ShortRead/.Rinstignore0000644000175100017510000000003212607265053015772 0ustar00biocbuildbiocbuilddoc/images doc/simon2.bst ShortRead/DESCRIPTION0000644000175100017510000000233512607325164015204 0ustar00biocbuildbiocbuildPackage: ShortRead Type: Package Title: FASTQ input and manipulation Version: 1.28.0 Author: Martin Morgan, Michael Lawrence, Simon Anders Maintainer: Bioconductor Package Maintainer Description: This package implements sampling, iteration, and input of FASTQ files. The package includes functions for filtering and trimming reads, and for generating a quality assessment report. Data are represented as DNAStringSet-derived objects, and easily manipulated for a diversity of purposes. The package also contains legacy support for early single-end, ungapped alignment formats. License: Artistic-2.0 LazyLoad: yes Depends: BiocGenerics (>= 0.11.3), BiocParallel, Biostrings (>= 2.37.1), Rsamtools (>= 1.21.4), GenomicAlignments (>= 1.5.4) Imports: Biobase, S4Vectors (>= 0.7.1), IRanges (>= 2.3.7), GenomeInfoDb (>= 1.1.19), GenomicRanges (>= 1.21.6), hwriter, methods, zlibbioc, lattice, latticeExtra, Suggests: BiocStyle, RUnit, biomaRt, GenomicFeatures, yeastNagalakshmi LinkingTo: S4Vectors, IRanges, XVector, Biostrings biocViews: DataImport, Sequencing, QualityControl NeedsCompilation: yes Packaged: 2015-10-14 01:05:56 UTC; biocbuild ShortRead/NAMESPACE0000644000175100017510000000220512607265054014712 0ustar00biocbuildbiocbuilduseDynLib(ShortRead, .registration=TRUE) import(zlibbioc, methods, BiocGenerics, S4Vectors, IRanges, Biostrings, GenomeInfoDb, GenomicRanges, GenomicAlignments, Rsamtools, Biobase) importFrom(BiocParallel, bplapply) importFrom(grDevices, colorRampPalette, dev.off, jpeg, pdf, png) importFrom(hwriter, hwrite, hwriteImage) importFrom(lattice, dotplot, histogram, levelplot, llines, lsegments, ltext, panel.abline, panel.dotplot, panel.grid, panel.histogram, panel.levelplot, panel.xyplot, strip.custom, xyplot) importFrom(latticeExtra, xyplot.list) importFrom(stats, approxfun, setNames) importFrom(utils, capture.output, packageDescription, read.csv, read.table, Sweave) exportClassPattern("^.*$") exportMethods(show, coerce, dim, length, "[", "[<-", "[[", alphabetFrequency, alphabet, coverage, encoding, narrow, reverse, reverseComplement, strand, trimLRPatterns, width, append, rbind, "%in%", c, lapply, sapply) export(pData, phenoData, varLabels, varMetadata) exportPattern("^[^\\.]") S3method(close, ShortReadFile) S3method(open, ShortReadFile) ShortRead/NEWS0000644000175100017510000002732312607265054014202 0ustar00biocbuildbiocbuildCHANGES IN VERSION 1.27 ----------------------- SIGNIFICANT USER-VISIBLE CHANGES o fastqFilter allows several input 'files' to be written to a single 'destinations'. o readAligned() for BAM files is defunct. QA and associated methods removed. o srapply removed CHANGES IN VERSION 1.25 ----------------------- SIGNIFICANT USER-VISIBLE CHANGES o srapply is defunct o readAligned() for BAM files is deprecated; use GenomicAlignments::readGAligned instead. BUG FIXES o close opened files when parsing old bowtie, soap, and solexa export file formats. o Don't allow R memory to be released prematurely when processing old bowtie file formats / creating external pointers. o writeFastq,FastqFile obeys 'compress' argument; mode must be specified by the caller (typically mode="a") CHANGES IN VERSION 1.23 ----------------------- NEW FEATURES o alphabetScore,PhredQuality-method implemented o reverse, reverseComplement methods for ShortReadQ objects o srlist, to access SRList data as a base R list. SIGNIFICANT USER-VISIBLE CHANGES o readFastq qualityType="Auto" chooses base-64 encoding when no characters are encoded at less than 59, and some are encoded at greater than 74. BUG FIXES o report() prints adapter contaminants correctly when user has stringsAsFactors=FALSE o qa(..., sample=FALSE) no longer tries to re-match 'pattern' argument CHANGES IN VERSION 1.21 ----------------------- NEW FEATURES o writeFastq can write (and does so by default) gz-compressed files SIGNIFICANT USER-VISIBLE CHANGES o Use BiocParallel rather than srapply, mark srapply as 'Deprecated' o qa,character-method defaults to type="fastq" o Input of 'legacy' formats marked as such o alphabetByCycle supports amino acid string sets CHANGES IN VERSION 1.19 ----------------------- SIGNIFICANT USER-VISIBLE CHANGES o qa(..., type="fastq") uses a sample of n=1000000 reads by default, rather than then entire file; use sample=FALSE to revert to previous behavior. NEW FEATURES o encoding,FastqQuality and encoding,SFastqQuality provide a convenient map between letter encodings and their corresponding integer quality values. o filterFastq transforms one fastq file to another, removing reads or nucleotides via a user-specified function. trimEnds,character-method & friends use this for an easy way to remove low-quality base. BUG FIXES o writeFastq successfully writes zero-length fastq files. o FastqStreamer / FastqSampler warn on incomplete (corrupt) files CHANGES IN VERSION 1.17 ----------------------- SIGNIFICANT USER-VISIBLE CHANGES o FastqSampler can return records in the order encountered in the sampled file. o Increase to 10000 the number of reads examined for determining Fastq quality type o as(FastqQuality, "numeric") returns a vector of quality scores concatenated end to end (previously cycle to cycle), without padding to effective equal width BUG FIXES o trimTails, successive=TRUE would return inconsistent results o FastqStreamer, FastqSampler parse fastq files created with '\r' CHANGES IN VERSION 1.15 ----------------------- NEW FEATURES o FastqStreamer accepts IRanges for selecting input records SIGNIFICANT USER-VISIBLE CHANGES o as(ShortReadQ, "matrix") now accepts ShortReadQ instances with heterogeneous widths, returning a matrix x[i, j] with NA values in when j > width()[i]. BUG FIXES o readAligned, type="BAM" correctly adds required 'what' elements o FastqSampler would only randomize first read; introduced 1.13.9 2011-12-02, fixed 1.15.4 2012-04-25 o report(qa, ...) no longer produces obviously confused base calls per cycle o FastqFileList would fail to initialize correctly from a character vector CHANGES IN VERSION 1.13 ----------------------- SIGNIFICANT USER-VISIBLE CHANGES o FastqSampler is considerably faster o FastqSampler and FastqStreamer require explicit close() to avoid warnings about closing unused connections BUG FIXES o qa reports on very large lanes would overflow alphabetFrequency o qa report scales adapaterContamination correctly o FastqSampler would rarely sample fewer than requested reads o FastqSampler supports outputs of >2^31 - 1 total nucleotides o readFastq parses records with 0 width CHANGES IN VERSION 1.11 ----------------------- NEW FEATURES o trimTails to trim low quality trailing nucleotides o trimEnds to remove arbitrary (vectors of) letters from reads or qualities o FastqStreamer to iterate over a fastq file o FastqFile, FastqFileList to represent fastq files SIGNIFICANT USER-VISIBLE CHANGES o writeFastq has argument full, default value FALSE, disabling printing of identifier a second time in '+' line o srapply requires that options(srapply_fapply="parallel") or options(srapply_fapply="Rmpi") to enable parallel processing via fapply BUG FIXES o SolexaRealign, SolexaAlign, and SolexaResult transposed strand information o FastqSampler segfaulted on some files o writeFasta had a semi-documented argument mode; it is now documented and as a consequence dis-allows argument 'append' that would previously have been passed to underlying methods. CHANGES IN VERSION 1.9 ---------------------- NEW FEATURES o Support for HiSeq tile layout o Track reads passing filters, including across logical filter operations CHANGES IN VERSION 1.7 ---------------------- BUG FIXES o qa() represented the per-cycle quality scores incorrectly; this influenced qa[["perCycle"]][["quality"]][["Score"]], but not the qa report. o qa() for type="SolexaExport" transposed the 'aligned' and 'filtered' labels on all elements of SolexaExportQA. Thanks Nicolas Delhomme for the report. o report() failed when each read was unique. Thanks Peng Yu for the report. SIGNIFICANT USER-VISIBLE CHANGES o The perCycleQuality graph in the qa report now includes boxplots for all cycles instead of just the median value. o A depthOfCoverage graph has been added to the qa report for BAM, Bowtie, SolexaExport and SolexaRealign file types. o An adapterContamination measure has been added to the qa report for BAM, Bowtie, SolexaExport, SolexaRealign and Fastq file types. o srorder is now stable (the original order of identical is preservered). NEW FEATURES o Add class BAMQA. qa() can now be called on BAM files. o The param argument in readAligned() and qa() for type="BAM" can now be a single ScanBamParam object or a list of them. o FastqSampler can be used to draw samples from a fastq file. CHANGES IN VERSION 1.5 ---------------------- SIGNIFICANT USER-VISIBLE CHANGES o levels(strand(aln)) is c("+", "-", "*") (was c("-", "+", "*")) o Add USE.NAMES argument to srapply, minimum length to (internal) function ..reduce. NEW FEATURES o Optionally retrieve multiplex bar code, paired read number, and id from SolexaExport (contribution from Nicolas Delhomme) o renew() and renewable() provide an interface to updating ShortRead instances o srapply checks for and uses multicore o readIntensities supports Illumina RTA '.cif' / '.cnf' files o readAligned type="BAM" parses BAM files, extracting simple (no indel) cigars BUG FIXES o readIntensities type="IparIntensity" correctly handles multiple tiles CHANGES IN VERSION 1.3 ---------------------- SIGNIFICANT USER-VISIBLE CHANGES o coverage,AlignedRead-method has a changed interface (shift/width rather than start/end) and default behavior (return value in genome coordinates, rather than minimal covered region). o readAligned,character-method, type="Bowtie" and readFastq return FastqQuality by default. o coverage,AlignedRead-method now returns an RleList NEW FEATURES o qa reports from _realign.txt, MAQMap files o QualityScoreDNAStringSet coercion methods o qa type="character" now accepts a filter argument with value srFilter() o alphabetByCycle supports variable-width XStringSets o qa,ShortReadQ and qa,list methods for qa on existing objects BUG FIXES o Parse .gz realign files o alphabetScore,FastqQuality-method shifted quality by +1 CHANGES IN VERSION 1.1 ---------------------- SIGNIFICANT USER-VISIBLE CHANGES o 454 quality scores are returned as FastqQuality-encoded o For functions accepting dirPath, pattern to name files, allow dirPath to be a vector of file names when pattern is character(). o width() on ShortRead and derived classes (including AlignedRead now returns a vector of widths, of length equal to the length of the object. NEW FEATURES o Add Bowtie as a 'type' value for qa and report o Add dustyScore() and dustyFilter() to identify low-complexity regions o Parse _qseq files (to ShortReadQ or XDataFrame) o Parse IPAR image intensity files _int.txt.p, _nse.txt.p, _pos.txt o Create HTML-based quality assessment reports o Add trimLRPatterns() for ShortRead and derived classes (ShortReadQ, AlignedRead). o Add narrow() for ShortRead, QualityScore, and derived classes. o Use append() to append two objects of the same ShortReadQ or QualityScore and derived classes together o writeFastq for classes derived from ShortReadQ o Input functions support .gz or text files. o readIntensity reads Solexa image intensity files into R, including information about lane, tile, x, and y coordinates of each read. o readPrb returns different types of objects, depending on the 'as' argument of the readPrb,character-method. o readXStringSet gets arguments skip, nrows; argument order changed slightly o New built-in SRFilters positionFilter, uniqueFilter to select reads aligning to particular positions, or to select only unique instances of reads aligning to each position. o readAligned gains a Solexa _results parser (_results files are listed as 'intermediate' in the Solexa manual, and not a good end-point for analysis) o readAligned gains a Bowtie output parser o readAligned gains ability to parse MAQ 0.7 version binary files BUG FIXES o readQual would fail to read 454 quality scores correctly when these spanned more than one line of input per read o coverage treated reads as 1 base longer than they were o FastqQuality got the quality encoding off by one in as(x, "matrix") o qa_solexa.Rnw incorrectly displayed read occurences when lanes were presented out-of-order (an unusual occurence) o readAligned SolexaAlign, etc., updated to parse 'chromsome' and 'position', and 'strand' information correctly o readAligned MAQMapview failed for most chromosome labels CHANGES IN VERSION 1.0 ---------------------- SIGNIFICANT USER-VISIBLE CHANGES o SRFilter allows construction of filters that can be used to subset existing data objects, or filter incoming (readAligned, at the moment) objects. o readAligned for Solexa-based alignments return 'strand' information as factor with levels "-", "+", "*" (strand not relevant), NA (no strand information available). o srorder, srsort, srrank, and srduplicated for AligendRead class now sort based on chromosome, strand, position AND sread; previous behavior can be recovers by extracting the sequences srsort(sread(aln)), etc. o Functions using SolexaPath now search all relevant directories, e.g., in analysisPath, rather than the first BUG FIXES o 'run' in eland_export files is correctly parsed as a factor (start date: 29 September, 2008) ShortRead/R/0000755000175100017510000000000012607265053013674 5ustar00biocbuildbiocbuildShortRead/R/AllClasses-Base.R0000644000175100017510000002775012607265053016730 0ustar00biocbuildbiocbuild## .STRAND_LEVELS needs to be early, to be used in class ## prototypes. C-level code retrieves this value. ## readAligned,type=MAQMap depends on this ordering. .STRAND_LEVELS <- levels(strand()) .toStrand_Solexa <- function(x) factor(.STRAND_LEVELS[match(x, c("F", "R"))], levels=.STRAND_LEVELS) .srValidity <- function(object) TRUE setGeneric(".srValidity") ## Virtual base classes setClass(".ShortReadBase") ## .SRUtil: SRError / SRList / SRVector / SRFilter setClass(".SRUtil", representation=representation("VIRTUAL")) setClass("SRError", contains=".SRUtil", representation=representation( .type="character", .message="character"), prototype=prototype( .type="Unspecified", .message="unknown error"), validity=.srValidity) setClass("SRWarn", contains=".SRUtil", representation=representation( .type="character", .message="character"), prototype=prototype( .type="Unspecified", .message="unknown warning"), validity=.srValidity) setClass("SRList", contains=".SRUtil", representation=representation( .srlist="list"), prototype=prototype( .srlist=list())) setClass("SRVector", contains="SRList", representation=representation( vclass="character"), prototype=prototype( vclass=NA_character_), validity=.srValidity) setClass("SRFilter", contains=c("function", ".SRUtil"), representation=representation( name="ScalarCharacter"), validity=.srValidity) setClass("SRFilterResult", contains=c("logical", ".SRUtil"), representation=representation( name="ScalarCharacter", stats="data.frame")) ## Intensity setClass("IntensityMeasure", contains=".ShortReadBase", representation=representation("VIRTUAL")) setClass("IntensityInfo", contains=".ShortReadBase", representation=representation("VIRTUAL")) setClass("Intensity", contains=".ShortReadBase", representation=representation( .hasMeasurementError="ScalarLogical", readInfo="IntensityInfo", intensity="IntensityMeasure", measurementError="IntensityMeasure", "VIRTUAL"), prototype=prototype( .hasMeasurementError=mkScalar(FALSE)), validity=.srValidity) ## Intensity, implementation setClass("ArrayIntensity", contains=c("array", "IntensityMeasure"), prototype=prototype(array(0, c(0, 0, 0)))) ArrayIntensity <- function(intensity=array(0, c(0, 0, 0)), ...) { new("ArrayIntensity", intensity, ...) } setClass("SolexaIntensityInfo", ## AnnotatedDataFrame as prototype does not work, r46984. ## .init is a work-around to identify user-constructed ## objects that should be valid; used in .srValidity-method contains=c("AnnotatedDataFrame", "IntensityInfo"), representation=representation(.init="ScalarLogical"), prototype=prototype(.init=mkScalar(FALSE)), validity=.srValidity) SolexaIntensityInfo <- function(lane=integer(0), tile=integer(0)[seq_along(lane)], x=integer(0)[seq_along(lane)], y=integer(0)[seq_along(lane)]) { new("SolexaIntensityInfo", data=data.frame( lane=lane, tile=tile, x=x, y=y), varMetadata=data.frame( labelDescription=c( "Solexa lane nubmer", "Solexa tile nubmer", "Tile x coordinate", "Tile y coordinate")), .init=mkScalar(TRUE)) } setClass("SolexaIntensity", contains="Intensity", prototype=prototype( readInfo=SolexaIntensityInfo(), intensity=ArrayIntensity(), measurementError=ArrayIntensity()), validity=.srValidity) setClass("RtaIntensity", contains="SolexaIntensity") ## QualityScore setClass("QualityScore", contains=".ShortReadBase", representation=representation("VIRTUAL")) setClass("NumericQuality", contains="QualityScore", representation=representation( quality="numeric")) NumericQuality <- function(quality=numeric(0)) { # used below new("NumericQuality", quality=quality) } setClass("IntegerQuality", contains="NumericQuality", representation=representation( quality="integer")) setClass("MatrixQuality", contains="QualityScore", representation=representation( quality="matrix")) setClass("FastqQuality", contains="QualityScore", representation=representation( quality="BStringSet"), prototype=prototype( quality=BStringSet(character(0)))) setClass("SFastqQuality", contains="FastqQuality") # Solexa variant ## ShortRead / ShortReadQ setClass("ShortRead", contains=".ShortReadBase", representation=representation( sread="DNAStringSet", id="BStringSet"), prototype=prototype( sread=DNAStringSet(character(0)), id=BStringSet(character(0))), validity=.srValidity) setClass("ShortReadQ", contains="ShortRead", representation=representation( quality="QualityScore"), prototype=prototype( quality=NumericQuality()), validity=.srValidity) ## ExperimentPath (base class for experimental data paths) setClass("ExperimentPath", contains = c(".ShortReadBase"), representation = representation( basePath="character"), prototype = prototype( basePath=NA_character_), validity = .srValidity) ## SRSet (base class for datasets) setClass("SRSet", contains = ".ShortReadBase", representation = representation( sourcePath="ExperimentPath", # for lazy loading readIndex="integer", # for tracking subsets and sorting readCount="integer", # counts of reads in each sample phenoData="AnnotatedDataFrame", # experimental design readData="AnnotatedDataFrame"), # arbitrary read annotations prototype = prototype( sourcePath=new("ExperimentPath"), readIndex=integer(0), readCount=integer(0), phenoData=new("AnnotatedDataFrame"), readData=new("AnnotatedDataFrame")), validity = .srValidity) ## AlignedRead: AlignedDataFrame setClass("AlignedDataFrame", contains="AnnotatedDataFrame", prototype=prototype( new("AnnotatedDataFrame", dimLabels=c("readName", "alignColumn"))), validity=.srValidity) setClass("AlignedRead", contains="ShortReadQ", representation=representation( chromosome="factor", position="integer", strand="factor", alignQuality="QualityScore", alignData="AlignedDataFrame"), prototype=prototype( strand=factor(levels=.STRAND_LEVELS), alignQuality=NumericQuality()), validity=.srValidity) ## .Solexa setClass(".Solexa", contains=".ShortReadBase", representation=representation("VIRTUAL")) setClass("SolexaPath", contains=c("ExperimentPath", ".Solexa"), representation=representation( dataPath="character", scanPath="character", imageAnalysisPath="character", baseCallPath="character", analysisPath="character"), prototype=prototype( scanPath=NA_character_, dataPath=NA_character_, imageAnalysisPath=NA_character_, baseCallPath=NA_character_, analysisPath=NA_character_), validity=.srValidity) setClass("SolexaSet", contains=".Solexa", representation=representation( solexaPath="SolexaPath", laneDescription="AnnotatedDataFrame"), prototype=prototype( solexaPath=new("SolexaPath"), laneDescription=new("AnnotatedDataFrame", data=data.frame(1:8)[,FALSE], dimLabels=c("laneNames", "laneColumns"))), validity=.srValidity) ### .Roche setClass(".Roche", contains=".ShortReadBase", representation=representation("VIRTUAL")) setClass("RochePath", contains=c("ExperimentPath", ".Roche"), representation=representation( readPath="character", qualPath="character"), prototype=prototype( readPath=NA_character_, qualPath=NA_character_), validity=.srValidity) setClass("RocheSet", contains=c("SRSet", ".Roche"), representation=representation( sourcePath="RochePath"), prototype=prototype( sourcePath=new("RochePath")), validity=.srValidity) ## QA setClass(".QA", contains=c("SRList", ".ShortReadBase"), representation=representation("VIRTUAL")) setClass("ShortReadQQA", contains=".QA") setClass("FastqQA", contains="ShortReadQQA") # synonym setClass("SolexaExportQA", contains=".QA") setClass("SolexaRealignQA", contains=".QA") setClass("MAQMapQA", contains=".QA") setClass("BowtieQA", contains=".QA") ## Snapshot setClass("SnapshotFunction", representation=representation( reader="function", viewer="function", limits="integer")) setClass("SnapshotFunctionList", "SimpleList", prototype=prototype(elementType="SnapshotFunction")) setOldClass("trellis") .SpTrellis <- setRefClass("SpTrellis", fields=list(trellis="trellis", .debug_enabled="logical")) .Snapshot <- setRefClass("Snapshot", fields=list( .debug="function", .auto_display="logical", ## ranges .range="GRanges", .orig.range="GRanges", .zin="logical", .pright="logical", ## data .data="data.frame", .data_dirty="logical", .initial_functions="SnapshotFunctionList", .current_function="character", .using_initial_functions="logical", ## more-or-less public ## annotation track files="BamFileList", functions="SnapshotFunctionList", view="SpTrellis", annTrack="ANY", ignore.strand="logical", fac="character")) ## ShortReadFile -- methods elsewhere .ShortReadFile_g <- setRefClass("ShortReadFile", fields=list(con="ANY", path="character"), methods=list( msg = function(txt) { "display 'txt' with status information as a message()" s <- status(update=TRUE) message(txt, " ", paste(names(s), s, sep="=", collapse=" ")) }, status=function(update=FALSE) {}, show = function() { cat("class:", class(.self), "\n") cat(Rsamtools:::.ppath("path", path)) cat("isOpen:", isOpen(.self), "\n") })) .FastqFile_g <- setRefClass("FastqFile", contains="ShortReadFile") .FastqFileReader_g <- setRefClass("FastqFileReader", contains="FastqFile", fields = list( reader = "function", readerBlockSize="integer", .status = "integer", sampler = "externalptr", verbose = "logical"), methods = list( yield = function(...) { stop("'yield' not implemented for class '", class(.self), "'") }, show = function() { cat("class:", class(.self), "\n") nm <- tryCatch({ basename(summary(.self$con)$description) }, error=function(err) { "closed" }) cat("file:", nm, "\n") s <- .self$status() cat("status:", paste(names(s), s, sep="=", collapse=" "), "\n") })) .FastqStreamer_g <- setRefClass("FastqStreamer", contains="FastqFileReader", fields = list( skips="integer", adds = "integer", ith = "integer", recycle = "logical")) .FastqSampler_g <- setRefClass("FastqSampler", contains="FastqFileReader", fields = list( ordered = "logical")) setClass("FastqFileList", contains="RsamtoolsFileList", prototype=prototype(elementType="FastqFile")) setClass("FastqSamplerList", contains="FastqFileList", prototype=prototype(elementType="FastqSampler")) setClass("FastqStreamerList", contains="FastqFileList", prototype=prototype(elementType="FastqStreamer")) ShortRead/R/AllClasses-QA.R0000644000175100017510000000714312607265053016351 0ustar00biocbuildbiocbuildsetClass(".QA2", representation("VIRTUAL", ".ShortReadBase")) ## data sources .QAData <- setRefClass("QAData", fields=list(seq="ShortReadQ", filter="logical"), methods=list(show=function() { cat(class(.self), " ") print(.self$seq) cat(sprintf("filter: %d of %d", sum(.self$filter), length(.self$filter)), "\n") })) setClass("QASummary", representation("VIRTUAL", ".QA2", addFilter="ScalarLogical", useFilter="ScalarLogical", values="DataFrame", flag="integer", html="ScalarCharacter"), prototype=prototype( addFilter=mkScalar(TRUE), useFilter=mkScalar(TRUE))) ## Sources setClass("QASource", representation("VIRTUAL", "QASummary", metadata="DataFrame", data="QAData", flagNSequencesRange="integer"), prototype=prototype( flagNSequencesRange=NA_integer_), validity=function(object) { msg <- NULL if (!(is.na(object@flagNSequencesRange) || 2L == length(object@flagNSequencesRange))) msg <- "'flagNSequencesRange' must be integer(2)" if (is.null(msg)) TRUE else msg }) setClass("QAFastqSource", representation("QASource", con="character", n="ScalarInteger", readerBlockSize="ScalarInteger")) ## summaries setClass("QAFlagged", representation("QASummary")) setClass("QAFiltered", representation("QASummary")) setClass("QANucleotideUse", representation("QASummary")) setClass("QAQualityUse", representation("QASummary")) setClass("QASequenceUse", representation("QASummary")) setClass("QAReadQuality", representation("QASummary", flagK="ScalarNumeric", flagA="ScalarInteger")) setClass("QAAdapterContamination", representation("QASummary", Lpattern="ScalarCharacter", Rpattern="ScalarCharacter", max.Lmismatch="ScalarNumeric", max.Rmismatch="ScalarNumeric", min.trim="ScalarInteger")) setClass("QAFrequentSequence", representation("QASummary", n="ScalarInteger", a="ScalarInteger", flagK="ScalarNumeric", reportSequences="ScalarLogical"), prototype=prototype(n=mkScalar(10L)), validity=function(object) { msg <- NULL if (is.finite(object@n) && is.finite(object@a)) msg <- c(msg, "only one of 'n' or 'a' can be defined") else if (!is.finite(object@n) && !is.finite(object@a)) msg <- c(msg, "one of 'n' or 'a' must be defined") if (is.null(msg)) TRUE else paste("\n ", msg) }) setClass("QANucleotideByCycle", representation("QASummary")) setClass("QAQualityByCycle", representation("QASummary")) ## collation setClass("QACollate", representation(".QA2", "SimpleList", src="QASource"), prototype=prototype( src=new("QAFastqSource"), elementType="QASummary")) setClass("QA", representation(".QA2", "SimpleList", src="QASource", filtered="QAFiltered", flagged="QAFlagged"), prototype=prototype( src=new("QAFastqSource"), elementType="QASummary")) ShortRead/R/AllGenerics-Base.R0000644000175100017510000002063412607265053017064 0ustar00biocbuildbiocbuild## new generics setGeneric(".throw", function(object, call=NULL, ...) standardGeneric(".throw"), signature=c("object")) setGeneric("renewable", function(x, ...) standardGeneric("renewable")) setGeneric("renew", function(x, ...) standardGeneric("renew")) countLines <- function(dirPath, pattern=character(0), ..., useFullName=FALSE) { src <- .file_names(path.expand(dirPath), pattern, ...) nLines <- .Call(.count_lines, src) names(nLines) <- if (useFullName) src else basename(src) nLines } setGeneric("countLines", signature="dirPath") alphabetByCycle <- function(stringSet, alphabet, ...) { if (missing(alphabet)) alphabet <- Biostrings::alphabet(stringSet) w <- max(0L, width(stringSet)) .Call(.alphabet_by_cycle, stringSet, w, alphabet) } setGeneric("alphabetByCycle", signature="stringSet") setGeneric("dustyScore", function(x, batchSize=NA, ...) standardGeneric("dustyScore"), signature="x") setGeneric("srorder", function(x, ...) standardGeneric("srorder")) setGeneric("srduplicated", function(x, ...) standardGeneric("srduplicated")) setGeneric("srsort", function(x, ...) standardGeneric("srsort")) setGeneric("srrank", function(x, ...) standardGeneric("srrank")) setGeneric("tables", function(x, n=50, ...) standardGeneric("tables"), signature="x") ## Intensities setGeneric("readIntensities", function(dirPath, pattern=character(0), ...) standardGeneric("readIntensities"), signature="dirPath") ## QualityScore setGeneric("FastqQuality", function(quality, ...) standardGeneric("FastqQuality")) setGeneric("SFastqQuality", function(quality, ...) standardGeneric("SFastqQuality")) setGeneric("readPrb", function(dirPath, pattern=character(0), ...) standardGeneric("readPrb"), signature="dirPath") ## ShortRead / ShortReadQ setGeneric("ShortRead", function(sread, id, ...) standardGeneric("ShortRead")) setGeneric("sread", function(object, ...) standardGeneric("sread")) setGeneric("writeFasta", function(object, file, mode="w", ...) standardGeneric("writeFasta"), signature=signature("object")) setGeneric("ShortReadQ", function(sread, quality, id, ...) standardGeneric("ShortReadQ")) setGeneric("readFastq", function(dirPath, pattern=character(0), ...) standardGeneric("readFastq"), signature="dirPath") setGeneric("writeFastq", function(object, file, mode="w", full=FALSE, compress=TRUE, ...) standardGeneric("writeFastq"), signature=c("object", "file")) setGeneric("readFasta", function(dirPath, pattern=character(0), ..., nrec=-1L, skip=0L) standardGeneric("readFasta"), signature="dirPath") setGeneric("readQual", function(dirPath, pattern=character(0), ...) standardGeneric("readQual")) setGeneric("read454", function(dirPath, ...) standardGeneric("read454")) setGeneric("readFastaQual", function(dirPath, ...) standardGeneric("readFastaQual")) setGeneric("readBaseQuality", function(dirPath, ...) standardGeneric("readBaseQuality")) setGeneric("readQseq", function(dirPath, pattern=character(0), ..., as=c("ShortReadQ", "DataFrame", "XDataFrame"), filtered=FALSE, verbose=FALSE) standardGeneric("readQseq"), signature="dirPath") setGeneric("trimTails", function(object, k, a, successive=FALSE, ..., ranges=FALSE) standardGeneric("trimTails"), signature="object") setGeneric("trimTailw", function(object, k, a, halfwidth, ..., ranges=FALSE) standardGeneric("trimTailw"), signature="object") setGeneric("trimEnds", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) standardGeneric("trimEnds"), signature="object") setGeneric("clean", function(object, ...) standardGeneric("clean")) setGeneric("srdistance", function(pattern, subject, ...) standardGeneric("srdistance"), signature=c("pattern", "subject")) setGeneric("alphabetScore", function(object, ...) standardGeneric("alphabetScore")) ## SRFilter setGeneric("name", function(x, ...) standardGeneric("name")) setGeneric("stats", function(x, ...) standardGeneric("stats")) setGeneric("srFilter", function(fun, name=NA_character_, ...) standardGeneric("srFilter"), signature="fun") ## AlignedRead setGeneric("readAligned", function(dirPath, pattern=character(0), ...) standardGeneric("readAligned"), signature="dirPath") setGeneric("chromosome", function(object, ...) standardGeneric("chromosome")) setGeneric("id", function(object, ...) standardGeneric("id")) setGeneric("position", function(object, ...) standardGeneric("position")) ## ExperimentPath experimentPath <- function(object, ...) { slot(object, "basePath") } setGeneric("experimentPath") ## *Set setGeneric("qa", function(dirPath, ...) standardGeneric("qa")) report <- function (x, ..., dest = tempfile(), type="html") { func <- switch(type, html=report_html, pdf=.report_pdf, .report_any) func(x, dest, type, ...) } setGeneric("report", signature="x") .report_any <- function (x, dest, type, ...) { .throw(SRError("UserArgumentMismatch", "'%s, type=\"%s\"' not implemented for class '%s'", "report", type, class(x))) } setGeneric("report_html", function(x, dest, type, ...) standardGeneric("report_html"), signature="x", useAsDefault=.report_any) setGeneric(".report_pdf", function(x, dest, type, ...) standardGeneric(".report_pdf"), signature="x", useAsDefault=.report_any) ## SolexaSet setGeneric("SolexaSet", function(path, ...) standardGeneric("SolexaSet")) setGeneric("laneNames", function(object, ...) { standardGeneric("laneNames") }) ## Roche setGeneric("RocheSet", function(path, ...) standardGeneric("RocheSet")) setGeneric("runNames", function(object, ...) standardGeneric("runNames")) ## Snapshot setGeneric("Snapshot", function(files, range, ...) standardGeneric("Snapshot")) setGeneric("SnapshotFunctionList", function(...) standardGeneric("SnapshotFunctionList")) setGeneric("files", function(x, ...) standardGeneric("files")) setGeneric("vrange", function(x, ...) standardGeneric("vrange")) setGeneric("functions", function(x, ...) standardGeneric("functions")) setGeneric("annTrack", function(x, ...) standardGeneric("annTrack")) setGeneric("ignore.strand", function(x, ...) standardGeneric("ignore.strand")) setGeneric("fac", function(x, ...) standardGeneric("fac")) setGeneric("getTrellis", function(x, ...) standardGeneric("getTrellis")) setGeneric("togglez", function(x, ...) standardGeneric("togglez")) setGeneric("togglep", function(x, ...) standardGeneric("togglep")) setGeneric("togglefun", function(x, name, ...) standardGeneric("togglefun")) setGeneric("zoom", function(x, range, ...) standardGeneric("zoom")) setGeneric("pan", function(x, ...) standardGeneric("pan")) setGeneric("view", function(x, ...) standardGeneric("view")) setGeneric("zi", function(x, ...) standardGeneric("zi")) setGeneric("zo", function(x, ...) standardGeneric("zo")) setGeneric("restore", function(x, ...) standardGeneric("restore")) ## ShortReadFile setGeneric(".ShortReadFile", function(g, path, ...) standardGeneric(".ShortReadFile"), signature="path") setGeneric("FastqFileList", function(..., class="FastqFile") standardGeneric("FastqFileList"), signature="...") setGeneric("FastqStreamer", function(con, n, readerBlockSize=1e8, verbose=FALSE) standardGeneric("FastqStreamer"), signature=c("con", "n")) setGeneric("FastqStreamerList", function(..., n, readerBlockSize=1e8, verbose=FALSE) standardGeneric("FastqStreamerList"), signature="...") setGeneric("FastqSamplerList", function(..., n=1e6, readerBlockSize=1e8, verbose=FALSE, ordered = FALSE) standardGeneric("FastqSamplerList"), signature="...") setGeneric("yield", function(x, ...) standardGeneric("yield")) ShortRead/R/AllGenerics-QA.R0000644000175100017510000000102612607265053016505 0ustar00biocbuildbiocbuildsetGeneric(".filter", function(object, useFilter, ...) standardGeneric(".filter"), signature="object") setGeneric(".clone", function(object, ...) standardGeneric(".clone")) setGeneric("QACollate", function(src, ...) standardGeneric("QACollate")) setGeneric("qa2", function(object, state, ..., verbose=FALSE) standardGeneric("qa2"), signature="object") setGeneric("flag", function(object, ..., verbose=FALSE) standardGeneric("flag"), signature="object") ShortRead/R/AllUtilities.R0000644000175100017510000001142512607265053016426 0ustar00biocbuildbiocbuild## public polyn <- function(nucleotides, n) { if (!is.character(nucleotides) || length(nucleotides)==0) .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "nucleotides", "character(1) or longer")) if (!all(sapply(nucleotides, nchar) == 1)) .throw(SRError("UserArgumentMismatch", "'%s' must all have %d characters", "nucleotides", 1)) if (!is.numeric(n) || length(n) != 1) .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "n", "numeric(1)")) sapply(nucleotides, function(elt) paste(rep(elt, n), collapse="")) } ## Errors .undefined_method_err <- function(class, method) { .throw(SRError("InternalError", "undefined method '%s' for class '%s'", method, class)) } .subset_err <- function() { .throw(SRError("UserSubset", "'[' must be called with only subscript 'i'")) } .arg_missing_err <- function(arg, method, help) { .throw(SRError("UserArgumentMismatch", "argument '%s' required for '%s'\n see %s", arg, method, help)) } .arg_mismatch_type_err <- function(arg, type) { .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", arg, type)) } .arg_mismatch_type_err2 <- function(arg, type, was) { .throw(SRError("UserArgumentMismatch", "'%s' must be '%s', was '%s'", arg, type, was)) } .arg_mismatch_value_err <- function(arg, value, possible_vals) { msg <- sprintf("arugment '%s' had value '%s'\n allowable values: '%s'", arg, value, paste(possible_vals, collapse="' '")) .throw(SRError("UserArgumentMismatch", paste(strwrap(msg, exdent=4), collapse="\n"))) } .check_type_and_length <- function(x, type, len) { name <- deparse(substitute(x)) if (!is(x, type)) .arg_mismatch_type_err2(name, type, class(x)) if (!is.na(len) && sum(length(x) == len)==0) { typelen <- paste(type, paste("(", len, ")", sep=""), sep="", collapse="' '") was <- sprintf("%s(%d)", class(x), length(x)) .arg_mismatch_type_err2(name, typelen, was) } } ## Misc .file_names <- function(dirPath, pattern, ..., full.names=TRUE) { if (!is(pattern, "character") || length(pattern)>1) .arg_mismatch_type_err("pattern", "character(0) or character(1)") if (!isTRUE(full.names)) .arg_mismatch_type_err("full.names", "TRUE") dirPath <- path.expand(dirPath) if (length(pattern) == 0 && all(file.exists(dirPath)) && all(!sapply(dirPath, function(elt) file.info(elt)$isdir))) { return(dirPath) } files <- list.files(dirPath, pattern, ..., full.names=full.names) files <- files[!file.info(files)$isdir] if (length(files)==0) { if (length(pattern)==0) pattern <- "character(0)" .throw(SRError("Input/Output", "no input files found\n dirPath: %s\n pattern: %s\n", paste(dirPath, collapse="\n "), paste(pattern, collapse="\n "))) } files } .show_some <- function(what, obj) { if (length(obj) == 0) cat(what, ": (0 total)\n", sep="") else cat(what, ": ", paste(selectSome(obj), collapse=" "), " (", length(obj), " total)\n", sep="") } ## Class- and method-related .forward_objq <- function(object, ...) callGeneric(quality(object), ...) .forward_xq <- function(x, ...) callGeneric(quality(x), ...) .forward_obj <- function(object, ...) callGeneric(sread(object), ...) .forward_x <- function(x, ...) callGeneric(sread(x), ...) .nameAll <- function(x) { ## Add names to character vector x. Elements of x without names get ## a name matching the element. if (!is.character(x)) stop("argument 'x' must be a character vector") if (length(names(x))) names(x) <- ifelse(nchar(names(x)) == 0, x, names(x)) else names(x) <- x x } .make_getter <- function(slots, where=topenv(parent.frame()), verbose=FALSE) { slots <- .nameAll(slots) nms <- names(slots) ok <- !sapply(nms, exists, where) if (verbose && !all(ok)) .throw(SRError("InternalError", "getter '%s' already exists", paste(nms[!ok], collapse=", "))) slots <- slots[ok] for (i in seq_along(slots)) { func <- eval(substitute(function(object, ...) slot(object, SLOT), list(SLOT=slots[i]))) assign(nms[i], func, where) } } ## Misc .append.factor <- function(x, values) { lvls <- unique(c(levels(x), levels(values))) factor(append(as.character(x), as.character(values)), lvls) } ShortRead/R/Snapshot.R0000644000175100017510000004143412607265053015624 0ustar00biocbuildbiocbuild.Snapshot$methods( .message = function(fmt, ...) { message(paste(strwrap(sprintf("Snapshot: %s", sprintf(fmt, ...)), exdent=2), collapse="\n")) }, .stop=function(fmt, ...) { stop(paste(strwrap(sprintf("Snapshot: %s", sprintf(fmt, ...)), exdent=2), collapse="\n")) }, .initial_range=function() { h <- scanBamHeader(.self$files[[1]])[["targets"]] if (!length(h)) .stop("header of file '%s' contains no targets", .self$files[[1]]) h <- h[1] GRanges(names(h), IRanges(1, h)) }, .update_range=function(lim) { if (lim[2] < lim[1]) .stop("The end of range must be greater than the start of the range.") if (lim[1] >= start(.self$.orig.range)) { start(.self$.range) <- lim[1] .self$.data_dirty <- TRUE } else .stop("Please make sure the range arguments define the regions within the limits of the original range.") if (lim[2] <= end(.self$.orig.range)) { end(.self$.range) <- lim[2] .self$.data_dirty <- TRUE } else .stop("Please make sure the range arguments define the regions within the limits of the original range.") invisible() }, .update_data=function() { .debug("update_data .current_function='%s'", .self$.current_function) .self$.data <- reader(.self$functions[[.self$.current_function]])(.self) .self$.data_dirty <- FALSE .self$view <- viewer(.self$functions[[.self$.current_function]])(.self) .debug("update_data view limits %.0f-%.0f", .self$view$get.x.limits()[1], .self$view$get.x.limits()[2]) .self }, .get.active_region=function() { 'get the start and end of the active region' c(start(.self$.range), end(.self$.range)) }, .is.initial_function=function() { 'check if initial reader/viwer function is currently in used:TRUE/FALSE' 'assign result to .using_initial_functions' .self$.using_initial_functions <- any(.self$.current_function %in% names(.self$.initial_functions)[1:2]) }, .check_currentFunction=function(currentFunction) { if (missing(currentFunction)) currentFunction <- .self$.current_function lms <- limits(.self$functions[[currentFunction]]) wd <- width(.self$.range) if (wd <= lms[1]) .stop("image width (%.0f) < function limit (%.0f bps)", wd, lms[1]) ## FIXME: suggest to use togglefun to change function else if (wd > lms[2]) .stop("image width (%.0f) > function limit (%.0f bps)", wd, lms[2]) invisible() }, .change_current_function=function(currentFunction) { 'Determine whether currentFunction should be change according to the size of the active region. This function is used by togglefun()' 'If yes, change .current_function and make .data_dirty TRUE' lms <- limits(.self$functions[[currentFunction]]) wd <- .self$view$get.x.limits()[2] - .self$view$get.x.limits()[1] if (wd <= lms[1]) .stop("image width (%.0f) < function limit (%.0f bps)", wd, lms[1]) ## FIXME: suggest to use togglefun to change function else if (wd > lms[2]) .stop("image width (%.0f) > function limit (%.0f bps)", wd, lms[2]) .self$.current_function=currentFunction .self$.data_dirty <- TRUE invisible() }, .zoom_in_xlim=function(){ 'get x limits for zoom in' lim <- .self$view$get.x.limits() center <- mean(lim) width <- (lim[2] - lim[1])/2 if (width > 50) xlim <- c(max(start(.self$.orig.range), center - width/2), min(end(.self$.orig.range), center + width/2)) else xlim <- lim }, .zoom_out_xlim=function() { 'get x limits for zoom out' lim <- .self$view$get.x.limits() center <- mean(lim) width <- diff(lim) xlim <- c(max(start(.self$.orig.range), center-width), min(end(.self$.orig.range), center+width)) }, .pleft_xlim=function() { 'get x limits for pan left' margin <- 50 lim <- .self$view$get.x.limits() by <- 0.8 * diff(lim) xlim <- c(max(lim[1] - by, start(.self$.orig.range)), max(lim[2] - by, start(.self$.orig.range) + margin)) ## if xlim is between the gap of the limits of .self$range ## that of the trellis object limits (.self$view$trellis$orig.x.limits xlim <- c(min(end(.self$.orig.range)-margin, xlim[1]), min(end(.self$.orig.range), xlim[2])) }, .pright_xlim=function() { 'get x limits for pan right' margin <- 50 lim <- .self$view$get.x.limits() by <- 0.8 * diff(lim) xlim <- c(min(lim[1]+by, end(.self$.orig.range) - margin), min(lim[2]+by, end(.self$.orig.range))) ## if xlim is between the gap of the limits of .self$range ## that of the trellis object limits (.self$view$trellis$orig.x.limits xlim <- c(max(start(.self$.orig.range), xlim[1]), max(start(.self$.orig.range)+margin, xlim[2])) }, .reset_active_range=function(xlim) { 'determine wether to reset active range. used by pan and zoom out' win <- .self$view$trellis$orig.x.limits f1 <- xlim[1] < min(start(.self$.range), win[1]) f2 <- xlim[2] > end(.self$.range, win[2]) any(f1,f2) }, .switch_ini_currentFunction=function(xlim) { 'determine wether to switch viewer functions (TRUE/FALSE). used only when the current function is one of default functions (fine_coverage or coarse_coverage)' sw <- FALSE win <-(xlim[2] - xlim[1]) < limits(.self$.initial_functions[["fine_coverage"]])[2] fine <- .self$.current_function == "fine_coverage" if (win) { # limits within fine_coverage limit and viewer is coarse if (!fine) sw <- TRUE } else { # limits over fine_coverage limit and viewer is fine if (fine) sw <- TRUE } return(sw) }, .initialize_currentFunction=function() { if (width(.self$.range) < limits(.self$.initial_functions[["fine_coverage"]])[2]) currentFunction <- "fine_coverage" else currentFunction <- "coarse_coverage" }, .initialize_fac=function(fac) { ## initialize fac and values(.self$fiels)[[.self$fac]] .self$fac <- fac if (is.null(values(.self$files))) .self$fac <- character(0L) if (length(.self$fac) & !is.null(values(.self$files))) { if (length(.self$fac) > 1) .self$fac <- .self$fac[1] if (!(.self$fac %in% names(values(.self$files)))) ## not sure why cannot use values(.self$files) .stop("'%s' is not a column of elementMetadata in the 'files' input arguement", .self$fac) values(.self$files)[[.self$fac]] <- factor(values(.self$files)[[.self$fac]]) } }, initialize=function(..., functions=SnapshotFunctionList(), currentFunction, ignore.strand=FALSE, fac=character(0L), annTrack=NULL, .range, .auto_display=TRUE, .debug=FALSE) { callSuper(...) .self$.debug <- if (.debug) .self$.message else function(...) {} .self$.zin <- TRUE .self$.pright <- TRUE .self$.auto_display <- .auto_display tryCatch({ for (f in as.list(.self$files)) if (!isOpen(f)) open(f) }, error=function(err) { .stop("open BamFile failed: %s", conditionMessage(err)) }) .self$.range <- if (missing(.range)) .initial_range() else .range .self$.orig.range <- .self$.range .self$.initial_functions <- SnapshotFunctionList(fine_coverage=.fine_coverage, coarse_coverage=.coarse_coverage, multifine_coverage=.multifine_coverage, multicoarse_coverage=.multicoarse_coverage) .self$functions <- c(.self$.initial_functions, functions) ## initialize current function if (!missing(currentFunction)) { if (!currentFunction %in% names(.self$functions)) .stop("'%s' is not in SnapshotFunctionList", currentFunction) .self$.check_currentFunction(currentFunction) } else { currentFunction <- .self$.initialize_currentFunction() } .self$.initialize_fac(fac) ## initialize fac and fix values(.self$fiels) .self$annTrack <- annTrack .self$ignore.strand <- ignore.strand .self$.current_function <- currentFunction .self$.is.initial_function() # assign .self$using.initial_function .self$.data_dirty <- TRUE .self$.update_data() .self$display() .self }, set_range=function(range) { 'resetting the active range, called when setting zoom(..., range=)' 'also used for determine the best fit SnapshotFunctions if the initial functions are in used.' # seqlevel must be the same if (!all(seqlevels(range) %in% seqlevels(.self$.range))) .stop("The seqlevel '%s' does not match that of the active data", seqlevels(range)) .self$.update_range(c(start(range), end(range))) .self$.is.initial_function() ## find appropriate reader/viewer if initial functions are in used if (.self$.using_initial_functions) .self$.current_function <- .self$.initialize_currentFunction() .self$.data_dirty <- TRUE .self$.update_data() }, display=function() { .debug("display") if (.data_dirty) .self$.update_data() print(.self$view$view()) }, toggle=function(zoom=FALSE, pan=FALSE, currentFunction) { .self$.debug("toggle: zoom %s; pan %s; fun %s", if (.self$.zin) "in" else "out", if (.self$.pright) "right" else "left", .self$.current_function) if (zoom) .self$.zin <- !.self$.zin if (pan) .self$.pright <- !.self$.pright if (!missing(currentFunction)) { if (!currentFunction %in% names(.self$functions)) .stop("toggle unknown function '%s'", currentFunction) if (currentFunction != .self$.current_function) { .self$.change_current_function(currentFunction) if (.self$.data_dirty) { lim <- .self$view$get.x.limits() .update_range(lim) .self$.update_data() } } } .self }, zoom=function() { .debug("zoom: %s", if (.self$.zin) "in" else "out") if (.self$.zin) { ## zoom in .self$.is.initial_function() if (.self$.using_initial_functions) { # check if need to switch viewer xlim <- .self$.zoom_in_xlim() if (.self$.switch_ini_currentFunction(xlim)) { range <- .self$.range start(range) <- xlim[1] end(range) <- xlim[2] .self$set_range(range) } else # if don't need to swith viewer .self$view$zi() } else # if not using fine_coverage or coarse_coverage .self$view$zi() } else { ## zoom out xlim <- .self$.zoom_out_xlim() if (.reset_active_range(xlim)) { ## expend the active range and .update_data() range <- .self$.range start(range) <- xlim[1] end(range) <- xlim[2] #find appropriate read/viwer funcs .self$set_range(range) } else .self$view$zo() } #.self$.update_range() .self }, pan=function() { .debug("pan: %s", if (.self$.pright) "right" else "left") if (.self$.pright) { ## shift right xlim <- .self$.pright_xlim() if (.reset_active_range(xlim)) { .update_range(xlim) .self$.update_data() } else .self$view$right() } else { ## shift left xlim <- .self$.pleft_xlim() if (.reset_active_range(xlim)) { .update_range(xlim) .self$.update_data() } else .self$view$left() } .self }, restore=function() { f1 <- start(.self$.range)==start(.self$.orig.range) f2 <- end(.self$.range)==end(.self$.orig.range) if (all(f1, f2))#original range is the same as active range .self$view$restore() else .self$set_range(.self$.orig.range) } ) ## Constructors setMethod(Snapshot, c("character", "GRanges"), function(files, range, ...) { if (is.null(names(files))) names(files) <- basename(files) files <- BamFileList(files) .Snapshot$new(files=files, .range=range, ...) }) setMethod(Snapshot, c("BamFileList", "GRanges"), function(files, range, ...) { if (is.null(names(files))) names(files) <- basename(sapply(files@listData, function(fl) path(fl))) ## duplicate names is not preferred fnames <- names(files) if (length(unique(fnames))!=length(fnames)) names(files) <- paste(1:length(fnames), fnames, sep="-") .Snapshot$new(files=files, .range=range, ...) }) setMethod(Snapshot, c("character", "missing"), function(files, range, ...) { if (is.null(names(files))) names(files) <- basename(files) files <- BamFileList(files) .Snapshot$new(files=files, ...) }) ## accessors setMethod(files, "Snapshot", function(x) x$files) setMethod(vrange, "Snapshot", function(x) x$.range ) setMethod(functions, "Snapshot", function(x) x$functions) setMethod(annTrack, "Snapshot", function(x) x$annTrack) setMethod(ignore.strand, "Snapshot", function(x) x$ignore.strand) setMethod(fac, "Snapshot", function(x) x$fac) setMethod(getTrellis, "Snapshot", function(x) x$view$trellis) ## private functions .getData <- function(x) x$.data .currentFunction <- function(x) x$.current_function setMethod(view, "Snapshot", function(x) x$view) ## interface setMethod(togglez, "Snapshot", function(x) { x$toggle(zoom=TRUE) invisible(x) }) setMethod(togglep, "Snapshot", function(x) { x$toggle(pan=TRUE) invisible(x) }) setMethod(togglefun, "Snapshot", function(x, name) { if (!missing(name)) { x$toggle(currentFunction=name) invisible(x) } }) setMethod(zoom, "Snapshot", function(x, range) { if (!missing(range)) ## FIXME: must be able to tell whether .currentFunction is appropriate x$set_range(range) else x$zoom() x$display() ## FIXME: invisible return TRUE on success, FALSE otherwise }) setMethod(pan, "Snapshot", function(x) { x$pan() x$display() ## FIXME: return TRUE on success, FALSE otherwise }) ## show setMethod(show, "Snapshot", function(object) { cat("class:", class(object), "\n") with(object, { cat("file(s):", names(files), "\n") cat("Orginal range:", sprintf("%s:%d-%d", seqlevels(.orig.range), start(.orig.range), end(.orig.range)), "\n") cat("active range:", sprintf("%s:%d-%d", seqlevels(.range), start(.range), end(.range)), "\n") cat("zoom (togglez() to change):", if (.zin) "in" else "out", "\n") cat("pan (togglep() to change):", if (.pright) "right" else "left", "\n") cat("fun (togglefun() to change):", .current_function, "\n") cat(sprintf("functions: %s\n", paste(names(functions), collapse=" "))) }) if (object$.auto_display) object$display() }) ShortRead/R/SnapshotFunction-helpers.R0000644000175100017510000002771412607265053020777 0ustar00biocbuildbiocbuild## get coverage for fine and coarse view .get_fine_coverage <- function(x) { rng <- vrange(x) wd <- width(rng) cvg <- function(aln) { if (identical(0L, length(aln))) numeric(wd) else as.numeric(unlist(coverage(aln, shift=-start(rng)+1, width=wd), use.names=FALSE)) } lst <- lapply(as.list(files(x)), function(fl, param) { aln <- readGAlignments(fl, param=param) seqlevels(aln) <- seqlevels(rng) list(`+`=cvg(aln[strand(aln)=="+"]), `-`=cvg(aln[strand(aln)=="-"])) }, param=ScanBamParam(which=rng)) } .get_coarse_coverage <- function(x) { nbins <- 5000L rng <- vrange(x) wd <- width(rng) breaks <- seq(start(rng), end(rng), length.out=nbins) lst <- lapply(as.list(files(x)), function(fl) { param <- ScanBamParam(which=rng, what=c("pos", "strand")) starts <- scanBam(fl, param=param)[[1]] bins <- lapply(split(starts$pos, starts$strand)[1:2], function(elt) { if (length(elt)) cut(elt, breaks=breaks, labels=FALSE) else integer() }) lapply(bins, tabulate, length(breaks)-1) #nbins = breaks-1 }) } .coverage_as_dataframe <- function(lst, range, ignore.strand=FALSE, resolution.fine=TRUE) { positive <- sapply(lst, "[[", "+") negative <- sapply(lst, "[[", "-") if (is.matrix(positive)) positive <- rowMeans(positive) if (is.matrix(negative)) negative <- rowMeans(negative) if (resolution.fine) pos <- seq.int(start(range), end(range), length.out=length(positive)) else { ## center the pos at the bin delta <- (end(range)-start(range))/(length(positive)) pos <- seq.int(start(range)+delta/2, by=delta, length.out=length(positive)) } if (!ignore.strand) { snames <- c("positive", "negative") group <- factor(rep(snames, each=length(positive)), levels=snames) data.frame(data=c(positive, -negative), group=group, pos=pos) } else { data.frame(data=positive+negative, pos=pos) } } .multiFile_coverage_as_dataframe <- function(lst, range, fac=NULL, ignore.strand=FALSE, resolution.fine=TRUE) { wd <- width(range) positive <- sapply(lst, "[[", "+") negative <- sapply(lst, "[[", "-") nPoints <- length(lst[[1]][[1]]) if (is.null(fac)) { ## phenolev as file names (must be unique) fnames <- names(lst) if (length(unique(fnames))!=length(fnames)) # conform the uniquenss fnames <- paste(1:length(fnames), fnames, sep="-") phenolev <- c(do.call(cbind, lapply(fnames, rep, nPoints))) } else { ## take means of the coverate on each level factor cvlst <- lapply(levels(fac), function(lev) { ps <- rowMeans(positive[, fac == lev, drop=FALSE]) ng <- rowMeans(negative[, fac == lev, drop=FALSE]) list("+"=ps, "-"=ng) }) names(cvlst) <- levels(fac) positive <- sapply(cvlst, "[[", "+") negative <- sapply(cvlst, "[[", "-") phenolev <- c(do.call(cbind, lapply(names(cvlst), rep, nPoints))) } ## define position if (resolution.fine) pos <- seq.int(start(range), end(range)) else { # position should be in the middle of the bin nIntervals <- length(lst[[1]][[1]]) delta <- (end(range)-start(range))/(nPoints) pos <- seq.int(start(range)+delta/2, by=delta, length.out=nPoints) } fnames <- names(lst) if (length(unique(fnames))!=length(fnames)) fnames <- paste(1:length(fnames), fnames, sep="-") file <- c(do.call(cbind, lapply(fnames, rep, nPoints))) if (ignore.strand) { data.frame(data=c(positive+negative), pos=pos, levels=phenolev) } else { snames <- c("positive", "negative") strand <- rep(snames, each=length(positive)) file <- rep(file, 2) data.frame(data=c(positive, -negative), pos=pos, group=strand, levels=phenolev) } } ################### readers ####################### .fine_coverage_reader <- function(x) { ## x: a Snapshot instance ## create a plot of coverage as sum of coverage of all the files lst <- .get_fine_coverage(x) rng <- vrange(x) ignore.strand <- ignore.strand(x) .coverage_as_dataframe(lst, rng, ignore.strand=ignore.strand, resolution.fine=TRUE) } .coarse_coverage_reader <- function(x) { ## x: a Snapshot instance ## create a plot of coverage as sum of coverage of all the files lst <- .get_coarse_coverage(x) rng <- vrange(x) ignore.strand <- ignore.strand(x) .coverage_as_dataframe(lst, rng, ignore.strand=ignore.strand, resolution.fine=FALSE) } .multifine_coverage_reader <- function(x) { ## x: a Sanpshot instance ## create a plot of coverage, separate lines for each file lst <- .get_fine_coverage(x) rng <- vrange(x) ignore.strand <- ignore.strand(x) if (length(fac(x)) ) gfac <- values(files(x))[[fac(x)]] else gfac <- NULL .multiFile_coverage_as_dataframe(lst, rng, ignore.strand=ignore.strand, fac=gfac, resolution.fine=TRUE) } .multicoarse_coverage_reader <- function(x) { ## x: a Sanpshot instance ## create a plot of coverage, separate lines for each file lst <- .get_coarse_coverage(x) rng <- vrange(x) ignore.strand <- ignore.strand(x) if (length(fac(x)) ) gfac <- values(files(x))[[fac(x)]] else gfac <- NULL .multiFile_coverage_as_dataframe(lst, rng, ignore.strand=ignore.strand, fac=gfac, resolution.fine=FALSE) } .update_viewer <- function(x, cv) { ## subset annTrack and validate anntrack anntrack <- annTrack(x) rng <- vrange(x) ignore.strand <- ignore.strand(x) if (any(seqnames(anntrack)@values %in% seqlevels(rng))) { gr <- anntrack seqlevels(gr, force=TRUE) <- seqlevels(vrange(x)) } else { message(paste(strwrap("SnapshotFunction-helper: seqname of 'annTrack' does not match the imported range. Annotation track will not be plotted."), collapse="\n")) return(NULL) } ## if anntrack has no elementMetada value, then return NULL if (ncol(values(anntrack)) < 1) { message(paste(strwrap("SnapshotFunction-helper: at least one column of 'annTrack' elementMetadata is required. Annotation track will not be plotted."), collapse="\n")) return(NULL) } # x: a Snapshot instance if (.currentFunction(x) %in% c("coarse_coverage", "multicoarse_coverage")) ann <- .coarse_annviewer(gr, rng, ignore.strand) if (.currentFunction(x) %in% c("fine_coverage", "multifine_coverage")) ann <- .fine_annviewer(gr, ignore.strand) strip.label <- c(dimnames(cv)$levels, "annotation track") npacket <- length(cv$packet.sizes) ann$x.limits <- cv$x.limits update(c(cv, ann), x.same=TRUE, layout=c(1,npacket+1), xlab=NULL, ylab=NULL, strip=if (!is.null(dimnames(cv)$levels)) strip.custom(factor.levels=strip.label), par.setting=list(layout.heights=list(panel=c(rep(2,npacket),1)))) } ## viewers .coverage_viewer <- function(x) { ## x: a Snapshot instance sp <- .getData(x) # x$.data lty <- rep(seq_len(length(levels(sp$group)) / 2), times=2) ## sp: data.frame with "data", "group", and "pos" column col <- c("#66C2A5", "#FC8D62") scales <- list(y=list(tck=c(1,0)), x=list(rot=45, tck=c(1,0), tick.number=20)) cv <- if (!ignore.strand(x)) xyplot(data ~ pos, data=sp, group=sp$group, col=col, scales=scales) else xyplot(data ~ pos, data=sp, col=col[1], scales=scales) cv <- update(cv, type="s", ylab="Coverage", xlab="Coordinate", panel=function(...) { panel.xyplot(...) panel.grid(h=-1, v=20) panel.abline(a=0, b=0, col="grey") }) if (!is.null(annTrack(x))) { ud <- .update_viewer(x, cv) if (!is.null(ud)) cv <- ud } SpTrellis(trellis=cv) } .multicoverage_viewer <- function(x, ...) { ## x: a Snapshot instance sp <- .getData(x) #x$.data lv <- length(levels(sp$group))/2 lty <- rep(seq_len(lv), times=2) col <- c("#FC8D62", "#66C2A5") #col <- c(rep("#FC8D62", lv) , rep("#66C2A5", lv)) scales <- list(y=list(tck=c(1,0)), x=list(rot=45, tck=c(1,0), tick.number=20)) cv <- if (ignore.strand(x)) xyplot(data ~ pos | levels, data=sp, col=col[2], scales=scales) else xyplot(data ~ pos | levels, data=sp, group=sp$group, col=col, scales=scales) cv <- update(cv, type="s", ylab="Coverage", xlab="Coordinate", layout=c(1, length(levels(factor(sp$levels)))), #key=list(space="top", column=2, cex=0.8, # lines=list(lty=lty, col=col), # text=list(levels(sp$group))), panel=function(...) { panel.xyplot(...) panel.grid(h=-1, v=20) panel.abline(a=0, b=0, col="grey") }) if (!is.null(annTrack(x))) { ud <- .update_viewer(x, cv) if (!is.null(ud)) cv <- ud } SpTrellis(trellis=cv) } ### default annotation track viewer .fine_annviewer <- function(gr, ignore.strand) { ## how to get the window x <- start(gr) x1 <- end(gr) xm <- (x+x1)/2 y <- rep(c(-1.4, -0.7, 0, 0.7, 1.4), length.out=length(x)) col <- c("#66C2A5", "#FC8D62") myCol <- if (ignore.strand) col[1] else col[as.numeric(strand(gr)@values)] mypanel <- function(x,y, genenames, x1, ...) { panel.xyplot(x,y, ..., col="transparent") ltext(x=xm, y=y, genenames, cex=0.45, pos=3) lsegments(x0=x, y0=y, x1=x1, y1=y, col=myCol, alpha=0.5) } ann <- xyplot(y ~ x, genenames=as.character(values(gr)[[1]]), x1=x1, xm=xm, panel=mypanel, xlab=NULL, ylab=NULL, scales=list(y=list(tick.number=0, labels=NULL)), par.settings= list(axis.text=list(alpha=0.5), axis.line=list(alpha=0.5)) ) ann$y.limits[2] = 2.1 ann } .coarse_annviewer <- function(gr, rng, ignore.strand) { ## gr: GRanges for tracks ## rng: range of an Snapshot instance col <- c("#66C2A5", "#FC8D62") nbins=5000L interval <- seq.int(start(rng), end(rng), length.out=nbins) l <- length(interval) ir <- IRanges(start=interval[1:(l-1)], end=interval[2:l]) scales <- list(y=list(alternating=2, tick.number=3,tck=c(0,1)), x=list(tck=c(0,0), labels=NULL)) annview <- if (!ignore.strand) { lst <- list("+" = countOverlaps(ir, ranges(gr[strand(gr)=="+"])), "-" = countOverlaps(ir, ranges(gr[strand(gr)=="-"]))) snames <- c("positive", "negative") group <- factor(rep(snames, each=length(lst[[1]])), levels=snames) cvg <- data.frame(data=c(lst[["+"]], -lst[["-"]]), group=group, pos = (start(ir)+end(ir))/2) xyplot(data ~ pos, data=cvg, groups=group, col=col, scales=scales) } else { lst <- countOverlaps(ir, ranges(gr)) cvg <- data.frame(data=lst, pos=(start(ir)+end(ir))/2) xyplot(data ~ pos, data=cvg, col=col[1], scales=scales) } update(annview, type="h", xlab=NULL, ylab=NULL, par.settings=list(axis.text=list(alpha=0.5), axis.line=list(alpha=0.5))) } ShortRead/R/SnapshotFunction.R0000644000175100017510000000373112607265053017330 0ustar00biocbuildbiocbuildSnapshotFunction <- function(reader, viewer, limits, ...) { if (missing(limits) || length(limits) != 2) stop("limits must have length 2") if ((limits[2] - limits[1]) < 50) stop("limits[2] - limits[1] must be greater than 50 bps") new("SnapshotFunction", reader=reader, viewer=viewer, limits=as.integer(limits), ...) } reader <- function(x, ...) x@reader viewer <- function(x, ...) x@viewer limits <- function(x, ...) x@limits setMethod(show, "SnapshotFunction", function(object) { cat("class:", class(object), "\n") cat("reader:\n") print(head(reader(object))) cat("...\n\n") cat("viewer:\n") print(head(viewer(object))) cat("...\n\n") cat(sprintf("limits: min. %.0f to max. %.0f bps", limits(object)[1], limits(object)[2]), "\n") }) ## SnapshotFunctionList setMethod(SnapshotFunctionList, "ANY", function(...) { if (nargs()) stop("'SnapshotFunctionList' unknown argument type: ", class(..1)) new("SnapshotFunctionList") }) setMethod(SnapshotFunctionList, "SnapshotFunction", function(...) { funs <- list(...) if (is.null(names(funs)) || any(!nzchar(names(funs)))) stop("'SnapshotFunctionList' functions must be named") new("SnapshotFunctionList", listData=funs) }) .fine_coverage <- SnapshotFunction(reader=.fine_coverage_reader, viewer=.coverage_viewer, limits=c(50L, 10000L)) .coarse_coverage <- SnapshotFunction(reader=.coarse_coverage_reader, viewer=.coverage_viewer, limits=c(10000L,.Machine$integer.max)) .multifine_coverage <- SnapshotFunction(reader=.multifine_coverage_reader, viewer=.multicoverage_viewer, limits=c(50L, 10000L)) .multicoarse_coverage <- SnapshotFunction(reader=.multicoarse_coverage_reader, viewer=.multicoverage_viewer, limits=c(10000L,.Machine$integer.max)) ShortRead/R/SpTrellis.R0000644000175100017510000001322112607265053015737 0ustar00biocbuildbiocbuild.SpTrellis$methods( initialize=function(...) { 'initialize SpTrellis' callSuper(...) if (!is.null(.self$trellis)) .self$ini.orig.x.limits(.self$get.x.limits()) .self }, get.trellis = function() { 'get trellis object' .self$trellis }, view = function(window=NULL) { 'view trellis object (in a designated window)' margin=50 if (is.null(window)) .self$trellis else { if (window[2] < window[1]) { message("Invalid window") .self$trellis } else { if ((window[2] - window[1]) < margin) window[2] <- window[1] + margin xlim <- c(max(window[1], .self$trellis$orig.x.limits[1]), min(window[2], .self$trellis$orig.x.limits[2])) .self$trellis$x.limits <- xlim .self$trellis } } }, get.x.limits = function() { 'get x.limits of a trellis object' .self$trellis$x.limits }, get.y.limits = function() { 'get y.limits of a trellis object' .self$trellis$y.limits }, ini.orig.x.limits = function(xlim) { 'set orig.x.limigs of the trellis object' .self$trellis$orig.x.limits <- xlim invisible(xlim) }, set.x.limits = function(xlim) { 'set trellis object x.limits' if (xlim[1] < xlim[2]) stop("Invalid x-axis limits") else .self$trellis$x.limits <- xlim invisible(xlim) }, set.y.limits = function(ylim) { 'set trellis object .limits' if (ylim[1] < ylim[2]) stop("Invalid x-axis limits") else .self$trellis$y.limits <- ylim invisible(ylim) }, .debug = function(fmt, ...) { if (.self$.debug_enabled) message(sprintf("'.SpTrellis' %s", sprintf(fmt, ...))) }, restore = function() { trellis$x.limits <<- trellis$orig.x.limits print(trellis) }, zo = function(by=NULL) { 'zoom out' center <- mean(.self$trellis$x.limits) width <- (.self$trellis$x.limits[2]-.self$trellis$x.limits[1]) xlim <- c(center - width, center + width) xlim[1] <- max(.self$trellis$orig.x.limits[1], xlim[1]) xlim[2] <- min(.self$trellis$orig.x.limits[2], xlim[2]) .self$trellis$x.limits <- xlim .debug("current x limits [%.0f, %.0f]", .self$get.x.limits()[1], .self$get.x.limits()[2]) invisible() }, zi = function(by) { 'zoom in 50%, change x.limits' center <- mean(.self$trellis$x.limits) width <- (.self$trellis$x.limits[2] - .self$trellis$x.limits[1])/2 if (width > 1) xlim <- c(center - width/2, center + width/2) else xlim <- .self$trellis$x.limits .self$trellis$x.limits <- xlim .debug("current x limits [%.0f, %.0f]", .self$get.x.limits()[1], .self$get.x.limits()[2]) invisible() }, left = function(by) { 'shift x.limits 80% to the left' margin <- 50 #if (is.missing(by)) ## 80% to the left by <- 0.8 * (.self$trellis$x.limits[2] - .self$trellis$x.limits[1]) .debug("shift left for %.0f bps", by) .self$trellis$x.limits[1] <- max(.self$trellis$x.limits[1] - by, .self$trellis$orig.x.limits[1]) .self$trellis$x.limits[2] <- max(.self$trellis$x.limits[2] - by, .self$trellis$orig.x.limits[1] + margin) .debug("current x limits [%.0f, %.0f]", .self$get.x.limits()[1], .self$get.x.limits()[2]) invisible() }, right = function(by=NULL) { 'shift x.limits 80% to the right' margin <- 50 #pbs #if (is.null(by)) ## 80% to the left by <- 0.8 * (.self$trellis$x.limits[2] - .self$trellis$x.limits[1]) .debug("shift right for %s bps", by) .self$trellis$x.limits[1] <- min(.self$trellis$x.limits[1] + by, .self$trellis$orig.x.limits[2] - margin) .self$trellis$x.limits[2] <- min(.self$trellis$x.limits[2] + by, .self$trellis$orig.x.limits[2]) .debug("current x limits [%.0f, %.0f]", .self$get.x.limits()[1], .self$get.x.limits()[2]) invisible() }, restore = function() { .self$trellis$x.limits <- .self$trellis$orig.x.limits invisible() }, display = function() { print(.self$trellis) } ) SpTrellis <- function(trellis, debug_enabled=FALSE) { .SpTrellis$new(trellis = trellis, .debug_enabled=debug_enabled) } setMethod(update, "SpTrellis", function(object, ...) { tr <- update(object$trellis, ...) SpTrellis(tr) }) setMethod(show, "SpTrellis", function(object) { cat("class:", class(object), "\n") with(object, { cat("region:", trellis$orig.x.limits, "\n") cat("viewing window:", get.x.limits(),"\n") }) object$display() }) setMethod(zi, "SpTrellis", function(x, by=5) { x$zi(by) x$display() }) setMethod(zo, "SpTrellis", function(x, by=5) { x$zo(by) x$display() }) setMethod(right, "SpTrellis", function(x, by=5) { x$right(by) x$display() }) setMethod(left, "SpTrellis", function(x, by=5) { x$left(by) x$display() }) setMethod(restore, "SpTrellis", function(x) { x$restore() x$display() }) ShortRead/R/filterFastq.R0000644000175100017510000000334612607265053016311 0ustar00biocbuildbiocbuild.filterFastq_check_fnames <- function(files, destinations) { if (missing('destinations')) stop("'destinations' missing") tryCatch({ S4Vectors:::V_recycle(destinations, files, "destinations", "files") }, warning=function(x) stop(conditionMessage(x), call.=FALSE)) if (any(exists <- file.exists(destinations))) stop("'destinations' exist:\n ", paste(destinations[exists], collapse="\n ")) } .filter1 <- function(filter, file, destination, ..., compress=TRUE, yieldSize) { strm <- FastqStreamer(file, yieldSize) on.exit(close(strm)) tot <- tot1 <- nNuc <- nNuc1 <- 0L while (length(fq <- yield(strm))) { tot <- tot + length(fq) nNuc <- nNuc + sum(width(fq)) fq <- if (is(filter, "FilterRules")) { subsetByFilter(fq, filter) } else filter(fq, ...) tot1 <- tot1 + length(fq) nNuc1 <- nNuc1 + sum(width(fq)) writeFastq(fq, destination, "a", compress=compress) } attr(destination, "filter") <- data.frame(Reads=tot, KeptReads=tot1, Nucl=nNuc, KeptNucl=nNuc1) destination } filterFastq <- function(files, destinations, ..., filter=FilterRules(), compress=TRUE, yieldSize=1000000L) { if (missing(filter)) warning("'filterFastq' invoked with missing 'filter'") .filterFastq_check_fnames(files, destinations) ## FIXME parallel over files, esp. random numbers x <- Map(.filter1, files, destinations, MoreArgs=list(filter=filter, ..., compress=compress, yieldSize=yieldSize)) stats <- do.call(rbind, lapply(x, attr, "filter")) rownames(stats) <- make.unique(basename(files)) attr(destinations, "filter") <- stats destinations } ShortRead/R/methods-.QA.R0000644000175100017510000000256712607265053016051 0ustar00biocbuildbiocbuildsetMethod(rbind, ".QA", function(..., deparse.level=NA) { lst <- list(...) if (length(unique(sapply(lst, class))) != 1) .throw(SRError("UserArgumentMismatch", "rbind,.QA-method '...' arguments must all be the same class")) f <- function(nm, lst) { elts <- lapply(lst, "[[", nm) if (class(elts[[1]]) == "list") { nms <- names(elts[[1]]) l <- lapply(nms, f, elts) names(l) <- nms l } else { do.call(rbind, unname(elts)) } } nms <- names(.srlist(lst[[1]])) l <- sapply(nms, f, lst, simplify=FALSE) names(l) <- nms new(class(lst[[1]]), .srlist=l) }) setMethod(show, ".QA", function(object) { callNextMethod() .dims <- function(elt) { switch(class(elt), matrix=, data.frame=paste(dim(elt), collapse=" "), length(elt)) } .names <- function(lst, depth=0) { nms <- names(lst) for (i in seq_along(lst)) { fmt <- paste("%", depth*2, "s%s: %s(%s)\n", sep="") cat(sprintf(fmt, "", nms[i], class(lst[[i]]), .dims(lst[[i]]))) if (is.list(lst[[i]]) && !is.data.frame(lst[[i]])) .names(lst[[i]], depth=depth+1) } } cat("QA elements (access with qa[[\"elt\"]]):\n") .names(.srlist(object), depth=1) }) ShortRead/R/methods-.ShortReadBase.R0000644000175100017510000000114112607265053020221 0ustar00biocbuildbiocbuildsetMethod(append, c(".ShortReadBase", ".ShortReadBase"), function(x, values, after=length(x)) { .throw(SRError("UserArgumentMismatch", "'%s' methods not defined for classes '%s', '%s'", "append", class(x), class(values))) }) setMethod(show, signature=signature(object=".ShortReadBase"), function(object) { cat("class: ", class(object), "\n", sep="") }) setMethod(detail, signature=signature(x=".ShortReadBase"), function(x, ...) { cat("class: ", class(x), "\n", sep="") }) ShortRead/R/methods-AlignedDataFrame.R0000644000175100017510000000126412607265053020573 0ustar00biocbuildbiocbuildAlignedDataFrame <- function(data, metadata, nrow=nrow(data)) { if (missing(data)) { data <- data.frame(rep(0L, nrow))[,FALSE] metadata <- data.frame(labelDescription=character(0)) } new("AlignedDataFrame", data=data, varMetadata=metadata) } setMethod(append, c("AlignedDataFrame", "AlignedDataFrame"), function(x, values, after=length(x)) { if (!identical(varMetadata(x), varMetadata(values))) { .throw(SRError("IncompatibleTypes", "'%s' and '%s' have different '%s'", "x", "values", "varMetadata")) } new(class(x), data=rbind(pData(x), pData(values)), varMetadata=varMetadata(x)) }) ShortRead/R/methods-AlignedRead.R0000644000175100017510000002775512607265053017637 0ustar00biocbuildbiocbuild### .AlignedRead_validity <- function(object) { msg <- NULL len <- length(sread(object)) slts <- c("chromosome", "position", "strand", "alignQuality") olen <- c(length(chromosome(object)), length(position(object)), length(strand(object)), length(alignQuality(object))) if (!all(olen==len)) { bad <- olen!=len msg <- c(msg, sprintf("length mismatch: expected %d, found:\n %s", len, paste(slts[bad], olen[bad], sep="=", collapse=", "))) } if (is.null(msg)) TRUE else msg } setMethod(.srValidity, "AlignedRead", .AlignedRead_validity) .AlignedRead_QualityConstructor <- function(sread) { if (length(sread) > 0) unlist(lapply(width(sread), polyn, nucleotides="!")) else character(0) } AlignedRead <- function(sread = DNAStringSet(character(0)), id = BStringSet(character(length(sread))), quality = FastqQuality( .AlignedRead_QualityConstructor(sread)), chromosome = factor(rep(NA, length(sread))), position = rep(NA_integer_, length(sread)), strand = factor(rep(NA_integer_, length(sread)), levels=.STRAND_LEVELS), alignQuality = NumericQuality( rep(NA_real_, length(sread))), alignData = AlignedDataFrame( nrow=length(sread))) { new("AlignedRead", sread=sread, id=id, quality=quality, chromosome=as.factor(chromosome), position=position, strand=strand, alignQuality=alignQuality, alignData=alignData) } .make_getter(c("alignQuality", "alignData")) setMethod(chromosome, "AlignedRead", function(object, ...) slot(object, "chromosome")) setMethod(position, "AlignedRead", function(object, ...) slot(object, "position")) setMethod(strand, "AlignedRead", function(x) slot(x, "strand")) ## coerce setAs("PairwiseAlignments", "AlignedRead", function(from, to) { pat <- pattern(from) quality <- character() if (is(pat, "QualityAlignedXStringSet")) quality <- quality(pat) new("AlignedRead", sread = unaligned(pat), id = names(pat), quality = FastqQuality(quality), position = start(Views(pat)), alignQuality = IntegerQuality(score(from))) }) setAs("AlignedRead", "RangesList", function(from) { chr <- chromosome(from) pos <- position(from) wd <- width(from) notNA <- !(is.na(chr) | is.na(pos) | is.na(wd)) split(IRanges(start=pos[notNA], width=wd[notNA]), chr[notNA]) }) setAs("AlignedRead", "RangedData", function(from) { chr <- chromosome(from) pos <- position(from) wd <- width(from) std <- strand(from) notNA <- !(is.na(chr) | is.na(pos) | is.na(wd) | is.na(std)) GRanges(IRanges(pos[notNA], width=wd[notNA]), space = chr[notNA], id = id(from)[notNA], strand = std[notNA], pData(alignData(from))[notNA,,drop=FALSE]) }) setAs("AlignedRead", "GRanges", function(from) { chr <- chromosome(from) pos <- position(from) wd <- width(from) std <- strand(from) notNA <- !(is.na(chr) | is.na(pos) | is.na(wd) | is.na(std)) GRanges(chr[notNA], IRanges(pos[notNA], width=wd[notNA]), std[notNA], id = id(from)[notNA], pData(alignData(from))[notNA,,drop=FALSE]) }) setAs("AlignedRead", "GappedReads", function(from) { if (length(from) == 0L) cigar <- character(0) else cigar <- paste(width(from), "M", sep="") GappedReads(seqnames=chromosome(from), pos=position(from), cigar=cigar, strand=strand(from), names=id(from), qseq=sread(from)) }) setAs("AlignedRead", "GAlignments", function(from) { as(as(from, "GappedReads"), "GAlignments") }) ## subset setMethod("[", c("AlignedRead", "missing", "missing"), function(x, i, j, ..., drop=NA) .subset_err()) setMethod("[", c("AlignedRead", "missing", "ANY"), function(x, i, j, ..., drop=NA) .subset_err()) setMethod("[", c("AlignedRead", "ANY", "ANY"), function(x, i, j, ..., drop=NA) .subset_err()) .AlignedRead_subset <- function(x, i, j, ..., drop=TRUE) { if (!missing(...)) .subset_err() initialize(x, sread=sread(x)[i], id=id(x)[i], quality=quality(x)[i], chromosome=factor(chromosome(x)[i]), position=position(x)[i], strand=strand(x)[i], alignQuality=alignQuality(x)[i], alignData=alignData(x)[i,]) } setMethod("[", c("AlignedRead", "ANY", "missing"), .AlignedRead_subset) setMethod(append, c("AlignedRead", "AlignedRead"), function(x, values, after=length(x)) { initialize(x, chromosome=.append.factor(chromosome(x), chromosome(values)), position=append(position(x), position(values)), strand=.append.factor(strand(x), strand(values)), alignQuality=append(alignQuality(x), alignQuality(values)), alignData=append(alignData(x), alignData(values)), quality=append(quality(x), quality(values)), sread=append(sread(x), sread(values)), id=append(id(x), id(values))) }) ## match, %in% setMethod("%in%", c("AlignedRead", "RangesList"), function(x, table) { ## could use as(x, "RangesList"), but the assumptions here (about ## the definition of notNA, and about split() preserving order) ## make this fragile enough as it is ## ## consider only sensible alignemnts chr <- chromosome(x) pos <- position(x) wd <- width(x) notNA <- !(is.na(chr) | is.na(pos) | is.na(wd)) chr <- chr[notNA] ## find overlap rl <- split(IRanges(start=pos[notNA], width=wd[notNA]), chr) olap <- rl %in% table ## map to original indicies len <- seq_len(length(x)) idx <- unlist(split(len[notNA], chr), use.names=FALSE) len %in% idx[unlist(olap)] }) ## srorder, etc; srsort picked up by generic setMethod(srorder, "AlignedRead", function(x, ..., withSread=TRUE) { if (withSread) order(chromosome(x), strand(x), position(x), srorder(sread(x))) else order(chromosome(x), strand(x), position(x)) }) setMethod(srrank, "AlignedRead", function(x, ..., withSread=TRUE) { .check_type_and_length(withSread, "logical", 1) if (is.na(withSread)) .throw(SRError("UserArgumentMismatch", "'%s' must not be NA", "withSread")) o <- srorder(x) .Call(.aligned_read_rank, x, o, withSread, environment()) }) setMethod(srduplicated, "AlignedRead", function(x, ..., withSread=TRUE) { duplicated(srrank(x, ..., withSread=withSread)) }) ## coverage setMethod(coverage, "AlignedRead", function(x, shift=0L, width=NULL, weight=1L, ..., coords=c("leftmost", "fiveprime"), extend=0L) { ## Argument checking: if(all(is.na(chromosome(x)) == TRUE)) { .throw(SRError("UserArgumentMismatch", "chromosome names are all 'NA' see %s", '?"AlignedRead-class"')) } chrlvls <- levels(chromosome(x)) if (!identical(shift, 0L)) { if (!is.numeric(shift)) { .throw(SRError("UserArgumentMismatch", "if '%s' is not 0L, then it must be a vector of integer values\n see %s", "shift", '?"AlignedRead-class"')) } if (!all(chrlvls %in% names(shift))) { .throw(SRError("UserArgumentMismatch", "'names(%s)' (or 'names(%s)') mismatch with 'levels(chromosome(x))'\n see %s", "shift", "start", '?"AlignedRead-class"')) } if (any(duplicated(names(shift)))) { .throw(SRError("UserArgumentMismatch", "'names(%s)' (or 'names(%s)') have duplicates\n see %s", "shift", "start", '?"AlignedRead-class"')) } } if (!is.null(width)) { if (!is.numeric(width)) { .throw(SRError("UserArgumentMismatch", "if '%s' is not NULL, then it must be a vector of integer values\n see %s", "width", '?"AlignedRead-class"')) } if (!all(chrlvls %in% names(width))) { .throw(SRError("UserArgumentMismatch", "'names(%s)' (or 'names(%s)') mismatch with 'levels(chromosome(x))'\n see %s", "width", "end", '?"AlignedRead-class"')) } if (any(duplicated(names(width)))) { .throw(SRError("UserArgumentMismatch", "'names(%s)' (or 'names(%s)') have duplicates\n see %s", "width", "end", '?"AlignedRead-class"')) } } if (!identical(weight, 1L)) { .throw(SRError("UserArgumentMismatch", "weighting the reads is not supported yet, sorry\n see %s", '?"AlignedRead-class"')) } tryCatch(coords <- match.arg(coords), error=function(err) { vals <- formals(sys.function(sys.parent(4)))[["cvg"]] .throw(SRError("UserArgumentMismatch", "'%s' must be one of '%s'\n see %s", "coords", paste(eval(vals), collapse="' '"), '?"AlignedRead-class"')) }) if (!is.integer(extend) || !(length(extend) == 1 || length(extend) == length(x))) { .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "extend", "integer(n)', n == 1 or length(x)")) } ## end of argument checking. if (coords == "leftmost") { rstart <- position(x) - ifelse(strand(x) == "+", 0L, extend) rend <- position(x) + width(x) - 1L + ifelse(strand(x) == "+", extend, 0L) } else { rstart <- position(x) - ifelse(strand(x) == "+", 0L, width(x) + extend - 1L) rend <- position(x) + ifelse(strand(x) == "+", width(x) + extend - 1L, 0L) } cvg <- RleList(lapply(structure(chrlvls, names = chrlvls), function(chr, ...) { idx <- chromosome(x) == chr chr_rstart <- rstart[idx] chr_rend <- rend[idx] if (identical(shift, 0L)) chr_shift <- 0L else chr_shift <- shift[chr] if (is.null(width)) chr_width <- NULL else chr_width <- width[chr] coverage(IRanges(chr_rstart, chr_rend), shift=chr_shift, width=chr_width, ...) }, ...), compress = FALSE) metadata(cvg) <- list(method="coverage,AlignedRead-method", coords=coords, extend=extend) cvg }) ## show setMethod(show, "AlignedRead", function(object) { callNextMethod() cat("chromosome:", selectSome(chromosome(object)), "\n") cat("position:", selectSome(position(object)), "\n") cat("strand:", selectSome(strand(object)), "\n") cat("alignQuality:", class(alignQuality(object)), "\n") cat("alignData varLabels:", selectSome(varLabels(alignData(object))), "\n") }) setMethod(detail, "AlignedRead", function(x, ...) { callNextMethod() cat("\nchromosome:", selectSome(chromosome(x)), "\n") cat("position:", selectSome(position(x)), "\n") cat("strand:", selectSome(strand(x)), "\n") cat("alignQuality:\n") detail(alignQuality(x)) cat("\nalignData:\n") show(alignData(x)) }) ## summary ## perhaps summary statistics like ShortReadQ except broken down by chromosome, ## strand, and their combination ShortRead/R/methods-BowtieQA.R0000644000175100017510000001575012607265053017143 0ustar00biocbuildbiocbuild.BowtieQA <- function(x, ...) { new("BowtieQA", .srlist=x, ...) } .qa_Bowtie_lane <- function(dirPath, pattern, ..., type="Bowtie", verbose=FALSE) { if (verbose) message("qa 'Bowtie' pattern:", pattern) rpt <- readAligned(dirPath, pattern, type, ...) doc <- .qa_depthOfCoverage(rpt, pattern) ac <- .qa_adapterContamination(rpt, pattern, ...) alf <- .qa_alphabetFrequency(sread(rpt), baseOnly=TRUE, collapse=TRUE) bqtbl <- .qa_alphabetFrequency(quality(rpt), collapse=TRUE) rqs <- .qa_qdensity(quality(rpt)) freqtbl <- tables(sread(rpt)) abc <- alphabetByCycle(rpt) perCycleBaseCall <- .qa_perCycleBaseCall(abc, pattern) perCycleQuality <- .qa_perCycleQuality(abc, quality(rpt), pattern) aqtbl <- table(quality(alignQuality(rpt)), useNA="always") list(readCounts=data.frame( read=NA, filter=NA, aligned=length(rpt), row.names=pattern), baseCalls=data.frame( A=alf[["A"]], C=alf[["C"]], G=alf[["G"]], T=alf[["T"]], N=alf[["other"]], row.names=pattern), readQualityScore=data.frame( quality=rqs$x, density=rqs$y, lane=pattern, type="aligned"), baseQuality=data.frame( score=names(bqtbl), count=as.vector(bqtbl), lane=pattern), alignQuality=data.frame( score=as.numeric(names(aqtbl)), count=as.vector(aqtbl), lane=pattern, row.names=NULL), frequentSequences=data.frame( sequence=names(freqtbl$top), count=as.integer(freqtbl$top), type="aligned", lane=pattern, row.names=NULL), sequenceDistribution=cbind( freqtbl$distribution, type="aligned", lane=pattern), perCycle=list( baseCall=perCycleBaseCall, quality=perCycleQuality), perTile=list( readCounts=data.frame( count=integer(0), type=character(0), tile=integer(0), lane=character(0)), medianReadQualityScore=data.frame( score=integer(), type=character(), tile=integer(), lane=integer())), depthOfCoverage=doc, adapterContamination=ac ) } .qa_Bowtie <- function(dirPath, pattern, type="Bowtie", ..., verbose=FALSE) { fls <- .file_names(dirPath, pattern) lst <- bplapply(basename(fls), .qa_Bowtie_lane, dirPath=dirPath, type=type, ..., verbose=verbose) lst <- list(readCounts=.bind(lst, "readCounts"), baseCalls=.bind(lst, "baseCalls"), readQualityScore=.bind(lst, "readQualityScore"), baseQuality=.bind(lst, "baseQuality"), alignQuality=.bind(lst, "alignQuality"), frequentSequences=.bind(lst, "frequentSequences"), sequenceDistribution=.bind(lst, "sequenceDistribution"), perCycle=local({ lst <- subListExtract(lst, "perCycle") list(baseCall=.bind(lst, "baseCall"), quality=.bind(lst, "quality")) }), perTile=local({ lst <- subListExtract(lst, "perTile") list(readCounts=.bind(lst, "readCounts"), medianReadQualityScore=.bind( lst, "medianReadQualityScore")) }), depthOfCoverage=.bind(lst, "depthOfCoverage"), adapterContamination=.bind(lst, "adapterContamination") ) .BowtieQA(lst) } setMethod(report_html, "BowtieQA", function(x, dest, type, ...) { qa <- .qa_sampleKey(x) dir.create(dest, recursive=TRUE) fls <- c("0000-Header.html", "1000-Overview.html", "2000-RunSummary.html", "3000-ReadDistribution.html", "4000-CycleSpecific.html", "8000-DepthOfCoverage.html", "9000-AdapterContamination.html", "9999-Footer.html") sections <- system.file("template", fls, package="ShortRead") perCycle <- qa[["perCycle"]] values <- list(SAMPLE_KEY=hwrite(qa[["keyValue"]], border=0), PPN_COUNT=.html_img( dest, "readCount", .plotReadCount(qa)), PPN_COUNT_TBL=hwrite( .ppnCount(qa[["readCounts"]]), border=0), BASE_CALL_COUNT=.html_img( dest, "baseCalls", .plotNucleotideCount(qa)), READ_QUALITY_FIGURE=.htmlReadQuality( dest, "readQuality", qa, "aligned"), READ_OCCURRENCES_FIGURE=.htmlReadOccur( dest, "readOccurences", qa, "aligned"), FREQUENT_SEQUENCES_READ=.html_NA(), FREQUENT_SEQUENCES_FILTERED=.html_NA(), FREQUENT_SEQUENCES_ALIGNED=hwrite( .freqSequences(qa, "aligned"), border=0), CYCLE_BASE_CALL_FIGURE=.html_img( dest, "perCycleBaseCall", .plotCycleBaseCall(perCycle$baseCall)), CYCLE_QUALITY_FIGURE=.html_img( dest, "perCycleQuality", .plotCycleQuality(perCycle$quality)), DEPTH_OF_COVERAGE_FIGURE=.html_img( dest, "depthOfCoverage", .plotDepthOfCoverage(qa[["depthOfCoverage"]])), ADAPTER_CONTAMINATION=hwrite( .df2a(qa[["adapterContamination"]]), border=0) ) .report_html_do(dest, sections, values, ...) }) setGeneric(".bowtie_mismatches", function(object, ...) standardGeneric(".bowtie_mismatches")) setMethod(.bowtie_mismatches, "AlignedRead", function(object, ...) { adata <- alignData(object) if (!"mismatch" %in% varLabels(adata)) .throw(SRError("UserArgumentMismatch", "'%s' does not contain varLabels '%s'", "AlignedDataFrame", "mismatch")) if (any(c("nmismatch", "mismatchScore") %in% varLabels(adata))) .throw(SRError("UserArgumentMismatch", "'%s' already contains varLabels '%s'", "AlignedDataFrame", "nmismatch', 'mismatchScore'")) mmatch <- adata[["mismatch"]] idx <- which(nzchar(mmatch)) if (any(grepl(":", mmatch, fixed=TRUE))) { anuc <- lapply(strsplit(mmatch[idx], "[:,]"), "[", c(TRUE, FALSE)) cidx <- unlist(lapply(anuc, as.integer)) + 1L } else { anuc <- lapply(strsplit(mmatch[idx], ",", fixed=TRUE), as.integer) cidx <- unlist(anuc) + 1L } len <- sapply(anuc, length) ridx <- rep(idx, len) x <- as(narrow(quality(object)[ridx], cidx, cidx), "matrix") mmscore <- rep(NA_integer_, nrow(adata)) mmscore[idx] <- unlist(lapply(split(x, ridx), sum), use.names=FALSE) lngth <- integer(nrow(adata)) lngth[idx] <- len txt <- "Number of mismatches" adata[["nmismatch", labelDescription=txt]] <- lngth txt <- "Summed quality scores at mismatched nucleotides" adata[["mismatchScore", labelDescription=txt]] <- mmscore initialize(object, alignData=adata) }) ShortRead/R/methods-ExperimentPath.R0000644000175100017510000000402312607265053020414 0ustar00biocbuildbiocbuildsetMethod(.srValidity, "ExperimentPath", function(object) { msg <- NULL if (length(experimentPath(object))!=1) msg <- c(msg, "ExperimentPath 'experimentPath' must be character(1)") if (is.null(msg)) TRUE else msg }) .srPath <- function(path, pattern = character()) { path <- path.expand(path) tryCatch({ res <- list.files(path, pattern=pattern, full.names=TRUE) if (length(res)==0) NA_character_ else res }, warning=function(warn) NA_character_) } .checkPath <- function(path) { nm <- deparse(substitute(path)) if (length(path)==0) { warning(nm, " not defined") } else { for (p in path) if (!file.exists(p)) warning(nm, " '", p, "' does not exist") } } ExperimentPath <- function(experimentPath=NA_character_, ...) { new("ExperimentPath", basePath=experimentPath, ...) } basePath <- function(object, ...) { .Defunct("experimentPath") } setMethod(sampleNames, "ExperimentPath", function(object) { character(0) }) .show_additionalPathSlots <- function(object) { # for derived classes catPath <- function(nm) { vals <- do.call(nm, list(object)) vals <- substr(basename(vals), 1, 15) vals <- paste(vals, ifelse(nchar(vals)==15, "...", ""), sep="") cat(nm, ": ", paste(vals, collapse=", "), "\n", sep="") } slts <- slotNames(object) for (slt in slts[slts!="basePath"]) catPath(slt) } setMethod(show, "ExperimentPath", function(object) { callNextMethod() cat("experimentPath: ", experimentPath(object), "\n", sep="") }) .detail_additionalPathSlots <- function(object) { catPath <- function(nm) { fnms <- do.call(nm, list(object)) cat(nm, ":\n ", paste(fnms, collapse="\n "), sep="") cat("\n") } slts <- slotNames(object) for (slt in slts[slts!="basePath"]) catPath(slt) } setMethod(detail, "ExperimentPath", function(x, ...) { callNextMethod() cat("experimentPath:\n ", experimentPath(x), "\n", sep="") }) ShortRead/R/methods-FastqFile.R0000644000175100017510000000157412607265053017345 0ustar00biocbuildbiocbuildFastqFile <- function(con, ...) { .ShortReadFile(.FastqFile_g, con, ...) } setMethod(readFastq, "FastqFile", function(dirPath, pattern=character(), ...) { if (length(pattern) != 0) .throw(SRWarn("UserArgumentMismatch", "'pattern' ignored for '%s'", "readFastq,FastqFile-method")) callGeneric(path(dirPath), ...) }) setMethod(writeFastq, c("ShortReadQ", "FastqFile"), function(object, file, mode="w", full=FALSE, compress=TRUE, ...) { callGeneric(object, path(file), mode=mode, full=full, compress=compress, ...) }) setMethod(FastqFileList, "ANY", function(..., class="FastqFile") { Rsamtools:::.RsamtoolsFileList(..., class=class) }) setMethod(FastqFileList, "character", function(..., class="FastqFile") { fls <- lapply(..1, FastqFile) FastqFileList(fls, class=class) }) ShortRead/R/methods-FastqFileReader.R0000644000175100017510000000027012607265053020460 0ustar00biocbuildbiocbuild.binReader <- function(con, n) ## read 'n' bytes from 'con', returning raw() { readBin(con, raw(), n) } setMethod(yield, "FastqFileReader", function(x, ...) x$yield(...)) ShortRead/R/methods-FastqQA.R0000644000175100017510000001161212607265053016761 0ustar00biocbuildbiocbuild.ShortReadQQA <- function(x, ...) { new("ShortReadQQA", .srlist=x, ...) } .FastqQA <- function(x, ...) { new("FastqQA", .srlist=x, ...) } .qa_ShortReadQ <- function(dirPath, lane, ..., verbose=FALSE) { if (missing(lane)) .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "lane", "character(1)")) obj <- dirPath alf <- .qa_alphabetFrequency(sread(obj), baseOnly=TRUE, collapse=TRUE) bqtbl <- .qa_alphabetFrequency(quality(obj), collapse=TRUE) rqs <- .qa_qdensity(quality(obj)) freqtbl <- tables(sread(obj)) abc <- alphabetByCycle(obj) ac <- .qa_adapterContamination(obj, lane, ...) perCycleBaseCall <- .qa_perCycleBaseCall(abc, lane) perCycleQuality <- .qa_perCycleQuality(abc, quality(obj), lane) lst <- list(readCounts=data.frame( read=length(obj), filter=NA, aligned=NA, row.names=lane), baseCalls=data.frame( A=alf[["A"]], C=alf[["C"]], G=alf[["G"]], T=alf[["T"]], N=alf[["other"]], row.names=lane), readQualityScore=data.frame( quality=rqs$x, density=rqs$y, lane=lane, type="read"), baseQuality=data.frame( score=names(bqtbl), count=as.vector(bqtbl), lane=lane), alignQuality=data.frame( score=as.numeric(NA), count=as.numeric(NA), lane=lane, row.names=NULL), frequentSequences=data.frame( sequence=names(freqtbl$top), count=as.integer(freqtbl$top), type="read", lane=lane), sequenceDistribution=cbind( freqtbl$distribution, type="read", lane=lane), perCycle=list( baseCall=perCycleBaseCall, quality=perCycleQuality), perTile=list( readCounts=data.frame( count=integer(0), type=character(0), tile=integer(0), lane=character(0)), medianReadQualityScore=data.frame( score=integer(), type=character(), tile=integer(), lane=integer(), row.names=NULL)), adapterContamination=ac ) .ShortReadQQA(lst) } setMethod(qa, "ShortReadQ", .qa_ShortReadQ) .qa_fastq_lane <- function(dirPath, ..., sample=TRUE, type="fastq", verbose=FALSE) { fl <- basename(dirPath) if (verbose) message("qa 'fastq' basename: ", sQuote(fl)) if (sample) { samp <- FastqSampler(dirPath, ...) qa <- qa(yield(samp), basename(dirPath), ..., verbose=verbose) close(samp) elts <- .srlist(qa) elts$readCounts$read <- samp$status()[["total"]] initialize(qa, .srlist=elts) } else { fq <-readFastq(dirPath, ...) qa(fq, fl, ..., verbose=verbose) } } .qa_fastq <- function(dirPath, pattern, type="fastq", ..., verbose=FALSE) { fls <- .file_names(dirPath, pattern) lst <- bplapply(fls, .qa_fastq_lane, type=type, ..., verbose=verbose) lst <- do.call(rbind, lst) .FastqQA(.srlist(lst)) # re-cast } .report_html_ShortReadQA <- # or FastqQA function(x, dest, type, ...) { qa <- .qa_sampleKey(x) dir.create(dest, recursive=TRUE) fls <- c("0000-Header.html", "1000-Overview.html", "2000-RunSummary.html", "3000-ReadDistribution.html", "4000-CycleSpecific.html", "9000-AdapterContamination.html", "9999-Footer.html") sections <- system.file("template", fls, package="ShortRead") perCycle <- qa[["perCycle"]] values <- list(SAMPLE_KEY=hwrite(qa[["keyValue"]], border=0), PPN_COUNT=.html_img( dest, "readCount", .plotReadCount(qa)), PPN_COUNT_TBL=hwrite( .ppnCount(qa[["readCounts"]]), border=0), BASE_CALL_COUNT=.html_img( dest, "baseCalls", .plotNucleotideCount(qa)), READ_QUALITY_FIGURE=.htmlReadQuality( dest, "readQuality", qa), READ_OCCURRENCES_FIGURE=.htmlReadOccur( dest, "readOccurences", qa), FREQUENT_SEQUENCES_READ=hwrite( .freqSequences(qa, "read"), border=0), FREQUENT_SEQUENCES_FILTERED=.html_NA(), FREQUENT_SEQUENCES_ALIGNED=.html_NA(), CYCLE_BASE_CALL_FIGURE=.html_img( dest, "perCycleBaseCall", .plotCycleBaseCall(perCycle$baseCall)), CYCLE_QUALITY_FIGURE=.html_img( dest, "perCycleQuality", .plotCycleQuality(perCycle$quality)), ADAPTER_CONTAMINATION=hwrite( .df2a(qa[["adapterContamination"]]), border=0) ) .report_html_do(dest, sections, values, ...) } setMethod(report_html, "ShortReadQQA", .report_html_ShortReadQA) setMethod(report_html, "FastqQA", .report_html_ShortReadQA) ShortRead/R/methods-FastqSampler.R0000644000175100017510000000545512607265053020073 0ustar00biocbuildbiocbuild.FastqSampler_g$methods( reset = function() { "reopen the connection" if (verbose) msg("FastqSampler$reset()") if (isOpen(con)) { if (verbose) msg("FastqSamper$reset() re-open") s <- summary(con) class <- s$class desc <- s$description close(con) con <<- do.call(s$class, list(desc, "rb")) } else { open(con, "rb") } .self }, status = function(update=FALSE) { "report status of FastqSampler" if (update || !length(.status)) .status <<- .Call(.sampler_status, sampler) .status }, yield = function(...) { "read and sample all records in a connection" if (verbose) msg("FastqSampler$yield()") reset() while (length(bin <- reader(con, readerBlockSize))) { if (verbose) { status(update=TRUE) msg("FastqSampler$yield() reader") } .Call(.sampler_add, sampler, bin) } if (status(update=TRUE)["buffer"]) .throw(SRWarn("IncompleteFinalRecord", "FastqSampler yield() incomplete final record:\n %s", summary(con)$description)) if (verbose) msg("FastqSampler$yield() XStringSet") elts <- .Call(.sampler_as_XStringSet, sampler, ordered) if (verbose) msg("FastqSampler$yield() ShortReadQ") ShortReadQ(elts[["sread"]], elts[["quality"]], elts[["id"]], ...) }, show = function() { callSuper() cat("ordered:", ordered, "\n") }) FastqSampler <- function(con, n = 1e6, readerBlockSize=1e8, verbose=FALSE, ordered=FALSE) { if (length(n) != 1 || !is.finite(n) || n < 0) stop("'n' must be length 1, finite and >= 0") if (is(con, "FastqFile")) con <- path(con) if (is.character(con)) { con <- file(con) open(con, "rb") } else if (is(con, "connection") && summary(con)$opened != "opened") open(con, "rb") sampler <- .Call(.sampler_new, as.integer(n)) .ShortReadFile(.FastqSampler_g, con, reader=.binReader, readerBlockSize=as.integer(readerBlockSize), sampler=sampler, verbose=verbose, ordered=ordered) } setMethod("FastqSamplerList", "ANY", function(..., n=1e6, readerBlockSize=1e8, verbose=FALSE, ordered = FALSE) { FastqFileList(..., class="FastqSampler") }) setMethod("FastqSamplerList", "character", function(..., n=1e6, readerBlockSize=1e8, verbose=FALSE, ordered = FALSE) { listData <- lapply(..1, FastqSampler, n=n, readerBlockSize=readerBlockSize, verbose=verbose, ordered=ordered) new("FastqSamplerList", listData=listData) }) ShortRead/R/methods-FastqStreamer.R0000644000175100017510000001017512607265053020245 0ustar00biocbuildbiocbuild.FastqStreamer_g$methods( add = function(bin) { if (verbose) { status(update=TRUE) msg("FastqStreamer$add()") } .Call(.streamer_add, sampler, bin, c(skips[ith], adds[ith])) status(update=TRUE) }, status = function(update=FALSE) { "report status of FastqSampler" if (update || !length(.status)) .status <<- .Call(.streamer_status, sampler) .status }, yield = function(...) { "read at most n records in a connection" if (verbose) msg("FastqStreamer$yield()") if (!recycle && ith == length(skips)) return (ShortReadQ()) ith <<- ith %% length(skips) + 1L status(update=TRUE) prevTot <- status()["total"] if (status()["current"] != adds[ith]) { ## use C scratch buffer if (verbose) msg("FastqStreamer$yield() reader") add(raw()) } while (0L != (adds[ith] - status()["current"])) { ## fill C buffer if (verbose) msg("FastqStreamer$yield() reader") bin <- reader(con, readerBlockSize) if (!length(bin)) { status(update=TRUE) if ((status()["current"] != status()["n"]) && (0L != status()["buffer"])) .throw(SRWarn("IncompleteFinalRecord", "FastqStreamer yield() incomplete final record:\n %s", summary(con)$description)) break } currTot <- status()["total"] skips[ith] <<- max(0L, skips[ith] - (currTot - prevTot)) prevTot <- currTot add(bin) } if (verbose) msg("FastqStreamer$yield() XStringSet") elts <- .Call(.streamer_as_XStringSet, sampler) if (verbose) msg("FastqStreamer$yield() ShortReadQ") ShortReadQ(elts[["sread"]], elts[["quality"]], elts[["id"]], ...) }) setMethod(FastqStreamer, c("ANY", "missing"), function(con, n, readerBlockSize=1e8, verbose=FALSE) { callGeneric(con, n=1e6, readerBlockSize=readerBlockSize, verbose=verbose) }) setMethod(FastqStreamer, c("ANY", "numeric"), function(con, n, readerBlockSize=1e8, verbose=FALSE) { n <- as.integer(n) if (length(n) != 1L || !is.finite(n) || n < 0L) stop("'n' must be length 1, finite and >= 0") if (is.character(con)) { con <- file(con) open(con, "rb") } else if (is(con, "connection") && summary(con)$opened != "opened") open(con, "rb") streamer <- .Call(.streamer_new, n) .ShortReadFile(.FastqStreamer_g, con, reader=.binReader, readerBlockSize=as.integer(readerBlockSize), skips = 0L, adds = n, ith = 0L, recycle=TRUE, sampler=streamer, verbose=verbose) }) setMethod(FastqStreamer, c("ANY", "IRanges"), function(con, n, readerBlockSize=1e8, verbose=FALSE) { if (is.character(con)) con <- file(con) open(con, "rb") skips <- start(n) - c(1L, end(n)[-length(n)] + 1L) if (any(skips < 0)) { close(con) msg <- "'n' must have all(start(n)[-1] > end(n)[-length(n)])" .throw(SRError("UserArgumentMismatch", msg)) } adds <- width(n) if (any(adds == 0)) { close(con) msg <- "'n' must have non-zero width()" .throw(SRError("UserArgumentMismatch", msg)) } streamer <- .Call(.streamer_new, max(adds)) .ShortReadFile(.FastqStreamer_g, con, reader=.binReader, readerBlockSize=as.integer(readerBlockSize), skips = skips, adds = adds, ith = 0L, recycle = FALSE, sampler=streamer, verbose=verbose) }) setMethod("FastqStreamerList", "ANY", function(..., n, readerBlockSize=1e8, verbose=FALSE) { FastqFileList(..., class="FastqStreamer") }) setMethod("FastqStreamerList", "character", function(..., n, readerBlockSize=1e8, verbose=FALSE) { listData <- lapply(..1, FastqStreamer, n=n, readerBlockSize=readerBlockSize, verbose=verbose) new("FastqStreamerList", listData=listData) }) ShortRead/R/methods-Intensity.R0000644000175100017510000000357512607265053017460 0ustar00biocbuildbiocbuild## IntensityMeasure setMethod(show, "IntensityMeasure", function(object) { callNextMethod() cat(" dim: ", dim(object), "\n") }) setMethod(get("["), c("IntensityMeasure", "ANY", "ANY", "ANY"), function(x, i, j, ..., drop=FALSE) { if (missing(i)) i <- TRUE if (missing(j)) j <- TRUE initialize(x, x@.Data[i,j,...,drop=FALSE]) }) setMethod(get("[["), c("ArrayIntensity", "ANY", "ANY"), function(x, i, j, k, ...) { if (missing(i)) i <- TRUE if (missing(j)) j <- TRUE if (missing(k)) k <- TRUE x@.Data[i,j,k] }) ## IntensityInfo ## Intensity setMethod(.srValidity, "Intensity", function(object) { msg <- NULL if (.hasMeasurementError(object) && !all(dim(intensity(object)) == dim(measurementError(object)))) { msg <- c(msg, "'intensity' and 'measurementError' dimensions differ") } if (nrow(readInfo(object)) != nrow(intensity(object))) { msg <- c(msg, "'intensity' and 'readInfo' read numbers differ") } if (is.null(msg)) TRUE else msg }) measurementError <- function(object, ...) { if (!.hasMeasurementError(object)) .throw(SRError("ValueUnavailable", "'%s' has no value '%s'", class(object), "nse")) slot(object, "measurementError") } local({ slts <- slotNames("Intensity") .make_getter(slts[slts!="measurementError"], verbose=TRUE) }) setMethod(dim, "Intensity", function(x) { dim(intensity(x)) }) setMethod(show, "Intensity", function(object) { callNextMethod() cat("dim:", dim(object), "\n") cat("readInfo:", class(readInfo(object)), "\n") cat("intensity:", class(intensity(object)), "\n") if (.hasMeasurementError(object)) { cat("measurementError:", class(measurementError(object)), "\n") } else { cat("measurementError: not available\n") } }) ShortRead/R/methods-MAQMapQA.R0000644000175100017510000001270412607265053016762 0ustar00biocbuildbiocbuild.MAQMapQA <- function(x, ...) { new("MAQMapQA", .srlist=x, ...) } .maq_reverse <- function(aln) { plus <- strand(aln) == "+" new("AlignedRead", append(aln[plus], aln[!plus]), sread=append( sread(aln)[plus], reverseComplement(sread(aln)[!plus])), quality=append( quality(aln)[plus], FastqQuality(reverse(quality(quality(aln)[!plus]))))) } .qa_MAQMap_lane <- function(dirPath, pattern, type, ..., verbose=FALSE) { if (verbose) message("qa '", type, "' pattern: ", pattern, sep="") rpt <- .maq_reverse(readAligned(dirPath, pattern, type, ...)) alf <- .qa_alphabetFrequency(sread(rpt), baseOnly=TRUE, collapse=TRUE) bqtbl <- .qa_alphabetFrequency(quality(rpt), collapse=TRUE) rqs <- .qa_qdensity(quality(rpt)) freqtbl <- tables(sread(rpt)) abc <- alphabetByCycle(rpt) perCycleBaseCall <- .qa_perCycleBaseCall(abc, pattern) perCycleQuality <- .qa_perCycleQuality(abc, quality(rpt), pattern) aqtbl <- table(quality(alignQuality(rpt))) list(readCounts=data.frame( read=NA, filter=NA, aligned=length(rpt), row.names=pattern), baseCalls=data.frame( A=alf[["A"]], C=alf[["C"]], G=alf[["G"]], T=alf[["T"]], N=alf[["other"]], row.names=pattern), readQualityScore=data.frame( quality=rqs$x, density=rqs$y, lane=pattern, type="aligned", row.names=NULL), baseQuality=data.frame( score=names(bqtbl), count=as.vector(bqtbl), lane=pattern, row.names=NULL), alignQuality=data.frame( score=as.numeric(names(aqtbl)), count=as.vector(aqtbl), lane=pattern, row.names=NULL), frequentSequences=data.frame( sequence=names(freqtbl$top), count=as.integer(freqtbl$top), type="aligned", lane=pattern, row.names=NULL), sequenceDistribution=cbind( freqtbl$distribution, type="aligned", lane=pattern, row.names=NULL), perCycle=list( baseCall=perCycleBaseCall, quality=perCycleQuality), perTile=list( readCounts=data.frame( count=integer(0), type=character(0), tile=integer(0), lane=character(0)), medianReadQualityScore=data.frame( score=integer(), type=character(), tile=integer(), lane=integer())) ) } .qa_MAQMap <- function(dirPath, pattern, type, ..., verbose=FALSE) { fls <- .file_names(dirPath, pattern) lst <- bplapply(basename(fls), .qa_MAQMap_lane, dirPath=dirPath, type=type, ..., verbose=verbose) lst <- list(readCounts=.bind(lst, "readCounts"), baseCalls=.bind(lst, "baseCalls"), readQualityScore=.bind(lst, "readQualityScore"), baseQuality=.bind(lst, "baseQuality"), alignQuality=.bind(lst, "alignQuality"), frequentSequences=.bind(lst, "frequentSequences"), sequenceDistribution=.bind(lst, "sequenceDistribution"), perCycle=local({ lst <- subListExtract(lst, "perCycle") list(baseCall=.bind(lst, "baseCall"), quality=.bind(lst, "quality")) }), perTile=local({ lst <- subListExtract(lst, "perTile") list(readCounts=.bind(lst, "readCounts"), medianReadQualityScore=.bind( lst, "medianReadQualityScore")) })) .MAQMapQA(lst) } setMethod(report_html, "MAQMapQA", function(x, dest, type, ...) { qa <- .qa_sampleKey(x) dir.create(dest, recursive=TRUE) fls <- c("0000-Header.html", "1000-Overview.html", "2000-RunSummary.html", "3000-ReadDistribution.html", "4000-CycleSpecific.html", "6000-Alignment.html", "9999-Footer.html") sections <- system.file("template", fls, package="ShortRead") perCycle <- qa[["perCycle"]] values <- list(SAMPLE_KEY=hwrite(qa[["keyValue"]], border=0), PPN_COUNT=.html_img( dest, "readCount", .plotReadCount(qa)), PPN_COUNT_TBL=hwrite( .ppnCount(qa[["readCounts"]]), border=0), BASE_CALL_COUNT=.html_img( dest, "baseCalls", .plotNucleotideCount(qa)), READ_QUALITY_FIGURE=.htmlReadQuality( dest, "readQuality", qa, "aligned"), READ_OCCURRENCES_FIGURE=.htmlReadOccur( dest, "readOccurences", qa, "aligned"), FREQUENT_SEQUENCES_READ=hwrite( .freqSequences(qa, "read"), border=0), FREQUENT_SEQUENCES_FILTERED=hwrite( .freqSequences(qa, "filtered"), border=0), FREQUENT_SEQUENCES_ALIGNED=hwrite( .freqSequences(qa, "aligned"), border=0), CYCLE_BASE_CALL_FIGURE=.html_img( dest, "perCycleBaseCall", .plotCycleBaseCall(perCycle$baseCall)), CYCLE_QUALITY_FIGURE=.html_img( dest, "perCycleQuality", .plotCycleQuality(perCycle$quality)), ALIGN_QUALITY_FIGURE=.html_img( dest, "alignmentQuality", .plotAlignQuality(qa[["alignQuality"]])) ) .report_html_do(dest, sections, values, ...) }) ShortRead/R/methods-Misc.R0000644000175100017510000002276312607265053016365 0ustar00biocbuildbiocbuild.abc_BStringSet <- function(stringSet, alphabet, ...) { if (missing(alphabet)) alphabet <- sapply(as.raw(1:255), rawToChar) callNextMethod(stringSet, alphabet=alphabet) } setMethod(clean, "DNAStringSet", function(object, ...) { object[alphabetFrequency(object, baseOnly=TRUE)[,'other']==0] }) setMethod(dustyScore, "DNAStringSet", function(x, batchSize=NA, ...) { doDusty <- function(tripletPDict, x) { tnf <- t(vcountPDict(tripletPDict, x)) - 1L tnf[tnf < 0] <- 0L rowSums(tnf * tnf) } triplets <- DNAStringSet(mkAllStrings(c("A", "C", "G", "T"), 3)) tripletPDict <- PDict(triplets) if (is.na(batchSize) || length(x) <= batchSize) return(doDusty(tripletPDict, x)) n <- as.integer(1L + length(x) / batchSize) i <- seq_len(length(x)) i <- split(i, cut(i, n, labels=FALSE)) unlist(unname(bplapply(i, function(idx, tripletPDict, x, ...) { doDusty(tripletPDict, x[idx]) }, tripletPDict, x))) }) setMethod(alphabetByCycle, "BStringSet", .abc_BStringSet) setMethod(srorder, "XStringSet", function(x, ...) { if (!missing(...)) .throw(SRError("UserArgumentMismatch", "argument '%s' not supported", names(list(...)))) .Call(.alphabet_order, x) }) setMethod(srrank, "XStringSet", function(x, ...) { if (!missing(...)) .throw(SRError("UserArgumentMismatch", "argument '%s' not supported", names(list(...)))) .Call(.alphabet_rank, x) }) setMethod(srsort, "XStringSet", function(x, ...) x[srorder(x, ...)]) setMethod(srduplicated, "XStringSet", function(x, ...) { if (!missing(...)) .throw(SRError("UserArgumentMismatch", "argument '%s' not supported", names(list(...)))) .Call(.alphabet_duplicated, x) }) setMethod(writeFasta, "DNAStringSet", function(object, file, mode="w", ...) { append = mode=="a" writeXStringSet(object, file, ..., append=append, format="fasta") }) ## srdistance .srdistance <- function(pattern, subject, distanceFunc,..., verbose=FALSE) { if (verbose) cat(".srdistance", as.character(subject), "\n") substitutionMatrix <- distanceFunc(pattern, subject) -pairwiseAlignment(pattern, subject, substitutionMatrix=substitutionMatrix, gapOpening=0, gapExtension=-1, scoreOnly=TRUE) } .srdistanceDNA <- function(pattern, subject) { m <- matrix(c(1,0,0,0,.5,.5,.5,.0,.0,.0,.3,.3,.3,.0,.25,.25,.25,.25, 0,1,0,0,.5,.0,.0,.5,.5,.0,.3,.3,.0,.3,.25,.25,.25,.25, 0,0,1,0,.0,.5,.0,.5,.0,.5,.3,.0,.3,.3,.25,.25,.25,.25, 0,0,0,1,.0,.0,.5,.0,.5,.5,.0,.3,.3,.3,.25,.25,.25,.25), nrow=4, byrow=TRUE, dimnames=list(DNA_ALPHABET[1:4], DNA_ALPHABET)) patternAlf <- alphabetFrequency(pattern, collapse=TRUE) subjectAlf <- alphabetFrequency(subject) alf <- unique(c(names(patternAlf)[patternAlf!=0], names(subjectAlf)[subjectAlf!=0])) m <- m[, alf] -(1 - t(m) %*% m) } .srdistance_DNAStringSet_character <- function(pattern, subject, ...) { strings <- lapply(subject, DNAString) res <- bplapply(strings, .srdistance, pattern=pattern, distanceFunc=.srdistanceDNA, ...) if (length(res) == length(subject)) names(res) <- subject res } setMethod(srdistance, c("DNAStringSet", "character"), .srdistance_DNAStringSet_character) .srdistance_DNAStringSet_DNAString <- function(pattern, subject, ...) { res <- list(.srdistance(pattern, subject, .srdistanceDNA, ...)) names(res) <- as.character(subject) res } setMethod(srdistance, c("DNAStringSet", "DNAString"), .srdistance_DNAStringSet_DNAString) .srdistance_DNAStringSet_DNAStringSet <- function(pattern, subject, ...) { callGeneric(pattern, as.character(subject), ...) } setMethod(srdistance, c("DNAStringSet", "DNAStringSet"), .srdistance_DNAStringSet_DNAStringSet) ## tables .stringset_tables <- function(x, n=50, ...) { if (length(x) == 0) { return(list(top=integer(0), distribution=data.frame( nOccurrences=integer(0), nReads=integer(0)))) } ## FIXME: two sorts srt <- srsort(x) r <- srrank(x) t <- tabulate(r) o <- order(t, decreasing=TRUE) ## n most common sequences n <- min(n, sum(t!=0)) # remove duplicates top <- head(t[o], n) names(top) <- as.character(head(srt[o], n)) ## overall frequency -- equivalent of table(table(sread)) tt <- tabulate(t) nOccurrences <- seq_along(tt)[tt!=0] nReads <- tt[tt!=0] ## results list(top=top, distribution=data.frame( nOccurrences=nOccurrences, nReads=nReads, row.names=NULL)) } setMethod(tables, "XStringSet", .stringset_tables) ## trimTails setMethod(trimTailw, "BStringSet", function(object, k, a, halfwidth, ..., alphabet, ranges=FALSE) { if (missing(alphabet)) alphabet <- sapply(as.raw(0:127), rawToChar) tryCatch({ k <- as.integer(k) if (1L != length(k) || k < 0L) stop("'k' must be integer(1) >= 0L") a <- as.character(a) if (1L != length(a) || 1L != nchar("A")) stop("'", a, "' must satsify 'nchar(a) == 1L'") if (!a %in% alphabet) stop("'", a, "' must be a character with encoding < 128") halfwidth <- as.integer(halfwidth) if (1L != length(halfwidth) || halfwidth <= 0) stop("'halfwidth' must be > 0") }, error=function(err) { .throw(SRError("UserArgumentMismatch", conditionMessage(err))) }) tryCatch({ a_map <- rev(cumsum(rev(alphabet==a))) # '1' if < a names(a_map) <- alphabet ends <- .Call(.trimTailw, object, k, a_map, halfwidth) }, error=function(err) { .throw(SRError("InternalError", conditionMessage(err))) }) if (ranges) IRanges(1, ends) else narrow(object, 1L, ends)[0L != ends] }) setMethod(trimTailw, "XStringQuality", function(object, k, a, halfwidth, ..., ranges=FALSE) { rng <- callGeneric(as(object, "BStringSet"), k, a, halfwidth, ..., ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(trimTails, "BStringSet", function(object, k, a, successive=FALSE, ..., alphabet, ranges=FALSE) { if (missing(alphabet)) alphabet <- sapply(as.raw(0:127), rawToChar) tryCatch({ k <- as.integer(k) if (1L != length(k) || k < 0L) stop("'k' must be integer(1) >= 0L") a <- as.character(a) if (1L != length(a) || 1L != nchar("A")) stop("'", a, "' must satsify 'nchar(a) == 1L'") if (!a %in% alphabet) stop("'", a, "' must be a character with encoding < 128") successive <- as.logical(successive) if (1L != length(successive) || is.na(successive)) stop("'successive' must be logical(1), not NA") }, error=function(err) { .throw(SRError("UserArgumentMismatch", conditionMessage(err))) }) tryCatch({ a_map <- rev(cumsum(rev(alphabet==a))) # '1' if < a names(a_map) <- alphabet ends <- .Call(.trimTails, object, k, a_map, successive) }, error=function(err) { .throw(SRError("InternalError", conditionMessage(err))) }) if (ranges) IRanges(1, ends) else narrow(object, 1L, ends)[0L != ends] }) setMethod(trimTails, "XStringQuality", function(object, k, a, successive=FALSE, ..., ranges=FALSE) { rng <- callGeneric(as(object, "BStringSet"), k, a, successive, ..., ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(trimEnds, "XStringSet", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) { relation <- match.arg(relation) alphabet <- alphabet(object) if (is.null(alphabet)) alphabet <- sapply(as.raw(0:127), rawToChar) tryCatch({ a <- as.character(a) if (!all(a %in% alphabet)) warning("some 'a' not in alphabet(object)") left <- as.logical(left)[1] right <- as.logical(right)[1] }, error=function(err) { .throw(SRError("UserArgumentMismatch", conditionMessage(err))) }) tryCatch({ a_map <- alphabet %in% a if ("<=" == relation) a_map <- as.logical(rev(cumsum(rev(a_map)))) # '1' if <= a a <- alphabet[a_map] cls <- sub("(.*)String.*", "\\1", class(object)) xs <- get_seqtype_conversion_lookup(cls, "character") if (is.null(xs)) xs <- 0:127 map <- logical(length(xs)) key <- lapply(a, function(x) as.integer(charToRaw(x))) map[match(unname(unlist(key)), xs)] <- TRUE bnds <- .Call(.trimEnds, object, map, left, right) }, error=function(err) { .throw(SRError("InternalError", conditionMessage(err))) }) if (ranges) IRanges(bnds[["start"]], bnds[["end"]]) else narrow(object, bnds[["start"]], bnds[["end"]]) }) setMethod(trimEnds, "XStringQuality", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) { rng <- callGeneric(as(object, "BStringSet"), a, left, right, relation, ..., ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) ShortRead/R/methods-QA.R0000644000175100017510000006462312607265053015774 0ustar00biocbuildbiocbuild## QAData QAData <- function(seq=ShortReadQ(), filter=logical(length(seq)), ...) { .QAData$new(seq=seq, filter=filter, ...) } setMethod(.filter, "QAData", function(object, useFilter, ...) { if (useFilter) object$seq[!object$filter] else object$seq }) .filterUpdate <- function(object, add, value) { if (add) object$filter <- object$filter | value object } ## QASummary .show_KoverA <- function(object, K=object@flagK, A=object@flagA) { cat(sprintf("flag: K over A = (%.2f x 100)%% over %d\n", K, A)) } .QASummary <- function (class, useFilter = TRUE, addFilter = TRUE, ..., html) { if (missing(html)) html <- file.path(system.file("template", package = "ShortRead"), sprintf("%s.html", class)) if (!is.na(html) && (!file.exists(html) || !nzchar(html))) .throw(SRError("UserArgumentMismatch", "'html' file does not exist:\n %s", html)) new(class, useFilter = mkScalar(as.logical(useFilter)), addFilter = mkScalar(as.logical(addFilter)), html = mkScalar(html), ...) } .QASummaryFactory <- function(summaryName) { function (useFilter = TRUE, addFilter = TRUE, ...) .QASummary(summaryName, useFilter = useFilter, addFilter = addFilter, ...) } setMethod(show, "QASummary", function(object) { callNextMethod() cat(Rsamtools:::.ppath("html template", object@html)) cat("useFilter: ", object@useFilter, "; ", "addFilter: ", object@addFilter, "\n", sep="") }) QAFlagged <- .QASummaryFactory("QAFlagged") QAFiltered <- .QASummaryFactory("QAFiltered") QANucleotideUse <- .QASummaryFactory("QANucleotideUse") QAQualityUse <- .QASummaryFactory("QAQualityUse") QASequenceUse <- .QASummaryFactory("QASequenceUse") QAReadQuality <- function(useFilter=TRUE, addFilter=TRUE, flagK=.2, flagA=30L, ...) { .QASummary("QAReadQuality", useFilter=useFilter, addFilter=addFilter, flagK=mkScalar(flagK), flagA=mkScalar(as.integer(flagA)), ...) } setMethod(show, "QAReadQuality", function(object) { callNextMethod() .show_KoverA(object) }) QAAdapterContamination <- function (useFilter=TRUE, addFilter=TRUE, Lpattern = NA_character_, Rpattern = NA_character_, max.Lmismatch = 0.1, max.Rmismatch = 0.2, min.trim = 9L, ...) { fmt <- "QAAdapterContamination not a DNA sequence\n %s=\"%s\"" if (!is.na(Lpattern)) tryCatch(DNAString(Lpattern), error = function(e) { .throw(SRError("UserArgumentMismatch", fmt, "Lpattern", Lpattern)) }) if (!is.na(Rpattern)) tryCatch(DNAString(Rpattern), error = function(e) { .throw(SRError("UserArgumentMismatch", fmt, "Rpattern", Rpattern)) }) .QASummary("QAAdapterContamination", useFilter=useFilter, addFilter=addFilter, Lpattern = mkScalar(toupper(as.character(Lpattern))), Rpattern = mkScalar(toupper(as.character(Rpattern))), max.Lmismatch = mkScalar(as.numeric(max.Lmismatch)), max.Rmismatch = mkScalar(as.numeric(max.Rmismatch)), min.trim = mkScalar(as.integer(min.trim)), ...) } setMethod(show, "QAAdapterContamination", function(object) { callNextMethod() cat("Lpattern:", object@Lpattern, "\n") cat("Rpattern:", object@Rpattern, "\n") cat("max.Lmismatch: ", object@max.Lmismatch, "; ", "max.Rmismatch: ", object@max.Rmismatch, "; ", "min.trim: ", object@min.trim, "\n", sep="") }) QAFrequentSequence <- function (useFilter = TRUE, addFilter = TRUE, n = NA_integer_, a = NA_integer_, flagK=.8, reportSequences = FALSE, ...) { .QASummary("QAFrequentSequence", addFilter = addFilter, useFilter = useFilter, n = mkScalar(as.integer(n)), a = mkScalar(as.integer(a)), flagK = mkScalar(as.numeric(flagK)), reportSequences = mkScalar(as.logical(reportSequences)), ...) } setMethod(show, "QAFrequentSequence", function(object) { callNextMethod() if (!is.na(object@n)) cat("n: ", object@n, "; ", sep="") else cat("a: ", object@a, "; ", sep="") cat("reportSequences:", object@reportSequences, "\n") .show_KoverA(object, object@flagK, object@a) }) QANucleotideByCycle <- .QASummaryFactory("QANucleotideByCycle") QAQualityByCycle <- .QASummaryFactory("QAQualityByCycle") ## QASource QAFastqSource <- function(con=character(), n=1e6, readerBlockSize=1e8, flagNSequencesRange=NA_integer_, ..., html=system.file("template", "QASources.html", package="ShortRead")) { .QASummary("QAFastqSource", con=as.character(con), n=mkScalar(as.integer(n)), readerBlockSize=mkScalar(as.integer(readerBlockSize)), flagNSequencesRange=as.integer(flagNSequencesRange), ..., html=mkScalar(html)) } setMethod(show, "QAFastqSource", function(object) { callNextMethod() cat("length:", length(object@con), "\n") cat("n: ", object@n, ";", " readerBlockSize: ", object@readerBlockSize, "\n", sep="") }) ## QACollate setMethod(QACollate, "missing", function(src, ...) { QACollate(QAFastqSource(), ...) }) setMethod(QACollate, "QAFastqSource", function(src, ...) { if (1L == length(list(...)) && is(..1, "QACollate")) renew(..1, src=src) else new("QACollate", src=src, SimpleList(...)) }) setMethod(show, "QACollate", function(object) { callNextMethod() cat("source:", class(object@src), "of length", length(object@src@con), "\n") elts <- paste(sapply(object, class), collapse = " ") txt <- paste(strwrap(sprintf("elements: %s", elts), exdent = 2), collapse = "\n ") cat(txt, "\n") }) ## QA QA <- function (src, filtered, flagged, ...) { new("QA", src = src, filtered = filtered, flagged=flagged, ...) } ## .clone setMethod(.clone, "QAData", function (object, ...) { .QAData$new(seq = object$seq, filter = object$filter, ...) }) setMethod(.clone, "QASource", function (object, ...) { object@data <- .clone(object@data) object }) ## values setMethod(values, "QASummary", function(x, ...) { x@values }) setReplaceMethod("values", c("QASummary", "DataFrame"), function (x, ..., value) { x@values <- value x }) ## rbind setMethod(rbind, "QASummary", function(..., deparse.level=1) { class <- class(..1) values <- do.call(rbind, lapply(list(...), values)) renew(..1, values = values) }) ## qa2 setMethod(qa2, "FastqSampler", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,FastqSampler-method") state$seq <- yield(object) state$filter <- rep(FALSE, length(state$seq)) DataFrame(SourceN=object$status()[["total"]], SampleN=length(state$seq)) }) setMethod(qa2, "QAFastqSource", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QAFastqSource-method") if (1 != length(object@con)) .throw(SRError("InternalError", "'QAFastqSource' source length != 1")) sampler <- FastqSampler(object@con, object@n, object@readerBlockSize) on.exit(close(sampler)) df <- qa2(sampler, object@data, verbose=verbose) values <- cbind(df, DataFrame(AccessTimestamp=date(), FileName=basename(object@con))) ## Path=dirname(path(object@con)))) metadata(values) <- list(NumberOfRecords=length(object@data$seq)) renew(object, values=values) }) setMethod(qa2, "QAAdapterContamination", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QAAdapterContamination-method") obj <- .filter(state@data, object@useFilter) Lpattern <- if (is.na(object@Lpattern)) "" else object@Lpattern Rpattern <- if (is.na(object@Rpattern)) "" else object@Rpattern trim <- trimLRPatterns(Lpattern, Rpattern, sread(obj), object@max.Lmismatch, object@max.Rmismatch, ranges=TRUE) filt <- width(trim) < (width(obj) - object@min.trim) .filterUpdate(state@data, object@addFilter, filt) values <- DataFrame(Contaminants=sum(filt)) metadata(values) <- list(NumberOfRecords=length(filt)) renew(object, values=values) }) setMethod(qa2, "QANucleotideUse", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QANucleotideUse-method") obj <- .filter(state@data, object@useFilter) alf <- .qa_alphabetFrequency(sread(obj), baseOnly=TRUE, collapse=TRUE) values <- DataFrame(Nucleotide=factor(sub("other", "N", names(alf)), levels=c("A", "C", "G", "T", "N")), Count=as.vector(alf)) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values) }) setMethod(qa2, "QAQualityUse", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QAQualityUse-method") obj <- .filter(state@data, object@useFilter) alf <- .qa_alphabetFrequency(quality(obj), collapse=TRUE) alf <- alf[alf != 0] alphabet <- alphabet(quality(obj)) quality <- factor(names(alf), levels=alphabet) q0 <- as(do.call(class(quality(obj)), list(alphabet)), "matrix") values <- DataFrame(Quality=quality, Score=as.integer(q0)[quality], Count=as.vector(alf)) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values) }) setMethod(qa2, "QASequenceUse", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QASequenceUse-method") obj <- .filter(state@data, object@useFilter) t <- tabulate(tabulate(srrank(sread(obj)))) values <- DataFrame(Occurrences=seq_along(t)[t!=0], Reads=t[t!=0]) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values) }) setMethod(qa2, "QAFrequentSequence", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QAFrequentSequence-method") if (is.finite(object@n)) { n <- thresh <- object@n } else { n <- 10L thresh <- object@a } obj <- .filter(state@data, object@useFilter) r <- srrank(sread(obj)) t <- tabulate(r) ttop <- head(order(t, decreasing=TRUE), n) topCount <- setNames(t[ttop], as.character(sread(obj)[match(ttop, r)])) filt <- if (is.finite(object@n)) { r %in% ttop } else r %in% which(t >= thresh) .filterUpdate(state@data, object@addFilter, filt) values <- DataFrame(Threshold=thresh, Records=length(r), Count=sum(filt), TopCount=IntegerList(topCount)) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values) }) setMethod(qa2, "QAReadQuality", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QAReadQuality-method") obj <- .filter(state@data, object@useFilter) dens <- .qa_qdensity(quality(obj)) values <- DataFrame(Score=dens$x, Density=dens$y) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values) }) setMethod(qa2, "QANucleotideByCycle", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QANucleotideByCycle-method") obj <- .filter(state@data, object@useFilter) abc <- alphabetByCycle(sread(obj)) values <- DataFrame(Cycle=seq_len(ncol(abc))[col(abc)], Base=factor(rownames(abc)[row(abc)]), Count=as.vector(abc), row.names=NULL) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values[values$Count != 0,]) }) setMethod(qa2, "QAQualityByCycle", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QAQualityByCycle-method") obj <- .filter(state@data, object@useFilter) abc <- alphabetByCycle(quality(obj)) alphabet <- rownames(abc) q <- factor(rownames(abc)[row(abc)], levels = alphabet) q0 <- as(do.call(class(quality(obj)), list(alphabet)), "matrix") values <- DataFrame(Cycle=seq_len(ncol(abc))[col(abc)], Quality=q, Score=as.integer(q0)[q], Count=as.vector(abc), row.names=NULL) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values[values$Count != 0,]) }) .qa2_do_collate1 <- function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QACollate1-method") src <- .clone(object@src) srcelt <- qa2(src, verbose=verbose) # side effect -- populate seq elts <- endoapply(as(object, "SimpleList"), qa2, src, ..., verbose=verbose) names(elts) <- sapply(object, class) renew(object, elts, src=renew(object@src, values=values(srcelt))) } setMethod(qa2, "QACollate", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QACollate-method") qas <- bplapply(seq_along(object@src@con), function(i, object, ...) { object@src@con <- object@src@con[i] .qa2_do_collate1(object, ...) }, object, ..., verbose=verbose) ## collapse summary df <- do.call(rbind, Map(function(elt) values(elt@src), qas)) df[["Id"]] <- factor(seq_along(qas), levels=as.character(seq_along(qas))) ncol <- ncol(df) values(object@src) <- df[, c(ncol, seq_len(ncol - 1L))] ## collect NumberOfRecords filtered <- as(t(sapply(qas, function(lst) { sapply(lst, function(elt) { metadata(values(elt))[["NumberOfRecords"]] }) })), "DataFrame") filtered[["Id"]] <- values(object@src)[["Id"]] ncol <- ncol(filtered) filtered <- filtered[,c(ncol, seq_len(ncol - 1L))] ## add Id qas <- Map(function(elt, id) endoapply(elt, function(elt, id) { df <- values(elt) df[["Id"]] <- id ncol <- ncol(df) rotate <- c(ncol(df), seq_len(ncol - 1L)) values(elt) <- df[,rotate] elt }, id), qas, values(object@src)[["Id"]]) ## collapse values <- do.call(Map, c(function(...) { do.call(rbind, list(...)) }, qas)) ## flag object@src <- flag(object@src, verbose=verbose) values <- lapply(values, flag, verbose=verbose) flagged <- Reduce(rbind, Map(function(x) { f <- x@flag if (length(f)) DataFrame(Flag=f, Summary=class(x)) else DataFrame(Flag=integer(), Summary=character()) }, c(list(object@src), values))) QA(object@src, QAFiltered(values=filtered), QAFlagged(values=flagged), do.call(SimpleList, values)) }) ## flag setMethod(flag, ".QA2", function(object, ..., verbose=FALSE) { if (verbose) message("flag,ANY-method") object }) setMethod(flag, "QASource", function(object, ..., verbose=FALSE) { if (verbose) message("flag,QASource-method") rng <- object@flagNSequencesRange x <- values(object)[["SourceN"]] if (1L == length(rng) && is.na(rng)) { ## default -- outliers stats <- stats::fivenum(x, na.rm = TRUE) iqr <- diff(stats[c(2, 4)]) coef <- 1.5 object@flagNSequencesRange <- rng <- c(as.integer(floor(stats[2L] - coef * iqr)), as.integer(ceiling(stats[4L] + coef * iqr))) } object@flag <- which(!is.finite(x) | x < rng[1] | x > rng[2]) object }) setMethod(flag, "QAReadQuality", function(object, ..., verbose=FALSE) { if (verbose) message("flag,QAReadQuality-method") df <- as(values(object), "data.frame") object@flag <- which(unname(unlist(with(df, { Map(function(score, density, A, K) { dx <- diff(score) x <- score[-length(score)] + dx / 2 y <- density[-length(density)] + diff(density) / 2 k <- approxfun(x, cumsum(y * dx))(A) is.na(k) || k < K }, split(Score, Id), split(Density, Id), MoreArgs=list(A = object@flagA, K = object@flagK)) })))) object }) setMethod(flag, "QAFrequentSequence", function(object, ..., verbose=FALSE) { ppn <- values(object)[["Count"]] / values(object)[["Records"]] object@flag <- which(ppn > object@flagK ) object }) ## report .hwrite <- function(df) { hwrite(as(df, "data.frame"), border=0) } setMethod(report, "QASource", function(x, ..., dest=tempfile(), type="html") { df <- as(values(x), "data.frame") df$Id <- as.integer(as.character(df$Id)) pal <- c("#D73027", "#4575B4") # brewer.pal(9, "RdYlBu")[c(1, 9)] plt <- dotplot(Id ~ SourceN, df, type = "b", pch = 20, col = .dnaCol, rng = x@flagNSequencesRange, rngcol = pal, panel=function(x, y, ..., rng, rngcol) { panel.dotplot(x, y, ...) yy <- c(min(y), max(y)) llines(rng[1], yy, col=rngcol[1], lty=2) llines(rng[2], yy, col=rngcol[2], lty=2) }) list(SAMPLE_KEY=.hwrite(values(x)), PPN_COUNT=.html_img(dest, "readCounts", plt)) }) setMethod(report, "QAFlagged", function(x, ...., dest=tempfile(), type="html") { list(FLAGGED=.hwrite(values(x))) }) setMethod(report, "QAFiltered", function(x, ..., dest=tempfile(), type="html") { list(FILTERED=.hwrite(values(x))) }) setMethod(report, "QAAdapterContamination", function(x, ..., dest=tempfile(), type="html") { list(ADAPTER_CONTAMINATION=.hwrite(values(x))) }) setMethod(report, "QANucleotideUse", function(x, ..., dest=tempfile(), type="html") { df <- as(values(x), "data.frame") df$Id <- as.integer(as.character(df$Id)) plt <- dotplot(Id ~ Count|factor(ifelse(df$Nucleotide == "N", "N", "O")), group=Nucleotide, df, base=df$Nucleotide, type = "b", pch = 20, col = .dnaCol, key = list(space = "top", lines = list(col = .dnaCol), text = list(lab = levels(values(x)[["Nucleotide"]])), columns = 5L), strip=FALSE, scale=list(relation="free"), par.settings=list(layout.widths = list(panel = c(1, 2)))) list(BASE_CALL_COUNT=.html_img(dest, "baseCalls", plt)) }) setMethod(report, "QAQualityUse", function(x, ..., dest=tempfile(), type="html") { df <- as(values(x), "data.frame") id <- df[["Id"]] q <- df[["Quality"]] q <- factor(q, levels=levels(q)[min(as.integer(q)):max(as.integer(q))]) df[["Quality"]] <- q df <- df[order(df$Id, df$Quality),] df[["Proportion"]] <- with(df, unlist(Map("/", lapply(split(Count, Id), cumsum), lapply(split(Count, Id), sum)), use.names=FALSE)) pal <- # brewer.pal(9, "RdYlBu") c("#D73027", "#F46D43", "#FDAE61", "#FEE090", "#FFFFBF", "#E0F3F8", "#ABD9E9", "#74ADD1", "#4575B4") col <- colorRampPalette(pal)(length(levels(q))) plt <- dotplot(Id ~ Proportion, group=Quality, df, type = "b", pch = 20, col = col, xlab="Cummulative Proportion", key = list(space = "top", lines = list(col = col, size=3L), text = list(lab = levels(df[["Quality"]])), columns = min(length(col), 10L), cex=.6)) list(QUALITY_SCORE_COUNT=.html_img(dest, "qualityCalls", plt)) }) setMethod(report, "QAReadQuality", function(x, ..., dest=tempfile(), type="html") { df <- as(values(x), "data.frame") lvl <- levels(df$Id) flag <- lvl[x@flag] df$Id <- factor(df$Id, levels=c(lvl[!lvl %in% flag], flag)) xmin <- min(df$Score) ymax <- max(df$Density) pal <- # brewer.pal(8, "Set1") c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00", "#FFFF33", "#A65628", "#F781BF") col <- c(rep("gray", length(lvl) - length(flag)), pal[1 + (seq_along(flag) - 1) %% 8]) plt <- xyplot(Density ~ Score, group=Id, df, type = "l", xlab = "Average (calibrated) base quality", nylab = "Proportion of reads", col = col, strip=FALSE, key = list(space = "top", lines = list(col=tail(col, length(flag)), size=3L, lwd=2), text = list(lab=tail(lvl, length(flag))), columns=min(length(col), 10L), cex=.6)) list(READ_QUALITY_FIGURE=.html_img(dest, "readQuality", plt)) }) setMethod(report, "QASequenceUse", function(x, ..., dest=tempfile(), type="html") { df <- with(values(x), { nOccur <- tapply(Occurrences, Id, c) cumulative <- tapply(Occurrences * Reads, Id, function(elt) { cs <- cumsum(elt) (cs - cs[1] + 1)/(diff(range(cs)) + 1L) }) id <- tapply(Id, Id, c) data.frame(Occurrences = unlist(nOccur), Cumulative = unlist(cumulative), Id = unlist(id), row.names = NULL) }) xmax <- log10(max(df$Occurrences)) plt <- xyplot(Cumulative ~ log10(Occurrences) | factor(Id), df, xlab = expression(paste("Number of occurrences of each sequence (", log[10], ")", sep = "")), ylab = "Cumulative proportion of reads", aspect = 2, panel = function(x, y, ..., subscripts, type) { lbl <- unique(df$Id[subscripts]) ltext(xmax, 0.05, lbl, adj = c(1, 0)) type <- if (1L == length(x)) "p" else "l" panel.xyplot(x, y, ..., type = type) }, strip = FALSE) list(SEQUENCE_USE=.html_img(dest, "sequenceUse", plt)) }) setMethod(report, "QAFrequentSequence", function(x, ..., dest=tempfile(), type="html") { thresholdLabel <- if (is.finite(x@n)) "n" else "a" threshold <- as.character(if (is.finite(x@n)) x@n else x@a) freqseq <- if (x@reportSequences) { seqdf <- lapply(with(values(x), { #with() gets wrong env for .hwrite lapply(split(TopCount, Id), function(elt) { data.frame(Sequence=names(elt[[1]]), Count=unname(elt[[1]])) }) }), .hwrite) paste(Map(function(id, seq) { sprintf("

Id: %s

%s", id, seq) }, names(seqdf), seqdf), collapse="\n") } else "" df <- values(x)[, c("Id", "Count")] list(THRESHOLD_LABEL=thresholdLabel, THRESHOLD=threshold, FREQUENT_SEQUENCE_COUNT=.hwrite(df), FREQUENT_SEQUENCES=freqseq) }) setMethod(report, "QANucleotideByCycle", function(x, ..., dest=tempfile(), type="html") { df <- as(values(x), "data.frame") df <- df[df$Base != "N" & df$Base != "-", ] df$Base <- factor(df$Base) xmax <- max(df$Cycle) ymax <- log10(max(df$Count)) plt <- xyplot(log10(Count) ~ as.integer(Cycle) | Id, group = factor(Base), df[order(df$Id, df$Base, df$Cycle),], panel = function(..., subscripts) { lbl <- as.character(unique(df$Id[subscripts])) ltext(xmax, ymax, lbl, adj = c(1, 1)) panel.xyplot(..., subscripts = subscripts) }, type = "l", col = .dnaCol[1:4], key = list( space = "top", lines = list(col = .dnaCol[1:4]), text = list(lab = levels(df$Base)), columns = length(levels(df$Base))), xlab = "Cycle", aspect = 2, strip = FALSE) list(CYCLE_BASE_CALL=.html_img(dest, "cycleBaseCall", plt)) }) setMethod(report, "QAQualityByCycle", function(x, ..., dest=tempfile(), type="html") { calc_means <- function(x, y, z) rowsum(y * z, x)/rowsum(z, x) calc_quantile <- function(x, y, z, q = c(0.25, 0.5, 0.75)) by(list(y, z), x, function(x) { scoreRle <- Rle(x[[1]], x[[2]]) quantile(scoreRle, q) }) df <- as(values(x), "data.frame") Id <- df$Id pal <- c("#66C2A5", "#FC8D62") lvlPal <- c("#F5F5F5", "black") rng <- range(df$Count) at <- seq(rng[1], rng[2], length.out = 512) np <- length(unique(Id)) nrow <- ceiling(np/4) layout <- c(ceiling(np/nrow), nrow) ymin <- min(df$Score) plt <- xyplot(Score ~ Cycle | Id, df, panel = function(x, y, ..., subscripts) { z <- df$Count[subscripts] mean <- calc_means(x, y, z) qtiles <- calc_quantile(x, y, z) sxi <- sort(unique(x)) panel.levelplot(x, y, z, subscripts = TRUE, at = at, col.regions = colorRampPalette(lvlPal)) llines(sxi, mean, type = "l", col = pal[[1]], lwd = 1) llines(sxi, sapply(qtiles, "[[", 1), type = "l", col = pal[[2]], lwd = 1, lty = 3) llines(sxi, sapply(qtiles, "[[", 2), type = "l", col = pal[[2]], lwd = 1) llines(sxi, sapply(qtiles, "[[", 3), type = "l", col = pal[[2]], lwd = 1, lty = 3) lbl <- as.character(unique(df$Id[subscripts])) ltext(1, ymin, lbl, adj = c(0, 0)) }, ylab = "Quality Score", layout = layout, strip = FALSE) list(CYCLE_QUALITY=.html_img(dest, "cycleQualityCall", plt)) }) setMethod(report, "QA", function(x, ..., dest=tempfile(), type="html") { if (any(type != "html")) .throw(SRError("UserArgumentMismatch", "'type' must be 'html'")) dir.create(dest, recursive=TRUE) header <- system.file("template", "QAHeader.html", package="ShortRead", mustWork=TRUE) footer <- system.file("template", "QAFooter.html", package="ShortRead", mustWork=TRUE) sections <- c(header, x@src@html, x@filtered@html, x@flagged@html, sapply(x, slot, "html"), footer) values0 <- c(list(report(x@src, dest=dest), report(x@filtered, dest=dest), report(x@flagged, dest=dest)), lapply(x, report, dest=dest)) values <- setNames(unlist(values0, recursive=FALSE, use.names=FALSE), unlist(lapply(values0, names))) .report_html_do(dest, sections, values, ...) }) ShortRead/R/methods-QualityScore.R0000644000175100017510000002427412607265053020115 0ustar00biocbuildbiocbuild## interface ## constructors, [, [[, length, width, append, show, detail ## QualityScore .QualityScore_subset <- function(x, i, j, ..., drop=TRUE) { if (!missing(...)) .subset_err() initialize(x, quality=quality(x)[i]) } setMethod("[", c("QualityScore", "ANY", "missing"), .QualityScore_subset) .QualityScore_subset2 <- function(x, i, j, ...) { if (!missing(...)) .subset_err() quality(x)[[i]] } setMethod("[[", c("QualityScore", "ANY", "missing"), .QualityScore_subset2) setMethod(length, "QualityScore", function(x) length(quality(x))) setMethod(width, "QualityScore", function(x) .undefined_method_err(class(x), "width")) setMethod(append, c("QualityScore", "QualityScore"), function(x, values, after=length(x)) { initialize(x, quality=append(quality(x), quality(values))) }) setMethod(detail, "QualityScore", function(x) { callNextMethod() cat("quality:\n") print(quality(x)) }) ## NumericQuality setMethod(width, "NumericQuality", function(x) rep(1, length(x))) setMethod(show, "NumericQuality", function(object) { callNextMethod() .show_some("quality", quality(object)) }) ## IntegerQuality IntegerQuality <- function(quality=integer(0)) { new("IntegerQuality", quality=quality) } ## Import integer qualities from 454 .qual files .readFASTA <- ## from Biostrings; legacy code but handles numeric values function(file, checkComments=TRUE, strip.descs=TRUE) { if (missing(strip.descs)) warning("use 'strip.descs=FALSE' for compatibility with old version\n", " of readFASTA(), or 'strip.descs=TRUE' to remove the \">\"\n", " at the beginning of the description lines and to get\n", " rid of this warning (see '?readFASTA' for more details)") if (is.character(file)) { file <- file(file, "r") on.exit(close(file)) } else { if (!inherits(file, "connection")) stop("'file' must be a character string or connection") if (!isOpen(file)) { open(file, "r") on.exit(close(file)) } } s1 <- scan(file=file, what="", sep="\n", quote="", allowEscapes=FALSE, quiet=TRUE) if (checkComments) { ##comments are supposedly lines beginning with semi-colons comments <- grep("^;", s1) if (length(comments) > 0) s1 <- s1[-comments] } descriptions <- which(substr(s1, 1L, 1L) == ">") numF <- length(descriptions) if (numF == 0) stop("no FASTA sequences found") dp <- descriptions + 1L dm <- descriptions - 1L end <- c(dm[-1], length(s1)) lapply(seq_len(numF), function(i) { desc <- s1[descriptions[i]] if (strip.descs) desc <- substr(desc, 2L, nchar(desc)) if (end[i] >= dp[i]) { seq <- paste(s1[dp[i]:end[i]], collapse="") } else { warning("record \"", desc, "\" contains no sequence") seq <- "" } list(desc=desc, seq=seq) } ) } .readQual <- function(file, reads = NULL) { if (!is.null(reads)) { ## a lot faster if the reads are known nums <- scan(file, integer(0), n = sum(width(reads)), comment.char = ">") inds <- seq_len(length(reads)) scores <- split(nums, factor(rep(inds, width(reads)), inds)) } else { qual <- .readFASTA(file, strip.descs=TRUE) scores <- lapply(strsplit(subListExtract(qual, "seq", TRUE), " +"), as.integer) names(scores) <- subListExtract(qual, "desc", TRUE) } scores } setMethod(readQual, "character", function(dirPath, reads = NULL, pattern=character(), sample = 1, ...) { src <- .file_names(dirPath, pattern)[sample] scores <- do.call(c, lapply(src, .readQual, reads)) FastqQuality(sapply(scores, function(elt) rawToChar(as.raw(elt+33)))) }) ## MatrixQuality MatrixQuality <- function(quality=new("matrix")) { new("MatrixQuality", quality=quality) } .MatrixQuality_subset <- function(x, i, j, ..., drop=FALSE) { if (!missing(...)) .subset_err() initialize(x, quality=quality(x)[i,, drop=FALSE]) } setMethod("[", c("MatrixQuality", "ANY", "missing"), .MatrixQuality_subset) .MatrixQuality_subset2 <- function(x, i, j, ...) { if (!missing(...)) .subset_err() quality(x)[i,] } setMethod("[[", c("MatrixQuality", "ANY", "missing"), .MatrixQuality_subset2) setMethod(dim, "MatrixQuality", function(x) dim(quality(x))) setMethod(length, "MatrixQuality", function(x) nrow(quality(x))) setMethod(width, "MatrixQuality", function(x) rep(ncol(x), nrow(x))) ## FIXME: implement this, when starts are un-equal setMethod(narrow, "MatrixQuality", function(x, start=NA, end=NA, width=NA, use.names=TRUE) { sew <- solveUserSEW(width(x), start = start, end = end, width = width) if (length(unique(width(sew))) != 1) .throw(SRError("UserArgumentMismatch", "%s of %s must be 1", "'length(unique(width()))'", "solved SEW")) if (length(unique(start(sew))) == 1) { idx <- unique(start(sew)) + seq_len(unique(width(sew))) - 1 initialize(x, quality=quality(x)[,idx]) } else { .throw(SRError("UserArgumentMismatch", "%s requires unequal 'start' positions", "'narrow,MatrixQuality-method'")) } }) setMethod(append, c("MatrixQuality", "MatrixQuality"), function(x, values, after=length(x)) { initialize(x, quality=rbind(quality(x), quality(values))) }) ## FastqQuality, SFastqQuality .FastqQuality_missing <- function(quality, ...) { callGeneric(BStringSet(character(0))) } .FastqQuality_character <- function(quality, ...) { callGeneric(BStringSet(quality), ...) } setMethod(FastqQuality, "missing", .FastqQuality_missing) setMethod(FastqQuality, "character", .FastqQuality_character) setMethod(FastqQuality, "BStringSet", function(quality, ...) { new("FastqQuality", quality=quality) }) setMethod(SFastqQuality, "missing", .FastqQuality_missing) setMethod(SFastqQuality, "character", .FastqQuality_character) setMethod(SFastqQuality, "BStringSet", function(quality, ...) { new("SFastqQuality", quality=quality) }) setAs("FastqQuality", "numeric", function(from) { v <- as.vector(t(as(from, "matrix"))) v[!is.na(v)] }) setAs("FastqQuality", "matrix", function(from) { .Call(.alphabet_as_int, quality(from), 0:255-33L) }) setAs("FastqQuality", "PhredQuality", function(from) { as(quality(from), "PhredQuality") }) setAs("SFastqQuality", "matrix", function(from) { .Call(.alphabet_as_int, quality(from), 0:255-64L) }) setAs("SFastqQuality", "SolexaQuality", function(from) { as(quality(from), "SolexaQuality") }) setMethod(width, "FastqQuality", function(x) width(quality(x))) setMethod(reverse, "FastqQuality", function(x, ...) { do.call(class(x), list(reverse(quality(x)))) }) setMethod(narrow, "FastqQuality", function(x, start=NA, end=NA, width=NA, use.names=TRUE) { initialize(x, quality=narrow(quality(x), start, end, width, use.names)) }) setMethod(alphabet, "FastqQuality", function(x, ...) rawToChar(as.raw(32:125), TRUE)) setMethod(encoding, "FastqQuality", function(x) { alf <- alphabet(x) x <- setNames(seq(-1, length.out=length(alf)), alf) x[x >= 0 & x <= 41] }) setMethod(encoding, "SFastqQuality", function(x) { alf <- alphabet(x) x <- setNames(seq(-32, length.out=length(alf)), alf) x[x >= -5 & x <= 41] }) setMethod(show, "FastqQuality", function(object) { callNextMethod() cat("quality:\n") show(quality(object)) }) .FastqQuality_af <- function(x, as.prob=FALSE, ...) { res <- callGeneric(quality(x), as.prob=as.prob, ...) if (is(res, "matrix")) { res <- res[,1+32:125, drop=FALSE] colnames(res) <- alphabet(x) } else { res <- res[1+32:125] names(res) <- alphabet(x) } res } setMethod(alphabetFrequency, "FastqQuality", .FastqQuality_af) .FastqQuality_abc <- function(stringSet, alphabet, ...) { if (missing(alphabet)) alphabet <- Biostrings::alphabet(stringSet) .abc_BStringSet(quality(stringSet), alphabet=alphabet, ...) } setMethod(alphabetByCycle, "FastqQuality", .FastqQuality_abc) .SFastqQuality_ascore <- function(object, score=0:255-64L, ...) { .Call(.alphabet_score, quality(object), as.numeric(score)) } setMethod(alphabetScore, "SFastqQuality", .SFastqQuality_ascore) .FastqQuality_ascore <- function(object, score=0:255-33L, ...) { .Call(.alphabet_score, quality(object), as.numeric(score)) } setMethod(alphabetScore, "FastqQuality", .FastqQuality_ascore) setMethod(alphabetScore, "PhredQuality", function(object, ...) { .Call(.alphabet_score, object, as.numeric(0:255 - 33L)) }) setMethod(trimTailw, "FastqQuality", function(object, k, a, halfwidth, ..., ranges=FALSE) { rng <- callGeneric(quality(object), k, a, halfwidth, ..., alphabet=alphabet(object), ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(trimTails, "FastqQuality", function(object, k, a, successive=FALSE, ..., ranges=FALSE) { rng <- callGeneric(quality(object), k, a, successive, ..., alphabet=alphabet(object), ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(trimEnds, "FastqQuality", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) { rng <- callGeneric(quality(object), a, left, right, relation, ..., alphabet=alphabet(object), ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(srrank, "FastqQuality", .forward_xq) setMethod(srorder, "FastqQuality", .forward_xq) setMethod(srsort, "FastqQuality", .forward_xq) setMethod(srduplicated, "FastqQuality", .forward_xq) .FastqQuality_srduplicated<- function(x, incomparables=FALSE, ...) { callGeneric(x=quality(x), ...) } setMethod(srduplicated, "FastqQuality", .FastqQuality_srduplicated) ShortRead/R/methods-RochePath.R0000644000175100017510000000604512607265053017342 0ustar00biocbuildbiocbuildRochePath <- function(experimentPath=NA_character_, readPath=experimentPath, qualPath=readPath, ..., verbose=FALSE) { if (verbose) { .checkPath(experimentPath) .checkPath(readPath) .checkPath(qualPath) } new("RochePath", ..., basePath=experimentPath, readPath=readPath, qualPath=qualPath) } .make_getter(c("readPath", "qualPath")) .readFasta_RochePath <- function(dirPath, pattern = "\\.fna$", sample = 1, run = 1, ..., nrec=-1L, skip=0L) { dirPath <- .file_names(readPath(dirPath)[run], pattern)[sample] if (any(is.na(dirPath))) .throw(SRError("Input/Output", "'%s' is 'NA' in '%s'", "readPath", "dirPath")) callGeneric(dirPath, ..., nrec=nrec, skip=skip) } setMethod(readFasta, "RochePath", .readFasta_RochePath) .readQual_RochePath <- function(dirPath, reads = NULL, pattern = "\\.qual$", sample = 1, run = 1, ...) { dirPath <- .file_names(qualPath(dirPath)[run], pattern)[sample] if (any(is.na(dirPath))) .throw(SRError("Input/Output", "'%s' is 'NA' in '%s'", "qualPath", "dirPath")) callGeneric(dirPath, ..., reads = reads) } setMethod(readQual, "RochePath", .readQual_RochePath) .readFastaQual_RochePath <- function(dirPath, fastaPattern = "\\.fna$", qualPattern = "\\.qual$", sample = 1, run = 1) { reads <- readFasta(dirPath, fastaPattern, sample, run) quals <- readQual(dirPath, reads, qualPattern, sample, run) ## combine the two new("ShortReadQ", reads, quality=quals) } setMethod(read454, "RochePath", function(dirPath, ...) readFastaQual(dirPath, ...)) setMethod(readFastaQual, "RochePath", .readFastaQual_RochePath) setMethod(readBaseQuality, "RochePath", function(dirPath, ...) .readFastaQual_RochePath(dirPath, ...)) .readFastaQual_character <- function(dirPath, fastaPattern = "\\.fna$", qualPattern = "\\.qual$", sample = 1, run = 1) { callGeneric(RochePath(dirPath), fastaPattern, qualPattern, sample, run) } setMethod(readFastaQual, "character", .readFastaQual_character) .sampleNames_RochePath <- function(object) { path <- readPath(object) if (!is.na(path)) sub("_.*", "", basename(.file_names(path, "\\.fna"))) else callNextMethod() } setMethod(sampleNames, "RochePath", .sampleNames_RochePath) .runNames_RochePath <- function(object) { basename(readPath(object)) } setMethod(runNames, "RochePath", .runNames_RochePath) setMethod(show, "RochePath", function(object) { callNextMethod() .show_additionalPathSlots(object) }) setMethod(detail, "RochePath", function(x, ...) { callNextMethod() .detail_additionalPathSlots(x) }) ShortRead/R/methods-RocheSet.R0000644000175100017510000000174512607265053017203 0ustar00biocbuildbiocbuild.RocheSet_RochePath <- function(path, phenoData, ...) { if (missing(phenoData)) { samples <- sampleNames(path) runs <- runNames(path) df <- data.frame(samples, run=runs, row.names=1) phenoData <- new("AnnotatedDataFrame", data=df, varMetadata=data.frame( labelDescription=c("Names of sequencing runs")), dimLabels=c("sampleNames", "sampleColumns")) } else { if (!is(phenoData, "AnnotatedDataFrame")) { cls <- paste(class(phenoData), collapse=" ") .throw(SRError("UserArgumentMismatch", "expected '%s' as '%s', but got '%s'", "AnnotatedDataFrame", "phenoData", cls)) } dimLabels(phenoData) <- c("sampleNames", "sampleColumns") } new("RocheSet", ..., sourcePath=path, phenoData=phenoData) } setMethod(RocheSet, "RochePath", .RocheSet_RochePath) setMethod(RocheSet, "character", function(path, ...) { .RocheSet_RochePath(RochePath(path), ...) }) ShortRead/R/methods-RtaIntensity.R0000644000175100017510000001175712607265053020130 0ustar00biocbuildbiocbuild## RtaIntensity RtaIntensity <- function(intensity=array(0, c(0, 0, 0)), measurementError=array(0, c(0, 0, 0)), readInfo=SolexaIntensityInfo( lane=integer()[seq_len(nrow(intensity))]), ...) { .hasMeasurementError <- mkScalar(!missing(measurementError)) new("RtaIntensity", intensity=ArrayIntensity(intensity), measurementError=ArrayIntensity(measurementError), readInfo=readInfo, .hasMeasurementError=.hasMeasurementError, ...) } .readIntensities_RtaIntensity <- function(dirPath, pattern=character(0), ..., lane=integer(0), cycles=integer(0), cycleIteration=1L, tiles=integer(0), laneName=sprintf("L%.3d", lane), cycleNames=sprintf("C%d.%d", cycles, cycleIteration), tileNames=sprintf("s_%d_%d", lane, tiles), posNames=sprintf("s_%d_%.4d_pos.txt", lane, tiles), withVariability=TRUE, verbose=FALSE) { .check_type_and_length(dirPath, "character", 1) .check_type_and_length(pattern, "character", NA) .check_type_and_length(lane, "integer", 1) .check_type_and_length(cycles, "integer", NA) .check_type_and_length(cycleIteration, "integer", 1) .check_type_and_length(tiles, "integer", NA) posFilenames <- file.path(dirPath, posNames) ok <- sapply(posFilenames, file.exists) if (!all(ok)) { msg <- sprintf("%d pos files do not exist\n %s", sum(!ok), paste(selectSome(posFilenames[!ok]), collapse="\n ")) .throw(SRError("UserArgumentMismatch", msg)) } if (verbose) message("reading 'pos' files") readInfo <- do.call(rbind, mapply(function(fl, lane, tile) { cbind(lane=lane, tile=tile, read.table(fl, col.names=c("x", "y"))) }, posFilenames, laneName, tileNames, SIMPLIFY=FALSE, USE.NAMES=FALSE)) readInfo <- do.call(SolexaIntensityInfo, readInfo) laneDirname <- file.path(dirPath, laneName) if (!file.exists(laneDirname)) { msg <- sprintf("unknown lane directory\n %s", laneDirname) .throw(SRError("UserArgumentMismatch", msg)) } cycleDirnames <- file.path(laneDirname, cycleNames) ok <- sapply(cycleDirnames, file.exists) if (!all(ok)) { msg <- sprintf("%d cycle directories do not exist\n %s", sum(!ok), paste(selectSome(cycleDirnames[!ok]), collapse="\n ")) .throw(SRError("UserArgumentMismatch", msg)) } if (verbose) message("reading 'cif' files") cif <- .read_cif_or_cnf(cycleDirnames, tileNames, ".cif") if (withVariability) { if (verbose) message("reading 'cnf' files") cnf <- .read_cif_or_cnf(cycleDirnames, tileNames, ".cnf") RtaIntensity(intensity=cif, measurementError=cnf, readInfo=readInfo) } else { RtaIntensity(intensity=cif, readInfo=readInfo) } } .read_cif_or_cnf_file <- function(fileName) { conn <- file(fileName, "rb") on.exit(close(conn)) ## header id <- rawToChar(readBin(conn, "raw", 3L)) if (id != "CIF") stop("not a CIF / CNF file:\n id: ", id, "\n file: ", fileName) version <- readBin(conn, "integer", 1L, 1L, signed=FALSE) if (version != 1L) stop("unknown CIF / CNF version:\n version: ", version, "\n file: ", fileName) dataType <- readBin(conn, "integer", 1L, 1L, signed=FALSE) firstCycle <- readBin(conn, "integer", 1L, 2L, signed=FALSE, endian="little") numberOfCycles <- readBin(conn, "integer", 1L, 2L, signed=FALSE, endian="little") numberOfClusters <- readBin(conn, "integer", 1L, 4L, signed=FALSE, endian="little") ## data m <- readBin(conn, "integer", 4 * numberOfClusters, dataType, endian="little") if (length(m) != 4 * numberOfClusters) stop("incorrect number of CIF data values:", "\n expected: ", 4 * numberOfClusters, "\n found: ", length(m), "\n file: ", fileName) m } .read_cif_or_cnf <- function(cycleDirs, tileNamesRoot, ext) { res <- lapply(cycleDirs, function(dir, tileNames) { fls <- file.path(dir, tileNames) unlist(lapply(fls, .read_cif_or_cnf_file)) }, paste(tileNamesRoot, ext, sep="")) isNull <- sapply(res, is.null) if (any(isNull)) stop("no CIF or CNF files matching pattern", "\n pattern: '", paste(tileNamesRoot, ext, sep=""), "'", "\n directories:\n ", paste(cycleDirs[isNull], collapse="\n ", sep="")) nClusters <- unique(sapply(res, length)) / 4 if (length(nClusters) != 1L) stop("cluster counts differ between cycles", "\n found: ", paste(nClusters, collapse=" ")) nms <- list(NULL, c("A", "C", "G", "T"), basename(cycleDirs)) array(unlist(res), dim=c(nClusters, 4L, length(cycleDirs)), dimnames=nms) } ShortRead/R/methods-SRError.R0000644000175100017510000000401012607265053017011 0ustar00biocbuildbiocbuild.SRErrorWarning_types <- c("SRVectorClassDisagreement", "Input/Output", "UserSubset", "UserArgumentMismatch") .SRError_types <- c("UnspecifiedError", "InternalError", "RemoteError", "InvalidReadFilter", "IncompatibleTypes", "ValueUnavailable", .SRErrorWarning_types) .SRWarn_types <- c("UnspecifiedWarning", "RemoteWarning", "IncompleteFinalRecord", .SRErrorWarning_types) ## Error setMethod(.srValidity, "SRError", function(object) { msg <- NULL type <- .type(object) if (!type %in% .SRError_types) msg <- c(msg, sprintf("'%s' must be one of '%s'", '.type', paste(.SRError_types, collapse="' '"))) if (is.null(msg)) TRUE else msg }) SRError <- function(type, fmt, ...) { new("SRError", .type=type, .message=sprintf(fmt, ...)) } .make_getter(slotNames("SRError")) setMethod(.throw, "SRError", function(object, call=NULL, ...) { class <- c(.type(object), "SRError", "error", "condition") msg <- paste(.type(object), .message(object), sep="\n ") cond <- structure(list(message=msg, call=call), class=class) stop(cond) }) ## Warning setMethod(.srValidity, "SRWarn", function(object) { msg <- NULL type <- .type(object) if (!type %in% .SRWarn_types) msg <- c(msg, sprintf("'%s' must be one of '%s'", '.type', .SRWarn_types)) if (is.null(msg)) TRUE else msg }) SRWarn <- function(type, fmt, ...) { new("SRWarn", .type=type, .message=sprintf(fmt, ...)) } setMethod(.throw, "SRWarn", function(object, call=NULL, ...) { class <- c(.type(object), "SRWarn", "warning", "condition") msg <- paste(.type(object), .message(object), sep="\n ") cond <- structure(list(message=msg, call=call), class=class) warning(cond) }) ShortRead/R/methods-SRFilter.R0000644000175100017510000001664512607265053017166 0ustar00biocbuildbiocbuildsetMethod(.srValidity, "SRFilter", function (object) { msg <- NULL fmls <- formals(object) if (length(fmls) != 1 || names(fmls)[[1]] != "x") msg <- c(msg, paste("'filter' must have one argument, 'x'")) if (is.null(msg)) TRUE else msg }) setMethod(srFilter, "missing", function(fun, name, ...) { srFilter(function(x) !logical(length(x)), name=name, ...) }) setMethod(srFilter, "function", function(fun, name, ...) { name <- mkScalar(as.character(name)) fmls <- formals(fun) if (length(fmls) != 1 || names(fmls)[[1]] != "x") .throw(SRError("UserArgumentMismatch", "'filter' must have one argument, 'x'")) env <- new.env(parent=environment(fun)) env[[".stats"]] <- NULL fun <- eval(substitute(function(x) { res <- FUN(x) SRFilterResult(res, NAME) }, list(FUN=fun, NAME=name))) environment(fun) <- env new("SRFilter", fun, name=name, ...) }) setMethod(srFilter, "SRFilter", function(fun, name, ...) { slot(fun, ".Data") }) setMethod(name, "SRFilter", function(x, ...) slot(x, "name")) .getAlphabetFrequency <- function(x, ...) { if (is(x, "ShortRead")) alphabetFrequency(sread(x), ...) else alphabetFrequency(x, ...) } idFilter <- function(regex=character(0), fixed=FALSE, exclude=FALSE, .name="idFilter") { .check_type_and_length(regex, "character", 0:1) srFilter(function(x) { .idx <- logical(length(x)) .idx[grep(regex, as.character(id(x)), fixed=fixed)] <- TRUE if (exclude) .idx <- !.idx .idx }, name = .name) } chromosomeFilter <- function(regex=character(0), fixed=FALSE, exclude=FALSE, .name="ChromosomeFilter") { .check_type_and_length(regex, "character", 0:1) srFilter(function(x) { .idx <- logical(length(x)) .idx[grep(regex, chromosome(x), fixed=fixed)] <- TRUE if (exclude) .idx <- !.idx .idx }, name=.name) } positionFilter <- function(min=-Inf, max=Inf, .name="PositionFilter") { .check_type_and_length(min, "numeric", 1) .check_type_and_length(max, "numeric", 1) srFilter(function(x) { !is.na(position(x)) & position(x) >= min & position(x) <= max }, name=.name) } uniqueFilter <- function(withSread=TRUE, .name="UniqueFilter") { msg <- if (withSread) "occurrenceFilter(withSread=TRUE)" else "occurrenceFilter" .Defunct(msg, package="ShortRead") } ## withSread ## TRUE: sread, chromosome, position, strand ## FALSE: chromosome, position, strand ## NA: sread .occurrenceName <- function(min, max, withSread, duplicates) { if (!is.character(duplicates)) { duplicates <- deparse(substitute(duplicates, env=parent.frame())) if (length(duplicates) > 1) duplicates <- "custom" } sprintf("%s\n min=%d max=%d withSread='%s'\n duplicates='%s'", "OccurrenceFilter", min, max, withSread, duplicates) } occurrenceFilter <- function(min=1L, max=1L, withSread=c(NA, TRUE, FALSE), duplicates=c("head", "tail", "sample", "none"), .name=.occurrenceName(min, max, withSread, duplicates)) { .check_type_and_length(min, "numeric", 1L) .check_type_and_length(max, "numeric", 1L) if (missing(withSread)) withSread <- withSread[1] .check_type_and_length(withSread, "logical", 1L) if (is.character(duplicates)) duplicates <- match.arg(duplicates) if (max < min) .throw(SRError("UserArgumentMismatch", "'min' must be <= 'max'")) srFilter(function(x) { rnk <- if (is(x, "AlignedRead")) { if (is.na(withSread)) srrank(sread(x)) else srrank(x, withSread=withSread) } else srrank(x) t <- tabulate(rnk) result <- rnk %in% which(t >= min & t <= max) if (!(is.character(duplicates) && "none" == duplicates)) { q <- which(rnk %in% which(t > max)) if(length(q) != 0L) { x <- tapply(q, rnk[q], duplicates, max, simplify=FALSE) result[unlist(x, use.names=FALSE)] <- TRUE } } result }, name=.name) } strandFilter <- function(strandLevels=character(0), .name="StrandFilter") { .check_type_and_length(strandLevels, "character", NA) srFilter(function(x) strand(x) %in% strandLevels, name=.name) } nFilter <- function(threshold=0L, .name="CleanNFilter") { .check_type_and_length(threshold, "numeric", 1) srFilter(function(x) { .getAlphabetFrequency(x, baseOnly=TRUE)[,"other"] <= threshold }, name=.name) } polynFilter <- function(threshold=0L, nuc=c("A", "C", "T", "G", "other"), .name="PolyNFilter") { .check_type_and_length(threshold, "numeric", 1) .check_type_and_length(nuc, "character", NA) ok <- eval(formals()[["nuc"]]) if (!all(nuc %in% ok)) .arg_mismatch_value_err("nuc", paste(nuc, collapse=", "), ok) srFilter(function(x) { alf <- .getAlphabetFrequency(x, baseOnly=TRUE) apply(alf[,nuc,drop=FALSE], 1, max) <= threshold }, name=.name) } srdistanceFilter <- function(subject=character(0), threshold=0L, .name="SRDistanceFilter") { .check_type_and_length(subject, "character", NA) .check_type_and_length(threshold, "numeric", 1) srFilter(function(x) { .idx <- !logical(length(x)) dist <- srdistance(x, subject) for (i in seq_along(dist)) .idx <- .idx & dist[[i]] >= threshold .idx }, name=.name) } dustyFilter <- function(threshold=Inf, batchSize=NA, .name="DustyFilter") { .check_type_and_length(threshold, "numeric", 1) srFilter(function(x) dustyScore(x, batchSize) <= threshold, name=.name) } alignQualityFilter <- function(threshold=0L, .name="AlignQualityFilter") { .check_type_and_length(threshold, "numeric", 1) srFilter(function(x) quality(alignQuality(x)) >= threshold, name=.name) } alignDataFilter <- function(expr=expression(), .name="AlignDataFilter") { .check_type_and_length(expr, "expression", NA) srFilter(function(x) eval(expr, pData(alignData(x))), name=.name) } compose <- function(filt, ..., .name) { lst <- if (missing(filt)) list(...) else list(filt, ...) for (`filt, ...` in lst) .check_type_and_length(`filt, ...`, "SRFilter", NA) if (missing(.name)) .name <- paste(sapply(lst, name), collapse=" o ") srFilter(function(x) { .idx <- SRFilterResult(!logical(length(x))) for (elt in rev(lst)) .idx <- .idx & elt(x) .idx }, name =.name) } setMethod(show, "SRFilter", function(object) { cat("class:", class(object), "\n") cat("name:", name(object), "\n") cat("use srFilter(object) to see filter\n") }) setAs("SRFilter", "FilterRules", function(from) { exprs <- list(from) names(exprs) <- name(from) FilterRules(exprs) }) setMethod(c, "SRFilter", function (x, ..., recursive = FALSE) { if (missing(x)) args <- unname(list(...)) else args <- unname(list(x, ...)) args <- list(x, ...) rules <- lapply(args, as, "FilterRules") do.call(c, c(rules, recursive = recursive)) }) ShortRead/R/methods-SRFilterResult.R0000644000175100017510000000272212607265053020354 0ustar00biocbuildbiocbuildSRFilterResult <- function(x=logical(), name=NA_character_, input=length(x), passing=sum(x), op=NA_character_) { new("SRFilterResult", x, name=mkScalar(as.character(name)[length(name)]), stats=data.frame(Name=as.character(name), Input=input, Passing=passing, Op=op, stringsAsFactors=FALSE)) } setMethod(name, "SRFilterResult", function(x, ...) slot(x, "name")) setMethod(stats, "SRFilterResult", function(x, ...) slot(x, "stats")) setMethod("Logic", c("SRFilterResult", "SRFilterResult"), function(e1, e2) { x <- callNextMethod() s1 <- stats(e1); s2 <- stats(e2) op <- as.character(.Generic) name <- sprintf("(%s %s %s)", name(e1), op, name(e2)) s <- rbind(stats(e1), stats(e2), data.frame(Name=name, Input=length(x), Passing=sum(x), Op=op, stringsAsFactors=FALSE)) SRFilterResult(x, s$Name, s$Input, s$Passing, s$Op) }) setMethod("!", "SRFilterResult", function(x) { name <- sprintf("!(%s)", name(x)) y <- callNextMethod() s <- rbind(stats(x), data.frame(Name=name, Input=length(y), Passing=sum(y), Op="!", stringsAsFactors=FALSE)) SRFilterResult(y, s$Name, s$Input, s$Passing, s$Op) }) setMethod(show, "SRFilterResult", function(object) { cat("class:", class(object), "\n") cat("name:", name(object), "\n") cat("output:", selectSome(object), "\n") cat("stats:\n") print(stats(object)) }) ShortRead/R/methods-SRList.R0000644000175100017510000000252212607265053016641 0ustar00biocbuildbiocbuildSRList <- function(...) { args <- list(...) if (length(args)==1 && is(args[[1]], "list")) new("SRList", .srlist=args[[1]]) else new("SRList", .srlist=args) } .make_getter(".srlist") srlist <- .srlist # export setMethod(names, "SRList", function(x) names(.srlist(x))) setReplaceMethod("names", c("SRList", "character"), function(x, value) { lst <- .srlist(x) names(lst) <- value initialize(x, .srlist=lst) }) setMethod(length, "SRList", function(x) length(.srlist(x))) setMethod("[", c(x="SRList", i="ANY", j="missing"), function(x, i, j, ..., drop=FALSE) { initialize(x, .srlist=.srlist(x)[i]) }) setMethod("[[", signature(x="SRList", i="ANY", j="missing"), function(x, i, j, ...) .srlist(x)[[i]]) setMethod(sapply, "SRList", function(X, FUN, ..., simplify=TRUE, USE.NAMES=TRUE) { sapply(.srlist(X), FUN, ..., simplify=simplify, USE.NAMES=USE.NAMES) }) setMethod(lapply, "SRList", function(X, FUN, ...) { lapply(.srlist(X), FUN, ...) }) .SRList_show_class <- function(object) { cat("class: ", class(object), "(", length(object), ")\n", sep="") } setMethod(show, "SRList", .SRList_show_class) setMethod(detail, "SRList", function(x,...) { .SRList_show_class(x) .srlist(x) }) ShortRead/R/methods-SRSet.R0000644000175100017510000000504312607265053016462 0ustar00biocbuildbiocbuild.SRSet_validity <- function(object) { msg <- NULL len <- length(readIndex(object)) rlen <- c(readData = nrow(readData(object))) if (!all(rlen==len)) { bad <- rlen!=len msg <- c(msg, sprintf("read length mismatch: expected %d, found:\n %s", rlen, paste(names(rlen)[bad], rlen[bad], sep="=", collapse=", "))) } snames <- sampleNames(sourcePath(object)) slen <- length(snames) oslen <- c(phenoData = nrow(phenoData(object)), readCount = length(readCount(object))) if (!all(oslen==slen)) { bad <- oslen!=slen msg <- c(msg, sprintf("sample length mismatch: expected %d, found:\n %s", slen, paste(names(oslen)[bad], oslen[bad], sep="=", collapse=", "))) } osnames <- sampleNames(object) stest <- snames == osnames if (!all(stest)) msg <- c(msg, sprintf("sample names mismatch:\n %s", slen, paste(snames[!stest], osnames[!stest], sep = "!=", collapse = ", "))) rind <- readIndex(object) if (!all(rind > 0 & rind <= len)) msg <- c(msg, "values in 'readIndex' must be > 0 and <= number of reads") rcount <- readCount(object) if (!all(rcount >= 0)) msg <- c(msg, "values in 'readCount' must be non-negative") if (sum(rcount) != len) msg <- c(msg, sprintf("'sum(readCount)', %d, must equal the number of reads, %d", sum(rcount), len)) if (is.null(msg)) TRUE else msg } setMethod(.srValidity, "SRSet", .SRSet_validity) .make_getter(c("readData", "sourcePath", "readIndex", "readCount")) setMethod(experimentPath, "SRSet", function(object, ...) { callGeneric(sourcePath(object), ...) }) setMethod(sampleNames, "SRSet", function(object) { sampleNames(phenoData(object)) }) setMethod(show, "SRSet", function(object) { callNextMethod() cat("experimentPath(object): ", experimentPath(object), "\n", sep="") }) setMethod(detail, "SRSet", function(x, ...) { callNextMethod() cat("\nsourcePath\n") detail(sourcePath(x), ...) cat("\nphenoData\n") pd <- phenoData(x) cat("pData:\n") print(pData(pd)) cat("varMetadata:\n") print(varMetadata(pd)) }) setMethod(phenoData, "SRSet", function(object) object@phenoData) ## proposed ##setMethod(readSRQ, "SRSet", function(object) readSRQ(sourcePath(object))) ShortRead/R/methods-SRVector.R0000644000175100017510000000215412607265053017171 0ustar00biocbuildbiocbuildsetMethod(.srValidity, "SRVector", function(object) { msg <- NULL cls <- vclass(object) if (length(cls)!=1) msg <- c(msg, "'vclass' must be character(1)") if (!all(sapply(object, is, cls))) msg <- c(msg, sprintf("all elements must satisfy 'is(element, \"%s\")'", cls)) if (is.null(msg)) TRUE else msg }) SRVector <- function(..., vclass) { args <- list(...) if (length(args)>0 && missing(vclass)) vclass <- class(args[[1]]) ok <- sapply(args, is, vclass) if (!all(ok)) { classes <- paste(unique(c(sapply(args, class), vclass)), collapse="' '") .throw(SRError("SRVectorClassDisagreement", "elements and vclass: '%s'", classes), call=match.call()) } new("SRVector", .srlist=args, vclass=vclass) } .make_getter("vclass") setMethod(show, "SRVector", function(object) { callNextMethod() cat("vclass: ", vclass(object), "\n", sep="") }) setMethod(detail, "SRVector", function(x) { .SRList_show_class(x) show(unlist(.srlist(x))) }) ShortRead/R/methods-ShortRead.R0000644000175100017510000001207012607265053017353 0ustar00biocbuildbiocbuild.ShortRead_validity <- function(object) { msg <- NULL if (length(sread(object)) != length(id(object))) msg <- c(msg, sprintf("sread() and id() length mismatch: %d, %d", length(sread(object)), length(id(object)))) if (is.null(msg)) TRUE else msg } setMethod(.srValidity, "ShortRead", .ShortRead_validity) setMethod(sread, "ShortRead", function(object, ...) slot(object, "sread")) setMethod(id, "ShortRead", function(object, ...) slot(object, "id")) setMethod(ShortRead, c("DNAStringSet", "BStringSet"), function(sread, id) { new("ShortRead", sread=sread, id=id) }) setMethod(ShortRead, c("DNAStringSet", "missing"), function(sread, id) { new("ShortRead", sread=sread, id=BStringSet(rep("", length(sread)))) }) setMethod(ShortRead, c("missing", "missing"), function(sread, id) { new("ShortRead") }) setMethod(length, "ShortRead", function(x) length(sread(x))) setMethod(width, "ShortRead", function(x) width(sread(x))) ## coerce setMethod(pairwiseAlignment, "ShortRead", function(pattern, subject, ...) { pairwiseAlignment(sread(pattern), subject, ...) }) ## import / export setMethod(readFasta, "character", function(dirPath, pattern=character(0), ..., nrec=-1L, skip=0L) { src <- .file_names(dirPath, pattern) FASTAlist <- lapply(src, readDNAStringSet, nrec=nrec, skip=skip) fasta <- do.call(c, FASTAlist) new("ShortRead", ..., sread=DNAStringSet(fasta, use.names=FALSE), id=BStringSet(names(fasta))) }) setMethod(writeFasta, "ShortRead", function(object, file, mode="w", ...) { dna <- sread(object) names(dna) <- id(object) callGeneric(dna, file=file, mode=mode, ...) }) ## subset setMethod("[", c("ShortRead", "missing", "missing"), function(x, i, j, ..., drop=NA) .subset_err()) setMethod("[", c("ShortRead", "missing", "ANY"), function(x, i, j, ..., drop=NA) .subset_err()) setMethod("[", c("ShortRead", "ANY", "ANY"), function(x, i, j, ..., drop=NA) .subset_err()) .ShortRead_subset <- function(x, i, j, ..., drop=TRUE) { if (!missing(...)) .subset_err() initialize(x, sread=sread(x)[i], id=id(x)[i]) } setMethod("[", c(x="ShortRead", i="ANY", j="missing"), .ShortRead_subset) setMethod(append, c("ShortRead", "ShortRead"), function(x, values, after=length(x)) { initialize(x, id=append(id(x), id(values)), sread=append(sread(x), sread(values))) }) ## manip .abc_ShortRead <- function(stringSet, alphabet, ...) { if (!missing(alphabet)) .throw(SRWarn("UserArgumentMismatch", "'alphabet' ignored")) alphabetByCycle(sread(stringSet), ...) } setMethod(alphabetByCycle, "ShortRead", .abc_ShortRead) setMethod(clean, "ShortRead", function(object, ...) { alf <- alphabetFrequency(sread(object), baseOnly=TRUE) object[alf[,'other'] == 0] }) setMethod(dustyScore, "ShortRead", function(x, batchSize=NA, ...) { callGeneric(sread(x), batchSize=batchSize, ...) }) setMethod(srorder, "ShortRead", .forward_x) setMethod(srrank, "ShortRead", .forward_x) setMethod(srsort, "ShortRead", function(x, ...) { x[srorder(x, ...)] }) setMethod(srduplicated, "ShortRead", .forward_x) setMethod(tables, "ShortRead", function(x, n=50, ...) { callGeneric(sread(x), n=n, ...) }) .srdistance_ShortRead_ANY <- function(pattern, subject, ...) { callGeneric(sread(pattern), subject, ...) } setMethod(srdistance, c("ShortRead", "ANY"), .srdistance_ShortRead_ANY) setMethod(narrow, "ShortRead", function(x, start=NA, end=NA, width=NA, use.names=TRUE) { initialize(x, sread=narrow(sread(x), start, end, width, use.names)) }) setMethod(trimLRPatterns, c(subject="ShortRead"), function (Lpattern = "", Rpattern = "", subject, max.Lmismatch = 0, max.Rmismatch = 0, with.Lindels = FALSE, with.Rindels = FALSE, Lfixed = TRUE, Rfixed = TRUE, ranges = FALSE) { ret <- callGeneric(Lpattern, Rpattern, sread(subject), max.Lmismatch, max.Rmismatch, with.Lindels, with.Rindels, Lfixed, Rfixed, ranges=TRUE) if (ranges) ret else narrow(subject, start(ret), end(ret)) }) setMethod(trimEnds, "ShortRead", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) { rng <- callGeneric(sread(object), a, left, right, relation, ..., ranges=TRUE) if (ranges) rng else narrow(object, start(rng), end(rng)) }) ## show setMethod(show, "ShortRead", function(object) { callNextMethod() wd <- sort(unique(width(object))) if (length(wd)>2) wd <- paste(range(wd), collapse="..") cat("length:", length(object), "reads; width:", wd, "cycles\n") }) setMethod(detail, "ShortRead", function(x, ...) { cat("class: ", class(x), "\n") cat("\nsread:\n") show(sread(x)) cat("\nid:\n") show(id(x)) }) ## summary ## perhaps a 'summary' method with statistics on reads for each sample ShortRead/R/methods-ShortReadFile.R0000644000175100017510000000257712607265053020166 0ustar00biocbuildbiocbuildsetMethod(.ShortReadFile, "character", function(g, path, open="", ...) { path <- .file_names(path, character()) g$new(con=file(path, open, encoding="ASCII"), path=path, ...) }) setMethod(.ShortReadFile, "connection", function(g, path, ...) { descr <- summary(path)$description g$new(con=path, path=descr, ...) }) setMethod(path, "ShortReadFile", function(object, ...) { object$path }) open.ShortReadFile <- function(con, ...) { tryCatch(open(con$con), error=function(err, ...) { .throw(SRError("Input/Output", "error: %s\n%s", conditionMessage(err), Rsamtools:::.ppath(" path", con$path))) }) invisible(con) } close.ShortReadFile <- function(con, ...) { tryCatch(close(con$con), error=function(err, ...) { .throw(SRError("Input/Output", "error: %s\n%s", conditionMessage(err), Rsamtools:::.ppath(" path", con$path))) }) invisible(con) } setMethod(isOpen, "ShortReadFile", function(con, rw="") { tryCatch(isOpen(con$con), error=function(err, ...) { msg <- conditionMessage(err) if (msg != "invalid connection") .throw(SRWarn("Input/Output", "warning: %s\n%s", conditionMessage(err), Rsamtools:::.ppath(" path", con$path))) FALSE }) }) ShortRead/R/methods-ShortReadQ.R0000644000175100017510000002130412607265053017474 0ustar00biocbuildbiocbuild## validity / accessors / constructors setMethod(.srValidity, "ShortReadQ", function(object) { msg <- NULL lenq <- length(quality(object)) lens <- length(sread(object)) if (lenq != lens) { txt <- sprintf("sread and quality length mismatch: %d %d", lenq, lens) msg <- c(msg, txt) } if (!all(width(quality(object)) == width(sread(object)))) { txt <- sprintf("some sread and quality widths differ") msg <- c(msg, txt) } if (is.null(msg)) TRUE else msg }) setMethod(ShortReadQ, c("DNAStringSet", "QualityScore", "BStringSet"), function(sread, quality, id) { new("ShortReadQ", sread=sread, quality=quality, id=id) }) setMethod(ShortReadQ, c("DNAStringSet", "QualityScore", "missing"), function(sread, quality, id) { new("ShortReadQ", sread=sread, quality=quality, id=BStringSet(character(length(sread)))) }) setMethod(ShortReadQ, c("DNAStringSet", "BStringSet", "BStringSet"), function(sread, quality, id, ..., qualityType=c("Auto", "FastqQuality", "SFastqQuality"), filter=srFilter(), withIds=TRUE) { if (!missing(filter)) .check_type_and_length(filter, "SRFilter", NA) tryCatch({ qualityType <- match.arg(qualityType) }, error=function(err) { .throw(SRError("UserArgumentMismatch", conditionMessage(err))) }) tryCatch({ qualityFunc <- switch(qualityType, Auto={ alf <- alphabetFrequency(head(quality, 10000), collapse=TRUE) wch <- which(alf != 0) if (any(alf) && (min(wch) >= 58) && (max(wch) > 74)) { SFastqQuality } else FastqQuality }, SFastqQuality=SFastqQuality, FastqQuality=FastqQuality) quality <- qualityFunc(quality) srq <- if (withIds) ShortReadQ(sread, quality, id) else ShortReadQ(sread, quality) if (!missing(filter)) srq <- srq[filter(srq)] srq }, error=function(err) { .throw(SRError("IncompatibleTypes", "message: %s", conditionMessage(err))) }) }) setMethod(ShortReadQ, c("DNAStringSet", "BStringSet", "missing"), function(sread, quality, id, ...) { ShortReadQ(sread, quality, BStringSet(character(length(sread))), ...) }) setMethod(ShortReadQ, c("missing", "missing", "missing"), function(sread, quality, id) { ShortReadQ(DNAStringSet(), FastqQuality(), BStringSet()) }) setAs("ShortReadQ", "QualityScaledDNAStringSet", function(from) { q <- quality(from) q <- if (is(q, "SFastqQuality")) as(q, "SolexaQuality") else if (is(q, "FastqQuality")) as(q, "PhredQuality") else as(q, "XStringQuality") QualityScaledDNAStringSet(sread(from), q) }) setMethod(readFastq, "character", function(dirPath, pattern=character(0), ..., withIds=TRUE) { src <- .file_names(dirPath, pattern) tryCatch({ elts <- .Call(.read_solexa_fastq, src, withIds) if (withIds) ShortReadQ(elts[["sread"]], elts[["quality"]], elts[["id"]], ..., withIds=withIds) else ShortReadQ(elts[["sread"]], elts[["quality"]], ..., withIds=withIds) }, error=function(err) { .throw(SRError("Input/Output", "file(s):\n %s\n message: %s", paste(src, collapse="\n "), conditionMessage(err))) }) }) setMethod(writeFastq, c("ShortReadQ", "character"), function(object, file, mode="w", full=FALSE, compress=TRUE, ...) { if (length(file) != 1) .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "file", "character(1)")) if (file.exists(file) && mode != "a") .throw(SRError("UserArgumentMismatch", "file '%s' exists, but mode is not 'a'", file)) file <- path.expand(file) ## FIXME: different quality types max_width <- max(0L, unique(width(id(object))), unique(width(sread(object))), unique(width(quality(object)))) if (!is(quality(quality(object)), "XStringSet")) .throw(SRError("UserArgumentMismatch", "'is(<%s>, \"%s\")' failed", "quality", "XStringSet")) .Call(.write_fastq, id(object), sread(object), quality(quality(object)), file, mode, full, compress, max_width) invisible(length(object)) }) ## coerce setMethod(pairwiseAlignment, "ShortReadQ", function(pattern, subject, ...) { mc <- as.list(match.call()) if (is.null(mc$patternQuality)) mc$patternQuality <- quality(quality(pattern)) do.call(callNextMethod, c(list(pattern, subject), mc)) }) ## subset setMethod("[", c("ShortReadQ", "missing", "missing"), function(x, i, j, ..., drop=NA) .subset_err()) setMethod("[", c("ShortReadQ", "missing", "ANY"), function(x, i, j, ..., drop=NA) .subset_err()) setMethod("[", c("ShortReadQ", "ANY", "ANY"), function(x, i, j, ..., drop=NA) .subset_err()) .ShortReadQ_subset <- function(x, i, j, ..., drop=TRUE) { if (!missing(...)) .subset_err() initialize(x, sread=sread(x)[i], id=id(x)[i], quality=quality(x)[i]) } setMethod("[", c("ShortReadQ", "ANY", "missing"), .ShortReadQ_subset) setReplaceMethod("[", c("ShortReadQ", "ANY", "missing", "ShortReadQ"), function(x, i, j, ..., value) { sread <- sread(x); sread[i] <- sread(value) quality <- quality(quality(x)); quality[i] <- quality(quality(value)) id <- id(x); id[i] <- id(value) initialize(x, sread=sread, id=id, quality=initialize(quality(x), quality=quality)) }) setMethod(append, c("ShortReadQ", "ShortReadQ"), function(x, values, after=length(x)) { initialize(x, id=append(id(x), id(values)), sread=append(sread(x), sread(values)), quality=append(quality(x), quality(values))) }) setMethod(reverse, "ShortReadQ", function(x, ...) { ShortReadQ(reverse(sread(x)), reverse(quality(x)), id(x)) }) setMethod(reverseComplement, "ShortReadQ", function(x, ...) { ShortReadQ(reverseComplement(sread(x)), reverse(quality(x)), id(x)) }) setMethod(narrow, "ShortReadQ", function(x, start=NA, end=NA, width=NA, use.names=TRUE) { initialize(x, sread=narrow(sread(x), start, end, width, use.names), quality=narrow(quality(x), start, end, width, use.names)) }) ## manip .abc_ShortReadQ <- function(stringSet, alphabet, ...) { if (!missing(alphabet)) { if (!(is.list(alphabet) && length(alphabet) == 2)) .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "alphabet", "list(2)")) if (!all(sapply(alphabet, is, "character"))) .throw(SRError("UserArgumentMismatch", "'%s' list elements must be '%s'", "alphabet", "character()")) } sread <- sread(stringSet) quality <- quality(stringSet) if (missing(alphabet)) alphabet <- list(Biostrings::alphabet(sread), Biostrings::alphabet(quality)) w <- max(0L, width(stringSet)) res <- .Call(.alphabet_pair_by_cycle, sread, quality(quality), w, alphabet[[1]], alphabet[[2]]) dm <- dimnames(res) dm[[3]]<- seq_len(w) names(dm)[[3]] <- "cycle" dimnames(res) <- dm res } setMethod(alphabetByCycle, "ShortReadQ", .abc_ShortReadQ) setMethod(alphabetScore, "ShortReadQ", .forward_objq) setMethod(trimTailw, "ShortReadQ", function(object, k, a, halfwidth, ..., ranges=FALSE) { rng <- callGeneric(quality(object), k, a, halfwidth, ..., ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(trimTails, "ShortReadQ", function(object, k, a, successive=FALSE, ..., ranges=FALSE) { rng <- callGeneric(quality(object), k, a, successive, ..., ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(trimEnds, "ShortReadQ", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) { rng <- callGeneric(quality(object), a, left, right, relation, ..., ranges=TRUE) if (ranges) rng else narrow(object, start(rng), end(rng)) }) ## show setMethod(detail, "ShortReadQ", function(x, ...) { callNextMethod() detail(quality(x)) }) ## summary ## perhaps summary stats like ShortRead except with qualities ShortRead/R/methods-SolexaExportQA.R0000644000175100017510000002554512607265053020352 0ustar00biocbuildbiocbuild.SolexaExportQA <- function(x, ...) { new("SolexaExportQA", .srlist=x, ...) } ## qa .qa_lst_as_data_frame <- function(lst) { if (length(lst)==0) return(data.frame()) nms <- names(lst[[1]]) sublst <- sapply(nms, function(nm) { subListExtract(lst, nm, simplify=TRUE) }) names(sublst) <- nms do.call(data.frame, sublst) } .qa_Solexa_tileStats <- function(dirPath, pattern, ...) { .qa_Solexa_tileStats_tile <- function(dirPath, pattern, ...) { lane <- as.numeric(sub("s_([0-9]+)_.*", "\\1", pattern)) tile <- as.numeric(sub("s_[0-9]+_([0-9]+)_.*", "\\1", pattern)) dna <- readXStringColumns(dirPath, pattern, colClasses=list(NULL, NULL, NULL, NULL, "DNAString"))[[1]] list(lane=lane, tile=tile, slane=(lane-1)*3+trunc((tile-1)/100)+1, stile=1+pmin((tile-1)%%200, (200-tile)%%200), nReads=length(dna), nClean=sum(alphabetFrequency(dna, baseOnly=TRUE)[,"other"]==0)) } if (length(pattern)==0) pattern=".*_seq.txt$" lst <- bplapply(list.files(dirPath, pattern, full.names=TRUE), .qa_Solexa_tileStats_tile, dirPath=dirPath, ...) .qa_lst_as_data_frame(lst) } .qa_SolexaExport_lane <- function(dirPath, pattern, ..., type="SolexaExport", verbose=FALSE) { if (verbose) message("qa 'SolexaExport' pattern:", pattern) readLbls <- c("read", "filtered", "aligned") rpt <- readAligned(dirPath, pattern, type, ...) doc <- .qa_depthOfCoverage(rpt, pattern) ac <- .qa_adapterContamination(rpt, pattern, ...) df <- pData(alignData(rpt)) filterIdx <- df$filtering=="Y" mapIdx <- !is.na(position(rpt)) nbins <- max(df$tile) tiles <- seq_len(nbins) nReadByTile <- tabulate(df$tile, nbins) nFilterByTile <- tabulate(df$tile[filterIdx], nbins) nMapByTile <- tabulate(df$tile[mapIdx], nbins) qualityScore <- alphabetScore(quality(rpt)) / width(quality(rpt)) qualityDf <- function(qscore) { d <- density(qscore) data.frame(quality=d$x, density=d$y, lane=pattern) } qualityScoreRead <- qualityDf(qualityScore) qualityScoreFiltered <- qualityDf(qualityScore[filterIdx]) qualityScoreAligned <- qualityDf(qualityScore[mapIdx]) abc <- alphabetByCycle(rpt) baseQuality <- apply(abc, 2, sum) alignQuality <- table(quality(alignQuality(rpt))[mapIdx]) tablesRead <- tables(sread(rpt)) tablesFiltered <- tables(sread(rpt)[filterIdx]) tablesAligned <- tables(sread(rpt)[mapIdx]) frequentSequences <- data.frame(sequence=c( names(tablesRead$top), names(tablesFiltered$top), names(tablesAligned$top)), count=c( as.integer(tablesRead$top), as.integer(tablesFiltered$top), as.integer(tablesAligned$top)), type=rep( readLbls, c(length(tablesRead$top), length(tablesFiltered$top), length(tablesAligned$top))), lane=pattern) sequenceDistribution <- cbind(rbind(tablesRead$distribution, tablesFiltered$distribution, tablesAligned$distribution), type=rep( readLbls, c(nrow(tablesRead$distribution), nrow(tablesFiltered$distribution), nrow(tablesAligned$distribution))), lane=pattern) perCycleBaseCall <- .qa_perCycleBaseCall(abc, pattern) perCycleQuality <- .qa_perCycleQuality(abc, quality(rpt), pattern) list(readCounts=data.frame( read=sum(nReadByTile), filtered=sum(nFilterByTile), aligned=sum(nMapByTile), row.names=pattern), baseCalls=local({ n <- apply(abc, 1, sum) data.frame(A=n["A"], C=n["C"], G=n["G"], T=n["T"], N=n["N"], row.names=pattern) }), readQualityScore=cbind( rbind(qualityScoreRead, qualityScoreFiltered, qualityScoreAligned), type=rep( readLbls, c(nrow(qualityScoreRead), nrow(qualityScoreFiltered), nrow(qualityScoreAligned)))), baseQuality=data.frame( score=as.vector(names(baseQuality)), count=as.vector(baseQuality), lane=pattern, row.names=NULL), alignQuality=data.frame( score=as.numeric(names(alignQuality)), count=as.vector(alignQuality), lane=pattern, row.names=NULL), frequentSequences=frequentSequences, sequenceDistribution=sequenceDistribution, perCycle=list( baseCall=perCycleBaseCall, quality=perCycleQuality), perTile=list( readCounts=data.frame( count=c(nReadByTile, nFilterByTile, nMapByTile), type=rep( readLbls, c(length(nReadByTile), length(nFilterByTile), length(nMapByTile))), tile=rep(tiles, 3), lane=pattern, row.names=NULL), medianReadQualityScore=local({ tidx <- as.character(tiles) data.frame(score=c( tapply(qualityScore, df$tile, median)[tidx], tapply(qualityScore[filterIdx], df$tile[filterIdx], median)[tidx], tapply(qualityScore[mapIdx], df$tile[mapIdx], median)[tidx]), type=rep(readLbls, each=length(tidx)), tile=as.integer(tidx), lane=pattern, row.names=NULL) })), depthOfCoverage=doc, adapterContamination=ac) } .qa_SolexaExport <- function(dirPath, pattern, type="SolexaExport", ..., verbose=FALSE) { fls <- .file_names(dirPath, pattern) lst <- bplapply(basename(fls), .qa_SolexaExport_lane, dirPath=dirPath, type=type, ..., verbose=verbose) ## collapse into data frames lst <- list(readCounts=.bind(lst, "readCounts"), baseCalls=.bind(lst, "baseCalls"), readQualityScore=.bind(lst, "readQualityScore"), baseQuality=.bind(lst, "baseQuality"), alignQuality=.bind(lst, "alignQuality"), frequentSequences=.bind(lst, "frequentSequences"), sequenceDistribution=.bind(lst, "sequenceDistribution"), perCycle=local({ lst <- subListExtract(lst, "perCycle") list(baseCall=.bind(lst, "baseCall"), quality=.bind(lst, "quality")) }), perTile=local({ lst <- subListExtract(lst, "perTile") list(readCounts=.bind(lst, "readCounts"), medianReadQualityScore=.bind( lst, "medianReadQualityScore")) }), depthOfCoverage=.bind(lst, "depthOfCoverage"), adapterContamination=.bind(lst, "adapterContamination")) .SolexaExportQA(lst) } ## report setMethod(.report_pdf, "SolexaExportQA", function(x, dest, type, ...) { qa <- x # mnemonic alias to <- tempfile() save(qa, file=to) res <- callGeneric(to, dest, type, ...) unlink(to) res }) setMethod(report_html, "SolexaExportQA", function (x, dest, type, ...) { qa <- .qa_sampleKey(x) dir.create(dest, recursive=TRUE) fls <- c("0000-Header.html", "1000-Overview.html", "2000-RunSummary.html", "3000-ReadDistribution.html", "4000-CycleSpecific.html", "5000-PerTile.html", "6000-Alignment.html", "8000-DepthOfCoverage.html", "9000-AdapterContamination.html", "9999-Footer.html") sections <- system.file("template", fls, package="ShortRead") perCycle <- qa[["perCycle"]] perTile <- qa[["perTile"]] readCnt <- perTile[["readCounts"]] values <- list(SAMPLE_KEY=hwrite(qa[["keyValue"]], border=0), PPN_COUNT=.html_img( dest, "readCount", .plotReadCount(qa)), PPN_COUNT_TBL=hwrite( .ppnCount(qa[["readCounts"]]), border=0), BASE_CALL_COUNT=.html_img( dest, "baseCalls", .plotNucleotideCount(qa)), READ_QUALITY_FIGURE=.htmlReadQuality( dest, "readQuality", qa), READ_OCCURRENCES_FIGURE=.htmlReadOccur( dest, "readOccurences", qa), FREQUENT_SEQUENCES_READ=hwrite( .freqSequences(qa, "read"), border=0), FREQUENT_SEQUENCES_FILTERED=hwrite( .freqSequences(qa, "filtered"), border=0), FREQUENT_SEQUENCES_ALIGNED=hwrite( .freqSequences(qa, "aligned"), border=0), CYCLE_BASE_CALL_FIGURE=.html_img( dest, "perCycleBaseCall", .plotCycleBaseCall(perCycle$baseCall)), CYCLE_QUALITY_FIGURE=.html_img( dest, "perCycleQuality", .plotCycleQuality(perCycle$quality)), PER_TILE_HISTOGRAM=local({ cnts <- readCnt[readCnt$type=="read", "count"] hist <- histogram(cnts, breaks=40, xlab="Reads per tile", panel=function(x, ...) { panel.abline(v=quantile(x, .1), col="red", lty=2) panel.histogram(x, ...) }, col="white") .html_img(dest, "perTileHistogram", hist) }), PER_TILE_COUNT_FIGURE=.html_img( dest, "perTileCount", .plotTileCounts(readCnt[readCnt$type=="read",])), PER_TILE_QUALITY_FIGURE=local({ qscore <- perTile[["medianReadQualityScore"]] score <- qscore[qscore$type=="read",] .html_img(dest, "perTileQuality", .plotTileQualityScore(score)) }), ALIGN_QUALITY_FIGURE=.html_img( dest, "alignmentQuality", .plotAlignQuality(qa[["alignQuality"]])), DEPTH_OF_COVERAGE_FIGURE=.html_img( dest, "depthOfCoverage", .plotDepthOfCoverage(qa[["depthOfCoverage"]])), ADAPTER_CONTAMINATION=hwrite( .df2a(qa[["adapterContamination"]]), border=0)) .report_html_do(dest, sections, values, ...) }) ShortRead/R/methods-SolexaIntensity.R0000644000175100017510000002121712607265053020625 0ustar00biocbuildbiocbuild## SolexaIntensityInfo setMethod(.srValidity, "SolexaIntensityInfo", function(object) { msg <- NULL reqd <- c("lane", "tile", "x", "y") if (slot(object, ".init")==TRUE && !all(reqd %in% varLabels(object))) { missing <- reqd[!reqd %in% names(object)] msg <- c(msg, sprintf("'%s' must contain columns '%s'", class(object), paste(missing, collapse="' '"))) } if (is.null(msg)) TRUE else msg }) ## SolexaIntensity SolexaIntensity <- function(intensity=array(0, c(0, 0, 0)), measurementError=array(0, c(0, 0, 0)), readInfo=SolexaIntensityInfo( lane=integer(nrow(intensity))), ...) { .hasMeasurementError <- mkScalar(!missing(measurementError)) new("SolexaIntensity", intensity=ArrayIntensity(intensity), measurementError=ArrayIntensity(measurementError), readInfo=readInfo, .hasMeasurementError=.hasMeasurementError, ...) } .readIntensities_SolexaIntensity <- function(dirPath, pattern=character(0), ..., intExtension="_int.txt", nseExtension="_nse.txt", withVariability=TRUE, verbose=FALSE) { .check_type_and_length(withVariability, "logical", 1) .check_type_and_length(pattern, "character", NA) .check_type_and_length(intExtension, "character", 1) .check_type_and_length(nseExtension, "character", 1) intPattern <- paste(pattern, intExtension, sep="") nrec <- countLines(dirPath, intPattern) crec <- c(0, cumsum(nrec)) if (withVariability) { nsePattern <- paste(pattern, nseExtension, sep="") extrec <- countLines(dirPath, nsePattern) if (length(nrec) != length(extrec)) { .throw(SRError("UserArgumentMismatch", "number of files found differs between 'intensity' (%d) and 'nse' (%d)\n dirPath: '%s'\n pattern: '%s'\n intExtension: '%s'\n nseExtension: '%s'", length(nrec), length(extrec), dirPath, pattern, intExtension, nseExtension)) } if (!all(nrec == extrec)) { .throw(SRError("UserArgumentMismatch", "line counts differ between 'intensity' and 'nse'\n dirPath: '%s'\n pattern: '%s'\n intExtension: '%s'\n nseExtension: '%s'", dirPath, pattern, intExtension, nseExtension)) } } fls <- .file_names(dirPath, intPattern) gz <- gzfile(fls[[1]]); open(gz) tryCatch({ ln <- readLines(gz, 1) }, finally=close(gz)) cycles <- length(gregexpr("\t", ln, fixed=TRUE)[[1]]) - 3L reads <- sum(nrec) what <- c(rep(list(integer()), 4), rep(list(numeric()), cycles * 4L)) int <- array(numeric(), c(reads, 4L, cycles), dimnames=list(NULL, c("A", "C", "G", "T"), NULL)) df <- data.frame(lane=integer(reads), tile=integer(reads), x=integer(reads), y=integer(reads)) for (i in seq_along(fls)) { tryCatch({ gz <- gzfile(fls[[i]]); open(gz) data <- scan(gz, what, nrec[[i]],..., quiet=!verbose) idx <- (crec[i]+1):crec[i+1] int[idx,,] <- array(unlist(data[-(1:4)]), c(nrec[[i]], 4L, cycles)) df[idx,] <- data[1:4] }, error=function(err) { msg <- sprintf("parsing '%s'\n file: %s\n error: %s", "intPattern", fls[[i]], conditionMessage(err)) .throw(SRError("Input/Output", msg)) }, finally=close(gz)) } if (withVariability) { fls <- .file_names(dirPath, nsePattern) nse <- array(numeric(), c(reads, 4L, cycles), dimnames=list(NULL, c("A", "C", "G", "T"), NULL)) what <- c(rep(list(NULL), 4), what[-(1:4)]) for (i in seq_along(fls)) { tryCatch({ gz <- gzfile(fls[[i]]); open(gz) data <- scan(gz, what, nrec[[i]], ..., quiet=!verbose) idx <- (crec[i]+1):crec[i+1] nse[idx,,] <- array(unlist(data[-(1:4)]), c(nrec[[i]], 4L, cycles)) }, error=function(err) { msg <- sprintf("parsing '%s'\n file: %s\n error: %s", "nsePattern", fls[[i]], conditionMessage(err)) .throw(SRError("Input/Output", msg)) }, finally=close(gz)) } } readInfo <- SolexaIntensityInfo(df[[1]], df[[2]], df[[3]], df[[4]]) if (withVariability) SolexaIntensity(int, nse, readInfo) else SolexaIntensity(int, readInfo=readInfo) } .read_ipar_int_array <- function(fileNames, nrec, cycles, ..., verbose=FALSE) { reads <- sum(nrec) crec <- cumsum(c(0, nrec)) a <- array(numeric(), c(reads, 4L, cycles), dimnames=list(NULL, c("A", "C", "G", "T"), NULL)) for (i in seq_along(fileNames)) { tryCatch({ gz <- gzfile(fileNames[[i]]); open(gz) data <- scan(gz, nmax=nrec[[i]] * 4 * cycles, comment.char="#", ..., quiet=!verbose) idx <- (crec[i]+1):crec[i+1] a[idx,,] <- aperm(array(data, c(4L, nrec[[i]], cycles)), c(2,1,3)) }, error=function(err) { msg <- sprintf("parsing: %s\n error: %s", fileNames[[i]], conditionMessage(err)) .throw(SRError("Input/Output", msg)) }, finally=close(gz)) } a } .readIntensities_IparIntensity <- function(dirPath, pattern=character(0), ..., intExtension="_int.txt.p.gz", nseExtension="_nse.txt.p.gz", posExtension="_pos.txt", withVariability=TRUE, verbose=FALSE) { .check_type_and_length(withVariability, "logical", 1) .check_type_and_length(pattern, "character", NA) .check_type_and_length(intExtension, "character", 1) .check_type_and_length(nseExtension, "character", 1) .check_type_and_length(posExtension, "character", 1) intPattern <- paste(pattern, intExtension, sep="") intFiles <- .file_names(dirPath, intPattern) posPattern <- paste(pattern, posExtension, sep="") posFiles <- .file_names(dirPath, posPattern) dims <- .Call(.count_ipar_int_recs, intFiles) # reads, cycles nrec <- dims$reads crec <- cumsum(c(0, nrec)) cycles <- dims$cycles[[1]] if (withVariability) { nsePattern <- paste(pattern, nseExtension, sep="") nseFiles <- .file_names(dirPath, nsePattern) extrec <- .Call(.count_ipar_int_recs, nseFiles)$reads if (length(nrec) != length(extrec)) { .throw(SRError("UserArgumentMismatch", "number of files found differs between 'int' (%d) and 'nse' (%d)\n dirPath: '%s'\n pattern: '%s'\n intExtension: '%s'\n nseExtension: '%s'", length(nrec), length(extrec), dirPath, pattern, intExtension, nseExtension)) } if (!all(nrec == extrec)) { .throw(SRError("UserArgumentMismatch", "read or cycle counts differ between 'intensity' and 'nse'\n dirPath: '%s'\n pattern: '%s'\n intExtension: '%s'\n nseExtension: '%s'", dirPath, pattern, intExtension, nseExtension)) } } int <- .read_ipar_int_array(intFiles, nrec, cycles, ..., verbose=verbose) if (withVariability) nse <- .read_ipar_int_array(nseFiles, nrec, cycles, ..., verbose=verbose) ## lane, tile, x, y lanes <- sub("s_([0-9]+)_.*", "\\1", basename(posFiles)) tiles <- as.integer(sub("s_[0-9]+_([0-9]+)_.*", "\\1", basename(posFiles))) pos <- do.call(rbind, mapply(function(fl, lane, tile) { cbind(lane=lane, tile=tile, read.table(fl)) }, posFiles, lanes, tiles, SIMPLIFY=FALSE, USE.NAMES=FALSE)) readInfo <- SolexaIntensityInfo(pos[[1]], pos[[2]], pos[[3]], pos[[4]]) if (withVariability) SolexaIntensity(int, nse, readInfo) else SolexaIntensity(int, readInfo=readInfo) } setMethod(get("["), c("SolexaIntensity", "ANY", "ANY", "ANY"), function(x, i, j, k, ..., drop=TRUE) { if (missing(i)) i <- TRUE if (missing(j)) j <- TRUE if (missing(k)) k <- TRUE if (.hasMeasurementError(x)) initialize(x, intensity=intensity(x)[i,j,k], measurementError=measurementError(x)[i,j,k], readInfo=readInfo(x)[i,]) else initialize(x, intensity=intensity(x)[i,j,k], readInfo=readInfo(x)[i,]) }) ShortRead/R/methods-SolexaPath.R0000644000175100017510000001017012607265053017527 0ustar00biocbuildbiocbuildsetMethod(.srValidity, "SolexaPath", function(object) { msg <- NULL if (length(experimentPath(object))!=1) msg <- c(msg, "SolexaPath 'experimentPath' must be character(1)") if (is.null(msg)) TRUE else msg }) SolexaPath <- function(experimentPath=NA_character_, dataPath=.srPath(experimentPath, "Data"), scanPath=.srPath(dataPath, "GoldCrest"), imageAnalysisPath=.srPath(dataPath, "^(C[[:digit:]]|IPAR|Intensities)"), baseCallPath=.srPath(imageAnalysisPath, "^(Bustard|BaseCalls)"), analysisPath=.srPath(baseCallPath, "^GERALD"), ..., verbose=FALSE) { if (verbose) { .checkPath(experimentPath) .checkPath(dataPath) .checkPath(scanPath) .checkPath(imageAnalysisPath) .checkPath(baseCallPath) .checkPath(analysisPath) } new("SolexaPath", ..., basePath=experimentPath, dataPath=dataPath, scanPath=scanPath, imageAnalysisPath=imageAnalysisPath, baseCallPath=baseCallPath, analysisPath=analysisPath) } .make_getter(slotNames("SolexaPath")) .readIntensities_SolexaPath <- function(dirPath, pattern=character(0), run, ...) { callGeneric(imageAnalysisPath(dirPath)[run], pattern=pattern, ...) } setMethod(readIntensities, "SolexaPath", .readIntensities_SolexaPath) .readPrb_SolexaPath <- function(dirPath, pattern=".*_prb.txt.*", run, ...) { if (missing(pattern)) pattern <- ".*_prb.txt.*" callGeneric(baseCallPath(dirPath)[run], pattern, ...) } setMethod(readPrb, "SolexaPath", .readPrb_SolexaPath) setMethod(readFasta, "SolexaPath", function(dirPath, pattern=character(0), ..., nrec=-1L, skip=0L) { callGeneric(dirPath=analysisPath(dirPath), pattern=pattern, ..., nrec=nrec, skip=skip) }) .readFastq_SolexaPath <- function(dirPath, pattern=".*_sequence.txt$", run, ..., qualityType="SFastqQuality") { dirPath <- analysisPath(dirPath)[run] if (is.na(dirPath)) .throw(SRError("Input/Output", "'%s' is 'NA' in '%s'", "analysisPath", "dirPath")) callGeneric(dirPath, ..., pattern=pattern, qualityType=qualityType) } setMethod(readFastq, "SolexaPath", .readFastq_SolexaPath) setMethod(readQseq, "SolexaPath", function(dirPath, pattern=".*_qseq.txt.*", run, ..., as="ShortReadQ", filtered=FALSE, verbose=FALSE) { callGeneric(baseCallPath(dirPath)[run], pattern=pattern, ..., as=as, filtered=filtered, verbose=verbose) }) .readBaseQuality_SolexaPath <- function(dirPath, seqPattern=".*_seq.txt.*", prbPattern=".*_prb.txt.*", run, ...) { dirPath <- baseCallPath(dirPath)[run] .readBaseQuality_Solexa(dirPath, seqPattern=seqPattern, prbPattern=prbPattern, ...) } setMethod(readBaseQuality, "SolexaPath", .readBaseQuality_SolexaPath) .readAligned_SolexaPath <- function(dirPath, pattern=".*_export.txt.*", run, ...) { dirPath <- analysisPath(dirPath)[run] .readAligned_character(dirPath, pattern, type="SolexaExport", ...) } setMethod(readAligned, "SolexaPath", .readAligned_SolexaPath) .qa_SolexaPath <- function(dirPath, pattern=character(0), run, ...) { dirPath <- analysisPath(dirPath)[run] if (missing(pattern)) pattern <- ".*_export.txt$" callGeneric(dirPath, pattern, type="SolexaExport", ...) } setMethod(qa, "SolexaPath", .qa_SolexaPath) setMethod(report, "SolexaPath", function (x, ..., dest = tempfile(), type="html") { callGeneric(qa(x, ...), dest=dest, type=type) }) setMethod(show, "SolexaPath", function(object) { callNextMethod() .show_additionalPathSlots(object) }) setMethod(detail, "SolexaPath", function(x, ...) { callNextMethod() .detail_additionalPathSlots(x) }) ShortRead/R/methods-SolexaRealignQA.R0000644000175100017510000001524612607265053020447 0ustar00biocbuildbiocbuild.SolexaRealignQA <- function(x, ...) { new("SolexaRealignQA", .srlist=x, ...) } ## qa .qa_SolexaRealign_lane <- function(dirPath, pattern, ..., type="SolexaRealign", verbose=FALSE) { if (verbose) message("qa 'SolexaRealign' pattern:", pattern) readLbls <- c("read", "aligned") aln <- readAligned(dirPath, pattern, type=type, ...) doc <- .qa_depthOfCoverage(aln, pattern) ac <- .qa_adapterContamination(aln, pattern, ...) df <- pData(alignData(aln)) mapIdx <- alignData(aln)[["nMatch"]] == 1L alf <- .qa_alphabetFrequency(sread(aln), baseOnly=TRUE, collapse=TRUE) abc <- alphabetByCycle(aln) alignQuality <- table(quality(alignQuality(aln))[mapIdx]) tablesRead <- tables(sread(aln)) tablesAligned <- tables(sread(aln)[mapIdx]) frequentSequences <- data.frame(sequence=c( names(tablesRead$top), names(tablesAligned$top)), count=c( as.integer(tablesRead$top), as.integer(tablesAligned$top)), type=rep( readLbls, c(length(tablesRead$top), length(tablesAligned$top))), lane=pattern) sequenceDistribution <- cbind(rbind(tablesRead$distribution, tablesAligned$distribution), type=rep( readLbls, c(nrow(tablesRead$distribution), nrow(tablesAligned$distribution))), lane=pattern) perCycleBaseCall <- .qa_perCycleBaseCall(abc, pattern) perCycleQuality <- .qa_perCycleQuality() malntbl <- table(alignData(aln)[["nMatch"]]) list(readCounts=data.frame( read=length(aln), filtered=NA, aligned=sum(mapIdx), row.names=pattern), baseCalls=data.frame( A=alf[["A"]], C=alf[["C"]], G=alf[["G"]], T=alf[["T"]], N=alf[["other"]], row.names=pattern), readQualityScore=data.frame( score=numeric(0), type=factor(character(0), levels=readLbls)), baseQuality=data.frame( score=numeric(0), count=integer(0), lane=character(0), row.names=NULL), alignQuality=data.frame( score=as.numeric(names(alignQuality)), count=as.vector(alignQuality), lane=pattern, row.names=NULL), frequentSequences=frequentSequences, sequenceDistribution=sequenceDistribution, perCycle=list( baseCall=perCycleBaseCall, quality=perCycleQuality), perTile=list( readCounts=data.frame( count=integer(0), type=character(0), tile=integer(0), lane=character(0)), medianReadQualityScore=data.frame( score=integer(), type=character(), tile=integer(), lane=integer(), row.names=NULL)), multipleAlignment=data.frame( Count=as.vector(malntbl), Matches=as.integer(names(malntbl)), lane=pattern, row.names=NULL), depthOfCoverage=doc, adapterContamination=ac) } .qa_SolexaRealign <- function(dirPath, pattern, type="SolexaRealign", ..., verbose=FALSE) { fls <- .file_names(dirPath, pattern) lst <- bplapply(basename(fls), .qa_SolexaRealign_lane, dirPath=dirPath, type=type, ..., verbose=verbose) lst <- list(readCounts=.bind(lst, "readCounts"), baseCalls=.bind(lst, "baseCalls"), readQualityScore=.bind(lst, "readQualityScore"), baseQuality=.bind(lst, "baseQuality"), alignQuality=.bind(lst, "alignQuality"), frequentSequences=.bind(lst, "frequentSequences"), sequenceDistribution=.bind(lst, "sequenceDistribution"), perCycle=local({ lst <- subListExtract(lst, "perCycle") list(baseCall=.bind(lst, "baseCall"), quality=.bind(lst, "quality")) }), perTile=local({ lst <- subListExtract(lst, "perTile") list(readCounts=.bind(lst, "readCounts"), medianReadQualityScore=.bind( lst, "medianReadQualityScore")) }), multipleAlignment=.bind(lst, "multipleAlignment"), depthOfCoverage=.bind(lst, "depthOfCoverage"), adapterContamination=.bind(lst, "adapterContamination")) .SolexaRealignQA(lst) } ## report setMethod(report_html, "SolexaRealignQA", function (x, dest, type, ...) { qa <- .qa_sampleKey(x) dir.create(dest, recursive=TRUE) fls <- c("0000-Header.html", "1000-Overview.html", "1100-Overview-SolexaRealign.html", "2000-RunSummary.html", "3000-ReadDistribution.html", "4000-CycleSpecific.html", "6000-Alignment.html", "7000-MultipleAlignment.html", "8000-DepthOfCoverage.html", "9000-AdapterContamination.html", "9999-Footer.html") sections <- system.file("template", fls, package="ShortRead") perCycle <- qa[["perCycle"]] values <- list(SAMPLE_KEY=hwrite(qa[["keyValue"]], border=0), PPN_COUNT=.html_img( dest, "readCount", .plotReadCount(qa)), PPN_COUNT_TBL=hwrite( .ppnCount(qa[["readCounts"]]), border=0), BASE_CALL_COUNT=.html_img( dest, "baseCalls", .plotNucleotideCount(qa)), READ_QUALITY_FIGURE=.html_NA(), READ_OCCURRENCES_FIGURE=.htmlReadOccur( dest, "readOccurences", qa), FREQUENT_SEQUENCES_READ=hwrite( .freqSequences(qa, "read"), border=0), FREQUENT_SEQUENCES_FILTERED=.html_NA(), FREQUENT_SEQUENCES_ALIGNED=hwrite( .freqSequences(qa, "aligned"), border=0), CYCLE_BASE_CALL_FIGURE=.html_img( dest, "perCycleBaseCall", .plotCycleBaseCall(perCycle$baseCall)), CYCLE_QUALITY_FIGURE=.html_NA(), ALIGN_QUALITY_FIGURE=.html_img( dest, "alignmentQuality", .plotAlignQuality(qa[["alignQuality"]])), MULTIPLE_ALIGNMENT_COUNT_FIGURE=.html_img( dest, "multipleAlignmentCount", .plotMultipleAlignmentCount(qa[["multipleAlignment"]])), DEPTH_OF_COVERAGE_FIGURE=.html_img( dest, "depthOfCoverage", .plotDepthOfCoverage(qa[["depthOfCoverage"]])), ADAPTER_CONTAMINATION=hwrite( .df2a(qa[["adapterContamination"]]), border=0)) .report_html_do(dest, sections, values, ...) }) ShortRead/R/methods-SolexaSet.R0000644000175100017510000000550712607265053017376 0ustar00biocbuildbiocbuildsetMethod(.srValidity, "SolexaSet", function(object) { msg <- NULL nr <- nrow(laneDescription(object)) if (nr!=8) msg <- c(msg, sprintf("'laneDescription' must have 8 rows, but has %d", nr)) if (is.null(msg)) TRUE else msg }) .SolexaSet_SolexaPath <- function(path, laneDescription, ...) { if (missing(laneDescription)) { laneDescription <- new("AnnotatedDataFrame", data=data.frame(1:8)[,FALSE], varMetadata=data.frame(labelDescription=character(0)), dimLabels=c("laneNames", "laneColumns")) } else { if (!is(laneDescription, "AnnotatedDataFrame")) { cls <- paste(class(laneDescription), collapse=" ") .throw(SRError("UserArgumentMismatch", "expected '%s' as '%s', but got '%s'", "AnnotatedDataFrame", "laneDescription", cls)) } dimLabels(laneDescription) <- c("laneNames", "laneColumns") } new("SolexaSet", ..., solexaPath=path, laneDescription=laneDescription) } setMethod(SolexaSet, "SolexaPath", .SolexaSet_SolexaPath) setMethod(SolexaSet, "character", function(path, ...) { .SolexaSet_SolexaPath(SolexaPath(path), ...) }) .make_getter(slotNames("SolexaSet")) setMethod(laneNames, "SolexaSet", function(object, ...) { laneNames(laneDescription(object)) }) setMethod(laneNames, "AnnotatedDataFrame", function(object) { sampleNames(object) }) ## .qa_SolexaSet <- function(dirPath, pattern=character(0), ...) ## { ## dirPath <- analysisPath(dirPath) ## if (missing(pattern)) ## pattern <- ".*_export.txt$" ## callGeneric(dirPath, pattern, type="SolexaExport", ...) ## } ## setMethod(qa, "SolexaSet", .qa_solexa_export) ## .report_SolexaSet <- function(x, run=1, ..., qaFile=tempfile(), ## dest=tempfile(), type="pdf" ) ## { ## report(qa(x, run=run)) ## } ## alignment .readAligned_SolexaSet <- function(dirPath, pattern=".*_export.txt$", run, ...) { dirPath <- analysisPath(solexaPath(dirPath))[run] .readAligned_character(dirPath, pattern, type="SolexaExport", ...) } setMethod(readAligned, "SolexaSet", .readAligned_SolexaSet) setMethod(show, "SolexaSet", function(object) { callNextMethod() cat("experimentPath(solexaPath(object)):\n ", experimentPath(solexaPath(object)), "\n", sep="") cat("laneDescription:\n") print(laneDescription(object)) }) setMethod(detail, "SolexaSet", function(x, ...) { callNextMethod() cat("\n") detail(solexaPath(x), ...) cat("\nclass: AnnotatedDataFrame\n") ld <- laneDescription(x) cat("pData:\n") print(pData(ld)) cat("varMetadata:\n") print(varMetadata(ld)) }) ShortRead/R/qa.R0000644000175100017510000000235312607265053014423 0ustar00biocbuildbiocbuild.qa_character <- function(dirPath, pattern=character(0), type=c("fastq", "SolexaExport", "SolexaRealign", "Bowtie", "MAQMap", "MAQMapShort"), ...) { tryCatch(type <- match.arg(type), error=function(err) { .throw(SRError("UserArgumentMismatch", conditionMessage(err))) }) switch(type, SolexaExport=.qa_SolexaExport(dirPath, pattern, type=type, ...), SolexaRealign=.qa_SolexaRealign(dirPath, pattern, type=type, ...), Bowtie=.qa_Bowtie(dirPath, pattern, type=type, ...), MAQMap=.qa_MAQMap(dirPath, pattern, type=type, ...), MAQMapShort=.qa_MAQMap(dirPath, pattern, type=type, ...), fastq=.qa_fastq(dirPath, pattern, type=type, ...)) } setMethod(qa, "character", .qa_character) setMethod(qa, "list", function(dirPath, ...) { if (length(unique(sapply(dirPath, class))) != 1) .throw(SRError("UserArgumentMismatch", "qa,list-method 'dirPath' arguments must all be of same class")) l <- mapply(qa, dirPath, names(dirPath), MoreArgs=list(...), SIMPLIFY=FALSE) do.call(rbind, l) }) ShortRead/R/qa_utilities.R0000644000175100017510000003565612607265053016532 0ustar00biocbuildbiocbuild.bind <- function(lst, elt) { do.call(rbind, subListExtract(lst, elt, keep.names=FALSE)) } .qa_alphabetFrequency <- function(object, ..., collapse=FALSE, baseOnly=FALSE) { ## avoiding integer overflow in Biostrings::alphabetFrequency if (!collapse) { msg <- "'collapse' must be TRUE for '.qa_alphabetFrequency'" .throw(SRError("InternalError", msg)) } alf <- alphabetByCycle(object) mode(alf) <- "numeric" alf <- rowSums(alf) if (baseOnly && is(object, "DNAStringSet")) { bases <- names(Biostrings:::xscodes(object, baseOnly=baseOnly)) idx <- names(alf) %in% bases alf <- c(alf[idx], other=sum(alf[!idx])) } alf } ## qa summary .qa_sampleKey <- function(qa) ## use numbers to represent samples, updating all elements of { value <-rownames(qa[["readCounts"]]) kv <- data.frame(Key=factor(seq_along(value), levels=seq_along(value)), row.names=value) lst <- c(list(keyValue=kv), Map(function(elt, nm, kv) { switch(nm, readCounts=, baseCalls=, adapterContamination={ rownames(elt) <- kv[rownames(elt), "Key"] elt }, readQualityScore=, baseQuality=, alignQuality=, frequentSequences=, sequenceDistribution={ elt$lane <- kv[elt$lane, "Key"] elt }, depthOfCoverage={ elt$Lane <- kv[elt$Lane, "Key"] elt }, perCycle=, perTile={ Map(function(elt, nm, kv) { elt$lane <- kv[elt$lane, "Key"] elt }, elt, names(elt), MoreArgs=list(kv)) },{ msg <- sprintf("unhandled QA element '%s'", nm) .throw(SRError("InternalError", msg)) }) }, .srlist(qa), names(qa), MoreArgs=list(kv))) initialize(qa, .srlist=lst) } .qa_qdensity <- function(quality) { qscore <- alphabetScore(quality) / width(quality) if (length(qscore) >= 2) { density(qscore) } else { pseudo <- list(x=NA, y=NA, bw=Inf, n=0) class(pseudo) <- "density" pseudo } } .qa_perCycleBaseCall <- function(abc, lane) { if (missing(abc) || dim(abc)[[3]] == 0) { df <- data.frame(Cycle=integer(0), Base=factor(), Count=integer(0), lane=character(0)) return(df) } abc <- apply(abc, c(1, 3), sum) df <- data.frame(Cycle=as.integer(colnames(abc)[col(abc)]), Base=factor(rownames(abc)[row(abc)]), Count=as.vector(abc), lane=lane, row.names=NULL) df[df$Count != 0,] } .qa_perCycleQuality <- function(abc, quality, lane) { if (missing(abc) || dim(abc)[[3]] == 0) { df <- data.frame(Cycle=integer(0), Quality=numeric(0), Score=numeric(0), Count=integer(0), lane=character(0)) return(df) } abc <- apply(abc, 2:3, sum) q <- factor(rownames(abc)[row(abc)], levels=rownames(abc)) q0 <- as(do.call(class(quality), list(rownames(abc))), "matrix") df <- data.frame(Cycle=as.integer(colnames(abc)[col(abc)]), Quality=q, Score=as.integer(q0)[q], Count=as.vector(abc), lane=lane, row.names=NULL) df[df$Count != 0, ] } .qa_depthOfCoverage <- function(aln, lane) { idx <- !is.na(position(aln)) & occurrenceFilter(withSread=FALSE)(aln) if (0L == sum(idx)) { df <- data.frame(Coverage=character(0), Count=integer(0), CumulativePpn=integer(0), Lane=character(0), row.names=NULL) return(df) } aln <- aln[idx] cv <- coverage(aln) cvg <- Filter(function(x) length(x) > 0, cv) if (0L == length(cvg)) { df <- data.frame(Coverage=character(0), Count=integer(0), CumulativePpn=integer(0), Lane=character(0), row.names=NULL) return(df) } ## Each chromosome count <- do.call(rbind, lapply(seq_len(length(cvg)), function(i, cvg) { x <- cvg[[i]] res <- tapply(runLength(x), runValue(x), sum) data.frame(Coverage=as.numeric(names(res)), Count=as.numeric(res), Seqname=names(cvg)[[i]], row.names=NULL) }, cvg)) ## Entire lane, non-zero coverage count <- count[count$Coverage != 0,] res <- tapply(as.numeric(count$Count), count$Coverage, sum) count <- as.vector(res) data.frame(Coverage=as.numeric(names(res)), Count= count, CumulativePpn=cumsum(count) / sum(count), Lane=lane, row.names=NULL) } .qa_adapterContamination <- function(aln, lane, ..., Lpattern="", Rpattern="", max.Lmismatch=.1, max.Rmismatch=.2, min.trim=9L) { if (missing(Lpattern) && missing(Rpattern)) { df <- data.frame(contamination=NA_real_, row.names=lane) return(df) } trim <- trimLRPatterns(Lpattern, Rpattern, subject=sread(aln), max.Lmismatch=max.Lmismatch, max.Rmismatch=max.Rmismatch, ranges=TRUE) ac <- sum(width(trim) < (width(aln) - min.trim)) / length(trim) data.frame(contamination=ac, row.names=lane) } ## report-generation .dnaCol <- # brewer.pal(6, "Paired")[c(2, 4, 3, 1, 6)] c("#1F78B4", "#33A02C", "#B2DF8A", "#A6CEE3", "#E31A1C") .ppnCount <- function(m) { if(is.null(m) || is.factor(m[,-1])) { "Not available." } else { ## scale subsequent columns to be proportions of first column m[,-1] <- round(1000 * m[,-1] / ifelse(is.na(m[,1]), 1, m[,1])) / 1000 m } } .df2a <- function(df, fmt="%.3g") { FUN <- function(elt, fmt) if (is.character(elt) || is.factor(elt)) as.character(elt) else sprintf(fmt, elt) a <- if (nrow(df) == 1) as.data.frame(lapply(df, FUN, fmt=fmt)) else sapply(df, FUN, fmt=fmt) row.names(a) <- rownames(df) a } .plotReadCount <- function(qa, ...) { df <- qa[["readCounts"]] df1 <- data.frame(Count=unlist(df), Sample=factor(rownames(df), levels=rownames(df)), Census=factor(names(df)[col(df)], levels=names(df))) col <- .dnaCol[c(1, 4, 2)] dotplot(Sample~Count, group=df1$Census, df1, type="b", pch=20, col=col, key=list(space="top", lines=list(col=rev(col)), text=list(rev(names(df))), columns=ncol(df))) } .plotNucleotideCount <- function(qa, ...) { df <- qa[["baseCalls"]] alph <- df / rowSums(df) df1 <- data.frame(Frequency=unlist(alph), Sample=factor(rownames(alph), levels=rownames(alph)), Nucleotide=factor(names(alph)[col(alph)], levels=c("A", "C", "G", "T", "N"))) dotplot(Sample~Frequency, group=df1$Nucleotide, df1, type="b", pch=20, col=.dnaCol, key=list(space="top", lines=list(col=.dnaCol), text=list(lab=names(df)), columns=ncol(df))) } .plotReadQuality <- function(df, ..., strip=FALSE) { xmin <- min(df$quality) ymax <- max(df$density) xyplot(density~quality|lane, df, type="l", xlab="Average (calibrated) base quality", ylab="Proportion of reads", aspect=2, panel=function(..., subscripts) { lbl <- as.character(unique(df$lane[subscripts])) ltext(xmin, ymax, lbl, adj=c(0, 1)) panel.xyplot(...) }, strip=FALSE) } .plotReadOccurrences <- function(df, ..., strip=FALSE) { df <- local({ nOccur <- tapply(df$nOccurrences, df$lane, c) cumulative <- tapply(df$nOccurrences * df$nReads, df$lane, function(elt) { cs <- cumsum(elt) (cs-cs[1] + 1) / (diff(range(cs)) + 1L) }) lane <- tapply(df$lane, df$lane, c) data.frame(nOccurrences=unlist(nOccur), cumulative=unlist(cumulative), lane=unlist(lane), row.names=NULL) }) xmax <- log10(max(df$nOccurrences)) xyplot(cumulative~log10(nOccurrences)|factor(lane), df, xlab=expression(paste( "Number of occurrences of each sequence (", log[10], ")", sep="")), ylab="Cumulative proportion of reads", aspect=2, panel=function(x, y, ..., subscripts, type) { lbl <- unique(df$lane[subscripts]) ltext(xmax, .05, lbl, adj=c(1, 0)) type <- if (1L == length(x)) "p" else "l" panel.xyplot(x, y, ..., type=type) }, ..., strip=strip) } .freqSequences <- function(qa, read, n=20) { cnt <- qa[["readCounts"]] df <- qa[["frequentSequences"]] df1 <- df[df$type==read,] df1[["ppn"]] <- df1[["count"]] / cnt[df1[["lane"]], read] df <- head(df1[order(df1$count, decreasing=TRUE), c("sequence", "count", "lane")], n) rownames(df) <- NULL df } .plotAlignQuality <- function(df) { xyplot(count~score|lane, df, type="l", prepanel=function(x, y, ...) { list(ylim=c(0, 1)) }, panel=function(x, y, ...) { panel.xyplot(x, y/max(y), ...) }, xlab="Alignment quality score", ylab="Number of alignments, relative to lane maximum", aspect=2) } .atQuantile <- function(x, breaks) { at <- unique(quantile(x, breaks)) if (length(at)==1) at <- at * c(.9, 1.1) at } .colorkeyNames <- function(at, fmt) { paste(names(at), " (", sprintf(fmt, at), ")", sep="") } .tileGeometry <- function(tileIndicies) { n <- as.character(max(tileIndicies)) switch(n, "68"=c(8, 4), "100"=c(50, 2), "120"=c(60, 2), "300"=c(100, 3), { warning(n, " tiles; ", "assuming lane geometry with 50 tiles / row", call.=FALSE) c(50, ceiling(as.integer(n) / 50)) }) } .plotTileLocalCoords <- function(tile, nrow) { if (nrow == 8) { ## HiSeq row <- tile %% 20 col <- floor(tile / 20) %% 4 + 1L } else { row <- 1 + (tile - 1) %% nrow col <- 1 + floor((tile -1) / nrow) row[col%%2==0] <- nrow + 1 - row[col%%2==0] } list(row=as.integer(row), col=as.factor(col)) } .plotTileCounts <- function(df, nrow=.tileGeometry(df$tile)[[1]]) { df <- df[df$count != 0,] xy <- .plotTileLocalCoords(df$tile, nrow) df[,names(xy)] <- xy at <- .atQuantile(df$count, seq(0, 1, .1)) levelplot(cut(count, at)~col*row|lane, df, main="Read count (percentile rank)", xlab="Tile x-coordinate", ylab="Tile y-coordinate", cuts=length(at)-2, colorkey=list(labels=.colorkeyNames(at, "%d")), aspect=2) } .plotTileQualityScore <- function(df, nrow=.tileGeometry(df$tile)[[1]]) { df <- df[!is.na(df$score),] xy <- .plotTileLocalCoords(df$tile, nrow) df[,names(xy)] <- xy at <- .atQuantile(df$score, seq(0, 1, .1)) levelplot(cut(score, at)~col*row|lane, df, main="Read quality (percentile rank)", xlab="Tile x-coordinate", ylab="Tile y-coordinate", cuts=length(at)-2, colorkey=list(labels=.colorkeyNames(at, "%.2f")), aspect=2) } .plotCycleBaseCall <- function(df, ..., strip=FALSE) { col <- .dnaCol[1:4] df <- df[df$Base != "N" & df$Base != "-",] df$Base <- factor(df$Base) xmax <- max(df$Cycle) ymax <- log10(max(df$Count)) xyplot(log10(Count)~as.integer(Cycle)|lane, group=factor(Base), df[order(df$lane, df$Base, df$Cycle),], panel=function(..., subscripts) { lbl <- as.character(unique(df$lane[subscripts])) ltext(xmax, ymax, lbl, adj=c(1, 1)) panel.xyplot(..., subscripts=subscripts) }, type="l", col=col, key=list(space="top", lines=list(col=col, lwd=2), text=list(lab=levels(df$Base)), columns=length(levels(df$Base))), xlab="Cycle", aspect=2, strip=strip, ...) } .plotCycleQuality <- function(df, ..., strip=FALSE, strip.left=FALSE) { calc_means <- function(x, y, z) rowsum(y * z, x) / rowsum(z, x) calc_quantile <- function(x, y, z, q=c(.25, .5, .75)) by(list(y, z), x, function(x) { scoreRle <- Rle(x[[1]], x[[2]]) quantile(scoreRle, q) }) Lane <- df$lane pal <- c("#66C2A5", "#FC8D62") # brewer.pal(3, "Set2")[1:2] lvlPal <- c("#F5F5F5", "black" ) rng <- range(df$Count) at <- seq(rng[1], rng[2], length.out=512) np <- length(unique(Lane)) nrow <- ceiling(np / 4) layout <- c(ceiling(np/nrow), nrow) ymin <- min(df$Score) xyplot(Score ~ Cycle | Lane, df, panel=function(x, y, ..., subscripts) { z <- df$Count[subscripts] mean <- calc_means(x, y, z) qtiles <- calc_quantile(x, y, z) sxi <- sort(unique(x)) panel.levelplot(x, y, z, subscripts=TRUE, at=at, col.regions=colorRampPalette(lvlPal)) llines(sxi, mean, type="l", col=pal[[1]], lwd=1) llines(sxi, sapply(qtiles, "[[", 1), type="l", col=pal[[2]], lwd=1, lty=3) llines(sxi, sapply(qtiles, "[[", 2), type="l", col=pal[[2]], lwd=1) llines(sxi, sapply(qtiles, "[[", 3), type="l", col=pal[[2]], lwd=1, lty=3) lbl <- as.character(unique(df$lane[subscripts])) ltext(1, ymin, lbl, adj=c(0, 0)) }, ..., ylab="Quality Score", layout=layout, strip=strip, strip.left=strip.left) } .plotMultipleAlignmentCount <- function(df, ...) { xyplot(log10(Count)~log10(Matches + 1) | lane, df, xlab="log10(Number of matches + 1)", aspect=2, ...) } .plotDepthOfCoverage <- function(df, ..., strip=FALSE) { if (is.null(df)) return(NULL) xmin <- log(min(df$Coverage)) ymax <- max(df$CumulativePpn) xyplot(CumulativePpn~Coverage | Lane, df, type="b", pch=20, scales=list(x=list(log=TRUE)), ylab="Cumulative Proportion of Nucleotides", aspect=2, panel=function(..., subscripts) { lbl <- as.character(unique(df$Lane[subscripts])) ltext(xmin, ymax, lbl, adj=c(0, 1)) panel.xyplot(..., subscripts=subscripts) }, ..., strip=strip) } ShortRead/R/readAligned.R0000644000175100017510000003507712607265053016232 0ustar00biocbuildbiocbuild.read_csv_portion <- function(dirPath, pattern, colClasses, ...) { ## visit several files, then collapse files <- .file_names(dirPath, pattern) lsts <- lapply(files, function(fl, ...) { tryCatch({ read.csv(fl, ...) }, error=function(err) { read.csv(gzfile(fl), ...) }) }, ..., colClasses=colClasses, stringsAsFactors=FALSE) cclasses <- colClasses[!sapply(colClasses, is.null)] lst <- lapply(seq_along(names(cclasses)), function(idx) unlist(lapply(lsts, "[[", idx))) names(lst) <- names(cclasses) lst } .readAligned_SolexaAlign <- function(dirPath, pattern=character(0), ..., quote="", sep="", comment.char="#", header=FALSE, Lpattern="", Rpattern="") { csvClasses <- xstringClasses <- list(sequence="DNAString", alignQuality="integer", nMatch="integer", position="character", strand="factor", refSequence=NULL, nextBestAlignQuality="integer") xstringNames <- "sequence" csvClasses[xstringNames] <- list(NULL) xstringClasses[!names(xstringClasses) %in% xstringNames] <- list(NULL) ## CSV portion lst <- .read_csv_portion(dirPath, pattern, csvClasses, ..., col.names=names(csvClasses), quote=quote, sep=sep, comment.char=comment.char, header=header) idx <- regexpr(":", lst[["position"]], fixed=TRUE) chromosome <- substr(lst[["position"]], 1, idx-1) chromosome[idx==-1] <- NA chromosome <- factor(chromosome) position <- as.integer(substr(lst[["position"]], idx+1, nchar(lst[["position"]]))) df <- data.frame(nMatch=lst$nMatch, nextBestAlignQuality=lst$nextBestAlignQuality) meta <- data.frame(labelDescription=c( "Number of matches", "Next-best alignment quality score")) alignData <- AlignedDataFrame(df, meta) ## XStringSet classes sets <- readXStringColumns(dirPath, pattern, xstringClasses, ..., sep=" \t") len <- length(sets[["sequence"]]) wd <- width(sets[["sequence"]]) q <- paste(rep(" ", max(wd)), collapse="") quality <- BStringSet(Views(BString(q), start=rep(1, len), end=wd)) AlignedRead(sread=sets[["sequence"]], id=BStringSet(character(len)), quality=SFastqQuality(quality), chromosome=chromosome, position=position, strand=.toStrand_Solexa(lst[["strand"]]), alignQuality=NumericQuality(lst[["alignQuality"]]), alignData=alignData) } .readAligned_SolexaResult <- function(dirPath, pattern=character(0), ..., sep="\t", comment.char="#", quote="", header=FALSE) { csvClasses <- xstringClasses <- list(id=NULL, sequence="DNAString", matchCode="factor", nExactMatch="integer", nOneMismatch="integer", nTwoMismatch="integer", chromosome="factor", position="integer", strand="factor", NCharacterTreatment="factor", mismatchDetailOne="character", mismatchDetailTwo="character") xstringNames <- "sequence" csvClasses[xstringNames] <- list(NULL) xstringClasses[!names(xstringClasses) %in% xstringNames] <- list(NULL) ## CSV portion lst <- .read_csv_portion(dirPath, pattern, csvClasses, ..., col.names=names(csvClasses), quote=quote, sep=sep, comment.char=comment.char, header=header) df <- data.frame(matchCode=lst[["matchCode"]], nExactMatch=lst[["nExactMatch"]], nOneMismatch=lst[["nOneMismatch"]], nTwoMismatch=lst[["nTwoMismatch"]], NCharacterTreatment=lst[["NCharacterTreatment"]], mismatchDetailOne=lst[["mismatchDetailOne"]], mismatchDetailTwo=lst[["mismatchDetailTwo"]]) meta <- data.frame(labelDescription=c( "Type of match; see ?'readAligned,character-method'", "Number of exact matches", "Number of 1-error mismatches", "Number of 2-error mismatches", "Treatment of 'N'; .: NA; D: deletion; |: insertion", "Mismatch error 1 detail; see ?'readAligned,character-method", "Mismatch error 2 detail; see ?'readAligned,character-method")) alignData <- AlignedDataFrame(df, meta) ## XStringSet classes sets <- readXStringColumns(dirPath, pattern, xstringClasses, ..., sep=sep) len <- length(sets[["sequence"]]) wd <- width(sets[["sequence"]]) q <- paste(rep(" ", max(wd)), collapse="") sfq <- BStringSet(Views(BString(q), start=rep(1, len), end=wd)) AlignedRead(sread=sets[["sequence"]], quality=SFastqQuality(sfq), chromosome=lst[["chromosome"]], position=lst[["position"]], strand=.toStrand_Solexa(lst[["strand"]]), alignQuality=NumericQuality(rep(NA_integer_, length(sfq))), alignData=alignData) } .SolexaExport_AlignedDataFrame <- function(data) { lbls <- c(run="Analysis pipeline run", lane="Flow cell lane", tile="Flow cell tile", x="Cluster x-coordinate", y="Cluster y-coordinate", filtering="Read successfully passed filtering?", contig="Contig", multiplexIndex="Multiplex index", pairedReadNumber="Paired read number")[names(data)] AlignedDataFrame(data=data, metadata=data.frame(labelDescription=lbls)) } .readAligned_SolexaExport <- function(dirPath, pattern=character(0), ..., withAll=FALSE, withId=withAll, withMultiplexIndex=withAll, withPairedReadNumber=withAll, sep="\t", commentChar="#") { files <- .file_names(dirPath, pattern) .Call(.read_solexa_export, files, sep, commentChar, c(withId, withMultiplexIndex, withPairedReadNumber)) } .readAligned_Maq_ADF <- function(lst) { df <- data.frame(nMismatchBestHit=lst$nMismatchBestHit, mismatchQuality=lst$mismatchQuality, nExactMatch24=lst$nExactMatch24, nOneMismatch24=lst$nOneMismatch24) meta <- data.frame(labelDescription=c( "Number of mismatches of the best hit", "Sum of mismatched base qualities of the best hit", "Number of 0-mismatch hits of the first 24 bases", "Number of 1-mismatch hits of the first 24 bases")) AlignedDataFrame(df, meta) } .maqmap_warning_seen <- local({ seen <- FALSE function() { if (!seen) { seen <<- TRUE FALSE } else seen } }) .maqmap_file_list_error <- function(files, type) { .throw(SRError("UserArgumentMismatch", "%s for '%s' must match 1 file, got\n %s", "'dirPath', 'pattern'", type, paste(files, collapse="\n "))) } .readAligned_MaqMapOld <- function(dirPath, pattern=character(0), records=-1L, ...) { files <- .file_names(dirPath, pattern) if (length(files) > 1) .maqmap_file_list_error(files, "MAQMapShort") lst <- .Call(.read_maq_map, files, as.integer(records), FALSE) AlignedRead(sread=lst[["readSequence"]], id=lst[["readId"]], quality=FastqQuality(lst[["fastqScores"]]), chromosome=lst[["chromosome"]], position=lst[["position"]], strand=lst[["strand"]], alignQuality=IntegerQuality(lst[["alignQuality"]]), alignData=.readAligned_Maq_ADF(lst)) } .readAligned_MaqMap <- function(dirPath, pattern=character(0), records=-1L, ...) { files <- .file_names(dirPath, pattern) if (length(files) > 1) .maqmap_file_list_error(files, "MAQMap") lst <- .Call(.read_maq_map, files, as.integer(records), TRUE) AlignedRead(sread=lst[["readSequence"]], id=lst[["readId"]], quality=FastqQuality(lst[["fastqScores"]]), chromosome=lst[["chromosome"]], position=lst[["position"]], strand=lst[["strand"]], alignQuality=IntegerQuality(lst[["alignQuality"]]), alignData=.readAligned_Maq_ADF(lst)) } .readAligned_MaqMapview <- function(dirPath, pattern=character(0), ..., sep="\t", header=FALSE, quote="") { colClasses <- list(NULL, chromosome="factor", position="integer", strand="factor", NULL, NULL, alignQuality="integer", NULL, NULL, nMismatchBestHit="integer", mismatchQuality="integer", nExactMatch24="integer", nOneMismatch24="integer", NULL, NULL, NULL) ## CSV portion csv <- .read_csv_portion(dirPath, pattern, colClasses, sep=sep, header=header, quote=quote, ...) ## XStringSet components colClasses <- list("BString", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "DNAString", "BString") sets <- readXStringColumns(dirPath, pattern, colClasses, sep=sep, header=header) AlignedRead(sread=sets[[2]], id=sets[[1]], quality=FastqQuality(sets[[3]]), chromosome=csv[["chromosome"]], position=csv[["position"]], strand=factor(csv[["strand"]], levels=.STRAND_LEVELS), alignQuality=IntegerQuality(csv[["alignQuality"]]), alignData=.readAligned_Maq_ADF(csv)) } .Bowtie_AlignedDataFrame <- function(similar, mismatch) { df <- data.frame(similar=similar, mismatch=mismatch, stringsAsFactors=FALSE) meta <- data.frame(labelDescription=c( "if Bowtie >= 0.9.9.3 (May 12, 2009)?: number of alignments aligning to the same reference characters; else 'Reserved'", "Comma-separated mismatch positions")) AlignedDataFrame(df, meta) } .readAligned_Bowtie <- function(dirPath, pattern=character(0), ..., qualityType=c("FastqQuality", "SFastqQuality"), sep="\t", commentChar="#") { tryCatch(qualityType <- match.arg(qualityType), error=function(err) { .throw(SRError("UserArgumentMismatch", conditionMessage(err))) }) files <- .file_names(dirPath, pattern) .Call(.read_bowtie, files, qualityType, sep, commentChar) } .SOAP_AlignedDataFrame <- function(nEquallyBestHits, pairedEnd, alignedLength, typeOfHit, hitDetail) { df <- data.frame(nEquallyBestHits=nEquallyBestHits, pairedEnd=factor(pairedEnd), alignedLength=alignedLength, typeOfHit=typeOfHit, hitDetail=hitDetail, stringsAsFactors=FALSE) meta <- data.frame(labelDescription=c( "Number of equally-best hits", "Paired end, a or b", "Length of read used in alignment", "Integer indicator of match type; 0: exact; 1-100: mismatch; 100+n: n-base insertion; 200+n: n-base deletion", "Detailed description of match")) AlignedDataFrame(df, meta) } .readAligned_SOAP <- function(dirPath, pattern=character(0), ..., qualityType="SFastqQuality", sep="\t", commentChar="#") { files <- .file_names(dirPath, pattern) .Call(.read_soap, files, qualityType, sep, commentChar) } .readAligned_bam <- function(dirPath, pattern=character(0), ..., param=ScanBamParam(simpleCigar=TRUE, reverseComplement=TRUE, what=.readAligned_bamWhat())) { .Defunct("readGAlignments", "GenomicAlignments", msg="use GenomicAlignments::readGAlignments to read BAM files") } .readAligned_character <- function(dirPath, pattern=character(0), type=c( "SolexaExport", "SolexaAlign", "SolexaPrealign", "SolexaRealign", "SolexaResult", "MAQMap", "MAQMapShort", "MAQMapview", "Bowtie", "SOAP"), ..., filter=srFilter()) { if (missing(type)) .arg_missing_err("type", "readAligned,character-method", "help(\"readAligned,character-method\")") if (!is.character(type) || length(type) != 1) .arg_mismatch_type_err("type", "character(1)") if (!missing(filter)) .check_type_and_length(filter, "SRFilter", NA) vals <- eval(formals(.readAligned_character)$type) if (!type %in% vals) .arg_mismatch_value_err("type", type, vals) aln <- tryCatch({ switch(type, SolexaExport=.readAligned_SolexaExport(dirPath, pattern=pattern, ...), SolexaPrealign=, SolexaAlign=, SolexaRealign=.readAligned_SolexaAlign(dirPath, pattern=pattern, ...), SolexaResult=.readAligned_SolexaResult(dirPath, pattern=pattern, ...), MAQMap=.readAligned_MaqMap(dirPath, pattern, ...), MAQMapShort=.readAligned_MaqMapOld(dirPath, pattern, ...), MAQMapview=.readAligned_MaqMapview( dirPath, pattern=pattern, ...), Bowtie=.readAligned_Bowtie(dirPath, pattern, ...), SOAP=.readAligned_SOAP(dirPath, pattern, ...)) }, error=function(err) { if (is(err, "SRError")) stop(err) else { pat <- paste(pattern, collapse=" ") txt <- paste("'%s' failed to parse files", "dirPath: '%s'", "pattern: '%s'", "type: '%s'", "error: %s", sep="\n ") msg <- sprintf(txt, "readAligned", paste(dirPath, collapse="'\n '"), paste(pat, collapse="'\n '"), type, conditionMessage(err)) .throw(SRError("Input/Output", msg)) } }) if (!missing(filter)) aln <- aln[filter(aln)] aln } setMethod(readAligned, "character", .readAligned_character) ShortRead/R/readBaseQuality.R0000644000175100017510000000361312607265053017101 0ustar00biocbuildbiocbuild.readBaseQuality_Solexa <- function(dirPath, seqPattern=character(0), prbPattern=character(0), ...) { prbs <- readPrb(dirPath, pattern=prbPattern, ...) ShortReadQ( sread = readXStringColumns( dirPath, pattern=seqPattern, colClasses=c(rep(list(NULL), 4), list("DNAString")))[[1]], quality=prbs, id=BStringSet(as.character(seq_len(length(prbs))))) } .readBaseQuality_character <- function(dirPath, seqPattern=character(0), prbPattern=character(0), type=c("Solexa"), ...) { if (missing(type)) .arg_missing_err("type", "readBaseQuality,character-method", "help(\"readBaseQuality,character-method\")") if (!is.character(type) || length(type) != 1) .arg_mismatch_type_err("type", "character(1)") vals <- eval(formals(.readBaseQuality_character)$type, getNamespace("ShortRead")) if (!type %in% vals) .arg_mismatch_value_err("type", type, vals) tryCatch({ switch(type, Solexa=.readBaseQuality_Solexa(dirPath, seqPattern=seqPattern, prbPattern=prbPattern,...)) }, error=function(err) { if (is(err, "SRError")) stop(err) else { seqpat <- paste(seqPattern, collapse=" ") prbpat <- paste(prbPattern, collapse=" ") txt <- paste("'%s' failed to parse files", "dirPath: '%s'", "seqPattern: '%s'", "prbPattern: '%s'", "type: '%s'", "error: %s", sep="\n ") msg <- sprintf(txt, "readBaseQuality", dirPath, seqpat, prbpat, type, conditionMessage(err)) .throw(SRError("Input/Output", msg)) } }) } setMethod(readBaseQuality, "character", .readBaseQuality_character) ShortRead/R/readBfaToc.R0000644000175100017510000000010312607265053016003 0ustar00biocbuildbiocbuildreadBfaToc <- function( bfafile ) .Call( .readBfaToc, bfafile ) ShortRead/R/readIntensities.R0000644000175100017510000000303612607265053017153 0ustar00biocbuildbiocbuild.readIntensities_character <- function(dirPath, pattern=character(0), ..., type=c("SolexaIntensity", "IparIntensity", "RtaIntensity")) { if (missing(type)) { type <- "SolexaIntensity" } else if (!is.character(type) || length(type) != 1) { .arg_mismatch_type_err("type", "character(1)") } else { vals <- eval(formals(.readIntensities_character)$type, getNamespace("ShortRead")) if (!type %in% vals) .arg_mismatch_value_err("type", type, vals) } tryCatch({ switch(type, SolexaIntensity=.readIntensities_SolexaIntensity( dirPath, pattern, ...), IparIntensity=.readIntensities_IparIntensity( dirPath, pattern, ...), RtaIntensity=.readIntensities_RtaIntensity( dirPath, pattern, ...)) }, error=function(err) { if (is(err, "SRError")) stop(err) else { pat <- paste(pattern, collapse=" ") txt <- paste("'%s' failed to parse files", "dirPath: '%s'", "pattern: '%s'", "type: '%s'", "error: %s", sep="\n ") msg <- sprintf(txt, "readIntensities", paste(dirPath, collapse="'\n '"), pat, type, conditionMessage(err)) .throw(SRError("Input/Output", msg)) } }) } setMethod(readIntensities, "character", .readIntensities_character) ShortRead/R/readPrb.R0000644000175100017510000000733512607265053015406 0ustar00biocbuildbiocbuild.readPrb <- function(file, ..., asSolexa, verbose) { if (verbose) cat(".readPrb", file, "\n") tryCatch({ .Call(.read_prb_as_character, file, asSolexa) }, error=function(err) { .throw(SRError("Input/Output", sprintf("parsing 'prb'\n file: %s\n error: %s", file, conditionMessage(err)))) }) } .readPrb_quality <- function(dirPath, pattern, qclass, ..., asSolexa, verbose) { fls <- .file_names(dirPath, pattern) qclass(unlist(bplapply(fls, .readPrb, ..., asSolexa=asSolexa, verbose=verbose))) } .readPrb_IntegerEncoding <- function(dirPath, pattern, ..., verbose) { res <- .readPrb_quality(dirPath, pattern, SFastqQuality, ..., asSolexa=TRUE, verbose=verbose) if (length(unique(width(res)))!=1) .throw(SRError("Input/Output", "reads have different widths") ) as(res, "matrix") } .readPrb_array <- function(dirPath, pattern, ..., verbose=FALSE) { nrec <- countLines(dirPath, pattern) crec <- c(0, cumsum(nrec)) fls <- .file_names(dirPath, pattern) gz <- gzfile(fls[[1]]); open(gz) tryCatch({ ln <- readLines(gz, 1) }, finally=close(gz)) cycles <- length(gregexpr("\t", ln, fixed=TRUE)[[1]]) + 1L a <- array(integer(), c(sum(nrec), 4L, cycles), dimnames=list(NULL, c("A", "C", "G", "T"), NULL)) what <- rep(list(integer()), 4L * cycles) for (i in seq_along(fls)) tryCatch({ gz <- gzfile(fls[[i]]); open(gz) data <- unlist(scan(gz, what, sum(nrec), ..., quiet=!verbose)) a[(crec[i]+1):crec[i+1],,] <- array(data, c(nrec[[i]], 4L, cycles)) }, error=function(err) { .throw(SRError("Input/Output", sprintf("parsing 'prb'\n file: %s\n error: %s", fls[[i]], conditionMessage(err)))) }, finally=close(gz)) a } .readPrb_character <- function(dirPath, pattern=character(0), as=c( "SolexaEncoding", "FastqEncoding", "IntegerEncoding", "array"), ..., verbose=FALSE) { if (missing(as)) { as <- "SolexaEncoding" } else if (!is.character(as) || length(as) != 1) { .arg_mismatch_type_err("as", "character(1)") } else { vals <- eval(formals(.readPrb_character)$as) if (!as %in% vals) .arg_mismatch_value_err("as", as, vals) } tryCatch({ switch(as, SolexaEncoding=.readPrb_quality( dirPath, pattern, SFastqQuality, ..., asSolexa=TRUE, verbose=verbose), FastqEncoding=.readPrb_quality( dirPath, pattern, FastqQuality, ..., asSolexa=FALSE, verbose=verbose), IntegerEncoding=.readPrb_IntegerEncoding( dirPath, pattern, ..., verbose=verbose), array=.readPrb_array( dirPath, pattern, ..., verbose=verbose)) }, error=function(err) { if (is(err, "SRError")) stop(err) else { pat <- paste(pattern, collapse=" ") txt <- paste("'%s' failed to parse files", "dirPath: '%s'", "pattern: '%s'", "as: '%s'", "error: %s", sep="\n ") msg <- sprintf(txt, "readPrb", paste(dirPath, collapse="'\n '"), pat, as, conditionMessage(err)) .throw(SRError("Input/Output", msg)) } }) } setMethod(readPrb, "character", .readPrb_character) ShortRead/R/readQseq.R0000644000175100017510000000712012607265053015564 0ustar00biocbuildbiocbuild.readQseq_ShortReadQ <- function(dirPath, pattern=character(0), ..., filtered=FALSE, verbose=FALSE) { colClasses <- rep(list(NULL), 11) colClasses[9:10] <- c("DNAString", "BString") elts <- readXStringColumns(dirPath, pattern, colClasses, ...) if (filtered) { what <- rep(list(NULL), 11) what[[11]] <- integer(0) filt <- sapply(.file_names(dirPath, pattern), function(fl, ...) { scan(fl, ...)[[11]] == 1 }, what=what, quiet=!verbose) elts[[1]] <- elts[[1]][filt] elts[[2]] <- elts[[2]][filt] } ShortReadQ(sread=elts[[1]], quality=SFastqQuality(elts[[2]]), id=BStringSet(rep("", length(elts[[1]])))) } .readQseq_DataFrame <- function(dirPath, pattern=character(0), ..., what=list(machine=character(0), run=integer(0), lane=integer(0), tile=integer(0), x=integer(0), y=integer(0), index=integer(0), readNumber=integer(0), sread=DNAStringSet(character(0)), quality=BStringSet(character(0)), filter=factor(levels=c("N", "Y"))), filtered=FALSE, verbose=FALSE) { if (!is.list(what) || length(what) != 11) .arg_mismatch_type_err("what", "list(1)") xWhat <- what xstrings <- which(sapply(what, class) %in% c("DNAStringSet", "BStringSet")) what[xstrings] <- list(NULL) fls <- .file_names(dirPath, pattern) elts <- lapply(fls, scan, what, ..., quiet=!verbose) data <- do.call(mapply, c(c, elts)) if (length(xstrings) != 0) { xWhat[-xstrings] <- list(NULL) xWhat[xstrings] <- lapply(xWhat[xstrings], function(elt) sub("Set$", "", class(elt))) data[xstrings] <- readXStringColumns(dirPath, pattern, xWhat) } xdf <- do.call(DataFrame, data) if (is.factor(what[[11]])) { xdf[[11]] <- factor(levels(what[[11]])[xdf[[11]] + 1], levels=levels(what[[11]])) if (filtered) xdf <- xdf[xdf[[11]] == "Y", -11] } xdf } .readQseq_character <- function(dirPath, pattern=character(0), ..., as=c("ShortReadQ", "DataFrame", "XDataFrame"), filtered=FALSE, verbose=FALSE) { if (missing(as)) { as <- "ShortReadQ" } else if (!is.character(as) || length(as) != 1) { .arg_mismatch_type_err("as", "character(1)") } else { vals <- eval(formals(.readQseq_character)$as) if (!as %in% vals) .arg_mismatch_value_err("as", as, vals) } tryCatch({ switch(as, ShortReadQ=.readQseq_ShortReadQ( dirPath, pattern, ..., filtered=filtered, verbose=verbose), DataFrame=.readQseq_DataFrame( dirPath, pattern, ..., filtered=filtered, verbose=verbose), XDataFrame={ .Defunct(msg="Use type='DataFrame' instead") }) }, error=function(err) { if (is(err, "SRError")) stop(err) else { txt <- paste("'%s' failed to parse files", "dirPath: '%s'", "pattern: '%s'", "as: '%s'", "error: %s", sep="\n ") msg <- sprintf(txt, "readQseq", paste(dirPath, collapse="'\n '"), pattern, as, conditionMessage(err)) .throw(SRError("Input/Output", msg)) } }) } setMethod(readQseq, "character", .readQseq_character) ShortRead/R/readXStringColumns.R0000644000175100017510000000313112607265053017610 0ustar00biocbuildbiocbuildreadXStringColumns <- function(dirPath, pattern=character(0), colClasses=list(NULL), nrows=-1L, skip=0L, sep="\t", header=FALSE, comment.char="#") { if (!is.list(colClasses)) .arg_mismatch_type_err("colClasses", "list()") colIndex <- which(!sapply(colClasses, is.null)) colClasses <- sub("Set$", "", colClasses[colIndex]) okClasses <- names(slot(getClass("XString"), "subclasses")) if (!all(colClasses %in% okClasses)) { bad <- colClasses[!colClasses %in% okClasses] .throw(SRError("UserArgumentMismatch", "'colClasses' contains invalid class%s '%s';\n must be one of '%s'", if (length(colClasses)>1) "es" else "", paste(bad, collapse="' '"), paste(okClasses, collapse="', '"))) } files <- .file_names(dirPath, pattern) res <- tryCatch({ .Call(.read_XStringSet_columns, files, header, sep, colIndex, colClasses, as.integer(nrows), as.integer(skip), comment.char) }, error=function(err) { .throw(SRError("Input/Output", "while reading files '%s':\n %s", paste(basename(files), collapse=", "), conditionMessage(err))) }) if (header) { gz <- gzfile(files[[1]]); open(gz) tryCatch({ ln <- readLines(gz, skip+1)[skip+1] }, finally=close(gz)) nms <- strsplit(ln, sep)[[1]] names(res) <- nms[colIndex] } else { names(res) <- names(colIndex) } res } ShortRead/R/renew.R0000644000175100017510000000222612607265053015141 0ustar00biocbuildbiocbuild.renewable_of <- function(x, ...) { cls <- names(getClass(x)@subclasses) sort(cls[!grepl("^\\.", cls)]) } setMethod(renewable, "missing", function(x, ...) { ## classes that are renew-able .renewable_of(".ShortReadBase") }) .renewable_query <- function(x) { if (1L != length(x)) .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "x", "character(1)")) if (!x %in% names(getClass(".ShortReadBase")@subclasses)) .throw(SRError("UserArgumentMismatch", "'%s' is not a renewable class", x)) cls <- getClass(x) if (cls@virtual) { subcls <- .renewable_of(x) res <- lapply(subcls, .renewable_query) names(res) <- subcls res } else { getSlots(x) } } setMethod(renewable, ".ShortReadBase", function(x, ...) { structure(list(.renewable_query(class(x))), .Names=class(x)) }) setMethod(renewable, "character", function(x, ...) { res <- .renewable_query(x) if (!is.list(res)) res <- structure(list(res), .Names=x) res }) setMethod(renew, ".ShortReadBase", function(x, ...) { initialize(x, ...) }) ShortRead/R/report.R0000644000175100017510000000713412607265053015337 0ustar00biocbuildbiocbuild## PDF .report_pdf_do <- function(src, dest, symbolValues) { if (!file.exists(dirname(dest))) .throw(SRError("Input/Output", "'dest' directory '%s'\n does not exist", dirname(dest))) if (file.exists(dest)) .throw(SRError("Input/Output", "'dest' file '%s'\n already exists", dest)) tmpdir <- tempfile() if (!dir.create(tmpdir)) .throw(SRError("Input/Output", "failed to create temporary directory '%s'", tmpdir)) cwd <- setwd(tmpdir) on.exit(setwd(cwd)) tmpfile <- file.path(tmpdir, basename(src)) copySubstitute(src, tmpfile, symbolValues) texFile <- Sweave(tmpfile) tools::texi2dvi(texFile, pdf=TRUE) o_pdfFile <- sub(".tex$", ".pdf", texFile) ok <- file.copy(o_pdfFile, dest) if (!ok) .throw(SRError("Input/Output", "failed to copy '%s'\n to '%s'", o_pdfFile, dest)) dest } setMethod(.report_pdf, "character", function(x, dest, type, ...) { src <- system.file("template", "qa_solexa.Rnw", package="ShortRead") if (.Platform$OS.type == "windows") x <- gsub("\\\\", .Platform$file.sep, x) symbolValues <- list(QA_SAVE_FILE=x) .report_pdf_do(src, dest, symbolValues) }) ## HTML .report_html_do <- function(destDir, sections, values, cssFile=c(QA.css=system.file("template", "QA.css", package="ShortRead")), ...) { if (length(cssFile) != 1L || is.null(names(cssFile))) .throw(SRError("UserArgumentMismatch", "'%s' must be named character(1)", "cssFile")) htmlFile <- file.path(destDir, "index.html") biocFile <- "bioclogo-small.gif" values <- c(list(CSS=names(cssFile), DATE=date(), VERSION=packageDescription("ShortRead")$Version), values) toConn <- file(htmlFile, "w") for (sec in sections) { fromConn <- file(sec, open="r") copySubstitute(sec, toConn, values) close(fromConn) } close(toConn) imgDir <- file.path(destDir, "image") if (!file.exists(imgDir)) dir.create(imgDir) file.copy(cssFile, file.path(destDir, names(cssFile))) file.copy(system.file("template", "image", biocFile, package="ShortRead"), file.path(imgDir, biocFile)) htmlFile } .html_NA <- function() "
NA
" .html_img <- function(dir, file, fig, ..., width=750, height=750) { if (is.null(fig)) return(hwrite("Not available.")) imgFile <- paste(file, "jpg", sep=".") pdfFile <- paste(file, "pdf", sep=".") imgDir <- file.path(dir, "image") if (!file.exists(imgDir)) dir.create(imgDir) img <- if (capabilities("png")) png else jpeg img(file.path(imgDir, imgFile), ..., width=width, height=height) print(fig) dev.off() pdf(file.path(imgDir, pdfFile), ...) print(fig) dev.off() hwriteImage(file.path(".", "image", imgFile), link=file.path(".", "image", pdfFile)) } .htmlReadQuality <- function(dir, file, qa, type="read", ...) { df <- qa[["readQualityScore"]] .html_img(dir, file, .plotReadQuality(df[df$type==type,]), ...) } .htmlReadOccur <- function(dir, file, qa, type="read", ...) { df <- qa[["sequenceDistribution"]] .html_img(dir, file, .plotReadOccurrences(df[df$type==type,], cex=.5), ...) } ShortRead/R/spViewPerFeature.R0000644000175100017510000000312612607265053017261 0ustar00biocbuildbiocbuild.checkClass <- function(x, class, length=NULL) { msg <- paste("'", substitute(x), "' must be object of class ", "'", class, "'", sep="") fail <- !any(sapply(class, function(c, y) is(y, c), x)) if (!is.null(length) && length(x) != length) { fail=TRUE msg <- paste(msg, "of length", length) } if (fail) stop(msg) else invisible() } spViewPerFeature <- function(GRL, name, files, #ann.by=c("exon", "transcript"), ignore.strand=FALSE, multi.levels=FALSE, fac=character(0L), ...) { .checkClass(GRL, "GRangesList") .checkClass(name, "character", 1) .checkClass(multi.levels, "logical", 1) .checkClass(files, c("character", "BamFileList")) .checkClass(ignore.strand, "logical", 1) .checkClass(fac, "character") if (!(name %in% names(GRL))) stop(sprintf("element named '%s' does not exist", name)) gr <- GRL[[name]] seqlevels(gr, force=TRUE) <- levels(seqnames(gr)) which <- reduce(range(gr)) annTrack <- gr if (multi.levels & (length(files)>1)) { if (width(which) <= 10000) currentFunction="multifine_coverage" else currentFunction="multicoarse_coverage" Snapshot(..., files=files, range=which, annTrack=annTrack, fac=fac, currentFunction=currentFunction, ignore.strand=ignore.strand) } else ## sigle file Snapshot(..., files=files, range=which, annTrack=annTrack, ignore.strand=ignore.strand, fac=fac) } ShortRead/R/trimEnds.R0000644000175100017510000000142612607265053015607 0ustar00biocbuildbiocbuildsetMethod("trimTails", "character", function(object, k, a, successive=FALSE, ..., destinations, ranges=FALSE) { filterFastq(object, destinations, k=k, a=a, ..., filter=trimTails, ranges=ranges) }) setMethod("trimTailw", "character", function(object, k, a, halfwidth, ..., destinations, ranges=FALSE) { filterFastq(object, destinations, k=k, a=a, halfwidth=halfwidth, ..., filter=trimTailw, ranges=ranges) }) setMethod("trimEnds", "character", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., destinations, ranges=FALSE) { filterFastq(object, destinations, a=a, left=left, right=right, relation=relation, ..., filter=trimEnds, ranges=ranges) }) ShortRead/build/0000755000175100017510000000000012607325164014572 5ustar00biocbuildbiocbuildShortRead/build/vignette.rds0000644000175100017510000000040612607325164017131 0ustar00biocbuildbiocbuilduQN0 M2bW_&!îQH]2oUo|9Zds՘1ƙqAݒ%,e/{{u^:gV]YN.ߝV#lA&Gd=W..@/믨):onô >v2H'1]=CS;S rF]N0$f ^.LXYAۙwu޷~~'x>eEM U .ShortRead/cleanup0000755000175100017510000000002312607265053015043 0ustar00biocbuildbiocbuildrm -f src/Makevars ShortRead/configure0000755000175100017510000037612412607265053015417 0ustar00biocbuildbiocbuild#! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.69. # # # Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc. # # # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## -------------------- ## ## M4sh Initialization. ## ## -------------------- ## # Be more Bourne compatible DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi as_nl=' ' export as_nl # Printing a long string crashes Solaris 7 /usr/bin/printf. as_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo$as_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='print -r --' as_echo_n='print -rn --' elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='printf %s\n' as_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then as_echo_body='eval /usr/ucb/echo -n "$1$as_nl"' as_echo_n='/usr/ucb/echo -n' else as_echo_body='eval expr "X$1" : "X\\(.*\\)"' as_echo_n_body='eval arg=$1; case $arg in #( *"$as_nl"*) expr "X$arg" : "X\\(.*\\)$as_nl"; arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl" ' export as_echo_n_body as_echo_n='sh -c $as_echo_n_body as_echo' fi export as_echo_body as_echo='sh -c $as_echo_body as_echo' fi # The user is always right. if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi # IFS # We need space, tab and new line, in precisely that order. Quoting is # there to prevent editors from complaining about space-tab. # (If _AS_PATH_WALK were called with IFS unset, it would disable word # splitting by setting IFS to empty value.) IFS=" "" $as_nl" # Find who we are. Look in the path if we contain no directory separator. as_myself= case $0 in #(( *[\\/]* ) as_myself=$0 ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break done IFS=$as_save_IFS ;; esac # We did not find ourselves, most probably we were run as `sh COMMAND' # in which case we are not to be found in the path. if test "x$as_myself" = x; then as_myself=$0 fi if test ! -f "$as_myself"; then $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2 exit 1 fi # Unset variables that we do not need and which cause bugs (e.g. in # pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1" # suppresses any "Segmentation fault" message there. '((' could # trigger a bug in pdksh 5.2.14. for as_var in BASH_ENV ENV MAIL MAILPATH do eval test x\${$as_var+set} = xset \ && ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || : done PS1='$ ' PS2='> ' PS4='+ ' # NLS nuisances. LC_ALL=C export LC_ALL LANGUAGE=C export LANGUAGE # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # Use a proper internal environment variable to ensure we don't fall # into an infinite loop, continuously re-executing ourselves. if test x"${_as_can_reexec}" != xno && test "x$CONFIG_SHELL" != x; then _as_can_reexec=no; export _as_can_reexec; # We cannot yet assume a decent shell, so we have to provide a # neutralization value for shells without unset; and this also # works around shells that cannot unset nonexistent variables. # Preserve -v and -x to the replacement shell. BASH_ENV=/dev/null ENV=/dev/null (unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV case $- in # (((( *v*x* | *x*v* ) as_opts=-vx ;; *v* ) as_opts=-v ;; *x* ) as_opts=-x ;; * ) as_opts= ;; esac exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"} # Admittedly, this is quite paranoid, since all the known shells bail # out after a failed `exec'. $as_echo "$0: could not re-execute with $CONFIG_SHELL" >&2 as_fn_exit 255 fi # We don't want this to propagate to other subprocesses. { _as_can_reexec=; unset _as_can_reexec;} if test "x$CONFIG_SHELL" = x; then as_bourne_compatible="if test -n \"\${ZSH_VERSION+set}\" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on \${1+\"\$@\"}, which # is contrary to our usage. Disable this feature. alias -g '\${1+\"\$@\"}'='\"\$@\"' setopt NO_GLOB_SUBST else case \`(set -o) 2>/dev/null\` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi " as_required="as_fn_return () { (exit \$1); } as_fn_success () { as_fn_return 0; } as_fn_failure () { as_fn_return 1; } as_fn_ret_success () { return 0; } as_fn_ret_failure () { return 1; } exitcode=0 as_fn_success || { exitcode=1; echo as_fn_success failed.; } as_fn_failure && { exitcode=1; echo as_fn_failure succeeded.; } as_fn_ret_success || { exitcode=1; echo as_fn_ret_success failed.; } as_fn_ret_failure && { exitcode=1; echo as_fn_ret_failure succeeded.; } if ( set x; as_fn_ret_success y && test x = \"\$1\" ); then : else exitcode=1; echo positional parameters were not saved. fi test x\$exitcode = x0 || exit 1 test -x / || exit 1" as_suggested=" as_lineno_1=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_1a=\$LINENO as_lineno_2=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_2a=\$LINENO eval 'test \"x\$as_lineno_1'\$as_run'\" != \"x\$as_lineno_2'\$as_run'\" && test \"x\`expr \$as_lineno_1'\$as_run' + 1\`\" = \"x\$as_lineno_2'\$as_run'\"' || exit 1 test \$(( 1 + 1 )) = 2 || exit 1" if (eval "$as_required") 2>/dev/null; then : as_have_required=yes else as_have_required=no fi if test x$as_have_required = xyes && (eval "$as_suggested") 2>/dev/null; then : else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR as_found=false for as_dir in /bin$PATH_SEPARATOR/usr/bin$PATH_SEPARATOR$PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. as_found=: case $as_dir in #( /*) for as_base in sh bash ksh sh5; do # Try only shells that exist, to save several forks. as_shell=$as_dir/$as_base if { test -f "$as_shell" || test -f "$as_shell.exe"; } && { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$as_shell"; } 2>/dev/null; then : CONFIG_SHELL=$as_shell as_have_required=yes if { $as_echo "$as_bourne_compatible""$as_suggested" | as_run=a "$as_shell"; } 2>/dev/null; then : break 2 fi fi done;; esac as_found=false done $as_found || { if { test -f "$SHELL" || test -f "$SHELL.exe"; } && { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$SHELL"; } 2>/dev/null; then : CONFIG_SHELL=$SHELL as_have_required=yes fi; } IFS=$as_save_IFS if test "x$CONFIG_SHELL" != x; then : export CONFIG_SHELL # We cannot yet assume a decent shell, so we have to provide a # neutralization value for shells without unset; and this also # works around shells that cannot unset nonexistent variables. # Preserve -v and -x to the replacement shell. BASH_ENV=/dev/null ENV=/dev/null (unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV case $- in # (((( *v*x* | *x*v* ) as_opts=-vx ;; *v* ) as_opts=-v ;; *x* ) as_opts=-x ;; * ) as_opts= ;; esac exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"} # Admittedly, this is quite paranoid, since all the known shells bail # out after a failed `exec'. $as_echo "$0: could not re-execute with $CONFIG_SHELL" >&2 exit 255 fi if test x$as_have_required = xno; then : $as_echo "$0: This script requires a shell more modern than all" $as_echo "$0: the shells that I found on your system." if test x${ZSH_VERSION+set} = xset ; then $as_echo "$0: In particular, zsh $ZSH_VERSION has bugs and should" $as_echo "$0: be upgraded to zsh 4.3.4 or later." else $as_echo "$0: Please tell bug-autoconf@gnu.org about your system, $0: including any error possibly output before this $0: message. Then install a modern shell, or manually run $0: the script under such a shell if you do have one." fi exit 1 fi fi fi SHELL=${CONFIG_SHELL-/bin/sh} export SHELL # Unset more variables known to interfere with behavior of common tools. CLICOLOR_FORCE= GREP_OPTIONS= unset CLICOLOR_FORCE GREP_OPTIONS ## --------------------- ## ## M4sh Shell Functions. ## ## --------------------- ## # as_fn_unset VAR # --------------- # Portably unset VAR. as_fn_unset () { { eval $1=; unset $1;} } as_unset=as_fn_unset # as_fn_set_status STATUS # ----------------------- # Set $? to STATUS, without forking. as_fn_set_status () { return $1 } # as_fn_set_status # as_fn_exit STATUS # ----------------- # Exit the shell with STATUS, even in a "trap 0" or "set -e" context. as_fn_exit () { set +e as_fn_set_status $1 exit $1 } # as_fn_exit # as_fn_mkdir_p # ------------- # Create "$as_dir" as a directory, including parents if necessary. as_fn_mkdir_p () { case $as_dir in #( -*) as_dir=./$as_dir;; esac test -d "$as_dir" || eval $as_mkdir_p || { as_dirs= while :; do case $as_dir in #( *\'*) as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'( *) as_qdir=$as_dir;; esac as_dirs="'$as_qdir' $as_dirs" as_dir=`$as_dirname -- "$as_dir" || $as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_dir" : 'X\(//\)[^/]' \| \ X"$as_dir" : 'X\(//\)$' \| \ X"$as_dir" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_dir" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test -d "$as_dir" && break done test -z "$as_dirs" || eval "mkdir $as_dirs" } || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir" } # as_fn_mkdir_p # as_fn_executable_p FILE # ----------------------- # Test if FILE is an executable regular file. as_fn_executable_p () { test -f "$1" && test -x "$1" } # as_fn_executable_p # as_fn_append VAR VALUE # ---------------------- # Append the text in VALUE to the end of the definition contained in VAR. Take # advantage of any shell optimizations that allow amortized linear growth over # repeated appends, instead of the typical quadratic growth present in naive # implementations. if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then : eval 'as_fn_append () { eval $1+=\$2 }' else as_fn_append () { eval $1=\$$1\$2 } fi # as_fn_append # as_fn_arith ARG... # ------------------ # Perform arithmetic evaluation on the ARGs, and store the result in the # global $as_val. Take advantage of shells that can avoid forks. The arguments # must be portable across $(()) and expr. if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null; then : eval 'as_fn_arith () { as_val=$(( $* )) }' else as_fn_arith () { as_val=`expr "$@" || test $? -eq 1` } fi # as_fn_arith # as_fn_error STATUS ERROR [LINENO LOG_FD] # ---------------------------------------- # Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are # provided, also output the error to LOG_FD, referencing LINENO. Then exit the # script with STATUS, using 1 if that was 0. as_fn_error () { as_status=$1; test $as_status -eq 0 && as_status=1 if test "$4"; then as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack $as_echo "$as_me:${as_lineno-$LINENO}: error: $2" >&$4 fi $as_echo "$as_me: error: $2" >&2 as_fn_exit $as_status } # as_fn_error if expr a : '\(a\)' >/dev/null 2>&1 && test "X`expr 00001 : '.*\(...\)'`" = X001; then as_expr=expr else as_expr=false fi if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then as_basename=basename else as_basename=false fi if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then as_dirname=dirname else as_dirname=false fi as_me=`$as_basename -- "$0" || $as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \ X"$0" : 'X\(//\)$' \| \ X"$0" : 'X\(/\)' \| . 2>/dev/null || $as_echo X/"$0" | sed '/^.*\/\([^/][^/]*\)\/*$/{ s//\1/ q } /^X\/\(\/\/\)$/{ s//\1/ q } /^X\/\(\/\).*/{ s//\1/ q } s/.*/./; q'` # Avoid depending upon Character Ranges. as_cr_letters='abcdefghijklmnopqrstuvwxyz' as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ' as_cr_Letters=$as_cr_letters$as_cr_LETTERS as_cr_digits='0123456789' as_cr_alnum=$as_cr_Letters$as_cr_digits as_lineno_1=$LINENO as_lineno_1a=$LINENO as_lineno_2=$LINENO as_lineno_2a=$LINENO eval 'test "x$as_lineno_1'$as_run'" != "x$as_lineno_2'$as_run'" && test "x`expr $as_lineno_1'$as_run' + 1`" = "x$as_lineno_2'$as_run'"' || { # Blame Lee E. McMahon (1931-1989) for sed's syntax. :-) sed -n ' p /[$]LINENO/= ' <$as_myself | sed ' s/[$]LINENO.*/&-/ t lineno b :lineno N :loop s/[$]LINENO\([^'$as_cr_alnum'_].*\n\)\(.*\)/\2\1\2/ t loop s/-\n.*// ' >$as_me.lineno && chmod +x "$as_me.lineno" || { $as_echo "$as_me: error: cannot create $as_me.lineno; rerun with a POSIX shell" >&2; as_fn_exit 1; } # If we had to re-execute with $CONFIG_SHELL, we're ensured to have # already done that, so ensure we don't try to do so again and fall # in an infinite loop. This has already happened in practice. _as_can_reexec=no; export _as_can_reexec # Don't try to exec as it changes $[0], causing all sort of problems # (the dirname of $[0] is not the place where we might find the # original and so on. Autoconf is especially sensitive to this). . "./$as_me.lineno" # Exit status is that of the last command. exit } ECHO_C= ECHO_N= ECHO_T= case `echo -n x` in #((((( -n*) case `echo 'xy\c'` in *c*) ECHO_T=' ';; # ECHO_T is single tab character. xy) ECHO_C='\c';; *) echo `echo ksh88 bug on AIX 6.1` > /dev/null ECHO_T=' ';; esac;; *) ECHO_N='-n';; esac rm -f conf$$ conf$$.exe conf$$.file if test -d conf$$.dir; then rm -f conf$$.dir/conf$$.file else rm -f conf$$.dir mkdir conf$$.dir 2>/dev/null fi if (echo >conf$$.file) 2>/dev/null; then if ln -s conf$$.file conf$$ 2>/dev/null; then as_ln_s='ln -s' # ... but there are two gotchas: # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail. # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable. # In both cases, we have to default to `cp -pR'. ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe || as_ln_s='cp -pR' elif ln conf$$.file conf$$ 2>/dev/null; then as_ln_s=ln else as_ln_s='cp -pR' fi else as_ln_s='cp -pR' fi rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file rmdir conf$$.dir 2>/dev/null if mkdir -p . 2>/dev/null; then as_mkdir_p='mkdir -p "$as_dir"' else test -d ./-p && rmdir ./-p as_mkdir_p=false fi as_test_x='test -x' as_executable_p=as_fn_executable_p # Sed expression to map a string onto a valid CPP name. as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'" # Sed expression to map a string onto a valid variable name. as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'" test -n "$DJDIR" || exec 7<&0 &1 # Name of the host. # hostname on some systems (SVR3.2, old GNU/Linux) returns a bogus exit status, # so uname gets run too. ac_hostname=`(hostname || uname -n) 2>/dev/null | sed 1q` # # Initializations. # ac_default_prefix=/usr/local ac_clean_files= ac_config_libobj_dir=. LIBOBJS= cross_compiling=no subdirs= MFLAGS= MAKEFLAGS= # Identity of this package. PACKAGE_NAME= PACKAGE_TARNAME= PACKAGE_VERSION= PACKAGE_STRING= PACKAGE_BUGREPORT= PACKAGE_URL= ac_unique_file=""DESCRIPTION"" # Factoring default headers for most tests. ac_includes_default="\ #include #ifdef HAVE_SYS_TYPES_H # include #endif #ifdef HAVE_SYS_STAT_H # include #endif #ifdef STDC_HEADERS # include # include #else # ifdef HAVE_STDLIB_H # include # endif #endif #ifdef HAVE_STRING_H # if !defined STDC_HEADERS && defined HAVE_MEMORY_H # include # endif # include #endif #ifdef HAVE_STRINGS_H # include #endif #ifdef HAVE_INTTYPES_H # include #endif #ifdef HAVE_STDINT_H # include #endif #ifdef HAVE_UNISTD_H # include #endif" ac_subst_vars='LTLIBOBJS LIBOBJS EGREP GREP CPP OBJEXT EXEEXT ac_ct_CC CPPFLAGS LDFLAGS CFLAGS CC target_alias host_alias build_alias LIBS ECHO_T ECHO_N ECHO_C DEFS mandir localedir libdir psdir pdfdir dvidir htmldir infodir docdir oldincludedir includedir localstatedir sharedstatedir sysconfdir datadir datarootdir libexecdir sbindir bindir program_transform_name prefix exec_prefix PACKAGE_URL PACKAGE_BUGREPORT PACKAGE_STRING PACKAGE_VERSION PACKAGE_TARNAME PACKAGE_NAME PATH_SEPARATOR SHELL' ac_subst_files='' ac_user_opts=' enable_option_checking ' ac_precious_vars='build_alias host_alias target_alias CC CFLAGS LDFLAGS LIBS CPPFLAGS CPP' # Initialize some variables set by options. ac_init_help= ac_init_version=false ac_unrecognized_opts= ac_unrecognized_sep= # The variables have the same names as the options, with # dashes changed to underlines. cache_file=/dev/null exec_prefix=NONE no_create= no_recursion= prefix=NONE program_prefix=NONE program_suffix=NONE program_transform_name=s,x,x, silent= site= srcdir= verbose= x_includes=NONE x_libraries=NONE # Installation directory options. # These are left unexpanded so users can "make install exec_prefix=/foo" # and all the variables that are supposed to be based on exec_prefix # by default will actually change. # Use braces instead of parens because sh, perl, etc. also accept them. # (The list follows the same order as the GNU Coding Standards.) bindir='${exec_prefix}/bin' sbindir='${exec_prefix}/sbin' libexecdir='${exec_prefix}/libexec' datarootdir='${prefix}/share' datadir='${datarootdir}' sysconfdir='${prefix}/etc' sharedstatedir='${prefix}/com' localstatedir='${prefix}/var' includedir='${prefix}/include' oldincludedir='/usr/include' docdir='${datarootdir}/doc/${PACKAGE}' infodir='${datarootdir}/info' htmldir='${docdir}' dvidir='${docdir}' pdfdir='${docdir}' psdir='${docdir}' libdir='${exec_prefix}/lib' localedir='${datarootdir}/locale' mandir='${datarootdir}/man' ac_prev= ac_dashdash= for ac_option do # If the previous option needs an argument, assign it. if test -n "$ac_prev"; then eval $ac_prev=\$ac_option ac_prev= continue fi case $ac_option in *=?*) ac_optarg=`expr "X$ac_option" : '[^=]*=\(.*\)'` ;; *=) ac_optarg= ;; *) ac_optarg=yes ;; esac # Accept the important Cygnus configure options, so we can diagnose typos. case $ac_dashdash$ac_option in --) ac_dashdash=yes ;; -bindir | --bindir | --bindi | --bind | --bin | --bi) ac_prev=bindir ;; -bindir=* | --bindir=* | --bindi=* | --bind=* | --bin=* | --bi=*) bindir=$ac_optarg ;; -build | --build | --buil | --bui | --bu) ac_prev=build_alias ;; -build=* | --build=* | --buil=* | --bui=* | --bu=*) build_alias=$ac_optarg ;; -cache-file | --cache-file | --cache-fil | --cache-fi \ | --cache-f | --cache- | --cache | --cach | --cac | --ca | --c) ac_prev=cache_file ;; -cache-file=* | --cache-file=* | --cache-fil=* | --cache-fi=* \ | --cache-f=* | --cache-=* | --cache=* | --cach=* | --cac=* | --ca=* | --c=*) cache_file=$ac_optarg ;; --config-cache | -C) cache_file=config.cache ;; -datadir | --datadir | --datadi | --datad) ac_prev=datadir ;; -datadir=* | --datadir=* | --datadi=* | --datad=*) datadir=$ac_optarg ;; -datarootdir | --datarootdir | --datarootdi | --datarootd | --dataroot \ | --dataroo | --dataro | --datar) ac_prev=datarootdir ;; -datarootdir=* | --datarootdir=* | --datarootdi=* | --datarootd=* \ | --dataroot=* | --dataroo=* | --dataro=* | --datar=*) datarootdir=$ac_optarg ;; -disable-* | --disable-*) ac_useropt=`expr "x$ac_option" : 'x-*disable-\(.*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid feature name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "enable_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--disable-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval enable_$ac_useropt=no ;; -docdir | --docdir | --docdi | --doc | --do) ac_prev=docdir ;; -docdir=* | --docdir=* | --docdi=* | --doc=* | --do=*) docdir=$ac_optarg ;; -dvidir | --dvidir | --dvidi | --dvid | --dvi | --dv) ac_prev=dvidir ;; -dvidir=* | --dvidir=* | --dvidi=* | --dvid=* | --dvi=* | --dv=*) dvidir=$ac_optarg ;; -enable-* | --enable-*) ac_useropt=`expr "x$ac_option" : 'x-*enable-\([^=]*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid feature name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "enable_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--enable-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval enable_$ac_useropt=\$ac_optarg ;; -exec-prefix | --exec_prefix | --exec-prefix | --exec-prefi \ | --exec-pref | --exec-pre | --exec-pr | --exec-p | --exec- \ | --exec | --exe | --ex) ac_prev=exec_prefix ;; -exec-prefix=* | --exec_prefix=* | --exec-prefix=* | --exec-prefi=* \ | --exec-pref=* | --exec-pre=* | --exec-pr=* | --exec-p=* | --exec-=* \ | --exec=* | --exe=* | --ex=*) exec_prefix=$ac_optarg ;; -gas | --gas | --ga | --g) # Obsolete; use --with-gas. with_gas=yes ;; -help | --help | --hel | --he | -h) ac_init_help=long ;; -help=r* | --help=r* | --hel=r* | --he=r* | -hr*) ac_init_help=recursive ;; -help=s* | --help=s* | --hel=s* | --he=s* | -hs*) ac_init_help=short ;; -host | --host | --hos | --ho) ac_prev=host_alias ;; -host=* | --host=* | --hos=* | --ho=*) host_alias=$ac_optarg ;; -htmldir | --htmldir | --htmldi | --htmld | --html | --htm | --ht) ac_prev=htmldir ;; -htmldir=* | --htmldir=* | --htmldi=* | --htmld=* | --html=* | --htm=* \ | --ht=*) htmldir=$ac_optarg ;; -includedir | --includedir | --includedi | --included | --include \ | --includ | --inclu | --incl | --inc) ac_prev=includedir ;; -includedir=* | --includedir=* | --includedi=* | --included=* | --include=* \ | --includ=* | --inclu=* | --incl=* | --inc=*) includedir=$ac_optarg ;; -infodir | --infodir | --infodi | --infod | --info | --inf) ac_prev=infodir ;; -infodir=* | --infodir=* | --infodi=* | --infod=* | --info=* | --inf=*) infodir=$ac_optarg ;; -libdir | --libdir | --libdi | --libd) ac_prev=libdir ;; -libdir=* | --libdir=* | --libdi=* | --libd=*) libdir=$ac_optarg ;; -libexecdir | --libexecdir | --libexecdi | --libexecd | --libexec \ | --libexe | --libex | --libe) ac_prev=libexecdir ;; -libexecdir=* | --libexecdir=* | --libexecdi=* | --libexecd=* | --libexec=* \ | --libexe=* | --libex=* | --libe=*) libexecdir=$ac_optarg ;; -localedir | --localedir | --localedi | --localed | --locale) ac_prev=localedir ;; -localedir=* | --localedir=* | --localedi=* | --localed=* | --locale=*) localedir=$ac_optarg ;; -localstatedir | --localstatedir | --localstatedi | --localstated \ | --localstate | --localstat | --localsta | --localst | --locals) ac_prev=localstatedir ;; -localstatedir=* | --localstatedir=* | --localstatedi=* | --localstated=* \ | --localstate=* | --localstat=* | --localsta=* | --localst=* | --locals=*) localstatedir=$ac_optarg ;; -mandir | --mandir | --mandi | --mand | --man | --ma | --m) ac_prev=mandir ;; -mandir=* | --mandir=* | --mandi=* | --mand=* | --man=* | --ma=* | --m=*) mandir=$ac_optarg ;; -nfp | --nfp | --nf) # Obsolete; use --without-fp. with_fp=no ;; -no-create | --no-create | --no-creat | --no-crea | --no-cre \ | --no-cr | --no-c | -n) no_create=yes ;; -no-recursion | --no-recursion | --no-recursio | --no-recursi \ | --no-recurs | --no-recur | --no-recu | --no-rec | --no-re | --no-r) no_recursion=yes ;; -oldincludedir | --oldincludedir | --oldincludedi | --oldincluded \ | --oldinclude | --oldinclud | --oldinclu | --oldincl | --oldinc \ | --oldin | --oldi | --old | --ol | --o) ac_prev=oldincludedir ;; -oldincludedir=* | --oldincludedir=* | --oldincludedi=* | --oldincluded=* \ | --oldinclude=* | --oldinclud=* | --oldinclu=* | --oldincl=* | --oldinc=* \ | --oldin=* | --oldi=* | --old=* | --ol=* | --o=*) oldincludedir=$ac_optarg ;; -prefix | --prefix | --prefi | --pref | --pre | --pr | --p) ac_prev=prefix ;; -prefix=* | --prefix=* | --prefi=* | --pref=* | --pre=* | --pr=* | --p=*) prefix=$ac_optarg ;; -program-prefix | --program-prefix | --program-prefi | --program-pref \ | --program-pre | --program-pr | --program-p) ac_prev=program_prefix ;; -program-prefix=* | --program-prefix=* | --program-prefi=* \ | --program-pref=* | --program-pre=* | --program-pr=* | --program-p=*) program_prefix=$ac_optarg ;; -program-suffix | --program-suffix | --program-suffi | --program-suff \ | --program-suf | --program-su | --program-s) ac_prev=program_suffix ;; -program-suffix=* | --program-suffix=* | --program-suffi=* \ | --program-suff=* | --program-suf=* | --program-su=* | --program-s=*) program_suffix=$ac_optarg ;; -program-transform-name | --program-transform-name \ | --program-transform-nam | --program-transform-na \ | --program-transform-n | --program-transform- \ | --program-transform | --program-transfor \ | --program-transfo | --program-transf \ | --program-trans | --program-tran \ | --progr-tra | --program-tr | --program-t) ac_prev=program_transform_name ;; -program-transform-name=* | --program-transform-name=* \ | --program-transform-nam=* | --program-transform-na=* \ | --program-transform-n=* | --program-transform-=* \ | --program-transform=* | --program-transfor=* \ | --program-transfo=* | --program-transf=* \ | --program-trans=* | --program-tran=* \ | --progr-tra=* | --program-tr=* | --program-t=*) program_transform_name=$ac_optarg ;; -pdfdir | --pdfdir | --pdfdi | --pdfd | --pdf | --pd) ac_prev=pdfdir ;; -pdfdir=* | --pdfdir=* | --pdfdi=* | --pdfd=* | --pdf=* | --pd=*) pdfdir=$ac_optarg ;; -psdir | --psdir | --psdi | --psd | --ps) ac_prev=psdir ;; -psdir=* | --psdir=* | --psdi=* | --psd=* | --ps=*) psdir=$ac_optarg ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil) silent=yes ;; -sbindir | --sbindir | --sbindi | --sbind | --sbin | --sbi | --sb) ac_prev=sbindir ;; -sbindir=* | --sbindir=* | --sbindi=* | --sbind=* | --sbin=* \ | --sbi=* | --sb=*) sbindir=$ac_optarg ;; -sharedstatedir | --sharedstatedir | --sharedstatedi \ | --sharedstated | --sharedstate | --sharedstat | --sharedsta \ | --sharedst | --shareds | --shared | --share | --shar \ | --sha | --sh) ac_prev=sharedstatedir ;; -sharedstatedir=* | --sharedstatedir=* | --sharedstatedi=* \ | --sharedstated=* | --sharedstate=* | --sharedstat=* | --sharedsta=* \ | --sharedst=* | --shareds=* | --shared=* | --share=* | --shar=* \ | --sha=* | --sh=*) sharedstatedir=$ac_optarg ;; -site | --site | --sit) ac_prev=site ;; -site=* | --site=* | --sit=*) site=$ac_optarg ;; -srcdir | --srcdir | --srcdi | --srcd | --src | --sr) ac_prev=srcdir ;; -srcdir=* | --srcdir=* | --srcdi=* | --srcd=* | --src=* | --sr=*) srcdir=$ac_optarg ;; -sysconfdir | --sysconfdir | --sysconfdi | --sysconfd | --sysconf \ | --syscon | --sysco | --sysc | --sys | --sy) ac_prev=sysconfdir ;; -sysconfdir=* | --sysconfdir=* | --sysconfdi=* | --sysconfd=* | --sysconf=* \ | --syscon=* | --sysco=* | --sysc=* | --sys=* | --sy=*) sysconfdir=$ac_optarg ;; -target | --target | --targe | --targ | --tar | --ta | --t) ac_prev=target_alias ;; -target=* | --target=* | --targe=* | --targ=* | --tar=* | --ta=* | --t=*) target_alias=$ac_optarg ;; -v | -verbose | --verbose | --verbos | --verbo | --verb) verbose=yes ;; -version | --version | --versio | --versi | --vers | -V) ac_init_version=: ;; -with-* | --with-*) ac_useropt=`expr "x$ac_option" : 'x-*with-\([^=]*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid package name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "with_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--with-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval with_$ac_useropt=\$ac_optarg ;; -without-* | --without-*) ac_useropt=`expr "x$ac_option" : 'x-*without-\(.*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid package name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "with_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--without-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval with_$ac_useropt=no ;; --x) # Obsolete; use --with-x. with_x=yes ;; -x-includes | --x-includes | --x-include | --x-includ | --x-inclu \ | --x-incl | --x-inc | --x-in | --x-i) ac_prev=x_includes ;; -x-includes=* | --x-includes=* | --x-include=* | --x-includ=* | --x-inclu=* \ | --x-incl=* | --x-inc=* | --x-in=* | --x-i=*) x_includes=$ac_optarg ;; -x-libraries | --x-libraries | --x-librarie | --x-librari \ | --x-librar | --x-libra | --x-libr | --x-lib | --x-li | --x-l) ac_prev=x_libraries ;; -x-libraries=* | --x-libraries=* | --x-librarie=* | --x-librari=* \ | --x-librar=* | --x-libra=* | --x-libr=* | --x-lib=* | --x-li=* | --x-l=*) x_libraries=$ac_optarg ;; -*) as_fn_error $? "unrecognized option: \`$ac_option' Try \`$0 --help' for more information" ;; *=*) ac_envvar=`expr "x$ac_option" : 'x\([^=]*\)='` # Reject names that are not valid shell variable names. case $ac_envvar in #( '' | [0-9]* | *[!_$as_cr_alnum]* ) as_fn_error $? "invalid variable name: \`$ac_envvar'" ;; esac eval $ac_envvar=\$ac_optarg export $ac_envvar ;; *) # FIXME: should be removed in autoconf 3.0. $as_echo "$as_me: WARNING: you should use --build, --host, --target" >&2 expr "x$ac_option" : ".*[^-._$as_cr_alnum]" >/dev/null && $as_echo "$as_me: WARNING: invalid host type: $ac_option" >&2 : "${build_alias=$ac_option} ${host_alias=$ac_option} ${target_alias=$ac_option}" ;; esac done if test -n "$ac_prev"; then ac_option=--`echo $ac_prev | sed 's/_/-/g'` as_fn_error $? "missing argument to $ac_option" fi if test -n "$ac_unrecognized_opts"; then case $enable_option_checking in no) ;; fatal) as_fn_error $? "unrecognized options: $ac_unrecognized_opts" ;; *) $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2 ;; esac fi # Check all directory arguments for consistency. for ac_var in exec_prefix prefix bindir sbindir libexecdir datarootdir \ datadir sysconfdir sharedstatedir localstatedir includedir \ oldincludedir docdir infodir htmldir dvidir pdfdir psdir \ libdir localedir mandir do eval ac_val=\$$ac_var # Remove trailing slashes. case $ac_val in */ ) ac_val=`expr "X$ac_val" : 'X\(.*[^/]\)' \| "X$ac_val" : 'X\(.*\)'` eval $ac_var=\$ac_val;; esac # Be sure to have absolute directory names. case $ac_val in [\\/$]* | ?:[\\/]* ) continue;; NONE | '' ) case $ac_var in *prefix ) continue;; esac;; esac as_fn_error $? "expected an absolute directory name for --$ac_var: $ac_val" done # There might be people who depend on the old broken behavior: `$host' # used to hold the argument of --host etc. # FIXME: To remove some day. build=$build_alias host=$host_alias target=$target_alias # FIXME: To remove some day. if test "x$host_alias" != x; then if test "x$build_alias" = x; then cross_compiling=maybe elif test "x$build_alias" != "x$host_alias"; then cross_compiling=yes fi fi ac_tool_prefix= test -n "$host_alias" && ac_tool_prefix=$host_alias- test "$silent" = yes && exec 6>/dev/null ac_pwd=`pwd` && test -n "$ac_pwd" && ac_ls_di=`ls -di .` && ac_pwd_ls_di=`cd "$ac_pwd" && ls -di .` || as_fn_error $? "working directory cannot be determined" test "X$ac_ls_di" = "X$ac_pwd_ls_di" || as_fn_error $? "pwd does not report name of working directory" # Find the source files, if location was not specified. if test -z "$srcdir"; then ac_srcdir_defaulted=yes # Try the directory containing this script, then the parent directory. ac_confdir=`$as_dirname -- "$as_myself" || $as_expr X"$as_myself" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_myself" : 'X\(//\)[^/]' \| \ X"$as_myself" : 'X\(//\)$' \| \ X"$as_myself" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_myself" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` srcdir=$ac_confdir if test ! -r "$srcdir/$ac_unique_file"; then srcdir=.. fi else ac_srcdir_defaulted=no fi if test ! -r "$srcdir/$ac_unique_file"; then test "$ac_srcdir_defaulted" = yes && srcdir="$ac_confdir or .." as_fn_error $? "cannot find sources ($ac_unique_file) in $srcdir" fi ac_msg="sources are in $srcdir, but \`cd $srcdir' does not work" ac_abs_confdir=`( cd "$srcdir" && test -r "./$ac_unique_file" || as_fn_error $? "$ac_msg" pwd)` # When building in place, set srcdir=. if test "$ac_abs_confdir" = "$ac_pwd"; then srcdir=. fi # Remove unnecessary trailing slashes from srcdir. # Double slashes in file names in object file debugging info # mess up M-x gdb in Emacs. case $srcdir in */) srcdir=`expr "X$srcdir" : 'X\(.*[^/]\)' \| "X$srcdir" : 'X\(.*\)'`;; esac for ac_var in $ac_precious_vars; do eval ac_env_${ac_var}_set=\${${ac_var}+set} eval ac_env_${ac_var}_value=\$${ac_var} eval ac_cv_env_${ac_var}_set=\${${ac_var}+set} eval ac_cv_env_${ac_var}_value=\$${ac_var} done # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures this package to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. Configuration: -h, --help display this help and exit --help=short display options specific to this package --help=recursive display the short help of all the included packages -V, --version display version information and exit -q, --quiet, --silent do not print \`checking ...' messages --cache-file=FILE cache test results in FILE [disabled] -C, --config-cache alias for \`--cache-file=config.cache' -n, --no-create do not create output files --srcdir=DIR find the sources in DIR [configure dir or \`..'] Installation directories: --prefix=PREFIX install architecture-independent files in PREFIX [$ac_default_prefix] --exec-prefix=EPREFIX install architecture-dependent files in EPREFIX [PREFIX] By default, \`make install' will install all the files in \`$ac_default_prefix/bin', \`$ac_default_prefix/lib' etc. You can specify an installation prefix other than \`$ac_default_prefix' using \`--prefix', for instance \`--prefix=\$HOME'. For better control, use the options below. Fine tuning of the installation directories: --bindir=DIR user executables [EPREFIX/bin] --sbindir=DIR system admin executables [EPREFIX/sbin] --libexecdir=DIR program executables [EPREFIX/libexec] --sysconfdir=DIR read-only single-machine data [PREFIX/etc] --sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com] --localstatedir=DIR modifiable single-machine data [PREFIX/var] --libdir=DIR object code libraries [EPREFIX/lib] --includedir=DIR C header files [PREFIX/include] --oldincludedir=DIR C header files for non-gcc [/usr/include] --datarootdir=DIR read-only arch.-independent data root [PREFIX/share] --datadir=DIR read-only architecture-independent data [DATAROOTDIR] --infodir=DIR info documentation [DATAROOTDIR/info] --localedir=DIR locale-dependent data [DATAROOTDIR/locale] --mandir=DIR man documentation [DATAROOTDIR/man] --docdir=DIR documentation root [DATAROOTDIR/doc/PACKAGE] --htmldir=DIR html documentation [DOCDIR] --dvidir=DIR dvi documentation [DOCDIR] --pdfdir=DIR pdf documentation [DOCDIR] --psdir=DIR ps documentation [DOCDIR] _ACEOF cat <<\_ACEOF _ACEOF fi if test -n "$ac_init_help"; then cat <<\_ACEOF Some influential environment variables: CC C compiler command CFLAGS C compiler flags LDFLAGS linker flags, e.g. -L if you have libraries in a nonstandard directory LIBS libraries to pass to the linker, e.g. -l CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I if you have headers in a nonstandard directory CPP C preprocessor Use these variables to override the choices made by `configure' or to help it to find libraries and programs with nonstandard names/locations. Report bugs to the package provider. _ACEOF ac_status=$? fi if test "$ac_init_help" = "recursive"; then # If there are subdirs, report their specific --help. for ac_dir in : $ac_subdirs_all; do test "x$ac_dir" = x: && continue test -d "$ac_dir" || { cd "$srcdir" && ac_pwd=`pwd` && srcdir=. && test -d "$ac_dir"; } || continue ac_builddir=. case "$ac_dir" in .) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'` # A ".." for each directory in $ac_dir_suffix. ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'` case $ac_top_builddir_sub in "") ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_top_build_prefix=$ac_top_builddir_sub/ ;; esac ;; esac ac_abs_top_builddir=$ac_pwd ac_abs_builddir=$ac_pwd$ac_dir_suffix # for backward compatibility: ac_top_builddir=$ac_top_build_prefix case $srcdir in .) # We are building in place. ac_srcdir=. ac_top_srcdir=$ac_top_builddir_sub ac_abs_top_srcdir=$ac_pwd ;; [\\/]* | ?:[\\/]* ) # Absolute name. ac_srcdir=$srcdir$ac_dir_suffix; ac_top_srcdir=$srcdir ac_abs_top_srcdir=$srcdir ;; *) # Relative name. ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix ac_top_srcdir=$ac_top_build_prefix$srcdir ac_abs_top_srcdir=$ac_pwd/$srcdir ;; esac ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix cd "$ac_dir" || { ac_status=$?; continue; } # Check for guested configure. if test -f "$ac_srcdir/configure.gnu"; then echo && $SHELL "$ac_srcdir/configure.gnu" --help=recursive elif test -f "$ac_srcdir/configure"; then echo && $SHELL "$ac_srcdir/configure" --help=recursive else $as_echo "$as_me: WARNING: no configuration information is in $ac_dir" >&2 fi || ac_status=$? cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF configure generated by GNU Autoconf 2.69 Copyright (C) 2012 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi ## ------------------------ ## ## Autoconf initialization. ## ## ------------------------ ## # ac_fn_c_try_compile LINENO # -------------------------- # Try to compile conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_c_werror_flag" || test ! -s conftest.err } && test -s conftest.$ac_objext; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_compile # ac_fn_c_try_link LINENO # ----------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_link () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext conftest$ac_exeext if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_c_werror_flag" || test ! -s conftest.err } && test -s conftest$ac_exeext && { test "$cross_compiling" = yes || test -x conftest$ac_exeext }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi # Delete the IPA/IPO (Inter Procedural Analysis/Optimization) information # created by the PGI compiler (conftest_ipa8_conftest.oo), as it would # interfere with the next link command; also delete a directory that is # left behind by Apple's compiler. We do this before executing the actions. rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_link # ac_fn_c_try_run LINENO # ---------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. Assumes # that executables *can* be run. ac_fn_c_try_run () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { ac_try='./conftest$ac_exeext' { { case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_try") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; }; then : ac_retval=0 else $as_echo "$as_me: program exited with status $ac_status" >&5 $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=$ac_status fi rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_run # ac_fn_c_compute_int LINENO EXPR VAR INCLUDES # -------------------------------------------- # Tries to find the compile-time value of EXPR in a program that includes # INCLUDES, setting VAR accordingly. Returns whether the value could be # computed ac_fn_c_compute_int () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if test "$cross_compiling" = yes; then # Depending upon the size, compute the lo and hi bounds. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) >= 0)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_lo=0 ac_mid=0 while :; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) <= $ac_mid)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=$ac_mid; break else as_fn_arith $ac_mid + 1 && ac_lo=$as_val if test $ac_lo -le $ac_mid; then ac_lo= ac_hi= break fi as_fn_arith 2 '*' $ac_mid + 1 && ac_mid=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) < 0)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=-1 ac_mid=-1 while :; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) >= $ac_mid)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_lo=$ac_mid; break else as_fn_arith '(' $ac_mid ')' - 1 && ac_hi=$as_val if test $ac_mid -le $ac_hi; then ac_lo= ac_hi= break fi as_fn_arith 2 '*' $ac_mid && ac_mid=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done else ac_lo= ac_hi= fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext # Binary search between lo and hi bounds. while test "x$ac_lo" != "x$ac_hi"; do as_fn_arith '(' $ac_hi - $ac_lo ')' / 2 + $ac_lo && ac_mid=$as_val cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) <= $ac_mid)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=$ac_mid else as_fn_arith '(' $ac_mid ')' + 1 && ac_lo=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done case $ac_lo in #(( ?*) eval "$3=\$ac_lo"; ac_retval=0 ;; '') ac_retval=1 ;; esac else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 static long int longval () { return $2; } static unsigned long int ulongval () { return $2; } #include #include int main () { FILE *f = fopen ("conftest.val", "w"); if (! f) return 1; if (($2) < 0) { long int i = longval (); if (i != ($2)) return 1; fprintf (f, "%ld", i); } else { unsigned long int i = ulongval (); if (i != ($2)) return 1; fprintf (f, "%lu", i); } /* Do not output a trailing newline, as this causes \r\n confusion on some platforms. */ return ferror (f) || fclose (f) != 0; ; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : echo >>conftest.val; read $3 &5 (eval "$ac_cpp conftest.$ac_ext") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } > conftest.i && { test -z "$ac_c_preproc_warn_flag$ac_c_werror_flag" || test ! -s conftest.err }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_cpp # ac_fn_c_check_header_compile LINENO HEADER VAR INCLUDES # ------------------------------------------------------- # Tests whether HEADER exists and can be compiled using the include files in # INCLUDES, setting the cache variable VAR accordingly. ac_fn_c_check_header_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 #include <$2> _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval "$3=yes" else eval "$3=no" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_compile cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by $as_me, which was generated by GNU Autoconf 2.69. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { cat <<_ASUNAME ## --------- ## ## Platform. ## ## --------- ## hostname = `(hostname || uname -n) 2>/dev/null | sed 1q` uname -m = `(uname -m) 2>/dev/null || echo unknown` uname -r = `(uname -r) 2>/dev/null || echo unknown` uname -s = `(uname -s) 2>/dev/null || echo unknown` uname -v = `(uname -v) 2>/dev/null || echo unknown` /usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null || echo unknown` /bin/uname -X = `(/bin/uname -X) 2>/dev/null || echo unknown` /bin/arch = `(/bin/arch) 2>/dev/null || echo unknown` /usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null || echo unknown` /usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null || echo unknown` /usr/bin/hostinfo = `(/usr/bin/hostinfo) 2>/dev/null || echo unknown` /bin/machine = `(/bin/machine) 2>/dev/null || echo unknown` /usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null || echo unknown` /bin/universe = `(/bin/universe) 2>/dev/null || echo unknown` _ASUNAME as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. $as_echo "PATH: $as_dir" done IFS=$as_save_IFS } >&5 cat >&5 <<_ACEOF ## ----------- ## ## Core tests. ## ## ----------- ## _ACEOF # Keep a trace of the command line. # Strip out --no-create and --no-recursion so they do not pile up. # Strip out --silent because we don't want to record it for future runs. # Also quote any args containing shell meta-characters. # Make two passes to allow for proper duplicate-argument suppression. ac_configure_args= ac_configure_args0= ac_configure_args1= ac_must_keep_next=false for ac_pass in 1 2 do for ac_arg do case $ac_arg in -no-create | --no-c* | -n | -no-recursion | --no-r*) continue ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil) continue ;; *\'*) ac_arg=`$as_echo "$ac_arg" | sed "s/'/'\\\\\\\\''/g"` ;; esac case $ac_pass in 1) as_fn_append ac_configure_args0 " '$ac_arg'" ;; 2) as_fn_append ac_configure_args1 " '$ac_arg'" if test $ac_must_keep_next = true; then ac_must_keep_next=false # Got value, back to normal. else case $ac_arg in *=* | --config-cache | -C | -disable-* | --disable-* \ | -enable-* | --enable-* | -gas | --g* | -nfp | --nf* \ | -q | -quiet | --q* | -silent | --sil* | -v | -verb* \ | -with-* | --with-* | -without-* | --without-* | --x) case "$ac_configure_args0 " in "$ac_configure_args1"*" '$ac_arg' "* ) continue ;; esac ;; -* ) ac_must_keep_next=true ;; esac fi as_fn_append ac_configure_args " '$ac_arg'" ;; esac done done { ac_configure_args0=; unset ac_configure_args0;} { ac_configure_args1=; unset ac_configure_args1;} # When interrupted or exit'd, cleanup temporary files, and complete # config.log. We remove comments because anyway the quotes in there # would cause problems or look ugly. # WARNING: Use '\'' to represent an apostrophe within the trap. # WARNING: Do not start the trap code with a newline, due to a FreeBSD 4.0 bug. trap 'exit_status=$? # Save into config.log some information that might help in debugging. { echo $as_echo "## ---------------- ## ## Cache variables. ## ## ---------------- ##" echo # The following way of writing the cache mishandles newlines in values, ( for ac_var in `(set) 2>&1 | sed -n '\''s/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'\''`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5 $as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;; esac case $ac_var in #( _ | IFS | as_nl) ;; #( BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #( *) { eval $ac_var=; unset $ac_var;} ;; esac ;; esac done (set) 2>&1 | case $as_nl`(ac_space='\'' '\''; set) 2>&1` in #( *${as_nl}ac_space=\ *) sed -n \ "s/'\''/'\''\\\\'\'''\''/g; s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\''\\2'\''/p" ;; #( *) sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p" ;; esac | sort ) echo $as_echo "## ----------------- ## ## Output variables. ## ## ----------------- ##" echo for ac_var in $ac_subst_vars do eval ac_val=\$$ac_var case $ac_val in *\'\''*) ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;; esac $as_echo "$ac_var='\''$ac_val'\''" done | sort echo if test -n "$ac_subst_files"; then $as_echo "## ------------------- ## ## File substitutions. ## ## ------------------- ##" echo for ac_var in $ac_subst_files do eval ac_val=\$$ac_var case $ac_val in *\'\''*) ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;; esac $as_echo "$ac_var='\''$ac_val'\''" done | sort echo fi if test -s confdefs.h; then $as_echo "## ----------- ## ## confdefs.h. ## ## ----------- ##" echo cat confdefs.h echo fi test "$ac_signal" != 0 && $as_echo "$as_me: caught signal $ac_signal" $as_echo "$as_me: exit $exit_status" } >&5 rm -f core *.core core.conftest.* && rm -f -r conftest* confdefs* conf$$* $ac_clean_files && exit $exit_status ' 0 for ac_signal in 1 2 13 15; do trap 'ac_signal='$ac_signal'; as_fn_exit 1' $ac_signal done ac_signal=0 # confdefs.h avoids OS command line length limits that DEFS can exceed. rm -f -r conftest* confdefs.h $as_echo "/* confdefs.h */" > confdefs.h # Predefined preprocessor variables. cat >>confdefs.h <<_ACEOF #define PACKAGE_NAME "$PACKAGE_NAME" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_TARNAME "$PACKAGE_TARNAME" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_VERSION "$PACKAGE_VERSION" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_STRING "$PACKAGE_STRING" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_BUGREPORT "$PACKAGE_BUGREPORT" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_URL "$PACKAGE_URL" _ACEOF # Let the site file select an alternate cache file if it wants to. # Prefer an explicitly selected file to automatically selected ones. ac_site_file1=NONE ac_site_file2=NONE if test -n "$CONFIG_SITE"; then # We do not want a PATH search for config.site. case $CONFIG_SITE in #(( -*) ac_site_file1=./$CONFIG_SITE;; */*) ac_site_file1=$CONFIG_SITE;; *) ac_site_file1=./$CONFIG_SITE;; esac elif test "x$prefix" != xNONE; then ac_site_file1=$prefix/share/config.site ac_site_file2=$prefix/etc/config.site else ac_site_file1=$ac_default_prefix/share/config.site ac_site_file2=$ac_default_prefix/etc/config.site fi for ac_site_file in "$ac_site_file1" "$ac_site_file2" do test "x$ac_site_file" = xNONE && continue if test /dev/null != "$ac_site_file" && test -r "$ac_site_file"; then { $as_echo "$as_me:${as_lineno-$LINENO}: loading site script $ac_site_file" >&5 $as_echo "$as_me: loading site script $ac_site_file" >&6;} sed 's/^/| /' "$ac_site_file" >&5 . "$ac_site_file" \ || { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "failed to load site script $ac_site_file See \`config.log' for more details" "$LINENO" 5; } fi done if test -r "$cache_file"; then # Some versions of bash will fail to source /dev/null (special files # actually), so we avoid doing that. DJGPP emulates it as a regular file. if test /dev/null != "$cache_file" && test -f "$cache_file"; then { $as_echo "$as_me:${as_lineno-$LINENO}: loading cache $cache_file" >&5 $as_echo "$as_me: loading cache $cache_file" >&6;} case $cache_file in [\\/]* | ?:[\\/]* ) . "$cache_file";; *) . "./$cache_file";; esac fi else { $as_echo "$as_me:${as_lineno-$LINENO}: creating cache $cache_file" >&5 $as_echo "$as_me: creating cache $cache_file" >&6;} >$cache_file fi # Check that the precious variables saved in the cache have kept the same # value. ac_cache_corrupted=false for ac_var in $ac_precious_vars; do eval ac_old_set=\$ac_cv_env_${ac_var}_set eval ac_new_set=\$ac_env_${ac_var}_set eval ac_old_val=\$ac_cv_env_${ac_var}_value eval ac_new_val=\$ac_env_${ac_var}_value case $ac_old_set,$ac_new_set in set,) { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&5 $as_echo "$as_me: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&2;} ac_cache_corrupted=: ;; ,set) { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was not set in the previous run" >&5 $as_echo "$as_me: error: \`$ac_var' was not set in the previous run" >&2;} ac_cache_corrupted=: ;; ,);; *) if test "x$ac_old_val" != "x$ac_new_val"; then # differences in whitespace do not lead to failure. ac_old_val_w=`echo x $ac_old_val` ac_new_val_w=`echo x $ac_new_val` if test "$ac_old_val_w" != "$ac_new_val_w"; then { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' has changed since the previous run:" >&5 $as_echo "$as_me: error: \`$ac_var' has changed since the previous run:" >&2;} ac_cache_corrupted=: else { $as_echo "$as_me:${as_lineno-$LINENO}: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&5 $as_echo "$as_me: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&2;} eval $ac_var=\$ac_old_val fi { $as_echo "$as_me:${as_lineno-$LINENO}: former value: \`$ac_old_val'" >&5 $as_echo "$as_me: former value: \`$ac_old_val'" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: current value: \`$ac_new_val'" >&5 $as_echo "$as_me: current value: \`$ac_new_val'" >&2;} fi;; esac # Pass precious variables to config.status. if test "$ac_new_set" = set; then case $ac_new_val in *\'*) ac_arg=$ac_var=`$as_echo "$ac_new_val" | sed "s/'/'\\\\\\\\''/g"` ;; *) ac_arg=$ac_var=$ac_new_val ;; esac case " $ac_configure_args " in *" '$ac_arg' "*) ;; # Avoid dups. Use of quotes ensures accuracy. *) as_fn_append ac_configure_args " '$ac_arg'" ;; esac fi done if $ac_cache_corrupted; then { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: error: changes in the environment can compromise the build" >&5 $as_echo "$as_me: error: changes in the environment can compromise the build" >&2;} as_fn_error $? "run \`make distclean' and/or \`rm $cache_file' and start over" "$LINENO" 5 fi ## -------------------- ## ## Main body of script. ## ## -------------------- ## ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}gcc", so it can be a program name with args. set dummy ${ac_tool_prefix}gcc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="${ac_tool_prefix}gcc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_CC"; then ac_ct_CC=$CC # Extract the first word of "gcc", so it can be a program name with args. set dummy gcc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_CC="gcc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi else CC="$ac_cv_prog_CC" fi if test -z "$CC"; then if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}cc", so it can be a program name with args. set dummy ${ac_tool_prefix}cc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="${ac_tool_prefix}cc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi fi if test -z "$CC"; then # Extract the first word of "cc", so it can be a program name with args. set dummy cc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else ac_prog_rejected=no as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then if test "$as_dir/$ac_word$ac_exec_ext" = "/usr/ucb/cc"; then ac_prog_rejected=yes continue fi ac_cv_prog_CC="cc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS if test $ac_prog_rejected = yes; then # We found a bogon in the path, so make sure we never use it. set dummy $ac_cv_prog_CC shift if test $# != 0; then # We chose a different compiler from the bogus one. # However, it has the same basename, so the bogon will be chosen # first if we set CC to just the basename; use the full file name. shift ac_cv_prog_CC="$as_dir/$ac_word${1+' '}$@" fi fi fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$CC"; then if test -n "$ac_tool_prefix"; then for ac_prog in cl.exe do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$CC" && break done fi if test -z "$CC"; then ac_ct_CC=$CC for ac_prog in cl.exe do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_CC="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_CC" && break done if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi fi fi test -z "$CC" && { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "no acceptable C compiler found in \$PATH See \`config.log' for more details" "$LINENO" 5; } # Provide some information about the compiler. $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler version" >&5 set X $ac_compile ac_compiler=$2 for ac_option in --version -v -V -qversion; do { { ac_try="$ac_compiler $ac_option >&5" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compiler $ac_option >&5") 2>conftest.err ac_status=$? if test -s conftest.err; then sed '10a\ ... rest of stderr output deleted ... 10q' conftest.err >conftest.er1 cat conftest.er1 >&5 fi rm -f conftest.er1 conftest.err $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } done cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF ac_clean_files_save=$ac_clean_files ac_clean_files="$ac_clean_files a.out a.out.dSYM a.exe b.out" # Try to create an executable without -o first, disregard a.out. # It will help us diagnose broken compilers, and finding out an intuition # of exeext. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the C compiler works" >&5 $as_echo_n "checking whether the C compiler works... " >&6; } ac_link_default=`$as_echo "$ac_link" | sed 's/ -o *conftest[^ ]*//'` # The possible output files: ac_files="a.out conftest.exe conftest a.exe a_out.exe b.out conftest.*" ac_rmfiles= for ac_file in $ac_files do case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; * ) ac_rmfiles="$ac_rmfiles $ac_file";; esac done rm -f $ac_rmfiles if { { ac_try="$ac_link_default" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link_default") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : # Autoconf-2.13 could set the ac_cv_exeext variable to `no'. # So ignore a value of `no', otherwise this would lead to `EXEEXT = no' # in a Makefile. We should not override ac_cv_exeext if it was cached, # so that the user can short-circuit this test for compilers unknown to # Autoconf. for ac_file in $ac_files '' do test -f "$ac_file" || continue case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; [ab].out ) # We found the default executable, but exeext='' is most # certainly right. break;; *.* ) if test "${ac_cv_exeext+set}" = set && test "$ac_cv_exeext" != no; then :; else ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'` fi # We set ac_cv_exeext here because the later test for it is not # safe: cross compilers may not add the suffix if given an `-o' # argument, so we may need to know it at that point already. # Even if this section looks crufty: it has the advantage of # actually working. break;; * ) break;; esac done test "$ac_cv_exeext" = no && ac_cv_exeext= else ac_file='' fi if test -z "$ac_file"; then : { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "C compiler cannot create executables See \`config.log' for more details" "$LINENO" 5; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler default output file name" >&5 $as_echo_n "checking for C compiler default output file name... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_file" >&5 $as_echo "$ac_file" >&6; } ac_exeext=$ac_cv_exeext rm -f -r a.out a.out.dSYM a.exe conftest$ac_cv_exeext b.out ac_clean_files=$ac_clean_files_save { $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of executables" >&5 $as_echo_n "checking for suffix of executables... " >&6; } if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : # If both `conftest.exe' and `conftest' are `present' (well, observable) # catch `conftest.exe'. For instance with Cygwin, `ls conftest' will # work properly (i.e., refer to `conftest.exe'), while it won't with # `rm'. for ac_file in conftest.exe conftest conftest.*; do test -f "$ac_file" || continue case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; *.* ) ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'` break;; * ) break;; esac done else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot compute suffix of executables: cannot compile and link See \`config.log' for more details" "$LINENO" 5; } fi rm -f conftest conftest$ac_cv_exeext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_exeext" >&5 $as_echo "$ac_cv_exeext" >&6; } rm -f conftest.$ac_ext EXEEXT=$ac_cv_exeext ac_exeext=$EXEEXT cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { FILE *f = fopen ("conftest.out", "w"); return ferror (f) || fclose (f) != 0; ; return 0; } _ACEOF ac_clean_files="$ac_clean_files conftest.out" # Check that the compiler produces executables we can run. If not, either # the compiler is broken, or we cross compile. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are cross compiling" >&5 $as_echo_n "checking whether we are cross compiling... " >&6; } if test "$cross_compiling" != yes; then { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if { ac_try='./conftest$ac_cv_exeext' { { case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_try") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; }; then cross_compiling=no else if test "$cross_compiling" = maybe; then cross_compiling=yes else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot run C compiled programs. If you meant to cross compile, use \`--host'. See \`config.log' for more details" "$LINENO" 5; } fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $cross_compiling" >&5 $as_echo "$cross_compiling" >&6; } rm -f conftest.$ac_ext conftest$ac_cv_exeext conftest.out ac_clean_files=$ac_clean_files_save { $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of object files" >&5 $as_echo_n "checking for suffix of object files... " >&6; } if ${ac_cv_objext+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF rm -f conftest.o conftest.obj if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : for ac_file in conftest.o conftest.obj conftest.*; do test -f "$ac_file" || continue; case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM ) ;; *) ac_cv_objext=`expr "$ac_file" : '.*\.\(.*\)'` break;; esac done else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot compute suffix of object files: cannot compile See \`config.log' for more details" "$LINENO" 5; } fi rm -f conftest.$ac_cv_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_objext" >&5 $as_echo "$ac_cv_objext" >&6; } OBJEXT=$ac_cv_objext ac_objext=$OBJEXT { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU C compiler" >&5 $as_echo_n "checking whether we are using the GNU C compiler... " >&6; } if ${ac_cv_c_compiler_gnu+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { #ifndef __GNUC__ choke me #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_compiler_gnu=yes else ac_compiler_gnu=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cv_c_compiler_gnu=$ac_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_compiler_gnu" >&5 $as_echo "$ac_cv_c_compiler_gnu" >&6; } if test $ac_compiler_gnu = yes; then GCC=yes else GCC= fi ac_test_CFLAGS=${CFLAGS+set} ac_save_CFLAGS=$CFLAGS { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CC accepts -g" >&5 $as_echo_n "checking whether $CC accepts -g... " >&6; } if ${ac_cv_prog_cc_g+:} false; then : $as_echo_n "(cached) " >&6 else ac_save_c_werror_flag=$ac_c_werror_flag ac_c_werror_flag=yes ac_cv_prog_cc_g=no CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes else CFLAGS="" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : else ac_c_werror_flag=$ac_save_c_werror_flag CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_c_werror_flag=$ac_save_c_werror_flag fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_g" >&5 $as_echo "$ac_cv_prog_cc_g" >&6; } if test "$ac_test_CFLAGS" = set; then CFLAGS=$ac_save_CFLAGS elif test $ac_cv_prog_cc_g = yes; then if test "$GCC" = yes; then CFLAGS="-g -O2" else CFLAGS="-g" fi else if test "$GCC" = yes; then CFLAGS="-O2" else CFLAGS= fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $CC option to accept ISO C89" >&5 $as_echo_n "checking for $CC option to accept ISO C89... " >&6; } if ${ac_cv_prog_cc_c89+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_prog_cc_c89=no ac_save_CC=$CC cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include struct stat; /* Most of the following tests are stolen from RCS 5.7's src/conf.sh. */ struct buf { int x; }; FILE * (*rcsopen) (struct buf *, struct stat *, int); static char *e (p, i) char **p; int i; { return p[i]; } static char *f (char * (*g) (char **, int), char **p, ...) { char *s; va_list v; va_start (v,p); s = g (p, va_arg (v,int)); va_end (v); return s; } /* OSF 4.0 Compaq cc is some sort of almost-ANSI by default. It has function prototypes and stuff, but not '\xHH' hex character constants. These don't provoke an error unfortunately, instead are silently treated as 'x'. The following induces an error, until -std is added to get proper ANSI mode. Curiously '\x00'!='x' always comes out true, for an array size at least. It's necessary to write '\x00'==0 to get something that's true only with -std. */ int osf4_cc_array ['\x00' == 0 ? 1 : -1]; /* IBM C 6 for AIX is almost-ANSI by default, but it replaces macro parameters inside strings and character constants. */ #define FOO(x) 'x' int xlc6_cc_array[FOO(a) == 'x' ? 1 : -1]; int test (int i, double x); struct s1 {int (*f) (int a);}; struct s2 {int (*f) (double a);}; int pairnames (int, char **, FILE *(*)(struct buf *, struct stat *, int), int, int); int argc; char **argv; int main () { return f (e, argv, 0) != argv[0] || f (e, argv, 1) != argv[1]; ; return 0; } _ACEOF for ac_arg in '' -qlanglvl=extc89 -qlanglvl=ansi -std \ -Ae "-Aa -D_HPUX_SOURCE" "-Xc -D__EXTENSIONS__" do CC="$ac_save_CC $ac_arg" if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_c89=$ac_arg fi rm -f core conftest.err conftest.$ac_objext test "x$ac_cv_prog_cc_c89" != "xno" && break done rm -f conftest.$ac_ext CC=$ac_save_CC fi # AC_CACHE_VAL case "x$ac_cv_prog_cc_c89" in x) { $as_echo "$as_me:${as_lineno-$LINENO}: result: none needed" >&5 $as_echo "none needed" >&6; } ;; xno) { $as_echo "$as_me:${as_lineno-$LINENO}: result: unsupported" >&5 $as_echo "unsupported" >&6; } ;; *) CC="$CC $ac_cv_prog_cc_c89" { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_c89" >&5 $as_echo "$ac_cv_prog_cc_c89" >&6; } ;; esac if test "x$ac_cv_prog_cc_c89" != xno; then : fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for gzeof in -lz" >&5 $as_echo_n "checking for gzeof in -lz... " >&6; } if ${ac_cv_lib_z_gzeof+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-lz $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char gzeof (); int main () { return gzeof (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_z_gzeof=yes else ac_cv_lib_z_gzeof=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_z_gzeof" >&5 $as_echo "$ac_cv_lib_z_gzeof" >&6; } if test "x$ac_cv_lib_z_gzeof" = xyes; then : cat >>confdefs.h <<_ACEOF #define HAVE_LIBZ 1 _ACEOF LIBS="-lz $LIBS" else as_fn_error $? "zlib not found" "$LINENO" 5 fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to run the C preprocessor" >&5 $as_echo_n "checking how to run the C preprocessor... " >&6; } # On Suns, sometimes $CPP names a directory. if test -n "$CPP" && test -d "$CPP"; then CPP= fi if test -z "$CPP"; then if ${ac_cv_prog_CPP+:} false; then : $as_echo_n "(cached) " >&6 else # Double quotes because CPP needs to be expanded for CPP in "$CC -E" "$CC -E -traditional-cpp" "/lib/cpp" do ac_preproc_ok=false for ac_c_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.i conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.i conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.i conftest.err conftest.$ac_ext if $ac_preproc_ok; then : break fi done ac_cv_prog_CPP=$CPP fi CPP=$ac_cv_prog_CPP else ac_cv_prog_CPP=$CPP fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CPP" >&5 $as_echo "$CPP" >&6; } ac_preproc_ok=false for ac_c_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.i conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.i conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.i conftest.err conftest.$ac_ext if $ac_preproc_ok; then : else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "C preprocessor \"$CPP\" fails sanity check See \`config.log' for more details" "$LINENO" 5; } fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for grep that handles long lines and -e" >&5 $as_echo_n "checking for grep that handles long lines and -e... " >&6; } if ${ac_cv_path_GREP+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$GREP"; then ac_path_GREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in grep ggrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_GREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_GREP" || continue # Check for GNU ac_path_GREP and select it if it is found. # Check for GNU $ac_path_GREP case `"$ac_path_GREP" --version 2>&1` in *GNU*) ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'GREP' >> "conftest.nl" "$ac_path_GREP" -e 'GREP$' -e '-(cannot match)-' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_GREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_GREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_GREP"; then as_fn_error $? "no acceptable grep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_GREP=$GREP fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_GREP" >&5 $as_echo "$ac_cv_path_GREP" >&6; } GREP="$ac_cv_path_GREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for egrep" >&5 $as_echo_n "checking for egrep... " >&6; } if ${ac_cv_path_EGREP+:} false; then : $as_echo_n "(cached) " >&6 else if echo a | $GREP -E '(a|b)' >/dev/null 2>&1 then ac_cv_path_EGREP="$GREP -E" else if test -z "$EGREP"; then ac_path_EGREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in egrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_EGREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_EGREP" || continue # Check for GNU ac_path_EGREP and select it if it is found. # Check for GNU $ac_path_EGREP case `"$ac_path_EGREP" --version 2>&1` in *GNU*) ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'EGREP' >> "conftest.nl" "$ac_path_EGREP" 'EGREP$' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_EGREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_EGREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_EGREP"; then as_fn_error $? "no acceptable egrep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_EGREP=$EGREP fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_EGREP" >&5 $as_echo "$ac_cv_path_EGREP" >&6; } EGREP="$ac_cv_path_EGREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ANSI C header files" >&5 $as_echo_n "checking for ANSI C header files... " >&6; } if ${ac_cv_header_stdc+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #include #include int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_header_stdc=yes else ac_cv_header_stdc=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext if test $ac_cv_header_stdc = yes; then # SunOS 4.x string.h does not declare mem*, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "memchr" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # ISC 2.0.2 stdlib.h does not declare free, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "free" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # /bin/cc in Irix-4.0.5 gets non-ANSI ctype macros unless using -ansi. if test "$cross_compiling" = yes; then : : else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #if ((' ' & 0x0FF) == 0x020) # define ISLOWER(c) ('a' <= (c) && (c) <= 'z') # define TOUPPER(c) (ISLOWER(c) ? 'A' + ((c) - 'a') : (c)) #else # define ISLOWER(c) \ (('a' <= (c) && (c) <= 'i') \ || ('j' <= (c) && (c) <= 'r') \ || ('s' <= (c) && (c) <= 'z')) # define TOUPPER(c) (ISLOWER(c) ? ((c) | 0x40) : (c)) #endif #define XOR(e, f) (((e) && !(f)) || (!(e) && (f))) int main () { int i; for (i = 0; i < 256; i++) if (XOR (islower (i), ISLOWER (i)) || toupper (i) != TOUPPER (i)) return 2; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : else ac_cv_header_stdc=no fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_header_stdc" >&5 $as_echo "$ac_cv_header_stdc" >&6; } if test $ac_cv_header_stdc = yes; then $as_echo "#define STDC_HEADERS 1" >>confdefs.h fi # On IRIX 5.3, sys/types and inttypes.h are conflicting. for ac_header in sys/types.h sys/stat.h stdlib.h string.h memory.h strings.h \ inttypes.h stdint.h unistd.h do : as_ac_Header=`$as_echo "ac_cv_header_$ac_header" | $as_tr_sh` ac_fn_c_check_header_compile "$LINENO" "$ac_header" "$as_ac_Header" "$ac_includes_default " if eval test \"x\$"$as_ac_Header"\" = x"yes"; then : cat >>confdefs.h <<_ACEOF #define `$as_echo "HAVE_$ac_header" | $as_tr_cpp` 1 _ACEOF fi done # The cast to long int works around a bug in the HP C Compiler # version HP92453-01 B.11.11.23709.GP, which incorrectly rejects # declarations like `int a3[[(sizeof (unsigned char)) >= 0]];'. # This bug is HP SR number 8606223364. { $as_echo "$as_me:${as_lineno-$LINENO}: checking size of unsigned long" >&5 $as_echo_n "checking size of unsigned long... " >&6; } if ${ac_cv_sizeof_unsigned_long+:} false; then : $as_echo_n "(cached) " >&6 else if ac_fn_c_compute_int "$LINENO" "(long int) (sizeof (unsigned long))" "ac_cv_sizeof_unsigned_long" "$ac_includes_default"; then : else if test "$ac_cv_type_unsigned_long" = yes; then { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "cannot compute sizeof (unsigned long) See \`config.log' for more details" "$LINENO" 5; } else ac_cv_sizeof_unsigned_long=0 fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sizeof_unsigned_long" >&5 $as_echo "$ac_cv_sizeof_unsigned_long" >&6; } cat >>confdefs.h <<_ACEOF #define SIZEOF_UNSIGNED_LONG $ac_cv_sizeof_unsigned_long _ACEOF ac_config_files="$ac_config_files src/Makevars" cat >confcache <<\_ACEOF # This file is a shell script that caches the results of configure # tests run on this system so they can be shared between configure # scripts and configure runs, see configure's option --config-cache. # It is not useful on other systems. If it contains results you don't # want to keep, you may remove or edit it. # # config.status only pays attention to the cache file if you give it # the --recheck option to rerun configure. # # `ac_cv_env_foo' variables (set or unset) will be overridden when # loading this file, other *unset* `ac_cv_foo' will be assigned the # following values. _ACEOF # The following way of writing the cache mishandles newlines in values, # but we know of no workaround that is simple, portable, and efficient. # So, we kill variables containing newlines. # Ultrix sh set writes to stderr and can't be redirected directly, # and sets the high bit in the cache file unless we assign to the vars. ( for ac_var in `(set) 2>&1 | sed -n 's/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5 $as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;; esac case $ac_var in #( _ | IFS | as_nl) ;; #( BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #( *) { eval $ac_var=; unset $ac_var;} ;; esac ;; esac done (set) 2>&1 | case $as_nl`(ac_space=' '; set) 2>&1` in #( *${as_nl}ac_space=\ *) # `set' does not quote correctly, so add quotes: double-quote # substitution turns \\\\ into \\, and sed turns \\ into \. sed -n \ "s/'/'\\\\''/g; s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\\2'/p" ;; #( *) # `set' quotes correctly as required by POSIX, so do not add quotes. sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p" ;; esac | sort ) | sed ' /^ac_cv_env_/b end t clear :clear s/^\([^=]*\)=\(.*[{}].*\)$/test "${\1+set}" = set || &/ t end s/^\([^=]*\)=\(.*\)$/\1=${\1=\2}/ :end' >>confcache if diff "$cache_file" confcache >/dev/null 2>&1; then :; else if test -w "$cache_file"; then if test "x$cache_file" != "x/dev/null"; then { $as_echo "$as_me:${as_lineno-$LINENO}: updating cache $cache_file" >&5 $as_echo "$as_me: updating cache $cache_file" >&6;} if test ! -f "$cache_file" || test -h "$cache_file"; then cat confcache >"$cache_file" else case $cache_file in #( */* | ?:*) mv -f confcache "$cache_file"$$ && mv -f "$cache_file"$$ "$cache_file" ;; #( *) mv -f confcache "$cache_file" ;; esac fi fi else { $as_echo "$as_me:${as_lineno-$LINENO}: not updating unwritable cache $cache_file" >&5 $as_echo "$as_me: not updating unwritable cache $cache_file" >&6;} fi fi rm -f confcache test "x$prefix" = xNONE && prefix=$ac_default_prefix # Let make expand exec_prefix. test "x$exec_prefix" = xNONE && exec_prefix='${prefix}' # Transform confdefs.h into DEFS. # Protect against shell expansion while executing Makefile rules. # Protect against Makefile macro expansion. # # If the first sed substitution is executed (which looks for macros that # take arguments), then branch to the quote section. Otherwise, # look for a macro that doesn't take arguments. ac_script=' :mline /\\$/{ N s,\\\n,, b mline } t clear :clear s/^[ ]*#[ ]*define[ ][ ]*\([^ (][^ (]*([^)]*)\)[ ]*\(.*\)/-D\1=\2/g t quote s/^[ ]*#[ ]*define[ ][ ]*\([^ ][^ ]*\)[ ]*\(.*\)/-D\1=\2/g t quote b any :quote s/[ `~#$^&*(){}\\|;'\''"<>?]/\\&/g s/\[/\\&/g s/\]/\\&/g s/\$/$$/g H :any ${ g s/^\n// s/\n/ /g p } ' DEFS=`sed -n "$ac_script" confdefs.h` ac_libobjs= ac_ltlibobjs= U= for ac_i in : $LIBOBJS; do test "x$ac_i" = x: && continue # 1. Remove the extension, and $U if already installed. ac_script='s/\$U\././;s/\.o$//;s/\.obj$//' ac_i=`$as_echo "$ac_i" | sed "$ac_script"` # 2. Prepend LIBOBJDIR. When used with automake>=1.10 LIBOBJDIR # will be set to the directory where LIBOBJS objects are built. as_fn_append ac_libobjs " \${LIBOBJDIR}$ac_i\$U.$ac_objext" as_fn_append ac_ltlibobjs " \${LIBOBJDIR}$ac_i"'$U.lo' done LIBOBJS=$ac_libobjs LTLIBOBJS=$ac_ltlibobjs : "${CONFIG_STATUS=./config.status}" ac_write_fail=0 ac_clean_files_save=$ac_clean_files ac_clean_files="$ac_clean_files $CONFIG_STATUS" { $as_echo "$as_me:${as_lineno-$LINENO}: creating $CONFIG_STATUS" >&5 $as_echo "$as_me: creating $CONFIG_STATUS" >&6;} as_write_fail=0 cat >$CONFIG_STATUS <<_ASEOF || as_write_fail=1 #! $SHELL # Generated by $as_me. # Run this file to recreate the current configuration. # Compiler output produced by configure, useful for debugging # configure, is in config.log if it exists. debug=false ac_cs_recheck=false ac_cs_silent=false SHELL=\${CONFIG_SHELL-$SHELL} export SHELL _ASEOF cat >>$CONFIG_STATUS <<\_ASEOF || as_write_fail=1 ## -------------------- ## ## M4sh Initialization. ## ## -------------------- ## # Be more Bourne compatible DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi as_nl=' ' export as_nl # Printing a long string crashes Solaris 7 /usr/bin/printf. as_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo$as_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='print -r --' as_echo_n='print -rn --' elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='printf %s\n' as_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then as_echo_body='eval /usr/ucb/echo -n "$1$as_nl"' as_echo_n='/usr/ucb/echo -n' else as_echo_body='eval expr "X$1" : "X\\(.*\\)"' as_echo_n_body='eval arg=$1; case $arg in #( *"$as_nl"*) expr "X$arg" : "X\\(.*\\)$as_nl"; arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl" ' export as_echo_n_body as_echo_n='sh -c $as_echo_n_body as_echo' fi export as_echo_body as_echo='sh -c $as_echo_body as_echo' fi # The user is always right. if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi # IFS # We need space, tab and new line, in precisely that order. Quoting is # there to prevent editors from complaining about space-tab. # (If _AS_PATH_WALK were called with IFS unset, it would disable word # splitting by setting IFS to empty value.) IFS=" "" $as_nl" # Find who we are. Look in the path if we contain no directory separator. as_myself= case $0 in #(( *[\\/]* ) as_myself=$0 ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break done IFS=$as_save_IFS ;; esac # We did not find ourselves, most probably we were run as `sh COMMAND' # in which case we are not to be found in the path. if test "x$as_myself" = x; then as_myself=$0 fi if test ! -f "$as_myself"; then $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2 exit 1 fi # Unset variables that we do not need and which cause bugs (e.g. in # pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1" # suppresses any "Segmentation fault" message there. '((' could # trigger a bug in pdksh 5.2.14. for as_var in BASH_ENV ENV MAIL MAILPATH do eval test x\${$as_var+set} = xset \ && ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || : done PS1='$ ' PS2='> ' PS4='+ ' # NLS nuisances. LC_ALL=C export LC_ALL LANGUAGE=C export LANGUAGE # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # as_fn_error STATUS ERROR [LINENO LOG_FD] # ---------------------------------------- # Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are # provided, also output the error to LOG_FD, referencing LINENO. Then exit the # script with STATUS, using 1 if that was 0. as_fn_error () { as_status=$1; test $as_status -eq 0 && as_status=1 if test "$4"; then as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack $as_echo "$as_me:${as_lineno-$LINENO}: error: $2" >&$4 fi $as_echo "$as_me: error: $2" >&2 as_fn_exit $as_status } # as_fn_error # as_fn_set_status STATUS # ----------------------- # Set $? to STATUS, without forking. as_fn_set_status () { return $1 } # as_fn_set_status # as_fn_exit STATUS # ----------------- # Exit the shell with STATUS, even in a "trap 0" or "set -e" context. as_fn_exit () { set +e as_fn_set_status $1 exit $1 } # as_fn_exit # as_fn_unset VAR # --------------- # Portably unset VAR. as_fn_unset () { { eval $1=; unset $1;} } as_unset=as_fn_unset # as_fn_append VAR VALUE # ---------------------- # Append the text in VALUE to the end of the definition contained in VAR. Take # advantage of any shell optimizations that allow amortized linear growth over # repeated appends, instead of the typical quadratic growth present in naive # implementations. if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then : eval 'as_fn_append () { eval $1+=\$2 }' else as_fn_append () { eval $1=\$$1\$2 } fi # as_fn_append # as_fn_arith ARG... # ------------------ # Perform arithmetic evaluation on the ARGs, and store the result in the # global $as_val. Take advantage of shells that can avoid forks. The arguments # must be portable across $(()) and expr. if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null; then : eval 'as_fn_arith () { as_val=$(( $* )) }' else as_fn_arith () { as_val=`expr "$@" || test $? -eq 1` } fi # as_fn_arith if expr a : '\(a\)' >/dev/null 2>&1 && test "X`expr 00001 : '.*\(...\)'`" = X001; then as_expr=expr else as_expr=false fi if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then as_basename=basename else as_basename=false fi if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then as_dirname=dirname else as_dirname=false fi as_me=`$as_basename -- "$0" || $as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \ X"$0" : 'X\(//\)$' \| \ X"$0" : 'X\(/\)' \| . 2>/dev/null || $as_echo X/"$0" | sed '/^.*\/\([^/][^/]*\)\/*$/{ s//\1/ q } /^X\/\(\/\/\)$/{ s//\1/ q } /^X\/\(\/\).*/{ s//\1/ q } s/.*/./; q'` # Avoid depending upon Character Ranges. as_cr_letters='abcdefghijklmnopqrstuvwxyz' as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ' as_cr_Letters=$as_cr_letters$as_cr_LETTERS as_cr_digits='0123456789' as_cr_alnum=$as_cr_Letters$as_cr_digits ECHO_C= ECHO_N= ECHO_T= case `echo -n x` in #((((( -n*) case `echo 'xy\c'` in *c*) ECHO_T=' ';; # ECHO_T is single tab character. xy) ECHO_C='\c';; *) echo `echo ksh88 bug on AIX 6.1` > /dev/null ECHO_T=' ';; esac;; *) ECHO_N='-n';; esac rm -f conf$$ conf$$.exe conf$$.file if test -d conf$$.dir; then rm -f conf$$.dir/conf$$.file else rm -f conf$$.dir mkdir conf$$.dir 2>/dev/null fi if (echo >conf$$.file) 2>/dev/null; then if ln -s conf$$.file conf$$ 2>/dev/null; then as_ln_s='ln -s' # ... but there are two gotchas: # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail. # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable. # In both cases, we have to default to `cp -pR'. ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe || as_ln_s='cp -pR' elif ln conf$$.file conf$$ 2>/dev/null; then as_ln_s=ln else as_ln_s='cp -pR' fi else as_ln_s='cp -pR' fi rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file rmdir conf$$.dir 2>/dev/null # as_fn_mkdir_p # ------------- # Create "$as_dir" as a directory, including parents if necessary. as_fn_mkdir_p () { case $as_dir in #( -*) as_dir=./$as_dir;; esac test -d "$as_dir" || eval $as_mkdir_p || { as_dirs= while :; do case $as_dir in #( *\'*) as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'( *) as_qdir=$as_dir;; esac as_dirs="'$as_qdir' $as_dirs" as_dir=`$as_dirname -- "$as_dir" || $as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_dir" : 'X\(//\)[^/]' \| \ X"$as_dir" : 'X\(//\)$' \| \ X"$as_dir" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_dir" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test -d "$as_dir" && break done test -z "$as_dirs" || eval "mkdir $as_dirs" } || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir" } # as_fn_mkdir_p if mkdir -p . 2>/dev/null; then as_mkdir_p='mkdir -p "$as_dir"' else test -d ./-p && rmdir ./-p as_mkdir_p=false fi # as_fn_executable_p FILE # ----------------------- # Test if FILE is an executable regular file. as_fn_executable_p () { test -f "$1" && test -x "$1" } # as_fn_executable_p as_test_x='test -x' as_executable_p=as_fn_executable_p # Sed expression to map a string onto a valid CPP name. as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'" # Sed expression to map a string onto a valid variable name. as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'" exec 6>&1 ## ----------------------------------- ## ## Main body of $CONFIG_STATUS script. ## ## ----------------------------------- ## _ASEOF test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Save the log message, to keep $0 and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by $as_me, which was generated by GNU Autoconf 2.69. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ on `(hostname || uname -n) 2>/dev/null | sed 1q` " _ACEOF case $ac_config_files in *" "*) set x $ac_config_files; shift; ac_config_files=$*;; esac cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 # Files that config.status was made for. config_files="$ac_config_files" _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 ac_cs_usage="\ \`$as_me' instantiates files and other configuration actions from templates according to the current configuration. Unless the files and actions are specified as TAGs, all are instantiated by default. Usage: $0 [OPTION]... [TAG]... -h, --help print this help, then exit -V, --version print version number and configuration settings, then exit --config print configuration, then exit -q, --quiet, --silent do not print progress messages -d, --debug don't remove temporary files --recheck update $as_me by reconfiguring in the same conditions --file=FILE[:TEMPLATE] instantiate the configuration file FILE Configuration files: $config_files Report bugs to the package provider." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`" ac_cs_version="\\ config.status configured by $0, generated by GNU Autoconf 2.69, with options \\"\$ac_cs_config\\" Copyright (C) 2012 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." ac_pwd='$ac_pwd' srcdir='$srcdir' test -n "\$AWK" || AWK=awk _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # The default lists apply if the user does not specify any file. ac_need_defaults=: while test $# != 0 do case $1 in --*=?*) ac_option=`expr "X$1" : 'X\([^=]*\)='` ac_optarg=`expr "X$1" : 'X[^=]*=\(.*\)'` ac_shift=: ;; --*=) ac_option=`expr "X$1" : 'X\([^=]*\)='` ac_optarg= ac_shift=: ;; *) ac_option=$1 ac_optarg=$2 ac_shift=shift ;; esac case $ac_option in # Handling of the options. -recheck | --recheck | --rechec | --reche | --rech | --rec | --re | --r) ac_cs_recheck=: ;; --version | --versio | --versi | --vers | --ver | --ve | --v | -V ) $as_echo "$ac_cs_version"; exit ;; --config | --confi | --conf | --con | --co | --c ) $as_echo "$ac_cs_config"; exit ;; --debug | --debu | --deb | --de | --d | -d ) debug=: ;; --file | --fil | --fi | --f ) $ac_shift case $ac_optarg in *\'*) ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;; '') as_fn_error $? "missing file argument" ;; esac as_fn_append CONFIG_FILES " '$ac_optarg'" ac_need_defaults=false;; --he | --h | --help | --hel | -h ) $as_echo "$ac_cs_usage"; exit ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil | --si | --s) ac_cs_silent=: ;; # This is an error. -*) as_fn_error $? "unrecognized option: \`$1' Try \`$0 --help' for more information." ;; *) as_fn_append ac_config_targets " $1" ac_need_defaults=false ;; esac shift done ac_configure_extra_args= if $ac_cs_silent; then exec 6>/dev/null ac_configure_extra_args="$ac_configure_extra_args --silent" fi _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 if \$ac_cs_recheck; then set X $SHELL '$0' $ac_configure_args \$ac_configure_extra_args --no-create --no-recursion shift \$as_echo "running CONFIG_SHELL=$SHELL \$*" >&6 CONFIG_SHELL='$SHELL' export CONFIG_SHELL exec "\$@" fi _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 exec 5>>config.log { echo sed 'h;s/./-/g;s/^.../## /;s/...$/ ##/;p;x;p;x' <<_ASBOX ## Running $as_me. ## _ASBOX $as_echo "$ac_log" } >&5 _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Handling of arguments. for ac_config_target in $ac_config_targets do case $ac_config_target in "src/Makevars") CONFIG_FILES="$CONFIG_FILES src/Makevars" ;; *) as_fn_error $? "invalid argument: \`$ac_config_target'" "$LINENO" 5;; esac done # If the user did not use the arguments to specify the items to instantiate, # then the envvar interface is used. Set only those that are not. # We use the long form for the default assignment because of an extremely # bizarre bug on SunOS 4.1.3. if $ac_need_defaults; then test "${CONFIG_FILES+set}" = set || CONFIG_FILES=$config_files fi # Have a temporary directory for convenience. Make it in the build tree # simply because there is no reason against having it here, and in addition, # creating and moving files from /tmp can sometimes cause problems. # Hook for its removal unless debugging. # Note that there is a small window in which the directory will not be cleaned: # after its creation but before its name has been assigned to `$tmp'. $debug || { tmp= ac_tmp= trap 'exit_status=$? : "${ac_tmp:=$tmp}" { test ! -d "$ac_tmp" || rm -fr "$ac_tmp"; } && exit $exit_status ' 0 trap 'as_fn_exit 1' 1 2 13 15 } # Create a (secure) tmp directory for tmp files. { tmp=`(umask 077 && mktemp -d "./confXXXXXX") 2>/dev/null` && test -d "$tmp" } || { tmp=./conf$$-$RANDOM (umask 077 && mkdir "$tmp") } || as_fn_error $? "cannot create a temporary directory in ." "$LINENO" 5 ac_tmp=$tmp # Set up the scripts for CONFIG_FILES section. # No need to generate them if there are no CONFIG_FILES. # This happens for instance with `./config.status config.h'. if test -n "$CONFIG_FILES"; then ac_cr=`echo X | tr X '\015'` # On cygwin, bash can eat \r inside `` if the user requested igncr. # But we know of no other shell where ac_cr would be empty at this # point, so we can use a bashism as a fallback. if test "x$ac_cr" = x; then eval ac_cr=\$\'\\r\' fi ac_cs_awk_cr=`$AWK 'BEGIN { print "a\rb" }' /dev/null` if test "$ac_cs_awk_cr" = "a${ac_cr}b"; then ac_cs_awk_cr='\\r' else ac_cs_awk_cr=$ac_cr fi echo 'BEGIN {' >"$ac_tmp/subs1.awk" && _ACEOF { echo "cat >conf$$subs.awk <<_ACEOF" && echo "$ac_subst_vars" | sed 's/.*/&!$&$ac_delim/' && echo "_ACEOF" } >conf$$subs.sh || as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 ac_delim_num=`echo "$ac_subst_vars" | grep -c '^'` ac_delim='%!_!# ' for ac_last_try in false false false false false :; do . ./conf$$subs.sh || as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 ac_delim_n=`sed -n "s/.*$ac_delim\$/X/p" conf$$subs.awk | grep -c X` if test $ac_delim_n = $ac_delim_num; then break elif $ac_last_try; then as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 else ac_delim="$ac_delim!$ac_delim _$ac_delim!! " fi done rm -f conf$$subs.sh cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 cat >>"\$ac_tmp/subs1.awk" <<\\_ACAWK && _ACEOF sed -n ' h s/^/S["/; s/!.*/"]=/ p g s/^[^!]*!// :repl t repl s/'"$ac_delim"'$// t delim :nl h s/\(.\{148\}\)..*/\1/ t more1 s/["\\]/\\&/g; s/^/"/; s/$/\\n"\\/ p n b repl :more1 s/["\\]/\\&/g; s/^/"/; s/$/"\\/ p g s/.\{148\}// t nl :delim h s/\(.\{148\}\)..*/\1/ t more2 s/["\\]/\\&/g; s/^/"/; s/$/"/ p b :more2 s/["\\]/\\&/g; s/^/"/; s/$/"\\/ p g s/.\{148\}// t delim ' >$CONFIG_STATUS || ac_write_fail=1 rm -f conf$$subs.awk cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 _ACAWK cat >>"\$ac_tmp/subs1.awk" <<_ACAWK && for (key in S) S_is_set[key] = 1 FS = "" } { line = $ 0 nfields = split(line, field, "@") substed = 0 len = length(field[1]) for (i = 2; i < nfields; i++) { key = field[i] keylen = length(key) if (S_is_set[key]) { value = S[key] line = substr(line, 1, len) "" value "" substr(line, len + keylen + 3) len += length(value) + length(field[++i]) substed = 1 } else len += 1 + keylen } print line } _ACAWK _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 if sed "s/$ac_cr//" < /dev/null > /dev/null 2>&1; then sed "s/$ac_cr\$//; s/$ac_cr/$ac_cs_awk_cr/g" else cat fi < "$ac_tmp/subs1.awk" > "$ac_tmp/subs.awk" \ || as_fn_error $? "could not setup config files machinery" "$LINENO" 5 _ACEOF # VPATH may cause trouble with some makes, so we remove sole $(srcdir), # ${srcdir} and @srcdir@ entries from VPATH if srcdir is ".", strip leading and # trailing colons and then remove the whole line if VPATH becomes empty # (actually we leave an empty line to preserve line numbers). if test "x$srcdir" = x.; then ac_vpsub='/^[ ]*VPATH[ ]*=[ ]*/{ h s/// s/^/:/ s/[ ]*$/:/ s/:\$(srcdir):/:/g s/:\${srcdir}:/:/g s/:@srcdir@:/:/g s/^:*// s/:*$// x s/\(=[ ]*\).*/\1/ G s/\n// s/^[^=]*=[ ]*$// }' fi cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 fi # test -n "$CONFIG_FILES" eval set X " :F $CONFIG_FILES " shift for ac_tag do case $ac_tag in :[FHLC]) ac_mode=$ac_tag; continue;; esac case $ac_mode$ac_tag in :[FHL]*:*);; :L* | :C*:*) as_fn_error $? "invalid tag \`$ac_tag'" "$LINENO" 5;; :[FH]-) ac_tag=-:-;; :[FH]*) ac_tag=$ac_tag:$ac_tag.in;; esac ac_save_IFS=$IFS IFS=: set x $ac_tag IFS=$ac_save_IFS shift ac_file=$1 shift case $ac_mode in :L) ac_source=$1;; :[FH]) ac_file_inputs= for ac_f do case $ac_f in -) ac_f="$ac_tmp/stdin";; *) # Look for the file first in the build tree, then in the source tree # (if the path is not absolute). The absolute path cannot be DOS-style, # because $ac_f cannot contain `:'. test -f "$ac_f" || case $ac_f in [\\/$]*) false;; *) test -f "$srcdir/$ac_f" && ac_f="$srcdir/$ac_f";; esac || as_fn_error 1 "cannot find input file: \`$ac_f'" "$LINENO" 5;; esac case $ac_f in *\'*) ac_f=`$as_echo "$ac_f" | sed "s/'/'\\\\\\\\''/g"`;; esac as_fn_append ac_file_inputs " '$ac_f'" done # Let's still pretend it is `configure' which instantiates (i.e., don't # use $as_me), people would be surprised to read: # /* config.h. Generated by config.status. */ configure_input='Generated from '` $as_echo "$*" | sed 's|^[^:]*/||;s|:[^:]*/|, |g' `' by configure.' if test x"$ac_file" != x-; then configure_input="$ac_file. $configure_input" { $as_echo "$as_me:${as_lineno-$LINENO}: creating $ac_file" >&5 $as_echo "$as_me: creating $ac_file" >&6;} fi # Neutralize special characters interpreted by sed in replacement strings. case $configure_input in #( *\&* | *\|* | *\\* ) ac_sed_conf_input=`$as_echo "$configure_input" | sed 's/[\\\\&|]/\\\\&/g'`;; #( *) ac_sed_conf_input=$configure_input;; esac case $ac_tag in *:-:* | *:-) cat >"$ac_tmp/stdin" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 ;; esac ;; esac ac_dir=`$as_dirname -- "$ac_file" || $as_expr X"$ac_file" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$ac_file" : 'X\(//\)[^/]' \| \ X"$ac_file" : 'X\(//\)$' \| \ X"$ac_file" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$ac_file" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` as_dir="$ac_dir"; as_fn_mkdir_p ac_builddir=. case "$ac_dir" in .) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'` # A ".." for each directory in $ac_dir_suffix. ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'` case $ac_top_builddir_sub in "") ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_top_build_prefix=$ac_top_builddir_sub/ ;; esac ;; esac ac_abs_top_builddir=$ac_pwd ac_abs_builddir=$ac_pwd$ac_dir_suffix # for backward compatibility: ac_top_builddir=$ac_top_build_prefix case $srcdir in .) # We are building in place. ac_srcdir=. ac_top_srcdir=$ac_top_builddir_sub ac_abs_top_srcdir=$ac_pwd ;; [\\/]* | ?:[\\/]* ) # Absolute name. ac_srcdir=$srcdir$ac_dir_suffix; ac_top_srcdir=$srcdir ac_abs_top_srcdir=$srcdir ;; *) # Relative name. ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix ac_top_srcdir=$ac_top_build_prefix$srcdir ac_abs_top_srcdir=$ac_pwd/$srcdir ;; esac ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix case $ac_mode in :F) # # CONFIG_FILE # _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # If the template does not know about datarootdir, expand it. # FIXME: This hack should be removed a few years after 2.60. ac_datarootdir_hack=; ac_datarootdir_seen= ac_sed_dataroot=' /datarootdir/ { p q } /@datadir@/p /@docdir@/p /@infodir@/p /@localedir@/p /@mandir@/p' case `eval "sed -n \"\$ac_sed_dataroot\" $ac_file_inputs"` in *datarootdir*) ac_datarootdir_seen=yes;; *@datadir@*|*@docdir@*|*@infodir@*|*@localedir@*|*@mandir@*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&5 $as_echo "$as_me: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&2;} _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_datarootdir_hack=' s&@datadir@&$datadir&g s&@docdir@&$docdir&g s&@infodir@&$infodir&g s&@localedir@&$localedir&g s&@mandir@&$mandir&g s&\\\${datarootdir}&$datarootdir&g' ;; esac _ACEOF # Neutralize VPATH when `$srcdir' = `.'. # Shell code in configure.ac might set extrasub. # FIXME: do we really want to maintain this feature? cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_sed_extra="$ac_vpsub $extrasub _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 :t /@[a-zA-Z_][a-zA-Z_0-9]*@/!b s|@configure_input@|$ac_sed_conf_input|;t t s&@top_builddir@&$ac_top_builddir_sub&;t t s&@top_build_prefix@&$ac_top_build_prefix&;t t s&@srcdir@&$ac_srcdir&;t t s&@abs_srcdir@&$ac_abs_srcdir&;t t s&@top_srcdir@&$ac_top_srcdir&;t t s&@abs_top_srcdir@&$ac_abs_top_srcdir&;t t s&@builddir@&$ac_builddir&;t t s&@abs_builddir@&$ac_abs_builddir&;t t s&@abs_top_builddir@&$ac_abs_top_builddir&;t t $ac_datarootdir_hack " eval sed \"\$ac_sed_extra\" "$ac_file_inputs" | $AWK -f "$ac_tmp/subs.awk" \ >$ac_tmp/out || as_fn_error $? "could not create $ac_file" "$LINENO" 5 test -z "$ac_datarootdir_hack$ac_datarootdir_seen" && { ac_out=`sed -n '/\${datarootdir}/p' "$ac_tmp/out"`; test -n "$ac_out"; } && { ac_out=`sed -n '/^[ ]*datarootdir[ ]*:*=/p' \ "$ac_tmp/out"`; test -z "$ac_out"; } && { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file contains a reference to the variable \`datarootdir' which seems to be undefined. Please make sure it is defined" >&5 $as_echo "$as_me: WARNING: $ac_file contains a reference to the variable \`datarootdir' which seems to be undefined. Please make sure it is defined" >&2;} rm -f "$ac_tmp/stdin" case $ac_file in -) cat "$ac_tmp/out" && rm -f "$ac_tmp/out";; *) rm -f "$ac_file" && mv "$ac_tmp/out" "$ac_file";; esac \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 ;; esac done # for ac_tag as_fn_exit 0 _ACEOF ac_clean_files=$ac_clean_files_save test $ac_write_fail = 0 || as_fn_error $? "write failure creating $CONFIG_STATUS" "$LINENO" 5 # configure is writing to config.log, and then calls config.status. # config.status does its own redirection, appending to config.log. # Unfortunately, on DOS this fails, as config.log is still kept open # by configure, so config.status won't be able to write to it; its # output is simply discarded. So we exec the FD to /dev/null, # effectively closing config.log, so it can be properly (re)opened and # appended to by config.status. When coming back to configure, we # need to make the FD available again. if test "$no_create" != yes; then ac_cs_success=: ac_config_status_args= test "$silent" = yes && ac_config_status_args="$ac_config_status_args --quiet" exec 5>/dev/null $SHELL $CONFIG_STATUS $ac_config_status_args || ac_cs_success=false exec 5>>config.log # Use ||, not &&, to avoid exiting from the if with $? = 1, which # would make configure fail if this is the last instruction. $ac_cs_success || as_fn_exit 1 fi if test -n "$ac_unrecognized_opts" && test "$enable_option_checking" != no; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unrecognized options: $ac_unrecognized_opts" >&5 $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2;} fi ShortRead/configure.ac0000644000175100017510000000021312607265053015755 0ustar00biocbuildbiocbuildAC_INIT("DESCRIPTION") AC_CHECK_LIB([z], [gzeof], , AC_ERROR([zlib not found])) AC_CHECK_SIZEOF([unsigned long]) AC_OUTPUT(src/Makevars) ShortRead/inst/0000755000175100017510000000000012607325164014450 5ustar00biocbuildbiocbuildShortRead/inst/CITATION0000644000175100017510000000220612607265053015605 0ustar00biocbuildbiocbuildcitEntry(entry="article", title = paste( "{ShortRead}: a {B}ioconductor package for input,", "quality assessment and exploration of high-throughput sequence", "data" ), author = personList( as.person("Martin Morgan" ), as.person("Simon Anders" ), as.person("Michael Lawrence" ), as.person("Patrick Aboyoun" ), as.person("Herv\\'e Pag\\`es" ), as.person("Robert Gentleman" ) ), year = 2009, journal = "Bioinformatics", volume = "25", pages = "2607-2608", doi = "10.1093/bioinformatics/btp450", url = "http://dx.doi.org10.1093/bioinformatics/btp450", textVersion = paste("M. Morgan, S. Anders, M. Lawrence, P. Aboyoun, H. Pag\\`es,", "and R. Gentleman (2009): \"ShortRead: a Bioconductor package", "for input, quality assessment and exploration of", "high-throughput sequence data\".", "Bioinformatics 25:2607-2608. " ) ) ShortRead/inst/doc/0000755000175100017510000000000012607325164015215 5ustar00biocbuildbiocbuildShortRead/inst/doc/Overview.R0000644000175100017510000001351112607325164017147 0ustar00biocbuildbiocbuild### R code from vignette source 'Overview.Rnw' ################################################### ### code chunk number 1: style ################################################### BiocStyle::latex() ################################################### ### code chunk number 2: preliminaries ################################################### library("ShortRead") ################################################### ### code chunk number 3: sample (eval = FALSE) ################################################### ## sampler <- FastqSampler('E-MTAB-1147/fastq/ERR127302_1.fastq.gz', 20000) ## set.seed(123); ERR127302_1 <- yield(sampler) ## sampler <- FastqSampler('E-MTAB-1147/fastq/ERR127302_2.fastq.gz', 20000) ## set.seed(123); ERR127302_2 <- yield(sampler) ################################################### ### code chunk number 4: stream (eval = FALSE) ################################################### ## strm <- FastqStreamer("a.fastq.gz") ## repeat { ## fq <- yield(strm) ## if (length(fq) == 0) ## break ## ## process chunk ## } ################################################### ### code chunk number 5: sampler (eval = FALSE) ################################################### ## sampler <- FastqSampler("a.fastq.gz") ## fq <- yield(sampler) ################################################### ### code chunk number 6: readFastq ################################################### fl <- system.file(package="ShortRead", "extdata", "E-MTAB-1147", "ERR127302_1_subset.fastq.gz") fq <- readFastq(fl) ################################################### ### code chunk number 7: ShortReadQ ################################################### fq fq[1:5] head(sread(fq), 3) head(quality(fq), 3) ################################################### ### code chunk number 8: encoding ################################################### encoding(quality(fq)) ################################################### ### code chunk number 9: qa-files (eval = FALSE) ################################################### ## fls <- dir("/path/to", "*fastq$", full=TRUE) ################################################### ### code chunk number 10: qa-qa (eval = FALSE) ################################################### ## qaSummary <- qa(fls, type="fastq") ################################################### ### code chunk number 11: qa-view (eval = FALSE) ################################################### ## browseURL(report(qaSummary)) ################################################### ### code chunk number 12: qa-files ################################################### load("qa_E-MTAB-1147.Rda") ################################################### ### code chunk number 13: qa-elements ################################################### qaSummary ################################################### ### code chunk number 14: qa-readCounts ################################################### head(qaSummary[["readCounts"]]) head(qaSummary[["baseCalls"]]) ################################################### ### code chunk number 15: filter-scheme ################################################### myFilterAndTrim <- function(fl, destination=sprintf("%s_subset", fl)) { ## open input stream stream <- open(FastqStreamer(fl)) on.exit(close(stream)) repeat { ## input chunk fq <- yield(stream) if (length(fq) == 0) break ## trim and filter, e.g., reads cannot contain 'N'... fq <- fq[nFilter()(fq)] # see ?srFilter for pre-defined filters ## trim as soon as 2 of 5 nucleotides has quality encoding less ## than "4" (phred score 20) fq <- trimTailw(fq, 2, "4", 2) ## drop reads that are less than 36nt fq <- fq[width(fq) >= 36] ## append to destination writeFastq(fq, destination, "a") } } ################################################### ### code chunk number 16: export ################################################### ## location of file exptPath <- system.file("extdata", package="ShortRead") sp <- SolexaPath(exptPath) pattern <- "s_2_export.txt" fl <- file.path(analysisPath(sp), pattern) strsplit(readLines(fl, n=1), "\t") length(readLines(fl)) ################################################### ### code chunk number 17: colClasses ################################################### colClasses <- rep(list(NULL), 21) colClasses[9:10] <- c("DNAString", "BString") names(colClasses)[9:10] <- c("read", "quality") ################################################### ### code chunk number 18: readXStringColumns ################################################### cols <- readXStringColumns(analysisPath(sp), pattern, colClasses) cols ################################################### ### code chunk number 19: size ################################################### object.size(cols$read) object.size(as.character(cols$read)) ################################################### ### code chunk number 20: tables ################################################### tbls <- tables(fq) names(tbls) tbls$top[1:5] head(tbls$distribution) ################################################### ### code chunk number 21: srdistance ################################################### dist <- srdistance(sread(fq), names(tbls$top)[1])[[1]] table(dist)[1:10] ################################################### ### code chunk number 22: aln-not-near ################################################### fqSubset <- fq[dist>4] ################################################### ### code chunk number 23: polya ################################################### countA <- alphabetFrequency(sread(fq))[,"A"] fqNoPolyA <- fq[countA < 30] ################################################### ### code chunk number 24: sessionInfo ################################################### toLatex(sessionInfo()) ShortRead/inst/doc/Overview.Rnw0000644000175100017510000003641312607325164017522 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{An introduction to ShortRead} %\VignetteDepends{BiocStyle} %\VignetteKeywords{Short read, I/0, quality assessment} %\VignettePackage{ShortRead} \documentclass[]{article} <>= BiocStyle::latex() @ \newcommand{\ShortRead}{\Biocpkg{ShortRead}} \title{An Introduction to \Rpackage{ShortRead}} \author{Martin Morgan} \date{Modified: 21 October, 2013. Compiled: \today} \begin{document} \maketitle <>= library("ShortRead") @ The \Rpackage{ShortRead} package provides functionality for working with FASTQ files from high throughput sequence analysis. The package also contains functions for legacy (single-end, ungapped) aligned reads; for working with BAM files, please see the \Biocpkg{Rsamtools}, \Biocpkg{GenomicRanges}, \Biocpkg{GenomicAlignments} and related packages. \section{Sample data} Sample FASTQ data are derived from ArrayExpress record \href{http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/}{E-MTAB-1147}. Paired-end FASTQ files were retrieved and then sampled to 20,000 records with <>= sampler <- FastqSampler('E-MTAB-1147/fastq/ERR127302_1.fastq.gz', 20000) set.seed(123); ERR127302_1 <- yield(sampler) sampler <- FastqSampler('E-MTAB-1147/fastq/ERR127302_2.fastq.gz', 20000) set.seed(123); ERR127302_2 <- yield(sampler) @ \section{Functionality} Functionality is summarized in Table~\ref{tab:fastq}. \begin{table} \centering \begin{tabular}{lll} \hline \multicolumn{3}{l}{Input} \\ & \Rfunction{FastqStreamer} & Iterate through FASTQ files in chunks \\ & \Rfunction{FastqSampler} & Draw random samples from FASTQ files \\ & \Rfunction{readFastq} & Read an entire FASTQ file into memory \\ & \Rfunction{writeFastq} & Write FASTQ objects to a connection (file) \\ \multicolumn{3}{l}{Sequence and quality summary} \\ & \Rfunction{alphabetFrequency} & Nucleotide or quality score use per read\\ & \Rfunction{alphabetByCycle} & Nucleotide or quality score use by cycle\\ & \Rfunction{alphabetScore} & Whole-read quality summary\\ & \Rfunction{encoding} & Character / `phred' score mapping \\ \multicolumn{3}{l}{Quality assessment} \\ & \Rfunction{qa} & Visit FASTQ files to collect QA statistics \\ & \Rfunction{report} & Generate a quality assessment report \\ \multicolumn{3}{l}{Filtering and trimming} \\ & \Rfunction{srFilter} & Pre-defined and bespoke filters \\ & \Rfunction{trimTails}, etc. & Trim low-quality nucleotides \\ & \Rfunction{narrow} & Remove leading / trailing nucleotides \\ & \Rfunction{tables} & Summarize read occurrence \\ & \Rfunction{srduplicated}, etc. & Identify duplicate reads \\ & \Rfunction{filterFastq} & Filter reads from one file to another\\ \hline \end{tabular} \caption{Key functions for working with FASTQ files} \label{tab:fastq} \end{table} \paragraph{Input} FASTQ files are large so processing involves iteration in `chunks' using \Rfunction{FastqStreamer} <>= strm <- FastqStreamer("a.fastq.gz") repeat { fq <- yield(strm) if (length(fq) == 0) break ## process chunk } @ or drawing a random sample from the file <>= sampler <- FastqSampler("a.fastq.gz") fq <- yield(sampler) @ \noindent The default size for both streams and samples is 1M records; this volume of data fits easily into memory. Small FASTQ files can be read in to memory in their entirety using \Rfunction{readFastq}; we do this for our sample data <>= fl <- system.file(package="ShortRead", "extdata", "E-MTAB-1147", "ERR127302_1_subset.fastq.gz") fq <- readFastq(fl) @ The result of data input is an instance of class \Rclass{ShortReadQ} (Table~\ref{tab:classes}). \begin{table} \centering \begin{tabular}{ll} \hline \Rclass{DNAStringSet} & (\Biocpkg{Biostrings}) Short read sequences \\ \Rclass{FastqQuality}, etc. & Quality encodings \\ \Rclass{ShortReadQ} & Reads, quality scores, and ids \\ \hline \end{tabular} \caption{Primary data types in the \Biocpkg{ShortRead} package} \label{tab:classes} \end{table} This class contains reads, their quality scores, and optionally the id of the read. <>= fq fq[1:5] head(sread(fq), 3) head(quality(fq), 3) @ \noindent The reads are represented as \Rclass{DNAStringSet} instances, and can be manipulated with the rich tools defined in the \Biocpkg{Biostrings} package. The quality scores are represented by a class that represents the quality encoding inferred from the file; the encoding in use can be discovered with <>= encoding(quality(fq)) @ \noindent The primary source of documentation for these classes is \Rcode{?ShortReadQ} and \Rcode{?QualityScore}. \section{Common work flows} \subsection{Quality assessment} FASTQ files are often used for basic quality assessment, often to augment the purely technical QA that might be provided by the sequencing center with QA relevant to overall experimental design. A QA report is generated by creating a vector of paths to FASTQ files <>= fls <- dir("/path/to", "*fastq$", full=TRUE) @ \noindent collecting statistics over the files <>= qaSummary <- qa(fls, type="fastq") @ \noindent and creating and viewing a report <>= browseURL(report(qaSummary)) @ \noindent By default, the report is based on a sample of 1M reads. These QA facilities are easily augmented by writing custom functions for reads sampled from files, or by explorting the elements of the object returned from \Rcode{qa()}, e.g., for an analysis of ArrayExpress experiment E-MTAB-1147: <>= load("qa_E-MTAB-1147.Rda") @ <>= qaSummary @ %% For instance, the count of reads in each lane is summarized in the \Robject{readCounts} element, and can be displayed as <>= head(qaSummary[["readCounts"]]) head(qaSummary[["baseCalls"]]) @ %% The \Robject{readCounts} element contains a data frame with 1 row and 3 columns (these dimensions are indicated in the parenthetical annotation of \Robject{readCounts} in the output of \Rcode{qaSummary}). The rows represent different lanes. The columns indicated the number of reads, the number of reads surviving the Solexa filtering criteria, and the number of reads aligned to the reference genome for the lane. The \Robject{baseCalls} element summarizes base calls in the unfiltered reads. The functions that produce the report tables and graphics are internal to the package. They can be accessed through calling ShortRead:::functionName where functionName is one of the functions listed below, organized by report section. \begin{description} \item [] Run Summary : .ppnCount, .df2a, .laneLbl, .plotReadQuality \item [] Read Distribution : .plotReadOccurrences, .freqSequences \item [] Cycle Specific : .plotCycleBaseCall, .plotCycleQuality \item [] Tile Performance : .atQuantile, .colorkeyNames, .plotTileLocalCoords, .tileGeometry, .plotTileCounts, .plotTileQualityScore \item [] Alignment : .plotAlignQuality \item [] Multiple Alignment : .plotMultipleAlignmentCount \item [] Depth of Coverage : .plotDepthOfCoverage \item [] Adapter Contamination : .ppnCount \end{description} \subsection{Filtering and trimming} It is straight-forward to create filters to eliminate reads or to trim reads based on diverse characteristics. The basic structure is to open a FASTQ file, iterate through chunks of the file performing filtering or trimming steps, and appending the filtered data to a new file. <>= myFilterAndTrim <- function(fl, destination=sprintf("%s_subset", fl)) { ## open input stream stream <- open(FastqStreamer(fl)) on.exit(close(stream)) repeat { ## input chunk fq <- yield(stream) if (length(fq) == 0) break ## trim and filter, e.g., reads cannot contain 'N'... fq <- fq[nFilter()(fq)] # see ?srFilter for pre-defined filters ## trim as soon as 2 of 5 nucleotides has quality encoding less ## than "4" (phred score 20) fq <- trimTailw(fq, 2, "4", 2) ## drop reads that are less than 36nt fq <- fq[width(fq) >= 36] ## append to destination writeFastq(fq, destination, "a") } } @ \noindent This is memory efficient and flexible. Care must be taken to coordinate pairs of FASTQ files representing paired-end reads, to preserve order. \section{Using \Rpackage{ShortRead} for data exploration} \subsection{Data I/O} \ShortRead{} provides a variety of methods to read data into \R{}, in addition to \Rfunction{readAligned}. \subsubsection{\Rfunction{readXStringColumns}} \Rfunction{readXStringColumns} reads a column of DNA or other sequence-like data. For instance, the Solexa files \texttt{s\_N\_export.txt} contain lines with the following information: <>= ## location of file exptPath <- system.file("extdata", package="ShortRead") sp <- SolexaPath(exptPath) pattern <- "s_2_export.txt" fl <- file.path(analysisPath(sp), pattern) strsplit(readLines(fl, n=1), "\t") length(readLines(fl)) @ % Column 9 is the read, and column 10 the ASCII-encoded Solexa Fastq quality score; there are 1000 lines (i.e., 1000 reads) in this sample file. Suppose the task is to read column 9 as a \Rclass{DNAStringSet} and column 10 as a \Rclass{BStringSet}. \Rclass{DNAStringSet} is a class that contains IUPAC-encoded DNA strings (IUPAC code allows for nucleotide ambiguity); \Rclass{BStringSet} is a class that contains any character with ASCII code 0 through 255. Both of these classes are defined in the \Rpackage{Biostrings} package. \Rfunction{readXStringColumns} allows us to read in columns of text as these classes. Important arguments for \Rfunction{readXStringColumns} are the \Rcode{dirPath} in which to look for files, the \Rcode{pattern} of files to parse, and the \Rcode{colClasses} of the columns to be parsed. The \Rcode{dirPath} and \Rcode{pattern} arguments are like \Rcode{list.files}. \Rcode{colClasses} is like the corresponding argument to \Rfunction{read.table}: it is a \Rclass{list} specifying the class of each column to be read, or \Robject{NULL} if the column is to be ignored. In our case there are 21 columns, and we would like to read in columns 9 and 10. Hence <>= colClasses <- rep(list(NULL), 21) colClasses[9:10] <- c("DNAString", "BString") names(colClasses)[9:10] <- c("read", "quality") @ % We use the class of the type of sequence (e.g., \Rclass{DNAString} or \Rclass{BString}), rather than the class of the set that we will create ( e.g., \Rclass{DNAStringSet} or \Rclass{BStringSet}). Applying names to \Robject{colClasses} is not required, but makes subsequent manipulation easier. We are now ready to read our file <>= cols <- readXStringColumns(analysisPath(sp), pattern, colClasses) cols @ % The file has been parsed, and appropriate data objects were created. A feature of \Rfunction{readXStringColumns} and other input functions in the \Rpackage{ShortRead} package is that all files matching \Rcode{pattern} in the specified \Rcode{dirPath} will be read into a single object. This provides a convenient way to, for instance, parse all tiles in a Solexa lane into a single \Rclass{DNAStringSet} object. There are several advantages to reading columns as \Rclass{XStringSet} objects. These are more compact than the corresponding character representation: <>= object.size(cols$read) object.size(as.character(cols$read)) @ % They are also created much more quickly. And the \Rclass{DNAStringSet} and related classes are used extensively in \Rpackage{ShortRead}, \Rpackage{Biostrings}, \Rpackage{BSgenome} and other packages relevant to short read technology. \subsection{Sorting} Short reads can be sorted using \Rfunction{srsort}, or the permutation required to bring the short read into lexicographic order can be determined using \Rfunction{srorder}. These functions are different from \Rfunction{sort} and \Rfunction{order} because the result is independent of the locale, and they operate quickly on \Rclass{DNAStringSet} and \Rclass{BStringSet} objects. The function \Rfunction{srduplicated} identifies duplicate reads. This function returns a logical vector, similar to \Rfunction{duplicated}. The negation of the result from \Rfunction{srduplicated} is useful to create a collection of unique reads. An experimental scenario where this might be useful is when the sample preparation involved PCR. In this case, replicate reads may be due to artifacts of sample preparation, rather than differential representation of sequence in the sample prior to PCR. \subsection{Summarizing read occurrence} The \Rfunction{tables} function summarizes read occurrences, for instance, <>= tbls <- tables(fq) names(tbls) tbls$top[1:5] head(tbls$distribution) @ %% The \Robject{top} component returned by \Robject{tables} is a list tallying the most commonly occurring sequences in the short reads. Knowledgeable readers will recognize the top-occurring read as a close match to one of the manufacturer adapters. The \Robject{distribution} component returned by \Robject{tables} is a data frame that summarizes how many reads (e.g., \Sexpr{tbls[["distribution"]][1,"nReads"]}) are represented exactly \Sexpr{tbls[["distribution"]][1,"nOccurrences"]} times. \subsection{Finding near matches to short sequences} Facilities exist for finding reads that are near matches to specific sequences, e.g., manufacturer adapter or primer sequences. \Rfunction{srdistance} reports the edit distance between each read and a reference sequence. \Rfunction{srdistance} is implemented to work efficiently for reference sequences whose length is of the same order as the reads themselves (10's to 100's of bases). To find reads close to the most common read in the example above, one might say <>= dist <- srdistance(sread(fq), names(tbls$top)[1])[[1]] table(dist)[1:10] @ %% `Near' matches can be filtered, e.g., <>= fqSubset <- fq[dist>4] @ A different strategy can be used to tally or eliminate reads that consist predominantly of a single nucleotide. \Rfunction{alphabetFrequency} calculates the frequency of each nucleotide (in DNA strings) or letter (for other string sets) in each read. Thus one could identify and eliminate reads with more than 30 adenine nucleotides with <>= countA <- alphabetFrequency(sread(fq))[,"A"] fqNoPolyA <- fq[countA < 30] @ %% \Rfunction{alphabetFrequency}, which simply counts nucleotides, is much faster than \Rfunction{srdistance}, which performs full pairwise alignment of each read to the subject. Users wanting to use \R{} for whole-genome alignments or more flexible pairwise aligment are encouraged to investigate the \Rpackage{Biostrings} package, especially the \Rclass{PDict} class and \Rfunction{matchPDict} and \Rfunction{pairwiseAlignment} functions. \section{Legacy support for early file formats} The \Biocpkg{ShortRead} package contains functions and classes to support early file formats and ungapped alignments. Help pages are flagged as `legacy'; versions of \Biocpkg{ShortRead} prior to 1.21 (\Bioconductor{} version 2.13) contain a vignette illustrating common work flows with these file formats. %--------------------------------------------------------- % SessionInfo %--------------------------------------------------------- \section{sessionInfo} <>= toLatex(sessionInfo()) @ \end{document} ShortRead/inst/doc/Overview.pdf0000644000175100017510000040244512607325164017527 0ustar00biocbuildbiocbuild%PDF-1.5 % 65 0 obj << /Length 1984 /Filter /FlateDecode >> stream xn_APkH ;hMܢeDJ-"-߳ 9iǹq>֐s7`ىɣs:NrGdAU*|2f2چ?R--5-~f6q\7!#N()(f bLk U \ CvI@潿( bgElq82%+vAdd;=.Ծ(8M# /Oa#+S w"3! $UnYu"U*%*3Re"-[/y5QGН$dn)lI|Dc'Q;<}8 g`)ye_I {c@}<;I&,KgPa\IikaF[ >Ihq**d i0LJk%B+ے?= I1f7J]z/{Gq7Tԓ} )BG g&xEM_NXz:ŒA@PA$ -]ԙtpSG<'"ZNF/$X0aXӅ@1v˱ΨSaWdu+2lpo9GE88ZJ=o )/=㧥<"2l②me B_P@*QD囖''<2d/匑3X&*yM[DR18{uR5r*8Jdh6j!.BkyR+_ iImhs{=̨h\wuK G@M;uv5_a|MBq?L[qs#v WǷޱ^1r8}%vޭ-o9vk5o?50+^$`pl#2|<}Ku$Zn./_鉶ۆgB >E~|N֍!+i>re^ە̥P":U7b!XoO/SXװPb!GE.h!*Lyشj8 B_(n/̩O:Wn(G8xA_sBIOUNkƏ=!"ߺ#cCv_vh{тa>u Z(T7kKie5F'=7҅VN9bG.42O)M 0jsn{؏ ]Q%KQ%cΊ 5`NiG&?mib endstream endobj 82 0 obj << /Length 2140 /Filter /FlateDecode >> stream xZnF}WCe f{&e[M u-n*m"]#ΒKr)1F̙3+{ν9˫ qR7dL0rw r̝T 6gRS =ٞx0 -w,'^^1w"\0M{S'+~?ȚTz.'+M}W&KMЙOn{>sh`2LQ (zUT0OW%G5-Qu~` ZZ?'\s;yU]?9g0:59v Y u sRR F|df}$ޤxLu[:@=8]?A޸es\Q?=RF%*ir]MD.Lפg@UW^7WwuuQUJ9"^)>5~v'0UL!gC> [vThV^-yJ*|[Դ^k?fja+#Qf~}6W*0lsk&Q̻ e0+Qn#7M W,z 2 a7%V:b0N ,X^} `zcT1URgS؍}1φW%cztH爊 *ru\*\E B!˸,+9+3i:umۻ"9JDQoZ.jRh4{^w~V`Jv5j"U53r;&P,غ`쁽F>Pl npYV,k%ө\L{eADߍ]~nDn%N?WBڹACM&H@$LA{ڕlIkgzi ^nݍ#/=qS<4-eXuZ2nhBYqӊCUdކɦ OF8p#:F) Vη `4#fJLJL>2 ^ԼTki?B=fZ*݉AzQ2&[hCO C;~BhC2ml'zR>QT"DZ6EEb7~cЉݠJ3b9dzYU}*D "%[L\8N}$3xX/㒱tet *Igl&cVoxԎSy U`ֹ%mʚ͈"/T/m dŴKTO@1ʭjpa|i1|d@NUf5;, *JXdB'2BiA">SRi5zc]OJpxWO8r%9 VY=\TJhz^7OsQoԧ'6ռ=Y MIUUK n4p?l_f ygF#o,;LWQ0Ư7KdT ʍ>CT-IIM XbY)\ܾ; ˳dETD{{ȡ^fsI=ў0 {sc;Gݰ1@=2Ɯkd6\jnKvV,9 ن' ̇m:vtmb7?> stream xv]_i & `u$R89Mϑ>~Hpi,_߹,@IQmeЛywyt::z}^HK -ih}O O،flC[xa|" y8VZ>  @ּWRWq$z%G! kq!TJo( O Aaϰ?L ~:NS|Ct<;wߥZiaEX]~]^::2vp|g=c}Ł/]:4#W fA5;;Q)o_ȯaL@4A}ln` ~VBRW1i/߁k}&gЭS[h+E=)r#'oH}sf>&KMel3޻[s6K2O?(^;F% i0H$W 42ó~\͊, "9eunjGum|pݔ p T$" C8=McnoZS=X,މ`fͼDcD}ŚXd}1GGhNa)UDb7a,c ]Gmsɫh$&F>W. ~7/=.#ω: OB[)%S^1^${2=帢͔}rcXB炱I?Pr5{Vَ lM=["Hq߫eX;۱ W}I1y\Kx֝]™5R1}DEq T`> 4HL5@B0T6ML"U_a$8%磣OG }EKPYWG>DͩEʕyFP-+PL?,u͹9Dw6\uoIEuSuvú3cy*60Yh><)~OU }#\,xyp|QsAY:-33a 󫭱VB}tT%>0O(M#ps}p7,MO}T{HvfCGMGw;ntqFֹag)k9k5IT+TSp#^)Zf.-O9.8ʖsـ crrkqVWa2?9`" $l$nԭJbRJ0A'Q'{^a/k*92pCH+8{Yg:Zܪ~d~ㆯM{{]ˡa5c`HKbcs͊;uc޵e}"Q^quʺ߶58yC#->G3Q:ċ01kգe.g -=󵕰ǏKxa 64uC7{a#Lƴґ7 ||qu㛹gm_vxgb@.dLj{TO/n1aydW#f`+ :x} f܈?MG^[燁y. s3ߍ_ݯQϷNKv/sڰtNr79ԿaeӔf=*W,"_-O3JK &vSl je[fbMt 0`qo endstream endobj 93 0 obj << /Length 2432 /Filter /FlateDecode >> stream xio A]14Ëiҵ- DX]+RqwAQZ]Ø̛w;GQ\&ҋk,CA<YybDš 5i<$(Ǧ:= % 3ޑZ':P$ . zD 3=t@>*MŒ*s)575mgYAMn\zo1U51uKYAp3In-9#e@%u Kx '" &q ^Mz|rscTivz OL:HebCeQ͢$ KDY2bt{F*Ls*>\ yT`B $MrqtdF&@{֪ f+,[\.AO'6eqQ YwԃNtYV0b2)h|i&t XFVE la;WgЬ%KFVC?jBftbӍmQWjZ{N "%%A n/bCԭ.v73';qiaYLr6 ̞746T\+zPg@tLC ,wKLffwU">|0EM(s IIQ~~EZ;Zsn~"6LsE8K -16AÓo%xñٝgӷ -S@>(ƈ-L 6e$9.C^}2i NꭵWOTYi9ߤv탓NwoZIɰM /izĢ5xY~&' ^9JMܒ4H&CwLWG=r`9&pjG̚m <(.Q/t,}$&tAz]P#7\yHny:d2'q=/G'1}]Lusl bCm{芹Ox+~n$M;8ʒc[NURcakf"lսw'h D)vֆT7GSj@ӝ d\4%AkM_/;{g _~)Q>PAT^O ]da& ZOb;at~\[/sqB:y.ƻ0>fV̐(=&z0Va8*U8+ ,(FЙ[g bT=J.I Dt7+.mMM3+iVT.teyA~ :TkdGxTſX-Ʃ-f*S܁Fj^cpI Q|9ِQ" jeHKɱ`sQkpO)hTjK!UU(Ҏ^w1+(9qh&PPd ׷NakXg+ֱVvfC {iWm㵘b0FaADڮCHI* }ʞ뻜e3TTin?㳦[D>q%' _H{amr74.{ŗG[Imj@;۱=0|p{;; ?qNz^X8Yn@T%5|aAp;浡f8Ӊeٻi޿|\23VA77wwaE!b1aqj[-g^jtx./p:3lִ03N9"v޷#G2쉺@hFCi9Ă.C ĸk> stream xڭXs6 _K&"V5,mlMvioJm9ڤG Eْf{  @߹v|q:b;+'YN̹t] rY_5D>J裉M5~?q[SDʍ셜~S% ֜_Lpr4K#2I97za8/Ygjɷc/Lx>;<{<*l |/TWNTF G+045TpVSZW!Q3TiҴۨ Y¢8Ъek bŒ蚑p &J@pT&o !2L쏵-O#Fb @VbڧB P3 E~&Lb?IOC瀩"a,:YG(adRRW7wׄq^N՘ `_iNF&ר4%GbtwfrLeY̅f)9̹s1zk@Ԁ4>$,& KBHt2oH2@`'uUJ>H(* >QZP*W'-ѿh}&RvM]]6S3h 흽2FDDS{q6w&+ЦG,nm^R`m"jx?zyeEG~f#=2 pH?)hIe4'ccgCY,# MOt{)Z ˳CD:z憒haHo4 Wxͣ&9} 6aI* Ϡ u$:D\;1VoQ iPZXӣ`/DڽR9-kn'KwHB |QƋxXru(c9I?Xy}P͍no-\#^j1_A1+xPu yPnX9Ɗh~M_ o8.xy ^s#n gp]qD|A|S29BYRlyWKmT(&(>TemcM~}7#//$u7ٙ-hl<[f7@~I٦zY#muDlЋ+~S$ Ͱ 2K ZA|⨻8.ND)d^cK Hc .:*>=6m]״{l^_{+S:6<%S<_[)'DV~ O~7FްmMy> stream xZ[s~d@̈́.״(9SWTb9ERcE*}q d{KҙwыSEgt QԪSfHhK˽R{ٴ?,;@fyƮR!LOÞ旫== lR)TUۮ4y":VPSڏwn4΢ZzYZu76?_Ca zijjp#NRHYZou"LCqȄR/̴pW0OςTB*GΗdbȅDdZy5+0 [HDR^:M%.,CiN% Nu_{Ue[V݁.f}B2 οI$M%$y|P++ֵJsanM%jfPi\{?茆=UUBs'";-&"[FVJded̏.r $c453 QZtq՗)*iYj%0.1y.zE]t_t\oٚ ZxJ3dG-g֒Dm6fUzbmBdp)6i%G5%)JY7tK7&{O5kHH6Z*F z]q'r`d$h5cS_$A-0{"ژ˜cxˆ.AȠW4k 1Nsm]Pm.I-R_<59nn50oшxLQ-Vcil\Ppi+g3W gu "(*ZpJ e -BjZ "ȩ-JUE*Ҧ h8D%R~8<q4k6hUJT!(0\PꞣSkZq`QzJ:j v; (`#W 4eTaJtAuW'L0jHU^fXp2TAeZqM:.r6##b-R%UUDO(;Z>~"wAskXlY-fB%K/Dل\<@ѷdd1.VtzK(;"ٜ*$#LQVu[ʵN9APcLۋK.6<+dE<3cUV2k͗>2'ӑmM@[ezAAX3Q4ro|4VDvJ&ἦWm- vnC+iDT Մ}4#j36L֮l1ȭU7lHqΦ4$i7j~a['w:;/irA'@R"`qHnj܅5} ^e4;敳qP߰q$leo)ZШ@c)̄;Ҋq3mcHڟS8)lp6|HecZś^]2}/ntM CS4P. $F9cڻ=ὍNȥ$vU81s3`A+Zd8e3_zQW,6L x=Wt<*}eʾ ZdY[|c7Q0r nch5sⵎv:8:80[QxfPOS7;v?< ktaQȻ-fc3זv?gh&m]3s!I:"e`hdYp7>7˂w(KL Y 'fMi"@ ʹQmh\v2W`C?hIۈecY{1n8أ̱:F ܅ǭqszi cxY;>0cFᜣgà}#^k1"4sl!OF;|ҼLy"jvx`R0 ԐqiY},+4Ė[8gR7 IL bZpt1Z4m ߶1Z,k?"}]SԢAv y;x ;Ҵ--a)8M|kla[\^E,7XtNoZ7~V>`!(z'F,(t@WgʶSz;S!܆%b95Ӹ4d}OX޶9d|~zbZg_3/DG _){KɎ a?|}^OHH]lW|`R h/V1L^Ğ6"]µrzO)Rz?{F<<3by*O? )xOX&bmӭ~4/͊Fqd?DŚG xuMeypIW7xr'P4ԖǦ?`ƉnW:5u>ǝ{pt%{a!^Cp}*,oöxue(d#Ӎ 0'zQ=[_*y?m! ?&s {| 4cv'ěepX1$><7aCt~ڍC@9wQEo6PTR[/o) δ[ x%IeqVQP3;>VdD~RTQhM:ˈb Ӈn&^6tSe -[: ,.~0D<:^&JRlSY)|Ԋ$h.aC s"Jfhb.n^9DVVM%od eADۘښ䦉4ǵqea P O0Spf^L 9kD9Ctk"21Y02iMYɡ>,~t[Uj2vr#Jq"4p1|ΐ"Q59ςH\H45pe$N D8@˖HՍ l:{n"9MnbV/ulzit/sKM-P`RY5cPe&ڗnKvDsQ Go_v[4ܚ#`Oth u7({)-` _v{C841)zWVK6FKTpHvgUz kq4 < YrzDvttjT񎢙x'nw+g _!\7%}aPN\}Džnu@,C On+bA%웅9τa؇尶 \6">ʵacm֑#=Q2ο׃vdG׬!n %>66 3ˏ \lΆn814a., @πk]H'{m8GƁ>15 W+;faH6,KiU{K䴎0BV\w!PmQŃlOpAҨQT?h?N"uv$(#tzaNՄR5+5ۏ|4yTfׅh#|.Z)[B;!4 j k[]LhF>K|O# YD#ymgKG^[@YWs#qd.[H'_4̨cK%miL~4{55oH'{e$ DW]t ~^83q÷r- ._6_Nsz gܗrk 4ZˀgޗA(n=[ ^BZOnGԞG.20o|߃wdr:^,X\^ xNTd5軐fa-B+jf #)0Ho[.ʜCsY&C"{˜J{kT PʓeF_X"L,pSABɄ g%TƘ0#l)cb"D騯6oK endstream endobj 113 0 obj << /Length 3435 /Filter /FlateDecode >> stream xZ~PrJN:k_$JFˑ;G]쳁|Dsfv7&f/bRFefrfQV&eq4NgILc [DW7]Êa3%IӪn׊B2QR:_;<%'ã㩉*z:X`-w[ ~n*BU W Gm-Q ĔcI CA O~ܘLG"lTie} ۚH+!Azz*3\75@w/4C3K fZᶟLj .zqi:c|ͺ k6 =ˡ+#zjX^vZFiJ82Y.W z&-<3y>,>[p2p@LEj:dѝLwmdZY6݁hC`ɐ6<3EC:FQEiV0QOP$Z̙)bAn#؉CoxW)| ΕH`YF.*dž͋ F:Շmd6P1;Ԭp]c"x!vw Bz)O9oǍ`0qQ^x*CMKFb|mZk][ hz=|V/ _ZȪxL^gX1ONJwd%YTB;kr}y; !PL퐱K*`mX1ޗ;Ûݪd2PyE6wR5ˎà o>|yJ:k=-^CC %EMzs}.yDOF9u(VT,%,S 8] t齼r~%bEGXFʼ PXFY\B iK=_Fe|/  6ZF#iqZ(ö%_k@ L{d$ַnEOj1I)8{GDaՀj$kq^,;Ma]q&Aq*,8__lAӯO59(gsq\pl>>7>".G<^F8w?]l(L =Y/ךckIнd=IwEΆO|hc5BJldn,J(Ϋld%ѶcrRnޭ$\9(鮩:eraeJ ?,eT~mU&$[7ZٵA-\T|(md X? w4hFe~L+M.Bw֯*!I} bӭx%ʲ`m#)eghi^ض,.cȫZw9x0b9s1 c:~zAE˨ 0ʖCc*%gH`˺+AHо+VF+(_R#Fs1ÏO~=AњI4Qfd=yLp@ NP,Fm&NkGoXm-iQfݴ,Mq2%"W[)$7ܳc¾Kmh_u7f]ݽYpLcՆdH^UuE7t;. s!͚wFofm=+F3lE"%PVz!-T-ߟ5B_`N߲k >9~uZKdfK6oCyf"[ngIdԀyp{oHT,R',VA2Y;tzQ:58Ѭ4ȅ/p TMoġU21NDA n[` M3q.@wZK&Yn ~۸݆8+n>1'z8mYe]w6fy}044ti?..35%dO@YP)f5æQY)^W~ZytD 8%Y (i<@Qj0F8_1|DK8GF|.4Zn:o:&,BcRT1Q{mw.X/q?]>8< ~\_mmVKQOV PK"z(d}r^jG@ܲpw*3%:{\c${$|Gtc8f&ȿ(m$2EIw&p}υO>ypyߋΧr!=Oe?γ]Ev=Y,u0`+G_TBSN9Fz$Z̚ˍ͂>K ,LE]O~ˑS룋`ypZ!X8;j&-v81A3pbgyOGZ`΅]5- t.F}EO£*xz+|ۢU>Mzf9o!ޘy&^X;{&9Ta endstream endobj 118 0 obj << /Length 444 /Filter /FlateDecode >> stream xmSMs0+r 3"V;i[?ft0E˒۷%Hf&`43EneŊV/=(^C8|QݹL%.I0m.WP}$|h-sĠ9w.؋Z$ƕUE`s 850&VJi Z'HqA5GC< sn'Ѣ~NB_vtV 0*8xg؅ G-k_GCi UW.AS?˄+Cx ?_: > aExzg?dZ a endstream endobj 120 0 obj << /Length 149 /Filter /FlateDecode >> stream x3135R0P0Bc3csCB.c46K$r9yr+p{E=}JJS ]  b<]00 @0?`d=0s@f d'n.WO@.sud endstream endobj 124 0 obj << /Length 104 /Filter /FlateDecode >> stream x313T0P04W0#S#CB.)T&9ɓK?\K(̥PRTʥ`ȥm``P73`v(PՓ+ L5* endstream endobj 129 0 obj << /Length 119 /Filter /FlateDecode >> stream x313T0P02Q02W06U05RH1*24PA#STr.'~PKW4K)YKE!P EoB@ a'W $o&| endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 788 /Length 2479 /Filter /FlateDecode >> stream xZKs8W19 c5U3κ*ݵ3XI&__%[q+sHYAh$Ȓ8IAѐ$nC'$.R‘)E R7GE$ &ਣ$h LԤY$k(`,9)Yg\ #VޒBNLF7{9tÁ.`@BOVDJ2J0+e0 ^SЬk - @+@] V w`(GL; A h,tP!]Pa G *?R2x`*f R!H (#Y!4K{#Hs5P[ rG9l`c8aؼCm%(N9 fݡx0[6b .4 ) "\3ҡbHBTӣQt% 5`J,$ @b7PyL]C+z~ ~yBq5tV;UVtj:י^~35sԴ||gR,T4U]Wwݬ論}!ddd6ow:hi4T6m_,U@^qo_qZ7tl1=kLyAղcee;eMNj٬j'cy`jEq &K g`^W-ͪ~|Qw71Y0nқC5nqy]9 >.q^yA}"ʃI;;eM߫o=z1((zLzw>o0 ,&օt ͉t;?u{M{VI2qZ<,O Owڌ{: j]1CVi \7rwg'Q&C^\_7Ÿoڢi?#ʶUW'MˣM3 ~| ԾK5ϡz&jw *Bq|N'kA$M., $ Eub|Oj\,>UVW-y;}姷v~¢˻4֑r1MCP(Q(nnz?>ȱ|~׿.rJNO"uTa5lC̭nRA{3х!rBudbYgYgsu;f 0Eζ0"s;& AA<_HwYWtA\Y8FBAblaA0V >i؛4]Q#X,BQ2`{Lg?WոOO^&G\JPBF[uRjy?@*)cv9[g 3= sJN"rj66iRn7ۑbpG"G;^]Q(ڻV`E nk6xvr c1S3@4~uM 05,bϪÖ~/L> 6&j,[Q"=ndqk݃3:)6R:DlsPneg^Gp< )6~svd$*ĭh v^?MhrcO *:ns?0LbN^ l- ٬.U|01ؖMDJab=Ll=GfJFr鷢 ZP!l=ȯ3K4r٤4ڎՉ_m}]U4S%):,mg#QZ䬿҉X/qN h,0-!AA˞~r~^ÉBq ?pxZx*M52ۄ̯ 6I[@cY T>_ד_zd=(=S۞gjHW\!)!b6/q5G2KEG> SD 3S뚢u2h$ %d&]f_kcX̺(* 3|p@J\D\-u)t~ȥ 'P9`T.M lFMi}mzIrk\$Q |D>V'!]aNG'.qʬb6ԛo`TΤq\&GIWw ~|ar-CP!U->iɺYԪ<*lLΥNq9X*Ous=> stream xڌeTٶspw. N kB>Ru\{\GE$jh rtpcbcf+)XY9YYԭN4.֎wd&n UEG `ge ?@ st"P;:yX[Z"_/s=hfE439Yݼ;+77'~OOOf{WfGK!:F=4 P2C ne Y\AF@(>@MVt[YoF`cf;v`am(K)0y1L+ع:M O/ȋ`y|A?A8A>M\A v20@*&fv&VHAM]L̀v@ #{q?|f .PFfv'q{?T~ ?TesG;;ioZ? cA*<-2S7NP}ɬA f/*şA~ßsP@е'ȗhT Ef@W6㟤A>e" :Ok9#rRpr%v>NPaE ot7o_MeI6?n@\;]\ujȉ+'?l 8x7+࿦T&7O|xP̿>H\]]kPZ0APAPc|$ !4swu tzVl:D =85I9!*ٖrJ[ A*BG$Jxu1b`c@D37SGG;sO*=$sIVyC%$>H|{| CHRY\ |DLJ]Y.@fa[&$2QeFNfuҀ2WB4[SBrG.yn^ƒkƒ_ ).<81iRK_ne <l-N64j‡y^LvAA RӬH1a"ZA)&j0~PDx5/G!CAö>jWg;Do{A4ˬB`>z2_6['0|>E5f&,_c]D^t>cIX/,ƩCFifƃ=DGVW奟9DD_BLCtƇև2@039 ¼'D7ӚNvY7V& V_Ÿ?-lXCRonޘּQAy5(f֫qb00ŒOl`:@r.4 pӝ벓ܒI E#Х?:0/$|M3`:.";J/LNf '¤ q8/(0m$t(}u mj0~d<-(s< @7tO.|c@pR? Jxr0.&˔׃Gkuy4Gō͔w%#N+_/0I`|klbaQsqi։Ղ/Zl.>]+uwVqFŹRd[tOXŢMΛo.;3i6râ0wlQp$N[?״^v7:?{gP2q:c'XĂ(Lz\0>I|PHf&P=ߑU)ڦ-W$^{)۴wyHHҳ7e^ ^3 g$j}'d2x5BI?/?gY?#bnh6*> Mz*vGt8$fwĜٷ 5I {;fu g-KQmӧ J~i>Me}|nWW7d_Ϟ97:G+t®34m7DI HA50jA,gӎW,9Sw)'' ӄy5tEeS}{LN V7v1FʹڏVj!;'Muqn hO_#gEIr%JǍh埥pd-~ ^}1؍rnY?-5\i7(eMv&\ mHְi0H*W¼2$8Il\) IEOu!%U>zn j!6zY8IQft#DN)JpGyò  ch9Tx< 9IJZ̴3G 5.ꥈ_%@1A|OKRDn7ԗgDc9Hrշ*9h = sG57F }#rc7V;yZryğԦ9[ia[S"~$;LS{ fc$>#&U~EglB*lnj =狋+ؓr.<`)>>7#.FGm>/(iT-6?;`s!ԱK_eV9,/Fh׺w5]fڒ& Й?`چ5͒ѪۃD_|.gy+e@l6jzٍ=i!$\~!GQ MJ;XtPۥi9}Fy.$h_oB0mSqm[`Dvpfsuc dٙE 22$gXaen,>]e< itv(EW#];ߕW]w> ˼]cE2a.@F%smU0H=ARBcW2 νٶ6tc|Sɤn{53k=y-_k Ruñޗ맼= (l*;ڝ 2 mZtiI¨a6v Geu%WG\ڔ jeB#_}z+>HAlo΢9+ޓoKg},b /B\&>Bpʰ֢+_ KK /;$MUk _nVDaWۇ-7hU(4pV⥭|I7\=ƚn B9ous?$ODWm[)pp2&]?tva(MRy8ooOA|tUDmfr|WkZƖc&yHș$Sld*&DzN>5}(P2 QQk$'F5k~5oS=s8-(,U?eH?Œȹ4ua.N湐舃'pXw5țǖIPOnRfr0(s:3~ǑwB<Б">(+Z@Zj`QwX$;7ט0 ̻XnP·Epr[(Y^"9w&Dp: 0*vx+g+Ws5L5_Ё@ X4uK f:FZg#; {iĻ8.-uFݸF *#Axϖݬb^LOp5e/Y}N#Z +=P-̣n/!zfZE|Öc&+xE M6_+@=הGyqԓcc6dWh@2EJo|̛瓐@[ mJ8_^?`+"8ܖca1AC_٦r8*CfJ)ll}=ؕVHEŜ8 G^HMеb pюt͞!-C?.+Y\[5$dEl?xO>yd>ȌnǴ*B/]_n4E\hm|ke]\%LwPJŗcO4}>!%rmPuf-4D)4'㘰BvH;I`QX )Md;x$Eu28 M Ohe 4134k,^. Uܵa%ɒ̾䇙u_iXЎf8l6~IePET@02nxOe!8V5v`V(xqȵzɰ*whյHɍfOf]^mJx$;5y .çb ]>}ú/&$kw,OeBq#ԇs|TziKNJZ&qOg*g|ģe<?I9"1v  B2Ku#0~e<\MXQjªOVGC#n-0G(٨?E*9vAtIQP@P==uPQ8nLT7c X~wQ w$|\݁bVm? qq-6)> X˲|UN0 wK4m2Dyko&m-\gv6,U5Sācl3C JАh)wӯdl侮>P-2Og 4Di"!~הBdx^Y?'M L/KY٦MnSulS&9F+} 0JZQ`G6 Fֶ5Qe'Kai7B. _mILTǣ:)惔oJ!s% 3},m0ڸ5B}T= NA+PeXxțR{Wƿt4/eRFz|A䀘6P4-]>Q>dÜ/m8l +E,4nd 4lQ}gC.:/7B)64u46-^0o ip0_^G yL-C)'Ԋ44ڼX\Z]š1[7&rQ'y`VMbhK8Uw㧼IRʒ[M`?َ0 {?WH =vsqz[ :&ʓ'R͏M[ӡSQɣ0,s4FHotαLr㳱^ )rl PZcMs+n&NӬlS[ ]aqo.(gD?+%dd9fZR-4eH]I`VpWt~ jRy>롦2_}E ,nE8,2S';Z_՛SEy.̐NxҘR ZZ[K'pvm>:=`M'y/xXW^^M؛-tقZۂ$pGD+Ise})I7ʍˢ0G7`)R^#T@ +/p.K4 [GsteuZy=JsޮXB_rЍDVz߀ ::r$_[f糄HqV{L676r GlūU`&573s 9T/!k /({tTw v6?5͕ΐKbA-ӯ5QY#蕨1QeM:!8 r,q{wGyOZy:(kOjct ijPgⒺ9e7!6`<7=e׭w{נHĈ$292Pi)1.aluIgt!U+UR[;JO66n9,J:!Eu֢ 4_Ttwl\F'0dd^ԫͦiA~A T?=ϊq 5p-~As_x| 5;87B H6 |b8ol]ot(5@[&]I'w+|s11ޱ(Y[6b]I= 㑳P $B1ylRGgΩRt&Ek7+<Є94<Bǝ?-bPZp8'_a̝4)18mfT|wwHʜ(n!`Xs F:bNI_!'e#(r3$,DMCRJ~zpqnׅ`0Jq 34c󚫓4xqiO\rVR%&`_w嗢](X$PKޱȓEIȽbeuȝ6PCPH"GEZ>yI\U+$ ;pWB:i;wx7"19fVv)q7 ס| -R [g!9vMBUnl 1@='ٖErLqyob R䫬 |="x>\&&q$* f#v)oH:s9x[ӛ, //PhND`!r0 66Oa?M쾎ʯ "Z(NYJ%r;YmnHױ*'39}xl?wHɛڶ:MhJpU4B|~04`T|N {B"5ꮌRwb?謪W[LigjU  Woo{&S#/'&7gz#jUB8nR+0ZTMv $IGdH֧H()IIPGД0`{[8N0+,2&@$7j!=TX1E3<5a==ϲB'@i 6ɓ,i <8+Fy/R5%!x!%eEyKǂksȨTXϧF0pBzY j>wuo3ەN&rWW3t[fzhzg~ Z6[~͏¼ɵ,zH쏂Ů#_.?^zZ{5co$KEIz@^+{v&Y] `*M-l=WzAwYO)EPŕ7?1wu7!h ;ߣº|PfL_c PDb f ^(duT!od&C;r)qc\ʫ,*G@تjO Ѕ{-sK%ވX[CH-$'&Dpfܖ?wњC9RV6lߜLƂ'6Sb|`?|,<R50 }Y7x/<8w/!̕oM4\gybY-GlΎ*RjӶLҟ*yYwxjk#"w=s|>%34HwܜӋNm@d Sc-_#I=hK-nhJf4=g&OLJd/s,,?HꝓG92S8. )Nwoh]:3 *9 ,W :0`~΀xGIOg5ѽiHH݃@̋D;3؁W*44!l/OEU8&umԅ4oO#)wOh/eɳB5r抅_2 /o[Kr_^h@ J5c沏 V<և1w&鶦۪vE̟O.:qo"<( o=F4{"o9ҏЎ-ХR`گP) {D)7:&K\;]cn]< jDk;,ȉrjs杒hY)[-鑶õ1 Nm7HV> ZM|(" | `&v낸"-6\$H$l9$=G "&)cs ?D9 xeW ZE%^//ԭU;8D C fgtAPvFڞaךEAz%>Lk MWŝc~tI I.*)ezOwy[(~iCa;-H{{B̝=Yffj61XA4Sެ VӪ3aL\cj^שT)u+hGWNzyZ'9.h\HaGENQNݸ%Sn:YJS>%&Er<͹I;a҄oF6lʑ-RdޡW{D:Щpb[++jɾ_h4VGmɺ~$UQ6V\6~ L/ E!o~\g~NFH1\pUI~ RW]6?jxH V +`4&x&Ln3{ڦX:>sh%Q$6ꈟ$R=j'|*YRQxj tQb5EIߖI=92-J7ydYF2SͩDQSOZ\^V׃)r(Яax, %f#)Pb] E'`M֒eV?|5Tĺ4"K* 7fWN/~5_*9${ 5Kn>o7~}׬qq=\`◾~!TrA=&LYOL$B[@1WrzG*CCٷ8A3w0Sf(M!=$lCe1^JsޗHDW_(,eܚcoD ֏<7iY tagQ.5j+Y7jMEzxo12A|Jx GM)jaeYot.#&ljmqoT[ܖM~C+\0)nO= z=jİ>ow:ahM,{F>3[&MFiXTnޗW]+y,$Z_jXre `{bOq0pDޡ f+-*78LvNx1\7 >Ē׮)Ѵ(m,ib]p [cL2֘Pb.Κڀ9Cq'6^#^zrcܯ` ƾXɬtZBeiPy' ~}0ٍ1 "|+74{{oܯ}E&XEkfX̮C4" aS13YR W/)`ZxO2sUlsYcAZ8ėP3xhUK߹XUҡ'Ò=;,Q):f3NSVf $C]( LHPwE.I:,c'n+!wyR|njF!֏Zb*ڪA%e/=Urw\~>id@P\Ie8wIG$Z|lE`ATl,(LD9ұ-qky54߹Q|])Ǭe`ΤHiERBLSS3Θwč421R“*@R-]"Ik8̫ ,[g Y˸f*qћVxscu)ivmj?ǯ2_ ,%_g*uha|&;x )+!NKpe Lw@\/usV7b$DSgӭ5_%Ms撕lxf3yYOb{]NtYPV괊+ܦ$' S4 r)\~!g E'/-1.A~)]{Ǝ+> endstream endobj 143 0 obj << /Length1 2522 /Length2 13483 /Length3 0 /Length 14911 /Filter /FlateDecode >> stream xڍTk Ӎt C7HJt0P!҂4H7" ]99z߷.ւ}V` Hhjr@ ȍFOeqOFrs; a!2@e2 p s n P`7a@vK]|ll!<`dp tY;T! 'hFKsG&O&Q[Eˋɝf#^An +NZ@hڹ[C@up 5px d%`m)s@!lsg_`rshnfqps#01:[I@w_ع,sp^ξ#k;g+_mXypj;۹zd~l@@-Z>.\}].kh ;k'q/qq,! 3P1o7]?.Ͽfvvms1PQdRR`o/;? vG@gk0@_,? `:L|rnH/=?zs';G,^ 08_S]Yde stqwvrv +u;[sws~=q\@A/=T oJYgKկ0ws3AB7V ᅱ @]`7_g%RI)2I)/ r )x ]7A+&hvͮ%Ahvͮ_&hv MZE7Ak:Y&hTg v$$NN;A5yoex~\ndNTG~ ?:;?: ?:=?ZNwd>3] 5jh0;d{\H3d^h.Ч5* pC@ #~CwcP'w7 AC UN }rBl@t/ <<@he^~8hW Sf7䯗 ? D[ |S#Iž9=2^/0kbU̪x(U},۴ͨQlߺ {y Lj3&sAef`Ș;Zgj}@h(¦N!JfES|7Žu3LR{Crnuii}_*YRO5e8 +Ew_H+60H]I%4qos  bOӘtDB*( cxv"}3,3KخYXj{QhGSw }P&a5o90+l_{Ư(H҅)#Nta!Us_uUvtFJ v3a4`%z1skkdb4D2;G{eyBe. h~.\-o^E]& Ꮄ&i/xn<k9sD 7 /i2m iX;:wKk>_0DYUc)(/y6FMuٓZ^^dSpEӗmѪWx-qwuG I&1ӛDPZ-՞!X]lSO( ثeAv a욷"klF6uhw~Ld˰,q]Ykq?}½}Ouvv:>+Cj` găx"0 0M;,EV¼ ŝwd!?C<.1, Rاc\?\,"h%?gpkH* \XKȼGfxq&"XIVlel]ٍ3dfR"Q,[BU3,.n(NEAy(E#pMyc/76zn1M~0NH7>\Y4fhz;b>>>e\8W:\My" 3uqٓJB^yKyncħu6](T(DIgt\7zHaA8/46X3d'n+vNbڟsu?\Ogvba`n}j|?+­/4K[;.$]KJME .Wjj ,Fu9= m?%٧&ZwӐ-%aRJʾ|Ņ=K"쉀dMdQ:$LjפranNv2F43ЧlCb{i}& [vQzI,K$B %I9"JiB6G?P%z'SBF!&6nܢ|LM^))ASvmsI t*}A܅Fg1N!qiV$ꥆ2f  iI߬:\f|B҇y'Ik4bkZ\mS,gyqXȏ#^8U3a: b׎iXDz!Wu}xsW#DkZ 5 FqWh_RpRWѬlH{N)4ؠ [@pE=8I7 -3d@ʋ\ gڊOdyp(z DVrz<U .zxS7Xא %]%[x?^K("pE9] h 9`E5 s?ȣ;"6sT`hu'4}ʈv[B/x;6"ޝ@F~Rfw£i&AK {DS՝/jXҋyhu%TyΙY-^x|pM4bdad^Ewf1,~Ӌ}Zmh [3,8? 'Arҫ @?cKx]wvMnI u͠+4-ga8,lJ}.6qYMReI4+xVuKF",VJTgh4ͯ 7%FewIj[L[O2> SL&U{RD~ʼ"zY͙|HY$[޴8Ӂ57#\oziŶ!iZH;|㢅&eF|܎mYwu!3v+L5}&A)]%g轧o)_ O=+'l~j?*[/fV'%^ 0E ӢB0OPS:`}uC *슢R^>0D<0e޾P=yYR ~sMΑb&khؠ% J"p2TvcZ?ux@O3bwYg^2)fOgMt ^@~cD߆PG_c)>khnoк@djIƹmfBa@o,D`*U4F,}]g$uӫf.wZ 7tiau>'!E|6w~bS^'tFO>{hRJrWQrۇ H}w5Gø@pgv;t*sTpŹG԰/vRHRBr-;>S* :+ә p 5Oм 4|6A-p&혥"eON``ܕ[@d0ρ5HrS!SA,Ln]g'V&4OmvluvՐijo\x+h<<&9Pqn&KVp~7K.f]bC|h+M!bغi?UfV>z:$\| M7mIz%;4(S?eb&QJp8ww1ReTToI( QGA)Lz=*1QztLZ.BQ&*a.)_˵Rؘs +taG{ݲ<,KasH-z)>_%Hjz:PܑZ ,c0 _\o}LFv O;?ީ2p%=NMb֛Ualn</ '-HUe]lzeY2"٨=[CӖ;Jٹ{ښgŴ6 uό oK濃9A4 cJB"9!Sd.ChVm,8:%7.IbN4R u]y~aue˼t![)Ws`mH 7>q"`~rO)yFeE%4} ,~jsgF7H>MM26uGvt(RlaY,L+•_N@\ \ȒE<٫Fۿ*m0 k7A8bL|TJƝxK:1@U7R׭-0{Y@'`є 扇[-QBs1FEEYBòYn~%skVaoz]"]sܔyP=R팘t%êGDӍbͬC;]z{H?m?Ք&0'*2hkF R_%01Y8oj'N[e;\S3'*p@~S},x|/˗R] qkqE✍ɘs?Hd/Fb]@af- FW MUjf*Nݬĥ9w_Pg-˄bHƉόc1ev>ڽ|[vCp88dRh1&ڮFBvM=ҭzj",f{QEWIdO*!1!Q0lZ+zvEy#ʼn6ϣ T;pN-c# 7͛?y_99߳I"{Pt,s/-jQH(y!lh򦛦= |ok; ok*zҿ3{ϔ|UɸZܠΝɐó IftNly/}m^$Dl۩Jr˜t~Mp]=\ -J=nkXꍙJa qzqSkcdnRW.x$2WN5:! "\|r2%^?+oL[i4&}p;FҺߌpP]jn#|<ύ_\F) 1X-PD$<րrT>aԄ^?:K(@TBZNWWC|ANa\9H`IBj=Kjt 19}CDS3|} 'R\Ƽ&|ocNL6oF.3'`ŲXJ.̴[2B.;^1m jOev1a3nc?95o9Bͮ\ꃠTdjs^Ls˔|+rڽ&=& B8_cVS%챃-TJ-B9t:Q,#Y<+d;+8;`n&jy1IAZH:X|ޫYسDv¤F0+:MdWf$?jOauȚ);,ʾʳ@7qZS}xy|fsȯa˳Kx/>l>AlC![" O}% >کDu ɥR+ %۽+') S:$'[C@"ԁKP6aY_G_uwf%[A^gH-x}\q#?UJ"}|:^\lg,/IVE2Hݯ./"Z)E|S'1{޾mhhs'*ӳݠW߳03V9R!˰J&T.e9QKW9\r8<{z5”ORJ'}oYzQpn%@ y>ftW-#9wlrk~cu%D<%5dxIiC4 ng  d"YhFm}K!CܓwIJ ko1gg2"T\4rAK=gi- VtRO J__-͚h6?l_Py_f_)`=;*ksHبo 3R5'؎rD2g17\(%+l/mCL0 V~!+Q6_5wӓv6`UɎm[>O=̅R1ۘK*sUen#+;\m0?bsm sZ!.G%W-i6 Y-~DBuXeDhx^k1 /v~TH$Ԕ`/ap`"gz g\Gި諴yܢv*Y|9tog͓@$yN(YORUZ?*3M߽у^:Y6iEh~ r;h S m .0/n>Y sᱟ1U=dX%N.sJN tvpR3v4דPI">TRY˄Ϸ':TcT2] 1_Ib냓!^I_oh9xT+Tq0K0 [d(O.&/AX "J.346~'6cn"Ev]t^yGdžyvҳE Iwd1Wb>6 @X$*@,ړ5^&0R-tmtdf%\57mHWraϷhPL(Axsmdh29ςچn(BBbO8q:er؍0عehtf?y fB، >WG+,0GB69QRwR1@jAmUZ퉻OY!Cw!Y^;LXƓF Rq; I&h2^ǁ]Aء5d\R%GϏX_"eW%5q[9VhMFAB[}{UP:δ^5aұ\Wc'wa}ݻݨG)!7 ['*uDjӭvxAh'# FLYg6+,*ZPS4A︰Y0[H=D GIHK biv_S* so {eaѭ{\vD'їB ֈož1ǏFEG _!}kna1{P+|;8dFS̾ۛ8\_('M6"ogTPF" q\輷$xYLL*Ï)@@"NjAUٸn+Ya* e\ҳ裚[ۆH %Ws2(r%y e\)E7ﹷ"Ju&&%'Tߴbo3c0WF2HN2Wt@fg TI1F\!7]Մ+Yէ]uݸ/+Ds GwyUE-Ol艄=ßIj'MT\Xo!MU\/jY֤${-trط94ϲ'h-Dr^bޑxJ{ 늣Z vB|&E$%vKw: IEn,H1ϒE|kF;t:bG~WK}L2۫(7x%2/1nO2{Tůpf^;(zɠWpǶ>GB/a/9Q gCLjAoyX tϻcN3x$}4))HT+,.ᬬOĞqIvͦIՄ =dP]o1Ku3$ Xvm8.-o_e;1`*UH'܎LGa|hIu\v$DSK\N/w*E";>Eg͋( I}ie@S$}>O[&jj~N<_hhO1I )>=ڿΛ,: R-O7a JVr˰ӚEwԊ[N4Im\fʷH76VkZbį]tڮ:PP򣾭/Q;ͲQ{2z Ov* }YW;kxL L$RU[`ܾii*[x~%+xnޮ}kejV#tnJC:fKO8ޔY]/OgfO??.$IdGRno Zϭ@+/_;t$n4Cf==)26ҏ#\k GzL3 d 5afQn7 bk!jY)bJgܼa#]1W^}L}_1L8aujoԕK+!ʆ"gOq O6<,axZylpMz=J21szQ9uS2_q婜k L)nk2 3>U!Bm~fDg="a~9BFu*;4Zx+*#ʴp/6JǬm/.v4 W_+,ZRrRq[,B=H#ħ;.v XD bբZ蚷ǧp/ufͅE[3"Œ 3+Ly-ZULU9&qSgT2_O5qN5{]H`}+-nf"p u4~(N/XIA  fL;2]:~0 [;9y%*u͚XyҧZ]%l/{Ŕ,XyXZ3^bawi.dH[+>u'rϢ63q3s~Z*.0W+:O lJcz0_Y _%sހxv 4'U9w5?`^oX,4lz:V;&)V='ӪcɇzS'wQg'xY q`;%3Dn|Ȕr V5pfũpfVe^U k{P|M)jQ^W]vL97hEv%ZnSv/Oo۶R7k Ɗ"ZY_'?W5JlF;Dϳpf'jb2:Tծw pzSoesrQRlv$ze(8n5'gޭr̸5\xcͥ0aAϢ(҇:ULUpR|m8xI7^ <#%wnnIOMz+>T;Yz 9M XlK'$b+x$ W.H8Y9h-rV.XEIB9b7*@8׏%"י}j[B^rRS,v9Bk"c&!/hRڞ+BO]+mi96}aCP`(x9>AmHj_^ʘd 7cz_lcF^^(Ο tcFx\@r{ ?Rqqaqz|i 8Vcyb@W1eD( 5TR B+й`6b-#ཐz`bw6cծ uŒE[pfk8>ܑ66・z .0m$ͤl7ESڮ*60,#tzؠ-yq ewJ_͞""1z Vϼ|#Bat$q|V>x4!3DiEWudl'HTJ&l7_)Ng"Pe~0G|)2wOs{Rh{MWTI*>V]tv ;Egx soE>Ig?"K7Vw,yw1B>"nr-a{ńz4{2ʼY_rn,I\4T= rߚm9EVפP)B 6V{5[ TGbB~LSikּd%=7ZӑʞGOY<&'UYŻl-BZO3uRqGob'D U5 )bI;Cb9lXd- 15ifO[b&r(I/pw)-X UBSJ3E,~"MC}?pb-.ZN#|[2fx/rd-,BZ6Ԥ{ اo4Vd}|eqGB4<<šk<9d҉ĐںyX |ی]<0S䢃/IMК~O/ko:F}Jܴ^y-HZ1Zppk0uܫ oD~pI0VR"ڥ kyPtUK̟zx)-_<=l'g_vݑ!8Xs> stream xڍTl6L(ttwI.,.-Htt*J4Hwt>=kgg憞ZMM(qs $55<윜XZ`o; v! 4mRf08QPpp99ܜBRf`K2;@bK:8z8a<0Z0X8:- e35`<Qspssc7;8[dba   P1%e t̜l@G\ @g<;@S^ IV r\\@`,, `Tea0V?oj33( #0+KCv4r fi=bO ߻_͵8AF 0K#67aYa>NNNAN^ t@zA@9/X-`s;: w 8|, vCUCBIC/8%$^l6n>. @O0\*w@y `kk͠g rqZp?GFWoE2.vv$f`;qvWC @KzafXs` hYX9E 9@^'Kga Unw)!`l 0n>>|K- 7y@Xz/e o$g 8#8: ;-,a/w@__~N_`/7g 3;΅rKq#:t.8A8txt3wDx'9`n/?pqv?|?^Y h5;`"Ȧ&J̍mcmy%4F+0e*;$ajYl Im8xt Րa{R\ AkM-iҁjX )ta:SolVȿkn ԉdH̖]p=jUX!~AR88R)ǚATJbozwWIbG%y0! u@\ɓtP ☐pig# }fʷ{6]qv_>8a$ǭHQkcNO17"h?7qJ8nh"$'=!K& _XH!w o{XLҧ)mо+(f@poz%^ްUS%Q@k K\k O?ֺ2mzy|n\n/#-K:">yK>۵tUkuNrU xe7f.cR/XG.g K,4nI17"/?!},tPs$ɂOע4"^:Ocא!JyXs$N].'wAK$ӳ^?6n>[t޲sA3Q8eVV̟t>BH3}cw>]irJ6~{W#M\`T|PaF'CiC22T"qpt!#,UcwJx}cjgBЅ.4Z$wτ==mr׹B"&.'8IXuooɑQʏ$3F<7,f" N_Zz%5űmB%O5%iŽu"V~^ۍDO"f`+ǀu`%ՋQǜJR詭".Դ[Փt :O )>%{|VJΙ^B)x8${Ig[)l9:!'HUS<t_4SlIogtcS!bt͚cID!J[5[eVB\@]o-Rq9kg/'9ω%jiy#m4}o_"`z(YJcbJȹC#o!‰Fntpy7Hn.c g~,.ꕢܶ.VXggp6 w6RNj|Y9F.Ͷ ([i,uh,?rMq$8 g>pZ?(4x( w9(&XQ*`vIi:6hDlR(kzey 'y171B+D٩3| C@e$Hed/tƦnwcd}ciOxSPn}#g3sZYDGu'-ۖ[/TһQf ,Zxvo"ol~_*:)ҖS%‹v|myp63lOC䈵*UL* EV^)V6 H3b@'E6ʶ鮜g\i3BO+3NjICѰ]}\KsAd1|Fӑad!d۹\ Ԭc%k &/& V =ըz8$uјAqs!4"<9p e1^]. оm)}`0wro[{k<"Ǣ_Hc@ ML7&rj'h a6B2D'?v@_OԄJr}UK[$? } F%y?42rbנnR&O5#Wv)EQSG~,hޫSKy܍=#ieYI\[gzW!,z)'2 x㲥L"%-~Pw ,ʂ)m?̨ek%K"$Ųf2rŊ)K7,B[#bRx\r$M`t{Z(:eIHyx94y3W/+y;O :ǣv(h)aǺͱP49Z, ŏ$ֵ>!֡6YHDW4Nt /l!bd8Ԋ4 qcjr3o 2DYr.S1sfI\M5嗴s>*\"hA!9xAxn=ӾJ]'~ybWM'$=rϺn'0}+aBݢx&'eC)n*"4|L˶=o{aN+o=vjyo^,nHs37Yzjc,[Ud*F11r| e/Nk)_SC7Y$&=[c5jϦm+8nNnXgm訝 O">M@j2Sbo|;o,ȼ,.1>Ӹ֑H)3ʗ>y-9ƶ]}vӣ&--ChZsª#K:9bY#cO&8@}^^Nݫ{kӺK"B랯m)]j+Xs~v!Y8ݱQ9Q&K[6D$2f iTyT\X;s޴|7y~gL[uvtd4U@I+I Ti?~sj7jM%_S)`2^ N.+i_ G%V:6FqYCM0^|wg?w4aXk#7H6LߦY3 XC{ҜWVuzG/m8?;NgBPWHf $–\U#$ױ`>X_u܋n ͊C>&(hء5"JbVːq,&V2-695QM^2EP:%/([,ޕXm89jY.u/n] }j3ع: 5)#yܜ2R&*G^@klE&[c }1b˫d''pP̀V#kK`1XR( FJN֑bp$gVLkE7L0'p:UVLw8x*zl֘6 k Ul*2DNg썇7 B&]lL@ܠ5Eh,rYep-7TkUߍm{a~d1?iꞸY_lKU,!uK5S vJ@ٮfL0̰=.aU}Pm_4JX/e He⇖HlxT=Q&Ӄ`9 I )FxJ.jK$q`Ծ2k'jkۑ1q6bnQs?ENOYMEent4CcFF`VzjU@9o&qqgY8LeQH>8IqbEu%#yAqc+TeK頞N<]Ɣ%,w12.kRSS6.B D 3xlWB5{Q5=;kKCb"4D^A>,sC8f)A󝀜8籜`-ʞX?'|ᗠJh}=U؞lUu(&72f;v!h,* ג-y6*xV4O%ĥV$M](F"%@\yıC퐏(ZC-BS/Of ʦ_ϟ7YxrGŦ{;@kYQ)w$]3%ŏ#s`zĄ,[ٚ40Փ/zM3{HQl9(/dj ͪ\1JG/$I{9M5984cB{Fo/1nCP .:mSۄ?!tTWH~udN"}8٤3&/NK)?4D-3xFӈt_Nծw> HDa%7 ZK4ck\Fj!D%uMp xY]N+ڶl:`L(I|+C9լKEo_jkEJl}l\(\Q% y*d;*7۶?.SP%i}DhH͹޼Y  sKt><)A}5DY$Ɓ*+rF;JXJ O_gU6 /) IOi'PDÀ=R55>vunڳZ$L^sؼo^!V;4^^|1?2;+ yNDij# ܐ lq8T~)@@Qrݯp>afX53/rSӤK)N}O}#FRxMU&&FH@@*P::sCԙVDCtymwwQ(XV>r/[>)gT?2o fS$X/Tİ`{d 1yyѐ\-= 9@ԘdMj7zm"8By04SĆ$0TBڽnzg>!+&^A,#CHOUV RQJVbf(i,'t/2n<VufC'*@TlbE7̷Fo&}h ZE, :_iN*'HNgxƼz~X 6x)$^?vۯ6#RSsI5K충ϧ*>~jKN;u|^/ۤz>OyגnJJpH#s) Q2s}#sBűx^b jw NT볅i|XzҨ;1c#摍`MAIBLM1LYWnHE^ TT59[oWvp@m3nowAq)ۙK&;h\cwDu*8xl,=rtp?dDk)= ܨAӧUxx 袌(oU޶r'ۭn:"+ [i $2Z=MʬCm`-h$eYL?MIlkEQKer4I9@EAyBr)mrhP_I{]l‹^^&j>HcC,b 0L=Y9@920u݁x>5 WR%M96-5Ot4E[Jc>}F:` pŐw l^Whe'3$fR' 5_R7~_ \H/dyGUC ۝΋Ƀzncڅd|t Sܴ߬ ,l{V5 BЃ8c=5VN'crD}t 8V4T򱫝8@`*iׁwRD.ۊ6 w*Gz]ߓVnSwl|F_O0?잷z8W[SB{-oDq{ٍzRrlPyayklFP^q1jZ:弩¦\s6J{?'yﲚX4PF:8Kڇ6uG endstream endobj 147 0 obj << /Length1 1525 /Length2 6982 /Length3 0 /Length 7984 /Filter /FlateDecode >> stream xڍT6 ҥt9RMnc1t4(-H7H %!- !ċ~g<{;?I[WaUFѼ >8@ACO$ll0#/;>!C76E0&P:@8HD< Dg0[@ ) (_'$&&; E `8@v:tz O I4)vrC9yn0@E=~QhRg;\p!n`pcpApW-SUh!?9w?'! v0G(@KYᶿ.|30ls`|O~. vs9͘ ''(|0r3w?/) vhغ" 0gW17&lP4@Pg eD v74>0; FB}/0`~coso~Q-O+S'忝w( & >-"۪ y8?Uvng ϭ&FP?7 !7N*W]9N0G?#n슾Y ͂7>k@maNUEoVDn a.0w6 qCEMyGpxA@nrs[]ЛoK%8ak (xBB/͖BGoR7|v;/o$"W!_ɄA7^ AonWf_W uBgO7VѹYҤ+T>堎hYڶz ISы)o:aw7*h Uެ6{(-~D$)llك8`vͲMS )S":J.eV gt9i]YX|S$͙ǪY7]Iُ;ʅK_ܣ!TcJxF]^BI)=i[c;c$1:z'!HƊ4,QKI#Ԯb=GOLMc2ᆱQq*4=aj=9<}b;[9a,޺]ϸt&_"|=|mC('Wǽ+wnc<7M +1wNL a=V.YCi.4q)sЪzpe3pfoԄĻ!^-K1gj7QI_*tCYQbὂ ➌-\ʳ%ޭw'!c։$R,_Mҵ7uUЫ:r&0$} w˾w?wH ՋgA?[F>({Dnkϸ2 d[^3L߱o!DwS;k^҅UȽoKQ=a}tvfvyL 3({,\1q/StIļWCT]M3$ c?ʔTiMZDQd`T(jδJeΨ'$6` 4y{Î-;@f_~J5"r'Dpjה|'Fk.Gd _S4pHt 0q6 ɵi8%ch}t{3M/ǥȇYp\ w- MCi@ 3# 1&bXPdwqQ| o-y1߬;i(tQS?ȃbI+x1ܢNw!^rNǞ0sҵ!o[ 9xu.nwACЦDUثzKlvGZ]dxkW$u\zʍcS B>Po崯MM+]9;9h6",uWe XoU7jII!Xf)4MtB|Y II+iG\Do RqEO9C (s\yo!˖/pN02|,"LfVL՝,q$LxٴΛ`"d#,9fQ1{J2jX(`22nNdZ#x1#~m]`Io>;s-U6::嶮sE&Vio@)@ǝ.nqׅhm[gEvt%[l%ls֭%̽ήG-JϟP v^ P| I`uDX"Bp<'j&+!ֲFu+wo>gb(wikʙQȢ=GCꞶKO⨁nR0|ȣ V霷2Uh^: °pƊ٨È9Tp\^ѡBw,}6}]m\Fh ilQ_i*'0gqVVp" XG^2q6#xo[xC]}q5cQ0XdϬy078 .nVn'[HtȾ^C;Ip:y^ղBIh)m75/iƳ@R't_^fu<>SLa~[L}{Es{JoE!wlZ̅5[ g[ȥoX<>8VaFu4`\$xGn45jTci}7IaRokby5.i$I*yRǝ1#7t35uKuOF;eI'R3$xߨ6WQX7ԫIo7Ǖ̓ $[">sE =Ͻ y~]G[pz&gJmeM+fX̽6y`ny$CfXKEZ]?ՙOuxCcRM?b"_2}d:>`;-C[ aV*,RϪ~Ѕc#1^G+2/ɺ{U\sq}Nt~nJx$EQRS8WvqdNDgϿq'_mضd:McLʅ] _).h%< ụ!I IhP"(m2|iJoZK ´ɜ =Rr[͟H/57s7c;l-n_-.kpl0[xlJM1_f W+,"'JY(v&]eE[U7AGy"~n6Vnb>ވ3ckV S<,=ɔ"o`^~] 1+eYM88͚%,'K :Oiˆl 8G߄h0^yJ|Ԝτ{ܑOӶ}1Wh;V:[vӬFVJebbN;q8:mDbs. &Zi'm; "1mڶ6`#20o7֋8q 9)ި9Dlx*QۣL^ JS&rWzqT|S 8lv^`ld_WOؒrqeF-H 1]BKpαx_3fTBs")@F1+c;cS|f{Mc9$Dd~6XIYu۝Cz :0'I8_<70 2A]PK;ڿRГZEu~!.04]:'EDej[^-q vvv2;)?kz6hI?}S8d4E"_b$}/|y/Ύv޳QkA)j^]D߀db| <;WƢ~k}QP 7hy#٠8,Szz#.׶ݛiO-/Lۯ;?)z/Ǝ{rlzؿŽ[%ࡳ ž+bKɉޏ)R? >|./ @'oC#JSyRaXKYm繁|BZB qQWj t﹋%z+@KDo^mm^,c U*t6Q".9NIBkucj/ǟ8WOE˵fVˑoU&]c&YGTLIIu5^ GESѓ%ͼKU_w'x{^)xǸ#rޜ82 W5B:3ݬ 1f)v's3 cM qv;ZV-ST$mWHt QJ/OzH\ݿ;Rf;nkJiם)-ZM{qVU}NX|.ASs, iI >kSWj˱aF"u%OKrA&11vD =,Y&kgzD~xA KPX>#pq#+>IU7G9%yQti_WoCmCuBKILb0DJdBJ$ ,<gfqr tRxNqdXhZd%"*_4s3vJ՘L[ٍRd9N$Jc.li cDB=#'IU/_[ײy^{QsY| nmQ,&A %%=K/ 6+Z'n~__ KIIS._JT?0עqs_y;-/=/]ή<&ʷAQ#ǰ8uY%G}pq7v>ʊŇXk^וs>ж#|f=rW6މK <I,WFGrblOD>VhKvK}6=sR}#~7/r<؂-{@r5:Q}zJ/noq;~hkI4Rd AM5u(HW|K5^:"7F%% 0`| ws)mHPyd}d95*`piF(Mp1'IqlZqȭj [QX6UrEMu!GGl: {Vb/7dtO~M{SeȊKOVI%!H|!ϘԖ9d0\vc3;Bgb) endstream endobj 149 0 obj << /Length1 2043 /Length2 11978 /Length3 0 /Length 13201 /Filter /FlateDecode >> stream xڍwUTZ-N oܥqww'6XBpw'8 Bp{pw3sofx]T^Pj0Y@@Wf ?@BICC- ƎLM vcA9!p$A/g/T%@߈`UXA/Q4A\VK-߽a_X#ߐ7to:p/? 'R5RveuȀ 9_/'_*ssǗчR/R?:_./O^ w3uC%?/չZ;e Y]= 8p(^x^uis7g症ePwm6|CaeA v co 32P=h*SJXRcna EożWK@ Wz}ūxfn鮹HJy5 Y׽dZG'Eqྦ7_p.즋q(#9 ;"bK(}aV7zg}᳃XD Έ\9#(8kSUڍYpTӈS\m>al)b*7<6iBN}~\޸O"fƭb<8Q֏e0Ujz(CUm_r"GDɎz:e|.j+ 4U` %? 3 E7qwМs~Zyx^$K.=ӥ zK=EֿCvLS~ X| !n!5@' Efm^V"ݷFVy:cHre5CkvFU_]9_G%%BM-X߂,4̞ñ;d.\!`/JX$r궶Ͷ`\B vgjfRj84#Xk2o?oy&V602xG {Yl_c Т9ޔJɹlgzRi^-e舻' h{rc_sDBFҰԊp8sA[U %Ɋ 1$:EgUP-F*3#Wx/",_"O6CAhK$Tr "tF1ɅIxTS]e!ʹl=W4\(j-ĭ 4Lū.f?!9QC+ "ล;/ 0ĘFY5(Q*}ٝ3yu4=ƶ ]yEf떴XA?9C'-"ݱ4YjW$= طhz\BIΛ*)1G[$Cs^,?>c#-,3 0"XDa^aC!Gm|qʔ37?Rb[82:⾞m`6҉ ,*Oߩn<2`, =`ta^BךL!L>G ):#Τ;2U$`D_9Bpau3~#f˵-r$"xZO?8)9-Z8hWӽuŭmF6`b0+pdʦBQ1ȳ3\z!:p)>cǓvj?{R I |vhܹ}}=of\s54ud6yoI|~~Jo6X}PTcP';WP'd nj xdIbY!;$v֛WWծr"y7V'f FwP;r_ ''o=kcjRS(dԡ =UzFGjlhoF(,WY[H. w m}p1L*+I gSgt3M 0"utC'b3~/]*cJl%g'>A;;UFZ ՍlSW M9u2+0L/ OV :أtQ_ǞQE?80\ӡuv@}cDцUkD9&bjcȕz%g1fzfj:*QHRߠcrT]Ƨw|~ԋL a9Ж!iEy{EZQIB5K͡z,ɛUFq86 N| AJp O33NG=/iEW?`ZOUls=2 WJ]%T-Aju㲀A;[A&c*+.͒w#[OMWsܔoZޚI{D)YF **[ ڗiZԒYϳؠ9=Fýa~d]u)ʌI'˚:=#O3_N؄14Z5|5o3?bV,]bi~}(]q7X4!dh>t9 K] ZF7%qnA,|i~axd\sm^BRKf3nHC㍉.!ř Nړг,25)4m#N5 I yh߻Q{CNLԞ?mAogᑛ~С'AZ"j%^Ҫ3Vz}N'*Cf@iX]m1뉤-=+ݔj;՜lkoMlnS_K$`~hi|6isRaF {=z!ՈWVG}3Ǯ_ ^=3qh%иҫ ۏS9qPwҪqqr˜4= ڀ3qICO༯\Yy߈;h9т3%ǟ:)y_F'&-\0a :]r85\et/Է>'<'~zOkE-H(m.8M'X"80ZeWBa,@XxQ2S('eoSእWE{1۹4u߲ʉT p˃)MzYjU,?*4,L#]XHP_@'gB޷KoFm5?wmɯhr=K E{k=SWn*%U1aWp(EQ02vTxlXz hQz{YC3QrgN^g_[ mo^yz|ΔK%kd)p*B=\zEzߋ>:j]'*㒎*a'PF<0O+ Xژyp#C Nq v.> BzK~oy8J-&:y-μ1oJEل!$Nj 0I8aZ+G O%M{G X/k}3uɁF6R+/GwNC<$3 ,Q_%`-T~idwY>|Β8T~> }tZYtxJDT sxUm.p Iv~݃Km,LK% 鰢.ͅxvG4[_3MswyuNGcI>(-C)j9~#kݭkrL(sNӮ/iNpw9TWswQÿV!T+ eÿYQhGY)B ;X|V*-R@4jUViOZtVi{c6LX |@g{)ֹʽ :;dU7OD,T /uf9[qjќ)XB-0jԄ32Fe<5Δ = 7ehIWc&滶`븵.Si9 WM mZk1;; YO b{gT&F-ڱX=͍ٞ$;iys8kq#MB{J BZܗd3kSZ )5JA`(`z3;V(ժբ-DÞp hj_,yyu`BYXU] D8RC*Gf1#UGRsƐv9CNQWB,Q\b{rxB/{": =Rm^L64>"y[}-);+֪|/+/q|ʟO|#x.sO"OP)'AT T&":l̵EiCͿOR_X)&ߊ~>x\@g$LM@4>].qnwú-dqRuS lS`~!J YJnj /m]ά8䞿W8XA ޅTj: ՞w ;"H-(WNێ8E49pdaq٢~MrqQɧ=R̤_Ʋ}|bcY(d7N^:cF2kWokn|E {R'0nOv sd lt.*z%$jgwמ[v9c|t]Au!î1i#g | .Evן0l"3uNG=7j![iX[^UݟBu&;]{.4j_nޢ6hwٻ棦x5.MV\Q$yw~k_wڼE{%leyD6|#:db \ҌCM |hV  ViT܁Wa넦6ԧlY[iU 7d|VB}cBħxJ1z&3ܡWFZ0^j}jW%DΒ@{"[(w\g蕼]ҭbGд˙D)|˻ROQOPPl? qR[-$IRh*^M'} &Sƙ“ZhHL"rPAks{)(5VDxAѯ%؛L !.Fs[ Kw l5|{Oπ1${w[2MF kAb/|J i97kZ-Ӣw/BiQlD]!SJ:/SN"0vp&XR 1^G^\cnGĜp}Kä/!Цa*i N>K I?]5br 4ӠAK9@O!"l LQ=F,?5fv][J7/ s,S$ZM){MH2| dPV[D0 3؀ a^|ڒTVQS3RjRKŶ}o( 9o$!Q;Dfxc,Kj޳䤗v3Ewl5%kV|lga$hD^18)Tx@-L?='<Fa. wZ3h gYO]ey#<,1}la-/tC9N2LkŔgo#kv\ ItHAg}KTя3)>\Rqp䰞W; !#=82(l50$4f~0ﲖ$CNo"|.S^ig4r~9s n!D2m: |yk&}^'DVN0{ P [n:%9f ݑ,AA򚝚# tU؝bpC~̃[.>չj]3_ӎ'a#8TNxbw#!6OZ3BG5JπX YZ[?J_)qp ƎL\hnmg)ܯލ,6:&2`RG(Sn /3+U),JDj(-:?$ڼ6dKꝊoNlN]'g\l=Yub~GՏj,?%\K~G~(59hu9%_QԔ(gtxϼ#x\{,EQ:2½uYM"MGjOL5Z 췹XVe3~B073h_t; Fp>OaF(q'¡+zw>/"V >nky u9ңJ,+zҲqj*T_RqƢ緕C>8ጡxJ{1;Ku7gWMD'nŎ5OfڃWԣ#?qn)EgC|8;8y"TΝx>}p.3|ak :t,iSQ:KZ2P7t SP\eȞc55xvl]+FU])){s@gEYaˢ2{~改Zg|83BԵoTg 1cb:c=Z%8WO+:r'[]n8{8]a'NEpHyO?}-Ʋo1Dۓ-n4 !O *FG21\'1FZqW^܂e%ɟZlqx[/{a+Y9)M v)[tS哞93O"%g^ [.f-{&m<>?:HTP#’YVWݷ6΍n\W ky᪖B)\STHWkpq뼛rТ$V_L0>A\_:JYi#SCp?<dd$r-Tۡ(nٰA=CZ5DNjK(64}3=o]RoHdV6bQf|4M<݉4o= ̯Bt]ΫD~*SrScLQ]FLӓBȐ;Ū-t3r᦬&\{8 W7#XtikNeneǍ($( leA k^e n#u>ɝTB$;}I؝{`W,YW_sxG9yȿ~Nc 7k|Jdukջ9|^:"Y bm휳`Mcm.:=(0ؕTwk=d:;X鎘[}'nr{~t̟[YY`A~I9qke(-=}BES{[ƭXbǧb;=ptŀID H;!QdB^CaqzӅ3Xj!).s\DnQV7nKH$aG6 ׽5wRlHh7_hu+"V#0*pC`Х`HF'T-]LD"3>D c`~nևͬG&{0in]:6EnlB7$u>Ii; &}WGU'suV}LFf c'M-m$ ),{Q!^=B {y'"dCDZPn~X`~aL͖u\ aeKr?{1p0ZH;d¸mT%X, %?Aʊ'] f(ɺ $ {] 9r=h.-{0.[Sznm}ǧkxU p3˔zˠXBq]$H^k;IvM &h,dLHq^ѧ-uh&F1[$7_ jl XJ kE8Vf> stream xڍT[]kCp/ݝ HkqS(-RH-N^ܥiq}[ޕ3{Ϝ$Lt:60k Ȫ(@ ȋĤ pŤvsIdVp\=<|AQ!Q  -䬼 65.2 vbA=X<""BnfavgY9t` ?!X=<\Dݹ`nvOY9{6*n 6.,&=78A@`;jvtT.`b?vO@p`.VP_` q4T<|<8VP_B+'w de qVi-Ŀ tA\<ܹ!NPY3 n`|}>_G(B6 tփB\=Jr&mv`{]`=.?y~U\B[0 p_@@kotl'[ 0; d60?N[MXCY9E@PH $ ojZA"*Ama?oߕx,+aXS?\W-)x:9!`KX9C|> j0@Wjs6O]U4<! &dg/}N(X聻>#??oRy(fkyVnnVX>6`?Zy]07_*(e20[%WCpWjKn/CfDܠNq7p!!^[ Q :f@bXG>X3Hy5!C ozd}!vVS=>mc+*&]}ʥzǭ0Cn s\v9 L]3zKDO5YdF4>cyyD_DZS:79&~F @.kfe:T֘M==J(-dl#y &;xB 9 Y:Y'l6 GG >j ^d"oռ6[QaاEW^)w9u[K8n&]:ĨY#8B~*6Xѳ~{&{,<_%܌yTLc-]#;^Ȓ/'7/]sj~ldÂ%),?&nf1WNp =?`&l|S l|0AhH5.m$aTkו7MI 9pU m P_k6G;QS4/"!)Q>욃6htw<1 %2~Nz*U֋o(G\U=$ќEt)1R^'(ULi(VNѢ$}D#3\ 4k$P͒y0(~̅rc++[x Z v #g>S 5BYa~_(q/nL4Ⱦ'@@m%W9{{I".XWW>o%Ef%):(D{A)T{!" G^xW=zDfP}"r^cX5-,ULw ΜZ=%4x9!0Y|~}hA!eڸcm}5^!0j-$B|~) K[qk.W\_ xoQR|ds6_G)>Sc[ 2# c"tg6v^mߑS17"VW@nCߺ cJ怼@ךOۭh_nI̭>m>; `LD:ƼTGy| `yJL;`fPx1F8S9 +[n k?uc3o;wzD9ceD`<.#uki[W@a\G*I:f$3EOtħIo1 ;V<:4lef(i׫JsW|DQ*Au- Ӝ;?՞@ѥqF\KS,@DpPA*1r1N*6p8:QN;.i]>]ՠ*{C翀+O>Vu~@SjI7⥥i+zofu N2O+.._Lٵؠ)@{7>wVsBĵzH7Äz]҂s6˱%mW\Mv|6b>fbJS˝}mz9ʔ\S1ПBz3/_;Q_QuśO+l6`l\/onis \T[y:d`/J q}^f#]p.Hlr/1[}-BD-sP$ .)~M}DМ'oyD~cۖ`,LT}ru b<<mlҎɸXutƇ`o ڐX>AK o5 ]}#N[כ3rkm<.{%mG1Urܛ>d*d&EƐ ڽ,j̋9 Rbv=>P %X}Ra|5~tn(ֳSZJ~^B9vA$a&Q[ўJʝ:^$@! k[fZhD ]-cD( 6( ˠ&?I)-\ )b'B˫@ɭ%4&*wヰ0["7cSe{rX.AffʴݏUoҾFOu PP%Qb׺USH$Ξ$mb^(w x|F2^Z`ov):<-zK>̭k^ &dÆQ[GN)#rfV!aSN)N>Ȥ>JbSXnrPL0`U}K_c,<9ds\A닡Υ=X!;㯾_ 2OM*x\N_ΦeQګ_530>jVM"W?ܺF0oo)| vFh(VQI[-J0:LDUkLS ю6yku1<퓦}NFz N0j0ʖ'<^d wUK04`Þ\Ğm\Z7F$b(ꞖDtԋ=e!u,ǫiίڶ_0IR8c+Xjg[޶E\ޡ\~r ehϕ݃8*_P-§L"@5ȻlKWΊρż`-#]fe@yH(|܋xd9.S"BWX‰nQ6+O=F %{`t0N)\Wl҅ZC44q^bei?ٻ}>qy;tg.;nMC`BEtA|Cҟz{5pc=ԇ&] irR_^2f:Rg` d3"[} ގ"w-]+ĥH[$(.ʰzVF!jR)H'j-'..7V򅔟k2Uhp6bO޻TO*na]^) 4 锄i>R ʮ* 1qrQ^/[F#wdAM>4/s8 xef8sV5)A'0PIʢ?>`%dDC-^C1e-|t2B-|Q zr}G]y':` {%v@_,f:[;qHhYkwM3zNÉ)jLt$A>:b{2Sy J\~NS;.((>O4V,kX,]EzD?J$lbg%I X1:Ov-vUNNL4.[d@$] 7f*Q{f3@fOYo{,=4RVu+|͇6Ň!ɨQWcMj o q%01dx詪ۿ{(|:ޕE,# %4w2_WI{T\(r٠z݀n*p,*byF<{c]u9fzvF@p-`${yD^Ϭm6{zaY~_q =G"Qp,9(w3/5`7ݯƷy~]/ĝ^,їMihyh[O: ׍ ]\:YاF=olfa954eacabO`h% *%A^ wD m^N?t`}xK-cWAؗ5;]"YDՄ/69=B΄/Q X"X>K[ {İL/"T;T~:i'"8D-s<31YKK~?}[Bܯͼ~y4n Չ% } henAZC nqt+gy$ O&K)gKvGǖ- 3ߊoF1]O8&1 aE` inPbm$o.<%ɔ548Kgf;Sȹ?S8fH?Nd$`0*OVcl[EHq\f7\Gv3'}L۾z&H l甙Iv_U Bs)>@>x ɦ']Ùa rM1O"v9g˞gV ]ne6( Rʜ$]@BO/>-E:BH#I\r^H]y)QMi@Hܣ]#p z(K sj9Wm`!RD3̵mO8.;fvZ t[*获8CWrEgvO2O|+EmcD/1GG_yDgb;=^x&2_ib?[ J~<ܧ,/RvFPk(qzD<4㈆L=fcmzBTA!g=3]ǫ_z/N< ǂ0ֺ#+jJZyԡnU:c Gx !{1/8Bl9R; cc>TN]d]IWɬƥwdQ\  ۫.guIaۓ|RO0* ?Ico\S"ag^EBG9 exk0PA3 o#ΆY!er Is$+3X/=o)ev8+:7 0}?1v"Tg I<N<ఐë| e `Ϙki`-Kgx@{T_ⷹCZL9 -4`a$E- 'N?U'*)F_v:7o?[Wo,CZK ܺ$=\m*Xzb (Ĥ͔I{8: $u#՟%1<0uFn^l704ͮewYMPj@J?U.{v7Ҽf&L%;ۡl`x}O$9YIL5T o' Ae5ԋ{8!h:XF5NJ(+B맔\2C*$_v|75&v#~_W9IvT(5 Zhiܖ]pf8kfhϻQ)?=8͓R ̉vʺ "IG/֩eKٶ yU^z4&?6`uWvE,Smno/5 >jt_6R?~RMޣ\[ì;$?.lcr5(rG /ӪWU닶M}Y4B8Qe ni8Uv_jUxwiF&V>^_i8_tnP\r ObV~N68 !2)m ġ?IRnܺ8+=&v?Ϥ2MXxXߪZma41it:"4cm!5ҍ !I;j?=iLcFչyIRr41+{laTc*UZ   'l4jwj2ж+nY"D#L<9C~IIl *4)k5!.b #ݽb4 ?zQ𾒩ȉ!k y n![֟@)~vFHfguӽ nNnAR:b:ДmHڽ0tC tGS<.Q8Yg$Cnfe_J96Ne $|7@nя >3qa1q굳(&:d3\Ie3AW}LԨ8L.vy]j~ w"ɼ{O5gmE} 2tޣl#]zKA-S3.ҽ.;*C:GI#GEKUS] $>V[:uIp4opIӥȆK\I ʈ_/l h#I^ $(U L-wk=3py·LGl e F߸eGb#BY8k*ng<'N:9(Fi*\d^_4HF'bő"Hrk \8H<SATFԮ+y,;Y pVTc'ҟuCY:6jj.pXnlmW4D";3!^v?,^4⛊[TPY`+Brt]q٭(**j}qenmW+QFW뉘!61p;Xڵxrrۋk=^uG/9 w}so-7xk;7}wmQ5~f51JO{LUeUįceEQO:8e.cgdzנM1Nl߆uX:& 9lvQX2Bk˒#XtF`'bA5p6NۅPĉ J*ۜh*eT1u1y;NƟ]u½m$e1ީtl%{RV*=f"_u-b|<^uOn$, 6e@G{ %N07TrĕPGٷk}t?P0gU>/Z"xWd&mP\$qԽAx=#lIx>a%!H/f ȉ.n^J<8N"ޡA=Z[6N`k:VD4`m%<|ٔe_3-j^fʥq 2}q >4Vnm%?~ "EIɗ,p~er TiŮJ G|0v s oN[M>~ !(/ipƹFx,A~:PӋTj]'nQNm12D1OIYIwlMe$%>;vhſS|*L +l2"rMfm$ UbGOjj-Ά}MF8" ֫*̓"RK܍,;]K&8U6.|HPsXAp  "WzQ5[D»mv5pۋ`U9>}I΅eoa&$T.'& endstream endobj 153 0 obj << /Length1 1521 /Length2 6854 /Length3 0 /Length 7855 /Filter /FlateDecode >> stream xڍT5Lw#]C] ! 1 30 C HJ!% ! !Zfg}>}7HHD"B@aQ9}H( #6ݠ'͡(O8!/7L}$p r1QQٿH@ w "PO";H?}_>?(++-E!`@v߬@HO >g4CNDG)D9) |hg :~ݡi&:=Ȁ0( EntPd??O_`FN 0F`/"yS7{4U hOaO/"ܜ@{ڟ:_@ 08K '&DO H/Y~I@v#Ao=P w⿈8!h M ߌ @ @7!sD"e5cc_Ϊ!}B!1IQP( GQ#0QCdPqs|)s8?+ of E%E!7~.w 4~d`wߟBDycR-Zr߬|cUͰ upOM/81Knp )܍ 7ϛx뿋j H_&Q( I?ƭP#F 7%E^e"&B qo$+ ~N_ JD7A dQRo1/F_ B&ǐpӷL>B+ iĄ l ]_@S@M[Yl5~'BlNl c'0scZ0X(Z @U|xnkJߍh28CY|{c"yDϛ~s Έ|*(?~Fr;te+M!ì._a-gvK*- `a^DY<$÷"h9 k{{f~Ԓ#i3*9rfTjX-!?u `cWmȺ&(}ެM7uʾbk80gxUIbhL(c+Bìq>2lWK_(,**nӄ{vy_*xP1x7-2Fm\5$|6QxJitR2ܽm͑r=A'wi\},U`߮oosݗBiR soŒֿ.=dxGIb'![ NE\SW_vS7Љb]_<~PM Jh} B:UR\*v^QNfλأmde K6xk(X3f9Jkq Wq>dUU"VEhIȡ08{i!q0j{XPj~Gau^7j}o1Jef@nQdGBeY5VVogf6̐|' )GPًNuOx~S[ Z}3RϓЈ#v˿ Ð!)݌be=|kU}ݰqS|Jq{?tw"alU@Cy[}cڭ.ϘN:!gZqN=uCV$]((qJ{U،tPFdtƱݔlg@UzfHm1B@KɕtΕZĤ-s,wSYVw}?|l)L/R>{ڬ=?d3xp2Zָ)^8!Uulj.n7Hg}Ut 21AYͷc+IIBY1u&8N2BfzryMl(?\U`>y~ AX텾{ج켍[+Xn$̓ b]љB'"K4Z,p`:*CAbDu@mmYcPq.ԍ$DRyׅ_+E(}>j)o߽TiC BMɸ{Br$!ߴJ6VFL7zuץ0hDm]E*:6n$Ygjl0r G{0ufT 8^WGc~g*_e萂]x4z}SxUܤuxG./L:wq~X( c~viN,cƘGGcE#Ie,mk6hӜl>Ke}jk -K}DkRDϑ$nZgPˮԹwV#Im}:igۙ*UdTmDGZs7jŀ,.|v\:Hi(킙=*6?/✦3 QU}N L\ 3P0wowH|"Qv:zI1%NqSү_|:B: *y|ô7 ? =6 Q WK`/-Z;7;B'&ڕ:. iY zݦL; \|c? a6`F#_Pw:s|Zl$gjV\F |n:u`&G|?M$[BwAߕ> zرb.t]TOg4^f#)*c'u8axR+pr瞲]-[i-dJWfW\Tlw}q&.Y.*L\iYk>K= ɬ̛}@;R>lNfnerGnEC"^T<ޟ(^xpko V s/mkrt#Zuʆ1'3͢ #:Fz4Ct9L=X?4{9|vț ﬤ=&;A8GfӪ->Rx$KGˆ)A25OvdjXu.`-3N *ch'6\!C!O:cND7zD'P2MG,M|]dQS|&5XP謝ÚykyLDu:iՂȫOr,X lz[Iqg!rOr֐v/YhnHa$ݒd%^=xٜgɾ̸`.R 5Ck{,Et$-8ghz9bUHgߋtZ*P6.D|$ߌZU]/qto|p5dtfxz r"OY>?5nm&LWՖsG~~ɯy/+L5x bH- *_΢<2iȅ"rXKl3+׷YX|+A'+v#[ 0]n22McN!@ހM!Zмq~KKAC2q$LCkC6gl!#*{[<.[P+&n^}})s/220Ou%x_ߩDu>>֏==f+ y|I[\{GM.@ @oQ }N%ؐ29hs(,CW94b̵V=囟#?:υv]URߗ[ Js/S1ujׅka#5=Q,*8=cJ'ӈY)F3[AͰ{ܾw.BE}hH|7nhgb}S,v+C}sҦvH/DW)bf.K'[Cm]yfRޣP=<3|p{Ɔl8;ŕAR=pdjDrneV͒b r)͆f w$^A 'iOL|#bpjh|H_p,#j[, J0A1dk\d$ Va\Re Yl vMewMǩj¬]h/vuLbs>V|V@9 |fMA9X^ML#J".H8>zb!ͷImgEh*hߥBVWELOr%de\4`gTvYSNka4NΨ}d#׊k˯M֦֐"{38[8+nrc9 NإIb{j%j4Y, FvW~]ߴ9tەxt0ed"oך]s ҫ<6{f L/k!}_mfw|5teIlO^K-n uˎPLFZ-`U!LNWDܟ{٭ G_RvE?G -E%{(=s#SǰcWQջu#㊙nr\& cʢֹġxWX4.g588B&vd9|&($6:jXK$*6j> zzIM<ņ$DORl[WtwKd憰:7`yA~f~OPJ/)ɂH_SR`_XgV?JE3:9Н ZOa3[3׶"H0>$/"N4A*ֱ2ʗ?!P` @ԊyN?3-e~|wh4JB-AzCUG\j˗7sm8=V(LѮCD tɔۦC=9vSݽXWjoO=afSlא:aCХBd\0%:|6_Z/b]J$k>}o?0Za}f [K}ڥ(ѥ1bϯ/Qա0iij^JZMߑI6^UvKq6% ]M ϛ)}IuW8+sg"i®pwAƋu+Ebi endstream endobj 155 0 obj << /Length1 2736 /Length2 19767 /Length3 0 /Length 21336 /Filter /FlateDecode >> stream xڌT ,@pwwwwwgpn%kp79ܓs_Z0jTI^(argf`ʫ13XX)(Ԭ\l#RhA<umb.@y{@ `aab01q7މ ffeg؃ΈNV.:20sss lt25],vƶU{S+tqqadtwwg0sfw[XT@'7doi 5K+8T]܍r/qUi9`3?^;Ʀv O+Pcpp~:ۃ[n VřFi,2\rݓõٻ̭@fe:0]bǀMl@;+ zZ2. `0Z݀'WfV.Ovh >'+.L03{𿎘QGFEUSo8ED=lzVV;+'Y_Y| s{$2  Pi~=&v&S/#ג;k_F7;ͮ.ɐj3@3+Wv1O0r)YZ1=pv[+P}gfb?>șڀga'+L~ ; _,of=jm#V 0wB}Fߦ  `b7Q` Qb0JAlF?Es\ 0?E(A`.*A`.h\t :+xx~_;f^i8/Xgq)Lm;?T7&05vWORpr;,`~ƴ5Wz?YVnJm?E~߯2!`9āWf/ޑ?49mO?x|3I>cxr'ڙ3-U40iU`)?'|3 N+/: uGo tn'7o _ 83X`i@;m21@;83%XU~M],6k8Kӿdg^:\̦Nq}A=Kw{{iޫN]5YN7chTBk$'ma>O*s{+3E' CDoՄ}}4l {d(]P ݹJz4  ]SޯEz*By"${ ΅G3'-'0 :a~- טRڌk|:EEaCSźbooPåŵt1o WЭʢyPI-kЏħ:6|Gwp qUǴI>qњbG0yɸ ;B|}7{振 c&H6@1wqc-4vթ( N{*?9{3pUe3t[2}V6V+me{cAs'jcěNbgQvcjb' ُءŜBjJ iBrx}r0ŗ]+H: G:~,ΏT`?q:(wŰ1BJ/,Ꞣkw det~OY+njBJEh6\lIP AɌ @# ̻(-Q9\vmw_Nm,sefU-Asљ5gʼnk*λQtj<ȹ 5FYp|YOmI.3_Z6 P q % TS賓/K Hh-oXzKr[Y{*vj9{1QG0l_D{jSK񃬻YvL1?3#SiRAA I#;%L&/bk[ü Ɇ.=7]!NzѱPfS}*j.I< @.zw*$ ^ V k? lG˴[mG@RUjuFUUv2bX|1q'IEt WQ% m8ƣHg5ޑhzXTMoei׏']~o.@J3ظY HYP;oRTh3TDU2*>!R}8%•a=.#aN1H+َ-;ɄɆ#] @1khVgPuenI> Wт#44])o{wMgoe!NR~z : Бs&||0.0 0J }z\cq˕zZDsd1NLWm+/+\ɚibrC]?1Gܓ|Q$e^[(uȃ#V!W䧋bbu&c!87kjPS>_g >MW/z :zw8r.-HVoƳq l9vO1mCn]>T%JcArjo`Zx?{@qyt2UYƣ!kyt^6ƫ.V8I_Gm}qO!zNP㗨<*znE.͵}FxM sFju]ZU|̅D&Wi/s3{9flw򍣂Ȇ2M>O*n37mujA⳰35]Fv?@uB Q(}Qy+zkr=jFpu_s~/%mlҞ}Mf'^ '/Oz3)\sI N͹F]\|/oyS%+Luw%S^U(jAQ*tāy"E;G߸f emYimWicѴdl'Zo/:+]J+>i:x'ΠfҤ1ݐ5R /M,~|>T&5VCV}ܛ1iN3Ł`GͨPK*g x7b2yI84ϣkni=شaōzMj,A\XcOUդ8 D/!؀Ьq?J+caa| =Y2e$wiLEK-^YFǷ|3T?%{\h H ߘVy[q9i(~.EdrXniё_0cx^EB S94nP8]pOIx%+[M5ȽĢO(['F.ӊ Jq7j4zLjHS"k{y yLIx?^P־݋%+ `8u-'. ݛu%հc6@gUh[L^+jsd,Eg|;ϒRM쯭 k|~7Aycmu=}.`2X>rXtC fW狭f6[1e`[ұrUbHĜB-Yzs4h6/KFy,UuYeόVJ;뱰2L(.WáиLņ=vЌ~\ ^PJQ){h]~N8{1_OӜ/12G4TQAj6I{ gөJ'R饙UA`c#8ٝo x8}[!bdwI䘂-ĩkm ZX(whB>s=%ɘ?Ӓv,!\B;\L#4a’[E.σB*WnFVuFVk^\pX6哼Qq%=ert8BTsߕzPoHw8 :^LLn+4(k=αiߌCv|UQt)9sZUz8)} 3y-\7yttiz$30Y2gҥCf,b7Mi:D!iK%4Af3*ڮ&J-Un6: KsB!/t2NWka3%E:-w8\ۃ#+7TB>%NZ(tPQ7ʧFF2"5[Ė/q!1\Ό V<4I*K56͔ͩ۷/Z]&-īt; WP>݇T}X^of1kdxjJX]^TSJV>V-1r,ugvq66rQm0022-+GA|8@i&~4pvbxO~r^[K #cj]Zh΂**Wm܍{AXg!8awA~#惯>5k-Caq)M'cf߱>ӹ||n뭛ؓ^K .RFg 7 '6e4{͖/k5Sp,n2A_($h鈎 gF*9aj8_4i^mS cNDX^ˤifm Lj_O%J%+e4A{V'!tGAܣè&K>tk61wl+'@*_6)hcCbRGki ܌ד8+~y^< %9i[jO_OfЁ.^sy,!LSjUN1Q+el)ɝh3]297>DiN*/q&RW5X._O71v3ivȏp\[eA#6Q`y`:ξWEᝀ>m;{p'`BMrmi?it5-`ǟ6ssCLo΂M{Ŕ%Zr5:kI(O%'{dL:a< H>()Q#_QH #ѪRX֡\%W`+BFa#RtT";5>W`/Λ,Lrj[KEɀr%J÷3\rF/SeLlMJȣ0^hlκ>v#xyU(sq$tG-Rd|F (?i7t?~W7R(E[}_l~+c"!ͪ klY 5G_k+|>+GFokA:nO]`]tC9sIT|FATFH/M%m܉MH00&<a$\m+gSE3 :_'WqSWݢ"o %"S~^ctXǀOK\Q%URkvzjeLk~ZϙCYG+ S>}QȚVEI DU\ZFt^7dQL!ҰN[ Z}1!'zI^Z!8=;rs$;L,+v7GXA W]CE~%Eڒa_<;hwn@ޡ)7 rމ&P0?:Ya/:3HՄ6Rt8yVh!DLN eГmӄs&0celz4?'Eg_(:!?w{o~WKhb>)P2` #+MPeᠼ,q~Ζ$$Ie)бc mV0ۜ{a}h{it-+wVpQSn>Wv S 5*efޗjo(AY|3ax"L`_W%Fzchz'k>n<V!R1)bi>N]=R3D5~C/jn.1RY/f&F!8HV-5%FDdjTP)F?'?j{-jo|3F-O0c!b te1+r< °=NnR#w6F(5я: AH ,Vdp)0ȥHvu_BְgqVXQ]Wa`I3§]}/z~=Fv඲U|=6k񅡡w_),q4^Bav9W>@^`_$oۧ+:L&Gkr0sޖEBYZkY(V댒Nh2|E,Βܶ UΤɫ];[\^ǻ_rzڼBHOg(okx+x>n3#ykOvk +w!]טy| R-.WjYEM!#o;4SN0e*]bܿme,Se[C74K@XVڕ8pZYoS[*3l@*ꉑ Sd։Nx)Tb~gmuT|b#30-AB ]Mw(fŜ,N,liE'hjB!M9}qVƞxF lNaƜ#=_6c<108gHݞ zY-!Kq`١ iB^kdlT N>JЖvk{yV08cQ.X3&'<QF@*6,f:nKMlLՒ^tU^."IЗJ @!w0pi=/huXQ0u9(q0/%(Td|6%O:ڡa`kr*ﻝzc:䱔ÿ,r77COZ9D3kU1|9=s,l8[%96菕ѹc$<5= g(˳ódbaA'5= cۚP*|_H/LHztvnv4s=17rAت= ni<@/'n#w__$C0R(%Y<%<>a ROTh/uU-Q8wr_$GUsƗ94'8vOT#$ _|P{W\b.Cm%QI |U0E.}j obŵ3L{pMŔGy+5]Z f*v;)CAQQJi攔 ;/uVCLGfwmucTQ;{ls|2E'Gy0fdj Le(Y6Z `Hs g A|AɂO*Ozsa9-kPi*[7L5/;޶Gd=B.I% w x%ӮoƷFDJҢ}N9j_%h[kST!cFj0I( Rw>M: \d ¦23jsg\ǥh^mpT"uGA}0%?b(ΨȇH&,w:eg*aO+ۀBE0.Fe福y5aR y"ep_ŃfAծtQJ垝}1iY_@HhFۦOIexJʇ-8YXhة6Ip3~U:n9J _eW=EZoHȿ]K-uˤ&<(X嬁MlfvrJH~԰tn ?R\܃a݅'[m;}t\DJJIST@a5+C@L?vu-BhάðP@Y>IiGJĐnWi.m]!OHz@񝘄uX()t8|ћfvE2* s 6Phzt܇l<$:CPT,t )h4zNTAN5Ee,qހk$ Ԁp@]!e/nILdwνkHR`o? Ȭr#_߄2;R7z3=:KoD6Cٲ{O-ǖ֩wi?Ǻ1G|䵉 Ϯ+%OA xSE iW:CWϙꏈdQ$fL'I>j}cˋ{>>ߢz{`NZ]x%j6dҮAƗ 1.(*#օofQ'n1V".E'SPIz֒>d?Fܥn1R102d%Y?e; QPz{-^l>@Q7[ZgGfV(Y?A*X?JwAs:p%]HehW[ES h3}m._,k;k,.x">J>٩Ǽ#fعLO `,PZ99 >>}8S)О<lc>Vk):}1:"(<(4@Z~QtKJr8<'|!˩6{jݲbfC} ˅rT0OL4(LÁA( ^Frrq[)_l@tyC2)fsvMv0iKA}WiU<q0ABtrtLJ@f9-I$G1jG=.%:sf!+ĵZ7WwiTˍUBDDae~*Ҫ% 6}Gp#Y$kvX}ԭ3{ŒS@~N(xFV o?Tq6qV?iC3%ᷱ"W2 IP xmXq+nO12fc/\<6Ԓ!;I"[E3;iI. y9:xHw~hpB@\Wq!4-Di~9h y _9ͦ33F]V, d'VEttVOz(u#Z(>]$XS m YbNEQ,n}f ₕf/R|л(CC;r|Pp>!6{Q'$;5?fI,erIW<\Cк"gC!fI57ag_>f=Yy&Hwǎ=y1{h9" `3H2[ju3 /ǎm}Q 'OxUsm餉W]-v8{d Jp# 99x)8jf C1Д㜉Lhߚkǝ}MjpE:QfVe-T<¡;&t\:b0{bXlVE$UU@q ǏD.qRKgpB  2nRIjoq YmY"T>E7@Us}<^[dU S3UXN~bg'%M=%R(}P.a0EFVDAX4ʷ+ӥQ*RI鐻~,vj,GNO  b욢H[q/<ʟ̺3KH([NE )~OɸXBR~3!RYRBN?aU"Y]86J<Pu$栺HZi#F2SN~b<7Ѽ#E`o#\YӍőA,tQw&icMXrwWcNM(9\D6APƷL |1aN{!cXo# g@x\@L}:}-ıқOK)H)k6|d w%NW N~g,XW SpV;zPŶqT^r-ؾ9S2 ^{>3Yf؝k_&s;g UL{~͹{e z 2^Rzd%ҷ*FpeDNEqs\'0Q<>YK eg&lp(-ٮwЉeu-9LSyuv-i%Y2H 4f[,r|`IsV ~F,[i e'jAߤԯ6) + 6\7N|Y+u*'PO K2L Rղ!adx, ޚomʠE WUYyfsz#+O~&͸Sei2CU|k׆O5y@qk[ !zKy|J3qe vߵQhO@X{(Mp rϑG vMm!8T$¶l3is_.|(!]Oeo.L {'NU(RYfhA꜒`|3_e9$;/W pVaX3<^|a}uMuV*|~5:uT =;8(_Bpn+Od$NyA\gO\LiD&Րf6߸A|Xoşҹ3@o)>oY"^3Jn LK=j:_@]afl8[5f|ɛlλw<ّ=d9mGӏV0u˷ą0rmaΌ;"Y_&[ Q1**f:=n:qOՍEHɈGЖj+C[&>}Ϣ!FN|̣e4rI5a1k?f\pf!,E?j 6@2;VMc]97J$BS"jvC$%ݪq@9viF>DW9)ԝ0"Kƻ]Yϸ}!lp7(UOfKw'.u[BYi*% Va?&na:B5<Ε`-B{QeK3esLH;p,!C W򕞒f0\PHb61O"ç3`(♌]5nA-Z0?.?lSTtQ Bn wV(b>V ƙ8ꑎ>r;V6A좱ǰB.[dYFFc%Gg6ix4B#I*1 (XF}J/: < _JDʏbhn6] ?o"7<8򋲉Qq74'0Spar1F QI;]:5Ylʒ*}J{PU8k{E?B )BRPg#&[~~k#E2l_Dqۺ}Moi#V#ثhNT%SxWhA2Bn i@?1iF(ԒRG VpjMAHY~@X&aXbwj+2Z^Z´0UI0\5"~]qGVj)Yd;x=iOY9$EBsle3ؼ^ Ѐ J=uP[ ./{M_5 V%iڄHmC%}cU[nY(ͬ19mH":=L"C BȽ}ɨީ֣xk;yJA^ԥbl&R5` T)y.2. 0cKS{kL`00Xg؏3'BOoBwfF˝[cc=X2O8UFh2kIGV/ ?Qp=,餻lge;ǻPy<ۍbwBѴ7- )hLH "4V™ LK\3XN-RRP,48~@EcE*4AJ789Kt{bF<-psAM0$-jօYKlƽ4aCZ7G4LTæ`߶U%X{h%LW/GŪCjN(IN=CA*}^)1p z seૼ(r S4)B5-*JjifnBM ov5};_hᒟaqiEG Tڢ 2^L}у&=$~=I,>VP9`i;>Aݎ*`YvLeedI~?k?7OgkCߛjk27 %ҢZBGHp{..pn3UI~}ƁcC{#Ǒ%ԮI22d6Fh{q雲$@^w/1&lOh ,2U%dr*_W q3 D_͘bz\w K(}<C4ݐ>,{ ԙw~st`;Uة5Ý^''}VcD fKc!\-z ]z>I1x_ed 7qG5XO<2q]ɂP'50WE6,CeYǨykZ_L;n-m|]WtζMBIUJ֠Z"YJ)סQ_2hW# <5kRF "%n!@wϥVaN"ɧ ` 00 ^h% Vԅ ɴŦ aƃ,4}F< QrwjSM;Ҝ{5_k= ^3u&dΕMl_"CFTۄ G6tM^QKD7]=D[O?KgT&&Y%iw}GRALAЬQ 9wT..(˃a7yGhj8Ԡm}4ۥ":j2 ؑB5u Nao0Rm6.,7) hfߘyȄ9r MK]Z~ LQ6!.A=x%:Op&SY~B݋Z13d)XFV/b#&B\F\=+!_:uBHHڇf{r?@I:Lѣr -1װ}^Z aAm[[lB{R׳._ɸmfCF 4gVW%zm]o|qTw)J{!O](7+u. [wgT]?y"8EWm4%c/s9ָ8M934 j*'oq )LSYA F]jpJz4/`/ƋZOE4jpN? _c&u~ILKS\w>~ K)}'}t]*0ݍ[( >e̐ p0o^q0~[jfm^fh6ưTBs] sVד@{:6()! @AiT1ApꃋP)KL<߾ɾ}cvF"U:O1_Ty1KhN/ t`a.Z(:6h[-K7.p jx7xe$-h TB=vND[Eơ 6djn\pVng}%cz JYCr }e?>ߠ>r|. i˴uѺ ;5FM&U2XV%,&S\׏z=yrܼ77 n;^b5 kOR GD8 +cL)-zbV$}ilK9]Cъ0u35zu7ھZQ{5r9* Y`C@)/ [CtV֨$!pzrzdЉϜYtǜ'giIeф륥~ʋhPmMgxӸ q P +V“cڱtSd4@&A>!U5yq! ,S=Ry9]֟y}ނ9GևoTjK˥ ) [{l-Gqa>cWi2 AMpR޾Q\,^zX.ܑHMulj6&UmzC4~C"ѻ1X5S|36.ڧ)ŦȘղX> endobj 138 0 obj << /Type /ObjStm /N 44 /First 367 /Length 2147 /Filter /FlateDecode >> stream xYYs8~ׯc<[*3>+NN偒]&3~&#i f0hdDH— `&h9v[3-jq:MzAo!U@>WhK$aJa]=>fF {!&(qk КJ -!'H$F㊿F/x⣡"4K92Le.82?VgwZlrAcrx*rlJ@-B_%z\1/}}i =[S[lY._3yswݿN.߳ ү9>^|_>9W:S[tFt-fCdNt%];tK#?c HW(30q(x89-hagȞCn--\]=ZIwų gp%Fo?O/mYwOUȊDuV05"čr[Ro 1q NKZ!}-d`U[G8>ȹYDێ}w}s|qsǷcI 5*~y@H\{ZG뼨}x9\~wy1yWOj|^DNs`d Ƿ7ηm%kBɲk6^v&p_,o.N<:R7j%wyq};b_ ^pbIzhwNdUTyv }jݻE`Ku$‽<@gL<i{בx#We%h7~ygP (-+M}MُnEc,`4$1V0NIB/YVvU9>pMb&``QaG0%CUa6UMQ r[lp!Uq5աLumlwWڜ 5/r(lzMI*ųfkt۸oͩ2N]^``b.B^T 7Jl7ܜZJ5EI -&=>_՝ڨR)/^.Ɩ^#oў endstream endobj 168 0 obj << /Type /XRef /Index [0 169] /Size 169 /W [1 3 1] /Root 166 0 R /Info 167 0 R /ID [<2EB3B6B469357F2CEB349D6AB32D6B4F> <2EB3B6B469357F2CEB349D6AB32D6B4F>] /Length 412 /Filter /FlateDecode >> stream xIRQbFAPAI@QAGih O`Ö6*_ūW61Km㟑 HhD*BH*bxC4 R˒JQ{Az0NT`Z20K9*aZ-  g'>R!U*5=e]5N5f{ Zݬ\Ga))BlK!x'tC[:M; z-ejs{vkQn$ôfJ'K 5ܱ*}-7uppDC~smFn> W*(/(ܷJiR/%ngp_G :ܯ͓9iD endstream endobj startxref 131721 %%EOF ShortRead/inst/extdata/0000755000175100017510000000000012607265052016101 5ustar00biocbuildbiocbuildShortRead/inst/extdata/Data/0000755000175100017510000000000012607265052016752 5ustar00biocbuildbiocbuildShortRead/inst/extdata/Data/C1-36Firecrest/0000755000175100017510000000000012607265053021313 5ustar00biocbuildbiocbuildShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/0000755000175100017510000000000012607265053022717 5ustar00biocbuildbiocbuildShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/GERALD/0000755000175100017510000000000012607265053023655 5ustar00biocbuildbiocbuildShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/GERALD/s_1_sequence.txt0000644000175100017510000007577412607265053027014 0ustar00biocbuildbiocbuild@HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS @HWI-EAS88_1_1_1_898_392 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGAC +HWI-EAS88_1_1_1_898_392 ]]]]]]]]]]]]Y]]]]]]]]]YPV]T][PZPICCK @HWI-EAS88_1_1_1_922_465 GCGGTGGTCTATAGTGTTATTAATATCAATTTGGGT +HWI-EAS88_1_1_1_922_465 ]]]]Y]]]]]V]T]]]]]T]]]]]V]TMJEUXEFLA @HWI-EAS88_1_1_1_895_493 GTTACCATGATGTTATTTCTTCATTTGGAGGTAAAA +HWI-EAS88_1_1_1_895_493 ]]]]]]]]]]]]]]]]]]]]]]T]]]]RJRZTQLOA @HWI-EAS88_1_1_1_953_493 GTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCTT +HWI-EAS88_1_1_1_953_493 ]]]]]]]]]]]]]]]]]T]]]]]]]]]]MJUJVLSS @HWI-EAS88_1_1_1_868_763 GTTCTCTAAAAACCATTTTTCGTCCCCTTCGGGGCG +HWI-EAS88_1_1_1_868_763 ]]]]]]]]]]]Y]]T]]]O]]]]VO]W]VZMXVOLS @HWI-EAS88_1_1_1_819_788 GTACGCTGGACTTTGTAGGATACCCTCGCTTTCCTT +HWI-EAS88_1_1_1_819_788 ]]]]]]]]]]]]]]]]Y]]P]RRTYYV][VZXHFSO @HWI-EAS88_1_1_1_801_123 GAACAGCATCTGACTCAGATAGTAATCCACGCTCTT +HWI-EAS88_1_1_1_801_123 ]]]]]]]]]]]]]]]]Y]]]R]]]]]]]UZZXVSSS @HWI-EAS88_1_1_1_885_419 GCTTGGTAAGTTGGATTAAGCACTCCGTGGGCAGTT +HWI-EAS88_1_1_1_885_419 ]]]]]]]]]]]]]]C]]VYY]R]]V]]TRVHPAJAM @HWI-EAS88_1_1_1_941_477 GAGAAGTTAATGGATGAATTGGCACAATGCTACAAT +HWI-EAS88_1_1_1_941_477 ]]]]]]]]]]]]]]]]]]]]]]]R]TPVVVZCSFLO @HWI-EAS88_1_1_1_984_473 GTTGGTTTCTATGTGGCTTAATACGTTAATTAAAAT +HWI-EAS88_1_1_1_984_473 ]]]]]]]]]]]]]]]]]]ETY]VJ]]]HTOMEQAHC @HWI-EAS88_1_1_1_570_435 GTCTATAGTGTTATTAATATCAAGTTGGGGGAGCAT +HWI-EAS88_1_1_1_570_435 ]]]]Y]]]]]]]R]]]]]]]]]R]]]HVTREEVHAA @HWI-EAS88_1_1_1_649_729 GATATTTCTGATGAGTCGAAAAATTATCTTGATAAA +HWI-EAS88_1_1_1_649_729 ]]]]]]]]]]]]]V]]]]VYV]]]]T]][ZVRVSSL @HWI-EAS88_1_1_1_867_781 GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGAA +HWI-EAS88_1_1_1_867_781 ]]]]]]]]]]]]]]]Y]]]T]OV]]]]T[PZJVSFF @HWI-EAS88_1_1_1_722_426 GGACTTTGTAGGATACCCTCGCTTTCCTGCTCCTGT +HWI-EAS88_1_1_1_722_426 ]]]]]]]]]]]]R]]]]]YYY]VT]RY]VVZPQMOO @HWI-EAS88_1_1_1_789_111 GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAA +HWI-EAS88_1_1_1_789_111 ]]]]]]]]]]]]]]T]]]]]]]]]P]]][ZZXVASM @HWI-EAS88_1_1_1_945_812 GTATTTTACCAATGACCAAATCAAAGAAATGACTCG +HWI-EAS88_1_1_1_945_812 ]]]]]]]]]]]]]]]Y]YY]]]YV]]]][ZZUQSSS @HWI-EAS88_1_1_1_974_468 GTGTACGCGCAGGAAACTCTGACGTTCTTTCTGTCG +HWI-EAS88_1_1_1_974_468 ]]]]]]]]]]T]]OYYHP]R]T]]Y]HHREEXIAMH @HWI-EAS88_1_1_1_321_368 GTCCCCTTCGGGGCGGTGGTCTTTTGTGTTTTTAAT +HWI-EAS88_1_1_1_321_368 ]]]]]]]]]]]]]]]]Y]]R]]C]M]Y][ZMXVAJS @HWI-EAS88_1_1_1_974_763 GACTGAATGCCAGCAATCTCTTTTTTTGTCTCATTT +HWI-EAS88_1_1_1_974_763 ]]]]]]]]]]]P]]VY]]]Y]]]]]EH][ZZXHSSS @HWI-EAS88_1_1_1_923_392 GCAATGGAGAAAGACGGAGAGCGCCAACGGCGTCCC +HWI-EAS88_1_1_1_923_392 ]]]]]]]]]]]]]]]]]T]R]RTRYECVVVSPEAHA @HWI-EAS88_1_1_1_331_887 GCCACCATGATTATGACCAGTGTTTCCAGTCCGTTC +HWI-EAS88_1_1_1_331_887 ]]]]]]V]]]]]]]]YV]]]T]]]]]]YRVQXVOSK @HWI-EAS88_1_1_1_681_650 GGATTACTATCTGAGTCCGATGCTGTTCAACCACTA +HWI-EAS88_1_1_1_681_650 ]]]]]]]]]]]]]]H]]]]R]]]]]]]PMVSMLOSH @HWI-EAS88_1_1_1_1001_376 GCTACCGATAACAATACTGTAGGCCTGGGTGGTGCT +HWI-EAS88_1_1_1_1001_376 ]]]]]]]Y]]]]YY]]]]]VTYY]CY]][QZMVFFJ @HWI-EAS88_1_1_1_812_666 GGTGGTTATTATACCGTCAAGGACTGTGTGACTATT +HWI-EAS88_1_1_1_812_666 ]]]]]]]]]]]]]O]YT]MV]]J]]]R]JVCMSCSS @HWI-EAS88_1_1_1_879_409 GTGACTATTGACGTCCTTCCTCGTACGCCGGGCCAT +HWI-EAS88_1_1_1_879_409 ]Y]]Y]]Y]]Y]]Y]]Y]]]]]YJJ]EVXVZXOHAJ @HWI-EAS88_1_1_1_874_833 GAGGCTTGCGTTTATGGTACGCTGGTCTTTGTATGT +HWI-EAS88_1_1_1_874_833 ]Y]]]]]]]]]]]]]]]]]YT]]T]HJVTZOXIFNF @HWI-EAS88_1_1_1_671_184 GGATATTTCTAATGTCGTCACTGATGCTGCTTCTGT +HWI-EAS88_1_1_1_671_184 ]]]]]]]]]]Y]]]]]Y]]Y]]VP]]V][ZZXQSSF @HWI-EAS88_1_1_1_770_657 GATAGTTTGACGGTTAATGCTGGTAATGGTGGGTTT +HWI-EAS88_1_1_1_770_657 ]]]]]]]]]]]]]]]]]]]]]]]YRY]][XZXASSS @HWI-EAS88_1_1_1_864_736 GCCTCATCAGGGTTAGGAACATTAGAGCCTTGAATG +HWI-EAS88_1_1_1_864_736 ]]]]]]]]]]]]]]]]]YT]Y]]YYYY]VZUXAOSS @HWI-EAS88_1_1_1_885_763 GTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCTC +HWI-EAS88_1_1_1_885_763 ]]]]]]]]Y]]]]]]]]]Y]]Y]]]]TRWOVJQOSA @HWI-EAS88_1_1_1_246_659 GTTTTTTACCTTTAGACATTACATCACTCCTTCTGC +HWI-EAS88_1_1_1_246_659 ]]]]]]]]]]]]]]]]]Y]]]]]]]T]][ZZXVSNS @HWI-EAS88_1_1_1_977_481 GTTGATAAGCAAGCATCTCATTTTGTGCATATACCT +HWI-EAS88_1_1_1_977_481 ]]]]]]]]]]]]]]T]]]]M]]]]R]EYTZOXLHOS @HWI-EAS88_1_1_1_844_119 GGCATTTAGTAGCGGTAAAGTTAGGCCAAACCCTGG +HWI-EAS88_1_1_1_844_119 ]]]]]]]]]]]]]]]NYVY]]]R]JP]CRJOXEOLL @HWI-EAS88_1_1_1_947_483 GAGGATAAATTATGTCTAATATTCAAACTTGCGCCG +HWI-EAS88_1_1_1_947_483 ]]]]]]]]]]]Y]]P]]YY]VY]]PTVYMCMPLOLH @HWI-EAS88_1_1_1_878_486 GAGAAATAAAAGTCTGAAACATGATTAAACTCCTAA +HWI-EAS88_1_1_1_878_486 ]]]]]]]]]]Y]]]]]]R]]T]]OV]VTMXZRQSNA @HWI-EAS88_1_1_1_966_456 GCTTGTTTACGAATTAAATCGAAGTGGACTTCTTGT +HWI-EAS88_1_1_1_966_456 ]]]]]]]]]]]Y]]]]]V]]]]P]]]YMPZEEVAKC @HWI-EAS88_1_1_1_786_629 GAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGAT +HWI-EAS88_1_1_1_786_629 ]Y]]]]]]]]]]]]]]Y]Y]Y]]]Y]YYXQVXLMAS @HWI-EAS88_1_1_1_817_744 GTATAAGTCAAAGCACCTTTAGCGTTAAGGTACTGA +HWI-EAS88_1_1_1_817_744 ]]]]]]]]]]Y]]]Y]]]Y]YY]]]]RO[ZTRQSNH @HWI-EAS88_1_1_1_726_628 GGATTGGTTTCGCTGAATCAGGTTATTAAAGAGATT +HWI-EAS88_1_1_1_726_628 ]]]]]]]]]]]]]]]V]]]R]]]]]]]R[ZZHVLSS @HWI-EAS88_1_1_1_985_406 GATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTT +HWI-EAS88_1_1_1_985_406 ]]]]]]]]]]]]]]V]]]T]]]HMT]JRWZZJASSS @HWI-EAS88_1_1_1_717_240 GACTTAGTTCATCAGCAAACGCAGAATCAGCGGTAT +HWI-EAS88_1_1_1_717_240 ]]]]]]]]]]Y]]]]]V]Y]]]T]PM]]UZZOVSHO @HWI-EAS88_1_1_1_346_566 GTTCCGACTACCCTCCCGACTGCCTATGATGTTTAT +HWI-EAS88_1_1_1_346_566 ]]]]]]]]]]]]]]]]]]O]]]]]YH]]MZVUVSHS @HWI-EAS88_1_1_1_930_759 GGCTTTTTTATGGTTCGTTCTTGTTACCCTTCTGTT +HWI-EAS88_1_1_1_930_759 ]]]T]]]]]]]]]]]]]Y]P]]C]]VMVXZZHVCAA @HWI-EAS88_1_1_1_441_780 GGTTTATCGTTTTTGACACTCTCACGTTGGCTGACG +HWI-EAS88_1_1_1_441_780 ]]]]]]]]]]]]]]]]]]]]]]]]]]R]VVZXVASC @HWI-EAS88_1_1_1_893_385 GTTAACACTACTGGTTATATTGACCATGCCGCTTTT +HWI-EAS88_1_1_1_893_385 ]]]]]]]]]]]]]]]]Y]TV]YJRVRVTOMHEOSLN @HWI-EAS88_1_1_1_860_742 GTCCCCTTCGGGGCGGTGGTCTATAGTGTTATTAAT +HWI-EAS88_1_1_1_860_742 ]]]]]]]]]]]]]]]]T]]RHYC]H]OVVZCRVFNS @HWI-EAS88_1_1_1_646_490 GTAACCGTCTTCTCGTTCTCTAAAAACCATTTTTCT +HWI-EAS88_1_1_1_646_490 ]]]]]]]]]]]]]]]]]]]]]PER]V]]PVZXQOOC @HWI-EAS88_1_1_1_484_791 GCTGATGAACTAAGTCAACCTCAGCACTAACCTTGC +HWI-EAS88_1_1_1_484_791 ]]]]]]]]]]]VY]]]T]]]V]M]YC]]TZZMOJSL @HWI-EAS88_1_1_1_698_397 GTTTTCATGCCTCCCAATCTTGGAGGCTTTTTTATG +HWI-EAS88_1_1_1_698_397 ]]]]]]]]]]]]]]HT]]]]]]]C]]V][ZZXVASS @HWI-EAS88_1_1_1_955_440 GGAAAACGAACAAGCGCAAGAGTAAACATAGTGCCA +HWI-EAS88_1_1_1_955_440 ]]]]]]]]]]]Y]]]]]TR]H]VPVVTOOHPMQLOH @HWI-EAS88_1_1_1_976_442 GTATTAAGGATGAGTGTTCAAGATTGCTGGAGGCCT +HWI-EAS88_1_1_1_976_442 ]]]]]]]]]]]]]]]]]]]TV]R]]]YYOPCPQHKO @HWI-EAS88_1_1_1_366_209 GAGCAGAAGCAATACCGCCAGCAATAGCACCAAACA +HWI-EAS88_1_1_1_366_209 ]]]]]]]Y]]]]]]]]]]]VY]JH]TY]TTZMLFSH @HWI-EAS88_1_1_1_872_762 GTTTATAGGTCTGGTGAACACGACCAGAAAACTGGC +HWI-EAS88_1_1_1_872_762 PPPPPPPPPPPPPEPPPPPOPPMOOPPOMMMPOOOJ @HWI-EAS88_1_1_1_361_357 GAAGAAATAACATCATGGTAACGCTGCATGAAGTAA +HWI-EAS88_1_1_1_361_357 ]]]]]]]]]]]]]]]]]]V]]]]]]]]H[ZEMVSOA @HWI-EAS88_1_1_1_804_628 GTCAAAAATTACGTGCAGAAGGAGTGATGTAATGTC +HWI-EAS88_1_1_1_804_628 ]]]]]]]]]]]]]]]]]]TY]]R]R]R]WXVRVLMJ @HWI-EAS88_1_1_1_864_773 GGGAGGGTGTCAATCCTGACGGTTATTTCCTAGACA +HWI-EAS88_1_1_1_864_773 ]]]]]]]]]]]VY]]]]]R]]]T]Y]Y]RVVMKHLJ @HWI-EAS88_1_1_1_561_780 GTTATTAATATCAAGTTGGGGGAGCACATTGTAGCA +HWI-EAS88_1_1_1_561_780 ]]]]]]]]]]]]]V]]]]]]]EE]YTRRVZVTOSKJ @HWI-EAS88_1_1_1_415_588 GTAGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTT +HWI-EAS88_1_1_1_415_588 ]]]]]Y]]]]]]]]]]]]]]]]V]]]]]PZOCVSSS @HWI-EAS88_1_1_1_862_123 GTCACATTAAATTTAACCTGACTATTCCACTGCAAC +HWI-EAS88_1_1_1_862_123 ]]]]]]]]]]]]]]]]]]]TT]]P]]]]UZZXVCOS @HWI-EAS88_1_1_1_686_617 GTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCT +HWI-EAS88_1_1_1_686_617 ]]]]]]]]]]]]]]]]]]]MH]]]]]]M[ZZJNSSL @HWI-EAS88_1_1_1_299_507 GTTTTCTGGTCGTGTTCAACAGACCTATAAACATTC +HWI-EAS88_1_1_1_299_507 ]]]]]]]]]]]]]]]]]J]]T]P]Y]O]RJVXOSLO @HWI-EAS88_1_1_1_433_756 GTTAACTTCTGCGTCATGGAAGCGATAAAACTCTGC +HWI-EAS88_1_1_1_433_756 PPPPPPPPPPPPPPPPPPPPHPPPOPPMOPPPNKMA @HWI-EAS88_1_1_1_604_463 GATTTATGTTTGGTGCTATTGCTGGCGGGTTTTTTT +HWI-EAS88_1_1_1_604_463 ]]]]]Y]]]]]]]]]]]R]]]]]RY]OYEHVTQHKS @HWI-EAS88_1_1_1_366_254 GCATTCAAGGTGATGTGCTTGCTACCGATAACCATA +HWI-EAS88_1_1_1_366_254 ]]]]]]]]]]]]Y]]]]]]]]]]V]]]V[RZXAJSO @HWI-EAS88_1_1_1_861_780 GTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAG +HWI-EAS88_1_1_1_861_780 ]]]]]]]]]]]]]]]]]]Y]Y]]]]]]R[XOXQLOS @HWI-EAS88_1_1_1_51_508 GGGGGAGCACATTGTAGCATTGTGCCAATTCATCCA +HWI-EAS88_1_1_1_51_508 ]]]]]Y]]]]]]V]]]]]]]]YTJ]]OM[ZZRPAJH @HWI-EAS88_1_1_1_918_394 GCAAGCCTCAACGCAGCGACGAGCACGAGAGCGGTC +HWI-EAS88_1_1_1_918_394 ]]]]]]]]]]]]]]Y]]]R]]VY]M]]OVJZPQKAF @HWI-EAS88_1_1_1_873_770 GAATTTACGGAAAACATTATTAATGGCGTCGAGCGT +HWI-EAS88_1_1_1_873_770 ]]]]]]]]]]V]V]]P]]YY]VVV]]R]PUOCOCMH @HWI-EAS88_1_1_1_712_190 GCCGTTTTGGATTTAACCGAAGATGATTTCGATTTT +HWI-EAS88_1_1_1_712_190 ]]]]]]]]]]O]]]V]]]]OC]O]]O]][QTCVSSS @HWI-EAS88_1_1_1_411_573 GAGTTTATTGCTGCCGTCATTGCTTATTATGTTCAT +HWI-EAS88_1_1_1_411_573 ]]]]]]]]]]]]]]]]T]H]]]Y]]R]]RZEXVAJS @HWI-EAS88_1_1_1_228_633 GATTTTATTGGTATCAGGGTTAATCGTGCCAAGAAA +HWI-EAS88_1_1_1_228_633 ]]]]]]]]]]]]]]]]]]]]]VV]]Y]P[ZOUVFNH @HWI-EAS88_1_1_1_359_604 GGTGTCTGTAAAACAGGTGCCGAAGAAGCTGGAGTA +HWI-EAS88_1_1_1_359_604 ]]]]]]]]]]]]]]]]]]]]]]EV]VV][ZZXMSMH @HWI-EAS88_1_1_1_303_791 GGATTAAGTTCATGAAGGATGGTGTTAATGCCACTC +HWI-EAS88_1_1_1_303_791 ]]]]]]]]]]]]]]]]]]]]]]]]]]TVVVZXOSSS @HWI-EAS88_1_1_1_998_450 GTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTT +HWI-EAS88_1_1_1_998_450 ]]]]]]]]]]]]]R]]]]CT]O]]YR]][ZEEKSSS @HWI-EAS88_1_1_1_697_640 GTGTGAGGTTATAACGCCGAAGCGGGAAAAATTTTA +HWI-EAS88_1_1_1_697_640 ]]]]]]]]]]]]]]]]]]]ET]]]]EPJTXQXVSSL @HWI-EAS88_1_1_1_961_516 GAAGCCTGAATGAGCTTAATAGAGGCCAAAGCGGTC +HWI-EAS88_1_1_1_961_516 ]]]]]]]]]]]]T]]]]Y]]V]TT]]YPTHVOQKLH @HWI-EAS88_1_1_1_676_167 GAATCAGCGGTATGGCTCCTCTCCTATTTGCTCTTT +HWI-EAS88_1_1_1_676_167 ]]]]]]]]]]V]]]]]]]EYV]TOTMV]JEHCENFA @HWI-EAS88_1_1_1_908_493 GATTCAGTACCTTAACGCTAAAGGTGCTTTGACTTA +HWI-EAS88_1_1_1_908_493 ]]]]]]]]]]]]]Y]]]]VR]H]]V]YV[ZECQSSM @HWI-EAS88_1_1_1_335_282 GACATTATGGGTCTGCAAGCTGCTTATGCTACTTTG +HWI-EAS88_1_1_1_335_282 ]]]]]]]]]]]]]]]]YR]]]]]]]T]VWZSEVSSJ @HWI-EAS88_1_1_1_706_512 GTTGAAATGGTAATAAGACGACCAATCTGACCAGCC +HWI-EAS88_1_1_1_706_512 ]]]]]]]]]]]]]]]Y]R]]JVYHRV]]WMZOKLHA @HWI-EAS88_1_1_1_927_495 GTAAGCATTTGGCGCATAATCTCGGAAACCTGCTGT +HWI-EAS88_1_1_1_927_495 ]]]]]]]]]]]]]]]T]]T]]]]T]HOOTTMMKNLH @HWI-EAS88_1_1_1_370_877 GTGAGAGTGTCAAAAACGATAAACCAACCATCAGCA +HWI-EAS88_1_1_1_370_877 ]]]]]]]]]]]]]]TVT]]]]]]]]JVPTQMRQJLJ @HWI-EAS88_1_1_1_223_238 GTTAACAGTCGGGAGAGGAGTGGCATTAACACCATC +HWI-EAS88_1_1_1_223_238 ]]]]]]Y]]]]]]N]R]]Y]]Y]]P]]VPSCTVHHS @HWI-EAS88_1_1_1_324_781 GTATGTTGACGGCCATAAGGCTGCTTCTGACGTTCG +HWI-EAS88_1_1_1_324_781 ]]]]]]]]]]]]]YR]P]]]Y]T]E]WTRJVMHKAF @HWI-EAS88_1_1_1_833_311 GGGGGAGCACATTGTAGCATTGTGCCAATTCATCCA +HWI-EAS88_1_1_1_833_311 ]]]]]Y]]Y]Y]Y]HTRVVT]MRY]VCEVVZJQKHF @HWI-EAS88_1_1_1_364_260 GGTTATCCATCTGCTTATGGAAGCCAAGCATTGGGG +HWI-EAS88_1_1_1_364_260 ]]]]]]]]Y]]]]]]]]]]]PY]V]HM]WMZXIMHS @HWI-EAS88_1_1_1_900_770 GGTCGCAAAGTAAGAGCTTCTCGAGCTGCGCAAGGG +HWI-EAS88_1_1_1_900_770 ]]]]]]]]Y]]]V]J]]]]YY]VO]Y]]TZOCLMOA @HWI-EAS88_1_1_1_674_661 GATATGGACCTTGCTGCTAAAGGTCTAGGAGCTAAA +HWI-EAS88_1_1_1_674_661 ]]]]]]]]]]]]]]]]]]OPY]TY]YE]UQZTQJSM @HWI-EAS88_1_1_1_524_466 GGTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGG +HWI-EAS88_1_1_1_524_466 ]]]]]]]]]]]]]]]Y]]]]]]]YHOV][MTPVHHK @HWI-EAS88_1_1_1_960_818 GGTTTAGATATGAGTCACATTTTGTTCATGGTAGAG +HWI-EAS88_1_1_1_960_818 ]]]]]]]]]]]]]]]]]]V]]]]T]]]][VZXMSLN @HWI-EAS88_1_1_1_227_700 GTTGACATTTTAAAAGAGCGTGGATTACTATCTGAG +HWI-EAS88_1_1_1_227_700 ]]]]]]]]]]]]]]]]]]]]]]]]]]]][VZXVOLH @HWI-EAS88_1_1_1_662_208 GTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGG +HWI-EAS88_1_1_1_662_208 ]]]]]]]]]]V]P]TR]]]]]]M]]]TV[PREKMLF @HWI-EAS88_1_1_1_635_393 GTTTCTGTTGGTGCTGATATTGCTTTTGATGCTTAA +HWI-EAS88_1_1_1_635_393 ]]]]]]]]]]]]]]]]]]]]]]]]]]]OJZHUVAFM @HWI-EAS88_1_1_1_403_780 GCCTCCAAATCTTGGAGGCTTTTTTATGGTTCGTTC +HWI-EAS88_1_1_1_403_780 ]]]]]]]]Y]]]]]]T]]]]]]]]]Y]RRZZRMOSO @HWI-EAS88_1_1_1_468_756 GCAGAAGCAATACCGCCAGCAATAGCACCAAACATA +HWI-EAS88_1_1_1_468_756 ]]]]]]]]]]]]V]Y]]Y]]]HV]OTRVVJMONHFF @HWI-EAS88_1_1_1_484_755 GGTGCTATTGCTGGCGGTATTGGTTCTTCTCTTTCT +HWI-EAS88_1_1_1_484_755 ]]]]]]]]]]]]]]]]]HOT]HCTOEYCCMHMKHAH @HWI-EAS88_1_1_1_973_421 GTTTCCGTTGCTGCCATCTCCAAAACATTTTGACTG +HWI-EAS88_1_1_1_973_421 ]]]]]]]]]]]]]]]]]]]]M]MM]]V][ZEEINSF @HWI-EAS88_1_1_1_497_908 GGTTATAACGCCGAAGCGGTAAAAATTTTAATTTTT +HWI-EAS88_1_1_1_497_908 ]]]]]]]]]]]]]]Y]]]]]R]R]YY]][VTXVSSS @HWI-EAS88_1_1_1_991_521 GAGCTTCTCGAGCTGCGCAAGGATAGGTCGGATTTT +HWI-EAS88_1_1_1_991_521 ]]]]]]]]]]V]]]]]]]RR]]P]T]]YTQOEVSSS @HWI-EAS88_1_1_1_495_814 GCAGTAGACTCCTTCTGTTGATAAGCAAGCATCTCA +HWI-EAS88_1_1_1_495_814 ]]]]]]]]]]]]]]]]]]]]V]Y]]]Y][ZVXVSSA @HWI-EAS88_1_1_1_703_438 GATTATTTTGACTTTGAGCGTATCGAGGCTCTTTAA +HWI-EAS88_1_1_1_703_438 ]Y]]]]]]]]]]]]]]]]]]V]]]]ORWVVZUQCHF @HWI-EAS88_1_1_1_730_507 GTCATTGTGAGCATTTTCATCCCGAAGTTGCGGCTC +HWI-EAS88_1_1_1_730_507 ]]]]]]]]]]]]]]]]]]H]YYV]HOYT[HMOQALH @HWI-EAS88_1_1_1_866_100 GCCATTGCTCATATTGAAGTTCAGGCTGTTATTTTT +HWI-EAS88_1_1_1_866_100 ]]]]]]]]]]Y]]]]]]]]]]]]R]]]]CZTXVSSS @HWI-EAS88_1_1_1_949_458 GGTATGTAGGTGGCCAACAATTTTTATTGCTTGGGT +HWI-EAS88_1_1_1_949_458 ]]]]]]]]]]]]]H]Y]]RRY]]]RH]VEMCMHCJF @HWI-EAS88_1_1_1_320_300 GACACCTAAAGCTACATCGTCAACGTTATATTTTGT +HWI-EAS88_1_1_1_320_300 ]]]]]]]]]]]]]]]YY]]R]EJ]]]YT[JZXVSAH @HWI-EAS88_1_1_1_996_317 GCTTATCACCTTCTTGAAGGCTTCCCATTCATTCAG +HWI-EAS88_1_1_1_996_317 ]]]]]]]]]]]]]]]]]VYR]]]]]]O][ZSXVSHJ @HWI-EAS88_1_1_1_843_780 GGCTTCCATAAGCAGATGGATAACCGCATCAAGCTC +HWI-EAS88_1_1_1_843_780 ]]]]]]]Y]]Y]]Y]Y]]]V]V]]]]YPWTENVNLN @HWI-EAS88_1_1_1_337_794 GTCTCCAGCCACTTAAGTGAGGTGATTTATGTTTGG +HWI-EAS88_1_1_1_337_794 ]]]]]]T]]]Y]]]]Y]Y]]]]Y]R]]]MZVXVSJF @HWI-EAS88_1_1_1_599_542 GATAATGGTGATATGTATGTTGACGGCCCTAAGGCT +HWI-EAS88_1_1_1_599_542 ]Y]]]]]]]]V]V]]YY]]Y]JCYTRRVEJENLLAF @HWI-EAS88_1_1_1_636_218 GTTTGTATCTGTTACTGAGAAGTTAATGGTTGGATT +HWI-EAS88_1_1_1_636_218 ]]]]]]]]]]]]]]]]]J]JRY]]VYVH[CVCAAKS @HWI-EAS88_1_1_1_801_780 GTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGAC +HWI-EAS88_1_1_1_801_780 ]]]]]]]]]]Y]Y]]T]Y]]O]EYT]]]TPZTVSCM @HWI-EAS88_1_1_1_753_627 GGATTAAGCACTCCGTGGACAGATTTGTCATTGTGA +HWI-EAS88_1_1_1_753_627 ]]]]]]Y]]]]]]]]]]]R]]]T]]]YV[ZZXQSSC @HWI-EAS88_1_1_1_234_684 GGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGAC +HWI-EAS88_1_1_1_234_684 ]]]]]]]]]]]]]]]]]]]Y]]]]]]V]RTZUVOAS @HWI-EAS88_1_1_1_915_728 GTTATTATACCGTCAAGGACTGTGTGACTATTGACG +HWI-EAS88_1_1_1_915_728 ]]]]]]]]]]]]]]V]]]]]]]]]Y]O][XZXOALK @HWI-EAS88_1_1_1_970_579 GCTTACTCAAGCTCAAACGGCTGGTCCGTTTTTTTT +HWI-EAS88_1_1_1_970_579 ]]]]]]Y]YY]]Y]]]]]RYR]]]O]RR[PTXVSFL @HWI-EAS88_1_1_1_706_163 GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC +HWI-EAS88_1_1_1_706_163 ]]]]]]]]]]]]]]NTVT]]C]Y]VVH][ZTPLSOH @HWI-EAS88_1_1_1_851_764 GAAAATGCTCACAATGACAAATCTGTCCACGGAGTG +HWI-EAS88_1_1_1_851_764 ]]]]]]]]]]T]R]]]R]OTRY]Y]]VVJUSRESHM @HWI-EAS88_1_1_1_963_398 GGGTGATAAGCAGGAGAAACATACGAAGGCGCATAA +HWI-EAS88_1_1_1_963_398 ]]]]]]]]]]]Y]]V]YVTYHYJ]VJTVWPZOHJHF @HWI-EAS88_1_1_1_706_182 GCTTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGA +HWI-EAS88_1_1_1_706_182 ]]]]]]]]]]]]]]]]T]]]Y]VTY]RVOSZHHLJA @HWI-EAS88_1_1_1_886_399 GATGTTATTTCTTCATTTGGAGGTAAAACCTCTTAT +HWI-EAS88_1_1_1_886_399 ]]]]]]]]]]]]]]T]]]]PYYYTVRMRWPVRQLAO @HWI-EAS88_1_1_1_975_702 GTAACCCAGCTTGGTAAGTTGGATTAAGCACTCCGT +HWI-EAS88_1_1_1_975_702 ]]]]]]]]]]]]]]]]Y]Y]]]P]]TRYVZVXQSNH @HWI-EAS88_1_1_1_634_538 GGTTAATGCTGGTAATGGTGGGTTTTTTTCTTTTTT +HWI-EAS88_1_1_1_634_538 ]]]]]Y]]]]]]]YO]O]YY]RR]]]E]MVVXEHHS @HWI-EAS88_1_1_1_803_696 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAGA +HWI-EAS88_1_1_1_803_696 ]]]]]]]]]]]]]]]O]N]]]]]]]]R][ZTOPKOF @HWI-EAS88_1_1_1_878_417 GAACGAACCATAAAAAAGCCTCCAAGATTTGGAGGC +HWI-EAS88_1_1_1_878_417 ]]]]]]]]]]]]]Y]]]]]]Y]]EJ]JTRVVRKHOM @HWI-EAS88_1_1_1_926_442 GACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTT +HWI-EAS88_1_1_1_926_442 ]]]]]]]]]]Y]]Y]]]]JP]R]]PY]HPVOXOAMO @HWI-EAS88_1_1_1_371_757 GCAGAAGTTAACACTTTCGGATATTTCTGATTAGTC +HWI-EAS88_1_1_1_371_757 ]]]]]]]]]]]]]]]]Y]]YRYT]Y]Y]VOPEIHJJ @HWI-EAS88_1_1_1_986_397 GCAATAGCACCAAACATAAATCCCCTCACTTAAGTG +HWI-EAS88_1_1_1_986_397 ]]]]]]]]]]]YY]]PYVRMVYE]YT]JTOZMHHCF @HWI-EAS88_1_1_1_553_75 GTTGAGTTTATTGCTGCCGTCATTGCTTATTATTTT +HWI-EAS88_1_1_1_553_75 ]]]]]]]]]]]]]Y]]]]]]]CY]CH]]MZZCVFOS @HWI-EAS88_1_1_1_692_494 GGCTGCGGACGACCAGGGCGAGCGCCAGAACGTTTT +HWI-EAS88_1_1_1_692_494 ]]]]]]]]R]]V]]N]]]]]HYRYRRC]CJORAJLO @HWI-EAS88_1_1_1_971_538 GGTTTAAGAGCCTCGATACGCTCAAAGTCAAAATAA +HWI-EAS88_1_1_1_971_538 ]]]]]]]]]]]]]]]V]]]]]]]PY]YTTPZMHNNN @HWI-EAS88_1_1_1_867_629 GTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCTAC +HWI-EAS88_1_1_1_867_629 ]]]]]]]]]]]]]]]]]]Y]VO]RVTJTPVQREAAC @HWI-EAS88_1_1_1_326_303 GAAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGA +HWI-EAS88_1_1_1_326_303 ]]]]]]]]]]]]]]]]]]T]]]V]]]T][VZCESHF @HWI-EAS88_1_1_1_680_172 GTTCGTTTTCCGCCTACTGCGACTAAAGAGATTCTG +HWI-EAS88_1_1_1_680_172 ]]]]]]]]]]]Y]]]T]]]]YR]]VVVTRVHRVFAJ @HWI-EAS88_1_1_1_997_339 GTGAACAGTGGATTAAGTTCATGAAGGATGGTGTTA +HWI-EAS88_1_1_1_997_339 ]]]]]]]]]]]]]]]Y]]]YH]TJV]]M[ZZRVOOH @HWI-EAS88_1_1_1_415_754 GCATGACCTTTCCCATCTTGGCTTCCTTGCTGGTCA +HWI-EAS88_1_1_1_415_754 ]]Y]]]]]]]Y]]]H]]]]]]]]]]Y]]WPXJQSNC @HWI-EAS88_1_1_1_629_192 GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT +HWI-EAS88_1_1_1_629_192 ]]]]]]]]]]]]]]]V]]]]PY]]]Y]YVEOMHJOO @HWI-EAS88_1_1_1_160_207 GTGATGTGCTTGCTACCGATAACAATACTGTAGGCA +HWI-EAS88_1_1_1_160_207 ]]]]]]]]]]]]]]]]]]P]TY]V]]V]UZPRVSJC @HWI-EAS88_1_1_1_705_461 GTTTAAGAGCCTCGATACGCTCCAAGTCAAAATAAT +HWI-EAS88_1_1_1_705_461 ]]]]]]]]]]]]]]V]Y]]]]]CYY]R][TPRQHKH @HWI-EAS88_1_1_1_584_460 GAGTTGTTCCATTCTTTAGCTCCTAGACCTTTATCA +HWI-EAS88_1_1_1_584_460 ]]]]]]]]]]Y]]]]]]Y]]]]]]TYJ]VZZXKAMJ @HWI-EAS88_1_1_1_434_845 GTTCTGCTTCAATATCTGGTTGAACGGCGTCGCGTC +HWI-EAS88_1_1_1_434_845 ]]]]]]]]]]VV]]]]]]]]]]V]]]]][ZVTQNSF @HWI-EAS88_1_1_1_319_700 GATACCCTCGCTTTCCTGCTCCTGATGCGTTTATTG +HWI-EAS88_1_1_1_319_700 ]]]]T]]]V]]]YERYRYPYYPEYM]MCOHTUIKHJ @HWI-EAS88_1_1_1_882_462 GCATTCATCAAACGCTGAATAGCAAAGCCTCTACGC +HWI-EAS88_1_1_1_882_462 ]]]]]]]]]]]]]]]]]P]]Y]]HTRWV[PVPHMJH @HWI-EAS88_1_1_1_346_126 GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT +HWI-EAS88_1_1_1_346_126 ]]]]]]]]]]]]]]]]]]]]OY]]]]]][JVXQOSS @HWI-EAS88_1_1_1_285_738 GGTCTATAGTGTTATTAATATCAAGTTGGTGGTGCC +HWI-EAS88_1_1_1_285_738 ]]]]]]]]]Y]Y]YV]VV]P]]POORVRVCPCAMCA @HWI-EAS88_1_1_1_885_551 GTATTAAATCTGCCATTCAAGGCTCTAATGTTCCTA +HWI-EAS88_1_1_1_885_551 ]]Y]]]]]Y]]]]]]]]]Y]Y]]]]VPWUZRXIJLK @HWI-EAS88_1_1_1_211_313 GATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCT +HWI-EAS88_1_1_1_211_313 ]]]]]]]]]]]]]]]T]]]]]]]Y]]]]TZZXVSSS @HWI-EAS88_1_1_1_905_706 GTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAAC +HWI-EAS88_1_1_1_905_706 ]]]]]]]]]]]]]]]]]]]Y]]]]]T]]VZUPMFLL @HWI-EAS88_1_1_1_364_133 GTTGATATTTTTCATGGTATTGATAAAGCTGTTTCC +HWI-EAS88_1_1_1_364_133 ]]]]]]]]]]]]]T]]]]]]]]Y]]O]H[ZVXVFJH @HWI-EAS88_1_1_1_984_424 GTATGCCGCATGACCTTTCCCATCTTGGCTTTCTTG +HWI-EAS88_1_1_1_984_424 ]Y]]]]]]]]]]T]]]]]]Y]R]Y]RTTPZZEOSSF @HWI-EAS88_1_1_1_885_432 GGCTCATTCTGATTCTGAACAGCTTCTTGGGAAGTA +HWI-EAS88_1_1_1_885_432 ]]]]]Y]]]]]Y]]]]]RY]V]YVY]]YORVJNOMA @HWI-EAS88_1_1_1_730_651 GCAGAAGCCTGAATGAGCTTAATAGAGGCCAAAGCG +HWI-EAS88_1_1_1_730_651 ]]]]]]]]]]]YR]]]]]]]]]]]VTW]XZZPOSMS @HWI-EAS88_1_1_1_571_420 GGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA +HWI-EAS88_1_1_1_571_420 ]]]]]]]]]]]]]R]]]]]]]]P]]]OVPOHCILFN @HWI-EAS88_1_1_1_721_668 GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCAG +HWI-EAS88_1_1_1_721_668 ]]]]]]]]]]]]]]]Y]]V]Y]]YO]]R[ZZXVLLL @HWI-EAS88_1_1_1_863_648 GCCTTCTGGTGATTTGCAAGAACGCGTACTTTTTCG +HWI-EAS88_1_1_1_863_648 ]]]]]]]]]]]T]]]]]TJ]YRV]T]YHMZZEPOFC @HWI-EAS88_1_1_1_714_518 GCATGGGTGATGCTGGTATTAAATCTGCCATTCAAG +HWI-EAS88_1_1_1_714_518 ]]]]]]]]]]]]]]]]]P]]R]V]]]]V[PZXOHHO @HWI-EAS88_1_1_1_832_717 GTTCTTATTACCCTTCTGAATGTCACGCTGATTATT +HWI-EAS88_1_1_1_832_717 ]]]]]]]]]]]]]]]]]]TT]]Y]V]]][ZJRVNSS @HWI-EAS88_1_1_1_345_593 GGGATGAACATAATAAGCAATGACGGCAGCAATAAA +HWI-EAS88_1_1_1_345_593 ]]]]]]]]]]]]Y]]]]]]]]]]]]]]][PCPMJLF @HWI-EAS88_1_1_1_833_651 GTAAAGCTGATGGTATTGGCTCTAATTTTTCTATGA +HWI-EAS88_1_1_1_833_651 ]]]]]]]]]]]]]]V]]]]]]]]CRY]]EZMXIALA @HWI-EAS88_1_1_1_794_763 GTGAAAAAGCGTCCTGCGTGTAGCGAACTGCGGTGG +HWI-EAS88_1_1_1_794_763 ]]]]]]]]]]]]Y]Y]Y]PYRRVR]OMRMSCMAJJL @HWI-EAS88_1_1_1_570_882 GTTTTGGATTTAACCGAAGATGATTTCGATTTTCTT +HWI-EAS88_1_1_1_570_882 ]]]]]]]Y]]]]Y]]]EV]HYYC]]RVVCZVXVOLA @HWI-EAS88_1_1_1_677_183 GAATGCAATGAAGAAAACCACCATTACCAGCATTAA +HWI-EAS88_1_1_1_677_183 ]Y]]]]]Y]]T]]]RVV]]]]]R]]]]][ZZMVSJH @HWI-EAS88_1_1_1_894_262 GAGCGTATGCCGCATGACCTTTCCCATCTTGGCTTC +HWI-EAS88_1_1_1_894_262 ]]]]]]]]]]]]]]]]T]]]]]]]]HV][ZVROSSO @HWI-EAS88_1_1_1_109_416 GTCGCAGTAGGCGGAAAACGCACCAGCGCAAGAGTC +HWI-EAS88_1_1_1_109_416 ]]]]]]]]]]]]]]N]V]]]H]TCYR]V[JPMHHAA @HWI-EAS88_1_1_1_168_329 GGATGAAAATGCTCACAATGACAAATCTGTCCACGG +HWI-EAS88_1_1_1_168_329 ]]]]]]]]]]]]]]]]]]]]O]MO]Y]RRVZXOSSO @HWI-EAS88_1_1_1_955_838 GGTGATGCTGGTATTAAATCTGCCATTCAAGGCTCT +HWI-EAS88_1_1_1_955_838 ]]T]Y]]]]]]]]]]V]]]]]V]]J]]]RQZXVSSJ @HWI-EAS88_1_1_1_451_882 GTGTTCAAGATTGCTGGAGGCCTCCACTATGAAATC +HWI-EAS88_1_1_1_451_882 ]]]]]]]]]]]]]]]]]]]]V]P]]RYJ[ZXCSKSS @HWI-EAS88_1_1_1_210_485 GTTATATTTTGATAGTTTGACGGTTAATGCTTGTAA +HWI-EAS88_1_1_1_210_485 ]]]]]]]]]]]]]]]]]]RT]]P]]CVYOHTCKSLA @HWI-EAS88_1_1_1_858_816 GTTGACAGATGTATCCATCTGAATGCAATGAAGAAA +HWI-EAS88_1_1_1_858_816 ]]]]]]]]]]]]]]]]]]]]]]Y]]]]Y[ZZXVKOO @HWI-EAS88_1_1_1_111_677 GGGCGGTGGTCTATAGTGTTATTAATATCAAGTTGG +HWI-EAS88_1_1_1_111_677 ]]]]]]]]]]]]Y]]]]]]]]]]]R]Y][ZPXQSLS @HWI-EAS88_1_1_1_669_439 GCTGACAACCGTCCTTTACTTGTCATGCGCTCTAAT +HWI-EAS88_1_1_1_669_439 ]]]]]]]]]]]]]]]]]Y]]]YO]T]]]WZZXQCJM @HWI-EAS88_1_1_1_176_181 GATTAGAGGCGTTTTATGATAATCCCCATGCTTTGC +HWI-EAS88_1_1_1_176_181 ]]]]]]]]]]]]]]]]]]]]MY]]Y]CV[RZXVSFS @HWI-EAS88_1_1_1_681_526 GAAATATCCTTTGCAGTAGCGCCCATATGAGAAGAG +HWI-EAS88_1_1_1_681_526 ]]]V]]]]]]]]]]]]TY]Y]T]C]]R][JZHHFFN @HWI-EAS88_1_1_1_734_219 GGTAAAGGACTTCTTGACGGTACGTTGCATGCTTGG +HWI-EAS88_1_1_1_734_219 ]]]]]]]]]]T]]]]]RC]Y]R]]]]WPCTVCQCMA @HWI-EAS88_1_1_1_643_478 GTGAGTTGTTCCATTCTTTAGCTCCTAGACCTTTAG +HWI-EAS88_1_1_1_643_478 ]]]]]]]]]]]]Y]]]]]]J]]V]]]RJJZORVSAH @HWI-EAS88_1_1_1_152_301 GAAGTAGCGACAGCTTGGTTTTTAGTGAGTTTTTCC +HWI-EAS88_1_1_1_152_301 ]]]]]]]]]Y]V]]]]]]]]]]]V]]JJTZZHVSJL @HWI-EAS88_1_1_1_864_228 GTATTGCTTCTGCTCTTGCTGGTGGCGCCCTTTCTA +HWI-EAS88_1_1_1_864_228 ]]]]]]]]]]]]]]]]]]]]RH]VJVROTCXCPHMF @HWI-EAS88_1_1_1_623_542 GATAATCCCAATGCTTTGCGTGACTATTTTCGTGCT +HWI-EAS88_1_1_1_623_542 ]P]]]]]]]YVT]]]]]]]]O]C]]]]][VOJPCAS @HWI-EAS88_1_1_1_851_725 GTTTTTGAGATGGCAGCAACGGAAACCATAACGGGC +HWI-EAS88_1_1_1_851_725 ]]]]]]]]]T]]]]Y]]TJT]YCOVOVCHQJJOCLF @HWI-EAS88_1_1_1_643_262 GTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAG +HWI-EAS88_1_1_1_643_262 ]]]]]]]]]]]]Y]]]V]]RVVVYV]]RPVTMNFHN @HWI-EAS88_1_1_1_664_726 GTTAATGCTGGTAATGGTGGTTTTCTTCTTTTCCTT +HWI-EAS88_1_1_1_664_726 ]]]]]]]]]]]Y]]]]]]]]J]]]OR]MCUZEKAOO @HWI-EAS88_1_1_1_736_517 GAAGTCATGATTGAATCGCGAGTGGTCGGCGGGTTG +HWI-EAS88_1_1_1_736_517 ]]]]]]]]]]]]]V]]]]]]O]M]]YR]WEHRMMML @HWI-EAS88_1_1_1_99_173 GTATAATTACCCCCAAAAGAAAGGTATTAAGGATGA +HWI-EAS88_1_1_1_99_173 ]]]]]]]]]]]]]CTTOT]REP]]OO]]RVSOMOSF @HWI-EAS88_1_1_1_664_501 GAGTATCCTTTCCTTTATCAGCGGCAGACTTGCCCC +HWI-EAS88_1_1_1_664_501 ]V]]]Y]]]]]]]]]]V]]TV]YVVHVOWMZEHJAK @HWI-EAS88_1_1_1_339_626 GTTATATGGCTGTTTGGTTTTTTTTTTGTTTATTTT +HWI-EAS88_1_1_1_339_626 ]]]]]]]]]]]]E]ERR]]P]P]V]YOCUEJCLFCA @HWI-EAS88_1_1_1_740_733 GGTGTGGTTGATATTTTTCATGGTATTGATAAAGCT +HWI-EAS88_1_1_1_740_733 ]]]]]]]]]]P]V]]]]]]Y]TT]Y]]PJZVXOOMO @HWI-EAS88_1_1_1_878_404 GCCTGTCTCATCATGGAAGGCGCTGAATTTACGGGA +HWI-EAS88_1_1_1_878_404 ]]]]]]]]]V]]]]]]P]]]]]]VYMP][ZCMQHCC @HWI-EAS88_1_1_1_822_121 GTTTATCCTTTGGATGGTCGCCATGATGGTGTTTTT +HWI-EAS88_1_1_1_822_121 ]]]]]]]]]]]]]]]]]]Y]]PM]]C]PVZVCVSFS @HWI-EAS88_1_1_1_708_703 GAGGAAGCATCAGCACCAGCACGCTCCCAAGCATTA +HWI-EAS88_1_1_1_708_703 ]]]]]]]]]]]]]]Y]]P]]R]]]PYY]MPZXAMMJ @HWI-EAS88_1_1_1_362_553 GTCTCATTTTGCATCTCGGCAATCTCTTTCTGATTT +HWI-EAS88_1_1_1_362_553 ]]]]]]]]]]]]Y]]]]]]]TT]]]]]][ZZMHSSF @HWI-EAS88_1_1_1_960_757 GGTATTAAATCTGCCATTCAAGGCTCTAATGTTCCT +HWI-EAS88_1_1_1_960_757 ]]]]]]]]]]]]]]]Y]]]RT]]]]]YPVZOXVLKS @HWI-EAS88_1_1_1_752_651 GCACGTTCGTCAAGGACTGGTTTAGATATGAGTCAC +HWI-EAS88_1_1_1_752_651 ]]]]]]]]]]]]Y]]Y]]]]]]]YYV]T[ZRUONFK @HWI-EAS88_1_1_1_754_734 GTAAGAAATCATGAGTCAAGTTACTGAACAATCCGT +HWI-EAS88_1_1_1_754_734 ]]]]]]]Y]]Y]]]]R]OY]TY]]]YMPTJPRQKJJ @HWI-EAS88_1_1_1_825_711 GATGGATACATCTGTCAACGCCGCTAATCAGGTTGT +HWI-EAS88_1_1_1_825_711 ]]]]]]]]]]]]]]Y]NTYYYVVV]RCVRPRRHSNO @HWI-EAS88_1_1_1_308_236 GTGCTCGTCGCTGCGTTGAGGCTTTCGTTTTTTTTT +HWI-EAS88_1_1_1_308_236 PPPPPPPPPPPPPPPPPOPPPPPPEPMPPPMPOFAF @HWI-EAS88_1_1_1_937_329 GGACGCTCGACGCCATTAATAATGTTTTCCGTAAAT +HWI-EAS88_1_1_1_937_329 ]]]]]]]]]O]]]]O]]R]]V]]]Y]]]WZVXVJOS @HWI-EAS88_1_1_1_838_878 GATTACTTCATGCAGCGTTACCATGATGTTATTTCT +HWI-EAS88_1_1_1_838_878 ]]]]]]]]]]]]]]]]]]]]]]J]]M]]TZQXVSNS @HWI-EAS88_1_1_1_414_792 GATTTTATTGGTATCAGGGTTAATCGTGCCAAGAAA +HWI-EAS88_1_1_1_414_792 ]]]]]]]]]]]YY]]V]]]]]V]]]HRRTVCOQJOM @HWI-EAS88_1_1_1_730_497 GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC +HWI-EAS88_1_1_1_730_497 ]]]]]]]]]V]]]]NYPNRYR]]]]YCY[VXXQFMF @HWI-EAS88_1_1_1_969_419 GAGTGGTCGGCAGATTGCGCTAAACGGTCACATTAA +HWI-EAS88_1_1_1_969_419 ]]]]]]]]]]]Y]T]]CRYE]PET]]VEJJQCOMLN @HWI-EAS88_1_1_1_104_533 GTCATGATTGAATCGCGAGTGGTCGGCAGATTTTGC +HWI-EAS88_1_1_1_104_533 ]]]]]]]]]]Y]]]]]RTVV]M]O]TVCWPZXAALA @HWI-EAS88_1_1_1_836_628 GGACGCCGTTGGCGCTCTCCGTCTTTCTCCCTTGCG +HWI-EAS88_1_1_1_836_628 ]]]]]]]]]]]]]]]]]Y]]]T]]]]YYXZEXSFFM @HWI-EAS88_1_1_1_596_390 GCAAGCTGCTTATGCTAATTTGCATACTGACCAAGA +HWI-EAS88_1_1_1_596_390 ]]]]]]]]]]]]]]]]]V]]]]]O]]]]MQZXEAOK @HWI-EAS88_1_1_1_987_447 GTCTGGAAACGTACGGATTGTTCAGTAACTTTACTC +HWI-EAS88_1_1_1_987_447 ]]]]]]]]]]]]]]]]T]]]]]VTT]ERRVZMAHSJ @HWI-EAS88_1_1_1_370_352 GGCCTTGCTATTGACTCTACTGTAGACATTTTTACT +HWI-EAS88_1_1_1_370_352 ]]]]]]]]]]]]YY]]]]R]]]]RRP]O[ZZXVFLS @HWI-EAS88_1_1_1_843_797 GCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGT +HWI-EAS88_1_1_1_843_797 ]]]]]]]]]]]]]]R]]O]CVY]]]T]Y[RMOOSSS @HWI-EAS88_1_1_1_720_664 GTTTACGAATTAAATCGAAGTGGACTGCTGGGGGGA +HWI-EAS88_1_1_1_720_664 ]]]]]]]T]]]]Y]]]]RR]R]]VTRVERVZEQSFF @HWI-EAS88_1_1_1_892_748 GTTGGATTAAGCACTCCGTGGGCAGATTTGTCATTG +HWI-EAS88_1_1_1_892_748 ]]]]]Y]]]]Y]Y]V]]]R]]CJM]JV]WZTEINOS @HWI-EAS88_1_1_1_569_417 GAAATGCAGCAGCAAGATAATCACGAGTATCCTTTC +HWI-EAS88_1_1_1_569_417 ]]]]]]]]]]]]]YV]N]]]]]Y]]O]VVVPNOSNS @HWI-EAS88_1_1_1_231_669 GACTACCCTCCCGACTGCCTATGATGTTTATCCTTC +HWI-EAS88_1_1_1_231_669 ]]]]]]]]]]]]]O]]]R]TOYYR]]Y]EPZXOOSA @HWI-EAS88_1_1_1_990_296 GGCTCTTCTCATATTGGCGCTACTGCAAAGGATATT +HWI-EAS88_1_1_1_990_296 ]]]]]]]]]]T]Y]]]T]]]]T]]O]JPRZTCVASS @HWI-EAS88_1_1_1_113_590 GCATGGGTGATGCTGGTATTAAATCTGCCATTCAAG +HWI-EAS88_1_1_1_113_590 ]]]]]]]]]]]]]]]]YV]]]]R]]]RV[QZXVCNO @HWI-EAS88_1_1_1_355_102 GATAAACCAACCATCAGCATGAGCCTGTCGCCTTGC +HWI-EAS88_1_1_1_355_102 ]]]]]]]]T]]]T]]Y]]MY]T]Y]YVMUSVEVNOF @HWI-EAS88_1_1_1_658_670 GTTTTCCGTAAATTCAGCGCCTTCCATGATGAGACA +HWI-EAS88_1_1_1_658_670 ]]]]]]]]]]YV]]]]]Y]]]]Y]]MTTHSZMQFFF @HWI-EAS88_1_1_1_699_385 GCAATGGAGAAAGACGGAGAGCGCCAACGGCGGCCA +HWI-EAS88_1_1_1_699_385 ]]]]]]]]]V]]]R]]]]]P]Y]Y]REV[ZRXAFHF @HWI-EAS88_1_1_1_943_855 GTTAACAAAAAGTCAGATATGGACCTTGCTGCTAAA +HWI-EAS88_1_1_1_943_855 ]]]]]]]]]]]]]]]]]]]]]]VT]]]][VZXVLKM @HWI-EAS88_1_1_1_465_881 GGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACT +HWI-EAS88_1_1_1_465_881 ]]]]]]]]]]]]]]]]E]]]]CHT]V]M[ZZHVFOS @HWI-EAS88_1_1_1_110_475 GAACAGCATCGGACTCAGATAGTAATCCACGCTCTT +HWI-EAS88_1_1_1_110_475 ]]]]]]]]]]]]Y]]]]]T]Y]TY]YR]PZZUNOLO @HWI-EAS88_1_1_1_334_219 GACGCAATGGAGAAAGACGGAGAGCGCCAACGGCGT +HWI-EAS88_1_1_1_334_219 ]]]]]]]]]]]]OYY]Y]]]C]PYY]]VCOXXVHOA @HWI-EAS88_1_1_1_313_372 GACGCTGACAACCGGCCTTTACTTGTCATGCGCTCT +HWI-EAS88_1_1_1_313_372 ]]]]]Y]]]]]]]]YV]TVO]]]]YY]R[ZZXVSLS @HWI-EAS88_1_1_1_423_931 GGAGCACATTGTAGCATTGTGCCAATTCATCCATTA +HWI-EAS88_1_1_1_423_931 ]]]]]]]]]]]]]]]]]]]V]]]OO]]]RPZTQOOO @HWI-EAS88_1_1_1_511_536 GTATGGCTCTTCTCATATTGGCGCTACTGCAAAGGG +HWI-EAS88_1_1_1_511_536 ]]]]]]]]]]]]]]V]Y]]O]]]]]T]VPZOJIHJC @HWI-EAS88_1_1_1_233_304 GGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA +HWI-EAS88_1_1_1_233_304 ]]]]]]]]]]]]]]]]]]]]]]]]]]M][ZTXVSJL @HWI-EAS88_1_1_1_239_243 GCCCTCTTAAGGATATTCGCGATGAGTATAATTACC +HWI-EAS88_1_1_1_239_243 ]]]]]]]]]]]]]]]]]]Y]Y]]]Y]Y][UZXVJSM @HWI-EAS88_1_1_1_705_445 GCTGATGCTTCCTCTGCTGGTATGGTTGACGCCGGG +HWI-EAS88_1_1_1_705_445 ]]]]]]]]]]]]]]]]]]]]R]]]]Y]YHPPJQLNH @HWI-EAS88_1_1_1_371_846 GCCATCAACTAACGATTCTGTCAAAAACTGACGCGT +HWI-EAS88_1_1_1_371_846 ]]]]]]]]]]]]]]RP]]]]Y]]]Y]R]TTRXSSSO @HWI-EAS88_1_1_1_921_496 GCAATGGAGAAAGACGGAGAGCGCCCACAGCGGCCC +HWI-EAS88_1_1_1_921_496 ]]]]]]]Y]YYY]Y]]]HYO]TYPYHCMEPOJAFAF @HWI-EAS88_1_1_1_322_845 GTCACATTTTGTTCATGGTAGAGATTCTCTTGTTGA +HWI-EAS88_1_1_1_322_845 ]]]]]]]]]]]]]]Y]]]]]]]]Y]]]]WZZOVSMA @HWI-EAS88_1_1_1_243_812 GCTGCTAAAGGTCTAGGAGCTAAAGAATGGAACAAC +HWI-EAS88_1_1_1_243_812 ]]]]]]]]]]]Y]]]]]V]]]V]PYTR][ZZNQJLH @HWI-EAS88_1_1_1_370_333 GGGATGAACATAATAAGCAATGACGGCAGCAATAAA +HWI-EAS88_1_1_1_370_333 ]]]]]]]]]]]]]]TY]]YY]]]]]]]W[JHMOJSM @HWI-EAS88_1_1_1_859_299 GAGTTGTTCCATTCTTTAGCTCCTAGACCTTTAGCA +HWI-EAS88_1_1_1_859_299 ]]]]]]]]]]R]]]]]]]]]]]]]P]R]XZZXMHOJ @HWI-EAS88_1_1_1_797_117 GAAGTGTCCGCATAAAGTGCACCGCATGGAAATGAA +HWI-EAS88_1_1_1_797_117 ]]]]]]]]]]]Y]]Y]]]]]M]]]]M]]OHHNSSAF @HWI-EAS88_1_1_1_748_430 GCGCTACTGCAAAGGATATTTCTAATGTCGTCACTT +HWI-EAS88_1_1_1_748_430 ]]]]]]]]]]]]Y]]V]Y]]]]]R]]M][RTRMLOH @HWI-EAS88_1_1_1_356_375 GACATTATGGGTCTGCAAGCTGCTTATGCTAATTTT +HWI-EAS88_1_1_1_356_375 ]]]]]]]]]]]]]]]]]Y]]]]]]]O]]WVZPQSSH @HWI-EAS88_1_1_1_655_181 GTTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGG +HWI-EAS88_1_1_1_655_181 ]]]]]]]]]]]]]]Y]]]]]]]T]]]TJ[PMPLSJA @HWI-EAS88_1_1_1_801_48 GAAAGGTATTAAGGATGAGTGTTCAAGATTGCTGGG +HWI-EAS88_1_1_1_801_48 ]]]]]]]]]]]]]]Y]]R]]]Y]]OR]T[ZZRVNSH @HWI-EAS88_1_1_1_802_724 GCGTACTTATTCGCCACCATGATTATGACCTGTGTT +HWI-EAS88_1_1_1_802_724 ]]]Y]]]]]]]Y]]]VV]EV]C]P]RREHSCRHHHL @HWI-EAS88_1_1_1_705_499 GTCAACCTCAGCACTAACCTTGCGAGTCATTTCTTT +HWI-EAS88_1_1_1_705_499 ]]]]]]]]]]]]]]]TY]]]]]YYT]V]PVZXQSOS @HWI-EAS88_1_1_1_186_694 GCGTTTGATGAATGCAATGCGACAGGCTCATGCTGT +HWI-EAS88_1_1_1_186_694 ]]]]]]]]]]]]]]]]Y]]]]E]T]]]]WCZXVSSH @HWI-EAS88_1_1_1_354_371 GTTAGGAACATTAGAGCCTTGAATGGCAGATTTAAT +HWI-EAS88_1_1_1_354_371 ]]]]]]]]]]]]]]]]]]]]]V]]]]]V[OZXVHKS @HWI-EAS88_1_1_1_967_272 GGAAAACACCAATCTTTCCAAGCAACAGCAGGTTTC +HWI-EAS88_1_1_1_967_272 ]]]]]]]]]]]Y]]]]]]]J]]]PP]H][HZXOSSK @HWI-EAS88_1_1_1_668_200 GAACTGACCAAACGTCGTTAGGCCAGTTTTCTGTTC +HWI-EAS88_1_1_1_668_200 ]Y]]]]]]]]]]]]Y]]]]]T]]]P]V][XZXIASL @HWI-EAS88_1_1_1_306_556 GTTTTACCTCCAAATGAAGAAATAACATCATGGTAA +HWI-EAS88_1_1_1_306_556 ]]]]]]]]]]]]H]]]]Y]Y]]]VV]]]XVZTVMMM @HWI-EAS88_1_1_1_881_561 GTCGTCACTGATGCTGCTTCTGGTGTGGTTGGTATT +HWI-EAS88_1_1_1_881_561 ]]]]]]]]]]V]]]]]]]]]]]]VYY]]VZZCVFSS @HWI-EAS88_1_1_1_238_692 GTGGTCAACAATTTTAATTGCAGGGGCTTCGGCCCC +HWI-EAS88_1_1_1_238_692 ]]]]]]]]]]]]]]]]]]]Y]]]]]]]][VZXVSSS @HWI-EAS88_1_1_1_443_888 GCTCAAAGTCAAAATAATCAGCGTGACATTCAGAAG +HWI-EAS88_1_1_1_443_888 ]]]]]]]]Y]]]]]]]]Y]]]]YRPV]]XZVUVHSS @HWI-EAS88_1_1_1_167_340 GTCTTTCGTATTCTGGCGTGTAGTCGCCTTCTGTTT +HWI-EAS88_1_1_1_167_340 ]]]]]]]]]]]]]]]]]Y]EMVM]YHJVECZPLCHS @HWI-EAS88_1_1_1_603_569 GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT +HWI-EAS88_1_1_1_603_569 PPPPPPPPPPPPPPPPPPPPOPPPPPPPPPOPOOHK @HWI-EAS88_1_1_1_718_225 GTCAACGTTATATTTTGATAGTTTGACGGTTTATGT +HWI-EAS88_1_1_1_718_225 ]]]]]]]]]]]]]]]]NT]V]]]]MY]H[ZZEKSOF @HWI-EAS88_1_1_1_406_412 GGAAAGATTGGTGTTTTCCATAATAGACGCCACGCG +HWI-EAS88_1_1_1_406_412 ]]]]]]]]]]]]]]]]]]]T]YY]T]J][VCMVFMS @HWI-EAS88_1_1_1_549_119 GGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATT +HWI-EAS88_1_1_1_549_119 ]]]]]]]]]]]]]]]]]]R]]]TYY]]]VVOPAAKS @HWI-EAS88_1_1_1_693_898 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAGT +HWI-EAS88_1_1_1_693_898 ]]]]]]]]]]]Y]]]]]NY]]]]Y]VR]MJQNSAOC @HWI-EAS88_1_1_1_183_559 GTTTTACAGACACCTAAAGCTACATCGTCAACGTTA +HWI-EAS88_1_1_1_183_559 ]]]]]]]]]]]]]]]]]]]]]]]Y]]]VTVVRVMSM @HWI-EAS88_1_1_1_314_891 GATGAACTAAGTCAACCTCAGCACTAACCTTGCGAG +HWI-EAS88_1_1_1_314_891 ]]]]Y]Y]]]]]]]OYY]]]Y]]]YYVVTSZUOOHH @HWI-EAS88_1_1_1_884_867 GTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTA +HWI-EAS88_1_1_1_884_867 ]]]]]]]]]]]]]]]T]]]]]]]]]V]T[OVXEJSJ @HWI-EAS88_1_1_1_878_444 GCAATCTGCCGACCACTCGCGATTCAATCATGACTT +HWI-EAS88_1_1_1_878_444 ]]]]]]]]]]]Y]]T]T]]]]TRYVMEVVRSRHHNH ShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/GERALD/s_2_export.txt0000644000175100017510000035503012607265053026510 0ustar00biocbuildbiocbuildHWI-EAS88 3 2 1 451 945 CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC YQMIMIMMLMMIGIGMFICMFFFIMMHIIHAAGAH NM N HWI-EAS88 3 2 1 409 991 AGCCTCCCTCTTTCTGAATATACGGCAGAGCTGTT ZXZUYXZQYYXUZXYZYYZZXXZZIMFHXQSUPPO NM Y HWI-EAS88 3 2 1 451 939 ACCAAAAACACCACATACACGAGCAACACACGTAC LGDHLILLLLLLLIGFLLALDIFDILLHFIAECAE NM N HWI-EAS88 3 2 1 447 961 AATCGGAAGAGCTCGTATGCCGGCTTCTGCTTGGA JJYYIYVSYYYYYYYYSDYYWVUYYNNVSVQQELQ NM N HWI-EAS88 3 2 1 450 960 AAAGATAAACTCTAGGCCACCTCCTCCTTCTTCTA LLLILIIIDLLHLLLLLLLLLLLALLLLHLLLLEL NM N HWI-EAS88 3 2 1 467 922 AAAAAAAAAAAGGACACACCATGAGATCACAGGGA YYYYYYYWVVMGGUHQHQMUFMICDMCDHQHEDDD NM N HWI-EAS88 3 2 1 874 313 TAAAAAATTAGCAAAAAACCAAAAATGTAATTGAT ZZZZZZZZZZYZZZZZYZZZZYYZZZZZZZUUUUU chr17.fa 69345321 R A30A3 14 Y HWI-EAS88 3 2 1 907 256 TAAATCGTGCTGTAACCTTTCCCAACATCTCTGTG ZZZZZZZZUZZUZZZZZZZZZZZZYZYZZZUUHUH chr18.fa 54982866 F 35 67 Y HWI-EAS88 3 2 1 889 547 AATGACCGATAATTAAAAATAAAATCTTTGCATAT ZZZZZZZYZZYZZZZYZZZZZZZZZZZZZXUNUUU NM Y HWI-EAS88 3 2 1 892 426 TCATCATTTTTCTAAGTGTTATGAAGAAAATATAT ZZZZUUZYZYZZZZZLZSZZYYUUZDUJIYUUULU chr12.fa 80537786 R 25T9 18 Y HWI-EAS88 3 2 1 898 354 TTTTGTAGCAAAGTGACAAGTTGTAACAAAGTGAC ZZZZOZZXZZZZZZXZZZZXZZUZXZZZZZLSSSS NM N HWI-EAS88 3 2 1 915 368 TTAACATAGAGGTCACCTATCCCAGAATTCGCTAA ZZZZZZZZZZZYZZZZZZZZZZZZYZZZZZNUUUU chr10.fa 117148563 R 35 18 Y HWI-EAS88 3 2 1 937 326 TTATGCGGAGGAAGTATGCGGATGAATTTATTTTT ZZZZUZZZYYYYZSZUZSYSLSZUUUZZZSHUUHU NM Y HWI-EAS88 3 2 1 895 373 TTCCAATTTGTATCCCCTTGATCTCCTTTTGCTGT ZZZZZZZZZZZZZZZZZZZXZZZZZZZZZZQUUQU 89:255:255 Y HWI-EAS88 3 2 1 926 330 TTATTTATCCTGAAGGCAACTTGTCCCCTTAAGTT YYYYYYYYYYYJYYJSYYYVYYEYYSYSYYLGCGQ chr9.fa 9192755 R 33G1 14 N HWI-EAS88 3 2 1 347 920 GAAAAAAAAAAAAAAAAAAAAAAAAAAAATGGGGT ZZZZZZZZZZZZZZZZXYVVXRULQUUDOFJCCCA 0:202:255 Y HWI-EAS88 3 2 1 874 613 ACCATCTAGACACTGCCATACCTGGGGATCCATCC LLLLLLLLDLLLLLLLLLLLLLLILLLLJLLALLL chr1.fa 3393025 F 35 0 N HWI-EAS88 3 2 1 384 963 GATGGGTGTGCATCCTCTTGCCGTCATATTCCTTC LLGIILIGDGLAGLLFDAIALLFILLALHFEEACA NM N HWI-EAS88 3 2 1 907 299 TTTGGCAGTCTACTTTCAATCTTTTAGTTCTGAAA ZZZZZZZZZZZYZZZZZDZZYZZZMXMZSZUCNUU chr19.fa 4786365 R 24G3G6 0 Y HWI-EAS88 3 2 1 888 810 TTTAGTGATTTCGTCATTTTTCAAGTCGTCAAGTG ZZZZZZZZZZZZXZZZZZZZZZZZMZZSZZUUKUU chr2.fa 98506741 R 35 6 Y HWI-EAS88 3 2 1 877 697 GTGATTTCGTCATTTTTCAAGTCGTCAATTGGATG ZZZZZZZZZZZZZZZZZZZZXZZXZZYYDZQQQUU 0:12:46 Y HWI-EAS88 3 2 1 880 318 TATTTTCAGTTTTCTTGCCCTATTCCACGTCCTAC ZZZZZZZZYZZZZZZZXZZZZYZZZZYZDZUUUUU chr9.fa 3026723 F 19A7G7 0 Y HWI-EAS88 3 2 1 907 342 TGGTCATAAAATATTTGCCTACACAAACGTCCTAA ZZZZZZZZZZZZZZZZXZZZZZZZZZYZMZUUUUU NM Y HWI-EAS88 3 2 1 912 534 TACAGCAGAAGACACCTCTCAGCTTCCCACCTTGC YYYYVYYJYYSYYSYYVYVYYSYYVYYYYYQQQLQ chr8.fa 129798321 F 35 48 N HWI-EAS88 3 2 1 914 642 TAAAATTCCACCAGTGAAATCTTTTCTTTGCTCAC ZZZZZZZZZZZZZYZZZZZZZZZZZZZZZMUUUUU NM Y HWI-EAS88 3 2 1 899 377 TATGATACTTAAGAAATTACATTAATGTTAAAAAG ZZZZZZZZZZZZMZZZZZZZZZZZXZSZZYUUUUK chr16.fa 88687813 R 35 57 Y HWI-EAS88 3 2 1 885 532 TCTTTTGCAGTCACAAGTGGCATTACAGTCATTTT ZZZZZZOZZUZZZZZXXZUOZZZZZZZPZZSSSSS NM Y HWI-EAS88 3 2 1 915 604 AATATTGTAACAATAAAAATGAATATTAAAAATGT ZZZZZZYZZZZZZZZZZZZZYZZZZZZZYZUUUIU 85:11:71 Y HWI-EAS88 3 2 1 878 810 TAAAAAACGTGAAAAAGTGAAATGCACACTGAAGG ZZZZZZZZZZZZZZZZZZZZZZZYZZZXZZUUUUU NM Y HWI-EAS88 3 2 1 929 361 TCTCTCATGGGCTGTTCCTAGTCACCAGGAGCCAG ZZZZZZZZYYYZZZZZZZZYMZZYZZYSXZNUUUU chr8.fa 74191119 R 35 50 Y HWI-EAS88 3 2 1 874 519 TTATTACATTATGGTAATAGTAATTCTATGAAAGT ZZZZZZZZZZZZYSZZZZZSZZYZZZZZZXUUUKU chr15.fa 49598112 R 35 63 Y HWI-EAS88 3 2 1 142 935 AAAAAAAAAAACTGTGAAAAAATCAAAATATAACA LLLLLLLLLLLDLHIHILLILLILFIIIFLACEEE NM N HWI-EAS88 3 2 1 886 878 GATCCCAAGGATTTCTAGAAAAAAAATTGTTTGCC ZZZZZZZZZZZZZZZZZZZYZZZZZYZZZZUUUUQ chr2.fa 123647048 R 27C7 40 Y HWI-EAS88 3 2 1 880 89 TTCTGGTATAGTTTGCCATTATTTGCAGTGTTGGG ZZZZZZZZZZUZZZUZZZZZZZZZLZZJZSAUHGH chr9.fa 94929240 F 30G4 21 Y HWI-EAS88 3 2 1 359 968 GAAAAAAAAAAAAAAAAATATATCTCACATGCCCC ZZZZZZZZZZXOZXSXIZUIIOXQFFHQUCLEIIH NM Y HWI-EAS88 3 2 1 909 544 ACACTATACCCCAAATTATCATAAATAAATTAATT LLLDDLDLLLLLLJLLLLLALDLLLLLLLLLELEE NM N HWI-EAS88 3 2 1 899 539 TACAGCCTGCCAGTATCTCCCAGTCGCAGCAGTTT ZZZZZZZZZZZZZZZZZZZZZZYYZYZZSZUUUUU chr10.fa 62882404 R 35 65 Y HWI-EAS88 3 2 1 901 604 CTTGATTTACAACGTGGTATTGTATTTTACATAGT ZZUZZZUZZUZZZUSLUUYZZUZZZSYZZZUCULU chr4.fa 10916601 R 31G3 27 Y HWI-EAS88 3 2 1 921 822 TACAGATTCCTTAACCACCATCATGGTATTTTACT ZZZZZZZZZZZZZZZZZZZZZZZZZZZYZZUUUUU NM Y HWI-EAS88 3 2 1 952 762 GTCCTAATGCTATGATCTCAACATTTGTCATCTCC ZZZZZZZZZZZZZYZZZZZZYZYZZZXZZSUUUUU chr15.fa 28011008 R 35 65 Y HWI-EAS88 3 2 1 936 775 TAGGGCCATTGACTCTGTAAAGCAGTCTTCTTCCT ZZZZZZZZZZZZZZZZZZZZZYZZZZZZZZUUUUU chr6.fa 115483999 F 35 71 Y HWI-EAS88 3 2 1 906 500 CTTGATAAGAAAAATACCACTATTTATATCATCAT ZZZZZZZZYZYZZYZYZZZZZSZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 897 270 GTTGTGAATACAGGTTCTTCATTGCTATCTAAATT YYYOJVYYYYYYYVYYYYYVYYYEYYYYSYLQQQQ chr5.fa 27077055 F 4G30 16 N HWI-EAS88 3 2 1 893 595 ACTTTAATTCTTGTCCCTGTATGTCTAATTACTTC ZZZZZZZZZZZZYZZZZZSXZZSEZZSSZEQUUUU chr16.fa 47153775 R 23G5G5 12 Y HWI-EAS88 3 2 1 882 602 AGAGGAACAGTCAAGCAAAGAGCCATCTTGTCTAA ZZZZZZZZZZZZZZZZZZYZXZZZSZZZZSUUUUU chr6.fa 114345009 F 35 63 Y HWI-EAS88 3 2 1 141 939 ATATGAGTGTGAACATGTGAGTGAGGGTGTGTGTT LDLILILLLLLLDLLLLLLALLLLILLLLLLLLLL NM N HWI-EAS88 3 2 1 879 858 TTTTGTACTTTTGGATGGCTAAGTGAGTCACATAG ZZZZZZZZZZZZYYZZXSZZYYYZXYSZZXUUUUQ chr17.fa 76356869 F 20C14 33 Y HWI-EAS88 3 2 1 906 585 ACGTAATTTTAAAGGGTTCAATTCAACAAGAAGAT ZZUZZZZZZZYYZYZUZZZZZZZYYZZZUSUUUUU NM Y HWI-EAS88 3 2 1 902 401 ATAGCATATGATAATGGAGCAAAAGTTAAATATCA ZZZZZZZZZZZZZZZZZZXZZZZZYZZZYZUUUUU chr6.fa 61278653 F 35 70 Y HWI-EAS88 3 2 1 904 204 TAACTTCTTGAGTTCTTTGTATATATTTAATATTA ZZZZZZZZZUZOZZZZZZOZZZZZXZZJUJSOSSG chr18.fa 43206285 R 35 0 N HWI-EAS88 3 2 1 932 819 GATCCACAACCAAATTATCGCATATAATAATGTAA EJJLJLJLLLLLLDLLLLLLDLLLLLLLLLLLLLE NM N HWI-EAS88 3 2 1 919 409 TACTCTATGATTTAAAATTTTTAAACAAAATTACA LLLLLLLLDLLLLLLJJLLLLLLLLLLLLLALEAE NM N HWI-EAS88 3 2 1 336 929 ACATGCATAAAACTCTAACAGCAACGATACAGTTG YVYSUIUUYSUYSVGYUUWIUFQYQUVHUMQANEA NM N HWI-EAS88 3 2 1 933 554 ACAATAAAAATACATATATTAATATTCTAGAAAGG LLELLLLLJLLLJLJDJJLJLLLLLLJJJLLLECE NM N HWI-EAS88 3 2 1 899 215 TCTATGATTTTGACTATTCTAAGTACCTCATATAG ZZZZZZZZZZZOZZZZZZZZZZOZZZZZZUSOSSL NM Y HWI-EAS88 3 2 1 876 544 CTGCCATACTTAGACCCTCACACTTACATACAATA ZZZYZZZZZZZZXZZZZZZZZWZZZZZXZZUUNUU chr10.fa 90298827 F 35 69 Y HWI-EAS88 3 2 1 364 954 GAAAAAAAAAAAAGAAAGAAAGAGAAATCCCTGGA LLLLLLLLLLLDIIDLIILLLLLLLLHLLLLLLAL NM N HWI-EAS88 3 2 1 881 869 TTTCGTCACTTTACACACCGAAGAGCTTGGTGATA ZZZZZZZZZZZZZZZZZZZZZYZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 886 564 TTTAAAGTTCTGTAAACATCTTTGCCCTACCCCCT ZZXXZXUOOOOOMOMEOOUUUOKEKXXUPIGOASG NM N HWI-EAS88 3 2 1 917 676 GGACAATGTTATTTTGCTGGATGTAAAACATTTTT ZZZZZZZZZZZZZZZZZZSYZZYZYZZZXXUUUKU NM Y HWI-EAS88 3 2 1 899 739 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGA ZZZZUZZZZZZZZZZZZZYZZZLZZZZZSZUUACU NM Y HWI-EAS88 3 2 1 899 567 CCATCTCTGTAGATGTGAGGACTCCGCTACCCTCT UYZYYYZZZZUUZZUZSULSZZUZZJZZUZLLUUH chr11.fa 85759919 R 34G 25 Y HWI-EAS88 3 2 1 877 530 ATGTCTTTCGCGTTTCCCCCGCGAATCTGCAATTC ZZZZZZZZZUZZZZZZZZZZYZUZZZZYYZUUUUU NM Y HWI-EAS88 3 2 1 952 599 CAATGTAAGATGACTTTGAAATGGGTAAAATACTT ZZZZYZZZZZZZZZZZZXZZZZSSSZZZMXUUNUU chr19.fa 33555851 F 35 2 Y HWI-EAS88 3 2 1 913 506 CTTTAGAAACATTAGAAAACCTTTACTAAAACATC LLLLLDDJLLLLLLDLLLLLIJJLLHHDLDLLELE NM N HWI-EAS88 3 2 1 897 705 GAAGCTCCAAACTTTTTTTTTTGGCTTTTTGCGCT OVOJYYOJJOJOJOSJEOJOJVJEVNEJNNOOGGA NM N HWI-EAS88 3 2 1 943 280 TCGGAATATAACCCTTTATTTTTCGCGTGTGATTG ZZZZZZZZZZZZZZZZZZZZZZZZXZMZXZQQUUQ NM Y HWI-EAS88 3 2 1 422 869 GCTAGGACGAGATCGACTTCCGTCTTATGCCTGTC YIYIYJYYYUOMYYVOYYDUYDYVWQMQQUAQQEA NM N HWI-EAS88 3 2 1 882 513 AAGCCATTTTGACTTCCTCACTTGTATTACTAATT JLDLLLLLLLJLLDJJLJJELLLJLLLEELEELLL NM N HWI-EAS88 3 2 1 940 270 TACATGAAAGTTCTTCCCACTCTTATTGGTGTAGG ZZZZZZZZZYZZZZZZZZZZZZZZZZZZXXNUUUN chrX.fa 77965784 R 35 63 Y HWI-EAS88 3 2 1 952 544 CTTAAGTTATAAATTTAAAATTTCATTATCTAAAT ZZZZZYZZZZUUUZZZZZZZZZZZYZZZJYUUUUU chr17.fa 40370177 F 28G6 41 Y HWI-EAS88 3 2 1 899 607 TACCTATTATGTAGTGGCACATTTCCATTATGTCT YYJYYSYYVYSYYSYSVYYYYYYYYSSYYSQGQQQ NM N HWI-EAS88 3 2 1 888 896 GGAGCAGGGCCTGAGTGGGAAGACCTTGGTTGTTT LLLLEJLLJLLLLJLLLDLLLEELLJJLJLLCELL NM N HWI-EAS88 3 2 1 905 276 GTGTGTGCATTTCTTGGGAATGGGAACTTTGAATA ZZZZOZUZZZZZZZZUXOZXZKUOZZZZZZGSSSS chr17.fa 64723844 F 35 37 N HWI-EAS88 3 2 1 142 943 CGGGGTACACACACCCTCTTCCCACACTGTACAAG ZZZZZZZZZZZZZZZZZZZZZZXZZZYZXXUQSUU chr3.fa 88181975 F 35 30 Y HWI-EAS88 3 2 1 934 544 CCCAGTATTCATTCCACAAACACACAGTGCCCTGC ZZZZYZZZZZZZZZZZZZZZZZZXZZMZXZUUUUU chr8.fa 94050279 F 35 59 Y HWI-EAS88 3 2 1 916 555 TGTTCAAATATAATTTTCTTTACTGATTTTTATTT ZZZZZZZZZZZZZZZZZZZZZZZZXZZZZZUUUUU chrY_random.fa 18996311 R 35 1 Y HWI-EAS88 3 2 1 901 670 GCGCATGCTCAACCAGCTCAGTTCATTTCATTCAT ZZZZZZZZZZZYZZZZZZZYZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 883 460 GATGACATTTATAGACCTCTTCGACAGAGGATGTG ZZZOZZZXZZXZXOZZXZZZUZOOUUUPPPGSOSC 159:47:3 Y HWI-EAS88 3 2 1 921 556 ATGTATGTAGCAGCATGCATAGCCTTAATCATAGC ZZZZZZZZZZZZZZZZZZZZZYZZZZZZZZUUUUU chr2.fa 169986103 R 35 71 Y HWI-EAS88 3 2 1 879 465 TAAAGAAAGAAATTAAAGACTTTTTAGATTTCAAA ZZZZZZZZZUZYZZZZUUYZZZZZZUJUDUUUUUU 0:139:255 Y HWI-EAS88 3 2 1 908 786 TATGACCTTCGCCTTTAGCAATATCTTTGAAAATG ZZZZZZZZZZUZZZZZZUZZZZZZZZZZSYUUUUH NM Y HWI-EAS88 3 2 1 914 591 TATATGTGGGAAATGAAGGGAAGAGAGCCCCAAAC YZZZZYUYZZUZUZMZYZYYUZZZLZDUYYLUUUL chr18.fa 10669427 R 18A16 4 Y HWI-EAS88 3 2 1 885 855 TGTAAGTTTAATTTGACATCCAAATGGTTTTATAC ZZZZZZZZZZZZZZXZZZZZZZZZZYXZZZUUUUU chr2.fa 117484337 R 35 70 Y HWI-EAS88 3 2 1 888 614 GCAACCTATCTCCCAGGCATTTGTTCTTCATTCAT ZZZZZZZZZZZZZZZXZZZZZZYZZZZZZYUUUUU chr4.fa 75212573 R 35 70 Y HWI-EAS88 3 2 1 969 274 TTAAACCAGTATTCTTCATTTAATCAGGTCCCTAC ZZZZZZZZUZZZZZZZZZZZZZZZZZUJZZUUUUL NM Y HWI-EAS88 3 2 1 906 433 GAGAGTGGAGCCATGTCTTTCTGCAACCTGCAGCT ZZZZZZZZZZZZZZZZZZZZZZYZYYZZYSUUCUU NM Y HWI-EAS88 3 2 1 912 770 GCTATGAGTTTCCCTCTTAGAAATGCTTTCATTGT ZZZYUZYYYZZZUYZZZZZZZZSZUZZZZYUUUHU 255:255:255 Y HWI-EAS88 3 2 1 902 640 GACAGAGAAAAGGTAGTAAAACTTGTTAAAATATA YJJYYOOJJYYYODJVYJOJDOVSOSNSNVLQQCG NM N HWI-EAS88 3 2 1 918 278 TTCGTGGGTAGCTCAGTACATTTGTGGGTGGCAGT ZZZZZZZZZZYZZZYZZZZYZZZMKYXXYSUUHIU chr6.fa 91171518 R 2T16G15 0 Y HWI-EAS88 3 2 1 957 618 TATGGAAAACATAGTAATCCTTTAATTTTTTTATT LLLLLLELLEELLLELJEDDLLLLLLLLLDLLLLL NM N HWI-EAS88 3 2 1 874 368 GGAATAGCACAAGGACTACCCCACGTTCACTTGAC ELLLLJJLDLLLDLILJLLLLLLLDJILDLAELEL NM N HWI-EAS88 3 2 1 931 260 TACGTCTAAAAATGAGTCTGCCAGCAGGATCTTTC ZZZZZZZZYZUZZMMLZYZUZZUSZZYSUZUUUUU chr18.fa 41526962 F 2T28G3 0 Y HWI-EAS88 3 2 1 907 367 TTACCTCAGTTAAGAACTGTGACCAGAGCCGGGCG ZZZZZZZZZZZZZYZZZZYZXZZZZXZXZZUQUUU chr15.fa 81143764 F 35 66 Y HWI-EAS88 3 2 1 882 830 GTAACTGGAAATATTCTGCCTTAACATTTTAGCTT ZZZZZZZZZZZZZZZZZYZZZZZZZZZZZZUQUUU chr14.fa 99016975 R 35 67 Y HWI-EAS88 3 2 1 948 315 TTCCCATATTAGAGTAGTGTATAGACTGGTAAGTA ZZZZZZZZZZZUZUZZYZZZZZZSZYZJSZUUCUU NM Y HWI-EAS88 3 2 1 922 268 TCCATTTGGAGCTGAAGTATTTTGGAAGGAAAGTG ZZZZZZZYZZZZZZZYYZZZZZZXSYZMYYUUIUN chr16.fa 11190525 F 35 44 Y HWI-EAS88 3 2 1 889 91 TCCCACGGAGATCTCAATACTCTGGGCTTCTCTAG ZZZZZZZZZZYZZZZYZZZZZZZYZYZZZZUUUNN chr8.fa 36921313 R 35 71 Y HWI-EAS88 3 2 1 879 672 TGTGTGTGTATGTGTGTGTGTGTGCGCCCGCACGC ZZZZZZZZZZZZZXZZZXZLZKZMXSYDYKUHUHU chr14.fa 30832942 R 27G7 0 Y HWI-EAS88 3 2 1 900 175 TCTTTTTTTTTCTTACTCTCTCTAAGTATTTTATC LJLJLLLJLLLELJLDJLLLLLLJLAJLLLLLLLL NM N HWI-EAS88 3 2 1 423 910 GAAAAAATTTAGTGAGAAACAGTTGTCCAATCATA YYYYVJIJOOYSSOYOVYUUUVYVOULUUULELNL NM N HWI-EAS88 3 2 1 893 553 GATAACCTGTTTGATTGTTGGCAAAATTCCCTTGC ZZZZZZZZZZZZYZZZZZZXSZZZXZZZZZUUUQU 21:15:1 Y HWI-EAS88 3 2 1 915 570 ATTTTAAAATGCTTTTGGTTTCTGTACTGAAAACA ZZZZZZZZZZUZZZZZZSZZZZZLZZYZJZUUUUU chr4.fa 92270412 R 6C28 14 Y HWI-EAS88 3 2 1 912 559 TTGCAGGTCTTCAGTCAATGCTGCTTTCCATGTTC YJJJYJSYYYYYOYVYYSYJSOJSYSYSSJQGQQG chr3.fa 92821955 F 35 31 N HWI-EAS88 3 2 1 904 766 TCAGCCATCTCCTCATTTGTCTCCTTCCCCTTAAC YYYYYYJYYVYYYSSYYDYYYVVOYYYYYJQQQGQ NM N HWI-EAS88 3 2 1 910 795 GGAACAGTTTATATTTATTGGATATTCTTAGAGTT ZZZZZZZZZZZZZZZZZZZSMYZYZZDZSMAQKUU chr12.fa 49087737 F 28G6 2 Y HWI-EAS88 3 2 1 943 370 TCTGTTCCCACCGTTGCATTGAGAGACGATCCAAT ZZZZZZZZZZZZXZZSZXZMSZXYMYZDSZKAUQU chr9.fa 66979336 R 19G11G3 1 Y HWI-EAS88 3 2 1 349 954 GAAAGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA YYJYIJYYSYJWOSYSVYYWYYUWYUQYYUQQQNQ NM N HWI-EAS88 3 2 1 892 69 TGTTTGTCAGTTAGGTGCAAGTATTGGGGTTAGTC ZZZZZZZZZYZZZYYZYZZZYZZZZSSYSZUUNUU NM Y HWI-EAS88 3 2 1 917 766 ATTATATGAAACATAATTTATAAATACTAGAATAT ZZZZZZZUZZZZZZUYZZZZSLZSZUJZUJHUUUU chr5.fa 6774915 R 20G14 9 Y HWI-EAS88 3 2 1 883 522 CAACTCCAAACCTCGTATTCCGCCTTCCTCTTCCA LLLLDLLLJLLLJLLJLJLLLLLLLJLJLLLLELE NM N HWI-EAS88 3 2 1 938 813 TGAGGAGTCAGGGCTGGGGGACCGCTCATATTCTC ZZZZUZYZUUUYYZZYYYSYZZUULUZJYSUUUUU NM Y HWI-EAS88 3 2 1 932 488 CAGGTTTTAAATGACGTATTTGATGGTATTGTCTT ZZZYZZZZZZZZSYZSZYZZZEYZMEZXZZCUNUU chr2.fa 138562488 R 35 17 Y HWI-EAS88 3 2 1 939 562 ACCAAGCACGAGGACCCAAGTTTGGGTCTCCATCA ZZZZZZZZZZZZZZZZZZZZZZZXYYZZZZUUUUU chr19.fa 46941599 R 35 70 Y HWI-EAS88 3 2 1 905 313 TTATTCGGCAAGAAGCAATTGCGTACTCTGTTGTT SYOSVYVOJSSJJSVDSOOVSVODOJYVYJCQCCG NM N HWI-EAS88 3 2 1 937 710 TAAGGAAATGTTATAATGAAACCCATTATTTTATA ZZZZUZZZZZZZZZZZZUZZZZZZZZZYZZUULUU chr2.fa 74398714 R 35 56 Y HWI-EAS88 3 2 1 902 77 TCCATTCGATTCCATTTGATAATGATTCCAATCGA ZZZZZZZZZZZZZZZZZXZZZZZZZZZZZZUUUQU NM Y HWI-EAS88 3 2 1 927 397 TTTCTCATTTTTCACGTTTTTTAGTGATTTCTTCA ZZZZZZZZZZZZZZZYZZZZZZZSZSZZZZUKUUU chr2.fa 98502407 F 31G3 2 Y HWI-EAS88 3 2 1 910 553 AATTGGCAAAGAATGGGATCCTACAACATGGGACG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZXUUUUU 255:57:40 Y HWI-EAS88 3 2 1 899 422 GTTTTTTTTGGTAGGGTTTTTTCCCTTTTTTCCCA ZZZZZZZZZYZZZYYXZZZZZZZZZZZDZZIUUUC NM Y HWI-EAS88 3 2 1 935 385 ATTACCTACTTTAAAAACAAAACAAAACAAAACTA ZZZZZZZZZZZZZZZZZZZZZZZZYXZZZYUUUUU chr7.fa 19483019 R 33A1 44 Y HWI-EAS88 3 2 1 938 274 TCCATGAAAGATTGTATTTCTGTTCTTTTGTTCTG ZZZZZZZZZZYZZZZZZZZZZXZZZZZZZXUUUUU NM Y HWI-EAS88 3 2 1 884 520 GATCGCAAGACCTCGTCAGCCGTCTTCTTCTTCCA LLLLJELLDLILJLLJLDLLLLLLLLLLELLLLLC NM N HWI-EAS88 3 2 1 929 667 GGGTCTTGTAGATTTAGTATCATATAATTTTCAAA ZZZZZZZZZZOZZZZZLEOZXOZXZZPZZZCOLOO NM Y HWI-EAS88 3 2 1 952 533 TTTCAATGAACTGACTATGGTAAACATGGTACTGA ZZZZZZZYZZZZZZZZZZXMZZZZZYZMEZNNUIU chr14.fa 109174603 R 35 35 Y HWI-EAS88 3 2 1 879 211 GTCTTCATTCTTCTTGAGTTTCATGTGTTTCACAA ZZZZZZZZZZZZZZZZYXZZZZZZXZXZZZUUUUU 101:255:255 Y HWI-EAS88 3 2 1 884 381 AGGTCAGAAGTTTGAAACCAACCTGGCCAACCTGG LLJLLLLDLJLLLJLLLLLLLLLELLLLLLLCLLL NM N HWI-EAS88 3 2 1 909 354 ATAATCTATAAACATGGATAACACCCTATATAAAC ZZZZZZZZZZZZZZZSYZZZZZZZZZZSZYUUUUU chr14.fa 105675009 R 35 63 Y HWI-EAS88 3 2 1 890 745 GACAGCAACTTTTACCAACTGCCTCCTAAGCCCAT ZZZYZZZZZZZZZZZZZZZZYZZZZZZYSXUUUIU NM Y HWI-EAS88 3 2 1 891 370 ATAACTATTTTGAGAAGTCGACTTACTCCGAAGGT ZZZZZZZZZZZUZYYZYZZUYZZZYZZZZSHUUHU chr10.fa 101961852 F 35 52 Y HWI-EAS88 3 2 1 398 813 GAAAACAACTAATTGTCATCTCCACCTCCTCGTCC LLLLLDDLLLLDLLLLLIIDLILLLFLHLLALLLA NM N HWI-EAS88 3 2 1 891 209 TTGCCCACCGACTCCCAGAACCCCCTGCCTTGCTC ZZZZZZZZZZZZZZZZYZYZZZZZZZZZZZUKUUU chr11.fa 63446199 R 35 61 Y HWI-EAS88 3 2 1 940 247 GTTTGCAGTAAATTTCTTTTATTATGTTTATTTAT ZZZZOZZUZZZZZZZZZZZZXZZZZJZZZPGLSLS 0:0:25 N HWI-EAS88 3 2 1 924 560 TGAGTGTGTGCTGCTGGGGCTGTCCAAACTATTTG ZZZZZZZZZYZZYZZZZZYZZYZXZXXZXZUUCUC chr11.fa 117778468 F 32G2 3 Y HWI-EAS88 3 2 1 877 921 GAATGACAGATAACCAGTGTTACAGCCCTCTGACC ZZZZZZZZYZZZZZZZZZZZYZZZYZZZZZUUUUU chr4.fa 52212587 R 35 71 Y HWI-EAS88 3 2 1 976 325 TATGGGATAAAGACGAATCACTCAAACGAGACGTG ZZZZUZZZZZZYZZZZZZZUZZZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 887 906 GGAATGCAATGTGCTGTAATTGAATTTGCGAGACA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 386 970 GAAAAAAAAAAAAAAAAAAAAAAAAAAATGTGGTG ZZZZZZZZZZZZZYYYVXQVMQQLHFFCDCCFAAA 0:33:255 Y HWI-EAS88 3 2 1 891 230 TTTGTCCTGGTGACTTTTTGATCTTTGCTTTTCTT YYYOYOJYSJYYYSYVYYYOYYOYYYNDYYOQLAQ chr13.fa 99334307 F 27A5G1 13 N HWI-EAS88 3 2 1 884 451 ATTCCACGCTGTCGAGCACGACGCTGAAGCCGAAG ZZZZZZZZZZZZZZZZZMZYZZSZZXSZYZUKUUU NM Y HWI-EAS88 3 2 1 920 365 AGATGGGGTGATTACAAAATCATTAAGTTACAAAA ZZZZOZXXOXZZZZZZZZZZZUZZZZPZZZOSSSS NM N HWI-EAS88 3 2 1 878 296 AGTTACATTAAAATTGTATTTGTATTCAGCTGTCT ZOOZZZZZZZZUZZZZZUZZZUXZZUZUHXSGSOS chr12.fa 50274375 R 35 34 Y HWI-EAS88 3 2 1 881 120 GCCATTAAAATGAAATAGAATCATGGTAATTACAT ZZZZZZZZZZZZZZZZZZZZZZZZYYZZXZUUUQU chr2.fa 121829927 R 35 70 Y HWI-EAS88 3 2 1 877 484 ATCACTGATCCTTCCCACACCAACTACTTTTTTAA LJLLLLDLLILLLJLLLLLLLLJDJDLDLDLLLLL NM N HWI-EAS88 3 2 1 893 606 AAACTAGGAGTTGGTTCTTTGAAAAAATCAACAAT YYYJSJYJYJJOYOJOVOVVOYYYSYYYSYOQLQE chr15.fa 18597700 R 34G 0 N HWI-EAS88 3 2 1 904 324 GTATAGCTCAGGGGTAAAGCACTTGTCTAGGATCA ZZZZZZZZZZZYZYZZYZYZZZZZYZZZZXIUUUU chr7.fa 26124214 R 35 58 Y HWI-EAS88 3 2 1 463 887 ATCATTTTTCTTGCTATAATTCCTAAATAGTGTAT ZZZZZZZZZZZZZZZZZZYZZZXZZZZZZLUQUUU chr9.fa 4440309 F 35 54 Y HWI-EAS88 3 2 1 919 693 TGAATATCTCCAGATCACTCTGGAGAGTGAAGTAT ZZZZZZZZZZZUYZZZZZZZZYSSUYUZYZULUUU chr14.fa 72223491 R 35 54 Y HWI-EAS88 3 2 1 878 692 TCTCCTTACATCTCTTTTTATTCTTTCACTATTTC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr12.fa 34386077 F 35 72 Y HWI-EAS88 3 2 1 918 493 TCTCCACCCAGGTCCTGCTTGTTTACTTAGTTGTG YYYYYVSYVYJOJYYVOYVVOSYVSYYYHDQCEAL chr12.fa 16877741 F 31G1G1 6 N HWI-EAS88 3 2 1 877 572 CGGTTAAGTCGCTGCAATTATTTTGGGTATGTGCA ZZZZZZZZZZZZZYZRZZZZZZZZMXXZYZQUHUU NM Y HWI-EAS88 3 2 1 893 725 GGTTTGAGCGTGAAGCTTTTGACCTTTATGGCTTG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZXUUUUA NM Y HWI-EAS88 3 2 1 891 630 ACCTTACTAATGAGCCATCTCCCCATCCCGAATCC LLJLLJLJLDLLLLLLLLLLLLLLJLLLLJLELLL chr9.fa 101729240 R 9C25 14 N HWI-EAS88 3 2 1 353 995 AAGACTGGAACAAACCATGTTATCCGTACACAACC LLLILLLLLLDLLLLLFLLLLLFLLLLFLLLALAL NM N HWI-EAS88 3 2 1 874 607 CATCTTCTGCAGTTAATGTGGTCAGGTAGCAGGAT ZZZZZZZZZZZZZZZZZYZXXZZYXZZZYZNUUSU chr19.fa 3915206 F 35 3 Y HWI-EAS88 3 2 1 917 629 GTATCTTGAACTTGGCTCAGCGAGGAGTTTAGGTT ZZZZZZZZZZZZZZYZZZZYZZYZYZXZZZUKUUU NM Y HWI-EAS88 3 2 1 907 196 GTTGACAGACAATATAGTAAATTTGGTTACCCGCT LJLLLEJEDELLLJJJELJLLLLLDLLLDLALLCL NM N HWI-EAS88 3 2 1 895 585 GGATGCGTGATCCTGGCTGTATAAGAAATCATGCT ZYZZYZZZZZZZZZYXZZSZXZMZMZZXSYUNNUU chr1.fa 171119303 F 31G3 25 Y HWI-EAS88 3 2 1 893 543 CCAGAGCGTTTTTTAGAAACACCTGGTGTGTAGTT ZZZZZZZZZZZZZZZYZZZZZZZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 943 514 ATATTTTAAAATTGCTTTCTTTTTTTTTTTTTTTT ZZZZZZZZZZYZZYZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 885 634 GTTGGGATTGTGTTGCTAATTGTTGCCGGATTTGG ZZZZZZZZZZZYZZZZZZZZZSZZYZZZMYUUUNU NM Y HWI-EAS88 3 2 1 912 170 GTTTCTTCATGGAGACACTCATAGCTATTTGTTTC ZZZZZZZZZZXOXUOUUZZXOEUEUZUZJPOSSSS NM N HWI-EAS88 3 2 1 905 742 TTTTGCATTTTAGCACATCGATTAATTTTTCAGAA ZZZZZUZZZZZYSZZZZZZUZZZYZZZZZZUUHUU chr6.fa 143903417 F 35 65 Y HWI-EAS88 3 2 1 936 539 GAAAACAATAAATGTTAAACCAAATAGAAACCTTA ZZZZZZZZZZZZZXZZZZZZZZZXZZMZXYUUUUU chr5.fa 58035807 R 35 59 Y HWI-EAS88 3 2 1 896 778 ACATGGAAAGAGCAGTTCTCAACTTGATATGGAAA ZZZZZZZZZZZZZZZZZZZZZZZZZSZZZZKJQUU chr19.fa 12481297 F 35 14 Y HWI-EAS88 3 2 1 915 188 TTGGACAGGGTCACTTCGGGGCTTCATCCTCAGCC ZZZZZZZZZZZZZZZZZXZYZZZZZZZYZZUUUUU chr16.fa 47302165 R 35 28 Y HWI-EAS88 3 2 1 938 382 GTAACGGGGTCCAGAGACAAATTGAACCTACATGA ZZZZZZZZZZZZZZZZYZZZZZZYZZZZZYUUUUU chr12.fa 106101183 F 35 71 Y HWI-EAS88 3 2 1 927 596 CCAAACTCGTCCCTCCTGGGACCTGAGCAGGATGG ZZZZZZZZZZZZZZZZZZZZZZZZZZYZZZUUUUU NM Y HWI-EAS88 3 2 1 921 590 AAAGGAAGAAATCCAGCCCTCTGTGTGGACTCCGT ZZZZUZZZZZZZZZZUZYZZZZUZUZDDJUUUULU chr10.fa 121127944 F 35 22 Y HWI-EAS88 3 2 1 912 857 TAAAAGATTCGCCAAAACCGTAAAGATAGAATTGT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 890 507 AAGCCGGTTGATAGTTGCTGGGGCCTGGGGGATAG ZZZZZZZUZZZZZZZZUZZURUSZZZSJYSUUUUL chrX.fa 11161903 F 35 51 Y HWI-EAS88 3 2 1 882 543 GGCCATTCCTGATGATCGCGCAAGTCGCGGCATTC LLLLLLLLLLELLLLLLLLLLLJLLLELLLLALLL NM N HWI-EAS88 3 2 1 942 632 GAAAAGAAAAGAAGAGAAAAGAAAGAAATGAAAAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZYUUUUQ chr16.fa 75224828 F 28A6 1 Y HWI-EAS88 3 2 1 887 518 AGGTTGCGGCTGCAGTGAGCACCCGTCACACTGCT YJYOSSYYYYYYVSOVJVJVVYVDJNSDYDOCAOO NM N HWI-EAS88 3 2 1 912 515 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTATA ZZZZUZZZZZZZZZZZZZYZZYZZZZZZUYUUUHU NM Y HWI-EAS88 3 2 1 923 621 GACTCAGCCAGGAATTCCTTTCTCTGTCTGGACTT ZZZZZZZZZUZZZZZZZZZZZZZZZYZZZUHUUUU chr10.fa 79303829 R 35 54 Y HWI-EAS88 3 2 1 873 579 ATCTTGCAGGGGAAGACTGGGCTGGAGAAGGAGGG ZZZZZZZZZZZZZZZZZZZYZZZZZUXVXZSQUUU chr18.fa 4186859 F 35 61 Y HWI-EAS88 3 2 1 876 690 AGGAATCTTAACCTCATTCTGTTACTCAGGCTGTT ZZZZZZZZZZZZZZZZZZZZZZZYZZZSYYUUUUU chr6.fa 80058264 F 35 65 Y HWI-EAS88 3 2 1 881 446 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTAA ZZZZYZZZZZZZZZYZZZZZZZZZZZZZXZUUCIU NM Y HWI-EAS88 3 2 1 881 885 GTATCTGTTGAGGCCTGTTTTGTGACCGATAATAT ZZZZZZZZZZZYZZZZYZZZZXZXSZZYXZNUUNU chr18.fa 31524278 F 35 2 Y HWI-EAS88 3 2 1 903 63 TCAATTCGTGTACGGGCACGTTGGCATCTTTACTT ZZZZYZUZZYZZZUZYYZYYZZUUZDZZZZUHUUU NM Y HWI-EAS88 3 2 1 884 340 TATGAAATTTATTTCTTCGGCAATCGCGGACGGTG ZZZZZZZZZZZZZZZZZZMSZZZZZXYYSYUUUUU NM Y HWI-EAS88 3 2 1 923 599 GGTTTATTTTGGCTCACAGTTTCAAAAGTTTTCAA ZZZZZZZZZZXOZZZZZZOZZZZZZZUJZZSSSOS chr5.fa 108124829 F 35 31 Y HWI-EAS88 3 2 1 359 933 GAAAATCGCGGCTAGAGGAAGGGGGGGGTGTGTTC YYOYIOOSSSYISVISVYDSIVSWYLVUHHLLAAE NM N HWI-EAS88 3 2 1 952 331 TCCATGCTCTGAAGTCGGCCTCAATGCTGCCGTGC ZZZZZZZZZZZZZYZZXZZZZZYZZXZZYZUUUQU NM Y HWI-EAS88 3 2 1 897 478 TCTTGCGGTAAAGATGTTTTATCAGGGCTTTCGGA YOSJOYJJOYSSOVVOJVYVSYVSSISNDDOLLLL NM N HWI-EAS88 3 2 1 942 167 GAAGTGAATGAGAAGCTGAGAGACGTCTGGGAGGA ZZZZZZZZZYZZZZZZZSZZZYSZZYZZYYUUUUN chr8.fa 113857324 R 35 63 Y HWI-EAS88 3 2 1 928 515 AAGGTGACGGAAGTTCCACGTGTTTTTTTTTAGCA ZZZZZZZZZZYZYZZZZXZXYSZZZMZMZMIINUH NM Y HWI-EAS88 3 2 1 908 379 GTAGTCCCAGCTACTCAGGGAGCAGAGGCGGGAGG ZZZZZZZZZZZZZZZZXZZYZYZZYYZXZYUUQQU NM Y HWI-EAS88 3 2 1 471 818 AGATTGACCGGTCGTTTATTGCAAACATCAAGTCT ZZZZZZZZZZZZZZZZZYZZZZYZZZYZZZUURRU NM Y HWI-EAS88 3 2 1 894 856 TCTGTTTGTTTTGATGAATTGTCATACTCTCCTAG ZZZZZZZYYZZZSZZYYZZZMZZZZXSZXZUNUUN chrX.fa 89655881 R 35 50 Y HWI-EAS88 3 2 1 947 221 GAGCAGGAAGGGGGAAAGAAAGAGCAACAGTAGGA ZZZZZZZZZZZZZZZZZZZZYZZZZZZZZZUUUUQ chr4.fa 31085509 F 35 71 Y HWI-EAS88 3 2 1 889 602 GCCAGGCAGAGGTCCCTGGTTTGGGCTGCCTGGAA ZZZZZZZZZZZZZZZZZZZZZZZYZZZZZZUUUUU chr9.fa 123071963 F 35 71 Y HWI-EAS88 3 2 1 907 394 GTGTTTATAATTTACATATGCTAATTATCATTTAT ZZZZZZZZZZZZZZZZZZZSZZXZZZYZZZKUUUU 0:14:0 Y HWI-EAS88 3 2 1 885 171 GAATGATGCTTAAATAAAGTTTGATGACATTTGTA ZOZUZUOUZZUUUZXLOZOXZZUXXJXZPZSSGAL chr14.fa 9544253 F 33G1 35 Y HWI-EAS88 3 2 1 803 529 GTCGTAGCAGCCTTTGTTTTTTCTCATAAAATCTC ZZZZZZUZYZZZZZZYZZZZZZZZZYZYUYLUUUU NM Y HWI-EAS88 3 2 1 836 558 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU 131:254:255 Y HWI-EAS88 3 2 1 889 459 TGCCCCATCTTTAACACACTGTAAAGCTTTCTTAA ZZZZZZZZZZZZZZZZZYZZZZXZZXZZZZUUUUU NM Y HWI-EAS88 3 2 1 897 132 TGTGTTTTGCAAATTGTAACTTATATCTTGTGTAT ZZZZZZZZOUUXXZZOZXXXZZXZXZZZZJGASGS 11:255:255 N HWI-EAS88 3 2 1 770 342 TCTTTCCACATGCTTGGTTTCTACAGTCTGCTGTC OXUUZUZZUZXOUZXOLLEUUZZZKJJZXPOOLOS NM Y HWI-EAS88 3 2 1 913 348 GTACTCACGCGGTTCGGCTGCATCATCTTTTTTAT JLJJJLLDDLELLLLDELLJLJLLJLJEELLLLEC NM N HWI-EAS88 3 2 1 885 319 TCATCGCCGAAATTTCCACCGCCTGTCAGGAACAG ZZZYZZZZZZZZZZZZZZZZXZZZZZZZKYUNUUU NM Y HWI-EAS88 3 2 1 888 527 TCGGAACGGCAAGCGTCCACCTTGTGTTGGGCGGC ZZZZZZZZZZZZZZZYZZSZZYZYZZZZSYUUKUU NM Y HWI-EAS88 3 2 1 887 639 GTAGAAAGGTGCACGTGTGTGGCTCCTCAGGTTCT ZZOZXXZZOOUZUXZOZZUUXKXXUUJZXPCOSLO 255:255:61 N HWI-EAS88 3 2 1 816 597 GGGTACAATCAACCCCAACCCCATAGCGGATACAT YVJVYIYYJSSSOIOVVSIIYSOIINNNSDQELOL NM N HWI-EAS88 3 2 1 949 565 TTCGTACGCCTCTACTTGCATGTGGGCATAAAACA ZZZZZZZZZZZZZZZZZZZZZYZZXXZZZZUUUUU NM Y HWI-EAS88 3 2 1 910 609 TTTCGGGCAGAGCCCAGCAGCTGACCACAGCCCCT ZZZZZZZZZZZZZZZXZZZZZZYZZZSZXYUUUUQ 26:16:0 Y HWI-EAS88 3 2 1 950 287 TGGTCTTTATCTTGAAGGTGCTCAAGCACTCAGCA ZZZZZZZZZZZZZXZZXMZXZZZZZXZZZZUUQUU NM Y HWI-EAS88 3 2 1 900 738 GCTGTGTAGAGCGGGTTTGCCGACTGCTCCTTTGT JLLELDLLLLLLEELEJLLLIDLLDLLLLLLLEEL NM N HWI-EAS88 3 2 1 953 673 TAGAATTTTTAAATTATGACTAAAAAAACTGCCCT YYJSVYVVYVSSODYYVJYIYOOYYVVVDYLOOOQ chr11.fa 84930670 F 13A14A6 5 N HWI-EAS88 3 2 1 912 397 GATCTAACTTGACTCTTAGGCAAGGTGTTGGAGCT ZUZZZZZZZZZZUZZZZZSLZZZUSZSSZUCUUUU chr5.fa 52273399 R 35 38 Y HWI-EAS88 3 2 1 881 539 CAAATTGCTACCCGAATACACCAGGGCTCTGTGGT YJVYVYOYVYVYYJYYYVYYYYSVJYSYYYQQQQO NM N HWI-EAS88 3 2 1 902 485 TCACCAGAGCATCCTCATTCCATCAGTGGCCCTGG ZZZZZZZZZZZZZZZZYZZZZZZZZSYXSZUUUUQ chr2.fa 31305231 R 35 63 Y HWI-EAS88 3 2 1 365 952 GAAAACAAAACACCCCACACCTAAGAAACAAAGAA ZZZZZUZZZZYZXWMLOUSUUHQQILDMQMKKHCH NM Y HWI-EAS88 3 2 1 879 499 TTATTGATCCACGCCCTCAGCAACATGCTTGCTGG ZZZZZZZZZZZZZZZZZZYYZYZZZZYZZZUUUUU chr15.fa 73952070 R 35 71 Y HWI-EAS88 3 2 1 900 279 GATCGCATCCGGCGGATCGAAAAGATCAATCTCGC ZZZZZZZZZZZZZZZYZZZYYZZZSZZZXZUUUUU NM Y HWI-EAS88 3 2 1 914 833 TATATCTCATACATAGACAAAATATACATATTTAT ZZZZZZZZZZZZZZZZZZZZZZZZZZYZZZUUUUU chr6.fa 68101988 R 35 71 Y HWI-EAS88 3 2 1 897 587 ACTCTCTGGTCTCTCACTAGAATCCAGCGCTTGCT ZZUZZZZUZYZUZZSYLZZLYZZZYZSZJZUULLU chr7.fa 19615416 F 16G18 21 Y HWI-EAS88 3 2 1 910 888 GTTTAAAAGGTTTTTTTGTTTTGTTTTGTTTTGTT ZZZZZZZZOZZZZZZZZLZZZZUUZZZJZZSSLSO chr4.fa 155074818 F 35 21 Y HWI-EAS88 3 2 1 361 949 GNGGAGTCTGGTCCCGGGGCCTTTGCATTGTAGGG LALLLLLLLLIGILLLLLIILLLLLDLLLLEELLE NM N HWI-EAS88 3 2 1 918 736 GTGCCCATGGAAGAGATCACCGTGCCGATCGTGGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUH NM Y HWI-EAS88 3 2 1 914 423 TGAACCGCGATGAGCTGATGCGCCACGAAGCTGCC SOSVYVJOYYVJOEVYJOYDYSYYOSDJNDLALQQ NM N HWI-EAS88 3 2 1 888 104 TGGACATGCCCAAAATGTACTGTATGAAAATCTCA ZZZZZZZZZZZZZZZZYZZZZZZXZYZZZZUUUUU chr9.fa 31252377 F 35 70 Y HWI-EAS88 3 2 1 879 650 ATAGAAGTAGAAGAAATTCTACCCAACTAATTTTA LLLLLLLLLDLLLIILILLLLLLLLLHHHLLLLLA 0:0:25 N HWI-EAS88 3 2 1 932 144 TTGTGATAGCATGGTGTTTGTTTTAATTTTTTTAA ZZZZZZZZZZZZYXZYZZZSZZZZZXZZDZUUKQQ NM Y HWI-EAS88 3 2 1 881 195 GCCCATTATGCCTTCTCACTGTACTTTGGAGGTCC ZZZZZZZZZZZZZZZZZZZZZYYZZZZSMZUUUUU NM Y HWI-EAS88 3 2 1 901 610 CCTTCGTCCTTCTTAGGTGGTCACAAGTCCTTTGG ZZZZZZZZZZZZZZZZZZYZZZZZZZZZZZUUUUU chr13.fa 69280146 R 16A16A1 14 Y HWI-EAS88 3 2 1 916 173 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZSZUUAKU NM Y HWI-EAS88 3 2 1 930 373 TATATTAGCGTCGGGCCGAGATTTTACTTATCTTT EJJLLLLJJLELLLLLLJLDEILLLLDLJJLELLE NM N HWI-EAS88 3 2 1 894 267 TGATACCCACAACAATATGGATGAATCTAAAAACA ZZZZZZZZZZZZZZZZZZZYZZZZZMZZZZUUUUU chr9.fa 33016479 R 35 59 Y HWI-EAS88 3 2 1 902 99 TGAAAGCCAGTACCAAGAAAAGATTAATTCAGTCC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZYUUUUU chr12.fa 71928974 F 19G15 40 Y HWI-EAS88 3 2 1 961 538 GTGGTGCTGGGTGGCACCATTAAACACTCTTCCTT ZZUZZZZZYZZZUYUZZZZZZZZZKZZZZZUUUHU chr9.fa 59082830 R 33G1 44 Y HWI-EAS88 3 2 1 383 970 TAACAAAACACAAAAGAAAAAAAGATCTGTTTCTT YOSUIYSOGOLQYYVFUYUOQUCHQLLFHQAHLDD NM N HWI-EAS88 3 2 1 874 346 TTTAGCTTGCTGTAGTTTATCTTTCATTCTTTAAT ZZZZOZZZOZZUZZUZZZUZZOZZZRZZPZSSAGS NM N HWI-EAS88 3 2 1 899 491 TTTCACGTTTTTTAGTGATTTCGTCATTTTTCAAG ZZZZZZZZZZZZZZZZZXZZZZSZZZZZZZUUUUQ chr2.fa 98502416 F 35 1 Y HWI-EAS88 3 2 1 897 379 AGCCAAAGGCACCTCTCCCTCAAGCAATGTTCCAA LLLLLLLEDLJLLLLELLLLLLLJJLLJLJECLLE NM N HWI-EAS88 3 2 1 928 202 TGGCCTCTGCTGTGGAACAACTAGAGATTCAGTAT ZZZZZZZZZYZZZXZZZZYZZZZZZZZZZZUNUUA NM Y HWI-EAS88 3 2 1 813 295 TTTATGACTTTCAAATTCTATTGGTTGCAAGTGAG ZZZZZZZZZZZZYYZZZZZZZZXSZZXZYZKUDUK chr12.fa 38551409 R 35 55 Y HWI-EAS88 3 2 1 938 105 TTTTCGAAGAGTTAGTATGTTGTCTTTTTATTTAA LLLLDJLLLLLJJIJLLLLIIJLLLLILHHLLEAE NM N HWI-EAS88 3 2 1 898 895 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZYUYYZZZYZZUZZUZYZZLZSZZYZJYUUUGU NM Y HWI-EAS88 3 2 1 885 334 TTCCCCCTGCTTAAGACTGGAAGGCGGATATGGAG YYJYYYYYOYYYYYSOYYVVVOSJJNJIVVCGGLE NM N HWI-EAS88 3 2 1 936 532 TCTGGTTGGATATTTCCACCTGCTCTTCTATTTTA YYYYOYYYSJYOYYYSSOSYYJOYYYYYYYLCGCC NM N HWI-EAS88 3 2 1 890 581 ACTGGCATTATATGCACGTACCAATGAGTATGGCT ZZZZZZZZZZZZZXZYZXZZZZZXZYZSZZUQQUU NM Y HWI-EAS88 3 2 1 904 557 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAAA ZZZZZZZZZZZZZZZZZZYZZSZZZZYZMYUUJJU NM Y HWI-EAS88 3 2 1 790 652 TTTTTGTCTGAAGTGTAGCCAAAAAAGGTGAAGTA ZZZZZZZZZZZZXZYZZYZZZYXZXZZSZYQUUUU NM Y HWI-EAS88 3 2 1 451 929 GAAAAAAAAAAAGAAAAAAAAAAAGAGGGGAGGGG YYYYYYUGWVUSCSQMFOMMHCHDMCFCIIHHHHA chr18.fa 69524991 R 12A18A3 0 N HWI-EAS88 3 2 1 902 478 TTTGATGAGCCTGCTACTAAGCATGTTCAGATATC ZZZZZZYZZZZZZZZZZZZZYZZZSZZZYSUUUUU NM Y HWI-EAS88 3 2 1 908 117 GAATCTAAACTTCGCGGCGAAAAATATGTCACCCG ZZZZZZZZZZZZZYZZXZYYZZZZZZZXZZUUUUU NM Y HWI-EAS88 3 2 1 914 402 CCCGAGCATGTTGGGTGGATAGGGAAAGTCCCTGA ZZZZZZZZZZZZZZZZZYZZZXZYZZYYYZUUUUU 0:30:36 Y HWI-EAS88 3 2 1 920 188 GTTGGGTTTGGTCATTTTAGATGAAGCTGCTTTTT ZZZZYZZZZUZZZZZZZZZLZZYZZJZDUYUUUUG NM Y HWI-EAS88 3 2 1 883 80 TCTCATGGGTGATAATGTTAATAAAATTTTGCTGT OYVJJYJJSYVVOJOYEYVIDOSSODYVJYCCQGO NM N HWI-EAS88 3 2 1 965 558 TGCATTTCTCATTTTTCAAGTTTTTCAGTGATTTC ZZZZZZZZZZZZZZZZZZZMZZZZZZYDZMUUUUU 0:103:50 Y HWI-EAS88 3 2 1 901 227 GCCCTGTGCTTGGAGCCTTGCCCTTCTCACGTGCC ZZZZZZZZZZZZZZYZZZZYZZZZZZZZZZQUUUU chr17.fa 25144121 R 8T26 36 Y HWI-EAS88 3 2 1 898 395 CCCTGAATTGCACCCCTGCTAGCCAGGGCTACTCC ZZZZZZZZZZZZZZZZZYZZZZZZZXSXZZUUUUU NM Y HWI-EAS88 3 2 1 899 121 GGTCGTAGCGGGTTTAGTCTGGAGAGCGTCTTTAA ZZZZZZZZZZYZZZZZYZZZSSXYYZZXZYUUCHN NM Y HWI-EAS88 3 2 1 897 627 GTCAGGGTTGGGGGCCACTGAAGGCCACTGCCCGC ZZZZZYZZZZZZYYZZZZYSYYXYZZSZZXUUUCN chr4.fa 123643328 F 35 63 Y HWI-EAS88 3 2 1 906 48 TTAGTGATTTTCAATAAAAAATCATATTTTTTTTT YYYSYYYOOOSIYYDVYIYSIYIIVNYIVYQQQQQ NM N HWI-EAS88 3 2 1 962 611 GTAGGTAATGATACCATAAAATACCATTCATTTTG ZZZZYZZZZZZZZZZZZZZZYZZZZXZZYMUUUIC chr12.fa 4489782 F 33G1 45 Y HWI-EAS88 3 2 1 936 655 GGATGGATCGTTTTTCCAATTTGGCCTAAATCTTC ZZZZZZZZZZZZZZZZZZZZZZYXZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 956 469 ATACCAAAAATCCATTGTTAAGGGGCTACCCATGG ZZZZZZZZZZZZZZZZYZZYZSSSSZZZYZUUCQQ chr10.fa 109632545 F 32G2 53 Y HWI-EAS88 3 2 1 938 660 TTCATGTGTTTAGGAAATTGTATCTTGTATCTTGG ZZZZZZZZZZZZYYZZZZZYYZZZZZXZYZUUUKJ chr2.fa 8535582 R 35 0 Y HWI-EAS88 3 2 1 879 646 GCGCGTCTTCGTCGGCTGTACTTCCTTCCCCCACA ZZZZZZZZZZZZZZZZZZZXZZZYZXZXZZUUNUH NM Y HWI-EAS88 3 2 1 934 191 TCATAACTATCTCCTATTTATTCCCTTTGAATGTG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZMXQUKUQ NM Y HWI-EAS88 3 2 1 888 490 GGCCCTTGGTTCAGACAGCCAGGTGAGCGTGCACT ZYZZZYZUUZZZZUZZUUZZKYYSUDJZDZHUAUU NM Y HWI-EAS88 3 2 1 898 461 TGCCATGCACACCTGTACAAGTGCAGTACGCGTGT ZZZZZZZZUZZZZZZZZZZZZZYZYZZZZZUUUUU chr5.fa 125997759 F 35 67 Y HWI-EAS88 3 2 1 932 286 GACCACCAGCACCGTCACACCAATGATGAAGAACT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr6.fa 113743717 F 35 72 Y HWI-EAS88 3 2 1 837 598 TAACTTTTCTTTTCATAGAGCAGTTAGGAAACACT ZZZZZZZZZZZZZZZZZXZXZZSZZZXDZZUUUUU NM Y HWI-EAS88 3 2 1 882 535 CCAGGCTTCCCTGAGAGTAATTAGCCCCTCAGCTT ZZZZZZZZZZZZXZZZZZZSZZZXZZZZZZUUUUU chr2.fa 165251615 R 35 65 Y HWI-EAS88 3 2 1 944 219 TTCACAGAGCCGTTTCCTGCATTTAAGTCTTGGCA ZZZZZZZZZZZYZZZZZZYZYZZZZYMZZZUACUU chr18.fa 34617501 R 35 39 Y HWI-EAS88 3 2 1 932 170 TCACAAGAGACAGCTACATCTGGGTCCTTTCGATA ZZZZZZZZZZZZZZZYZYZZZSZYZZZZZZUQUUU 255:255:255 Y HWI-EAS88 3 2 1 927 895 GAAATTCCTCCTGACACATAATAATCAGAACAACA ZZZUZZZUOZOUUZXZZOZZOZZKZPUXZUSSLOS 255:255:255 N HWI-EAS88 3 2 1 924 639 GTTTTTGCAGCGTCGGCACCACGTCCGTCTGTTTC ZZZZZZZZZZZYZZYZZZZZXZZZZZYYZZNUUHU NM Y HWI-EAS88 3 2 1 886 315 GATCTGAAGACCTACTATGCCCACTTCTTCTTGCA YVYYJSOYYYJYSVJYSESYOJJOYYYYNJLQLLA NM N HWI-EAS88 3 2 1 889 276 ACTGGCGACCTGGAAGCAGAGGAAATGCACAGGTA ZZZZZZZZZZZZZZZZZYZZZZXZXZZZZZUUUUU chr8.fa 113381811 R 35 70 Y HWI-EAS88 3 2 1 925 541 CAATTCCGCATACTCACAGGCCGCACAGTCTTTCA ZZZZZZZZZZZZZZZZZZZZZZZZZZXZZZUUUUU NM Y HWI-EAS88 3 2 1 971 333 TGTGTGTGTGTGTGTGTGTGTGTGTGTGAGACATT ZZZZZZZYZYZUZYZUZSZLZLZLZDZJSJUHUAA 255:255:255 Y HWI-EAS88 3 2 1 892 483 ACGCTCAAAGATCAGATTCTCCATTGGCAATATCC ZZZZZZZZYZZZZZZZZZZZZZYZZZXZYZUUUUU NM Y HWI-EAS88 3 2 1 895 437 AAAACCTATGAGGCTGTTTAGTTACCCCCTCTTGC ZZZZZZZZZZZZYZZZXZMXMZZXYZZSZKUQHDU NM Y HWI-EAS88 3 2 1 903 510 GAAGTGTTCTTCGCCCTTTATGTAGTTAGCCGCTT ZZZZZZUZZYZZYDZZZZUEZYUYYUZZSZULUUU NM Y HWI-EAS88 3 2 1 931 227 GTGGTTTTCCATTTGGTTCTCTGTCTTTGTTTTTT VYOYYOYYJYYYYVJJOYVOVOIOYVYYDYLLQLG NM N HWI-EAS88 3 2 1 896 546 GAGTCTGTGCTTATAAAGGGGGGAGGCCAATCCAT ZZZZZZZZZZZZZZZZZZZZYZZZZZZZYZUUUJU chr15.fa 5883622 F 35 12 Y HWI-EAS88 3 2 1 944 455 GTTGGATATAGGTGTATAAACTCCTAATCTTTTAT ZZZZOZZZZZUOZUZXZUUOXXZZZNHIUXSSSCS chr11.fa 91560934 F 27G7 21 Y HWI-EAS88 3 2 1 830 561 CCCCCCCCCCCCCCCCCCACCCCCCCCCCCCCCCA ZZZZOZZZZZZZZZZZZZOZZZZZUZZZXZOSSSO 0:139:255 Y HWI-EAS88 3 2 1 906 447 GTCCGCCGTCCGCACCTTGAGCAGATAGTCGAAGC ZZZZYZZZZZZZZZZZZZYZYZZYYZZXYZUIUIU NM Y HWI-EAS88 3 2 1 822 523 TTTAAATCTTAAGTTGGGCAAAGCATTTTAGACCA ZZZZZZZZZZZZXZZZYXZZZZYZZZZZZZKUUUU NM Y HWI-EAS88 3 2 1 971 245 TGTTTTAAAACTTCTGAGGATATCAGTTATTCCCA ZZZZZZZZZZZZZZZZYSMYZYZZZSZZXZUUUUU NM Y HWI-EAS88 3 2 1 408 792 GAAAAATTCCCAGATCTTCCACTGGCCAAAACACG YYWYYJVUOYUIYMUWOUUVYYHCYFYYQQQQNLD NM N HWI-EAS88 3 2 1 879 360 ATTATGCCCCACAACCCTTCCTTTTGTAGCAAATA ZZZZZZZZZZZZZZZZZZZZZZZZZYZYSZUUUUU NM Y HWI-EAS88 3 2 1 881 584 CCTATCCTAGCTGTGCTGACTGGTGAGCCACATTC ZZZZZZZZZZZZZZYZZZZZZYYZXXYZZKUUUUU chr11.fa 9312148 F 35 57 Y HWI-EAS88 3 2 1 754 914 TTCTAGTTCCATCTATTTCCATCAACCACTGAATA ZZZZZZZZZZZZZZZZZZZZXZZZZZRXVZUUNUU chr18.fa 90021100 R 13C21 33 Y HWI-EAS88 3 2 1 876 147 GTGTCCTATGATTTTATGTGTTCCAAAATGGTCAA ZZZZZZZZZZZZZZZZZXZSZZZZZZYXZXJUUUU NM Y HWI-EAS88 3 2 1 889 231 CTTTAATGTTTGAAACTTTGACTTTTCCTTCTTCC YYYYYJOJYOYYYJVOYJJYYJYYYYDSYYQAQLQ NM N HWI-EAS88 3 2 1 913 582 CAATAAAAAGTTTGAACGGGCCGCCTTGCTGGAAG ZZZZZZZZZZZZZZZZZYZZZZZZZZZYZZQUUUU NM Y HWI-EAS88 3 2 1 897 276 ATAAATTCTAGCAGGGGTAAACTTTATTGCTAATA YYYYYYYYJYSYYODOJSYODVVSYIYJJDQLAEQ NM N HWI-EAS88 3 2 1 451 787 CATTAAACACTAAAAAATGGAAACGTACACATGAC YMIIQIMIHIIIMMIMMIDIIFIMIHIMCMDDDAE NM N HWI-EAS88 3 2 1 935 290 AATTTTTGGAGGTAAGTTGTTTTATATGATGATAC ZZZZZZZZYZYUZZZYZZSZZZZZZZZSYZHUUUU chr2.fa 108246981 R 35 50 Y HWI-EAS88 3 2 1 354 958 GCACCCGCTGTACTAAAAACTGGTTGATTCGCCCC ZOXOUXXISOQZZXUWFZZIUZZIMXHLXDSPLSP NM N HWI-EAS88 3 2 1 808 601 GACAAATTGGCAGTATCCGATGGCACCAACTTCTA ZZZZZZZZZZZZZZZZZZKIXMYZWZZRXZUUUUR NM Y HWI-EAS88 3 2 1 950 836 TGTCGGATAGAGTTGTCTATGAGTGCTTCAACAGA ZUZZUZYZZYYUZZUZZZYZSRUSUSJZDYLUUUA NM Y HWI-EAS88 3 2 1 335 951 AAAAAAATAAAAAAAAAAAAAAAAATAAATTAAAA LLLLLLLDLLLJLLLLLLLLLLILLHLLLLELLLE chr3.fa 10824675 F 7A24TG1 0 N HWI-EAS88 3 2 1 958 829 TGAAACACACATTTTGTACGATCTGCAAGTGTTCA ZZZZZZZZZZZZZZZYZZZYZZZZYZZZXZUUUUJ NM Y HWI-EAS88 3 2 1 877 763 CCATCTTGGCCGGGCTGGCCTCTAACTCCTGACCT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUSUUU NM Y HWI-EAS88 3 2 1 907 521 GTGAACGTGCTACGTTATTGAGTGGAATCAGATCG ZZZZZZZZZZZZZYZZZZZXZSZXZZYZZZQUUUU NM Y HWI-EAS88 3 2 1 920 826 GGGTGATTTAAATAAAACCGGAGAGCGAGGCGAGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZXZZUUUUU chr15.fa 84686876 R 35 70 Y HWI-EAS88 3 2 1 876 633 AAGACTAGCGGTTTCTAATACTGCCATCCTGAGTT ZZZZZZZZZZZZZZZZZZZYZZXZZRZZZYJRUUU NM Y HWI-EAS88 3 2 1 956 274 TTGGGATGGCTTCTTATAACTTAAGTCTTTACTTT LLLLDLLLLLLLLLLLLLLLLDLLJLLLLLAALLL chr3.fa 18677929 R 21G12G 0 N HWI-EAS88 3 2 1 880 357 GAATTATCAAAAAATCATCGCTGTACCGCACTCCT ZZZUZZUZZZXOZZOZZZZZDZUZZPXDZXSGGSG NM N HWI-EAS88 3 2 1 813 519 GATAATGTTAAAGAGATACCAAATTAACAAATCCC ZZZYZZUYZZZZMUUZJYZZUSYRZYZYUILUUUU chr4.fa 88474224 R 35 3 Y HWI-EAS88 3 2 1 483 876 CTTTTTGAGTTCTATGATATTTTCTAATTATCTTT ZZZZZZZZZZZZZZYZJZXZZZZZZYVZZVUUUUU chr1.fa 143154011 R 35 56 Y HWI-EAS88 3 2 1 893 526 GCATCTTAAGCCCCAGCATTTGAGGAATCTTGGAA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUKUU chr1.fa 91357391 F 35 72 Y HWI-EAS88 3 2 1 922 446 ATAATCCAAAACTTTTCGCATTAAATGCACTCTTT ZZZZZZZZZUZZZZZZZLZUZZZZZZSUYYUUUAU NM Y HWI-EAS88 3 2 1 912 369 ATTAACAGCAACAAGATCTGGTAAGAGCACTGTGC LLLLLLLDLLLLLLLLLLLLLLLLLLLLLLLLLLL NM N HWI-EAS88 3 2 1 377 881 GAAAAAAGACTGGGTGCACAGAGGCGTGAGGTCTT YYVYYSYISHIIIILOMDLLFOQHFDHLMLLEGGA NM N HWI-EAS88 3 2 1 753 531 GAATTTTAGCAAGCATGGCAGATACTCTTGACAAT ZZZZZZZZZZZZZZZZZYZYZZZZZYZYZKRUJUU chr18.fa 61449832 R 35 54 Y HWI-EAS88 3 2 1 942 552 AGGAGTCAGACACATCAGACACCAAGGTGGGTCCT ZZZZZZZZZZZZZZZZZYZZZZZYZZYZYYUUUUU chr2.fa 180012890 R 35 71 Y HWI-EAS88 3 2 1 926 764 GTGGCACACAATGAATGTTCTTTAGGAATCAGATT ZZYUZZYZZUYZUUZZSZZZZZZSYSSIZZLCUUU chr14.fa 78515942 R 35 28 Y HWI-EAS88 3 2 1 911 151 TCATAGTTGTGATTAAATGTTGTTGTAATTGATTT YYOSYOYYSYVIVYSYOYVYSSYYSYNNYYGLQLQ chr1.fa 88914937 F 33C1 15 N HWI-EAS88 3 2 1 504 922 GGAATATCTTTCTTTCCTCATGGTTGCACAGAGCC ZZZZZZZZZZZZZZZZZZZZZZLZZXZSYVQJUUR NM Y HWI-EAS88 3 2 1 933 221 GAATTGATGAGAATGAAGATTTTCAACTTAAAGGG ZZZZZZZZZZZZZZXZZYZZZZZZYYZZZZUUCKJ 255:255:255 Y HWI-EAS88 3 2 1 947 674 TTCAGTGAAGTTTTCCAGAAGTTGGTACCTGGTGG ZZZZZZZZZZZZZZZZZYZZXZZZSZZZZZQQUUK chr19.fa 53716027 F 35 43 Y HWI-EAS88 3 2 1 946 342 TTGTAAAATGAATAACCTCTCCTATTTTTTTCTCT YYVVYYYOIOVSOOSOIIIIOYSOISDHVHOEQLO NM N HWI-EAS88 3 2 1 878 561 AACCAAGACCAGGGGGAAGGTGTAGGTCAGAGGCT ZZZZZZZZZZXZZZZZYZZXXZZZYYVXXVLSQUU chrX.fa 6310760 F 35 57 Y HWI-EAS88 3 2 1 920 458 AGAGAAACCCTGTCTTGAAACAAACAAACAAAAAA ZZZZZZZZZZZZZZZZYZZYZZZYZZZYZSUUUUU 101:255:255 Y HWI-EAS88 3 2 1 905 422 CGAGTGTGTATGTCTAGGGTTGTTCTTTCCTCCTT ZZZZZZZZZZZYZZZZXZXZZMZZXZEZXZUUUUU chr5.fa 3936449 F 26G8 33 Y HWI-EAS88 3 2 1 760 694 TCTTCCGTCCGCTCAAATCACCCAAAGCCAGCAGT LJDDLJLDDLLLJLJJLDLLLLLJLLIILLLLLAL NM N HWI-EAS88 3 2 1 931 630 GCTTCCCTCCAGTGCCCAGGCAGTATGCTACCTCT ZZZZZZZZZZZZZZZZZZZZZZZZZZXZZYUUUUU NM Y HWI-EAS88 3 2 1 877 264 AGACTATGACCAAAAATCACTTGGGGAGGAAAGCG ZZZZZZZZZZZZZZZYZZZZZZYYXXZMZSUUUUU chr8.fa 26560368 R 35 38 Y HWI-EAS88 3 2 1 884 637 AGCCCTCGACCCTCTGACCCTCCCACATCCAAGGC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr5.fa 137164832 F 35 72 Y HWI-EAS88 3 2 1 912 345 ATACTCCCACTGTAACAAACACGCCTCTCTGGAAC YVYYSSOJVOJVEYOOJVJYOJJVJNJNVJGGALQ NM N HWI-EAS88 3 2 1 750 577 GACGTGAAATATGGCGAGGAAAACTAAAAAAGGTG ZZZZZZZZZZZZZZZZYXSZZZXZZYZYYZUUUUU 0:31:57 Y HWI-EAS88 3 2 1 923 572 GAATAAAGAACTCTCGTGCTACAGCAAGCATGATA YSYSYYJOYJYYDJYJESOOOODVVYYDVDOGOCQ NM N HWI-EAS88 3 2 1 924 479 ATCTATACTCTGCATCAGTTTATGCCTCTATCTTT ZZZZZZZZZZZUZUZZZSZZYKZSZZZZUUGUUUU chr16.fa 28765746 R 30G4 29 Y HWI-EAS88 3 2 1 893 406 GCGCGAGGCAAATGGGTGTGCAATAACAGCAACTC ZZZZZZZZZZZZZZZZZZZYZXZZZZZZSYUQUQU NM Y HWI-EAS88 3 2 1 889 607 AGGAGGGGCATAGAGAGGAAGTGCTTCCACCCTCA ZZZZYYUZZYYZYZZZZYSUDKUZKZYZZSUULLG chr9.fa 57911928 R 29G3G1 0 Y HWI-EAS88 3 2 1 906 168 TTCAATTTCGGCGGTGCTTTTTTGTTTGTTATTTT VYOYYJYYOVJJDYJEOJYSYOYJYNJVSYLLLQL NM N HWI-EAS88 3 2 1 915 551 TGGATGCTCACAGTCATCTATTGGATGGAACACAG ZZZZZZZZZZZZZZZZZZZZZZYXZZYSZZUUUUU 255:255:255 Y HWI-EAS88 3 2 1 756 790 GATTTCCAGAATGTTTTTTGGGCTCACCACCTGCC ZZZZZZZZZZZZZZZZYZZYYXZZZZZZRZURQUU chr5.fa 122518129 R 35 61 Y HWI-EAS88 3 2 1 915 866 GGTCTATACGCAGCTCATGTACGAGTTGAACCGGC ZZZZZZZZZZZZZZZZZZZZYZYZZZZSZZUUUUU NM Y HWI-EAS88 3 2 1 920 940 GTTTTGTGTGTGAATATTGAGTAAACCAAATGATT ZZZZZZZZZZZZZZZZZZXZSZZZZZZYYYUUUUU NM Y HWI-EAS88 3 2 1 908 581 TCCATTGGGAGCCCTATGATCCATCCATTAGCTGA YYYYYYSVVYJYYVYSYOVYSYYYYYSYYVGLQGE 255:255:255 N HWI-EAS88 3 2 1 915 654 CAGGGAACCGGCCTCGGTCTGCATATCGTAAAGAG ZZZZZZZZZZZZZZZYZZZZZZZZZZZXZZUUQUU NM Y HWI-EAS88 3 2 1 952 395 TTTTTCAATTCCTTTGCTCATCTCAACACTTTCTT YYYYYVYYIIOUIOSIYOVIOCOVIHQDUNEEAAL NM N HWI-EAS88 3 2 1 890 497 TGAATCCATTGTGACAGAGTCTGAGGGTAGGACCT ZZZZZZZZZZYZZZZYXZXKZYYXZXXXRSNUNUU chr17.fa 59227515 F 32G2 28 Y HWI-EAS88 3 2 1 433 830 GATGCTCTTCCGTCGAACCACACGCCATAACATCC LLIHLILLLLLAALLLLLLLIILILLLHAFLEEEL NM N HWI-EAS88 3 2 1 910 282 ACCCCCACTTTGCATGGATGTATCACTTCGCTTCT ZZZZZZZZZZZZZZZYZXZZZZZZZZZZZYUUUUU chr9.fa 92391937 R 12A22 39 Y HWI-EAS88 3 2 1 881 553 CCATTCCATAATAATATTGGAAGAGCTCGAGGTCC ZZZZZZZZZZZZZZZZZZZXZZXYYZZZYSUQUUU NM Y HWI-EAS88 3 2 1 824 542 TAATTGTTGTTTATGGGAGTTTTATGGAAGTTTTA ZZZZZZZZYZZZZZXXSXIJXZZXZEDSSDUCIUN NM Y HWI-EAS88 3 2 1 752 661 GAACCTATGAGACCATGAAATAGAGATCAAATAGG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 961 476 AAAAAAAAATCTGGATTAAAGGTGGGTCTTCCTAC ZZZZZZZZZZZZZZYZZZZYXMZSSXZZZZUUUUU chr7.fa 132640600 R 35 41 Y HWI-EAS88 3 2 1 934 714 TTCTGGGTTCTCAGGAAATTCAGTAGCATATAGAC ZZZZZZZZZZZZZYXZXZZZZZYZZXZYZYUUQUU chr10.fa 21913322 R 18C9C6 2 Y HWI-EAS88 3 2 1 943 587 TTTGGAGTCCACATTGGAGGTCGGGGGGAATGCCA ZZZZYZYZZZZZZZZYXZZZYXXXZYXXSYUIUUH NM Y HWI-EAS88 3 2 1 942 376 ACGGAAAATCCAAAATCCGTTGTAACGACAAATAA ZZZZZZZZZZZZZZZZZZYZZXZZZZZYZZUUUUU NM Y HWI-EAS88 3 2 1 792 319 TCCTTATTTGAAGAAATACATTGTTCATATCATAT ZXUOXZXZZXUOEUZZZXZKZXKZZXUZUUOGSOS chr14.fa 83514743 R 35 27 N HWI-EAS88 3 2 1 752 880 GTGATTTCAGTTTTCTCGCCATATTCCAGGTCCTA ZZZZZZZZZZZZZZZZZXZZZZXZZZZYSXUURUR chrUn_random.fa 4533498 F A16C17 6 Y HWI-EAS88 3 2 1 749 235 GTATGTTTGAAAAAACTCTGTGCTATACAGTTCTG ZZZZZZZZZZZZZZZZZZZYZXZZXZZZZSUUUUU chr19.fa 18090261 F 35 65 Y HWI-EAS88 3 2 1 886 750 GGCGCCGGAAGCTCCCACTACTGCGGCCAGGTTGG ZZZZZZZZZYZZZZZZZZZYZZXZYYZZYSUUUUU chr2.fa 165777088 F 35 65 Y HWI-EAS88 3 2 1 892 396 TCATCTAAAATGTTCTACACTTTGTTTTTTCTCAT LLLLLLLLLLLELLLLLLLDDDJJDHLLLLELLAL NM N HWI-EAS88 3 2 1 928 440 GAGACTTCTTCTTTTTTAATGATTTTCTTTTCTAC OYYSJYYYOVSYYSSYSYYVVYJYEDNYYJQQGQE NM N HWI-EAS88 3 2 1 878 71 TTTAGATTCGTCGGGCGTCCGCCCAGTACTGGCTT ZZZZZZZZZZZZYZZZZZZZXYZZZZZXZZQUUUU NM Y HWI-EAS88 3 2 1 881 511 AAAGCATTTTTACTTCTTCTCTTGTATTACCAATT ELLLLLLLLLLLLLLDJDJJLLLJLLLEELEELLL NM N HWI-EAS88 3 2 1 888 495 TTTTTTAGTGATTTCATCATTTTTTAAGTCTTCAA ZZZZZZZUZZZZZZZZZZZZZZZZZZZSZZCUUUU NM Y HWI-EAS88 3 2 1 931 589 CAGCCGGAGCAAGTGGTCTGCCATGAAGAGTGACA ZZZZZZZZZZZYZZZZZZZZZZZZZYZXXYUUUUU NM Y HWI-EAS88 3 2 1 811 278 TTTAATACATTTAGCCCTAAAATCCCTAAATAAAT ZZZZZZZZZZZZZXZZZZZYZZZZZZZXZYUUUUU NM Y HWI-EAS88 3 2 1 875 664 TTGGCTGTCCTGGAACTCACTTTTTAGACCAGACT YYYYYYYVYYVJSVVVSVOYYYYDYNJNYYAEEQQ chr4.fa 12178082 F 35 0 N HWI-EAS88 3 2 1 939 851 TACTCCTAAAATAAAGTTTTTCCATTTTTATTTTT LLLLDLDDLLLLLJJDLLLLLLIIJHLLLICLLEE NM N HWI-EAS88 3 2 1 954 378 AAATATTGTTGCAGATTATATAAATTTTAACCCAT ZZZZZZUUUZUZZSSZUYZYULYUZZZZYZUUUAU chr10.fa 36654392 F 35 40 Y HWI-EAS88 3 2 1 336 927 ATAACAAAAAAAATATAAACGGAACGACACAATTA LLLLAJLLLLLLLLLLLLIDLLLLLLHHLLLLLLE NM N HWI-EAS88 3 2 1 922 836 GGAAGAGGCTGTCTGTCTAGACTTGCTCTTTTTTT ZZZZZZZZZZZUUZMUYUJYUZUDLJUDSZUUUUU chr5.fa 114898328 F 5G17G8C1A 0 Y HWI-EAS88 3 2 1 900 615 AACTCAAAAAGGTTTTTCTGGCTTGTTATTCGCTT LELJLLJLJLJEJLLLJLEDLLJLLLDLLDEALLE NM N HWI-EAS88 3 2 1 905 263 TCTGGGCTATGACCCGTCGGATGACAACGGGACCG ZZZZZZZZYZYZZZZYZZZZZZZZZZZZMZUUUUU NM Y HWI-EAS88 3 2 1 921 282 ATTAACCCTTCCCCCATCAAATGTGAGTTTTGTAG ZZZZZZZZZZZZZZZYZZYZYZYZXYYZZZCKDUD NM Y HWI-EAS88 3 2 1 900 821 TGAACAGGTGAGAGGGTGCGCCAGAGTACCTGACA ZZZZZZZZZZZZXZZZXSZSZZYZZYDZZZUUUUR 0:255:255 Y HWI-EAS88 3 2 1 961 383 TAGAAATGTCCACTGTAGCACATGGAATATGGCAA ZZZZZZZYZZZZZZSZZZZZZXZXYZZZZZIUUUU 0:40:51 Y HWI-EAS88 3 2 1 903 491 CACTTTATTTGTTTTCAATCACGGCGTGGGCAGGA ZZZZZZZZZZZZZZZZZZZZZZYXZXYYYYUUUUU NM Y HWI-EAS88 3 2 1 907 605 ATGGCCATGACTTGATGGTCTTGAACTTGAGATGG ZZZZZZYZUZZZZUZZZUZZZZYRZYZZEYHUULH chr5.fa 18365733 F 6T28 6 Y HWI-EAS88 3 2 1 930 640 TTGGTTCACGCAGTAGGCCGGCGTGTAGTTCGAAC ZZZZZZZZZZZZYZYSZZZZZZZZZZYYZZUUUUU NM Y HWI-EAS88 3 2 1 789 935 TTAATCATTATTTGTACTCTGAATGAGTCATTTAA YYYYYJSVYYVSSOOYDOYYSJSVOJHVYHQQQQO chr2.fa 43968131 F 35 24 N HWI-EAS88 3 2 1 884 493 GAGCTCTGACTCCACAGCATGTTCGAGCTCACTCC ZZZZZZZZZZZZZSZZZZZZZZZZZYYZZZUUUUU chr9.fa 8001648 R 35 65 Y HWI-EAS88 3 2 1 633 740 GAGAGACTATTTTTGGTTTGTGCTTTGGTTTTCTT LLLLLLDLLLLLLLLLDLLIDLLDLLDLLLLLLLL chr7.fa 118591554 R 6A16C11 2 N HWI-EAS88 3 2 1 903 716 GCGGGCTCCTGTCAAAGTTACCATCCCCACAGCCC LLELLLLLLLLLLLLLLLLJLLLLLLLLLLLLLLL 0:0:19 N HWI-EAS88 3 2 1 801 589 TTTATTATATGTAAGTACACTGTAGCTGTCTTCCG ZZZZZZZZZZUZZZYZZZYZZSZZUYZJYYUUUAH 255:255:255 Y HWI-EAS88 3 2 1 783 924 TTTAAAGACATTTCTACATGCACTTCATATCAGTA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUQUU chr10.fa 31988475 R 35 71 Y HWI-EAS88 3 2 1 835 349 TAGTGATTTAGTCATTTTTCAAGTCGTCAAGTGGA ZZZZZZZZZZOZZZZZZZZZZZUZZPZZXXGSLCS chr2.fa 98506739 R 9C25 0 Y HWI-EAS88 3 2 1 787 267 TTTATTAAGCAGCAAATTTTTATTACTACCAAAAG ZZZZZZZZZZYZZYZXZZZZZYZZYZZXZZIQUNU chr9.fa 26877103 F 35 54 Y HWI-EAS88 3 2 1 750 724 TAACTGTTCTGTGACTCAGTGTCTCTGTGGAATCC ZZZZZZZZZZYZXZZZZZYZYZZZZZXZSMQUUUU NM Y HWI-EAS88 3 2 1 764 596 TTTAATTTTCTCTGTTCTCAAAAAAAAAAAAAAAA OXZXXUOOOUUZZKDZOZXZIUUIKJZDXHGGOSS chr9.fa 25207612 R 35 15 N HWI-EAS88 3 2 1 877 579 TAACATTCTTATCATCTACTTAACACCCCTACTAC YYYYYOSYOIIOUYOWIFQDIUIUOUUQLLEGALL NM N HWI-EAS88 3 2 1 894 251 GATCCAAATTTCCAACAAAAGGTGGTAGATGGAGA ZZZZZZZZZZZZZZZZZZZZZZYZZZZZYZUUUUU NM Y HWI-EAS88 3 2 1 937 497 GCTTACGACTGGACCACAATACTGGTCCCTTAGCT ZZZZZZZZZZZYZZZZZZZZZZZXZZZZZZUUQUU chr18.fa 47148461 R 35 70 Y HWI-EAS88 3 2 1 915 805 CACAGGTTTTAATGGACTGAAGCATTGGGAGAGGA ZZZZZZZZZZZZZZZZZZXZZXZZZZSXSYUUUUQ chr1.fa 164832107 F 35 63 Y HWI-EAS88 3 2 1 981 519 TAATATATCCATTATTTGTGAGGATTTATACTTAA ZZZZZZZZZZZZZZZZZXZMZSMZZZZXZZJUUKK chr5.fa 71376143 R 35 40 Y HWI-EAS88 3 2 1 934 677 GTGGGGCTTGCCTTGCCTGGGGATGGTGTGGGCGA YYVYJSSYYVYYYYVYYYSYSSVYVSYNVNLLQOL chr5.fa 127993847 R 35 38 N HWI-EAS88 3 2 1 966 544 AAGGTTCCAAGCTTTTTCAGGTCTTCGCCCAATAT ZZZZZZZZZZYZZZZZZZZSMZZZZZMZZZUUUUU chr10.fa 106665219 R 35 49 Y HWI-EAS88 3 2 1 761 589 GTCATCACCACTATACCCTAGTTAACCACAGGGAC ZZZZZZZZZZZZZZSZZZZYXZZZXZZVZZUUURU chr2.fa 48312350 F 35 65 Y HWI-EAS88 3 2 1 848 364 GCAATGAAGTTGTATGTGTTGATTTGATCCTAGAT ZZZZZZZZZZZZZZZZZZZZYZZZZXXZZZUUUUU NM Y HWI-EAS88 3 2 1 882 486 CTTCTATTTGTCTCATTACTGCATCTGCAAATTCA ZZZZZZYZZZZZZZZZZKZZYZXZXZMZKYUUUUU NM Y HWI-EAS88 3 2 1 879 490 CTGTGTAGCCCCAGCTAGCCTGAAACTCACCACCG ZZZZZZZZZZZZZZZZXZZZZXZYXZZZSZUOUUU chr11.fa 116507478 F 35 38 Y HWI-EAS88 3 2 1 947 363 ACATCCACTTGAAGACTTGAAAAATGACGAAATCA ZZZZZZZZZZZZZZZZZZYZZZZZZZZZYZUUUUU 0:17:42 Y HWI-EAS88 3 2 1 885 207 ATTTCCCTTACAATCACTCCTTTAAAAAATAAACT ZZZZZXZXXOZUOZXZIZXXXXXJOJPIPULOLOS chr5.fa 84520807 R 16A18 18 Y HWI-EAS88 3 2 1 953 516 CTGAGAGAGGGATGAAAAGGCCAGGCTAAGATAAC ZZZZZZZZZZZZZZZYZZZZZZZZYZZZOXUUSUU chr9.fa 76432380 F 35 61 Y HWI-EAS88 3 2 1 909 810 GTGTAGTTGCTTGAAAAGCTTTGGCCCCCCCAGAC ZZZZZZZZZZZZYZZZZYZZZZSYZZZZZZUUUUU chr4.fa 155048026 F 35 65 Y HWI-EAS88 3 2 1 892 273 TGACACATCGGGCAGTCCAAGAAAGGTGCGAAGAT ZZZZZZZZZZZZZZZZZZZMZZZYZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 950 96 TATGATAAAAGTGGAAATCTTTTACATCCACGTTT ZZZZZZZZZZZZZYZZZZYZZZZZZZZZYZUUUUU NM Y HWI-EAS88 3 2 1 908 270 GTGGACACCACCGAGCAGCTGAAGAGGATCTCTCG ZZZZZZZZZZZZZZZZYZZZZZZZYYYSZZUUUUU chr19.fa 10292715 R 35 65 Y HWI-EAS88 3 2 1 904 215 CTCTCCCTCACAACATTGTTTTAAAATCTTCCTTA ZZZZZZZZZYZYZZZZZXZZZZZZZZZZZZUUUUU chrY_random.fa 6186055 F 35 2 Y HWI-EAS88 3 2 1 945 377 GCTGTTCTTGTGATAGCGGATAAATCTCATTAGAT ZZZZZZZZZUZOZZZZZXOZZZZUZZZZXZGOSGS NM Y HWI-EAS88 3 2 1 906 251 AAAAGCACTGAGTATTATTAGTATGGCAAATATTA ZZZZZZZZZZZZZZZZZZZZSZZZMMYYYYUUUUU chr2.fa 91587950 F 35 49 Y HWI-EAS88 3 2 1 857 277 TTAACTCATTTCAGCATTAATTTGAAAGTCAATAG ZZZZZZZZZZZZZSZZZZZYZZZSYZZSZZUUUUK NM Y HWI-EAS88 3 2 1 807 124 GAGCTATCGTCAGTTCACCGCGGTTGGCTTTCTAA ZZZZZZZZZZZZYZZYRZZSZYYXZDYDZXUJANQ NM Y HWI-EAS88 3 2 1 928 704 ATGATATTGGCTGGTTTTTTTTTTTTTTTTTTTTT ZZZZZZZZXOZZUMOKOZOXXZZZXUUUDJOSSSC chr14.fa 124922754 R 5T7T21 0 Y HWI-EAS88 3 2 1 914 458 TGAGCACCTGTGTCGGTTTGCGGTACGGATATCCC ZZZZZZZZZZZZZZZZZZZDYXSYSYSSSZQAUUU NM Y HWI-EAS88 3 2 1 906 550 AGACGGCGTTTCACCATGTTGGCCAGGCTGGTCTC ZZZZZZZZZZZZZZZZZZZZSZZZZYZZZMKUUUU NM Y HWI-EAS88 3 2 1 821 663 TAAAGTGGTTTGTATAAATTTTCATTTTTTTGCCA ZZZZZUZZZZZUZYZYZZZZZYZUYZZZZYUAUUU NM Y HWI-EAS88 3 2 1 892 336 AAGTACAGGCAGCCTTTAGGTACAATGGCATCTTC ZZZZZZZZZZZZZZZZZZSYZZZYZZXYZYUUUUU chr2.fa 27914010 F 35 65 Y HWI-EAS88 3 2 1 951 343 GATTGCATGACGATGTTCTTTGCTCGCCTCCTTTT ZZZZYZZZYZZYZZYZZZZZMSYXZSYZZYUUCUU NM Y HWI-EAS88 3 2 1 917 292 GCGACCTGCTGCTGCCGGTGCTGATCAACCAGGGC ZZZZZZZZZZZZZYZZZYZZZZZZZZXZYZUUUUU NM Y HWI-EAS88 3 2 1 885 414 CTGCGAGCATAGGTCAGCTGATGCTTTGTGCCTAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZXZXUUUUU chr2.fa 78193715 F 35 70 Y HWI-EAS88 3 2 1 385 821 CCTTAAATAACTCCTATCTACTCACCACTCCAACC LLIGLLLAIIDILLGIHLILLFLFILLLFIEECEE NM N HWI-EAS88 3 2 1 432 934 GAAAAAAAAATTAAAGTGAGTGATAATTGGTGGAT YYYYYYYUSYGGOSGFLHFICIMMFMDMHQHHDGH NM N HWI-EAS88 3 2 1 881 732 TAGGTGGAAGTTCCAACACTGTAAGCGGCACAGAT ZZZZZZZZZZZZZZZZZZZZXZZZYZZZZYUUUUU NM Y HWI-EAS88 3 2 1 905 841 TCCAGTACGTTTATATATAACAATAATACCATCCA LLLLILLLIDLLJLLLILLLLLLLLLLIILLEAEL chr15.fa 16828403 R 31GA2 7 N HWI-EAS88 3 2 1 913 287 ACGGGAATATAATAGGCTATGACACATGACCAACC ZZZZZZZZZZZZZZXZZZYZSZZZZZZMZYUJUUU chr12.fa 70737561 F 35 46 Y HWI-EAS88 3 2 1 954 567 CTGACAGAGCCAGTTCCTCAGTCCAGGGCCTCGAT ZZZZZZZZZZZZZZZZZZZZYZZZZZYXZZUUQUU chr8.fa 124193938 F 35 70 Y HWI-EAS88 3 2 1 779 278 TTTCTTCACTTCCTCGCATTATTTCCTTGCGTTGT ZZZZZZZYZZZZZZZZZZZZZZZZZZZZSZUUUIU NM Y HWI-EAS88 3 2 1 901 457 AATGCAGATGTTAAATGGTTTTTGATAGATTCAAC ZZZZZZZZZZZZZZZZYYZZZZZXZZZMYZUUUUU NM Y HWI-EAS88 3 2 1 809 551 GTTAGGGTCTGGTCTGCTATCATCACCCACCCTAA ZZZZYYUZZZZYUZZZZZZZZRZZYZZZOZUUUEU chr10.fa 5309337 R 35 58 Y HWI-EAS88 3 2 1 915 842 AGTATTACTATTGAATATTTCTTTAACATCATATT ZZZZZZZZZZZYXZZZZZZZZZZZZZZXZYUUUUU chr12.fa 47613700 R 35 70 Y HWI-EAS88 3 2 1 966 523 TTTTTAGAACCCCTTAATATTGTTTCATATTCTTT ZZZZZZOZXZZZXZZZUZUZZOZDXUHIUXSOASC 0:0:255 Y HWI-EAS88 3 2 1 630 951 GTTCACAAGGAGCATCTCAATGGGACCATCACTCT YYSOVOOOSOJYYYYYVJSSVSJSYIVNYYEQLOQ chr14.fa 69069969 F 35 28 N HWI-EAS88 3 2 1 777 551 TTAAAATTGCTCCTCTAAAATTTGGAACATACTAT ZZZZZZZOXZZZZZZZXUSXUXZOIRRXXXOSSEG chr4.fa 7531467 F 35 43 Y HWI-EAS88 3 2 1 766 882 TTCCTCTCTCACACTTTCCACAGGTCACAAGTGGG OZUZZXZZXZXZUZUZZXXZZUUUZXZPXNLSSSO chr14.fa 33774028 R 35 45 Y HWI-EAS88 3 2 1 652 910 GAATGTCTAAGCCAAGACTGGCAATGCCTGGGCGA LLELLDLLLLLLJLLLLLLLLLLILLHDLLLLELE NM N HWI-EAS88 3 2 1 947 418 AAAGCTCGGGATAAGTGGTGCCGAGGAACCCGGGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUOUJ chr12.fa 105549738 R 35 3 Y HWI-EAS88 3 2 1 390 751 ACGCTGTGCATCGTTGAAGTAAGCAGGAACAGTAA ZZZZZZZZZZZZZZZZZZZZZZYZZZYSVZSUUUS NM Y HWI-EAS88 3 2 1 889 636 TGTATATTTTTCATCCAGTCTTGGTAGTTTTAATA ZZZZZZZZZZZUYYZYYUYUSUDLSYJIYYLLLLU chr14.fa 39726067 F 27G2G4 1 Y HWI-EAS88 3 2 1 904 718 GCGTGCTCTTGCCGCCGCCACCATCCCCACCTCCC LJEJLLJLLJLLLJLDLLJJLLLLLLLLLLLLLLL NM N HWI-EAS88 3 2 1 950 820 GTGCCTGGAAAGGGCAAACCTGTTCCCCACAACAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr11.fa 6381861 R 35 72 Y HWI-EAS88 3 2 1 901 754 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGA VYYYYYYYJYYYYYYYYYOYYSSYYYYVNYQQLCQ NM N HWI-EAS88 3 2 1 949 749 TCTCTGTCTTTTTCTTTTGGATGTTTTCCATACGT ZZZZZUZZZYZZZYZZYZSSZYUZZZIUYUCLUGU chrX.fa 73759902 R 26G3G4 7 Y HWI-EAS88 3 2 1 911 60 TCAAGCGCAGCATGTCCTGTGTTGCCTGGGGATCT ZZZZZZZZZZZZZZZZZZYZZZZYZZZYZXUJUUU chr13.fa 41960620 F 35 59 Y HWI-EAS88 3 2 1 756 601 TTTCCCAACACTCTCAGCAGCCATCTTAAACTCTT LLLLLLLLDLILLLLIDLLIALLLLLIDHHELLLL NM N HWI-EAS88 3 2 1 625 116 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZSZUUEHU NM Y HWI-EAS88 3 2 1 941 179 GGGGAAACTTTAGCTTCATCTGGTAACCAGAACCA ZZZZZZZZZZZZYZZZZXZZZXYZZZZZZXUUUUU NM Y HWI-EAS88 3 2 1 924 380 AGCCAATCACAGAGTCAGCCAATCACAGACCCAGC ZZZZZZZZZZZYZZZZZYZZZZZZXZYXYZUUUNU chr6.fa 137095738 F 35 25 Y HWI-EAS88 3 2 1 917 38 TGACCAAGGTATCATTGTGTAGAGTGTTATTCTGT YYYYVYJVYYOVOOYYYJEOOSYYONYYVYOQCCO 0:31:255 N HWI-EAS88 3 2 1 923 520 ACATCTATCTATAAATCTGCTCCCGCGCCAATTCA DEJELJJJLLJLDLLJLLLLLLIDLLLLHLCCLLL NM N HWI-EAS88 3 2 1 914 730 TCATGAACAGGCTCGATCTCGATGGAATGATTTGA ZZZZZZZZZZZZZZZZZYZZXZZXZYYZXSUUUAK NM Y HWI-EAS88 3 2 1 911 343 ACACATCACTGGCCAAAAGCAGGGGGGCCAACAGA YVVYYYYVYYJYYYOYYYSYISSVJNSSVSQQOLG chr7.fa 128094815 R 25T9 14 N HWI-EAS88 3 2 1 835 610 GTCCGGCGCAAAGTTGAAGGACTTGTTCGTGAAGT YJYOOYYVVYVSYYYSYYVVVYYYVYYYSSLOQLL NM N HWI-EAS88 3 2 1 882 286 GGCAGAGGCAGGCAGATTTCTGAGTTCTAGGCCAG ZZZZYZZZZZZYZZZYZZZYZSZXZZYXSSNUUIN 202:255:255 Y HWI-EAS88 3 2 1 532 920 GAGGAGAACCATGTAGGGTTGGCCATCACCTCCAC ZZZZZZZZZZZZZZVZZZYZRYZYXZZVZZUSULS chr5.fa 50566858 F 35 62 Y HWI-EAS88 3 2 1 967 197 TATAAAAGGTAACCATCCCAGAAAAGACTCAGATG ZZZZZZZYZZZZZZZZZZZYYYZZXYZZZZUUUUN chrX.fa 68851575 F 35 70 Y HWI-EAS88 3 2 1 879 190 CGGAAGAAGAAATGGCAAATATCAAAAACGATATT ZZZZZZZZZZZZZZYZZZZZZZZZZZZXZXUUUUU NM Y HWI-EAS88 3 2 1 760 365 TAACCATTACCTTTTTTCAAATTCTGACATTTCTA ZZZZZZZZZZZZZZZZZZZZZZZZZXZZZZUUUUU chr15.fa 10092829 F 35 70 Y HWI-EAS88 3 2 1 893 366 ATATTATAAATCATTTATTTACAGAATGGAGCCCA ZZZZZZZZZZZZZZZZZZZZZZZXZZZYMZUUUUU chr5.fa 46633156 R 35 59 Y HWI-EAS88 3 2 1 757 279 GGAAAGGTAGTGCCTGTGGATGGGAATTACAAGCA ZZZZZZZZZUZZZZZZZZZZZYZZYZZZYZSUUUL chr10.fa 82665069 F 35 65 Y HWI-EAS88 3 2 1 792 565 GTTGGGATATGGTGACTAATGCTGCTCTGAGCTGC ZZZZZZZZZZZZZZZZZZZZYZZSZYZZXVQUUQU chr1.fa 94600753 F 35 61 Y HWI-EAS88 3 2 1 966 173 TGTTGTCATTATTTTAGGTAGTCCATTAGGTTAAG ZZZZUYZZZZZZZZZYSLYZLZSSYZZYDDCUUUH NM Y HWI-EAS88 3 2 1 388 976 GAAAAAAAAAAAAAAAAAAAAAAATAGAAATTTTG ZZZZZZZZYYZXXXXVVUDQFIFQFFFMHHCFCAA chr13.fa 93042653 F 24A7A1T 0 Y HWI-EAS88 3 2 1 497 751 CATTAATTCCTAGCAACATGTTTAAAACATGTAAA DLLLLJJLLIELLLLLLLDLLILLJLLLLDLELLL NM N HWI-EAS88 3 2 1 899 752 CTGCTTTGCACTGTCTTTCTCTGTATTACTGTATT ZZZZZZZZZZZZZZZZZZZZZZYZZZZZZZQUUUU chr15.fa 92818643 F 35 67 Y HWI-EAS88 3 2 1 892 547 GTGTATCGTTGTCTCTCTCTGTCTGTTTCTGTCCT JOOYYYYVYYYYYYSYOYYYSYJYONEYYYGQLLC NM N HWI-EAS88 3 2 1 896 767 CGGTACAGGTTCATAAACAAAAAGACTCCCATCTC ZZZZZZZZZZZZZZZZZZZZZZZZXZZZZZQUUUU NM Y HWI-EAS88 3 2 1 901 823 CGCTGACGCTCTTCAACCACCAGCCAGTCGGTAAA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 880 207 AAACAAAATAAAAACAAAACAAAATAAAACAATAC ZZZZZZZZZZZZZZZZZZZZZZZZZZZYZZUUUUU chr1.fa 167844152 F 35 28 Y HWI-EAS88 3 2 1 801 355 GAATGAAATTAGGGAGTCATGTAGATGCACAATAT ZZZZZZZYZZZZZZZZXZYZXZYZYZZYZZUUUUU chr16.fa 60000236 R 35 70 Y HWI-EAS88 3 2 1 712 388 TATACCTTTTTGAACTGCCTCATTGTCAGATTTTA YSYVISVYYYVOVVVSJYYYJYOYDSYQSSQCEQL NM N HWI-EAS88 3 2 1 936 827 TGGCGTATCTGGCTGCTCAGGCGCTTTGGCGCGCG ZZUXUUZZZZOZZZUZUZXOUZXUZZZDIULSLSL NM Y HWI-EAS88 3 2 1 759 361 TTAATCCTTAATAGGAGCAATTTCTCCCTATTTTT ZZZZZZZZZZZZZZZZZZZYZZZZZZZZZXUUUUU NM Y HWI-EAS88 3 2 1 495 880 ACTGGGGCCTGTCGTGGGGTTGAGGGAGTGGGGGG ZZZZZZZZZZZZZZZZZZZZZZZZZZXZZZUUUAU NM Y HWI-EAS88 3 2 1 789 348 GGAATGCCGCTGTCATCCTGAGGAGCCGGCTGAAG ZZZZZZZZZZZZZZZZZZZKYXZZYZZYYZUUUNU chr4.fa 154961466 F 35 57 Y HWI-EAS88 3 2 1 933 701 GTTTGGAGCATGTATGCATTCAAGGTCAGTTTTAA ZZZZZZZZZZZZZZZZZZZZZZYZXZZZXZUUUUU chr8.fa 47379601 F 35 70 Y HWI-EAS88 3 2 1 796 584 GGGCCACCTTGCCTGGCCGCTGTGGGCGAGGTTGA LELDLLLLLLLLLLLLLLDLDLLILLLDLLLLLLA NM N HWI-EAS88 3 2 1 904 236 ATATACTGGCGTAGCATACAGTTGATAGTATTCTT ZZZZZZZYUZYZZYZYYYYYUSYSUYUJIQUUULU NM Y HWI-EAS88 3 2 1 480 922 CTACATAAAGCTGGCACAGAGTAGGGTTATTTGCC ZZZZZZZZZZZZZZZZZZYYZZZZZZZZZZUUUUS 23:11:4 Y HWI-EAS88 3 2 1 878 414 CTCTGTAATAAAGAATAGATCTGCAAATTATATTG ZZZZUZZZYZUZUZZZZUZUYYRYUZXUTYUSUAE chr8.fa 51300105 F 33G1 55 Y HWI-EAS88 3 2 1 336 925 AAAAAAAAACACAAACAAAAATACACTCACCCACG UZZZYZZXYZZXYXXUOWIHDSIUOLMIXUAEFEP NM Y HWI-EAS88 3 2 1 882 131 GGGAACTGATGGTGTGTGGCGGGGGGGGTTTTTTG ZZZZZZZZZZZZZZZZZZYXXZXYXYSMSZUUQUJ NM Y HWI-EAS88 3 2 1 884 306 ATTAGTGATCAAGGGGGAAAGGCTCTTGTGGGTGG ZZZZYZZZZZZZZZXZYZYZYZZZZZZMZSINUNI chr2.fa 153106591 F 35 1 Y HWI-EAS88 3 2 1 949 578 TATCTGGTTCCAACGCTACATCGGCTTCGGTTGAC ZZZZZZZZZZZZZZZZZZZZZZYXZZZYMXUUAUU NM Y HWI-EAS88 3 2 1 473 774 AGGATGTGAAAGGATGGGGCTGGGTTAGGACCCAG ZZZZZZZZYZUZZZZZZZRZYYDURZTOTTOSPAI chr14.fa 71647608 R 22T12 29 Y HWI-EAS88 3 2 1 456 896 AGCAGGCAGGGAAAGCATCCTCAAGTCTGGCTTTG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr11.fa 34183361 R 35 72 Y HWI-EAS88 3 2 1 910 661 GTTTCTCCCTCCTCCTGATTCTTCTCTATATATTC ZZZZZZZZZZZZZZZZYXZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 949 196 TGAGTGTGGGAAGCCAGAGGCCTCGGCAGCCTGGC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUQUU chr1.fa 89167335 F 35 72 Y HWI-EAS88 3 2 1 877 609 GTTGTCGAGCCCGGCCATGCGCTGGCGATATTGCG YSYYOYJSYYYYYYYDVYYYUYISSYLUVUOOQQQ NM N HWI-EAS88 3 2 1 936 284 ATGTCATTTATAGATATGATGGATTATTCGCATTG ZZZZZZZZZZZZYZZZZYYZZSZZZYZZYDUQUUC chr10.fa 124777654 F 35 44 Y HWI-EAS88 3 2 1 908 470 AAACAGACAACATTAATACCTATACATACCAATAA ZZZZZUZXOZZZZXXIXXZZUIXZZXXXHUSALOO chr1.fa 100954516 R 28G6 10 Y HWI-EAS88 3 2 1 795 148 GATATATGACTCTTTATTGTAGCAGTTTTTTTTTA ZZZZZYZYUZZZZZZYZZSYZUYZLZZDZZUUHAU chr13.fa 10642710 R 15G11G4GA1 0 Y HWI-EAS88 3 2 1 475 755 ATACATGTACATTTTTTAAAAAATGGAGCAAAACA ZZZZZZZZZZZZZZZZZZZZZZZZZSZYZZUUUUU chr1.fa 133991988 R 35 65 Y HWI-EAS88 3 2 1 839 354 TTGGGACTACGACCTGTAAGACTGAGCCAAATTTC ZZZZYZZZZZYZZZZZZYYSZZZZWYZZYYQUUUU chr2.fa 123356256 R 35 61 Y HWI-EAS88 3 2 1 906 223 TGACTCCCCTGTGTTGCGGAGGCTCTGTTTTCCAT ZZZZZZZZZZZZZZZYZZYZXZZZYZSZZMJQUAU chr3.fa 87539367 R 29GG4 12 Y HWI-EAS88 3 2 1 797 112 TAGACAGTTTCTACTTTTGCAATTATTTAAAAATC ZZZZZZZZZZZZZZZZZZSZZYZZZZZZZXUQUUU chr10.fa 108548019 R 35 61 Y HWI-EAS88 3 2 1 817 568 TTCATAATATAAGCACATGCCCTTAACTTTGGTTT LEELJLLJLLILJLLLLDLLLLILLDHLILELEAC NM N HWI-EAS88 3 2 1 830 553 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC ZZZZZZZZZZZZZZZZZZZYYZZZZZZYZZUUUUU 131:254:255 Y HWI-EAS88 3 2 1 793 877 GGGAGTGGCGGCGCTCGCCTTTAGTCCCAGCTCTC LLLDLJLJDJJLJDDDLDJILLJDLHHHLLLELEL NM N HWI-EAS88 3 2 1 896 554 AAAAAAAAAATAACAAAAAAAAACACAAAAAAAAA LLLLLLLLLLDLLLLILLLLLLLLLHLLJLLLLEL 0:0:187 N HWI-EAS88 3 2 1 422 781 GCAAATTCTTAGCCCTCATGTCCCTCACACTGTCC ZMZZZZZZZZZZDZZZZZZXYZXDWXZZHXUQOUE NM Y HWI-EAS88 3 2 1 921 700 TTCCTGTGTATGAAAATCTGCGATGGATTGAGGTG ZZZZZZZZZZZZZZZZZZZYZYYZYXYZZMUKKUQ chr2.fa 9425450 R 35 49 Y HWI-EAS88 3 2 1 533 726 GCTCGTAAAGACGGATTTTGATTATTTAATAAAAC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 901 682 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA ZZZZZZZZZZZZZZZZZZZZZZYZZZZYSZUUUUU NM Y HWI-EAS88 3 2 1 810 967 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA OZZZZZZZZZZZZZZZZZZZZZZZYZZYZXSSSSS 255:255:255 Y HWI-EAS88 3 2 1 915 802 GTCGAGCAGGGCATGCCGCGACGCCAAGCGCTGGA ZZZZZZZZZZZZZZZZZZZZZZZZZYZZZYUUUUU NM Y HWI-EAS88 3 2 1 888 414 GTTGCGGAGCGTTTCCCGAATGCGATGCTGCTGAT ZZZZZZZZZZZZZZZZZZYZZZZYZZSZZXUUUUU NM Y HWI-EAS88 3 2 1 917 197 ATATATTTAAATATAGATTCTTTTATTTTCTTTGT ZZZZZZZZZZZZZZZYZZZZZZZZYZZZZMUUUKK NM Y HWI-EAS88 3 2 1 872 584 GCTTTTTTAATATCTGCTGCGACGATGACGCAAGT ZZZZZZZZZZZZZZZYZZSZXZZXZZXZYYUSSAU NM Y HWI-EAS88 3 2 1 916 308 GCTGTGCTTCTTGCGCTTACGATTATTTTTACCAA ZZZZZZZZZZZZSZXZZZZZMYZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 683 109 GCAGAGATTTCAGCATAGGAAATTATCAGATAGGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUQUU chr1.fa 26195046 F 35 71 Y HWI-EAS88 3 2 1 955 525 CAAGTCCAGTTAATTGCACGTCTTTTCAATTGATT ZZZZZZZZZZZZZZZZZZZXZZZZZZZZXZUQUUU NM Y HWI-EAS88 3 2 1 824 273 GTTTCATCAAGAAGCAGAAAGGCTTCACCTCGTCC ZZZZZZZZZZZZZZZZZZZYZYZZZZZZZZUUUUU chr11.fa 85125318 F 35 71 Y HWI-EAS88 3 2 1 225 117 GTTGTATCGATGTGACCTTGTCGACTGGTACGCGG ZZZZZZZZZZZZZYZZZZZZZZZZZZZXZZUUUUU NM Y HWI-EAS88 3 2 1 876 549 AACTTTGGTACCTGGTATCTGTCCAGAAATTTGTC ZZZZZZZZZZZZZZYZZZZZYZZZYZXVZZUUQUU 255:255:255 Y HWI-EAS88 3 2 1 831 639 TATTTCTTCAGTAAGTTACATAAAATAATGATGTA ZZZZZZZZZZZZZZZZZZZZZZZZZZYYZZUUUUU NM Y HWI-EAS88 3 2 1 917 581 GCTGAGCAGCCAATTCATCTCTACGGTAAGGTGAT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZXZUUUUU NM Y HWI-EAS88 3 2 1 888 152 TCAGATATTGACCAATCGCCTCTTCTTGCCTACCG ZZZZZZYZZZZZZZZZZYZZZZZZZZZMZYUNUUN NM Y HWI-EAS88 3 2 1 672 712 GTGTAAGCCAAATAAACCCTTTCCTCCCCAACTTG ZZZZZZZZZZZZZZZYZZZZZZZZZZZZZZNUUUQ 255:255:255 Y HWI-EAS88 3 2 1 791 893 TGCTAATGTTCTTAATTCTGATGAAAATGATGAAA ZZZZZZZZZZZZZZZZZZZXZZZZYZZZZZUUUUU NM Y HWI-EAS88 3 2 1 766 920 TCACTTTATTCATTTTTTTAAAAAAAGGTTTACAC ZZZZZZZZZZZZZZZZZZZZZZZZZZSXZZUUUUU chr9.fa 38291967 F 18A16 34 Y HWI-EAS88 3 2 1 457 871 AACTAGACTATTTTAAACAATTAGGAATAAATGTT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZXUUUUU NM Y HWI-EAS88 3 2 1 877 247 CAAAAAGGGCCAATGACAATTATAATATTAAACTG ZZZZZZZZZZZZZZYZZZZZZZZZZZZZZZUUUUU chr1.fa 163149797 F 35 71 Y HWI-EAS88 3 2 1 875 242 AGACTGGAGAATATGGCAAACTGGGCAGGGTTAGA ZZZZZZZYZYZZZZXZZYYYZSDSKZRMSIUUNHU chr5.fa 140154350 R 35 28 Y HWI-EAS88 3 2 1 955 603 TTTTCAATTTTATAATCTTGAAGTGAACTACCCAT ZZZZZZZZZZZZZZZZZZZXZZYZYZZYZYUUUUU NM Y HWI-EAS88 3 2 1 822 118 TTAGCTTTGCTTTGTCACATATGCCCTTTATTATG ZZZZZZZZZZZZZZZZZZZZZZXZZZZZZSUUUUA NM Y HWI-EAS88 3 2 1 937 581 ACGCCGCGCGGGTATCCAGCCCGGCACCGAACAGC ZZZZZZZZZZZZZZZZZZYZZZZZZZZZXZUUUUU NM Y HWI-EAS88 3 2 1 875 649 GTTATAAAGAATACAAATGCCCCCCACACCCCAAG YYYOSOYYIVUVOSUUIIWUVYIDOLUHQYPLALE NM N HWI-EAS88 3 2 1 348 978 GAAAAAAAAAAAGAAAGTAGAAAGGCTCCATAAGA ZZZSZOZZZZUZGHIYQCUHQCHHMMHHMFFIEAH NM N HWI-EAS88 3 2 1 904 455 CCATGTAGACACTAGCATATCCGGGGATCCATCCC ZZZZYZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU 255:255:21 Y HWI-EAS88 3 2 1 899 159 GTCATGCCAAGATATTTTATATTATTTTTGACTTT ZZZZZZZZYZZZZZZZZZZZYZZZZZZDZMHIUAU chrX.fa 15017633 F 35 0 Y HWI-EAS88 3 2 1 752 323 GAGGAAGTGGCCTGAGAAGGGATGGCACCCCTGTC LDLLLLELLLLLELLLLLLLLDDLIIHLIIAALAL NM N HWI-EAS88 3 2 1 966 674 TTCTTTGTATGCTCCTGGTTCTCAAAAATGTTGTC ZZXZZXUZZZOZZZZZXXZZZZZXOPZXZUSSGSS chr1.fa 195524766 R 35 50 Y HWI-EAS88 3 2 1 940 290 GAATAGTCGCACGAAGCTGCGCAAAATTCCTCGAA ZZZZZZZZZZZZZZZZZZZZZZZZXZZZZZUUUUU NM Y HWI-EAS88 3 2 1 922 524 GAAGATGAGCGATCGCTTCTGGTTCAGATCGGAAG ZZZZZZZZZZZZZZZZZZZZYXZZZZYZZZQQUQQ NM Y HWI-EAS88 3 2 1 691 756 GACTCTTCAATTTTGTGTGTGATGTTTTTTATTTC ZZZZZZZZZZZZZZZZYZZZZZZYZZZZZZUUUUU chr8.fa 34088823 R 35 71 Y HWI-EAS88 3 2 1 759 576 TTTGCCATTGACTGTGTTTTCCTTATGTTTTTTTT YYYYYYYYVJVYYSVOYYYJVSYYSDDYYYOQQQQ NM N HWI-EAS88 3 2 1 913 468 CACCATCTTCTCGGCATCTTATGGTACCTTCTCCA ZZZZZZZZZZZZXYZZZZZZZZZMYYZZZZUUUUU chr4.fa 16273427 R 35 59 Y HWI-EAS88 3 2 1 927 687 GTTGCCATCCAGAGAGAGGAGGGGCGTGGCGAGCC ZZZZZZZZZZZYZZZZYZZZZZZZZZSZSZUUNUU chr5.fa 34976414 F 35 63 Y HWI-EAS88 3 2 1 874 708 TCTTGGCTACGTCTTTCTTAGCATCATCCTTACAG YYSOOYJYIYVISYYYOSYISISJDNYNNNLQEEO NM N HWI-EAS88 3 2 1 940 208 TCGGGCAGCATGACAAAGTCTGGGCGCAAGCGGCT ZZZZUZZZZZZZZZZZSYZZZZSZZYZUZUUUUUU NM Y HWI-EAS88 3 2 1 926 712 GCCTGGTCAATATCGGTGACGCCAAGTCACTGGCC ZZZZZZZZZZZZZZZZZZZZXZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 872 587 TTTCTTAAAAAGTAATTTATATTATAGTCTACATC ZZOZUXZZZXZOKZUUUOZZUZXUZPPZUZSGOSL chr15.fa 18633952 F 2C32 17 N HWI-EAS88 3 2 1 626 421 TTTTCCGTTATTTTCAGTTTTCTCGCCATATTCCA YSSJYSYYYYYVSSVSVVYYYYOYJYYQYSEQQQE 0:27:96 N HWI-EAS88 3 2 1 881 718 AGAGAACACCTTAGATTTAACCTGTAAAATAATGT ZZZZZZYZZZZYZZZYZZZZZZZYYZZZZZUUUNU chr13.fa 67993272 F 35 0 Y HWI-EAS88 3 2 1 935 683 GGGAGGGTCCCAGCACCTCTGCTTTGTCTTTCATC ZOZZXOOUZZZZOZZZZZZXKZZUXIJZPXOSGGL chr5.fa 33713046 F 33GG 6 Y HWI-EAS88 3 2 1 876 516 GCTCCGTGTCCATGGAAGTGAGGCGAACCTTGGCG ZZZZZZZZZZZZZZZZYZZXZZYZZXXZZVUHSUU NM Y HWI-EAS88 3 2 1 894 213 AGAAAGAGAGAGAGAGAGACAGAGAGAGAGAGAGA ZZZZZZZZUZZZZZZZZZYZZZZZZZZZZZUUUUU 57:255:255 Y HWI-EAS88 3 2 1 884 408 ATCTGATTGGGATCGCCCAGCGTGATGGAACCGTT ZZZZYZZZZUZZZZUZZZZYZZYZZZYSZZUUUUU NM Y HWI-EAS88 3 2 1 904 136 TCACGTCCTAAAGTGTGTATTTCTCATTTTCCGTG ZZZZZZZZZZZZYZZZZZZZZZZZZYZZZZUUKUK 38:53:5 Y HWI-EAS88 3 2 1 625 741 GATGGGGAACCAGGGCTAGCCACTTAGAAAGTCCT ZZZZZZZZUZZYZZZZZZZZZUZZZZZZYZUUUUU chr1.fa 149702895 F 35 67 Y HWI-EAS88 3 2 1 898 295 ATCCTTCTTCCATTTCAACTCAAAGACTCTTTATC EJDLLLLJEJLJLJLLDJLLLJLLLJLJLLLLEEA NM N HWI-EAS88 3 2 1 865 316 GTTTATTTTCAGTAATACAGAGATAGATACGAGCT ZZZYZZZZZZYUZZZZYZUUUUYZYUZZYZHUUUU chr2.fa 56767358 F 35 54 Y HWI-EAS88 3 2 1 771 566 TGCGCATGTGCCGAGGGTGGTTCTTCACTCCATGT ZZZZZZZYYZZZYYZZZZZZWZZZZZXZZZUNUIU 255:255:23 Y HWI-EAS88 3 2 1 908 742 GGGCTTCCATACCTGTGTGGGACAGGGAAGATCTC ZZZZZZZZZZZZZZZZZZZXZZZZSZZZZXAUUUU NM Y HWI-EAS88 3 2 1 958 120 TTAATAAATGACTTGTAGTGCAAGATAGCCTGAAA ZZZZZZZZZZYZZZZZZZZZZZZZZZYXZSUUUUU NM Y HWI-EAS88 3 2 1 863 603 TCTCAATTTATGATGCTATGGAGACTCCTGGCCTA ZZZZZZZZZZZYZZXZZZZSXZSZZZZYZMAUUUQ chr15.fa 85312070 F 35 37 Y HWI-EAS88 3 2 1 487 800 CTTGTTTGCGTGGTCGCGCAGCTTGTCAGCTTATG IOYYIYOYYOJJODSSVYYYOISIJHYDNYCLLOE NM N HWI-EAS88 3 2 1 518 564 GTGAAATATGGCGAGGAAAACTGAAAAAGGTGGAA ZZZZZZZZZZZZZZZZZZZZZZYZZZVZZZUUUSU 35:58:27 Y HWI-EAS88 3 2 1 554 588 GGTGACAAAAATGAAATGCCAGTTGCAGAAATACC ZZZZZZZZZZZZZZYZZZZZYZZZZZXYZRUUUUU chr12.fa 103221030 R 35 64 Y HWI-EAS88 3 2 1 267 692 GTTGCTAGACATGAGGAGAATTGACTGTACCATTG ZZZZZZZZZZZZZZZZZZZZZZZZZZRZSXRLUUH chr9.fa 106765676 F 35 52 Y HWI-EAS88 3 2 1 558 895 GTTGAGAGAGCCTCAGAATGAAGAGGTAGCCCAAC ZZZZZZZZZZZZZZZZZZZZZZZZZZYZZZUUSUS chr4.fa 130772238 F 35 71 Y HWI-EAS88 3 2 1 734 546 TATCTTATGTTCTTCAGTTTTGTTTTGTTTGTTTT ZZZZZZZZZZZZZZZZSZZZZSZZZZSZZZCUUUU chr3.fa 47636170 R 35 45 Y HWI-EAS88 3 2 1 887 407 CATTCTGGAGACTCCAGGCCACTTGGGCCTGGTGC ZZZZZZZZZZZZZZZZZZZZZZZZXYZZZYUUUUU chr15.fa 75579139 R 35 70 Y HWI-EAS88 3 2 1 762 639 TTTCTCTTAGTTGCTTCTTGGATGACATCTGATTG ZZZZZZZZZYZZZZZZZZZSSZZXZZRZZZISUUC chr8.fa 54384871 R 35 50 Y HWI-EAS88 3 2 1 941 698 GTCTTGAGAAACCTCCAACTGACTTCCATATTGGC YYYYYSYJYYYYVYYYVVYYOVYVYVYNNNAOAAL chr2.fa 113979562 R 30G4 23 N HWI-EAS88 3 2 1 740 632 GATTCTACGGGTTGTAGGTTATCATTTATTTGACA ZZZZZZZZYYZUZZZYYUZZZZZZZZZYZZUCUUU chr16.fa 69629017 R 35 49 Y HWI-EAS88 3 2 1 584 522 GTTATCTTTTGCATGTCACTAAGTTTTATTGTGAC ZZZZZZZZZZYZZZYZZZZZZZXZZZZYZZNUNUU chr18.fa 48464092 F 35 63 Y HWI-EAS88 3 2 1 812 961 AAAACAGAGCGGTCTTTGTCAGCTCCACGTTCTTT ZZZZOZZXUZZXZZZZDZOXOZXIXZXHHWOLESS NM N HWI-EAS88 3 2 1 593 536 GTTGAATAACAGACAATTTTATCGGGCCTCTGGAA ZZZZZZZZZZZZZZXZZZZZZZZXXXZZZZUUUSU NM Y HWI-EAS88 3 2 1 929 737 GATCGGAAGAGCTCGGTATGCCGTCTTCTGCTTAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZXZXUUUUU NM Y HWI-EAS88 3 2 1 606 914 GTAGAAGTTGATAACCTCCTTTTAACTGCCTATAA ZZZZZZZZZZZZZZZZZZZZZZZZZZZYZZUSUUQ chr15.fa 29761550 R 35 69 Y HWI-EAS88 3 2 1 493 855 ACAAGGTGGCACTGGGGACCAGGTTTCCCACATGT ZZZZZUZZZZZUZZSZZZZUURZUYZZXOZUUQLE chr17.fa 31801893 R 34A 46 Y HWI-EAS88 3 2 1 946 605 TTGGTGGTGAGTTTATGCCGAAGCTGGACGAATGC ZZZZZZZZYZZZZZZZSZZXZZXZZMSYZXUUUHU NM Y HWI-EAS88 3 2 1 876 309 GACGCTCGTTGCCACTGATTGTGCAGCGCCATGGA ZZZZZZZZZZZZZXZZZXZZXZXZXVZVDZQUHNR NM Y HWI-EAS88 3 2 1 181 411 GTATAGTTCTGGCCTTAGGAGTACCCTTCTCTTAC ZZZZZZZZZZZYZZZZZXXZXZZZZZZZZZUUUUU chrX.fa 44412950 R 35 70 Y HWI-EAS88 3 2 1 774 582 TCACACTGTCCATGTTTAGTTTCTGTTTCCATGAT ZZZZZZZZZZZZZYZZZZXZZZZZMZZZZZUUJUU chr17.fa 39100850 R 35 23 Y HWI-EAS88 3 2 1 901 769 GCATTAAGGCACAAAAGGTACTCATCAATGAATAC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 883 541 AAGCCTCCGTAGTCCCCTGGGATTGCTCAGCCTTC OSVJOYJYOYSSJOVJYVJSVVSOJVNYJJOGQLQ NM N HWI-EAS88 3 2 1 485 826 CACAGTACAACACAGCAGGGAGTCAACTCTTTCGA ZZZZZZZZZZZZZZYZYXXZVYZZZYZZZZUUURQ chr2.fa 19952288 R 35 68 Y HWI-EAS88 3 2 1 770 535 TCAAACATCCTCTTTTAGACGCCATTCGGGTTAAA ZZZZZZZZZZZZZZZZZYZZZZZWZZZXYZUUUUU NM Y HWI-EAS88 3 2 1 943 132 GATAGTCATGAAAAAGAAGCTCTGTGTTGCATCCT ZZZZUZZZZUYYZZZZZYSZZYZYZSZZZYUUUCU chr3.fa 125312640 R 35 63 Y HWI-EAS88 3 2 1 924 581 CTCCTTCCTTCATTGAATTGTTTTTGTGCTTTTTT ZZZZZZZZZZZZZZXZZZZSZZZZZSZSYZUUUKU NM Y HWI-EAS88 3 2 1 880 454 GAACGTCTGCTCAGTGCGAGGTGATATCACGGAAA ZZZZUZZZZZZZUZZZZYYYZZUZZYZZTZLHUUU NM Y HWI-EAS88 3 2 1 897 954 GAGGGCTTAAAAAGCCCCACTTTTCAGCGGGGCTT ZZZZZZZZZZZZZZZZZXZZZZZZZYXZYZUUUUU NM Y HWI-EAS88 3 2 1 873 456 AAAAAAAAAAAAAAAATCTTTGCCGGACAATACGT ZZZZZZZYZZZZZZYYXYZZZDZZXSRZYXUNUAU NM Y HWI-EAS88 3 2 1 580 801 GGATTTGGTAGGACATTTTTTATTCTCGCGGTTTT ZZZZZZZZZZZZZZZZZZZZZZZZZZZSZXUUUUU NM Y HWI-EAS88 3 2 1 899 440 GACACGTTCGACCCCAAGCCGATTTTGCGGCGAAT ZZZZZZZZZZZZZZZZSZZZXSZZZZZZYYUUAUU NM Y HWI-EAS88 3 2 1 888 563 GTAGCTCGAGAGGAGACAGAACTCCCCACAAGCAT LLLLJDELLJLLJILLLLDLLLLLLLLJILAELEA NM N HWI-EAS88 3 2 1 915 234 CATCTAGTTTTCTAAAAGAGAAAATATTTTAACCC ZZZZZZZZZZZZZZZZYMZXZZZYZZZZZZUUUUU chr3.fa 60164742 R 35 59 Y HWI-EAS88 3 2 1 498 831 CAGAAAGGAAGGCTCTTCAGTAACACTTGACAAGG ZZZZZZZZZZZZZZZZZZZYZZYZXZZZZXUURUU chr8.fa 37741103 R 35 70 Y HWI-EAS88 3 2 1 751 596 GCATGACGACGCAATGCAAACGGATCGCGGTCGCC ZZZZZZZZZZZZZZZZZYYZZZZZZZXZVZUUUUU NM Y HWI-EAS88 3 2 1 760 519 GGCAAAACCGGCTGATACGCCTTTACCAAATCCTT ZZZZZZZZZZZZZZYZZZZZZZZZZZZVVYUUUUU NM Y HWI-EAS88 3 2 1 464 866 ACTCAAGCTGGAAACGTCTTTCTCTTTAGAAATAA ZZZUZYZZZUYUZZRSZZZZZYZZZZZZSIUUUUU chr19.fa 36085820 F 35 50 Y HWI-EAS88 3 2 1 875 627 CTTTGGACCTAAATGTTTTTTTTTTAAACACAAAT ZZZZYZZZZZZZZZZZZZZZZZZZZXXYXZUUNNU NM Y HWI-EAS88 3 2 1 475 904 CAAAGAAAAGTCATTTGCTATCTCGTGCTTCTCCT ZZZZZZZZZZZZZZZZZZZZZZZZZZYZZZUUUUU chr4.fa 83715498 F 35 71 Y HWI-EAS88 3 2 1 883 194 CTGCTAGAATTATTGACCCAGCAATTGGAGTTTCA YYYYSVOJYYYYYYVYYVYSYYYYYYYDYVCQQQQ chr1.fa 24618553 F 30C4 2 N HWI-EAS88 3 2 1 808 312 GGCGTCCTCTGCATTCAGCGCCCCCCTCTTCCCCT JELLJLJLLLJLLLJLLLLJIIIDIIJLLLLALLA NM N HWI-EAS88 3 2 1 553 954 GAGTAGTTTTGGAGGCGGATGGGGTGCTTGTTGGT LLLJLJJLLLDDILDILILLILLDILLLLLLLEEL NM N HWI-EAS88 3 2 1 609 906 GAACTTAAACGGTTCGTGGTTATTTTCAGTGTTGA LDJLLLLLLLLLIJILJLLLILLLDLHHILCLLLL NM N HWI-EAS88 3 2 1 912 645 GAAGTTCTCCCCGCGTGGAGGCTGCCGAGGAGGAC ZZZZZZZZZZZZZZZZYZZZZZZZYZZYMZUUUUU chr1.fa 74708623 R 35 59 Y HWI-EAS88 3 2 1 839 225 TATTTTTCAAGTCGTCAAGTGGAAGTTTCTCATTT ZZZZZZZZZZUZZSZZZZYZYUZYLZZZSZULUUU 0:0:21 Y HWI-EAS88 3 2 1 901 310 GTATCCACCGATAAAATGTCTCATCTATTTCTTCT ZZZZZZZZZZZZZZZZZSZZZZZZZZYZZZUUUUU NM Y HWI-EAS88 3 2 1 887 347 GACCCGCTCGCCGACCGGCGCCTGGTGCAGGAAGC ZZZZZZZZZZZZZZZZZZZZZZYYZZZZYZUUUUU NM Y HWI-EAS88 3 2 1 799 533 TAAAAGTTTTAGTTCAGTGCTGAAGTTTTCTCTGA ZZZZYZZZZZZZZZZZZZYZZYWZYZZZZZUUUNQ chr3.fa 51592441 F 35 69 Y HWI-EAS88 3 2 1 933 727 GGCTGTCACTGGCGCCAGGCTTTGGGCTAAGTGCT ZZZZXZZXZZOZZZUZUUXZZZDXZZXZDZSSLOS chr10.fa 20909735 R 22G12 18 N HWI-EAS88 3 2 1 817 123 GTGTGAGTTTTTCGACAAGGAAATGATAATTTATA ZZZZZZZZZZZZZYZYWYZYWYYZZZZSYDUUUUU NM Y HWI-EAS88 3 2 1 754 375 GGTATTTTAAGACAAGATTTGTATCGTTTACTACT ZZZZXOXZOXXZIIUDUZZZJIOXUPDHHNSAEES NM Y HWI-EAS88 3 2 1 770 116 GAAAATATGCTTTCAGCAATCTACTTTTGCCTCAT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUUUU NM Y HWI-EAS88 3 2 1 780 592 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZZZZZZWYZZZZZSZUURAU NM Y HWI-EAS88 3 2 1 932 359 GCCCATCACCATCATGGTAGGGAGTGTGGCAGTGC ZZZZZZZZZZZZZZYZZZZYYZKZYZZSYZQUUQH chr10.fa 66179060 F 34A 38 Y HWI-EAS88 3 2 1 726 791 GTCTATCGGTTTGGCTGAATATTGCGCAAAATGAC ZZZZZZOZZZZZUZZZZZZZZZZJZXZZXZSSLSS NM Y HWI-EAS88 3 2 1 949 393 ACAGAAAGAATTTAGTTAGTCTCATGACTTGTTCA LDLLLLLLLLJLLJLLLLLLLLLLLLLILLLEAEL NM N HWI-EAS88 3 2 1 749 524 TAATTAAGATAATCAAAATACATAGATGTAACATT ZZZZZZYZZZYZZZZZZZZZZZZZRZZVXZQUUUU chr6.fa 3662658 R 35 60 Y HWI-EAS88 3 2 1 728 769 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZXZXOOXZUXZXXXXUXZOZUUOXZUXZXZSSALS NM N HWI-EAS88 3 2 1 501 429 GTATAAATTCATATCAGGAACTTTAGGCTTTTATA ZZZZZZZZZZZZZZZZYYYXZZZZYXXZZZUULUU NM Y HWI-EAS88 3 2 1 898 163 GCGCGGTGGTCGTCGTCATCAGTCAGGACATCGAC ZZZZZZZZZZZZXZYYZZZZYZYXSZZVYYUOUAU NM Y HWI-EAS88 3 2 1 960 843 TGCTTCCTGCTAAATCCCAAGTCAAGGTGAATTCA YYJYYSYYYSYYYYYVVSYVVJYYSYYYYYGQQQE NM N HWI-EAS88 3 2 1 670 913 GGTCGCTATGGCCCCGAACCGGCGGTGAGCCCATT LLDDDLEELJJLDIDJLIIDDLDLJLLIIDAALLL NM N HWI-EAS88 3 2 1 934 738 ATTCTGTTGGTTCGATCATTAATGTTCCTGCTACT ZZZZZUYZZYZUZMYZZUZZZUZSZYYJZJUUUUU NM Y HWI-EAS88 3 2 1 804 366 GCTCACTGCAGCCTCCACCTCCCGTGTTCAAGTGA ZZZZZZZZZZZZZZZZZZZYZZZZYYZZZZNUUUH NM Y HWI-EAS88 3 2 1 818 738 GTATTGGAGTTTCAGTTTCAGTCTTTCCAATGAAT ZZZZZZZZZZZZZZYZZZZYXZZZZZYZVXUQSUU NM Y HWI-EAS88 3 2 1 895 476 CTGGAATGGAGCCTACAGGCCGCGTCACTTTGGTG ZXZUZZZZZXOZZOXZZUZZUZODKXZZZDSLLGG chr15.fa 80169658 F 22G10A1 0 Y HWI-EAS88 3 2 1 881 966 GAATAGAGTGATTTGTCTCCTTTCTCCGGATTCTG OJOSOOSSOOJOSYDJYSDOOOSJVVNDNJGLOLL NM N HWI-EAS88 3 2 1 708 110 TTGAGCACATTATAAGTTCAAATTGATCCTTAATA YYYYJYYYYYYVYYYYYYYYYVYYOYYVYYQQOQQ chr2.fa 138987639 F 35 46 N HWI-EAS88 3 2 1 639 497 TTTGGTTGAGAGACTTTTAATGACTGCTTTTATTT ZZZZYZZYZYZUXXZZZZXRZISXZOTXUXUASUU chr18.fa 42662167 F 35 0 Y HWI-EAS88 3 2 1 549 884 GATGGCCTATGAGGGAGGGCATTTGTGGTCTTGAT LDLDIDDLJLLLLLLLJLILIDDLLDHIHLLLLLL NM N HWI-EAS88 3 2 1 905 684 GGCTTTGCGGCACACGTACCACGGCTTTCACCCGG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUUAU NM Y HWI-EAS88 3 2 1 917 483 GGGAATGGTTTAAAAAAGCAACCAATGTTACTTCC LLLLDLLELLLLLLLLLELJDELJDLJLLLLLALE NM N HWI-EAS88 3 2 1 809 626 TTCCCATTTTATAGGCAAGCAAACTCACCTCTATT LLJLLDIJLJLLLILLLDAFLLLIIALLLHLLELA NM N HWI-EAS88 3 2 1 843 636 GCCAGATATTATTACGGATGGCTGTGCTTCACCAC YJYOOVYOSVIJYSYOIYOIISVDYHQHDHELQLG NM N HWI-EAS88 3 2 1 890 665 AAGAATTGATGAAGAAGAGTTTGGTTTTTGTGAAA ZZZZZZZZZZZZZZZZZZZZZZZXZZZZZSUQUUU NM Y HWI-EAS88 3 2 1 823 514 GGAATGCCGCACAGCGTTACACATTCGGCACCCAT LLLLDLJLLLLLLLLDLLLDIILLJLLLLLLLLAL NM N HWI-EAS88 3 2 1 487 971 AACGAAAACAAACCTACAGATATGGCGCATGTGCT LJLJLJLLIDLLDLILDDLILLLIILLDLLLLLEL NM N HWI-EAS88 3 2 1 942 392 TACAAACTCGCTAGGTGATGCTGGTGTAAATCCTG ZZZZZZZZZYZZZXXZXZZSZZZSZSZZZZUUUUI NM Y HWI-EAS88 3 2 1 477 816 AATCCAAGAACACATTAAAGCAATCATCCATCCTG ZZZZZZZZZZZZZZZZZZYZZZWZZZZZXYUUUUS 255:255:255 Y HWI-EAS88 3 2 1 463 778 CATAATTACAGAGGCAGAATGTGAGGAAATCAGAA ZZZYZZZZZZZUZZZZZSZUKYUUUUOZZUULUUU chr8.fa 29668485 F 35 42 Y HWI-EAS88 3 2 1 960 516 ACTGTAGGACGTGACATATCCCAAGTCAACTTAAA YYYJYYJJYYVOOOYSVDYIISDOODDJNVQLAOQ NM N HWI-EAS88 3 2 1 836 247 TTAAGCACAGCCTTTGCTAAGATGAGCTGTTCCTG ZZZZYZZZZZZZZZZZZZZYZZZYZZZZXYUUUUU chr3.fa 87584520 F 35 70 Y HWI-EAS88 3 2 1 899 408 CTTCCTAGTCAGCAGACTCAGGCCGCTTACCCAAA ZZZZZZZZZZZZZZZZZZZZXYZZXZZZXZUUUUU NM Y HWI-EAS88 3 2 1 796 618 GTGGCTCCAGCCAGCTTGAGAATTTTGCAAGACTG ZZZZZZZZZZZZZZZZZZZZZZZZZZSZYVNUUUJ NM Y HWI-EAS88 3 2 1 808 373 TCACCCAGGCTGGGGTGCAATGGCACCCTGTCGGC ELLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL NM N HWI-EAS88 3 2 1 879 219 CTAGGCTCAAAAGAGTCCTGTGTCAGCCTCCCAGA ZZZZZZZZZZZZZZZZZZZZZYZZZYZZZZUUUQQ chr1.fa 158268793 F 35 71 Y HWI-EAS88 3 2 1 717 544 TATCGTTTATGGAAGAAAATAATCTAGTTGGTTAA ZZZZYZZZZZZUZZZZYZZZYZZZZUJZYULUUUU chr19.fa 51334036 R 35 47 Y HWI-EAS88 3 2 1 895 734 AGAATTACTTTTAACACTGATATCTTTTCTATGTT LELLDLLJLEJELLLLJLJJLLLJLLJELLLLELL NM N HWI-EAS88 3 2 1 943 590 GTGAACACCCGGATCGGGTTTCGCGCGCCGCCGCC LDLLJLLLLLLLLLLJLLLLLLLLDLLLLLLLLLL NM N HWI-EAS88 3 2 1 949 490 CAGAAGTCAAACTAGAATGATAGATGAATGCAAAT ZZZZZUZXZOZZZZXZXZUZUZOZZUXZZPLOSOS chr2.fa 171277714 F 30G4 29 Y HWI-EAS88 3 2 1 769 583 GACAGCAAGCATTAGGCTCATCAGGAAATAGGAAG VYYYYYYSOYJYYYOOYYVSYYVSSLLVHYCQELQ chr5.fa 73876390 F 35 25 N HWI-EAS88 3 2 1 937 794 TGTGTTTTATTTTTTTTTATTCTTCTCTCATTTAC YVVSSJSOIOOSDSSOOSOJOOCOSJDNDHLCLEE NM N HWI-EAS88 3 2 1 880 934 GTCGTTGAGTCCTGGTTTTTCTGGATTGTGAGATC ZZZZZZZZZZZZZZZZZZZZZZXZYZZXZYUUUUU NM Y HWI-EAS88 3 2 1 905 689 CTTTCAAATATCCCTAAGTCCTCTGAAATGCTTTA ZZZZZZZZZZZZZZZZZDXZXZZZMSXYZKUUCUU chr6.fa 8290349 R 10G21G2 0 Y HWI-EAS88 3 2 1 944 536 CTGCAACTAAAAATTCTACATATACTGTTTATAGC ELLLLLLLJELJLLJLLLLJLLLLEJLLLJELELE NM N HWI-EAS88 3 2 1 973 661 TACACCCAGGTGGCAGGTTCTTAATATTTACCTCA LLJLLLLLELLLLLLLLLLLLLLLLLLLLLLLLEL chr8.fa 71749770 F 35 31 N HWI-EAS88 3 2 1 487 906 CAATCATCTCTAAGCGCCTAAGAGTAGGTGGATAG ZZZZXZZZZOZZUUUZXZZZZIXOUZUXDIGOGLS chr5.fa 102691430 F 32C2 12 Y HWI-EAS88 3 2 1 241 121 GCCTAGTCAGCATGAGGTGGCAAGGGAAAGTCCCA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr8.fa 75206122 R 35 72 Y HWI-EAS88 3 2 1 812 513 TATAGTCACATGCTATCCTCTAAGTATAGAAGGCG ZZZZUZZZZZZZZZYZZZZZZYIUZUZUYUUUUUU chr13.fa 55648320 F 35 55 Y HWI-EAS88 3 2 1 935 768 CACTGTTGGTGGGAATGTAAATTAGTACAGCTATT ZZZZZZZZZZYYZZZZZZZZZZZZXZZZZXUUUUU NM Y HWI-EAS88 3 2 1 955 128 GGAATACCACACAGAAAAAAAGAGAAAGAGACAGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 780 122 GTTCGACCCGCCAGGCCAGCCCTTGACGTTGGGCG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUUUU NM Y HWI-EAS88 3 2 1 949 519 CATCTTCAGTTCCTTTCAGGGCAAAAGTGCCAAGC ZZZZZZZZZZZZZZZZZYZXXZYZZZYYSZUUUUU NM Y HWI-EAS88 3 2 1 823 511 GCCCACTCCGGTTCCTACTGACGCAGTCACTCATC EELLDLDIILLLLLLJIJILDLLILDLJDLCLLEL NM N HWI-EAS88 3 2 1 784 930 TCCACTCGAGATAGACCGCTTATTGGTTGTAAAGT LLLLLJDDDDLJDLIJILIJLLLDLHLLLILELLL NM N HWI-EAS88 3 2 1 692 182 GGGAAATTTTTATTGTGACTAATTTGTAAAATTAT ZZZZZZZZZZZZZZYZZZZZZZZZZXZYZVUUUUU chr1.fa 146202664 F 17C17 37 Y HWI-EAS88 3 2 1 725 880 GATAATAATTCTTCAGAAAAAGGCTCTGATAACTT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 824 226 GTTTGCGTAGACATTCACTTTGTAATATATCATCA ZZZZUZZZZUZZZZZZXZZZZYZYZZUZQZUUUUQ chr3.fa 127685258 R 35 63 Y HWI-EAS88 3 2 1 879 277 ATCAAAATTCCAACTCAATTCTTCAACGAATTGGA ZZZZZZZZZZZZZZZZZXZZZZZZYZZXYVUUJHU 255:255:255 Y HWI-EAS88 3 2 1 920 602 ACGTGGCAACCGACGGGCGTATCGTCAGGCTGAAA ZZZZZZZZZZZZZZZZZZZZYZZZZZZXZYUUUHU NM Y HWI-EAS88 3 2 1 718 237 TTTGGAGATACAGCATGCTCGTTGTTTCGAAGATG LLLLLLLDILDILDDLDDLLDJLLDLLIDLLLELE NM N HWI-EAS88 3 2 1 940 56 TCTTTAATCTGTGTGTCCCTCTTCAGGGTGGGGCT ZZZZZZZZZZZZZZXZZZZZZZZZZYSSZXUUQUU chr9.fa 13807046 R 35 63 Y HWI-EAS88 3 2 1 912 143 TTGCTTTCGATGGATTCCATCGCTACGACAAGGGA ZZZZZZZZZZZUZZZZZZZZZZUZZYSYZYUUUUL NM Y HWI-EAS88 3 2 1 719 581 TAACCCAAAAATATGGCTGGCCTATTCCCCAATGG ZZZZYYYZYZYZZXSYZXSKKZDISZSXJICHNAH NM Y HWI-EAS88 3 2 1 901 712 GTGACGCGGCTCGGCGTCGAGGTCATCGTCAATGA ZZZZZZZZZZZZZZZZYZYZZZYZZZZMZYNUUUU NM Y HWI-EAS88 3 2 1 752 276 TGTGTTTCGCAAATTGTATCTTATATCTTTGGTAT LLLLLLLLILLDLLLLLDLLLLLLLLLLLIAELEL 0:255:255 N HWI-EAS88 3 2 1 496 806 ACAAACCTAGAAGAAGATAGTTACAAGTTTTGTTC LILJLLIDJELLDDDLDILLIDLLLLLLHLLLELL NM N HWI-EAS88 3 2 1 913 301 GGCGCGGTCAGAAAATTTATTACAGAACGCGGGCT ZZZZZZZZZZZZZZZZZZZZZXZZXZZZXZUUUUU NM Y HWI-EAS88 3 2 1 884 563 GTGAATTCAGGGACGATCTGCGGGGGCAATACTGC LDLLLLLLLLLLLLEJLLLJLLLJLLLLLLLELEL NM N HWI-EAS88 3 2 1 943 151 TGAAAACCGACGAGGGTGACGCGAAACAGTGCGGA ZZZZZZZZZZZZZZZZYZZZZZZZZZZZZZQUUUU NM Y HWI-EAS88 3 2 1 750 574 TCCCCAGGCAGAGACCCCACCGGGCTCGCTCACCA ZZZZZUZZZZYZZYZZZZUZZZJZZZZZOZUUUUQ NM Y HWI-EAS88 3 2 1 907 724 GCGGTAGACGGCGCGGCCGCTGCCGTCGGGGCGGG ZZZZZZZZZYZZYZYZXZSXSXXZDDXJXZUCNUU NM Y HWI-EAS88 3 2 1 880 902 ACTTGGTCTGACAGTTACCAATGCTTAATCAGTGA ZZZZZZZZZZZZZZZZZZZZYZZZZZZZZZUQUQU NM Y HWI-EAS88 3 2 1 876 483 GACCCTAATCCCTCCCACCCCACTTACTTTTTTAA EJJJLDLLJJLJLLLILLDLLJIDJDLLLDLLLLL NM N HWI-EAS88 3 2 1 780 497 GACAATGAGACAATGGATATCCATAGAAATCCTCA ZZZZZZZZZZZZYZZZZZZZZZZZZYZZYYUUUUN NM Y HWI-EAS88 3 2 1 936 760 CTGCACACACCTGTGACATTGCCTCTGCCTGCACA ZZZZZZZZZZZZZZZZZZZZXZZZZZYZZZUUUUU chr6.fa 136799707 R 18C16 3 Y HWI-EAS88 3 2 1 651 642 GTTTATCCACAAACATGTTTCTGTAGAGAGTATTT ZZZUZZZZOZZZZZZZDZZZZDUDZXUXQPSLGGS NM Y HWI-EAS88 3 2 1 909 641 GTCGAAGTCCTGCCACGAGGTGCGCCCGGCGGTGA ZZZZZZZZZZZYZZZZZZZZZZZZZZZZXZUUIUN NM Y HWI-EAS88 3 2 1 818 718 TTGATCTTTGTTTGATACACACCAGGGAGCCATTT ZZZZZZZZZZZZZYZZZZZZZZZYYZYXXZUNUUU chr10.fa 68687231 R 35 63 Y HWI-EAS88 3 2 1 891 562 GGGCAGGTGCTGCTCCAAGAAGAGACGCCATGAGT ZZYZZZZZZZZZZZZZZZZZZZZYZZZZZYUUUUU chr11.fa 3709268 F 35 71 Y HWI-EAS88 3 2 1 944 818 GGGGAACTCGATCGCAAATAAAATGCAGATCGCGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 918 102 TGGGCTGGCTGGGACGTCTCCCCGGGCTGCCCGGG LJJJIDJLDLLLEJDLJDLLLLLLEDLLJLLCLLC NM N HWI-EAS88 3 2 1 928 463 ATACCCTTGTAAAATCTCCTTATCAGGCAACCTAT ZZZZZZZZZZZZZZZZZZZZZZZZZXMZZZUUUUU NM Y HWI-EAS88 3 2 1 856 541 AAAATTGACCCTTGGCAACAGTGGACTCTTTTTTT ZZZZZZOXZZZZZZOZZZZUXZKUZZZZZZSSSSG NM N HWI-EAS88 3 2 1 904 608 TCTATGAAGTGCGATGTTCGGTATCGCTTTTACCG ZZZZZZZZZZZZZZZXZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 764 666 TTTCACCAAAACCCATTATACAAACAATGGGAGTA ZZZZYZZZZYZZZZZZWRZIZZIYZXVZVRHLHLU NM Y HWI-EAS88 3 2 1 703 835 GCGGTTGAGGCTCGCGTTGTCAATGTTTTCCCGCC ZZZZZZZZZYZZZZYXXZKZWVYZKYZKYOASNUE NM Y HWI-EAS88 3 2 1 889 540 TCCCAGTCCTACAGTGTACATTTATTATTTTCCAT LLLLDLLLLLLLLLLLLLLLLLLILLLLLLLLLLL NM N HWI-EAS88 3 2 1 827 250 TCCATGTATCAGGCTTCACTTCCTTTACCAAGAAC ZZZZZZZZZZZYYZZZZYZZZZZZZZSZZYUIUNU chr15.fa 52075675 F 35 53 Y HWI-EAS88 3 2 1 648 727 TCAAATTGCTGTAGCATTATTTGCAGGTTCTTTAT ZZZZZZZZZZUZYMZSZZZZUSYYZZUZZZUUUGU NM Y HWI-EAS88 3 2 1 892 61 GTAATAGACATAATGCATTTACAACTCCAGACATT ZZZZZZZZYZZZZZXZZZZZZZZZXZZYZMUUUUU NM Y HWI-EAS88 3 2 1 837 92 GTCTCTCACTGACTCTGGAGCTATGAGGATGGCCA ZZYZZZYZYYZYZZZZZSWXZZYZSSYSKZIAUUU chr2.fa 10066105 F 35 25 Y HWI-EAS88 3 2 1 907 739 ACCGGAAAGCTCGCGAATTCCTTCATTTCAGCCAG ZZZZZZZZZZZZZZZYZZZZZZZSZZZZSYUUUUU NM Y HWI-EAS88 3 2 1 806 654 TTAAATAATCGTGTAAATTGTTGAGTAGTTGATTT ZZZZZZZZZZYZYZZZZZZYZZXYSZZEZZNUUUU NM Y HWI-EAS88 3 2 1 786 829 GAGTTGAGTTCATGGTTGTCAATACCTGTGACATC ZZZZZZZZZZZZZZXZZZZYZZZZYZZDZKQUJUN NM Y HWI-EAS88 3 2 1 897 513 GATCGGAAGAGCTCGTATGCCGTCTTCTTCTTCGA ZZZZYZZZZZZZZZZZYZYZZXZZZYZZDZUUACU NM Y HWI-EAS88 3 2 1 474 877 AGCTTCGCTTTTACTTTTTCTGCATTTGGCAACAT ZZZZZZZZZZZZZZZZZZZZZYZZZZZYSZUUUUU NM Y HWI-EAS88 3 2 1 898 656 TCCCTGGCCCCACCAGACACATCTCAACTCTTCCA LLLLLJLLLLDLLLLJJJLLLADLLLLLDJLLLLE NM N HWI-EAS88 3 2 1 896 209 GATGTATTAACCAGAAGTAATGATATTTACCTTCA ZZZZZZZZZZZZZZZZZXZZZZXZZZZZZZUUUUA NM Y HWI-EAS88 3 2 1 894 557 GTTGGCGTTCACCCCCACAGGGCCGATAAAGCCAG ZZZZZZZZZZZZZZZZZZZZYZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 605 672 GTCATTTTTCCAGTCGTCAAGTGGATGTTTCTCAT ZZZZZZZZZZZZZZZZZZZXSZYZZZYZZZUUURU 0:15:53 Y HWI-EAS88 3 2 1 947 38 TCTAGCGTTCCCTACCCATACAGTAATTTTTCATT ZZZZZZZZZZZZZZZZZZZZZZYZZYZZZZUUUUU 73:52:8 Y HWI-EAS88 3 2 1 953 408 CGCCTTTAATCCCATTTCCTAGCCCTCACTTTTTC YJSYSSSYYOYYSJSSEYYYOIIOVNDVVNGGLOO NM N HWI-EAS88 3 2 1 739 111 GTATTGCACTGCATATATCCCCATAATGTCCTTTT ZZZZZZZZZZZZZZZZZZZZZZZZRZZZZZUUUUU chr1.fa 89453069 F 35 64 Y HWI-EAS88 3 2 1 922 737 TTTACGGGAAACAGCAAATAAAAAAATTAAAAAAC YYYYYJVIJIIYYSSSVYSVOOVYIDHSHVLQOLL NM N HWI-EAS88 3 2 1 536 902 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA ZZZZZZZZZZZYZZZZZZZZZZYZZZZZXZUUHNS NM Y HWI-EAS88 3 2 1 764 946 TGAATATATTTTTAACCATTTAATCTTCCAGTCCA ZZZZZZZZZZZZZZZZZZZZZZYZZZZZYYKUUUU chr10.fa 126572071 R 35 61 Y HWI-EAS88 3 2 1 798 278 GATTTTCTAGCCCTACTGTTGGAGTAATGTCACAG ZZZZZZZZZOZZZZXZZZZZUUOXZUXZUDSLSSL NM Y HWI-EAS88 3 2 1 672 837 GTAATATACATAGCTCGCTAGTCTAAGAGAATTTA LLLLLLLDLLLLLLLLLLLLLLLLLLLLLLLLLLL NM N HWI-EAS88 3 2 1 761 272 TATGTTTAAACCCATAGTTTCTAAGTTTTTTTATA ZZZZZZZZZZZZZYZYZZZZZZZYZZZZZZUUQUU NM Y HWI-EAS88 3 2 1 790 916 TCCCTCTTCCTCTGTCCCCAAGTCTACTCACAAAC ZZZZZOXZZZZZZXZXUXZXXZZZZZZZZZOGSLS NM Y HWI-EAS88 3 2 1 934 735 GTCAGCCATGCCCTGGGACAGATCGCCGAACTCTG ZZZZUZZZZZZZZZZYUZUZUZZZUZZYUZUUUUL NM Y HWI-EAS88 3 2 1 800 107 ATTTAAAAACATTTCTCATGATGATGGTAGAGGAC ZZZUZZZZZZZZZZZZZZZYZZZZZZZZZUULUSU 129:255:255 Y HWI-EAS88 3 2 1 801 361 TTGCCGACGTTCTTCGCGACGACGCCGGGCACGGC ZZZZZZZZZZZZZZZYZYZZXZZXZZYVVZRUJUU NM Y HWI-EAS88 3 2 1 538 257 GGGCATGCCTGGCCATGTTTTTTTGTGTTTTTTCC LLLJLLJJEEJILLLJDLEJJJILLJDJLLLLLEE NM N HWI-EAS88 3 2 1 760 882 GAGCCTTTAGGACCTCCTAAAGGTAGGCTACTTTC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 916 513 TCCCAGCTCCACCATTTCACTGCCTTGGAACCGCT ZZZZZZZZZZYZZZZZZZZZZXZZZZXZYZUUUUU NM Y HWI-EAS88 3 2 1 497 885 CGTGAGCAATCGCCATTATAAGATGGCGCTGGCTT ZZZZZZZZZZZZZZZZZZZZYZZZZZZZZZUUSUU 159:255:238 Y HWI-EAS88 3 2 1 905 189 GATCCTGGGCGACGAAAGCCAGACGCCGCTCAAAC ZZZZZZZZZZZZZZYZYZZZYZZZZZZXZZUUCRU NM Y HWI-EAS88 3 2 1 883 791 GACATGGCGCTTGCCGCGCTGGAAGCTGAGCCAGT ZZZZZZZZZZZZZZZZZZZZZZZZZZZSXYUUUQU NM Y HWI-EAS88 3 2 1 769 373 TTCAAGTCGTCACGTGGATGTTTCTCATTTTCCAT ZZZZZUUZYUZZZRUZURYIXYYYUZXTXULUSES 0:25:45 Y HWI-EAS88 3 2 1 854 666 GACCCAGGACAGCAGAACACTTCTAAAAGTGCCAA ZZZZZZZZZZZZZZZZZZZZZZZZZZYZYZUUUUU chr10.fa 74433775 R 35 71 Y HWI-EAS88 3 2 1 706 643 GACAGTTGATCAGTGTATACAGAAATGAGCCCCTT ZZZZZZZZZZZZZZZZZZYZZZZZYZXZVZUUUUU chr15.fa 88716091 R 35 68 Y HWI-EAS88 3 2 1 921 733 GTCCAGCGCCAATACGCCCACCGGGTAGGCGGCCT ZZZZZZZZZZZZZZZZZZZZZZXYZZZYYZQUUUU NM Y HWI-EAS88 3 2 1 950 253 AGGGAGGAAGGGAAGAGACAGACAGATAGATAGAT ZZZZZZZZZZZYZZZZZZZZZZZYZZZYZXUUUUU chr4.fa 123122781 F 35 70 Y HWI-EAS88 3 2 1 755 219 GCTAATTTATTTTGTATTTTTATTAGAGATGTGGT ZUZOZUUXOZUOOMZOUUUZUOUUZIUJJPGCLCS NM N HWI-EAS88 3 2 1 899 792 GTGCGCTGGAATCGAAAGGCGGGATTATGCGGTGC ZZZZZZZZZZZZZZZZZZZZZZZYZZYZXZUUUUU NM Y HWI-EAS88 3 2 1 896 880 TCCTGGGCAGACTGCGGGCTCGCAGGAAACCGAAG ZZZZZZZZZZZZZZZZZZZZZZZZZYXZSZUUOQU NM Y HWI-EAS88 3 2 1 601 710 GCTCCCTCAAAGACTAGGACTCCATGTTTCTAATA ZZZZZZZZZZZZZZZZZZXZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 833 532 TTTCCATGCTGTTTCTTTCTATGTTCTGCTTTCTC ZZZZZZZZZZYZZZZZZZZZZZZZZZZXZZUUUUU chr5.fa 71088116 F 35 70 Y HWI-EAS88 3 2 1 888 593 GTGGAAAGTCGTAATGAAGCTGGGCGTGTCGTGCG ZZZZZZZZZZZZZZZZZZYZZZXZZYXMZZCUUUJ NM Y HWI-EAS88 3 2 1 804 341 TTTCCATGATTTTCAGATTTCTTGCCATATTCCAC OJOYSVYYYOYOSYYVVYYYVYSSYYVYYYQQQLQ 0:64:99 N HWI-EAS88 3 2 1 217 935 GCAGGGTATGGCACCTTTTTTGTTAACTTCGGGAA YYYVOYYJOVYYYJJYYDYYYVYVYYVYVQLLALO NM N HWI-EAS88 3 2 1 883 658 TTTTACTCCTCTTATTATTTCTTCTATTCAAACAT OOYOVSOJJOSOYDJYYJYYSYVSVNYVDYOLQAC NM N HWI-EAS88 3 2 1 480 838 AGGCTTCAGCCCAGGGTAACCCAGGGACAGTCATC ZYZZZZYZZZZZZZZZSZWZZZYXXYOVXXUUNUS chr10.fa 70337282 R 35 59 Y HWI-EAS88 3 2 1 176 487 GAAAATAAGGATTTTCTATATGTTACACAAATATG YYYYYYYVVIYVSYYYYYYYVOVYYYYYYYQQQQO NM N HWI-EAS88 3 2 1 899 622 CCCCACCGGCACACCGCACAGAGCAACTATCCTAA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 760 584 TGCGTACACTGCACTACACCAAACACAGGAGATGT ZZZZZZZZZZZZYZZZZYZZZYXZXZYZZVUNUUU chr12.fa 110701291 R 35 61 Y HWI-EAS88 3 2 1 376 105 GTAATGATGTAATAGATTTGACTTAAGCATTAATA ZUXZXZZXZOZXZZXOXZZUZZZUXXXUXUSOSSS chr7.fa 104621960 R 35 49 Y HWI-EAS88 3 2 1 841 588 TTATGCCTGTGTACCACAAGAGTACGGTGTCCATG ZZZZYZZZUZZZZZZZZZUUYRYZZYUZUZUUQUL chr8.fa 96821653 F 35 64 Y HWI-EAS88 3 2 1 779 815 GGCAAGGCCAGAAAGGAGGCAACACATTTCAGTCT ZZZZZZZZZOZZZZZZZZZZZZZZZZZZZZSSSSS chr4.fa 58495865 R 27C7 26 Y HWI-EAS88 3 2 1 506 585 GTTTTTCAAGACAGGGTTTCTCTGTATAGCTCAGG ZZZZZZZZZZZZZZZZZZZZZZZXZZZZSZUUUUU 171:255:255 Y HWI-EAS88 3 2 1 836 298 TTTCCAAGAGCTTAAATACGGGGGTATTTTTTGTC ZZZZZZZZZYZZZZXZZZZXZZYZYRZZZZUUIUU NM Y HWI-EAS88 3 2 1 694 924 TCTTTGTGAGTCCACACACAGTGATTCCTCTCTCC LDLELJJLLJLLLLLLLLLJLLLILLLLLLLELLL 99:45:3 N HWI-EAS88 3 2 1 927 718 TTTCCTTGAATGAAGTAATCTCTCTCCCTCTCTGT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 236 887 GAAGAGACCTTGTATCTCCAGTGCTTAGAATAAAT ZZZZZZZZZZZZZZZZZZZZZZZZZZZYZZUUUUU NM Y HWI-EAS88 3 2 1 868 109 TAAAACAAAACAAAATATAGAAGAAATAAGGCTAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr14.fa 67188487 R 35 72 Y HWI-EAS88 3 2 1 880 502 AACGGCGGGCCGCCCCCCGCCCCCCCCGCCCCCAC LLLLLLLLLLAILLIILLDLILLILHLAHDLEAEL NM N HWI-EAS88 3 2 1 755 762 GCCCTAAAACTTCAGGTTCCTGTGACATGCAGCTT ZXZXXZZUOZOZZUOJJJZZZJOUOZZUPZEGSLS NM Y HWI-EAS88 3 2 1 804 303 TCTCTCTTGTTCAACAGCACTTGCTACATCGTCGC ZZZZZZZZZZZZZYZZZZXZZZZZZYZYZZUUUQU chr13.fa 24829231 F 35 70 Y HWI-EAS88 3 2 1 906 305 AGTGGATGCGTATGGAGCGTTTAACCTAGGTGCCC ZZZZOZZZUUOZZOXKXZLOZZZUKUZPJPSGLLG NM Y HWI-EAS88 3 2 1 750 178 TTTAGGAGTTAAGAAATTATCAGAATCAGTATTTC ZZZZUYZZUZZZZZZRZYUUZSYYSYTTOOEUSEU chr7.fa 131895428 R 33G1 29 Y HWI-EAS88 3 2 1 813 654 TAGAAGTGTAAGCTGAATAAACCCTTTCTTCCCTA ZZZZZZZZZZZZZZYZZZYZZZZZZZZZZZUUUUN chr4.fa 149057112 R 35 4 Y HWI-EAS88 3 2 1 918 141 GCACGTGGCCAGCGTCACAACTAAAGCGCATTACA ZZZZZZZZZZZYZZZZZZZYZZZZZXZYYZUUUUU chr4.fa 128216332 R 35 70 Y HWI-EAS88 3 2 1 768 355 TACCACCAAAATGTGTGATCCGCAGAGCCTCGTGC OZZZZZZZXZZZZXUUUZZZZUZZURZRZPAGLOC chr13.fa 55384859 F 27A2G3T 0 Y HWI-EAS88 3 2 1 872 573 TAAAGCCACAGGAAGACTAAGATCGGACCTTTCCT VSYVIYSYJYYJYYOYYVYOSYSYONDYYNQQQQQ chr4.fa 95496480 F 8G26 12 N HWI-EAS88 3 2 1 700 743 GTTGTTCACTTGCTTGGCCTTTTCCAACACCACCC ZZZZZZZZZZZZZZZYXZZZZZZZZZVZZZUUUUU chr1.fa 80588256 R 35 68 Y HWI-EAS88 3 2 1 678 894 GGAAACCCTGAAGGAGAGTGGGAGGGAGAGGATTG ZZZZZZZZZZZZZZZZXZZZZZZZZZVZXZUQUUU chr19.fa 38487571 R 35 64 Y HWI-EAS88 3 2 1 647 180 TGTTGCTATATTAATTGTCAAAAGATGTAAGTATT ZZZZZZZZZZZZZZZZYZZZZZZXZZXZZYQUUUU NM Y HWI-EAS88 3 2 1 548 733 GAAAAAGAAATAGAAAATAAAAGTTCTAAAGCTAG ZZZZZZZZZZZZZZZZYZZZZZZZZZZZZZUUURU chr3.fa 124650102 R 35 71 Y HWI-EAS88 3 2 1 889 931 AACAGACATAAAAATAATCATTCGGTACATCAAAA ZZYZZZZZYZZYZZZZSXZXZZZYSZYZZZUUUUU chr3.fa 91860968 R 35 63 Y HWI-EAS88 3 2 1 640 218 GTAATTCCACATTTCTACATGATAACTTGTCTTCC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr9.fa 108650593 R 35 72 Y HWI-EAS88 3 2 1 905 283 CAAGGTCTCCACTGGCTGTGCTCGGTCTCTTTTCT ZZZZZZZZZZZZZXZZZYMSXXZMMSXYMMUUJAU chr8.fa 74049944 F 29A2CA1 6 Y HWI-EAS88 3 2 1 601 821 GTATGGTTTCATTGTAGGTATTTGTAAAGCTTAAA ZZZZZZZZZZZZZZZZXXZZZZZXZZZZSZUUUUU NM Y HWI-EAS88 3 2 1 483 822 ATAACAAAAAATAAATAGGTACTTCATAGAAAAAA ZZZZYZZUZYZZZZZZZZZZZZZZZZZZYZUUUUU chr12.fa 90252201 R 35 67 Y HWI-EAS88 3 2 1 788 902 GTACATAGTCCTGTAATTAGTGGAAGCGGTGCCAG ZZZZZZZZZZZZZZZZZZZZZZXZZXZYYZQUUQO chr1.fa 68469637 R 35 66 Y HWI-EAS88 3 2 1 792 39 GTAGGATTCCTACGTTTACCTTTCGCCATCTGGTA ZZZZZZZZZZZZZZZZZZZZZZZZSZYVZZUUJUU 255:255:255 Y HWI-EAS88 3 2 1 951 717 TCGCAAGAGTTCTTTTTTTTTAGACAGAGTCTCGC ZZZZZZZZYZZZZZZZZZZZZZMYZZKZSYNUUAU NM Y HWI-EAS88 3 2 1 751 121 ACATCCACCCCCCCATGCAAATACATACACACTCA ZZZZZZZZZZZZZZZZZZZZSZZZZZZZYZUUUUU chr1.fa 102389647 F 35 65 Y HWI-EAS88 3 2 1 565 559 GCCACAATAATAGCATCCCACCTTTAACAACAAAA LLLJLLIEDIIJLLLJLLLIDLLLLHLLHJLLLLE NM N HWI-EAS88 3 2 1 713 668 GATCGGAAGAGCTCGGTATGCCGTCTTCTGCTTAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUNU NM Y HWI-EAS88 3 2 1 903 380 ACTGGCACTAACAGCAAGGCCACCAGCCAGCGCAT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZXUUUUU NM Y HWI-EAS88 3 2 1 567 834 GAAATTTGAAATGTATATAAAGAAAATATCTAATA ZZZZZZZZZZZZZZZZZZZZZXYZZZZZZZUUUUU 255:255:255 Y HWI-EAS88 3 2 1 922 696 GGCTATCGCCGTTCGGTCATCGGTCGCACCCACAG ZZZZZZZZZZZZZYYZZZZZZXZYZXZSZZUUUUQ NM Y HWI-EAS88 3 2 1 844 617 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGA ZZZZZZZYZZYZZZYZXZXZZYYZZYYZMZUUHHU NM Y HWI-EAS88 3 2 1 892 822 TCCTGAACGTCCCATCCTCCTGAGCCAAGCCCCCC ZZZZZZYZUZZZYZZZZZZZZZUSZDYYDZLUUUU chr8.fa 73016844 R 22C2G9 0 Y HWI-EAS88 3 2 1 908 305 TGTGTGGACAGAGCGTGCTGGGACCCTCCGTTTCC JYYYOSJJJJYOOVYYVYVOJVYIVVVNDSQEEQL NM N HWI-EAS88 3 2 1 847 624 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZXZZZZYYZZZZZSZUUAJU NM Y HWI-EAS88 3 2 1 637 167 GAGTATAACCTTTTCAAGCGCTATTTTTAATGATG ZZZZZZZZZZZZZZZZYXZYZZYZZZZZXRUUNUU chr11.fa 50543300 F 35 64 Y HWI-EAS88 3 2 1 636 836 GGCAAGTTTGATATTTATGTATGGCATGTTGATCT ZZZZZZZZZZZZZZZZZZXZZZZYZZZYZZQUUUU NM Y HWI-EAS88 3 2 1 902 508 GATGTCCATCTCTGAGGCTCTCGGAACGGCCACTG LJELLLLLLLLLJLLLLLJLLLLLLLLLLDLELEA NM N HWI-EAS88 3 2 1 166 80 GTTTTCTTGCCATATTCCACGACTTACAGTGGACA ZZZZZZZZZZZZZZZZZZZZXZZZZZZZZZUUSUU chr9.fa 3006939 F 19T1T13 1 Y HWI-EAS88 3 2 1 538 881 GGGGGCAGCTCTGGACAGCAATGAACGGATGGGCA LLLJDLLJLLLLLLILDLDLALIDILLALALLLLA NM N HWI-EAS88 3 2 1 495 798 ATCCTTAGCTACATCCTTAGCGGCACAAAGCCAGC ZZZZZZZZZZZZZZZZZZZYZZYZZZZYZYUUUUU chr16.fa 33031616 F 24T10 40 Y HWI-EAS88 3 2 1 806 868 GACATTTCTTCAAAGATATAAAGATAGTGTAACGT ZZZZZZZZZZZZZZZZZZZZZZZZZZYZZZUUUUU NM Y HWI-EAS88 3 2 1 684 788 GATCCTGCTGCAAAATGGATTGGGCTTTTTGGAGA ZZZZZZZZZZZZZZZZZZYZZZZZZZZZZZQUUUU NM Y HWI-EAS88 3 2 1 532 619 GAAACAAAAAACGATTTTAAATTTGCCGATGCTCG ZZZZZZZYZZZZZZZZZZYZZZZZYYZYXZUUUUU NM Y HWI-EAS88 3 2 1 972 788 TTCTTGCTCAGTGTTTCAAAAATGTCCAGTTTATG ZZZZZZZZZZYZYZZZZZZZZZZXZZZZXZUUUUI chrX.fa 7536012 F 35 70 Y HWI-EAS88 3 2 1 610 798 GTATATTTTCTGGAAGCCCCATAGATGAAAAATAG ZZZZZZZZZZZYZZZXZZZZYZVYZZZZYRUQUSQ chr15.fa 8803974 F 35 60 Y HWI-EAS88 3 2 1 533 662 GTAACAAGAGGTTATTTTTACTTTGATAAGAAATT ZZZZZZZZZZZZZZZZZZZZZZZZXXZZZYUUUUU NM Y HWI-EAS88 3 2 1 893 928 GGCGCCGGACTCCAGCACGATCTGCTCTGTCGCGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 833 587 GTATGGATTTCCCAAATTAGCATTCAAAGTTGCAG ZZZZZZZZZZZZZZZZZZYZZYZZZZYZSZUQUUU NM Y HWI-EAS88 3 2 1 895 500 GATGGACCCGGCCATCGTCATCAATCCGACGCTGC ZZZZZZZZZZZZZZZZXZZXZZXYZZZSYZUUUQU NM Y HWI-EAS88 3 2 1 526 413 TAGGGGAAGGTGATGGGAGCAGAAGAATTGGAAGG ZZZZZZZZZYZZXZZZZZZZZZVXZZXZZZNQQUU NM Y HWI-EAS88 3 2 1 902 23 GGCGTTGCTGTCGAACACGGTGGTGTCGCCCTCGG ZZZZZZZZZZUUZYZYYZZYLZYLUUJDSZGULLU NM Y HWI-EAS88 3 2 1 713 703 GTGTTTGGGTGGAAGTGCACGTGAGCCATGGCTCA ZZZZZZZZZZYYZZZZZZXZYZYZZZZXZZUUUUQ chr2.fa 106357370 R 35 70 Y HWI-EAS88 3 2 1 376 770 CCCATGACTCTGAGTTGTTGATGCTCTTTGAGGCA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZYUQUUQ chr7.fa 142173463 F 35 67 Y HWI-EAS88 3 2 1 843 441 GAAAAAAAAAAAAAAATCTGCCCAGGAACCATTGT ZZZZZZZZYZYZZDZYXZKSZZZXSKZDZZHUUEN chr3.fa 23079939 F 13G21 11 Y HWI-EAS88 3 2 1 496 916 CCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGA ZYZZZZZZZZZZZZZZZWZZYZZZZZRKYDSUUUN chr6.fa 131327559 R 29G2C1C 0 Y HWI-EAS88 3 2 1 942 529 TTCTTGACCAGCGACCCATGATCTTTGGTGAAAGC ZZZZZZZZZZYZZZZZZYZZYYZZZZXMZMUUUCU NM Y HWI-EAS88 3 2 1 925 107 TTCGACACGCTGTTCGTCAACATCCAGTCAGATCG ZZZZZZZZZZZZZZZYZZZZZZZZZYZZZZQUUUU NM Y HWI-EAS88 3 2 1 489 878 AGACAGATTTTGCTAAAGATGTGTGGTTATTTGTT ZZZZZZZZZZZZZZZZZZYZZZZZZYZZXZUUJUU chr7.fa 110404788 R 35 23 Y HWI-EAS88 3 2 1 823 360 TATGATGTTAAAGGCATTTTAGTTCAGGGGTGGTT ZZZZYZZZUYZYUUUKZZZZYUUZYZJSUSHLLUU chr4.fa 3081855 R 26A8 17 Y HWI-EAS88 3 2 1 598 901 GGGGGAGAGAGGGCAGATTCCTTCTTCTTCTTTGA LELJLJJJLLLDLILLJLDLAILDLLLLDALLAAA NM N HWI-EAS88 3 2 1 452 891 ACCCGTACTTCTTTGACGTAGTCAGGGATTGCCTA LJDLILILLLLLLLDLJILLLLLJLIILDLEELLL NM N HWI-EAS88 3 2 1 655 73 GATGCTGAAGTCTCCCAGCATTAAAATTGAAATGA ZZZZZZZZZZZZZZZZZXZZZZZYYZZZSZUUUUU NM Y HWI-EAS88 3 2 1 817 346 TCATCCTCTCCCCACAGCCTGGCACGCAGACGCAC JOSOJIJOOOOSVSIOEYYIYVSIOIVNSYLELOQ NM N HWI-EAS88 3 2 1 375 321 GTGAAAGGAGAAGAGGATAGTCAGGGAGATCAGTG ZZZZZZZZZZZZZZZZZZZZZZYZZZVZXZURUUU chr3.fa 60160168 F 35 65 Y HWI-EAS88 3 2 1 914 405 TCCGTCCAATCATTCCGATCCGGGCCGGATTTCAT LLLELLLLLJLELLLLDLLLLIJLLHJLHLELLLL NM N HWI-EAS88 3 2 1 720 641 GGCTGTCCTGGAACTCACTTTGTAGACAAGGCTGG ZZZZZZZZZZZZYZZZXZYZZSZZYZZVYYUUURU 146:255:255 Y HWI-EAS88 3 2 1 878 443 TCAGCGCCGCCACACTCTCCAACACGATTGGCCGA ZZZZZZZZZZZZZZZZZZZZZYZZZZVYZVUEUHN NM Y HWI-EAS88 3 2 1 340 980 GAAAAAAAAGGAGACAGTTGGGACATTTGTGCTGC OYYSWYYSWIIQDUIFQUUMDCMIFMUQCMNLDAE NM N HWI-EAS88 3 2 1 613 190 GAAGAATGGAGGACTAAGGATGTTTCTGGAGTTGT ZZZZZZZZZXZZZZZZZZZZSZZZZYZXKYUUQQU chr14.fa 103320657 R 35 55 Y HWI-EAS88 3 2 1 806 543 TCGAGTCATTTCTCCCCTCTCTAGACCTCCAGGTA ZZZZZYZZZZZZZZZZZZZYZZRSYZZVZZQNHUH chr4.fa 147664235 F 28T6 22 Y HWI-EAS88 3 2 1 743 890 GTTGCATATATTTGTAATTACTTTTTTGTTATTTA ZZZZZZZZZZZZZZZZZZZZZZZZZZZMZZJUUUU chr2.fa 126642782 R 35 48 Y HWI-EAS88 3 2 1 555 684 GTGACATCCCCCTGGAAATATCGGTCCTTGGAGTA LLLLLLJLDLLLLILLLLLLJLLLDLLLLDLALEE NM N HWI-EAS88 3 2 1 913 709 GTCTCGCCGCCTCCGCGTCCCACTCCGCGAGCACA ZZZZZZZZZZZZZZZZZZZZZYZZZZZZXZUUUUU NM Y HWI-EAS88 3 2 1 942 436 ACATCTTCCTTGACGCCAGGAATGCCGGCAAAGTC LLLLLLELLJJLLLJLLJLDILDLJLLLLJLELLL NM N HWI-EAS88 3 2 1 781 218 GTTCAAGCTGCAACCACATGAAATCGAGGTGCATA ZZZZZZZZZZZZZZZZZYZZZYJZZZYZYZUUUUR NM Y HWI-EAS88 3 2 1 636 570 TTTTTCCAGACAGGGCTTCTCTGCATACCCCCCAC LELJLLILLLLLLDLIJLLLLLLIDLLHLLAELEL NM N HWI-EAS88 3 2 1 592 506 GTCAAGAACATGTATTCCTTGGTGAAGTTTTACTC ZZZZZZZZZZZZZZZZZZZZXKZSVXMZZZUSUUU chr16.fa 68605852 F 35 47 Y HWI-EAS88 3 2 1 821 603 GAGAACTCTCCGAGGAGCAGAACCCAGTTGGGTGG ZZZZZZZZZZZZZZZZZZZYVZZZZVZYZZUURUU chr11.fa 78559979 F 35 68 Y HWI-EAS88 3 2 1 468 901 ACATAACCAATTCATTACTAGCCCTTACTTAATGT YYYIYYIOYYYSOVYYYYYDSVYSYNWLSIELLOA NM N HWI-EAS88 3 2 1 691 732 GAAAGCGAAAGCTCCTATGCCGATTCTCGCTTGTA LDDLLJDLLLLJLLDLLLDLLLLILHHDLLCLLLA NM N HWI-EAS88 3 2 1 631 492 TTTAAGATTAGCAATAACTTGAGAAACGATGTTTT ZZZZZZZZZZOZZZZZXZZZUXUZXXZXUZGSSSS NM Y HWI-EAS88 3 2 1 487 782 AATGCATGGCAGAGTCATATATAAAGATCAGAGGA ZZZZZZYYZZXYYSZZXZXZOZZXRRUXVOAAHEQ chr4.fa 5925916 R 35 21 Y HWI-EAS88 3 2 1 633 632 GAAAATGAGCAAGCCCAAGGGTACACGTCAAGCCA ZZZZZZZZZZZZZZZZZZZZZZZZZZZVZYNRUUH chr2.fa 156018038 R 35 58 Y HWI-EAS88 3 2 1 805 578 GACCCGCAGTCCCGAGGCCGGCCCCCATCCTGCAC LLLLLLLLLLDLLLLLLLLILLLLLLHLLLALLEE chr11.fa 76030821 R 11G11T8T1G 0 N HWI-EAS88 3 2 1 694 532 TGAGGCCAGACTGGGCAGTCCTCTGCTGTATATGT YJJYIVYVVVYYYYSYYVVYYVVYOYYNULQLQLQ chr8.fa 54397071 R 35 2 N HWI-EAS88 3 2 1 931 600 TCACCCATGGAAGCCCCATCGCTCCTGAGGCCGAA ZZZZZZZZZZZZZZZZZZZZZZZZZZYZXYUUUUU NM Y HWI-EAS88 3 2 1 827 466 TTTATAAATAATTGTAATATCTGATGTTTCTTCAT ZZZZZZYUZYYZZYZZRZZZZZSRZSZZZZUUULU NM Y HWI-EAS88 3 2 1 848 260 TTTATGCAGATATTGAATTGATTAATGCCGGAGAT ZZZZZZZZYZZZZZZZZZZYZZZZZZSZZYNQNHU NM Y HWI-EAS88 3 2 1 974 512 TCCTTGCCTGCCTCTCCTTTCCTGAAGGAGACCCC ZZZZZZZZZYZZZZZZZZZZZZZXZVXKZSNUUUU chr8.fa 113220414 F 35 48 Y HWI-EAS88 3 2 1 961 437 ACTGTCAGGCCCTGGCCTGCCAACATCAGTCTCCG ZZZZZZZYYZZZZXZZZZXZZXZZSZZYRZUUUUA chr19.fa 44774231 R 35 62 Y HWI-EAS88 3 2 1 827 314 GGGAGGGGAGCAGTGATAGGGGTATAAAACAAATA ZZZZZZZZZZZZZZZZZZXYYXWXZRZIZZRUNUU chr3.fa 149274957 R 35 49 Y HWI-EAS88 3 2 1 482 895 ATCACAAACTCAAAAAAAATATAAAAAATTCTTAT YYUYLUUUIIISSQGLDFULIOSUUQFQHDALGAE NM N HWI-EAS88 3 2 1 651 465 GAATCAGCTATTAACTTCTAACAGTTCCTTAGTTA ZZZZZZZZZZZZZZZZZZZYZZXXZZZZZZRQUUU chrX.fa 108231872 F 35 63 Y HWI-EAS88 3 2 1 823 645 GAATTTTGTTTTGTTTTGTTTTGTTTTGTTTGAGA ZZZZZZZZZZZZZZZZZXZZZZXZZZZSZZUQUKU chr5.fa 129502105 R 32TTT 0 Y HWI-EAS88 3 2 1 927 796 AGTCCAACTTCATCTCCGTGAGCTCAAAGCCACTC ZZZZZZZZZZZZZZZZZYZZZYZZZZXZYZUUUUU chr17.fa 69660086 F 35 70 Y HWI-EAS88 3 2 1 921 351 GATACGGATGCTCGAAATAGCGGGCGTCCAGCTTC ZZZZZZZZZZZZZZXZZZZYZYYXYYYXZJJUQUJ NM Y HWI-EAS88 3 2 1 775 516 GCTATTGCTGGTTTAAATAAATTTAGAGAAGACGA ZZZZZZZZZZZZZZZZZZZSZZZZZSXXZZUNUUU NM Y HWI-EAS88 3 2 1 905 418 AACTCCATCAACTGGGGTCGTGTGGTTGAGATCGG ZZZZZZZZZZZZZZZXZZZZYYZZYZZZYZUUUUU NM Y HWI-EAS88 3 2 1 896 176 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZYZZZZZXZZZZZZZLUUUUU NM Y HWI-EAS88 3 2 1 771 404 TTATAAAAATAGCCAAGATGACCTTTAGCTGCAGT ZZZZZZZZZZYUZZZSZZZYYZZZZZUJZZQUPLU NM Y HWI-EAS88 3 2 1 957 508 AGAGAGGCACAGAGGTAAGTTGATTCCCGTCCAAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZSZUURRJ NM Y HWI-EAS88 3 2 1 784 234 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTTA ZZZZZZZZZZZUUUSYZYYZZKSZZZQYDYUULHU NM Y HWI-EAS88 3 2 1 539 893 GTTTCAGCCGGTCAAAAGGCTGTTGCCCAAAGAAG ZZZZZZZZZZZZZZZZZYZZZZZZYZZZDXUUQUU chr1.fa 70464614 R 35 50 Y HWI-EAS88 3 2 1 956 723 GAATGACTGAAGGGCCACCAAGGTGAGCAGAGAAA ZZYZZZZZZZZZZXZZZZZZZZZZZZSZZZHUUUU chr1.fa 108634297 F 35 52 Y HWI-EAS88 3 2 1 865 465 TTCTACTGTTGAGAAATACCAATTACTGACTCTTA ZZZZZZZYZZYZYZZZZXZZZZZZYZZMXYUUUUN chr8.fa 59178559 R 35 59 Y HWI-EAS88 3 2 1 892 502 ACGGTCGAAATGACAGAATCCATGTTGGCACATGA ZZZZZZZZZZZZZZZZZZZZZZZXZZSXZYUUUQU NM Y HWI-EAS88 3 2 1 964 385 CAGGCAGAGTTCCTGGGTGCTTGGGTTCTGCTGTT ZZZYZZZZZZZZZZZZZZYZZZZXSZZZZXUUIUU chr1.fa 41920588 R 35 49 Y HWI-EAS88 3 2 1 858 630 TGCAAATTAAGAAACTACACAAACACAATTAGATG ZZZZZZZZZZYZZZZZZZZZZZZZZZYXZZUNUUU chr2.fa 82687691 F 35 63 Y HWI-EAS88 3 2 1 189 438 GTAAAACACTTATACAGATAAAAATAAATAGTTAA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZHUUUU chr1.fa 189122495 F 35 59 Y HWI-EAS88 3 2 1 798 952 GTGATTTTCAGTTTTCTCGCCATATTCCAGGTCCT ZZZZZZZZZZYZZZZZZZXZZZZZZZZXYXUUUUU 40:85:50 Y HWI-EAS88 3 2 1 816 235 TTCTCTTCAGAGGTACAAAATCCTACGCCATATAT LLLLLJLLLELLLLJLLLLLJLLLIHLDLLLECEL chr16.fa 96689638 R 25A1T4G2 0 N HWI-EAS88 3 2 1 453 782 ACTTTCAATTTTGCTCCCTCCTAGCTCGTCATCGT YUQYUYLIYYYUSOYISYVUFYSYLFUYQUOALEL NM N HWI-EAS88 3 2 1 801 376 TTAGAATAAATCTCTTCAAATATTTTACAGAGTTT ZZZZZZZZZZZZZZZZZZZXZZZZZZYZZXUQUUU NM Y HWI-EAS88 3 2 1 858 114 TAATTCGTATACGTTTCATATGGAGTTGCCGGATG ZZZZZZZZZZZZZZZZZZZZZZSZYZZSYXUUJUU NM Y HWI-EAS88 3 2 1 317 643 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA JOJOYSVVIOVOSSVSOVIVVVDYSYNYYVQLQQA 255:255:255 N HWI-EAS88 3 2 1 917 482 AGGGAGGGTCAGAAAAATCAGCCAGTGTTACTTCC JLLLEJLJLLLLLLDLLDLJJELJEDELLLLECLE NM N HWI-EAS88 3 2 1 854 244 GTAGTCTATCTATTTTGTTAATCTTTTCAAAACCA ZZZUZZZZYZZZZZZZYZZZYZZZZZZZYUUUUUU NM Y HWI-EAS88 3 2 1 814 109 GAATTACTATGGCATGGTGCTGCTTCAGCCCCAGA ZZZZZZZZZZYUZZZYZZZZZZZZZZYYYZUUEUL chr2.fa 155675957 F 11C23 41 Y HWI-EAS88 3 2 1 195 407 GTGGAAGGCAAAGTGAGTGCTGCAGACAGGAGGAA LLLLLLLJDLLLLDLLLJLLLDLLDLLILLLLLLL chr7.fa 124576490 R 8T13T11G 0 N HWI-EAS88 3 2 1 779 89 AAAGAAACTCATACTTATATTTTCAGTATCTAATC ZZZZZZZZZZZZZZZZZZZZZZZZZXZZZZUUUUU chr16.fa 80786735 F 35 70 Y HWI-EAS88 3 2 1 677 236 GGAAGTTCCGAAGGCTTCCACAGCCTGTTGTGCCA ZZZZZZZZZZZZZZZZZZZZZZZZZZZIZXUUUUN NM Y HWI-EAS88 3 2 1 893 791 AAAGCCAGCAGCTGACTCGAGCCTGGCCAGCGGGA ZZZZZZZZZZZZZZZZZZYZZZZZZZZZXSUUUUU NM Y HWI-EAS88 3 2 1 821 332 TAGTTATAAAAAAGTAAGGCAAGCTTTAATCTCTC ZZZUZZZXZOZOZOXZXOIZXZIXXXUNRZSSSSO chr18.fa 71601507 R 35 36 Y HWI-EAS88 3 2 1 979 500 TTTAAAAAATATTCTGTCAATTTCATACACTCTTC YYYYSJYYSYSYYJJJVOVODVVOYVQIHLOCEQA NM N HWI-EAS88 3 2 1 779 504 GTGCAGTGGCACGATCATGGCTCACTGCAGCCTTG ZZZZZZZZZZZZYZZZZZXZZZZZZZXZYYUUUUU NM Y HWI-EAS88 3 2 1 889 506 AAGCTTGGGGGGACCTACATCCCACCAGAGCTGGG LLLDLLLLLLJLLLLLLLLLLLLLLLLLLLLLLLL chr12.fa 118564386 R 3G31 21 N HWI-EAS88 3 2 1 853 877 GCTCCCATTCACATTGCCATGTAGCAGCGGAAGCA ZZZZZZZZZZZZZZZZZZYZZZZZZXYZZZQUUUS chr17.fa 56204409 R 35 66 Y HWI-EAS88 3 2 1 946 614 CTATTCATATAAAAACCTGTAATAGTACCTTATGG ZZZZZZZZZZZZZZZZZZYZZZZZXZZZYZUUUKQ NM Y HWI-EAS88 3 2 1 684 424 TTTGATTGGTAGGTTGGAGAAATCGGAAACGATTA ZZZZZZZZZZYYZZZZXZSZZYZZXXZZYZUNUUU NM Y HWI-EAS88 3 2 1 877 50 GGTATCTCAAAACATTAAAAATAGAACTACCATAT ZZZZZZZZZZZZZZZZZZZZZZZZYZZZZZUUUUU chr10.fa 108954872 F 3T8T22 10 Y HWI-EAS88 3 2 1 655 855 GCCAGGGTGAACTAGGGGACATCAAAGATATAGGG ZZZZZZZZZZZZZZZZZZZZZZZZZXZZZZUUUUU chr6.fa 16775150 F 35 51 Y HWI-EAS88 3 2 1 873 168 AAGTTTTAGAATTTGGTTCTTGGGCAGTTTGCTTA ZZZZZZZZOXXZZZUUXZXZZOIIXRCZXZEOSSO chr6.fa 144740952 R 35 21 Y HWI-EAS88 3 2 1 656 866 GACCCAGCTATGAATATTTATGTTTGTATGTTTGT ZZZZZZZZZZZZZZZZZZZZZZZZZYZYZXUUUOU chr11.fa 15105662 R 35 70 Y HWI-EAS88 3 2 1 877 715 AGCCTGCAGATTGCATAGTTCGTATTTTACTTTGG ZZZZZZZZZZZZZZZZZZZZZYZZZZZZZZUUUUU chr5.fa 15037425 F 6G28 27 Y HWI-EAS88 3 2 1 879 11 GNNNNNNNNNNNNNTNNNNNNNNNNNNNNNNNNNN LAAAAAAAAAAAAALAAAAAAAAAAAAAAAAAAAA QC N HWI-EAS88 3 2 1 811 218 TTCTGTTTTTCATTGCAACTCATTAACATACTGTG ZZZZYYZZZZZZKZXZZZZZZYZZXSXSZRUUIUI chrX.fa 73844088 R 12G22 2 Y HWI-EAS88 3 2 1 758 191 TAATTACTTGTTCTATCCATAACCACTACTATTTC ZZZZZZZZZZZZZZZZZZZZZSZZYZZXZZUUUUU chr15.fa 20210570 F 35 65 Y HWI-EAS88 3 2 1 829 346 TAAATGAAAATGTCATAATGAAACACATTAATTTT YYYVVIYVYSYVOSYVUYVOIOWUSULUULAQQEE chr16.fa 43061928 F 33GG 1 N HWI-EAS88 3 2 1 790 359 TGGAGTAATTGAAAATTTGCTAGGCAAGGTTGATG ZZZZZZZZZZZZZZZZZZZZZZZZZXZZRYUUUUU NM Y HWI-EAS88 3 2 1 896 98 ACTGATTGTTTGTTCCTGCCTTTTGACACGGTTGA ZZZZZZZZZZZYZZZZZSZZZZZZMYYYYSNUUCC chr18.fa 79595169 F 35 50 Y HWI-EAS88 3 2 1 781 571 GCTATAATTTTCTCCTTCTTTTGCCCAGGTACAAA ZZZZZZZZZZZZZZZZZZZZZZYZZZVZKXUUUUU chr6.fa 140413227 R 35 57 Y HWI-EAS88 3 2 1 750 200 GCTTGCTGTCAAAGCTGGACAGAGCAATGGCAAAG ZZZZZZZZZUZZYYZZZYZZZUYZZZYZUZUPUPU chr7.fa 116173723 R 35 62 Y HWI-EAS88 3 2 1 929 742 ATTTGGCAAGGCTTCGTATGCATATTTGTTATTTA ZZZZZZZZZZZZZZZZZZZXZZZZZZZYZZUUUUU NM Y HWI-EAS88 3 2 1 793 429 GGTTCCGTTCCTAGTTTGTACATATGCTGATCTGT ZZZUZYZZZZZZZUZZZLZYZUZZZUZZIYLUUGU chr1.fa 177208985 F 35 37 Y HWI-EAS88 3 2 1 801 192 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGTA ZZZZZZZZZYZZZZZZYZYZZYYZZZZZXYUUHHU NM Y HWI-EAS88 3 2 1 933 774 AGGAGCTTTCAACTGCTGCTGCACTTTTTTCAAGT ZZZZYZZZZZZUZZYZZZDUSZZZZZZZZZUUULU chr19.fa 48294243 F 18G16 39 Y HWI-EAS88 3 2 1 886 201 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA ZZZZZZZZZZZZZZYZZZZZZZZZZZZZXYUUJQU NM Y HWI-EAS88 3 2 1 502 70 GATGTTTCTCATTTTCCATGATTTTCAGTTTTCTT ZZZZZZZZZZZZZZZZZZZXZZZZZZZSZZUUUUU 37:99:34 Y HWI-EAS88 3 2 1 631 275 GATTTTAAGTTTTCTAGCCATATTCCAGGTCCTAC ZZZZZZZZZZZZZZZZYZZZZZZZZZXKXZUUUUU 0:0:85 Y HWI-EAS88 3 2 1 769 90 GCATGCGGCTTTTCACCGCCCTTCTCCCCCTTGTA YYOYYOSYYYSJIJYDSDYIJJDYDLVNNDGQALC NM N HWI-EAS88 3 2 1 544 984 GGTAAGAGGATCCCATGAGTTTTGTTTTGTTTTTT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUUUU chr1.fa 182812609 R 35 71 Y HWI-EAS88 3 2 1 743 406 GAAAATGGCAAGAAAAAGGAAAATCACGGAAAATG ZZZZZZZZZZZZZZZZZZZZZZZZZRZZZZNUSUU NM Y HWI-EAS88 3 2 1 923 250 GCTAGTAGAAAAAGCTGCCTAATCATGACAACTCC LLLLDLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL NM N HWI-EAS88 3 2 1 904 720 TATCTAACTGGCCAGGCATGGTGGCTCACCCCTGT ZZZZZZZZZZZZZZZZZZZXYYSKXXXDZZUUUQU NM Y HWI-EAS88 3 2 1 544 679 GAGCAAAAGAGCAAGAGAGAGAGGAGGAGGCAAGC ZZZZZZZZZZZZZYZZZZZZZRZZXZZZZZUSUUU chr10.fa 77031405 F 35 30 Y HWI-EAS88 3 2 1 656 186 GTTTCGTTTTGAAGTCTTGTTGTTCAGGTAATCTG ZZZZZZZZZZYZZZZZZZSZZXZZZZSKZZUUUUN 15:2:0 Y HWI-EAS88 3 2 1 629 822 GTAAATGAGCAATCTGATTGAATAGTGACTCTGAC ZZZZZZZZZZZZZZZYYZZXYSZYDVYZRYUUNUU chr14.fa 40090097 F 35 45 Y HWI-EAS88 3 2 1 912 918 GTCAAGTGGATATTTTCTCATTTTCCATGATTTTC ZZZZZZZZZZZZZZZZYZYSZZZZXZXZXSUUUUQ NM Y HWI-EAS88 3 2 1 641 809 GGGAAACCCCAAACCCCTTGTAGTGGCAGGGGGGC ZZZZZZZZZZZZZZZZZZZZZZZZZZYVZXHUUAL chrX.fa 3095635 F 30A2CA 0 Y HWI-EAS88 3 2 1 782 612 GCTAAATTTGAATACGACGATACCTCAGAATTTTT ZZZZZZZZZZZZZZZZZZZXZZZZZZZYIYUUUUU NM Y HWI-EAS88 3 2 1 669 244 GAATGGGTGTCGGACACAGAAGCCAGGAAGGAGTG ZZZZZZZZZZZZZZZYZYZYYZZZZZZXXZUQUNU chr11.fa 111842488 F 35 66 Y HWI-EAS88 3 2 1 800 98 GACTGTGCACAATGACTTGTTTCTAGCCATACAAG ZZZZUZZZZZZZZUZZZZYZZZZZSSZZUZUUUUU chr7.fa 80627978 F 35 63 Y HWI-EAS88 3 2 1 591 851 GTTAATAATGTATTGAATCCTCTTTTCAGCAAATG ZZZZZZZZZZZZZZZZZZZZZZZZZZZYMZUUUUU NM Y HWI-EAS88 3 2 1 568 744 GTGTGTGAGTTCATTTCTGCATCTTCAATTATGTT ZZZZZZZZZZZZYZZZZZXZZZZZZZZZZZUUUUU chr18.fa 4072143 F 35 34 Y HWI-EAS88 3 2 1 546 595 GCAGAACCAAAGACCAACAGGCCCAAACTCAACTC YYYVSIIVYYYSYIOYDIYIODDYYLYDJSQLQEL NM N HWI-EAS88 3 2 1 670 177 GTGTTTCCATCGCCATTTTCGCTTAATAGTATAAA ZOZUZZZZZZZXZZUZZZZZOZZXXXZXDZOSOOO NM Y HWI-EAS88 3 2 1 807 890 TGACAATTTTTTTACATTTATTTTGTAGATTGGTT ZZZZZZZZZZZZZZZZZZZZZZZZYZVDIZUHHNR chr1.fa 12470118 F 35 25 Y HWI-EAS88 3 2 1 681 215 TTAAATTGTGTTCTAATTTACTATGTAGGTTTTAC ZZZZZZZZZYZZZZZZZZZZZZZZSZZSDZUUUUU chr12.fa 85950709 R 9C25 16 Y HWI-EAS88 3 2 1 962 734 TTTATAGTCTCCAGAAGGGTCTATGCTATGCCTTT ZZZZZZYZZZZZZYZZZYXZZZYZYZZXZXUUUUA chr3.fa 18605968 R 34G 64 Y HWI-EAS88 3 2 1 623 674 GTGACACTTCAAAAAGAAGGCACATCGATCGTGTT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 836 343 GGGCAATCGTCCCTGATCTATGGCCTCATTATTAC ZZZZZZZZZZZZZYLYZZZZZXVZZZZXZZQUCJU chr17.fa 15778882 R 32G2 46 Y HWI-EAS88 3 2 1 886 113 AGAAAACTTCCCTAACCTAAAGAAAGAGATGCCCA ZZZZZZZZZZZZZZZZZZZZZZYZZZZZZZUUUUU 255:255:255 Y HWI-EAS88 3 2 1 866 300 GCGAAATCTGCCATTTTCATAAGATGGACGTGCAA ZZZZZZZZZZZZZZZZZZZZZZMYZSXXZYUQUUU NM Y HWI-EAS88 3 2 1 844 539 GCACTCTGCATCTTTAATAGACCCCCGTCTATGCT ZZZZZZZZZZZZZZZZZZYYZZZZZZZZZZUUUUU chr11.fa 113444916 R 35 71 Y HWI-EAS88 3 2 1 789 240 TTTTCAGTTTTCCTCGCCATATTTCCCGTCCTAAA ZZZZZZZZZZZZZZZSZZZZZZZZZZYLZZUUUNU 0:31:52 Y HWI-EAS88 3 2 1 532 342 GTAAATGAGCAATCTGATTGAATAGTGACTCTGAC ZZZZZZZZZZZZZZZZYZZXZYZZSZSZXZUUURU chr14.fa 40090097 F 35 63 Y HWI-EAS88 3 2 1 565 466 TGAAAGTCATGACATAAGAAGAGGGTTGAGTGTAT LLLJLLLLLLDLLDLLLLLLLLLLJLLLLLELLLA NM N HWI-EAS88 3 2 1 510 338 GTTGGACTAAATTACTATTAGTAACTACTAAAACT ZZZZZZZZZZZZZZZZZZZZYZZZZZZZZZUUUUU chr9.fa 72525064 F 35 71 Y HWI-EAS88 3 2 1 793 473 GGCTGGGGTCAGGGAACCCTCCCCATATCATGAGA ZZZZYZZZZZUYZZZZZZZYZZZZYYOZZQUUUUU chr2.fa 119598007 F 16T18 26 Y HWI-EAS88 3 2 1 413 243 GTGGAATATGTCAAGAAAACTGATAATCATGGAAA ZZZZZZZZZZZZZZZZZZYZZZZZZZZYYZUUUSU chr2.fa 98502473 R 10G12A11 2 Y HWI-EAS88 3 2 1 907 578 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZZZYZZZZZZZYZMZUUQKU NM Y HWI-EAS88 3 2 1 560 198 GAATCCAGTCAGTTTTCATTAGAAAATTTTATATT ZZZZOZZUZZXZZZZZXZZZZUXZZXZZZZSSLSS NM Y HWI-EAS88 3 2 1 666 745 GTCCTTCAAGGCCTGGCTTGAAGTTTTTCTTCGTG ZZZZZZZZZZZZZZZZZZZYZZYZZZZZZZUUOUN NM Y HWI-EAS88 3 2 1 831 202 TATCCATTCCTCTGTTGAGGGGCATCTGGGTTCTT ZZZZZZZZZZZZZYZZYZYXXYZZZZZSXMUUUUU 255:255:255 Y HWI-EAS88 3 2 1 482 880 AGTCTCAGTGGGATCCAGGAACCAAGATGGCTCCC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr11.fa 48041487 F 35 0 Y HWI-EAS88 3 2 1 513 950 GCAGTTCCTTAGACCGCATGGCGTTTCGCTGGCGG LLLLDLLLLJJLILLJIILLILADIDLJDLEAELC NM N HWI-EAS88 3 2 1 758 244 TGAAGTAACAGACGATTGTAAGTCGCCATGTGGAG ZZZZZZZZZZZZZZZZZXZZZXZZZZZZZYUUUSU chr11.fa 57813847 R 35 70 Y HWI-EAS88 3 2 1 686 636 GGATCTACAAAAAACAATCCAGTTTTTAAAATGGG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZVZUUUUU chr18.fa 47133187 R 35 68 Y HWI-EAS88 3 2 1 535 890 GAGATGTATAAAAAAAAGACAACTAGGTTATAAGT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUSUU NM Y HWI-EAS88 3 2 1 689 488 GGGACAGGGCTGGTTTTTTGTTTTGTTTTGTTTTG ZZZZZZZZZZZZZZZZZZZYZZZZSZZZZSUUUUK chr3.fa 133849203 F 35 63 Y HWI-EAS88 3 2 1 788 709 GTGGTTTAGTGTTTGAGAGATCTTGGGGGTCCAGG ZZZZYZZZYZYZZZZZYZXZZZZZYXSXXXUUNUU chr14.fa 60090838 F 35 26 Y HWI-EAS88 3 2 1 973 454 TGCCCATTGAGAAGGGTTGAAGTTGCATGCATTTT ZZZZZZZZZZZZZZZYZZZZWYZZYZZZSZUUUUU chr8.fa 125850905 R 35 65 Y HWI-EAS88 3 2 1 494 776 AGTGTGGGTAGTACTACTCTGGCTCCAGCTGTCCT ZZZZZZZZZZZZZZZZZZZZXYZZZZYVZYNUUAS chr17.fa 74182095 F 33A1 55 Y HWI-EAS88 3 2 1 932 505 CAGTGAGCCAAGATCAATGCCACTGCACTCCAGTC ZZZZYZZZZZZZZZZZZZZZZYZZZZZZZZUUNUU NM Y HWI-EAS88 3 2 1 815 414 GGTATTTGATTTTCTGGAGTCCACCTTCTTGAGTT ZZZZZZZZZZZZZZZZZZYZZZZZZZZZZZQUUUU 18:255:255 Y HWI-EAS88 3 2 1 770 718 GGCTATGTGGAGCTCAGAGGACAACTTTGTGGAGT ZZZZZZZZZZZZZZZZZXYXXZKZZZZZMYUQRUU chr8.fa 97191714 F 35 45 Y HWI-EAS88 3 2 1 855 339 GAAAGGAGAAATTATGAATTAGAAGTGAGGCTCTG ZZZZZZZZZZYZZYZYRZZZRRYYRXDVCRSUUQQ chr1.fa 79083631 F 35 29 Y HWI-EAS88 3 2 1 552 578 GTTTTATGATAAGTACGAAGTTTAAGCCAAACATG ZZZZZZZZZZYZZYZZZZVZZZZXVVZZDYHSHQN chr15.fa 71249064 F 35 35 Y HWI-EAS88 3 2 1 761 568 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZZZYZZYWZZZZZRZUUNHR NM Y HWI-EAS88 3 2 1 890 378 CTGTCCCAATATTCAGAGGAACTGGGCCCTGGGAA ZZZZZZZZZZZZZZZZZZZYZZZZXZZZZZUUUUU chr2.fa 174024130 F 35 70 Y HWI-EAS88 3 2 1 710 479 TTATTTTAAGTTCTATTGAATTTATGGTGACTCAG YZZZZZZYUUYYZZUZYZZYZZZXZJDZSXUUULH chrM.fa 11942 R 35 37 Y HWI-EAS88 3 2 1 609 756 GCTTGTGGTTGCAAACACTGTTTTTGTTTCTCAGA ZZZZZZZZZZZZZZZZWZZZZZZZZSZZZZUURQU chr5.fa 28634802 F 35 65 Y HWI-EAS88 3 2 1 903 679 AATGGGAGGCACGTTTGCCTGATGCAGTTTCTAGC ZZZZZZZZZZZZZZZZZZZZZZZYZXXZZZUUUQU NM Y HWI-EAS88 3 2 1 838 392 TCATGGCTTCTAGTTTTTTTTTTTTATTTTACTCC ZZZZZZZZZZZUZZZZZLZDZZZZZSZSZJLUUUU NM Y HWI-EAS88 3 2 1 856 585 GACCTATACAAATCCTACTTTCTCCTATGTGTGGT ZZZZZZZZZZZZZZZZZZZZZZZZZZRZXZUUUQU chr10.fa 85679421 F 35 64 Y HWI-EAS88 3 2 1 899 605 CTTGTCTTACAAAGTAGCATTGTATTTTTCAGTGT LLLLEDLLLLJLDEJEJLLLLELDLLLLLLECEEL NM N HWI-EAS88 3 2 1 902 595 GTTAAAACAACAAAAAAAACAAAAAAATCACTAAA LLDLLLLILJDIELLLDLIALDILDLLDHIALACC NM N HWI-EAS88 3 2 1 864 245 GAACCAGCAATTATCACCTCCCATACCTCGCCTCT ZZZZZZZZZZZZZZZYZZZZZZZZXZZZZYUUUUU NM Y HWI-EAS88 3 2 1 832 673 GCTGGAGTCCGACCTCGAAGACTGACCTAGAGTCA ZZZZZZZZZZYZZZZZZYSZZZZZYZZZZYUUUUU NM Y HWI-EAS88 3 2 1 601 562 GCAAGCAGATCGCATGTATCATGGCACATGTCTGG LLLLLELLILLLLLLLJLLLLLDLLLLLLLLCLLL chr11.fa 4033339 F 5G25G3 2 N HWI-EAS88 3 2 1 829 892 TTAAAATGCATTTAGGACTCCAGGGGGAAACCCTG ZZZZZZZZZZZZZZZZZZZZZZZZZZZXZUSSUUU chr14.fa 35397820 R 35 63 Y HWI-EAS88 3 2 1 961 356 AGTGAACCACATGGAGCCAGGGATTGATGCAAAAG ZZZZZZZZZZZZZZZZZZZZZZZZZZXZYZUUUUQ chr5.fa 136124225 F 35 25 Y HWI-EAS88 3 2 1 659 457 GAATTAATCTAATATATCATGATATAGTATATGCT ZZZZZZZZZZZZZZZZZZZZYZZZZZXZZZUUQUU chr5.fa 60391454 R 35 70 Y HWI-EAS88 3 2 1 182 380 GCAGAGGGCGATGTTGAGTTAGCCAGCACGTAACC ZZZZZZZYZZZZZYZYZZZZZZZZYZZYYYQUUUU NM Y HWI-EAS88 3 2 1 704 672 TCGTATATCGCAGGCCGTTCCGGGTGCAACAGAGT LJLLLLLDLILLLLLDDLLLDIILILLLILLLLEE NM N HWI-EAS88 3 2 1 746 379 TAAAAACCAAAAATAGCGTATAGGTATTTGCAGGT ZZZYZZZZZZZYZYYSZYXRZZKSSYZZZKUUIHN NM Y HWI-EAS88 3 2 1 893 299 ACGATGACTGACGCTCACTCTCCCGCAATGCCTGC ZZZZZZZZZZZZYZZZZZZZZZZZSZXZZYUUUQU NM Y HWI-EAS88 3 2 1 843 700 TCAACCTTCATATCGTCAGATACAGTCCAATCTTT ZZZZZZZZZZZZZZYZZZZZZZZZZZZZZXUUUUU NM Y HWI-EAS88 3 2 1 429 937 GCCACCAACANGTNTGTCTANTGGNCAGGNAGNTG LLLLLLLLLLAIIAILLLLIAILDAAIAIAAEAAE QC N HWI-EAS88 3 2 1 755 193 GAATGATCTCTCCACATTTCCTTCCTCTGGTGACA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUUUU chr1.fa 180757407 R 35 71 Y HWI-EAS88 3 2 1 817 283 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZKZUUNHR NM Y HWI-EAS88 3 2 1 764 378 GGTCTTGTCATGCCTAAGTCCTCTTGATCTTAGTC LLLLLLLLLLDLLLLLLLLLLLLLLLLLLLLLELL chr7.fa 115178366 F 10G24 23 N HWI-EAS88 3 2 1 932 606 TCGCCGTATATTGGTCGTTAATGATCTCGTAGATC LLLLLLLLLLELLJJLJJDLLLLLJLLLDJLCLLL NM N HWI-EAS88 3 2 1 967 597 GTGCTTTTTCCATCTTTTAGACCATTTTCCATTCC ZZZZZZZZZZZZZZZZZZZMZZZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 955 885 TTTAAGAGAACTAAACAAAATGGTATGGGTACAAC ZZZZZZZZZZZZZZZZZZYZZYZZZZZSZZSRUUN chr1.fa 131923589 F 35 60 Y HWI-EAS88 3 2 1 513 118 GTTGAAGTCAAAGCATTTCTCTCAACTATATGTGC ZZZZYZZZZZZZZZZZZZZZZZZZRYZXZXURSNS chr2.fa 175054175 F 35 0 Y HWI-EAS88 3 2 1 806 729 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGA ZZZZZZZZZZZZZZZZZZZZZYZZZZZZMZUUAAU NM Y HWI-EAS88 3 2 1 422 796 TGCACTCAACTGTTCAGCTCTAAAGGTATGGAGGA ZYZZZZZZYZYZZZZZZZZZZXYIZXUXYXQSSHO NM Y HWI-EAS88 3 2 1 581 904 GTTTACTGGTAGGCATTTCTACCTTTGCATCTCTG ZZZZZZZZZZZZZZZZZZZZXXZZYZXYXZUUUUU chr6.fa 98583100 R 35 70 Y HWI-EAS88 3 2 1 886 389 CTATCAGGCAGGCACGAAAGCCGACGCGGAGCGCG ZZZZZZZZZZZZZZZZYZZYZZYYZXZSXXUUHUH NM Y HWI-EAS88 3 2 1 772 750 TTATGGATGCAATTGAATATCTAAAAGCCATTACA ZZZZZZZZZZYZZZXZZZYZZZYZZZSZZXUUUUU NM Y HWI-EAS88 3 2 1 652 602 TATTTATATCATTTTTATATTTTTCTATAGCCTCT ZZZZZZZZZZZZZZZZZZZZZZZZZZYZXDUUUUU NM Y HWI-EAS88 3 2 1 935 453 GATCGGAAGAGCTCGTATGCCGTCTTCTTCTTTTA ZZZZZZZZZZZZZZZZXZYZZXZZZZYZDZUUAJU NM Y HWI-EAS88 3 2 1 741 697 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZZZZZZYYZZZZZKZUUEHS NM Y HWI-EAS88 3 2 1 869 544 TGAGACAGGATGCCACTCTGTGTGCCAGCAGGCTA ZZZZZZZZZZZZZZYZZZZWZXZSZZROZJNUUUU chr6.fa 135113970 F 35 43 Y HWI-EAS88 3 2 1 886 195 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA LLLLELLLLLLLLLLLLLLLLLLLLLLLLLLLLEL NM N HWI-EAS88 3 2 1 103 553 GGTGTTGTTTCCCTAATTTCTTTCTCAGCCTGTTT ZZZZZZZZZZZZZZZZZZZZZZZZZZZSZZUUUUU 255:255:255 Y HWI-EAS88 3 2 1 978 456 ATGGGGCATTTCCATCTCTTGAGACCAGAGGAAGA ZZZZYZZZZZZZZZZZZZZZSZXZZZZXYYNUNNU chr5.fa 126317066 R 35 58 Y HWI-EAS88 3 2 1 550 893 GGAGACACTGGATAAGCACAACTGTGACTTCTGTT OOYOYYYVOVYIDJOSYOYIOYYJDYSLVYLQQQE chr11.fa 120476614 R 12C21G 4 N HWI-EAS88 3 2 1 606 741 GAGTTCTTTTTTCAGCCGGGCGTGGTGGCGCATGC ZZZZZZZZZZZZZZXZZZYYZZZZZZZYZYUQUQU chr1.fa 153365706 R 35 47 Y HWI-EAS88 3 2 1 944 419 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA LLLLDLLLLLLLLLLLLLLLLLLLLLLLLLLLCLL NM N HWI-EAS88 3 2 1 753 458 GCTGATGGAATGTTGCAGGCACAGTGCTACCGGCT ZZZZZZZZZZZYZZYZWYXZRZRZXZZYJZAUSUU chr6.fa 101416782 F 30A4 27 Y HWI-EAS88 3 2 1 964 267 TCTGCTTGAATAAAATCTCATCCTACAACTTTAAA LLLLLLLLLIDLLLIIILIIIIILLDLAALLLALE NM N HWI-EAS88 3 2 1 866 522 TTGTCATCTCTGTTTACTTCTACCACAGAGCCTAT ZZZZZZZZZZZYZZZZZZZZZZZZZZIVZRUUUUU chr14.fa 8551127 R 35 52 Y HWI-EAS88 3 2 1 406 803 GAAAAAAAAACAGAACGATGCGTTCATCCACGGCA YYYVVVSSGVSQIGIUSFFYIHLUUHFQXULPLLH NM N HWI-EAS88 3 2 1 792 647 TTATCCCTGGTTTCTCCTTGTGACTCTCTGTTGTC ZZZZZZZZZZZZZZZZZZZYZXZZZZZZZSUUJUU chr14.fa 75762363 R 35 65 Y HWI-EAS88 3 2 1 414 998 AGAGCTTTAGGCAGCTCGGTGTGTCCTTTCTATTC YIOSMSGSYOSUIYUSUDLIWUQIQQUUUFPLENG NM N HWI-EAS88 3 2 1 776 596 TATATTGCCCCCTGCAGCAATGCCCCTTACCCGTC ZZZZZZZZZZZZZYZXYZZZXZZZXZZZSZUUUUU 12:33:15 Y HWI-EAS88 3 2 1 909 244 GTGGCAGCGGTGAGGCGGCGGGGGGGGGTTGTTTG ZZZZZZZYZZYUYZYUYZKYUDUZIYYODJGUGAA NM Y HWI-EAS88 3 2 1 939 918 GTCGGAGGTCAGCAAGCTGTAGTCGGTGTAAAGCT ZZZZZZZZZZZZZZZZZZYZZYXXZYSSXXUUHHQ NM Y HWI-EAS88 3 2 1 483 208 GTCATAAATTGGACAGTGTGGCTCCAGTATTCTCA ZZZZZZZZZZZZZZZYZZZZYZZZZYZZXZUUUUS chr8.fa 19708804 R 35 1 Y HWI-EAS88 3 2 1 924 817 ATCTACATTAAGGTCAATTACAATGATAAATAAAA ZZZZZZZZZZZYXZYZYZZYZYZZXKZSYXUUNUN chr5.fa 71805980 F 35 55 Y HWI-EAS88 3 2 1 822 504 TTCTCAGCCATTCAGTATTCCTCAGGTGAAAATTC ZZZZZZZZZZZZZZYZZZZZZZZYYSYSZXUUUUU 29:255:255 Y ShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/GERALD/s_5_0001_realign.txt0000644000175100017510000026144012607265053027254 0ustar00biocbuildbiocbuild#RUN_TIME Fri Apr 25 23:26:16 2008 #SOFTWARE_VERSION @(#) $Id: qualityFilter.pl,v 1.8 2007/11/26 14:42:26 tc Exp $ #FILTER_CRITERION ((CHASTITY>=0.6)) #RUN_TIME Fri Apr 25 23:21:48 2008 #SOFTWARE_VERSION @(#) $Id: PhageAlign.cpp,v 1.7 2007/10/04 10:13:50 tc Exp $ #MAX_BLANKS 35 #SEQ_LENGTH 35 #GENOME_FILE /shared/solexa/solexa/Genomes/phi_plus_SNPs.txt #BASES_USED YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYn #SCORE_FILE s_5_0001_score.txt #SEQ_FILE /shared/solexa/ycao/080422_HWI-EAS88_0003/Data/C1-36_Firecrest1.9.2_25-04-2008_solexa/Bustard1.9.2_25-04-2008_solexa/s_5_0001_seq.txt #SCORE_FILE s_5_0001_score.txt AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 TGAACAGCTTCTTGGGAAGTAGCGACAGCTTGGTT 3908 1 5093 R AACCAAGCTGTCGCTACTTCCCAAGAAGCTGTTCA -462 TCTACTGTAGACATTTTTACTTTTTATGTCCCTCA 3949 1 1187 F TCTACTGTAGACATTTTTACTTTTTATGTCCCTCA 340 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 TCAGATGGATACATCTGTCAACGCCGCTAATCAGG 3952 1 2574 F TCAGATGGATACATCTGTCAACGCCGCTAATCAGG -77 TGAGTCGAAAAATTATCTTGATAAAGCAGGAATTA 4119 1 52 F TGAGTCGAAAAATTATCTTGATAAAGCAGGAATTA -159 TTTCTTACCTATTAGTGGTTGAACAGCATCGGACT 4117 1 353 R AGTCCGATGCTGTTCAACCACTAATAGGTAAGAAA -34 TCTCAGGAGGAAGCGGAGCAGTCCAAATGTTTTTG 3850 1 1498 R CAAAAACATTTGGACTGCTCCGCTTCCTCCTGAGA -170 TAGTAATTCCTGCTTTATCAAGATAATTTTTCGAC 4026 1 55 R GTCGAAAAATTATCTTGATAAAGCAGGAATTACTA -29 TAATGTTTATGTTGGGTTCTTGGTTTGTTATAACT 2651 1 2808 F TAACGTTTATGTTGGTTTCATGGTTTGGTCTAACT 196 TTCAAGATTGCTGGAGGCCTCCACTATGAAATCGC 3951 1 4472 F TTCAAGATTGCTGGAGGCCTCCACTATGAAATCGC -162 TTCTGGTGATTTGCAAGAACGCGTACTTATTCGCC 3945 1 2128 F TTCTGGTGATTTGCAAGAACGCGTACTTATTCGCC -270 TTCAGACTTTTATTTCTCGCCATAATTCAAACTTT 3997 1 2399 F TTCAGACTTTTATTTCTCGCCATAATTCAAACTTT 73 TACCATGAAAAAAATGTGAGTCATGTCTAACTAAC 2250 1 273 R CTGGTTTAGATATGAGTCACATTTTGTTCATGGTA 341 TATGTTTTCATGCCTCCAAATCTTGGAGGCTTTTT 3944 1 3945 F TATGTTTTCATGCCTCCAAATCTTGGAGGCTTTTT -373 TGCTAAAGGTGAGCCGCTTAAAGCTACCAGTTATA 3947 1 4958 F TGCTAAAGGTGAGCCGCTTAAAGCTACCAGTTATA -36 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GGTCTAACTTTACCGCTACTAAATGCCGCGGATTG 3981 1 2834 F GGTCTAACTTTACCGCTACTAAATGCCGCGGATTG -621 GTTATTTCCTAGACAAATTAGAGCCAATACCATCA 4103 1 3884 R TGATGGTATTGGCTCTAATTTGTCTAGGAAATAAC -269 TGTCAGCGTCATAAGAGGTTTTACCTCCAAATGAA 4050 1 1663 R TTCATTTGGAGGTAAAACCTCTTATGACGCTGACA 383 TGAAAAACAAAGTAGCAGCGTCGATTGTGGCAATT -186 1 4278 R CAATGCTACAATGTGCTCCCCCAACTTGATATTAA -424 TATAGTGTTATTAATATCAAGTTGGGGGAGCACAT 4106 1 4288 R ATGTGCTCCCCCAACTTGATATTAATAACACTATA -520 GCTTCTGACGTTCGTGATGAGTTTGTATCTGTTAC 3933 1 4218 F GCTTCTGACGTTCGTGATGAGTTTGTATCTGTTAC 146 CAACAAGAGAATCTCTACCATGAACAAAATGTGAC 4053 1 288 R GTCACATTTTGTTCATGGTAGAGATTCTCTTGTTG 522 GTTATATTTTGATAGTTTGACGGTTAATGCTGGTA 4113 1 2517 F GTTATATTTTGATAGTTTGACGGTTAATGCTGGTA -121 TGCCTGACCGTACCGAGGCTAACCCTAATGAGCTT 3878 1 1422 F TGCCTGACCGTACCGAGGCTAACCCTAATGAGCTT -42 TAGTTGTTATAGATATTCAAATAACCCTGAAACAA 4196 1 1370 R TTGTTTCAGGGTTATTTGAATATCTATAACAACTA 133 TTTATCAAGATAATTTTTCGACTCATCAGAAATAT 4140 1 42 R ATATTTCTGATGAGTCGAAAAATTATCTTGATAAA -34 TTGATGAAAGCAATGCGACAGGCTCATGCTGATGG 3653 1 4530 F TTGATGAATGCAATGCGACAGGCTCATGCTGATGG -471 TATGATGTTTATCCTTTGGATGGTCGCCATGATGG 3805 1 2713 F TATGATGTTTATCCTTTGAATGGTCGCCATGATGG 157 GGTTGTCAGCGTCATAAGAGGTTTTACCTCCCAAT 3714 1 1666 R ATTTGGAGGTAAAACCTCTTATGACGCTGACAACC -250 TTCGCCACCATGATTATGACCAGTGTTTCCAGTCC 3882 1 2157 F TTCGCCACCATGATTATGACCAGTGTTTCCAGTCC 463 GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT 4012 1 2372 F GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT -365 TTGCTATTCAGCGTTTGATGAATGCAATGCGACAG 4080 1 4516 F TTGCTATTCAGCGTTTGATGAATGCAATGCGACAG 160 GTGAGTTGTTCCATTCTTTAGCTCCTAGACCTTTA 3908 1 5054 R TAAAGGTCTAGGAGCTAAAGAATGGAACAACTCAC -237 GGATTGACACCCTCCCAATTGTATGTTTTCATGCC 3843 1 3924 F GGATTGACACCCTCCCAATTGTATGTTTTCATGCC -169 GTCATGCGCTCTAATCTCTGGGCATCTGGCTATGA 3904 1 1712 F GTCATGCGCTCTAATCTCTGGGCATCTGGCTATGA -367 TGTTCAGTAACTTGACTCATGATTTCTTACCTATT 3932 1 375 R AATAGGTAAGAAATCATGAGTCAAGTTACTGAACA 8 CACGCTGATTATTTTGACTTTGCGAGTATCGAGGC 3510 1 4011 F CACGCTGATTATTTTGACTTTGAGCGTATCGAGGC -301 GTAGTAATTCCTGCTTTATCAAGATAATTTTTCGA 4018 1 56 R TCGAAAAATTATCTTGATAAAGCAGGAATTACTAC -252 CGACCAAAATTAGGGTCAACGCTACCTGTAGGAAG 3955 1 4797 R CTTCCTACAGGTAGCGTTGACCCTAATTTTGGTCG -411 GACGCAGAAGTTAACACTTTCGGATATTTCTGATG 3877 1 19 F GACGCAGAAGTTAACACTTTCGGATATTTCTGATG -305 GTTTAATCATGTTTCAGACTTTTATTTCTCGCCAT 3995 1 2387 F GTTTAATCATGTTTCAGACTTTTATTTCTCGCCAT -394 GAGTTGTTCCATTCTTTAGCTCCTAGACCTTTAGC 3957 1 5052 R GCTAAAGGTCTAGGAGCTAAAGAATGGAACAACTC -306 GTTATCCATCTGCTTATGGAAGCCAAGCATTGGGG 4041 1 4093 R CCCCAATGCTTGGCTTCCATAAGCAGATGGATAAC -459 GTGGTCTATAGTGTTATTAATATCAAGTTGGGGGA 4129 1 4294 R TCCCCCAACTTGATATTAATAACACTATAGACCAC -396 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GTTCATCAGCAAACGCAGAATCAGCGGTATGGCTC 3920 1 3714 F GTTCATCAGCAAACGCAGAATCAGCGGTATGGCTC 629 AAGACGGCCATTAGCTGTACCATACTCAGGCACAC 3874 1 4732 R GTGTGCCTGAGTATGGTACAGCTAATGGCCGTCTT 293 GTAGTAATTCCTGCTTTATCAAGATAATTTTTCGA 4018 1 56 R TCGAAAAATTATCTTGATAAAGCAGGAATTACTAC -252 GAGATGGCAGCAACGGAAACCATAACGACCATCAT 3609 1 1464 R ATGATGCTCGTTATGGTTTCCGTTGCTGCCATCTC 131 GAATATCCTTAAGAGGGCGCTCAGCAGCCAGCTTG 3677 1 4391 R CAAGCTGGCTGCTGAACGCCCTCTTAAGGATATTC -295 TGACTCGCAAGGTTAGTGCTGAGGTTGACTTAGTT 3907 1 3682 F TGACTCGCAAGGTTAGTGCTGAGGTTGACTTAGTT -228 GAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGT 3848 1 232 F GAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGT -229 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GATTTAATTCGTAAACAAGCAGTAGTAATTCCTGC 4030 1 77 R GCAGGAATTACTACTGCTTGTTTACGAATTAAATC -318 GTTTATCGTTTTTGACACTCTCACGTTGGCTGACG 4008 1 4568 F GTTTATCGTTTTTGACACTCTCACGTTGGCTGACG -47 TTGAACACTCATCCTTAATACCTTTCTTTTTGGGG 3952 1 4442 R CCCCAAAAAGAAAGGTATTAAGGATGAGTGTTCAA -88 TGTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTA 3956 1 3947 F TGTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTA -42 TCCCCTTCGGGGCGGTGGTCTATAGTGTTATTTAT 3646 1 4308 R ATTAATAACACTATAGACCACCGCCCCGAAGGGGA -313 GGAGTAGTTGAAATGGTAATAAGACGACCAATCTG 4013 1 1070 R CAGATTGGTCGTCTTATTACCATTTCAACTACTCC 61 GAGAAGTTAATGGATGAATTGGCACAATGCTACAA 4009 1 4254 F GAGAAGTTAATGGATGAATTGGCACAATGCTACAA -88 GACGGTTAATGCTGGTAATGGTGGTTTTTTTCTTT 3337 1 2535 F GACGGTTAATGCTGGTAATGGTGGTTTTCTTCATT 246 GATTGGTTTCGCTGAATCAGGTTATTAAAGAGATT 4082 1 2864 F GATTGGTTTCGCTGAATCAGGTTATTAAAGAGATT -255 GATATTCAAATAACCCTGAAACAAATGCTTAGGGA 4088 1 1359 R TCCCTAAGCATTTGTTTCAGGGTTATTTGAATATC 204 GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG 3613 1 564 F GTTTATGGTACGCTGGACTTTGTGGGATACCCTCG -720 GCAAAGGATATTTCTAATGTCGTCACTGATGCTGC 3934 1 3768 F GCAAAGGATATTTCTAATGTCGTCACTGATGCTGC 108 TTTTGTTAACGTATTTAGCCACATAGAAACCAACA 4198 1 4997 R TGTTGGTTTCTATGTGGCTAAATACGTTAACAAAA -219 TAAAATAGTTGTTATAGATATTCAAATAACCCTGA 4140 1 1375 R TCAGGGTTATTTGAATATCTATAACAACTATTTTA -339 GTTATTATACCGTCAAGGACTGTGTGACTATTGAC 4022 1 2750 F GTTATTATACCGTCAAGGACTGTGTGACTATTGAC -531 GTGAAATTTCTATGAAGGATGTTTTCCGTTCTGGT 3947 1 1980 F GTGAAATTTCTATGAAGGATGTTTTCCGTTCTGGT -365 ATGTAGCTTTAGGTGTCTGTAAAACAGGTGCCGAA 4063 1 2475 R TTCGGCACCTGTTTTACAGACACCTAAAGCTACAT 194 GGTGTTAATCCTGACGGTTATTTCCTAGACAAATT 3688 1 3900 R AATTTGTCTAGGAAATAACCGTCAGGATTGACACC -421 GATGGATACATCTGTCAACGCCGCTAATCAGGTTG 3896 1 2577 F GATGGATACATCTGTCAACGCCGCTAATCAGGTTG -367 GGATATTTCTAATGTCGTCACTGATGCTGCTTCTG 3907 1 3773 F GGATATTTCTAATGTCGTCACTGATGCTGCTTCTG 804 GGTTATTAAAGAGATTATTTGTCTCCTGCCACTTT 3495 1 2883 F GGTTATTAAAGAGATTATTTGTCTCCAGCCACTTA -334 GTTTGAATTATGGCGAGAAATAAAAGTCTGAAACA 4179 1 2396 R TGTTTCAGACTTTTATTTCTCGCCATAATTCAAAC 140 GATAGTAATCCACGCTCTTTTAAAATGTCAACAAG 4081 1 316 R CTTGTTGACATTTTAAAAGAGCGTGGATTACTATC 389 TCTGGTGATTCGTCTAAGAAGTTTAAGATTGCTGA 4069 1 2009 F TCTGGTGATTCGTCTAAGAAGTTTAAGATTGCTGA 165 GATAGTTTGACGGTTAATGCTGGTAATGGTGGTTT 3945 1 2527 F GATAGTTTGACGGTTAATGCTGGTAATGGTGGTTT 140 GCATTGGGATTATCATAAAACGCCTCTAATCGGTC 3948 1 4602 R GACCGATTAGAGGCGTTTTATGATAATCCCAATGC -603 TAAAATGCAACTGGACAATCAGAAAGAGATTGCCG 4022 1 3395 F TAAAATGCAACTGGACAATCAGAAAGAGATTGCCG 1242 GATAACCGCATCAAGCTCTTGGAAGAGATTCTGTC 3853 1 4122 F GATAACCGCATCAAGCTCTTGGAAGAGATTCTGTC -87 GCCGAAGAAGCTGGAGTAACAGAAGTGAGAACCAG 4001 1 2446 R CTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGGC -270 GCTGCATTTCCTGAGCTTAATGCTTGGGAGCGTGC 3950 1 3297 F GCTGCATTTCCTGAGCTTAATGCTTGGGAGCGTGC -92 GATTAACCCTGATACCAACAAAATACCTAAGCATC 3280 1 1336 F GATTAACCCTGATACCAATAAAATCCCTAAGCATT 35 GGTTTCCGAGATTATGCGCCAAATGCTTACTCAAG 3995 1 3602 F GGTTTCCGAGATTATGCGCCAAATGCTTACTCAAG -315 GTACGCGTTCTTGCAAATCACCAGAAGGCGGTTCC 3910 1 2119 R GGAACCGCCTTCTGGTGATTTGCAAGAACGCGTAC -208 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GGTTATCCATCTGCTTATGTAAGCCAAGCGTTGGG 3468 1 4094 R CCCAATGCTTGGCTTCCATAAGCAGATGGATAACC -131 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 4101 1 276 F GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 31 GAGACTGAGCTTTCTCGCCAAATGACGACTTCTAC 3868 1 1529 F GAGACTGAGCTTTCTCGCCAAATGACGACTTCTAC -20 GATAATCACGAGTATCCTTTCCTTTATCAGCGGCA 3936 1 3257 R TGCCGCTGATAAAGGAAAGGATACTCGTGATTATC -364 GATATGAGTCACATTTTGTTCATGGTAGAGATTCT 3987 1 281 F GATATGAGTCACATTTTGTTCATGGTAGAGATTCT -234 GATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 4098 1 3816 F GATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 407 GGTTAATGCTGGTAATGGTGGTTTTCTTCCTTTCT 3193 1 2538 F GGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCA -79 GATTGTTCAGTAACTTGACTCATGATTTCTTACCT 3915 1 378 R AGGTAAGAAATCATGAGTCAAGTTACTGAACAATC -112 GTTCAGAATCAGAATGAGCCGCAACTTCGGGATGA 3993 1 5123 F GTTCAGAATCAGAATGAGCCGCAACTTCGGGATGA -305 GGATATTTCTGATGAGTATAATTACCCCAAAAAGA 3246 1 4418 F GGATATTCGCGATGAGTATAATTACCCCAAAAAGA 614 GTGGTTTTCTTCATTGCATTCAGATGGATACATCT 4001 1 2555 F GTGGTTTTCTTCATTGCATTCAGATGGATACATCT -282 GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 3984 1 2485 F GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 348 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 TAATTCGTAAACAAGCAGTAGTAATTCCTGCTTTA 3965 1 73 R TAAAGCAGGAATTACTACTGCTTGTTTACGAATTA -239 GAGAACCAGCTTATCAGAAAAAAAGTTTGAATTAT 4022 1 2420 R ATAATTCAAACTTTTTTTCTGATAAGCTGGTTCTC -438 GAGGTGATTTATGTTTGGTGCTATTGCTGGCGGTT 3742 1 2921 F GAGGTGATTTATGTTTGGTGCTATTGCTGGCGGTA -107 GTGATTATCTTGCTGCTGCCTTTCCTGAGCTTAAT 3687 1 3283 F GTGATTATCTTGCTGCTGCATTTCCTGAGCTTAAT 48 GTGCCAAGAAAAGCGGCATGGTCAATATAACCAGT 3914 1 1301 R ACTGGTTATATTGACCATGCCGCTTTTCTTGGCAC -306 GTTGACGATGTAGCTTTAGGTGTCTGTAAAACAGG 4064 1 2482 R CCTGTTTTACAGACACCTAAAGCTACATCGTCAAC -270 GACACCTAAAGCTACATCGTCAACGTTATATTTTG 3896 1 2493 F GACACCTAAAGCTACATCGTCAACGTTATATTTTG 157 GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 3984 1 2485 F GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 348 GAAGTTAACACTTTCGGATATTTCTGATGAGTCGA 4013 1 25 F GAAGTTAACACTTTCGGATATTTCTGATGAGTCGA -194 GATGAGTATAATTACCCCAAAAAGAAAGGTATTAA 4154 1 4428 F GATGAGTATAATTACCCCAAAAAGAAAGGTATTAA -40 GTTATATGGCTGGTGGGTTTTTTTTTTTTTAATTC 1371 1 4987 F GTTATATGGCTGTTGGTTTCTATGTGGCTAAATAC -64 GGCGTTTTATGATAATCCCAATGCTTTGCGTGACT 3944 1 4613 F GGCGTTTTATGATAATCCCAATGCTTTGCGTGACT -239 GTAAGTTGGATTAAGCACTCCGTGGACAGATTTGT 3896 1 5172 R ACAAATCTGTCCACGGAGTGCTTAATCCAACTTAC -346 GAGACTGAGCTTTCTCGCCAAATGACGACTTCTAC 3868 1 1529 F GAGACTGAGCTTTCTCGCCAAATGACGACTTCTAC -20 GGTGGTTATTATACCGTCAAGGACTGTGTGACTAT 3983 1 2746 F GGTGGTTATTATACCGTCAAGGACTGTGTGACTAT -281 GTGTGGTTGATATTTTTCATGGTATTGATAAAGCT 4081 1 3808 F GTGTGGTTGATATTTTTCATGGTATTGATAAAGCT 97 GGATTTTATTGGTATCAGGGTTAATCGTGCCAAGA 4114 1 1327 R TCTTGGCACGATTAACCCTGATACCAATAAAATCC 238 TATTATGGAAAACACCAATCTTTCCAAGCAACAGC 4063 1 3566 F TATTATGGAAAACACCAATCTTTCCAAGCAACAGC -314 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 4101 1 276 F GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 31 GTTTGGTCAGTTCCATCAACATCATAGCCAGATGC 4008 1 1733 R GCATCTGGCTATGATGTTGATGGAACTGACCAAAC -197 GAAAACATACAATTGGGAGGGTGTCAATCCTGACG 3947 1 3919 R CGTCAGGATTGACACCCTCCCAATTGTATGTTTTC -159 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GTTTACTCTTGCGCTTGTTCGTTTTCCTCCTACTG 3644 1 1852 F GTTTACTCTTGCGCTTGTTCGTTTTCCGCCTACTG -145 GTTTGATGAATGCAATGCGACAGGCTCATGCTGAT 3957 1 4528 F GTTTGATGAATGCAATGCGACAGGCTCATGCTGAT -444 GTTTTTGACACTCTCACGTTGGCTGACGACCGATT 3961 1 4575 F GTTTTTGACACTCTCACGTTGGCTGACGACCGATT -440 GGACGCTCGACGCCATTAATAATGTTTTCCGTAAA 3919 1 696 R TTTACGGAAAACATTATTAATGGCGTCGAGCGTCC 345 GTTCAACAGACCTATAAACATTCTGTGCCGCGTTT 3885 1 1793 F GTTCAACAGACCTATAAACATTCTGTGCCGCGTTT -255 GGAGTAACAGAAGTGAGAACCAGCTTATCAGAAAA 4030 1 2434 R TTTTCTGATAAGCTGGTTCTCACTTCTGTTACTCC 150 GAGCATCATCTTGATTAAGCTCATTAGGGTTAGCC 3987 1 1438 R GGCTAACCCTAATGAGCTTAATCAAGATGATGCTC 794 GCAGGTTTAAGAGCCTCGATACGCTCAAAGTCAAA 4013 1 4023 R TTTGACTTTGAGCGTATCGAGGCTCTTAAACCTGC -429 GCACCGCATGGAAATGAAGACGGCCATTAGCTGTG 3614 1 4748 R TACAGCTAATGGCCGTCTTCATTTCCATGCGGTGC -430 GAGAACCAGCTTATCAGAAAAAAAGTTTGAATTAT 4022 1 2420 R ATAATTCAAACTTTTTTTCTGATAAGCTGGTTCTC -438 GGATTGACACCCTCCCAATTGTATGTTTTCATGCC 3843 1 3924 F GGATTGACACCCTCCCAATTGTATGTTTTCATGCC -169 GTTCCTGAGCATGGCACTATGTTTACTCTTGCGCT 3856 1 1832 F GTTCCTGAGCATGGCACTATGTTTACTCTTGCGCT -181 GATTTTCTGACGAGTAACAAAGTTTGGATTGCTAC 4031 1 492 F GATTTTCTGACGAGTAACAAAGTTTGGATTGCTAC -173 TCGTCACTGATGCTGCTTCTGGTGTGGTTGATATT 3867 1 3787 F TCGTCACTGATGCTGCTTCTGGTGTGGTTGATATT 600 GATTACTTCATGCAGCGTTACCATGATGTTATTTC 3909 1 1628 F GATTACTTCATGCAGCGTTACCATGATGTTATTTC -25 GGTGATATGTATGTTGACGGCCATAAGGCTGCTTC 3915 1 4188 F GGTGATATGTATGTTGACGGCCATAAGGCTGCTTC 288 TGCCTTTAGTACCTCGCAACGGCTGCGGACGACCA 3945 1 883 R TGGTCGTCCGCAGCCGTTGCGAGGTACTAAAGGCA -767 TTATTACCCTTCTGAATGTCACGCTGATTATTTTG 3972 1 3992 F TTATTACCCTTCTGAATGTCACGCTGATTATTTTG -294 GGAAACACTGACGTTCTTACTGACGCAGAAGAAAA 4069 1 777 F GGAAACACTGACGTTCTTACTGACGCAGAAGAAAA -109 GATTTCGATTTTCTGACGAGTAACAAAGTTTGGAT 4115 1 486 F GATTTCGATTTTCTGACGAGTAACAAAGTTTGGAT -128 GCTACATCGTCAACGTTATATTTTGATAGTTTGAC 3968 1 2503 F GCTACATCGTCAACGTTATATTTTGATAGTTTGAC -512 GCTTAGGGATTTTATTGGTATCAGGGTTAATCGTG 4030 1 1333 R CACGATTAACCCTGATACCAATAAAATCCCTAAGC -332 GGCTCATGCTGATGGTTGGTTTATCGTTTTTGACA 3917 1 4550 F GGCTCATGCTGATGGTTGGTTTATCGTTTTTGACA 111 GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCA 4003 1 2368 F GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCA -410 GATTAACCCTGATACCAATAAAATCCCTAAGCATT 4026 1 1336 F GATTAACCCTGATACCAATAAAATCCCTAAGCATT -396 ACGAGAGCGGTCAGTAGCAATCCAAACTTTGTTAC 3815 1 505 R GTAACAAAGTTTGGATTGCTACTGACCGCTCTCGT -186 GGGAGGGTGTCAATCCTGACGGTTATTTCCTAGAC 3822 1 3905 R GTCTAGGAAATAACCGTCAGGATTGACACCCTCCC -430 TATGTATGTTGACGGCCATAAGGCTGCTTCTTACG 3692 1 4193 F TATGTATGTTGACGGCCATAAGGCTGCTTCTGACG 445 GAGGTTGACTTAGTTCATCAGCAAACGCAGAATCA 4024 1 3702 F GAGGTTGACTTAGTTCATCAGCAAACGCAGAATCA -78 GATGAGTCGAAAAATTATCTTGATAAAGCAGGAAT 4124 1 50 F GATGAGTCGAAAAATTATCTTGATAAAGCAGGAAT 46 GCGAGTCATTTCTTTGATTTGGTCATTGGTAAAAT 4027 1 3655 R ATTTTACCAATGACCAAATCAAAGAAATGACTCGC -506 GGTGATTTGCAAGAACGCGTACTTATTCGCCACCA 3898 1 2132 F GGTGATTTGCAAGAACGCGTACTTATTCGCCACCA -64 GAAGACGGCCATTAGCTGTACCATACTCAGGCACA 3902 1 4733 R TGTGCCTGAGTATGGTACAGCTAATGGCCGTCTTC 275 GTCAAAAACTGACGCGTTGGATGAGGAGAAGTGGC 4006 1 210 F GTCAAAAACTGACGCGTTGGATGAGGAGAAGTGGC -211 GTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATG 4057 1 2197 F GTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATG -159 TGATGCTGGTATTAAATCTGCCATTCAAGGCTCTA 4002 1 3074 F TGATGCTGGTATTAAATCTGCCATTCAAGGCTCTA -200 GTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATT 4062 1 2192 F GTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATT -120 TGTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGAC 3917 1 2662 F TGTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGAC -328 GTTATTAATATCAAGTTGGGGGAGCACATTGTAGC 4055 1 4282 R GCTACAATGTGCTCCCCCAACTTGATATTAATAAC -317 GCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGC 3836 1 4916 F GCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGC -430 TGGTCGCCATGATGGTGGTTATTATACCGTCAAGG 3956 1 2733 F TGGTCGCCATGATGGTGGTTATTATACCGTCAAGG -248 GTTGCCGATACTTGGAACAATTTCTGGAAAGACGG 4072 1 3843 F GTTGCCGATACTTGGAACAATTTCTGGAAAGACGG -127 GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCA 4003 1 2368 F GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCA -410 GCGACAGCTTGGTTTTTAGTGAGTTGTTCCATTCT 3870 1 5072 R AGAATGGAACAACTCACTAAAAACCAAGCTGTCGC -308 TTAATCAAGATGATGCTCGTTATGGTTTCCGTTGC 3894 1 1455 F TTAATCAAGATGATGCTCGTTATGGTTTCCGTTGC 404 GCATTGGGGATTGAGAAAGAGTAGAAATGCCACAA 4069 1 4067 R TTGTGGCATTTCTACTCTTTCTCAATCCCCAATGC -501 TGATGGAACTGACTAAACGTCGTTAGGCCAGTTTT 3578 1 1750 F TGATGGAACTGACCAAACGTCGTTAGGCCAGTTTT 206 GGTCGCCATGATGGTGGTTATTATACCGTCAAGGA 4016 1 2734 F GGTCGCCATGATGGTGGTTATTATACCGTCAAGGA -284 TCGCTTTGAGTCTTCTTCGGTTCCGACTACCCCCA 3380 1 2670 F TCGCTTTGAGTCTTCTTCGGTTCCGACTACCCTCC -346 GGCTATGATGTTGATGGAACTGACCAAACGTCGTT 3980 1 1739 F GGCTATGATGTTGATGGAACTGACCAAACGTCGTT -393 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GAAGTAGCGACAGCTTGGTTTTTAGTGAGTTGTTC 3849 1 5078 R GAACAACTCACTAAAAACCAAGCTGTCGCTACTTC -579 GCGAATAAGTACGCGTTCTTGCAAATCACCAGAAG 4007 1 2127 R CTTCTGGTGATTTGCAAGAACGCGTACTTATTCGC -226 GGAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTG 3909 1 4142 F GGAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTG -313 TTCCGTTCTGGTGATTCGTCTAAGAAGTTTAAGTT 3846 1 2003 F TTCCGTTCTGGTGATTCGTCTAAGAAGTTTAAGAT -166 GTTCGATAATGGTGATATGTATGTTGACGGCCATA 4048 1 4178 F GTTCGATAATGGTGATATGTATGTTGACGGCCATA -148 TTTTACCTTTAGACATTACATCACTCCTTCTGCAC 3756 1 829 R GTGCGGAAGGAGTGATGTAATGTCTAAAGGTAAAA -284 GAAAAAAAGTTTGAATTATGGCGAGAAATAAAAGT 4143 1 2404 R ACTTTTATTTCTCGCCATAATTCAAACTTTTTTTC -19 GACAGCTTGGTTTTTAGTGAGTTGTTCCATTCTTT 3877 1 5070 R AAAGAATGGAACAACTCACTAAAAACCAAGCTGTC -369 GTTCAGCAGCCAGCTTGCGGCAAAACTGCGTAACC 3900 1 4373 R GGTTACGCAGTTTTGCCGCAAGCTGGCTGCTGAAC -174 AACTAACGATTCTGTCAAAAACTGACGCGTTGGAT 3971 1 197 F AACTAACGATTCTGTCAAAAACTGACGCGTTGGAT -204 GAAAATAGTCACGCAAAGCATTGGGATTATCATAA 3984 1 4619 R TTATGATAATCCCAATGCTTTGCGTGACTATTTTC -277 GTTTTCCGCCTACTGCGACTAAAGAGATTCAGTAC 4015 1 1872 F GTTTTCCGCCTACTGCGACTAAAGAGATTCAGTAC -613 GAAGGGTAATAAGAACGAACCATAAAAAAGCCTCC 3978 1 3969 R GGAGGCTTTTTTATGGTTCGTTCTTATTACCCTTC -169 GTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGC 3989 1 2608 F GTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGC 911 TATCAGCGGCAGACTTGACACCAAGTCCAACCAAA 3677 1 3233 R TTTGGTTGGACTTGGTGGCAAGTCTGCCGCTGATA -228 TGACGACTTCTACCACATCTATTGACATTATGGGT 3936 1 1551 F TGACGACTTCTACCACATCTATTGACATTATGGGT -291 GTGGTTGAACAGCATCGGACTCTGATAGTAATCCA 3697 1 339 R TGGATTACTATCTGAGTCCGATGCTGTTCAACCAC -274 GTTGAGTTCGATAATGGTGATATGTATGTTGACGG 4040 1 4173 F GTTGAGTTCGATAATGGTGATATGTATGTTGACGG 165 GGATGAATTGGCACAATGCTACAATGTGCTCCCCC 3835 1 4265 F GGATGAATTGGCACAATGCTACAATGTGCTCCCCC 2 TAAAGAGATTCAGTACCTTAACGCTAAAGGTGCTT 3940 1 1891 F TAAAGAGATTCAGTACCTTAACGCTAAAGGTGCTT -223 GATGAGTATAATTACCCCAAAAAGAAAGGTATTAA 4154 1 4428 F GATGAGTATAATTACCCCAAAAAGAAAGGTATTAA -40 TGGTTGAACAGCATCGGACTCAGATAGTAATCCAC 3940 1 338 R GTGGATTACTATCTGAGTCCGATGCTGTTCAACCA -340 GAAGCCTGAATGAGCTTAATAGAGGCCAAAGCGGT 3983 1 426 R ACCGCTTTGGCCTCTATTAAGCTCATTCAGGCTTC -25 GCAGTCCAAATGTTTTTGAGATGGCAGCAACGGAA 4065 1 1481 R TTCCGTTGCTGCCATCTCAAAAACATTTGGACTGC 539 GTTATCCATCTGCTTATGGAAGCCAAGCATTGGGG 4041 1 4093 R CCCCAATGCTTGGCTTCCATAAGCAGATGGATAAC -459 TGTCAACGCCGCTAATCAGGTTGTTTCTGTTGGTG 3866 1 2589 F TGTCAACGCCGCTAATCAGGTTGTTTCTGTTGGTG 64 GGAGGGTGTCAATCCTGACGGTTATTTCCTAGACA 3879 1 3904 R TGTCTAGGAAATAACCGTCAGGATTGACACCCTCC -173 GATTTTCGTCTATTAATCAAAGATTTTGCTAAAGA 207 1 183 F GACCTTTCGCCATCAACTAACGATTCTGTCAAAAA -436 GAGTCAAGTTACTGAACAATCCGTACGTTTCCAGA 3948 1 392 F GAGTCAAGTTACTGAACAATCCGTACGTTTCCAGA 212 GATTTGGAGGCATGAAAACATACAATTGGGAGGGT 4059 1 3932 R ACCCTCCCAATTGTATGTTTTCATGCCTCCAAATC -611 GATAACCGCATCAAGCTCTTGGAAGAGATTCTGTC 3853 1 4122 F GATAACCGCATCAAGCTCTTGGAAGAGATTCTGTC -87 GAACTAAGTCAACCTCAGCACTAACCTTGCGAGTC 3897 1 3683 R GACTCGCAAGGTTAGTGCTGAGGTTGACTTAGTTC -21 GTGATGAGTTTGTATCTGTTACTGAGAAGTTAATG 4080 1 4231 F GTGATGAGTTTGTATCTGTTACTGAGAAGTTAATG -27 GAGCTTACTAAAATGCAACTGGACAATCAGAAAGA 4134 1 3387 F GAGCTTACTAAAATGCAACTGGACAATCAGAAAGA 1021 AAAAATTAAAATTTTTACCGCTTCGGCGTTATAAC 4006 1 2303 R GTTATAACGCCGAAGCGGTAAAAATTTTAATTTTT 1043 GTTATTAATATCAAGTTGGGGGAGCACATTGTAGC 4055 1 4282 R GCTACAATGTGCTCCCCCAACTTGATATTAATAAC -317 GGCTGTTGGTTTCTATGTGGCTAAATACGTTTACA 3792 1 4994 F GGCTGTTGGTTTCTATGTGGCTAAATACGTTAACA -256 GATTTATGTTTGGTGCTATTGCTGGCGGGTTTGCT 3425 1 2926 F GATTTATGTTTGGTGCTATTGCTGGCGGTATTGCT 34 GTTTTTGACACTCTCACGTTGGCTGACGACCGATT 3961 1 4575 F GTTTTTGACACTCTCACGTTGGCTGACGACCGATT -440 GGAGCAGTCCAAATGTTTTTGAGATGGCAGCAACG 3953 1 1484 R CGTTGCTGCCATCTCAAAAACATTTGGACTGCTCC -30 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 TGAGTGTGAGGTTATAACGCCGAAGCGGTAAAAAT 4052 1 2293 F TGAGTGTGAGGTTATAACGCCGAAGCGGTAAAAAT -293 GCTGGAGTAACAGAAGTGAGAACCAGCTTATCAGA 3956 1 2437 R TCTGATAAGCTGGTTCTCACTTCTGTTACTCCAGC -153 GGTTTTTAGTGAGTTGTTCCATTCTTTAGCTCCTA 3938 1 5062 R TAGGAGCTAAAGAATGGAACAACTCACTAAAAACC -159 GGTCTGGAAACGTACGGATTGCTCAGATACTTGAC 3139 1 394 R GTCAAGTTACTGAACAATCCGTACGTTTCCAGACC -388 GATAATTTTTCGACTCATCAGAAATATCCGAAAGT 4121 1 34 R ACTTTCGGATATTTCTGATGAGTCGAAAAATTATC -197 GCGCATAATCTCGGAAACCTGCTGTTGCTTTGTAA 3411 1 3586 R TTTCCAAGCAACAGCAGGTTTCCGAGATTATGCGC -221 ATTCGTAAACAAGCAGTAGTAATTCCTGCTTTATC 3917 1 71 R GATAAAGCAGGAATTACTACTGCTTGTTTACGAAT 109 GCTGTTGCCGATACTTGGAACAATTTCTGGAAAGA 4101 1 3840 F GCTGTTGCCGATACTTGGAACAATTTCTGGAAAGA -16 GATTAACCCTGATACCAATAAAATCCCTAAGCATT 4026 1 1336 F GATTAACCCTGATACCAATAAAATCCCTAAGCATT -396 GCAGTGGAATAGTCGGGTTAAATTTAATGTGACCG 3709 1 2203 F GCAGTGGAATAGTCAGGTTAAATTTAATGTGACCG -162 TGCCTGACCGTACCGAGGCTAACCCTAATGAGCTT 3878 1 1422 F TGCCTGACCGTACCGAGGCTAACCCTAATGAGCTT -42 TTACTGAACAATCCGTACGTTTCCAGATCGCTTTG 3668 1 400 F TTACTGAACAATCCGTACGTTTCCAGACCGCTTTG -816 GATGTTATTTCTTCATTTGGAGGTAAAACCTCTTA 4096 1 1652 F GATGTTATTTCTTCATTTGGAGGTAAAACCTCTTA 121 GTCCTTTACTTGTCATGCGCTCTAATCTCTGGGCA 3968 1 1701 F GTCCTTTACTTGTCATGCGCTCTAATCTCTGGGCA -666 GGTGTGGTTGATATTTTTCATGGTATTGATAAAGC 4093 1 3807 F GGTGTGGTTGATATTTTTCATGGTATTGATAAAGC 97 GAAATAACCGTCAGGATTGACACCCTCCCAATTGT 3837 1 3911 F GAAATAACCGTCAGGATTGACACCCTCCCAATTGT -82 GACGGCCATAAGGCTGCTTCTGACGTTCGTGATGA 3843 1 4203 F GACGGCCATAAGGCTGCTTCTGACGTTCGTGATGA 816 GCTTATCAGAAAAAAAGTTTGAATTATGGCGTGAA 3916 1 2412 R TTCTCGCCATAATTCAAACTTTTTTTCTGATAAGC 54 GTTTGTATCTGTTACTGAGAAGTTAATGGATGAAT 4166 1 4238 F GTTTGTATCTGTTACTGAGAAGTTAATGGATGAAT -409 GCAAGCATCTCATTTTGTGCATATACCTGGTCTTT 3884 1 3495 R AAAGACCAGGTATATGCACAAAATGAGATGCTTGC -471 GATGAACTAAGTCAACCTCAGCACTAACCTTGCGA 3915 1 3686 R TCGCAAGGTTAGTGCTGAGGTTGACTTAGTTCATC -140 GAAATCGCGTAGAGGCTTTGCTATTCAGCGTTTGA 3892 1 4499 F GAAATCGCGTAGAGGCTTTGCTATTCAGCGTTTGA -151 GCCATACAAAACAGGGTCGCCAGCAATATCGGTAT 3871 1 1932 R ATACCGATATTGCTGGCGACCCTGTTTTGTATGGC 649 GCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG 3866 1 5371 F GCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG -150 GCGAGCAGTAGACTCTTTCTGTTGATAAGCAAGCA 3687 1 3523 R TGCTTGCTTATCAACAGAAGGAGTCTACTGCTCGC 321 GTTGACTTAGTTCATCAGCAAACGCAGAATCAGCG 4064 1 3705 F GTTGACTTAGTTCATCAGCAAACGCAGAATCAGCG 27 GGACTGGTTTAGATATGAGTCACATTTTGTTCATG 3932 1 270 F GGACTGGTTTAGATATGAGTCACATTTTGTTCATG -182 GTAGTCGGAACCGAAGAAGACTCAAAGCGAACCAA 3979 1 2665 R TTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTAC 2 GGTTAAATCCAAAACGGCAGAAGCCTGAATGAGCT 3996 1 445 R AGCTCATTCAGGCTTCTGCCGTTTTGGATTTAACC -295 GCTTCTTCGGCACCTGTTTTACAGACACCTAAAGC 4021 1 2470 F GCTTCTTCGGCACCTGTTTTACAGACACCTAAAGC -22 GCCCTCTTAAGGATATTCGCGATGAGTATAATTAC 4008 1 4408 F GCCCTCTTAAGGATATTCGCGATGAGTATAATTAC 366 GTTAATGCTGGTAATGGTGGTTTTCTTCATTTCTT 3451 1 2539 F GTTAATGCTGGTAATGGTGGTTTTCTTCATTGCAT 56 GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA 4140 1 4236 F GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA -215 TATTGCTTTTGATGCCGACCCTAAATTTTTTGCCT 3918 1 2628 F TATTGCTTTTGATGCCGACCCTAAATTTTTTGCCT 352 GCTGCTTATGCTAATTTGCATACTGACCAAGAACG 4097 1 1592 F GCTGCTTATGCTAATTTGCATACTGACCAAGAACG -140 GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG 3573 1 555 F GAGGCTTGCGTTTATGGTACGCTGGACTTTGTGGG -59 GAGTTGTTCCATTCTTTAGCTCCTAGACCTTTAGC 3957 1 5052 R GCTAAAGGTCTAGGAGCTAAAGAATGGAACAACTC -306 GAGATGCTTGCTTATCAACAGAAGGAGTCTACTGC 3973 1 3519 F GAGATGCTTGCTTATCAACAGAAGGAGTCTACTGC 374 GTAATTCCTGCTTTATCAAGATAATTTTTCGACTC 4016 1 53 R GAGTCGAAAAATTATCTTGATAAAGCAGGAATTAC -74 GGAAACACTGACGTTCTTACTGACGCAGAAGAAAA 4069 1 777 F GGAAACACTGACGTTCTTACTGACGCAGAAGAAAA -109 GTTTTTGAGATGGCAGCAACGGAAACCATAACGAG 4097 1 1470 R CTCGTTATGGTTTCCGTTGCTGCCATCTCAAAAAC 251 GTTGGTGCTGATATTGCTTTTGATGCCGACCCTAA 3978 1 2617 F GTTGGTGCTGATATTGCTTTTGATGCCGACCCTAA 362 GGTTTTCTGCTTAGGAGTTTAATCATGTTTCAGAC 4025 1 2371 F GGTTTTCTGCTTAGGAGTTTAATCATGTTTCAGAC -190 GGATTGAGAAAGAGTAGAAATGCCACAAGCCTCAA 4008 1 4060 R TTGAGGCTTGTGGCATTTCTACTCTTTCTCAATCC -224 GGATGAATTGGCACAATGCTACAATGTGCTCCCCC 3835 1 4265 F GGATGAATTGGCACAATGCTACAATGTGCTCCCCC 2 GGTTTTTAGTGAGTTGTTCCATTCTTTAGCTCCTA 3938 1 5062 R TAGGAGCTAAAGAATGGAACAACTCACTAAAAACC -159 GCTTGGTTTTTAGTGAGTTGTTCCATTCTTTAGCT 3936 1 5066 R AGCTAAAGAATGGAACAACTCACTAAAAACCAAGC -373 GTAATCCACGCTCTTTTAAAATGTCAACAAGAGAA 4169 1 312 R TTCTCTTGTTGACATTTTAAAAGAGCGTGGATTAC 271 GCATGACAAGTAAAGGACGGTTGTCAGCGTCATAA 3938 1 1684 R TTATGACGCTGACAACCGTCCTTTACTTGTCATGC -207 GGTTAATGCTGGTAATGGTGGTTTTCTTTTTTTTA 2944 1 2538 F GGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCA 72 GAAATAACATCATGGTAACGCTGCATGAAGTAATC 4010 1 1628 R GATTACTTCATGCAGCGTTACCATGATGTTATTTC 211 CCGTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGT 3749 1 1137 F CCGTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGT -397 GGAGCAGTCCAAATGTTTTTGAGATGGCAGCAACG 3953 1 1484 R CGTTGCTGCCATCTCAAAAACATTTGGACTGCTCC -30 GTGCTGATATTGCTTTTGATGCCGACCCTAAATTT 3958 1 2621 F GTGCTGATATTGCTTTTGATGCCGACCCTAAATTT 330 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GTCAACGTTATATTTTGATAGTTTGACGGTTAATT 3819 1 2511 F GTCAACGTTATATTTTGATAGTTTGACGGTTAATG -122 GAGGGCGTTCAGCAGCCAGCTTGCGGCAAAACTGC 3836 1 4379 R GCAGTTTTGCCGCAAGCTGGCTGCTGAACGCCCTC -3 GATTTAATTCGTAAACAAGCAGTAGTAATTCCTGC 4030 1 77 R GCAGGAATTACTACTGCTTGTTTACGAATTAAATC -318 GTTGAGTTTATTGCTGCCGTCATTGCTTATTATGT 3923 1 612 F GTTGAGTTTATTGCTGCCGTCATTGCTTATTATGT 992 GTTGAAATGGTAATAAGACGACCAATCTGACCAGC 3990 1 1064 R GCTGGTCAGATTGGTCGTCTTATTACCATTTCAAC 105 GAAGAGCCATACCGCTGATTCTGCGTTTGCTGATG 3800 1 3717 R CATCAGCAAACGCAGAATCAGCGGTATGGCTCTTC 519 GAGATGGACGCCGATGGCGCTCTCCGTCTTTCTCC 3310 1 1127 F GAGATGGACGCCGTTGGCGCTCTCCGTCTTTCTCC -130 GTTCGTGATGAGTTTGTATCTGTTACTGAGAAGTT 4048 1 4227 F GTTCGTGATGAGTTTGTATCTGTTACTGAGAAGTT 317 GTCAATCCTGACGGTTATTTCCTAGACAAATTAGA 4035 1 3897 R TCTAATTTGTCTAGGAAATAACCGTCAGGATTGAC -409 GCTGACAACCGTCCTTTACTTGTCATGCGCTCTAA 3892 1 1691 F GCTGACAACCGTCCTTTACTTGTCATGCGCTCTAA -486 GCTTGATGCGGTTATCCATCTGCTTATGGAAGCCA 3980 1 4103 R TGGCTTCCATAAGCAGATGGATAACCGCATCAAGC 101 GCTCTAATTTGTCTAGGAAATAACCGTCAGGATTG 4105 1 3895 F GCTCTAATTTGTCTAGGAAATAACCGTCAGGATTG -331 GAGTCAAGTTACTGAACAATCCGTACGTTTCCAGA 3948 1 392 F GAGTCAAGTTACTGAACAATCCGTACGTTTCCAGA 212 GTCATGCGCTCTAATCTCTGGGCATCTGGCTATGA 3904 1 1712 F GTCATGCGCTCTAATCTCTGGGCATCTGGCTATGA -367 GTAGAGATTCTCTTGTTGACATTTTAAAAGAGCGT 4063 1 305 F GTAGAGATTCTCTTGTTGACATTTTAAAAGAGCGT -54 GGTGGTTTTCTTCATTGCATTCAGATGGATACATC 4041 1 2554 F GGTGGTTTTCTTCATTGCATTCAGATGGATACATC 44 GGTTACAGTATGCCCATCGCAGTTCGCTACACGCA 3915 1 4884 F GGTTACAGTATGCCCATCGCAGTTCGCTACACGCA -648 GTTTAAGAGCCTCGATACACTCAAAGTCAAAATAA 3788 1 4019 R TTATTTTGACTTTGAGCGTATCGAGGCTCTTAAAC -441 CTGTTTTACAGACACCTAAAGCTACATCGTCAACG 4031 1 2483 F CTGTTTTACAGACACCTAAAGCTACATCGTCAACG -32 GTTGACGGGATGAACATAATAAGCAATGACGGCAG 4051 1 625 R CTGCCGTCATTGCTTATTATGTTCATCCCGTCAAC 119 GGAGGAAGCGGAGCAGTCCAAATGTTTTTGAGATG 3834 1 1493 R CATCTCAAAAACATTTGGACTGCTCCGCTTCCTCC 506 GTAGCGACAGCTTGGTTTTTAGTGAGTTGTTCCAT 3856 1 5075 R ATGGAACAACTCACTAAAAACCAAGCTGTCGCTAC -642 GAGTCAAGTTACTGAACAATCCGTACGTTTCCAGA 3948 1 392 F GAGTCAAGTTACTGAACAATCCGTACGTTTCCAGA 212 TACCGTCAAGGACTGTGTGACTATTGACGTCCTTC 3847 1 2757 F TACCGTCAAGGACTGTGTGACTATTGACGTCCTTC -401 GATTATCTTGCTGCTGCATTTCCTGAGCTTAATGC 3964 1 3285 F GATTATCTTGCTGCTGCATTTCCTGAGCTTAATGC -278 GAAGAAAACCACCATTACCAGCATTAACCGTCAAA 3968 1 2532 R TTTGACGGTTAATGCTGGTAATGGTGGTTTTCTTC -170 GACTGGTTTAGATATGAGTCACATTTTGTTCATGG 3991 1 271 F GACTGGTTTAGATATGAGTCACATTTTGTTCATGG -352 GTTGGTGCTGATATTGCTTTTGATGCCGACCCTAA 3978 1 2617 F GTTGGTGCTGATATTGCTTTTGATGCCGACCCTAA 362 GTTATAGATATTCAAATAACCCTGAAACAAATGCT 4109 1 1365 R AGCATTTGTTTCAGGGTTATTTGAATATCTATAAC -126 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GGTATGGTTGACGCCGGATTTGAGAATCAAAAAGA 4091 1 3354 F GGTATGGTTGACGCCGGATTTGAGAATCAAAAAGA 172 GTTATCCATCTGCTTATGGAAGCCAAGCATTGGGG 4041 1 4093 R CCCCAATGCTTGGCTTCCATAAGCAGATGGATAAC -459 TTAACCGAAGATGATTTCGATTTTCTGACGAGTAA 4064 1 474 F TTAACCGAAGATGATTTCGATTTTCTGACGAGTAA -313 GAAATAACCGTCAGGATTGACACCCTCCAAATTGT 3579 1 3911 F GAAATAACCGTCAGGATTGACACCCTCCCAATTGT 157 GGTTTAGATATGAGTCACATTTTGTTCATGGTAGA 4044 1 275 F GGTTTAGATATGAGTCACATTTTGTTCATGGTAGA 11 GATACTTGGAACAATTTCTGGAAAGACGGTAAAGC 4081 1 3849 F GATACTTGGAACAATTTCTGGAAAGACGGTAAAGC -417 GGCATCAAAAGCAATATCAGCACCAACAGAAACAA 4070 1 2609 R TTGTTTCTGTTGGTGCTGATATTGCTTTTGATGCC 671 GCCAATTCATCCATTAACTTCTCAGTAACAGATAC 4028 1 4242 R GTATCTGTTACTGAGAAGTTAATGGATGAATTGGC -184 GTCATGCGGCATACGCTCGGCGCCAGTTTGTTTAT 3320 1 1008 R ATATTCAAACTGGCGCCGAGCGTATGCCGCATGAC -64 GTTTCTGATAAGTTGCTTGATTTGGTTGGACTTGG 4004 1 3213 F GTTTCTGATAAGTTGCTTGATTTGGTTGGACTTGG 253 GTTTTGTTTCTGGTGCTATGGCTAAAGCTGGTAAA 4090 1 3139 F GTTTTGTTTCTGGTGCTATGGCTAAAGCTGGTAAA 220 GGTGCTTTGACTTATACCGATATTGCTGGCGACCC 3942 1 1919 F GGTGCTTTGACTTATACCGATATTGCTGGCGACCC 29 GCTGGTATTAAATCTGCCATTCAAGGCTCTAATGT 3978 1 3078 F GCTGGTATTAAATCTGCCATTCAAGGCTCTAATGT 173 GACAAATAATCTCTTTAATAACCTGATTCAGCGAA 4062 1 2871 R TTCGCTGAATCAGGTTATTAAAGAGATTATTTGTC 195 GGTACGGTCAGGCATCCACGGCGCTTTAAAATAGT 3872 1 1401 R ACTATTTTAAAGCGCCGTGGATGCCTGACCGTACC -129 GGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATG 3981 1 2607 F GGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATG 931 GCCTACTGCGACTAAAGAGATTCAGTACCTTAACG 3990 1 1879 F GCCTACTGCGACTAAAGAGATTCAGTACCTTAACG -327 GTACGCCGGGCAATAATGTTTATGTTGGTTTCATG 3586 1 2795 F GTACGCCGGGCAATAACGTTTATGTTGGTTTCATG 334 GCCGAGGGTCGCAAGGCTAATGATTCACACGCCGA 3868 1 4680 F GCCGAGGGTCGCAAGGCTAATGATTCACACGCCGA 35 GGTTCGTTCTTATTACCCTTCTGAATGTCACGCTG 3929 1 3983 F GGTTCGTTCTTATTACCCTTCTGAATGTCACGCTG -329 GACAAATCTGCTCAAATTTATGCGCGCTTCGATAA 3982 1 5327 F GACAAATCTGCTCAAATTTATGCGCGCTTCGATAA -245 GCCACCATGATTATGACCAGTGTTTCCAGTCCGTT 3851 1 2160 F GCCACCATGATTATGACCAGTGTTTCCAGTCCGTT 169 TCGATTTTCTGACGAGTAACAAAGTTTGGATTGCT 4021 1 490 F TCGATTTTCTGACGAGTAACAAAGTTTGGATTGCT -313 GCGTTGGATGAGGAGAAGTGGCTTAATATGCTTGG 3943 1 223 F GCGTTGGATGAGGAGAAGTGGCTTAATATGCTTGG 27 GGTAATAAGAACGAACCATAAAAAAGCCTCCAAGA 4054 1 3965 R TCTTGGAGGCTTTTTTATGGTTCGTTCTTATTACC -312 GCTTGAGTAAGCATTTGGCGCATAATCTCGGAAAC 3995 1 3603 R GTTTCCGAGATTATGCGCCAAATGCTTACTCAAGC -158 GTGATTACTTCATGCAGCGTTACCATGATGTTATT 3975 1 1626 F GTGATTACTTCATGCAGCGTTACCATGATGTTATT -189 GTTCCATTCTTTAGCTCCTAGACCTTTAGCAGCAA 4030 1 5047 R TTGCTGCTAAAGGTCTAGGAGCTAAAGAATGGAAC 308 TAATAACCACCATCATGGCGACAATCCAAAGGATA 3508 1 2722 R TATCCTTTGAATGGTCGCCATGATGGTGGTTATTA 106 GTTTGGAGGCGGTCAAAAAGACGCCCCCGGTGGCC 3134 1 2993 F GTTTGGAGGCGGTCAAAAAGCCGCCTCCGGTGGCA -440 GCAACGGCTGAGGACGACCAGGGCGAGCGCCAGAA 3573 1 868 R TTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGC -474 GCTGAGGTTGACTTAGTTCATCAGCAAACGCAGAA 4060 1 3699 F GCTGAGGTTGACTTAGTTCATCAGCAAACGCAGAA -298 GCTCCTAGACCTTTAGCAGCAAGGTCCATATCTGA 3947 1 5034 R TCAGATATGGACCTTGCTGCTAAAGGTCTAGGAGC -257 GCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTA 3983 1 1822 F GCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTA 387 GGCCTTGCTATTGACTCTACTGTAGACATTTTTAC 3923 1 1172 F GGCCTTGCTATTGACTCTACTGTAGACATTTTTAC 723 GTCTAGGAAATAACCGTCAGGATTGACACCCTCCC 3856 1 3905 F GTCTAGGAAATAACCGTCAGGATTGACACCCTCCC -493 GAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAA 3832 1 4359 F GAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAA -325 GTTACTCCAGCTTCTTCGGCACCTGTTTTACAGAC 3913 1 2461 F GTTACTCCAGCTTCTTCGGCACCTGTTTTACAGAC 67 GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 3984 1 2485 F GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 348 GTCAAGGACTGGTTTAGATATGAGTCACATTTTGT 3944 1 265 F GTCAAGGACTGGTTTAGATATGAGTCACATTTTGT -254 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GAGTGGTCGGCAGATTGCGATAAACGGTCACATTA 3933 1 2227 R TAATGTGACCGTTTATCGCAATCTGCCGACCACTC -524 GCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCG 3963 1 3227 F GCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCG -101 GAATTTTCTCATTTTCCGCCAGCAGTCCACTTCGA 3958 1 110 R TCGAAGTGGACTGCTGGCGGAAAATGAGAAAATTC -359 GATTATTTTGACTTTGAGCGTATCGAGGCTCTTAA 4047 1 4017 F GATTATTTTGACTTTGAGCGTATCGAGGCTCTTAA -228 GTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTT 3959 1 3944 F GTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTT -320 GTGATGAGTTTGTATCTGTTACTGAGAAGTTAATG 4080 1 4231 F GTGATGAGTTTGTATCTGTTACTGAGAAGTTAATG -27 GATAATGGTGATATGTATGTTGACGGCCATAAGGC 4052 1 4182 F GATAATGGTGATATGTATGTTGACGGCCATAAGGC 315 GCTTTTTCACGTTCTGGTTGGTTGTGGCCTGTTGA 3966 1 4923 F GCTTTTTCACGTTCTGGTTGGTTGTGGCCTGTTGA 157 GCAATCTCTTTTTGAGTCTCATTTTGCATCTCGGC 3961 1 3426 R GCCGAGATGCAAAATGAGACTCAAAAAGAGATTGC 1363 GGTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTC 3945 1 2367 F GGTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTC -280 GCATGAAGTAATCACGTTCTTGGTCAGTATGCAAA 4026 1 1606 R TTTGCATACTGACCAAGAACGTGATTACTTCATGC 86 GGTATTGATAAAGCTGTTGCCGATACTTGGAACAA 4043 1 3828 F GGTATTGATAAAGCTGTTGCCGATACTTGGAACAA -290 GAGATTCTGTCTTTTCGTATGCAGGGCGTTGAGTT 3953 1 4146 F GAGATTCTGTCTTTTCGTATGCAGGGCGTTGAGTT -161 GGTGGCATTCAAGGTGATGTGCTTGCTACCGATAA 3933 1 3021 F GGTGGCATTCAAGGTGATGTGCTTGCTACCGATAA 218 GATTGCGATAAACGGTCACATTAAATTTAACCTGA 4015 1 2215 R TCAGGTTAAATTTAATGTGACCGTTTATCGCAATC 293 GTAGACATTTTTACTTTTTATGTCCCTCATCGTCA 3970 1 1193 F GTAGACATTTTTACTTTTTATGTCCCTCATCGTCA -394 GCAGGGCGTTGAGTTCGATAATGGTGATATGTATG 3921 1 4166 F GCAGGGCGTTGAGTTCGATAATGGTGATATGTATG 89 TATTAAATCTGCCATTCAAGGCTCTAATGTTCCTA 3975 1 3083 F TATTAAATCTGCCATTCAAGGCTCTAATGTTCCTA 352 GTCTAGGAAATAACCGTCAGGATTGACACCCTCCC 3856 1 3905 F GTCTAGGAAATAACCGTCAGGATTGACACCCTCCC -493 GACTGAATGCCAGCAATCTCTTTTTGAGTCTCATT 3841 1 3438 R AATGAGACTCAAAAAGAGATTGCTGGCATTCAGTC 753 GATTTGCAAGAACGCGTACTTATTCGCCACCATGA 3962 1 2135 F GATTTGCAAGAACGCGTACTTATTCGCCACCATGA 3 GTATAATTACCCCAAAAAGAAAGGTATTAAGGATG 4129 1 4433 F GTATAATTACCCCAAAAAGAAAGGTATTAAGGATG -90 GGTGATATGTATGTTGACGGCCATAAGGCTGCTTC 3915 1 4188 F GGTGATATGTATGTTGACGGCCATAAGGCTGCTTC 288 GTCATTGTGAGCATTTTCATCCCGAAGTTGCGTCT 3643 1 5139 R AGCCGCAACTTCGGGATGAAAATGCTCACAATGAC -193 GTTTGGTCTAACTTTACCGCTACTAAATGCCGCGG 4009 1 2830 F GTTTGGTCTAACTTTACCGCTACTAAATGCCGCGG -694 GAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGT 3848 1 232 F GAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGT -229 GTTTACGAATTAAATCGAAGTGGACTGCTGGCGGA 4056 1 96 F GTTTACGAATTAAATCGAAGTGGACTGCTGGCGGA 112 GGTGGCATTCAAGGTGATGCGCTTGCTACCGATAC 3443 1 3021 F GGTGGCATTCAAGGTGATGTGCTTGCTACCGATAA -5 GTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGG 3791 1 1139 F GTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGG 102 GGTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTC 3945 1 2367 F GGTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTC -280 GTATATGCACAAAATGAGATGCTTGCTTATCAACA 4012 1 3504 F GTATATGCACAAAATGAGATGCTTGCTTATCAACA -69 GCTGGCACTTCTGCCGTTTCTGATAAGTTGCTTGA 3910 1 3198 F GCTGGCACTTCTGCCGTTTCTGATAAGTTGCTTGA 70 GACATTTTAAAAGAGCGTGGATTACTATCTGAGTC 3992 1 322 F GACATTTTAAAAGAGCGTGGATTACTATCTGAGTC -194 GAGCATCATCTTGATTAAGCTCATTAGGGTTAGCC 3987 1 1438 R GGCTAACCCTAATGAGCTTAATCAAGATGATGCTC 794 GCTATTGAGGCTTGTGGCATTTCTACTCTTTCTCA 3873 1 4056 F GCTATTGAGGCTTGTGGCATTTCTACTCTTTCTCA -69 GCAAGAGCAGAAGCAACACCGCCAGCAATGGCCCC 3079 1 2937 R GGTGCTATTGCTGGCGGTATTGCTTCTGCTCTTGC 208 GAGATTATGCGCCAAATGCTTACTCAAGCTCAAAC 3984 1 3609 F GAGATTATGCGCCAAATGCTTACTCAAGCTCAAAC -98 GTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTG 3837 1 544 F GTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTG -302 GGCTACAGTAACTTTTCACAGCCTCAATCTCATCT 3590 1 5266 R AGATGAGATTGAGGCTGGGAAAAGTTACTGTAGCC -569 GAGTTTAATCATGTTTCAGACTTTTATTTCTCGCC 3940 1 2385 F GAGTTTAATCATGTTTCAGACTTTTATTTCTCGCC -75 GGATTGAGAAAGAGTAGAAATGCCACAAGCCTCAA 4008 1 4060 R TTGAGGCTTGTGGCATTTCTACTCTTTCTCAATCC -224 GGTTAATGCTGGTAATGGTGGTTTTTTTCATTTCA 3432 1 2538 F GGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCA 116 GCTACATCGTCAACGTTATATTTTGATAGTTTGAC 3968 1 2503 F GCTACATCGTCAACGTTATATTTTGATAGTTTGAC -512 GAAGTTGCGGCTCATTCTGATTCTGCACAGCTTCT 3618 1 5116 R AGAAGCTGTTCAGAATCAGAATGAGCCGCAACTTC -148 GACCAAGCGAAGCGCGGTAGGTTTTCTGCTTAGGA 3857 1 2352 F GACCAAGCGAAGCGCGGTAGGTTTTCTGCTTAGGA 5 ATGCAACTGGACAATCAGAAAGAGATTGCCGAGAT 4013 1 3399 F ATGCAACTGGACAATCAGAAAGAGATTGCCGAGAT 1550 GATGGTTGGTTTATCGTTTTTGACACTCTCACGTT 3917 1 4560 F GATGGTTGGTTTATCGTTTTTGACACTCTCACGTT -138 GTCTTTTCGTATGCAGGGCGTTGAGTTCGATAATG 4041 1 4154 F GTCTTTTCGTATGCAGGGCGTTGAGTTCGATAATG 17 GACGGTTAATGCTGGTAATGGTGGTTTTTTTTTTT 3101 1 2535 F GACGGTTAATGCTGGTAATGGTGGTTTTCTTCATT 260 GCACCTGTTTTACAGACACCTAAAGCTACATCGTC 3947 1 2479 F GCACCTGTTTTACAGACACCTAAAGCTACATCGTC -131 GGATGAGGAGAAGTGGCTTAATATGCTTGGCACGT 3849 1 228 F GGATGAGGAGAAGTGGCTTAATATGCTTGGCACGT -20 TGTCAGCGTCATAAGAGGTTTTACCTCCAAATGAA 4050 1 1663 R TTCATTTGGAGGTAAAACCTCTTATGACGCTGACA 383 GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAA 4011 1 2821 F GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAA 47 GTTTTATGATAATCCCAATGCTTTGCGTGACTATT 3990 1 4616 F GTTTTATGATAATCCCAATGCTTTGCGTGACTATT -279 GAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGA 3968 1 1982 F GAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGA -451 GTCTGAAACATGATTAAACTCCTAAGCAGAAAACC 4082 1 2371 R GGTTTTCTGCTTAGGAGTTTAATCATGTTTCAGAC -136 GTAAATTCAGCGCCTTCCATGATGAGACAGGCCGT 3956 1 666 R ACGGCCTGTCTCATCATGGAAGGCGCTGAATTTAC -210 GCTGGAGTAACAGAAGTGAGAACCAGCTTATCAGA 3956 1 2437 R TCTGATAAGCTGGTTCTCACTTCTGTTACTCCAGC -153 GGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCC 3762 1 857 F GGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCC -110 GTCTGCAAGCTGCTTATGCTAATTTGCATACTGAC 3976 1 1584 F GTCTGCAAGCTGCTTATGCTAATTTGCATACTGAC 69 GATGAGGGACATAAAAAGTAAAAATGTCTACAGTA 4053 1 1189 R TACTGTAGACATTTTTACTTTTTATGTCCCTCATC 14 GACAAGTAAAGGACGGTTGTCAGCGTCATAAGAGG 3968 1 1680 R CCTCTTATGACGCTGACAACCGTCCTTTACTTGTC 76 GTTTGCTGATGAACTAAGTCAACCTCAGCACTAAC 4024 1 3693 R GTTAGTGCTGAGGTTGACTTAGTTCATCAGCAAAC 149 GTCAGTATTTTACCAATGACCAAATCAAAGAAATG 4194 1 3649 F GTCAGTATTTTACCAATGACCAAATCAAAGAAATG -222 GTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA 4036 1 2884 F GTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA -199 GTTTAAGAGCCTCGATACGCTCAAAGTCAAAATAA 4091 1 4019 R TTATTTTGACTTTGAGCGTATCGAGGCTCTTAAAC -313 GATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 4098 1 3816 F GATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 407 GGAGCTAAAGAATGGAACAACTCACTAAAAACCAA 4045 1 5064 F GGAGCTAAAGAATGGAACAACTCACTAAAAACCAA -354 GAATGGGAAGCCTTCAAGAAGGTGATAAGCAGGAG 4048 1 2079 R CTCCTGCTTATCACCTTCTTGAAGGCTTCCCATTC -166 GTTTATGGTGAACAGTGGATTAAGTTCATGAAGGA 4172 1 1229 F GTTTATGGTGAACAGTGGATTAAGTTCATGAAGGA -51 GTCGTGTTCAACAGACCTATAAACATTCTGTGCCG 3943 1 1788 F GTCGTGTTCAACAGACCTATAAACATTCTGTGCCG -183 GATGCTGTTCAACCACTAATAGGTAAGAAATCATG 4076 1 358 F GATGCTGTTCAACCACTAATAGGTAAGAAATCATG -65 GTTGGCTGACGACCGATTAGAGGCGTTTTATGATC 3671 1 4592 F GTTGGCTGACGACCGATTAGAGGCGTTTTATGATA 33 GTTGATGGCGAAAGGTCGCAAAGTAAGAGCTTCTC 3913 1 165 R GAGAAGCTCTTACTTTGCGACCTTTCGCCATCAAC -437 GGTAAGAAATCATGAGTCAAGTTACTGAACAATCC 3997 1 379 F GGTAAGAAATCATGAGTCAAGTTACTGAACAATCC -467 GGTGCTGATATTGCTTTTGATGCCGACCCTAAATT 3926 1 2620 F GGTGCTGATATTGCTTTTGATGCCGACCCTAAATT 559 GTTGGTGCTGATATTGCTTTTGATGCCGACCCTAA 3978 1 2617 F GTTGGTGCTGATATTGCTTTTGATGCCGACCCTAA 362 GCGTTGACAGATGTATCCATCTGAATGCAATGAAG 4055 1 2563 R CTTCATTGCATTCAGATGGATACATCTGTCAACGC -419 GTTGAGTTTATTGCTGCCGTCATTGCTTATTATGT 3923 1 612 F GTTGAGTTTATTGCTGCCGTCATTGCTTATTATGT 992 GATGGTGGTTATTATACCGTCAAGGACTGTGTGAC 3984 1 2743 F GATGGTGGTTATTATACCGTCAAGGACTGTGTGAC 26 GATGAATGCAATGCGACAGGCTCATGCTGATGGTT 3860 1 4532 F GATGAATGCAATGCGACAGGCTCATGCTGATGGTT 112 GTCTGTAAAACAGGTGCCGAAGAAGCTGGAGTAAC 4005 1 2461 R GTTACTCCAGCTTCTTCGGCACCTGTTTTACAGAC 0 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GACGGTAAAGCTGATGGTATTGGCTCTAATTTTTT 3396 1 3873 F GACGGTAAAGCTGATGGTATTGGCTCTAATTTGTC 178 GTTTCCAGACCGCTTTGGCCTCTATTAAGCTCATT 3885 1 418 F GTTTCCAGACCGCTTTGGCCTCTATTAAGCTCATT -355 GCTCCCAAGCATTAAGCTCAGGAAATGCAGCAGCA 4025 1 3293 R TGCTGCTGCATTTCCTGAGCTTAATGCTTGGGAGC -136 GGGCATCTGGCTATGATGTTGATGGAACTGACCAA 3975 1 1731 F GGGCATCTGGCTATGATGTTGATGGAACTGACCAA -224 GAGGCATGAAAACATACAATTGGGAGGGTGTCAAT 3971 1 3926 R ATTGACACCCTCCCAATTGTATGTTTTCATGCCTC -401 GATGTATCCATCTGAATGCAATGAAGAAAACCACC 4077 1 2554 R GGTGGTTTTCTTCATTGCATTCAGATGGATACATC -79 GTTTCCGTTGCTGCCATCTCAAAAACATTTGGACT 3997 1 1479 F GTTTCCGTTGCTGCCATCTCAAAAACATTTGGACT 564 GACTGCCTATGATGTTTATCCTTTGGATGGTCGCC 3646 1 2706 F GACTGCCTATGATGTTTATCCTTTGAATGGTCGCC 44 GCTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGG 3851 1 2445 F GCTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGG -335 GACCGTTTATCGCAATCTGCCGACCACTCGCGATT 3850 1 2233 F GACCGTTTATCGCAATCTGCCGACCACTCGCGATT -253 GAACGGACTGGAAACACTGGTCATAATCATGGTGG 3935 1 2161 R CCACCATGATTATGACCAGTGTTTCCAGTCCGTTC -30 GTACGCGCAGGAAACACTGACGTTCTTACTGACGC 3840 1 768 F GTACGCGCAGGAAACACTGACGTTCTTACTGACGC -179 GGATTGTTCAGTAACTTGACTCATGATTTCTTACC 3931 1 379 R GGTAAGAAATCATGAGTCAAGTTACTGAACAATCC -364 GCTTGTTCGTTTTCCGCCTACTGCGACTAAAGAGA 4054 1 1864 F GCTTGTTCGTTTTCCGCCTACTGCGACTAAAGAGA -370 CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC 3616 1 563 F CGTTTATGGTACGCTGGACTTTGTGGGATACCCTC -615 GCCATCAACTAACGATTCTGTCAAAAACTGACGCG 4031 1 191 F GCCATCAACTAACGATTCTGTCAAAAACTGACGCG -169 GTTTTGCCGCAAGCTGGCTGCTGAACGCCCTCTTA 3828 1 4382 F GTTTTGCCGCAAGCTGGCTGCTGAACGCCCTCTTA -68 GTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCCG 3988 1 4939 F GTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCCG -492 GTAGAAGTCGTCATTTGGCGAGAAAGCTCAGTCTC 3894 1 1529 R GAGACTGAGCTTTCTCGCCAAATGACGACTTCTAC -18 GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 3984 1 2485 F GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 348 GACTTAGTTCATCAGCAAACGCAGAATCAGCGGTA 4036 1 3708 F GACTTAGTTCATCAGCAAACGCAGAATCAGCGGTA -161 GTTTTTAGTGAGTTGTTCCATTCTTTAGCTCCTA. 3852 1 5061 R CTAGGAGCTAAAGAATGGAACAACTCACTAAAAAC 30 GATATGTATGTTGACGGGCATAAGGCTGCTTCTGG 3407 1 4191 F GATATGTATGTTGACGGCCATAAGGCTGCTTCTGA 924 GCAGGAGAAACATACGAAGGCGCATAACGATACCA 3923 1 2051 R TGGTATCGTTATGCGCCTTCGTATGTTTCTCCTGC 184 GAAGTTAACACTTTCGGATATTTCTGATGAGTCGA 4013 1 25 F GAAGTTAACACTTTCGGATATTTCTGATGAGTCGA -194 GCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGAC 3902 1 547 F GCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGAC 10 TTCCTAGACAAATTAGAGCCAATACCATCAGCTTT 3969 1 3879 R AAAGCTGATGGTATTGGCTCTAATTTGTCTAGGAA -307 GGTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGA 3937 1 3150 F GGTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGA 43 GGTTGTTTCTGTTGGTGCTGATATTTCTTTTGATG 3710 1 2607 F GGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATG 660 GTTTCGCTGAATCAGGTTATTAAAGAGATTATTCG 3834 1 2869 F GTTTCGCTGAATCAGGTTATTAAAGAGATTATTTG 52 GCGTGGATTACTATCTGAGTCCGATGCTGTTCAAC 3915 1 336 F GCGTGGATTACTATCTGAGTCCGATGCTGTTCAAC -212 GTATGCAAATTAGCATAAGCAGCTTGCAGACCCAT 3968 1 1580 R ATGGGTCTGCAAGCTGCTTATGCTAATTTGCATAC -74 GCAGATTGCGATAAACGGTCACATTAAATTTAACC 3999 1 2218 R GGTTAAATTTAATGTGACCGTTTATCGCAATCTGC 214 GGTGTGGTTGATATTTTTCATGGTATTGATAAAGC 4093 1 3807 F GGTGTGGTTGATATTTTTCATGGTATTGATAAAGC 97 GCGACAGCTTGGTTTTTAGTGAGTTGTTCCATTCT 3870 1 5072 R AGAATGGAACAACTCACTAAAAACCAAGCTGTCGC -308 GACGTTCGTGATGAGTTTGTATCTGTTACTGAGGA 3746 1 4224 F GACGTTCGTGATGAGTTTGTATCTGTTACTGAGAA 408 GGAACAATTTCTGGAAAGACGGTAAAGCTGATGGT 3997 1 3856 F GGAACAATTTCTGGAAAGACGGTAAAGCTGATGGT -321 GACGGTTAATGCTGGTAATGGTGGGTTTTTTTTTT 2848 1 2535 F GACGGTTAATGCTGGTAATGGTGGTTTTCTTCATT 7 GTGTTATTAATATCAAGTTGGGGGAGCACATTGTA 4079 1 4284 R TACAATGTGCTCCCCCAACTTGATATTAATAACAC -296 GTTATTATACCGTCAAGGACTGTGTGACTATTGAC 4022 1 2750 F GTTATTATACCGTCAAGGACTGTGTGACTATTGAC -531 GATGAGTTTGTATCTGTTACTGAGAAGTTAATGGA 4099 1 4233 F GATGAGTTTGTATCTGTTACTGAGAAGTTAATGGA -194 GGTAGAAGTCGTCATTTGGCGAGAAAGCTCAGTCT 3920 1 1530 R AGACTGAGCTTTCTCGCCAAATGACGACTTCTACC -77 GTTATTTCCTAGACAAATTAGAGCCAATACCATCA 4103 1 3884 R TGATGGTATTGGCTCTAATTTGTCTAGGAAATAAC -269 GCTTTAAAATAGTTGTTATAGATATTCAAATAACC 4176 1 1379 R GGTTATTTGAATATCTATAACAACTATTTTAAAGC -262 GGAGTTTAATCATGTTTCAGACTTTTATTTCTCGC 3920 1 2384 F GGAGTTTAATCATGTTTCAGACTTTTATTTCTCGC -335 GAAAGTGTTAACTTCTGCGTCATGGAAGCGATAAA 4052 1 5 R TTTATCGCTTCCATGACGCAGAAGTTAACACTTTC -441 GTTCTTATTACCCTTCTGAATGTCACGCTGATTAT 4020 1 3988 F GTTCTTATTACCCTTCTGAATGTCACGCTGATTAT -165 GAACGCGTACTTATTCGCCACCATGATTATGACCA 3885 1 2144 F GAACGCGTACTTATTCGCCACCATGATTATGACCA -487 TAACCATAAGGCCACGTATTTTGCAAGCTATTTAA 3964 1 4854 R TTAAATAGCTTGCAAAATACGTGGCCTTATGGTTA -180 GATGAATGCAATGCGACAGGCTCATGCTGATGGTT 3860 1 4532 F GATGAATGCAATGCGACAGGCTCATGCTGATGGTT 112 GCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGC 3920 1 429 F GCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGC -25 GGGCAATAATGTTTATGTTGGTTTCATGGTTTGGT 3609 1 2802 F GGGCAATAACGTTTATGTTGGTTTCATGGTTTGGT 120 GTCAAGGACTGGTTTAGATATGAGTCACATTTTGT 3944 1 265 F GTCAAGGACTGGTTTAGATATGAGTCACATTTTGT -254 GGTTCTCACTTCTGTTACTCCAGCTTCTTCGGCAC 3870 1 2448 F GGTTCTCACTTCTGTTACTCCAGCTTCTTCGGCAC -508 GCCTGTCTCATCATGGAAGGCGCTGAATTTACGGA 3936 1 669 F GCCTGTCTCATCATGGAAGGCGCTGAATTTACGGA -280 GTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCT 3957 1 2071 F GTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCT 36 GGAGAAACATACGAAGGCGCATAACGATACCACTG 3894 1 2048 R CAGTGGTATCGTTATGCGCCTTCGTATGTTTCTCC 184 GAGCAGTAGACTCCTTCTGTTGATAAGCAAGCATC 3973 1 3521 R GATGCTTGCTTATCAACAGAAGGAGTCTACTGCTC 342 GGCTGGAGACAAATAATCTCTTTAATAACCTGATT 3925 1 2878 R AATCAGGTTATTAAAGAGATTATTTGTCTCCAGCC 221 GATTAAACTCCTAAGCAGAAAACCTACCGCGCTTC 3929 1 2360 R GAAGCGCGGTAGGTTTTCTGCTTAGGAGTTTAATC -342 GCATTAACCGTCAAACTATCAAAATATAACGTTGA 4060 1 2512 R TCAACGTTATATTTTGATAGTTTGACGGTTAATGC -213 GTGCCAAGAAAAGCGGCATGGTCAATATAACCAGT 3914 1 1301 R ACTGGTTATATTGACCATGCCGCTTTTCTTGGCAC -306 GCAAACGCAGAATCAGCGGTATGGCTCCTCTCATA 3586 1 3722 F GCAAACGCAGAATCAGCGGTATGGCTCTTCTCATA 96 GATTTAACCGAAGATGATTTCGATTTTCTGACGAG 4035 1 471 F GATTTAACCGAAGATGATTTCGATTTTCTGACGAG -226 GTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGG 3791 1 1139 F GTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGG 102 GCCACAACCAATCAGAACGTGAAAAAGCGTCCTGC 3610 1 4916 R GCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGC -227 GCTCTTACTTTGCGACCTTTCGCCATCAACTAACG 3985 1 170 F GCTCTTACTTTGCGACCTTTCGCCATCAACTAACG -506 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GACCTATAAACATTCTGTGCCGCGTTTCTTTGTTC 3803 1 1801 F GACCTATAAACATTCTGTGCCGCGTTTCTTTGTTC -501 GGCGTGAAGTCGCCGACTGAATGCCAGCAATCTCT 3802 1 3452 R AGAGATTGCTGGCATTCAGTCGGCGACTTCACGCC 513 GCGACAGCTTGGTTTTTAGTGAGTTGTTCCATTCT 3870 1 5072 R AGAATGGAACAACTCACTAAAAACCAAGCTGTCGC -308 GGTGTCAATCCTGACGGTTATTTCCTAGACAAATT 3985 1 3900 R AATTTGTCTAGGAAATAACCGTCAGGATTGACACC -310 GGAGCAGTCCAAATGTTTTTGAGATGGCAGCAACG 3953 1 1484 R CGTTGCTGCCATCTCAAAAACATTTGGACTGCTCC -30 GTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCCG 3988 1 4939 F GTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCCG -492 GTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTT 3959 1 3944 F GTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTT -320 GCTGCATGAAGTAATCACGCTCTTGGTCAGTATGC 3672 1 1609 R GCATACTGACCAAGAACGTGATTACTTCATGCAGC 79 GTCTAATATTCAAACTGGCGCCGAGCGTATGCCGC 3934 1 1003 F GTCTAATATTCAAACTGGCGCCGAGCGTATGCCGC -98 GGATTGTTCAGTAACTTGACTCATGATTTCTTACC 3931 1 379 R GGTAAGAAATCATGAGTCAAGTTACTGAACAATCC -364 GTCCTTTACCAGC.TTAGCCATAGCACCAGAAAC. 3758 1 3143 R TGTTTCTGGTGCTATGGCTAAAGCTGGTAAAGGAC 450 GTTTGAGCTTGAGTAAGCATTTGGCGCATAATCTC 3970 1 3609 R GAGATTATGCGCCAAATGCTTACTCAAGCTCAAAC -200 GGTTAATGCTGGTAATGGTGGTTTTCTTCCTTTCA 3434 1 2538 F GGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCA -141 GTAAAATACTGACCAGCCGTTTGAGCTTGAGTAAG 3970 1 3627 R CTTACTCAAGCTCAAACGGCTGGTCAGTATTTTAC -129 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCAT 3644 1 1129 F GATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCAT 107 GGATTGTTCAGTAACTTGACTCATGATTTCTTACC 3931 1 379 R GGTAAGAAATCATGAGTCAAGTTACTGAACAATCC -364 GACAGATGTATCCATCTGAATGCAATGAAGAAAAC 4113 1 2558 R GTTTTCTTCATTGCATTCAGATGGATACATCTGTC -409 GTCGGCTACAGTAACTTTTCCCAGCCTCAATCTCA 3864 1 5269 R TGAGATTGAGGCTGGGAAAAGTTACTGTAGCCGAC -276 GACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGA 3902 1 2644 F GACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGA -305 GAATGTTTATAGGTCTGTTGAACACGACCAGAAAA 4142 1 1781 R TTTTCTGGTCGTGTTCAACAGACCTATAAACATTC 316 GGATGAATTGGCACAATGCTACAATGTGCTCCCCC 3835 1 4265 F GGATGAATTGGCACAATGCTACAATGTGCTCCCCC 2 GAAAGACGGTAAAGCTGATGGTATTGGCTCTAATT 3883 1 3869 F GAAAGACGGTAAAGCTGATGGTATTGGCTCTAATT -350 GTGATAAGCAGGAGAAACATACGAAGGCGCATAAC 4008 1 2058 R GTTATGCGCCTTCGTATGTTTCTCCTGCTTATCAC -299 GCAGTAGTAATTCCTGCTTTATCAAGATAATTTTT 3943 1 59 R AAAAATTATCTTGATAAAGCAGGAATTACTACTGC -292 AAGGCTTCCCATTCATTCAGGAACCGCCTTCTGGT 3845 1 2100 F AAGGCTTCCCATTCATTCAGGAACCGCCTTCTGGT -316 AAAGCTGTTGCCGATACTTGGAACAATTTCTGGAA 3962 1 3837 F AAAGCTGTTGCCGATACTTGGAACAATTTCTGGAA -250 GTTTCGCTGAATCAGGTTATTAAAGAGATTATTTG 4060 1 2869 F GTTTCGCTGAATCAGGTTATTAAAGAGATTATTTG -37 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 4101 1 276 F GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 31 GAGAAACATACGAAGGCGCATAACGATACCACTGA 3930 1 2047 R TCAGTGGTATCGTTATGCGCCTTCGTATGTTTCTC -121 GATTACTTCATGCAGCGTTACCATGATGTTATTTC 3909 1 1628 F GATTACTTCATGCAGCGTTACCATGATGTTATTTC -25 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GCTTAATATGCTTGGCACGTTCGTCAAGGACTGGT 4001 1 243 F GCTTAATATGCTTGGCACGTTCGTCAAGGACTGGT -81 GCTATCAGTATTTTTGTGTGCCTGAGTATGGTACA 4034 1 4717 F GCTATCAGTATTTTTGTGTGCCTGAGTATGGTACA -57 GCTTGGTTTTTAGTGAGTTGTTCCATTCTTTAGCT 3936 1 5066 R AGCTAAAGAATGGAACAACTCACTAAAAACCAAGC -373 GACATTATGGGTCTGCAAGCTGCTTATGCTAATTT 3906 1 1574 F GACATTATGGGTCTGCAAGCTGCTTATGCTAATTT -209 GAAAGGTATTAAGGATGAGTGTTCAAGATTGCTGG 3987 1 4451 F GAAAGGTATTAAGGATGAGTGTTCAAGATTGCTGG -119 CACATCTATTGACATTATGGGTCTGCAAGCTGCTT 3976 1 1564 F CACATCTATTGACATTATGGGTCTGCAAGCTGCTT -485 GGTATTGGCTCTAATTTGTCTAGGAAATAACCGTC 4027 1 3888 F GGTATTGGCTCTAATTTGTCTAGGAAATAACCGTC -489 GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT 4012 1 2372 F GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT -365 GAGCTTTCTCGCCAAATGACGACTTCTACCACATC 3925 1 1535 F GAGCTTTCTCGCCAAATGACGACTTCTACCACATC 104 GTTGAACACGACCAGAAAACTGGCCTAACGCCGCT 3455 1 1765 R AACGTCGTTAGGCCAGTTTTCTGGTCGTGTTCAAC -519 TACGTGGCCTTATGGTTACAGTATGCCCATCGCAG 3930 1 4871 F TACGTGGCCTTATGGTTACAGTATGCCCATCGCAG 191 GCAAGGTCCATATCTGACTTTTTGTTAACGTATTT 3907 1 5016 R AAATACGTTAACAAAAAGTCAGATATGGACCTTGC -326 GAGATGGCAGCAACGGAAACCATAACGAGCATCAT 3887 1 1464 R ATGATGCTCGTTATGGTTTCCGTTGCTGCCATCTC 311 GTCGGGAGAGGAGTGGCATTAACACCATCCTTCAT 3784 1 1256 R ATGAAGGATGGTGTTAATGCCACTCCTCTCCCGAC -310 GTCCACACCATTGCTTTATCTAAAAGGTTTTCACG -363 1 1558 F TTCTACCACATCTATTGACATTATGGGTCTGCAAG -529 GATGCCGACCCTAAATTTTTTGCCTGTTTGGTTCG 3826 1 2638 F GATGCCGACCCTAAATTTTTTGCCTGTTTGGTTCG -278 GATAAGTTGCTTGATTTGGTTGGACTTGGTGGCTA 3767 1 3219 F GATAAGTTGCTTGATTTGGTTGGACTTGGTGGCAA 130 GATTTGAGAATCAAAAAGAGCTTACTAAAATGCAA 4131 1 3370 F GATTTGAGAATCAAAAAGAGCTTACTAAAATGCAA 1077 GGATATTTCTGATGAGTCGAAAAATTATCTTGATA 4074 1 40 F GGATATTTCTGATGAGTCGAAAAATTATCTTGATA -17 GAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTGA 3947 1 4143 F GAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTGA -64 GGTAATAAGAACGAACCATAACAAAGCCTCCAAGA 3793 1 3965 R TCTTGGAGGCTTTTTTATGGTTCGTTCTTATTACC -57 GAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGA 4041 1 2893 F GAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGA -161 GTGATGTGCTTGCTACCGATAACAATACTGTAGGC 4004 1 3034 F GTGATGTGCTTGCTACCGATAACAATACTGTAGGC 253 GTTTTGCCGCAAGCTGGCTGCTGAACGCCCTCTTA 3828 1 4382 F GTTTTGCCGCAAGCTGGCTGCTGAACGCCCTCTTA -68 GTAATTTTTGACGCACGTTTTCTTCTGCGTCAGTA 3972 1 794 R TACTGACGCAGAAGAAAACGTGCGTCAAAAATTAC -311 GTTTTGTATGGCAACTTGCCGCCGCGTGAAATTTC 3935 1 1955 F GTTTTGTATGGCAACTTGCCGCCGCGTGAAATTTC -188 GGGTTAGGAACATTAGAGCCTTGAATGGCAGATTT 3931 1 3087 R AAATCTGCCATTCAAGGCTCTAATGTTCCTAACCC -123 GCAAAAATTAAAATTTTTACCGCTTCGGCGTTATA 3983 1 2305 R TATAACGCCGAAGCGGTAAAAATTTTAATTTTTGC 1233 TTGAATATTAGACATAATTTATCCTCAAGTAAGGG 4171 1 981 R CCCTTACTTGAGGATAAATTATGTCTAATATTCAA -446 GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCA 4003 1 2368 F GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCA -410 GCAGAGGAAGCATCAGCACCAGCGCGCTCCCAAGC 3510 1 3318 R GCTTGGGAGCGTGCTGGTGCTGATGCTTCCTCTGC -93 GAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGA 4041 1 2893 F GAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGA -161 GCCGCGTGAAATTTCTATGAAGGATGTTTTCCTTT 3617 1 1975 F GCCGCGTGAAATTTCTATGAAGGATGTTTTCCGTT -181 GGTTTAAGAGCCTCGATACGCTCAAAGTCAAAATA 4021 1 4020 R TATTTTGACTTTGAGCGTATCGAGGCTCTTAAACC -192 GAATTAAATCGAAGTGGACTGCTGGCGGAAAATGA 4056 1 102 F GAATTAAATCGAAGTGGACTGCTGGCGGAAAATGA -637 GGTGTCAATCCTGACGGTTATTTCCTAGACAAATT 3985 1 3900 R AATTTGTCTAGGAAATAACCGTCAGGATTGACACC -310 GTCCTTCCTCGTACGCCGGGCAATAATGTTTATGT 3328 1 2785 F GTCCTTCCCCGTACGCCGGGCAATAACGTTTATGT -289 GCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGA 3927 1 2311 F GCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGA 1475 GTCATGCGCTCTAATCTCTGGGCATCTGGCTATGA 3904 1 1712 F GTCATGCGCTCTAATCTCTGGGCATCTGGCTATGA -367 GTGATGTGCTTGCTACCGATAACAATACTGTAGGC 4004 1 3034 F GTGATGTGCTTGCTACCGATAACAATACTGTAGGC 253 GATGAAAATGCTCACAATGACAAATCTGTCCACGG 3991 1 5153 F GATGAAAATGCTCACAATGACAAATCTGTCCACGG -201 GACTACCCTCCCGACTGCCTATGATGTTTATCCTT 3778 1 2694 F GACTACCCTCCCGACTGCCTATGATGTTTATCCTT -140 GAACGTTTTTTACCTTTAGACATTACATCACTCCT 3972 1 836 R AGGAGTGATGTAATGTCTAAAGGTAAAAAACGTTC -175 GAAACAAATGCTTAGGGCTTTTATTGGTATCAGGG 3768 1 1342 R CCCTGATACCAATAAAATCCCTAAGCATTTGTTTC -110 GTGGTTGAACAGCATCGGACTCAGATAGTAATCCA 3977 1 339 R TGGATTACTATCTGAGTCCGATGCTGTTCAACCAC -316 ATAAAAGATTGAGTGTGAGGTTATAACGCCGAAGC 4049 1 2284 F ATAAAAGATTGAGTGTGAGGTTATAACGCCGAAGC -325 GGAAGGCGCTGAATTTACGGAAAACATTATTAATG 3955 1 683 F GGAAGGCGCTGAATTTACGGAAAACATTATTAATG -287 GTGCTCCCCCAACTTGATATTAATAACACTATAGA 4074 1 4290 F GTGCTCCCCCAACTTGATATTAATAACACTATAGA -278 GTGCCAAGAAAAGCGGCATGGTCAATATAACCAGT 3914 1 1301 R ACTGGTTATATTGACCATGCCGCTTTTCTTGGCAC -306 GCCACCATGATTATGACCAGTGTTTCCAGTCCGTT 3851 1 2160 F GCCACCATGATTATGACCAGTGTTTCCAGTCCGTT 169 GTAAACATAGTGCCATGCTCAGGAACAAAGAAACG 4098 1 1823 R CGTTTCTTTGTTCCTGAGCATGGCACTATGTTTAC 86 GAAATGACTCGCAAGGTTAGTGCTGAGGTTGACTT 3864 1 3678 F GAAATGACTCGCAAGGTTAGTGCTGAGGTTGACTT -377 GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 3984 1 2485 F GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 348 GCAAAGGATATTTCTAATGTCGTCACTGATGCTGC 3934 1 3768 F GCAAAGGATATTTCTAATGTCGTCACTGATGCTGC 108 GATGAGACAGGCCGTTTGAATGTTGACGGGATGAA 3989 1 646 R TTCATCCCGTCAACATTCAAACGGCCTGTCTCATC 313 GCTTAGGAGTTTAATCATGTTTCAGACTTTTATTT 3929 1 2379 F GCTTAGGAGTTTAATCATGTTTCAGACTTTTATTT -40 GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCG 3910 1 1485 F GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCG 25 GATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCAT 3644 1 1129 F GATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCAT 107 GGTATTAAGGATGAGTGTTCAAGATTGCTGGAGGC 4030 1 4455 F GGTATTAAGGATGAGTGTTCAAGATTGCTGGAGGC -196 GACCCTCAGCAATCTTAAACTTCTTAGACGAATCA 4013 1 2014 R TGATTCGTCTAAGAAGTTTAAGATTGCTGAGGGTC -202 GACGGGATGAACATAATAAGCAATGACGGCAGCAA 4015 1 622 R TTGCTGCCGTCATTGCTTATTATGTTCATCCCGTC 283 GACTGAATGCCAGCAATCTCTTTTTGAGTCTCATT 3841 1 3438 R AATGAGACTCAAAAAGAGATTGCTGGCATTCAGTC 753 GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAA 4011 1 2821 F GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAA 47 GATGGTATTGGCTCTAATTTGTCTAGGAAATAACC 4065 1 3885 F GATGGTATTGGCTCTAATTTGTCTAGGAAATAACC -146 GTCGTAACCCAGCTTGGTAAGTTGGATTAAGCACT 3936 1 5188 R AGTGCTTAATCCAACTTACCAAGCTGGGTTACGAC 104 GGTCGAATTTTCTCATTTTCCGCCAGCAGTCCACT 3872 1 114 R AGTGGACTGCTGGCGGAAAATGAGAAAATTCGACC -319 GTTGACGGGATGAACATAATAAGCAATGACGGCAG 4051 1 625 R CTGCCGTCATTGCTTATTATGTTCATCCCGTCAAC 119 GTTGATGGCGAAAGGTCGCAAAGTAAGAGCTTCTC 3913 1 165 R GAGAAGCTCTTACTTTGCGACCTTTCGCCATCAAC -437 GTCAGTTTTTGACAGAATCGTTAGTTGATGGCGAA 4097 1 188 R TTCGCCATCAACTAACGATTCTGTCAAAAACTGAC -602 GTGGCATTCAAGGTGATGTGCTTGCTACCGATAAC 3925 1 3022 F GTGGCATTCAAGGTGATGTGCTTGCTACCGATAAC 199 GACACCCTCCCAATTGTATGTTTTCATGCCTCCAA 3857 1 3929 F GACACCCTCCCAATTGTATGTTTTCATGCCTCCAA -648 GACACCTAAAGCTACATCGTCAACGTTATATTTTG 3896 1 2493 F GACACCTAAAGCTACATCGTCAACGTTATATTTTG 157 GTAAAGTTAGACCAAACCATGAAACCAACATAAAC 4110 1 2812 R GTTTATGTTGGTTTCATGGTTTGGTCTAACTTTAC -270 GGAAGTAGCGACAGCTTGGTTTTTAGTGAGTTGTT 3857 1 5079 R AACAACTCACTAAAAACCAAGCTGTCGCTACTTCC -534 GGCGGAAAATGAGAAAATTCGACCTATCCTTGCGC 3821 1 125 F GGCGGAAAATGAGAAAATTCGACCTATCCTTGCGC -444 GATTACTTCATGCAGCGTTACCATGATGTTATTTC 3909 1 1628 F GATTACTTCATGCAGCGTTACCATGATGTTATTTC -25 GCTCAAATTTATGCGCGCTTCGATAAAAATGATTG 4071 1 5336 F GCTCAAATTTATGCGCGCTTCGATAAAAATGATTG -195 CTCAACGCAGCGACGAGCACGAGAGCGGTCAGTAG 3903 1 523 R CTACTGACCGCTCTCGTGCTCGTCGCTGCGTTGAG 177 GTCGCTACTTCCCAAGAAGCTGTTCAGAATCAGAA 4034 1 5102 F GTCGCTACTTCCCAAGAAGCTGTTCAGAATCAGAA -81 GTCTTCTTCGGTTCCGACTACCCTCCCGACTGCCT 3844 1 2679 F GTCTTCTTCGGTTCCGACTACCCTCCCGACTGCCT -10 GATTATGCGCCAAATGCTTACTCAAGCTCAAACGG 3979 1 3611 F GATTATGCGCCAAATGCTTACTCAAGCTCAAACGG -529 GCTTTAAAATAGTTGTTATAGATATTCAAATAACC 4176 1 1379 R GGTTATTTGAATATCTATAACAACTATTTTAAAGC -262 GTTATTTCCTAGACAAATTAGAGCCAATACCATCA 4103 1 3884 R TGATGGTATTGGCTCTAATTTGTCTAGGAAATAAC -269 GACGACTTCTACCACATCTATTGACATTATGGGTC 3931 1 1552 F GACGACTTCTACCACATCTATTGACATTATGGGTC -217 GATTAGAGGCGTTTTATGATAATCCCAATGCTTTG 3988 1 4606 F GATTAGAGGCGTTTTATGATAATCCCAATGCTTTG -109 GTCGGGAGGGTAGTCGGAACCGAAGAAGACTCAAA 3952 1 2674 R TTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGAC -453 GCATTTTAGTAAGCTCTTTTTGATTCTCAAATCCG 4044 1 3368 R CGGATTTGAGAATCAAAAAGAGCTTACTAAAATGC 597 GAACAATCCGTACGTTTCCAGACCGCTTTGGCCTC 3780 1 405 F GAACAATCCGTACGTTTCCAGACCGCTTTGGCCTC -277 GAAATAACCGTCAGGATTGACACCCTCCCAATTGT 3837 1 3911 F GAAATAACCGTCAGGATTGACACCCTCCCAATTGT -82 GTTATAACCTCACACTCACCCTATTATCACGTCGT 2707 1 2276 R ACTTCGTGATAAAAGATTGAGTGTGAGGTTATAAC -454 GACGGTTATTTCCTAGACAAATTAGAGCCAATACC 4013 1 3888 R GGTATTGGCTCTAATTTGTCTAGGAAATAACCGTC -285 GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG 3613 1 564 F GTTTATGGTACGCTGGACTTTGTGGGATACCCTCG -720 GCAGGAATTACTACTGCTTGTTTACGAATTAAATC 3991 1 77 F GCAGGAATTACTACTGCTTGTTTACGAATTAAATC -356 GCATCCACGGCGCTTTAAAATAGTTGTTATAGATA 4029 1 1390 R TATCTATAACAACTATTTTAAAGCGCCGTGGATGC 115 GAAGAGCCATACCGCTGATTCTGCGTTTGCTGATG 3800 1 3717 R CATCAGCAAACGCAGAATCAGCGGTATGGCTCTTC 519 GGGAAAGGTCATGCGGCATACGCTCGGCGCCAGTT 3750 1 1015 R AACTGGCGCCGAGCGTATGCCGCATGACCTTTCCC -361 GGACTTGGTGGCAAGTCTGCCGCTGATAAAGGAAA 3976 1 3240 F GGACTTGGTGGCAAGTCTGCCGCTGATAAAGGAAA 108 CTCTTTCTCAATCCCCAATGCTTGGCTTCCATAAG 3991 1 4081 F CTCTTTCTCAATCCCCAATGCTTGGCTTCCATAAG -449 GAAATATCCGAAAGTGTTAACTTCTGCGTCATGGA 3965 1 14 R TCCATGACGCAGAAGTTAACACTTTCGGATATTTC -230 GGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTG 3841 1 4484 F GGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTG -671 GGTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGA 3937 1 3150 F GGTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGA 43 GCTCTTAAACCTGCTATTGAGGCTTGTGGCATTTC 3921 1 4044 F GCTCTTAAACCTGCTATTGAGGCTTGTGGCATTTC 84 GTAAAAATGTCTACAGTAGAGTCAATAGCAAGGCC 4059 1 1172 R GGCCTTGCTATTGACTCTACTGTAGACATTTTTAC 735 GCCAATATGAGAAGAGCCATACCGCTGATTCTGCG 3856 1 3727 R CGCAGAATCAGCGGTATGGCTCTTCTCATATTGGC 264 GTGGTAGAAGTCGTCATTTGGCGAGAAAGCTCAGT 3931 1 1532 R ACTGAGCTTTCTCGCCAAATGACGACTTCTACCAC 234 GTGAAGTCGCCGACTGAATGCCAGCAATCTCTTTT 3768 1 3449 R AAAAGAGATTGCTGGCATTCAGTCGGCGACTTCAC 326 GATGGCAGCAACGGAAACCCTAACGAGCATCATCT 3607 1 1462 R AGATGATGCTCGTTATGGTTTCCGTTGCTGCCATC 560 AAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGA 3968 1 238 F AAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGA 297 GTAAAGCTGATGGTATTGGCTCTAATTTTTCTAGG 3649 1 3877 F GTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGG 425 TTTTTCGACTCATCAGAAATATCCGAAAGTGTTAA 4128 1 29 R TTAACACTTTCGGATATTTCTGATGAGTCGAAAAA 227 GATAAAGCTGTTGCCGATACTTGGAACAATTTCTG 3933 1 3834 F GATAAAGCTGTTGCCGATACTTGGAACAATTTCTG -357 GTATCAGGGTTAATCGTGCCAAGAAAAGCGGCATG 4014 1 1316 R CATGCCGCTTTTCTTGGCACGATTAACCCTGATAC -86 GCACAGAATGTTTATAGGTCTGTTGAACACGACCA 4035 1 1786 R TGGTCGTGTTCAACAGACCTATAAACATTCTGTGC -18 TTAATAACACTATAGACCACCGCCCCGAAGGGGAC 3991 1 4309 F TTAATAACACTATAGACCACCGCCCCGAAGGGGAC -389 GTCCAAATGTTTTTGAGATGGCAGCAACGGAAACC 4094 1 1478 R GGTTTCCGTTGCTGCCATCTCAAAAACATTTGGAC 445 GTGATGTGCTTGCTACCGATAACAATACTGTAGGC 4004 1 3034 F GTGATGTGCTTGCTACCGATAACAATACTGTAGGC 253 GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA 4140 1 4236 F GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA -215 GTTGCGGCTCATTCTGATTCTGAACAGCTTCTTGG 3898 1 5113 R CCAAGAAGCTGTTCAGAATCAGAATGAGCCGCAAC 129 GCTGATTATTTTGACTTTGAGCGTATCGTGGTTCT 3513 1 4014 F GCTGATTATTTTGACTTTGAGCGTATCGAGGCTCT -170 GGATAACCGCATCAAGCTCTTGGAAGAGATTCTGT 3905 1 4121 F GGATAACCGCATCAAGCTCTTGGAAGAGATTCTGT -28 GCTGACAACCGTCCTTTACTTGTCATGCGCTCTAA 3892 1 1691 F GCTGACAACCGTCCTTTACTTGTCATGCGCTCTAA -486 CATGTTTCAGACTTTTATTTCTCGCCATAATTCAA 4044 1 2394 F CATGTTTCAGACTTTTATTTCTCGCCATAATTCAA -253 GTTTTCTTCTGCGTCAGTAAGAACGTCAGTGTTTC 4003 1 778 R GAAACACTGACGTTCTTACTGACGCAGAAGAAAAC -387 GGAGCAGTCCAAATGTTTTTGAGATGGCAGCAACG 3953 1 1484 R CGTTGCTGCCATCTCAAAAACATTTGGACTGCTCC -30 GCCTACTGCGACTAAAGAGATTCAGTACCTTAACG 3990 1 1879 F GCCTACTGCGACTAAAGAGATTCAGTACCTTAACG -327 GTTACCATGATGTTATTTCTTCATTTGGAGGTAAA 4109 1 1644 F GTTACCATGATGTTATTTCTTCATTTGGAGGTAAA -217 GTGATGAGTTTGTATCTGTTACTGAGAAGTTAATG 4080 1 4231 F GTGATGAGTTTGTATCTGTTACTGAGAAGTTAATG -27 GGAAGCCTTCAAGAAGGTGATAAGCAGGAGAAACA 4076 1 2074 R TGTTTCTCCTGCTTATCACCTTCTTGAAGGCTTCC -88 GATTATGCGCCAAATGCTTACTCAAGCTCAAACGG 3979 1 3611 F GATTATGCGCCAAATGCTTACTCAAGCTCAAACGG -529 GCGATTCAATCATGACTTCGTGATAAAAGATTGAG 4095 1 2262 F GCGATTCAATCATGACTTCGTGATAAAAGATTGAG -211 GGTTGTCAGCGTCATAAGAGGTTTTACCTCCAAAT 3965 1 1666 R ATTTGGAGGTAAAACCTCTTATGACGCTGACAACC -490 GCTTGATGCGGTTATCCATCTGCTTATGGAAGCCA 3980 1 4103 R TGGCTTCCATAAGCAGATGGATAACCGCATCAAGC 101 GTAATTCCTGCTTTATCAAGATAATTTTTCGACTC 4016 1 53 R GAGTCGAAAAATTATCTTGATAAAGCAGGAATTAC -74 GGATTGACACCCTCCCAATTGTATGCTTTCATGCC 3589 1 3924 F GGATTGACACCCTCCCAATTGTATGTTTTCATGCC -167 GGTTATATTGACCATGCCGCTTTTCTTGGCACGAT 3937 1 1304 F GGTTATATTGACCATGCCGCTTTTCTTGGCACGAT -362 GAGGGGTTGACCAAGCGAAGCGCGGTAGGTTTTCT 3731 1 2344 F GAGGGGTTGACCAAGCGAAGCGCGGTAGGTTTTCT -81 GAATTTACGGAAAACATTATTAATGGCGTCGAGCG 4083 1 693 F GAATTTACGGAAAACATTATTAATGGCGTCGAGCG 776 GAAATCATCTTCGGTTAAATCCAAAACGGCAGAAG 4107 1 457 R CTTCTGCCGTTTTGGATTTAACCGAAGATGATTTC -402 TTGTATGGCAACTTGCCGCCGCGTGAAATTTCTAT 3873 1 1958 F TTGTATGGCAACTTGCCGCCGCGTGAAATTTCTAT 88 GTTAATGCTGGTAATGGTGGTTTTCTTCTTTTCCT 3185 1 2539 F GTTAATGCTGGTAATGGTGGTTTTCTTCATTGCAT 160 GCGGTGGTCTATAGTGTTATTAATATCAAGTTGTG 3809 1 4297 R CCCAACTTGATATTAATAACACTATAGACCACCGC -135 GGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGT 4014 1 1996 F GGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGT -162 GTTCAAGATTGCTGGAGGCCTCCACTATGAAATCG 3968 1 4471 F GTTCAAGATTGCTGGAGGCCTCCACTATGAAATCG -156 GCGCCAGAACGTTTTTTACCTTTAGACATTACATC 3906 1 842 R GATGTAATGTCTAAAGGTAAAAAACGTTCTGGCGC -365 GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG 3573 1 555 F GAGGCTTGCGTTTATGGTACGCTGGACTTTGTGGG -59 GTTCGATAATGGTGATATGTATGTTGACGGCCATA 4048 1 4178 F GTTCGATAATGGTGATATGTATGTTGACGGCCATA -148 GCATTAACACCATCCTTCATGAACTTAATCCACTG 3982 1 1241 R CAGTGGATTAAGTTCATGAAGGATGGTGTTAATGC 165 GAAAACATACAATTGGGAGGGTGTCAATCCTGACG 3947 1 3919 R CGTCAGGATTGACACCCTCCCAATTGTATGTTTTC -159 GCCTATGATGTTTATCCTTTGGATGGTCGCCATGA 3754 1 2710 F GCCTATGATGTTTATCCTTTGAATGGTCGCCATGA -173 GAATGAATGGGAAGCCTTCAAGAAGGTGATAAGCA 4016 1 2083 R TGCTTATCACCTTCTTGAAGGCTTCCCATTCATTC 127 GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA 4140 1 4236 F GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA -215 GTTCAACAGACCTATAAACATTCTGTGCCGCGTTT 3885 1 1793 F GTTCAACAGACCTATAAACATTCTGTGCCGCGTTT -255 GACAGAATCGTTAGTTGGTGGAGTAAGGTGGCAAA 2944 1 178 R TTTGCGACCTTTCGCCATCAACTAACGATTCTGTC -113 GCGGCTCATTCTGATTCTGAACAGCTTCTTGGGAA 3953 1 5110 R TTCCCAAGAAGCTGTTCAGAATCAGAATGAGCCGC -226 GATTCAATCATGACTTCGTGATAAAAGATTGAGTG 4084 1 2264 F GATTCAATCATGACTTCGTGATAAAAGATTGAGTG 187 GCGTATCGAGGCTCTTAAACCTGCTATTGAGGCTT 3866 1 4034 F GCGTATCGAGGCTCTTAAACCTGCTATTGAGGCTT 280 GACGCAGAAGTTAACACTTTCGGATATTTCTGTTG 3628 1 19 F GACGCAGAAGTTAACACTTTCGGATATTTCTGATG -263 GGTTATTTCCTAGACAAATTAGAGCCAATACCATC 4058 1 3885 R GATGGTATTGGCTCTAATTTGTCTAGGAAATAACC -222 GCGCCGTGGATGCCTGACCGTACCGAGGCTAACCC 3789 1 1412 F GCGCCGTGGATGCCTGACCGTACCGAGGCTAACCC -815 GGCTTGTGGCATTTCTACTCTTTCTCAATCCCCAA 3929 1 4064 F GGCTTGTGGCATTTCTACTCTTTCTCAATCCCCAA -342 GGAAAGCGAGGGTATCCTACAAAGTCCAGCGTACC 3574 1 570 R GGTACGCTGGACTTTGTGGGATACCCTCGCTTTCC -172 GGTGAACAGTGGATTAAGTTCATGAAGGATGGTGT 3967 1 1235 F GGTGAACAGTGGATTAAGTTCATGAAGGATGGTGT -34 TGACGACATTAGAAATATCCTTTGCAGTAGCGCCA 3955 1 3758 R TGGCGCTACTGCAAAGGATATTTCTAATGTCGTCA 238 GTTTATCGTTTTTGACACTCTCACGTTGGCTGACG 4008 1 4568 F GTTTATCGTTTTTGACACTCTCACGTTGGCTGACG -47 GCGTCGTGGCCTTGCTATTGACTCTACTGTAGACA 3922 1 1165 F GCGTCGTGGCCTTGCTATTGACTCTACTGTAGACA 210 GTACGCGTTCTTGCAAATCACCAGAAGGCGGTTCC 3910 1 2119 R GGAACCGCCTTCTGGTGATTTGCAAGAACGCGTAC -208 GGCTCTTAAACCTGCTATTGAGGCTTTTGGGTTTT 3113 1 4043 F GGCTCTTAAACCTGCTATTGAGGCTTGTGGCATTT 51 GGGTTAGGAACATTAGAGCCTTGAATGGCAGATTT 3931 1 3087 R AAATCTGCCATTCAAGGCTCTAATGTTCCTAACCC -123 GCCACCATGATTATGACCAGTGTTTCCAGTCCGTT 3851 1 2160 F GCCACCATGATTATGACCAGTGTTTCCAGTCCGTT 169 GCCTAACGACGTTTGGTCAGTTCCATCAACATCAT 3912 1 1743 R ATGATGTTGATGGAACTGACCAAACGTCGTTAGGC -58 GACGACCAACATTAGGGTCAACGCTACCTGTAGGA 3675 1 4799 R TCCTACAGGTAGCGTTGACCCTAATTTTGGTCGTC -226 GCAATGACGGCAGCCATCAACTCAACAGGAGCAGG 3468 1 603 R CCTGCTCCTGTTGAGTTTATTGCTGCCGTCATTGC -74 GACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGA 3902 1 2644 F GACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGA -305 GTAAAACCTCTTATGACGCTGACAACCGTCCTTTA 3878 1 1674 F GTAAAACCTCTTATGACGCTGACAACCGTCCTTTA -576 GTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCT 3943 1 1771 F GTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCT -502 GCTGTACCATACTCAGGCACACAACAATACTGATA 3767 1 4719 R TATCAGTATTTTTGTGTGCCTGAGTATGGTACAGC 256 GTTTAATCATGTTTCAGACTTTTATTTCTCGCCAT 3995 1 2387 F GTTTAATCATGTTTCAGACTTTTATTTCTCGCCAT -394 GTTGGGGGAGCACATTGTAGCATTGTGCCAATTCA 3889 1 4268 R TGAATTGGCACAATGCTACAATGTGCTCCCCCAAC -435 GCGTAACCGTCTTCTCGTTCTCTAAAAACCATTTT 3908 1 4346 R AAAATGGTTTTTAGAGAACGAGAAGACGGTTACGC -595 GAGTCATTTCTTTGATTTGGTCATTGGTAAAATAC 4122 1 3653 R GTATTTTACCAATGACCAAATCAAAGAAATGACTC -343 GATGATGCTCGTTATGGTTTCCGTTGCTGCCATCT 3851 1 1463 F GATGATGCTCGTTATGGTTTCCGTTGCTGCCATCT 351 GACCAGAAAACTGGCCTAACGACGTTTGGTCAGTT 3835 1 1756 R AACTGACCAAACGTCGTTAGGCCAGTTTTCTGGTC 791 GCTCAAAGTCAAAATAATCAGCGTGACATTCAGAA 4059 1 4001 R TTCTGAATGTCACGCTGATTATTTTGACTTTGAGC -92 GTTTGCTGATGAACTAAGTCAACCTCAGCACTAAC 4024 1 3693 R GTTAGTGCTGAGGTTGACTTAGTTCATCAGCAAAC 149 GCCTTCAAGAAGGTGATAAGCAGGAGAAACATACG 4093 1 2070 R CGTATGTTTCTCCTGCTTATCACCTTCTTGAAGGC 53 GGCAGCAATAAACTCAACAGGAGCAGGAAAGCGAG 4068 1 595 R CTCGCTTTCCTGCTCCTGTTGAGTTTATTGCTGCC -102 GACGAGCACGAGAGCGGTCAGTAGCAATCCAAACT 3865 1 512 R AGTTTGGATTGCTACTGACCGCTCTCGTGCTCGTC -261 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GATTAAGCACTCCGTGGACAGATTTGTCATTGTGA 3919 1 5164 R TCACAATGACAAATCTGTCCACGGAGTGCTTAATC -131 GTGGTATCGTTATGCGACTTCGTATGTTTCTCCTG 3545 1 2050 F GTGGTATCGTTATGCGCCTTCGTATGTTTCTCCTG -71 GTCAACAATTTTAATTGCAGGGGCTTCGGCCCCTT 3902 1 951 F GTCAACAATTTTAATTGCAGGGGCTTCGGCCCCTT 157 GATTATGACCAGTGTTTCCAGTCCGTTCAGTTGTT 3862 1 2168 F GATTATGACCAGTGTTTCCAGTCCGTTCAGTTGTT -32 GTGGATGCCTGACCGTACCGAGGCTAACCCTAATG 3871 1 1417 F GTGGATGCCTGACCGTACCGAGGCTAACCCTAATG -323 GAACGTCAGAAGCAGCCTTATGGCCGTCCACATAC 3615 1 4196 R GTATGTTGACGGCCATAAGGCTGCTTCTGACGTTC 543 GTAAACATAGTGCCATGCTCAGGAACAAAGAAACG 4098 1 1823 R CGTTTCTTTGTTCCTGAGCATGGCACTATGTTTAC 86 GCAGCAACGGAAACCATAACGAGCATCATCTTGAT 3879 1 1458 R ATCAAGATGATGCTCGTTATGGTTTCCGTTGCTGC 648 GAGTTTATTGCTGCCGTCATTGCTTATTATGTTCA 3946 1 615 F GAGTTTATTGCTGCCGTCATTGCTTATTATGTTCA 483 GCCGTTTGAATGTTGACGGGATGAACATAATAAGC 4083 1 636 R GCTTATTATGTTCATCCCGTCAACATTCAAACGGC -202 GTTATATTGACCATGCCGCTTTTCTTGGCACGATT 3906 1 1305 F GTTATATTGACCATGCCGCTTTTCTTGGCACGATT -216 GGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGT 3977 1 3158 F GGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGT -203 GGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGT 3977 1 3158 F GGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGT -203 GAAAATAGTCACGCAAAGCATTGGGATTATCATAA 3984 1 4619 R TTATGATAATCCCAATGCTTTGCGTGACTATTTTC -277 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 4101 1 276 F GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 31 TTATCCTTTGGATGGTCGCCATGATGGTGGTTATT 3693 1 2721 F TTATCCTTTGAATGGTCGCCATGATGGTGGTTATT 273 GAGTTTGGCGCGATGGTGATTAAAGCGGCGAAGGA -98 1 3420 F GAGATTGCCGAGATGCAAAATGAGACTCAAAAAGA -250 GAATGCCAGCAATCTCTTTTTGAGTCTCATTTTGC 3855 1 3434 R GCAAAATGAGACTCAAAAAGAGATTGCTGGCATTC 1158 GTTGGTTTCATGGTTTGGTCTAACTTTACCGCTAC 3964 1 2818 F GTTGGTTTCATGGTTTGGTCTAACTTTACCGCTAC 76 GTGTCAAAAACGATAAACCAACCATCAGCATGAGC 3996 1 4551 R GCTCATGCTGATGGTTGGTTTATCGTTTTTGACAC 204 GATGCTGCTTCTGGTGTGGTTGATATTTTTCATTG 3686 1 3795 F GATGCTGCTTCTGGTGTGGTTGATATTTTTCATGG 143 GAAAAATATCAACCACACCAGAAGCAGCATCAGTG 3982 1 3791 R CACTGATGCTGCTTCTGGTGTGGTTGATATTTTTC 460 GAGATTCAGTACCTTAACGCTAAAGGTGCTTTGAC 3944 1 1895 F GAGATTCAGTACCTTAACGCTAAAGGTGCTTTGAC -29 GCAATCTCTTTTTGAGTCTCATTTTGCTTCTCGTT 3221 1 3426 R GCCGAGATGCAAAATGAGACTCAAAAAGAGATTGC 1071 GGTAATGGTGGGTTTCTTCATTTCATTCAGATGGG 3201 1 2548 F GGTAATGGTGGTTTTCTTCATTGCATTCAGATGGA -215 GCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTT 3841 1 2341 F GCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTT -223 GTTGACCAAGCGAAGCGCGGTAGGTTTTCTGCTTA 3806 1 2349 F GTTGACCAAGCGAAGCGCGGTAGGTTTTCTGCTTA -21 GATACATCTGTCAACGCCGCTAATCAGGTTGTTTC 3858 1 2581 F GATACATCTGTCAACGCCGCTAATCAGGTTGTTTC -425 GCATCAAAAGCAATATCAGCACCAACAGAAACAAC 4059 1 2608 R GTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGC 939 GGTAAAGTTAGACCAAACCATGAAACCAACATAAA 4097 1 2813 R TTTATGTTGGTTTCATGGTTTGGTCTAACTTTACC -260 GTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCT 3943 1 1771 F GTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCT -502 GCTACCTGTAGGAAGTGTCCGCATAAAGTGCACCG 3955 1 4777 R CGGTGCACTTTATGCGGACACTTCCTACAGGTAGC -786 GAACAGCATCGGACTCAGATAGTAATCCACGCTCT 3853 1 333 R AGAGCGTGGATTACTATCTGAGTCCGATGCTGTTC -15 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGT 4018 1 2181 F GTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGT -415 GTTGTCAGCGTCATAAGAGGTTTTACCTCCAACTG 3746 1 1665 R CATTTGGAGGTAAAACCTCTTATGACGCTGACAAC 26 GTGTGGTTGATATTTTTCATGGTATTGATAAAGCT 4081 1 3808 F GTGTGGTTGATATTTTTCATGGTATTGATAAAGCT 97 GACGATGTAGCTTTAGGTGTCTGTAAAACAGGTGC 4009 1 2479 R GCACCTGTTTTACAGACACCTAAAGCTACATCGTC -194 GAAGCAATACCGCCAGCAATAGCACCAAACATAAA 3990 1 2928 R TTTATGTTTGGTGCTATTGCTGGCGGTATTGCTTC 452 GTAAAGGACGGTTGTCAGCGTCATAAGAGGTTTTA 3949 1 1675 R TAAAACCTCTTATGACGCTGACAACCGTCCTTTAC -387 GACCGACTCCAAACAATTTAGACATGGCGCCACCA 3617 1 2972 R TGGTGGCGCCATGTCTAAATTGTTTGGAGGCGGTC -20 GACAGCTTGGTTTTTAGTGAGTTGTTCCATTCTTT 3877 1 5070 R AAAGAATGGAACAACTCACTAAAAACCAAGCTGTC -369 GCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTT 3841 1 2341 F GCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTT -223 GAGCGTGGATTACTATCTGAGTCCGATGCTGTTCA 3829 1 334 F GAGCGTGGATTACTATCTGAGTCCGATGCTGTTCA 3 GCGACAGCTTGGTTTTTAGTGAGTTGTTCCATTCT 3870 1 5072 R AGAATGGAACAACTCACTAAAAACCAAGCTGTCGC -308 GTACGGATTGTTCAGTAACTTGACTCATGATTTCT 3939 1 383 R AGAAATCATGAGTCAAGTTACTGAACAATCCGTAC -275 TTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC 3923 1 1486 F TTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC 22 GACTCCTTCTGTTGATAAGCAAGCATCTCATTTTG 3973 1 3513 R CAAAATGAGATGCTTGCTTATCAACAGAAGGAGTC 53 GCAGAATCAGCGGTATGGCTCCTCTCCTATTTGCG 3086 1 3728 F GCAGAATCAGCGGTATGGCTCTTCTCATATTGGCG -346 GAGGCTCTTAAACCTGCTATTGAGGCTTTTTGCAT 3360 1 4041 F GAGGCTCTTAAACCTGCTATTGAGGCTTGTGGCAT 525 GACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGA 3902 1 2644 F GACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGA -305 GCATGAAGTAATCACGTTCTTGGTCAGTATGCAAA 4026 1 1606 R TTTGCATACTGACCAAGAACGTGATTACTTCATGC 86 GCTTCTTGGGAAGTAGCGACAGCTTGGTTTTTAGT 3890 1 5087 R ACTAAAAACCAAGCTGTCGCTACTTCCCAAGAAGC -589 GGCGTGAAGTCGCCGACTGAATGCCAGCAATCTCT 3802 1 3452 R AGAGATTGCTGGCATTCAGTCGGCGACTTCACGCC 513 GTTGAACGGCGTCGCGTCGTAACCCAGCTTGGTAA 3856 1 5203 R TTACCAAGCTGGGTTACGACGCGACGCCGTTCAAC -408 GACTTCACGCCAGAATACGAAAGACCAGGTATATG 4013 1 3476 F GACTTCACGCCAGAATACGAAAGACCAGGTATATG -233 GTATGGCAACTTGCCGCCGCGTGAAATTTCTATGA 3859 1 1960 F GTATGGCAACTTGCCGCCGCGTGAAATTTCTATGA -170 GATTTGGAGGCATGAAGACATACAATTGGGAGGGT 3774 1 3932 R ACCCTCCCAATTGTATGTTTTCATGCCTCCAAATC -426 TTGGCGCATAATCTCGGAAACCTGCTGTTGCTTGG 3866 1 3589 R CCAAGCAACAGCAGGTTTCCGAGATTATGCGCCAA 8 GATGTAGCTTTAGGTGTCTGTAAAACAGGTGCCGA 4029 1 2476 R TCGGCACCTGTTTTACAGACACCTAAAGCTACATC 162 GTACAGCTAATGGCCGTCTTCATTTCCCTTCGGTG 3334 1 4747 F GTACAGCTAATGGCCGTCTTCATTTCCATGCGGTG -302 GCGCTTCGCTTGGTCAACCCCTCAGCGGCTGCAAT 3119 1 2332 R ATTTTTGCCGCTGAGGGGTTGACCAAGCGAAGCGC -685 GAATGCAATGCGACAGGCTCATGCTGATGGTTGGT 3862 1 4535 F GAATGCAATGCGACAGGCTCATGCTGATGGTTGGT -174 GACTTTTATTTCTCGCCATAATTCAAACTTTTTTT 3963 1 2403 F GACTTTTATTTCTCGCCATAATTCAAACTTTTTTT -167 GGGGACGAAAAATGGTTTTTAGAGAACGAGAAGAC 4060 1 4338 F GGGGACGAAAAATGGTTTTTAGAGAACGAGAAGAC -28 GCGGTTATCCATCTGCTTATGGAAGCCAAGCATTG 3986 1 4096 R CAATGCTTGGCTTCCATAAGCAGATGGATAACCGC -311 GCTGAATAGCAAAGCCTCTACGCGATTTCATAGTG 3888 1 4493 R CACTATGAAATCGCGTAGAGGCTTTGCTATTCAGC -119 GCTTCCATAAGCAGATGGATAACCGCATCAAGCTC 3965 1 4105 F GCTTCCATAAGCAGATGGATAACCGCATCAAGCTC -105 GGAGGCTTTTTTATGGTTCGTTCTTATTACCCTTC 3845 1 3969 F GGAGGCTTTTTTATGGTTCGTTCTTATTACCCTTC -321 GACGCTGACAACCGTCCTTTACTTGTCATGCGCTC 3770 1 1688 F GACGCTGACAACCGTCCTTTACTTGTCATGCGCTC -601 GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT 3622 1 562 F GCGTTTATGGTACGCTGGACTTTGTGGGATACCCT -622 GACTTTGTAGGATACCCTCGCTTTCCTGCTCCTGT 3476 1 579 F GACTTTGTGGGATACCCTCGCTTTCCTGCTCCTGT 104 GATTGGTTTCGCTGAATCAGGTTATTAAAGAGATT 4082 1 2864 F GATTGGTTTCGCTGAATCAGGTTATTAAAGAGATT -255 GCAAGAGCAGAAGCAATACCGCCAGCAATAGCAGC 3606 1 2937 R GGTGCTATTGCTGGCGGTATTGCTTCTGCTCTTGC 791 GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG 3573 1 555 F GAGGCTTGCGTTTATGGTACGCTGGACTTTGTGGG -59 GCAAGCACATCACCTTGAATGCCACCGGAGGCGGC 3899 1 3012 R GCCGCCTCCGGTGGCATTCAAGGTGATGTGCTTGC -348 GAACAAGCGCAAGAGTAAACATAGTGCCATGCTCA 3898 1 1837 R TGAGCATGGCACTATGTTTACTCTTGCGCTTGTTC -204 TAATGCTTGGGAGCGTGCTGGTGCTGATGCTTCCT 3804 1 3314 F TAATGCTTGGGAGCGTGCTGGTGCTGATGCTTCCT -29 GACGACAAATCTGCTCAAATTTATGCGCGCTTCGA 3918 1 5324 F GACGACAAATCTGCTCAAATTTATGCGCGCTTCGA -440 GCTTGGAAAGATTGGTGTTTTCCCTAATAGACGCA 3793 1 3560 R TGCGTCTATTATGGAAAACACCAATCTTTCCAAGC -425 GGCAAAACTGCGTAACCGTCTTCTCGTTCTCTAAA 3834 1 4355 R TTTAGAGAACGAGAAGACGGTTACGCAGTTTTGCC -149 GTTGAACGGCGTCGCGTCGTAACCCAGCTTGTTAA 3608 1 5203 R TTACCAAGCTGGGTTACGACGCGACGCCGTTCAAC -478 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GTTTCTATGTGGCTAAATACGTTAACAAAAAGTCA 4178 1 5002 F GTTTCTATGTGGCTAAATACGTTAACAAAAAGTCA -484 GGACACTTCCTACAGGTAGCGTTGACCCTAATTTT 3822 1 4792 F GGACACTTCCTACAGGTAGCGTTGACCCTAATTTT -172 GCCGCCAAAACGTCGGCTACAGTAACTTTTCCCAG 3794 1 5280 R CTGGGAAAAGTTACTGTAGCCGACGTTTTGGCGGC -283 GCTGAGGGTCAGTGGTATCGTTATGCGCCTTCGTA 3841 1 2039 F GCTGAGGGTCAGTGGTATCGTTATGCGCCTTCGTA 103 GATTTGTCATTGTGAGCATTTTCATCCCGAAGTTG 4011 1 5144 R CAACTTCGGGATGAAAATGCTCACAATGACAAATC -304 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 4101 1 276 F GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 31 GAACCATAAAAAAGCCTCCAAGATTTGGAGGCATG 3986 1 3953 R CATGCCTCCAAATCTTGGAGGCTTTTTTATGGTTC -482 GACTCCTTCTGTTGATAAGCAAGCATCTCATTTTG 3973 1 3513 R CAAAATGAGATGCTTGCTTATCAACAGAAGGAGTC 53 GAGAAAGAGTAGAAATGCCACAAGCCTCAATAGCA 3960 1 4055 R TGCTATTGAGGCTTGTGGCATTTCTACTCTTTCTC 322 GAGGCTTTTTTATGGTTCGTTCTTATTACCCTTCT 3876 1 3970 F GAGGCTTTTTTATGGTTCGTTCTTATTACCCTTCT -66 GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT 4012 1 2372 F GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT -365 GTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAA 3971 1 3151 F GTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAA -36 GATTCTCTTGTTGACATTTTAAAAGAGCGTGGATT 4090 1 310 F GATTCTCTTGTTGACATTTTAAAAGAGCGTGGATT 500 GCGCTACTGCAAAGGATATTTCTAATGTCGTCACT 3893 1 3760 F GCGCTACTGCAAAGGATATTTCTAATGTCGTCACT -228 GATGGTATTGGCTCTAATTTGTCTAGGAAATAACC 4065 1 3885 F GATGGTATTGGCTCTAATTTGTCTAGGAAATAACC -146 GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT 4012 1 2372 F GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT -365 GTGTCAATCCTGACGGTTATTTCCTAGACAAATTA 3995 1 3899 R TAATTTGTCTAGGAAATAACCGTCAGGATTGACAC -426 GTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACT 3896 1 2663 F GTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACT -359 GTTTTTAGTGAGTTGTTCCATTCTTTAGCTCCTAG 4020 1 5061 R CTAGGAGCTAAAGAATGGAACAACTCACTAAAAAC -104 GTGAAAAAGCGTCCTGCGTGTAGCGAACTGCGATG 3908 1 4898 R CATCGCAGTTCGCTACACGCAGGACGCTTTTTCAC -447 GCTTGCAGACCCATAATGTCAATAGATGTGGTAGA 3996 1 1559 R TCTACCACATCTATTGACATTATGGGTCTGCAAGC -184 GGATTTTATTGGTATCAGGGTTAATCGTGCCAAGA 4114 1 1327 R TCTTGGCACGATTAACCCTGATACCAATAAAATCC 238 GTCATTTCTTTGATTTGGTCATTGGTAAAATACTG 4125 1 3651 R CAGTATTTTACCAATGACCAAATCAAAGAAATGAC -127 GATTCAGCGAAACCAATCCGCGGCATTTAGTAGCG 3908 1 2847 R CGCTACTAAATGCCGCGGATTGGTTTCGCTGAATC -586 GTTATAGATATTCAAATAACCCTGAAACAAATGCT 4109 1 1365 R AGCATTTGTTTCAGGGTTATTTGAATATCTATAAC -126 GCGCTTTAAAATAGTTGTTATAGATATTCAAATAA 4175 1 1381 R TTATTTGAATATCTATAACAACTATTTTAAAGCGC -321 CTCTACTGTAGACATTTTTACTTTTTATGTCCCTC 3947 1 1186 F CTCTACTGTAGACATTTTTACTTTTTATGTCCCTC 313 GATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGTT 4029 1 1997 F GATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGTT -141 GCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTT 3841 1 2341 F GCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTT -223 GTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCG 4008 1 845 F GTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCG -495 GCCTGCAACGTACCTTCAAGAAGTCCTTTACCAGC 3908 1 3165 R GCTGGTAAAGGACTTCTTGAAGGTACGTTGCAGGC -390 GTTAGCCTCGGTACGGCCAGGCATCCACGGCGCTT 3562 1 1410 R AAGCGCCGTGGATGCCTGACCGTACCGAGGCTAAC -469 GAGAAAGCTCAGTCTCAGGAGGAAGCGGAGCAGTC 3939 1 1510 R GACTGCTCCGCTTCCTCCTGAGACTGAGCTTTCTC -156 GATAAGCAAGCATCTCATTTTGTGCATATACCTGG 3921 1 3500 R CCAGGTATATGCACAAAATGAGATGCTTGCTTATC -578 GGTTTATCGTTTTTGACACTCTCACGTTGGCTGAC 3958 1 4567 F GGTTTATCGTTTTTGACACTCTCACGTTGGCTGAC -157 GACACCCTCCCACTTGTATGTTTTCATGCCTCCAA 3586 1 3929 F GACACCCTCCCAATTGTATGTTTTCATGCCTCCAA -620 GATGGTGGTTATTATACCGTCAAGGACTGTGTGAC 3984 1 2743 F GATGGTGGTTATTATACCGTCAAGGACTGTGTGAC 26 TGGTTGACGCCGGATTTGAGAATCAAAAAGAGCTT 4039 1 3358 F TGGTTGACGCCGGATTTGAGAATCAAAAAGAGCTT 462 GAGCCATACCGCTGATTCTGCGTTTGCTGATGAAC 3868 1 3714 R GTTCATCAGCAAACGCAGAATCAGCGGTATGGCTC 582 GTATCCTTTCCTTTATCAGCGGCAGGCTTGCCTCC 3409 1 3246 R GGTGGCAAGTCTGCCGCTGATAAAGGAAAGGATAC -509 CAGAACGTGAAAAAGCGTCCTGCGTGTAGCGAACT 3870 1 4904 R AGTTCGCTACACGCAGGACGCTTTTTCACGTTCTG -432 GGCTTCCATAAGCAGATGGATAACCGCATCAAGCT 4003 1 4104 F GGCTTCCATAAGCAGATGGATAACCGCATCAAGCT -128 GGGTACGCAATCGCCGCCAGTTAAATAGCTTGCAA 3890 1 4834 F GGGTACGCAATCGCCGCCAGTTAAATAGCTTGCAA -292 GATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 4098 1 3816 F GATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 407 GCTCGTTATGGTTTCCGTTGATGCCATCTCAAAAA 3759 1 1469 F GCTCGTTATGGTTTCCGTTGCTGCCATCTCAAAAA 88 GTGTCCGCATAAAGTGCACCGCATGGAAATGAAGA 4040 1 4763 R TCTTCATTTCCATGCGGTGCACTTTATGCGGACAC -123 GTCATACTATCAAAATATAACGTTGACGATGTAGC 3746 1 2503 R GCTACATCGTCAACGTTATATTTTGATAGTTTGAC -198 GCGTCCATCTCGAAGGAGTCGCCAGCGATAACCGG 3891 1 1103 R CCGGTTATCGCTGGCGACTCCTTCGAGATGGACGC -412 GTTCGTTTTCCGCCTACTGCGACTAAAGAGATTCA 4040 1 1868 F GTTCGTTTTCCGCCTACTGCGACTAAAGAGATTCA -558 GAAAAATGGTTTTTAGAGAACGAGAAGACGGTTAC 4070 1 4344 F GAAAAATGGTTTTTAGAGAACGAGAAGACGGTTAC -586 GATTTCATAGTGGAGGCCTCCAGCAATCTTGAACA 3951 1 4470 R TGTTCAAGATTGCTGGAGGCCTCCACTATGAAATC -562 GTCCATATCTGACTTTTTGTTAACGTATTTAGCCA 4040 1 5011 R TGGCTAAATACGTTAACAAAAAGTCAGATATGGAC -280 GGCCGTTTGAATGTTGACGGGATGAACATAATAAG 4077 1 637 R CTTATTATGTTCATCCCGTCAACATTCAAACGGCC -4 GAAGTTAACACTTTCGGATATTTCTGATGAGTCGA 4013 1 25 F GAAGTTAACACTTTCGGATATTTCTGATGAGTCGA -194 GAGAAAGCTCAGTCTCAGGAGGAAGCGGAGCAGTC 3939 1 1510 R GACTGCTCCGCTTCCTCCTGAGACTGAGCTTTCTC -156 GCTGTTCAACCACTAATAGGTAAGAAATCATGAGT 4077 1 361 F GCTGTTCAACCACTAATAGGTAAGAAATCATGAGT -145 GAATATCCTTAAGAGGGCGTTCAGCAGCCAGCTTG 3929 1 4391 R CAAGCTGGCTGCTGAACGCCCTCTTAAGGATATTC -43 GCGCCAAATGCTTACTCAAGCTCAAACGGCTGGTC 3906 1 3617 F GCGCCAAATGCTTACTCAAGCTCAAACGGCTGGTC -110 GAAGGTACGTTGCAGGCTGGCACTTCTGCCGTTTC 3731 1 3183 F GAAGGTACGTTGCAGGCTGGCACTTCTGCCGTTTC -406 GACTGCCTATGATGTTTATCCTTTGGATGGTCGCC 3646 1 2706 F GACTGCCTATGATGTTTATCCTTTGAATGGTCGCC 44 GATGCCCAGAGATTAGAGCGCATGACAAGTAAAGG 4029 1 1703 R CCTTTACTTGTCATGCGCTCTAATCTCTGGGCATC -637 GCCGTGGATGCCTGACCGTACCGAGGCTAACCCTA 3804 1 1414 F GCCGTGGATGCCTGACCGTACCGAGGCTAACCCTA -535 GTGATTATCTTGCTGCTGCATTTCCTGAGCTTAAT 3943 1 3283 F GTGATTATCTTGCTGCTGCATTTCCTGAGCTTAAT -207 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGA 4122 1 355 R TCCGATGCTGTTCAACCACTAATAGGTAAGAAATC -60 GTCTGGAAACGTACGGATTGTTCAGTAACTTGACT 3910 1 393 R AGTCAAGTTACTGAACAATCCGTACGTTTCCAGAC 29 GCTGAATTGTTCGCGTTTACCTTGCGTGTACGCGC 3854 1 741 F GCTGAATTGTTCGCGTTTACCTTGCGTGTACGCGC -537 GACGCCGGATTTGAGAATCAAAAAGAGCTTACTAA 3995 1 3363 F GACGCCGGATTTGAGAATCAAAAAGAGCTTACTAA 287 GCAACCTGTGACGACAAATCTGCTCAAATTTATGC 3930 1 5315 F GCAACCTGTGACGACAAATCTGCTCAAATTTATGC -418 GGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCT 3752 1 4938 F GGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCC -187 GTTCTTGGTCAGTATGCAAATTAGCATAAGCAGCT 4084 1 1591 R AGCTGCTTATGCTAATTTGCATACTGACCAAGAAC -90 GGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGT 3977 1 3158 F GGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGT -203 GCAATAATGTTTATGTTGGTTTCATGGTTTGGTCT 3622 1 2804 F GCAATAACGTTTATGTTGGTTTCATGGTTTGGTCT -159 GGTAACGCTGCATGAAGTAATCACGTTCTTGGTCA 3899 1 1615 R TGACCAAGAACGTGATTACTTCATGCAGCGTTACC -221 GGTAATAAGAACGAACCATAAAAAAGCCTCCAAGA 4054 1 3965 R TCTTGGAGGCTTTTTTATGGTTCGTTCTTATTACC -312 GCTTCTGACGTTCGTGATGAGTTTGTATCTGTTAC 3933 1 4218 F GCTTCTGACGTTCGTGATGAGTTTGTATCTGTTAC 146 GTTTCAGGGTTATTTGAATATCTATAACAACTATT 4059 1 1372 F GTTTCAGGGTTATTTGAATATCTATAACAACTATT -103 GTCTAACTTTACCGCTACTAAATGCCGCGGATTGG 4007 1 2835 F GTCTAACTTTACCGCTACTAAATGCCGCGGATTGG -623 GCCTGACCGTACCGAGGCTAACCCTAATGAGCTTA 3864 1 1423 F GCCTGACCGTACCGAGGCTAACCCTAATGAGCTTA -57 GCAATAGCACCAAACATAAATCACCTCACTTAAGT 3957 1 2913 R ACTTAAGTGAGGTGATTTATGTTTGGTGCTATTGC -445 GGAGCTAAAGAATGGAACAACTCACTAAAAACCAA 4045 1 5064 F GGAGCTAAAGAATGGAACAACTCACTAAAAACCAA -354 GGAGTTTTATGATAATCCCAATGCTTTGCGACACT 3141 1 4613 F GGCGTTTTATGATAATCCCAATGCTTTGCGTGACT -496 GGAGTAGTTGAAATGGTAATAAGACGACCAATCTG 4013 1 1070 R CAGATTGGTCGTCTTATTACCATTTCAACTACTCC 61 GTTGTGGCCTGTTGATGCTAAAGGTGAGCCGCTTA 3966 1 4943 F GTTGTGGCCTGTTGATGCTAAAGGTGAGCCGCTTA -453 GATGCTGGTATTAAATCTGCCATTCAAGGCTCTAA 3979 1 3075 F GATGCTGGTATTAAATCTGCCATTCAAGGCTCTAA 146 GTTTTCTGGTCGTGTTCAACAGACCTATAAACATT 4078 1 1780 F GTTTTCTGGTCGTGTTCAACAGACCTATAAACATT 224 GTGGAGGCCTCCAGCAATCTTGAACACTCATCCTT 3780 1 4461 R AAGGATGAGTGTTCAAGATTGCTGGAGGCCTCCAC -659 GCACGATTAACCCTGATACCAATAAAATCCCTAAG 3980 1 1332 F GCACGATTAACCCTGATACCAATAAAATCCCTAAG -287 GTGAGTTGTTCCATTCTTTAGCTCCTAGACCTTTA 3908 1 5054 R TAAAGGTCTAGGAGCTAAAGAATGGAACAACTCAC -237 GCCAGTTAAATAGCTTGCAAAATACGTGGCCTTAT 3939 1 4849 F GCCAGTTAAATAGCTTGCAAAATACGTGGCCTTAT -447 GTTCATGGTAGAGATTCTCTTGTTGACATTTTAAA 4014 1 298 F GTTCATGGTAGAGATTCTCTTGTTGACATTTTAAA 538 GCACGATTAACCCTGATACCAATAAAATCCCTAAG 3980 1 1332 F GCACGATTAACCCTGATACCAATAAAATCCCTAAG -287 GACTGCTCCGCTTCCTCCTGAGACTGAGCTTTCTC 3812 1 1510 F GACTGCTCCGCTTCCTCCTGAGACTGAGCTTTCTC -213 GCTTAATAGAGGCCAAAGCGGTCTGGAAACGTACG 3999 1 413 R CGTACGTTTCCAGACCGCTTTGGCCTCTATTAAGC -557 GATTGCTGAGGGTCAGTGGTATCGTTATGCGCCTT 3845 1 2035 F GATTGCTGAGGGTCAGTGGTATCGTTATGCGCCTT -539 GCTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGG 3851 1 2445 F GCTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGG -335 TTGTTTGGAGGCGGTCAAAAAGCCGCCTCCGGTGG 3906 1 2991 F TTGTTTGGAGGCGGTCAAAAAGCCGCCTCCGGTGG 80 GACTGTGTGACTATTGACGTCCTTCCTCGTACGCC 3575 1 2767 F GACTGTGTGACTATTGACGTCCTTCCCCGTACGCC 302 GTTCGTCAAGGACTGGTTTAGATATGAGTCACATT 3964 1 261 F GTTCGTCAAGGACTGGTTTAGATATGAGTCACATT -390 GTTTGGTGCTATTGCTGGCGGTATTTTTTCTTCTC 3112 1 2933 F GTTTGGTGCTATTGCTGGCGGTATTGCTTCTGCTC 183 GTTTTTTACCTTTAGACATTACATCACTCCTTCTG 3782 1 832 R CGGAAGGAGTGATGTAATGTCTAAAGGTAAAAAAC -331 GCTGAATTTACGGAAAACATTATTAATGGCGTCGA 4056 1 690 F GCTGAATTTACGGAAAACATTATTAATGGCGTCGA 244 GTATTAAGGATGAGTGTTCAAGATTGCTGGAGGCC 4015 1 4456 F GTATTAAGGATGAGTGTTCAAGATTGCTGGAGGCC -433 GATTTCGATTTTCTGACGAGTAACAAAGTTTGGAT 4115 1 486 F GATTTCGATTTTCTGACGAGTAACAAAGTTTGGAT -128 GTTGATGGAACTGACCAAACGTCGTTAGGCCAGTT 3908 1 1748 F GTTGATGGAACTGACCAAACGTCGTTAGGCCAGTT 666 GCAGCATCAGTGACGACATTAGAAATATCCTTTGC 3891 1 3768 R GCAAAGGATATTTCTAATGTCGTCACTGATGCTGC 61 GTTTCTTTGTTCCTGAGCATGGCACTATGTTTACT 3957 1 1824 F GTTTCTTTGTTCCTGAGCATGGCACTATGTTTACT 115 GCCATAATTCAAACTTTTTTTCTGATAAGCTGGTT 4015 1 2417 F GCCATAATTCAAACTTTTTTTCTGATAAGCTGGTT -161 GCCGAGGGTCGCAAGGCTACTGATTTCCACGCCGT 2853 1 4680 F GCCGAGGGTCGCAAGGCTAATGATTCACACGCCGA -150 TATGGTTTCCGTTGCTGCCATCTCAAAAACATTTG 4009 1 1475 F TATGGTTTCCGTTGCTGCCATCTCAAAAACATTTG 260 GAAAACCACCATTACCAGCATTAACCGTCAAACTA 3978 1 2529 R TAGTTTGACGGTTAATGCTGGTAATGGTGGTTTTC 270 GTGCCAAGAAAAGCGGCATGGTCAATATAACCAGT 3914 1 1301 R ACTGGTTATATTGACCATGCCGCTTTTCTTGGCAC -306 GCTTAGGAGTTTAATCATGTTTCAGACTTTTATTT 3929 1 2379 F GCTTAGGAGTTTAATCATGTTTCAGACTTTTATTT -40 GTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGG 3791 1 1139 F GTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGG 102 GCAGTAGGCGGAAAACGAACAAGCGCAAGAGTAAA 4022 1 1853 R TTTACTCTTGCGCTTGTTCGTTTTCCGCCTACTGC -113 GATGCGGTTATCCATCTGCTTATGGAAGCCAAGCA 3989 1 4099 R TGCTTGGCTTCCATAAGCAGATGGATAACCGCATC -458 GCTTATCAGAAAAAAAGTTTGAATTATGGCGAGAA 4172 1 2412 R TTCTCGCCATAATTCAAACTTTTTTTCTGATAAGC -2 GCACCTGTTTTACAGACACCTAAAGCTACATCGTC 3947 1 2479 F GCACCTGTTTTACAGACACCTAAAGCTACATCGTC -131 GCTCATGCTGATGGTTGGTTTATCGTTTTTGACAC 3951 1 4551 F GCTCATGCTGATGGTTGGTTTATCGTTTTTGACAC 100 GCTAAATACGTTAACAAAAAGTCAGATATGGACCT 4045 1 5013 F GCTAAATACGTTAACAAAAAGTCAGATATGGACCT -2 GTTTCTGTTGGTGCTGATATTGCTTTTTATGCCGA 3746 1 2611 F GTTTCTGTTGGTGCTGATATTGCTTTTGATGCCGA 653 GGCCTCATCAGGGTTAGGAACATTAGAGCCTTGAA 3994 1 3097 R TTCAAGGCTCTAATGTTCCTAACCCTGATGAGGCC -176 GAATTGGCACAATGCTACAATGTGCTCCCCCAACT 3878 1 4269 F GAATTGGCACAATGCTACAATGTGCTCCCCCAACT -407 GAATCAGGTTATTAAAGAGATTATTTGTCTCCAGC 4020 1 2877 F GAATCAGGTTATTAAAGAGATTATTTGTCTCCAGC 140 GATTGCTGGAGGCCTCCACTATGAAATCGCGTAGA 3942 1 4477 F GATTGCTGGAGGCCTCCACTATGAAATCGCGTAGA -459 GCGACAGCTTGGTTTTTAGTGAGTTGTTCCATTCT 3870 1 5072 R AGAATGGAACAACTCACTAAAAACCAAGCTGTCGC -308 GTTATAGAGATTCAAATAACCGTGAACCACCTGCT 2799 1 1365 R AGCATTTGTTTCAGGGTTATTTGAATATCTATAAC -302 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GAGTCATTTCTTTGATTTGGTCATTGGTAAAATAC 4122 1 3653 R GTATTTTACCAATGACCAAATCAAAGAAATGACTC -343 GCAAGCATCTCATTTTGTGCATATACCTGTTCTTT 3620 1 3495 R AAAGACCAGGTATATGCACAAAATGAGATGCTTGC -595 GGGTCTGCAAGCTGCTTATGCTAATTTGCATACTG 3891 1 1582 F GGGTCTGCAAGCTGCTTATGCTAATTTGCATACTG -202 GCAGTCGGGAGGGTAGTCGGAACCGAAGAAGACTC 3895 1 2677 R GAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGC -184 GAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGC 3851 1 2677 F GAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGC -289 GAATCGTTAGTTGATGGCGAAAGGGCGCAAAGTAA 3828 1 174 R TTACTTTGCGACCTTTCGCCATCAACTAACGATTC -561 GTAAATTCAGCGCCTTCCATGATGAGACAGGCCGT 3956 1 666 R ACGGCCTGTCTCATCATGGAAGGCGCTGAATTTAC -210 GCATACTGACCAAGAACGTGATTACTTCATGCAGC 3925 1 1609 F GCATACTGACCAAGAACGTGATTACTTCATGCAGC -60 GCGCATGACAAGTAAAGGACGGTTGTCAGCGTCAT 3901 1 1686 R ATGACGCTGACAACCGTCCTTTACTTGTCATGCGC -441 GGTAAAGGACTTCTTGAAGGTACGTTGCAGGCTGG 3936 1 3168 F GGTAAAGGACTTCTTGAAGGTACGTTGCAGGCTGG -260 GTGATTTGCAAGAACGCGTACTTATTCGCCACCAT 3904 1 2133 F GTGATTTGCAAGAACGCGTACTTATTCGCCACCAT -292 GAAATTTCTATGAAGGATGTTTTCCTTTCTGGTGA 3697 1 1982 F GAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGA -394 GACGGTTGTCAGCGTCATAAGAGGTTTTTCCTCTA 3383 1 1669 R TGGAGGTAAAACCTCTTATGACGCTGACAACCGTC -171 GCAAAATGAGACTCAAAAAGAGATTGCTGGCATTC 3976 1 3434 F GCAAAATGAGACTCAAAAAGAGATTGCTGGCATTC 1198 GTTCGTTCTTATTACCCTTCTGAATGTCACGCTGA 4037 1 3984 F GTTCGTTCTTATTACCCTTCTGAATGTCACGCTGA -36 GGGTTAGGAACATTAGAGCCTTGAATGGCAGATTT 3931 1 3087 R AAATCTGCCATTCAAGGCTCTAATGTTCCTAACCC -123 GCAGTAGCGCCAATATGAGAAGAGCCATACCGCTG 3898 1 3735 R CAGCGGTATGGCTCTTCTCATATTGGCGCTACTGC -76 GCAGCAACGGAAACCATAACGAGCATCATCTTGAT 3879 1 1458 R ATCAAGATGATGCTCGTTATGGTTTCCGTTGCTGC 648 GAACGTTTTTTACCTTTAGACATTACATCACTCCT 3972 1 836 R AGGAGTGATGTAATGTCTAAAGGTAAAAAACGTTC -175 GGTTGGTTTATCGTTTTTGACACTCTCACGTTGGC 3945 1 4563 F GGTTGGTTTATCGTTTTTGACACTCTCACGTTGGC -168 GCCTCATCAGGGTTAGGAACATTAGAGCCTTGAAT 3955 1 3096 R ATTCAAGGCTCTAATGTTCCTAACCCTGATGAGGC 44 GGTCAGGCATCCACGGCGCTTTAAAATAGTTGTTA 3864 1 1396 R TAACAACTATTTTAAAGCGCCGTGGATGCCTGACC -283 GCTTTCATGCCTCCAAATCTTGGAGGCTTTTTTAT 3640 1 3948 F GTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTAT -45 GCTACTGCAAAGGATATTTCTAATGTCGTCACTGA 3980 1 3762 F GCTACTGCAAAGGATATTTCTAATGTCGTCACTGA 13 GCACCAGAAACAAAACTAGGGGCGGCCTCATCAGG 3857 1 3120 R CCTGATGAGGCCGCCCCTAGTTTTGTTTCTGGTGC 470 GTTTCTATGTGGCTAAATACGTTAACAAAAAGTCA 4178 1 5002 F GTTTCTATGTGGCTAAATACGTTAACAAAAAGTCA -484 GCAGATTTAATACCAGCATCACCCATGCCTACAGT 3896 1 3060 R ACTGTAGGCATGGGTGATGCTGGTATTAAATCTGC -219 TCCATTGCGTCGTGGCCTTGCTATTGACTCTACTG 3877 1 1159 F TCCATTGCGTCGTGGCCTTGCTATTGACTCTACTG -181 TATCAGTATTTTTGTGTGCCTGAGTATGGTACAGC 4071 1 4719 F TATCAGTATTTTTGTGTGCCTGAGTATGGTACAGC -48 GTGAGCATTTTCATCCCGAAGTTGCGGCTCATTCT 3839 1 5133 R AGAATGAGCCGCAACTTCGGGATGAAAATGCTCAC -324 GTATTAAATCTGCCATTCAAGGCTCTAATGTTCCT 3946 1 3082 F GTATTAAATCTGCCATTCAAGGCTCTAATGTTCCT 73 GTTGAGTTCGATAATGGTGATATGTATGTTGACGG 4040 1 4173 F GTTGAGTTCGATAATGGTGATATGTATGTTGACGG 165 GACTCATCAGAAATATCCGAAAGTGTTAACTTCTG 3958 1 23 R CAGAAGTTAACACTTTCGGATATTTCTGATGAGTC -383 GAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGA 3955 1 1993 F GAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGA -266 GCCACTTCTCCTCATCCAACGCGTCAGTTTTTGAC 3868 1 210 R GTCAAAAACTGACGCGTTGGATGAGGAGAAGTGGC -288 TTTATGGTACGCTGGACTTTGTAGGATACCCTCGC 3570 1 565 F TTTATGGTACGCTGGACTTTGTGGGATACCCTCGC -623 GAATCTCTTCCAAGAGCTTGATGCGGTTATCCATC 3867 1 4118 R GATGGATAACCGCATCAAGCTCTTGGAAGAGATTC -198 GCTCGAGAAGCTCTTACTTTGCGACCTTTCGCCAT 3810 1 161 F GCTCGAGAAGCTCTTACTTTGCGACCTTTCGCCAT -171 GGCAGCAAGAACCATACGACCAATATCACGAAAAT 4003 1 4648 R ATTTTCGTGATATTGGTCGTATGGTTCTTGCTGCC 311 GGCGAGAAATAAAAGTCTGAGACATGATTAAACTC 3708 1 2385 R GAGTTTAATCATGTTTCAGACTTTTATTTCTCGCC -566 GGTTAAATTTAATGTGACCGTTTATCGCAATCTGC 4009 1 2218 F GGTTAAATTTAATGTGACCGTTTATCGCAATCTGC 117 GCTACACGCAGGACGCTTTTTCACGTTCTGGTTGG 3793 1 4909 F GCTACACGCAGGACGCTTTTTCACGTTCTGGTTGG -405 GGATTGGTTTCGCTGAATCAGGTTATTAAAGAGAT 4075 1 2863 F GGATTGGTTTCGCTGAATCAGGTTATTAAAGAGAT -108 GATTAAGCACTCCGTGGACAGATTTGTCATTGTGA 3919 1 5164 R TCACAATGACAAATCTGTCCACGGAGTGCTTAATC -131 GCTACTTCCCAAGAAGCTGTTCAGAATAAGAATGA 3789 1 5105 F GCTACTTCCCAAGAAGCTGTTCAGAATCAGAATGA -95 GAAGAAAACCACCATTACCAGCATTAACCGTCAAC 3730 1 2532 R TTTGACGGTTAATGCTGGTAATGGTGGTTTTCTTC -141 GCGCAAGAGTAAACATAGTGCCATGCTCAGGAACA 3970 1 1831 R TGTTCCTGAGCATGGCACTATGTTTACTCTTGCGC 58 GACAGATGTATCCATCTGAATGCAATGAAGAAAAC 4113 1 2558 R GTTTTCTTCATTGCATTCAGATGGATACATCTGTC -409 TCTTTAGCTCCTAGACCTTTAGCAGCAAGGTCCAT 3992 1 5040 R ATGGACCTTGCTGCTAAAGGTCTAGGAGCTAAAGA 853 GTTGGTTTCATGGTTTGGTCTAACTTTACCCCTAC 3704 1 2818 F GTTGGTTTCATGGTTTGGTCTAACTTTACCGCTAC 107 GCTTTAAAATAGTTGTTATAGATATTCAAATAACC 4176 1 1379 R GGTTATTTGAATATCTATAACAACTATTTTAAAGC -262 ACCTGATTAGCGGCGTTGACAGATGTATCCATCTG 3902 1 2575 R CAGATGGATACATCTGTCAACGCCGCTAATCAGGT -329 GCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGT 3747 1 873 F GCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGT -337 GAAACCAATCCGTGGCCGGTAGCAGCGGTAAAGTT 2590 1 2839 R AACTTTACCGCTACTAAATGCCGCGGATTGGTTTC -397 GGAATAGTCAGGGTAAATTTAATGTGACCGTTTAT 3696 1 2208 F GGAATAGTCAGGTTAAATTTAATGTGACCGTTTAT 211 GGTCTATAGTGTTATTAATATCAATTTGGAGGAGT 3321 1 4292 R GCTCCCCCAACTTGATATTAATAACACTATAGACC -342 GTAGACATTTTTACTTTTTATGTCCCTCATCGTCA 3970 1 1193 F GTAGACATTTTTACTTTTTATGTCCCTCATCGTCA -394 GAAAGGATACTCGTGATTATCTTGCTGCTGCATTT 3802 1 3271 F GAAAGGATACTCGTGATTATCTTGCTGCTGCATTT -170 GTGATGTAATGTCTAAAGGTAAAAAACGTTCTGGC 4066 1 840 F GTGATGTAATGTCTAAAGGTAAAAAACGTTCTGGC 219 GTAAGAAATCATGAGTCAAGTTACTGAACAATCCG 4043 1 380 F GTAAGAAATCATGAGTCAAGTTACTGAACAATCCG -427 GGACATAAAAAGTAAAAATGTCTACAGTAGAGTCA 4076 1 1183 R TGACTCTACTGTAGACATTTTTACTTTTTATGTCC 617 GTTTATCCTTTGGATGGTCGCCATGATGGTGGTTA 3728 1 2719 F GTTTATCCTTTGAATGGTCGCCATGATGGTGGTTA 70 GTCCCCTTCGGGGCGGTGGTCTTTAGTGTTATTAA 3612 1 4309 R TTAATAACACTATAGACCACCGCCCCGAAGGGGAC -383 GTTCCATCAACATCATAGCCAGATGCCCAGAGATT 3993 1 1724 R AATCTCTGGGCATCTGGCTATGATGTTGATGGAAC -205 GTTTGGTCAGTTCCATCAACATCATAGCCAGATGC 4008 1 1733 R GCATCTGGCTATGATGTTGATGGAACTGACCAAAC -197 GTTATATGGCTGGTGGGTTTTTTTTGGGTTTATTC 1637 1 4987 F GTTATATGGCTGTTGGTTTCTATGTGGCTAAATAC 129 GTTGACGATGTAGCTTTAGGTGTCTGTAAAACAGG 4064 1 2482 R CCTGTTTTACAGACACCTAAAGCTACATCGTCAAC -270 GTTCAACCACTAATAGGTAAGAAATCATGAGTCAA 4087 1 364 F GTTCAACCACTAATAGGTAAGAAATCATGAGTCAA -129 GCGGTAGGTTTTCTGCTTAGGAGTTTAATCATGTT 3951 1 2365 F GCGGTAGGTTTTCTGCTTAGGAGTTTAATCATGTT -111 GGCGTCGCGTCGTAACCCAGCTTGGTAAGTTGGAT 3848 1 5196 R ATCCAACTTACCAAGCTGGGTTACGACGCGACGCC -376 GCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGC 3920 1 429 F GCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGC -25 GCTGAATTGTTCGCGTTTACCTTGCGTGTACGCGC 3854 1 741 F GCTGAATTGTTCGCGTTTACCTTGCGTGTACGCGC -537 GAACAAAATGTGACTCATATCTAAACCAGTCCTTG 3939 1 267 R CAAGGACTGGTTTAGATATGAGTCACATTTTGTTC -6 GTCATTGTGAGCATTTTCAGCCCGAAGTTGCGGCT 3641 1 5139 R AGCCGCAACTTCGGGATGAAAATGCTCACAATGAC -518 ShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/s_1_0001_prb.txt0000644000175100017510000055000012607265053025445 0ustar00biocbuildbiocbuild -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 19 -19 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -29 29 -40 3 -40 -40 -3 -40 -40 40 -40 -40 -21 -40 21 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 2 -40 -2 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -7 7 -40 32 -40 -40 -32 -40 10 -10 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -31 31 -40 -40 40 -40 -40 -40 -40 40 -40 -23 23 -40 -40 -40 -40 40 -40 -38 13 -13 -40 -14 -40 14 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 13 -13 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 18 -18 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 13 -30 -40 -13 -40 -40 24 -24 40 -40 -40 -40 -19 19 -40 -40 1 -1 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -5 5 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 33 -33 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -15 -40 15 -40 40 -40 -40 -5 5 -40 -40 -40 9 -40 -9 -40 1 -1 -40 -40 -1 -40 1 -39 -11 -40 11 -40 3 -40 -3 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 21 -21 -40 -40 -40 7 -40 -7 40 -40 -40 -40 -40 -8 -40 8 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -18 18 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 35 -40 -40 -35 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -9 9 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 22 -22 40 -40 -40 -40 -40 5 -40 -5 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 33 -40 -33 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 17 -40 -40 -17 40 -40 -40 -40 -40 7 -40 -7 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 36 -36 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -31 31 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 7 -7 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 6 -40 -6 40 -40 -40 -40 -40 -40 2 -2 -40 40 -40 -40 -40 23 -40 -23 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 29 -29 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -1 -40 -40 1 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -13 13 -40 -35 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -15 -40 15 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -13 3 -4 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -8 8 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -26 26 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -4 -35 -2 -3 -24 -40 24 -40 40 -40 -40 -40 35 -40 -40 -35 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -5 5 -40 -27 -40 -40 27 26 -40 -26 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 14 -14 -28 -40 -40 40 -40 -40 -40 -40 -40 40 -40 21 -40 -21 22 -24 -27 -40 -40 -6 -40 6 6 -7 -16 -40 -37 15 -40 -15 -40 40 -40 -40 28 -28 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 15 -40 -40 -15 -28 -40 28 -40 40 -40 -40 -40 -6 -40 -40 6 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 35 -35 -40 -40 -40 -40 -40 40 -40 -40 26 -26 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 6 -6 40 -40 -40 -40 40 -40 -40 -40 -35 -40 34 -40 18 -22 -40 -21 -40 -40 -40 40 -40 -40 -40 40 -15 2 -40 -2 -40 -40 -40 40 23 -40 -40 -23 -40 4 -40 -4 -40 -34 -40 34 -37 -40 -8 8 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 21 -21 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -9 -40 9 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -29 29 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 17 -17 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 21 -21 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 5 -40 -40 -5 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -21 -40 21 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -34 34 -40 -40 -40 -40 40 -40 -10 10 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -5 5 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 9 -9 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -5 5 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 9 -40 -40 -9 -40 5 -40 -5 2 -40 -40 -2 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 12 -40 -12 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -22 4 -6 -12 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -7 1 -4 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 32 -32 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 26 -26 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 7 -7 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 38 -38 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -15 5 -40 -6 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 28 -28 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 11 -11 -40 -40 40 -40 -40 -40 -6 -40 6 -40 40 -40 -40 -40 -40 -40 40 -40 -12 -40 12 40 -40 -40 -40 -40 -40 40 -40 -40 -1 1 -40 -40 -28 -40 28 -35 -40 -40 35 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -34 23 -40 -23 -40 -29 29 -40 -40 -4 4 -40 -40 -40 6 -6 -40 40 -40 -40 -40 40 -40 -40 -40 -0 -40 0 40 -40 -40 -40 -27 -40 27 -40 -2 -40 2 -40 -7 7 -40 -40 -40 33 -40 -33 -6 -40 -40 6 -40 7 -40 -7 -12 -40 -40 12 -40 -7 -40 7 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -32 32 -40 -40 19 -19 -40 -40 -40 -40 22 -22 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -6 6 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 31 -31 -40 -38 38 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -37 -40 37 -40 15 -15 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 3 -40 -3 -40 40 -40 -40 -40 7 -40 -7 -40 -40 -40 -3 3 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -29 29 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 31 -31 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 26 -26 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -13 13 -40 -26 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 23 -23 -40 -40 40 -40 -40 -18 -40 18 -40 -40 -37 37 -40 10 -10 -40 -40 -27 -40 27 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 2 -40 -2 -40 40 -40 -40 -40 -31 31 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 17 -17 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -4 -40 4 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -31 31 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -25 25 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -29 -27 11 -11 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 34 -34 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 16 -40 -16 -40 -40 -40 40 -40 -40 -40 -40 40 16 -40 -16 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -27 27 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -10 -40 10 -40 -5 5 -22 -40 40 -40 -40 -40 -8 -40 8 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -8 -40 8 -40 -40 -33 -40 33 2 -40 -40 -2 -40 -17 17 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -19 19 -40 1 -40 -1 -40 -40 -40 -40 40 23 -40 -40 -23 -0 -40 0 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 4 -4 -30 -26 -40 -40 26 -40 -38 38 -40 -40 -40 40 -40 -40 -40 40 -40 -36 36 -40 -40 40 -40 -40 -40 40 -40 -40 -40 18 -40 -18 -40 -40 21 -40 -21 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -17 17 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -5 5 -40 -40 40 -40 -40 -40 -40 -23 23 -40 -40 13 -40 -13 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -20 20 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -3 -40 3 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 3 -3 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 3 -40 -3 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 26 -26 -40 -40 40 -40 -40 -40 -40 -8 -40 8 40 -40 -40 -40 22 -22 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 7 -39 -40 -7 -40 -40 -40 40 28 -28 -40 -40 31 -31 -40 -40 -40 -40 -40 40 -40 -40 -40 40 33 -35 -38 -40 -40 -40 -40 40 24 -24 -40 -40 -40 -5 -40 5 -19 -40 7 -7 0 -40 -40 -0 -40 11 -11 -38 8 -40 -40 -8 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -38 38 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -28 -40 28 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -23 23 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 32 -32 -40 -40 -40 40 40 -40 -40 -40 -40 -21 -40 21 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 36 -40 -37 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 21 -21 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 37 -40 -37 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -19 19 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 17 -40 -40 -17 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 3 -3 -40 -40 -40 -40 -40 40 -40 -40 40 -40 9 -9 -40 -40 -40 40 -40 -40 32 -32 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -37 -40 29 -29 36 -36 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 3 -40 -3 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 9 -40 -9 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 14 -14 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -9 -40 9 40 -40 -40 -40 -40 -40 -40 40 -40 18 -18 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 2 -40 -2 -40 -40 -40 40 -40 -40 -3 3 -1 -40 -31 1 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -20 20 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 20 -40 -40 -20 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 27 -40 -27 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -7 7 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 26 -26 -40 -40 40 -40 -23 20 -40 -24 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -13 9 -40 -11 -40 40 -40 -40 15 -40 -40 -15 -40 -40 -40 40 40 -40 -40 -40 2 -2 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 34 -34 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 8 -8 -40 -40 -40 -40 -40 40 -40 -40 -40 40 16 -16 -40 -40 7 -7 -40 -40 -40 -40 40 -40 -40 20 -20 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -14 14 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 31 -31 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 11 -11 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 3 -3 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -32 -40 24 -25 -40 -40 3 -3 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -35 35 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -13 13 -40 -40 -40 40 -40 -40 27 -27 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -36 36 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -34 34 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 38 -40 -40 -38 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 2 -40 -2 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -35 -40 35 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -19 19 -40 40 -40 -40 -40 -40 -4 4 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 18 -40 -18 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 37 -40 -40 -37 -40 -8 8 -40 -40 -16 16 -40 -25 -40 -40 25 -9 -40 -40 9 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 29 -29 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -20 20 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -29 29 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -37 -40 37 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 30 -30 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -28 28 40 -40 -40 -40 -40 -40 -32 32 40 -40 -40 -40 -40 -40 40 -40 12 -40 -40 -12 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 8 -8 -40 -40 22 -22 -6 -40 6 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 6 -6 -16 22 -40 -40 -22 40 -40 -40 -40 -40 -40 34 -34 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -19 19 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -7 -40 -40 7 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -9 -40 -40 9 -40 -40 40 -40 -40 -40 40 -40 -40 -23 23 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 25 -25 -40 -40 -40 -40 -40 40 -40 -40 26 -26 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -20 20 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 16 -16 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -35 -40 30 -31 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -28 28 -40 -40 -40 -40 40 -40 31 -31 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -23 23 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -17 17 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -37 -40 37 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 9 -40 -9 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 37 -37 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -34 34 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 5 -5 -40 -40 -40 40 -40 -40 -40 -40 40 -40 19 -40 -19 -40 -40 40 -40 40 -40 -40 -40 6 -6 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 1 -1 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 0 -0 -40 -40 40 -40 -40 33 -40 -33 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 30 -30 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 23 -23 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 14 -14 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -16 -8 7 18 -23 -40 -20 11 -11 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 32 -40 -40 -32 10 -40 -40 -10 -16 -2 -40 2 0 -8 -22 -3 -40 -40 -40 40 -40 -35 -40 35 -40 -40 -40 40 -27 -22 -40 21 -40 -40 -40 40 -13 -40 -40 13 -17 -40 -40 17 -31 -40 -40 31 -24 -11 -21 10 5 -5 -40 -19 -2 -0 -40 -9 -40 -25 -40 25 -40 -8 -40 8 -23 -40 -40 23 -22 -23 -40 19 3 -34 -40 -3 -9 -40 -40 9 -6 -15 -18 5 6 -27 -40 -6 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 33 -33 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 17 -17 40 -40 -40 -40 -40 -40 3 -3 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -9 9 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -2 -20 -40 1 3 -21 -40 -3 40 -40 -40 -40 -40 -14 -40 14 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -4 -40 -40 4 2 -15 -40 -3 12 -12 -40 -40 40 -40 -40 -40 -7 -18 -40 6 40 -40 -40 -40 21 -22 -40 -28 40 -40 -40 -40 27 -27 -40 -40 4 -4 -40 -40 40 -40 -40 -40 12 -12 -40 -38 29 -30 -40 -40 -3 -40 -40 3 -8 -0 -40 -2 -40 -30 -40 30 17 -32 -40 -17 -3 0 -40 -8 -9 -40 -40 9 -39 -14 -40 14 13 -31 -40 -13 40 -40 -40 -40 25 -27 -40 -30 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -10 -40 4 -6 -7 -40 -0 -3 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 37 -37 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -32 32 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 21 -21 -40 -40 40 -40 -31 26 -40 -27 40 -40 -40 -40 -29 29 -40 -40 -27 27 -40 -40 40 -40 -40 -40 34 -34 -40 -40 -40 -40 21 -21 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -22 -40 22 -40 40 -40 -40 -40 -26 -40 26 -40 -40 40 -40 -40 40 -40 -40 -40 -16 -40 16 -11 -40 -40 11 -26 13 -40 -13 -40 -40 -40 40 39 -39 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 3 -3 -40 -40 -40 -40 40 40 -40 -40 -40 25 -40 -40 -25 40 -40 -40 -40 -40 -40 40 -40 -40 33 -33 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 36 -40 -40 -36 40 -40 -40 -40 -40 -17 -40 17 40 -40 -40 -40 17 -40 -40 -17 40 -40 -40 -40 -0 0 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 8 -40 -8 -40 -40 -40 -14 14 40 -40 -40 -40 40 -40 -40 -40 -6 6 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 10 -40 -18 -11 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 4 -40 -4 -28 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 31 -31 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -6 6 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -30 29 -40 -39 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -21 -40 21 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -29 -40 29 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 15 -15 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 23 -23 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 12 -40 -12 -40 -40 -40 40 -40 40 -40 -40 -40 -15 15 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -17 17 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 14 -40 -14 3 -3 -40 -40 10 -40 -40 -10 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -9 9 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -10 10 -40 -40 -40 -40 -28 28 11 -20 -11 -40 -11 -40 -3 1 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -18 -40 -40 18 -40 8 -8 -40 -40 40 -40 -40 -40 40 -40 -40 2 -2 -40 -40 40 -40 -40 -40 -40 24 -24 -40 -40 -16 16 -40 40 -40 -40 -40 -40 -40 -40 40 -40 29 -29 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -15 -40 -40 15 -40 40 -40 -40 -40 -13 -40 13 -40 -40 -40 40 7 -40 -7 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 9 -9 -40 -40 -40 40 -40 40 -40 -40 -40 4 -40 -40 -4 17 -17 -40 -40 -40 -40 -40 40 -13 13 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -1 -40 -40 1 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 15 -15 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -14 14 -40 -40 -40 40 -40 36 -36 -40 -40 -6 -40 -40 6 -25 -40 -40 25 -40 -21 21 -40 7 -7 -40 -40 -40 40 -40 -40 40 -40 -40 -40 12 -12 -40 -40 33 -40 -40 -33 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -21 21 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -11 11 -28 -40 -40 40 -40 -40 39 -39 -40 -40 -40 -40 -40 40 8 -9 -40 -19 40 -40 -40 -40 14 -38 -40 -14 4 -5 -21 -12 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -9 9 -40 -40 -40 -7 4 -9 -40 -40 -40 40 -37 37 -40 -40 -34 -33 -27 25 40 -40 -40 -40 25 -40 -25 -36 40 -40 -40 -40 34 -34 -40 -40 34 -34 -40 -40 15 -40 -40 -15 -25 -25 8 -8 -35 -40 35 -40 -18 18 -26 -34 33 -33 -40 -40 -11 11 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 11 -11 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 38 -38 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 10 -40 -10 -40 40 -40 -40 -40 -40 -40 40 -40 5 -40 -5 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 12 -40 -12 5 -40 -40 -5 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 3 -8 -7 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -34 -40 -40 34 -14 14 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -13 -40 13 -40 40 -40 -40 -1 1 -40 -16 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -6 6 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -31 30 -35 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 13 -13 16 -40 -40 -16 -28 -16 -19 14 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -13 -40 13 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -0 -40 -40 0 -40 -40 40 -40 -15 15 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 8 -40 -8 40 -40 -40 -40 -40 -40 40 -40 -40 -11 11 -40 -40 -40 -40 40 -40 40 -40 -40 -40 32 -32 -40 -21 -40 -40 21 -40 -35 34 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 26 -26 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 23 -23 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 21 -21 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -24 24 -40 -40 16 -16 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -35 -40 35 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 16 -16 -40 -40 34 -34 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 34 -34 -40 -40 40 -40 -40 -40 31 -31 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 30 -30 -40 -40 40 -40 -40 -40 -40 -35 -40 35 39 -39 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 3 -40 -40 -3 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -8 -40 8 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 19 -19 -40 -40 40 -40 -40 -40 -40 40 -40 -35 35 -40 -40 -35 35 -40 -40 -1 -40 1 40 -40 -40 -40 -40 -40 40 -40 -40 -40 18 -18 -40 -40 -40 40 -40 -40 40 -40 -40 -29 29 -40 21 -40 -40 -21 40 -40 -40 -40 -40 -40 -40 40 -40 -18 -40 18 -40 40 -40 -40 -40 -40 -40 40 -40 -35 35 -40 29 -29 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 8 -40 -40 -8 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 33 -33 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 27 -27 -20 20 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -12 12 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -14 3 -40 -4 -40 -40 -40 40 -40 -40 -40 40 -40 -40 32 -32 -8 -40 -18 7 40 -40 -40 -40 -36 -40 -40 35 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 38 -38 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -8 -40 -40 8 -40 -40 40 -40 -40 1 -1 -40 5 -15 -40 -6 -40 -40 18 -18 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 17 -17 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -38 -40 38 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -26 26 -40 -40 -26 26 -40 -40 30 -30 -40 -40 40 -40 -40 -40 31 -31 -40 -40 26 -26 -40 -36 -40 40 -40 -40 12 -12 -40 -40 37 -37 -40 -40 -14 13 -37 -21 30 -30 -40 -40 -15 -40 -40 15 -40 -40 40 -40 29 -40 -29 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 1 -40 -1 -40 -40 -40 -40 40 -40 -10 -40 10 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 14 -14 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -28 28 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -26 26 -40 -40 -40 -40 25 -25 -28 18 -40 -19 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 31 -31 -40 -40 -40 -40 40 -40 19 -19 -40 -40 39 -39 -40 -40 -40 -40 -40 40 -40 -40 -40 40 34 -34 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 38 -38 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 15 -15 -40 -40 -40 40 29 -29 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 33 -33 -40 -40 -40 -40 23 -23 -40 40 -40 -40 -40 33 -40 -33 18 -32 -40 -18 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -2 2 -21 -3 -40 3 -40 -19 -40 19 5 -40 -18 -5 -14 -10 -12 6 40 -40 -40 -40 9 -9 -40 -36 -13 -8 -40 6 -40 -40 -40 40 -1 -40 1 -32 -10 -30 8 -13 -10 -6 -4 -1 -25 -30 -40 24 40 -40 -40 -40 12 -14 -18 -34 -25 -40 -12 11 -15 12 -36 -15 12 -16 -40 -14 -28 -22 -40 21 -15 -29 -11 9 -40 -2 -40 2 -5 -10 -40 3 -24 -20 -10 10 -40 -31 -40 31 -40 -40 -40 40 -39 -40 -24 23 -40 -40 -40 40 1 -6 -14 -6 2 -11 -26 -4 -8 -40 -40 8 -1 -19 -11 -1 -29 -38 -40 29 -40 -40 -40 40 -40 -40 -40 40 -6 6 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 21 -21 -40 -40 -22 -40 22 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 33 -40 -33 -40 -11 -40 11 -40 40 -40 -40 -40 -40 -40 34 -34 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 24 -24 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -35 8 -40 -8 9 -40 -9 -40 -6 6 -40 -40 30 -30 -40 -39 -40 -40 40 -40 4 -4 -40 -40 -40 -40 -40 40 -18 14 -17 -27 20 -20 -40 -40 -22 -37 -6 5 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 23 -40 -23 -40 -40 -40 40 -40 -40 11 -11 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 6 -6 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 37 -40 -37 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 39 -39 -40 15 -40 -15 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -1 -40 1 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -18 18 10 -40 -10 -40 -10 -40 -40 10 -40 -40 40 -40 -40 -40 40 -40 -15 -40 -40 15 -40 -40 40 -40 -2 -40 2 -40 -6 5 -15 -32 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 36 -36 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -36 -40 36 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -18 18 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -26 26 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -16 16 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 32 -32 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -9 9 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -38 -40 38 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -22 22 -40 -8 8 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 33 -33 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -36 -40 36 -40 -40 -40 40 -40 -11 11 -40 40 -40 -40 -40 39 -39 -40 -40 -40 -40 40 -40 -38 38 -40 -40 34 -34 -40 -40 -40 -40 40 -40 -14 -18 12 -40 -40 -21 20 -34 -40 40 -40 -40 -18 3 -33 -3 -40 -9 9 -40 -5 -25 5 -28 -34 -7 -2 -1 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 37 -37 -40 -40 -40 40 -40 -40 -40 40 -40 -40 23 -23 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -2 -40 2 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -12 12 -40 -40 -40 -40 40 -40 -40 40 -40 27 -27 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -39 -40 39 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -22 -40 22 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 30 -30 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 20 -20 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -16 16 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 2 -2 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -9 9 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 6 -40 -6 -40 -40 40 -40 10 -40 -40 -10 -40 -35 35 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -19 19 -40 -7 -40 7 15 -15 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 33 -33 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -36 36 -40 -40 40 -40 -40 -40 -40 -10 10 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -39 -40 39 40 -40 -40 -40 -40 -40 32 -32 -40 -40 1 -1 -40 40 -40 -40 40 -40 -40 -40 39 -39 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -10 10 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -33 -40 33 -40 -40 40 -40 -40 -40 23 -23 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -9 -40 9 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -35 35 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -11 11 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 4 -40 -4 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 27 -27 -40 -40 27 -27 -40 -40 -40 -40 25 -25 -40 -40 40 -40 36 -36 -40 -40 -24 -40 -40 24 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 23 -23 -40 -40 40 -40 -40 -40 -40 2 -2 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -28 -40 -40 28 -40 40 -40 -40 -40 -40 40 -40 -40 22 -40 -22 23 -40 -40 -23 -40 -40 -9 9 -40 -40 40 -40 -40 28 -40 -28 -40 40 -40 -40 -40 -40 40 -40 -8 -10 -40 5 -40 40 -40 -40 -38 -40 -40 38 -40 -28 -23 22 -17 17 -40 -40 -34 -21 -40 21 -40 -36 -6 6 -39 16 -16 -35 -40 -40 -40 40 -40 -40 -40 40 -5 -9 -9 0 -18 -9 -10 6 3 -3 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 2 -40 -40 -2 40 -40 -40 -40 -40 -40 40 -40 -40 -32 32 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 27 -40 -40 -27 40 -40 -40 -40 20 -40 -40 -20 -40 -40 40 -40 -40 -40 37 -37 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 17 -17 -37 -40 -40 35 -40 -40 40 -40 -40 -40 40 -40 21 -40 -40 -21 -39 39 -40 -40 -40 -40 -40 40 -40 -40 -31 31 -40 -40 -40 40 -40 -40 -11 11 -40 -13 13 -21 7 -40 -40 -7 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 21 -21 -40 -40 -31 31 -40 -40 -23 23 -40 -40 30 -31 -40 -40 4 -4 -40 -40 18 -18 -40 -40 3 -4 -12 -40 -4 -25 -40 3 16 -40 -40 -16 -10 10 -40 -37 -9 9 -40 -37 40 -40 -40 -40 40 -40 -40 -40 -11 11 -40 -36 7 -17 -31 -8 12 -13 -40 -17 -9 9 -40 -21 40 -40 -40 -40 -1 -2 -40 -6 -40 26 -40 -26 33 -33 -40 -40 10 -10 -28 -40 -6 -2 -27 -1 5 -6 -24 -21 40 -40 -40 -40 1 -3 -25 -12 12 -12 -40 -40 -40 -19 -40 19 8 -8 -40 -40 -17 -40 -40 17 -5 5 -27 -28 -40 40 -40 -40 10 -10 -40 -25 11 -11 -40 -38 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -27 -40 27 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -23 -40 23 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 19 -19 -40 -40 -40 -35 -40 35 -40 -24 -40 24 -40 -32 23 -24 -40 40 -40 -40 -40 -13 -40 13 -40 -21 16 -18 -3 1 -26 -10 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -13 9 -22 -12 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 35 -35 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 23 -23 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -13 13 -40 -40 24 -24 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 33 -40 -33 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -2 -40 -40 2 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 3 -40 -3 -22 -39 -40 -10 10 40 -40 -40 -40 -11 -40 -40 11 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 23 -23 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 23 -40 -23 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -20 20 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -27 27 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -8 -40 8 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -30 -40 30 -40 -31 31 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 4 -7 -13 -14 -4 -13 3 -23 14 -14 -40 -40 -5 -3 -40 -1 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -35 35 -40 -40 40 -40 29 -29 -40 -40 14 -14 -40 -40 -21 -25 -23 18 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 19 -19 -40 -40 15 -27 -16 -40 -40 40 -40 -40 21 -21 -40 -40 -15 -11 -40 10 -30 29 -40 -35 -31 -16 -40 15 2 -2 -40 -40 -35 25 -40 -25 -29 29 -40 -40 -15 -20 -19 12 -4 -4 -9 -4 -7 7 -22 -33 8 -8 -40 -37 -20 11 -17 -13 -7 -11 -40 5 -39 -40 -40 38 16 -16 -40 -40 -40 -40 -40 40 3 -3 -40 -19 8 -8 -40 -40 -40 -40 -40 40 -2 -7 -35 -1 -18 -18 -22 14 -10 9 -33 -29 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 27 -27 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 29 -29 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 30 -31 -40 -40 7 -8 -40 -15 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -9 9 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 5 -40 -5 -40 -40 -40 40 -40 -40 40 -40 17 -17 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -7 -40 -40 7 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -8 8 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -30 30 -40 -40 -40 -40 -40 40 -40 40 -40 -40 14 -14 -40 -40 -40 -40 -40 40 7 -40 -7 -40 -40 -40 -40 40 -40 -40 9 -9 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -39 -40 39 -40 -40 -14 -40 14 -16 -40 -40 16 -40 -40 -40 40 -40 -13 13 -40 -9 9 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 19 -19 -40 -40 -40 -40 -40 40 -40 0 -40 -0 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -29 -40 -40 29 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 7 -40 -7 -40 -40 40 -40 -40 -40 40 -40 -40 -36 -40 36 -40 -40 40 -40 -40 -40 40 -40 32 -32 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 24 -24 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 24 -40 -24 -40 40 -40 -40 -40 40 -40 -40 -40 18 -18 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -3 -4 -2 -40 -26 26 -40 -40 -10 10 -40 -40 -15 -40 -40 15 -9 -1 -1 -40 13 -20 -14 -40 -40 1 -1 -29 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 34 -34 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 12 -12 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -14 14 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 34 -40 -34 -40 -40 40 -40 8 -40 -40 -8 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 27 -40 -27 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 14 -40 -14 -40 -40 -40 14 -14 8 -40 -40 -8 -40 -40 -3 3 -40 -28 28 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 31 -40 -32 -40 40 -40 -40 -40 -40 -40 40 -40 -18 17 -40 -21 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -24 24 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -35 -40 35 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 30 -30 -40 -40 -40 -40 40 -40 -40 6 -6 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -3 3 -40 -40 -40 -2 2 23 -40 -23 -40 -3 -40 3 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -3 3 -40 -40 37 -40 -37 -40 -40 29 -29 -40 -40 40 -40 -40 -9 9 -40 -40 40 -40 -40 12 -40 -12 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -18 18 40 -40 -40 -40 -36 -40 -40 36 -40 4 -4 -40 -9 -11 6 -37 -7 6 -40 -15 -40 14 -40 -14 -40 -40 -40 40 -40 -40 40 -40 -3 -3 -40 -4 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 18 -19 -40 -34 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 13 -13 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 23 -40 -23 40 -40 -40 -40 40 -40 -40 -40 -34 -40 -40 34 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -21 -40 -40 21 -40 -31 31 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -6 6 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -7 7 -40 -40 -13 -40 -40 13 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 11 -11 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -8 8 -31 -32 -26 -40 26 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -4 4 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 31 -31 26 -33 -40 -27 11 -11 -40 -29 -40 -40 26 -26 14 -14 -40 -40 -40 -40 28 -28 -38 38 -40 -40 0 -2 -28 -9 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 10 -10 11 -11 -40 -33 27 -27 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 23 -24 -40 -40 -40 -40 6 -6 -36 -39 1 -1 -40 -40 1 -1 -40 -40 -40 40 -30 8 -40 -8 30 -30 -40 -40 -22 14 -33 -15 -40 -40 -40 40 -40 -40 -40 40 15 -22 -40 -16 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 11 -22 -30 -11 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 18 -18 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 15 -15 -40 -40 -40 -40 40 -40 -40 -19 -40 19 -40 -40 -40 40 40 -40 -40 -40 19 -19 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -29 -19 7 -7 -40 -40 -40 40 40 -40 -40 -40 32 -33 -40 -40 40 -40 -40 -40 40 -40 -40 -40 12 -12 -40 -40 -40 -34 -40 34 -40 -40 40 -40 -40 -27 -40 27 -40 -40 -40 40 29 -29 -40 -40 -40 -5 -40 5 -34 34 -40 -40 26 -26 -40 -40 -40 29 -40 -30 -40 38 -40 -38 -40 40 -40 -40 -33 -40 12 -13 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 33 -33 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -35 35 -40 40 -40 -40 -40 13 -13 -40 -40 40 -40 -40 -40 21 -21 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 30 -30 -40 -40 14 -14 27 -28 -40 -34 -40 -40 37 -37 -40 -40 2 -2 -40 -40 10 -10 -38 16 -40 -16 -40 -40 40 -40 3 -40 -3 -40 -40 -40 -40 40 8 -8 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 23 -40 -23 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 29 -33 -32 -40 -40 -40 -30 30 -40 -40 40 -40 -40 15 -15 -40 -16 16 -37 -40 -40 -40 40 -40 -40 -40 -36 36 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -29 22 -23 -40 -40 -40 -40 40 -40 -40 40 -40 -23 23 -40 -40 -40 -38 -40 38 -40 -40 -40 40 -2 -11 1 -18 -5 -26 5 -35 30 -33 -40 -34 -1 -9 -10 -2 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -9 -40 -40 9 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 33 -33 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -22 22 -40 -40 40 -40 -40 -40 -40 39 -39 -40 40 -40 -40 -40 -40 31 -31 -40 -40 -40 -40 40 -40 -40 23 -23 -40 -40 -40 40 40 -40 -40 -40 -40 -35 34 -40 -40 -30 30 -40 -2 -36 -40 2 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 34 -34 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 28 -28 -40 -40 -40 -40 -40 40 -33 33 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -25 -40 25 40 -40 -40 -40 -40 -40 40 -40 -18 18 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 3 -13 -40 -4 ShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/s_1_0001_seq.txt0000644000175100017510000003024412607265053025455 0ustar00biocbuildbiocbuild1 1 109 548 TTGTTTTCATGTGATTTTAAAAATGTATTTGTTTGT 1 1 105 517 TCCAAACTGGTAGACAATACAAACATTCTCAAATCT 1 1 101 522 TGCACCTGATAGGGTCTCTGCTCTGAGAGAGGAAGG 1 1 113 530 TATGAGAGTAGCCAATGCCACAAAGACGGTGTGTGT 1 1 105 511 TAGTAGGTGTCCTATTCTGATGCCCAGCACGCCAAG 1 1 121 531 GAGAGAACTGAAAATCACAGAATATGAGAAATAGAC 1 1 112 525 GCAGAGACCCACAACCCAGCCAAGCGGCTCCAGACA 1 1 121 595 GAGATATTTATTGAACACTAACACTCTGTCATGCAA 1 1 113 371 GGTGGAAATAGCAAGCATCCCCTTCTCCGCTTACAT 1 1 89 581 TCCCAACCCTCCCCCTAAGAACAATACTCCTGACTG 1 1 83 580 TCAGAGATGATAAACCTAACCCACAAGAGACTGGAG 1 1 95 513 GGAACAAAACACCCATGGAAGGAGTTACAGAGACAA 1 1 97 540 GACAATAATTTGGTATTTTTAGAGAATGTGCAGGCC 1 1 93 384 GGCCTAGCTTCAAACATGGGAGCAGGGATTCAAACT 1 1 122 247 TCTTTTTTCTTGCTATATTCCACGTCCGACAGTGGA 1 1 115 738 GTGAAAAATGAGAAATGCACACTGAAGGACCTGGAA 1 1 117 468 GGTTTGTACAACCCAGCCCCACAGGCCTTTTCTCTC 1 1 69 533 TATCAGAGTCACTCAAATCCTCACATCAACTTTCTG 1 1 121 586 AATGTGTTTTTCAGTGTAACTCACTCATCTAATATT 1 1 117 578 TGCTTCACTGTGTGCCTCTTTTGCTACTTCCACTAT 1 1 115 365 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGAA 1 1 119 406 GCCTGTCTACTGTGGTATCAGAGTGATTATTTCTAT 1 1 112 238 TTAGCAGGCCTTGATGGCTACTACTTCCTTTCTCTA 1 1 120 597 CATCCCACTGCAGTTAAACCTTGGCAAGCGGATAGG 1 1 119 390 TTTCCTTGCCATATTTCCCGTCCTAAAGTGTGTATT 1 1 108 606 GATGGGTCGTATTTCTCTCTTTCATTACTCATACCA 1 1 96 508 AATTTGACTTTTAGTAATAGCCTTTTTACAACTAAG 1 1 106 347 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT 1 1 92 482 TTTGTATATGTATACATGTTAAGAAGATTCTACTTT 1 1 114 415 CTGATTGCTAAATTAGTCCTGCAAATAACGTTATAA 1 1 117 462 CTCCAGTTCCACAGACTCAAGGCTCTTCTGTTCACT 1 1 88 544 ATAGGGACCAAGCAGCTTTTGAGATACTATTTTTTA 1 1 68 580 TTTCACGTTTTTCAGTATTTCGTCATTTTTCAAGTA 1 1 81 571 TTACTTTTAAAAACTTTATTACTCAATAAAGGCTGA 1 1 75 541 GATAAGTGTGGAATTGATATTACGCTGGCAAAAACT 1 1 113 775 TCATCTCTTAAACTGAGGATAATAATACTTACCACA 1 1 122 660 TATGCAGCTAGAGTCAAGAGCTCAGGGGTACTGGTT 1 1 115 329 GGGGACTGTGGGTGTAGCTCACTTGTTGCAGTGCTT 1 1 118 518 CTGAAAATCATGGAAAATGAGAAACATCCACTTGAC 1 1 120 704 GAACCAGACTCCTGGCAGAAGTTGTGTTCCACTCAC 1 1 105 427 TTCGAGACATTGCTTCTTTCTATATCTCTTTGTGTT 1 1 110 692 GCAGAGACGGTTCCAGGAGAGTTCACCAACTTGTGT 1 1 98 349 TTTCAGTTTTCTCGCCTTATTCCATGTCCTACAGTG 1 1 120 488 CAATATAGACACATTAGACTAGAGTTAATGCATCAG 1 1 120 749 TTGGATTAGAATGGAATCCAATGGAATCAACTGGAA 1 1 115 889 GAGAAAATGCCCCACAGCTGGATCTCCTGGAGGCAT 1 1 98 629 TTGCATTCAAAGGGGATGAGCAAATATTCTTCCTTG 1 1 120 446 ATCCATTCCTCTGTTGAGGGACATCTGGGTTCTTTC 1 1 115 762 ATAGCCTCTTAGGTTAGGCGGGCCTAGGCCTCTTTA 1 1 99 723 GTACATTTTCTTTTCTGTACAGGTACCAACTGCATG 1 1 80 439 TTCCTCAAATTTAATAACAAAATTAAACACATCAGC 1 1 120 897 TTAGGGTGGATTTTGTGAGACTGAGAAAGAAATTGT 1 1 113 628 TGTAACATAGACAGAGTTGAAAGTTAGAGTCTGCTA 1 1 121 143 TAACATTGTGTATCCTATGCCATTTGCCTGGAGTGG 1 1 101 353 TGAGTTTTTCTCTTAGAAATGCTTTCATTGTGTCCC 1 1 122 581 GCTAGGTTCTGCCATTCAACAACAATAAACATGTCT 1 1 97 502 TGGGATTGGTTTGGGGTCAGCTCATGTGCTTCAGGT 1 1 95 455 GCTGTGGCCAACATTCATTTGTCATGGAACCTGACA 1 1 100 681 TGAAACAGAGGCAGAAACGAGTATCGGGCGGTGCTG 1 1 122 300 TAGTAGTTGGTCGATAGTAGTCTGGGCAAACTTTTT 1 1 103 604 GAGTCGTGGATCCAGCTATGCAGGAGGCTCACAGCA 1 1 121 544 CCCTACTGCAGGAAGGAGCTGCAGCTCATTATTCAG 1 1 105 377 TGTCACCACTGTGTCAAGAGCTGTTGTACTGTACAG 1 1 109 610 CAAGAATCAAACGAATAGATGCTAAGCAAGAGCTCT 1 1 96 412 TAGCACAACATTAAATAACTCATAATTATATGACAT 1 1 88 444 ATTATCCAAGTGAACAAAGTTGACATCATCAGTATC 1 1 123 424 CTGAGAGGAGACACCCAAGAGCTACGACTTAGTGTA 1 1 98 361 GTGGGCAGGAGTTTTGTGGGTGATGGGTTCCTGAGT 1 1 119 458 TCCTTGCATAGGTGTTGGCAGCCGAGGAGAATGTGG 1 1 121 629 GCAGATATTACTTGAACTCTAGCTCAGACATTTATG 1 1 112 446 GATCCCGTGGGGAGTCCCGTGTGGGCCCTTGCGGGT 1 1 112 379 AATGATACCAATATGCTTGCCCTTGGTCAGTTCATC 1 1 113 631 GGCATAGCCTCCAACACAGGGAGGTTAGGCACCCAG 1 1 118 565 GGCTGGCTCAAGATCAGAAGCCGCTCTGGACGTTTG 1 1 89 533 GAATTCAAAGGAATCATCATCGAAGGGAATCGAATG 1 1 106 886 GAGAAACCCTCTGTGGCACAATGCAATTAGAATCCT 1 1 109 291 GGGATTACCAGTGTGAATTCACAGCAGCAGATGACA 1 1 93 629 TTCTCATTTTTCACGTTTTTTAGTGATTTCGTCATT 1 1 80 481 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT 1 1 109 568 ACAAAAGCGGCAGAGGATGGCCGTGGTGGCTATCAT 1 1 113 482 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA 1 1 79 878 GTCATTTTTCAAGTCTTCAAGTGGATGTTTCTTTTT 1 1 98 479 TTGCTCCTGATTCCTTGACCACCCCCACCCAAACAC 1 1 75 217 TTCCATCATCATCACCCTTGTTTAGGCCTTGCCCAT 1 1 100 525 AAAAAATGGATTAAGCCAGCAAGAGAAAGGAGATGA 1 1 113 326 TTCTTTTCCCTCCCTGCCCTAGCCAGGGCTGGTTAG 1 1 85 733 TTTTAGATTGGTAACTTGAAATATTATAGGGCATAG 1 1 111 862 GATCGGAAGGAGCTCGTATGCCGTCTTCTGCTTGGA 1 1 87 618 TTGTCTGTGCCAGCACAGAGAAAGCAACCTGAGCAT 1 1 83 277 TAGACTGCTGCCTAGCAAGCCTTAAGGATTCTTCTC 1 1 103 414 GGGTAGGCTACAGTGGAGGAACAGGCAAAGACCACC 1 1 93 494 GAGTGACAAAGAAGAGAGGGCAGGACAGGCCTGAAA 1 1 65 610 GTCTTATCCATAACTCCTAGAACTTCTATTGACATA 1 1 102 717 GGCCTACGTTGACTTCTGGTACTGAGGTTAAGAAAC 1 1 104 595 CCGGAGTTTCAGTGATCAGAGTACTCTCTGCAGGCA 1 1 118 675 TCCATGGGGTCCTTGGTGCTTTTAAAGCACACCCCC 1 1 107 489 ACAGACAAACTCTTTCTAAAAATAAAAACAAAACAT 1 1 72 446 TGCAAGAAGTGGAATACAAAACAAAGGCTTAGAATG 1 1 85 233 TCATGATAAAATTATTTTATAGATTAGGGATTCAAG 1 1 106 462 AATAAATCTTTAAGCAAAAGTGGCTGGTTTTTTTTT 1 1 82 588 GCTGAGGTCCGAGCTAGGTTTGGACTATCAATCAGA 1 1 80 334 TGAGTGAAAAGGTTTGTGTGTGGGTTGATGTTCTTA 1 1 117 484 TCCCACAGCAGAACAGGATGAGGGGATTTGTAAGTG 1 1 104 475 TCAACCCCCATATTCAGCTGTAAGTAGGTATGACGA 1 1 102 619 GTAAGGAAGGCATTCTTCTCAGAACAACCTAAGATA 1 1 98 190 GTGTATGCAAATGAAGAGTTTCCAGAGGTCAAGATC 1 1 115 189 GTACACACAGATTTGGGGAGACAGCTGCACGGGTCA 1 1 88 462 CATCCCTTTGTCTCCCTGAGTGTGAGCTGCTTTCTG 1 1 113 784 GACTTAGAACCAGGAAGCTGCCTGCCTTGTCATGTT 1 1 107 478 GATCGGAAGAGCTCGTATGCCGGTCTTCTGCTTAGA 1 1 102 248 TCGAGATTATGGTCAGCGTCGAAGAACGCCGCGAGG 1 1 107 310 TCCGCAAATAGCTTGTTTTCTGTGACCGTTTTGGCT 1 1 117 503 CATCTGAAAGTTCCAACCACCCCAACCACTAGACTT 1 1 465 808 GAAAAGAAAATTAAGATGAAAATTTAACTTGCAATA 1 1 87 313 TTTATAATATAATCTTTTATCACATAGATAAATAAA 1 1 90 286 TACACAATTTAGGACGTGAAATATGGCAAGGAAAAC 1 1 88 396 TGTGAGTAGAAGTAGTAGAAGAGAAGCTGTTGTAAT 1 1 81 453 TTAGTTAAAAAAAAATATTTTTTTTTAATTTTATTA 1 1 88 479 CTAGTCCTTTGCCAGTGGTAATCTAGGCATTGAGAT 1 1 120 534 AGCTGCGAAGGAAATGAGCAAATATCCCCCAAGGAT 1 1 111 505 GACTAATAATAAATAAATAAAAAAAATCTACTTAAA 1 1 120 648 GGCGTGATTCTGCTGGCCATTGCCATCAAGCTGTTT 1 1 89 450 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGTAT 1 1 122 166 GCAAATACAGGAAGAACCAAGGGAATGGAGGAGAAG 1 1 82 533 TGTGTCTTATTTGTCTCTGCTCCCTTGGGCACCAAG 1 1 109 730 GATCGGAAGAGCTCGGTCTGCCGTCTTCTGCTTCTA 1 1 94 520 ACTGTAAAGCATTCTTGCCTAGAAAATGATAGGATA 1 1 112 852 TGAAACTAAAGCTACAATAAACTTATATAACACAAT 1 1 92 550 ACCCCTCCATCACTCTGAGGCTGACCAGAAGTATCT 1 1 104 584 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAAAT 1 1 123 436 AAAATGAGAAACATCCACTTGACTCCTTGAAAAATG 1 1 109 580 ATCTTGGATGCCCTACCCCCCTGTCCTCATCCTCTG 1 1 102 549 CTGAGCTGCCTGGAATTAGAACAAGGAATATTTTAT 1 1 121 318 TGGGCGATGATTAGATCTCACCCACTGCGATTAAAG 1 1 119 279 TTGCGATCCTCCTGTCTCTGCCTCCTCTACAGTCCA 1 1 89 424 GCCCTCTCTGCTACTAGATGGGCCAACAAGCAGCTG 1 1 82 804 TTCTGGGTCTTCAATTCTATTCCATTGGTCTACTTT 1 1 90 304 TTCCGCCAGAGTTCCAGGAGGATGCAGGAGGATGGC 1 1 107 425 CAAATGGTTTTAACACTTGAGCCATCTCTTTGCCCT 1 1 110 408 ATGTAAACCACAGTAGAAGTTTGTGAATCTCCCATC 1 1 103 853 TTTTTCTAGGAGTTATTAAAAATACATGCTTAAGTA 1 1 115 514 CTTTCACCTTCCAAGGGCTGTGAAACCACCATTCCC 1 1 114 521 AAATGGGATTGTGTTCGTGATTTCGCTCTCAACATG 1 1 99 337 TAAGGCTGGTCTTAAACAGCAACAAAAACAACGGAA 1 1 118 632 GAGCGGAAGAGCTCGTATGCCGCAATCTCCTTCTAT 1 1 91 364 TAGGGACATGGGAGCCATCTTGACAAGTCTGCAAAG 1 1 114 400 TCCCAACGATCTTCATCTTACTCCGAAATCTAATTT 1 1 85 487 GGCCTCCCAGGAGATCTACTGCAGCCAGGGCAACAT 1 1 113 509 CTCCATTCTAGAGCCTGATTCCAGTTGCACCCACTG 1 1 104 907 GTTAGCATGAAATGTCATGGCAGCTGGATTGACAAA 1 1 123 467 CTATCTGGCACTACAAGAATTAAAATTTAAAAATAA 1 1 74 589 TGAGTTCTTTGGTATTTGGGTTGCTTCACTCAGGAT 1 1 100 564 AACAAGGCAGGAGTTCTGTAGTACTGGGCAGCGAGC 1 1 116 569 TAGCAACACCATAAAAAGTCGTCTAAAAAAGGCACA 1 1 79 401 GCCTCTAAGCACTTGAAATCCATTCAAAGGATCCTT 1 1 98 771 GGTTTTTCAAGACAGGGTTTCTCTGTCTAGCTCTGG 1 1 86 761 TGTGTGAGTTCCTTTGTGATTGTGTTACCTCACTCA 1 1 88 393 TAGGTGGACATGACGTATACACTCCAGTCTAAACAT 1 1 84 708 GATCGGAAGAGCTCGTATGCGTCTTCTGCTTAGATC 1 1 113 439 GCAGCAATCATCCGCTCTGCTGATCCGGACGCAGTC 1 1 83 506 AAATCCACTTGACGAATTGAAAAATGACGAAATCAC 1 1 107 128 GAAAATAAACACTATAGTGGAATGGCTTGATTTTTT 1 1 70 568 GGAATGCCTAAGCATTTCCAGCACTCAGACTTTACC 1 1 122 608 GATCACAACAGACAAGACAGATGGGAATCGCCACAG 1 1 97 306 TTTCACCCCAGCAGGGAGAGTGCAGGCAGGTCCTGC 1 1 121 179 GTTGTTATATGTCAGGCAGTGACTGCCCAAGCACAT 1 1 106 507 CAGATGACTGGCCACCTGCCTGCCCTGGAGAGCAGT 1 1 427 635 GAAAAACAAAGTAGGTATTGAAACAAAATTGAATAA 1 1 109 107 GTGGACATCTGATTTTCTGCTTTTACCTTCCAACTA 1 1 116 82 GAATGGGAGAGGTGGTAGGTGGAATTCTGATTAGAG 1 1 64 473 GATCGGAAGAGATCGTATGCCGTCTTCTGCTTGTAT 1 1 107 663 GTCGACTCCGCGATGCTCTCCGCGGCGATTGCCGTG 1 1 89 718 TATGGAAGGCCTGAGGAGTCTTTTGTTGCAGTCTTT 1 1 380 636 GTTAGAAAACAAAAAGGATACACATTTTTCAAGACT 1 1 88 506 TCATAGTTGCTGAGATTTACAGGACCCAAAACAACA 1 1 123 502 TGAGAAGCAACATATGGTTTAGAATAGAATTATCGA 1 1 74 510 AGGAAAAAGACCCTTTACCAAAACTACCTTGTAAAG 1 1 70 476 GTGTAAGATCTATGCAAAGTCGTGAAAACATCTCTA 1 1 118 160 GTTAATTCCCAGTTGGATAGGTAGTACACATGACGC 1 1 737 593 GATTCCTTCATTGAGAATTATCTGTTTTGCTCTGTA 1 1 84 611 CACAACACACCTCTATTAGTCAACAACTACAAATTG 1 1 114 669 CCTAAACTCACCTTAACCCTAATACTAACCTAACCC 1 1 114 570 CGTCGACTCAGTGGTTAGGGCCTACTCAAAATCTGC 1 1 366 851 GAAAAAACTGGCAAGTGTTCTTAATCTTTCCAGCCA 1 1 120 187 TTTTTATAATTGGTTAATCATTTTTTTTTAATTTTT 1 1 99 468 CATGGGAGCTGAGAGCTAAAAACACACAGATCATCA 1 1 116 556 GATCGGAAGAGCTCGTATGGCCGTCTTCTGCTTAGA 1 1 109 150 GGCTAGGAACCAGTGTGCATGCATACCATTCCCGCC 1 1 114 754 GGTCCTCTGCAAGAGCAGTAAGTGCTTTCAGCTGCC 1 1 111 432 GGCAGACAAGGGAGAGGTGAGTAGGATATGGTGGCA 1 1 373 636 GGGTCACATATATACTATCATATCATGTGCAAATAG 1 1 119 991 GTGGCTCAATCTGGCCTTGAACTTCTGATCCTCCAG 1 1 97 872 TCCTCCCTCCTGCTGCCTGTCATTTTGAGTTCATCC 1 1 117 859 CAGGACAGACTTACCATGTCCACTGTACAGACAGAT 1 1 67 557 TGTGTGTGTAGTGTTGTTGATGCTGTTCCCTTGGTT 1 1 452 555 GATGGGTGGGAGCACACAAATTGAAGCAGGGCCGGT 1 1 355 795 GTCCTACAGTGGACATTTCTAAGTATTCCACCATTT 1 1 98 511 ATTTCTGGAGACCCAGGGACAGCGTGATAGATGCCA 1 1 495 692 GACATCTATTCATATGCCTGGGTGTGTTATTTATAG 1 1 129 389 GGGAAGGAAAAATACTGGAATACTGGGTTATAGGAA 1 1 100 552 GCCCCTATGCACTCTAGACGTTGCTATGTCAGCGTG 1 1 106 452 CAGCACAGCCCGATCTCTGAATTACTTCCACTCTGT 1 1 99 487 GTTGAGTTCAGATGCAAATACCGAGTGTGTTATACA 1 1 465 826 GATAAGGAAACTAAAACACAAGTTAAATAACTTGCC 1 1 90 464 TCAGATCACCCAGGCCTATGGTGAGCTTGAAGAGTT 1 1 96 724 CATATCAATTACAGGTCTTTTAGGTTGTAGGCAATA 1 1 94 317 GGGAATCCAGGCAGGGAAGCCATCCGTGACTCTGAA 1 1 100 399 TGGCTCGGGAGCTCGCCTCCCTCGGCCTCCTCCAAG 1 1 488 607 GATCGGAACGAGCTCGCATGCCGTCTTCTTCTTTTA 1 1 73 788 TGTAGATAAGGTGAAAAGGTAAGTGGACTTTTGATT 1 1 103 490 TACACATAGCGATCAGTCACTTTACTAATGGCCTGA 1 1 123 475 CAACCAAAATACCAACAACAACAACAAAATATCCAA 1 1 443 635 GTTCCTGCTTCCAGGTTCCTGCTGTTCCATTGCTGC 1 1 117 798 GAGGTGCATTTCCTGTGTGCAGAAAAATTCTGGGTT 1 1 110 917 TCTGTCTGTCTCTTAGGAGGAAACCCGAGGCGGCAT 1 1 109 882 CCCAGAGTAGAGTCACAATGTATTAATGCCCAGAGT 1 1 81 142 GGTAATTCTTAACCAAGCTTCTATTTATAGGCAGAT 1 1 117 822 TGTACTAATCTCTGTCAAGACAAACTGTAGCATTTC 1 1 116 174 TGATGCTTCCTCCTCAGCTTGCTCCAGTAACATCAA 1 1 108 268 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTATAT 1 1 83 406 CCCATCCAGTTCCTACCTTAATGTCTGTCCCCATTC 1 1 101 484 CTGGATTTCGAAACGGAATGACAAACGTGTGCGTGC 1 1 483 628 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAA 1 1 107 469 TTATGAATTATAACATCTACCTACACTTATAATATC 1 1 962 565 GGGATGTTCCAGTCAAGGGAACCAGGGTTTGCTCAA 1 1 118 572 CTATCTTGTTGATTTTCTCGAAGAACCAGCTCCTGG 1 1 121 126 GATCGGAAGAGGTCGTATGCCGTCTTCTGATTTGTT 1 1 111 537 AGAAATGCTACGGAGAAAAAGCCAGCAGGGTAAGGG 1 1 119 908 TCTGCAAGTTGAATCTTTTCCAGTTTTTCTCATATG 1 1 115 562 AAAAATGCCAATGAGGTTTAGAGATACGAGGACCCT 1 1 96 884 GACATCAGACATGGAGATGCAGAGTTTGGAGTTTGC 1 1 123 534 ACAGTCCATCGTTTCACCTGGGCTCTTCTCTATGTT 1 1 99 443 TCAGCCTCATGGAACTTTAAGGCAAACATCCCAGAA 1 1 96 906 TGAGAAGAAGATAATGAGGAAGATTTAAGGTCTGAC 1 1 117 195 GGTGGATTGCGGGTGGGTAATCCCCCCCCACCTCAC 1 1 405 806 GATGTTTCTCATTCTCCATGATTTTCAGTTTTCTTG 1 1 68 425 TACATTCCCTTGGCACAAATGCCAACCTACAAGATC 1 1 113 567 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT 1 1 69 594 CTAATGGCGATATGATGTCATGTAGATGCCCAAGCC 1 1 90 379 GACAGGCACTGGATGGCATAGCTCAACCACAGGTGT 1 1 111 977 GCTGGATGCGTCTCAGCAGGGCAACCGCATCCAAGT 1 1 85 701 GGAGCCTGTAGAGGCGGGCAGGGCTTATCGCCTGAG 1 1 116 879 CTCCAGGTGCAGCTGTCCTGAGGCTTCTCCAGGGAG 1 1 753 95 GTCTGACGTTCTTTAAGCAGAGCGATTTCAGCTTTC 1 1 104 223 AATGAGCTTTTGTGTTGAGCTGGGGGGGGTGGCGTG 1 1 91 195 TGGGAGCATGAATTTATTACTGTGGTAGAAGAGCAT 1 1 82 227 TAGGAGTTCTCTGGTGGAATTTTTAGGGTCACTTAT 1 1 78 554 TGGGGAGATGTGGGCCCTGGCTGGATATTTGAGGAG 1 1 101 329 GTGGAGGCTAGCACCTGTTTGTGGCCTTGTGAAGGA 1 1 449 243 GATTTTCAAAGTTAAGGGTAAAAATGTTATCACCCG 1 1 401 703 GAAAATGAGAAACATACAATTGACGACTTGAAAAAT 1 1 101 226 GGTATTTTCCTTTTGTTTTATTTCACTTTGGAGGGC 1 1 239 916 GATAGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAT 1 1 349 63 GAAAAACGTGAAAAATGAGAAATGCACACTGTAGGT 1 1 158 505 GATTCCTTATGTGGTAATGGAAAATAATATTTCATC 1 1 793 122 GGATGAGAAGAATAGTATATTACATCTCTAGCCACA ShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/s_1_1_0001_qseq.txt0000644000175100017510000005203612607265053026061 0ustar00biocbuildbiocbuildHWI-EAS88 1 1 1 972 352 0 1 CTCCTGCCTCAGCCTCCCAAGTAGCT a`aaa`a_P_\X\```a]][X[MRW_ 1 HWI-EAS88 1 1 1 973 431 0 1 TGATATTTTCCTGTCAGACTAGTCCT a`\`_aaaaa_`X_\WSQZ_ZTZ[[_ 1 HWI-EAS88 1 1 1 973 933 0 1 TGACAGCCCGGAAGCGAGGAAAATAA ab`aaa]]abbaaa`_]__X_^]]]a 1 HWI-EAS88 1 1 1 973 557 0 1 TGCTGGGACTGCAGGCATGAAACACC abaa`a`_aaa_]]`]\`Z\]`]YX\ 1 HWI-EAS88 1 1 1 973 159 0 1 CCCTAATGGCAATTTTGTTTATTCAT aaab`W`^``VUabba[_baYab[M] 1 HWI-EAS88 1 1 1 973 151 0 1 TTGTTTGGGGACAACAAAGATGGCAT abb`ba^V[`Z[]Z\UYVWQ[XFUV\ 1 HWI-EAS88 1 1 1 973 6 0 1 TA........................ BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 973 990 0 1 TATGTAAGTGTGTACACGTGCATATA abab`ba`[a`ba`aa`_]a``aaa_ 1 HWI-EAS88 1 1 1 973 540 0 1 TATAATGACTTCTTTTCCTCTGGGTA aaaaaaa_`aa`aaaa_`aa^BBBBB 1 HWI-EAS88 1 1 1 973 483 0 1 AGACCAGGGTCAGGAGGAGAGATGGA abaaaabaa\]O]]^]`XXHXNRUYX 1 HWI-EAS88 1 1 1 973 955 0 1 CTCTGACATCTGGGGCTTCTGATTCC abbbbbbbbbb`Z``a``_`a_a^Y_ 1 HWI-EAS88 1 1 1 974 417 0 1 CTTCTGCCTCAGTCTCCCGGGTCGCT H_[V_XBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 974 280 0 1 AGTCCTCTGCCTAGGAAAACCAGAGA aaaaaaaa^`aa^PUVZVZ]`BBBBB 1 HWI-EAS88 1 1 1 974 776 0 1 TTATACCAGTACCATGCTGTTTTGGT aXa`K\GI^ZW[_YGHUYOQYQSBBB 0 HWI-EAS88 1 1 1 974 744 0 1 ACCACAACCAGCTCCTCAGAGTGTGT aU\^_^_\W\^WX\WS\WYSSKUWBB 1 HWI-EAS88 1 1 1 974 801 0 1 AACTCTACATCATCATACCCATCATG BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 974 656 0 1 GCGCCAGGTTGTGCGCTGAGGCTCCC II__BBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 974 741 0 1 TGTGTCTGCAAAAATGTTTAAAAAGT aa`a_aa_[]`^__``^aa^^_^^QX 1 HWI-EAS88 1 1 1 974 961 0 1 GGGATGACAAATAAAGGAAACAAGGA a[TTKTNWBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 974 687 0 1 TGGTTTTTTTTGTTGTTTTTTTTTTT aaa]aababbaV`a_aaaabaaab]B 1 HWI-EAS88 1 1 1 975 798 0 1 AGCGATCCGTCAGGTGGCACTTTTTG aa_a^]R[`[^^^XTRZZRZ^^Z^[R 1 HWI-EAS88 1 1 1 975 737 0 1 CTGCTACCTCCACGCCCCAAGTTTAA aabaabaaabaabaaa`a``_U^_V] 1 HWI-EAS88 1 1 1 975 22 0 1 CCCTAGCGCCAAGGGTGTCCGCGGCT ^Z___H[I_IGFT_^R]GTVW]IZ\B 0 HWI-EAS88 1 1 1 975 884 0 1 TACTAATTTACATTCCTACCAACAGT ababbbaabbaabaaaaaaaaaa__W 1 HWI-EAS88 1 1 1 975 586 0 1 AACAATGGAAAGGTCATTTCAAGGTC aaaaaa^\W^^]a]`^a`\PZ\WNT[ 1 HWI-EAS88 1 1 1 975 396 0 1 CCTCAGCCTCCTGAGTAGCTGGGACT aaaa[_aaaa`_XX\]]X]\UQSO[] 1 HWI-EAS88 1 1 1 975 346 0 1 TAGTTTTTCCCTGAATTCTGAGCACC a^a_aaaa````P\[_a_`UJMVXTZ 1 HWI-EAS88 1 1 1 975 617 0 1 AGCACTTTGGGAGGCCTAGGCGGGCC aaaaaaaaa_`]TW]^\]X]XUUYBB 1 HWI-EAS88 1 1 1 975 160 0 1 CCCTAATATCCCAAATGTATCCACGT abaDTNYHWbbWBBBBBBBBBBBBBB 1 HWI-EAS88 1 1 1 975 511 0 1 TAGCCCCGCCTCCTCTAGGGTCCCGG `a_\RX^`^`_\^^Q``ZBBBBBBBB 0 HWI-EAS88 1 1 1 976 149 0 1 TGATTCTTCTCTCTTTTCTTCTTTAT aaYaa_aa`a_a_aaaa``a`aa_O` 1 HWI-EAS88 1 1 1 976 472 0 1 CCATGTTGGCCAGGATGGTCTTGATC aa`ab\```a\O\a^a_V]Y]ZGNY] 1 HWI-EAS88 1 1 1 976 490 0 1 ACACTGAAAGGGCAATTTGTCACAAC a`Yaaa^X`aX[]WZ``^X]YOVQRX 1 HWI-EAS88 1 1 1 976 969 0 1 TTCGGCCTCCCAAGGTGCTGGGATTA ababb``aaaa_ab_V`a__`]W_]_ 1 HWI-EAS88 1 1 1 976 109 0 1 GGCTCCACTACTATAGGGGCAATTAC aa`a``X`a_`[N^^```^YNNY[QY 1 HWI-EAS88 1 1 1 976 663 0 1 TTGAACCCAGGAGGTGGAGGCTGCCG aa``a^a^Y^\\`]BBBBBBBBBBBB 1 HWI-EAS88 1 1 1 976 476 0 1 ACTCCTGCTCTCTCATGGGCTTTTCT aabbbaaabbabab`_]WT_aaaaab 1 HWI-EAS88 1 1 1 976 496 0 1 AGAGAGCTTTACAAGCACTCTAGCAG aaaaaaaaaa`_[XZaa`aa]YQZXY 1 HWI-EAS88 1 1 1 976 310 0 1 CCATCTTCACTCCTCCTTTGAGTCCA ab`abaaaaaaaaaaaaa`SUQBBBB 1 HWI-EAS88 1 1 1 976 479 0 1 TGCTTCATCTGTGGGATGCTGAAGGA aaaaaa_aaba_^a[\]Z]a\RNQVR 1 HWI-EAS88 1 1 1 977 21 0 1 AAATGGCGCTTGGGGAAAGAGAGGTC [GZb_[G_`a`[ab[DXVV^BBBBBB 0 HWI-EAS88 1 1 1 977 406 0 1 GAGCGTTACCAGCTGCCTCAAAGTTA a`aab`a`a]Pa`aaaa]_X\`UL]] 1 HWI-EAS88 1 1 1 977 861 0 1 TTGCGCGCGTAGGAGTAATGGCTCGC `aaaaaaa``a```_\_]aa]]]VXB 1 HWI-EAS88 1 1 1 977 266 0 1 TGTAGGTCTCTTATCAATGAAGAACT aa`aaa_^a`aa\a[SY_WSQTSXXa 1 HWI-EAS88 1 1 1 978 312 0 1 TGAGTCTCCAAATCAATCCAATGAAG aa\a_aa_a_[]a_\_aa`YS^ZUXB 1 HWI-EAS88 1 1 1 978 647 0 1 GGTGGGGGGCTGAGAATCAGGCACGA S_T\FY_\`\QXZVEW\ZTXWZBBBB 0 HWI-EAS88 1 1 1 978 159 0 1 CTGCGAAGGCTGCCGGGAGCGGGACT `aaa_\^[`\`^`]U]\P[Y`\BBBB 1 HWI-EAS88 1 1 1 978 641 0 1 TGGTCAGGCTGGTCTCGAACTCCCAA aaa\aa`\a`]Y\^`\QHV\ZTXBBB 1 HWI-EAS88 1 1 1 978 686 0 1 CATTTTGGGAGGCTGAGGCGGGCGGT `_aaa`aaaaa`a\`\`a\a`[BBBB 1 HWI-EAS88 1 1 1 979 550 0 1 CCACGAGTGGAGACCTTCCCACGTGT aa`aaa_V_`]`]^_````]]]\R]W 1 HWI-EAS88 1 1 1 979 920 0 1 TCGCAGTACTGTTGTAATTCATTAAG a`baab]a`aa`ab\Y_b`a^aa`[[ 1 HWI-EAS88 1 1 1 979 789 0 1 CCCCTTTCTGTCACCTGCAGAGCTCC aaaaaaaaa`aa^aaa_`a``_]]`` 1 HWI-EAS88 1 1 1 979 886 0 1 TCTTTATTCTGTTCCCCCCCAACCCC aaaabaaaaa]aa``a__`a^]]_`` 1 HWI-EAS88 1 1 1 979 908 0 1 AGTTTGGAAACAATGATAGACATAAG ab_aaaa_aaa`]`a^\`a\^`]`]Y 1 HWI-EAS88 1 1 1 980 525 0 1 CGCCATTGCGCTCCAGCCTGAGCAAC aaaa`aa^_[_```_Z]\]Z[ZVYT\ 1 HWI-EAS88 1 1 1 980 828 0 1 AATTGTGTTCTGTGAACCTTATCTCA aabbb`baaaaba^`___b``a`a]_ 1 HWI-EAS88 1 1 1 980 404 0 1 CCTTCTCCTTGAGCACTTTCTCTTCT aabbbaaaaaZP]_`abaaaaaaaab 1 HWI-EAS88 1 1 1 980 867 0 1 CAGGCATGAGGCACCGTGCGCGGCCT aaaaaaaaaaaa````\aa`^`]XV\ 1 HWI-EAS88 1 1 1 980 252 0 1 GGTCGGGTGCGGCGGCTCCGGCCTGT aaZa```Z`\BBBBBBBBBBBBBBBB 1 HWI-EAS88 1 1 1 980 648 0 1 ACATGCAGGTGGAGGGGAGGGCTGCG `aa^a_V]XJXVJW]]BBBBBBBBBB 1 HWI-EAS88 1 1 1 980 284 0 1 GATCCCTAAACAGCAGCAAAACGAAA a_baaabaa`a_````a]_[]`\TZY 1 HWI-EAS88 1 1 1 980 678 0 1 AGGGAAGGGTAAAAGGCGAGGCAGGT abbaaaaaaYa``]]__`[^]XQ[BB 1 HWI-EAS88 1 1 1 980 282 0 1 TTACTTACGTAAAAACTTTAGATTAT aba`abaaa_`\]\_aab[YOL_b_b 1 HWI-EAS88 1 1 1 981 215 0 1 GTGGTTACTGGCGCCTGTTATCCCCG __R]H]_VPPX`XO\WZTUU\XBBBB 0 HWI-EAS88 1 1 1 981 351 0 1 CTATCAGAGATGCCGAGAAAGCAGGG ababa`_\]`_]_a]UYXZ[WXKWUU 1 HWI-EAS88 1 1 1 981 632 0 1 ATCCCTCAACAACTGTCCCTAATAGT \^T_a_^W_```a_V^\__VWQ^[RV 1 HWI-EAS88 1 1 1 981 855 0 1 TATTTCTGCGGCCTCTGTTCTGTTCC aaaaaaaaa`__``^a^`b`a^]`[Z 1 HWI-EAS88 1 1 1 981 123 0 1 GCTGGTCTCGAACTCCCGACCTCAGG a``a`^\a`]JO_a^\^XVZ]XPGSW 0 HWI-EAS88 1 1 1 981 551 0 1 CCTGGGAGGCATCTGGGTTCCACCAA aaaaaaa`a_\_a`_`aa_``aa`]U 1 HWI-EAS88 1 1 1 981 785 0 1 GCCAGCCCTGGAGGTAGCTGGGTTTC a^`aa`^^`a]P\]PU\U]`_XM\BB 1 HWI-EAS88 1 1 1 981 769 0 1 GGAGAGGTCTGATCGGTCCAGTGTTG aa^a^aaU^a`[^_`]XXZV]T]ZZT 1 HWI-EAS88 1 1 1 982 94 0 1 AGCAAAGGGTTAAACGAAAAAAAGAC VBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 982 426 0 1 GCAGTGAGCTATGATTGTGCCACTGC a`]a_a``aa`aZ]]_]]ZZVRW[M[ 1 HWI-EAS88 1 1 1 982 414 0 1 TAATGGAAGACGGGAGTTGCAGTGCT a`aaaa_YZ\_]`YRWSX\VOSNVNW 1 HWI-EAS88 1 1 1 982 573 0 1 CTAAATAAGATGGTTAGTACTATAAT aa`]`a```^a^^`a^SZ``^U^[V^ 1 HWI-EAS88 1 1 1 982 341 0 1 GACACATACCCATCTTTTTAGAAAGT a\aaaaaaaaa\aaaaaab[BBBBBB 0 HWI-EAS88 1 1 1 982 997 0 1 TACAGTGAACAGAAAGGTCAGAGCCC abbbbabbbbbbbbbb_T_aaaa^_] 1 HWI-EAS88 1 1 1 982 221 0 1 CAATGGAGAATGAATGGCCTTGAACT aX`b_b_`^`a_V^a_]]`]]WIW]^ 1 HWI-EAS88 1 1 1 982 655 0 1 TCAGGATTCCATGGAGAATATCACAC aaabaaaaaaaaZ]^^^^`_``^^X^ 1 HWI-EAS88 1 1 1 983 404 0 1 GGCAGTGAGCCCCAAGGCTTCCCGTT `aaaaXX\a`aaaWF[\YU_YOEYYX 0 HWI-EAS88 1 1 1 983 204 0 1 ATTAGGCTGGGCACAGTGGCTCCTGC a]\Z\ZZRPZBBBBBBBBBBBBBBBB 1 HWI-EAS88 1 1 1 983 277 0 1 CTACTCAAGCCTCAGGAATGGCGGAC ababbba^aabb`WZ^]W`a]_WYBB 1 HWI-EAS88 1 1 1 984 727 0 1 TCAGGTATATTTTCAGCAGTCTTGGG aaabb_ba`bbbaaaZa```a]\OYY 1 HWI-EAS88 1 1 1 984 703 0 1 CTGATCTATGGCACCTCTCTTCTGGC aab]aaaa`a^aaaaaaa`^`aYHU] 1 HWI-EAS88 1 1 1 984 252 0 1 CTGCAAGGCCAGGCACGGTGGCTCAT a`a`aa`a`aW^a`aa__V[a[XXSS 1 HWI-EAS88 1 1 1 984 980 0 1 CCTGAGCCACTGTGCCTGGCCAGGGG aaaaaaaa`a`a``a_]_][_aaaa` 1 HWI-EAS88 1 1 1 984 591 0 1 TCCATGTCCCTGCAAAGGACATGAAC aaaaaa_baaa^_U_T[\O]X\][[] 1 HWI-EAS88 1 1 1 984 564 0 1 ATATTTCTTGGAGGCTTTGTTCATTC ababbbbba\ZXZY]`b`S\aWD\`U 1 HWI-EAS88 1 1 1 984 379 0 1 AAAGAACTTCAGCAATTGCAGGAAGC aUWYWRZYY[VUVUUUXXBBBBBBBB 1 HWI-EAS88 1 1 1 984 824 0 1 TTGTCTATCAATTTGATTTATCTTTT abbaababa^`aab_^abbab`baaa 1 HWI-EAS88 1 1 1 984 2 0 1 A......................... BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 984 709 0 1 ATATGGAAATCTGAAGGACTTTGAAT aaaab`_aaaaa_``^a^aa``UXZ` 1 HWI-EAS88 1 1 1 984 748 0 1 ATTTTGTTTGGTAGTTAAAACCATTT abbbbbabb`]ab_aaaa`baa`aaa 1 HWI-EAS88 1 1 1 984 64 0 1 CGTGTAATATGAGAGACGCCGTACGT ababaaaa__WPZORDZZ]]`XLT]` 1 HWI-EAS88 1 1 1 985 246 0 1 CCCCACCAGGGAAATGTCTAGTGTCT aaabaaa^``_RS[``]a`ZRX\\\` 1 HWI-EAS88 1 1 1 985 431 0 1 CAATTAATCCAGCTTCTGTAATTTTT aaabbaaba`W]aaab`Q[SY`aaab 1 HWI-EAS88 1 1 1 985 743 0 1 CTGCCCCATATCTGCCACACACACTC abbbaababbab```ba_]`abaa`` 1 HWI-EAS88 1 1 1 985 857 0 1 AGGTCAGGAGTTTGAGACCAGCTTGG abbV`aaa`a^_aa_a\][V^XXRZ^ 1 HWI-EAS88 1 1 1 985 864 0 1 TTTATTACACAACTCTCTTTCACCCT ]_aa`^a]aa^[LWO]LP^ZVV]TZB 1 HWI-EAS88 1 1 1 985 827 0 1 TCCAGCCAATTTCCAGACTGCCAAAG aababab]abbbaa^b]aaaaa]]`` 1 HWI-EAS88 1 1 1 986 925 0 1 ACTTATAAATAGTATATTTGTTTGGC aaaaabaaaaab`aa`aaa`^aaZIY 1 HWI-EAS88 1 1 1 986 277 0 1 GGAGTAACCAGAGTAAGTGAGCTGGA ]a[aZ`__`_^N_WY]XZ]W\T]YRB 1 HWI-EAS88 1 1 1 986 332 0 1 GTGAGCCAGCATGCCAGCCAGCAAAC a`a``a`[a^\]Z]WDWO[Q[\BBBB 1 HWI-EAS88 1 1 1 986 655 0 1 CGGTATTTTCTCCTTACGCATCTGTG abb_bbbbbabaaba`a]a^_``b]] 1 HWI-EAS88 1 1 1 986 580 0 1 GGCATTGGGCTGGGGAAGGAGTTTGG aaa`aaaZa^`^[[SDT[WGWRX^VW 0 HWI-EAS88 1 1 1 986 956 0 1 TTTTCGGAGCTCAAATGCCATGCTGG aaaaabbabaaa``a`baa`]_\___ 1 HWI-EAS88 1 1 1 987 599 0 1 AACCTCTGACTCCGTGGTTCAAGCAA aaaaaaa_aaaa`_][`]`\Q[HZYV 1 HWI-EAS88 1 1 1 987 220 0 1 CAACATGGATCTCGCAGATACCGTCA a^`babb_[`bb`[]M]O]`a_X]\Y 1 HWI-EAS88 1 1 1 987 293 0 1 GCAGATGCTTTTGCACTGCCTGTGCT aa[aXaa_aaa`Z][_WY]`^`^Z][ 1 HWI-EAS88 1 1 1 987 485 0 1 CAACATGGTGAAACCTTATCTCTACT aaaaaaaa^][]_`aaa`aaaa_]]a 1 HWI-EAS88 1 1 1 987 808 0 1 CCCACACACACCAAGCCTGGGCAAGG a`aaaaaaaa`a``a`a````\]]_` 1 HWI-EAS88 1 1 1 987 175 0 1 AGACATAACAAAAAAAAAACAACCAA `HWBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 987 113 0 1 CTCAGCCTCCCAGAGTGCTGGGATTA aaabbaabaa]J][^Waaba`[E\_Z 1 HWI-EAS88 1 1 1 987 81 0 1 ATTCTGTGGGTTTGTTTGTTTTGTCC abbbbba\a_aba\abaX_bb_H_]X 1 HWI-EAS88 1 1 1 987 526 0 1 GCTCTGACCTTTCTGTTCACTGTAGC a`aaaa^^_aaa`aaaa_```]\]TT 1 HWI-EAS88 1 1 1 987 934 0 1 GTGCAGTGATCATAGCTCACTGCAGT a^baab_baaaaaa`_`_]^Y^^__[ 1 HWI-EAS88 1 1 1 988 201 0 1 TTTAATATTTCACAGTTGGTTACAGT aaaYT\S`U_XDXVG\MTO[`BBBBB 0 HWI-EAS88 1 1 1 988 156 0 1 TTTAGCTAGACACAGAGTGCTGATTG aba`a``SX^]X_UWO[Y]``WHX^X 1 HWI-EAS88 1 1 1 988 309 0 1 CGGCGCGCGCCTGCAATTGCAGGCAC a_`a`a`aa```XT\U_a`ZPTYWYY 1 HWI-EAS88 1 1 1 988 772 0 1 CATGTAGATTGATGTGTCATCAGCGT aabbaaa^aba^a_]Z___a[FY``` 1 HWI-EAS88 1 1 1 988 296 0 1 ATGGTAGACACAGAGGTGGACTGTTT aaaa^a_Y_\^PVUXZFWTKTYFU\] 0 HWI-EAS88 1 1 1 989 630 0 1 CCTCTATTTAACTGTACCTCCCCCAC aabbbabababaa^]aaaaaaa^[BB 1 HWI-EAS88 1 1 1 989 94 0 1 GATAAAGGGGGAGAAC.CGCCGGGCA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 989 517 0 1 CTCCAGCTCCCCACTCAGCAGGTGTA aaaa[aaaaaa]G]`a``]\_XP\YU 1 HWI-EAS88 1 1 1 989 980 0 1 TAGCATCACTGCTTGTGGGATGGCTT abbabbbbabbbbbb`baZa`````^ 1 HWI-EAS88 1 1 1 989 292 0 1 ACTCCTGGCTCACTGCAACCTCCGCC YG]\^`_I]_OO[]]]YFWaa\]T[[ 0 HWI-EAS88 1 1 1 989 356 0 1 AGAATATACTAAAAAATGAGCAGGCA aa`abab`ab_X_`a`a`]^_^T\\\ 1 HWI-EAS88 1 1 1 989 398 0 1 TGTGGCAGAGCACAGCCTGCTTGGAT aa^__^a_V_ZLYU[]_Z]\V_QYM[ 1 HWI-EAS88 1 1 1 989 237 0 1 CCCAAAACAACCAACAAAACAACAAA \_KK_J_HJHJRW_LMSSXL__H\a^ 0 HWI-EAS88 1 1 1 990 109 0 1 TTTCAAGAGTCTCATTTCCTAGTTAA aaaa[_^Ua\aaa_a^a```Z^``\T 1 HWI-EAS88 1 1 1 990 173 0 1 AGAGATTCCTAAATACCGAGGACTCT a`Y]W_a^_`XUT]^\^ZRXSSV\\Y 1 HWI-EAS88 1 1 1 990 123 0 1 TTTTAAGCAATTTTGAAGGCGATTTT abaa__a`^`a_`^HW[T_\]V^`a` 1 HWI-EAS88 1 1 1 990 205 0 1 AGTGCAGTGGTGCGATCTTGGCTCAC a^W`W\YSPZUUUPDNVVTSNS\RRQ 1 HWI-EAS88 1 1 1 990 941 0 1 CCAACTACCTACTCCACACTCCCAAA abbbbbbbbbbbbbbabbbabaaZab 1 HWI-EAS88 1 1 1 990 812 0 1 GTGGTGCTACAGTCCATCAAGTAACA a_aa]a`a``_a\]_[_^][_TZXZ\ 1 HWI-EAS88 1 1 1 990 908 0 1 CGTCTGTACTAAAAATACAAAAATTA abaabbababbbbabbaabaa`a`__ 1 HWI-EAS88 1 1 1 990 993 0 1 TGATTCCACATCTGGAGCTGGGAAAG abaabaabababbbbabaabb^^^ab 1 HWI-EAS88 1 1 1 991 748 0 1 TCAGGGGCTTCCCTGCAGGGAGAAAG aaaaaaaaaa^``^a`]Z_XWYKTPU 1 HWI-EAS88 1 1 1 991 146 0 1 AACCAAAGACATAAATAGATTAAGAA ^RNFSDDQ]BBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 991 535 0 1 AGTTCTCTAACAGCTCTCACCCCTCC ababbbbbabbaabbaa`]``aaaaa 1 HWI-EAS88 1 1 1 991 849 0 1 TTTTTCTTTATTCTTCCTAAGGATGA aaaaaaaaaaaaaaa_aa`_ZWX[RS 1 HWI-EAS88 1 1 1 991 689 0 1 TCATGGGCCTACTCCAGTTTGGCTTT aaaabaa`aaaaa_a``]`[YU]`aa 1 HWI-EAS88 1 1 1 991 400 0 1 TCTCCATGTTGGTCAGCTCGGTCTTT aS`JY]V\[[SBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 992 775 0 1 TGGCGCGATCTCAGCTCACTGCAGCC aaa`aaa]```_]\`a`a`\XUOYY] 1 HWI-EAS88 1 1 1 992 955 0 1 AGGATATTGCCTTATTCAATTTTGGT abbaaaaabaaab`aaa``aaaa^Z_ 1 HWI-EAS88 1 1 1 992 926 0 1 GGAGGACCTGGCCCACTAGGAAGCCC a`]`a\]XV]`YKX]XWU]]\\\QYB 1 HWI-EAS88 1 1 1 992 677 0 1 CATCGATAAACTGCTGAACGTTCTGA aaaabaa``ab`Z_aa_`a_]a`_PV 1 HWI-EAS88 1 1 1 992 823 0 1 AGACTCCTCTCTGGTCCTCTGCTCTT abaaaaaaaaa`]``_`a_`^^`^\` 1 HWI-EAS88 1 1 1 992 714 0 1 GCTTTGGCTTTAATGAGGCTGAGGTG aababb^`babaaa^]ZZZ_\Z^WBB 1 HWI-EAS88 1 1 1 992 694 0 1 AGGCTACCCTGCTCTCATTCCAAAGC abaaaaaYa``^`_a[Q^`_YVX\Z] 1 HWI-EAS88 1 1 1 993 112 0 1 TCCTTACATTTCTCTTTAGTTTATGA a_`aa[_S`aa`a`aaa^^^a_O]BB 1 HWI-EAS88 1 1 1 993 93 0 1 AAGAGCAACAACTGATTTAGGCAATT a^a[`[OV`[\]a_R_^`\[LXSO\_ 1 HWI-EAS88 1 1 1 993 882 0 1 AACAAGAGTACCATGGCCTAACTATG a`^__^]YF\SMLQZYOVPX_BBBBB 1 HWI-EAS88 1 1 1 993 526 0 1 TGGGGGGATCTTGGCTCACTACAACC aaabaa`U^^^\WZ_^]VZ[^YJWX] 1 HWI-EAS88 1 1 1 993 136 0 1 CGGTGATGCGATCTCAGCTCACCGCC a``]`^a_a]Q[`a[QX\`YU\YUBB 1 HWI-EAS88 1 1 1 993 143 0 1 ATATATTGCCATCTAGTGTGTTAGAA abababa]aa]]a_R\`Y```BBBBB 0 HWI-EAS88 1 1 1 993 854 0 1 GGCGGATTAACAATTTAATCTTCAGC aa`ab_a``a`^``aa__`^^_][\] 1 HWI-EAS88 1 1 1 993 506 0 1 GGGGACACGTTGTTTGTAAAACCTAT aaa`^a_`a_aa`aaZY`\XZ]Z]W[ 1 HWI-EAS88 1 1 1 993 124 0 1 CCCCTACTGGAGGCAGCCTCATGATT ababaaaaab[`a_[`]`aYJ]KDX] 1 HWI-EAS88 1 1 1 993 149 0 1 AATTCTTCTTTATGTCCGCTTGTCAC `_bbbbbbbba`aTab`R`b_H_[Z_ 0 HWI-EAS88 1 1 1 994 321 0 1 CTGGAGGGAAACCTCAATTCAACGGA aabbaba_S_^^`a_X\_a]PZBBBB 0 HWI-EAS88 1 1 1 994 91 0 1 TAGGAGTATAATTTTAAAAGCCATTT a_aa\a\_a^U`aaaY]]VSY[Q^`] 1 HWI-EAS88 1 1 1 994 361 0 1 AGAAGTCAAATGAAGAAGGTGTTTGA aa_abaa^aab`^`_[Z^aZZ_a^BB 1 HWI-EAS88 1 1 1 994 996 0 1 CTGTCTCCTGAGCATCTTTCTGACTT abbabba``bbbbbbaa`a`a\_`a^ 1 HWI-EAS88 1 1 1 994 838 0 1 ACAGGCGCCCACCACTACGCCCGGCT a]_a`]`]X]\]^\X\ZR]TJTZRPR 1 HWI-EAS88 1 1 1 994 556 0 1 GTGGCTAAGAAAAGATGTACCACTGT aaabaa``^V^^_`\``]_Z]Z[[XV 1 HWI-EAS88 1 1 1 995 516 0 1 CATCTCCTGACCTCATGATCTGCCCG aababaaaaababb`a_W`a_]__YV 1 HWI-EAS88 1 1 1 995 410 0 1 TGGAGTGCACTGGTGCAATCTCAGCT aaa`aWa``^a`[[a\^^__`[PYU] 1 HWI-EAS88 1 1 1 995 226 0 1 ATGTTTTTATAATTCCAGAAACCGTT aaa_aaaaZ_XY[G[]VTUXXXDPX\ 0 HWI-EAS88 1 1 1 995 632 0 1 AGATACATTTTCTTGACTTGAGTCTC abaaababbbbab`Y]aba^\W_`aa 1 HWI-EAS88 1 1 1 995 1001 0 1 TCTATGGTGGATATGTGCAAGAGGCC aabbbbb`bb``a\]]]Z]`bab\I[ 1 HWI-EAS88 1 1 1 995 27 0 1 CTCGGTCCCCGTGGATGGCGGAGCAA a[JI_aa^IaZMXZX]_VQTBBBBBB 0 HWI-EAS88 1 1 1 995 605 0 1 TAGGACACGGAGCTCGTGGTGACCAG J_aXG[FW_]_S]VBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 996 872 0 1 CTGGTGCGCGGCATACGCGCTTTCTT `aaa`a`aaa`_\X_\_a_]_X_\__ 1 HWI-EAS88 1 1 1 996 450 0 1 ATGGTGCTTACTATGTAACAGGCACT aaaa_abbaZ`aXa_aaa_[TWY\_` 1 HWI-EAS88 1 1 1 996 527 0 1 TTCTTGATGTAAAATTCTTGATTGCT aaabb^_bba_TX_aa`aaZ\a`X]a 1 HWI-EAS88 1 1 1 996 102 0 1 TGGCTAATGAGTGACAGTCTATTCAA a`a`a___]Z[WZTYT\Z^\[\_BBB 1 HWI-EAS88 1 1 1 996 124 0 1 GCTGGCATATCCAGGAGCTGCGAGTC aY^a`XY^^\]YJWXO]BBBBBBBBB 0 HWI-EAS88 1 1 1 996 889 0 1 GTGGAGGGAAGGTCAGCAGATAAACA a\aa^ba_Y]`_S[^_\\]ZTYVZYV 1 HWI-EAS88 1 1 1 996 807 0 1 CCCTCCTCATCCGCATCCCGGTCCTC aaaaaaaaaaaa_aa`aaa``\]]aa 1 HWI-EAS88 1 1 1 996 976 0 1 CTAACCTGGGTATCGGCACGATTAAT aabaZ`bbbb_bbabaaa`a_^____ 1 HWI-EAS88 1 1 1 997 427 0 1 ACTCGGGCCGCGGAGGTTGCAGTGAG aaaaa`]^a`a][P\YJYVVQXMTPU 1 HWI-EAS88 1 1 1 997 172 0 1 CTCTGTCTCAAAAACAAAAACAAAAA abbb_bbba``\Y`a___]]`ZOWZS 1 HWI-EAS88 1 1 1 997 454 0 1 AGACCAGCCTAGCCAACATAGTGCAC aaaaabbabaaa`a[]_T_T_VKIS^ 1 HWI-EAS88 1 1 1 997 570 0 1 ATAGGAGTGTGAATCTTATTGTTAAC abaaa`a`a_[SZaaa`X_^OVFNXU 1 HWI-EAS88 1 1 1 997 217 0 1 GGGTTTCTTCTCAGGCTATCAGAGAT aaa]aa_aa`a]WUI[^S^[VXINV[ 1 HWI-EAS88 1 1 1 997 756 0 1 GCCTGTTATCCCAGCTACTCGGAAGG `J``WQT^a]H[OFTOV^O\BBBBBB 0 HWI-EAS88 1 1 1 997 26 0 1 CAGGGGTGGCGGTGTTCTCCTGTCGT _UTZBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 997 713 0 1 GGCACCAATCCCATTATGCCCCCATG aa`[ab^`aaaa^aaa``a_a`^U[Z 1 HWI-EAS88 1 1 1 998 902 0 1 GGGGCCCCTCTCTGGGGCTGGCTGAG a`aa``aa```\aaa`a]X_`]\`]` 1 HWI-EAS88 1 1 1 998 411 0 1 GTACATTTTTTTTTTTCTTTGTTTTG Ua]HH__XM]`a^[Z[BBBBBBBBBB 0 HWI-EAS88 1 1 1 998 747 0 1 TGTCTGTCTTACTTATACTGTTAAAA abaaab_`aaaaab`aaa_V^a_ZSY 1 HWI-EAS88 1 1 1 998 1 0 1 C......................... BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 998 606 0 1 TTGACCGTATAGCTGACAGGAGTCCC aaa`aaaaaa_]]]V[^Z[[VUXY\Y 1 HWI-EAS88 1 1 1 998 206 0 1 CACTAGCGCTCGCCGCAGCCGTGTAA _T_`aaa`aaa``_Z_a``]BBBBBB 0 HWI-EAS88 1 1 1 998 847 0 1 AAAGGCTGCAGTTTAGTAATATTAAG _X_`WNKZIGFUS]P\O^IX[H^K]S 0 HWI-EAS88 1 1 1 998 424 0 1 AGGCTGCAGTACAATAGCGTGATCTC aabaaaa`baa``_a_a``^]X^]_a 1 HWI-EAS88 1 1 1 998 418 0 1 TTTAGTGGAGACGAGGTTCCAACTTG BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 998 815 0 1 AGAAGAACCACCAAACAAACAAGACC Ka^IHGGTVbYGYKJ`V^Y_XXKO]B 0 HWI-EAS88 1 1 1 998 362 0 1 TTGGGCCATTGTATGTGAACAGATCT aaaa`^`[aa^a`aZ_XNZ][VP\Z_ 1 HWI-EAS88 1 1 1 999 750 0 1 GGCTGAGGCAGGCGCATTACTTGAGG aaaaaaaa`_a`T\TPX_\RQTMMTT 1 HWI-EAS88 1 1 1 999 695 0 1 TTACATTTCCAACTCTGGGTCCCGGA abaaabaa`_abaa``^`a]]^``TY 1 HWI-EAS88 1 1 1 999 768 0 1 TGTCTCCACAATGTCTCACCTGCACC abaabaaaaaaaaaaa___`^]]]_` 1 HWI-EAS88 1 1 1 999 405 0 1 CCACCAGAGCCTGACCTAAATTTGAA aaaabaa^aaaa`__aaa\T^`^XZZ 1 HWI-EAS88 1 1 1 999 743 0 1 AAACAATCCCAAGACATGTCAATTCT a__]V]]a_ZMS]\\TZ[V]YU[Y]^ 1 HWI-EAS88 1 1 1 1000 434 0 1 TCCTTGCCCACCCTTATCCCTAGTAC a_aaa`a\_Z]```_Y^^^_]PPYNV 1 HWI-EAS88 1 1 1 1000 335 0 1 AGAATGTCTCTGTTCTGTCAGTCCTT aa_abbaaba`V_aa]H]`]V^TZ]B 1 HWI-EAS88 1 1 1 1000 635 0 1 AAAAAATACAAAAATCATCTGGGTGT aaaa_T_aa]a^^`_a`_a`]WYV][ 1 HWI-EAS88 1 1 1 1000 149 0 1 AGCCGAGACAGAATACAGGCAACAAA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1000 278 0 1 CAGGAGAATGGCGTCAACCAGGCGGG a_aaa```aa_a`a]X___\_YBBBB 1 HWI-EAS88 1 1 1 1001 13 0 1 CTGGAT....TGGTAATTCTTTTTTT abb`a\DDDD^\]]W\aa_abbabbb 0 HWI-EAS88 1 1 1 1001 779 0 1 GGGTCTATCTTCAATTCAGAATCATT aaa``bababa]Z]aaaYY\\aaYaa 1 HWI-EAS88 1 1 1 1001 852 0 1 ATGCATTCGGGATTCAAACATTGCCT aaaa`aaaaa`[_a`^_``^`[^[]_ 1 HWI-EAS88 1 1 1 1001 62 0 1 CGAAGAGGTTACACCTTAGACCGACT BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1001 196 0 1 CGCAAACATTCCACATTCGTCGGTTA `GbGFXaGJ\FYM\R_H_L]\INI]^ 0 HWI-EAS88 1 1 1 1001 373 0 1 CAAAGATGCAGAGCATCCGATCGATA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1001 474 0 1 CAATGGAGCCGAGGAATCGCTCAACA aGbBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1001 817 0 1 TGACTCTCACCCACTCCCCAAAAGCT abaabbbaaa`aaa]aaa`]_`Y`_a 1 HWI-EAS88 1 1 1 1001 26 0 1 AACCA.GAACCGAAACACAACAACCA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1001 694 0 1 TCACTCTGGGGGGAGTGTGTGTGGCA aaaaaaaa__`^^X\WZ\YPTXYBBB 1 HWI-EAS88 1 1 1 1001 427 0 1 CAAGTGATCCTCCTGCCTCAGCCTCT aabbb`bbbbbbb_X^bb_X\aaabb 1 HWI-EAS88 1 1 1 1001 160 0 1 GATGCCATTTGGTGCTCTTTCTTTTT a_aaa_T`ab_Q]^`baaabaaaabb 1 HWI-EAS88 1 1 1 1002 931 0 1 TTTATGTAGTTGGCCAATAGGTATTT abbbbbabbaa\\aaa`a_\\\_bab 1 HWI-EAS88 1 1 1 1002 9 0 1 .AG..........AC.....AGATCA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1002 180 0 1 .TTCTGGCTTGTAAGGTTTCTGCTTT DPZZWSSWZWBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1002 735 0 1 .TTATCTCAGCTGGGAGCGGTGGCTC DNUTUTUTTTTSBBBBBBBBBBBBBB 1 HWI-EAS88 1 1 1 1002 172 0 1 .GGCAATTGCATAAGCTTCATCTGGT DNZYYYYWUVWWUUQTVYBBBBBBBB 0 HWI-EAS88 1 1 1 1002 354 0 1 .ACCGCACCCAACGAAAAAAAAGACA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1002 389 0 1 .TCAACTACTCCTGTTATAGCTTGCG DOYYZYVVWYWQFJTUWVWBBBBBBB 0 HWI-EAS88 1 1 1 1002 498 0 1 .AAACCCAAAAACAAACAAGACAACC BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1002 684 0 1 .CCCTTTCCCCCTTTAGAGGTACCTT DNXXXWXWWWWVXXWVSNJOSRSNTR 1 HWI-EAS88 1 1 1 1002 799 0 1 .CAAGGAAAGCAATAAACAAAAGAAC BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1002 969 0 1 .GTACTGAGCGGGATAATTCGTCGTG BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 630 0 1 .ATCCCCTGACCCCTTGCACTTCCCA DNUUTUTSSSSTTSSSSSUSSSSSBB 1 HWI-EAS88 1 1 1 1003 973 0 1 .TCTCCCTATTCCCTCTGGAACTGGA DNVVWXWWWXXXWUXXWVVXWWWWWU 1 HWI-EAS88 1 1 1 1003 149 0 1 .GCGGAGGTTGTAGTGAGCCAAGATC DNVUBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 224 0 1 .AATCCTGGGTGAGAAATGTTCTCCA DLUWZZYVPTWQWVUUUVYYYYWWQQ 1 HWI-EAS88 1 1 1 1003 232 0 1 .AAAAAGACAAAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 236 0 1 .ATTATCTTCAACTGAAAGCCCCTCA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 269 0 1 .CAAAAACAACCCAGCCAACAAACAA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 341 0 1 .CACGCAAAAAACAGTCTAAAACACA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 400 0 1 .ATAAGGCGGAAA.AGAAGCA.AC.A BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 487 0 1 .CACAACACAAAC.TACAAACTAAAA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 806 0 1 .GCAGGCTACAACAACAGCAGCAACA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 196 0 1 .TCACACCTTCCCTTTGCTGCGTTTC DPWXWUWWWWXWWWWRLTWUWSTWUU 1 HWI-EAS88 1 1 1 1003 446 0 1 .CACAGAGATGGACAGCCTTGATACT DPYWVWWVWWVTUTUUVWWUPQSVWW 1 HWI-EAS88 1 1 1 1003 101 0 1 .CAGCTACAAGGCTACCGTGCTCATA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 133 0 1 .CGAAGTAACAACAACACACGACCCA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 321 0 1 .AAACCACAAAGTACACAAGAACACA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 394 0 1 .CAACAACAGAAAACC.CCACAAAAA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 456 0 1 .AGCGAGACTCCGTCTGCAATCCCGG DMSTTTSSSTTUBBBBBBBBBBBBBB 1 HWI-EAS88 1 1 1 1003 906 0 1 .TATGTCTTTGACCGTTGGGTCGTAT BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 61 0 1 .TACGCGCTTTCTTCTGATCCAGCCT DPSUWWWWWXWWWWWUNSTWBBBBBB 0 HWI-EAS88 1 1 1 1003 417 0 1 .CCTCCCCTAAAGACCTCTGACCGTG DMUTTTTTTSSRORTTTURNRTBBBB 1 HWI-EAS88 1 1 1 1003 475 0 1 .CATGTTGCCCAGGCTGGTTTCCAAT DPWXVXWWXWTRRTWWWTWWWTRRRS 1 HWI-EAS88 1 1 1 1003 373 0 1 .CAAGTTGCTGATCATCCTTTTTTTT DPXXZZZZZXPNRVVVZYYYYYYXZ[ 1 ShortRead/inst/extdata/Data/C1-36Firecrest/s_1_0001_int.txt0000644000175100017510000077614012607265053024067 0ustar00biocbuildbiocbuild1 1 109 548 409.0 504.5 475.0 11120.8 880.8 3231.2 464.8 7933.4 951.9 3059.5 5077.9 6208.9 497.6 944.8 323.7 6858.3 1009.3 3135.8 279.1 7079.8 2822.2 3229.6 242.2 7284.7 1120.4 3011.4 297.4 6954.9 2745.9 7237.6 307.2 723.4 4052.1 6018.4 333.0 1091.4 2261.5 2687.3 709.2 8650.3 988.6 2745.4 4628.5 7704.0 1037.3 3195.5 763.3 5544.4 1340.8 3376.9 3672.5 6658.9 4058.9 5211.3 607.3 2015.4 1002.3 1519.9 1899.4 7716.5 810.8 1475.7 603.3 8588.1 1867.8 2779.4 469.3 7981.1 1375.5 3056.6 491.2 7467.7 4442.5 5464.0 440.9 1837.2 4528.2 5348.6 500.0 1542.4 3964.1 4602.5 1415.1 2554.0 4014.4 5117.1 553.2 1585.7 4056.4 5334.7 567.9 2475.9 2255.0 2787.8 837.7 6907.2 1216.8 1792.6 3496.3 6726.9 1229.2 2841.8 681.3 4536.3 2778.7 4221.0 552.2 3242.3 922.2 1877.2 503.7 7375.9 987.2 2425.7 577.5 7461.2 820.1 1682.3 797.1 6892.2 1438.1 2065.1 2487.8 6057.6 893.8 1734.8 1219.8 5282.9 822.1 2245.5 550.9 6224.7 795.6 1770.3 862.0 6897.3 701.5 1395.3 2727.5 6998.8 897.3 1918.3 882.4 6059.3 1 1 105 517 482.2 636.1 615.1 9592.9 1966.0 6379.1 188.1 572.1 1713.7 6166.5 103.5 909.9 4409.5 5459.8 291.6 709.2 4623.2 5186.9 391.3 863.3 4491.5 5120.4 310.7 804.0 1206.6 4803.8 269.3 835.6 1009.2 1540.4 442.4 6299.5 882.3 1203.6 4540.7 5371.9 908.1 1410.4 4750.8 6091.1 892.9 1413.8 728.0 4856.9 4535.2 4984.8 626.7 1362.4 1300.6 1792.0 3948.5 5201.6 3309.2 4722.9 661.5 1606.9 1762.5 5753.3 522.9 1134.2 3925.9 4722.5 475.7 1332.5 3874.4 4847.0 425.4 1309.0 1493.3 2212.6 556.5 6281.8 3670.9 4927.9 423.4 1552.3 2207.6 5437.1 398.1 1173.8 4324.3 4928.4 354.8 1270.4 4238.6 5005.4 488.2 1226.5 4159.3 5660.8 467.2 1215.8 2049.9 5195.2 492.7 1156.4 3621.9 4979.6 359.9 1314.9 1619.7 2520.2 570.5 5214.4 1101.0 2225.0 581.6 6657.3 1305.0 4328.5 583.8 2959.4 1086.6 2346.2 421.7 5535.0 1502.1 4525.0 473.5 2427.8 3113.9 4753.6 365.9 1645.2 3626.9 5317.4 313.3 1448.2 3239.1 4533.9 401.6 1998.1 1748.2 2759.5 405.8 4439.3 1497.9 3540.4 308.1 2751.4 1310.3 2738.7 384.9 4257.9 1 1 101 522 321.7 -124.5 342.5 7800.9 1109.8 259.5 5263.2 5621.8 1256.2 5588.4 179.6 427.6 4373.7 5268.3 206.4 418.9 1106.7 4785.4 178.9 629.3 1671.8 4855.2 227.0 676.5 385.4 1349.0 325.1 5194.8 713.0 1478.1 4130.2 4602.5 3317.9 4145.5 150.8 738.2 876.1 1478.2 316.2 5976.5 3237.6 4230.2 516.8 1001.1 755.6 1206.2 4125.8 5002.6 1132.8 896.9 3616.6 4607.3 779.4 451.0 3387.7 5101.2 572.8 1229.5 455.2 3596.4 1159.8 4287.5 838.1 2228.2 460.9 1198.3 452.7 5039.3 835.7 4418.2 352.5 1747.0 538.9 1331.8 506.2 5176.6 843.0 1155.5 3046.1 4707.2 1197.3 3741.4 818.8 1925.6 717.8 1659.2 494.5 5150.9 1212.5 4230.9 278.5 1599.6 587.4 1316.1 544.1 4797.7 665.9 1566.7 2649.6 4168.0 2178.2 3227.5 936.5 2112.0 816.2 1643.0 3050.1 4556.8 2104.7 2871.3 933.4 2039.3 1523.9 1583.7 2549.8 3756.0 2122.9 2720.8 594.1 1538.7 735.0 1444.3 2503.0 3814.0 779.4 1531.7 2222.1 3240.8 1990.3 2843.8 651.9 1542.4 2545.3 3253.4 767.0 1565.1 1064.9 1505.9 1778.2 3440.0 772.1 1750.0 1909.0 2931.2 1 1 113 530 983.2 738.3 2887.5 7685.6 3105.3 3713.9 2530.5 2902.6 1137.9 3268.5 911.8 6150.2 556.8 1193.8 3963.4 5572.1 2744.1 3287.2 180.7 3674.4 914.8 3085.3 2648.6 3800.1 2288.9 2906.2 424.3 3621.0 1075.7 2801.6 2964.6 4123.6 1058.6 3291.8 312.5 3626.7 3683.6 4918.7 863.1 1796.7 730.1 1388.6 3114.3 5461.3 1341.0 5010.0 1020.7 1655.8 1100.2 3728.9 788.0 3076.5 3074.2 3553.6 2303.3 3265.8 2889.3 2945.9 1941.3 2627.1 1022.1 2812.8 674.4 4034.0 641.0 1769.5 2708.7 5172.2 908.0 3416.9 1998.4 3308.6 1225.3 3914.0 1937.1 3222.2 2048.9 3552.8 2078.9 2964.9 1649.4 4210.0 648.1 1545.9 2990.3 3920.2 497.9 1756.5 3324.3 4636.1 527.2 1736.0 2551.6 4236.0 870.3 1778.2 1284.0 3148.9 1924.4 3083.1 1916.8 2808.1 799.0 3018.5 1389.6 3049.7 1686.1 2881.3 946.9 2418.3 2487.6 3262.4 1694.6 2751.4 2410.1 3501.5 902.8 1719.5 1858.9 3899.7 936.4 2087.9 1911.3 3557.6 705.9 1607.6 1206.2 3854.2 735.3 2149.2 1812.0 3344.1 768.1 1854.5 1408.3 3325.2 746.2 1856.7 1398.0 3120.7 871.3 2629.8 1042.2 3602.8 1 1 105 511 851.3 361.2 297.9 7601.5 3990.7 4504.0 328.6 912.9 643.8 836.9 4407.9 5098.1 900.7 863.1 244.3 3861.7 4203.5 4969.2 354.7 403.4 889.1 1928.0 3652.7 4121.9 366.5 726.0 4106.5 4806.3 1376.1 1253.7 609.7 3589.7 912.9 1133.1 3572.6 4501.4 675.4 1649.2 225.2 4892.4 1073.9 4562.4 281.7 1678.1 1138.2 4040.2 395.7 2442.3 497.8 2002.3 396.0 5986.4 3132.2 3835.3 437.0 1490.2 680.4 919.8 1216.0 5846.5 559.2 1169.4 435.6 6259.4 1118.2 3930.5 650.0 1692.4 663.0 1340.2 463.1 6132.9 859.3 1206.2 2764.4 4698.4 2888.0 3138.6 434.4 3361.6 802.2 1132.5 699.3 5245.6 675.9 1359.8 2524.3 2889.2 1009.0 3987.0 608.8 2756.1 1215.7 4032.5 391.0 2882.8 1376.0 4241.3 713.9 982.8 2805.8 3583.0 831.2 2247.8 966.2 2127.9 2382.3 4195.7 1225.0 3862.0 601.4 2054.3 2499.7 3660.7 1409.9 2182.1 1163.0 3451.9 705.9 2627.4 632.4 1640.0 2125.7 4082.4 938.7 3442.5 577.2 3170.2 1010.4 3521.6 443.8 2431.8 2396.5 3443.2 412.6 1715.1 2272.6 3003.1 500.8 1478.1 1018.2 1931.5 1700.1 3582.0 1 1 121 531 -819.1 -1528.3 7281.0 7273.4 4784.1 4419.3 -104.1 -1367.9 -342.1 443.4 5386.1 5413.4 4214.8 5233.5 45.6 -490.9 544.9 569.9 3642.2 3600.8 3161.6 3641.0 135.4 189.3 4566.8 4468.5 -112.6 173.3 579.1 4668.1 -331.0 -352.1 219.2 299.4 15.3 6114.9 564.6 1052.5 4717.6 4194.6 3966.7 4372.6 -590.2 -835.5 4178.3 4612.7 261.3 -166.5 4520.1 4991.6 27.0 -152.9 3833.8 5027.9 16.2 -31.1 781.8 1162.7 -76.9 4711.3 1076.8 4966.1 -306.9 -116.5 3347.6 3997.7 151.3 -197.8 1184.3 4671.5 -61.3 931.1 3062.2 3795.7 431.2 309.9 686.9 449.1 3461.3 3840.5 2713.4 2800.2 421.6 -45.1 2930.1 3404.7 232.3 381.4 918.6 1685.9 295.1 4595.8 2849.3 3485.8 407.5 995.9 905.8 1495.1 668.0 4130.8 1039.1 536.6 3524.7 3816.3 2204.7 2819.1 906.2 1058.4 736.2 934.9 3383.2 4020.8 2209.2 2932.5 709.4 750.3 2794.6 3033.6 500.4 822.6 2469.1 2982.4 316.3 612.1 687.0 815.5 286.7 3199.1 2335.9 2702.6 132.1 880.2 919.8 1536.2 1958.2 2108.2 2096.7 2418.8 298.9 390.5 1258.5 3805.4 315.5 408.0 1 1 112 525 -24.2 47.7 4547.5 7224.2 2841.8 6113.4 5.6 -144.1 3814.2 3573.7 63.6 3096.6 852.1 3692.2 3904.6 3544.2 3638.7 3912.9 738.1 302.8 706.8 942.0 3765.3 3760.4 4361.7 5000.3 -42.0 -343.5 2780.9 5965.3 -63.5 170.0 1384.6 4553.9 794.7 265.0 1207.4 4494.1 2285.9 2182.5 4019.3 5119.2 -232.0 -508.7 1405.3 4512.0 1040.2 2466.3 3184.2 5123.3 279.5 403.3 3612.6 4270.7 209.8 1975.5 984.9 3415.2 2139.6 2033.0 1146.3 3937.3 1051.2 2642.7 1264.7 4100.5 93.3 2042.2 3393.1 4814.0 425.7 795.8 1010.1 1452.8 2293.2 3863.2 870.3 3651.0 1631.5 2274.2 1448.6 4734.5 702.6 801.8 2514.5 4795.4 495.1 606.6 2905.2 3672.9 1772.8 2097.4 922.0 1412.5 2141.6 3119.7 1150.7 4097.5 376.6 1081.2 797.6 1611.4 2367.9 3605.0 715.4 1429.1 2186.2 3491.8 943.9 3261.5 543.6 1916.6 539.0 1674.0 367.9 3792.4 637.7 2729.4 1091.4 2129.6 777.2 3613.2 694.4 1861.0 1398.6 2833.7 351.5 2074.8 870.3 1718.5 1285.7 2863.4 1745.6 2647.6 1035.9 2601.5 1574.9 3105.2 954.2 1796.4 1797.2 3544.3 221.0 528.8 1 1 121 595 176.9 2514.4 7352.6 6950.9 4315.4 4841.5 211.4 -1083.4 423.8 565.8 6082.8 5298.3 2188.0 3737.2 227.8 390.4 444.9 819.4 93.6 7423.7 4206.4 4612.5 218.6 528.0 584.6 2433.1 244.5 8169.8 378.6 148.2 283.2 7777.9 757.4 1042.0 149.2 7039.6 4532.4 5013.6 444.6 497.3 657.1 772.9 16.5 7174.5 355.3 924.8 266.9 7221.6 794.7 653.0 3510.4 5345.7 4296.7 4607.3 370.3 749.3 4556.4 2253.6 372.8 463.9 1272.0 5555.3 -112.3 641.8 3776.9 4307.8 218.6 592.5 1065.1 5261.6 -0.9 704.9 1000.6 1591.9 78.3 6184.0 3861.6 4820.6 -2.1 963.0 3987.7 5479.5 36.3 270.6 1669.3 5806.0 19.9 35.1 4079.5 5546.4 124.4 444.2 1597.1 5271.2 -179.0 498.8 692.7 2203.1 95.9 4623.4 1437.4 4188.9 -166.8 1136.3 725.0 1437.5 535.3 5275.2 601.1 1156.2 2221.1 4742.1 631.3 1277.8 722.2 4236.5 1319.1 4484.2 483.1 1338.7 2875.2 4531.8 546.9 1350.7 927.3 1546.6 357.7 4344.9 610.3 1380.5 2546.5 4746.2 1057.7 4174.7 830.6 1999.5 2721.4 4458.0 197.5 1368.3 3250.9 4023.2 21.7 1347.7 1 1 113 371 1007.3 1008.1 6554.6 9321.3 3494.0 5652.1 4161.5 4115.2 1242.8 2706.3 538.7 5913.6 2502.7 5558.8 3215.3 3958.0 805.8 863.5 3210.4 6248.1 3117.1 4511.3 2394.7 3748.2 3391.6 4984.7 1696.6 1997.9 4955.5 7153.9 770.9 1091.9 2388.0 2899.4 1177.2 4862.4 3354.5 4864.0 1055.4 3691.7 1603.9 4318.6 4116.1 5065.2 1722.8 5241.2 3501.5 4366.2 3574.7 5024.2 1001.6 5043.8 3486.5 5974.0 823.7 1827.3 2250.5 3445.6 2918.2 3817.2 2159.3 4890.7 813.1 3536.4 3871.1 5020.0 654.0 2406.3 2256.2 4761.0 720.8 4038.5 1816.1 5174.2 1940.4 3078.3 2651.1 5589.9 565.2 1660.6 1463.6 4180.9 1371.3 4223.4 1266.3 3959.7 2636.8 4172.1 1393.8 3578.4 1600.7 4101.2 1996.8 4231.8 754.4 3762.6 1952.8 4700.3 738.8 4516.5 2073.3 3164.1 699.8 4517.3 2011.7 5223.9 544.4 2120.6 1509.3 4643.8 738.6 3828.2 978.0 2766.7 2220.0 4645.9 1320.6 4563.3 781.4 2508.9 1020.6 2876.5 621.8 4626.9 1110.9 2454.5 1095.1 5212.5 2232.6 4193.1 1341.8 3748.5 1654.2 3975.6 1548.6 4293.0 2343.6 4058.7 1206.2 3431.2 1692.5 3696.3 1409.1 4089.9 1 1 89 581 1671.1 2716.3 997.1 6284.0 3540.1 7589.4 649.7 779.7 2106.0 6075.7 314.3 3533.9 1856.1 7100.9 113.2 757.2 3534.3 4223.7 2292.4 4234.2 3285.4 5377.7 936.9 2159.2 1861.1 5340.4 639.9 841.1 2870.6 6000.0 361.4 1650.5 1451.4 4310.1 606.4 2728.8 875.2 1586.3 1235.3 6065.6 1251.2 3568.9 845.3 2716.0 1023.1 4368.0 692.4 3183.0 921.8 4446.5 443.4 3796.1 1003.2 4137.8 508.7 3898.9 995.6 4363.0 792.2 3452.0 1492.1 3334.8 783.0 5198.5 3125.4 3962.2 1917.1 3184.2 2883.0 4527.8 1684.1 2927.0 956.0 1491.5 3476.6 6135.2 2474.8 3130.2 882.8 3917.9 3440.0 4160.0 1534.2 2676.3 2349.8 4923.8 702.6 1614.0 3340.1 3984.5 825.7 2364.1 3317.6 4090.7 750.5 3664.1 1084.7 1889.6 2156.8 5211.1 2687.9 3287.5 601.0 3280.1 1078.5 3516.7 401.8 3628.9 811.3 2613.5 520.3 5609.9 1170.3 4173.0 1088.1 3337.4 1079.2 4368.3 1007.0 3171.9 1320.8 2395.2 1026.4 5132.7 1042.9 2421.2 1870.1 4491.6 2308.5 4000.3 800.5 2616.9 1341.2 3261.1 794.8 3399.7 1101.7 2489.4 1136.7 5077.2 1528.7 2973.1 2086.6 3890.6 1 1 83 580 1242.1 252.1 -51.1 6264.1 1264.9 4787.2 68.0 1.2 3453.5 3603.7 198.4 1056.1 289.8 -126.2 4127.2 4262.4 2949.7 2919.0 53.5 253.6 933.1 807.0 3293.7 3643.8 2771.3 2954.2 58.3 332.5 915.5 759.0 165.2 5052.4 606.3 606.2 3047.8 3420.4 2566.4 2806.6 67.9 509.1 688.3 1347.3 -24.4 4427.5 3041.1 2946.2 195.5 464.9 3088.0 3661.8 46.5 507.0 3228.2 3453.7 20.1 374.6 1144.3 3886.8 18.0 153.2 787.3 3736.6 -47.6 1230.4 649.2 1475.8 178.7 3990.4 2977.0 3805.8 -6.7 315.0 3181.6 4036.0 31.2 255.0 1005.0 3845.7 148.2 379.9 1012.1 4092.7 -22.0 948.2 1136.5 3873.8 220.1 418.3 2625.3 3743.5 226.3 418.5 1276.8 3621.5 69.6 372.1 2443.4 3947.8 164.0 547.3 2534.3 2675.8 393.7 737.5 1004.4 1320.2 2303.2 2547.6 2179.4 2691.5 848.1 704.0 856.1 1132.7 2479.2 2652.0 1828.3 2380.5 522.1 901.2 729.7 2918.0 317.1 1133.2 389.7 1170.6 478.2 3452.1 543.4 1006.9 2376.7 3031.4 557.7 886.6 2238.0 2687.2 1176.6 1843.7 889.0 1580.2 679.5 1030.2 1854.4 2637.4 1 1 95 513 -112.8 -328.4 5994.9 6048.1 40.7 199.3 4581.7 6371.3 3746.4 3808.4 230.0 1549.7 4184.1 5112.8 284.0 1709.6 1494.7 5257.7 354.5 242.4 4560.3 4638.6 87.5 432.8 3651.8 4201.5 44.7 742.1 4279.4 4496.4 608.4 2186.0 4884.7 5370.8 389.5 321.4 1519.1 5103.6 807.7 929.9 4267.0 4718.9 372.8 131.3 1662.9 5364.8 424.1 1167.2 1222.6 6008.8 422.8 725.6 1406.4 5522.2 83.3 460.5 3315.0 4560.7 539.5 686.1 666.3 1517.0 1045.8 5945.5 371.6 982.4 3835.2 4612.7 940.2 1096.9 3961.8 3669.3 2777.9 2852.1 805.2 1354.2 3007.0 3700.9 396.5 828.2 674.1 1886.4 3509.4 4224.0 762.8 1367.3 3820.7 4280.2 2423.4 2905.2 1022.9 1198.0 1064.9 1296.1 2902.1 2905.4 810.7 1793.5 874.6 3569.3 1034.1 1598.5 1388.7 4826.9 2407.5 4027.8 467.5 1131.6 1084.7 3528.1 555.8 2528.1 2391.6 3366.2 727.1 1328.0 972.4 1282.0 2741.2 4057.3 1681.0 2705.4 1015.9 1994.0 1013.1 1235.9 2225.1 3949.8 1699.6 2717.0 693.8 1310.0 880.7 3313.7 555.7 1207.0 1877.6 3007.2 465.7 1162.7 2151.3 2955.7 303.5 862.6 1 1 97 540 466.9 424.5 5946.6 5984.7 4591.8 4776.4 258.4 392.1 1216.1 5289.2 172.9 483.5 4308.2 5444.8 195.4 438.8 4227.6 5116.9 200.3 562.2 867.4 1010.0 299.9 6015.6 3944.7 4269.6 178.2 508.0 3792.3 4671.5 232.2 602.7 804.7 1225.3 286.7 6149.3 677.5 1040.2 293.2 6974.4 536.4 1004.6 447.9 6821.3 641.0 929.0 3928.5 5426.0 534.7 878.9 3911.7 5203.4 663.3 1162.2 580.9 3805.8 3248.6 3725.6 344.1 1191.0 710.9 1026.4 310.4 5962.1 502.5 1057.7 390.4 6184.3 598.1 990.4 326.4 5909.8 559.3 946.7 334.2 6102.5 784.6 1194.9 299.1 5467.7 2956.1 3446.9 533.4 1939.4 1078.0 1527.8 2774.9 4982.1 2863.5 3469.8 803.4 1886.2 1143.2 1583.7 2680.9 4770.2 2987.3 3525.4 569.9 1571.9 2959.5 3616.5 368.8 1624.5 945.0 1455.7 686.1 4834.2 683.8 1189.0 2402.7 4697.7 645.3 1013.8 1163.4 4235.4 555.5 1392.9 1690.2 3606.3 928.7 2990.1 727.7 2031.6 1891.6 3167.1 648.3 1675.5 1047.8 1590.3 1795.0 2976.7 660.0 1535.7 2220.2 3701.6 918.6 2603.7 882.7 2378.5 1186.9 3225.8 527.4 1888.0 1 1 93 384 486.1 527.4 6609.2 6466.0 536.4 662.8 4192.0 5562.9 1144.1 4402.6 339.1 4322.8 1254.5 4399.8 2276.5 2731.2 1687.3 2407.3 309.9 4978.9 3296.1 4216.3 1831.3 2469.6 509.9 842.0 3652.1 4387.6 1091.0 4343.7 513.0 2477.5 796.4 1175.3 431.6 5751.6 1973.2 2738.9 446.5 5914.2 1407.8 5137.7 554.1 1118.3 4101.4 4973.3 336.7 978.7 3776.2 4457.1 387.1 1099.2 3320.8 3884.3 343.1 2770.6 2040.4 4304.5 294.4 1048.0 2304.5 3415.3 1074.9 2192.8 701.3 1242.7 586.4 4636.1 511.5 944.4 2856.5 4363.1 718.8 2034.8 2495.7 3574.2 487.0 998.1 2629.1 3889.8 1916.6 2712.0 1356.9 2292.6 859.0 2036.0 2254.4 3294.8 1019.5 3256.9 938.0 2780.0 2156.3 2817.8 630.3 2955.0 774.2 1214.5 2576.4 4622.1 572.5 1120.7 2551.2 3871.9 1061.4 1495.0 2181.7 3303.7 1726.2 2449.5 805.8 1821.3 1274.1 1766.0 557.7 3083.6 732.6 1329.6 1019.4 3716.2 856.7 2871.6 622.5 2713.7 1910.5 2809.0 417.7 2432.5 2140.2 2895.1 362.4 2696.7 2359.0 3457.6 430.2 2011.0 1264.2 2923.5 372.4 2661.8 925.7 2159.2 529.7 3726.9 1 1 122 247 721.6 1954.1 260.6 6397.2 2247.8 5939.8 124.2 307.9 481.3 596.9 1501.6 7421.5 353.1 594.4 257.3 7366.4 401.3 757.5 1794.7 8533.3 1321.4 1553.9 369.8 7645.4 1324.6 1532.2 308.6 7600.9 487.7 1118.3 1704.8 7852.7 1023.9 4330.7 300.8 1975.8 666.1 2036.6 322.7 5708.0 562.6 914.3 381.6 6964.6 692.5 1389.2 3125.9 6160.8 1204.7 4912.3 437.6 1673.2 1469.8 2109.8 391.6 6175.9 4055.0 4746.9 364.9 1667.5 1067.9 1562.0 1369.7 7286.1 3296.1 4248.8 438.2 1730.1 893.3 1444.3 1347.5 6870.1 1115.5 1973.6 479.9 6088.7 1289.7 4591.6 321.9 2759.6 1367.5 4584.4 1153.9 2492.5 3249.8 4708.4 437.9 1682.2 1691.5 4669.2 669.6 2095.7 897.3 1742.7 3478.0 5344.6 1273.6 2069.5 723.9 4731.1 1642.1 4290.1 557.4 2137.8 1224.4 4029.7 1413.7 2523.1 1325.6 2392.4 2616.9 4709.2 2464.1 3674.4 1408.8 2480.1 1429.3 3510.3 1403.4 2959.7 2447.1 3425.6 1511.2 2944.1 1004.5 1849.6 3018.8 5057.1 766.2 1413.1 1840.3 5014.3 1165.9 1928.3 2660.3 5050.5 1191.2 1848.5 2361.8 4584.2 2231.9 2883.5 934.7 2345.2 1 1 115 738 636.4 982.9 6128.9 5862.6 1192.4 2151.2 227.6 5367.5 531.4 662.4 5701.9 6023.2 4193.4 5434.4 126.9 265.4 4385.3 5075.8 255.8 2013.3 5023.4 5322.1 173.2 331.5 4537.0 5013.3 82.9 204.9 4052.0 4827.9 230.9 2615.4 836.3 955.1 400.0 7000.4 948.2 1619.4 4045.2 4768.1 3120.6 3925.2 583.4 2823.3 998.9 2284.6 4236.1 4868.3 3558.9 4754.0 306.0 723.0 4139.0 5145.0 317.4 821.7 4518.1 5498.5 261.0 828.7 1099.9 2960.7 446.4 5175.0 965.6 2419.3 2944.2 3913.0 1618.0 5263.6 464.2 1024.7 3503.4 5526.6 292.3 789.4 1590.9 5304.9 237.8 1356.9 3776.3 5291.4 278.5 787.0 1473.8 4754.9 257.4 1911.2 988.7 2876.9 796.9 5274.5 1143.0 2179.3 3155.4 4114.7 2632.4 3609.8 1225.9 2143.5 3028.2 3962.0 1325.6 2117.2 1012.4 1785.9 2931.1 3824.5 1221.2 2899.4 2619.8 3292.3 2454.7 3817.3 652.7 1209.7 1295.9 4421.8 735.6 1378.0 1594.1 4520.5 398.7 1395.9 1611.8 2672.1 687.5 3822.1 1080.7 2485.2 2422.6 3425.9 1019.7 1959.9 2918.1 3936.5 2383.2 3385.1 1436.4 2356.7 2762.9 3393.3 656.9 2336.1 1 1 117 468 494.1 457.5 6365.4 6474.3 1130.2 3931.8 3770.8 3954.2 705.1 2762.1 426.6 4881.3 450.6 729.5 3072.0 7654.6 592.2 2564.0 503.7 6242.4 501.8 909.0 4561.0 5387.9 517.0 966.3 2486.2 5400.3 3611.8 4522.2 1873.4 2304.3 1126.0 4328.4 633.4 2645.6 2433.3 4745.6 532.3 1047.8 3076.8 4392.4 2359.9 2608.1 2296.4 4905.7 624.9 1090.9 1372.7 4082.6 410.9 2990.0 1401.9 3903.9 288.5 3381.2 3122.7 4789.5 470.7 1336.7 846.2 1886.1 2205.7 4880.1 1080.1 3815.5 448.1 3491.9 1073.1 3845.1 466.6 3608.5 1197.4 4457.6 501.0 1554.0 1177.4 4007.8 1558.9 2354.7 2460.5 3444.0 1715.7 2166.9 1134.8 3379.9 1556.8 2558.0 2252.5 3929.5 724.3 1646.9 946.3 1799.3 2172.9 3778.1 686.1 1680.9 2063.3 4041.4 1198.0 3997.4 685.7 1870.7 1715.2 4089.8 584.9 1269.9 1621.8 2513.4 529.9 3738.4 868.3 1639.7 1391.7 4509.1 1760.1 3000.7 554.5 3410.9 1073.8 3034.8 536.5 3732.1 1035.7 3734.7 459.7 2180.0 1187.2 2519.8 555.0 3700.9 871.7 3186.5 1314.5 2797.3 664.1 1745.5 623.9 4510.1 1376.0 3173.4 443.1 2254.5 1 1 69 533 -36.7 -38.3 272.2 5570.7 3295.0 3533.7 63.0 298.9 426.1 478.6 -49.5 4115.4 715.7 2709.0 159.2 325.6 2372.1 2313.9 135.2 430.2 181.7 340.8 1640.0 2044.6 1811.3 1912.0 195.0 355.5 89.3 486.2 1694.0 2136.9 352.7 689.1 -9.2 1645.0 710.3 1623.8 152.6 625.8 1467.3 1621.4 203.0 559.9 677.2 2336.9 69.9 450.1 358.7 626.9 133.3 2140.8 427.5 1998.1 146.7 743.1 1486.3 2104.7 12.6 399.3 1522.9 1971.5 212.6 461.7 1501.1 2187.3 13.7 460.7 549.1 964.1 -37.6 2076.8 609.0 2038.0 112.9 551.1 602.1 1988.1 132.3 583.8 457.3 882.0 77.5 1804.6 697.9 1835.1 189.2 650.7 1472.1 2030.6 171.5 667.6 656.6 1987.6 171.1 566.6 1168.8 1958.7 163.8 491.0 648.0 1386.6 232.8 1201.1 629.8 1749.7 160.0 713.1 1293.8 1716.4 92.8 519.1 1258.6 1796.0 26.0 386.4 653.2 1685.8 79.4 482.4 443.1 891.0 110.2 1796.1 472.1 730.1 94.7 1737.7 392.3 506.6 125.7 1805.8 345.2 1367.4 182.0 993.6 375.2 750.4 138.6 1752.3 439.2 956.8 643.3 1666.9 1 1 121 586 5798.8 6447.3 1584.8 3498.3 6034.6 7737.9 135.0 1991.1 911.2 1895.3 1614.0 7114.3 956.2 4005.5 4433.6 4744.6 1307.7 1855.5 2110.6 4937.4 907.7 3215.4 4386.6 6459.7 700.5 1159.3 1073.0 6246.7 721.2 1023.3 2334.9 6874.0 1020.6 1958.2 377.5 7339.8 577.3 845.5 525.3 8201.9 725.2 1782.3 2049.9 5934.0 1401.7 4651.0 1895.2 3586.4 3524.9 5595.2 507.7 1451.1 1371.3 3166.4 2804.1 5163.7 2415.2 2819.5 624.5 5086.7 2065.1 2793.9 2943.1 6230.3 938.3 1644.3 2255.5 5741.4 3365.6 4028.9 474.9 2172.7 3484.9 4670.8 331.9 3088.0 1814.1 4809.9 458.0 1776.4 1133.7 2644.2 387.4 5194.2 1534.8 4967.6 371.7 2504.1 3133.9 4969.6 1958.2 2817.6 2388.5 4625.1 304.0 1738.1 1140.9 2339.4 332.7 5250.3 1445.6 4685.6 372.8 2834.2 2576.8 3830.4 2152.4 3310.7 1788.0 2680.3 734.2 4530.8 1279.9 3461.3 959.8 3906.1 1266.3 2232.3 1485.8 5345.8 2517.7 3512.2 420.9 3461.0 2719.3 3953.7 1669.2 3086.9 1579.2 2611.5 439.3 4532.2 2747.1 3801.3 389.2 3398.3 1185.9 2747.4 579.8 5307.5 903.8 1809.8 2019.4 5454.0 1 1 117 578 359.1 371.1 293.0 5491.1 529.1 551.6 3297.8 3418.4 967.6 3854.3 177.9 512.2 357.3 760.9 198.8 3964.6 497.6 740.1 182.3 4150.7 1118.7 3395.3 143.6 588.2 2588.6 2682.0 228.6 496.9 1024.3 3573.2 74.6 389.5 529.2 1123.7 230.7 3814.3 454.5 1034.9 2413.4 3477.7 378.2 894.3 353.0 2864.6 467.7 834.6 2046.4 3263.7 357.6 846.6 523.2 3395.0 347.2 885.2 2110.4 3527.1 978.1 3325.8 368.4 864.0 881.2 2738.3 298.8 902.2 569.9 1267.3 363.1 3895.8 733.9 3034.4 249.0 1275.9 488.4 1095.2 288.5 4124.7 510.2 970.4 282.0 4403.6 479.1 951.5 359.5 4003.5 514.7 953.5 425.0 3959.4 460.7 1234.0 2076.5 3420.0 733.9 3136.9 479.1 1680.0 683.3 1484.9 385.6 3487.5 1938.6 3029.2 326.6 1187.6 923.4 2653.0 307.1 1295.3 608.7 1319.7 363.0 3547.0 581.6 1431.9 284.2 3689.3 745.9 3107.3 235.2 1501.0 1011.3 2968.0 236.9 1119.7 1807.5 3224.1 220.4 1116.9 998.3 2835.1 210.0 1150.1 859.5 1701.5 298.8 2974.6 1836.8 2409.1 234.1 1499.7 832.0 1615.1 242.8 3106.1 1 1 115 365 799.5 1673.3 6617.4 7365.4 4399.4 5283.2 303.9 591.2 808.5 1250.4 296.2 6224.8 1603.3 5132.7 295.0 797.2 858.7 2322.2 3812.9 4868.0 843.8 1270.0 3291.4 4267.8 3341.0 4374.8 412.3 906.6 4599.1 5194.1 558.6 1179.6 1255.7 2361.4 3697.8 4505.1 3870.3 4178.9 803.2 1423.9 1243.3 1580.7 3734.0 4404.3 1532.6 5066.8 713.0 1603.4 908.2 2163.9 562.2 5900.0 1518.9 4673.3 637.5 1852.3 921.9 2233.6 3341.6 4723.1 985.0 2188.7 613.7 4322.4 3563.2 4162.7 447.4 1042.8 1122.7 1702.5 678.5 4727.6 1073.2 1837.3 2569.4 4058.4 1601.2 4313.3 675.8 1465.8 1425.9 4607.1 693.8 1254.0 907.6 2124.0 2729.0 3983.1 1194.9 2044.1 801.8 3619.0 1454.9 4258.7 565.4 1689.0 1010.7 2171.8 615.2 4919.3 1002.2 2055.5 554.4 4301.5 1079.4 3959.7 429.5 1707.3 917.0 2018.3 742.5 3897.8 949.3 2136.0 2274.2 3845.9 1132.0 3508.8 752.2 1851.1 867.6 2010.9 422.2 4632.9 1110.6 1800.5 613.5 4298.5 1590.3 2657.6 1513.6 3781.0 1700.5 2732.2 1715.3 3083.2 2291.8 3388.6 792.5 2018.3 2052.8 2992.4 573.5 2464.8 1 1 119 406 381.3 417.6 5987.5 5978.7 1264.7 4922.8 183.7 263.5 1094.9 4820.8 242.5 498.7 364.4 863.1 241.7 6764.0 392.8 700.2 3939.8 4168.2 438.6 723.3 289.3 3819.3 1010.7 4118.1 182.4 558.3 636.6 1272.6 311.8 5700.9 3156.4 4211.6 248.1 773.7 1007.9 4006.0 342.2 1256.3 548.1 1071.8 531.9 7968.0 468.5 832.7 4258.9 6116.2 504.7 781.2 605.2 4329.7 472.2 785.6 3448.8 5005.7 500.8 998.6 2843.9 3875.3 633.7 1040.9 458.6 3366.9 2444.2 3463.6 344.8 1414.6 726.9 1208.5 442.2 4520.7 1065.1 3869.7 303.0 1258.0 2284.9 3412.4 451.3 1109.8 962.0 1415.3 2417.1 3883.8 2374.6 2856.8 880.1 1576.8 796.0 1362.5 2867.7 4606.7 748.6 1206.6 1056.0 3883.8 877.7 1238.9 2646.0 4443.0 2240.2 3077.1 820.5 1904.9 914.5 1418.9 416.2 3706.8 905.4 1432.6 449.0 4481.7 2272.1 2692.9 344.5 2187.0 907.2 1493.6 391.4 4289.6 643.2 1199.0 349.3 4949.6 627.1 1529.9 398.9 4771.9 942.2 2927.2 323.3 2641.1 1001.2 1966.0 439.3 4862.4 2146.1 2719.1 326.6 2927.1 1029.9 1855.0 309.5 4606.6 1 1 112 238 424.3 474.3 336.8 5929.1 523.9 642.2 256.4 5850.8 2928.2 3336.3 287.3 523.9 399.2 577.1 3691.6 4039.1 1016.7 3373.3 398.7 752.1 2681.6 3385.0 334.0 708.4 430.7 678.1 3459.5 4526.7 411.1 719.7 3035.1 3875.6 823.3 2840.1 429.2 714.8 961.2 3294.5 220.2 776.9 448.1 867.0 324.6 4067.3 484.2 786.1 473.4 4548.1 520.7 942.4 2696.2 4220.6 2040.8 2609.4 554.2 1328.1 658.0 978.7 503.4 3911.0 451.4 767.9 2663.4 4188.1 445.6 897.7 2634.6 3618.8 784.2 2985.9 624.8 1479.1 600.6 1104.8 373.9 3915.3 2112.6 2549.2 317.7 1312.0 1138.2 2698.8 333.4 1262.0 761.2 1562.2 351.3 3416.7 1831.0 2779.4 417.3 1846.7 1097.5 2655.8 381.4 1306.5 698.0 1464.0 375.9 3802.4 576.7 1155.4 418.0 4570.9 783.6 2624.5 344.0 1991.0 808.5 2942.2 306.3 1682.4 595.4 1429.9 278.0 4179.4 475.9 1027.7 290.4 4722.4 422.7 1074.3 358.6 4975.1 693.8 2205.6 306.6 2501.2 526.3 1531.0 304.4 4277.6 721.9 2251.8 291.3 2431.4 616.0 1405.6 359.1 3981.5 1419.8 2030.4 281.4 2203.2 1 1 120 597 1704.9 6282.8 1704.3 1283.0 5708.6 6457.8 776.8 1882.3 890.2 1054.4 122.0 7812.3 2188.0 7746.2 16.2 337.0 2228.8 7742.1 2.5 907.4 1190.0 6894.8 331.3 787.3 3988.4 5261.5 544.0 439.4 1693.7 6591.7 283.2 769.3 1036.9 3448.3 590.8 4600.4 549.3 1919.7 3736.5 6322.1 1352.3 4774.1 1688.5 2077.8 3765.9 4575.6 1386.6 1166.1 917.1 2127.0 3424.0 4269.0 1403.6 1501.8 887.4 5543.8 540.9 2253.6 1316.3 6410.1 3432.6 4117.9 1287.1 2446.3 3377.1 4222.4 688.3 2088.4 3606.4 4449.7 1787.7 965.9 1362.8 4317.7 1568.1 2016.1 1662.7 4160.7 629.0 2831.8 1205.8 1356.2 357.5 6257.4 683.1 1238.1 548.1 6229.7 351.9 872.9 3331.9 5672.1 772.4 1804.1 2851.5 4865.7 1360.7 4053.7 1416.4 2214.8 2933.5 3689.0 758.0 1566.9 2506.4 3930.6 818.4 1291.4 944.1 1930.5 2212.6 3759.5 1007.8 3421.8 987.6 1574.3 596.8 2449.9 2717.2 4901.3 1275.9 1951.3 3016.7 4218.3 1799.7 2733.0 1343.4 2562.1 1355.8 1781.0 506.6 3290.7 2079.0 2913.7 844.9 2658.3 1234.5 1685.9 2272.7 3819.5 1021.4 1689.2 2451.8 4045.8 1 1 119 390 192.5 225.8 277.8 8311.5 412.3 622.0 56.5 7445.9 369.8 501.0 202.6 6613.0 1073.7 4216.9 21.7 232.8 1091.2 3773.2 165.7 436.8 338.3 658.0 205.3 4507.1 348.8 622.2 305.9 4975.0 526.2 997.5 3304.1 3981.5 961.6 3712.9 163.4 486.2 1106.0 4107.4 117.3 434.1 2875.3 3399.8 54.4 663.1 697.8 993.6 102.9 6624.2 2851.1 3785.7 192.8 991.5 461.1 637.2 232.1 5773.5 382.8 932.1 98.5 5034.7 468.2 1126.3 169.3 4848.7 869.1 3211.6 151.2 917.9 882.1 4055.0 180.8 585.2 915.8 3394.3 195.0 904.0 421.4 1016.2 2148.4 3775.4 483.2 1056.2 344.4 3675.9 816.0 3463.2 141.1 1160.0 930.6 3711.4 246.8 1230.5 824.2 1243.0 212.5 4375.4 2374.9 3195.6 159.3 1337.9 2328.0 2812.1 246.3 1117.9 1772.5 2763.5 407.2 1316.2 594.8 1015.3 2218.1 3623.0 485.6 1006.8 621.1 3272.2 449.0 688.3 2070.9 3802.9 366.5 862.7 809.8 3747.7 557.4 942.4 2059.0 3838.7 677.2 1137.2 523.0 3863.7 1877.8 2553.7 460.4 2422.3 661.1 1145.0 376.1 5636.5 594.5 887.3 373.5 5609.3 1 1 108 606 552.7 373.8 5153.8 5338.2 3524.3 4088.1 2099.5 2198.2 1291.7 1707.0 139.5 4055.5 1450.9 1996.0 2592.0 3199.3 671.3 890.8 2661.1 3970.5 846.3 2126.7 1813.1 3172.4 1073.3 2398.2 438.7 2871.1 1138.7 2964.3 365.9 2276.0 1104.9 2771.8 1716.4 3187.3 1451.8 2439.0 424.4 2568.4 1555.6 2312.9 1342.8 2870.2 1015.7 1859.2 1496.3 3598.6 1040.9 1972.3 1084.5 3674.5 1110.8 2100.7 521.8 3494.7 1152.2 3114.5 1281.1 2217.8 1009.0 2440.3 610.6 3299.7 1082.7 3125.4 549.3 2624.6 877.0 1860.5 916.4 3908.2 1097.0 3078.4 544.1 2243.3 899.6 1700.1 1274.4 3851.5 1379.5 2058.8 549.9 3282.6 877.4 1667.6 1117.3 3926.9 1069.2 2679.7 1215.6 2600.1 1770.0 2799.8 616.3 1860.5 1212.9 2245.5 731.0 2833.3 1251.9 2007.6 1035.8 3181.7 1429.8 2592.3 1167.8 2466.4 995.9 2534.3 1146.4 2597.1 791.9 1855.1 721.9 3360.1 1134.0 2625.4 1006.0 2768.9 1452.5 2710.8 1192.7 2116.9 1121.9 2496.2 834.8 2482.3 1353.4 2652.7 1069.0 2171.9 1112.2 2546.0 789.8 2209.7 1142.0 2691.1 525.8 1970.3 1387.5 2511.1 845.8 2083.7 1 1 96 508 5615.9 6234.8 161.7 232.0 5619.7 6516.2 45.5 -307.9 595.2 1099.8 249.5 6875.8 533.1 682.4 293.3 6575.4 415.3 118.7 376.7 6320.0 509.0 793.9 3503.1 3980.3 3183.7 3801.8 -3.4 137.7 1136.1 4591.8 -41.7 191.1 173.1 756.7 299.8 6504.6 603.9 1070.2 51.3 6886.3 202.9 473.2 407.3 8074.7 622.3 637.1 305.2 6481.3 3288.7 3222.3 453.1 1379.7 508.7 505.1 3368.0 5317.9 266.1 741.4 500.5 4016.4 3072.6 3787.3 61.2 738.3 3043.5 3719.6 172.5 976.2 1022.3 1464.8 -117.5 4946.6 2894.6 3387.1 393.2 1716.6 801.6 885.1 2423.0 4265.2 956.3 3693.0 425.2 1316.5 1116.6 4164.3 104.7 1242.1 564.6 1068.2 334.9 5017.0 625.5 823.3 254.6 4695.6 632.9 1098.5 295.5 4981.5 703.5 1217.6 129.3 5810.3 515.4 1003.8 351.8 6354.0 2453.7 3244.1 295.8 1900.9 1116.4 3440.5 301.6 1748.4 2373.9 3228.7 -24.9 1166.8 2341.3 3271.3 180.3 1607.3 1102.5 3223.4 70.5 1474.2 773.0 1719.0 139.5 4481.2 2496.8 2853.5 218.3 2157.9 2274.9 2723.3 431.7 1850.1 904.2 1365.0 1758.2 3489.7 1 1 106 347 367.6 181.4 6476.4 6024.2 4452.1 4501.4 240.2 314.5 537.1 324.3 325.9 6856.1 1082.6 4607.1 216.1 553.8 691.2 902.8 4289.0 5009.0 751.0 932.1 3902.6 4428.3 3290.4 3608.1 349.9 560.5 4146.7 5097.0 434.2 535.0 1059.4 1216.7 3506.5 3799.5 3597.1 3712.4 532.6 821.6 923.1 1126.9 3910.3 4238.4 1323.4 4205.4 611.1 1279.8 754.6 1312.8 539.9 5832.0 1214.5 3525.1 581.9 1478.5 479.0 1171.7 3146.7 4050.6 647.5 1100.9 624.2 3873.2 2548.8 3201.0 375.6 1569.5 779.4 1177.0 620.3 5035.5 708.7 1307.0 2729.5 4003.1 1044.0 3499.7 700.7 1450.6 975.9 3757.1 658.4 1286.6 717.7 1543.4 2613.7 3846.6 411.9 1303.8 866.5 3789.4 767.8 2901.4 564.2 2286.4 535.7 1320.2 538.9 5624.4 699.1 1305.5 432.3 4598.5 788.1 2772.2 435.5 2314.8 664.1 1484.6 659.1 4136.4 641.7 1621.5 2033.0 4070.7 821.2 2610.7 711.9 2420.7 589.6 1303.9 434.6 4178.3 666.8 1195.0 509.5 4529.1 1378.3 2019.1 1081.2 3189.4 1464.6 2093.4 1511.3 3023.4 1935.7 2466.1 698.2 2151.5 1752.1 2087.3 571.5 2825.2 1 1 92 482 437.4 201.3 257.8 8164.7 507.4 667.8 211.5 5789.8 377.9 369.4 61.3 4939.8 684.5 507.5 2216.8 2885.4 435.1 416.1 180.9 2391.6 1952.4 2174.4 180.9 595.6 471.8 535.2 193.5 2957.1 1987.6 2208.0 163.2 557.2 747.1 920.6 145.0 2292.0 429.7 775.5 1393.7 2452.7 540.0 921.7 258.0 1867.2 1554.1 2059.3 191.6 640.0 502.3 745.1 236.3 2275.4 1238.8 1359.1 278.0 976.9 799.1 2054.7 86.2 567.2 1319.3 2012.5 149.6 623.3 550.2 879.1 224.6 2131.9 271.5 718.1 992.2 2133.4 448.4 840.9 210.8 1792.9 571.3 1119.7 170.1 1813.1 1175.5 1497.1 231.2 910.6 1241.8 1635.0 211.5 763.2 659.4 921.0 779.2 1640.5 1048.3 1353.9 362.3 865.2 1097.2 1512.0 223.5 924.9 741.9 893.9 880.3 1698.5 827.7 1236.4 321.0 1217.5 610.6 812.5 195.4 1886.2 431.2 994.1 243.7 2065.8 511.9 1245.3 190.2 1430.9 492.0 871.7 250.8 2109.0 895.2 1268.2 149.4 1437.9 499.6 1315.5 198.5 1424.0 458.7 1030.8 241.5 1516.8 431.6 634.6 607.6 1703.0 499.1 885.9 374.5 1648.1 1 1 114 415 2809.2 7681.3 373.6 970.0 944.3 1387.3 2184.2 8803.8 836.3 1280.6 5932.8 6722.4 4850.9 5883.1 498.6 1059.3 985.1 2824.9 393.2 6464.9 2250.3 3055.8 442.0 6339.8 2075.5 2773.9 4598.9 5658.5 1863.5 6430.9 2180.1 2639.0 1246.2 2080.5 566.9 8582.8 5167.7 6120.4 930.4 597.2 4696.9 6139.1 559.5 1534.3 4583.1 5926.5 2347.8 3388.5 1295.8 2250.2 2177.5 6886.2 1767.6 2387.3 500.3 7770.9 3847.4 5472.4 1563.9 2321.1 1694.2 2682.3 3151.3 5057.7 1242.9 2902.9 611.4 4443.5 1637.9 5529.7 574.2 1661.2 1748.7 5658.9 527.9 2652.6 1123.6 2301.6 1606.3 5476.8 1255.7 2249.6 2737.4 5255.9 1604.0 5702.4 767.7 2406.4 4239.5 5863.8 1669.5 2571.5 4199.4 5755.6 666.9 2555.8 3749.3 5604.5 567.1 3023.2 1747.5 2732.4 540.6 5554.2 3440.6 4601.3 1245.0 2156.1 3507.3 4797.3 613.8 1867.2 1871.8 4681.2 1341.9 2348.7 1480.5 2520.6 2623.9 4875.7 1511.7 2289.1 880.7 5697.7 1345.2 2353.4 1240.5 6281.6 2848.8 4038.7 576.9 3354.1 1757.5 2539.8 687.6 5885.4 2971.1 4084.6 1326.8 3086.0 3261.1 4545.5 656.5 2663.2 1 1 117 462 1650.7 7626.5 168.2 -73.6 957.6 1051.8 125.6 8250.5 1540.6 5848.5 238.3 636.7 1543.4 5888.6 359.4 643.0 4375.9 4992.4 355.7 827.7 927.5 1287.6 3883.8 4892.4 785.7 1236.3 400.9 4854.4 887.2 1612.7 247.0 6525.5 1550.9 5363.7 411.0 1302.4 1522.9 5565.4 428.9 1309.3 3958.6 5098.2 359.3 1057.1 1802.2 5180.8 404.2 1136.9 3764.3 4953.7 480.3 1189.2 1087.9 1767.7 2951.1 4168.9 3005.3 4200.7 533.8 1302.2 1399.4 4630.2 391.6 1306.5 951.2 1837.2 370.9 4857.1 1500.8 4579.8 178.0 1605.9 3081.6 3908.1 460.0 1494.8 2955.0 3654.8 517.0 1424.0 1274.5 1726.1 2697.1 4303.5 860.3 1550.8 2791.0 4452.3 1378.5 3745.5 705.8 1923.9 976.8 1951.8 489.8 4179.9 1339.2 3984.5 435.6 1973.1 907.1 2100.6 482.6 4738.2 760.8 1722.8 427.6 4869.6 904.3 3351.2 418.7 2602.9 805.5 1970.5 524.4 4780.9 749.6 1481.0 2106.4 4820.3 654.7 1250.1 946.1 5489.2 711.7 1489.3 598.1 5101.7 1047.9 3254.9 535.4 3043.3 2048.5 3350.9 494.2 2234.0 1240.8 3277.6 434.4 2279.4 924.0 1906.2 369.8 4555.2 1 1 88 544 3149.7 5989.3 226.5 423.1 578.6 816.3 283.3 7524.7 3647.9 3811.7 219.4 2255.8 589.6 700.8 4417.1 5009.3 578.6 723.3 2994.1 4195.7 2081.0 2752.9 2381.2 2786.3 2657.4 3469.1 1065.0 1648.2 1164.0 4088.6 1341.5 1824.2 1262.4 5056.3 391.5 821.9 2930.2 3633.8 404.7 1728.1 2776.6 3237.1 421.4 2719.0 807.0 1271.5 3102.8 4093.1 1162.8 3961.1 616.7 1566.9 2738.3 4211.1 485.0 1333.9 1053.3 2508.3 2262.3 2966.7 1830.2 3990.8 501.3 1041.1 1000.6 2331.7 326.8 3834.1 733.9 1596.7 397.6 4382.4 673.9 1467.2 389.0 5012.2 766.8 2022.9 524.7 4273.0 844.5 1434.2 2590.5 4082.8 2043.7 3225.2 862.1 1661.7 1571.0 2057.1 2143.5 3327.1 2185.4 2572.4 552.3 2597.8 1173.0 2314.2 389.6 3532.4 2431.6 3497.8 391.4 1439.8 1332.3 3571.4 452.2 1391.9 904.9 1779.4 851.3 3829.6 1883.2 2654.6 454.7 2383.7 825.8 1402.2 439.0 3786.9 1144.1 1946.1 297.0 3966.2 780.4 1586.3 266.3 3534.5 752.3 1418.1 360.6 3752.1 632.4 1418.1 654.7 4480.1 819.2 1678.8 465.8 4100.8 1834.1 2451.7 387.3 2693.8 1 1 68 580 338.2 1426.6 161.3 5117.2 294.0 377.8 193.1 5354.7 280.9 1363.2 140.2 5493.0 762.2 3668.3 177.9 453.3 2616.9 3070.0 122.3 424.5 728.8 3235.9 152.0 850.0 366.2 575.9 2713.2 3671.3 357.6 591.6 441.4 3581.2 305.0 952.7 210.4 4842.6 286.8 493.5 181.4 4909.8 583.0 985.5 153.5 5080.3 703.9 908.8 180.3 4482.5 837.6 3223.1 168.2 867.5 1986.3 2451.1 270.2 920.8 344.5 656.2 2250.0 3434.8 373.7 690.4 320.4 2995.1 1860.5 2341.4 217.7 1108.5 556.4 1139.9 251.9 4614.8 696.4 997.9 209.4 4435.6 341.1 1028.9 263.4 4211.1 856.2 2461.4 358.6 1414.1 427.5 821.8 2141.8 3527.4 464.7 1130.5 456.3 3418.8 743.8 2647.8 254.4 1229.2 1713.4 2450.9 334.9 1292.1 411.2 1007.3 240.1 3984.5 378.6 790.7 270.5 4303.9 434.8 804.2 242.5 4534.7 337.6 1044.8 266.5 4354.4 445.5 1051.7 237.9 3569.4 787.5 2200.3 227.6 1576.1 1613.2 2250.1 245.1 1057.7 1620.4 1860.9 345.5 1343.6 585.0 976.1 1449.6 3273.8 634.8 871.5 474.1 2876.7 1329.6 1711.2 423.1 1625.4 1 1 81 571 294.8 233.1 289.9 5109.8 562.3 650.0 42.7 4604.9 2558.4 2787.5 108.6 378.8 811.1 2915.0 97.2 348.8 364.4 603.6 156.2 3272.3 475.2 462.2 125.2 3910.0 480.1 491.4 211.1 3924.1 545.0 674.2 245.4 3613.7 2249.9 2589.7 175.0 532.8 2034.1 2657.4 181.6 559.2 2151.6 2743.1 93.2 441.2 2213.1 2821.7 204.1 466.8 2010.2 2426.7 93.3 580.6 730.4 2417.4 193.4 844.1 485.1 854.9 232.6 2903.0 504.0 773.3 179.8 3229.8 534.1 882.9 224.1 3149.2 1572.5 1891.6 200.9 1084.8 456.9 875.6 195.4 3216.6 449.9 724.9 204.9 3107.9 1491.6 1957.1 108.5 979.1 769.1 2066.4 238.0 1000.8 491.4 1117.1 234.7 3001.4 657.2 2242.2 211.3 1019.8 1626.8 2338.1 227.1 867.9 1482.7 2061.1 167.1 804.3 672.1 881.1 263.4 3012.6 1479.2 1666.0 224.4 1126.6 1640.7 1916.4 245.3 1012.2 1405.4 1932.6 378.7 1078.1 584.4 800.9 1219.5 2413.0 493.2 972.0 1171.2 2153.7 573.2 1758.2 380.9 1238.8 500.1 941.3 411.0 2325.1 501.8 870.1 1078.9 2208.0 964.3 1404.0 485.8 1435.1 1 1 75 541 535.9 842.2 4660.7 5107.3 2927.3 4385.9 249.3 1178.9 621.8 1124.3 2214.3 5105.3 2455.3 3248.4 281.1 2505.6 2512.1 3058.5 1954.2 3338.7 825.0 1387.3 2621.6 3203.8 807.5 1230.8 333.5 3322.7 847.3 2236.0 2770.3 3979.0 748.9 1372.3 374.7 3956.0 700.0 1357.9 3340.7 4862.0 758.1 1407.8 2769.1 4235.0 2014.3 2631.5 589.9 3240.4 2337.9 3445.8 386.4 1431.5 828.5 2909.1 352.0 4198.4 1037.9 2842.9 597.8 3521.0 1683.9 2485.5 1801.1 2929.4 2256.3 3637.3 450.2 1258.2 1062.8 2210.8 451.7 3632.0 2159.2 2820.8 421.7 3366.2 945.9 2361.4 821.6 3711.1 1242.6 1910.4 468.4 3972.4 2556.4 3160.5 359.8 2108.7 1744.8 3497.7 647.4 1711.4 1189.0 2128.2 1859.0 3273.4 1560.5 3095.4 562.6 1964.3 1442.2 2197.5 649.9 2983.9 857.6 1603.0 1956.5 3622.5 920.4 1905.7 1854.1 3273.2 965.8 2493.7 1266.3 2555.7 1707.0 2729.3 1157.4 2237.4 2170.6 2888.7 654.1 1813.9 2119.3 2991.4 661.9 1732.4 2128.7 3055.8 387.1 1436.3 2296.7 3192.4 522.0 1851.1 1093.0 2457.8 1000.8 2215.5 968.3 1633.2 1417.7 3090.9 1 1 113 775 -82.9 168.0 317.1 8082.7 1500.6 5540.2 116.3 -120.6 4391.7 4860.6 215.2 617.8 400.3 1693.7 283.7 6619.8 1060.5 4609.4 257.2 715.3 273.8 731.5 260.7 7092.7 941.5 4542.6 64.9 679.1 530.8 1105.4 234.7 6969.6 599.6 1045.0 292.7 6583.5 3956.7 4762.9 221.7 657.7 3665.3 4163.4 208.1 511.2 4093.3 4701.5 178.1 894.9 1189.2 4733.4 87.0 1004.9 709.8 1220.6 593.2 7686.5 754.7 1293.3 4069.7 5674.6 3079.3 3469.8 719.9 1372.9 772.3 1251.9 3968.8 5600.0 837.4 1282.1 4260.0 5745.5 3073.1 3488.4 366.5 1655.9 1035.7 1573.4 269.7 5705.6 3623.0 3754.4 461.2 1518.4 3650.5 4074.0 198.5 1503.9 1281.8 1838.5 610.0 6304.3 3809.0 4075.3 256.1 1627.7 3424.9 3945.2 188.7 1739.5 1434.8 1870.0 377.4 5374.5 3136.6 4127.2 203.8 1422.2 1237.9 4152.2 281.9 1526.4 727.1 1622.9 267.3 5296.2 1020.5 1671.3 172.6 4928.3 2634.3 3962.1 268.3 1663.1 1401.8 4414.6 130.1 1358.2 1422.8 4666.8 230.7 1209.3 2636.1 4012.5 262.1 1108.6 1556.6 3637.4 268.4 1397.3 2307.8 3244.9 313.4 1951.8 1 1 122 660 482.2 487.0 78.2 6732.4 4381.8 4434.8 199.8 241.7 214.0 212.1 343.2 5617.4 439.3 748.7 3013.6 3433.7 898.4 3915.0 138.3 470.9 3064.7 3652.4 339.2 375.5 607.0 959.4 3049.5 3508.3 916.6 3346.8 378.2 807.4 630.3 973.1 309.1 4222.9 2290.0 3172.6 438.0 864.3 593.1 942.3 2516.3 3414.6 2096.7 2509.4 641.2 1357.2 408.6 693.7 2772.0 3983.9 462.2 957.5 455.8 3519.3 1047.2 3362.8 222.8 902.7 2248.2 2827.2 325.9 1009.7 2062.7 2745.2 521.1 868.6 795.6 1158.8 2203.0 3023.5 1695.9 2323.3 561.0 1051.8 637.5 1170.0 1986.6 2602.5 829.4 2348.5 582.4 1237.0 623.5 1240.7 441.1 3137.8 896.6 2704.2 409.1 1046.3 1616.4 2572.8 528.0 976.3 679.6 1128.9 2196.0 2854.4 444.9 825.4 2122.3 3006.8 473.4 888.5 2262.6 2966.4 382.2 751.7 1860.0 2712.8 569.2 947.3 709.2 2502.6 1270.2 1980.8 502.2 1316.8 843.5 2094.3 427.5 1301.7 607.1 1199.6 496.1 3015.4 469.0 989.8 1971.9 3317.8 455.2 678.6 1832.6 3047.8 586.9 749.6 613.7 2658.9 508.6 945.4 496.4 3383.4 1 1 115 329 543.5 557.3 6240.7 5988.9 539.0 788.5 4817.0 4526.5 474.6 436.6 4330.3 5484.5 455.8 778.5 4302.1 4596.7 2849.5 3354.4 464.2 661.6 1113.8 4074.5 461.3 678.2 627.5 834.5 472.7 6378.9 690.6 723.1 4333.3 5680.4 572.6 694.9 631.6 4585.1 656.3 775.0 4419.5 5824.0 647.2 1085.4 4210.8 5203.4 703.3 878.1 3818.7 4637.1 692.0 879.3 981.8 4273.2 677.8 990.9 3687.1 5476.9 843.3 1251.3 997.6 4117.3 2920.8 3177.7 686.7 1812.5 875.1 1642.1 3030.0 4523.6 1329.6 3241.3 976.7 2316.6 762.0 1700.2 801.1 5314.3 1215.8 3843.1 659.6 1833.1 2334.1 3359.6 606.9 1509.8 1393.3 3424.8 569.5 1572.5 883.0 1622.0 711.4 5170.8 707.7 1323.6 919.7 5546.4 748.0 1375.8 2762.9 5143.1 753.3 1493.7 908.7 4719.6 786.0 1497.9 818.7 4758.3 814.2 1551.3 2083.5 4519.1 1084.0 3092.6 983.5 2323.6 1888.3 3050.4 1031.6 2076.0 1005.2 1710.0 1899.6 4106.9 777.6 1611.3 1130.6 4051.0 759.5 1637.6 2171.8 4121.9 1035.3 2879.3 852.0 2639.1 675.9 1612.5 685.9 4225.5 830.9 1625.7 669.0 4781.4 1 1 118 518 1104.8 5930.4 261.6 440.8 428.6 655.3 224.7 7701.9 439.0 709.9 5156.3 5429.3 4795.2 5117.8 268.7 194.4 5283.5 5491.1 88.4 576.9 4841.4 5504.9 495.1 619.8 4520.5 5330.6 151.9 493.6 1007.9 1339.9 346.9 5753.3 1728.7 5885.2 359.5 550.2 3984.9 5325.8 326.2 774.8 767.4 1348.5 422.0 6841.0 932.1 1447.7 4727.6 6061.8 933.8 1420.9 4209.9 5306.8 3902.8 4589.5 588.3 1193.9 4617.1 5363.5 313.4 521.2 4383.3 4896.1 362.0 923.2 4278.7 4714.8 219.2 1088.0 1200.2 1769.9 702.5 6501.3 1323.6 1809.2 3481.7 5242.9 3231.6 3771.6 873.0 1712.5 1666.8 1879.0 3441.1 4186.0 3690.4 4078.2 667.1 1246.9 4064.4 5100.6 585.2 1003.9 4064.5 4711.8 421.0 1065.4 2035.8 5049.4 413.0 1215.6 3434.4 4150.3 388.5 1459.3 1308.9 2282.7 514.2 5185.1 1369.1 4471.2 336.6 1667.3 1637.0 4904.9 421.5 1250.2 2575.5 4154.4 450.7 1336.7 1190.1 3932.8 416.0 1943.9 747.7 2146.2 455.6 4699.6 753.3 1721.7 682.6 5009.4 1087.2 1696.0 2318.5 4132.2 2379.8 3243.7 850.5 1786.0 1319.7 3835.8 795.4 1865.4 1 1 120 704 804.5 596.3 5293.9 5160.4 3325.6 4066.7 102.1 216.6 3786.3 3719.0 43.9 208.7 650.5 3836.1 40.8 33.9 804.1 3831.3 -294.3 -79.8 2914.1 3448.6 75.4 157.7 545.0 637.0 3732.8 3469.6 3014.7 3181.2 -10.0 -217.3 919.2 3335.7 -154.2 -84.7 401.0 888.6 282.0 4140.1 1013.5 3768.3 -273.5 -66.3 732.8 4061.1 67.6 315.7 507.6 683.7 314.3 4165.0 593.9 625.6 3003.4 3772.1 562.5 898.7 3142.4 2952.2 887.5 3777.6 290.7 -189.8 2310.1 3398.0 409.1 854.8 436.3 952.5 3000.2 3340.3 2256.8 2687.5 203.6 883.7 2228.1 3106.4 490.6 662.3 676.4 1264.1 2707.9 3056.6 553.6 565.8 304.4 3272.5 301.8 761.3 523.6 4067.7 487.8 935.9 2591.6 3680.9 216.5 806.2 846.3 3344.3 513.1 677.4 2642.8 3508.0 503.5 691.9 605.2 3441.9 539.0 840.1 402.6 3302.0 813.4 3068.5 268.4 971.6 796.8 3095.8 321.0 875.3 1940.2 2443.2 185.4 625.3 716.6 2697.7 353.9 1145.7 643.1 1406.3 160.7 3002.9 867.8 2685.1 282.6 1233.3 1600.0 2532.7 149.2 726.0 554.4 2545.8 187.3 1074.1 1 1 105 427 656.7 1156.4 358.7 7771.7 1036.4 1968.1 453.4 6382.1 2283.0 4637.7 373.9 750.6 1733.5 3483.9 2841.0 3366.3 2295.6 2719.2 265.8 2341.2 541.3 1302.1 2984.3 3490.8 1853.1 2400.5 1106.0 3454.3 914.4 3013.7 354.0 3142.5 2032.6 2752.0 582.8 3571.8 713.0 1130.7 2631.5 7927.5 621.5 1064.9 2474.7 5761.3 1376.1 3140.8 2399.2 3576.7 713.6 2457.2 490.7 2598.7 1000.1 3038.3 387.5 3775.7 1561.7 2840.2 327.7 3363.9 1342.1 3534.4 388.0 1599.7 657.6 1378.8 361.5 5094.7 939.8 2734.6 509.7 4608.8 805.7 1498.0 1053.5 4352.9 1098.6 2420.4 1315.2 3064.0 764.5 1557.5 1004.6 3065.8 1980.1 3237.7 334.7 1496.3 1238.8 2165.9 432.2 2943.5 2298.1 3791.7 515.2 1938.2 930.6 2052.3 1256.9 3495.9 1154.4 3394.1 584.0 1721.4 970.5 1677.0 378.2 3150.1 1175.6 2897.5 346.2 1799.7 763.1 1790.0 398.4 3479.1 666.3 1418.7 1320.0 5051.5 697.7 1302.5 1440.9 4987.4 782.7 2107.7 1585.5 3981.9 655.8 1758.2 600.7 3761.6 978.8 2023.0 1423.8 3156.1 622.3 1657.0 901.9 3221.8 680.5 2214.5 601.3 4010.2 1 1 110 692 558.0 682.5 5290.3 5459.1 1418.6 5088.1 329.0 600.7 3925.4 4537.4 427.9 823.7 595.4 1030.9 4030.6 4696.4 3232.7 3871.1 552.3 1436.0 568.9 902.1 4296.4 5262.7 3374.7 3583.3 581.5 1177.2 1341.3 4390.0 500.6 1165.9 707.6 1201.8 3976.6 4709.7 692.4 1080.4 4098.8 4775.6 681.9 1006.7 1105.1 4068.3 628.2 1162.8 800.1 5264.8 1205.0 3604.8 536.7 2457.6 1146.7 4090.4 621.6 1737.9 2504.9 3932.2 670.2 1518.7 1314.6 1909.7 2815.7 3701.2 986.9 1702.5 3473.2 4584.6 1951.3 2900.5 1375.3 2273.1 1021.5 1825.2 2875.5 3829.4 1948.7 2954.8 1333.3 2019.1 1205.4 1684.9 2440.3 3436.4 894.8 1435.3 1180.3 4086.4 763.4 1505.5 753.3 4730.1 1121.3 3411.5 577.3 2315.7 2132.8 3365.1 517.1 1588.0 1320.9 3802.5 571.8 1303.3 1361.7 3597.6 467.9 1230.8 2149.7 3256.8 469.1 1032.6 2188.1 3205.0 511.4 1246.8 1235.8 3454.9 520.6 1705.9 961.2 2017.2 451.8 3415.6 763.3 1724.0 683.7 4328.5 716.1 1454.7 1790.1 3827.2 735.7 1344.5 921.3 3499.6 664.0 1144.7 1647.2 3734.1 616.6 1495.1 995.6 3683.1 1 1 98 349 130.2 8.9 327.4 6779.6 182.9 562.0 -17.6 6732.8 126.2 410.6 -9.2 5891.7 982.9 4001.2 80.0 514.3 3436.4 3701.4 285.8 647.1 312.7 435.0 3714.2 4321.8 73.0 401.2 414.6 3938.9 224.5 462.7 354.3 5003.1 325.2 627.2 12.0 5012.1 357.0 660.3 245.2 5981.0 911.3 3440.5 239.2 573.1 417.0 807.1 206.3 5195.3 811.3 3819.0 525.5 1011.0 279.4 767.6 2632.8 4706.4 705.1 3322.6 298.3 1029.6 770.6 3350.1 199.9 934.5 248.3 816.9 117.8 4891.5 379.9 866.0 340.2 4537.3 2202.4 2587.3 251.5 1313.5 496.4 932.3 306.1 4174.7 439.9 1082.7 72.7 4209.8 690.8 3032.3 147.8 1443.0 896.4 2994.4 271.7 1160.8 1867.7 2895.3 458.3 1393.1 417.0 1053.1 825.4 3714.6 386.0 849.1 1926.7 3822.5 396.9 1139.1 427.6 2952.2 586.0 2741.8 403.0 1409.5 647.2 2672.6 311.1 1709.4 570.5 1214.1 210.9 3494.3 1650.0 2511.9 264.0 1462.1 1059.0 2734.1 90.9 1142.4 1489.9 2113.5 733.2 1688.8 512.3 880.0 1714.9 3476.6 357.3 599.3 873.8 3615.9 394.2 775.5 1716.5 3801.3 1 1 120 488 1649.3 7313.6 511.5 4064.1 6344.6 9108.2 189.2 456.6 5833.4 8500.2 159.4 589.9 3253.2 3989.8 373.1 7589.8 4957.4 5724.2 2747.3 3556.4 2598.0 3354.3 441.2 6420.8 4611.7 5588.9 322.7 3653.0 1200.0 1803.7 5227.7 6559.5 4452.6 5420.6 556.9 3446.4 3616.5 7993.5 399.7 1447.7 4456.6 5584.1 355.2 4315.7 2053.2 7696.1 445.7 1568.2 4017.2 5893.0 384.6 3829.0 1250.7 1914.8 589.1 8414.2 1227.7 1916.7 2053.6 8078.4 3509.3 4951.1 690.5 4080.2 1697.7 3756.8 3325.5 5227.7 3068.5 4538.3 772.8 4400.3 1888.1 6428.1 587.1 2213.4 1233.5 2602.2 509.1 7625.2 3111.3 4982.5 700.4 2910.6 1453.6 2454.2 3199.4 7110.3 2674.8 3299.3 904.3 4609.4 1335.5 2142.9 2781.7 6201.1 1228.4 2168.7 1949.4 6109.2 1523.3 3675.3 981.6 7272.4 3288.4 4787.4 702.8 4726.4 3329.8 5683.2 622.8 3030.1 1941.5 3769.3 823.9 5649.1 2607.6 3652.1 2739.0 5624.9 2973.2 5848.7 900.5 2879.9 3223.3 5624.6 645.5 2687.5 2463.4 3826.1 648.2 5478.9 1931.1 4802.5 633.1 4508.3 2762.1 4340.5 1795.6 4119.8 1645.0 2795.0 2608.2 5256.8 1 1 120 749 392.5 176.7 294.0 6453.4 457.2 553.0 292.4 6172.0 311.1 116.3 4832.4 5209.8 446.5 418.2 3907.3 3836.8 2957.1 3075.7 234.0 713.5 232.3 337.8 218.7 5398.6 375.0 380.5 318.9 6196.9 3859.1 3731.6 333.9 674.9 703.0 931.5 3549.1 4049.6 3089.0 3744.1 312.5 774.2 3615.2 3652.3 286.6 716.2 679.7 885.1 478.2 5698.1 636.2 847.7 3685.8 5049.3 611.4 885.2 4025.7 5082.4 3028.5 3801.3 395.8 876.3 3414.8 3888.5 349.9 789.4 802.5 1382.6 389.9 4596.4 996.5 4303.0 315.1 1160.7 1381.1 4608.4 280.8 809.5 2758.5 3563.7 298.5 877.4 2951.6 3418.0 315.7 1008.5 874.1 1215.7 514.4 4513.4 580.7 802.6 3483.8 5009.5 775.9 1132.6 3307.3 4453.0 2169.4 2859.8 707.2 1339.0 2521.3 3229.6 481.7 1376.1 1027.3 1385.7 475.5 3788.1 1076.2 3446.7 338.2 1383.8 2423.7 3338.0 298.1 1143.2 2370.8 3565.7 316.7 1012.8 1152.9 3034.4 339.6 1427.6 806.3 1536.0 645.1 3613.4 647.1 1255.6 2295.3 3652.5 926.3 1305.4 2018.2 3154.3 1850.1 2373.9 644.1 1512.5 1941.6 2715.1 566.2 1858.5 1 1 115 889 219.2 347.4 4501.4 4082.8 3033.7 3083.1 143.9 94.4 354.5 381.1 3244.9 3427.1 2674.0 2898.1 152.3 197.3 3007.3 3350.5 60.2 252.0 3038.0 3473.5 152.9 233.8 2924.5 3005.2 61.2 218.1 544.3 609.5 220.5 3980.8 483.2 727.4 3026.4 2837.8 862.1 2960.1 243.1 435.1 834.1 3126.8 212.1 230.2 764.8 3064.7 181.1 374.1 868.4 2959.9 150.3 496.9 2410.3 3102.9 204.2 453.8 885.6 3228.1 43.0 298.5 2323.3 3009.2 303.0 452.6 543.5 1008.4 1944.2 2170.9 773.3 2895.3 240.9 605.5 492.8 963.6 338.4 2621.6 424.1 824.2 2084.7 2353.6 519.5 849.5 2125.1 2249.2 1611.7 2054.9 339.2 708.4 496.2 950.4 301.1 2905.8 680.0 2365.1 218.8 769.0 416.7 959.2 314.3 2961.6 691.8 2577.7 181.0 713.7 681.3 2519.7 228.9 734.2 405.2 1014.3 283.5 2448.8 389.8 790.4 1619.7 2464.0 415.1 874.3 1648.9 2194.4 1247.8 1901.5 520.8 902.6 507.8 933.4 1561.3 1974.5 384.5 918.3 1660.9 2360.8 665.7 2015.0 528.8 1217.2 1307.0 1873.6 241.0 993.8 488.2 940.0 344.5 3048.1 1 1 98 629 305.2 222.5 1204.7 6408.0 1145.8 788.5 403.6 5369.9 391.2 332.5 4334.4 5879.8 971.0 4969.7 461.5 -238.4 3839.9 4797.5 -39.8 -71.1 857.2 1012.8 277.3 5792.6 700.8 1003.8 499.5 5604.2 1373.1 5118.1 341.1 -425.7 1516.9 1864.8 353.1 -36.2 3321.9 3885.9 737.0 640.0 2977.5 1420.0 349.9 85.1 795.2 1152.3 3271.4 3616.1 286.9 904.6 3726.4 4286.9 936.0 811.3 3359.7 4183.6 633.5 1202.6 2970.3 3061.7 2159.8 2909.5 508.9 260.4 658.3 1499.7 768.8 4247.1 609.7 1394.6 2932.8 4159.4 2141.3 877.9 1116.7 1250.4 563.4 1396.9 2724.2 3822.2 977.0 2066.8 736.0 1999.9 2172.8 3185.4 624.7 1910.0 2467.1 3266.6 407.4 926.7 2646.7 3392.2 414.6 1052.7 824.0 1994.4 -21.3 3626.2 2214.3 2245.5 185.7 1412.0 1178.5 1223.7 506.2 3874.5 803.6 1214.1 321.0 4643.6 783.0 3248.2 406.5 1825.1 516.5 1587.0 343.9 4289.7 533.3 1104.9 216.6 5170.7 885.5 3225.5 394.9 1709.5 1086.8 3052.4 372.7 1831.5 629.7 1728.3 248.5 4060.8 644.7 945.1 541.9 4874.4 351.8 982.2 1961.9 3964.5 1 1 120 446 5664.9 7160.7 353.7 2289.6 826.6 949.0 458.3 10222.1 2213.2 6428.2 363.3 851.4 1362.5 5272.8 1606.4 2753.4 4438.6 4807.4 1740.6 2663.9 904.6 1170.5 796.7 6733.7 731.8 1453.4 440.2 6522.7 1590.1 5754.1 466.3 3303.2 2121.5 6059.6 435.2 1332.6 752.8 1903.8 2062.6 7487.6 1289.7 4846.0 1393.0 2990.6 849.9 1796.2 1734.4 7345.5 767.2 1462.4 3567.1 6049.9 755.8 1480.4 561.5 5937.3 1239.5 1962.0 705.4 5748.6 949.7 1556.1 3429.1 5510.0 2811.1 3199.5 1639.4 2629.0 858.5 1466.5 3567.6 5570.2 815.5 1239.0 3057.4 5384.4 853.9 1243.8 2556.2 5076.4 2851.0 3484.9 628.5 1837.5 1323.0 4147.5 1482.1 2468.4 2966.6 4159.7 1446.0 2537.8 1099.9 1966.3 1178.8 5287.3 1126.3 4127.9 463.0 2558.4 763.5 1634.8 753.7 5666.6 1170.8 1742.1 2503.7 4534.6 737.7 1313.8 3070.6 5083.8 744.3 1379.4 2895.5 5184.1 630.4 1322.9 1403.7 4855.0 624.7 1530.3 705.1 6043.3 1033.5 3402.0 625.0 3775.3 1026.7 1976.8 610.0 5878.1 726.3 1464.3 1218.1 6336.5 760.6 1550.5 1286.5 5708.8 1095.9 3423.8 1015.0 3259.1 1 1 115 762 4466.2 7141.3 128.4 451.2 1580.7 4379.8 74.8 5221.7 2977.9 3573.1 204.9 3931.2 533.6 1325.8 3094.1 4793.9 900.5 3789.4 2903.6 3645.2 1046.2 4657.5 905.4 1419.3 978.2 3590.4 515.1 3919.3 1648.2 4861.8 396.6 804.6 1062.9 1728.4 376.2 4410.9 1144.4 3242.1 708.3 3872.6 2977.9 3920.3 397.0 1128.5 781.0 1367.8 2991.9 5517.8 1004.1 3595.9 2934.4 3697.1 901.2 3395.1 812.0 4529.0 2335.0 2938.3 953.6 4636.5 2571.0 3082.2 2142.8 3261.0 1026.9 1697.9 3012.8 3909.2 862.1 1626.1 2512.1 4253.3 1293.7 3053.0 614.7 2452.1 999.0 2909.6 2216.9 3086.4 989.4 3180.5 2575.9 3295.3 802.4 1695.7 2116.6 4268.2 927.3 3218.9 668.0 3017.1 1101.4 3363.6 760.7 1672.5 1085.6 3250.9 640.5 3266.7 2291.1 3000.7 2104.5 3194.8 1973.7 2841.5 2186.8 3127.3 1876.3 2702.0 1895.3 2898.8 1845.3 3687.6 547.2 1579.3 1012.1 3047.6 404.3 2529.2 1404.7 2373.6 625.5 2864.3 1006.1 2533.3 503.9 2736.1 1424.0 2457.3 472.0 2867.7 918.3 2452.0 519.5 3149.0 755.3 1572.6 1348.9 4239.7 1817.7 2540.2 661.3 1960.2 1 1 99 723 517.0 1145.8 5102.7 5267.0 223.9 1511.0 329.3 5023.9 3929.6 4315.6 159.3 12.3 1042.0 3659.5 214.4 321.6 3066.3 3851.3 158.3 1254.2 542.9 1155.0 269.5 5673.5 954.9 1049.6 225.3 5950.5 512.6 653.0 262.7 5412.7 557.8 1143.5 265.5 4170.9 1173.8 3889.7 208.2 1140.6 522.5 820.1 314.9 5587.1 374.1 1655.1 260.1 6030.8 594.2 989.8 232.6 5751.3 500.1 1003.8 162.3 4963.1 956.2 4099.7 201.5 727.2 539.1 1235.2 538.5 4943.6 521.0 940.5 2576.8 4407.2 674.5 1025.5 453.3 3422.3 2783.6 3438.0 368.9 1584.2 1317.0 3949.1 326.0 387.8 2414.5 3647.8 401.6 934.0 677.1 1561.0 2229.2 3478.6 701.5 1153.5 2005.7 3282.6 917.6 1310.2 114.5 2424.4 2276.2 3506.6 285.3 1255.7 1187.8 3534.6 339.4 1152.4 1089.3 4010.2 283.6 912.5 2351.4 3556.9 290.9 1016.7 2114.7 3207.0 211.6 978.9 1020.4 2781.5 199.3 922.3 725.6 1415.3 366.8 2895.8 705.1 1228.3 1635.0 2915.8 879.0 2571.1 481.9 1527.2 1536.2 2461.6 423.9 1609.6 740.7 1371.7 462.9 2748.9 827.5 1169.9 1646.0 3204.1 1 1 80 439 450.0 531.0 339.6 7440.3 636.1 950.8 262.2 5981.2 957.8 3473.2 192.2 551.2 791.3 3065.3 212.5 603.2 420.9 840.1 158.4 3037.9 888.5 2799.5 207.7 462.7 2071.8 2757.2 180.0 393.0 2085.3 2846.8 257.2 525.6 1867.9 2471.5 274.5 824.9 601.0 915.5 175.6 3607.6 626.9 966.9 176.1 3491.0 665.0 1238.2 189.8 3220.8 1855.9 2418.9 244.3 829.9 1807.7 2241.9 218.5 1060.4 701.3 1152.4 203.8 2310.4 1637.0 2313.9 191.4 702.3 1551.3 2086.1 201.7 704.2 818.9 2173.1 179.2 685.4 1658.1 2153.8 238.7 714.4 1619.9 1976.0 167.7 686.5 1647.2 2119.0 210.1 655.6 1535.4 2103.9 173.9 843.2 624.6 1141.8 238.4 2273.8 713.8 1160.6 213.9 2400.1 1447.8 2001.8 268.9 1008.3 1575.4 1991.3 212.4 867.3 1373.5 2099.2 206.9 708.5 815.1 2128.1 154.1 809.8 1314.5 1956.0 207.0 841.5 767.5 1877.3 177.6 795.1 1192.4 1792.0 200.2 1003.6 711.6 1299.1 117.5 1756.8 722.4 1733.6 140.6 1061.0 1019.3 1840.9 333.1 1088.2 583.1 1192.6 797.0 1632.8 643.3 1629.7 314.5 1177.8 1 1 120 897 98.5 251.3 470.8 6070.6 639.1 842.3 2677.4 5775.4 3326.9 3930.6 295.3 728.8 210.7 656.2 2824.4 5397.7 798.8 2420.2 2205.3 2887.4 825.5 2441.8 2436.2 3077.6 1667.0 2289.2 331.1 3187.0 754.5 1225.1 2313.6 4749.1 1071.0 2643.3 2074.9 2797.0 1897.9 2167.9 649.0 2952.0 819.2 1257.6 1755.8 5276.5 1382.8 2109.0 463.3 4409.3 868.4 2533.1 173.6 3807.7 1869.7 2525.0 491.7 3843.2 1761.5 2435.6 2117.5 2999.5 853.3 1488.8 511.9 3617.8 966.0 2341.3 1818.7 2972.4 1802.4 2644.5 656.5 2631.2 1572.0 2257.9 1737.7 3019.6 2359.3 3516.9 591.1 996.6 1285.9 3692.8 334.2 1046.4 858.0 1830.1 532.3 4051.8 1647.3 2162.4 1986.0 3601.5 2115.9 2649.9 821.0 1730.1 1603.2 2376.6 1522.6 2637.2 1842.4 3250.5 535.4 1340.2 1925.7 2797.5 352.4 2129.9 1950.9 2970.1 363.4 1378.8 960.4 1951.7 1949.9 2886.3 1367.5 1876.9 1476.0 2477.3 2120.4 2631.0 660.4 1440.7 1495.5 2089.6 1229.6 2315.3 936.3 1454.3 1370.3 3176.7 810.9 1308.5 761.9 3843.1 978.5 1756.8 1265.3 3054.5 984.3 2116.0 628.1 2782.7 1 1 113 628 523.9 689.1 583.6 6322.2 729.6 963.3 3696.9 3947.5 564.7 374.3 215.5 3890.8 3239.2 3085.1 250.3 601.7 3248.7 3295.5 146.3 499.8 749.1 3324.6 228.2 759.0 2486.8 3516.5 610.9 1089.8 852.9 1846.0 294.1 3677.0 2852.9 2964.8 277.3 948.0 1003.3 1298.8 2447.6 3045.2 2445.3 2650.8 356.4 985.4 1404.2 2933.7 302.8 1082.8 2078.4 3147.0 428.9 1154.5 975.2 1166.5 2426.7 3520.3 2003.7 2384.7 703.3 1234.8 568.9 1301.7 2195.9 2978.4 781.4 1039.6 634.4 3135.4 668.9 1693.1 576.2 3894.1 1030.4 1525.4 1353.3 2631.1 1946.2 2453.9 266.7 1142.5 2393.2 2867.1 290.6 923.1 2038.6 2945.5 463.7 1112.7 1165.4 1729.3 1402.4 2685.3 879.7 1392.1 705.7 2646.7 981.8 1548.5 446.1 2820.1 1909.9 2544.8 496.9 1445.5 816.3 1605.5 1560.2 2853.7 1413.9 2427.6 542.8 1533.0 985.4 1603.6 1247.7 2624.0 821.5 1364.4 553.4 2705.9 773.3 2471.8 425.9 1967.8 829.1 1315.1 502.5 3339.4 723.1 1551.2 1380.4 3249.3 907.3 2217.4 573.3 1734.3 688.0 1681.5 460.8 2572.6 1542.0 2180.6 211.9 1748.9 1 1 121 143 106.2 -266.9 105.1 5236.3 2473.3 2731.4 83.2 -166.5 2596.0 2314.1 29.0 -86.2 500.0 2519.6 24.1 -207.7 2344.3 2379.0 53.8 -111.6 220.7 222.3 202.9 4704.9 117.4 -163.5 201.8 4859.2 247.6 -12.0 3292.0 4515.6 62.4 -27.2 280.2 3114.1 97.5 -11.0 2758.8 3916.7 122.1 -77.5 340.3 3244.2 2170.5 2144.3 174.7 987.3 165.1 316.2 200.9 4534.9 512.5 2517.6 138.9 675.8 553.9 2859.8 32.7 603.8 336.6 733.6 43.5 3480.9 1863.9 1884.1 111.1 817.0 410.0 455.6 429.4 3773.6 303.0 539.9 1990.3 3071.4 471.5 2066.2 371.0 955.1 623.6 2329.9 238.5 605.1 1377.1 2007.9 154.4 770.1 520.2 740.8 249.0 3905.3 278.0 573.6 243.0 3984.8 275.2 538.0 423.7 4108.2 380.2 679.2 1803.9 3275.0 532.3 2008.1 496.6 1460.6 469.1 1933.8 279.9 1411.3 195.2 628.0 443.5 3702.0 289.7 557.5 1850.6 3410.1 320.4 661.9 2033.9 3645.0 1176.9 1288.9 826.7 1738.5 458.6 657.4 1736.1 3194.4 335.2 466.7 853.7 2860.0 198.7 306.3 1810.0 3467.3 279.3 542.0 2074.1 3297.2 1 1 101 353 568.2 500.1 744.5 6473.6 334.6 471.4 4617.9 4213.5 2660.1 3178.4 218.8 568.7 189.1 288.0 3327.9 4219.7 -8.6 394.3 421.1 4145.3 250.8 399.5 487.6 5786.1 341.4 471.8 675.2 5399.1 694.0 847.7 345.9 5242.1 691.6 878.4 342.2 4654.3 994.2 3383.8 517.6 725.6 454.5 732.6 524.1 5493.0 829.0 3489.5 562.3 1197.3 344.2 897.1 298.9 5316.0 366.9 541.8 76.3 5006.5 2629.7 2773.9 401.4 1183.6 445.9 610.1 2623.7 4276.3 2185.9 2458.8 431.3 945.8 2383.6 2853.6 324.5 1033.5 2277.6 2370.7 282.3 1215.1 496.4 791.1 530.6 4804.0 451.3 1091.2 2297.1 3765.8 719.0 2886.4 481.7 1468.0 256.6 586.0 642.2 4834.7 173.5 481.8 400.5 5511.5 337.3 903.4 257.3 5298.1 735.1 2660.8 202.1 1685.2 1779.5 2288.1 235.0 1752.8 445.0 827.4 273.7 4215.3 192.7 448.4 523.0 5199.6 153.2 543.9 2181.4 4482.3 191.4 572.1 676.8 3804.7 281.2 588.7 1861.2 4217.0 231.0 664.6 658.7 4589.5 566.7 2570.3 507.4 2345.0 782.6 2806.0 364.9 1696.1 1136.0 2693.9 225.5 1506.4 1 1 122 581 3502.6 3540.0 4835.6 4747.0 1388.7 5549.8 2709.4 2914.1 1050.1 2868.4 111.7 5607.9 4612.1 4138.4 212.7 3889.5 763.1 1040.0 2797.5 5837.2 721.8 715.7 3130.6 5005.5 880.4 3337.2 404.0 4199.4 752.1 1306.2 2315.9 5332.4 664.6 3581.3 3137.9 4478.8 964.1 3253.1 508.6 4147.3 2431.3 3656.8 2800.6 4308.3 1604.5 5431.2 342.2 897.2 1451.7 5160.7 316.0 961.8 3837.3 4904.6 396.9 1229.8 748.2 1256.4 1631.9 5438.2 713.0 3171.9 469.5 5038.3 1272.0 3671.4 292.5 2389.6 2680.7 3985.2 2532.4 2547.3 2893.3 3729.4 666.1 1804.0 2235.7 4363.8 422.4 1178.6 2646.1 3755.1 452.9 2803.3 2637.7 4236.1 611.3 1304.4 1257.4 3457.2 2231.3 3330.9 2822.5 2885.2 2010.7 2610.6 2902.4 3966.5 741.7 2536.8 1223.0 1734.3 1348.1 4320.9 2582.1 4234.4 379.5 1227.0 2602.7 4011.4 680.4 1368.6 2705.4 3919.3 1059.1 1882.7 1739.8 4090.2 372.0 1386.1 2057.3 3246.7 1394.5 2567.5 1129.7 1882.2 438.5 3979.8 868.1 1765.8 1983.6 3781.0 862.0 2533.0 634.6 2970.2 959.4 3089.5 553.8 3107.6 847.6 1736.7 794.2 4298.3 1 1 97 502 297.6 446.5 317.2 4728.6 450.5 591.7 3076.2 3079.7 508.4 554.4 2281.6 2326.6 502.6 681.3 2120.3 2467.3 2064.1 2294.9 138.8 399.8 547.0 770.3 197.3 1941.1 414.8 863.3 125.5 2189.9 690.8 935.3 1870.0 2307.5 592.1 911.8 1964.7 2431.2 627.1 799.4 305.0 2478.4 461.9 635.1 214.5 3576.3 528.5 708.6 326.3 3309.0 495.2 679.0 1504.3 2324.7 559.8 757.2 1588.7 2434.1 494.5 932.5 1442.3 2204.9 487.9 818.6 1575.1 2310.5 564.3 808.9 359.8 2111.1 792.8 2225.2 264.7 933.9 1626.1 1997.7 327.4 798.8 721.8 989.8 1279.8 1978.7 894.6 2105.7 506.1 961.9 588.3 1162.3 231.3 2232.1 943.1 2133.0 147.5 857.1 1600.3 2059.1 170.7 827.3 684.0 1190.5 334.5 2206.7 595.5 886.2 1355.8 2636.5 486.8 1029.0 483.2 2049.8 484.3 968.0 1142.0 2268.7 686.4 1786.2 432.2 1144.1 531.2 1055.7 236.4 2350.6 413.0 975.4 226.8 2540.7 776.2 1765.8 198.8 1195.5 1226.4 1913.4 288.7 1056.3 640.0 1087.1 1003.1 1851.5 539.7 957.6 823.8 1697.5 570.0 849.5 313.4 1703.4 1 1 95 455 1490.9 1481.2 5216.9 4800.6 1577.0 5957.9 269.4 1161.0 479.9 661.2 278.9 7397.9 550.9 1280.8 3786.7 5578.8 812.6 1458.4 489.1 3989.6 799.7 1075.7 3208.4 3918.2 529.5 934.4 3429.9 4130.5 1172.9 4089.4 1180.3 1433.3 1491.5 4405.0 761.1 1008.2 3807.3 4162.9 448.1 735.8 3270.6 4224.1 356.5 608.1 1520.4 4693.8 200.8 657.0 2822.2 3886.7 160.8 1298.4 988.3 1652.7 168.0 4366.9 626.1 1387.2 189.8 4434.0 965.6 3289.4 184.4 1913.2 2159.5 2922.0 167.0 2132.5 724.3 1122.3 128.1 4679.7 735.1 993.7 242.8 5081.0 848.5 1138.3 328.9 4031.1 688.3 1173.3 1973.4 4289.9 585.9 1195.4 691.2 3967.0 1062.2 2736.3 668.7 2142.5 1984.1 2593.2 873.2 2151.5 764.1 1195.1 1121.2 4573.9 563.2 749.3 2395.3 4688.3 921.7 1197.7 1788.8 3072.3 1943.9 2368.2 681.5 1996.2 2113.5 2740.9 650.7 1624.2 1053.6 2502.9 801.0 1857.7 831.5 2506.0 662.3 2441.5 658.9 1284.5 939.2 4419.5 604.1 1121.9 2086.0 4139.9 1547.9 2407.2 1097.1 2195.2 1064.8 2824.2 600.7 1721.8 1864.8 2859.1 518.1 1692.9 1 1 100 681 1608.4 625.9 334.3 6182.9 931.7 1595.5 4458.2 4850.5 3377.1 3508.5 589.6 4644.1 3954.4 5120.8 402.0 860.0 3588.5 4257.7 2250.5 2727.5 1245.7 3871.0 1182.1 1694.2 3134.8 5135.6 394.7 1094.2 1252.6 3448.1 3871.3 4436.9 3547.8 4513.1 718.6 1277.5 1100.9 2569.9 3258.4 3888.2 966.8 1480.4 4025.4 4708.6 1237.7 3970.6 780.3 2490.7 2849.2 3532.2 863.3 2569.9 970.2 1399.8 3219.6 5768.8 2648.3 4567.3 917.9 1601.5 3480.9 4630.0 656.1 1467.6 2571.3 3679.2 1459.2 3485.6 1326.5 4413.6 794.0 1605.1 763.7 1588.6 2731.0 4806.7 1896.6 2767.5 2221.9 3334.4 1038.7 2797.5 2602.2 3223.6 1186.5 2982.4 914.9 3971.7 1994.7 3025.9 1880.3 3602.7 1135.1 2916.7 898.4 3850.6 1180.7 3970.4 753.9 1966.7 1593.2 3190.5 2586.7 3314.4 892.7 1584.3 3124.3 4208.9 931.3 2380.7 2301.3 3399.7 1452.7 3229.1 1048.8 2079.7 1598.9 2728.5 2243.6 3434.3 1139.8 2236.9 2187.7 3734.1 648.8 2115.7 1200.5 3302.0 1042.8 2705.1 1555.5 3305.9 979.8 3178.4 991.4 2434.2 744.0 2724.5 760.2 3502.9 1387.9 1785.3 1994.5 4079.1 1 1 122 300 3208.8 3559.3 174.9 6350.9 4329.9 5172.7 1319.5 1703.5 2620.3 3387.6 2876.0 3695.9 874.9 3203.4 217.9 3969.3 2786.6 3153.0 296.5 4402.5 893.0 3235.5 2782.1 4550.9 932.7 2741.7 965.3 4741.7 2235.2 2735.7 404.8 4733.1 732.0 1124.2 2622.0 5366.7 622.2 1160.4 3189.8 5640.3 1020.9 1768.2 2096.7 5520.5 1289.1 3478.0 630.1 2843.7 1218.1 3379.9 2574.9 4077.9 2121.0 2644.9 2491.0 3898.0 872.0 2687.4 1140.8 4737.8 2464.8 3109.9 651.7 4009.1 2235.4 3177.3 2144.0 4007.7 982.0 2049.3 1091.9 5460.3 2846.0 3675.9 814.8 1889.3 1226.3 2781.5 2472.7 3935.2 996.7 2041.3 2096.2 5119.4 1217.3 3072.0 1986.1 4087.7 1656.0 3034.1 984.7 3398.7 1365.3 2944.1 1995.5 3270.1 1539.6 3082.3 2090.1 3443.2 1357.3 3043.9 2404.7 3958.6 1868.9 4048.6 767.3 2019.8 2453.2 4004.5 842.2 2279.1 2328.7 3322.7 1773.7 3192.9 1977.6 2993.1 1783.4 3240.2 1212.4 3033.3 1076.4 3294.9 1662.3 2969.4 545.4 3565.8 1457.8 2506.6 709.3 4310.8 843.5 1678.2 1564.2 4583.5 743.1 1576.9 521.0 5084.5 923.8 1696.3 606.5 5238.8 1 1 103 604 814.5 1457.6 5079.5 4662.9 3625.0 4019.7 1967.9 2916.2 1323.4 1482.0 3160.0 4835.9 1651.3 1927.5 263.4 5235.1 2333.4 5280.3 196.8 530.0 624.6 996.1 3700.5 4352.9 1284.6 1707.8 1578.4 4602.7 1818.1 1882.8 2651.1 3122.7 984.5 2181.8 2504.7 3359.0 3132.6 3905.8 1217.6 1730.6 706.2 1402.4 1113.1 4794.0 1190.7 3697.7 900.6 2094.6 2192.4 4414.8 262.0 1600.3 2833.7 4116.6 465.1 1035.8 1085.5 2789.6 1842.6 2908.6 1029.9 3006.5 534.1 3025.7 1772.0 2389.2 478.7 3958.6 2087.8 3138.8 377.5 2238.1 918.4 1506.8 1239.6 4077.2 1095.6 1801.2 2219.9 3534.0 1349.1 3693.0 788.5 1334.3 2149.7 3165.4 1353.7 2064.2 1454.6 2130.3 1978.7 2714.7 1033.0 1830.1 2215.6 3178.4 1796.4 2582.3 1319.9 2084.4 1043.9 2017.1 1807.9 2485.6 1226.0 2154.9 1825.8 3159.1 1505.1 3081.0 750.8 2115.6 1641.9 2568.1 482.8 3303.1 1117.2 3334.9 780.7 2178.8 1714.5 2788.3 796.5 1887.1 1347.0 3095.8 581.8 1600.6 1961.8 3166.1 651.6 1666.0 1544.1 2233.5 1300.0 2014.9 1400.0 2996.6 624.6 1467.9 2117.2 3260.3 646.7 1496.8 1 1 121 544 1079.6 5437.8 327.6 578.8 1841.4 6655.0 676.5 925.2 1333.9 6129.1 77.3 659.1 682.0 1153.5 152.0 5557.9 4756.2 5410.9 214.0 815.3 936.0 5875.5 222.3 743.9 741.5 1573.7 422.7 5756.8 911.4 1804.0 3988.7 4741.7 1385.5 5583.3 580.8 927.5 3256.0 5344.8 624.9 1556.3 784.3 1518.5 4189.1 5163.1 864.0 1610.9 3972.9 4796.0 3664.4 4346.7 782.3 1264.0 3737.9 4772.6 812.2 1402.8 959.5 1572.9 2983.2 4004.3 772.4 1219.1 3160.0 3757.6 2997.5 3953.9 935.1 1546.8 1056.0 1906.5 3295.9 4109.8 1273.3 4481.9 1038.2 1834.4 860.7 1886.7 859.7 4674.9 793.9 1690.9 3057.5 4292.6 1346.5 3880.7 1045.8 1812.4 3065.4 4622.8 897.3 1414.8 1286.5 2141.7 3023.6 3613.8 1292.5 3814.4 1210.2 2136.9 940.3 2038.2 770.6 4067.6 1278.0 3746.5 721.4 2281.2 2289.8 3746.2 588.9 1721.9 1137.4 1960.8 601.2 4692.1 878.8 1528.3 579.1 4773.2 2275.7 3023.0 535.9 2425.3 1164.2 1759.4 501.9 4070.3 770.1 1715.0 545.3 4351.7 1244.4 3384.8 556.8 2415.9 2027.0 2975.8 793.6 1897.4 1138.1 2109.4 1952.7 3686.0 1 1 105 377 361.2 163.9 323.7 7212.5 772.5 561.2 4610.3 4927.1 550.6 1041.1 176.5 4437.1 1159.1 4174.2 444.2 606.3 3582.3 4069.1 346.5 485.3 1079.2 4397.9 201.9 518.1 993.6 4047.8 192.0 683.0 3186.2 4281.8 225.5 697.4 998.2 3820.0 200.8 660.1 485.3 1065.2 430.3 6260.9 447.7 863.1 3634.5 5569.2 519.2 983.5 535.5 4697.5 465.6 926.8 2891.3 4609.6 536.5 1100.9 427.7 3684.3 1197.7 3966.0 328.6 1048.5 2815.6 3671.8 259.3 747.1 2536.2 3280.3 536.3 879.0 916.2 1415.9 2176.5 2939.4 2123.4 2672.2 611.6 1241.9 742.2 1364.3 2019.2 3109.7 838.7 3144.3 570.0 1252.5 642.0 1129.8 539.0 4181.3 552.3 1151.9 2260.0 4095.0 559.6 1181.1 679.0 4333.8 562.1 1137.2 642.0 5245.3 642.8 1098.5 1785.8 3924.4 760.8 1286.5 564.4 2952.9 1825.2 2742.3 376.2 1454.0 944.7 2589.2 357.3 1506.1 676.1 1471.2 521.2 3553.4 550.4 1229.9 1664.7 3382.1 719.1 1280.2 658.2 3014.9 1757.4 2330.0 402.9 1626.7 1198.0 2986.3 486.3 1523.6 1504.0 2561.9 567.6 1618.4 884.7 1401.4 1645.1 3561.9 1 1 109 610 1421.7 5411.6 -89.8 15.5 5880.6 5713.8 25.7 97.6 5262.1 6409.2 247.6 283.4 743.0 1066.2 3799.2 4388.4 4129.2 5000.0 22.4 457.3 4113.4 4633.0 84.9 491.9 694.0 959.9 251.2 5700.0 1371.9 5315.4 384.7 666.3 3477.6 4238.6 205.0 827.7 3239.3 4419.3 173.6 626.3 3192.2 4253.8 359.4 617.7 1072.9 4144.9 634.9 966.8 630.8 1149.4 3361.2 3929.7 2552.4 3102.0 473.8 1218.3 3102.4 3704.7 218.2 974.9 1110.3 1412.5 313.9 4290.8 3034.9 3576.1 443.3 1031.0 1081.4 1607.3 2448.5 2914.5 2616.7 3499.7 515.6 1089.7 752.0 1457.3 468.0 3861.4 724.1 1416.0 2327.7 3234.8 979.7 3367.9 598.7 1536.4 711.0 1686.0 502.9 3820.0 2401.1 3197.2 736.5 1582.4 2447.6 3134.2 668.6 1388.7 936.2 1664.6 2003.8 2668.3 1302.1 3332.9 836.6 1430.4 2373.1 3425.5 559.0 1021.2 2328.4 3255.3 765.2 1336.5 1010.6 1667.1 1808.9 2576.3 1657.8 2344.9 832.2 1511.2 755.0 1654.9 1626.5 2687.9 769.2 2673.9 727.4 1933.9 618.7 1607.0 550.7 2981.6 659.5 2265.3 409.6 2137.9 763.6 1816.9 338.5 3245.8 1 1 96 412 1973.7 2107.3 222.6 7167.6 3198.8 4111.7 190.8 332.8 583.4 896.7 2351.7 2563.9 912.0 2904.7 328.1 2260.7 1945.6 2474.2 435.2 2218.2 587.5 1886.6 224.8 1988.3 1822.2 1998.8 1473.6 1922.8 2076.9 2683.5 277.7 585.7 1012.4 3220.7 234.5 596.7 2186.9 2974.1 279.3 898.3 639.6 1105.7 365.3 4518.2 1032.1 2428.9 381.6 3478.9 2351.6 2520.7 250.9 834.3 1745.9 2886.3 284.5 909.1 1834.8 2753.0 232.2 700.4 670.1 1913.8 200.9 2045.5 1368.0 2236.4 195.8 557.4 1407.6 2496.4 212.4 667.5 997.2 2721.5 111.5 649.0 505.0 1232.4 219.0 1549.1 749.4 1994.5 835.2 1563.7 1245.8 2089.3 150.1 1711.8 760.7 1353.6 315.2 1950.8 1301.1 2157.0 227.7 1035.2 1292.5 2116.6 226.5 748.3 790.1 1312.9 210.2 2447.3 717.6 1103.7 427.7 2175.5 1112.6 1643.9 744.9 1849.3 895.1 1265.2 255.6 1844.8 1148.6 1926.9 175.4 1157.7 651.0 1891.7 272.5 2106.9 839.7 1342.2 893.5 2234.2 1059.6 1532.6 406.5 1885.6 898.5 2026.5 1012.8 2237.9 1130.2 1662.3 450.3 2044.2 685.0 1240.8 378.9 2437.3 1 1 88 444 5795.3 6820.8 101.4 447.7 3423.1 3819.4 302.8 6036.6 3376.8 3643.2 247.8 6959.4 4962.2 5679.8 233.8 354.3 1369.5 2679.6 238.7 5087.9 2582.3 5538.1 92.3 638.7 1195.3 4226.6 334.7 1753.0 4197.8 5305.4 274.6 791.7 4460.4 5312.6 356.3 837.8 2393.2 3050.9 3409.9 4313.1 1996.1 2556.4 357.4 4090.2 884.0 3000.9 2833.2 3853.5 3435.1 4342.3 343.9 939.0 3570.9 4739.5 282.5 887.5 2336.2 4897.0 225.6 674.8 3144.0 4120.1 368.8 859.3 3367.4 4222.0 310.6 656.4 3294.7 3675.3 451.4 843.6 965.3 1430.2 2202.2 3863.3 923.3 2262.8 469.0 3011.8 1671.4 2115.1 506.9 3591.5 1650.2 2242.1 1809.2 2665.0 2415.5 3217.3 340.0 2433.9 1431.9 3946.7 1036.1 1959.4 2712.9 3594.6 290.7 1424.9 1494.4 2458.5 328.8 3569.6 1725.9 3440.2 364.6 1417.2 2156.5 2657.4 236.6 2440.0 826.7 1427.5 990.3 3920.1 1390.3 3375.0 292.2 1663.6 2042.1 2505.2 439.4 3087.6 625.6 1423.8 1926.6 4548.3 971.8 1341.0 482.0 3810.0 2035.2 2828.8 277.2 3062.1 1286.6 3009.1 317.9 2923.0 1630.8 3792.8 305.3 710.8 1 1 123 424 1530.5 6806.9 97.0 764.1 805.9 1252.3 288.0 9864.2 579.7 986.2 5643.9 6668.7 3997.0 5078.6 369.8 827.5 591.2 970.9 4590.4 4787.2 3958.2 4683.3 352.1 687.9 759.8 1234.1 3750.4 4583.7 775.2 1118.1 4649.8 5287.7 3406.3 4356.0 628.0 1127.0 954.8 1402.7 4377.9 5414.8 3519.8 4568.4 786.0 1268.5 1654.4 5496.4 581.8 1225.5 4228.9 5315.3 402.4 843.5 1518.6 4313.6 1708.9 2328.0 1587.0 6133.4 478.7 1011.1 1615.4 5324.8 452.5 828.6 3654.3 4818.9 577.9 948.2 3753.1 4904.1 531.0 998.1 1331.7 2137.6 2948.3 3353.6 2984.4 3737.2 753.4 1023.4 1261.6 2155.7 2620.2 3379.7 1478.1 4429.5 773.4 1295.3 1209.5 2437.2 626.1 4318.0 3347.4 4649.9 681.0 1377.6 1813.9 4647.3 688.3 1365.7 1139.6 2660.0 2917.3 3411.2 2563.0 3750.3 713.2 1328.5 1627.4 4158.6 483.3 1388.8 1097.6 1925.4 501.1 4043.7 1107.9 1968.8 525.5 4355.2 2356.2 3642.7 569.2 2267.9 1196.7 2066.1 2343.9 3569.1 970.6 1827.3 977.6 3959.9 920.1 1601.8 2592.6 4685.4 1059.6 1730.9 936.4 4383.0 2529.8 3785.5 654.2 2097.4 1 1 98 361 346.3 22.7 5654.5 5119.6 110.6 -26.1 318.5 4002.4 302.0 146.9 3866.7 4183.6 155.4 124.8 3285.5 3745.4 229.8 281.6 3014.6 3574.4 664.2 3265.5 280.4 338.0 2144.5 2152.1 382.2 516.8 364.6 376.6 3226.0 3492.6 434.9 438.7 2668.0 3411.7 1694.4 2010.0 645.1 760.7 380.3 570.4 3042.6 3601.5 238.8 224.0 584.8 3831.8 296.9 456.4 380.4 5025.8 263.4 326.3 305.2 5227.1 295.8 500.6 514.7 4463.9 273.8 278.2 2350.5 3439.8 177.0 259.3 643.0 3119.9 242.7 292.9 2443.1 3510.7 313.1 455.0 2396.3 3530.3 295.9 636.9 2163.6 3203.4 336.2 651.4 685.8 2393.6 432.0 684.7 1910.2 3152.9 1285.1 1409.4 750.1 1679.4 581.5 786.7 777.6 3702.5 313.1 503.3 2212.0 3690.5 309.2 380.4 2094.7 3465.4 326.1 414.6 1969.5 3069.4 361.2 543.7 654.2 2716.2 293.0 783.0 497.1 2958.2 615.8 2054.6 361.4 1266.0 651.8 1882.8 275.2 1303.8 535.3 1160.9 552.3 2558.6 602.2 928.0 1403.2 2813.9 1202.2 1844.4 700.0 1455.9 495.0 905.4 1186.4 2469.4 488.9 1112.8 474.6 2495.4 1 1 119 458 399.7 -27.3 336.6 7116.0 1351.5 5681.5 127.2 53.4 1191.1 4763.3 585.4 749.2 378.9 415.9 296.1 6587.8 58.8 517.7 336.3 6164.5 488.8 731.2 3861.7 4632.5 1113.3 4308.4 277.2 380.7 3018.5 4389.9 254.0 456.7 634.8 751.5 319.7 6415.3 3183.0 3584.4 434.6 974.0 483.2 694.5 4040.8 5022.0 466.2 645.6 3384.7 4724.3 325.2 557.3 627.7 3526.0 418.9 825.5 2512.8 3986.4 386.3 685.2 505.5 3642.3 500.0 639.4 523.2 4858.8 402.4 844.6 2690.5 4281.1 477.3 872.2 2745.5 3968.0 1178.7 3663.4 587.8 1311.9 2281.6 2949.3 550.6 1115.6 803.4 1386.0 2411.8 3607.6 1026.6 3350.6 674.0 1455.3 855.2 3383.1 776.3 1284.8 772.5 1729.3 2161.4 3049.2 1758.5 2122.1 1137.3 1896.9 791.2 1434.2 2548.9 3353.9 726.8 1177.5 2303.8 3056.0 1577.3 2039.3 1165.7 1841.6 1019.9 1408.2 2069.8 2755.7 1588.6 2291.4 723.3 1311.4 1773.5 2558.7 540.1 1720.5 930.1 1538.8 730.1 3343.7 682.9 1173.4 1850.5 3655.0 513.6 878.2 1292.2 3770.3 559.8 1014.7 1885.5 3504.7 870.2 1168.3 1793.3 2761.4 1 1 121 629 420.7 588.9 4841.6 4484.2 1455.0 5226.4 231.1 -16.5 4153.6 5070.9 44.1 327.7 523.3 760.5 3254.7 3597.4 3356.4 3658.3 7.0 360.2 618.8 1008.5 163.5 3833.4 2876.7 4032.1 334.1 621.5 692.9 764.2 317.4 4327.3 753.0 1072.1 245.4 4706.8 3314.8 3934.2 244.1 944.7 1220.5 3785.6 194.7 789.1 914.8 1259.6 371.9 4800.4 630.7 900.0 386.6 4825.8 886.1 918.9 2794.6 4708.4 2739.1 3236.3 440.1 1034.3 3023.4 3699.5 281.9 697.1 1056.7 3473.3 362.1 1133.8 714.2 1286.1 397.6 4848.6 1201.1 3623.4 356.5 1364.5 775.4 1227.2 363.2 4238.5 2607.9 3130.3 359.2 1200.6 852.0 1423.2 2015.2 3365.3 1080.7 3321.0 500.3 1356.2 612.7 1484.0 360.4 3992.3 1004.0 3782.4 267.5 1216.7 2290.8 2969.2 634.2 1475.3 966.2 1499.4 1992.4 3282.8 1855.7 3094.8 466.4 1113.5 1134.1 3369.2 351.1 1207.8 1906.5 2898.2 330.9 1684.1 783.6 1374.6 292.1 4377.3 525.8 1194.6 285.8 4608.4 686.3 1327.0 325.7 4768.9 1928.3 2692.1 304.5 1611.1 818.8 1344.4 304.1 3711.5 925.6 1461.3 1752.2 3649.4 1 1 112 446 58.6 1858.9 5084.3 5048.5 3437.0 4031.2 175.6 223.1 218.7 213.9 646.7 5323.1 651.9 4028.6 -71.8 192.1 536.5 3663.5 74.9 363.8 853.2 3943.1 63.9 250.5 283.6 664.8 3270.3 3060.2 341.5 422.9 394.4 3443.9 152.4 339.7 3505.0 4159.6 34.3 308.7 3169.1 3868.6 250.9 309.0 3233.1 3766.5 311.9 584.8 3076.6 3662.7 2196.1 2321.1 448.3 851.1 369.3 627.4 2109.0 2832.4 237.1 361.7 412.7 2796.2 614.7 3218.7 233.3 315.4 761.7 2913.7 230.4 266.6 668.5 3094.8 303.3 397.1 381.7 766.7 2039.0 2594.9 197.8 411.3 563.1 2549.5 246.5 571.0 1947.6 2803.7 159.9 585.8 631.0 2479.8 228.6 893.1 2189.8 2718.8 378.9 587.3 2031.9 2772.6 193.9 548.3 2330.1 2942.2 643.0 2220.4 621.6 659.6 593.9 2722.0 275.7 338.7 464.0 2355.1 271.8 755.7 392.7 871.8 279.3 2313.0 186.6 528.3 335.4 2719.7 197.5 558.7 1484.3 2652.5 438.0 1732.4 608.1 1105.0 302.1 855.0 1770.6 2480.5 164.6 571.4 2186.1 2851.9 221.1 538.6 1868.2 2687.2 273.7 443.4 676.0 2097.4 1 1 112 379 6156.0 6747.4 995.6 1156.2 4374.7 5306.3 527.0 4970.1 638.6 796.2 2837.9 9091.6 719.5 904.8 4424.8 5684.4 4027.6 4373.7 360.7 2964.9 1178.5 2820.9 321.2 5664.7 3619.6 4377.6 333.8 2570.0 2381.1 6130.5 295.4 810.2 2313.2 5742.3 472.2 1007.1 4026.1 5468.9 535.6 1162.3 3907.6 5186.8 430.1 1370.0 1328.3 2948.7 741.6 6912.8 3729.0 4559.1 1462.5 2529.3 1675.6 2387.4 616.2 5724.1 1062.6 1788.9 2951.7 4395.2 1615.0 4608.8 549.8 1459.7 949.2 1795.1 475.4 5167.6 1068.3 2450.6 533.7 4893.3 965.9 1872.8 2545.7 4490.8 1673.0 4221.5 647.3 1529.7 1434.3 4766.7 507.0 2182.9 1439.7 4438.9 383.2 2465.5 953.0 2202.5 454.7 5591.2 875.7 1844.4 1197.6 6456.9 921.6 2396.0 3228.2 5765.7 1370.3 2259.5 2534.9 4716.8 985.0 2462.8 827.1 3723.8 1514.7 3925.9 496.1 1940.8 2388.5 3921.5 878.7 1963.6 1087.4 1801.2 2281.4 4347.5 900.2 1628.5 819.1 4589.8 987.2 2113.7 1030.1 4708.4 1468.9 3793.3 552.2 3013.7 2395.7 4018.1 552.4 3167.3 1257.7 2173.6 633.3 5158.0 1451.7 3444.9 671.4 3641.0 1 1 113 631 358.3 349.9 4813.4 3928.6 169.3 146.3 3989.5 3650.4 1018.8 4929.7 407.2 225.8 3543.0 3942.1 202.1 507.9 72.2 341.9 246.0 5370.3 3464.9 4010.7 385.1 774.5 224.0 475.1 3916.9 4298.5 1031.1 4168.7 388.8 550.4 840.2 3964.7 253.6 641.0 475.7 924.7 299.6 4815.5 834.9 3682.6 170.4 588.6 1177.2 3872.5 395.0 745.0 2839.3 3680.0 315.0 507.3 3238.6 3635.9 114.4 488.2 1152.5 3637.4 218.8 440.1 2663.1 3506.1 200.3 273.9 1013.7 3709.7 261.7 307.1 2367.2 3325.7 324.8 359.5 728.5 1206.5 2498.5 2919.4 420.6 722.8 2603.1 3005.9 474.9 695.9 2560.4 2873.6 1668.2 2211.5 746.4 984.1 580.3 917.6 2812.4 2957.0 563.9 717.4 2557.8 2836.0 433.8 797.9 838.9 2329.2 359.4 483.2 624.6 3057.5 1884.9 1986.7 563.2 1372.4 476.2 729.9 1788.4 2342.6 444.6 739.0 1860.4 2892.0 741.7 2311.0 712.0 1327.9 1846.1 2379.9 433.0 996.3 940.8 2882.5 367.7 608.7 860.5 2904.5 216.7 805.0 802.8 2697.9 424.4 776.6 1299.1 2087.5 616.2 980.6 572.4 1108.7 1780.8 2388.6 1 1 118 565 -246.6 -270.1 5044.0 4489.8 -321.9 -594.0 4432.7 4287.6 704.2 3369.2 -31.2 38.5 -176.6 -261.3 163.4 5645.2 -113.3 -100.7 3540.6 3757.9 -38.7 -2.8 3257.8 3228.9 492.6 3191.0 320.8 512.8 -19.6 276.8 214.4 4638.7 662.3 3702.2 29.0 376.3 2688.9 3449.8 177.2 383.5 2672.3 2905.8 120.9 351.6 409.8 601.7 3080.3 3499.9 2533.9 2718.4 412.1 782.1 188.9 599.9 329.7 3968.5 812.7 3815.2 41.6 507.1 2488.9 3251.4 309.2 494.9 515.6 803.7 2515.1 2719.4 3651.2 3404.4 398.8 569.8 3135.2 3370.8 275.2 398.5 616.6 906.0 2259.5 2575.0 774.8 2921.2 461.1 740.0 584.6 3230.2 460.3 596.3 411.8 1085.2 2421.3 2510.1 563.0 2672.8 581.8 993.9 327.2 938.9 397.7 3134.2 481.3 2631.0 375.2 1001.9 196.9 763.7 561.0 3897.3 231.6 674.3 2633.7 3512.6 237.5 496.7 2407.5 3093.7 1304.2 1789.4 686.3 1082.8 679.4 2507.1 478.3 937.1 354.8 939.4 1747.6 2426.8 257.0 630.6 736.8 2996.0 159.2 435.6 506.2 3723.6 156.0 615.0 440.7 4177.0 147.8 577.0 1679.6 3036.5 1 1 89 533 860.7 1529.9 4965.6 4487.0 3599.0 3370.8 8.6 155.3 3195.4 3724.0 376.3 766.5 304.4 649.8 195.0 5335.5 454.3 699.3 273.1 5035.1 841.8 3916.3 170.5 811.7 2407.8 2927.9 487.8 836.9 2971.4 3336.0 412.1 794.2 2882.0 3360.7 176.0 315.3 1133.7 880.3 3581.6 4148.2 882.9 779.5 3000.9 3725.4 2594.3 2846.0 183.3 527.2 2821.1 3504.7 43.6 505.3 1129.2 1056.2 220.5 4547.7 936.7 3287.0 759.9 1501.6 2833.5 3130.1 94.3 604.8 993.6 1036.6 220.6 3774.3 902.5 3550.0 189.1 1302.4 2528.0 2690.9 163.4 2007.9 548.8 961.3 64.0 3653.2 1414.4 3009.1 331.0 994.5 547.2 1119.2 2296.7 3318.8 2026.6 2461.0 583.7 1344.3 2107.3 2620.1 504.6 1020.4 677.5 1482.2 2450.7 2973.2 420.6 1132.8 2691.8 3386.1 775.8 1553.5 2385.3 2829.4 1590.6 2309.6 785.5 1652.9 1991.1 2423.8 282.5 1140.2 712.0 1250.8 361.6 2993.1 669.4 2368.5 423.0 1336.8 566.5 1184.3 1623.7 2234.2 1439.4 2142.8 397.2 1069.5 1835.0 2207.4 257.4 1172.3 645.2 1189.4 484.4 3107.5 468.9 951.0 1622.4 2809.8 1 1 106 886 162.5 -74.8 4146.0 3798.2 2633.4 2339.9 208.2 82.6 219.7 42.9 3296.6 3367.1 2166.8 2294.6 121.8 117.6 2781.9 2865.6 -70.4 -9.7 2148.8 2159.4 841.1 910.3 635.4 2794.1 -158.0 -69.3 792.8 2884.8 -23.1 -66.5 498.3 2651.4 19.8 221.0 249.5 508.7 -20.2 3671.3 278.8 2296.4 87.4 483.2 200.7 465.1 67.3 3334.0 319.8 517.4 2502.3 2806.1 184.3 85.7 488.4 3008.7 -7.4 80.8 2621.1 3180.7 105.3 232.6 2322.7 2790.7 360.3 2035.8 293.9 845.8 1707.0 2234.8 147.5 558.2 816.1 2762.0 132.1 133.6 2073.1 2256.8 64.6 244.0 1867.8 1995.1 109.2 520.5 304.4 580.1 313.5 2738.8 342.9 732.0 2138.3 2389.6 620.4 1966.7 501.6 543.9 1541.2 2013.8 191.1 546.6 1465.0 1951.3 198.8 679.5 498.5 840.9 181.6 2900.4 473.9 807.7 123.1 2752.8 1552.8 1541.5 269.0 960.2 513.4 644.7 1387.7 1998.7 1267.5 1633.4 394.8 850.1 1423.6 1665.1 153.6 730.7 550.3 955.2 43.7 2177.7 421.8 1650.1 156.5 1084.8 491.1 1897.0 0.8 736.9 426.2 842.1 223.6 2176.4 1 1 109 291 234.1 362.8 4993.8 6090.8 1000.0 2683.1 3677.0 3245.6 846.2 2884.3 3464.2 3219.4 3143.8 3559.5 138.6 806.9 365.1 878.4 550.4 5506.6 941.8 1260.4 2080.2 5103.7 3319.4 3432.4 222.4 1389.4 1051.1 4022.9 209.6 2818.5 928.5 3736.1 169.0 2975.7 2685.0 4114.0 187.0 804.0 994.6 2536.7 2412.3 3520.6 545.5 920.3 446.1 3989.0 564.2 890.2 3238.7 4717.4 686.5 2032.8 361.3 3603.2 543.9 1137.4 2802.2 4472.4 2573.5 2977.3 1797.4 2874.4 2115.9 2795.1 636.3 2741.4 1666.9 1826.4 266.6 4356.5 1764.5 2308.0 409.4 4754.1 1338.7 3510.7 271.0 976.9 2755.9 3292.0 466.0 1081.6 1455.7 3472.0 367.5 1139.1 2156.3 2953.5 542.8 3099.8 1311.8 1859.3 2046.8 3373.3 1029.1 2736.3 1346.7 2512.3 2136.9 3036.1 811.6 2433.9 851.8 1516.6 1954.7 3372.2 1034.7 2726.6 1491.9 2211.1 1895.9 2658.9 860.5 1855.6 954.8 2127.7 1858.2 3054.8 1357.9 2592.9 827.5 1942.3 1471.5 2065.4 747.0 3377.5 1294.5 1998.7 1721.4 3178.3 1420.9 2649.7 750.2 1794.1 943.1 2667.8 582.5 1381.4 1450.4 2654.2 407.5 1367.8 1 1 93 629 444.7 461.6 305.6 5906.8 549.1 668.7 237.6 5818.3 1217.2 4842.2 20.9 229.9 423.1 616.8 199.0 6042.4 960.8 4503.9 194.0 618.0 3297.3 4072.1 183.6 320.6 508.1 795.3 267.7 5641.1 460.4 753.2 267.4 5887.9 513.6 566.7 356.8 6364.3 397.1 672.3 271.1 6480.9 440.5 859.0 219.7 5848.0 1197.1 4531.5 98.1 894.7 3109.4 3923.4 82.5 682.4 1031.9 3573.0 245.7 1151.3 564.4 1038.8 2985.5 4526.5 279.7 872.4 394.6 4461.3 441.9 905.3 358.6 5744.8 399.8 783.9 265.2 6087.8 332.5 717.5 273.8 6155.5 428.5 922.9 123.6 5826.7 537.9 968.6 304.9 5081.7 2139.5 2914.9 410.3 1875.1 462.9 873.6 2726.1 5311.7 479.8 807.2 707.6 4201.2 593.1 1032.1 2403.9 4312.6 1915.4 2429.1 427.1 1874.2 554.4 1155.4 301.3 4568.2 528.1 1029.5 239.3 4869.8 479.5 1203.1 292.6 4832.5 791.9 3018.8 514.1 2296.1 438.8 1146.3 2099.2 4536.3 554.3 1243.8 570.5 3989.8 956.4 3100.3 332.5 2130.8 1935.1 3057.5 250.2 1923.9 706.7 1305.3 243.8 4485.2 644.1 1033.3 229.1 5332.9 1 1 80 481 665.4 676.6 4947.0 4550.4 3563.2 4427.3 304.3 280.1 620.8 714.2 267.5 5163.4 1297.7 4000.5 255.7 539.2 633.5 845.4 3581.5 4123.7 650.6 999.7 2959.0 3236.0 2805.9 3372.8 327.2 679.0 3481.8 3810.3 331.8 520.2 837.9 1058.8 3203.9 3562.2 2859.4 3155.8 602.2 849.5 816.1 1104.5 3144.0 3670.7 996.2 3622.6 578.6 1011.5 660.2 1247.9 404.8 3904.7 1010.4 3461.1 408.5 1079.6 661.9 1297.9 2623.0 3266.9 617.8 1255.6 603.8 3117.5 2528.2 2853.6 391.5 1142.1 859.6 1148.5 451.4 3931.8 706.7 1220.8 2349.7 3489.8 934.3 3096.1 499.0 1011.9 961.9 3232.1 613.6 1142.8 680.3 1445.3 2323.8 3305.8 663.6 1169.1 564.0 2974.4 967.4 2646.5 340.2 1514.0 576.5 1350.4 275.1 3593.7 568.0 1361.4 361.4 4465.6 850.6 2705.5 323.4 1731.0 642.3 1424.2 492.1 3582.9 712.0 1390.5 1561.5 3059.5 801.0 2145.5 572.5 2231.0 528.7 1284.0 415.2 4419.3 622.5 1135.7 452.3 4717.3 1433.4 1845.2 1025.6 2973.1 1224.4 1758.6 1309.5 2671.2 1505.3 2352.1 549.3 1709.8 1364.9 1867.2 373.1 2388.5 1 1 109 568 4859.0 5207.6 310.0 597.2 2709.3 5966.8 19.3 141.7 4326.1 5306.6 255.1 317.5 3608.0 4638.2 275.9 433.3 3671.2 5139.5 35.9 187.2 3543.0 4865.0 155.5 341.7 655.8 381.3 3180.3 4546.6 945.9 2459.7 566.4 2551.6 811.9 1821.1 3308.2 3610.1 1508.4 1881.4 3297.1 3687.8 1046.7 3661.0 1466.6 1711.9 3061.7 4623.2 391.2 529.3 1148.4 2796.6 2506.3 3060.5 2428.8 3397.9 744.4 2542.8 1130.5 2445.5 2465.1 2828.9 1681.7 1951.2 2910.1 3264.7 1747.8 2398.3 1835.1 2453.0 1424.0 2101.4 664.8 3232.7 829.8 1156.7 2811.0 3750.7 1201.2 1631.2 2431.4 3275.7 1030.1 2771.1 1067.7 2355.7 1048.4 3550.2 694.7 1580.4 834.3 1961.9 1822.5 3657.2 532.5 1235.2 1558.3 4514.5 1025.3 1508.5 2053.0 3927.0 640.0 1242.1 1733.2 3780.6 508.8 935.8 956.5 5036.6 410.7 874.0 2239.7 4884.5 953.9 1828.0 2113.4 3693.8 607.3 1906.7 985.8 1375.2 904.7 2512.3 639.3 2508.6 1962.6 3184.3 493.3 1246.3 1391.4 2522.9 516.9 2675.7 1138.5 2496.3 1069.7 1808.5 1804.4 2672.3 562.1 1960.7 929.3 1747.2 1202.3 3313.2 1 1 113 482 440.5 508.3 4912.5 4108.0 3594.2 3698.8 194.3 251.2 229.6 180.3 201.4 5343.8 792.8 3717.9 241.7 483.6 197.4 215.0 3552.8 4110.6 485.8 385.0 3262.9 3600.7 2327.9 2661.7 243.3 409.1 3163.0 4332.1 89.6 114.9 738.8 686.9 2964.8 3604.2 2466.5 2543.5 507.9 873.1 659.6 1155.0 2520.1 3051.1 879.1 3720.7 443.0 875.2 418.2 885.4 412.9 4138.0 979.6 2964.9 383.1 934.5 508.2 984.6 2276.6 2921.4 598.0 1128.0 397.0 2915.8 2283.4 2688.8 259.2 941.1 530.9 1106.7 506.7 3888.8 622.2 1122.8 2519.6 3428.4 885.4 2890.2 486.2 1003.3 794.9 3244.0 586.6 1108.6 594.8 1366.7 2540.4 3341.4 531.9 1380.7 495.8 2841.2 820.7 2670.0 372.9 1483.2 646.3 1278.2 284.1 3688.5 534.0 1079.0 333.6 4402.0 745.8 2754.7 382.7 1637.6 677.9 1396.4 543.1 3298.6 546.4 1458.6 2014.3 3489.5 731.8 2500.9 553.1 1983.5 634.7 1359.5 433.6 3760.5 504.1 1251.9 568.2 4755.0 671.9 1146.7 1989.7 3968.9 1579.1 2436.6 578.8 1718.5 2057.1 2767.3 302.2 1092.0 2329.3 2587.6 261.3 1052.8 1 1 79 878 206.2 277.7 4090.0 3953.8 240.0 351.1 175.3 3835.4 690.7 2471.0 91.9 292.8 2076.9 2865.5 92.1 378.0 287.5 314.0 108.7 4098.7 298.0 383.0 142.1 4039.3 217.7 354.9 151.1 4253.2 310.4 407.1 122.9 4084.9 269.4 492.0 193.4 4320.4 658.3 2402.3 99.9 571.1 1774.0 2014.7 150.5 522.8 1757.0 2139.6 216.9 663.7 387.7 502.9 1934.6 2880.9 262.0 457.2 276.5 2657.7 564.2 2206.2 174.7 930.8 178.4 510.4 195.4 3472.9 230.5 627.6 203.5 2991.4 708.8 2292.0 145.2 814.1 1678.5 2067.0 125.4 599.8 1536.9 1929.6 221.8 683.0 384.1 703.6 1807.7 2768.0 248.2 548.2 452.5 2318.4 288.5 462.6 2025.1 3128.5 351.3 490.3 1955.2 2806.4 1073.1 1232.8 375.3 1145.2 352.3 587.2 472.9 2838.5 216.3 502.9 1929.6 3223.7 246.4 442.1 732.3 2851.1 230.4 499.8 375.1 2867.5 292.0 499.5 281.2 2740.1 372.3 1252.6 240.5 1960.6 300.5 762.1 283.5 2225.2 309.0 609.8 1098.8 2771.3 664.2 987.2 638.7 1970.1 412.7 689.8 352.4 2824.7 340.0 509.0 294.1 2973.7 1 1 98 479 310.4 1073.3 27.0 6840.5 252.0 574.0 298.2 6319.0 212.5 456.0 3668.0 3916.6 525.5 1294.0 88.2 -22.9 397.1 610.6 44.1 5048.6 952.1 4117.4 66.8 270.7 719.1 3487.4 158.2 423.7 218.9 254.5 332.3 5428.8 612.6 747.0 3377.8 3895.2 2209.5 2901.6 282.8 369.0 351.7 531.3 81.4 4971.7 706.5 25.0 27.2 4939.9 636.9 3971.5 106.9 1350.1 551.0 3536.0 155.3 782.1 176.1 709.8 -87.1 4111.0 218.5 464.1 208.4 4892.8 154.6 640.2 2360.2 3308.1 2243.4 3113.5 181.4 574.5 903.0 2284.3 64.4 230.6 938.7 3478.8 113.0 257.8 2536.5 3227.9 145.1 682.1 824.6 3219.4 -66.5 367.6 892.8 3699.8 83.2 283.7 764.5 3433.4 133.0 463.6 1020.9 3765.1 -42.1 293.5 1174.4 3629.3 171.1 436.8 2311.6 3455.1 123.5 531.2 904.4 3127.0 307.5 587.6 934.6 3313.1 32.6 447.9 618.7 3152.2 151.2 638.0 610.3 1051.5 143.9 467.7 1948.4 3035.8 241.4 288.6 1868.8 2885.6 114.5 662.1 998.0 2638.3 -9.1 592.9 1512.8 2268.1 190.3 675.1 663.3 2594.6 104.9 838.5 1 1 75 217 310.3 1509.8 665.9 4845.0 476.3 416.6 183.1 4486.6 600.4 2360.2 582.6 763.0 559.5 2620.4 3.2 577.2 1918.8 2043.6 1948.3 1892.3 887.1 998.0 235.1 5028.4 608.8 2075.0 372.0 747.9 2045.5 2382.0 1219.7 1694.6 376.7 591.7 233.6 2137.0 945.9 2477.2 295.4 627.7 1865.5 2191.8 1294.0 1375.5 389.3 775.9 861.3 3669.6 428.1 2669.2 358.1 673.9 1756.0 2490.5 212.7 571.3 1242.0 2535.2 224.7 918.6 614.3 2340.0 1008.7 1109.2 838.2 2253.4 415.8 1053.7 497.8 1376.0 218.1 4280.9 504.3 895.6 695.7 4542.6 301.4 760.1 2085.0 3453.7 344.2 694.3 987.8 3251.9 405.1 748.5 1011.7 3785.6 672.7 1019.9 519.4 3829.6 1501.5 2048.6 749.2 1534.7 430.6 777.5 1730.4 3360.9 311.8 806.7 1814.1 3158.1 723.8 1781.8 470.8 1490.5 640.5 1800.8 697.5 1277.2 248.1 633.4 500.5 4266.9 303.7 544.1 497.5 3933.1 263.8 592.7 1670.9 3418.5 561.7 1961.2 459.7 1251.7 644.5 1747.2 371.0 1242.5 471.8 1842.9 382.9 1473.1 531.2 722.6 353.0 1433.6 286.0 553.3 488.6 3959.1 1 1 100 525 2877.4 5147.7 258.9 -117.1 3058.5 6006.2 -283.4 -162.1 4855.2 4996.7 150.2 339.2 3861.3 4616.7 242.4 418.6 4096.8 4491.0 187.7 386.6 2503.1 4384.1 161.8 394.3 2241.8 2739.5 359.0 3906.4 707.5 3239.3 3252.7 3414.6 343.8 2564.1 3326.1 3671.6 2237.0 4340.8 433.4 790.4 288.9 874.2 333.7 5416.1 451.1 939.6 -46.2 4743.5 2125.3 4006.2 92.6 998.4 2154.7 4158.5 277.1 809.4 565.8 1574.9 2473.1 3097.8 843.6 3040.6 2240.9 3037.1 1048.8 4255.7 2181.3 2435.0 2443.5 3450.9 438.9 884.8 955.9 1723.1 2478.6 2897.9 1678.1 3358.4 690.8 965.5 2193.0 2990.3 405.9 859.6 2197.1 3244.1 475.8 735.8 1038.6 1356.8 2492.7 2962.3 1681.2 2767.3 1066.5 1083.6 962.8 1449.1 2151.3 2804.3 1882.0 2488.4 861.9 1107.8 2203.3 3007.2 497.3 1025.0 2066.5 2908.4 518.5 1080.2 1765.2 2452.9 2389.0 2805.9 1137.7 1929.8 2444.9 3080.6 1569.0 1975.8 1031.0 1826.7 916.2 1112.9 1939.5 2245.2 1651.0 2147.9 1169.1 1827.6 1397.9 1788.5 658.6 2793.5 1329.4 1840.2 1458.1 2580.4 1752.9 2395.1 1140.0 2174.5 1 1 113 326 342.6 291.2 -93.6 5959.8 311.4 513.3 -68.8 6125.5 847.4 3558.7 -158.7 169.5 246.6 440.0 -58.1 5769.4 35.0 201.6 287.9 7044.2 296.3 219.4 269.0 6289.9 277.5 569.7 189.4 5017.7 1012.6 4043.1 -19.1 232.0 972.6 3755.8 168.1 313.8 941.3 3405.4 24.3 532.6 406.2 833.1 -18.2 4801.9 846.0 3808.4 48.3 551.9 903.3 3845.1 195.7 668.1 824.5 3340.4 44.3 818.1 350.3 793.9 384.0 4196.0 124.2 826.8 3041.4 4716.0 899.6 3428.5 279.7 901.6 870.2 3282.1 198.3 821.0 755.5 3147.3 246.5 1167.2 486.4 876.9 262.1 4754.9 1836.1 2850.7 409.2 1460.7 554.2 1133.6 2568.7 3903.7 900.9 3057.4 540.0 1015.0 1090.9 3095.4 214.4 822.4 1809.0 2575.9 444.8 1128.4 534.4 996.4 2671.3 3836.0 450.1 964.7 2604.7 3480.0 482.5 967.0 2403.7 3339.0 582.0 2258.2 630.4 1734.5 295.2 840.6 657.7 3872.9 409.9 766.0 2428.8 3660.7 382.9 859.5 2343.8 3462.0 359.4 744.1 563.7 3178.1 471.6 862.2 437.0 3801.8 1127.2 1764.6 628.2 1854.6 822.1 1054.2 1649.4 2588.4 1 1 85 733 721.1 525.8 251.2 5748.9 1633.3 1460.4 168.5 6001.5 547.4 802.4 222.6 7108.8 509.5 755.1 282.4 6660.6 2922.4 3357.8 384.6 1815.4 656.3 941.1 3234.6 4160.8 2776.5 3484.4 290.6 843.2 667.8 1064.9 269.0 5510.3 510.1 1028.3 419.3 6206.4 638.0 966.0 3391.8 5372.5 579.5 932.2 3576.6 5376.2 751.7 1112.8 737.8 4446.5 3168.9 3935.4 301.8 1087.2 2872.5 4148.8 444.7 1235.3 1532.0 4005.3 398.8 1450.0 744.4 1925.5 420.3 4999.2 657.5 1086.1 590.6 5542.3 826.7 1360.8 2485.6 4853.0 2411.0 3140.2 507.6 1963.5 2632.5 3270.3 895.9 1840.7 2549.3 3094.8 452.0 1934.0 1060.5 1700.1 796.4 4406.2 2327.3 3092.1 402.9 2021.5 785.8 1206.0 460.9 5357.0 832.6 1300.8 842.9 4904.6 2154.1 3162.9 447.5 2326.7 966.7 1553.6 425.0 4339.8 2230.8 3279.6 514.6 2067.8 846.1 1855.4 1987.9 3385.7 745.4 1525.2 2162.4 3775.9 624.8 1464.0 1955.6 3880.6 1066.3 3042.4 946.9 1964.5 1820.9 2653.7 729.9 2233.9 1155.0 1895.8 399.8 3436.8 2040.7 2574.4 481.4 2169.6 1172.3 1657.7 1628.0 3644.5 1 1 111 862 147.9 -84.1 5507.5 5200.7 3344.7 3636.4 58.9 129.8 152.1 111.7 90.0 5216.9 726.2 3855.0 147.0 318.4 250.2 25.0 4001.0 4196.6 338.4 163.7 3565.1 3869.2 2555.1 3016.1 255.5 144.3 3229.3 3191.0 337.5 471.2 530.5 627.2 3858.1 3650.5 613.4 616.0 3500.9 3574.7 2357.5 2549.3 571.1 674.5 602.1 854.0 3487.0 3308.3 888.7 3270.8 337.3 538.7 507.6 804.6 223.8 4533.1 563.5 2964.6 452.8 1228.8 255.9 685.5 2614.5 3258.5 556.2 984.4 568.8 2794.3 2249.9 2390.8 289.0 1244.7 535.2 790.1 566.6 3576.4 489.2 858.9 2230.3 3242.2 714.4 2791.7 590.2 1134.8 585.4 2921.5 569.5 934.9 635.2 1337.0 2424.7 2995.8 512.9 1035.9 615.3 2935.5 624.7 2306.9 330.5 1486.5 481.2 802.3 358.9 3785.8 533.5 1062.3 336.6 3659.1 665.5 2339.2 181.2 1803.8 364.8 978.5 504.9 3409.5 361.4 914.7 1610.9 3177.3 533.9 1967.1 693.0 2001.3 432.9 985.2 416.0 3276.8 307.6 870.3 490.5 3962.3 871.3 1286.7 1230.8 2955.7 921.5 1269.9 1248.2 2715.2 1637.8 1910.3 457.6 1614.3 1 1 87 618 327.1 342.8 303.2 4302.3 410.2 529.7 365.7 4144.9 395.7 466.5 2608.2 2995.8 245.2 568.3 234.8 2627.8 578.3 2817.3 205.8 681.8 306.2 655.8 366.1 3509.8 285.9 604.3 2038.8 2766.9 341.8 613.7 571.2 2695.2 354.2 761.7 1953.8 2701.5 575.5 2364.4 466.5 967.8 732.8 2481.6 258.0 638.6 1699.1 2591.3 356.8 734.0 554.0 1022.3 1733.6 2479.7 745.0 2156.2 452.0 1016.6 1508.2 2332.6 248.5 618.3 840.8 2394.5 303.3 786.4 1397.1 2337.7 329.0 780.9 707.5 1045.5 1555.9 2147.5 1296.0 1990.5 443.8 949.3 616.3 1171.0 1392.9 1916.2 1345.4 1860.7 388.4 967.9 1651.7 2164.8 194.6 601.1 1479.3 1961.3 334.8 894.8 567.7 1161.0 1141.4 1660.7 676.9 1997.5 416.7 986.3 1401.1 2128.8 267.2 743.0 1569.1 1956.0 304.4 792.3 773.1 1765.5 280.4 899.4 558.8 1896.9 161.8 1061.3 393.5 1004.4 359.5 2127.8 408.3 829.3 1039.7 2034.3 984.2 1523.8 540.0 1188.0 524.8 981.0 1193.0 1919.8 689.0 1707.1 487.1 1090.1 1069.2 1480.8 256.1 1176.0 567.9 845.6 248.5 2273.8 1 1 83 277 297.4 593.1 253.4 5806.0 3032.2 2941.8 317.7 342.5 384.3 438.7 3315.4 3188.1 2624.8 2776.5 96.0 297.6 675.0 3158.6 47.8 950.9 508.7 1157.3 320.5 5496.3 180.0 525.6 3371.4 3546.2 768.9 3152.4 273.0 938.4 352.2 689.4 286.2 3882.0 79.7 443.9 2950.8 3816.5 953.0 3141.7 322.5 609.9 821.4 3648.1 211.6 513.9 528.5 908.1 241.1 4657.1 2297.3 2874.3 440.7 1129.2 510.2 691.8 3018.6 3492.7 1026.2 3213.3 425.5 709.7 2535.2 3072.0 336.2 715.2 2220.0 2747.0 509.2 1028.4 695.7 1018.7 2719.4 2817.8 913.8 2618.3 671.0 1073.1 755.2 2841.5 339.9 1050.7 536.7 827.6 500.5 4384.0 396.8 907.8 365.5 3734.8 1995.9 2453.1 484.5 1198.9 2003.4 2906.4 419.1 723.1 714.3 897.7 2495.7 3457.0 579.4 886.5 2394.6 3181.5 1516.0 1965.6 686.8 1353.7 567.3 665.6 409.1 4350.2 387.2 817.5 356.9 4311.5 668.1 2128.6 242.3 1613.4 386.1 977.2 304.5 3756.9 377.2 843.4 278.9 4111.9 503.9 1909.9 331.5 1871.8 445.9 1172.2 198.2 3419.1 571.8 2255.1 321.5 1463.3 1 1 103 414 493.3 544.5 4709.9 4396.6 404.9 586.1 4278.4 4221.8 440.5 519.7 3303.3 3411.4 384.4 394.5 703.8 3099.8 2585.6 2902.5 258.6 776.3 709.0 1055.1 2001.4 2077.3 441.2 784.3 2292.9 2723.6 869.3 2842.5 679.6 980.3 556.6 1114.1 362.8 4128.2 2286.9 2844.9 340.3 1398.9 1267.7 2964.1 269.1 783.2 1925.8 2954.3 359.2 899.1 870.5 1355.2 1932.6 2487.2 637.8 821.1 746.8 3082.6 459.7 819.8 1889.0 2828.2 598.7 1058.7 1893.5 2486.4 1383.7 1835.2 880.9 1340.2 706.9 1026.6 1560.7 2427.5 632.4 1026.8 1673.3 2490.5 1657.4 2078.5 789.3 1087.0 1885.1 2426.1 447.4 786.5 1266.4 2778.9 324.8 679.2 1822.7 2649.1 483.5 901.6 1047.3 1667.9 1314.0 2002.7 635.0 1355.5 1711.8 2165.5 867.3 2212.7 857.8 1374.3 1536.7 2562.8 368.1 899.1 1736.6 2407.4 281.6 719.6 1707.7 2271.3 423.6 778.7 959.1 1397.4 1006.7 1557.1 1336.5 1741.5 606.8 1174.6 1079.6 2165.4 399.0 934.2 921.1 2298.7 361.0 835.7 1398.3 2603.4 321.0 784.0 945.9 2329.0 304.6 991.0 854.2 2431.7 338.0 1261.9 1 1 93 494 380.1 153.9 4703.4 4674.1 4043.1 4862.0 380.6 563.9 634.6 1042.4 3225.2 3356.6 525.5 819.5 51.9 3305.1 632.4 839.0 3178.6 3622.2 3124.6 3276.1 277.0 528.4 1364.3 4111.8 116.0 114.3 3899.1 4259.7 73.4 315.2 3536.0 4306.8 68.4 394.2 3238.2 3727.5 346.6 783.6 882.4 1175.1 3695.1 4440.0 2508.4 3239.5 488.5 860.6 3098.2 3540.8 370.0 887.6 985.7 1141.3 2978.0 3490.7 2495.7 3454.2 543.7 835.3 967.4 1442.3 2793.9 3150.4 2269.3 2876.8 649.8 1205.0 775.9 1110.9 2862.2 3648.7 721.4 1100.0 3038.4 3362.0 778.2 1288.7 2716.9 3208.5 1254.9 3330.1 659.0 1204.0 2589.7 3260.4 607.3 936.9 932.0 1571.5 2102.0 2696.3 885.4 1144.4 2158.3 2531.3 1950.0 2534.7 656.5 1086.8 1072.5 3430.3 577.1 1192.4 2221.0 3028.1 451.6 961.9 970.4 1523.0 1917.7 2592.8 750.7 1228.8 1978.4 2651.9 974.9 2747.5 751.2 1468.4 953.9 2695.7 468.8 1353.6 660.8 1459.7 572.7 3556.2 790.5 1364.4 1565.4 2974.9 1809.5 2431.7 566.0 1427.0 2122.2 2725.0 399.9 1074.0 2305.9 3030.3 301.2 917.9 1 1 65 610 1219.1 1676.5 3382.9 4203.5 367.6 436.3 867.1 5302.7 662.0 3251.1 1334.4 2236.1 363.8 989.3 165.2 4018.2 660.3 1701.6 85.8 4350.2 3399.9 3360.1 104.9 543.2 832.0 1033.7 134.1 3861.9 738.6 2774.7 642.1 1888.1 775.4 3130.4 670.8 1549.9 2155.7 2736.0 198.1 1231.0 1353.4 1641.1 166.5 2697.8 2302.3 2459.6 210.3 1913.5 1948.7 2109.2 1169.5 1789.0 1160.0 2468.6 233.6 1266.8 383.0 685.7 152.6 3561.7 663.9 2311.2 112.8 2115.2 591.9 2525.3 932.1 1841.0 430.4 1264.2 764.1 3231.5 1508.6 2049.7 365.0 1916.2 488.8 811.2 1709.3 3395.9 1629.9 1852.4 686.2 1408.8 1580.1 1955.5 501.4 1643.3 525.3 1824.8 773.4 2027.3 458.5 844.2 1048.7 3615.4 870.5 1224.2 618.1 3130.0 1044.2 2258.7 274.4 1388.7 981.6 1480.2 183.0 2612.1 1749.8 1896.9 235.0 1162.5 967.7 1385.8 217.5 2857.7 867.9 1120.8 639.2 3476.4 468.4 713.7 1591.9 3007.0 1279.8 1814.1 855.0 1625.3 745.9 2014.5 339.4 1645.6 1472.3 2118.9 271.6 1191.2 816.4 1122.2 287.9 2816.2 1187.1 1508.7 338.6 1997.8 1 1 102 717 404.0 563.1 4443.9 4419.5 465.8 488.0 3251.5 4683.6 1067.5 4226.7 201.8 474.3 982.9 4164.0 223.4 4589.9 383.3 483.9 311.0 5564.7 3146.6 3622.5 2245.1 3387.1 894.0 3421.1 406.2 3261.3 547.6 1099.1 2617.0 4568.0 721.5 2999.9 291.1 4227.4 856.3 2696.0 414.5 4910.8 2048.5 2816.0 3290.4 4250.8 2222.0 3894.9 323.2 805.1 1007.0 4077.0 310.9 886.5 2019.2 2383.8 356.5 4579.9 595.6 1063.8 2059.0 5048.6 859.7 3399.2 550.8 2606.9 546.1 1286.4 2050.2 4487.7 534.3 992.6 2692.2 4085.9 564.8 972.8 1898.8 3658.3 1761.4 2109.7 429.6 3871.0 1907.1 1244.1 1970.9 3420.3 935.5 3284.0 565.0 1402.8 1656.7 2329.5 630.9 4057.4 884.9 2228.8 2261.1 4295.0 1763.9 1871.2 866.2 3283.2 803.6 2418.3 2050.8 3689.1 873.9 2640.9 2204.6 3667.8 1341.1 1826.5 761.8 2942.4 1577.6 2480.0 579.6 2592.5 2001.5 2797.6 1313.5 2135.3 2096.9 2484.2 683.5 1761.2 1119.0 1697.6 1672.3 2798.3 1660.3 2242.4 624.3 1667.2 1663.0 2551.2 487.3 1266.0 1663.5 2484.1 366.1 1157.4 1096.3 2898.7 361.0 1445.4 1 1 104 595 1298.7 4903.4 206.3 249.7 1392.7 5335.5 625.4 665.3 650.6 786.3 4702.8 4644.9 533.2 1296.4 3630.8 3730.5 2460.4 4079.1 249.5 406.2 490.8 986.1 3503.5 4174.5 232.8 583.8 574.2 4107.4 405.8 943.5 470.2 5061.1 320.4 1278.8 269.9 4709.0 884.8 3743.6 136.0 906.1 2537.0 3352.9 192.8 854.0 618.5 1328.6 2648.1 3574.3 336.2 798.4 506.7 3754.2 371.7 585.6 2514.5 4472.1 2418.0 3017.9 630.7 1315.0 759.4 1130.8 344.7 4243.3 744.4 3364.2 268.9 1673.2 2169.8 2733.7 598.8 1713.0 829.2 1323.8 2409.0 3724.3 2076.1 2662.5 674.8 1334.8 791.6 1155.8 2572.6 3794.4 828.9 1121.9 760.2 3221.8 2362.0 3056.1 380.5 1360.8 1005.6 2952.8 472.3 1627.2 728.5 1424.6 416.6 3682.4 889.8 3065.9 265.8 1592.3 747.4 1410.0 241.1 3472.4 854.1 2619.5 446.8 1843.1 514.8 1328.9 602.5 3325.7 429.0 1532.7 1513.0 2995.9 831.7 2651.2 516.4 1612.3 1540.3 2618.5 551.1 1575.9 770.4 1260.1 1666.1 2940.6 895.0 1345.4 1771.6 2923.5 1077.2 2472.1 797.3 1537.1 1834.0 2715.9 558.6 1361.2 1 1 118 675 469.8 1137.4 498.2 5543.2 877.8 4367.0 731.1 890.6 1763.5 3719.9 203.4 362.4 3339.6 4005.9 121.3 1356.1 599.2 874.6 224.0 4468.6 188.2 1728.6 3484.3 4049.9 260.8 654.0 3158.2 3200.2 490.5 635.1 3160.5 3491.0 527.6 609.4 2973.7 3375.7 543.0 1028.7 13.2 2786.3 929.9 3118.0 357.8 673.3 570.2 3300.2 656.9 1132.1 244.7 1408.2 160.1 3943.7 192.3 1044.1 386.3 4452.3 54.7 1761.8 2874.0 3853.0 394.6 1313.0 2418.2 3215.7 286.9 610.8 426.4 3012.6 433.3 679.3 2172.6 3245.0 625.3 2669.0 252.6 843.3 288.4 853.0 304.3 4232.9 405.5 600.9 912.2 4348.3 303.3 815.1 738.9 4087.5 277.8 1023.1 724.4 3654.6 1963.1 2476.7 448.2 770.0 2383.5 2818.2 321.1 578.4 2048.7 2642.2 440.5 1330.2 584.9 1518.5 1773.8 2611.5 764.2 2443.9 421.5 938.9 1731.7 2416.2 204.0 777.9 787.0 2524.9 269.9 883.6 1632.1 2547.1 165.7 752.5 673.9 2506.4 216.2 805.6 753.3 2791.7 118.1 568.9 827.7 2409.0 253.7 730.7 714.6 2580.6 184.0 775.2 787.0 2900.4 71.8 562.8 1 1 107 489 5642.6 6190.5 2513.8 1965.9 1258.7 6486.9 1788.7 1550.0 4741.5 5631.7 156.6 905.8 674.4 985.5 3545.7 3682.1 3791.7 3799.9 1260.7 1576.1 1488.9 5099.6 228.6 450.3 3836.1 4526.0 146.9 191.3 4281.4 5244.1 201.1 1350.4 4331.1 4723.2 67.5 2041.9 1558.2 4852.8 163.0 622.2 823.2 2085.1 83.5 4826.8 1366.3 5139.5 1323.5 1808.5 1373.1 2316.3 268.1 4505.3 1468.0 1821.2 320.3 5102.5 719.0 1979.0 227.3 4630.6 1581.4 4425.8 129.7 673.6 1675.8 1965.1 318.0 5089.2 3083.1 3605.9 378.6 1093.9 3049.1 3876.3 300.8 900.0 3141.2 3967.4 784.6 1212.6 3177.9 4189.0 311.6 720.2 3176.9 4089.0 282.7 1458.1 1447.8 1836.2 518.3 3570.3 2996.6 3840.4 299.7 1403.0 3056.5 3969.6 334.9 1442.8 3399.8 3936.5 1081.4 1735.1 2975.4 3675.1 341.2 1140.9 2871.0 3377.8 336.1 1256.7 1467.0 3780.5 293.0 921.3 2475.7 3251.7 214.3 1030.8 2755.4 3241.8 727.4 1436.5 2745.0 3323.3 240.4 1583.3 2543.9 3349.6 393.6 1470.4 1544.1 3874.5 403.9 1058.0 2322.3 3324.0 201.2 891.9 1282.2 2007.4 299.9 3437.5 1 1 72 446 522.6 886.0 300.5 6489.9 2021.6 2480.2 2561.5 3675.1 918.8 3602.2 251.5 1918.1 2816.0 3636.6 348.8 1822.7 2532.0 3727.7 289.0 1246.4 533.1 986.3 2450.6 3942.4 2190.9 2595.9 483.1 1268.7 2552.1 3351.6 447.8 1308.8 670.3 1072.2 2938.6 4409.8 541.7 843.9 690.3 4556.5 513.8 936.5 2896.7 5048.6 585.9 1061.4 2282.4 3768.3 1897.7 2461.8 413.1 1528.2 1980.1 2804.3 272.7 1756.1 834.1 1442.1 424.9 3189.1 1938.8 2655.4 279.3 1548.9 1031.4 2772.3 281.9 1434.3 2051.5 2460.8 347.5 1475.1 2009.2 2735.9 235.2 1221.2 2143.5 2966.6 242.1 882.0 2389.5 3113.7 202.7 830.7 1372.9 2856.3 440.4 996.1 2189.5 2642.6 541.4 1212.3 2008.8 2624.5 579.1 1148.8 2030.1 2457.2 642.9 1080.8 920.8 1553.0 1812.2 2435.4 856.5 1429.7 1383.8 2012.7 991.3 2352.2 471.4 1602.9 668.6 1161.7 306.4 3373.7 686.1 1353.2 355.2 3232.6 1511.3 2005.5 439.2 2200.3 781.5 1292.1 1419.8 3042.1 1445.8 1907.4 656.9 2104.0 1573.1 2108.8 482.3 1936.2 818.7 1304.3 497.0 3004.0 821.0 1436.2 1310.4 2607.8 1 1 85 233 1068.8 821.2 321.9 4596.2 1561.2 4514.3 204.1 461.4 3053.6 3377.4 281.0 654.0 1196.3 974.8 297.1 4481.6 1003.8 956.9 3095.2 4166.6 1701.2 2804.3 311.0 1256.0 718.0 907.4 453.5 5914.1 2338.2 2890.6 1081.5 1307.2 2249.1 2503.4 429.2 1463.4 2271.9 2661.4 373.2 1530.1 2677.8 3045.6 325.2 1108.2 835.4 1194.9 580.3 5791.0 808.4 1294.3 555.3 5986.8 1963.6 2322.5 878.2 3162.8 461.2 1480.7 537.1 5485.7 566.8 1108.9 662.5 5153.4 542.4 992.2 2578.0 6300.0 577.0 948.4 2323.0 5354.9 1333.1 1739.8 750.9 2025.5 698.0 1023.8 2331.5 5372.5 1597.0 1780.0 747.1 1903.4 964.3 1325.5 1986.2 3597.5 1457.0 1962.3 877.8 3048.3 581.8 1191.5 1159.5 5580.7 665.7 1449.0 492.9 4312.8 2043.7 2174.9 752.7 2001.7 760.2 1176.7 1762.5 3658.0 727.4 997.5 1907.0 3793.2 1309.5 1815.7 1491.2 2944.0 1793.8 2026.1 622.0 2616.7 430.5 916.4 572.3 4804.4 933.2 1399.5 598.0 4193.0 939.2 2100.7 1087.5 2906.9 1641.1 2676.4 499.1 2387.0 1534.4 1768.3 612.6 2265.3 665.1 1493.1 1713.3 3580.7 1 1 106 462 4517.3 6172.3 304.4 221.6 5526.0 5312.5 251.6 1186.3 766.9 1092.9 1230.6 8791.6 4595.1 5730.4 256.1 634.0 4445.7 5610.2 323.5 735.5 4317.7 5089.7 322.3 720.6 735.2 1278.5 677.0 7225.4 1497.9 5518.9 406.2 1686.4 1304.2 1912.3 476.5 7001.2 863.3 1846.2 470.8 7189.7 1268.3 1927.9 396.3 6678.0 4519.4 5173.3 993.1 1753.9 4262.3 5018.2 544.1 1039.7 1605.1 2404.3 3195.7 4538.1 1965.4 5602.8 589.2 1162.4 3952.0 4353.1 443.3 1580.2 3983.0 4989.7 926.3 1495.7 3874.8 5112.5 873.5 1436.4 3536.9 4669.4 620.9 1275.1 1362.7 2007.5 2544.7 3905.7 978.8 1491.8 1207.7 4004.6 826.9 1743.9 2911.8 4098.8 887.0 1802.2 2845.9 4022.9 1256.9 4357.0 746.1 1813.9 831.2 2130.5 667.7 4806.4 773.0 1577.6 3029.2 4908.4 960.1 1619.6 2411.7 4384.0 953.1 1666.5 1930.5 4645.8 1276.1 1890.5 1736.0 4184.1 1060.3 1625.3 1590.0 4674.9 962.2 1611.9 1731.2 5875.8 1285.7 2077.8 1465.7 4413.9 1157.1 2274.1 1219.0 4381.6 1186.1 2052.8 1066.5 4186.7 1287.2 2033.2 756.3 3780.0 1165.0 2437.6 959.5 3371.5 1 1 82 588 204.3 -139.8 3540.4 4159.4 883.4 4205.4 -99.9 -230.1 479.7 470.0 200.2 4676.9 386.1 624.9 2828.9 3178.1 2806.8 2863.5 368.3 133.9 154.6 257.6 2771.0 2781.0 248.1 388.3 2271.2 2754.8 397.2 724.7 275.0 2517.6 660.4 3118.7 134.3 725.9 714.0 3097.8 475.6 701.3 294.7 596.4 2254.5 2844.6 1838.3 2000.4 445.5 682.4 302.8 795.1 2049.3 2374.9 654.8 2528.3 242.8 787.2 332.1 852.7 261.3 3418.5 1852.2 2436.3 193.4 717.9 489.1 921.1 2380.6 2897.9 293.1 404.5 2275.6 2986.2 132.4 285.0 509.7 2904.3 225.1 278.0 356.7 3842.6 344.9 599.4 377.4 3685.2 326.6 592.7 1844.5 2800.6 443.5 523.8 1877.9 2777.1 1436.3 1734.5 530.2 1055.4 702.5 2098.8 287.4 1094.8 444.2 704.6 306.2 2944.7 1568.8 1960.1 322.3 1406.4 476.7 981.8 243.4 3025.9 718.3 2373.3 222.1 1053.9 1757.1 2237.5 179.2 850.1 1565.3 2049.5 244.8 1220.5 655.4 1112.2 199.4 2432.4 778.0 2316.3 198.9 1143.9 1434.8 2204.0 364.0 966.9 719.1 993.6 1373.7 2270.6 1357.7 1747.0 419.0 1080.7 1 1 80 334 2420.6 2650.9 191.9 5652.5 1518.4 2421.4 3532.3 3700.8 2121.9 2185.5 2057.7 1410.2 1684.3 1536.4 3399.2 3262.2 552.8 544.0 204.5 3704.6 1264.5 2244.6 3084.9 3264.8 2118.6 2396.8 703.4 762.1 2292.9 3544.3 207.1 502.7 2473.7 2948.6 4.9 322.1 2238.5 3026.5 189.8 696.3 1446.2 1976.4 2900.7 3493.2 537.5 1845.8 2553.6 3350.6 1088.1 2286.6 348.3 2793.1 523.1 693.7 463.2 4460.9 356.6 701.9 567.5 4622.0 423.3 934.9 2375.0 3587.2 1558.3 1685.8 346.3 2898.5 447.7 931.4 2431.4 3824.6 630.1 869.8 404.5 3008.0 458.0 1022.7 2156.7 3541.5 1633.0 1868.3 552.7 3169.7 1021.4 1776.5 2276.7 3686.0 1084.3 1140.5 2410.9 3579.3 620.9 1985.3 2050.3 3557.9 758.0 2017.7 452.0 3022.4 831.6 996.7 557.6 3845.8 606.7 844.0 1631.2 3306.1 1317.3 2253.5 529.0 1533.1 634.7 1825.4 509.0 3206.7 581.8 883.0 1336.9 3279.6 542.3 822.8 356.3 3347.6 808.5 1201.9 312.8 3104.9 514.4 1746.3 594.9 2075.2 728.4 1134.1 301.1 2961.4 1195.4 1614.1 420.5 3128.6 1328.7 1967.5 301.0 1590.8 1 1 117 484 353.3 160.4 13.2 6408.1 701.2 4422.8 115.8 213.9 856.0 5117.0 117.5 60.4 933.4 4633.1 63.0 52.7 3649.3 4041.8 -100.2 87.7 959.0 4388.7 46.7 -342.4 2598.7 3530.2 246.8 406.0 413.2 883.1 3235.0 3325.4 838.1 4286.8 162.0 275.2 2709.3 3479.3 385.9 559.5 303.9 827.8 3524.1 3750.7 2934.2 2765.1 423.3 657.7 3346.2 3823.4 232.3 259.6 981.0 4319.3 145.4 324.2 2615.3 3641.9 329.7 211.9 505.2 952.0 3327.9 3673.8 408.9 859.5 2977.3 3185.8 1774.9 2300.3 594.9 854.7 575.4 795.1 523.0 3971.5 589.0 823.2 2698.0 3361.9 1863.1 1688.0 870.4 1380.9 668.4 1015.4 2670.2 3152.1 482.2 1016.9 2802.5 2814.2 494.5 784.7 2432.4 2554.0 684.1 943.7 2403.0 2410.6 1578.6 2245.3 765.9 682.9 459.3 752.9 517.3 3667.3 246.0 728.6 426.1 4311.8 422.3 846.6 548.1 4263.8 346.1 804.1 1937.5 3388.9 518.7 862.7 718.1 3324.2 1536.8 2215.6 445.3 1139.5 1726.8 2311.7 569.6 1055.9 681.8 914.5 1745.3 2624.1 382.1 644.0 702.1 2858.2 590.9 939.1 1249.5 2416.2 1 1 104 475 45.2 502.8 405.5 6392.8 689.7 4977.8 235.0 501.8 3792.5 5343.0 21.6 55.4 2974.4 4028.5 153.0 152.8 979.8 4595.2 -120.4 -175.0 985.8 3230.7 630.9 1573.6 776.8 4311.0 707.5 1304.9 1060.5 4645.8 548.7 327.3 1141.4 2618.7 294.8 -100.6 2409.3 3115.8 891.3 1486.3 749.2 2291.9 252.3 4258.1 2594.0 4208.7 350.2 921.5 319.9 887.8 519.7 4247.6 958.6 580.8 612.0 4194.8 1349.1 4866.8 450.1 512.9 2302.8 2740.6 784.0 442.1 670.0 1625.5 2585.7 3993.2 948.8 2967.4 594.1 2187.3 528.0 1725.5 768.4 5073.1 291.9 840.2 2782.6 5088.1 704.3 1042.8 2088.3 5282.4 1763.3 2590.9 567.4 2351.2 1623.0 2729.1 826.2 1761.7 996.9 938.0 2507.9 4166.9 1079.4 1238.4 682.3 3734.5 2027.2 2735.9 1528.1 2647.6 712.7 1416.6 2633.6 3457.1 684.5 813.0 1422.7 2579.9 835.2 1039.0 1179.8 4315.9 1988.8 2114.5 964.0 2386.0 1052.9 1898.5 1099.8 3710.1 889.2 1343.3 2168.6 4103.1 1771.0 2034.2 1147.7 1993.2 1536.3 2810.5 1237.7 2409.3 1269.6 930.7 1853.2 3080.6 1793.5 2861.0 870.5 1816.9 1 1 102 619 438.4 550.2 4480.6 4113.0 772.3 800.6 209.0 4207.0 3919.9 4796.6 1909.6 2101.2 3790.1 4552.4 233.7 682.5 619.4 709.8 3412.3 4064.4 1475.7 962.7 3359.5 3795.5 2907.9 3047.1 196.1 553.2 3496.5 4391.8 660.4 912.7 860.4 1059.6 3299.6 3774.1 739.4 996.2 3308.1 3360.4 1125.7 4010.2 495.7 716.7 3186.4 3422.0 547.2 1123.2 601.9 898.9 1239.9 4931.8 476.3 811.7 711.3 4692.3 930.4 3418.6 421.2 1341.4 540.1 902.1 387.7 4570.1 585.1 1484.3 486.6 4959.1 758.3 2892.3 395.4 1484.5 581.4 1623.0 392.9 4556.7 946.3 3323.8 713.0 1503.7 2208.2 2884.3 607.9 1834.6 740.1 1285.7 2323.5 3379.4 2094.9 2949.7 649.8 1214.0 2694.7 3315.6 613.1 1212.1 1276.2 3292.6 302.3 1296.7 2472.1 3045.4 372.4 944.8 2230.5 3081.8 630.5 1054.0 867.5 2920.3 336.8 815.0 875.0 3074.5 262.6 1068.9 633.7 1381.3 263.2 3480.2 1942.3 2607.6 196.3 1187.6 1856.4 2731.4 466.9 1324.1 935.4 1525.7 1760.9 2583.8 1743.9 2385.3 420.4 1457.7 975.3 1267.9 291.4 2951.9 1878.1 2333.1 449.4 1586.6 1 1 98 190 332.1 450.1 4007.5 3980.4 453.0 613.4 123.1 3397.7 304.4 603.2 3298.9 3868.2 467.4 805.3 366.7 3711.7 2263.6 2894.7 457.6 1268.7 449.5 652.7 574.8 5879.9 400.4 771.1 3100.0 3953.2 1026.9 3313.6 570.8 1031.6 2302.1 3166.9 187.2 495.2 2460.0 3040.8 150.1 693.8 2175.4 2758.8 249.0 815.8 600.8 1310.4 490.0 4689.9 769.0 1300.2 2980.2 4514.5 2165.8 2723.2 572.4 1361.9 2161.6 2982.7 693.4 1358.1 861.7 1292.8 2713.8 3744.8 1664.9 2525.1 845.0 1470.9 670.1 1019.9 2638.8 3938.5 524.7 934.2 702.5 3854.8 487.2 939.9 467.4 4646.4 617.2 1182.1 437.5 4508.1 918.4 2663.3 422.0 1562.0 1069.2 3136.9 450.1 1152.7 1832.6 2717.9 564.9 1265.9 827.5 1429.2 2189.4 3432.8 1466.1 2215.9 874.8 1753.5 714.6 1105.5 2048.9 3213.9 554.6 915.1 2263.5 3497.3 614.4 1186.3 717.0 2974.1 802.6 2256.4 495.9 1560.2 1613.4 2146.4 427.7 1510.7 1549.3 2323.1 626.6 1715.5 821.0 1238.4 1642.6 2862.7 1343.3 1900.7 562.5 1748.3 687.1 1157.9 354.8 2826.8 975.6 2147.7 406.9 1549.8 1 1 115 189 265.2 302.6 4003.6 3072.6 224.1 123.8 141.3 3023.9 2376.1 2743.5 118.5 -61.5 794.8 2679.0 -105.7 -133.9 2011.7 2490.8 -87.1 314.2 643.8 2226.2 130.7 316.0 1698.8 1726.0 188.3 298.8 619.9 2554.7 -36.0 54.5 1416.4 2048.4 183.5 251.9 389.4 523.5 2234.5 2577.6 1135.9 1593.9 220.7 422.1 307.3 572.6 15.4 3429.4 289.7 361.7 143.4 4439.5 271.8 248.9 349.8 4296.7 276.1 448.9 2346.4 3165.9 210.5 404.1 2312.6 3009.7 165.8 330.7 2236.1 3252.8 204.3 474.9 2023.2 2648.3 1172.8 1490.9 531.4 957.6 431.0 579.7 1760.5 2463.1 1223.6 1496.4 439.9 735.8 738.4 1777.3 177.4 302.0 1303.7 1825.6 340.3 675.4 452.7 888.5 1651.1 2145.4 406.1 1424.5 570.6 1278.9 354.4 569.3 539.2 3010.1 294.9 636.0 1588.8 2178.4 569.3 1574.4 499.0 1089.3 1093.4 1637.0 319.0 855.0 501.9 1672.1 434.9 831.1 378.1 574.6 1693.8 2259.4 242.0 579.2 2009.6 2600.2 253.2 523.0 1818.7 2264.2 377.4 714.8 507.2 1750.4 568.9 1231.5 320.4 702.8 1095.9 1511.5 286.5 816.7 1 1 88 462 1931.1 6062.1 271.3 1190.4 4229.2 4795.8 275.3 418.9 1110.7 1530.5 269.9 6060.9 1645.4 4877.1 320.7 630.1 1592.2 4460.9 204.9 645.7 1689.0 4800.5 199.3 1047.8 1070.6 1693.1 254.6 4960.1 1364.4 1656.1 291.7 5149.2 1197.2 1695.6 422.6 5650.0 1221.0 1689.7 2985.0 4305.5 1094.0 1692.8 494.3 4220.1 1413.2 4178.7 261.4 1313.2 1319.9 1942.3 276.1 4169.8 1656.7 4323.0 610.9 833.5 1605.8 4607.6 251.0 718.3 1492.4 4037.2 296.1 884.0 1088.4 1821.4 378.9 3812.3 1061.6 1765.5 2346.5 3512.5 2673.6 3124.4 558.1 1124.9 1282.1 1726.7 1797.2 2952.0 1153.2 1726.1 628.7 2940.2 1029.8 1760.2 2054.2 3246.5 992.1 1577.2 704.0 2895.0 1194.8 1690.9 1770.4 3208.1 2632.4 3144.9 599.9 1475.8 1336.6 1978.7 1813.9 3254.8 1396.4 3543.8 549.0 1420.9 1031.6 1977.5 543.5 3298.4 1036.2 1802.5 1613.5 3095.8 1118.1 2951.3 574.9 1760.4 915.2 1720.2 461.7 4253.9 868.3 1603.9 621.0 4087.8 835.1 1653.0 394.2 4382.6 1203.1 3201.3 257.9 2130.1 974.5 1909.0 578.8 3498.5 934.7 1511.2 1475.4 3295.9 1 1 113 784 457.6 499.4 5209.0 4951.8 3794.8 3730.9 213.4 395.0 963.0 4018.0 209.3 633.9 401.0 500.0 258.6 5920.5 501.2 648.7 277.8 6619.5 3647.4 3941.5 383.7 838.9 610.4 876.7 3617.9 4457.5 3506.4 3811.5 439.1 821.2 3442.6 4151.9 340.6 552.9 1162.8 4285.3 320.1 653.1 1233.1 4163.4 333.9 600.6 3185.8 3909.4 563.1 901.3 854.5 1259.0 3718.7 4157.5 697.1 1142.5 3552.5 4263.7 2668.6 3436.1 686.4 1152.9 3075.4 3687.2 519.1 1097.6 977.6 1587.1 2743.4 3536.3 1017.5 3768.4 757.0 1529.1 644.0 1437.9 540.2 4378.3 669.7 1387.2 2328.3 3541.9 1020.7 3350.6 621.5 1274.0 1013.0 3826.6 408.9 1166.6 648.4 1606.1 513.2 4016.5 597.4 1419.7 2352.7 3735.0 878.2 3156.1 714.4 1408.9 860.7 3204.4 595.0 1372.6 526.6 1352.3 487.0 3956.9 528.2 1123.9 432.3 4028.4 500.9 1029.1 2000.7 3736.0 460.2 1194.2 657.2 3361.3 881.5 2775.2 464.8 1748.8 1905.5 3245.6 406.9 1434.3 748.4 1588.3 534.1 3475.9 574.9 1007.2 1836.4 3509.4 530.4 954.8 772.5 3487.0 463.2 1240.4 543.2 4045.4 1 1 107 478 310.4 19.3 4546.1 3441.9 3160.2 2623.5 489.5 110.1 68.8 -59.7 153.5 4625.0 609.9 3194.6 104.5 164.1 262.3 133.0 2878.6 3418.7 380.4 60.7 2777.1 2783.2 2266.5 1891.8 115.5 248.4 2514.5 2948.1 223.8 201.2 548.9 324.6 2564.3 2826.8 1922.8 2264.4 290.9 437.8 466.4 735.2 2507.5 2197.7 761.4 2593.1 347.3 641.2 494.3 514.1 206.0 3364.0 706.5 2200.4 315.0 495.5 378.4 454.9 2074.4 2651.8 292.1 417.0 416.7 2591.4 1975.6 2133.4 58.9 719.4 453.9 630.3 382.5 3134.3 368.1 739.1 1842.5 2572.6 746.9 2398.5 201.8 171.5 639.9 2613.5 75.7 478.7 353.4 729.1 1974.7 2758.3 263.0 569.8 1667.1 2374.2 466.8 1088.5 238.2 1507.4 545.7 1835.3 148.2 1293.9 260.8 635.6 132.6 2921.2 420.7 1117.8 69.0 2486.5 455.4 1583.3 203.9 1445.6 394.8 848.1 524.3 2760.6 262.3 986.3 1271.5 2429.6 433.0 1376.8 333.5 1684.2 343.7 884.7 229.6 2848.5 320.0 771.7 507.4 3043.4 1282.6 1591.5 403.1 937.5 829.2 960.6 921.9 1715.5 1232.3 1474.3 244.2 1051.5 1 1 102 248 368.2 336.6 1401.7 4502.8 893.7 3555.0 113.6 224.8 318.2 426.4 3557.0 4115.5 1561.3 1666.5 1347.4 1380.6 493.9 1462.9 3083.9 3100.3 1549.0 1764.6 1502.3 1556.2 357.4 457.3 260.4 4960.9 577.8 1435.7 245.9 4174.3 1782.6 2009.5 252.2 1983.4 441.8 721.4 321.6 4987.8 395.2 690.8 2724.4 3999.2 430.0 637.6 2897.3 3497.0 440.8 752.5 1275.2 3651.3 1236.9 2703.3 389.0 1033.4 2029.1 2918.1 501.2 1063.2 718.4 1518.7 1776.8 2793.8 770.2 2047.5 1476.6 2236.2 792.1 1389.3 2102.8 3417.5 451.4 1009.0 1201.3 3419.2 642.8 1926.3 620.6 2194.0 707.8 1642.3 1696.1 2852.3 1838.9 2257.1 591.8 1245.4 1647.3 2890.6 646.0 1362.7 1201.0 1886.8 1833.4 2439.1 1682.9 2542.2 679.7 1301.6 1905.6 2107.2 554.0 1871.0 946.0 2191.4 1021.3 1632.9 541.2 1303.7 1985.3 2987.1 643.4 2212.9 1195.2 1919.4 783.3 2480.9 708.6 1632.9 492.9 1185.9 1987.3 3128.7 663.3 1944.3 1224.1 2230.9 507.3 1234.4 1751.5 2915.9 994.3 1951.8 862.8 1748.6 523.2 879.1 1611.4 2706.3 510.9 1183.2 1899.7 2850.6 1 1 107 310 355.9 439.2 321.4 5569.0 1034.3 4240.6 271.9 439.7 1097.6 4187.8 102.1 838.8 468.4 1374.7 4010.2 4430.1 978.1 4028.2 237.1 725.4 3023.5 3709.7 287.7 622.8 2818.7 3202.5 225.6 508.2 3255.9 3937.0 211.1 607.5 620.1 826.6 190.7 4915.8 2706.6 3551.0 323.3 968.3 664.7 995.3 3065.6 3788.0 1246.5 3994.3 353.7 867.8 452.0 1274.2 338.3 5558.1 409.5 886.2 502.2 6167.0 336.8 869.1 3818.2 5101.1 412.5 844.9 535.3 4530.7 548.5 1074.8 195.7 5741.1 391.6 996.9 375.6 6500.8 631.8 1563.9 328.6 5536.3 810.7 3218.8 299.2 1800.3 552.1 928.1 573.5 5312.4 477.7 1038.5 2819.9 4855.8 533.1 1095.3 786.8 4629.8 751.7 1187.2 2569.6 4548.9 2079.7 3266.6 538.9 1402.8 1044.9 3118.8 511.0 1400.1 935.4 3248.8 678.6 1858.8 597.3 1265.2 2572.7 5044.7 554.9 1177.1 852.6 5068.1 521.2 989.8 593.3 5618.1 453.2 1044.7 457.0 6005.4 536.7 1062.2 677.5 5415.1 606.2 1162.6 2203.9 5421.1 700.5 1522.2 2071.2 4104.7 739.7 2190.4 831.2 2773.3 714.4 1523.5 575.0 4243.3 1 1 117 503 1082.8 4776.3 75.6 231.1 3996.7 4854.4 55.0 272.2 435.6 664.2 52.1 5412.8 970.3 4311.0 99.9 375.7 243.4 562.3 241.1 5523.1 386.1 705.4 3336.8 3744.3 2963.4 3753.8 349.2 535.7 4163.3 4414.6 192.1 399.0 3452.7 3943.3 403.8 779.4 564.0 955.4 3676.2 4815.8 441.9 649.1 448.8 4488.6 465.4 871.9 447.6 5520.9 1131.8 4754.7 211.1 880.4 1152.3 4495.6 304.9 896.1 3018.1 4187.7 398.9 800.9 2955.0 4290.7 274.2 633.3 1080.4 3746.4 321.3 804.6 1278.8 4168.7 343.5 1111.3 3041.8 3795.9 338.9 968.9 1236.4 3951.0 243.7 795.8 1065.4 3883.4 328.2 974.5 1109.6 4201.1 195.7 817.7 1282.5 3819.5 294.8 730.8 3033.6 3859.5 264.7 770.9 2950.6 4195.9 217.5 572.2 1297.5 3717.0 274.1 995.9 1210.0 4006.5 229.2 975.6 2369.1 3730.8 238.3 1010.2 999.8 3425.8 189.8 1296.1 921.6 1604.9 235.9 3656.1 2092.9 2860.7 478.1 1767.7 1070.8 1514.3 1811.0 2917.2 2059.4 2747.1 537.2 1547.6 1091.3 2930.0 235.3 1158.1 604.9 1369.3 176.5 2654.3 592.1 1379.0 215.3 2860.4 1 1 465 808 862.1 856.0 13278.0 13850.8 9869.9 12004.6 588.6 1372.2 9820.3 14340.0 631.1 1795.5 10493.0 13361.6 679.3 1976.6 10674.5 12986.2 730.5 2539.8 1765.4 2963.9 10672.2 12955.2 7768.8 10536.7 946.7 3330.5 8798.9 12363.9 896.2 2627.9 9082.9 11734.1 870.5 3107.3 7835.6 10857.6 907.1 3647.4 1956.1 3555.4 1049.3 18400.7 1987.9 3530.3 901.6 17566.5 8225.8 11367.2 931.8 3213.1 8511.0 10406.6 1143.3 3218.8 2604.6 4046.6 8193.1 10590.1 7097.9 9316.1 1376.2 3258.2 2366.0 3979.0 1484.3 11683.0 2310.5 4359.3 7382.4 10117.9 7408.2 9422.8 1765.1 3203.9 7787.0 10638.8 1522.1 3015.2 7900.2 11225.5 1136.8 2685.2 7571.9 10555.1 1178.9 3182.2 2607.6 4604.1 1605.9 12979.9 2590.4 4181.6 1422.3 14033.3 2480.2 4377.4 1477.4 14141.9 7969.4 10217.0 1176.3 3979.4 7246.0 10247.1 997.8 3176.3 2886.9 9998.6 957.3 3869.1 1904.4 4433.5 1232.5 10178.2 1689.4 3689.7 1419.9 10499.7 1843.2 3899.6 5569.6 10282.3 2635.4 9641.2 1473.3 4413.3 6104.7 9897.5 1493.1 4354.8 6137.7 9762.9 1412.8 5146.8 2839.6 5251.1 1508.8 12784.5 5943.1 8367.9 1863.3 5802.8 1 1 87 313 199.2 574.8 204.2 5541.5 256.1 69.1 155.1 5345.3 169.2 306.4 144.2 4578.8 2624.7 2786.1 451.1 347.7 379.3 316.6 141.1 4971.1 2060.0 2307.9 115.1 381.3 2189.3 2064.6 162.0 652.0 538.0 569.9 153.5 3712.5 2360.2 2545.9 358.1 458.7 467.8 609.0 160.0 4261.2 2248.1 2534.9 124.6 512.1 2173.4 2572.9 123.0 604.9 414.1 688.2 170.3 4230.8 601.1 2290.4 175.7 1108.5 387.7 634.9 203.2 4811.0 375.7 583.3 45.3 4481.3 407.7 483.7 175.3 5067.9 460.0 669.2 273.4 4460.7 1723.4 1978.4 149.6 1316.8 459.0 835.9 168.2 4200.1 767.3 2428.3 221.5 1092.5 1707.9 2237.4 187.9 853.4 912.3 2389.3 250.1 696.7 1702.2 2295.2 194.1 1036.6 641.9 1053.9 176.2 3841.7 1757.2 2092.5 395.4 1513.6 666.7 881.0 2030.7 3177.1 1429.9 1686.3 407.6 1497.8 703.3 950.1 322.8 3457.7 1769.4 1970.0 185.6 1245.8 1845.3 2047.9 390.6 1027.7 1694.3 1867.5 225.8 1388.2 799.8 1070.5 153.1 2901.8 1638.4 1724.5 160.9 1037.4 1571.4 1811.7 189.6 1029.9 1584.1 2063.8 189.2 1126.5 1 1 90 286 315.9 892.5 257.7 5531.2 3105.0 3179.1 184.1 1314.7 862.0 3184.9 1403.7 560.3 2465.8 2983.1 940.7 670.0 801.9 3237.4 134.6 551.0 2230.5 2923.2 269.7 551.8 1812.5 2805.5 119.7 589.4 662.0 1003.3 254.7 4395.0 581.1 2105.0 168.1 4354.1 458.2 533.9 433.4 4478.0 2004.7 2189.3 279.3 847.0 538.7 1805.6 2593.2 3298.3 558.0 1396.6 2746.3 3606.1 1673.0 2323.4 493.3 985.1 774.0 2818.9 484.0 2385.9 524.3 942.5 2717.2 3904.0 758.1 1420.1 668.6 3688.5 562.2 933.4 2213.9 3681.3 1670.3 2293.1 614.8 1239.0 1817.7 2190.6 1076.8 1427.4 1884.7 2311.5 442.8 1303.4 908.9 1571.7 311.6 3428.6 1959.1 2235.2 284.0 1583.2 937.2 1791.3 438.6 3713.7 572.6 978.2 1872.1 3204.5 840.3 1515.3 2222.9 3422.9 855.1 2507.8 612.7 1574.5 1565.3 2377.6 366.8 1221.9 1677.9 2137.4 444.4 1365.8 1093.7 1136.3 1773.9 2881.6 635.8 1014.4 1764.3 2947.0 1349.2 1734.4 832.6 1383.8 1461.1 2201.0 317.4 1216.5 1720.6 2159.2 365.3 1108.2 1528.2 2050.2 281.6 1100.0 869.2 2053.5 369.6 1208.1 1 1 88 396 140.9 1096.9 344.8 6266.6 38.8 774.7 4222.7 4503.0 157.6 609.8 110.5 3477.7 225.2 219.8 3463.7 3497.7 2192.1 2383.5 275.1 406.9 203.6 715.6 2234.3 2840.6 175.3 917.4 187.2 2479.8 2543.3 2859.6 429.9 216.3 470.3 564.0 2767.0 3652.9 1969.9 2161.6 447.1 629.3 1938.0 2385.7 1056.3 1564.4 541.1 589.8 2988.5 3376.8 340.9 764.4 326.4 2679.1 1959.4 2070.3 366.2 724.4 304.8 637.8 1929.1 2633.7 430.7 1038.7 409.1 2308.5 1904.6 1957.5 386.3 806.8 668.4 1024.3 1805.7 2390.0 1713.0 1919.7 398.6 625.7 1979.7 1973.6 397.6 551.0 430.7 747.3 1747.2 2126.7 1428.1 1498.3 583.5 800.6 652.3 903.5 1823.7 2400.8 1737.3 1698.8 479.6 844.0 1719.8 2051.7 465.6 804.8 519.0 1019.0 1695.6 2104.1 722.1 2055.8 474.7 729.6 384.6 723.9 485.7 2581.6 276.1 684.9 1628.9 2497.3 436.8 694.3 831.4 2437.6 330.3 635.6 684.4 2907.7 370.4 673.2 1097.6 2562.5 443.6 879.3 810.9 2617.9 1241.3 1387.8 355.5 1483.9 1409.4 1559.2 240.8 1354.7 846.7 1109.7 287.1 2103.6 1 1 81 453 -140.9 -161.3 973.5 6265.0 374.3 364.8 755.7 3583.2 1231.4 1125.9 517.6 795.4 202.7 220.2 986.3 1527.0 204.3 489.1 -200.7 1278.0 126.7 432.0 454.6 1133.7 576.1 579.7 229.1 773.1 788.4 1175.2 77.7 456.5 1028.1 941.2 185.2 678.5 775.6 819.3 406.3 889.6 894.1 890.3 323.0 626.6 1098.2 1614.3 -169.0 227.5 907.6 1197.8 98.7 413.8 785.8 1014.6 104.9 738.9 632.5 712.1 67.1 821.3 427.2 855.9 138.7 831.9 493.1 829.7 265.2 879.5 356.7 474.8 170.3 1233.2 331.9 648.5 147.8 1164.0 359.5 440.5 156.6 1193.2 396.7 719.0 165.9 1081.7 282.1 581.4 92.1 1470.3 527.7 644.6 158.4 1247.3 485.1 710.0 192.3 1132.2 434.4 541.2 224.2 1207.8 418.0 802.7 377.0 1159.1 549.2 1001.4 156.7 620.7 492.4 968.4 3.5 493.9 340.2 819.3 105.0 1095.5 153.7 647.6 233.9 1199.1 412.7 664.2 224.9 1194.9 542.8 938.4 -9.6 991.3 639.9 832.2 96.1 1016.1 583.3 820.3 227.1 1126.3 497.7 785.8 302.7 1024.6 630.4 934.6 202.2 968.9 1 1 88 479 1495.9 5966.1 205.8 438.1 684.8 1037.8 228.6 6432.9 4537.2 4893.8 179.3 572.9 644.3 1248.0 3827.7 4150.2 630.4 1173.8 304.2 3747.2 1547.0 4394.5 191.8 663.9 1287.6 4138.0 219.4 698.7 777.2 1467.8 326.3 4980.4 687.1 1213.0 363.2 5567.6 624.1 1243.4 357.3 5621.4 589.1 1311.9 3066.3 4749.3 1157.5 4457.9 373.6 1015.9 1334.3 4091.6 300.5 960.6 2702.4 3868.1 332.8 1006.1 746.8 1471.6 2443.8 3662.2 575.5 1070.0 532.2 3669.5 471.1 1189.5 2728.5 4097.0 551.7 935.5 2581.0 4525.9 722.4 1325.8 615.1 3504.7 2347.8 3222.2 384.4 1438.5 2378.5 2951.3 358.1 1484.0 965.2 1565.9 377.3 4082.8 1082.3 3199.2 414.4 1782.1 1091.0 1771.3 363.0 3084.5 2413.8 2882.9 487.0 1790.0 894.9 1629.5 2064.2 3588.6 782.2 1586.7 1820.2 3442.7 1189.7 3024.8 701.7 1820.2 1897.5 2539.0 449.0 1942.2 742.6 1273.8 506.7 4314.2 703.1 1201.5 612.6 5071.1 803.4 1285.5 1764.3 4361.7 1567.3 2205.4 929.6 2708.9 1021.1 1451.4 1626.3 3683.9 1621.4 1909.2 583.1 2189.2 808.0 1234.8 428.6 3488.6 1 1 120 534 4141.7 4714.4 -320.0 -102.6 -62.4 -19.0 5203.6 4303.8 975.6 5174.9 -102.2 121.4 8.4 230.1 -45.6 5011.3 381.4 647.7 3533.3 3896.4 938.8 4392.1 388.9 1460.1 49.8 218.9 3962.8 4236.1 3308.3 3334.0 412.4 538.2 3684.0 4522.5 365.0 -446.7 604.8 1942.3 3794.2 3928.9 334.8 704.4 3778.8 3733.9 2658.1 3143.3 561.6 574.4 3517.1 3799.4 991.7 956.9 3449.0 4240.0 877.4 281.9 849.3 1983.9 22.5 3767.9 822.3 849.6 2999.3 3452.8 2771.0 3260.2 499.7 691.3 733.7 821.2 2916.0 3283.1 939.1 4075.2 451.5 639.8 3370.9 3995.6 -3.6 231.6 3687.9 3898.4 179.5 171.9 3354.4 3912.1 74.8 1735.0 1113.0 1513.4 238.4 3321.8 2703.6 3505.6 276.1 963.5 1015.5 2127.4 296.9 3287.0 1027.8 4202.9 185.6 471.5 968.4 4270.6 307.2 410.3 1145.4 4116.6 85.6 521.4 886.6 3937.1 258.3 493.7 988.2 3797.8 237.4 556.2 2110.1 3658.1 231.2 423.5 2087.4 3456.9 372.6 1190.9 729.4 1402.2 2002.0 2001.0 826.6 1539.2 1960.1 2214.0 1732.2 2250.2 442.3 1009.6 721.0 1644.3 373.5 2392.5 1 1 111 505 809.2 624.1 3506.2 4015.6 2285.1 2454.5 302.4 391.4 1152.1 2498.8 52.5 496.3 827.3 927.1 273.3 1889.7 1695.0 1937.5 207.2 732.7 1531.5 2098.3 126.5 530.2 955.1 1450.0 315.2 1504.6 1141.0 1631.2 291.2 1702.3 1608.0 2113.5 273.5 787.1 909.2 1791.1 158.7 1671.2 1626.0 2321.5 17.6 747.0 1633.6 2147.9 252.5 752.8 1732.7 2125.1 190.0 839.1 1141.8 1434.1 254.6 1724.8 1048.0 1765.3 337.1 1545.8 1143.3 1875.0 648.7 1136.4 1564.3 2122.1 154.3 933.9 1095.4 1899.8 301.2 1557.2 1116.5 1612.5 526.4 1325.2 1073.1 1689.7 366.6 1289.7 1146.7 1607.9 706.5 1522.0 1216.2 1956.9 393.1 1168.0 1119.0 2013.5 355.6 933.4 1325.0 1912.8 234.8 882.6 1078.3 1822.2 273.0 1067.4 1063.2 1684.5 604.7 1475.1 1057.9 1671.0 263.0 1627.3 847.3 1725.5 344.1 1546.4 776.6 1539.5 412.3 1798.6 983.4 1537.3 511.8 1582.5 951.1 1793.9 358.6 1391.3 941.0 1618.0 226.8 1545.2 808.5 1566.5 331.1 1642.4 993.1 1581.0 469.9 1558.9 1144.5 1696.1 390.4 1229.9 1111.1 1774.1 276.8 1262.6 1 1 120 648 300.8 51.4 4243.2 3916.7 369.9 710.7 3726.2 3416.4 588.3 3645.5 210.9 460.3 137.8 450.3 3544.2 4141.5 110.3 307.3 326.5 4284.3 377.0 395.7 3564.5 3994.8 2659.6 2508.0 391.2 510.1 312.5 462.2 326.6 5248.7 313.2 718.9 247.5 5060.2 730.8 3282.9 200.6 1067.9 444.5 761.9 231.2 4680.6 317.8 698.7 3060.2 4470.2 819.8 2880.5 512.2 1376.9 378.2 769.7 518.5 3973.0 374.6 653.4 2855.0 4051.6 295.1 791.6 2914.6 4157.5 745.1 3133.7 687.9 1232.1 792.2 2961.6 456.3 1110.0 1829.0 3109.7 240.3 1016.1 732.0 1218.8 396.0 4143.0 572.8 1096.3 578.8 4604.4 590.4 1004.1 2300.8 4350.6 570.1 2548.5 760.1 1870.7 942.9 3029.5 486.1 1460.6 1696.1 2811.3 437.5 1491.7 798.0 1612.2 299.0 3366.0 977.7 2527.5 358.7 1608.2 1868.4 2633.5 317.5 1145.2 1741.1 2419.3 489.9 1420.6 905.9 1526.2 1789.7 2644.5 827.1 2423.6 689.3 1990.3 495.6 1303.4 710.4 3595.1 508.4 1092.9 1888.0 3877.1 476.7 813.0 858.4 4098.6 524.0 896.9 506.4 4650.1 582.5 1039.5 485.2 4373.1 1 1 89 450 72.8 -120.9 4436.9 4337.4 2965.8 3060.9 8.2 -475.6 304.7 302.2 214.9 4826.1 738.4 3219.6 187.9 76.4 804.1 1072.8 2247.9 2122.4 451.4 454.2 2275.8 2540.9 2245.7 2210.1 137.5 223.0 2725.4 2850.8 116.8 -27.0 424.7 420.1 2848.8 3024.9 1960.1 2297.1 373.6 524.9 471.6 569.8 2588.6 2610.2 787.1 2706.1 284.1 553.0 205.6 440.4 248.0 3290.3 579.6 2642.9 74.7 415.2 379.6 674.9 2196.7 2224.0 325.2 506.9 241.1 2450.0 1607.4 2021.0 217.2 760.6 461.8 653.2 140.7 3081.7 260.0 647.9 1858.5 2509.4 484.7 2263.6 374.2 681.3 605.6 2280.6 345.8 463.3 337.1 862.1 1492.0 2223.9 422.6 778.3 397.7 2271.9 485.6 2050.6 238.1 994.4 222.7 767.8 167.3 2696.1 405.1 673.9 176.1 2745.0 567.3 1717.0 64.6 1175.0 329.8 811.7 299.5 2504.5 381.5 813.9 1313.2 2429.1 372.8 1802.3 563.4 1280.0 341.9 587.8 325.2 3489.1 344.6 716.7 436.9 3425.1 802.3 1052.8 990.7 2548.3 877.9 1137.6 899.8 2017.1 1386.0 1453.2 404.3 1373.7 957.8 1452.0 319.2 1743.4 1 1 122 166 790.5 428.6 3894.6 3697.8 736.5 2355.0 179.3 284.5 2095.0 2462.0 482.9 387.1 2014.0 2169.4 51.1 312.3 1866.8 2114.0 203.0 673.0 384.6 478.9 242.2 4013.6 1665.6 1892.2 189.1 401.0 766.7 2329.9 102.2 416.6 1667.8 1905.8 183.2 339.8 404.5 674.2 2116.6 2569.3 411.1 561.4 2048.3 2354.9 1678.5 1693.9 307.7 664.6 1717.5 1816.8 312.7 708.5 446.6 802.8 1848.0 2558.5 1410.2 1636.0 549.8 878.4 1527.3 1872.2 245.2 515.6 578.7 2189.7 252.5 608.0 652.0 2401.1 286.2 640.3 1270.9 1813.4 224.6 621.1 1286.3 1692.8 294.0 493.9 575.5 798.2 1764.4 1869.3 353.1 728.5 1808.1 2016.7 510.2 940.5 1978.6 2134.0 1353.3 1882.9 398.9 803.9 1476.1 1925.1 331.0 673.7 531.1 867.9 382.8 1991.9 400.6 619.3 1727.1 2075.1 459.4 724.2 1538.1 1836.1 839.0 1198.9 692.4 1079.7 464.0 746.8 1628.6 2003.5 362.1 673.7 1690.3 1956.7 826.5 1193.2 626.5 1229.7 490.5 792.8 1377.4 1777.2 1025.3 1352.5 488.7 912.7 981.5 1141.6 481.5 926.1 613.1 915.0 1129.2 1708.9 1 1 82 533 315.3 449.5 227.9 3990.9 353.1 509.9 2558.6 2601.6 375.6 404.7 142.2 2214.1 324.0 341.5 1690.0 2092.8 342.2 436.6 183.2 1947.4 619.8 2081.8 153.4 411.9 364.2 654.6 126.3 2309.1 528.6 641.3 187.0 2226.1 1606.4 1831.5 122.9 515.3 391.1 721.9 221.4 3009.4 339.1 504.6 207.4 2959.6 373.9 563.3 277.1 2432.4 342.3 667.1 1132.5 2117.6 346.1 566.6 261.1 1924.6 593.2 1594.9 164.7 722.7 327.1 782.0 142.8 1946.8 496.7 1585.1 208.7 786.1 348.9 613.4 261.3 2027.6 487.9 726.9 967.6 1942.8 474.6 1482.4 287.5 889.5 456.2 870.8 241.9 1688.5 567.2 1511.9 201.3 715.1 528.4 1696.1 222.0 715.0 542.3 1537.4 164.6 725.5 489.9 835.6 184.2 1682.3 434.3 706.6 277.3 2045.6 332.2 729.3 925.7 1816.6 319.7 639.4 949.4 1726.9 342.1 739.8 981.3 1594.6 507.2 1261.4 317.8 1001.6 873.9 1336.3 193.7 867.5 652.3 1534.9 155.2 760.2 578.5 1431.9 208.3 643.0 932.6 1412.6 223.3 702.4 874.3 1280.9 214.2 705.6 561.4 841.5 698.3 1344.8 1 1 109 730 430.3 43.6 4214.0 3669.5 3079.1 2909.3 146.8 1925.9 205.3 392.3 292.7 4636.5 704.2 3703.5 206.4 553.0 305.0 1100.0 4134.0 4516.4 840.5 1290.7 2796.9 4104.4 2960.0 3757.6 284.4 1053.3 3037.3 4593.9 323.2 444.6 639.2 1492.4 2768.7 3185.3 2307.2 2945.5 660.5 691.8 627.3 1365.0 2854.5 3232.1 553.5 3451.1 1242.1 1546.2 1012.3 668.2 370.0 3169.3 927.3 3272.3 764.0 910.6 478.0 1236.0 2667.0 3999.2 405.0 852.1 2481.8 3309.5 731.0 1120.9 353.5 2679.8 874.8 3395.0 261.3 676.4 630.8 1399.6 628.1 3990.7 646.4 1705.0 1958.0 2612.9 791.5 3829.9 402.3 676.7 1102.0 3283.7 388.8 916.0 1142.4 1254.9 2068.7 3022.2 670.0 1424.0 505.5 2522.5 581.8 2520.6 356.2 1621.5 472.2 1398.7 272.4 3480.2 437.5 1499.5 271.9 2290.9 611.2 2179.2 274.1 820.4 422.9 1281.2 293.9 1340.8 359.9 1238.0 1498.1 829.2 410.1 1804.6 333.1 1062.2 342.5 1123.5 311.4 1501.4 681.5 1060.2 400.1 1664.3 617.0 1496.0 355.5 1519.2 945.3 1806.2 635.8 2590.0 1337.5 2162.8 608.4 1730.3 1 1 94 520 4245.3 4646.9 245.1 1038.0 1218.2 4430.4 391.9 522.2 497.3 643.9 165.8 4682.7 548.8 831.2 2951.9 3532.8 971.4 1094.8 301.4 3038.3 3060.5 3105.7 220.2 780.9 3147.3 3489.4 196.5 417.5 2998.4 3730.6 195.5 1243.4 773.8 1378.5 2432.0 3022.9 1069.2 3795.7 366.4 923.4 2261.7 3220.9 160.0 1528.0 740.5 1279.5 321.3 3888.7 616.0 1030.1 359.7 4245.4 902.2 2744.4 313.6 2614.3 615.1 1716.1 321.8 3187.1 466.1 1124.2 832.8 4101.3 505.1 1217.3 2189.6 3430.2 1159.0 3142.1 481.7 1269.6 988.3 3561.6 307.4 1158.8 1000.5 1869.3 290.2 3610.5 2252.5 3292.7 279.8 1328.7 1082.2 1828.7 1776.7 3350.6 1955.9 2834.7 550.7 1914.5 2395.7 3340.2 352.9 748.0 2427.9 2535.7 261.6 1379.6 2012.6 3060.4 349.4 1890.4 930.2 1318.1 476.8 4154.3 726.9 1227.2 1891.2 3757.3 1519.6 2123.9 498.3 2206.3 846.2 1527.8 393.1 2248.9 1770.4 2270.9 671.2 2020.4 778.8 1579.9 1577.6 2857.6 876.1 1414.6 1529.9 2413.1 1734.2 2318.9 713.0 1829.0 1131.7 1788.0 414.7 2514.8 1914.5 2673.9 325.0 1217.2 1 1 112 852 496.1 595.4 333.3 6286.4 649.7 855.8 4587.5 4714.4 2310.2 2140.2 313.7 2500.1 3269.5 3914.7 319.6 568.1 3101.8 3484.9 225.8 572.0 910.6 2512.4 1639.6 1833.1 920.8 2315.2 233.2 2850.4 2308.8 3493.9 218.8 744.0 2077.3 2622.1 336.6 2750.0 2130.2 3163.8 300.9 892.2 1528.7 2164.8 1917.7 2594.9 875.9 2530.5 1606.5 2295.8 834.7 1176.9 393.5 2983.0 2364.2 3047.2 271.9 1066.2 1122.6 3473.3 305.0 933.8 1752.6 2516.0 231.9 2206.4 1865.0 2532.5 278.6 2424.1 1019.4 2389.7 218.4 2379.5 1921.1 3338.5 294.3 1050.1 1749.3 2556.3 313.3 2197.0 1840.0 2624.0 340.3 2276.2 1536.2 2866.3 325.7 1177.6 927.6 1573.0 323.7 3426.1 1114.4 2111.4 305.2 2513.9 2130.4 2757.5 305.9 1246.0 1045.8 2258.9 436.6 2643.3 1493.9 2089.5 1525.8 2653.8 878.5 1625.7 1450.8 3096.9 1479.5 2054.6 1186.5 2171.5 1409.9 2161.1 938.9 1869.7 1467.0 2768.8 395.7 1371.2 1562.8 2312.2 333.8 1822.3 1221.5 2843.5 355.9 1362.0 1782.0 2861.2 475.2 1518.3 1416.9 2113.3 1061.4 2480.3 949.8 1434.5 1243.2 2996.9 1 1 92 550 4368.0 4632.7 113.3 228.7 1031.7 4446.1 158.5 162.5 1210.9 4948.0 34.1 284.6 1147.7 4991.4 -16.3 112.9 1016.8 4677.0 77.2 365.0 372.9 694.1 213.5 4857.8 858.8 3604.8 73.3 422.0 1155.1 4502.4 97.1 452.5 3282.3 4092.4 74.9 396.1 404.5 866.2 232.6 5208.9 1063.2 4157.7 60.6 391.6 3414.8 3990.3 75.6 446.3 1022.1 3566.2 223.3 803.7 355.7 920.5 238.8 5078.2 824.1 3563.2 191.1 920.8 423.6 852.6 287.1 4522.3 387.7 840.9 2737.5 3807.3 2183.7 2876.4 592.1 1246.7 591.4 1023.0 2697.7 3662.9 425.0 1148.8 2625.2 3581.5 947.1 3250.5 453.0 1150.6 524.0 1078.2 467.8 4353.6 603.3 1073.2 2669.7 3810.5 2039.2 3201.9 585.4 1028.6 999.2 3529.2 345.0 807.4 1094.6 3543.6 348.5 712.6 2215.9 2706.1 507.8 1065.4 877.1 1280.6 2152.0 2848.4 2065.9 2660.6 578.6 1225.8 2214.1 3068.8 556.7 1103.7 877.6 1172.1 2015.2 2858.8 773.7 1125.5 523.8 2433.4 2001.7 2549.1 304.4 1364.9 837.4 1365.8 310.8 3153.5 810.9 2399.4 234.5 1568.3 796.4 1497.6 279.7 3341.5 1 1 104 584 241.2 285.5 4145.0 3959.3 3464.8 3258.6 201.2 209.0 508.4 369.2 209.5 4316.5 951.6 3609.6 249.8 389.7 521.1 818.0 2528.1 2847.6 629.1 682.1 2671.2 2975.7 2382.2 2431.5 151.7 484.5 2779.9 3004.6 349.5 496.4 642.9 1020.6 2058.9 2294.5 2079.4 2800.4 355.1 576.6 594.0 782.1 1891.0 2310.0 995.8 2772.2 459.5 860.2 555.6 1035.9 330.6 3622.4 756.3 3140.2 419.4 885.1 426.1 947.7 2255.9 3092.9 544.6 922.6 507.0 2892.6 1996.2 2444.4 329.4 1001.8 731.6 787.0 483.2 3523.3 575.6 845.8 1828.5 2937.5 806.5 2572.2 492.1 1045.8 849.0 2387.4 466.3 1059.2 620.2 1093.9 1913.3 2618.6 595.3 1182.9 531.0 2592.3 717.7 2523.8 364.7 1220.2 551.9 1048.8 238.3 3171.1 560.2 1001.2 280.2 3165.3 715.3 1951.0 312.8 1704.3 458.2 958.8 436.5 3077.0 431.0 916.8 1602.0 3041.3 665.2 2190.9 533.7 1619.6 493.4 1179.9 371.6 3208.9 608.3 989.6 367.3 3142.5 1154.4 1638.2 816.1 2104.8 1194.7 1383.2 1059.6 2104.0 1616.3 1845.3 518.5 1547.9 1079.0 1850.9 272.9 1924.2 1 1 123 436 7211.7 7918.3 -409.2 240.5 6802.1 8412.6 136.5 -163.2 6238.2 6448.7 231.8 456.1 5834.1 6768.4 139.9 321.6 957.4 1212.3 -18.2 8916.3 822.0 743.5 5377.4 5693.0 4766.9 5010.8 541.4 264.5 1089.1 1526.4 5915.1 5772.3 5025.7 6082.7 627.3 245.9 6152.6 6183.5 575.7 888.6 5866.9 6611.2 392.3 619.7 1898.2 7550.1 331.2 685.8 5418.2 6660.2 361.7 690.1 1018.6 1726.2 425.5 7523.4 1364.3 7051.5 259.0 949.1 1905.3 6963.7 118.7 519.4 4152.5 5544.9 330.7 678.1 1645.5 5549.1 303.8 685.8 937.7 2100.0 338.0 6275.5 959.5 1690.3 637.9 6279.7 1195.5 1988.0 3603.0 4899.1 3836.1 5380.5 430.1 1112.9 1696.2 5408.5 501.8 1549.0 1007.6 2183.9 537.8 6250.6 1540.6 5932.0 398.9 1272.0 1291.3 6006.0 522.2 1629.5 967.1 1981.4 372.1 5490.0 890.5 1705.9 650.6 6534.0 974.0 1744.2 3009.9 5055.5 3357.4 3949.5 839.4 1560.9 3863.7 4652.5 480.0 1697.5 4146.0 4952.2 499.8 1384.0 4206.3 4908.0 407.8 1164.5 3749.0 4928.0 358.2 1868.3 1350.1 2067.5 726.0 6495.2 1406.9 2034.9 3099.5 5660.6 1 1 109 580 3850.5 4602.4 197.6 450.8 511.0 710.9 226.3 6075.8 1130.9 5171.5 194.5 520.5 436.2 565.1 232.0 5119.2 382.0 643.3 136.7 4838.3 465.6 828.6 3121.6 3665.5 337.9 769.7 3000.3 3802.4 3180.8 3663.7 236.9 658.2 686.1 1081.1 230.9 4263.2 448.4 896.9 2685.8 3817.1 979.0 3643.8 418.5 823.6 1148.0 4001.7 198.6 711.6 954.9 4576.1 231.6 795.4 686.6 1470.4 369.5 4475.2 2636.4 3673.0 140.8 1229.6 1199.2 4163.5 247.1 646.2 1020.6 3807.3 247.3 714.3 977.2 4122.3 250.4 839.7 1146.7 3933.7 153.5 700.6 1058.9 3777.5 226.5 892.8 1009.1 3593.7 288.4 918.9 571.1 1772.5 377.8 3029.5 572.4 1453.4 2167.7 3559.1 561.5 1361.4 726.3 3083.9 908.0 3601.1 351.3 1220.7 881.0 3252.2 327.7 1208.8 637.2 1820.0 341.6 3206.7 969.9 3322.5 277.5 1601.0 1946.5 3637.6 261.4 1245.3 930.3 1732.7 301.3 3086.0 915.4 3208.7 318.7 1599.0 915.4 3238.2 264.2 1193.6 679.9 2007.4 270.2 2797.6 802.6 2872.8 219.3 1628.2 522.0 1474.8 465.0 3179.3 589.6 1391.9 1306.4 2965.4 1 1 102 549 1019.1 4597.2 -169.1 -326.2 402.8 481.0 287.7 5795.2 305.9 176.6 3708.5 4292.0 3291.5 2949.2 219.9 414.0 362.9 489.2 3415.1 3738.4 984.4 4397.6 260.5 90.6 119.2 339.2 295.8 5092.9 390.1 741.3 3304.0 3564.8 1024.6 3880.0 -46.9 128.9 937.1 3881.7 315.7 658.1 398.1 712.9 412.2 5832.7 370.6 662.5 3868.8 4737.4 471.0 821.0 3504.1 4046.8 2929.0 2784.7 389.0 1077.3 2896.6 3243.8 327.9 745.8 246.5 494.6 278.4 4811.4 602.3 865.1 -24.6 4814.3 2438.3 3069.2 338.4 1149.6 660.9 763.5 2777.9 4089.9 2754.4 2810.7 105.8 726.5 2856.0 3570.1 293.8 693.9 1110.9 3583.1 219.9 364.6 2780.7 3483.9 32.7 626.0 2664.0 2918.7 408.0 934.5 730.5 1194.8 2752.2 3319.2 523.2 792.6 2803.1 3412.0 1868.7 2254.4 467.9 992.0 2160.7 2658.3 179.6 1140.3 716.5 1151.9 275.1 3758.0 1807.9 2201.8 212.1 1348.8 484.8 850.3 238.4 4128.6 606.4 852.1 109.9 4031.8 520.2 754.5 211.5 4128.6 714.0 963.3 155.4 3617.4 1914.4 2250.7 206.6 1753.0 739.8 983.5 120.7 3930.0 1 1 121 318 439.4 480.6 277.8 5331.7 353.9 561.6 3769.4 3979.7 305.6 489.6 3598.4 3983.4 257.2 564.8 3425.8 3429.5 939.3 3680.1 370.5 583.2 493.7 782.1 3591.9 4174.2 2034.2 2490.0 305.1 750.9 524.0 697.8 562.6 4812.5 550.4 776.0 3027.0 3497.8 2648.2 2899.1 475.7 1079.7 629.1 967.7 297.9 4350.2 635.3 1064.4 327.3 4856.0 2655.7 3634.5 494.5 1360.6 729.6 1108.5 2744.5 4017.6 2561.0 2944.3 546.2 1323.6 549.2 1249.7 442.5 4218.1 932.8 3312.2 300.8 1323.0 481.3 1344.4 375.1 4451.7 1160.2 3402.2 314.9 1062.3 2379.6 3421.0 330.9 885.3 990.2 3536.4 294.4 796.5 994.4 3642.3 289.8 885.5 1244.3 3461.7 350.2 833.2 2066.9 3313.8 258.1 840.2 955.6 3198.7 366.4 1212.3 616.1 1260.3 689.8 4050.1 606.7 1356.1 2267.8 3491.7 670.5 2739.3 915.2 1688.7 673.5 1549.2 2192.5 3320.7 1584.2 2094.4 646.3 1795.9 647.6 1165.7 517.3 3910.1 787.6 1236.8 376.2 3644.8 1739.4 2447.1 410.1 1658.6 2033.0 2865.0 411.3 1097.9 1673.7 2180.1 558.4 1464.7 757.4 1287.1 1577.7 3111.4 1 1 119 279 395.1 258.4 218.9 5321.6 310.0 424.3 268.3 4917.6 409.1 439.7 3118.4 3842.7 864.2 3801.2 267.3 533.6 392.7 759.7 3612.6 3914.6 2877.3 2993.2 292.9 674.5 391.4 772.3 372.9 4632.3 928.2 3840.1 201.2 686.4 953.8 3597.1 181.4 691.2 387.7 1031.6 266.7 4340.8 822.5 3480.3 123.3 784.5 927.3 3387.7 226.0 655.7 527.8 1052.9 356.3 4115.4 454.5 868.4 2505.4 3771.3 447.4 1183.3 385.6 3451.5 888.4 3332.2 295.0 1363.9 422.2 1144.4 268.7 4382.0 780.6 3111.0 302.3 1350.9 362.1 1120.4 485.0 4172.1 467.6 1125.6 2163.6 3503.1 798.9 3035.3 547.3 1145.9 874.0 3336.0 247.7 1161.4 581.1 1543.8 356.5 4043.9 863.2 2829.9 325.7 1279.1 797.7 3024.2 258.8 1123.3 570.6 1456.4 339.2 3897.5 774.9 2745.3 268.3 1554.6 644.8 1435.0 263.2 3523.2 1801.7 2698.5 271.5 1480.0 1014.1 2980.5 235.0 1352.8 1851.7 2858.8 390.8 1302.7 647.8 1591.8 1752.1 3101.4 580.4 1527.8 527.9 2771.3 741.6 2915.2 376.4 1667.3 926.1 2667.5 250.5 1301.0 1713.1 2503.8 275.5 1190.6 1 1 89 424 386.7 268.6 4334.0 3980.7 909.6 3972.8 285.0 435.6 864.6 3618.0 265.7 428.8 812.3 3412.3 195.3 450.3 295.2 585.2 197.4 4141.8 740.1 3382.6 157.9 479.2 317.6 839.8 214.7 3449.1 790.4 3523.6 155.4 535.8 451.0 848.3 245.3 4465.0 430.6 744.7 2688.9 3987.2 728.5 2819.2 384.0 761.2 374.6 839.8 279.4 4819.7 2166.0 2937.8 221.8 785.2 852.1 2932.5 254.6 816.6 568.0 987.3 201.2 3456.3 1892.1 2690.1 272.5 801.0 617.2 1029.0 1933.3 2872.6 1742.0 2300.0 451.5 863.2 596.0 863.8 360.4 3110.0 435.7 734.9 1811.9 2818.0 424.9 769.9 2116.7 2964.1 441.9 860.4 2056.2 2719.2 828.5 2625.4 651.0 1091.3 1053.2 3042.4 384.8 835.8 2064.7 2888.1 330.9 836.4 1954.7 2675.6 275.0 785.8 1046.4 2969.9 214.3 667.9 1824.6 2764.4 316.1 741.8 1733.7 2412.4 397.2 815.8 747.0 1281.6 1301.2 1911.9 766.6 2249.7 545.4 1234.6 1484.1 2238.5 381.7 964.6 765.1 1205.7 1409.8 2033.7 642.6 2180.1 796.2 1435.2 520.6 1255.5 496.9 2826.5 426.3 949.8 1559.1 2752.8 1 1 82 804 415.0 472.8 523.0 6176.0 481.7 717.6 201.1 5090.2 966.3 3409.3 110.0 523.1 413.4 648.7 390.3 5077.8 372.9 603.2 3285.7 4299.1 412.6 557.4 3184.7 4008.1 373.4 694.8 2893.4 4215.8 384.5 678.2 346.1 3232.8 755.4 2712.5 325.5 1172.4 428.3 818.9 290.8 5199.5 413.7 752.3 316.9 4989.4 842.9 2927.6 274.3 1104.3 2210.4 2674.9 240.3 955.5 1952.1 2524.8 273.3 1156.9 600.7 1064.7 340.9 4956.1 576.9 1120.6 331.1 4387.4 954.5 2987.4 209.6 1369.2 662.5 1077.6 238.5 4762.9 2162.5 2562.1 318.2 1569.4 717.7 1118.7 276.3 4361.0 698.9 1148.8 259.9 4002.9 957.6 2893.6 299.3 1184.4 996.0 2831.7 283.5 1233.7 1776.3 2527.2 320.2 1561.9 685.0 1022.6 310.1 3653.0 517.5 888.1 544.9 4270.7 550.0 910.0 1997.0 3779.9 500.8 853.2 1771.8 3467.8 527.2 1131.7 447.9 2759.6 816.1 2332.7 356.7 1871.1 679.9 1294.3 300.8 3437.2 1601.8 2264.4 303.3 1605.3 761.6 2326.6 249.6 1861.2 580.1 1071.5 305.5 3371.1 428.0 804.9 463.9 3567.5 416.9 919.8 1385.7 3569.0 1 1 90 304 216.2 119.6 256.5 5302.1 288.8 304.5 175.6 4587.4 755.6 3178.6 119.6 32.5 702.4 3067.4 143.8 205.5 179.7 403.9 3166.4 3412.0 597.2 2939.0 106.1 225.4 590.2 2642.2 165.8 293.2 1978.3 2660.6 212.2 509.8 435.7 638.5 2436.2 2879.1 1933.4 2199.8 368.6 688.1 324.1 526.6 2546.6 2997.0 292.9 403.7 387.1 3067.0 332.1 603.5 172.9 4261.9 652.7 2361.3 161.3 743.7 830.0 2769.5 156.6 418.3 1741.9 2250.0 297.0 510.9 402.9 672.0 2676.4 3104.9 277.7 707.0 2368.6 3391.7 1423.5 1843.9 545.6 896.7 372.3 543.8 2294.1 2953.8 442.7 760.3 1904.7 2766.7 1301.2 1600.4 499.2 1079.4 442.7 716.5 594.9 2903.6 330.4 591.0 1823.6 2614.6 608.6 1873.4 441.0 956.6 1327.2 1700.1 466.4 782.2 445.1 709.2 1824.9 2655.6 381.1 519.7 2005.9 2624.5 1016.2 1340.2 612.7 1141.9 428.5 493.1 1907.5 2565.2 407.7 466.7 1841.4 2569.6 839.5 1107.5 712.9 1406.9 304.4 553.4 509.1 2507.9 317.0 563.9 1379.3 2368.5 304.8 488.6 1238.6 2071.0 453.9 1230.0 500.3 1089.9 1 1 107 425 1228.6 5755.4 418.9 325.8 4265.1 5278.0 389.4 219.8 3974.9 5831.1 214.0 420.6 3587.8 5055.1 193.6 1102.7 927.5 1398.4 150.2 6732.7 769.2 1302.1 4282.0 5054.3 725.2 1425.5 3895.9 4816.3 301.2 2138.0 694.9 5524.4 1012.2 1125.5 511.3 8866.3 596.9 876.3 705.6 10458.9 712.6 1501.4 316.8 9472.2 3958.3 5092.7 375.1 2291.1 4328.0 4597.1 380.1 791.6 1534.5 4860.7 131.9 1488.0 3526.5 4466.5 57.9 1653.0 1342.1 4400.3 256.8 1599.7 657.6 1244.4 245.3 6535.8 637.9 1423.0 429.5 6104.5 918.2 1498.0 2616.2 5334.0 2876.0 3565.0 767.5 2359.0 1172.6 1900.2 2292.4 4165.0 1463.3 4500.8 582.2 1684.9 1776.8 4863.8 630.6 1770.8 3169.4 4430.4 467.3 1860.5 1386.7 2315.2 602.4 5061.4 1532.6 4493.5 267.2 1747.1 1107.3 2019.9 153.5 4554.6 1353.9 3861.7 168.1 1785.6 834.3 1790.0 306.3 5352.9 588.2 1418.7 331.7 6098.0 721.7 1302.5 303.0 5788.7 599.0 1378.7 2293.3 5428.8 972.0 3237.9 330.5 2293.9 1246.9 3937.0 658.6 3174.6 1071.9 3564.3 375.5 2091.0 909.3 2214.5 468.9 5646.7 1 1 110 408 5112.6 5737.9 410.7 5045.0 735.1 1155.1 289.6 8346.9 598.5 885.6 4685.3 5907.4 2683.5 2612.3 330.3 4760.1 4016.7 4766.2 281.2 744.5 3858.9 4781.4 283.8 635.4 3244.9 3934.1 267.1 3188.8 1233.8 4754.2 302.0 3531.7 1435.0 4685.0 2111.1 3267.2 3477.5 4364.4 338.0 999.1 1392.7 4472.7 455.7 1219.9 2894.4 4162.7 980.1 1637.4 865.5 1528.5 3343.7 4411.2 1898.3 2142.8 630.0 3883.3 2852.9 4298.1 457.6 1201.2 1899.6 2498.3 2363.7 3233.2 2392.7 3121.5 560.7 2783.5 2670.0 3530.1 643.2 1462.4 1067.7 1647.4 2364.9 4066.3 889.3 2458.1 549.7 3353.8 1831.9 2662.2 502.7 4442.2 2088.8 2770.9 605.7 4729.9 2207.8 2927.6 2576.3 4368.1 1081.6 2798.6 931.7 4119.7 1990.6 2773.5 2160.8 3998.6 2487.9 3054.1 690.3 2305.3 2437.3 3059.1 1076.5 2124.9 1037.6 2496.2 542.3 3551.9 1049.9 3213.6 1200.6 2485.4 912.5 2202.2 574.0 3423.5 980.1 3305.7 1298.1 2595.6 1098.5 4074.2 601.7 2378.4 1203.6 3670.3 1117.8 2347.6 1913.3 3743.1 524.2 2001.5 1374.2 2332.8 435.8 3967.3 1073.1 3474.3 476.3 2642.0 1 1 103 853 384.4 450.7 1322.5 6129.9 1031.8 611.2 134.9 5785.4 324.3 481.6 227.8 6101.2 543.2 1110.4 260.3 5825.1 345.9 546.2 1297.7 5136.7 1005.4 3577.5 814.3 1401.7 723.0 1414.7 218.6 4569.2 3260.4 3164.7 295.1 734.5 483.0 837.8 3234.3 4965.5 1162.5 1264.1 3400.9 4843.6 2348.2 2417.4 681.5 1976.9 569.9 1025.2 2905.5 4484.2 475.2 793.4 349.0 3515.7 677.7 1123.0 357.3 5177.3 2470.1 2604.2 1143.6 1784.2 579.5 930.4 355.2 4234.7 1211.0 1163.7 290.3 4692.1 2443.1 2875.1 304.4 1408.0 2659.5 3026.3 874.1 1700.4 2448.4 3054.2 327.3 827.8 2656.8 2991.6 282.7 811.9 2320.1 2648.6 558.4 1500.7 914.0 1341.6 465.1 3998.7 2126.7 2765.1 359.8 1305.6 1033.0 3232.5 298.3 1872.4 2075.7 2452.4 298.8 2057.2 665.0 1364.5 448.6 3800.6 604.1 1261.1 1749.4 3361.6 860.2 2875.7 550.5 1775.8 626.3 1699.9 407.9 3638.5 819.8 1190.4 299.6 3598.5 2058.2 2471.9 350.4 1587.5 1962.8 2624.1 459.7 1868.0 887.4 1513.1 1885.9 3583.5 1221.9 1340.2 527.1 3052.6 1650.3 2502.9 374.3 1814.4 1 1 115 514 1127.1 4509.4 259.1 387.0 399.6 591.2 190.0 5361.1 405.0 348.4 90.1 5763.3 241.2 355.6 227.6 5040.4 889.7 4284.1 98.9 422.2 3473.6 4022.1 139.4 270.5 838.6 3584.8 132.6 412.7 1178.6 4301.7 157.9 527.3 520.8 879.8 216.0 4251.0 268.2 942.2 188.6 5115.4 1052.2 4155.6 136.1 656.6 1181.6 4399.1 164.1 589.1 3101.7 3815.3 14.4 483.1 2587.5 3610.5 295.6 913.9 670.9 1023.3 2617.0 3527.8 374.0 854.4 2987.3 3841.3 396.2 982.0 2444.2 3512.3 873.2 3366.1 527.3 1269.6 499.0 1060.8 462.0 4165.8 515.5 884.3 2537.0 3780.8 482.9 830.2 866.3 3679.0 615.4 787.1 2280.4 3530.9 2538.3 3219.0 745.5 1410.3 2784.5 3601.0 332.1 896.9 2653.8 3214.2 304.0 707.3 1111.8 3297.7 398.2 959.0 1135.0 3392.9 418.4 952.7 1924.1 2970.4 326.5 1134.5 1105.0 2841.2 281.9 1082.4 988.8 2941.2 353.2 1128.1 1673.8 2482.8 329.3 1395.4 759.7 1436.9 329.2 2796.7 567.6 1183.8 265.9 3307.2 841.5 2339.3 298.3 1472.9 797.3 2458.7 227.2 1083.7 713.9 2824.9 255.7 1225.0 1 1 114 521 4193.3 4507.4 -216.8 -750.0 3698.9 4155.1 1.1 -399.0 3801.1 4438.4 -144.1 -178.1 146.9 1176.4 -113.3 5842.1 -288.3 259.9 4201.5 4564.5 329.1 480.1 2670.7 3508.9 -63.1 438.1 3587.5 4004.6 2918.8 2833.9 248.4 366.1 529.4 746.4 33.6 5475.6 262.9 29.5 548.7 6975.0 78.7 93.4 4012.0 5468.3 253.8 710.4 163.8 3992.8 214.8 204.8 2963.6 4278.7 653.9 463.2 515.3 4254.2 450.7 565.2 -55.8 4698.1 916.6 3668.9 360.5 1138.2 211.6 67.0 3216.9 4645.3 218.6 230.8 728.8 4094.5 722.6 1065.8 2700.4 4280.7 2417.1 2386.9 316.4 1393.7 543.1 946.2 197.7 4577.2 54.2 798.6 400.3 4996.0 454.8 551.0 198.2 4583.5 1009.6 3501.0 473.3 1240.9 553.8 827.6 2207.9 3551.3 789.7 3314.0 352.7 1485.4 570.3 1397.6 156.6 3995.5 732.3 2838.5 367.6 1926.8 530.9 1654.5 201.1 3703.3 1122.9 3029.3 94.6 1246.1 2637.3 3048.8 222.9 1294.0 2536.9 3332.3 338.8 862.5 1260.9 3358.1 108.1 536.5 2148.2 3169.1 226.5 1392.4 781.3 1277.9 444.0 3836.9 829.9 999.5 1872.7 3644.8 1 1 99 337 79.9 -147.4 179.4 5233.2 3132.6 3494.8 87.3 -162.3 3073.6 2994.7 -126.5 169.4 45.7 213.4 2943.0 3145.7 289.9 198.8 2651.2 3116.1 716.1 3158.5 156.6 315.4 270.2 446.7 178.0 4129.0 315.7 300.4 3380.1 3609.1 346.0 375.7 2725.8 3000.8 352.5 653.6 182.8 2802.3 740.9 2532.7 222.1 656.5 397.7 787.6 37.5 4785.1 346.8 643.1 244.7 4696.4 2233.8 2381.2 216.1 1124.0 2213.2 2822.2 185.9 710.3 2094.1 2977.7 109.8 424.9 965.7 2658.0 248.5 524.0 1998.8 2505.7 301.0 451.3 680.9 938.4 1801.5 2716.3 791.2 2404.4 453.3 829.3 1856.4 2376.8 326.4 696.8 1804.5 2784.8 190.9 644.5 1151.9 2723.9 192.0 363.0 2023.8 2630.8 212.2 519.7 2037.3 2610.2 279.6 519.3 2204.5 2689.5 279.8 465.9 1973.9 2461.1 240.8 553.9 2036.7 2486.1 253.6 452.4 1054.5 2648.8 197.8 446.5 1902.6 2457.1 195.8 437.1 1855.9 2393.1 213.1 464.3 925.8 2252.3 351.3 590.6 618.1 1057.7 1976.0 2330.8 596.6 1101.9 1898.8 2148.5 1375.3 1907.2 564.3 963.0 1785.6 2339.2 287.7 787.5 1 1 118 632 785.3 720.3 2943.3 5082.2 3635.7 3525.3 -133.8 4223.5 259.5 -10.6 2317.5 4592.7 762.3 3175.1 2514.0 2776.2 392.6 724.5 3518.0 4043.3 684.0 500.1 3284.6 3701.1 2199.7 2646.8 141.2 2015.9 3169.9 4154.5 361.6 349.4 721.0 776.1 2514.9 3851.9 2683.1 4017.5 517.4 732.2 879.1 2686.1 2480.2 2891.5 1066.3 3327.3 465.9 3158.1 833.2 2498.9 313.3 3538.9 971.4 4370.5 320.0 889.8 636.7 3008.5 2501.3 2859.5 713.2 2234.3 448.2 2941.8 2836.6 3820.5 385.4 1064.7 785.3 2796.1 561.0 3680.4 913.4 3046.2 2053.5 2939.5 1017.1 4191.4 316.6 711.0 968.4 4115.4 338.1 735.3 855.7 2554.0 1640.5 2418.6 981.0 3049.5 404.7 2621.4 2149.2 4205.4 400.6 1048.1 2091.1 2739.0 315.4 2818.4 1667.9 2940.2 282.6 3106.0 941.2 3442.2 243.7 1558.3 597.3 1674.1 487.2 3749.6 896.4 2712.3 1314.5 2699.3 1441.3 3111.2 619.7 1737.3 804.9 1567.5 1345.0 3974.0 1319.6 2436.4 558.5 3565.4 1404.6 2795.9 852.7 2585.2 1035.6 1588.2 1285.1 3115.2 1377.8 2249.1 1333.8 2646.3 1238.6 1871.3 1357.7 2892.2 1 1 91 364 363.4 337.9 278.5 5203.2 3220.3 3971.4 165.6 291.5 434.3 524.9 3057.3 3846.8 424.6 650.8 3250.1 3772.1 359.1 657.0 2982.3 3293.8 2569.0 2516.1 311.4 552.4 897.1 3126.6 144.7 392.0 2976.7 3388.8 173.0 486.5 678.6 1014.6 260.9 4475.9 539.0 705.7 3193.7 4176.8 488.4 845.3 2985.5 3936.7 986.6 1281.9 2623.4 3000.5 1956.3 2366.5 936.2 1379.6 674.3 1487.1 2051.1 2639.0 924.3 3431.7 485.7 911.0 1283.8 3195.9 289.9 714.1 1978.6 2736.5 352.8 1214.2 763.4 1534.1 229.1 2764.5 772.6 2565.6 279.7 1670.6 471.9 1115.3 274.3 3397.4 536.6 975.6 728.2 3343.0 870.3 1312.7 1671.5 2532.6 1959.3 2734.3 531.4 1193.4 1361.3 3126.1 362.0 831.0 2431.5 3004.8 388.8 780.7 1887.7 2831.8 700.3 1183.9 811.3 1222.0 1330.6 2340.3 703.4 1348.3 524.2 2148.0 810.2 1987.7 435.3 1643.0 577.2 1071.5 715.4 2907.7 678.1 1413.9 1297.7 2579.2 1119.3 2713.0 416.4 1094.1 2055.0 2766.5 301.9 1022.6 2128.2 2753.4 380.3 1044.5 1741.8 2446.3 610.2 1276.8 910.6 1690.4 1222.2 2198.5 1 1 114 400 3661.1 4080.8 395.6 5928.2 1288.3 4665.9 3426.2 3516.1 1964.9 5003.9 281.8 738.0 1044.8 3851.9 2220.5 1618.6 2602.9 5094.5 561.4 1128.1 3173.0 4192.2 1025.9 2300.0 979.2 3596.8 2279.7 2607.8 1113.1 3575.7 3091.5 3401.6 3427.0 4591.5 476.9 1220.5 813.7 1420.9 571.7 7530.0 1016.7 3459.1 2235.3 4073.8 824.5 3081.6 584.3 5965.3 853.8 1500.2 466.4 6043.3 1142.7 3892.0 2390.8 3426.1 3385.6 4558.8 436.9 1129.3 2257.3 2908.0 387.1 3346.5 1078.5 3397.9 1210.2 2553.0 919.3 2732.7 509.5 3073.2 1783.1 2664.2 547.5 3481.8 1829.0 2801.4 1714.6 2861.0 1118.8 3458.2 1687.3 2351.4 772.4 1807.5 805.8 3795.3 1040.6 4320.0 932.1 1726.2 1021.7 3392.8 2140.3 2907.1 841.2 1837.7 2150.4 4028.8 2273.9 3059.7 609.8 1561.1 1940.5 2499.7 458.4 2541.1 1939.7 3389.1 357.7 1377.6 740.1 1830.0 1343.9 3520.4 1445.8 3094.5 621.6 1736.1 908.3 1586.7 1326.5 3939.3 1730.6 2733.7 1205.8 2388.5 2002.0 3036.1 783.1 1832.2 1524.4 2559.8 713.9 3961.1 824.6 1345.9 1373.4 4877.1 694.7 1392.8 1847.1 5065.9 1 1 85 487 384.1 145.9 4241.5 3949.8 434.8 511.4 3538.7 3492.5 1073.2 4368.7 224.0 423.9 1000.8 4275.4 195.1 352.3 379.6 699.7 115.6 4306.4 949.1 3946.8 198.1 591.3 969.9 3931.6 221.6 360.9 1004.8 4056.0 164.6 444.6 3040.8 4036.5 198.5 492.4 547.9 1003.4 2945.5 3500.0 517.7 909.2 2985.8 3442.8 2497.9 2851.7 503.1 902.8 781.8 1078.4 2496.1 2912.6 2358.1 2766.1 398.5 986.6 674.1 1153.1 255.1 3413.1 827.9 3256.5 243.2 1021.9 654.7 1177.7 284.2 3991.0 2286.9 3023.8 270.6 949.7 1044.7 2991.1 220.3 924.7 552.6 975.4 381.2 3616.6 569.8 915.2 2179.2 3271.5 934.1 3114.9 528.7 1081.8 2387.8 3097.6 400.8 756.1 871.6 1291.3 1667.1 2497.5 930.9 3098.4 478.7 988.8 930.6 3376.4 396.4 1056.3 2007.7 3141.6 353.8 852.7 742.3 1353.9 1967.6 2558.4 617.7 1025.8 2017.5 2714.8 575.2 1037.5 1971.5 2718.8 753.6 2606.0 720.0 1539.6 1716.9 2616.4 517.9 1093.8 1809.4 2603.8 393.9 880.2 1130.3 2867.9 346.9 806.8 1647.6 2280.1 275.8 870.5 911.8 1338.9 248.8 2302.8 1 1 113 509 1081.3 4466.0 -96.4 335.9 458.6 753.1 247.7 5736.4 1351.1 5122.8 159.4 344.2 1263.9 5179.3 137.9 127.3 3684.5 4273.6 167.1 586.6 346.0 683.3 162.7 5259.6 367.5 687.9 227.2 5469.8 1255.3 4495.4 88.9 490.3 640.6 1060.0 175.5 4994.2 3616.2 4659.3 225.6 840.2 699.2 987.0 3390.5 4775.2 3292.1 3999.2 465.7 971.0 555.7 1024.6 2887.4 4029.5 924.4 4050.3 469.9 1126.4 944.9 3245.0 254.5 2145.2 540.8 1125.9 275.6 5067.5 666.9 1000.6 2995.8 4419.8 2594.2 3067.6 584.9 1620.3 721.6 1077.2 320.6 4584.3 495.0 1216.7 281.5 4513.4 1133.8 3993.7 307.3 1060.8 1182.7 3807.1 382.9 1069.5 2731.0 3404.1 519.5 1301.7 658.1 1255.5 2313.8 3607.7 490.5 1081.5 546.8 3255.4 592.2 922.4 614.6 4632.7 687.0 1106.1 2499.6 4493.5 1097.5 3192.5 522.5 1593.8 2338.3 3447.1 368.1 1220.3 1124.2 3454.2 397.8 1194.6 1047.2 3162.3 300.6 1142.8 1223.6 3837.8 288.1 897.3 2274.5 3173.4 349.8 1149.2 974.1 2965.8 348.1 1227.5 627.4 1361.2 442.6 3068.1 600.7 1441.3 1691.3 3197.8 1 1 104 907 1669.6 529.4 3526.9 3271.5 2364.7 1804.7 194.1 3886.9 453.0 614.8 284.3 6758.2 2052.2 2581.5 1283.5 1699.0 437.4 2193.3 2958.2 3224.4 997.8 4285.0 203.3 133.2 2720.4 3226.2 342.4 711.9 516.0 710.4 375.0 5609.6 281.7 1073.4 2917.3 5227.7 1873.7 2104.1 826.3 1375.0 1967.8 2310.4 6.5 1475.9 2991.4 3440.9 258.4 614.9 784.4 2115.5 438.8 3395.3 617.6 2340.5 2225.0 3316.8 901.5 2374.6 491.9 2912.0 933.5 2796.7 404.2 1196.8 1765.7 3332.2 32.6 634.2 1324.9 1940.7 193.9 2856.6 882.3 2379.3 2011.2 2677.2 936.4 1694.7 1847.0 2520.8 979.8 2529.1 508.5 1418.4 2212.9 3088.6 373.1 692.6 1440.9 1810.6 1661.7 2394.6 728.6 2076.4 918.7 1816.7 663.6 1417.0 534.3 3474.6 702.6 2056.0 1656.8 2964.3 1212.1 1903.2 1662.0 2774.7 1653.5 2749.6 480.1 1315.3 1546.0 2094.9 494.6 2427.7 1304.5 2221.1 523.6 2357.0 1096.0 2298.6 1267.4 2363.8 1408.6 2759.1 621.7 1427.9 1024.6 2437.3 940.8 1964.5 1659.3 2242.6 529.9 1506.0 1324.8 2133.0 486.2 1347.1 1387.2 2046.4 1018.4 2301.3 1 1 123 467 1395.7 5640.7 451.9 297.9 440.0 642.7 195.7 6997.3 5024.8 4866.3 60.4 340.8 540.2 809.6 -80.1 7239.3 1092.9 4762.3 17.7 482.6 478.7 806.1 48.1 4594.9 611.4 923.3 3053.1 4409.4 548.8 768.1 3246.6 4281.7 1249.1 4869.1 96.0 361.8 3662.1 3796.2 146.6 735.6 1014.3 3998.6 30.5 858.0 647.5 1091.3 107.4 5245.5 3444.5 4116.5 118.8 857.7 1301.3 4426.8 188.6 712.4 3088.7 4236.1 67.4 585.4 2910.8 3902.3 367.5 807.2 917.1 1032.8 3292.1 4151.2 2678.3 3027.0 505.4 937.8 2781.4 3406.2 333.9 1163.7 796.1 1056.4 85.6 5110.9 720.7 1191.1 172.8 5362.9 2653.3 3410.2 146.7 1315.5 3364.9 3418.0 277.3 1017.8 3296.0 3500.4 274.7 876.6 2855.8 3418.5 151.7 1047.9 927.5 1138.2 411.0 5675.7 680.1 985.2 223.9 5005.2 744.4 1003.3 305.3 5412.3 2495.1 2806.3 269.5 1559.6 2618.0 2636.9 248.9 1476.1 2799.2 3005.0 252.5 1362.7 2750.3 2902.9 310.0 1314.8 2673.9 2658.2 256.0 1831.7 1211.0 1496.9 206.3 4307.7 2462.6 3026.2 338.9 1579.5 2538.6 3010.3 351.2 1751.5 1 1 74 589 185.0 1.4 104.6 3800.8 236.2 294.2 2854.9 2660.3 1540.4 1471.8 8.7 49.1 78.9 177.5 2331.7 2572.2 162.4 137.9 178.3 2286.0 260.5 389.5 75.4 3407.4 538.0 2015.6 -57.6 301.4 270.2 174.3 130.5 3419.1 285.2 333.6 125.1 3355.3 181.6 298.2 145.1 3525.5 176.9 142.3 1902.9 2728.0 205.3 179.6 1738.5 2415.5 159.2 419.0 230.8 1961.0 1263.2 1560.5 68.6 732.5 279.9 475.9 129.2 2763.8 160.7 259.2 137.8 3311.6 223.4 462.6 151.2 2953.5 153.2 311.5 1708.2 2850.9 276.3 400.4 1458.5 2379.7 137.3 318.9 1478.1 2567.8 114.6 253.4 303.9 2269.4 160.9 451.8 307.1 2746.5 154.2 465.2 1367.6 2418.4 335.6 1458.9 333.2 993.3 209.0 461.4 161.3 2791.5 185.6 435.5 234.0 2372.6 535.8 1547.5 121.7 789.3 1225.6 1665.4 172.8 786.6 481.5 1519.6 63.6 940.1 259.5 705.3 146.5 2207.7 462.0 1445.4 12.2 816.5 977.2 1487.8 231.6 872.7 310.6 531.5 1282.4 1982.9 269.8 502.9 1215.4 2106.6 764.9 779.9 359.2 1237.2 312.1 535.8 288.9 1911.8 1 1 100 564 4086.7 4435.8 689.0 709.6 4377.1 4954.6 653.1 621.7 846.8 4465.4 670.3 878.6 3737.9 4141.7 460.8 611.5 3819.2 4131.0 297.7 552.3 1053.7 1309.1 3732.7 3613.3 651.2 1294.7 2957.8 3205.9 1346.5 5030.7 373.0 426.9 3172.1 3929.7 306.6 724.6 690.8 1044.5 4025.6 4466.7 546.4 891.7 3649.3 4048.5 2277.8 2966.7 900.0 1212.0 752.4 1235.7 3192.4 3399.7 801.3 975.4 755.2 4080.9 834.2 1136.2 387.0 4520.3 1053.5 3376.0 469.5 1412.6 555.2 1280.6 626.6 4976.6 421.7 899.8 2903.8 4536.5 538.3 992.3 846.5 4120.0 2245.6 2782.7 537.4 1382.7 708.5 1195.5 2833.6 3644.5 631.5 1265.5 725.2 3362.2 2255.1 3038.4 492.2 1465.3 1045.3 2982.2 428.8 1373.7 763.1 1485.0 513.1 3754.9 534.8 926.6 2242.3 3892.1 484.2 991.1 2138.5 3416.0 491.1 1037.6 2044.4 3609.6 783.8 2695.1 884.3 1726.9 1834.2 2540.7 663.9 1563.7 779.2 1449.0 1617.7 2772.8 848.7 2595.2 905.8 1598.7 739.4 1346.5 1712.7 2503.6 1464.1 2438.7 912.9 1579.3 708.3 1326.8 1497.8 2514.8 845.2 2338.2 822.5 1455.7 1 1 116 569 297.0 -214.0 -310.6 3784.5 2221.2 2376.5 -653.4 -1205.0 -166.3 -342.8 1593.2 1128.6 318.5 844.2 97.8 -267.1 1187.8 1085.8 -745.8 -698.4 876.1 1058.5 -174.4 -310.1 141.7 677.3 -21.4 -72.4 1046.9 1201.1 -150.4 -966.5 249.0 669.9 67.2 -190.4 -269.5 864.1 78.7 -159.1 733.1 1116.2 -521.1 -600.7 170.7 -157.6 -213.4 548.4 312.1 411.4 -264.5 -74.7 1193.3 1076.9 -320.3 -1024.2 393.3 328.0 -236.1 0.7 149.3 131.2 -119.0 -125.3 568.7 419.1 -99.1 -104.8 23.9 -92.4 510.1 -61.2 -27.5 -234.2 -104.1 217.7 143.9 414.2 -475.8 -555.9 -107.0 -4.4 109.2 273.9 -74.7 -235.5 -172.8 596.2 257.2 883.0 -272.3 -746.2 27.1 44.0 -14.3 138.3 558.3 686.9 6.6 -217.4 321.9 -29.5 88.9 59.0 624.8 227.7 55.7 56.3 598.9 611.8 -74.7 -110.5 688.5 866.7 -317.3 -401.2 351.5 39.4 -76.1 196.9 41.0 -136.7 195.2 286.0 129.1 -157.2 497.8 150.6 73.1 240.9 113.3 -129.6 407.2 540.8 47.4 -732.8 208.4 437.0 -193.8 -481.6 326.2 235.8 -151.2 -214.2 1 1 79 401 404.6 294.5 3544.7 5873.2 905.8 3263.6 2235.4 2153.7 880.4 4106.9 225.4 517.9 283.6 629.4 302.2 5042.7 739.3 2941.7 189.8 2015.8 564.7 617.4 234.2 4119.1 2140.7 2305.7 1064.9 1459.7 2540.4 2735.5 257.2 1451.0 657.6 930.8 2463.9 3366.4 882.7 3041.0 1335.1 2074.4 2316.8 3218.9 301.0 790.3 843.0 2924.5 411.7 2207.4 541.4 917.8 1031.5 4104.3 435.1 754.9 871.3 4931.7 400.9 761.0 2174.8 3451.7 1873.0 2292.7 707.4 1517.1 2128.5 2522.7 569.9 1664.7 2170.9 2452.7 643.7 1603.1 707.4 1023.6 656.5 3182.3 725.1 2577.7 586.4 1391.3 957.8 2942.9 430.4 1055.3 1905.1 2570.4 334.4 1317.2 835.4 1537.8 404.0 3156.7 702.8 1475.8 350.0 3511.0 873.3 3151.6 261.4 1226.2 1865.5 2800.7 299.4 800.6 1989.3 2826.2 234.7 779.8 1785.7 2308.0 396.0 1064.2 806.4 1400.4 1505.1 2322.6 700.0 1483.8 1498.5 2376.3 1461.3 1996.6 445.7 1263.3 767.7 1628.2 321.7 2662.2 706.8 2434.9 258.1 1445.5 842.8 2586.9 353.4 1519.3 844.3 1331.4 337.3 3350.8 755.0 1261.2 496.4 3879.3 1 1 98 771 54.0 -359.2 4802.0 4656.2 171.8 -103.2 4480.5 4420.3 171.9 224.5 28.5 2936.3 -95.0 -113.9 198.4 4291.9 157.5 224.1 -26.6 4977.9 300.9 355.3 537.3 4897.5 114.7 -83.9 143.7 4742.1 936.9 3391.3 101.2 634.8 2847.2 2981.4 134.3 330.4 2727.1 2444.5 160.0 511.2 414.7 563.9 2812.0 3139.8 1847.5 2186.0 270.6 559.9 627.7 2599.6 161.2 553.6 1914.2 1965.4 318.7 712.9 296.3 141.4 2925.5 3961.0 206.3 160.6 2816.7 3837.8 223.5 49.2 2591.9 3595.0 68.8 138.9 411.6 2850.3 266.5 73.8 318.4 4417.2 258.7 219.4 256.7 4194.3 523.7 2287.9 389.3 1094.7 344.5 865.4 146.5 3668.8 529.2 2101.9 247.0 999.4 351.2 595.4 119.1 3501.4 293.5 578.2 1605.5 3213.5 229.9 575.6 397.8 3158.7 597.6 1958.4 209.3 1283.1 469.4 820.4 220.4 2603.5 1618.4 1954.8 381.1 1020.4 524.1 899.1 1156.8 2075.5 644.3 1892.1 331.9 1037.1 311.6 908.9 245.9 2284.7 412.4 1472.7 206.7 1207.6 283.0 647.9 430.0 2747.9 246.8 643.4 1462.3 2734.8 270.3 463.3 1521.3 2766.2 1 1 86 761 373.2 409.5 2028.8 5981.5 573.6 798.7 3893.4 5064.4 561.3 1897.6 220.9 3427.5 509.7 718.6 3298.6 4684.8 406.6 758.3 1901.5 4855.4 601.1 912.5 2776.9 4396.8 2781.0 3787.0 384.9 1050.9 804.3 2130.6 2735.9 3869.6 766.1 2165.9 327.1 3855.2 565.5 1125.2 293.0 5167.9 1025.0 3109.6 1514.0 2423.3 966.7 3440.1 421.0 2577.5 879.2 2161.1 368.2 5355.7 725.5 2150.3 435.9 5583.8 699.7 1296.5 684.4 5828.2 851.4 2125.7 2454.8 4644.1 1455.4 1993.4 706.9 4018.3 1007.0 2284.0 2461.5 4151.1 2043.5 2763.3 585.1 2801.5 736.1 1264.7 535.8 5077.3 840.9 2043.3 698.1 4816.0 769.5 2075.3 2204.9 4501.1 663.2 1225.8 936.4 4769.8 620.7 1138.6 2149.1 4911.8 668.7 1811.3 721.6 4050.2 944.0 2102.3 476.0 5046.7 1895.0 2814.3 366.2 3008.1 1125.1 3002.4 382.1 2750.5 1009.0 3395.3 362.6 1904.6 743.8 2496.2 298.6 3060.6 1072.5 2667.5 272.2 2459.6 1785.8 2913.6 266.9 2128.5 1078.6 2977.7 232.4 1679.1 817.5 2330.9 335.5 2910.5 860.9 2440.8 297.8 2475.1 1507.7 2600.0 607.7 2657.8 1 1 88 393 220.2 82.1 264.3 5848.4 3556.2 3408.9 -167.6 365.9 215.4 295.3 2687.6 2607.2 217.1 83.8 2322.4 2498.3 132.5 209.4 176.8 1790.6 289.7 251.8 1624.8 1984.9 184.4 406.9 2052.0 2212.9 2020.7 2393.7 87.7 279.1 726.8 2659.3 -86.3 -46.7 1851.0 2285.3 67.1 585.1 144.3 273.2 288.2 4632.8 450.1 675.9 2376.0 2982.4 2161.2 2416.3 187.7 512.7 469.1 2146.2 282.1 701.9 288.5 687.5 1549.9 2115.0 389.5 537.0 339.3 2073.8 1575.6 1795.2 123.6 745.0 485.2 751.9 162.7 2064.4 1707.3 1934.6 133.8 604.6 788.5 2057.4 206.3 396.8 1776.6 2011.9 35.9 338.7 567.4 2043.1 139.6 538.5 409.7 927.0 160.1 1970.3 594.1 2297.7 180.0 588.9 632.4 2274.8 142.6 569.3 1306.5 1643.7 142.8 485.4 383.0 571.4 1169.1 1703.6 311.5 689.2 343.4 1560.7 391.1 1658.5 163.0 833.5 414.7 817.8 126.9 1872.7 1312.8 1830.3 126.6 671.4 1657.7 2179.8 27.9 912.8 1392.0 2048.8 148.3 531.3 843.5 1969.8 157.4 477.9 1180.0 1763.8 179.5 869.2 558.5 1070.5 142.0 1973.4 1 1 84 708 446.8 484.4 3947.1 3866.8 2899.8 3121.8 165.3 311.3 433.2 492.1 218.0 4313.0 907.7 3091.7 223.0 453.7 421.2 595.1 3090.5 3685.0 432.8 630.0 3094.4 3278.5 2173.3 2569.3 289.3 527.9 2886.4 2955.6 296.4 526.3 593.5 809.2 2273.1 2672.6 2210.6 2574.1 420.3 719.7 572.7 845.0 2304.0 2706.1 861.5 2844.0 428.8 927.1 470.8 1048.0 316.3 3775.8 752.7 2856.9 443.8 1037.6 421.2 1021.4 2601.3 3319.3 539.1 1001.5 444.0 3115.5 2286.0 2619.8 337.5 1065.9 625.1 900.6 469.1 3579.0 548.3 1080.6 1921.8 2947.5 755.6 2728.3 580.4 1122.5 597.7 1227.0 2139.4 3128.5 473.4 1039.3 628.0 2816.4 789.6 2259.6 442.8 1398.0 499.7 1245.8 351.2 3223.6 501.4 1075.9 341.8 3532.3 640.9 2188.9 328.2 1684.2 492.0 1172.3 481.0 3355.0 477.0 1192.7 1639.0 3067.6 739.8 2175.1 675.2 1827.5 536.4 1128.1 390.2 3393.2 582.2 1053.0 381.9 3884.6 1534.4 1833.3 514.6 1908.5 710.0 1087.9 1598.0 2989.2 1475.0 1877.9 485.8 1476.6 742.1 1240.5 375.2 2713.2 702.2 2036.2 403.3 1646.5 1 1 113 439 1244.1 4638.1 4146.8 3967.8 1286.3 5660.4 3133.9 4601.3 3897.5 3459.9 3194.1 3469.4 511.6 866.6 4892.4 5530.1 1087.6 5525.4 2861.3 3102.9 4374.7 4633.7 198.1 840.7 3793.2 4124.6 1972.7 2290.6 794.7 1521.8 2314.9 5583.3 938.7 2899.0 2119.2 4679.3 3244.6 3524.8 780.4 3860.9 795.9 2660.2 290.1 5758.8 1079.8 5069.8 174.0 4133.6 489.4 4142.3 1838.3 2503.5 2061.3 2609.2 2720.5 3592.6 1945.3 4865.9 506.9 506.5 2034.5 2787.9 711.0 3508.3 1821.8 3648.0 382.8 1270.5 667.5 1308.9 1622.5 3973.8 548.7 1194.9 2786.0 4365.1 869.5 3746.1 605.7 1306.9 719.7 1656.0 1358.6 4228.0 1555.7 2520.2 2494.0 2645.5 2470.8 3227.3 1552.3 2090.6 1031.6 2651.8 596.3 2670.6 1197.0 3879.5 325.6 1183.5 1715.8 3576.1 784.0 2437.5 906.3 1178.4 1941.4 3221.1 673.1 1180.2 2005.6 3348.6 1176.9 1001.3 1144.6 1920.9 1327.3 3103.5 335.0 1537.5 1190.2 2121.0 1942.8 978.6 451.4 2349.3 1024.3 2428.0 2257.6 3209.7 570.0 1418.3 1061.3 2168.2 1742.3 3319.7 852.0 1584.6 1194.9 3294.2 1036.6 3025.5 709.7 1922.2 1 1 83 506 3848.9 4339.5 178.8 3.2 4167.8 4963.7 179.3 341.0 4085.8 4361.7 123.5 343.2 517.4 758.3 242.0 5532.9 1111.7 4124.6 91.5 493.7 1171.1 4721.6 88.4 326.5 2875.9 3536.0 192.1 402.4 1011.5 3809.3 253.7 544.2 453.7 922.6 246.2 5497.5 496.3 845.9 381.6 6011.3 664.0 825.9 3562.8 4743.8 2852.4 3595.1 358.6 712.3 1076.9 4090.1 399.6 776.5 740.0 1175.8 3086.8 4047.3 2563.4 3362.9 376.8 855.7 2598.4 3700.9 284.7 802.0 753.9 1108.0 323.9 4964.3 620.7 827.3 450.6 5245.5 773.8 933.6 2870.5 4457.0 2421.7 2839.5 507.5 1037.5 2757.4 3167.0 249.0 847.7 2702.6 3377.2 240.2 729.2 3121.5 3253.6 265.2 740.6 2940.8 3197.0 222.5 909.0 936.8 1358.8 378.0 3523.8 824.7 1077.1 2487.2 4063.0 2293.6 2772.9 555.8 1380.4 1131.0 3279.7 524.6 1204.0 837.1 1478.2 2109.5 3270.5 2435.0 2708.1 554.1 1347.0 2702.0 3264.2 389.3 1183.1 2506.0 2833.6 306.5 1059.3 1063.7 1523.5 316.4 3606.7 1087.5 2839.7 297.6 1429.2 1897.8 2750.7 258.8 1100.8 1170.1 2921.9 255.8 1076.3 1 1 107 128 419.4 384.1 3083.1 4063.7 1792.6 2017.7 185.7 1635.7 2077.6 2278.9 211.1 476.3 2015.8 2418.3 212.8 462.8 1822.4 2113.5 192.6 615.0 867.2 1017.7 230.9 2857.8 1742.7 1812.5 177.3 652.8 1845.0 2084.2 314.4 861.4 1430.6 1892.5 180.7 577.3 1056.2 2052.3 233.1 591.8 1582.4 1850.8 262.4 715.4 671.0 2035.9 894.2 1489.0 561.5 1358.7 303.9 2396.2 1449.9 1759.1 335.2 1714.8 586.7 967.5 809.8 2583.2 1514.0 1899.9 301.9 896.8 593.3 990.5 1563.5 2265.2 780.7 1008.5 436.6 1911.0 835.1 1125.0 1306.7 2192.9 828.6 1178.7 1193.2 1807.6 981.1 1340.4 690.5 1288.5 1168.3 1770.6 399.2 909.7 756.1 1290.8 433.5 2398.1 771.6 1213.5 1226.9 2241.3 510.0 936.3 1594.7 2199.8 673.4 1590.8 904.1 1549.3 554.4 946.7 714.0 2453.5 491.3 831.9 425.9 2541.8 458.3 916.8 967.9 2291.7 755.7 1136.9 545.2 1515.2 654.1 1218.4 595.7 1639.0 587.8 1051.2 355.8 1997.3 451.2 749.9 593.6 2340.4 495.3 962.3 712.9 2738.0 430.4 1082.3 581.1 2048.2 495.5 953.1 415.0 2373.7 1 1 70 568 355.1 375.6 3663.7 3688.1 551.5 678.4 3274.5 3204.4 2826.3 3217.5 102.0 455.2 2903.3 3234.8 170.6 609.8 414.0 622.0 251.6 4164.0 516.2 616.9 2412.6 2861.7 795.8 3059.3 216.1 450.5 772.5 3233.0 270.2 584.6 528.4 994.5 189.8 4376.4 2923.7 3150.3 271.9 702.7 2928.3 3128.5 245.5 554.6 647.9 972.1 2535.9 2836.7 920.0 3338.8 301.3 711.5 2443.2 3190.9 266.0 890.0 534.6 993.5 294.6 3976.5 398.4 897.0 246.1 4332.5 477.8 954.9 352.0 3861.3 809.7 2960.6 245.1 1044.0 841.6 2843.3 305.8 881.6 1884.7 2594.8 326.4 772.0 648.2 1371.2 1787.5 2704.2 901.6 2977.0 441.2 900.3 2034.1 2623.2 466.2 844.7 928.0 2727.1 283.5 927.9 562.1 1397.8 319.2 3183.2 912.3 2546.3 313.8 1036.4 1646.7 2441.8 419.9 1010.1 772.3 1275.0 1772.6 2572.0 1455.1 2144.6 474.7 1041.6 839.4 2091.6 302.1 1198.3 557.3 1121.6 291.9 3275.3 500.2 916.1 287.6 3280.7 687.1 1083.7 256.5 2986.7 1473.3 2195.5 183.3 1354.6 818.8 2398.5 255.7 1214.3 913.6 2512.5 243.2 944.0 1 1 122 608 459.3 345.6 3842.6 3664.1 3144.0 3891.4 155.4 287.2 435.5 598.3 206.4 4613.5 954.6 4095.7 177.7 354.5 3002.7 3445.6 199.7 448.4 954.2 3758.5 165.9 299.0 2824.1 3326.7 178.8 391.6 3048.9 3871.2 114.8 360.5 1055.6 3841.6 241.6 351.6 3186.1 3311.7 233.7 473.6 748.4 1094.5 2564.8 2993.8 2240.9 3131.3 399.4 688.9 1081.7 3955.8 154.9 422.1 2842.9 3649.0 186.4 504.9 2556.9 3315.2 290.2 571.1 750.6 1251.9 2222.3 2578.6 1907.6 2687.8 440.9 769.1 1130.4 3175.0 268.8 631.3 2170.2 3047.6 432.4 719.5 814.0 1289.8 1950.8 2151.2 1728.0 2444.4 474.8 930.5 663.1 1227.8 384.6 2751.9 519.2 857.4 2059.8 2527.0 612.0 911.3 1955.9 2262.4 611.5 1002.4 1842.3 2163.5 1729.3 2136.6 623.4 978.6 2215.3 2810.9 321.3 854.3 846.7 1374.6 353.1 2472.6 852.9 2494.1 354.0 977.0 566.0 1317.6 1445.2 1959.6 819.4 2590.0 565.2 1080.5 1054.2 2823.4 363.0 630.9 1940.8 2760.4 300.6 648.0 1069.3 2973.2 322.4 653.5 1520.4 2695.0 427.0 869.6 868.9 1690.4 1141.3 1608.9 1 1 97 306 605.6 2002.9 217.4 4989.4 592.6 758.7 156.6 4487.2 291.7 453.0 1200.5 4243.9 848.5 3177.5 40.9 250.6 2255.6 3091.5 106.4 419.3 543.4 2718.8 182.7 1715.1 684.8 2595.8 1280.3 1351.9 722.3 2950.7 1003.4 1043.4 691.1 2944.9 586.3 1354.0 2230.9 2050.9 216.0 1480.8 400.1 995.4 2402.1 2976.9 809.2 2794.4 322.2 673.6 2286.5 2825.0 374.4 762.6 383.2 807.3 2395.3 2866.5 474.5 1815.4 2504.0 2568.4 452.8 1374.1 2511.2 2483.8 1570.5 1921.6 568.9 898.8 564.7 1385.2 2114.1 2951.0 1361.8 2028.2 431.9 1093.2 567.5 984.9 1769.9 2386.0 1369.7 1742.4 468.1 2377.0 614.7 1069.6 1805.8 2321.3 1105.3 2312.8 531.3 845.5 1590.4 2089.4 230.8 995.2 544.2 1184.6 1582.2 1984.3 997.5 1266.1 1771.9 2055.1 754.1 2011.4 428.4 1907.8 1344.0 2140.7 417.5 813.3 467.8 1284.7 1532.9 2161.2 602.0 1420.9 1150.4 1969.3 896.9 1136.6 414.3 2210.6 783.2 1921.4 340.7 1107.1 569.7 1949.2 922.4 1434.2 835.4 1289.8 469.2 1909.5 380.9 1024.4 1003.9 1957.6 506.5 1594.7 640.7 1336.3 1 1 121 179 222.5 201.1 3565.7 3275.7 234.3 363.2 169.7 2573.2 146.9 139.0 211.6 4380.2 195.8 209.5 2832.0 3659.2 61.1 185.0 314.5 3757.8 277.0 334.1 117.4 4362.2 1623.0 1727.9 216.3 772.4 450.0 576.3 258.6 4299.6 1760.9 1653.8 156.7 700.9 349.4 414.2 347.1 3471.7 319.0 391.1 1729.2 3150.8 402.6 602.0 398.5 2630.2 798.3 2159.1 98.7 746.6 1729.7 2008.0 327.6 815.7 513.2 666.2 1963.6 2626.0 342.0 562.7 1712.7 2699.2 617.5 1828.0 536.8 1095.3 1170.0 1781.0 387.3 1002.8 509.0 686.9 1759.3 2757.5 312.8 657.0 666.5 2468.5 429.5 668.5 1586.3 2589.3 1169.9 1442.2 420.8 1091.1 596.8 1812.4 319.3 1117.8 440.7 793.5 463.4 2974.3 379.7 749.4 1619.1 2740.5 510.2 1538.4 574.1 1339.4 519.9 1758.7 320.5 872.4 567.0 1908.2 275.4 816.9 1045.3 1815.7 306.2 841.2 1042.8 1572.3 402.6 1141.1 527.2 852.5 1290.2 2212.2 609.1 1688.2 549.1 1350.7 892.7 1648.4 339.2 979.4 655.6 1776.9 278.5 929.2 889.9 1325.6 224.2 962.2 603.7 929.6 175.5 2289.0 1 1 106 507 998.5 4271.5 41.8 -585.5 3702.5 4132.6 152.6 130.8 382.4 572.9 2891.7 3477.2 2981.3 3202.0 175.3 -30.0 -43.7 47.1 275.8 4864.3 449.8 661.4 2458.8 2682.1 2722.8 3031.3 -122.3 69.1 1007.9 4154.7 153.1 127.5 477.1 837.3 -31.0 3980.2 429.9 744.6 3120.3 3480.1 293.7 400.7 2982.9 3699.5 917.9 3357.5 370.5 651.0 1139.4 4033.5 247.0 51.5 2661.5 3074.8 233.5 485.3 1586.8 3488.8 136.9 -92.0 1053.8 3683.3 158.2 81.6 607.3 1317.5 326.4 3253.6 465.9 1102.6 1973.4 2847.2 811.7 2962.8 358.2 952.5 477.7 3007.6 412.8 996.6 622.2 1585.9 389.1 2268.6 479.0 1217.5 1506.9 2560.3 634.2 2323.8 641.6 1323.7 742.8 2804.9 311.9 843.6 662.8 2728.3 310.1 783.1 471.2 1340.0 478.2 2853.6 517.5 1152.3 1780.7 2686.1 505.6 620.8 1988.4 3129.6 1031.9 1648.3 1025.7 1565.8 702.2 1017.3 1905.5 2583.3 1507.0 1789.8 634.9 1155.3 743.0 1091.1 1745.6 2134.7 917.4 2007.0 750.0 1135.6 1159.0 2137.6 655.2 1231.2 588.0 1136.7 1151.2 1699.7 636.9 1152.5 549.5 2020.1 1 1 427 635 1156.7 1648.7 10184.8 10210.8 7206.7 10624.7 400.2 834.0 8816.1 11120.5 349.9 987.1 8086.4 11395.4 357.6 882.3 7513.2 10771.6 297.0 1207.3 7640.7 10258.0 552.5 1122.5 3229.0 12064.1 385.7 736.3 7330.3 10718.5 416.6 1071.8 8126.9 10841.9 449.3 1103.1 7917.8 9281.1 623.9 1428.0 2004.9 3366.0 7181.5 7723.0 1755.1 3643.0 746.1 5828.5 6754.5 10105.6 800.6 2167.6 2324.1 3915.9 5885.1 7581.3 1911.9 3146.7 5986.3 7454.6 1890.1 3786.1 1226.0 6764.3 6121.6 9000.4 796.0 2306.7 2236.7 3553.5 799.0 9536.6 1944.9 3705.3 1155.7 8975.7 2006.3 4033.4 4750.4 7097.2 5354.0 9092.2 1155.8 2429.6 6552.3 10253.6 903.6 1992.0 7039.4 9888.5 1135.1 2096.5 3426.5 9426.7 1147.4 2231.7 5078.9 7882.6 2025.2 3164.1 5999.4 9073.0 1185.8 2320.8 6231.8 9110.3 1087.1 2598.0 5880.6 8941.5 942.9 2582.4 2245.2 4236.7 966.0 8452.0 1878.9 3274.1 1267.2 7956.9 2286.2 4073.9 4338.2 7049.8 4737.9 6888.9 1068.5 2801.2 5307.5 7132.2 961.4 3542.2 2405.4 4688.3 991.9 6749.4 5131.7 8216.4 1009.5 3487.0 5408.1 7672.7 785.3 3105.9 1 1 109 107 125.8 152.9 3270.1 3156.2 225.8 267.0 118.1 3046.6 132.7 144.2 2859.7 3201.6 203.3 243.5 2624.2 2730.3 1649.1 1878.8 163.6 290.6 647.4 2187.8 72.6 189.7 1514.7 1700.4 139.3 303.3 381.8 546.9 130.4 3685.5 487.8 1951.7 127.2 512.5 279.3 526.5 255.7 3459.3 225.9 435.0 2334.9 2859.6 1479.7 1949.8 330.7 803.4 310.6 486.6 219.7 3439.8 267.8 345.8 228.6 3694.9 263.9 429.4 133.7 3392.2 210.4 448.4 182.8 3314.6 472.2 2088.9 132.8 851.0 230.9 515.4 302.4 3244.8 270.5 542.9 1732.3 2696.8 433.0 1807.5 320.8 995.6 238.4 510.7 224.7 3195.4 179.6 444.1 196.3 3466.2 286.8 454.8 255.1 3997.0 380.3 752.8 229.6 3572.8 1285.4 1879.4 175.0 998.9 636.2 1991.2 192.2 855.0 598.0 1806.4 203.7 1125.8 295.6 658.8 214.5 3120.5 306.6 686.9 220.8 3015.8 529.5 1813.0 165.5 1012.9 709.6 1799.8 175.7 898.5 1406.0 2011.4 185.4 848.1 1307.7 1840.1 132.5 729.0 607.0 1579.3 160.0 1199.4 484.5 765.5 170.2 2397.4 1037.5 1568.4 175.4 1142.5 1 1 116 82 349.3 350.7 3269.7 3301.3 2115.6 2339.8 88.9 155.9 1513.6 1665.7 87.9 2246.1 502.3 1640.1 138.3 2310.2 328.7 437.5 2525.4 2599.5 404.2 434.6 1749.7 2512.4 1241.1 1519.1 1446.2 1355.3 1691.4 2590.0 264.9 392.7 522.2 1613.4 1516.0 1885.8 1228.1 2015.7 447.1 641.3 405.9 648.2 1482.3 2932.9 602.4 1681.5 1758.0 2540.6 487.4 762.8 369.9 3058.6 522.8 1636.3 1489.0 2171.0 495.1 1707.4 1556.0 1982.0 623.4 1651.5 386.9 1631.3 1646.5 2089.5 368.8 683.7 535.4 868.6 1516.4 2754.6 485.3 697.9 1298.1 2654.5 604.8 1528.0 455.2 2293.6 654.1 1539.1 1254.6 1814.2 607.6 1658.0 1411.4 2003.7 1263.7 1658.7 504.6 1968.5 1317.1 2047.4 353.6 1155.1 721.4 1865.1 338.0 2315.3 569.0 1800.8 290.7 2156.1 755.7 2087.9 317.3 1278.2 929.5 1563.6 415.5 2134.2 556.5 1549.8 1247.2 2215.1 979.2 1769.9 512.3 1352.8 506.0 927.1 944.7 2563.8 828.6 1396.1 381.1 2488.2 1148.5 1367.8 683.8 1576.6 753.6 1098.0 1148.7 1983.6 944.5 1171.4 458.2 1652.5 749.9 1030.5 947.9 1806.3 1 1 64 473 767.2 227.7 4036.0 3767.2 2943.3 3098.3 235.1 789.5 464.4 311.4 101.9 4793.7 1410.2 3589.7 237.7 450.0 1545.2 734.1 2694.1 3304.2 450.1 1537.3 2311.9 2583.4 2590.8 2447.7 268.2 461.3 2476.1 3250.5 431.4 832.3 632.1 934.0 2891.6 3325.7 1918.1 2620.5 516.2 355.7 606.7 462.4 2176.1 2530.2 1988.4 3543.6 312.5 635.9 691.1 1914.8 268.1 2913.8 1026.0 2780.3 359.5 1020.7 306.1 830.1 2012.7 3406.5 340.2 838.8 535.0 3200.4 1791.2 1573.5 348.0 1562.3 524.2 882.9 479.0 4328.7 573.3 944.4 1684.2 3708.0 1211.5 2726.3 310.7 699.6 741.4 2633.6 845.2 1141.6 327.7 1325.6 1783.9 2768.6 662.7 1013.8 340.2 2313.6 1200.9 2502.7 285.4 1110.5 515.1 1200.4 582.3 3053.5 476.8 812.9 390.0 3387.0 434.6 1953.2 354.3 2253.6 526.7 1279.1 449.8 3025.5 492.0 872.8 1381.5 2856.7 546.7 1292.4 461.5 1741.0 499.1 1290.5 438.8 3585.5 472.1 487.1 534.4 4105.9 789.0 1226.4 1366.8 3272.5 937.7 1044.9 942.9 2272.7 1526.6 1404.5 397.1 1423.6 1120.5 1777.8 384.5 1827.2 1 1 107 663 381.1 309.5 3837.2 3630.9 271.8 309.4 99.4 4113.2 1080.1 3605.7 105.9 267.3 333.0 616.8 3312.1 3311.1 2524.7 2870.8 234.8 546.9 1016.9 3622.7 137.3 300.3 234.0 659.3 247.3 4756.9 884.4 3693.5 92.1 502.4 867.9 3603.0 308.6 468.1 329.4 785.4 2664.2 3026.3 763.6 2826.3 533.2 801.1 459.5 1003.2 2838.4 3273.7 2278.3 2834.3 526.2 1039.1 535.5 841.7 465.0 3644.5 399.1 947.4 2334.5 3169.3 634.9 2609.7 604.0 1301.3 309.6 995.4 314.6 3842.6 633.6 2554.8 311.0 1364.6 400.6 1156.9 190.8 3320.6 701.0 2727.5 182.4 831.6 756.7 3092.5 263.5 755.6 384.6 1360.6 2031.8 2773.5 684.8 2254.3 689.4 1030.7 388.5 1082.9 2017.3 2716.6 442.2 924.7 2193.7 2862.6 581.7 2290.5 979.4 1443.8 571.6 1171.3 1906.6 2442.2 1405.9 2017.6 729.5 1130.8 664.8 922.9 464.4 2641.6 494.8 747.0 439.8 2949.0 395.9 844.6 1508.6 3021.9 518.3 1897.6 728.3 1328.8 612.7 2004.7 592.9 1281.1 463.2 1134.3 1548.1 2382.3 388.0 963.7 808.3 2902.0 474.8 865.2 1276.5 2644.0 1 1 89 718 416.8 302.9 281.9 4799.0 2733.6 3132.8 192.9 1118.7 331.2 443.9 2073.4 6121.8 345.1 1611.9 3125.1 3572.9 420.6 548.2 3882.0 4340.8 2673.6 3354.0 181.1 468.6 2342.7 3438.4 280.8 472.7 634.2 2295.0 2612.5 2975.2 489.6 816.3 2610.1 3919.5 839.8 2807.4 1594.8 2147.7 1060.7 3327.3 332.5 728.8 1446.9 1418.1 384.7 4086.0 1237.5 910.3 2333.0 3321.8 2432.0 2300.3 606.4 1161.6 1528.7 1533.9 2512.9 3040.0 444.6 678.6 2439.9 2914.0 1301.4 1764.7 1176.6 1791.4 553.7 772.7 2822.8 3811.4 505.0 837.0 655.8 3099.5 625.7 2450.4 586.3 1630.4 526.2 1154.7 643.8 3928.7 573.2 911.4 296.7 4038.1 539.7 1009.4 453.1 4717.5 486.8 999.6 793.0 4564.6 505.7 790.4 1858.8 3511.5 501.8 939.3 715.7 3040.0 1429.3 1895.9 542.3 2983.5 768.2 1710.5 1618.8 3120.9 607.4 1975.8 1582.3 2710.3 979.9 1813.9 808.6 2093.8 629.5 1092.6 1612.1 3448.5 417.0 1266.1 797.7 2721.1 604.0 2362.3 442.3 1794.8 491.9 1296.9 402.5 3119.6 466.6 698.0 353.2 3113.2 449.3 1218.8 354.5 3655.8 1 1 380 636 244.6 479.7 10129.7 8263.2 -355.1 -707.2 143.1 7735.1 533.6 519.3 -25.3 8649.2 6153.2 8873.5 402.6 555.6 208.4 627.2 6562.5 6704.0 6721.6 7867.1 -569.6 -417.5 7562.6 8820.2 379.8 496.6 6501.5 8079.9 405.6 599.0 7699.1 10368.3 159.6 256.7 1987.9 9899.8 209.8 379.4 6793.1 8785.8 220.2 496.4 6554.0 8197.4 476.1 790.1 7444.3 9163.4 222.6 -454.7 7384.5 9007.7 448.7 596.6 6226.9 8742.9 297.2 421.6 1542.5 2243.3 5527.6 5438.9 1560.3 2024.9 5380.7 5541.0 5147.2 6665.2 714.1 1018.9 1502.4 2864.6 470.6 6044.0 5634.9 8781.1 442.9 1091.3 2724.9 9671.0 581.9 434.8 6655.7 10222.0 370.7 210.3 2755.7 10070.8 471.1 501.4 5820.4 8291.3 471.4 1207.5 1486.2 2515.5 589.7 5976.3 1164.8 2536.2 579.6 7238.7 1175.4 2445.7 479.4 8026.7 1102.4 2315.1 501.0 7261.6 1196.1 2781.1 59.0 5990.4 1952.8 7405.9 343.2 2103.2 4683.6 7488.1 531.5 1037.4 4045.0 6488.6 649.4 1183.7 1454.8 2607.4 3135.2 4876.5 3820.4 5978.6 703.1 1572.3 2149.6 6940.7 450.5 1555.7 1602.6 3514.1 479.2 5044.0 1 1 88 506 13.9 -48.1 119.8 3622.9 428.8 1677.6 115.1 144.9 1669.6 1998.1 69.5 147.2 267.2 352.6 114.6 1884.9 1379.0 1438.2 67.9 241.1 269.3 162.7 1079.7 1285.1 109.9 213.5 107.7 1327.4 290.3 320.1 141.8 1551.6 297.8 554.8 999.4 1107.1 495.0 1663.4 93.1 175.4 141.2 352.6 92.5 1446.2 284.1 380.8 1038.7 1402.8 902.4 1031.4 168.8 424.3 278.7 426.3 756.5 1203.7 735.5 1050.2 164.0 462.5 232.5 437.2 197.5 1607.9 139.3 361.6 139.6 1505.9 228.4 405.3 144.3 1563.5 923.0 1039.4 103.7 412.6 366.4 1070.5 67.6 396.8 950.6 1020.0 175.1 433.3 279.5 576.3 816.2 1098.8 283.1 480.1 672.6 921.1 788.0 980.5 180.0 314.3 459.9 1220.3 102.2 197.5 420.5 1196.9 96.2 434.7 398.5 1089.5 181.3 470.8 707.9 991.6 108.0 397.7 897.6 1091.7 104.2 386.1 762.1 972.1 87.9 387.4 679.2 1011.0 102.1 513.5 432.6 1180.6 88.3 309.6 609.7 1065.2 157.0 359.7 725.7 1067.2 86.9 356.4 445.5 914.8 121.9 406.2 677.1 1044.8 117.5 283.5 1 1 123 502 5114.3 6166.1 491.7 8378.9 2225.3 2914.6 6089.3 9498.2 5391.5 5895.3 5899.8 6239.9 2108.4 4084.6 4414.0 8304.7 4177.9 6296.0 3869.5 4805.6 6533.0 8079.3 591.6 1107.6 1665.8 2504.9 3887.2 7635.6 2679.4 9228.6 578.8 1876.0 4642.8 6817.3 1964.3 6275.1 4358.9 5378.8 1738.7 6489.8 2162.4 7132.2 3664.9 5788.6 5050.3 7320.1 953.0 2883.5 3318.3 6702.1 970.8 6468.0 4152.1 5870.0 3450.0 6311.5 1557.9 4113.6 861.4 6911.4 2658.1 5726.2 4022.9 5450.7 3312.6 5042.1 4129.1 5346.9 4345.0 6047.8 1748.1 7840.1 3785.4 5730.2 1128.5 6783.2 3037.6 4036.7 2750.7 7142.4 4058.9 5882.2 2416.9 3764.4 1921.9 3863.8 3759.0 6928.2 3991.1 5642.2 2964.2 5250.0 3783.6 4653.5 2655.7 4729.2 3048.2 4645.0 1401.7 5118.5 3799.5 5122.1 3488.0 5601.4 3453.8 4951.4 3522.5 5319.8 4051.2 5645.4 1187.3 3697.1 3189.1 4866.8 2643.2 5593.7 2358.3 3769.2 2015.0 6129.3 1766.1 5164.7 1206.1 6481.9 3064.4 5174.7 2291.6 5529.0 1638.3 3815.3 910.4 6578.9 1749.2 5375.4 1424.4 6318.8 1785.1 3622.0 2347.2 5763.3 3139.5 4307.6 1214.8 4552.3 1 1 74 510 3772.5 4230.3 124.9 169.9 290.9 580.1 3243.5 3195.2 320.6 450.6 2708.5 2787.1 2400.6 2676.6 190.0 242.0 2854.0 3077.0 220.8 83.1 2890.2 3073.6 126.8 136.6 2619.5 2956.6 160.1 350.0 2961.9 3345.3 156.5 253.4 465.9 885.7 2033.8 2063.8 2762.9 3376.9 97.6 375.2 853.9 3163.3 90.1 565.5 850.8 3372.5 131.5 410.5 792.7 3114.4 97.2 260.2 347.0 760.1 177.9 3196.8 337.0 625.4 197.7 3715.4 252.5 678.7 217.0 4084.8 1991.5 2575.1 118.2 469.6 794.7 2895.7 217.9 693.1 828.5 2937.6 200.8 292.5 2015.3 2532.8 108.3 381.8 2133.9 2575.4 208.6 610.5 1946.3 2363.2 95.9 456.6 2097.3 2709.7 51.1 508.5 788.5 2477.9 121.4 580.7 571.8 917.4 202.2 2772.9 1605.7 2345.4 194.4 887.4 824.3 2579.4 64.2 493.9 684.0 2549.4 71.2 696.5 344.4 892.4 136.8 3050.1 394.7 814.6 210.4 3066.0 347.7 759.0 1681.6 3167.3 464.7 761.2 375.3 2556.6 1634.3 2115.5 159.5 1013.7 1809.9 2339.5 128.7 733.2 1654.6 1968.4 267.2 870.9 628.5 1180.7 1125.1 1817.6 1 1 70 476 -395.1 1201.9 4015.4 3818.0 165.8 198.7 143.3 2540.7 867.8 1426.4 2472.3 2581.5 346.8 695.8 174.1 2589.0 2156.6 2060.0 738.7 412.8 2072.7 2262.7 41.8 323.1 552.1 532.8 2278.8 2600.4 1915.5 2019.4 76.8 461.5 372.6 295.2 531.8 2859.5 216.2 2344.8 199.8 1150.0 259.2 45.0 838.5 3191.0 2133.0 2292.0 49.9 356.2 189.9 326.4 198.4 2379.1 603.8 578.2 1657.5 2046.5 866.4 2289.0 183.7 267.9 1720.5 1723.8 139.5 626.1 1614.4 1694.5 147.4 936.8 1624.6 1988.4 239.1 -108.4 373.6 599.1 1223.4 1535.1 375.2 766.4 157.3 1641.4 441.7 1899.0 238.9 572.2 184.0 991.4 1457.8 1623.3 277.4 603.6 434.0 1650.0 345.0 387.5 1176.7 1770.7 1329.8 1292.8 490.3 774.3 1457.2 1676.6 204.1 448.1 1723.4 2100.4 140.6 55.6 1427.1 2017.8 121.9 189.2 839.0 1858.3 104.7 679.0 1170.7 1503.4 123.1 391.6 443.5 681.2 88.1 1730.0 465.1 1640.9 8.9 824.7 589.9 642.0 141.7 1733.4 791.5 1717.6 140.4 757.9 432.1 620.5 111.1 1655.1 1157.8 1545.1 121.9 522.5 1 1 118 160 158.5 121.3 3509.1 3527.7 272.6 268.9 215.1 2910.1 366.9 384.9 121.6 3338.4 2127.3 2300.2 -24.5 173.2 1850.4 2028.3 162.7 535.6 277.0 425.1 171.2 4229.9 253.2 617.4 124.7 3461.9 585.2 2117.3 169.7 585.8 593.8 2073.3 135.2 226.3 611.4 2140.1 135.5 336.4 1175.1 1687.5 248.1 483.2 396.8 615.5 2267.9 2838.8 320.5 529.8 139.1 2768.3 291.4 551.5 240.5 3384.4 256.7 560.6 2140.9 2904.8 283.7 511.1 1788.7 2724.8 1158.0 1568.7 351.7 1036.7 405.8 686.7 233.2 3103.0 1239.3 1628.2 330.0 791.5 361.5 708.9 1650.0 2365.8 306.5 612.4 1711.3 2648.6 416.3 734.7 368.4 1948.1 1208.1 1596.3 545.7 1203.8 480.8 793.0 1652.4 2374.3 408.3 686.6 621.8 2452.6 1286.6 1597.7 465.6 1029.1 701.9 1758.6 303.9 835.8 1167.3 1613.2 286.0 820.3 703.6 1772.9 205.7 895.3 952.8 1489.2 222.4 1012.6 507.5 854.4 420.5 2477.9 519.6 850.3 1163.0 2420.1 1069.5 1462.1 603.2 1197.2 745.2 1640.7 509.9 1114.6 396.5 958.6 990.4 1880.0 551.4 1404.6 618.8 1489.7 1 1 737 593 1181.5 1879.4 14730.0 12682.8 5880.2 7314.4 635.5 1085.5 1131.2 1599.3 943.6 15384.9 1245.5 2234.4 475.9 14278.8 2947.6 14120.6 507.8 1664.7 3316.8 14844.4 392.6 1784.2 1293.8 2941.5 629.7 14099.5 1282.3 2717.8 686.5 15244.8 2980.4 14829.1 708.3 1632.7 8611.7 13030.4 540.4 2266.1 1350.9 3574.5 1022.9 16362.8 1192.9 2897.0 1339.1 15767.4 1480.7 3105.0 9554.9 12804.3 6613.8 10423.3 1546.9 3881.4 1705.4 3801.6 8379.7 11556.5 6107.3 10016.9 1405.0 3095.0 7305.6 10832.5 1013.5 3065.9 1879.9 3574.8 1069.0 13806.6 2062.1 3806.3 936.1 13210.5 6551.4 9859.4 904.4 3984.2 2017.1 4615.3 1055.1 12679.8 2600.6 11596.4 1022.8 5009.0 1952.3 4410.6 2029.4 14553.5 1920.5 4151.7 7550.9 12797.0 1578.3 3482.6 2097.1 11961.1 1516.0 3771.7 1412.0 14646.9 1401.9 3532.1 1309.1 13939.6 1507.5 3523.2 1685.1 13588.8 1518.0 4097.9 5607.2 11263.0 2250.7 9031.8 1864.9 5718.6 1524.2 5027.5 1398.3 11706.5 2295.2 8906.5 1252.3 6508.3 1674.9 4669.5 1839.3 11944.2 1601.5 3953.0 5646.3 13216.0 1960.6 4620.4 2212.1 12994.1 6388.9 10151.6 1493.2 5522.5 1 1 84 611 924.8 4197.0 281.6 408.4 4102.3 4719.6 120.0 273.2 979.7 4398.9 157.1 297.3 3535.3 4075.6 93.8 219.7 3691.5 4219.1 178.7 462.9 1078.3 4163.9 77.5 253.6 3005.5 3682.9 207.9 312.0 1126.1 4243.1 133.9 323.3 3108.4 3782.6 174.5 289.4 1054.3 3649.3 150.9 276.1 1030.9 3585.9 99.1 379.3 513.7 982.8 164.6 4179.7 799.6 3789.6 152.4 837.8 482.1 944.7 204.6 4170.5 2655.1 3245.4 208.4 736.6 578.8 968.3 179.3 4387.7 477.8 848.1 227.6 4296.4 2406.7 3048.1 221.1 1101.7 642.2 1011.5 2301.4 3115.7 400.5 972.5 401.9 2968.2 1076.4 3461.8 157.1 852.3 2449.6 3233.3 166.9 600.9 2802.1 3288.5 220.7 495.6 1267.7 3545.3 245.7 661.3 2276.7 3544.6 216.0 639.0 2594.4 3291.3 228.2 606.6 1085.3 2978.2 198.6 980.3 749.8 1406.9 257.1 3169.1 2157.6 2921.8 174.1 1135.3 1089.0 3133.5 182.1 803.1 2203.3 2857.5 148.7 908.7 2536.1 2958.0 160.0 801.5 2191.8 2884.9 172.9 1089.6 819.9 1401.8 213.8 2983.6 611.3 1018.8 398.0 3630.5 579.1 1021.6 1718.6 2986.8 1 1 114 669 1250.5 6003.5 142.7 -145.1 1492.4 6902.2 49.3 -231.5 421.3 677.9 257.7 8941.0 5084.4 5494.9 129.9 182.5 4662.5 5266.8 137.7 115.4 4024.1 5289.7 167.8 -17.8 1216.5 5307.1 -120.2 102.1 749.8 1388.6 110.9 7286.1 1446.8 5264.3 174.6 601.7 4443.8 5471.1 101.2 492.6 1274.3 5262.1 203.3 552.3 1361.0 5690.2 97.2 750.1 697.9 1518.6 55.8 7272.5 684.5 1231.3 287.8 7580.1 3732.7 4552.8 232.6 1023.3 3767.2 5304.6 154.9 700.4 1323.0 5010.5 128.8 832.8 1148.5 5640.8 155.9 921.6 1273.9 5111.2 198.2 935.4 952.6 1833.0 229.5 5673.8 3160.3 4486.3 187.0 1028.2 3169.4 4512.4 116.8 977.5 1115.0 1759.2 315.3 6187.1 3154.8 4250.6 254.8 1455.8 1391.4 4889.7 97.8 1316.9 1112.6 1835.2 281.5 5338.4 3190.9 4078.5 293.5 1771.3 3269.2 4405.5 218.5 1109.2 1300.7 4718.0 106.5 1129.6 1281.6 4544.4 208.8 1465.8 1173.1 2327.1 238.7 4941.1 2939.4 4056.1 157.1 1583.3 2865.7 4097.2 197.5 1389.5 1335.7 4289.0 269.8 1240.8 1188.0 4066.5 171.4 1177.6 1200.7 3847.6 193.4 1583.8 1 1 114 570 760.1 4180.3 5.9 915.1 387.0 943.6 4856.9 4291.4 250.8 131.8 572.6 4414.2 1014.6 4291.4 316.1 553.1 194.3 411.6 3369.6 4163.6 3014.0 3543.1 209.7 -58.1 981.6 3875.0 348.3 731.1 542.4 1087.6 242.0 4526.9 1571.9 4601.1 -11.9 442.7 2529.9 3722.8 286.6 812.2 599.2 985.2 2876.3 3927.1 376.9 888.8 838.9 3939.7 524.5 896.1 3305.5 4382.7 286.2 778.0 3920.0 5152.2 706.2 1021.0 568.6 3815.5 683.5 1107.8 558.9 4168.7 2260.6 2707.3 744.3 1858.1 942.3 1572.5 2706.7 3483.8 640.6 1276.5 2822.6 4357.2 663.3 1462.7 2654.6 4072.5 973.8 2841.5 907.2 1745.5 1044.1 3284.9 563.8 1579.2 1030.5 2112.8 478.0 4086.5 2597.4 3519.1 539.4 1711.9 1187.5 3622.7 420.9 1737.7 793.7 1903.9 388.2 2991.6 1063.3 3308.8 438.2 1737.5 2161.6 3698.5 328.8 1128.9 2510.9 3613.7 92.3 1215.6 2587.9 3464.0 308.3 1097.6 2272.8 3091.4 312.6 1206.2 1045.8 2092.6 294.9 3100.9 900.9 3173.4 261.3 1370.1 851.3 1770.5 448.0 2727.8 697.6 1279.4 1504.3 3261.6 830.6 2125.1 700.0 2114.1 1 1 366 851 907.8 1267.5 9704.9 8633.3 7247.4 8462.2 390.0 570.4 7676.0 9252.6 290.2 807.5 7785.9 9866.4 283.4 848.5 7837.2 9551.4 313.1 1292.3 7471.6 9446.6 279.0 1149.3 6753.3 9009.6 305.3 1200.1 2298.1 9187.8 424.3 1418.6 1712.2 5590.7 795.6 8091.7 1253.6 2121.4 7614.1 9657.3 1001.0 1834.8 6746.7 8942.2 2062.7 7439.4 909.2 2166.9 5674.9 7512.0 537.7 1737.0 5325.4 7500.4 899.8 1977.5 1542.7 3110.1 6166.9 6846.4 1342.5 2773.1 1337.2 6520.5 1288.3 2485.5 6026.5 7835.9 1299.4 2499.7 1125.9 8059.7 1405.6 2692.1 837.9 9178.8 2127.0 6348.0 690.1 3016.2 1240.7 2636.7 782.3 9455.7 1466.9 2623.8 707.5 10269.0 4998.6 6391.3 669.8 2941.2 4971.1 6136.5 666.1 3037.3 1591.1 2911.1 600.5 8758.0 1936.2 6348.7 760.6 3146.3 1333.8 2723.5 828.7 8420.8 1132.3 2180.6 806.2 8484.7 1401.4 2634.5 812.1 8469.9 1848.4 6175.9 886.7 3281.4 2170.9 6989.7 865.9 3048.2 3601.5 5913.4 1091.4 3155.8 1701.1 3497.6 3664.9 7024.4 1713.3 5952.7 1404.3 4146.9 1984.4 6216.5 1038.7 3776.1 3365.1 5443.2 928.4 4220.1 1 1 120 187 88.7 177.2 558.1 3925.4 191.0 370.7 274.0 2120.9 42.2 118.2 683.0 1513.0 368.2 820.5 205.9 854.8 101.4 556.6 349.1 1284.5 556.0 514.5 489.9 1203.7 333.3 614.0 321.1 835.2 845.1 853.5 214.8 620.2 497.9 795.3 155.0 413.7 399.1 788.3 34.4 668.5 262.4 457.4 313.0 1201.8 538.0 641.2 611.4 1051.5 496.7 775.4 617.3 1157.9 408.8 783.7 444.0 1025.3 497.0 863.5 239.7 1120.2 717.4 934.9 53.6 541.7 579.7 861.9 369.3 691.6 377.5 543.6 477.8 1169.2 343.6 821.5 175.9 631.6 559.8 890.6 34.0 611.7 421.1 745.9 178.8 984.1 312.9 534.9 326.1 962.4 214.4 697.8 219.6 982.4 450.8 851.2 142.0 879.7 319.3 614.6 389.0 1087.4 192.6 509.8 319.2 1304.4 265.2 369.7 246.4 1517.6 302.1 443.3 428.4 1385.0 191.7 364.2 415.5 1438.5 411.2 692.7 293.5 843.7 490.8 767.6 229.1 804.2 540.0 756.9 166.8 1002.4 498.2 719.1 321.0 1028.2 402.1 626.7 302.0 1184.2 332.6 411.5 309.7 1330.6 235.4 477.0 345.6 1290.5 1 1 99 468 2628.1 5271.8 416.8 734.9 2649.3 4406.3 283.4 820.8 2071.8 2933.2 188.0 3986.3 499.8 1096.3 3470.2 4462.8 780.2 1189.3 2110.0 3791.9 1056.2 2272.9 2285.5 2856.0 1971.9 3345.9 473.9 1035.6 1866.4 2808.6 2104.4 2434.7 1131.5 2933.3 638.9 2359.3 1016.2 1890.7 1645.9 4143.9 1591.1 2578.6 1991.4 2421.5 1957.3 2852.2 1835.2 2620.6 1915.8 2558.4 2042.3 2483.6 2635.4 3184.0 718.0 1531.9 1157.0 1867.5 1777.8 3501.5 1147.8 3405.1 780.0 1696.3 1118.5 1788.7 560.1 3968.4 1887.4 3106.9 1416.5 2447.0 1752.5 2989.1 615.7 1569.6 1994.4 2699.8 640.0 2441.9 2353.1 2747.9 1225.0 2169.4 2335.6 3450.9 629.3 1513.2 1547.1 3422.8 606.2 1408.6 2080.2 3010.3 535.7 2224.8 1470.5 3011.4 554.0 2462.8 1706.5 2654.6 1433.6 2421.6 1759.9 3385.4 653.5 1410.5 1725.1 2998.0 541.1 1992.4 1333.9 2595.2 1456.8 2283.4 1610.6 3089.6 599.6 1647.6 1457.5 2738.8 655.2 2693.4 1261.5 2609.1 1052.6 2414.9 1560.4 2819.7 1151.3 2468.3 1154.3 2266.6 1297.8 2806.4 405.1 2392.2 1345.9 2530.0 1487.4 2848.4 806.8 1905.4 1 1 116 556 287.2 70.6 3740.5 3555.6 2750.7 3087.5 217.3 371.0 420.5 305.5 183.3 3632.1 772.0 3055.7 169.6 299.1 329.1 483.3 2709.2 2697.2 444.0 664.2 2185.4 2296.9 2285.7 2728.9 249.6 474.2 2800.7 2945.2 273.3 437.1 567.0 765.9 2560.9 2805.1 2142.8 2301.8 458.9 719.0 540.9 705.6 2484.7 2633.6 763.2 2864.2 402.6 698.5 416.1 837.4 270.9 3092.8 776.0 2894.3 296.3 793.6 337.7 973.5 2219.0 2527.0 413.4 851.4 328.5 2524.7 1858.0 2124.3 286.2 766.5 437.6 783.9 343.2 2767.3 486.1 752.2 1959.8 2617.2 344.1 805.0 1593.3 2211.3 650.1 2326.3 437.2 846.5 593.8 2531.2 456.2 813.5 412.5 830.6 1841.6 2626.9 462.1 997.6 815.4 2176.6 550.5 1906.9 417.0 1404.6 425.6 1112.1 422.4 2526.7 440.8 957.3 260.3 2868.2 475.7 1596.8 336.2 1995.4 406.3 1093.8 389.9 2561.3 384.0 963.1 1022.0 2430.1 484.8 1613.1 646.1 1890.1 392.9 1098.0 410.8 2251.9 575.2 920.7 362.2 2686.9 1099.0 1636.6 470.0 1736.6 691.9 1101.2 1009.8 2244.2 1168.0 1681.6 578.1 1535.4 1 1 109 150 341.0 498.9 3466.4 2904.0 281.7 433.0 3015.5 2912.9 596.6 2500.3 202.5 391.2 227.4 500.7 283.5 4412.6 2092.0 2411.3 303.7 727.9 358.0 430.7 2935.9 3243.8 295.4 494.5 2595.4 2805.7 1720.7 2173.6 466.1 656.5 1801.8 2318.1 197.3 494.5 681.0 2172.9 241.8 572.1 644.9 2239.4 194.6 425.3 1599.3 2070.3 310.5 772.9 481.0 646.5 2535.0 2893.4 324.4 471.7 535.6 2679.2 305.5 537.1 2012.2 2955.8 335.7 475.1 496.5 2584.5 295.0 572.5 1703.7 2500.3 571.9 1999.7 469.6 944.6 1374.6 1946.1 272.2 800.0 407.5 745.2 292.0 2506.2 381.3 718.4 1669.2 2498.4 649.2 1838.0 467.3 846.8 1378.0 2010.9 412.4 905.5 517.4 733.9 341.2 3103.5 1465.2 1664.6 337.9 1207.1 654.1 1987.6 403.4 883.5 678.2 2112.1 335.4 686.7 1335.7 1722.9 232.3 853.5 481.4 736.6 239.1 2499.3 332.0 831.4 182.3 2476.3 544.7 1819.4 217.7 972.9 568.1 2020.2 235.1 832.4 533.6 1724.2 351.6 925.8 369.0 922.1 1337.3 2066.1 422.5 1445.7 341.4 1060.0 424.3 1435.3 310.8 1080.7 1 1 114 754 334.0 784.5 4520.6 4482.5 359.3 565.5 4082.8 3776.7 275.1 579.4 226.8 4064.1 1078.7 4653.4 89.8 306.7 1124.8 4396.8 161.5 637.4 385.2 964.6 164.4 4957.3 904.5 3686.9 148.7 551.7 702.8 1078.4 280.2 4797.2 453.1 978.4 2970.8 3810.1 917.2 4134.6 306.8 726.2 2854.0 3902.4 212.6 468.2 3149.5 3736.5 374.7 1137.2 657.2 1267.5 3591.6 4151.2 2370.8 2936.9 576.3 1024.7 675.8 1282.3 2753.2 3417.4 988.8 3568.1 486.7 838.9 2681.6 3465.5 392.4 970.5 639.3 1364.5 2861.8 3626.4 660.3 1361.0 544.2 3203.1 2784.9 3173.7 300.9 914.2 2745.1 3239.8 397.4 874.5 716.2 1266.0 2133.5 2943.9 476.6 930.5 820.2 3472.4 563.8 1140.9 2355.3 3422.2 812.6 2922.7 588.8 1425.0 602.2 1345.3 437.7 3856.4 515.1 1064.9 488.6 3860.4 528.0 1302.7 481.6 3523.7 936.5 3207.7 432.4 1375.9 1939.0 3190.3 393.2 1085.3 754.5 1398.0 1429.9 2604.8 837.6 2880.2 436.3 1291.1 534.0 1445.5 462.2 2821.7 451.0 1208.1 1505.1 2991.0 753.1 2438.7 584.5 1363.4 917.6 2984.5 468.4 1148.7 1 1 111 432 516.5 1909.5 3942.8 3626.8 661.5 747.8 3120.4 6298.5 684.8 3323.2 190.3 3391.9 2377.3 2841.3 869.1 695.1 814.3 2391.7 2249.7 2688.5 2120.8 2137.9 1863.5 2178.4 972.5 3974.1 286.8 466.4 2370.8 2946.1 133.8 1174.7 2361.5 2758.0 681.2 2234.1 453.3 1058.7 3003.4 4755.5 412.4 1034.9 4346.5 4909.5 1503.6 1865.8 2886.5 2718.7 1795.1 2196.3 1767.6 2561.1 1138.9 1691.9 2345.3 2871.1 1611.5 1967.7 639.9 1271.7 744.4 744.7 2292.8 3936.6 676.9 1171.5 2984.6 3921.7 467.2 1275.4 814.1 3030.2 575.5 1266.5 2551.8 3531.5 2140.5 2650.5 815.4 1564.9 809.2 1742.9 1609.9 2566.0 1071.3 2440.9 925.6 2578.7 2262.5 3207.9 992.2 1334.2 814.6 1469.6 2830.4 3568.2 894.8 1187.7 1931.6 2919.9 1456.7 1942.9 951.2 1964.7 755.5 1212.2 1403.2 3064.7 1254.2 1615.2 1326.1 1266.6 1411.6 2208.8 848.7 2448.4 899.3 1544.0 2047.2 3253.9 917.8 820.6 1580.7 1925.4 1454.8 2315.5 1033.2 2786.3 984.1 1663.8 2212.8 3002.1 1484.4 2257.3 1828.2 2867.5 1205.6 2186.4 1088.4 1874.2 1540.0 2144.7 1220.3 1886.1 1 1 373 636 -486.2 -121.5 9827.6 7967.0 358.7 311.8 7007.8 6135.7 412.8 352.3 6544.5 6178.0 -110.2 357.7 468.5 5445.1 2174.9 11150.2 209.4 448.9 7817.8 10528.7 194.1 429.7 2330.2 10797.8 148.2 236.9 6748.2 8536.6 163.3 728.3 945.2 2058.9 554.2 8651.3 7037.1 8790.1 527.9 1565.1 1159.5 1661.5 612.7 10122.5 6288.8 8207.2 538.0 1556.3 1534.0 2902.9 551.2 7964.5 6471.2 10005.4 317.5 1041.0 1753.5 9731.6 423.3 1306.3 1257.7 3371.1 473.0 7741.8 5882.4 8679.8 485.9 1849.9 1338.3 2688.0 680.8 7867.5 2326.0 9608.9 455.8 1546.7 5333.3 8314.6 604.9 1494.4 1839.1 3142.8 679.5 7139.7 5156.0 8356.2 501.7 2079.5 1433.9 3287.4 695.8 7351.1 2315.3 9283.0 631.2 2265.2 5029.6 7774.2 561.4 2136.8 1378.9 2774.7 1218.3 7116.5 948.1 2481.4 4515.0 8012.2 1016.7 2407.0 1472.3 6083.0 974.5 2896.3 4129.6 6867.3 2155.3 7611.3 1117.7 2220.9 4855.5 7236.8 681.4 1741.3 5171.7 6963.7 457.2 1752.2 4790.7 6578.5 494.7 2566.4 2266.6 3509.1 586.5 6389.2 4134.6 6347.9 1077.5 3015.0 1774.4 4014.0 3165.7 5145.8 1 1 119 991 195.3 200.4 3280.6 3047.7 263.3 357.5 66.9 2221.5 233.1 216.7 2313.1 2415.0 163.3 278.1 2049.0 1922.0 595.3 2260.7 148.6 376.5 277.0 459.4 150.0 2854.0 652.1 2341.2 143.7 241.6 1992.4 2092.0 96.7 208.5 1716.1 1887.1 94.8 305.3 427.6 624.2 154.3 2464.0 588.6 2061.9 111.2 499.9 257.1 597.6 248.5 2076.2 270.3 489.5 1757.9 2248.1 244.6 564.3 1667.3 1856.9 523.8 2043.2 342.0 499.2 505.6 2241.0 146.1 497.7 281.8 694.2 222.1 2332.4 217.5 619.5 292.8 2687.7 376.1 691.7 1475.1 2136.1 1293.3 1771.1 381.6 706.9 1707.1 2154.6 190.5 376.5 647.7 2043.8 144.0 645.0 381.5 675.9 239.1 2254.9 307.1 689.5 177.0 2083.1 447.8 1776.1 147.9 917.2 329.1 760.4 282.0 2093.4 364.7 822.4 1374.9 2122.0 974.3 1432.6 297.0 858.5 409.6 860.0 181.4 1806.0 487.5 1893.0 240.9 869.9 518.8 1940.9 167.6 688.3 383.9 989.0 183.1 1664.5 523.8 1886.5 167.4 810.4 631.9 1896.8 133.2 708.4 1125.1 1690.7 272.3 732.7 511.1 996.9 959.8 1461.3 1 1 97 872 255.8 265.5 273.7 5618.9 819.8 3346.8 109.3 841.2 777.0 3038.7 606.3 850.3 558.9 770.4 267.1 4227.0 743.1 2969.6 448.3 794.1 844.2 3248.7 186.7 654.1 720.0 2890.7 103.1 800.8 453.5 932.6 152.5 3362.8 982.6 3062.6 98.8 480.8 701.5 2704.0 132.5 1052.1 337.2 785.1 227.1 3714.8 307.5 839.7 2237.1 3042.2 638.4 2891.9 272.3 710.0 316.0 580.9 390.4 4073.7 293.4 685.6 2267.7 3346.9 620.9 2553.5 357.1 1011.5 614.4 2535.1 196.2 1048.8 358.4 1082.4 377.1 3487.1 388.3 923.6 1911.4 3013.7 265.8 787.4 345.9 2888.5 753.2 2465.5 486.3 1117.6 1587.7 2258.8 498.6 1126.6 469.9 708.8 467.0 4154.9 336.3 609.3 514.8 4420.2 414.2 678.1 316.5 3537.9 561.2 795.7 455.3 3674.3 512.4 1001.9 1825.8 3289.1 1496.5 1847.9 581.7 1397.3 542.6 850.3 1508.0 2911.1 373.7 881.6 428.9 2765.1 535.3 969.9 318.4 3130.2 871.2 2357.5 232.4 1451.2 1724.0 2114.4 205.6 1385.8 570.8 1059.8 445.7 3233.0 656.3 2122.9 251.8 1274.3 646.7 2214.7 270.3 1454.9 1 1 117 859 1114.0 5215.1 139.6 -165.5 3503.7 4631.4 66.1 276.5 569.4 2274.9 3738.1 3534.3 497.1 596.7 4474.1 4161.3 2699.7 3782.4 150.6 486.4 888.7 3624.8 1891.2 1834.2 2885.3 4294.7 187.4 388.9 1908.3 2400.7 2747.9 2596.5 2476.3 2918.2 2063.8 2023.5 980.8 3671.7 320.7 684.6 592.2 1040.3 1955.9 4459.6 655.9 953.2 1831.0 4312.9 2785.6 4197.0 331.5 782.5 1171.4 4020.5 351.0 615.8 934.4 3269.6 1663.9 1674.8 2810.7 3776.5 392.8 770.6 828.8 1126.5 1409.5 3645.7 604.1 1015.0 2312.7 3595.2 567.1 1126.3 1531.8 3266.2 941.7 3475.1 560.1 1047.0 1032.0 3040.4 1395.2 1772.7 2211.5 3187.5 514.3 865.9 919.7 2866.4 1392.9 1795.9 757.2 2211.6 604.5 2940.7 1377.8 2034.7 2064.2 2765.8 783.6 1308.7 1273.3 2787.1 1792.9 3329.6 494.3 1172.7 1212.8 3622.3 372.4 949.6 1780.4 3237.8 540.4 1054.7 893.8 1514.6 1890.9 2652.1 1391.6 2064.8 1315.4 1770.1 1093.5 2681.0 1233.6 1616.7 1468.0 2392.2 1316.7 1805.7 978.2 1745.6 1925.4 2660.4 1324.4 1754.0 777.9 2247.4 816.4 1275.6 1319.6 3473.4 1 1 67 557 307.8 623.8 200.2 3530.5 412.9 2098.9 2759.3 2681.2 285.4 818.3 117.7 2615.4 200.0 285.2 2357.8 2750.9 748.6 972.4 310.9 2348.8 353.1 1238.3 2078.2 2568.7 329.8 490.2 336.1 2265.2 383.1 733.9 2092.6 2887.4 395.5 1248.7 251.4 2403.4 1684.2 1940.8 363.2 709.9 248.6 777.1 1878.6 2561.6 391.0 756.5 324.7 2345.0 263.0 481.3 1776.0 2363.0 251.6 495.5 330.3 2706.5 371.4 434.1 355.5 3100.1 260.3 498.1 1526.4 2561.7 313.4 450.9 312.3 2516.3 377.0 905.5 449.4 3304.3 499.1 591.6 1514.5 2509.5 1108.7 1365.3 349.1 931.5 443.3 761.3 294.9 2254.7 406.2 787.7 1105.6 2001.6 499.5 1724.0 360.6 1034.8 412.3 770.2 501.2 2516.8 647.3 1064.4 1292.0 2191.8 234.1 781.1 578.9 2350.0 340.9 760.4 298.8 2194.8 452.0 1710.2 272.8 1142.3 460.4 1753.9 192.0 865.8 410.3 1508.2 201.5 560.4 306.4 874.5 512.7 1835.5 271.2 651.3 797.1 1867.3 247.3 649.3 1143.2 1802.4 225.7 585.5 1144.6 1844.6 232.9 581.6 530.4 1978.2 309.3 532.9 540.0 2196.3 1 1 452 555 59.8 -469.9 11427.6 10567.6 7741.3 8904.3 176.2 85.6 1038.9 4221.6 137.6 8017.5 683.4 923.9 7024.9 8157.7 762.6 1013.7 6538.6 8281.5 418.1 788.0 3412.6 6285.1 714.4 982.1 544.0 9190.9 3374.0 3990.9 5225.4 5787.2 280.2 154.9 6418.2 9826.5 765.2 1325.7 5835.9 10451.6 5111.1 6761.4 2490.7 4056.6 1598.8 5021.2 5319.4 5715.2 3891.3 8176.7 830.6 1351.4 5658.4 7689.3 1824.2 2912.7 2491.8 8632.5 720.8 1103.3 4646.8 6685.5 926.6 4882.1 1856.2 7393.0 2497.7 3960.0 4573.2 7563.4 829.0 1676.3 5924.2 7901.5 441.4 1270.3 5159.6 6847.1 2252.0 2623.1 2097.6 4504.8 489.7 6863.4 2596.0 4354.6 641.9 6880.2 1672.0 4353.7 3690.1 5292.4 5231.3 6634.5 1167.2 3784.6 4713.5 6355.0 954.0 3399.1 2013.6 3573.4 4174.5 5783.5 2819.1 7637.2 1590.7 1959.3 4568.5 7129.0 1431.3 1738.4 1719.0 3116.3 4321.1 5308.6 1931.8 3207.0 3309.3 4063.6 1217.6 2874.4 3208.8 4673.9 1520.4 6204.5 1361.3 2901.1 1432.3 4913.4 1106.5 4018.4 1614.2 4499.7 3498.4 4185.8 2391.9 3919.0 3352.1 4709.7 1258.3 2830.1 2542.3 5123.4 1 1 355 795 -586.0 702.7 9564.7 9547.8 388.3 1174.5 -268.2 8335.1 1880.3 11075.2 879.4 442.6 1761.9 11583.1 455.0 583.2 423.9 1291.5 825.0 10871.8 9625.4 10825.0 226.0 800.3 1913.7 10860.0 556.5 728.7 7523.7 11642.9 277.2 1505.5 743.3 1992.4 7815.6 9034.8 321.6 492.9 900.1 9452.4 621.3 1282.0 8834.0 10047.2 387.5 1334.0 8345.5 9742.6 5357.8 7313.0 995.5 1492.9 1730.2 9153.3 837.1 2364.8 6014.3 7206.9 961.3 2355.5 1023.7 2109.9 1005.5 11232.0 923.5 1899.4 367.7 10936.1 772.0 1363.0 682.1 11285.3 1574.3 8363.0 618.0 3309.8 1015.8 2563.5 428.8 8468.9 5624.5 8117.7 518.4 2638.6 6452.0 8598.0 550.7 1860.6 1367.6 2722.0 5229.8 8642.6 1202.9 2265.9 1299.0 7540.2 4666.6 6168.2 879.3 2909.0 1680.3 2887.8 793.3 9018.8 1029.7 2195.2 794.3 8714.6 1647.8 7288.1 721.7 3076.4 2177.6 8081.6 369.3 2459.3 4197.5 7512.7 451.3 2028.7 2094.1 8207.0 649.4 1770.5 2192.1 8525.4 303.0 1717.4 3987.3 7443.8 350.3 2677.1 1488.4 2958.4 621.7 8664.1 1146.9 2584.1 553.2 10045.5 976.1 2485.4 314.9 10132.4 1 1 98 511 3458.1 4113.9 934.5 1777.3 -198.2 484.4 828.3 8107.8 1925.2 1336.8 237.7 5394.6 2088.4 3393.1 322.0 5147.1 1300.1 6360.3 339.5 466.7 2364.4 3173.2 -258.8 4941.7 2123.9 2943.8 3483.3 4478.6 1915.2 2470.9 3275.8 4203.0 4884.7 5505.0 411.4 228.5 1302.8 2498.2 3515.5 3719.3 4267.0 5464.7 427.5 100.9 1428.8 6301.0 308.3 -1.9 1323.7 5684.4 374.0 618.9 1690.0 6127.1 -126.4 -32.3 3820.8 5291.1 392.5 286.9 813.8 1394.5 2877.1 4767.3 2275.5 2803.1 2955.4 2229.3 1025.1 1694.7 3961.8 4271.0 2511.1 3888.2 783.8 1416.9 1831.1 4920.9 370.6 291.4 2809.5 3484.2 1243.1 2262.9 1121.5 1588.6 3233.4 4001.2 1999.4 4363.2 833.7 564.3 1230.8 3505.8 2249.4 285.8 795.7 1798.9 676.9 3299.4 1034.1 1931.8 2361.3 3005.6 2087.2 3824.3 770.1 1055.4 923.8 2056.8 621.3 3473.7 2369.7 2637.6 583.4 1909.7 832.7 1743.2 2110.7 3019.6 2039.4 2827.0 809.4 1717.6 878.3 1127.7 778.4 3949.8 1380.3 1710.0 1771.8 2429.6 1157.0 3528.6 770.4 1413.9 852.1 3185.2 388.4 1278.9 1755.1 2377.8 82.3 2190.7 1 1 495 692 553.1 840.3 9801.3 8047.8 8377.8 8668.8 495.4 709.5 1919.8 8956.6 547.6 1101.0 6639.2 9385.8 433.1 1106.9 955.0 2133.0 455.5 10134.1 1947.0 10071.8 897.4 2630.2 1136.3 1442.3 1508.9 9744.9 7577.0 9514.5 476.8 1326.5 1472.4 1369.4 778.5 11351.4 3283.0 3049.7 742.2 11316.7 2789.3 11724.1 697.2 1032.0 6978.8 9882.3 1757.9 845.0 1321.7 3885.5 780.9 8850.9 5797.5 8850.3 199.3 1492.9 1155.0 3627.3 883.0 8399.1 1062.3 2509.8 4514.1 6794.6 2277.8 10606.1 464.5 1690.2 2044.5 9109.7 895.3 2593.7 866.2 2550.7 968.1 8696.1 895.0 2405.6 4901.6 7818.8 648.6 2368.5 5268.5 7555.7 1045.6 2357.1 4953.5 6974.8 645.4 1926.0 1573.2 5687.8 830.2 1935.8 4943.0 7914.3 1570.7 2457.4 1435.8 7520.0 705.4 1277.4 5011.6 8993.7 635.4 1762.2 1141.3 6931.0 995.7 2165.3 1253.9 7953.1 3770.7 5184.7 751.2 3498.2 1038.7 2372.0 799.7 7749.2 643.3 1843.2 1186.4 8094.0 836.4 2073.4 718.1 8124.2 3888.4 5436.6 569.9 3875.4 1873.9 2488.2 897.5 6971.1 4254.3 5222.7 1347.7 4030.1 1645.8 2744.0 3722.3 7016.0 1 1 129 389 538.7 723.2 9795.0 10087.4 3172.0 3794.2 6857.1 6635.0 567.2 669.0 5530.5 7509.8 4077.8 5182.7 149.3 510.2 4402.1 4567.5 2925.1 3141.3 737.0 1046.2 4913.4 5237.0 2676.1 3043.4 4722.6 4735.7 5036.3 5239.8 553.7 824.2 4531.1 4802.4 2914.3 3509.4 4830.8 5925.5 667.5 1138.4 4569.5 4983.5 2948.6 3815.9 4767.6 5854.7 625.0 1290.0 1116.0 1975.8 488.8 7339.9 3952.4 5853.2 564.0 1582.7 1387.7 5473.4 2446.0 3050.2 895.4 1816.7 601.6 6242.3 2320.6 3032.5 3465.5 4575.1 1075.9 1765.6 3435.0 5014.3 3266.4 3713.0 1833.4 2330.0 3670.8 4787.1 537.4 1263.0 1429.1 3233.2 677.5 4957.0 3302.0 4402.0 1655.5 2545.6 1401.9 5097.9 708.4 3178.0 1141.4 3160.9 714.8 5780.5 990.4 2021.3 3545.8 5636.3 807.0 1691.0 3516.4 5890.6 877.1 2639.8 3157.2 4719.0 808.8 1838.3 905.6 4433.5 1037.8 1733.4 1503.5 5467.1 2424.1 3694.5 841.3 2817.4 1114.0 2131.1 642.2 6125.6 2774.3 3513.2 826.3 4291.8 1449.3 2285.0 3174.4 5760.0 1662.4 2343.3 3180.1 5410.1 2642.5 3470.3 997.2 2847.0 2730.4 4189.6 793.4 2756.0 1 1 100 552 -103.5 -511.0 3640.5 3504.0 717.7 3393.5 163.9 -26.3 742.4 3395.4 -110.1 -25.6 593.8 3376.1 -163.4 -146.5 755.2 3050.7 547.2 655.2 315.4 52.9 232.9 3458.7 2271.5 2613.8 135.7 264.6 327.1 608.3 -73.4 2460.1 330.0 656.0 2266.5 2681.0 685.2 2664.8 279.6 446.0 2092.6 2684.8 109.4 -97.0 664.2 2814.3 232.6 237.0 355.3 714.4 95.4 3142.0 380.0 2304.2 161.8 854.0 473.9 426.0 198.2 3032.6 1910.7 2410.4 159.7 220.7 390.8 816.8 2011.9 2445.4 1234.0 2073.5 429.2 690.9 662.1 2460.2 58.5 918.2 342.4 709.9 1921.7 2454.7 288.6 441.5 343.4 2278.4 328.9 192.4 284.2 2905.6 29.3 871.6 1916.4 2711.3 291.7 2075.9 512.5 999.6 353.8 1045.2 321.4 2502.4 1664.1 2097.5 -39.1 1003.8 539.6 785.4 388.7 2810.1 224.4 574.3 1376.7 2733.0 266.2 769.7 453.3 2292.8 496.7 1915.0 243.5 911.0 1379.9 1860.9 315.7 646.0 651.0 1319.2 1108.5 1473.0 615.8 1751.4 615.3 956.2 472.5 1108.4 1163.6 1954.4 375.8 481.2 596.8 2002.4 430.0 820.2 1276.0 2111.0 1 1 106 452 1294.7 5176.2 115.4 357.8 4767.8 5052.1 227.0 241.8 530.2 882.2 3529.6 4492.1 1129.3 4407.9 967.0 1521.2 3221.4 4450.4 191.0 534.1 1113.9 4048.7 1066.8 1545.2 3085.9 3881.2 230.6 2348.7 853.8 2439.8 2798.9 3111.5 1126.9 4144.9 324.6 1774.8 1102.4 4447.7 1341.5 2070.7 1148.3 4540.0 386.3 695.5 628.3 1342.1 2912.8 3751.1 2248.6 3372.9 602.3 1104.4 770.5 1407.3 1578.6 3591.7 1471.9 3618.5 222.9 1173.3 651.8 1402.0 370.8 3974.4 957.8 3517.5 344.8 1182.1 483.1 1205.6 1382.9 4200.4 672.3 1209.5 2289.8 3615.5 2090.8 2782.2 590.3 1786.9 2386.2 3023.6 438.7 1606.8 723.6 1319.5 342.1 4059.6 1001.9 2200.6 407.5 3852.3 1707.6 3488.5 361.3 1284.8 1048.0 3379.2 761.0 1660.6 805.1 1549.8 633.9 3846.5 1144.3 2152.0 467.1 3403.4 1310.5 3143.1 327.3 1420.9 1047.1 3167.0 1000.4 1488.4 1984.4 3004.7 978.7 1775.4 1116.1 3165.9 575.5 1521.2 802.1 2345.3 384.8 3108.6 1121.8 2945.4 441.4 1910.6 853.5 2395.3 526.4 3583.6 756.1 2155.3 1358.9 3318.8 694.2 1493.4 569.1 3077.5 1 1 99 487 739.6 416.9 3882.2 3526.5 155.0 249.8 236.5 3777.8 264.6 40.1 707.0 5161.7 242.1 173.0 4126.0 4056.6 2253.4 3020.6 313.5 604.0 110.9 137.6 2001.6 3074.0 150.2 300.5 228.0 4061.9 280.0 337.4 162.4 5367.5 856.1 4255.8 84.3 567.8 1983.4 2048.9 1863.8 2306.5 1132.5 921.6 1893.4 2426.4 2108.7 3179.6 424.2 816.2 814.7 1343.6 361.3 2615.6 679.7 376.1 1597.2 2407.6 684.5 2160.6 1146.5 1253.5 1668.5 1921.6 915.8 952.3 1860.1 2876.6 530.2 885.8 1742.5 980.3 1626.3 2301.1 520.0 930.3 517.2 3465.4 1562.5 1968.6 887.6 1594.8 872.4 2885.8 355.5 1398.1 520.8 2178.1 448.9 2422.6 1083.7 1039.1 1577.7 2128.2 1321.8 1890.2 590.3 2033.9 722.0 1665.1 1354.9 2232.8 621.3 699.6 651.6 2282.2 560.9 948.0 1507.6 2137.5 1139.2 1562.1 921.1 2775.9 584.6 989.1 1648.2 2174.7 515.7 749.8 1386.3 3057.6 589.8 1765.8 352.7 2271.2 1343.9 2616.0 703.8 1611.9 751.0 1764.0 355.9 2166.6 1161.4 1958.3 421.8 855.0 755.0 1948.3 297.9 1045.3 1274.0 2030.1 434.9 1367.9 1 1 465 826 719.0 1034.2 11311.5 11249.2 7108.7 8591.5 612.5 838.7 913.0 1454.8 582.3 17111.7 7874.8 8963.0 449.1 948.7 8175.2 9461.0 353.2 1024.8 1395.7 1918.0 8364.1 9441.5 1092.8 1840.0 8482.6 9654.4 5759.3 7488.7 883.0 1426.9 7148.5 9465.2 470.9 864.6 7589.9 9431.7 653.3 1578.4 2337.9 9008.8 590.4 1450.5 1620.6 2722.7 731.2 11672.7 7579.5 9898.1 531.1 1942.4 8069.2 10019.9 740.5 1840.2 7374.1 10037.5 502.3 1286.4 7381.0 10492.2 676.4 1139.6 2985.6 9604.1 642.3 1280.8 6374.5 9625.0 652.7 1331.1 3127.2 9422.4 671.4 1221.8 5939.5 7888.0 1081.7 1566.1 5813.9 7968.5 1126.3 1928.4 1988.9 3687.6 5724.0 6379.7 1534.8 2968.2 1399.1 8199.4 2042.8 3365.3 891.5 10168.5 5901.0 8151.6 906.4 2991.7 6057.4 8617.0 879.0 1813.1 5565.5 8631.5 766.5 2155.9 2493.9 4505.7 735.7 6978.8 5807.1 7964.7 703.2 2734.9 5712.4 8147.4 794.0 2147.3 2634.1 8895.5 792.4 2578.2 1802.9 3740.4 740.2 7522.0 1658.0 3368.3 1204.8 9111.9 1455.5 3497.9 4948.9 8105.2 2072.9 7866.6 1752.9 4291.1 2207.3 8347.4 1110.1 3220.5 1 1 90 464 640.2 2915.3 1291.0 5387.9 648.4 3677.1 374.0 518.7 2870.0 3311.0 168.9 2443.4 316.2 1039.3 2989.3 3183.3 2002.1 3101.0 154.2 607.4 335.9 1073.6 167.1 3207.3 631.8 2967.2 412.9 562.0 2678.9 3432.0 213.7 1154.3 683.5 3041.7 248.4 1298.4 665.3 3203.5 1359.5 76.2 610.3 3006.3 110.8 1043.4 2292.9 2502.2 286.2 472.1 340.6 769.2 2371.9 2203.2 490.0 1639.1 2162.6 2691.5 648.7 2693.4 468.1 729.2 576.8 2623.8 182.1 917.3 381.7 806.0 255.8 2765.3 1592.4 2083.6 -105.0 733.1 540.8 1845.8 612.5 2915.3 297.8 1112.2 1555.5 2471.9 418.4 884.8 1850.8 2334.3 327.1 805.2 582.5 1887.3 501.1 792.3 1696.7 2119.7 1576.9 2051.3 402.1 566.6 595.2 1221.1 1438.4 2022.4 525.6 1875.9 504.7 989.6 298.4 1222.8 474.4 2861.9 324.1 627.2 350.7 2756.7 362.4 699.7 1325.2 2522.5 1214.6 1589.1 364.8 844.7 1309.9 1875.7 584.3 986.8 579.4 913.8 1737.1 1834.1 1123.3 1457.3 863.7 1002.1 429.2 1344.7 1583.3 2166.8 350.4 749.6 429.8 2086.9 453.6 776.1 166.7 1974.9 1 1 96 724 1392.9 5806.4 1212.6 1167.3 4724.6 5608.5 90.0 932.2 1005.6 2599.0 275.9 5648.1 3228.6 4788.5 -31.9 207.5 2055.3 3240.1 236.2 5129.0 1296.2 5036.4 145.2 29.6 3847.2 4538.0 248.6 1544.1 3124.1 5084.3 -8.7 407.6 1803.8 3212.1 151.1 4238.6 1031.8 3047.6 224.7 4791.8 3618.5 4560.0 221.3 887.9 2473.1 5040.5 236.0 1033.3 3315.6 5015.0 386.1 457.1 584.6 2854.5 2665.7 3594.9 689.3 1539.9 2545.8 4314.9 823.1 1575.6 446.5 3320.9 1268.0 4593.8 232.4 883.7 1062.8 3463.3 295.4 4133.5 768.8 2918.2 389.1 4706.4 460.9 1404.9 363.2 5616.9 710.0 1556.9 229.5 4983.7 2218.5 3891.3 268.3 1373.6 893.3 1752.4 2590.0 4220.1 645.3 1656.9 2837.7 4618.3 858.2 2289.5 715.2 3418.0 908.8 2418.2 724.0 4381.2 1605.1 2318.2 2069.1 3817.6 931.9 2425.5 320.2 2951.7 2134.4 3514.3 475.4 1703.9 914.8 1465.5 1989.1 4007.1 714.9 1545.8 1789.2 3750.4 1140.9 3310.9 1058.7 2295.9 2213.5 3179.3 457.5 1461.7 2007.3 3165.4 398.9 1542.8 1104.6 1982.4 303.8 3499.4 2074.7 3119.6 246.2 1801.0 1 1 94 317 1084.7 424.6 4254.3 4194.8 890.6 1829.7 3475.1 3606.3 1523.5 1156.2 3191.9 3228.7 2211.0 2522.7 265.7 2210.8 4066.6 4587.4 282.5 729.7 880.2 968.6 2831.7 6160.9 1375.6 3945.9 475.2 730.2 1337.4 4933.0 409.8 731.7 2173.5 2881.4 461.2 2053.5 604.9 1200.2 3885.3 5012.7 536.1 901.7 4077.8 4722.7 947.3 3715.4 807.2 1446.7 3465.2 4321.8 739.4 1218.6 871.4 2090.3 2381.6 3135.4 702.3 2348.6 2441.5 3055.8 997.8 2080.7 2432.8 2786.5 1617.3 2197.9 1275.9 1722.3 2665.7 3354.4 732.3 1683.0 1753.3 1739.6 2035.5 2718.6 896.9 2366.4 742.9 1737.1 975.9 2638.1 1328.4 2381.6 1449.6 2438.8 781.9 1939.6 1070.4 1655.7 747.6 2973.3 1131.2 3628.5 628.2 1752.3 1469.1 3766.8 671.7 1580.1 1583.9 2538.3 1611.7 2397.5 1087.0 2213.1 899.0 2959.3 997.9 2028.2 1836.5 2787.3 1576.6 2267.2 1018.7 1790.3 983.7 2185.0 673.5 1444.9 768.0 1902.2 778.4 2955.4 967.0 2442.0 809.0 1480.5 1432.3 2108.0 735.0 2973.7 789.2 2063.0 1692.6 2372.0 1366.7 1760.1 1356.4 2268.5 1514.7 2063.6 850.3 1350.7 1 1 100 399 304.6 778.0 338.0 5360.0 827.6 1228.9 2685.3 3105.3 498.8 1197.2 2580.9 3028.9 1083.5 4128.1 181.2 390.8 676.5 1090.4 207.1 2527.6 865.7 2914.6 565.4 753.1 641.5 1197.9 1606.5 1947.4 433.7 870.4 1847.2 2740.7 368.3 1029.8 2038.9 2533.4 1489.9 2004.8 1266.0 1639.3 411.7 847.1 2671.0 3046.6 885.1 2368.2 758.3 1045.7 774.8 1325.1 357.7 2508.3 704.6 2284.6 592.9 1214.7 697.5 1189.1 1298.9 1582.6 667.7 2110.5 589.7 1013.7 626.2 2576.2 398.9 669.2 312.1 1057.3 270.8 2350.2 659.3 2458.1 199.0 883.4 593.7 2139.5 370.9 889.7 589.9 2168.2 308.4 908.5 538.4 1303.3 216.3 2025.1 589.0 2192.4 292.3 1512.6 461.3 961.9 1660.5 2333.9 267.1 490.2 1431.6 2257.7 357.1 1208.2 629.5 1672.3 535.1 1834.0 501.6 1244.3 322.0 1023.2 363.9 2245.6 506.3 1835.8 268.2 1243.8 480.8 1946.2 265.6 1213.0 294.0 1201.3 226.7 2269.9 436.4 1918.9 302.2 1467.8 565.8 2086.3 298.5 1298.7 1204.9 2194.7 503.6 1315.2 1174.7 1923.1 396.1 1278.8 617.6 1198.3 1118.7 2259.1 1 1 488 607 892.0 1317.0 11193.2 10022.1 7472.6 12225.1 396.0 504.7 5646.1 8364.8 524.3 9149.1 2350.5 10619.4 3066.7 5343.0 4286.3 6286.8 8548.4 8284.3 1179.9 2426.1 6984.4 9862.0 6408.5 10955.8 721.2 1184.7 6006.4 8978.9 676.9 6149.8 2144.2 8040.3 6302.8 6440.9 1728.5 3266.2 5281.5 8706.8 6876.4 9190.2 1287.9 1805.3 1860.1 3113.9 5702.0 8153.3 1966.4 7814.3 3862.0 5651.5 4406.8 6968.3 1119.3 8438.8 2166.8 8423.6 3793.5 5892.2 1380.4 3829.5 6310.2 8406.4 1900.5 7145.3 1799.4 7403.0 4663.2 6746.7 1391.8 6966.5 1717.6 3404.7 4271.6 9958.8 1449.9 3351.2 5826.2 8743.8 1983.9 7301.8 2126.2 6053.3 2063.9 9572.8 1783.9 3585.9 1645.4 4417.4 4958.7 9042.9 3450.5 6969.6 1807.7 6746.0 2441.1 9014.0 1291.3 3304.3 3534.9 6909.2 1456.4 8119.9 1969.3 4579.0 3257.1 9229.0 3154.7 7689.0 1669.0 4471.2 2991.4 6083.6 1631.2 7288.3 1664.2 3808.8 4074.7 9758.5 1940.5 6260.1 3673.1 7085.5 2493.4 5071.7 1825.3 8545.4 1720.5 3613.6 3376.0 10809.0 2406.3 4390.3 2541.0 6918.0 2645.7 5119.5 2567.4 6671.8 4029.7 7635.7 1450.2 4228.0 1 1 73 788 1730.4 1835.1 310.8 5476.0 746.7 2391.0 2357.6 2523.8 1335.7 2537.3 238.7 3336.6 1684.8 2109.6 1240.6 2610.6 1369.4 2236.5 2000.8 2726.8 1573.3 2439.4 451.5 2045.5 700.1 1869.0 1214.2 3396.7 1737.9 1988.5 321.1 2814.2 2206.9 2724.4 381.0 2308.9 1354.0 2114.4 1643.4 2313.4 781.2 1894.0 1502.3 2516.2 614.1 1663.2 466.7 4272.1 1172.2 1595.1 1725.9 3503.1 1836.3 1987.3 1561.2 2448.0 1675.4 2000.6 920.1 2644.5 2039.9 2522.5 1413.4 2312.3 1643.6 2506.9 508.3 2160.4 1249.8 2093.1 1586.7 2364.1 1114.9 1401.7 1676.9 3196.1 683.1 1086.5 1631.8 3902.4 1413.6 2186.1 680.6 2193.7 1752.0 2827.4 573.0 1480.8 839.6 1625.1 1409.5 2948.0 1023.6 1925.4 705.3 2383.4 944.1 1593.8 1901.5 2979.8 1205.1 1522.3 1976.7 3113.5 1362.5 1854.7 655.8 2165.0 1115.1 2432.0 513.5 1551.9 581.6 1314.9 927.2 3123.9 620.9 1438.4 1069.7 2906.6 560.7 1327.0 611.0 2521.9 535.6 994.2 1197.2 2914.8 820.5 1611.4 1129.9 2350.6 1069.3 1510.6 584.2 2068.8 564.8 994.5 930.3 2774.1 565.0 1392.6 592.6 2765.9 1 1 103 490 711.6 2039.9 69.8 5339.5 4033.8 3698.7 1281.0 1317.6 1219.2 4127.5 46.0 -64.1 3168.5 3714.6 -507.8 -410.9 484.7 3495.8 594.4 954.0 2667.3 3124.9 537.1 782.5 436.9 697.9 890.5 3993.0 2825.4 3784.5 217.0 126.0 300.6 276.5 2717.4 3012.8 632.5 3084.3 610.6 881.5 397.5 975.7 2812.4 2733.9 2290.8 2662.8 732.3 1079.2 428.8 1043.0 235.0 2741.0 965.9 3050.3 138.1 122.9 2089.5 2733.0 495.5 306.0 420.9 620.9 2153.1 2887.8 230.4 751.7 459.2 2170.6 502.0 2962.9 188.8 704.6 1836.2 2782.7 510.9 705.6 456.2 2494.1 213.4 714.4 281.6 895.6 612.4 3627.4 324.3 542.0 327.0 3758.5 386.4 1091.5 108.9 2556.9 1679.6 2560.5 151.6 913.1 613.1 2584.1 327.7 838.0 540.2 1074.4 450.9 2927.5 1576.5 2219.6 189.8 1002.7 1517.7 2150.4 235.5 941.0 620.5 1150.3 218.2 3177.4 198.2 759.6 1710.6 2985.8 313.8 814.0 1847.3 3056.8 380.4 2286.3 409.0 1114.0 450.9 2393.5 284.2 1153.1 255.7 813.1 409.1 2802.9 470.1 694.3 1340.5 2695.2 1359.1 1719.9 465.5 1091.6 1 1 123 475 1431.5 5089.8 273.2 220.2 1206.5 1194.1 309.4 412.8 1021.4 1494.0 99.2 131.0 767.0 1850.9 275.4 612.4 686.4 1615.0 330.6 834.0 733.0 1081.0 459.0 762.2 897.3 1597.8 362.1 407.5 1014.1 1485.9 320.9 469.6 912.8 1671.7 670.4 794.5 918.7 1587.8 47.4 1211.2 1006.0 1444.3 253.1 1369.6 746.4 1571.3 294.2 904.0 854.7 1785.4 225.3 887.4 1186.3 1702.2 251.4 459.5 1361.9 2029.0 231.9 779.2 822.3 1804.2 228.3 608.5 803.8 1351.2 477.3 1254.2 758.0 1277.8 229.9 926.8 779.0 1586.8 262.3 980.9 911.3 1174.5 232.3 795.0 745.1 1371.0 332.5 1058.4 607.6 1629.5 409.8 1333.0 949.4 1518.3 302.0 1062.4 822.8 1399.0 451.6 620.1 652.8 1326.9 375.9 1082.7 859.3 1549.4 506.6 1141.2 993.9 1496.4 258.2 388.9 734.8 1295.3 313.4 759.1 731.2 1261.0 278.6 570.8 631.4 1326.9 284.2 1355.6 829.1 1508.8 235.6 615.9 841.0 1354.8 329.0 1412.8 661.3 1361.9 304.1 808.4 643.2 1696.9 318.3 885.1 733.8 1369.0 256.4 801.4 873.4 1548.0 231.0 899.1 1 1 443 635 1062.2 2125.3 9605.1 9063.9 1513.7 3042.3 395.5 7762.5 903.1 2191.7 857.8 9396.6 2675.9 11710.1 460.5 1156.9 2438.9 10875.1 786.6 1444.6 1353.6 2744.0 258.1 8681.8 1372.0 2983.8 6281.7 7874.2 2433.0 9625.2 589.9 2157.7 1752.6 3628.2 526.2 7653.2 1618.7 3159.5 905.2 8772.2 2668.4 10639.0 539.1 2190.3 2994.2 10981.1 529.7 1289.8 6224.9 10068.6 882.3 1631.2 1832.0 4504.7 5799.7 7378.4 1500.9 3465.0 5383.1 7304.1 1243.4 3429.8 1063.1 6328.7 1499.2 3517.9 939.1 8939.6 2235.6 9495.7 1088.8 2823.0 2259.1 8890.0 761.0 2738.3 1312.5 3315.3 1350.1 7664.7 1389.2 3788.9 4670.6 6697.2 2020.1 8191.5 1363.8 3002.5 1616.6 4114.1 1978.4 7610.8 1622.1 3554.5 4432.7 7819.8 1313.0 3736.9 1576.4 7185.6 1864.6 3497.0 1312.3 7781.2 2054.2 7765.6 1376.8 3672.4 2105.8 8608.8 887.7 2612.9 4237.0 7766.9 1200.7 3150.8 2165.3 4154.6 1033.0 6610.5 1518.0 3384.4 1367.7 6960.1 1830.4 3486.1 3230.0 6552.7 2052.0 6381.4 1579.9 4199.4 1283.8 4080.3 1258.7 5672.8 1457.5 3533.6 2699.7 5442.6 2732.9 5716.4 1436.7 4017.5 1 1 117 798 258.6 296.0 4370.4 4083.6 2881.1 2806.9 118.1 276.9 340.8 490.9 2984.3 3192.3 498.0 599.2 2240.3 2299.6 303.2 426.5 254.6 2272.8 374.6 528.5 2482.0 2865.7 725.1 2525.2 283.0 433.2 2210.0 2658.7 250.2 588.8 444.9 705.4 213.1 3530.3 333.4 677.7 258.6 4120.7 367.6 685.9 225.4 3813.7 711.5 2352.5 243.4 819.3 675.4 2497.0 219.4 834.0 426.0 782.5 273.6 3528.0 426.0 782.0 1866.8 3020.8 479.7 737.2 478.9 2537.9 433.7 833.8 1786.1 2955.7 394.8 818.4 518.3 3020.5 444.2 870.9 1845.3 3061.5 743.4 2290.4 446.8 997.7 1685.4 2355.4 379.2 923.5 686.0 1179.6 1715.6 2732.7 1372.0 2094.0 518.2 1099.1 1649.9 2199.4 362.3 866.0 1657.4 2314.0 242.6 828.7 1783.3 2209.0 325.3 814.8 1567.3 2059.4 353.2 953.4 712.4 1082.7 282.6 2554.6 596.8 1221.1 285.3 2697.8 645.3 2256.2 215.2 1305.1 509.5 1020.5 395.6 2792.2 537.2 1149.9 1430.5 2530.3 507.5 1119.5 1679.6 2923.9 568.7 1059.2 1479.7 2612.0 588.8 824.7 474.3 2158.4 544.0 1073.7 340.5 2671.5 1 1 110 917 230.5 241.4 211.8 4356.1 694.5 2657.2 85.5 403.5 139.6 263.4 157.1 4796.3 136.8 152.2 2892.9 3226.9 131.1 246.1 277.4 3736.3 621.4 2355.8 151.0 541.8 282.2 486.6 218.9 3671.0 367.8 331.1 2802.1 3502.1 352.5 399.1 388.1 3275.0 525.1 2077.5 260.3 892.2 341.8 567.6 213.9 3672.7 502.5 2002.4 143.1 1037.1 321.2 766.6 217.3 3964.5 366.8 503.1 284.6 4053.5 1469.9 1747.7 368.8 1151.6 485.5 678.6 2165.7 3130.8 360.0 592.3 2466.0 3126.0 1223.7 1631.4 677.0 1245.5 525.5 688.2 2212.8 2990.1 352.1 625.0 2150.5 2859.1 1491.1 1678.7 560.2 1022.8 1811.0 1972.6 304.4 716.5 1729.5 2318.1 284.3 730.7 744.7 2191.2 201.5 684.1 759.6 2272.0 263.2 739.3 671.5 2204.2 433.7 951.3 463.0 875.4 1725.0 2378.1 1074.1 1435.3 668.0 1173.4 582.1 911.3 1452.2 2063.4 417.6 812.4 1469.8 1852.9 498.8 1439.5 603.4 1248.9 365.9 896.9 1454.5 1715.1 390.0 857.1 1343.0 1837.2 641.1 1313.5 671.9 1367.1 1133.3 1412.9 402.1 1225.4 590.6 1067.8 332.1 2264.7 1 1 109 882 1024.8 4100.3 259.8 584.4 1205.5 4711.2 275.8 566.7 1442.9 4369.1 122.5 704.1 3230.8 4184.9 1099.6 1371.1 413.8 719.2 4280.9 4684.2 2972.5 3146.3 380.5 761.4 1099.7 1544.1 4135.9 4390.1 773.1 1693.4 536.6 4152.7 3083.5 3630.2 490.1 1083.2 925.1 1057.6 4235.2 4400.8 2652.3 3104.3 1267.8 1873.6 792.8 1242.3 3215.4 3687.1 756.7 1120.8 626.4 3422.2 1239.5 3666.0 387.0 1018.1 2661.1 3650.3 458.6 760.0 1296.0 3939.6 288.0 663.9 2491.7 3409.2 318.7 724.2 2691.9 2962.0 345.0 1080.6 1209.0 1665.6 583.3 4725.4 725.3 1623.8 2942.7 4058.3 987.5 1640.2 655.7 3519.1 2408.4 2951.2 465.3 1545.7 835.9 1224.1 688.7 5198.3 995.5 1336.5 431.1 5384.8 2348.7 3029.5 386.9 1616.4 2318.0 3064.9 385.1 1551.9 796.3 1338.5 570.8 4490.9 761.2 1459.3 2171.3 3865.9 1066.2 3265.7 1045.4 1725.1 1031.2 3582.2 357.1 1226.5 1129.9 3385.9 425.9 1672.6 1969.2 3371.8 601.0 1593.8 1018.5 1668.5 2037.5 3275.6 2031.4 2611.9 941.6 2160.9 934.3 1362.8 2066.8 3616.2 708.4 1369.7 1138.6 3440.2 1 1 81 142 207.6 137.4 3342.5 3224.2 239.6 349.7 3014.0 2914.6 278.2 203.6 138.6 2268.1 2010.7 2130.4 40.3 207.0 1853.0 2126.5 166.5 417.7 399.6 369.7 153.3 3728.6 203.6 353.3 161.9 3593.7 535.7 2143.6 107.8 562.3 279.8 467.8 177.7 3647.0 326.2 423.7 154.5 3258.0 1890.4 1854.9 172.9 479.2 2095.4 2476.3 152.4 408.1 676.9 2403.5 138.8 340.4 686.3 2488.3 76.3 432.3 1757.8 2196.4 192.0 451.9 1444.2 1786.8 186.2 463.5 412.6 697.6 1732.7 2192.6 571.6 1675.1 284.0 748.4 316.1 692.7 216.6 2590.7 332.3 561.7 149.5 2555.7 543.6 1641.3 165.4 937.1 414.6 706.6 201.3 2562.1 1465.6 1648.0 212.7 1114.0 494.5 682.4 231.0 2982.6 358.8 596.8 239.2 3509.8 419.5 560.3 272.7 3077.0 1306.2 1455.0 202.4 1086.3 455.8 783.0 189.0 2509.6 1166.4 1295.9 268.9 1012.2 484.4 529.1 1150.3 2130.5 409.9 622.6 1347.4 2390.6 641.2 1555.6 422.0 1012.2 1117.0 1427.8 336.6 1003.4 517.6 839.0 1344.1 2316.5 884.0 1021.1 461.6 1363.7 586.3 863.9 382.2 2094.5 1 1 117 822 276.5 190.7 296.5 5431.8 359.5 594.1 3613.1 3812.1 403.6 727.6 205.1 3530.9 2981.4 3754.2 180.6 408.5 963.0 3610.5 38.6 371.2 584.8 1044.1 155.2 3421.9 2519.9 2833.1 103.6 313.9 2241.0 3134.5 187.9 277.8 734.8 1130.7 175.2 3481.7 976.5 2849.5 96.2 910.9 484.3 1084.3 131.6 3514.5 748.5 2910.1 178.8 770.4 330.9 751.0 211.7 2928.3 355.7 774.3 1746.3 2841.7 470.1 908.0 265.2 2238.6 879.0 2477.0 77.6 883.5 1838.3 2884.0 8.8 503.8 1788.9 2384.9 241.4 759.5 793.8 1484.3 1263.2 1925.1 1295.0 2318.0 251.1 826.7 952.0 2788.3 176.7 468.6 1915.2 2567.0 172.6 423.5 1689.5 2392.1 186.6 643.3 1697.0 2429.8 122.2 836.1 911.2 2365.3 182.1 818.3 723.5 1329.0 248.6 2374.3 690.2 1074.4 1154.3 2160.5 803.9 1257.2 350.8 1746.8 1476.7 2119.4 423.3 945.6 827.5 1581.2 1043.8 1711.2 1043.2 2206.9 429.8 1179.8 1345.3 2387.8 317.7 1166.0 852.1 1328.2 241.9 2659.6 639.3 1144.7 262.7 3034.7 579.2 1169.5 160.6 2724.4 625.8 1840.8 237.6 1825.4 1 1 116 174 211.8 231.2 132.1 3755.9 252.7 249.0 3011.7 3135.8 2263.0 2028.1 138.0 343.7 229.8 242.0 183.4 4112.5 206.7 285.9 3516.3 3475.4 638.6 2509.4 196.8 556.0 130.7 209.3 131.2 4714.4 305.7 468.0 213.9 4755.5 521.3 2379.2 170.3 413.4 636.4 2391.6 121.0 494.8 241.8 629.5 120.2 2981.2 620.2 2580.4 184.8 625.6 520.5 2509.8 47.7 770.6 233.4 601.2 178.1 3440.4 696.6 2626.5 122.9 632.6 1476.8 2392.3 258.5 724.6 344.6 772.9 2157.7 2594.7 497.8 1992.4 284.0 941.3 349.0 646.7 163.5 2776.1 240.1 601.8 377.2 3347.9 270.6 676.6 1877.9 3147.3 423.9 1860.2 368.1 1206.1 376.0 903.0 304.4 3089.6 520.8 2148.4 223.9 1014.4 691.5 2204.8 209.5 921.9 1377.9 1945.3 477.8 998.5 392.5 757.9 1602.8 2729.7 907.8 1052.1 464.2 1786.2 1320.1 1790.8 269.0 890.1 1414.8 1674.1 255.3 760.0 763.8 1783.8 270.1 889.8 1297.6 1616.0 238.4 1036.8 557.6 859.2 234.8 2598.2 675.6 1819.6 214.4 1114.4 1075.2 1659.7 209.6 969.5 1347.1 1682.8 377.1 1067.2 1 1 108 268 566.1 812.2 4194.0 4350.9 3255.3 3812.7 42.7 144.7 570.8 702.0 129.3 4600.8 1090.7 3597.1 124.1 353.5 623.8 866.4 3964.3 4142.8 685.6 952.7 3507.8 3702.6 2430.3 3022.4 374.0 634.1 3105.4 3767.5 190.6 517.6 839.5 1121.2 2790.5 2976.3 2712.3 2675.6 394.7 671.3 776.8 1082.4 2840.0 3034.0 1118.9 3698.5 494.4 771.0 694.0 1327.3 482.4 4563.9 1116.2 3237.4 486.4 1144.1 702.2 1360.8 2734.9 3626.5 779.8 1358.5 495.5 3727.1 2305.3 2937.4 476.0 1291.1 709.3 1224.7 572.4 4278.4 633.4 1152.4 2582.2 3646.9 956.7 3124.5 566.1 1107.8 989.2 3216.7 500.4 1197.8 737.2 1591.6 2242.3 3647.2 739.4 1429.6 799.9 3410.5 868.3 2519.8 475.1 1634.6 658.6 1320.6 442.8 4519.7 788.4 1534.1 358.6 4029.2 821.8 2578.1 394.3 2000.7 652.1 1397.5 517.2 4193.5 581.7 1476.5 1874.5 3850.6 740.4 2291.3 782.9 2068.2 577.5 1302.2 486.7 4104.8 750.7 1285.2 438.2 4192.4 1230.0 1654.3 1224.1 3057.6 1211.4 1957.7 1258.0 2956.4 1613.0 2247.9 480.1 1893.0 1369.0 1833.6 427.3 2259.2 1 1 83 406 1423.6 5032.0 202.3 385.8 1543.5 5223.3 331.4 595.7 1489.8 5364.7 757.6 316.9 4438.2 4564.3 372.1 344.4 777.9 980.6 258.2 5070.5 1166.7 5418.3 376.8 341.4 1061.7 4659.9 715.6 1105.5 3527.0 4802.9 643.0 786.7 1118.5 1354.9 3607.7 4074.5 1026.5 1324.9 788.8 4149.4 870.7 1167.3 904.5 5277.9 1591.5 4650.6 665.2 1163.0 1163.0 4838.1 636.3 624.5 758.2 1624.5 376.0 4354.0 2939.6 4023.3 124.7 1098.5 935.2 4184.3 334.5 544.3 714.1 3262.7 488.4 1229.0 543.7 1272.5 115.4 4042.8 890.8 1252.3 288.8 3927.3 2741.3 2948.4 229.1 1329.8 2590.6 3012.1 304.6 1181.9 474.6 1328.3 486.8 3959.7 583.0 1432.9 2174.0 3559.7 530.9 1110.1 705.5 3867.6 813.5 3432.0 409.5 1749.9 544.0 1046.5 615.2 4470.1 352.5 957.8 1831.0 3913.2 241.8 792.7 809.2 3844.2 531.7 2583.2 411.9 2265.5 657.0 3015.4 471.5 1815.7 613.7 3288.0 517.6 1504.8 922.7 3396.9 448.2 1544.0 1576.5 3119.8 359.8 2026.0 911.2 1746.0 576.8 3987.6 685.2 1310.0 485.8 4967.2 901.6 2468.9 501.1 3097.8 1 1 101 484 1143.7 5029.4 -7.6 243.7 360.8 620.7 172.4 5482.9 249.0 149.0 3950.0 5161.7 205.7 247.0 4550.7 4962.2 2895.9 2882.1 281.4 378.8 383.7 86.6 52.5 5180.7 262.1 285.4 200.7 6327.6 324.9 895.2 282.1 6009.4 801.9 4147.1 194.9 751.2 1087.6 719.4 3309.5 4386.7 2776.3 2855.2 536.9 1306.0 3258.1 3905.7 344.8 509.0 3735.7 3911.1 171.5 -6.1 1009.1 3294.1 651.4 1547.0 452.0 1257.5 3073.8 3336.4 578.8 1126.1 3256.6 4261.2 2665.4 2849.1 502.8 1289.8 2507.5 2858.4 315.4 1251.1 728.6 840.4 541.9 4706.3 451.1 870.5 2347.2 3685.1 2026.3 2806.2 626.9 1398.1 1172.3 3427.0 374.6 740.7 2755.7 3120.8 356.4 869.5 2860.5 3204.1 363.2 1018.2 2644.5 3107.1 201.4 751.2 989.0 3079.6 563.2 1738.1 487.3 843.7 2473.9 3591.7 648.7 768.0 769.0 3290.7 370.9 770.9 2206.7 3705.9 506.3 556.6 950.5 3589.0 399.4 726.7 2157.3 3833.5 1020.5 2188.0 958.9 1967.7 614.0 918.8 2288.5 3830.7 539.2 718.7 923.4 3225.3 347.2 1462.0 1657.3 3059.1 1051.2 2521.9 702.2 1608.4 1 1 483 628 -240.8 101.3 9491.4 8003.9 7965.5 9780.5 702.2 -325.8 648.1 1346.2 -7.8 8616.9 2343.6 10211.6 2208.5 197.1 641.9 597.1 8608.3 8580.0 692.6 3119.9 7714.4 7101.9 6599.1 8692.8 305.1 666.5 7307.1 9979.4 -53.9 -101.8 2155.1 2035.0 5509.4 5600.9 6391.0 8123.8 692.2 878.6 1764.5 3010.6 5398.4 5474.7 2500.7 10080.8 1262.3 47.0 1447.0 3960.9 3.5 8065.8 2142.9 10387.8 379.9 2156.3 1235.7 2828.5 6106.4 6598.0 1303.8 2920.7 973.5 6279.1 5438.5 7607.9 541.1 1679.3 1709.3 3295.3 1461.3 7389.7 1093.1 2507.0 4982.2 6799.6 1868.9 7753.2 1448.3 2222.0 1755.9 7992.7 1586.0 1058.1 1075.3 4008.9 5264.2 6212.9 1107.7 3783.8 1879.3 5618.8 1896.1 7661.0 348.3 2348.3 1351.2 3335.6 352.0 6688.4 1135.0 3350.3 1342.5 7730.9 1517.9 7146.6 263.9 3167.8 1155.1 3762.7 1148.2 6349.9 867.0 3391.6 4078.6 6809.9 1522.7 6036.7 1441.3 3699.4 960.2 3048.3 1147.3 8499.8 1204.5 2583.0 1093.6 8200.8 2806.3 4842.8 2155.6 5288.0 2784.5 4551.0 2559.5 4107.5 3682.5 5881.6 1256.3 2838.9 2983.8 5250.9 816.6 3732.1 1 1 107 469 1249.4 764.5 250.5 5250.5 642.2 1707.1 164.1 3308.7 1342.0 1551.5 273.0 983.5 391.0 503.9 829.4 2102.2 440.0 506.4 1100.5 1381.8 629.7 875.1 108.5 503.0 711.2 995.3 148.8 506.2 520.6 689.5 558.8 1547.3 491.3 819.5 245.1 2615.0 1158.4 977.5 576.2 923.3 536.8 1093.3 210.5 1914.5 705.4 1135.5 219.1 658.7 561.3 787.9 428.5 696.4 355.3 1186.5 474.5 902.2 583.1 942.6 198.9 514.6 550.7 983.2 190.0 1033.2 473.8 1260.6 162.6 791.5 497.8 1056.8 329.6 1181.3 655.4 1301.1 283.5 601.0 386.1 1184.6 216.2 776.2 490.8 1338.2 345.0 846.0 381.5 696.5 339.9 948.6 498.5 907.5 360.3 870.2 603.5 1271.0 394.2 752.3 608.0 1106.3 251.9 582.6 408.9 1050.4 394.5 950.6 518.7 995.4 250.0 1026.2 501.3 835.8 329.0 1316.5 591.5 905.9 220.5 616.9 501.0 868.7 187.0 1801.9 544.4 993.5 153.5 750.1 678.3 1188.6 229.1 628.7 493.1 796.3 286.5 1629.4 503.7 841.1 209.1 1023.0 406.7 748.1 317.0 1005.8 431.1 952.5 262.6 637.8 1 1 962 565 -458.7 -43.5 15131.9 14792.1 163.4 389.0 12511.0 12473.3 110.6 197.3 11130.5 11163.1 7480.9 10017.1 614.3 1271.8 927.5 1795.5 692.5 10988.8 277.3 1873.1 11317.4 11683.4 970.5 1101.9 1099.9 13807.4 172.3 926.7 650.2 14869.1 2083.7 11214.7 727.7 -78.1 1864.4 9934.6 923.6 2218.9 6772.6 9265.1 1069.3 246.0 1175.5 1564.3 8035.5 10784.4 1220.8 2450.7 1412.0 9807.2 1896.0 10245.2 992.5 2659.0 5992.3 8994.2 1097.4 2235.3 6457.3 8294.4 1609.8 2821.9 1445.5 3201.8 8482.6 10124.7 1415.2 2431.2 8582.5 10647.0 1367.0 2999.0 7329.8 9477.2 4644.3 6509.9 1847.5 2915.6 6031.9 8529.3 1333.9 2933.1 2110.9 9114.6 1218.9 2524.3 2447.4 8947.5 1257.5 2555.6 4815.7 7603.6 1706.1 3005.1 1741.3 2996.8 7080.4 8143.2 780.2 2233.2 7643.5 9381.7 756.0 2254.5 7747.5 10440.6 1046.9 2309.6 2055.4 9183.3 880.4 1578.5 1874.1 12384.6 640.4 1925.0 1966.6 11219.8 1018.1 2889.9 5670.0 8680.5 1221.0 6024.6 1768.1 4673.5 1183.1 3178.0 1383.1 8725.3 2161.0 6823.3 1489.3 3164.8 4480.0 6833.3 780.0 2946.7 4078.9 6629.5 1146.5 4006.1 1 1 118 572 826.5 3947.4 18.6 -465.0 251.9 327.2 -72.8 5829.2 3361.9 3613.8 -131.0 56.7 320.6 236.5 166.4 5645.6 830.5 4174.7 -49.4 330.9 168.8 273.5 164.6 5753.6 228.5 97.3 220.7 5619.7 354.0 501.4 3882.4 4526.7 301.0 340.2 281.5 4250.7 209.7 265.1 315.5 6129.3 342.3 461.5 3335.9 4801.8 2682.4 3508.2 177.3 703.7 413.5 627.8 141.0 4987.0 376.7 462.5 179.6 5779.7 362.0 475.5 293.6 4983.4 334.3 751.8 252.5 5371.8 673.2 3339.0 131.4 1301.6 384.6 957.0 189.9 5263.5 775.0 3345.0 382.5 1545.0 545.9 1154.1 2666.3 4266.4 2211.5 2999.0 491.9 1178.5 2427.0 3115.3 461.6 1188.2 848.6 1258.1 2753.4 4523.8 2346.4 2778.3 426.4 1138.5 2505.1 3522.2 275.7 733.4 1114.0 3701.8 280.1 970.5 1039.4 3284.8 291.1 814.0 1904.2 2491.5 540.5 1399.7 591.8 1265.5 2154.1 3298.7 713.4 2556.4 455.0 1750.0 468.5 1154.8 275.2 3623.7 787.2 3069.3 166.5 1405.4 830.5 2689.7 171.6 1345.4 461.1 1235.4 538.7 4070.3 360.8 964.2 2292.8 4252.5 395.3 829.9 2251.1 3786.8 1 1 121 126 632.6 396.6 3290.3 3224.7 2527.3 2431.9 1186.7 1942.5 545.6 554.7 711.1 3922.5 1267.8 3104.9 152.1 400.8 435.8 720.3 2810.9 3327.5 573.3 1684.4 2530.0 2973.9 2341.2 2660.9 288.4 429.5 2269.6 2920.2 290.4 2312.9 658.2 913.4 2797.2 3431.8 1602.2 1995.1 535.3 1424.8 629.3 950.6 2872.6 3529.0 947.6 2536.8 2021.2 2649.0 685.0 1068.0 963.6 3697.5 858.6 2232.9 603.6 1518.8 816.8 2319.7 2080.0 2964.2 1080.5 1968.9 519.5 2559.9 2330.5 2718.2 467.6 1244.0 885.3 1256.8 552.4 3598.6 691.1 1252.7 2433.8 3361.0 792.0 2337.2 1100.9 1346.9 842.3 2427.0 586.9 1820.9 763.7 2103.9 1751.6 2727.8 853.6 1658.7 596.7 2636.4 878.1 2209.5 555.7 2284.3 831.9 1421.7 922.1 3864.1 1071.5 2025.4 599.2 3342.6 770.9 2328.9 370.0 2799.1 625.7 1415.0 1254.3 3825.6 700.1 1605.8 1488.8 3058.6 1159.2 2162.9 634.8 1626.5 653.2 1384.6 405.5 3520.4 807.1 1471.5 467.8 3149.0 969.9 1579.5 806.2 3026.0 1030.8 1892.5 1237.0 2678.7 1213.0 1780.9 851.9 2554.9 1153.6 1531.4 921.0 2868.9 1 1 111 537 3676.2 3945.4 236.2 357.9 496.0 641.1 4134.4 4127.9 3367.0 2882.9 195.3 447.2 3347.6 4158.5 171.8 319.4 3310.2 3934.4 145.6 516.4 646.6 727.6 218.4 4430.7 514.8 778.3 2889.4 3333.9 1178.4 4154.7 290.9 652.1 633.4 1165.9 273.8 4687.5 3113.0 3496.4 226.8 902.0 1105.2 3795.9 329.5 625.6 598.3 1311.5 3278.7 3841.9 650.3 997.0 2959.2 3581.6 2518.4 2973.4 672.3 1096.6 868.4 1336.4 2477.3 2878.5 2391.2 3049.1 540.6 1016.4 2612.8 3588.9 306.4 631.2 3121.1 3337.2 368.7 758.4 2857.1 3714.5 325.6 665.8 2723.1 3629.0 421.6 773.0 986.3 1734.1 2235.9 2768.5 1048.6 3664.3 517.5 939.7 1221.5 3753.4 448.3 929.9 2355.2 3611.7 472.6 814.0 1031.3 1755.1 1859.5 2133.9 1148.9 3450.9 625.2 1047.5 2328.4 3133.9 467.3 960.6 945.1 1507.7 1962.0 2612.7 676.2 1210.8 1961.5 2500.6 653.0 1224.5 1888.0 2275.0 708.8 1311.3 658.5 2059.5 1834.9 2686.9 408.3 1085.7 2082.0 2571.4 417.5 880.6 1051.6 1569.9 1587.8 2195.0 733.8 1257.3 1668.0 2259.2 632.7 1088.7 1890.7 2336.1 1 1 119 908 928.8 1050.0 319.6 4277.1 632.9 4305.6 1002.2 1377.6 383.7 526.2 226.9 2877.8 675.2 2169.8 1700.5 1882.1 846.1 2434.6 218.1 1511.9 2001.7 2299.9 1093.0 1396.0 1899.9 2274.5 685.7 2118.4 1729.8 742.2 2741.2 2518.7 539.1 761.7 348.5 3745.8 529.1 1219.7 310.9 3779.7 499.2 908.3 2002.2 3909.2 1980.5 2964.9 332.0 985.5 2701.9 3279.5 118.8 894.0 683.1 1099.2 491.9 4503.4 918.8 3416.4 179.5 896.6 536.3 2076.3 260.2 3095.5 370.5 826.0 335.2 4185.6 370.9 788.1 739.1 4153.9 404.2 963.8 328.0 3803.2 748.6 3064.6 212.8 967.5 802.4 2456.9 290.4 618.9 1395.2 2249.1 1065.6 1687.5 408.7 829.7 2721.5 4208.4 511.2 909.3 804.0 3347.2 472.7 971.7 315.6 3573.7 522.4 1003.9 509.4 4554.0 332.6 894.5 1526.2 4647.5 324.7 980.9 511.1 3613.4 701.7 1646.6 316.7 642.3 656.6 828.5 263.2 2234.5 743.1 2564.4 336.2 1391.5 1214.3 2414.3 415.6 1194.0 724.1 1176.0 1239.6 3244.6 1038.9 1587.7 1094.6 1135.1 880.2 1547.0 524.5 2641.2 653.3 1575.4 1405.2 3314.6 1 1 115 562 3624.7 3941.9 27.3 95.5 3119.3 3674.2 71.7 -270.6 2711.0 2793.1 249.2 522.5 2536.9 3040.9 142.3 193.6 2284.2 2772.8 -64.7 133.6 678.0 593.1 30.8 3089.6 457.5 454.1 1817.9 2170.8 809.1 3131.7 178.1 273.5 807.6 3061.4 0.1 321.9 1852.3 2250.1 248.8 888.9 1651.9 2204.0 117.1 320.2 722.3 1020.8 60.1 2740.1 341.7 738.9 1766.0 2399.7 1640.6 1991.9 730.0 1016.7 469.0 624.3 1542.9 2093.8 486.2 745.0 1838.4 2141.4 392.9 1013.1 318.2 1961.2 246.0 1024.9 285.7 2606.5 375.7 657.0 134.1 2879.1 1390.4 1723.5 246.9 908.7 637.9 835.8 1547.4 2173.4 1424.1 1612.0 274.5 814.3 568.2 1276.6 1333.0 2057.4 1385.0 1467.5 411.3 1008.2 647.3 995.3 291.9 2026.9 1402.4 1664.2 319.3 607.2 637.7 1900.3 328.3 1245.1 492.6 947.4 1228.5 1630.5 1079.7 1629.6 291.9 813.8 364.3 855.7 963.0 1707.3 526.7 859.8 977.3 1513.6 1219.0 1847.4 291.7 871.8 688.0 2017.5 206.4 611.1 621.5 2060.0 291.2 511.3 625.9 1791.0 380.7 575.6 495.9 1204.9 228.5 1673.6 1 1 96 884 273.2 414.2 3117.8 2745.0 1739.5 1842.7 146.0 57.3 473.1 2517.5 142.3 261.8 2201.1 2796.5 59.3 202.1 346.9 411.8 147.7 3863.3 740.0 2852.0 107.6 314.6 2178.1 2607.6 136.7 305.1 464.4 681.0 2106.8 2740.1 1393.6 1565.8 664.2 955.1 704.7 2264.8 226.6 417.0 1400.3 2004.0 185.2 368.3 602.6 983.5 267.0 2680.7 346.3 632.7 1972.8 2298.1 792.2 531.8 1984.4 2332.5 1472.7 1925.7 439.3 671.2 495.3 740.4 1232.1 2195.1 1504.1 1878.5 358.2 787.7 599.9 931.5 331.3 2054.6 427.7 1249.4 1513.5 2038.2 609.0 2093.8 383.4 731.0 1042.7 1691.9 334.6 1202.4 684.2 1304.0 1364.1 1786.3 950.7 1151.1 761.2 1172.0 484.7 713.7 1664.4 2840.1 354.1 755.6 648.5 2141.3 546.1 937.2 293.0 2524.3 648.4 605.2 380.3 2554.4 677.9 644.3 1379.5 2304.4 298.3 859.0 1318.3 2283.2 1224.0 1297.8 470.1 972.8 779.8 644.5 1015.6 1774.2 355.2 950.4 408.5 1860.2 842.1 692.9 281.5 2202.7 521.5 1042.6 401.3 2548.2 393.2 1187.2 870.0 1875.8 808.8 1792.1 441.5 1182.6 1 1 123 534 4753.1 6667.7 -280.7 -46.6 1143.4 5223.5 -276.3 3621.7 5719.5 6300.7 -222.2 119.5 48.5 490.5 4037.6 4628.7 604.6 885.7 -21.3 3815.9 733.9 3872.9 245.2 2486.8 742.1 4120.3 1927.9 1097.8 2760.3 5332.4 102.9 656.5 489.3 1304.8 48.5 5814.0 937.0 3977.7 -567.8 4105.0 286.7 990.4 3389.0 6082.6 49.0 412.0 549.3 5946.1 -20.5 476.6 1876.2 6256.6 -16.9 711.8 1688.0 6461.8 987.1 3776.3 2551.5 3136.5 2424.9 3149.8 253.5 3234.2 724.6 3475.3 1380.8 2528.9 1006.9 3721.5 589.9 1734.1 304.4 2606.9 832.1 5058.3 603.2 1723.6 2271.8 3975.7 287.7 894.7 2962.2 5572.8 126.0 988.8 3304.7 5181.7 1122.7 3461.0 1339.5 2483.7 988.8 2473.4 638.4 4373.9 1055.9 3294.2 537.0 3585.8 751.8 2308.4 197.1 5054.7 516.1 1525.3 428.8 5724.7 968.6 3788.2 477.6 2106.8 1527.2 2309.7 308.9 4267.2 581.7 3533.6 261.0 1892.8 398.1 1525.4 366.9 4324.0 2026.8 2751.8 285.3 3165.3 1923.2 2772.3 350.4 3317.5 897.8 1875.5 1902.6 4107.2 1254.2 1602.1 692.4 3526.2 1197.6 2351.9 578.7 4128.8 1 1 99 443 325.1 175.8 1087.8 5222.2 751.5 4006.9 136.7 48.7 3063.1 3979.0 -101.5 237.3 297.6 685.9 2921.5 3410.7 1025.3 3125.8 290.5 420.8 775.4 3235.5 223.5 486.5 295.0 1521.2 177.3 3072.1 764.4 3585.9 173.2 1154.7 2382.0 2629.9 931.4 1280.8 466.4 735.6 242.0 4413.1 373.6 755.3 2465.5 2345.3 1064.0 919.9 2546.6 2907.9 1815.9 2285.1 222.3 515.6 2311.2 1994.2 268.5 959.8 660.1 2526.3 138.0 586.4 464.7 1342.3 234.6 3312.2 426.3 709.0 337.7 3785.8 781.8 1027.0 114.7 3100.4 2213.8 2611.1 199.2 769.9 1911.3 2287.6 299.1 666.2 770.7 868.2 1877.2 2372.6 443.3 1563.0 1837.5 2392.5 748.3 2835.5 423.7 676.6 1941.5 2633.6 295.5 691.5 1910.3 2653.8 269.2 515.2 1943.5 2349.1 644.5 1113.2 818.9 2354.5 440.8 753.4 1625.9 2116.8 205.7 980.8 607.4 1291.1 223.9 2235.6 706.2 2189.1 216.1 914.6 647.0 2268.4 173.1 1192.5 750.2 2380.4 231.0 918.0 1400.8 2094.1 843.3 1124.0 551.5 1199.3 1385.9 1752.2 1174.2 1324.5 623.0 1056.1 1428.3 1969.9 407.2 929.4 1 1 96 906 170.7 33.4 223.3 4266.3 191.8 480.5 3409.6 3339.1 2028.0 2034.4 73.8 462.0 247.6 433.5 2385.5 2913.7 1677.5 1843.7 105.0 659.9 1812.1 1930.7 101.6 594.9 255.7 483.5 2183.0 2486.9 1484.5 1606.9 107.2 523.7 1459.8 1667.2 169.4 569.3 258.5 570.5 1763.0 2412.5 1479.5 1629.3 152.4 606.7 396.5 624.9 165.3 2317.3 1372.0 1656.2 141.5 678.3 1283.9 1573.2 129.1 562.1 410.2 570.4 257.7 2421.2 409.7 606.0 1315.5 1917.6 1163.5 1454.8 327.3 585.5 515.8 638.7 1548.6 2021.0 410.1 730.1 1585.9 1913.5 1002.4 1470.9 333.8 616.9 1288.0 1537.5 307.9 680.0 557.4 622.1 1368.7 1732.8 1052.8 1117.5 530.6 917.5 456.9 547.0 301.2 2396.4 377.8 651.5 296.8 2353.7 467.2 704.2 227.9 2390.7 1175.1 1322.4 268.2 1005.6 1064.3 1257.1 225.2 755.3 380.0 673.3 1103.3 1734.2 432.1 528.2 1045.3 1702.4 414.0 472.3 366.2 1497.8 406.2 1381.3 249.8 933.9 290.7 647.4 292.9 1687.1 374.4 589.0 1064.4 1979.0 722.0 1076.9 357.3 904.8 460.6 1160.9 313.0 1137.5 1 1 117 195 302.3 356.9 2336.3 3696.5 705.9 2338.0 2927.7 3109.5 481.6 2074.9 164.6 2859.4 251.2 492.7 2893.8 3961.4 291.3 455.5 3042.4 3544.4 1368.4 2326.1 387.8 531.9 554.6 1986.3 264.7 2992.4 661.1 2105.7 165.1 3764.3 321.8 631.7 2177.3 2625.7 617.1 2320.8 305.5 1792.0 523.2 1916.6 1832.2 2181.1 338.0 784.3 1842.5 3099.0 407.6 1550.5 2427.1 3893.0 268.8 583.0 484.6 3657.0 322.7 613.9 2497.9 4069.2 375.8 698.9 1954.5 3112.9 1297.9 1696.2 1840.4 2601.5 965.8 1300.7 837.0 3248.5 1272.3 1867.9 346.9 865.3 1228.8 2035.7 276.2 904.3 928.1 1762.2 354.7 3582.0 1641.0 4689.7 1654.9 3138.0 1116.1 3495.9 486.3 2851.4 939.4 3443.9 357.8 2773.2 918.4 3164.8 1520.2 1874.8 987.5 3019.5 1692.4 2219.3 981.9 3255.6 920.2 1365.1 898.0 3084.6 1555.4 1944.8 1041.3 3160.4 749.0 1237.4 1490.4 3056.1 1269.8 1699.7 1411.2 3059.2 788.8 1198.3 1520.8 3148.3 448.2 1391.3 1422.2 2539.5 443.4 2183.7 1401.8 2769.9 1252.8 2276.2 1280.6 2313.7 1172.0 1419.9 996.2 2252.1 1319.3 2250.4 1 1 405 806 941.6 605.0 10933.4 11741.8 7378.4 9607.0 444.1 1166.2 976.9 1678.3 288.8 16285.7 1017.8 1822.4 10637.7 11505.6 1011.6 1873.3 820.1 11519.0 1012.1 1315.5 792.7 14493.0 1109.1 2049.2 817.9 15318.9 3238.6 12617.6 600.8 1862.3 1121.7 2431.4 767.0 16044.7 2507.5 9314.1 526.1 2360.9 6127.5 8247.2 597.8 2318.0 1189.1 2660.1 955.9 16599.8 1094.9 2752.5 948.2 13213.0 2451.9 9723.8 712.6 3744.2 1367.9 3629.0 1064.8 12807.4 2381.9 11012.2 773.7 2754.9 2754.6 11603.9 832.6 2447.0 6665.9 9921.8 714.6 2699.2 1700.3 3386.2 1329.3 12201.3 1502.4 3712.6 6430.6 10447.8 5686.7 9354.5 1230.1 3789.3 1742.0 3868.0 811.7 11130.5 1472.6 3015.9 950.4 12382.8 1336.1 3096.4 1021.2 14271.3 1338.2 3497.3 1053.1 13700.5 2974.7 10534.5 888.8 4369.3 5970.9 8930.1 1240.8 3535.8 1752.6 3657.2 5098.6 9294.4 1143.2 2807.5 1363.7 9001.9 1372.9 2805.3 890.8 9540.9 1258.4 2721.5 868.8 11345.5 1272.3 3349.3 852.9 9465.6 1992.8 7536.3 725.6 5733.1 1138.4 3303.9 1099.3 12987.7 1186.0 2930.8 1555.1 15374.3 1291.9 3517.9 5045.5 12474.5 1 1 68 425 285.9 -11.9 214.8 5208.4 2519.3 2718.4 72.0 271.1 724.4 3086.6 73.6 295.9 2356.8 2702.4 134.0 290.5 338.8 457.1 195.4 3500.9 313.7 518.8 147.6 3247.5 695.8 2793.2 116.1 401.9 1155.6 3509.8 163.4 109.3 766.7 2933.8 156.5 231.1 258.9 414.7 233.2 3929.0 235.6 427.8 283.6 4038.9 271.5 406.7 2419.0 3407.5 178.1 427.0 2037.8 2818.2 498.4 2306.5 343.8 771.9 1904.5 2436.3 225.7 486.2 857.3 2458.4 167.9 445.1 2059.6 2417.2 136.6 322.1 2030.1 2652.7 79.9 285.3 2019.5 2225.6 158.1 525.7 546.8 764.1 331.8 2566.0 470.0 651.2 1676.5 2628.0 793.3 2149.7 372.3 818.3 762.7 2626.5 316.9 747.8 1879.4 2297.9 211.7 594.1 1881.2 2285.0 259.5 615.3 861.9 2314.4 258.7 550.5 584.6 2422.2 221.9 721.3 581.6 1156.7 207.4 2159.9 1611.6 2098.0 204.1 658.0 885.2 2279.9 174.1 548.7 1446.6 2354.5 220.2 654.2 1545.3 2039.8 297.9 494.6 684.2 1218.7 1448.7 2018.4 1296.4 1656.7 453.5 1120.3 471.9 873.9 300.7 2533.8 658.9 1949.9 447.5 1040.6 1 1 113 567 -130.5 -895.7 4051.7 2939.2 2897.0 2813.7 -272.6 -589.9 90.1 -54.4 -84.9 3541.2 509.5 2428.3 137.4 -9.9 226.7 70.5 2702.0 2576.8 -98.4 -244.9 2693.6 2731.9 2212.2 1784.1 125.5 110.0 2690.4 2991.3 240.9 -283.8 506.1 -273.3 2520.0 2813.2 1658.0 1790.8 438.9 297.4 234.2 283.1 2174.4 2428.8 651.4 2604.7 161.1 -45.8 199.1 444.8 -273.0 2927.4 517.6 2387.0 -52.3 152.7 409.6 351.7 2089.1 2059.1 172.0 237.8 257.5 1963.8 1673.7 1665.7 68.8 662.7 185.6 335.4 184.0 3021.7 315.8 502.2 1779.9 2589.9 623.8 2253.1 32.1 295.8 594.7 1925.7 198.1 568.4 324.0 223.8 1946.0 2343.8 162.8 527.9 376.3 2314.1 323.5 1491.4 110.0 1048.8 184.3 358.8 211.1 2986.1 261.7 289.1 103.0 2720.2 400.5 1487.6 193.4 942.8 29.8 272.4 230.7 2585.9 -175.5 247.2 1578.5 2857.2 134.5 1376.0 392.3 1234.2 89.3 231.9 147.9 2734.0 230.2 409.3 169.4 2904.2 898.6 873.1 666.8 1519.5 827.9 1031.0 981.7 1213.1 1339.4 1574.7 183.6 566.5 917.0 940.3 144.5 1495.9 1 1 69 594 1914.5 3923.6 532.4 322.7 621.5 786.7 226.9 5633.4 2376.3 2517.4 2127.4 2464.8 2218.7 2716.0 338.6 1466.0 413.4 459.2 1554.5 4859.2 512.6 714.1 2678.2 3657.8 1529.3 1621.9 2485.6 2851.2 530.4 2210.2 469.0 2340.6 895.3 2141.8 2088.5 2521.1 1725.1 2295.2 309.3 2588.3 1054.8 1912.2 343.3 2917.2 1871.1 2142.0 277.7 1731.7 526.2 836.8 504.6 4668.1 1218.0 1776.4 1805.1 2816.7 1430.8 1931.5 421.4 1620.7 415.1 834.1 946.7 4153.4 425.0 790.4 1727.0 3387.2 481.4 854.4 1461.8 3491.7 1067.1 2857.6 387.9 1087.5 1345.1 2041.4 1138.4 2327.8 588.0 905.5 647.6 3756.5 408.8 829.2 2210.3 3602.0 532.3 1008.5 628.2 3238.0 1214.0 1937.7 1188.0 2294.6 503.8 1002.7 1437.4 2939.0 1041.5 1401.2 674.5 2265.3 489.4 960.2 1455.9 3264.7 493.1 1394.7 1313.6 2566.1 641.6 1954.0 536.6 1544.6 598.9 2234.4 458.3 1260.4 610.8 2076.6 492.1 1658.8 1191.5 2032.7 892.9 948.2 1205.1 1666.9 572.6 1602.6 564.5 1133.7 1392.4 2788.6 863.3 2034.3 658.2 1898.4 705.4 2362.2 514.0 1695.5 1 1 90 379 330.8 208.4 3723.8 3139.4 2433.6 2864.9 23.3 73.0 663.0 2486.9 35.6 219.7 2498.2 2871.4 81.7 231.5 314.1 409.7 2270.0 2260.4 242.2 265.9 2126.5 2061.6 790.9 2611.6 1.4 128.3 2343.1 2509.6 135.0 165.3 734.8 2759.3 180.3 175.7 320.0 608.4 236.1 3907.8 155.6 393.4 2520.2 3384.3 201.4 392.9 2500.6 2864.8 1696.1 1858.9 329.9 532.7 232.6 540.5 226.8 2514.9 231.5 480.8 1663.8 2173.6 282.0 541.7 1704.9 2010.8 673.0 2391.3 505.9 508.4 1593.1 1915.8 188.4 632.2 629.1 1032.7 126.0 2274.2 1452.9 1989.3 204.3 760.4 588.2 939.3 1244.5 1647.7 644.1 2104.0 390.0 754.2 469.4 1006.7 280.9 2218.0 633.6 2045.4 241.6 960.5 1426.1 2189.4 135.2 485.0 1650.4 2316.9 149.7 461.9 909.5 2021.2 118.7 374.9 661.8 1996.0 164.4 420.3 1240.3 1906.2 125.4 403.0 824.5 1952.5 173.1 375.3 1298.2 1813.5 210.0 639.8 609.8 1077.4 1077.3 1564.1 461.0 721.2 1365.9 1782.0 406.4 751.3 767.6 1734.3 329.9 610.9 1176.8 1912.8 362.2 585.8 684.1 2302.0 1 1 111 977 179.8 523.6 3100.4 2796.4 541.5 2504.9 103.0 190.8 207.9 341.9 98.4 2778.5 226.7 375.4 2381.5 2243.7 258.0 328.7 2445.9 2401.3 1535.8 1687.0 241.8 390.8 286.5 419.4 193.8 2862.4 314.8 576.0 1831.4 2098.3 614.6 2013.0 304.2 431.2 254.2 503.8 1831.1 2076.3 280.9 522.1 316.0 1957.1 459.3 1790.8 220.2 755.7 261.8 733.3 138.7 2191.6 523.1 1967.8 146.8 556.5 1295.6 2061.7 179.9 461.2 459.4 1012.9 1143.1 1494.1 616.1 1811.8 410.0 516.8 1330.9 1819.4 312.9 668.7 486.1 858.9 1378.0 1784.4 301.6 585.6 1494.3 1818.5 351.7 658.0 1390.7 1661.9 569.6 1798.6 435.1 709.3 1395.2 1676.3 369.7 563.4 1286.8 1586.8 237.8 479.8 628.5 1826.5 257.7 457.2 532.1 1771.2 264.8 657.2 578.3 1178.4 895.9 1251.2 551.9 1527.0 358.7 642.9 1030.2 1402.3 238.7 624.5 446.8 871.3 216.1 1541.1 501.0 1530.2 207.6 784.7 553.6 1610.9 179.4 637.5 1059.0 1638.5 191.3 633.6 1027.2 1375.9 339.6 638.7 423.1 812.0 932.5 1411.6 340.9 602.8 524.7 1439.9 1 1 85 701 538.4 666.6 3542.3 4088.5 865.6 2711.9 2605.8 2678.8 1901.5 3428.9 208.4 887.9 509.2 1064.7 2881.5 3612.5 619.4 2673.6 2138.7 2841.1 893.9 3314.4 416.8 998.8 635.7 2233.8 427.7 3112.0 749.8 2502.0 1914.0 2238.0 577.7 1338.4 1573.8 3253.9 1710.8 1920.8 1754.5 2628.3 1509.2 2183.7 1551.8 2351.8 1829.9 2799.4 568.8 1328.5 1402.5 2211.5 1709.7 2442.9 810.5 2177.4 1520.8 2525.8 837.9 2569.1 677.4 2327.9 615.1 1219.5 1691.4 3342.8 642.3 1449.5 1918.1 2785.6 883.8 2241.9 1565.5 2251.6 944.5 2965.3 655.2 1209.5 1415.3 2442.2 1329.6 2217.5 785.1 1320.4 1526.5 2645.9 670.3 1263.0 1853.9 2803.0 603.0 1389.4 1507.0 2697.0 932.7 2489.6 635.4 1500.9 1037.8 1860.1 638.0 2765.2 841.7 1313.5 1172.6 2997.4 1541.8 2096.7 769.0 1836.0 1294.1 1984.4 612.3 2451.7 817.4 2003.8 1177.3 2242.9 1016.9 2037.6 1091.7 1970.9 1051.5 2231.0 606.2 1724.3 787.8 2122.2 424.7 2100.1 614.3 1343.8 539.5 3342.0 621.8 1320.5 1286.4 2578.6 900.3 1718.8 797.3 1906.4 710.4 1265.8 1516.6 2701.7 1 1 116 879 865.8 3992.9 258.8 443.1 349.0 413.1 221.6 6209.6 950.1 3787.6 165.8 489.2 1032.4 3811.3 189.8 382.6 3207.7 3288.4 190.3 472.1 358.1 777.1 3120.6 3664.6 359.8 685.1 3219.5 3607.4 446.9 686.2 479.8 2839.3 302.0 779.9 3835.8 4222.7 981.1 3331.5 425.2 686.5 2778.6 3265.8 361.4 618.2 517.8 777.8 3062.1 3459.7 889.9 3313.8 445.2 887.3 454.7 753.0 491.4 4630.2 375.6 736.5 2928.1 3855.9 410.7 853.7 680.6 3320.8 815.4 2928.9 408.6 1044.1 793.7 3253.8 422.3 1020.8 534.9 1152.8 550.0 3399.3 548.3 961.7 2044.7 3071.1 1818.1 2582.4 784.3 1281.7 613.6 1171.8 2028.6 2792.4 561.6 948.2 2647.7 3258.0 854.4 2334.3 810.5 1541.1 516.9 1226.1 514.2 3581.1 458.4 969.9 488.7 3908.0 649.7 2407.6 396.8 1937.5 548.5 1593.6 301.5 2744.0 678.4 2454.2 289.5 1548.6 854.1 2724.6 274.4 1071.0 1406.6 2453.7 411.6 1157.8 790.0 1234.5 1601.7 2432.7 576.2 1034.1 1976.2 3042.7 492.3 1042.4 2097.7 3210.1 987.0 1698.9 1069.8 2102.6 786.5 1089.2 1805.1 2954.6 1 1 753 95 189.7 -44.5 9459.1 7582.6 135.6 312.8 477.5 6061.0 1180.4 6015.4 147.7 215.2 283.7 517.3 552.7 8422.9 523.4 394.8 5625.3 6605.2 3765.3 4599.8 514.8 735.5 1095.9 5498.5 431.0 692.2 579.3 1504.3 6695.4 6875.4 453.6 1070.2 718.9 7085.2 527.5 1128.5 381.8 9529.5 1192.6 6128.1 200.6 1553.5 561.6 1546.5 327.5 9456.2 384.5 793.4 514.4 8993.4 675.7 1234.8 651.8 10030.7 4015.1 5414.3 543.5 1669.5 4333.9 5717.7 651.1 1137.7 980.9 2052.4 4018.1 6336.4 1534.5 5758.1 715.2 1165.1 3304.5 5130.0 598.5 1437.5 967.5 1805.2 3971.4 6201.7 3001.9 4303.6 1311.8 1784.4 980.2 2101.6 4103.4 5315.2 1158.7 5229.8 1482.6 2486.9 1024.8 1965.9 4825.1 6926.5 2783.3 3929.9 1250.8 2364.5 881.2 1622.3 900.9 7140.9 595.1 1335.3 903.8 7408.4 669.6 1609.4 909.9 7101.8 1239.1 4822.7 820.3 2948.7 2630.0 4992.9 1026.3 2317.4 948.9 2379.6 3557.0 4947.0 1010.2 4429.7 1081.2 2749.9 696.9 1832.1 771.4 6363.2 586.8 1689.5 1017.1 7936.3 765.5 1851.5 962.1 7550.5 1086.4 3859.6 651.1 4144.3 1 1 104 223 2833.2 4517.2 -26.7 1.9 2568.1 4214.4 -94.3 39.3 2049.4 2433.6 177.1 3410.4 399.1 2467.8 2742.5 2593.5 2960.1 3340.8 327.9 168.7 709.2 2426.0 3119.0 2838.4 853.0 3450.7 304.8 -38.8 726.6 2588.5 322.7 3806.1 1730.9 1914.2 304.9 3738.7 1771.3 2047.9 229.6 3756.7 1682.1 2107.2 245.3 2925.0 741.2 2502.4 2211.0 2549.1 497.8 1019.4 387.2 5347.3 1718.6 2287.3 2653.3 3835.9 1655.7 1838.1 264.1 3783.5 499.0 927.2 2576.9 5741.0 580.4 893.7 3499.3 4585.8 2034.6 2589.8 692.8 727.1 680.6 899.5 3300.8 4244.1 1276.7 2487.0 669.4 1188.3 1541.2 2064.8 509.8 2687.5 581.7 1030.2 3027.6 4092.2 560.8 922.0 3529.7 4459.4 1085.5 1457.3 2127.7 3422.8 441.8 763.0 2448.7 4159.7 493.9 786.8 2125.2 4154.5 512.7 943.0 2130.1 3600.4 538.5 984.8 2857.1 4384.9 662.3 931.2 2086.6 3187.8 1033.5 1773.3 847.6 2807.2 522.3 909.6 2691.3 4216.7 583.8 1581.5 2077.1 3203.7 995.1 2109.5 1080.2 1934.2 1234.4 2030.2 1455.3 2331.9 827.5 1618.4 877.5 2507.9 947.9 1719.4 1678.8 3044.9 1 1 91 195 220.9 324.2 249.6 3643.5 479.0 331.2 2496.9 2854.4 331.4 550.9 2288.7 2698.0 336.2 507.0 2195.8 2845.5 1338.2 1937.4 347.0 647.5 335.3 544.4 2456.8 2932.4 902.5 1791.3 299.4 505.4 1603.6 1927.2 257.2 49.9 457.1 459.0 326.5 3377.5 424.6 604.6 2038.4 2662.1 1212.4 1784.0 255.0 522.5 1614.7 2131.9 259.0 699.6 412.7 618.9 302.3 3650.0 244.3 467.8 285.5 4159.6 444.8 534.6 280.9 3915.0 1235.0 1445.7 198.9 886.5 378.3 1036.2 253.7 3569.6 350.6 803.4 252.6 3548.5 1210.3 1727.3 301.0 1012.8 535.0 1883.7 215.0 918.2 467.7 1206.8 434.1 3029.4 480.7 488.1 1605.7 2998.8 348.2 708.6 723.6 2798.4 220.4 905.1 1657.5 2812.9 379.2 699.5 1719.0 2855.8 450.9 575.0 446.4 2632.1 1092.8 1405.8 435.2 1299.9 599.0 838.1 1139.1 2225.0 949.1 1401.3 484.7 1435.1 955.2 1570.6 450.5 1281.7 706.1 748.6 1093.2 2123.5 935.5 1532.9 633.4 1376.4 393.1 899.4 1025.8 1934.8 615.6 1638.9 434.8 1141.6 554.7 1172.5 241.6 937.7 349.6 872.4 273.2 2143.4 1 1 82 227 98.5 15.7 239.2 3634.6 1658.4 1885.0 154.5 138.9 163.5 184.7 1593.4 1871.3 171.7 264.5 1596.9 1533.0 901.6 1077.8 109.4 470.8 183.1 241.5 1404.2 1699.4 327.5 363.0 227.1 1106.7 262.9 327.7 50.1 1652.6 276.2 1046.8 132.9 345.7 281.0 371.0 134.2 1339.2 212.9 851.1 158.9 441.7 230.6 465.4 150.9 1316.4 223.1 343.2 1294.3 1630.8 191.3 341.5 945.7 1525.6 126.0 197.0 251.7 1367.6 127.8 328.2 985.8 1703.6 229.1 364.3 868.4 1687.1 496.3 772.4 134.4 465.4 605.0 877.8 128.4 439.3 252.0 452.3 90.0 1838.5 144.2 330.8 114.6 2014.5 150.7 357.7 63.8 2030.9 233.5 456.5 192.2 1969.1 340.9 562.1 138.8 1814.0 557.8 800.1 201.6 799.6 173.2 413.8 785.6 1648.5 243.9 406.0 649.2 1377.9 228.5 408.4 676.0 1533.3 246.0 404.2 224.1 1399.1 234.3 746.3 123.6 861.9 524.2 817.4 185.4 554.6 303.8 799.8 191.2 714.6 287.5 507.2 95.4 1500.3 308.6 512.3 134.4 1620.7 490.6 659.3 111.2 900.6 372.4 483.6 77.6 1437.1 1 1 78 554 -183.6 305.6 116.9 3300.8 588.5 118.1 2671.0 2401.6 -133.2 387.9 2206.9 2178.3 54.1 -129.4 2114.3 2385.1 84.8 -135.6 2058.3 2214.3 1304.7 1350.1 -62.0 -80.3 61.6 143.9 1807.2 1790.0 1019.8 1231.4 158.1 236.7 133.3 152.3 168.0 2136.0 163.9 138.8 1756.6 1716.8 53.2 513.8 269.2 1971.5 180.2 184.1 1806.4 1618.6 144.1 227.8 1647.7 1305.2 72.2 64.0 1721.7 2035.5 446.8 1796.4 277.6 64.7 394.1 1553.8 179.2 270.3 371.5 1527.2 144.2 100.5 52.4 343.4 209.4 1869.5 39.5 56.5 1510.6 1862.9 96.9 333.0 1431.4 1129.2 113.2 1105.3 333.9 518.6 163.4 503.2 260.1 1609.8 -17.5 358.6 1411.1 1914.4 143.0 82.9 1593.7 1942.1 788.8 872.3 218.1 299.4 242.3 330.9 195.5 1641.1 751.3 854.2 195.9 715.5 263.8 526.5 163.0 1670.2 192.2 342.5 96.2 1611.2 163.7 402.0 47.1 1578.8 162.6 210.1 763.8 1502.1 696.5 827.3 353.5 526.4 399.9 521.1 784.8 954.2 276.8 393.6 1012.2 1069.6 439.0 578.2 500.2 884.8 358.0 499.5 954.1 1401.9 1 1 101 329 311.1 42.4 4055.4 3684.4 358.2 403.4 259.2 2607.6 289.7 418.7 2837.2 3062.4 217.7 296.7 2451.7 2870.4 1723.5 1973.5 278.8 566.5 350.4 414.3 2670.2 2897.5 352.6 368.2 2304.9 2356.9 868.0 2378.7 431.2 700.5 466.9 824.6 183.4 2733.3 2006.5 2377.8 267.5 821.2 799.9 1068.0 1778.1 2204.7 753.4 2405.5 546.6 872.9 1919.8 2305.4 374.6 640.8 871.6 2189.7 294.8 760.5 640.5 2462.0 229.5 715.6 463.4 1026.8 299.6 2598.3 343.4 744.8 1813.5 2926.9 363.6 613.8 651.1 3007.6 353.8 629.4 331.0 3481.8 374.4 591.5 410.1 3718.4 444.1 599.3 1645.5 3138.4 368.6 668.5 780.7 2765.2 400.2 648.0 1613.2 3073.3 393.8 782.3 1967.2 3108.4 554.3 2020.0 716.9 1308.1 669.6 2089.0 477.3 1178.1 451.1 982.4 360.4 2454.8 375.0 726.8 458.2 3002.5 318.5 722.9 1440.0 2941.6 304.5 712.8 849.7 2870.4 473.2 734.8 1237.9 2669.1 1081.7 1478.1 643.8 1553.2 1263.7 1515.6 511.5 1162.3 719.6 1048.9 1327.9 2166.1 491.7 904.6 1303.1 2069.7 1059.0 1499.5 656.8 1458.3 1 1 449 243 773.0 921.5 8466.5 10553.8 5903.0 7854.6 1556.8 2699.6 897.9 3677.1 433.7 7809.8 849.4 1149.1 416.9 8871.6 684.0 1327.2 437.9 7568.9 743.5 1568.9 280.4 6735.1 1812.3 6590.7 2962.6 2750.3 4858.2 7155.0 2207.5 2620.3 4927.4 6899.6 514.8 1066.5 3878.1 6776.9 790.6 1383.8 1311.2 2454.5 4951.8 7583.2 1837.3 4019.9 723.7 5300.6 1358.3 2464.8 425.5 7186.7 4334.5 5629.7 493.2 1828.9 4209.7 7016.9 665.3 1776.9 1360.4 2630.3 3710.6 5184.9 1033.3 2534.7 3616.2 5290.0 1294.2 2413.0 2421.5 4769.3 1518.4 2998.1 1463.6 5942.0 4173.9 5894.8 479.7 2043.6 3874.1 5545.3 545.7 3400.7 4174.2 5550.2 701.8 3134.9 4356.9 5772.2 844.5 1534.7 3770.8 6257.1 706.0 2238.5 1806.9 3953.7 1112.4 5443.8 1355.8 2943.6 3242.1 5735.1 1547.3 3044.1 739.7 4617.0 1426.5 2678.2 855.7 5810.2 3231.2 5150.3 803.2 3433.3 1385.9 4126.6 911.0 4653.4 1831.5 5265.4 975.7 3001.9 3122.3 5430.2 677.8 2888.1 1761.8 5288.4 1048.1 3271.7 1550.8 5787.8 594.4 3038.5 1637.3 5405.3 1149.3 2984.6 1723.6 2543.1 2683.1 5104.8 1 1 401 703 644.7 2477.0 9203.7 8221.6 7107.1 9201.7 123.7 864.4 7477.1 9176.7 1048.2 448.0 7354.8 9479.5 420.5 943.5 7084.5 9939.0 493.1 1190.8 1003.4 1226.4 408.3 9916.2 1048.7 1727.7 6893.0 7076.8 5720.1 7130.8 679.5 1123.1 1299.5 1998.4 7252.5 7018.0 6809.1 7790.5 584.0 749.2 7054.3 9082.0 564.2 1388.4 6627.9 9698.0 415.5 1073.4 2022.3 8607.4 630.1 1165.4 6049.3 7949.2 527.7 1539.9 1527.6 2347.9 522.4 8244.3 5808.4 8228.0 508.3 1580.2 2320.8 8993.3 506.8 1588.2 5742.2 7743.3 523.1 1024.2 5382.8 7990.8 517.7 1376.9 1544.3 3002.8 656.8 7092.1 1569.0 2884.0 773.2 7945.9 1753.1 2888.9 4581.6 5886.8 4672.5 6284.8 987.9 1708.8 2245.3 7897.7 1128.8 1774.9 1416.3 3229.2 4389.5 5474.4 4226.6 6326.4 1023.9 1968.2 2096.1 6748.3 708.6 1701.5 1151.0 2874.0 712.8 6578.7 1323.3 2597.5 957.5 6859.9 1441.6 2627.6 3307.1 5153.1 4211.7 5419.7 1067.7 2293.1 4394.4 6612.6 765.2 1492.9 4946.9 6454.6 691.4 1712.4 4344.1 6193.4 958.1 2083.7 4143.8 5939.2 920.8 2834.2 1897.7 3049.0 954.7 6548.9 1 1 101 226 -174.8 -528.4 3210.7 3592.2 -170.8 -217.6 3008.0 3069.7 -49.9 -15.6 190.9 2066.2 1417.7 1525.5 -98.8 -142.2 -69.8 -250.3 224.9 4784.2 -12.8 -70.7 -83.4 4510.3 120.9 100.6 105.2 4059.8 39.4 194.2 197.5 4020.6 241.5 1691.0 133.4 592.6 236.6 1716.8 101.5 460.0 111.5 273.9 57.8 2826.5 77.7 -26.8 -37.8 3417.9 137.3 260.3 -44.2 3586.7 51.7 87.9 49.7 3721.7 -26.8 185.5 2184.5 2987.2 179.0 153.9 203.0 2637.1 118.7 282.4 230.0 3351.9 -75.2 50.7 156.9 4203.9 118.5 201.2 -26.6 3482.7 1088.0 1140.5 179.9 886.9 223.7 215.0 94.8 3524.9 172.3 259.6 9.5 3483.7 136.8 417.5 -132.9 3257.8 282.4 1507.1 29.0 762.4 921.2 1399.0 202.3 593.2 302.5 1483.2 19.6 905.7 112.5 407.5 -47.7 2405.3 125.4 382.7 -29.0 2751.4 101.4 72.6 201.9 2971.1 185.4 257.9 1281.3 2860.6 290.5 291.1 1283.4 2598.6 664.1 929.8 330.2 1161.3 162.2 205.4 1379.2 2684.7 112.8 280.0 1327.4 2721.5 149.4 256.4 1289.3 2626.5 286.9 905.4 571.1 1402.9 1 1 239 916 396.3 103.9 6222.4 5198.1 2515.4 2755.6 2791.7 2609.4 877.2 -109.3 333.4 5942.1 2096.0 3872.3 191.1 1895.5 742.1 2372.1 3781.3 3577.3 375.0 1173.1 3412.7 4963.9 2379.4 3458.3 1923.0 1793.1 3047.7 4193.4 364.2 528.3 492.4 1252.9 4571.9 4493.7 2072.2 2264.1 1916.0 2139.5 1043.8 2029.1 3290.0 3902.7 932.0 2845.9 175.8 2027.1 698.7 1268.3 1813.0 4625.1 1047.5 3752.4 879.0 1546.9 1147.5 2275.6 3680.2 4048.5 656.0 1788.7 1061.7 4263.6 2068.6 3105.1 1785.9 1848.5 649.4 1300.0 2100.7 4658.5 640.3 1538.0 3140.3 3809.3 882.2 3021.3 1978.1 1934.9 1427.6 3587.0 1157.6 1861.4 1204.4 2133.9 2568.3 3080.1 305.5 1043.8 1735.5 3950.2 939.1 3049.3 1260.9 1437.2 1087.2 2046.3 850.3 3485.2 737.8 1333.3 673.0 4251.2 1002.9 2719.5 1215.9 2131.7 811.8 1896.1 1027.3 3301.0 501.4 1494.9 2615.2 3622.4 1098.8 3021.9 1159.8 1717.0 867.0 2002.1 605.2 3324.6 905.3 1805.1 927.2 3962.3 1362.7 2325.1 1422.5 2763.3 1409.1 2087.9 1505.5 2381.2 1813.0 2487.2 1172.0 2468.2 1393.2 2234.8 991.0 2502.1 1 1 349 63 206.5 199.2 6039.1 5692.3 4316.4 4897.3 161.2 -167.6 3384.3 3910.8 1976.2 1934.4 3903.9 5315.2 197.8 -16.8 4607.1 5079.0 45.5 305.9 3428.8 4341.2 1594.9 1773.7 1153.3 3965.7 246.8 1820.1 951.2 2484.0 3949.9 4326.9 1700.7 2474.5 523.6 3125.7 814.7 1318.0 3325.7 5200.5 2889.5 3352.0 1823.0 2478.3 3399.9 4123.9 501.4 2390.1 3128.3 4115.2 506.6 2812.7 3244.5 4147.2 1526.7 2293.1 3071.1 3929.1 1698.8 2242.9 1009.8 1641.4 820.4 6004.8 1012.0 1653.0 3715.1 5007.9 2956.3 4020.2 783.2 1636.0 1067.2 1902.0 3842.9 4891.6 3010.8 3941.6 633.7 1477.1 3120.6 4719.5 639.8 1259.4 2932.8 3948.8 683.0 3147.7 1194.9 2176.2 763.2 4906.7 1056.0 2006.3 2745.4 4686.2 2105.4 4806.9 825.9 1365.2 3045.1 4319.3 905.5 2264.6 1604.1 4160.5 1548.6 2738.8 2512.1 3994.5 1539.3 2839.2 1272.2 3910.3 1754.3 3364.9 924.6 2132.1 877.2 4857.8 907.5 1709.3 2335.6 5231.2 1057.4 2129.3 882.2 4560.0 2428.9 3551.9 936.1 2596.5 1196.3 2402.4 2276.8 3669.0 1098.7 2231.4 2201.2 3523.9 1835.2 2840.1 973.8 3415.1 1 1 158 505 199.8 3169.0 7513.8 5520.5 5910.5 6385.8 310.1 -246.6 1320.6 2370.4 178.8 8295.9 2306.5 1705.7 652.2 7397.8 833.3 6490.2 233.4 505.6 1514.6 5909.9 304.1 746.7 1013.0 1319.3 334.9 7984.9 2147.0 2733.6 309.9 7651.2 4135.4 5418.1 257.7 657.6 556.7 1074.3 841.4 7401.9 401.5 923.9 5289.5 6470.0 537.1 1282.1 106.2 4610.9 272.3 257.7 5131.9 6952.9 1308.7 1271.0 4266.1 5964.2 853.0 1886.1 575.6 4482.3 4248.0 4876.6 540.1 2728.4 3647.6 4464.4 546.1 2001.8 848.3 1317.6 1976.3 7270.5 579.5 1176.9 4524.1 6714.7 1691.8 2321.2 4470.4 5866.1 3354.7 4350.7 1350.6 1271.2 4352.7 4667.3 703.4 2021.5 3860.3 5258.8 532.7 1336.1 4638.8 5595.7 177.2 1290.1 1632.9 2321.3 208.0 5301.9 4070.9 5438.1 476.2 1939.6 3887.8 4864.7 653.6 2315.1 1240.1 2149.8 1452.2 6426.2 3475.6 4214.5 476.6 2824.5 1509.1 2436.4 421.6 5444.1 670.1 1809.9 527.8 6530.7 969.2 2362.9 428.2 5368.9 1562.5 4975.7 334.9 2043.1 2999.4 4953.0 127.6 1962.2 1216.8 2678.0 391.0 4423.0 1794.4 4949.9 383.5 1640.5 1 1 793 122 470.5 610.9 9286.6 8967.2 912.8 1764.1 7359.8 7806.1 5581.3 6751.4 442.3 5301.9 587.0 792.8 2285.0 8972.9 972.0 2977.8 6117.8 8210.1 3803.1 4911.5 1952.1 4818.6 2709.5 3626.7 6817.2 6461.2 5049.2 6321.6 691.5 3722.3 5658.4 7114.1 1161.5 3596.3 1206.3 1807.5 7412.2 8073.0 5132.6 7257.8 1539.2 3820.9 5868.1 7302.6 761.7 2634.5 1291.5 3768.7 1249.5 8540.0 4270.4 5878.2 2570.5 3322.8 1175.5 3072.0 6522.7 7440.0 2044.4 3239.9 993.1 5588.7 4196.0 6448.6 810.1 4668.2 2551.2 3901.8 707.1 7593.1 3980.9 5613.8 1562.0 3424.5 2121.4 3931.5 950.4 8236.5 1387.1 2894.7 827.9 8706.6 4208.7 6148.7 1112.5 3426.4 1975.6 6522.1 2606.4 3163.1 4310.4 6818.0 1032.7 2420.5 1472.1 2916.4 1792.2 8661.5 1452.0 5349.4 782.7 5028.8 2076.3 3769.4 853.8 6823.6 2325.2 6092.0 756.7 2896.2 1361.9 4061.2 2087.3 6484.6 3545.5 5364.6 1299.9 2979.5 2225.3 3957.2 3987.0 6129.2 2382.0 5628.2 1936.3 2949.5 1722.6 6066.1 1926.4 3315.5 3827.1 6870.1 1232.4 2281.0 2415.9 5889.6 1101.9 2356.1 2856.0 5286.7 1345.6 4241.2 ShortRead/inst/extdata/Data/C1-36Firecrest/s_1_0001_nse.txt0000644000175100017510000077564412607265053024072 0ustar00biocbuildbiocbuild1 1 109 548 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 105 517 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 56.6 52.7 65.2 37.6 46.3 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 101 522 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 113 530 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 105 511 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 40.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 158.0 27.8 47.2 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 121 531 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 112 525 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 121 595 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 113 371 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 89 581 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 83 580 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 95 513 41.5 34.4 35.5 29.4 44.4 189.0 40.1 48.0 40.1 39.8 28.7 46.1 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 41.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 97 540 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 93 384 53.5 43.5 32.6 45.6 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 122 247 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 49.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 115 738 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 117 468 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 69 533 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 121 586 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 117 578 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 115 365 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 119 406 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 112 238 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 120 597 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 119 390 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 49.4 55.4 34.3 56.0 44.0 75.3 33.9 71.2 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 47.5 52.9 33.0 51.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 108 606 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 96 508 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 106 347 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 92 482 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 114 415 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 117 462 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 88 544 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 68 580 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 81 571 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 75 541 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 113 775 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 122 660 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 115 329 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 118 518 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 120 704 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 105 427 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 110 692 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 98 349 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 120 488 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 120 749 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 41.9 66.9 34.7 74.0 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 115 889 37.7 35.1 27.2 37.3 40.7 67.2 28.1 57.6 42.9 62.5 25.3 46.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 34.2 65.6 40.2 51.1 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 42.0 51.5 37.1 48.0 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 30.2 49.9 31.2 48.8 28.3 45.1 41.5 51.7 31.4 50.3 39.3 52.3 35.1 63.4 41.6 54.4 36.9 55.0 35.7 51.1 30.6 61.5 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 98 629 50.0 49.2 31.1 38.9 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 30.4 42.9 48.6 75.7 38.8 91.9 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 45.7 58.6 28.9 52.1 54.1 67.8 42.2 63.3 48.4 40.0 34.3 38.1 49.2 66.9 36.5 70.4 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 49.8 48.8 31.4 48.0 45.0 58.0 31.8 46.8 49.4 62.7 41.0 58.6 1 1 120 446 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 115 762 39.4 43.4 37.4 46.6 44.1 81.3 32.8 45.9 37.5 76.9 30.2 43.8 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 36.3 68.7 42.4 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 99 723 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 80 439 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 120 897 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 113 628 50.0 49.2 31.1 38.9 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 41.6 41.9 30.4 42.9 48.6 75.7 38.8 91.9 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 54.1 67.8 42.2 63.3 41.2 40.0 34.3 38.1 42.5 51.7 27.7 70.4 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 49.4 62.7 41.0 58.6 1 1 121 143 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 101 353 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 122 581 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 97 502 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 43.5 64.0 32.6 40.1 41.0 59.5 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 45.7 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 42.8 48.0 33.4 43.9 1 1 95 455 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 100 681 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 122 300 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 103 604 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 121 544 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 105 377 53.5 43.5 32.6 45.6 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 46.8 99.9 34.7 55.7 47.5 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.5 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 38.9 67.3 32.6 71.7 1 1 109 610 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 96 412 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 88 444 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 123 424 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 98 361 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 119 458 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 121 629 50.0 49.2 31.1 38.9 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 30.4 42.9 48.6 75.7 38.8 91.9 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 45.7 58.6 28.9 52.1 54.1 67.8 42.2 63.3 41.2 40.0 34.3 38.1 49.2 66.9 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 49.8 48.8 31.4 48.0 45.0 42.9 31.8 46.8 49.4 62.7 41.0 58.6 1 1 112 446 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 112 379 53.5 43.5 32.6 45.6 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 99.9 32.6 40.1 47.5 53.1 35.8 64.0 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 56.3 35.4 50.7 49.1 68.6 30.5 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 42.6 71.7 35.2 47.3 46.4 65.3 34.8 67.5 38.9 43.8 33.4 43.9 1 1 113 631 50.0 49.2 31.1 38.9 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 118 565 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 89 533 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 106 886 37.7 35.1 27.2 37.3 44.1 62.9 28.1 57.6 42.9 62.5 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 109 291 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 93 629 50.0 49.2 31.1 38.9 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 42.9 48.6 75.7 38.8 91.9 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 40.0 34.3 38.1 49.2 66.9 36.5 70.4 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 49.8 80.9 31.4 48.0 45.0 58.0 37.6 46.8 49.4 62.7 41.0 58.6 1 1 80 481 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 109 568 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 113 482 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 79 878 37.7 35.1 27.2 37.3 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 39.7 54.9 33.9 64.7 37.5 48.9 29.5 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 37.1 49.2 33.8 45.8 38.6 42.8 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 36.0 44.8 28.1 46.9 1 1 98 479 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 75 217 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 100 525 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 113 326 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 85 733 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 111 862 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 87 618 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 83 277 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 103 414 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 93 494 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 65 610 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 102 717 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 104 595 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 118 675 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 107 489 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 72 446 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 85 233 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 106 462 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 82 588 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 80 334 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 117 484 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 104 475 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 102 619 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 98 190 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 115 189 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 88 462 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 113 784 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 107 478 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 102 248 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 107 310 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 117 503 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 43.5 64.0 32.6 40.1 41.0 59.5 34.7 49.2 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 34.4 53.1 45.7 49.6 31.6 40.1 45.7 54.3 34.8 50.5 42.5 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 42.8 48.0 33.2 39.2 1 1 465 808 138.7 252.7 95.6 559.0 126.9 298.4 95.5 202.7 151.8 393.6 69.4 540.0 123.2 244.9 94.3 212.8 106.7 267.1 88.4 265.5 183.3 331.2 89.6 188.8 183.0 352.1 93.3 476.0 203.7 246.1 98.0 175.4 193.1 324.2 111.4 266.2 195.8 339.8 99.2 250.3 146.0 334.1 111.5 259.2 171.5 478.3 106.0 213.1 159.6 398.0 108.0 293.5 179.6 343.5 103.5 333.5 125.2 303.7 97.1 234.3 174.8 429.1 103.8 245.7 151.9 421.9 98.9 291.2 177.2 430.1 96.4 248.7 149.2 345.9 108.1 229.0 158.1 402.9 128.3 259.8 163.2 482.8 121.6 331.7 141.8 446.8 92.4 218.0 162.2 455.2 102.5 324.4 187.2 425.0 116.9 473.1 177.4 483.5 137.3 450.8 207.7 412.6 142.8 373.9 198.2 352.4 126.3 229.9 174.1 417.1 103.5 223.9 168.3 411.4 119.0 373.3 173.9 382.1 137.8 410.1 176.0 373.1 139.7 295.8 158.7 386.8 110.3 310.7 190.5 403.8 131.2 328.9 174.2 406.0 155.5 453.1 156.8 407.7 142.7 483.3 142.9 355.4 134.0 469.3 1 1 87 313 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 90 286 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 88 396 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 81 453 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 88 479 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 120 534 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 111 505 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 54.3 34.8 50.5 42.5 51.7 27.7 37.0 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 120 648 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 89 450 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 122 166 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 82 533 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 109 730 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 94 520 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 112 852 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 92 550 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 104 584 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 123 436 53.5 201.4 82.1 159.0 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 109 580 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 102 549 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 121 318 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 119 279 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 89 424 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 82 804 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 90 304 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 107 425 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 110 408 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 103 853 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 115 514 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 49.9 48.1 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 62.1 38.6 42.2 51.0 58.2 29.9 57.5 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 114 521 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 99 337 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 118 632 50.0 49.2 31.1 38.9 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 57.4 92.2 32.8 43.5 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 91 364 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 114 400 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 85 487 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 113 509 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 104 907 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 123 467 53.5 43.5 82.1 159.0 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 74 589 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 100 564 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 116 569 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 79 401 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 98 771 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 86 761 39.4 43.4 37.4 46.6 51.9 81.3 32.8 45.9 37.5 76.9 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 88 393 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 84 708 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 113 439 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 83 506 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 107 128 44.5 39.9 28.7 32.3 38.2 39.8 23.0 33.1 36.0 41.8 23.7 32.2 27.7 46.1 26.6 32.0 35.0 38.1 25.8 37.2 35.5 39.0 23.7 31.9 33.0 44.9 25.1 39.2 37.8 54.2 27.0 39.9 40.6 52.1 26.2 38.6 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 40.6 30.0 36.9 39.6 64.9 32.2 61.5 37.7 40.8 27.3 39.6 35.7 47.6 26.6 39.7 34.7 45.0 28.2 42.5 33.0 44.5 25.4 37.5 31.8 46.9 26.7 42.3 38.0 42.8 24.7 33.7 35.6 46.2 25.9 36.2 33.2 46.0 27.6 40.5 47.1 40.7 40.0 45.0 52.7 75.5 33.9 53.2 33.3 38.4 27.4 34.3 43.3 39.8 30.9 52.8 36.2 39.5 25.5 44.3 34.3 38.7 27.9 35.2 33.3 37.8 25.8 37.3 32.9 40.9 25.4 30.8 35.9 36.0 26.1 34.3 35.8 37.2 22.9 35.0 31.5 44.6 24.4 35.4 33.0 47.1 31.3 43.7 44.9 35.9 36.6 34.0 41.3 54.1 30.7 45.7 1 1 70 568 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 122 608 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 97 306 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 121 179 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 106 507 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 427 635 144.5 215.5 82.1 211.1 235.6 544.7 86.0 182.0 185.7 502.6 100.6 212.5 165.6 407.9 91.5 237.0 175.6 392.2 111.2 237.2 200.6 433.0 92.6 171.9 223.8 431.2 87.2 159.7 180.0 421.0 93.9 233.5 203.0 315.7 116.7 233.6 259.1 407.5 101.7 251.2 203.9 415.5 141.8 267.6 165.3 405.8 121.9 254.6 178.2 409.1 110.7 340.7 194.7 465.6 108.5 218.0 191.3 311.8 124.3 333.3 209.7 573.3 108.6 314.9 177.1 363.7 108.0 242.6 169.1 350.8 123.2 425.9 176.5 484.6 140.9 404.5 222.9 404.5 139.8 202.8 181.8 513.0 123.4 353.0 214.5 457.0 138.6 354.9 201.3 485.4 150.4 422.0 181.4 397.3 137.1 369.9 148.4 347.7 129.0 444.1 197.7 451.0 130.0 426.0 218.0 467.6 131.1 401.9 215.2 488.6 154.3 316.7 183.7 449.5 144.6 443.0 199.5 498.2 122.8 388.6 209.9 481.1 125.0 399.0 212.6 470.8 106.0 353.5 213.8 380.0 146.6 406.9 167.7 456.0 155.1 357.4 126.7 309.6 139.3 409.7 207.8 466.7 95.4 389.0 1 1 109 107 32.5 36.1 26.4 28.9 38.2 39.8 23.0 33.1 36.0 41.8 23.7 32.2 27.7 46.1 26.6 32.0 35.0 38.1 25.8 37.2 35.5 39.0 23.7 31.9 33.0 44.9 25.1 39.2 37.8 54.2 27.0 39.9 40.6 52.1 26.2 38.6 35.1 41.8 27.9 37.0 34.9 39.2 27.9 40.6 37.5 42.7 26.7 35.4 37.2 40.6 25.1 36.9 38.8 45.7 25.5 47.2 37.7 40.8 27.3 39.6 35.7 47.6 26.6 39.7 34.7 45.0 28.2 42.5 33.0 44.5 25.4 37.5 31.8 46.9 26.7 42.3 38.0 42.8 24.7 33.7 35.6 46.2 25.9 36.2 33.2 46.0 27.6 40.5 34.3 40.7 26.5 35.3 35.4 44.1 22.6 38.3 33.3 38.4 27.4 34.3 36.3 39.8 25.8 36.7 36.2 39.5 25.5 44.3 34.3 38.7 27.9 35.2 33.3 37.8 25.8 37.3 32.9 40.9 25.4 30.8 35.9 36.0 26.1 34.3 35.8 37.2 22.9 35.0 31.5 44.6 24.4 35.4 33.0 47.1 26.7 43.7 36.5 35.9 25.5 34.0 34.0 42.9 26.1 36.1 1 1 116 82 32.5 36.1 26.4 28.9 38.2 39.8 23.0 33.1 36.0 41.8 23.7 32.2 27.7 46.1 26.6 32.0 35.0 38.1 25.8 37.2 35.5 39.0 23.7 31.9 33.0 44.9 25.1 39.2 37.8 54.2 27.0 39.9 40.6 52.1 26.2 38.6 35.1 41.8 27.9 37.0 34.9 39.2 27.9 40.6 37.5 42.7 26.7 35.4 37.2 40.6 25.1 36.9 38.8 45.7 25.5 47.2 37.7 40.8 27.3 39.6 35.7 47.6 26.6 39.7 34.7 45.0 28.2 42.5 33.0 44.5 25.4 37.5 31.8 46.9 26.7 42.3 38.0 42.8 24.7 33.7 35.6 46.2 25.9 36.2 33.2 46.0 27.6 40.5 34.3 40.7 26.5 35.3 35.4 44.1 22.6 38.3 33.3 38.4 27.4 34.3 36.3 39.8 25.8 36.7 36.2 39.5 25.5 44.3 34.3 38.7 27.9 35.2 33.3 37.8 25.8 37.3 32.9 40.9 25.4 30.8 35.9 36.0 26.1 34.3 35.8 37.2 22.9 35.0 31.5 44.6 24.4 35.4 33.0 47.1 26.7 43.7 36.5 35.9 25.5 34.0 34.0 42.9 26.1 36.1 1 1 64 473 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 107 663 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 89 718 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 380 636 144.5 215.5 82.1 211.1 161.9 310.6 71.2 361.0 100.3 238.1 70.4 146.5 108.3 418.1 72.3 124.3 143.8 290.3 89.9 153.1 145.9 220.6 77.1 168.4 174.1 347.2 85.1 184.6 145.1 279.9 80.5 193.0 126.6 274.7 83.2 165.5 139.4 283.8 69.4 158.6 178.5 333.8 77.1 164.4 168.3 325.7 85.7 193.7 158.4 327.6 76.9 180.8 177.6 355.6 88.7 182.6 123.9 279.9 94.9 224.8 123.2 367.0 95.2 189.1 183.3 375.2 97.2 245.2 130.7 312.2 116.4 350.0 169.0 378.2 102.5 316.6 152.8 354.0 108.2 257.1 130.4 345.0 95.4 221.7 161.9 402.0 104.0 244.6 125.7 383.0 125.7 309.2 133.3 252.7 109.4 245.9 138.1 380.8 92.0 237.6 160.5 349.3 94.4 229.7 130.4 371.0 99.4 378.4 162.0 420.0 127.5 298.4 161.0 370.0 108.8 340.0 173.3 217.1 105.4 321.0 164.2 295.6 109.1 305.1 150.7 389.7 101.5 260.8 140.1 385.1 96.7 333.0 119.6 285.5 120.0 304.0 146.9 324.0 72.5 282.0 128.9 383.9 83.2 191.0 1 1 88 506 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 123 502 41.5 194.1 67.5 307.0 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 43.5 64.0 32.6 40.1 41.0 59.5 34.7 49.2 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 66.9 34.4 53.1 45.7 49.6 31.6 40.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 42.8 48.0 33.2 39.2 1 1 74 510 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 70 476 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 118 160 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 737 593 195.7 548.1 120.3 261.5 278.1 384.6 112.0 277.7 235.5 372.9 113.4 513.0 251.5 421.6 123.6 309.0 262.6 525.8 127.4 279.2 335.2 621.0 137.1 256.5 306.4 658.7 116.0 271.7 307.0 705.0 165.2 347.9 289.4 670.3 142.0 212.6 326.8 795.0 139.7 311.9 250.6 749.9 149.4 357.4 270.0 651.1 167.5 484.7 311.2 568.5 152.6 416.4 257.7 669.3 187.6 592.6 276.0 628.9 173.0 547.8 221.6 673.7 177.1 508.8 289.8 705.9 145.4 376.0 257.9 523.8 165.6 527.8 269.0 700.2 182.1 538.7 291.3 703.1 155.8 521.0 269.1 637.4 194.7 433.3 259.0 714.2 152.2 399.4 304.7 806.6 208.1 489.6 283.5 691.5 206.3 515.1 246.7 695.6 205.3 536.0 285.3 601.8 229.7 583.0 263.0 685.9 213.5 527.6 265.0 689.0 188.6 551.9 267.6 621.3 210.0 547.0 258.6 609.6 202.9 479.3 237.0 612.7 177.3 574.9 277.6 684.1 190.0 506.1 249.4 609.6 178.3 642.8 262.3 629.8 236.8 627.7 292.2 620.1 211.7 569.0 276.1 622.0 215.7 661.3 1 1 84 611 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 114 669 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 114 570 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 366 851 137.8 202.7 79.9 121.1 147.3 250.0 81.3 185.8 149.1 289.9 80.0 167.7 139.0 337.6 73.9 125.3 160.9 305.3 76.9 178.0 172.4 363.5 82.7 181.9 172.6 406.7 70.4 167.4 196.9 402.7 65.5 157.9 150.3 255.7 96.1 181.5 194.9 319.4 84.4 198.6 123.5 299.4 100.9 277.9 166.0 393.2 107.4 222.7 118.9 397.2 98.5 318.8 154.2 365.9 111.5 355.7 160.2 393.0 104.1 198.9 151.1 347.5 101.4 277.0 178.1 449.2 107.2 274.2 186.2 432.0 110.6 330.2 172.2 396.6 106.5 226.2 142.9 400.0 111.1 321.3 158.0 372.3 102.3 238.2 186.5 401.8 111.7 347.6 163.3 413.2 113.0 298.6 199.0 350.2 123.0 375.3 170.1 361.0 121.9 292.1 191.9 364.0 100.7 329.7 175.2 333.5 108.2 302.2 153.2 382.2 110.4 324.0 167.7 421.6 112.0 330.5 165.5 381.8 110.8 267.2 156.8 383.2 102.6 337.0 141.0 406.0 107.7 339.9 146.2 373.9 120.6 314.7 162.6 318.0 121.7 322.3 145.3 341.4 126.6 396.2 178.0 354.2 120.5 419.2 1 1 120 187 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 99 468 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 116 556 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 109 150 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 114 754 39.4 43.4 37.4 46.6 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 79.2 33.0 49.6 47.1 61.8 32.6 44.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 41.8 49.2 35.4 63.5 47.9 52.9 37.0 51.3 48.4 55.8 31.3 51.1 40.1 46.7 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 40.9 58.0 37.6 59.6 47.8 53.1 28.1 46.9 1 1 111 432 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 373 636 142.2 215.5 81.4 122.2 161.9 310.6 71.2 361.0 100.3 238.1 70.4 146.5 108.3 418.1 72.3 124.3 143.8 290.3 89.9 153.1 145.9 220.6 77.1 168.4 174.1 347.2 85.1 184.6 145.1 279.9 80.5 193.0 126.6 274.7 83.2 165.5 139.4 283.8 69.4 158.6 178.5 333.8 77.1 164.4 168.3 325.7 85.7 193.7 158.4 327.6 76.9 180.8 177.6 355.6 88.7 182.6 123.9 279.9 94.9 224.8 123.2 367.0 95.2 189.1 128.3 375.2 97.2 245.2 130.7 312.2 116.4 350.0 169.0 378.2 102.5 316.6 152.8 354.0 108.2 257.1 130.4 345.0 95.4 221.7 161.9 402.0 104.0 244.6 125.7 383.0 125.7 309.2 133.3 252.7 109.4 245.9 138.1 380.8 92.0 237.6 160.5 349.3 94.4 229.7 130.4 353.1 99.4 252.6 162.0 420.0 127.5 298.4 161.0 370.0 108.8 340.0 173.3 217.1 105.4 321.0 164.2 295.6 109.1 305.1 150.7 389.7 101.5 260.8 140.1 385.1 96.7 333.0 119.6 285.5 120.0 304.0 146.9 324.0 72.5 282.0 128.9 383.9 83.2 191.0 1 1 119 991 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 97 872 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 40.1 50.5 37.2 49.0 38.8 42.7 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 117 859 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 67 557 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 452 555 221.0 487.9 95.3 189.5 235.6 544.7 86.0 182.0 185.7 502.6 100.6 212.5 165.6 407.9 91.5 237.0 175.6 392.2 111.2 237.2 200.6 433.0 92.6 171.9 223.8 431.2 87.2 159.7 237.6 411.7 100.9 187.7 231.6 389.9 103.6 251.7 177.2 554.9 126.2 288.3 191.4 365.6 122.5 281.1 211.8 522.1 124.8 246.0 176.6 302.1 107.3 293.4 217.2 416.2 113.0 271.0 217.7 472.2 129.2 259.3 151.8 377.7 108.6 314.9 177.1 363.7 108.0 242.6 169.1 350.8 123.2 425.9 176.5 484.6 140.9 404.5 222.9 404.5 139.8 202.8 181.8 513.0 123.4 353.0 214.5 457.0 138.6 354.9 193.0 525.6 153.1 334.6 179.5 434.3 113.3 386.0 199.0 474.8 115.0 344.5 189.4 435.8 150.3 422.7 195.7 501.4 131.1 401.9 215.2 488.6 154.3 316.7 183.7 449.5 144.6 443.0 199.5 498.2 122.8 388.6 209.9 481.1 125.0 399.0 212.6 470.8 106.0 353.5 213.8 380.0 146.6 406.9 199.3 416.0 176.3 363.0 202.4 451.9 150.9 429.8 177.2 373.0 158.6 393.8 1 1 355 795 137.8 202.7 79.9 121.1 147.3 250.0 81.3 185.8 149.1 289.9 80.0 167.7 139.0 337.6 73.9 125.3 160.9 305.3 76.9 178.0 172.4 363.5 82.7 181.9 172.6 406.7 70.4 167.4 196.9 402.7 65.5 157.9 150.3 255.7 96.1 181.5 194.9 319.4 84.4 198.6 123.5 299.4 100.9 277.9 166.0 393.2 107.4 222.7 118.9 397.2 98.5 318.8 154.2 365.9 111.5 355.7 160.2 393.0 104.1 198.9 151.1 347.5 101.4 277.0 178.1 449.2 107.2 274.2 186.2 432.0 110.6 330.2 172.2 396.6 106.5 226.2 142.9 400.0 111.1 321.3 158.0 372.3 102.3 238.2 186.5 401.8 111.7 347.6 163.3 413.2 113.0 298.6 199.0 350.2 123.0 375.3 170.1 361.0 121.9 292.1 191.9 364.0 100.7 329.7 175.2 333.5 108.2 302.2 153.2 382.2 110.4 324.0 167.7 421.6 112.0 330.5 165.5 381.8 110.8 267.2 156.8 383.2 102.6 337.0 141.0 406.0 107.7 339.9 146.2 373.9 120.6 314.7 162.6 318.0 121.7 322.3 145.3 341.4 126.6 396.2 178.0 354.2 120.5 419.2 1 1 98 511 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 40.1 39.8 28.7 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 495 692 144.5 215.5 82.1 211.1 187.9 242.5 80.0 480.0 159.1 209.7 93.7 218.4 176.2 327.2 86.8 165.7 169.8 364.8 97.9 285.7 139.0 234.5 101.7 224.8 211.9 470.1 109.4 228.0 180.0 421.0 93.9 233.5 203.0 315.7 116.7 233.6 259.1 407.5 101.7 251.2 203.9 415.5 141.8 267.6 165.3 405.8 121.9 254.6 178.2 409.1 110.7 340.7 194.7 465.6 108.5 218.0 191.3 311.8 124.3 333.3 209.7 573.3 128.3 348.4 223.3 564.4 101.5 413.0 208.4 471.1 125.7 308.8 218.7 488.5 140.5 451.6 187.8 518.0 111.1 403.3 251.3 518.0 110.5 438.8 213.9 488.1 115.3 410.0 201.3 485.4 150.4 422.0 181.4 397.3 137.1 369.9 148.4 347.7 129.0 444.1 197.7 451.0 130.0 426.0 218.0 467.6 128.5 301.3 167.2 516.9 125.2 365.6 206.1 436.0 136.7 420.4 193.5 476.4 140.0 413.7 220.4 488.3 147.4 384.4 211.2 505.3 142.2 300.6 221.6 530.4 161.1 385.0 167.7 456.0 155.1 357.4 126.7 309.6 139.3 409.7 207.8 466.7 95.4 389.0 1 1 129 389 130.0 201.4 82.1 159.0 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 39.1 66.6 38.0 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 76.8 37.0 66.2 49.4 55.4 34.3 56.0 47.8 61.8 33.9 71.2 40.9 81.7 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 56.3 47.5 52.9 33.0 51.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 100 552 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 106 452 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 99 487 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 465 826 138.7 252.7 95.6 559.0 126.9 298.4 95.5 202.7 151.8 393.6 69.4 540.0 123.2 244.9 94.3 212.8 106.7 267.1 88.4 265.5 183.3 331.2 89.6 188.8 183.0 352.1 93.3 476.0 203.7 246.1 98.0 175.4 193.1 324.2 111.4 266.2 195.8 339.8 99.2 250.3 146.0 334.1 111.5 259.2 171.5 478.3 106.0 213.1 159.6 398.0 108.0 293.5 179.6 343.5 103.5 333.5 125.2 303.7 97.1 234.3 174.8 429.1 103.8 245.7 151.9 421.9 98.9 291.2 177.2 430.1 96.4 248.7 149.2 345.9 108.1 229.0 158.1 402.9 128.3 259.8 163.2 482.8 121.6 331.7 141.8 446.8 92.4 218.0 162.2 455.2 102.5 324.4 187.2 425.0 116.9 473.1 177.4 483.5 137.3 450.8 207.7 412.6 142.8 373.9 198.2 352.4 126.3 229.9 174.1 417.1 103.5 223.9 168.3 411.4 119.0 373.3 173.9 382.1 137.8 410.1 176.0 373.1 139.7 295.8 158.7 386.8 110.3 310.7 190.5 403.8 131.2 328.9 174.2 406.0 155.5 453.1 156.8 407.7 142.7 483.3 142.9 355.4 134.0 469.3 1 1 90 464 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 96 724 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 94 317 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 100 399 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 488 607 221.0 487.9 95.3 189.5 235.6 544.7 86.0 182.0 185.7 502.6 100.6 212.5 165.6 407.9 91.5 237.0 175.6 392.2 111.2 237.2 200.6 433.0 92.6 171.9 223.8 431.2 87.2 159.7 237.6 411.7 100.9 187.7 231.6 389.9 103.6 251.7 177.2 554.9 126.2 288.3 191.4 365.6 122.5 281.1 211.8 522.1 124.8 246.0 176.6 302.1 107.3 293.4 217.2 416.2 113.0 271.0 217.7 472.2 129.2 259.3 151.8 377.7 108.6 314.9 177.1 363.7 108.0 242.6 169.1 350.8 123.2 425.9 176.5 484.6 140.9 404.5 222.9 404.5 139.8 202.8 181.8 513.0 123.4 353.0 214.5 457.0 138.6 354.9 193.0 525.6 153.1 334.6 179.5 434.3 113.3 386.0 199.0 474.8 115.0 344.5 189.4 435.8 150.3 422.7 195.7 501.4 131.1 401.9 215.2 488.6 154.3 316.7 183.7 449.5 144.6 443.0 199.5 498.2 122.8 388.6 209.9 481.1 125.0 399.0 212.6 470.8 106.0 353.5 213.8 380.0 146.6 406.9 199.3 416.0 176.3 363.0 202.4 451.9 150.9 429.8 177.2 373.0 158.6 393.8 1 1 73 788 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 103 490 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 123 475 53.5 43.5 82.1 159.0 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 443 635 144.5 215.5 82.1 211.1 235.6 544.7 86.0 182.0 185.7 502.6 100.6 212.5 165.6 407.9 91.5 237.0 175.6 392.2 111.2 237.2 200.6 433.0 92.6 171.9 223.8 431.2 87.2 159.7 180.0 421.0 93.9 233.5 203.0 315.7 116.7 233.6 259.1 407.5 101.7 251.2 203.9 415.5 141.8 267.6 165.3 405.8 121.9 254.6 178.2 409.1 110.7 340.7 194.7 465.6 108.5 218.0 191.3 311.8 124.3 333.3 209.7 377.7 108.6 314.9 177.1 363.7 108.0 242.6 169.1 350.8 123.2 425.9 176.5 484.6 140.9 404.5 222.9 404.5 139.8 202.8 181.8 513.0 123.4 353.0 214.5 457.0 138.6 354.9 201.3 485.4 150.4 422.0 181.4 397.3 137.1 369.9 148.4 347.7 129.0 444.1 197.7 451.0 130.0 426.0 195.7 501.4 131.1 401.9 215.2 488.6 154.3 316.7 183.7 449.5 144.6 443.0 199.5 498.2 122.8 388.6 209.9 481.1 125.0 399.0 212.6 470.8 106.0 353.5 213.8 380.0 146.6 406.9 167.7 456.0 155.1 357.4 126.7 309.6 139.3 409.7 207.8 466.7 95.4 389.0 1 1 117 798 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 110 917 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 109 882 37.7 35.1 27.2 37.3 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 51.6 45.4 32.9 53.3 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 81 142 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 38.1 35.0 70.3 49.9 39.0 34.9 31.9 44.4 44.9 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 117 822 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 116 174 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 108 268 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 83 406 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 101 484 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 483 628 144.5 215.5 82.1 211.1 235.6 544.7 86.0 182.0 185.7 502.6 100.6 212.5 165.6 407.9 91.5 237.0 175.6 392.2 111.2 237.2 200.6 433.0 92.6 171.9 223.8 431.2 87.2 159.7 237.6 411.7 100.9 187.7 231.6 389.9 103.6 251.7 259.1 407.5 101.7 251.2 203.9 415.5 141.8 267.6 165.3 405.8 121.9 254.6 176.6 302.1 107.3 293.4 194.7 465.6 108.5 218.0 217.7 472.2 129.2 259.3 151.8 377.7 108.6 314.9 177.1 363.7 108.0 242.6 169.1 350.8 123.2 425.9 176.5 484.6 140.9 404.5 222.9 404.5 139.8 202.8 181.8 513.0 123.4 353.0 214.5 457.0 138.6 354.9 201.3 525.6 153.1 334.6 181.4 397.3 137.1 369.9 199.0 474.8 115.0 344.5 189.4 435.8 150.3 422.7 195.7 501.4 131.1 401.9 215.2 488.6 154.3 316.7 183.7 449.5 144.6 443.0 199.5 498.2 122.8 388.6 209.9 481.1 125.0 399.0 212.6 470.8 106.0 353.5 213.8 380.0 146.6 406.9 199.3 416.0 176.3 363.0 202.4 451.9 150.9 429.8 207.8 466.7 95.4 389.0 1 1 107 469 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 962 565 235.4 366.9 131.8 833.0 264.5 726.8 127.9 289.9 243.0 624.5 142.5 350.5 214.9 518.6 126.9 800.0 197.7 394.5 139.0 378.9 182.9 562.3 168.0 372.5 239.4 515.1 130.5 338.8 249.8 576.1 106.1 349.7 273.2 603.1 155.0 380.2 244.0 588.2 139.0 372.7 265.7 490.8 201.3 367.1 241.1 729.2 146.1 405.7 234.9 640.5 137.8 709.9 227.7 627.4 160.8 495.5 210.9 587.7 172.6 595.8 248.4 634.0 148.5 629.6 245.1 421.5 156.3 536.9 215.2 647.1 177.5 466.9 242.8 619.5 170.9 602.1 264.7 653.2 167.5 691.7 246.7 595.6 180.4 543.5 244.4 592.1 202.1 610.2 251.9 568.0 193.9 594.5 271.0 564.0 188.3 463.2 248.7 547.3 189.2 623.6 219.5 532.3 235.3 663.6 238.7 482.2 201.5 737.4 219.1 560.1 187.8 619.3 205.0 555.3 218.7 694.1 207.5 553.6 194.8 712.6 232.3 526.4 183.4 768.0 205.6 553.8 142.8 507.3 239.0 518.5 109.6 649.7 253.8 468.7 209.7 711.1 249.4 542.5 182.7 660.0 258.1 532.7 172.9 545.6 1 1 118 572 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 121 126 44.5 39.9 28.7 32.3 38.2 39.8 23.0 33.1 36.0 41.8 23.7 32.2 27.7 46.1 26.6 32.0 35.0 38.1 25.8 37.2 35.5 39.0 23.7 31.9 33.0 44.9 25.1 39.2 37.8 54.2 27.0 39.9 40.6 52.1 26.2 38.6 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 37.2 40.6 25.1 36.9 38.8 45.7 25.5 47.2 37.7 40.8 27.3 39.6 35.7 47.6 26.6 39.7 34.7 45.0 28.2 42.5 33.0 44.5 25.4 37.5 31.8 46.9 26.7 42.3 38.0 42.8 24.7 33.7 35.6 46.2 25.9 36.2 33.2 46.0 27.6 40.5 34.3 40.7 26.5 35.3 35.4 44.1 22.6 38.3 33.3 38.4 27.4 34.3 36.3 39.8 25.8 36.7 36.2 39.5 25.5 44.3 34.3 38.7 27.9 35.2 33.3 37.8 25.8 37.3 32.9 40.9 25.4 30.8 35.9 36.0 26.1 34.3 35.8 37.2 22.9 35.0 31.5 44.6 24.4 35.4 33.0 47.1 26.7 43.7 36.5 35.9 25.5 34.0 34.0 42.9 26.1 36.1 1 1 111 537 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 119 908 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 115 562 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 96 884 37.7 35.1 27.2 37.3 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 123 534 41.5 194.1 67.5 307.0 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 99 443 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 96 906 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 117 195 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 405 806 138.7 252.7 95.6 559.0 126.9 298.4 95.5 202.7 151.8 393.6 69.4 540.0 123.2 244.9 94.3 212.8 106.7 267.1 88.4 265.5 183.3 331.2 89.6 188.8 183.0 352.1 93.3 476.0 203.7 246.1 98.0 175.4 193.1 324.2 111.4 266.2 195.8 339.8 99.2 250.3 146.0 334.1 111.5 259.2 171.5 478.3 106.0 213.1 159.6 398.0 108.0 293.5 179.6 343.5 103.5 333.5 125.2 303.7 97.1 234.3 174.8 429.1 103.8 245.7 151.9 421.9 98.9 291.2 177.2 430.1 96.4 248.7 149.2 345.9 108.1 229.0 158.1 402.9 128.3 259.8 163.2 482.8 121.6 331.7 141.8 446.8 92.4 218.0 162.2 455.2 102.5 324.4 187.2 425.0 116.9 473.1 177.4 483.5 137.3 450.8 207.7 412.6 142.8 373.9 198.2 352.4 126.3 229.9 174.1 417.1 103.5 223.9 168.3 411.4 119.0 373.3 173.9 382.1 137.8 410.1 176.0 373.1 139.7 295.8 158.7 386.8 110.3 310.7 190.5 403.8 131.2 328.9 174.2 406.0 155.5 453.1 156.8 407.7 142.7 483.3 142.9 355.4 134.0 469.3 1 1 68 425 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 113 567 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 69 594 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 90 379 53.5 43.5 32.6 45.6 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 51.4 56.3 35.4 50.7 49.1 68.6 30.5 48.9 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 42.6 71.7 33.2 66.9 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 111 977 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 85 701 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 116 879 37.7 35.1 27.2 37.3 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 33.9 64.7 37.5 48.9 29.5 53.0 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 37.1 50.1 33.8 45.8 38.6 42.8 29.4 43.3 34.3 54.4 32.5 36.5 36.1 45.9 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 39.0 45.0 34.4 58.7 34.9 48.2 32.4 45.5 36.0 44.8 29.6 41.4 1 1 753 95 123.8 308.4 83.5 230.1 132.7 280.7 61.8 163.4 122.1 272.0 62.0 176.2 104.7 220.1 61.6 137.0 99.9 198.5 82.4 220.8 107.8 209.0 72.9 173.4 123.6 285.4 74.7 145.5 120.2 258.5 75.3 198.0 122.7 242.0 107.3 132.9 163.4 261.9 94.4 178.1 137.3 286.4 91.1 229.6 131.7 342.4 89.1 168.5 118.6 204.3 73.6 255.1 108.4 279.4 90.1 322.9 93.9 247.7 94.0 228.6 101.4 258.0 90.2 282.5 138.2 235.9 91.2 292.3 123.4 282.0 114.7 300.6 125.6 229.8 97.5 281.0 123.6 254.0 110.2 240.2 131.4 277.8 105.0 279.5 119.8 278.6 101.1 284.0 140.3 282.5 108.2 253.1 138.1 268.8 84.3 282.7 112.2 263.0 103.2 263.4 139.1 251.8 82.9 324.5 105.5 227.1 102.9 285.4 110.2 259.7 115.9 365.8 127.3 279.8 125.8 350.5 136.0 276.2 108.4 286.0 107.2 273.7 89.2 282.6 119.4 235.2 96.7 322.0 109.8 269.2 98.0 293.9 131.1 260.6 113.9 322.8 122.0 241.5 118.0 343.7 123.7 229.6 97.2 306.0 1 1 104 223 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 91 195 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 82 227 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 78 554 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 101 329 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 449 243 118.9 157.6 75.5 446.0 157.7 165.4 55.1 348.0 108.8 178.0 71.3 158.6 135.0 248.9 74.2 139.3 114.9 277.7 80.5 152.0 156.4 177.8 93.7 141.6 174.8 307.7 79.8 146.7 193.8 370.2 88.8 368.0 148.9 351.9 95.9 167.7 134.7 258.2 108.0 168.7 115.2 335.8 89.1 224.5 167.1 373.2 85.1 212.8 177.3 299.3 108.2 196.3 143.7 276.6 105.2 139.3 115.6 371.1 98.9 173.3 162.4 271.3 109.3 173.9 143.9 275.6 122.1 141.0 176.7 358.0 131.1 183.5 137.5 363.3 109.0 153.0 155.9 286.2 100.7 250.2 159.2 339.0 107.4 248.9 164.0 336.0 111.5 150.3 157.6 322.0 164.5 211.4 176.4 379.0 90.7 263.9 148.2 282.4 110.8 199.9 143.9 287.8 125.8 225.1 138.7 321.3 112.6 148.2 137.5 308.0 114.3 135.5 158.4 295.0 125.5 208.4 124.1 288.1 90.9 157.3 129.1 342.4 99.5 245.5 149.0 298.8 95.4 212.3 162.6 312.0 132.7 345.2 181.9 304.4 136.0 350.0 108.2 296.0 93.7 154.7 155.0 300.0 117.9 351.0 1 1 401 703 144.5 215.5 82.1 211.1 187.9 242.5 80.0 480.0 159.1 209.7 93.7 218.4 176.2 327.2 86.8 165.7 169.8 364.8 97.9 285.7 139.0 234.5 101.7 224.8 211.9 470.1 109.4 228.0 180.0 421.0 93.9 233.5 203.0 315.7 116.7 233.6 259.1 407.5 101.7 251.2 203.9 415.5 141.8 267.6 165.3 405.8 121.9 254.6 178.2 409.1 110.7 340.7 194.7 465.6 108.5 218.0 191.3 311.8 124.3 333.3 209.7 573.3 128.3 348.4 223.3 564.4 101.5 413.0 208.4 471.1 125.7 308.8 218.7 488.5 140.5 451.6 187.8 518.0 111.1 403.3 251.3 518.0 110.5 438.8 213.9 488.1 115.3 410.0 201.3 485.4 150.4 422.0 181.4 397.3 137.1 369.9 148.4 347.7 129.0 444.1 197.7 451.0 130.0 426.0 218.0 467.6 128.5 301.3 167.2 516.9 125.2 365.6 206.1 436.0 136.7 420.4 193.5 476.4 140.0 413.7 220.4 488.3 147.4 384.4 211.2 505.3 142.2 300.6 221.6 530.4 161.1 385.0 167.7 456.0 155.1 357.4 126.7 309.6 139.3 409.7 207.8 466.7 95.4 389.0 1 1 101 226 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 239 916 79.5 82.4 55.6 92.4 82.3 213.1 42.0 93.8 92.1 109.1 48.6 121.2 79.0 149.8 44.6 82.7 87.4 137.7 54.0 106.3 96.2 118.7 49.3 102.9 85.7 214.2 38.0 100.3 89.9 153.5 63.1 135.5 81.8 171.5 56.3 233.0 80.7 159.5 55.8 125.2 109.4 181.7 57.4 108.4 94.0 162.5 60.7 136.9 80.8 131.3 57.4 91.7 80.2 161.0 48.9 141.9 71.4 161.7 65.8 146.8 84.6 205.3 64.0 174.3 97.9 231.1 59.2 133.9 87.4 225.0 71.9 107.0 102.0 220.8 69.4 131.3 94.8 222.5 58.9 124.7 108.9 245.8 66.6 108.6 79.8 247.2 67.6 203.7 92.3 154.5 69.6 128.3 97.6 208.1 56.3 135.0 81.6 182.9 58.1 188.8 84.4 204.1 55.4 214.8 97.8 155.1 81.1 135.1 90.3 166.3 73.4 127.8 95.4 192.8 66.3 107.9 100.2 202.4 61.3 184.2 107.3 201.2 64.3 186.4 83.6 237.5 64.6 98.6 81.0 196.6 78.7 211.0 87.6 191.6 76.6 120.6 97.7 158.3 65.8 145.9 93.9 181.8 79.4 212.0 1 1 349 63 95.8 189.4 54.1 87.3 141.3 222.6 51.7 192.5 107.8 236.6 59.3 133.7 111.7 244.9 71.6 109.5 106.0 185.8 65.7 246.7 129.6 231.8 62.2 106.0 124.4 231.4 61.8 131.2 133.3 211.9 64.1 103.3 116.4 235.5 66.8 127.4 105.7 221.9 71.2 153.0 104.2 205.0 76.5 162.5 116.6 242.4 64.1 120.8 94.3 177.2 56.0 150.1 106.6 234.4 72.2 167.4 108.7 211.3 76.7 178.4 115.6 200.0 73.4 155.0 135.0 235.8 57.1 205.5 115.9 244.7 78.7 197.9 116.3 237.5 88.5 244.1 109.3 212.8 76.3 171.4 137.5 130.6 80.1 197.4 111.0 229.4 72.6 218.8 121.8 249.8 76.4 148.1 120.3 212.3 91.1 214.3 117.7 228.1 62.7 174.5 109.8 244.7 92.2 166.8 103.2 238.2 78.9 183.3 115.7 249.9 88.5 175.1 130.0 242.3 84.1 225.0 114.0 228.5 80.5 213.4 104.9 209.1 76.0 209.5 105.5 227.2 79.9 204.0 107.4 238.4 93.3 244.9 102.9 185.0 78.8 210.0 94.0 179.1 75.0 213.9 95.2 205.5 72.5 196.0 1 1 158 505 116.8 194.1 67.5 307.0 169.7 300.4 57.2 135.8 141.7 301.5 66.5 131.7 152.0 253.2 68.0 157.0 121.1 237.4 84.6 156.3 160.9 357.3 67.6 133.0 162.9 287.5 61.1 160.4 167.6 376.7 68.0 157.7 141.0 336.9 75.2 160.8 147.8 298.6 56.9 149.7 153.1 332.6 72.1 134.1 144.8 353.5 72.1 166.3 132.5 243.5 60.6 220.6 152.2 227.8 61.0 198.5 140.0 337.9 71.1 208.8 139.1 331.7 90.6 203.9 144.2 328.5 86.6 271.3 131.0 345.3 80.5 263.3 143.6 316.6 89.4 322.6 139.9 339.0 90.3 255.0 149.8 316.6 86.2 282.5 142.4 358.1 94.7 180.2 143.3 334.0 102.2 206.3 125.3 252.6 99.3 210.5 139.7 338.6 77.9 185.8 102.9 276.3 90.6 147.6 141.1 400.9 77.5 231.7 124.1 334.5 89.4 280.6 155.6 343.7 111.2 310.0 112.8 346.2 100.0 269.9 149.2 285.8 92.2 316.7 142.6 364.0 97.9 291.7 161.4 328.0 89.1 249.6 157.0 339.2 99.1 212.9 138.4 318.8 73.3 210.7 127.0 304.4 73.7 283.2 1 1 793 122 123.8 308.4 83.5 230.1 129.7 315.0 72.3 128.8 102.8 252.1 72.5 197.2 128.7 242.4 68.4 175.0 104.6 240.0 77.0 173.1 139.2 209.5 81.8 158.5 118.3 192.6 93.9 217.7 131.1 315.4 99.1 153.7 126.0 280.3 100.2 218.4 148.7 317.6 102.0 233.1 227.7 253.8 89.4 275.1 247.8 255.8 134.5 331.7 125.7 246.8 77.6 296.5 147.5 240.3 86.5 297.4 118.7 255.5 103.5 278.7 126.1 251.5 105.2 211.2 101.1 295.6 117.0 349.1 119.5 293.5 105.2 275.7 112.6 224.6 111.1 283.6 117.4 313.0 107.6 243.1 134.9 276.5 133.3 346.7 110.5 244.0 126.8 306.4 129.7 246.0 131.7 278.4 131.9 289.4 92.4 250.9 132.4 261.2 103.9 313.8 117.8 235.7 101.5 396.0 109.9 216.9 120.3 327.0 131.6 289.0 111.1 354.7 126.1 279.4 120.4 300.3 117.3 253.5 111.5 339.7 116.6 263.4 96.2 325.9 94.3 253.6 96.9 244.1 141.4 247.6 108.2 315.7 116.2 230.1 113.9 301.3 101.1 218.5 104.0 264.9 127.8 238.9 106.6 367.7 ShortRead/inst/extdata/E-MTAB-1147/0000755000175100017510000000000012607265053017401 5ustar00biocbuildbiocbuildShortRead/inst/extdata/E-MTAB-1147/ERR127302_1_subset.fastq.gz0000644000175100017510000527737512607265053024026 0ustar00biocbuildbiocbuild=eRERR127302_1_subset.fastq[ٲH}4I@,z0)m5+*ߎw_T_Mk:msmz2TXOMݘ/8 t1;9*&;XKGvM;I9H=elm%bm_HGۡw`1?#=x.%yi9ˆmaw<;%-xяy[}sKWձ JSOX5Sgx>)9^ޮWVL,&K+|1xr7w.jeqib C_l;u~8mś;$#v#]8JI`^ʭx'=:86 R7A6}۫e y*t`O"O Av B0}}3fonVw{ߡFcT]әd\C?՝iɘaY썷E:s@RE,hXx];,k 3De1~<ݏU_ bcǩkJ`9e`D>€˱wpNT%PRAi,1mkX}g;vk ~Gx%9ڶa(HҍhYM A:K=Zʂt`F@:{uhcS v}^2D M{E܂bhmC-g@F@<s:)'(Gp%$-1gSSQZ ncDYؖ`~t*F1{F*A1 nnW,ϗ?ߓL8Y9 ۻ$+G3SS*'qN` Fk׉R\W%sǡyIkZSrңaRK%wr8KE%Kp`mv޵r xy0/:`JW}ߏ]C?Nhj0`˸K=]p41(3 D/xUE԰+H=z)FI|7F~<֐5D_w=^mC2^a"*&S`8sebQjܥeM 1Q1`a ʰB:Xe0$A@6Tc*'q0:<&"!WszR?Jtu^/t .wmYrwAp< eLII`veASVĠ )Fp!d;Fk2Tះ>"}0Zm$EHR2ҞԑP'b.\ ͅ)A IEh$|h_$ {,,M2V1C/ASDxZ|"ySA!#] l-E3Cx;iah2Q{ʦy- V]Z$16EhTJ)` fo6,wX>lL=6(b![k]14)htZ ÄٓkI~>ӑ+Nj E/1P^Y?#ƦBo((5XFt\ sx)pBr`THX$$XKzFjAѤ2$s>c\8j,`ޓ] 3F%P Lfdv4CkAteg0 9Yp*_rvC*tQ`)w % sɜzh'3LX?֚a,РTk:ѮQ8vT ֜BCz,0 84ZlrL_K$؏Hf]gM1à aW+TuiBW (=IJ4NJN*l{r3>rA,Oz$'O ՏGX:Ɔ _:xM '58"crNHȯ,\PY>mWg[a6m:˕BeHi}}% ; SQ kM1j|ضH(#bc1?f?; o{_ ~յD(^\,ɭ>"0e e?A$FfڒSoq'STH&TJI3Ic9;:m8)+ay>}ۇr585yO5`σre?a׾4*T5FN JA53a2OO}mo?>47ine]2-mDZ/|o/AIJh;q }fLrhxUv 1pu(mرlEbf9ww,U5aAt-FJ钻ĂANRq.L(J@Xrߎº+{ȼ؟CʺE,],wSP"S<< -McB)Ess8f24mFcCX9}H T( S?j{ sb`:Bpu@ϧjy@dPf]ciӴB`+-p+(Rcs淑"E`X̀@ ŷ,l&ȂX^_0Kd6w$)3\k^֐tZ,+)}d8C {~4#\޺}G;?n3 6,7c%H|2u,GTP"eGFϵNɎm^9\Q8'v4P1X9`A͈\1!\zLf+1NFx!-׷1TG@ʊ2oqy96 LռJD0(ܙR.գR^;>|ђ3*eMߘ֖hoTM#4iJ{1: !5A&Ǖ#m{~xb[tb}]F/7ÎoxKV=±"kMyE*ɭV2{NX2 ^#2{(pFE/t+mf+iTlJiQhB ?R 4wHmGbxU9S;;V+-GcR[yk1D XOj%UIJu !1hDVNKՋ.D#/6 3"s~p&Ra$^B"ie J{_i7+ Ua1gx$4\jim 2Ztjnpex"W/O2Gd<1S@1NݝqѹǼ4SflRiEd0LUEH~ 3jucL>X'h6|cI_51=ʨ9.;% dMG+vO< /М jԙWG#WMOqVRC[#p%#Zg k)T 1OP': ovOm l38 M`jDԡB %-,9X0Dv􃅽ǣ  `⫌lX?2K4`.?&+C)`E>^o΢ZE.H.RCjRg8#V],Wy"`byx| :-%9^|$Q:O?'K6o?LC<ďuHxf4A:B C%i|E.uoMdOR ŵrpd8ak[pwxsaIX1j,^&`F0Uu,Al3\p{É/!ⶮݎݰѫL[bܶCqh|^NGKCWB*/}ac;ȑ`zaE"O L8Je#—8q|&)7>wf9w, TXRU9TCvD95n- $&=!#o%-J QewY%R`^(ԛA;A93IRPx?Qk¾qd bcWD?4nM12;-3>/|nxeu6[hYR \w汮]}"+* #٘ME5=Ԯ;/t"J;=s2g2AS em=I$E $o| ԰؎Ϸh8(TidC0 *CqS(VwPVI\rT;"7 F<d[Ǎz4$Mx$?tZq:U*J{< h1$+q*(^xĕкCԄB݊ʂZMє9"\ b%!_񼗘΄F jyiSϽUnyϫBnۦ̒G5y7y]_n{N˸æ`Ƃ~R훢0I qe.|&(PP)>q睽@3F#2?(ㄆў](ӳ7Dͫ'D\?ᯢ2.$>- [\aW- oe)qސά:_ˬe:&\E̱*$z%(;Y*w_^"SH`)b‡s~o`/|70MȀ3S/&69V.ߣ~i" )`Z. q/}.Mbv,~<0ڮjQb']h?‹hwh;XrDڵOl&zFm)U}@rpG7vaEU7"v*o;[Hժ@K/:8&LjI%0]2Eyf:#(/kj $y/*yH[4 @;VW7.8XSF6Hn xY /gH(%.IK(3")T!{ C^`wMWP-(wzdX4qUζ ku&OZC٣kŧ*>A&hKkIKs5iY&B8ɆR5ڹeW ~QWM^$s1[=K$> "4$&p.D(fދ͟MD hRz'HKOrJrA?"@U"8r491|'>/̑ (?AҔ7&\Q%rń7nq){s-~ K;4Rw/,\L4srL ]Ὑ޾z7&MʐeEE8vvd0$?  LqK<&e tYD"0!*"[URLJW\) 9KxɴvH4wxId൰&tv{ΎOkq {ًȻʓ xP\-4y7,bjX([v5Wx1,::爺Pɼ~)eJԳ4 %>YҁQWX³0=^d\1xw3_k,I $DQ,/pO> y^_{u^5*#ER!ނ?"S^Y %ĴY&u/0[4 6rY%dS6>:[)%u9^+\.gY6L$~bL4)XlA \[&-ۏf\yEVm0&I(nU%/bmkJQZ0] JYdm,YjЉW.*"V3 Ģ$RERzÏDg__!8// +sϲdj*Ѳyԍ:B9x!:BfV Y yŗIE)Ds]⛿;zy*y56)ӖPy|Uqđ8a!/E${.6_H"_X@ }M~fߠdr!pdR-DX(}W|!Rie= vE62fV ƹ%\7Bd6R[(+=,+՗J$ g?x n^@ޔ~䕯K&y|gyl 1-ˤ I[r/pU&i+HPqm?Y6盆g=- oO+YW4}ݠ/fkClѢ )LK`EZ=:űtxN D .u/8B2*p,S$-WԦ!"Vv5RĊJiV;$gW 8f$ct,eْLȴR,%s}:aMrVrC!E@@k/蔃+_r3N/$/~mzX\y²N&uHǟEbJ`0ydw>Kl!wĉIJ%!@*w{lGe Ձmm$oP\6JT"ٕ^E NZN@+FLY?ooO@u %DyCgt2a4__<|6'mXBSi.E eds, pH͍WԞG#Ou]/3^Y?&=”u޾,#^*IT^#Rgt`,u'-qtjNyKϑI *Z ˑ]hc W=Q-u,O:P ? 䣻GMvxFzGHxO^ldqVYJp0( WHՄdᢨU*=R80=b/)m(qES+ev. ٳ'.RwEҶ;%ZZ=ECEP΋1?s`(";ޑPp3Ys ) `!L ٣2m(b:AiR L=BXծhXdH59(oa ߛŃ{C6hd.\U](ݽfF(D2DqIhnvsׯ%PGZ4\%Ny[aNU()@sTs`Cq?%[E8u e+,M^җ@xGN\4$F>rաUc'sT[ :4$ɾfdPVKux;pCq0ՊQT%W8lWa^ϟ}tM^:?,* C0ERSw_]b ~ 5LkH%S _^o.rp8X^WMX%Rɗ\ќZ-e4f.U%RTm۴H1=율$8!H'H,4V@%p2.\A ofz“j܍kByM7"AផK; 5z݃v\ִp4,=N)D|?U8BC(VlJ7/1:E×R$iSA^!Nƙ\[m/[w?,LM2tVa!'y[ZPΟP+eX>~ R!J#GG O KWXWmmU&"$)bixw`wM6W*|!{xPgIjh\kWnZ-;^)mv(uW=-_S=A dP&=_zBUVBJiruia*_QST*ݼ@N2H(1&D9 ?}^_:8=)pX4d;>(yL< ,%\WN& Hҫ7Xr >+lG~=UVWY_6Kȯإ] jEB *iY7, fi0^׽ᷱ2:/BOcٙʴ/&rXipU)JqEFNnA&eyϺm1 n/wPV~h;;u+,0PS>(mT,FE<{>Rw.y3 Lꇩ㛆cfxy 侮N~r̮c uR+B诪N$dW>('8 A,k4lHE:l#In5%o]]T4!JyQN)]`Ac^0-pp7?Dt+s3d2. ˲]ѥGgauygWl(dv\)I*yкn$B\WzfbٴYlHZY$ [-֪ ;Ͼ),àQJ*ݧy$&|/`0XXɓXGDGY@;Lg$%Èc[L\?6]Nsdo| ?=P ix_`H ,\8Gv|8"k ?g^{TUQy0EfLz8" &ERӊtGs3  J( ^ "6A) Wb kͺ _=s Mlm!JBcgui#%UI+G HsaOqbʧ]&")5S_*ws3Jz!E䑌Qv6\y\qḀ.%MJ`j1MA8ZI,XU]SgWp_/U*'KV1݅ llDS&Hv7a[~LD^%Yxk2%ͩ{98*\ ?,+Gt/agb]uyǁW-Oθ"{b11`:q*,UaKghKk@edfBr`۪܆ !rYi%Ee%]z8cķ y*_yBe'p=39*z7W;SW]4ny&*Yî.Pi]CLJu{7כl_' 1CG6~auUEۥʪxtEÖM:1wg iD, _XBZy,h(50_EῄɹY:0AcOD(=}b2W AEfqvy[k.-%} >Tqn8Lw,AxrbkT(/{T_"RsڡN x}y)EKjM΀_nXN b^ ,6ldʅ.#Jޚޠixu;\y(%/#)!%U,xHU!)6 Y^- I#Mm.bBbj Hm0r2ll% $@9M_Uœ ~&{WĹȓVd.Ny8xKwH%` .>.Yyv͏"9Q5ǁ<*6fXPIIN?:|]6Bus8Bdu1zNa Oѕo@)\:Ń^κD h L#Đ< '&6LO^i/ithORUV/S%l T>Tº&&Ir提/=a՚Rn,S&T̻|Bz wdy$aUgQK$:LtծE&P`#yduCq"m:B@9"iZ:M**mYR6ylW4; QE 3x Qy^ř]Ť'XLi6yUݣl"T*`<ծDq(F~DV?{pb̅ K=JY>ںC."rAPPIBҤn8+#|F;?HWb#|d?^;!dy4ܩlhC' (| %BR8Ve,4RǶPJUVX`~uȼz_B!%s.?lyaY Ŭ*ᤔ.pVʋꅁyၦs0҈Oû~xa|tY$FRCKI:Ԓ۫s+OVHsi`(?yQ!2Za8X; />-Izs E sN W ֮dd]9cv/Q_*M퇕v|G韮QˮIt gR#݁~ ;_8xvlB40>7Iza Ԡ,?<.ܓ"'G6HbNJjVP-KbA{G/<:jtgmuv;/$%o'T/a?JI>KUB?ba*@pm/%9zz'k^fbܬl g5/7nd}/x䘗y&NaUMv*^8Ee]R ,Q»~]LQG$PJ\hE#vŠ]A9\vgODeںkkRV]ٶ)Es(Tfm|=qÊDhe4iA5ż@<2gJjq#!?}s~|HRdBHpEI^ Ƥhb?:tq#7;a7I34@h<=2)96¡O^d5&>:;h}q2| OUKz)wĮ|I6/8Ajݿg\RKy^-uђdI$FpJW$t?i.D ^PZUB/"[im8ux0Mf]2cڈmVW }c]/V908Onc p9"$p%ԕa*#|QϏ*:` #~O(%4>G1 ?ߏ4n6g|<~!ĒRj/P%xp5"GRE _J9mI}M:@H'/-}SIe@FF(wَLVrpKaɴMX~{a]t- kUe:T !Eu+{\"sKɤi)ńMދ(>>p2`ϻ}dmfUɋ)*"T i(G›Frd8뗐in._(;QDD>:; VJQ4e.rhux~H2/IBdٔR0`uZƘ!%^L8ANF?w>9wx\!,ɷJƉnL"07FbڂƨSI-/PʯpV"ˈX}h*r5緙 4ʅ9TʴiJd.yIWi(ϊ' D-!J>w_U|p8sxpqapw((ԶIcmKiBh s{*U1Q*vDv2:}NxKg C:>sI07F^M4Ya]=<@4)_jö_q4Joui+m\Wgf{EQU:GNv9N KTVBxuǛjDs;sܧOJhyZK,~]rKSa>k{Щ5}(%7} xoK&Ζ0.6kRo2! wt/biƽc'(f]WH6IOqM1XTh׬B^J׼I׬mUYݫ%$odi\]wI][M셔d̚p$"{~q;ӘL8K>U7K<(F{>&KG5Ɂ9XWuǣg?l>m5ɓ]鞙L3[%'/`!gcϩqO5bL4Ɠ3󇩊SOy/sו1'MSO/ rAt`N[Nb'-d7sge'=?MO,1]>VB:jgм8zx?FY~]?f?[(^͂oe9:|CՖ5DIpu9qC.E)Xz_"L9>&wyGd"\):E6E.X\r$'[T}~;?v|ߋR2ш/6dmŝLS7-1R >=DJѓicIc-xr!#B|L"yeX޲ET%V劢Bmtc_JJa:ϋ_j}f\N6oWa-M~~ g+nјMv%"/P췘AI/,;pq~)k5Rގqqp2v^ )_V܌y̛(gTӨL]wJ)Er^%1ߓ5>qѥn0AX3ջ9S؏F؍|G.imERA|~n 轂p*.O$.#Rz٠?kar~!.L[TI lQ=WR!.4v,1|L*mMJU;_>J" k`*z}B U\5rSKbԢFLwt]QM\NSQa; 4@'=&UiUw9ؗ˸0+;6&=6!RDL-c|G΢';0{$JY8kY"iVFi{5c.6+|;frpk%@W:$Vz\? ZӕqAa?2 9*u4,BTtnA̔ӎͭ'(K2Hd`ZhLne*弔e䩣%*Ϣ1rEpa$54UɎkQ4Oh>ш+ _ES쿺̓!CmYG>m$ :yʊIEuZX!UғAQGlE/GLR99T5CRidZk)\lR>򺕀y,$(rrGY~;,8O֫˸J$$} Aþp˻ 7+7}#s3Jܟ@2,.e)a}Fkg`hueںM2ku! :CvxI;<FdJ bۡhz_7VL޲U HQ5B8?^}`csJ}"c;-t( ñG!|6p4}O2K"FkmX媄W(xN̮JxiczR(V]֕iI0\YfpnSDճ0Pr-/u4_.M5.NL3~BlM6^Wn*RP 0"c ɉ|Z3fy0Vd8/Y=MrrFYX7V1юUť2G3߇W7qQ7q3x⻚!`Аqu"cÄzrYbmtf|eZ.C,(DpWBJ ]r*! Z9{'Z/<Hx1t;y]tɜÊ!S>>ymۨ 6w {1J ^xQa9+cϿ 0־~mqx]H6EY2.^Wxjsrr5'я*; OHo&dГ\+ Np팷BM %rW=Љ鉅pMCNJHFQ foù.pSP5W_$V1|-+,r -H%(3ȏl6~f4qx,kٽcޗueYiowhsC c>HzȀx"\]B-?d|m@fDxJDYŅ?L+'<9w*(fY"1ɣ+cwԒ_3ޟO|?7TEHmWyPHAigr 4? 'ӃLZwe(RB!ۣ>Jw1;IJP0we^$3h]okXĞlm[LHؑB߱?!E{6;dIDaS0-ey3cx<MtyrhY?uhC]!p"4Yp~ *9xez}abz}W!+JO$j*w }W,Ppx;ƵqOYq|)YYk#:kGQez <'QrC*,PA2c,BJ\vZ*DuOu̓~nkz)ɬ6m %U>JmCE`G.Ok+*DpNdl%.DHB_$G)z(pi8ծEmE nCrqC$ /G!ttI@dQ-~n1 eԛr"o) Q25|C+H ko?2JjajTzIF#QOd^4qgZ9ՠpOC/?x B`->G"kkFuEv$*ʱQlߵ`udCu.-v{`! R:k2donmd VܺΏbbiRttc:7bw߯|D.2fWW ͺDžԮ]Y>2-# Ir|`P)BrQZi2_!d(qƲ%&w!4 ]H&_V$[XpHu]`0{Ji6$wCw[uJenCuGs{ #O;T;DB@g)ޟF[q*5l^Sh4IeqIW'K;j&:B(q܁ɯJX!\Ga "$Sz!"s ē""&V%!ɉCaes*@w!V=/P:`)bF^1>S?s1ϛ4j|OZ"'uʶ$p ?e9Dn0׳-7g-F \z;v~riM]g?!s뢫"IBP!nr$D)"6a"Nz_M"U&]+jӞv(%Wfաqk%*Sq)k:[ o12JNvrEzF][]see9ho˘}z4쵳6!(˓'(ëTձakE4}H'7g_]9yInMzגÐ#x{^[m1Pƽ*?\58(=c1s螷A &˒Y.z`xt NPGy eQ#+ANTb_&<kzɨ ٿCp,6+V9Qs’T)l,Pr(k{Gb,}O|aTx?KhICb/,(RKՄ?]e nC{BeQ!Y ?VBþBE^nbqlwY.D$,uV'S,uNcugp MxP)O[JVmVl#FX"CnV֦i3:5]lTbjȉ8%#j@jEh}t$fi!lG& %#ɧ5]Mz䕮?gPI0 1[Y#u\/^t}a~ST_xZ.<1U%<$+!g%HfιɜZ`/Ooka3@Hllo=]uI._r1QM.m۵4qNorjKEFF<֫L1idP@nDL(~WkLݵd7k޶ٚit,ٯExWSH΄-,}Yx-@Q=N? ӴKj}mj7V,uū\^iAa aFWh KStaYOaCU:z64S>!߳.i_p;캼SOEⅺ#^D1`I0at&9:{QMȬwOA*NH YBZR%?]4bi̳{<M]IB){,9pctlCW6&YGc%)!̮oE2F!+ϿRI͒=3B'I `moMdJD>"M ۋc6k\dPJS"Ҝi2bg(mL, t%_PrGri'Vw4q"|/1"}{X~DHzД ԧ Pz:F?v3>idC;4Sh@N.7ڒ4I$0m#P_@YgQ*)IƮ7a :%۩ʬ>VqnEFr;˨ER]ѵzX^Q_f9!a 0L9 x_!pwMC)))Ù ԜB?%@q Ԅ@ iNU&_ټ?F5danØ29*ʒM¨w+ 4?1Pd#C>2}=l:< e4,#IF#M߹>v\EV7uzPubӄ[9D}%[J-+(SIPLӞ4Ɨ Ouݪ/ t^cK^&tJ 0ɋۈIZx ;^?(m![Qj~q{wf\ȂiJqhM>\6;JN)&;~6p0`쫇ڴȑy:^GJ,eMgGUuF6'VPc$Sr-"qU) ~TG74)/4BZWG6NJ#fhF}FsYbp0D$FR]q857j|<˃I9:y\EIŢ>UJ&Z%ۏdϋln#'ei岸GljD8"ʰL,tiDUZ{ۡoTfM]b/6d_nmE~#{>B,ei2w.EfЄ2"z(G)}=']1w[[H~(Fg"R)SInblgoh̲*}ш&+v%A"Ӏ3 @ YktUWU^5ӬTx_֥%\;Fd̯Rs!PὰG2*=,X_bNKJ3eHȒXY=ʎp]U LyvՈC"ny/(%'_ i˪$LʬR>oa( d;PAsy[̛E ;jdS+DFf*C .WpQC`w80.5~ai ~v|Ŋ~rppRj9yBߕA%>jdҪ /R,}vslY 5->y<5ZF @C_K?g$[daucODk)'$X *9eA cW0PH*\ÇZ/*KiHpI-uCLKS;@[r799Hc>dR%lJ$Ɏ}+k*U,i@EѲ2S"l)GGe \\Qn7n7O@4-y iCbO4LיExvIf$Bji5mԻH rU b "pj|3V]8MJm)$mS#o\/e ^L|ha  ^Y/J-"6 Yʜf'AG[` vF h>(G?T_Ht:"?ZT_šM^e.2AXRw& V:u8GN}Iy.+ڤ&UGUZ8T8Wa;|dbN/`Bi5|2f_ B(3W|t.Vfk% C#|D|Z#+qYh@M“>PaiBLGjke\(jvf&YVᄎH3URM[湇7.EzX1c{ tjv(3\C\'A׊{QYk~{p(=^Ws$R"Tj;b]xWIqKɌW..+U1bޫZIlՑ|'ƧHi֡&r򅶖(IQ՗bn(b*W,&R0;P£Ǯ5E0P#lpg2OP4hB%}!VuZ6(M1 IYA~`\x=+;ʼn?<>O%>IG2)\o Blך)*5o5EP "ʁ]ט̉9tQ WU~SUmU&ՙ .erI5"$cBFBXLE_n\[Obd??eML{n ~t'HUR\n-U>GBEgY&XSd U[/ DĤ3"C&(0%DÞ!R{ˮaueV,8ȸsEi} 4&ehۡ͟U@49 i^ϩ~͋s(IRzuE,?k.$k:-(/ rScQxV##tQ`B.dpBɍ'0q ^>Bڠ(:}XZ:Y?Yz0Vv(vHwfbMrɷ\#y4%`~+e_g7eS/j ұ2e!0A+Q% N\MUQtW:s0WXq~-ד߶ɓ-.Y((K%V";cjBƃ<،Vy32[.Hn^KE0E :kg\'BsЏ^.ʄ1I\ 5Z`L"PU,M?ͺ,աXDjds~!=nh#-[ܮF1PMMd"Q2Y0ިUʢ!L :BX1m!J]184wG:J4fǻЦDR8f?KDpDX]E΁kZJWM2 A/M\WPS3F : $`)9$ ;iTg-m])$?G!U_L#퐠±M1?mBV% *:G.N[Ԡ#EOC×*^cʏu麢ɓUJ2,'q}ыИ&W}m2KaVoXseoqa|[mB{HrO1IL#/y^<-gwPӐoщ*P@ihU[&)g:\\Jw΁].I&a6c qrpfBn&("2d}+<,2cź ivL(wMHʤ8QNA}@ƣ_-.G{-e\oCx!48<".y{06Ԍ:0MQ=n:vS[aO9 ]U-Mւw".=jC#>6[uF}0Bl?2<,"\2s4:]}R(|a .i<8@nUR쨑wH/!=i92cCz{?}5~&Kk(OEPZZ,w?c+ 0Z+Y#Nt*d1}YxXƗsb\y}`ƄMWVbVg HY)X͋2V.@,q8kc7 ɥ% v>E%8Gӝ\]Tll%AQW!-ګMït mr z-/8S?/"q-NNEca[((ձ>Ƞ NCZ/O+-u jv֕dutXI#*c*YA#ZC9NL8tGVvR٤rY ISg漬Kx4 İ2uR6RQ:= ^`xv1 RW~B5=ih;i{(y_*N5ҭ9yפe.-/ 7a[GMn0$ `L0v;{㬆O}~mWEba]ÔSӁe`]EU=LoΘB/rF3DKDy 7D(JtaF~ԅ`GZ5\`{v\G&9F#EUUV4ϫGit{mpCsa@.cXvxo2\qS7BM"ұ*F{lS?ڌ:cmuouW"̷cKA,UHϛ4E< f0:!b{YD1 }?hnZݪʤiu5]ؽRҟ )h"UZ?}X$$S5xxQcV:+.3Y' \U5/Zh?$QR0˩ڏKVEpyma 2![0yoӓ~jolŚN,xڍ.VTY:klZ0N]`AʆX.}Va-0P(Eb,_1Ł)+pd8 T['sӿmWoL/XU7ikAz"+vwqhdW,n Ao'vRBvmp]m2TsŦ-0nڣ!$BFܪϜʜ8ܴ \y(^V ooW\rZ*S_'N]7S BNv-^ `Υ섷iцtMfbl%̝. "җXpS)yU5Sxj7m {=hp9`}9[ʽ̯߳⟜Эq1, 0BTY[H$e#|I5`a LjM+\qUT 6LC2j+iL'.mZOŷ>ֽ\̱뼦~xb~z4U(tB18RfRʘ'G B'C:g!~5iu5nqE Cl>4(G9߷LVѶ?JNWY?+\HXM~jOHru&K')9Kπï>Pd=@~}tM&:𛎠F-!y"_]k㬫/9'Dkd\q>wN 3 j~UyY#< ݖu./'P$J6fuXخl|3)]94-?|F׵hs#%9 &9cOB'ѫ |XHaScQa΂i e'?>ȂÌe"˚$A'DN,s > f 0e%A[]vɵoc6}벭c;\]UQ5byײD d 4^@=IL; ; _0Ш:Xɛ&i((SbQc#*IMrһzbno ㇦88a lkMh:.}#RU>RFpU0=<ŗ%a40f8l+a_GGT ǚr}23:+.^ RNM H=Ce~6HDl'NrEUWyS2!7mv(h@t튇º[M6&Fn7UMl:&8i V_/ Kz%etc6r?`-4ÕcY$1%=Mk K_,Gk;IFwK˔΃+줫L3Eɣęm@SP|Ӈ-j|FV_8"/2͗K<iB yv,[O]lWv%sw.ז;ib$<91 I\ˋO.֒4eGuK~eR!i6;!HEvUraYaw$gN27 K/EVlH4(-Gwn*srI0fCQL[1w"rgutł >!#R{]%r")%UVM !6Ģ:ByGzH;`'Kc3zdofr"w۰ɖ1~?l,.3vME4KU`;"aWXpL @Y< -nu!.&E>Mv]>~_y2X&8m&y#g瞛*Yl(V+a\c` Imzp Yg¥CD&7t?ƣȒ YISI輡&w:LZPq,}(2ó<[aᵽë3$2 /#]=1ޖ4]ц㟂GUH-:J] bL{UX0qKCFDq7yR4Sw4f/-'a*Xv y9)<"Z4>`[;(}H? ?|ay2,|,vqIe&4ɵ($츨R9"ظrĔCK/B>bt# i,*.l bMTfMzi iD84O /P@G`[풴(kcwwK7޶csXM.y\xaÒ*C,𿅏`60{eE{ˎ . 8Yv0eDs]H"+] 9W\֝V(r0at!r'L1|!V "(Cĭ.v+'e|!~'LCG~[g+fobLz(݈<֨hҋ"!Hx0xiV4b9s6c=Ҧˁa,ۉM"C|LLblJƬ$3FIhBص,%?sYx@t#} z98Xq>[dY meIRON,ˌ>Mlcp*n2ȃ9ﲌqp(EǸ_1˯9%+_&wYEʗ.#C^!/l-Pt~Ĕ@iG5Fǹ>r|3ddö#f-6}@]8u~ZM#.9 *{9MJQA9d#T r/`X"`NX.v+6[-0 l28EƖ Er]AfRgu[xmZPSȽ8GfI‹{@}O B*EgBCG4e)h4dISݣϟTLu"$oN{:AmHjE5ȭX }B%8cQR$ј}UK\#y&/tIIJ~%1IņnW$ T*z^'Uˆ4S {])=ͨ^F'Mx9CtIm:H#g&V_;t! E05Tp|ڄL LbYB#$.^3WHE.xP}S5'y;;BPϓU, o%5Ak>.'_X:r]j&SyiԦ5_x D &4RS" ϭ~xأj^fu43\$unx>S_$t!N݀*}p $Ơ10w^95k*R1vNEvUsZun]n#).IOQ \;\bTUi(@ղ?Q%³gttMMZݺ%U^*9=6un  <<[47J?Nlq&%"Tdx}>W@d 4b,^Dt`XRٞV0mmu. #zֻ\#~WMZ κGuͩlz;"$/#C!2": e*ضZ>!Y@>UuI_x4%U)wNjPD"6pèm ó8;=C MRD2ĒZ>M+gtLΏWX('/Ӷ 鏋8֥aLhUNrhAٕsYm '4^z3{dZK3pLHRiierd'2岉EaR+iG/?Ɣmx:FfehqnN>>D>Ʋ/\,+JcRw2'i3z"ON *(hT#b$/RE4?tzձ|;^A3s+ˢ8MKC,C w«s͠Լ0w 4)`t9Bs܅`Toש*h6?fUeBLbw-FTk !{5TpE;zWO^NXHg^Z9:e(kC"LQ߶VaHa$?JXȉ~&IM$}{{ 84?=wY: NYj,/UGFYc+R<j'EQDYM_ɍ{Z4^MeJs-ڦe w<#v/M~VLJa/!2Q`y81YdWGϴn6Ԣ,L)($<+&X$qeu kKZ,0 /Cɪi~#GZy'N%|zeZ7-YƲ{_Jx6IJ(Y٢JC"+ ޽7%G(X ^>r%_t!z=hö.Պ0⬲1, d ?nZ**wމ䪻I8'KhÅ(Ua6'%TM+>ІE߽S ƙޗ/3ʥrIMU.4\ 2y ZݝI*sB {{?t7C\YlMryuEe97} "rQd4@RGthv# *P/r|/ixL5s LE;jƐDL%vJ(hi.c^0~kUw-J_o^U"xTm^ G"p'sPKTh rBe)l8c~f 9 MFR74q]k"a %.%]&91AK$BŠ}f@_MTW(lb%bu8(4t*6W0"RY$nu/q?z__e]VTo=OvP^Imʚ+Gzۓ8Ie| *MdN~f4i~;躲I$_WۏE*O{3F'X]+huƩ{4քx ujEVbL 1%XH&Nĝ]^dBIh(I?Hs3߃s Y чa'}lY4^Q`ߙGX55{X !/sRK&2ƁO;Gx}O۾$npK:UեS/W(df$W&\j &y`6 L)\0h5&k; Qpwf8LBoBkUaXE^;:]0_7?hO} 3̕rLp]@>$U&'MxmBą ]96i!elE- 8'<<q(J0Ŧj iʳ 7XjDR, c^yrn@\+v{yӧLylqJgOKbhFXA:KmO<Ϊ8H"Bsm"M 򼎥$Trb2j9Ni"(;q,E)0rkz9Tley}h&ZX1*^M]gU7% yF_vyڢ&L ŏȿ%ú|Q%gm]>2J*!#Y۹ǓƸ4UIߊ6uz=J4˫gCL 6eMUwL^a"a(p`*8/J|Zz7bI%rqUu>vW)3yl gȍCNm灹@Hd$w`YCA<=jwy [&j31$0I/qQ.p02C叴FN'4xu%YByR.LMi4;E;cIr%9W;ϸB"ѩnR骼]><\ T}/iӵyBŔ#,qzSo[_a}6`V?>*7Wb _dwvȐ>If^I:cO*%n'?d0Z9wxk|z֯ 6) yT9E;z 'ϟGN/aT]2DxthnvBe-i_Wj5dn,2F. ejUڌĠєUEE.^0vŖsGoB;YEFB}HpQ>73Ֆ6X;ߔTExo (Mg1ݢ(ޑr`€/v|I L$QXog8#|R~DQubCf(x2sʉ]$3ګx?kvm.dN~WD2Po,3Zx ƒ7lW+:t)['$S9dnYW6&![ͭ!ӍÃћ+C c1!c (*Z@,\mW @A/%Oi_Mx .,Lu k.^b%gA|1D؊TTn4e="9Z{pODJ+c"(*u [F-&1{b]w(Hơ͍;;wInyuQ%%פnƤO[+1{`zJTٴu0F7o )D KP8QVŒ(gzyD ;xb;R.)Բ22.i%[U ;·ղϣx;r|c$++iT( e]ey|&)y~D~ LCj I׮rIzi}}^!~LQ0+L_MoeZ^YS%NCDI^QOqEaשbhiub &U"ghWo=ϥe8 z+F[-$\~VEԪ KXmQC\|+!-`]La"GO=xҨ4egiK&$[H)|{yո!?^4;/ wO?TL+'ٚ[=Tyr['z=!耟/5#|w %|Dx0_p.CI AxMfq ?z"i1!.9P E<J>tAG7 p²خ^`msR&iERч3Na $*}!qmQ1G7ف1^?>'ߘFͳT>]5el_5#bUQI $K#u 9Hew|7^0?̳j} KYQ0aţm8oKdHԝb1i|~bwQʼn;qDmA\7QiUX(JZ _b,cu-|/o{Y>pNbɵaKDYabgf9Jac 0ޅqaAELH<=\+R7@3?ԁ[teG~> ^+JR5]Tt[>2y߾.ugƢd[QV5Ut?^j J/*$1R*fK%`4q&c!E03BʘPvJ$JkU.!o.I h\E[kY"=hű^9ˑ b鷋Jzh ~EݤlBE٘2ڰJb J\R@␓:䓚߬Mc*:IO A66v o8RNx^I|zhMędҁ60fמr/Aw]@XBGdSY8SNT(ZECW?x˘72rd^I0;Uz/d&iMXE 5.LL vx[T2BY[:m|$ 4mMħ4pNg'oU/ȓ\V1\+;hUB1_/nQ}eG"#ɛ"Wu Y4P[P{˃3i*뵰 u|}E YĚq*qj;b qMcYA/xbT*saч GNDl $:-?11nQo\rI++S.^Rpx]K?,[ɆgNSϱӻxR~NRW3~@*v\ׇeڋp"x)H qj=ծ˛Kkev67*ԓMr;JRVW( ,cqBiYhD/7W{! F*$o8֡!/;Y$)G8zKv y˜?&핸 Qa>1y@L|2XC4zH_x-}nAx !\t? qCٮ$1vPh±)4iaw|߈>i2p$~20OłKIcU aRP9>A,bI>;Wq 9L8D>`8v}p0w0 Wұs(o%&٥$qGMB^{ ;wp˄QKbX\o] ySj9AaT?n4ܐԆlG_ =/ S5{2b/Er2uGh .߂Ơ3fyK\=LG(ey@,,릮KiCRđQvV}D&Sq/yҙo"Qsoy׏lݴ\[tm5j&j!&h<Ž%V*GA2_$}u2_k+iVZGo'˧ZI FX*;X"Mu1Hd_!~pK@o3ucyM`p! ׌0ئ<+FuSЦzv(9B7K]b"R픅2MW$zP% Sy.dYބBge5` l.U/E&O-!`R\].$(REڋ&irOtu<߭ %qd Of#_5ך9 FD-K! ̒ F|FClF*ަu-־?V緲 Ye0g7a-¼**v)@fz# s`ՀܥAt8[&F^ Md≧X+gG_R0KvdnQ"M4^o^ l-[n>n0yQ'yIuiMM)k -*آ= Ue%&گ);~lHɿ,}"$,zWVbĒ)aq"#Qio |o8ph_?Ό_zeݻ EJkh` \0Fz~71JV@| k*TTyhxHŐIjarV^8x_&tRN?|Z9eH^/~աh ' ,o0cg.& L;S2N`-$Y$=J~XvF!uaDWGeSI_%~*ZvH&d+V-]!5qVFLYbq p^]9.[zWN͛,mz[M s4 nPPM& 4E/2#xrJ"yl-eŒr!O`S`_~xaO.,j*T4Ą|Q g8eHGD#l`f!&(iK<ؾNŽ߼5ɱT!w-y Wk!Q:Q&Dqr-X_խWcF@s_~wRR%u,B%UBķD{ $Nc6qvpl`gi9ہ14ˁiiSReV/BOŗQVi8)ID6}M=u3 ] hy,o6|qnnr+kG?M'e5C¥^e]4f<m8Fɱo{o;fו)LA5/2j嵉WHt'R(*5 VVs"|y|s/KLoMׅ$2SԼ_J0\tˊ U2V$}O?sC9*/v4G$7޾xjBgP8>#.{/TnZS?-[Sf&\F\l8EV`#^hՒȃ(YOF˱S~?5O9Ua4Z裰cSY$Z/aɻSJa(oa38 C͕ɋ' ,d乔%9qjxD%>`tay "s)xQ|!~^3-Z&E|Y 3'eoHӬ)dDтW}r6r]>=oU^|~^/J;2,ZOTYS$gT>w,?B,W~1p+"8K`Se<D* &o5&r+,"3MF~cuIQ}^]^ոˋoJWP"X6d2.Ti5]eA YeGiWIķBpicx0Jmz@|̧C/Cu>}De%;ak+@_zV'dKU, Cj*3[;L %}EbqiX7"L+)Y҄LXL^gԂIY;҅\1E@s_>b):>PA#{{9\/ָe{uc8,MI2N5˫b#L6\VLU/k BIpã08 c!k a-F\'ͤ۬P-"xV`-WGɃN[Qe5ZZ+$qtR\69x>!5Knpy6!bMGXQFFUl, Z%zP8bA6LʴRIH=쥀1dZA?':oxAIqWo5wWQ:])翜x|6%H9mB/]\N mM2HJ *&o#8D& |rwUʨЋuPD[Mlɯ~.e#B&J$MJ *= JsWC9b0͟zopJc'<̆KES^0uDNBqKD@?;&$3:%VX"pc6dh+¸]kM׸i3R`i I Ԓ/9\0*!}KPZxy rp⼶9De,.v첾%~n6uצ%VY(B$J݋ގz%5AȬHdߝfs >KB[cqp|$yj:Vyeȏ_s_\cփ`ʣK`5CSx'Xăpjy]]>ٸk"*_8?$ u?eUeVγaʊy*B8d)7@`إh 矦q'zL_EOZmK[M|5%u-D'WW*1]S]rp@\gHUyMc7tAFyYD/iUsohIU DXI7L?o׆Ϸq9Q~v(C),$;HB'"z4ȉIڊ WL1Fʏd,2@h#ȟ4|!u"O7ZilHT4I(&9J +xKH20~hy~:A:ᚪ5 ƛQ?#sNZv)Bfb;|8ADk7q%lb($IwRQL&= 59&+`gU HT̐#FcR|.{k[xEVB~}01Z^ܪ/e]L&8nX}U\9a+&E'\mz-l,f)̄421rИ2`ej?CQ3+^{z%Ebҹ|aWKl6Oȩԑ'd(ۡwĕ[pf,7Y:"\'S):7\CWF"W~|3//H_?u -זQ`n_gSJ^ 4;V1ζ鞑 &yr$.Hᨇ$O@C7C(V Iakw5SwQ(FgPĘP>(ypVIH;_g=a-]jE]aG;EFje@x\1DiN\K|i8FK.RBˢ.9) F";JkUm,s?>nbkT֟!^n:Y1hM,EAk;vN,~uLS^@*v9Qgj7VүLv'UUal!s  kTb8bJ*P≭ݰJFJf w]IU/r"Ϣ.r*D?Fw~7;j}WWq0y}GKjʅ..T0lsO|y;IxݔЏ ֩ W]GGH3"qi[B(ޑ_mJq'uWii.6fAߵF9D\+ c< YnF/0ֺNyG3C3 ^J{*m6WN#tࣳ2 VKN;܊#mьfPl~Yi#(N ͆zpM U _}:dr_ >/bKE!o%'If;`E0jVd?5MCo~J-G:29@-͙MFd3=o۲"R# 1s9 L)R Y a#~zex)FY8V:q&\<5izҼ$?ϴx?"D!.KוyRjq^=:,,"w ^$x$ kHBG&[Ep=V7*`B5u퐀*Bf٨ ܻ); ^pS=WS毌XBD>˷F6g8u^ZWYS%Y+^BDc ݸ,cgtPZ24,s/_ukGxRĉaBUI,Cv0SJK.FA\ z!dA:챉<2o5u' ;[Ye2` "q+,;\i^G[I(Y7*~~)fWpSdߑ'U\([ yXRvS|l4UqiI")Qurd cxhʺl<~VqR}6EBrYf'Z϶]d}z#CI13[F[<\i}uS7] ڄmFHҸ!J#L\bgBTrw=|NfyrK+)NSa*B/<ӽ6VC?+v?5*Ip&YTfͪ=i _CeYӾ3* {*Z_ؠX]zU*8Q/>5IN,U4,.4ZVxSI6`ˆGN&>-'>Oօr/6"^`]t i05Zd]+XLx HH~#u\]Idb<{ջwi8W0NRK^"ԃ"Yvbd\O@~z˴~~k#rW#Ë~;Ymk$KW]]p9.` a!? +96@6dN[~ ,#o-Mq`bK1Eb"I$]Jen9p{o $3jPayShHyis;rY+Q5hɦݙ$vlDCl7ھЇ?0 _ln0O+~*9(gVօXw܃:BV ;L"oEqVHjiqa!?Hb r$(O(++|OpogNos,izɌϾNvVQƉKdJK=BRrug6}"w 1:P#b6Cش!v$𒇾<|I=z'V32@fZnNB_!֯a09nIB>[!F#8._U|wcI|&Av/&mr>L(mD Qƒ/fF3}i ,RCzkQViɔ64E|1R:rF_z`eHrc`dDH輛dNX|2d &ͮ\~dRQb.;0r%fHt'o.:g^ c|ûea :G8D&M6,s-We Ҩ""ǩ)1 Bz./ F0cT$w~1_%J=}/ו_Ѩ2o3/j|+z>IkE XChA( os9y&"'BGA'/23ΫEgH pǠHsU$4|-C$=ǂq]VT?NPgB}l*6۲ٻ:,Br Qe*|"N3.4!ɢ .-]xiN X~E$3KOW4>Xu=CƢfe_'^'< Cf)LH+d!% <:V1՗= z/P9"`E>qjUG?=^Y=_S5M1)&.PuԱJFCekCSλu=4؈aໄ>M{xz#FU[ɠ1^+dNFQ<7I !_A N7ΝnS^Ռb@F 5'#rշdCF1 ©u!N1y$tf]ϟ)df A5ͯkd&m^?ڂF@46q|ZjpەSk" t 26O+ˡ%j7 3^1*$,UCIF`DS?+WM2Y=筘Yx4إǝ}1fgieUibL6ņRPRga"7=L ə[^DJHS~ g MmSw!P l,DH68-dl$:)%CȗjdyDyسw=mPbXX斕!2k:F.;͔% (ȪSay.ѽM2.O~Y;HywmԼ:/JʐZNQbETR&>6m Yg\hR88|LVuޒ#ϲeoy̞]7߻W²P|]WUukX? @O*qfl.Mx5Ӽy>ˤ Yf?2s^JwlP~;ܓE]$iϼhO`kN h.ujJS@'i+p'8;4e7bfE?C9Vi8YKK*_BIYքu,ZLyA"rqX$:yWƛdVYo#,]-]'*teP}1M:\j8M>:B9\79bȷC)qrO_q岌&Z1.Hs ̑sb[<5洈*SU{dǑ`GJZK|P ߡ p(ɻ̺Z&&Xd-&rGI| POm3M,=0q)0P|XO˝-DXzs`$]Peօپu݄ 9 "Y7N^" L{oDuUh'q1CQ╩xxj;\7/~$@nKlh[ꎵN-ZH;-]#`.,[HjYH55z/mpgo'^ewsR("M"1ӰsF+j1ot"tGF dx#a;4ؙgp-PanrCW߼~MS1!)MWvy|!BB KP&,b< wHObW`S8w}0-$ CNֳ+G1eZ2BKKff@҉jWkW07.*җa E49HX6Cs/Vw=>q\ǓG:oJEEQ5T]$pPdlboT),Iƒ7*]#`YKsDTg~o0KfڲLLϸ c~Ncm>ĩ#w0^@ &KvbzD١kCm9\XJ'oN? _s"]vjġ{8/RwmWHY`X, uLKF{ֺ4!X+QHw-»-Zdf](ȝ$aȯQo$xt+njGgί:ײA$9)?6lhvșF"`R@Z>ɗ/.?•(u4jUiMWUHz`bۈGFp<@nMyE@~wVD#"\(:&-`!0'w`-b$σ9W _ %Qh}{cuaڔm]|PED쪖zvlWAEgU8Js-y ,)2#$ĀU&A"r³MpQX EIG"Ky6~Û\6v~#RQ#,&;.u+taÂ!꫊āN*q~``Dk#sѷLzYY&.vϊ2x Nxy͢Nv@l^dɭڲ d2N`.]Xu-,7&n6٫/bYf m=jzd92[8պRED`oœ\XKlIqՊj,#YxNd+4WE=-*Ci;+go椟kEā|iSbvO"g~ i H0ٝebWzȨUi%_? -/!gʰ2ϓ:>d9UH񋶚N2SOe[b^*̸bX$%hLnE\ԅ)s6!&@Y{ĄD?YUђ@;{WI4~A33]Kܶ hq|s?ƯU)I:)( # YוU/mkF)VZ-?;Yx>ih[t1dK46GV/ؓ;qϫyG^"W$]"h=)Χf/6raG~LWw)ɩcΏew7^]^AskkĭԒ_SHKL+l]-ņIZINѼ^;.<?22aaRrE˖6*ő G̡Qn2ruiKxOZÔŤ ʺ>غKA(ΫףubO Dt}%O44P崼^O2¿̖Zf\ds"7XV?LO3k 16W"J&@?cŜƵr҈ė9YIQx&/M\d>M5mWIOyN= .[Dj\;s/eBxq$.v S̓&Crc:y(,Y s-=-F6@n2-[,#h5ΐ%s| ح ճM}_ V"lTn`aXx,iIJF7J41ӆ2i*o 0YMzeϚ=FV|EgM Y~ fҏ+C/Enc⍲G^p->\B7p&3;J-\# pq"cԭ؁.L(M_I„LY$AטEer';,\ ZkN|BCҞ}vTT)\~(=Y~ra1,5T_`9~ݾX+h8NΚ,0^288HAZ:Znd’ ?h#%LTγt i.bOyrWRrYmExbOr0Y"l%頌elnd^5ey zBlPZ#"$˒:@F+B]m 75E*4P}fD ؔ=nI:&*nNB^3'NI+y˺J^Yx#w$Ha4BrT8'eY6v@d~ 3JcIh>pd1,Ta?e>WTڦLz;g)8fq. 8ٔ;0@.d2]/ha/?[',M;ٺzx4&dJRee.+8&D %.9Aˋ/rBB"n@(_%a_>((~s11GT(^dnv^+ i&hvzF ?HLJ|W_|֯P^5lRNئ$㮬dXqO@/a4JX?^1C"g0Ώs~me_SH ݘ1 i?o!ezCkIRJh04NS8zf$_*oBLц>S񊬊Ab/=珪@jQ["9 RǂLeƙɝLK >LY+iuE$NW&[KJ~uTJyf͠ d%ȢAG-fFG„Ṕ_0pP:#\^dgݐE6~df~H~2i3JR{&#f=ˇo_B _(N .>0FCxSMϲX ):,KQe]VݡH\žF+0F껋 \uC,ݹ_=֣qQs9\ kT$.:ʼUF@Vʔ~%:;~p^ohkM۩U0;xYK(щA4зBFӷфJRД7[pFEo{v$$^X,Gmge*UnQ*2R_ҙ8prV)@p:pzyKX:M{uz ïe~j߃?G) dԵELSLZ3q (_icL n6~T N&4%YU5 )Be+4Pib042 x19LJ_kVWjyqRӯWP7&Ug429)I6:I 6UKxݙY&"33oبǮQ6LD$$  @1$s[bl~zHQ+zc1%Nt&/`ryG_Քq.ɔS-s/+piiUX 3Aq򏆌,?SKf7 G{ex%is!:9EDdII#շ&t ~n^B{WeFikrT1y#=*G )a(A"P߳-2:f,yfjYݶY " I#}{u\2ںP8l,9-~w=v(\g/ %i+gʱUY@xY)*`'f/k3K=kS}s,?^)an,tO2Mǫ+d`U#%X!*A`S9_nnf?Eʂt^3~RRw}EPg̠˪ \\$r"! 5ۚ/E wyxt{hTӸL1sT/1Ks-_iQ݉4qb)sVoeFYPXNb0tڟPKP+ޏ1{Lߘy|zصe=G,˲nW ^%I/? ZɃ=͊`A%vqǕ{1$]Kײ&$.VN-|w"_TmD 3|rٴ1$PmR 2 !H  \矊$@>k//Ų3F]b\뒤R0L(&; c:Wޓ1&Z`#c~b _ a<`lLΏΑPp]o$0ZO! ^z[4M|=nygïҗ0:xzi/}GR4_]!Q&ɔ +*v q!\[ƓlZȳarKM`hdR,s`^Ca' wJN@ai[!l: y\<7 uW<`%Q2O5+eH3z:_ˣ'^d7C5{էgEh NA =F Du)TO+Ry>an~Lcuu#%UQ&BASJU2 嵨դᔾ &F1+Iz-Nnoa%푎En cMeL@ҴLu?dp?X%8%*|==o,8Qöm}Lrv'6Ae7@&(`b')QP|E(~#€拓mj__7&?}Y[VeCĒ|mL X&Gf:5P`?`w)W/ D<MeTM)Nj_}S*4=5(po'\S\a1eanjV ,i*_K5emZԓLsвzgJ$?,He!f 2rDkQ@ʣ$ 0c$ϵ˅5f';q|!/ b'ػpC^巔גEBܱ#'@EBa*jBLn3k爯: 7Y5n}]^>WYeeWdB*Cb 2 &91̷,`9={QO ]ذOIQ$=i#:B,$],LUHD0Y*# a-kD@PcKq)G"YiP3`%To!]?Ǚ[fֆn~$Zc\j\u}-P b=B&\ClIbwl`nT*5 }:PLAa)V9`<($>9;wf.c~׷)8в65:N_τ%08LDWikuc0> A:o|}-#BDb(J}V4'z#{]}A$EgIATeLy4E?TڢlÄ$LTLmRG/|LuT& aS,&$6ʅ'qBh-6ˋ&*C,ϳ,@Ac* +BW\lNNDSNT"L{R_,2IC '\c@>bc6rGTͷoA{씦>yGs,g3sǩ ?ӲL|k5,kbS@B }KVMPC w4PkA7(`C44Ci|9 n@(8Ϻ*=1 k>&q5HFhcâGMZ.E×vnnmڅ{/lb,'X_ g\h_M<,Uii%-}lOa~)8.nH^*(y'xԢYs 0Ňdrǽ btU'N"[7HC2k#mZǟ܏ڽ-b aԵ$v~5JNh }kbrhИt<;h8?a-F{B=mlTr $X Hƈ_KKR~]6G"n.vld#NtXAR=mlʶˇ4L_#!qK9UҧSӳZ,<#[}(P}QT5Ks͢%c%5c c0u:]S $"hhӞv/>i;IV57KnjyPƢ Y2(Q#q<K@ +Bhoknya^澔b5XD0yG½TVt+ =2ܳ Y+&FNSp<{ [løfq]S,o&Σ.}>P'9*j9уdgz!:E_ G?ȗBWR }w cV_&_bKiQy+!8 CgpJc"p{z|3gu_Gvi+襴oD1 Z"}0? 2>J}r.KS=3iiN|RUpz$!'dD=󖱙6ÜR&BOXZ^dgӲihlhA4O0[kN.1R2 }y[6W5VOS+-'#͒LbC}y\>H)FjRI^cDͽme-u҅.s}!A0.ؘǍiI#ڥ>LM(`B c{mj'Ia#:PO^~R>Ho$gg?cuSMRFMR^<BÓ5`[T 0ZρW=\~g>>sݖ+ցLgigUL.I!CBI@C;vW;>@2~,Dn!8Uſ]M|y|h`; 3!"n-#0SOT+`U.G"F`&)u{kDj[D0O&*;\đ#$*L+cdqG;8f􃣒uEBЁ0J-thi:2Č8=#Ľ|u1&N[2ai+4} 4<R &X!H[CB}qmY:\lq%oƟ^3A)]sb*9 뀩~3gA; wO۲]g*"άbwjѶyFJȄRPz 6[1UG'$>PZCr4K첄})f}$4f|U}gLSʢ?48ΪAjW[4Srڟs ҐaoT"HE]d*]R@eIv|bLZH8\vЁ9oũ=_2MӿMÙ{-$>'qc՜iiE$l8$3`./!-!TFZio{(>IɺK㪢uVTP{Q2 S8`҆m5EE' ^|P!~^g1 s"0UshPg :ZM7v8ΛFXҿbibL(=O"=>SljD}.m~Шm Ц)#5UKe%q1^{wzAӯ>MDH3HF HkN%-TT9N*K~OcG3͖_"+Vp۲LfpM7u}&HUe/F&b'B\b)1T:ET+G.}Re-' of5k9Lj}yC7ڲju+ Gdd7slCg=f%:-z,xNG$1U {$vBYݖf'MШE RP bk$\45}X&aUYIzh]촐M]j,k2jIW%Y0ߓx4bNrAmET)1n5<ѮחMԏ]ݰ-7M+[2 'e, R9P!+hD݁P)г vVL|%샌{_ţe:rȫ}Un."(],"lc_yiyK&YÝraϺKN*Gu2y5{ CP/N,pPPC+$DIȜЋf?ה4нױ IagcUEݤ}?#cO^hPKڤ\ hp9bĠ.;vpDϾNBi5M "=>17n_HTx/ۺ 1b({aV#8}T3eEOZw[+**jEY0:9mn(R1t*lu~h^(Hdnv" I]p&T)u-Z3umﭘ2z_Ƨ4* #BLJC.2d cA_YsO |+~m0y2Km?*F3Cs[aQHgqA_=lC2*Ȳ6&Ff7 Ree\.ăDeXp$2:xq)O.:9}l NjV=4ITDBq CĪY]#vɉ[+ԮW( ~\W7Z:onq_p|uI`~ SniT"^T(Q,bHr ^Fσ_&MGٮYICL>$2 <4rSwApt)@ ѐ m-hJ2xP0ц_Jlz; ȶ#. QRP@ E2lì 92jV:ƃ qײS!gqvcER}2PW45:nm4T{֪dAuYZmZ5wӿ|D1gU` 6 .IcOԟ-|*-?rP 3q;}zƸٙp'ԏ_rʖ#x9OTN%@ / WQn;cvR44=d:l<>Z/I1B;pJVp; aye+zxkVSTːև0 Q2!T_`zb`LJ}Nxa6笌-x]OX$OaEaА*/Vr)3:@܁Cv+5Q7g^VOdW̓Oc^92I(d q/2$ @O(1aT;tB̫ZI eU2SI|#,I` 5,Y5`"-Ef܆ eT|пc+ĽXˎT2uKHav?xRP#KGBƂrx*]`u`Cp΅fЈF"v?ݹ Q+1^K"x!" @KR,E-1G qN^xYkIR"jr)' 1@s9 h9&dO i0MdSd>;1_+)pQ髌oam\p))_xw8MV:H % ̩Znfڲb4#%0Ղ@]+N.ōL4e[h+f\d}ƻYIJ{Y#&lTYRH.²rVq21YH=%OѺMʝxvVʜg6{㸐S5>LMAMkqwJzh,>np 0N'"kXXcY% mXv)E:^פLObfğ;Y}g7ʢ_v;{nr]?W2ъBkCo:IET.F |'!L+2'AS}׍]r0-<8B%NzFCarS@D[N^B(hIPVUԢJt%M>SICBMJgAI]CSf΋_[ 'fIQK/8K~ dF1 %P4P=o<1>'JHg]2ydd/??ެ4l:oد>,[n! ,wh&k=~ jviy--$_M3A.f0D2 *Z?^}eS\-\NCp4kE)]Pv. Zh9cd"+&k<)iXf# /% DoZ~wbeYBIB0ʵB3S5`u(Ÿ_XFI1 29lͱR)ǵ ۊYtyw*e,& ct%8gD/ 0kCWix*wm/E&qen,5ԆS(ׅ^'hiKIRdB[W dD:D.ĨN\MVF1:|em}ȈBBFV` lIޔ=f[tneͳ,[tnK.<ʊJalK8L_elӘƞh5NqZcޓ2tK>%{_um;!D }C` t,ܬ̳HTDxr*+oXމS8qt\c_?g;ՖC-WЛ*&@b^bh][ku.ɺm7_ҲyX~nR$D`W \͡CD{"@}xB6>T4W X''/'-NI" `m%qq䚹|d|齮$\N6Sb/iXSF%oh>I2*+7ILEkL&vdvDn &W9gU)\≾+mo^ OxF-ь.L% 5Aڵ+;c 3Mt##T70j'2 QjYW|ZZyZ|F|);&,җв~n$+Ei9Iyly覦udq#}Ǝ!LZ-$E_a*# Z9FQ;7ƂeVźLlPNfa湛L=Mhe.ZVp~nw!cpUI4Hp^첱ޘcOb:S/f[Zz;>ч,'u Kb`ݷ^D!alX`L+1ǰ ?$hsWVYދeV.H{0"E9 )+c7)5uN뛡_q|WOmafԯيtbYW mkXE)':@ta!;XQ(6=i?zi$v_'I%ehmTqZR-_%=I*+Kv=(M۴i46r^R}B-pH$)Xeɰ1ǡfHY.\^|1{~N㽬.hLLu;(@ClKέCٖNծ{!"'W l+]1+ގ媩": 'u1$1,b!3`Kg_5# E4ʔ.FJBYdjNN|| dZs#=u) L.)ۨ;>JvE[weUJ\58*32޹7fC'd0K0 n}5Y}I=.u/!˜@s߂t`zeH+DfizbjL4I4p8V~iQI w=Z.ym%֝?Ȍnyo}١X_.qܣz!*FFnZh5 aFdO9SY h Gk|fv[7RLXeai{.Rep=Dưij<_"TUvWT(_6=tSm8w޻!K{&Ϙ:Zyic}Ǽc?&:kKv/>zPC)sv%<U wd+ǀ& wx=M0 ӫy?>7X=`Ʒw5ͫڗ1{/d%6 nYe/+MF&mVh| pNz(IwLn^ƚ9`VǷ;*)+byUwځG"B+$3o Y""+|FUqf% KhzDwk00鰀7T^,Wyy<"^#Øc8o"> ޹IFb1fOy岟*-C7匣`|EmXKM":"%ȶP}4nt3 {Nf|n=XW_8Zͱh> 6}Ϛ̚h{,%02B(="(NZɡC!;?#Gp5׼8StW+;?X_ tSeaS3Gqf%%= s89`֧(+;OKV =Ql!ˢRܫ@`(PLYnvb*$h@@tEU{7?z):aQf^y>/֛w~'~E b"BB  B&YjhL` EmLyl*7aXrmMK3͓Y̟R]揨xFĽr}_ojR B JI:M)TC|Qwׇ[4Ayn3% *\#襤^[ճ$-)!oԷ&14x(|}\ !wg"MSE|w>=@‰e-|ѵR/:ѻM>n+L+BJJWuҐ&DzfQBB^ cI6׭aSm .h0U}GreA2'4hs/-a:(RlI%JޘnͲ<: '~%y WCbg_ +Z!>vEƳtחKq2iAV%`!R H q2C"dWfSj cF#yܵ-%QHE)YU9",wACA8,DWjOOtR(S}";"`skHteQ$1]/"2GYV*׽"ŕQ #\x|#v 1+$kT乆gs9g#Q f?/^> <h{Lv汾4:ԯUђPS)Fs*D jŜVI _]Ml|s6NB +!?E('B Ar̩ĝ pvD'sTdШ=O먚eJSB`CR!J8tZ(aL e"uxKIseMX ;S?)K?byWXzzb)%Z!R|*}nVEcHZ0i$sL"J/u2_L$MImM hºP[qɉl}R@ZʹQ>܈}L&AQ$sG0 c k@T /d FhMm}ěkf"jaК c/uuߓBX->0E],0^$\KCVh8V7}5J_K_}:EV'$[d%>,j[iz(`ӊ-=peX2|( &.^?0$qH_m^c=_K++Pg]f-y$(ˀ>a,qmt%׋pPMf`5Ѯ+F -ݒϿm}X04JJ'e?:cFb)=NƊR{ 9A(v_J; &#lj$W'yC@2MY%<;w$/@v8V"Wāz!{\ _,G$mx^7IE Yіl){ MS^ (% @T. Ov!Dy_F٢ ^nnsm6UufQ*uz &% qhq9͗{H\x: mMLRфR$9 b)%A{(N${*])q$v7v5 /ĵ!`_e5=tMڦ祠K!@~΍d\l@vA&YLi~S_H1q{hEn<~}Em˪+ڦ@a-d˿z3&V}8W9{S@o)eT.Np\E:$rx~ s!w㢜4H+C>&9;tTPE7 ¹@8-^7ϫ-8O/-A%+wzُ`K OZCMMI|8Cy4m$.N\c擢x}ŽoC=}<:ze]=JQZ0Exx=klO2;n[ +$+?+%RWз1xAIl*ke'hĈz`/e ->Nb6 -0b|;ʌk !Z9͎ |3XX`1s!MdMs8&hS?^<ˌ~_y~a+,Ӌ4M>;?ϚakYg JB( .GUFz x?'HvJYUλWުTY,-] O6J>"%.9S*:)%XÜlQZzzL#vbEgN1p PR AkE ]8y~>Y^N,318̢-zq[9 ˆsTcHUNLi9;@_w΀WW9g1wl|_}peC'2m VƤG᠔"g42B:H]ΐ (jaIT"j^m'@n d0I{y~=y)c^ZP;D'F+ 8e׉ a/^9w=Z=JxIJѥ;/\ P;!!BGHYpG8= c".Y^{Nަfh߯:=DJkC꼍jAT-!VA%5^ {LAi#Ig27{R,P3a,fB ,Ƚ +|#%v9XR3B!Ǖ*0>cpE0_ :)=MfzyeI l䯟D~&b{HZ ) hQ먂oSs AԚ4q!p(`,("K]}MPUL?ʊۗ^(hW D%-C)zi.}sG}6pQ -iC4g!`pCT5^W "h`v=}Iʺ){4\nxE**y GțNy;ޗ4:_/{uMB.R'-95oKʵ~e[Eu$aWvQc ,xF4촥[>kLU6>ʼe%m7ّ8w^ZfUE/>,*R'C hUr ս2-$;@ž ɖ; mV,~qYsrRޣeb/ʤi.sc BX ir./3R13Bt;Փj)y7_^pT5S Uo}Z B P $ 8Ͻv\t0JoMrsҀ"[5:T Ry졆h! &.!n{\(~[6Omߴuʓf>Zi:`.mK"E!jCY&~UḾ:U[ŇJ?in@FgBvo4eSGi.?)R-DvˡU>UPqaP){Sv7̈́%3C.u/4OjNJVn,7r @gFOZN7`0 /$oTii>,mձPUQ.w~V q.wS(KrcM5r&\eMNӰoTMNIY iZt)O"E͍qxѿ릈N(AZ*_2@ޭ[*xo!Z9fH?FB?D/#eN1eG򹇳K=(Kg&(?p.Hy`Ăy9T6×1L9f͊>GC&A:K=<7ü_("9L9Vwa2=٫$a M~^tuz9gdOƋen,=9xrIbUYЪ xm+<洘[RS u` 1SN{y 6q뿊D|C2mbB#>Ͽqsl"I2 D] a!9DP3ZȦ,Vy a_u $>&F+$6h=1 s3D;>r(P<~s!>|{$A%Qc?iI3*p:Ozc˹ěz[SMwÁ>^'2x@-AګtQ^9cJ"k5tCR2M#"#NʰŨ`Z 0R$:AIUcڇ*hRsq_|QKtuM˪UiD}%pŃDAv(M4\ER5,KeaN622dK&"d,\-R'1tQK"d~g2d,Tj#%;:&:˶TtFceF8ʪ|:1n;xhb2$Xj/F*Yl{$n7Ϳm[{YʘsJ SFä*]b"@q![/:s]`%SmP3KQ6FyqW>0٪0Wږ)FhUFSnGxݵў"].>;L $GE}^$ )Ϯ1u^(PV&1F=ChC[J:x%+׫zb~y<+5cXI<$6Kp{L+]%.AQHCJ"csFj0^,^׼}h2}طiͧc5 @š0 &)4EO*z/1wyKi,l♿UFOK2pM0.l)@]$!d,x`"Bt7+Y >;S>Gzk{]^7)E 66a,+xb%$u0NGr(Ǟ_E(u- Y݇{_It P*@10^.PZh>0|-: Yf_̫Xvc^dnnIB0 QHjD-zڥ<0= u+J+Dhuq_~9Ïp lH/~1 PUi;YIr."/A @2 C'~zlcї5q䔬7t*&ـ?)%-҆r8SB dY*uûtJf؝=]?fXqjȓӚQO/ z`c`|Ph\8(*z;ktc#}sj ]?K,ۘDn0~&X6e4$Z6f9PU,끺?0&6'M;mLPi{gOPvDxF`Lׁx`.%͈L6*0q-! "YeJql];v듑k#W"!Qe =}RsIfȂVN )ACwcx=[,+&co$ d!X_t};,v*Kj쫌>wɥNJ24~OU1єRoI,/w`+&t o@UKցUb&G !:C,j'oY26l}e?Voz_?a}wN I/&mt(p_!A.I˂U2o a4],la>e5b|u2ZB)^(:+nIÀHq- FK\ #4 L\9Q1+EK : .-W+7 ՌU I@dbgY=(9p}m]QuV{cu<9Nc*w9X1J=orOqmi8Q|Ư$YmML) G d[)l"OѦe?p27ΖN<K}riۋtEb>!R'y~)nFUčY2R^-[s%trE[ka$iU*8Q.Y֕KcY d*~r1 *[""9 7]hrLN8{_4dx)[փhB] 4\%ҍdEёM/-Ϻ~T ÿccWK]tl@r"gPiEå_d5"-ՀL)>3H==lpx\x0 ( /ObRD`0AcAI>%Z3Uz`v41q6FtwI~1=׈+]ԯWT/}/\ W` $Dg-J6BR-\ N|n؇/2x{pD%C> aG"ً0¹I#(- aD=P&o4|d!F"Թ@7RG:AU0K1҄PnsnwXNܥVZv{:A,+DzvNxSVwH9 .fwi !GbOsk;-˓:j"RuI?k#+_I1-,sNkeTbM}i'վ>Uap3h[6T"ad'%!dg88`aЭv+A~nڦ4z/3'ѹ^h}w qſ6~%-_sU, V .r %rW{IZnM6\?7ڄN&)ځge^QYuZILt97PgVqݿI?^z*Y[j'HC0:@NɌhc,ℰH{k+KJ2 2P:͡o J7qFJdο|?/^-4\^v56{M. < AD1_@$e)G$R: )ɾ!o Ʉ;KdȤO8Iޯ֗M+ %IVTƜȔ4i\L^(G$dxmp5.бcŊ>ְT!<OcUuv10wҢUs+fT! X@)Juz' &a m1ݾ%W! :W; 6DC""!E>MGFl֓?]>: %MFS~uJS$ [*Gk9EB' -rI,g||ZR=:5Q? L[G`Pg '4_F-^9>s-4eiLzU0vˊd#TGbVdŨzDCj1+)LHa $-pӍ|؏{ 3!zq| 89F{me # ú/o{wg?7g} YM꼎f0d~*kd -dm(:wyg?w[Vׯl0_(eSǴШqEXGrr9e c@ ,;o˂+"=E K?VƯg[evwۂ)rPF| Sz7&`Ne%=.7z^P6TibN<Gǡeny07E& !J =hY…$i:(hdH{"ߊix?>]a~~%ĨTZwY):" RԢ' K= @Bϣjg';-E.ڲh;T'YYvu8DT4^Z =V*Ԇ6 -ZfOL ER߂D2UwnB1r:BR%QYUttJ :?šw;}%'}£lϫ aNU_D?1a|l/9MLSS@1/1G|VpyQN3N9:OС!Ab#<}0.xirvQP3^D) Qf4شMGJ$r3(I  2/EAV&N<"WJ#n~i^ؓJw,+$+P~(ZX^z KO\ƽ!AɷDaQꕣ yWD[>k" 'ebUeE V*\;xn:00'ȑz?+󝜬h%:n}6B+:cX[啗`.~PX8zUrHXUO|$B!~R9.qIeIjD@;/ibF&8=Ibief0Dv7z WL mw{^"@\@xbu֑bg!`j<~ ; _q|/qa&}2TP;LN iTFEZsom($@G LSLeL8۾sR$UE=CrZgY‚D{X0 JL򈐚 1hrbfxп^DXYx+5H[Y8Dc/,:|F=*T[fcÜ(p0Bw"t04fo-kq.[0^Wisrc6WcӼ^WuDU\ݤ &j(S|zV̶:%aί$ Ggv4t}ߤ}޳  rJ"Ҳm1)IZ=qX sOUnOFf-ITluKuR$ L$nBg 5!">ph8gE-yH0kMԻgƴCQ{WXŋҸ%cX$Y:Bq'FDDQSCO3( ,jSMVy-ɛ&su@WKEުɝc$%@$_ӷ)/DX{e:0@jc-5et`Mi)$ADQ9 Cu*8sl%rjn#Ҡ<"oB])v)Pa?aYz1xaITI%Ez $EVK#/Se& 2йS/ 'ض n2)€pe2haBB!0X0d*njOF3~a ̝2-1F,F9RϹCvDF2t9U `lVcCFgNRhNl6)D,#˺f3 m~[D{}tVXĊ*SM& qi:;2,;;,r~˕W2Ӡ/- }ўD>ı`Zphi U!X-Bpu$84Y`IoqwvogXWMT#xbnWa"*/0Hsw-NfIKg=0۬?1 ]O@;w׋?,_L~Ȁ' 5cFJc0Y`tc +b mٹjH#![Ke}NmQ!%>ϳ2khq6L+1V{m>)+E*> &\zMc+Wgش{O4Ua4Vd KJ(\}(ZL`JAL5{f~7/zCwl1G-TZ\h]Mr?4ˢN N" LT9?x(i P2;>Nh`i9xah/zJ:Z"F%;n7FPR+0Qnkl]jH,J[DfKӹ>r'ւB=U$m}O GE; p?V@8 ćipAчFc{apۼ'3 たL2f2pXI|C}pL*phkƟLDvTSKw8#և= ]S&zr9\ $6PƉ`!y* :UPJ'5ҧ0cz|!՗,1ET yc i(Y)Nz-:)XNmýn|/|b<N[auU|M?yy/ZDILiC %oQȹ`2+ (q Tܮ!e2%/"c {$ a[7~]upeM|$ ~ H V`rV MtY .&ZGMR~nln5e͸՗wY]޸҉"FV11V|"{ DZF,x}։d#]}L$Q0)(JVӣJrg[((KSTf'ƣ&1a>5˒}XOCm|dbRwyrq4d]XTa,"cIIF$S5g eu lz^5.Hyj"C4A+)iJuAE#0x}}>' $_:לiH*NH"Xbj~-={8HZ[0#%Xޒ?z*&G볗I}'Ә+UU>9O T쎐ȍq~/+/q컾e^^ObZMTҽŻ7~!8,<8"iٵmͯUTB9K2m$W<Ύ655B:n^;ETi%2^֪i-2pa`|b \c[Bq> 8JIl+Dž,ҏa*8FP<? _ُݹ?f#b|!&eTfTpx&SdX|i׏OQ!{x 7ӦG-pZl1yYSPdiC~O8moהuycf;ܘmM'+I1z%[ЍA8^ 8@Y ;_`r;_/jҵ\|`eY$Wa;(ocq5bI?8YVYKqv-U,:1Ƿ$$Ds~6G6$xqxcKRhbYaQb82-}E}eiY|F?0ί?|a2-<CY_>WyƯ)&$ZF& +c' ,Yze믥3GIѴL\8=2uV=e}t.ӲMlC r|\TSC6ͨT7ٷ'Dơk?gq2zvGk?W:X &~ K{6A5iϲT5Up|A/S ouv0$Mx EvtMfzGkmBV2]o8[ב|jK8`*$N,(Kq­3=ZG]`JaYk?>gh_~5e+h[U3C1;]sKghtbg`ؗקWtQ(ߚ&ވmʮʂ@ѩlX #JL0;M;ƘYJymi> ^į:/P._DB)P|Yή|!w ,+Kb;F/ꤌ6h,e~1ejӽ/ lqgA<mwI^p/a0~qe{ReEk1z|RF묨T^. 9{!*;HZ̊ev0Rd|U~6dzIᲪ}Icy2 ̓:T0iC98Y9,t1skdKH";.E>bm/g,e4.,wVyC?l.!-[aq ,c,OX9Dg3>;VgI<)9IH\ɿ8QF*ij6mJ sLuﶭއ z z|7+%4#2G9F6Ѭm9KRWp DfG= 3Hd*D7p~,#(UȕTy2 ID(X`g)[E[.h.<ϲ .n`OBpE*1ͧɌOu}Txy'7j^ϊz1J8FLР#;xg([*=Fg'C?nQlt S򯾏`4+TM+ɚBBNfJ/EJwWvKsf+4 c:iʨIJ,S3V9ȇ@7L0..oӱҒr>1c~~'i5&A6!KZ-R5)TqB|G~ұ`| B'c?8OvrNS$)y"Z_ݰB}'G)w^A'DaWIFDw3"XtҚ{>J>rx‘<&#.F_?Ғ _\LGVv>Uwj- _[IZ -z@NJ##&j`YVьDy1.^42w|n3FiLVT\eS"i4yJ"F:bTP9y Ӥ]B?~$ʒ$߬6&Y孥N6FNH`V$X n_}U3;- ˆRU E0G**ZHu aB1kOLyfOy״dNfgw֩sOh')?/x?<ɩh@p+ ۾{u, 1{8wFHsAt[0.(iV'_gHD))^WH8AAq)w;փjYm]Y @Ɋ* (UԈsAZ aJ>-9< uE#Q1h[ FJSܒ$΂LA/N0 '[+MN'-u _~E uSE9yݕ]JdAQO+%ca0O\ $;E3>nS}4iZ~2]h=aJbDA 1dtһJ s7qtD^sDl>5c7Gc& o}KhdxU o3}y\Ļ ޛ&. q}ėVIYe }IKӤ#~c \sfAT?ToXOq!ɬOO2v?Ӥ: aҜPWUdgϨ^\2pjJN8t 'C7K34YP$ն?_de++S"&peJ"ـ )%`:2zE.B=xj&R r&UE{}dD~)aTrJ( =8ww!-qݡkDɭb^|p]f_zn_u4<~ gm '2(+()P FJ鹎uZatfo8ΠG–=h0UE^ʨu(zn!&`T0nofcLwzRM5,Ym)[Al=?U;O_4_lǘ,hO_eLXR;&TאFޢh!!/i?|Gt|~*ݝi8ĕ<&\P hTEOMi @'2q1oZs *JQr?؆)iq>_NU_l|"PQ \z*ÎdR.)]H("1Z =#-È^'¾gy)t,zWw2u Qd)Ko9vpfu9~]Z( DK.T11\ܬS W2#ؠs[8@Ȋ',llo~Muu"/e>'~״(6P`=.-Yctd U!|[;ݛ|`^m!)?.db;}7E&¨?˿.}V`o'`\}yM_ɿ~믒SW_b~VQ9&|HTbŤKEH4<(WTc TU'޲hۺnp?ғ]J:A  $dfoF0m?tdBZAXAfVF~娖_ BDۇDEl^ / 9D]|9悁e|C}z/\'3/;qۇLјB}?D0)M Go6uF!hR`)PAu+Bu ov{lJGF,hqee:c xvU!cT WZˆiee.$J66,$&\%!+iX{ok_~DzMj`+RF\(Psc>IǫzOr}>}_~ nKҕ _ H(ԤpB?րVрPN~-/^ 7LJ RtqKdKrQ 'ZW1VVe'EHxGVfmz`5/}%4wv0E۵UR0Re33jA6P}d@!яs̉{r-lQLT!:9wfl ȥ;'6 3喊H(CچHΜ'+ޓ|JHLY p;B謥z?hvG5@ږ(.(+ X+yԷSGm|ƶ˰I2#{\;ke0FԇPB"3:o:@{ *J߯e!1(8|EYiև1:ԏ̕0PjMj@};TB~VV.{(E KC\"HYdP%r} :8[&l1EI;8XS$#,%qH ~_>G.DL,sb淨p dHGB+Jq.6N7yU1K[׮S67wDEh$5F<"#Q)}@ eQܐ;V#s3+?wLdytՕOfR⍅L>9 4RXuCԡ恚A2R|d'ݒ*InүWI 9>'R? ,yK"PwL8 N(ܤXYoLG%VER&QL_.ꚵG'Q‾zի`$n֡ .b$CFw(!Rvܰ]>lyCU͗f]VT)+G#Ng@ЄLc!eIyq;<,`r&6mtʉd-s*aad%ʷF/RAp|_>d1KZ } j_f iո wˁ,<*E6VIC<^j|NVfa*0xxjӡj/GDA]ۗd0迶u._@*H)"8 u^:BfP H\kgF c}7hbI o|Sێ~ l£U5YT-zpC$ì0EԃAY!6%jjWBQ*)!xRUj!d,/68ܔf@L(9˂˦kY)Կ[nDrc QJ\y[L@9ϓ&rE驿/4EU=H;,eH"UseUh?Axƭ8#hfYe4C&dj7¡d -7lOz|:h13ӗ/f>ϢpK҇鋯[Udς"+,M/^>rMTJ'L*DY_BvICZáiŘPxD s9$ \ف?q?$h-",3 ܒO [e* F&%=G$ $4Le'kaiGJtՓ@90q1^tCГ9oOMٙ!&yHtWE6Qz%itZpO0T1tb&B#s7!_&]#o.G<˂ DN=Vr% p סs[Nqێls"[Tf7O{[sp[moȿ!r]Mո#鞒Ld:<_^e(QLZfV P_/XfG5/h v-U+$j,v$@*+bcd$6!(%;Yvʮt\c-mZXE2E4#/օ"-9Ȳawƈa\{J׺ ^v̡.r(rM:dhTy-~8DToJdg.X?/U7=uהԌ[2 (AF2qs+oep(q2h $\`Z&Ey ѫR=U &ZJ}, ȅq ;Ikx{I2HD#rUz KR JQL%#S@=3?.v"{6}d-yK[\RD>HܒW8@:AF$^T۲PE'nEد[m[Y7MKy/"ɻiNQoQB&dWQXf8ت0-j׵6ӕv?|eRD5H)ֶsEѴB_XrT _$G>snY+KH=m %eU$BBQ\@8i#)ڀ&\ ﱙ)s}v,ӄ/~RlWt] 9*;0Iq`K-5231cߓ|.‡|,0ŁJb#h$<7D}]>gIW6UCCߗ(5:#e2Xr`K2";9D9&rlC(Bq"?.<1[pV]&+|M+IPXa Qz!-@`pgvTrӯoלqޒڳtPKQٗŃ2_סi rQuYX81fHpk7ov|HEGҐ%zeնNrY4!x@z%䩽$Ռ'2EU(Ӣq ްc鏳$ԔAJ2%I6LӬ`->O1LUU!NnMY$ >KV&"N ܃p@;1&iKapȾHi)$r[6"ҹПTC i< ?)L¬Rb".A}2眶dTW/_vJW~GլW֗Y)#> `3s'|UAd8VWHx W-d]2-+m5yjq揇¨YĂ+&0~<΅d?//e`YEcNkb`ā+]V!W M&(ddzTV!O42O49+((xMIT1.\j$.8ڪm^RNj_E{fҵJdy,p2I wIr %Y?Λ4VӸm蕤YWR+|m兌W_MW U˺@ [IkT|y#eV̀TaU|Q!7$'/n g<8 "uCJ)IPo}Hn2wN% E54(787`5|3nPr0dIJmYi1CcտӚɌe5EBˬ_ժbCt/iA=0K1Vnk(Za(!Q2%4t#XhLfn< LIE!Kj2%bt-ZʰL@Y`Ļ][}bg5&_Y'*9Fmj,Ѽ',0;p 7GWg+=NY@{vǶN?o(}>PyN*}1촙'=.;MJ"q%9D],$Hv2fƳD׏/$X'|\RicpTdJ;P+ڞ"  ~M2BMm{-2*mm&'ZSPZК#N&d1SC|ׁ5}L@t_ɽ{1M d_Gz\eW^0|0HNC1^pD5Q}qRu4 o'ykƎs޽WY|) }iZZ$mSBZ-+ТUΡ#^K22B _Y`4LϹ: vy^4ߺ/24,J i" x!NnAJ2Hsb}Q:0a klGcq4/Cׁ%wB$uT A3U<<\]e ueb/0Jz_嶯D<#=|RTr֕!/ɇ{%Xueh- Ќ9941',Ym% or|4f;̝۶/ؽM9$|{g>,`[[1Q>.x2`}Ӭ7¾!*!|.I[ N3Ieh!8>Q'3j Cq|ܘ"$zc:N:>⢶-TH5n}҉Fkם= =hc L{[Jp RӼA3ޕ#eDĠD>^iXpL}?nMee~tOxuVtcTw&4`%L_(Hh 1")˹m-H^1Jړ;%_>f$W(RH>[B+ɢueU+&5` .[Ky R3h/:µqq:qMIn媍J̕Uk"VF?1<&m*"YxD(<d3+<UDeabdfj"8{6cTNx"F[kTNDz>/X#eG ;U]2y{dАP/Ɍ^qIe~<c.X2N0}FLw1hiB%k>Sy6 0uQ/ָ I?wb ѻNb>$@~?jӼИIW'OԌ,ِU 0R&='k8IlAJY_<'g[$}6]ULut󻛆ȱR[]- `U|:엫Yutlx3/Y}d5̼r`25\t%\Q1NLXp‘.ASpe#=':H:[w歙'76?u/$Všn>;eq46OZatcTfgP'$Q-E4ŭ,vmq~}zVy߽;&"RSÁ&0P'rDSؗt美+嶉ݦ1emV ^5x7 `l`,`UFСF&{Zաz~䊸o9Qqăq&\SԽV?s]6u|]9 6A@x(yW'K BL Xrߪ+oV]][gRxrRUcm]%Uֵ:? #LfA{DmPYd 2F{ 9:c tWr$75UHjRVe0@kxApD%]JٕʍDu$WGxQ<Ϗj٫S'c Aaɉr \J}FJ|p)C!ST#g'?hi؝i.bBˬ(HLUR{eFE-$X(+݅Rϛb//$vj1=>Gʚ) u-σDpy/ZG/ײB'^óD|7o8}Vo,.z&7M&ѺKVP#"<{) &v\dwŽ{g!0&nl0ג29*FVMF4ӄKP. }Zn|eXwm]DJWDL^&%ӫM ( )KAB)sI e|&9j?wS_FK㿡0Y8 Pd?+ȟƋgӁ! /P8jTM*YG[ܿ"uE^z bՋ\mj 3nM -eDfP;R"ɆV3 I~O&«qoˢʋ:L['>F*GD( Bߡe`Yc958W +(.LF:ah] ׯ{j`&jVf'҃>o[>E ~9r- =q1 0V0H4D fJJvHg0ٺantI6iZM :V?,P4RDƝB]DdW`Gok%?HEYVq]*3X4U$+i#<5Iu"UB݁B"@ս./i]&mZ̥a U8Sgm4%T58™k]%Y^w4< G:$wHEB;.Ci2V;hwN/s@(@Sy[\L7qIyOabRhJ tT*-7]wo eR:ƯѾ-td>$,Pœf.`$x9at'%\2r$_N0Xo K ůagJ,Ƚ2n2KbCü$I^Ah,cE pߎCp`>T ^߽1~O ۨBC#!\Ft0ϯ?4.fNAw{^'MPn|Ps"V2DdLqgO_Zae _1l֭zZp=[NK뢈K7LEb뽲 5n,:2X- DFw\H/sU:{ %gzʟe^G{h e۾|V-E]1<3j, \*ur0'sP}焀4ǗS ϢfOl4C "p=K]5$j5y؀A܁>-7gu]~:Rdwら D*ULtJ>t0D P l/ln~?ߌ\/b44֍uq>ٷc.ŠL㚼4}ytZ*r84!T!(Qt(Hy{v9YL$#+(%>!G}҆oc6Va 9|<9du*Tr$%$D`:$|qdឺ|7Ioۜ~MfN–Mt|xLEh?y |O2#ociVU!mމp,#CIBj090Od)rM;>-2?"_W"đDWk (DB8<`9+E`Ll%71K?|+<+r&ꕎ +O[T&ADvO6*KY:02>-@*Qaf1.dfXq lmK)Ne>":X04%US VZwcGVS}Ww=y;?xIu]/{dYIS0{7X.Gy52~Hܡ--CGO1? AϒGYv~>Û2i aRTd1fvxH7:QE|}UAN_[/M6G跟_w~]$k$ :FApʮ8h~ @q!-eQ 0~jm;(4!durYm}S M͓ǚf~Fbuh  rBeYFx/-q[ zTpV4c3\LnQZ6I?Hޢ"u,+Qq [a PF4s[XPz8鷲Gӌ 8.wL|?Ș^\ DFxy?;'kjޱʜݺ!c0e/j:g^0jHHT+ډNI:Avǩҟ1`Z@3#';w{LƧƎ6VtTfOIS̪lI/Ȍ OE.6h`#e V\{p"~5a?|=SqHEuDO}>-ׂ0d(r5ij/Ӹ}a"7=,dYki 5`;ED01ne@\ @=cqW!Hj0ĸeRm6w$͛<:DxYdRE8Ձ j(ȾX'oĻ~v(wc51iTT=E0z5&bbƝkd PLm@08;]d9}_|ⳡY |`\m0YϽEijbeUpؙutBHG}2="<ܯ qS$L*s&Jw  UVky 8DPNחrL 2_/8If.їJud}mY5ÀSAr0TƴMTڎ8ĺ:\ 256J"r %|?.r.m&yVKxVklxʫ |$G 4ώ3C=oni`}2ɲxBFjrEN{ǒ&aȹJq2N2c 6ڎYydfcX+Xjl8dM]U-9XNKlsNQP Py8C(wMSՒ=l_)p$ U"EVg 5-$ê$'X+5L];&Jc#Fxe#fS`f/o2&mҸs¤winie\,eVB !wA={c[ή2ڛ"\֤ QL Vh"j\.:4RYp,NZcob3qeIm /AQVWuønЏSO{\Օqjd 3cY@;h'n]08lQ̏_w5M?FK :. wlR d Nd}6En`vC@be[>{ɞ&nwu^@T^l:P36-IbAGNYylx˳ƇFq}p6as'cbeKIYQj1!bх4Jҩ=J9辬R$-̨n 1מzVl/0G# `0Za(9﫯$>׳0Ij vq%Q,UN Ztv/)@2Ə,ud@oSEf])pj9lˆFY ]y(iړ:LdQu򙙝J~X$_-AdE%zO x?/k'sYx45SԌ*xI*ϐ堧 &PVzɜ3fIJ%lZ7qؤiAd|n!pQU[NRP>*}Hc0Qel@ƲH,m(}D{Fo86uH̭ w?l"%ۑ@SH@ZoǧS JcYǭuuNZ,逫#-F DӘnXSt;|ݘQuVu3rKW$+aW#2= =*]!ƏSNXl8/B'qߖ6-! g|N/hGJd 5bXa Jzk.Y~O+`2H*Ԁ!P#|ՒcXZ@4_!tJ,v3HE0 naJ57Om]r7H>PXCpG]GPAWK=R) ǍAZ۶jE!HF-rZ Q e8ʏ2klYZ:5PQr -΍ӋeʎyFɬn)m>K -x%XlM:k Je錎ݥH8.I 2,~,On]NfT;3ɗmʩq]%29CJUCϘ^SdL4H8 w~bs/h|2> W!~=Mg`)f5r:UV:B G3pDi<{38tvǕ:<q4֍͵4eƩb9 ī"}TST0/RKZ5pB ! Z -J<.u\_d}ɝgQB?Z]l<" +$`94XS٨47.;0,}RXr伟bmxܚbzi;w2߄T ihيdOVݗ]ZȎqA_l8?/ǂ Ed ;T2,C gPg* Egr 2>p,bNKX S t&ZlT-ñp  #8m =/Uӹ4rׂ,뺎j[]8)ZpbNNL(Hbgu ڊg6SnwCr$W,}IL.|@ƫ*"X!թMB}$R਴ HIƨEqoMՇg|if=LJ;7Q7|]}6>GW^(Wu,w,5#&*`px#@% x䙽`D7 %4 8N]쓗iFSd"%KrNɁv,أr[Hg'#>NlXwSpxbUm^'RK9e#ONQNwOP,TٮP̺N"I)*Kv)5aa`;&]Fj-tWsjG.r%*9Dh2Tuhi9z%w0̎{wZsWm"II(5 0+ZZ2{(!1P+'z m')P~XayW޴ i.GZZ]2k>{NEz2UrP^/R0:t5)$?"uR/p*בwTNx47;Q;zM]_ ET;VtCbo/ViQn v@gaȷsNcڽ*n~\stUQ˸.ۖA_" Đ!M<,X8EgD#" ۾<},=`/iڶe1*"!%9K,;I+"drޣʵ`R0PI7r ڲ^KʲIYZvM(:`DE^mj2RfF(^G4ؗ;դ$w#Z|#T^SX/9z_& =,Q;z-4d Yw,8`T.Rޤ4Y܅K"y +gD؍#,xvL 5.FUi= $O M;,1d//Jz*V~Aʻ42`0I MJH s_*H:N)n Ԗ[x`LED4G.iO_R/i ogϲNTHRL$p=x " Vh-We3毺3,Y' Se23" ˃TM45KM>YuQHG¨C(,3 2Z1~Gܯ7'܈y/Mŝv}w z9*_@| 0s@ b_:mD[Dem  ߒӒSuـ:VPያʀG%p0܂B)?Vl;+Ӹ9ߕ*E*DM\[EY̴_ XD 2@s6: (ltXY=,V3?N:eCB\Aw*b~dt`.#ge]D\y ƭzBC2StD#s֬IH滁D I)DBp ѠZca&٫Xs.뼈/i7thTouw-|,\b]U+_Td.æFA`b}h-/,SE Ƞ QwFw23i_|G"WcAK&8Vap!1 xN% uU(7jhB65.=4]6.-Gw(@+定[cG93e~j %FK)U^o 2d=$͋?2֍- /g}W7ܼt7ev՟U+3QTMܳqu y5) L/\!I\V>܇6~wh^-dKdYfu-@p FčwXe /h<8vֺ|Ort ~Xd_FYNɵ"=@'!#PE$8&I d} 3L0/ݖ{? $ !oL31hn^ܥӻlټkz-ﶝqcwTdYF+> ˋ/⹑!dQ8QN$2W`)hW  m[;1U]'MJeMM?bU%n?n٥e˒2 CCI UM:L\Hܗg Е[T)V7HvU.##.-lyGb }STt')8 R>A;-qzZDrysCVtq1Vߪ}`2.Q4y'dH@RptœlqR8]ZH&M=_ :,R񐌣 I(c9=n 7ǘR+Z*] t2%qZ齩|$W|<ӚZ` [UWn9!tap,{N^)sM`pT:H%LF/=6m(D@w@O7MJE )kM듂sKV |)BSИ'Kr.,uuLmJpUN:e<46@IKsCՒB_eSrH4JFꂴ.σ#NwL ۔%D+gR^U4[_48/P7KSo@0 {{p88[»TEtHf$οjɟ{ӝy9J4,3:1b\D~eAYem3o_Uen67$bZS,Wc$@z {"|T^ x%pP'o<1J)1#Yy1~2xu]AhQI;xDՅ9YvXcLdI(')ʹ|+6l۲ /[)WbE NQPpJ3:pC\u<@f[67].if-BxeU|h{O̟bq1'[1=fG3\Uߤ)Q  1^H\ƧMu4AT [2j҄|_6&}GHfen&[n³~Uy~ί]T56V3hrWN*ħQٴʼ񅿪YO5!h(Aigrqwq!HT~ivb{k^BHCM*EBi@0 P@e){8w|~}Xu0%inY֕dYNh'+` D& i8mH)owܘV7uCiQS Q^Qq./]kѣ0"fU0v"2wZD2n7,?_ ^QiWԈih2[0_Ɉ+"{(XM[|U="K=yΝM V5v[dmSy=V2,((X&^ 䣀Q CX,7J>lij$]p.ڤ($!ʖ~R[UZ"d~j"Xz!g7Tn1>'\\|҄u,nۨP: %þU Jc>N-Zei%ȫर0!AF}b4"} dԮsy} d>AI;8S.7 KU!AF]%YsVA Ŵlңa{X"O.ݲ:+w_^:)@iLqNdiYɖDo!':x+&51j|7tiÓEZ Aw!;ǔQx_-# !D HTf߯uHZgs~5RH;`{hTA0oE]|gu̖-+*_R|[?z,) c?W9{G%WBd c7&E|˞Q= 섻 CeR[INV!aGT3@z/[ӂHCE #sph^#ϡ+'**p4YGXDQDy!,t5E6iHJP{k^s؎O")\^j~7Lgx>GC}erN6 !/ l4EXɲ{a\K i&fa|-(p'puCTEÜ"BA8VK3)x~.ʟ6]N=y?ֻ%+Uڠ 3hžͧOR0Y'/K^#*$?m֏8mDW0JRSvuU6IRRld^F;q6L,v)y)u׮dyE(Z%g[*&չ&zm|e' : Tł*];T*w-{dNN[E :O*>3Y^pJ:)ӓw5Q,äC"TR)JoeANPs]&< kB6Nl#Vwt -3@se&ǔ*{Թ{pbZģ8IDm<1j&$i~ <,r%Kgԏmt51Q" F[A%Kb(^CA =/JD4 w'W7KVfBZ#ʪ=u=|heCBJ`Wel>'J bбM3ԼB9Vi<Y#$C lT㲑vr5my2|aHB\7/%/ [u]#1 >J Nh.bCs'%ŸOZ|JQemUE$K6b3ğ2*rx!UJ,-6/s^.$/[M>X1mSd&P!⛠Lm:i`YRFM'چڋ0 G{(ͣ-Lq]$C˺@")-5kLum]ӖT&|ӨKGIqUSs"Df-6T}7 }]OE2/Hḵ^`v3!GRrv*QB1uP R;YA0_VPK\*=iRalӅ5n;HؐE+}t>G%)rɒc"WYNՍ)S݄BI⎖f1nRDC6@]N }n'Sn"KL(^siZM ⩖NhMIK!$J~\< XN}B5-lywg_ߦ}:tUd&4dEʢͲ86vRwFVGr Sv8A-2{`9%;KI/zdMXiyHMYf`;DA~ݲ lo lf}? Nb5Lbri6K. WgUsͦˋd]:ЦfLCܝPpJ{ţB`z;^a}|")ETt%/ Y^Qu8FBy`3iv%=z,mf"´ʪWҴB_&NCi%Mc.yYV -7&'wo]~RUK O&3;@ek]~[eiHo߇/Yùߥ2 V^벺1'<]`CIҮϘ^]1>wocA7߲:ܼV1U/TuiX|LQ8zU8s0#V_K4~Z!H!|HLɫ{]&!ar'c1Ɗ8JI f QŅRNC sk,63i!m˲Hv\Krg[h*\cpȾ")2fQ&wJu"Q'2/g6c)1䟴v\.,AU,\{+i7R,de1Y`Z64j~KOS#Ezrq ξz~^">ٍi* 5]])-64! JPF[I s/*㏔c?Lڴ7y[ZK bIWrR*}%Xˋjazv^,{v̯ix>iªo̐z̠̊akG'k\às4iC(;)t G[7*˓>b屋3aq8V%bk3'dp*UjFJ [Ukt&;5St`Ѕa'?|E"`X(Vߙp/飑/ǜtq}x|ӷyޘBb:asFT-$^H|tmp~ 'xᓯp Eٲ<4gK{Jkݪ;JcFeW);Ua(b招?_jZc$y3$Nc:ՔM|'&HdN/ȿ2"Hih?1xaM]0T̎aϕ W2^Gj/ݘ).iKNj:gs6Ն!S~ůA/Jl򧵁G^t߯2k1Dchu@$w)йG ~^#,1D!°[_7)S8H&RW8=Lj&\R˫ Ŋ|Sc*M dGs8xQz>ow3J*^BGRpH|AN a!-ȉܴe9bgG _ظaӸrIW5/h Xņ}%VpJ;si?ebY_i">e=;)q)yhM"R5D{C 8q9(lDodFK,=N} Q~5jYJZ][6):zUÑt ܩECjAH:[&„ϭ})Q‘b/QD!YaKT4YYBJsEϷ1JpŜͿMz0o2PxeVjBDoc4XH 6₪c/\>KL%(< ++Hpΰ4kkn7م̘+G!^2 LulFt+_jLtwT{R/-ccpejTpWFL-U ߪdk}S6XexA"4uSVC^|KSu9UP ]}5W*Y& JP;XHG]0*;BT؃5r6q!:z,}QKh6%mnLDCT j˶9=yxӝG1X(07dPƄǾ6)8`å"k;e4R_@CA)륬97۳)ANM@?0&ɬk&gCg~e [3t-+x$F;$ 4܇M,bGj[lMh_4=?]B@~) JƜzLf~>e\$G 4`R{"F(/RrvFT[_9 d7渧^n&%0,ĚåN^Д"?Qв]Zj9M{3n\&$dy8`҃԰d)/#츋۾L^ҁ͒r.z[X;,L!$VWXmL~7t!_=,|f&__w~O~+bDd快Sq]L/]39o!L "# N;ySM.=<Z>Yg2*Ͳ6o)ECEYn6;b/bFɻ)I _fR0xqvz$O,c&bcMFyB}"5;ʸx=-$⓴m/'%ta۟zēw_S1Ze!H;rt>11Q|4ޭ~:;o jIr-rX0+] U"g(y"uEz=o6p~>ߥOĮei@9}/(!|1byTBwOۙڏ'9h(l\U 4+=N}^+UXʆ4ҳJX3@,Cde,T*l S=N>I1̉WBs+nʟtO)NJ*/tUþ=Yq1 eG wC~gct:_;{Ύ^sj~Tr#a#7$Kha%xǠVG] Hڏ.kg"r\ KLB=)ۇ)* S}0]#FcK; =A:) s[uC 5THx|z(p%h5b辫ѫ)^mSH}TX?ƢsCtBy%'5Hzu 랂C J" = DʻJV0*WϦХ>©]U‹"dS%Gp(NY%8.B:/1[xWpuˊWslJ"eWAB\O>9B'V61ilܙv%Ɂ/x9GِtJv^fl\ |:WΘ,[I dՀ@8zx9E'P~_MZsela s|2Ʌ2-Kx3Dl(5fʊXcepbFE0` IgeI~럯dlͰe kY@@2Ym|wm,7Q=$D$My%&/]hx19vv[L\kʺdF.l@`B<{0?@$F|_wk#}Lu!}(G^~<5EJۤyys\LP] \QdV48m&]̫HхUMv&i.yVrj=oa.X_F"KPiYPGKnB3{6E6zs/XS?-mbuTYh3vie qŬ D6bj c-y)*䧐/ًQ(iUUtIU}!OE1CalKSf ;?,B ƘK,fr%\DR^G f`6#ѐ\N[ JdAuݙ  lhp5gƼ $$đcv?Q\0yDžz Ib-k& j aZ^8DrLey VV[Jw4p:07deW&HeU%>8*Ȓ_{$Z0}ڐÓ rF. lv6w+z>B<m`έL9﫭x>?)Ej)k40>|”{DƊ/ ݁E ?{;0_kc)o>RD8 GǮJi 0dݞX0Ȥ!BqQ/+8g3z |tyxIEم$mMSL=`8 |C譻ry@i/r(Q\8&-%n[&ɌW3$ӈezLlìrjJ Cd ld` tVq=]%.5SFor@J#b>Hp9n56r z$=qIjB/BW9u\XǶ_v1v+IӐS ؍q?%6-k y#j̳|V\=f7Fľ+*ZhÈ|ZTEI>V̂So ɒfB*C'LqDqfGBi3TᰱUS=pY3" El2Nd$ Վ(:AED~,CջsOQuTtm 7cC[S !&ސ' .ɻ) {Y^Q?Oh~y&JkDDrM +F&zًaw*p> L$;-WnQb?]?7 ~0LXZ"oJc" {8dB)OShC-$מ RM{s(ʮPtUڦ&|ژh- yE؉JÅ\HZ:y'oQ-)AF<]_\ ۺYT&We=Gϡ_ˮڤ\,4]WGⅼ{0-"yLpþ%h,?:<0IS/]flzW}/:*뢦|Z0`I_"Q)cTU$岝4K3>}kx]ʲ*סz!UAzlOg<$ [FKl,@-Lεk|f-=Us52M+xU)/J! 1O`;Lm:G'E0~""t&Ħ3"ǁ|"E2(eGKx3|Ҁw8[j"Ajlj m|M,,vKY!V(%<_c'lZ: d䈺ݜlkDA!5 7u0f8,ɒbiZW;뗙lh;I|ixOz_Še/-ğ_m.n#0w5ܝ~FPY݊rO&yg^Uᄵ=޹,. oMT6pH\wu/;LoS8cPVKdC?Zw'opLWd&)㲡Fg1JjxsN27·s0R¿8%R܈8I3i^S%L}\4NetwXWJ]xQ͘8_^Akz!Md_>lJ.GJQp&I3V{*lmĚCt3"<آWe'0m6 `<. Ġ!<`ke)$ >GZJ7T&H^Ȋ/F ;#NKW< A1yfO>Nn'K. c$\ ެe1;X8>jn%ZD^VHd !9m2"PlZ ֯4B&p/#m|W1bJhTlQ\9d~ N#ʅ{)}.^ hLOT~3uYʑF87k5]*=1uGC"DŽ?O$c09{_.*5켡($+$.VR j^ j>`.tYySdp=b۩ 5M$.^lK৫TD\3ɫホοIt(-/yV gǭ'l7 |aEl> &qv ɐ|^mUTLD#b<5:8lbi*瑖 `HU!yJF2xX-A0HX:d?E'-|^NThJ F~sxz˲̲lcENdN-%:weh:\`(J29wL .~v`+{&v=J44Ԋ(cM{AufJ]! BG Bwc_/ֿz'q;ƿ묵Ú($xw-IʄWx'P3H ^m"4UY`oܼ%֍8 KY@. &'8ՔLs2 {@r sūnߗ{xe٘"DhQ." ~٢䗳E ݫ2\;m䋕݃h>PX hS8FqX|uW'k3)6ۨw,oWr7D~aŪb_vO:Li;j71%EbHٺ/z,׏ ,y3 StSa0$ VndI;H4c`w~?Xs]0urŀ$/y[i dtg% 1yl`;vR`z|3:PCuHm3p]zie:XUKEKsi%{2Ate#GPw깴6|)t-uc'QE^]<B2jHB jԙ\K&LD$ۭ ;+xu5 /ЧWF-n.ōs<_XZ'p1dMnp: ӤȃlޘO>=iv4Zs!-_{Ɛ&!ޗ!7fቿA=(dj![C$%O~.(5//=1rV7iQ6Nx葕@VsQ}A)|-kVEr7"Z]BD槠H̐@'Yf@ qZ ~,qSISSSzp[J}:[R ۋ+teF!{q7֏e;=1 eX9?ܾw7@8W3$DmE2eIsR,v%i.Ah pL@4IgWQ]q>!ɺYhDNhXdHrufʫ:M7ˊ*\bR@ᓜ,?+YaSɹݰVzUjUV }ٷ-[}ŔCҘ,UxpPSPDD{{C *a srekrm\b/D$o#L.owʑPM„/^Ϙ gT"d>?rE Aw9@4Yɛͅ~U>QF~xMS?-넕MQMG2P' &/0xYc/|AE ҆;a8|kyvߛq5AjP`_dbT`?{(z Q8?ZNCYI TPf;LVM&#| K˫ T2#'YA6NW8Uck/fϔ";4cdW5LS.""b<~ñs&Gl?QČT:[8—M |)ޝL#Q(ʿ4v4^?t gnϓ;}|'(@>#)LVd&MCWƃC(2 \ ,+ ( <юLSH'Lffok!H`ܯek* DJӭkvGb[ aȬywP㠵2&ek})M بo[g_^71J=Β* "sbN+fC (*QCSqFtd v {]Di!঩dG?Fu#8i&Q%lm0׋mw.iKYgoޒ9"&7IHd/ QWBN<ܪcIdܕEO6+[To"Qu|TACSM-)u ZWr˞u`Fثu]/1o?@ڊPA//d QıCSIpba $I ֥/csDwG^x"5f&N(2KZѬ]MVP&XĄ Sl`3@5DHy5^ZA"|Y2!/ Ѥ ~Ҋ?5pF6^ɞ"xA06ȢܑK$ #z8IW>@GχJѕ\C2OZRWRYOخI,pUo' W0[nw'v7K H]I|xD<鏎aL^٥(V^RVnx@J:YQߴڷG$b6R!L"jMԔWΛMYpz>l(:vBߥw16|v*mYɋ5/M#1n6,F>-ifFnXQuٗC6ܓG&GY_ nL+'ˎ+H]wAdPS1)^h44Ș*hH/t$( mr B/ 9p"]>Xƃvփ`L汷}PLQEr6z QNMم|ԚjfQn=L˾w'yNI VPw]EjYFbO|1ZC9٩Ld #(3㴊A_zwՇWE$bz2gXDۮI% ̕% w5BNHQV_FښW!\G1*ț~WhץG}dȐIdjT]F7&(O0!-bJF%_el@PQn`:QIQ:0eHgd~ nΦ1t(kHyiyTMoLXcOUMm.hG=gn;ي'g #mیf.˸M%ZJ7uX+MMELtyܝ)H,X i# Z*ƐjVF1A7C 6Dmd#]:QFdAd?E"&ȒX9#-}&l{]P&SV '+)ruoByњ&AEda,6eU컲Kd Y*2mgRɿ<z,/4Cv=YeDi߲C\lm c^9NIfMuƧnHڣlR2Mɜ\?kB\bZsQMX3/{Է&NJ8te+GyvJDDriEґ W2!½![XJwNodO%{Hy4Y8[X`42N DKDJ1l‹siJ6vaލ¯PT\f;i%7yRc}2_' 0@qBJ NK5ʼ$]y8.#oO6T:'Iz_0orW ꒡"Ucc1jKC]^0ܜrOdY$hĝ7*#o*v/) q$vep|pXMd U܉*DyET=1]x\`)k9LI;Cl?e܀$C҉4:(sU&4XLL] ,ƒp9XJ8@h{#*niv[&+~ WXfra%@k%A+vlK=Rc ~RFF. ͼײ4l'?rR>gl.L֔a,Z4;*Xёms)Vr40~`U"MU6iל7dNT$ &^hpfwԜR8 0~ϜxJn׋ƋLB-JqIjuuM Y6>8JL~MQX\ݠe5ҳ5gRf&.'*[AeeoSm!<,d&{ˆGQxiBCYd$5MtNe.&4#]gu;btdQ]-%_gj~\C4f7o lPz=G5ScL(F ^EA0ju;f=nYw0碕q3,ZBbʊH|$SG'&Q^@d(H\^ݤ*c}}}FsίO&NJpxpU\;.F9F)QXZ`䲣QZB#%6PLŎZgWU'F%{;t12lU,bRSHY:jnίY%RHVpy~ /T)NūY&0@,¬{xvKIȐhwfXPEUu:j[эZ떇LĄC;|m{)依~TMFHN;t?K̓ QZ' A|];hYO+av5^̒_MgIN<~=U`ܫ{ᮺhl`\+^;'$2kX/mϠ|\B('5a$t׺õ|K=ke3]OQMBx=,POKti|}Q y'989E>TJRLG줏TC.QPbxO۹Qao,f- SyaE;[3w}M:!!|~SS(A=dR 6it-F>wf763՗Ċahz"O,$` y!<.]bLe(<}ԧo" 64=u6)Gc%5Eq; '], w0_1MpXx_nh%.:d[>k)mx^gGBɓ(efMv[yBDިxeyfQCsU\Y{/&+(L]= t4]=LBx_YAߕ22EWOu\߇8QНmVV/jq8[߃"iH nw6{16>"#~2r;Ym˺]LQ_I,C^8'qVF1x0xDiP=̳\`1G]m:e*ʮ,kdHW˶{sB^^i"y ֒xg<˰vt,ajS3jˢ< #Ehmlit. 0C$vw6sHF$^:/)x1ZY͔@vv#T;vX,E +)!=dMI4<&?Qs9p]V\ MxyH'$.a6]fdw?Qa:-ɜ?Ƒ )a{ Ze~foєуߡ>);[t(Jż <ݲ1ͳ=6my8 k\pjZ&=F)-?0DZgܐ !YP^X&].7$`9cȶ[`pT.7qkх:?!BLýş53tpQ$5$7ǝ J 8oc|L8NgeD'cf-Q]~)~&^ʏp[GqE$Ǖ-]4=+ /8L52ܒlE R[U 1:eZK?UHN()]NҲd&oQjd:a4`% C!t'NF`ύ!R9PmW79֥*̣ FAEW58 RC8Fc~~cX_W555p`Lw[`(̽(9K  PZAIzE] XmLNײ|jf K?٩ۅf.9z1#kWyaupC|5*BȥM _A/Z3]yVEm !&uWt0Lvr\8Gti+C#'7Ў%1 uMA(/jL]oM 9%V8GFN.-3)u=|QѨ_0_$r]Xbm[ dgB_]\alSD CvfD$S|Ds׷@qb&i:@S+ 2RbD Q#c'a=ŋC0ča |9O2L^$GX6Pۙ`ژ?jbL(}C,k+wt H(dV4Ib7TzoQ#Bp1yXI)=Uw\rx+A)D&(@ Vu n'Ў:e v θ>}B<Et-aX_GuʱnҢ6 W(GUC=!#/ 4lyo~#Y%0 -IGxE4ҩIm1N%eC;1L'9x%r1=@\HFrY9Kr+HBʷDJ]E0,jOՌp`E'==P(<3L (:MNȊGYF'K;|"؁S"H7dsnB =.ku4툑v,OT!8|ɫ`]5v5v̳eo '_Y~MTn-ŻKf+!+f7&t 1efu٤gt=-"LũoLQ0?MuԤ5n̂3 DcuuTb}a{ ):YY:,19'db1<ҔB?2nXax/#Nòge~Gkd:a! sH J sdןEoǴNXm 'kxG:Į֡v[p@ ԫ#b6r,@Jx~uP&]^V!'hRfY1"mL51XbNc7 .`ɤC>kvc÷2Ϗmq]ee4e8hBDZ* ڈ*RxkQ'/XPs,gBU"t*\iX-ѽ85Qm.G;%F@֞lWp1ϽR ̆OP2`rOaZ%oK =;gg, R RvhtEX^ ̜H!w8PtϱaaS06u_Sʊhz8">ǿcrgO|GA9r)-? z񃙥eׇ¿T"/]aS򣩺2Y)$Q̝S>k8Yc<@ڮ-ElΖ5>}\Cᠹ5շ22-iTǐUkwd8 G+zגutRr)_dلmn"i"?3̱#{2%(6=&2ַh=Ļr'a BaI!b,oh>aauf3캇)hB&$C%VKJ3⓮rmW8}ؘ/o 09R]}r$ZDs(uά^i M&(vQ'2Tz%np>^[j_':_ɰ`R-AUMrAyI*a9_0ޏjw8p="]sIw};0SS8YakM>]BfuWa'v!:Y~w* 1op7TĜ0䟥Ǥ̀]\[5{oXԅ)R>xn[Q ;9x?) d)ǜ. Œ+Nd/"@u1Gc&pcNImuN~! ~WI0W`z%1 LV5}4yIM?/G[ᶌWe\7|_\gb6" ˠO(ZEGs1hl^$6deeOQ[wZHBy{uؓcKOca* o-,[ۆ~ s%@z5 J_Q%|L3T[п7(,U% Q/Ɛamw 8M]>:uqG mu+MaFzȕ<5w!xG/ M$ ) i,Qzb8VV֣{ 9 V,HأrECL%J JRdhp hۖĽǘ<1Pŝ z, !1Y3.ͺK4=z#wyZF+}P&_a.*yh:ʡA>.h uRVz+ 2`qM!^"e `xqa m'z-aUSdCNjtOO P10KPl)s-A1+)6߹^v䮬 ֘`RH6X4.DVSI.ٟTS"qKJc_SOKThU.d´UDKg_U"RXbdmH 쨏!l ^Sy1̯UYrԡ~idWe(2JX C վѰw b  i'}Rxfɲ ['iuX)el*Jj_-T B 1%r .PF|l\ǕsIOX~d_+rPZ~k.b0Шڇ!ە|+ ]L;8*EJ+p|lBΘ}4Ni4| {%;Cwr/Gdѷrn.r80XZ^¸%鑫Ӎȉxd&pRIEu}7NGZLyՔ眫ŭ;X"H!)4R5Ϯ / -14=do;&0o4zNszN>ehS23. ܮ6?Ap??0s;}6tdm[wI\EC*aSJbt%NDW7 J%BxP빊N&6YZ2b jw<(bi02?0eY2'\-^j,Ooc}ii$ }4+s}\zEU"&!pPAx)ww b7ctS'2ǼɣLc%Q3ZԝiNQВA_ }ťk~ӊ}s?rĮUy!Y?NŽR uJ$MhQʂ-J)Jbr΢*GT8rcoj<~29V3z)$Dx[j2G(JJO,J|B1Z %+o9 xc͹K.J LvuxΊM{?c+v';BR#?"?v!ħo.5굡ͳpR~ɬJvjI`>r)-^Fb % #u/Yz崛q~7w,=}&Jaڱ+%^!1_#O I4g%qsb^yD.kMM0)-v%n(_)_`wc?I&=WEJ&iloјhٗx:S9=F/fJ]#ifp-ayZBź֊\HFLS|J̉+QF"AFZ [{,8"-\lRLEWstUAu;s'j۬o% eDAJH'*ͰZ^FET! (i'CzȨк1u,u"G Hʵ^R3uۦ ֟u]," bݮW1,vRS 숬<&N)!U^F4:Y?Ho5̝ I>eY`e.kNb17GVdYu+ӑ2<gy\{E.{MWfL'{T8%u簘C3XGT#w ;nu FhYoE^pҡyJl; K#F`Vj?VIY(S kއP+$uT˨fi.\`kKXɞH-:>@_/q29zaFɖiS"@qKJၟ5xfeXlr&CZ?,#UcHXPDRA#EU ]0;T(EԠFyGP1 fdBwюs,Ζ^D 7f@<-L`ȲUZn$eRC30]@D%NŻ' GLrmfDds/*=?yWuKÕ.ݮ?4/^kj'{E2Jy)^׍CX*:Qe혅](8w=KҥV>%:E!7w0;n6E3᪋ΚrXL0Hc,4TqI,JZ;xR:+;βP5)6G}+z$]Pv~D(-H_M7s/y,a#6D|lgIVE[&'"rY̓b'TV+RKw”d-j_M'=R(Ze L(I)BQW%) q*ә-džg9{0.œW' ﵐʂ$ Ovzo$Mn)5Jrn,嶐5y&HD GX0߁cK((>,|\'9ٕ+y,m, /EJKAzIa[- (-v*Qyswl~Z%fʢM|tY(+@?A2͞Gxq,P*((vRe/5 wѹivI[G甃 a?RP":8tQ&E$MzEcL,E01F *2}wemcW0e*UZrBg& VEX M\I&tGjyfag^IһzoiCs`*J(^ᘇS24"dwps D?ֳ}Rհ~%mBj|7÷]-!h£,:,7[NbL M͒wO]B|8yMڄ2 RGI\ Sh0=tpqWC~Y2F}u {,o@ʰ.QV hqHո_ Ii!>\'aܫ~@Ko,s/!-.s"\TK;Hpj[+ DD i:%m̦,|k+CTq!twE%KV~6"9QևGأLb^{-b[1^1&{}y?}6SaȣxThCm0&4}WPS$]ʦx4]/:c {QXZz\7ンORy|<2tpDH6E8qJ*_BHvø/q NK]~YQLB4MHj"Qc/$ˮ Ee\L^:,>hUhX_1QP}lˌلVW۰>x{SO˗;I"LΙh]h*35Pr `{Juz Z1\э9JDg3rawtLL-]mO\ݴn 9Qp0ZWe_ljv.|Y)("0" o.pZ|GjnM޿u4|]yWL0 q> <~rjF?0/ZudR\x{ȚkR,i@{%h)&mP̛堟򩉡яua[bMUQAWk~ ?St]%Ww}:dLXGMWUTY1e9rJ '+?m i\V]9+s 2Ѥx||$0}Mֻ2 1[ZAh8>uǃxwM0i pT/YT B+IAŲ#'ѥL[tRm?hSu,c8u,lG3eHⶴaEɤZ2 J`\(ǡ |aw|U9B@0 Mur,X} s{aLO2@&%<5P,mbqSToY4eFɫ+Q&X=Ƣ~ҰWL|p5ܳ7Wpge' أͻӬbڄDvҙ"E(~j.QwVv !d}?Wgͭ#d: yN4*S%x%߸W;$ؒR{b@aJW^r &YvGYSV j@y:v)6|$p>H]qN¢2\Ƞ.ɍbW)Q$g#RZE ApiyB3_1%[$ZߵĶF[]Io``+` QF6vy"| cx^kڬM>bNXL8N(̎ZPNa'"c+'|.wBå(U IQje %eX^h2 A[ek2ɟ8#۞kFY +32& XϒJ25 Y9́.!2Wd1dai(Y+Dqt cf';,U߿{vZqY^^P$oYPG.ᖌ]~ޘ 5Q1 N6 =?+KM<_8K7exSIztF2e PAuC,:aOS⁇e4S< oį{?Cx3qǙ^0yeik^2A4=ag] ,“?G?MeX$ir }HмiH_I5MXI55y4{bB7rovRY88ҿ̯yN (m~va7K=(өow^}^A"4fIf8z@by3;+V~ /eO3z!kWCBcG;<34:kgl(N'* H eW |-~U^y2YIp0,BƖvY.כEWIaj^}o6&T'%HRÀ~gJY y82jAk9%Aٲ@\=MWec^aYaZ)dY5h$"5m~l%NY5Ny˅/EArX)ʺ8rs^NNlgy !'RGAr)Q,>8Hwo.|Ȕ6?_'̌w#}ݔ)Ol Q5e=euYXINzpo&g1tai {0Q})da^7/m{zc J gd!mؓۜդG >p J_BH!ޫĒif6;gdhd :ƲÙlRh.\;lT :;%=Lr.-$?Se/B#Ys˚IRo:PGdCɹJ·M,ŖgO?C3q^2ݧ,cnrSPm/}mh+28f6EX+] U^Iwk\uҡ-JQH !姯;p)Cz/WKG$pOa̫ Gzj?n$\JdQ=GfgG>t|L]@[k8"f*RF2p'eJFTbصRzyKhdBUW(kɄؽнS,\P>Ӯ)HFɲ=&h.q/6܇y<{ BRw*J׎fȇŰHq&dC.SK6z"j,\pbZn  e Z4;}),+B-ҍXh*'EǾU8cu}%M#.g\mSD]B/6H)|س | MXSɘr-ÝOv(>c! 9c+pcWa+" V5S،򡭮|oKFWoMFͣ ak,8 hE"/&n! ٲj@p1(~'mhRК%UH޳-ȧ< @зX&h6!w’ec _{JccԆT4\q"(U!'7)tEX`0T"-$"Ed3z\I* Fșg%+x(/~m".5 _B%H2&&R.*tqz~66*.)'#^Wj )Ev'wҤNR u̇X,H _>Hr3ӆ&&wdQdl%áX8iVʰ]'* NGړi%R;?o ےk ?KFOB{m3Z=j :D '6xPN)u$$& \o~_b`5wdɲ2ON*i 5r\u Pi!vAav,/.*-cq8Qe؍k+lIםQ_,q!\d8w95?޶4HNV0xX$/gIDȔui| I9{̔ȔwYtUp09v~NDgיJ'~r҅͜(Db/>9432ٻyy WJcdmh^UT9eBŀ@P|&LǸ,(c9h ; [֤LÖup7X p{K N̚e<5 4VS+>8?h5\{UtmrsPGqaaſbc%blU ZĔB䅋 ?-"P^Trƽ"ČM~' aE$M+)9=kOpceGa#% qU ÉPY~0\D@`t/I$B%eX6,"CsR& A3%me;cŢ3M1=GU{9,4HYL9_f_}&KX!Į^i6?p,f:f=?cm6d"]eaQ{tTlGa~Α?{nflZ4K6ѷ뀿iP%J%}iڨwS&v|jd@sf-SIwܠ$42(GN.i9.>$*g{`kL"p~r]}T7\bTM6$ eA;FB@C^$HBB@/-ôWg83+aCM,Fa g& j׵_TI#ȩoZD]"X^Gbu^G>2>lۭ `['|1VɭϏKh3NP毑ez?Ws\͒/дty_b:Bz"UήH; EO X'eL8-̲e_Z 0S7$mUt*EawdXe!'!cܯ ͋DOi,Z[?)ƦW'+Lp"y [p)]$sv&NzVI8XGGśtidx ۍɒ]ca X`+3B4> o&48K:whg2xeUԅ*ڰ4 H=vXK3 8'U n]~e GJP47qE^<1$t"Zp)yPƗaEvP(ѹ?v_b`^mLp-,}\2 k޼~2gpR8ǩ#:RA(9f=7,2;C*ᠩ Rd(d*N ]ŗ>PR [֯ܣW,yw2t(YVG/0Jc Jp/64@u HCkmƟV^PH ͡ttJ4DH1:eG@[o")ؽB;eUս˛ u4|ɛ`(pJZ'r2[ĩ^#$T xKXBV}y=K#mLU2 ۲^Nܡ >KTwk|ϡy6cLv/kvN,G+f^;H;`0=ʪhbEsp%*ILI `XW/b+6oLg#5nԱq Xi&쑝?$_aʏrGa/N ~6<4PgiL]K(-ӓ7pሔ,[VMp"PtMvEH7 ~<}"_"{K"'5L;YME^q9"ap ]~ (9a^l@n+ /oۼ }hʕ@мY7EP=9)ά%G9xӉMvt\ \.|TX`Y\]j h0Pa,D XbneJ`hIl [r#aqb֩,NHb!PPl'#bGeNF_av !+3&yBsQ>3u`4^pF5\*-jA)@cIKi)]8&0#}߹eJ݆fvO},ڴH>Ϯ' &^%)x\lsl=1h.K{kі'.: ^ O*QDO z?qqjn-UikI0256& ?b;$#"Y#I)*=}(>7{L )׹*kB52  PzeoM\%ȁQP63IMJMݱG=y sƢLMmIl`gwo{"_ u]Iؖe/~ 2;r(,Dž2g@Ϫ1N AMuc#zckƾ{_/m٥ ,}h]!^VQwxcU!S}ە%# ٞ{2^1&%ɞY\k&")yfQʸV,^@wNBst%(?垆$liQ95gI"B4y'F秫$GB& &Cٗ4.E![-b䘷0[ٯ1 ^_xoKDCmeɣ24E^&C~GPƃ)`Dc#EqӑM¶ʃ̡(uuaU🭺vFG{WN,s)]b%j Yv^ KS&^Qfbk.^vc@"7Y}RA 찰?7z+?q3S,gXxu jHN 1`)B {쳤IQW]&Vw{IOq%8y^\V*6%kÌ׾-]_ۢ,Q |2m ȝz6BDU’uE-mzQf"EN &}tS^K9C\oX^Su-u02ųc4 mnBɊ֑BGWf:OP=_Uw>L!u+O'Q >ԞuYG+*3٣,9频X?r-)([d1RZL1 43lD~|n0iSPW~m\v]-cTT2O&uQGw4*Fւ62!ǂ@&U`jm۾3mQmR3V%}lqjTӸ[ Z8(^Ähzp߀\l]SwPv.?#04^8O- 6l!`q@iNBw;MZEW&z:p)QoW/c21Qo>Q6k1݈[a/W¢xj pg^7 6rt516!s0 +*HD`h/o׹g1’Hck階 C+. QÊC"~RE3 ?c{a{ i~q6 ǹ 3GܸIue*C J c%H:#:"ѻBRlB%JO ASK0dIv y;Lq6tBԥMx۩5~ۡz_1uz:Ith" hWN629b vxtb>qionF@pMᔹne&1RsӶ u ^"QA2S0Z3vЧW=*-YⷰgrAƫP"[JQdfNٺBWce?16" '|lmV UB+/҅ ;*y齠cA1C2ȴQMyH>b=N=\'Y3˼ڶ^& kVHA\}BYJ]0e185l׉q[i|5ײsJ.BB>lkسuvүעLD.|*kU6o0G 8Wz$yθ< _{Ϥk;ͫ$2F"+ *1ףY }<vp}z`:dbJpu4%+5lsIBTVJ1㖩*~#+ap[KD6 ZIV{>CnL$rR"DJAKƇė[HJ"4ر˒RB4cj}#[S6fPˆ_O^ SG"OgS_d~XI2ճG9f?F誕iuyr~~<\{KrMfZYS@a%%RCkAJVXjeļ^##=upp*Ie$a;Z<\Ҡsz1>5o"mxe1p6o^KCTA$S]1컺( 6.EI(goL5S|bT&-9#ݪU C❺j deKB 姠R"CƦ!s8\ڲo|&m"kk2m6y4,6Y3J&Eyau[ o(US8ٜo{aBЌQ]۱<|zg/ےSv^Y:dWn/ ΍=m]/C&4h {rt]vd%@KJ{&aB1@ֻ#ńl_g'/˅N,(//k~oăcN՘DJE 4=NtEF+|O9IG^mMG$[hwN gKlU6&I"~vA$7^ ob(νǻ6/s쇅R4I`~Yωam!4~~^f3SOV?,ΉͰ_{Ît†yC%xMm}TcҎ&Q1DiubơhՓ?YF<\yjޚd G '׵2`̽B@)t. .wKoc3V}h+7DS~ߘa˭$jiP# uG&$dOS?!'G~jD5VN+[Rv#MQZE#P2ZEIP"L#b=tΟ ŴyNƿbznLCtiIXmLgbg%E! tFj B▼^{ބXz7N$׍,RI>EجV];,č˩Rܮp$a*Cn5GO+uer6Yc7  Y=In/=.E+B&vb )Ljb{ }ooc \g~N*'ƖaYC2TjC_}Se7.]kE. ra,V}!"p/}^ntyLi'AU"E΀ڽ]&`izGZH\EZ}TTZ~ފq>qp$ӫ(۹& |YQZ%'$"gd3} ̉eo[: u䱋x=|\ ?P''EGn] u._p旆eWS $''3f+IlUH۵REnWx dFbh] 8_9 O3ׅ v7/tW$X4ֵ4!Xy+smbڡv@(?]ɲ B VC%%sPy̳2{*ol]nvܻ_zQ*/\)9E]e@AUoE9MWGg4ID9 a^`L8DD` {b9n35SAo.peDvcx+C\YF-1#Eo C=酩Q@.3[{ZMX7^98*4*~D.ٹUW{?&|4y,AmЀ(-k^,´cy\NO+dn?_ܔѻ,p$dԤ,a;:v ÿJ d@]l,o$ZC-~gjM6v3gOqEAE<,IDaa91-"cC-f>0M^+~YrQg|ew.bPquxs#d(?aC]%8Ty |[MIe!ywgUnP_ ez{fz1z%]IbYVtw `2NM~%.PNlMxkTeIÔZGX)О&La[(`2 '?$ťARԑorp![EW&7,طBzxb*ձ˄6&.r`u/?*׫rgSR-"0Pב,|ތV1 "}pIWSaxMӺ<Nz9@E4m][nKXM"#Ĭ#kk" 6Sv`Y8d$ [ cٽq$9 q~dBOo^pաB_uŤ{Ћ dP?m @X\(ބH#F=3ycI5T[yh8WFpd ]eQ`,Xˠ@q#u[ORj;!yiy0~=Moq9avHBE|*DWBm҉$2RÅХMX_tY{>nc^x:Vx0\T0+oy?EZ.^0\woװe8}]KYW9ta8ܵJA(%@rs@؅,vYliyn,UBhWFoU6a|`tR LYMz48y/@DZ/YKɫ)Yt~Ry\i$ yL{p-1wyRL]1f.>';!K:蒢z]NuwwAȁBg!SV_8;t<"2PFK(Ԗ\~# mP4ۘJ=5ucRtoj&yyO nPEgyˤO&J>ZIڇ161[ɒd E4U`k:jjSXQB(w9Gwh@8d0r=GYp+EzHzQ\i kqJCڕYd0w!9N!OԔal7xIIG[Ԫݠ{C$?=(JUfFf'lg V}[d`}yO4=c1K1z0d!TYa>?1t%9Z\o)ovK`x$)U0ZqoʑW)W-):=ӘX͕gixN.{4 $&Y‰/8ߎQGrx#$kUc˃OyrNtK9Lvd {].y]wIk]Sޫ!ϑaL`805eؓyeQ|pgDa$-Z>L*mپ KW#Z0D, yHۥjU]并l#]Dxt$ s^5XU֡OcUaޥ8I%nT5RW |,9biT^F8,,EcnG7)۬b7XumjUx *AYMݨ)thǨrMH R_Lsv` r' _ X$DҔ:obʯ2~XNŴ9e9vݴMѥ],3tMͳPP+-xdekAL*f?9%g8cLop𚘦~l[6ٓա{StiiELA5Yy4<`lEW' T)t;"IDJo{)w?=0tFJ])#7mV| cD+Yب+}ڵeYom",SN_`N7 m\f~q۾ڪtk^d =0Q Vw~wBk^{&;UeG1 ss($"t ):M[/HdVPL!1ݲ;M)ә-_)?1G8)V>QV5t%edנlhZ2aN"2J oS៾-V ]V!s"U]hV YχgH;Hj`!~y.oEsI =9ws{Tޚd !D!)L=yaցPq,N;b`uvu/Jɰ{XIe/LB -UAU!npc=q&Om =(pذulxve[P^`(]BT& XPфTyVh@L0I_3y$ u&}?ω)\Nɦ &MP}9Ǡ%ʣC"XK&6Ϣ0dQ 0)cW88bJ*Þ䫻9%oC {rvZ*HA&oBwuǎp2lwUUޢTz)D^LŹ.n]֩'>bwocdTC5)yuȪǼLJ/nlEfQG$~H? 1&w2mi*㣷v ZCJjNˬJkCiYX%b .somɈq}g_=#8 !/mo [28}Y$I#+QbJy Px̟mf/ yw3VMz,.V3 :28CM#PQs&E1!CKa>dG|dʙaVq_yؗS|{uPؾG3>P~ڰ_y ֤IcDt2-tN^x'Z[#yt!oLD kEєM{@Ή4!zDN4dׅ^H@4 qΓVG.Wwʳ:iNp(UdhNE1Ĭo 2K?P~w  ?{yzvnxS /W҆[ߢZiP \ڥ̗Lꮼ/]Xpf<鴅]]T66%Ɖ NzTj6VJ+)!RЫ<\F}(4]I9ué73Nļz!aR\07݀i8ݹ/ S`r$Q <,dr(w?! +~xa~+&,a.SYDž}3nkd͢CEVt Dޭ+h\xR-Xx9xG"zVimv_*rM˩3jX0RzK@\ II.7Fz",J ^i\?pZTa Sxg^t%cx סK-~jec2b C4LL * _H3жel8Z&jX঩ʪt(M*MV=@"g8h#LI |yǁ#?-|mVٶstATU]*:;B7 ρ2*,WeR3ڄG@!%^zaӮm15y'|U]5Yp+] þ0#ӐWyr1K@3La營i&BY2gޏ l,˻/d2Z)m%ը14bd]MkA4S$>/I41t Ǎ2B˭,/t*Ó8*o;uz.N| ݽb|lv)K_ݒč %4JŇ+aG,B8J!б喙 U_?ĦYܶ%$#y&M\ q¥TEӪ%Wd_ą|O?I:y *sZ縠+Mp,4[EI\,[dF8̊1Yц m}ad/ɧ#, {&jjFwbCf^GHUWաsL*jSȴ"sC-|#]0)-Foj>.ɨJ:"9@e+6 'e]آ|D7(eA j} *GلO5\("In+<&+Ga=;JKtif›P$]/-Z-Z}|\6"c)@!|iD;RhYAI 2)fQ_s9gXlIvH4NT`+IWnSj]BxƕVs?CmRtI& = DEʬUe$j+QoGxh>/f1](ҫ% 1 i'^tBڝL.~<'^,i\J$ca.NŒߣ#z|vs2 ڞMkX/ʇ$? @ݱorapgpFI gEM(1nSa̷k7 Ɋ @Z!eeޟFVCoGw\Ck%^pe;-Op^Hm;yړt2n ʽ.eؒCnv;41ܣ5 }L4Ud> e97ec2ܱ3n,S|HD)YGay'إ'#%6VaL6Z<*iNY6oU*ȎvW/ 2uBX m߯(z/xߑ)&t`&H’EE~^FUꊩ RFԃ.:#wPi>F?O{I68̖y%>> a5. 7Ĉ1S *B?ESV^-.1'LHӢf#HPUZ6u:ڪl&2a,]""e#;2*\`F']c0{S;-H (jʜo{*z#|B(@cF#x5Z٘I2qXwKde`h0o׀ǦlHꐚqFB筼KJ[Q*vudYM Ģ@ܪha4#4M]IyX",ɱxǚAc*[ v#76]SI 6{WgjҪ]VnJ%aGit„ޅfl1t%^I>)`R!i+"h Vz*5?U+7ʗF;=)R&z +ԯxgMLܔRScK^(`?ݙ[|>₇q0~n:>!q8f$ճ} @ݬ_8a,qN ^ae*Z*'[h]jc"OQ ߥx}6攉 mh SKÊNb yuH -֪L}2.C@e'+JQ³9Li~y/MOx'b)qZ%Q"Gf7\ʆh#_R;!X iܩ,߉&bN *ȁ"՟DYZm?/B(|z}-SxT_v~ GG&TIbBx”fzp)"WnRx*D%َD]E)O2(R̪M4|-u\q= 2ZW-~'u#/l 'R5 Nv?vfiuFRP]i.,)$hS##1WVa#^>3)I(TN >Y0܅2+S0y90(͆=LW<~}^2_PdGxʺs$ K]V92,(¹Aݡ@-|}$ű 7+p^I0VE/ zB?,`A3hm\xy\mVq YW6[UEv-lHnjt ɒ% q,R"P"Ԃ n磑;"0Q#'Fofv1<;M;Xicau:@hDQgtr7‰Ac;A>?|ȗgB'ӏ:5ނjoÊ(( 5V1ZfqGBN%\Vo=-RUHmi| sOذ_q- wdmZܴ˺5fJB%&VU9p]yju+:18/E7tk]I1s4-c~b{[8EO*K5n|=:IH!25K<\~)2vx$M4?~ODİb2\JkxHHD%cޢgeT8$$Vb. >~*#jk\mӒ)3J\Zэcu#~u!2W(5.~erk(06<бnԶPK֒e6Q!=c) l0a!^ޖ?NczLx.7U:x/tr_]/5S; D=\<;$Z˛~LLHɣ b U^](%QF rF/GV}.l!T-b /zԑM-WKVҗ/;Ꭾ[W;AƆN\KӵY< +bLŞDi%P{xp/1uAlxTY6!8a,_l^eryѤ%l%vxP)`򮼎1wҺ_d>u},T45g/Cά2|C1KۼL[WiivX?Qdb Ghe ɓ f*$W}:+u1BBd\ʱg#E(M$%[?1_*++#2=Ox~@Q:{V͟k|hP]l(ԌX}uQUԳh'hP+q r^'h|{xo?^}Va9I,IkM9 L Rw #YP௼7ѩ~=L\42ƘC 9R~t+hIDHO- ό,at@Z 4)ݸ]6"\S^QQTF](pepg[0z_㌽֒J =l ot?n4qRJ$7fr]ja· ({1Sv1 nPow5ckOG/-4M pR$F)P"WiC t0C%VV.jL9?Pxs$iGحO1݇/t%2jeۑ%w2*7$HȎMB r|dչC 7iv1M~?.77$hA7vi*'yy@_rDΨpy FVB:~znA {8 r(]Bmڊ<%7L,2;lE#s E^$-m֕2MpE!UvTZ)`q^!j혷g;?H3]Scjq#B;i6EB,u}J"+ŢRfJ40h@*H>b;^75.ufث01tPX;p&j/P}oFqp?xw<ʻtKr`\!F,,NhT$ޗ/nBӲW#(s-&Ǽr2*fٴpF1z[4I(j[Z(*O8nLCjz!;O>PTZj2TVXs(aNW{ oI~Ivi2(ZQn ::#,'&酿h_aHnpoO]y#uK#)tnU8MӘBE;-RHr=~f*z"%ە Bwg(j 8|ͭkZ;v^7^ޘ*v4 ̓vÃ_0vdDkNNt=Efꖙ9lJ.i6 fd+;!+O섲"{сljx"S4.DnV.wN/%it}[үݦMeBH-!Qe0P n> a;ƕb|. -'KYedR֘$R UDMs*!3VB6>:2 >tΜD| bES%QhI7[pX|ZϲJ}?<E?TpF*;!VnI>.e:״}#-uW:=8X]cǞ^H.]iWM뺆>Mr~&!}ae64XZVcyGx4E%KHUɌZyqw;tRaTs!2.D₹\ >{>~k⼧ Ikrxz!1z+,|)l+L5<.֓}]HP U`!L1w]YeweHr#Vu)ɫpV*wbofTĥ.`G.S/UzӬK&7)_\#y{]n2&9n;KZZa@(xVbz!eZ߁x㾮\[AU4.n~^LGEpQͶj!.Ã7<pw$A\N[鳶L}8oʗy7}Sn Wb0kZv'S:w@]v&qX]b)Ef$(E 9tȓƉVX^ ʘ:m nLM'ۃ kG3fEAV8HF>xqGdr+%tx& ¿2yŒ7lZq2G )#2bgȋ=W¨.&2~'{b'2#hCE0nZZƲx 3M8]%cMG8bnPd]G. *_zt\j5H2!6!wI.-w +5!@S& š(pNRersh~} 6ν]j_cx 3Kġ2eҪ/eI0,vsخ$* OQ]@V'+UFŴe]@JS]u|ƌ,p[e?Gsr yYT+~:7ۡ„\IWG޵rVcy]J?~"@2r^ ,CDMYCeΫM:F%PZ;Ԓgg\<!yr 2T]ˍ!r𾹎2JItr;L#MBi9^Eonjܟl/>:hڦI6ݣ%Ĥh#_L.2x6TΉ . Gذ!O@Kfdh u[I{<0 b񇳂Q`1sy߶|絎x&W-~ڒu"tAMD8lTX{ŅaЈ::46&κ/hefo.Whz&lHML]+5Ʉ=G8,ڋ-9r}q"Qsq*_u4|aԮl9,N y59AI{FsE:|i4۝k^|$}&D)}C?Ŷߕ<嗁h_^U84/[h]zQe Gi-nua*4n滌B)XƬ0N.+ﺤrLsZDT-2I`G $9P{yorl&*+ z˰6eCui7iñ( -IL5yacX  L ib!oqͥnm{?zl(zLU:~tdoPab306{>,0؈= z㟏϶S6=RUe̒޺YDΨXm+i6R46iBiG8u϶YqXvYK/k8KLZ8Z͞Mă\rD`gEJq0mҥ'g~ [hhcX*zU;2wK/((@iēVfZ/ WLz#ZxrM$ 2nWBxX!r'%Q&w>FH+11 ą 9/~V5yY'mGacxKD\"$* NL/q^OyO"˼N, -PmUjtCc:e#z':oOMٜ]堏 NևCD¸@U݄0| NβT;!7|Wjǂj|VWN\L_,|*D‹ Fۏ˼͋~(m%qAIjCXN GEƶsp982X12f;mylᙣeqGBWK۽mC̩lK&~XbWᤳB{whSm`!O2Db7RRL1CHo\pgyMXf-t)Rۊ:eY"]s+yA1Bӻㆅ_+" bẙ;7ocp Viݞ 5LI8Y.F$,ܳ,܁3ghkFQ&S/:8CY6.'3zKǨ5\;]W0XWf҄EǯfY1MY;Vy[?CO֟},}>^W?frT5-Y=*mC $Y|EM6]R ~ p?1P#!,.^)]CfU?ǫ{<^~J,fBu͉cڊm^TKj=~vFxm,%]G] 7+ ZJ@5P J w:?n]I{[ZWxB%te #[x(Wx6ijEj.eYw4:5uPM@ہ"(oNAwoC亲߀0oi1uh}dƦ]G*{^J1'^WB3."._V+ꜳNG3QMd1p4l{het)|d,đnu(qDgœs8,Uyי<Ց;5yz-%<@Rv d_ WՎ]i Պ+2f^^=&+t9XELhDlEþ]/ SP  Rn>r'&=cLZJ{Ȕ e]Z_79zte0YΜ,,5x)b:OJkO2]m ԇ޸0!QE 4<*=^?)2cʴ HpVJ9Oe5&{5/M|^eT%Ǵv*wZ Ml9 gv饲OZt>g%\ g.q}~M{ =V0UA*/X *+GlG`oXM-o۟692od8JYj kWeZF5E}0\a V&4t r@ ێCp^۝|OUMZ׉"zbB(2=.M~.afD"2dA]?~:zr Xla,/^*$\޻h(.ÒJ;`F~O˃^|KCv5O}˶o9^`ҙ?\ɉnE"t{ I|},Hv0,V^a=p S%=! QcI+ 7 e %#ijΉ& vHHdW*m3VL0,*5e -`9g=oY2JW{.x ,jsҭcj`AR%"SFHe@(E7.܇4>M9fa>x@fu5Ub(ںXjҡjY~+SsP_zY?I0q?1)p[Z,t-sNuy* GWG{}Gf^ׯ3g+9bi>X#-|׼hr م}թhoYϏS\X=lQ ~ZYq6@NSݬj 0IX(!.ʎ:?: / "y$9pfL/tRӰm-B1F+9B /r_@I *.zV]ʐU b[_n,D:߬IhMJTTiԙYl٣Vy=}6l `ۜ-䈲} `W|v0lYs`8Sj;݋C`9N:z++_ %2.cY]".UMR82IG ?Niy[H;ViYM8+&6-\ jQVmv(Ay@:IqP}Mn($:{z`M+wc][rfЏԌsSBnI3ߑ!+5,">E\c/NW6yTnMyq3&"Gy1 ;G rܺoOwK-QeDxBeh+ѷH)W6N(RG\TEϠY9e-I_*ZOgxMUv/2b*GdE2_ܺ+jenxxS*V%*Sڹ 1.EUBK`&e;FP9ݜz!JH|\7}|u =y\Ai7nUYRsqߞCLBA*(#՞A"TƓ& &qR /%C(cu*$ LBP>X;c.UE%TqĤ3s9> H"3LIڐݡA]荁Vʏ]CY7c Fzu^W",ӻ_?(pTUW&uamh:$NL| R$r]ɉGjjsaG~;RE8)Bw2o\Cx{2&JH ?V*:u)H@T.# dW߷X}O/FkihmjCŕ^QVFjY^D5ل\wLl2[ -f}c&XskӔu%Kh&ܖkU$EhџY]U1L6 ȿ令bؽ^T&eJxS[>C;(z*+bqm7.3yX;'nHVC*dߙ݇Ǐv"\j84y:ì2j Б9w&w$1 O3{/IVS\q2 rY> KY^z"I=MYSyś#67Ygw=l]֏e!I2|c]WVi$ftyY)"2@龗.R{?|E ܏Yl3LeF YX,kv5ByPGbc6{cǛ($'Uޤ x_TٖqX!}]-iDxlt9Z8d\ٮ#=n79}uDh*( YŌC_~iN {ZWi^& Փ#%WfC7{:{8H$/QWEGDBJ%yKN33(F(L~Eujˤ}BK+ug:(D C`^|sEPlAo7[oMZ@$D|ӎW~ކLN$(Kt/VtaEjCdF<LZb$@pwLqh} .zz}$u^IJQhJJ|9xI<|+u6] *œ1-8c̮pM^lzB Bf8tSj 0ne0(_YFq}܌cھ'- z#oћ]5s -=&g Eq*Eqzh׆ƃw-n6y4x:DBtl [J*Z#iՔOdq!%2?xͽ4o; =^N1tE|]7uVY&B a%BO}tZB~@"|1̗`#+d|3{C?!eXr  n;!5eY"|PcDъpCK <.fO_crEɕym81m񾀁M}{\F[3 f'*LCpM$3eMnyWLnWkQaI"W!)WQ~x}jNu,3Ew3< KO+>n}ُآEW(KĔ`t->bX/NrVg b=2'Nd lO%|rᩢ jKSn*% E\1(m[Y>y+3俨ٮ5|lVrqyO(]%(H.bٴwA/>~vP&'FpRvhsԛ!2o>ݞ %8W]8qʷ;Il(WU9E,oע㹻~8o7(5 (g"fʴ`% ]iʈ!ULw\mXK1.#l7ٽ7FN _[וDB&:qytMr|Te(E>G< = '^ 9@mFy&N/hКQ6NπבNTYXMF;D.)H+$X;9I]-\b!D:}^?(G,+g4k8)in8^ÔqK8vSZ '^i\+$ȞbiٟwUSI4 52N _ D/W3:ҫ1lw)c/~5(7y"գ4StqB[]p|bexY:c2֚e2a,g}OnK~$M;Oe˕ +Av!׷+oQK&β QӾ6MKƉ_5G0/>GG1r+w,,W&+ Xp5OL^&햇4J}L^"0ku]b-+f$eUiPS,2IEc Oo̢([qDx[䵊x =X"R7h+)\ʈr`MXX:6 i?BeLpɮضEV~eq̼(D*k4(-C3M2&2=Llv>WN9Lh2WTyad;dMV~U!h<[6j0Zt4HNR`4mjUXš%c}6n+ZοG_>zd[gI v] sU3ʅiON0"&Ku[kDF466ĊuINF6(t=f+vAe%&3E9 F=G>*,Ua-tnNu.[UY~qv.VM}3LI20^тWZ* b9e Β< =eђl_s3&eA:JduU5 ȔоAp*IMpKx]" dC6$~u݇ie(a 5MX9TռIbue_ lSLƿ(b_:䰒 ?nB!<|Q2 S5Fx躦yTujYTQWɲt2:nqAvI[xS{>)In^kghѐlVugYIӫ˹y](˘pn9ux oF%DyapIU_O2u/#u8 f]ѹXVe,CVf9;eу0IZKU`9΀smZ^n7&i;P!*_!Ia7dotexL1|$18NM=! zsiWDJ^.)EF&)ɚҔ&P15P'(C>*qP?b' R7:ښYxy[fʺ4_tLL# WGXr㬊0ap"L,qS&+k|[o;~`fxݯ4u 7Y֤)J9x 651vhSƊ`AN=׿HE6Y,r7mյ4|B\& Mɩv= ؁1ʟioy ]츮={*^㣝q~h&46d7uN=DH6.9hYfu5Td`~"Yh%Lh[69DpY\A/"arTveR8?5cʧSxMkȧ>j0/2{М8مL)m#ȖR`b=US]`D w3kE* !OxO0iˢJRÖ;2TK4.酤.E ca xPr"Jc#/Azsv̻[h)O8UGHCwie3*U4kE6fԒK~qvqc:=WEӷ"9,NV.t4Vб9.fIex vcz+O;IhMp_2k#\={h}Ͳ|>aU4;;HgIeYǮa\Dw9^BYY)>lM~$:4!%SeeSEd1F┋L~[?5y(^'bmWI{Ă_,Ʊ] ֓:r EA#+J4*>?qH=exԾH"ǘ+ VT#!U-JfS% ,$;X~;HsI[+ b^$} rb }\Mh4U:Bga=|߅ÉC*pJYMnղdWH'YwMFpZG8,je[$.(++,(7U~2.qxDm q=mxra ߗ,kGЇE.?]3)EhҷW#3$k_V'מV;{{Bt$ C{^*4q[-Bpʣں[urpW{>%ﴨa)~ώTv(7DMIHo>">*H j6,QYՉźE1*'GV;u]m+C-|`Ex={Tc]\:a:(XɋYx{x)[v)B*g/v˶RЇU#1W #f0&4Џ6?-tB4oא  IRw8*c^~LG!]idJ'S9ZYlÛGɿ֨D狖L&ͷ$ܲ*掅?;r;+gbJMXL%R18wﶣ5],nvӸ }K H=aBǦaE.ŇPe{dX.L@,1XpE^gkxY3Lk%LL2jxkzySPx ~- p'#{+%AA)2=:J@wU׽0~25䒙T(dԊJmgIr$}S)l飩}*~E}R+RiFj4ᯋ\ \m9 ̏kJ؏4i} Ywn}M51PqͯžhB]I*% yL(,]b'2ч!=:u_k*|i=O~QyȬpt?XԾK#=iDm'ص"o۠AC2,-Y֒-i8C4s+{4kh]eJ!Ӌ`[$"Bx,6#~3C-76%2 FZꞝhk=b?^LIO[_LE"FWpcaj<u~.rMGs]SU',T4# c#'D8eW:I*KP"͛욺$Ѕ7ӹ@^2=nĊxImVt=hv] Z D~nZo}{2J&,ڽE$4~jRY$VҀ"Ihq^aSvqnA?fև* n3ƯE2|[ #4J1U/FDŽq\UߪKE/Zulsd¶0Z>vk%mJ(3zJM[D1bP,uՐ,IhzدB劄hfSɪxey,{I;b-[,Ap~LIu@Z {Oe#U =gu3:%g$~ )K*%}pg!X’#C=x?z۶϶P=Hm"w!usCR''C%M N[L!oZeƿ4b*R<׿ޤ oAyJGċŃCB46-i[I&DP*|Q% Ȉ*RQLo1`7蒒^5t]5m['gɆP%bv ^:z :U뫲vj|!bY~;FNl?:u[QJzUʸ(w͉jx7 bE} 'i7D=ғm&[X>z\']^t6e&Eh8};zwO!Q׊]Xz )<=o=l0ׅ!u2lXp_ÎXvcqdᥬan*f:e")ALUɪi}=b)> %qkRZ>q=;I2FSg+}}&Kޅz~?GVL8 A+\?/TEr(ǰ+Ng!yVE]򝃸(p5^ Ȓe hX/Bkgg )K9IEEB%9Bpܵ]h (7Y7q-,_+*zΛQi(tvĬ&W2]g //T8)BZVgMr$EFycMYxk֞kKn;yBs"4/cHJUFzaV:*Q]s"#SL<[ܶhA m*Wv֥sٝ9ATv@ǻ6Ŗ-$QFyia.fÇ/y7/p a0(:j,Z$Xv# R[K8"=$n8ngAep߶.X^$  ZidLBtN0~W PU (@q12 0cW)4$!qxfcHhl:+&kPY&>{(ե12p¼DH$!CAuXH>ѵgE#zZ?KQíuʪL֖-JѺ)m%U14~N-Ӟl6Bcmk.$U֚"io]b1e$@$*.T_(sΫ"$Pn2GtjkHۘ" X8N󴮷}\+˶˫"i8V&O I_ DL%DoX1R@D=bAUNۅЕ7U"D iEQ7^_ӥm" /(3UQn8p?ؙ ;,zYeH@hbVfemiKC/VwI< BI4%,mp ;J~Y8dWshpdY5a[!7 )u) H k{ SXX4ʃe!>gFAɇ w(41,^cHCΌΙ(c#&U<:]6وqCRA +F\;xU}ŵgm&\D*,v)MGē]YHh'a#Xѱ+R:E>,@*7E[E@0)4Ӵf3~ƹ q7tӅ6 W %@GY`YEVr̘*y}mi7=NvZ$4ɴw"L GQT ˺RO{ U&e;M"QLf8Thޝ)p*5YNJC.}.B OAjR%]{$,}|!m݄YQixWZJƥ3dEGAc2y8}€8ɗ׍+K m^nHfĔB/ QᔩWydʒ1tO^=zukYs^Ntlaj^ҘK/ /4;bҴ !G}$GH g֧EK˵i Yv}ˣR^:/a$Ӂt.Nʎ;˜G&JJ/_pΤ0FeGАp;U+5/YZNØ!fyPDH vL`QQ3RHj11fq‡*y SӼ|sHc8(S6HDupcL"J-ﱠ^ vuebb(wP߮~gʅīd~3Q"`gvgw*OJxC_s~;*UĀd P堲D dxHy]<\^>թ p|')4 ubxI7I_qmrD,veWM' K҇vmI a%(lFI,fy)4?F&꘠|w.9n6mRXGo9ܜVa&wgTʹmL֘etKg]訞c4c2xf3U:YshJAH)"1,1%82!6ߥ/Tnyp4fVʅ)#(gu%llPH ϙ-H(i"|zԲ;uu( M$u6?ŎwB^4&^UUY`"R`wij6(~|c QaMUy{x08{e np$2R8m)8HrXVmjqaO1Xp3~^eєi?-6;D8_ q/Go:H-5""6aH 3K1K'X._˪,&I !eBţ #, )*E $Y!sB2)3mQ׎ gZ8UdrseǑ@eb oWn[g]TӪ"/h'1mAUc;Ό@4h&Aؠ̒bEɄv!i@X/# !K9CF5]yE@cH^d=R-%ZVq%YXtCTK~4L!olf QWͽ`mvU2ʬ$լ॓5tһqw&],=ԥ>Ń;N7?rM`[bͩџzed)`ZڜҪY JKX@Xn` r"'pڥ.uˣY,SRSľ HZ%A2E6}/TE  iqdꚇPǾף˯*ǜW'PyG[q*j'-ƲvOb1 Rt0Jh4fÐud aU?Q+A;|P%7¢zM㺾%PqKl gn§)LP #|7eijSP*L[ݚ |i>~-OjgT QIdXI=ʫHSOfj o0a;R <&eZƲH2(dď?< Z[I!QЋ^:kM u$ϛ*^=wR"IoARTl,?8RdQnQZ7ٚF/f|pkK_A{^k[)©ѕh"81\'?dиЛ HdB"D^6ʹo_4k3=p$diO9.?_ :Y}?D3/So%wO߫I {e JPH.b%' VчYAv.}mye64yHWQ3\1Z) A"> * Ťow &9pLb F`_q}V~#e'b) `_k{hG.D8uؖ]ag:Tۓvnu#)_C74T\Tix PC_bA rwINzM0IݎU"Bp&ȭ{y}0'nm Y~?mo2M6#ﱼUA,D$܇N8Ra^1,ԓi̔=o.7.ƒl_vYuf>*h[NwPTma[ %ٗpڲi*CU0m[«!. `R)*ҧ}&(jkhe|--䘐=HV3$MM\.1${ 'qys1U3un)3ZKMUDz~1W*.q:@gvl:Ïayp<`!ѱ.=eax?MHuZz1"*4UH/ek=Cx SAcH390r0<2VZGpغs$E1ƺ\1XӘ"/MM].Т<@l,FcxdZ}Z*f7Qcfr8 )Mj{K()EfK?]5ϙI1hv6h72ռI L9b1\lD\ZQ@! +9BS~cLzrLC)dG8*cеBLbt&>xQO6}OξiٓuT]{ &aIi,◪&e%cFIja]Yr0pIN*;0&X_\K&1wv>e.//pYL Edkvee`mwmᚸ`0]eo To٣2^-LT7yyz?_!iz7N;B3Y7r.&'?a m}}j5G68(<|W%3T0IT)~uPI:X#~{3˪, Ol<h+zbzCE"ﮏ%@/cd:'ߒa [y# yٓ+ 7iT&Jc*Tp]FuLWEcKk9$ Ia\d/(e Le,LgH 0LFdrΚN NA,KA(D+T&0)M?,._7I&,G i\W KLG;`bk+ܞoI__^`#cD#@lpm.=B+=p9c+,O @*(n GJ˖Psޅn7m=w9ǯVNfH{kR&5pY hPOzL HQfnŵ$P'kq9H%B\"n/L(B\NDIT̘F do&W|2/q:҄ɋ/%W\ϋQȿ_7]oB~~2M<5ą8ʍ~ ?ԃ1*N΅{"WY[z.F뮮Mny9ye:q W8%l"rXGeC3|3ElgKw2XяTG.XXrt ΅2LEe֖ dku<"4Acc1a5ӛ bOdx9-,҆ T$ 17Ц- VUTK3 C1pV8Ry^vx50!$^mꚡG{]]Y4,ӭXʙ+l$aK0Vè7 R.%>Bw0f۸aػ@.|5.--붰˲I%ِ @y?k W3#e ;1]pMIfQC32L*YRdyJA,zJN |[Ò'+JE  y" VUV^M3I4ryax, i觙kk N$i29 s]6e$*ҋfEqb+C늀b!TU!:ׇLޯҢwK2[B^¥YQMnP+'-"AVJ VRRajRqeWυZ /Nh(ϯ3w~PXNBlxD;V0joo g;ZFɅ'^[6n4Ej;LDŽ U|47x/[3L_GD,֡ᕽY6& #ˊWZ)dug:3z8`; :x)0\B .a#n8YumiW(9uـA$ʁƫ/~m{Y-/n)ƴI(ꮤEyab+Pwxq5Pen().y?{nˤʙЕ+A&N"䖌=ȢBxB:]mfuAOi5ujrmGMFqҟ^śWT_YfrO &,ҷp=}{(JX~[$1:? fR/IgRf]{pyG׵R:[G[)Y?~,h+-lGDgeݮfgg7e7qiiɀ[:.⓾Ij^U')* 7^Mvsc>ʡUx>|h@U-Й=6Aȓ&]`B1z% aɵ.L0d6MeGeIL:2pb,~ %LbF,Y> 3!qeN۟}et|_%D#]V&f2&,+,$Q+>xNZKgF!s"pkҸi)i Fd*GUBaLѐF(V#'eeJ-JkE8Ĺs}?4 +JHC3f%~\E*F1H%ٶDGrf{k**hS\6#k©`*ʂJJ$ yZKΖsig?u[>W^bôiqΌsrcexB0d^],1/~ hrHI -Y%7dJyM- ]oWV&$k  9r )"үth9f bDI^yv^_$8d?MQii 2& YH@~߇pm?&ʓC0zۮ9MzDHB~m*~ y_>qajYK_AX܊A|~.f`ĉzWh^+tw֛K,8 u=VC/mҰ>,kT".21ËE5TuHayW.Q=.AQ;dTn\_i1sd#;*&KREgL+";|1͘pD{M)Bl*_"2qYyy<bL)4(ig%2*rP\x ZZ-sdrpc[%b,z@7\ulu_~71`\ٽz)M#4E,JDO 1"pIJHa1ZProP)_dcu]TIyRم*&*u!pqqL B#>΋q#j1?#NdƄ2"-͇-C GDYXBX;&pE->1̨p PX{ }77 +т ,`hO*Օn<$]Y{GL}WP%rg Z$JdҺlNM)_/7#q]hӾBa٤ KYQ_gѿw16vm*?g ) ˸Rw^{feYLW3L7I~1=4¼gkxhlb^a4AL_``^m]C8F ͓4uJͫG )&?e, YנkjwT"@*&.Iw2[ [뭘Pŋy-_i+a ̓Bu#˰BDsqǘLθ, ke$}Uҋ.Et]: Mݑ'AԼ ozڂIlŗĢRD[p7\"o*anNu"$='-rH2#dlkC2Kjl fgXf;XcM()0DR&.m3,_+0)E٫MD]+yX"bGw,h!! tr&m|֛X^_W7mO,M:CE \\v c)RP.&nqo5etC,HdDq]]D21v) O 8}S[xhȅKQN/w㭬ںI.D5\vdZEXLr1K",G><,Dުr{e[ uVt1eݔ{-M]iUJ+*3=F6'z$jA 582;U\bSs l[6]^ZK"#XSNk]= 7EusrY^ Qbʚ\ֵyɐkҔ@MdPE+ ܩ7J->zJO+ 5*ly:'\eE]i ;]M Cۂ]B;reXqpG2<4K;G.b_>g7ަMJIQ%1U]A}t@ TR2wqjO\?t,{.hrg`c0 vEYVaJ .48pp|; Jh MV$F01#u2ZJ)5B+v@(=,~idP,W*05䡳bk3Uq>+좮Og =)4;7S칻$ܒ2NaGr">Wt66b6b;;Y&|pX~-z|*Duzk4ieY=9MXU&Ň;#\U2@T$Oi=xL&P9[uv/l~+Χ5߁zƻ^L?|/Sb)LЮo!͖镮6C5u5ǂPC~"ZDZ}@>gX. >c tGnҮŻ8e0np.VnY'jɦyI]KxMڍW|CC_U31K`קLϋn94/xCs̋d!$SВ(upF5h#NcX{lICrc]aqp`iXL;,is ݢ]L:քSRDOt:rٗ!lc8B,;j;GŵvfZ61ҝ%)Lq]XȎ}B"#^} ^Lwȵ CV)\(~g-6Œ4:fʇ&9qO%{nxu *l_@P03),LM4o U24KJjM愴 ]vߑJR+^V9l I t]kxa0O2#c^ g_¾kP:KYV^.H&ܗu.vcF;+ K`ʤمF(Xwlgv(nA Df MbAVYr% Dv wO בu)L'c<=?ӌPNmK! ݎ]DJ_{+l|=OJdHPY&-;T7d թ^Pex%:msk+4󁹝*<7NUrj1M-MQef*rU=&+h̬N-sIڸ=/\M+:!w!?_C8*|HL| 􇊿jJ]W5މ E% p_ !SK|?ȸJt u 1m׽otSvtg+v)ЊYs; ɗtG $^.ȧ>/ȉ/\jUuݫt!١׊:[}K)6.V21W.=mZuk% DMU+X`NU#hŘ>Ȑf"_ϴi6ZßdeS%W̺(GkU2]a%(dFj;o뫘PdO2l VǟdvRl{svX`/{َg܁f*Zi3)Է:/Y^4Eo 80ra:Sv]:.NnC" 4\](VЇG:g,X2(JMt|W`3*UH yLFx(EtN-ueFYpl`v9De|3S F. {q<_K57XѮ9Yt'c09|)ZDA|{N}/ߚy$+2}!l6MMMf J8Ĥ QoߟOnT„8\"ןyy{U^h`YR8mUv8 K/:]L*2{LF 3ڡyMJɎ( Um54?:օGNvRPΧ̯EEHȅ;!h ǔzaa G.lտ;y0j6߬f,kҔ.#Q-M=pKq2H/@AfM3㲪v~مy y>runOE cF=Q2tyhOu*l9脘\2e %LW._tG7ҳaEc5Ȓ!"t/;jݺvsW< !L#y|<)]gl)R$^>+3 )^? l{0U 6r^2?4>[|4ׯ VŲHluM6ns}(,CIpbhڤ6!eYe=Lh1܌FX'(eP8_2\LӄK)N44k:DZVؕ2vmt$1b BZ1#^Ƴc7IO(!Q ͮvJNbLT**VQr yG 9p|f3m>y6ݾA;khcq i!7 tEb'J+t)Um(R3B"K(h3'(~Ȼb(h4=s~\vM@: ,nk*"kN}:pj!DZ pyqd~°!5[F4}1v=U6]r<4/Qtah!"#ƒ.~]IQߙ@QzQdiW<0_CZf:Q󨣇 e/\E/ޫګS^SJ=˅'JD,v7Hfىomo e'e-0H&ʬ"aET.:҂R3%PMbe=MXN.&}$d/Sqiwx{T_]Zb0]yCV.B>wa{P2Q0IL"tSP +킽*]Ya+{D6 x$[IEkB:`m״5M+,*iGH  wxƇUV\2rUrjZgY2-vWN%^|n **K5`Uh]# ~ $4]C #Cc>^5<ཟRJ}\J}„)$abb^Uy/#qhG2xYq# DTpfNշ'FK!Hb!=kn M0uF}TZ2PޖWX݅{Νw&i4/}2-^磾~ۼ׍IZr2@.Jw؊9R;s3/^IKO3%$X&X-6H>cYIđ4Q܄.UwxUp< ^wc5uƜ֨je0£~]#͙%=GBxbmX̊9HEZ(H*PM)I3Q~ǟ*4RonM$IȔidSE ١T[j)k-2<uǜXOݗ0ح<$CnT'O]8ļe&}z[@t|X܆QFTԫ3q kv%"8/~8mܧ\a_ {c@[r\/}?EQ"Eu>U2xwa<zU΅24g mI]8m &9?<-AcXiWOnSwB4i]ޢr~?nW$ɠmsO\zL]mr`9LTK:) Ml}1oeUOyd[K9|CI{ɕd,w%+ɭB@&;NF҉㱂^pGm:St8r5a `Ca&/$XIPSJga J'Hr)[9v-\ &e?dQ5FKF|^. eTZt5mAu>zoW;$?1ĨE4pե ]ئ+T>) sL븒U"/!8ͷq+:s[#;鈪*^2;XM3|B8z/C f/U&o*bMw(trq$ZËB /=V: V2^`ܔ{yѴMʕUUQ77M|EГXUɱ^i dI⑛? _3w3Qz4er@"#%̍9o3)E ,%x +Q.8N.՟7Ur3|<1!|" z6橹 6 -ڬ5θUiځ##p ¿sE:qi|6[H3e‡o78sx ՜{*zW7 KaلR'd^[7['z B9W>"RBJag/=id&+%'ߧoz{3=:(6)UFx^| GuZrɺ]̞E.dbw y A$|_(Orfᅓ@5w.|9'*!ٯZXx(+GZ)ҥ Yz}{ŅGC`{4g=MZЇ.)ikW p|BBvthƄ-?G6 Nſqvqnx=CKInW(L! $Vn]K;:)NH-YYHD[Q9y/ퟦ"Tl)dg^/B|60`E %z"<v,2n2Q4tؾZfXSƩe.ŸX;vH2No):[^IQ1… Orزt3t<˻M(HSRQ41_RYy&n dH)H;*dc".}-fyC?mc~>x ~5&I]Z^KKS^zCJ1ߡJ0.e֢İi^89Q1GPiNc= ʷeɈ}- |1BƷ 71+XYu@WeE(PٞTc\ n. IxkC/"4$-zw?tF/.4hdU a7mj%ym?Jx^\ȭSt^Cȅ0bQ&N;o%_ǐJhC93WUHUJ+ * q:z&I? RwAQpVR_>{׭փ1U(:6k@TӑZ,ʵDWK0etLߥ;yg]AHk(u䖾{;[ ,O֕]Go,TErP#y;_ŘkLyJ&OH^sx* mRt-M $*jőSoM !$^z0yV0Ǘ񓵨ʒ.0r|R!*,I =u yUxu(Mގm8y:/'nCč~"[|,fg^ʊ -W"_Kߖ&$6缬"{}<d#ݘ}Jmd>ſߠa - uViWȱ抎emf؅/=$I0mAO C ܊a i8%_+61Ygho I+2|=v;r5 )q!׷\`,~К]V3Z;`)xM+EuPOSW|7v `'B|IVe f^_{UӖHJjKZxDb$>및& <gKdEڢ[2S<(F.uy[=;LA0uةgb2)}7l"$}ڐ•l`qNWx^'E.†+W7 ;"|z^=9 +_fڥUE$݂b5՗YW;j2(Ub#iy;t{ߗ i2.P9 F*;x 8<`և+8=[u7Ei,4~?8㲄'm.VWU"bmK8Ӂsѹo%V*O H N+ıہ؈|sdZJ]DYGc/*C^?kj5FFC$lݧk|,;f'f?A%vM1YeIn+ΗqTvVvL1[Rc4w"2^@C!p~6QZY@ʣ6 4^ԡBrpskHJ@ wV=&r/v6me y׺hUBUL.Ѿ,MeV$Ʋ`q4Aq !a!cB` , X,O$g+ꊏf2aDY;GnZɛWfd3hbI&5q B'H9 ait̆xCx#q= &zy*bɨlp[ZA;t.* / A%Z*=6aIHޯp(^c(A~ퟏݥ7zPŪbq ^a)?J /]c#+3;MHUC(8WK[mӹ'Iͳxͥk)?pXh/ϓXN!LsߜVyJoj5F'LM=TOvCUFגDHTQM,ȠHKD6@דIRRkѹgΖZx0.&쇺{3Z+6eM bdeʌMl{T1^bC6=vFD̘ Xo%QEh3Jgy;Wbr1JZ!ڲ03W?0&]4zmݎE8-4~ѐabɄ#'dԲAa;% R+D2ٱF=tcm~`x֍ mG,^˱S/n 3*3~X{|Ѐ6r124eZ,rW*!1GZe@%-s|R8ΏCMvθ3q5DƸRhhѥҩ4ŜK&"-;1bд !ɳr[Q:R\W#9rCR_莬Y6ʻؕ@/ #`,C y"N&c][]}j5g$D"[:ҷ]ֶєH<>|@?fxxl݉PJќO.AP-eD=!92aH$ ubѫʽ5i-qi ~ e/H=]>|`MƱvZ#eRf!s8K h$uB$X[Y.0!>n0p E.dxM|hhczrFP4y#3Ae՜+IF~Ɖ.tRr*=a $ӎ3i43 RB]v蜯+MK6NM-"@ pT;@FeD7%vϒ/ՕMbUVZ&tqo``Y(H'Xc[ٵpّDi͒V[5QlB|[$~U܇V}ZÙʣ^DS!;q\Sj$*sR뵎C?Ma*+2+;PKrfjx׉GV6Np.'=gz/8|}W 23{kB WeV~؈]#cNojJ:Jno>ŞoSB_<< X]5]ْ?NI^O9ch2?\$3gLyxu(yJA hA=р aQ\H?-i#}ȝ717aVnN\Ie,iv1:3mv>C!uDA3wMB3_AI a:s`#|y:dsL> ϐ QY N]a c:N.m3Mƿyóm$Al_B]N((.7Ҫt"?(?(:3cH5˺\;eU #+(J~Ύ pAeU#nDN!?ryRWr[7kdeަ$aU(UT+'u ݎ׊) ,ZMyy_3/§(&> E*qqGBJmix5amZ%b B/e/ެE ;4,Qҙzly~FԻŤWݣ#,)cv*3!M[$2(=J=;2$7/& ^cfyQF7H!$ew/}̼T*bҍ7{sqo+|π9z|O|x PMO~S8˳,3g{դHG VWѨnAd\DšTGa|$z|rי"D8.˽-(RbITC1_4^6Ez𒑳pՑ2YYTd<ʽz粶fF"KCrEy><~//=n =tA,Mt]6ZCw@VK~A+naGzIyuXEnA]̴6v8'oNWE^:AīË_#gSTBk5W6olߍJ|%* S6)ZIp:jg5' "1},}ӻM/ 0"? ]83ZwEڕ crN] d#y^2VEUބ(D=x.=ja]XRUR*~0߸ئ"|z`05W n),~P*%fb\F/R(z@#C.&P*U$of/T/cەyYd VB2n䶭'c*1mHnPE:b5!"ckryjmn "֋z^y-m-A .4xZnw 2U8e`Zhi웬'hcMT$ Euc U%-Á*Z>!XMS5unSU|/8ӟ$taʅR̾B.E-ƻ[HUa㽌hMz0G1N*o /\\_qzM~[deQMˇg+INDy$ӣ-ņ#I(ZFF'o rƉ~2~ʍc3͏!ko~zIeIAUw-HOpNj,acUtFODLi^]_blIjkDGh 95TJйȘVb38.)*x3ÈZ cf[_~ayM fYs;`4W.ij tvU:uBy/6%r0wt#ɇJ`mN]KiN6W"'w~'(zӪb***ss?ђzt闗 N=iBl޽[c:x[XT ƕ K]$=:@ߨgpAx }Qxc_xS5P%0n-$6zu/ K Cey/PՈGA6Eor׷ &<Ȩ&h(Ƙ{M!MR#VbQ7̇>_y, DE%(Q߽ _~~^مp.پZ겗]t.&/cRKCKf1!G۶G!2(*W䂸G<",+h9(_{tJ;0U?J}^fAM[i)&Y=%6WX1( !֡vS:!'m"> SJBR|/TWZbOm/eHuN!Ԍ$R.΃qA0@R"㝕ֆ-~7&ӔCG1w7RpNhZOy BKl7 1 7O{Ni+~f z4Y%kJ\L,0A%) -U?uW."v2F&YK!ӊs"oN:/ׅUFS$**ۊa0Qf+(9DY(c׾CgHȃfIsXb)z}c3l\]Ѥ{EE4X@8yUͧL`Jx- _UC6QbP'Fuln[-mQRwDYZuEw1_-L]( rT'LǮQ+x煮n1/ W2KW j^x.nHZ D{ +3|l2欁ѷ-N j)9m ?BxTLAK&Q h^2S6p^G]aЅ0JU-Sŕ93L'ӎ}Gc2+裧l gdWĘe mO5#W4))}Uz^:B,d]RJ 52(/F=P5ID*&HZӪhQ?byx~v_egEa<1PmۑLTfW+nu..#oxs*,aX5UT 'GIM(Lu*)]5v m\N)&Ψ`B4D|OwqeN+&BUT53݂~`ҁ oϫMn~Lz55}X\eURftGӋwZ<0}W"Skb%f!<|g; !}楨&Osb[dEM&qЭ}UcH=r!ݙ_yz>ʖ2P7`g~={H* X!0Z @Y59 !u`GtA.'u䘷s#?[Mi.Y8Byպ~0]ʡ. <>&KggB]U]۝Z1 PBy 7KՇfٗ)g)ʽ腿gY0,jZ؁7mk ŞQ/m S'C!l]HQ (꽤FO<3SIL֡$Bn U2?*}_Irڏ^vZ!^#σ2 'ʹ@ԾWxۦN^Jʦxt2Pz W܇G0(G*BJ֛P&9Nә:L`*2븵B=&:΄i-ǽ @D/PC U_o5 lV 41XUU$p1m,Q*2ռxc, CV)䖰yB0tl\;zͱ+Dwv2sx W8M#l&\̓mor1_BEb**E:5U^X{bupk!sʦGxWH<Aϐ&C'A(zNͣ0l&bC=V1N\7ּw"8I.d|6*>/O\,?T.$nxGm Uv>I=H/JSE i3&Jq=S@^O"\c0ʢSɅb%P)^! h gI?!GRË-~Fo )|A?#蝰Q :E;U\J۲s'0K%ZymZdM  5 I\c)=Z/^qх S>30,4N*˖-~Rݼ+hF $"{|(/ϚMF/+ON 2-`\5k~1!ͫP+R_LVmإߩ.^mGCXC c;k3'!^w9ݽȐ7&ıMS9ֵRuv=JQp,K{ImKxCF1`&& I&|0cb^-iִ%ڊebWe!ǻsXl5/\ eUmޱ`es[о DP '6aǰHu0.>{x\ȃ^uFh]EU35ZU&+fu:Y;<_z| U9 D }gì [w.&<ӂfǺ>u-& X( ]Gdj,,Q YKl#H_y m>Ή;={W~",uB';|[B8/ms\ol/C+)"W`1HbgEEܫ΀%~jc7 V!5f1EQ4uc;SgRxt@-Pyt` )UTGdۖdϢv#^\&4::zb P# lfiF|oFCړ[FD!/ " Q,o.0vZk*B=Voa"5sKlK81Be|sW%&\xArzw $l(2]pd"P.h_TVYώlfx9s]bɟ ]e\ngd;%v.Wk.!VJ,}?u㸒I(@#r~#X *CBQ6ac'Wa8` v -$-hP]%G>P ՋÎ#W("/QсŴQ=Y\K%/=1MS]qtu%y*o瘁#`ѪE=y8nY2W"F3|2cz&o_Տb>qu֤7oԆ6:6$'(E8n ؈.za-"fU8ry'@{LO74A_ܪeGl+eBLNX^, MQ\wxttX+d% Fb6sِeVF_mT1OA{-E=˪*RTpoozΓO >Yo JTm:(ݿ1vcQF%"K,YPGZD}'ۉxpMի6$uޕU)ԷʼumXbW<v-Ŀl>f )]l)EYͤ\#Z%)C-~G] L?Vǖs"iL"kR_$G@1 = ihw`;m<Nvax]o!GoM7KF7w~bf-mDTMumpN!슁k~jlWvFNoOsJo;V#rSR~X,2,F.9 vSbj<@=It,pWׯ!XI45&r+9*өY7%lSb qOrLY'rl9&vie͛!m('|am\l,2 =Ut8=^|l_~ݹYC>Z=,Nc'[HV` .t%~s3X@ vNYSUEW4\)Kʒ(A ,yr3LpdqJ-JSd*˞^p&| 2w&^ 7e(.+`W-,dJh,~Vvp 3΅O}XbexC.`RuPfΊ$Or/Y[ħ'g LBP~$Oxn`0ӈj:l,`{-ŋwF29xw& [<YEZn1| .aqzAE&rX/e#pm1-9^QggZÙ528PdR05qh`+ᮽF;3Jyρ"m^޹4'ZI hq0ZDًS]ܴfɥ!#0?">hE#bH;P~6ϣ~T <~o!&/mc\-mwk{` o7O*z➬!bq c9 5D&*Hw⹹=ܺ_;ڔYˮ޴>̼kwTbQ$Xx 0v)EUf>v6/WwM>XGy\pWt]'BJ Bw' 2$ǔ 5694;V4X1=/F+?kK\ ͇az=="+] ‹^'\k>6UeUyAe#RI[`ؓl ہ@X?ݒ9\cI qԱ~v˱A%2{٦x 6a׻p?G1]=[ى2{O GEÐ,V \URR++ %(,mOԈhqz}lxs682\8p4e%v\q_8: 8y^+}!ɟM$AMkciI݇9[\1RAˁnD``2ge 3&Q.o/g Yuji[){/։P߉$c1&ItFt$Y;Dњ<[?+ck_NuL[?__Ksa_ZG|iMt'S$u`|@nnGh* <~'_Ϳ.~2or?+Û꒕ŵ):x|9D&3 g4Vhۯ߱~} 2u/\?>/7.&/㟷q| }?Kdc';g^CbЏ_&a CLSf>[Q7X]M@0!$ZHQ1w08KLS,c?!)*ׅ?L8Eh$T(a{)=T5}mb0 Va(Z\,ńi fqZ6[ܻ$,ӎDK _Ka:,:.~^B|_c8Sx1C~$yNw}4@ȿ#/2|þKl7FHpj giR"{Vq3N:'YxsFl! I-f6.gz6W#},cS],@)fZA>aL9zXiA6>.i~bВc]Dz$-|ܝ>}6Yĸ^,ŏu IC0U7|bKw/IH!ENE(ub,)FDMS=5.}Ӕe6a>}EVIC,cAF8}J-lv]ݰ^ı÷4ۋ}3!<g3}r6tu?&W溽p?gd,KޤG]!d8o W, +0p{;~= ӵ8@xT5]a}9vˢ^5z-n 0)ǒb9&#Gq-Gr|[0Bk08Z2yG)Rb#0*Hč**P( w`R%%(r$GJJuz,XfUl[.y/isPcZJTY蛄<>KInQ-;AOً5ߪ|ѹ$Β_)0E7Dٿ 1 y@#~~?-{ٿRK|ԗ4$x $l'J,$V|- Gi krIz 1O=ڢ¯5]p B䳓ԎNw 鲐]l7/PMe+) g1b2}n0k \fJa,!|Җܟ'8e|qMq 2$%0±7,^7m M0I?fmlC/_@̯sХl/Y5q Kr ʓv0*IaG)ey1ۧ }6yWǏe~`#R9}3gjvNbq>!,/Jf%kdSVHٴpie]* Vca'eLo=ftQFqK뛓.#3ZHϨ* o3& folGq?t=w/8w$jmc~&q[6;kQt)͟[q,{{U\yK:ϵpǂ ̠SeXp7K8.j7>ZiRtOCEdHM/@tqg&QB$dKġ)3E31#Zn 7?AGy/̧!]$WKc|{en=@3`큷<r{~* 3Zb,L*6AY ɗ:?M?u0ticҷR]q%$ %ao4$$.;K&Fz}pQFX41ܚ@2OaeEo# ]/ܾ Yr*emy~tn8?mqICU˱]k;|Ɏ{!㴟V=&r-/&] k_uJpů?9J}m:yj5@  ibS+ /|R~;l"v _*R%?1E5R]OB0!vw(9>Y*UHv,K'EtPP` ˙fU0QU4. =Ƞ"#sR)խ)D~CfcyGDLdx:ݮr"6<^H޿|R r5ͫlV-U!֌ >BMg:_iz&M]ܵEJ".Xڡl9Leӽp?qG:ڷu;q}+ơzy~{xomg6bASGnRgp;"47/%$RTj0FGہv6&Jg<r*BJ9m[5ռ"\gK_ BȕYg[Fl 'COg)zxǏiz_Ot80W*R࣡AUPFr*I ۴6! i!Hns=>@[Bó_16E-ֵ")Lª7/+ZD#CI-gX5 <OWv{q^DyS·oʥq6wCxU ޜO P;AW"X"m9DAGxK{ٯ7.,-b 8ȇDN0p1!;Ài ӷxAe^ӭ8w~F(+!!g )qK&Ϟ,,.}/ vX#إqD\0K=!JT9^{ -I5/b S ,.i>J?n W #/5w"z{J+ y9[}(Bf賑R(# b'͆yLۊ ŎղZ;)Wfh~|?%Tw} Wog j 4`7Gb'<ӧɾGiW*p/$-K+u'j:I;"1ُpC1-Fs|k$oAޢiDZd?=_ۼ95uݶe64HK!Q;N`;$$K9r09Ð}ū-/2?8BWq*59Tqu?h^TK34Ő-dz_JP&V  Ji GO-ZR W` eQ+&9{rE: ,i6 -b\>)8haeYnTe}SeP +۪uH!QHc0\{ÓldD^i/C R,uw{~NE7Ȟ\-{8pz DY)S" IU*댺Rv%eiq>y5>og r1>k^|+9k4k8U'|'lwOm16ο^§G a_o:\5:ꁸeъy{X9v_H+sj/#`$Ƀw`%x!4C(q]G|%c9cwc͉bҍ߯Ee>;DJbmY2@$`y>-F0 0Mx53Sئ;Ěk'$1>cI]8Wr݉"WYVJVKU \G o0ޙ=wi[Cҵ$.B|m_K,2S߉u]]奶 7K*9$պ;eWzzSH@ `B,{6جx]44Y9F>SRc`j?Bidۚt REJWcEb2@PfZHrR|àf;^y-dQQ?n~9~ 'DyG)_L_<s_/eePC)oҬ/LO#@Tbmebb*ȩT \&C,lb#c)1S֍qMOycwViW)O,ԯ71TvD{Bj+K4\o$av66svVJmhdZue&y˱޹QNyW9C%#;b,kr܏` %<&Q $cy8͆0|1$Q@}G |K_ycv$7.aY%e`.ĄcB,uGخs! JM,3;} )1ek2^\bՂJ "UYX68ǫ`줶Gpt=v+)]<^सkX@!)FKBdf㲻4eܳJ>FeH@ֻ+0XR~||ぢe*~0=%5l @*K6}hU#nI̅LxO8 Q(s1O[z8 㤠~iyMo^Č+;v0oA5Kx(o #hRvZfkJ|Z}Q#.z#}SH Oj=-[َzeZ&Q{P(q3 okG8;T up1`> /Wbooܜ)x^+7f3+1WjHGNlԱֽ_߁;"y\V3eYo$x1_7n7wa0(6g#L<|uݢ]9ARܒ$jj p;ء{gV, wL 5,զwu}!mo*ЕѠNK5B| L &p~gYy9+N#&BJtx՛,GfQ7ݻy+,;`zē.TBOzfn00Mpİ;|ټE8JW/xobFbDwTg&6ȥ$2,3ނ1afc/%){ߵYoRΏy~Ji޼{cE{բ3Z﫸d^'e]\ !aJ4'$^I4M6Q,uT!1x_a2x\'q _r"-ӲdUf/E&^KSjaO A%@i?{hS/&Mf,U 3⥀/9nеQD*jwJ.˶=şc6/LQs=_ԅ=c hfGKwv `2uLvh@%2YmNue%?Ky:xxw+lʏyk߅" m#v<>aumc7 ?~/ib 597MRȜeiMzbgr=f5/L0YpFdS7+>UK23SIۤXv"&{)6ُsy\ɪ4dh$< \\zoJ gԦ9נF4ND!J$0 s.ge,279+*Vm&ف吇=zJV$16;alo x/%.!o/ k fmn{0=N֩zME;AX.ߘYYNJ4SǾse_*˗xZJlO|lΰlDE6b qaܧc{Y{l=F!2&t}6)oLSE-jrll7FgGղS I& h VT$͈_ynMז]Je (' URD$iI:rvA ,I{3 Lv(CyKRߊHEV/<:B=8)2eAsԘ1[}FJ&)^#IU`4,6epi++mW璩+D(yx52MISd0 }ꢹMvOnU."Ce0RO*6A>WmM 7L%)i~OLǖ9} q}sw/QMwmkRu.$; B @jA Pw/&&"Eݓ,i>!efBTH̠fo ecÚ3o5M bFH*Ka%Vѳ*"p| |>c- V~-ޜ#g0NLOF0yd@ܘ3~l&l`$lƓZEoe ) <9|`+NDXFRYm=2QmޗXWg-]~)+!Y2ۋjlL13Υ |8?~%%\֗CܢYbG㞝6*Jpt3-X0r߼zfwٶbM*[H𡱌/P.Ra> ^APqU+WzGl}|Sٖ7ϫ*.ݐ P~`@~ = G%+}Ģ'fn̻fKx'6/w{g[+ Jrm#XqMp[V2qc6t#w(B&65[lWW61ǟt :ur=CuWwcD Hvv Wf>{aBm,/5˶y+^_}mZTǸm=0]_qm߷ .Evg#vg~K@/',s,WCO"`k|ƂܸO}jSd$$M6^RM|H{@qYBi''MMum"Ah<iAtqH/X~nVfyYRi,Phmc%@"#hNȮx;Q~D1Xl)3%KU9aᐌc"!<0 gnB ?O5վ>|R0&3Oq1U-ť^=d ڍH5e|;nl[jtVId]5$W4rz.~|Yыzw@2Mo$nH'ƾPCxuK8x~x&_ Z~%WW] aك9[Z|2ˆu2Ⱦ]b5o3/T}~($6Rݓv(pЙ+Ak_?uqu:w,b˕OlZoKIP9 =0L*hYx\;P%0<ߔ3k/ nm}V.aq/C4 +uQYXXVZv-' EIboڧyh8clitns=oy_e Q/ a%jWK-AZ_|@LȈ2L#[o^ $oW2Q[f>}7n}l k!?Oi6E;VKM;hNPtu>2 X%w%g[gKzneʽb=WTg,-2+KEQ)VjX(;b@kDx坵wCr_ÒDt!(l\.*)AMp,L$O9͸$j/yB/&SmRy.iRIyN/}V2  FbR)dI]n< N_(Tx1%YvzK FpH}~7,V@/":mǫS<3w.)AgqXY+wZ4tx6"L~y|2F?\Osܕ)޽:5 L pXm2-I}Y$i;KXc .<L{oҹ[:>׻};۸Jpڸ/wmu$ (|*1m&$n x6>"U"IP|Zm|2PK&S0Jj#'8–{e\dȸ\`qE?P/ ?Ǣ5լq&}q͆J^e/Kz͔) Ğ'=h@Ep|&PSRB0XDP E\Ckwdn02 4`&NT_'0X)AF5Nb>{]RQ, wxq=E}⊸dQEL&X߀}Juf8ZU0t\՗Cկ>_WZqo>Ř\agjY <߆ȀNzQ-+ u?r0(# YM `?֦O?b9 f6.±Y~d]h"iC/$)-|bECH e&)(O4KܰV۲ksʮe)ւEJƐZ=trxVl@u uȖзM;mجrYnᣆP|j^[-- c)o$hpzS8L/Tlo#m%/eɅ>3Bg/V YbM**ID1vSA8VIrg ]χ&Owqe5\+5%(]S߮mn8LTh$xkUXkqMv~nُn~?_K)īܕfU'AHn;|YGKp X q|L* XlO Pr|BGh]D٣?I Cah*\}LHF` DR Tkۗ,Dil^ߧ^i2;kڲ1K&w#'Kp՜듹H9AȢP˰Lc_c%ZW杤Yf"v/,V ?K Cu}˂9,H,J+[L) 泪'$ט+`ՔodiJshSMNZlRWI7[&H1L0mf k9I|eߋ%ȟ*'Yr=퐄zAlNt 1Js-Xں&~MW}<UQVeZ4ՀʬL΄A–ge%51"ڄ@ƢL7ҋP4`{x^O^*9^Jy2RhpE<g; +LVs!>vp}mya+_*ga Ċ7-.QE[fە+' n2vƃ^wӆxoc=``^] ǨS[kK^WORM5S'h0(v24ְTN5-:@3K)b6 #o ~OXqFHG tx@|,Z> .BOqw*u,&.xLH@ Ü>\y6|{{vϫEL VdTs?N.$V^67ܮy]5{⍓+1k"z{xBuK,fEQ+ELgi m>? K > &>Wryq:s6m!mZ 䡪R,ɽ\ P'517+ ,wl2n0vEm4-K=u! meqoOM&+<ANmc!*B{j;2I-B[Ԇ֓UKï<1|lȓ$cX)JzpJ"׆Ic~2Ŝ7 :z⚨z$5)d=>WӠK9#b,:r??M{i{-W;~׿ m$U]_惹^.5n F٩gu7d GnءӤuy/Bl熲lZnJ |ة %FHC;˅3#JFiw^GU i=\*{BV*/blD9BX`T0?0Fϊ sAOw9W;P=㩤?_I),^zJ'^ʌ.7' eA>ɰ&خFJ$J~#~t&/vm?/WjꮮƱ>ƱZ5 Z5S1>Oh0$UTeFM,I8cɏ$zLCH!'/%SX A)2_u0sj(KAIL74y2 oZ)l?Ћ|#ʗ߈d祔ckfC&wlbO٪DC|/Z>+V_#~TUqt1%fJ>Q.$ __g[SM!eىeqiN~-?ľwpm* QސŞo%qjm[Wdyb>_)$Us*RM!D%_ )O`Ř6dX-_Iv"k|np]K/%?yϑ`I]0N o{P<{Jr\*2i{bK&A7,([>o'Vy󑮈|U\cf Qp^LDHjchE;? .7ZtIq\lAx_spF`G%x2yK SyӞf۶`Lz+wQֱ|}uL='LW΅9H +Ћ __i3~n3Vm{^Lm_5u8[O1bItm2(:)ޕq(U0P 5)Wލr%׳DVxUXø'mN+XX/{VꟴT+%ͦ%~Z!v}~q>TR"dSn+ qDpoVh d$_e(f98YJejY\&-.e~؞a| oL("I  𴺵鲮9GA񤻶0y*ʑkof/xyUxoȳ^K`Ƅ@p%[$qZשSeIj0=ÂyoGWEפھC\m@{HWȂlJ|O)<:4?;8 X3)ssx4nɋb/gLzN <8ؗm5xi("!5`HCO#62pͶmSxb,:*>L> gNGAxr\[1fHߗ9~>"fս?۸|gSr$$Z80}Y[ni)N:Q'(V^±+gJ#R#&0$ۧQp)c͕[bѿAbK/H$kijw,0zCU0 YWW%>j}Y0}Lt'u$kȍiǺz1Zt]pO*ɀ< X.ܟIqM"K+Ss Ñ =ַM.ˤ+!"Դ_Uւ-ahQ].y+++}i*d9n tή'$@D /ED曁L`Iɵk/K%Z.&~jVtK߸{zPEBxг%xIwzECW򬡌dfG"@(Tq]d; ۩f ͒͘ oejq,4GTO eoL'Abev^JE` &pMTg":/m|j S+)' 'MHh{<]ld*iDA=P9i*/^#6Y}9j} Yb(Ͳsٕi0ɑ}'hlb3u[rcfiFI$GѪM*p6{uEb Ƴ,T8*3DBmOQ Sչ&>K2ά6FO Z l G<]'D2̅R.Ff3itl.^H !@2T0B9;^$&4,ItsFG,X}BxM_cQYdXlQS[Oˌ^RʄK:ǣ&\\~f:O"uNb[q, ;&Uћ*螳60Kz}fH_Y_(oj G|OR C`,bSۂ[h+G:k^8w MSt5ǒKfٿ*_կwq*~5Ef1:ln" μ)LO\է؅7A =_r iOJϽ.qͻ1k1BiT#W(oǤ,r6[rȮN;4 yh>k.M!|ۏS?Hn 6 wU%Ӈ'cgˆR.46fxRLw|ÌRUC6K60b'ϥBv1bxS&E`>hg!$3Rڥ)$>\K-p1܂UpZAQE-TQ8EXB*esCﴈt|fym*ivD%AC&5?p/.@A3Qp9NzR![8 e`nS~=W j~WYa6\] ..ُxOլM2v=I_;:`:c}Mဍhi(&FenKs⯫22[YqwcyGQ{}'S 7wn7={Ƒ(4m\"N!$7q'{QCXɰcLVMXALy_h2\R/ =Epfmyދ0 OrX̻`n 5q~2ǚxYyXY]u۽cZt$)_W?)%IX>vq܍ĭ+fۗu^,+vu~c0o<+hB%2靼d4c)_RiT3``9tŠb>C#&}mMwld\vgJ!>i(d%Q'Mc?~MxtMb+sk=X>΍{1u고R_eJ5[0=mf`"`$\Z4EWYRJY4@jQoNhݺ3g} LoO>ߔ,ĎZ):!\&8BȇNR߳1T~9S้(<ϋ?v/!-2mLͬL&BqyTtWGb r|޼0]ǟ"ǹ6 Jʵb@_l$ !"d&;~K],Ӝt-ͯyӪC1g~ "yA^,=Z*ŠDR\gx 䔥}cJF,-%sRJT@6yGM.d&;DZN9$vd~n?/| VX.ndՐT ]diRWCVԈU<#YO{<$UoDHhY|OIezvMظ~e:~6k]8Ň$&KY6}9LDP ٱ:v=Udo |O*Y[3pXq^~z:Xe FPˡKM8/PI2?4fSzȻ%QIBOPsrwZ.xOiľ~>-"ktJu/s=HԏpvR18=QzyTJ_,6(^ݝv|*CR/sH!8`ir`80u$Sge529JbL|] F鳑lH{rb%v(_6~ xYW]6^$(Kwq<5" dők@-=Ӊs3VumiQ+ :KfryF=$t|ݛU\MkzYMJDM`%1M-Ow% ]}$R%^`cMpH&xGss){Dꬃ%BK_tgPŐФ|}4.=0=p9i|PG/;{(mGJ¥s;ϼhjٕ)18 ^MTfUdB 9,P\o^`mpmgnX&:ʲx0o)l4c \sb8kN6ݚEi¿&VkάK+^ubR.A@O]f ~àtftHhQ'q,%wo*l&aO5[Zg\F~*x1Y{!Uwyo)$Rwd? w46bZ|{X|U8nd7XaS4>b/4wMda<)/Z n0pd, vNU"cxMhQ~uxIEH&q;=[|\L|ݐ" "'cLl>rH XwpuZ98,Enn_R`G&xDŽAMgdU?8>9FF~Nkn߁$ h䦏ڪ삑u;f͕̽'9@epz u(d{[ &YL h2fO2aJNk5v-|vmWB#O"8TaSXD |V̊K7-*F9ykRs#ҤlS6O 7gg*zP|tȼM޽߸5Mq#ɤFg}RXuewepJuM?TXݎz{P8`BvO9FƩ2Bē33IPuC,Cf']qIѐ9l!c/2d(\{m&K[K)ͽM/q+ǝ6K<\H׊P>B@a3R6QgdIUG$`m\xw$cRuq =WcC0]2G⣍bQ jѿL^-[1Xzk!z'Iߐ%_F ƑnO64;v3OgLL.y?%'4 B ^؇s<?d=i^:&Hpq`b@Vl듑`y<^h,꿯c.~us}܆$3;rsJ,>;u8bSOgx+ƎgIZWᎯ ],U=',X.UwzKAGqP$̛@ 5;~9d>4ihܛۣq<~![FC]BYvL;GycC33n6ӗm4_?=;Ze/$"Sc~P3h!TXX^K|xFkpyPR!Wڍ=aB}^r܆P;g {!1Pо&ix Nq0e~ ~+źOKJ,.d>DOk~ ĥ"v;j{W v祊[.MxD`}Q_~𶍫hkToZ>m 6OH1 '"ōKSR^Mxznb=}|~V5 e V nY f z%X0^–QØ9SYH_LfK!uw|Eߓ`Kl`9zB`g"fH`)\Yyr8.Irޗ=oӬ7;6Mdρ&Hٍ@}ڿ=c5XO _VTmd/bJP]\Bǫ , ;DΟW>+J۶%1\,St>ߧX FۡJWg:vx0c?^J \ts|^S ˺;=jޘ;[4̶UF ֢p7XJ+(-];3MwLCJwۦ@(lËB(WrnS|:cUJ Jv-Ct $J+OLr11( ?ߪ_R9gG$*IL$/h;aD@jvdY7/A羬nK!× IbQYCbT(w"204Li৚\7Ix nHFZ7yq4/q97}bA+g))Ly=#G#>ŝL cED09*A_vq;Ϙ)E|'&x9e#H!3&EFCS|ŏAd^O\z&@tU2$x19 H\=6L˞#7ab; %ţ%^p',И]m ڭ@@}ဦgx7757\ca[Ͼ:/]) r\(uQiȅ:< *J,ps&|,G|w>ZhDJL" ċ%X֫7XDgOvKLR|T,Z>niPwUR^tVHQ+4%o†AܴѤY1նJfEwۣwnuKoZ6]'3bh.kTq#Yv )`I3%&HFqy.苾[C,H14M/zDb^j`x^:':~3c؅F.b9 j%#qR1bܫ0n*'䦩6ݐ䝐~| %FyI:ώEb-}$9^JnYqeܘ{a 9JXxZƝ”?YJ!9gNND@c_0Qj$1uSJP\M2$9wzd0<@I}hL܃-f@Tx~T=Y"ڮIϘI%|$$[J(vвp'f'gic\4=nۺLNHR]YR}vy Zq~OozE$^ŪM~^/ZfBw&VClT`#$ekQc ^l9pq1/Fbʼ=7Z. q0œ]ڛ ^ ˳mMs\CO-C+Q6E/?IbJӵI&PDzpy3R.){[/[2TmyS%>;G\ʬMo]/5N?ޛ!GT]rX%Ur5 SY_i:!Ru|r oE0'+y^EܙUv01I1J7(_ceX|UձDG_EL ;x Џ 9:Fe'!Ob^uW.6֋>e|ZeɉfU+dpk  [1Nc8zT2x}z a޶p$Z->}\]>WC+AaƊKB,Dud{2S4ed *S$N.Qz?.N%--TQ kEƋ2=3@8Yq?oFϳov( تKI2C.{Q,Jҝ*^aXwPe.p{Oo^Tbl,V{Mke`~;0}},# `TnΈLr_U\[B_`X7+u[yc[n/bCW H$Cr0[򚷍>3w)CE&),c@\h q%TIH3(|c>I|aDu"OO}]~`\Pū7ɒ4rYi$j[D,/4جtS(M'O\'oE&J$_T3D*ަ׺Br`A;Qbipk0b/<<4\ͩă)"@[܁3"gauqZZCv*i?H3P\c:`D~շ??-ˤ& -Knr>η~i4zr-K)e;apihγVln3ZMj%d<]qP>x@E":O}]?rEe^ARx$XG4}8|*-©?aALt/64J<jGW$i5á;50A11w]\2||!#*̀_WA;F&)+wDCdXh>ۋ/rFדC5!is{!@"L.Y0z$RlY g \|+QR_mZXm}\,Ygӹ<bdXWp1RVDP&b7[e7ΣwHN Z¼;C(mRdrM3ݲ@CtT@l2k 1oK]YRXM{iрEYte%mv7ԵV=yݠv3 4{"~I;\ ru%oKCUbSXO/p%}| r5TziE_Lmf)g }a;՜:3Q (Ύσ(ًۈ]OkZW|8݃OOiU8I@ct b^g 5 R̼Cp:cZWM+zh(m4mVGU;$YĈӤk7"耼)K|ߊ/ Z -6Pp}9UEk/bTqnυcm2Ի,Aa%ޛ.~ź}@0,cc?\48$/4JqI; :.6؉e}cq{s-7xǺK_1Ǫr^a즏* eQq}<&{;&4p?44a&KAU,,m|MBJg,i;{Q ?8uI ;."Ej+L!$S~Ӕ{| L]DXyA,5{ Z""MoۧhXG~uVb}W@&,^JpsKRDon0'w Xpa#m8 Y\$UIy{*{jɨ62^p!Eޒk6d D;=Z,\G{/ 1)Y~ՈCz>`6o#0rC0s4EbI46.G>-eu3G+N{ GH?{^jh~R_z[]Ѹ yIUN+I)L|]c[w]3nͭQ+y$skܧlJZsGZI иM 1iYW@wqmĶ4h*PsL֨}HbBalT lCbw2p48 M.*:/̛bao%زmǾחphxA1ovh̩Ļ&Q?И#'mS`i_*߷FZb~p\xgEbu#Ml&:ƅAЂ6;d' ~>ޕ2 WrFPČΜ!=rv>riZc 0.§ojd2á'x.$tAP9` %K3ʻ5e'gP ĹVw\xWq9ܽ,.M]e[x}ɽϲf[KzI>0*̤B(i>Vg9ŤزGy/j0OK5Udh0!;o ?8{CTU}iY D47:`[``UjpTkQW+9r rf8$DjaZ3;;a1O&=Iw*]iYa]3!$̇m$RlCHHVIp>+Icy\b}=%WcgFgmꕱwێj~rK)ܖ\/"@YiA `ro7-Ә‘kmV=OR`/8{ B[4Ϳ#x=lo묯AswB ӻ%ca +~8a2oi3mV%Nj*#ԼىýZ,UK]Ea\'"DswqrM|\n# 㿬V_ӬZ-rH>9`eW= Q0DյR1a|.s7ٯXmFҮSO˪K+k*vd ZTf lHM /Sޫ."|&We _<^D2NO7VMlWT.%9eÇٯYŮV̯l/qG·uo\14&pCANo~m(Ug^g.wY=P^nHtN;A0YpP΁KVVl2C 3QJ$k)u&?H*~Yť)>m(S3|ϸ|=N=w#7'{ߔ,߁4kKi#:,PNgޥG˛8_ËF`ކ9W}fĜe߷ޏhBf?ŻYf_iD"9h(!QT.K# ^X__i6ޮ9U >bE_fBi[ K6ڤ8wv)Űܼp4Z۩Wuj19Tw5rWٸm9;Y#Tz/ pހpP 'BF8uqz >Av=a'&#AjԢ~EY  CV`4)5v-kQGl;nԛ=V+@{؄e7V`%asʐ0' o2`i3~/-זB?C8ٽW)~~;>af_qhddR}!>[HTرPBG@)'ΊF&&cD⇹n[<zzW_)k$x+( /;5ᬥMϜwsK7"z˱Yrxgdet x7xEw7?)YDR`_(#nP) Xa Q1 ;bvuD):'%>3qQvw]u$ kw仰w! f~Ͼ|W_U<3G3ӷEy"ݵlˑ`{E\9$K0 6Pp[gDhJ7'%x~V֥MnsC3TՐ(e+ĔWHv|Lp+4+J?a ~:/#s/Y]eq/KteM-h]!oڑK ^B1 057F'HEs!X(;L\7+.B,Ȱb}18|-AyTĴDT !YeIƢ ٓ1ޛ"E|_~:Z ƛ{'r%z&䍴Dؐ{+}k5ofcŵkx- u*K bKϕS^7:LUq ! {jh7h6ӺbL΃x|+)-o۪tHBu~]Z[X擞|)覽q'B#~41L wz^Yֿw>Mn$'-b%U]Znx@ 4HD=\!1aK\jrt]rK1Ϸ>QV E(+t,إunVVEh X;PPŝ&RV-OX\c,>\ѭe{7~ UYY}r !YMJ uSi74]0Åf1aV'-%p3^F,~pkG3Odo&Q&H4z#+$۫,:up8z;I1$!%޵I cg 8snC;,k2v&YQh-Em:*#قihOHLE`A|O~Cx"R藠EQjۼ͂z_v ٽ88e7GP{yH*|HF'ma,q[ĚGQNXxT 2Ka/QGBiQ"/~=|yCx59< ۻ F6Y1 |[lRQ葉 $5<[e8.S;QNL7&,~gブo.B$)Lz*f9wt'͹`A;]:V, {q|e?'NaM8zf)Y㖽NtؾXt綉Kfj__0M6MfܔqbZb{o0Ab #%nq@y ebOgݦt!&Wz+j/ /07Zp+uZC Y?g--`xdêkoصLF4+褥U2Bhg (ڴ 2"9~2.}_Syou.*KCcMzLJ҅|0`z_aH_SіSeDO3SKPM)rBPd[(,|Aۿw߮{A"d|%ޕϖɺS6e{Zx\FaU=Ab-);u'I8$q|=m2,ٻMQ]K5",(aa%%o m9J\e̠Hʺcǘ7aU /b\#UMi l  ~ź>0:R#W43-Qx?Cts,xK4wC|ږ.;uQT*$R1,ɮҟyIw\OD6L$@$ [0u讀EYȴ+w-J7 ](%.p᠏9yY1?049 -2;?bq.F !k{KF38;mna-|\np_UGvmx/ܺR.:{el\Y,*W"]t!?O[cy˄ȇTXôw5>o!Kj)aSr^jEVĉE_cК>=1\[<+ͷa2("4ѧLjxgK~OE YִMd@mIM=%q~$oy>CoN칈=$UmqZ`. BHl'ߩ{4K[ۑʕͺٝzUWCC7k߈8ܞa@> ]d*sڲvGy ?wqɈKby~$3}ٽIE)^"] ")MIi;^-36<2+1\6/Wٴ1[xkͬzgwa/-i`R9<;U@w"Řn[y,L-$j&l2SZd@~VU["9$*UryߙO[ey U,S^O W竧gk촆:+u $=O.7  0!!z%+ec4X/u&O11O;:8Tcj=(7QELZv5ק*1e^U܅g=LVVH&EQa1k*v X@ >!|aFo 3GZF''{ QӾ9vZ/\{bP([;w=#'I%ƼB0y׊BI@4>|-åI^k(Pe4;@O03tX6jU5e![dO!ytuŘ;fm\zhCFvr.&:19ҫэ_ݺŦ~,_eAmKVN il*F D~O ?4ICx}dCބ*ټFz2nbUSWzayZa߲Z[eb@7SԴ]ҩ\;qvY752+u/N|& ކZ k>^6:O,R񄭨+ y]1Ex,S_G|$PS~Ln2,Kw0F{GnҠrP4Gp*,.|D$vRl1t}^'$aͩՃFo~EzG0h8u쯷Ggk3:u_l?!cЇA/lBeW,>'꛼$y"[LˍL/:CwW=$d~#VHe2Db VVbpt,5E>?\v3M^ JgLn{߼ pԙ'ݝNxJvBXE7cX_n܋3O_ˆv\oF/-!ƓK4Osà4645b 6CgqaxS3/cQNrУJ e'q\GIoAv&x)"NЫ'mbw&uDVyHo$]NF%wvte 嵪//<[\w`1ƕr 'Yopou-v>S%A{K&ջhF&b I{M<ce/ tG;=}%hϡz˗EO3gmZ'\A^و!; ۣ\ą x@;,\nhۿ;a;6R2+u[r*Y4II)34- U lQh;va9. #yD+,^:H2El8߁z,pz 6&~ bbaXm˖~1cZ7l.jN; FÐ{>CWm:<> f~ܦqEK)C'/NjwQvtn.8HmMh:_ϻO~ni)~upO._]菍K'K0'qJ_p[3JDnT#tYE?\F8 EkSPxOR+$Cm'0S feyce,-~\nãn6~:pMl;}QmL/k$&/آv,A0tp`=x;3cYfkX׀&$w lHM04{:0(D~D0XgL]&%JC54IR,ܞd!'[N&MRNpe"x rSE>FZBQbcwzo9ȮŹ`1mD67Hɞ4 v-@f^걀%˧VorBjAdUt,āI]@4plW_`ĎꩾO2y)dj髐>ÇP}e[4tq 㝃mT#LjD[1,lC:!^JB;1̼m*~NmSz%19c'7L]Hb@Zs5zn 8ެ0GC[yLߺL];w)=m7}Ye{⒪6 00|cb dH<b1u3YvGaOu$,op} %W-5% y !X#ӓXMpc%643Gwl-kĖx>k+]|{i7Kc,m 0p1씶uKвhK- N;Z_~В;NpC:_y K!Rh//e[>^_w!-ϳpKyE&i]IxMZ0@=ڴ3}~ c|PnNe\0.B X^_,E;,$ZʝVT2o7(w [Q凝xS@5UʢGdۄƈ )8k $7~Wnpi?;l3X6SRM;d&VPǞR)Y]bvDF(6l*tUo%(˧(bZLJ"s)Ņ6O`%2/BOh¨EAsGY6Nmm2Wͩ[A7;(]9?::,Z=N֔ȧen$50i!ޖ.6z$K<%/1V$%sxVW7޳^1kX ׶kjP߀̀Ӽ@y\b2~3X+Q#B\(@? _#ܠr} ƌ9~ۥ'=g/¼)Mf.BaVqNy1Ş!tv[ FaX_ W!Ty~ʀVϕŸ\?n7w9--EVJYbfyL1~z> пO}ՒZNːΎ7k1gd?ЇNnXk1攆BߴDPG:Bc7L^@j%5 & ) [Xce M6L`=]uQ:LadB;K<0bLt+xq- ޖT2OI Jй8>+~Ə1.:+@nxHƓRHI;nqjGe|mz3?,G2E`-> 1T:̡>"0,d>a'DmE7-s/g< X_O[/mde X"[K=ޚdinʻ< /nv[?*/ya|=ۇTܔ%7E9  ;B ="<1 K/$bn꙼ҷ@ݾstcg!l$J3n20^ʿS X8S`SsGKϤ?xiSSYUUgg{^GOiDKv`Y6@&I~zS cO "+66rȔ  cFuau Ȫ *xe̹ ^I_UUrFΓH9v,7Itbg% !bbZc Îm-NZhKơ랿mmڧd⯩..ޔ)!::;O.o T ZeaBy~ȷyCs eĉPυ}JY^}%@%XNf t ߍ~ؙ`R>^ƫ5e$bN8 g38GT!{^폇N]2XWKVEVMS\L$ dNT_Hr͗7ƌRcj^iŵ@c1o:@ c~y8{He!dY.U'EXSJˣ104nx$O$_F AC Ƈ5uڤ]WȕkXI*A;17Ci9I9jSEnx]^x"T+ A:H ڭ=ذ6bV éNu-ύODgPwMU/j^;;$k1G3/rw$t8*zB/;:_JJ<_KS}B%n֪ 頻S8`pB)<^brwܘ9^^>{~@pQ6vu-ueoځ]:Éכ77h@)GZ9[x[@o۷cr.RbR_d  zzBB5-£ךLq^u~?UF-oe5uc@Ra6src!{и2\uى[/@;Kܝ#_ 85w@lwB|7Qeg9Xya e׾]SxTᐍWA>[Oه,购:0ߞl&?i]ѪE2wj4v1t %A6Ik(?7\M_>Gf}i+t R;HF;{4${JM6fPVmdR' 9R|ڱwwpIЋ(tq`#tyC -?vgpwޛ{!h(>Ya&1 )z=aSI6pًue5 >s  kq-wemAw)*Cw%. @p39o4Z1v6JWw "U2BlTsM'^T9i1$/k=@l1LovsK5!pQ׍@Z ˎ*BA(`KyC'Sl[&U;>2ܶ,  u~|2ٻT<JJH2Α n!ZJo)|,÷0OS}=疲5Wr},.qEȍRhTei8[<:ISlR~)Z&L)*& ʵA"/"U\,b>.q9?$h$:a.Mt%zhrDoqա=$;'=(dG(qce򜷁>_2CǚGEnݡ AO+ cмQowBr:ͮVeӴ5o]r7ITך~ώ+ƺHU{?"(pz>oEA|ʞ\:Uf$%̐{ -\-L {"|UnN"wg6VT]6R1h]&hadd9238]kn8 i%]A>|:fh,$e= ׺Rq6":zjD쌽`QbB2Y~k61-Y nl:kSɈ`*ddRWf>q:j-% z^E{tSLS/F6.>}<w݂XqO-%c-gD6qSH!n/R8I<&t/[-c T;Ug8d{6of} FId;}܌Guv{^G~ t7]si]_I6ØɺXyTI0`IS^@vj /pFs"b-MOxXY>qet6Y2*up,x6 >YrҖO"A7^0U\yeq-[9`>D<ʄ$˦Xk j3]7N_| N3dY[+ES=c8Yg(`nv>o7fޡ: / F T$1FZUL2bǗDcYhc@†^b=C.+XWs6JlW.-LJ $~`E-&m'[F2 `1O:GKxձ˔o-k&3/k7]9Rt63i\ S?HW).I_,3>aJ&'m^"x -u⸝E0.:GHv4Vwܾ<^MOxoa!wZLw_ r3V^{1sJ3COqnu CN2Sʦ2-ۉA('&6g8X`1#] ,ŀcݓUlzv*8@08s'Lվp¯%2Vpd>KC_ 0f2,vn"8lv3VSjF(E_Jރ|BMVbm,cda @@"bXπ@ܾš< yV?ׁWlOa<ԇvHޫG'cpt,s\C :a6"*e>8HNc^r_`:E)TH԰pAq;MWBxu5&,8udn5=Xוi܀U-/+)c*]ѣK@w[QAX%xv#c飸n)\L{77!+&!]GiE`VwXlW@z" !0(ua U<`}^)x}u}m&'7/͚J|CV $MXAd.г}<|v͏/Ґ]Vq%F+;w*هxx\nK @ܾ$xĞ˛u9s[v1oxP6UlN;x E4xÑδ#heU/:pJWiM9h>ˢk$VDR4 3*lryxd `V| py~`^O|AmG[z ~,KE =[ Jm'!623xޒuzꆾ\~\+'u3]?0x\AEhU.&NZVGs/lr6uQ; s3ʲќjk4WQnv xSWq\IpO)qEИu,~|ڔ/KI6R3٘cS"W| ҪaX@^߷cwW˄J>-xZf,cKrhاCȇғՎp*>iV[^_45]A3*\״z?_}7%TYy=QM E ; h3Eo5Lz^G>X]]ð{Q4W0}MXX[dϗR`ȴsb 4yeF=dkNuRz??:7[~=}: Ue޼84h%S[M :8+Zy>U7`$MHzF-au )fjjW)l`v0x H(rPna(w[txN|T-$`w>S-ѯ7]쀳ʑZU,Ȓ8RC':]0`M|MY6ZZ/:FZ\(98Vk<$4fTHz%* a}þr?.d\):X'˃{_HsX5̗KQ_۪|ful7"ljܯ~cHǟ˾X@.̼vl/7IxEX0+D%}~Q(oz^9vh /-Қ杪C~>BֹYK@"yr°Cѳk^^1A?^\ r>NrTxRvR;t'Z$2d<wFB ~q\_Q/\3YVSx0IOyN=Ჯ aecSq}"Ẏ*9RwKl|ڶmbk{g pzV5O DD9R^XiP.Eg7LQcju?[ZUU'$_s{ʥ6nV;B0#u sfk,R%ʾn2*[]3֮@aNo9.糩kfP[T +44!eZmbhh^]jNg뢭Q@ShE FL2 YIFٌP'__' { pO?kQMEԹ|+6a"M29φVcQqB7;=)A'?%7] إ/L]dY_4^BwS$tk+B$eݤwJϴ!|+ WMu%9umnYIX(Lt0R!2YBNfv.-/w / $:sVhZ8PTɳ;,Jp{r֜SErsl)b :}9՚<9̩MCn\2? dT\/1!K&qt%%Q4;s /9Ypd%]3(pB nGqI%Lxw/K*I}HWUvĞE.3-I,#@Yg|/~_Ԅ-7U s`vwآlG;Tfwq`uFӡLb]&1pЦsuX4Ykwk/i0lO O/M/Zw凄㹢wti|+ub<$nj=;>:8RęuxzPGeXXUC: ':N:csӋ躼t9E$HڷM%1"5 \oo܏0#]O׸ZcSX]2ansk: ,z檗"x[,&8E:Q_E@s ?ou]s>]T}'K]v)v@-0Ep*N1s{cܑO}_Jwl ʦ2.^U|{݅[zPD8yg-rb?x$m X$TzWX }!˺쐢 1N]V8Jc#=Aڀ?:Npa?s ^MgO^Q_lä73Ef}srL#Q}ޟWׇ ~\]cےPJrDgyɍ>Θ)F"#i:ʦ//wi7p鱬R}/ϴLgB*  =4ei,{k"XujJM*| _J؄  ч*J'nXx\d!eK[cJǓŋ¹.Ub6߯Ʒu_7wzֽ|#P?)#M7mmD֔q^Z${]"{罕ȁ dY|">$\p|{KWǣ2!U1*ޙ~ %63&4q@h>{jGVٕE&^]$%&t Q0q+Mb]=DRj8tL 2.A<}Nϒ*͢QzI6+eŁ@djrj t|i~^@ãTxO^.}.yX DzٲԮ{f"8+ђgJ"á@JܚWUlmU޻UWqbwĊ~ʶImNkn Ŗfk %.ߜm/~93 Fz:~l*JOm,ħqjRx Q+dWBug ?.(s,$r~ٹ^%q[X:İck= YO,@TQD%FTXFς`" 5uXqnĊ(Y~/Er8b]VidccaRD hG=oȫc÷oCkAl&z/&#}ɰL:PhX?ZuE^ܨ'2;eZhlp#W.<]H9X*ShInXƪKUiE<%Lp(lCzVp/,>0)/T%+8 -$Y(3*kԅ/v[6萛$J^`X]VH7lav-s8fwP*SSe䢌'L!V FS`  Q@Oh{Xzb՛!ڪʌB ^5K'ez\yJ:ͬ+`$6Zl`1jtɁ@=7ar~uHBXgxzȰwRx u*Km@K-JJ߆e'sVdAK6sP~錒(4Ȫ \]# |4šE&tC7m !tu$bK|90MӤm2_^5vgkUm&hl$NB1D bb!XV;_Cq}x?yśSn֟{U_]悱+CFf|6#^a*vH.y(ej0dvw s3p'몊דu)Z%m\ J-@ņ3MHz񰊸ĚgxiBLDEKm,:.ӺI7{>oĸ0KF0">}rqcr@U0hŢ'|A)Ƣ2_^@#1^H!nj٘*WE~ &.2!)uIBGPZݵRLaQ2O{.}KWuyV2yOK>hڎqr5~)&v9Ta~M̱L;v_ēK;A(p~ɠ,[䑉frNMsl՗dǪKV"femK_7+>sܑ9mx@n,`i1zߒXE#9y]=<x/f`KzxQk$\سpȸ"GI.ܒPJw0ԕ痘x'9:Y&=vb`K^ \ !a]yk-)JD\Oy'il *Zdv7^(V'H&qNx ?om|[|ǏǠ!x'0NvFRZWN|(i]J'k7IJOh?_'-6)Z 9'I{Pg6<\Ƶ?[RQ UxJbKoqkAOHzk1{CI[]`RQH AT`0z8G1vR/iUG+z~rq<UA?qdܯ= V0"+Y0]__ҝ!Hy bmP)CwѰwXLTva^>r|cs' ~1彶Ł4 sMjiy1ƇK,mbp/6l )H:j|zĝ0UUY^~%HSOs f9KF?h0 NV~bD_<烿ד`Ueuݧ.[$b* X{\,,70(pȈ" " Gb& kj/;?fKR B8 E@0aB7;c;Xnk0 3 G-ޟm7Y<ɞqwE*I]/ k{y6ZP,0%Ȼ/=|!=gyj^Wi(LsEjEH8ѽ 4 ,8*xx՛ 3ìd=8 [8^_|->4>dYkUߚ:1MUQ\ф)~ Φx6')pR,\ʊYtFpgqiY'i?zSY!7: ]jo|=&Sw0'Nڽh$\O۴}uT#҈se;Zh LBiB Y?zC"b,<*&{߆{s"6fzBY/Mi@qPc%+0ćHΙt'd"scϰ퉞LIL„ ?,ax]|F"Yr\K)ѮkI(~bĜ:grX7W+J=B`VYHk.\4pXCDXS[`=Ĵv!MJVXř;v|p-vBkwn\Jд#W8q Y3r|BN3cu,kz? ]t*>ڤ2pai%4QpғZ0L=UmZde$Qix4V(,$^g*gDvfscHygH@f}q$M]}8Ev>S!7XрIQUQ_҄1ٔ S)BEPa r|Rj~x!XO q7~Zl[>4nd.xney5L%OiqHuuΗa!fo_n|;OJS( R_`U|o(H?4ҳ){q7:{}W4<%woiϗ=.yIBώ^ A!LYq<Zƶ7oO~{ɫXĊJxĒW˲L`m I9f"p 1_asz4!0 lG˦҉yQݳXp^k9`~fkrNJUN72)OýBbWd-{f[N< yJ8XUԆb~# ?N0 #jcC VmX 5K Id˗<{$bW̗y>]L.FѾ$ϙD0j{0 w3<b ")'H vZJ?ճƼ(K8ņ|[)sJ§\C  p)AJ Ǘ Sgz/ a34ĝ@͚I3~`䢫φ򱁹ȴJulYf?lxe^ө<>xˢ3SJ$hdLkDpt~ăP0 y$1)7 ([ +9&Z)=-1bԆ5Ӭ0TػUUai%9@qf 9 zSE-X}p9'%>F¬,]ja]acE cbliXY(P@6Z+uZA.1lc%M ¿lj-RH1GYv ?,K $4-m&-RvV('e;h0/Xh.2E`a yb,d J7%t*wީjMG7K1Us-˗"֍"WSd'#+I}2ߜ.SA =1_1Kc^Ra$}vkb\vVC ݊(I" b[v$a8БЄ_2O}! ^1m7Q+V~\x@[6J:1ȈD;to0:k.jK6mU~[Ci >+#ߊ! |$Z_*ct$9.5q#S҃ttJx?d]ĎmE0{F{şOVYɬi+/IZΠx#*q: ?\,lXCP >0|kmYej{XJ7A«=>0`և4C43q{0u34hciG|K;-zs~|Պ,^WʴvmN05.ޒMz  |@ JcQ9.(L#>7섏 AXqkNj8JKegCCP 0™OQ$Yv6(a"߾>sSɸԗ[| PPI*wb$9;FaS93{B}Yݚk< EeVϠ㶤#p<3u3{{eߗY R[ʦT\gڙvATa6O &/rE $RiP𨙂HFncTuƲt{i9n4-63&jp0qAM7]9tHzs7tDLEv%Ewf)N%7Ȩco9q |ū(ۣx~W({V?_^nū2Y}-6#j-wr3ϚF钀,o*Ω*F0Gnj l8/<U"'rfp0*{C`iFJ?0N`0XGZ%fUpmxey,C7vu3:kZkV{kbɱOh$ Q 냁3`s\?nd86<tԺ?Q;^a7?! q{( !ͺid/a@?}~Oo/ڇ[ݶB\/z!+)1ӸcLhC|^Џ,a*氖ZʄPI2 r8]˿^c{ȊtH& ; 4n 3kD7n=6% #>zWZ<.h[2?HusEP(" 1uo(L~ #HV_{>={!ms#^|Y*v޿PvH5蒋\$h-TұQĄ"ޔƉ3BWk9_7P`.j<.pO-EVpUҘ31};̿1o/ݠ6A }()|d'E&DKH:E*E@X?rWSMJ B\m{K k gľ:I¶}aq(wRwfD`^Ϙd`pL: ]4~bN̈́z/0d؝7eReLr_/24KRD9`ٸ`e $֒l.yYe=6:s}6%?9B92*Lp:t@UX<:@d gTj%VfJ(]șZ srb$ R7{͛Y2WݪKU >u _( ~QJfa8R(YyZʦro @TZJu=vx='Y19r-yvThȶpam ޯIT5Vd T%tiɉ pO|=GoȗkLR} 5-n98 r#m9cC*]FS/ݗnA0I {,+Uu[=6mK }ǶkaZD@}"MdAlf?IsߣŲl>V̻hb ܶy 4B,Dw= iÙ|_92e*瘺\_2)S=$g/D(ꫬS/bt$g% |4|(pA (e;ܓg(r|!^gP9Y}`@lqUhk^xx8PLlE-:ߨ%X![q^Qug8TQ6Ͼ/RܫH\ΐC dxj*wbӱ_?S7Kf?zPWv5>hRYDnUߙ/v[`+`ɍ>{B^QZҶȘ gP3!M/peQK8D걻dɰqғѹ4PD-!*ʱ mΫb璀,Y1|*.Y7FP媒I>>no)2梁ȘQ_0ټofL?82Gody!K+״uwꗳyrqQM]ʪJ:+G3K `0Do9Ora3> >}C)] Y ;>\GՊ(.-% N|(Lڀ-oK\%$B;f&\>YY(HE:6ɎwǻQl8a6>u.)H=LZ:Mrg/:,i`Ȥ5U|ƊUKT^J N[mv4ܟK'-r|O"M↿M.7VXS$%$"탷l4MQ< 3U0"F./)f?Ǻ{C﷧;]?hoI6W4H ԰YEeB7#SCd1(Zic}W/lI[/)8&A#9SH2fW~OZ&yVc/ؚljT{o+#N \rÖ5W5H6lx7jW<gշwNp%})kt[Uj[fE z4J LpFwoogi L+TJOuxv9?²C);0( c&Iҵ$XNzrs&@QVhZ$U_]]rU֍q\װ}!SN>>ۇfJ@K&[k@0btDʓd?a8n͡ (W D :d$dnkWj[vXϲq`gÍ<iK?+ rec$ٮ$c֜RTYmK+%8#JDLqpZ֝ؖGa' o&D+JB媈KiZ_, č&eF؎7r"cpLV b4ICS/+}:ZcPlnWҖtW*`f81{g&Sote(8o[]ygCx=) Ruq Ʉebj,qF,=bY:_'~B C L^8L*.>;ܺFޚ0,H 5Ug7[Wu,.vRɘ!oqvư0xV Ǻ.BIQZЯ̄s[6u۞T 1 =nZcnC̄Tu.R~Q estwM_ ӵ]( uHC'ϊ@P3FNVH?Kw紃Yçy]ssk,+:T͕`AD*@rzD C=acxO8e*V}.$\ioONHyϊ0ֲD _/O2{.u}pUI4ťݖ@펡9JݧQ+'bG6O{zUp_J2T*#ig`. Z_Ӫ*dm gX'U4> ^F>VaZ+t9Zܲԗn>6N0J#ג\ਜ਼vQiw:ꬓ]C*:x3+*("/ǣۯߟǹ Iqk oKɩ/$Tz0m B]F wyS ش!21ZZ³H&EXmGʆ%ݿ!659:W(e.(KGO!yJ?n̥ay$̢PKÈ:@˩2fpF ![}~-,AQm-k5b% 2GJ+S&ޡN&cFj'NyVI;E)?wX^n TW y-<{K*OO" \'2d;GSES^ ).bS!liZ%@KV\q\z:|.O^aѨ4oiՋhpܔOpk՞><?խl[ulK#% BA'(q]H B~xKo3YIĈP=7"xXT{x^72`-S6!Y _H ԙ%/b`WfN(f%f;')37cqC V_6(ϒm7>Ls̺nȟUl-뮈o=wt2Rq &IY˜}5Nŷ]IF3GG\-K_^e,:ڕ>\?ZԌ 7 Q*j&guub8q;N fۢ/jF+XfQ@'*`qz8¦{W!$Ӝ^<^ս^XsOqrghޫ~^NbcۛV\5m;1Z|v$;wo"+|m9W۞mZlQ>g0,}$\xLc+evX+1sܓa|vE x:·8_f}`dV{4sQY ~PgC;+ r0RY iJ͜= G8h/~畐ziK2=mqv%`M+n˷,IXOHJ^Ɲc\泉J!ƨy?k /Lm ]Iw*wI)߼ο1[/0|9~[>&5T+J#|-Hni` B8jڻmǟz$}[fb!Js|CruJNo3`>E库is,R*%1F eB YK%@_:y^)2pK @_Ĉu貃3GoHZv8 ؈IՄߕjNwdp_KfAd]*ʃI3o T$V>YKخm>yxwn`_JxKv*mvLiIƺ}vߖY*@ hfHK=7r0OyurWsx0Ѕ+ {;=\;4o8$Rg#M<76&X<䐌ՠ%va#L/Fu-Nu~Qy>˥Iw~ztԕXښ'7IȨV)wGj)hߜif#Uߥ_*WxW XD䯋Fq&]&*Zz$XR@`nf 1DX$;ErۉAYjP&𹍵g.qgHٲ!ߐX܋q܋Wxy˥ȖJ)oĕ:(v%t Uel3s( {M_yAin a4R-ݭ+/Jv}Jn` nKtt`uPEЯn\y^}1>c1c/P(K%")rqS$F2\y͍Hݒq`ѧCgɏ#:-{"N=O^S5KVi~K d#BzPCLxKۛU{/ᢈGTz _/qy؝Tgna-K2 ԸF˴餿<ЍU*tyC(F0P $}z6@E~Co{,9X,-be?)"<=K^ cS۹wHplV=б= vhӆv_#9 Q/Qr%8aF{!widٿʺצI#1vӱ?zbJU +~UO߇:ҞSy~6>`k^1`e'$O%rcؠQmg`@MX8XW%cܸtYqxitN 8,6k3(YoJbg9&@B-6PY#xWy~ g9'f=7"bX|ݦEoscQʭS>]xڌ (rUݷ &oeorǢ]~@~aٯr|0M[?*ls1!qv8.BH(.6!p| )B|Eb"(p|$ Kܭ?rWE/rI'fSi&i[/c6)Y&#-nNف ]Yz)>Gw??ou8gBVe٤b(i 5QGf Ux ӗ UIxḗ=RlM4q5 bO^]u?Ehc|5+QIu OJ.=y8lf9)^hWA$3xQol\䌹ԗP{ȳf2+~ip}\ChGbsz;2J2 NC7=^uCwjkKW 9/ncK$ZP} 10+Jysdm$'Ax+XtmV\wߤQ3! ch;^纃uƈ# LsST,UoV2by"gYeh#F0ukK(iQ=\<fp{]%Θf(|}[k %/Yo6w& YVt7:L'aѫhHI.cXȖ/u{kUM{=9/d{d[.ɨtAV RI]XZg3#v5r7;;tY7qPXzz=MewM"5_UK@y-Ew4 +mܪ9nLb7$q a'%Kefd{-g\E\$J28[0 gͨkM.),ĐIb c#^L?g >+Hb yܛJ\ߐ!{X?AIQ& \mAjkǾ~ c:MVNW%DFCLOD/]M֗0\ӘA2%i*gm}Ib_yWM%<\Z35eRzP24Jz侄L`LwI{Q/(ofroO >s-gOtYJjk/ e}Qf2jf/ ES\g&fYh,rXԑ~:aʊV-ȅp`:d0)"Ţ{cV0$s}.u7\ikfHQ%E"SQOԞhb,(血^A=KX?s$V%Yk8Jj^0`;s?TG>he?%Œ- \Gl߳GdWI Gh`Jv4'vɋ%iFDzI'>,U[]~ :8'#~~P{:7n=3ipu|o&Vћ ?Xv pM$[")8ɥޘalYU]{ͺVԕfŒjA=@ }MA;12Z)^섏^rc@HJ6΃5aۇ$L?؆iaEMX8eIx][ =ŌŃOnVЇl8ß7+-$Hf)h6 (_/M\y;)는>"$ӧ7uKQ{y~VЗ~+̡ͥk<%&*?VL+y[#ڗZĂc`V^,-l~PJG΅?<0O$QNv_1.]QĪ$ Dqb&c!QI^E7uxz).;}XՊb$хE8ZZ@kmK<&%p5 h9*:^۶Du )/~"+p::-"KR(3?8~m'o"eOԭMl'&Fd s.Kc8]e:y+cl}ej{#~dJX֒k*NLDyk*wllUM츲bmSBvg3B2/7&iwI$uo{,K)d}I^ŷYʸ_X]^:ʫq\:'f1CLp-3inP:irni6/T貌2oLwyF(m\!DJaExʇD`=muzOJٕogleVyeu 2z).#fޙ`E/F*[TwpCVa~@zneC~wsCC7lemP,!bU b7qNbf6`'Lш:?jk+y R.Fk-$yad@I%_jF,*M<.^:#o5}]U +Gd㤪:;itaz/%n23ax]:hNB~ {s̤uΏspfyc2.5SVӳc`,?ڷd(ɥ8Y {?vޓn>2QcQ_dJQUrK̔)˥Ъ]7w |ϭ"%d^ w|<}l螏5۲+7jF]l:E f,.ų87;R턖gGe2Mrd,{S/ Y#`.ؑmobpOj?`a0|]0: Μ2UWa̦ysyT晊hJbDt! [3 b.TX{fs~- zL˅/Bɭፐ0evAؤt{}Lܯ~OhfT &ʛc 'A®.w/䲩#Եg*K9Q.1׃ %4fUqTx~bueYܑ2NS.G7;a⧟zT߫__ǽp:g8ֈyb,a*Edl lYSS{HU lߏèK ,]/"Nނ,gr|e% "oPi"F dXy5-2A`Tz\M-޴?{w=n:1q!s݋T.M#rX$_(x @ p#sA/=M&_+ddL}6UDM+4Upل5(|8&bUhP 1Ѭ}4aVo4C}̭^3$#2WPl*-k]"^NxZ~sÉ1ca^}B;z:`qȥRTvM7f@e;i @?9?(6#{z!i*L{)brdUb53 gvnĆ ͏ 2<`ozt_WTas%yJw\`m(ٹg~TdHaWafyT8h]./s_^d+?L!nݡ?*XQ1kﺲg"G_~i1s_ixqCZY=oz26ƍC1;It'\ d__)}]ԙA=R+.WjV+Ff Q@w2\HEyZc(?)/kznb۵]gweŚQmy9ҒLji@%E&]XR*|܄7?|60Sh pSkY_ h%Ϻ/f]D1{^L޽ah̃&OPR S$SHA./O+F.84E+ǐH dRN*QG1mz۹,g/.J7WXZ0J`(M$K1ɨ|F|9/>&;j􈋷0v])sKS7ա 7e5,2}}şNb|5c[gp8. [ҍ0\ >L.e> CCZ{K pK|{)\2RnÔbX[E 'k4}0adN^7ɑsbs%\c>rUe%"nMU^nfʐV(6T.90|6s>8˚7|a2&e.kŲ8,{S )`t_Rbu'Lo!1q_t*,j9da,Nz긼3:`~=~blp*_W}YM-"&p`'ld`%S|9^x$6d3ÿ7ق0mƛ؎rUѶ]RWnEa)}b6TSln}:fJd>7ce|-jڪD<֔O_m3  V*(&\B]gD>W1V^Ĝq먐~if1LVݒ}< yBcܺe#[Bbslwy#W gSN~4 4OzhW<+F}]puݵ` *OJ$@#BƠf`\E2Ixr_ئw*\cxX<ܦI2PlB8xJG{4 ODkL8<]sf8 t$`e'];]y $*kuZ갸aTXx.֒9nfUB(A.~ XaiYXёŏuX6%+^jf]ӃzNپGZVJu5I1*ca7A't.>>&b}(\KS IPڣXbYIljŌT昌e H"jLi-EHf(3R xOA*`>)_u7Ke&}jMt}I1Y7}e ͪl& NIh id}w8|CzՑtẍ́$Ӥfgۖ<SߪUM|xB hb>۰ҝ9,@4;7AkY4"|Qq"~>D,}<#gRu3 ĥ-E@>Yk&tGw:XADUQ``ms[bN+t?=;lK' d Jeٷm, dJ@bY0X@JJPiP!Om'R[DHNʲ>FӪ?o\# sJǐW.OlɆs(=m"u|7Q.$WBÊm% x wWSP=ؤ;ӊ1fGɩ/嵆us Dg|!-Nt8,; ؅mI FY^3 i'p| !WIǣ[k#q=-]$_\Z_-y>\n):v+rJx܃//$2{N-kYD6DNF) ]N/׆0Dx7h/N^BϤNKOS;xT&}H=F =640)RNQlcԑUG{ CgJaxj(Eߏ B̾bo̧b9.cen)k6;]K[e~ޚ܊aOz+`ZqEhJ“o =ZA l2AHHjCsjj0˙4D\"WyY]U'U !o'm! h輘E*f楾w,0L59tեɃcm"60ɶRu26\e)X_OO_}zeWv*▖VK\z[j*xKTo=]:kW__,S% d'n q~`&JP[ފ *)3VڱBw>T&O7[)Z}m_",s7Uښ,*wrߛ OWo} R3ς&{xb R|sQO=]Q8AD$/ᎂ^1(>-$e+s%'~;}~[[gXwRP%ޖ®e35X!共Bl<.O 4~`}}HxUn]UF_f42cUf Q[_yo9W6L&y̏q#g[kʬ3oDt|iѮiDF7aO;3r8j*;b c\g2:ž"T_Q@]״i~dnؘe<~Gy{S^1n*]aVOA/wpϐ^W!gDo?0͎]+U}ˋ)lJ Ryp:-57.0N5.^Og!I }S05ӣ?n [,nݭꋔiM4!H8FwŋdkW4AL7):2^T];v8@4%]^#keoQO0ut&4Ʃ!L`bͬHO~|? ʏo[cu!rHg9eTQK\e߱7:^M!][[t$_֦}Q׬εU{$q!%9WCsfӨBm4va40XӪ3Xf_u;4<.sY-8h2WI+헲1wk_b8ꥍg*^Fw}"66c#xH*"ߍN7A-' oNl ,5)׭e~_s~ey'iՑI$*x((캿=bd^҇v!n˫dWE5MVZ_]W>5[Y'n ZAb.I)Dnq*t%ʊ|8s^%gΫ0kwщl[#s;V@I%q;lag06nU];Lcq%qUk3|&~G>-zh=;,GS̬Oe2 #]s pe_TE6)ATWy䈿8.goђS6Υ2}YXE=[r7K[ҏI^Qgf[O9=k]Wg'YË]TI:gR.)S;XB&3r21>XJr~i,MܨW?:KXT!vWRgAR1(b_1XiW ֏ BqM{6~fmDnaG;~mrS*.0:?_l`Ǔzgv2p e~~Njg/m|WSDՕq?~8^,=]_qr*?pZ y4BRe+ChdzOg9﹣⢏mѦ+kIkYQCOMm"t0D أA1+A Y ☤-Aevb^brFI< $+;.7Pڧ $yeƿXv"z;ˉ$l ?GgiYТЦrG'`$MC}!1 YPoc+VMHç2a7;J -#<߻!& -eiߊ&͸ob ol2L+,3Hʯxϳ_|,&`,lw0)t^QTNe5)sOf/͟-lF>|m{4y?3k:%Uyc]FvYB!XLxl~ÉTErqy˓\.^N_y8X6( Hv oiUATL6O/ (;N X#NyjR}X42 )7B]M4 oPfVJs^ݞbg$kf~Xc6/!]/Q* }(vSUfWBr{tW?Y) QR-ѨX>ȕg:!n}G56cገ*+&)7u>u81 |g9CLLq-~'Eo2bRĚ2BlLY[lph3)Qh'|)넸 +H._7[Q>ob*]V>v' T߄$[F,W健;K * yBH$Dv(N%jʙ ]]*fXH>طNyݩK{/ b܅xe!fH<^< -}'7ݕF)h &'?31~T7AK_E[s}{dnسYIflrLs$p~nB"/a;?iþW&v5Į`ҵ% ''?sqSq۔Xp (fhnnw҃zsoh'+wBuox̷g}?sx_4vh? m6˰"sKc0qŻ6lq0_}nO=ny f9TPuPRlm#6.e3;?g e3ƽq4 Uij<e0䪕 u.UEKJ4ρt=LaP)M,sKuQsk_߱'Q;O\ʾSXBe2Mž]XUB0B%o/o#jvAy赪ѹןeW+^rxe,k]-%rsj#dlpv)_dxN^rfekuk%;^cܿ0<|kǭbv-$IwԂF}䐄`FDj, ,!3]JXWbE7 b 7vtQ'QZSEVyBo6U,hQ(k`#E\ȏ$R&I=lz?1`v΍kxUyjc)dTi2y,͙eH<83l!+9ߠ[b@0ÞVi}U2X"/~ZX>Ge]0l[3znA R[AhH3'+i'v 'B=KDZ[ ?2[խ1G1i*2O;W@>pVg\K x!{9kۛ˥jx_bO`KNQmi1sDPbK>='v0r%oW5Wj?W4)4;bk)LRu~fz)i` `e۾Tt0R1<Ӓtij=-2G/b =E]]Ծ*MC!p6A} ,2ΕTXe=ƅ{ebWtin`!Ua ~iK O%녉=4cmz=P>.ٴN2tsd sCuC4u=5<4?.SUUG*@a}BQdY|}ك69y c#;ɼgOżFy(d11/#w_=b}[#lwB"L8$1 Lu#hqӸjIW񥪝4]7bF踌gF=wm_k<]W_,H^Ca8Зe\/ƚRxl#Y͘س8ON3M5^3oĴv `:Eat7N|^T) geHR,]T}(\UU^#Zv\74almXVnQ~:77. ˜X 0t8W]T] dQԗ(>X`p.ȧH,n#{Q3zR6at{o剟ײ?M\}s/n5I~@4H CL $N2Hf5ot8׷BCJ+omd o ':06opIHOX 0/gH#gQA7I[tq{1!6Ŷos FcII!.6 +n&k}aTL"+FRw*֖AP;}8뫟m<V>=B]Wyʥ0tceQ Lm,PS}2|h,hc]ey꤅ ɮC=-CBPUnud&zRdF 2J]Bb-j4`OdQd9](ڱ1j)j@I党`$0CS2,>Q,7IO(^Swy(1kN|jv8I jc[HRV|%Bb(㧐,G&[aw0T*&TR ZlJ|!K)f(HS@ %0X10ˁ`q`29i@]. kËh>;AueW3 bUZ*~``m%w3t~p?~uxq(>."&2DE# Lv0t|wC 4hE 15J߁8a~ +f@G;n,lF B~d^+hdMSlC'-{pwsx4+TQ{{u5=_ ʢ#.lښ`32dqݟ1{O".YU 1uM)*-@۷]uqYIpwV.Vcy>$uh{zZ*{uQ7x*նʁ熙8D)6K"{yOIa?Uo4/^%)Mt W~ۢNYfX@"i Lʺ]K}#Neㄹ؎'':Q羱gZ? BP!׾jD6ޖ"ҧl3.FQb^rbэ^ptl$B\_^M-~4ݡեU{Eo0 h='mEi䜪jqh~bNx۵L"E%lRc?5G`7zU[e*vˊZ(MW7991e7mڤ^+.OθL^~148@S<7t'EK7 ՝YXc(.(Z ۷j7{?J]f[1t7CwM:Ľ-.mŒn 'Q3ҁ>N^U .u8ߜF Q-eVwđii`nX1yz {SUY/Fm >@VCD_"nq?įt[ܢBGu#\*OD%"tL0 op q>1ݻ?x׏n[ul+ܞo+/TĺLIЏ٫3wVvjX{GXmĒ/޳[]'׎gg,G@gwoK_]"KkT&ܟ̕B*[@cmwIWe >N18W+%MY{9u&b}}eg1F*|g\;4L 'vQ~Xګ{tݥ2c"k٥p*z xxr @y'a( I!}SluFMQs?/6Z$mU@.jK3k݌ '-&p||[TFGAm"qWm9ĥE~ G,]StYUs+]ؒ@>̄av i #}+*mQNX7ײU2ـ m1ǐ(zd׵p1&=׬h4JHb5-φ}V@V<ijl5PۏJ5gl/#O[X_T}T2163kDVXwq3ɵ8#;A"@&-K& Rt R [^/?uKRŦaع|{KSgCVBH/b3d Ai#QqzsEp )l?FuY>{%B@eFF$h)l7c(~:p>má 9]FM-kmx% ?>[ְ|O+WRs 0j1xzs:_>_w.5qBF,+6#n4}ނ9 R:Go`_2דHH0S!,>`֦i:[]ToV6PtMn}VMjpMѡeF/!]ns)Hd)҃lUW$6!ؾâTAd\֜Eί:O3MGPav59ÿ("hN1E䑀ޙοSe n4 E)ܓRr83IqYӞ'J A}XpĤ"+̹JItrA n|C /,7T,[+:JΜ ӭ@AɐČ>Vp:ROd'CtL>hH}SH Zf~O8NEhh1h/dva\ae翈!F(*64%E0ʨwz|oVXǵ\%=^󥫛E$8<ȎڞngBm`&Q*ld8?$9$$*%EQ%zl"oHٿ9t:_꾹=[qwm{ba@LP1[$|/`Fo%>g5B dSnw֓`O^YGV5|׿ƾ?|%e^ >Q;ʦ1 ߁. h<$@ EwE_J7mS)%h#1vq;jatyaS啹-W{]xc!pc2YNszUTY?xah(Ntn6f#YOdub-C. ٻ"5U;ew;^C>BF ~wB:rN+s1}+b Ff,ᓂ!>ًxt;Y i\$ȒӇ4[]Ѝ:>_^'XÝImy7/+ET?`9\6I6STNa8󥏶@珵vYq+:esۜIJxi#|Xa^4$; G$T%b{ סw&}]g#oU'[:7a,C=wy` w3ua؋3/ =A^Lq˻\ܰ{WK?lZK-& iuВ <Uj136SN+)N>dҽm _{{}stQ?p..s| \z+a0&]<ް'άQO(h j~IJR1M앢i%#DO-}P_a"ܕk_5*ӵ8jـZzr;B}q=8?ï\$3^u}'KAHL?0Mgݳcbl˂NxmKރ(HuyV\VfX|aRm>g(_ms0>>1=.x%<YNӽz6|"{eW!ZzT@ؔSK V?ZJ<:ԠzO{m[ZM8zm_SL`Qtٷz).*+%}B:cQKjK9ƄLr>d!U?EyҏߴEPS[FC6m jMTc\ʧfަrBZB0ˠd30^U芍 ŅBazk:4mgcz@ag67"P_b;XY:=RI7sh_M<'gW?"yڊW:U$<$O}2[klt:MKѧfBLcC@0*n÷MX2Ǝя(ɟZVɗ[{NDV '́H=C00CYzD%moBi_W#1ͧ#_l u:ڠ+li=aJ80t3S{J&ѧGo1aG>-U_w=Z$GIJ⴬=c6ر:ڟ P&*AIHb2@'עsMpfEqj4.N,=W09lXW?:6#1\;aI1u}4YosK|dwML}! r} }S^_0v,h\?v:㲻5@JEog"I<6fJRxO3YT$ϳ#G\sytyrV^?vxv1]m⮙նoߘG`;$ ʖ28n"zS!巙,Y̖Džpޯw7tg!`Kz^z"@&w}t8ELi;I+ͮ LPQ;/0vݶab>lz('SEo~{hݐUc^0~PQw¿M*0~ .Hj|\r0Ooz6Cĭς9IU*8%r5egi 6d$Aڇő{3|>ɷU_-[=+"~#K =~&kSg6LI!>kِ!L&UjSh#i2yҽD-M'}}NEKկ")dmwaXo#%NCUtWw._f ]*oTΖ-b /,[Kbgp4A; n>f`a!iH^V ^_b^:MX+4`7N"C6Pw;6-9L{e1踿}L*z (VU QFx`(>,ImCJ~4|;RþNߢDXĽY#^ 8/onͥVbphI\ *lx37oA;X8ЈH8VFe"0؎ul]h?etRLJ`[sg_gk+RzMQ.| P co0b& oZ OeSq}K|mA 6eێ8-ۧ"Ut":cV0FPCvF@߂OX"r/`NQ*{zch"f)9],"谬:~L;O%P-&@ߊ˶0HS6ɼO^Q *k1Ֆ~v% 1>8 t-mm mY1?4NikE* )-e(߻|!7p^fZ;bߢ_C}z 9qԦB 2z$%z.Үp^nX0I?'>ԩP#q-u[dڥriz+Vbahuj'ٕRHEۢ)x5N54_b&+)|eܒ,L[+GΒ 1*!KHviٺY; ~x⢦P)gچZ,oG ![&]r,_^d/ˬ$MԺ%xw=a|Gn <?/,uv|3<եΪ%6\cҗŰ Fn8n,R!H@1eeG,f|޻ t{шȕ*$%'\@s1g~! ٨%m =^O755k.{V?$P;~:׾> %ID`(K$H@8J4}5[o5ƓC:zՊ,niO iCgEyqk/@HՇn meha ?LBL<\}Qe[d6UC#睃H-X0f C`V`\9NݳBw)o.*>HEv[n.] L60sn0 (s0pJ^&^,(%䌺EK R 9j.NT/q0VD# 07h(=5<=`dFiJ\5iR6O:u'Tb؍Yen94.鋙`<}!΅eyLCNJ.+%| 'J0‡],oI!eY[U6vP}∡ʣz6(7rCl/X ) *2M#YQ]?`HcQ68Pqo Q܆-W^6tO SˈB=Rr傐㸼R9B^fO%p]{CY/tf(A墲=4ϣ^.Yzr6HCEJ@dU e ja9=Zujq$/1+pRK ;@]\FV㛪$?(WI ;?dM5º)xElxUOtMny?Z [}}he|ȰLX[Bn{m쀫|2J:' *Vy;cx3z`>ifѱ=EX5#k?k[}ګTc/ ~腒$0Iyyu;q0& pf C !)_(@8l[u1O ^pӲ<(ydЏAmca}yƸ%,<˝p7>;ӦL B.PpXz=F">@>F;}q?*t.=aK(_ Poڸp-w~[0}} _d1\-|Dƶ Pҳ;9Ⱔ*rf+dh1i6(wq ϻ ,Y k˦Ǫx_~Ar7OyyՙzRY X]-gڪĕFD[,ϰ˛4M/Y8H8}}B52q5Y $9!qN~۷Ay߫&l<]27J*rܙrSO~vuQ\Pe ep`1Oط;Ie;4[."IUl$pl4In+8\4),.u=N=*/gmD-(+ {l)B*.U<& L\J ?‰>5.(),lJI\ؾCJZ,PQo7_[pxHwFѕL릨,*Z.ð3M2W?,AE?h}- ^ΰe]TuWi} &xa o\E><a$-ڥ`&wsٟ>d9 .YqlWK'Ho ov EQ>da/JY6#P{y^Gx/؉GkzzdY5dbs8lKf^6~^wC/BȼtOezCX`x"˸)#yť,Ҷ̢}7671/>^œ"+qg[c}6_.pnZ0> gxD̠`bp >p~FA׈+K,>^4o.OPmbٕ|+߀o!y&+&(j:Qc8.* ~C֗K!S[Y5$fC"y7ƑDz\ѾY[ӟv|$!Tx~f-D8R:|BožQG)9dl5 {|t:O!>i2}XCD4eTaݦ_ ͱ-/qsW8}FqE!Fpm`7#LG*t`:nvT0_,aN$#i:- /ZLgc/m~ -$YKlM10ݬ6ʒR|w&w5CWY-g<׻~..@U)7E"kgF}xbO'Ng jh.oNk|r<̃0uk # C FeuFnZ\vTح67>p/9/<O"n5|wPmSE3.*z ׁN%!$0G5b9ɾ xTIp&X9E_1g*wmW]{z9 W͙6]G%TG7y\:G,i !iB^2Їť *䚮IjD)a-s\vկs S [K'EB.=?&hHDj8\_"* Il=EήHKd}H^F~+FG}?A9ea3_uv)-crh{K&0Upwп&4*/A辬b+ ~sϦQ_OU2"03eAqb.Xã> WuiX(V|%s8/{;c6[(=&dKf垇ts^d52]T],UQ[j1] iP o):HR|z~[],0q[ܫ?5cUvnE&bTXI}̙JH?CƄ?ܙAm'[ǮI:ַOXOLQ2F0i3"Igx\M9ފ'F6 J>/:.mɍME:&z 5A.y1gċG_?7o֏]T?>ɏ~MD GbqiHI(UϕtD }%mI+d_Y.o۷ÀwܝmWW]l GYd tSJF:B2H{V2 _^ϖFQ͕Y`]RŪXI[$=axo_ LHX{XLJg.Q,P00La~QHxl"v, odž3U1bM)D) +^N,h$Ba/~b|R-}ގ%@ҧBVk).![ ޕT{Z͓腯-;L˹/]L_I"bVmSj{ ue֞;5__;v@ȌqOexN; d'^\9`,ն9^~7\d%SۛZEޚ.?oVg xM[I|gl!$zKpXG|>Gj{#Zt^/6DvhJ@-4w :xsQ|Kv.&oh+1W(x]|eg L~;X%QT$Nr~y}gs1?ǟA;z>*~gsĕ ۅ<yo/-&u/v dX5M0UT̏KE! =~-4tۥjy[&KVGѠW\ s{jqMqItt&#H2DHW`wq uvKN|%K׀LP> *ZZwj*?fdƚ6W}6-*R*9#q )t1h. űǤrg_NvS^y[^}~k˲v*}u)l#kbIB1[Ӄf#ՀT.i g34|aʺCڟn#K[L $AGkB_^AeEy 0Bse'|,6,LKLOYR›)iKdclЏgUʴ|5f0q'ڪA" :a*;9v8˓yٳ~X{K؞[̴6ZDoYVH/:祐OОoK_lFLjxzgok&CEwSy6[-+|/hL}K"=>lsXp!)Kѿ40>~Wt$ cd)]HzY],f-9Ivy^F N9_Pf=Iۍ<&tJx~3૚&R4p b\&cm*[Dj9+d[7Z\zU}lglyl9^w]d%"3?K}(-٭JzYE#EsUgۤJuL"j]ȟ]cPȇƝKyDNBIuaM%㺗@ObD(c!ļIBW ZHԂ͒#TJB %E@N^0dILjR:{jXe*RG~'mYUY+HP}#@v؞ RJLABu`J۸z1pqYnۘU^swcKWw |78+bwMQe5t~J%޼49^ ~$2m#ca7TeAnDI?\خ(a}T|ca2Iza(f'K{m#M}WYx#l?;L8Kth_,1KxOdmJxYsIu ⥭ʾ.T~YbmU"b08px_hYC 7gU@,qxII/`:Xk1B=8ٻR4u_v?]#K${J)(o &c]t8 /R_#,mFA3~4id6rm{vnrIJZ]ؘX K%TgÆ4ed>)&|N3NJjv<W:DVzE&< u혃Pt)6l@C׀ĝ [ʯ8,M*gP~~N?n:;-R]n1lЍ }2KЗ`Sc%V-)IP8ER^@wk҉y'ex,`ZL~+qgyef,e ڙSJ dȐQЄp^X㱴_YM"vAP]ޘSƂ $TYv=\Uۏrwc?x8IRx)eRHÌJ\2i. g*@fy 2bv0s*WD6[nXer:~_6@s\<5׶q.]DN q42{3":B'`m/é%BKiKjdr}}jx]b)P:S%Z Q1/@h#p}]rAghO|#MxBB|z)̭ ٕjDS3[d5K,ba?a(3pi/xԖ盝8'Ujv|pBH{2]Gȅ$QGOubW^8✓㦼fMyK +/)9\?зÛr%9o`MWůZф0i*=,zR芲/d3J!#11cS_UE1M# _ƲW ->McuA#J'b1aV;s7:85ui{%N}`~sD{/tM!Vo.`+YG)e5)ܬ5?ÊqFc]v&klޢBpYVF(,,A%L:fK =eyhbmCKhC|yTo3ecj|NgX_m\`a 7 %;OAY8aai!I"(c)/ע{X.[]I7(q%ڃS3CAINE޾5\\>AJ1|(«jkRd^M .R4fn-Ex;J2#ߝƖ#r]op4;=ޝuw%XNv"l mntop#U5>y@ZOoKyq'E!.YŠk($gs_G r( ٢<vD.96^AZk9Tc5=etQ/m/ FyyX]c3iۧM𱜙cAB16َKYF_$ST%eH$y)!18EJw?plc_/p5;U"aϪ3m *F%w"HICf)gy ˀ$f[" ݟڐ٦ma;4_Z&f~i/6c[o}txwW{QbVtˏU'2+nM+V zAÔt0 \6+0ͱٿ uر-^<^mEݭ1/W/]].I.+:' J.oT1Jgv[<:闙tBW.F/b4K,|^rk2ݥ쟗̵e`JjlSZ2$bS 7}Gpֽ1_Rh\HFuyr[O>K)(&˵< ?hd/D<3 }at fMu~-iYnU".oCZ;Q' hZ uM0no~J3V G?_\tL؄`P\di̓,8~ gDZCsUw@KIɚ,;ŏ8/)uE 6 ֝c|qN19C`-M͑j\gsgo!&4Q(Գ+|6ۭmm5a]5Qq g"V'uu䖸ų!dVe?RF随9\ѫsSҳv}9ޖ%xeM }fq%'MH*v9ozL蕻ϙh1Ŵ,Ȗ0gu@~,Ooa@µ+c.=g;"GZk_C,diǼeg=R'D*dCsɪueӈaҵv`<:gc5qF;_PHd<޼!?G<x}]gqB]kyc*!7!|D(ؓVFF?H7G!prXOU,]*;cO\vx(&q?'DxMRewyO+#1ƿʂO"h4i*K+)o 6I nʛV lin6m~[VƼOrSX6SUT'_'bH߾N~:`"ղa <8o4ukZ02atsע[ne8Au TvqA[I X/&|M\-A-";pW)e<oBώ]{U@ɨqN(|^dNxHP nk*צS,EZoZ 6KđJutKPSaDž8Nvvٲ)+y?Ee xаd Kwv*ȝFS:q.Owf;~'{q/D|`[ų,?ݙk&ۭVa$Ց ͞1ży/]e'f E[+T٩H PTcѹ@4Va]IޘU\`w _A.Qfl>,ML *0f)J8i3.Ppn7ENvRN,ySG㘋~ً+]rMI&pXŹ'ӟwL|m8*]}u$;*R¹ d,8$1;>*rnyJ=y15}y]_dČjrj`9ā쮱`6xǎp d1bԬ~9M\r՛5}K̺ܹ,VMɬ^T;dT骒d|2 Wv`:gb9aP5}1MKSǩ,A +3LH%7J7XZWȫۺ=}ڶ0_}v7`J %] 7Np-r~LTqꤖU7Ϙw1tugZU)8'8$)QM;hG 0 &Ԙ5V!n}bu4,C8ι.,ZLWl `sji -f4:M}36uSܦM i ^x,^> w+.1 љ-X52}Z')L*FBaat w2⟷c<岕iAF2: i[SXJ-^w fkVҙ{~vh)UJn&A:,f*:?_G_?j1ѝG\y<)ֽ׶{sʄoɋ$t y0 ȑf2{TB,uo63 U^4,2v/y1E<[4FZQzȦ3Bz53SoԋJ*dA%J\_)fx^ 񖻖NN=1V є0-iS]{+%~i$mɥ=ǶYbUiosj^V}<>ͭc] cAY>E8=T0f29, }1ZєTCV^%{ؓk'~:RgYF̼RKIAMHLIPdկyOYU6%}uVT|nIvO0WB9߻\oFϋp.^Γ+qͷZa}<ȰJ֐~10=-^vF!25u׃A%Aj0}8Y^TuURV} oƛ`@5ZG4HK Mƥof>xY 2=֖ʳof}!W"=˭ ۦ1ZE' g4k4}jF/sg<-3C,^7evzkRR9=G9h8l1lBT)\7Y=YX$w!I1RŤ;U\ O֡8AI#4!?`cY)~g85/skħ-BΩ4$ HlpC|6cb8uX?L'JΌ]r!VGo|O_g2|EX\Ƽ@fҹ].xDı:< w)u9&+uwgf72`B >0QUU)+k"M^bDr @)x"%J̉HOcz021CX#2F^ʇ<,s)|>C9}e^EpkiwX#0S_N{? Ҵ>mGlemHHNOwF}e 5/)荖06uYh -}Z6j!қRl12bF@NBI ԩHBGl6)ί(޷o 9@3I"SfTY1{wIU+{da7?캮,k"+Vz&ĮRD!0MPcǶų$gm<3k/y^QmV&'ʙhK+CG; Lcl4$[B#bt6wq\] T+kqߐTXq7L@37oWum Yzeӆ<ϵb)[_Jl7Nj`nL9ezm݄<˰puo4Irs݇LG~`[P0C@̙GsdΪi-޿8___er0C:y_qA뺺,W !Iޱ<<Hٵ~9s,7c#l kz$dg/ypghfIF3 Z>,̔5lbRűz\|LjŜˆEg'"vOX/wg$#AWA>;cd(.01M;{ &ޖ>HxCxg9 Aq^27p)͇m{̩z)_[dW/p®ſfX)/u*n1hly06/w:e<YTcڇV{%jVUe>svyM_*WIB˻-X {HwaXO2}{>|3y__QM7-/56uR_dF7>{]UeHvJ.og-GT:I:1,=o1ܟYeXExX{{R+Pb`7m*J<]z0rc=Ќ``~\Ɩ~vvO^'m:[|겋LZᵨbQ`9v[k"b޾q0S>B2JyL |/ĉ=VAJ-VS5c܊egej`M?$(iW ;U*3ϸRZN'!TE5g5].;O5Ȫ߫KSj8Oƻ#iw=إ/MwW&7GviO˜e͠8`E[CzQ?g cqܚP;bw>3HQe a;fa:ۈ^S),ۋ̞dtUr@n2O'2'%_Mpda'eU4&k/#ƚ:^QWK 78Y;֤DTQɱ{9Ώ9nuee1: 8.9q>{YKV&@Y 0x41Q6B:ݧA+>x/z0_Agþb+:{[6fpS:왧x;Y Gʧ !c/a?$/A_A((6OeQUY9[-%  %a &X6vK%eW1z.%i肳Ǧ c =oLeu)[yJQ'q`Nn-LWDt 1sya0O {Ds03'B&?y^ͬ}F Ϟc@8~ʄ*cϱ^>ʱD=U_J.8C;<8-.< G^{bh$.cRzH'yKb1oHY{7"EY0׾,s[]gO2úpR/%]`4D31O. rM G)_oW(H]EOz饲Z]"Xݗ JjT}N#flBy J0d˭.@1P>xtQeeiCV)!j=Ik+|SǕE3@ޗ(F`JiRe!`SɁDU2ϔ>__m*֪LL$˼籭DIvJɺ,mHgC]pI-Uxx>b#QFg˄zĴ#,1?SV|U~B1U Wbę1%Efb%V)@>$ɜ0s5˴^v7ηBc}N"b98ed2EFV+&M!*7T-LA9#O=9 m6/O'1Sryj?!Ⱥ]:!,\1> ֎8~PD$_7-DȢJN_{?~G{ƣjh_)9?%!5T L{|g̟So&.^ Y۳D;v|+t1wRu }FQ޹֚GV^_mxC3MP0{Ĭ|[>rk+S dʿp)#E8r $1 ,N_ͥBA]7!~!H0ޅn[.鱸{ԴWQfKJ|M *x8'Foŵv:ZCkb z>XTitZšemL '"-{PÂ23Qd)=0ʠ_B6'o-o 5m 0yO2ѿppn$CyVٴ+ __mR➣5My{Ibjt_.윻&xǎzs p>eA{\v$ٮ-ySBE'y|q|,V`1I|x{EF _RgVȤYYH4/(zqg>gie}?Vj.Me Bgx2} 3Yx7 k4aVUC}D`^L Ƚ մ!^ MA%z(Ȳ+N.bV$a+֍^?c1Pɲ廍ZΣdzWhnʋMA0 m\G}5=.i3 .8n!DhV! 08 x@E_Zg~sbF?>:&L VLCz)H;&N3̶pwKIy_ _U.rCYhB !↣BGU}+ʲd?ՈeM.W5Jwo@We=ݭ} )w[[/kL X.ZHDgbg SH6y|}||{YhLr)j*3tdX =u_zjőЯWF,1r@>?.j6"Ro[{a{T E(t4e8p8S清P0W=O B(پ2jm::*../4SoY-i(vC1 Oxx y}x[,mͣ^ vOgqJQ`',8DƧK I\",w<c#3nǭϝt*U-śy3?HAwE1v'e >!)b5q1W~"jC(׻.zl(I)Z].)[N  h1,D3\#_DbƄ%Vj%X5$.HQEWGIU9 KlK0٢ &i<>{.qcg|[ն-qE} 0[ÊSq >pu濾 ,A<[ /~90SUvn;h=!!GH1zXOHN}[>۩ 1&`\G^jJTґ<ip;ۂ[ŶzvcCΔ0>8zrՈEg"L,Ml 4I:El,c8t<ݠWg/v+x)Mub%f| XRdU=4~΀  ICv}d /㵔wbY{bHL$MʪQcziԢ FH2ѐ&iOr1/eu}>|k7McU؍1vtZfSKE(-b]]f}`4CkPC…l~B߼Uw kN/&q &𹋑yOmWmr571IY_! Tp(D|g/,^k?`^bY0P`ӃCxLA7nYa{lT$S"G'<[ads~vi.ԺXrl@ɍ8(/ ! -3t_ʢ,x]YjU_% &E=U-j.C.b@L7M/2R2ٯ?v/m~3SQ^,YKU`0wXkF%נ-½l?χaA%n@Rzc4&7ۘ4_FP@ 2̛,3!;MzPfՆ#Qh8p5:?p_@ϷdnzpOSTr~i~Y>S'+laM# K2&$UI`Rf;!@O;ss8Ӭ&Y_)׽Tc1Id#%sH fNj1/A_ a oEIۡ Y Ze#>Kǜ$!o3xJ gn \kK+8:x\A!`fӭ6 ?x!˥#I' (= H 8o$g%LI ^Gv6l暟(^8cUYw1&Hl+ OMƪdůת!~ Rg볋wx<㏺`\ 1Q/!..5`4.+}jt8J26M*gyvM)p-w@o>t<ɫ&ws-!.k&ܑRqtZyK´f /N6J#'zt7$iO,tQJ1[dm,jmOg '/e01~}4:[ɜRKU.k?l#cb@ۖĒ7yfk[._/[k؃_Zu7Y6E,cV S ko)Τ\? zeAfYclk{ģf6|l-YKN_yZaɵ.m._,XL~FCxɮ,-b"n=Ue(1Fz3' ^ߴ5֯oMW͋0<(E{%ŚwQUlz8<=R@/Y v|:P4o\/deI܇InRpO(Fj.9]\@_*[0\5Q~a it @-Ӭ*eƁ+Ho foYCo('L&*nZH _²lM}s-Vf w[(7 %9`@gE\zΛ ARKYF$_o>i2B8eHwV˥"pVVz>dܼ3U`*MDZZ=lαTqS}})n]UT7[{Zr =XME_1ߓǛI"DW٬iK'"km3|ջ_fB -c5h Cg8hĖ7; %2 2v]C84Tp*B&C5\.ͭv"R/J#~BS~rӽY-8sbQ琬ɨ1kɎmdXuclaުF&dSğTS!=zRuL8o3^tgp 'FKHfX9~6vGE >b>qC9!n:C?pŨu`NxN*H(!i՘ O-öY)mF4Yq4³|u$k.T$3ibkHEx ;fq,USth |%`ZܒˬuRSߺ"P2mA]i. SG++yWz*亭ˬҭŮ:҈/X"ݒVɁȴB=\#-RѰwk'۠-ՋɖGMYHXo^SؓpM0GӀBǥVvU=+_/DG0BL/1;nr^h#M%xRs7/.D^ӎ#^FC0lx-!Y vSp?- +tŜ?$U<²utR/5JFI<FA6ɱzY{$tzX!"U f~ηD\yKw"d'?d ~6V(TsvwҘWpʟ6-]V]._AH1$pL]rz>1U KF$?$sGKlLY0.׬9WDCBM0 -aP!/ӨsyL00X ΆܵDq9^aU:׿ǼMMoK?~ɲӰO6];ƗNt4O&,dx'uWL# 5a(}ă`d"[eD抿z0*y{2iϚʺj㑜k/*} w7aȒ"`?O8%{/.˨w#qlƮnznusu ){l" ת0'nD[>e1$|齑uw?NR ~M)/h),E[tL)'r<7V/S~㡨uI/9H7>a$O4}"?pHI g7!VP.}Mbǖzc eՙYNL"eSZ"e4ʨΓnBfv5j\eQa[L1KnSmfs}Ϻʪ9I%ۍ1HtTOYgʄo敖~j[{e~7uX[J.bc[tݭ(>YZ7~{//yo{Bhae><&+$WGW *-brny6Ҙ*[{}~R^ڧK/>p=OaoUE&u^Ucn4]sxP&A:}lV^*>T띻ש ?0o[,Lit'vmj J 7$#^J, NDp՘yiixHKL~]G!l^"?u+CYL\,d&K`\Y& O'7X#b9 zl,a+ʋ_A9>E\Gp!e1z1fc-?*w'P?}UL-&cA }MiWdH4F Iܳs"z/.J ~50J*wVhk,BzmWyS-@!Zʋx-gQޞ*ox{i#XI-%v80)R76_6d1dUɢN+.=o~}P?:S/#ƛW )b'W}3tUvnb#U)UF'/a2x) %)dyq{e)nnCѻo{d{.['ǁ`MX \}8:Kog΀U1g#LCR4 PZV.­k!%!eQsKר =gpL~=qxHȜq'Slҷ*Pb.mxCbiYƺ}TSq(\>5W[gbQE@'C@[ɑsN;a"Y^o}5E/^7,mL5塁g@5$.j/DC dz1JiLPr~1f­ߍ8,FVǨ铼cV>IC,؅}@ = W!."9ؗr-+;ͼwP[~4ON_و}%\ַ qXǒ Wqb&>>{śzIYS]J쒵w"_1i63]g"Tqύ9h~٥j IUgme^)tx L)?ɺ)(i` @-L`D@ ~f`K'_^vσ֘X>d9.-.yp f ز}A7WC*slQf$ca;CaAP=eB]=P Q{21=of)5xIk`p/˵[OQjE,p!zPcNqs2r6X3?DvDM6Is/Vyvp?jF4c׷8Ʃ;Zl:c!fb4ʾ1VI27a2gI2F.*]++ղ9KGuq@A5)I  fC[EsQ;]6OBCy]?e`}gl~$1d(A~mPT[Comϳ~$o*OqieSҲVW1%u(;Dp-hMo33x6E Θ,,/ŭڻuЊvEY18bpwi3~zNz0{\-|"C]2Vx+#Q񀘽Ұ< `T? Iit^; = 8`ؘg,L!J' v nz/ջ.j2niDN;Tn@y MIO\u%גpQd[gU_K1ݶ.z6 lTdgUםȍӃHl0h |{7R {h ҏ9/ *͛5"qw(+xrPFrjs0oFx񄷗 Dn+'be)"%h%.ˆJy|B<4>S|42_w^2=k/pgp\::+>pUCoiVP Y0o@zqQ>1/fpIO{g˺u]Dޜ7 |29]%KGBpoM8&(6Sش6vCgn-4Jb2z1)9-p8]"+A(Ou~$Y)fC(g۔Z6pxl:hz 2m:fyJ'Pȷ8&+qlݻgV]Nz&!~>;qŭotXvpM&?B|ՑR/%*WU.o:)cJ"S>8 40 @2<1@9,__eWm[ܲI=@v+\؝jT gFy|g3)aa߼LN[?1<up"ٓzD#C3Q <6ױؖwz '}ޮkUfy$U-WmfI+& ; 4sY m^ʊ=/OXCƳ*)f[Tuh[&sCS9} %kt&j̐ *xW+a]\*+֎I0B+Lm͎@c\|?$$|C> Ao]!"X?yTʝbbf+.ĒYiy2HHس4(L9mȌ} AJu_EϻВ|Gâar_bd4XwJ 3,c1=M#m^޺9S|kx+"D+K0^ls{̴ 9 Y0&Q}{[lNKX+aoR)?~N|;CRl'IxGX ݰ1idYdkV߸ɭsXEx 0yD.}gȵKX/:*ؿPV;Fa3l!ibIaZ)iSYǠ,e|L MMk,vH=Xjo0J7~sT~yf0'wI>æxLuJVt[k3;uh$H>b騷]!4Z0?9Nu/r#|j2a%Ǔ@*0@п]/A򲣪E'.-ޖwUJap?0LUzj^N,bz˯`meZeHO@Erb VIǸB3,ӏO)'?-yq08*$W#tWVŧL|Du&%3#oQ!]gy0>CK!Ye@_M͆ p$ L,J,_2.0:}X径NIXbM#.5]|CT.Nu~bCgHS3~D,vl_zg|y4]bD|5kh L2=$@5`'ސַ̦urb+;GuUanv>٣2qDT05q"&jLWK.f$37%)ڭ3\uM]c*CJmGMFS 1t|=zO:<[t` %A&e2IL9Ta}!ӫ R1%*@9cUfx iܞ4ַ[-b)K\a(UM_UY&f-Z4JnPxgrgT D{R~n2Xz/>$367-lz&*\aX%ť'Z&$ft99J%7򪞗G7߫ys^At9F&?LeՂF~;f2$ GɦT DQ1G9sH=9szLs2%WqLev ,"eMp+'LQ :Am>~b6e6;,6d}'/npTmfO8N]+{4)0}e/bj;u%>Iz[ĕ4 J{̕?fy{r?U7썉Uͭκf"G[ov$μ C*Y;(9^ -!8oC (]buaқ uay;mbP!-DP||ԉb*9XLI3,srCMyU86qQT4ѥl $-#-CC8ES󫔸<ή?f? .˷[QhY$&ٗ`bQ eĖ@r,+}PΆk-k%^/bwъF<5^ZAo?ɴbT3Խ,\B e.l(Jmm4#bS>L<_Q= u'yaibbFjv&-,iݳ2,oo@1cߒhBA^"{\W`| JaZQ&KyYqL:J~4 Vmg@@EA3C-UucQZ볓ĎN$ptZ Rh_Y_:M˖$|ivo54%TeU(e!>E2w+&1,ë(A.:C/`UKְSqd`@>9 }@ Z~? 9߇FgYSnr[UKh <(1'9G{; + 6WZuknyyuRoKkƥ9 p`($RHT/~d9rR6Y?%1hKcp$dH/Q`ցsϖe̟n,zJdkTd}GZ0Ucs|jo"pީn8̊ /X6]qL`Yh~2Lf<=d<4 ?gDK/#ΰy$vCE51*qk1VF5Mc,@R;< ΂ťO]ɣ? [X0UT UM&ثH$a 4/M_fkV$Vc]W$x)n ;~ppSlޅެ!-,~ϲ1C{ߊ2MqJNqZʮYº֗[OLVcQjX,9ٶ`f\_ $4;A/``6L6<>Uu\ƪh҄cf$`QH'=iC ba!s0O&Du$ Fk*bR4 ,_*qoPB%Gob$긷7^ƼMA5+n x۶moϿ 1 DE"jR;r|vÐc0.$啉_H]?OX7TY?!.o>0L$Hܘ7y*iD2P^j$,e>ƀu7Ո̛"}2M#\ͫc}cx=560X8&l*[|k楉ɏex烬}4o;Г&rYxhv+-!a+ ág&̔iINR8ݓC8n13~!}ΡRY^L*[>-~!G5KGn)ibAXCmJ!AV6Ec$%Lwt@TH0&y+ĕ? lp.$e,{J*rKLFXÙ Z}q?&T][e@37yB.B2ˮ/vy!`YWj݄t: ~׮o%ׇQ:>ǫ0%ִ͵u~Bכ8@20 񯷦k~S> l@sl/M#8bdW?t-D=+xbi.iͨpoė۸D}ggBV\vɔ4P1==M:A'M2snZ11c U:rZRMY]}KZgm@3%jqbȇU 6E[x\V0G,6S^>;"]:Yc;{w[vCo?G׿lh{i!flpKE;3wN@4 mn=Yz`aк߿-)ri}CKX0_4M0`=d. KasB Mfql71fWt,gbϊfȌt  `)W?/}N&K`9e;hx&"܍*bPGT;$G/Keu51ʐw,(1ˆ9*xƣ9n,Ňs1k\3%v"N Cd>4qcuaVJ6du鯯uZ>'|UiBʶb}\i碲bl5/rJl fc%AhS&jњ쿏Խ4PdsiͲX6,w+1]; :[; g>!i{]2\HaeY.cy܎Z]'\@#$LR¡6Fwc0w#`1sW|Ɋg,9;qӂm='1~}VIסeToVAPdA:$d&!ӞX^oP^y>݇5ܵjj wiۧʱo["cw&6&@ 58(; '+|ikP]?+1ܕٙIdC% e0kwaA*aLU_*~$PEv éi,_IʵyR}!-"N ٔH j߽kA擨[glQ_BՂ6q\PŇ)u FIɅ*v+ iZ@Lñ p7X_njx&_ln)XSp[W&R@h1d-Aq'g'#%֐OX,O9϶]եK(RaCOO${o!51*#\RWܐN-iqP Xo9,os@C8+_dBm]fm'V/_XdI,ę$Ku͈^0Rogl2n>JF֣GvEq)ǔ`t&c& G-X~rh/-VDl_1ldy{>G'WKuԽݭtiyy$V]#203X42˃#y##I \RZh[#"˦,RgV\&v"R[)4sxGNF(Ɏ;74f糉b-"{o.vI4%Gi%c@^r`cF#g]c/H-$͸duH^ 1wgߞZWevk`m9*Ɗ=59 SuTD=MUʦ3Q+wæspEUT1 3Tq{??u'כtcKQwYNussb )hay2>#.Ҫ%y8vߒ|Nk]ŨmUֿV:"m#هm*9/yv#`Ln+{t[Rc8Ew)sfJe"9%Lz+o xh1v]cn#Ԧ\(Cr K^*ѫc#)0 CTbǜo._Aaٯ7,q>dz-/ڵYB$쁍V4 V̮D;He~9a6QRCLVGGc/o|[bIyB#ūjF!lAEhʱUdl\N~2QsjYt?{-1`DĶr.x!坆;uz7z ?`Q[*Qy >$  Gˢi_b-V[Dsl9+Bn>4?#4BL+NY9?F K\sk*孍i-V/}*I,.jH'wV 0K,b㤴lWVoҼ~w#%  -qYbf"T uL{h_}Atee[i; sLI^QzH|D:y)mxy>oy IwQJҵ8l41R8-})ǩ$t]ոK'ȗݶz.A&S/y m%6 [wzhbcɁ%,=oqB;bEaow!FY{leTflh?|)AGM?~- 14..nt8of5ƴy[?N#)_"*+56W>{x f`!%(8L]W˚ڳGhg@Yߋ[U2+@wpH7Te;QCz{oWoߜ 0siuuWE0^wOOQ5YZG+u\l:)|}<1if) rl[v"{!QDYAbp/v^;q +N)_c&!0NvuwnrL7W0f9A 8[B]%t'x,S'Τ åqT*k(-\bW'5bG Uf@r8@dQ]+7^ V#p4#%b4pj˴>&wwbW_?q[K,poos{>?cEvy E&^M߿dm,# Qvٺ|\?e*,#'jJaݞ2[txeXNL rJFqE2Xぞy&(ؔ@5cwdcTO"LXB3Tk[^[,3Dۺ=/RtHVąw*J1OQy ቃN3q:yEܪՒww7)gn\Nnݯ,m~Lj+,NtpƝnû AdG޿H1w3ksaႥ۴*&)nx_y[NbWwv_qZq3z.3FUl1A9Sa>гb~0 &'VYLٴ ,d8sBDP-kS-A>_.Y}G<\nK^zs%Sx*ד Yvz`7_c'LzX4R`lucY'|E;Hcw%Ű_ԲںG[w{5+XFl6'~q1;%м6Gr|bT5 w> FzܓAoR]~xn5+;T| ;vslBQ76Gw}ۻϹf^|9:*8jLS!-aԉ[w奻1&s9ȭ r1ߡ$ϊ*We:rjb:.'7QD U5mM21׾NnnتثWIX o afFG2^SHL>BL3yOo1;|ۼåïXwNu'BI Hfy 峝Ѯ4}ޟʺ%+ESRwEbid@ 5#UCF2^5z2Џ?8+?wmQJ9;aL}%kM'v9tƞ&|v0 ~{,fR 5:Gɸ:˻E^U L̛[*H0;:-٨4:8IxwQ<j녃pٺM2jh:1{YWIͪ3T}}b(?pۿXa {}J_ZoI"$(qm ;,/Jbq\y$+DE!05,Wtť%7 K.k6MXfiJbj[]EVm(2vA/m(_tjІ ![0NM e.ec,H*/fUB+F}۝%1$ 5&=T,+ TUfݪX}}EeVE%2/lk8 YI2;~dK_t{|>o=o]1h۲DSJTUC{|}<${Pޝfbꡲ cD~?rVg"PmR:"kli],=8|hPz^3}'>?pGU}^s,7•_:ǃ'VZd'KaGX8A I_&ܘe{-NvNhmveݏC^[ڥ:/wmNL3\4 /*E:ۿ#$&fY.YbMc;=в3|2)@1o3 Ńkfn bN^\*,=1V_\ڦ$[H?=6ң<8w_4 JAp<#=>mbr>^FsEeu%Ot̩=C29B''f&V;4ٗ#lp,'f=*D7Ckǜ ;]HIv<.xLRO KPH7r3$^e[Gs\yX-5ٽg}L!;q>ǃ3m$SAǣgs|ކs*/ tWX(8t^Ej|O-Gq;7}T3|sC6J1LoRyY&T|FO[`ݐHI_ Rʘ.shʫPP3~ےD8.%@~l h"MO"_z 1Է qEPq|9rU_fכ/c% 6{.&rb?>jxD?l9ԣPt1]-e]`|m7#It';cեjF[`ͭnw{[F>c?mlFRSsyyun_|:u'j ȶOFvijd74}1h#mҍt'2dxsNq,_UeE^Ťų.q,XEj[HPM'{XLyI|cgk?[o%uBrkJEbLt EAMG~]/X& _ddw-".p,ǠENd\&* GWF;gި<bteC[DA|}5Ye<d%qݛSxhk}z[dA.ݏO@4?ykoMSCt[EPs/B?eTNV*.& Rǖ/i`=e-CDE2 HD)ۿ;w| 2 ܱ-ޙ5,gc2֋%{1r, ˮV4EivX< [C]bQ2C?lFx#J|Ƣii< PW8ogV2'F[T=*`&6Z<#xIwc^huNM{pYJ9k \JT7|AHkbiyf:+sL _ƎkЏGnvp] uEv4pMu&GDw5f}NtcO5}T \$\>8}\0PDL2>iƒ[`{h0^1ANpJ"݅s10=uB LK.Oq BG7X_Kc-Re %x$;x0г-T(PA.c,C|Q_VÝe.;1cmU&Ci4oD#DJ |0j,Z|0LsөYV}f1P޺Qx>ؽVxREYESKh7 ?NgBxƊ*%s<F,fYVb)XqƘbw5!tcM08 hy'+7Q̚9LLn^ky"J+mt̯}WYL$b1[\Y"#vQMn ^vCLfM}R}WD3/__;TVydѿ6DL?rF?Lks! xͽ/BY Ddyb~1B9v+-ZuY5V09vy`Ҙ>fjKl%9r&! W57\gn˱g TVY-}dž0o"MrA8W Va軬Ǹ@}eմ$F1Ƅ@P'skX) /ueb%PF H'}˽|2[O1Zq'Ǽ'Qoc+]]Pt \"l^)räj7 @%rڍktw}Y}Ù ok;F,r0™vͶ5l#ٍ~)g4C+=7o |Xm[ia)k"O)U׊PT쁿]نQbf(Bap:Q]m/Ŀsy\7K+chDPui)BojpnqL EfJ\}|CVA^^l*u_qfYmQYk)a2'"^ٙ+ D3l7 GWJ"f8k^c@ߥo_ /z^w@}cBّ;>|GύEuld&bS^fr1? p::%%(6wxbrRb{[Ss"5Y|?w&[6w3WM@ưH /Q)߫0oKGVw}gǢi*כU7mN卹dB-Y܀55 9*e=Y].ya’NtFy_UM49QAbvkhZ6Nj7MgyW\sn?ϾNY_/K۵}><$]}TbԀ!7kQҖ<~bhh&X`&f⇓l5uA Ts3҈.7L*N^JL% L$tg8J|DNN( BaZύ1mG4YULbk-ct "~s8pՁ8~g}I6YoLSBC,r_1uR8KuC9˘~&X %uNsxGȬ"G`8 NOh9;iq&?#^7N&-3'(٪υ~;ƑHWvMF=V8FFQEv—aAG/e㍙>WұȺu\i;eFq!27&(T>#緟X1uGlR9 eg#9ycdz3S3 kd5__ȱ?g;Ix&Lj$.稚锐jb]h+՘v[s=jU7=ӄ"t78,HtU4Y0ELc5YB޷a&@OcgZkKkLRN}]qH$_,ި 8I),v[ο:7&KD$t8q:dž$d)a۟;MBơ˯:cY#"KM6jETu^Lܪ[QsT 0&='9,nr,ɴ ܱEϰ DU<ar,udஜ]V)x̬݆0#&BT{r`dixc6m@b2Fq#ؼ-YRmm,a⦉9Qadl}D@wG/[Mݷ{ʆA_NGtSys!y)嵈5ICAdnm%VCzY+Đ%/Z؎5O^ceH -K=e_`XխpGNF {{]u) f|kۯoȖ?%H@owcpIox8Fb,uvEyfYŵȚW ziE.2 /i:.!)dh˄)9Ǐ7bQuBYgw+䒪4<RDxř߻uA7+ tDF{H$zK05qҀEIaioy.~H(#. Ne 7}|'t'w}H>_KOwh.Zq,7 Ed Y2BȨ}Il,}NJ uiM4m՗ìJE>| qVb6^`TH=V8΂@aYBLKVʺUxh[7 6n>Т;p hZSZ:yJЌAP U5K'*9+*/ҵhN^'q ^)[c=}];8ge}}|٤,;=aT*FnM!SG? GJG˼*rۈslyT\eIk&ؿjџ7b %[%TlQf1a/YPk0r*Ei `<"NؕPY&ձ=ʐs`NNj34s|5R$P<ަV8P; RliÐ߽ijui.:ב*$Ў3$NH&* $&K'Ǣ-0p1L ? 21dN .k̮"sr\TE} BZa[rNĶލoq^d rmW~oC_ty{ǯ|6?28 {ݟnώiqeӗ[)~VUu% hQs8ETT%dl?u{˟^<6O3W7N@})|v(qP҃ FRG>:T -dI`I@daq_u,U㇫xp;BH.J$U)|瀹_A=frٶuކm>+ʺpR/0_U'!`zvo#p xylXDEh.o*qr]ex`^)grMt}IhH "tg Bes!L7>Z*Ӄy}پt$󴽪ﳨEuk Z^0!Fx'$w*[eB\/L:-, Qi 3MmȗA%-R]{"ii$bYOª)<\?k 6*"Bm|C\gd4y8Η!W r)Z6/n,T/ͪ3Qb*(vca,>oX_%Uj3H&YL ,mP+prQ wt9#zoH'Knkv)mwie#*ꮼ L3bG%9;;Xu+.jW:Śnc8翪~z1;M'2\i,:1Ԓڙ0ԃ$KJ ̰ .|֭ qEfTtp~iΡZuSQ޺JՔ5/hCRFOS#P,K+;>LaS_eYwK{ZNCj*=4/^8rb 6@)=zN/ouuģs8`;xZp fr~xjii?NdMF@pB|)}qL/?/e8]a(07.}_Ŏkn?"KH] Oczc4> t&_{ۺv4/Ҙ,#B".8>9lXE~[VVjt02b7qq & Ws)okHIt3#[ٍq2\j@]_O Ms^:oKgN)~oۘ\O9$:胃O±U3ph)%*Mʕߟ ^J<,10x)ԑ,GK]HOߙN11B4o7MquQ,K5f!͑nR< 6mSiئ!>qZڲ9fo `kJo't?{+\u\q{-jwG< \cŸS#$*%!| TR, ;F*9ǦaUIb'. P<ă$1:}<"7*^>z*a,960u0> 5AS,惮~ 'Y枞X?{!}#~ٛMbHD1X(7HKY wGzӠA eXVN݊ܭ sxVcR浢+R%T,Lcpzg4LGMkr\r?!|~e Yfo&_\|Y;%Yje(8׽D I/1?!lgޛLYt e'7^nT#wG*"j7>w%&u>ת/*/1<Zbi֑3W|`NDy즺uncu[xܞuK̻|sI}Pe5dS4: quY\E^07B{d*[M vN%K>FǿzcMd-z=hdbSQxXz^HHXƖG1s }6M^ "5 ncs Y! h sil~ye YU=7mE k9 WYww 3Oc$h)X$CX4ow&ȋ^r$CCsb;Ν(.*x mv&oND&'0ɴ hδx Á Hك +LsdVKhxZ)ZJY#`Wemn5Mm_6.R<|o*"N ,!&7lvhgUoe|N,cUz7ܥq\}iM=Pc6Վt; @n<楈qܻGe; ݽr[[1MhN~Y\,wVJRcOV ?8z={*/vkȧbz8ԼjycϏgl۬Q(*w7KV1-wى1'S¹2'aDgXd8"!5\.;<"D gCȺ!$4q>JCY -` v}m V}Yf?H!p+ڰcn7+ZT4X`X\zz޸ 1_\k0!/KE#Gd$VM+5/4ইV9>T+ IZ'nol^ f5YF?G/TE )(}Wm׋^ӴSo鱣~gVUU4aYY5]yNY1 C|Q:kb"},ⴗ LnMBA0H臱Si~ X:}Ap+Զ!ƵL'^D4]tw6O2Ӣ'?5p5C{#0 Md_^ 1cyMߞXf9R쫲X/Xkk_(< 57ͿNx]'k?*O߿v_ڲ˂/b-˭>쫠g㎂ƛ{LAINbcmXW  Q8 ).cY}jtMF|!YNA`.zI`A8Gmm19^]Vxow<,nxLsҘX)*i/}_e6^4ߊK_q_y7 S1WJZv 6J Uy#e}itFE\v݄ |h^8 Ūm&ݹI2-ޘu_*ڴTW78Črӏ;k,u~%JPؗuDV,whHlqb!:rc?}1T{}ų}S8hꞲx #.gee)ۘe&c]~}0.A$|+Ό54t4!ё*~Fx86Um}(ci^.yUߺ. :X}7SN|K <91,eyU\^X\J3vrI_*1!) s *VeU \qsN1HvݑA#k 2(73!Elxʺ/6l @π}zx۵|YaJ:V^</^ Rcbm6=77oZ]cuy.[_ۉ_ʂyIj_C{a”2uW_%>HvMz&w[_[ћgZ=o 1,rHX߷ˊol_krY;kšRYF-T14z jr}߈<K^ (D7%jLE&MřW]EsߘKqX+Kˢ1./!y:̵DЬ+?4q`,ry.To(RG/?9bW J:sybyRdA3.ov628%|;&*uUg'CLq8a4v5,_|>_)/qgDoS_Hqo H"id |? -dִtPn./uׯUu}7uEvHwUo, >Ц[MvρH #a/O J;"=*x8nV&"ڸ*ZP /J >J$d|q~C#&|I}378H:Y>eXjcuei)CQB"YҌT3*2?$ҒdC:`whWWĥ^\;bua޴}^#Cz$6l-y|qKOa,jnݞQibI?}qgvK' m_!1EFs-§Ȋ8x7eC$FwػO?F|6dqA )4O*-uYu\L䌪#%^RD(&Hwb-j!VA_vs?aU\`UJ庌9Y'7X&y \"%NÂ3Xۍ>4 i<ǖ>M_e۶G&[%p'&2,IsCtwGOv7(-Rv~ Ak/ڟ%?⥴}(~0uh{+#?H CCU%P>ujS @bI+3o-=2!>q1ez, EX3bɭ2żfs oX][|7FETbs,@[Ln~idSejZk1_8y$r:]_2W2IưRX䇟A]ڼMpwFPK옃IJg .@bɔ!iTzh"LldMa0Bb%wu{{?Y}|x{>FԉE*ťT1l)'K 3 v'C3Z{_?s4ewY0t ;%yj4tC}y\>gwB]\IIqGkڙP߆w'SR~a7Gu9n}{kaDž|_Kƞ)2)eaMz:q]n$mvNe UH·h7` <*ӎ?Hv>BS>w1B(fdeB_ BA"bE-[_ַ}*) |n\Ĭ` 1c6%]AXZa])PyqjWRWOhʛh0[p5!XC*` Hܮ6+ݓvLD-b{tx7O5^ t(qh0p:O.y>bP/bDjC}L0c8cV~u+N ,mkB#Ʌxt)v#l7}$11)cvuRE<@8غtF`J7n\rR?hcov+4va4-I7ИpbV3%~bH1JDIN܇bxe]b}yv5q<~#2& =q!Ym"{bbކ 0B~3# -̲\/UQV18-Aj;'Mkm1BrLj7Lrl C]iUUdD]. /lHԽm8!?”Q TSYml%f`q/hʀp^L@ˑ`XR6M8a_CI,6u!I||M-ƳRnIK9ٜQ"su~ R^yiRdΐJ$biyD^>Czs\!җK <®2ЩltE@$D`)c̎(d_ d>(E~ s7X9;4U,Kvi+%, nڇJcwNR0%,$ހYF_'a VPuuNbXOg.3?!;9Dx5 XQ,D?p vY#Xn8=qsh?VݪK%M昆TpӸyୌ,\"\mؗkBcT%( 8밉=+"'X\kEbC_ၯDS>gLrZE!FΗ?f{x; ]Z<>nk&6U~6B"WsЫuwĻ)?ɖ5:ݫ,/jn}M KL#O ]aT`1x2ަmv^G |^ mφi[?m/Uvx] FߚfbQ3~Og)2֢٥zm 7ZUtjkEѡun1uXr&THdSt%&zmѲ9Zz0_% 3~s;s蒖" )q++=:,,T#BOe3oϦJ"!8Xx I8=)u@j~$c] .X/j1Ko@PbAvF72 1IIx5풬tBiðtÏ؍c,bt?KwwGvR.Y&_ɰD}-45XxV6Ed@TL4JOU@v,/ G@^t΋KypX*c[cM r]ߧC[e?rdN+mV/Kxؓg,dp7+&Hmd1˽xwKi]]n dG.+AFLK̙]7Kop~㤮Zl#ބ2K}Yٮ%Sn}OD2U H=.Lޘѩtx)#-z\&^Ģ+?H ֔uUÃΈŐkb|`]'ВSҹX.\ a$nl&ZV8BII HdYi<' vؿNY`:qќxu^~r?]L|)EST4XfTQ?gjG&0Քr}:?Daa>$c(ngHgZk}y[ys;1FIAg3|fct ?1ErtP+>B0,Eƶm+ʧl%0w%B !Z$.9^u Hy2?hU__UY\ z$m;;U;;22w{|԰(:5`>3!--([.RuEe~CZ]EH<E0mhJ'*ϯm|crbu{u4«U 6n.m\jሲc* CεE%@c~3Uӊ,jPw_{Gȹꀫw*#Q`/oUT/ )1 :#2fM ũ? <>I_d!qmT_o>SQ$cS `I= *HkWx ׌Fmebú*G|11e(miN: @I7RnYv㡼IEk8:/2+e?qd(@Ve!+J N :_zt6@m8Yۇ& 'E]sL[ |.YLbQ>&4mKIŚַf -gmO~x#IAV۽x^Q#/|0>r,iUԱ7ݼvX&16Br9)^o#٩il=2TeWS`8ڰg,#+7-O~C@Kϫ3k ߐjtZ_{`+E?-m)sD4v.tLfZ/& 5SCk%H+-XU5l~dce.? Mn2R42k? iaw钂oƨ.BfC<kbr&WN"Lݘc"tI"#4ƒȺ8-z>g^"*~3=\QI!;Qu`CՔRTY\b|6I"j;YK>7w56=pr<=d2RA76#QZwW%bGҘ' ([ohsˡ Kt̏2V @!2eiMN)zm*)[63/ \*38rsHA[ƨ9Knog{.ܕ;@&Qg >TU6h㬤goSI=zt7a$M\^1\3m}c&( }Te })eMyXaQxK/v_e,;cw5HrM0(;Y V"c&ylkIFk.Ib߂\]C\+;N O -_io&m,ޟטhTŝIT,̈FLK_.6\"#"_J_rLKnR/*dL+8BꋳĖ騷4O^I نA~P"p l+SЬM>- meKMfUI/]1a :k眜@zvCB _c'|vEh?Um|i.$g`++V|0!nR3,FwK*7zi)[{)q$-\_*Jk@[m<<&(vȞFº=:'V󟿝U9V؊:G;NJ(3sLyįX/ƒ?1f.ƁytuW^U&RI = O(a%8X+aC!#|>Q['Z/kӢߙP=59W l?FUhEVXIŮ>rfǧ*&W%K~e<- ѥ5o}:Vt &-ͻzo >,aǖ9ҖyjbNJLEz#HA8][4)r"$'">`R _aN~<(},ȲrpN7_lv8I] X1#dțHL[2>u |E6or{Mu0_ŋ߻wJp\w2/li2IC Zi= 1B_e{e^8>qcRveqc.ݬ @ Q#Φ=+m0ےΠtrt=O= fV ʛɆEָ^A~ƐL~;Z;{nJ6Hh"Lj |a\xeup2EIembYs҂߽Y8Hmq HX<-x'-xmЏ`&KSiWե&WT1vyR-DiE@`)ajUUHJ:0_QJ 7##>]Tv;X='q=mv˵z-#m_-Rf<*4ޙD )>"aCitZ&˕`*y)u# +b> n-/]r8(T!K i],0ص]n {}A8eB"AMՀ#ZbJFJȘ.ҫ䳿A1ɥ.b0EqTև9g.M\f\tGcX%13I6eqdq):'[_6aRWr_dJǠIFAM#?^nFX^Bv]d..JirO7y߇axYE,B6>_K0O餰=n:Ia:h2ctOI!r:=b~<܏˺/.Fk[]P5Su"HZ8X4υtA;n,wѹ?[uoalbWp,tk]]sP/:&ɋQ5AU?9^8ۚ0DCxnI9.ȿBY|7Pv,n KIV?k֍(^M{mai.ݒqA2Uz)nlKy_YݥjA.:7Obgoړn:*vfǼL}Υ\>cL{$${wH#VcՑ8Sۇʀt?ׯg7K|$ ~;޳#˲)ʪޔl -.Ch3%! q˺EogbfxJ0+3~ߎK[eJK_.&DeMZ fM`ꧩyoGߚk{m)׵.?1|5.52X.60rAFK67jBy͊_&3Y/-p!yOa~d"ȹWHȴطeplNȝE,zK_!5_+mFxZ邉bkd/-6VJUM.FHǣO%]vQE[&YV!&eRdž"c:f.Ϝx{SiIR"'p6-ٰcW<1\D"#1I1[{uGe%Yu_gWy~(ѽdw7e^%8WGKQ_G%/RV`Loryu뢷 2&9u9ޖ&nnRc60i5$zzPIi+Fw: J4W²`X/ɫ0MB͚ˏ1͐Y [qF\Kvډ竰/*JD`Os܄r7JC1H$6?2F`I(2YP,R9fJ 9)b#>ԕklbF $\57)!G*E^Բ1EpHPCC)I]!<~^64I6/1aJŬx|\azd2ȒX rSu% &GyLr`#["b%^_1$_N/~-,:i^=e[9cƱ./S@ӉI|*gI$@+RhV$~lٞ]"TLʚkEɨ-.}heE%d@º%PTP 8DPi'Cb8| g(OuQNآoCxXnle[18t|޲j3r/ On߇+;qgSkQz-v* 5U1#q; db6ILޘCwBOD"7jVmb)0GR?joՌ a"n#4ɠf-!a3;dbI2^o6Ǯ{7gS.TKZt͵15b V3}cBPԆ1' iJ"a' B٥x@‰Yh>34MVE4MLF!xtMdQZqhge|ޫ7 Kw߱N~y{?4=Ըg^8wڳy?=^mDU(Y%^:wU&%qFgɔ+e|Ó%(%yv13mгWOȁq*Ǣ=Ve.YUK爞*o+=8x4jv?dBRak|?Xu?WmgIie|…d$X<B sS"l:},e Y\a'/QN,DpBb;HlUK}uDl8I|B.ԫfOW,ܵ]U)[YGZy!UzQ,eVJ֜DL/*Vb2Χ5c40eK $Jx"hrV զz0Aׁ It. )k[rrLTY.\]KU>ԞIq #͎m=h=u%ad kq,вI4>d'BLbPb3pFr+B |(!GI TȪ}O& I0&,yBcQDU\K=Hϛ&qX].RkhaYœR0G&P8䖢ݥqUMs|_˻r#~Ǐm^.9Bdu|ڮ5,+񖀚F`_W;FO~xMᄉ`0\y91IIf?ǘpK,rf+6v͛Ҏ@w)Weo[߷}Le2qD,j;4,hKpzhQn>|GrLм]|sJ|UeiRiNY'CÃt+Ɣa6O2wޏ|c~~58ژ 6sԍ*RpUJS20Lp+0~fŧF`x9<.$2lӎJ+y>XT<,VVR~VbuULX]"jXg!FCV^= [GmWg9u a׬=@m/ ߜ-6N"Y_i%%>*J{dE2%E3c" [i|atM>.k;qyNJe&I{\sD f2`0Ϊ JAڙQ[11tYH`x)47T7-ZŰH+.e ;/FiT _9GFǏtaS﫬3eh}ʗL8AaX-:p{#؆ #F~" 4hMEԹӇUa /} nH.$ƨUOHd$|+NIp|5 h]*ĕ-&+uy5*2^}msfYiγ{)IFƀMRx4[Dbsr߲4Жѯ81{e8BmQ.wS$;]qA\1@O>`MUjJv)u =ʥe]r,a(:byV(ķ[ץH& Q9h5ACetjHsrAr2*ƶIaE<\![ZTE1Rb:f̆"R-\8J[!צ&22WYoCKn yDJ*ھ&|NtE904qf8v,17v`C}nU%@Lܳ:Χh\rܢ+LϽs j$Xi[FV`3[BF4+O(n|7/şkFi;n5DXsgnX`42ԃ >F /r:Fd1R\E{i.#uubI|dOk N2B55!Y^bMz<0jf=:W:KK66:kx`d۷2a|9OoKi{.%.̍diɖˬTBMQ)D@O+5=ۢ(MȎ 8Ma\׬. AQ krܶ=O X8P"SRŀ?1M{|gk:wgVյ̏jb t+6d et!\"glT/I<~/vB8~i;AurEkOմp1;:ـ4yQJg}uyI}Z Q1 Q,0dF^D߇.ɍ`lڻͫ:K1֑rr[S]xocިz,ŽnP;ScONN$o|(uT~??GC9kҊ{}_ȖN'b- 4c:,q7e!m='z^V 󻚟CL3#1M|ai/s@b\?XW5MgEvg' TbѬh&5;K=3N%ַ^[Z}e@nbүpzJԆ١q֟󸸓 L.rvcVB|yz?Tx.EM` |-¬WnȽ>/|J.i>{}SM)$%ķ68S`DbO6E߼>aJȄuO79 Rc)ZѹP&#?7 g0=TsxSjUگz8cj+4.;V{ cASFB@!55닄[gM:ln;fz/TEU5[#URVkY p$-N3`B !5k!oNZip/ztq;]KL#m~W]ZY#"Z֛'wzOnó܍Εw^VwpTu~qjY^, < 0U%4yF\yPQ*q뙰JA?}H—?wH ̛`1tϡGdN`9=J%ekND"RO :,_er L؎~ݻ߬;qGK7QG^kͣ]%+Jة0jF6\+Z= X9 {)yD]NZΌL%eïɒCviO=fa){l޲7S)sC޷F--"Dnq|.yE`cm%>.<qZp15VS2}4|>~eJ%{:=zvx5bE|j~t(bX&&ƕ.P#9^NO W\涤…g fX1w:$M\G^*iڱ۱dd_'B{1/ck|^n4/g-HY1fo A54Ī)3Вy2bJ$&!u^~T[E_`!Dծj#tV oU(ۛt$?^KY ܞIr$PQÀd>PVnQYBeܬK77[Оͅ俯( (Xd)dQaLa8):ic*fLЂZ~j{O9}v%khܬX ~j  _8]UeHZZ !*uN-B*/']B[?my+ksfa=cM#g=Vz1]wix<ƿHeB,lJ#pdWui-Xֲlt4K?d] ]%c.Qǘ,dfz~wʽ}úJTu?&hXHi@ `~czCȌXױ$t#uW QNu]~LvrK:T6V63\7ǔB́=e۩XIXAݓ9tB#!1hg! )cEHW vuGby1ޏ?ԈߖT{n;V-( 煸7q=1 tz:|s׷#,]YVҍ].%JG L*^\ pWj0%ÌЏ.%cِ:wTMY7,wxS69CjK,-)OJNL3Xi$~=]{̇/O'꺪$ho f&m:ƙ_ hqsnQaa(^S 5!6hckcAչ#QEg oS84Ӗ0^JӇO.fc|h%^P RǪ0f Kzߖ!I;Y)4ul$MB!^y4{|;Дٔ.-|Hs#'ҕHD+1=♀^<`_8;9O%̎I)o]1!. )BxVPnƸ;.|'S?[Ֆ9GcCU)qJKTȊgRFyBoY @Ϫtkl^S/)!3*׍RJF?.ER 8T ! %H"5IeE+p܋TUdY+%&ڽJ&!!p1e Q[E4ßz!0ջn꺣w/n0YH۫P_a}\"!Yau[>f?R}'}%@O=BmU^"Vo[I-ƚZCH̀K1_oƒYt$X>sRw}1vѫjdTHJ`pZZg¬^"--FT$ߢ״?렏_E@.^]X,ҊE~ > 1vcVanT`!Eb5Lqqc k/UBTeL[·~WHަ0QF=s6 fƻKcn~x섋0Ʋ*1ԗKQc)Ä_?LsbhsbN?t!j0ǥ*+8 ̥)2W)dF`kWO(Eyjd50&+_gy ?HؗBL;򕚳 WG7TNJeĆNЊ1Qa@mW~d2,SMն=%!;ha{$`gr Y<;DVld[[(B7jxIvϑ}[lLGx'dK؇m_z޸ ]zw$;gcI8vNu|<.m,݊F\Y|5[[itGSJd{k?(eo~`2,q|MTUp)٣M#ҍ/Z¦w!9wv.D`?><Ͽ [\@~M7쟋{u{ٟծu$˻X |;idg= wce@Fv`ͭgIr ӍMyKo.uR;&3FjGğcQ߮%qv,Gp3>s3M?Gy+CerzqOk l-8; Ӟ/ݍ#C+ʨBGse?mnb^qxoaW׿nt䚡~?ꪃpWXu ݢoL Km7‘`#r.njoǮrYP/oM p\NѯC~ǾΗ0Ed^.C5ش80d5!a2<Ưب+) *؋y8:4lF#sV~{/[kP# 2ƜdygˀƷXcX!S.wi)ۈ1nEm8&+G..~I ި0&AiV mB|vrT<,hҥZ7ع~^@P: kO> n=R[Ve\q>9uBjE8p{\kƮۂ/,,; Ԕ0 ǔ/e\*i0ޖ6Q}suȞDRyVyP&5e$Ғ &<0l.x(L۬ejd+ X)W4P&뒽G l:q^!{S7n|Բ,Xf *8vp!/Y EAN-֔ko_'qRyq=+ eeɉf*NJ{/_v$/RiPi kr!5ƥb$)~߻U &,:oyӢ\ ~zyWKeEeɞ|7['F)+'.yvq[z9kgnC]$`ZK/erqkwdO',al *`CaZa 8 =;mv6vQ<,|2zH~K!cq!_ 𥻵_\/Ͷ94C I7g~+*wE/ 8bdn]%׾/=.A^ +"șL =qNM}40?eU}^)h?P0/e4y?[%$_[{ [[ S= /q){:6E ڌ_.ymCΛ1'r y5ULҌ)U¹;h$_w,Tz%%_{kPVab d*q Pum[yV_}O_g}pO/zבb-i~.Vb1.:}郞4%vX8zJ݉T %:ץΟ$^,*#+^=cQ}ԉ\koE٪|ߠ䤿] ctզz 1dFK-4~icԑ1#~itiP_Yjc/>Y<*(rSTb@b59;9/aH?d4:3dy Dq[Ɓ,KOxZ Y7UU%'ۯcy01 ;yp [;S24.5X/:#&Tˋܖ"hCP-&;a=5-&=fm){ ZY||ƚK@EŎKʙ0De=qOiνAmbEP$ynlc< ^lb7e9B̐ҔfVc5)dk=h䤰Lg,X7|b,7I0<ssdKJuOzgh #oa:9oJ~$~ؖȒ<5R<6h\w "ɍYuWyhi EQBu̕LvXT#S腻ӟ<Wv)"BLGeM2PCWz?  ?t.݀~}2qמ}B.Y#[QwV_vc@EPLwŔrDlK}Vopౚx0w~</BQʏw}Wf/*tٲ,l&N(mZnJnP?ddae"8fp-W>d>ۻ"3sŪQƑu۷׽!V;yH!{8sI֯PQdG>p)/0IC=9'm/[k?}9dm|XcqW*OQfFM#g6 mV zFk߼}Е0c) Z |?m)"~ˤZnh]@ǖ e[Pb)P(.Y[q) cYhG+V7#BpʗV=091ᑩBY*yԝ)8c>HP1,"U,$3N¬$Qwp b1zLY }aaTcdg4 g@+h;Oò=\Z BuH:ZKfE-U3 z&ZN 6b={d͏K:l%7 KEc'd|NMe}i>˃qr_mVealX8N D(+>bIi1e(/80Y%?8wP[JMhiǥ.n ؈$塬kѹx9"I奩Vdž%>gI  wo%bK g!uųzUK,wx>߻{,mn9EKk\MUV3}Y4fo,@ܮE:(ۺ W6/6HZaY4 aMV`fe{<vV;gkZ6Ze175yӄddӻyrx>oςR툢Kz0D.ޙ/.m K4T'ȅB"syR=cYbr~9pjm˼=z׫5%~P$⫧%1ai Ӿ}c;#pz& i(Ywqsn80^g%'%.kom/\OK67}$MC7~p)CځwϷmu2o6TIt^*Qe ^V9.'4_{nX͕F8Jl@q$y9,"VඖMڍ`bjcL^0a2v?O#=O7Qsa|~< b6. ,PXyC2 Ayj@&uVxoZx/_nXWBI.[>E-Crk\L!vqԉEd~6.$CΫg|+g(B'=OQ0kEUs8"0|ͻFk3U8,I YӴ|90WkS?oV~scV][ԴKmȄÎ$(Sf"U=ޫq߻W?ǩ[ǽjmct.vRG1Bvaz1r4j)Em]3AN9&Qs#jS{AHҗ4ڝ{X&g-:%$+``Gɇ7!K=zLHl߹X, R47gmMR)륮b\Q PwƠ1"pCKs+__owWtԃ4 r?t_ lRXKv} -mNabkr碤e#)?6IԵ]kz? w,9,ot. ~"FVu"(x=IhF0/B{k,&}~:ɜ_~XTg"\i6- '!TGTуKsXi>Vl+ўo5S٭x3bIּ,Q\꺏2:$AYɆl !@dw%I1O˔|Av18]b __{[͆ b_bTV˶d6<.$Q`˘Lp@O ^f]ga};Ol;d5ݳl8B+Em%4>_9]?CGRw1'11)EvL6.D;GRSe(^V5%K~\C3M^#0ջ$y9gǗ.FS5_rwtǫ?^KQTm1% YLwpS 8YV Cs.60O:}ICS ͉{Jc//IBj pvMƓB3"pz7vS@0m-=:8}_thRfⲁtcX1k& AٞG_.opav]I('xaBLQ?*>kmS4㩉M6?Lh^J|p8l##[UW2M,%O6 ]l糺7#Vu~õ5j3*@HCFeo;$@.,@+/JYSa5s"՛n]|y}VwmvG˦6U@hP 5Ygq3+k))u񃓂xL)ƚW╞&+Gf%y(C>vQ:8. 2ZUu,Vn%稦`ۈCOՀ[w>gT@ax6V1Y0F&7ك~]&C%$>+$hO_o<*tv}fUVy&tG˵OPe̜3jq9@ HY/NFxO Zf4wi ׇeY5׬hqӫ[QIc $\(!K~v ɇ}%ÜRg/$cZФJ4y1zbP2{q>􎾁*W\++AdHG + 6vw_Hײ]lY]C/lLUrm:G1\FE"YCxW{&.MHj~ܽ*z~z{+Ć&=X]qFD.Qdi")x}V8c?!V]`Qt:\Xm@s -0{1_+W~{ :R$}bewltӵ !o},;*JP}:.5wpg4қXNu<_{u^i-r~5a)^ʫ9u8g[8:EÈr&AO LMjpn=l5iTʑrBsKVQtsh|+yC-GY!0=O:XnD[ebU:>b¸r9Rx|]bKJT ]rK^9ļ"P?>M.!l[0!l( Tv+e<*yw=A`S>.yAq~?d$9>Y9~`c0 QXuY4Igbu'I&^IE7 8HDF 1;L+IL7ݹ}tv" r_Pw[6YZ6eiыY8G8+}x ?|sK}%)r#1?}E֕OgaM߈sfsz$a盆δX"̊LG(!ɫ9_|%m~ z^ys5uvju^gL^b5ZjK/0ݜ\Bިw:BG}?s0eKyŞGkq2{Np4tEA鴂% t3~leٳ W\%/9A8_~E]MޔOm/=$]Z~ dT!!(%S~RrxU +>f'w*?px wa.=!W2G9FafZ΄}lW,O}A*&|"Q8 'IV$=}KS,&eEeh/I%}QR#J<6Sc"y~Bj7Viuh$ W\UQ)(n{ϽލzUd)$xq Tp~M@hJCn1ϏN%ܠB m׉8FIKP3DWm1W[ ~c)+˲#=Vau!ZQj,jTV7NZe%}8cr|#^b<@Iܖr$80U~ysژ,%'% k?<J&CX}f? AdV`9b}UٯM"KAFQPӸ@cWQ}nq+9FIĂ)vKrJFΨP=H z` j^~\6GS~97J d˼\`Bt M[¿:^,>zN>!tJP+ܛcUoŀ3V=4ZlQvr1",,4K'y~~}M5ueSZ!'k;љ\d{#XǦ~0%BP=gXD:#!je.X=rz-\n!=a/S-.AB5ܭU*+`yW|58 KE eUa5!Z̭G ޲<$` f qVΑܨ.>yg=@Sn)޲Lӷesue)1TS1!Exu[!]}Lc~>FƁK}]o5ab+塞Z{/xEic[3 |?B,_#E!]v=ErMB7\{E5cd:ArG%pZDa5\:\#O0/34i?O ]E߄CX!./H՞) Vgk/F1.5Mi +Q9bU\[xTk}^ػ(YCLvIt&˃i1΄H tvѷJ#;i&^'C懅 k.;eMt5Cbn}s Ŋ)tzn<˯'nL.j ciMxcU:uLNn _Hu3z) k4aR2'[3Y|ak24~c#tZ]骸/#"0Almjj-9 r֕NaԳg#ģˬFOJB)/bXvs(Iu#툨L~Q W}⳺tc_1Bq4;)`|x_uUE݇aІYkY Bևr*$μ NٞVO! P`y2w*]&k~Ջ%j 24)[>4^~(sm BUeՁ#XL=8CIF(-Reu$DZQ Tİ%l`#vtS4tx%@S>\QV\`= J.40y uOKܜA4nCqi~$_ʦȯN6(#1[Ԭ9 N̆!mۅ#x/E_x)7Am/iDYFALMq<_nB X):JYI"Wcôyp$-U턧FXt@rw},1͞ j]z*\,^54\۹[FI~x0)arfȰV1'x./E.7.p [A3SBf@wGH)^O ګ.Ww"{iעVvE-pA<4ȮCDlhqVK8ތXM-^R -)N׺\y56pTA!he3X] *ݘe&·3/PL#]ӎ@%#8|M{ͦRZ˕d+j% ^P K ?Xo8L^aGpR׵}~*ja #Dl /C>ϵVVd^cvs+dʝ߽!ַp+#q^B`fPDjw Y~"P-_9`IrTSB^d[* d ` ,p Me}j^l)R c ^3SbU'4.g}+VŮiXܹl4 1K8HZ L!,sqzY, @&exM9\s Kv#@H0Ƃ X= $: Df ZҞi[Rq7e}tkI-][ YE#XH^jٶ |!nVÜ`Y\(묺:$Lrj{Ĉ4G Ɓ͈0gC>1L+tnXp =B{ ٷ%5NʫAĎM}Zi*8 VQe'حC ƈư&?ltMM<9h}[䳾4H|v3P VMF2E`YO%^vž@`\6:ˮmˬLd#Zumk!)A_~`AOz@Ӯ@4#()[%!_7bϿ}w XX6u0)J+Ҫd'9&3{";ÃG 1}͉qLb.S,3P%N2ޗXsު \Qx9`@g ]7L #[ 6YKEÛUl9u.E.Y(Y䭗MpB,vy`2^Gn>U 6nnrRl܄]z$EuwHs Q`XLҥ%m q^jZƖ/qdK;~Ϸ?2,W*jq+shWJXׂEQMmP蹗ݳ/|+?;:0qR鱂黶cƴrPsKQҰS$ːٙ)?zq2{-X^vխ$BC-BΒ E ?Q`W__:V\<.}F7~Otpy5lr[Yd `I" 5 3xe1{F巾*o;$vDt_xwwي?9Z]AW%=d!Bǥ?,WpyJ&gHv- NK&?Q~muKW_,53131ooS"bLdk/ 219vg?i&׹잷ټud69?&,W aBDЁg|0/%CL!&QEhbnAqM%N.gvp`#>fGaپ+ؓ/E~'E^ݶ@U0*V4hyTM\ /욱kCv[4j;>ڐL,BObvAzzЙy}a>mحXsK%+ƨܡ떉 AQ?: \׆em7JN.YЪ/8 6\Pw @jwc؅觟wTRަ-r<]8?'eV[z7e܎<³pX7x>H.I\5es}PK}FjkGFK[(_ٿl=9~«CuG ssL?Ir&ޓX"J[^9|E3 :E qiA?Ӊ7}y(x?'F}+{ic.SGM'Q +{*bg>s7?ki%#tZtD%]ݽ]:1_.]wwV[¸$TC2jdkTH;#oUC5(8]~zqj ^blԂ"'v`*kJ3pXWB][Rv^TH8]T=~+q'XoeEbBEx(ClYƃKAw ~C@ŕ *]5B)Ӹ,+k,IxcKd:#RP-W[ ŸƇӊuD0PR:~L(a~#@%Ev\F/DkcȊ"tԑv&Ŵ`wGswzxNMNS4B)Uaq4V`$DyeίaM<,>'fRL.5ס+8sRm=dMU;# ECٶ DqZJ!rG 8ʝ iaE,C9'-x/3_{EeX|Y\*-::RH*Бvw`LIK7pla0<pu#r!+ol}2&TL(P sQH3VxY.S:, !-CYv \h0D5] X!M \nef0KK7M0؁ˋkі 1"igORx* \K#|Uuّȃ۽c d1 6fnZp*Nbu']|tmuہRy8nŊ#w)b"Xk널$W \wL6sdڷ|xPOBsO?;"ʅ3ue\YU]ɮE2;;i۩ &}dzP^V`|iv(=d,'?Y|ӽwrD붫s"1\ꭎ p8?Z9 l kTQVщ[Xj&^J%1(] '!pNiuh $-׺jWXݰiǵbedk$퓺 BLxb_t6;Y9wЕ cX=cޮӷb$~Ŷ{2,=/d2mFIػah5O;mo`tCAā[v5\*ѣ>.8uH3rg7L)Te+OѬ. IyA`p9 j/قUUYOiBv >bؽ&T_s%RwtS(懐Z0Vdr.yTvi~jW3)>_+yv4eRQK_mϴ"+1}$h}WIY1]ϿvtvK.Îo6u+W(d8xgVDg{[Y_g^bsxl1VMc,ycq8zDiIPJT1u1Wi͊8 ꩗>wbѝXKBdm "!L.I"Y\S1)8)qdM8UR[QI5?|܃{O3cl jNYWci SCaﶋcg_oop[^ .rAL{ͥ•kaܭgy*I ۷ܲ %%TF~pyʪ]J16fAҽi?P]7]Hҿ&bw݄I -JJR%_e]O0R"aAH #cpE1nې`WL)nCx/561?5YL2<#ϙ`~%L M'-)\ غJЗ̼ݨOߛke~ۃL+bseݔs&_'2 TY{*ǻ S184B~Y$ fLT/7wEsߗCk۵YBk4wS#fFϫ&2ͭ̐ Z2z^.Uf|RӼ@-'Y+NR/}vO}뻘/4blT*~~,IQConEy&㱭c G؋3Š\6]- {hV@<"q8&hm=`{/NúP>KkOX-~_/Zp~˞"Pgַg[𲖽}<+{eK,,RlpUm"DvH%P\Mdlj9u7"l(_{Yɡ[&V)dUs+QCss1,=}2;o2z71~X0Ȁְ!/soɆc3T֔A" ȀvB=3"3uTTS}%Imɱ}XH/eb)3N N4~SZx: 7F~`ři²Ć[⳯Q&GSB5Rܴm\UV\y-Szc@Ԉ.%[?$-%vXK1?{~̽#+L$?38Yw!N)x/om,NʍvVFnǁh? (jur0og[<]UH»W@p[mG{Aw*t^>`4 O cHr(^[w饩, z.L# 0.|~v?0k"oȱe^0$d]326CNGF߾DυŖLì>=ʗ?B!71]^ '.&V)&И(oEZ;{X 7,ȝ0AO<XFu+'҆{ Fz:UHgŋ'K+N8GP-m;1 ,_8Fô.'m'f xzqO,.gɑc O!A,X 8$[Vn2K7M]W0ݥ-r$Rʪ e~R|| bid /Kp43òq^ US8[*$&:(  SJ m 'k⮍ŶXQsgArkט[L+FWWzs,pJ]-íviG3ogC^ei-6q[veOB(MgkP$wW* tb ưK9SL9gAlycsm&B*ƪ\U,Hp4g4"p'n6K% "ǧZYB?Rbׂw-d~0":_SN$M˗馾/{ 2d>_ө\,|ôZ(^^l KO5% bȌW+=hhnE|8 #=zFW&&L2M`<ke;b ] tO &-(O0,7 wCr{I"Ʌ  -XLY>L3ueHH,5z+/YIdT;Yp7T\b{¸Br*Kk4&{ЦMP2B?41 ʖY%X+1ɾ=%$#H׶k饺ZWC+7ڛXJ@Fv)up>m# O垁v(.]_Enyʾ=n+v> j 0u c|-5U_D-üɇ R,s ˎvɴ>kX'/A&6_sL3U}cU)M¬y=Mg#J<0>)`1'OXK߽tnuxn_i{c7wqA^>FhVxbzm "BSAǴyVB! ^ݶwqM>J]uqUsu[lkAC(Hh rO 9p:}HKi5w,x{i6Gk)iJצj@-l%➉P 7BrSe-wzy\:G֣}-EMdx:?my\F.zQ XLjFcN mQSE+>65M50HmzG6U(eRZ+t9RӚ! =`)`2d };o̮H֕'y͇p1 دq者=6˫;bUdml]&~Au SrAd'KR).bL޵/x`hq'g42:;T\®Sx7p+㗞e|;S&[&˝i2]uv)Gdd Edc5csG7OmGfv;IWqE볶b+hPjRt C3 y61 Y&E/yu{V9%;/%pQ]7E_\Bj9t "wT} 5j;g` 3+ULla׿_9Dz.E[ӵŭH$Oao`0`F<U飙er i An\2wkX|<4u\~Zq+ 'WgQ頃=@\4p,ԢmHIld#j|.3nGS0+◠wSV$5ƔI7"/ItyTGcc+Y詊NA<L\.'&#D;7/)"{6q)&|aA;ə iFZUM_M7}6 xI`qb.2K ERtfE.p&x 5YyDЬ,v~tM߈d/ (G)nuظ#C0plCXmAf8D;ğsG&puyt({TPχno5w'k]QkƉE5 V=9킱-GGgGvfa۷$}XQA(޿|4#BVk*> "1\Eo#YFf0 zzbڟo&oY`i"_,JXk<,Gw 6>Ilƌ;°9x`uaw6t݉vʫ%YJ*Mk7#Х®D9B##ɹtٺdU0=6f@*^\j:e&x!V IDEK DwgռR͊1<XtﴏbXߪNFM*Ap?Ѐ_`vAȃJ9 r4M${ e/0L e%?Pm+F`%Ji%Gs>ŏ!ZɋI^`poU-?1Nv~c*!j"O*nu-RT^%{Z9ѳ!:@4àPoˢc8͏6A-z<~${_m#ؐݚo 8 ~aΎ,XO[w5IeQ%t#JpZX 燭"\4us۫1{?|I1u'jHSћ̤UKF'4nbv[|8]1]yV=ګvs#q('G} mKQ~>2\!K|Ya1KFv;PI; #PKF9#aX!~Rsd[Ff|2]iW $IX}W uDnHLK'uYT/K=/;u pOnh:0eBn6&y+U]*zu`&0,>3;ˌhsMIڀXZp]R;˂z_)lL|G{դ3i : ӎ޶!ъlO9y6[[PI(+cuvMu%]-ċ,1HEhd 6cZ, (۫xE_e},~HSSt٥>N@GElc1 9d#/f9 >q#1Rd?RirIP9gLj[Ck?%?Eפ-pDN8/9GTI:D\2GxGW)-(_q@2g=4Xd01,ܚƉp=cQqU{n;+k]4u~r{U4}i6*V|ՙW!Ƅä&~AX;o6 :ƇqO]1JQf/p]]^H Zڤ6W+vMN }q~+ d2quxSUT=,V FHJ]((T~|;:zA/a _ so})D'$Z^^Ak [4-Z5uޘ  ۯMoƜwX^ٱaJr帵Fyɂ]kH[ZHQ&-aɈ! 4AAr~21hԘ(},۟ ǚvOd#8oXmYVhe$O%Jbl_I~ —CYEpǣ^w: x9ik 6ZCKs8u %c"K7@I-dE ~DN-$ML`cO HLtm] +c~' 1f%"jh$,q=wI$k}獉 \~"a!׆JBJrIۮ%` MVlwK>YOC}[[LXM1p&Qy8i16iZN֯übec,fX!4ٹQEڹ;#YjF ݴ^$TOA>OlZϣZ^{YQk'v2{rK*0TnF6oՒQK>nkQb~}UɺFeiv쫍[㨞t!lȹB*N$>RG$h/^a?8W+nP26 ;T+O,lF>]ʥ Pzs˥i..)9ӷ~Hְ"SX BP|F*Ǘ7B#?~g+iӶY7mgYŵHjz'QPn8$k86y2YA:sn> c^ %beRA[ %!VXp'8XoV3H)e ^#b'>&\ c~wן'b]Se學%ȉE+|99\MM6HٰFd^7Gx01>?u~v?_%YߺkR(th FNϕxsѬS n>n?Ȇp_A\ZFS}KtL!z OT1Y*$0gY.S~l.ڪF,[Q-+s l%m0D|kv'Fp?˶n?iՇ[E>"Ok}֙9k^ȯom㻗q>j u)r=e'=jLQm0D+س8c;V;!IE|uM/K_ ub{|f\LںlRu7aǃm#N MZt{VrKݙPd[F+GDSh֤[b"vx[ߑ% Th1 ~r͡?za/g鏠48^,J7= $v?B3zɸ# ͣwD.e,}_Şky++~i^ߖ!LvW0q\tUe2ND}3Kbgܝ@*d%Fww"1¨+X[dadx;1"̮<$t20Y. J3"xD'}٪ǩ qXQח2;ԯuWoĘb\:FzEiHtQ1k9x\>v/&kL*6'tWptH_t dwl/;^טĐ'ަv@p|??Aa/]q7Uw^Ǫ꺲"Ȳ:ixB!ixV6~d}Ͼ{+{oc ~?4\ cĕIC{ &?CpOvצEvx[fn!w)rd!\T.\.|U?]I@-a#/DDzUTE\/ޜVd( fԯkVX]7qkL?j3^0pZp>r0Fu\J.i=UXtUzAvKTvHtea5wj";&L)R6 .s V$A+ǜjOB nD@%J7*$9^'uhWB+N+J;`y #֩\2ɖ߯5bzc|{,~/n]==ߏWm@yUB2-@wV;FוOgY{QB@SVũ'ڧ -nVɬDudA⡄|ޢB1`.Dir@<]SxX1\6^v҃D!pΩ%GqإY1խfmW͞AjuI?{-,#o ^sw놲U?URbr)Vb1~ҧgG2_z7PZMZҫX~]`Xpe_[8M L;$pqiʉҺnl OA5uYwjgwKqax끦1ko!V-:C[ŀ1.&xԟڃڶPjz;U |1w=e_뼹E-Iڿ$^"l!1t0E2ivf4΀]A)9F0݅&1NUG \#ֶbasdǞ 4o"]ewWvPض>tNRI?˗]|8-\bEdmE1[ 8POb'~*ZPǜypSd !q[I)y`46=u [=~[޽v|6c.ՖD)'N<u:Ɓ;f?~AuȱkNatX|(WJ l\8[L /EQnQJ=kM[^|cE߯u_U|[h*kEhp@oeSm%Qq`H|<*#J6|+(^XR6ѥLHa}sA@ A_ed5A,B8ɚ[M:ۨn0 !r+hom)X,7TzUh^og xTbF?_y (eIk ^Xti둍;E߰1L;y"]"cKg clҖ#$d"`-8'A/ZȌN/M5Q_U$Wx@"3(F|WL0PTM 2?l7QlĔWoDa-HS1=SzǗ[_|X?^w-1!ҍVNX q$h@zÐ&ƶ^W}'Z:=p{,ۖ9RVL:x[U:%1@P9|])B䲏V,G*d,&\ܛFCARfi̭O|}"ith϶o~+淶|g,ds+.}'#u'!6yDSotx0x Dwsh'A;KӶYSK0j "up\(eh x=bL޶><1Y-ԷYk*;,kY$4vd{Qgz8EloĒ\][ԑSɿ_ucpCħȫ~ b)gsWk&[Z!&nLW%U? aCی/-E!]II>_},.bWi-cI uIv`ilH3pxx}~TWmK(hSQgAcTYKYO5?raiGSʼnCv2VZ-LL Վd6 i_G*S^͝1T?'Y'?ݯ2(nGU[ i}W$k#62w(c.!Z߸e;+ s=ht5,ݖ.]VRV1\11"F^>I]583(ˍ7FkK8'-vsx9 S5*r^](=0VĤ_Rǚ,j;QWөaˍZ*!lSX "BKʪ֖~֗fޞPat &b@Y ]2")\$&D/5?qKnmӤ^iNQ9JXLgO7 ˗y[0گc^ uW#lh N#`$G`&po4R-1`m#6){P@YZ6^ڦ{SgCҏUr>ӑV"ɞ)Y -+( 6D9ؙBy·^MM?Ami+1*BD@}5Ggh }YDP20r-L.YFO%wlDK]!|, 33ǂ]{,u_]WL*QmX^oZWd8;Z,͌er0V,tas?/G][>_>f]8&Yxﻹ?XV3vUKm!0kj4$T Er.jJӹ=FDE6T]w3Xm]}㱏YmQ@,#cMhp)kbwAw;LֆQ.ЭF¨p-ǜ/?du<7mvkVu0Ce uEUGOr[?X|ldVHWvߋ_V_CTç`r+LO/*E& @g3"ҺX } 9iWUYdcsyCx x7$W(\^Df~qcl va.h-dD q~>,q3ka'F/3LiF/Y9A6dRobl恟 O&X\#ZFmf1' 4вq9+@s:?`É(m̞aΉu|Ɋ϶W[mL>7;}VSȏ%ˌmAi<#dx?1?8\A0 ~pْ v7z#ŬɊLo?=`]섻,uj;EY'`@2H!fE5C沲Oy3$E6XDV]eKmp(}#"|QL`Q ԈgbJ _)bu`RN$%![f+N.d(mq7 s <%?sFYVrx:wh+dq"}RʱE b7!!:>V& TO=tNC]ՁzRt- xzgۼnc5VuQ~e$ aniˢIYu@fr%Ftp lz/jlJBvϔ^Eլ_gK{K/%۱Hbi3;KbA V,ч3DXՠ_"-&sᘫEQ9[ˋ͛ɔ"PJliD_)ס`#k J+kGl5/n8 0 .p Z{"e~:!Xu$k 3q!v70[? ْX`ퟲqW(N=%0-/xl^_]U@Թ:xgTvJ@ ɛU4IteVU{ғ4ǣ=vc2s я~P3՜t{JDWRF T!Q+I%8ꝃ#qo)c** ۋǥ).+k[SOvۦB1[0;G&mQhM/[Yl"c?/-_KnC_CY]* &E6^H: $]S\pGQoǴEKMmfW%Lpy%_r| D$)k9]ƦȦ/9TAK_ +pg >AgE"uZDuT: (݂zwWܬVX&и-VqV-nةI8/=Aή-[$G+D#zc (;>q!6=Sg״( MnLgj9 Dxu2@-sM ϑ=zsUɼMUBWXIƧDP^b3M9%tޔGz<,}lM=1Ur Ge,cXN|d|V)„ȧhȫ=]4f<~X2G(neQϲjuCL6X;`\[gog/yyMxTUu54)J3g~x~Iinm}Q {fe)F@|Q ȫ00űc~ML Veg˶5@|M&AO.VAsD;}P~cs 9chu/;ޠQ{ӞK/,/4mZI(7DzBF?eYfg*K?b9N=~{9Ut׽_cm:WAa Aa2DHlj eȒ}:&OrOU G^N-l{[>d6e-#P YFx]4DPNbvz1p$ šZ#ЋH^:1ť6#ܥB 85ɜ`Pq6C(zʕt=A񙿒9-0ݘڻɲ¥cӗv-Y,íG 'p QbQK[L_xvB\9ҟ.Thw<҈j+*nuEL p0JU#MԟNH,_s/7DL 6usO>s%M_Lx'Unnd0P8߆ictIKo/',ɋ!7 j}@*}`V0r8Bl3 b20\ei>_ֽ|M^[w%2EA &㷙x Z8?qG-7g0E.c ]&μVr'_EjxǢrDP'$"YH`%qyÄ0.2&cx<Ƕ/?תeSKD ,FQ=#3&<1kjoB:\UGߋ5gtc_rӋpeQ́63IfeT\,`[,(?Ş^o3ap#}d,|Mx/YlVyИr;SGcNZ.6ޞ_m }3>laEj QWŻ'?Zx/*ZPfzj AQds,m|q4͡G[;ױwCX͒ ɖMZ[iJw^ Ղ&]aseeidYFC9ٔ"3Ͼek{!hcD5`DdIhk{ۜ2p<4Px,(wWzqiȯud#$'Qz^I`(\ie ń 2(U\Tbf۶W п" }HGM1(zWΌT`Ɨϖ5'4lPԣ@eVw1KkABpXiD*4!K(G}mOQã1o~Lbr,FaQ#QiIԋLOFT3TF8Oڗƹsđ/Vnenq枈AҰxK:+q-x?GY! zl2\Y@.f-pX`3L/ĤS;$Sg_E_\K<-KS {IwmJs5єqEMu*u/<&=1p'e8̃:^r\Q-KV"M~OZEq{9O#͘eFP.K F+ԗw ds?0"Y:9?''𥭳3d)\E]1I:}6 nx^ i9b Ư90TEvU?n \J <Wo%qIF7Ϭ7(gC`Ư0f5~оl5 lصޖزb@1]9|~ny(uwftkn!{()3|S\h/\ڪ[6dN*;0FiXH-il`mbBˎX^: i315F n!)ISzY @W6D\wӱL.;L,7=4,OpL!hP)o &?E8>f7zGX/js_d 2Z-)ӎ^܃A9Ve!X}Vgo &H7~(.XcocS塴kQE)L$<6wcsv+>NmkTg?hd]GdD[3=p%1_W %7kH@gsSiCdن׸L\kE|²:;:VJf<?2hBͭ4"{e04߼QUlh Bv,4m?3oE(E؎2S9JL]!\EV]$T[aHJ[F8S`jr W}Xf!YctrImipj䯞?0 +kIIdi^c53R$$Y7ws)iʑ5IA<:vx>8,Ȃwi˲̒ZvV]?B"4/yPt] (LxkK+B<6&Po=-IJvT'MiH]Y \FN1B=; dS8z9j^m[S73RQU>C?i^ EƐS2E>TX _o59&Eo>Г4?Wy!*]2}(E}`:R>9ܧ"qgӬ"1YwuK#z4,,D+@GyLN6"ii8E<{QSq$IY\*1tqH?p..b^@qIMfB zuӴ^2,zYD'# Ӧ-o<חN ]@3dCFKsTh6/ t*+e2^}T2"Cp\-`}o1w$b%{q6֮:vW_j>nGC o-.JpT5q%~@tҡhI>1pPC%i;d~r"tX5gU賒Y<ڽ%F+0, kʻșOVV >,_Y v kմ="~jZv^Bqv[" dlZ] uMhֱaXk{oݐ˶M60tlʼ;&zZ}PDdx6@ƛ]C>OɢC6hV0Q{,Q-1k]-(mmii3Ѻ@Y\`M')G"'hdF!q0lp)nxeZERFzXں pO ;UmSq]Њ;ޥi/+1^#cK ]֛$kl2ۛG M:o~u>C+4֎WaZZ0\ҚRrU@1,xEЭAJE[.|<'T,U RLTʰ$h M"|w0m;kyA48Y\%zr(f8|@IpFt6рoerKˋUgWM=$]ɲHC)Sj$!78N~CmK ўķdx 6RֵpyvLUXƻiB5HxbrupE Y+:7_kLNͣBvM=\ nU[+Gj̝>,B49-}w\Y Ԏ%oHwzC{Xa(A,oCEf0˄Up]pK,)꘮ʣBЈ:L#sO3֧q 3maэLm/3s?h433f zEb1|fyC\$&40ua,pԧ߲d/V!Ws%*!Ð$\DXd vw^\͇8v[{RveE-Es65.*A`rwYʁg>G(*gO~ӄɛ#V䟚zh-=Ų6€M ogу Od9VL0ЗQ J_uJ"Ѣ<Ȳ8kƑu]' P@R&\x:/ۅ;d͓^emkZc򄆀Y|W]Q(PGM*ҳ^<-xDrOyI2Q/#8ɛzس/k5Gc Z(ۮEڼ3eEBN W-"t/gkAet_ ~q)A&~;D"jJvD, *0@96B$E%ISwU mw͗5bTM$mah1!D(RNje FҀ7fw2yP!,2"}iduN*YwbR\几Q&D:!UJd(bۑL:]o~n]!F:Vˎiݩ{$^}vU_L9T :lnu'+4al`CsY]!Mbv, YXѼ30"Zr>>^ ȱx[%g"MdY49Qz+LB.t?Qb$SZq挪II, Q[#erf4hT,YZv4MɊcpCH&q (Jɐ+w,AoY>=/1CvfpXYRPrSg -( F W 60HlTk;8G{GpO9g#kЈ}ml7Pc O:e˼^6-/,ܖ}82͐Ji@Pt>yyqi\NkNRPp(CzqixL~dy:9(S8,N dxroeG;D=r^84؋*_a5c5"Y[NrmeH. i؅.@/˽DD *KE@-*xEk/GZ>։%d6]"6+Ѕ ~]ѐC=gX4U`^?bVP]!-L [gփ3~Vt Yi_ۺ2~f21{$JaKNBfݽc g<㒸82!%Ԓ8,{u9 m lF3% E$ġb11\ЫX1RBUgo=2?{uyf|"<y܄^\LGSeZ$OߋGR;aD ̶yW@'4i^5/c}5/ C"W8HE$yEa>5<p+)z/wSR> G nSrڊ~<6'"\!)\r赊,OÉ"2@6WmlЀJ[TBdm D~rZ{^n1!\=;ؿIRʲ~F\߉X(xoQy[OH]^*4]i"~2CCTgqR!Kc݅桭DA# tx:ιDﶪ69TL\\mۤvvb.ЋMSS qdi+tbѭܓrZQUw_UmTPKmᱼ*P@‰]h!DvvǠzJu`b$N~dIC~5գɪc{&"0W(cv)bEAHy..x-~bL}ʢ٥)5x_m0\v1W1{q#ޙ8_S4+!SYW=i7<'5b2& fb*wh@ZbǣK8 #J dz޺:W2}oC!vnObܕ2܋ _ªA(/z]]8,-xbb>͵M݄su 2 \PCKiwc:RDo%Zkgb#uϫAi.IZSW4`r t:T\.4˲#sh#\ɿ~G]tzWmtb96\y#h[@)a8WIx>dߕsW?(ge_] u^$h_!vN̴r0?96E>9* 7]4$'XC&"$,yA.Ӂ8m{FHY]w׫n!\ : E2yǹE38A=<h2O^?~'!s<៾G>!}$U"!&75]y,{4ʼn+? ] f3h ǝX;LSKgqao5oʃ$m0_KtyDCb!.dyĉ SLqvKJUMǟ6-ضY17t'/7ˎjJ~0g=Noppj >ujo`#ym-]ڄRj#.& ޛ6zqqo!#' {;>#ND@(Dqj&ۂV׺ OdH=HPPJdQRl^ޢϡ=!M@N!97,liW.Y\Iţ/?t̺0u'^UPoNM*Xlm%Ǽ]G>mZJ˜1ah4鄟{4y7-@,I\FTIԪ͛DT\_IȖOyV;/_lJE/4}>aFt]YE`;`PRc[D "e&cr[i-r` xv밬K8h~_ʱXʱ&imPSG.jrhB#NL\Q/"Mv(?_>dju"&`r(͋ӘSB 8lZzݵo)4,j֑ud<,bx{yE()"1_*vٸn4/ϕ0++y;~y a~]G,/3#M2?Y?\Sˢ5ervM*x[م!| ΊF%u'd\+Mv!BN˴X[z>n ؂BT٦*\%l[EԂ!N1\Dyw!wR IDH^ft!RZHc[ɚ\Qq+`TC]_NnqZNZ,9x0ʖw%Wl׼-V2дV_z}M6 le[!,39 ) LiWF?fNln/!DG[6cxOigMѴ5QwUHAjE ;hFvx.8>-R>Tb7ΓOS_\=M Ykݧz2]4.k A^?S oJ3"QPka(< \·Pi6:kv2Z`XJH|Q _:>tVOU KaZWW;Awt(*EuGU BPV* vI_aI|T7^¿T%7'7Q/$K'cJF%PѸ¹3cc+cv68%405: /MnGslq"F/pـq{2Vp]'HXoÝ@ '6+Vfl,E/;(Enmqb8'F5J:9Ԅ:'\I|_9'T5&Q1iQ禩/_D&5듯kD-vbVp(xlo^<蹤&$<۔F+ ޫLgHt5) Eyq E}%nWşԱ}y ɥ0&[6^K[[AJMU)M*1TBSZ,´29?zD(?L|?y6tT0Ig+rш,;0ߕN5m`H$<#B]뼈ܕIT6{m28cel^QRAk7#k%0p0!_#y;{OX'h\DUj@h#/@JqHMWtY;n zJq=aB W1A'y=F\\}HN؆>2uBy^TlOP1+)<]a*!(tp7_O~mvNL*G=ΣEVQsX3%RAƁå-)'(gUջ,#W>#0RY(bvqͪJ@dHu)^' WD)-50ꐬ$IueWaqܿc3GgtLnLu^9l5X˿Cr/04x~;gՠC'ȁ?2n /cQ= GzYyCXRڴ-XŇ {N}D| e')R n ] ~ncӴeTK<ע/+(؍;X{M2m\_ RKGu&镦 y)1J쪴`&!I`jE%h;>Cӓe>y\ $65ƲDD!Qa;uOvxHp.].Q|MP҆k)_(8UU5T±]V(wgp4{' 4r4Ǟ ,4LtH&H[M HZ HLq_ ݤTbr㭴-ֺ .>_$/qW">1c毫6:-UchQh|+3 $+cPJy1GAl1}of|nx;2O#n?1~ۇԙdɱ>=^Eُ"k&6/NPp.DoӴō$n3?>5ͤ>G;(emQ'ןJZP@+eTL1/{s~*>_JЫJm)蚶6VwYHi?;6x4y\zCzè{4X%8&)T˵rlg!?pͻj/B.}4Z[ABXƻUC 8+|dT-1;KLCyۉH w]d#D:.LnmGs\w旓 ЌmO+neGR1s9aNpa2٭ J|1L1GAq8RPژO5%V!,dNu *$)D1%ycV@x~*2w&ˁÃ3t~_Q ࣴ~ev]Ҫx`[RW\ DBR/˻hIIǬ뗻C/m %&+g=Շ4N Oz)ۿE"-pH6G{PҷkL]BBRjeྈ@W~`%c; cDϦ_9B|\7~ _+=E"Mhe:?mWR  nk):psEڑv3xʶkeeZ]={(, U$p8L_qlϛ*w}&M_y:,ܨӐy1l:KI#j0# U"s1I&h8cE}[9h!7J` =']ǂ*+]!M䓥_ @Tl4IL #W1]$?zˆF#2NHlV6 'IJ^(_߷U] COy6&ۄ n7Ex]d]RC K2O'XW!PHдT-.N)Y .5qtP$Nλ'+BYcy JJÏJEyvQӈ}ůBRP{(+q !:}YRuUI_ʼZJi5bimxNO["Z ˌ %d 3m1~IB~pcktwKBuR Qn)KGrQlŨ"J_+s23T#0?:]bBRJ.I1qlp ^ׂp]~%L丒?%_*ٽOפ7ZwXpD1x`g4>;ykalڅ;Pn^Cr]b,ɳ ad6B^ñ-ArYswa^3cza]QUR@Ie]PA* PV&M( ^>`~q5 d#SDYYMM$}Ogsw&"'mGPD"9X;!Yx9 H#d&QKn_'/6e.66z7el@TL|MTy)-,)id"Y엪 s+/+5Pb 87[9"-Ya'"?2ۮ>- mp b,)5Q>꤈9:Y. <|xd"%oE% 0s9⊐eMco/<p^m*\^INW#,eR,lر槺x߆= j_npMzýVn/%tuyv!:HQ0cV3|"f%_Nc8,'C~01,^ڮ7 )h,O:2}PapdO[8HGhJqNCfgQ6dS0ʖ4> ꥄux}xZ3-k?=υ/q6pf³aiNavE=J)gK|:va8s%F+k XdmStTL/9Tҥ$3 eYM#. wiǚ;1@؅/o!N{^7YPR]oX^@<~\@*"c~vv'ؙБ0hzA̟^jpitnl*N|Y'#vkhhZ' 1y%ţ*IKN^%H.D&miC;eȈٳ.b,*/iEhL*.NWa#vE!to!h'LWڣT /28^w.%֓AYa:xiL$qʼ 9X݉adO+_" kog2)^O" Bz5Au?U^2 y['&K${[eqh#wQN.2px!VL\>.k.əN@_QCSv Y\8O2,%(t9e[2+9}x]_>0!n.Qx.בy e lX3790&gy{CH}=lvXUIzu[' K3Mch?|< Hne_X k[f,گxyrG0w*+¿DMUZфw] ZQC&I60~;Q@`>h~ G82\mfOi jfMljb~xx[utS )Pɺ ,a f eTd)UI51aFΘս/_YEWwiDԻ"{c+:s)9 D0:GSXцt(煿|Z(Lݜnnʪ6YFݢdÜhTZ 䴬:`G1!L8uބLǙ7{?/UIU˪]Hb^c%бx]  '7+]u)g t5 i igAZ3y67^?XSXi(S&v.>rNO̾˞W/֡bii#$eFx]fam/&)%-!p.],DJw+ z_|'谽HǞ`Dhij,*9+|ih jPH4qV*w=mعhM9C)E)"ТK&ɾ%hЁ9:Y ~jw=p%gqoZC\/dmf|Sɓ~^?;!gF1 .C#!p\)jS3|3lva }ʏa49Y5I/^S\D]&^|u-T軔 vk[ xlP}#çZʂV .<\:TšW=+$oyS"BϿB*%ubuN%x$V=V7)_aNg CV)x;+h)o;M^N- QKوpհ$fGЃ!yvv|^ v\B*\2/TЏ/5JԦKǮ.:J[s; &tCvg5rs!9zak-Vj ,w>qλ|qkď#yżg LNc6L;9Zљ M^$78w:z>j9ɘYƸ КXw3ܝ#,jMyY_tptyukBOob4^ !wa7}OԗK][&k# 1yS r{4qAgN${$x$_z 5%R K*L䛡MmL?LV$ v]qVKidۅ݋tGS987l< 'Jhc߿Y^B;94EzDAqMY(ԔU n.=_^#`1O'$f)jGK+w&-EJM7U ݾ랊% w^`O$^p uAGh !~OoWY pP-qw\ԥR( `-|`4x(dХ?48v.mh@Jl3ԒDE, /";ݑ"=8V|u;58)d/4q~%4ϫ<!&SD]ˎ9wQM g\  봥 U֦`4o[Ů\)SɎEzL@Ҥ] r~nuܗk'--+Z+b$1ƳxPoZLy{V!HG1y¥764ǩ;CxEE"D+2UUt bc Q39'ݎ!`f,Jb%>Ruc(GpYqIjު˅]ؤԕ pg0v@hؗ{aԫ_zN#̰P]eo3R~Fs0/N Bϝ8 ϐ\X;,չi{LWD1 6Uh몊@ m 4)ܺ,1n:#;epZhgv!X$Ȧ6tP7j.NIqJ^{zHnX~F[Lb!_f v%L$T~y/R02`.=_j6Mcu[uuoXM'&46O.RN)|dYQCk4Wv ;qHw+l$3})hiu&hwyzժ lBpʔ Jo1>$Ջ^$tiRQEUW LnzE.5*J$>>< ZFki??MN_/u]\I~uEVF'lqpŝ4)BHgA3BDfһeZb 1b0%a3<'~^yUfͣ]޿ `>u2f-/po*/|4q@b.$D3b=~W679RS]Yf;_f擃eh(ˎ9VXPF ݊GaV`/Hvg3͟C,Z>5Ǭ{|/I[ʕ%[PǘS7(ănf>V a[rg"];1Sߓjd+ejk a, 6ձar*pof@)2ڗ]$+$x 0 bB: B~L Ŷ0{Q%,(*KHBk㓙@CKJ'׼VO Y=Čgx㓡rDH}xV葼:%>pK+L/YjL:o&An$( |y@Z1.W[+/-ߖ^5o|<4ew=.u]u T9!)niG̖ 7(G RjQ$u63gxӺN\;H']:hZ5 G[UqS'.K UOkO[<l&5H2,SOg_CŠ" {0K52WGf+͕t$E`b|1 Ŕڼ8O]yui e5Vл ,bw5P kmr~_X71~7ђA'.Wnu&׭svJuW.E*`n@c4ΔdTh=S>}(0F.r3_|]c.vE-tiZz¯l P)cgڏ+)Ҏ6{H./_ jۏjږNL^q}+t,|]'e|d˃OO'\"zjbۼуu++*4Oh.E"3$I{x+` UScц^ibVh?4<_ƚ5<9k=z,Εb)Ye:6E?t۟t$VJ<ĪϮB,-Ve"J+S^lZUEe/2ytIIRN#;8O)7~]a;Č,&tIbh'k)lY ܗ) =yZ3 E?0GJ$.#[v3#)B{22^<?Y^;;jz0!4 iك"Ε ?>XZ|rkLwV2c-qF 'c:R/ F6tH(^i M.r*ft\4=芽JFNKJYP>ݖaRpc e*H%a=d#Emr %{==H WТ+~ce$]VQ] ]:XmrDx>#hw*nDLZsU6qX…Nr$dOqp3og[?Ã9LN{I^'JN 4.Pq䎧rcGL^oJ*S"ӑZ7 h,w"b"|E~6L轂1fWo5Xo$|V6GNCzxߙ:nfC*we^#bP va\hvЛǟ-i߼jh zYzXNTq]eGƨcE/Di?^ cV՞'>MGa gtg׿m:"'"otq7m%N $c$m<^U-G<>ӴuN~M.գihJIv ]E@8 .8f7_G*&H!FYFV,4eJ$;]"?>*&qV"WY~^+}[9g|ʎNZ˞.b~4|Y|r4_1Oz#1/hehKJJF+rVLx DYBRĬ3u&&Vmw%PU1M[>FA^l9Q QFD%a GӁcs(O̎qh%6n"bI2!| ZC _J +1bqF>-.DK+"6Kݙ&4aq\2*t6%rVHx/. d8C$SU݃8r3% ], .4wս $yHŤten*w}3ati'Ua?Z9]-0r^`Eo@9*89|?֕o&cMiy[D vx8+߹ezԵ$F hnJ^ )%y/?y5b_-x1L/PTi uMh)ue(2t]#cJJ{a"Nt)qObxtOU&f2R%r.##~uFF gm8>)KJ2!SPt ́m6SH.3"MMY6c0"xC܊3 ^q"ч2F[!>&KC˗ikoLK;ҊQ"pt1-M)64ރc\ jcuS`fڰ#>Wo"(y(uk? " zf5}9uW$ms3Z~\v_|ƊuuD'kV#?' 0}ݽ8_f"X]BF/P2 Íō1bɮQa(}\_a32) kȯmKc](i_h)}:s Xzʻpbc+ALRސO|f*+tԡϒD OV''선)/? V}QWj# HIu-h``=,g=g`޽ _ S׻JU TT88 k?LRR+&}37)AXah¼Zx¢g~|;|㗖sgB/CvTt]]6i7^򄀥xS5Ԙ`HT#"BIݨ>P_i *uXa;APg|mfUgEj6zJ&\P,Dz+-\G|Q+ņ(~ß_£g⏬(;LJ)tIGеdm "dPID% (rSH|2gc +ӿEbv]\4]we[:‹JnQZ!I{_SqϞgl}~~M_uo6/AZ K%IHM)»pT'gmܑ]J׺fy~PН[H؏7+ ,i@4,nn9' 6c7;v,3zmks]8aռ2y ܻ*|\FORjʸKĊh‚g'*)@m2㿠k4MZJf\'b#U!YQ@{A1w_ \E'je0];rdnִߗ.wFxځEل(:A/[\a %n=+zɭn3T u& %ʉ5Aĵ N! PQlm~Ww2nɇ|§Ȅ sQTe6ɂ?'CZg*Y(*]U3}W 4`gHxoR2岔ys0`RR .b6f%:y\dYhVRuFgE6G pW1~'WǗ%/!-y5@71[nqǩGXyQ *p5b·0^fCsÕ;u'u0V҃"?esuR JdwB2Cy;*d-tUu@Рdޮ_g<5n|4U.="n"EP1;b ?!09L9^7tUh#s#+YBEc. Ry<;uHنD>w KqYe*x7,aMTs0KJ+בKS'Ҷ]/}T8 dhgt1Β~"2L~{G9kcOŵ!RVI#LXDٟ Z.q0&9\c?qD187T‹v~gs0$_>w%qqK^{xZ eq$Z)1ص)™~ r_-B&ڭM] -.B)c"$TQX5e eBfL'KL}]Wx]68f,/XYBِSz'=Wу;6 ?5V+5tH-_. ܒ낳GQ3->2v6YW2d!<ߖ\ ~]8X_hYuh:`˰UF~ ɐ<̫!'oJn<)={s=˸8%bqU'!ٚXȼ²!'"03c_g19T=l׊M7BӔI~)yck*&J჉ XCɋ+4)zY9!åH8G乶glHDv7.BߕuȚon .VL:1qwa]) 9&GLq&׻fery / ictM^XʦsR%}]8e6 Z)]X&eftRҿkՑ0)ܘdy DA]"ߕYVN{Yd̊2-| n更=7ᾐ 9hG) ETPSQL'㱟#d7 [U~=ry_fv( -ezw2j*չ EWU:Dv«R3ex{ʘ?[z';Õm[Fܮ܇9Ƶ9..OJBsLjs5K YvŖUR2hӟPUZ`{=,fO~u_C ߮oXM)å L|LžF*/8G :=xv#}gvOf[#-E;Wux[dsVT*V2"5wL9J -f ۆ2J6 +l(X,> A @ (+ 2W~ʅtn2ӶLBҋ BH@< ߄ ~l?r- yZa!qpnt㰆gxA]֑9LU-9mLaG?hZ C#G R0e&dleGAז٬e9pi ,ͬw#y3j&Wg0Vd&B;k:)`T,E&ea*0x6u ć|al]b@âT0RpBpcE<ҼR0xM<-LۖM Q]\ >P-hRHy^`ԁ c<;ю{ڏt#$xb*2LH~XEH䏒3#4/$*`v/ e–b20\2ј v:|"탯[!c<<4~J>: fRS⾟R_]\U(Z31#{>KloBcGmP12Om{JClq\!¹È[?In!~W"<@iqYsu)uLQ"ã1p愴*+. wi6{D5qkxV4iL33mP[6UpEoQ e\X:QJnx U[>Gr8yxeP ZJUQE$`8=Tsx2t͜}RS;vB4Jmr}B֢4e,-!bF Rt$\_,܄ɘPV 1>0?K?q\57k-iCN+0(E*(%ȣQpʯD13 1FKrhKsuLP$Ԅ5eL例֪@t\Hp/vF:?1+;:os~/nK|S5 w`nYzj+{D>gRff{k7zpB˼M_ˬN HS7U༉ϐB )T=vO:?OJU@:U^*(ER71KI@܃@8t:B,Ev"}\K.~֭nq[o[Z;sss\㷶kCWT#6'S#(q n_!032BQ24.4l1i-oausSahqv[G2pPڬ˓{&/]0m}!PX;qW!t]za:+)hpCOv|' @َ5S]7pGQ-붰׭!\zohN,qSs#[0tDr5$V8@-WXt1Zk6>c<|=0ړ*w6ܽvCV5uQhje]A;8#zȔ Ȑ2s`@v?.hZ^gIO`nL }Xdrj:[|rP9]8Y]:%H- Pe9b\fmVɻBD҄ujZ;Jw/e >4;:I(fyΕ߉"Ds|hc(FyUգڸG(+Aq|iyIZ=̹` MbKv@W֔E]|isΣ32}eƬHB>IcDn0cUH.iUe+q6 勋]ejoz$wߘVv̿`4c⁨vB2Яk݅S? w2A -?3f,8 F]x֚C&E>%LaVvyҴE,^0F)A4c !%ҋU?mg&/e©Sx8QL:#XeU0ڷӰf?v.h\ =΅t2 M(d%xx\ֶlh_|&n²Ì[B`0ytMfZS"yVI-BM-|Ģ։bWϲEq+*7Hp ~ gcNPN3՛Ζƀdd. !iz" -[.!Lq  ö/xE1̒EB}0j멜z'b '}T>`,:3* zm/n>0E2dyQݒQVA\|yfU) p7%s׉/4[d85sNNZ?ܓQV:ټQkc8sdU]99t(LSr,0&'c@̜\d4l=jd׻v TLN~V7 $cĺhԙ X[MgLtJ" ]q~2EY2/vlpWHFeڶeL_c=81 Ӓ *y[67y M+TG) ^P7V֤oO򊃢%1 y cE%-K>f+A1؁F HvOl1[9Uj1@^&BŊnx- \SŠ/OWO~1g@Iuv5HÞ(]E|X ^|8Tݝ.kvV?f/$A֍~%ev[W4HRFdVT0aׁ?KOCc FXqgaǏj O[#\,gg_iݹ<+/[,%&WRBuzYʄGW:ݗ ]0օ8<ӟg||>;SdC;=Ә0n%5MSy7e p>V1KapbHycʶпf?d>:Y8ܟȐOz曛ȡ+ j zeh`2dwYe)HYk@ h=//4yO?Å}݊tmS'{mU Js=!sYW+mċ dQgwJە4FiyZX3L3E:Hم.,\8+P;jk%fꮩr~%4Ǖx0LP;I -^2)NȉF!$?κM8>ݳ@t} X?|vfO0bsΝ=HP^~ L%#m̲fljhƹj_C=y~-͚Τ}lMGmҫ)Tl )j`bx$Dj`+X=^iW34/wuYA^\P?27 c2mSjPq}e^ Q \&x֙:ע(oj4%Z6/V=ΊDUuYK+_t#]yٿӤ骶H+P`0ĜHmH*w *''Q(%1Ԣ7 +Ӄb# =I {{c@`]Xm1%$ymlB|ZL=0֙oӶ,ҥCC&A3ɻ:MJ!C;} 1(pv(V8T2]f;8;z Xc ^}`LC)*T'Px!#b 8X\]E +|-}XAe_ ϯwE?xr9F,b2BG*D4_}U毄p6e^\ĝ q㣿8>BȦܥk$%$no eNyaJs;%-Kq̩@梟^+ꭜqH_^uCɑKQGmz`Z3,/6Љ9.9}$s C+\R 1m Q/Ph<}tuF5GXu@̅0#!N NpugtlfIp/)@CIi9\|ƪ,B7ZRSucT QJ`uKU]_LO@"v_m->Ok42m4UB\Hwya`&B )ʠRD<>8x.*DwWmc<|~[6-.&cģetsn |Vd^YKbŠYKX(o}ljxW1B[IXbUh0'݊ ]Nb/g\0]'bO -aFvWڲJ|d)\"\y.*\cH>9ݭ 'ՎvTboMA(Yp觉P rpdVŲ:eAm,0?(+`!0lb塢FL,8 R,+`/bB;usPu;\p/S.sg~5nCԿ2IxbɅю6Z'x1pp a2sg그Ű9J$N]1徔jCnt>.E]vbn&<["LL ~294%Z۸,|aI̷|ʦI/zS_ezL8V!]^fURF[]ϔQ_c"$i!aL rv,9Uex4$J{ VOcXB (3ޔ{,$iW"&$&MEZߦ\ɢU4KkZaj.E,32Uf$\‹<s Iw ŋjB/hFLEACHc0T&HP8Z+PK-\K,. ZJ7֖O+!8Ga}m 9)e i@ Ӡh'Ma)odrޔX8]Vg"J<޽y>f *P@{Ba*va$t9v+yF6}CDᇥz)>Xa-yq/O{(HWR?P\x3,$C M!9 ʬIAdLX\w L^i'7 R(, y [z% 9BID1o-#/Ŵ۸łs_k\תɚ4ъ_V ( \?. gwo1r@myi9~Ky !D)uKBvy" XArwž  .R. &گ>5J^FM)uu*"{CycVw,IEb3I>N(sLh]tͣ;Srtg e})f;/GӒ#^*z1K܋%0f nOt44?t_$L0$Py^V/B$LAD._0fGXؕ6w~K5~}p0<__4./ti/P^Ll]D,&rP!*?f$}ުRyN+qDf!4hÿ8e"ŢNJڹU(Mt'P:c|V4>J";+Ԝx1@,?4#)ih\|VYWX^Sez,xLzLGZצ1!$lA^vYL`q'j] j v~#EA#k?ᝢ%մ"R )*mT1˶ HX GOYQ'.3KB u,] |'yk+~ڄiJڎPdVҭ|N)Yb1t洮8dd@ $cf#qC ,c2oKCL?SZ1GS,"Q2 zӤbs_RNCJnGU*E$;FӭxCq&$;"̉}UIx  rކ-iZVy(Ȳ,2ƽz#n/\΂jrJ!ep} Se5!UEI꒣T@sZ"4XC55uT^G3*hCL,8 IJ%9}w5U3Ux{ĥ۫H'vY ?ƹ]~6S?,~؈0{Ӷܘ6 i٦bHaQwi 7] _ଖBFU T pIEe%DW^oo9~_IMZBԞJdåF>`,D$k u拒R.M ye@:heۼj,|խn"#uҦ4. e0Mdyx=h0b:DPFb w>A|#O>sh0% ~8]X^eM2훖l k C},=X@wFY85U^օMbeֿ^˱쒢v/[֙NAHK#F0\]$ + (02m i":)]HE0KVWZz"ڣ/rhԡ@0J,m@"sɶוh(Y<.:ÿD֩p6%s:T|=#3Y8)h1DkbZ<0X&Az)DzMU C_5-jOM# ?/%}utqn,B|TE#J3n6pO6,ZV5ɟp<(tW+2c!kZB Y5W"sP-[;5Хiub J4Mb"NV4VR ḫš3u$ -Yoo 5JSTZvDg5FnΉ+xvXH`Ufbow9iU=9/M ^\tnx-"ᨥ#+['F25Gi xx)oYX~_(ɡ kMR O5Ƅ*$ OOK:e,zq_]i~wJ7ٯv5Ԋq:K r)=6DbHL6b2;3ˍ?ӛXQMY$7vQxNFʂ(uN ?q _"օ}8 -+ૺ63Rnv!d(R&]T;BN Qݎ4Z,GV%GhӜܺ1K[<x'JG䬓*V\EIa%BJ2d <7/j x_"Xgy}IP`_d˜U+JX [bKп ^?? 8~ij$+T$ZF򭬕r:ѮK u1-v9z ![[CK>aq.D,s&]pwz8';@Բ\cnhd> e/. QN}8t_\o7N! X79E1ҾK:JP#߼hq2G>e=.'>6C$4ͷޥ&+ᴀF׆ (Q|bms.N"˻ Ub,X-JۻF͚}9)|[KLmhGTbK81{dKD/>mqXin'E||O/ZwYjjԝo3>Ci3:OW"U4ЂjyH!MNъ˦ #-n5pI"8QWHRr Х_yc/9gk1Z&]e~?ǐ^Yޥkk! `ҳȚ.8lfd`tNahO7l&q PHZڂErs?oa%|Y3)Ut9d~ӹm&g&{֘Ջvͥc} Qi#CwĿߍϋsh׊v[v?0DSl)"0?]:hzp%f=.4.cGo{gNdJ={,`򃌢6^ce?++7KաAtËo]mhaCi>33о'*>p ZKVaᓌ {WU*/wЪe,kVZw9[rO|]dqA{}l2 #Y-2],iQJq&y I(%C dC~K'Ѯ$ϊ,zږU~xD W2{p*We.f9U$;6 qƛjvtեiʴ &by[mHO|.-v+#쏑Ӎb BoT.r!2tuƄ\ʓ0#5*;JY؎SPghQyR_$+/ 2KG񾝿Et,1K:VKb^$JF_]ƐBf\'X3aᩒӓ-e[uTĺjK TqF+.Hg`UZc DL'8|_?v~M$Q7Ԅ_ ",sQ!"FN,_@Г"ЋRF{I-W V2${ױ*뀼XݾGa '\XPe$}*BJZr2;zUxdvaB'nՃy,d1QR{Ƙ'](U[lCj?עaZIשKהYr+-A[s(d жȮDmv~Z{*݂~4_%7=pǐ:.o2ONbJo `мį ]lwQ A勞e'P'#ܯ1 wcZ4rSQB(+nuxD+.k&dOL4Ka^s|jE]Ĕn.E$OݘeyKX$+ ć) d1O|5Gnlin6}L澷?m7^ uK=r\=;R(1J+e=*.gRy.JƇKfZO؇ÏUF dV:`>Q[j};\o4?yGsX~nq6bPEP+Ixgk&;n r % =~$+P@m<<\՗P3|&$8 E(GG4gmK]tmRA]>cgk8BI8 HV8eGq%8b/^ZFq:ޙr;c/~]+N 0#D&5(1`EDs2ǮhK3bVY)p0YW"IiL "#_G2ˍ.?ނ,v1OT[m#!x+Sܛ{mˈZ铢"KYҒ]Qł ӋI#6ǜ4K0YJ%|y7D0n19k(]BV7TB_=RTw$q9$[9pF*=iu5֤z>)]f:BØ^1bZr/K#D 4CR\);JpTq.isT24XW&miAK.+ZuH%hyrDT*Bc|5r.,xqp\^黽FH!hƫV|2Mo{X&8Js$Qa/'L>لUkvr;L+ۦ=K b()?źtR^]dCy .e\R%e> #MSu|?q,ڂw9gު zٷRLFf+CPb4n]<T+\<Ģ.dͫ o[:fi :(M}@YƢt؊}9qZɵ;Mx)}HSFByqW$ /2#X# F/^vӿ鹑ތ_D¬xuO*n(s ./X8D-'>&<?:r._M P 1IQPU}$\NN)}ӷ!_g+bV]molb=.&2 jsZfW,a䅀rvlsB\RʧmpISS }yXٚP%'Y8rj@%_U&gƅ Kc$~zk1VkocьMZ~|_gG7d_Y#MS29;6A@VFwA}:5 fDÐ>z2'U9d|<@?q1H/Y(('?]֫(Mp 4023˜BLi23m!oG+-rR8 J^~Y3'|Mh֗]+%܁ߟ/E>> W1'TRhW42M{P6qZTʻ;٥fQt Mx.FSW:<_jR%Mmh d:=+ydWiApǬOa>+ kCM ϝ*1D6,̄[8L3o4|n0}P#W&)'s&$GSQ$^]FGQ~Į]N^7&rLs!jx?)Ʊ,+,.4uG&u I8؊~VIW/eNҾW" ڊUmx !^BG?J6xY7W|duz!3~}"&U^9 H.Tׂ*:d3-C.l!Sǿ"eE~e}ʜpXlht2 LvM,{Q:Jwʵ/j%CJ Uvs,*xz[fy ln"sʪkLͪ#]UuBzUωKCq)d?L?owGoK,:ѐ_ot*+0mV啰C s(tނ WvrZtiKgB!BBf]j$UrŊ fuʀzTCx-Vo&dj&1R4JxɸH[;l9C&(V/q[U^Ưyu29EFO)2&*=O-q?&@ 1Z&>uǡ{`ִRI2`iPt}0+A_&aOxbwxqI/!/hz(R8c|Iw[۲-cLj/QhaƖk+S!6/CSݖ##@V6գ̅3oyb,KˁyVا^'an2NiYHngma1}-BRORpG -3V 5|Q`鱸B3( 1`ZQ&mGab{`}'KQUu|M+~< K0W+&#qb)dxI,s'7.ZH;Km|R*aюci5duzcY9d-P☦>UWxovoצ?3zYh{h5eF`vb*KVЀ{c%/X )@k+zkR.^Q6xtF7#E +lpgϊ 02ڏYYNsy쾘G|:NӿEyAꐀdZ}*6˻,뗌SEjWo}6Jf}m{I)oh_4/L Q  c %|0Br{?ĿmM螼Iu1iaGDN.*Q(T pwH4|f/0@ή>0l]Ĵ9=jE+^ w5ZYh&$pNB.V>G?#.̞̇*fnsw$hMVY<}$ YP[h.muωouGB;46-\3>B~!^m:r5H.4ppwG 3ZYX- 8[=S/tajabzh ˏ !2LԢJإVDm0+ȹ^xWz\b[ X(ȍCIY6od+V=l¡ɺX1!do|Bbe^ۿNyo6Oו½*+6Q5' 稴ڝZaJT.z*<bhһ4/k-m -n5C:_ }G]fm]urKG2DX?42p52ܺ-Ti,1 %JZD q\/DU?j{|µߞ04%+~6xV}*' _þa\ek*|lpb2@v6·ML%*HW 1$zNu<[x77 'u+qE@04Hdtvć+wP.$k1'z26d fq6WcYVϦK/yhg52VyV"Y̕چ6!i,&H-g,2 +)}9ߐ ^SxƈEF%J4w1> qEƓWY[ViyЪp-EYO^:F4"g8}KzXK5ܸHtڌk̺׏~|~[@զ%pŲ2H$> vɶ"C cUs#!5,1XNDAB%xUFᵋ{WJ{ \B#t88ČR,ZD/hNU.,F'y4LKL>C60KEL:ٽ%kwۀʠF`\EV};(0}48Gl7Jar^KzÛMFLTKKB{rߠRhzY0ОXxCػ,"Oߡg%9Oוz%NN"G{"+nteÜ<ǿvԷ9} b/|Eˤ5oϻ,EiS\0pd)zʠVhG~1wexC?sLlJ2_"+Î dj'[<DQҫ20Ƀ_ǝ+94MX۶-}*3LȅuYI8G;vx'N3P9'#|E^˹\*Y1z"Kתsu)KaZOݔCa^$! D)܁)[F y)w>>OC}M؃֐Uڟ3 Բ-,bM[m@tbUk(vxT_Gu"ObrǏ׳VTg0yeͣ(RU`z9/FvNi˜B|4阴,iS=y_!x&ؗ#.E- O(UCNQb0beu^ū#+C(y]%jG+t$! + ? 1T|gnA1T-1/R]|a z)l: 2H#_UͣSR/h`z?MCk\^YGQVÈX>R od:+kT ={^cK7{rKDiPw_%aqdH|KT+x8M@,OE6DSthiT܅Mx6Wļ\;:O.H-HNNSSV%iw޴M /kuN{̳Tʓ'G&qay1f"۵#k{ (0 im@fcc x'E7>>1y%aCOۈ37sz~i#sFHD#:xV]wxھ68"ɓWCK}/ԓ^wxxD^ygq!YJN#@?2##GEn%{w/kx>x\L䔟9Ӣ0w0X~1M@ȊdO.&wCN^aՏ.}>&ExەG$meI^C[9 @ )׍ nqhВNGNWqjksf.~^HG1rN/J2zᅱR=d+HI1>"Zn,]-C% 0]pn*e+EΥGt~=:);?\xh'{;FZ%3Il L rMG VhKϼ^M?l,/NfCW $iN:1XA #2<{B>$ĥ RʊW!m<4vrĖ=Í@֔^dA]rERR /7KrNSKLCX|߇ Gb04[?!<#dӆ$\8)lh";@l ѮBWHQgs룠Op5Mz7!Q|Bv闗e R3c]P*&6r*?#}V).7K2uМf6sЈ~R5Y0sx'e) ks/# aw!MY ;"V9̲y A>hF3X 8-ƽ ˋ/#mr+0JnF .%zlRI*K_f?{X*/اL1/ ,[d'HDԢ 漁&F.!'> ɟL˒Y-z9JsK/m%sҕ}ӖYXqZiN ,Hl>(oϏ4^LLҝyRYu\E4b2 R eGg㵴eZ_c}/QvodzO^2޼<zv\^*ZYR ?_X}6縅Gckv'`h{Y'u5O)hEHw[ }C.T BSc1-(# x'>d_yaYIAԀ$^m؉@W\2 !֪řU ɫ+>WG&>񼛇ab/.i?"eBf 䯼}Z4T}x˫UZeME֬G/}|$1 G;xq(7EPXx1E4;}n|)ѹ˝E:owcFY tPC'*Rc-{3^0OnªXhXh}7%VUe]]Ժ9Xחrb*72P }/eD̰i{Bp̣(~>3y3dZdo10A1U;ie0 4RBWcs7 4]D*Mc]#kC 8ٍӵ$;QaAnJ|݆rHn.%+቙Xѵ:R$X C-b }|Ϙ5|ML94.=>n{_91.~bٛerkZ \ ۷ {]iPFMDsaNON52VpMNr?YSYضv_<Ǟ-P%n$ GDo|C>!HF.iz.}gguuUr\v2А#*JfXzBYs0~,?Z *,8uO̲*۶ ]̖m>%A F8vC@?R8g(BW&+p?Hݯ}Y$KžhFHc@`'ZpLX֌nNuVI\W9ߦkZl6VzVkTވ!(4Ћ‡Tѐ=NVԇ|\.]zg֣60?_Pۺ.Kzbk[vxSHl/x3 %ܒ,['Mߒ,1y} o~P$=XxqTVm~k,bN vņ6=gF_'3r~hy?u*X ݵ>E,hcryhdiaH6:F`L"|җ1] 5-/_THq]=b %wL[oo=)ԒEc^E_W^MTT:B ̕P(02\slH-E=w /CzVjĔaqU5:*Y~O^>j*rM `$q윾V!/΢\֏q_Px]2dfђY0|]&Β8Xr0JP[ڑ,WuG!:k% iX>e.խn^ j$,m/yE[]6{!p/kѲ_}a昺эы,=γѪl]_/9gCkΈx ]G;(7ca$ dCy^)DS1dVr&_5w [ jr2 &'|Br\OU!$۵,WEdmyVYNL PiLv쇙 {EYӱ!W$Յ}q$_몿flU&L! ;$!"zjwbk*1yq&k^/)upM&;,0*F Ae.caٕ}ԗ,'Ѳ'L//'7^|?$$1^Y<-op`!KvGMoowlf.}U5hb^_1[T@Ha),E};u7M?@bcJ||KɠXJL:Ы !k 0K爙nI&Nj(.I&p*4(SDocWx?ݥ.Yʘx:-GaY<9lrD zoz`:? Y߭_k5$ܱe=/Ufm۪b=#{q1E^h|*f€w,xyByN U+wul3 "(Šu陥P%KFxoӛJ}5i/WdK\&ǐr]rNۥ|祬dAc%&uCX2{hŌ/d>؉6 :̺ 3 c1xzOkzI|ɎEPL,cyYGh <<+!^w ~%jbͲ&_ ~򥏕KVN!0e0ztu$-4=F%,XVXMQa-ľtYǸlS'Xgl[YTby,eACV0 R=R4xX0Vq5<&DE&hiuMJN 7g)f N%>@V&#i&ߩ?}e$wWbp-lj}|*fegm]VT&OirPk3|shC"JcSU*il:BVAE_׿qcnص{IɌߴޤnLr?ANX'_K!V#ErSuSQJH#6W#Mзhd{*$½9|JOy"JʘluaUAs588zxctC̢ʾގ-λHqXV0q:vRY YJk)Z@f WԽ8&< Ed7;H᯦S}j<Չz ,% uBo!7Nre<4%z9(+\X%HmkLj_Zt8k.R fe=1Ogi5isw?ܗ~b 0 yL{ښG1X?Ow8Ũ޼\Ȱdcȧ@d(~7ieLzMYmJ,|li|=Wy[~ c,1,X#Eΰ!/$Te >d/|TUi%&y G~/I 4•?f>ͥ zs1S|njE'"S|\Z^*,Ɨ!Of~C@Jwvo5#ly2MoXژ%gSIbcBzAQW@;q$u=:n)뺈D7[ X .~}V0)nu#{HNLS.A=oǩeϘk5o5UXTVͫkЌ?'dH,ۋdeeop|, S%ds뵕YBҳ̎ۚJGS%aW + *}bi(Z|sɚ*nnEI}ZD0~ꢷ Fʌ2k0z `Qz񽈰PCTG7/8{1u X݈(tMJ!{ 3oz\m6c#G/dH&U!v_t[pbULs Bzb4'$8R$tp%<:H 5{IĎHz|8.&?tSxWͮإS)@'xae Y'q'+H>*@ $GmoqL^8c"C )Pz\sy$3f)EiعSpzk3g]u^eqY?>UwL@gAJX 8p}EqY6aRF i=-$MKi6Xx;neaBƧb=!?6]>Jck& G˱rf1>ݓgF$m{Iu渥|isN2r.KLBO x}dcenK0E;=\v*~ s^?"LU$"OfKެJ.4lʕٹ#|B8&z&9$/ KPұ0 [i9O2O{`;e9E4>Čf?Z]Sh)KպͭuJ3׳X!`ֻ9CtJo#pAOV`Ce>MN^ʊ2a`QE\RzEJk\85i 8Z&xh%LF:oF طDQ^.,_퐵LqwKs\`prs( XEl{5u`iEE wlG";)=F >6{UE{KnKV| PflYyމ:cH g.;\viTH/گn]Iy9srkGu "2 btuH(}Hug`2\p{ 4 '.c: 7=R+_*x_XN>hC\2d$X FdĆ8 kNu:0%Szx+qTP g+M.Z],gd?#am̟Д:1<$k?'~qX.[s\]bHϺи ;s H#|pe'g PG>M|;O]p*r &t+_Mh>_&rKe;D& &IvІ!A)?|q0>Cށ}H[ֲ*#RK K7yWJ]6TQ%3'.w!١0_u|1-ݶ's&V";m1ߚư=9-!KsMTHt;=vo˞ù=yY-tiXQR1V*R5=*9e1#`:r}߇qھ1DJ0Ā^f;ƒ- fe/_OJ$euL n9UqƠZY~{ǛAL2lwN߄yUa턥U'gYfvnV$Js` _:ŭW7'+.:|G P^ =7Y}|]uz~XcSV2Ҟʺ~A:`@g4rH(7*8엀A8}:\82 gCriMIb9Dz$.?^B!MrKbPʞ9<@p%8V Y-]ۆiOkx H7m& ^MflԈbEN1vT*̥ QAz'KW1x?˰X0Rn1tє<\dž^ᱨMO'j(Yϙ].]Oխ6: ~#x%.n Y'PJE;Wl/(;ŹRʗMFfMf2"#OM9AJtz!t.[f?&nMwcUxMkm°G>=~'} /d|uU)<%Tܭsߞnʦ04)\1[uH+7/RF/8J.u3/2zX/+^%'5],W#T`jdd]PzxCЅ %Z/=QI!C8Õq\? W1Oq/5 {R"Um?B2QlGHw MjS&v/⫟oe}4AbXB4vQޔ<ǫYe0>xKկ2 2+nW+ 1k&Q)j`bdR[Ll">{ma YT|?_ފCέm9S|jl#Că6FFB"jKg.}r~uK۬%z}QT ( ډ#&E7sSIK*M* +DX>+UtvrmBPHEơv9!{DF:6@Nv&cI rR3(H3p]CzeYt5BS3l12 i3'`S~IF%S5*hg CȖ_M-m<P f KjH1 gv!IsuQb<ŕ| zyw'6&_ JsW%ȜР vJ\Z/e.o"l~ZW}6U_ Uͮ^6 Ca@퍌cZ{BG7o'>n),TqC}KYw}t+[:iaHۜ3¤ [Nir5@^ O7Ii2T9Qݵ5kZȬKWb$L( $ 5tpW)L7%QCgQqsa?[܉0Id[JM2rMQ j(Q,~?+}9'&!a9@qwGrqoXp jF" oކЬ')1(y)8Lerט;(d|L7$s_b}i2R{|Ǭe<ōƼ}ܸk qjk!.I,\ +z4H!Dr%YcbUݵY20Fn{ jf =Am; 0vlBʖطy:ɱ8sNk1ՂFX6EfդlDR|Hb( ;^?%,a%.6M=yĜa{=&r]Pp4Y\A=dD`5s4Xg秇X~\c׋ Bc/%o36HڔXJj ƛ:TL@Vl9{Jt+kxNmۺj8rDt)B3Ǯv !ٱPij0"@RMUEo%__?^r9rR^eXu wߜP|8Jc<)/eg6[jw2}3#I$WIdaDR\f.24z#APA\5rcop$1]gPD`uE}$.6UG+ LȅcFN3XlT%Bbw[ a ߙG7bK){?3+2Q^KuڤM~_c1?owT7M/)IҬf@szdw5tʱ}l46}coed`Pa{Th͢Mns[=spE UuH{I} %xYxF&1X{y#Kʂ~E2)R]Ex,JY#mٺEîǎˏ(r{{mmj e?%]:ۣ^FW2utWdc ;CCpsEkIdſ%3^$ף13U< 1N2~a"Icl&wAXcsE\j_NR,ňܥhc/;xLt0"7gq2ʼnaw<ܗIǃ+F/lXyރӺz\@!=!k)Z`( I9 W]ԧY w˃ܯ9ǥ q#ePY`2.HY%-\ ;4rCG@]٥$+xg݃nyHsA"#ESiXUY'V경ӎR~sw`Lɫ`3ٕ7#yIEĨ7n+c#O:Ĭ^xݥKȱ`u,ϙ9nc0zpCθ~Ⱦ}z_GRy[^udC=Sb&;oڂٶpV v㡀'Iחl>abQg2Aࢨ=-LVI3>v\yB"2,b5$˷ _ş=jRuEJEz,&aƹWƀ|Y%g .ˠIS(|O=#ΥKOj 1U學l#V{Rn j?pI.#/Ʒ"TmWbJ-&%__&;5תyr?lV ]QI~`ŵFYn3Gĕ=vΕ~y>^!pܯ撝u,^qv6IHQ܋(䝰yO9';&ȧ`b)0k(+\lZ gkh r#uBti:e$|fԎl|t5˺J>< =$#Q nf7OYY_]at mw˭ku3 g  0o^l! A})[w/^e TU^Ȅc])8pKCmTI=)SJs dabn~X}|_z^D*:x$E(xUP0 sH'W\\ڶl.YEs +c Wʨ Ml piS7rֈ4%߭(quJdWI) $[e81E>T%!f_MbӘQk46Ksu>ʾ_G|wk* D 1$gH:NԿC95&5CfyRy^^pzZd^ij#֖UbcܯÉLփ6l#@YvS)"A@&*E,PXYN1mVDlRf t-p"dM20g'3%<߯D*u9BʉbU?\`,,Cm=./**jZAg.mї_'K,,**>)Qӣ!I@,kbd&C6,~gLH3Xz#(g9kjʬ#_]BVXi^&rcT*1QMyvF.`*vstCګw(Fd|=sR7}fY0EykqP)$f'#,RA#l:߄Q]".≺Q{˻{/hƩpgXL`WwEڔ$oIò 03*ig9m[wRX]3,X4U*֧c΀>%j&8՛y:[e| u$x<|R9 ^1+q^k^&Ʃv#R\ `p2F Un9.KN r, \ K XJn#9;milLkU:GhOز|-eg!Ҕ% n\E*2 duŷi$kJ_ V5ş$\+ŬR!5eȈP2e+aAȐSZy;b.&됧|M07)g*n(0ї[Uɞ{˅@(v#+[αUϭTfGfc\R:ٙJ-R!X{=|G+!= /_=x, }﷈R$9V_6ޞ@Wt {V0mIl1!0}ՙ oJat^dc ' >=΍ѹٸSy\m_VC_nr9gg"  w3NWUNi.T%ᯤ>,j'4$ |?L&W.RWρZCt9՚Ǝj^]zrK6 1ySs=״bg|axUg뫚t:H nϯ_0)`*;Hs|) "ü%ȧanY w Q1ƤE+Jے:5jahGRf"]I!it14YK5֜@&p[_Ky'_e3-aPy"+x{ecyˮ1a>F|5 =|%$*_$r}L*0dV۠i9!=U6P*fΔ;鰂ZV;8 Y cॅ,G.6yW.!MV8\߬A NdA ʪ̰lst98xL|_vl mp@'|VdWXՠa'()eçx .1b 'k12\P 1s4}"09ݗ^b}g GkD8q )g,.jl0,o&~7`/m@:J =W^'ۀ^1Xݛeދ0E */*9#ag[5knQ(DzEcr#MA⠤P̆Oͯ,ZRp5ve|&Wm[g~#ԤB%"%' )M!޷~IQ9S}}L;꺈ox˴P͢r*El42KMIE}@ώE`d%L[}Ћ9PϯW+̼Jf6ИWx]L/C|_}ofHwGr5k$@8>Gb1&*G-22W~Vk4v~Q01V~+m)C-S 6E#.\05JH$bLIqs3[uK6K}ӸU^2zտ+XWe[,z!c0GpЙ 8ר\ |HށIi#_Az2OK#?#t檗Z$ 3'_1Ș) ,9de2>أo66+ÙjE0[d J.xA "1#0wDNTjH/KR*b+!% [ܝ=E)u=7w|@m6^Tp&Ldssp1_ }ebRɲ[Q ~YLe8'0g"&9ԁfy¯+:cĨg e%y|s FH? 9'2ooS =[1o$YF@vOw',gh:5,ޛ'qͻ6WxNZ+!dlMyqVrBF$.s1ϯgpZXk?%P G}QRں_Fg*=~8͜&eW b95^*BA#1qg\p?" [[glp@Lis€l-`dQK[K ߬1׷(^Vi xZ_nZ:Nа5v #z[x\XHx{ !خ06B).˭0I12aI{80LTر}so}ϱAeH@N>WĨ*mmOg.BzL#O_$>ɞ=4/ܙTMLI`vOt@4"Mq,62erdi;fY\Vq]=wbJW.xP}>0q/zzŔ2@+SnfRj#Kng} W9&!Vc7\e9n<}A3inmut %ИfvxEaE++pd=W1cVsmkK)󃚦U*]PplfgFo;`[P$Yu1Hg`W?rb"pCp /.cqoi2\KY)$nޙ*S^@k|9*D;OTP}>kCP9R7fʪ%/Jf W3[bUՕoEw}8G,TV_F8_͒zo\>i+8aOD$~g. I *~>!v._\Rai2ڹYY][g2i\y3^H<̘xm:EO\29?ؕok_no7_%;lS !p`9ke(v9MYЛ;?%I{[/~]}OKiImʛp5o3 g }y`ؾX`}&Ph [),cf+Z'$+z>p8b=`LxI~o+5slbdM$%.ai7T`BBNҒ=e$ DPѤ[1+ob=4pΓ4ٽRj#L*v$X;KA6-ǴwlHz/aw)YKz`S"WQc~-&%koe?.8qʦ.V$7D^6茬i<}u1P?cҮy{ޜX2-텘@孫{!{W%1Ν h0{wP˚{aG7C@7iUmex^swEyDqNU725P@z\tew;;ӏ*>}^y7b:#(@qY9?L"`Ul磂ҳid?惃H'CRTiqeM^cnbre+KaͲxIfx?n D?yI5{%?WKQi7 S9j9p$Έ8 Y^5kaqJ|^DGv1_g‚9'RPf)Nwb豒#f% aʁD :(}Tv|K=p14#h׻Ř_\/1YN$:m԰G{7G62`rXf1,i)PL} 0~x/1Ɗ1\# ]%7T+ RN$2F5z[$=5!T 4.A%/ssEXѣEn^C[tѥ0֒P%R%[u$,Xd$QqHye&p4e!:L}-RΟVol#w,'=={y?vqӗ>;^0Hݣș1 *TY3i;%On|\?q7o_ qn].VZv@ZЯg=աO7KؾGeey6Y<ʽ ‹kLӘ.q uP6[VW7jrdhVNsπ6Yݰ*N$K#]ZM2ۼ"_ 4nπGGGLϹc'INfZ+"FX& %LLpdm\Ta0wjf( T%2ן ·9߻OQyN/ŷ&mkU Q%B[1f5aT d[~/]/*`ַu?헺/U.p޵_\X O0%͎1!Xˆ#"dj \tֱˡosxƳ}Im!6M]񝌤U +H l_ e#|5?*_㏩jbonK=E*soc,X⁲P>I^|c762-Z/9U=p&nUOxd2BFue]7+fdEnrV' (! и:}8+9چaĤz]?]ڳ~Cuo+$[`I`#¿ك  Шk><Ƿߟyy&ɠ.7$ʝmkռԉ LshV#IqVGzXTU-k$tJwL1^~9^F|C^uRݑNQ2"B= Hv82ߌedO?* F? ׺r߮**A/t-޹*}N" Zx?F8o9&}.MQy,Ô''eUcZ]0S!i=‹2y3ڡ=畻Lo(Sn4泪ZUye̎]wKم)I6 `e1>A1:38^Mb{|!44rX64·nMGD ][("SY-Q>ih#l:Cz,O3i@:!u۳p>x]o˿}#ѲjSmT">gB3еOe;˵Rqp1JQ!ESquHG(?BB5I!ll3%[Η։BY'1әY("Mxt@L~Ƒ.+gKk`HXdU+a/0 0u|B2c~{9w _R$W*j)^Y\l*l+!oLfU<Bgc*ޙ"\j⮫[L 4 oaZwkYF ,08)ѓFR~!0=C#Uy#"M$Tb%7|㍤&,Xgι]y^WY^~ǟ~LЊS_ufV` 1YaĒ=7q^!Ȅ| n̄1sz!>oҽz2g,#e],'͐4B42&مcv]t-#/F&M?/ѯ1 awu?XCΨ0XO13[=wsxME;H4Bz9,f㦹fVVzbNPH( 0Uo)%-gV;vt:kz]FPE.Y Wڙ HֳqCjaև=q볲_X5 kL;@+T{[;ГˈJT7tX@>oYy[?I] 7 ǿr^ᾮZ-]‘&b[Mzd4 >~LWF:A~EVN<lkOf#}ޓݷM.*GRSz^Nk_k+ʽMarjPm*ȱsP޸0,Ş:e>0;A;co핿a>y1[1צ6In{8%!@c 6Ł'adXJOrjJͲ/žt*Œd~lWqN#-9Ə6Ko>X|5hvӪco͖ - ΀Wx2; U-'2J8>0m20P6 }{=ɗ nCӓ[=ZGlf"G8uÏ(Fi"um6cܖktyrH*A0Xb]mڛ_}8~JIH_zX1:_{\q,ƞV#bWLΎ?Z(Xm%n7 Me.C'qQ#I>3GKםgmvu۔TyF۶1w$1FK^J5Z Hzpo/X`j},H&YsZ.Mݙ_.XA戙Ch R5{cYYT'.uV)Եn/tEXbal U9ʠZOHz'0?(w R~}z%{9[k17AJuZ /n^6{b~\F{ol?Y۪Köݡ'D\VgJ*=OÙ]*~r`9 +$do ԬDZcˮ }xo=└AJ%`0sGkt\cztA8b.XrК.!c\7gz#n'L}!=}9 2 (aRoEL/E_$xjCH1mx}"PySSb.d+~1^{ev 㧩x[8w$0Rmlq9P&3&ޝvNd_|jWZX{5ܣ.K\E˹ݺK-79\"^#]iҶƓtv%b$FP$LMhD P:$Xyo%6mi\N I-@[Rmxx'6` q/$=V^.}Sg.Zm no OJ+=`6~.R#;>\2pRlp-_e<ల+oI跰= 0Y[r|Lb9Mhσߕ+%ĥ6בԱcs}=<)[u铥xT6 Ē#f*y*_RvVQ\+F `{ĻlW4^oԉ4 ƾΒFS}kL@1:*|s9HU1xĔnFy1We|`7{NhR[6YKy;슽R,)#Z7Ap#&X0F]Ucjw`exڕ47?U'8[Ko!cTEїYU<"rKs*von?bJ K!ߨ.?Pd~AKY:+%}!Xk@?6A;ii5a|^  #[aS ;&])kλ%|obSջJ)Q, Ipꥮx_$[WD 1Ưucm>_/>1bgy “{$$I2|\H@bxƈ"eb1:QX-0;bE{ I}g6[&"=xĽF)]ņ&QLjo7kl8#X3oR;9stg 6^Vc[ykIMGw-2%T6m'0N=#*^8"za o|/(4/f͢ ĝ\Xc4ea=ٻap_MUM֠5eSj \5jf~`llrM|IޛtwdGgGP_[v(=2aE< =p-885hC|aTF y)Ua<Еm P<_λcY#px0wi؈p!o)D ژ٩-*5rB6^b8^Yv Ε>.f|{y$ <|a5UmѥQuw늂7>d}G%H6IkI|b|̏ڻ=EAFdXi-k1^O&3lۣq]eG%HJ 1xh_Y]m 6exP1bc"apGFIrw6,w"\ sye,0L;ՠ w]1(ڻXbdcxY=K1f`J3Qt1%׆lO8%+u 1_GՐ GeHqHL[qߔaIpbe^ĦzuK;Pn"`ļ_]n2J2H)Lş5+X-:IZi(1*gax9%cjSLVd Fh#:d!aK 5M9Q4i$L@juED6%9{~ rK}/,KXgϛndĀꌿ5gGfC \}ȗ|]{+'p65at f{Rw_zom& dYl5<O# ]XlqղE^ .ԕIꡫC8j}em9uc2> K&p@f7qg:DVr].:l^s O ~AET8;0(J#FUۋ1VvQ#'P#kWzQf#>]< t3!_fsL @xIOPg$ՠtZ䪣Cyt1xd$`9 "F:I=c#0 0L$lB'M8:01 t&o vb_2J0irB#u]K90MA(F|FL 0u8d y*R3(* _3bG|7[Pq6"D6MbF^ϲ.IyC}K$ƾgSz1)EQVkCaPu9_p2m[WZ8f w ˔X#<23K0ɞhV(f?JEYZO/DMJڅC*p]Ig2I^M>L0$+vXǯs^^[}o?Җ]JڬobSc.gaEB$Q;@нٻ=ϐtGCҳ+GZAk;In'sNs3K1[)lH@wdQ?R7c7TFf L^!r:K.RErǧqtf UQD =cY5Ǚf%n D/2Fv~}rP0Hkb]}oc8-.Lx2ОS%\ t+z>U) {'0FǦcKd\ι{.r)]:HI$}Cf6TAYri?`O#|-3|&.okktbnLk N {.wpSQD& )UCBALE^3} ÚOt"{):YX'z9G = /dGܾ1aFr"y'GnWv]u+.]gvz{&"yÍ61.l#; TbFLHY}7,UnC_~͑ L$3%]tV+ ǽ<`0P4U/IUaDkژʢ4h0 bez$uFŨ@Yԗ>7+ce p/$-ILhIAJzjyDI` Tb;qY \ԜoEhD% YxrE„8B?`1IB*N Rqo CտB7f9B:⭙t;U&b>@+dU +\;Yu|LW "Ν5 \Ki| QPg>[Ԅ&&vEq-HB5}{YSr,^{/RV?˘WU\]/ytML+.]Y4Yᮑ11,̡3=Ո!M%}f+3̔2KNߠyY~a1x\SLtF?ǼGSfYՕ,!ƻS\N%;u`Y9n\|02(F֯2;LT%Ű/} OqyY 4|䏉e}-Xg)6ғ>eVNh=SJv2nǷ&[Skߥq3'~ռ߱0ےxʚR 5GU&|UU+]J A5.r>a3Ha:㎗F-~qgrgY*/E T022557cYȳA25zz&bp͜~FR!`ia,.$EX2U/ 0=1GqgϘV% kbݩgc]QQ : / NK}_Z <Ӻ_nmwE:aµ`ƞFKdeb:Df}SUZuQ`ު5C՗kYյn.w5u9*C7#s9l`IJ|2SeL\-iD׵.yyJ7 3!=$pW ?WÅ}jFpriavzyo-x$w%۶UM4J Hx} 8X [8H,m\14mU_}F r}kNLzvizˏ#88Gml1!>y{MHMꞆ<3̏~O>E]0E&wuO#EW (&qMWYlư Uґ:a;|PBgq=-cc1l=F[&B)f~\Pˁp!/{V>w.l>׹T Yy] 4욪L G8F̼oy:d&iHygC-*NX @A8AF! g#tO3?tקƴ,Ki[+b=amJa m,qa>]mof:4@<̯5=:%jYTk]"a%&%!I7gɖhgh}βݣ^V14WK])ďL(vMc9ǘiW*tP'Ya~6%W&:pRr@ohAu,7wvx}hz˶,.x)Rn}w"_S1(;Ƽ+@W4O acKQI;d,9o26EŒhfs_Ll{鋌uǀ#9vÞKeG>z 8+SHI&sFDjӂ.DV=R/%{`gfaPZd?"ksqXZ{Ɏ3: q9c^?.y뮥؎2PJ &J&sTx* yB`XO[N~7 ^ 0ėZE{lv*d6!H$&a+ F̙>]Ǻ> i(N+CX YR'1ǹyqV6ԱWN^Fpi1Y_zRnbM_^6]JR1t6⑍zF+g2%Ac)}?i}bx+[/dM{|\G,HHfP3-M ӓyyUW! #FY7^guSl>º^tlBә߰9pƪmsx%e-ִQ~UWS˪2 iB/v7hmF㏽I3htX܀n0t;FL|q$Y;U XRw} WBΜerP4NXeײpq)Yr 2g|LS 4px$ Nc~4ߖ dp"jۦjd,1׹{+#pYhAbJOA$g3=u}5ۺQ u]k'F+_W(W=Fiv^o}hdqkܜz9:@JH8,/>Jc`z%+!SyY1zm/ǻ[YB4NXv.3/;\nF|`ۥՒ,|-Y._ngG[QڔD؍&JV3*G<%$@#z~OY "Wqvu>޸~5@1Kpnx8%*M: 8uI`/!p@GD3-tbm"G~uZV-ҵh_C{ q~,o'A<꼧/eA4_\ie{/e&(589~gYd*ܝy]lV)ґKq %s|ԫċRֵ0*vmng#ol&1{|y_ַwsS 2G4#?1n7K; ׯ#K1(\V*cV`wr)`7kqA8GAm=qN _aeWHo_$I`9H1ot(1BDfer-ϩj"aÈgbr߯9X$Lf}Їx7\F_XDj2s%ƐE%1?iԓB j0%g0η8 8W_:IHK+?O_/l|Qh}ił5OX“&>ly# r3%KGG85G O묏k:)S4DŽz&i]"GY$#-fGvzW?O&&\l/ie)Ķ/q{4C&6A!Qdf`EKh@|ڽLp\ުi 5nX^]l>Pت<>22-ReXHUhc Mc5#d›s].VUcLoHbn3' ^'k6KQ*[q(f/,CSЅ@&ycO٪A#OqQI}?/ys _a(ukݦz>E{+"ie鄐13'zac5[[mk\O$-`E'&0=]܈U1wʶ) I`WҒ7"We IC/`VPH\~onpLcxiC/zDl=o4m=O0L]YO SvܰM ʘ@@Vz%zX@ˁ9Ƌ\S_k6UG{s ű]g ?mW c[Ý .諨ExJˈ<5?r^OsLn|[bMa`pFo '=mRwٸ%Ri Mˋ+[_}$u\u^6Z~g蹧d+V:k;5IwN6ZBdYs]ۺ)sUA1 \jYc N6(C AyziLIܤӾ/D (묘īSۂj *)S+A$B(/ۘ$Ă,xԑY(O&(]xE1} kc\h'Ȯ\}$^'6,dZB"Tb \"|=eYT;< 78΍&!2 ti-W+{6!J͜G[ `+ 0 n)>:c;+V6_ KY^';Dcfq/jɄGoEL=V>FK+ B-*-A~Xd>tŚVLɸ d 10"p9fk?q0EDUGx<}]̺3k#"- "%oŋV[ebLitop_%~͟_Sb0(:4aSL,#9 >HQT,݌;EX(񵬪 )G|YI!(EhB``ߑ=ޟWuz ?ƧaBDŽ?"ED)Px<@ " Vk.~I̖ITocWgQi;Y4z@oHߥ7U4'햨ƀF`?4S^pS#5d]F_}/_Z&N{-]Aiu/z=]wDfRFŴ3F~/MtȪ,3sd,G{|=1Na(愉Wo981hKօj*q}zy)Ev>-m7Ga)S+_ K[yh]t*ܝ7KǘZtEnߗ"{E檂ކ.jGo]";ȖqnyިMpcC]~eS{M^.ٍߋZDH>`lՄXGlVG=|:}%_>"~qtM J+wNRT(s%( dIx$l6;ooPx>i4Ğ/蘚PL&$^.~%FVƀ.Qh;Av@p/hM+;eSl;l@ U\]fdp78C.l|$~9$03ѫgd{uq_Υ˥*l\ddǭT.fdKhJ0" ^ZLjK`2a/2yc2តcv @ƌ/Ee8zł2)"ʲ0yp8DFL&+^HwE #joVnӉ Ϙ[\K #|3(H5 <̬(S{W7 Zxi1qBX_=_IeY*Q]ʋQ<8F6*u""|2dEN=x "WNF4tѫM3ɺa4q1]K,R(~xJwU^|8X&&,30/_=HdvذWޛ OGbY'^ M RB&)1^t隘e/ T]nsnV@e9&d[w̓?Ѓy'n GfZ8'@O]QœV^bbfFvτzGpK$̖*y`y9ma %~2댹K,_ڣ}ΨCUoKn0I_db7k<\c>b} ܨ1!a V$%vhW4f$pmf|D?@c>%YJQ_u|miZ>v˥+$1:e%N'Pf%8~7?=WN:=7XӲm}gު,Rm { ;)dґV'2p_c^17q\*/ED^z j#S)qa?. ['"Ok-NO31s6hM_fD,^OµSłQ.fE+hg]$vKq_qOz<1QW(d-aB}},$<\U\_q)q{9  Ml=76Y켥}ɦ7(B+ t.mg% }L Pr(C r`xiKLl2|׳_[x$Bd)ȶES)npI0 7~5l40+!p}sUNM>u,%#e/JIt(XH7J/oԅYR $!6˃A2AE?YOBX3#[윑b;10IX }UBB+IG"0kW~!sx]єnt=۾U44iTn9`s0(Z~ 3icԞ1{CAGÐFuǭZWEFAَ&žzpmMnVtD_&Ӗ-4jyϹ%1m9s^?VŬ 6wavn @t+e䭊QU̷^^z`"xE^'ewRǝo#pΚ&m` ]t&I&Ab? [w2G#> '[Q~-̢jUALv2S~fT)Q5ghc *L 3X}ˎU[_ODRA,R,Ė?ߤ}kQpNG? d,)*SkNe;3 LQ&biMu gf ԋ.)m uTF? yNUU7}9Q"M* CT7;OɢX./VuB+Sg$w קijNQژYdwir%%BV@3?T kUعĠDDy?ꢻ)>{7睍K PzDFcNxeebyl q5e'_EI" cdi<% ֺeV̫_3T'ٝT?Y߶ESd`ԣѫ0!'Fc7yNx/>ÇBcaѰP{19"cdshH6Y?" 9?ܹGmxM&;X?ЋpjUk4$[Ă>;KX6ھ17Kl^ p (&ܘ=P޸o3-{Y /4<-Fudsmdft' .m-eW~uڲWA,*Qz_A͓pr2#){@ ˩\m_َ\/w\r@__uYr^C*WMS3&Z# =f7C Y'GsL"Wы >` fqkg_u@04m3l FX"߃43{Z0ȭm?GySڇ;ErS_ߋ店fiO>VyFrݵpM†va 0-7qR JƏpsȄ4^ Uxky\XVf#+킔KUi?Jڎcl1|T4\iD$^zU_r^:|$w]_VP}u9O` ]<LDJNY@`EyJ{LևYٹt?EJƑJ2Q> ]!Hd#{#E.(d7/YVKyTO[w2*]9)[OBd 0 af$q!<8'"_ӗ3q'I"?$z$S۬zT&(n }j"Iʤ\9x1jmuϏ^/ο%b_@W!nm(iCb|}@3RP&%߸9ge&neOoC(EGrh4o±ph2v?r?_n3SdQǚ>?SUeD^T[<}Jl2YM( ^K#KN+tz?cM,~`4Yd#<^MvSjleS6?KڍHUu_ie4LS} {ݞr{L'^ 5wc{~v8Ga|2J pMQnT~]}Z>Jm U/O aZŠŵ7G b`)q %H tuy֡po7޷xGC7s2vYc#tS&ͮ E2Ψ7r$ %2t} vwtXYeJŝKǛ%_˒`*R[,F|R1d<^ō0A;v.kIf*V1qq.:_Iwm.QxaưBKyA?B i]nOqwY2&xҒ&wwnP`s^Ӎ p;Sƺ5?MT#]^\.X;`C]}jXm&K{_IU!k/FBwZam\bِj(_iS}_0\lAO7+ܧnU1l?Lm^ 5:x؋Œꓶ _( 6H^iP֤r' br:)>?lİ2CS@ʗ{Œ~_^2jIeխ1?E|CxSƉ/3}ŀڝ!RPd/ qw<qa85݊VZ"캶NNyILtCӏ@"ETД7NnހOmX 8E7L.ZY[YU]H H5BX,U%=݇ ,YW\U*IeƘPxVQ@Bhfx$w46N ;]CVe̩l֟/ki~HI&p5!b#.y L ldK*030=}Mov~Z:^"iܷ`o$#k6S;!3-r2~'˭_̛U("iHy+s)IQv0l [d0rbhc{#mCj/= .Ȃ])3Ϫ/U^*k8bH2vPsٌ*¿C34[30̊tdc$#_EU UqǰmT ڌ Vޜ!x~o&%FoQ p%^L5cM]'sʊZt׬5FAhd`R DCl`c&FHw+d)FoK^ ųxGP\L pҙpjO3L>-*}\JPپΧj&W"Ne,mW,7i>LLjזv (x=UNh#Ùg4>g G| j'la'XjY9sL0XOɅ}@u!o"zh $Jd j{1\@ZҺmlŌD #xl2[21Oo]%fc& gd?ԕĤ6OtqB=cã믝+?эSg1,M"Y@M宨šиև3I$%~f(>URHN_s;㕗Xd+}%ld>Rb&Zأ\7m(X ?(v~zmȾ@>nLnLLKcӃid\bXb34~nZ_oq*_KY?`EYW;ǚ" Bi<BnI 3Er1ɑ? b <k RB(/a"y[RNI }m"c@l!qy]l=7q 45qmn+Ul֟;TcS~+, ،] ? [1Jw'w>F!>h#Xe<cQuqq8֛3d3ʷVB=2#H–BbҸsWET8fR Ru2C0#!S-JtUK;[H_DhYn7q[$+x1«iu*ٍSŠW$iVő_6˺q73>gcK?ޔl T LyQnIÈ*9zⅼOWC?G{|?/gWWŤ{<TuCsVv,㥝z u@+c  ffm4P=cJhqs*n1rVew} 0{'ݖ uŒQCsD{ 4tyT:`ܝ@@R*ި!=~Q~#7>Mx+fUuk.$0mQk7l3;EPMdOKƾ?7sf]۪)Yk[:L!&̞|ql;ZlT"ols`5 ➑7cN2ꮨdFuڲdE& գ)fi%@3/q?" kc2aĝk\_:/ubZymHζteM8W+"\j߼"b@^"<,b*Ƃ8`U *Gj+2q(71(x/&׳+hon~yy?ܫQ+{qtSs?ߔ:.[S TgWہ>K6T$=d^ Dr5\ʫvx5E,*xXP)4P0 l8+9r$0T[mp@g4 u7|JdTl>8݊Hm r1h0S |B^ٱS5c`J4B?xYI ߔ֩[t}glG?6LrRjc։) ̑ݾ$ i3ߗp/oXFӹG).1"*ń;V.DS]L5 hmSM/f@]Woz~<{:)w?Ϩ"s.~t>rEC  gM{M_ 6kXr~etZ:RqMa\4-=ןs("ފ"/?h2RD] l2wE"hՐ+%d{y5szСiObM?l:ʾ̋zĄP&קUhzr~$ ]9Xy^b`{{{$ ⧢u勅X߉w['7HI8BzI=0(.ɠ˷2ّۿ̳`0&` D0|i0{w!RwIm'*Z+ʴmc|&}]\]ai*^}(=L: =Af}`=5{lS?Tmd 1QU4`Jn`}(8b%9)_؍-=6=PտnOe+%BRZKVy'6 mFheJX @CնK4G4p8(nT8?^z.JDVK+d#MyWyvifx(&| Gx_wYރs/i}'+YYbױ +lbzC]=Ua/E³g?ŵtOX 2qA'ghMe%EV(̵.^y2z@ȰV xO6o`q"*Y$ҔUuCڑ>U]1G.=3቎95Xָ<3[ƣ7x=q Z1f UK gcI{-o[+/;WWtm-ú='ɶs $gL0V,I?yCs_Rƥco٩Rr1kR`';o-)|18HJcЏd}ǵ` fI`Yj]Ռ.kCg;+uk38inst3 YrnH}cAO 3\Hʋ~2RwQXAYRAγƮe%cifdP ligE@4+PבCl/+uVlD#!+'KBֹ[в_;τ2_YgP6R]Ʀ( i\u?/ NkJ!n?&|*|Lsvaŭ/v!nh-N d9, Gu7axx`x2.N>l9(Tsַ^k`RLc)Bz`Vǃ]g.Osҏ5ȸ 6j㪪k*˥*\;V#!O0R+E?TIY%9e.Af 猪X&Cjo*'d MkN]tH6gm3kI֘A P EB/cd daJB&dZ,H >2d 7Feׅn6(ErwLIRTٹ+&p#+n1 f3,3X&ԼNLz{\e[Ȁ:b&.F ]1lÎZ&3jVjrPglkzzY,Ϸ% c<>zݑ"KH0ПIq$$8uMG~[a'/(x5a^EQ-m$#oFݩN@{7XW@}K| Gp;/zNTV~?rKwK6RYuMrr;Zh* [58wl~+Dv(r~ 6<:u\T̾ue\)SM9sSr@ا (L7v?渋nvMݶ4gE-YL~0]ِBq@!$!f `u%\SCUoܺMGQuy&po]W)ǥs|W2n|M/7ȿ. w|zMvNe)@omW6q,HY39F_X,!C Y Xe$e'*,aZ H/LQůG\.cׇ,gxua7LG(cɾOvT&j2!ˠ^Auobgw-},` !Ɗ^ꍧ_8z|B. RŝfCvӠxr!R-._W}/ -E! /}c99iȄWb֗azpYp\/O> D!5ٻהD~h`)@,qkR4+#HF+NzBywnI{SgwK'|r0q\^XV,%w*986zϺDԕ=zFAN眇NJ6QݩyV~ P ,cX:H\/mMR2A*SAdIP#=;*~hD ';Lr雒~:B}<Ȳ5|.$C[bYh Ϋӟ cv^Ve0I^l5 PA_=3\v^9I6\Y!wi ="lJSDPbF.2g3&Dɢ`$M@ ۶EL,bF#;yt f C\LQo%bD&h0tY9Q?ߦJMy筻^l(5[j} 6 +C,XЪ> Ox=c4cU}XgIpe'&<bץZgA D B*v(V02 L| ENT^u=z;rJ1tY0 Eyd06T 1m1)b=c ԆxU6L|,}b=M膱=p> YbسɖQ߅,3PIO 7 =1~~3F-W76i"o6&E!Ċ O-GOZث401N=4?֓/< QL?1MFg}eee Ƥ$qխ0ʩf_cc9M_i2r]Gvmތ["lzs%qKȠM|(D~D{ Cx˟rMSgL"I S7GASf,l` o|;kRc>9})_%@&'J (e 4e9uk|hOe 'tx1Mh&),1%ƐXg]5jW`E*IecnrpIFc-ྵ޼'w$̭'U,:v8*2,/\btIF?(íFB@/e/Rbw*;ɦe?SPraqAaWX'L5>}(.1[– ^MT/FWge1RH?V=ǎԚo:.M(iqotq]Ygi=zU yYiRI5ړ0f3_]'ϵ@) V1D" l,/ݭ1 U Q!De6 TQ03X˜ߤ\-:d@i< =VRIګ'V,zϜ?}tW|}-X ]F+N[]KIvW Ĉ==]0tE/vŷXca;BUzLN|.LT;*I2hY Y(F~J5vv. L9Yz-ɧzx}i@I+G~ F;U c1#z#t'% +uHYUM,U#,`IEOIà[`F]!ʒr'#j=XVMx֏_R0M:Y[k@~$qD0b澍@<X zt e]i\~{|tduuM =[ ?#;8Xbv qvkskv0eLKD~=oHIɴ pf,.u[vw{6"}up4=~A0z]CKL*b[\ ,YfXg;C˰rPo oI6ȉxnwK;I$oMr(ѡ;܆v# Fn"_aǓD.obsBYTELu֥2AznT*#@LϘ$myٕCa\d/.U.S,J#;]ed)հNIbJrvZ5(.!8\ Vz" @KiI1vL+jyup<ܘUԺRdƟ/ t!eQeHHh[V M{p gR ؝x,!dʓT |:1YH?VXUZTZ$"B"5@=c`ٿ3GXE~@Kq.}-fɺ_;$+woJ-H%i)9>gtCVq5ޙX@}|*?mAZ{ۜ$ (xgE q(=3e:N $EXNӥi& 6 ˾;[\$yHQľQT\Cv<_t6\@p>!OpoY!e4aA^]XԇH9l)ze(x}'|= ~XMPPzx@dykXx@/ H+:> 3,_Qp޼l&:|Zd[\ޤkq#{XhAiJq+5ūWCqj&*,۪JaD2 "W{8yWLd>E&Er }O*MVC="y^b]ԇ',e$'. ;JdHd 2öf}l`rj'\q_Iz%(%7]t-bOPlQ.ڊUÁ]^N~Nq; +DuJRRyKGIFcJ|QXRl[[{u"7GZKo:G9loD3Vﲼ͒& >  ޜrjX5%!M8\WE,4>_8K|a^Ϫ"^7pwyC< Cvu9{;CE@՛[+PB="& zQ3$pKLן2ߨ"䇖VPLhVKa~yEDnz)WF_ ^,"Q4G4pAn&嬞},Bw y WٶI 'ժR/LT1/ !9ι(zxiyi3 .ymqBRs)YdpddK]0; t=蟹,?jq~|4֟gRNGo":o6ݤg;\Q@/,g^R>K9E "̡?7aSX_m=)V{Ht-ݤŞ>ZYZ >QGFy>_}>f+ o2Uf2/É_BꤾbS?<[FH,NKM߲08| 3u,eeהؖ ?$^VlʣW'1A8吗7xyl37RLgһɎLV?#]>)/tt0IZUol8NKŒ\9-oIy_(vKcD ( 3|~g0ԔFś'רu89z;ڃ)ߝd!QQ_V#^ . amiؖ8ijۃ8UʡOl0^f^¡6c=tEQ=Mf&Qqt/;&L"}-T]C׬г^Ͳ8ɰotKUl jTܑm[gz`oDR>*b&,\${҄mJ0xUNU+QL)JsŔc;@ 7[jJȳg Hy5kԦ%xM]x~)UQ B#B(AJɧNNxqp~ ƥs?H`4Sv|*-ɆbHk gZ1AinyEO-Bp.V~ \Dto톽ob)7A]%_GeLa*'䎣ǐB܃]n]W{k\9m{D#@'<\ʎ"*ahF GΎuT$8UKxJ:_`ƒ>/E4pXDdu&94 Iw{cd_&GF9U1[Y09xmKXWSdŒq&:Yu5QE׵+t$ CG1bU~uGB!ʓ9y;(K1u<,줏(.7J0&d=8/uȤ2.Pʸ &o^վK2ƗUIWUiz2\SMͷ?ۤyИJ-`,lGAL`^h4Mz'oX^QoU1JxVQ AWm,,`D$yˠ>)H6" ;ٕC/qHyGJ8fmCa&ǼoaO->"ſ֊啗c]*5 ٲ.~wsNM\Vx DV^"Da E{%C緤iPƹ޹媪h3I&_@ J>-b3"0tb"}KȇAkr;hY$<{N& +Jyz4iBcьc%^ZfGBB'J=c$ ,LD.&~T-%1ٲNχkeoG~v24]%D ?. h E#ڱtҠHE8w8~~{䐿1NSJGBGZozc'0z&C/goa bן{ g xG*JYP"eG(Vho4:Z^6b&M&&Qׂ@G}PI$-FN\#ѮT8ϥ<DŽ϶^ @3WmBiU{@Rh{AKx<> 8NN62D2wKW5Iwv r,b3)k'XِBtd l~(CxXєDe6Z~ϚA$:ҖE%_c*±UNfS^xʈvlR&O W-l b/ݾ3ufqZxz홰I>׬b IDȟ.uλZ̎~{ː: r&|Lc Xżi "a fbjRrSWoD?^ÿkx<=5!t lx+|\p$Y#К*]$7M!Bfʂ Eyqp@33O VrC n m6 jеu RufV3^2AvJIk-ʧBc9453)8ٮQ t/U6&G/Ńk6Ո()]]R(J$; b±NT7,;Jq?/dPӏ`/69Al8j .8C:D-H#WsUx%cg/@Oz4LN+$b"mGCڦ?DX(APj2;W:C@c8VQ=Yu50kZ~lx#.ћȽixX57*Pl6OyQ]Ӂͣ;Yx~Aa>ӇbÖeYoR?Lݨ'N=VFlU?ȢJD:$EW2~zYЌP-"G&Z$EFF<s %ڑFAGΗӉw>Q*gwoqtX:'T*T.ts:Ĥuw8QV٩3ZԝK7i@pZ(bf|j)/:'KYL xƵ$^ V!EoΛ^i}e䞂(U}ekX[Y{ߑPni|aGuA~# v1pnH.(X'12P{ y[~xYxOHü#&vT:tcKEQ[zh `v[B;I Ƒhbj~}^{?#7%5ZIUM.#[L"t aU!u*xgm^k,L!.( <73"/LvmqCs(iRpO+Tݮ%L[gYA៕gE+I!ܻ((uPҒt1̆qәjb  D._ʢ/S9`$|]{3>8La'@mAKִVf62RdeWG 8н,Óqe '-/eVV_yIa!tua狼[Si%'}Qw<.)7 oCxOhܲd\E]_8 tg.{99 =aj"YĤH׼+Y|{_VivcVMR%IB8k *FJP;T{GOYpm[W"o): RX`VRfW ;1Ϟp?;J,_0]6uV8uB_|фɫ>s_'<ƅFgͅCo?.?~+јؔU6iIuQ檥qer]L)l?O6o=e$^{F9neu+1rORr EN"Y a>zyUEU[-DgwEfMe1wH1EzK6ȱUKE,j2yU3HGk'XNʄ:93B$au ^hF#P@7I]fKeۭ ˫d&d ed_[_."Vn |-$ad2(p-]ːBִ]}1E#۝`^<%].ͻ6KRaiA)戌![<`2Γdc}H1R%vB-0XB?'7WBOWUU*IyD^$l#GdSu^Vz~dNϘե&(_yO%ڳ|k7M긧luueSL_I8[aЈQi)MÍ_M~"|Iy߱ )wDm /}43yLLJo*>~y.̫8|uPWL%: sH`ZTr=yt'8: ;U%$ɐPUVb38Wo2.\1 ~i}wUm~Ot [nL $87Y$ѵ,8&:p B `Ǝ7@-)pBܼ-d0͌,m4Lggz9se]$ȭC_u:w & WBQN^n7{$)|QHG%C.2CUf2as̎ t"KnZN'(??B,$[z*"i6@*`LVmY 9MNQ|pzs55KCׄ^~N,IJr myP AX}ba'sUIؽ1Nh'EA`[.obʷh3s)fX??$hߘUjeῈb#p-t(p6,a˴,FqUsn4ۮ_,USRQPhh U癃'>=x<@KwIaa8H[C}Xk[1|%+~}ǡX_6YTY:ukD_Y u[o%1EAzHm݊9fT8HMV4w!hQxU/8G/}Ѹ@Pxyϔ&'Lmo2j,+a11RX%; ba( ФE,iJTc'EM\yՆ1P0fCN$">)2B؋JJ<mQY'G6;W/28Vɡg}6.OjHPM1 B=}rz-,h? ĩ$ћ v}KO!CB__94WÑMo綇USh.5kPv&)$ L檒YiXnoBFݽ$,s|!t>%aXIEo*E/EaŐLY ɀZ ' }=?bK@܊˪0fM^a<0ٕ u39=>G*.=GEM=CikP'dtH %[XX8 ߕvS8p-Jj׺ԗoM( a[r5$mm ƜAw}2DA45чrHR5o뼅Ĭi]V)7~^1͂IEY6*~7JsxB-,j-7&j;[us2yuU^7Y\S0Ht`nk8pED~iP3:a5[*MƬoN^M:֓@URPw:PM` |^H@^Jn`IlE,>WTRbGW4q(խsC< Ԕ'=VV h&  =q/y'z!iCHs %a젋NA<9WϘPLӎuCMGj!t^Ss|ywVWŽ_(B*1t\3`7N9]ZrR' ^*F&m7fRt`EZ;V|zx@VUFCxb[?>4IMabJJ=fY\"JD%&1>!@^7>o-P';l'N4+5J), NT^ND$T"l`Zzu]Ja|ú&ٓzCj$^<2tpui-b[ Le4rN-:gBp`ƅ߹A4ؽGWG,mʶ!IrOph-jMZQVef퉖(<>ie@ F2:9> = wp/(_pY82{=t쓘~{*x4_+*M6HFQzHiˮw1 MӪ\B7/*h F\7DIߗP硅)N9auId;}YT~WE4:?sJK6]\.t-zʺVҘuNA加VGB%u8;H~8{Ʉط}m1Sih[98^e{Mn$iRUE]~U@h z!>*+}2:%, r {/m(/JK,*JN^hAYgN-@awUGW.*}tI-™zb4#˿3^B6[R2IK4Zz8\v^%(99x`AlCw^(+/Ȯ$JX&"ZzTMU&oL=#5=y`eЂ&0lOЛLd?3müȒ.šZʙL"Q <+F;x zʯ{W"q5~PbݼЦM-bM겢M]/bR-0ax$2KKctA&Wh.XIhIєeQ:zf1W3q}ڥ((ԕIx>bGa'&ڕk2ɄiO'gTDd"nwxq푹 P2;CL jSXG̏$!eYeJ7]ݸ6ʤb7uT=h1r=xa_ ,/W< Id/*ά`)š| ]鰃J8QweRy7-IsZQARHUE&~Ud $P~CQFmڲ j R̳h K|7og6K`^(`EV/ǏeajF?u3(ٯQӆԩTfA|OU|Hr6븺d\I^RM qZGe~25IH(Q^PW$mnQnsS<7/Ůȋ2/I?qf$BF!|)le"a'O`J#D%vA>?n](*t+B-,7ëI§xY =R7 k8o: `J^<謘',gĨayvW8b~s{%̍e;g +褪8PV (R*,g̑a-a涭_[qYG4$[Røѯ ZŅ$@FR=|֘RYe 5_.ަ'* KB /umx1-hFGLG,ȿd(.;13Lꓟ>}zÍN~\),OTU 3-*ƻa !Twy&$ҹ3^a2;API"Q?ư$ǑB`␴sZiwlat"3S^yDySz&̉ ye9L* GvG^];0z_8R13_Kt]#M*5xlG4 (@U;Jw{yVmϖ{vؐ}Dmȕy(f8ܥ.H <xNd|UoŽX7dm^bǭ4\IX-@h!ϑ_Wn1σƂtn(hs^.O&rXf=ZXᕷI&Ѭp{w]+$`QڸPYB+g|j%|A2 >_F7? .Õ16MYS>\LFҪmҮ:Qqr Iiwd;E3C 3c#cq`BgIZ86棒ͭڜPmCWH]ş/F,o ;{NmT[HQ/Ӎ1+0U=z`iIyݴy"xJG$6_4sZHex.nX~{.}3E$u;V4mOPXAr )d83UW.a0rt&[+! }@e^[CGwM7aEGoa0DhkJ 4)/URS,l>N32 KBlvde /.8ʟR+n?WW9?#=-Co'oЯox4u #=lwhG "W(,}_3n>3gY u]+G"#EJfK&6Pb^{ tcb巭A/#W/Yɬw.~CʬMwab?PmY1!~V;9,դwVM/I?u"uC(-e%unBEVIkE["%zcD&۸y+sWiG\Hy;.k_ r!u\u+cr͙hL건8Qhyl_BOM2WR}ʝ]1'g.ܕP%Tl6lmaK]8;0U-1z  Ԥ2IEO!WJ\;y"dm%|tYCL{pl*ƬbKJ0%O2H>/s2Ȉcp/ƩƗ}a a<~D UWI0ETv;& ~ j&p c!YrGܤgk +y͌2b}Beet[{kH+Fފx{Pv+GVu$#,%e@q`uoikfEpW"oat|ݢ+$9" UYԼ1%}9WS,, uZ΂L7ZtITg9=R ).!s9f;~,?V*LV)t ehؼ; .9H&sqqyj<^Qe鑩,F\\*W썌~;w&}T-imaL1^Qqc[*@rK+Ma_3dl[2a)6v_2Py\M(:bdJJJw/dQoӇ2֐'wiԡ^&1TR'>+B<"&ʶEy]2䢖$Z'=b(4Q( ~I18:bd;\ujCc1yޘ|U<C8jsRU \,"{|. SK.gz"~5J겑POC7|Mj>Fԋ+pxG>4A$xWonICG fmEK*i*&Wߗx88<-8&d=MҌ{bTY_C)LZzFMk[U1p2-`?&N@;YCm[6Z0Ya[ndbŤ 1t XbzE;e$R6FBt{#権GQ$iWNyVVMm!WvGEbRvA.@8.\fyLt*ZC(Ѹoo\́fiO.<^jArX#ieAI2#h*,@f 3 +VoԬ`08rY>L(<닽=ѹjCŕZ-yƓ1T,I/)bqXTUq%?K|Irb}UC& +أb,OJIKGN;ǼBj1ESᄯa?Io E#t<0?FV74KZB |*MR.:m/`C#3^S\H@B,',ܦQs6Oi?PDYעnؽ<\KR,B_<8Z) MȒP4/WvKZ\10sNܞ?OxOOgJ&9KyRWtw/xZVc]T^S0&QtHFvR?Y??m;k-=%zwEY$%0udm[)ʺ)E\wh wA__[CLqKP6XO=UQZ u^shRg%:?{ 2$K{)fInqQr=xE"-Ȁ sھxi4LOOi6):-q4qEY+G*xXX׋O".[ W>8b|%$~\F>6\Tn!w^UI"|#-Je :F+T'b*"; jQ>P-r>۴s?>hJn`?ͼޭ'iHܖ;tX'n/ʡh$b^I.dq…g9^'On!,1p/; [M#tuw鏥C %T,x1Y5|]mQV[V%&7uKrļ4o%G XzM=ev=\eZJ;Cxrz>5>%i]71 ʉ]Ѻ3=A%X2@K5N -~SQ) ߉6kb;=wL U1cy8*9$ALXE`4Qi:ux.Dx~{9g 7O20܋mn8=cAOn,zX5 Bb9^zZzK }@"mձsvV<eS*&!jc 5Uqr<ELߑ=k/> OY8.'>ɒ BTA$΢%B+\ɫ͋5u,ǩfR8Gj ;vW*;ruȒÅfxML[Lj_w בb6kFeV)&*Dk G'o_%GP0ݮ䞂ɦYPF]% F԰$?wc)tY-2U1/IyXe[a6:;dyǙ֐ٓ*?&8_.lۇLV!kf$ֿ‚H& ]NɎud"'CPp'E4w qVZP%d]{Y ) vj<!ɄpdA85s-glU8K[ s!-4p{_Wd?e{̪8D*0wA%iEDù*e23e&"ȶ鐌pkFٳv/:h$ɳ//gUh+ݴZ]2a{Z쉛KѭaXlIװU|/XE"9G"X>)82RĤ  rS0C7p 0c&`̜Jy6Y {V6uuɈ-(+:e)Y^2ؙ+'j`T늅W1'<#KoPE!Ԕ t+Q#?QK:nvPUn 6jW5Hś3#+Ӭh YhBENfLdh vd6\(RFӆj糝*Ҩ]ƌ;[f2 uq|fOX=fg2`pEٚp$5\j#OUGqٰ d;PIL\!LD\M4s$h߿j*boh&bI$CEcNt;Fm7 s6vnCL?__*?+-J.QmnQw'] 6GA߉]EqO;5 =zOY~X&I}ˈeiғ1vBC/>NI7=%_>ԿPEcMU̫CPUQ-̶|=be#VΣ׃_%T> ZX-./g~l}c,zOӲmr^Qtm2qTc^ [,veO*&/9Sk+Fur"to^ej$mL=ٞ U[{ &1/j=ѪrzP'SY_X\(wj!fm5U=/І7`x,cތ8b e<ލt#?ⓏV%ӻUkۖ#S"hֆ9/ؒ?Ȼsa]%U*Z[4@L^'n#k^kX^V&Xzr#YwPҳuVgQ_ 3q!=[b|_EJoVWcU O# /JO\1D|H񾿰y+O꛱")eU ) \t-;ÀW+>HJGT;\;d5r5_>e?Uf]ҤUhx VAC2xHмytWǞ|;ί_#F9\.bRwxRJM'H6 J'% Sp.ݘݒ /=VQ{y)inL2P,1-L0.NvT0&;~m,˰D~W'̂<[/_Ǣb 1 "0Nse_` *Q0hH&{q: >/da'|Dͻ4b41D| ɝP1`:'?GX,_,q;n\]]m:"W˜."C*R"!a~U O/EvvH'$b3;y>b[:ZA5ez=mB2 HW|B~0SlYR#x_Z+c,c#-W rXmҡ KKc2a,UV]0N A*bvWsqWg؊74M/dXۙI6WĴ ݀[9%QHWjbu:L_nhivIwڝHV6PZgv#vYj|cVφGdڔI Rn[Ar]cb+C/ab&cpxK%ύW^Rw-"e{\>S}I}P[:B;E' %VRI? ϟ]O~bI?%/L#;01 I%NwVH_D38lDk =慠=3S_BP>mQSveJ(NGwDJ 'Ӂ B¶]3p`/Źm-۵t-p%;4HVFWd;,AJEc@"ya髆CGY<%,?$D*=lͪGٖ5R ܲQaNZ XRozh0|7/M#{<ʦ!z.US`ȊGsNsQ[8 ' Q$JKrWݯcH_K6~/:taM"Y(^lJmEES+5A%xqV7|-ɑWua"TX- Xwڽ,tU2Cb=Ue\rwGzpb1Pyt;^:3{9wg^~bl׋i5iFr+*C}y/ ]LINb8 \9+qs)y1a[k\N?'W65F0VWU4B%f>BVvt#oJڗcB~t7$VDNZ+90U:PS1,ldB&K5.~ӯ޷8N4| |>LMs ٧kicRng2K^&2 A6YƁ+v {^zO .y|19~[_mZBӊ&2uI#c"F0w`ӿGx) hcᅾ$3Δn*?JMxu] H*%>j`CuONš# _n0y1?,Xޒ)btuSc0iJJ1iw*#N˶0ڥE2G)WDCcu{DUf(9 lcˤRn(ޥI#QFbV}Kxreszjߗz̚H 򴫚+oZ8~a"OHHJ k1?#ǿ?J1VŐ5I$"'s͋t~Q5ݏ{%.D|uM$ cW%gHE֧eR8[:~*zXp˵z)(V79uiUGX6Zى%.H}W1pE297U,lo~* m,هuO36%|n)buh!2=*1趜Wܜmp|sZy%]GȒh'˲w4NnlhI>8D/ٓvFa` jЩZ}G-@L=b$R4%mU . .q젼 IbR0*W^^6Yw%j8)trHZŎF6. RL#QDi#=QrKoYW FGQJI |٣*Z.85bRCL;$wgց!/9 "^Ce D ~#t <w$Z*RptkzTuI5IkJLZv.^z)Ap+¼M1$ 1HdpE-w"?n}oh~}zEdI+ˎ}r.6UwStE葯=A+ :[f;FD;KiHɯ_5%F>p)"(Y Y8 {}?[ jN"gG8( E_хI)H+XUC٘ D /=shP)x{-|'D:19Ї)3u`o0yQgpW5%|lS]=[|i05) W.UR*H'ʖiobm#Pdp"72lS1A:!G"(.E5+,?4h1Jfp[ $I;(-櫟kLn"tMAviœZ'*0Z&a T9؉1#z(/_U/rqzqgNlbmJJ)8ņ+zA1WQ+Y#@#?&?3cFiQڎBIޭ4۹_kOc҅h#9@eƄdF>@ 633v&j JٓÍ[4H1`Y we*+-X#5^ꅗc)8Z!3lJFxZ$WE%gԍ2x4YDnT:_>Vi.-]8zH ryU*%6z2Ytٮ&cI +֓1[p[Sv(,gŷq :k놔7굧ES J+$xRQ8Y۶)tՙuxi/cVz beWTL+` H2yz#Ɩ~[q{eu.60yg3%VVVANb`>ֺue͕u{ rrRq|3|ߴ*]Gi[ Wpo[]?SזRPRQR(Mz5x/np 5dC'pmȌcyemGkk|=_?dɻ. R5!T&zNFyU0ѽTJuap1ԾX MzT6. u</;VږOiӷ7`Zd1buC:2F٩*^D~v d=N׸o7H-kŠ{ %NnBtQa/KCئg 9yϕ\YWu%+:*{4yv G-1@Qc/Y/f^ ɜ}(!ntdVCÔ=:̤Ti'^ɮ%Z*ݣ,$ /uAߩBdo7kchguI1\`WoHlVyZNUh1-B9Pʥ+IiG:jq(4d`}|5T,zsꚪJZAL:&E.;t,35W_vބLq1fi^B_G3\u}?,]&t{)lT`?hL}a^'3Vw@oRi.*|z^jrFЯ$"MXE}܉U(بZ}=~`wd +=!<) ^ C#IS!_*)9fw*"_v0Z]UITwTګi-\>hb$%Z938lѼ2FgdMa"WTw0✢}[;ݥA:r| ]/q܎G/zlϧPudHOL]`݉\,riP4\/k,67i$3Gخi?GK8y.zUsQS4Pu,{{[.rw)d/\:BM8$[oܦ-,GueX@ fVs`#FZ4/^AC1"hOo0](e20@SJЁxUBF:3Dr9ͅ2g֫3g8 Aǰؒ?dvYUWM:`;{tUؓ뼍|P86NHw/S3.0*w휭Z(_EZr"|uhgHcWo:́ڲ.k2UtW ) w2A"'r(giyU"|1311aQ{yMYΨ"XV}4!#sޘ%I 16/\e?ZyC$OM!SPZJZJdNѨHcՖ ]´YgU_YՌ,iG7^Op~!h'=Xr ,q2rUzݶDFgZ UD5Vj Jw/*TvPޗ>Վ4^VpL7{C dܨTҪ`S#;A7@VR0f[JcQ2 􅦱˒^Ϧ|=T$`sXX)ȗ*GX!`~Νq; S=W6}RG$ΖpHZu:UP)hv M]<<$~Oפ8/T)G5pŌy}(ӹ4+AzHR #ëCI)C\%kK.rG\r\9|2>YGMGc7&f|W<ԗBp>^IюRP{7f:`eϺt3 '[^ }j<֐X +E|-teZrpzd#MI/ܗ LEF-k`9UQy=#Ha9<y6FfbZcdYI: 3*CqU ]}`y[8$e}oW/q2=+W;&h6oSB'KݴF]d2ŸEzh'% | czul8~zV/RyΆL1K8dHG |hc)>1YؼАJ#K>km}7thgn6 |-.U"ݤ,34bE%ǀc`xX͞qʙ9:+n\Q "eD-9,?/V_w8iu>_IF.@FEN"١|h4q$5rs,܄,}1e [4幭DB rX({-- .jWZڜݿ7mYz=-.tµY^kKqE, BvB+%sva63_YP錿ʙȣ %wIW6JQ=8[h2ّ6MGfL#͚nD1<Z6z&\893s4'61s-SEmך G(^ȕ఩z21i$1ļOHu:p~axQ@ajvkI CBkȕ(- {#td6SDa_\.hJSiW5>b" r- s? Mmt-,)I ״2)342`SpFrפAeYqB$ wɫPfbYD)s_|e*JT5*{v%3谌o$9vWXGH޼ѕ+dJǠi1K]eԣ%]fʵ` rs>[ xg]lx"+vbpan1mU]D OK:D H .V"+!Zwߗ67lQEjczٺf(G- $,_sӚ][?BBA"Qde*|)ETAKeW*ܨ*X?7g2=77qsi(.kd,mjVt %H2 Qﵙ AlVŻ;QL.h(ʽ:$D1 _+"!Z (B Od;HS}܇oV/2] },ԡ8j^/gBl:-Ny'Hd|sAU͏ᢶ몗YVNӵ#U+8CȞ"a(GL`ʎQ٦"핊$w0-1S9O1a&6X?vrz%VĒT4}1渖h /c5zR'tף'底 ַ{o+a\h/m05KqQ6r4 Jq8\,9ҧY5 _U;vn(kS>__צI/ irfYw05:)Y; y|՞cNK1GϧǥrXךц͘)(h^TY}3tP~l+F^b0j3 mM"IҼ؅qH$X^XyXPU o|G"EdFacGIDAp=($AYviqtU S?]Aﮙ /R-63o<`:/8IC;2|r06vIbPX2ag 5 TK2QTk4dدuw9ijb34nqcWy^O{B eez"aGJd2<+d$d|",aa8pmKyR(otpnCDu]IKRWIO}kg+*FxE*sKɯv!l8sC{3e?ӿ4پ ;t*8+2|Nbd 6$x`Q#]TNIRm9Qʢ;O nnu?.&Tm:0().樒tP[qvϩًt`28fW2o@wdgg>1YH5?$<`+CFHD$NY g[o͆^ wc(D>r{r9;W^EŖpưRB4Y`aNF(PH_gTZ6@|IxX|!SixvW(ziORT&MA фD Nn՘Y=0.td"ɫSZ%lBߜbvת?dɹK+vKmhS7]ĸX:EGVA*єEPr"oi8TY 葜ruo@.q10A:Ky8Qlj:t=ŷ 8.8H=S:%YZ˳G:N|/z0G 3A5G#ASH߁UJ?#Hpˊ7$L O 'Lr,'=bKU1)vc8itOJAbnб#,< uU5Y8M< l~% g:YRf@39宪j"1 ׵mk"Ik74h#;Q}k*XGM>$&&P ˚*~pPIӢQDG\/e181}~8$O:md̷.D˫̇2}K AJ$R !7 7H= ˰mx>'k叡jMR[|ωS߇<~tl,. ŰTCn=%;J)~w\J*"eW̓VMVqںdSKQaKmcm]'󜚘*+$+6YZL\B&Sb|OE0̃ 4?f:2&#+CRY@[ 2#[ +a@^=ϰ?8i±?]Apfm_P[.`/B^#UH2G =W'/?_7si{D{JBeIݕP,7[1^}biT?b,mk6)Ƨ9erPgC_1-[S$9Ĵl*ǻCh!5U`dH_ L†YbteU.㩋J] qKCn"2H@kY7KA3 / O8[̗. Wd[qkY>: `P|} luW>s [[hkqgU-SHN*҆x"UcQ!d'n8gkK{porYCQ8̘3oa*,eq{ gGsd;.ᨻbM>~>_ }N8'Pi-es`mm+ˢ*omC'eEK(_\DoUow9a!^VXŌPЯz =/3 Y_1Βa,7hͅy kٮfՁ]!$+Wd_Ez# 4o|fN$7UUd QleV*CRZM{BֽU?Bxb>{lZP5:f^o_ۖjʲ<OM,]0Tp6ʌ 4rt |OI1Wev% gxO_Ia29*uZX m_~|.?4k8}ƒD<k^.U< `vAlhP{+b:>\W)(| 2dtOB=8%~.pj?F'pPRyQeF[-_-!Mxʤ yݣgfkpP ^Y&^Z=< ;WLR)y}2-婗>&\`*| ,D!OC9U C6(s7 {C!dصϗE)> [JXz,d1_+./<'Jy.4aՀ,݁&9:e䜔"1ʅ;< 3FM߰ؓrP[(h$q4bCF|*7E5xd#Wތs#>ʆK6nL>h(5B `pj $FЙ]-><2 7d2 8d=&EzmVRᖔ D=q{X2WII{~z o wQ*PF9Ҿ--%,N{y6|gD.)I)>qTe]߿?[X1Ղ巩x]B֦ySKx j)3J&lIS]du {5;cvY(G݆V>.]D"MSC+f!E`f1A&'Ηdط_gD]pn+9]p$D#1l=ElŢҟK\YeV#ϡƍK&ײ^^vqLf9]\|e}AOզH(䯔>ZFu*}14N2]RFF\-X%&UP}O+MxߕMd\e#lM\~se LF8&HL-6T\ZWyoV!8I<9/kJLKZi}Zs9} a0"E2dZ^9Sh;C- Jސ| ,Bӛy0݃2KrrzPL'1?bM%l0 (?@Ld$=2l̯p]kO>a"`,c8xqM h1."KqMUW1K0d{ b!l^;$c _`)~'g݆RDxj0Y^fXˌ߄:$M/ʊꉳvH/^ ,|xtz3/`Ly#o{Ps]1nOUl s]/)LR0..<}[dG(w'l#jq86yarm.˒xA&t/U*l-cnX&0N@-< LoEs;򚇾}`xMPdOrם|t 1(tz=%/s!>R"E{oq >\Fݑ'kr |Nc8cT)_eT#Xc^pCBniӕ>AIyKʲMx(!Y8 oȪ!, Y]~\RS<'(\|iZ&wm*:eRH#/ksGuN{_yw$ς2@8WR>uZgajb]dGTmdò|GmMTiB6EpBѡUnG +-E 2aq$dh fS5mni WT`Ƥ_پ\*Dbp1v&rz(.PdzO=e* }b·MCIBL1.Tq/V+Lc> gd5ei5=6jF* CQf&'ar}DE?}7C r4 YQ6I+˽|toŮB{ )0#WY"mY* 2 s][TIa0R`c0!.%K<c-ر0VE %dM\XȏG3WZoS鄡Ј$|Q+!`Y a@|M(>8KLŒ/?NG4ѡz}L%/fUET?p}sOj!Fx1[`?d̡N6򲭓 E1Y(+Ջe.TUlk=9Hð:,fZ# )ĵ++]U/ˣyQVP$ ^a}.{X]w)99,:xG,(  $2 |1~Wǧ[ѕoXDd_Dc*agǬZ+)=2w W Z8Ķ:3fzc6lQih0X=)3| qz.Q[xL*+'N~cpiW骢˒W4]14ax:tY-`5(bFW>_1)Mw@PT]]ʩ?#aN1tݜj! Bf6Wf)a׾C[AI4dvAEʯEWjJV%"͋(d˔m:+EƜ\Äg?}B|3a˒U8$R.C,UNp[9T~̜z3m^U~@0!M7v7t=h & ipsZ&`_Hz&\o/>1޲Wz_57w _{JL4|xfn2ShG(4_y2X9%+|FRwc{}Z২?^]3WAP4G]i/JաDΚhlU/Pk]}![?jʦm3!4y [ty3r_Hq׼F2SdGӉptuTR[ۡ}rZ0 ^&-gbsw&2tWuOd"`UQGx9rpA/`3jsr/Z:UL eC[h=r W6I0+7JBG۶2S*cww[:WxF[^/fʇ_A_A 2]5E+M]²pwYDLӎK\81%EXe,w#z8V;pn*"+3<1_&?Tkd%+V1K!;GG=ޣ(a??leˋ}#o9)EIp>LsDztR[pP*oAUz5{όyQB7O$I*H&RF92K"JD'$ȥUq/\9 ^L>=n.XwY,[\F^r RLx,K"24jM$X gNvm?gptC^忟ϧ}4ep|ѹ:v" 6EZ5ÑenvR},}h>5.eOgK8-'0V%:ORLf |\Ȱ*]Quܑ<,,Ri1D;;'Ubiɖ|R80\'&9޼6-!kՒd1R uRWh+ dc"&["*!`h~|*ڶ~<mp6~ tS'D?"^\V,S-xȅ譝2AүtVI 6Pu#  lJV&HzW 0\-Pﴦ˘z&xog8d4v آqp9q|ryæ㯎܈_3jIb$m/(yK΁]W \R8Ho>+(#/1q^ʥ{tE?"YӦ@̏xr<1Ȯ&njW4p#sY? /gw<ҟTCK&x]RFӼ::肫 :UJ%X/"d̈́xwApAJJb GE{X5yץ-yIגø؁^>[A0zXJ5MF*,p>~8na][7J>`dQdh4@RzI5F{,ldP=_y0N'Y ~WL?Tby(EƬ,x@\(5P`bηk>{-ͣcz }U<_+ |H:)xM(C{5%$ݸb)I4&RAҞRyZ3\.!؁OxsؑgjȂ~cg̛)&lHW] d > ”d֖A@43"PšApMIGNnuYL(<~ŕP%:=\0%uQ(Eil m y'{z"^._KЈ;չ9TW<@#y/89D$ꢼ!uQ2pv@}H]4yub%5(Cc* UF\ߡwx- =S@ѷ`" -s >:WCtV0C/QS3 }2}iru}^:o>ytT=dY AN`ۯ/P,M]9|#|>7:3e9g&J{fZƶ KRLEAOYtꠘIBJ;(d&W}8;EJnr>wBU9mԛp$ *$'s^2zΚDDY;z,142pb5Pt[dtcpkNdfYZ!t {cѶUF)O ,Aǵmb?6(.hy+NˀlWڥ\ˉ\m ?v'f{6ZN5\׺ҺmI!iBX.p>?75`ոCȈh1=V`êEFȡM>x=r ž50^babiҗR՜\v`XPÅYx2&W\3?UY y_*2.C=\nmS7xAQ]JI]A"R]ߝs};+b2; [jS VLfSWAOe}tOEt'tm]-٫z"kPTfZG 2_UNv<Bcr]'ko,h~6Cg<_L(_(%0ug|`9\Z!U]jf094› ^!U)tiǖ*Q S ݋A">:'>).<68CC4KtTDFtF)[K4 ,^NE/Z_+([tpVJ!JK<)eƥoԌs0}b,!\CB'EAU.>!6z4$^w\ =)*gu8/`wiB SYGoX ?8p"%oo)rIy"I>p.䨂f!"oebq e&n;>`Wrpgxzf%vCyꮩ'3k+pLwPo\pr*9λVb.#_?| ['Һ>dO Nɶ)VƔU} S'3r}-$r~̯|6ϣ̮],ϥ.uoG]Z O$*is?:0kUK7 5NZ$abl`)p)v88 J,;jc/M?!z,k6 Ž XjT<*cm u!^vi!9oѤ-o/]L}H* A2HR摽JٖkPqr}?uaG>?ͯɓ2/CV R#qFp"Q)wa[q}xݫ5cl|4T$E4#Ȥ֌ q K=WPy0Y*>?t:$$2r e#h6!Д1#QsWuP]<4dQKK C;i&vtU(nšic6V`2͔(KqE |!ܚW7u|fʓO.P4\ECmdg𺑋yo9kofj3NwE7m̸r=] Q{Pܐ`";¯tgc6._%XX@ذķքhJ ^D*qI㌍.~`CP);'f~MP~xr~Z{=shB4xihp0 R6.ZAg}`-HvQlLiZTxu}&pS2u2g‘>2jB6y[V(0rH(Y=8  ޼9>n>N&A'NǯCgM ~e:>,ք.*b p1`,M.}/32TKr[Y6䯍N!HģG3 X!i Q %I$Bi^d f wlj7bg7+#m![~R LVg[+RCK~VQ)ʘ˲R*X{ib$Si7ZV/o]k"}A0rr+kZ0"K ..;RtӹǦ%Bɏ)^%EAg]CyZb\"+#Dw]qrleHt"~P(PCx2S?!6]"0>5TN7XuG{<(lp~7}m  !̓ʊj [*.͋[7 χAlvߗy7v4謯~]Vei6[W]@n@+lFs $G!& +|+dq.zErSuxP(2~Mj SB@tF.+N22tyTvcB%=04z5MŒ֕ؠ"z"s} E\Lƞ$pC.MUY=bX)MEd bWCľˈ2&̌6lw1S(xY 883i(q%oMF(LC6!؃>AW'dY(:RAϯoGlkN$%=Uulàqx^ BUz(3/?|?4Po~Gqnea Vȭo QMY^ kKI ÔsO\A~{AҗLr̄͋.V]|ؓǐEXOђg?W |> YxuE@ց69O [[W˓W“ڢxUA(zt'ϓRzϡCQo-g 6#`Jayp„//$'{5Ei4~ChRZ XUuܸٟ13' GhYc Em|~_PKRгym/g篍Kv$l,^+֔F>8m2Gyc*we2Q">[NN~jy&e+wf [_Urc/ NCГF2{!BJTvwOCԓUVYU]ddɕׇ۬JۀK,]$mDKd:7xKa-/CEYUԆyMlJ2֗r0e(v!:FI/[pp;AƎ4iO?{_662&74#Ԣ3VXm|.2xǣjOb*BKS\x?Ƶ]z<^s-M/FGzή9%3Ep7I%7[icP:u-EfQOI?S>"ʓTzuqHZr J{x͟pø n^-,7u+Ε̅hWߖ5M' iDK"}qpܞOn0ǹ\ҫL([! 8b~٥YD^((=beLR3^z ' kREUiUel],p $J;D" q|<,oA% 2n={?ۢ{fHIWa!ÔfbWKЃ#6ꕴ;e"i%;ELjcKE\pfDg]C_n2l= K1nv>}$veþq+8%up*=V9ZyR'I_Ac5tO F? }:6Ba0}Q=pelĵ6 5`5 !H0%(/-%/z?Wh^P^F.))GאP]v/(儔z0)GE){o1fE8\Ehd1ًjp m9 Y.prd$' rUL+ާEǬu3vӱm6KcO3,ܗ"iX#9 mUuZs@ ]sRA IW݇Zxpn!}X9]x|تںJBꂎPBV^ZV*\X~W0I{op3)hKBeФq[uZWee#QkSheAgu*BvghC̟Fm⒀R0^V^+0a`Wk-1JO֒uuL;LײPj/ r`*iAb Ä vR@6py;)Ӂ 9Q/f ZГm}>~FnW_y;>J¯ˇ!̋1 ZO&KƟ5HФ,IէJK\-Ar9N\#.WROS]J WEȐ$'PKAu-4\^ɲlփft%~1R{NxO2E vje݄?mV7AKYDdAcE#@(>Fm@N]3PaeM|"&좈 'n[{ȍ^VmEd8 %"^vAZ,H}*'yWd'D +_"29tӒۻ&vJk%`B0Q>/xS[n{at %E5ɑ\-_1>^eWcB/?6uݚoJn.7oOlMy_O* }}naQ mU* jK6(8&wDFJw_Uo?V; ?quli5WE ݋s}>2,D %e`|:^>Vq/&v]=hںLgR*SFdC+R-gLSe^.h4( \A%VaX慖OةCJG, mXb\$aq1Pa#5+-8giy>i,Ͼ1e9[;tYZ5nڊ2\,CvD1F8wr4rs<_K#&\KV' er hHPZDbAwJI(O-blɬdˤąz‰-DYC(!w#$_v%W ;__Bu4V؛߷M'\%'"IbI,vi:ǔ(!E,]ei0Rve?}w kx-rKVka(=&Eㄷk}@Ê(3>ёNO{NjK6tb:^T@ حzzW}KCdomJ.J׵ L0Rn1mRQyVi/*Gp@r:/%0nCwmUbĥ~~0w=].emoWf}YǤ_t1\׏"Gգ]2p曵Ioͯ,LW!{]a<Ɂ% Y0wٶlfr x`Tx(R%p-/JՙH8RS7iiM$SwLW\fK8ro hM4%߆ ,Hz 5nh#Gr{x?t?)JC& *ۢLNrt b'B 0iYK[x RJKV2r!3YNCX2eurLS]hLC9!/F:P4رAIn+ƌLt1:md{!x'Mߚ9b 7-\'㮦uݵyD.;zZ' _U”TƲґB:Vz;7eXrr/򋲷ܔIZyt$D+qSZ n~OydǡxM_oEo xYY0 PDks8k88YtcTjh(ޅRwcЫp! p'|욪w>y cIu j긇nZ/opb DBSdG0lYɧ;iyHdTEǩ;Q! zXf3_ZcN@|90>_4?浟z|}>iD#] _뇡 ޲ȒV=4z!n"ycу) f *G^|cD\-}b*iZGWk&*UwF0L'qWJ12jMyfogZYd|//F"yۮUEX$('j >J^=0aoaA$盈r}7#?]-\G8oK<㚦UgI`J CSU\:Jivr险26;rȩ3oayzKkKK*>f¾hBx q*٘euEQ.Ѩzj|RxtH9@rI B-p#YE4:/M9&@ޣ(L0 7 _H? o_&0wUIK~VL`;ᅍ !\xL薶r/~>ğL gQ{)L +k,~CQOՌxƚ.dcaK(*!f,6IeɏA)0,},cf3pAI-c(o.Lz%sT6t]EXݱZSق,|{~$ş?={1)j gHc$ILI]?i/cj+lYYMiv+.+qMki9uC:J/$`!Q^68Zڵkw&X95R6I&<,DEbzTm4Jfۦn&K'5 'K.HAp#+^Yf'g=.-X?r[R6PDZdau{(*hЁ.嘅9etH.ಀ}|fxռԯg+pmYL.WkQeE'"B/ A]z`8-'m1>R5l<_OƜKhKZS 548yaTZR6ч )OC1XLհr`iG04a3+4WJdo%S9R1JJǰFmNaOzQ-xPVt4y)=x BUIUQceb9FĴce}i,oyZ3ؙ90d1ו_&دpA&?FVT^8ef)Q]!e%\t,2Q?IõÓeeʟsh3eC1#XvU GYVƣU©ͫqWe"W [ۃ˧FZʙB֕kN}~.lk,$KE4]:0 R.FgEWo:kdE`2|BV2WCLƪ.r^Tr y/4Zi)ޠQR._e63?c8NPr.n X#XUzTY(Kc+7);wO·E<+N"ʚy|W{Bʪ*<2FSy!b"V r aztCm8"6k/Ce_!ؼ$,gdu@ HZ +Ws#ʁn%Vi۟-KCT (zߛ)mAj,ɫSj4I~* tDirdCRԔTFN~~x9+<@a]/(?,k$4NeVeZqu g%%YXٻ%s*xL\^F{ɤ0X7/ni{fK@Aug!ΖwVWRd+Va++] H;;'#r@΄ݫ2-K7>q~J* g|2y\]Ȗ85][Q!ma|]ǿV2{Eɲ$>ɑZ>(PfOwfvXHV8 h !kF"+?"C;W6@z߯Uqݳ+:Y+ Ko~_pE8_ݘRp@O-IP 8 K pcD.,m 3󱮭۴'LC"!X~rpWYZ">`r&8&+df zBX/-V7aI^0T*ߊM.С&{ObJ6MMAaE [(α"*c?>28G5!s ]6@gD?V֤K|=#eU%IaS Yf<˔&ixsjP2N%qge|^N|uf^ 8PYo fI%oPV6]arM6'lIKw2uEZJU"'+*C2QS,4><94HLֈP&*>8mLz]TMmqKXK\i .?CF >o`{umWO2b8@4/[XIR?ZPG%}O2OUljI8)u0!W ĴYv!nSd.2,<bgxW,Z`p2lѰL18àtg?4EԼ׬FM9$GuT;>| zѻc*QӿT! v_.#MYnowBYk@ اNr4gL_8bh5· 8buOr~fS,=ͺ,}7̩xY^'g:wDɊ^d1ADe^~R(}.?_?Z&zI {'~wLH˒ ip6?8`fI<P5ԙ=b{'`ul=YY7Bw8ty7~fg@8$BIZ'`&{GŻ/uBF4A<({KpodZE y^3Ӥg}]w0EF:  NJ9G4˚fzT}Hƕkpscjm"RǢ;!VQWCCӔ(ZJq^#9O]m'פMF 4u H ΎIn4ܷ}n߁ABՓK* ǜLWP.O?>'49Y hk_TtE,I#Љ0D5CJs܋R!/]^!Cљ4Rkp&W]"AQ)m00Xw0CǘFQQMY*ζ>)s ^~W!YYWYRCQ./~Bd{:^xXQC>-\Qt=W/i )6IWPPRbVK#)-&Du(fˢ(6^YlkUJ#7Wܠo3pُu?-S9w[U;^ԿYӯTm95 yuۤ~ m̵)SI ㎲Zf嬻 `炿YDE?Yp(6݇k b"i8d<+.S Q!YC! G2 n]$p 4KJ]˂=$A%p[/!d`)aE~/JY345a10^}?iK&Vf_#KdITfzdjt]F4p =zݣ_MPfʵm#.Ym޿z\n]&T"  gVʖ:E~D?Z[q3n]n1.LMfI;'~n)U, !#M=ݘXw#:RA[_g{"$`5f |c=L8Li]JB$y)9;B8߶2s2\*(Tko3+4%`hmS\&B>|'qqRm׽nnCMzjI_ 3"ɴP*4~RK:߃2u,^˷ǩِO-q%MA&+,$p*#k%?KIUҧBrh b?A~$[~cmߧw[7;n8¢ .)Ҕy* n:I&6 %1-AWS(>JW#\뺍c o #Ѥm-J&RvP<ˤS  !&fxJ"x@!ʪ{~Ӳ6-WQC6_B?ۧ}u#\a2^i;o㢀{tΤzSpH1}ę3 @&pe6~}fUҒ.Q䇞+[u=T,RrMY JU)ɡ;e#㗰1HW󖹄k eIjC5Y_JAdZ"%S>XH< _ 2SE%$-oe/ fs~MI&]2d8M)/LwpE",mJ|\XdW}},9\ӗq~MYɵiCi(TaE\*!a30P렸K)8Q;#+wp|G(ub4Iz\Tm_t)s&]򅦠Z4Äz*LT e^Ů*-^<3lՎڻL,EOICUGuLa`A`cO*ߝE `W:͌$5t?1B9L_fn_? oj1Sxv a2$- U qU 5wr*Z5rE҇A(Ĺck]ӢNkLB.-N}]uyrzM毆خJ(M d'^"pb졬E- y.s76CϿud dخCe}ggprH{K<"Z`VUپBb#ef,%8=~4yoDT!&9& SF= A./;t"5;"h~r=yu S¡jw5jaζsD"k:IAR GHj%.K\J*˓4o1Nx!hR, Q_!|Ոk4ʸg}_7b>T->4m/i>քG:>7xwoE#3Hll<Thy҃K,FE)@݋s[-]v]Re&/GϫVQ;:kM$sQBI#ݫ8FDZXDϩ^j}yQj۶v,챤 c{"yV9/ )Ië ~L$Y\?~mѶ&9&'?,'ɾbȺu/b9 ~i!~Uqzp LAƳRFV{X;i*H):YT#78rD L$"1"P\o=ѬP-.m0L°&x(GB.=,-0^ĬHx$%FhLpȽnf?AdDJ'cEս)iP /Y4'@%# w~+.O/Up&풩X7²(j?Ea*c tKW2'uoy e.ԩ`k ].F}G䔂i'0g[s,U̕#d_Է +7V.6LRYIL wXKj"B8*MÑDڑsl\Z'E䟄#hu3 R2L f}N3QJ>#`AB4_%* =D OY@HVUpKr$A Ų6Q⼸e;$s+n7'E2Ђ8Ȟޫ, lGޟmV!/2z`!U2dVuz6u*(/tSOO Uj#2 +] _TS MVIiM#j-W=|>-a;xA2ΰ".gxT ޭ~}-b dυ|PT= XP?ڢ3\MՀɼͲ?Ww߿y!.ķB?ނn8R4/;]Djh! x߁Q\8Qos_۳$+Le7)#v˩mҝ*u~fkHAN!DP A_;/";@%.Y@.sw\9yrLLȰC6JƤԥl2KRx&u'GR쵍} ڲҬ<~2 q딛%*VdhxʜP/=No%cʤE.9Cvw&VQցw6j[} __doImD_3))b{3JP{F@@AσfϔJ+7ؕk_5C?M.SUuίuhsXȥGL*?PXkvxhK &^>yF_Mk ?0vVV53,JO=-d3VVJ ƴzW[([^ykkW=7U+M Yo>\eoû-ˤ)CeR:ҍ/ $v O2{`F"?e|%+B?~k{/d2F!6MOcU-x{>2zIN[c3K{7~y]Fq RN.3C[]m}N~[p*,PWҗO +Q7Ē|1ѹ|OmmU$}*5iW *ZV񈇗$>qH{ |}{|4ΊJΩpseYH$. 3JEl$2Y8b͡$/CpJS?eڳ QT$'*rV ce($dH+ypye _d&|%ד AWQ\*a?a|f:H[KtpLGvL]t˿_ WW(i[F5u(H87(PWGo2ՁGw=vF͊mb.p+euenR'_UG0%wJ( ~';¥bXO\ G53 襨aks*]!0!v`8ǡdCZ齌R26d^{(؍ZP31 K46G;బ) +.6iPjnc90jLͯ||I!l˯wN$ MDh4N[8^e$\1-#9oz-<-T0_%Tns^G0X$) Xct#(SMa0; &{LmpsÒ6 ψ{E*XbXA9r&eN7/gDyj}ϔ[lވ8jSJI/I ^ZupT-ϫ9=W1¹i˺MsVA#FYX-k\ae݉~i]pI~©+DCْTL3b^QH@A, 4BD{{MCtaG:b0J {OX]hTE ա {T`]b r{yBB#y=mP!(5eCn/@"TUS p/N]M$ޔ?' ?]^ywa[JZp+`"iq538lE2וwOd rN=Ud{J"\r=t j+5W/#nbABHYQ$1]D[t]^$KjD vv󜠮+\P*͔g1I[)ըZCz-^z]g.m4Kju'""kq Ϊ(!f+\DzԞU.ªÆ.Èa~FGxݣ~CCWK.pBUK+HL}^8Gcy/;~K"C2{#}۾0:vC..n;M_y:uB Jcz~i{ܻ-;baG7yc!i?f#ȑC ã}ɏ]P""΃UYK^sh;ovWg\J_KqB0u—;L }lg`ح f?ĩtzF^P Du>kDnȣZ""׉y|43cwH  0 g\9GaqyɸBqNP&.X"k7.H˄DĆ%@ܯ_(u LTxy>mo3L}OE|,Hg+p^;`Agpݦs*jqS哏:o6Cumn 8ܿ4Ugi k[2nigtZjˁLc+ FԬZ18EBO+5$C3a4'9kn]7<^ Q)X4U.#3bMȧv1˛4ͫ]f%+T\W;^2.?\LWW!R&v}qE*+.R'uAkňò澼<בG^붝ֻ͙}t #b'*۪/JsV-1s]RՐ$x%0 zS;k\yDLީ)GD@qYm_ cg@APS :UERϺZ޼;?Ay3]kصaUSiDV)Zޯ2+>a}VEʥv^E:_3k'w\2S%Hw\~!VcR!(j!!= :2ڍT0 U*0/FjSҶ=zU]UMmL]j"6 ݡ|]/82xAvEQį9w$ᡛS^^nzbYzFߵDG3K)8d_XH?63KFx`1)nw, Ҝmv38zw"t_}]8KaPIaE~%y>'=H(qmq^bi6Yĭ{Ûn뷕mux ,e9D S2)ȰaS.#B6BI2E if>_v_.YWC.!M&):VC88%k"$՗,(*MYi R:x&#EYhۃ2NkC ? dNtH 8OHWJ `z}j2\b)R2z9!ZG!GW~aKxލWy!^~nJ07}7-V!@J#iQBPt4 J:-,FkǺ4uٖIĵ![\C Sk42-bg*;qή4g lqm~Dɻ%&-RU jAz?&hb)iE&cm]b_N8|y2^OHsР=/ۦ+Et-$&oŏpŜdK%L^sKE"^%N ]߶sסu\}lf ڬJ䫋fV?h)`re j+ɋBU˅wѳaf٤#gx~đע횴ypfQԑ}ʇE^`4`sZ@1 %rh>vҞ?r~[fJe!An B~N 7Qm[PQF'hWgyͧ_7z:[ ,#$4A0I|ylNa$h<&qKM,sLa{wuk~ & !ԗpy ,3OQ$@ہ]L >ŹɺuMsl.K)oC*_N}Ķ٥â Ff"rB5ޤCeLa'~Mjۺ%W]մ !]]FkWxE$.6V`Z9 ey9$ӊϞ &NH?7hBŖ=[P5Use̖f 5oUE򐎞NZO+֙Mwط%4-) yrދ l;b@ $a'eyH/M!ccM-SaU}u7X ~oQT/y$L~9}Z4TƤ̲o VpTHD3o2X}-_,τKه~ʈ4RfkM:oV!"˕ l,=bx!^cb48o#j`ordu^7eQEU^:-EL 6u =$6,bWSFrxe}U<uŒl䆨<5\k2A)R1*Zt نOfW}4 a&ӑfrPWiY +,k3SوbP(u,b*%pK'm[+{(wiL/yDcp^M/; WV)GqXd|gV~"YazC ɒ#-sY9֦Oh:Zpڗ{KFI{2t_ȁdly~m;tEV[-RF]P]Q׈ 53wQ7 y(q6Ε䦶P lCT4?hLA&MWuJYTww@(a) M=+ Ct/WwmyX,J&}= PUĄ?Tj`%W~(]t&VN2Vʿ>˸Å~v^!;!gYGވ#ϒzޜS`BJvvz+W]R?D驣;`ZТ3 ,M0(I_эl|. 1x(yowXY?D)d/N)3XlNrbYD6ReH*0p)uu{ﶚڰ]W֚g4m?Ca#4O-ֶaoEu_R'5^>GI:ZL9MhrYZ t}'-2GJ.h'}ؔF(UosXp䑧;BXy=Q.@x]hfSelL}EY:Y3**9}cJdXFgq 5-Nn ؐ28HC @/Sz'rxދ r̂ll3D+Fl[ mξ<  RBQakY7-SM6^*/YU2gq4j^m^ek,3d4  dW;dț0()b*Fxk>\~Ê- ,ﱬnƜ౶"!H8ƩCBS|Qэ/Eyzœ.SGy<})d{')teY7IƅՂ7'jC/74;#B;>wzwV熅K3l%.n-\vM44,YoN$3*© ,_^eƹ7bO@H%9$d%ƐBrD,wӆMFߨj58BE{pqmqm{o崮}xg1jH\0,SjCx;3Ma~/ݼk4{GYiBZ0!: Y}N~<Xoرoy8=_7/+JVۢR~5u"sN |GN\R?s'9e*so wEY%Gw4{U, J~h D:r, p.ŤpA>ߒ@7tO p4/BEij`0uS1騚{1!0J󰇒vsJ uG!?@Qgue̸RE`y\J¡ީO*P"#_b;~-/?{; ypFU1{(8sEIZzdc⊒=H~n\4-Yxi(uA̅=zNL~oR ݵ2  TU&èY(Zp8H<.jp ܜ9XNF/^m>.]tJ@dH*D0NAX߽b#% 킻I Ꮵl_{Oa @抒ȥho1;nU+9]R)p|@m0Cxדug.Bx1R6ov! !6-WI]5[;Bi2%#{)=D ́B_2|A1W2[&t7mǚ "m!j{Jٙ0U"khV+iPl v%9́82PoD3^ \Tb-w"TUE%·|?c8YTzȻE#$Kwщ8f@\e+ 1Iew} O|[YP*AyQ]q<|ꗄ="qJyCJ&#m5MTmNm"*($^º:FkHİ|O#8c.CMup g= %*w%#h!o1ҩش(NpwFkL=Jd!Niِm%wF]UK!d.*vŮ3ExǮ;1oq 3 61Ejǟfi>o&iL&69˪A‘*URYU[DGV^|lS΀i2`JĒ#y6S˲HBԡ,Lv)$7NqC5hS@ȗ"{D#MX=ϸm"2-[%?pʦ^IqW"9'R0⾁B,- ObXB/gCؼד"ҰPЄ\ S}%s@CXjhŗm4;K{2ySCkZ zz#9;zJORދ,cdTh1Lm,=Ӛ@=ԣܶfJ% P7WFi9 *]Uے-O]qܓ0!9|0KHծ1 !=oذT(!"u/}ԠswL =LãݒgeCiLOΏs&%9T78Z.vȳAc}EV$16噊  sxroC#1I\eS d"į癰A x 1E̐sHӒ`z5%ġ4ve\*lY` )鸫_hG  %;,DE['}W*MtPWCq{(oۮ?|]+KN _-iɈ RʊGR¦ܯ3Vˇ2]z49 *ydiVkZrZb49vJѷ5\S!z;Ks[>s?,9%#F_\?^iRT3ܘP o4 whzljq2E$[z .S!: y > '=eaY%!P!?田<}^~w/L[weRT%eE}k5q$84komm{\X<<痙6n0%`uU7'Z/e㋕4:dVRG+/Ox_I jx6~J0"oi]"n)#r86Qc) N ϋ{[CqCWΖץ_E^)o|yyY7U2Jc8@R)qm;)"P ox RoAXiHO>@%@vڭ6nL'ξ14=Өa"9pW31WiȣSg>| ;;`5C}u}idGTlRXtXvE9["&0}66=c~r1r¸[PIKk!Dv$CP{ZL qhpJ6kOq xBj^!J"aYwڊSrС///&6?'Gd 335Rsr==/0rgJF4BcM8LR*Ki[GsQ>X!UgwLupV;1`j$TE}`tz BAUNM%`Q凭d<׶|ݻ.EEbi;Qe 7G"F؁=(zbxCo#e؈n4c4bH:m=ʐWRũ\Bdd#6-d??>lc k)v{@&F&" C :{U^wkpA.QŪACI^2 "^z7.2Jx%7‡AXI ת h,J]ZuI-=}!R)CRӂϞb̠VR,M&N:wreiQ8x<,OJ aZ $%P ՍEɧD +ְl&kHoy"~5Vn.1~1 1bm}aakAxR z'_EI,Z`onMgm3/ <}c!$7[*$FF4F6-1W`k!,rM˂ɶIv9g 1׍m}+9Q8\g=kcB `JQ$Ç Dʏ?PYqc/t\K=lԌLzAxPi[:k9,EX&R ͥF=& /2 hv!O%2Wȣ8-,f>԰CO vRbmQVe@G]o_a^Ғл0 i\N>ŗ6QS!UES'KaR/^ڔ땘ȷbAF+ 6J l_e`B"!+!+Fl`@Kfy,.ݱ@|_? EXN*P WZ{NV(֞ b/x3 Lܽ pض͓;åeQGp3dU,Y'%5MMHkb/Sֻ3]HF"ӇKQW>1wB$LÑ[hd8 1NKKL!E()`9ls4n{Dʼ8 -c &B~CD1:ASx-΄n>2q<ܠ_mei[Ir5 h[և鹋QdS8E eA^=x ?h· Ψ#G1| C?܀=MFE ŚX"ŲgH"ťI& c]~Lq9 W­_VٕMcvӛ`F# vOGdr94%5Mz\7,@e%n13LP5iPc뇚?YV'gmX;̞jJ\)YԄSxW~)^0Cob7 72בaYFҨ\']L=> 3ٟm&Q!|L9o|:|_,k,eC~8dM%DdN} eSZW|_rq܏OzRf~uu-U{/TV:ʵkFl.FSs%{ez{'^5U^sV F Gd0`LLB=,Q%ӌ˅У&nq~%OikMٶl2mvѼGkmrÃ[!h(UZaj%)5At[ r]?jp%c4-~SuyHC41{EdJVcs#*gK=<[|ȹQOs,i^%U"]Hd:M)%LĄ.ZcPH.q+AMR5HXۤ>Ocq(cXoOH.MR) &]UuYuۓ|4 ]Dᛴ#p/+}"K>ݿ^ Y>4M# {} 1ߺ;5dYFM,닓dQ(瑛XspJ^@1 x=Өc?v}<ü>}CU'e_ nu>#+.{ Z4 dEvCr9ha?b&A'_T$? NkK4; ".2DEmɭptҸm#c|=ˑrIͪ4ݢ(i[``:nJ锠ha/ Z$sIdFlIS z_ *Kڧ}iڢ['DvDeHKrE[}'e,V1p?E˻|!Bw:y]dlʳM &B޽# PF,{G9*jxT_KY%)0V6Su,Yy,땜+ Ab!^\<v5B?en ,pV\aʊPW]4\;BH/Qc8 z*x]w>B"O\M|Nqw+P3۬қҡ@ D,RY I*I$q+9B2lޗe'I'y[>sJpZpmX:,mYp˼fb_!E}o 5m~WU~{鞌)ʆ8iTMU3D|_H+R:@.gO!Sz{l߇<H.ڦ 'V >yL}ZI,i^d-([&%o¿w2=7KUKSUP_/BQM~S_d&oC.aecFVG^,'Ο?zuԖFl diFmNsBn.#ɛf;Q6]N y5A|DȚ_(E%ʠ0=Յs~'_Qf/2e_8Y6r] %d&IM.;Zּqt@%d=ZIѾpM)r >Xؔ6^Ll|Eե1b” 5fXǓXqZr9.gX^}OYƑ#b䞢n.mV`h0,A#w Qz-v u=t-g/I-܇`⚳4S03UڀmjLݖz5}$ /4EԈ=3 F<dj-.jØ2~_4P(WUPz L* L1I,.u'E[_T QoM?>pК")3}Ye) V ;Di^us0 mv^<9= ݖ/>vZ%LqkbQ+k%<I PWݾ-x&CLCd yg݆3E.#5ۈq m̸c]i"ـa3Y(0,2dd,Y!K[FXYqWEңZ5uXbRLcr[QU]ܨ#R EpLx%]kZ=(Q\7FnĵQ/:Dސǂ_:Xhwb6,iEH+U&m[q}6@u^<2dSWZxofQ5`=+E=?!+&MNe~`*\T :Q%ORo> /S\eHP=BXz??,=>\L \ԃq$ᩏɺ-s$ Bvm{tD@YQ29VBJol~<ͯ)ǻ_/3=NLrM:d(]zWA 1?$`b(.|>bEҋNn}SXoQP OHor!YM8”q~tY5>/KMnLOd+ToݸK8ͼSBI'GVU&`.RpbiD }ΰ 9({ɡ$7$㮀7ZOSP+kuFRMt'a`aL~2:2Rcu k2 -uEGo 8e2ңl(ǒzƅ% ܥ䎌 OFX0t(򱶎6lq~J.)RH+yhMS l Č^Ehr\cG{5L&:TZ `7*oMlXt8&`W_},U-NVGO]2soQ&B-}ʲʍIZZuzVt΃tJ*Hi Ϊa_ʾ8b3\]b9LO5ÃttY0% e2U->P1p0R^T +YuǤN@NҢ9Uw&K{Z.NXůtQ [W)!O㿂bBKw3᥮BFvþSX4{2h!ʊJaB` Ų-`C2vݿ].knsVzV =Q]}͍dfedR &< :8.8.=V./8"5՘V=4|U'W&+t!$BUI 9HPX,mՠ ѫ; s}4C0%%)1U.bv9҆JeQ\&p'|Y:FEʘʛeŃiHdF)#DT/D;eZ,R~fXAq}4F^ Rc,-F<]镏51c0r$40NEH`5M?ۗ*R^HQ_fU*ECH"EJm<d! eDkkC~/d][:2׌ӨR50wF;8VGg~֯J;ea1c o!hnAkFܴ}LTDFj_ qģ$u hlS~t?i~x.ZgpnžixhE} I%JQgrk5T/"ÃkG:O3|Cc](*&-dquHOX8p[VYM&fQ %e}̳}*,'ȳoϼKt щr;Yτ![DTgWH\ ~u)Y6PᾅVD(V SHU2.x]S/ZVn<*Rr&͋49Ǭy=e(Œj'ED(Z=-uxm&}'n?,RŬGk1*|acƅo uclUta?ԥO65liƊIK~&+ E`sKY/_6 c-7ܗ&ZBDO7msu1k=gTBWJvGζ=R6&˾+L(e`7Ui/l[V%f \@v]b~}S>gi65;CrTk@01T:%5EQ|gPj|Y,DG mF& -6e+Vw_:. ʌ|M{QN; # '9pٟ-`r,^| ˪*ZᬭlC{-S)oy*9m|KBwnO;&ݬKrz ntiʨm< O`_PHCYy`haacV=tc*F,gQf𼖬hd2Fڪp4E^"Npp{ƾE|b= >#KVvFr)>?2g# ,/u+zN5eY%dI3c Go31\Ek5cq+;F룷G0¶wۼ؁ ,޳m5m`)7Ix[lh8b{J0 H wzZM6VcQRUU\3֍2  pPls4)BӜsrTk^,#M A/룧cMe gw5ƹNK1UC?Ke>CE|`wbJBײZ ):~7dŽ^C|w!6eg宫5,.W#D씽`#d2B&2eS10/}Iy8NC2k2 RǪ}1 {73SDw ENs4(a^4%j8A}S!2rT)&0-M VÉknWlC*0 PID..^GtŘde29)~]7ד#*زx0,5\]>wLo.Xd%֒}N䱺%i{a&s;itQmˑ-IBw 0UF#7P_̯CS&:= *K<"#aT$|'TI#Q QFs]du%]Nr%8HN)БO ߈,"u-%x^Q&K$#: C )á:CeTq/'|;Nu^ ˹Lu6~֐Co(WYgd^ƔjȓPhZj#CFU(KگoO2P` =vwI./=1)ld:wl8&9<*xNV&hWBZvOIbm#]'O?yvH=).R۫ 7ZÇh|Ow͛`~ayEY}ƻ ǎVV(!;Qĭ@`c/l ]'e.Qy8oje6b0]n)쎅p7cC]i( I,U*y;G,TZW{N|%Vyy6Hjȝ:%z66%6LŖ bHI#%)'NgYJ8-G"D662ZY|Wvֆ[t]7fB drxU6iy(wySfRap=%6/6G0K@92_ _;onPozﷳ-ͪ~~C!if){ΒkʖH0E_^hZcrݱJД Kv~G洒LX.(6aO "71a0 kG;!|:sC8qgP nB{K=aGBnXGf$sҧuU%X=:Ħ53dGtGdU PKaR-'u %Awi~uI~tloWd''|VY4! k1C ZX?!mrLgFrˇpDnȰ?bSK-?t~/0'E4PqMg&cVn]$"ULe.JcJ)\dЬ4C<J-)#>xmH/PS5sash_bZd0>P7#? Vh~˯!S ܥz-Kw]ލջlVcKYšfDKY 0<Dłtf!pj#«|oM{O}#LB_K3>g ugb{AQa != "e4ϏN0_җ!mۢ,^p+!ST+"i!#xP9 r*- 礭r_c8Zr]'!4K(5^38WwTG~{`b{uDkE$A}M/Jþ)<6ճ]sm^n˃wQoQ*dFIʬ$:rWi)I5X aAteׅImnl<_u}je=Uz̟k<MCuWD=HR+i}],,]E2 H`J K' -V5~QU4 e+Y'haLQ6e  KUV<{ә*78iݡPVIIj *[ p)Ҳ8$- atL庫Hrdi8+` V^TGb ]0?>am^sȷa/S<Ư`Z|gU skQ ǥ}{Ny2a"KOay]֔QwDجTt^%*"ImI1:m)44/x;y-Ր}TzqiinWVUV&UʦP1)Z-C PvS NfٴQƍGSJ!Cgrdg&q6R;ZaGp,Γh$[[2!Gؔz墱Hv"Wi_|: 3,x}ޢ` G#V#x?(\Tn-IM$%}YdŜQ`">dz4z![CR_y! q14(m e|-mU' 8#u䘃aHPJ؎Y,#hRwvn69 LzU|,S%VkZ^PDCq-_?=~P[G1eyNt%jU(\BjV4fBb@JST7\B9Q|NLV`d7;Z]4I)Rm+.J6-r#}s%cdAe$-G!c >l?I(۲659Lʍ8vZzꅊ4uqq YULrP3CcZ敤4d]w:vq|u0d0qp0a&ot_$z2 '+W+D~Lv݉tE<m8om ,ЯL߄A1 9Ix#) n"nAPp[mrR{,i8ď,٢VkVeZ75r"ihýa!RHhμ F-בfR˲ՕM1P$$ʄd]uz+#vk,g~Nr Rbfe_Mk&r2 LM"܂BƏ2L9TI$I|zM7zFTiH&$[|!"[ߴi|4-1O(Usl!5z F-/+ADhda\~)cb r/3uKW'x!-p72YnȎMyq#͵zQfXr^Y0~,4,zcJOpxx1jm _6pw:y{Wk?-OjC5yEC*i  /rRD4j>D[{.I1kyGlu)Ek5XY5VAH&»=G]Ч2;KY=M3?Eyn𛩦 IevZA֠]96]yH 8a$"5+,}.d P"k"ʩ3$ 2N(lCrz!q_?+j&z1p7E!/-Ihmc_|:@㮬1t> 7`v8/.ܼ>a%ᦖE&c2-8IUb,%+EQ/z&jLzw)Kr$tD/;f%90$=͕x@f6?"}jww[?Q+OH>%۲N9}i*rRVJ$1 qJSȋ|$Ǥ+AϢ| -Y1>wt̄M-ie)}&Q:ʞW?ooir[YrX Z%Bq %DLy2 & 1<7Z>kL9gr[jbM8q,λ[Z䴚oZ: uMp $qL`D˫d\l Taˁ"2@0c|;&\K6oxuz& 2n8mSJCx@E*,~a8<?ATp8&CCy:-9TC(a׻E'Vt%YQ%)A-;t$:c#8 %Å'ՇWJobJ,+Ӄ( ZM zLV+$o7p1{q=/7L f"x1mY.+2Q)3Q`a%P*N͇?u3%244| 2Q{ y.ȪߗP*R )ԗ̕GU_/&rHL㜗X2d.t9@X/H?PYmt'4dR*t FV-kb JЂv] m9$mvWo b:d~NeyXHބد&eω1fK(-Jk-9.Jew Upg:ռM"Hx CF!˙DF#4QPA,9.2w$Ņ3N3nw /obn t+f}$ӚxiyZ"r et!YPpSp(_\C-,PpI$"?AeỪ/2KpCw1>_ X-$2ō o_ө\T]t?_1GFUVNѡ;4)*1N7L /[Fz6dX|-Le*Y˃T,mȝin%!<ɡ_-$aƓu77(V0@-|Q(o2TIZmOhOըY0-#B]&,.\sNWK|#B 9?p;WUhj&筚؂^]9>%Y+vn= 9+t"X?{+_%ы .uރʓF\Al[ܰq Z'm{ fj;RYz.Λ8)$'n6}8 n%ELڏNTSARJh]~14D[ȫ [9oϭnعI) I}Cڝ>ֵI&d<< uq"NUuBN(/qkfZ֕:`}9tQ3_lF7ww"Ce(,OzYURh/Er DaK'C%~H>nSy>ƝELb:CVR,:`1@u/E_WN.9r1^`]&.MyHO>`XR9= Ӌ]aEmc+/)~X䖜fW98j$P||N9 V?rv[6&}Qa|ci1ĒLٷEUmY3/Ü.{[n%!^WÝv`r)W_,ȉ8=mv"h kO.ye,4JWXC 2iA[+V^67su}..PƧL̺V}R?:d3dNLq;0zv8 ;c5]35)nݣYeYaL GUœsS<¶4+(;Dv#ftR #?TL9KtϷKSK6ċ&aVW;d¢f;t~ msxomRL򇾯)&Ppuv²0"j{ȯێ!T>8v#zXH,q't'kl;?ב"׳S}`^y.ݟWuC'@%}C bvUMÅ "of d"K2ɻĄzg7wbrUfeM$:O[eTUm" '!^>ݸeq.!Ez%Wvbސțw3MPe;hQ AKYQ&2vs,U 'cnP~Eƛ_Su9 YVȤWGZRԆlY%1dبW ʬZ^X]:w$#-ۿQ teЊ(mFƨa!,ʡhDJ✿yD7DnButiE5e[ gMީF1`}{tDMTd3z&lH%$751:XK;`p 7.#b)#Y+RpnڴK5\+VզZBA*JaLAEo]8ɨoqe57$8a*Gez+٢ZE朄#p+̲Ȱ?c9oa?U*:R I$jy0^lDCTcH"ri"=nN6ry`BOZVYF`lZ+X,r' !Y!;ʙ7ұsRx)0D=X?$ZφeDZy.F}MIVjYjL_`P[J:lx}3C g&|;ˍ Vh({flmefonx̥ I:C4!o˾CNb~ a;d!ѯS엃{Rë;ڕ4h7ACLxO{c~]hO/]a *D gTl3C(X2UKq8Ik4ǐPdc=K6*d!2ONZjc R!7mx 06|>1۫ FTiALUc>m]C$iB[뾮LyeaB 8 ^&kp;& u$NZM+t-ZyQg[ۡ VJbEO+>$f 4n*LdQ*.jNHCKIпp~E㐑d198S1[Ѓ"#|R|]h=e'Vy0-^] : d_1.$l{růG_˭Ga;Sb[eoN"d AJ̍ymq(ta%XrLشX,H99"DEKaAv&s۬bD%{-)N^p@YZ3`a91Ͼ^nѬ#-֒ |xo[wv L(koC--InH,8G$qh![ +uR>8!>k7~?ƴI$+TV b\,Y`\d&+?^zFw_\?74[)c&Lo d01pcՆ8 Sw/-ކr$].LU8,Lw:\/_(cUB6V$'ydBRxU;$#!E[do`_&ڲlSP ;\v3wH\pp9XJn9.}x;" y3,dORʄ'"2z' E@<`T1MغÎ1h&k?ԟpϮ~.~(_QB,;B]ϣ+\[bng8${alqreJ޼+܍SuqQ"`zֳcAi-:v]r!ʕr"߽2-N!o+Z$/TEiU|HJ;7dQ$]PȇnRDq*~-]Su^JZ<~A<^h/SDP?Z"P0MZij ;gw z9 :ҳ»SUԅr!U]z[PNACCߏ?ˋcp~y@5LC]Gl;ηS硒}D}AZ+!Uxd^L\߻˔m W6JߥǖP,J4!Up{;WZ AhD)C|qI 88Z"aBJpp^bc1pdb}%nJEnrP$VyLx UKe* %h $+Gܻ=nmU 9NX8bFGQR|V弌*o†Üs\Wr$-RXNg]:(YI*<-CjiYB 3_jzM6 4Z닳ʔ襤^69ZH5x{ffT㊶=F52_K',^8;A21ʂ6[vS)hP:O~d4Ω1YS&qU4XW%ɉPG~] )d_daQyhI!?+_Eיц>XD:Մ xqF3%t˝8%9mUg7 D$Sc h5uE7 ݈/%y'%I#e_2%ktR^MaW'–ZAtρYg~y^d.w%ooR]d?l}P.;mTh-СPblҶx;e;1O~7sn42HHۤibݓr@$ iՈ1'_j/PĥPz'`,Pe:8CB` q'!\z=_No.f1`P臻M;ȁwPA2%h-4o5PI"\+!~6cZ j}-PgEm՗u)|k$T7I!Yno!EV 8b6҄owꪩlBRutY'?Q$MS'ь )n0<񪌋2-p7K mY]gG7S(Yg^'FɢَE0dZCޝCá6< 3xt#o]`<|>e9wyӖ$ ߄ 4j'1B6tQ| $^ HCy)>4.M/0?^fzߒdž):yNhX]W@^p9 /EIvw7ĶfURKpQ-,dS!'%/UfI4,@__-p &Ehrlt噯ï?lH .j؛JL8*9Smp.".OP6WA~DC?n7W^*!6. tնkn{"sӣͦq"2EOTN^{ `dTRRzo&-6f&'5Y"oIpbƇ5_EOwK+^e:҇׶>Es&=@F|XB/D [1V޾d:$p؆%N:gל$~f0ʺ`8mYm&Q51ٴ/XpNة/_׺/`bn9Pӥ Zju@¡] N>ĕ.N0=NžR,axfy!OF&O֜apHu}J]d{sx+L&T-RSGBpeFdk[b.F9$9cEuc 3-|)Ig=~UnM*$ ,VE"JIa QPI: \ ؋m}ßlJqJhA%%MFIadfS3bvX=,Bc[Pz9^A`3-SO4}]e0Q0◾X;P֘&qέ v`H+t"q&4{瘺S5"EfǪ2C6*Dc<}@eTޛa!tfVdyq7yT|#+9&d_CfЃaK]dGmnz/wg<}sc 0~ BC)3d2 ΆZ<7:8ɪ:Uфڦ LHPՁW.FnV}4=Ёߍ`7!M_ &GO`*}BTrO9X(%H} E,Pє!ٖPM`Ʃ 7L5Q]\x :")OčXti YQL0'>~#i2KVd)$h˒#eezSE/w:~TQuq|)lXfBޘh S~8NsRٻ;l8,ȥJ>}CraoA,Wܒ*۪K"k)(@Hb!3XЗtYv!' ,"%鲘&+M ٻ+99t!iyM@Mj)iPݱD.Rx)T *%} 0 &(miG6z,ǩB̍g G)H[J,| vT/Yz`-K,kbCcז,]f|<TV6f!W#s.Ž`y%3p 8Ky2bU_;^]׿uCB o9WuI(6i}exQ~g;ThWT,wǗ**AeWWO;a_N&$dyM dJmXL;}Ki"#$9|~wt}٤Z˗{0$o&\%4f7,^8A qϗ=T j̸p I@.k~wln5/CWێۦil5ͱ4b;M$[H@\g`21h-vW.d\VW;_\WlmgMEY$yFox'15s鳇R0@h D+Zj(qBc4ya,HBH mMH۷D:~PN,iDNܬ c"wT[LRz=w1iK8Ǻ`˼.Pd}٨P1ZL;/ts`^9-.|'gۜwu %`vx[T wm" /҇Mdf%uXսhGjѶkAfIe51BW:IJ$b5>X'ŵ#?;h $z/4Fªط$HHD5~ޙLJ={w,bb{F$)-8QoZR0xȴUn nqFGWte(/t,  pŴyvRQ  ޸˔g r'=!?Y;vLc4q/h)$TIWKx`vՂKIL5L:_^G2W3z?ڢ%qڛ/7u݇=.dpIAu*ѣtQ2ٽU{y zBx3jM2kWV$ ?;vKˤuY5IjR `KVpԿ].0;qᝮe8/ !Ӿ_4;0|BrX.ZO uK6#Bt} Y*G|q孭w`"3 {n]fKyqv/b o8ٰ8J+ZoK> Wfl.gI7b?1_*IXGdi0MGYp#q 2N\_XI1q#."i)$G/3[Vv`(Kdaus3};R}n:Gl2Qlx *}4 J]UE~?g^=1:`Mχz> {oݤub_L JElUMP̨ d2L˟{ZVi]<<~3Ko__[G?T1eeYRDؐ?%{H25C!ԑN>_{+b/${:>Eɤmc "KT? Ӗ2 !M4p2M߄θ}Krۥ9٨-fk]ܪx?h(kH=S~{HY(4MVoJ2툠2&aMD%>,*@ qkd(N2˒ī$CC^pPD>tr])zN"d\&-\Gl'nXjA^r3= Xs5p1ݸ#AƬ+4P(d,da?p |8vuUi,d@>DpvnuN ȴqw'a8_ @S,iёRGr^)r,uIf>nҢeIڈy^WS.WCҗ볬adp%!'Ge-NJW"Gwh{RjY$B ~,̢^+_B\0XŏSϓ__}Ծk $PTRK 'Bw Av2'?q^#8>;1t,k:fӧ%IP\? )c^E/ݜ^ڰ?o[%; /nzuU5ɴ CaN~hO8I(cp棱xT]Rmz.Ӕ:J'Vh9ao$O軮A롈 V^_k]yyiUμ~n0귐.SB OzGCp [3Y,Z=xV8$÷`d{2N6(4,m5}^G4zf4?>%,"uW& Tȷ~) Bʗ`$um.%i[ ==p_u}ߵcU"&#ǛRH^x3 #1C[MmKkm0dY#{H]hNa|^vMS&>L\cWgB])_+] Rϛ:x̢cLN̞&" I}A|,u}cNٲ%Jň[^?~m9ٚ˰r|=Vg-bҐremeUDXhomM`țI KaB{diqkyۗm;,d\JC2Zn)*'¸rUxݍOe>I;TO $8{ J[bYmYu N1u[KJIE^^u=hG}d)Fx[;;{/`\Bsp`C[JCd"弐#W%.h鼬5!1f:v/枍e]&g<IƔEjW:c_ 3+lq_Ì^ˬćr}e[<_rղȲ0L(rH{D;@[NAcsAױԺ|!5Q20#G"9:r& Q z7b(5sKIS侾ռ_xPt4c!l Hb/q~j1g/{#;ެ-o5l(X3<Ži箻oӺ$ ;b¸О>d/[0OԞy})0-뗹 o,h&p4zں姴CY^\ty~6,w wx %R0ߌәpH!S|1-Wd2ȐCP fxO'B8qS?(뜹$M=:$,OmkPNIq-7YDŮ~WA3hpV}z$`CDžre󓃸-v7n sn% !M\K_I_.+ppnc1*k@٪_XqzR-\e(§mtaס\׎a'=YN3SWB\4zHq 2,#9h:qO`N07cȗvj|KZև%w@$yEK-e+mHD=>^Ý Gz3CQmh<ߙ)ė_rYWd2 m[PiDs,5ٶ9#P$uxȪJ&/MF1da)yz"*RɖrAUL %. #F-$p,76)˖润&a5;םC"hT QBXd ߄kyj`Wl6^eن:ӾhG2T+vL}w} J8#i'"x L>zbF_\pM 2ۓ_|o4U%ބK$:)59qNx[ڐs%t(Y%)o7 3Zl K .M }$(wmh;凲,}Ӛ%X:}@FhƙTt\nG Gn/lQu/T;'%H4T}%NͲ^EU(W87浌z8faQP'"WGmc L Z[{^hhjN7I0ݻr'*Oۍ/McE, eܶy~ˡC,ʒ~~Js417V`َFPÕ%Ih_1sU~a+d1NU8H_YFưEаZ֦mx>>KeSbcW?csENJ3HkyWd\/O6hcB_z>=P)YHhcF!(S8D$ʿv%w'giY?](m{єIIWe~ls(3:DW&x3$8e&e2B:ڌo_2r{4Yvy黺ao;.1ky&~w[~\| W/aO}{Z0G2TT)1G@3 /*ttD~ ^ JQZfN2'554S?/kzյTmմY2X b& P|H| W;`TǼuF N[Xq`![;Rl!3Z6%UJ /*Pjux:RHfnw#׽m,Ah7wjYBB髬vX:\X-mT$!'u/+9:sOQmߚJ*7L|$x# ?FĚp)MC=DJ.Z V$2qI%#6#t{T]F|$Fkx.3u_wt S0Nxo[%P ;4שנA(!,ﳅ_hVeIJC7 A` ^fKgƊxNJ+ >/p1{?NͲ&T#Ӆ$Z/,PHE;WcCxpdTm6;6ff8cIВBKs/^c(ż  q &KSʘe YV|?G&Yӏ2''ecihY1EPeX;Lm` P~ g( .CPv1܃#43__ã#F} dI2)ۆxIUq! L*\Bѻ_I.>V=sI9yO@ʘk'rV4' ex  xZ"ұKI =[S}' f I &adfE"K~sE ޝǪ%F͕4rӜ6J*)*vC;Ar'2zpLYHF -/,TRݗEQ 7Xzw!{8 &rZ ]&YT1|䅈D0q։&hjkH >LkVl0VmG;f~n#7Ibj.ODq1Kz1Nl>$Q4ywfxGq(&C4:'.]C8V-4tBBXV̕@:4ݵ]"joE5uc?rukjM)CR⿐G_,ծ'hQk WYþTPi(>M&F@"&yCYmH@A5PQ8pc= mTB~vw/J'gpdCUr)!P<q0EH@"T1Z aMn5!u𞉙P39`ix`.zZNj{" Υcc&0ɨ/+.,,2Kq/ l`1ޟє9p:4WLىvv&Ym3M*<9۬hVux%xsȢqM<-:%U e\ TcWXRJby}e!{  *F ҶwX%JJS'_i`Pޅ4(()ǟ.O]^RoY(L(\&HH],qUYX9<9>'c"~/<#8 ܝ-UQ 4CfR/w7e~]vQ['rq!Ԍwؙq蛪b&= 5qI Hkcv W\GJ05IyeG1kz@B JmLH?ȺdC~(2gvSbKx3M.mK.*_Rve1uD)h)$H%+-A;4cG~g.v c3,|H8IdeY\64'I&MxQYx\4`[EÅ\ .cUQ/=Hxn/<"Ur[WQe. 8@AWdSѣ/=@) 37oDhpYys<v`=C/ TM߶i_[d-EƯHB.E۪I/Р'0?f!^UtG1%r1"w= ݮo3QPeȏ*)m(n 2W(X #FpJ2_=i$IϚ y]eD G>b+9zۘͤnf7>ʓp8c{-s+u<GB;`'e52 &Z5wm8q:9[){ϕ!A~{g;[};żۥdBi0(ū +" G, uhfg[F)̶ 0Z6ui @|igrb"K JFjBli.m'8vYÁ0NSO^dU]Ն9IzͫlQyyz ;Q{D98ACem!W$1{6rIgԻʛ1U#i0U)4!{y? &;.z6Mr-dTb{eXFU1xC&xjNQm5ssw25bԿڊ92+qRAK8"Z,׳LuX{-qcY]G:Ү10$"_HdI9m)$wsLzܜp{>)e)#rY8s r\\Uq tsxrG~E+,=7(Z>éۦG{l{!vF+pܓnR/|DԏKۋGO•T-{ou/#t#mǓḇ*1v*Zq-᧾ &Wq r -I|d%HGGLJXUU*TF 9jV*^lV鞏G5qd046AM2o[]RN2&A~0qOF&+c_&4酝-x<ݶnSY^޶Fv6Y)ѯ `Tݝ&;@r>yVv1Kot&~ ?3.R_& с( S%.K͂3ApZ$^n+I)^(_R6yRY buBUDMX/"1B 4unhb[o$v񯏽| e 6} > Z<#аC= )TcRzv`)7 =^ʴQ/7m% rnHs1HBhj2 c/F/9>w^N%Ĉ,KSV<؍MALT #b4K% IN7=ͱJiRE@M)5gF_S7e qOlj$w϶z/QD=rbk#<|P/壔Bbd#{4^<]s8}JT$ Έc8$4a~'3X+dxfº2c&1^ܾB j]b׳u/C:,UJ0a;2Or}L1Z9|oZ>^b?s@ ɼcN'~xV"hKytގݐ#/!u9CEվe!ar_jgo̟<#H%ݵQ[6y8RwԏC)<0RzX/H4qC%RX)tRrp>u]AT0M]=&"pL0+Yq㓔8HXXC:$?owvgyjk%n/^F]J_ 溡Z. dΜhC?ݘcV:@[*55٨Cy3Dz×r1M_\KJthصuM@Ն]w9!n Z+|A(_˗ؤIzz<Ά՝ 1-:@{S0^Έ4ÿ8~'r矱yR]ϩn IܪS~vsɮX`́BVo=V['ӈ~wG8SįͱvJeJVۈIj4+*ӷEӐ2a?)E5UcA3oRu-0cٵ ئ$*9;Q٭~G׎@oc=?lGa }F ˬy.rh`MbedG%x@7b*NDEKu_JWJSL&l_~/kɊ#ꤨ.#'1GytSU/y䄱2,?l~7пL;< @dCO4քBG,R y~[F<&~ѵTסX\o|ݼc[|َݤEak%"/ò\xd`"ņTt]tb1iICAU2T|m&K&xԊŇm"5PT2d$2{vکCDǽy95/Pox_IbVdY EcvsqG?}ܕٝO*+okq*], vng8٭Gk-H-m!ҏ7iR挢5x^g{߷l+VǵR\d:^Rc(WbyۇQ 6LrWVpַMKe(E'13>CLbAԝ,z<;qƷ<|zxnޏati=>Xz QXUϑAg݀< zWl(Yw&f}zNϝ>OtYwẹECD\ yeU'lfsEz9Qy,U?Zq1\X6m8$kX6Wh6\&%#{"3jѠo b+>,9h u%|_'2-d,{Y%ٞh+ 7CfI9I&=F膼~*V啬bЋ!˴x׮,H?ǎ"S}߇9|/k7\H.JBDS]ub6[O͕3Ks mQfȍ; 75 ~\Rqtg5rf#6Xqۉ92Mw:ɖ3 zFi_;M.`Xچ܈} CTzsFsI +6n|OAm߅qnO)/CAsqS}YTwY21Qi4S σL|YKvaSjel4rG_g?b3>i^?zJ`Ak-q^v)C׈{s43ya&2֙3{Sw6K"?SIZՍL`.#sd/DOف2 e^ 74&y*үz"+,j}#α7'(,yܤ`8/09DE}6c&n{V0m{8Y,m\]){qP|\4=>K],dqcɃ rFȡ鉮nwezM # 1.U*~V4=mi$xյ DSY!$PL`l28.v' y_RV_xxOXpsD,aZ8;x\[`K0>v}cCwE^! č/ *a:Ģ~7W~ܻ*eU$AM40e}lAVK釲ܱ/qy5hNyU)軄6=n_(ڶ0]ehX&qy~T-˪rUe)BKe{oC< I&_{~%&&AkY=gWRtݖmUKU1Z0\Kȼ>jع40e)xQ#dGO=Odz "\9ߏuPt/Cݺzѕ/fqN(,167X|j ]=uf? )؇g71j䡼6Ui;]IJt}E=2𚓼t~EmA5͞1E$EQt kMIhd J eF&NP5I Ivm~^?ʗrh,!]mb/lу5ߑn%Apv(]fr6?/O%.WN'_cS?;u,ZƀAqH>UHO0DY3#$j #wm0@ޮ"\x](* Xhra2O X*GH}1]6*SYeu꾱evlc1 Xُ1@!C  \yvM%$"qۦ}/}c qYhhh* 'YOgG㊋m)E6Ilum]'m,LyIk9aIYyXLOV|ՃKeb$Dg½`,Tӂ} W已ϛy]a鳦N.Ţ0a2<|Si x5QLzXm&u9?Ǣ4u{blN-y-y=1~34 Ǔ%[Ͽ =%韯Y"*C㡞Ul* “ xh)S=gЕZ+sM%}'{TZ,Z)~+PRݵuT| 8!UI34Hz-z@W%ɓ@&[nkʐJqΦ]DZvW 4[=$< @IK,/mR~o4Ww%MޙC[|r(mdO@G^;%|MI xF fGG9O=G\0$¸xϯ)]vӻRuYME^K%V{{po/%B eist$G$W,d7?ȱ9>׺n1aBРAHȁgd/9' [8ܦ Wz=6I5Jc"%uqfK}UiJMŅ_z1U+RYvؽ8tUBr䴰 DFLE1KqI<zŅI\`lv&s ī1*UMi!KH/C#"&v DQ^W(΀ a/ձۦU!NSܗ绘pKc9̃w/uWٜM*MRK}o9^Y%fJ>xW?U0` ȿč*k']E_\LsR|e9Y̓S|ޒ50?n";e̗mn<ܕDzY-PR>B\V5i;H)e S [,c-]Sewu\6`z<ѹmd[0m/ݛV6!,Qc(鏮S0݋~aedͯ+Ϗp}峵lwdPjޥrâ{8Uf7Ee4~أw2d}+MhkHD|v 4%&8c_<|t:G,RWARܵ7ɏ8sj"Y+b?u0tLb^V,$YXj E+_`+hZyqxWgfҶ}XdG-.XA1\ #QhjzEt)~&qߓKH=ǯXSNǘ]_4J#v>x0 5 f#,`z hMLY$} n}hq\.e lq~v8X0()T&0G TsUcyڟKb;ܜk"Wh#./m6/$ud]Wyc[? p&|$HBRM7w/|;ڗƅxgK~a๊GVz݁[BBp9T?@>H.~rjBZnNCduC3\۸(=e+H$#4囈2)K-X =.M[ YB9%]ĭU-SEԅ0Lg M^zS>~gV5Ӗyf6b<vu"8waӔ/փ401OXtDŽl PJbe[R블mf!HwĠ"?KSݣ]uYi?Ϥz躮ϻ U}_0c$ES.["'bW/]1LJ]AKUDjуm'%{/o|g0~͡bv`]p==ߎO?_v_ d/e eI\?m ,%!^/3VX-d$VecJƅt1mѕ,Ux4 I4 X 0ۓtխcҬ"%vr{|#xuo?09'1ֿX_y )0yVxȸ, i:+){'u-_d-&8Ee1䯦6vj(il>l>ޙDH\ :Z}q(Rv:c8*VCt=,MID1Qi_[`Jk[- #%HT$fچ$U}OW#%a˱DR 3Y3ۗr5>۶Wj^:Aケ%zԉ;H>Ӏ+N'wj.3fL<-+&UM|Rv ^OSqi⭟)Η°9ˏ9|eYuC1Z7kҙG%p&H CC8Md4|`"VgwyEa۶)JY,1BuCޕSʱ^hclHD)¼\@Lc6k|vh0Y:xR˶Y1ja^.YjsLlH+ج#rv# (mp/`~,|FAZ "uxc`o= A+> R# QiEǓB D a(`45мcH¤D-b"4eeS,9e>~.c"L(N5n V8<*+{ƈPewX9A0+9B#_Wd'I}]R_60צQc*??x5xg\2¹a;S}LMU 0wzwG?v,-:O# 3yQ$и x7cNG0q4^˺9l_<89;;Xx-GUi|3úBPvnc|p_Ę=&H鏁c`e TLݥ}(xU?漾-Dxyےh z?_M;u7RB KNl7'b Yx*U x{=V+F >cyǽ i>?$EP|yk{j=w3wW܄UP:{0Ixmk2zSIJ_bR񋪉ax!\+\O "*\‘ь6%($L<5bBqxCؑ%vW0Y7_W#Uji,ijŒ-YUPdo-Fp7X'#غ*ŝgR6˷cGz97sSЛ3o(bT$4|b8l}xb7`&<6U Jv@2rh_6mgL6J/4x[\Ft% hK~H( kcIQΘd g5[e+Ǡ&2P.w26)m>IFųQ6 l2ͻd[nN< ~ߖ.),ËO ٨_rR.ޗ>,,ǽTWgLƨc1 q̘䚄C$&{B@ 4#'7`e Xa"gMV*"ӊ GRvD^&|/pgUDie,*{#]!tلjUUWuT*>ː"0'?bS1#i\3g.>Ӫ+_QR8$V((I-l]}u:Ŷq?"VlY.q7$ErO&{(yTCk*+ ч͂@' kY 4oI".gB_WM1UQAkIգ>Ɖ61P 'ɅAc+ٸxEa['Xb>7vvE󄌪ᣅ"gcP"a(Vcj*?(˶a(v~EzNo6oԿsǢ)mەY۴F8I ThGz75Ldaa̝fIJM(v._$b``٦װ 36n KNa~}g\ճm "hUB}( \(nѱB6e&.4"V;JG7xByI' u^~ԙOUtb]s6=m)쑯\N}]itն`E2xpX_SrIGZ&ZƱ{&62y1x_to(E/h$o^`Cx6缬ռ>T>k2 /R)~r^!Ųػ漉]*kn6 f IF;GeR^&GknZ S&c%AaGq}6G?ظTC֎7.zzwo6]09suaLP$[?M#,S\ʰb.0KS/7'YW Ȯ}%{I=a A\8ia7(1}@_ewS_)^݊3ͺ"KRحXȀFL H.=HlFJOKbEw,o?ץ6m;퉡Q$]t,.?`f7X)4 IL@48 Qϸڳ@>*ˑl6/H9cE˒dtFs*{Ď_:Ц`XU~ m4\Z/o}2SX:Mq[zcue;&RP_nq,_<]|\/YfINEoM'ظaML"T-\b(Soa:?am/4.6}wbuVBA+%kDc ñy\<<WǒXǥ.i}c*~U8nų >KRьp`M5C{B4T#'yEleבYYVv}Qc84JFO'e 909މ0Dn+vqɡcT6V늕v^ c/Yƕc˙xbÙe&0)9m?( >-$}Mǖ|ij\[\.oHFQ;GUdO,m"o7)+S-$h_YOY-2Gw?hǤ+.$xJ LJwq0M̷BL^N@%Ry)uclȲxH͵fwFB*67"yHhA%m%^_ѕ)Nap%*")6F*o*831|%1mu:Z¤ww G>Ks^~9?d]lS{:+FFM%7 4%iI4|W>vV TXcߙ'w&+ U_UY X5g/ޖ `'a';Q!T/01>ܤ:G.ʏ}|\>b7{ī;ZwHD8JγɟOW/*Hb"1ˮGsseҘNiNF_V,Ǽ՚haݜ'1?HS˚bC:9y\WU2CBu=;=JsRkeQɼyo+ZTJpvu=h6(4-)odJٞ{~jg>oo4ю|[}*6'2g OћZݥA&w(`9`2? X :ZbLF+ލjᦸڎ&J6qjvVQSYEpObZ{{88)|F3#["f⣨1#uyp]5SW(gmyչ1sm]2Y}b$ c\Ai/Q@)`3Yy[n \0wm]r4q5Bfhp{)Q;>> z*ɲZd/\0٥벢1bZttb;I3Nrm̎D3Gr6wJ(oŏ_sg|@¦ם0%2O_=@hj؞RslvI~NDi^LC?5m/S/<.㾜]ƫizt5OJ ՍH4wP&Rڢ.Ibwf e4>uYy/ :-ޚGyu!(ٻRKlH.lK61֋$LJf^62O6? `7cc$frxy/2:>cY,B'a}a#6Z"p&,}XhGi;f=<6n$i!{/\s"boYґ ߈a< B,'~t7U9NI>ZR/[4WeqsvQ]:rY}acpX4T zÌ@Q[.AFL5nڎqu}1i_I#C/la V>*ne]>A,ȴ6Iv2N_g1n7s͚ԀOcطoa60*_~'yWnKQ`"~D嵩=E'@S cg]Cn:}-yŲ \eNY^"@` !=Oɚ2%M0at1YRHJ+gsI񸍏.|7Ԃb^Cce.]{CC^%eqFAs2cpx6"|:>aRyB<1+uW> |ꙃ1Y+"gD7;ʁM,UdvcX!wkꗴ!kY ׮,k5@& _l+yOӣݿ[~ 0m#2t*c@oB)Y; 0>dw=y}9庌<6M.`R~_M3o](}﹐KU+O`6 b9ij 2cD^Kt'Ţ;%.,*zL'LV֖Q6-%Y˚|.v.°iACiyE]nu,?S̺8S/ھ*BJ])*z+\$0&ڃ-Z 6ol?) =M8P̚ -xeYGd-Ԗ(Ѝ('dh痏= )̕0롻ֱMNe?w;937j@~+;}M%!2bW&IV9auYyWaR\#u֩ +M"`j~tM{A'&X.'`8Mq>g[ F" RXJ<)+SAeb+:W䴮NxtV_/?w]^vn@ Ά=)^3gh 9e5]D|n4dw {a^H Uɝh́`o›oIBFj!ۙ(kh-lڔA#:QA\m:/zIk*fv~Xa DFwd8~(<㍸xå<Tqd\Ǟ`@Je{ƶ4{α,zt) L'ܨtb_aG٭$ƈ cv󋔪)kBpXqɃtDۘoG@7<~:8eyhpJEO!* I&BY|eس:]YJpl+bK۫m1 2>a|頴9_` 2NJ;+\Iш^lg\IoXiоbp<SKE,%MXߛ:]O8r Pcm#2qԖ]-AN/:QoeNrkx[|MaʫȖS)G>ow0ε>.x4nݮynŭ=蟿mHKyOFzJ/Ad6)v!,p_n0 3p5+~$6 CE[U/ewK}-8JXc0A$-~3}յ#"mj:)[1qKiv}VqKn)[L=GϡL7{ ۘ' ۭk|N]mWhTM0!4RWm֤WFNȰm7=*CiJwc&Db8ߓ#rr/5&-MjY-dH{WhWfJb+fF̦"⽳YކCvWI)/9ʱ'LJknp%А ֎c; %o@q<| }-.ŰOb#Oz/xj2?JL$'H9̩XDG7慙EEcOvj\d4\e* *vPD@ܥtO3P2< b$.-[뫧]"MkSj'gXU͵$7,< MGBOŐ(>S-sӲlUލOtxa]bICd (  (ݛ3$'}F'~ygTNX<.ޕ-6'o~)Boa{s>a }%0Vt,1VK֯lK#Xh^o;Eihƞdhmm7$Ըik{}۲\lҩ\"vOb}Q\Bz_y+([խizϙjp~؎A k +!O75cPboq)0X/(@3U{;eYv{81#JQ*KWV;h)k[G^avuqp1klo>  9DԬ;wCX(cVTELރ;};u{L?C?m~ٶe:} 8K)oR oB;}ئ]oZ4(ww,N2gef{*41 ƎJǰJA_KI9FײKxK%WJ` xW|$c|βy#r)j8쭴4g]>T0Qe7T#Fx0Cl"l<="(O0#j),C,39]N=ezWҗ\Br]$[5q-\[TG\MEw0SFICkln\HPCcE@Ɯ!1$ z[!W<qIU)>סRĈ>#hY%.f`k\amY t~ϮpR YRFMlzH01&MO5,p&n<( *o4í܎xydE,^bIN@5)oZ܉ܖgbt)R/1t7PȮOۡlGYj,0j߿eʝPk#?=zolEvq%`:9#".O.͂$"ۇBuvkp%3q+9Y[‚Q(w A$VRlbm" Q;[\`3em( M,m\VC1t-C I_Lɾ{õe2 +~dSzw5|vt/}sڔrc.mn,q\Q!u˞6fRjZ!|4,+N0c Z~LLh}eëZ*'^BpdTG$m[p*C@۲[A 9fnDQz|l/ڶH[qTAbV;XI ;VS)"DIOwߛI9Rڧ>@DVՃ2}kA(Ty"DV6E32Q )'ҥ]`7\ig3==\\I7Q*.;b#X;VcpV-$耢n4* ,=n" oYI -b=19Xoޝ"A$H#_\J5 Sg~U@#q) 1ĕ爨Z4ōqAX*ҤUθo`Y^h|n9WM>U`3r8H2vtS631cjd,ʀD!= #bqw96?8/T q0rSRᗆ6}톷㇎pJ/70j:8g4Cn]wb |ia,,6nqf HŁ$98O<- q'_6[#&"r%"r&LXP6!Zr!=@A饰*8ҧyU&}ŗ`X1 7>r%a3(X>_p! $gNJl]RdI<'/i'yZI*;`@~,67w\–b  k0b2pw&Q@ˊ#"MlZ߿AɣrZ#Gay xw$%r5I-J*}' VNx'd#tZH%v:K\;#Eͥݲ+S{𩪧3}C=ʙ&]69R Kx5AmF۝۳_gzb܍c㎧ptqSwpg}r: ZYF"̲~I -gLHIi꼿$BXz-0xx(zApM~3H_%`:דMs֝S2!hR_rLEc  (ޱ=9b{/Cb^%|;qoIG*O!xoʮ"Xq*ƲRBeyg|vf50؆wCb,TI{Vp#69T Y)`.X` hRY/%vatMS5-K7xc({۲>Nq͸K˻KC W }!x*pԓ $l*a71owRC,W o-@ c_e/Fɸ)Hv?&;~a00,wTTVyqdߞ/Vc2(ϛ\H{JWtq ڔDlq^n pU@"J'3z)pyN*K}KRk%ݵK0ϓ6~tDkF!L E ЖgrKNW/:l&KP,Tǚ8w%q >|a0wjǡtZobJlNCaȾ?3+*{kK[T"5wngco,R R;IqôLD|}[9=7ۣ߯ыT('v]E*/ ;0mXAVx2-w6.:qXrHgwPhYTJ\䇻W {_Qlrp>c_oO|S%ڬZ\jCݥĥ]R.^V1mݍjk7Jp^a(Hzm"!Z3~Ӱ4]Qrl_׾ш9د%g#S +tmps!Jt+AQg݇"k/-kߵ)j0?>cn4 p 3~ Prި9%g{]]|^3\)ri'>tV5-* | Gf"bQcW׶nNuMN%&ݵ\yh4LWhMfAPc~QsҐ-D('C:_فP90 YMI$h}m`E큣 &^IE4hg 5s~\֝ Y]!sGٓ ‘݆ۍx ag>mܵ S9ɯJxyW7﫤un8_M|_0mz20GU`n&<`7>Hfei2+J"|NUֱ}.oQ[+*~-عաGyY$ߩzڐ|! q->[ FwӲ|StQ|k=$M>4LEX;:9dspLOaR^ðo-? s8|9k8$ [w.Ƞs #LN&|y`Q1 ~dYC!&p"/yU8A3lQJiuJXe$R$ ԼG4ށPN̓iMh* /yRQClsE 뻶E̥M[cSnTv ZO|59DUUXe=cZF|m`K(4JS+]9ǒ,e,PUC?LfT_KL% jg|{BB 3(ǔoo5)tby)mk겫ۢ/l>] {`R id?@])X/=cܘSvv`1>L/?_OЯS>pRS|)[pX Rq< YI1G`M Y>>Ɨ*mOae{i klbH)ɘQav=dD6b')q݆;9m6&//6a윶R/Lfaޘݸl@#*鸈lOsW7OHAgIS7}5Y\NB)ԤDmA'7 a| 1ʃ8?)gIi{4 Ksڨȵr/: Y.״yȪ.ִece)'BLP@_( s4ex"%80[3U9}Z6s &f =\1qn1//>T8WUy L@j`,dڍR#XAIɧ,/e%Ÿm75FۥPǑkzwZq#E}y*Y(kx gwG?nu~ދh/ys?nd^N<\_շ* H|܌0˦h]/HJUưU?W7:>}&}K]_/;DaXdŸla $|->ש\op?d&^d䦸:umʷ&LW9D}9Uwagr:➺H1{?1RrUS#tYj!̬|<+- цT´` P=S_Mna{ nL86@*^^;wlG٩GfRy|J^ Ǎ9^ovwq}~yiX7T؊* cP9F)xݧ,oʷrYί1n5O5r'|`5:P8bEg$XK}2KI%*mUu{Ǝq3|lLIتdQ8鰬0z_J.)sg )\FԿQ5 52i2?och%1/ލs>e.YO68qeT3zR,hmC;nc`1֐$NzنF2,c\U.YD`꽉wX^Gdpkydb}}ᵏ z+sgkU]ʦ:NGv-(Ef6$@u>q?0uWG^uIdVTB0OoYble_#NNvgYz `X~ݟذ]<ꮭi[ѪK'Ky1. <- P*68N>HW W vknky_ۏw*2#Yfaсb;:^iowmxI Lf/MvTU[4M߀6?,dkuZRn/PcۡlJ9+ƈЩ£ʪx2|RA\řVGNiЖJɸQǗ髡%]M9C-Pl%f[0H煶(H~7Kn(G[,U -g˒LgNgr(n(/C\` &\Ҏ}rI~`;TsG9/K`?f\{]>q޹~ !]lcJr?qPNd9ψD }v/uY>/6Trw~vo}|< s?´笼6d6$j&#JTL?@kJaKy% -oh^+e$q||I%F?jv7ǣ>bo,;I4P92[r㱞ےe7jLډOQ:(sw9oo[^ri,׊nmgĪ>2RȤ2صLEuj!{`89bѿ;sTsxߗW۞S7Cs?zsuƺȥ(m+W'O||yJ2j|PSs*Z߮Ś:..Xs ē=oT *D}" Nw2e0Y_+َ `n Q8#~d;neݥN|_S'nD17oω{,ELWn CTR=񺗏a 4o9=V8N96<98P#R}X`{0)crX64S?G]s[w❐^k68u!~g$BkrYv\W 7˿R~V}oN~յyxWiJH. iC(}8!9~m կٓF?>z)$=q:Sy}?`zdOu"=$Y9fu\Yؾ$zSۼ YC]d;KQC.=z?yqi$[C0kT#ja t`5nLV<&7ɝ$e5bb/;Y. 3P`Rm(V OXaiyM5>{c*Vxo})x_6?(/|[f1aM-L[NClI[!cqLnXIC"qj bqk/ڻ9ݝ>۱cVv 1u[/r_SRݨ=q`{O) ˪ۯ?)I^e|CLu6{{>b2[+׮d:YXc\QafA=?`L%R6 *SF>/mvrQh_pˢ9$h’#;-@D6{4Oral g}^[eRɣL諾\֡2ng}Lb-eH}]7GxIPzyWvsv:3⪏^jw-ʲ$Y2y-bltVBTAs{arjP-'_Ěe[5-/>޽m=K!Y]մx5cӕdXLJn ;ƐS&jz.2cV.VMSVYx[\kiartJ479>njH_ f,YyJ؛^n}۶@"Kk k[׆NK0<`GsK22UP tuUWD~1Vo[I8?EGJ7͏0UZBj+Scu 3 Fä I-W-X?<9}UޜϖI]wmXT%b0@w2T Ta 5)*7]gabOYCRǹCGK3dCK`$#.dE-b݈l Xs1 H;R&MQӖPd5®캾VXzY{soT;Jv5rGcڷL 2FQSSL*Z91}i׊,/;ܫU,;jӇgDwhdR+qž@lwP޾I-(2tњV'rBӆ,<* ܬ-bs.F8Reեf߬u! C;e |Šx[7]J]//49̌k XX7KM&fZ.Xz^x7-\Qduҏy|h.>e+D:v" /yt]PYfl4+[H~:CphbzK0ob+Y,хͼ]욗ɝ}zZ1@/$RH{\v} E;b|lSl,Ӫ:|'d_d55)ʱ.)E,%)]_'K&pyKڥHO JυxOk]2펣iK8 zIZHTFb]ڶiOϩu(.`F=szz>i>X,oH[b{_L b?1  x-j̵g2\. ш4SWu$p^@sAѳ6晈kϞԯs ]$szF'yd'm>C[!KZtaKK3|EzŸȜii ;=Xa|j^cUxOX|>nD䲈e J$Jߚ%:w[0ӓ`=m@_$v2ꧤvͶyR7%k'. smpLViJDcӴH!ؘēeya|΋=!onSYȜJDX.f(t(F}ǶBhJn1r$8&L G!í_y/%}{-ٮEe>0ڐ#ZgzI ../[S 2UصxS l0O;8[ig 818vS_&gI5ƒZkn? w+d)WuܖE/"W779.Νk;aeVejϨXisqߖARiUnDǞa^YvSc`ʒt2O|8OHUC/nL\>@]KUd)'oEq}䣪xkV&\6_v @诋GDP/b|\"jn C2/eD`U'gV1BdWq#?C$!:J:~y_eQPFQת7y |2gJz559@G=Ӛ !ڪiԲT.:J~v4 cih|rJ:suW cMqkSic,sNIF<& Q|IJ_~bUfvK#Isld``~ƄcD3Ó=_CP٭)3I*7sc6s'.K@~뻢UBLjZz 8MΡخ's?`WJoQXU]$A,uo8y}E?EL.1(gcfk;?nNSrkZ ` )]`")# ~B" ^Ca >2,'Ƣ_Zz)Nip?7_dqq}v/W9- #0(ZhГt~~e u3^'CD>}>qVJһJyT[rhwMO.z 7Nu (Fvm50;mMV8o,؇8-6JKE!sd 4KB9ڕ3p `|}N8?s2??y ξiMXfV&zsqd8Ra#E?ʄmz ],7뾬_4$Ect_~'<Vh(' :[,hvv{x˜-e'|ceW$JDxq{GK(1f}:GRe!oL 㯚Q?Xd>ˍ+$BC.w40CKp[7ݖj}޿.3:2X?IBjs;x{"  &!)XG]+3NPKˆl5֫!L_xwLXpJFjI( hqޓfx脢c &O!఺=AZyRs w./W‹mm pTftn`bei*P諺sr~X7P nݐYtDK-a?+ 巿j<:BwN3؊Ùv.ne޲C*JRnΐ po:͙z,}`SҍYedF\\lW} t ^zVI]#QRIn $GB!u_䗁-9\l-Mcuf`~ڜg9SWԔjS2ԗK,*<aoH4=2>0UT1u;-Sf^e4&L1b~,k;gdi]Y1CSPxҨ`6gP-M"`¤ĭKXjԀw ~>*_9,?{~/}~XrVA0@qԷaNGYpA뿩>j;ن)`,z>jpFNT.CuT/ b؋O~=p,JSd_v|f2}#ȵ}K H7D]fnd-)|IO:y?U0fk~ m#-,}Ɋ*f.QtCs4/8) գTl$Yt)uaAX; ~h^x%yV3GoO+uE`>hh3O[r|ZgD\DȲTxNG>ߗjf+Eaegy,!Ao<|E1\dBmI+g;i[ ܠ]*2L$U5s5/TQm ؅d4WO]RSۖ¦7J,˶eJq kݠRX0@dオ}OE%R>rJiL,zD^§܄i[x+fwv6XغKqtZCPk6w1>f_Z v'0iQf>KK-.Ur.퓡T%&U#nMk[@WbioX8ʚݺrd0 #K]q2EXSf}]^: omYɹq0Y3yZm R%)m>UxLq+ܵ͐=+`l;w( frH!yS/d<ȿKdJԱu&/,oLeu{}iVl2 gԜ?VavO/t` OZg)7+EZmq-0*p*i^ˎ GW_'Ǐ WI6hR}aZKiKKwA}vUg[(M,u(_;GWІ˕ c|)3e,$ȇ;44,%r10yN%<6Zm'Lm. )[H} ` (t$~oƤ x%zrK-(|opFe:jDsqܮ5U@4ώ@K wQCʗbbSw~)%c̢iK!&OT_º繕PRX^̴y $ <Ϗs/ֻYA%I2Zir+B@PΝr]K4OS_wV*]]VÿY=nb!cP;5;y%=#='Z;=Fش 2=f5ً{Y --=ǍZȳ.եҬhL{JC 4I,ځZ6ۍx׸Pj)^:zZ%|cڬ _ۢQ ?ToCEs0@BӸ78jv坭/_t֊u۩Xq1K ]ЈQy {:_ؠt 5~+떬Ja.uny (. g#8<3KoܲcpsD"]_cM%"*,EꙦsB#C1vФ11OᲩq~†k}x%EQ~ߤ+V -b7ghfa⠏ qЗS۫p}a$G a!+^nOK& \ƶkEo}Gk07PF $Le k>Y*+:Y mt3q (=7o 3+Y-YSVһBJPDȣ$7x jK .7'w+hh}(/NX5>@F O!JeB*׬"s475 />dgROɝ#ŻŠJi GqNAãf}F՝~@0)Ldc"xm(gM}^>%2, uwm =,Cxd#.rxǾ.g^K_Dk~z}lCfIܖBq81tk1R/ӺMg6G4Xett)\!a-를HQb]H;n*,q%ypqk:=n:^;5 G[,S^rŅ0ڋֵQ+{ޞ~@wxY EbyT[n _zw3e_]إmwsH/`p-1˜YwV-"jmE?n/wg6YٲRDE#Ko; w=q:82{CPBx4 !,-W=at]wg:KkS+(ˋqz|R DžF#! ̥lIyv{z-{UnM4?nϐӖ? b S\cZ{ a%lY(E#I?-O赢!ۈKȺgPJ+[kˮJ0񶪪m01 <0eyi7م]Ͻ?e—?)W2de]{IJ1,?.ÇES:-kHږZdoǝْs_Q.Cؗki/:\$3?˜ xf?pY8D4ыCHX&G%=-qss,uu)tH)5LTхQ`dNp00L<,b<ߛp/- .lvg=R\Ug~"uM jn?Xs$vCPrZ9v7cR=F mWyFo"d֝@9@+`HWJ1Hln /Nߜ*E3Ʒ:.jR.i.vO1`!p`V9M7I/hvcy2RP=c=jihŧ(+sZʕ3IںyQ/鱣:.kIkͮyTmY6qXVjdp:/m+y]u~ֱ1N/= 鵳6o HK)`/b2k@DIt7M͝9Iu 9Mtj͵VBDՖ55?Q&Fi8iWmӚ XpH(%̩d(7)NfOKeP _z1>o}Y}x} |-a t8n$=ݙMH.h+I*u-3gæ0Ye欉VX{7tKqWV]{kG^Cv#tFɱHaP- DȐszv }eFo`2~$PA`&1Y)˰|(+mY3;vya 6a dʃpM`\|PzeZ>M-K]ACuIP{W`m(f`X<)K|s_/˺,,?Pie\9b !<1')aZVvj-P z`F}6 l{#aA BD#bEcĘ 3ooNI;ǜ0h2*tZdYbbWnv6_Z%R8~XÖr5}92Q (cDK⽔Y#cY37.lo 7577J~$INLrrFIn[Y/̭VJuO ?lŹ^q=Œ%Idm0/5OF78|ZuU /ۃ_˜ zMrn_&;wd>@{*Cȓ%ow@$$q h9ω4f>{瞣k5eU7Ր ԚX IJDɗ XH9ydQȣn2 LYrÃaϻCt T̊aH0b)hZ=.lGsr7o21̪${ۘu򳓠T9lf^}يӱYÖx7aU! $bC9 % E}MR9:S?Ǟ.}vHZً'oм!AVˮrH'2GuY\u*Ndh7)Njw:Q*ْ'>c\4esflqa%7&騼6.⒟XԺTQT;w4[ & F$57+C/Y{wƞG;F4{Ou#EI0$|͒0}XE?&ykgzm~6PsU6|MCe=?p\ڹmyfD"xxGºd>K }6#53mB02$wmT+bs3%'{x.v1tc ߝc:܉PTɴ> pL!<$${nF08t.XGNy;#XoNx^\*¥lRn)Z<#hv2ĝy_PxZK١ xV|0Udʺ~du*^k:'3'^^ %{NYf}vK^_ 5. fXM~.m_+sF"10sЕcU@T$}-gwcn;<̢z]LD42;k&qW0:c5&ԅZ&d@?羨v2P[⟿_]L7u{ɺB /9!5h!Bb #90y$`jI޼*@~NvQWR;En>YCQ_ A [3{o[b8C'!qB[R^ۮ}3, Lyq.Ю3mNN:t_y2li<;wO0Ml-rLk"cBᘓi!SRDpd8wB+(MtZvc.RXy>NR l|HY__,9Q؇4> Uw-f?E\`U5Lr'}rWʬ6` [ҘcC(\).``Gϯg[ŋe<ϒBD^$V{bS;Siw 'ǁXgR{`2oT]MRl2%$\,*Ƙs6H2VB|&֨RmsK04 &:d@ݦKpm8n3)Py̙GMOJ$ESV7=kg&QjjJ`T}ץ&&O7On_UUjsfZKcfJ,c9mp`D \F&(,L;5&j&mAmE j(: kg,sK_0ݙ=|zbU4\Μ~x}{#W, YB(jUvZ2e$E0([fo.@7׳8TqzOW'6ܹ7E@{84=$ZCs~㌃}+௷3%Qmfh_|Z\+צnso'w(/ezIh\1sX$z$zopD|vrvb^8<Ѳk& Rnc!1*QgH=PR4UCȶmvxzn @\1$ť(C +_Lz$+qk}́dM#R)jQPyY_[l3䮗9L2GWn ( VG 5)2݋<󳹵bn|G>FxZ}Rl؀ƻi@X:gC>!<=KH[{ Fbk%>/)~ArM`Dڃ8d@=_I)(쪖񟴻 dWů~/IA.y;^kUvn'ށG> ,`\UcA)f ǏbzXGqF"W06wfQYl@8`dxԓ5VzK-_x^x^qd>"tw=82#0q7W(͸l>Ԭ Y6+ID:T}zJ8Bx iv(gP0" h1OwA_}(i9?y`]քH2,!^JGf/6$9P I?'}P,LE|/T:ϑt;U}-{_Ka؇` xbv[T#cRAeHK|,>bkCOe)e/n&+;x=|@ G2k&ut޸*ohD#ٴgY䷭m4 |'B3nSE8+eWEm|bcrf1KvTqrHq&^*mrRyD_'bMjZz HFSúD`_e1>@`M_Լ~[eI .*3'7:yٗf!~ɎUIJқ>Ґc}%?Ĥ !ޗ8YBwpvPKvۏ.}.*qo{sޝl1DɊD,]T"PV${FF>hMKSYQF ]znc|V_ AQzAL^Th9rqRoí8w2]ܶxy1zvRj*yfr}⍻I0p) hCb#@@2ql=#w Sfb3m}23,w-X'z[жiWƲH \IdTQǽp{[0[DV\zY[|`r[vحOoTA))86TEә%к`p.&ȤȁK{oK}ߞBG臔Lj rTf.,$,/t.p-DX zV=bC1l`m]!(i^:.q̑} 2Z8<8@&/Smnk@Ċs iQERx8a+r#u.6>cAllWSЁp8hq&ݍ;s9%ߧq}:œ/Bo~2T.ZY2G:!0G" {*p$Z=@d2EJWQ<Ɲb5ܕYweƦh <0M}<LȗVfQof+kYo~pnv%v(u7d-a$u55ѫߐ lLϾ@nOMR?/:!-yg5=_Yӳ]ݞ?)bRd2Io^fbHtVgOo0n*;wx|/oj,4,v_:z]OKǪnJ!wE<1۶J\^F'VTnݞݞYYYH/a+7@2E]EdcQ~Rƞ?2؋M]C&nF)vwT*i~Ǿy~>WxUm#iT1Ual^޴֎ߍh͉6v O2YQI<"LL_bo^ͺ-Sːg] &#mӞ ʎ1)=H,W/u}>o(9?qX έxXh,> L.<78d+5W`r}y:?/Mqrعt4$)4 8͑'vXRBxevouWwV'r4X slv#Y 315|%l5Oez5,&h^;n[X}0AΏjF*;_<*d`TZփ_sfa,)/o/ǬĦGF)voU>nǿIz ױQnXa;ɳ !dNe2`HNduYηCm6.+"">/UWCVn M@K$j֙+* b/p vh^~pٹkO}ܛ:,0pX`.iI};LÈoiط$|%Ǡ +̼TY92dv^/+dN~ ȔFBZke'F}UF5$Dq9X~t&Wc;b+&>Uf ]^.swuc?97M'4d%qK*.%\ћ;P#52߮Hq͘y;f8l0>s´ȺQ۴M~յ[MC+7X.Xn3!j\6D-ST2lQzָoڑYrHj]zP!#U}!-{}XoJzY r @h%"E^5*1I3\U]:IBS=Hۨ$% ?$쭵|_0M[;,lؿ:OZ]a s..I2k2mndTa EPsI _o\MZ).=jq6* ~Ro8-ͦ+D`܁,e|MG_v%~}:?ɺ2q1iv}y"^6a!oRN'L|ﶨcmlF=ů4e s`B6KVrȻl8#P ajC&aРvVzܾE$ڃ43?tyKIMJu-xUad':xQfLF\Ba[my11n֧YԸeU<1?CAVB^d{ԏτND܉ekJ*Q6䧆?6"Q숺ۖppgl}'xrWUgPAɹ$qc `TZN& IiIgdcqply~_\n]{̶Sc@]n'k d<֟EB|/؉(V6\.yB_Xc,ʏ89 ߸_B"m&Niz 3pˢUt,3IVK 5.Lj*:bW$ƒb=$%Bd)nҌGnmw0zΛ*2z7,7evbUg##[/3 8K38Xo۸Ĭ{v5jH5*s&vGRRN ϞԀ2aAj's7n_d 3r#+-.X_fJ}l;:M.#}L0%Ė#^fBP bJ1pUI o>3T1ɛsvvՇ;J,o+<ކߴ{V!{b;,c1Vf(.|ΆX<49쿠61;@J׶I_ŭ/@w&nd-K?t{,&#$fc޽c^7tXJW5)q]A?C~uu)wEf̓xvv4(379ٛoBJ/cg '}-/E|I 8lD(5Y3V@n%vVcHXל#_{_[]Vu]Yz_)PluHXc*rVL!bnNL`jg{Cw/`4OGdꢭ]'WL.IغD8$vnֱAXL#ԖX6o뎱52ˤ2%rna^XwMr>%qXY\O%0Mzy$:\H`5IX$ wI|>o>n3V 5$E<-qZm]rf:{HBYsP`@.|d KCH~m_s,'%>Bٌa\$0!>)= yAs;_a2-G6fmIKRufȼ67Ӧ[ra+!-hɬKO= ½Bʚ ,W\ĄMnRTE[ҴW L;>j~G'rvndz\sR{pR[^]<}bk>BN.@l0ߩNæyr}YwXϷ ӧq[Tq//oιNxgN/kűIs@ 2f-۩q2ߓwX4c^l/j-~~on}N-.-kUD9)J.e<0daYL%Y`r|xZ{is!^N{]rdP>+7tS3^/vӹoyo)Ul) ŏЧ1vcb "d?r 91V}WJaYIc]gTkwc"8@ޜ-wi)J)Y5KyfI2m:ݕϖ,LVu fp<ȶz/uE_$8 nf..2{'c.f &kabp%{&nFLΡd06$[x|~x0qϡ."C(q ΅!ˈ؞i\_onoWH Z}! !QYs[4!q wU_^kFxWɘl6wI`S^!@r}.`<={Ö!)ë|~=e>#lePiL,?P%Вcԑz3Rt4@M?a(~`)7'Rѝ=a3Oo|'%l*>&,)-RaQ厒gg~dzyk\M)%WC]Z9,PSc2`s ZZR?[F"W%rYAfVJ8}D&i2j8P_$ϧ.Uůo(V:y}>q~3󳗠 Kw?=;䇡0-dRr?oƙ&+m]؛2}c:@K|e0u?_7Ν)djlh\̬7 ]a~\o#fFUOԩa, Cްj㐱?Q@c+( a7͘f~1 :=T!3;ѫF~uDwXՏ糾ǧ'tOD &],">zҥ$pU|8t![+\8˹ߗo(_ }-ɝm!fJsaۯ `ENްe:ck[t, b9,"axKa("⥩F{Q0VpB͓0%X1i}}:{T~jߚK__|bu7؎]_eUc2AAdVxgɈ#!鳳 JPG{iRLVGEv~h|I6D4֔;DTD3'YgHW[A1&%#Uɾ{bbNXq]J9 v̀)i?ƼO,_o#70JtKRdg/ʾVyl:>jI8#7E0 +ٻ[Q'`6%reԦ _.!6ٍna\ѫ& g{H"g;-̓gN(t_V8>Z%V|}lD>؋Aj1dIV ɟ/ &VpW=xGⲱ4YOX uuk5X_@qn7KMyiK*)Lݘ;d"y%v5}H c/i]3cC砘^Xe)T\AׅÙumֲര># B_ oQɉKת㍧e[f=ZdZ8ǜy{\Ң% |x6(z!0&/MW&y4`c}n*v-mOu y$yzB˵1Ƿ5/c{>WxgxGMNw8ܧ0p0ↁ;[]6|kO_Q \ߪZ]|Bñ>ǦORŞ|yp[^"'e? 屙mKRb6xu]:>Iڥ ֔ḳ!$Ya T>#p޸#?>wcO~E,s$Yt8GG)k K JYa&Je>ɂzw?W8(Z?瞿_Xх',.L}ːЍ  h|l ]V`uf4kWeȒjƟ*a߹Kc{I?u]5ĵǫZMFd8g8}Ara9X"*Ǵ{Bhw_ȸm執ۂĕ'wcm+9#eU[X-@{AׅN#$sQVpXlNhP`0٪AP֗ʲmbSnk;cuz=}$ b h]xg9ns8O$TTԡIqo<֜αƦ@`e1w+ż|O)pL!n8DFx n*H|Sҗ_g7cZLvsl6[r^Z7-J~ZT˜p *8@(0m'}h_&筽~G[YC5UDVV.7|.3kG76mtZV}f1rèVumݽ@cC+7ku-,89fcox(.q1ՠt!zgi49Y@" k$t) 'w,{S+_Iعa]mVǕ}fVRZpwNv~].J㝾Sd$\^dzl5@7Q`/cR֑9 &~-cnj=SD٭YdoR4~?2yUiC Ix>G`K/,fh5IIRLx6! BNܝסxΞmvAPe}T&8)x ,wOԼ"Rw-UX!~̮'*כ!V +.8 *mN%_)$8ޣ kX` )2ޟsiw(&_[Vu2Iɦy{MsEj>Z' }o>- ?<) ׮XȼI8&vL]0p5gOo/#]=^%}nyT]5u,")ePKV(%MMV˸!ԈȔQ'fqQShL4QIf/yRؖ/LF34K ΜDA-ʿ&D+ 6.|^$8HRmYu6!QXn[bp {b~86[ЍXC=W?Lv ŵlŧ)(s:r)f(ȗ8dʼzre_1 ߇?C$?VbM G~V Vm4ʎVd#iVln0-sL;BNzov60$Mx0V<kĠ#pLǁ?fNTâ8\ǃ?y3s_D˦ˊI_ZFK$򢧇gWI$W=~&5|I?ZѼ9j,$T&mowy8\KI􀣎?)2hyxޥO!IKjXQ8×C k|R~u͵|NvKuɮ.|m"A΄|概5?*w72U1Iռia4Mj%nq5k"*l 1% ֋--g_?/c-FE( W|Og˂ċ?˸ .6_}.)ZPzF~'Ei45IҐBVwb3|N!WWk<# ktY>Ȣ(Λ?%9=3*NUV$@DOg#!yz Tax wbM=qL*Qm*L#H0O`ҥ烣;?WyuLukҦïzq>0ߦoycg:_a3E]{6)1xLz!] ټ95yɮubS UvGuYl cQd5+ej[L@7BfAe.nuS$yV95 L we9;?s싦ʲE%F^jqz4a|k 2!=dw~&0nŇc!yI^tRl|,Ώj)2ϥ%>Păz:$%S!1 -:6k缲nkUE+X2!G@4-2:0֟<rL}5U^ʥkk(BK>||D|ԑXz?&K J?QSn&JX8wi b&oԝ)X M.#W W4Pp1P*;C<33|(  vK `-^1e]^dXD32.(-3XR& TunG@ q|heCOC;?OFJ&}޺?&V.?1·VkmXR)"Yc ^|4%K~!pjF! ,?q쯄3OTu4`o g7`:IHsqx╞McC35࿺%2ڻ:W4&@!X-f,:$UnS{|N̷"@1 )|Ibz7ÍЊ9^j 1[Y]fn1ދ'V^/$VLlfڶo v'8t)5p*wby.`X)vdlx-y>zՃͣA KuaV%'GK\~'rLNʟxoUYJz1{gVtI'1@a`;\2^d[ q́ #CՍg-fjkyѸzߤ *;,(yR9ܳtOk)΋[y[q5q;aC{#D!Ou%5v =t{>c\!BYWXaf&N)UmYMvU־.9GOQU64GS!>'VHI_bLWgyu;ҫL%E&iM|8y=7F&Aԑ %lw P\SMÍNy ܍W&rnz>Kg)#ی{&FbQ[O\|;isC% Cڶb _F#C7b r<~nRm|yFrd9A/C4P-w"(lQǂһQ9ǰw3&e|84[!!aI<YGU`An֐A.<3&߶R0-MN7jQ.MGO Z_>_nQbLYx;Ύ%>cl ;)k1>4Mh4L^)~}ݦg^}<Ϳ'tEual$ʑ|݇9.ħb?p/ٗWɈ.ב1UC"ї++lxR#C#<$Ugɂ uCA/i 2xe~0_ h 9>.nZ_c^SDYqSSoJqS(=ZŦ#&d=myQO\wuJT_K92D1īuXUE2V6u;ä#sP3i 4-kúUrZ~W.lso#}q{[a'>*G ͝ȈH k >& 6 iTK_8\?O*S`mif_f+9-ԶAM8h%6Zmb zZ) f ?쵈Jk`'>>$-/&<|N)}=u~"pkzۺ>Oe1ih.<ޡWObǾLzH蒌xk>7hىf8ccv-& L ~~;>9A(sznUQSJw3͒F r@HiK߸wcXS432,+ٹE9Z@LbkUl8k#ӝ3=V\ ~ɝozK1xc/_7+B۸O>Xy\!}'E)0wcy ]y; h,q9EBkdX)"}'cFBnxGv~K4^tɔЭyIcf0}-Xf{H>~QM"xj5 JԚ! u8?_0>dU|ܧvLj9DcGܫ"/Nk^)V2J,)M3 . J^8k*QL L. $ o 4[&/*^ ~*BcaUYeU9\96EQQ1"%V@8xv=֊Z#+7RX]Zmcپw -,&D9͸l.pN{[?wO)z,Ck]ʉ3}gȢ4EȢqUmсͺt'ZAP GIɲR(\y W)QUYu/kgnu_Vu5J"$GfkݥmsYP㫤_CWlIfYM~;otAe=.Kz#W'r.Lk}_%!HUe0 b A+m~k[Rx8K:H1PR@G .`qhy$EKoOϗ2.ĈeaEsEE"lZ.uPiGޙ2ǎpA7ʷsw i=&eQKf.'qHG袳C4I0msM|3}I,l'@d(gp=Dž]="m0+'s-: v'jppPca؁3GDGL_%8 ߃Q"$'ߙ RgLu xkbG֕qL[gV̥:*bc! 1#Qea8gkϊr> q_NUCZEZѲV4_ 0qQeH O~dMa阁>A—:Y $, m1n/"np2zǺ(}AoXpa|s1rgOj5k76v_<ޚ %btݒLZ ~a'GE*Sfieg(%[oɒ]}*>#}RFx2b)OҼ c [sb 2QJe`[6u G0]i1#_& |1| OO'ψeU_/EWˑ|Qst% @Rad418R g: F 5|KN5ztlI)טek-B(;gð=p d2Yx$H q_|b8z8O˗WHa? {qk}bʎ JRkLT9lØ=TIԊֈ~C|~bu5w9{暝.3DJjXݤu 6#XL lhH_y1v16FPg_p4*]T?2 \ VW'XTygo$;~(}X( @p߮dG`Yx- gPL"ykqt.ƉGb-Ne]ӳKPJawk{=KL.[7U8 ., ċ/e㢓4fQ| ǻ4{zݟg׽E$1s̝ZӬ~1$*aX dHGq-pd-9]cIY*ܛ^A"nLw 0"?S"캎~r:om ޷͙Ffdc~D2&7.d5$ <\?>aJϠ;nTUWyod+Bx=]=.r 0kq$x-^fZ w =/׈#QR )pZqdWL!<mQGS@[w,?o-ӗ78ZmF 2 )nΫLHv^fEYY1YfEىGOF"м=ze#w|c sfcG;sÞ,0qes7-B湋_VڇAr^嵹BL"(=?ao?2.%[TM~J7H+ub- H~9A2㘗mib3]h YNaX1#:%X5oVe]/:,oŵ&GjɢL]:1N({'أ Kg( +^NrJ1Y@B_d3Qk''@*&v[+U2>٤U)t}K=۶@ |QMPp̩}VeSܴ󏪛&o;|%y8Y9뾈yt638B‘w'tCU9=1 ?$5c4<1th?b>& _SrS]n"ǻPv$zvweⓡFŕ_6rt]~(}+2Yr%֕,<mEU8v<`KCE`?9`8M8o l=Mo.ŭ+DTb#H#P~tY*Nv ,Mϣi/MQٖx3cӴI(7PLJǀ6ұ6]oJOvE%L{x_,ܸA dskz\0qxUW4NO!Nk~Ưg469T*5_e MgqIlv$•d f@ŏx'?w-U]>i7tXu\|0 E _ ͗^/+ I;)r)4}]ne!3iKmiFb#]*|+وDJ=2ɟƮybxnma)2{qL-Xf@q`ޱŁOgI EvN˫lARN:$M3~-+M 6X:S=>=1Et$_c,nKUrʮm-K%Շ݆Bt1?Hs9146;)[[{Wn3JKBӁW|8_cCL1C/!b,?y\9~zTW5\ ٥cb\}H,PpFFGW۫ZrUz>1VbUQ'Houץ9(U̱&PQ(ߑ$aAbNZa4}WTCkn T*F/$#ex>77) A \#lƆC;[0sǎ^|?齎z2r'YwN!ô8ɱKy4  2Ͽ쾜F7o xX8݉_c%Ke>Vk)l^H oz5vvF;+IgdJ4H IWY"/֪R?XC2Y"TaKhc9RqjŤx &,X1{HB߼:{h.϶|̯C!ūGI#]>mn>FEl6ޤ L_]FRbZzYr ےM 2c&2<%&Ξ<@F3묚)IJyIyX߆h~ye^|pϱ+*jwk* XWK;L ,RK^thY%c1d!n!ЬG{e]Ij# bdxH[}$ELv^Tᯞ4Wtb@ɇn,oI2pݖ6MgAk 0LjSZhSaNإneu.V#SY˭iƃpbT>'x_v~ -s/bPs [o2z8wq >R0K DQΤS.9IM82~0U_"ˁljKDNDJ @6vww&wcHD纬~'`FIuJ_^aF|2ޖU~hoXU1"殥Stb'KJhb ->Ek3)B`>|?HV}$㾴]_g}qw,nQ>`LO@x*~VYd|-ye |lѾŰ'fePA>pD =z&~ ـŝ,}Nx@lY&q4/~퓃Z)+J9)Ke3 f!s@{'K2b>w;1y{x%X+'ag>cFm&IͫU:yu3e7Z闥W}@OOk'HUNf.;Wt}>vަ׬:0%|zXyHu+}`q;)(ӜT'd/a8n+ 2:8ZXR>"f2CUtQʥ1Z`KcYڌ 2!g|brQLA1)ppK}X'"_1+%?LL4])W) PS2I DE˂M 3} EYaղe1?bwui P'gat( } Bvm.0!2i}OC. `/ >d>y}ؽ E:]A!jk{-/u%ZY}. v.C$|P%}nFe s C3:cb>Ck"FV4>y>;l6+]Q.O6Tr)0ٟ b-F|U澒X"g\>kh+$eHmd^xf95L֣#34V{<6g5[ =wu5̤Iw7? g^Fy= ڒR uޤz郵Y 3}8r4Ҭo ?_m7^W` 1FGXwmo}0l@l  D{:~|'3Uܸ9(ܫqE[szJ@*緉݄z+Yi@oenX^?~5*[Ƒ[AďF68ސAp'L<y"RovCμ8_IU& b3,񥽤qVnsz0w4zF@:[ݜwgʐ}b@^(=~;Ӄ>{ 2b­͠,Tlqh_,|%h:5PLTKU2ks~)) 1 y'rrQ{n9wO'rş1xJtËؗ>bC. Q$m lf1/hè]˺9K^)shk6I!1*<[!}<#?DKӹS?:'^DeHhԺᛎz#X, ,bVA/ޏ"t}̃;L]U0UoMv@W^Ҕ1A@{h X3YCd`cLTb1/+̋샃pFF ٳKQ V)+LtL<0帊ܲi=oZwUւ$m~"67;./Gzw4sH/Ѵv[R}1G9L -}ݥCQ/6t[߈Ula J\J䀔 jOd,Iɴh'F}4lnz Ϯ^>j^XSȔ:![q$T,i@q'l3k7Ax'n bJ2T~rѴ*t:g 'e#8`}D۩DnudQҕlGMt4#5doxpӸt^c ́j>yvRYƌkJ\aR PnoFzI:B%p:@i=:yjs%,>'L(3sS=x\9;"ÞgIp7Ȫ FG62n^<Žsls-_:TnA3?嗥*aQ2;L^,1Zimzv-nq.d(|mϒQ:&sdA>AZU03ײ(K}s;on}U7#N 4/  `]A3yΏ|ϯc:?QF֗*p_8 $Kkܾ2]a <,S/IA@8dnVD,OM0MgΏ0 Ng?ǦyWzŐއq}wgJjz,Lx< mz>^z\_]gr[%Uj2/IiL,~2]Bv\[yht2W7/w:BvnwE9]T_b^L)SIzMzMX*u˟ӏ~eYgoyݥ+nU컅I\GmTTtX̟r}럒]UJ_&8toL^ ˵yk%v-+s7jGҘۏ*"K72xx]6JEb>ÎzbOܧl `UZխiu#Qǽh^Ç  M8=9F}\;ڢ~ w\}:AIV*EA&$Mj1J掱N;]0HzԏS!dF[$Ck1 l:W"q!uC)gsr=h8) }Mv)%t V ( )?3g^ܞ}H$~fegW ӐP8 p]6@ܝ52`si!:gmP#ʇrb{Nh fEߝ [Ǻ\KWλ"$*R8YɕV\p;Wmf- z6E};$.Ƒ1X-2ƣǹ}\rj1`x@V4|0+$WBS"& I&SuV *ǝ3G։\8A1U:basfǞ'y{c:lpiMt\ɻ1ȯ>z2G&wZLaP̑V.f>.7[Pyfac<9}(K|v2#{my_nj|^+~1?yݽ&骪hkX!\> [0^%~zocMd٨`_"|A%q ULVU. Թf#)JǾRA/ƒK2(QYB803O_B`YrcRtjB:!.a,*ARFͯp/Bi%W;жAGWVՁ)(bԐz#jAτݏ@Xωrvm(9^YTBQ쨵–( >6; ?)kIn}6\e۵rĭ[[ߒ3\.%ƕGa _ŃM~pk-Ӷi8ŐZu)mQwB*9#ޠHLX o|] K~$*^a1Qb Bϋ(KO+KWy\FmԤzMNJB`f輑w@4;<^իɡ~C?vWipj$]dEIBKzlQWq^!K @r\jFnҿ5 r;cz,UT'yYߵ׬{'9Lx.z7OQ$Zi ^/}C;}d[~_3K %^ޱ~;Q%W C3hںw!y_ֻ%‰rيwH𙀥cå 'iMIw | q8R\C@iɎsyQ мc]<$I)^ꘇ)G6p~i#&Z8!Gdð`;4ߌVj} w]5g)oMWꕵX EwC/[׷;CG;6G<|=aUʟ^ _n̠M#=W_k,x_U[տb!OW\p =w:uԵPQe,Whe:g$y=z,dVRwڶm4}gjU_d4RA ESXY7 [a3O<)!tu;S`+l9k[-K1Pꡡ%-0F1@ d"[֏nd4QXlti3ҚVKkˢm1|& BP#0_v4d prinηG]Te_TeQ5yzb ҂~ObGAVM61FhI|IQ TqCe̞'t0^xN25+Y<T@ MSԏq֩KInmox ~?u*Cݧߕ.k0Yz]Hau [n@Z*n ǣ2;98{GIc@H2^br]`ce!i8̛<y\*uZKm8zQ^qY8b o5w-\2YgĢ.d:Rݘ6];,dž*=.hmk/3NrCjP)H'N7˃WdT}Uue~.:_~O3o8L oork'l)%_2ЦL!)`2.T*@`̣o?䍓? L+feF2 &wߕY0Y*qDzI\)iI" T]?a>8,_0x\o!]Ó#ų`O]źBT&q< @yDH%\l u Y\YDț7 ޖƅQj4ZiV 9 /nHyu#WNT/}\߷}  \MEarU´ua8PZ(퐍!W )iO(sHaV.25D,_֕" e aB,~iڲdq+5%c0qY2v rOu1 6O.3xEvK}kL]n`T0AS0~grHnpsjБldx?F\cd>d³n ׊ gRi@ 7ej Igj6v̒op%+p}e]7yXy뤠M<3<16l%]r{M1_w2=ޚǤ\,L8\Wu~[Wugupq%UYvI\ajb_7Km#.Jw|=k Ñ+3HMXzy`Oi>$Ly#]W幼mBO0&4wΗ K72N7=8=7ϰܖv^]Wmv㡂4TpOĖ7/z rRON|,[Yszm yhݲ1Tb2 m?jvHZtGW<+5Iwl>seg 4_`6/nX=G6ʌJgQmݴs$U41W?._EeL+@rfټso0FB}$96@esKw$ŝ'd Q0ӫ@E'O?,^ƈfGBl㦩jh hy|`W!S-(e#lv"jX0~/ UāCmi!{,aEi!0AiY r鬪zH]0jpsWg:o0dKS7~^ 4_K&m|䙨Q>Nz_a\t?-DobI ѼɲjHzqRd%{ӛ^h9- \_LzRgNb&-_8ڮJ^{#µI։e 7”T^Ge,qR qLo#2PK/DmNeXs5?fh_#Qfƾ@ܶRL1a^/-,]ݝN1Ӓ͋$G]D**o2࢚㳻ƯnUW]~zz?m11Zh.?7 `l@Fte>XoZjrDғI&+4l`LeeWL.";zn*1g+xcPPk=\IK9+}#U'q6;ic߆{>_Y\6;^]bӵ8Z{0P[4 y} !znZ s/]o]k?r.˪ X7׮UUgK=:CjiBq<,bXr?dӒ(@"PdiimXjڍYK$ f2p,*UoXsdzEc%ϩXq{ga1|-n"Ԡ !y>! hpiğm/F>a(%[HdHz%Jwȷ+P"w1sqvhp-3+7TcXn&c&CtYFI8:S!uWQ_=|vTy\JZC,@K :-l'a+MXW܏Bm 1|#~DV2U.{F6q1JW4;ߒ}v| {~|x\Q_Mg~v+\GKCYeQ fwo"tZ›>R@Ôn%*iNWޣt$`FJd81ǷYA~ (&{-qԗrk} tqa/g׍},jv+dA2.TW" @!H%0 {=vBX7MY&1ߝceѴ]ma#9mP'!HV{_5|-ly#}ӗK[^2 =4y091Q|#=gm!KfB+(|Mzm)t"-f= +F$ < c̣YnY5 nfXTӅݏ%uUu+BExq;IvHRșaf;gC$\{'z lċ?w_JA.ik6élU'aϻOJ?ﯿ9m.b+.{ hCȺdQ;)Gx.Ǔx|A>^my `'PKME0GGߋ$p+RbA*ٻE%msiZ y\ U,̧}uv./ESdC _Xـ7OSJAu͕- 9;٢[, ;4W'q~a6ų3A!֯}~kՉH smf/ԧDlƉ ,X}Zd}IO<gs,ܝIWD0Z#Y\k3F%O nG**ۭ&$Os}FmڥW1iOnfO,7%9f_'b}Tmei\Yg"`Tn&[&>}0ELRk$6p"A;D󏠤54Qp#,5Ywaf빋[Iz3(^nk p&(u[6i_d6ɅM9c3[%Yʻr̾vflI{4pLu׈{K6FL ykoPl=,zyY-6@r 'aCq8L~smcAeAqY޿6\Ҵq=HUz_\vb -ʯVYa.DEO0fZ1x Khff>?cygT6R\+!"k} wSQ'm?c=Uz6"E3Oexoyz[ \e]ٽhp~x 6=yKN-$+SKiҋ̎ەt&Tnx )IDm 'ɽE >b8ɚ 5W\(f&aqp3q{ ~FʽG$.6]6ɟվV㢵>H?bt(6.gI,lʆYmB3 M~ɧ:f"0K"-G 4qur0_)G+a s 92Z.reXBT˲l|wZ '~8\'JFiͺⰏoSh^5IyZ:ƅQuEєi4]*b$2D2>fX/0V?pr⊒KU?Giz3..+ jL2d6bJTh磗L}>Uo!m9҇cMgLE,ZeKòbe3+M(ѵ(%Q)XO3H𩈚~O~4Uj`Z8z\/iYWF>^MLn+1LĀd;b`- ai03Cg=rJ#ZJ7"FӺ:ӪM<섔_##IݫG֓wlj~G"&τJ__Ԅ/a0-KV~urH;}3]=xZ:Z?X7"ulOJ%1/Aps<8^+IrWXB{?^-+(*l&U$Z ,)wpMw㸮_Hkl ձD*4Vv}E͎I?SHx zpHQ)L06XfEVqM3G&RLmMܟݯe\{w@kj+U(]r5[Ns$Jn8%zǍ9|K>"GsK-a[# Y SWLF'u{lc8/Ju=zߙPVp]ɫ*&Vt/aΗ= X_8xeX^Iѿנf0/y𤪭& Y6WEan}ۛ+Gb$~3,]<\5)=t(nKBk]!0|JԘWtdyE|X%qJ2"1AH:A5tӜ}ʼn}{ou)o` F Q> gQs</_,?r}_*ek`\A;!'cagr^K og2vY=ψx/&/v6E{,T D#`DF]b`&|z>Ϡ~IwcR/]l̓B?=U6S .Q=% <8~@HpAiddRi&8FJ $. RݴbnwS+]ZF%v>KW ?.r:|D+Phc#(|Xu#0n8*[k_^2?*;.cD/IB paEyISU<GÑM)=&^Y뵅|fZ?{aZt1RV{'w~ʮ鞿mk#UDž𥉉1 !x䑠҂"5ᤅ0Avu&#O*\a7ftn QskeJcBYyH `=.k&x2gU3a I^<?C_PXNV]U)fQԡy-FqSKjbq(4 ?=@ $X~褟w{f$oh]:-' =kQpg'NZmO.poˎ׏-~V9tsߨ餾˧{ANwy=,p!\5`zE` Xj~) 1*.k[n)hjvdhh s&Blg Y)RNyhۄURwL5[1EHZZp!ȱr&җ O?hGb(D>x5a1͡PM`N*粛e*j`E T]#'@S(%l3`N\@3PŁ5ΤxzqJugi%DC7|Cn⇘+dC|\xzlӱ_-y錈51GaMQ*rJR( 1q8C:ͥ>s+%?N<=0dmfK+H%ql.vL-式p2bd 3l*~p^)YnY4<0a,sH3m`(6wzxafssL\:f )VQˉp h"ZSw짟$BRWP^KQ,zRumDdll3BH_V# xNYf1L! {οJCWK-$7ˁĤތOQ ];@މ͇ۈf0`\g?Oϱxʘ <&{ BӗXLTSN5o3$~P*cߔ.+O?:),~vi.ԌR8cxahz9"e-jLM 7}KSk Ob:Bp+I0~J2b^T%b8#׳E~iz>b÷忯ov8Znkto-tiʐI ԓ܎xC_A}Byd{%&NO9k" >QR/YiM>Ve~ڀ`)eOX! .Ol󀞋Y6Y͎US &r\oÝ+ kC5dǶ48e^+Fϯi}/ CCyYˤ׼3rW%oOF."yV8+s6(rD'KX[h)gp>urY]ah$ "9FV@YorqaH+%â0n[Bo1eg$%xyCi,9XR zMPq ߍ{1xQC/VB7D%MG)3 L1lF=8g,/8F5K5'u$b/vYN ՃĪ~#= x9sU0c|%_{cNI˲> e1K2ǥYצ#rz)J%jнK?5!H.\KS`Kِ"9\)r1,t wO5u8'ɵ2ڴ>C&/4^ gIJGՏOQ$9 H4]c$I=hB,rG>pX }YV"Jx$ 9n5=v(2 ~G} ha7`Y4I)Ut?$u!\6)7 x^A1J2@_@]"u:Py}۰'ށ v.)Kwai. >C+Hkخ Z'[ s:hv -a$$Y{>[,q*_X8eHgDFTdV?ŎyO4uqU؈eqBJpA TŞ|Pg91EpC_oVPwo&ZE/-"uS(FOxU6)evH!0jctE- Ԕ`F %'?PG$8Jd'gLi."E$BC>R6 OI8H.u3}0cm;u]G D,5#^WCBC{㕙D:kے%IߵoEQ#1,Z4Hl 2AZ4i_zLp缊TW`+7 Ph3fp@׬+PhTDSL)?#0 )O+vRJ7HUSMeuIrAݥ ̄YbL;zK6famRv99ҤP8u}yV^?ʋE4oڸĪ 9:ecz#k|xtwv%B2IBX"#f,K< {RīnpqU<@đZ8Fkّc7Z][v?N1-,xGϹ ;Oiu}-oaE,.*ڗ,E,0o\7tzsg~WNߏu,԰X4X&do}#R8u |N:{hV1 nWU~\b1w]SAI@°C ⮥3T)0jvRJb91y-E̋CtĬj.+l!9FAvKlcwfn~LJ1`H^cɸ, /zo>oLqۢ2gA:fdq0#Ԁx#%Ep+U{OFV.MPh ؈sYȑ1\_zCe:!yL |W_5\_iM|vRl04;B$pXA^21ĸϗ7o_u_/=oۋFl x\:F<3)10 2d‚2g߯c7*k,_2U$ĸ:7^|ޟS$^6%?r+i}z_E& d1G31Z!' VEJ8f85=%|>^kdWJm0k4pUZRՍaڟ~ KhJ;tRQڍ/!ss8^ϪZﴼ ͣ([y;D6l"KO+L*o2 67Tv'23E1z0 Cqp*5fّʰj>S8P7j( S7T&%a4`N*N_f$OPΦ_T̑8T+ {1:D6ti/:/_ xM7م)úXTf~܊HV7%,e&x 4? ~_QyZڝ xfE hoqRjފɑv&BDۈ 'TS 便sz<z)l⯩dT'i&=R[ZRbOOӪl,ܙ$GЀXQ]Hm޸bxo?qgKL+$q1@*[uJ.j]dZe& I=QENjzBiAxC:Ey;D~ W:L_@`;}C T+6ST[<kѻ({wsDy.} %&\u}/ݼJӔj4n, xH!Z =qO|T9϶{W C7ý7c{ָUMZۗM0Žct g1 &jw7=vahPJmumVQ<˺C,b?iw.̞cO 6wJP@#); WloI6oBfw/?h6?AWMrJ!cE /F647CI#{"27iՅ/6]c*_ ע! PN)?Ξ{<><C0Q@lb|EnN>,tAFv$f+ ܌hV*#M2G&q1dxR6"DQ4K!ady`я E/`Yc' jy R&5╹k~Pu/2W"9C>&Oy,2k+Mۢ/ĨSFV) Ctm;&##N,T'{M|/!GtT!.A<g1ۭΘ̩4l Cvb-C8or1pMR|ܖ3'|}kS*1˾P)۬(nEu}və\cAx*m5 M/>1҅fd )BsIL}k-b8b@wYK̔4g%~ḁŭ{vO\wN)b_2.}IB ՞#HFȆ;-pjQ _4_\ Ź׾o.s{Ybt0[[0& _vqY<G,3اĀ#:p!wk]ty4_GEy2(YBvM<5Y[*( &6f>0 I5IEᓕ.XcH1įɊO&2铞6ىNBOjNJ;ǁ6-[@'5"K9`n9iY)+{^`ҦSqbvHPC7sx )~s*' i\c*g~]Y1[Oj%ˠٓ']jٓH;Fb}|ApƚvK Hi-}/Gjz_:x*wLŒTPg ;)(3ab_Ix2$$H|*DbA%O4ZYnQb%nOtrI9r:qk} _wK[tϊD$/Ǻ {*jQ/ړPX}`0[y~b8r֦Skվ{פHV(:VKid0;9 eIv(sȰ yǀ#c+*.9rŧd &qn$g5*BSЮ'j j+s@s\x{5#s2_|a50~+{j7O%wُ̺b?,9'juQw0?Ǻ,_iqglZ?6ŭnJgSꐱPKIs[p?sӦPb&E}hXmc$èN -4cX|@(GC[Dž_>U1~W̢cI z0UeX sqQߪ15Ma4 ^ |-/nYe-^w'sO1}G7"NZ^ c)uGN)浡A[k >5 YuD(dh 2(U—&WzbYPgv>GHÚL*1ZvL:Y1:CWA*-)#)AҋŠI䂢~7s+>7d?9&/tf L3Xeeŭ('|J!j߼+1@Y1dG)עCOwqz ̒ӪՊQ* `Ae|n0ōﯸ}*q9̂ ,YLElsICiP匙fqC10wOͥ/aMx A)41x)Ihvj/IE,|mUJ\U ԁuS*NI['14Ţͷ-CvBv_rW]ܒjWkg!ж6zKmz&=YKڿ.v i,Gy(#e:5BJ4fƫ@Kr>*S+d E>3fBwxz#4H aAQX'sTZ7cK!xCcunEQ?p,cKGpxْ%Ia%i8b1yflЄHLHus'ӱ?B]/H7oP*BD^ qH/lNÁ _,0WzN[ ?}Zyja0h =ҁ?Hٍcp9Xٻ w,]Yܞ7̱EDE 1A[J:( ;LAa^qD]װĹ3~_V!-_N氾ZHr[l`|#{ߒ@(&m}_0{=Nm1O0i zm;W\˲n,X!Ǡ70 gbp_K:]Ryw7Τb4Bt}Oiv6q) =ĂrҞ'=_cbA^Ě<CoiS6&FYKukG*Jo x/1+OL+|TKIVq dmD [ʝ٥y֒\c<(QXƕ%/h2&yp<ޓkxZoL\%q={0"6i6r1Sp/bOu[wj弓m٘VI3'Sr ad`~6?$}N/QTLP:d>̶o]Q4&ylJT & i=ξNO I^ϯ |>^:H|an r& IB Ƀ7;׃g8IwQ?=poIp~ nJuJW{<=YPCw\( b7zG. XYqM0zTX3Qr4 +2N}-f-Q' OW?1om:l7Vmb]TH#'\Y` gٿxL!/pܜ.5*0yvߣxX9 41V5?MxYzpVœ^j  dȄ2H9&t@2L)!gT)*+{QKx.ȼ]s FLO3kFpXlڂ z?”.^9Ô(Q_H/kzIX=_ly`8F{a0-^'K520xDi bǦ&:~K4kӻʈ_tPmS9-]헯ueߧ$9oz} խu |M]dO 1ʍV{*(P&>`< xt1vnuy0yy2&޵shϷ-e#)L}19Z8kɒkMk|ct }݇A?; K˰/U`BZzbǓTWݭUdW5n[R`x-fH> Ջb<J}ˮɺ'J/rsLJ:>r})Nuyw;o{e8{3:{*c,:w(bQ8idvJxa1lwe>q ؓ6.=Ƙɖ p7z:{xeT>Mכe!" `@Cp$4Plj*|e-0=cS,C.&z~;%y #}H^wш(89b^uTV v_dqr$m69wQ$Fxquzk%hEhc4^oHXŃ>ԲioȮ25OǘgYujJ\{zHE>ާDs}PU˟C+2~n6rD9?ZkYv*r܁00"y=F|ˁ| Gw20Ln~4=仵T0Tq-Go01<Պ& %hy~n_P|}R,TaZmo9~H^cؔY| .;8jX7CyHwRˉlzѡW 2!jeE rZ+3Tzq~뻲&z;Ӗ).l^(DrbҶUY֋=oxtzj 1ɑD/"˂˶f]mE#cﮖƤ+`k6b4Oa0}!svՁF 枻cRfwej,}^RT(o]k!cWnT$U [ԓof4cRVNx;_&,>V~c\}!Lג,J^7 ҝDeN2=~kTAPeՕh/Z-BYE"5!`9c_CLӅ9qلoO~]܇"?﩮Zj~3Wd)dǐ@BbiݟvɒXB*9nXkGy4YڸɽK y/%ewv\ P؉`laH"Q"y9۔T:.J->D͏̬]`.xnXh*n `FPx6Hx?]v&wuwLKꘈM/!_N~}Xqg1OSNC[E47hܬ=Vؖaሦ+F.Dp֘{7FQX3ֳГ^dC >C{X\˭/u-~@H*-o A|sw_ M}._3Jdw5[,Rz h 0f݁O ;w7s,|1Vux87G tcoH]o QbWoq"d~pw; N< ƈ[e,zqFT,<.YZbhDcL8̚)G]VFxsC-WjtK)6NT";1ɆߨY)11zTAeBso=-&rmoKeé'\Jc,/'C0#[-718W׾qЅo#_>~(o9s漴Mй]^715&Rtіq>V4cs sC) l=u:2 x-Yer:Cn!StKe`fo D,ӧJ|:KRaZ3FMmle!0I~|w% jgn<~I O+nU%t)6Nj^eShr_K1i ͟I %RUW .E1"ʘ+dq&`'n!gnF{52Z7ޫi~)6tƻ]Itnŋee֢;++ "HxjX# a&][a(YUɲ'*.$KK}"kqNG\%!Qݙ[%փRzeFf} jo9@kg񢪲d9"1űv#O+{4}sӝ1ŝº#)Kt?BS!cY5/_$3Y erᲿjtY4m3?F$)̥-q+}2ReHc cr]hY@b96t"u ")kz*ur{'ZZ}jr)gfGIb3]Y+NO},keG2j[hSpr  %tJ!wc'4  fׇhJbJL:9fiב/,6NWyXPZhG0c"p^4MYK~M5;,}#'2$IN[< #s-mSu+xT8qŒK..q῍[L2UԘsA5e5>O2v1I"JkZ2̫};ԢTjL c>d4iԭO[z3&P)4.|nykj_vu!iz->!M' {=FC=%ij(ͮ 3|eBdU<sQnT?[wNa.::K-oȑMej1vp@?>w۩XJ!i1ht_D#nz9鶈{Z_)2^b^N8 YiZnVu\k{f!Ʋ_\m8g&?9171H̲+E"+>8VHMYySq3IrF,˖¬KJ ΅RY[_ԗx24G8{@^=$O~7b1Lÿ&J^"Y6쮔#u6e?sY? pE#|-UYe'7ARQn~F@@WN#?ٕ-}Q6&yîu~Lp%`@5J1߁nOXqנC6(.ͥzVn0á20Y9Py'3_xՍ1)|2rUNfG6U՞k=G/&xqF5 w3 -< ТI0iMŶ^s3\Q^cuNq)%XoN؈AQȸ ŘcY[8/͎ 2yw~O$=sҴ"?MbrI!+d-vX\X!{8;HPN{ߺW;>ZUe 1/u@2,7IyFڅcXZeJZ%!UT;θle,1.;#WFj A\zOG,6RB֬x,:B':?~qiΆUVUWfp̧Efb~Pl2"_/f5*}tOv)\btH>Xq]60UߙuyEbpHM52bݯ=觉 -,z%z޽ʪ3-U)R Ê.\)VĊVL"ei15/8V=3bf"}NPaOi`f1/`(}'*M}`S%u @}`1BiE "*yt@.$+-_2}[y#c_ &XdC ֍5) }@"'Vᡃtn韉7rjBԿfOZ\ndW3]g3pHyЙF+(O^ noOˬۡ2dHʮfrJ7X0%Bd檜GZ|b1tXVM"+Gn>_ʵ&Kc_\}rŁ:j_1)(Or%;<ٸz$S"jmsi7="]mQ$Ee.WJX]Gxr_82Ϣ}Տy~Wa)H+ceG A!KO[ 7 \KW4b Mp>!'o8޾oFͭP SmOz%eT"b-րƖe4#'+Ȗa񭅥8*]b%V7Yx_d\HQAa#{(AG`V8>'>_8),+ /b-*.{cU/1I雬U TF8Zu,hƫظm@ 9 XG@)b V*2} p]YgVT:K5K(z!:Z h׮}o$v~ s n },1YXy=s6:ngx}Ì6O|p欌<%6hm菼O?lqIqm~8)¤:CE7*1Ũec]FN-jÑ=N,cGe jǸ4n+}7[pɄx%M]e"ySY uiNo[SŸ(,̜N'X<̮MTڦ` J-Xx.<޼S;U@Ԟ1/>dZ]ĢM[&g>BxKǧyHiɖ x[N"{o|^hdY 4^"?uŮ*=ܑ{ M|s0锁Nf'1m[T6'U̹0[[I%5'#Rnp i ̓4¤yA2LD֘3q$!gVJ̶+d[}nRk*މ|,F2IMʍZ Ws{u{6me=tt]QT(b3}QZEIeU$1ҭO'Cz-"=дqxU}_09..A~{c]ւ@J-R"+q:P3k<ƒ,QY~%\ @5g`w`E_T_şV\.fյ g6z&^XVH5?Y7i}c&l+iaq ➨)"]S5Eiyib/jݥc%WBEhh&,9֝աJxr]\/{$Y͛:(vVJQ7>YQĎ~e+ϳ?ȐQ_pNQ1ucK4*d9aUkK€,B7kg#ce漷KE8Yv1~wWg ?+r|Yv~!WT^-pNV"#8lDoF_r_þQnT;%\ƌ㗪ﯯ׶2.;z$ F G#4.RgO2f?ϋ $khBXL;+ J֙i=˪[{6\c]S2瞯Dq> }cӶgS&662̯j[j.k\^$Ok,*)iU:AU$d.y:`@f--<}yX>DK7GHYhs`ڶl#I4tNJ[r_\=J F"r /QHF/g,}J}]uUoX`a:6`1v%!qfs*$1_m]V"ΊFuLb$PU1mZ ؝+,$d=jr->i%/_:{Qc𳏡=f^Iu-KHrx3T90kV}&q 3|Q ])cĻRJzG܂h4\NRsH(.+, zdoJ:; @0gx kE v).|lP_b&cQ4eq$>X?:4w@?Xބd~̯[ch?ayUVosd-w <P7[^bzŐM9L/ >>7.+kQv9j{ޞn5W3l%!u6Tw(Y9.KJ|o𞱦7̪1Vqeb$w=JMFl!3OoF7e,?7,SN_.ް;M]vEք@B=M<:76sv%QC |<}GMY<}J fÒ+j/L^)/|zsܺZldl _3Ɨ:^l]ԯ4m5N5=ckYb$Mr58=/B`vfУsh7z2Jcfѹ)8l?eaR/EU}ׅ-.]MZA 4U8`yoL3.Mm/(5 P'9MOby;RJ l]VٮdSaDP|*i5(v|3ߺzɢ/Z)c.U1ջ#͜f'1 4wϣkW,DV*s,UwPze24A[{)1.K'oB/_2,n[*?MS}eFbD$VBiEƎWp1`-$ Uqhl_^qfa!t1u#ss;:EXf&bʹlCahB oxP幇/}mvXg/u}f;㗫j)N\$ kS"b]skwaO2m3 leE$6Ԣ9OoK5ꠑeR,oF`9iYVWEc.д sAn{'XּE#8Wx~"o@o}c\Ǐ}˾c& JmZnp5!1[`hU_/m,V^cQy)ݻK%2WJ Ƹq$kQ#.quS{4/-/%{O|(˫dխʔKO#o@FàX,`vo`y5]@t`.Ek o|8div-/,/N3H+=ˉӏ{%50~ X&8`3ҳ͈#Ho {O|\SC/C[}iXt BIIBhf8Ӎ߱FK(޿݁)mY\Eu0 yI # m;>Fpo_8֔7/$0GX͒XSml>>N-3YGu?ŕ]5mp-1JVVRFͬa>13G5/K*cP4,C*Św5Fm+{Lyv[yep`K51~t Ҩ]GêenՉm \ꌀ$K`օQ+t:渤 om6YplidO +1߅d.xL?j! ǵ3+':};{|_uZ}y)@_Uf "H(Zzj>$G@ы;&c wSaF_W,|>&]LcN+f]}*0&LY_ۜFVc:cT&7Ѥ?42m\h{3lq뢼f`daYۡ٪4[)7)ѱH1+ 7HDEg\E^e^O8݂‹}4 ~M9PE,,$^}a8=ɀa\02-6 'g/v#N[<*eX_'q?|mӋTR$@VkkRjwj 33*)vH}/X/g{}ʼ{=WP{5 8E"dA# HYSM@}R LzNu@9%nv??2g4)D%twHR̚Qg73SXLMhѲ<^ _۲N^ƣ.nc0m<_I? eg|<伩+VgYb1SY#ecx[n?ȹVIqSFEL]n}y~֖eW֛g-ڭ'CW~#^nU"2|3xT4t( >`cMj_xҜ7aF LRl"Qk͜G'oa]vuw"-L=nȎ 8@ӞHJpB Hu=j&؈ߪBE+W"KfnP$p>n/t/}=r++@V&#u{U{*a֘-,nGynhb_P޸nl#'BflS:OlB`=ۧiV.=āST]Q5bt'>g$aDgMԐ \x6&Z%LtR8E%}Ye  u\'k#tTj>\@4 OIJӊ-UqXNF|ԓKRW"kae=l{.2W$[uڸš}E$g@%>bv\͊?s#efmV*b8NwD%W2EnVhP#8`IŸojwWn_0^]qmekUί,oq;YvJ.\P@[z h0488s{i'_Ux[J'E<k/Y~OCp!  q"c}=$N7LkM ł'#x>fҌ =wV7X_239uexS o+c~Na$QEyi0}&![㉖d-!e|fg3]-A<͘lD9ouWԘL$U>-gF* 3 `?cv3Og//Eot_Kzb +4Y;((aC(Q0+RыDޕoTB'$p(gtJ ږz]9tߘo%8TVR"δ|1E'_%kߒtl ~Nm3!%rfVL{_Y)q_tD;04懗GZ|51*~n}6uyJ G"aPtd0 >qZoόBݬx9\ꋌ9ϕxo,LEh_<88`=!zGA$5IpGB9R]@D"U8u<&K|@a} gQcZ"J:_zXC@~8P'sC S]˭)Y"H#LrsxF4*?G0cJ(HY(F&<]|phfe4ZJ&1575>I<,I1+M5r*ڧ0$ !l0ĩuO%FxyfVw:'7u՜#zTCbd~}d3,.&p< Z2 3mY;;ޡ[uM/rg@OB$es7xt tS$Pc?IQyUpS,[nu>p82tkxnTo Yx'8<#yˆm=3;8ߗLw'2/+5͍chf '13 ݷyX4j~UosUg:z2y+]`l҈>]d1`06 XDEn;X2S(c•ޯ%o|Jb. L[6n14#sn/S :ӿb|#Q?@cHBSqyCǪ2eg<~N;99 V x$|un-z?-4ŷoose}eEǤ_vr ۀc6oi0"O3c9(,у#^U1GqM{_G\&uudw}7֨m<"b 9~Wm߱9`f1/+7FQF:|%UsQs4̐#iF3bh#+Ochoiܺh򚞢y}h, "S5F t^L%ˬ[1LE]6ݏ}4~t CoJ7Y>X ]NqO0P  gYXU]vK)QS9vbo& !5Γ5ߩ-G!c)jP? E=uthQX5ɍ[ _^dSH&dntCgIwI8Liٱ\Nە,+x(T iR 4NL1.PWn~\^ >ؘ3:˜KVF&(UǨ&A`>I/ =|twm*W=LS_,gYu](ilD8FGt;.&1 > UI H3:h^0}&T^E9?1IJ5K$H2F(t(4Wjp_ "59/֞t2n~xXdml}̧~c2d-2'e M+EZ@wiI[%Pc$nwӬ!R#| bJ{BO\#!SjMeX.?y]A$TICft# ֋ȉp%MN5p-Uk,~_N>d4P ̕( oGw1x^%U|^Y u T q+V)Šz!Jd;N^_K9o>c_e&jpQX;S41Dipaԏ%ǚq\W"8NmSZW!I $$m@R /瑸"D$%}JM+ otv`3d_E *(tmFe-TasNk`yo:Qlu\Y6M>0*ۮPзr_j "hdwOT j >R׶N "@۲sFkbFZ~)_pUWyV|h+uCs"?"/{;Zϑ(u[NKɥdwu[.Tridԙ@tz - )ϓ&|xf"?t a|iǺMIh9!iBꩬ: wO'!=."?#fLn‹%y!w;,N|vVw5%zUG Ru# j'JU!7IF)*N4ՒDs7:>x8{ ,0s_Ŋ0[:JPZeUt`H/ou0=GoNOW[I D]V Z@plCv \f=}.E]WU[A!h\/,L-qO|\b,T xWA;8ȗ]`Zɽ ]PP7bdr\wX)x+oO*0c09mx +5YM<;N}WDd(B2)V^b%3oi*&ޟ,;꟧" /@IOqOtvW?ֿ7&0~(kRVH4ʕJ-oW0}]ӰG-,@+|aԅsx\8mZFN@ْ $J"h[vR5b)`RTNzL, g6ޮ~X_ݤ}ڕAV&0_`W7dmFb7שmUd(=tSPI]Ú5f-'z 8u%FI).hV)s|qoJ=p0~uDabC|c2#3#NGchr]މԖ mc<|srM2.CL|Ixq&k@ *4C"# "9q~e !ɖixph˨vY[uʁ !4!HcErQ`PkfIJ;[|θxMjqZqyͬum! gtCϮ ~0bo%w]C \Ps7GVmx?I@[㻕UYuUP"#*/ bg/O*JX"آ? ^Shʺb NA'G[:ĥCB҂ǁ9cZEhV:ј-9vdUj|\'A ]o]@0p ՙ=mVxH]l.D;b> .ׂ&!M~Ƅ WX҅e= 4tNq[e78]mh:|5YPa~]iV{XfI<X;hmE~nhR$]U/I`"t0=UJT8-56~\.p]6!;{^9]eK4%XIT3Na[ ȟ *C4 :4%bh_W$)I2B|_]SmԋI㸛I~>ڢtil'[\^{S̏~Se[q_"':]%oKxb5(鍠W [SC~{RNPRu`\C[H{droqq uNc"5Ž8 h)E0Jm}1ʣ Tg |䅽K϶;Ew*®"n]p`]]^!1cSMq)Vϋ.FgݶmOb]T~Udw):I񥳪?6,v%q8EU%_%9qzV3O9yZ#ʌF]1HqV&h{CZ-;ИbΊ$$|,ź,0\Rg W WlXlyA#!YY(wliM0jh~c[we4@f|_x'R O)|:<zopsX r|mx^ͲBig0yek+5N¨6L(bηVHX7g2R *ə4ɍ4iZ3"7W6$864?P2".m H],KE&/.ei0Y|9;Ѷ٢UQ^Vs%Ċ fI\wTDxiAHq^njJvJiJuΣt*!S'ڛP}CѿgϯDd,: =}_$e mbiS?ԑC'm3P0 J^[G`5S KZD/yśEג?L5M Ҹ` !'F،6̴nC[g[~=-f[΋yE˦jbVm. IQ HxAC~,qNݮD[a=; .?Rc}13 <'NWYeA#ɢ+?U`i#@w7l5ekSE"*G8"K^Vŷ udbC(;,xq<)r7X[PF;ůSs=۶RO?$)yzEOtҺQ2ڂ ]>5`j^cUcX:~BJ˒ͪGYF4o$ J:lܚbiayW}ռdqB LzBˡCENkƮ}{s~60fP aw>]̯[Ly 440!UPpy+'q-s"SB˶` []^b ´I")SSY[b?2,'Tqi*fgEW)05%OM١} 4]йew=-2Ff4ϣyRQZq`҆ų䜈,p/>jӟyN^,p2|^hiFO-\-ħ TʩPW+$ Y@K6ϯ^gK=]yء[pT3S@ 3̱_c(Q,lyj,+lpuS5 U_{t\CsI/| CX%(U'Ip4PobYn1%{=aIv2bK䤹 pѴ_ƈؖZ6޲M`i,GAon7҈:NCnG0Rs%<3*i"Cy`􍟊gw yJMcꬫ+R6+AkOPF`O'f]h0 p^&s8< q]]}_2e<"m6Yɫ&I㨋j_j}! H| x{ &" +5<Ef*r4?gR dqes>ʶX?]h 4pQ,T,EP߅py쌾q_w2oU7E%Xivf0FhBKR͒$8M\.ezy&y|bh7?5rmߛ~v4_tG K_9uBMmkWyG*kY"THk?Jx;u䠣,Qg&yn9%>rMЌڕa}Dn`*,2~I"rռ\|G!L9v[#~#?n \QDs$k$cש/[TH%.i2UR'8PLÍ 8i_ϹH64Ȯu=7Mf6Lc5G/I>#c?>` Nè:CujJO~Z_͆9+"v6y3 hGr܋슊F9 9abt .cX_aR /ւpObIcIXZ۲K(/_ۑhζKFVQ)VRaBib ˆmu:ӹl_f"^8`>y]:N }cJG!E=lC\8!Vω4_ΒO"U8:-(̛iꦢ蓚*i^ Lt͙;0yBNk,:J CvMP;X; }I{O=(IO yfp*ė88~Clzs~%c PTuhc ͻ1DRqs>7MFd+* jmĊH}ml_Y&ƾ6Kst7҃ D~Y__&7d15|dRk_P@˒%;˔]9{؋r߶lLkԞJf4FۀDV"_GrM 94e6!$$Qf6fejqeo'ə՚u?m76û+$ϾL2T*N+Dc`h#,5t%"CˋҬ*RrYA󬓼IFeS^sVuqן7YeT̽+ڤ QZ-/ENNN#̮V8[pw-\J$Y۵UˠȽT0u.HM!\ȧ-³BHWiy)+5_̱4Ģ8piv.i.DSpC}_:(#ܖ73u¿Ehm_h)D"$҃Uaӧ)ݯO!?4Kt"c~IL&Ѳ,_a>{'f;퇎gFp3|_lKyBX"=Gm]|^|QyOArOEs%!gT>kZB5J68('}b̅{36S4cT%a(UW&-V~ysrsyD8}@v8oC2M`dOvGgvV>?4O~;-+aTt{IV[ 3njCz8ANHɿ~ɗd^W6uE? "嗬j-qYmʡ ɘG>YMtQ>I ߮K`h]o%Y,ʑ MVx]h+(mzɝ{,r!d 븭_dI-9{TˊЮl 1Ɓ&4+93&Ųʢ~ LAExO]a$Se1(<^7jK\:9Hx9Ռ)!F/SN ƋUJf@?Ö2vqw҇<!i> %/{B|,R 6&$_l1nA_}ǩWS+q~E5:$It TH&% <8V s OpY}!rVEOk$!Ks,>FFڧĹ8H0+?~P#>7LAЮ#W'#ZwgVqħm\Nq]HX ; SIN0 t4cXef]^Sò{cUw+_#M_*vw[zW˜d]LY4i37'Ԭ $>qdz 0h\o^KHYgD[$}X&<+Oy>IBѧf/ki .bN)éBԮ0\n:0F\Ks"fHl#]"nKgT|ʵL/}9M1@DD#@T'\*; G%·,ѩqDf{=Dz[GpJɛ,.uQ{JJx+R &?fE1VL!aEy_ӞyxE48ޖŧ/m\I <9唒z X\2ڈ4t]= ||)^8$箨*x+ã[0n `彉6AdQT?b .؀MV)x5o8&_Ӎ,RҥMb'xbMB*I##%4\OqvD+}^anG?4hnXMge~xԕ:<$9ڨGEҌEaLO"'Xc|ЄPm|H<ҏvQZ_gsIx|4)g-0AZ11( y^71 /,9v)ؗN]aM]FJ!@C[8 $r'f 7p'OώEnYXܦ{˒s$4&E}2 yh3a6b7*O~Y,2o/j V6UרǘtN8_.R=Q:,PwRhmb8ʓ ʯݲ"P>Fr1kp -B+QQIWPҾ7\T+KM&j~_"El] {RK~ ;߂+ '`GhبXmB*›Fi>âvc/2b%)d%wC /2촜y~(guR b!ZK0.Kum꫰6)5BP[H_-3{9^>:QPl8*8=ד9>p,I FFP.olҔ%ߪ4N?{+@B#H< dk؇tqǹ1f||&t 1oMf1O}ލ͍'J݌m0 )ޡ4=6|bCapij!RIE1ˠ3(^[㖕' ڋJQ,ʮPY醠:#Du]_]E HӇj;@ `Mh ?fwo"-4s~mDۥ0s3_h:@DjCl៸p#A+C /B*k NH+1Gz& g^i+QMoHR3਼iƓۋs7WC`%=HF0V 48S0y~ӣ,˻k6 }jt_4e~qUFҴ4AkZaT>r` 77Hĩm XpL )̣>c>+}Eewa>/U X` ;\)INh生x>Y$ܟoa:Ͽ-i(ot 0PB6K v0FRKY]zj)k?[|3sMov5z>oO|tf`Wpt},B5& z תcYP{QhmlD~ÜGד7dɖ1WӃSϣ]~m20z8dz0t$ 8%M4I^oyŚJMYDlڶ겊R/I@]:Y@Ҟt*F,|[2)zL;l>=4ZcU5P0)?Qwӽ@\e`ZmA )_X!%{d#8*>Ok? 5NuW>kc;t#_r+`b ɤVH1:M BF@9Z>{)hG7nW?k[f3;^Go0Uc $bGsȓTV Kr9:`|; S'mՄlfg) <%sZC;+5@үDq@U+ vwKWr"h/J3ᶵ<#&'3*?/,˂Y<qghk"%t65X/ |fR͋ D4r0B#% WZ@=%׀0qp>EDIL3bi{n37bbL^At:kBB NVƻ8R#΃ɧd(ӂX *[߳j$޸n LyC2jQI z2|<0"y'_ לrPY㊧ۜ *-'8,{fA!vg*_Rw%a@CǼ2t3]/c@apY6Gld 4mq:G+7lIJ+FdBڝ:4'3ѝגw6ť DjI^ SOíT4M~nuLԆN^IɾV3g.YPҁ Y<=|N&U"ԟy9H+P_/yҙ}?Q)((V05l`!'Vd! 8P}Pqл\qʼnLCpb0ב%n!SLiy)-UE {מjM5 19 XTXN6G*ODzmɧp#yq~jŰERSS@- JA"NHa`--r,]3Of^_|Yg$t.M#~M䳴k0Pmqldn+u6%}sO⴪_ܔ|ݛ*.mRmb?q+B+ NSq ӊ=1 Q~G`$//` kU`8e`?%RM2?x/62/r" A,r Siضp[L8, Z !d\xآyS/+.udkQXNE~rh _SI^yF)Gk/ɬ}(-%14#3FQCtwC$%7O'wdHBi2Mc7Z+i/33te˒&QV_.>Q#F_-B~%. "U`RRC|_/l/lAE-jh$?]&!Yph'}[tiB f".(6|mz3u&0[2m*ˢ-ʈ68y'zM6+*E%ʽT!󈳞N~&Yb/1 eVTP1eDЫ y4LhX0棎_$cYIdj,*Hv!3xH%J h-TW*/†]yII͹51Ht(=U4LX1ދQʩlV!M}O)q jx( gVԏ1iuP!(ixP"63%p…O<Ĩ s ۉßk\'%,, _f7^}D=%z&L $FSKI$V@#xJ5t/+7)*ww'Q19 Qvۣ$xSZ"æK$SH^AyAQR,t EʃBdr+,FGV3ԯql!Yjn )1,d20o*-AXۡ7xqqfxgd2 s1Y-wgڸ B\90 W{WCG"`3 [:Pĥ x:C/S*rr ^8_ebvNs3>$>j"Vg)d!gP` \PKu&{BŖPR_,%/}M0+XC!uR0@8D{lRk+I[9zn:?aJ^hщYq*{9Ю4Cg-U4T{5;7ܮ2%12 ) Uu"O^#8XjW{ sPMv ^5ײ4!>_Y<\# h{gɡE&XyLZ;?Y?Ovݡȋ׊8SoѾ\#XtwPSH)~`,˷>8oGсnT'I}V.iUr( phNȤ:L^Q続zՓNm:u6g}8'5U]TQD ۩re#EoKj1q~L)8Y|O.BAf7<|B[7SpWỤ"dѧd9"9E"}KwQt3OŢ}oX>H+}L>jt݆a[-+6aJtzXYJj:Pfq#iqa$|[vkBiN<4YQU325Z59NĀ΋;s]y(0ޟǓ;תR,Aj󶬋h)FMuU0KJ֋gp} @s`0_%r,-VK*zW)y:ԀbPXaX( U %0"gY2hz7EP|Y!& %U~eHN: dl ؄#^S~Ϫ(ә0*Ec {^-q󺩣G MIT_0G D0b+!y}b/<>L h鷅se, 8D+dz 6FM3 j<2M[,s=+f}H높JI=RDUd;*+iYȚ^P0LӁm(f[1 vQeZFq>z $tpC7..T!aN>p=,%H!ȿֵAlv츿&ReSX~0J_`׿es5gIxWk_MZ&<]9U~$H<R&XCi~r|Yպ_fzZȇ{!+ٮП'ưsץ>1> Rc'8"\J2? _#_pI3I+4?M3`2kr6 > a-|pu-dF2b@E'k40BN!ВQ8^F_#|YOOޤ9Y -* -H ˕e@He)4_80NBy|6W?F pݡ(}eWw5= >oB,0'-`#A#,23A]qN#àj|D/KΨ;'c>.JuFRa_nnz\H!VŚnf|B%vkBʶ ,Rʱ69TbV;xAP4 FW^deoo?4L`>A^1K]}zZvN"ee4cF-ЋiC)k̀ V'vk=3IVSϿQ~VE)=t)^)UPcb XPzdx^!Ȳ>ᓫL{))%  6fe}rZ>ګUK*Č 7P`q[o>"Iۄ3uMoLS@ӷ!ϫ2jG!n&6IuaiA#LJ1~{FZTv]z=II,:fǔSvB聶H\%2‰߸\z>_<<ٴ>hIM]'$"Xr V:F&QuBu08z!dsXËFKdӏi~͌&!W0)̒k4BL t "h*.0xȊ@2Wn~ltHr }aur_ ׵^olk l*Bbҷj> %”>lvI:sFPAKGvRu˕-njU%aFs/&}$n.յ?2.pSG ē%`2؟#gtc = D/t#$vͲs2%Mѡb|epAfQSm1Xi+AJ_KCe7ZQ}x#[V|Q ް2 gQËM ll:3ӯ}~ջy443 fvYk*̨sMZ@U/xHq֑EttJ.ߐݛǍ/&p%<jCɱ@ fʍĨ^FP *X3 1zܶ!9 uzJ- YTyyt{99Z5Eh6IˁSQ9gWz SKE@y U];0{RQs %mg'V"r*/JCZ- WNc}b%/ %Iira+1{7o/}{:EdF@pjEJ3vRAf .p 3Y,\T:@9pD IJ(֯%MB՘?-&7 A[T"[%P9?" i*}_=Iha!Lk;΀mYAE@onǢshGt`+~Ւ1<_{6HW?/FC×ŔnTNs$䔣Q^C W) $aVM 5~?@}}ṭ|&_"cGLHF%? ! UHɏv_9Ͳpw/ErRgQz[trai}PUhłW({ZãnKfmw_wo~}UuI˚5GmH[5tۙqׁbՄ#*?*l~Rmky4],8/S|69AP_~l JB5c>PI8E%?pic9 #ex*'wMB㓘6ZsܯJdԘS^7Y1h)YLorG7Mcpϯ -Mp2`tff7nl}NIrIϗ65 Z0XX pp;n.7WZd`|+>OG#"kڲ]Y5~+g&bVyh>z`iBO#6h^LuXsd//"`V^{jŶɭeQ%UU%xkȮ 1a(VsDXEdP%dș$ m5Œ75eswTl.OiK*k@`A0JCCNY.p'(Ec(L#H`r?TϾ~HjueVeY b)h vZw/r)R.)հ\b_M\J!YeF~+WE()Z[$sDQ#efj<'mkh+4 rpZ":B?D Lƒh8xJtZ ;K1ܖҌֲUO?E#=-M/fcsA2m`ᔤ$`Ӂh@x&ɗRqҎ"' 5ɿ{V5y8JO˩=_fɵg"CG k_.=pr>quX,~[U!7)dDr#@U} ߺ̽`,8N4n#ߤLý8OJ%yv(dbJ!GQAAۄ+4 ]ٿ|NI.<8V>ЬArmQq1+h0-K$ h!E}8LS_r[t=uKƒ(C*}FV!;4~5p`[1sRRmԡ>yΛer\b|})[T-V|=\e."͇C9COHׅ"gb;(VUNFH *ڂz0LFG 8'OSղG'd@ ~#!S7ɟcuN&*Bt0e*侨/yj+Gbi2HY hF.U1 I'7B_4b%>hS$bqTz*=1L8RU%<6ú̳eV[,v*)GÇ&;QS,]Jv(: M$Jb)y7Yh]*-m2KKN{t%yG˜P/uQ1u:zD,Kc;C:$d\䶐>=fwCYQmHyV=xJ^(ҡasl=8G8!͉j,=}{OF3f{d_Lcօy֦L^Ny熓{pmsT k9dw)]Kr`lq2WV,+OiyK.y~ˬn4SISXIRwf(ƀKSυl(FɎdKע'ă;>ڢUA/eX co‡!>b r|3Jaw7(TY,|ż<ӴB3Wt@b\圎kFaG|=d$Z%/}F5ʱbj SN q'%Q `ɾd_U後$d^OQHeMJ/h1!U|]-"k=92iY_6Ͳ$$d_H (ǣl`JPm#<$Z$#vk{ie^KaQ6 8l+b䉫{`,N]9dIKB|]vJYfk$w 4>*t%,gjIWTUArW8K"`,o/;,?M* GVO/uy*_đ,C' e@9I_{0I]F^~OS<}R{T6GK떭_~Oka~76KJ Z -y\$A&uЇM#8AX@'3-ةC0iH.<7>TQ;T.P`BwL9Wzғsy됔1D|-,S2u3aJg~/2|=p<,N@m*]h&q"tkӉq[I"iy^D|y:*_44}ɲ"98 AXT_~669_{9wu1TΏƣ|++))kt]*{L},L 3N2`2$`H{Y?mQm_nQi)mWDaNe%;3:1ziN$UXGc,/t|a1t2j'LXiy[=17V=*4Ίdy6; p7Bjr?2W*Ӗ}_.hf*BHYc؂*kƘd;*v\SPY(6ӵvRF9'Ԭh&k& C%,M'΂A'Oqwmq[10KOݽʠuns4Hݏ}߫¯ 2'T!gm-3 QfNX*؇5WB~.LXg/%hj))EW][VE/.bh kX;T#,O ׎&>$+ κhD)mB^iu!=zCh7Vn+#K}B~g Rf7@gIWCjqVG6eCއ4I#++u1+A~Д+G# L/0mIv=;~G^Ct_@q7nIBhL?cVOtbV'$)1Tk٩I &y9in(%E I2)P;J~W1 MIab'ug@\ 2&ZI 2K2O,[*f2*B&/2:0oP(  hr)>݄4jHT*͸Cco}ێ:{_%eT㜉_9lӁ"pX fj^y*?:o!=@<;~`?m~-|t)}I0i;Vs^6r\0V^ùðgȿ=FNrb)"% Zup3xk0{7B@Y%ja^4ߡ^fa!A_~YI[;XRĺ~j7/4hEjo4%OÁ %ެEBz̿]P 捨PHn UZQJƛ4[LW8#d&Q>-gY9 2K',%u ^K̟(%<('1D KE&?Eo~{w$m*j 5X8#sAfF|-P̧݃lݣz̞&w\ ?^#Gy\J쑦dltJ`@ 類 !Z,D{v^;->c[}6eïi}/eQEXpj$+iGZ{QM2or]qYqgu׍u4S90^w]*_8FI?1-$޻b1GLZZ]` k8-̰YS!pi݈㟿lkdI-3l} kRil]DFyb &U`o4V %SH_tQ03r*dAYǴ4V|(GD45X$~ P2/Ƞ q/.c!X H)ܿc:o0GmuBCp_0\){b**l~M bI3܉y 3{@ NjL㋎".d2`ݡ+露_` 5 ނomr\ 1$VRZ٧9M =K1_ >So/(Q3%ys=ÿ;eE^ljV^*_U%:ɓU~_w^ǠM siǾ{`~W"}a|p蒖v]@  r%ĖD FvZd"x:Vx]WH.5PҴjCɩכ/ܤ٥MT7wZ8E,¤7S.qq?yΈPMD4F5 CW(RZ r\m[cčE|؟ }4EDMYA#jg@ & :#C-z6(T_-Ou]ҔB1>!D2in̋:<ȹJ!>yKr?+bЩdǁUfJ|&ɰYl[]qZVP;R.u^ö6;Ӣj:rx 1TAW _H@'!WHZOoLj6B ~?)W>oNsr;*F( }Ŷk.=B101,tW£CqmW^&=8/ I|`8VEVLégEvyI8+rt_xO z)_݉n|UMu6:ʕWs,CQ2)(тjP]7M>) B ݖ _&!k}ZK?7O^%_Ub7/ U$DGEn/USC)B?çr˒c?MW~}9ƒdB+u+I_ըv/RS['Toh3OU`.̷9єm5É;!oΨ2ʂ6o,İjiuBOPTAPt3PxqeX"RӲ5mͻkMY2:~HҢҼ'PR x"7AGxI xYBFNz=jWYBQ(RX:{ԓP)&<deU;"9E>LyAϹ/P|v8ߎw}?t<3G8°FGP `XrWXEq/! ~yIeE]S'خ8X:a9(#79eϞ daQY|f@u[@5mvUfUtdښFy-A* Ej}0`^Ո+.#3^q؁+֦1CmW1^Mռ= ,7>h6ɗLڢȏagL*GeVJca%^АWbbwƖk)>_~b_"Y#UD'.wrࠢ&IYr`^ 'd ;x!Ս*;иsЛ'C($Aci a/un|~2m W=^2!8~Z(.42K 0e}UE]q 2k/}70Iʡ6BǀO$mׂ$^Ar5t59~306ar*2ݑRʘ:9y=\)EUlA!⢓S+v_Ṟ[خ1.-#24]U*dF ZF1Bmv ŽwA\\wyuuYFc~]RXӟgqNm%gf=䎏pc*z]Oi{fYFYHý'5u|6/|HXIy`hJH/扇(uw;k.U;C B|_hb4RV܇`.[_ի?oo AO ԝU2 i|C4'u/q`1?>gʼkbZ7YW6]*[ xjF}ʏE ~o3ɠ/nrѲ { cFP{ Tq8ИS#d?u#;W{L"Z7]뿧k z`PU.W$9)C& A=r]f-ۼu4O{+:7P_ vl,KM)x:l($ c9RFO@~L<=> SɌ,ivPR:IFi `YeI=l=Ұ)BezUNT|JnyI4%Y[OjO)m?]d]^ )`BUXPYm|$؈aQ |o~?[F0~ɺ&ˉy `Ь`I)~" qvj`a3瘺u+Qm7-rC$ i`JWz%?I<4f68C],A% @3fX8d01&}%PB~vs+=YLs:]bdfEv 7Pj.#u-;E^4lS(QGuԸKU7Uٷ򸪫$*)3Y4:v fW-Xy(˄e$ =HaF>? <Ow 4!91Z?߹qR:4BEpŸ G2SjmfFޘyz7 .B,ôn8I&LE"E}h\(|W/L A:k*:9!7#CvUD=pl6+#1e:tl_g/qk*Od"RWVm~f0bʊ,/x`)ShIz9/ SecRvUYT]` 5;.V_lq Ql[r_=LI+3ިiüNbiU+IN% h80 Ym$C'Nݛ`*Eb4NTi7rC 5]'؃ 4a2+Z9dĻl0k.q]-ZRGRioVW }pn?Qi@+< F=JFpJ$LݰMu-]f׵ܺaY7>&<(:pP1gEM#D졨O!!yH?yal͊p-u)p_2-" P.;\c퐹eHd7] 1gOͽ?QsWkVEJ5 {!BO8yqxedpFQL9}cko UŗY.dVQ_ʇh!4MFU2,~oTJ\󈃗r^^ܡ1^RE4}!+tndy[GmI^\. 1\58'nel$+k|;a3:.'g5C*[,yi)y@W}Xqd E0JBdc;~ jocbht@W* ZRta0C Lzm".2/a=KdiEi=(d5\4m8:HB h" t)C]i4Fq=B&ֹR0\JQva\0uh'9\K_w?dhoD#CE ք^Z6jDf>Hl`o%4[7>ʼL۽CrTLsvE ڪҾ)T'м8aHJ`]C,K?KWk6Nڄ;Y9MG+l"X\YMuĄ>Lu(3 |3ǝ>V]Dq*|7Ya惖 ݛ#ԥA3Y Jb! nYMOkz$RU/ffeYZyƻhj[O/w^مyq[83ӿ2wthע9 f'p׭gHhK"lETl>`0a-Hu:Yg4,JZ9$,WinV[f /gecyLi F  4-2?20~ݟkX뚯?4 wkj_eRS9k/9Tc/LgYELEe†u_H0ʁ7JA#n8Dj 6N VI [PeL~h4nBr쟍pbm)h,ĈԌsa[E2|yKŢe2ͮX°"8 zt.dIJLE6z ۗ A5JS>&6Qh.2jE8pN%cz"΃󣽥DŤ O"r +{h͕"kll?DZ6Ih?FIH.pGU6(#X@(@*+H"p2[8_ ʍ FKI]X'k*Ui;_UR#"S&^:*^*I¬H.0 m` oT@䇧el߾lw/-})*Uޱ{Jsn.H&0C'!Ğ\jaNCnl'+qĹKdqT*O<Ţk0e(E.i5QVQXy!w=wf9xp;n~.?:?I>ɮ$)T誡>ڗNvYQ̻^<` }|ėR6Xy[!VJ p P(m=%] ȉ)Šv? N0>Xu@NB[~;-O(Kd,'ëվy\k!e 1Tʐ<61;Gv=ETsy[*rz\2 =MG8TISfxZR.8\ r۾nYG 0$7?8}^4&ҳH!Va`o?ˤ_V)Ss_m' ~7勞[LjGFxi%^u %G(p q[0ǥٟ[+jW EGHIl \_N8,J h_ CjpOJ|F5IYIhrMvkX8NZJQ>PFVfL$XpbѝN+)P*p,/5INҔk3ӧ`UH5-B])waDE!`t2Pݸ!_6+b _P7VϓE6OK[16pzR]Eڮ+a3:_3ɸۉbe!i½kഈ`b y$Fjn MuV VDl^l ,? dWdpAgD:Vū% b?bTO'ݘgK!zafgCjm4}BӇ0m+L{-NG?K^սȩROS#{X7$߹;ZœYEg9ЇK3Ы4'Od:ڛ/U3|!ipHޓ1κV4  `n/X=2UtJP # Z` CL)Ґ&oO9:`uCh x ]t*t}S[*<;s\' @=iAlW K}tÝ}YF (%_%6/QSD/ü4R'3i>Kڴ>D {#S󜐥-ESL1b=o,dLΪ|='M<''#]y2p7<'|[M,.&dMbi-8+atSuXE0@&`@'ۼPRiZ'PyzU0aSD* %W 0iӐz9Dž8[q2ٿ'FDX_">| * 6aM*`ddӡ}gb1' 7>[0Jd9eD麟>']RooܞbafzsBX%0(6pi^뺱kMLRyDIWUG43VRgj.}L8 @2ZYJ2hn;EVEܶ_{RS~_6b }7{xIIYeoյv<PM k &`ss)jz:Ax۹ 6DKcgb}~Uqe◆Yrы`"z3B{d "N<@&ӏ_4{DUea2ӠTC&.`戒XN~l-H4'щB=XRRh6 6'ڻGQC'ZW%̭O'V'VT-KL2y'M( rN< 0y Npi.Ù2L&©߱.6`^%5Jq?9rK|Gg:"2ej 0ò$\DT CTksg˲W>iO;۹J*>%Ap;fՂ>z,`pgcj~m{09J^umh%gh]фrH7YLJ9.7haQf~Ϧ&\XH zKSdhT ܓ:i˨#&>wMsI.n=Rq1 &a%if>ЉǼAs|eq,"ьaCU#. tD<%`Ja@m3,̌/<>Dwv1-n렿ħbYd+u0a*4 e(w/wmYiP=hV*>Mb&ӳ)rDyԜ4'VV)O BaQU_t}ɩ7qllr7|uREh&:l5$X3) xFO yZ4{o,M0C?MvJó'b_LguēY8+ l+l23g׿gf !/2[ yw˪0YhBm-k s8w=|Ln?De]_亾1Fe,4],}9ߊ1yoQ&4֑P#}Ҕ ė[nG6ߵD YfMLb+'UiX1:oCI\nje1 ճ,LX>5Fy%l#cmK/I{eZ jg# %4.jrKZoY!F$Xb\ێ#p}ГO{$# d ;y\ڷ)oNu6v+[ 9^x %q)܃~BJK(|+wƕ+YvI*'e^Qb&Ve$)>&d-Ց9qtYdD579_Sj9K? C;Smf-E]TRV*D8ꓹUQY8/̲2!4IL/QN<f5FF&&5FŹdmE_XŁ'B999pa/~=2ܾ~ǹ;7MVQb"IH+Ulם-C0.f` ڨ'V~_//wz_ U%Od=NuV)*='&o*h yTFn`C=Tu[GIuMqteؓQ^+c-Rkm* Y_U;)L*hkE.|-X[muEk4<&‚Ā-֜1vew [^& ]B,, 쟌dVʘq8Hl6A|*:w/7~KIWfM A.>#~QdI;|sQ~d~[(OĴoY7$1y?ݫwe *jO4M@e-T@ALq|M,۪zwwGwmFdĩXQqWɞ98D!xPU;-@T_y6|Zm} RWuM|zd,$(ktx 2ҙe⼀C,frBYV!Fӧ~~w͔+OFƗXemCTI0sEwD (pHcD#7Gf򯂛+4lï\{~-<$9K9}|@TRi* d0БGM>{1.f9/ÅRbȦ{[h>_x"oPNKɧVwk5G'[]oX@q]A!.^VQQ_6M"v j`Y&pOhf3AF&Iy>_)o`o)ӈ;XC.0d1Q9dv'h7$'~'yr&ZY@ʂ-q-+xA׌u<./M7~D]b!I!ADX&VSIdd({z$q9v?/ /ۦk9s}ޚO3Q)F/1,̪N>N=/-]b|ww)hdJ>YByF:8 *%ɂ-0b0jk$ ic28&&=~ZfdYRE")x`(L0ȍIfY{|!ĭm}=k1%Ī l ZX ƑT,|?˵_As`3itWAp~{Kv {Jpi>nc@z32m8r[?BWKi1KU-2˄MDJ= >_AE:skUsdO/me_TÁ5&DuF7^p Kn#^I +c\~Nr!g!HW UV<=4RnIm% l;9ZYN]ޮ':WhՅF/o1-VVu킧)^gl!`Ƌɠ✂JNUW[aHJ~/5${G_451;J2J- kR%$ZlCVaŀ#1l dZWx\~\P%7an*dh`!.Tia&@ h x-'gf]PM]k9|FF]_QK J)f݁ᓙtGi&H6[=,OCV+[_S֩X+QԈ r]k$ ؟pᕪY麜Ѭ;6m͉NjRaHZItf0BG_dqf0<{@Uk!&M6Nkz3eX_!ޔ@+k)L1Wkw*_DneM_E T(X-u,cF`68J  OpV]֘hrsHZ_,Ͳ*h.^"@xe6ts!52xDݔ'WE.Kcy<+r럅mJQU#ơ0(s+_BPM"m#Է~i{36۴i^+xת~W4c[w_m[~.]!*X( 2vŴd6ŀG">rK^_jJNŠڰfbg]JS2|Tl^sBi,D )-9t] _to3fuK(~XQ,FZ }&PDVh Icj<*eɮ,zI-VGc:]?7좬%gyW%_ #,*\$gf -愙 /?R,S-0A$VMndQD@G5ZXiʁNi!ia(XUch\Y~\Hp]t~"'"Qn5+ɉmpOn`U.!H{M- qTa5G [ M3~hKP-+ۦ.hn)9 T^^Z8bDv]vga<'( iOZR}u/S:Sٷpb.q }A$u~z5':tК#RzU*W Ӈ\m8gK& G !k+X hB&_q7>`pYqF M!JpjxiB/2|K( p>#1.ftڈJ UlgbZaDx]ai`Fv^i;,X2=<>qd*uނzt,3~i%Uytz0vd7g4F[~w,IN k/to0멕k =` a CfzpL/-0\"uurאby*jIB@׋#XN_#XqǏG>ϗ؟(|MR/R5GvC_u/VH.pE;ef%i"+uVMwViF}=}&|J޵%CK¢:T-; iqGLF(8-|Wt[ \ a0Ф:&ȄM[.ۺ@:HhR+^7^mYge4T2ۓY#Y#N?Ee[~ m=UVMxGҿpRfc8,Xl[PQPG@QτKx :mF (mj}6mTEMU4[ZTI2-1FV8ɰѫÊ\Ԛ9ª|msr lOՈɷsj[iNEy|@/xt+wuF&QpMA83- 5۶Au6")\F5& ̺63 > -~I&N”h8G۽gMUe~}y.y[ q( 2V&,)1* koy%w GlZJ 5~E2c7 &;mcیڔ_ڴhCY$Ŕ/F\́S>f/okSajceDli?V+G: ߷F=]@qh+.|U4P 0R 49-|erȺTm̐.3c^I&MBWTmXZt<%obIC>.2!/qf:5btc8똖.9c0=M|u(=,L:EDO V̡@/C.)uR<9nոI/h)gvn 6I$Q,cEFm9=@R{Dq?H偹Mf1{tI{ :);<ߩpK(}ɀnRh:8Y:iV" ^bE,E0 u./~o_ugNq|,/i>uX!]zcI w,s]y.a ؉VW" *nLˊ.X֤W>Ab%+j; TWEЩ)Imb_P7Wd+[7c>7BRi؅?bN{FBQ4:@≸?g_w)",ğ[ 2yylzITQ hH]ݪ``ČEJtR84XpG:LZ)k:zyrN L#fr(Ȗ81ʭ4Z;[fK2Ń\@?o۶{4CDEETVHKܓ6: seavp Xc ;Y8?_N:iZ =pKl}uA+NR=9!hg&Lr!;yā断elnfzܶffM^Ki=M4R<"-. -*o߅q28L8>#|WJݥ'Ēgt)B:2紀9޽zqzE}']zd 6"]`XM2c_>"ZƨXZ1^+ou=s,HêM!E o|Ddo(Ƅ!gEŃ *1fr"(N4L0M˘og%oR?a_B͞~ȣǿ? QSU~o`jW iGTL_se@;CعZYv0D[ȗIκHճ@iW6lq,VQYI~tGKa:W8S4!8єs  Kf~ِ_38G!3Hz~TaI%YV]W%7+ZsBBN L: L: U NRkj_ ˾_[.wexV/^Eӵ)v˲F ``ň,$d(`”''y L`Y6;< <ɶ4_W្YkLf:JB iN]%A>dRḨҽɳ{/O7cV00ic_6MnW ۤ*AVf!{+Q@d)S/ ߛE,lm9COC2͢cI HJMX.1cy:Ith>BoZ-;Z›w"/cFfsOEAxV'G/ qCY*hn\KVxZ ~t0T>YPcA^ޓay'_Oܷ}m2he}~ؗmtSuMN76M!*#OKB':P<͓O $}s(EIvySda!#xX"?8m>R uK]/f-C<+$MplSvU֞*D]q@ x y~4K#ṿOcwT>AVuݵVׄW!9,V֥Ow;#9>"nsъJAեQ3[ [–JaljtFAv̝f;4q~{u>5aL]z??P#k: RZzl7}r!V4?XNşuRwaA?8ң#@ʟXIuɔ2IpI̬XhE:o/VZLbjs0Ouhc(õM,ȍ PuܡMUEȖ†Aŵ#m6j_C/Ֆ[eKW-RDqJ9𑬚,JѡWH\Kѳ &f\6f_5c_gIuz$bS>Cj)bAMRd@fo6'±Ņ C}윶e#a$_,,ߞfT7ʛdwiI66 -(JaVhov r%yW6Gc$aU dNXCuC3y-}x*<қgr>ǁnA,׵Sdeyzq(w;yws>0c߽2{Ӷ7j=gBr]ۓ'|*9҅Pz),"⻿诎ȋϱ(9DR7R7k,ݐ]>pn"w#NېMv1x ȍ1i k갠sAD$YbeG)})fP4gU]=a0GFYVď@*}(.ӎ߭:yEF%`Z\dј(IG7t(DžGQL8}Yu%j/+4CJ*JR` ILɟ\е: {9yzqm.eZ1̤;-/$:*4'nhP#(w>R o; 9f­j"qFi=D>}ˑUQʆxdXOCa Z;ͪm( :nTjD}$oV0&(_ bU]# @ cAwЇ˖ Cb$1&D\/\3 Y熈ˮ5]Ж`}WLA zJPjhz!an(^D;IFQ~-=o*+v욷Iٵ Vڕ̥A 9ir\*6z-拋04P mZϴjs/Ϳکϥkʌ._;5;%'ܗ2'VU ݁׋!{ɗJ2Bj|]{n'&⇟h9)FMʝ/ppx`&<{>K|!iI!!Rb{|'mّGW^R7Ʌ(U4S}i|seN7Y+s_М`aE"w "TJߞrP .8 Hq،f.v׫?^S8Y2*[5Ti : 5QG.J2JP44^e/l)׻ETIܭ>ICM Xj$vĸ"8 6a'q`Y iY ~]~蚷/iL5֣\V5IwI8L]}t>#1r"</F*=ۙp-"۟/F7kLKAI{%Ujr-P P8B-=3 hߥ7!J.G&__߫0_/~R[ \K&=8inkYӗ&F1/m7!,ˏ3%h*:P_"1/{X>Ao`)x2HHrnC? ^2H֐#sc #RH˼J`L16C36 _7q˸ȟ. @ pQI)o]!Znh₟I`BrpbbeM#\㰘ͨ}܆;dդ0 ;Pr'4?xoN%>V_<˿*sxڴ/rNB_C\o 뗖4y}%<ձI4qjۘ'sVxF )>Ȉ˼$ TB+ O8i k0kMGG9N9VOĶDz W5OZ {FĬ* Uf@k×8?FCvV'҅gv18. 60Ugc;XY2Oٵu21fhC3D ;/[`ؠchq&:$l?|*mh/Tݨ;I[ "#6Iª 4_1& ˡ,X/ޝU-}ԓŸ.pY! ˴Fkh`5ƚ?x6am~>X FٹFs`/`9`%ݑt?NZvf\-IّU)mӕ{x 4lZiY+rEjZnKü+U) GjcTo(TaFN*sM ͐e)% 5OvO6-Ө(l}ʟ_RJ -NUۅx $D4)h!=_dihl78N-r-S":և=|v\aR4]0 =0n˪ը4z,܄νu?wmB[.w{]5ywL|z/ S`| Pr$I1ձ4E:p3ean2Iݚ=4Y󘄐e4IyWmUaJ/k/?P1_/%TP$l֬ڪH,Q'z&v(y7,h]O cOL/|!(c:o.m1.LpXh@:t%ij\''Ld :qZ0{֦uțO~]'^kʭ Zmd.Ag8qjP,(4Skk4TVLR\yZiAIM]$yԐ8VUAxe;`R-RQũϘ>%lZ;*OΘ @ܢ~]Ub/9|y+L?`P@wFɍd #q 63MH7oՐɱ($״QMNs~; #LFdTz [)> ^ rX'uqO|W'SUXb G4ծʵ&EhܸU^xl'd>ͻ/`wzw Ͳ%u:>GQBw4 $':>cfQTCΥIȽմnnf0܌s:8O/&'~Eٍ:TPtZ$/akY4XL)gXEDG᪂=ī-TgyTq&n{Pܪo?TBۅ?z3/D3cg Tt⦈칝St'hq,g凁i ՉS MY%?W3beJ wak6|P6 =K9-ćZâDԢh 7 }M h߱JZ.M,\YE`Χk fXfQt?ڀ]6[?c'+EX|/v-y)idTzɊ\ET.HEP$|-V\W)ennᥛu~ED؝xbW5Xj@B1JE ,ҞYsQ?$<+bG.MZ~+sydOo wu[)ªot0ͣeH⢠T7"xh^<%.SDҙkw2um}a?1e9J_HPzCD<#y];·UB 5gel:ZL/xޱP~PwQq>/秩cH~aTy|}6t0}儼F/4 #~ Y%d|G\j!OŦR0t ܽGGd$ y#Z }o0ɄLH@-/ -iA:y_. sJWbfWG~I sSS'^I灛 4<@1J]+|m6X4'sDŽ C0 z/ daN> S}3`@_ }a|)_},|O X GQ2#L0;7(ϔLbi)o5ۖJʪL&:. ٦F.CS!bB!HtL{l[uF N~ZX(:"Vr79Wr f:P0s?SX<Tdtl}a R+~Y>vg1;4vSw͗qݧ1e~.2#p:z8`"̙bv'qV_xy9'2dq{fYTzmg*3ԟ:7G CǁB%rQ8<--[0m,_٦sqxկ%ԩhiYr`Y`#.%HG OЖ >ft!Y~װ+geJ[Sk^g'vq*a`+U폓_7EDE&ohI%,J8רX%0 kUOÁu='U&"N>o}ǖl~;TURŸҤJ !7[ȆMΞ+-l/ǟI[H>4 ԁ**l\H=%XՀ:%? +.7?AJ+q~/Vi˦j2_V]AiU& $d!-;RsϾ˴4LSyכ_f|%z?6TU%T+0JඨZ|6 c:KpR`%xXK1-K3ALN,l<6l\_527!P3vjV-4I+!dCHdw(/v6R(+E#>e>5 D 1[!(^p>Ӵ|FQLЄt;40\*UR EE{-1C0nwpLĐgZ߰us. ckj>LٵI&HW/;( Ҕ;G&bet;1.)*2D C2g iOΔ4!J mڑr]cz3̞fh`'-I|_D-HrmB F@-X%0V.eKiB<"ndDlK#竧@ʪ}S.2(7I zuS?90!8p8 ʜ ɋ9ц8[\l5rhy@*EVUL;n_,znS4[6<\J(&13cPC8xY2^tJ뢈sߴ|1+LJ{ߢiI[)&Vm+HN":;瀉sg*ݟf}අ,Nd.m}'5dWmRjX # ;y :B7RqM1ɇ*5և&e$$Ƥ-m|IwUdY9{ZQb],擰lJ dN⽳%=1̻aRO~ ꤂D2 51 HV?.X"/ Ep]`d8)>qǯ庣B<`.2[Rb&γpExH6P.aȄ첿uoej|z5Ϧ#?7PI߰qiz?`ΕF% @.'YBI|qNI>rB)KKLq=Jf껷) ڗ>/ԡGPGShY 8e_,i亰bʛu5{@&LJ'jc#c9ODƵ4m#L9t&벉?'Am;BDaUͣCxR=@Pr`C3ͰFѻx 8QU|W&E]`Zl4t9^>~DiJTN&ui| Na˵9Q9_%#c5g~MPLG7kGbd'L]a0E)7/wB/1amgNSBߩH羓|j`!*7vωi`]#e.!y;7ƌo \g/ ӊ,:ȉ;l2'1jtd^@=`k!ҡdlF%geU\y[vvEd0")ק-r`(} M0,|YR31%W_ŀy^˾2aĜמa?B ,M?U0w]ڴY\J]7:N.D9ϥyu|¸&G$?ޟ1FOۅwwD\%SXdb7*j,RBΓr+2~$r?9ǹvLbi^/3|ߍ^g˭Q.OđjqLv|41ֵY}GNcjH,ؠ6B41wH|Y?ϟ[’-龽Vh=D*`syn\PQIG܂Hv|cs?_x2Ӿ^sRN|ռI&[:eA2fJ@>)S^N=b ?66-OXH<@|A~{C/!ޏEYo.G +G,ю1w!2)Gͮl\@`w+Y8sō/upZ9`(I*3VP1Nq`HLOY8 O>)xfwe5y=}vIռ^<:>PY'&2Y*}`lO(M?ҝu/U0J+_ %Օ >/sE#BI#Y8?Zm`Z ~~IzϷySȑx)2j^]$5'%z%T=8'V#P0 Fht]!WJejc:xBm>P PxJH_nS[6n$^:8C&o"@FB#î6ꮥ97oo! a`ҿkd("IO+[LRU*OOE0$ UL*0Ed!hyvxTkokeruwpo8UXV*PELmTS}hT!ƈߠbA>kgOD31V1g)G:m!|49}.0 nR܋+$!(-n0G_bfۤw'0?*|m=I*>~ C,0*XmrE9q[ģ JbX$MIžWI•IicӔ|.#*/k.+r$ }-Ff Ot_n +JߛRჹ$, &8oag;Z?_~)~kL<) Ak*(N-yr–#/jE0_ʰ ^ 1dG1n^[[Yd]z7JK+eQC`VVmL_ڋޖ wt0V FEqb]a %]e1bL8iX҃E'灙iZ6]ķ 2d,m*˘nHd) Ԑ@×9Ɇlǻw=b҄8M\5n>myٱD=HGTI5].p|c62[HD`):Xv8%F`)KlsS%ukW32IdWtQ9 > /,__kI"lPBlIKY-7e(V6,bq3]i M^$K|e1ٔdg.2<DɁSʳVPJ9=T.7/Do]33:߃3D;ï5^'ySUUbMuY M*ԉ \w< Hb!JQ6s@ǎ/lerTLi~5TSj4[wC+.*Dأ*,w$!%a@"߷od"fTSa>bF"As>4jqYÜGa!r&a56x77&9t!HKe~lc70v4,A+ji-nɿ1i]F8-gP,PMr\F 9r_uHNJn@"'>L$ظx|zkj* хhz[m]aI-^P|AWq%[߫~]^7oO5& *?K1Xmwj BFʻC&(|v^>ە5 ЌFo"1aO0FZoI31kp sGpk+h.ؼT&uLD^A̲rR0M2-U0EZH\X 4IaX"G:d'fd/剩,S ZU4s51O\?6D,8%?X渥>D  jkeڊ}DI~ mm!$ٖjE'c;;Օp/ryvGL l:O]KMjŐ] [P!=tpufX'%a@F %[/w2KTϞ 'ŕ/{%w6eM1?)32 {ߕs%zbt\OE$}0Dbo6.GlRTma MQ6 5CXe5-ZKcV}fT/d|jp V!(YGŢspBHǢH!&_Oj~tu訐}E"tj0l_nͷ\aj=d )HuһK,4@g -j; 7N/b;Z7: 늶mtaXtÅ t-LT40"짹L_b+jr|J=dэۣjt"U󣳵rnܼގ閭w<;C㌪") eIޏB+Ktչ%SA9aw8#i*i8t-  Y? ZPE`􇊿hҕ%ۜ2jh{eb*/K9`c.WVQT*ήUOnMϷ[%yJYB9U[d{DiqM5\׬s(pW#~M} %F$uqXaqMBjjj0YFEWPu@6<$Fʻ{˽̾0fď.d&ѿ7emzo w_&ׁUQ=ݩ!O#=cRLn HoI#H6 dz!(>m4p{xCS.w .dՏ#pT1N9B9LX^U/RJcIA%*:e˱սL//n#1C&ʹ"]T#Ó_B#JU}: .~⭐\dOK6CkC>lZ]tdrdY@FVI=J"ࠀUبOHL8ߢq[~$J(4!̴CQmK(Y#Ze2 (_Ga2X+arub=7)u8,IЂ}3CJ_49; ywIO=iɋf^m]g.//u[=']8(g zXBRilx]SE/eqlus+E׍{i]>X)ޜ&u`]FXce*V \etaI vm^XU %WnY6O:״ܬhHA(o_{,8Ou¦2Bҕ]e7ez1abO> |/c"!zlWRea╰ߋjG)(ߒKkµ$u;EnL˾\u\A~ݳ0%YHz}k.f'> cc1/CWX{Yaa3.ѕN2㱫g,LUd wAw Na[G EM}~La4wz={3 ?\FLꮄ-P7G!ҍD*L3o|D$f# G~ǮИBDhf$״U^MN(?R$c\,2VTsdo Wns6)? OнpB$xkT1w xwRFC+R?>`µ-an">!l՜0IM;mGU; S٭f qLBut4}=s#کa}<9x4_+#).XS(h 9e$,Ufšƥ`(Z1$vWܖӪ Gj2b)GZI_!k Ϝ\1HCo}~D9 RbgqI6}[~6S>Ƽyv*KhHVq/YFϮ}w$I%"XIᘸo+ssL_@%[_<+'v qM+LB+&bBgق/{rY%6qڱOg(O24<Q^eѶ,gş3OC=WEuzԚ4GahvD0O+fQJDz0M _?o~+v0PcuX!Y}&l!0 :K^&lG'*!4NւiYB 0Z6mǪ#5h[6((D'nw| n'1ADwAc}>L65l?d%YyjSv]QD `H;Žz@Dģb _!߆zEc!|L+~ysJC?i?k@;_^MIcQ`AzF/\Ծ]^cM*5˘9*@qb&:) z-]W3v?445\&3&K uPyͱCG*Md ;T ~c@\q rTAABwq׹(]|kε%=c]>J$逾zxVQ:PeAyoY8:|Q.Dń/u%ǡyyk9ᄂM6yŮN7@r#^Nray ӓ=uI4cmkdG^U] ?Jr{`! ]a}YyBqW.uDz=H>ê*9N{"O\U$8IBj^I9D@p|BwsY J5T-9 Ӣ U҅ےȗ9oEMp=~zް|*>p`W*I"yXYڊK䲬&!q MN׾ˆX=D9݃j/򜻗oF+$-!nOX2{wk"gEgS5&fȬWB8<{d3^}xo77aU:iQ^9LUs8XA[ \/28(F]mDOT-x=y<Y'v/MׅbmXUu@dGUα9XQ(g.qwh5 rC ?zap9])E˘nvi\7oQȥlפLl8; iE\(אMw 79A b P[Vѳ]bՅXaPI!f8$|ُ]\<@ssx_Bu}uuez |D :I \.*Q >جsM{"j(kz*^SWOj0B %2HW@n^<]hg;(odT-brD~N'Z([ی_yCP}ACKwZ5}H- 4 z= R>B @F.%F4Ʈ`I4kiلڲ&[9i뉗{qY6ɒNVű˺W;OktL9Uec_{?0 czri#gg^0?W^J6m`YFjuKF1X] 0eB.\׾EgyIäTL&/pAeūg0K NDmJKIt~4Q~vnl?zMSx?:e`;t4RߋE=.[""yne'y-- I;" d!X jy'{7>5N3Yw濳*\r]EP,D1ʬQCqh?J`~ %b +wU#ٽ6]]]n~|b.M:3%'AAy6w28c^LNvRC,$8L*ilALjUk{CD 4ﯮ!)Bƙ(a,ܗiSY]dӪdz p$RVH V0%#x޸;~Zz8L`TF9_yZ~'kcy.:@߭x@[쵅FZLO>i >/c_ȯmH$ID|Zu<ˣKNE`cb1]t X վ-iƺWЏ.<]coU$fSˋX)}Ǥž~`&|_d*$L8&vV8רK)nS&/).tu₎%0m%Gzѹߖ,-ʜM$[yU2e_8* si61ltω; n7!&._m#>`Ea)ck+8ƀv/21QbXGV.ϻX{VH}/,uKjvh5' @~4b2 `;k- V.RL<_xL⦉,u].ߴug2$JPBHskc~8Ye]eߎe^^C鼟#TOn0Mn ẹ Q*$=81`ROnƯ]RÔu(R{iZdD2t)|EkU'xy8a+~S1w#r"]q0&:zɹq-}WA+<_s㠟q>Gxg}}ĞLGcjʘraw`(v!o@C8?80X9w8bٵ,˶SC:S5B-@ zJQ/ ;!b-qql:f'KQ7)8Kl Pʦdt,Vv:Pa/;{\ $`}Ԧ>3H'Jv/XfY+P5uV>L1M:kґh򁗋#h11$c/ @6,Ӎ45iM]Kp_~اg!s6E<^dIȔ# ەP3S !uZVvEz+*lE2@&%j_#z*yMn)E&fT[*uzcgsJQn^ Tw#p=oվ+)~rY7ccWfH]CJDz𭰚©B9•Agw;}jfb b;7im2bi>ֶI.mgeYV GqRs#gWq2%{T5Ue|y;[c_Gzd= ïC_5jfBf4SeXb@o1+aD^ysZa|mH'j46ӘϢ*ƪ dÐ&E4yζ-}6rI;w*ZBߵ 4;#0z*Fe:/1,I~H?Ȏz s+$'o:+hkUwT -D0+E++`2y$<{YH^\"kW._IIjJFvиV)r=0#w7STwg%_L+趄y89b `ߡ̽`pw IpR9]i?OB,/)CRIQu_^@b;*3` ݄ Q=أ,/:!uVLU6EzIErэӊ:RFy K^VxFZpO P txC'ꙷQB^S_'/nL&u Cez(,#KB0>Xg!̇^'n;=+C!o(vBPT&'{S_ ;jK uATTG)#*+Soyv{Zж8v95E{ԇo'{%OzSa?c|O/4t 1g7`e!!M6u"r]UYGqZ!Y ʠ0_V0~t#ex}rxc\w?lidnRdAVV5W/vYű,Oyч A4sKzp ڴxNQ 4] P>,< XHz1"oG,#sTO=cfYtWb%+lʃ8+M<ȣB]Oh1}iQU zrj*ΰlR6:qxTǀ,x ;N0! @ QCL?һȭ .q}2=ۣRPj\=㕉+Rl^ƯCCu84M#9r^k嚶7%EJK;f uג\B@QR*qjbFnYV'=:g荇q~a!Sqk R kIgtc1|I$3t̢q < 9u&6dPT5f_(&=u#v+E IHp^EJD)֎mL-+S C1C%I-N$R 1cyl;tPN)vw7/na Hn#0X# L])qi,DK2!5~x.4`Hm1eWUQ\LM=́l(%"X,8 ">Xe:Lޱɍţk `s+en&O>acji5ul{#mX4:8EY#&P绲:Qͅg?Wex7"xKӓZU〈YO ~P5`{ (PUԕKC#6cNxbA^˵E-/}&0M;r)R.{ݺI"Y9<(<I׻+t`r%ȐCXwR.{:~T6)ȗ~ƟTt3!s^K6]גeM !qXTrӢZ]l5B[pND#+Q!L:+Y?nUf1I_N2"{mLĕEU $LC&AZ uP%/l !x#{>^p#^48vך?P$VÅR8G?Ċ] =<2O[L0_%ķЀѶ g)e] v2/ &Oinvc| ;2EA5.S?f_d#nر!1Р\*K2aNqcXAd)]SKM2kdV+;[AJ^ Df+.KZQ x~`;.sIuu3S2 5 YY$1FŅLj0ڰ1ewq!oqc+Hxau_/}<۶n2|!QJ&z5jD؝KڐA[/J萞L҆=ba3g/s8zV!IμQ;:Zۄ5_TњS;z<5rrc:\ I9케r#pW!1"?_}s u2n)^ KLF]cl*nʨAR\:]|be,Ϝz9Jw:!HK{Z'R̓](Bz6b=ZyR~b-Bل08B-V)qZX:bA%{|1rIKOxvu{{\=m.1+M$UtkJ5^J):YZ^Ln""F`ativl!uifIUEMݖmMKJ+OiC&?8\1`yϳ"ok64tu+?4q9\ -j H'{Rz[ WKR~5hz@0q|!j+ZK8;!My͋mگS1_2.J Ppy?dnھ :y凞 Ѭ+[~St8jnXZ.a8P+g^ȹށcV_ ò=dKeeH^3IuLa-֢IN v&10G7P؎;|.v?HzB ?緡9x *H ˠC"]b6w7"w bĀxEU0w#̺KR/ õu,) u-ߨa'%|F5`+IM]=̏d] S}XX#^`W6ztue CpGVp+dYvQS-EaB6 1\ \elyP ջaz Zts`ATɔOlDq~ sJPM  6mVjfV.أjA&Y-|4,j~ϨP+? 뿗0)FXfѳDYsayR摱IPnAd1XXֳmfw."+sۂb`݄n)Y4Bejx%irlev ̯isWڜoI״./yeW)_T{A'l ] y mL baku'yٽmH\,c"QdEc2V -EUNE-ъ_Gq˓yZ½%Ws0oC!}G]&P 0՘"C&hDX{N֊׸PiX痵\ -*_$i˰1CtI:a+#%Ē6xSk?Q&B ,>i5`l*S5I?Β*Ҩk=SU^tR R{!&h15?Gۄ绨 SPϖbXW:?m^J)uՄި$$[%SݘhX8p9/s^P-VIPM*ltJD ǺNP;W䒁knz!ۡB[mrDمLshe"+$t"Hq<3DY``uHEc .hoE֡/~E4J͙F eh$Z7SUFV'Gs{ Nở2ү3焐Di#.\0ѬLau>)"0SFBdb^7WkCMBW(/ZV"&PZőy]]OjX"W2t|Ɂ q:,X_7:x4uWYW:7 ׍EhSmuȯN׳2JӺEك>FRE+~# SIp!!&3~E.v-{rf'#NilI b'ryUU1  x?Hڤk1E89Z7c%ʱ@w)7R09SR&NѾXq>ײ ji GH_$LڲMѱϪnq_y!TYD$>^ͯTҟmxoɚPi}ZB#kJYIHS #CjEw(x,.h3lɹ,|"ϤMZD$+cD)."eW#=Z+C±6Z伆,*F0 +,"--TV$ _QS dYy@$O``^Zk,:JexЪ*Ar9DPEjD)jsU%XǢF*M\QҾiPĉS HTzªC?mz!Њy,=և ɫ{Φ[;Pi)d]لƸȥ#pFZoaV95,=o]ҘBS:;z`[05Q]U1%op1pu0/$B=5IQ+]Il&̍i$,*>}UKcմ/cT6K,&WeG]ʅN:a瑋20뙊yy|:M׊!QNSB*yWSPLTU]qށ:F}2:!g!S}UMoOx|2谐 9Xk OŕɚMZ E C65?۪Ĕ>9Z @ $HIr}y֚(M߄'ޔU&:B6Z8)-Z#:|vOü lqO2zxc58?:.mӪg^~zW##zUJPrjJc b;`FoJ҂ pI]%kPK%8l֣@&kνOcM?i#~zZyڈx\ ɡϻdyY゠7LU@vD6%E -(u,s3khVh)ڇf`r)-lyTUMܷ1 {x2GHHLNEzcJ ?OzQ/\YEu6` 8.}ǸBGA0FڭnFVrKvTuB3iV&uUIE(y tU1$HM&.x!]p(NqCZmlCybh0gEr K:JS%y4,bLU?#.\X8t0bb94 (/+4ֆ2[bњ"$Jo(i h+c%BPo<1,:Za\* 3_\lS&"Q25y߱^n# 8RZxvuj̪ggs:t[EIrۯ´*,ayk0`1bBȾRTt^bJ(Tfoo9_9dcB߿V"Бyى&}S8C!3n_eMZN]a.ļ.0rW|pPK .OW60Eqb'қ^{^|4͜+S5 $9%4 S+!T®-.=S,Xȳir_!9"\x^Ub!ˆp mKJaEF 23=)N+Iw`,#W= :<-ⴉw/mۖyĠmи/Tع `~/cSï S 4e`6ׂBR6˞eBv&ϒTOV4C|ctBصN鼳]y nrdV;2PKgjx߯k̤WW߄Qˀ+~#Xhp9vI)I!ABH)7"sJqf]%5i*c.1xI]Prbb͈AxtZlj|?΅gs[U&y%$5w)* m.njVcpPW{aAjC~'Cb_mYu){^Cgqu?ßsNi|'ܣP)PZ[ah1jPf$ k-n hGNsEEk~gw59JJj4];ȫڔݩhi*07cH%丩ݣUA/M\7XFDP _IqB"`$_RPinU.C {>L.b?+>%3Y.FJg182TBW{$zk}rD{RޘږmUʖ]3%dmWoG3iҷ$<-T/L4y: +78Ŕm_|}CVŻ\&Q^(qV9'*NC>!&Ho:0D*K9~R#> 0YJVp9 kjHv cAD5;:۸pƓ!G";TˑYRLASKu"pj/ pyJ18Y%OGд̷9tchRٕ5Hy~LU( Z9lHAn#@,BD *GuYI2 }[ĶHu$r*h`/V{Aʰqݑ_m0}a e= pz|vdfKt;YiI7fh6<6_AehM}ѿսn}=,ϼ5y,_$A.qQ}̛JcrfX~5EIb9rl }2FAqC>y?y%NL\8LJvwXAڲdO!",D6B?V_Z/=NJܤ;_|:Ly<>RAv:򬨺/P"wN|rŨj#]yq{tW0}`p.C!$Sn8'5.SfHz'%*d./oЫur2|0r=3rPR#TF/"Օ76; UzǞ]ůpS__Pq%o1"7dR< ID : ,HP%~=2(z_噧xdCRt_}ϯ1헩XCV0&|b`J-[(,P!Pjq[%U`+ 'm=]p΄+1ڶS81B_ fN )w-1vEckdO%YndJ+З/`*z@ v/\wvE]H[ PИA$bz: gjqE w,-Υɒ6ME""c U(A"TnʼF0u!{vdcl/__7\}BM+wik[/)?0gj-Daf>dS)ƋIo2*|&2Qظ Z9O!ʍl&x]rʄ}f<x̕dPfgrd< ПD2hY8?4UH>o{\F1镽{sq1oHf-M3 dc11iNJvr &,L;{+Yڡh "8<̽Caeyh#Ο_ו;dLmʲjKi.R<+/p_G˿|Q=SZ'`ʖCۧ1Ϩ)n%H7u/UZK5ʪ2NLy* k] oӘ7-}Tz?uSfUII}T /v`Ss(iDcl X\&>o|1 [\GRiXiuMcsoE&i2Lc歵=P{_Tb>E%1)(+NYPMk^ՁeU]2ǐxAˮ˓V*a=ćP Bj;?HPٿA `PneK EK>Ne#c5Ƙ3KzVlT$Lk8/A#s)saIx.L |ƽ5 Ĉ_gta>2DH?ojI1?h2T+PǬFuqEںM[@>PheAOvq^ۏ^sǡQ&2+z*M*L˒br1ڎ.:ɌRun>$hu%~I66s ̮(:/y[nֵ)Cdפw/ۇQN-x1(*]*dN&jڕ%+"ctf>~iy..C՟wPگR;~aU8F;l"mXŴ3 ,A8r?.nKu2Q!w٣˪({6vC1DĚGzIwA<F b.ڦqq]yqwKn C5'Qڶi7,éҁp\2G7j].QE N _޹JAQfxE 2m~D$yF! YM,V ~K.=nol`G}W}UU.Ζ$ɡZ;x|&X_x҄] rl0qMOtrrF hʣi%9'գUuJ*y~wj<`1)Rz.P`$.W+_kcYxcO44WH)k”rxuMhRNFZFڬ@BKvxv`m^*-t5l++n0MPo8G .DPMoK0fq@MHJ|{cqT,8 ds5-N] dx 2,ڈܫ J)!Pa0 95W`7iDޏe6{a~!"5M8=-ym6PH DVIΫ TdbH`D)֍8g~VZ:ˮ|"ԍ]'D,knzXT 8 %7hWb+@*npLJ605@M,+}TSʼЫ^E) u䊹T`_8-?v[%c_~]H=KHO]T:WD*M&S4}^9֮ꍻF^Ӥ Y,)^RJ⁸ c~,A=/aٸu2q\Ktb<] zz0*9Z8v#9f)-v`}(2< %!imi{~b*O;/cZTƘMndyv:qU ߮Ԅ=ڦ+@8 (:heeYCƫ×P8R]A(#:0nR2ک?O?DJTG f^s~8&K򾚪%Gʪp[u⿤>UiNRK㿻 XT^Vkݬ<kU,">VoPWގpP_)wGQdgt0s|o|̲$b4Q]YpN=.޴R&[j<r$ f&C4󢫆+R/?^Nz^Ma4U\FB6iQO!P(9Ɛb.1!EhUZ _}lDL_^KєmT9Ȭ˻JVhrLq.R.f q<GfQ~u(_e~ȊhLc?c:L^X=؏91vŐA%}> Uss_F|,-k(T9FK G}ӎ%V`7RxU` qq?D&!ĕUd14wYdYs<܃=Nr`F .*bA ,JXF,iQ w%_eI<- uC ~t!M0}o[2=!'8bIe/pf’xVI-ߐ׼˛4Fk(_2QjOve d #QJ(>^B/BԖ/AJwjkӐVW2mMJڶi{ɓľV,`x~'o" D٥~"׬Ek[᦬EgEkjoyǒ RGݑm^iu)"REnn?f̳&f3:L<қnXф[桁.O/"(`ňUe4֑5s<%B<9q(tu5 Ƈm)uicARj,NFyRKC)$&+OǮM~ L`Ar~x d|?mǗy4Mk,1Nr_6;qH ~X,i6W%w(#GƖvv-MUg&mZ |YhOҤh`$ DjdAi7]-\*|۫o}_Dz;I)yP%')_ޜT|;1 ^˝6hs`-Ywi-鴑xGըEۮ_ 8ȫ,]im 3c5b˱%B G? (Ӣʒ*̐8:]dRVz.KrxޙS'ZAQ9WQJ0uV4m3xTeOh ɫ[ュ$}9G{hIc?H].㭧dsi^`_{6<y?'*EE,/ыSaaI (EZ(3 i8+H4R*6\RE}…uҤhV~;'ȘI!"/YsA4Lz5I:8RÜ8hػ(!WNĀ;Ciڸfu2R҇M(꽬@0ыLt1]&c`+y]2u2lK49eqk '𢤪:Z *{T mci D2ƶnND'MؼM(Зzۀ^0Y6գ+H \'chZymBN`(yɛPćyڹW{oWT<4.U '>o[Dw{a/+$oLp*Qa%ɑ)D+8|rᷱ?í##pysl͗KiRFyq,΁kHh%{&j{yicȍ+d~zM4:_{Muh]GU=p>2=r̐vetyVTRX0Fk1?JUy٨TJQL)+Aް4'2+:OyVC7o3 3ۏc(Td4sx>?ƘЏ K?`l7k%򀯉2WtʄG ;3Lk!I W4[ɮܳ@+Wg=9fm[кZPnȏ}5P!!&}aM/(p\_rr_ls&.ڱbWZJR*e~$QL:p_;0xX z{+\}Tr\JːՓGݬDMK) 0N6D.-#!CiIX^ta?jʅ*Phb4خHruI+!e>e.qHI22`V͑Rh'i$K?cS(;r{5_KWmQ'/|$&nE"_I.]x AE1̢7Gmk_\䴚KL M}e:\ 4NQq R y;N>nЎP#& /ȧ*ݓ<4BR+jz $ٟy7 Ķ-J*Ǧ̒ZUݣ.T ._F-xIE& O Ae9yp? SGs/{ۈuuSfHm כGa"{ZwUp l킽*TW]bo C@NK؏h\vՈZ1t3Lt [Y@~m,[H~|mFx-2~6j2Jl-Q1j:, /.I@+nH&ɜmL//Y'MV$2 7åfEV'ҰM G0'Iâ92c)?#s X=/kx%S7I)J({jV8+"uqԚ˚/c4fxK>XȖ+/1櫬N&u`fe{4FuLEgA2XC.GKK0p{Ro+Udɱ^VJEFR TxO<[&7QQ˧g5 +B1=[]4rbHH#cLAɫyRP8c(8e|yh90P+\):$BnʊLIӻeT2"M>"~_3dOڸ5~.*# XD A!VZ`9,>&v^y7mM5"δdlB6]n<;P ;GL4r4Kx`& X=lgzޭ&+Lz]mAC [ս(Dm M}DGd{7e5}vtMxuOa" )wգdi:[QeLU\qd|$,L0,[*ǻw~s|A._8i!ؑoJ w#DӍ&hOq'a oO joX(*tm"{*=+iv?L~}M R&44y_-z1!M]NblXJ@0 VHZ~rR޷ǩx8D?v#We@&BO ^H éσ '܋j=w%)Sv:H)Q_3NQ wCҐ|ըK'rvd BMM =p"&at*CunNCLD)3V䪳<|Tw ÂFȮXqx'U"9 0sXoCmHu˦ZS>jEW(h d*ji/3WP$Y3g#Svwi35#0'ug =rrGPcT2qN -(s. 8TCadKc83~x9&tXi̗FfQ^ۅbzw{Tc2A0MΥ"cx­k!+Y)< Օvt{eq=qyݐ,0mz@h˲~424/U8wy AUSΥK35u{GMIܑ\lNb]w]z5xў.ӡ̼=~9+N K}Ȥc9]Y@}#ТLhZvP"}uVj,)”#N*]j-J8-Y ˩U,&=QRwNT\xZ|rw:Hdrݣ?{>9d>,bor]t"҄*c;FɒW"ha#W[c,Jh{ƙib6ˤX]5$"b2Z[fe(vJ&V(<|Qأ%I(O6bǻ~f[7U[^``ZghKgYwy8٩DYTtXa!KFN--R46cģ]dp[,"OG z-`*ܗ4uӾ^+j +-.SXG[ yIzfbS* ֘-{td=fm.E2Ɠ ib.ŰV\ ͂{јNjY\4}Zta*^*VwU$Roj64]v4pޑQuBJ\g"#wN0?d}tɣ#̎*pm[J5uU0Ѭ꣈aTnRQ+ Ʋ&synzi5iMWzHTM+y-w /8qL1/KlfzO")WܰPRfrۤX-"{rw(r·Q<-bB +UcyX,.xӎ뛭 9q?s!E~!Դ*-BSYՀƕ#%8E3 c&}~L^(y{q4rMӸ̷qCJ#&K{@z%b{8*Zvtj~עc^kx "̴aQD021!;p· tOۥ wDQWbȼۚ * T̯9s[<|b;:FMl;F[)#5eJrD[Do#;V:z^`mخX=GC,G~5i>zd8iyeThTqp@ Gr~]iPr6$DDUhMy=r^w*dvAdE}?,r/TxzѹYy)4>~>w݅6;HgcC(5'pTj6Us/;@a-ҹ+<vg(>c:x})o|߸C@£VV+ATjoǼO:Bl3Mj}$/ǃu")b{m»t"[7JťA9A ?"{v7Be"*/]@f~_B2cx>cBfz__PVg$ Hi7U|)#X8 ːI1Zi#Q2D"C\x sc,e= wt'^ɻ؆hOZcu`wxXCQ;ob-:kvd$)w3ET_ "(= Պ.1+Ap0X`n1.\߱,$ϯ/4گ1 (%4I@!Q\W?Qk%>H|WxSDb_K'0B,pʘ B^WNOmʲHrhN#]Z-_4TT+yKbd*_!q5JM#3-46 Iē\БMMnp|N;J2c|D=#]t5x^]2XLTL_W*WV3pÊA[WWTAFBLYU-:}:]VVĭ +a<<9&cA3CZUvesRnBw5a]'3f8z n!bAGZ%uKK"ҏ;+Joe%)^rF*"6ݤْx/.l:'GPC?G_B#4]YWYr ++^ãN}9A]pRpx X^tReF % U(Y]#V^ìiV N7ể̵i9ozrZǣyMMEv3N*-8?xSf.I"nFL%*xpND}㰼. Qz󢬁ma*K|UR+ҒW3sz< 7˪yDL9(l$ M~05z&Uy>ēۮۤB/Fl1*Ķ+Gqg7৑k{i!~y3?ʙopaL\&Ȅ؈@A%PHEc4/]u/҃ uN/%E7FHJj{Qw9Vw-R +xlW7p^pIe7f񅚎Z,} Hbc %Op$MM6zww`Kz"0cyz-6{M*+˺2)FC#E DKpX̮Ȳ !\TN4t~DR l8 W)&m!I^ZȺʧIFG2}TW !C= ?G ۢWfض*P:>H ɋwR XzfIk刹QwK5!f \48Xsɗ7ɪbbq%uMPCF]Ar( r-@F ?<(}UL?7~?|$E† w+H`;:NefƳ}υ#dCyf gs^DaEe89mK7Mok*= k룶 5hU@VݒB2oMk2dr& l:y @'f=2{!ŰJf#^WQ\# ['J11GT kM#aԭ>~ $M<\{zhn܏shW^B}x5IfAC@$C#k3jivYr{ aD4{#+&i%h|ˀ誶1IQݥhMP1;wK eiյ( ~i~)PͿ;F. (HK?)_gm"*1܅Yaª]հ\xx&}R/ܗV_ b.^EJN`~1Z!29Z\ռi \ĔPH/?/~K>J.Piڍ絫 aI+_h Y øKdmL5 ]D2%ƅt{"42 -2ǚL/rabzׁ y j1e`@L,;TokigB&"`tzU*QF0.W_t^e;ӻqL̝Sw=xLoyh=س &rx+ WlG.q:ѩ1|r3-Гr-wʺMgJSm,?^T1* `A,{tOPhgk eoO9-]z&uMV2_ŭBނ*WztVvtHϺٙlJLlP% ^ӰemUx[qUUK`e`c|dR!ݘ\̠6)0ҭ'QbM)юnϡ2D΋;_/UHBKtKA A㯜J$S;K%6]-C/:YsZӯvVץI>.X[`1]mJ޴AQ\t2"j/ghfxFhrtL[T(Br,V/ީɐ^l@<{CO.mysU`akc>]K>ү/w=L>-ͣ!)]X[%KW& 郺=aqEJ,ж7E-OgҖeִuEL)KC0lrBEy(\N(@K ;uVuWϙL]?wm_E*@Xr[̄$-է\kU'Hp*4Ą*0k3oǟDe5gO\1Vuwh Q[mu\0u15Z \Vub^pg] u\gOk'ƍpkڬ6UF)v Ty# E9XG|М%ŷ#LWSL!6{fdm.yÎ;aNHJtEe&Iw71i 2QXyI8Дɓ&c!(MG91*1at MG]=_k ٥}hCWgkۼ1lh6GY$[O4tR~W~*ޛ`_3o*#HʡC;ѭ"eɕaфR%mv+,*]1wKEa:.*dXBM_lݯGzb_YQOCah.a o]2V}x 1oi՝Y=^Y0&xdϕ eU:*5X \RAJ("]f|Syhb!~ K? Abysd+%)<@d=F갦v Im٣ʏG1*7 15OT,3û9L׼yV^ok_ʎǨb?4: w8/"N 5զs4*Ol 5[,v\n=_/+S.^8{%Otw,`y5_|6:E}7MSF.\etՓү 󮪿PB7Z)׉#0wp1H)erjAXZ_]./kT⪹ |wv</Jփ]q:Z?+.suR6&KoE dWM $pmC}k %~gꕔjMl@ܲJn/f;W ]uH8f&#:9aߡyCg^W[k u;T>ﱯʲl牻~ZEcu/:7ぼӥ%TucZG/*Ra2<<.egz9ZYM+Ov;K?OωVA_زj6 QYIYua"$k '$ ˜I31ߘ؍0`YiA`ö7Nv0F3ĵc@< WҴ/4#wMm [ӰO%wU Y,'VO[vf%7{ZʷceW!'D :/mW+4&$Dq|ہxAx&`wOޮަDV&D8ROBDp.tuV%yiRØXoa0N7pQQV# !it"(=+q*6gat!fƾYCw\ޙ8*ע1*бNGYGN#fLAȏ6mI UR10/?bڭBmHd֓lWc=2|EzK$F.#Gi ]lZD&݂'ŁuC˶Vo4Y1=Z*G ~ Hya$ڛ_Wl뤭v&.ڍD  <6,P T+T|8 ٱŐ>wBZX,!?Nӷfy>I$m} _ؼYKJ|Xq0;Y1wT+Èk?y;]\:\79 PڇD2u/{6( 1`'W HfytUj'I ~?E`HJO=^"0<'cOdYK>И){<p˓}C.,0z/EaeY I;'W?(\^7~(voP&BC,<[S FrVvqY_3AI^k|:~iKCт=|PY#u'^d /?f6ᠼiMݸ !B־ʒrdx"L(,/ШrJV AׂhI\DSc"Apa1L3{܄2=G"^RSn)-n:\ʪoB;^hU*"BZʣJ/j,;Zј,h Eb2G q9䯋ݶ<)M5*tHdž 9,/2E s&RǤ `aZ,͊ .]MЊYv&Wf2v: ;[ͥLheΥo)d`&C1{br5Sݞ>M ݤ K3c6P C'3e~&p~;õ8]upqh{4B3t,tJeˤyB &P`uZ^so ryS]Z e|޺UhӘh'DNs%ǘRH!c%pXN]2%ͫWQ&*%>p,'!مizSg1=%Џ ~߇TN+'[6Jw!l0yx@Em*/x]H%6 C~-VJR.1ڣQ ?d$Ysf9syCٟūPbvj\m4+] X J:?oմ8͘)BkuZykȯݪ&$) I)O u)KEThswp%cq ]oG)DiCizQ*1I:gǓ}dLc6BX$eڍ}']wxl-0FGrbTG]I+P S޶_m31<;19D:m6S , H+(pO&pP+ou=*@ip]MDxM f>ܐO8͇e 8Gk.E`$M2_pg)]M{g_zv󳬪sGL?8YXb v%  gAQTy žS7k5 ";bɬA^^BQv WgHwuM`(ԇF¶T"vq|Ɲ'rpXO^~&vΓgjdyy&-}Sw,@\XG;{pщNBJaʔi#1DJ~S6I\1 %@ܽ. Dcl!X~?p>U2~_~L|'(caK?{3іg[ؙʙ_o*bhXKW{*m"Q7~E?R&k/'K% \5/qx|>8~GMl*Ef3#Å{Fq4T%*~ ²Cx'0c[G4KT\+wTEh[9>X\V`-QV"z|6C\vɺ:K!-Q:w /%> ~=NK^XNƍj˕wdI<|hVޏ0%iImICy\43 LBQE-S* C 1߉!Kn뼌!:^a%$%x HI.- Je9ܬ 1Ybۇc,kv1i PEC_!c.Is*j?#:Hzy iBNVYz,4\ie%g4rCل&A)E$VS5#ڴ4 /c\ز;b+d UϘ2`#_+"~'_uI?`h2a뺬.3ʺ*hCeXuTluS-;V;R,QbxOn$f0Ж A|[D,jfǨ6_S'Ȥ)dtL;d]=H$N}0 X myAv*BF+2CHMF~*E/خ$91Ӳ[]yqM[ iSO8AW6\eE3#4ţ*[%'Qop"#1 e ]XITܹM, ojw Z}U.M¥zZ ,KԮwa26MoSzԲ!hfrr mŞKDWA,,,nzU-q94OtPUfbjp9_|aH&hD8Y+di$^ 4AN؏"(`_օ?ѕd5fC ~o`MaU, ` aiΣxe1 a$iOFc { R1+ƒ_Z,:|:\vmH0+ Wdo\Th1ĜzYƺ_V7MͬLX[!pd\I:FXQ-rڌyD"O̼XgܰȩVC/ג7]zH B݇+DcS(C8nW"A JM_XQ$1au?3dAVd钸!oLn3N1U.7Fc:O%D~Wui!>p|'!"uLM*FI:~m+8fH1E_ ;ґ҃Udvi'^~> }@0\xd <yI!+7GQb}`(mRkBBZ_ rczL]>ٷ}ޯ}epE@+,ut(>$U{{ƺGRˆ}i_ pRif/R20ݗjc[^T!WūD._y ":t!\=S%"ʷN{PR[@n <0 A&T*>|y*i%</m'-nQI:U%1q^ɧdߡ烏.\2^ol{s!KgpT񯋢d2#*2O4<$L%AwpyF)'|y-8YWRAI$ЁFB9ȼNn ,&-ݲeʒ]uw:E6iRJhA*ׄ ]΀E:>3y*ʼn?mCJ4,!otKUc8˥s=ϾX^ $0gwt@0?Uը'dѐ-dfqҰ(^.u #pAb4iҰT&;Nx^b uͳGz2 cRkr1M0e.$ўj 39/?KV߈OJƪS88li~d,4e5\2Ԑ$_rV}^qWNS:c41# Թ;bdßŴ.gCBߕX->>>XV(0Si!ZJ+O I6mNlIs"]FY90%֝_2 \ۊ #cHKmi-V& zXY_b鳻5 Spj^vB|?ؾ+A0>a"Ugq@uI}qi)_ bSQ'񵺉}i.0WUM"+KpK1a N3Aic `շ--Y=Yj|5 1ɍՍy`8!HciQT0r^ޘ Mx'yEIj`TUw \]eA]&5՟Zt${q03{\"iLQ'UĻ`[.EfBUB},1V2vB,3YJe>v*C5jh׋%(yBg"MF*JxcpVE\K Z\~oeV} EֿrC.>cDBNc]8-}S)'jC+@cS hʼZGҫNlja^FR_/tlLAR7HhBJ|GJU A*)9FGPy % LA:: mx}mk[ Ҵv=;C!iuDŽb84*M}wTl? ^.gF˒ ߴ"ŐT?KJhiefe/^yU6s!%õ'38XB֗V =d(FJa:p𶛃6|ܘz1R!zi, KSmQ>)`P"U-ŠV\<<[dibyg7&mEVv'| 鉍$SK'0MyaE9ڑFig&Z0 kj~ Sٻz\0׊;JhtrQ9:$?~N%_m.c׋as쾙d|q#hLt!$ Bm]'[X̾VÓ`#̓_*ۘL2я;wJ!"vr.&iyd: Z{)0ۢ%2,aHdm~ dѭC Kw-uWt8HCU(LиÅ<$^z+*be̍[kZO *GW:\YPB2(:6Lriл0|rmT .>d?q+i'2YŵuK fB 0L]_!ui; f%bCrvhJWLqx_W(q.BR+igQnt&}q@'ًo> )?P4lӂǶX.}?uU{" NuZ$$r0S.S9 ;_do +"/]\^U30THy/Ũ\`|_Tڳy g&o7v-aڮ,-nm0kqh\^3,FCC?."korI2e~P 8.Q!bأRӌ(0-U#0Hj\0ď~y ihI iE[”ta$/B*|zD+j5o{N A,nnT"ƙr~\:(l׎FƁ7 a0<gg?^sM,4f>ڶn¹)+uU#qv$8ifƄó>vMMfNzHEbȼ2|YЬ8 +3C6SB0&rF2+2!G RNeGn2_Ժc 4"ˆeCuj$$͎"t~pC (zpɂD+FV)^C#2ܹͥpd}ֽVێ(;n^!VgaQIaŐ0w2~8=saB]O~zkiW=*09I"R=EuivQIVTag9d[_Y~n>vp+}ͦrҋ1I뱊݇(H"RnD3!VJ@`?i8-d>vőioڢ6ᬄ\D.I~~"\JCƐmxS6c:a^K3=?ؘ0ɢvCb}bXc8L)/3I{e+-Y';ӛYH7MOy|(̳"XYrJKAVX!!:ke 9 =ot)8$0}kMs1<~ZtVfӪP^ۂ64|sH&u(Jf%+ٿ'vXI[p(;6 ({lng\8YR IWMWyRΏi/v}]<L$[&R ,[|6pNTj Rҟ3MZ9L EMMf7sFg%؟9&D~-,n{']jeHI nxTEQջjevOj1;aiFy\a;xcb#Ksj ?c|De<{MwcrS7ͭ)kZUrgCf.C&v5YW?`+,*nx`O~<ں,_@QN,yptk$DҐ1tŶcg%.=okLVg,sp[uܗa2+ ]yUnԷ|",0Ik . dT3'Mp>.U7 >OeHv+GЇ@`uW/1'JXG}k.m}r`d ,dd$)'hݼu\iHN b}y MذrOyXQ.iۛrf͒dDW--M bYtQ\BIˁ"Ja!Y|h{2wQ d9 k yt+Eb=~\1WQu1rxEzZLFN<QLgM Y&1&)eWb:6L?zp\iyI_|tPLIR^I%?*fV%F@FZėah?$Ƹz_v9Y2.k# KSl! bmUnt$!$U2EJz}r9%je"F^ԆM_dAK1^Ka0-E6#E XZRLۋ%2f"dqk'W:kڏwzEy{SB2 sY]jD2ҕʇ-[݆~$c׼))=dRގ0W+RAO*ǧct$Ed.uGm_B9- C'SY4[[Ϻ`AEyമ($.G\$nsGpi{#um\kWU˱%[Hk#h yk@?|cc}cTH=QR\.2*[ڥ.yylK L&U<>~вİfqa]#ab20}/Ue~kY6Mܘl&nEsf $#5y#qԲceBgO[>40Kk9݂Dg\Qʼ\/C8;7߉ @M] 3y v;pͳ *fRex *|<(_z'+1- .Eʔdո*AȘ:J+/F䵯({:: Τ׻xmYeҔKVQݖKi-l'퍆6XW~}`OJuҼ{ztu?$FԦRRz}]Q1,%P]5"R˳[{㭘縔8ynSR)~;bx/KO[߈bM[cd"Ѕqƽ/tJGOI6hZ] 8~"s[ȥgeu#vc"I"@&gqΧ ,yOnΫz:e^ὢIg%f11S+m UR5~-,Z:>V'Hj\t΋\uW8V B$Ji{{x}򕷹(B= xQ Op>Ĥp_Q TCa`X +0*x\J,9X";8 }N*Ҫ9\[a,t!mVOyUkцUUY%C3 bQtF}BX?s(cfkYu8t6kmr0 F,VFˡ9|w{<^4܆?|ޛK~.N΢jwB!|.ڤ9prW} bƣ|ň8T>'o<ޱVNzM<Z"]ڥRiR#%0GEV afBv%=̲+˾h}&D|qK"'s@Ϲ][FvLf${ZI_:w+^/S,Ѫ^H~^߷|mޥUa\"`PT;@@S 5歉e+VT]IE@8g>/w^KSj=fE V 5yo$::wKLMBeAL`c}B|@,t^,|(w׾lL˶q5i>t6($O a qq„ 1\$4yyۺ3pVy_7`.8g;oJ Fek|>iyWc3>e1+yqk9<-k9~=ƿtlfc Ƴ zKY8RxЅqS|X=Y.]^nU8΍xesyR]|G0QO5'nhQ< u;$:kr2BA,wep~^F۽'_ke NU+2 hm|wu]s CȬ7YK Q&!e yzq|QKmV2TrGKNڟz@xIqͻW9 `"}}-ZsER^fadhKi 61y9Fɋ Ed;]ێ1jaA>p}1u71~Yz TEOI'ԳL3gӭ@bp Hy\5HY}wWd0HD91$p)>OVk}MBD: $ETPN)[7eQ@ f~|D'+=Eas)D.;=`v}A{!cXwpא# Tnd?VM~EtS71Ke?\ Fw[$2ғ NU^ˣ^>>1.|A#3w'Kvvq+XP6暦ͼ /+^ 1D/6VOuChJa..Vd:Jc5qOdQ3HU0_0*$ӎݽ˳\?{Ypf1gAg\.[QmوZچeyURٌwB8ᓵ;JKp5/^Nkڥ\RJUi02`Q떬HwrR- ^4CwI'"I :0-Xb #ql[Os {)z[xB^>X\_ݪ˥# Qm&1Qx2eۧ~9SS0n*ggOXƗ׬>ԡqF0[hHG¨JL0o -=y%s&յmu;EbX&lάk {qlXu剼vOK h:%fSdׂc;ޏAXL㖧ɫm7@橄 #MДdɵ3m/U#cޖKT)";y4-.vcE27bn>?>aWI^ZK^ -m{18 Ly9*b "ݴCf1A3絭c^Zcb  ;ǖ'-0Z4_0/hK~e\BUv{sjjMbh;J@0ľju{|޶:AH@O~[?Lt.EV\.Y^{xx4 kfA2,FJz߇ZޜIq^~2wX]?P[t3)>?zJQ,K%qY"tۘ('ӻxb􄯬f[8nAx97ZefV^vorooC&1)2-H]t1z(E64[=5\dc߶fpw`S{H@pQOĚ\a }z6爄rИiU W$/l 9Ls/lQjq6m 12=뇑]]/[խV0ᴵ8>D2aF,PO[m%LK*k&ĪzV͓ Ljզk1t3f,9/r}M|t>oC˴O;T<_L݉6”^hS+TKdY>O)ZHMJ=a}pzV"DQݓ£F?qefq|m( 1MnkW'*g7M-0)PN%~!==s5wYKy\u:cn+,YUNk"腴)?`&$j o'ީ=O77YuUsqBzK3#Y/(5(a@W|3lwj2$2 fԧaleH?e, qK1_ƛ43fcCYlNuU{4R»9q٥0 uuAP*,.]؃hw!P[y(oXHyVq?3jI.6*CJ R5mZ7[t]Փ(߳m^O O}ɄeƸ;xւE<!mF.on=GYQTKx1E}Q<1bNcWEc1*bqDNMb,@.69psH F,>Iݧ0`ݿݽ)Jfy Z71I6];pM2pO=7VR>EuT|]vV iآrw190Q`umuLA\o-/ ÉTU5ź݊0E<`MPxp@0*˥{ "Eb71w%&L Q)[i2=:bHTXeHu87ʪ\mX g1!G r5XSTSvhdVɛ_%fx|V"$0ˌ5w/EF%~]簼n\OٓE S*Zq%Ț' '!˴_( vT,O9n(ha Ft}mc_Ta nog{7fE12/ۄxzձ 90 [G ڕuCs7yM4Բ>r}()]3H"> %U1hL#G:+IJ #{$g?;Ɵ[l/_FUe'䪪JeK _ja|#n/~ʲamU_j/SSwҀ̝a2C4 xe1WBT7A y6e+xNʣKq4&%!ےQf0c"Km2 GhQnoz/#-"W_BacuuuvE,^t"mQ;n"bFVCQSWfc͂Z_?<1 S?,|M ʝ7`@@D܌Lk#{},y׬؇-1ʥ$eeݣc(KY@0Ec6@`v֯_],RK ײk BވG66=48H ~=©,oH]cOd RE;'qfX'H*Bz3>BPj wl1x8Kd_FMf3>hCky͵ˎ _* IjO `M{Xv-`)mWz@U 4ڠ(dfk;ƙp *6"}xo7MIIK:sjQc$/] ҚQϩ7>06l2`MwAy >}8=C/Q:iI?/a; 'rdC7 5D8h쓧upqNI{N2tk籊ݛسd;n< cmѯȮ9ݨbeI26q15RP)-I3GFz: щ` 'nLH?G_k2Eۛ{P5_-&d/<+IMS%3}NP $f`̆B($<|<WlR_Dߖ/%Ib] ={E*;̔H~kl=<[!KOηxPuk {3Q{mH#OTͨl̏=!vby$$d%-cAtWcֆCE?!K$pL9mQX?4ޟ]_y!;G_(֔T6) knR7Nof0- .2DT6~uPMUV"kqH2˭tL|bT 1 "!+422F`$Y湝u]9b~,Ҿ'&'ee3higᬱ* Ծˇ$fJ2fpʣ3<թ(ť*'wB4ND0|4" C@!CF]kq8? tKPQFo-USwٽ"Ck Ui<%®t_*ja >]\Mkp?SGv&7bdy׮V#{=j3´b(ZmZ)B}nٴ\]? Kdz?_31{*d}] cMG2D~u &B "<wUg;R%ULG^S\w kxнws\^"ey.AHu}; IbHrüpQI덊 H*dG_F\R'_h5 (e5m&VA_Z`f䚀 k*0(EMv1k[q{g1L+>- w8VoͭX_82/3,vӐE3A򣼗<v^Ob,˺|cWHCWΪpῥ$V$ ?&NqKm_ɥ|oM5Ĩח5_eUWGk֪S}]lc_ "|wL&ghD=x/zGFbcDbr4mu,HkB)3m6l\3+}&l13r>]G,d3DC)( ,O#H<y$?4bBHPÅ$%>_fwN+E\Ewl\7Lߠ-D)Il;`@:ji>NouH&mο׭|g~__dKW3$Fn +|#Vqݶh28;Z&>VAM*eYuro1?f!ꨬrX% .={w䜽T]L賍=+ĀI=Xզ.H: JU~P-Lc**W8<%6Wx*7bC5KG25/iĭQ]0|e ]5r5e-+n=yĎ6!Ung#ӿyAALgJNf 3}m8MG*U.uKXqJ 4י֗}_TYY\:@o3OQWnf=5 K7 l#| cy;wnruca:VY]I^&T4tfU.ёɂ`L9;iz|2u_G ӽx+!E7~Q*cQWb_@4x)oh*+'ݏ=;?J_YPQu̗"Z<8}V(6zwSP" V~^4ECd[/N?\blbȓ}deE[59srKQlf)ƃ}F Lc=ߪ7ooHwmv+c_enWNhVuA&( ަ( NR ~<fi+Ni/KpD}얮,1;.V[ᆄ@*t3x_J@ZG\lyaxJ dv3%n~Q>ݿƪl{\V+pTSSIPDM,snAɉk'儉/MDb e\"O%m\]F,8%p_ޟu~1/1xuWob\=1EMҎ&̸@v^=c$ggmߨxlѢig 1#?]]-*6yzs ehDD@rT(Lr-+O[[[&u✅_0_4&T)2-RfdoK1^*Ѥdy>{Krh vU88{Jw._l*1tC>J!ZBK^1 7Z0,I[1ao֩Ѽ~[1ijl~jkYuR"Z^2ޖ vM`mDr0% `0D,_ ϗsG=ţ}k,tqѹo}qlk㴋V]Ċ K2AAV @WmdȍMxV5$%-g'W|Bc.8dgS4ݭƸ޶~Ea즙T#E8TUueyoVb5RVMCđMH(b&;Ɩ)Z%F 0᫪d.sڶVZB  wDKb2Bwn\* n[[Č8$@6 ُghV5Ȭ-Tl)^bQe%" eyYӂU7DBLz/}q-kZji7Ax[ȀlK F ޝl = 8M3$PLcܬkImb0d:TCؽUiSM焢6 4V`L#'Ynɽ6[xt_b^$A+jJaV:/9e7䡧YGb2 BݗK8?Z}L15)i{g,,cD8[cPSpH"i5 "s:whHQ2RLa_V0Nk eKJV}s_QR7CZ\:7:dA~P蠪'rp-:=ΝKUMv99گMWMdsFRЊ&Cmcwe?NڙY.CF3s/vHYK Ŕ@/s-r~&ոPiLg7./Fcază5enP$axGOK}*;X{t)rt"-  zrE 7#a+{Aj+,n[݁zTMBi|$l*Oi%~][b2 )$F-"aR0G\p1ZoP%o$ 0-.IJ+*d^zILd7ƞqTGdJ4P#;G۶v5cwL@'A;pHpI8&vvv>/.U~rkrE4͌7ΰZm E޽1eYƷޘ!f!3.i0;:^D)/(>4N+2VSW ؽ`b Hm#5BbP+a't˼$b9ijҊV4iĴ i Aޟz @ ^:CΐeCGv d^q VboE?;<^%Oo,~qnVf7[]ݛyZwzqo9]g1 \:c6!f epҁ9]V[Xx-,39޳սn~έNٍ+rknG 9Hah#6Qo`20A*+tbz2f@crq{GץJ_+ҊFzBW4TafD]~h-/ivxcPALVULS7 }tgUV}%$^\*s. Z8)`v [txzsuʸ٣@d"i"Wʔ,O}ܲ.:83%*i8X3${RHLl}ߜ5Og1w>ƖXQqILQހBW`c6.;Eݠ ='UO>Ȅ%J/3$[5GH;+e.C;e03xw}k|vER}zpHӺ|ӍvT{I=> .qxѳ1AݞdZ dfkft41׫@>Fۧ>ʌ;%N"Ah\?235I\ϧt4ޯJqz'@LAd\!߸ORv䶽`}3ž ,tl(lz=_>ڢdSKIj`4pEMn8UFm!˝Gzhawh6կ$`(Z_GY . ¡ 1ub0c zqo3Y|B0L`a^" ⊮2תDv&"ŌrtV ۺPy,y8ŘVYuN jCPtEZH)~՞0rT]evd}PKaĽd+b 5iW_t֡D;ogN{LC^dm%IFn^)\(^ͣ0} ubaD<3X99xQ[&Y?-{1֘wX9gwK/JoqT7uSۂE)>RNr=2ϊ} iG̋S dj!J{NY+jEJ}z32Q&2WDC1g\S=1'V2}?mu6JRW^*j]T(]fqt̴:+e* 3jM̓fK-8Z1F?aedk<aQLdP9tK7i%ŋq~b7.YآZL8}b#K%!nq[|)Sd &FQ:aG>W:iVS ,%%V{9 PPlJ0#~0 tMenP,b !!#&*<`¹Oqv<5â* #BokvR#w&5]%+oRVaYP+8gr|]ʗ'4Lz/Ox)yÎ!EFthlXZ3_+N:[H 1z,+'mhv$qQji;c W8=OނյۼĺK27ef)0rn)A}L#_;EK1xeWn(7MsLKT}6:&?aۮ)Z~:̊˯_YdtM#G.U]pyt{ 5( [buIR.6|)޴.e "ײ"(^at*ERKr+kP]'Nˋ$˰fixJ2 !g?MȯJV+E^MyN8- ; ay%>17Qҍ߲+I<߄%cr>cYwu-NcS&#AJoޕX!w뿠]W-WCl=G2xdB ƺQ _snu$$Xl\dv\pҒMǮg?ìÅ ׽l'y^`ߵe򮍽4>P`<=Y>>悻P2/?P 1"J+ _|Bz]&ƕi,N9pƳR|#1GnKH-/$q%KvOږd$qAfyX[xvOHDkg |ŀ}mM7t)õ|Vy@_6U,*x,ܪҌ7iwLo|F3NM{/ߊm:%~}NsL79uNSH^&V.Y!Խ5H iǑ/`an;G9ϗ?ZvxknEk2]fpK $5 0Ҩ(v˷`;dYOÇ~Ϧ/b][w!eX8CR?D!M{Ca_5cZ .o ~:17C9 4S|Snl{L$T:R% Y&|M_(@0f#IX/wd}]XyPH*%x?sr_^>ޕsZ3xu]gi" +Kw[cRBZj6BvdmpbI{gdL0[o>aHg.b=v?g0(KujDYsSh(e=6?X\ڗP[k&Fn3諺:]y9<ڄ&xv×w/)O5dK4H˥fQ~m~P [T)Q0 &noܤ\r^aSrκM15@h 3w \LQ'Ҳ[q0`Ҫt!&'._W^c[9Jxjs@%$ hJ D5dܨb>\-Ѻ%]f#wcv*qmtؽ 7lN?QX?$"nX8O#nx0׮Ytզ: l t~$*% c3Ѯu :H"W8ƕ#S,zŴ]gebsiLh[PvL@14"0cH~. :>qqѷLຮ߰<&U|yjch%dEVT\DKH[ل'@gw8>Qz-~+, fEf %6e-"Ǚ?_ş?/b6MqdaSTE%*\\]i(%Hf=, ach`ŝnqˇЌe`2Z&KI&0>ϝxu[ ,c&p0h"ac$O Yxd %"\,,Q*ŋcy:.]nLbs妱>c8b3ʛIHHoq1h_ny{EVwתF~6Y8؞(A Xq]v)?vy{]WCt (cU"6od&TtbJ;9ibNF¤g2dЀڊ`Ö` PeN:8eI L]xt2?E/Ș:ktUR05({{"4i=rdiJ@\(e3la`H62⥥:&Ręz ޕ;B8A5&ζa~{x^-jqLK;6 )j=]_kJr-~fX `k3k5>8X0(((w6UiNrN_N ~5JXikܴ(7nGJҳfZl dlȌH-,P $DŽ<*8yq]n{jn}p|5US䢾 :Xz fu@[ތEeeۙzX .IYD?enqYγЮMU`^T^.DpFssSt#%ٙ$gHe 17Yu/.Иu~HgOcQW4]'$.5^=6cSÀxcY۝{-ugFP1`@҉?u0.ekli#-#;7[T66f2\UNz n~5iER*yudEuxGIq#cc"w*LR-u>e_QOW⫴Z@Q@ Y:O?x)a /5Z3\3ٶ _: h*KZA z0.IwXo&ݙd01Aԟz 8HfqR7If:Nn8g,ϧXO=EVWL5y?Aȶns"4J3|s>M IerXがlarml#JIJ-.1L0Dx"[ig?m>4,#K7uKz/r˩_Yǭ}&KcE#.=y,5{ĝ#gbzp@]ep&I+MbI" ˩鳆Eyʺ݂jo*F6K ֤Y/fT~ÏF&gRDžw@XT[P+]v'Ja,ōv{' Я4څ&z>L瘪xH/K+9gCy`eӴ y!~0kT׀HtSK-4ڧo,E%9{AE{ۈsbEkZ)0bg0oXo [qd\co]w8 JEU e\Lh[M>!+W7ۢ5!LB:9!0ГE:h}.-{Ib(sY1k)Uɓy'Z0.0 5;VBc okhLx7,'B':ܰc !(~ZDOߎY{p g&\w1k.[`hJJ H)n 3{]'A*zN:?T1%ͭR۰;V,.Ud`Kx-߻_򹟔VS6XE޹P륖~grᢋ E@̟?GgO\Z[ԫ$ANjԳ^o>FT29[_/ePaC]}żcG~6^$>oT π&W}|~?NXs8WLćK̔i}~NB'(Nݏ~9y%q%R[ڎ'&㕎0ŭ%ߺ3\a>BQe,Ԓ*,1 !ox UP`T,8;ZBxp0sv(V2K,aIZ)@'-)P+.?8Hs>ˇ8H:g}%y8KY7*O0Ժf^׭?CHw&$u1?6*6y٢@qd` \q-',-LH>ֲJMPx̶ֱ#yZ m̔l.jQQGa#MAÊXSn|y %)ƳOYs< z̊nYiWm9ŠINK@3AF4{̓?|y9q&y_}7x;ӓdQRt{#lq @bXW36u9알+Xd+CDu~I-*)b˔xRe1eUqXǜ;o!SzL94vt)u /ͥϭצ,Lqto^V$q 3/ƺľ@M+' 5ˬrsJ!(}K&_IW 4:z `Y5a=̖THl\]~W{%}e*%e`7bnA솥YGLMzH}ÿ|3Ǻ,e,1ª͍_5=8@Omz g+YΡE,“")=UAE-lMYAf±*#f -bI(w}agcΖޑ2>ba΀rtuZh㵗_Rr ƥtR!!1m˒cNXHSJs7| Erjl2/q=:&`2j.X1V>cH3K  O-' xb,'1(-K1 mucsQoʌy)ux< ˜MlWsBYN ^:__@4mVPVk+[dRrMu>f>C>gi~Eq|WBL9ĻREYWO}8Rު0{@;FlkT*9A!|;'z{!|-kC`BT Dbx 9@Y$cZ7pWyr4ʡ{M2eGݳ xM>;.#a(Zo*=ݩ Ud씛"Ыǡd#rC'Y P'Lϸ qVع/V\ejUBcbYŤ_ޖ;m0RM5YDKOdb*V5&+S7 $>9\Ezk!Cf<{_2;f?gtSªHkL3[L%IK25q"/ Kpɱ9Y[dWOR.28mk ۉݡ@h1d8店+gQcl;ZL‹Ua)vg;T'ipX_8ìQdYXhC9f8Ҙ6.\^. ge2zS/O&J%b&׀.P\: &/)E3{=/'Cçzk^vQ)yEɶÏ6U"Lp8.@=UG-g5ż~y-OgaaÆP::Y<־߽lʦ;Mv}~ȣe躲5B/70 +O9eT1yt!(n1s9R^ Y|Ƨ;ߘ>[YMFmə#0||hIWNO}K " .-jʯty٘iä H51 `p qJ׷sHaS'e\0ryVN_|bu !Q&0KvS W۠$%)P~V5mhsTw?#/HSr$:⧫إ6,dC׷:,| 69ƱL?}xK-Nl^0ofqݝKw*l,9mb] ecB4-tER1͆a0UҝM׽tv3ղSJzupm9cIhtN5eUWls_{Bh}I^@l01t!v~ :E#TTJ<*nEJe2A[yK1N[Nv28 m$.9֯T{R#(e۬GgUK՗jw1r)P\$DzC+3%>7tL įd2u[f{BPw 5[` 6-ea.!c :L}sgƧ"!9<ݬlֳ >$#FoXR;GCL%RA3Ni++K:3K$τk~@T׮a ÀGi*dMƋy4dw@FMow/|1^aN&dz赊 J3 .;qLj$ sF ' >t=quR<[:a>Dv8nvc>?1?cpĹ. Mf xzlx.d%ɩepY;C{ܾꮚnc7~%/V|VbT6ftI0OPyO.7ڏ*l<Ǟ}xeWҜ㿱_g c1WeU5RFyV2 )`1q<7aG)W(?JX=△E_![,lx` 0^uef/6eB02]#_*n<[O,޿U?ňWXfbiۦՖa2Dq! RGv f^eOm. %UG5)ttHK7 ]ѻG#{%Ĉ3\),}e .U,+A‹F@r'^%Lx^;x1Cu~Rzqy}[[N`9 u@ANB1Rx/GyWn2so1ioMMuYz{:i/P)!E_-4w`vwk{=6I:WXR^*,4˝H@G: ­B0#ۦ"q n58F 52$`"C#9әơZ}( [Eb݈-X3;9Pqt i 7vspeoݫ;îeY<\b*gψ )dm6֛ݍf7*kbp5V*1_Ɵ l/]ӴYbLXVj/!ݞE^츁=t[KKd/AEH&!l7}.!]+c %6N|xVCgwofe҆tY8N~][ ai[;C',~f,Uv֦ e: X91 BR`MS2"Yci`ط,rX>Ws~}l0-ny$MXb +)T+{~y^Ag|rqͿ~jOK!oى(uq+U[]8XE u,(pgiR&IP^K,Y|хVN6Oz‘9hq]'HYG\߰OcE}Wd2=Lт ^)fM ! F2qy\Ilݦ1V!e% iOE+Fί_p-Y,F+o81H'=SB7 %iϗx0v¯ۮSZ[gq9  ;$@pT3{˭mnqƫ8ɡ)UN7JLnU"u$(> \IA/bHG=%TILL&uF, #ZHkcThy QC5C9w>&k~ړ9ea])l)Fl#!Y?õv9 wO4tZ.Ӹ}H[9fgE9; 䵉ovy}k^OBmL.)uh phූ=8AӴ=EKl5ٞd_*)/g<4&SB ;`- \tqZbz/#J KU8uIG4-lܵn([І-.l؝0~3//S.e^JUkj<%pFds&VVli,Nh &pHFZq,TdJ@ЦʸE]{ ڢ ~ c:YG; $V`D%Dnj !e|ڹ~y~ k\{chOe+cmH xH Э1i& b Jуg-$wyqMs._Z}x W%'𱴹&L1YZ ` ="@Wˡ+5S$SUm-쮵`n#˒])0h_'6LhQpźZu?ѩK 48@h^OD|TP,㽥7`?/2WS^~3ԯ1O5 ~/o'Ž4^6mVh2^$zo1 |}.l&K6y ".pL=ꇶw{y)zg }o䮔\/ 0^ P}|`rbծ$ ):`^ii-`yk8QX %O|$1u[u׼E(0.t8UçNMBU@^;PAc8Rƈ,֓R/BJ^m]xLZ,s쫬[}lm H pڨ]!BE.ij&2aEhEg9ґ=,4Uw$2,&2GFmdfc86:h2`]9 PzDo-'ŽhDuTcM74]o#@~f$1"6DC7S søVdm,)kS\wRWJvk}=FJYL)Y_6IH~K|/4YX=׷+_88CHqy:4CNآ]Uu$&v-ϥؾe_Ħ0cGo(~#;v Cw_Bg) Bq|A(׹iظro%uTKT42ʭUYs-!<2% l_\PJUu}6vZ/⇶y&:ߴg/RYl&n!Oj.|zC2-h$BGJUUz|M_/:/)M_5P_׶um_ kraK^Yh /&4֠}CKLDUbzHo8_ 8,48Ѷ\>#f&0H9"< zNzϜqy]SYn]ꬭ\ ӕ$x ]!*lJVUVfgSm]ĩcCv\cF罈"h%!tQ@DƄU󁹰 0K N~1E<䪹mEnx /6$"`DtRPxyoXQ|:mQq>=FxO" k.!K7^ x$bF"z{nv|OwROMf3Қ;'^fR6m z¹]8X! Jl~J4oXq}SK6lG{NEYekך4 Bk$)_TebmHuQL1*10ˣv>\(wg.1)K^<ע S"b=1gMޣg~״u}fMJb4+ۖ Fp0!x:\nY[rHOU{>}֗Z$[Tr} l\԰ I%G8 +?7Ց f(EWtIw#BHlcrECŁ4 1ʦ0 ,q19:~3D*ײ| jYUJ- 缲K"bY։NnެȸtL;>,j͢7$A~9sxĢAھr,72-Ef<R1@0=#;0Vr}}>K?KJl/edY0)T舊SU VAvCA^9BX&10wjrokR@q5 _e[SP;q=G!S;*-{ؙܚRzu/;#_uG2#K*9U|ؽƗEù. Y˺#_̎rLr2 8+lBV?)i\+oZlE<^ H1-^i_s/ܼ.LVUu5a<;dHۘIm1MYĵ^ )OhnlXO7TmJϮf 0?n7 `~9&);3/UtYJ`R.J[No!)t;6g!INrl~%d2DѣChk;ќ8#=> 9KDi L;ji?On6,jIefV ^ԥe-nGg;Akl>uk7%M۬S?ãĴzF9jZK9]aǘ5P}T]ԃIjW4!c{V[wi˨V"GzU!فNsuƷ ɾOnLft~ kNEg0+fG'8uS$5%"=,k<. kʃ4 -s̬>%^Sa]_4\Ɲň3v;7=&'rNFe mU" O!,%BF/lԼOߦP3_w`Ʋ'iq+k<}U~-TnHhwhnn(hc4JƐHt8V?)HYcbP-Tl)iS}erxE؜5A.$ d[# lAoo7A\N< -"U{t眲GXV #.CaB&T샭 (e,{3h<)Xb~yܫcI 9; EL*bEEс0VܤlˮW-瞉\"c/{_Fnnۥ<>Fh /|qTn2{xW,W Le Ђ,{b-%͡CA9fec)%H;ioK:7144`FrD d ;3<9߽el;CcM(7Vtw(M MH-1n} SzelNZI–Ǡv EXh x#*@L:s 5e"y!r+l܍˗vWYvE}+f͡ުcġLa%o Du)k ?#!,)?]e2R6}֋b[V7kb4,b4Fa)唏ob暸-5Ň_%6LF_ܺM$n]% # NM?ݹn2FNK>͵i"[bQ dो[ }⊁c20 9N=uYu8uu|v_2!wfH#K/Hؘ[Ac/ ᑅy>gהO,R,S 4Q~ȿ68xAy/?x?ח('aic}ĊzQ>:A=15|c|\N[FǥIܨ)v5jt&P8B-a2(ಋ Md~?{%^wvaK'\Ȱ<##hG[H"-?ɻx15:_,Lw08ț57jbpx mˀȌ쥼oK$'#_H;.]]vM1] pZSo١,?-L-~x=1f1Bcz[We]}dC*BGnR(nqf뷎 IoLST7/˶͒F2V)T&`w$,'0h5`p"~Fmo>c~,?>y9zd[Y븠TCuh,bn$@;CьS:M@|Zx~ߦuX(`9"y)X^ۦ\h)W5E.g-t`TF؊zYgi_v0 t_ :e%["*N8qT>YegAB̸E8;qvn˨.O-8j%R$rx CG=ssp}>9UƲvmV-2ԑWC ~Dh/:EU#t)S_iyRgNWmww6MRxc(kHϵ^5a, zJYapeP @44d=Rw[CNDq)[D<^uRO 1 /qƴ *04B׳ D[owr)ϴܕZ/oI]V2%0R8m6u4BN7;+-WYf!|%ALZ4s%k./EW1=BAs6coK2D(CqO 7;d;@&q~^~vsaY]'2?=@1 Ǵ.y (*|mLZ')sxx}.NX,M,6\͏旲/}]X9.8ŽS-ru)o5&j_3 ,wt8U&ovQ.Yr 4 $0:!!M>FcHzإ GX8P}PäR.1jaҍCp`pPp%ζz5gQG2xeN *LS_Q8dg1 wy~ѓ%Oxeaq{Nc{(o =$ AF |r%׺ou2d)i3; HOje|)ﯽV Uqa^?_=_#c4Un FbӂAMfu|ao:K-mι6yBJɋL. \ 9HY9M܆]ЭP U$Gah{jkdl(h.1M*FT FM/Bl9'(>[ִe+>{qݷcDQt?&aluyzz" 6}60?/Eo丸tmHH:5iLQAۏ mTL&G{ fRL!ġq! ?L*6+kJҥt?FQRL1(bCEAUF 15eɪܲ Ay?B+oJ5RXɵa w8dd/miK|sL0-94  =U ^biy=W?.1U:Sm'ʺȜ|]gPHk-I|`( _1TeA1rY~.*VylVgX k`D=l&v!gޯ;4HYCk{%`^ުk>~?OmM6VW5G/u>Œ0mC[8fzE~|a ؕ{rn2G!uk.vF&η.`NL<h/L`yǀ8wk,{yI0=1>-în%Pv!X8$bqs%-  epMٻ/Rg6ۜu>ّ.ʦ Z{ )DhSl`Yq[A \ ?5NQp\;۾f%&qd\s,UW`ػZLimr.—GZWw|˿a,ccf-{˝~2x-T1EdZ,%$hG:17 $:{3 +Ty!ܷW:7)eY EH՛O6[{ GkWhpS4AqoToyaK(OmaU_wt? u/6"~ofB0#;g+pmŻ_遼nqu}=au]Z6&bg\ڥ.}vlu~7?#B\ a_.!) @Y_iGhJq,XvH.H5vMDP<2<.Z\ <#,7C|9h#VmS_ϼ@tKWntE&6 wD7_-siCSx=K w^^E-:):{X6 ̪(׫g'gE<CGm6g@1dκ%-L}=%5X{ZB%ˇEgY/:ڽY%fV࡯n\7(,IB98V5/~Sk%/k_5屃'8p:hB2h̀?iqffϸ9bfVEw7mGF,ZQ\O*x26\*/'c韏]D[ޝmJ;Gid ZokS@}[ 81!0~^!{%`a敚=bJqj/,-nE.ɏԍ{VhwЎ>(coǾwGmg2I#DZ04I&A,ד,Wk 0}zۉP^ 3صoʶ_:Ԗz V$ xKC/7u멮O?]]O8_Jɢ5AWn}Οs7IJV&M$(!608HJRR_G?>uՖv_ypXS?妩o, Xq:[?H}_ xa[gP2K}o[` Cm?PȈE"Ϙʛo{N?W_%!&ʯ۰Jk6".C1Lo\6;v$3"Cp|M2&;a|un3$7À_:5U OA6vKU{ X{W #m J̖Pd~i_U1'jJK؜L1R5Z({׺T٭/עm1Z!O ,g% <LMx'sV1!)quު,"f'9ˎ[1*Rc1e MJ+dt}!eXCޙiP>nA'&/ .̿ؿb6L.^F6w]+?{1k =]fb]bCWg0FW'H8R_ev41l'"rͦezm7] C̙>Pwq$1q[нFPgNŹ"JUX`ypnR JsD )MmzH5M-/jbȱa>NJWo$` fe$H֟+{snL&s<1Zw#~aա?|ZKaw î6~0{ sFqǾH11oH(GOu&nu+cZ6`w([ή;ʪA~GfwK?sk|脺% L2׳lg(mPK+ ; N+ D-VOy;V~J {jG,,2 cՒ0 ;-ngcS0'9\YÇOR7fqȦ{m,~Ł`gИڡ>&:d^ǯkiYře ,@*}Jy%)Erj( A6s ljR`D+Ֆ~YC< { mگl̼Z⿤( Kj_jnoۉ%w?493)$/ R 4bY*nsk!YUL̷FON(ln@+Ƕ wr:qF c+F $ʻSAU3MJz۞%mYr2a 94~xHiG:.!G_`"YJT>~ì[ʼn+fӤwK̇%z?xYXU_>.XЫ$2i\>Tv؅n(Pa⟃)xQ˲;&KGNb6: wuߴ1q|.#04d! d:4%7Y%GiW1U]TqU[o V,}~-wsy%{ߏS5?V&T}W.z%C| H`8LœǸ?_ʽYyĉ8lZxժWuM4ȓFHCޔPl|G/%B.9h+WN|4u*wO6U3h,%iQo^ZD( 6Ta>rwc,蟯&M2?b* Rvq%1 tQ.|e0`"r] Umc&v:{a:1L8P80u'MY+/˫-*9ξzW;ȇ.tzYt-A,7Yd\l^JJt@WY3b"td{gͱיn X?׫wKF5uB\"МElOL/UL1"1Q`ug}o~I!z,=M[zl25 /Ŝ<;tћ@f$d~'cmbP> 4͗R,QK=%1r6jв44i?e%5\fII^},tN|6F˾k^W0i#sno_AKG1$ЃX@x"(MlKңK>ܼߟ33\= Q}ToZt5!I &cx`',nS9=HT?cllK'^Q͒"`9;vmsV*aڛ#y%~t&1 ^ǻ;C- u>m__v^|i-q/pKWY_躢K7UJ 9 ;1V^zu/Nzp 4YUU!y?%hzymQYt\/M6Qƣ}&3ŘP yit>c?k|4|ʟfHb,ĊhWQg2I>?'l|P] $rOn] n_4M M..U_qbLUH Je1a K K5I"bq}֍[M0gq:qdn 3$q^Ntn#_C+ 7WL3S'2w748 xS6/8ue~^:?8y_N/Ynh]=C&՘uٳlT]-2c}֡u/2u+WM6ŭWN~&A|w\sD)Hu_ctP[ ?}:+yk.BuYkYMqK IBi|`_ri^saT;hU +](^Azɋ sC :oK1PR:oe}sC* $}!y8\)$۫Xl:vpL]kVߝew6pJM2ƖZS;emƃ,$7"*X&8XKL>1w,鹮N' =4Yq8L}<:*!cz+e@S5-ї $(.:Y5пfƜx=9,et,WFmei'W` >H1.Eo8rթ}ߦSZ]S80PS݊ ԙ U?5bO)ߓ+ķS~) cxK n$A[V0דlL,.2x'ix ٶݢ䀈'^,S<^nyI6ǂb ^k|qGnYwm.e/kAOS5/l\1t }tуj5cADy^vBJ{zSX9k8%.Ӻ혶j\`PLO$@6j:FSLIbeY"ůcXY̓*L4yꄉcv҆4 ܬm_fҳK̷o2 WnjnxeVʮ1ucl+ĹP|37 /D9&ѼH>Zw/6 WW\fQJLy/ݭHc*Qz>8 64ze$iju@0d&dj k* ds,2?Vx.9 U>`7Dt4=SiKDp-B>?ZV#VXYɸ*05/'7O˸ޝ1۪zjm{t/&4 јǙЎ_)fӳ</i=U-݆3t"B'1ǽbŒek)SXwV*l ?N} ;=|5fǩy\u`ߗ14m\ҔzlOLk30`v}?r㷪far"׋$fdY?e'fUJa3s׸?~okY^]WwWG&dW˦dHc%5S3doW;7~V;A +bFc67PI؅U0E"Ky4W`™%)??'ݥY+9UYq!z&0Kr\xN!>/r e3ۢ)ʦ6qu253/& ;FiM?SAC1#TJTu,cǎȧCOjC6b K?nK_*k׋ܭG4{ dh,O6L |wPw6'au} c75ܭ}Sk$LƞBГz|`RFhRqދVh <#i4MB LL.xBI:aCÆ?I63lGϧJ/-[a h5H?㳑$},)Cۦ[s woL62GXW֑5#.m=ڐ :w{/x%8w^nYơSkV.3e2EH'SoRe'~ ADO-(g?q=ai^a[ʥuչtraWė,&Ƞ|ari DFe>4"_?'}.s)4W^.Ƹl GIsY o8Ɖ4vKL}lnZe~!٬Fj˯EsrʭʨH &Ժ?4 d,`U#.vWIY: `=T%ñX|@uu%qťViL%8 ""|^ArC с5K\GUc:a?{)^z%Kڦfq1ڦUA.c!A>8Ȕٖ8iEc8I^e3O;[fyL^ZOk_\|6]Y1>Og1!݀*@Ȭ5P/FO =a+lme❸~C2 5cXXR.GX[9^1)'k +Lb.>?%9 9tKa)u .]Ik['$-2+*U-FCׅOߧ6AKɅ@yK)wΗѭ2r:>z2<[k=Yةb/s1[Ȝa+,$`"'1+Q1uyK޷MRq}!{F&7lXRcک󄌤`y%0|HC^-qϒ 'ɋصX&;ꪺV];)$# L2I^uϴsʏ\f1 Q{"PZ޾PQx>~bmޗM<WHݠ\"tHU(ҜYm|~6z 9F aKdWRo}]:MY#> y2py;HX,*PT yOG/zpr?pR:2Y"4*^|y:M9SOVIƪ$ʙ59S}aNğǫQm #sɛ}Ip-%${j&C<:8ne7G' MO6Y2^M.O[[[%'ۤBKP8/(FDQ.++$ӌ"saLܫHBi ܥU2=L ÂD}FD1 ,\`J bγW4F{u,_ʦ;Pz q G"X4pztKN4^ a]sK.VW,r5Uv'в暭^Ve| byXpvgyl hɳ6/,e~'ǿ[l _gnUu^,x8vQoP@+ Ƥ9@ HFU,xv*ǿߦ|,~%)?r˪.<"F-4~/9:rK71!3dAٴ_v`G Jk)E+kكX$ݐ%Q]M{^ۯ>"p~_?yܘ~0]#VEQdt6MtS'ʻ$ n~?2U?.&*qEwSh_yLA.x?)>UhuY:] |w#-gT$4XQuM<˲%c켒x:8l*+9y6w^ќ,wᲄA&+1Y3,*R.!^^[i-FIFa}MF} cԊ|#?GpϦxԗ޾ޏN:s|G5InlD@2e73D] c( 5MYէkyr!wZ29XRW DVu#w_bb+ Y54ݞOQܲC՗b!>.GA _lkd/}uWs`;,݄>^p$x3Vx8._nj_/gy̮sng>my,*R&%-FwP 4 j1`6w⃤l1 sEܟWKkVદ5扆Z`=ԥ D=!6w,t:I%Dž\5ЬNZ;߉yj9-ڶ|խ7= sGC݀ߣ_a3dCRYtf{⥴ں1`N#I&c33uX1~(u&hSGCA>u8ϩ뻾rxzJˢiӌZ2M'dU.& ی[>Ǽ|ރRM+Ӌ, GSq/1gegc0.p (\+4eC}"jC $4)6 ?B0T@lEZ˟_#9WKs*Y`xx/7^3RK>¿ ~]tJô.9uuvU+x5rN\oؗKD@fQ+ 35DcXx!2T]'Cd@]PHttgmV%}3V;7+w] p,FY7@V`ɞ\qv)EROcӸ,S'׺+246\ڇ^߀kVf5Hr]V'Dh8k{cTͬf"fVasVVu-a1BYL@vسxy1+06IMghlo\2F@v*1EQ-a^θkVy}{)xs5݁|9X70yfdغ;! gr2\[^-!CLZxVf~Vg| d̃LCۭEOah:P@d3X b^e,v[h`oX#hz `6e~NDS^hck1J2Vmw+4y}B0J/F`9H;Zh1T.i `ʈ-^ Q,.>Fi絗°c@sC FC<qIR31]0K5艼4|Y8[M]ZD GZ51G18~ 'DG}8~=˲e(Lxuߖ}v[/b-J@|eG ؾ́]l Ťh E=ʸsߨhrwcL)$xԱv` Ա3ѳ_{f0|a/Fwҙpb̲Ejʢ(l*i27&/`KNpSNCָo%˥^IX}+r/S6a1` ^%S yuge XR+)/qf?<;SE],~I,cV`0Ǽ 3fI[R䂁EYp OP [(}5_R,JJTdm6Ud̀ KɯxǪ?x鷩{Lotn82W-7k/u s\Vd4%==F8= X`BG=!IC+JdVvbuag;o=?YRvPyO;o8XY%-T^M) p~)\9WB=vEnȍXmwIL1j=<Bb2w J'8JɉVhNT̝G)h/i4-pIcD>o,*R0,)CEoK Ďk-3i+텙 y9.hxB8z|I/IRRųB'vs1K}RҺ*)qWM#IVIZ5lI1L Fozd(5LN_$9+,Qh%aFȬ$lxSQr wi:5i5槫L:ծc0¥a@w+EqnRR̬gSq0Z,]©#k[lFdj #ag#̛x~]|{e7D!͐o"@HT"fHV#+n<-P௝{OG2?sՔKYϻkEMt |;@ #K&XsGH+ Rų_{8D\ NF4-~`o9!tMZPFa|+9 !v&#㶊w6}X{Uz{t8zu)7䊔A} +McIgR_ .^Dvw3{'#yE-R0;*TށTTX½bZ"˗T ;YMKe@ 0Tpgv۟?"t!V]֏G0~",^T1t:P2|Xw8Z<{&uIc>Kݭ%淟T9.iFG0u]@rAUW&ᑎ64|9=7z״fv~ Gp|6gµAO b&JM)e}5@sAtS! j7`.xɛ 7z,ӛ p{yb>m f:sN4x]]- lV@}hybT2 ޏ7gZE4! b1 UcaYuY\;ϲ9Ho?U {4{7Svu#i]Eoݭ/{ ĺY;q- j1@+-13׍oyy﫪-A_ala6KҩPTB#yT|c޼[l @C.Ս[ϐR O-uFx, :Pӝ6”}RxS$",r+>;Zϛ싴#0wʻ4:L=.|N?_ a+RX ,mcY)dNYNʓ u8͋m9@Iy0JRrdAsIPcC OUlur-cO.EȯZz02a 'F`l@V(I2.s^aT 8J +ª$i*4 Mi/h&ij-ڀɺ|V'S[uE#3E R_C닺sF;l&o6!3Nz<>YY ABBzRE͜ IzG"4Y'Bˈ8hJ `&DCFT5y350MΑ ΢^gHZ&Xv$m7>ڎ X8~RgtB^,ً߻1<Т|wB޳1;A7v%j,6&#=\-e7]EOCh 21=y/E)jMp5)yiLHG ĺ;|j"ˇξdp>ӡ\Ŋ1`[:B d8CrG f"jf F2̜̬yqHg Od}ť&F]wYUMfsKqe]^Sb ?ۧ|E@,^BE?_w>KהYu+bwiCX؅\߰sMk03T´:UC0vəeUW&!Jrh)#JCҒܘVDa!.4)frY&oˏg*r}| ]$-+B=m N/VK`W]9+4cōދ\޼ђҦ{;Y΃1a_m(HR0 iX>EC[h[Odb[~{z{Pe**?*JC {_0(9} |v]! ɢm0{ɪ=Z: ܶO1}4@NB-Is9Ewʉ8U AOVS(蔜*m%H_Dܥ&EwM1*Ub좈kE>-ȋ<39.COXV-VV}[dMU4$F5OFrJdkYz=;3B(,C]կoڻqkʦJޖ^*I`~KFu,e dWmc X L*rm:8/G3>w)NΏk U50J!/A^3Id|3f51g; vD>!?KW<+nLji*$ .JV70$dN]*ۼ{ SY.3O MdXL˩[\LC7{<MQ;Wjt7ƻB*72Lsh>QMVuI=0r3bu~`4Mwx d!v% f3JE.{o$[K}CPĺ?uuӆs:XJCHQM 7 3Z_JA&3WU ,N|+MY8 - ڞ{s=prIjym! _4=Ry;IEwR8YLsWe#χ|x=&3)sV%dݘKy *TR8ZwH_۽S%Ηm⿵+o1ȑ)<%ёs \PɷX% D!x.QZz$혐ͰDڶeޑ:Ez2 M Ykge%ye`b)"e(`rIa&iϤ YN. ZF uAћw}2&y~ǽOQ`5N1l IQ~`ӰSd|@ܙBykM8-:6RxVԵ2)gE@${p?$x ׭pl Oa=%>8 B̜s2e,O~7?$bE2TFc5Mת?QN-"L*rMVc僜wb\te&-eǢi+C罢Ud|&9.$~B)" .k+ΓVa򪮓# I]hE6?ңvХI/^a&\㛤hMxifx^R!y\-Opצ7}/T3+½_Ͽ\tpKiӚTt Wjۅ+wIo}]Zp,%Ч+5;c6-Jb-GЛ`ܥ?g|P~b LB9ŝK,(.V!hl%1YR㤔0=a@}rX%{ :F$Os)$2ʉ4.خ~wpEEӇbǕ:Q*ZxyPA/2CBnKb-;9Y(K;ؐ8Ͽl63֔$y,oLl 5l ȆA 'w >Ӗg?I~#=9.6bRȲ&ÍFAGH-h%V,NQ,v<Zӿ ˉ&5:/"xerI,hh4#d%jT ws >egs%'oliK"ATyZd%91JaNǓ⡡"{>}t%17-g¥oSXUm!y +3U4ArZ)ݥD0z!Q"! o S6mL !H.m:Qz8eVaHi @mbcj*;J4T~8^FFy*@2wJr^bPO{ݡ-.N93):Rw; W8@tE  ]`l]HVQM~|FD]FBC IY'+$o9O-L-d(ߟIz]t697̿3c^[GzI;Kh3_KvJdլR,r $`0$JHLV a!mJaJ9CٳE Ս&1úw'UYY]'e_(쪰*! D&}d4Ѥ@߾mҸ%B"K)J|"GOh=mT2yXePy؜8+lzo|Ү3Ig=v֪صiXJG0t ݯz6_W<\@RZ +º2WJXL QсٌGU9W=5!~yQ6\ʩ= -\]3tpK}׉3S//Py?UoX_ۗo/$3o}_puc }ߐhu^+= "c{'`,#E4Ah(D ~h :c,u-W ?q|'1<I4I5q*C_ץڸHrc0). ɅnA7ծ=˹B\^1EE$u݇@ڒ7B阃CsU^lp=1y`~wcH Igۤ + 5U*o8n},x^: F뭻*eݑB.aKilj 5 7 j!(plq'1d>-`Ť$ K٦{mE~҅yဈ# Ez ;Ip,@L9u\Dbg}1;aʦ4טCe9ت WM))M ND0_33DaxE"Ɏ]eurZc," ! %iNš5fwX7hi'6xޥ:悀*MPYI`RQ s q>Zi"]qR0U7.4@8\[;c'oL%WݖV$!vFp^B ԟMͤ:gQ/<>ߡx,f\οUa17DuSmV(E9IF)ZTϞrl PU52bDʌy,dms}C8i=}"OJU4Eꚾ9^f";_И*;\ s&{vW;4(i6 )q-Y-(p2A5l#][k<=Dz£&r۞&D%]s!O ]@$;bv 'مS#re8:>We޹$U4N^LUvNvH2`Q>FJ#lrVϋGcuwYmp(MT#>!> UUzU.]<ˋoniۦIN eiZ]iAŕ᠖=rEA8kKCcFLq+AuS/{zSצ"zmz{,}LGHx.<9^_uI֕$& zOY^q3?{uxMPZ ɋ ht=S{<ۥlJ:M_vTUPhT%( w#7G('ȩ /E}xbRy6w&` A$ Esz +:"^y/AJ_AE2+%lÒ9 X,)6)m'(+ UX!}į3Y+gJmZy$ u'l_ۑ#ҥ))蓃y"C>VV:KK}.A-ᓿTUU?=fV*3`AAg9}j/ U/h5S ɮ Kr};4& GXC~N4~-Eb+`ڢ}q-!hUix{v }ٽqY$ e )pW# w.77:PB’jZ< / Sai[2+Kj%ceEF1]UIVSAt/HZNhp%5 7rC0__0 t^HvΘ:muxO.ZiXA/BЋaTT0ӲLexƲ9Ӵd_H#J_|,7mC+ JPDs;ǓƧW4SRq?Ë AFLBL/]ۇ߄ިc#2$VguZq\n3=b#c.$MbBQ+4**JMuv%Ib UQ"FB?z2 YJ?͞\j%6Q<bH~+CaI8˲S+WB#fbīROʐoY^~r5ք7h Z& X+\-~ BYe~D돧E2yu_ӌ1J"Br; asߥq&b^ J?KFc"y~o'R\Y݆ď8և@?ښTp! Lӆc٫﬐B,+"7@dX%oQ']w0M.SLF> @A hFRä!=t ^Yٶq[-tkHhd&Z&;Q'YXS?Yz.*$ ~U'p4H)-TI+50 I)PݓRyi&mm5 ޹&^^iLܸv:hAkE/4+X+ӯ8>=ArE۶>Ce'w {oxSJ7F`aK209 $lNmQ->;Q-H{Exlch{+8<<կIB)b" RAA=0̳ !Kȓ6žn/Lz{H%[Z`|Q@B 9x<*W XD`a$v{8Vl8. ĩJodbI C&žZ4@ Ib;HƐ' ?δsǾ ؆^9Wl/4Iɸmǣߕ᧟tCBB>QVE4zH,8l{DB4."ۥ- @֛,7͏OH&|})zӮMdcJDH,wTOUt FI,=":ܰˮQXDβLN]K EmDĵ'i[D'ɢrsE*Ѳu:Zj3hTd\rr ȤYk97E*99W qkˏ|-gX#Ԑ?]k,$]Ӊΰ"3ގ. l2GVT & v Vt.85cʹ;M$9sE88&C[S(Ďm1,aW;\-̾ik*"2igoխF>l]{{cd%MwPwE'ֆW]EIJ^^=+h2I;!$ܫ˕!="<|+ʮR+LxRJ& ھwTGpM:;ҁ+%+M._A I|pePX.˾eR] oZiV>jgWe2x|kXu~O6z528~jW-SqV!I(%`k T("Erj"-.1nJg.OY-<rni}ˬ髩쵲W"*Mp4H1ڥyv#`a~ٖ7/;Hʿ JU/FOqU*79)LC.8e!Ui ڶϡTj$VJeWU N08XdլviD_(rwx:ʼYe.7AHC\GS.}xII^REe՞uz:_lɶJ,&l$=I;Q^b :.f*&<ҴPنH>74g5"!m* 3N)Yb=d Fml8H)K Y9/մbbGpVK4ئcԟ2 UmI~΍)ODѰ9|.rfEN-K삷!̬rUJҲ!v}[uAJIiQ27-_5*.MD^ajD ^E\dN3QF_]$0RоhXÖ) IhjP .s)DSBʱBSYP;kZm,>ƵyG\eEU&E)lQ;Y4h('֪*ݖeˇx^^틜lFE/ӛܜH8if`ji|PUU W0&3Jrv0"V`$Tx[_.%R<.}qČ$j[/*۶I$0fW#x4"-cMj%G;ו3QHAia%I,Λÿ!N+[ I,l N gK|bIvrf+iuSziG!V!J͑:::99IbCqua(\ka_8%`uAhxF/!{i~^Ș{SkL.IrfnWrC=; DACEx3wlUU\7ɩ>~$~;Q Rt@)">j5nKmn*{n}; ^X^գ>2|⤋3 &]9.2B[ߜ`S+\Sc)N-o}{Lb_뼻qO u GU=u]ì} ((ca\HĜǏ(G (5v)'Ape 5.dQietTDio0l?oԬI )̳Jׄ:cY4z2U0?&FGԯDR0R[)@ 7ٟm=/a=jӭ[ʓFRS$q$$4ɞϊl?%aM#EQ\2NNocn>!Ųt~I]Kʒ1MCIrSY`4 P+ ͟Qñ7`.r*TդPeYioUܝ4Q9xxp?n=74awG_jAIg!(7 vQL8GIq'SQImHdjUp^GHt&B& І´8# ǒ5׍n1rنݐDhY^Dgmyz^VI }?Nq"L ?14"T8q/ƹT-鎒Hѳ&+: {QvK]#''Ұn A4U>Zm$T:D^>i-/hʘlNilVS&APJ:i;I>(|^lr2G>ƾP }ۡޓX*cZLJ_S_w}e߿ #xr VZȂIDB/}U_ Fj6xst)<E֟'*q\"90u9;0iz&I -5B4끓 =/hByʉ:߷OQx9L>٪Ӑ}γ+ dQ)}S;&mA^k' ]@! C>H.^2kl7FTtQ n"ۧyLWt$9^6Z@SQ.>eZ#y\U"^4~l1geSNo;ޝkB.JdoI#bW :,x&  P(6_ Ys^ 錛43z˝nۥj:iCSʺkB8/">LAyhD:@cS-j|DuU=1mVcީSY$F^";Cl\@m(n\k$Ƕ&=(mp˭DUZ>t.@pz+QAFZW92|iALKj,B|;)!=}R>ƌ-F^!ׂ]ee.؉}]?+<{)bHrPRQԃ4ibe4qn=x2l9k,)u!'=b4P_fN6G}t-D%Ѷ(2 }L(,aiQ&4.̑xl)}?X凼ˌ++Jӗ*k)j E}G~ync]y wα+bxg"|ׄ8ڤsgE x$tl"įh)P$pj:]r 7R/j>%_~/eIJ6&VR2NEtJGXl[['$gɼʖvizB5yOok,TmQ'.)cb9`^5drr:@Ś6ƛ H1!\n45TX~âj۲Sۅ~ah.J(8 mGNq$9ƒCX\ׯ@Vrea hMUM" :Cx!*4q|ԲlOXx:seQ^s#Օ$5 XOwX'1bB~#4QﻻcdqNv1{J&&cF$d;P.,50*$ *& ;%.TyQX%5t#G>\MjѰ?,A8ז%u^JTҶGer8#~ O]θZ"c?j%i^a~\o#5u$|UIXdCKs1gu%ҡzzR<"jq ׫+?UelE_"8W64`)JҌ8Nnށ)s:Ԏ ۖ),A9v}(&ܵBE3G2b\$juu0UKQ( ؁ۄfAR(%pɶM\_i6~5vF0Mޖ-Þ%/EDBb"r(6^3Oati&㭸Y )IZ}H־`Imwabiu<#+2g('*ؼx`ܾ3yV~ނ-œS!$lO#JnA,\*uwPOl{\=<.N6L%!fhwYX҆!r H(2i9Sڵ:yx쪪RƊL ;Q-":Yd\0arsvAp{-Bt/Lf k1Ċn"qYK ^x:֔n#A@Iw4ZN;d&b P,e1χ K~ۂ!7|j"t Mc鯇'Hlۢ`.14[G1c %1r~&Ӆp_ڛj2yJϛⲸҹ_KVk k?>9Iy+:3 L)GIlwNR}+YuΧ.N7OʹΞRxQ)< _U1غ80CAjE\AXHS" _̺ӆBp'#Ms]}&:< ,$ٽ`0 m_4u%\*\>7jjI22<46r35j}Rׯ3;ѡ.EUWY l!|bNĤ9Dw~I)*^j&w':\H;c8Ś*lX,='>IB[%^ FY_cx>IX{s<+Τ;$O$Sh +ߜ֢^1/r{`?ʡ/&eFKw-k[cGJ{^eQPhAyw_VO!zO4L7 q 0S, #J@b(xSohFNɯR8+٤*Du0~CJ2Uzimxݰy[gm<[ᣚVmK)D=/q &[t0~f: >Kym*Jy\пg`ц*^_%Yu IiA=d҅t_I' tg{Sѧ4:_xU`837'|9}]zYsYK/$\цC٨'YUURϡA ۟: X'NWN5Ɨn_Trf^Nc9#ArϘz#e h(iv5Hi.󪫢UܽPnYH+杒JuL_6ZW$C;k712:2HFcR[7z WL-/2}7<=_\N}Ȋi|}PLG& %rNC Rd:Q 3/i uQHH $ESDwH<_>k"IUȏsf&"c@@ UG_Zx]K守q}>jNI+a-`=܇r$ E%= qp+! g8\/2-݇-Nr+ELɖ밭pbv6+?/k~Ͼ,v}ui%tULŀ10n0ۤ{#B%͒Tп-ui$yt5I*"nA$+mySd7%(f_Nas4׍`<ܞH(Kz2Tv?dp~H ƛ>]MX[ tEI6be198v1/{Cx 2Oz|ȷ}>:r-bêY eVBuVgIaqX ᡵ$DLNNߦ=an\6%SaPS"4RIZ3>ޟO;go%/J^P݇}ū!-_TQLipWN^Ocmg骤X6KCUR6C- !0z0/X]é\D@!bLKpK?y_aSbkjݜmkMzGfU1ˋ6 `0!cHϟ6ù,Ca:+ sSy[qRQ!1Eg\dEt0))Z}~dY#njd|at.w&$1i'Dv5 Eu.@Y&r2,{EKR {y:tY 3OChY0!B O^ʆme6"]Ḭ$߄Z#JzHIJ=xmN}Ͻ~)lcD.O dOQHQ]&,$L,KC`Bm7몕"q &9۵-xO|!|E5o7ku5c;5MS,'d*F`211b ȡٽЎڤwlS0& 2)C(LBބeCZF:dF@kQPIXRes]?]?ȫ̤CI/ԬR- 5n$h[+Wܷ~`)T6 Hģ%!_ȦR^-hIWK4E4~t䃞1ҥr7.FDDV ?g7z & TgJsE~R\#; Wi4͍ zOucko5$ukL1BV59e$i`Qw%U:`Hd%'5³틒9T$y!]1}Ue%bf黲#n/Ci0pׁ6rlw< |gzE1'0L֧*$>L]ɵ"R ܹ2Zѯ$V0|+bM3b$IcVMBp$]peEt뻺cn$B.Qz^ :V.9D"-~)ݐi"v ? !HPN ]QtM]d龅|PȭQDN*\iqY+ka"3h3цJKGX%r p|u24Yc~UZ0sŘ؋L4*1Eҁ{85{L ;څ/Y_+CaRLDlIPUD,ΑђR'ϽL/!<-p ]ϪCjD1CKQ[0 S`|<"6:Ymx$ߗϸJ]RaJ%Zs7)Ȼ*P ':UJldyP2/)w -3Q=%)ŭևh݅dqƧuIS; [*+&-yŐY 8,_㛨\~n;.Bfͣ϶J9&C^ S!A2Sw cu=v(KG~PcFkң(lOGWY2H:Pň{P'Hj?7س8M'˦;+I n}݁v6 drDE{Nf/|{fLRS.tĔ]D ˪-WüB"WD%pP=ZG=!{GڏM fmWk5 0ˠ'&\­'TsI$o?rѬ5tEt c軋e0@^^w#^ S0BeuW%喣m܃ @ {Ȥm]6iLݺiYYact.d*j1,h_'Ŝ$Ӭ< VdU9z\sBYUjX35$3!nb99B5̍ "%!ʵ"pUipcJ$ΚƯYI'B։^FQ pDR1b؇i% 7"m3s/I,MC.߶I^%aCiӇ0 lV(hIa" 4p,•-&*CW`lK’d2_!8e|uw"xMt:L+ƾK[z[9F~BTa6~#H<'Ӄ9s:uy篠,"A3VteW5I'HD,N@9*[9:bRajJ2Y)cO~@(PEVp=,Eqq%XN, ~H?}_?, E:]m+#Li ?$ cWJDaB<8MKRHSUiNdxڈpHDaNQ%y&L}`#4D"EqOOk8y? Β1XnYؕyup@"J:Ǣҁl.b ?U;ʨ'KܶyB4<e©AcPT .aH &JD·nҗ6\w'Gr[i]DJS /$`Nfuu$EJ9ʐ.SoEdcZETF!1f3-[E<,?@wDf ա-=iڢJIH!#/qw_vaqdLV z(B[p.gy8l˄ʛmpJ[s~DCBA^)PRz?)a 3pw|'›eiaxea %zx7uȓW PȈt=aALXvǼƎgpm'ބ$M̨KEJɊ)G*w!R]2LJr~zeR6c,BBbH10lՙ%ECv{/_~W?B 7~ <".xto>T]v"WM {mZ5v?UItҪy{˲H&%2\980Nq"`>&yX "Q24Gm{8 װ ]nt&<ī"g|WH;rS&wK()MNѦQؘd.8Q'Et0ܡeXASELbWL37ZLJ0)4ӱpN!wЏĘʁ%*Ƞ}DqR}*7$..O=f\YQ'ɻuN-i%ׁy=& 39nG>COWd y;W˽h~6c}[."j KsIO޼^ š)I)+<uS&B[I_dǠ_Hl%UيWU4bz vTи90 ?⴪䢨 02$lx:pi%(IrĨS c ھtauuȚU u?)},_h,16/6fᴾZU*,?p$I'B՞vÉoaLHSrAEXІbV**+ o-~a!+=}#<@/ƒBe\$;cU$u΄SJ~P@5RJ'*-'D>6Cdة5W\ya L39C6b!:[RB_&gFAS-  dtʜ$-b{9CW{g= eGX1$ѕ+yS`N[0C1~( dE) 8iGbÞt8cm! {EzyO}  9Y<)[!Z1u`,Dqw8Bn3n\(P ˧I.dvjկ ?/k k/ݑ^)7&ՅZ2uxAnNbTq3,y@F>/ŧMIy "C{uqljn&vHg)V*= Q~1}mDy{BnHe0/rq:k~MSbɿ2j~}ƆPM͡25ض `4+U^bbgY*?[k-җ! #[5,vqAAF@*(ʉ?]*',{rc}y5kxׯWz 1!vUW'YaYH),8 q5U}@ДR[8ƽi$e)o'?q]4]R1,TJ Ai`B>vUiʢ7{>{G }Eϙe!<+g&ԓ\3dba*\D< 2VjYlF < |K$7ƽjUؐjgrt{.˶M'%OZK6J LŬg3kKek><[p懶\…$eF$ىWVDHYp ̈(tE55&yl4kM6CCB.m՞'2yYP X8Mw+&sUT#OW,b]g;v&4i92>աFd,WqY }B3@PX5bŅ1 Q,⺫;鎚P S.iNB]CT)Y$Y=jy/s1z:uə| *-D8!-yͯ]YSE)7uGoڰ$"yuU<4/6;7W׊ɗ4/@1C;qmv7~ ۰D'us}VdXP5&pj%hi*9xm[E[Lq/'c.K,,#H LY]:GnBo(`BYٓrEH[߷NEǽ~UJۗ'fL({/3q!E~ 75Q 07$y=" I(AWI+FCͬfW=~1?v̟aG=gHI "HSQ0V)PѠ5tIpq&q?@AVݏ17I8šfR4d4!,
$')k {|',:"6uoXah^dNyۓojUDr̙WV1Iqw%{(5drԒ\ah񺄓xs:owk4e4wzn9@@Ah6Lp,Rk] xOuJPن"ׯu^,!^GLrB~H4r>Hrߢt|{,6L0XF~xTEM߆$MzF\;A6 RH7Fqˬs.},}g7hä(e߆Ii?: ?T__}9C"e\.ɨ ?,Z 4O5DB\[Hq 0,ؼWQOxp_4PJ(WexS+:N:(3F<>t]豝~{WfC!DK(#{YQ4|!NM^BZ;`@!cA %|Klg_ w.MQNm~\sP* ֱ5=*n>pmSx3P`Ssu`Zv}ihHMOՐƴ&!;6]5+ C$x sFxوhVt8tshqvmg6_!䑥u*Vȼ[`/"O) + I'"Ȝ/[/0pv%/>0n^o~ktԾ_RbI4Qbұ*$$+B{ ;"s)b$!23o8.eͺopYJ.BoyÕ "e)wI ,47BCsYFN2cL zRz]"г8$%:WXj/EkRJLX.RzBBKwƺ*Қo%;ER ȇ$`gx1?]i Z#ryGb.ZY]2^LebǴ$ArQ}^K%!* &p>_x,2}ax?J#.ȼĵUQ 9I>ُr9^"OewzBFd|4/r)$~.Sݐo1zodk>4΍ι"`ΓClިW0]1JAj,R;^B R15aXQmk?C5ˢϒ鋜GJB] C 綜#ᬇh8eͼ<4>~{ !^?ϬUټy~e?:k`,BFzϝ >TX]"*XZm\kCĚS-)J*ߖ.kd zϫ&zaDGPGKzk\q5x.k8,ěaziꆍʘaDuzx"NSlx '2M\_81Ha#6{Lg&+j)[iڮhdX nKB= ^ =h҈gAڷ݈UJH**?&`]U$Gb<%*1"Q[(vUsuXL}v>o[$>GO Yid/$1jmTV$. /l6<.b{ l7s]`kx A*9+j+vحRyTг 1Y$VҤ8@HDbLT4vYKT?{8#컑$z~[؏z!MEsRߥO0 rrs{Kc :gHO1`IfCHrn4h~qРEqi nh7ӿ^}}6<U(Mҙ̘PW/VE>2 3t2inrC^.gqL8mREڻͮԺ"V~?2DEPEQQSkdm_Y&;im5~>c^)4ٱd6YF(᤮8fKI%%#*-)Р>ˬǸ?W XAb(2B w7Cza !EϽsyS&$*<T =EZ C4Jɟ@dg:oT{,USElZ "UUW *PT D%AIU>0v9 !."q`|(&fB0V](GY[$힅4eUޗsI`̈bS)ꐕ|ϧzt4ۭ_]/kDZϊ;G_PIOȗo4&kRieaӡWڍzB#ApeP DXb7#a*ԋU1N"iCثjD#68F4xׇֹ2–}%3f!ܼ˼k Ϟ>Hi(/Hp5'yC/+6Y^ԍITQ_Ez[~`pGWvƀ5At &wtY#,&\ALVPSmQ( βo|@G" mm"g 򩚽 V5U]Y8Sg] ct.Bꊁ Y?ddn WQ)6.[oS'ݙg骙#Q.7u7BX#1Ʃ,8Qܕu׬r#]6;l`" plRTM&5Ȉe DZFyBIGDՑ:'YRٗth||bݼ|݁VUUwur@I{  X"x=AZ3¾~:6="ikedBPVU֞;瀮QYHV-I?Rcc$T ٯ1p_=,y]3v ?S^n@a_:+SM hm)ya /oRxo"[TBndP}tqՖ!pxp4YZKs6~A=.f\PT ~(|ho~HpfCI\y#B( Z※hm6^?o~tx! 'SuŐS#@d x ́COn,ozn3"leX KIaHm$-ĀьmnC`1$\&N(4\d|I餝CEW3OkۚyW?_7leUI›MLYb W@"q4h%τ4uO4#\OfSM[owMt*zIuU_3 {HcH?hE)kRIy9+q2_NQRU"ԅas\2*\ WKjW(llB6 Z_!t ,V.4U*j̺XT1If"XavqymLNM#W,%PC"V(Y m]gC.N 8Eta<ʲV`VBIP1c"SCQY1\۬^ٽ>.#Y+V$1?"|M}Cӂǹʼθ'",@H=`.Q8zLe*˙{{5;Ȫj:BUN 5E$KQ e`evP·i*xjyhD8Y+yI}&>ݣ~NIDk b'tA1k71 z1dK i֢Y (n6 m>Y_^tT%1H`TH~Fn^oq44c"hp#֙7[;n[8d~@sϭ|n^k)`K򔵑dKD6Ut$rC#mc&2ʡǵ0SrY6Rհqs>7C7ݚuE㈤3_ķ5;pZ,kk J-hˍx: q ٟ!yߍÁlPQ:C!7MGC?.@C?R;_oH/#z Rd%b?Hcueϊ1Ld)"+L0]a/Bd҇W%.Ny`cqJtpC'K إ}.#vS֕,FmB_PُS1&t}Z3_y;o_g3.2BK?Z9jo,[FH#Y| .ÁP8IGzE#M,B'ζ2}+m=rpUj$k2eȲhF&*Vc qV}з7/U[J{+͂;~ex&_t9x<62JT gX&XvAZOF: O9.QLk?7عn^`!i򖑑S2jZ*a:[ {I#LDuߖ$$q! ΰ2dF)QzfJZ}}>M$Ҋ`ڂ@})ױ;_D&;P@ }J\0=OgkIxS~$l:iudL鄲 Z\cʑċw&oYm[]vi]Ev()>D qwbqq/8 9r]2:p#! f;j/{Έ}ARo]ۧ2K^F0_`ЇbN3]|qZ`&q1u' Cʜ^͡RnL1quG9ʞo{qQ0M)UY%|\}Y7>J P-)-!;!K~ת{Qt*'ep9sbiC }Y/qU|%.k{*Q*dEhS"v Rsθ+J +SQECJt!iCn4u5; nU(L~vq#?HF,;PՀ|!K&Ry;?|\2 )Yr\!U ,X:)&ªbKjcO>=ז_:XUK?5aKӅe%Cx+]5BjSj,rkL.gd?,m2/E43+Hݒ&5KT`Kr YC:A'9L&eೊ$fY %b9.Ԫ7HA$7KXgTGV.% ( ȸ#Q$2N |c.y~i3{";ufU}Ev G ĺ[aiAZJ\a @Sl3|~{&Z̆/LQmS$yAuߙ"*8E$ N^)~pq]zM(AS,Z'Mӷ8u5ALLthl\/H WoDdC$m+L]G4Ԕ֥@r`eY6|'0AN{ݳHA1F<5Z?nH?5|.6K B5.ڰ3%x R $>)=8o}?,[hGeؼ tvpb/w5R+˼ 2:d-Op)EC1S|#ߟ/LO ,ܺ&OmN.3EV .~z3m/Ji1 sxv?ټY4X;": Ii^ i C"[Фh ) !r3~80J@4G/ r!k;ﭐ|4a&7_WT-1B0fER?y_BAHK*5>X12BIvhS^FU\T: ^/ܨ"X|?Ak[ E%אu%Iw-cNiT*va DqJhPFKi 1",2,\D"%BMiu OȤP[_8z:; l<1̘4&}ʼn~g}>oI><]v5J֎ˢ02m^Ix<|Q]6ds/,I&rtdH-Â8-rUlC4ᅿ e DP12˭\-{sA\%1f-Yyd\|OwES%y[2gY*!KdCcDL rXt"ߺa+a!}ؚgGag5uN쫼a6 !RJNP},-r@ꍯ1}J5IFRyՇhCK%?l>JnnC:Eya@zK\H1$ C1 u(iLa)n!/~v仳Pchmny}[ePN٢2.jY2NvAc܎=p<OVq}Nq v]jN/՗j-iCFV&Ň9^4!X6\8ZXYh=@/9/p/+}H`]V=xGmiNHp\v0o'͢&^+a?aD!!*F䏕`'d5d(+{k!U|14'hPY4r(PT௬I %L wB'CJ1<8e޿=،.2/I󚲧eSȺ H t(~R[R,_2vݡ}_amwBp.)au5IBc\?GЅ|=qu)=-zJ.b*4˚ DJ i+li-d/aO{`c6J"j4&#YTx!&ce^=Ǥ#lO&X.# ^6:! ϩ)BQT4ާ~iB&:I7+htB\> ?44^]xN߆u!d-uObB_]ƍ˂$ɴ]-iL-] uP9JkY]l";'2!_w )*]ӎbUT].rX:e:pB Cu$ F8 +0W,1ΊODCê'Ԩ`d?$l[Mwo_ھѸq03ʦKӐ*Av ~3EVh5=<[1dzÎC>B8.N_nޅ^$DĔaT> N1.߲Uy^esV}HC^<+"G&lꇎ2IvQv0"J C<$xba0Vv-5DP4؈࿅o2920!V1Jū1/$-DB_,طyHw)zr\}mѺ$uD˪$ΪSI%Qu@ L D\b+qKҏGcyIk[pfqW5MœF ]_Y11^c!; M6d.88!c /MW[Ȑo" I8D?-nL͝G8>q$m&C]V& >!+JH JH '*p>*GqƈpC'\B1f~P$) R-r@ɽZX $g ZJ2n1,!8hC W*%*Vn.N*Dbt=<|iX[VS{!YJmRErm- [ m Y]Dɲ1_*h ae#&I<%{sVΨ+սWn\q$tK4D'MΈK_ޔ"6dI~nX $Ӛ kģEq bPB+qEVuxur6…*cnLwy@!˅M.ׇefEEߐmX`U—Vs͋ >'vۄZCNgd)ܙm5~M{͟2IM ua;;| Ww*n@U[ A/hJpS_Xզ6ĖPZV.)Uh`8RIDOOtu@,"kGw|T8o*sI-C;ghB M)Z1Cu}k"W~e-[^z]}H]MH~sSE1r^4vW K/L TA~W1 ؏m_M%}% ʿ3 ?$2@L!73H^ [RF}T?|St$ C^Gԯt_W 7fJrNIɶTKT$v!pdh]F-#9ZR56TtyB9#94f5a&R$s:J0Va@z|}/fYɧ_0ֻ~_,Oe*S y%ȡ?j`, Jx( R&VV;޼tïǎ{^G%ALRwYuz ߮$it⏬wU| f|ZȥoK+RO)5ZiJD-i u2%C,^ F(_tPs2!:r!9ph7_H#9|!/ǟ žHJ< QuX!*Ui=8vXJRC17Lm R:.o~&i~sLOanLmԵ-θSU h9jJeo"Ka,>yuqūW_p6OaW1gXVoU;*lq9ڿ_sM<<ʮN"NBW]8D`1H] u:{ԕX,N=(Q5"#3L,ڐ[UY!=wX<1쁋A{ϢdGCL_V?+XF|;A-X!T4}x *d2z-#I-bk܂g)7ǻIf)1ʃn#Be(XyRɺ-:Z ?GG>GDiuiWRrOLbhs$ i^_1P~VY߻meITb#hg]r(|ɊB ģCًx2Z8Zy6 9#Ř#c|/)iyᅰ~XH.:EWM@b/:I6A^$xII(N\?=+:LB!i?֎PRڡ* kCt_dAp+0'e|]YpiElu:]T9I`!nŃ+kFT.@7@w7XQg*ch*r)\6m=z!9ؘ$}B}Yϵ<1u%KAP4tL_.]ox"ʄDm6)%څ Cѫv+;"y>%^&t_φ2nl<+,B}״m<u^+/NzX2JB%CCSUfaEiXi *Bܫ( v 8us5x̑B=: Ē%䔔PTc,( ʽtH a q+V]%t%Rja!7xKJQ2I(R܁"E$sS2-V"*_7eR _vP|ɆyGǬkGѐBΣ/j{(Y[}в +<յ.vo- O&M 1 SEzD%U[ =XQ iۇ@ߥc9?4Ôbvd\66_~?:w etun/HǼ(-\JX祜ϟoT_ߐLlڴmUIrPUYV&ADVF^F%2p0bT'D3gxosX4I"yca$-MQH&"v"->a/x^O`B66^ݯ( !\-dm?_/3]#4"5-LDr}T!J,K^eR()^'@ɽ:F'*/λc XeK2/Mc{b R%!*C45gRAoS$˕cj%t9?Yg UEI iX!̘ib0o$fKA3ɤ}]3٥pm4_V<, E_6Q.P<TVٹC8<}QR_g7_Ē}$):HBqx]UJPԡ %yG gIo) rpwV3$wuXWX#eWd],ń8.zo VYV surgS-"Ht{K&QRg9EXOtʊv(~[c1yq !lx76f9_&y+und`b("Ɇ@! 4쥾fm?.T;^'u )eKk>EA3~8Yb`·;|ۇ2Hc'5ycBeR,^[ʕS`I;CXHXH ƞ2fH,ێ=Jb1t>+Cm3E>fJ Ja|uQPD& ` 0XΛ%7κ{bw<-Vp ݪ<(s.eE2ROWpZh{%ya bI&/ˇxh氌Reۿw燜:}<ɀkf\.y|e.VmY%Qcd7=몎H)'CWZ@{i`:z#I s5%Z?aĀozY3uuLZf2Бa:Pq0dgW)nSAF轢$TQĞ Jy`à!՟ʢ=ҝe \mKjD wN{䔒) JGMQ*C1 A>ּ熃73}goRu@u}sm4ϧ-ʚ, &cgM2}( A<0`2쬸KW 4uqyBiPZS/H;Qʘk*8=2?QspϱE95~i*^߄~lLM-#]vGLAPq2ݤ.0^' %&pK+z1| m%\E56H<"e;bd8:[ Z=QHQŦumӊ|/MS&a0M%{"1QI-ڰȓu@B@6H~yOxO RE'$*m ĤkU |*^4Kn=%0:~S(~#]U&9})T&v/BU!t8P8F2 L"/o-=nR!Q;ZcH GHy= h'sL?Nx"xC2:X {mB@l窬G8š.lU!˃}P#+nQif)6S?.k*[+R#)(…* m3Fuu d5z[ q(i^풽>nϛQC~2m4txFdœt2waP7IӺ@cDVp"")Ss[7@#*.S\e|ĺy%7ٶɢU$IQ\02JpʫJ@{_ԄZ1I `)1P[U A#A s< L0,zO9Ӡh"_bUu^qe(댨U%fbbncyuqFTO' gz8v}@<&m,,.nAjX3֊.C@˲h/:3YH;ޞ$2e4pk篦Byg+4ΒPXYNM:iVvii}6OЮbxAD)w1PYz!rD*i{d'&+a]1$ȊL[{ (!G|};ȒB܏`xWTMd/a]-LHp{PN{厏E꿲,0{ě{E(#pA4竚hY"HB<^|>08ϟPiOd^Sbː)"me*Xx`d;kE`kz (J%&fi^L]H.U ͖YTF.n C@V@S |&e^|_C|;˲bi"\U2(kς #H)U0<'[Zgd+^280a/ W^fXNs-,P0G'3q DS8"#V3#q]8G?_9ϳ8s k&9kl7 f>oܐ)fPM,26plvC&F[Ȑa$687) f?A XbH0cµ\ [jUV|T2@,Rvk,hk}(2yQ$u|U{LA1%w(aā"2wҬ/6X.PаۄksHuɉk*KSOTюq0P & >0Z=updx mM/s٢uH!}1tQ){dIOEB0$p^Bc% #9σ華;u\+_DȒۅó 2ҷS_}S<Ƥt(ZsXa.[LkK`^_ɭ,4mBXT՗37If˓#Ke!!=&JxL&PAzhO^Ҳz0#p{dZSn˾܂KP]Qi%y "=# '2v%$ևK׆1!J4owWdRP&zeh ItO{ǩlQr=VmrCq 0U $͛+ſ6~{q#oL_ ʕoo(t22$F\ t%,g;uǶ?p6N'd )e yZͼ4̢"ݕ|U|t&JeW?P+CL!EnGaAVIEB0r08!'O$z|lo! P!b,0uh =Fy#gJɰ]H7F{(eTo_=TWȋc0f闈ݵl1gMmB)ܮ44R .iS +ȫ!56BM )Zc"xGRP >39>9WzM]j-(B`VjUHIС+ۗ2C dNN'nY#y,O)8|hg9{)BFΈɬ 5%v3v zԍ y$/X)k*_Sgp8au[UU=ߟ9{ip6Cu2dbeohWpH a:iG<΍u_tA7Y TCO[RsY|~f>Sΐ[0{#Uѡ3}Ĺݟp/oxԔ?\D}),$8~M9y㯛哗"9HRv5#iN|;,@Exb١r9b|jun:x򫾑sʒX뺯ۦ]QfP?1]^n>"ƭtYh",)Q-+-} l\,ٵ ~4D+iPqoa*/|%A?9^n4e۹M< #{+'~OI)pˮ#{qN"š:,p^ezXƿBCwK/VJgX$O䆨4k@Z%F2($l2Ew~3L;(^ je KuzZR͓j*]-HrD纁xPCe.=k ۳Yq 8BYph]c2etu&UQrŖ)\eU,3ͣS U/@ L߇DWڿo_Kb-פ WQN{}%1˗c`Y y!01&Lx7ܕ범!7vݚE5ȺPr:?rpK^@\>DZ->xRAō^,^Nyd"u_1Ut0WM/[j BEbmNyJ %Mr}픑Tn"o"8#j}l8Ja.!um,\I퓟{AzmR3 >I:%dzٶ':$Y+FNΆ]@ӱU,TjCrNGxA] /b6^l=.khq&!v%+ :hBw'jZa"sY|PϖkPd}XV赙_[R4]n괊R8~UXN`.cΝ}ze:Q5 M]x_6͎篙ėmy٬2[ q% A5>Ump֪2s-핳q>:|11ұ(W4bwYSLZ*_w!RMVp(Urw-TefѾT \ /cE54ze"V ^XJH/c3(C|t4eiD(XOef,ƜS e~GƪI,!dbe8{//P:9Nl%vJEWHpoPG6I,s5lSm -mF%KHu_JCY7}e-zj|nKx_d.R" _uD;C^͂UmJ$ʗ3 w{sHQ040}M;Ɨ ;:lr̴(CL"BhLJ̻%?S' ́x>u@jؠ QClhjBzw^LtYZåHS zsc04u%Y{9+j B怵S.>\zRΚOҾOOCyӾ{ntb}$1<O/%4A⤿h{)*RTE|p!ʂݙ ؍F(C%;#$5K)IPWY<҄+5x/ݙ̷}ف؇s*$2K "|ns-j\X A > ܫU7Ikc(b{ldۅ|9S8lJȢp[AEP>8bSaTlRSuDWVEJvHXK`X`)XԡCza%nb>/DXKWVZz#!yiY-՝RغA) ٧!#bAL{cO g\Rg1X^ɞf͋; [=mtn4۶B5FWڕq`U X㋞*znT_HZM]&OnkXkU aN9UFO o\A;DqDޟq GnWC۽]~JCmQ7XosvI| 5t2Pl%dC8턐CMqddY %-A%P7XtXQHERfy̘,62P]:6\h$0m[ rI)ss *T =Vż$^#e6SXysFg/ ?{o=1Z%B@ixKoߺxQL}Y"_ 8DC{Hڶ_9J3ýٞV7xE.9d%MQ4qz|iK)"w4%FVpw䞗z2s*N4ZtF5]ɦkr$]JhC= fWDA%: hEcTeZS4PJ6Ey+Bb\oޥ!)S9 CzO|,\[b؎6`jm_Lz6$rcbG^p>T;ڔ^(׾lgG^v]7UB̴nC*V52R|Z;n:iP낲3vxS15䆰7)Û^~]LT oUUDzHUY#K/jI"VN kN5y=zfa>YidɥAcLx<愻H" $IspZ@a{B/-m}[p6}roוiXy꿮 ~^'7Mܸm՝)M.f[C=Su_.iCB:$!vȥȳ䢂S՘z@!yCiL*QB&V?:gCh&NӤu]Ѭaٽ̋oIkUMl+&V hPC=dp>Fe %Lax{{bv?O:~GUpB,îip y9 Rx]q-Yg_{$XܺjMȉbJvD4$VK5d:㣵oҠJ2+ȑ Vj"#>,^G3 y~VsB.UݻMe*p!eBDlK ?BڐP>4κgi0HވtDtOSڑ4 w-F]rH- ǝ+U^=*{)o9JXFxRi'nHYm[/u;/J҉XFUXB#( Hc^#K7pNa?8gaV&[:ˈTPBuYO=ޔ G KۺO.=O8!Z[#mY*XٗZaQEFD( )}@}1hvk};<# 91/"yB8C]g >ԋu/-^^DĥQJښa3{}۵|opAUuY;s2uz ryp&d&VCNu;Oz1@FȞǔAN@kIBûs0v,cXbht4".Ჴ+0xTw|Ti9>62z2,Ϊ5uY%"Ji.(xdXNr-w\{̊={hCNERw7yQv}k4(6dT *l4C. 03.!!7MZӌl]:7mXѩw&Ud3A!!|_5p|oEs|CoSx^HúõM>ۤ At2 d&& u\Zhz@F}Q árES%D\ƿtۖ/cN3B_L * x%B[[#BF7NX_H8񚤑u̟_k n"v0*c.9z %ӷZhp䞨RBbnqk連bo=YVi-P:oZHR``IZB+a Hg%o_~.&P3\$2hFBPĎ`_^==Hvͅ <|f\zKCye^?VM4duSFGVru qBe PΈ17 q_fnQl*V4I WX_9]rJ !09ʠ{ y!YPȪ[~]l/3PZ)׃O~=Zb5q~hUS.v-`Bv=d[0A,KTBr4r^xAȗLLnI-S`U9d<˓&Q[/3Wh* :s2w*AʆWVQtק~˴Sk5<Ί$|4js *T:HBue4" p=\:Q(- ԅ4:Wi1, k49'-{tYX  sթʾ~:8 $} p\2<5~kweM?W>C?̟ſcobrdBx"۾49=^(O4nI}6;EKXOC-n*YKRc;B#˪I+<`,Z2FFۚ7<MEBVvm'>n /X9fY|03ob>AuҲBɾ) jl*% 3ȕ20xr3F`5WL*gimem&Y%jR Dž ^= FvIsPG8?%JҞK ڄ|?$7DAU CZy&L7CK@}h]: U*km>~&?cG??\S(JqQ9!%F-dBX;.?XM]IP `:3g,6QHQ[7Y(*S miH=vŐr uHTyUJD&>c&_/3{H!_!N$%UCV@DCiҰlEc{qz'%/Fn ~}4=ѽb^Z=o.`0[uzsN+2p5}О&'yft` vi)n{ߕaߧExbL^Gi9~*1u+M?I)K+ĔiPdє&T.E{^8 P /o0oHo 3P6Ma964+RGiJAxr2WB }ft|ᰵCdej{ra^֛KP}4:&]./m=2AB *p^1lLC-?1Hv8w*tYL_(,CZ7zu-sPq7 G\B5jn^u0lzaf*C3SwiR“BIaЯޏ;@nR߯#_u. yTޡ4$WHjCP>? gv*:yD1TYE+5 _{"O+_M1L+:փFjQ\үR@S|[$%I'k.7*d fu+b!BR&ONA3hO] űf&pb=8)emIP񮊝>ˮɯHߟ4C#z>{&.g&E!%R7lWFvgc;dI4Kզi"_{@rSa4Ɲ`y݁9z8ElѬlux:fy.=4}{|)QC>eerdW ;mnW7"'s<‡zg(C}@4^|iy?~5sӿܚxۭ, 4io@h:D$'ђ;'1'׸Φ|pvgǪd;ldRκR t0u[0l|C2QTj|d.Hk=&ULŝvbB!5 pFN3>7ÖIRԬqWR#V:8^nU~/)۬;OKO6*0r K]Gm ӛ$F;N2p= 3=DZϝLYhID~SqbY7Fh'lԻϑHxƬw.n>b>n:_ilq-U,3.Ѓ/F~RN%1;&Kg6o*>Z>.% `-Y,2|(=|!()Ss X FcU-WOnFwUiwwFwt`gNHNO& *P݃ &'`fzS§YbAmJD8ǟ29*꘎OvJCYg3k!Id?$yiH]%e~gvGKkF|T8jwFag,'T١|Y̕CUa>G'Go%sr 댢_<7vii@{=)D_UiFE'ShRǍ{}E5޸&.`PGx"O XS*V@J5]ep/q鿡19D;kʕKP3d+;OF[uOOx<,*yeUf1em%-r7e &Հ;lpaI⥣]!w}vfѶ& +>иT3D-̍!nə\QKM\IEɏ-Kn恠Az$Zlm.DaNf;S(fB|T6oϵ-^ေXhuY0Y0])f?$5dz3ev#40 5k en?zoj1Mxk" TK%y_/ڼ] O"MOm L0\ _u[q*By}<\qowhѐM,N# X,joܔ#]݋]jg+H|S{`3$m?y~d5z=^!;h 6`2m(2cQہ?_ea$&-2ۖpAZ6]4)/Cug? ӄ[dôw J@CjCP'ZzLS_CW⯻6۵*ݕKVw+80>hׁd7OTſfJRk;y=v u/eVMWgp{3 \.eX ]'P`wmU]Gw(~U076pU};>..npÎJlbq:Y 1x%yui#q9+%;#@U K&^8D,<`R]%00ת B@v w P!d}$r{SܪΊ]eT%)UiMq0bܔo\Gl-lc͎ia'uS'a$n뤴x[,: "$G:W+KOb/I1*Uڜ#֓磟唈_CΏU|#*M!5:/ɲqpE"A$u=&A{x?S=>5AKsC"f Rvx[Y%;~Bپ;ouK`!&AafJ8Qm=.]A.1QV}G X"vFlK_L8T}=lNpZa!o5kDya8pa--9zT V±6Xw]7{fPXOq,ZB*! L! a#Th'-umNz_6Ҹr3.XrXcC\Q*&(җ3OT|zc]p'`=شN[ڿpɑB\%uvg77}}X/qAZbjT񤃱!I4hv2-߫{p:V^_W]\-6!fOb"T Ba96&1kGD+$ HAdx7*[@mK{繓i~<)+EAH ?Je<`a8VU)z G frkE-5<ns#$fCo!Jċ&ϡ2 GG}pJ&i~>Gvϱnv՟us.TOPRm,tȊucipD2cBP8[J\`>v(G5;˲Ih,18KTºKwl,X\Yu$~i[\d\3 ZyBsbHq%Ruf>?ܬOm\l^|i94YAt/B'̛ "",I 3zv3Q05nFFlGϲs4ӬLhB@˙~_.j__4 ({]3 YUYTgg+89G؉%9,LwSk2yd%m>y/֬ _敩4~>cJkSw]>^F0yVʞyUnePn-Ȑ!ZJV(x!HДG< xS!WvoWpx 9D4֖uUtK[ˤ;-@65\K1e21'ׄ- .#gIe>ӔnĄDUv]ζQЎhHeC75!\wDY~DbD~w9фl,Ѵpo 蘴`NVxEu5dT]SW\1U{9owѭb sGRi]=?Iו=YF/u!5򑳋8qp9+1[H<]5[M(?.W0EOF@ZP͙wbt顛;P(͓ pDa7J gR#M7펆2=[~.`b;_WY?*C[ Ic J9*b.@dJ^ 9,TM*r ƻ1\/Zl2,_F=Őc1s`zK61; 1PYJw%6>wg϶>U 5l[Bϋݰ]-E?z^Je-ߎNrR2K?18 &-D4Q Y_hG)6j<:'K FUNԂ6f^l;.YM= ӛ7k. g[K/Jݼ%\_jS#5Et%&ݟ_o"$<6}|&$ Y4}]a06tmSVYFmH/c 4z Cܓ1.8)CYf~Rh {E?n7vm/*\KRƌ DPqCW u @|\LE>'Ε5g,ֈkwh|n-5L[m򥿼[1UP&ppGMOo'=1>m&sd]u|BuˤE]M'4qr0l7&~ZfTiQ }ܰvjLttRKyk=-6[ta!Rl6e<ıbDeu(N8U2ڲmc%Z+dFG-llb Z,aY*Y\YUemDۥk |,LX$0BI,<]*v#N&XS ᥎R-]톬eZ=_l*Nў}ANm$QBinu!9C[!J\1uv`9h/XUeg];$JԄ 5?EfnN(iW8+'ݙ(Kn_|?9ʒ]ϟDm"~l2m')\1N*U@W"RPg6֗(ް'b,X87. /jZ8韲-%VvJ*˵S"Pn"\=?Grnum ;AdIm/ǫSh} 㶶ƯN˗z\K9\#J,&py$ُSX(1!4]Y6}#3@{i6ݟѦiռdc_7:KnlH׉]\nDrWfA`X!)sᩯ cKE"}7 'kG-۴KcRR%T&(z>&%7^heϼs(a6*&V)ta?YKcϻsqu/CdL JnIxy'Fo9/v0Ҫ  +"1#>8HF+d׳n?3dl},/&ļTv1{/%6XSHM][$]I.ٚ`lT0 Ԓ:j9Ez^M3E0%x+3F"VYHIGt<  g=c8ڨc|Hj#>f7mW͵*{S&O.yI ԽDw]csN_8pURno?]Hwrt;(EHI6P>MtYͺx/F̫,`h;ÖUVӁ 3 C}ΥKsΣ yz>$3=d`$wF;8)@#b>̵\X4qT%g/ $?(rWX>ȾE\(Oܖt?n0Xxz<|=HVTi9]WeSuݦtS|v]ƈ-yF`>7`%I[?, AC_Rn>{͵%.M)e9F焀yOӣX9ɕb9_g6x-奪w+~龨'.,ܽ+>ZnWry N'P||M'"hCplqmkpx\׷ZSsȵamU C/Ek=TF )PϧljK\J;[v±|`w] (UNb[i[6ޮq~kk!_|܁VU*d9& mV >ƙ\} Ydom81,]` z;~.9#=+gsHB'8V!c(HHkhG?nq(+ʰKK6QX cxrEtUגp8|Q'.>bd8K]@(.B[_ ;^P MZ<$a@jOyS/a SLpv5 ^_ڔY(r=qVvMYEqJz}&mސ={l;2"@4ݿ@$9-s%G^!W=eIý|ܯݭ=X'|$X,&iD{=#"*>{zɳ}^J,WF^ ⸶ɹ74dZ=i[Vhfs7 g3>'E#٠^;Ks-d)GYc~J _6ínOISL53]4M}^|/kkV7f3LFU`x~nwo R @ e^9+}MJx$<6e>7z4#T>.xg/L]7H| UCN5NϷkkC9_6yN^:m촲X_>y u8W@A`$Dџt4xIRDM&ҖqicP(,3q qt%ȮᣗV3c\d_X&EI o|MŚtRQ=fԈq̗lyjVʾ?%~1x..$2M&d{Ke,dQk~[*</uZ KQdBR6#ގnQ>7uqe phqN4$ Y]pAs5r+}1 0B&gӸa)勓7Ol.&S!n*xkK+?-8=Cݵ׺J*`yl"ѺQ)>)0=_J $mbȑ.~Zr8 vMliO$T@rx:u)XPC避%J͂9{/a]4. +8;$*š`XXdɛ-Nj!iռO}Z^0I.)J2ڸÉ'SyH2l -KT#W߿/lǦg}w}qvJx#UG1 Y!MqŹ5pش Tc ~YDH.n0r<(c ]4a^H"'A'[{$`{!nE2 Cթ! 2;PR eNNN}ݑ2&"4((pUL+n7x"Zg1=c><FR<2&Vc}=hoNU=Z0CQTick% `$iUC\XR.ȜfѸݯ)O䶓<]4"Xc(q{2`b& F[.3ZZ/G\R׾$xLj:^ I{3>*wR^^+·?߿MS>ԥ-eQҭ]"E4֋U{"a(mc|Zjlyͽ,&PoX,n_q9!EAWG2(eE`C/mxARqtT |{!##lF^W~Ud~$*v-,o#''*-$$y֬ػHb MPl_KU۫?qxۮLQRS%HIshD\'l^~T,ȕ:Y7P`f^}+ JtZmݿ|P:wcp-SzqM&]3(g:?U,RjJP4 g=a[xW8"ۭǁx>3_W?o^12b,arQ/1tW Oy!SF ^ST(&+@ne)όdBg"nqKGׁ^/ٵo*]cY&Do* =a2ʰA#x~R:rnV])|Yi4tOٌۦ*"lcS$ CeYex`O9g f-ͯTj/"%;l`pԹR,-~hV$ `n1{cX7ݍSܩ3vl@jP j)&;ِ2"#Kn|~g0o$k_fZC!nW#Ιܕ8*ʞ=?Sޚ'lZXLq=.&]67oNxǩh$>e4Wp`41OJ8xdo4^K ]. 4 s>6\0΂|$Vz*B!$8% K%ގqIQ,-BA):ݮ:qK0Ex%emb | $/Zofè<)k*$ p^r6W:঩Mu,GVRyVWU$Rk77f'P_qÏbDzZ/| "V>f"o [`LsR'n99=[ryTkf8 ϳ^қyb*sciF~ QZc\McvkfqM.CWYq4ALAr`W1 &/p5yyj\%a`l'CZweLRlD|0.>"FT$?tL"BFu!ߢ(뜤Uƥ,꡾dElV G.Nv+qIƃ 1Y9:hH+b4\{=vx XMe%A 344>ZV gL;,'ίJ /RkSK[•H sClL{[rqA쬹;l8 (q9ƕ|x<ަ2k 냟5%>c=>:NJoւvQ֎@-[alrX&gn{M1 ?6MH,>_sY^VK7PU}1=v%*w6DO7@% #I)J7 ER(+(^ԎO:]QL9kPg+|Ula䵋%Z ZٽK90f T{Z$~uHyڋqzZ@S3`)yF m$W'\0x^Z$o^-qm^HUyE%VٕR_ń@c.v(ۘ6N,.S>H XɨBDNq'y.Mf~hHAO=è'=ƵcYU_uvBΣ Rz㡍O]K_ IGI ZQVи*KḺv? /---' rE<ͧ!`K=VmI31I;䴑isjϾ8>wgȮA guݲ[ֻc^=~%?539*',e^JFUit&gǷ4x*uZ&iJ'2&1mXJ1k@dJ_'kؿm}уT clj7HaX(]|9GH7''jn/ɕ}l1εˬD8YTC =03V+IQÏt>]J RI(vCv=M~D:;iNǑD((SB1/DI Py,/KܚP.1V[[G>*eo8<3'I8۽Aׇ`0*=O7uS"*hdbOnW6`!:){-or6CtܸަuuТD%APV Kz?M@<*VL Gfd_%he䭠y/NgAŐUP!\kY QEApP zd;;7hvA?y|/R_80ٟn-kؑ6m=ŻG̐(,{GiW ~SQ*kT{?G0+CBY &]¶Զ?[6YT'a_DqT<6k5veP~RLv_9`QV%&֔j϶Kwf1!8h6]v[ش ƄV5=Nw&Ǐʓ|Y|>v\,eY,Es0wuȷL|*6"92ƀzI Txmae&;lUr;\20A49 S,@T]&ӁTǧ.`ak ~hԬouNYe{ߓ8JQg*_}[jݺ'M_w_0]:Vm+y'KQVe,[% ΋=Cc}6Z8 Hm 뗾nz3&0_Z5벨bMkѨ;qN p:<sL D{b)iI'Kno~zz^ _r\bџD֝ s( Sakv@ni٥7X)\G0 $c*I)cRG;XD$eigST&iΦ?1(p^ܰ4^WӶwaʲ2Ryq;bUM(ڧfKyaI(5f,I^Rݗo.]-!JzdĴv@@7;V.}13+,A<t1M:J'^ӝ,N+R G,e]\d5awY(NzY23F…a>M>GL]\۸k'_;br(9&:0aO@lHrIe Ӄ(e]-n}5j+.&)% ɜH̞3A`+雩ppp*mڤ!%& %?㯯$M:_ 'h irLS$-잷z `o)v=*]K!jeEqlp*9wFH]wYB|F]_S{:ID^H3U-)MaOp{L MhRt.'{_Rs yZ9 _etcmܡi`'פ,P ƻQnjqÆV F=([t_JqV-V{_Uy$rCi}ܣe#&lǴ" v.3ҧ8y ]zd[>1ۄ&+t#$eSRYRJɣo/8wa= Lz;H|ݙmg췑ǥk BodWK\˲ gx v9#(K\3pWSW"9Pv3dw?>[4KtTWg%Mxʷ},ŗ0Ϳ VQ> U;uɓ(nܑ> [^oxj N8T!<ɰN.BSlx(t).ݵ,: qtwRg+yj[ 'xn;Oo(uFdbe)*B$j>)AYei(\cQ`錵9hb>Ga,K'KJ\*TZMF/ѻ<yW}ٖEVW wJ{;Bw>B 0 +k'"kn)B GLj6aYy;Q[O Pȸ=;G"sz _&)Kfo ~xTPp'l2aɘp/;~ospʪ.k*ފ %EFXf!1or!@ZR6jΪ( 훺9ŎR)7H]eשZ]*‘6!@GgrP6„W,bWD^0V cw`nVc.7MFm7@]ȫX=p@$/{&&O?aU[(4$]Lbx1<eƆ5*9cD zĀA^_-_c}< rEq=%FM v0e IO7I+5VS̑?/;qT34`d,|G8 P48@j>H v諵Y@$u7?6LqW0~Jf]I nM F҅8!PI^N&/Ɵl:m o(<5+ f&%}> =^gPˢl$*$w_$کgt@黉UI*!wWB>ԓkb'qr?hg\%-|eK1ث`]#̀gBGȲۦ8?_!]—GR͌+^_#PxZ6ow`J|AZ ]m?],!!0ZͺMINxf|L@vώ.v_m_WiCȆs?i0ᬢ'6ŜYB3g 2غr[~Y ]V"OVmaTjDZfTy6b'{5s֟axCUm).ztd}Ye3^c"CbZ%>_Ԓ`Azyrh)B(00ןx3i??aM;\ڼo}\ͩ*.M#> g> $"!ѽQp;ύC ݭ.v5Xb2/>籀!(ejtkM&%|2H&_8U1.S"S/oL\a$X܅TA.h jNޣBI1XeN"ݿ&>Vţe<゘*d]-x{^ w6V~[remQJ fX%F'33/Y2ؾ+`%>=KM6Mh֠x6rbsQY8-hcG{mbPmbj++^ny0tSf6C%Hqv]CZt<,agwd5Eu.$e]9x؍ݍKW,NYx(4@,z v#;Fyoަ G5gelPP͹)c,>Le{`ɓ>ɉ~c g&X|6k|}\w1]cE mߦḋ ʚí.t^eǥUlج2q4J,>NDP$^nc[fYuC|֊dS$S r;x̃tD*ڕu njQ%Uxa\' ŲH@ %6?.*;6ю=$W}ggHqwcCVr`qQE LO51^ZmS/7o=pt0Υ\bE[D\c>3 .=ww?XY]*y\ ]3dKޛ6@8ZLWH_>v ?H" ..M_I3$cJș5Po~md*1YY W˸-oyk?[#S^[Hrsc=썪@;5rLUO9۾DS-t6/zL*",2N>^c3;))Xǂm檜eͩ+n[ OY;/oDo;\Ay2"#uYVn"Bi+"7š1W.'adOZlw*aF NO +-O['S'g ;gU G%RndS2}B*f ܤH9Cԗx|dg0kgS!s"zLKFn˺UL NiF uvyGun_E5LѤPH~tA]0Y0 %/&]OO^:Kٯ?ܖgj!?4wKZ?W`etp+Gضc Fz,L]oW8<ˉaooK|YHw $iΰ>l[vڙ7`d ˸o=c#0OFqi5?sq<]bMRC &ܦ١ qs[O!LT(F/ Xtj7;a'JPY/u}\3cVENR\`_7rCkz)`;+|,ByPu$}Fd?K= /|9vU<*V\W#s/s ƥ"嘳 N4Y/߹>눉X|G c|Gq50k* hR奮CՈUL @8ՇKRJ*e-e8haJ@1^Dg{]&%w4q[n{ |I/}mm~(K;y$MPȫ>n8y΃G'] Fϧ eur}_.e{K6I.mW- gIIr<0LTos`8n,CVۤuyXQgkO!]e;ՉXB%)pOK'S\Ӽ;o6R͎t"kɅ4/eL~y# =9YP-N%/E۷T_:eNF}"-yZ#DGɑ1|T`Z}iw/#'E,eTv㾽(-b$#AQv[NyHD^nZ5~pf!vfkʿD^ ڋ}&#nr5&+yo4ޫ{gBgGfO@Jo;4CГ1 8}@T Uw$Gt:6eoMUY^Β{y<%adO~ #>W2]QnnZKsq?aea l7/=Gb-4+tI{;4VAjnf͜ Q]_ YR9g|gEɚʬ[e1}3*A|˫ WpfOG0ضx4Ǜ@,4B%BT^~DٶRq#]Y r sd݁K=qώ`?/X>?1ht_ ;Yf:&l>ߟz4CQ~?DpNq2OT0j^lSӞTjv},˭qYD<삩W  ]' 12ڝCFJlg:VoqrXsy4MΣo͹ܵmYk<`bV]+h]eӼå;X4/H6oweJeB'pLB39$59VVB M}o789؝MTiY6\B&8`@#WD~Oa鯺u,pB1m[l`? )ctRT~ܗ# b´%U] .3brBfyzʒA!A}.$&h}\۱/ (!7X:`* 2"ܹ҆ 2GwNP󙿪*SﯸGo|t^^w2q)2ǂ*[b7\ m4Vʅʤ{܈G 0Bppi=QptaC%Y3% ".^l6(/]2yt`4R.y$sJ6-DH7iẀLE6#ᄩc1y50SB`䆃}ºY{^R-Bs0BDc5\tHZh0b/%B*S B U:&*KWsuJk}K)6m<ڌS<}0g;b}uR(GcSr>ciJZ'a8 jMHo&8mBk(4p>JI;zkZ&!_]٢p1Jd#p2Á~~|^C>]9l!<0kCi[c!8W-QS]VSM]\Y3E޲y8fv%?D'|*oPDo8f`ߣz(˶*,N""Yь`gI,Lг.= }9ֵ45]]b5x<2>۱3b 88\PI b$z+ģz-#!{LA;8BrMQIHD88ɶ-<< kZb\$UХ;Ie%UV*AƋ/uo"8^d2=0i/SH:gTSanٔزn)AiZF[8޵_k} sŤvu(D_U49aq);ۓn>wS;`~^7IF}yãtdx9;m/OQkv\~v;;jv7/  'Ֆ g*6$O!PVhA0DKIlцG]8.G[x7U|%ԔfC2]L6L!>seY_f"unUR$x]Ӯ/d9õ-Z]Faw n+- Mg{^ׂR7`:bMu52Hn!UbAlwL(,"Uƶ Y@;x!iCtT4>o? 9|KdVX!}-z淭28ɸ 9nW+Ip<]$]eWq2jT8o|kOpT{[?`.vB!:w})lwpO)hnת~[R#G$rLfV<,/PQQsb9|Wkj?:n<q9^~TY_bT120O}(],2X0SUbmۿݑ3_<*6ZYPlz-F]O `pLnҘvgjvW5=btY׸IРT'4pLܭ\{0U3 nc@_V  ZdÖfu@ 7le=*xJ)O~PT«~{cO }62FɇGIx(0\o[n*/xcJs<,JɈ `&F;١0Τ>Yl+wZU!oepFO'ih4+9M7σZ髧c1sP+ {r>\KUΊ7t(!뽻GKޡ(bQm5g Rh4:vvP*z_WFj1nXO";rf Xu ~a ZQ+ ^e ; c|x`N)ҐvRBJy~Ƃg:v(<~a(LYuE_v'%΀)|Dql:?}m"/ :Us!o7M[JqM~cPo86ĬuQbXyS 9bǼewǟuT_QguHkBm @&7yz4Q#ˢk*+ oĜq \9V] 4q0v+>g|EAOl~~h,cY./fl_ӾFH_/<8L.N<{.7S3aoUISqe>䁾ٮ% /ŋE2uN)q?.6;ke oZGfl[@lK)zgۀ&ub(+_-:%oUoH"}9o^6!$ 3_B[̱oc^%|}) )MCZ+;菴 41Ν쬳q//d~ݭULIw_|iP-0ԏ9V=w\^RWҶ~DU9<ٝ CPr(A `7 K[˺ri5c}Y$@n7/buO=e$ӗGRAkEHoWDzi )W{-ijc#!pјt"p Mz,S6` EqS/uIV\%@C7ZdU.Eڞ<(l -Dξ5+W4R۔Bb5oO˶ouשs#.9^I}.vؠ*<0pG1c'=kd,_p Ol;퉏zY 녑ud,EV] <=@YA֗$UB\iQm1 WF#zR5m !U,k 3%QyR9Kڙc㽽`G;ƾy_,G%Ut}]Bi {r*vT"^ 9fø壸@HҟcfJH>q ZZȃ' N ='~0wT`&Ջ [2."%`W}h4QY*T!y!_-}G{]Ă?+ľMt0rr|c]!P-⮛.%@WuS2Mߙ퇼E鄆|$THG:gxFw MoOI+FR:Y(0`F|s("Ux-{t՛"|wރn>& ֤ EΕ&7p"V#6Ai<>cMٴ}VjRMwbxC駖b4sx(I U,x+!1/fz))SתRH58ÁD#qn,pWWՃZuaݶ{d힚 ^)%E쟼F7IdwW7Uy^wb@(,S -Ѵ}?cc &鲒ˁ4TM\hR/Q(G '9G&k 0t4(݊B˦qGiQ!S{3⋐囗%b[R0 ƷKs\^y:ňydL$ȼH;-:T|7u{+ IdC VD"dyHl`d"־+ AJw9DU^E뺮↵Z< pwE1/&BSߑSWE|_.J&Q `(`ip'IB7=CM3J],.{ܿG?uvި=( LyDjOx zAXD%K2ZwpSsqNp.yIb܏>y}}4*봆/ݗ<\fP7HtJ;:)4p7ýqٍ㳬Ǻ(gwÂҲ/Vxż(§&PG?;zσXrJP@jLtw7ݟ};)͊[kWAcoJlHuDg-iat۬L?˿kVzиaݙN o,Ɂl+LK7tNabBS5]sk-VCk*7XOLB-y2 zJ7ȼ2}=&2)ױqYYF<-eh./eS 䞿8a8Sr>_Csp(.KW evŢWہBۢvVިgx@ PYl歠"n2~9';1U͵knѼ$1т1C+QHnmI,ɔqy/H1 <͓o:RZI˒q/.cCѱ$ֈ3ߏ-ЊizLUIz/И^tyy!2wo^VuՁ_/EIcBc {224# fW$*?4 )(D['51Fꪻ=a4'mLGqM74<цa/ 9ݾj_mWZB+.WQuD\mM\0˝8Uh^?So1Bc2Z#Ŷ]Sߗ/hɒJ^h))G$` R@0SNJ]sh\/1%x&~NSɲnsnZߦGNHě$>?@mכCtAhyOiTVɟXB*x[:R词&X1ttTBOD>x@c)zbQL42+uR)i«>V&u/o>f3I=K2dgd*ч\lSHiq)luN><g ˲N_{ZHMvъl@fAeqӣsC?I6ᅇPp*$E@"78|~`˫Yl VmՉpΝza }V;5nui`PcsJb9lQLͅ<^9R7Sg۔eTezi&SM!ξ%ϔz)j ^#'5lOR1NXIڛYa |=w''60Ի?5uZ2Ɇq.&axd,54}'8A{U)OΝESjy:krt,_%9og`"nrNN%Ԝ3<O=z=ۿw; l͓V;+i e18 *Ґv0I8@ldhX6 i ˆ82IG5Re-+ 5=8/37> PpLIFKG{ݺG-;,9i\>%R6\'7Msw:m{= ӦcDE`,')nRF͑fɀX_7O_]UݒSVMJ|E``ؠYR0O-Ȁ,'.Ϳ-rrjpׄx7uVC-B^⏫aCBd[|F_ASf, Dt:bO&7Jc1J۪Qjz(s'C]+-=G}&,$)m%xl#tΧKҵr_v/1MI.r_ۍ!/if@6TqwyIh]Lx Or.BIc\tPq!0E6esH*&b8z)@ӗh|M<:@ue\銸YL+N_qC`=lʙ6NbóiiUNG{Zyۗc<mlEf66Hbae V IO=I1;;IrP.Ҷ1>ue#k&(]:M*͇~SϷ4W2=ãأ|0<*G?.ُwK[ق>_er fCNv,x͑3fNZ8`&&H:HcM\^ifkeHqV 3Q\b|͌:2sVa\7z!g~_ peRѕB )`%f"P5sȿX߄v?rz1|yyZ9.%FϧiIúRN,~D&oNa糍onb SCY9ZY"fAQ>Os4Lg-~po}:%!.?yRڌj,hyM/TVZG{,*,kHU<#XĎK< u'i 恣S~}WiͿRZ\kZ%#xSj8q):1=E c+ Y+G̝vZ ztw)fG/a PUqEMyfdLGlo<FM/2kr 0K{3}^1#߂ 9.),617C:;lUijNn_rÖ\kR"wayݎq:b[ ..ﱬ>y:әd2yB'3e})gGת} y46BF6)CXf}/nj(*l+Urm<7QrL")'Šxv9~b7~Hk[>ea5R.é7$޴]}Rmx-EqHvV#=QJ9(Y :4B:iyEGy.䘟.,ǒO^SQv\[U|['$x $|%chc&^ w{ʷ^/lNeƨ]Z\%0f$`3Q9/?!K}Ǎ IKhkl[1_g3ϥֽ )9[W\xvSmoʃݥ]OkNכ0:q״C'YHu#3p,x@:H c*A| <k}m6ꉶ~yYɭM rB;r)G V:s2P83MjFS$gRd(UMYx>LK-TaKٹ&h>k~LD s k{hptЀPnDh\-S0H |~W1'eNul:p#.*46A{%0y{_-aôj$[(v#͹_n4..]3ZJ| +^ 9жoX;@ڒ*2][/7,ptY^q,K0h"VY E:D>CVAQM ؠo7#&BOEy^S3Hs6tR` ?t׺qe]<:$ǻmF A`u<:`x'/SPRyϯX:nz:7 ǎ8l~z^5f>ul6tB4\ p샍~6DH}aѫ۞6VK|;nbo4z\~b70 +;TJpʲ ]@ RK ӌ4^"f_2Ysv[S LeK]$*I8ؿ2+v$O>9U+++N2+#\-:ZQU̥cm 3PgzNVCg)dCCduij h`ֈ 7=iLj&)رO (oOC^rOX#H\7'Qsx[ ʶN֦PDž|7&=3uSż&,c43X>h`~Oqɲ(57N5IB 9ΐǷ?WP^sY(BaV[y1eTXdAJ(d6Yy>E8:|q>gqyċyX }[hPÄJQ@1+1bmLFw#Tyqmmԍp9^ Zn^#fڪBBdm)}Bs^z? ?=5sES5Y{^:e!4vӰr̡>Oo>1눺h}my< C;dFyҶ @;^76(Ey  8 F7 s<η-.Gunmߦzޮu;>vu]q\]+ z&a  Nkׄ3"v/: H8AGyKSjz$6BɮKʖܵ$;GK66˜[eӢ#5fVeZQS(ˁ9^٩]XӋ!ۉ:db/6)>O |;1|X"-|P>4RU& paUłVh1nmvImٛ֓tƶ}|"@E-x!s4=Lw W"9pVλὙei#TXP1Fe#k.)Tϙ{hKɾL. !X7K}}p }W_Nm :͐4l.Y)CTt#~ju1mmS}_B_ӆRubܗFd~lIє:habe N~[I{K?Yպ.,M6}V=/݁1V̷¼n@P:+oMB?x\խn^X3%ޔ@R+@jle5D|0f xGғ6AO@Ir&ȨNd JHr)xWmV.N\f00``1&SFɘRBeHNǖR5NI)`ey~<@ymʡ~Bi{$R] (CǬrم@$w,K4U~_6 ýXTտN~O <ޱNnocO(o&|/-'NMd)dcWxQgujpH`h* ;R0DX\%䨞t 0os706}>rT˽< ͥ̇IC,p$3qk?5]k l d'w8Uًc|M\_&ɇMRWUM R+ dLWg)ݷQs,*IM@|7:6n{ˢO/ &~!X$A}0Ŧ:Xb9$UsI0p["cyƦƭ!yoCa\r6^+*.NcifauZQI"q,Itl\M'O/cbpgƢ3ZOJ3/`m&y+3ez +e#36%VjRw{j?kJF>CD[C_?kllJY|?FˠdŨߘ+8!]5f}bK~'mmkb=Tj89P(CI+<[73fLe{JQ 61He7[g2ylmA֑^yTjXzNjn}A"J[`]+pؑy#'Ѡ[tD[ꋣ{쏛>ac);XaqYKŶ(ޝܑ~ z [ܿ(uWLl_kߓ@.P!s[v0ðٹMT#_5/ K9BrKZLKM,ԕE_礂Vi\'Fܛjq|{դov J_U\3}AeU$ҏ6AK&1~bu6nh҆I?;-|K[ǖ@&2:;Qqb߁y}gNVI)z}]`|h^/f(x̘^o7;7JX F'= ؽh{uxL/*0qPC,C <~P~UWF(@LΞ0$+Rd0S˞SEg=O9FI~}⧝m'M&4B`/zqlak WY'/gݬϚ,עN?ȒJ| ^#Lbwü[?rFҕMYٰ*ţ$fMʟ8*`|eLeZ8.h\~i9vx 7Oҥ{JYOSh@خ&k\oTc߯Ķca͠%tϫf(<k`Ӷ :x6]xA.؅}|\!~%UYP@ىB^;iLN!mJbȸL_l<`gXy&~<%K..vaƳM7)ǵ(>ɕgnϔ/W+hÿ(>>aW!#ќ>o i/嵿gT3+:ضy9D9тIOljH}w?\s?d ,s>4.4{IN`C[~,2ޢSTHH:\ 3r4aŖe>doRt͟KJYDZPuUk^4Ri "anx*:x7ȤJ4~g󧠢uJ@z_^_(2Ux.T UeԈx\F\;?azɤ۱䅂1? MܘsX_.V juͼDֻv g 2/qZbJ0-?&>NӽXeVTuE$vG:/=wcM &0(;UyjO~(exfƦ+ hrkb-Sƻg&9ִMYusz2Uɗ |I$W?bas4*.Md>e[յ`7+ޙ+ Bu`,w7'EzxC,dvzڟte3h)OB哛?`J{aoLJҜ"1ATL &Gbi^^G,O_(w؃AQPCWj^?aJ}g~a^m"c$SE!Z4qN`NY2w͠fΤ.%K"gC1&aXkV&u6ȱ <&=xҸ#86$c*ٻOM(- "v[0ݣ2W2ιRwFtb}7JR%K`+I8`&V?H5)y ɻ0-T[Oub<ŖM躶ϑ_*plDxpIJy- ɿŽWtUs1]卋5I6$T/q@ÕäcKC w 7nt@GfbSfx^K\z^B۾N]UV+W).}a{pfdI;dK~ׅU Pe &!P7M _6۴wpH, X-ǒ9wv<1[" s!b $l2`ABX1:22(t}-`"e0Mb hdzbɐ`e]Bܴ֯4k^^&Wx,<yUCͩi4,Pmip{L 14 FsS%jIΜ$/u"epXBR -J?,yw ~ W''j`6]3aM>{rmOu7vQ|^DTYxIȉ|7GY#`eH%#2 dJ';#r,?3^B8:|'௏%TAbU !/H#zi23cDOky}ٱ1bj:ZV+KR!+KMJ=XYEJU Tue=4c 1"8Sdq08!âJ>A_K,X'KiWW8l'ۈYԁq wԖ"+yo7mQhFV(ڛ'Izu}͵i;[g3I9TFOSKz3E^2ktPJP _YS4ĺ/x\#Gix@}du@ò5䶼y;, ea,fi8M)sz°],yuy-ES}/ƜU-0omu,a;CԖEAk(ADլ9ܡ' nE͞jt1z_dѤj&!" 39_'Yu]@ɚ|Q?rnL O~[0;"v{1*_5k>+Crd+?Kl :ݑ0F[`v4R!0st;?yscN}\dlՄC\%{K@B+zX&t .N>-s ÊA/S~ m4) ܤֹyr/x[l/ &V^01Q50dq.#GGZdF  .'c"q"Y~.6U٦v+cvSlU r݌c $Bl%~U|,{w=t-UUc.EKc1+a\DbL735oROJuOOx}DͱbΏc˽!C+CPӴl R)D"\6I_fab@$-H܍a|Ft.``@^Ʀ/bQ½2LUYzjR/\ 3&n tAszրPjŒRkӸVgM!vy(3%jq=mȗr(7F HFT$yqB 2x?>.5yGR_6{ed9KX-gpM#u,0gx-7~R۸=.F_Fb +!EQ1$S&C{OLL6ǨJǷ,\~ɮdäLi',^{w'Vm ]8p̱DOYKيsוT17Nx+&lAPH>U_əWt.:vhS fm4JafA2=m@d$;T{ZMpL}~i|\Ϣ08sXfMEmfD#e,=2 -;w9z%􉥧I؋ЇrlA=*+q.k|:'H?fjQEqӜyiԓ[gݥ]]%YBMb(P_Y?P/@8z iͤ3|?ى7.'ΐ}sɁM#bNB qlyć`ON/ʪʉvmʲI+b6tPVi~\olY+.HpW~+[զ%8'_w37<ڿ3vŋ-hGcOv*ۭ2zuI#|IDZ)ƲcX3d6( mXWN= WVݐ'4Kk1cʾ-ˎ)ut*B2l7ԣ>'n; ulrܯ,-yZ|Sre= bPMJ=Ѫ9s qS1!&}p/ĝ/U? }юxY`L.&EW"P` ,Tk`n!گ(_,xRo_bʷ2n~^TCfpY) v΍!e*Ooz}J>3j8%1>|ԗ\,R)f @f. ޳sh|0 $ {?܋MF2~FHHN7.:&Ҩ̭&`F ,A`AIZ}),00tz_Xuḇ6!EIv0K^V]+EvwQgJ9t`2,i˒ |/ݳ0~ļ-=i=nף]j;R_K\/C2!}{MY+k?Hl[M'ۡlUwI$fiVt4Da]Wwm=r 7|6j9qŊfqClۣLD}m<&ƺ~»K\,5m+i4iYf,͋]sЉW\MrC٥'K(#[މ=fiO~YTYmkks1y3[lgxt!uog)xǖZVɫ2xڡKHuBøGRtzsMƌ4kXlJ6.B?suq/[xG۱cݘ?%fWĠ<1C==%SCn,^9>V߯ib[9ߗ:5gl.#6unͭvz\Dw5Imk͵>p  վY$&w)8VPns2V9!tB \=-WtzMqWg5e+|{&\,"=W9@gt`>Ԭ3lfEq? u7ݼU i\ZTxQ&WrBH Hl/||nDˤxYplʺl}\Z U"ݙzN }<@1w(ЬɖlXb zu9A$y"Fjzr?~7w9[WQw?H +Sy2vcRK~La~ vk.U:y(Yib,xgCdG[MUMw1g!#+Tiy]ǂE"_'sx?i\D(*S1``Mmn>wܽT,[$qR8LGCWGm\U3qPcqT4;Gaka΢#SAMT;`cz?s^g"6s_'&AI˚PґsB}rZ8 G*T7i-Z&!mSI-rsS*kMAJLoslI+u)}4:ǫ)ERZzC'1DTXa{cqR~d6\ʦA@"D>l$=$5XGyW~j.yZui.#DZ\`B~aM0V|ɺW pyX ̯۴ۯ/7.v:_^6'a IJ1O-8^u #g2om|RYC ɧ+bY64^Lcx8‘5B2m3^Y zIйS8r<'ㄡhd:bUVU S$7|80RSHY ķBᖁZ@_6Lem-* s~I\)%70_Fy' pҏ5 wj Z'v;l֦LA|tdɰ$!"6Јm=o㢴:,aE JqŽFxb3 N̬~1zYr_HtwVNT"9}2P22 >s:zO_˿ϧ{X|~s҉hǣ[Qeœi$EDJ a>{®5OД# 8M+r`LxlDm@_E0rue'?8C][3S6aiqox{q Zi}x4s};M1祕`{ht{I`sYE6+6;,avvjZ cvgwP|n]Z`%z޶nt0d/Ep5g1t8! H;dZYIM9Xz҉XGޕAONk "': Xp4 GySHwcE؄zWH&ǥb H)h|oIOX!c'vv1aC$~e-2%;5M{:fhEϟFEû$pfL n6#OP?OQE/Ь#$@̒v|:WwWP3nwjPaSLۉI'A ?HaQŪ&e}Pg+*Ns0? 8#CéLQ*)z = |sS~a~(P'8ah&zc֟x̟> az>3qbG(NW@,hLdJGEFQڊjL2MM#ãn˨A ~5yj$FPtG\DVժ+L*tl᠈6>Μăno3eg'Q6J\kvD__x pYd:߽I8n? zT K*i/7ǂ_G mt9lduL,M-BŬ g2\j)C]'ɀduOp{܃eL+}([Kz~"Ix,* M] f]>N>anYF gyp(^hCB.YK qN4 4< ='֙!r;O*-j#ORǴ^T1ặ[NMX,ê./dK-u{ =M]M f!x-]fom,/ZQ~>cs}(.ɗ;T8N >]2{K`8tI.FGz]δ|t% y\YaxMd tI2z,gؤYP @.Aj9Mu8(އf7x\c4퐅+kA*Qjڲ-o>p|SkfK&5b٦D2u-g] o+g gƋ;I[f,ت/+punUl7}^H}w "NJ.n琉=%тߺ0 MٙO?b_sxj*/K-Z6bUMjWĝ1co eN`1#i3dVs7=/b|kSy%c }:Pa3`7eVc=C- k?m-<2na]lLi*OCRDm9`BO=C";/|.(/KEZo(gĵ O/AGPz&(^ &y]+prI#ѲBܨ1̃j1*~?dC&ӍLk8m'/G)3nJL8wY {lz _#hrjfClkOrdm%6tO2}@t_s$O 1;͓3i >(38ߚK8!Ws)D~Y4NP ;g- AӅ$ZӁH խ[xI|y} Stq7JAYmNKo ,GL [-Ky\yLjGd^_߾¸ϘVB   ~v3ۮ픯JnՈU$bAPavmÕr$L,wN('\eOE]%lcssx+m1(TQzv{b`ݔ7ޢyO.~BMccK3FKF'JҚ=%[#L0f jP/놰5>;szY.ŒK"?c-M[eg81å.YG#M}I.nK&ImcJ̞Cw~f'1?+l̻U{ Z?!)m\I=m ;{gd'ʉlZJ:}̟XH ~[R6M&[uH| Fjb`L̓c8NN&^L\O=z__ī/ZIjLpu\5pfܺZhc)cRVǙ[4ΞUiV+i9R-K&~`elL28N%81GזGZ`~>P81aOu#;R`wu6V Ԟz x#2熜D:9Z`UiB/74gYy τe5WoݏfPm޻X(%RGkG#2QoZā(#E̙v,@y2ϕuE= ֘5D'*G2ͼuŊKn˥j.DoxqPG S6j)B{dgl.tlV*?RX\~ԓBrwqLy~µY&򾀷uǓ5gUtYA f0v;I0MX`Nd¸mJF]ڊJ@bW6 'B+Ҹ=ɹUQ^%,A΍ Hؾ۠~M2D=}e-"x_tاaJ1px־|,aaOخkukCcx @.ORJdY m%Lm[_j ,Fޔc fK'vՑ u弌aq4O,X?fb*2>}G֤D$5#+<}a۔~Hzmms2h(p)|S<]4Sp9@N&m-X\EA}Z :\m,"5VezIcЃp")Dn24R(@0} 46cؙ*>/N6 Zq|V}yHw|C!T/;Uqg'_n.M9]`򆉝"MςP_nݕHݏCR}ņwk! o 8mijp{">yj-HASױ7zirn@Qno3&q7.lm+잮#„SLeMPMS)FK )C0+eNc}?3)ޥm(c<墴ݷM6FJɫeBܻ0pG38mH&71"hKaC3z)Wu[eoaێX]e6MDE_&Қ(t} )#X$nP`\̵ .SWVy©Yg$9+്'L[_=$k0Q6,>o"I.~Ȣ.C6ݟ7$ILy7YS%;T#*dSRfto@󳅒9m /%:Ɯ8;7}o}:@u?}>,6}kK,@WrYQa1wՍ;!jso\rXs=gU5֕.?홧.k3$I-cRUr&5OB0P#yiO덻3tY=Cq/ͦrte\!è'Iٽܦi] =@1^ޛЎ&nF8e\Fukoۑ6k]$:98Ed︴i Q6&'fJ7%~(r#u}|:= v)šǬ?g+X7@jG-s$yo|xR?hk,{(.og;&cZaB+p%ݢꕹ>Lz-qT0ɴ(@L9C`bY  )*9?_|yE |Mcw\&U/3|  VJݙ[<ˬ-+=6(=FT}6FzQF=WƜufF[|؛ڃZf@ j=bFoa;N&!MYM$b]mvk(MBMH6N. ]v$ ɖs d E(C벾ހGx#\"fI|+KA0&/ǑB7v:HR& 5&RBx^^=FYYr sQ+Y.V%kAP 'w gLi*avL/` .\}pm,ۼ8|/Vqى u2Iƍ`K) 5﷖X9vz  &g٪lIIU"/x|<7ѻglQm(LѦ5Rb ]4*z:1;rcF)9epډw2wERL-e7o:;w>$C)頱-V_`L .~lP qκ jq7-UXhGƷɓTq?O#LN 'A|}|ħuUb8ȣ^_~48$;sCμmM]IvR`MCp*^iޭ-pQ/9[=ni1O<^J^;$;SHy7 >V!AQ|Uw%9 Hl ;zOC\]ݮD暈/ת7/Rݚ~A>+l#& q\MģN|diőumm[<&G"1wsE^%DίEX"dGKlf,PLEپf c1,ұ~#Ӛ*~ى]?15OSK~z=&pFi#<-6sшݐ-y'I"LoTPǮ #0 MCu,,ZZ߃p?y^dJQZ -)tGH 3 apn?aȁΟ#=|Қ|MOvm"5d'iDtC*`t!8g1G C8d f`HX rJ&1GX|E6 д}b 4aX d FٗIV*}PbvvLjg&X b,D-DJ{P/}zKc.ӺM˭on8Zat11hc9Ϊ_!ȯZZ`~A6|x|&Y\_*RI|h肑gYNd녆P0H_ukA`nXxď~W<;'(]cY8~S"HriGL6 zׅ2/}[ bYи??uudwgw2ĻN0|`֗m*F6aW#Fl0ީDBh<}mLjIV_b\e }uZl0#3{X8FC|Ď&ǍoB W\7UbD|J!%%uC #- -,ސGMÒ1~1z'He \O<14xFe;cuQMFzؕIƵosp@3}02d^BbpBjC%!N=fٻb"~W>ݱ.0YH]Ber>Px0H63 O;ܔm^;3]Sޚ]㔣ct~тnA,OBVޏ@t'm J}SfJdܒ(YVN^Tkq?#Z(ĽsRf?(񓯯 UR=r$d{a@s }oN4%~FU¬Ai&)l?KQ1R@"f;txcυ{4+CH#%VRlȘOK\#x ym#dUm- 48w%݊Of`"PnIb;^XWOxsXwETbIJ*@s_`_Q]b[Wt= z6C 94Tx9bjLqQSd&?y G' wxDN[:32I[5N䒲*kDG=_+zPcI{w3+>~Ry^|alMNϜ6![>lγY M\ \998Ę"Q5zeߦq s?ݧ|v8-U}J: A;TwqThjq0F6W]yD80US1MV6bbfP&#@H Δ/0~{/Sշ@K޽FE.})5[bVDbQwF_ [( "q32I<~Iz -96 C瞣 +%Kq)wߏuqc36է=PcR/`iI*ϘTp+[vdKw8ﭩٺ`s ]y6J ͤ *:粬~Y?{>q]{? I9_*b.lJ4ow4UAhK#OS5U@ˏbuY%`!kµ2@:G'/F!3xRU{.AN{*-Ac4asx<ˮcjYss:x;A1Fg|€AyyT#܉dc>pō;L\KuAĜPiaÂG,PLH Xn@v-[yF:r׃bŒI꒾Lj1`M_M…!NViIl#ʓӺ+؋\!M}8;dyk.4f?cm3j̜Q vvg- 1bɕ1Z.v!|1+6iVrKBX> bc'"$y n,`t7BQlOHħȸįOIxiC?x- /{[61!˺2@txAƧQijH&N2JR1h2Fq iNwxz&mY,jcqm7iI$ 7 ݌JQ=wm*!)@HTjn#m Y gIEL2})8ʦUxRA+\@pfc@7y پc{nHzX`sN?Ŗ*?tNHQ-dtNO, k)V_d7ێ;丘A:O^ >s*Ս06SIT˴:)it 땁IZ|L~r)?EP q8''Es?[hVvEQ_ ;1Q[M/܆Yʪ(b| A+^_hϺNK,Irvȭ.-*8R1pX_3iH#Kj뜃0$hKX?x K˳& -AC-9W{%^15$KЌ }> \&_/]OecPB& M}*4Rcw7 ufeOβO6d,/*״ 0 s~<??r^C<ņset57kMs|R "/ ̣!O(_~Qw!_<;&1V툍*¡@.m3IB7VŽOCU2L$bqOif!:~k' QaXֹ~.g_ %Ո%8&̘SOt7{ 1:V0Srڻn^ Yf/]q[2N1K)e\hMˣ5<#'䞒jObn.W-_E ?OkIu$s،2U<*DBjB켰}Iuܻ:;XL/m2:1Lcݜx;d 5@c1v:k9blsXy*o*rE4P'lo4r F#OS \Ni? WL琽^s8 wkFN(-oz@F xզς5Ve|cFuy1?ksKQ]T KK\ 窝Qyh]8; _?/N}v/mdwwj-Z]}QS f+4?2`Ϲm`8y˓NjAuzCpT/V% G>ņD8gc}fXs] wÈ(tu.ֿc +E0CuR"715(ڻ&R]$V% 70 G9oO͇m<ȵ^h5Bn3j'[$fn< mЩȄ9`;#g$ +RbT:|s+eݏ7&6wQU ĪLە{TR.w\{g,KN H[}=N\zZ L0kU{zfY O->d!;& J[\¹]YYñ\z?2U)Pq'8$B3mb>k9{*|5F}!NҾXx35xd9ySU2El|hқ:Ds\K3<˿0Ovi#*\{$*R6Y,@֜f/(s9>l ?M9'dUԗ R d-1 plDo"_\L3GELJ@v l(c6g}`S4~r4 q/Z G][_ [׻!:yN3k'd*U #@:if?Yiv \VfcNvY]ߛ6آ'0D*j6<# ˔ju8G5ɽyBu"^~> /vag Eӻ6]uiSYB^X2]cK-y.qex0 \;y:冏L9\ݘFS& x$O:27P\J1,z|.WBg?Db"V]_vi@Ƃ Ea fEm>*v6aqX$W~=IVyV^Jb?O{ަ`~'9wan(v^X/dvrNZ "'â>mb[^kE.HkFPYA@%˦QB+[R8_/ͫ_ K|H ~o27er|F&_-x R~3= =߸= Vĸq[NB | j6&un?0:2[aްzK(IKM!rJ9TBY{u6iѿZR&\^M5&}^$ %21.Β7g>J8&ywfg7Ub3Y b>W1}\W]\Jt29*ɜr]t$8YL2ȐdVPn׼r\~-6/ Kzaoa~CNJ.fȥTBKފmXms'nH\at`sKd)OjƒJQE߉+0hv/V|VGI|>v~H U)9L6i؆y~3=))P;R`y\{@GH\. EJ(r=S`X! "m(}iVͷfS,:'xM .svb~´wvvL̮(U?$?S8]b]XD_ungiy~OzeTxQc#!|2|, mוƚ*a 8ܑܤ՛\L_㙗eeM8%?Ed,}~c,}a+_p[S}["$:tk]OH?'<̃ܖ<~fAOsimXٕbei0ͽ>owH0fV`U WL_L 幸Iax9=w(:,窱Rb_IP.1=Fl,q:/[@-%'A"1Αb2v%q uۄ'瞧+I" Xi';DhÑG>dUtt9j֔u ){۶]mi=fM9Ǟ-w%;IM67e⫎x:.WCdOG)9t"WuՔʼ]݋Dl=Dw-^A0&0U֍"2qQvɢp;+ELa νiXE6W"bBƇ yuϣ"-䘿]rަ$H u deU%"[sX1^ Xy9H.w%R\IP}ahQ3ޟp*̇&OYOrNpЏc\]>|xcR.|I[";H#5< F>pl;i0gۈ)|}jiN^F~vj:<)buﺄ %}ѐJAM%7Դ&=}Lœj|Nq!:fƗV*ߍE7x$TƅM*EDd ^_յ5 hWUU0Nxj͎cmZ)H-mfw>xZއ?XKL8f 10m'FoCLdΨHPAuYOu(,gX5{kS|k2eiXL{ۘsgA賮vh0_pTcg ){_TD]Uv04{w\}|Goيb1l(ޤo?FEѹ#pFuVJ͠aWF&l"6HkWXgZ" 3 s:H` u^eަ Ot1]K-KtWU"Whk~Ix IIag5_󗲰"cU.XXI^W7Pbe$`6ԽWd8Xڼ{@i%0̓&n-9Hͩ >Y(O&+GQwoXx Δ,↝MFPe{nE!yriFa΄H*$@".2#늇}~m#mNI)ǯ&Cs^a8nҧG<}UM<铊#%K,3ƒK7 du1;3hRJX)L@XAK\-})j]Fc4G8Bw^`8=f]_\8z`*MG|T=lH&cyHaHFdQ[ФNYvDɻur˟aW/E\/?ĄM̤c#;aWg=9d!PyyjC\.s_P|4)򪸔v] G!Xב$Kl||0{!Ɲ?10-&UUg߸UE-b6&Dl?t`h481TqIeytV, Z}o雛.}5e6ŰE[r#㖦C7r1W ,DFO-b}s:bY]`  ka ^ED u5a!Im1}Y9"_ah5.xYѿU 3-(=p,9+f*Y[4Id>).yMב O.'9RK3~8h+h,f%R! 1}",Z_gD6g)gWbyҬ}0(%Rbʹv2C2,D(Xv&;9Znv!}@ D`_v=ͷ^Ǣ$׏%WrCԹyty(@f1EUp&̵>8s^)w#y耿!OUtRɭdeC[oX=]OD:!DN%; EOdx$pzQdcyNӜkpnZ"FC;L>{/9i܋[YvKץsKh7j ǯI"LMwT:'~=j7MkU&꬚%:D^ KʺH} g\cg-$(2Ída ӫe%$߆al+qO^K 1)77 *6b8(J4l%BAqzY 0 P8%kqު]EAؙ `P]+.cX0E JW5} m|CQ{Z61_PE,&E?Rvew/2ʲ5&.;Lt2)a(,I|ޒbGA@o+b7gFi|,x-+%2aUηbmܿvnԶmfM^4zH.F1e*>zYqdvCچw߆(|# P0CWԺJ% %0<ƾ0"OSm ѷU<.rLSH:Th~pC3iK9+c8$^e킭tYU8z@xJVDxohG1`dLgZ"Ez3T!e:R~Mk~DJŮGrgneƪ@F3!E/H/ @WumTF%ǽ:\]ƗEh|:V/+LEfR7ʣOO.X0 |*O {<cV;wMoEi&8ģPaJS`f9(ڹIKD1쇕g?,G=G6L3OƦpSA.`-$\CƷv0IL 8\҄^pEka脾S𸼚,2vm56m#zŶppQc1G -^ttŹ%QH9ƜUI54S}ViDm W H#1M>95f7y(]Z߭JK j:py-R*e,%л9L!y1y aKΓrD?o8|yY׷Xh`ƫk.XWA1ɺ62s2pDsqF{sf((ޢ~3czuJ C:]Ms 틜 /i1>cd# Ξ 0Kve>3QoҪ$#OSv?oRѨD9dBV"1X`~J^H]i]e8'1[MaC!k0y*^C^Ū2~|e.0f콁(z+=ΧUi=(6xxq6@=y6;Nt:TMVL$#TB} FJ0(F(4619 ^A9i,\zaͽMqh}"nic)yv'!B7 ˬk#ڼpg޿ *ve| J>r>;_LW帚RD/J5ӿF?^Baʞ!UЗXǯzA>]W^݊{qqNV6`L3a*$sy97P"bĥ#ϭ}C F_c`*ɚ1;ߓkFdcaf c,S?j\2,CZ>4aNE/a"P6)pz^._S?M}wy辁JY]|JFԵ%'JfgI0z;ty#u\S]ܓ0=ࢭQѹzz}ֵ̧b1ׯm滯F(0A2F L`l9lA4?'U|W@k4~ʫy >^( RFVm=}]) 9iK)oZJ:AGl!F~Đ`P,RŝYM]_cr밳|LfHMZ~t*6>noSi%9a<Ҵk#+M''zIE2ƭF@!!nz7hAK1`/]D"psrHZ If,mBaq&/YU}okUU4sI˦x駩 tD?ی1О)NN gg9B5֔r=Bm407VRh`m<eOQV< uw\VYlOMr13^](Y`E d?ֳ"} M昏aw[4CZ&=1a)KAq3P':sDB2 %D"Ǥi$W/+j3F)n$?ҷ]nKXUStf VVE@qS4b g Y=bJ37~2kjN׷RH6 Dᨠ ##䓔3NraS%&(eRwmxsxpkHX @=;٦<9T 3K???YS_fa,F}܆3JE3Xamt@c(-r:12<4|%u,ZAyJߎ`Ǒ0Cv9BdDhaOI(8Ś],,/']U,4:Xa TQEU8 /dс] ll2AvDW*LMOo8LoD!6M){\ߟǷ]u%,V; 's I=cMv6:BhL_]܎n16(rn"X5]^d6]ThQ# VΠ͐ުYW4IP ( +u?e0DsilO.f@HJ#DQhoQJJ0co?&8ǫdz3Z[|A(MS2'5, Xx*CIo?tHF&mB:=X}!>$?@0MQԷE*:c9+u͌ J@F:jB+橍!ޫ9y~_MVջ^OhEv]2qcL`>2{Y%Z5-^ VYo!z%*7&+>LZXqPP$dUVC&%*M:[p߷QYQ GpJ1^^ԏsl27 9 q3 4l? #1Ia˷97~Zsw+{nc*4m)ddw06w-kZ O2x{^f$&]$^kc^ߒuCժcp1΂874 ۙcd\XCz|h&]d5Ҵ ##DŽS!Q|v~izMVxL񊧖߄<~|_N;TKњ=pСf/D Ծ%r#Mv$䋛bt!30MW2Kv[IǸM4gX>\ދ~YǺAU~ P,C(DPىݰ ghd.b9:Uym@ 6-@sd0*&bBJgT&:9SdFPf##vtC{h\~]" )ͩʜֿd񣢬hK^Kd֘ϳTaY!G 171}cTDZ,^)rB\nb: z.]ީ. & Jx*@hoʝ#]_q—,n]#}tEϛ{SBQho(!)`@f& :1bKtHRk,f'݄8⬨r.fL&w?laA ZPq3uL:~uK\YT*RYuo2 i ŽS0ԉ)y]5Q'U c¹WmyWjxժBvtB 4`8FCtDKy/qBwvRlƗ;]A1V_Ou!9~-iir&"P!obt#|55ڮL܉EIzAYl@!Za]0XFQqmO#1N*^0-/7V*{q$QY@nRS[*P/Xn#l\ahfB@!531zcrxx*2z?^/wͭ*ֵ1S.5[IDNEIzӚi70Ayk1եd ƏQʸ3V1Bc[N )'M R:ܦ~p5|yٛZX^=ayd`fZVYoH֑9L 0|$))m <\w u|h4IZUb0J o::k ;B*Fj Ƒ`N;lNJDf_c5?ęWk/un lE9ݲ78.ݡ~><ȋcF#{p@p|QH\!Eq-ǴBƁ^b:WNj11gȲ\ 3=q]~|fpXdo[TZ3Zg%_ARpWa<{V}7>Z<{qfʱ4TBLK2!q`1[WI2`Oظ\RHNMzc[%W3{ȏatډir7)6o{X$iݓ"7>hInS|߈$! w} z6V*Dzqs8SFژ8^#"'6玆K,akK"_7*)1H92Iėw8gi~uVk}RVRu⛒YLc,1aߺo8fH-ȟT0'4+n![6 3~J´3ٝ@լ~3gX+ԋdhtY\c%U:d9%fA)GH0>jxYX/T˲V慌4 Y,[0c jmc0Q|DH /}QdtLBVy_vKLkfeӉݫ0y4)kBr&2;{4(xL7TPdHs҅I 0v-n_um}mc]V T/ʧo>/QKu|ጠ0S6 Uު:Uiɗ DނvQǿыXŸgN[yB_[[yy=WҴU#u#SLb$@ ["jM9郙MoBjl=ݴ>.ȗ*qK۲USOUǨzɮ"=dmhS¿ !RCq:`V(/]ESx'C$o)7. &T6$H~l7Mt#\"V5)b.:,پ)( xUe Vrx*(~/> X<F)wW^B&MMshC ͘! ~O`*CtN̴1*B޳we. Qoj$P#Pނ=9RwBD>#MYM؊kZDx >ǘY~pjb_w/r<x˞;eRb\ȁ;!?)|Me~ɪU]g2/ygFz^!QyKjH51AqAtCT3gE/w "$V԰Zn b]oE)9 0<,*{N,^w(&[0uLNY~'Yu9M$U)%o%jw$E@"a䛆׏kizn-MIEi@ v NHW`/3XǏS.A<1:@aĘ2hE=_GߟwK^1Tvr|ƒ)&< wuX!)[E˔x}I'ޒ:ˋ,bLi,Sr۬ekO05(pV`YOdK0*ҨxV\q5wwn9WPxL8.@h3?*2K=x `ZWn{49MNIdpI:6=s̗e'6 _>tPu ?9O=?3+#<0xÑ̻~$qKx7McukqH3Fvbi=6 USnfbU7ZO$g*["Z)"CO}!9}1HXN4)~uˈ([bVݟ!VmY\6)Z _5/}^b$$ K>;tPU[SsUmW?]SIbQ%<>ؽ}FaTz3sfV({Dzpjm`+@qXlvcy͇og+]s6 t od q+;R"XVZ:+Um6`Abb͝X$$*V_pknvYX&#wb!TEtH$Z^-GLonb+6Z=4Uec0:9q^Rю0P2ͫ=4K_Ꚕ*YZJ,] G5EW׳vW K 0txMiп 0k3%23jCN'7bS_nU,_.1|agdGL2`<K3dqyO[Vwl \^֢AZVLSLH` s4^d`WeYcK5^±)WHUF02ԅ88P4cQ0\F3/ :=rG8qXtqOue/\zyhUv樛 iv Fv_b(,^[25Mw׬#|>z}biyB$Jnuc.6HltDVG!iʼn\_`Cy9 7b*\Ɨ\ MYh2s]˯L{{n YPm =$U;8 >i+ +Ek~hz5eYw]c⥒D!Rs8a2}$Gy[cR;zCPps0[fhadbs\Mc%R)QŅ6 ;J`l臓<|COtnӛ DzJsviب_c'S'c3B[]FAtKl}eӠOC=|[t_Qm[{Y#r7fRO*4S)xQI|aT}?8AK=./i@[p]+˙!➗ɍg #oh+J&5.=^iz x<^kY6yRҿFB ϲ|G+@ l&A0y;v?0Ç=vx+tjT=U4ƍ0CuCÌ$.刢80S?s(Ϩ8˨ʼ-/dLHكf_8b/Ȫ&Dkܖ̭(8JOd]Ď[K! ma8z~ j3OyI&|+?ҼսnO+9'=o\0G/\[cBz2 QE10wgxseO~ l䅎ceO-`L^q8Bv"&W Ieͼ`,L WXwE`LPV9Nv#: Th6f\YTC>NKyv_7U~hUY4 \;|#w\k.S?:cgy}K@Xt8U1k)</C>76.(KĚ29f;;úwGQ-ixW&7Nh-k㋄ g[kr@5IN$9roG-k<-ôBB G?1&/qcStau/JQk-\}r ěv,y5'gfOd"R#ܧ#ܸ^ka 1U ! ZREq?(kPZNr΃W56?Uyv9Yc[Ƙrj j>QATh3#0Epl^c]̗7Iح]7&qѥd)B71]m 1,}Qf|_ߺ^?{b9e@g^ԯk*WbuGsGj1x!A&)#ALt;(wkW'W8l%}~DŽi}܋Ye.0CAS1oi9 | <9+??Ļ3cIl9xBAIꫲ@?71IklwƉ (~ ' $XM!/=q]ϲ27:% 1 &h5f X ;,KN{F.USj^mzQvMLf,|[F&x*U̯%(%jGůKxƲƜl)xðLn|y_HV˹ueTU WgS:}*) ű_0xo ސQyB>|[dq_"00cZ&(͈9Ӈ@.6ӄO3HC M.Jt/cnx[RQ/3v U{h|t>h|Kyܪriy"%IV<;[V.Ep_&^ˍ43HbށfI-0x5GqtDCW'{bLfL(,9Ʉ*RRq=d*[jp[1ɿa Vzf^\(>R5!-YQE&3#9AYLg2.!1u4)5"ףn4!q=c{}(\<$SN2"2M 4dd'q w4$ɷZdrtgGtoa9E4W2~Ɨ:.E36F%TKhf5q9j ݿHbb +)K桐d-dR0`ЀJ1D]XOwo(2mBfWOǫcA1tjl_cvIKyQ'`K#W.ue~K-MJUJ*%mQYEk i&<YrӶ[JV#ח UHuJw(!1Ps7Mcv3ܒɮif\ҠIlǸEIn̲uQ(x&ыu3;[0 7ɼ(AkYD,mgLD3hΞ 2..]g*EMMne X$3}<%Pa' (4Nn[ccZ}Hd)(&oleٶ[LKUWmslUj7HFQ0ޢ͆5MezU&<9.-sV}ɷP+elXӦQ, %8gSP@Q 3i>`Ό;[a2a0\%-߱7YuU]^IOVyvcWREid6ÜBFREVq;\]5V >R>fFQH7;fCWW?&{]s}mP 8D{O~rO vP_1\c]{*^2$pF̶ozS./ p GeJp6 Hde/xMv lq\ ]fʡYǪ^Zdx@SQcd ?i&rGmdd%umQ\x Nvf)$lw!6)>RǷ4ۗzM[ή)*:".㎺ ̜@DLfE g hkTMtXANBJ^,0ɤՍh\gyz,ۺ"~x1ͭ6%kj(sN@RA6$VK~E` q`i^ǛYq=!TؕMTa͈B<1uH,4y,~dv&Ͳ K6#Kެϔl32QO55yz[8bƇtl/+sS= Uދ6OKt^PCnQ]9 tmWW8;fLM%ĬIkQw:*Y܊P䦸;YȠ‰N҅x"=畇 ^bFU7Ko]1N~6]$1p"ohs5z($ 0IXe:O\ [\./N ˓vv"MkTi0UOfP%=>ӻn4Hl ƝTQ<7ak{ƺEKLʴ]p3Æ%-mqϙ7cG,XVaefvR,isXq, E~)+ۿlV0=XJ\u7Ȍ|/99@.m2WUP(!osifX٥2J?%2,TPw`Qgu/T!ceyv6'q̉cWUoE^ &vwW$4Tz"QNMI{%Kf_m=i2k7\4ԭY?ߛ2a'e-|`'HvXmmoUw=EJ(ac BC#^B" @0VgmOZVuqi[9hQ 1ZG^O\:Q.33ҵ׫H <}P'i.e/Et=6DWcj_X>k>髂攦iHim<;x"?Ie,EAoߙc,5"|PXc~ ߊrs_nq\mL*e7c'qna"̧XRS $?\ѩ\-OcZXbyaQV+O'Ko*ސ,WV_OC! !L՟xi-mځx3=Zy@W_/Z-}N1ivTUz.Cb'8Ns !dx>k)Qz.bl\dl!BcQ̰ @{2j}2Cͱ_Їgu75+R4iM;瀮K66%DC2S}E腧$Dv?6y&SnJ'h# o`7nZ?']2)RN+u4֣}"ˮJ'tE+| {4&f)22Lop]ӘhUO2?q?%vqq\\ djx6c>ƶQ*Y D3ijJl'rp>FMSےtм2&OdJx9a@p,by yTI+NX6hO-pAژَR pO_^dRowF[%;*FJK8n14e[5T՗I~&Otf)18oӦ1r5G Q`c00Li)V(Rpk*3]xMtqbRu%Hߛ6qQJռՓ[) /zѪ^a/;~ m6'. W,u<eq mcd57ګ|a{Exj4{a1_Vg L!F(H>m{7FO!@4rO~0!U+I=Xy~;1h`{. Z|#C2Ug,-e5-_Iuq%׸ ~^̐m}5,---PS@AB)fZcJ ?`pz6~C5BzMK +1KzZl<7o}#+|ck=0Efsʮ!=o4/};@O Fb\"ׅ'[β3aQ._lUӹlꦾ쁉Q,</2ѽmOf*0:j,[RyGLc~>V,6gf}yƜlNS[Y__F½0YDspI[-Ioک3)e`~Y{KJd5_fAN6yYrݙK\b0|ld=XͅG/!|ey CV(U.r[`Yq 4@~R8%^9^)dIQ@E"y~@LI٠̚d#UE,[:3/9H\jSn&N[[_تhUo1 "d?Y珶/-TAAO.C9|$0PEշۥE=.c n eHv#G/eb>0$)8EV\ ̚Z|FL۵;J>pǦ,@3VdQ5_GSWΚۥ\\+sMɡ (ޠ$ڂ!gTɡcQLo7"hZcULyzᙶIp`eU=Gޤ<9X$Jr5f{,eN<~UM<o ԗAZ]v0A*i jV AidJ{ܭgrY'f5" " ej}B]UԗշX%ߺVE31VKj6)8􈮶s{P1qY1UrUw^vpEc~ APresZؙlȰ; E39ݸ,0wbғ[{oErY\sӄ`o=,3P'nډdB29N2ure$,5ib&,rxub|[,uή6Y^eu ::kk}H~d{ߚԾVz.B6 n%}t9״L.wYc o,oyc\veV /flAKX %4-)&nձ3 sĕ|҃Cjbnua T1G!BuETRť q5ɺ:,I$() l|o#T#-e$Ӝ7*ƯDmr ^xᢶ3~*s"ew*Tg.r^|I[rSy?ko&ff-&uzI62kSDGJRPY&o*xjJ40h˟J*WmmNVħQ-bILɵCM§O 0wG˖I"giDriȮV*ltM/HүLX()$'|f,.]>M_rڳG=a:9`0w[Vv"97ѻTb[P9pr3᝱2COvG:+bvSC%[KE,,bu;~yxzqv 7` ށwWef7=neVߺKB<&eMdv$LZֿ"-aszbT_yGֿVK读.eq5!Xn0GAe:5.Pµ(BwϠ]KnϻX^ɽk@4e5y&WJ]|"ɨ﫝QnVMe?R}ҋ<_J) e&3g']O|ş^! 1n~:/ʜX yW:gHO=J&WG']?0 lݛ2 & sI8w;Qϓ iuGÍQ"&_K|86e]* t^ESrDnM Xe#o3lIYX>./b),R yS2onozT`K0|2fba";dF<|=#P$e]aH²u&IPzc`W|.QV <t*1b5{$7mn vEYTrŨ/%n'%є-K2]jAHf.-k -M+f1ĺzmx>5>[ ՝t.Yq8+ A 5lzl3uF=6(QJbQ%\mcU%v0ۅΤp2-̷s L3VLr}q%Vͥ:Y$XUWn` -cQom-MN>@y^\I(ο]oU]m1W\5 |E?.)µDs-"8 뷧?j0}bk8f DtBvT$o*e(͞"TZWl=d*Z^C0/[xQ(eũv{t}~)'䫦o8\9$mIiBc ȑ?9ax'80#iQ:$6fb3g׺ebaZ 9xdj__6I;%F $[w|h%d`aIi㟠BOO/(/eP., AuÖz/XI߳7=9}@`y`L.@\ӏ9ERý6YN`2aBH\dTo&E $-O@',| # ,I`x4|bi2v!-_\7FrJ_v.i$"9ȮE| V}L k2,:KaOՒKcGntYQjRVτ\̰x=-NKz%޶dk==@JLic{8cP9?X$z׷FRu%bhB1`Ks=>EO6VwՓEXd(֒yNөaa~1 LSelﵐĖEIb}I0Hh I}_ͣ_4V)ؘ4*&yIC`)jNf^4T\b1M6[41q xWeX'=u_O+{Ք%:= ٢DƻX, Zur액 ㎟{7^{B^ȵ9բHAט*PHs&nΔ&gB1և9c6lY0wWJ:嗥a4LE", ?IrCDA ][13`~΋+%Łh-Gkpk~N9\3z1q`|8sK;`d2C11IGP:UBdi o綘O%&Uv42/X֪ y||T&_M* Gec\<jX'VPfqPS@,޴x}-?O+?0]'*S+oi&0plNB5 X>a+N˸YI/.%t2@92*Ǣ֟ ݵKMpE}")QqC|p0+S%t O! AHѷ/1p=[MT-rd ܏'/XQ 2{}H%"aq3.FT=逸V03hR`hy8g33`unre)J麄=W}.9Y@Ko. X/$\TE gcQ>=:7>E3f/1eX:ԡ^ ~,#ge[^7,?~ (Γi Cgid8eS?*wGy{YL 2E/)¾􈈥?_Kr8pƛ<֕ulPfH!2W%7*{Ø N lέ_t2 B1oQliҐy S3L|eG"ɣe G$̥fWݴ0ʈγe  x? ]lDkėS{Fc|f=,;D&VwnJpIg`e ͅk}Ms1'>5R<(V9bԭ0/z*$GnG_g![^0͎%{~8,Hpl&Wm$k'rE˂2I>`B6CZeY}9R?,o뢻Wse6 J${ )?SkQpV&aTc5ыvEW0k}Eh~.[bd={)󵮒V{rdp7V\v #$!13NMӹ_B!AbZn;˲.-bR3B2YjC| _K+1*]a,h,c!u pь?_1^!a]ݕM}UEx=Ym"wĊi0Yu|3×7c<΄D^_{heKɛdLt6Hg۬Vl o$&CN1dxa \;|ǏWۿ kG]w`7ҕ d>vNߍEJG GȺ}+Oqk:s9":EfVeaw9HPi, F@8 9g0@]djs}C4m^"]-(ߏeEwi!^:wI"DlIP +l30JN\Z/kk@2qג {6S#&:77^*`8|xcн1k+DEdN$ޕL.:u7Nm@ c{a xrܼ1x)O:n}8J# DqI]+ Jڬpoo gv\9htYvtI"[չ?*7qƳZ~i.dК ,8$V#a̖ (2 d]q]q̾~l\bbv+qxC1!V"q%kg_bV).qFu -bx8A!t(#F 27Uzb*yv.윎ݲBڮus! OV P%"S%KaA+XPʱ~S4\٤+{,७ahyvg MPok-JhlIHeaۙ (Hi%8BJ'eϰ,%r4BJquN˴JZ3lq ?0U^#e%V(RI(!TҲ|5 &%Wa ;/H8q)b4<_{%,SŝQ-#J.%$0Ҟnthi<8t1YN[%k)H>Db]ͶS,޷fgXcGݷWǏYfb;H]6tERȼ|VpAkp}?y!VEӂF WX_iv m`cMR٩[P^Nc:K@}u'%:GyIAaΖzc%P~e)qU/x4HߵG_so[\tPFg]i<~&8:3x&QɌ s-N2l0\ !._&]T1b2a"x$tv5[䄭D r/xCYvzjc~^{bꢕ)O12++Dmǣ1gjN%T8dL ZՒwSZ~QM8 ic/n.RWޤìtkY &$b9ƍ #Lc\{>O{eS|NðLX.׸ɯ ~%t+bܴ߀m|VMצ{7S eK&ⷨ*a>Ԋ=,͟P%J)MsUjtET UKzpu=y7?LŃbYRQK\Wޫ:|+ַYea`cyfH}`gqwa9ݜ5%cZQ(.:-8NL]_n.E:۱ YC .&$nZσόLj< B-|,n"Wi])/kcEk*8 VYvq;<-Cf|꼹o]-v}uco4qp ;¹IJʙft*6UY<' ճRe>E#{)-2[UƷ5d+&ܢnNޏd,^P3g|U=1(J1ȯ7J4Bi 1 O/n? ʢ(+rL@źS8qH{Ѧ2@S~jWn7tfW3w]ALk6)wb3h3+8"Δ 2IƁx( [盔]0$r_: X_^bk5ֳ Bm60VO!G8Y]M@91E$'w!2CR#R"6X57JzC= o/*eKQP2#OVȤ&L&ήɦvVM!3h"?wI缉=*9v=^\B%Z/$V|O5/a(I!V_*n4< }|kA%+=2&v.CL=7T aӹwRHY q,܏Aue}21ޙ.RG[Xv]o`*Iv0hվ\< ۰Lq?5$fɳ,2aX@m&@,+( ,3 N)u7qN:dPJ$]&˥U0QG۝7nhJɮv!G6T$Lx)mi|j⨙j%b:A%o.'+?8ܦ%ݍ 1{fAq` q{ڣ|F~}\L[Va*Y7̂WqJ@]r# owSL lSXqя]M헚Am 2O?E4yVEVY~9(Sq:빸ȠC}eٖcz)MW{G̯Ygjq}L&c1R_oηB3"u\`@eL$˛Hۋ@ZO#Ơ KĄ7nVoˁ4-sQP-VZ< Ʋ)ejuLe-=aK\"4f3إY :ITYubL[Yxya~Qud1ӿ:ZB  od$=wCʈ E-fp>mWnVLD ? WN)mO| ʛI˪^+q (jsjKxU]j]NrⲾ7fƹ%@[U*H&SpH\]&a-@_沨_\xqem#d1OJ6Cȏ1hFo!2-TEBXRF˲Z^lUk(xфY'VdCP+Ud1) Lg`za3OX,d.zf|27e׳{R]ROMgΘt- !xjQ`~71eu<Į]+wU({]Y(;M./[r.2 _K.h8-Rm[i*1/'{g3;HG~JM>4'lXVRNAX9קLݸ>gru9!{k34x'L M|d]CH#n mgqۥ=s[)Z.!xY7 pt=< 5.?)0֋y9إ8֝NRf_6nS)>e|-b(c,@3a_BAx,O]HHW"ܫ69+]Ț&XQUvqwS?{߁<`'9Nη_wzbMb0.3?H^feS\ 3ή{ID 0i Xl+ }ՅqiM0勋~, ^e{?]V]uSHQRҋnX?~~HaaMr|Wywewom,7&*xr<3==HaGpZI\C2})X $ETsx^sE?+m.R3}A~(܌yg̛ӝLQ8l򹩋7鏦-za,X&M:)aZǣ2fJ*}tnM=eqr)ܻ[7K\E|zA?wdNcǣ*l1&(V6V;M"X!ɪ`N@U.{tHlj{nAiOKy'?U%0=^*d$HC+3D6K-Rr7Mߒׯ4 Z$Iܶ6lh1˗0m. aWdCO4bpQNyJQUp)bJJ(68h49YP>_H${?yY{ImV0$arĜc9b:?G*Ʃx$#]ɒhnÃͥR_3P5\:p |A*OCiHL񲾴 W?aE|.=mB,7:Gr͔db(f7#C $>1)@1.D(ep{-<_vq2UyV\O2;%l"rQ!3_(=ϟJzzR~$q׾#c˞˭U.h8 MʰMS䤄RlkO8֐NƿK=U։r,Bs 䐚怛CFq@Ȃ?R_"OW0?@ۤ!\<hU?TԺPR.X::hu6ꕤqq7ItI"W?gV2;.?We~ݪ+ R&FR`X=i8hD:3%eo:DB޽2]YZ/fEz QU25*c?cs/Yґ?Z%NWa2(e^'32Dp4">7^6>RnQm\+bW6+s}yBnk&3knYJEpo[|k~*aJ/v_#%OZ t:FVer=R[gAme_qh_3,AT,CL~F;H.}`ǃ"o2λossXO߹]Q.;:1{,yI\_f9J!_7K0v6$|1Ő *n= eîu'^*r `y!<'TOv⧙`>8 "YL{wS՜=MSWR5LxإjXTr:M!Sƒ9 S3Mrv9I-JVlKVʮnwLZAu+Rmn bX;VKZ{#`Ll'].qk%C]/hWpd %&y$E|{4ۏqLduOiХ{ ftQMʬVւU4augh4~WI%;=8 q_CiGHțFgĜylF ]9VNB7f|v8֘cs.E֥>߰V=SSDT>5^\uI|Zژ%2?'bMzMY1i`(wB1ELkGUm'Ŵ}|Kh/X})<4fү*\k$BBXSeixʞ78~s=9QV%WJ= Ws?A;',J1*a-%M[?~rH-H6  ע)ҵKYl_b2ėvo R6#r _flL]׾ ](x?).@ғ_o#hNY( 6῟~SiUEGll}ё6Zކ&6ա#™  p[>Q}h&*ΉXצ y& fsO1;о`ۆ ?lSd=RЧdpʦ:/eV՗kbDArN*2<^7 [/ fѥ ųKʯuU*|1pT\!bCE 0 xWYS ҨU($ǀHP_~e%yQHϻ8u42+8 Y#;TJ-fXff`}:ptDɼIi}iz@2ΝukV4›׷zh>>JwǷEGGDgj?v}bV\TWWQ KZ.4PB1F EV]2eX6J5j7%OϘܛTHr:xwb+|D,u+ۺ.![&㦟ϩ?4lz;ݲ򦣃LDLmT uO>|J6Kρkai8 {X!-llMʵRdƀ |9l:8H[!fᗮ #m y?Mޯo|WMWW{s5x;-o&ս8\8__irWhGŜyN+eiV˵T[#Ոc963 xbHtn ]"/{k]SD{eQ EbNU|dzxy\`B3w^ĪԜYNlG ^U.]\v}4 x\Ԯ:,hW-^rj<81Fy\z:zpy "QA/h$Bk~kU9C^K3,hY|ٜzͭUoN.3z%GvPo#sdSDny o^^tK~yyUUJeJ Jd$%egp^]pWèSέJ&t+?EV_ܑh20HT҈g#NN3IX(a?vXtȐG!VFuZKnz!'YW#N۔O= (=| v ?P$eZ`xCnLU+/~_diU˪}Aºk#166lP9!|?@ۢ)!Ř\WIW%Gut&;)\Y)yk O{t@F7v5x t$X7FMpbŤ)5! \QerЭk-x볰 7g2ƠOqI,g˰z2 a_X^m.3Amh0)f!{!Å,/}}Zay,rLpc&=Q9YY,ҝ㶽7+޿ ?gOCK9n/RU. S#1acO'!~: iuF;OѢ\eV9+±R-u`f1). $.|eX%&@.p#nq,'_Ѻه%ec" H"qf;a0]r8q=/aWV4U1,0ƽgyfXve}ik6^]4;p ތD@M)_?wl-%fZcw<$Pɯ e,][6m$~rvF|kȫF|aa~ lr _X[멳đHWƴ1ފ{YE/o6rKi=?nKI(N͈=W8@]lEHH!ŷpw/<8=˫Rʄі a@/R "YcBWak@(g'/'?*gcL%ք^\M_s`p`dhFKzuA.\ EN)z5*qt_7qz)~kVy<5e㚫 6l0'Zzsu!AXRW*,ig p !*KB_(k(N>KXWP)*h-I(Cdsvygoˁ? \%,Mi1ge|m~i'6L]69V&<%:Ff01~…7W.Dwe唁W.[*"f]4/)n q`W&F@kgJdϯ2VG-pc ) c/<q8~Nj_Y xWWGeT][{Qxs an8"c).vjici4e`)J C%mFƭ#}1`Y ^8̧Yoٜ;i2Uxr>2?X%&هeP𛦐vtycPJ9dʘ -sgL뗝7}ӗ95<8p.+Uj2ac(@nGmp,Hv?KR@]OmJ͇?'y\sabյݽl6i`%bg.?bx}hXa I NmYMT__odeOǑDV5)]Q@3dn,7g,&;C 2ҏvmz+E2CBvdПN~Kr]!,^+OjX"o˘ CR+2 \_1E>>ZҹUŌ>ai^W5$l&.x%U:TDlUw^DKYX0dKr[-'Q`)j|A; 0 u~6.ٯev/tTMIf5LEB bS S}T/T^AJ~vFmJqn+JGN*- Ǟ>fl,PJkg[U+~4Jie՗BoyRm";g>Iu(1U;22?SGk XblWhq3>=f*u sy󄺶 ڦPL3,; 8΅K2Qo*z_'yiU]^:iliGGs'g86c:9op);Q?  )T19 E궪.i➒Ws;Pv2Wֻ׳}%}Ȫg?1N At^_Xp| &&@>Ygvٽ^4>`k3o[Wkwn^Dx2(G><[7<~b|Uܺʯr vI ?em's^A7B-=ة,D㟏ׁKÀmYGլ,G Et-//c-[F8UOA<^ry܁ڟH1b;O[KL% h.Z2OS]Տ;cu油/L7MkDx2)W0P.1ۉ\~gj:z N<3F% s%]7+e4Nos $U@YF,Sɉ8McO8Je_~>eiWT^.cf؝87jB>2̤rL꼉եy}%e ]:y{;K}Or۶ewhCcnj #YOK(H {1>81G- >qo.i?a|Rj՗1 +rjx%r =>vqKA6l`9e]$- #%H Dş5xL?YGKaxWv GtWeWyJLҙǟK}4zslYoD0Fy28 ڸå+wLv|e1qҘݍFo&Q=6jluqq-Wo>U4~ D_Hܗ3jH,/W@Ds4zǸ/, , Fv]8Wⷸ[-լjQ-9lv$A.4+ "4yȔTG[m|Q_35$.j8a WH ĵ&?$cM^|Vg2{jLYٲ}\}OpWlp~&JSlݶ%OHm+uEPR\:mD"`2'{7q( [)ÈK3W<Vd11E]pm,w.aCj42e5ֺ <~NaK/ƟgqYZO F A7 _Ł>'7% 9_{%0.#V߆kG@XMFyu49[ Ew{)bxAehB~pm6wlsM0> 8%6 =CQ8%L䃛j|vX^ W> m,FO~+3/|F*I ^E ɍo:WެХyeANN=<Ýk9nu#KiUC8!mjtZ] h ]y*`Se~[tc^?tK#1oٽ+ A4#wz;z/%q&,bZ[ ]zTYۘ Z |Rxf~;آr8 /ShÝVQRыz%H”̀$KfBr⾧+s=౛B/ }UƢ.;:/?їocۊ|"lZ XĀq0aR(1 _EQ!~C-*ʫ *?Uo_ IiG"R9튧N7|/Φ%h2If;Q5Qia>Mye#;[\T@ܬӇY84o^vRȋNPtÇ/$C ̵K p዗> S ;1LЯvѷhqc;&!(30jm<4ˮ=/oi97{JSc(Y/ryQI{?&#ubG|nj&\BW|Rԥ, mFD~d%hyz:$k}LMu.k~LZd բgmzRr*KE;zIasDk"\q "eCBXI>OP1$K*ӗ1D堺!y X+= )2,\yspau-޳-$kvϿ> wU\v*.F7#o0Mh G#@!TkH@"t;][t\q<exag[##טLEZe&ANK bvfL.׹_ G~S$"H^Yx{W%ngru&Ŝl'[F_@wq Va 6_ zJDB7QuB? &ou)Veϴml''Ii+iƫ%+HIy>,zfT? CVnjkW@lLH{%}撨~sy$E)ɥXYax8\z-5}XHpɼbI/L2BG ܏Qd}`˂N }҃B"qyǨ0Ew-9 to Ƴw3aKbc*Y ;8"L]y!%͙'lzē_%礲Ky9T2k 7v8G;yc />Ly>Hx,ӢGXɋFO{:c9q~jWەiF]Q:]+ve?DROcM%@<wvoC#&bj; eaǚrkd:ݪL2ĮNoo|tC_Eb3O"; (%#b>x'ߋ{Y7yݹu+K4Nmt;~4q[x9.ȋgЬ͑uLC_x yW_/B_ㅾ} Esdy^Yʬ#w3;e:XErrit}QVή ̆ɞCK8*#-0u$@ (pZV1aCW5<\e,#IǪw܎ZJE o'. Dg;s"0oY??ұ림1Uwoڦum+u6a1x&P_$:x8 guV<@:M>g˺7e61E҂-Hh>0I`3՝: Jӭcxvvcp44_Geԭ%K^fQ@74%ٞHҷO$7m!wYe^Ox逄 V>"$;$#j[tgALȒX2Jh^[YRCNYj}O ̅ս ^>Ȓ./vS̓(ރM>`6+RƄ F $ף\ҸuwcL!^=ᥨ .`R="J]Xs$' &o]̜M_W4v~O7z3-ESJǪ#4 OQB EIB Kj .XV^K^:rq*d#툦Vȓ10逘5(EH-|Լyyl@2am^\[ܲ cj1I׮ '&pl Έ&a+8lxFRHC,}xFY4KǮVYUݛxf֙ bsyotKdC2A5;_e4g s;`@V,/1g& b,4$,$OFdA)>1Lc*vbJ[o2w?ggQQXmsB|Ⱦ%9B7ivv,RːΣr@EXx1qtugl /OJ@:'/Z '&~>ʘ4~4ff H|tKUR1x3 H"EOoY8<!uR+$ws;cqf,?n.*UUmMzۢrw&hqjͽfˁU*jK&- >TϺB #a/0d)3Lf/Wi(& .=„kumpϽYjE  hX,_'ak! UNaY& VQQmɦ:o#1wpNQJV]ǒ*h\:W1 1P͋e9BX˂t3,X(#z"xp'cZ`{>Oh}۾}ڋ:wc`B\)5p)Ɋ?pѩZ D`yNrtGPa]ӲQe{1Dث 襐m9Po`PCXv2%5F_ҏPI+2Iy 4}bF:blIq6 eh*1|9-ܗ(%#AZC`` ~b"H[FٸP<ӯ#%{ g}&q%/7>Y+xH8jyIsDkYcra:n 26uu(VtO# Mp? D .k݉ k(0=?@{+}#*Ċޖ^WQ%);tr8ӌLF.F-.^:/.g,a$qAΗbWGP{]ŘZ`KJHⶀ":p O-L#L  ?l;d"בkoow#T_St{_Ĥ|Yԕb6/YpjCy<`U_Sc;NA2*`$fɏqD4x>\9igJBBLGb@z &114d*])x:?2ˍvVIs,_~U&JY)#i#%u@U!ɛf`8t3>,G:3jr?~7McuY%"vkkHSY9ؔLшsʫbӸb- `\G~]I=]vRO'.c4AđNqVhx΀oG c)?J.V]\&bm-s߀I:JN}i&/*Q޲ Ӊ>ʝTBײ‘L ˴ X2t`I@ŕLQJYӥ2C^Pݬc 1 φ Mh + 㬥u??O[r]"K`jJj⎡3 84A%U5 \I/u K[k_2Wn]Vk\0r6ABԙ78%ZN4-(qGH_hE*30M˥d*Z+P[sQi%\GG.;^ (e޻k)Iܿpކ;_q=T D؀مߺ~3:%$Q0~ _UĚcid}";Õ#Whys=*k1tM%|v>֙!uz5b霄^E!ZKUY $%jmNr ATȰbaű &7C|ylϣBt/MF5ܸ[m~і g2m/}vJ<A0aވhijaX5_LwD'; UQ$ Ն&(O.y 80ƌ?tcTG†<9fV-H,n A$٨<2 ƈ2Ō&~kK޶?8[Iug1?+8ڃ_L ?r_5GyWE)$|OJsVe#p>Pd%|6 $ $Pa rLŤg[3~f87//I. kSȅI`_ՊRzᕝ |Tc>hlyA0َgk.sؽWT"QlGy=] \|ߖ{3:9L_dngUuױ'$ZDiso;Io2/B3,SjKNYUMZ-$dJOG G]$-,W9bCr(r^)4}6k^V"yxNtyUۭ>]ƎA^ `M_AeS}d7N~_ŬLiyz kdTi~BQ/:b|/.caf$ YoJy+sm3_KW嗇NHvy6'OSbU$dIRB(48VQ߾ѿSIs}lF sO;1m|3f)[2! ImIm8z[0c9@qQ ^ ѾF_7?'ٮVڴBpnMR8zq3#XgrpΝ*ϑpSyUWJ, :TIȟTJDxJybP˂,T;򍾳+9!􎣲"y쓦ٮ`= w=5ۘх֖=3FJIRq2,gSE%1_B}+:IĚ@k\Vh5/-20;_laF!f8r {Wܿd4-뷼՞HguҢXW*ҷ1~^1~яkd’Խ+T aHR0AHi_?8/ P8BK^U5rYS_I+g~G kbWT Tp;2{NJ{}%5GFdYJ(ZbCȵR7gXYW[ɓ%ƒGW^7l `1z*ɏ*8vB*#_KO}Ŕ1y1MeT/dt1Aс$/'* ,:"=K%'I#?vlw+9]NgdmgV8N^w3=*+ҵV* (d&V)q6F]X+D0nr]c"Bhg&ӆӒפ&ˣ_}_!-O.;ww⍘Q$orxݲ[zIKK1 _ԅdv p_sg%ޯaK@g̲j['0wbK=ɩiv\Pqx 6-؟{<<ň̒D,R%kf sE3ؗ8Ե7?_H-9C}Y-m}=5KH}n\5,  Nݼg߽?OĄȧqQ%|V6z#<}l< h(Ā_(Ć QϓVrN?Æ9U#2O,/[$:wEt$ԇ,ƱOq\aqwЫ]0 DH[aD6?0{ɮm{E]8љQ()UiiC Liz+>ɤ5=wqJ&l~!eW'Y떕HIӅVp+U0 &aaËrՄ=-vtr'`2210 Q/*vR&g?c29@Bt6QݴRf0ݹ2a%9'HW'qX{&ZtS( S95Z-Ӌ7T74q}ꁴr$[mV䮉ĹPtjǩYU W.$?Y <䴲,M% ̦`f]0c?ܚxď]s]K.5:YRʶ+̘]5sF TX'z})LC@~&O\WIR|3/˶M|!-*[]E?6S.{gzA}P #XxrszLw?7fSz@QPƑMm#O1l[`I睾cftC5(# S^q7qJ&6~3f/Z72'bP;;wA&kBxh eY?MOk%OfJܑIVRTB f<[,6 (\P 16Vo-- h[w5[3/1|$ݪ"r0&M,X~mcs~,OWQUB<jvyO($g;Uϴ-3xoECm[ '>:r݊ok4hSrcC—ٽw*3DMa^WH=9/6aayT#UpoE܏;|nY!oO130-)$\}v|쭾^4ӽ~N?~a=igo0S2o}HޓJZz /IꃶGe 1~vIWpEU2vV BR[sMa8h2 Ĥ{@>_]L ה!JS~V)pm#NPaf9"Qc/:RV23>[ `sVwuDn[q⿵ *wЩ\2u" a~ nەkuxZ=2cEZmlpqE|"XgH*k㮼.V8'}0qj,C9&MdU#xd Clbl``J ү4 wg()s 'Kv\fb`SϨp"GPn4-ڭ1h߂knxO2]IK=i+.+wuLaȋ);$S)M*ҞYcJ>b8P0A ⏡Q%x|7\Ϋ= o%(_]鯁oqp1~kUC(zQDPP!<㵄L=1D|q 4{[+tf-8sGh-Y8<ꊿG []0 Pja/V_tǡT^iUU IyE~o'VU&z0Uc,oNXh1Vbߡ5[Î@~˨ҟ1K/2~=+ABX1oW`WY.MT(Iq5I/o~Z6ksG.9e4},iUNg!>)qKJtS#1":_ܛ#{}?0j-CEry4}{_r])%_G!cs b+j{G]rԹb հZ³J_QΣŜK!dVŒ K)q|=!S pEҢuəxلcdQ.h8HZAPRQz}_Y??{“QKVg!%! [/-RЫȉ!ѩT9R]ĭ͑V]D5Ut]+) N^Ͷ)J!p/ v0*2c)kݟK﷨|"˻/YCdC\i81T5q ) > I[>68@>7 Oa1k<-t)vooUjփ*X$R웪=\RZBBYO| ebG+KT3ğm曓bWW7Jm5 b#7Bn 8\r_pae`O0ݽ2:бPjHԋXt),Xjw-;w@}>vcztKoƵH]#\Z)pTe3\(ď{R-ߗpcg ga}m/UX]+#=D yfDp1h(R,؋dUyo+_efU0N1TN]6: `iuR \}hp!#E$Ӻ̾iE*Q{*RRђ: DS;gtqEÑ@F.^L>SȂQ{΋X[ULIܛ2A9N9$V*{ %ɉ0sRȏ]/6D|%|YiHXFrX,%p9zE.D%IL܇{; JԮ/GV67qE.Ezp᪞ FtKжws m;\z1'x]2YWgUV%+䐼յ*2ͧ5*ֳ<ZT lmꨄZ';&cXE&a%@ߞ{wAI* û"W\7-FN*8q8{C<;ÿѣk;u^˾j+8m" @Dg(И ƺc;e>X.V oM#Rޭ-Ȭ?p%R=xQG Cbβn]{ p`|?N4/Jgi>_q/x vb5$!۩Ec.`肕ΫΓ'fnLN1#![Ŋm; _$e,ͥ.}ԇ4#CWK>7w %,a!+ܹï>QPkn~]t1kxC!+x85Jk~^ GR$" mZ+MvoʠoȴP+,G2;°|0z,ty Ay=x=e&xt?CʺU}0\t J\TŸtK^#[H7,/601V+&gI2/AN@OÏeOf MWzU!ɎԳkЫVKzeAtug&/uP )#.Y&pi" )r6"M{DTf+Ȏ=Z!@etg;Ge[ <0b[  b-y)X`onmT- #vU)Ŗb.T^)dBF&p|uˇ̪.yGx/r\<8I yyPId*EeCPpsgn[Wb@R7׫|h.^~Luul*kQVշr$pam;Ӵܪ +R6as4}?B^y[U5jr l\ eB#gxQu`B<]АY캮ܱ2/$)$ͯ(],G))74ȩiE32/+Aoj|T^+/tX,ބpBu)% h,G(F2ٙ475dI6Xԥ^ uL|cd*ȳ]R,J*Euk``/-r+)$ ^j+DMNHӲ墂d$?p<? j_usﺐU(d7ݫ8W&#@2AO/`Rdcsz-YΩWY0D=rO߂.S Δý#omQw~)~OQ=? gҲD[HN@QkDS2%jI*r"Ru3{y֗.ڴ+t1-Kˊ>/UG?>,w/3a@vg|os!.辞x)?^ӏ(-~̌cb7|)UX#f7Xy*2lr*;vi@V&CfA{Y0 \} o@JcwezлgYu֧dkJ'TQm,u6ǶvɐV/8[URdmBR!d%U]N ,0S4d324ii5o*`=-z~5Bb 韃.nI3kLʯJ;ܨc%(4w_ 1gՍ= pR636Ic>I/$Rwfz[Ƕ |lRIMIwnJY?^e.Y|? Ō'Z/D"tHiLTcD1Ȃ>wdp‰I) ^eDe<^-i#šrK6P]0#l_r^&~5ST%UP[Ԉ^DGϮE.zPkm!qt]]]y矈$].&W@UB5 TQDhEt؆l{N^3+:odēu"Ǒ:E||cUERE2I3btV9-W0J̻ԜqIΧQ?~~?.7I{+GڛobMLt{PlX`)rE78eq6eUVU6ςFUcAZDw0h8 fW7d;f?+b_\ڲ.ӆW{4'Ca KVJ!Œ0:Ww( Q2w{/ k_F`˴%>)*"-l6J_lԌ8 5|\}:K$X.l8g\ggR%>EW$N4ȑ2Y@0*BғXiY0|p!˂>N)biꑷvf0*߳==,f jbf5)~esΦY8"K`[|Fi^ffx@y^m`^yu!CPobu<66\3}lJ# P -FAΘwwRlo+ydEѥB sE "Ȩs+:0Cj UÂ?l1U-FvutxDI_Y#'X` 'Pa :~),n(FW]csJ+ԥ{\]ZAʮ{y[ZGm s JOxŵ>B=v)]Η\ݓ*cg\C l53aط\8yZqjGp .Ƀ7]K4 *"ƌ-N*0ͷʽIC  x^k0/`aAӀN`Dž6Y~,a&pӥ`k4toCPHAy#TeSb##B )ݮN ,T[p1b;k}@q߫E‚.E7Xh`6 }ZaKf$lBIHדt:E*$:/:㎰7HN2“X ~&(컡^_ɹchowU`uؐRjĹ g&Aneh2N)02‰A SJ8PG ܻ9|ΐ9g/ R2!7'Oݒ,>kl ® ox듼J@ȢSKе,c4bRIW}~\z)!Qp,9å{k=f.8o3fstT P-̓] C9/ΣȳP˝eI"k?;,}G^2VepÇnk+Ya]PX߹-ԗw:\;} 70°Knt;}0Mچ=un<{'E&/~Wep鼩crhd݈0Z G_- k0Z|?}mPaaX!YnϺ7g]i2)qtՐħcM=@ `%KFTFG;]/?3i=(|aބ!RF=ƶX[pVq  -N u3Z9dm8Z;vj}y{SUYYUH?&sBFz|s2-|J}CRXhy>-.=<.Iĩb٥UǗ:Lڢp|v*O6L^[=a&DP" XJnR+YS!R-N-I87āM ^wG,*.|cbeI,=x k,WV%*m\J6.PHnTX:CH,m3JUdKC$ 46ܛ5y)0CFbk\WRR^nƳ%2hg+t?(<cƘr+C g1qj''ܥc'OKUfmе)Q&΋L+b"OX|ZQ"Eĕpj~-oMd%?c1\ ]rbE88tʭR>GPُn?FּM,k}h`ĆP~(Os<7V̋EwjW睢3X<٬\$| ގ#Kc$Th0]$]n84qN꺩"IeԒΑF]VSƝ8}}]! 'MG#)]J)\['U$f> |7P P:-(UY1OLQCb|h,c45㺮AkOcjj|4,&W< 틁%FGD"i~}zhN"3l២6 %-ϫ{uxc_=ȽsJ5 N:)'Znʦ䝡n,,HЮG r肍:lce EgXlaw5!!q~3uӊBDZnO,|Gƣ)ؑ,av/^" : ~  ǓhELD3io='Œo D%>|;{\i5$Tl{qO6O?{ߡF/pHTd\VG_~&|G0-pҰM], S& P f*XE?8S (僧w.Fm;4+3($W~l]7MRUSGUO_ȡ{r-K2q\$\t"{4Mv6,B]p )4_}-?9uvA@ammTW c~h4wiYӱ720u\ۈrj mH[,e(YE^r(ۆl2T. ִ'.^޺."JdsfD-q٢};0\Pc>^~YzkVQ$ eZ Ge})U(B+;x":z%™]5Pz"':YϳcW]-[ނؽf]ݢm8NAjx\qd0>0$Qꞣ5d;ɜVr%msq j;%“\0+ha,#px[Q:"Pd+JKgt\Ԉ] &w}JY=PUwdN3 F ,^@8'9+w )T. \VU.dꗀnV))E6^(v%cy/ jM [}3Bay 7aܟ5 z5YVHdwHc1G T=>Pv0gU՝ s$`5*ô9l;ю;\l$Y&]&,#ިg1%A&ãӲ!VvH'8_y=Ehz,nq!Q@(pV\7(nH"Iڍ.Wp5 ު}V&˲[]emmV4f`o)e`̒`wu2JVv$}3?He 2{݈>ܧc(3°(J1qGaqkuQO_Wft1eUiQlsc]RɜxE*4FlQ.Yʪ: ??^ezIKBb}ٕnTha`ut$ϜIDOL-(s'4sxm22Bmr")e[ɾiZ) Kkb3J$5LrXH=Bē2LTȳV꭪,/e/liuq Y)?y̢sq,t 0: @];xJQX 9,o˷mgr(C\2[2CcR?S4f m-3Dq )8 .iJyd ^ҫ6*ne@L bFxH!F&5ew,?# ^} u:) @ 3Л$0X{KwK?oy&!Y[%~)%ƍKp Wl7Mm9r]>o;Wfɻ*ɅMKSuX؅<!4CqN(A[fIaSdz?I?ur_'ԾnrmPu 8BhVS̳E#Ґ*Pr6IF,63v%GC3JoR-քRENjb,,x6w;تń&;K1q^@vrkʶ>*y/* BC0G9ű&`uJ[fIo O(4/uS}6Ӕ?e%>Gʖ'Y ):7y`dJ_r2:dx9L/3)S0=;)NJHU){%͒S0Hw:ioɦbc|س4ykBΘldrq[ڡ([~NU[KN":N2j(-oL‚y]6zwh71}~ƓdWNҮ{^JO<s3x6Ŝ; ndmY:S}'Sˊ_w+Z^J~MC&;٥O]35[t RDÞ ya *ŀ_Bm:u\d(9r{K^Ҭ[ &QF}W ";9'Ң*z<˷bK_"~R MT&mߥQ (vJD&3+."wbq\y"Y4Ya*ub@~K%ra( ntP_([ yf;,ֈ"X )gfieצdrc'𯞮CdȒ~K`'XܿⷬOaj+E4rEe2]vЉmI0?_YϽGLozxg~~.RxR{/IJndd, cC0o>K;*fq) CN}X&3sHb|q$=횞gRYM2ъ!bʃ=.z&x1YD,Kض{.~q/<<3kNiw6Ike6&VG8 y4_c{P_Lّ 7V1:bi,HdVBqqPea uMW:K0~rج(2+ |/H<7 }T(&K *i.|T5Fٙ8Zq/B8Dd#xiS?RLGP9$ ?5Y.e]'pwl_,W+f(U0^v?H=BsXoqx ( 'A" EwQ8#jǫq2$zƯX8xt;Ǧ 9.y~\6Y5*Ѭ.P2*HTB3fbIED Fsw-xV1Ɯq1nwz[ [ivKg]l֯K jn{BۧM`x` n`n0;w;/>3H Pe :g^hnMnQUKltHu ޕ6ְV@!mK-aXTsb\ol~O1yQm/]U!յfXz%9rwf p(I| ?5wp3`feg->.ү6D;8@q0 -x4$DbPQ5΢m1M>2(*D7j'F4U^NjqKPW7%7g4-I,JREiw*21.6ꃁi ! /!xO:Ft3'5p#<2LB_7Aꦮ <}VͥU")i u 2Jy#;v@`tD"z^͇#?dI~EdudNqV܋uS.PuP\_ڍhْr#E3|+:Y]ʛ[[fa ,n܂9h07T_C`B \YҊ]LIR˞] 5jκ4pChtآwJ{I3~é_|8z´YYr'A%={RZ10U=!qL`tQW1Τsn7B2^/T[w2--zAF^J83XP_D{,!WD:?\ܡ fP#/+f+gW)Y0+3*lb~#igwW}cR3<,%ʿwS}YR(ZǕ/TN*L?ƨ?'XHE p`!w O1K,Anѿq8+$ԴȘyi.T!>2,4_{w|EgL&(~=<9JKonuRڊtdvGuFWF/@;"@vRY5R^iOJ `h.jD_az3 ӫo/DAQ7C 2W<%z&ꨱ|aətԖ́4:MTaqS.ְ3s?[7ZyǴHU`-w/L.jnh$H4ű2upY>UJQ#>?Lc/"u[e r`v_75N(dcWN v8:e9f Cgs.^WJ|-;XtaXt)GIo]6R*7~ud_R]c&"nJ8i-\d+uh9YBFo!5y1<"pL,Ѫvj(l^D6حf<ǒ{5~Da-WoR Y-"IabF~/Y]U ''G}N[B$2\)OLf^U[$ V֭(dQZ܆'FgP1שT9-q'Æiu|آtlJcmNpzq4N`|ϫʽS,3PYiT˼S{in%]mo`D*,Df")LK覘̭;7NBXr@x?96rUs>&/F\DV%%MY.5 !{sBezSLCJg&s^ b[BU*y4 a#CAe ]*h TuO:[GsgZ֩oܜᾮ%}|/rakl|=$ȒE6 ] a?d kG;Z$zQK?|mDb}<5`ho%CGf[`uz@'|nw紾}Ej2ɳH1sH*Z8S؝e6)/~0?&1ħgɁ_';ǖVH$s*Dβwʩ&\ +t3څ}])m8Dn5%'̲VEAlyp_/փ8ŚVT|8Hn AO dyu}^/]eDfͫO륐WR蟱u7I0$atÿ#dt*lx@&@ȫ$r1tt],>\$%j,F\pڤ/dN}-3V]ʇZdS>W{vkE+Vewi`} sPVw TbGi+E/ HI8d>^>d1fl|NxQM$8bZ\ި D\`:xrT[d`2bi4GF_ 7V}9w+a~36y>&7e:&N_ጂ3ނ-~;}}zS7e Bፎa+g_jp)+#íq:$goQ\210GD? z`(~V-yz 'Fo[-iqSR$RZ% M1bKА0Ǖ؃֞FN9ݚ),Y }[/uI__L U-xV&I6>UF#ܔKs,A\NcHD6b%Ѥtso1NupJڕ Q' 1:`;&f>u0\| X6xjGfC-Ifz49{FWYcB}75|i2BNfp ?7\4 8!t r0n@i7Wb !d8t  抳i&~LeKyTw/>VuM +`b}\Ib:X ݢ NFm9Y_m@g%UO~Ɗ(I|j:\6(/q[zn,u _ٶ^$VUî6>an|g^yS|GSX$ "*y 97z͐fa' S`>?ڗSю3V$Z(u2سWz9zw'9ثv&y#e +ۜypu&Ƀg~^W\IN U`('V1ʹ?8s/m6^N;oh/dEbeQ.BeA-,wC>=, WXMq>IG"xbC\6ƟgL6UL,<4] Hm:md%iMnb?Ln<IY˜3⃃ƶ"pDW:ET*8R_!ni"̽l'&I[a^+aI`\~N]CЊ1c$HٕxQꢺREKu^Hp][&׊GB^j=!!ؐڟQ%GX$ha#q3+ 0h)[>b'};{s mgGN4` ?$ 3.:Y7:/W$j"&aNbh9hQݮ.)ι5paƿFZ'LaNJ(֩Չ=ovac9MRYG(Ȯ V;Fy{#^,\]N kLrۢ+N\`ō@7atТ61ΦNL~y^:9 /yZܸȦ@#/5Z '7!K~wd+I嗨)*,E<^"8Bh TDT!RtoNxfX`-:^6+}ӜN+]ThJXQ o 7Xly@;Uby+Pr'~ѕ%0&&X`a&߹|PZ,{6ߪ?|e\7\vնy )$X_v5!> ANż%wle tue,$gŽWjIKܾ, JEzR7Hw ~5`5f?Tӿ*{Ln:1TH3E#ܭ_2/gL+Rf7C g5M ݼr_~Xu~?%ǷL]$uZ7պ"\;vSF834xzCqq,eqy8N4y1?O3펀>ц`SNj\A ;S <󒩲4&FE 7u?:2zad@V8sYD߉mU@ | ѼaS a0sҒr[TZ.oli*7i] - ,| MǷ{{P M4vK8ߕ.O[݂WM4@!Hq`k,`BezmB :LBv`ň%#Abf gqcoCynyD/[$=9bEI!b05"s/0|E|[MSuB=X{׼^5q}OTA&17_-Z2&,czpjo I¶lj8f5˲I*qK>j/e|P } DƆapb`ʲ& HwI'?aV}o,(+7& ^8H$\=(#|1N1t!7SW4^7åU!]t1y4iYwT0av/7+=}-W!K"yEtli}!Hn(k/9 2 |0q?ƮV1&\x֐R?/(SߐS=/gQ=ZZ OVqA,} 4b 4\ɳ}|Z~* Ky WȍHVm#XIE|C^Azދѽ^Dcŷ=}Aʆ-H8I׶ڽCΎ¯KE;H/B'6";au]yUzmަ$b@2wvw8pvIA)EyY{<3\4_ d! ?RDOi3Q_%aл) dI{E^Tcӏŗa[~KL.~% \'Η'xm䍵2Vv1< >6},LAKP:>eXO9%KuL܋,'7pAHF +LC#IXr/NoM;N!5^=[]4NI_R]ܫCO $`tz)1u4K…V qTqdk<dK ߕgM(|%BGa5PgN1KkS8,y;PW ӊc t6*Xhz[?{^m@f ~|/1\5i] Rb9ֲ*"΁00!ZqRE30NzG6*-(" &-=s7b  `9ؾ ]jt?;qgo iEՖrcm.hӞ-0 Y:+FɯpX䥄оKdv}Um|v&uI(d("b sjZ4h17*Ł^79.hwS>~~Vq|8{;4SȷOǫh*˒L䬼*8膦KWo  L34aVÁ=-Iǒ y%'κT">+䒪z6㮩,5(`(~EvL8G9#YHD{f"^RQ}2O tK; eV,U5 GK&N.uۧ{(vb Y, I^7m,^?Y$Z}K2E,gP f"0WˢK0J:٣c{E6wg,Ϲ[c  KN8$[B3}f5Eeɹܒ-ﻍ"w#:frX;/6QHP|_#T=wpǺ#ZŤKB㞪% }Cԫ(4:,pt"c7?&Iz C1@K&p˰UMDǜ*) 1ԋaPX ;AYÊ##9)foľ%c|Ƥ@: QȞtqd'Hz"M:!z?_ 1K>3RT<~Jt.(I)!/.Gs~܏p93?EWe5 +r-k(sw M.xC̟^5O^7Ki—٫}~Z|Qi}'rd}ɐNXuEE68MdΨu3ׄ?Ft<*,b}jS9Y>O?/se9Խ, (:$BG6lݏ?%*GZ|lT5y68i鿏Oåؚ֯)*A#ꏗ差Ibe[vRbۨ=mSk"[c}=Wt/}rٿ^(=y2X@N' Qn3#cC+ 8eO{6< ]yo^DoKtV9sOYR%'SEDVQP)B<$XÝktƈOuODߎS,2bfձw⸁>pupЄLI쁝۾57Ѫ]z|}(6}KUEaIW<-&'s %{Gh)O,wq>ܢs_7-3 $h+ (OE>ہ^!K8 On9nq,kð= yUi$gaqS'q"6Oꯠy eq"Ǥ4!!ٹ;Q&}1!1Oe-N=  $ې4duyb_ZJKO[ުqq`S l؈(fh Yr`5 K :DWƹGVy]0bgdm$n 8Zؒ9&1Wھd9ITZ'b'[.6e.#&{??{)PI͐L즡x fc')$`poiMʋ$/IȥߺTTTj*Cau&Owks+GOSTb7چrX=~d*p)w.m)D}؏3eeMl_؏Luq>PFxyC9H;{FS;5Tsy+1o8|4=zaDk<+9)o,‹8t*T4Rtg-Qh=WŮly/CjuRrñue s)-!Y(S"UFH  txgqes^t6a mq<ߒ6wH΍ XumQɝӁ.>M퀘ZXa$}sjCj*B0^ܹS8)=Ӿ3׋  "s\/RWJ~=iƛL(RaԁSb˃y8e?",G$ ߟmHE[R{,X0%]#\WR66*6r]JB%K?i?F\~ !"]Y0s v"@ w!5;l! w6T }C0PRRXRz._ܶað<EFudb 7k e(|S,j`/ \ x~GL9>p!cK*bSo~ޫԺ?\Uq ^Mf³(M&y#ޱ:V;1I˝DW{=_Gas41IKp/uO٨-GgC_p, 6h789CTYVÑuhsXASjbЙ / czxO1H%6MǺCE??Q,\Msywޕۦ.qE+*g3Dʋ۔iv<U}%S{0ϨZ&8-YB=bV 1ҿ+$G(ZLJdbTGaېU}4+Xqq1,aw!O7bK㦷Cc}´%I*~&EvK- Ze;( $C&8lhIl1e'J_5~ww`AjyfTM_ٯN Y`p[~xJP!*(?Cc. 2c`槿YO)ƹGcyC*zRKS7zRB źtVJYD$N-d(#AM̽kܝ{IN12֟9? .9n!V!Bdh8*Fim |,Q:Yk)wrT~㥻ɓI%\+ jgu2pgSeǵ(3_b.̥U]2Ηcb(ƇR.mѱwxQq#$`*WRO~CWeiY}Vm(ˆ??EyMWۗ0qmDLCOQD(h/-絴ߚCpvQTbpB-eY#"iN'GHA \x q-׸5Hxw*7OcmuoʺHLh| u?&]v v b6TLs"TaGƩByu}ë0Gr.e[,@E|C9Kg֏NVFv5G>0UVIU.e%*9V 3';wG19D0'(v!Vˮ7L0߂sazUwc \DIf+fCһp !0A@ze`FX:Zv,@$PsM1Y鞟.x٥% tHmڝ.1?i aG+ѵwxИKL8_Xg1 }|2%,6c!Jmm.8ޡy|p (rܬ m"$Q$p yMb;ct׻agU_|EVZ+v ED0rBΟ{Ik*/7e}b24 ǡR"N>- QweމZԵ'I%zG8S UGwTװ1 ZvprGZN1X<Щ}s7͗Ye d *aceiml=:sׯ|-Ou˧5r5O|E8@W9NiLJ;J 9)h[v agyny.2L0٩8\x[;WʙKg 5p"w -4<8y Н&,_uazќu`7r{}Df&dc?`wo>G]0p&}ߒb1.ڝʘ= 4$r%,EUrkzgy=_p=$uW(M%C<]!:=S>͡hP8"o A{ <^@T5_cњ /gYv+R%Y]?mԊX^ECs]L'+aY[1݃{&7]^'`EָZ\`#?0 VNJ%$C˻"'/E9wc[R*̺OuȡNTz0ܮAJoQTʽQE,:jfղȑI:"7dTײwcdZ!*Efknjszm Wds$_tK7-}Z7FJ[p V0 CAFڕ [cGsu&rE2K̗W-BQe^Y̮=Wki${KbvL}b)#6Hv`˦J`ꍈw[H؅A9u/li$\H{:75U,.m !KYT5Q 6֤R^r#Ú1Θsh␕פI|7 B_XgD},o}'#kpM *D"51{lnRWڃZak6'8BT:_%mrY2t`(8ni Ti\ <:|H=1|%c\$5սE4;ajB`Fvx@2㶵_QN;Us^p&|j ǭr]2.*eO5ᡠ M Kp xоLxԪe j7= j˧?XS-_I'\\Ijv;M#pSJq"r=k7\ ^攗5dT#{Nl[4m}+q }hebCr6>.Xt%v=\ :ս&,5?m[PxAHjaoewcCeSE|"{EXq0~܎E8̗ae蔟E\'汧k!.Y ru2M ' Jb4}i_x|R}@8˗B]ln3x-HZՋ @ԨX8FWC.H'B~fD08ML~uhne.VM2 ]CZt@y ot#VUԟ5RυeBnL F^msriFwa*p0TMe"-')K4/_*˟1{T]ݒ"EƯaoՑQSn:FwAW7[e/nIR[Ń)/;bY){90]٤ݐșZC E I(jg JR2^<.Lq`- xɭ}ٿ:_  |Yw=PR?'9T?$R}e/Q_8hL+K[OȢn*ť&ҫDߨ)!+Ldÿuz\Eb L'Y$⦅e{ g ^c]Tbi*CTWIVRG@I-%6PǞ|SDSCc BG=s-eTm$]F¯$uj"RXqS8.EwWsruӚGԱhI}<:cyVyνsQW[I5JjcΣpŵk))|5=q#*I˺aǧ񻄑C,sڃQ7b>6]lUp~AL- /Q3b>~p-g$&)JEJFl$Վ~Eo\{:{ ?G'،dhpokb'ÞʂEq;afȉTmNC(m 5S1 P5 ';YU*|RՉC_U҂ā#cF%ZPg*)h󾮝6emҨ4Yn<-L-r+6ʦ8L}t#l<r1م{qL8J耄mJb^B& -p%h;\ײ]TupDVvqX' BXlizeī}&Cc^ Ս1it#;M ϐYpQW(PR1wЊUΒ| %7 ]0]lM|҃4P7mͦM@ ^$` )["Vw c׺g x,Bym~?s$VyD@CQG.bQ95AMa!>G_C;_wv\ww4<ъ3S*l4zk6˒ե0b:UkOIф38 T_\lE lY2Di,"Kw˧?ئg$ҹOۘ?ٛ,K&$ڱx*1pA7*s4#\G:9%|NI)9OB{tnE|6SmQ 1myw4&n{drN6.b=9+/CJ|mStO?xѬ&ifS=_hJ5}W&䏚)OOOQ~+6r&iUeD5"$REܭc*=3y(`[SK= QjN&3i,hB `+--  8p1GS p%/U[ OW/V8!_;,斦BU!ZA~uRC1jaٱt .Lb|IJe薯ssg{cWl+ TZ~C>ꯔCR%}ȮVToᒺ-<^v_Eز =]er—dE6{c~A, @H h g\Kqzwj7%"E,\՜}궩LNU[E4TA 6THBc8F`ܴܲ ( uf 7,Ϝ y+[FF mpӟw(4c8˒KF7ξh}7oyM5 ޴nS,}o2"%y`t_&7d#>/1cެ (TQeϦP_+Yײٷne."܀Ӛz"|8@={1<]šןoӐ9]$G*:yT'H%$ $%T8Y5F!ؓt Rl?$P|%gewnu{)۠}4f:DR\@p:P6V Y73nt,ZIJ҈ʲ烿;U} wE4 +{-Q/CcSSa.bAv#A` >$R.JbP_b#jC g}(cjT2R" Ϳӯ{V7+P|g6Lc#Y<ʶa<ߊM,/XH=V7rw0*`.3 cHrKr'B #uЬq1O3>mjUɵUmr!76J <҈ȑ ]9"%̋V t1`̉;֚{Ubz;J@.a7OR6+(J06n!k{iyi껙^Y6ãWգQ6oe_]Y:Uݍ"ĴM%acøyC\0TYj4a$MnR*%{T4ە)Rj#bD:``9㲇맿fw9|v5hvUMt"\ jv8 @n:g ;*Y%+.>&^<^"?@]2Yy-9ѻ0X'qgw8?Wc8yܪ\u-e q:@4@to CUx#1L^Uvx3WP̠3AB~?=;V-@!%KQ8U8i7#cn@eu'3 Z8̼nb/2<8z_<ז,'c/5Yw%$DB9eT2e[C8#6UWp:7f^Y|bK1u_bf~$z ?6 =$8-8-|-׊zQbfhQ\;>ҷN2_N4.z)8,+3 Ϻb!f/Ʈb]e1d|ý$|Z;ay[վ10Hjsm+"F1='*y HF0> l7G۾_nUǐtR'UWH^<~"x%QL$b 7{܏u9ԡ)8[8vu}8Zn/c-6[BLJ#g .E"_Qw)§IEΔɿ kgk8K!WT(6ƽЍޱi&0x_e\~k?d =>Wa4MU/Ѝ%#:4&K`Kr]ݺ#(a涜ΖN $_^SpKz$[ژ9"ᱼv'/IO4fjD:}IV%V~L_VWW޶$obY!\]պ_YS0]:p6NGRِc0OahKIg߄︉=Jr^8!GyIb~*?/A9.ƿ fjqM +8bLy$L?}E>6v\,AD-R@Z&~[ @vn,?_ׯ{i81m;\?*\VX⥠>XC+p4 .M?+8L}#_4p:7?Wnwv%˃-ٯnn]2˩8YFagmB\ HF)|m1}QSd"&tdQTcoJ^rgbXbvg1bE2*!XA6ٽPS[p"بp@eɉݓ%Bd]:βoQ&_u26٥Z_ohʠ!k唜IU κ$Ȫiզ.-=X{֘ʃ3ԼaC|Ďu| 3y%F-Y4ݽ)<ŢzPjYϐ i(Oj#ѢnsERںL3{^ eRP, ԉXu0ؑѷm1ww9ŝH#.,{$a?q DWuytW%v2J7|JpbwPH#f`m_ur^~?﫚%·/YvuoZR.!Yl; 2cnN^ju1y;-ga&"VmQ&dd1S'ahH-r:u;L5I{&/<2f.ڶ>0v~SNg JܴcіUUN t@1xLj[R{rU֩GFKxsߕe!>;j,}|u4D{5:_]{\nebQ7qUH eb>0XFZ.8#IɻcE_2.+őT3ܗ5E%W) zۢFuyVy<܇ Mגa"rGk^빈H ǩ'qq|WVq_rutUM#h?>uz(% 4`` cRSb,ɚhqYpz\gq_ V//~lbs$NMmStؽqFXٌB=5' /ަŔ,TϫI3V4Ƃ fhԡ5Y24%V}n$Je{ҋZ[B@:%Ll[hcńD&z8ubk3J(Ǖ%8|"VI = zFF 0W(e2W&|[tMےH>RFAj(Jp1gᎫNj7<\0e ~/ r%pӼ^8|١Oj6 ")ēQprA'OPP9,-=ĉ-FYkњkǫ}3 Q@Z~^Q <.-}td?0fq|7UJ^ͽaeU(}DxavYtWRUt}<0cjڗI ˀa%NBTbb`587imDu|ћ?|r MWrAҒ]nK(’@05,Np12'^t򢬓J<_A\ukugs!1MTp[ h)T|}{]k]PN\:Lr>Cnk)*"Ȓ`U1F(c: "Bh+9lW̷89LXY')9zm%U@GDkux8D5!/]ڧa0]鑄D[%Mh*KehVjr`g9 00(Q]X؈푾d:ٱ#,\,_+ߢƗK I\TE?vPbֽ6Pr!5a\0rTTJd#,i% َo݋BSCFXG>-mWG uѷ |f6d N!NV~˱ߵ;pUo^gS0Tx#Ba@$1"yaF8[,st[Oeg?Em<_SB0; m0 ' M5=4쥡ٮqPAG<^Rƾ@ku;81՚G㑊f=A3~r~қ"X,=kN-%ؽLJ?)VΕ ğNpK11k#'kYAb*ΙjBVo\R9<& V.bKÁH`aHzUk`5*ޓ1֕3n:F AY2'rrQW]V˛_0dYy%RƘM ^ >L6ըdbdRR#אdf6y2l4\xJ 1n,3k( `R#KE|#y 54OG͑d9IYẌ{Lc\C=p2N-MpӓKn O(S>a7P@: b=` ~ qt)e%$2.5r0L[f`6tDqg|{ʩ-kfQ!eQˮϟ?|g=C뷆2So>YUߒ8NPSAfY nq碖)t(#<ӳ_@սO4ۜM;~+RV<md8YBbl1s%'Fx Ϛ_e.nȾ (vwu6Olk2$Uk8ZOO7ײz:s|r[iz ӏi_y>fQ.`!! 8RB J{~~ŷ/=yHp.Dd˛ܝvPQHa,`xhXE%.ڔXAWrE4D_^p*ˆb ?Î7L% 0eʏ}噩! 'gMuU RC_;!Q툑>Z4wD_ jC$B/|!45D? _5IP%1]ێf)C${ 0dQҫGNjz3O48^yHan<2U-9qsN|3=|Up7׋/T ʠBV~(e ?v@b"b !v6hijo1Kͣik%yHןemj _2C("9AkƊ48ʽ- q$U|V -:q̄֜0-k$w$/P2*{EBWK(+eF*رʜXLz5Mh_65 ϱm>E\kSvj+eB>٤}c#TKw_Cq}3J5ܷ=+{YH 뛘+Hh.l2" 4i)UȲ^]ѥ#oMyy>\2}RRb\C N0$#,\_]|_,µzokx=3))³,Q+0 r A#jQ}jԫ.N] Ɏ|sPۘ޴C%n˻"owQ̊RuCeqH堄%QB0Nw.ڿ{6K?`!A{+!Ÿ8 ڈ( P e g:0{8T&uj&=<0W_a?CFG9XWo߷ufVIE"CWeG } ݘ9 *|Pb sCOk-kNQb~K_9JE..X2_Uq\t8@m0$2讀+ v}):zrLUkU)4ƫ0,U koy7DsysK&#Wm8/uQ1{+df2%#܇LF?ƗnG)|y^/~5ǭyަ|2KkM6Rw2ӯ-!0|iG73 y룵X7Ӳ8 2vdeNzgNIYAВnTB_wоPVt]c{<œϠs7'E!JܵT- USr|uU⧅u;^Շ3?;anIE-uɳ6״m&>ƈ00+-p ʡ; w}Ox0[2Y҄"I iBmbQS`Ebۆ F`JJx*D3"1ߗmoB}|EBw}N]%U>@  M@CaH.?|>1<4EaDH=`irs$iE~!(?IyX[w/16tZNj&àw8rcd <"_~ }b:\l yWB InM%fG( 0og."q Vhe d8݉0B˞r\0`zV8A(tt(D-Zp8` 5Âx|8?0ox\,h[3T &L_|RkU UЈTA1Ԓ[#k CEthA;k$焿m%CE$8 _.wY4ԟ'He'6^ DzX#^èw2 a2%<I. 9bQX׆$ؠufyp1$aH~~d-;ʞyj,ʟ8^R`z` d84\Wls 7H-/E0aABbU#5UۖIwBdb(*N:76h,sɋ-,Arˉ("9 ` ^pYQgpEWuj{͒FZҔ$!c[aSha%arbQ4nGdʐ&I{ 5Ix+=M]@0*1:A-zn_꾯4v}-Dv2+đ\sU"ka6hQLhP!jŰHwsѺ:|@Yg q^vtuUlV "Zr;`t\G ;uQ O8v ?xC➿Ve|d%RG,'S(8`i2_!e V-}F*M[Hl`Y?%i08ĕk?ǩXxM!AjhǑ.k-YqK I#&ckDkI2zob뿆*4[}Qkxx,1~="Ì s&zm<`paSN-kjVgo]).~6/Rb7ӏ(EDҴd]t5R 7~*,M&ih.%=io`7z1*VUi&L#M+~0`k f#"\zbI_jJE~Vl N_CV}]K0]m?^Ȅ=JF&Sx&R@`Yy#O 0(K֭ؒUUݪ4Z_mMVn۳=#L@P։k#Ħ{l׬N $Ej9Y*YwCEYO._&~h(~";Hu<ҽ$iM\G)irAΐ՜:`ګzP@J(*[!(|%uN{͛52,p$nL`ꬮq? <^V땪B0p2HKu/,IzGCv[57J P ]Huh+$i6Z帑J6̮s@; CSp:(%SCZ -Ջ:F.^ l"_@Gj*o\gX0~%˴Ŭ?~B؆Z;QCu3uΖ<35Mwqvݡ$ LgbG9 Wܒ^w#$i%-wY.tlJdgo[ass"7evBGw>o$ï&bC[g]VwɹXчM ʺoު" BmoC\j$a|f3Gܘ CeIOޗ ulwI f0]lpkA4R~T{DB61,a.\=ǻBt/HX]_.zCЧ;Zd!˹X>*xX.!޺U󓷐,ܲW}I"Pg&uV:v`,=*)x=39U0"1G"w }~#=)\ע$J&겭Irx_#螝z؊SHsg4׷=,YPZ7@"T:[6-dʛCATW#Lax=^_/Vdk|#el̔ ^~?oH={¯:|02nM.9AeqkҢq=rp~6fHm_//KHg2P7_Y͒ !qg$)a"TT#+i\tT@5q-XeTҭ!apeCe<̏hǫ(%| 5B$WCgTa~ -HVS*J9".،`^1ILjġ*T-oKYnZv +2&N]6K+H7gg (߂jCn6+ \j_З70yI*:Na+M1N-AYp#G+0n/N( c!f48G)vڵȒNpdvJvd9dx?WUYn im "_oM+)g EF=VEJei3h[YXyYb/DAG%B|)C6^˜B+ /iby A8l7g-I9g$t㗌WxP!t Ws3'_}5I0fAUg1p;hV<9#"¹j k7^h6!FN U17+KFuׇGļ%e#BLX#2mZ)J3OybBc;K(}izrx7+⿮x=_zΖf$_7 {:m1KMD0ꗀ@Hsʼn5t%{bQW;}pzf4k^W7ef-'/fG;UjYC WDԣ]<9!! 6'g?k*qr S=zerG(.9&d *]Lw(,:8-ЋR 7B-s[Uմ$f2w4S8NƑƑrRg#9=8%<W_*tTV3Q-^-8"XɲΘ"!N<[d;Ơx$rs~5YاzVV3pKʈKJ!/i(y+\EcZY ߹^.\JrPv]I"RV[ #CȖ%i=ϯpt:iO0ڲIWgs&rj Q6miYypy.^Ob!hP*}T4ϧ˚ce4p+m+e2"\aJ{3uRDŽ/#}aGQihzQ^Hy;z)ۓb<; /{ٞ81P6_aK|$c\] k>BbEҕlؗ|dxx-25``L2=`4#M"(mK8Mzm,d_(ν7QT:P.b2QNx(9?hy|Ӗa_bNo˥HeX;~jÕVggʮ%LQ2I:COoDY4z P!u=Z{IL"P GX1KciZJ;Frz[PĤNttS-UYWQvR$9FMF3W9e(ax:D%zeZU-9  ]Qd)IҧZ7gh'Z* n+Xz"gIDmsp&y&u#w1zOx7-=^n+5ؐHɗc Jgh~8hB!Q+8_ꕽ6_?;adgՙp8 `/![rȈTGbiE+;7evx=~|vr^–\wI*@.,zN' N(}dI,|49? vXLlBi! RjJgb H#8rC`(`#mH PRmޔ lx1N(eKʤyW)Ȯb)U`C&RM@1ubS^7kjO&~u.PMuC&JxT覶i|mc \80[3.Wo% *tcUq)+"}bu (ۏzi_#d\+wP_Ь~dE,BRw3E\fK[EP(r[.g# dpr<}JM!ݐ-IҼkUie㣆aN]_N|p\Q|$36q[LؐXssUU9d^{/ bLS(V&-@lȈ)N\uU易 2 L%!g u7v0e +1+>@祿EFƛJ l&/heN+;)\JGO_`?.]7,&FuKqm[`Y%\8·߆WW`azC§¯y^UIEQT:r2ZDˠ;VCEq_BtM꾈SgF aPYY"[H̕*VOW)|᳞c{Go͏F \mG9WhQvS:{]*dPNΔ <t3P2[[RݯRx-Ɓj%D0M =?˦=JdE-^[R7yS$U"į$X`=P[ ME]#gx -Y;5n߮N i}i.W…!6_Y1utXFWeEEBY~ [8CpsOb“]}~ϣQ|Px<}˗bj³y/ueUuMXDzȚ>PxeU\!#liU Qgpn^qz|7Diz}"#窪+޺/~_s2>?;t-U kLHN~S-H/\( >3@no+ ?=$^3XQE-d@"+Hd- A@qΪ~}p >goķp]ɾ_]Q( nF M8(fyJz$ܨRPA#+zݪZ%,TS7[u3I: *LY1^iq0|#w]t;2L5YJ*$gwm2EKm[%LhӅٰŰU JWF/sb / 4N1s }Ȋ1qؠ 9n]ͅ}LH(O&O 3?*n ߛ 9CR ҤH_BN< RIY]k,' j+>kIWLz_.\u9OʴYjNa 2K{:5E؁]: FtܒR{3$åLtREIqJeþ&ܲ^jt<ݯEl"z34yD MS2\r?n-}m\BQ-Jt2 a䶌X|FķuV4 ( 'hqKLxԏri˪3U`R8)92l48I{ kY0Pɢ+(y2czHD1EN¤Z eWPOqXYAR\żJy&H}ei+fP/d%Ggv[fm$2mUPB;Mfz`e䏡}1T]lt9ou1{=ܕ̮'<9999XQVZe9 g~L.p%_4_dXI<5 ӺNsxytȪuI;c>/Ydb$d+#I1Ux,y[^V^)Wquz\h%KT䙬=EIhac@}!ޱ`5r݋_{Xz3Ҳ$KwUDw)tPdX1!86z[˼ [J ZWc*2LMؒ 21?Uկ_VM)6O&W<KuЁC/pĬ|0=U_)τʚ7}׌~5uU(_eNRuEPKb۝:;cv;la^ kE淅'ġdW j3Lpڄ},Ee++CITu !Ju"ĬՂc%Hn| aPؗ Z|SU"SEr67fWFYzT45R$ǡa{5Nr;Ci= Fa Zpպ΃Re$ sQ^NIIv,se@9Vdvꅖ(x[L-Frn!#~&(_pz0y4k^:J[q_>uQ];QQ.7+X+ſ`0%J]4a%%%=0l3:k%`jV/\,$N(M^⟻L/4]Vꨦ:N~}}=~fwyB7izuL[IbRUY,Z Ml€4Ub.Yrŷ-qY6( S WA&wO*]Uodk;$?sg_3v'I5o+Bu扶\QJGG$uwJDy߱*}AO%9AݢLrxng~WXp曎Lz&dghQX&(.qzgvGSFR۬$͸7jOq^*ra qMpXN~df&Mա]L&T"dhQJUc9/cXެCl5b2%0ųM|W *uY_5MG&[a EG4Aݗa𬼸taWRZ+&qÿd 0Z(]]iLw81iy>pY$[5%L2Qoɼu3yf|; `QE^oR NV-BUWug>_%[wI ouPA+!:דOccOoᱡa8K)yeU8 !K >#8k|?˜I6Ņ/Җ_Fܽ=B('g!T,@QXT[PhX1M; T@a`~Fu⤐qBecL%Cˢo/y7U#N,:p E8ƭ˰m{]F8c1VU\*KS-D[v5],A=S{e ia~]Yb܆|a6" +-4&mNxq4Ѕ*jUij2T"S4,q|x{L[qKa8 9!Fw2ecXCra%=%YQ@>*vgybbl.B[)djQWd`*%Wc~a[1|E\03LDykiI%L("=;U,y^p_HZTbꊀl |}2L3P6.')42~ټERY[٢~8UbzV -dj9M1Gbʃܩ3j70Ξ|i6œ"gk)pU< M 1yŽyikSmrr\pSmq=]hT( 1;VLr+ e_lg(κYI%ϳdKӄ[31)EWήU<D}WrJ _צ?tȭc"Gizb7,<\ʶ+ntv *P+wDE kc@ur JӐxYe&\&y٥9a3n(82/rj@/Bsz QsXs}SY &#pX+ k% a7 h]k/"^<c^g8FY: (HNфr(IpTכ(*]|\_v`Za@[ro["o=k`ib4s([ҵ$ٱc):alD橎aoB#Mh ^M0?yٶ'9,E;k߄?B5mC]{,PBܢ&бs.{9 _ 7b}+7#W}mrޛtɈj"aD`GHZˢ@ĈJàLN[Kcu&Xfmz1 ͋Lf73o҉_G; `V *A*g "hbB,?1[7negӫj-yø{m](Mׇ;Qu<;Jvf8CpEB잎l~SߺoV%!ך؜#n ^ndrieA^0ky/8 WL Y|y径%mG|UBeT2;z ~.9dwV7TW\綈63-Ӓ/:M˓X,xd0ڣҲ799RFJ#ChĘ[;vz7'3V]vwMKjR-I?dEWU]gu7O8|zX)vDN~h|a=0AiŅrtZsuC%EuFޫ06`JN*IL}`ey#/uTI CyH*b/ r#H%kge~ 2,kNW oۙ_>n!hʑƦ$g1*k:DUR} msJE挸`) WP4~rjû 1Jn/d]/a[ ?tq7(v[?~߹~rava??cm:dRRlh4eT2b1-ؽȼ1dG&N9E`Q#D^V^E:DvVr!,}LWC8 0nRꖂu>Htak>acb> "C_ (hفu\pޖ[*p"S3&9'ϴL vwy@' nD^Crh9PiCs8E$AmZ\ɺH^ UābbXRGjUQ*9NksɻEN%-(O쿆?;aU% l5עrי򔎓]pتSd?i7O?1Ys2iuxhG;Fؔ;T;D^I*RhVɘ9XbX Q.Z+v'&#oi܃mvڦ"0lG(Y:ė$E~kq #VW擑Ƅ8i5F.Eµ$Iف$CMUzQK$וd},/&{KUd+鞂FdhWXz\Ubf~ l "z룶Xh]=蒵%UUKY bV+ J@4N{5m{gfJvLcwn_m[8Ĥܗt4L-qv5c\+R U‹~~Exǩh])d1rʳ.G!Ys$;cdV1.?1ü}_cI1-ci8pϽ2(~UY$D!.JE)`*#^4~ 7c-ΈxZh1C{[=9Č EՅ-$,ʦ˒aO.W/ c./, !Kīd}(~Ko`ҷm6Kz[*qt^{”u%'C(jNIڳqS̊yֶ~[m(Ѻ ߟp;V2WRuM,2b!+KؓPEF)\BBjE<H|[>e s7fN|Y“7˼ vA{u_5D"|>N;}SNcQ}&p}ĸ"o-#Ze./WOFէR~IP|4xK~j"`SJ$;9 ZɀXǧ("dX~zȨ)Dr~W>.yCM _tB3_eESTd,A.9URg4\&rب eWIF, ~4"|4Ni967fX0dS?,ϥU5MH5EݷMwd<]šr E<>^o|xB sYvϛQkn2R9'qWWj J^4zq*s)b,[ ~wnmUM;\MY ca ۭbƒQ R8)YjIGgs3dEf-?oTcdڵ5釬-(6 ~gUu(1Cn&'vm9*i4Ir 3eEvxX  W wJ `xpOۺ!nZaJտrmFn#uW}YPZ 9/.K8OUWbt (lʺ,UijٕH)nys*JFհ)IWf䷢3ޅ| e |`jv0bE_%VÌ-%2V6e~ a7fG_4O* .Y刨,nPrXD:/VO΅4b;}ZB> ~Nɳ(mMGo1|{DVSJ /1F׷fҡ+k Tpdu#P4 wϛ`]Fzm`s[NmBO^"19I`-qnX[!ޜI麖m 魾ucM&YsiI$ӂ #U*@[/EȡofNi {/͡Xy/55.,F06ce]d8HKd>d^:!w'1&)e l$p_z~eY4#?rܦ~*dc;:q%uMlcئP$fR P!X8UBӬղk}Pe)}'%TF Zy! MgV#oÔlx~̣e[j^fꕗyuZq O<-sI^OS_rMŹY%;)0kbύdF8azMcvaǣ_MVu[=߻/Up~:uiGũʡJ&1Q?^ /,Ep<ǿv6f, ;Yu4W/~6W uM> +ʑغˤn$|{_=º_'VWD MSGyg10]x>?ς.w+o?`ylZi$OjK2hVMy j#ӻ=;LьdKM=#[ }AygY󙕏5 >~ǘ|ʪ(I(KEv sV{҉yaZT32BD-ZNjf܇&: c]&g|hu,U tvdm-MIUH}pyGy.y/JFՑ=/i;ORYj_Iۥn5L n'QR:I$ȲZ%|OE0D/jѺqBi;8>ueoUY5U৘.NEɁ~%wR%q 2` *DӼ +Yvo3n^Sin$hWfd;dw1+WCIMzYHN\ }0Sdکa0SH#kSrTp (Xd\,Z˔ZA%o2Ylޘ#E`HY ^nOƢgDO]̄WIi6 S'F@lu7@$yy;H/^˱G#ۼLWLzh;&3Sg]D;E-aR5ٴ`0re ^;  M]r[KA=KzRP;F#f 8 d2|h X\{{"mnu":|r~sBA9o\ EviFE3hЪW0ȝsx{_*0^׈^Wi-,&]3?_W5 GHR)xJ"VEL]Bݱ4NYj0,{sd g8AFy9bwtW &*L7-ں:n2㕾ۃKve+ >GשR*XXscq)"ߕwo *ʮ>Iurcbirh@[έ?{̿]ӑ|Ί r֥!7b^pbrUqꗍQNK/?*y*xEgD4iHG(%&K/q19<=L7sʟ#OV#ӛP"ɋ'&V9O ctpiєaBP(I٢?^>rxϟ]~kFYueGѶf"GfVnVpN8Dar+aB.r"pEnf.6kCI5y(Ŏ_Ԝ!I*Jp@xzɴ 4`Γq{I5ơlqx}BU&5oBiݔk(6 /y<` *3}/NRYӒ bOm c2ǨQΒtކ t1uxYIS+zI)ƃTlư*^8X &յk3I 1mAy;` 4 ? =f,,oxdž=zyozZա꒐21"eh?ŌSzPD/]1:<F7UA?ҠrcER;f: ,=GsM%a11SU&nh i܉5XwR$NR<&Ğ![9ʍdWvO^e(2SW  i@yoAuTK _齋#X(}4{}زp4eӣK gL6C%M;@"Ƃ{ ;֊с@ԃ(}Q%:DG׉mwdE&YX|VHv%!*xH?V@CeqAxlYh4J$U\7/i+ĺLNN6iu)-zjF0LH2mT XHh,MJ-M1 (Q|):-8.<.u3Ώ;.vJZjmʶbOXlS z#ݽ*oۣɘxu!daQ,~_}T]em$12arz؎!8= ՎƬW6ׯ?&t&u=0%i>^H(TJUl3! =yH&ABW8Xe'/-ןyz*rM=k -cWm'p,oCmYw0U|\&|Vpk)`"K>%&1ZeY:-x!Mٻtn׫v.eVU gL92C Km-0JP2`e\qj!mGxu۞׹iq -8>u\g?sku 1%aJ|+jr ;]/ǥ<=CݹU X.c3(?Sx={E'2E2^h'sǂު2dB!3V8ꬍ+!eUL&p\h.0mkSƴwؒW:דۭ*jp֔tr6o!DeS4j++GC-?.<&Ax^/uy114MeɆm&FXb&YCbM6n6ӂ3Ι߇!^xt0}ޮNF>^iddQW@=bWz|Fp#W6 A6g B0xؼcڟ\һ tfZi l?ucH_7mإS֮ӢY^#Y: f = U&O@G4kuT!~yDEoY\筬!ԾlP.v-L R*ExɋG4^+Hdz|9ZUWxsDY('ބra/=i:!ȯuSczŀv#~ r 2HBf .h"7Em"s_H p 7[+b=y^|̧0Q'lY>'iʼn??1oL#N伅TiQ"P@bV";/bR p6Raiz$vi=]$XYܢ\6۽rc jj E.XǟVdV01|}G:G”ˍ1MSrɫ|dzIDEN%; M\UFAޏWEV*UE_TM~ZbeG+ c+ ̂c!󪐅G6+J:3G[}w{1Q"eNJg KPe];hZ+i* 0JV~>r-X ^w ov'm캑' O~BwXEˑ;&Hԟ.(yinv~mo{i!'Rɣ me"3ӪR8@^>_SxsϫrWuzyz^ﲫMt Şb@[y\e.Y$>"™>Ļ\-b)A0U:8_:)sщ"KĿ+q-yXGsJ%eֶm }X-i?yOJu@HJU n,^pT_ s(g%j]!qp䦫QAb"\LGlf55\V29 zS<>ɒ/c4}㟻UEtRmX~9 AL,\81Wadӵ$Xd.a}ۄ*$0˪#Zch!$eqp(EW_@w2^ [Ãԏ?钄&U # XDK{A3# }z_嚼wyTIpW QIVj  ^P3a %2@'%Iw>):|bL,vJMaBS02t6w_Nw@6w?tcǨfWX6 *5-sھkl`;zG9WJJ*~GDo OS?kDIð1ZPIˀx2)exS.ݶ̳5^>*;RقIb`ؔSM,7R^b;^W@>s_@ |2nVC6WYf2tlwGťV*P+#sjtw"ޏYh M^KєI0pd0;6TX K?AԃY̓2pS>yUOS;MBJP~Z?+ +JBښC)} pupCQ.Phऎ'e~dn Wz!ZΥPo nz bz)6dΪ< H6sqJޥ>I?_ q^hexDS,e%H ڇje "OQ&y_㫟Ǘ-ɦy=ǧmXy#[J%+&74Ʋ!U黂 UNWH穰uG)\RT VKviezb35llG,oGX 0O2Qkc.>Ytuބb spX+U_rg1Rv2G+Zbh oX5<"^8" &2HmG4 4֕]bHd&݁ #9@f·ah1P L3qHak}ٵV.߳􀽏-PtKz9\PTɁEfyݵڼp*D|,,y03g#0eq<7G&0D%s Y;ٶj`2..١ PsJJ&ל6w .ĉ+ʪ|裓?Gzw EKײnHg>ޜb"J-477U_:aX IG&->V8>av(~Z@` <=fS5]'D1lߕ#JhUo.R(7 i Qld}1G(_=k%FJNt5G5m>=GXZó_7N_s*OkSuSw14/\M]c}m(J8:.o;J;=YxiDH~i@ez;PᑸUj<dzhvА`YE!C'N8ӊ V|c5&/cGNhIsQBWso QH^x^=}}ʚD#'K ڮp uZJ'ʪlP o_M7JQ_e".jLywPYr?.ھ€ #ʠˊ\ T%#5Y<,˴ op}+juHӒ#ga'->`b=~ANVkoO 'm+KAv^9BW1r̓^*R5 @E;*,\&,RxMm02/si$}hX\sdtYUL3FT()]5r@[K4'u6ZPpdr#'YQ-J/;J\{tasV{Z6:{vxAŽ솰1Lq_#WŒtd̪|d[ȝ@ 2W֎9NЍtǵ,omaegzyD*CVQbxp>vce 'b0cJOeyVDVy{u5dז%U}RڅmS/nj4̄we 1l*z,~)v`/'55ZU|-:%UUj]4Dx+@v]T;!d$*U#$|rhNHHMM]TO]Ef*@v@8u,D:*VP;*R2t\ϙee5}(ŬGc_t4:+@wv+48“sةC9)+쟫phzV}?RѤ!UDyO|Ssq{suU6~R_4U~4a]+$i_?yD!{*soN+i3[M?OXqRqP^y[t*ӥ{C01sJuƍ4\R>bD+ibWi%ѕt=yD'trS?Moꪪqb.#T]YNn$Yy+]UJE'nW$ťMQqEoo6lWBbMT)C)SXX ni)ZHL7kK651Hm"lJz͙M4NgU|h9XU,{XqU8NF kSV$.~ݐ@AWnpnѾqrWdSC~,yHu^1VNX-U/ c>0qZ~Zd۶3QTʕ~z.Yuh?iiP*Ww]#@I W~jtԆyBe䬔:9#@&).2ݓR c{\Ye@ۊp\,J _"A oimX(MNtѢ4OY<0Cd _ȿkA>gZT6UkHCqM#rOhʓT@V|+q ysQ1J߽& 滒p1IKKڋ쭈FkdYm$eozmd^ָT\Qt2]C_Izk)s=WIQ*Uc1#'ne/WZuaF[ta1qrJYR80Z&~{eAp_*S&2$w?áv21oZM *r!B^BBLYIb㒚Rh-1DkD6OpDAnz !)Gťp~}Yą9AZ1ywzp?*X~MJxb{u_)wnu", 4YyPߔϰQ.cxf{F"Pɘ.pa3Z`5u4Jt!#b,8޷c_S5F tٔ߱>&--}F}kg~ t/Q|Ț%zoMig懻zEw/?#48 [2M4HA 0m]LfT ;$2!YWp4!Qc1PB??TB9m(uF}|gh q\4>WC.6_ܲ.ˇGԟ4R-!jsZPE2lEԋ.)>{7z6ѐHs#?A󗯻m^ݺEE5'HMec0Az}=oLdMty _ RdĺB(P)ςr!|+ BخV1"Z_jӕeMɯ2]$pakۺ;|QrQ=b_ V.JWCJl"&PeFfↁC) b4\iڌB.VD,^]ж9(w(?U@^{JXx{xsnz=CJymOs&Kڤӽ(jch{R6 nV*Ri\HJ2Mks2J ~&1FCt@/;"{M6Ӥ`^5u냙?@XEYofwD lĪ,LĤVzl]gU줷W_~8] _WBގ}ڑ|I'kJNѼj]w(X0NUQ2ʜKS\34U|f%߈&LѓJ8+:N-O\`S|8GE? 5Pxx> .:mN+JJ0QD9q$`ckOw^F`׼QϿ: P$et<#G1T׎BrLeB2BXxkegP;rO$ϲƱ 3VE[$it+c_Q$":\?=&h(*菻SZ;/liɐgCv6[ O݅3LJ)՜ -Z8 {e'b]1g{sFH( 4f\ƹ=oXJW*٥Z;\eQ< +~'-s״LkZ%]O8sfZf3!|m|[?磵eLQ5(&nJ-6r*z98q_ B=bIaF_^oNcZӧl.,? Ѳ0:ێpC6D+xa޶yG _/{*Lo.ȘwnNOC*<72G%9+ ୼ːHτƵ %yB-fZR!x(]]0+NyʊLB ķu 礍rV&k2I%Wfc!\cծ*X Rk^w`'3HvQXCʲn3e bZKj <ώY<&,sX^Sh.!i^ۦ?eHk`^$`q%G%h `Xط)yǣ(}}=Δbv+93al,n2О\{ڪ簘煚\UjL qLmH؆\8nYg8UIW2v6I&ݒ_,NU&қh,l=S'hTͳ#K=X8k`n%D$48Cqހw3p&Oy9<¦ w=I.%bHnJE`VTPL+c>WP& ]Uo7<#kjV•Oj'!!ئڲn?Ȯ șH>qtƧDɖw]MESƂ38Z< Bo*,KVLxR$[/ޑN"p$u!t8?;NzoN$cY7uC.7 .lF&&ݣX,G`$ɌY|"P_. ~x&]GYepDhڊ2 5O{@&`2Gr<|ѻ%/#P􆍃\ys3547}zѧЪmavUr <<)<+s\c7SRBH*%nv"Y҉6k-hoG>k͗Mt _ܫ}I-#bRLULl-'2D:qٷuu@hRp~")/'a':Xyцz|/&{o1U2I+c.*T-uRf;;:?+XhE6;ѤSxhHZEy1lċC:JEƘRr?XwWSQ(F/OP}1b[!L`"/P7|)˝(NEɧ-,bn6OT^8ODMCkنj-1@a@]U-;zj>.6!n^N(',7p,vJB/t W6{DQђ !APܘ(Kc?V6%{zտ^2ԗ$;|v(耺 -mRfO4$ی.4/]]9i!O.c^XI,|'j2$H{HL^ym,g} +f#@ʫdDuwLe~0B‡r8\ rZBxY}X?7 ^~5\!:~%:hcB3P_D~T X,v V1D(Lgg ҕo]|fmh~ IY0~ic=2|؟/SjdH@V%pìxTrbaC@,w*V΄r7.*r]gk~y.~A}m8zWӇEK8׃+#z V=0$`|Xz [t1|)onKhPU$7yKFJ :5QrF)܌:v36%M,P_-۾콇!* 01l_|P& KQI62xZuu_G #Ev/ U!qSmdY앥˷J<d'z׸γ89@񻸧Iȋ.WRvMݕf/|Zf'5";d C''{1 ?ؙE+핛[-˸D]ۦ \N"շB0(2SJ 犟 tfn6 MhM 龆a:wi$QmBY(ڷEn|[ cd@gQ%>:Ss(~IuwWPIi26ilCjՍ@1igl-7@L-7ϙHވLĜ@ɮꬩdZb.H=c1/] ;X"Q^m DgZoJ|L6l M19cIL%Nyn$%Leԑ{{ZѺ}:X0IG}Ďi !{Gؔ* ] '?q&4}9%YPY`Vta ,a¦ly+odϖqL,9_4U8AՙSp C'Xx Z(DfVW kefGϞc-T+UICL5MIGUo 9#i)hsɧbD&Zّ4gxvωjKnQc[KZkn3˫O3"aR J%$V OfR?]jBYY&+"0S8ftj#(GYrE2DKn ^TSfzʥ8!6̋]c^h]*C'TdlzcwZĦG;{5!d$Etv\|_j;e3g[m%=ݦ5YCI#\㙸_2knXQ&H/VgEf8ۨ<\jMwyd 2WOb²o[r;kK|}n쟯y8uk*,FY/N~N#|x/rt<3_>1ŇA%uK{ᵏ6b U SH>'rnͣ ŸW]T]jPSvk5HophFRf߅.v!+ f ;}HX T\Dʬm4[~"n9F Ԃ6jw{^7 qY~k|g{wYʩ93fz s!?^w3ʢ/R8&- Z嵩X4JZ{p9:.q ;[/dr,K#4NAgWXHr#gQ8z?] cNȼz}S۲R3<ϒǖ=-~ft'Icpj ERPR뛇'߾oNђl*ruAHҰ@]B;SJJ b(*r>XC1I\].Ѐܶ&U[", ICZZ _Ax{" ( ̷ka)%\L{]SZ-Tf dWU0bCN#6M߲UK|19<#ڼ$}qBtbDJ8kmM>MaR>CުhwrCɬRBe>rPsm|N;N?mJم2m(w" Vh`u I8M&Wmȫ}d[$)ʘ0tBk_w%ܒtxP8TY=s&<\,J7twG׷ Zyt~#A{X%Cr6RZ?u [/ RNͿ]oHSWG5iaGp x`8pw8 fFcvj_Lb *fJZ}>c9Ww&3e$)Sr%T䂟?a֪"2X.gI2OWnܪP')UM]ģ%X8,X>YdwmǼ,x ׯm[+ۢ}^ɺdv3yWU涃!"xEx")LR*3'С J#KN 2〉fRhfshape6ï=՚R؇B#ʟC? _-uWNp%}ଋwYLOt+$tEEG)JoQ @V ?.ss7!(qdʢl)<$W6Fa+AEcmؒLGUU6Wŏyz~,snKb=qmxeq}_6$D&IB pK$|W]8TzAZ`ε|+çoɖS쾖pn=~m4B* %yJ&~N .,("Bq vD g1R T͔$M W}.Sj29j>aWI,Y+$K^ۂo_uzs^u<;L,M>>uYՇZ+Ǡ6`L¨:"lr t{"Z@o]u c|]@ӅUф<)+Kp5W !H)lhhD ot+ ja\J H "# b~\(CEi"R<|hʽ tҰrJBO#.?aY/&Y=rƭG-U5憂CUd1=N„~ZRt+;Ȭܲ]C6@R@J/BI~};BbX(|emruZmU4ado? !6D1D$%? qa=X>n& ĝi.kA2{R+]3Q9Ż 4Kd q1ϲc1=<i58ӎy(մ dQH'#[KjMDy{⹐g!:g!i2Z&?MGzP\EYtaɤ*mtD?\ƈu:!z)#1&.蜴׶Zf᧏6fГ H3cu" ҢZ=~Qj>ycBҘ#h<]eJPoR.X8aV5-yћ8XgOJ*6A6d,].o!uPtHvUwE"/_f|*Ssr{^xÞQ+*1f${wB)eI|!&6J =]QzWFL@)]x9Wp|Z7p?E?׍8FV̓l%w. "W=-uÅg\ ;D1;U/-#pj&(U&j67b&BƇ0PZ~˥6>c۫i܊> Fpm$<.a-C#Є99aF\=x5jZJH2\ ʾ݃}*j]lO|?SedBb]ۅuDQa-SZʆ&GqJ 5:ȧvْkA)||naؕ۞' @7vh']zOkRwu܏3¼R,5(%Ď{t)he(Ud{ERs]^lyTQKXxNyaf*mx@"md7d BgP/Ss\OeeeI*]MKm,^1'o (wx-jT?=X1Cj*^Fd=&ו s OZ!K' jֱ!•b-PwJj#wQ[E-\^$VY\$8~nKT8rjzsOqpPDzf VZ5U1QZ})&G%z_G&Љ*+ḾCy6d{0IZax>U O&Blğ !k?IxPT EK ]YJZhVg B}%œ\u;S(yהj۬LFRqL 1"E|DDgw% ڂG@dˏ&'h+^M=2/瞎]DeYy(>A,Cяa(U-kC},Q$LKYaqy1M}S?i5Ӳș)SBJUuv0yYTM^ab4&Yx0ՌaSB<)O:6s 9?9yo XfwSn4KW1M,Ypw 2=8-SXk)=r"3>!'cRNuBBQ \Ʈ){u瘺1Y7C =.AwE#rHc71H?+᪳C/g~~jY\~A$5$kE䣄Jcxk b6ϺY+o|;r4 ?:ݽp!u?6}JtoX@,P`/?VrA\5Y=0+@`ׄ먓&%T(}iJ+wLN0 S%+QrqK*g0,qAK):M+CB?})C!3N*4b\פs@jo I#UR{ 80Jr?הs媒ܑܺ<?P1`.ORe=&)uBN he"-bK%.PH COкY"_ b&8[׬2IBΧ%?f@8RvR k0"؞HםwvIuY+P&N0?[~˼nOvɼg+OI:3J?Uucm9 kcSOȺ'R ]ԡ+erhP*<-;~:#uׂ%$4rdMɐ&U^_DY(q ŋwh+\S>u/.ߏ+&iRMudWd\ ҂KD I @I ')շe&Ncף-nKvȦʲ :Rԭ]0ۅuɓ~B Hp9[|:W;ɀK-픦JHYE a=A, \YUUPĔȝBn|"kg\ J=:ބ2o4+EPWo,iU/< [-Fj/f0M-m>eU+dDс7.B/IJNX(53#Baoxԇsz>xn^Y(ZRuۖ.;D')ZO+Gǘ¡rҫ%bow,h ¶MJљ#u90eSexz84,擘' +L\@}WWM! RڀUO$G_IT [*0Nm׋Vlrx&T{ ('QryoElQrh#Iu\TYxcm/ɧzH @:0)( TV= w"[APZg-[M7͔7OI"cPm2ۗ;z+a9-*)pK3Ku#+gI_Q|@W֚ሬVJӸIV3:`^4x=2fpAf%,cmzף#ζ=:ҊpLP¯p # c7riNb|x|BEd +4_5?kՍ6Cީ vG;&/A/ y!u$@A̅_z{}V^/&k4S4$Eee#MڂEZ,x.:Ȯr5B飿0߲LH;4yO~3rQ8K\WN;^ &:;)㞴zIZj[nOqpU !m2AڝՅ$z19SP3f~ţLKBN:Y5Ò0/TXX>;Ξ{@z'*,_h⿆RfV菟-<ޘ&kLrJbʌVEv\:uR245/L2[>e0)c+eiܿ}w6P.)qnEV奩ǔHaě<-*R'M*\$_/6%9mW^ ,<8FmQvUȬ䧊~L3)Dg0/l :XzG1ϮX6]Lդ0D3]H.t*0ʌsG)QԐFU7c SLG~i " &( B42 Ah";JY`6HӺ|olp,q9@ve۾y_M|u>3+IY6= 6F1Y` 7фpUi FRƥ>ֈPgIl5lWg.,By~O>vdG .6/1|!-~O X?mFFZ7˭r~+JZ7NT׺FdJz~y'j˕ 9q~ ?5^Eڰ< 0\{ C.c'DKJ? IB+p'q)da@ؼD\æ@ؑ@ЯٮTS;6 kغX>z&BxTJ^Vx}tV"4رFu-SV#CеG^pܢ܋yjf2#ƅA~ g'.hNnɚ}HgZs'Y5݊QLmq y(/>+a6 GZZCmc2=b%.x EJ]Fx@ Fv)\C%?1ʋbaYŮI-[ %}M09(/R>,vYR %)%jb(]DI\\DVπ̑rK(ZNpY ^F/ w&VSa#ӓ1ap$$Q|f1jOcʲЙ̫M;ᷡ}j=i CUUͣ,>.4]f[⸥KQd=d_m̊]x!IcDs 5% %)ٔ[-/cm?8~=@µ:A.[-q2ReE 7A4Bt=S{ ͥV@ jUTGT"U& .#OJ%np[9},3Nf~PnFyhcepK q`pz9GbK⢱yY4zp8^ZU{^dx|eIzJr'ֹSW/oݱʈ@ww8L^jW25?G? C;tCO>be.9umcUQv'd sn5pR!Ž_a}ăEc|Ŗ`R&57"oS,Wv}8WD+&# S;2ā qR::~'p,a'<_7dk* fWR A+8ܑ!$@F b1>w't/X03QtaNQɮIRG>fc v]a =Cw1 8; >GtY^UMk"]ʓ]s 3B|g^7!u[4,vqK?7UI e,R(ŗXlxyhUw( o?e ]'lA1F0"QIe/D[OX^%KBԤ CmZ#8^ y+\a !0廿/oG9Ch4er7JK)᠆e-_pī=zJɦmyM4ec#x DZަ] OgUuoڎىMrRt ja=ZpVf{Ȕ"YG!ķgSϥ/C-V1Jӭ:B#kd^UV Fj_gtoR'V$u /7IL YtI3$7Sxp1.I{}>vƱ̦̙7{SxZa#p+b[t| /2O[CߴpgO<$;'IE5~*>( Re~ʞ* j nrn^$leVB–^Py*$hYPM%ˡYo&w2ֵunZ)i4~WQ:J'+:&c'uS륆./t>aq0'GZ0D%\JS$:*$Iq| e.uEwUʓ ELj|ih9mǣ,ϲ qO! Q؊sHjJ@=^@;M)]Ԓ!\V<1R{&x7ȂN._J,~24nA- 'c>dWimj./, ),/uH1}׶ʈzA"ŗ{ c7_/`#/`鹣LX1g кvdra>dcuNxy_Fۑo|l_ouK[oߛ`PԩUdʦoKZhB8 g^wq/J܇YAMNjVO iźe%mǑ{*wUІݍ\.鴁_ΓI!w(nEG^=f󂍉͓SgN"[d;8$ ,Uw_nŠSR9EujtO_,*r BHJv`Vk: s7I:9mt:MQNmFKvN Xޙ3`Y]Vi''i=8V~(xͣ$.!F%[Z9\OWH]3aLD-%LJ5G+\=ܡ ;u 0qf鴝1:3z7$>2ԗl=,qefuޘ ᦔ}jW\6dqI5'DD r]&)`"!'ŝǯoo/ zS?TɄݪoXc .+c|&efH }y_§;6fq=9O Bw8 Hz{Q v?Byx#LhBI!suΗL%䊈 i#և9>vjI1=v2  6G_ 7~g6PGbdU V 2|4NͱCޞJm寿~_n@9`w]8=A͖h i}(E޲>ob,d*u uLL0wŰ%؋#9&2Ò26e~%E Ur.K=P՝IvbUۓ޲?&(!ݕ*d2)s|w,'>a6;Vo!io 7b{OaH0|nD&Dޜ?rj8J F`eP#lkϧ>ѧmyZKD6i79*& D@;6,iW{q"^a1$cT*OP!ꮳd綆qc;p beUKeTYI;t%ũůOBp##|{uNQ8<{Y؎϶y,֮v6֎6GSu&| [4mhÒJ'ihJ$鴼>U;*t@ GM>;Ei |qp4_21cRY5`,KETYyA TL"K-)ˬq&A.254@K )ya U.$dXH%PX"J7R ɢ޹Lyyρv.n#U8^>A0MSuj4XJ556L!#ME"uB5벱5lsvlWܝHVO"iM1EI4yrSھʙh)RaF$SAYF+ݻ3.դL8s:_9>jI(bWx Xh@nkiDA*F$Iw5krܘѿ:^56Mc_0ߥ1?۲,GmY7,'#]CRwMte?WxQ׿ڹʌyk@ d FXQ}8GSoJ F]R lݩ,!"[v㿅?ڊP'EqH^畂5J8 >؛*!ƬjoP@K(ɧi5y^XؐId'T,!VS"]QvRʤ ?vl*K5ZH<s/_`F>=W5O]*0ףGHe^vU5pӈœ ja2ANNvvR+`R ,+N[wn1VB;G)Kgy1|܅pM!LǸ"w?oYy?!k&\JFW>' \ȖWс(+cǁ q{a{3w[US[Pvom ʤkvqMUHD 136B$|c37YS?(Xd."+2Bd̾QN4l"yh)_s:ZIE~Q  7OfӑydbO[TmŔ*|PFb?bOۢruY]6 ;u7_I uIJ3t-Ah*/DAH]hg(Au.b%[*bE艻ysAW0~ݾ(u9RpD+/?/MI*2_z{IV*vr0ZVױїX~_ZP?񑲮+=oLǡKhiׅMac;+!'N07:E[0įE: + ~2"+F]X9\Ni>vI+d}c$Nbد?Ti yoSv{a2#_2p/~|K<>qv'8$1bY[s0-pg>/4I7%zaEQy^bEWS+5ZίCJxf"XL VbZ^J]]JCes>% q)@ɬݴ4ym,?5riwPB܍4HRPq)_v}ףdCȅ{Ǘlk2orN\~Ln`G]vY[&=xC"WmcüVJ;GW) x}=5]3t ?+|jˏj6zJz0d;쫅n+]wT^UiDHG7q[Dc 82S^pB,v:*0ݪ9/LeC=|Mkꫂ<^(2կ98*xp7G.݃#ķϤ+T [$Kwkޔ4.Ij[E~:ۼ^剓iHx"'$n͉N/gf^yjiXs &ǁdNI&1'M0&DH͎sВ0Ӄ9~'^2Y l0Ecl*;$"3(MV|_vG`Pb]=-c7c-˺|:]򢩲t5v ?$oV^UUNXѻg 1Ύ_ЁCVg1~ۤ_^uü"RK3OO x(ʾ}.+;RsSp-fsGc;|zn>u%+㨋1&vG렫R$iw$AwyGW&ܤ]ѰCVJH?% 2pbx-HpB Ց,P E=tB uf Wi=] bHqx=}wW5E]U]d]Nb’)4EA?"esk_FK6֧1ѹ4ݒrHmlI39"أ]v2̚QBlgũS3Wװ,^Ty8/B6<)NK^* $iTTh'=2Koti2X![2,oYZw7V~%cxj!uIm[Z㚔TK{eCcUaQA;+V D7h1x:6Gc#g&U [xHXYґ.UGomTنn|*xaՅWv6+ O۵9HC~#M|PPrs$tm_6xuDv. r`jejAa_C?cAKLngeٵ*8Iv%+c840ˢJ )ޏV&q -%==x^&NF諘;< I?,P৑ВI˲'m%Gkgz_8!ڨdKE,kDOI’nJy{Z7WtC\ʶkDDSv%UgW8X*Q2ne^|`m8m0&WKMI[~Ee 'ȠeTD̋\S[gэ Rwսn}{yq\9m?6laT =Ml'b]&t1LKYVs ֵgpr:FhWW'eqYfvm>qcdiʄ}Є-Y Quk`P 9+H=zho]_F`hq_TVzxg^}6M^{Ң!F)ȶ^OEa@BZd;676BXX0}wNؐI:ogu黛-b+$("gˢ}%a+CƻނQMһgeoɽT۪E33ՍPURNKޘSqq*T iW-%ITNc'}t)s\6ka$Vd^[ezG߮e=8@^pldK)n+EF\Xm&usc&]`J^FKPEDcSP+]TNϲaw JyٞzdAE̯ 0A<_VsF+ùZDUs`!**v0E@9jU+J]v'ՂÛ% g+asasvzQЙT~F<wI. X Fg)4*'xs~S^b\Yq:=U^i8ĸ(KB/]1T">d`Braoe\S;/q{ i>Gsr! oe_@k*Џ l%ޚ-E-{ng0>\ٓp Ҷ@Z`Q6]]%oKG 2׈pXDT]zjY$Z :e'x/b~` @n+J2/Klg 1J!m F, «-͛Tiq?zO IOlGLQYGG/<13O6U&םɫp/'L Yw0eh*!5}:4qC!|{!hu/cpg!J~e60gq>9h I ]nVCѪ<{`[ T=1gQ(3S*$4ۢ ,K)5?a\Вu_)z_ o^'a}A,&~8=;,X cCaڼ $IHI'M7IS#RAӚR0%>X`US aFV}ja~z/O.)}[C1ʬX͂cU)펴77YM+)?x3Pp?ͣYk0ϱO ,oK}LAxQxvX LD#b*%B*)1X|x*;Iڟ gutE6Eoɉbd8W Ybb _O{5M|c;Pv<77Iݘ4m6P:JwhMvp\&vup+Iq9XbPvS>Jt647=r1^}ُ6v234V5r6”FfJ7a!e{Br#W3t)g[x_,J UZeU$,^rB TS ,4$AP6z |0lT%C7Hfwyh?3C3߆{}kpt\k"bmLv仨M ##Ǎe۶sb:A_GfD%hknEȌÓO}*~;تk;g\#DX@t )/k0_t] 7 Pcx[fۣڢ,E!?V. Ê`|C*r`ʐsf^!fpC}8=zb=*"$M UUk U zpٹ6Rё=r\Q;uzv0W?}d&Oy\*?V羾A]3ߢ~4oHhqກ؈xW?Zopy-LJSz*gQg|(|՟c\Q6%.L_~|?Zг5Znq2xc}o }/XGFS^J6qOXʘ(U]厉H᎜#fxk= ?̹B5; o׻m<+f3?)[lBECi%F@l!UZJ8|V9$d& @"? !bu|Uھ?ۯMiEYTyTLN2Pp{h(&q<D.2hw\ߖ5#I6*n8+1wW }-&-ͣuԘw G@Mogr|ܾH^Jʞ㦬{zRq&l ?tuj >{X+YGK(3]xܱ#0 ~@պNnv8-Sס67O^J[Z|H*Rb~>t{W5O{ޥ\7zD4zP(몿dGa? :&  @w5;b򄀯H@^ QX2U +B𓨊2<7Raox`o@#m-v{:p-}b_:sq})~%h u̪MeS\ pLBP`f~B5c#"86kXƝe |ݭ=f/}\cZ.k]^cu[W]o*=^\\W q2p-ZP~>JDaO@}[U|=8Ф'rd abw_yOBǵyX]u&(Ma6UY(Mb:8q$6*2,L,~.mQKy?c*3< clrK[I&ULۗfI G#PϘ-Z:C9 E\f#ږ0>X?}MHuAa/*$ehy+zubBpx#Ke&nVf䘼#50ʪ=o5v=WqۖoR?E s}-lY)P]ٽ.feк |@)8!PŁQ|ku_vS<0LnƸ'U;2n.+UBekcgM8J$"Gm| 曚mۯ]e! m;ş*Y6ih0?oh#|D B)0Do=Z}O/>bGr2y*w\|;HF[f%m1BY%7B&;,{V|>_kMHϻ TCxHZÛ\{A!`0-(ptڝ=UĪ$ WDћtҋ@Ov5/_X̆HvY |azޥ}>Xbw|oIݓ 7 o=AoTa{0U̮Ԇq^)Մ0m!|mOe{Wf{NbUݨZKr݇;uxj[/kpSyeg [\׻ &x?D\Ȧϗ}\Uj7Րq! ^lvJdM@%Pq9/ |];>:M0? 3! }[bAd: $&K&!Cy&98xKl|ޔc2tY\z)h,Haߙ&);`| fNJ\Ti ڞǦۧc2v1eSfp1JcB| zD] 1[ERr* 1]R1k=Fzn6AX+ 'kɟC7N!to^X{e>m{p|xoVr=`IkhQ)ۉm`)pw$ma/:NJS~\/{aדb;5jI+_H $^170 `oicrɯX 8 7aHkQSAy*ߜRh_i2:5e7T[D#RXczXI$pe ??SFX6yy!ƕD=Lu؊ TK Jia5XNz-AXeX^EHc~6妟 ~?zvWdYSﴎRj#yOǼ{$h$(4o2kOrnbCߘ+g=8IZ^q|-Vֹ:&F"wڂZ}X&R l&r@{K x>?ALl&OP(}9NȮ"I&x磥&c(s?]u7jz܏Gˣ$F]nN_bdbٜIxy>`ȌC͇t&şo}syW`ސ28>L.}qE_)W sdvQ#4Ԗ@F/4\-Q7{\KX;Uޯa_u38חHokىw_A:{X/z?隔4?#mLq#E]>,y(|h #xZ]\ Nudŵi=a9㽵0AGp h''> 7ק+xڅUwJɫYK]e6xcO bÐv y!JZdU RVjX%_ަbv}I//LVנ1ߺo<_:2SRWEWM M6כXӷN,MΑ.M{O^-n .kmзN֒1j5s;V w]jC=uok1ڏڻT!$^,Weާ|Cc-GO[/3lDL*U)R u%SmQѩ$K)0A^ZMcm0rh~_;oS4\VlF/Iz}\$asf 89EKZ 0OwIqB3Hq7sw]Qbܧ݆qtYP,"Yg:ɍ $oJH60tk+$ y1^tkby_vqKuNmo<243C}RRX:mؕ1arJ`*ol= Vkf7i@)e~&G4γ%>Ll⿈_j`D=H B*&`l: z,t֋oVhL >xb_ Qyꧺi^9 si1/kN SyA$ ;.7K1`+ bJ!`uY0W(۲n ڵ]-,>_L")aq9&(ݥ6?(k .ǐKPROQy9HLI/v :| FPlMm뒽 2K67y`q %S|yñQWcx)˾U9UOն('u$ >Mb -&)7K'"DeRf݅T"31ΖPeoU"\ۊUe/"&Tj$`J!Ea|(,&ď3M1nE~$j}q:m3y[f *E._uyZs%60C/fR;/j II!6%kYVJp^A'Epݾ9{ ONׇbϲǍ,6!HGOMx,'!@n X{/ODb_])zm},!Rބ|1?芾 QTm& '>vf¾:_ٿ#p]I*P5*(F[N2Xta6`™7JC͡LE_qX1S+ri>cxgcq]W/%zh/7 ^R>.X{C/s_S3ۗKY_=-Fɷ γH$pFyq|`JE%VuqU[Mn2FFSqL*uG< uwB+oEq]1.h95G99| =U=_x~ϳgrS Cޮ`-s تdQې%%\<{a=3WBxg+xX6@KSp%`;hE+335ٜW lQ%] b2gܪg.*sLƉArC#Tx@t|Hf6_ҴsJe;7@oV]b.nhܓMgH5@N/3̞lU2 \&.$4(fdn> 2{RvC14Fay)s1YaxъBqA8'Rō28iʹŧǾTד58< aFs Ǜ.~C9c'Ww1EؾK"Ģ ^xGx7d|(ӷ^{0aY}Efe~Ib[8 x$.65jvP\ {G P[ '~m cĽ)v0ݞҼ@iHʃlj9/.{-e1__7& q?b(.uۉU!do_&*7e8LxV#Ǜ F5?i" B{ey= r ,c-{w~y,wCa\VA-lrc-/[aGg{N"wZ^-Υxps50>lZ,6_nʂJ[2@G#* $Odgq3Gl 0KLM,(tw3ߥ%$I~ `v|K~>[˾N/KFOH_=neJ-qˏ]5~%w'yE6^! O4gNUe^#6'&wUݾ W:~ژ;=aI 1I{JdM 5DL+^eQ&L>oe:(i]hW~0xkq@Z1`uy[[~4jh^V?%W\!L:$xRcxjȒg`S(%K׷JO[ʐ~M]U]wlDAj},ƏéYA$JzźblDsrS:ֹGiT|ݟ!iSNXc!rW6Mwj$8 ߠWb +$U.Bnٯs>vOpiμe$lhlb7|`yМC{sC4fN}a'ɫCQlV ;!/ڣ& 1f?`LJw̍0.[x}ZwXWr^'eK%Pbq0LZYÒE#Ytرcs<~W+Tk??fobs%u.k%nl@`Dܘ$ëC^ ~<Ok<8n̲%ѱhkҥp7X `$ C[a֑Ieߝ+n/WxGu확$?K6KX'/ [W:=_ !؎XF/B Qާ?;+>G9^Y9u}(*h*_>͆=<3itSaq+Vх8u=G&s=uqߖ#0dwm,`c`$/@N8L¬cR];mOD25pتW`?ť.5”B/]Y{|p6i(^ĆĘJs'm- myM9nR?Tc"72o.c3f]0N5U7#9a=[s/__Ըēis _l\f,T tfQ0I%|$hgr7$ 5Y8*;+kQ_hؑpI"_00||0bgԙWT[=hhc9 xLC:}b2o;XKyY  -oK4=Ibݭ>n8q<MkR#BWHgi@ LڤbjAqcGh yR S~>^&Ľ d)R}aE:2\|XB,c36׸[w~R0c-{O=%(i*@.*O _n\ ]LhVUuyxRI| [XK 0b}Q=rYweKR5Dљ;ZbAzz>sڂ)j{RTqѻmIY_P>]jdxl`]/FS&TI7n)gw;Tcm}]ΉQ* O>=`%E`*B/J#*:c25f|Vy}D_I_q(\.RB2qǛScG?V&]VO%xYoL.!{xE^*]C~sb>,),}ڜ[,MUUGn%-/}1Ql"l 6)odXkp6 z].3oDx~O{iZ3>+uDrB a1o}o%Nkb)o: =L*o8[W!mYU*ŀ FHYS85eV{iIq|{ufXSEv\!+*E*Jijf*aZ@ox|<,oqGT *u"E AfP_gbZjiwuHtSqCG#|.@Fz_8KK6C,6I)=81 p:@)rs QGLVb+9kFtCD?3e7 y6FMBx)):<ߒ}x8U =P:%4-W`a9+~W|u\*܉EtC$h.LNӽSR#9w L#E)lO[}˗$u=j͎p0IsF2(NFr]$2ɑ毫2ſ_/"6cέ\5_V 9%I $`kD^<+5R=ECvRcRՒՅƕRd:r /+AmvU5N0YFĭv!t2něAa?ȗBۺ:VlO)K ;yP4kL3;ޮgTUޜad\o~~|msb,K_ucݳkK*?~-cI54C-g_]c+ʖm릸N@tnj.4 Q${~ㅐ} _vj?mߋyOp.yDD1A$s%+:8C_+:?b 3d1#dl}Yb'},W\X#aNP*v\R;♋ (\{3~]/,W`4S,?TTm5Y:qBbzfztD92 )rW&'SBRzpхoX.& eg>Yd1^dLΠuċrl?c *M\F-iO6@-G&c_ΪY1l} ͟L]udw} U0U~!٥?ĵt-G6v,hvpi"$\闤#Oƅߗqf^S)6eíRT;e~^׺hDVvoK;yEj8c[ĺJz7,},>_gI )O8ēX =] $Qx`GH>8( 7 e"wʤRcXx[hvLq򴹴E,lRm{ET{O<ЃꃺDh5=mcXB <ωCL䠧] fZjêl"ċ fHB}W6|$yHP<)ϧ~[X<һ!S1,|08n|@%#BA(yڤX`🮤X5~M!y c@u4F z03&z!|% Jc4EMćR>뻡 u%"f :icKbs08rl;}ŷ³R.!H뢐8P}PUc(Ij~oe'<_k M^H)?RQ+.5菻ZǮ% yaf-8)BVC}:K݁0Ras?u/n{1„n4>2͐5ڲټbFqDŽE$qUɨ(-}.9A!FڄU[X|:D^_czg&bhHU1:]T{O;:Inu~8e})xvt].׺Ob$N#є8&}->*N!ߋ!cD35s<Hڡ,8 etzub~+S#3 ܚ?4wL#VUq:DpIqi-ɬ$v&/Ĭ㰶Z[Ԉז]?o+.n..GkQI'I] w++9Ԃ.]ޱwk㹩,;Bd׮,R^=A%g Ql)yV\wyЮ3jMQ_˺!zGWpRGoFte}tOJٻEPjofX"vMl_LSY-;q)"yVZr%~$M09L0|~@reY,fHInc7 &.j~WQQRMioֳ5Wܥ.,Ǻ}%xqIZzk)$J!lq>8AM0edUŬ$kr+vBb2X.#4,jQa$e^XO|Q+v)|OR1>JNFRaLlFc@#">G͑ղ+=b֦eUK.y6Jq`WU)aPa A076,H=rEDf#!{Xvٯgo?k)R!RK=Y&0} wD 6:5+&K74*1_(@pL8 aA=ۘ2S'>HbgrZ_+GJ!xSz"Ff>w9‡P[_%'Z?4a7սý=GY.?!ŭUWP E_|ϳ[󞴙~L1nq'Lbjhc4KURsb!VG`}nW2eZqoqMVn,&8:56(NdN\I-NN-OlY>ej/ __Z|J2z$Kn(85㤦ZfGm,I&P7١kJYz$_V tgc'bUּ&G\ۏ)+m> w]G5U lGAV4b=x"A!B!>cLclT lc3gX"1],z1~ A8qgFe~hrWem⩸\ -XksKeuĀDjȚYudVKE=tޮΣZ#% x_ZyTnlф/}.Sާ)6dKg9e_HIR\c m\QTw0VC@ b^{5fم \a͹E/zcoT~QcLs^ "K#{{V4<՞[і{5Em!Bous9=8/ֲ".g/S~#HE<0EAںƃEmRPa/D{;̢φP/ޏRұǣvHA w2i9nw;b Vekx)M#]XϜ=8il>ɿh6V|Pu wKD;F,&%KN4{KiTRbٛQޔQҜ!'nyC׷zIoӾkavugS)W6T;wz{%+q2FJS7cCc+TUbn}_4⹃puV}v׮d5,, wdh&NI`.*5`W*.ɸCC#Upqr"_=@⡪ez/V|{zbS-__5FL"*>@%H&Iny#uQHEH:ei=sc+scQ"~_W`x7z@f6j-]{XZx%o,f>Kٛ) _!U(Z#mp=8dR8O}B\_wVb듙A*Y?Ke߃5O,Eb'f7=A#֭cdqЁq' %YA4#{N[5uEJM㜶WƧnqiZeTM\a= [{aד_IG-2>t׮`FYheh00@flMsZ.6 fzo_f1Gd޶SDžfu Ja[u6r~h DQMo^*W"]<--}$ |t᮶ %`qlsO'LOlF,[tV30Q |W"j*>ȓ|aPFMS?L}?Yʘ+̄I!%Fwtj׮ebBk~Gb)( `:^GHӹحo+^iJ(ߑIxA '?\ &l'^2ξU~Ln_1 ,ab+\ [H(p;H'(pxJ'8]ceZwho7y]o4MɹEP^]GÎL,q䱲/xmTjMC쯽pkD#4[& Y3xѴ ۗ%vX_,ʁ5YZoڧB1 PB(0ڡc*9c~>*외<~k|mMrnZĪ_2pMG6 lQX`m%aސS/R8-/odT^#5b J5 I TirXXY5lV!}acXifzVyg4^z(ĺcٟ/D(i}s8/IBs4Kfy~n:}׹ %(_ '*Ëł& g`Qt4J,^*,;%d།\/A[%|/Mk 8g"N*t plN8qSn򖩅1vԖHySOě~ %'~9}~)b_cw&wyj*,>&tˢM3Gxp]6%˿5>˒vA ||E.zR{t_?mXe+U攼&@3b1 h zc\Mird*0 #Ō;H^z|1r-O:0S_m퐏D\릲%i J0amQc?~:я}'-i)g $TMvԟX+7??H/L[V Ȍkf|qlэX`O Eh;yي~i2/_f}N01l+sԢx2--O@ocId?Ds[ʨk/ p-!ٙ`T0vԩx R7QP'`S2%_t/[Σ'UpFw*gr]3+LbU\/Ϋ)>K#_Oܘ,AzA4R#W("S:~=<[$tkQwKd㨟+?,곺;v,>eFǤapɠD3=ʸ` ́j>LF$ƞ^bW~>lM!d]`'Ť rTSqhi|ZvUhKn̈aYL+ŖLTp .;b߉o?H*E bjzc4rwedum?"OceVj]kT%ՀL܀ D '"glʾlSJ|)d͐40.YDi]r2@Zb=$Fp8M"U-c> E2ATe|340 >EO8)P?$XSk㶭A Y좻.$^xqL`U<nT[3M[&~­+yỊcײX2E'ܠ|v XU~o/}O`,[>_r_Gpӷ BcZUbؼG3#fOyBqs^>?KN| L! OqWH0Mnիe ^8Tr@[)GFw@k[YYƵ$'YIA"syŠbks3Y)Lj(dd.skF 7!š0QoK;)\%tZC饑O7.=\X+߀IHMU؜$+q-`T_3琌 INe_BSG{Xfђk 5>pƊ2B 0.Y]4``*ԓ\7h7Ȟ0  is͋YkK6-OLlRjpp d4aM˒RL-^LFDaI#d3 8xg仩 "[(p_KZg?Ǭ-Ĺ#zE]Q-45 @N\y*{X1O~f|N>wXqe!(ŋ0k!==J+q~7?=`CU]֕|=! Lm4>h@#^Vry_ |I˼S]Ƿ[g̀`t^Ol!յ]J8/r=id\) ގ?U,7gfǻR8UQD"bZ*=y#yc|;QmVwQ!Y- pЋGѮ~{l)תd>m&,;.p㻘'7/oԟ~eA|J^}$"Ϧw#MLDXx!y#BNFL%BHm9&P)vz .YD0:jܮjՙ1z,BS` 0ӓ+~Cwy @B_`/;ߖj;n֟SHwַ!1x7H/05p%=-5J(|M M0ܷV#\xl{<\~_ȢC c! dc xnx:m?c8 KFb7edUUk-eۧ-9'Nm!.(Zp+ +Oa䇶nKeM> XU>-Bfq+LN$O zs@™eXefIoDUȩEaYԥ+n~+5ՙ*V%k9\mSs`=X XWw )l ez^mm>~qqGLΎRz5Ko$ߛ/r($qP~0$O"oPh~MoO /(1ܵ}▽?Me]m2>4`6 $+$?xFeCNJ8 'ۿ,YVeֳj3,RZluL\^R6XnGOջl*.t Ex >I  뛖KPO[_$΀?Q,5m)Y.YXW\)A=*\m06ͼ ڥDg߮%%–eU3h"'7mm(tJM29XQ ~[`Ν_ٓ&Y]_'!q\Dt{P/[51hOW-LXS;t™o7e5#Ue\3pQ7?Yx{)uJټt0 b vL(o51'肘MwM2G!]şSſå-&&<ײ+W M VHR>ck<߱-փW8+:CKԵZU$Tr[܆|eHc:<\;]<粭{֛䦟XN,ۇ5†b}Q9^e2H13K {3Tx9*U- \N sƑDWQp?=a}vEVM.]8DЇvvvrA8CY\Ϻ/CkK,)* hHFaFw Y7$U,7>]"O|bLls +%QX, U!6$$~l\IRKN>z_еyK} 39EF}0XT6 ћ%[̣Lİ ,J??7ksNz[ϗ0v#&=1ͻL̂*nRIcK%ej!/x!?Lc|RR=l?e/Wt6އ]K޻u..*ɂ⥎I.U(|=Ȫ*_N4q  S@_jR] .D .<^˱[nr-1S֍f$W[r2G?FB# E|LP"|aFZxgԢ!"X˽\,p)Fآv9lwai{Vύɽb} ]/i3T)bb w"sG(4(Hz3}i^eƔ dz@h|rlh[ /^.)#B!;7"/ _hw/ kK8ES]j/!bVEkί2&Qӱ*zӆqRΉyHE۵ Iz)O} %6`M B-D"mgf#V0<eGE82,I#|x0}[Oc_$n1"\'k뫼xADP!X)bB':t'UO Kx&)׊Ǟ/w&UUy_CoNU&#$M1y Ks7n8^Ch5.&.MKv]vi͹4e'&o$֡)eܲ r0 uڕL/^uzK'QyH鋄 .䴬ρ{Ǝ`fB2 HOȿn{ߵ\?nn1V2]]?Ms}4R^BCn6%ѯ/0n34VlA  ޙ[jz8)^^şM9tխY_u=%fQb!+lv%fIo50r5ze@# bJB@2noW+w?,|!."~v_#|Htv n4Vmm@0Nt;9yxM#Pkx5 XF?V/K<&uE_jcb:gO<4]w 6~5jjA[]$.QX~t8b~Tڏzi>`2*ؗu[*Oǡvm"W2}oi0I˽O'@GQ<۲sȸiۢH*<7(~Ւ[ۯT=n=T,/" 0XPxguw~}+gh/.i rb%!zx \O rڄM'T{չceq]S4dPJ975m\]b";6(Y'H|WfҒZgJvEK8|P&d}&puMMp3P` T,oc2~ 켉x$ȭ; Ug!qaU^I(G 410˻Tp35eW嵑DcF|$0?D[\kK0 |1ufI'r#>g\$JV.he^]nNl]:Yjnٍ!G۱3I$$:5DHv=7/cRȱ5o%I2ϛ]Ի ߖelkK՗+{=Uki)8@ߧk 3Ц 3klâ3?HrSw* ރZ\ZLH̄X%>(9~$ Te~Q^^dp%ph͏Ch:=XJ>߯#|v~$#]aTq|R;[>&!qdr5\`rXpo~h&n/Aa`~@>A.g!)i0/NZ7>1_?y4 -ώ/f!_ n0}5 yV !UbidjA"nGs߬NMl^gmgy^L>oqΨu},RVPu\"vk.}Bjy9<6B1clImזog 坒߂Iv53b[Uk Ie6;^(F-t嵉]e<#"{S'kQ̮;?`GB5$Tjg#om= 10?\V+] oYYD| :rGan!pq77<Ǧk Rp0Zy()sc *%vƣmTx876S 늡,NRiEu` p89,ʂΩB.E:zo̊>}i1sHUpvml,]J\#g[z2~M mXzcNp;"ۆ{mxo=6}dS^$5#/Un[oj@O$HFc52q]*dio3 ~û;w)fQyrx ["2@S9A*a>^uh](]JqxY\DA)L+LoZ- $(7 nr&3 ytXPn2T;e2cn!N?-D' "ٹ:s?B)2V8PiJ|7N_lg!0@]*KסEQXh,P7TՕgJv?R kG;d6YTM%ʢNO0Vg_0"sob™r25mbo_oED>jS呈u!nmW<A.2;8Q:[ "Kn֟_o\n >zġ,%1>hC=Jbd1vs, f}Vey?a7 DhW9_IyHvcy0 E3./G=/WTkQG8L)|- Dw9b;/E=,/h\6aL2s zNKEK/>vw)Bq{mN<E_ [2S6MqoH\&IFESǺ>Kt;_e=eSn.e%E,ĺ:Ve'"dz&$Xg4n-  C<}۾x HoίUeJ}yrµа;c\sBk f7⥈`@{]տe:umaB揖1ҏyq?1g夋P }~2DZq{ZF.oPq=u6pגFG\ͯ~s~+ںiV}>vY3[p40-SU8,^-(Z^u=hv9vluSƿi2u:Ë!;SyFSoΪ^?  "&7;u:U,#؅Kb#QĥP{;r*#&5#~+;.9uXH#?f͡+=<_)K-}4-CR"ɛ Vk4+8%/֒_9=X?] י7*mUKa1)xDnRu9(zcgJ!C`k?MC78I!U8.8g)btv Y-Yu:0>agzf@O5ovz-cu1[c)p?1b/ѹהWn=zE8J2Ǒ&TOP(˾ţ0nTc}9]w_a>OeIbjSϋΝc60 LJ`-ec2eǣfm],9w'ns6j[Hǣ+dS_bm\QN;3ìl4* i)¢7Az$||kuy F#A{I->"2o 1/$-QU}%HHҾfVJA%գF  0UcVdRHK{$ڥkX`((G: Gc{'P҆ x~D\m=4&X%NZWOw$s2$wp`ԳrM9q3ˆ Q|mmMqUh/i=`gKq>-bl$j=섌%w28Q\;mD8g,践eUl 2Tfefm4Hx(= GwXN/\, 냄@ x + PD{6_ :=7\ >V򩄤-7oPq;vOm6CK$y]Mf&-aK| ѱ0u}Y`2Mկ|vſ%͂Yu佑ȝ̡ѳa df)ԃr}$}8 Һ(my*ʢU/ R <_Bep 0J'2(pln%qJ $K_U~.EQ\H<m( 6Dȃ3 TtIϯoCSrqeEgU_LnL%xpC#ց]1$:gi 0qxS-4˟ B|k3cQThFUݷoqh]0sd/ ׁ:e\SCgwA":L,XǜXTF *Sj:GNahAJ}}xrg< iQzVs~=+c3Hp1@wYJ܌b7"M!+`l{Z6J*:~qۿy갾|}_Nd{u5$D|v`Q. ЄL+T_%:>&&Qn6XuȀUrڊee8' qji"@*AΘ"U_O{A++fnnqv>{Gjؗ>T㹹CD_#Z%_R59쵱ĠCÖ F+Mr09l/!!{.eoN?%'te9~]G:!F>] *10b5mG{;<˨#btH_U}pbxr{cPR SlYnx][NGYHM+Bܵ\_|.t.1iG.)l-!}Y Y<1:OVmsSvp>c/ܷ$ »wXBm5K b\SFy]s|?~sߔEй\_yX;XXD( f <|p~ /i`ekkvBbvc^ƃuTzurF|撽;G`r4o?}^rgt緼Ю]$/4>dmE2"0tؽWJzә?'8AD}1*"~O _Ftض)6n^bb6C-vFUr92 Q:I A!$f| K쯄.a}NLgEG])gK%.nC;wޕƝ"=d2ž|&P;.Ȫz(kKU":_U2BLGJ7a8R߼!S.,0jՌ_4۟W 7YE:flkOIqش CU Ozb`ĉZ_ҕ^Nֽnzl6t I >f&w5)g aIj7"ߗfi+ 4Dm³))=м0$lW3M<̀`>L`VzƟHI?Mj5ns˶WX-lOҲw%;ѿv%by&@("# W]lT!`޿cqG?u\!s!7UDk%\͒,`_{.E8aU@z9 q'"k\*=cY{^$2DƺZVI]W,b耤^ϰQ2)8F)i՛mb \Oxt.Û>nL,oL[ڈPP>LBd%d ){g 1QYOK,Q<]x ET̞C."-b5qfzzYz [$(w/MeH7M94{R3upsᗟ$h+5vr_x<<6!uM)i_8 f{>V8>;1N$?xt6`=b4ȉ_C}mss@P!_ / ֍'/{F8uK_Xޥz+ne3s6]ol+";qG`b݉bGj貍u6BRjMPd#b6zf#Vq?kWJs YIqg%pm*\ .WON%3U}gTH aKMCY YyC=?F1vAew%rWi J9 ؽ>@C#c&Ԛbm|ky/ ߳!䦫.? _*LKav(n{Y• ?f%m=~c,/AĀߣ;.l`E+kv-/CH8ذm̡Lsϕ.z meJWEYVHfibηehY⮜[U5`2 S{{'Vzqʬ+S<\b4.5& agxa?݃:6ɋ<H|o .NͅuIě| qC q'3qzbP`/ g便q o[6=-}A,_F7]nR~.-ImQJbEJf1oB` BOrbX'yb+%x䊗 _'bb*sk=PnaC+H5 ;QHj$mĎxrZmte=ezݦ~1&ۢ/sKUcR/ Ja9.HA3}ܣydxyJb8c^k\[& HД]x4HãW9Z*,iᵉpt(p  9{t%$7DwA! .$Qo9X%lg"Kl1(Z9*}{', dq_=]̲Yu:a[-l+X  A"24”ŜxgGC7̗1}ݾMLJwαstnU\<Nj$X7 =\HL}E)9ǯ^?^gHd~l$pQXEN⾬>|GJQZ.TTNc'r B/:{$Hd6*5Hvwu#?R:t8o ޷?ݡEи Eוjsc3W q0aWh)MC[+F;JbF;*HKݫ%~ߊ5~yʹ} qYR 5-n!m =,h+FW"xowFwbm̜D+K,;أ?b},~Uu Cyj20O2nZ^w[r gKo? %L}H"N" -4t)p9:d۟g5;ѿ>GMCSy)мcMÍLB%9 ACvs=}O{k=WqXh퍗K~#iv #|;"ZȌRW0vcyXvMr:]xtmYtU]fJ7>^mВH ђa'ZL2u?>w٨~Kܭ<)~SFC]-K˲JGo"E9 G_PuY5"b8k*o4qL=;H88Ʌ'EQuDq;v&uHqjW3^ұ$4|4C3dGU>^Β)L] "|^=T̄UAI75zt<$/KH^G顃`wsgJ]C7x?MSYXX'R'A_?A;-W[e뾘.',_n{(O:j, щhitCӕ"w+p4 OP8Ypf%O҅>x c/*[v|QXPZ)vhȋKP‘s#̷vFA_ yS7aI?YV}ߍٚ%D(O2]YwPS!=bX)C`@WLIR_5M9>Kх8okU7):9 z$Q0%]UA-^u`y[\¿t:]X[,܎+"ϫAX[jj[/H; =CÀZb 0, VY.+I[1v.ª}o]G*Zyq>IH`z4.4ON (KC%eWY,YT.ؼ/:^:ֹ@l s$ Z Ͷ3~D竎; V_}׻ӿ8xG*|.ڴ $oqa&ic*mTK2 +mW}U(܊Ug6V(r KZiB-Y%֕U]aJw&CIO8P~vۗvx5'"i̱4>Nf9`Ғ<:ŲAf F!% NF)CYe%j uoˊNyMg IYlګэ9nHLKI >ϑb7Ypת/]LN0yjJLl-gJwLӵ`nϢӐؤY ƍ9Y؁eL1T4P;lF7+ $ɡ2):]JGɤ٥FH>]3S̯89% >ڻ`Nc蕝n(qozm!y$H_&qUd' BJ,n)>EӫxeE?{E(P,q ?X$ͷew(b77檘VgL3ȃ֤sox7Q@mE7r% ;?)iIKJQE!+-X^"w})sU1"'/ƱX{1W?G^mn$}^uYbRԃ>;o5b u\U0xT:l&/6(>~?ygRmuޭ;D:=t,HN+a ma>j c9n"oBJU2ap&}V#3N^+sw"T L(4ϘjģVRÌ!}kR,pVGe4l_L[sj.%O#Aii-aqrPޘy®B}uվl~Yߺk9"  X8[w$hdS m[co5?_'e9v2AeGO[w<($UxJ}{|#d4x.+r;u\*C֦2\^Tu&uctc26$=zm]/t>'^%V-1Te,`"iðVaᬋ BFL8{bWDXVTL * Xr0}kWO531^1SƘ:ڳ&xBX(rzD#0 GiΖ pUW&H:$+8~p/ӲδBYbB_Fuu6 80aŊ=,=O/3 0u7}XgmeRQK5/m;u׵9Y̒nc:߫g ȼAgqNN%$m7m/cLlUuۈcgt\m+_qH\%Y"Ds ;cZXc#ίw~_G3 zU}O]q/+d]@38=Y{268 S%0ܤ]4\CGu2'lM~cC//lLiy(㩏,əysx_Qaum4[K28sFVJt+',Pe"HLJE;<ܽa!M#ee#z=7[}P\Eȫ7O+H]EA M? Iӵ˾Ctyi׈t=H)x)P @ E5Jݗ@8OOW~ijTuWe㲸փr_ͺ>zG]8&X%[H`ɋBa^mup3>v:kBw׮N:菘T/XcHA6áXu%QEgKRh 䱃>z'9HNy['VBxPZ >[Z\%g2uVT]Iܕ&&^J*|dk6>`w٫2_}\i-g,^~Јʑ"עk]r10u72|yl ȕ%,wz (nٚBZN~] ?3>R'Xݐ qmk_ g &.f;\si2؋Q%ݸD '0ٖx=N~2[ٮEnM[ձӏu'(9lD%1ʰEhAfkoLKs;rk^Dʚ; ̲0gH=r͆?󝳟XM鹅s*mY4PuYL*wm|űk wdT_ #pRrgWY\л䍅* i=YF ͜/QNəv@/X-Ȁ*S-|z *|wm1?MR7uOIR!7ת4 #@W#yR턓SxV㘟a/eSze)%+ pNN֘X)hg$Em`c,^ޖ{n8յ6V^Vhden\fdyX,WZI[HJV[{ZܛG1 VYHYI$Th۷&7j@yvÝY=]O5_UU׺LƨrsdC(%uCM1Q/4ɂ^|aQUi9LK'sY׫y]-9| ʟ%Maw1jx@=fȲ+'+{BO^h8H.eqm9\%5DA.3^:-$>P07cR]ey=F]RuܑQ+"=@ç zyGOav * ,|e )f nsĺfۑ TZ46|tI%,=y>9h}&#F[WQ;ieq_5ԕuKj90cT7"cm-.yq"d+Sf$"vkJ"E 'dSk5. }-_Z+_-/sv.c_fmk'(RXwΜFƇ;z4V!@&fJBi)WN[(Si$xnX+.YDT*!vp :G@\F DMCUxEheЏK-EVXV "هV6$aDDgȾe(,Zk>.T: $Y*^Z։[.Gpmq<é|7Y)<tm)+.v(^ǜu"ޙoY>ߌ탕v($8XA"#>THUV?0Fr-&@UIVƢ"7G hp|P)`M`xƮ%/ۯs?k!KEY UhNLMbr*IvAg*~BJѶr"W>R2*I:/WMZg9e[åIVB)./;bɓÓ85F0Uț}b_6-ΝfۦR鰵(1?yL0# Xw#7QhQeȶV]WPȃKk,۾1".߮a'Ct"Ѐ4=I8S;``r> ?VϿ^r(~h\.qg{@ q+LbADVXni@6)'RYGxU]&NsE.FJORiF%5~}h)KXS0tHL|$.#H3:KI.OoSːWeΫ*OxĔ2u. `K%`ZE1- y,#w{}>]ɷܑ_nxbofz+*CEa/ɎPx=TS=ۓ ;cܼR2+ĥi 3MEufAQGN/Ѓ PPɻv^4߅UoH㪗 }˺d-*73FAbJT>dq(ZܡO /W-ߌoj*GL5|8QZ—D=yky>hfeD}`sEہTK;u8JX/Ku{w@k/ؗåVb>* sF 栏5O A;E\Tg(rs>mqXU cY[y"z{б#LB*vR@uyǩb]g?0Ǎ)x^6_ōھ0bH TKV-g48im?aFF;2M̞i !7a,-yƕMuQF-ODt1dμ<96}D/ॵ^)rߧMқ/Iя5Cu,%BO#Akf@?lZI;x/bZ\[\xl_W(w?Tx9_<$#%CƊmLPDzA*tlay<3Pw&P-$xKTZB@i  <JX=@T+'5X{ѹ>Lg-}J:Х<*yTkbus!.ʮrP\<($-N9q$ ;xɁLٖ1&Xh6CQ_חC&`*ɯ#X8@ӸIaag@`: _hZJcEKuļa|"'g/ޔ>=H49)Q0 q=ތ9/`Q-DU z~N|HScko<#LiK){x16?;wIt94nZH.Wx:ƾq {mev>~kG7MO۾.|HU_3Q%Z 'Ε3T#{ؘgTzPG!1k}0~|ひM">ޔu씨x^.hSW*c]\se$B1 {oM\po0o UpTD}[jZq!9oV[~`4yNZr^'W/p'je]KtphA7>rYz w%.%OcV7nw7?}^UǃRkPҐJtسxt]ǎ|4LJE7AX(>7hsy\Q ?qݵQ6NHWi' B'D 4@8?Y\X9izҏꮰ- ?4S͇ō0 9~H֩`z#s(bULs>\uÉ~:CJ7)rܜ[0u]v&_c;)̐r ̒>$}ͲK\kVQIB⯼0sԙM64/R)s4k$r]GkT-bcҮk\ ;+I/o>nb9<߮m Twx7}yTj[q+6VhDNd0{#1+ G0ǚ8?q=wY`R\%wK*nFiozÖ.$n8aݥͱL1Al+@fcOڕ|\V_o}m躩ʼ,/*^,d#FI`Bo9\k;CB7pz*}u?ފgQ]"X4!14?.RKE`qT jΔI{SD@)!c+LaL+3EICu?+ʡtu^e%6m]%8p(!;(?tv{ys3cnNdo5OӽXE\-rĮBXAkqìi)v{ Zy^k=[nˌL I_@Ӟd2 WR!>' Kl @`On OrgKPdU'oZE /M9y7ʪkdsIM9r 2PLFʀ2,9~ƱܷX-Oqp;B~'g6?X~qE-)=|Q:+[9{ݞOx}6}D!1uѧMa, Y7 k"ΰs\-RX|Ja724mlr'bkiRA)< 1c(o#ƗhFx'&Jeb|lzd`N&+9O~6o.t]b>WbU)#%\o}177RZ  # 7 HRn_aQe'\ɪw~5䷰X뗝,K ;[Ԥ Roi,IZ\W7&-cIOccۑm3Sh7;6+*/Qj ncF?ຢ~j ,:M].OC>L=5zdf(DmEIZm+Zv ޽bLz>_۪hOa2Zbj;-cGxk9lDQ_`OZ]׹fVRSjܭP2˪R` i7O$ɏ3y9Bs3^"`d$HѷT 42 5T {U %]YgaվnVe^.FmRD=8Qa Ur9o5)|WfOsUwU84s34u1d7%FUK-ᨆ:z%r 8i$}9/لfٶzieDx{秬jaR.UF$kGk6F{~3#_^Ցp!$G :q\TNema0]C[qm!m悦Hqގw:H,Ѳ[{_)7=Cǣr喵Q{N=o [s*˦+.EVQC#e=B,6E -?pY@f s`cׄI{'bt>xtY8YwBQ*T$RhJgÕÿcrRp[䁿}biwk`[=h/߿IEMNjIFb'| Ҭ=u ʫ D;&RqQ)]pu&m`u7<-P8Xϋd=mu 3Ti}Ţ6HƩeb(R-YZ:z,> J1e2c\|=ѬSqjgH: |M,7Oԗl߷պcwYL)Xk9ޘɈBf }h90)&zڷx㌎I%_DUEsoFm2!,[z gJ?BjI~ٿ'Ż??, #wbz]@`A7 ,iA5gx^m%}Sқk]$=R/(keKkە"p/8A5|Pn@ݎij!xGhgē+ ZIJ&qxFnCer_h+6b'^:~S}=BG8W|H9l˷۬\*j&իJBwcWo&vp@ 1t2kyy~uU0yݒ/}5DY fn3k33,%ܔב*dw*~ޟ Yn)U7q#qShlÐkIm=rVΖ3vvxa.25{ tEat:(5õo̤%;E-)ւ FhDȗa̷ǿ}EnȬڗ}LOwr6V],ˀ'`M.16KY(5צ3F7:TB9\xS&YbdĀXjx㩟_7-erRO`"ײ.CKenG%ƄU@IOL`@U5{듲[7ahM]!Ez=%b |ie܁fژ,~K9J~KAGIx´oRw|JD Ab~G=H16Np˻"vώE>qoo[k*V]r=kiZLkI@l055I w[IeiƱ*v?n\.{b9o"IC>\Ԩv-'J}^Nz\ע?oX{B/ Y1枈LPfiϐ^O5̛ݬ_|2ӭ O8,D&븘$ >Z=gA z2(L\p!N:DATr? e(gt+aW'wBqƚ9K)j‰25F~0x/dmD& D)Վa[p27RS1T26b?%%iM;E6sw3TS]by`?~PȚ!mE x6!(N.O'4;&=֟ 5~G#2y:s;ss"h?vj9K:.YEmXw gHq\0b>y?-=6\avkwq?a."J9_K,nt9q 3`] f9&4}[}YMyW9=pw7Oi kr]"2A׶43 U%E3Ug$Q7|fEp7>UqW?薱JY\_{X揎:V%V GlPGc._Kцx_+WXV}e(,Lrpʽ[Mi dP(J)%F۽98}{-t}]֌xSZdXK­mS,ܢ=Xkg.]s\L'ǁ1KfZc0QFg {R2Pejn HaIMa5>LpW8?D(jL~KxӄߥRbk^b> %ɨhDK x8MmI48K~Gܧ C)%*]ː{Z*iy{S)6^güaM|@ٸm4[}Ǜ\,]s\I|zJ wlZ 'm*T!#=J3Iv/\jjŧ(>BdԾC|9mR""p9Ioñq\ʮ.z.\+Xp˥l"#/q Y;IUCgZ%;e\%r0SU!C|ưX>CAL9a?#Ύ]uW 꺗L|L Oaxb?ad~,aY$G%j[0 8K!ӈS5+ Atmte`⩏ ճIJߥ~󾹸\]k}&%|u|Fߤ&`.NI=f\p ?x(=ѧ.tWVIXya DPv_ONXZ?%|M_4?`◸c_0>Kt(yDqd6$&wXZkk_"È>\HBÑpǘN|p`qT!PHm);`i1]Kg{_=9^-WU:rYP@XT/ c$5ea~?ǿf4F"9  n/<,J#uWgUkp7C ?b u\g$Q/ WHGmF T{rf덏Ԟ採,E$$_'0ڟLQ2ڽq8#9cQ佩ɂ]X‹&)^2 XP?LU%0~˚{Wh&JF\D< ng/d, 36GdaNev2Z]s3_W)h{Gs8wBG$OhwpY/]'צt @1e:Ij]M h㣶`7;`uÝ:Ǵ+'/-;7psE{QUd-qO*x^JT8qG?Jڐ~(C`f1Y`':8=UvVp*z><`u~eZy~ʪX_物V~&^v8 C[1.@ihQP|HÎnq;{2_ZfRkO=o?sSH\,J:A:CK lU;!;0ILu)[5N h̡]IjsjYmq9$)qC IPf$_XJWPWO=z/^4zܻi:7R2*~jFrHKP /ppFˌLOBd~lк( UDMO: TϸNѦ nle(&M $)aiexbŰ|YS՗r)ޚxѶA!3nL^Ts%=e(M?6EM݉iNx)X,tI]Ӈ] ,yc|(UJpg.<,6n̗۲ KR#O| PxI̢)PNK9;R.dɦ_ٲĒb+ F۵6i-9n|yI!b06;6Ͱo)~I2jOU V/!*d\g(IIJOLpb*+RVؖy<"7TUXLK YJ>pP Lt5F?>JIWMvzv!b6yx&OR(s]G/%|\vU3aE6^&=4V&6@`Q\W,l٘`{/+0HopxN#L47s ~뜔R~0OYYD@$Џ!rLL!LLLѹ9u%[.c#K)R313s es\;m T \<58L,kc Z@3dS%n<&]B:ٯ̺6=9R:+H;F-=gj&IliyoʹL [ςh@@eC1Uغj¬?؁ŝ>@6˥Szi\DFWۛIq]cЋAd@;щ_;Ud*mŦ>9{+mdɢ%0iUΑfX}L..{TY]g" #F;Ȏ?zIH%%\k`Y_Ml_Aw_$!I.ª$:Ԫ>""f#?0~XmێQ\yok,)DE/"K-HEIf @`JoIN/z^VmF' 'YpCPHe\N&1eAQ^ e1(8 s]2@DdLI.4`IKb^Op_VpLSor7)>X¸\!kʍNq's륿.celX̟2.=ZRUjaC@c.3 :$%\zMs׸'.UXqj9ٷ*'76>\c?P=sZJa+IF侘]ad0q, %9Ldi~׊&N"R'67Y`jFx}<3LnR9,r6 ˜N(\av̑ w*%o8gdIJ ^qb]ڦ;|hA wNiweo.,nn-t?ƻ?yoVs`v|tnX(痐7]0벰~|#lCDqZ[Ir|Bs wY%8!cWg;"[a_t]T؂*i‘A8xzX~};#>9^#HKSL'μc<Óji5%?\VYɄ?rcb}ϣs(ǫw{W)FWY\N~-r36{A[]gl0 s*;C[-$q>IG?ٵܢׅ e REi fLI Ic|}1ͷ~hE>Y\ YW_O-_▜H6tT" Ym?HO,HM"cϘ#m%E#Ǻd@ 2z0-4y=A|-<ѫ"W`&=3åێDX'4s!Q^",gZW[ 5nR>0ؼmg[6U{Kb3!g83KƑA>ߋǫ4cN9Ӕu4Vje!+7qM%tg*cVvY ^ ^P"îeI"FpC+ gW?1W\ekR(nKkg! eݕ}4}QlK.41OwD(xJ0>жCO̸fsS5m\?.[Uh ^KbTߎ_&Ġ, 4OǾC&AM_ォ*DkK_dUQ7и\KrȤ aO! v]$#j2po۾ +٬b =I3}䉖m,/M!k)D!>i6䘍Z|AѰ:`+G;@ش8.%E{gdQkFbҰ@>v &RM? Dyb%F3|0p?#r1_\Aܴ|TdRoL^J6:ϡ4 fz-{_Q.>S]?~ٽ}_; Z?dYG[@1Gǰol)P!OcYy`}HQ=eH8ڲ+.1ْ.m] ~7W$|ڨʀa8X-s̸i䷂Kr"9iUQ5l),ot7AE![ΈbڀR4^sjoc|zd2_d5MQ8w/0Ul }pf5>__&|.gw۸/ R)Ǫ^t ]]neQxlS$sWZd֓=6Q:"UU:umG7Orsij.+Z)Wn)fws e0ѽƂQ`4xE8"vSYYO/Y}T_gc1v(6Ʋ^"~pf@`Z6OXm[.^6=>"潺1]q+9__HiNYCUpg(o5oV_WKO _x}Mm7n #:x2c(`qZޘwi!#X;O6~ZX"U>-G'8ʟ>F|mU_nU{݋xv#W*цD1\$K l=WA`Cx 믑n6u9JR2Ӳ ڣX?p z4GӸ͆XB1rM_a~N1 3=ACvՉXݻ1*)~ؽo>*.MezvSo}%i˾_ܗ ^ḘmROAE bCɹ2b s4*H!QLz{9T\2$k.׿y| (.AKIlmURo-o`ofwc3` ֜,/l^||iI aeY3.6b6~,yyc ux#g ME cax_Uu yez) ϭ:Nꘈ׫^.e{x'~18&2qh-6^L itM̲d'"5*4u뒷.#xoO%'^`ll3 lT8<k9;& T8e"%s@x-mKayXQƲ2U \ B֥+h`ݖOzT Ev]'~:Vw]QIe,؎֩f{Hzؐ:f,_>̗"c/Ŕ) @3m%>J.͡DkەFw$@CUfjDŲQMJ(OeLazwhDZIcT#ǧPUoM+5_땽<@iO&3z"}7Ϛg3bqQy,a ` ĕS F3 ܞ[,? 07AQ9M1X,oɾ?ؼD\#R&y@v(E',ky|J'e=mxL{>p22CLvcLDF EHK(ЅzG']G0TIՙ2VAS>|Y^L<""e#DOv  @{(̶}W|>%H/׷ARCz(l),ئM[pF!IEgˣ V2>6ztدR8e?UR,}S(eu(.<"K6-𒫏PF7Bo4QcB'12D?v,{܂2 E庬WG=5eldKVu=D@&.`1? HҠJ=/uL&yi eHJo"Z,}v# %ܜMo(h2)[ҍ[NI2"?!1bzHVǖ_ K0jq6u)dmO۰1R3#@&9C+Xd<ީ~5˫'E+;C8Ri r3m=4мY?g"0ň}j/ۛ(:geBѩd亯pom4EWy%lmoKP[F,$|,WAo›:Ȥ=9>|>w/ ~ّX[wJ8 A Uͩ viWp-*v wqSXo.9xQݟ_G1 įj}8]쑯- Y 6^p#ň!O^s7*RHBom;% MPru_5*q"ۀgr(~ipRY#Σ?vTeᕻJI~-h¶3HMTI5 ~t\CX]SA4?yz^M}e$ބ]z]Tb wo (K5ߔ; 3:w1AxZu*:K;C5dž3M$ˎq4c (JB SgW8t :9A/ 3v]͆oOlŚ.v@{]0K2Dm[́t黧eRU%"!vYڧ-F_ 9R/l{r{wo=GHKN;cY"y37(zw'KaKl/moYѴR7cB6Q`SU= =@4ע$MxKf[*c2c>\0a>;5E˫S&j&5IdЮO!F6ToVQ>,bj% NYOzq?:[]z.cRUhZKvU,6*niLj3aSvuQ~ŊWt{\U_qM+/k^Zffo=c9r߀S'AU*fce|Yi*qmW^Lz%Ҧ.mMS=9{,uɺ]T+0!7hMs6׹ k2pz +xs*ź? [ opы(B$X+a]ԳPWM^u[ؔ=c?|yB2OP6c"I 939jmQl[jt%CWۢ.khDNĕ9>(m`*b@gfӱġtLa |??1Ɨx,`&"X`ϟ B45"̫`} Z%:߳;7/.&q%dvCN*QRAsva rƟj亩K'*D Ɋekob<"(o[ .GPXDж[l>UtsQ̃M Dy'xx/)7.jr\;sp)V4*VXe}+Ke|EsK+5abS @aI!wqMo,_F`KTyRI v,޼qOM^^lA(+sxP^C6_9TY3A9<ު8˅/DaMn&]ঁ'9+g_lCzqZO" yVY0 *vR66E,+8 ߤEr%m0<`|V-6EmC1C7" boٖ3dpTofKr5$F֣gqnK$F-f>Y͋88Bڽ;o,R޴yؼ5f8J8GH|as tsK!o->|=_)}?`QX;%L:4Pa `:2BZ9I)+xy$sDM㈧~ukUOVH&f@|P㩨R']⮵cZ 2H^qw|%v\R6IN%I!Q@QK’%_?La~SlEh,.6~>ik0IlsM" YEl_RZk%87y=ë4Do)sbu0}YW$._!/:1V%-z!:FK@M h/OW-1y% %7~U{yX֕-+R6{JyAMOK0G<- 8#{&Tl(&MXO?L<|u?q^Pk5s{umt}ড়-Q`Nt/w} ^uH h6BwYܺŷ,s/#XIgEeWUu-AUݻJT͆$b 14C9IUREhW"&1JQKø=Eٽ6;.;mmoX7ct5'+S&e''6w]Z$ mr,PnW~:Bߴާ?~0).y> GA8% yKC&!}Sgc6^yw%K6.6VՇz[eL U<ؖGZׯ"R,cs({g0q+}yT65/IE%V=]8t0~ AHzBVbtt؞*Hήa$8*L.+!  \/ۯ+?X]SU%.~K!If5p&}0f%+f7K<]-8O?-;$7Q ݇vFɗXqǥ_ދ=_1$B>$[dOnH!Wͥa͟<^kcbl~_n7m]0Mܓ;λf(okhp.̃,icN;+.E˱+JO將J@x>OUi6Z럫n_Ci7u_ܻ؇+=sa ΁3O^R!͛DI( Df(fKǓ3sӇVYUC|1܇9??zL2%Z<]=/05$݇PIq8$MlE%)r!Dު4?zrtb&`ԯ`FX ƲrKw$]T o)b&Iܕ5fBO,O/ؤ%z;] r Ț珍R>Fp&Μ:gfJa-l":?V(XN&`!"npƇ/VcM,\9u3m?5) jt{{9'.,Rs9JuKdVůPy 6Yc:%&.kXP`a*r{=%v "lAɇ$&1sҟAbq4s.pݩi:~/2ol` ޔI -U_Q'YZ˴SvC@n{z/ՒRVMS^WHcu,P$h.8j݀e8+ٍWtIjŽ>,j0WDHq}Mxܫa54w& 5Q7X>֝ċxpLݮz+ooov0Y2EuFfLOUžat~] HU^JHUp$|Ǻ5{cCԋ:k)<}BvS A,yҗ8x+ֻ>ݟٵ,F.taj긒a!EAh6؛:jJko1J8ryɹGN}&m iL˺kP f̢i Ʊg_SŘ?@Lӫy=]kh{;ׂ=zOfS|>gs>=_tj|N~ Gj['/q:VdM9سu}I[Ȁ=V51۵+B>5uP\L~CHNLګY:1޻=6V`Tnnblj8!R4p+J"ʿꝸ#_+{ $ddioC$H@|'%XR+1OU-;10!`?60sl#ƂjѴ5pCO/^_?A~Z&X;t#i;Jol1m-o,)`khR]gk:Di0%|[NQXv`oÝ;3^B.dz+i%׳i/p>=(Ev9S)bHxܶAЭo}Gm R ]x:"a3}fS_f~mln7됽O>8f\{8>YD4/yV~O~ؔo'wոeWUwطdgJ ${6ULluac I~A/_n]~L6]oR堳[190a % õ>>`</,u$:P*mjQqτ6G!%:~@\ L""!((RMNe" '>R9%oʅ1I]k}bz䋋'/GQ\*vVrC~R^1+(0wr8[38´<{84'ߵe.j1L6tu\%X@rmZ/S5Q!I/NE 5{o͝ʥ>Hf x~.G3~v0 y!h~7E{9HXuJ |M Nf$H4ע֊\|ky\? S)_ȥFζ*-uA` qmTQMt7t.)`RT<}yv%rnp VcX\@*bյϨ'Yv6+`]M2m45#P$6p&?M{]Da\_*EdYDL^xD[ؒ4C,nAeQ'v8BԧʻpZ/A#,nU{Y"J2EbLp̸!r@*EHݚ9tt*~ U8}e"b0X[ΔEFPn7S#Ҥ&OF}}/taMZFHyy3ctk{2';ȕh[#M.آا{cQ|:@A*hxmˍ1^M4"l}7]Tuܙɹb~2n1J<˺†HDc(QnX`A2ȑEY4$%0C<_Yװ/6V}9쩀ir(3PK`ψӞ=pDqz{4/ק[Iz.$VR3ߟm~^//v+SXU aKba0'q w4?~P"Qɋ]9^ɚTqd/qN2XabK^~wZ~R'],%}ئc@Uiލq8rWl9Q;U t}[S"꫒|&r,[yK-.9/'MgLZ_ GqXs-d[>{@jʻ{ٮ[ޚ9ƣ|-USuku!5a J|.6[;@hvsRμlkGɏvsf}kkyEql̎N"<3#7\i+Xp$)p|&|Gh2?KkR$9&:o QDLIo!u<7fk500 Se$YW͓R$IUIv&6axH=<+gtZcc]'l+~rظvҺMR,bH[ Ml8=dj9awKY7d=V7G0BMw8?» b,khW"TjtWs7s|0_;>fS70.FvZb[LٻJ+^Q' VwIe}K;Z=*e/[Z`Hi޲Y)@HOX$o;˦+ L07XK=`re)>*q/V_"b [FC~Xef'.y_^ZwZMfWTjfFO69 6L[ǿ4'8~ l]PAM"`Ҵs[<"j?.Tԉ?'wlqrfth"@u;Φy]DR ޻qJAh(u(桃 wmk:WRo++5'(^Lb.cODZ|.Ims :bw&q!)bo[$'hڣôxϧ AXХ.c[\=fu+}l\tB5MI bԐ^ﰿΟ9ury=uP^䏾>G'fIz9g;,nr\r2 d^ncj'^Ğ^Ɓճq~2z7LGG!^P_Kj^)l|i߇ߛǟrlޫJЕ{X:N9Aiӄ; zpS{?jc:7-k^]J|q(K`FGZ[`F%Z0ےE='vo^AدX]\y nƳ9sxYZҗM\, zC!1Cmd!ӾvA6:Q/o[7ED>S.B;|vҽ 3S:xRiP:7Q2 dLƵd Fe>Cn-^:a%tB}+)\~/&oN:t`w{J#\]+?`%E#;b)(b,`BbS{l_l,kđbj?p0K/o0x.[uJqks䥸:R2r8L6PzDiI 0YS /2ٸE " \G, 0(쎇o[Bd]} Gk9a-0-J;؉GY9omV`|O?leC~ #b$/A&Ns[ڭO7 cи!LKp IT(^o0'LdU skXsg&9Hjr ~ˎ׉Q˿p&6U.nYM+w6+AWO~8Kbm+)zs9@Peşakq7[YVk/Vdy[ղ+3BCQi; 6+g􀣋>A cK-kFO]G'*Zg0ۨj@X}}E"~}#( L{~koqm.aE5>HJg%jx~oHnyXIWA@leΡ@@ZqO?*<̛[YԗbkU7q!@93䀠ØW8\>nܟVK5\bey}1yXח7UUN0haO9A27jy`yq,vՄIDUdWʛţ  ~AGN'dn\}{nd~, İY=yaaXv]vكe}L8匒ĔTU_N)YUťXld).!|*d3|Ӕԋ9ʨ5W D'k.d^j3!5#תnqwI5RE`od:o0 "wtTaCkt6k]dܷ`yWb$B&&M[EF>Ly9c e~TFszz^1xPR՗$OWUk$X n͟=yz -^_{G<.c2ӟE~/oG,0It`g;UuV\ZLR5F ڍCYh]p+P鮤(޻!I<EV^ZtylŪDN;z<@"2jbTxZx &]2cSNW0mA25~rs<e{V\?{YH"9\ ,rp9#8YY|N99@gl=7?( ?)e!QI?suF~3^̄F&FƬЪJ'c0e94G{q-S."[[B?ޓ 1k}c3˱`#t+Lʩ2m[Gr"C,~᲎jʯDX_Z/[c,W+:Yz;I4m3Ua oMȲS o.TQnj?2\OJ /RgqIoZ9Grl 7meip39E=K״b fg(1?$gr[y\XkuyaLЋDѴrX2Uщ#T" f9{kK@ :B4,z3v櫠s%V?rKDv3,oOPRLΎxqVtJl:Lߕ%rjUmֶPe%dELp T9(L20jB1XaNSD8_9-P iMyZ[M`*D/ ֬QwYa$)uϓʬNbh+GW]<Ɖb5=aojIн %qdR3ib%cƫH//8kEr.<{۴idiRkgkҥJ`xzu<εBh]L}?:&UU}9q_+2KL Ge"{sn> ɻʴ5 ="|t1۳vmY]]d1þ90"f8 $iv夹Ҏ,}'m %UG:-rv|~^LӍѬ\] = i C(TV.f|*ܜ]lڭ:AbyWK5/'uG(Ŷfg$ebׄ|>D<D>Oeu:%a7"5 _Wgߟ&FE#0uX0d i#ه&6y7?*$w?"MpwwW=X]\p*P_qJNuS6/s,@^vp9p⍓q\z?O>np]\9mS*/qU͡Źmğ ~^F_8A^ř͈Hĩmr:% Rzݷj:uS<:O;YPr\RObډ2ggӾkvVF\H'>'hc|G.(5q;ߘVġª1֧>V$oEiCrgTp,\4F2f2qgClFCֿ:q6/P z&E2T٬{`~5K*}b=V2lLAK-9ocIA'4xY}O=2d9n\%9'GtT젟6+/ g;h]E߻c~3JaU`d<*X~m".v=rUHiYtBL#1, nrwmq lʮyIǿ&/x8ɷ.i"Y!ʢ ZQCh0kNHNFz76,I:[NJ<:ܑ9I_ObV١yٽjX83prq7:x#-l<'{ SQ77'.%yab/2_WYዢ.c^F]e6HdiG`s )0p$eG(U2.uBV< H*J5vˣ=mYfG ,B& ř86e37o4a)ȓW KA[ˏ%e[K%SRC`n-mkIr9C[(9OLU 5OA",/n]q)Bqvʰ%1RA7`~ϊ yO+_aQrΨ,*:OjnϦo=ީMR*pc9 m %R5Xm?\\CWn7aweU>V G:i758G83U#69"*}>2^FyC_y50b-yad :HApjdC<)nhΔؾRs/X)U_֝s#5~m1S>lth\u Y|Fd m PVam@YS)㣸@'CPHjW6b׶ 3x2b"+w+ 8 .1>1tO^$j!ϘΩ,ϡRWe̶/M'DXFrxXͺ(P&dx{#je\sz˽6(`#G^lˎƚoW旨'?0.I©\Ml,o\ɌkbP#aqF0\uEV^XWozQ,.: ALq9Y^O_ۗ ~Ab#<9T֘/QJr3uuu= |yJ#~ k^g"j.y!tSMF+:zGZ/.8  rvJ^ -aYTnm⤞ [j#9&|Stc ղ*YNJOR%b|$TiL[|VUYD~5Mk [A%ݚ+/'ZHz냹 =<+<Үv Zϥb8-,S>7x{E,QRɛڧҗǪXUQ[!qűA-JVߒ3=}t,3Qʐf&SNuTuqu__Vm4V::N`)2'l0W2̱(^щ{ q8q Ĝ!ئ$Q.Mhbg8 3̈f7;)>MCdYA|^uL_dmo<V8 F'Bϖrpd)SwŸ? ˿t,&+ˤ:%)e_QsAƣ13$f $Obe:0'Pԇ9e%[K a+-ަ^ @^#~@NFf[ O/ 1]ΒdSVIR0;TT[40ː2..F_ I膟SEį~eS\j/$A5A`\u&9ك.}x(n, 6vn7pvYr4 l%T5şpB.Gf%!fN0ىѵ~?b7a`IE\~cq7o;RI OǺ#G2sTN!X,Wĥz(kU vD>EЁR6,U';-=}QUa0.'m4%G5 yxp}F\J$ZWn|J9~d,uϭs3ܞ0=QP(7@p<G~3'KZפ@A*eToɏ}Kqۓ9_Ey&~ ul=ͦFTB3ւAtci}xD,9h\jɇU^}1U$;+>%#Yi.x!:jdfߦ eO맶~HVgp⠪ȪOȶh˩N*Dž 5@bMD̔ aC?,)~Iϙ~÷Z'3ɝ[w%{TLoL{ٓs 2˅ `a2 R}o0z.nJ+;!&U2~:p(|71ga^gԉRvWgLG,<Y f=JDM$<2K*sM\1-}:"ҟ4 +x;4)+Ѕx84zZ[1V6̛4ְ9e9$γgurWKPe%DtvsUӈW͉`r$67% DQ:PEJ *K9H8Ik.kTGsiPcaIߜ)2F$J:^%zALIiZ 73Uo @ 4JBQV(nʐ !Ky^fa4npm*n3JLEј#7[v&`\K)!|$8ɊMƣwt NY'qt:kjb/ݧ5gK\\Ž:~#3 ;`o![@_.?+byQ՗ͽl.dTوt 8fzdlCx'ټq]奋uoMYIDJV{r@bzLvud48X 떋G_08EbI#e> xD[W6M;zr&]qv? ?0f fLA<<0.KiKynq! r# LP0M: }zP?^^yZ6MY_bcm%+|-R;n]9TѫS#b;/NQTq V+>9 ]|&Y+Llʶ+KC[.ŸC9&kFMb2sDSǒ~ǥ*q ,.Mjӵ=џ~/Cu i<!;t_Tʂԡ ZfP.6g&?pŊ@cf)ёcg3/աs=Y\ŵ|7tێ cn:K|˫rZY޻bP`+(Foߤ[*ؼKfتg_M>Վz*|~:}9Wju&^JVkֶyitV#qLL΋3%`\.~%I'TZp).gRKyXhW9lDlX*|[-m`'{8hE-ޑ%0#J{O w(K&QXT._ee"T˅`DkCӶ@3^w2j2zmGާŹ/,.nd˦YnjZ4ҕ1/w̸r0=ɭ 2-sҽZ7HcOK"$[,K(1}1!'S`89>fY5ŋ5K,}Y5IG&bOaz euO25nM\|DB-I \] ~`!?RC2c!&t:R:Ew]rܑuoNfk3 ,zC H~\@Ta";d r0i:"ʳ6% h) {YIo^RM"uPzW%R Prκ5 EWNw+%6v0UqVdyN >ac/ >բ z>lx+֖ՇS#S)~76Q/{ts*SίC2al(?rڬ4!jբ_@X-NEAG@d8hgd*:k|?3y_Th,n˗XZӕsf+cZ_K%/C&2|bb{>7r< nWe[JjmV Cpݝ:/^ma;?7^_ŏ9-˼)ɐ21SvthYB6;9i ƷotJoEQerT]љӕXlFX]x dC']=jcF9+=֪h!rAL&<~c-ě ʘ=.!+bm0;p.˹[δ^)U ʚ"BzI>gś i0ݶ۳%Ȑ#Bqm屾Oypv9׮"񾰯sOkd5lp 3N *\^ǵR#RjvQw)'7;S*@gv>N&N yHCR EaA;?s}]_j:.pLL*LbqZQ=/`сqcz֏uK ^~"?+Fv,عձo2/Hm}Wq++[tqЊWa#37=Y{z!4sU@&8@UXP?SVR!RX%pXDOxspy{͝leJI2ﰣB;[oTQMS(A " K[hԐ$/RcЗ\`0CR? Hhi r᧚yʇ6|Zjr4:
˭nҾC:&6qrM+`ٍ29ݧ!Lµ7]{f|Ŧ]՟\խ_rcya)E `e}+L<'Ŋg- Ţ{Y\ܓ.~e<,o])7mmE!p%$`nł3+>bTۺ(vNTQ?jQ4R_1ZُHB_ `JOoP9>wD7I y5qSHH& 7r3 /a)y=${Ȩ[Md$cqϒ p hn-?X4^wx{l)BAX*PLP3yc)%% үZ,ǚ)ǟzqku=Lp>$-!7_W5=. >Rᘧp+ I%k@, }ܮU)PUWeYL2+B# =@cYz`{LyT3$B\sYnAs~߳.~߇Ͼ=żjz̻{h܄@YAԞkd^kC\8W0ѿb<sfو3[-D[p/HT"rM 938i|}nk]Ï@$륮$<mxe#l 'w ^&rh핐esSxATf{{&ΉTkL%;1dᩔei_~0M]^\Y''ft*-tqeR_z2܆^\~VWrO|#g.dieӖwdF}2P*"MBIE=v*YGD7 qO\B`xѮ4 ?^um]$i|BG@Gwk:JK1*% B0FI`9} ! y64 o=~73q1QI#[|Gs֡ &DS4%S?`y:My/#:nÊkD&Qχjr#)ٙ2}ܗxbb /0?eC<II[OG'%OѹerKu"TD oqiT"b9&ǀH&,=H¥q Z?iu+D{X<]NaP oM>w@JI!jX.9s,}Yoi(pBV<9_7*h_nZW arW6`? 7\IuY?XM`Vo]Ƨ_ς?e~IWd%ޛz;syGaYMv ' 6Cu]jFl|Si9H1Y&Kzm~>q9D4ܖ{#qnsHZ 8'DZ$@vUp];ھIGzubihc[Ǧ`z.sw+ow E䴂6@Q<ZqP)әwXZp)?=)ԇE Yu("aXpg-͆RJ[D8颎 *l ;;7M_(fۗQvxt*9!]pΦ {Qt6(ۥx!-TEiq|`6A-ta>d[l泂Z-N*Pl,b9+d^ C6zc`b(HW88]y뗖3BZ%'f]avrX2Yl[,)0oUu|ƨG 6r0ȉ%d;9[Q`yy:+zh֡RBˬlT[+<7o@tIZhm>bz2\XVm}m@(.V:dž4cg&S-1zQoy+ecl$򚝀l<߯Aa.]{QJ2OV'>B2`+cգbXn,8GY8Sb0\to>YkIFsiK?P@Pc6³pxFܔ]-X\P0O0\_8שnطjA+{安>.#*߭qoMc>oW7Mw(yO^ pfY2 tp'-aO$}cnEbL,JooédQf%gB)?巧$}9c?rX4Wճ5??Ϻ~b:<ד榝_U~P:J*) +,qQUPb~8C,復VIg%h V@M)8c>~ۥt'H30VF"z`Џ =/mTuBK>Ƹ;%zAH%<{((avjAerېSkA<)0;+uS"v >d#YJ8>A/=lk'X$z>G?ݺL ;6B T1x~Ba)oMz-,D⅔^'?ya)ne? pw2krc??nFPϚ(6 #s$|-Tt:uޝGǖP-p%_PqdLe9.h;s8)PSćRXKfKIѩc&&PHQr=@I~Vg$wvkڢ/FFjܜm}7z󐁠W- a \j,,$/h# MRSjq㼄3-ŔV. 'I\<_s+QF軚-p0هHmnއ,̞56PS&+]w Z(]=eS%uD a b%aaR._|um_B02YiBcUA@f d7OlA"a{'򺺜5] MDKϡ[`Ubsx  wG`8 }߫_w-~׵Y*i: }L>q#saIϪ?^=V CΛ6^L|_`la2L18~& \|8TR"2%{dXޛǣ{Ԣ$2-=855Y7Imfsֿ8Sz 6@Z YRGfIvV}(a}Y^m%ů׫l=Gx{HZsޔXdwcn8 .B!}sl+Hgi\1&Er+L_kǹJ W]Xԝpn;qrA| %~rsfu̾C]2 4 ly^q+EZ9\?~U4Mmw W ll. ^)a~[=<~jmy޵ŵa.wG~1fxg`rJ zk/I-s TKV^^b>5DgsaV{7`kF'sGn=o e̷~CJb#]+[dQK\c}g|Z}v jr)L['zlQ0'+Auƌ{d@OX5LmVݕ'Κ,toqHL9Aqku dK.,vQWdGre ȃ:y<h{լi7YcJZ64vg|?hd>| {TWCP߬5P5pvf8+cK p̀ۊlx.aV\Kx(JP2s ?[ /8%KvSol c"3oL$iC%pN6JX#2t;w$xCwqt6rY@_+eJU\a!?ڇ}].k_ A hjWcF=M ܓUfhQhaAA˱:IJV4W}Xޛh@M>,Ӑ3/O[}o1e flXW^*ytY~V , A)`ΰe%]쯫2%'8w܆qCaA+8#Bi{VoMDqǗNuݪSo^ 4]AJDL?b`xm$N'qإ<'ɀ4|}*^c-]md%m,d CŰߠń7x8|6aؿe`6 steukKRV̓*;6=<{|ųɮ̇S ! cJC GX?y|Vڱ9?eE5?/Ml0r^wI+Bb[@l+3.]Aqeo:" h;SH^"ټgEVv]qyc@5]T$=FT)`d\S{c\*RBwe(Xu&_Y&ž2ێm%2p-t5g!٨uiohce/-x >af)8{ž7<ܢ ēՇ2zAhfeu=ǿƳ:S-rCUcm\2tbҰp8ym _ʉ>(o8{t,qz bI=g\MVtC>_d"Ytw"7ƱQ5 P`|,O%=wHdޫ|RgzźK]_Z!&+sj t7Iqd'$16} fkhxU~c][F3V}@cAܐRZ i}mh$j$y.D ٸF?S79aC*&Ҿ ?u], Fd@@偞 +Hkb_/8 l? ~*?ex~ 6kå)G[%'`+h 6Wh=I`pz}d7uS{(/R,nƴD p@A!9Ф \K)F8c[N?LA |Oa[*_qzݦβˊ#b]a+Wpbp&C GIіs4Woi/^PnUr,)۸sCJs ~sG==)U"rny">tbyy/W~]^ub(t)f&D&/D,jF|ͱ#K?-{M~C)#YÒ|_-D+=iGb6W NߕfjH 3O7չ؈83}eCuϋV\-Yv0P!]B0w&| 5rfmH7'*-Gxk5bv%vL\};rN h#װ +T8 cbm,X9F KJ DM >vĥ9¸x>cu\)= --wmK;fR?]tӒ0]EcrӒVM[Sg%a& 抭%q!)ffW؛Q3.c#b}6,2l-&kVg/"u:d(q;μɱ]|ң)NCSNU&~p| ",~XzT]UroJ'Ĭ!nS4g;L< _F3Z^jӼ#ofi fA 2יTN4`l 1iZ0PLf2N“~N˧eE,:iBqȪ{<2͛VPyb=}Z]tbquv!ΙY_z7Z< pZv%@g0&|gG\ߦa*C{׷hE䫾Dr1 :ٓ2h3~7re8*] TG2}H0GeP ue+YKT!(U^.ff =.OҺ/R4 s~7:D>+nC:om,vd3 Z}U]o=!lzY_zn@M,R}R(UoJ8q d{!^=;E0!pG2qGzY'Fb&yl޹˥ey*Jkskx^<dDrܕ1ov']"k׏w 4i=1p|aed55%-?$vLIo ޶sO9|0qGwyx%|%B M$ME~6eq۽Ĕ!vw1S1`=69] b+F'z5r)}$C[YeMg[D ΥѲp慼FLbIsX`g[[ ZBi+>n:˛7\K\%0c^mN[u`_f]9M?,yk ֶ&F"uH悍|t ih{3}§ ͡.{sYǢJU.g'Ig_[o\-c{N4oasݛ%=B?7SW]p]~d0<9_bz8) #m<'`Zm:D ,WX5c.'r>UWAiauV{Q$ƈaܸ6/qKJ8'0Vk׉㢚χeYDxuc12'#`rX;}`#?^q"s{=-`1Eei㢑@䏳wzRb)umsyŽw.$lKOn]{(rFGp:>YT򸛦_U8Ji˪zr}Y%HERJ P[UZl`y%߂:k\m,ER Fm=6)tZ'gG[@\yBMEƚ@[?>ǰ_^IelGm?>al27=*8yUL/~TL%D*؟\,j1YR-Q b7% %  ӫ}˲lr?]K^teyi zلo3Ȼ<<=X$q%_Q3ˤ|0bd"ȩNe&>4<7]V8yS.+Kޟ1v/aT|TUUUcvҌm)bZim|p,Š-qϯ^+A%RR.}ڪnnNM\ Nʔf`%bJ)9ذnw_|#q7&S*NUff]{rc]KI6Z}+M} #ǘ#?J8( C^P_dZ)Xœ2~t ˆkxcW` #() 1:%޿Iay9(b7&1oբzFN4I-ȗSz˳3%oj㷍SOQbɜ m{ͽk<Gu~xlΚM)??var5ǥsNy꺮/'{UH+% %̵V )U. P`cSIjQ [k=u'=/bbBL ̯-6RǦ.TWNSbj~i=l5Н/޾q`W6{gZ_uU'}rwʼ!O 48|8 #K zbF=q^ A3stE {YbUwy{Eɵ5n{tRxVcj YyJ%%1F[>'3{JA -=.2Zn; ޛbQwg1"]0pUق_DEent4Ch$)y SfGG b,THJ6+x)^6& oIMrL.u ?w4*}w+\|MNo|I|g<^kI)b~cf.v2QE2gVWF^h6Z5~xA|?FN-;⻉H)Ͱ볬;Q_2nlqҏe]\ Je_10>|b›7,=NL ~0r^zOLL`)!F.uB(GGn &;^Q:L8.ZLL1y-_C_k r~o;ϘΜ_|Y¹E p0߬w٨6u 1kn /;'/g+v-]E6~hB! IbcrO۷h z Y`B.}pH/x$ΓcH#q>pc F d9Cv6[/ \vcfTUܞls"Pr?q$AuD,M]Sźq%[ST0uSNZ(e\+TF*{[,}d\5W%eW]vtd=R|y;`>vv IT4T oʌ8 v]E,25Kt/ޚ>r1!V>`@ )o0r; Ƃ67<޶E<֓v-ZO55hC7K{n?v=l0['>B{l*1!zX<]5DDgq.Rħ#3}y O8r_6ٰȕI@_$PL1[:0 }؈$n]`xWʢIL#7K+;mI܊cUKs䱿wϟ]wZ:o<+чܚBa>ә\ - t^w8vIY߭vC)t'OIAyp=r^;sJn:  b,kwXB 8aR18ŸXhѯ,Z/,n ocm'NU`-iX fs|ĵbm_W|QcߺWvѹ&V<~nJukLDAp8>or0H ,>.CL!x+('" s5՘ gY~DPy$85/ oR[ c/jIj}e^5UuɳM~+`euͮ!eg }Hg/#R[A⾲aDYLM">g[dYqm=CUl,?j@݄wV @g|_jE ~٥(zmrQe5".b,/nVqO T] 9& p.YdP ةdVj|sz-˟#{Yӕݙ,:zĚy3lRf H:_U7NZ~zQM"bӓ2( [鍓c2bP bwv/\s)(Uh6!2ë Ԅ݊kOrsWFd{Qh,{0Nr[ZU]G{emhc6NS|a[1׬j㬱!Fbxd-K*Vnu AZCr(yQQ2u}c6,}I޴BLϿĐʰKn!&0\O۔Aw4x2b<6s Y|V̟o_zqldbVh`#lQ/!Ҍ5}l-qLX\ (R͑> %E1;d@OoiIoO2fvei8ǧ3ݠ}Y)E&& ?BR`ű1SK#_lbo~G[7S8uUUquB=PLvCj"mk3&RVB)08JԵ` v$пnvS58eE?JNk\~ ct]W&>w8 y׿_ |M׈Ew$)zj$ls'FZ8t6|*ѭ-_Z1FE j4%O񢾉ԍ=sm400$Z[  |쀐ؕ4b#bw;sU\3[>݇DClA,WAM =AKĘi ;Yy;)q-jg%/,8$hF|4cEbh#HF.Y!mߛW;>8/vmDO~K&Ueam Ū)+,v#6@}wUhcga{:Jl{OԾ~c4yv"rSx S47]{I ޔfj}}z pડh~w9-mw`Kg&겕}37B;w*]JW46xY(id.NZX>v˥w;5! 1d|CI/ٙ GH/OxGeC9s2.R㲏Etu"qgd@7efo7)~d?]K}x?Oc]J=_}xxr˼?F[[n$1J%a=ux1 b}/c2NȇqQq sL?K,ҩɛ&TWE#̏kSl$N$鿱DA 'vNA'_>*4w3 A m`B˗#]ڕݥ(m+[YehI.3+Ifij}`;veaL7?ڳIu9eEFRBوa~#*3 J֦P^y%})͘ŸX\=cGv>3rd+]H,ZuF=: O<}´s7\"}N7vk3q*)&puC/06cPOTȤ!T>_jϬFCMNoe[͐<nyrf?8.$Y'ǓNW*Ě/vh~Y%WښVvb\]%ޫ=ԄZCaرQzT2zcs^יfdy(4I@&{yVZ& zsA=ic\std,1ZĽ54VȖyz&wDf} bTy!_#~|1fnT &;=zu17I˹k1=6eo˱Ev.F C 'Hr ƧbRтyvcP1U p]DH,şߜ[b;GCELȬ&v>${;&Z\nw( %i=Ј$* 鯮k:x{_F ~*/Kv!>7!iI݀t~30A.=96$o>PyuYZ-Vcݽ<0ZĠlCEfET}DP&dҢJJ 1sEHMXzdS$CQ+}0Pl ?mM^VUwwǕ_ Xcr0~O >:2#:ZOh"j.9abAɋC\/L N$_ DU91b͏?m@Ќ~n}[4|aRΌVå(&N=9'c c[hI+>3$1|WA9F_NNe7Og>70*/FbkϘF>@}#=I꿫 t\{Y]+]_?2vJ:N&`Tv'!~ ?_m^8PMI=<(9OgokUYuRŴi6 X~0`nW$|H+1KeWJRCa}Mu'< %Cߩ=Q,90TϜB $%Ɂqͫ O u>UFp9\i%ۄIx-`2:JᦝKs旪^WX#þ w$-ǢūcddlE"8[t{+&kE:eLX^gsl @.\U9c|S6m/!\Rmf5?ZNA1>*.Sx&h:nbQ{?ލ&>`&L|k3QderhØ:G4;yT0yK35:%a} ]d ub^*4R2b/j} eޕoӪp,q'[&po^F=K)v:ge%1ImXf)Vqѻ>&ˢ*ˀ픍h]fuŖ4/Y#ruqRN9aK-< ѹٳyk,-Sj *B"+:Kt!)PMnӌ|2k0h-~(HAg{u<p+e]ysg!6&睍Fg:aάqy%qsVLsF{I ^4`e#@ +#T{<,#»Oz  Z7Bjں).FychDO̒?^9崹KJU7xk0ӗYpI۬aaMY&gDz-;ReE.aui1g]$Ԑ8Ifo&C.%L);caF:k=J׏?|"S 5r)Adn$'X @ЪRQFJY9w%8{Zʛ!q(*(R=N HCI5U@mIw]];Ur\ۏ~YRܻ5'=L?@t=X{Ux&{%r19vq{3/IU~gkǺ˯-xbhukqq^ 6jsO3bumVݮ2/`5`3WVMA.^M̵f9˰?ʥ-g=6C0y]5He/Fq碿bum< C:>hh=XeyV>(0žFC~M8Sb6Xܛv׷C,g]=chwe7$S6fnb6䓠'%H)*k͸}sB7T*/ΝGb_x{LvPrA1~ϡ: 1,uIQ-qV?1a\\:ˆبȘ'|'*(鿝+@U88}s] Vel=^ ov+]\J5݅# UqejB: 8L0+q#u9kkbV]ĹV⏫ Ž &b\3?C|hzϦeWUWYZַ&j@ͼU[#qd8]6$oQ7}ڧ}0j~X}Aj:r~M_g/_5ս+İhg };l0`|mסwY;DSV][eoqJ+x.a>=?d enq 0vP0I UqtϪ}6,Wx#N9=UI{̯\|T.9| 0j e+2&ɑE;[jiWl̂6a#Rхn3jIGV+Cj^iE]_^UoFs?M Pin6*]y>#\sIߋ`iN~^k۸,ᦎ-(nygL4?8 |*. A/$Y iz o'콘Xo9 quX]Y6k6%A,Bx#G< e'b]+ݒ=2 Gehu0_տ܇p]fnpCtƩbCCU 'juF2Z~WniҁB6ѭI6#A7Mc̈́#SKGɁ%4afjbnR<:[L~SRd25q4p.[OvxJyVuNwnh<'?O +EykGk^c#sBXdU'$pܗRi֚aA#m~[OY:? +A~pg+d[H|xL K1o(iKċpܒWV j<X_4XnS,Z݊ؗ݊tcbǽk:K|TA-Z,֗h{"(e|²[!$ͮul:7 pHsl^1mSeGQI0!d8iIJb@a>U gǫ6ʢo*l/2;+˼:-K*q&q2IUFn0@iw!Q>5-ai3@w/^uxo>54Y8CCqA~X\!2${ʘ#,T⟙J"ȼR>5ϭ0\z7Lnq>,~r+Fq"vgd(.o2:srVzLA; $N7n54zY%]R#/uH/ ]_Z?}bpۓ+꼍wj(GFQ}QUNr?pn)&҅d"*ՒUFD e"|OJY:<[R /bp6nUo Y|p` w*&<&oU&I]</hwJ$%6&GBzc5 %Xxv,R c_lnͥBJn~` KFa J,C^>z@t<%PeV HVy TYC=;RxGkf' 6Xk!P&Y/|ԷDnܧg(2LR-^ykW^aڨF:Oy(9ިeUsWv9x-2tБFv9F^r`d/(VZaG^;}d]yTauqcAf>JI 6 ?=8 2$_]LKKl\e? 0hXibJX;cZȊc\6DUH鮔Z%CϪ?Eefr'ۼо;؋;Gԅn]8 i"}smWd~/lj 9;G ۃ%) ~:ԢR@*bJu]{}֎C;+?_J^e{b!F:SV󴄃+$pPx #(!.D`o.jZU%f,=26i $gݹw~7^Wup#\UM}Py{ P&Je.4^ky27GI/EgТ5E6-rY }q4 ))#x̸֛ryq̙K\F冗qwqI3ݲ3_} Zro[PN?GV/ SQ =p}X0_a'i_{q9<'µޓZo{@Ow˯uh6k 1eCƸsه":m8,uK~@-I|%EQq?m jJ&;AO/PLH\p_C߶~|g>;sH#ag5/8KնO)qi5Y _~~œ--_gWއzC7Mcθ//zn}qo8l1Tّ K喢y(?\Y20֕}G?(Ydt%rl(%vB {>Y=Ig߾xŕ嗳M,*/5oOtA1>؈ɀ JQ Z됪#|RXwlG&IfjGXg#ěܗ[E nt s?%N+ ;0ỵ^S"kE JK[ll/} 4L-iۥmfI ^eX.-Px s3sm':_g(ϕeٿ{mIQMz8#A mЕ &GdSm D0Xs:-BOO*&$hYKSf"d935m&H1m0H,Su4v(;YX"$?OIꦮ Ci7FRk)s+snagv`K,MRDC[D0<c</oOح]l.];^i'[.o0vpL< ';Ej62źwx{qo=}v?xIquJɪ#m"`ZGD oA#>Dwŕc?lj.~<KЋ}-"[5EI W)wZ1|d2=6/__GYzҧIY$ž+qܠ7BTe|_l.bo Ek(6`֍yv]*\tAeE#qHC^(c?80v9(ĵ&oDVݘ S62lmxܤ$Pٛ!yq Bиq_"C\6rVRue\e.oUMJX[J%'U0>$)|U _;}HTeQ.=%ѽ,P\ *6YAF+yP(8Ob( ^L SЍli2Q ׬0CrGRBУԑSNArΧ7G j*1ydB]/oI.SB8 jey_MhyeЬ@{ʹ d B6etbdM+:d!b%hw g  ɜşOE {K_B?2?fuw * Vpv0#}y*8I7، RG*>n]!՛i]%4c;J4[4\I.]yI2[5 8)mhnSoJcYeHwKN6?>m)w^m:wEE,ad{&u{1G?[Z>smt iN^]50488-ۖ4 $3Eɶ$>ɑZ~(PgX- U񑞐f I&;KU.$NT\uȢ,K"y1>#~̭ҡ"x!.r^t!Lduٛ%̇Ͱa՞9/ A!Iuw)QzƯE|ڪ.3H-s1/MD ULY;&sF=EĆ&;s!LvTZ⵩$ӚZ!aUFd *JK 8v||NK0s6ғi*ɴ&HFb+"7}*zǸ.ԁ.gXR[Kp}} ov}evgô|E 7>r\W%-Z&Y_g͉`VqL ٣VpkvOIE-/T1<_!_܄yUg:9ݙou}B0vUL *Gxd8ƂewwAP^UEHieІ(PH˲˪?? /:|A, 0՛{ V8Ş(1l GS\2B9!uƶ*J6'a*mARȱ8)-1u IbXgvJj͑//òp獌YZJ Mz\!ea_`{A-v:lFX"s|s90MJm 5i 4)s-4"u^§ OprE"[ [LG[,Bir$jM<#3MDku`7r֪`A])#1 AXa!?53&cS8r_~1i'벯-PI7!ᚑq5*^ u#j8>;Jխ xÿ.ə7Xb%.ED~l^QIIhC%zV§|%uUnkBi0]'z0+IT~.PcZ>(>FnbLb&fV2`Ǎ׾-1s;_4!Vs>—)ygcKY?hy6fuG~db_4}J\b^uQTU[ xO-@0W.)W;qڽJr/8LŹ-yY$UUT4d4|r KKp]$yRz 絸|ry,8@onܑӥ)s"] ʪՈWX<Ūi0h+!<{rm~ VA=>#C$ C+0\b~eUf|>!*ˈgni M4oƼO8Rp~8v'wB*i';j!˄'^EK,/E!e"4r#nm2J],wkh OY FǠ$ '5z rIgi)yp8LsQb=1fp/r!ynˮ`=^p̹M6/ke܁HTK:\i;u5uGS6Ù_mO O8RL* \ʗڐϭ9Z;po̯c1z]t!/QśTm:D";F_Vh í.z\Mό$4:4Ǜ y2ٹ'nS%Ip]`h4.V9V&Ʌ:*;JK5yt)b6)ϛabԵUIn2N'e9'CQBѓX9q]L84dO_1-FD7i4C-N _P*Mlž&; xمk!$_"纘kCid43Ž>HߛGKĺPRV2OH$ 4) r+ҳ eit~ l ENiYhxgL%"蛎b~]WǘJN+bt~dID}ȼZ.?Ysd87e]hJGjyD"l""̋{ D@F?JHaࢍiڍ'/m`"afC_yΗႈPR&%#^8 d-hpeNbUOF68" ŠyCL@dhy!lqOotn雗iXnFn$=GZ̩_ \$jaA͊| Km !0Bݵ ݩF jʱ*l u -찭ܙe5CʹꍵuχO䊘Ip'jwP" oES h8&2⤚~΍CxX6>l(GpaBd.|J~#)Vri^$'ENA|?/kL1<嵛nٽ^c|bՎGU?KL^TYj盦G\ǦC[q[%X6HU8IÊ$Nr?]!H- ~u$M:M˂@wW/] |E 0}彚u9{smM7 c%aWMUц37O&t1]S&0IMەB%: ,wT7s V@ى%V:_dB! VTДpĩbzQւ;V-o 9$`7]L'eCմaڙ^5y%pYu!h+KL*_'LqBƅ}೜*QjPsɳ5VG#:bDW.ͫ1Y@wXtEuPXuLy>[ݼRly~Oʠ9=^k0nX5$nZJZh7qm%X>B`%6J$@Z`<}60Bp V~4*w'*tE,é5u!' 4Nջu[H:C#=p tɂ%DZ,, \Wt8b PP}d5?GIQD {|d ۴ 0˜ Znjr 7Bi! qyRr={X"SMs;U.j,mv׻e.\6eozʱ,cv_^P䫥(0証uY L y7ø1QK[ːQMܕ$}tIO.^22Ty|DLVZ,H QN5&df޸oo&`Vv oNuh:Z|^2@r]8鴹3YW1Y?0.ʆf6\($QN7e~>ޙd)&}LAdsN0}׆S;(խJ(;BHa_)0"Y-;IϻTӰD/k-V(>00yT4O2~D׷uQ|-x 4,h,+wwy G! GD.Rk}-EDȿ}2:Q^V:%t K6 93U16HÞL^頗')%{/<G{ٹsY:V04$[r}Sf " f(xЗ+C~E{RU7!sܕ?RPZQrʦ &,WF!twa7'N|Ať帶LmPaJ((yaN늬PxF"?\ i-'a4mG9.i>rt-bĘ L^D0rۑBa5yOʘIr66eFCьBkx\*Ľۏ^OREa~Ô!`48QgB,:|gF4m8pY} 夅=Gjj#4eX88cO9W:'/ʤȂ9\!ɌDzVȂ(s0E/Jz&l9m؇ڸ1X;1Gq5!>ua2d2}UW wC/dm b|_ޗ6MFsi61zpzoFMGuzT0U^h$01@ 3^5*L\1XdiK˖V';>OгGg]hl]T%IqQ'JA3?%YԚ~fW!Oϰ`؆PPw{$[8BPl:l^L- ԕ$Rެ j77'f%Q(*/"?=~1KbʍUUlھ,M$+:h{/YyŤTV\>Tm|DZ*I3CEVQ4]̹qLRZP2 &ǮrYL6\Ggz\yhY ]jht2 lNƻ‚s,(tK_ˁc7XXCM?B/\NƌYjjK/[0"@4 b ^gVx^P k-oiu1y^%˲p&JEfUq^`lj!XroE;!QA&wh|hqj*buפF,.&?j)l%(V]sYF?;X 6i7-D!'\ٝ]/%DSw ]P ᔺ(1F;Ffn?0'(>!$D!FW_'$mV4-K]T;1J0H*p&VeҴ,RzӰ@׫1Mi)Y2쟏!˲57@\wbBvE/Oh[UNZȭ\! &;D2;t=O>yUha馾\ ~fdMa4+BTːWK.v5Yx)v/W ѕ<>58٫Gì{ZgFg=e˄Lh JJKɸ5!%!C'}Cgɐ)z|QŀY6|2+*(ĔpI,10aéJ!1S5_FC]Drbl9Nut~!i;Xe%Z$hxG #1_a_o)rq_BA_6LC3Һ*++o&*1dB1]}9A\Q/#2>4J 0%Icz$nӝ )R b#sχݩUlx)6ՉD%%H?X)>?B΋D]cp[$y؋^- D*,jaz~Nk^B~}"^a<7'eL_k nI!}vu41FFkUBcFp.9RG>Xf˫|Cɪ|-IuຼJ#rŋ-IJG~φ})\ZCҌ,n KBYxI1FwЧ У;Fy Kbrwg!_F4ʇvp{e&dIIE#Ue`^C hI,yͽ/vjG~GwMaBN]?wI[RՁGT6:I+Lfq/OOء} )5.hJ pj ie6E;n I,6,-܌uv[zz_1"K\C~Y ]YP4I4S@8}ۗ aJ`$ۉQrlWH)ӭ&&U!w)IfvH B∓4+rL.zRلO(9O>}a"y2|0&#EN$32;F n(D@}.t0hxdZ6JWȘl/b{GOo!e>'(vxyVU[{ YXc=mmzGHǤ@if?+VR?XG|oچITɬ]`ݡx!B/‹ɣIXnE~d4_iLOw$n5SŎc2tCl/=dP==wl̼nsyr~63}?Mi2q`96ukFbSQpF/b[Eo&) !ШJSDv ])yQqf`(X=yw>O"S֙9 oxG:bva¥dK3,ق9!ɖƖR%Hߣ9!| 1P",T^LS疆$/}ՑKXĦH4+yhCpΜwM`]&@9ڱ@';,+[~x<\ a?(ΧX4dF*a] b V^o-I|z%0ӑkԊ:_!As4-yZVE{Ȼŏd}`M$U'_:A-ZG;ӕB-|is4#8՜4\OJ"] 5t2L|xMJz(cRf.+{0I˳oJYMud1Q!&喴ǀ EY=@8_ߐx0SW y&\,;S̒UrELˆnPB"a [%5 KU/ҴP3O=G9C YaUy?1{;?pf&3X-ۗ7 L}=o3bɾ¯d vӔLV'gU6D*x9LK'f\yҷ'õғ:qSpa)/ܷp#ܤ{{m_dH|[ c5"r 8}64?_ WAMa{:/&1 A6\v׃(*ORCӴ6îgER'BЅE!822Mnqe‹?? 璓em%k!]߹$]M1iIbVتpK3Ä%Bx+LPj]**VX/(#bܮ/B ց"Zp]kа rʞ0X#}M,RoJq\)3a-{ yn[I,OaG?o"Y1'1VBȺc~3Y,ټ#ce-ĭEVm!pq;8 )Y۾Cv v!k emlFbЄY$XД]$)ʽyB$ X%\A2ZLɤϼ!cn7% uL0"mrG)x{#$$Q#KzLcGuhA"MUMihB}uћ EO,"\٣2zqS\m,a_,EL3teiPA&5ێr7'PH/'T..0 uYq6ySS+ܗ׉s'?}-Ǩn,c  .6ju)ʔĥ@w\z){/= R{hB$SGįBم*W FU 0GŌ|zBeBI?&Dr5m֑hjtOծE'hC<`8C S1گz,<-'n} EF9,sӼύIdr ]Q}I)%c1H+r*0} w ¦ =@3^][(!0R'6D63}өHݣߡ?r͠x0.k%R5'{ߢ9Ŝe޺0\}Mw$>ypʯ=vqQ:h9=t'4ӛGn nږ. m.[B:K!SZ|"'NGwFⲴ T a2?"Lr7o3].̋PZ`>~0I"5YTy[9.\^ Unb;W(w0N]-đv`8JH$m.<IE)Gv+yn ]d<Ɯ=F߱'d(I\U!\dd=t s@y~1BIbkf7|](!iҎ<7eQA?X>҄f22.CbW  (}YX:đۙ}i2ϓq<$C 1_T DI3x]{iX.neT31W+)L:Os[ֿ1Ϣ7Ccx &;CЩ$DH$cPr"Ļ$7N}YcIu=D^dޢKۚuň=$B* hՍ QDAc]~^XtelĹvT򰵄MF Ae!o}nSYD`ǐLR06aUΪ4Q,XVݏ& .֢rաD@pIFW,&䚞Jbޔc$11(K =cR9/1b* , *a&& sٟ{針_5m |Av04#׸LD9Gy$q}b<0rn3%{fu+6ExI S*1Ú922^4!&5#;FKl*@{F~fy+^]_B=q),.Y"5mYV.^Y] "a@V_8iq %$4eոd+:up[? of ;,,uspb~Rtעn\DHI oaqct E LΧ+eə}%:Z+=n #"^lS%skIĢS ߵ" 砳QTWfz몜dq/XXf]밢VWSG9V 'g`Ь#8{d& & /Lqpy Yy/LU9껼 {q( a =^UX+tU_R٥ #dڧ"LlTN:RjMX(BCǖ(;2Yd/U̚=VM$#'߹ yTI A%(WsB@ceDb$qe^dN^ ˑ\ęRVVaoŲY -1 XW3lj|>%߅<>4t{8."8,/"a! ~A_lwn2"dP\Yz׮ Tʨv!(,#r`8cŨ/A@%(#fd3﬌7ʛeԽᶰ`vǑUƤ`L9$<6$ӝn7J"jG>4:!qHnT%t<})n&KZk}LvĊpλH_(~xy=TYg?d4GPrX81Rco;7|| =HUr-*Mpd*]E0YlĒSq]^bu-zuSR.R0q$5`D?6Hl60e C=(5/hڪ{dѝpc,߼w͒]BO0sPPx4J4ܵ.d0`]נ4O2NW$+L$N="0$VJ՚x3Q+N>{OȫS4U]CEg_4bP|dWXʼn Dyo竉$}i *=x͝$T,\L' :|H9*C?.qo,]X׺2M= ׁB G"[HWN!r}(JiY=P,,bcַ<Ηd_N!QמhThidR"uI߲[+i%WuEwfUbڴ3TrcuY"v8bwz ]iTo7[W} ?6>h0KǮ+˶HϪgb_k([U2L*kQ1RUğl߿o >u JYECC<;]EeUFVw"FHEZҠ'/G)$ݶ&;<9ۙ^ᷴ9Q3YJ;ӛp2/~WEUԇ! :_Njy\^âף!ZU|ԝ98~T^ꢩڤڝ0kv_E6 .[FV E ^dy{bn݂H;~{Ǡ2U/)Ӝ+bɻ!;%&CF"#@Xᘳ*Q/y$|jWkW_5gP_E]WuR5ҕ}]֘"Q>2GPHoqAV=f>`Wx 1YrۼJCvn kܖM,raUVeE2%x2n!!gw%슯kͿpn BkRለX& չFhy.8a; 9.),{ïTA9y V<<2BRʳKor\la$\ҳbU #ٴ)YE]#]Z+v<փL0ؼSLohrVtf0#_egqVi'&Oe)bwnJeW楴.Pk?Kd6"dƶ2FQ_ /4,DJ.J2LJ6yy L%YEnVp' =~J#FP=op=#o6k%29>,zdE8u]|)1F2LRs:rS"ϸ32v#k>7䦔w}ז!D?X7*9Q8a`S^KXʪ/:ꉅʂW$"}Ջ]'kD63Kzc/t-:y;nc?lt[pcRhhٙ&\Qeb$EnH#8`y[aH멦 gxg7?4MM.DeX;Ҫ"\w@!] uweX9ɮXm3tFg,qz 밧*KE&y =LTHâcC'%z9%K[42jfK8z o8 P9֐}dCCupI><5O]B?@ݧ[[7g(Ѭ_I1IRL ]!kO se{( ^/~`/'rl0n EO00U4pZ)0BYS,&MӸnJvWn /z. 5vkc MFNbMWkRH^| tqz,B}ҏ9X[dL?\yDR<)`':͖;;:Ɇ3cl.ń2G‘@1=p}Ga0a_m^MQw}8yMޗ2ėmC=񢒶E)j IAP\>G_ojN/|uGNS1t|M?ƢW&IeXIfWt<`LjI=Tm]S ir/Ⱥ,?ʴBQ0ڡ)ܷP`{uQOd+η-KY;v2CtdmmMRV}І1M,Rv F%/|B11d{~u4 ϷVrHZQ=28.>Dv1U|2&ɵ}+<+,앲JZ^]d,_xZK1pVƬƭE{Dߦt+]8mn(O>U1!6bDŽz20@Vo{G̿o:^`MP')dDj5أ}DqHJB|HC{7bOӆP(o5?0qyjPO6ƈ5/hYm{8ŠO;F!y*'HE';Ci!d(:>3~aβԵP҆T-|Dq5Ń*eJ>*I.N 2ۮs᥍.f8yG- 0QyG& ]p*Qq%In {fiU\pH%w>F/AvqR\_n9!S] rt!dCB>GKI sɒ)Kf$o󒀋ByRܞey/`6AVRGыZ;64d5:3OD_{缺ylq 㦦_kM1TZ ![=S";/L+{|eܩ0!1h_Cp+TExX %\E){VUūODQaMv#qrF)hp//[4mڣ^Kg+p ) RP1;]t횑Lb}*yOA6-ʦIZf]EaѨ};g' xM]-VUGdO:ц&'L,J`9q]FŠ kOE34xY%'`ɮ0ٍ7I"oxM1]EnIRN)0-ȟv5ECIX$|bUME m5w| 4j$DXpIlCܖϧ*)MWTrp"X/lCл/ ̷&z Xx^y p#NgD˜ɭ6FCrYG T&pU.3d!2 qȎsy Nfy}HeB~Y0LWWʵ/jQ( cavC¿ɘ ˖qX캲MJh(|%! 25vJ$ ̼;,2}D4&F?|=CTyWz-ӆwߤ|YOZ4F}b)-Eju.դ_o{3c+ds﫞 JyE[F1򋅨CdQ䀱];gU ur-WxU|iq-cٓKȰ4. X{A*@GT DK!ܛ}H,prk2eji0Oa!jhL0u=NeWR;b0E&Hv@K>w J;-~%ڻt8y'/v9oJιR9YQߐ:]K_8d?aDPQG3&FRy]a @.,.Mr'qNʊ;YxX̯wfoDs 5>ʹY1 lED^}x64oso0`5\MK`SW%8ʀ s-.%r^-4Q<"Gɋ=ŜpYGKΕeB=K74KyF,Q T訟EpVJyX2il9KgəcGVftN/ҳ,~::S)RC_@_ĤVCWF`) ^B[ '60v4Y߰t%%1IBզK8C8F9bSSOǛZ8H=:Hģ 5N_i6,bqrFrSGς#ex}@Ǻ4yz雊}!,vSCoU(Dquח?Jju2 %NP<-_~΁i:i2{v-p }ɼD>+Ho?=^ R0 )gnማ775YEFpJYd!'M@N;y98{$R5Jna݊4gN/m Yr2kin_(.8L~, 29(—J^w K08› ۮ3 /iCHB$6He({ 2RPxXD8&eOVYiYCHu{^n'}a)R}GAT2<=d@cVIW,2}Gv\qatI08[΄n,aQݓ8Jehōc&8y K !fӳxJ~SIʈ!D bڤk E[2(K,xᴂPi)ti^8_B|c'!3>wy\i`MYm2QqDbW1VIND#_Ud.{}}0vŷi╩dl!FԽR1R_fXՇ[\$.E2J1oI@f>+UnLĆl欵3*gD:Z\:YNݱcNkt[hޑVrXL| dpM)bndLm"VQ;%BO%G)aS-cv||_&aq5C(擅iyJͶZ[PS&Ԫ#]RJI Oy˂y c+5eDzg<]/y>&IdsC0_3*5?ԓ'^VY7>ݲP%5ܦm]ݶfk;mkr?7cxb͸ ɟ{ZU*!|!SH4f-Dq6% ?I U${F1vXWiB,)"_ʴ!"j1>_Dr|azi4|Ǝ/n<+XL߅>zLJ: m\C;HeNg%Pʺ ^VK\`wmU+!Y'݁@K0!*Xp1dX^r ^\6\MioCrgW}vXKTN aӎ-ʰ8C\KnB5#ausɆ& eIC}r=J|yH qdRY873Fz}d&ASB2Cijz"\N5~ّ,1{".e!l+{^9P$ ǯ˰ fxn_ϱ<^vl%B:R}W^ݢKwb!0.(d=/Bl[F+-.>ld|K+~)UIytx-Zp7ļ A J"'>2ȤoNQ3~sPXO?;udFX[m$qUr#LBUb޹8RD&4Zٜ%CE#lrp/B=Ic+MZfn^sȃlRii6e4뒖y MU (&E; z߻GIi0aR6>mM6SJ‚XDŠ*,F?>ruuh/ 'L M2ٕ؏!mn{Nj4Yv%f8"gÞre#/AX#ީB6 |n?ab:tkq}$U2?o>eC=az<ڒ(=C4b]%31A?,NI"neteߔ1TPGlX|Ln۵}a @.c֒bcO3\_pVmLX΅ g!F;0iވ&+aT>"v@9,Wse x182Wtí pFkLݙ5uzv- ILg/{r$J]R""v-.dhxf!@ʡN5KI"0 ڒ%\VuTtUr$9oɉFWȯKX5$ ʇk }9\-TY!M ""0Lf0ooux_^Ŕ fQl(梠9WPbJHi2)s8/azTZ9cH qP<6!Y3]iI-/eb-^,KCP@+{,I{e%{^a񦬋4Z֥)FH ;yp r!\(km꾫]OB%@*ڄ_/S(/w rrEE.ƋT*. wp@ fa~aۘ+UT7z:&CܶNȺ͒ Քt- e(ةb Jq`]@ٱ+L AĞƪ$Ll>N{yG_N,-oђ`*P1s J~M?[d[2dZmV ƴk bjQHT{]WƉG$S5R=ߺ7čRQ-]..X%ڵtEdr$KeS8FC|gVeQ m /Đ:+'EU>]o-)e%n]=BQjvU%tUq+ SEf|%-B| @)0I^r忉ճԋw!UQEtP㎟fQX2@l%kf_5'f!XJ' W%6Maqq cmiщV'Mx5`.gT6̪WoyB6ybZ'mX8koUN YBg`\6I1;i{sl!~L)|Ix҅Zf)ڲ4Ϫ{Gtt VoRBdo Sac߅|lrϰCy)mG1|)ZVDWoEb75uZ?O]W03ꦛ[OdYrFZf+uFJ[_ Z:KPYY0-ݿ&'gAIyXHiJzl2%Y0G lolqѹۘ)+,^8 MC] M`! ]WIhIS8{?L_"uLy~-ݯ69p,E^cN tGF*jOQ,fk%zm4\^6^7Sxu81\IҩABxh7|-߯: al~w.F>"C.  9ٽP#mBῳ}md_ʮܤw+~QɊ =bpx:9C D. hoyZm^ ֻ}5Sy`y[V kZcg+'%8=/ޘ܄SO.=q*Ju* 8'ŌDO4fӊd>t'e{rZU8X!a*j -Fxk'Ɓj,Xц#\^b?"}1bP2Pfy.X /EnoIdSȴ ?Gqa ew%byH0eR(g¬&^[cPv?Oea>qa+։Uv8\Թh/O- FpX`jwsHh]Wp,o4(1˧_TUF5&ZfG],7Ow' XGKfs5 s80Řp4'2Vu4*@>/!F{õp12-ZaLg_CuaS10^>? My Q13I ut8%eN!pv.>b {Kg+|enYن楄!ZI o-/Q \Uk[磩|Z~2, -o:- (7mIc'k >2I\2|gõl3V }swu9Ѱ: !$"~ҲQGYTEҊ|CIlu-"$ȅ1JKTwGwK.'_m}ݛf%sykN{mT:"m!l,B (UlZ:2,E!ߩj_mJ1Md(jSﵮs-m1* ##QC" SoD~]+^;׋~-ErHV 2;IwA ޏ4-BfY+0}DD9۲M㿵s4ϛ!DƄQ㸋S^vZ"X21/8?e/)FT~(dMnBͻp ,R uB"?ZVRѠT)ӜW0yPOz|wOg~k}>rҏezt}UY+0 N~v/JP[q.v 4Qp>yֶ^_:x,U~1m߶RX N.*Vr35IsOq]޷w[&_oTz"+hH.oN17*m>)d/QH^ r Rx΂η1!`%VϦPg!#DupT:ڴY_A sNa19;i3Y\g< xX>upV?^qp'~]7Lj(XRVj"?\v*V^a@IOrvأk%,a~5q~yC~->Tbo?(qx6f(VH+̺:iE-jֳŨP\:Oùfx&xPOlm`2iOM <>WC,w"^cڬ,1Wqt(:1ܴ#kzװ p`%f4SlSyJX59daQnT _zRiIQfƔMOUA̕E!o 8h)) C*h5TbQ ï&͓Ya֚ۖR N7_m*3esT'#P-r'^N/'|pq>ɽF6fx*bA< >1e8FZs *nĂ@1fCeHtE|e<ΪxZ G3J:-c9\I.TcY,fYtI:b8'L 2G~.$ՆAb7n6ED_.nPϒi x[) 4 Kf,9ω@AĞy+7 _z=2kz\t1/!?abkTU9 < is6rI@b3踲mtt /~ك`}6// eNHɮV`,$ϕ.pA^&{+]O]o*t# hyv(9-ɵ,4$m gյY-똶ۇp(/ʨₜBz0I(_lHyҫf}iL͈/͍͐ Q<|PJݝnR"!%&;Vf<~L|-K4_N N>yWl EdW[u"0G7u9ˠÏ~7ě`k[Mh$mm4sh`=`A[ 1 'vz ~i/]DЕe"rTa|DR*:ĊUm0zۨ\-Ar%e"E7D/k:ŕX$A}]"]{z SQXV >A]j5I>f"!BIBί#sIHCa7):>Ŋ\4vQy &K05,v9>o,<&Hu4uھ GU֊ HDG,VB\i*s ?jB^ҘHhf$Eb$VzX|DoY;dd|}^ĕ]`'#a!ͣyALTް/iXg"yS*UQ!(ϧHt>C5-YDGZ|73B96]znɨ8iFmIiv;;ܻiEit ws(=_q, oSz0K9\ jx∎R~彣R~T`YN&@U,$%e$VQb[5G"wA8HNpPYm$Ҧzz }9aay/$OB~ƌ.^RA:tDXXK爏 8r]wcf#Znۦ3U6G=y5e/ JNir NK.~+=`!sz#YsJ\)$l>.h\:Bm@ |sCUÿO5|7(,0^Nvvs~}gWEE2$>Rղ9a8AyK|^ɑnĒ_s;qyWlEi4`I}fԣXąОW]{!'+HWѝ-8ohB!Zb)2rA"2evEf)*}ӝۓ>U\%-H~]wLkݜ#t>7`PV7K96%h(ZC<4Xǫ|^W8 6IKӐ[B!+;_L9& <=q G6>h8:lCJKw5֫:"-RT-?9wei\yLjaP8bu%L蚯Z"*O+JRg_{u!P)˒#`${]iK,w3E,j,)wyX \z[S W)F2;6s}:bG#`FCoDOt7%=l$$Ldm*ܓrXv@na@tJ/i1T)z&R#4K8zJ- 9P~Jߥ^Di:$k,4/UpB1Ȥ ;f Nyf(AB) j) ҳcʎԓ^%ϊ /8(D&#H x@\S=-vU:6͸ XQ RC-vײ14Ԩ<ģ'Bn}b?o|QCcLfeyNYه\?CWf"Lᒺk/RoGqzo?UOY$Ĺɗ?d.0vcu]d]WgOE<^.fDJCBb&wP/0{>~gR:$y_9ac7)D(B`!^1XA,x'HJ?ۡN'j 'YÍ\xio@>\opY`U(۴ I%b]H[!H-qHNgb.{JxMZiNٸ=oJ'JsäJޱ c`%GX.&j8-OXm{Fʌ_vߥ.֤hO-.YmG0(Z`[L wrw)h'E{zkl.xU4v2~+𚛪ldjs\x`( 5Ai u,);ju~ 4mO_H\%i'; -1:|_!䞲dg‹ .* F6lCu"Pg?ίw~e6Ηn}ίIfY$&=d1O+HZT&(AsJ q0R{CgڛqpL 璡꣕1 ێ1sO8Gpy%}w&6" ;:r]_!FRESu^PR6ɚCD{-Qb֮r|$,8eqUg콹p`B~N(% ԋ-9t4iCcq1VU[Bb̳I1ќT bdt#eM=zc#+LQ+K|!7]!>~OqI)dsy/ufqG=ku oҲpZSCD'h!F"7_&b¯(%>؟V^DIpDo0S]֬![@O DRxR8@Wd}r DJyoFXi*;2aߥh1m^ 㦯X&NBrb~#$B䏏.W˜<2FXHYw!y#^F>msbzMrI9>(0+Yەǿ8u(œ'뚦j7GiZdRԉ%  unpչGfVhϸPwu~ɺ AxX(&;*A;U^>EHKtOGrJxS62&TDHSB&9Ud۶Jvq`X ‘?XbuYdUQ&&Te<zNϤΫ<"?c'ϭXЁ@w0d0nrxtg|z%%Q+ Ur/c^R^:<'2㔆7uμ8t*IӥgAF2ѐkW]i8lt[^R˞m@ syc qwy QT6J.kӭ F, JBv"&ʪ9֥RpRM)[f9O9[}+DXW>~t :Oe+*e A/X^;-v:EX [uZƸ|+lBN4r-W^ыo+[{0$p,yWxC"1@T/qE5ַٍuk!mդRL!mF™F%stR˅~W3%w~$dqI˥hh7uXPa5}q,8DwU^r7D'鞟5}HdGՆMxmlzu.MTItw/=44Ch\qZ &%JR _gZQ*S "Bf1zDQ!D eXȐʔy5^$%YˠLюT TʅM)][$[aLOXC'Y=߻ ; E^dp߷K Eh-hǬT+ײ6O ?y)v? v*&g4UAIظݷg?ϰ)IlzY`:9gBc~1xKd9 aeɎ 08I!\zǦ:[S]vK&Ɣk6Ku66}UM]`JRTy/ĂѮD0r=5RlD&R,.;hN B^Ip o;S<kԴ9 stdQxJm"I|uKy/\>חfpቅ9!'{ĺkLyJrMrVt%dWj]uQ֕uABrIKTVuj+UI#5F-5o_-Z`TW2UCb^Ad^44~1,CRU97e7 S ٝZ{F؂%{}:dUN2horrKP.d[Rp8t1HzKGhB^yR4uʵ,ɳT!d۲vy57\MڸZ1Ek1%;Zp!_*H:$I"zo3'4(y&׫H=kʗ+]RP>pH齋gfzAjX !: UIJ^)dwo#PoB~*t[<6 cbMݴuÖ)}Mӵ+e!&2P'=3*FA(aiEyCsy= 8 ; 8NdYc}O 8*3\w3˲,G@ƩD oJV108&M4{nB=]PVVeNkq5 ɊRZژKΩ~KKt1s9֛ dc CL`"9,* eNl7X]16,*9#)R֡  uwXJepk>ۗ?}\,0!JSÎ!Fo:90-ٝF@O~"XU" O1W[H3CpBe+ xQq@{q^:{u(` e4zyS'l4]/ى?f>$˛WnXv!c= vb@F6&V=9}1/ k V}3wE6k$_# ほyEV#C|*pj{ /o0:87:4]'}ʾj6KҸŀp=|@6b43}m7#Ey_ /׹UёUڙ7BQIPS!.52łZ=ya JA!N821mm=_m^)M_-wB=ѣ`BeP/XS]-L N- @1%i4;5ZcM7~v8a:q{QsnzW#9\ʌrl0An@Rxb%!&9V )0Yp jS*zߕǙH4# cl?-# ͮ5YtUŒpx%E)jЧrDz'mrZ^$Mohe(Y^Q; lFVm^z+Ol@ =⟥7?y !PC Lsa*aM&+#ULrj I#e0{EE2Z%' j8.2 mHB!WՍcgi~[(䈄̜KqpW7{U&N`6^ Dhyj~+q7EHQV}䡘סSC}:'d$؎dslؙxa&,~E:Y5 }bhsPD5CDvO =vdbE(C׸G+njU&KV0DsL\mDQ(嘉NʫdV&!nU(V`3W.lB4(wuJF$ k$Y91ZCxJW|X幮!nOmZ5I) P6ouҶg ob$;"^V(8EYt&bx @6|sVƯ?1v3P5eˎ(T:ZV%TH) `L4\vA nF&7]Q۷"e>_epGb$fa|~ ;FZ5V0u5 B9k=f,ϓUrYr[\Ģ ~9h% 9oظ+b1FVSșw?9ؾIL&m $z1Q*tģ *@&bscº'c쟆}ѾF|^}UAGiNb%tXB%~ΩGy7zTT-̺^~}3G%dMV%3\<\Kn.0I^CŌƓBWP0Tެ 'irF=Znz+3{SoM~*ԣSU6,P pIM_??/Ť(̪2ɦ8^hU_pG %J@\Ht/#^/uXg-xϜ6IuaʲH;2R,ZUWv\svҪ"&NOdCv~y$iu}zP amo!G_~yG+ssnI(5jഀ#KRP=rd/+D Er҉Tg/ 5I`R%,DsT,ٟkr]yf}[ߴy&6ޕ]_$Yڨ1:N& TksGcB_%7$= &/p;Ymҳ''Ė=ut"kԉ`D c-`^2qW[cduCpՕ8y%U#ߢ!ߎ4T*\TÜ#bs %ן<>hʑލ+?kIkUI[IAKcZtd9.1a?tè~':;>\N::hg*_ӜMq6 P6)>6nfbJoY;cJ%h_'t]XOɯ!x~4JZ\\h0?xECh 4IeCF0W`^ØO@''M1\O%|o?So{Cs[L$`.l]`Dy Y郩w ,s #JQD_nOP8wuVtIhj7UPXJ1b1rPk%P|t.9P,bF>ewS DF!+3`ܑNJ鏠Ѱͽ.x&rol0s?"6q*kƄbvOV+(]JIK7rPyHG+le458֩4#RV:..?2Y6 2)rQ`8gޕL? `Lqd[7~kI*]I.We{RDwHJ?To!>y( s8'ǭtTyt !MP`!CcXG+D9ɞ%K K-4֙oLV~_0aWEzV)B\|n@Zr&Cv$y掠"z?zJmzE3<%E1$22/\j+,KOn$_gkA/- J 9JaB4SP;i9ZpQ} (PB~/EHynvfl_|mYK$O'9t[6q1_ω-51Qw41M/0uɪS0#T_T{ 8\0fb㺒[|R+Vnhcq\1Sd)”\4fH;PGm% )$h|d?mTK_v}[]HOTBmv}vX"[|31EEUaqt-Ҷd|7TѳÂ` &#TDÀsfJOY+×_x 2.2{?k YpLisvg^𪕡& iE% o!^ˍ9-SȜ*S=T"(IK+ھ6*DV g$mG zRuN_OokW$|):iþ+Clz"Iށ P]:̫w(Ch/NDק|^vҌ("2kn2|lm}j(L<ҳǯn'JNVaeB0\*c%/<+$S9N,]:1Q[a:ô1H@~+ ye+ EX~6KөG/J6{@_@߃ "LjhB~^yP܄zY/k[f U|2NR_|}rN>~D"XH\ݓ7c4wbMqBQ\Pg+wcH%qia5%~ ʝK6v%v{ny#<9=S0-4mJ^E"YhɊ;P{}ߑyxdՑ߲0W鹺9؇|fPp!˒|]dZ,6iC~F]T-F%P.՘grhnޣB=e(,ѡ-_ֻ&+15}n d9<@'U/+f!~SV蟮I[H8"4Pjވ|U|gƱ"nۮ(pGTPX \r0[|T gl @̓ f)$1Jp8JiGNE`eAd)q+Tw$a$/k@*;T"3eKŪTu0Yp ƨL=cc83:UnDdC$!I>O[|кuyצyr!2PQfu7kk.H6\)FaNAy]::F%Pz$ªyԙxճvʅA8l[_?W9&70 {#i]CN -cG-*>}lal:>/I NDӕ`V j/f#ZG}?fxU9JV+ 5`Byc!V˴"{fߐu:,pUO-Q p1gkW}+83a!<~ ވ8vX^ӲW{ (LjSˈǫtd ȹ݉Ld``"8|dI1|MeueNw|,k[HȆybKNJHZ%Q?Ҕ/1{ + MU@F&ywOY_Q-GHƃOj'V2,Ȉ'u)e mI^,F@ &OwƱC_0o7+ eX#kK1Ӵ:C !Z2kJSL욌m ˊ@׍W^E,M2*6,5Q^lyD_T(!~'ܫ/r~4u~!f#JiO䰆e0+Ϸ:cKJ}u㽿ѵGYn^јsa/cu"Au/ta#}yb^ߌ. ]WE4CPknq H7ksEtb[7d5/1ۀPTf]ROEei" U[Wr/ɇ[ҳT}G_A~9h|P#] 3aX| v!:̐t+L!31II(ʈ.Lpot3Ҁ ˓`Pv 2.K'pB,/"'VR%KR; LLZo%u > ?6^f "dׯ? Y~iLIYӪŅأ¿t]@TXI^TB#<dg3ymCc[:}ύUė(qZWE M*t! $3e>AJ"ٶL?*=hpYېmR4W 4`=~p,Ev+( f!#Fo6뻜G8 T)ĠI C %H^C wFg l\0EYtK'nrٕ5ZU%b|5,qFǂS :sFdv /VMWPiV!ki=怲.R`9=zE9CjJD&b.$]#a:cѯ}<N$bp M;QIk .AVgkJֈgP}sڬNSHhZuFu}p&pD.Q*& K_?A)P 33|([Zզ)+ Kט{;Hvwo3I &*$q4*@{tw<˒#Bu\U$/;Xtq_?b-kz΂k{mY uYs8<cQy3J)>5Nۿc̗]qTg;sji'"S~(ކ}e|UʱJЇpBƂI U+kG 5$M  #Au#-?4(?ߘ!V&[ߩ;Qrcz2gSہq8ۍD#,p~b)凞YW{I&c4x3j/j-_%R*Cfb#Z e}[YV"`4J" (r0JqQt$xkY/P&3kosM~+ȳ^/|mU#x57Ӣݎ*x#kjxPeÏl~ %'nӄx$a%>j=)u#mTB#',>f3k9&hpׁmu+lIOH#%,M;zgQc^D^=ybt)@$E,q:1Ry5宫J6JNa&EՀiSL}DŽ=Q+<]?\m=?^k!\sk%ExˆˮAU^d<1:\T*D>}peSOwPp$ӼʴTb)0r½:O|(CN7}*YqዃbUe8ȅ$2~Z;[c2*Q4?a$`~zS&3Iݔ#~2y@#ZvANjG4# tn5_ß1my2/ -Z[ J,Vk49M816ߵy*RUvҴwAE˶jy 0o5\Ta qP/><~|f'bdLڗ εPQɤ6tivy^FoNVj6 $aXk6LF*KLMBf, a *)Q[R#,Y am3M2=~b,왪RZ)JE8t@^$`6sb~,g?zo i5BhOMۑ)) ;%;L_>-ˑ|d7a~I.<Õ.z$9"t3])XhQwmmSVD+=ʚf#fȐw[@2^"/VmAf1#4{en$~[-иy~bBR UٿE,Fa֙uF_Si#bX Řn&X_\:Wr/lM,}$&cZ<#WR1n㮮]4NQ@`Cܲ#WTi2;Rjd&>bWlr5y_LnB!{Sj$}J/P" j_L$lϱ( 3b>9)輟s.WxN$(c6˺b/D6!H`-**oD0:pjx'xc~R >SL{r)Mtr2\)n8ީ>\.XzFlfJ~ v U[U\+لb=y6b\"^Erp9S{dI.%(gYV6e""^÷X$H.L~y m6}Mܵuf<@."';:vWO%M봊#_ ,4[truo7XtbY<ԇpPk)r!+;`d]-S#qe=+fœCӣj5I/c+p.9ɺhDIKa3'F]9=?vf%iftCKBv]K8:iC _:x)B">΂! ~ ;-O2u^ly&3-^jhh^^MB\$npڶھm!㱻nE.uQ/s괭Fo~!.ylJpŲ{aMq+*_hHn髬8AS%\IJJe0y Pe;0/Ql$O'>'0kLlRI xvR%VD;`EfS5WːxΜTr~)JɳR6MH$O2 ?RjqdIG?\\Is8q[.'ZE1ΝltϾçƉUd2D+qwqgu9X 3c!ޡC `nsݧ{ ՄSYٜ ׺w*w*z;$dӈhc2wZ,q{IѿL[vmژ)d`lUE%>M&6wOwNf^ ̓%YAok%$3 *)biɤVƱ(uipZeV_&QĆhW?\Bh5`5MnMNB5waT0ȔAb 8bO'8(ӊy~Yš bZOd99$9y4MNy# 9&Ix0 m'-P]{iRroxNhF7nwc恎IJ7dO0LהEo`9zE7۳$9W">_ kvZdj P7&h:?8b11G~ycܢS'!~\ͭ?P`M&+)7e7 y&%H",>mŖ(b"kHDq&#Ryp~*D-aR̹JL~2!d<6lLOZiuN?!yz)dR2]ZQZBOɜnѮn6́#{/>r*5~ ]rF[Q #ǯw*>RSVz%d09gdi { m CS{cM^E[R3 9B b1' eoO75p:M UI1dVA_ ϘYl N)L!I B SH:Bjzt (BCȘbzJ[<\O7Mft+3I?~&czj&.N҅9s.,GViIMmK)=BlGCa9Gbb6T(+Ԛۜq2ŃKk]fXjH59)$~^6i}LDSo! IH+CM{'Z榨S6uY[$ *~]H . ~!K<Vy׸-Yap,#VYis׉NdɌtZ 9ޓ)eU^w,psZˋ*تt%,=vQsi)$2vxWY2kjIc1AqXC?7RFnpi=I<')F+f tu#EK!/Dlv;ZaEy>%TV"QR29Ŵ϶"|ǹ'P">:9ퟟ3m )AU{e,zH*)? P*ij-`ޗSS|uWwe!̊4<}Y]!Q@s`ҋPQlu`.eO=!ݟvX3$qM.|&=D([ =eWB*(Z=)Iri(S[eUwUm: *ԡL!XrIYED#ۺ-tU 8#L@P捯xg"ġ+Z;]N:Hh.\$F3[Յ`d;Or6]|B\L%O%L75E4JBiI^uvxWA5*3Lw'x+P?sӏMzR~ڌUAJݕɗ4eIG=t#K"yjwghęSˉ~ǩG3㪮(¶LkVGաd&JP0'E#Î'QOԬF7Fg)${ z2UV`|)[F(׋ IyW8EkGWyH"MK|e62Jk*uRC!QH>@3ۗޖh,,;'Tמ#df~7Tt+êJo{7ȪS¸Y.T/5s![kLseweZrׄt X4ۛ2G^@~LİNXyۊ2dk<}U]VԽEk#EGo!3}(el 2Uٺ1Nyu,Zq١1t:Omgmke<|C6I [*aJ0z 5)juX1"-~|m\v0`6K Wxo&O <19%q6N oy>0XRb-ha?NLptW#jULXud%\ hIe^2GK;i\0` sD[idtӊ5A~ƆWZw,sb`^= y\Õ*m?@6*eKmX:R(4>X_;e}Wr~/` fs)a?r#YuI1 i ,E-{1RAWCL{z7UPJ?zTHZ Oѓ)jw"66K\_(fṼ^^CnħeRFFNpM h2RKA1A,\Dd ǩ*}/nMόuޔ/{.3eUtW+!#R 7ģpW'  |^oziUCTFhN\6_R\Umm9s(˫bؿPꋔ=3~BjcQǠHRv}ޒ꧘-PJ|_>[n Ҿ}e:ZeAȑ v,wz fb]xv44Yf~F,(ԣw12|^Q*-ywMy̒#)C;q q_P(^dJ^?ZozՒ8hKf6iΩl>N0V)Dj{pR7ϣp{aGJ)yiצ*I.u(;"gU ń%pC-sZ̤l_ݸ g*  1rͳr[,&.*YK򰌳U΢.Bzh9N^`&;za-n7鶒Db4:S"/:2Xܠ~`_`&;͋ [oz;Lp@\>x/.J >pdY/+[Lzlcz(y:6MZ& 6+HL[d*0nnuauؼS_ ;sE.;cR#FK6 xX?VN ;A /fzUmC2; àΗlSPX @Be2pFI9`/u!qa t eV%A0-7:M@r$%4E Zq:!y!MW>b]+0":ԋHR\lFebmYDX-q͟VVu]mڴޕꋖ7ZջZ:5^ Qp8GS*i9Q,|YFӲ*}ٛ4hD>  +N&>UEFpyȅwHb["V"XȬlWRO,OBۆU 0J維Ӌ_WJ[5]\(DQ(̄Ci:e ~^\,*^P (A&h淇7>W@7=uSLƈuZ(:o&1Q(f iG~"Ҏ]<_VE٦=a‚.,qaBm+0:a"Ǿyg vEYjI?q:ue'nK:ki|<8 !:p:Þlj5ӫGobN2|=UBNGf]6oNi9 n¢RT, OKzDJjX$l#")@ȿ×n@ri%rk8_K+|q G#?MϗruD9nB'*n'aȪfN/ bSnZIbyDvb1!x$ ~f R$*ؔKG[39vY9e~)dyT%4J&^E Ū 2P9PF 8]9tr&Gg=é%R҆ )Uywes$xab)3"Jn] `H›k-B#Q+{&7;~lΰ?ט׏]: e} %Q U\Zk{?m.\<0b?~+o T&Uwx=UadʚpŕwjI݁ Z}&ћ?8`Žp w %W%!؊د𷭐Geo^ne"^)H~ռТ5 8ȆqaW6,fw]CEY! ^P >Bvd-ߨBKeȝ ?o `Ay\dnA_)ذku˙ʼ!B.6^Mje先 qpq& KqL"#=3q -=gP0D/6+XTħޥ=W i. e0?ƶ(-aӱi@7fžG^/&dt 6;}ASAkXOqqU vAL9LkBM2ߣ9zV,C(\ei"llr,#F2yL T,R1+|,EkF攸tih@C#QOǫ3s11Iƙb] o ʎh$4ѢbSDn`Zuv3qRqp/;a&..I'o޲"Brj' !SG4aNڿzs桴h)!ҤB͋7G,M]]_@xX[aMo]~r#GR>.]bd _VҦ7]- 6iA }}XB (kDo &6=G f>N bU !$uD/¯{@[G8[aB~@׻Hg1+?W:G=F$)~Qv s:<^-\A.P]! x B>l 2d v%*;+Kf4%Ve.U ^]`;=emظ/ZwqHWq'Fw*C,}hZ30Sx68HnjL~W1:^ȗxllkճy8܊gss8>;_6w V!ZJB2Gl[rB gU/졐y#DtI6ac5˱n}1d]eTM:=/par(cʘB&kY7 4WɊs=l\>˦mpF8ɻu7u5D) Cmu~ OKxؿ˺ǜQ]%-×\Xaڢ20<2@u$7HqNCX2nxqaލsi\6a6E#KQ cNyUjZ4qFv<#W2~-M L~ݞFn9_7]Kv^7E(2+ͫsx+ +Dإ ;]'#r?;>A yc'7I:lKS+!)S ՜@A#9CQb=I'FͺΤ(rz-ɔO+r Vr'T:U%y(WeɣU%LkA`gJ{㾈:cN |)OFl7UӤd_UM7hF%/#='WrPFFOE+Qә}=C?a(~I%'d2%S+:.ɵn8ֶl'3bFBo9#*jWP Y Fb4( TEfETb~&-;هP䘅LRhU SG9/f'}1ko_s?Ma]&W,4NsZBZo&tt0{dUSa;n bweZzW6kzZ[#Գ=g6.הzƚk$zI<ͺ337>~Oz+J:yY(q]DX^sĴ'''P(*/w13>Lf8:ݎ:^fڐɩ|WL3õL5_V3q-ra MOc/$HFKEV־שZ Y.xL1> g(c0>V]#k鮔&D|ID;pu$NGs((fN^ zV@}C?ƕc?]9N㲼sym05чI 6:G^Zջ$!]S+?G>Z;n!h[2ѹޞ3U/ꎖLh,)qPHeNSQ@Ɉ JDk X C <\ze_K& UY1;chAb  *G$OL_hw0^Y0QL')mu$QOٲXWhAtzE$|b#B86ܜ/a91<9}*o-iW Ŝd Si c0h@[**>Zik;zemzM]&m܇LS~0 E$ǿ[_oizXynGq:sWHUQ)tFأ}v,:e2fk9<@K%'!Z b0UIi`Q) {JNxсh ZKS/ةȨi},^83E6ߘ.~I#kQdBj,DDz!@Eh޼N/LTU"ۛ>b~B?e+.UXK}F:`EGYj4I#Јm3t;ءO{ß);T0a\)cV_Nz˚Fe} | [Xh^ *lC 2SZJNyl'֥- IxRX΍q)6A_ɩou/ G)ޛ6=u^›_3~ma켾xe>hC+0=C}IM0&z)#P;]Z3-%ǏX*pghZC[<:M-(&$\tE_:1?N 93x+Aﹸ#]dVd%DYʅ%2BWPR3,[-w0 =uUԑ3{co$=^ފ?eV8ɵdO {VEcKWy] yQ {wՓܑhy3"5g_42+SR#ij0l8UL!Ǟ+PM1s%}$v/X`S{*vNt}oTL'p#=?mbFBkF(r$7>dHY@. I^B<7QdzË0dS(-QW~vJT9:-4"lׄ"ϵP((YK?|Df遟!2T3@ v\ b& YuEWG'ݗp=bpw[_R|[لd9 ~PV#cMs86x]zb@VՄ ;ʼIqJO*ZrRz^럗ȏ uN8 g6Nd^NA]2pY.OIM8%uEAƖ]YT \"՚GȯzdU#f/eS&5-PrtblqdӇtm4F%s4xI IGj.;J@VBB ͗U+8Ǔb'Wl/ou6JO˅cgf2;M)Ḡ) vQGI!r؅/|q|>bZfҸuʫ~'˪6s%N4T(LCLHᴷ4NK%`S.!z~`1U%c,"P 7]$=-[D뻮8T"Z(bax>D3&Ư_g{cӖ_oY%gMEX O>/,j2o>}Xl!l|՟МAmM?]LnLIeUVVٶ !S=/=(&$ =a-#ͱ?˒Y C|Bv3)iŬ* Y+'Q ɘ >LIqܼ[{KJAH269Pbb4լdPӬ. u#*]w{##O!IJW~pkӽBv@@-Aa&OUɡDYJ&KbdE+5;SeAaBNﯬ$ާmyo\^) 4 ;~< |mƘ{dHk۶m~cZŠ3$`Gnsu3Ac(hk"jU{IVt-MVފ4֎a.ՀPbpà4pwk дw2z͍BWHw&O&>IM_R`tdR!1E`d's?W׆N= CX?՝e޺ 7 ns_Й_Br_)'Y1.>VVGϙ:WB|l ݑwYY/??›N-| Jh,#j! ^ .)1":TesG(r^%yU_U)ÈqicSaU}OqXיI\菶$zJL HC;WxVh،9]",_'D~LO4XWurCFuUx"j'Era۲= +-7 TL6rHm$fX5'H܃B6| ,yøb|^${N%1e+z?igx{q iaveQ \DwSN"ԭ1qTn9_5'Z՛ ;Ưb6"(\ZETIxyj EF,x8L/E8_T#]'$"Zx;,|b4Tr1Vih(w?A}/[1(,xCmȨc{^͐c"ߣm-yr~Y˲Өh[!Jє)Mz/^L`ޯay^cHcIl\"V"tyeyc~Cs?_1iB楠1pq"E(cD+)-\RPJpEN0cJA.2O9G!iMgm5}LW( !IU?+`jˏv&CC?,+qL _!MoHDM*4'i4}TL.)EݱyD+K9%.PTw*-ffbe.ZbǠiʰ)'9V\vvм$Mm!+1F V:חJNNOxg<\cfM2zq~u"/ˮ\8w}n74x/bkG/D؍ Yᔩ9_{ҦS1a'Aʷ ,t$R_vTUSk$hdq8>@ ۱csގ1hiI4 *i>ݏ eLXMQ ؤ@GIBCGXc_GGf֣תwi*JLZWLl- dUAlrZ0O?Yy"CTxA^Urڽ-c"6^г]o=T/`n\<:^h^cӏ}v1nK:p ZISh&&@+Zuˮƣ2xՙ8bl^0f5JrθՒOuɄ$wdʫ R7_1y:u$ZxuG͎L7([k]dmuz-/ s./5޴1t:{}б1T2~IK6'DTZsWvFrfVn-)]z}4* rsD i=., PE[KPv.ɼJ#^"4}&Ia)8JΈRPJ]_#*B7m†>qz>{m_м"/;fC"ƻ!̑dDzzx <Ƴr^g{wlߦxg~#2 kJ64`~_NJ`yW'NFNK_V=|pB>rK&^_K& uYMFnׅ/.C -Ω4dRQ*Hϫb~ˉ$Fs9>=Mݍ7&.eJHPU4q: FZaL(" yw) G++"Lnݺnk5uWaZAfv Z=?-h*e\x'~ecRA4-.fG u7e($p+m жy\x eus8Ƈy4 ',K*> LUj+p0^1d!N䩒heɲ̚K*iRtj.KqsSU#i;wM+9Q7k[|qoZC*R;]amK. $D.zecp*Zr @JKB2R!g{VVw)܂MSrV)=Va^IFˢrTe %6\zAY6+wY/mQRGZ,qVDzY`]YHP?R,lJdq~4cbo2BOA=wE]v*D(2E.vqwl9 ~[P~FjL er"$y1E{E[`֡V.~:zG.K1_ϡC^&}V}qڪL-%\K0dW5zYm%]1a4NZ z;*]xFk:Y[q- ȋ4GrşHTe,'F؁/I= Ӳ5r\>aŷʼnיc&ә YiC\z$TkayĞtو!|ĥ桴,ꤻE4|Q,^L1>A@Po,/a?7𐅭*u_ y o:&z-bD7=D زWծ-4JSi0Z~fmүd*5bїo+tS% ]ծO[( ziZ")W'0{D4%SS6cG0&m͉Lx8&{' eZG7tV`r ɓ$nږ&_ײA% :8tfːLIf_( + l/XՕI:C4M+#X&{Vx [K߅F*ixы\FHNjRa'zw+c,j~cʢQ+V\dPOhd[V6"m䁇F땄βM HD*/˺OtRBEJG5$BbY՜_B٢D&+Gcvm٘,WWab֛87vv2c:E&&))w2ʧq҅o]Q `utʔVUN@XqDF, ]]b|%ląaJ:8mO"_Dvț69 UՐD!Qj+*NI`k4v"&q:f=JShqedRt'En,] g.U5g7j8$?U 9^ҋ yu񣻌OQʜk;-"p$Ñ7eUlEn״NRKt͐du*@]x~z#X<~+-K{̺OR2.sr*#dPU#T-a}&ā>Վ|xω)㎭R^rhaM%fW^bܤx&"])տJƍŞHL]#8=Є$;ˢ0N)>Q MIpVŌh?b){z2%q7QNja[b9{j(CCRh+BVޛ(#:tڅ:T o eٖkV ַ]02U(.); ޅ x$0( 4Lu_ 3*Bѕ$Qdx1벒BY{+u|q̝y!1;(g?]sGaDђɮ Xa[qq_E? @ÈҚ~z9eB_?{+#3o<cg#v 8]䄯X=}̲IB#fr(W*GI6xȶhJ##K^ 5N v+.R*j~²f<ǣ8. pjJqXM.bdSaUX=8 &a=<)+Szrd.; S=khH1$TmRC^*Ɖ:ԫ$.Uvꭝ`x݂ Q9"ܘm.TЫ bFD*bR8<_=uۖ]2NbvPtSm|eY+rTbY3MPh%[#d˳BÇ L-BܤpauRCW&cj)2ͻ6. @ Hxz$rE|X\sŲ>W3E?v} 2~_?l$wSū gGҦ+δ%ǴՉh1 oq?.¯>D}*V;oQ,>|$xK<9͍@Q&tge&cꐄNbh kD\,{^ Fsm LdmRw"]h>5.  /'dr$ans !jxL^tqI޶~I%KU1LW[Dy0tҟ#|"}w=c0|]ؕ}d ?{em|ab}Hs]LU!.,mee]0>V&*NG#l,`&،`K=%*L(8O~WboYu .+ISYRpba,˄c><2YWc57?M-ּ^fx,˾^L.uXז=1t|Esc䒬`D:.$EcHuofLJJ(6 {-1YѾEDIpp) 攏0Ю<e^O],0 KԪ9K[/9Dy 9ԊRkH Pl= ˡ"Aic#'LSKhͲ_ǯ7?,,o2pWRGVA%\ spz|O}h!9?WJ 1˛y/;N7lXn(N\;"`L2ewh"^+; N7cԜ t eh# iNS3 Dmp.:d| Oȇ`À+0'1}Y8z;*۶IRxulwk$&ڍ/@t/Tnz1 ֳ!Zy'xyLX|u m(Y U"džzr*evbh(yYߧpY ƶ5E (E1UvuOqR) Pz+Ae6!&VnS.a,j [@)~]Eph⍉ X'n+1< gܵʶ̓ ˺MI mo!1§e1{.^\|xxM>@'ݶaf]u.U*rSu֗J{jUU`#WZ'V`YGk,+RTpEg c!8t+A/li }1ۊ(qYQ*Tb&wV=y_>;ݝd=ohe weҏoP% CeC˲:od\H)a(yAdbU#$e~joMoW\xӒiAɡ+sRʎEqa]  .}A܃2 \WCT)WV? ECT#QzoeؒMV=}2c9å8cc|^2S1u=vޞo4GDZVև;k7vܰQ%Y@%Y.EQ""Å;.s L-%DxQGmY^a1e>{W+69o?~ mjS}rU;2WP> J- DZ' v>]ªxnj6R-J<7̧L/Y5NMҽw% |>!39^aQ c&k[q 'UWM {1O|bAL $| O>R|1wvi㜹i0 dFu[nML}#hyy"V|\rģpۅ-%oܘ:w].eSo˥,iTzt MU'0&$^'kgYPdq)8a,^)n5c'gÖ6R|maB3V'ɴU_]7x1pm)0m? t8~äX0ĹU/Tso^"<`& .UcznHU}8YH=hGӒ&ϻ,p$}"^Jo(tBtF"؏کV^0ՋYeSֆ@'S+P*'sXU 8Be:q#Aө$ύ6p_%zw"FohOfkdũAhBav"EyG|D(S_@?s:^ %?%Qۊ],IGia}>bTr_{ Γ(=,>J]*2k"bD/|2 PpYL" Zn] |+O4QޭfN#00؎GmCҍg1̟bWW*I[*B1NbRhf/)gGR%{cCD3? Ò@ҨA0KiLFs(uL.lj0s0yccơtZ!Y0tXEaG֮& r g.W$ICoʤ)˪iH6)Cy%&`q@@riOO$/9Z^˒hEtNx؏fD z)W1S͕j@|Jǣ#ǀuC}_ kɒG%ѮJ R>C!):vbd)1zuC,rh9?N8)zk0dmj$vQeG*6x`C!Y1mj"ًw/)&N}ys#,s%%9H/fLN N uA2A)3^r~5 g4))1oq-aXoAYݚ:3uV}Wm&4%ٖr+~.0bE,"޶_Jܭ ]S_* w&(-%U$ە 8[80?~xlrhͫYy3**ϟu}YVeUe*U.ÉWz]Y1cxڔQJChibÔ"*/Ձ7KU{x'^V)ʮ0?i@~JDO)7 w@c1ᵀ."&ek3?Єn>Xhĥ}ck)(# 0{xCM]$kJB;X'88JA)+~|%0#K Uo٢^: Y6^^_y )h,vO{c.]bQb󄹮'dW hf](.%\fEJu Szu=G$qF}Z` gFoWxe 2%rЈ"| X[ưx_/Ff"u'׋YoV.P$54y\3:˫4-9t2GjH0RWjqs$z)Y-!KH< g?CṒhl9N9hցU4o/|LyxWIFK7%źpxݱ^]U߀#<dZ{ w%,UuzޚH\ͅrr tmiXI.r*)&k%HثLj|)u%mq>ձǸ+s?^} kv):YI G4cR[yNa_$"}Q Z  }j"TT?I`xw%a+n[v`Vfd ٲ"Ly_mCOC\]G{yqN%!AbX01+I0eLzT&H6]?rxb>!_uUXå %嗸jA!A+½v48%S#\fP9)4沭·2> :'Dʼge 1F;^<S34ib\TfFN^=8u5ov#noZ$ - FASP(+waJsSx P.}m;128$pl΄m"(æjh QbvEDНaPAռD;{ Y/+젯k8[Y8/<׈=! *_61ujLêA.O.: G*:3˴-a>ɴ\}dk\T=MWĐ]{\ԁ{:󊵀9c ;)EbYİkC1F!W| R.m䒑7DzBya++ VFQgZĻ'%]/rj̸C5kZ̲y_?k*~4L3J1Gɼjv+{!Vn{>")aM3h|dGq\ ir%LWP푃 AV䪾,!Ʊ$H#wH n6^>@_ WڶM/ń^;"d:/9%6j.\[T3BЗDȳZÝT&h}>UOH^:y^[K~Z|J䄂Y(.SRdŸhabHMO BML`utL藦_߲۰/ɻ%/D*h [ͨE) q槯G7qr9.1p-m#bLA˵9x0S%\V(FtfqM{塓!s^h-ySO8d~-n`uUd>^#zԈ#|4}浊UN~7VdNh ]Xa%VL85 yzǰg#dz+c!itm(,6UB`[C&}@lzZaEFD13ӎ_ϰ+4qh^C7}KdUz ~"?Ui~Q/"lkRݟ2Dqd8f'Fװ<?_UISigy/ZRqo,e+ RKRAw:b<"f!UҹpdX伙#"'i Oxƈ:5e؅I. dp}U Q8p 9|簴em{={־2{tZ黶9^;O Yd]DP}I>65cڲr(ꊂل1\-7K2tjcpDZwZSo/ݱpMI|=-'+UeղُAH#sU0Tu}^Ne.T*Gx5x/Xgl|#ۈ9odCK%lMZ(2Q[dR< wii0Z6*,D]7ޕօ?ORG΄VfI)(ϊvjO ST.9kzW.S4u]AcծRUyȄ АiF.af-%a$c''9F+I49cGvִE,|=ǧ0MFi+ËlO"Q@_]|\^a8 XoVn~ +é$q 7?Ⱥ ]LRhB*hSG^$ Y b'MA9ɋyJL&”$k.3 "sX Ag;ίoe7ʯEh<קPZKMK8YZSsz% 6ֻ̖Rr/q7r~`Z a?Obo_pTmjC&Nބ&&VbxCSphY}; xh꽐mEΕmFim`AZ4Q)&ɢ8\(b1Ir͙EPv{sL^'碀kͮyܒ-T G~9t_" W&io* tBVdş nhn6#`VUVՄv?V6%UӃVh_>ɬb$(5&Ω<I_BR ' rg4+zS/K %FniF$ N`\tO|" 5a4%W.!9!+I;e(!^Fh~WLůvuT ί\eS5$2))qX9S$9x IU哤(GR%oSB+B=lYՒukH^ELݮȖ;m+Pb cm1TF0Oy2?W/#paun3PY.`bo[prvE;蕀̄ky1?"n߸~< ܱ?UcU~ 1H cEAm2_ᛥ#eIykBՎy|MTw?"Ϧ|j+=B0e^9'<2moZ&\% LTRfYAN0X{H!eX.UB2%#4a:&H][̈u&FΑm7d|1E(!C.JPR7T:H%*dAWpl=_ dg_2~:s`PkzgL"RDN6<PU?[`!~%: P4T& 3^6{j_Ӭ`۰U5iĜdYY=*O#DͿ"PUʛӰ[>L˸"2Tsy5*sqY (q{FR"rpyȄ\;>1)}ݶ5.$_uf6bE*j:es𰇲jNqpiAOVB -ƍs vc]wiR$`ʚVI$;]dғYa0p)jEt-:R}/&9wr4ףfpQ&iJ7婾K}@1,D\ Dl#^Ԗƽ&]l|+.|S*Њ%1Be-U) pb,@0o?`AY}X||=:V2P6o$]6ܛ.=1d>B LVzx!`-2~aUܶenƞK}9vdl(t|di 0]`Uvc]eXe~u"tlyq҃/8j2;ێ$źd}Ĥcr 4, ,""pwVlq?y z-W_ %d.4ᤌ=yv!;/2#+NN z3tnp~O'qIl6Yr:Zx(R讻:$8EiVwFYcFLT؄I6iPR:.y)R,f|Pp]vP"vn jXd`$+K+^P,h{OG|9VoX7`Mnmir(2{;Y.J_||^*RN):i/m(WМ3N1KZIf=˕PCrKnL_suN[FE5%䋐LYs~–^=ﻑ²Ɵ'2R[rò2YYRՆX]qJQQT\%»H^%{c8\gm;u`32a^*_|jC8bΝE̓M*L?n|+`|zEoOrL,P ?xW+x&cVa"E>. O{LZd{gO+5#'{t*)q9)2sQTH! ,  ~;-j[WOL<˷ɵIu\6moL/ QS-.X<ݗ+J\_~>fZ8fc l¯=-$_]QvډLOUwʇO4挍Y]e_o+ ƞZ¨-h\h}8\iվ^+\MF'ҿ^ayZeS%'BS95fr]^ FHU顲$g|"A`&͌ ˮ/hrE.PrɄc#^1Bs0!{99khpr%ŏ=0䛖/aC朄"l˧Enueb:CfŦ'R|-lcFWcRje;102(uq}ڮ.fM-kbYNf]*KZKr"ǘWjIqtLfH[ѕtv6>?^'Oyڤ6)ě2]:Дh(>%&1; Xμ dpl|+V^6AY}sȠcӛ<48; 1U2s,.gmHwdxtMro8&}]W*3g- pX\kb5ى#"#)#xvY N&5➜5`146yX]Yؑ7Ҋ"꼋_+]T{Οyk+5աK:5ܳ:G.r]A,|ٵXf;8 帕)2a>>BM^rUM&`KÑjd PUfFAPGvݣA(Z>G ?Fv0H(xv8Ew i)ICk&Jd {;aUm-e Qe$"|lt >220t7n_ ^ y,$ O h˚bK/ !e28RQ$0͟HEUS?+7n~HlDEXDey %4>MUdɼP={1Z,\wEZKYmM㎖2nLOm77]%HQ:Y+\>%?_ o_ d OYEaUbjwQ"<'ҏMV3Y>OO_+~Ymd>K*dI1fص,wa߉$M`)76zoB297}8{ PD:KTbIM#8cӄIajs֧9˒CwY'^u <*xS: "UvW"SZ^,˺/=][Eߦma3])FR+UW tWGL` q0o KQb{P z Ffq*&gu )<:7,tİ,='0P(Xa_e Ta0\+reŸY:NcdjɻԽ"V{JwcL@!]C3+Qo?[x6;TP_wK8~:j<µuf19ڥh Xl,#ȍe7?CMO%kr^8=1Y7I瞎}UɘPE,{vymD6bt/*Yi֓vbn`(fKRCWY+t)pe̡/p}ʢ%=àC(r~wFNxL8>u4 X[u*H$;_DeG\cjv:ƮҌ߈|LFVHCol r^K[Жet ZE豜._d˩/ր\R@$gfAa\*u :/ilDPre+ }8[`e]:g)c hW;o3 ܦYSueeUD`K_zKGڥWAA3 aA[=2L sagxyʦgDUl7!9sfJw.‚Ȼ* h?o)C&F7 gƛ O }fdNbHq7:!w$')5d %ʼ_<]{6dCŜ H]Vg9^ġ1-+S˥)C+ɯhOdGXUtrAItDzC YnK. ]ӱpڼ\kBNΪ8'U{d߃e g  Aby5޹[b@ Fbz\u֔KteڡB+\&ƈ X1/?YrR(Zz8V#QSAxὗCڅgNB s:^= mL& +mzcf_dڦ"_Z*ޕRK5M(蘘Y[Gx7,ǧ91b 4eiԆ2pxbf0 ҝ(+Ȧ1ni"۝ϼ^ ’4(EQ'{QJ4NcQt]*&+N6N}߳jdSX)ɹ]=%Ju@='j'Ԓy 2.!iegO؊!<]OT[K?+,R YBBKȋ%NF9~]/R\nZa+76EVÅlC=B얥v-p$UL* _Vc89!ɂ\Geu;SSzbDY&Dtwڝъ' g(d>=}xa_㺖ӽtI+6V4u[DD&"LF@Hք7Xx+1N)BA "~LVbH֬s` ~ԡP, \Oyu#睚)Fo5V^&흺'N"ʼG4W7u7DPa@Et(~$: g%N>*vp4[юkjYg#USS&-&+wI'"2( P9( #e"#.=2|e&e C6>9#vԋc6lNΣzΏ,_uAU0)B`P@[+ds`+L1۱7qS>6isե4\}e}cT}Cs]UuqG(yD nN$1On,5!,Q@Hkp݂EI$KX2|5#{M,UiʬUATT.~^Ѩ=w%W]?ƋDB(Լ-e ,o V- ų&SsnDc8dr pA XJ/F}_'0-~۞wm7Xu*^⿇ՙ0dCūGr1^'ВqE>y7^E( x1Vy$)"ĸ9-ưt[ dDe\؛w# VaC;0i +6Il|. % "CZre\`Tk0߹(a$f^224zs9~ nwƿ^Gh2i4j/"7^o]0V8xpL~xeH<@d[bZ5֍/ێF*O1eo!kWI9f2?lJVGH7)IvwemD[.jSZio$ e#1xQK615]o{$Dq>EMd{mMCOS78́ah Z*x=)%#EFDG5? mk5=պjma.0]2(Ibޟp*w**I&rNѾ X|J& QF,M h*gC)(۳kK~B0Ҽ~Ɋ?w8X]wt Jw"wiv_T] K`5%ri \1Uy\%7/(L( H0ƖR4 H)`2ĝO!%w]|p~zTu8 ~pϿO5O!:3~67z?Q):|/m[vh閬{ jJG&}Sjޭhq@WZrوZza}/q<E^F}C.ύFd_ɉ[ṻy)a$)} AU"IQ%.]~! 1}z S6IBi֬.i"UVRօ,m$7yc~P0n΃MpsXdo)&KFI4 ;uW8Fe~HZtڤyߌ,ëo6*y88m$m$eCUQtڭl<ٍGpWJġ@; f +(/>Ngɩ8E3~hp0^ Mhp{QU">$(ߩA ݜ1nNo&j$) nJrR2l.vqc{ "HK :n0 eЕ?%?v*ʗd_Җl!wyge'ţ#ˤYW{: md]p&]4 rZiN\K8; \’1g-% iWؕ9v9V3jwx螜IP֓e2 SIK$xheje b} P^O YJ[5I9jm퇃?IPv5V1V!(LTP ]R^v?.{>9+Ӳۭ@5tlu<vmD/>q%W f;3ܿoVokXP(l( 6^z1]Er+1kJVZ)ݩS*3/!/Rv۶[mܥ +k~ymͯj[přc#T?&pumx8ihÿ\QxmUOvxٿFv!He^n4Y"7vMڬK\miDuprz*"-cd6)c;v4Y'nh_ȏgDOK4Bv2QՈHf_"eחN.V" _aHf=ڱlMߤ)LNV.6< Gơ*4VT3ϊ,`R"9`P%[C2Jv'S?,Y-U4]uY2"0Frk!z'1Y̑&|T =;=Si1ܱ}`Gx Ma]:I=caawƤG}a(NPqvL+FE%G|LqN0fDL>Oɹv#&E^3d呩4.^,:\jOmQP'c B0+_cZRBrby ;/<4![۴.IIr~|%ŇD$դ*w›1dV^+" Kս)ˑ$FjɎ.0iIdWn▬^tXbbIWsl:գT{#0u[۰1dwGzļV_J]=}^+s"vKK ] F8=GhT?+=/lmBM,Z7hhHÅ?Ǽ6u5veCeLhڪRD:{v!9Z0WFuo_] _M{Y6-MU ͉IǦ_2,Z#Wqte@g9U}ub矓2> ϓ~*p;dUQ&WL5]oZ5uH0qL wCjl5BvNrjߺ[Ӵ/tQzB q+PL߉vb2Ƣ>ĉG0*,WN{69læ1_vo,&L2^`JnWL/`ɩ">$3Bڕ긟;RS#a(6u}azI.9WMOfauX. P Z<%){`:-э%ӛ_7*}38>>6ųżiYSu)&|I= OW ےHBO ް@WGX!xprtPe K%wp[A+X>cx梪?u7׋(:dE8VtYd7,/KbX z1T{ש2h+ U{: +=34/ZA8g1$ҺeUIfYS`x[ :gnhE݇aB-fWzoIVs e12ρ߯hbzζX+D'*Xve*@TМXš)%10V!]qݯúډtZl"O*,VݘRѽeQZ`8"kWe_ acxUޣ]%0|]ZMuQ6O0aKl' B&VʶP4XȑS @+r==_oݜNW!W:)u`iu_p~xq"e_*uXO|+>C*E BW1`8| rNFU`e[͔_>W{W6$K{\}GK e ,.*SP2 w%gA)c#}ۚCr`skc (]S]lWVW.6d-"&}6"\L DZ)t*I22g:|{d($-= yvq~y4'c2Rdf2[Ci9|t/KrO-*ގ|u.NjW8r| 8{xm})a( "Qe>fUj"*j=o^jxXG~Pzߑ5E|c5kAE8̲k U׭qd_V "0kΐk9{UӮ?Rܢ)qeP'p']8BVeIr1ޚx\(++>II_ΏbfozҘθLR4B˯lL_UJD̫0Dj900ѿX$5G4>3֗Mk*]T;*  ) 1][p PǶ%>m : 3_ |ŠT Fu֗yѨL|W#BC i`x[P5m7d#e0h7^JkUwU*-T A?Q+ U*1|bLnq!)qMFPx4|yh{^]$ޭگC,4+Tbݱsjb0+=O_/ov^,L6q 7*|ʮl\ޜȲ* @bN$uysEZ8g8)|&glgiʄ^0. 1d#~| !ۭh˝/Q~S庯$71J1QK_!L`{)OCHFSxR̤mN7l%&~V.oBEr,=xDٝۥn'X ]*2jQj/᭾_<_\h5-t@\-df8lW ʊFh/sZ1RSƼAVX^Ŵ$ۖ6PX;!Xa]e "g&t yA?]bX0 n^颦).wg膦GeFpyDDs Ii7ΧƜoMT|7/CB^C'0sj64yǺJWzW+;%pgו,'ŦՃr!Ľ_fiҟ!ey*krLN$Y,'Ã7Qr_lj-IL8Q`՛Gp(@ǹQS\˰]i9"e^md}%q9^B/CLz&X b?_ ~p8utǶ\ӳŰkzV]uo§ E$ީ" >[[73Bx"Γ66&t̍S/Z'mU+V&ɘ$ƪ6YC m¸q9]X͆mڼ '^|h)TeD eh`BT^>{'W;+[Zۅ㰿ɬIuykb_fnQЏ\K^I]K)\.D:eOl z ^' oż#}EU3x )n Y8ݓMJkÃ#HCL,jwt0o@%ɡ~#86cAstu_d%ա1mL/RM{\ yE O-W3ydZ.NuU&Yc,cq*(]މ38<^D{-?G/O[Ñt zd:22j: *DJ1/lv @ةqԈMQNjec+ɻ6 (YRs J5T\T:T1&q#2]Gʵ-MZgWD%$I/dѕQZh Ɖ &3-z~.~~ʖ٬s1q1e_y_J;u2DmoDJnp#D@q!ީ $өXLyI y6)>ׯ_ݟlg1EX-388's[1 ^Lo(68PU`3FTX@'Q㵜Gv'maҺ!#$ʪ<ˍM `PETv͵J5:kxj>?wl't$]*4ɩ¾#-IE"}UHxd3us yˑ0`5Ɵ卋g;$MW' Kc+ d`nFr}Ic`“.f_E<F.0(ƽ+XQVvW^O0LC&yuq^̇ XzG qb7oو䚚'}-*r"Q]j%~@Ot)!Eʼn|w?#x%>oxkYm,4Eh[2c1E|Uav\:iż .RE"D2Ep~]mؑ d" %VBNz1R#p`̃@RE۰_ Q=HQ|P@7TxrZ'OdxS Dkt.>RpP]!'4b!:3|$ֈtuo?KW*.`^0Q Ue׸ːoR0*7̑N@=x}jӖu:/!kh^A&2=V|0Qlxؼ4z$h%mB~RuԝGd xTmԂ풵%u/UݴQ 7 pe@9Wv6$ym}Iw>$į+MT":M9ϵO %oX=6g|Heu#{u^SKjS#4++AU?.9[!ʊB|^TID)E6SSY!$+ԅsBQ%tesEDZ'{NG/m|MΖㄸוnETبDY fV D:1P.2QGB ";;rD> WEC:a&0ZҗgKhIheOs \*Q$z̜&~ѡY)bqxgnQo]7kPt%[*Q'Kʤx8"!?w̻p"wXz%-wP+cnֶY1?j"@.5ڋC GzJVC)Z1U>ѢZ]K)dSЏO"67]]MdbuODi=(X1"L~ We2 8*OR"VyroR|kc+Җ.B@5lBU?p"?Лq_rsy,7eM2#놙6.2 ] d6=[Yx'hem^ߴSn]! y\J) z sN`E9bQGިHSr9)#f +וkhUdUdvIf]WFK8(:QZy1~=/^|I oN&*5".7] yl.,#7us NbE)Fp?h{4h3|c G>N?rxNiva3> _{޺.ܧێb-r^VM|Rn$[ݾ,zx{ݻNߺc_̿Z8*tз$౦N)q:Q)YڕiD9Ȓ j&hpL֐Uh &tEq<۲bPtMR8.ưS%tD!C (/N"Gj.vvѕ£o=FU>xqq~vĿ`K tdy!.o8LQ?C8\]EtW/'kKy  _񲭳6Įy$+xdVDBή]o M:K1Sۼ=s D')k!q|qLptBNuAP5o|$C w,OVEߘ h۝D~ѼYI<cf3|f>-R~^ΕfСLwowA;<ؐGxHHt1J_]J/Hr2/ןz˶m[x5b᥀L]}OQ5XYL~SN&l68lQ8u4Y64/T)ȃ 'X81'c֩Vb,%ub j[}άv(Ud^)#? lX!WMPzPDeW>Lv/ed(w-d PܼgMR |J2ۢ.B3.DV N-;5$7'w(<<5,Oﰅ5YR\riLl07u,Xa5p%1ZQX^pfY$kA .<`_4cYa#Ư9y2c X. 1OjU2e~Nδh|:[)LtX50>p-6&=TJA q W b1+Ɨf, hD;RѺQ_Vh ='H+P UIٻQ(0ޮ_"^uٵaD5E+}2Wmj$&Uk~ +fx ծm=5KEF0/[).$qV\ uIA2fle q!fGUKY[uI;r6XgAX܁ߩClh bi[N( F?L~kt0uބ$u )jPq(ZTN7:}yrxxRpf|?_ݣݶH[w~n+;pu&2a-/ Xbl Z裩0wu[=mxtἧRhW.`3V7L e+k_O::󜛡 F/˧]vo')ˤҝN"Qϡ]bē2A¬";ʽ2HyOWp!':g\m֖y0W#~nV$ݭm>ֱ{R 89@Wdp^v[a q]̸^a%WV3=2~6*pdw=&F<˚aEvH@&4nG),]Tځ]O--0d B2u$ߺwIYUM}KE2uXI+- :QYZ څ_䐹u3?0laCJJw G,ЎpҲm ک@{ m] Q} ϲ|fM>+fAXѕiIdk:F#I2R'_:P== TqT3r91MSv|zHӆ/7">'rK |8\LVLR‰ sh1w9TEnNR0 ] p &A aew*r-؉ 6d|LIɴ.vwY6K6ű sH@iCCLW'I;%(qc4]Hᚽ眮 f8#Ny ם2,$+#Zu`p=Lyp%=,?׾g葒rSe(>ЉVk4}7W~#XRg,`O@*o/j^Pqu@Lxn3ӧK /p%%6E]%Y%ԡcHȻwZD.Ѣmr=X;7}x ٸ!Ǚw7Lib76M8V sCp!:宍 a%O{m۶9uwZED} l|1M&<^6ۦV/b,Hwb7$܅/i,TCv"x ~9M·64;,vpftI{YRHe -I|J$sEduAy˓R}tL)Eܼ.$Y ˮ Ģ;#3MTm.Wɇ3 "(竉Y3PHɳghjMn5CB53VwuL E~25a1ޟL+V ?dޫ' 6N G52)ly 'C誋F&$VPzUEJ8c[u.[YW  Ý^{n?+Z:e^fԑ< uW0 0 QW*dšՙ2aB(/,JK}2/'^6"ס;S{fS]l`A5"`q#]דւdW>4̴s`y]9q, Hr31{u25ETDZ;FW^;$12Hvg01&Rxxӗ.bȊ8*X<쪝@UH b*_ 3'*%:詻^MtҙYSKQv^zEe/,21gu֟w@;JJ3q0 Jkk]K̺6^ˮB`$cBҦlqЂX|W/xTI2)Pd&buӇVZ% Ņ gdV&IϾKjxz(¶ '*'CP''V;Ux[`f,D xzѷpz$&6^4*( PǴ U*wx& v6H,f YO!+Y~X>#6땦І=HN/*bXS2-]'N#"k$hN{[1m:-,T^2K]6 NCL,:1bg?+w P>'R}.d72$~v` ΃lhDos `JS =U%bϕ8 =|?UOQ'o2̧k}I\>Rd""@GޅC{ %euڭQ_:o;86O)]7rvӦ6' '|Ubⰵ**MW WTλl"ޅp`F *)+sfZҼD\pS1y-$j) ٘.10J' .rFNS|+ΚUWee$}F]E ypPgiG44L9\QR2[e^H'Cydۙ_U.6}'UE\,F [0,jYϗ\~˰t0׿O}5fBlg*xiʢHd4LpvrsSlx|i sDe=wn]ՆbaduC$FFiuݛHԑ] }V,w*4&@j8>Q.}X{%C4*7IGyS v|@0+q82-qmI޺y+ass*=k>U݋=@ 07Kv/-F؎5(KvD?w_\{}T]Д_ (_F&{01`]*aU~7(.Sݙ'_5K?_,ҙJ/zr]ydD/|tYʄ x~%b}ȁn]oA4JQcrAt:aM|NT+fa2Sf1쇼«AZ,׌ yb&B(o0 <5Ś %7m[tɻBpE~Gh XZz(mtp 9o|NQq %/ā+Tev ьJ ;h{`!F6":< VR.`%Lݲq}[ _sr3WC7xvI~Ewq'J=HE CeRr$/ D1u7Gey. Gk/)O(iE(RdqxsuƌV-#  ã̸1HOި&o ]s+dq8Ɛ"ϏVp`<1I yҶx ;[ٚ%rsK %k}$UֳgmX74u2\ dGJ2R]#:*j]3Gvřt`b^P␐p=?jSY/:mLGdk5q#@X02bp)N^M'K<2#n%=ŌsY>dK_5I*)TPߨG/aX X ǤE&Cf'L9=Gv[A/~[NFthڕDCY% GW Tw2¥ x_G2N B8M*Wt-QuiY.rF'[·qFiDFw+>JDu׎L.VӨ18٣ccL͟iu_((kd XV;DR8!% !nKV]%{б0V"^pJZЋF[p".=¯~I^>sY naFg?>ȦҠ JZep= 3juҼHAFsJ,^<= ɎTVh尤*k6"[]ڝ + ^=eiLǤ5SM`+ɺ:SIHwmLѓE[&f*NE'Heu o[Vr !#mcwoͯ2ؾɪuRǾ5~M 5vծS8x\LGr؎uйqej|!$ TM42hJIUŗ誀y,Dot:TQZEaә?a^c&ˬ,-qˊ}]TZqpB/+% vWBX9՚-ҋiwC%i뤫 9 -F¼iWdCG,y~L2M㏼scPG$k+ 4at7Ņך dɘZ"p_L c\"YTt"B 8-|%.ϼmT/$IG^a] 2f h_v&\Ƴ(oT˲ ;KkG.t1e;N=̿պω 8u66I E׍>n}νu@uRબhӬ#ߣ?(R,6OÛKN ݒ@J2  ?-6;.-reOS7FKӄƅ\G슽*EE>%^(9˜?WWF<1ט(lqEUI*r#Q{wrv?YOaWsXZ[/Ð)>R˗޸M /ȷ)(b ψJ…|0up`h'OQ4;3 /,ڼ XFթq%?"*oح=\wy2-H2P3g(~Ž6a,Uc34%eyjP c49 ˾k +-v:y~,]}㿅c}^f ^4bCTfk2HNy4)v)/00}Wag5$Щ+ӆ)Jᴕgl]¿YQS3 3%| OB7&y^V&Uz}ewbk! ^ }G#[g* (](*^Յ 9  =_MS#3Ȗ"T8 'Htדųd#]V/u\Z}W;?cq3/Xamp,Cm Cjn'EiIX0+b;u8n`f|ss``Y" X#WL[MRZ~8& ;J8@0D!8-\Ogc>L(hҝ(kx"kwܕ-%!pU_) j\N&x>R1Gړq!%l7ʲHi6]QPZin2*Q+vogx+QU.\bn9 9uzΪ+HDT݋W6D*ILQ\7Z-\Вj~^cf&q,7|3 }( k*c4$P Yҏ؟SCq7pCBU0tV!wb#&f&M왏ëdtf|1\ϗ4]n_%]R8rUz>B q&<#p'A zٚ߫`BXe*ZL=ȱ>_*Oа"7U<-Es (b^q¬h36?̆ Z lm2yeɆ,(ʄS2Bcݕ)io^X㤙O8MV7L":tФShortRead/inst/extdata/E-MTAB-1147/ERR127302_2_subset.fastq.gz0000644000175100017510000526376212607265053024022 0ustar00biocbuildbiocbuildHeRERR127302_2_subset.fastq[ے}WLmc$!D3j{$y[keZR4͠]_jzG݌uWjT?X1FSJ›"#)W𑇷Hc{OˏC-a|ïx!nqߝ~eku]ŘqкUkz2%uZN o\B ֡ §klfW}=۱?C|LQu+<xoM>{p̳Sh1!b ]ܶmxRmq[]p&omܼ-nxȏ1pR)Ө`8@xDw/m| @,NLx#bʎ9n>{r_ 8c?zehLR l1ڌm4/lu P m$˜(L,<`c{<ִn´ ^Y1arS7-UI4W[ںK zlJ֜xx-Ԕ6$ =& $m@{ 3 mBo tVX WzӌM^TטMH3#yl"%<[`l-u+޳=yq7C:U0kMtCל<)]1~ ud۹[ط[1S5]׵kyJOi>S5Fc SJGJ9vVA X„ d_ܚ}l^LS_a2-h,w ?ߥ3R E<XAd5bNkO? S ]1Xgv]uۻ)b5B-$M~[mK`DS0s؋\'rҧ8`/ajLSםJ-Gmꖚ!((0֢+0\((s1mJ^0M_`@ȹ&O3bOH%ny]ٹ[zmDz>cnYׇSo;雾/XYJP[v볏6{D^ɖK[_Wl[3/ްq8[ Y4T]SI=G'?f%*Y8a?EXĖ[N0 Xsn}ذڊx3(dW@ M wBUw:扔% )'9q&Gߊ//iz( AͨAlﱂQ!6B1 ȼyYD# bb|*`;nv\#V 5ul7V5,5:(RW8l쀫3Q^|M|Q' U] m)}7à-o/GtHYL,b-c?baN:Yg;zdya|՛.!Juj[vADj J(' 1Ж7VU%NF迓JC',6IBW|LI͹nPR$ˀyTR>>b]{82Ħ߷ը C(D`Kϧe &ҟ?(t&!F} )2K cs݌8E0ZF 6J,0HG|T#yjŖ)H0߯ǟht20|(w2J>-ni@`<2h=3~nHNc~{O-0{ x6Ֆ(Sj2J{-JU2R5.b&0r>YŽJ)MdIwK25G.]B؏'/J`c`4kJ`^4=svg>%>Ylb#QD2ѵ5~I_-l( i^ ɦX~%48cxY+% NIvzHgon]C>L n٢v\ 0t ><kM(>Xq ~069䄗ˎg6]dF̠F26JhgwZݞ+d?;>ї$mKȑj)1cV +-=EEn+$✲K?iYu ]KjR j]V*1efL^Q=>x2Wx6Ts zLG.vSok3K!}f&Hd&"WnJQc[Hmցⱅ΅.)P*IcF^:uzp%YC.l֙#!vb29 )> c(2<؉Q4n(ZF+Ɋ !lF(!m 57a*}lP5,Q}=z /uMj*,s QeR"HcnarKQpA~;eܯz=L?TUS fL.̒I4N=h,Ya ˤ"H5bv][b32O?u~itc&c?<ݵdӕpL"}: E 03}dyl]EtIVNyw-S{9Ч}%|xt ,}1 ]KU3F&)DBjT Tbl0 iikfRA{Z:Y aDCLƘ$]qͥX A<=ACJmsiIY?PC2MխUuwE>iʪSJJ,,DQ)&ag%tlvL-uem_W]_R:m, K$$1syƤ2&r%Q{q0U5<,Nq:.s''ΐgO@>DFц^,*8e]X>ƣ{O fXr|6MŘ!?I={@'2]dJ  VK0?L f)Ɔ)z2N, B=,YSȾFB I&p?h _q$'}/n"z`3}ի"mu;r-:d( TLxGm3dLyDKd,xS8ȋ@A!x'SڏN h`0 xʃ;jr^,F:!G qn< 3B= DNw876)Ru LUKp]8x1y&4S32~y5V*j~[~~+epT?nJ?V !b qwۺ@ DV5E{a{uz~ Lm컮z-r6`'CCtNN@% iIy%wjT6HvO[{{RzS<8x-Ddyە$VzyԵuN^b6>3 MS}..#n.wb*y ,"PcJ/ձ{'ɱEy7- 03fl cIF~q%oX )0@3 .TSj0 *}5Yәk1K+IϸFL6K$2ļq/Wbcw7ʈ=0EX(;(&?9M<^d9 ]_>d=8xQոfi?XW_d 5j(/^i\F@G}#eR.L,46.V;Xfqm_:>  O;K=noZC-}Is.V Q4,+\I!ߥGk(_I%m5,}xݗU"RT[q+;=QH"! <,fxY<_rq4;'sU8(”ܒ bdM 2W1Ot xN|"%m1&^sQ.k~U*_GBtZVaiǃo_oт/$^'~ 2 Z:|pp~9܏=n+qm)5FSK;lY/f8d,o Wܺss&_7ZTW# Y^YO+"yzt*|8eB+oYwz NPa#Qmun"N6\@%i1&tߚL?񠏺&9rVUN;#L!l~kP-11@B:eKZa3I/\!8`Ily޸ F 0O~p( # aq׭)'*K*IW^C̫},]C8iEIhO+mq덹6|`8}ܮU) _'/HM@xZ6lb wm"{4ĖUSJ$"3&^O2'QfQ22s?.ͽ:dCqՑ"̐_ë!*:WHx2')}QNw,O}J<§dl ӮbB"Bq$r`T# (|аOg3~3KyvяMzҼ~_nM2)Z ?L]b<qHA,9">NUvwn&kdɊܴTWݙ& ETz$6*gZ 9̭$<0_ϲdj*ѲD &y' X[B[{$MzsfS~q:u&&e*oB\*N,h#sbR~7&nw[W3O_?^HI)"td%0DZi cF#p9;/(ᾑ޾j_ wBd6%@,"./9=jێZnu7-ùDL17+%bZI^xM[ &LSi2s8mˏ ZKyR-L?6[5aHӳd醫eU%yl<.骊#|Se3 Yp#@?vh̙bw8pi{\TJz(_%!cIksjd`B8` (\hi)oG5݂Y慻-b >-ba8/ۢɓ-}S޴ Nx@ÌT5oz岝0aX:+ ,WxMN(/õdqvWz ު$Wt[G}|;>>؋t/d%>3B*΅E:Ώ$fo}`(-$ouE P3dW~Ӑhju_ZzM,x( qvռ۰l'!ȉ .鉛AHDܕ^Uda/F +mDR:1nDq֖6J<6n* UԮ|[ b'I\̇ m{vx_wˉ_IDgD ߮ 5c֯yjrxM2)ھ#;tQ*P'|/'+7%E÷lE DW[2׮ ZZ$]3lY IUe?փQ).ԣtB*3DMJߙsOf%6шI%WP, Tֶ?f NP{ҰW.=ťmgO4b-ܶ+ ڼJ"JdnW1T'c!Е<{7VS<|mG4 'f,M٦Ż-h=2oxDNi:x̑8ZEx|jYUG]85QJ d*OTycnduR&7Y/hhDvDRpr.ULg)["s5>^˅e|8 ~2h0K] v?+]xTImy`zH!YN2b.@|Bg1D$9҄3K);͒Y.@9P+hy Ei%UHų[ⶀLxVoq6K(x?^5gȪ_M%DP%/b}xևnXDWnCO j"d ;f~E apWKxJe5݄EyԑRa [

SK *wQ2mYjݭRN )[&d#jBRh2pQ1S.ajQ*zUƖV{sCsK/} Fz˥]"2yCUNR>#T {X{ ȦICϫlSB}r SZ,2m(b$[YN܇@۳$,W9!mqQ:31ܖkMr 9cZP45]]IX=:d I\,~(QA?9|b]g7`[~~7l1]Z-qzJA0Oz?T 4eh%gյXp2κee XZtE2E%AK!}WpkHv(TCH*7n?xo r["_YrZnɦ eeT+꺘ΔůV)|D; *_XTӂsdl\})n'7]USVy H=U(3$6x{OE #2 7Z0[L#g~?QZ;ZMjŶќīHkL"J%DQc- "G[r~ɟyiaJƬ7U"eGDR](L.rmۦGsb!_Sy %k4FXG eDqgM7R߼ݖ YLj.~k/i,V5"{}!iĜh)H9R%*Ԍw;瓰+G̻2i!HUUg)अ,v g;>k9΄\~ ZOfYf~sjCy6zJ&7(#Q>784nUkIRMmLi&: S!X΀plpu=H8\aUI0=T>`ϡ;}Ym GUd׆͒)G%JC^XTaBK*lɟ(Fs7f0M8ƺMr +>EꋇVpD+1Ilo<Q @!_JWn`aϺM7IJ+Ha3_FV>$xy!3Y 4iAҹB^MS+ Ҭt':/:7uc7lIJ!kg 3T.ӏ} EV&OcMm(bTSJҔ[S2>*y;MȳlYp`tr˰ː'|йBD*G9X mu8SQ)ʻ/boH4]KHözuyO/"x [3,e;-8^ t_"9dAHs h.òЗwMlmdo,)7}kS+;cϨ_ُ PfC0S8B|.4E$GJ:W;w:r>dDDB6Z"1K+f>LaH Ze$y$#+ˮz洂qXAJE4O.^7AzqIIR22[sϢ~|YmJAĥj`2ÛDE4j-aSI:Ld5ӫnc$]J OPfr$%_HD=bҜa# VZ&1 _ɕ]jL"%k+ [<2L={ ;C뺬1S]9)#fal޳*f2mN[n&{9Zk'Jm(( "~Iy+4_]-jQ :vcBHLik}MvDꪤ)w3Q $A[pbnp$HI\Ōm+Ծc(?&lyP&/Cx>N?YYm*--1VyZK∔Kw6$]a2x[Vx}iz~[ 0oǟMei“K|!cǡ~fq0VtW :.󞉙up]?mxyKvI} J|y1V̮tq0\~ȓܜj Z^-:zg' aF (M3 XOg봅Khq|pv1밙3l~PJv_*Fě̩]}RZ֒lbʬJplV.$\hر &ɶCl7;E- |Ͽg}Nd ؅*ORmbĒÙԬhUvn!iRUYq'= kIdwn u# a^VJyI[gb١z(ډbI\EA*~yS7W`k/7ſY@)eFs mJ0h玫aV{\$^f2w8_WrEWx`y6XfbhRXJ%\LQi4,@jKǹdV̺;3~IT d$x/ -8*h0ސ4bͲ29.Dd*T0MZPIb`aiaʤTV MҢ*%dE,^q*+ PUPz<N=":}}$`N1v WD}yE:=naKrS4/hfŇCY/b!4띹&Y3?WCO)~[IU_V]ٶ)Es(Tffc$2+>6vaoɝ_xko=Ûʋܾ]!M& !KqyR)boF  1Ǻ9'+i//8ډ 59\agg3k(_g_~ i5a3h-d8`C$V'%.EYJ+e+h>x3izWeK]t$Yh_Σc LTtsP }/Bsr,t58 ^|ao?e|{u;A'b8Qy6uW] cj36aaj|Mf]2cڈm>out&d%Y$Bƨ e%aa,_2ƃ gEu}JPW֪Z |E:i.!CiU:ĒRj/P%懂;Zᑔin=@06 QѴ=Jnd )bߔlqT8p?ĤW.{AY{!2ŃNb=m9%3eTI'QKVR|VgVQh)/ro0Q}ρz"6#7>/_|-+YÁm,~o&ϫ+LSTY4V8Vqa _$+ɢ)\h䗯;Q-?E$Ol \UC]yy!ч߅O6dco쮦!,ɷݼ%pYR]u>⤭B=̔hzNܗמUۿN;7 ʓpmH_Z0BdGq"VpMo +})ast-nlfLf |x~/+mEtb(/IL %w> ;myŔὺ{;,}T|S8~&]/ d¹eM7 q\KnT&Jaқևˍrhcy_m"1 yE[,TyWUw-t^)WrYhG-$1_% !rXBiZR!X6m7Jr4}єс@aj!did~q&-iU?u +88!9V2lFL}GNF,.CѰC3sx`|)_ܦ9g扇TH<7_,Tij2 e-SO!0vZ̊nEY*fc&msDe&A%CJMed(9 m>JI2%%D9ĸd_WU( 6 .:^K"xQRz+P'R { 1$+K̯ ^т~aQj,~<^~C8ܺp*4֌mWuɝOJCyVK{Ov+*t\dE]+$N?F7>[㴡7DE %p$-ڦY eT: yG[#VCba +(Y3ƽdgzx iEkTktORхG =Su$a3PHЄBIx=dH?ݘ$<5x4kl|nZ9d & ðyA6yd^Sw(ɗǛ̉@r_-8H㥉L٦eQqfI34+e(*uE_fCg>.)1rJ⹛B]K£KM#G;،Ѡ5YP0 M/x'8!9$AK5+yze3I{s3 庾/! OkkQg>&SK_ems~Y\:{/{O+Ebߎ?O]L/]0Րlex)N9c`%Kkz5N&<}"ϮB1a'AT z]5Lj);pEU ~GwK=e0?-گ2C)nJeU ppgX? @))#VÕOĽG2[x@q‚[F/a+8F?;y{4>9,$c3)6Ϥi#-|@=e:q(\_zS,1x%D3<1U^/;4x 2ͳki *`!` DIT;'xVw *QZbKܷ] \l$¾I^2KFI +DG* rp KNdTW"dv`IU-@9.Cx(e8?݌zڮ*C28.Di{U̢ZdjF){ E b+{2rslyq4r-rMQ$ [8&NJhX 1/5&4p@e=q/,I-44" 1 x'24.,]6TiXt*bK]'XVos|?Gęs]s)j#(K֋j@pF(f4E;^~޴h׃,3sij5&jJS=N8pAcc 6>^ hjIeX޲ \rF@r:71hB$.E$HL)ZqQH^0s칰k 6z ~[4h] ȋ&m}F9 "jNUdʢl L6XV!Ð!^Z~ ቻSa2ox*QMRB2&hCQ"Q/*B1$g;P'jORXi -0⼅_ wi⪖@$.n"{jFy&Q cyMM)bǹ|!KZ[T$ ! }8'Ep|?NTr{ˡ\آ꫊WAoO1`Ĥ8j-]#FU diSżL#Di'9?E4ᅴaqJde7pWBLa Vt$1((ի5 V<0mHߞ#$ibW U6_eIϧM!Q&SVKTlǣGeɯh}_JtMAnrS 'X|r2CJX|d!9(nYUe=4 ῴyp%ɌdjK֗:ˆ!K8$C_ \ d*o-$杌 ^Pq]CX[q7"%C%IɒMk+twb#R($0<* [9 g(y-2Vop'%$f+`|ϫ6a?$NrAҷd' BI9 U.Rk)I{%R7Gֿ;jZrjȂ_0>?W8}1XrW&%yɀ*-^e01 Kޚ邿ddRG .rCT R ʯp+2`lw?ED~x#-3í$ohO8FU",C[\q@O/PPN,BN쌛35o/벮LHPrYdyk@W؏x UZ_pLKpܿD_<ð28+݉&j DZjd}m 1lfadžN_xĩ zYZC4pKx7UXgUa ˥*?PF"&R9-FLIl9Wj 3i&W2?iZqo2Ƀ SVwx8.= T' )K2Mwm__ WZ]pT[quyr.9UQ25JiN{J.9[[P|/iⶤ IIօ$mm<='|3Qr،1r XwJAj, Ah$4~ݵy䩟Ƕ=G:4/(F69جzH*\t!{+?2 Iz׍ߚ R^]EO9gߴ] mZ;<ԹáU";cs,B#EJ'|5}5nJX[e(RB!ۣ\K1U&0^PXǽ^̳BaLTT.?`]PGTPUQ^ -I|4:!q_od/%8!ϡ> î ]`:M'爖uS}bJ¥V1^$Pa,;@E"Fb1}體1$8BlTw̺*=6/C҅#uzH@@Ob!v@DFdl;L/oӡՉf x&~rr bSj$*ITܐ"/K*P XZ.umԼji&rcʋ_9Qi'?qeZB̿0MBIO26 bK;C+J&>iG^pG½_g(;R*oB_$G)zB2]KK$j!,)+}Ze"i*C|O:$Dq ?DSniKSmU"6y8ռAv [?, 5x /TUI["LMZ1e+&8fH 1* INyb`B>S3ȐFNWa‚Oa /r C>d 3?ijB6?&caujCSlK=,8KgU虀_ XzaHte%/# oֿM?3.wnhq/v"jDc{bl5!| tX9l!YX^`,ʁa b}S/ np\%u}.E_]('Z9`$U zՇ)w.$>k/'2+.CmO@˞ݮal2^1i>!ϲ sY_ʐNa xlFR10A!fsm~4^>  A_ J.).&g:yO)6<-U("ZλO8(Y pߦnLbMTjS,0Tz$#Kȩ"tJr;ouc\IVoK75aLjkVe'w>*Q2/78BE^<bNw9w\# $x^X^7uR[޵9V1P$ t] U||px%,KsdA~Tq|[Y ,^}' ‘[G#@}xzsq]dmVr%7yWE77x@y"x=zֿ,ɳv979~V%VUT]}uR5OEnEH\{U _ W H+w~ÍY/`sx+4Vk\ypbB,m۵YLaµ9yy}csa@X%~Rˏ6>^ﬞ]<p„twm35]:EnJH )| 0 EұAC?' ܱ<I9L $fbKk$kgC);a&Е@5$lIz@y~[0i=m887odtԍآX"3+5DEBweE"PSި 3MYZ 3>˚>%1EU]!RptUiWOX\bV !@8æbf6i[ClK'q˲'U[Cy >yYPb 1>~:_}^}r(0$l65UiʃMU@CC+,:EYHmݰq^g9x;̽ :|KXoD\߳p_Ҿ0awmuy-nξuuEK< ΢uyudGll#w2rcǁ@qPoH0gv'%/ڰkJSV8? mZDOT;E 'rttt2,ða:K5w"#v0hG/@InpuNB|s36"5]Ѵ'*qQs0 AbMf6#"‰c 1':⾐mL +zܡN*?i,aI&T|co^>r.3 Ha @i+IRnLW|$Qԩ/gg6Ÿ 'x(9%q!fR_Rv^MQo.wȂ@L;ZAt(v9}kXmL"4莐^>+UvJ}nXXS~`LS $%leY0m#P_@Yg]%{`>-Q|x X"JHRuE6uTڃfX!%k]Q79:v("·\Z[4("5Ț\]BZ*hӮLpgB$5zpM@E)Eav(0JFCHK캝Bۃji v^FVHtwƔI\44kYiY@ܣf9v+h+.; 'hEء<h$Zz"{]_6ܝFЌ":);!1 S|Q@OwSX ND˨_B}MMSil]QG(.ޘM$K+UI',c,(_?o lμ׮PT+pDaXLaZ%S(P\xY}^cm,Clif4Ti=SjIg7xo>7M_adUMV ṃ :S ݁1(0"f\S^/6z?.u/]{^-3c% 0tRlS/%zUK:SWk8vmz2$dIh1\a?Y;d FP$gd wBܗv1H>ĮuFJYui@"mJˁf yRT-BmՕt?}wt fWT2-iqOqem(~TbyR_n/µ,:Ia&82 s*\Gjd_jE iN Iߙyĉlc21r ͛B"E . O:e)N:'m9ߦ=pdy-vTfkҝJ!So@@8CGQ7zsDLU H}'=$aٖ #?-[煦7] iXjn 4[Pɷ9xi}hR)<{ ݌4+ʷѮ7d9ZH8TWda,DczIV=\\J<\J֦βifͳt%VBb-"!aM X'+J"Y% w'dK'{ ѷ3Zc=O,*e,gkB.syx҅sݵ[S'31.\,bE)IIso[X1Tv4p9-\{ iLE۾,KZu:y>x0&ANS.ݿoMȰ˹Yns1S]tm'IPYtYC8{*]#OY(Ī2YHpYZλ޺Fį 2P?D*lilHamZwG6מKdaucOܨ5=魂~Tvp]2֑*4}8)FgS+3<=>^(Ǐr7Uz:RCLKSp$J=11TM#Gt㞼>+Pei3K+Pd d"WQ:INvzU ;sǑ<.lDH-O?;U06Cl{=.~d< j-Y򠋯r_nW>e^r꺿_?W׍yw]Ὢj2ILp(KjQ/7!KY5!IO!OP1`/=rx&s70/Bn 7|w|)(C$ʼn/RZJ V~_@ViNd* Dzϰ9l"jVW-?4oqңޡ,"Il>_RwMU'9EAv@Ze;KM/CZrq(]λu;2GdGK9O/Cl1-]-fiӇ8,o,ڤ;Tf[pu w{]f/E˟ȋav}e͟$m|R UyVۡI7;QD!$/ {%*#TD uܫa7zÕg ޟ6u&QI+ GљؚKmSE[`hȨ&27fw~POCfYmp g@$ Nh9$l 0q㫩j3~#9xև!MSh$="m~$AF Kצ1 RT=Csh"ex#//3;iɫLZ%,p=|5oyrTvzN0Gakb֒/jGItTlp)AY_DkJg)&n7&K_,8{%aTe<豁+,d?5@h,uj0qv:l%JRC C sDWޢZ !@ ]IrP=YwJ})ShBЀpw޸(!iMΐLߐc2lٓoE 4J,!m}{3"q]`3 ko)[YeYqS$0oҋӝFv74*~AׅM*'hfKo)$6׾(ѨЊ,dVNXj!}·ny+q/b,owXeu@vN) kQ{־B0e/$W}E@Mr" ѐ\v.%f2a xgKp&nO*ۆX"sIDQᵥz_~@M_@cx1c~ Ext?j^}rٴ]v 7  ]$W% Y%T$Ñ:^MGhwG0I %4_2LChKB2U JSOt>%UmrUvŗLfdVN\XF*JSUьOM#?-P !JaDxP.sʬ D/z=G/؃4Aeg%,MK氡1]5iKKK 6wFE.ȕ9} !!"^Мӫ_qiuvEQT!yL9e/aj &!%aq[VuQ1#י%0yi%xEp"uQnw0wQFmT2 a(o~ 7+:ݺACc =n1_ FU03 P q-0WQ+3D"ǡI1 Aӗ^{╗)/yӀq{܀ddSRҠ@jF/g0- &Z|$kzd۳mfu\r-5\3~T+AN1!u-6Ol`GP={ `\I@ПO/D>}0Y i&r"ó2vU/Nv(0G\բwMU3OI{;8R$mnEM\ɋ6X[;ްJ:"ܾY%BqRCWyoa Jxo(t1˿Jï2iFZ*Dͮ6pg9|!U%Wg)?I2^ӍWmjM. j NRɷ.vknͫ h#].x{y e40 f4ф!DjpfתA$GTE.VM$O?pdI(p%ѾG(Pl+FW58E7:"\<^!/,^GR 'U'; #4yr4 R(jM aHSIL6>B5gV1sVa8l7n_Lt<13eEk@t07zy)ʠ &m-HWQd%.r'Tfa'!Qz/ݷR,>t]yV!5!c/\e,LMo!# nUZ`!t).VvZ8]ù^&_vKeIpyeqRCBet.AW u x/oCĶ;`)m)ΛaߧW]y0muC,auCE֕[QGN +q:dN:OT381AYl?CyܘӅˆ5{1ttIg_c W?QG{ˈ9b2R͚B chZ!ƪO[:UMi.[WnF"@ӑ!D鄇޳\CElU|$G?1QFa=^ǻ,>:%! Widu}VC{=oEU! p42XGVHN7(,Yfm IYާ`oB>LqE;/=Y olݬv9\ǝ:,ra;~!c D 礄 n/(JJ{Px8KpH.dnVZ< <^,DZY\~̳c v bzOȽ= ͥo*u|mr$w J j=qz˕!_b_}D;iOpy/}MαP\2 0o$s(A bym g`,1 $㒢ˉb9IxKmioz~?Q 8ZdyU]z-O<79 6uypiMB<֋ûXtlL&9mO䤢))\pA.^ >#~GiZp]Ǽ9fhȲ&IP -\Z).N2\[@STF1\mE]uB:vFR5bMQ2첶$̛ӓbz^-V_#DDMs]9x>_ H㙁eirm%*V+= ʣϢv 12Lr&^۴}Q=`}.! [m lfkHF5Ǧ뛮ş$+4B=%bK)ȓx-7$onGH9͌KH=Wɺ5ctCZOo&geEA ID(=pr Hb݄`'Fz{!^Z ߙgKƼne]ILLܴ**>%!r+(7milҍ"!DP5٧x@3j$e)xHGeu ɵwOHQfd1 lLjS-u/!7Ilx%bO1&%*A6"t /t$5YȻ%+rYW{ok|)y˖OЖE\3Up7H]P3IdQ; CCt;O=篰5a-xuKL+ gQɣDWdECEJ]y2w<<˵z=??g8{r47_&U/lRRHP^Y)kK4G(R =mnEP*QlCJ\4â:z0\^l^~$Li`G4\> ryeUY[5Ik(`JT6JŢ8}Qq'FxpGnF 'YG2%|t>3w_BFSd0]yĒ:/UYJ;d1l\,9ԙK(=*%]NY,%1ԓ3Mw֯aR,OclsJ}C;myQVϻjcxcBXfUV&IMA$% kOOV́( grs:3t_wm ÿ^oLWa JT+=<(IV=0 y^uMus硕DGZg6s.fkieӼZr/t*(rt(.))cWecHt,Qqr]\,Tઘ"axh\e"MWvmaA\ i[ dX`CH*Jc 3^b"ǃJVn]kګ`Qve֤nɐmwh贷'Ï*k9]= JOy4']*YRehc; !0P]~Tӓxɾ(ONddزY6OCr21?:s#erd ;PVeyˁ1a_UU [ޓ4*͸m<0z11#buEɜoŘlQy9 ~a,K9BXM  vȞ0>mh_/чYepuR O I}2:0`d!QgJL >1 xi0{FLbaX<8zNa]L.k.ۢN%f\ςG;=q<*d2*c{؉UJ _VdW7Pa?r˖=1 >XO.#o%)d]z,JwF -1K ݬ$K"Zd]}Km<Ы&T#SN`r C$k¾dTӦ'eqdr7U2.k L6'P멖JHV>z8OD)+qFyۖ?oU_2oRG5 fG3~ROi8 ܡ[" dtX`Zp}Vy$_J taJsх"9ݮ~xG3(h|;tIsU^ 5뱧A6l_d0af͒,,L+ϯoK"3!b2y2v]|߁gW9Ǜ gER+¾DnML <YxѸ(DjcD_=_~nV N% e:ȽJ4̸[N:#,|"m&z̺@i))BKFijUkѴDLy)!AVBh9 [*KOߔ[Ibx0lxp*)PujhHB_]{ᓉA)BWҥ"W+r2Ȝog2j^ɤgW2y^}]OrYqcHCIHXZemgHvop MK"uߖn(nP$EB%06NNGsɟs)az{l!/Ir1?6dk㣳iB%* 9PR& 0DrēpEV|ܿƁħ5Xefs't$0MgexΡ:x׌L> %A;bP-q9b 32֤].\7Pe[[& ;-/w7ૈ@J*S>QS7M׋C&rHbqo{UI_ڐ1,2>S$t!NݜW dTCAzP}-0 H~o|*xo#G̔BtJnZ_5V,2nfče ㈠pbJܑF$_5.b6UrzPmu=JB(~C@"^إPu&oT׳ҷ\{.&kfX]ՇZDqT*U5ɗzEm0pBڥFvߟ^EWMZ κ&ƖCl4oug$o{?9{J_ޙwߘI4}꒾|U7%/yQʲ:Dfe4y̩iݪp-vu4zUuqqa8]CL2d2?L2?.X2vh_&6IɲL`}NF(-; ϐ&; 9ŏH=##$76ɨOP5eeSTU0N'QùG/Wtw;SނOɀrxNu<]VƤdjOlgzr0Z- J.佧1%0#&oW|NӒK:S(tGdL)lsgJbA(Ƅ'3kD KrcKu?֢zW 2Y6}aG +I'CN}8fQo_טyG9΄%ݳQy(sC)۶OacZV(h< CI?/ҮӴ>Մw2,4̭y,[=+CCFX (7mۇ4^iX%zz25};qpVmӲw[DҋtcwJwŲl%ή D䯿7j>E鵔I/啄'u9e+ ˖]VG!d +6UH╅1jQ6? }`xM'eBi"|܄KiD`e`圮SǢb-3%hج@륆TW]z~D-&7h_2 ,kp5J%_t†!z^݀񹠸ϚCI$@ox蹅F畻Qς!aXWw׆qM@b+1xc4XJ-!K(9X7Ȭh.V6EI^ .?qK,\X6yXNn)?u&stIX6 )-"&CvH<\kkHUs^яUۿ{yK $!y>x}SgQ,{ŽWaQDv2_49kIrK%FQ:2 HC*żKj5_o>A3-ՐSJ+).T$9F@RH{d@V&Q-BylwH"8YiaK}oqzR1O&l46 Bץ:ᮙ}~8-yHVED|0FhyMӟ=HlՎ+unxa~ᮘXUui}BE0B-4:g% y ̓CY>Oi%EdZU Z!d7mPQYYCI/̇Dq[߳J .ōgгA p$%MNiZzsHf,〉T&N1b aZY?z#l>sp!p.!89oy I?Ns*ڢcJ\Ta 7E -$(H+N\=悇)奘^Ώߞ:z5~r 'X>p!ՏI \ܡP+Zŏ̊a{_+KJ¿[bu]bA/uv]^(ag("5/06&Ýe6B>Q=K@vH g]SŠɨJ,xuɨt KŻ'T$y,kdW|MNJYiCYDĨQFpW{ok#7{RJ,Q5D{_ 8o벯\G[fCYIDd,;TF_ܩ"d..29Dؔ59W]̐{J{Dt^n ڗ7Du"UPd 8#U0T,!-o=%<8&ΐ%H; IX`aG Q\ g$09_zŸ_C8Q>Gbnr1d*u@T1G,|`$jjM/Pl![ϊR}bGNY-[{g*V[:8RtfW1k)͝'jZH5q7UsV,q(PA"M aRAf4rCMc WSa}`V]^ܵFU:98R|&Ȗv?;ݝ| z̍R/sF@Wh"ڿ<`ʌ!&Ŵ"PDLƪpޔ'Pʱegeƙ=eP,nn $m{?#q4{&$dyb,䗩f$5}SV͙tQ8(fA~K ~~]^oV<&85L+2Y`J6u=Jjo:HF́be7m^$"<9^:N*ܐWmmjllC4} | 7|"4lQ或>4#v0?]nd=4}Uڗ?QÇmdv~WD1"G͛NTu8k-sʏΉW L^1pGSh F&]c̤Q":f_IG*jfg|P=QYr-!Vbxp5Bп2ׂ_ETp5U+ X}bp߯i?{s@9&7&*4$խۢ168Aӄ60L9+b\I){&Sο'se3©ee\wQu8\ թ-20M{SSh$?QFS<،/W=ڡCG 7׺6y5vHC]kTi B3 >NÌ{i ("{\ĮMsmn' 7 5I[.ڎv  J^vI¤+ TRawOc"LvM֔IMلGCc[]T^`+(%pdaب߶)Ц0 +OD-K|6+L"RJn݆xnkUX(JZ&ߣ+`3i;X#(ukK?om;6%ފ?Щ6l '!:2zA,x4}I?fkZywI oX\EE*:{ynQ[(W6 q<JH<3}w+bK_Y8 gW?n~A6ilL0B`lB" 0PIrf9.CL֤G.p!d$B訓$n"Zs8:$1FC<\{F2ͩQh=,'Щ({wQ$? [s-%. Ϙ|;\_`ieEL1RL0X cHG ;<0N.!ARѿrmuƷiGQ>f"-y"yi aTܡS8' >Z`HL Nq6k\zI"2_]rY7`0pl jjbq{y}gfu&y$o8֡!/y%Ԩq24.z!tf׹!ʮ^ /,-&YȈXF1*P@&PYOB*1"֪7eY\nd* d;o^zXBf;(4aocՆw (բXl:u&&T,-Fgۺ~]$a%6@E+G𓕟/UThzpL.UwLk[' SCdsNT&C#[nu_~{Μ"ot ɮ>C -&ǡ!6-:bIy;0UTfkvV$'Y,8odt 7y}')$A΢3:c\2|^2odx.-J\#O _- u-jeeoK"9 AuE̚p ׌0ئNLcd^A m;x1 ^9)?o('N;]lu4+ =ㆩw<B::io7 Mc!Zժp";Tx]o9?C3# #ᱟ0E.PŧS}VE$唕ϼ0A1UdxV+1ycvEü >Xıc-}~աh ; ,#jf4y@thK^b25klye QWM1붓B,O:VB,e4Po^ &¡ljr-qsw2Z(ISy C}af%Qԥ)XIK=)NsY^̧r.[ TM+ !In,]ZfW\D7ع:J}߳$|{Rߊ \>(媧.FY,[itu:mȭ$ l@[קg rջuH&d+V-]P{ZY*A'B*mJ\29exK*sC:$8y|Vhޭ ,I.%75OiQ^b B۷ 2 $%֔q ե$_5d}ጻAcMӘ*&-1!_dF;|, =JŐ$ZE-GI8}֟_Uw#vilR׺iMr,%U]DޢPAGcaujMYvyl8 vqw H6\|y'%H]RDz(mWHAY:G#[> 30F1R%aę)dKO~leLd:!eOmaô4թ2isyajůǝ k(C5W i20bR- Qv+]b&C :5(IXHU|,twr(pб/)\Zx/~*TK^p3u&^mz%z,˩Wջ[Vx0gUl%ɐhWh94j+L7|5>X2,IJJQJ}O1I'<-F鷧u |/]U+a{>>fqё'ܠ:yEf|x~X7tYdj  M ̺ ˜Ow0rۛv,/_D8s29dp>YcUia2ҽh'ǁ2'h'uaF_K6n*c'Q5 y Ąց*SוTYS$gT>w*lIë^Y1#'g׿+9yH pBخr}a"3EF~cuIQ%翰 ot0oKM ]F'2tׄ԰r\Ryt%dE}/ԗAg! hoHҪkYmqGu!i+38O8GN~eD]_zV'dKضR}t E* [T y\,OۏaUPT5/%`ƞޡO*^Sܣ(s SfNr&461]e_,"m$l`U&C'FSK+]kpG^U.r4L.ι;䁠p͔,߹0&9kOI%'ى[:h`aΒnXIν{}O ((KGF—[˨Df+\Y4Ĥ iX9V耄 #]ڪ< {g~x(<hY[$2-z  IW"C+Aϡ0{]>@&VPωa_C"ZRq RB jCr&s'm-KCܗ§2mM2HJ |WL*V!U=Jf^N²Vt)<v#4`k\7ɪt_ خ2]_P? 22*b v#B-p\Dcʘarqǡ?CdxVGVKlYe?c哞9{c)\YTp$]u1 ]BbN~ɩ\i)}J6$;[L 3MP?M]%]˦ڴ*k"J !  QUޥ>Ti˄"STçghW+_(b fBLiKR?Q{{g R>f¿GhM5_ݬ)/˒%*r.M1kN]4Pr B9 BRra䐷/xB1ߜwvo#1Ŕ~'i]`[(-jJϫInd) gCf#/6)bu5<'֔RlnM%`C_֦q/^T@ŴOH 3*.%,Xer,_'׵1NZ0i nL f$hjKl+ihJ@ܒ2+ERly÷¡7v*d2iyƻ1YaԵ'2(u,z gEʤs@+_oBmܚlrW4Cc V}(/f2YyKpb*H|;ldo #y7$ބtoCG;jʾhL|H25{G`RO6 YRT&c)a6T14(e )x,mr.+WΊVp0 u|xc1b C "pB1hbk>Nf9v[ӄ4"aRMS6sTf N-XEnu,4µwzS߇i{A^|ʗbNw4dl׆_J%ءH3>58n=Uh~!k)*'EcL6IJZ.XrLT9"/jFP[|/zWq$LnxW7\Y[tuRO4PADVYD ɲ"C>9҉dgx=3:/e`:$rq/BJmފe Ŕ qR#B..S[/AJ'|7*em//]mfSW#Opn+L."Kuib~2\4`Ͽ 1fe|M 繱am!6ߦzi b+ Z- Y`cX_Z-@!İգNR,"+g7k]2:͈bɐˊ*BN^5ɰQ)|…{H}3N17"22Pb˳"BP2g 0vBqI_f~μ7rn+,UE]r%xmZHXA A/ASDK*mLnHUR 0ICaINs5.dMV-c(Ӊ`RR-ןp`~*K|YQѕ~e8ѯ5iڈHJH+,{L:F;k߆1AFoʕt5s797ۼ IfSl9+õ\wJVe/  ;ez2@g} ?RBI!TF5Wn[p %g/O j-}&)~[%`zfXN@c}dz9+ xAtvAʳC] G #sPINvvM 1Ik*T1׹J"qRU!b^MQ')#f}.5uav'Ήs |і]I,d0 kzMlsqy Ln%&Yb bߖXVpZI ȣ_F&Sans1^gYMUI$6U!F t8((bRF_V e,+?b8"Muĺ[$g[e1ɶE pkBU :ɁƱ`|QJCZ.mLf7x[p8Wvj\kQH:mtWJ/!בv\>xxp3%*"  e6,9X h؂Y}Qg +)l>19`69NANVώb!݇V/ieNEGjHN/"G~y}RYW"#P"̀ 7)mp=.iam" R0"2WxkJkPIP~(t&YK`]y:Ftg%sۥ1Տ]!X6].\8C/弖,;.1^ӫ9ޞ\Гa'ͳcDi4cׅ۔M jvU6%{A#1aCqlb?1I»{kk!CE1(\ |)uW&=4J\NYU@$;+fNY^VU( iNb~#ann_OS(o ~QwElP痤2J#A^8Df5xk"grhdH|GC|v;жPͅ{K\J2ueҝ *]I\.E7ܽI}ʯJy믦Oڪ"w=@Q0$% hrqgxӗ}]hΟŃ9&KfKyN% wD)T6ayZ;=mȗgnn̾q3M6D"Kr5ud :/О-cH]2韼GG|#Wh5J' MljUXHē&.'{V$NZqkB-p[8',y'$P̕LpnҬ,iyR驾jǔgK¥Kbcɮow,!kٖ-wo^D]F9pB v7eh!dK!,&Y=Dom$1 s}(= 9_HCr9C%{nKI}ڮU*jҞבWQ WOyYTc:fP%dmC؏sҖi$"Ov,8-l ?DC" \IA3aR2eDuS6;j v]&ZK9w$IUۓgbpJT:zԀ)4@YvMQ^rїv_ʺl<~VN+vG](pxUCI@T#~$"fhy, $Mt'/hGE76Xa.^ip(ᎫT|bpx6׋^v?ei*LV" ʨ?Dqoc]>Fƌ"w^,(F8=]֛%)¯lZBKu+9/l*c#$hLS=w#ZWUxEH~. On5dyv]mZ?GUF FtMQ)/ADMǰ^D 0I;~񗥳ibm(jC:Kpu!$q+3=,/@T}xD}JD*Q%]%ԈB6 J^HcI}G\ب*{=5U%N+ڮ.?Gnk8PfջZgbxw\3.47ri^eFZzuI12ϡSAX)B72Z,LN0xqNDVD tShHyiDA$Yۢ =LH]ve<יxhYnv+](̜{qOVws&*9(gVօXwh?cE 9t0P#KgII:SO٩mO׊2J9q~s]NJy1H岮_u?\,:i^j2㽏s.#1a?;aR@İݕF QPFݖevm۵~/?ᒋYf4!y_A8r.g!r4iRakQ2y&訓Dm48b+fD>$kbTnhTptP)::=EsU^A2p|A*.v!E[s}Ħodk9֤$ha 7^ lED??"!{{,NgzE%_:{wWw޶hni\"lNEMUo^"wH+wEŨ  g ޳9g40m/r~Eó6m\N"SÏ/۵>Ur(OGceuI8 y_,;pF8LAME5vF&x.oѳi /ꖛE-ƫƪ[SntAN50a-OXc?$o^3 չPsٖv4uL咐5EzXMJeV6O =ؽHEpt.@CP.Hp@A} qF9تor[I+>e!G>t2R8Ƥ9v9MIHe4I."a"en5aWVzObJRxߐ0&__! Q`j¿D5> x AJ g94? 8oMvRjF$` X" Q c. %w.FXv3'W%E'zrR*NONAq=̼F4QZlˇ<|K oVs_$E.o& E'vB:֝ ^M&tHNre{@z/N-\4 $a1/k+0_k˺h=yN 毢!Et\]x`Y? c)Z⯶6iFcy c!7C請KNKNJg" ,yX"jQKa+.ޠj JF^yyU ;^.CB|M33M~i}3چ*+>*dz :d˼$cV z>^:y=X_,gMlkYSO`;U$A~Ye_q:)STOf!h_LM Gsu,ղpƄs,|3Ys&x,-(i;ƖaߺY!y ѩ_olf}|l -\yN!:Ib#RfpT>.#'m,x의z2;a^t 9 njwa|17|ҫVBDK ytfr^[8 If-©XcH?3D6DPń\%/$\CFÅBʲ~Ať(x"7FRmz[X.ϼ녒"w\+a+AWޅ̚?Gఊ{5?|K$&==ޑ+B uռ!޽FCeqaʵyK/I$8 "ä.07%ݮY[l҅|ڳ,~hAceA0] @&.U4u5J_p% 38{~ B/jbc"/J_<>\ӵl6o 2*e 2HkGO#VF2w<e1/Hr쭑b7*5vIɜ6yn+ J"z=Y,8xu{q߂HZwy׵6h6j4lB!Y*Ѱ7C1ޡ b^p+%HbaD(Rl3n_/ʦLۂF@4YƼ(#JUB d{DTL[-A3_Y(v TMo 0"$'K'; DP0d` Of %s~WQ.;ӌ/GY̵LSi?x]EU;Er`DP  T8ߝmfܷ8S">jTܲ2C[fMe ӽW ]qG)%ӁefKj~=o_._۴qM^QR%5/NEI &nL >ǮViǂEv29"\L1՛a|C_4ny^:OP|]WUu5&hID;މ5'o0ee˺| -z.p ,pIo:}DαC eV١"ʪD[ `[Gݷ>=e*MWaJ$ B?@텴~2ϞCkH!&J,~ޘ,\3p(wIK()˚"\NdeC働wyz/o옶O~tMnTEC|%pu0Ђ 5px.N^~#D7ZZ9dn'硲-$s5]JrK}jŪЋEANx7㪶[nĕ#-Y.dJ|S_M.2-"JѡֲuW=r̤I.7 ·Hb6Sg$[_^۶Γ(L%>pQ괋"B'VtWƦ$Iy }4U")$I]%g p(SymQ~_k^MM<3eW=!d\%i!y5I/8`>C;-62k&4W kpc{FT#-Wi.[H)":3MBa6Ҩ3m?盐/P5'%ZB@vp:^2KǞ N#x ŧEĮ2ްe"PY-f7sm#SHj7u#wJ,#9zxDXG>>4STncIzsR~l2g+HjJ ( i61R7nGH+2wazgq3uB<*SO4xڡqub%. ?"u5g0z^o6dl8oJ<+lE1"…S~VQ&j\I~{Si {N4-s8 j+zO=|~{<ڔm]|PE{[IA;;*){ʑ﵏dR:el2E?yXeX{*ʴ}HGDXs d1WD0bj-¿Yj6eM}[6fu5u]k(KdXEJ'8$lv_^9@m,\ҋ,k/vϊ2xܠ+#-RAI~&u,j]fhr2{ͯ:Y5y?^ ~WR,L!җ6~Z#.ďcwծ%SAMl|m&sX}AwdaP _}˪?dR:A~)DXgBl)JHY?MSg9zy~xgj=ϋm6Eo""Nu)Z .b6/3ZN5ƴX1Rs  X|yZWZvYIu_j*M1]ZΪJYpT\c7kQ {>ӽuaOMH P~%zQ](]͢y%|oSw3QD6^ҏKkCD)'̔y$xXnjjuE$[RD*Z:ͫï<܇NJ ,WZB>EƋ]TI]5l (╎À-R+=dE|;C3Oˌxv_f@vsҫ*IqI/zv8#]xuZv~1Ɛ;ʪy,/{өPF]/BbCNƥ9kg?&yR(΃ *;50ſ'\0X٧;v+˦Wa톥%''N&dTDwjT;GM94MS)U|!'ȌDE|$ޮ*C䊤K:GaU(s.bjr{ ~"c?+iNb8B7pᑎp~a:ĵ/@ؾ '4OYH,M1D"eKO[~%N23)j4:sh~eLpCOC,ح'Վ9~/w.e1iC"o@$^umgbi ?@uSr% &2H7 ̍~ӏPqa! QI/q:&)4pc(t2\:|[P/Z|W, ~wFKa PMRV~0%vedSАR[|X" )d0T$&Й80HƷlIc3ïg#؍XeDM$x9|R֮^(=UyiWS.-1ܦKdz9Y^zIiC]T 3išS ?2ѽ::r{o ~IIf̟:"i>X4&o8>*U^]9Yc a\9]ȍ0:.^3x;q7+u*hX10„$$LΔuJI:~KP1Fp+#1P9؍C#zh&2K5lpM.P"aO +z2] VVHäzVlŽ9|=d dwEӥqmEgrvV:ro2j '[o7UXVV8'V`ь14Yv<+)6rtˋ~ڃ!2T臨 ~pHY7 xi-U81Ń[?q|?f#e{EpUfD.K\0.M.߮0 fQ|ψw{X#dtGȴ3% AXi\"%a̼Xm) ^P%%bE?=ϼPɔ+u" [x|֮ c UR3V|VWmLxW>hp`o}WN J2-_UNN7eڳAѵ ?x%TejX{4*efėcPqTd_p;S~=oӫyٟ )giӐrydydw"Pɲ-C.yҍ9o ^hmi~GC"SpyE ]e$)!9e@) ˘o;}i+Nqw7-rQ_յ?ΪFmW(pƦ]zX9}Uh%G 2{$xE.!c7uo"'8Nɷ4m~dE*FوRPAdXE#';ШO_y)8(wIInY8Z}=|K TV^4$oӻ؍ 3r Y$Ue(c>dޘrɲJ)- @b KkUgC%"BRY֭=ajeUU CRX%n^! 9aωi.~˪{=(˒Tk$;5R^(+*mY/^/A#!ߎ+fBx-K֯A/6//P1%̵Ɋ$ۥ3\R6^9,dQͯvm C3E6Ϣ -o9:yӞֿbk^ҁ;Psp`dшR2hPaY ݏ7[%[`g=Lļ6M8.aO~TQq1uN'&8m xV~]\\G5d~/1q1IYZCL%fzoòhxTJ,c\Nhk0 ,#xX7C{fʁ. b# HR{Q>U3{,ˀs~Y WR4Dnj9>?/~ (q~$ץt`ަ[ףX狷{{~?~Z[&WSu2lkPԵ6߁_©lA;({˜$.zjd6)J$C҄CqJ=ؤB @dSK\}SF%[??)GCvSɺGRvJ=0tIq>̐(Ra[! $qGnd?kb{ zUldend\%Z#} ^:!&E6Vl:ק:+xGĽѬئH(&kiJޓpduؗۘ.+M$P]8.xx_MJ/:|dJreC]PY9xڬDjU| \$.< =pf|.j1 ?~lpT i6QS)zp!˛uMa~4ŦPtAGal1:x䫿$B?Udz0IRzqor!L! ǿ,NXRr_I./~хn?9n5dtCK5^ݑst[`˼Z૦'jsyzc1gKkW*> [ڥ˓=ri:r!j4H1 ;x"2+xحzLٷ :H%ob7 Xj ˑY'u B>+S~pxI``k(ϡ峝e(xlnX5Y/t ΠPXDM'DHiUB9H.j*LPp1+ȟJ5DJS`V;{qGeaGz>\ek6!Uu:?Zx+t$27wѤ[v &_gZގjfyS E $Z ԰dOim^ SP]!yl .9Vtw]W_"ɗ#Im rTG ^B2Є DE? !Ią_I!'''xampW,E7I1lP(zab',ɚ7VˍTokB2 Oi OqH_ 7Y%+;:U(L0ﴡߣR/j KϣGv}fr[dG;O4ߟ1Wki2,5ԥ:8ZspQ1!=Fb^D#4Ow! ʒ\߹տwikf5IaeC($PZZCp ax` %t_h6yCHϜ:k+쟶g>ZLg,aHxD~TM Vu`k ∳#bz5^@-ʬtDW.~W, d PY #ɇ[ULGTa!d\1sc yVU3ҝug&;oڗxK5W(o<+d;B\GAU٫pH d^vWBH1)9z-j'~19M#P<<&򬉧k=vxzHK>9ƅn#_/),ےJёᰚy.R3wAĀu,sm6j+JӮXLE ϓ! 㴄-5z3 ^?O,ϣҊ7k VV(CdU,wc"F#'(˰%˗ztZ7w~ ctS[: VJ+ak2jƵZyei4&#y㉗;ס^~g%>!8k gXF&x X .vYǂ:xw@=~u]/Z/ nOP5$zZp6?_}^uW]8 ҩ{E0D=1G?2*d(G`)5`#xdt鯄Fjd5 VsF@Q{"q"_a˂xOj p(Y~*M*"))]Y^7c ;t8BͰ@!=Ҝ@ˮv%D5U_̅6E&ݼx^qa|j' aH%}} -MP`P82(/NJ#vAB lgnp׈4V̗4^؏d 6t.XΏPu%'y躌heL#Cv۵|JIZ&f}[?x~^FX(a[~P7tN.ǩ?u-ݏJUBeww8x~}duXM`LV,\+|$տIQft/dUG#90#T8G2h ܻ2tcɂd:_4]D~tApln^R9R#t %b&/ l2Szn"yRE)dKmeW1 \h;a/vh](_,ER8mÞ)l[0E&C=T !E&k,*lT%m3V??c37'n7Rأ \ Rxz*.> z|J;`vr[1kUn?UiqzsSeזK!oHx*CG-0QyNAC-m= ޏ|9ͱ 4;Ua7yIQ>UYhE&1P^TYrE)=QM,LLǔgӕܚH-KW8ejQ1G~[(-_ [zC41V,okYS3/]/&k))u14ڧ^[g{U^#pϪ ebiv\F܅;0>Ma`ڿpc:Hv iei*P{]ta bp!ʥddZ*w̃<`VPXA;Z6?,NrK'~ 6dB嘺-٣l2o#1#ގ8Jݿrq7`mG=^Ew[iR_YL>Z64(#JtH˖һlCN>C#_f̾s+/-i[E .cB1 u-pz.*L6?!lGuxY~\}CIKX!GaF6Ӫ;2 _1 )m#WD=yns ͓>`Mc@mRڥB5c!꬝ev-7iLַ%T>Ze/Kh+{v蜦~t4]˜}}ST{a(A$,FV,dV$s|1R\}I MtQc#qYpx~H55 ={~O p "sݽ+ۀ,ۺ.2_wA4Qx B .6]n̘/yڶ۱(qeRBe mzPrxp!ZNwǽF:kz, *D㻣/43Pj.~%|Ǖ5jƸʳ\/&'1QYH<R^kim17'KR㦡j!'ۓSsd+eڷ;d/^p;[y0ܮ*e=˫m7ÑSK8TH_]jIɁ8m͠xyO8{hsϸ3ĵ@ぅ[g"`bi#5I;WaP,DOީ;v1.cL'NgdDxL!yˆ_*LZI׶)LuaV6aB 6 W9; F<|yCxGLIݔ2yɇ ]TYҚ,UݨFm`'-b^i=\Qw*)/i&V2}u+4~+.G c~N*\vHUqP^fƺռ-Q#9 J$+MgEkNB&$«qUu1m^j$&e(ySzݢ ^!MV(W8Lìi2C@D>PzK?i8d_?T-n^*iU89smd1=XlB|=TT>N]%Q6PUI)jȪ Je.uʮ LyFN$]TP:M毼H{|c1_-ڢLޣ>3)/۳G 9Jd;_e$E?˞E"!CQl%#%=zW%=zh򒛜2b7g~;E)1Ů(t$& GhPd*}%n[M yt]Ve`Ud&cvrP )`QV>2$=Jf:}H+:y_Z~); 11SC;PE['n׳WX,I/t䩽QmWߔݨKV!nR]B ߮]3"rnN+"Q>?2bH㲮o &7W{Ӵ>&ta QuX[DtUX)vAjO&(A4V՚<,^}\qy9-|'/K$‘;gh 4Nn^6.+-b>.~u  qݒnyג879̙/^cb<-|tGt(|ˍY?}Ciw+Ji[e(jT-;Z=\p2e78쟡C¡J|(GDMS!Fr2İdbaKX0mJ:&h6ȻXF{?=J3ׯ8} +A2ɉ bˆnFBѶJXE9+98.l^̸cj광JV ah!=Y<`Uv)uil7r?:p\ϒ"1Y\ث 3 cΛ?\azy]͹wCIiݽm68W\W](keé&Q".+P7KnF z]+]ê,YPPBkxcΣ҃+ovCf!*C=e% CUryxFDdwmMYdi=bAM˓Ҫ$(]0Pi~Dx'Nt+z>ç)ⷲLJ 2oiYttk1MNM_FqX>p8un6@b[Y]E.\İt?f! 8uGzCg6-|Pi*MWG*y_]Hp`zpcRhɽY8eJm!fD]r֖eVpᦅKpm4=}j+bXTC_uIlt`yrL;6.yvNfԇŘ"i0 CKʓ#}cQX\r VY<;ONJ*5SX8[؏x JӦv1&Wֲ}ԔuyXwPx֔0E*C/=ZEbbH1Z;m#n(R`+]D)U\R*/R7@.,1 J.?<=:%v`3{4̷$_ǽdeKiYEl) 0Rj/{PIȮq:GJ,h-D>)#Mٹ9r8Cܫ+ ]éa|)OyUiH;$Y9W+9OGD$rszsA>O#=2;w{YR5ur7\ʰA4"|?hw=-aFaV U?Fe_4z /̃:0tY_n.)t0E8U/~^Tk[C IdpuO ~KI.I>{ ahCZ6u FO'UEpryey͜yxTۅ3&q5Pגp]NɒJ`4^m!ۮ(}— # ioʛ Ay:q3W }I,1$TmftyDcթzo\1/!1+I7{Yv[mKBfDz|]^&Jxڨ4ACJ,d /C]WN^J&1>]M')z1F&2 gGKQ}\6{ ^rn@A&30 '9SY.\}!i;훀=o"˓K8,ӪɮeGSA&E o$Bp (9 ށp@YDut W m0`>]S[eY&nh'+i2ݒ!t;任 6+^ V07ر,VtJGB3 :Qs91d9F0rYi*~U8)wx?3$h*ZFW:Y˵_ CG_y7Q"ܻ7rq=h6Y%3Jnp\{ReٰGJIDmDvX1D-5`m!kL[Ti8挃h.EXO=+ٖ;J!-q";C5 I}7v$WĜci6]0]T{[(~$ s;jzT9%.ubؒ3 a?-f!x)a[y& x0zN?cؘ@!0 UL-vH}7O"`aan: #iNZo3=iX>%3;.P0ؖCu}ùb AzR^dm;4*CcA,FX%rYR+~!a4$@kΥ LK**-u%l;Nu}Ғ)WH$Q +kX%c e ?YqF7X.gAV͟_SRVmB;^)&*ˆ a?n E?Tn0rԦ麴V,k諺d+V0FC _Z9|ԑz*N⛄אH) .|BI8qy0ϐ, ub4ܓLZPD"+O쑙8F„UVJhw"V.Z6W Ek(a~cx>c97|Vr no]zQ $dJ3|pZ/ߏj"x%>+'_l4@-50\ |0ᖗjf](p]kc(%BwR[ŝC%qIΗW&Ҥ{2p4O؏|pR~M|)isA^bx ~l$;/, `p t5W"o8㺏&LH&-+:bU`8&Gs% QY;er{I~DSɷcYƵ:|¢H+ )˲{4cweYm0:ǾcBx MUCsW{x{?~u~ioPMZYIc?:1:r(we){𖴥t:WbRcg{6}6Tc/VƔEX9lD'B+Q K1$rDTXz$t)|!LS`Zѫ"o.3U3Z6͇|cDyt&effM wիiMdIej+*,'JM)+wT_^t1\ћG3 Oc߶UXӒYz"xbLmv lNE3qA7i0 WO5e~4mל zH"".j{e$ Kn˅y9>er?ǷŒw.XKEj`uZαb1YDx_"prj蔭 STo))XxFpŎ-5bkd@D"Eclޕ*; }_P ņ\Φ5`+!ٕ_+FшT+52)HyPQy)A!̃ϐxQC%,De6Lѫ{RL|g1(Ӌ<|z^KehJÛkdsC=]kӿUkwL<b9\A N\ӝP6+\]R[R2_UOIуrU}a+ K'aF)"F+<8kvliѻ,W`Z,K<%=>Ԯe8f>iv-K _9zc|9밺6W솻.[Q[OHj??NHDYg7N(^pahGZLw-$uGQX 7IۥJ|s &J~x"&͡T OܔYxȒ ):Q!jCSOڌ æCM:3UCU6|"< K=lT( 8晶w??LqW0T~P"l2GI~M&؞"WASu #p_,SmRդG/Ɛ{~Lze4t'˻Ĵǹil_#EvN ܕhLQunHm4Ye+Y}=eYK}z!)E|x&9|IMr97˿=^`Z[Tk#)L^syW\Y/<6ӊv3j–,H[䝚7Џe|'c9SWnd8Ŋ#W|> u)TaSq (91|04!7 +29 '~[d<(I^;ab`*[)\߮ixhdk"&yCuTJ(В+Ҥ'CC>ђ[ qR+=JU6&&\V?_mz,%IHC )Eh"sC]Jdpc\)r+yp:~Pr)B=5ޗ$;~U?ݽk\5M4ΑS+yOVkd{MBJcZWąa? fy+ky9__Qr6fY3V dhU%ް&<]~H1 %j g7%^ sh}Ε1y0{Y]#ifY>Z6K<!Q^%m1QT2T /K%n̻`8)d^8zrUVf2T'InRINݣt;  ^~w1xRu+x)r8½DB GSK֑iOh[yK.sc.tJ~v?z(#Y5#2]$ꚶ+'Sh,֚v^.3Iu+#+BQCu"FANs_^ͥ|=3ֆ:ށPPxUSyguTy&Wٿ9M~ӠFnDJ"tl]߿Tiz'UV6.UXԩV-t0÷ɇņ3Uұ_=Y\ ē2 ;2[<=P, |4&q7*jCqc+u7r4I&Jcm;kຼHP7jc>Y;dIq7(^yqr2c|ÕkQuҊ,zHШzu0EB}#R]uVz''qr W4zWm%y#LK^v1Z/bE F` /'c ZTyou /I~]<}\KkH$9RL{D %~i{vT1um-4 9vz]~fWVyRǝh_nhE2$"€E=.=g q9)D" u~Mo)N;tOmԤ.Oۦ'T6 ]=B1B;c^C\. LXJa1M="Qy Fo -lEg$N4U& 0maCkJ C~,DPą'u.>`EW42L7@<<_XĺyTcWZIvq)(G^|+x&\8/0&>d!3 AIzʻp9]([BrkʨvS6]N'JROIVv@e⏧qVo$$NteRrEaUR|\B3٬Hd*@ D]Y כei6K&l-%fj]"GmA *c$ jQ)R!ԏG;NmʻHJWDӦ4Ȉ+8<EFy^2^P/7' _gzǃMd O^CT(;0Ϊ(,`Z8f  OH94^.Mi+JKGr+eI(U{<]T 7b#ډ}JKsF6՛gI%۹jIq5e{UԛVK6EQ7DacXDTw9cPji.sB6YcCA 7Kz%4;"{j z,@iõX+ziG%-Ҍ@yG'S2Rd۫r ĺ~au[;V`,^-RǔBJ:=h{Y|oڦJ CWٙ Fax%BITfyboB}^=Eiz&GYsTTmV[%ŢݳS^I:pك1 c(W.o uWFN6$pL.׬*iM,3WáiIO:Dp3N5BdZ i8tQwp뤂 !ޥY`˻j R*ҾgͧS /zF=~y,:%2Zɨkݺp4X:e`Ne:uOr)%dc3T2Y-'84|Pɒ|ĺKS>IxVdYoS8gaJAsN9^<;6Cc}݀:<,JxWƘ*@!2\K!&(FUrHICc¾x;No "M1QHL+>d(\[[:n{Kɳj$:*oc2o"t-ȸBv_bı^Fߒ+OTsZ"ܘ;i^?7[NLlBaeMr%x %QH⿎vqyY:Ao)n^CIe;`tRD"h9$yoClE9O)ins:O< JoBEg41XF>%Nc20FߪUi $F01LUB #kfLr(앴o¡|G CȪC"ii N:&c_K$RC!9km$֭r$G징&3M8^\]EγS8n/-+!O: Rr(Fu3 M_cɰ0p4j yq4Eɪ!} D<6pgTѩ' @srZT2MOBx˪m3G)&2 (fyvdBVg&ƅcռ!n Z7 Ts;" Vϼ://8AdĖm]c*oҩ7@_؈2@ƒwbӑr-2 .Ig[\zc`PM98&Bxfd43ՋD4ll%^kNbEyC]4'/B F%?11el$3al@hgà{ec˝win$usjKmڤ̥ 2aI!玐] 3@أ$bgJ4^pJ欑?4.m/4Z2NV*J]ØEJiE\z-)鴱&ui:XUUv}"#FOg2~U g~BVANT}c7Uk6].ׇxw^Jd0N֔4 FMeJrM*#?H3:T*+?p'P | }_;y o؆i u9ɚzwmk 䢣nNmݭ-ꢇ"8 Pˠ_:ӏW؎i[^EV dB9hFFU2eY/t1@]j`D,jA[dCq3Ty.y'VbPk̼>`UQk}}:O!^pl/ֿl_͖zdS%.Mh[bX691 ,{Tij{J_RĄx<)_|BdHh+JU&%5[f@WsN ivEr'PfN#'kdus9ïc/n^ڂx)UK!1e~X*`.3 9C Es^jHlYuMX ;p{ `HZB;#;}4&5mhsUZɂRlC+ (D=zB0-Z#솂JW95B4=rS{//:P-+0!:]A=6}1'ceI`qjɕFzɏ].d'o)e{Yb:E $B*[$y:-c-@ESaLc b1Coq2 o)0J kCNVOwch>;7-9yh(.|ZSkκUYnfe!g$+Yq'l@ /dQy{ʲ*|3KwYpA‡ ,L-9Rr^perXyH䤼6]KRk BΧ²e,]\+;mPKRHV.stWRfElB!}! AkcY%(Jl[G `cOuVd{u\ʮ!CdSC]ep CQ~;lXN1‰ݿ/{dzB .#mV~3}~͒MMurNyUyXݓ1F&CN'dJ|JW/(8-mͿ3ƑMw١palݖLh W9m`$2b1Ո K/E"g/T'Dzg'찔j*34^+pvNVd47ԋխ^ 8Wo 5lE(T -wNReoH-yZʉH0*P.-{8):5 ۳e)C"gu'V/z>4u)ȵIΑ"\B F/y<FI 㳒p&ѻ_0~":rEYQgѥCYaG4 X-T .rjZh|>7f8}uqxmS"9rsu XUSQ B_E E|-"e_h=e4Տg-֩cۓ;o:l.N軘硁ztQH8+ww,JDCnW}ou4=)z2i.ge,z(u!zNkfQob1f0q$cu[ ]YƆיXIAG^<ڎTq c)-Wz-рD[{.|kc$0@$2놦OSzjl=9 4]cDL[u2FzT <+aJ%(6 Oj0L.;Uv M !fBNY+U\lYI';"^9yUaRXrǤ}tymZLA:8YNŐDD| %HUdvbWkBv*ԝgDŽF/X8|`!Yn^Vv/J<.,juXí'.IE k"ifE8_Y#OZ.-``]U0Uw]_Èc:=p1Ȝk}AyCʓ+ڪNkVwELQ;J.;"BaBrrVJn/{)C|xNRPk{Xz;;BIZ+l/܁-0%.̃h.eUH'BNR,#Oj!3[ .;"n)pEtQϣ>_8}%K\>e]-z0wqP.[؃o^ޓv{rD@d2b݃QiQ ^C"=L $CCzY|e]ʧo!T,"VYH\SWqB>[B ]>i3~uM"}E[*jR'T{N @]Jfo6rvs(! _c0:i(y.o7 orpܔo]v$9;h]D%]d:g _tӤoeqXצ(6o G] 䋷Ecy G;lm-,^4y=<2Zm%~#ҕ r e9T7n~8"9^IYe7#4L?bVdȬ\g3 BN Lm[yfQ4L;Q: #Tԗ,O)ZJ`YZO ;'zÚ!鑜7Ewv  y]>}(ְuܔuY'āk; F ŌzMb*+jɀNqJi?:On[+b3-?]Mˢ.RY!F;YoذU{)Ʃ)'LAmr6/WlZ}lGI)eypFAV3 Y9ŪXD 3vL&-o*[؆c kkş )thQj_-1T2v0(ߣ>Bneyyg fee,}-8wrL'K~vmNS,zr:A)G3U,v(lTAmo)ڿS9M{ӏ&WϫmhI48KDhK,p@b M;_d9SjRyLcA0U[u8]BƥGs:R#к\%y@$쵽Ed +;.D23 /}.Ƙ6iN.wa4 BXQ2ﰇ@wۦiͷ? )4e@$gbf&(ЄqTXhI<$) ^pc74q5$[C1 {]-dC]E-Sd¡'v$`B,rz80IJ?LFO|Srzlx疋RWYvLa'Y#05pLF8XF\5$'ܦL~}˅-mnFFٔi;(4U{tb-ϙ6;v8 FxBafE{s1K8'3,Oɒ?QetLMC)-J; / d%:C:1쟶!㠟: bJ!I3}QrQ:{*w.ɤQ:^9g={K fh {duYQ׏V7dypO BqN3 Rp-lKv{Yp:$O O/(Ǭ=i{-~:/,t3IALt$D&lۇ>|f"ɅIr?Xq Vi`iݝ J5ݑ?.|St2 ,܎˰"'u\uIqi5҉Ńb"? (R Rфo.0]0yrh=z>QPv?]#yw,(;LIʊh I w41Hؤ<6'"Kc{|]gNaT`ކ&k"Z0j/,[0yyB}lnhB5Ni",턖dxߓ./, k׵q6|Ai*X#k4^}sm" X=jѓ3*`*~rHSJ:4f2BuBw_{5j^wwJM2Me>mqEi[jk )t8lLS4*1?'Yzօ~J+fAI OYԍ ؃qi&b"e=|_B#IEaFιr,Iw)|L&]pdIAb 턉׮ĕOTI^zN>ٲCŔ2ɼ_~*{_dzgaRN"OY~ǣ&n6m:uA\Lgh?e # ئBRpeRRNK2RP{L`aWi5偃XI-V.U$OdȲDፔi9p\^ЇeIduI0tv]RwǪGu#%@\HR~ ^Λ7!k.❜.&Tcq ͧ H>hǠ$s*wՠɯ'i3o594])kim y[P/+;xYo;OszG,^dF>YeB#''V 18L6"(a٧mdp9*E\zUfDIb6rmU3awZLcJ 0-V}*#== gNXx!U$ ԭdzk(]<>J#+] ^yd>I8ehם^g<-6&aFm-dxLiZMECO )^K]<FDmS_}]eSwX ׮ +@)~APቤ'&ppߗQlBu}^r|UI,9P982hpIZ!B{ݻt_S-ƻ3b'$L tgkUEf%GwRCo >gΏ+۱;x=l_X;$ֵ[V垇"nPRӣt1T7n wMŔ&Az9r+N;eL)Ed_I }rUkr0B`>(%"Fav)珌% m\/׺q&!oy$Yk8Q6rvyF"n:8_Вt En҉! D#Z*Ee2۠z_?Gb߻au٘3a#zbnp烌v=&+_8LɤՁQDqzfۄ<3>)2('ISV 1ta{vce2Ł xci-ޞCkI0qz2 Vk`pc?M3?eu}\ӎ]-PҽZ`DԅWMBeL~qXpGO>[z[Kꘪ56:I WIp=Dbvf .e+EO ؋.ƲڊuTI L.y}wΨ0)텪C\:.QmR0_~VxX1дl¯;Bkx4?>믑Ex2U#$:\Hww )_iy_ߧOl*PW5;,W[z2i[0W>ɎRyct2w4Z _8f x*? "tv|5ݯ2z߿50ɒ j`BwSU"*OIR?}Vwj9ЬgB"3;S_~k .\21ke4QB-(BDghNTrzurU''G{UJYM゜Y%PTf1->]vk+mGUYiuK >W0j!0 4n/!Wd:1yZH`U^)j uPp_#=k7 Ȭ+ =af;a_@Kք2Iᤧ4etK׫_ݪkb켵c/1|s|(d4? rj_ }s{PD̾J wNp@!N{#6=  q)‘_L\xԶ.Ka( M(0^2id, kqU%e2R7yWPp<: }ewi*2MҁEc(*ݍإr+Nt n]t*œHu?$]7By91]#+;Ł2S w!PeVPq\*aY#>ۿE߱2Hۗ-oWZ4 .ΠyEl%A*0 bRNLT(WlH/$,$ (ˈ1*FK8X/faq%wuɒd!$KU("ŋDbyLxؕ7rKяfl r}9}1>~_+EMA%(E sIWC)4DbN30ϵΌ%kJ-R:Pw:&-le@/M%!FMBV}ġCc" ۍy64MZR E;(JyUW`@ZMк(]~g8Yvf-'ʬ^1<Q}Xz`o7{!oަ|yQ"Wވ~*΅KprO]H\{*.)}7[~6,;\za^{m=8. ƐA.v]rvUh!ZeaѫjޮZKM߼1CTZs$9+sea#㿆Be]ˮ*4]FS+FW0[1LO43Sl=xp=o(5Gj8&i/Pi%YQ%B e IѸ.O0h&LPJwCQtܸu8q'a?k3 QؽV\@%HEz"t k 8Y\)2%4W:+刁\ᘺ+iuga}*}FJ.]_wi&!#UO N-Pr}}bqr9OٵX^>\SGN%gn\S֤;J'BirDt!e N42`ڟG-E 1cb&uRs?1`}/>WGHrLbUL]5]H"+Qq BfRKM|N{׊x׀*Yڝ }rUD-?`-"e`|dfl;c?|a-<\$6 5 5YT(P,jєEhcJ=cXHDž?lBs.aZ8|-[űլ/4c$KlCAIm-UQ٨Wg!T89MiD/B4MxP&J|yv#O"U<Mk8P OTrgb Ff@v^+6pL-V{+?3\ܫ<W3pV="ЊX*C|glV/F8~`ke?Iy[^d_R͘ ")3shmY1'8)ėń}H={Ć-!% ŦyὤKSu2z*HݢE& ^wyG&Į|7u?G"5gfcΟ\%LӄdUd Yfm ^$"VɪErSQZi9QߋYP2s-yF]X;fx %C*PXF0+fa*yO^7l\((/9QeoEV~>bHedYe #]x.E-y_?fJc?^)Smcӗ~nCЎM*#w[.!dp׆J,h/y|+Ÿ㿖3=mr֔ye.,Q0>FJ!uh]$Z1SS2'wآ?wFGi E2{sYvz{¡G]^b 6¬fzbHٿפyR#+9pSydyWh VR4GG;b\AK:gB/mWXђ-eJ~58.*IeYq-,~N+N>Q$Ζ'BdF͏/9Hx7pw!6ad?}M(2U:mmuDؗ-^j#wH,b RhLV$ÇoB]0{7L/+J9/M"kCw :O . &>:3B^!:Ӓhzпy E glzYDt.CKߦ .0 ?Z+-:?l@/u?HoLx? ǒ!d3Ixʺ"w69Knyq,?W+ ;˓R^2 .,q D1ua))v%ȥ* pdKB2]y uZ25h61'RGi92E#|4C6e- Sd 5d;y7^lk,H&Őjd:IR89{D9/Uni +aA>_*5$o_>5LUTMLP C(Q ,I0 Zh.'Ŏ9M `;e9߿ïzg.ڱFejp+7d T8LŽnAPo*.N#)67r\pq8-/ὧC_uם,iXѺ eK-/Nx/23UaK&?/S,5F.q( 'RR`ۘ r"ME ǤXhVYj6=2-O(EopG|t77D&)벒c#J.PQ7 ]N,Eó,O"_._X&(*vJ-+Faĩ?Z,fwݠ=V0Km;'FtU7<"O> eFRB0F?> *yQBٟڋ`PZ< MyGUl2pp902/ ^^gDֲ0IEfB1&a\ Q-]LGĻRX$pxn9-.C =̛2M 2&*`E$"suі BцD_5i$@?JU\&y"Ȁwga@(,E~Qq.x6nLڋ[huX$XRCeã<Nh`ANtrռ&!]k ^kf{Ҽ ݯ1 9tmumƺluAb:-j8rp\H%#-?`{ɪX_o v^8Lo˟W&3e8=YcC3_l#["(wwwu `5p| N'_uE:._v2]V"8Q#$dقe"8;).+/.~L{OoQ2)7h{sH0D:&uAQp;B.dELw4ٽ_p}IJ)$!HKb]5]K=""z}b8 )N*{r12ؿ231tXQW&ܝT[0%x'dE L PI !_َ(+ݼ1WI0':Eu" Pԏm-4GIDݱ3RýCY51L Jq9;+)7эiWϸekߐGzOvUys.Aq*!@fԪ3t@xi#hpaC^?N҅|Dytbhߓ)}ӚJIK+&W*XE q'oYeVU^wӆsyneq>s\)[ixraob@ղ;dztCt\kc7`vB'/51of.^S-sT'#hWٙ;(.}Nﯳ?b:zWL c- JJAs^_*u.5 ReF)+O=.r/+ʲKVKP>uvm֑TCrk%eGMzE "_Ym.\Z\^7V]̽9ڹю-d3F%ɒLzJO가2.pw 6bZ4YkJܣ_`\ﶉC[;Z;=aG]mɾ!uUX5]%EL\@0H%2VjiZY#RRH0O3> M9T7 WᵐI?{KSeinM,"RGVqpy Tei͋*}l̇2H~>O{m=OݏKF>u,Zm%}H% E=!DKFKa :d`¯'%>>ߴ0UÇ>;B/w;<̜oCkC].HJ(!w ٫[3_bղofٜWi,p.kInK _+pLx6^`0_k .[q4MQva޺w܏YCE6䴝ZkvE1C{¯W :iR@̓ގeGE2$/

>hRGKh|WQpn^DU2EkꤙK9Xb^3T-IRLpNI˫K}Ϊ/t+^e(t}W5F^#w!ߗˡWY1?9\ g 2 /GMWܢ+Ȕ7}\vEF@JU#p*wsD_:;46bc89̯it`]YWeú^)Z1pQ>'²4ڐ.TmGa)n!{PĄCmy»W)4̗ С@R`au .'-X|gyK%bkM|ה$,[\X|:$g[iTKs},>r}6h2iE1V!o(@/``;\=yV*8m1P>U`l gb yT 12 L?ڵu%SiIM9  Qk\\&Kly!1#r M6mV N;QbW遐{`d{w;u~ %.7Hyx0wC(< fzҭ'wӛ$HN23I+N})R D1跺_#2WTq1nt>q jX+]xeS ’î}Z@o°že`qYە1z@~;^YU[?L(_BէiԈl1Z(7MQsiNJ1NÓ1//Cd2,E y\%-t_]p|Me|rbq3˓['.e]tjK/K)arOHq/h͂joMܕP%&9ga< ՚2tZI%a겮eV' F` NuUU{'F^E鲲tL8N~j\4U֙]3Jc-DU-ϑfIRȿwC1W!~II&y〸kmVU %r+$zObヅDAl3<EF¹bMЯtȌ3MncYt4YQGZlyvuUX* oɩGH"t2ٴwNpydn\q4_kHӆ?Kw\ V_ )r>@Cߏ&m$SZqkGy,1{E8 =[>,9X.4.?_[2?lڰY%94Nx`RCѢ8QY);XVF}쪴:HPt/3 rsi :P'gmXU4^+&cBtQ |) s1/k{HVn=(Mie%1NJY6DЊ B-;/1r^K?oE@9y,L-8C*.ji&0m0ُiPyWp.- .[ƈ>KM! u #EOP@<_BYu-Q×iRrhQv֐*o448X%:]hxu{lNJ2UJtR-|_FhͿfk;`6H|(ɊI$#)\H1Ժ#,(~^}-Ėc`);̕=mL̯Uy d_ڰ\O72lĒ%-j( !'FпH)-d '4W,yL v 0w&d(1:Mj荻>1Gt&?V#GӢ f ) d5: G~_mLLIź~\0}\@`AT["]ٖ]G=rx;Qh84|"hq]Ew2P4R8v2rbz[{DpuƟt ?K@ićh(nXQ6,YV XY`J(Sj]S1G1cݶmd;/m$EK>e[. x({忆$iyR n8Y. Z4WblxP"Ě ܍~ 4HBC9 k T$j%kRջHy5Um+8X@ǢK[nj>t2>R4<)f\_Dd+{XT$q4,2+U#+"cT/Uf̂% {]E2bPMm(;^UoUhR,ꗚ2* !89sr:$f97`;C'$-me5G u-| z eIJ3giҞf>1ڕXcn1o-)5`D,LUX$)1 fM2]`1yьb"%Lk\m^Å6algBK6t?|5eI=!UѠrzG 0)V'E4j4Pl;ȣ:Tezڟy;hS&h/imwVl8'`@~jwW|,$? /9>r+DȌ_g()zK(,C>2nbEW:9Y&jZ.)WJ/;e@+ss&0q~QU=L>Ts;{1g[>/+ߢ%oMU_O]ԧ>Lz! 3=}m#"컱ܤ?O\+޾d&[LQwuҨ@WC1VyMDŽ } ,AFr;W$ EΫ d~AGmͤ0{Xh&=JNrʗLFG&Y&{YiO/K%$ZZכb.K^I^pUj+SڳpRqQous!;RXebY呤oQE/4=?31HIIۍS!oP6Vb_82B 9"q龰jb!QT°ByH,_xZڟ?  Q,%}UWFw}x&ށۧzR[NaCJ"s ]3fC/n=dIbbK. 9]8t$e@c-iE)Olo8O3)OӅ'3~SGYYYWDIZaGךЍe]I.]fh-N6yXډjFYq#>'ѯ;X3lBY&vҺ;lIk+-Lv4S5*|9V8!DչO #.8(iv3%-&3^bCiп8tJ,&H2 䦬m( XexᜆQ9Ä,£{-.i&8MۂT㽚=ž 1|$CoLGE4DrD,Lk! Q-]Yd/-ePqڢם/#O,g(Ͱ9eUm o)KB5tKӹC\-S_ǔtkD~ÞV(f]dmҧ@tAp,13 $ʼnŊcp Fӡ72yc*Bu/~[3L1;W]RFx/ul\#v*-- +~AtQ%ܖq˜hG[fp])a } !+mWn0a*lD}j}U2_෮Nnh_7aCCiFrZCJ螏I!R ,y)X - -\^§1,>8Լgn@Tޒp*~#GxYz]),Eet #꓎2a׫2,^]|]Ylf˚ M޶O^Өx-6OrSpU]>闫oھl!o!S;][Cռ&H]Y$J:4<tuPI}],)%us"3B7?!me]1t.69&3eȯ:5ݩxn'hDhV: RӃfO{ˁXT^‡8J0\:+XԶ XrρPZrKYjÎYHFP2K,*y2c΄jJޒRL%_ m7* 1vebL~*$ E:sj"uMEĢyH4j~%SeH{P$8&Bi#yVFE˱HOWf\P4'Hupg2zW*d@n:s{r+щ#p=M D"w&fyOKoBɾy4;&m s*!\: [z.#G+1,I̅\KZ̕? n(:b$b"0Eʝ_!%fV'uKC#Fe Čc!n1JZ*FycU"p-k5p` 7'ɺ]KrL=$JL9&\2#Y٦+UB 9yYVQzфjBGrbkb?O- Th. 1Qz/97?۰N,OE$!#cJ"iY&Oz).Fy/|\LX4DN՗bJg$:$1BkX|vm[RװȮXF>pg,䊆 md+Gގc= Ņ2\BLc˱7lO|i^Ϻ3ex7ۼJqx։])}pIȎ# F)&QoԐ# 6_ 3" dŸ"u"VL Mr8K&x LQ"?8̈́x[x)yNJ#O͍M5D&&.ݏg[]gxa({OnVk1arYÔ绔-Z!V_+ @f-.Bg\06,q ϙ g^6RS!ԂRVTpY|ڀn-%E-%ggu+̳d_I5;jáL$XĸGa^ Qvv{>_d{C5| }]J78zYӒ]/ n}|`۵MNڧ)H&W&*tC}C%[d8Ɣ~PBXr.v.'v.zBXpEҺFy?-)~%_!W,Jfpv- 41?TGE$Ab"4MNM$8 ,VfNfSԋW'>[hBr'$\Ov덉l~;Bi\CAە`Q.f;cTYGml %{w(ɦOGzwNUSVmiwOYF$\v[yv=a4+PĪEhE Qz7?^32>ͨ{޺%gKuaJ *rJ [q>6VҴYᕶ@gMޢ[D.x1 0G@ w7Ԯ-Cdwm"wDm aM'fr}dž}"\+3ᨫ)\q+TviUUM:n"a9*-5SD./}4Ȼ>z a`<*;IQ*of+U.:t::*T.]߻ )8 ĝ]81RM̟F&+s*9ӫnYuQVu: |P,$ NcZXo|%@Js ^?5SKgxC-u)-;vp4:NVYM=GW(/mO9.㻗Pma9-7صMڦJV Si;B Ch)-4Bq`nOs!5b\ͬ+/RCò& I٢ faȱ攣+g(z9JۿѿϞikb5`)KOmr_Pjk#cUaVbxג}XQ ]+ir(&H3QoALvP(GQ*.VnspDeչ !vwz|"ﮅbXKF?ߝ_ҖHWk(Nm[U'azUx.vX <=ep9h:=n[VeAXʹ3!9<@=-Dվkc1?"pm|v|od./cperJYP6BKXn&.3pw;v=X\4oAm(וqdU(o{b/"_/xYsdq)֡r˼'GxIsii|=V)ԮL 렘OhSl¤s o\lӢҝpmg7mxnd(d%a&r.vDɜED:y;[e墛ئI\TYM bDqPpk2wN1SƩ$8 NIºz+vIRi痐GrPûh-C!LTNr/ä_ª %T27U(L$1u}֩#/^Zz)xÒ8:}q[] [#yBI+FyLߐS_0S7Kdp65oyp _ JU:T+Gg r{κAӖqs/Mܑ O2x4eatK, 6+,R^H)d|.]0L0Me,I]D&);i2jKqY.C Ё F,76qңqckL#|b*ة޹׫d8LEnҲ|;mڠF '#]WB+!sb!'Mϯ[THf֑G_GH^ʈX^ Zub*^5^$I?_J2ɶ.GŊ2f*x&qhH+%qyئu7frQ(Yv߭ ~JZ쎦k  bE5:|Zs6ƚ2^`= 旬m] ePJ0<ڌ&xt?v%@<.vvt]Vr}HƥBGe,ƳEXc!\G_ROm]3T=>"xil$M`Kˠx7+K.rb_E/uL`IJi 1%m̭sBm(;UU>h[ 0R\g/ЋMlf!fWk;SapKʮ Zm;`d'=vx93rԖ_"7-R g'V|%\E"S2 s_+GFf?CxeeC鿺@kXAU@$wϋi8ʂyW݅J`np[ڱ1ȣ rxY߼"߂0Dr~e@8Ϯv7.TxSE%bN'F@.  ;01$Œ^^ڴuhiU09Ƌ(^K:e!JmҮI8N۵L.[G ]y"G.o,m]5#6SCºg0v=To>/y>0AkrXgT$"{tԿnKEey$N>su@b Y Gmp(4(zԟ_O]J(Ē\*,xS|~ y<&]<u:tu[ WG,TqDw==+mۤU(;"'Jqoro^ܮva%ب /s9|h߸9 z4ޘGӐ* 'PFΈ¯:Y]=^@ .\ ؼG6F5:p 5JUQUvB6g)]Pl:b۲G G Q #hƿc2&@:#=@;|/"8|n*ް-z9UWW~w6d^g.U&H ؂X=&^ģnU6Ŕ 'RNgeb%|b3yϯ wiA5ud1[г0|#r„]g.7*]L F8^\WL&]P2g,I{#}8AH$:*R::$82zD7Fƛ(WtpC;3PM~эyVϷ)üߞt ],˪&$f_J20pᾎM@VCUxi )Kxd a\ iVl,:Dq A#,"Žk+& IN7YEWk6뇩vD pb%=2M)͔\$-Gtn !|H ` kaG@j>^Q`4ʱ=8O^7?n`i(`?um^1pQL~@ނ!ضYF Z&ttGN,nIơgi)g jӱ`] xX } _LGOkzsO@j嫠"wZMX)z (?Ux bDXģ`A+e|Ooz=LZu0+OjU$BOCmYubd¨EW Y%To㽘ގؠ9y]+Mnnm(˖@?RUDjW(,४wy#(Ube*TvXlce8$wLf}ņ^ hfΪ-5^D%GaG;rvl(w#h|:][ɐv~m9qLz`8ae^bۏ%98~0_Ycൟ\/,D#_<%gĪK{L\q:*nNt1s>Y.CK[#؎׆qy)HD a=NdJ10CTi91 .G I pegPf 'ϡsq\ &?G|Pig/)MR71Tde`ߪ^#gWZ8iciAFS|GZոk5A`4[Tz*ClQiY\'U(dCb`b噱Ћߴy繳LʸzLX4I+1`e.!M0dVBˢM+MVq_KKsצاwLC<9႟2cxCjWVŅ0zT{}U\@eӴUʰ)UQwR%ޱHvUr_[/,+*q# ߓt/@MvWyWuI;;5%1wށFp܎_<^s_Hb>rxpɶ}"pM7UV5>ʲlOIy+pJ pN#< żD.2ɂfg2nM !-!dJ瓩 *Jb.Tj"`pѳnj oa\l(' U)hy$fWQ*)Etb}H;>-A2^=Ybq$3=BN g{3M kf~],쩛Rq'_nm q%2=Y~7?=sr/k\aK1.qn |P#r'`ٮX>iV<4nGa)+rP ~R#DAF%G὘!/*Rp.vܯN\soifA0rˎ_XGޭ\_/~*t-s|Ʈ ]fnE)'Z .NH[ތn.b6}1n`?k?2Ű'+2aU;C eAd&C꬚ )Wy2,~IgӋ&$jnA.eUJR"nҝBffX ^K s2<:g [cLPlig3On!)WE*1O+p|EP ֵs`x=0mu%0VcuUғcA^N)!|Pn򡅌 FŒЌ1q ^RermQOV)+5U^&凡 1 Rz%QF$91-ۃxZpMxR.+O~7]W~U6vJhQu1?3Cw0~Q젘f>T¼NHz0мxYelna-Пe6tЇc?=E, r٨S:8` ajP5`@ig h4b#{PVfk9 Փ w Ņ\&jf\l҂(H-;<@~(/k3gCR:/*a*U.DoUc@%И Z(F6p%T^5EBQ>eG~G\3wXxvCwLh50\>u_d?$+LfrXv$|]Q:%sTΎExVë^ >;<~["M7-6-L}ѷۇ `Džׁx(Pz9sD{b@]m ς2@HG̛9o؟ɏ\"u[TU2PڋQ,y0Ĥ7 (܃GOCٙT=K<.ٯO󳮆z骯eUy:_PdcYao8,lL3̖;becr|p.=3֕[ 9ֻ8w ߓ_5"16qW]Lg%ĥKl˘pPL;34e^I2Owi2K!k˘J{QP? Ic1P;lb>`E$U٣ %#úJAp2iZ{/Z.0GY]ůa&:Kޥ3jGkDGIWDdv@$N(ff'[vwqE =ysx©! 5yVfBZ#ʪC.ݣ/Q3IM11aϻhJcIrRGlB13$`.oŗԇk+,@VQ|J1UȎ YK\zf HLۮr;A" $7}q\v|*+S$MV]R5`DyLـO" bx=uj=8G܀hTZ r*|y^H9ivhBZ3绦M,ɧ"3< Xh" *AR2 +0߲O|xg7BuM0Ԫ늖Xu. rWi; r NVJ7f櫚$G+3HÜ?k_U/ίNHs:7^{HFooQ:7_)O{9jMd:4cz럯(IWEr֐kFNh@3LM R0A`Qs_Ɠb;`TU/lRAjWYV*E_.ډsIg ee_\¹P[bO<pRuR$N! r$USp{w'Pc}-e 2i6YËnsȇNӘ8=KӘC׵}tM[R^LGlpr#;|onCa!ēζ<7{{%]a:S߅Ef2UdX `1kLa|[~ιwμmU"EGH¥( ӣ9  !Ak)KYEܹٽL/S|Ij&99?h4fp1yi>v,#Ȼ& a!z5%U5:[2.whZߛNx8Cз-y-8WIE&_J9nE8@K/{&WwMAޤJbgrqZ6`BIj4?~E\a,Ӆ=e>p\ ,$>/,pIJ`I(Ω>A>,m5m[$6rFvK-^I \Ug9Vc5{ 1E,Eks3F5Z+Ar wfM(>'npƔE񙐼XD`y90C#'if -cALreʌ4P2n#QiY^%J'LhHEe*;D8|l!;ֱJN11߄AM 9,Tb"SC$q?4=46hF w̏~4W|#&5 eZ(u 8XF8/ *[+=D~S:=rb '!WF70]Ԇ,I/񨺌’L*o5F%hZ|1r}sc5nfȎ#~* e&UTƽ"XzqJC S絢!F\E ^hnB~{Oa3˳Yr>e7fBRUF̥oRfڽ_E-fR8}ZW=ԓC4ieIR*=Zܸ;ռǥd|5oz# ZyLy}L;͓%loδIS¼mMvJv̎r!Űir;iH%#N'$ML>B A\(m>)t 5c/Tvi|LV]E S0aZ,Uvb1"/W/G>p,N @&ѲU4ѿ>ㅯzYwZ-6)왢˴?&H+{Ϫʀ.收#oMX(.h}iNKB_ʬ_-D g!~Ol: IV$Q`5Wi n.=f&9pk!tl>;c0Ϲpm  2E/N.-m#WIPN )G־byd1~hCdt5>ѶUv[c( g+_@R%`HЮ-j)ʦF Ni1@ _=C9⿮vhG{/3UFdh5!T&p i2u>%BqJ_r+CA8ǠrIƹ+爕R}gHEl`D=\,d9QCnթܲ>[ҭ -"xJsQ/F֒!iǀ|r-b._a)mߦ>c^}.c "%) ҮH;-bPr-^Vc gh/?:~$:̃ cY5׶ek,iUUj,?nTa@~Odʣ b17˟˘?jRU!gے(3/7'"Ý-q$h W=!d̍ۙLɯq^*3+i/9S毆KEf/mq#G aS՟ɓ+ s:nȪI. ran4ᩥ %`f/tLuIeqBBˡŽ6/tCXb.w1cjB![PJpmd]S4IU>u=3@2 v?3Bb V8 o gjoEXI_y')R*_et9} lu)- җv~W1!$ёgxv[T&B +%w옴<>?L׮3אN|jm=qy=:,e40Jn%^fPx@/N",L1Dzw&R + BYnfOQrjvHw@ǁ'ӏMA֖gg#\g]#&N8Q, >p/vtRk I&_нnujP,)W.@%2w*b[SMH]H*g2x3V*,΂V8SȽJ@ib]${Ĥ6l9%@*!]F cEˬX=Ca-iҲpQ1uIz6xLXVT㧀Q<{[za1Mg}eU4˯oLIZ$P_3Y; L@\j,U.4_@Ie vܕSWuR٦ +AV7oXoO_/U4j?B_ڲh: @lV'SxQKz @7c֟>ďg!Cgo&"C ;R1?ߊ"'R&΢+2Ȉ*0m~KLkzGW:On etW(آ PId3$g #XģHTlq#fDwTg_[lɓvdZS4FZk0;]{?,JH×6sC=dbSzvEQ?SI٥ $"=% ٵ7\׍0y?x],ѵmx-MuI;ɾ$D$(IBah‘@)rq;|_??.fI?'?%a3#"Ge|KّQ ,R.`adiH!mH$j-OȲ6o)ECIYn­$O [u/Uecp9iDK4/:%|Y&05;&c>GSX gVYi.d0=%etDMޓ}:ΎV+dIFNg^Y^/?ˏ1;?|6z(p%q˛!]G!إ|C[ܑGXvR.y(!z9eVE#LrW"6m>RDy";"$(=[|kENr G3H$M7Qzp]Wy9E BNУwʎG=mV:L+qΊ4(;b -Js80J ' Y dn#?U~S?V9?yίѕuYfYRXibUydmx혊ō_}1xl/~8*ҫmkoY߄%F>:Q+ 305( }G gab^Rg~^ -ƔIc-80֔"xD~PIyo;eݗ81  7W u~VSרaȽqeվo!#Iƿ#a&e!A[X#-kZgژ,)[;=mOUALv'3Y+SrܥډD"Y11Tfcm7Xo!fE0Yv!$Ѣ٣i]>ntU=px[=$oc2՜D35fY]Vve#Mii }ZT-a_ЎZMC~f]%=u]O* XrR3d$l&o J!w8%h.{4dHD$v&M{o|E[&T.]ưc[/*TDt &C ( h#Ecμ1 ̛Ęs=3vR(ɣ67S;n &ԐJ*Ua8FiͲ%gZuEWާԲmJsD}~zՎU,U$ ѰLY,DѵlbǂUF&ŒcQ$׽B_B|y;CbmgG&Ge]8V|̘G̓T:#JEF#LoAIޡ| Rfl ʨ|"Cr7 #LMw:; z0BdlPxx㪯&1:[pyO0W¤8b!RQUlSLNS"׀NPD Pq2-9yVY_TX78ŐHv]bUWs+.tHDV{Vvytg9 \/v6%qn6ikkwkI4 K*3`r,p8aQul᯿#ԝ>qFݕx-'kOdJs8C[b 0a@!BFd8=V߹qw|.H&I@"+~3E0Pڮ%[EhnխJ;0pR ծak ~ܿ 5!Y3}7M2 X,<&*+ZP28Kz=az-m4uӎ e7U=);TS¯e0*RSݾdSÎѸ!XGEavTFoKio}w*=3J1r`3||}}弚ߔ+N5EÉZʸ]]7OݘX;6mb|!몴LM:%\㛅 (vLܮ;|.dq/<*V/$̿Rn@FfN,Ë@+Q4^eRiܼPGd<2/RP: clRՑ"f9$_I@y^MJY(f>xѼD/}v{g~"xI|N Õm]01ƆuQJt7bhWgi͟voLv_Ȁ>Km~XS?ڄ{zVE66cQ%f1Qfuɺ$],]WGQ!3;hUMJ$+{QqC<Ke $2ؿvJYE#$Be](Y 0 pFDy)|: d]牒'}E9t[L^J:d/$zAz0bS4/ev<^f8/5uOa_HS4WUKͅٮ g0^;6WŘou˾ŖE.it& D3"^G@"l+bi?Z!K6<R@ݱTVBS&Q&?:BLKᲡFga8Z dzfC"|6+qfMɫq^b6@.rX1i%ڐck&5-ՊOh-P2<ںAEy^gcsC7>SݰT9d?!^U?JJg"Y,ZJ$%$=NL0N}m:ߴ]$b%`x)*[ Fwz͸%wPݡh/ p ߗ@]2"ݸ4An}`Q^W5W}*oApBssXbw0\́wڰrq[n]0E<' z|,MvT3|û浥C r K;creq_-d3i_]%dz LB҄pߕL.jD*+'TIMd=12fJvlʭ`֒2M^/W _w~'q 3Lt0ʾs3 |sjݤ[ǹ2i@Ih.ÊޡVFɶk>yŐ5bNjц$)A/JYQP~Ҿ/8{ݦz,&bxfݡ /XJd$QㅍsuRޔ*n%;qk*&/\VW) ptP_NhQzڇ_" ZށVj̟{S8T{}3QQƻ!Rg|~einhP54&OR(/ʜ>F-b'V0Ne'm(;=Rx^/aE1C,f;\{by/I.!iDcPE'rcvppIl" \ H+n):}[8m+hܯdHصwKyWuI{"bL$b`QDB^PwjLHF2nt6ӳ˼-WOpF1YWd*Z_1 oR&3w86X'"3ISҫjVk4EBя#p5_y}oOO7qEa8!…ݒ2+*lw,~R* [foHw@q]R-FwIWV|5nW'U(po QX!B٫+R+-G- %~v??n)rיjF SҨ`Zp鄑,^^JR(!\ B*v.ay9)KaB pTFչ~} ɩ,µ/'!C&b,p Dz3.Wm&'D)e!_h !ٍHGBY߅S9h )'mm^aXDCHהX*d(^"&H~vL%tC|dY,{iޱB1B̺lkrU"IZrtu" pŘ(KW$Bb9OU7T!Y^;=(mRP+5 gUS$ JRϞ 伷NsHz4,9{5{6V=Q$% CJh;ڮ<|_UVGz]AgPH$(㈸ߘx'8\!!W f K(,ȩ_jLsRJ@vZOH`vؔwWDMB)uUY6H2;uXD,j%Lv)A'ڹWOc`*]BY!ۓ֢m @\f`RLTPONt'~G$iΫdiaOOQԕYU4ach32$NXmĴ^JB ΅nqvd2 K dMJ܏}!$<+CsZ1m pLm]R@8r5'ݷR+Hin| Jd^Q/+/PQ{%oBhVQ]3-S6ݦ, K$Y:3ߺ'4LsiwdUQ&(`/- ?u@^x}>lMPHzwXDX-5*<A$Zx}̴ewZyZz2cݿndO eqKԓۡ]N<SFu6te/]YKݑb-:]Ceȡ0aH$J[Cmc n(K|GqߓFϯjy[%be Ei]u1 YI5P`JUȫ^Mܬ؈qګdY> хl-B)I)_ULH3BU8)߫'\bŗ4e/v8}/:ֆ, SC^Oa"2Q9^aTx` rA%1(a?M"[<݃%;ElE?e9U Ɏ>dK[jX IC0YB_|˴īRݝvŹm,B6^cpUփ~7R?'1&%GΞ:o| {{2:,,:앖c$!&yЊSD)DOyIRf\YdʹPW'j }h^a}`U: 5ձ+%8rn0Lո@-\PyPCev6+Ky #y$U52A&.N5}d)ȕe7 C?̻Ǖ=@eIa^f7o3MZpi"jdEkj%JNc'Zd(1x!Y}sQ%T_l2 [$\q?,~Z;B 8ׯ?vŏ*!тDj%"&][~xLeg"r?Q}g3_pBrTeRTܖ,Q$cp^tkL (%pILX?4OҮ#QZ(d^9 6l"iZI2>)bl!#$*H0mf\)vxQ333-.URݙdߔ.+pA`[!%q1Nͬ@ѿ~fBLdQs{xn K>4) ddVrMyY!'{]5BҘ,x߰PSECnVPv^&_?X T**S|8oeNjA8 rP./Y_fH3y%U z޲Ș(u!wEwVwKncK1κeTQ'gXV*ͯ=Zj7ٯmy R{TbC1F_KH :El+6)mTOYVы@rP~az~))]xSELN5 bNOr&WLR)y[А%ESKZeu#CHvfQ#-s)0Q(1*Nbby4yi͊rmƗ F"1^`'ΊcbmeptO)ۉc'zLKbmH7-MJɅ9ݵAf`=@fFD9qxcvTHiuT]и QtHGlUU`"'C $72jh1/rb) HE/Mͥ t!HRmt՗Wy\]""P9u"RK;Mb#,_(Ya&Ѩd{jX@V/;웇Vry1Vr>a e3ۥ9*/ݺn۶5\:uvZΝp9m:TK9%j=$`j)Έs,QF.|C8^6IOe/OjvUQ7I>3h (g-bۻ im=SE+BL؅k]C|(%V˜fI#] ,>_:a~f'&+/i:mPwݑaHc)Djc 1+C| [X`+19gb @^#$8Z`v|d0_WTP{HѮ]m+ۯ?mr߳&j%툻Qܨ)N#.{`w~'9}4IJg, C&d[4!Kzt,DPRreW١ g"MIr :)ܔO능sټf46u,fISP诛,jZY6N W;x#:Tm:Vx![iuo⹑&=ɍC(*6y-&O)UmtYXo˖*&3.=<~qYVFs?.[RSjBXOm*E H kJND &vѱP?t^k(ۉnOE8&hcXl=`)݁S\gӘZ +l"NLG^W: #Df/k&|!I&ʹUyl|0́8X'7?BIArP.yl6RNxm5+p`-"}Tyj W$~ʂMLw˘'}W:򲻹RYW^TdjR-30r8aa'[,Ӳ տKJXg]3ZGkF!c^`0]H$D8Rd%}lCuI2(eX8R(u*yν%{L[H~Lчh_s],1HVͣhgjmX^AZȴyHwey%KG"\I oaJEXx dV2>m|Ye"Gr>wy9~S..M%!dX}΀P;GV;vQu" 0)gUygᒅkm[أkↇc1kRD8i*R!;6Q+^!ʫ^ި Ipw{ޝ(]7WDS0G1)fυ2X.!:wq1Ь^X@r'.uC)eӄI| vbރ~m;5D0V Fª88/8Nq1_׿,?-D 8$)pڸon-R{ϐ]jUdbgUM-a$3ZKݢc]Ra@O72m]ޢɋë [!q $u4m~K~":*#B(:""lu"qէm/G2jJ\_677Y6Mӄl+Sم E~Hp~"Bhїt 2h<߲J|XǦ~LIr1r.`n-ɼlivK[LY81M9~֒2󙵫b"e;{$םjFVhlW[ot9)m-|M8K'FEu{]>qj{|,%Ք~&1uE781-a3iqQrlKU^J2q9dR=SRY%R HRpyR*Iirt[]1kG:N7\_q庵E}ts Z=b!`xc]G.b w) : H}yuhg9;_Haky!J_Mq](˅$suŌ% <ʌ/cIRv[R.8>Yd`L81klBgo9^3ʬȼ1uWG /:M) X xTȸ)0%x;`H<+&UŐ ;$ԡv"<1I]J ɱpZN36 cȌybo279Ѷ|]c$iiU(EF(@q[ 7G(q"[y_9Mm$~ ˫DŽfcQuOyglC  ;:pΫB#gwW.U/R0JbCd w"ۻ+ͥp=1)QUeW"W1jK=?ޑuシ{[LmR ỴԘQyKz{[$y3tPұ`%˜HO>Ұe5SצL{Z>D"^* Y;Nm>"pcr4T/}sL=VRS$c҃@4Jqq)l0%"p/Dٯ\jŬ+ .dY_}QhIS| FGz2&F$LI:!%kYg%Aɓo|FU'C62犩hGC޾i~ VuP +qʢ$AZ hf:Rf0ׁ=?"v5EIB+Gjje84SVPxb!99-VE#xzq%dFHl릻X~'{IlJM9ARj@y.˅:.&֒PiEi6ƙnkW-ʮɒ~"]0%M6^K$5*^R "O iI5='Mܘ=GW?`Ez%"À_D<*ZQް4lS2@R42fSHD9݇˷WvkWed$gՅ 2EQglz4di4-V! 7ߊر!ɕ4ِ2o:M]F_# ̕0 kK U!G_LC2==aal\U[S 21hS%cH<ԂL_CAR+ЁXwF1w/տ _:ENȚ`>@pt; / 5hlOHr 7ھH=Lӣt4萙)H$wˆEinw(~,ÙX:8sc*}%=$8b臦S{Qa)/ZJ遗+5əz,Š]XgHrB q+{&%#yLJaЁB8%Ј H?s´ov[ Ep&gTTyMtA#D 0+C wy(1}Su~! q-2Mou!3"Ɓx4`Ivz@J'9Oo=RyML7SnUrVdCYL]&Jj{̂"Br\_UQXO|sce1-$>{f+Tb3<7:SPS/jߡ.87_Ec>1o*CtΕn|rlBm\,lݏ\ypuy<|)6>\doVO a>T`BcUa0 gǜ#כp=OD:ЮSiMŲ,H*<uQޚΟT-є{l$Co解Y˟}=_e<)dM(BY8r w8\_ N -iՈ)BTmsj"Xj;.Bj"dZ(D(jb!bވ\fzU;fh:t-m)T%Hj Y%ɾkK캺N:ю+#g:"H>It֮2\N;JB# wᓛHdLC[da^o_Uf,E"m%  /s/\Ry>Lr1RW1zUSƔ]ApzD-_h[fL.п%]ݑ/dL) +eiT򑗉Cy.6H;/JMVfυtcs#+W$^ic6-a\⮚c|&[z Hm4mSQCdR.eה,ϚP9&G&Ћ:^K/KACnwx8c5v}19 >)_vLfxA>&'Ԧ^ߋŊ# I1m )B; -Z_u =C9gQsuugsF ep->D4ínzP<+E}l(i00 gsTyZIfc?v)mc,Ce*ScDH],TREA}eJ5=[y[ 4…c/6&=iBLDY;ZWFhxVC15 x8Ȳ %󨛬 Rb8sB]ߵV'm ]0~ƍ\K>U,GFM}=_O{댗E-At$\j@`wb<Evk+FZXR t_G 1܍l=+ oTxG<ĮNz!)Hv`L!hˉ|]au|/]./&_S,kC>Zb]M),h(#-;ҹSO|EU!KI,\FSߔHޡ6x(aW!ӗ'1.gz4Bc%>V0y#sKƲ$/OrmY A~:kW_xeJޓߏ".D2{6U+dᝦ#혓vRձE5V`+p)v/Fi 1)b.Fs7y?5F(D_;ceIndc2PlqV~;gO),ò +/̫ %d2e2x֝*j$^^MJ~LU޸yiġmσ+iLX|3`!q>v=RmEߥj(3:uB(XƄ^?<^IphP?mVG*Zԣ$[*@]3'I%][I2Lxe$;GNÍ!7꽶'r\#\*+|IoU+k}^.c|fgh^SCɤsC7CkGf0VecG} T˷i%TfQmNmRyt R $9ERvIwU$W>bD!Yp$&>[ǎCVS|D*yh:ʡ@nt `p2ˁDf$r2 J#۟ń)gޜ bS&jZc"IkG.y̘|X_0K ~VKZBY]"P;Mwr/GdqrJmy䖌C'I@Yй"pJmW})T|nҔeK&?\dg! {I&5|R b>\LS5I4G3'Ρw]<"a 2{Fʩٽ0  ҈qJk&uJAyA9MP^% .URPp<[%¶JN-Qï+;PW T(}vwT f7~zfшRͽI`Hڴɔ? ѥB٨n]9A9V!\iN5q\wB+=.Xmk߶uU<>T }J2\06yy@`ƭĤt-~,anΤZrr4Sg~py(EԒdde@#vqR# %|Fy i#|9׊.1$_+RLNU7JЀmY.\g9JX6,?RIӲZZO;ċjԇ@P{t\zp +TJvOXĕ8C4 WYd|)qX1F; KU~IhW,n%LA㒆|HX4ym*YKr~Soe*SXI댆ug`~.\F Ytzg&$4dz/y 7h +|-JIv$mBy: F!.,^a  Wh*umumXK?nedB-i:Nx[ݢC@$H:QXb1ZaTV=lmqP aK_,tfqx8 ݉bΊԪSId&e~Irvj`8wC=uE+9:b%L뤥CK;ƢNRyw93EI0NdoeXA%I.N<~iH3bydϛE^y\P/$3eSCRJ4#^.pڥ X ,؄CA#h`ZqnٓΛT*Vh(qj~^\8-i7m&щA%Չp1(8) ,8iJX\ek߸x=HUUE|!%&I]abj [J>;)\8 <,b[z :q>8:~iۍ2)º!5CLTQ;"' ]smiOX+{Q'%eXCh8j лηKFK(={C3ӝ "c (>$_+Ě6e| #^H&\5T1Ln ]^+dL(25*եu"ZH^>u%78ja'rq,{1K8xUҕ-a.8ikߔM^Q$@f[^` `5w^;|Q Oo5ƪtPpԫXKDIWeU C`:m f #6O\έ@ܼא곁vR ,OrCxi:6yt;4 DML}ZVk$ Css~L1蜞`[}\XݖIa&D:[+Fg&wV%कa!lt7"c<{ALrϽ\vyI憇 \$}9HB@*$s3F-#9AuQn҇ll'2r=Nt4m]Xzz:q|[k0+. _,KB}amB˼κ$v$!^1*:`(`|P(J$NPo(K$_TEjNaDrn KD^T$ NRwSZʌ Ы)OF|~st6ƪތaB(=aů؍HBPf\"qq[_D$LsŘPIt_l]]yBC> VA ]r>hSǡf!+]c2 8_g<]ڊ>!l}H˟5]}1KB 2H"qW*< ?co6k]T ':IJ/C~ PEG`qo$+y$g|_$xc y^B\WrdUW!uMYմQ_Hpz{ ,|L30dQ!/X3cYڕRxf]+.ܗuR8`=0ED^ }R ,6%o;y׎1OLJoecm GJ"@,X%ApNs%r$ɷ̺1z=@f?xjrnl37qLm2lCYW9W0g{J/\h柤`vӼƜaJ/L[%+˦ĿKQ`x6$$y2臻Lc^cǛq1͠+tAi/J ҕ4YlJJ {UCbD.cf$ j+чqXE#%ˋօK'_=.f$>B刚&>ʢM*Zy%2޿ B@#uE2@̝~`m7!̤%̣sAYV㽌$f< >R$Gb_K"2_ۧ i˫Na`CmQJ(Gy( RtA6ufr~o|xq>zxNHU6 6ɱ+ucnUn]I|#$!'z'`=:È}?(UN=QOLj 8]`HOm]U& A"_k\,,|օ2. #@W{)(qKW-rQ==}M!r' ٣`cZK7غ/D;Lݭd8@Xr7@h;BQBu>` IS/y5ϊʴ!. :^Fр{240ME~V34n͒%XFuj<Нr r슀;d(CrᩗQ8V%,怱'aulU<"* vGE^riPNę <V˰,v`eBI(*wMwݣhX)G/ uW"p /ɣF/N H;ײITeg$|!TX/9 z*]ǫߝ}tMP0G_\n¼Et%ap4wT(E(-МIb.bq~ZLZ![_VU4/B AEBGI~ dyD )bo c:t}yA.z(o 7ebeO@KGw:"=D=/:.^LB8_'_'~]ux_{{],޾V&}q*ׅ|tB'6 [mtk/|b@:@OIO-3Tݿc lkR*u52{Y;L ц# ZA#z{ dSkLhJnKT ͕aRn.$WD# k)".UJZF,#{^0͗pޚ$*l%U5FJ9l{ 1Nf#}9?&$5K=/ ݲ65JM;U AHU {\\JgT{"z-NoeWdX)'20n|cۿ%rU$uFDnʖ%ʘ PRbQߕ=0v#n]Ax $}CemW>i}m_<ߪ?|y4* STa%,)$q>ĠTSP`,Vܩ[N7tANf ?}[H%o ;AB$oIPkCv'Yޥ)#U>-%'Hc#&\-|bDo.2m 5XKٷd^ 啊;U'<~6c[1^f ˧{>9_rǓL̚馩U]ydb -Z/),|,ģ)`qU gjZ`n4P"]5I*31tBWO~id=̓2b~tq3 P雄_mK/jVWiOI>Lsx!YK$5?rI#X-mqgIgF5ϊFT 0*' L?ɨpI?|S"b|l7O ғ>_ S@ ;N++TyrA5}VǶ&zuX:t-IS'{SQ#v^1y:f>}}(\ ~Xكj Rk;<2(~15!enn;& &iDD-ÇLm%EODr X`EdnC'楹(P>̝cb"AEVxb7C7w%T2CN:0 pswnĒ:vs 9Ÿy&jcJ~7}}Z*(:yd?[B_$DՔ*4E;$t Rr !B@WxP)820(rLo?yt`auJAU 1J6m֎:4X;^S +xB,\Ar~ ?;̶qSM4D#XVw ^{T{pМ\.t|pko6u  ;R*YB7Q.ޕa<lW"K*kaq38nN*tѴ%$ս0_.`XEδ ^ %=rLa r2;RL/Fm휢mJ{vuxk.ĺGS1>(AG[%6)*xXAf-~76@p< F+,&? ǴIrn[:sR˱eұyް(˔CkN?|kG8#%,ޡ#.{͚:mTGAm>#EV::0-QL ~|B':*?eEJ}ȴbJU]dtPY$qpԭtwyp܅UB{2)mIϯ$oC2@yw$D<1v!NmoJS#N%aKKkؘ\yimf\P"hW&+bY%dҊޡ^ t&p<$y+.[{Ⱦǘ\;$UuI>5;u "i[^(zrǤ~<|n|kWiPQܘllA+GrOdR!䌖+a; / M_;peM=,qxYWz|B$ABcIYfck̶u̿Ӛe]4\1*/ST+m#H^cg>M¿2mmKg2:{Ʌ L.MHN![{U>9ACq;^ __N9/o~6AK2|G3 ,+nY}LǨGSʁͷA.8ձE_:"ݹWy[_VWبJ7)չ+߷f_U&B֙N5Q:Ce /ao)# T/Oh_|[ݭ S%zY&o3.˂l%=KۥEeݴn4"HBa4j9{<^5MƿoU%{9wW!\V:/4a0إ.S@g@GBCmsJokw-KH?~ %i5 .OC&;'k4!Jfp3d {?O_ʎl TtxUA4=}%O}W,,7mfs Q_r7gC+:ʢO1S7L$Q4F)Nf^ J4Ne0+}M9U1LvF<*h.ұI :a)O"ZmKXF7)s ,4KH,NdSNWtv`=H?-szy͵*UrE(e<1D9bN%/ Za_CQnrhFɿugE%c)VAMeƛEH=.ŒB2,CK9ct, ʤI_gE(UBȌ70"xc }w@3:TX4VytWv/ۦtVQIXD.ĭ*KċD C`by@@)]}Oj6!o[hYSPiu>øPUXGIsW.J6MPK=8,H +Րj 7=f{SD QЏ$XeٍY,>'TϮv>GKd̛̼CvȢÕl$m20,% U*PB}<#"k/lFQʄ0$-oUxIhM&p5R  D|Q@RtS\C3q(:Z^KiA!n]@"纑x$\+<YRI42¨;dQ#G7$O0T{=ΊCݮ31] o]ƒ,D_a,EQ%ɆwΨn!#qx;MFq]Nq_t)})&UJ@ {9"tU$L r} /y=9޳NWaczfO?qbh&w &BbY+ -C0@Taʴ;^)RӪ_=_n7c 2!xҝ S7:JGqqjjG``Je39u 8o-gmDs/_DM4!e-/$A-Z)}+cnLcSSOywM$=4-]@^uwe-]QIUPIqopC4G~o suks 0S7(mUul~RO 4tf3޳_82Tt~_LlW7/4LwR]I!J -W(Q4$!&cn7q=%h>:3В2_W{#6Mч1@JRUYa4s9 ;& 0Ŷ%D$τDȫ& X(GZꪭ<·R>r/eyhucGX|߳l|Zt.*M?56v ̵gц:,ma%()=(@D_̾E-U@RY%zfGKN7Lw,?DR? foTyL,#ц09܃ |HUETf=XR *</A=nFɛ !I ;S5Y[&}UVMIcz-CdJ"KK8#c ]jRguׂӅaج:"nnh L%*3QY@mDW̨S]EiL?p2p͕pyCa'{|ۡJL D ef_ljvPΚ%|cpsRepyN;Q> ] x%2bWvXzKv2k _oaQ9;&.1!vva ;C*!T5̎Dq7XLd1ErʶFy ]6bZ0mL<*ìn~ga6\ PdYPc$hUdǡS\@ K5uaQg' `W(& Y<&b;0aY N.&I0?-*X N]9Z~8 vA⪇Y܄$ $%PA?ѹRFW^䐸Ĭ +<Ӕ yAǤHr(h_ϧJD8(b/xEM cbFOAZB<&4cBL2IcQcP ۵O!50p2 T3ΏuYk&> m\Jۅ,j8ᾭCGZMQW:MU%C=_T9wCr8YyhRHnN餞_BHjyi O6ARXftFH c *CxY[V23۽ 7姉$Ŏ*]z\ pKR{%p&oP'G-7Ț فd^6&C.Zx4s,lV4ɲ2ԄrcaD/JzTρwDQp_-5 I75-~a0; 4</&$Ʉ OݖW~Ԫ`)]/Cr,Wi,GoWӯƯOy(Ŧ_FȻǩ,FtĭH*)~/{ 6 ?Bc?ĵUdL* 0<<U$U|dWfu_ |1{p}̲} z:9.\l^VXFɠO[XwA(sz1i90{t9$xM m_LXrb|f\:,뒚-]JmsXP',do[x:v?.k`:E;u} .Ol±p׏2ґ&{˅^y8r~iJp!";T{q LiIH2piFg,?ߊryEA۾H^p$y: LyRAj4faΠS攼2e\y%rmZi~mHm5׹k^č \$n)% :O4w0^Yabshd/t4LQf=uhEg,E)f`5 XVnC3iOE*b:sb2b#)5u/L{[h<~#fu,% /l!5k)Vmk(NR#Sq RD=A7R=}Fxx6'_W.r۶M$VsQVVj'hXg1xh?qtb *[uUKJ9̆ݩ]f&IRS)nZ^Cxs8VBe].yHu1su\yReˣ|"d3%=_#s2q|!$~$ ʑ;7- F2zZjJRk9P! % BR} á)'pCT{яzELpaq1>KSKzRк*48R;(rL,? gwh6W#Jiݵ-># 2Z e6yI+m6{T ;T.Uh]C;0"(!t)nJrY a޺;[o )_0^򺫺d"eA.M FЈ]g'"+w69#6^XuY2TѵIv%[] hsy@q$|>g"k&]+l:**U u!xέVkG(OϜy뛽X힐X:GzFTjS&i^Qbbit)Z\9U!8i%c' 9O)3ƷLKKyů "HN !`Ɂˀ]!+&c#934НB" τ8ĕdH)J- (506$II.3aEXKKJ0aRX.sƦ86)(-0ՍgׅDVTYn }B<$ &/;$rrARE<j83C?6_Ot29J6fIC2NmKrkRz?kZXK+e]l9HV3wK*x Rl< 5^9 UIgwᴻ/) yg4HIGY*P-$:0úSHV2uGЫpm=qLCW \ˮɊ!u+3!Cvr 8CP5#nJOهLkg>_ҕUFQha<0ַ.R"bg=Cyprd-< HJc/<G1E6u($$Y|L(9; B bx Xz&̿/./Nƪu[Ud^Yy1(}RV@Dd54 fdI.${rM+QQ3_z4hIax"N$Qc/iÐ/ٸ&^<"ʤTOG6<EzX I0Qn-=1Pa{p/4Ɉ$ wk$FRV Bs0D^vp g҅q*]M k"cJ E} ߛCDgoV) jHđFv#Kwe7x5'm\/!2׏$63GѩЀ`"kUT JI-R""kE}Iq6衪5Dp5Ur`GEPؘPB+;IvaQhJzC/+ %\=o*/V Mwµ1&1ִ,j&yUvIg0QzЀƠ>"-8 6>^mه5o:S';]K1 SKd5qXk]!+ o7+"Kϖ7j!U3F"+G]m`wEe䔻n*9ޯEJxg3F+";I~ 9'yI j dօX;`6jsBJb߫'fEVb07|mߜY6kr 91KZW9_䰵=`$*k=˄B`PouGL * ؅ϋ)?RBG-7m̿H3=Jtұt'w( $[jIAm붭o Ǻ: `Im%Gٰn]ڒTm"$VVaa 6Yp*^ie>#dd[ sʵ1S0WUfT*$IyD ]c:AAŎ1޷Qv@;&'Ӻ@;g s!@m@0~~0erORPLC|5š7&^&:J)`F7(N)l8xPܤLJ@GRӱ¥h' cT^Inƭ >OŸ*JO{ZP}sPm*#kkc6hM&jL9 [/K%b@}zBO_pM~hN_KjNݾ+cY1kOea[ఓ)Lf~WE݄39݄SKa Qfb UTgNhVQd@cX$xbD=I mPi?89 MG室8|NRqtƿ8딨~abl6@%$3Ob©m<-:h۴%j(_NE9'i.ܞI^p)^=/+D.ڢI6. 'X9%"7%"Z^4s!|q&O%mxb{3Ў\쏪چ<2d4` 4QC$PM KC~i\+2Aip+㜍]:zC|BLztW~ICvk1.W1,Ɂ g.DW(|/A<K]Qc6r꒔ۦ)BZVklL:$]},[exF$\Lt^KϐNq&[Rv#uAdh=R LScJ#Hl3l9mZǵq.aNjiN-_esj`/V00\TGQSlMVzx m_w# TRю畅\0=xd^z9ʩBu_?yCL-3bRތaۙpk]ْ^zU] WxMkO.NdŎeg%-bz FV9?R(YVM|^4nr=!/Ӻ {RHڃ,"Y4X]ZAaZ)+HrT/P]Sl~󰌌xEF͡D .~õ_:< !BBJB K C]]*4۩6v/\A/(#w5h;2JN&գ _EY٥?hGVWnW-9 ࣙ\FJu!bŁ6 #n:-EQZtt s%!ONz ZK0|GuS)}> v$AaJOfw=ڟ0pcD&y)9U=wDG;UmKmf@s,rWD_ |$'ȐSp]a%'ZcԱ>]wʧyP܎u|'vDw!E&':2+x9dS?aMq6~A݋ UBycGh: hQXQ'iF(6]ޘ`A:H}(Qov*p$Op0iH kq9p-2:-d^'db42e1ޗEn(-:!iGn yq!I ƘNJ_k1-)VN5I>qn5L{"VS+M B)D_wbb,BN(b>2?!0kl{aҖYY,J3+҅XC3u*d=}L^eVa}Zίy(iT($߇خT؉ M9/d<-oSeVTEtۮIvL$rp@:h[i幷  "#Ws'>EL.bϟ1\ڶl?`r($,VAcK+9PܗW$)v,<1l'L{=vQjp&mmHIb 8kgOecKYm7;?e2X:MXh¹:銩hVb@}3{{ϊX8.BD`ŝ+P):!+xjဈ*X:Df(e =*2Eڶ#Kݖp3MSHE'M h]eꇩsr;Lg`.@pL`+r g_=ksO~8yF>rbu*Z2VBL:+Y$EVf`p'I1ɇL)#k,nk[8c=p/(,Ge]? ޸af}Y~l^-_ЁqFH#6r-ܧH.f ߱yA8B,Wy  iRS ۖ+NRHQ.>$gpV$'3JBpϊn Y!brS%D(?a&FMɟWrʋ'p'7ɑ)s?mYwqa $ƾo^Ci/klm͓3˳88#@J6,5*'`-O>)*gSQBχ])CtoHZņwSte& 2d06)D0 /B$6=iW˗ʤ\:~DP!PD®{kq%L,'#Xf0B'2H-DZC|q? Y2_wӺCkh^+<$vЫ@Hإ8 @  kW[TNaYnas g5BR^HYc· {KIfduwmM2)avYH/Ɩ,Qǁ$3\tӷ&RaQ.dU~i %$QW㏝-0rN`~̀fsJ|I4-t }+c e^?*?HVn@ PY>El`J% RD1f_J U*k`t#>QPj hyYXĥ&'3+VێN2Y'E9Ȅi$ yLM0 $ )4+!ޒiV!x)b2vA__ދ0_Uq6۶jMܪ$'{ͣ GjKE;d2Kqל\` n!Cd4w\ҾdO*0XF\ 4D?r~ǧq}n0oJmBm&4U6jquNPvEfu ס%|7E1:d^ M6_ʓ%$)U0UlZ =橊VtHT^F1K^..BH禘l(]h5FTQmKZӁ 'r|<{#~DnzOݤiYu;׺"k5Qyvi8c=U~*A$g^8 ՟av1=,i/Greqn M/]HXڑw, `9߸c my/6"ǃĜd_v˹{Cejjd̄LUavm9Z,J &\D*6}Lݥ 3dQ`XafQ:]bsmNmI%U/| Ff1M7{EUY#t 1ݺ&Ƴ.:\4RYy#p*)+0t񽥎e灄9þߖCO.1JêJ#^PDB_DT8I(Dj]9bquq+O{*LWb(IB^d'+[&R EG8y6iJ~^D`&p$"IGơ+Ym? D:kCbc_И 'Eʐs9$.us{UzIv)UHt0a1(q-tck&78ٓQU{6Qh^MgW:J%0HO!O K-HI.ʴD$?N8n= VhUinhuɨQl0"\'4dcr"MSrqvp~j;w ;1<Ϳ4a?2˛$h~#VHMRVnm$.\QV[Bqaj|Ea TQULbbѶ^ 'u>ad> $)~3hʙ.180rޮ:>0Q?ǶM$Y2KGJoy^UwfZ0beVǼAt)&\M`MVegGj̑[AǠ9iy#LN%%_E˗6"o#ksH~$kZSiQ^JZS /ȎRB$/%@:<Mfݝv=V_IKH5'#'UҷӸd∐(DfEUI4[B:^"҃.=z-\b( gj{O)ir[ n4.orކ8ɀjv1P򻏼$ARAB|&Jdb,Mre4!/F6[P}^eQ nXaT#I ):*.}Uj>[}x||iox g:NC_ F#Puh#  'BdsTi .{6?`ix`ؐ`픿yܼ^\}_y1]߿,a7 "Ց ~^+V\Zx--HZ~uujXhkw&HwB%d! #BjE1U *O=}2܏Qr⯳L֕-kJ7yqžBK 3JWCȤ?n(* jZ&ۯU`Y.+yeVe(mW[gp!%:2uQ0ZKdz4:2}~IC>$: =~o dhwTQ:~1dLrue4|aEIh\%Td*S1MA|FZliykی!Wbǽ1qz2\ZU|<H]VGe{AU(Rh-@/KiC[{-=Ը NHYL%g?-֭[W{N/gr(*j[jdg"``Dс#ADH$ i?'Hme*.έ2:aw<+kY/^%海,=katߞ1rLM _UWMXk剶:W([ɛ9!y8|K6̍ wĊk {J:V;D *k-x.Ý&'j*cR^<(?c5C%児c+FuHOBUiȩ24M8#VQ1୭soRWl4.gZo>L^)T\ueb#Wň ޻̘w -PSzB#1`$*\JU4ѫ{NL#H07U:u?i18WL>F6'"6;NKDI֬6W2$60$/h1W'v`/փܨ b\cWQBW8~pq/~_"<P9㐦/2ؑh:!3Br9kRuurGh (]=njL8IJIr&8MԼG͹ fCjVAn>T~7s+}xڇҾBB󘇿IšiBT"ĶhoYBK6mdRˆ٥zAUel킟s^}XHdF{o$O*olx"_T2B-q^ڮb⵲yh䂽ԃ 7*y>TaI1H6S K ͷ}߇smH {Y4$]{. H Ar-nFRJ8z~k/7Yz5R:B%txWr)[%Ih%oƧ!L%lz.ʹ.-Wk@Z\51{ƪAR-*7Jb{ou[F!ɢ(tZ *db2"ǬУbj!BC^W *"%g`y/r7DLraTmyD`Olbڂ._hPе1ƩHyگ~AүZW/0y2D]Ӆ]IykDYQS(kq7e Zzq%>l4 4VqZoE IzB/JeId+}0RvB+‹2u:AvYTHgsCƭ0yL+kTm_(ܔգV#A [8,}Mecrr}[TuIJSV91SBM"yHev3wTi 'n@&\i:+-|x6?;dZu_ Wu-MR%!ŋ~<le%expq-i63P9WsLU eZ%LS6俕?CW:܅ &#¢F%,|VVDAQ*^ZN?":n} C颿08QH9a '?dC HR^r@UJ QXL.EoG0AJg+d`,N0rip([6p]Jˁ8g3۩4_B64 M0a$\žM6fbm e%,\%57gr Y|zQ jX8'AFPn% ئ.׹Hw]^i,R Nz>^c* nT`AP3ߎꯛX2S?![UDu:=FeCn_k+#}H yLSBeQ:H9x+MP4M->4r8hL;1W+#:D,"R*&i2+!, q]@lr%hF^bWb,zώ`s8 ޺ }׏?i8v>ߵoY$SOvhmV'v_ĩS^ 8ջDOVgqJyaN˷Ť][uRMPlPklj5ۇ~-88N;`ҋ'2Po[CBk2:MZ<5ަBڤQݣ6 w`TFuX0$91)m0'{!_TTYcSV!۬=81RAwÂ^)Rא"Ne\6;7,p*@ *qGrð+RV%>CfcK*T\0r2?8"Co@ Q7)~Wd/gZ|Th25cHVK_5N_25?d,M8}Һ?ߡ!̄А?wRB>gX ˂ S&L@"l&ލX=`2.K]Gs:Ê?5=_=Fce]>X[Ԧ*~{+ʉr,KWP!^ ~VE2/ zB\2 w`*e DWi R|%3%sُ8L8ՏOO 솱,MLaci5 dZT-W8lC5'7!1^T"6*)ezgxGob'ل!ՑbHs7]79e0IfjOSd+߿R0J-iXQ9jv+t֍՗8}p!I"i }ǐ4͇l7^HAee1Pe<йvkQWCm[^+tyo# S$ !w;FIn$mG\C]7)JkI"zBъz!"Y=:0Ȑ89+T%.|3RQihb1u.5:Z_bح4:X}ŠӨ;ֺلWsFW!Q_u\Q0MB.HĶiIQgp6 j CŸܵ2zX}_u8M^8f!ϯOcenԱPI֒e6Vy9K%\pu+^?ף~;L]&Ĕwؕ햛*m*~/ eb 藩!'@JfLȨRZ$Z; >J_DM0fL\Jv!yLf5K0'(\1[0١ ;>ߙSK(KqwڬNFe1RXi"-#- iD~Y E"40ڶ.!C.\_X^.0.ɦ5vUe/zWV]5!]T}kW0ty /Ry0Ҳ+dP!A6qNcsap[`z)X7Kپo(e^mXWN侨}B[R j@&02|RdX'+B,)֏.k})B7w >Gf `\XKzXG"сz'g#E(MyIUD5N~Ѵe|4[M!/:})%Re꫋ê *!#dH hao(z$.cX>'hȦ+ҐCWdI8_0%j Swj#F}W-8+ac[޲XTJ%ል%܅jgY[*F$I/VY"2ZxC}K%=pBv^=\֗["hn+8a[Wmʅ^RINN:2xG=@ącv!q>{.mK)O S!d)oz8|We]{'ʹ!b+K; 젤,H޲WV(.z4ɂoԳ$g\p o]Fi1LSEPX[o(/};*l6]B=Ys;ZczuX 8ĝF$Oʶ=YYJ,Bɲ0@܊k\Rbj3uUECqCD$(\+Paw&)eTndEtjm[QџVi@Nra"[ӂL3QG r(VP eǁb2lQH-`ʏCYc3m4o:PXId4IJi.)EzSРHX-G?+]Z6rumN RDONNh𐍥 b**Ə>"l!NJ,u͐COzi+ +Q 4vh#j'LcHVPv޵h՗l*t CFgGI**Z2\*|وB)PD* w藋A\ܮ',D01O]GZ;MGL]dWPpUiKI!zΓu@mU\+aYXK-'P<CUPk8j@-yu  MwkK:˞YhWk) A#g4!Nȝ)2u"pLbSt+ I ~qB2}QKSO, Ҁ"1Gډd'فœ'P wF~fȥvGyYN?'wߵJI1f%iGaܰ˄jɊ&K0,#sG/9Q/ -U4icARͮd)A~5,B>'$˛V0{(8) 8A%SvejŅȉ@qUcO^U&) Kӵ$h5!DUrD;`)X>딬Ëͷ&:OC-GӆQJ¨e( IWDjXihGO}9E6"+~V ]Mr7.1QOW߂6TY¾_wn_VbL,M] "Jd_)e\ δA'oW%1ī#Kn!ۖǼBWV4@^lꭢ]n־‚UM yn2F(|ٍd^Փ-),eƈ]%|b'C~bQy)"_$#cb؏ I3{m}x*Gɛʄȑ*[C*)4ũd#_lnT+Q2)>޸9YIv$TOV=#=v]hƥ"gV"<=ܓsENnxm2z(!|[:ut޺V1D 9d]͇E >y©'č:&^׫}`{,z-Mg _UF&螺?ab`,S8~(y_E{&K݊Ufͷ>aM3kIe'@vG!.Nz" 飯klQ5*riEdqRyW]ryss}):g^ F(2`<.h~yݓ_VqM2Գm6B[E$[w+iCepj1Rc+s-Lk>_%:I׌qo*7PMM*@&Ɍ q]^*<(ܦ]r*)kr+&v)4 ܮ0cVFQ'"Lon= 1]ZMSY0IEKYw&|:"=9؁36xwO( ο 2tڝPwpޡ1їO/+^ݵθ\`tnq'oz/ÿń.&/f)i@Y4dᑸHoLP9V:"T:Haپߚe-SX,yҲ8|@1{>RMǒ(|4Ђ$ X-ޥ+ 4p㊑ BÒ4B[KOlWo#~+GY?UA6iyˬ : zˢFj=%Me8*̅BnfkB^Z|sn$8u4]ŶK~Cx᡿*r [G|\a2Ė&n;JGEX9r?iPsz9xw/' _*p1b&ZS8+ wr(xf8l3~HFRHIJ 4 #;H! YdhmdSK_ǺMGcڝ<{LU=a- >5k)4rUYTkmTAD3e=̷Pӟvbűzۻ}f,^gʩh${BlꠎeGu iH~r Ho6dlE5O0¤kdy烹 MG(HŴ_ȍ)ģdyFI,vx@}?gX=|a6w4a*er 1^eBjg+RYPPZKS(ߛpgaG..kid=ͨhl o\ڤ=|9ڒ" zSoK(v^+Я;çz{+͝$]AdwġyٚGɃæ&UYBApapiXNʂ/5syʻ.%$Ѱ1UG+bCLYx(] Be _*wi"e4O2ׄ,7Ep#hGM 0Y2iͬ#)< C|9zJc _kjMc՟$#en!)eZz|jpf`*cl&ޣqh(\~)a8N~ ﰐo3/\dƟT#EϚJ#%L^D09*11ؙɾвK[K &>?^#eU9#,iT:ǀ Ty-E,><{O˶}MU/.pHf0J4"$3N.iw9;<αN«DO#D1L[n6|BST~- yMu~-,ݯ(:qutEG?QK*SYHrb7P8s{_ݳ73@T{4!Յ D0 Mj[cL{лugS*&ShA-*VZ]!^uYwt ,-*dl]MPx;;*Sq/J/q!oM{υj#%$7eX,x^Q26,o*("Svrĉ_T8|~k)3 }uXmS6ғXM[0Y=x;~Qeߎ\b>~N`d+3Ff*Xܦ5ίi&3ha䛖5^=79yppVnx b$MRrɗke]xģۤo9!)fl.y}\t2M( q[+$QW7nvpZ^찳Dk̃2#m$Oݿ{n JK.VqX*;)%#kv&z[DFN͟ԓd #h g1% KSM;̰, C`p P=9pq_ٕpt0 H"ĺ6$!N2Q{^VDHJxw1|`N H>۾kSj&k!LM.PTtcajչgBf߅8f0g^8]_yɊ]j"YWhNG9 "W/H+Nϩ#S2dM[ Nh,OQc%b&8i:vGղd#Bzk[R6p^XPev*#qaB,ZE"Q!$ HzqlraQ9_k$!lPkGZ3FxEQ|}A$]@ y^qVLx%[ķ%R+iJG]M5ͥ&,)IkQ[H9m~ŝȊ*R=a7몼*r7/4jj~^FO[n)uH*Q4/EB%D qiGη 2pL4зYXFOq}7 J֕.yY~,5 ʒy] _ ʚI}^ &&9c4?lGsy]b0 /韈.,tar[u 2\ UOBa}hd\X\!BHcӃ5]銃(jjYmH,yV]:,y~ eQ̜͋ C7/,LoS&YL;JbjJ{^];-hYH%oFaK?UscE]4INKYi#ς wh;~rL"'niYpI? uDH|LCg^m3/oEEՔjѳxBOx;0@BC"gU^lBhy{A0GZ2}Rlh9Mٯ7[|&&X7)D$+^o{}ħȖ5̸]ю+7g)*d(٧mQ'[-slSE9dDA?\|7+ $UqnGZ$V|˕e,(IqS5=Vod -^?HE0RNG1&7k4?_y/.HYVmv(AyԩÁ] . FBs:kk'k}]aDާ?>ClI3ߑ!+#ߗQx  ' YJYy Ɵ4U3_/{#iYFIȞSE%˼uDwY֫aInIؾST {SZ5e {"? ǷkVz&`V 9E82]eYg&2%t]tc_6IKE ԵZE(wU$8fCkKIIRRz@ ی! ۺ0B " Qaæ cJ\K]DEa~EdGa#)pb[ 6{ Zeñu#Wy'K8( Mݴg :ʢv@ݧtfT @Q Olg97l!Θ #G:j_u7Û6Uu/ LI!{/F1²l@W\~k|OKJә$omNG;P(w}^@ XHOxQ ~a3ײl %LVuHI?N j!$N:t(#-ep^?T(a C:Lo(!ܾFj+BKnkեZ ? uׯB("]4~g(ߦPO'uVmȸ#¨\]l1fAQt!PymX%ە_RKMu}9^MY]r]B_6aYс攻RqeIrϻ+x˚S$CKQş}A}=CvGUK̻87]yharzP:5:9 6ZDzJܐae!02ҩ&1&[B%GV|-"vu!'~[,$aN(ʦ!?f%Pj*.Ses(i m *ү+ٳl^Bs>>,ѐ0bXzLޞ_hjɲ*AI?WT4,k1MYznJzu .YGwY<9a$Gc(wHB㌙?f^h<&|"[= ^ R Q/\)R`=7/_xҮA\Coپ~xvmYxdO%udS/;V@eQpOR#1}"yuisw+g4k8)anØ3JXwؤzasNü6)Z]o/i$IV!1v!eUM&R2tF],hmBkl}Ҵ%}mlK P*zNvQP)D,OEXՅ$4λՏoԕ~$M;EINlbFcL!~h wtl=ýr֑ЕV& MBݱ֩mS hFʗۙvL.JJcQkXFÑ|Э )²k,^{Xt1=mz%b_s}[bǏn2p[|!e̠nޏM?؄†'G{Ռ\rϩ+C8eZueJt  㖍G#Hm˝թvvF>݈ؑe8*cw4<^ 1lW_*̺?IN(q%lr'.壭`p _djk+J3LiI^zFZ/EXy˭h/jam^U:4)I7*/\ ˃J;vLKUa\a 2H(y lW?ie ሬbel?:죴+g޵"ޥh[$ #䥦hK/ T CO8Dk(g%  Ϻu~zYh*BsϢ=u+xrhY)NH*Yg'.&ѣ/il[ݴ1yR蝤@&HXg~\YƃhR"i0[;Z]YNWmJZXQPcU<+kOok˱g'zj~fw~{LɒEŪ]H,QFp'.k5$s'mJpDCvy㵢ůԎӳ+ɳGk.@qN黐[P,Ef K^)~˜ u-lj4rz<5SGzsa(,۶LƗ94BPѝ'9-"F!qpU}7 2Hx1fc)f/ʗnB oS7!b]a;HP9Z%Y~vu%4ciG8dZ#u] >Te0dTM6!X3'Y:Pa=zOxpakX8X~Y&>rkg!IL5]{ b1HMi"l{1TCPrE۬, %F JR Im,z'%C·rȗ#bVѲخc+fl|rn;UB`U.<]A Y'WAp)=ÿ/+s}Ⱥ^d4vp0+a]oڤq;C=llCҊDW'(+ğ}ߘRaUSx6/gtJN CSRwL *[TGS:J=U4^)1Bކyl^שHu-51-+Gٛ-N`DvS^LvvN{}FT`*!9[ؤ$L'GsagU%uY i2 _(EE=T``o (In;J^P/ _/kcɋ: >lÕix#>ДGEկ8ȆlD7yBװ8\~|5J,7mWI{Rǂ_ޓlTWژD:: 蓎9@e&uoD%po$J0N}#qO7Mm VT#! <"HuJFbP:$Bw+_]$~ϫ]?,R I CڢJu39(%wi*3ղx9i%|uQͮ*Bw&T8,#zCJu*Q["7' ǐ dvGE%! =<28ۺ!ǹ@u8Ɂ5.Y%UVrA(JHrPl?c|]4y7bέoHiv-Ú* М NB,FXR% O' o }>oxՅ oP좭PsB*]TV黻*vX*$/):^(;k|;1(tnu㌇(,WRuuSU i4'ޝ>N(q( /Z'x6d؏O3N2GH?`L(m*S.nWޛ~\\0_t<&\/h0fþ֭m[eڊ]`F:}a+qõ^j+@}>^-Yu H1R"Z_(2 $A)1,1(K01X.Ώvpls]rɥJ e:cddHmabțhcqK( r8r4[ ûyRB&4I{(cz3wA";l9vZ =ig͋0!ER輡 rS2ɲvO>^ygM~BRG 2BXe,"|,g 3a9(%bN|E;_TL y]T[(鴏|T.V( `>$*?TҒ?ö3gOoXVK_)1U[ʒmCPZ85/宎cPCvXXc kn1)gaBM4iOG.' +K,TlmTy:ɮRR:hah)Z`JLd֌.޲ݖ& 54(O*1wo<@7zI8!l#,]Blie#{lȏ櫬6-G}P/ M@1yfS}P+JeR8ew!I b*;VEv@Z2? mEDz1 GЦ]@&9#>tŔ>{Pne氧3Hyz̯ets>ig[VUvĻTIoKX֍Zv!Ћ>* Ck"u4yÿ|blqc;upvgm'HiuH|ѣ~,Å>jhvr]+M*CDI!"װh$ *ʷ{$egR$L]Cԍ!&Nm12EA$y|)kT]:8N0q`"w\^ԆЫu~ %z6OS_LE"/֘H|I^&$™t~7j8˟r2/Ӝ rAv5+BWISQߢ"HڲCo(A5,ߑ^H2d^|-x]=b^P/ wݣ͊՗4Jx J\$BVpoFɌ_ fh]pUۯE$~r2Mɲɀ */qޝzX0.o= eHjJv ă^_fewqp;~um+PB݈>y(^iĊ]y!IɐI]㡰^`}[|ӪZ:sŨ'vَy4i^W|azVՏ?r|>PJ# esa+Mc!渍F#)/$E{ Xb}^])Xe{G^>CIɦɓ+u^paYQiwNwdrpTlG ?ouTʒ#HeCʹ!,4ĴUYWɾ W H]Fblu@ NMGǠw]ODIUD]0o۲2FU۶ e*V% $YDR  21!HP2 q#kW3@iHXK +i[H&DPUJ熐ՊE:T# A~tM6iy wien􅉁Eѳkߴm%BA 2(܄ N&5k $Ch^e~8-x ƵdrL_ ~G9b]:!}$N~T6vv=&Lz, gE[6;K{C5amZBkf:I3 )܏qaY׿y\1ˋQDEԿy8 YgFXҝ?tsJC9_'ᦾD+ Mqsp\bLJ# uǴe-XN($dwteprlCJ8%S#i5όgzbʮI&^e s`Jd:,'/dx"ë~ /2gF Ëgo8|^eUElXLGN1Y=.!u,DŽDֵδY#e{||xi޶?l8 + 3U&wXKYX%"աϙ.ؓu蝇,~௕ϟb|<>KTZ;~uX-Rt,\V&YW)B% 2v+hd"ٕS_pü23Fɋ8b$24r1j|?4,KX/d7 2ӂQrYcH[^LQZ=^b/ZǶs4b|i|$5!7 YL7 xy\; QXALw񺔿"yC%vab Iى'G"M֥W:?^6^ rUhS{T4.ڊۦU#եG%؃#> *Idl۲:CBeZ0|hYE}v^%)'JcP%]\7nn~5/H+hEVJT>14?$1>An d2Yڗ ecL,L*2[gO#Eht΀nAY?$``)mؿS'0L'}Ϲ C(`@࡜*kM4w1es%[o'q;킁*5rlr]SEyA˱.ɯӳmZ1~.p[=,c?%H7\ ]e^ լ}tSS2)/Yh6J=+"N dkg[uWdjM{%$e*^a(IRe}2z>Q2Pt|ԟ__Kv{(]uēٰ+д^b8L,V Œ~r9˷GJ#i"k.X8 y(ԉz8 AqI``cEjLdkg5` $OvSPC2\paX/}wߚ&S<8O "?LZXuu&X\`$+ FZxD:e hg l:$tBh1dwicYUKGV Q lK\W2P :Ɣ0F1-]GXQ?Jц{7Tt.9κHFʯmexw8=|5xm+n~2dcUC"b1a@}ؑK5W-NԥB$7cB22w9YWU$z?<JJ[%ADxQ,l?XA.L ~5/UODRS !`(6,44;Ʒ:p93+#Gr YJc@&B+Q Ar;70&NBp3$Ȋ 0DӤ~H 0wHcceC~gboWn'~#/.9ŠNI8G45 ,N:ϾGݢߞQ ɈVg>6m;*&yztuM/LiUB^YIΏV^,9zxh0tWCK|o]\cf\y-M I+MR /d{NUr)K_ `d%x%r| 5'2ǯ,/&!!ʺ )f3ڑ +w Q)(-?)$h3UuҏS[!gճaWŮJEpS+8FҕpI&.eaM8~%9,e5\?'RL}?L4暎MִI ?1[JB\_vn>eOvNU Ky2=̫t5k46͊$o1DjJ_@]|ß.*e9D+ 1.p5Fӽj*vœzIߡe,|W`b$gN.MJve`mYD>aں&-g]!eћtJGVP<'%Q-o|ዘJꪤ {Gu׾*Xb px%T@. ʕ bGI$9W4٤ n9g5%n҄2IQUVM e.a$_?5="~2gU+&~ YrYՀWʑݛ*Zz#Ve=7Z_E%rj5Q\6Mwx@# PYIn[+f#&#y{AtgBN*aJbaUioBJ#wv81x H"N01W;0v;+\d] ɼi]bU8V5eǏ>AlwX[XL6٢ur loZ5=y F{;ci @ :=Jxh#IQo"Aq6}0VzNR2'h:I 8[e8տh+zP檳cS:/uԋm#I.<%1OzWcOgǠܿHN~{:sir1i"-G.g:LEy^0ުR-HZX@T'[] @Pp%ya|7Z|;y .,RH)^lIn 9.j:ebt4K\M3Wv~vԀ1y&k +47XQMYaAmF^-c;P_xo$u_5EJKv',.)2͏Gپ5nL; s 4ь(Y$a Jêx%hXeJ0ͩ]{/ ѿm8~{MJDiïPڍ/>IAcT]Wg]^?tb.*;z?_B ֆ 9 [ >x \Z \([' ]a<,?x1Rwq_|{-22?9kv|Q`G ? TdP]Dx ì c~ G"7~Nel0Ӕ&mфHɾ& 9D2U7s;}%Yl(,Vw:4li{!e4]:&!:1g T!{T' jT}^(ՄLS9Db\[-6q^. %prI1+#0%vR%7Z;ǣD{.6R^3G~`xM(' DeQV%a{#q]eL@׌E`?~,^(J%"Z,똧r ǎW.O&&\dz]$n,DKw-b.V}|` g_dx.Q*fumL(gX9U횊kNGWHݥ*Va߇rVVMF{b|*ޭc+9DxIBv iC c櫅F 2h"}.O1DgJKގgnqA NdNw@7XKuI!;dIySCl&GPPN͜|ea(ZfmbCo/rm&L$9-v٦v2WE# 6 N7K"+Ү$xm[U'$drʊ ȌEhݥ/Sz| ^e`gB(aW-oof8Qjj]q>1m-&*ĽU.Ύܭb A;,X:11*YnX#\6_%UUeRd jMtyB^<@|퐾 K D]fc; faБX٭U!Svv ˻da9ii!Y](#;K):~O`."5eoR#k2ϦW%/Ƥ n!{͊*PK]Lp˳7.(&1b2FXKM"4¿FlwʲCҾs>DõǣlsݸFLlپв!9!$|xs&e)~*!Z69m6ϻZCkT)YAO3yk̑S% _R}N6#,&I !eBţ #thG{ʤt$X;Pdf玸'~Qg4Wcjɠٲ8 $[hn:뺤FHh<jF^ZBL(Yke3Vtmrھ1k~"bI "h2(CRpMKOKǵϜe "~ vI}a LTbpϳm2/[|#&$%C/Ya.g/R2G΅n*+&2r36f >A`[Jпv&-jWS-R\꘤ySEA/`]UWiRHs -O(ԄQLfέ=e2WW'[|yn QOCbmC+E_Ohqniiʎ=]jw ˌ$diOȏT;$>B-Ree&jr/tO߫I {ҤױVR:zDi]SQ>~軎F:i~_?~>|3_?k)ovDֳ4yHOQ3\ vG/ŠM WubH*+pjK$G}&OEuId`iH[WsLO0Q`xx0i!U$/Lu}$f}I'37P_kd")1JCh*NhǐGV#vc9tXzQ/_qK,L6#ﱼ#ĐF,X'FdP(;f?66]G(*i#7.ƒl_vYc~v@<2p|cAZ~ɟx_e-6"pmq{—XDBi0YɻzNO6?維_O-srz)g}ԳT4K}DiH K^+|E¸e}1|aV.<*aY/6ǟKِeژJ!>NXEN"eE$SE[)E'A}Mxm9\o\f/Y8OwaoiK@o8”_lJ3- iկu}yWorRakhI"hU:wv&r^ʱN^3_Y8pnv4o<>"eu+0!6XHcw'Ȳ`8uW_4 Β#2km3=}oЏdf 7cey_׋dU.?Ẍ2D$ X*G#XCRGMLJs}?J%I'؊ұ:k;Md~߲7v@x9w8t*Q^/{91۷2o&Ʉ%![Wybw4/CoF>y>wtGzQ+JΗ4"]K c_dPDO8H =X\-OU*sDvW[o<%Vq.<|6ǀ2HsaxĢʛ:;"KyU@ÿ(u4On oC?9/E^NDIT̘Tzw=p:>wXF%(u T~B:-)+ؼL%? F BG(H PJbw۬EoVdžg =": 独ڤ톛G]]kamk% &{s k|:DDۍu:RT[ҢW6,%ڃڍ+]vc&[+8!a>L_i9}8ѱǸ~SfM2./B ke++u-T`KV+U\.K.|1kOiIyȪ+C_QC$8s'V;x/Lt( "Kmo֌aٮye֖ dk)!frߑɻ#_+m-ɶn KBk#CY\dҩ-s^%Z2UR2߬`, Q 9҃Iۗ 3Ih)jn*:} ϤĒtI X0`I *cE3`{㡍B/PrzE?2x,OO|"/]c&Ň!#!NV,6K/d d4E0ܼ/CMR40AMY|DTq.NurZ6YHd>FYQDa*;?/b~+^-﬌ Q7Yeh =1grv!WNZDՃ(&dky^I4db6TVKV%~"rzMnk6Ēg||多/ʶ)GO"!}}~,MMp s4b%G쏸~N>5499%c+rbJzs;K8+ܿ-+N:1"[[T=f So6͇#Gٵgw8CfՉ"pY`@Y׫cI$Oӛas/Mӳ>*l,9W&jLuڱT+ZEZ8}V&(W'r_?d< YzW38"o W?Dt Mť Ɗ1w҇UlA8j?|[u7ۖd,)o e2u *-~SKB/>/יGʆj~p_acFe ʹ-C%P̴YM.ɇQy(k[U0GRloxYʪ\fB9Q2c&KYYr\đN}Wrc<J\G~W?E+\b_e{+6ݏ~?ZiiɀVq^خ#_)g^ .zG| y;"S['vt1m^coD,MȪ.Pһ]EXAcUNovؐ ) ;?D?!߷9]vxCFW5Hbԑ2 '&N}^{ڿء,TgGv$aVyzje>w4!ΘB/y#?`D#]Vx@:U/2r0ntb<_Xm|7z]*&]y4a^=& w`E-. w=aoQ ͫ]âQl_v~'/44cYAckuV;dAa QpArcwԙ])\mbya?¦ _4M"վ^bUa$嚘YYSJnTH@wASٶϲ,|e$YQ=b #c-u)6 r lj9>V̭e>!1HF+YUt͟jNV&!%k "Ҕ0E=+?ƣi𲀕!@䣏m&o_OYn_i̚q¯XoS*OdMhL 8eҠ%H};?So|24!D Ѷ]LD7Dl}l αP , 52SKI S+.ގmmX6\!˱ ˒Bg>yfCR!Qjÿ`X(;v9r;Wcz!,rCB?o %s]?JgR$|ҁ*oaXlzq7Re7p_ĉ [_ dWr[tTiu-BZ;TW:ѫPD̒Y(IL~"[?;׵qLvV"!eںpBÜM*ũ¡J}|HI1NEL<=m}dG;] ,M#4EL8'Brc Sj2+{ܫs]ݗ..`Iʴy/BuwPv$nll;w\,X5 ]H Lb3>|b0N T/WM5N+ ŎTJ+/в epȔH UdF/t(bh g] L$MV:jU}B*0˲4@Tu"s^Zh3C"g(j^h73"P>\d1$B {2W^'07>~P!J)+qRIp=\"E!i@,jWDQ\nU4K? UĒ˹6 ˧yYWt UzaQ'7e_|TH#~ 5im0Gw J.l7 ;lnu)K*"xIͿ)"yog(x( Yn9A>Il83ڼ~ಊMZ>LQ}ז}W7

/zٳJ/hjQ@!v~p3gc?nb&YU ڔuS)Avzk/(ɌW.ơ\{Js/` ˸ #!͝kxtŒLzaY1;gRzTzn\V'^xj[e Ki1qI6Sie{]b ݵ5V5h]B-HamYH2=9+έc]>Q0/Xd X/ `AGmW2EwUq`KL(]{.Aijqӝ|3"6i 'c踐"ଐ:=a. -Ec~ɽД)K' uj_MQw<{3,n%iQh|XUrLJ{{*ҹr +%o;"8\d 8?-.6.($>*GK\8$_BV4&HN '1+yiц,8x uA&y{B+uXxd:,n2"EjAy"Xi>𜊝&Y`Ck |$bxUm>2KhK1FBzQꪡCn, TD /qeXļ,[J`oB>ɵX.e$a跮 ѥ21NZp?/'PDϚk**iuĪӔd^dJJ=&DHEĉb {bͥya|Ͷ뺄2O跺XX,,7A%4{ x"#bJv!_fV& lV\,dz+%P5F Z@` ̷-Tx –4)ŝ* SfJ#S^\1x%xZUT_޳{B1ROiI] V"Wk2'p!oYcYM1QF xu*@* 0b={h}2 FʪjpA2Q京ku|%WR zZzLA5TUG>+:NVYr% Df wF[zuRz»r>viyf(,e[qB:@.<Ǎ!s0"x˶$szaB2l1 ~Nٖ:vTAiK1s"1e^W S~2Lp^1|u~@uY2~K#٣l2ͭ}DpFvʿQ.O+-!h?M?w qiGet\mGUv|/GaTZU2#8{|1sF/LSO*+̧P4|آH%B:]/<v_8/Ei, M=sD12^K(t\q+}GN9E/1 RxzLjM\[>B–ŦpJ!+Sr`$ z8)DZ|U vӡgu85zmJeTaM_&2W$k>C_5%.kFΘҙf^WR*Oc]mͯi, *u~SN@g}𷣕!|p3c6"Mxl1 v Ij~|z!cxX~4NCon5IZu?4ƺM85q}~}s=P?d$"??'YDGzdh?Ǩ~{j%ymW;kELbbB`]BғIeټ!^B?/&]C')D;򂮴/>(a;)!EoUq^q;N;lƎAKD%pcq,ΓVԮ [G y'rFH5b&ĈAvG+걙Dr}BYx* Y Vn$} 0sdad]pC+Wy_#sb_ ?M/:j\eб"8.w@}[L}__mN,paG*֕XJnVBPl~\ӳ$}Lj]BE+ELْ_tQ:+!2|%ȄH uV6Ur|eɬ}&;%![Tn 2P[5,qؔK*X6>2pʲn(oS£T5})VE5w.`9q)Ymgfrcb0nCmMQl?xʺ"qBD3#ދz.oa B^s8Yv)4]D—2*hB..5qU\\c Ʉ p_8L@|D*}HBqF𿒛u$Wgʮ+S%mψˏ^Sr0v ;ПUM?![J[ѿX8rsc“I!h]byR~)‚  eQ \U zCYp;ҫc0Aݓ|`E*fB BƠ "[8=tsz91 s64ϴc۪I7٣6!7)bbU.zqr."Vւ'7τ8zqE&My̅2mg7~o MLKjp\D E%Pj{'m0:fdP$?bx" MRݣ)˦P),]buB&/b>E~x K"] #zQ+}ZizM_A?琿.w,,kҔ.#Q-M yXv9(Ac'iXJ=oRgA}WSEk~v]u4ɶV$tj[uU.RWUW0څ)«W>6Y,(h, 5C͵! »fu[uY,@8Άﲐ7&(((jd/>;ҫA3"e 5ɱ)0xw폮zk +S׵vDŮv/=9,gi\Lx\Vێ&~)gkIdH-^ӫ8ndOذ_*_׆L E 4&l4/CҗrC7\5U t 'C.4Ve`"UQeysVw]5ӼLcW? 4i]uM2-Zx"0FQzG5S߾̮3FEGHmPLW$q9Ua1y-`ly9,b6F^E& !/˒-c&桩EFNUSͭ҉4&ct2?G߶;n9Uο,si R$ zih=tV0w͊A| ʉ{Ȕa>d=9 GF,hnueBUTA0M -9I,[iv`su"Gf4Đgrɓj . $bjV|)5=^νcF1kʮxf3k$ N3Y]iU,Un1uTW$Â'ӝ1Qs/<\Ce%QCBzIA {>+8>[ '?Ɋn<+ue:QGEѩ;8x-Q}ILDe,~,Y޶LyeCm6O3~<+Mh2ʰ&e-,{T鸈U`UձR$|:$7 ;ڔipW9^: u ضV<89IM8>+\Vt;x&u":(]!L1l]Exrs xId9 B̪-eKGӋኴ༎YXvK} .}Ы|B,;0ËuwgWHwΆ$Om @6vCخ8]5!~kښ:Xփ`Ci0#jT<&f|8gu(I9v{ۇ4h"nLWh**K5`Uh2"ɘ.`.j1NV*±pFɫ0D!DȲk)bS D੓1^IC&wk2=ߑ4]x  kAH*BZҋN$4ҫ\q7 ?IJ4xE=䇘ߒYOV%N|/Yɒqhr㴓 p@%^31+n sn!f_9A"siNxkD]idS),4,{I9^l߁8_|FΗ3X1]σwkQ3F!jyjz8yNR3: ?|{Jd L`xFRQI^UXğ<nW n<)2L">BU"U۴u&u4*\ Q# `}/##+iWJ+8EIzZ݇|N{MKu5%sBI!K~ WNs@(}pр{xϲ Nh~+Ͱ,=7)wg2Y^*y;$2]IJirx$X ,ڭCU;0B?}oxKv39,eWHlI+IjB1>{8ð B5Dyg7%"^+N d[1~2J- Kz HtF-&H„߇@#j1T&1zIg,%RDF6 '&)E"^BHqSUSgЇ0 ymc"m=vo}I{bc#_pUUVdG[6RuN,kYd x^ք-7K(%UV|?<:.ϋmT,]:jaTT ZW~_&q1 [ C '5Kx!W;[ӔyŠ\WP'-di=H%]ѳ~牃CVx4__oŒ~XFkG_^&B) o6+izAy~SJǞuh ] Sl"hHSvaQQF(z]D RN`~qֲ1a:н3!ۣk|T 킫 ; S~S(~1xl+)D`Mڲ7.o8c[__#W+-kA'FTWms%I1MG.@=(,ubS{We?4uv3drC \Z=vd7 kJ"=@$$%XJI_5״]=d~M.+V]\LVCUggTM>n }cILr nde?a+*8w+2.RhXd/ !rZiJMT?=$/t00+5ۼ'- *>d!Pco{Ftgުڳ6"=ȓ|l[~oLf9?x}s,z`Zsr,#\Y)EVz?hh67о=%_amKWH?VUx^.-~TgtIBK*PLϘZqPwJu MZ(w!3yǧaT*-v܈qTX;̃kk˥4+j(vnjH8d8<],$fzoaX]yѭkK~@܆mB$9u|'pPƾr1JU/R\oczQ[^s3"))ʟ;_S4Hj:%1UE᠓ٰ[gRK~#h̀;f"rsjrEDIJ=b[m);v'"kIqcD)vRg%i i! @AuB_bH \a&K;lg?W5m+C^R QR:{aSSv3|_HW^B>㱰ڦNfҔ He (IGU/ݢ:yo|g#q?3RIhA.~[XM|C^Z&X qKѦ>(h 9,>tCr-xHak#?x;o *=: 7rVGB5u '{h';ݮ2ʲ3P~dK4Y}2i񈌋ߧ &\iT(k$7m11$ 2ǒ;[ai9o6۱D\鯼3^"dZI؈Ua×z6]tAd"HI=v\d-%T!ZE3J&kr¹ _Ec$|1 YLr]pN.C1+I nM 0C>Km-1,ĉ;=7=vY$aw!zOZ_^LYvS;:o[ #җ.]t},D1&JUr·WB~Tq9ȫ"$om8uhsO7HRU}$ZڈW;a'ۺ _}um^IVԠ$Ud-<$=")QD@g_aawPk{.rFk|8CBFW"/UsmU.$#:?;$Km֥ `ı5I72<]y'zCO0h4b0ʭ.jtN<$>}3;wr M6Oq;P8+{M,hc]:Hi3I)x\u1Yt*zrLEWJ+s\\L۸\_pͅ O/EC~i.KRݩÏ6ny"MoWOw{CC\C3c_B"뿶mrYHr(MՏPeq]@#@ a" p#q:.O ƙVV v4oovn`btyvUԸ5l(Le#YTUZe?bbMxӚ7M-. ks_/ex}]IUS="v{dZvr!KOV2kRQ0 Ө=z~Iօ;p#6}ɒQB? \({,NKdq62_6o7>2˲-_[omi1p%ZƟt!43$ \|;$/VpX6͘Ü+T'hڋz:$+G>ձ˲$т*wexPxx=,^N8|<+sbeÖ՟̰zr互?+u$u^V?/Qǣv2Mu]?_.y!4*G975g ɊCǮ |tu7Dc(D38&di~ebco f <|Ge^5>jJv&׈ġ}3m;1P݊MQMs˪""7pX:Uw:yaplP94jsކcY$?+v/{@~-2p'pl*yҾ3OL"iN!<ș-ӷVT6̓Dž\*r! log#WH³JBz ]f8^ePxeX~2_w7c 5mi4W[@Ge$-R)"ĕVR MVP|^"C3hgKfk_ ?oEҕXQWFEHVe0GVV^lp-)SQu9 )'_\ ʘIhiC W5{`B>Fɘ&BrʈZ.t?MrEm\5nQN3)m񘦱 sĢ*P')Jh\JE3Kv8^b H.}q =,_ڱ.KGÝݷ^;{ i2%\e.:^GNB"F"wU׉Q=jcq~gz2ﯯm3,@:>YUWU"bmK\dž X!O+_wݑm:mi_) t>0!Yi0r9Oϰn YUKi(uIve1t|!VďuK ޅ sED Ӝa^ J\ΗU|,ՑC-lU0r)\`nwo`K?2-Ő;yCBCݽ ϲh&o_͠s@]962NXDA~Y= a͊]Lv,AכTdOg%  yWL;x%Fg^dAVk^ ^^uokS2͈ %ɚ=鉋!{-N}Gd7EW&Cj >[ 6,J@fPηOM.=N}Mui)EpB.2emNb\rIޫ xbonY"J1MtZ0w:HBTKcwq3)gf˓dlQĴQG?4ńx屻:W V6@0U,'^LÞOR.+g_WvًVi55e]ޒ;VF=f0~?e0#;GN3SÑM!%n[7+q7pMnȀ{0Mٚ4邆8B6`4rʃo!ù%OI|Xosg{ VEVmR,DŽ.ٰl,.qjTխ|PX0ȸM:񰈔oV0bM?Wc|1d u(-F>*׉Isٹ+f)EbX-ldF~ov9V!J$4I,P9YVԵ0yS1E`C! s].M@ŕfS3|<`3]VVZ&ty.=N@ D:$˷x 蕡8<Qny /|jW" ?IC+>-TL屨IE뮆i6|W*QXyv $^ӤP;v/,\!^&+2+3PKr0Z<DE AX~0>?N.ʬL a? ϐe Z\ d\e=CNYx_EU __!Vdx'ڶiE} tܑ]!bĆL _vʤKFgXeuDJ6G!to@~ʛɅVǐ * Y%y?>dn E'+}#.Q[yرYU#eL۔$jeU ɢ4KY`˹ ٪YqQ'7;$coj#"dP!oSKAFi%y*+eix5am:QWepd浬sPJsS鞋ͷ~F|p݅/&=aIył9 |/ 0AbPb@cZTFJUGYLc>aۺ!tٷsKXipxmVP"y%ew/ȴ VZ;1Б8y0@'r_Xr4:N7IRM $q`u%)) U Jcө=X=]w<}כ߮qj|/3E Bٮ); U!@@ cC> e/%YMnd,>hl:%,Ѩ6Lbs@C6ܒ$$G1\i5*!'.HU¿r MY\ L{2QQ1UyNG]ż\Bsv=u]'tPQ-3A%G8"1Ս)|Cy^~ve_P׷mKbgIp9j*bu"® >Ł\t !]a-M^4xBZuS 6dɇx%s}N+U ,ũ& QmCZEE%4*bv2T 0!b+#2UILSm_MC+{%@`X"9L@i8~S04Yߋ7F~C^%-YI]*3Wȣ-8ºY{T"?I+e~rl*\OO; G&, !Dm2!6Cv&%$#o.Κ2vHN=iTdNiچqDĨQDpUsũ?ter@Y<˸+a6fYJO2B,+rzY[U*䵐U? an㪌$_0LDEe-baXn_~  ]wM3U%ڲ=E pv}JٵK!v 0q]n&\ɗ$"X`lB:gg+~x q~3TpU23mw uKC\MG YF 9_‡3)h(v(j3wƱ9)UH*zTy4c}dǥn8ӝxl{CN }:]d^cd#Oۅ_J΋I^j$emõ* IZ4,'BQ,F(IykT!N.3ud&eIN!;䒂^"|$p1eUísNL-Xg~I,䚆OvӔ^*`Uɻpf:f%Fۮ5BWP&q(U(ʆqAi8ZBE^s?}^cט#WВp+_LRӬt;9YP=,P* f0 b@# uD)?/oI+ HWr}*(- (^6JAdEԣj`S@X\=9?Bg3u>W?x_C(4uMteS]3PhijR}M,^c15!pmwY(-l]z߽z  aϓ3#S3ɛ2]~մ!OU%c}i6-W%"RxV wmkGt04)Y+T?(3$+V@U%껍=Bӷj aeStE/uz'csK7BrVIXɔ1LDufߤQXUkK-X>^5Kfd4.8!QH UŢ,L~hv뷫&iI%u RTyūCE%,cZqޕ K"7FusĺUa½l$,rIETJ?RФ{CȢ16b+v Pz;dy?&\1u&y/qu:@צ8Dr*b b¥.SJJR*KI؀wrm{'ug2^c neDWN "6OCMU dadc^hf]rAdtYB0Y%J{¹4G.=e3."Qz!2ˊ(%rE֥d&P~G<%.Gd"}f\U&Q:4{qpg?= Vr/_o664V$9 =obNɀc^!m^|P0tP:>ZyqP+_yY'܁GWbcR;XñG>Ba(dȷ\%Cv~#$Vgky AJ,Mgɜ'9W%, ! kqe0BnZܱ]z(~PF {@>Vxo&ex.%mER FI0jXZ 7_F'&]D0_'"}Olq]aE6PG]Hl!U<L“LӁI&;p>'m*Rx#Q,F1?.K[h)ڐVDYJYSGvrIxym)>q]eX9+zzƯ2 q9ugEO?i8,wc`.6Cjj=7XQxŲ${b&SvzE曌A0b씶oeIu&}z Ut4]/)G8/ţ.CѩN W߱,{,zhE`Ժa۟pAU8۟< ($(MAUdVt0ZHjNH4|ňIV~ k|lfrSG(^n&ƒde2]p9zU )-4^Xԓd0Hu/VǟgU}Q9LU'U" 3ͥn*E^`a/ e( e]Wuj@JXV~X7ћit+(_GE*VEG*MU<,`pi\:v;aN7%HGxDG]IJt)oSXyWqhEp lqQ#\)NDpiV菿;5M߀^x_7Y5M:Z>Ҵh3"U %;LFV%qY !و)*W gc܍ C$+0䮢A\YL$)=|JJM LtP=5.9s[bste{]*䲔} أ?Dz0IBr$cb;=I 3Gy؈re1+52 f\wMĶȊL.Q\ڕx`-eÄQ?u *y_fS1-!O~ c,(U,C\) a+.cɀ?' }uHg(#3]c'~ϝ>M+ؙ͒jNK PWD c1I=* ٞ>'P@ONV‘qUVV{-u3fY֥vZ) IOWXk5y<DOkm aȈP`(调ڼ]{ݖImG}41]UU/p2IiBNelǁT.D)9#!#& e^촴WBrݕE QJ:!M; zM IJ#&'8ق'yf{ \ښ`0U^eAȰ}񚬋*IAP;n1}g&l:>U-@'DfʰjpSXMxNjGC׎;"JN/U7J$ݡY֘ʄ!_ +)SJTE[DO5aE[Jƈs̀̾DG".7k,B*;KG8ڬg8F,zC`9f&P'ˁS&5[V1"1t ^lpO%=VI~|JǺVM-EHDXn9ؑbYR1)k@e'5?*a'gR30&7xɓ%MR-ܩ4|6=W0"L"*̭}ϕUrkQY V6g1aTDŽz)<|V$0V%egb%"a,&̶Z$(|[e2a [WJ=R%aRa}q4F\"#H %K/8O%]_}8}8x{]XlrI++1LGCr# /qu%TxatӜƞ8I,'!KU! 6!sz6jЈ^x/I%:]5H*S;!_!^4 Wntd/6OMpz歱M)nm6ODJrYƏ; `6 tQ![峔Vh"]x}cmp.V܇fKHbLE_٢lHF$ m5OEZxv5%]ԟr*MłJ4闈3kaiIṛ*dmÝ 50R-j lO41 [f_+_/P؝{y}jM xQ3G\MR'yװΥ/0T=cϦ{NEjٌ$_:d< Cc鷹_ey'fj\P4enwk(Ư^ 4ߝy=풉꧈X/S9Nqn&8җuӘ?Y^2$t%wYlIG""$`2R>emm&Dbay^|+tcsrl{4IPP9-?dx ж$ÊWd :z rj_HK;{l=V'9ڵßT#_sv Y3ϳY@LIoTMbu=2w{Ik ECL{P[O{(OV͌ezzuZ8xҮ|yQ,R HȏC"I ;Z:7;o/GD$Dtׄ?\DM#9aTwGvS.ҫdPȴ>riV39~n~?+uBi,id*"U0 i!)њuӓ] 3NB.Ky Y! R]壮ۓ0L`1.,"PG|<91Tq,+Zœf)onɊaeF9rVTJ[_fC;Ճ*$!{P2뷷]f!YL8)^ڙwenYD*Z(il6U{Q0б:ϗ}>Գs%SuYayjW5lxa"1p:N$[k<SrP(Nߢ|cz^ҧf2$/;Q4u|)*)gw@YN H`9腨,kC:[ Rm%A (L2Pd>9s`pQVXI(^,z)[ū~'ES8DAe8mzgŦDװ" uV%M[#672@ÑT*(Emx7quox"o˃'淇49ZԤ!{>%';EE"8DA&R6߯ h){#;XjOۻ-Hnʢ;"$fI-@ԥ=Y{U=J{?4T: 0 d dAHȄu̘\j*0` $tX>2'*t׃.;I\4-%8+o9@c| 9x:Ub!Z7#D/z(J/ ûoʗwfؼ 'CnF(>L_1,SҟUA1{$\S`D$waV\oNJkthO41+%ƞ O`'11Xl= L"]M54"^畆sNcBp"4%9%[M&YЈ. !nqtX(Q4$v_iCz>!כJ7!M&b*vPC8do*t]`^a-z; ҙ#b˥Fnk٥MTQezp 9I^O*< IQdv u(&2rJ|$ 3{X6[JQZ^˨XYIci=|_0"Ō}_Z1UeEZ)RQ)*śPFU~\adA`EpO<◈L/7_l!sK%0+@dާDmɊDˆ`20 :=s&LJg &Ȍy`2OkVe?Σ*y'nEVYA8Oyt JP@oz `Z0ߕoM/Yu`F#Kj X-ךڇ{oc콺y'ÐD- aDDyDvY?P]o w2 €)"Œab_!#h3ZZj_g ÚiõɤpEnȎCUz>fq一fwq<pu?KJ%zq8M83_pM{#9Q( FrIԋ9u\SY:um!C~]ޔĄÚ Wb8]HMKxBjFSm |ԐI|c\s0+ .1Ыkej}\L^:hc:1{8uP@O8…;"P )!jPx R0"zP k^g]$,f겠:,F}* ez !Yqp USUsjڦ9 M^GŹ}+7Y7Ԗ>_Kx<+h+jDFhu]M UtWY]N:&Ӕ=Y"e)bÇ#n^-^oH+%YQsj~xۈ1'/muf"XXu ý1`չZmT֔YvM/]HKD' M~bX'~\9$(2Kz+It4bǐjR1[H:"RBj(Q/vnN&~5a'" dzPۚ[,g P<˵!U*S.r MI%cjԡ_'凎rc Z0raXgy!9DpDqrzmItt{nҢr1K|wQ҃ي4Z.9Lmh$Ž ryk#]Ys1IbA*'!Y%sC{WVSin#$T7S߈'r~Z'JKUB+xJ-T+_~c>d++9Fט~.fVy躚As۷ !^Px-gft-lv>ݦq׉2"=fsxrC3<T =OJ]V5%i^bb$P2W^êϦu _~ӧRP%9]! VF;zP/ZaI"7ɋɳD//#fs9+$O2~lVF t© %gH&(煖<]LkdчQg;;WJ8F\rsB>@C&Ǣ,D j}qB0 'n=/[_5DSgcU(g'D^9ڢBu\ԒVb* ;_Ԫx騘[Jn3[RZf$O>3IO}x\8ɭɒJ;tV/@Jm瓸\Ƈ=_6/VWCe4%ӹZOx.A6F^+RE&^QHBCPvv~-yڤmFf'-qDKԹJBR`cs2wGOS-x:~,{00Y޴K4cɉ5NI"C,"_RG P\`^l(aiwPZmj/譸 6Uzg`Pm\UDFb7$v~;.\sViK HR4M\%IM- $yM啛,j8UrDzb'0 >utMug QK^4IJO 9BR0UJU&RsbMHC|}qBܛL8YJdOSX $nP>JPEfez@2_d8]˃ϲKon8Y8X]-Z0!~VgY8Q~^l__(J~~]9MWH2_36¹ |nd` a.W\Λ' \?mƒu> &\{OIqid 봳7ߘCXf]DU .jjSWq@2${ԝ +SMAX1~>{]wzO/"`ծL\ѓiVM8 #Iy J"0RJtd.3N{C-6 cT4(*|tP1md&Z`Z|=P;/i/wΓHiT$ẁ"G$9N!\$qq°Tގ:d>q^gpĄv i4ƈK 1Bf+?!c01?G6 N@setu\ca6]0ddG"B]G`s[#X+R.07@0L5"{(h3˰~t͊Ti 'Hh@4,`12 lxiIqHFdX{?xly3!^LjzBʖqԟ`rI{ 6d'O2%V]"Onp Wc,C29sv p(u} N_Pg6CDꀾGJ9bVI^֔>j7)L~ѧmp@d[[?6L%4!QIb!,/S`b)DDJZ͏7AũCT}Viׇ=4KZ6r߯ڤP^ܪ'neX#ڃ"HN"1͂]SZRѹ2z91h<=,du^&VMB:exUojd(7crR1S\v o:x* %UHDzVBמ&uv`줁/0ʸ͂^,~=$I벬S=,~'tFMn-0ٴuצUm[g7m"wP w-KHbpALf$t6\MKyƑ bI(MQv%bH-QVxlM&s.#Cn2BtKMké;1Ϯl>Sxa^+0Rŭ8wa#Ql{(NTUFI&x_6mr@} 5ym"ͱw .ѲEr?23u6{Qva0&sRʬ. ԼV d&\iգ! /ɗ=p34'X<>,7 "4[*-_Ndդ-:L!qy/Z]}Fe!*Zl?=`|V{Q?\6H660|U真6J]P4툹_XHwT#*~bACC`i/b\5y.xV~RS92ojW:b8l[SKF^XQ?&USŎ5k< r/W^B a)}/2w#1A۔Q& QhV v}$ +t /U tgyyLCơ|~~jpoαWB4ENJ!f;{~웧!:ʾlyZf74vN4g-"iγ6?eSo[žD(vX:H7X^2sG4:GmՄý辄1e1"S~_ >,D/]m+Neg9Ap=d'4w![>nhchgfFooE1.L/ȕIgJl>5Bh,O*#٣:,!O?yW$l]KF|įJeG]I*N: KIIoE+ {w'Ҫ$J|S;(6 yt +kp=cc@" Ԋoλ`~IF{og$r1Hθ *VJ|9^4´ WzS#/qzŏS<_sp)mKVTuX_jF%ޘ|p}p-(UUH+Jߔ^ yX8>.{7츫Is3ݙ,$IRGhYlQ1k9ޘ[YPs' db7MDI~ѨPUSSP#{,֯:Iu hTW+֒ G1KP(ڹ`Cx4"Y/ grDZYH#*'ۦV{jQ9 ߛpV\'BAg.R3ExIaKLVY[ANҋ;dp__ޘ0my~/G0u{>m7O[½#eҕ`C40=3C&9j=dZ%YKn(R Q!xWO aOt٢v&)5\I>i׳]J֐y{X9%n n'"&|")6VNZfhe{Zif;W͋t (Ezv[R:Aյ{~ D\> h`DCI{=M1 KۻW(5TME=6XϜl/ځHϖh=INYT?Tُ뫨2ctVs궍7ەmE o$z/j%oHå̊y KGPѥLƚb@jP]T(> .`KiG?7.oO0b1%Ǒp߇Pb5}ĭ3hQ61ivs^q,jD )<#bCn (io=@Bܕ4DɅh''7lP% I2,i2\pT;|/4ȵD783PC[*:OVW6U~p|#c̉"$ZQo7m=xdJytxQO2iHha, oպ.D.d;I2#EJ .Å"Rf~1>!Ye"]W;<%EtH2*sċ鶏Y JddQ@_#B/L?y=BKgH*Uص&]T4@^biiubw\8C\EFj?(_ ɛyƘSа1>iMc MF,;Dn<8M6U;max\Pc1Z8g?_OI`,bmMΛU+D􉱦`XpL5K[~xa/VB_^R`>)4-lIRHzPwsUbc/.H$ ?Qf- 2AAj8V0ñ_ȇÏ[wwqwm,=ŐP wmUiX*jL=+Ef𯘔Y>#xO_ϳch„ӸHIQlD:d#hpmʏ6$( V(adᲥB8ظLo>d=p1-3uL!~ձKQDq27"t_+.l% c.K+vyMJ&tKڬ"hlÆ3S,1r0%; z4(Su}"/PŠS#D'yG;i OLmr7/~,9ƒiɏ:̓[C~ 8N p׼͉r?1_E}*]e!$< JN ##P ̶>|PpDbjVT(79D>bwC /"hʲP8O J%1 '':j-"#bi4}7\PBm"z|Sy)[ן c2vm('"y)TTZҩAnF@ZjZG:K7- yӍ~ɢjn[aƱ|.xNtx04ӷ>tzY.~`J"P4b& (vQp0F8|?5/ $Kh>?D|t|)T$qdv 9sw%)O1Xb(Cbֽ23`(pV 9| -ҏ&,'yO]% e}Y;I3NO `#ށ0 ݤ tÉ(^^Sko/Kzz,HxYSSBF-^* ǵJ^e^3=cy;D%hB+Uv )[&U;)gE.RwZCgr"i:m ϛ}v_f(c*[g'8."2y-*ڪcF4?J"Z~S M0JQž?D?&7h3Z`t^ang)LU91`MvhIUC jdI%CȲN3Fgj:/e`[qt1JG &jsˊO}dC#`c%H/clvyT997tE#`3ekgA0D[FbPA3w M _ jS o}!Rap*ck4waC̺&IN?nf& c})je>.% 56(@_(7VS1yZL'@Y^V\Ǘ:O#9C*dZ*,)$nž~,]qɄ^UTe=#_r" 8ܖI\i.U86ы>..c~5P݁]:O \P`du]C??/CR6/n UGXcvTD8sXIeK9dF{:Cgnx>Cfy>s~mlӝipӾbteDOlUzI*S2ȍNsp aIq̿цjrx&-Dq|&jL,wer2nC%z)E„ns2$N>^UW2˴ 82QS`fɎbc*=[Ca1<˺NxNVs=6i>>-򰰱b&8I(ơ]Oq 7:ʐp%en+2dM eGn XTΑ2YO-s?M70 Ȝv(á60Yـ}o75Lír)hWQɄQ52@@D'#bYrWʆ%&x}}+-xJu \ۦh8?W-c@Y~wFZ*@_ (y'|"W[z18MW+yWte癄/!PD8HcCc>rAAx⥕Λ_D~v7:l^1E`tUsclCnFۿ-Su$*_- +Y3BhWbC|6;ߤd#…' ޗ3ReDi\˄ux†$}ꪊL qj:zY(2!1jՋ~ e+s̹SvM5-|, $uhȶ$ᘲ! @bM*kD3犨1DӅx4Pou3JRT<.$4E[ (]*0`4UshaǬEq,=|l6z>iLk.r]&/s:TY羚"H$hi=x`ZQ 4 i.1EHGy~ @[EY9JDsX$8a[,^ dF MSjpy!Rm }~]w[B\cQnEsU0O}';8|VVzs̫K-#p>ltqTLO2̷DOL{(&q &9V", ʹBE/#z)a # ÿя~]p$br<u}NCLa:bY3\ s)a1$AðDĒH _Xd/}ۑ>v8 A~M0OfT`$L 맰?uMUQCNurKc%˥9&,-gl/>5%O{ݾ}y l'~ K_̊Yv_[L D-WYWuLnX.BMү[#DK 7Z ц>$op˩|k}a5(Āl+( j;P? ex>ج_@VoB ֓P-ZBӥ"|tM^tڰ4'@n2&pu~Xio?-&dEO` $E@xXu*|" S\r \ 3=Z2urRvgp<2SoHЕ!kQL\Z/<~!N+ەIe.!͎֞HLbq.kȡ:+4:A#6ԣ NWN]Ĥ1?Ags?(9&lHy+(g_BaZ5;bm6^$`NJˈ=ĽOӛi6'mQ\#ˤ$̊m1&<u`C}.)ҹz'||Yqʄ89!g^Jc*啃 iX]H[3g`vq-*7]'G?9堦Bl 6;._lalb6IR?7PL}; :ZHQv'nNm4㏗4>&>%y0ZCbqj*9I 56E'MiZWD~ š˰"ׅtĠDs.Taquv ʲKV b(h.io7.>C-fM\dgW'B-AwKj^O \Vyr[%bcn,%.jX ׫)\&4R!g!UNʓRj*(e:dKF3 %/jYh/AQGFrrJ/RJӖ <.I'x Q+Iwr^]cER YJ ML_69PͦʵP NJtMMUEW@ܺ,H pe48p"Pn؋1}2oM"L<7RgH/ Y%N2y˴d0/.^V. yںX2^^pOI*GiuUcåTVlK(J6 o ҆@p`ުaGIQ ԰LKnX\8D:k—9zif f?}XOtȐr_'`T|>- & v$Rseu**BV+ K}?S9{(޾cKFKPQ鎻HҒƶO.Lmfvnzikn9̖Yц%KI5F)[l€IzhGhH5I-e/wf{3o2n'SoQGX \1TULى=EXN}D!ax%X2u9Ŋ-x< rF(yF'E ! PҀg6|@l5 /y0gQ5ϋ\ 7i ΃~ZGGX?hń2#%ȲѶ)\ƪ($%ݥ g-Nv2^JT"LL'}*;",Dɸ iAtNx"y" yg˦5Gnu5/E-%X 1"`\ƔLݯ cB9Φ'X O?w ϒ֣9{TW2/lMCZ'uf"$uxR@K\GXsv`Z~n%M*n!=]QʴrL72hc^Pc VZb! aY̜?-OF~$P_+=I*-ũ̌(IVcp&+m(+KDG]Mt<$eǖm4Yw_ H3zb0VKs~ n8^{ya 1|aeaȒVծ@N\W;Q~WH,W#B7whcxsyY 9$CLΣܴl.t W/%GSޢ}!1a^L徔%M`T>2`T( +#ӆ,bVYU̸|ᗪu8b&3:;˭TslҐ'M"Hjխd>4chzR ƘP%ƎҎ[WR]ϯճ'Y=$ ;Th,̭!h)wtVX#gFLp3\I(cb¹LV 2c!^&E}1meUn տ;Ph%Fl{(.:L{٧ r=tY/&=,D֭+ %6$^t~"|g(W޸7齮B좆"OvI?f8i!em9ZqX87ac޿G4^L.|?-װO.rI"U.ղS~>b緘ʠnfzWt#vNtLP'qX+!wG>Hܦ~s,,Beᴩc'u~;Vx)'pL94o0EUvuґ&YdBm NŜT'dT+*כMF_֧7*[ r_``OoMisM8ۦlFm&*? bF+BYY!1~Ʉۮ"|m|BڪGSOI|] W12G'shBe^2c}[Uߪ{+ه˝>f۟VfĬDi^e/=x)+z+ TkD(bW5+ߧ1ݿix 1?ire7]Ƅ";m|+:1P*j*i}bU.4^ cּ3&lD |Q'@nC<D؆4>6Ɣ9*NjV4,/M3fF(i{Ja -MpҏU!H ?#nU̓'e=|[L|rؽ?mYóF y0T@=vaaUNlG$:ҏ 蓁O¡8?mU%dS#/R9XYދLQee: ng1)Ɵݭz*-7(5݆}SJ+.%) ҐykbnɯY2d rNJcs*8Ž&Sub߿L 9k-uI%bu0JHw8~p*at> @E0{ wX`^)8sCI}2S{%ԕa(c֊0-aqW/~U( >-^ླྀ E,9zj!r.-$SJƃ?2FHHxVŜ/Cw~Tb|x=1K) qmW7s0]lWN="ĕ<L anJ]XcdhtnhXPha@kCY<-d%7I`yÄ=aI ّm#.ŊUE!QWek< F ;<~s:/lV-gs۰c>`(iՄ@#&8gU%, AsQSu}L˅@4֚/ "^40]w+(1 &!=@‰Rn_Rو'I{ f'3Xq{۳6{^?i*2_& 5dlx!1!˷yG&ƦVkt$ cϧ2vg8Q|-S}8i8{^:0d\E1Fצe[]_1))8/,FxG,ݗ{wnOSJ7zXep]x$8@$bWpΓEI;:+NT8浗BK1xOf@h,}f^.oxe$zO7?zNǥm4*Pm:n\&1Էc,xp _g/YAQLĒ!ýEo6jHn_b 46D|ւ cF@,XXKUЖ4}oP8ѕlJw?ۑt݃;#ɋu]KN#5 nl]WӄM3k`} :4qNWbҪq#O7ZB:ZEZxcKu#&xuѭ% B{lY _q-C]xڋya%}]A4m+qEU^Dia"*U betmֻ?B>< 4IT6.IaL? S0K%[ŹI7j藍s d @:Iͳ2µ Z fnH$~i&B̯| §W^02TLWc> u"HHs+BeҜ,D 20`[ =Ѷ^qt)2G/bň3} AI- uBȳ>5IEEDB-MBQl⫈QNR{hL'.˃9"USKg#~9)ܦ\M%9 pi]M%8a#]/dMq 1}q#kcv,MPrt&mǺ5:CL&ց/M/T+=̳ k0|V̄,O6`]5٫ch"ⴖy\}Hv_dȆu*slcra"-Vϧ%}>T*k݁̊]_N@> Z KN6 o12.$yC^L'9)SSh;jV;!?)1 uH?Q~Mϟ;z.Ѡ9#mn1{3%\pԪcC Z?iUk/0 n=euWUR)dwU5zV 0AܳIVPymNӭ;{nYߘl"ߛ$~+JrzA.Zv&JR(IFUa>@prKâ=bGLȳFsp𹭒S-x :ǽڨ۷JlًWh>?metWk9C{-FHG^5oځcX&NT#WS:&,y",><)҃yq G^y.}Aξj޸/9T.w+M|+7(枴?r6>uC6$n-P1N|åUa!%K3O.˲ps|-ʬ늴'dy+C|!#"ۢ$.EeprB"`Sv܀  68-xȂNW,|  ,x%)2 _p9'T ,'@?Donybp445SV}1'ƹ ^Qnwm`,Fup[I {c( 7[E$Q)xOJmJ8ٿM}i?x4Ƅ{%x/$,PݽT.64$[(J{+L9} %!* v<%ɼ5eqYa ~6e8t(D yC óϏRr*wы?\JdART4|M:$ғКL"w*Ke)z-[bYJ)M!f Z<;b׾> nkG [O3&&٣dSRnձ{+)Q$x!"XM"jF)^aPPF齐bK'| NOc> aJ>µie|nuSfԠ_D,1hN6U.2_&)nwDCJRI%U/`USF߅pFyq r8g g:PɀQ6C£Wc /˓xWԧ(\kюt"&-3ǐcIm9wߚ[!pb?9h4G?=.Z6KsIZ%^lw|IXGN%!z)r2pa`_)4 :+[<7p܆oMY|F읹 _M? KU5=j 9mm1Vq5k=sN^IKD[ْG_)X~UQU*,$A[9[Q&UU x7ٖ:-n=[I5%C]ɕȼ )Q!CFx;8@i;3 0迿aio|6].i)t<=^fr(TTb)9Yb~ώ\$4uX؊kVe Go #_)%?^>|uyՅ8b&q0َtgޔ$ߣ) nݴ -ǃfW Kec~ci%/-1ܚ8A;1GNќ T!4j[~ьIi3Qb_eSPWMG V5jtRe`pUc%6;^E Id!#. o{HF\I8>4Bԓފ,Ň;\5egCwdG}}&!^H|EWVEu n0Lb 08xUXh"ڋͲ`M,g) hcۘ/X_մU,hhN!V(+Vȋ`eDSax/Gx)r0_߿ ܎S<+*묲kж:覽!IXݡ.*I5IBGWP?ǐQCoQs a>!ZO7 EXna]qk;½ՂPT.B'd^`xJzrgzTeJ)hh`Vor!SsD,2=Pw7 FxkWoIٱLKڦ-4VuHĪ}&-¾ԢGx9sD\?w\I2`E \^)zΕד ƽ]eq(DYudI-+9 }9e0[vաLNyYUUo!x=m0"$kecN}MOĜzjCKqI&c2UE2URyQot^Q#d1k"FGQPW_痛,uf.:J@I:ʺ`wz5*1LjU %~^1QR8ˊ aٻ;EuL=NDo-lB"ǎ]K>0 !}9cIM4}:[Xs,|nT'7pi.Jo,)1rA0+;[z8v4yGAke2̏5L+kqo)ǞCOWHi+s+O:A-Ⱦ`*?'\ Dѷש|< {F|k9Gi)WEa&xj?ք(]$h?GS Fb=N<6s5#L- I^U-! q]a&0Kq&+O|2 gȦ+j~}ql/]^+P摌R KN:"=^ D>wf('U3M<`Q W@l_*d/l '_dij-m35!lS/d!i& s^>>K>>le5.,_"9LGVŲ6|}}6(Jʹ2}*˪,4nOiH(ui@I i;Cٸ5s"0ʁuBeey_mɓ,ъN1CƦ]e -:[mN¼T_eAA\\Ik|2.<el!cqJwGI&*0u8^㏕ #9{'/fKr p\:› cnϯiyiiX41'2A G]6n!R8XHud;fa "w4Ї8y4e0ԡ^oT?亩˴? Dl.$0Q\h"*c f@m7T>.k񯯏e@ܺ%r8c7 L }ХPJL -$ J{qpX)(D{TNZIY }>{"w]?&+3vuXK46{Q$UL 0P =;fd ©I:+mt6ȑaWsbY `i{rL:KO]q2Ow&VOwZVO'3 ng aPdȋeKՂ彪3 P1=Vei4Ald/χ߻ eיxCL9u›/$ NXJ($]UqϬIC5N'=M$`ٛ+˦|&'hITUeU$UKGQ2H}Y*dvڱRoy蚶X9Fb j06?)LEjvkY(]T  !4D/߂L_ÂoJo{;%zeUMQaҤBe^ZNN1O =׿Bߒ5e)ѥ$ѢȽ>qfPv%?T)MJ5Y]B|{a狡(]r.J]iꝞ8+M>0Yve$Y8-YaV~))"I#AnN$ڼp mc_FsXɜɪr iLud]Df%K* aī$T\L̒9I]} &+pA`ÏaVUR|~.6L~;261VM1h2{u/$hd/##gvC96܎gxyջ!@p93.N[HZW)oa0ЙqZ b饚4Eס$zN@{1O_E$e~ʾd~$q No{X۷1|Þ>|P]vUӴڅ r"$$0]d`x9J_Q=&Iz_Ll5b ~ɞώNF.u)t]&VB+ F9!EG#]*1#IA3snE(R~G6sJyTM/BVp,fk8AiBRr2kY=%4fY%]F.$<[5-,)}RIc];2I/#{K/#p@*_" NXF.gj\1?Mf%tƄD8+nmA}yrW]fh'7ۄvAǡ'Emt>0)dKVdʙJaƦ%Xu"I7|ӳOC ⊷5!nF^HAߝqĈI 3wdtt`nc~NEk~ݛbvg^|ޞj+5ѱNCŭy`'.hb$wQFqSvco!ľu?FvǮʶ|"JdO&oM$nu3֖&xqbOn[noM ,%c1ᅴ۟m$cgkS>]aW1{^p}EVx~8A nV] 7]5ɠB^q+ ]יO!²kUM*ZpBMI[Vֈkұz]C1r\sCor7=ufR&$!N ay5IyXQʬ y\N2vCT@mԩ^7]ȸڝTf0*CaR{`om?AX7d}0u^eY7 Y}Tj-Q6ni^zxtܮ#ROB)ua4uL%Џw,9QM6'!GD#$lr IY'`<ɲJWh%dDI{D0Li҄;ůf/#sw Eevhˤ*%Bo//T)/T*6{ BEv=֑bą GC.z6B= ҆Rl'(Ÿ Sz_HaoM&$ e+;\QSRnÍ qr4iYiL+䦪L*BLlP aDE¬xLJB,N g`}^VNW^aqw,v!gi?񜼬hPɨT*~hY tAd[80s*º>A2%^.iG,Õch{(tLs겠(^!^y.G-+vPRlViW2Gs| `:0U,uג2\c(5NX)6 PJ:{[1p>Pci~+~x<Oü(Ŋ,]ҔJZ06DD'dAږӣs ¥ב^.ҺC{* Yyy<&>5-Z- W U3pdG2 >}6~E/Tv:$&հ&r ˻l}ŏ@aD\qU,ŗt|܏W6毵/%hVd)cEbD"Z}c!^g: 5YW!)sq>&{(&UuX /BųV{YO{[ t3};ٿsܵ钹rF5]7axP0nExbfp{sҊ%|w_o ,_CmﴔnHė'Uhʼn"@~~qZ^]8~ɭav!.޿w&Nn2%E7/v2Q2$\\9! J $#t(vѾwE;l/'D˺&,W]}RHV<4גFc,:PB(^\iD0 x aS1ZKÛ0-! gj[z"K]RK>JؔG 'I8Dqުc>,Aw8ϴ )NXckωrY8$<2)H&p CxH {]XxxûLޑ F.&~ ㇂ ğ*2Kq)f&ϰ5n s4m.'M4~vSuJL. }dOk)Bߥ2uIN֭°鬒1'(q"q VO%[W.2q_oB-wZle6AC!Zu;VlH(_%]|$HDgnc/އ}1e +1Jh2~vs\ٞZeZh)jb`;[d{rm6ӶE9./j!6L~ǿ~FSQ/ߟceM,D'CHR5fm/8UZE< J3 4όuߣjhXvyQWt*=7\߇Cmjp-pWd.<>*=M5-ۢȴ܇Ry+%$Q8>%Ԟ* LBh iNmi3d[)B":7'4 ,E +^e@7ak!>+/dzh|$aDFWm1Xz M ;&A_1WWEGwH+Vk~653yz;O蜪cߨGIRơ-UҏzwzvyOa| O@amCz)Kz, $-j^wJ|JAYc L|>W)Chrl҆a3T5,뷪ܧ$DB%no>g˰&_@{1 #^ߔX>YQ&KnS$nj"6]Á8!2 ID9b/_{H(U4SuqgpFSIN*8 7,4Xw#1G8B]H^gUٓ OgV._1<ߟ*?O;:]h#*PTOb ݼBg&ieGa"^.֎c+pz#/Ls5dȣ86-eIU߶W$[zRx1˥,&=V('"xtYT%{vl:ETܟ}{8nHF <-ܕ.KΫpBʳ}$tb{UQM+xĽf{_<# ;{%&{Tam_"H]K/ʌăP׬=ǻgX9YBI Vp~yZx#GZ1;°AEa}%Z.}O"A#˥ Kmʼloijl-:bLj-SmSIٌ:x-xQ~ I995`yU"Ij@q^ftá ok'@-͏ އV 19;%}NN(å4Q]7qkvfF!E(XE=e\U(9"XO!OIiM^}KCXQ/uŋHG0Vqo--MJ/eDѼ#yd5eJp9tZ/Xlq*V< s*v>ggUfA&p}#)<\>ٸ1Y >[[Q5if֝U]_|..\p˲tCd \/x3KX\T,X`,XՔ74}'ivzHNLLQR}vm?sʱvb'9fűNH<^:=\VBnhH6k]䮩2i_i8`jo"V~L@k49hY'K/zv<5zv ޳&/ e~pYcyARBFHߝny9ι ka^ИD"1(Q FNs8QyޟϿ:ԓҸрQ% vU ˈQZu ď+^tK<#L`XwݛӻXsӔPaeiXT-y\\즳7Ȅ(~L;mT6?"ޒR uo|yK9 u^]G.9Нq$Q)}>bo#Zx0" !INL/.5D>|f26Ϩv! XH*LVU9VVΦBx@~+pu;rz-c<5# ѢȂ(WPR6>ȱ `-FWl*$8߲s^3?Qp#7& O$.vL܅4ALEs?%ණǟ4⹇03/P?C&.0˲)\-YWJ4.s2*WhZ? Kaf5!9drx'U4M| )%%ʡ疵@OЗϓ[_(R]Wt]puBhQ ٵQ&IVLlL'/}!ybB6~fϺpUu{ӝ~/ˑ ErS U!N\}ne4n*?Yɻ^UmY'972J[Q#+i&4rq7M?-]X9d: }4"j]3碫6iY #Xdў[x.dQ`A鄉3'e7!!bcZŸe`Wذ?nŠy4g3w&? SHzHd:jJNtUV ^|XX!DP_VU^rL+Kse ן^ suuG亮6]dfm1qQ =##7Dta>Ǖ T=`S/n礸2̆@6/Ncl׊V@2b~`@ KVaՖVh yT41uSЬ.uHV{APJx/ 5 J=*x=IM}8~l ۢL4"i &$DJsNkeȱJ/[B͌ixqMYxel e]9];'gMSԪe1n^.SB~*7<#U,֟qA:IfVþN}c!ۻL L.;#cnbN,(Q[1s2{Ih\},4+c>D܄1-F.CZmOďm,P6V녟 Q1ŚeH[ $I"&?%'/Q|iibJ6ZWʼdw[ 4q8.Dz-U+ED;9K]ٖmm[9U4FTDKuo܉ F}l^EL(~Bj/~HۨrY5<%/*Ԇ+"@ƫGXBKh(KkE].[v|iaEZ8 ic▎L˂e.E2 iM1h_1ARg)d2Aoh>G˰$9YՌ*=tR[KIje#qF'2S]A =*`N1CHnYҒTʎPز4Q-R |C!D|)a= U=6kf3b#LFC_PsZEpaJB&Z e+= xsEcF__yRpfA%;=I6Ř[7r)TBGG%j%zk|pџooD#0t!JkW+Ma,]+$]xj/ ̝d9dٯBc8^C3-#a <ݧ,w¤miv )[(͹BUa/y%,iy2zp-NJqyCՔu!N4@UA )elMs^X'[4̷ /d 7VT*O=y0J+դd4\N.J)jSeSlFRvCbF?w$p 3\V]'e Gdc]~3ucWw˷8$1IzH jlwH ǕS+[+"2$vĤg2[2K~/~DSZu\ڙ/x*ӞU05iG+0Ͼ(,><.ߙO;$,'/ޓ\˂e&ݝGyE"zЖą */ 8$>87ىjQaG%ד .wJX ņ)*o^;4uQrzއ q!u81Oq&W=5 㼼R w -9JE[]8Z7Sk_j@uN[D|6$/n ^3H^qС߭{TZ7UW+'dU4PCl1R\2@U}~dJ`!CRIFWGM t'&u&P8$mڢi&2*+d-qm&ɲݿwW`-, 3-?IrGcɒWbB1VV$y{Z ڱ@A ΨRJG -$+E%,@yvdMJ&6염 7-n 15W)/Ĝg,hJ%)|Q$V(]kş7֞J[[$O];[it"E|/W[j$\1;&s6ϧo_O*^S[D<&WG{ on R k҇ՉD168G&i{!iTE*wa^vS!agUs,JE/'ɩ\ebY%}8r]eV]Dx>Z8nuD{+9S\G(8@dܡ&5^1lqLS9er.$P_dM^bmtQ.զ: I" (.OHqf/T;3dYt]'5 w6ݭK?D.1~Qn-\ *ocf#r0 nyt7lO*σ_, k(@1!LvFJX##E Nxᤄ\ -{~:y+;^IvܥvAnEGĥ[9V)q^>\n_4/韎gⵓx^vIrб TqfUIkdA*'pA^qQN1o;,6_z=-͒m2Nk }Y`9Fc4(K6.~sŵ D]i`z)[~7)µʼ K{N8h'n~ (Z;09M?sbw]"\J8pSKQRdx#qIqyGbt0=9#Lq\g(-)-DQ-׺5uncMF.E ы^D1'r}!:xus@Ġ'-Iu ze-vGe/횴 ȭ A?9NJD:Gf g1`8p>-i"Nk2VS^˺Z?7ķV;NıSŝU&YZa-hC*MKM`ܤ޾}Oc?CoYW>ܞfl. z qI;t$Dio^3ث v,qZ#K<.duW,+˸!/RzjF]U˚&&HJ(HP1j =(&q_m_nxlΨ(F5vuI*΋\BҳZ !ˬX 3X'K,ykZu7cq& l|8*Z߄R$ahq8R^m'F9i,<8CdrJOl%uB4*< W'4!0d8T:z& ` M|u,I&o&a/2O\P#b?S߳dI´-ݛJٯPPmo!m.Y;$3d@+&POq]˟c,`Y҄;bu]vix0껄$Zbm2>4 $4\$X!.zH/82dhHj*ĕxB d8ͧDPJ;tH,g˥1Y_!袌Ӟ"Z5^  s>Fи$ ,.I+/Ƅ9r*H?Qr 9ا'jx 5)j|W[3VwpKv?& dAqbq/<ƘWƊpMP9 aAfJyV:5_CëdhǼE0|\ZLS(`/>o%M! V"퍦~FdLR8x:ډϫjn-XQ-Dg&#)5:?8O.K0ZwbjY]Aލ9 !~{G*5 b/FU\6v6vDB@hhXca-z(*' "Zцi'{i'5oqdЖyb m#'?|DZsdӵfdC*p~Q˔aVo ^Xp|vKǝcx׸.JFdc,ugkCr\ދ3#;&<1))9u2boU ½ dAJ0 :MD1ƜD mYek0܇?ߚiYm;TC{ri[Ӛ$KWS6jsa4)U (μH#V񲧑ᔰu12b`YSې^.|׹7O>MUf1~Xb6 )QX1`fi dfi<= @C77_ϵZVWKe IvBGG?J ]NOsԴgchpms.:蓓˖2吐jd+a g'Zٽ|2k@2S8REo=#G_ޖ:o2I%f=) BrIbB'H[L_}B7iA0V-DP^C)(ݐ1߆9g9aު6\Ku [E""zi*@j! p)#&FTR8\ ]mXO}A+~soBL(ZINb( /ʄ0mVzKΠPRm\bM)>8hy{>ܺ>xa4Mh(ȊLT=bezb[$*H!UӃ]yE~p ?~3;!}̒ѥ4ȡё=RXza$dEBhX0cxGc臡n'u]}+;?I)!M} /elpaIn]b2!ܒuYՔuiF#u>TQTWYB}&kwK", -0_.yr*+h0E}UZn"yGTTWE|Lj wfWLI#zD#{ƺ ~*VV٭(BִCU;I#\{+@. :| .e!F~pj_ԡmӥ1n!p{ڽbcki|"-VK\4I4D)+bB\-RLH\1߃ꭢڇwƓj)6A"p6IY/ HbQA~ 8%+dYH9_Ǜ G$KjڗJ2?NS1͝{<ɒ"A 'ISGrՄJ?wrtLpW"zd̀_aB,?M&ezhKv!GO&dW;J!k[͒]9x J/$:XHM֟]|Mc#S5YE ܄㑌ʊueY%Wzq FG)zz /486/Ze8(tHMkT{Q9 +nҘ7KEݷe㸮SboB(ͤ' `ê{0:2e+(tdީfZIh'L q:&Ѩ{p"jIG 3Xf/5C҃CVcϕ"x !\(r &vy#5 &e EozNC=JS6udK~)tc+ 'c bmr%$)b+^tO?92j )thT&:OIlK'0å/*c\Wٷ'ۅnn~*ǟ[=V!eF<YڥmFҮeO˲U޻N#>*^L:U쟝mp"}n\LuVih:Ӎ=Ӽy!V/8j0uyN\o{RKɛ'㟬L,ĚVi m;1` cU~VΩ@Ӭ4Iޮ0[½Wj]y<29n"~K1 9y} ݻnC1p7%ZSOӫϨEE22feKC\%)lNn[zF&r@/>ύ/aw.,meŖ`%spFx~􇐝RFT|I7Fs/ &o[Aޯg" ?[ŒjJSI}Μ,s[0Ud^2IY)$I:q ӡOYMZҼc@25)QWz{XXT! kHǢRĂǫ dOOcnJɝ jv~grZeM4O/e CͫNn|Bqsy;ޖ%ɜ.!o? .zŦ%K`rOqoB3@\̂;0ps<ljCnƆ$9䫻NdEht!7N.4 P0 ZssLWc\SH v|!DH e4ovG,JEX;dzIq(͊q؋M _lue;1=5\َlBIzo 2Wd]Hgpu jS&_b^!/0|UV& 5crH{+:ߧ=D WNJ\0+6.yz2]g1ʓL_jFʲKWtwdK $ VE{'0 V1yo`eCk tMC¤"YP[]D6^պBr%IBypΏvrY.2RrjMEFܪnaP% 8z!ƞ0N> 'dnQ"D].Shn<ɁOk 돏V  gi" $fG7xy6}(Ϝ-!K*neRaH8,Z 2J̞Q-iC᪻z0H]pMlOH鲮H(KT,5٥EUkCP}ͣM)u݄#w4%nrq9.."[ف|ERHwes3 fʗ愺+&+>41=ѫ$-Tǥwm[exsa4JTGQ68R[ޑhiB9p4tv!cZ>XU$) (9٦C8" 50 sr8Jp 0-!#z:V-dҨi,N`LZ3rL,5yEv_P-6Qo^Unpk0*D%I :|<{s_eMZIdRt? /z^YDƴv5yHqNB{7vzȢHqnꐼD:B"LMRD+r(UyM5!=>ɸ.DnMb0 [5pTU=PLm/A:t^{~Vkax%FEa/%!e 9sdYFrX}*;CI+oUa"rM|D-ILV13e a G{n\_](K1y%n*1ODziuQF y4}!#wM<1ӈmަL.\$8YtIV"9ȑh@QNn gOBŸ$T4YmA@"!paCp茁䝽IН>lzi6:_'oҙd; 5e]4ўm/hE‚ɁP#SRW՛Nmϸ#Dn&Nha}ʺ:6bHk?_X#)bb@H~CZ/V 2>ͣ䍲;*-mqqU[1mMò$:b|! ^GO\R2`57Mɾl4L{?uc5>/cwZSuIa-SrD D)M +Rߩ'eYW͒{f*o똗uW.OIKcMNxs΂!1-r^=GI_r)bA>⼙c0!XB2u&x Kly5MȠCOem`M$<}L~F5WucGr728 dJLeOp3͏ay`#4`8MrR8!]ӱ\6 A䗁0īp 9",*]G&6M|zά0RF bm(]g4+OԘM_guSdr+2vsNƵqd"1o'P` |&,iRFͮ2hCgr֑ܷt¦ I@VBK tS)H+kfkT'VuP^"yֳZSnrSM9/:f+f#clCƙ#@,[&dGŬ$(-E^nV{C<Z!"-KIf:&:rC\9p.pzVAiFm0?a-?ۺ-sڥhC<}}x̵YU8WʼȤ2 JsbPI sqz0F;YU$G!ne" ]6yS nG0F=,yݝnޟ' s=rl3Jl" kko#)>.E(Ӧ\9mrnM{ER ^@19%kuZ${_ s6 vU4uJUh,,x>ȇBJ>sR1xet5\-$S}h FE #a+#\@QO VHW;F"=3gWxfB21Xaj8CeXd$͞P#Ӥ1MD9 JLƼzZ0B D'TL ;>xHT2Lf<00Pb'Ni i[]7WLYvELM,=} yF I{%f)0^K͒4Q"41ݷp ?Ȼ c9or_&-ĵ;7tSzMVbp`=ܽ yzs%IXMF U^,mbPYmZeIT=1`\%s{o`B&LSY]LWd*5tˉ7)B QZNWM- Rr1Dom RIbXBxJħu܃&$5MzEA\$іXs;M8Ĥ+Q%if->|'3Ӛ\Id5$D$ƛAf1H `1 qfTsx4ljsUѥG&eU(Ū}.V1f+Xd{iYLkNțdz^9"'F/#?'aʗMĥ%,ëI "X^hXVSKqkT@,GR y!">i##q;!17d͙/V7d3RHB5hG# nFL':=iG/K-8{ "!5VY8_B"֐0MZsLײ:5d32CD#|2\s!d*+IR 9cwyQWх@XUeUE~P!LItOʖ!YJ)6BN"h1y 4iިLeJR}IytPN*)%hxFT +GMY=TX"QFf'/߭ps1bgR~m!1 w2 Vzu4יRC{Au7I<<8\<Ž _&rޙ]PU"v4/&̄MqAE->яI}HxŌ%+\ژ6CҒ-RDŽ 8 !ê%NH_n")$ahUI…n&B%ngNIIpƥ S-,M2mO4ljtn~'Fx >VjF*wmf7OUYf]HU%4oR0kĂ o\`H>?&:`LJc{+<<P<2E6wyӆPD+7A@^Sv~(`Y{/< GR6eM7=^w#.mbuE`cF1SƦm <> ll-yK*Qh.Bv'/)?½bq#/8E|H9I|8x=!+qmd]U7X`سKe/óǦ6EK*(mo hGrԠ@Q07T?1_U4_BmU D e6:[(4_xmh"MULWzd989u=9^LQgX Ͱֹ1"֎sP+`2Z^UCÏ1#m[Bއ VInK'%XbSr+yzsޕgϟ9#%]TĀkYSD{ e@Ož <'ҋ,$ܗee\8)YLC؂"G!\$n4ЯK;Ã% ;'c_" z3,yXvS*),Ҋ݂s1:2(x˨ +GђSme@A箔$qBYHY:<MbM{kBv+* xX })KD23+5醙#>Ƞt~_WL[F%|PydA" "gXSshelHD"{WyQPYi[ 5+_?{%h;0F_t"oZ1iX_w&3m ^l,@E(@ŲjΕIYD}Eg^:rEҨmxuF.Pm哴ʉDBQjN*QF5ZgͲqSܘ֑΃e9MJ^LFK"!^pEnQZKr|Jgp\g$FJ3&VN3+]*TDHn)EQu F@P309bjkhXRn-k DϥxZJX>nC]yeyV%x"mA>mx" &p`Q=C+ʓؕhyZX=C4݇:̄?-4JOi++yw jH}% ۱}l,.iê*G9dbkr+$ꇍ8>[<?syuRgFlp*,T"*JpZ9{1!7x.Y$y }?[pt373~${> ׆XUe|8[*lA+*no/ /dY#ay/_^JUm&EYk`->VP­Y2]غ:g߿xr?ïiR\u@8f^Lӂ%֬ նT&*0QҴJCxg0//Yo\nJ*79_)?nD82t#Q@m (+ TxZ׷g9N=p=ICVseΗ5Erd{PTB8 e z,r1wD~1= A^49p籀Le9Dbɋw meddq6EH(s+\>+(Kbⓚt"ZA((3z)zM#1Ř_cG1 ?t#|E49)r=-b/[N=45Sgm scKJ^V]w8M`! ˙lDtdӖ%_l7ta^Ƈ5yմl:[W!&zeJ㠅(Жs 'ȼ|| rw2G dHBi'~\ZN&WjoKI.SFNM0IȥffNB)1Is4Y&ic<kWp[AE8u^<\l>s^ 1:I=&>xl(w-~YF郊J&u2bc hΆo*QKR?)?1AS60ʼ4zXXq$[29^5sc" yc~xÄ,3Ýp:Ci=K; vQ2oDt yC"pKI8~ $ãus\¿KEAT.{=#>6]崯NM;:X@=Gý a;DD:^Ɣ̻#ң@枅htZAm #۸iEԿo&]yۤdxCdʴm"I& V{S C'ǯ!8{\릮=rL&X1P P| _ bbLl;NB"CǬǧz_$/ <Gb-&>uk~ \`j2/ۅ/SRR/BieS~CP&eJg_X,X^ RLCsmWuF.env ʭ^^ˬm$ǡ%󃿍W* (ER&&Sߠ 3ɎUlN[⺅'b~.`dg>`eT4MSG'kWI~ ;8^:q WX>@<>ʦ-z/{Q&v;yivɿL<2bDE\_0~7_d@@?0n:ec,ڏeC_ ` ZXئB&5j -ǩ+@,c~ӡ?8q<6D&Ėf#՝ jDҖCQfQt-9(_g05ڬt/KeR!N͟Wr z:Iql~v_D>gi\P.Ĉ^e]Y6U51G%gSCDm9^^oJ2zRoRݑ x$e!m^=P_p-q/L,bJl7ט/a+ ԩ 7]<_&Ҍ69Kjo]Wy/^2g:5H(47HK7=e[B2ChDZ e$L/uý1u WG0tvz=;H/H#P뺒~]ú[Q7o5UeK9 VjEha/#1o HТ$9>uy ^A1}l/PNhh0pږİҫ,ZuChJEQie"TSomVF<8wd`+Y2+3g%/,}&1Ur.aP}t-$VV0zYXi2$GԖQMbr vyڪ(MtUIF6`D ..9`:$* X*`f ;qXķ%zQ妱~zs-mi$BVhJL Hh{9Zm0,d c_{ q5TI9ey.SXDaE]VaݭTA)U(&CіDmLhd;-CEIA9rrj4[飑hN;Qď/:R4_EʢT)[R۵>5XEb2q<Нodee8qaq>'9LvGYi2K:r7TWaFM/QO.lZa*-QYM6U*p R2ILyŋ"})sFrWaM'BM<Fw85XVxPY41}h3|;ۿ2)cG8G1uf)m!.tFXkUQD(wj_NyLcAn}Oƅܨzf:wJ_vyUߧ"-%#sC> 3CONpȄ%6M]&5Vew jf]WWsf^cy& ߱mU~K5iW 5wi9Tp{hHEڄ(I8:sKYI3ZQ5]̼=!tIm)W(HdUឨ L+[ڦcqSQE#"Z*OE8=4?h qCaoALR,^U #$Re-'>ߒr=:B>)/AÙ4dݜڈW@sx G)aBdà9vƼIc&6#_,0 ri[U=ov;ҫš%UM;K{r%-I.n x aNr^Y,>7P!ňxһێLOMT4 y$'p dI ,d 5 ],=hY"WN|}j.A~*4gmmA]8cviCBEN!wQ 7v~WU 1dyQD-X^&rق85|?1SKŽ!@7}?/3;&PdW_t.e Y:RB%sw5YeD4*;^IXrP={e>çM}㧙b>,zWK_x,NAd[l v cwYIXuMyX$?il36#^Q,$JF%-"PO"|)Q8+#C(H/H7yH%%Ϝ'hG; K=?5{o;/:(e-akAuAHZ~xN~3clp.XWb+2 :ZZ^uT*GD/z-?_e%d7IE iLքɷ G's"1ę"ϞPPkRg!\xgDd݈?n'7Q OS$ZÕe (ƘD`nl2Q1?U);9᳨zV7; ?)Q4JQ]ij|1',];`]:\~Q1kO󖱟9>Õ?J#a1+.ُS[=b-W%-eU+PwPO^WĆ 7 %ʾ#J3|3+Kczu:o,krShpxw($$^66Ot>5@U>Q"9>%-\2%%6HCEkmd`gЏw*`tgA>}I+4\vrL֥; QxI_4BMq;pgKxY(V)_ʵR-Ιw ﴬ«f.:ma,w2*pꗦUw+XUȸ=seUd7.@2x|{Wv|XBF\D:o3ލEUaW6r wѧ8TLwog~_yM:,b̽ pʇ_;!@1u8*~48j[6S߫֎LL; 1ww "=;zĜ!|z#WHīQBBW*BPIPAy%U >45]q$C,gUYQ5tLew~M~Tq=HիɲN=S\:cz C0 cbRdfnnϿ O}7 0_s H -/^m;x6N9{n]LxRB'nQ8c=C̖.Ymn 2++n!PC_KƒFFQ7cMW):Ps旵_Cy8>V $:􍠊1[_h%?W^ҿm֛u]UeK&yCZ)Wuq`A%Eevܸ|CbW/(q\CO/uY]M"'IW,z]4̘bvCVK.hRXK3i?\vvwirÞ̴BULmelLY)o`$&3/7-val̡jiYZ ~p꾃uaĂ+')Y8b"_T^/yYu.yӥ4aL1<؊QU(W O.}kgxO,vGX,/np\~ bœ2V)Vxɦ:qp?JK o{/Ή;Oՠ 49*72Dmps*ɢ~R, 3SAcl,,qt2)W,+ws  V-lwuPLO3vfbγ|VӴI=c5d3fGC ać)8r::^=B7Z8]7_ݯ%4MnLrS#!&3r,V^vdGNˍ9`(aŬec˰Cyfޭ֭k^7%W }ab}[17 G?2˻ȍI,XTEJ2SQ,"b{ρUHM⨴lu-&$e8a 2:( KVF'7j{ 3t%Cl1P|i^ȭ{Ҷ4u%{3D6 iwpș$æSP9dpQ[_TmW>뺯dEo6m*{4~L&VEB&NɊϦ{} ! UakN^om(KvL]ŝGOQ$qz}>NjF{&M6\>d6UnTo\4=KBFTzjelXNnq[H-  +kN  :>7纆˜6DʺHiD$8"Uc^3%O(XXG[AO'lxa sO#dYoT_;˧9^RsH˄uߖPO.WKb@y[Xr9H-4&iFvikΪadi 4G|8Ib17&.0*ER-#RQ>C?*HV׹Iu˓ư`( P$- t2 _mJ [cc\ דt)bHry(_H{Z :2ud◵ߙpiڂ*#z/Բvq7rr+b;(P #>5x ;JoU_4 u%qf-qNb6 ]9gk[غgcۦk i#릦,X9띰zHHө,se(uUѸ|՚I"T&XeGV|ݭRtP9llGlB#~ɯ+<=㘍0oM% *CFt(`feb No7" &qhtR Q1zf'.w;2K:udd^Xh.VN0܀4utJΩpz,^=˪4i\]GI Ï|`ZJ9iwLkAƆ7aނWr?ݣMΨB SQA^ѩˉ4cNq3G?\uuOE@r=o{mz߆]7K Vdl=*" [, y|&0՗'d/Oyz%,4LZSka`HP#lgA 2o8EfY |2w M2 OfCYWedȭ14~b;d]]HPdgmCj oS%16MNTΨ`lb}ɓV^i8`eV_ ZfWh\T7R\aMqgH2ZuʄÊ@kmۆ*WPreO6Uoc6#co*fl9=ĔOtOAa KMә54%fYՏ~f3Hf&n0b$%1$OǢdj ۙآ]d~*맖u9>5<#;dx8kRx/BԃS>̓J* ??%ߧXǻ=Z4TEnǂAݎK'# ;-Y[DZ˻9fdq|Lصٯ,f"m]Qx!X"s0R5ܗ((SvgM.󛀥*)T&UN"Q"HN6 25i2D+oSzZC戍`hpƛD&iCbʮcZAKAVUZ|u a y֏T9; u1fyVl߲~ރ/6NK\.x>b)oު6+%Wت@]Ջ9@#7K&+sE*];[S7j`IYdc ]TSw1Mڮ>^+V7[7݋ܙyf{U>v0 9]eY'9ק^Weu+!=PF1?a پlW?PuH>k0 s K>b&@kj3I#N)z<aN'QU-*F'F$M4/yN|irIhXXTw8-鷊GG3|Η4ܺ"+uV~rr7% IkUMΘ*Ża5,HwdDnޕ5.aakڎzfe^uL2)D$c.}8QT؉Yyd/О~@ҿ*9Hr\.*=Zhn/76R(1ݎʺKwtTBD d/JJ햅% L7^ zu7y%=j]F$I{hC6{O}v—}6=kK}IbeQX^XRY A }we{U/)NkQTYx[fRm89\dGxg}D94I+N|aJTq;ٵ_F*~%t'^޾㿻 »$TytD;&8$NR,NX嬼iz)"%'KQW:{X 殐J^z0Q-a]BGiKv_CA&&b=똯x<.-N0 9{쟣a|:)Jx4s+1yWT~#(vu[tTj8ޞW[bx)U, JvIToܘ&Ӛа;5sbȎҞ^an3~;qyʚYK[OWn LѤxJ>}öZ 80a Rk%F,?$l>fHe~M |-" 39{7\FP{otX p""QL,ar&md!.j}é"jhOuY{;yƐjM:S" LckL)XSt-k] Ԣ^J{O2pNռ uXZLX3e+&&<B:`^}[.*yu[BUg>Jn^ɷ&b`;7+z],BQIwFOޮ.4۽&hG_(]xzApإc,xeѮQ|xqU1ɋ!%yb5ƨ`HPM@2wMzssەF= !f5y16od4 .k.h2( "0qq?>?|ya_ۨ[]㶎56M(V ^Q(E ExX&%ƚ;KJ,kO>it#S^\XnAy[TY:EFk,L#7L?F-#0dl$>HJ~ڰ=QMW7: I̡4/n(t0GRQ I:E'n5[V[xÜ7m~ϲb0<ʤX\?gV7eSJ2*i^0:xiO4;b{~/ua0ig̣3Gp'-/>L*8i`)TP9g[eFn4[;^2-y|-D6!̼Yz^xh *lϣq?/̫40S8qLIˑ YQTr*4cE~ƷUW"m.ErK$dIKNVCO^y?Sey3g␪;pv"]b@[{w I<)թmIx،ɜ(cXȸ5W҂#Q:mO]^MmJܪp(JNуՎ<"9`-5Ǘ'BwY?Mi^4N-ل6I( qАR]g9P;R$@gh{"uq~*Y$B0ΎsvaY8G4{ "G)T#H]btSC'q eo)b/RM\:qeII1IE2z_au@I2G{Iw(?߶+J(vnyD/KR&ޭR"b+;p8*/ ׋`xUUoSl _W,]ja]ET\ֶ r8wxUSOS\M89zg(G110NJŸ0c!YFe0wt4Ϊ 7 uEUSp:p@rrcyWTNŵ˪\4EcԃG%!%D.?ODa-'}Z,YO-5zU]U}=l Kr)5ɋC1gvܐ&f>6m2cZhzoCXJuB]rkB\-i]/_ +Xb` Y  lcrèUf,_1h&ѤڄʰiECբ}ghc%V +`bʜKU2\u ueu-`p5eL, /CU| '/ YJ;c;)BsIJ"\),w7HxZy W{&k/ϳu wF.,]pCEP!rcmQ="~xa҅UJwR!%)։da},y^VbD.+^<Sw^4[䉟Ly4M43=h/rõ ΢ 75_~ O)cGoGސН+UGb.B1!\ &"F 2J~$ BE&( Hc-T27mں&]h&T+9e%,wh-JW] M^EVpϋY^]y"#~CfkدIfuQx*+ @^BP"IWu]/4µcPs+wj]nJkd5FqM䤊G[ d!b!GT!>;< Y~Bv4i Uj@[HEE*:M FZg*S ŪqrŐ3nITӓ :qٛcV?l[i_-Y9 +DXXG*W~ފo Br @3tSK:F|+W Tĥ_n'G.~6WwY111FU[L)JGB2* ً3&*8! Xҽ&&aK,&6sVf( Ok]yy3;Pxf %Qdlk&콯miˮ+ogTP#[)$d QY˫ $B(Ir-fXJiY~^m,)oھ-)Řb/V:%6۲!qP#KJ>ƅTj=wa"M-N Єo,Atv%tt &E2YklB>ᚓi{).v^Q?,46_'y,L{Eeޡ5H-(-Y6id&z0-p.|k^ =̪bV}|58li1qrLI 8ZK Vzp l}}Gse }f:[ 1śoFhUr`T0X>ީluTq>Ex'V cPSmHa9 rh(k{lBmҗxW:1ݵg~I!`3H0>BCCaB4,+d~RBہ9oWG9V,1Yyl.{ŷl%,?p7!R$1$ eA"Q=f .lJwx^ ۣ̃.%k7W|!uҠ.&(hoQ:p#Y w.n\:9mK Cʖ"Iș4F`7%-9x& $2w|hqcN,>cBIֵIaT rYtQ":ܔ-MN|n+H-0Zs? T6,[~Q\Fɾ:Q6w]¤>R,jrvت7:3&hG įhLf:'eUM_@~f=q"X/UINٗS}[8?!)uO7H?E{͖+S,S&"d\q,EM)"]_hZ2vSY7{&oeTTsy#_*J ^Y|ņZnvW6LPK?!G*u`0CȐ.cyyS Vu yӹ>]uYʶYUon#٥Gj֍C})kk>s 6ek:~D*gGqJJŔH&1Ǫ?n';e~̓Y2c:E&Adt'TYf2RBZ. GSq =o̢{㌔Ez06a,#--K1ޯڦKzS"R[P %kS_dP$I"N65pIH1Q&ܑ?;P{+$x.h~ ~S(RMWTȘʶ_7>7ڧa4<$쏲zq'M&J1{1c(vLęKq:Qx&oIȬ,0\ hINiJaG sIά<IkFm~$(F;aW*&Eyu俣RGt١DSr=5/[`?'lc1 Ylc=׹4ϟp&<9L*8dXI>u$,TG%Ŏ2Qv_N*7l62y𢡊UmX0)H9eK.duZxY z?1D~5kוxӂi@bjI"Ùѕ|UEUf]2N mi,VG, 4d^HΪºcL8˝vr9 37&m&Ҁ#RU+>g!gB'ܞӞ 4JX90}-6>R F7dSUW%z~!s/le⌊ S 6`4rzҙMo-ߟφkYBsX5hP$آUpkX]Vd2qU4'茂aѾuE_cJ6}a>HA'-A8a jH@U$"=e7ƴԈ%*w,'oJR/]e}cFYݿ号4e,_ ' ݰz'o[oP1yxВ2D7U|\Έ] 1K^=^m(EEvTQ]jq!~B(1[LP$ɰa ԓ!!|b}e-$T*[ו b Is31*+TEtkU*j/ՋaZCBf;-s~t/zLLn] " ?ӌv `6 ?#ֆ&zήC %^5^FB%C,ߌɣjz?.O-yoJŢC қu֔UR]آ(JAV. <{tO;H&1w~g=OS:aBoY}.w$Ç&Qd:&ߧ9 {oy[5&\Waѝ[ 0@frN 7}ʼn*p5HR>ޙO`LQg ,%:U:*Q)^!E $R@;`;,-Oܺ_:Y?yZ_ՕMVgiښRZXīMzz:xrv5,h2M牌}8gv"Փm=Mb89| |a^dIaRԄ\t  E&x>;S-IdC0v s݂8n+e6GJkY\ʛ`# 0yb3|y-=94eG}XQdYbvwQ^mu V!f_MU'rCz߄!O$P[_ǯTr}3dL˲)#fC$ޢ$@ލv5-[#FV9nh4̓ٛ"આ{HmY(zMZqQls)ZIq~c=Pe;c6I2.Е0kJ)6@Τ,Fm5WzIt1! ">- 0~zhm/iZ̰h5uJnX$SFq,hcOCy k1s^мec$ J5 #`(+A$d%i@2Ră[ )ݢpTbZEhW%/BU$aC b~na '2ߗ/b&/ך>S.<=zp|\d1Kn3T9K8`Jj4'z7CA&PȵqC}qR rE<1a( w)nrnZnyaZ9ED[QLcU{R0Pɀ!NZn}WQ͏+KHLWuVɿ6i܈u:-hVϕ{F2>2`\ 菎hbI>%] +ɳ(׷kOE3.;,w2`Ht>-({956I/79<3v/">y+}m:ڎʑ9K)p #(эL#%o4\yc(wYQ%yKK% 9}1apwBXH0 ?=Vc  5*’)9Y]ME[ @W*#E厜SxX:|-_]'?j&ZKIm@̣vcI[ 1)_z@3Q#9]50t!{ R&%/j $!+V >E/aQjAoE0_/\F#bs&IEDqn]CYoMZ yg}A=*XJ6Y-Z%kr6{S87a)kYh C5ηe%7eʲL9Wao*T ecQ.˂9u+ԧkn>Mi?[6uN"jN>:9 d ߛ0ɵØ[.<^ NDZw =_/K5,ȚKCLYח&S2?Z¶{'nt/7#|;%ʺH]upg4k$AkZXh,|};X;we >i!Aao%F ] Ŏ \hR[9N ʆ(ǃ%z cvӑZfI2wCqiťdb9-ujK^_w@x5Idѵ%ԗnQ^,,텱$I^:etX=iEW~ꓤƾ+:ii2+r'mX: V #D/"q!;to)I?QC, \,+yj^* (o7` BïEԒRlj@;Yn>DqX@s圎Ѝ1ma&ʁo۲N$~Csx*ǃȐdHXq;La%m[&ѼO_fY y)#Qp&'\,rqw,B}S/i^nJD?Xޞx":8439]z_42/ۢ)ԭ* *ֱLؕ^[H E7l$X+g릜WḙHȟ)Z^"ӻcG O JY(O8W,oVԡ(6[[I> 3CuIZ/ 9 :| d(]w5,iL u)O׏X;L+O7uUOumNR1XZlɁ>bƪUd2t/}엨Qk-VUExL*p0pǍ&iw%$=-ǵ.~Tj~aaUVj#Np%œt^%Ͱ%Bi#L#_}vRT;Jp',<^IRrj;E$k:N5M$"Vؕ4_ʅ&__Y Sio-b. ;>Yw3S(dnZSG3qы4-"Ǒ1^x;߬uRhTSvk|^?G,U6IbR*qoG_66N̈@ JGVs![.~-ŘorRHOUveM꽢z{9=ѻ)aBy ='ͅ{ݖP_N("on`̛}nba [S-,h*3>6 t_ ?yp?yS ^EF (/.,IŒsv@dZ¡d)C}eU2wb SsR{;u-Jpl1c?4ͤHZ؛_+{}7FN[r~IZ ?bC(8ZH.ny^\ߔZoH.͸_JM͡] #zUS<} אGfidzh7g2Ofs[nX]e'4XGٻ٘lNNCCD8,v ;i^MW:lՓЂ |<`k]b?/S_.Fw-~ _WY J)Q+՟pO>Rl\:wL~D#P]3) AeǑc;p GjY[Cwy\tu`TY~IMUS M*Q(C+)ps:W=@ !6NGN@J~Uo2}*6^׃?KRswAU #NS+Ñ%$3?l4k7[(^MuY}UׯmxF2noϫ !gm2>>Luwb*Td '/NĒَU/o7'̬+w {%ʬk 2/l?L "8;}NMY}§%U0v[SʮYԢ+l0K]s؅~͓ݖ׶@>CP % ġٍL^ @y-_U\5{dfyJRAg5չX9: Z7WAuо+ĝ ;= Oy+%OST< qS}+؅763Y@R7"rbsFѽeaYW L^M)>-0͠|LPgVjqS[1c|zTakkӥ:1w=y^rB .a*yb/<غpF|U4.ա;͂/VI(,mՓ[$!b.#boA_N,!續p$pJqp:8/b[Ϻ\G e?WN6tWI~W+e2yJěB1Uy뉷2AW8r Z$/֓g:~mo Ț&MW1~1mBBuv02)>c Ɛ1Cŕ4p纅'mmT|*dC$ɲ˅M9toUCb!\ "b|0en(1`d6IIFӎ a2Pspa3wuS2v}Q+9o& IEW a^WR،A O?s7Y~n IzJS5-8)ODԖ^1au)3y]GKB$q-n U5m$!M Sm~&FRVi8no¤T~GTJm&Ъ~b544,Qizc0Khlܶd A}l2\v5*T-z7yD/~iK֫'+5yyvsJݗ˛6IHymzlj` cgM+="G&;B};j(l04cJ4rx~b6;c*%4|j?yݘG)m ^)=6i3HYo@%V $%ɶ5Sxf-C0Td/g>} *Q p^YP/DΕOh Ir6qp>0~v-**{o _7HuÆeو^5C)0ڮ\zs&M8'(lPտzumڲƕ<&3JKjE P(#>|9z2J~G퉠' W6Z&7I8&j4I=#jZ o>Z?7Gu]%Ve1*Qr\d!^x@0>3QupS>X[ue !Rцj9u^[XXG4= HG )KRU,LnlCS: pþB&;:0q 2QN؟vT.4#nKG7u77ߴH]m ٟZ8RZ\S]bj* %Z|,AAO%y,+Æڗ*څju.fRXaH: btZ.J,:#8T sqrWZM! )o/H ULy6wv#}K?Yb^XDBЦ|PYRڐLmٕ終FKf\xp_)#` a"o^Kфuh%~XJ{9%Ce& YVu_-M|^mAQ@I;ɺZi N.}cް#k|?¶V7| C.Hݞ S܃md]4] 4٨͗)80R_l: M${/Q"< wiʤrj+Κ4M^3+tB ?}PHm{Lܙ6'a6 vp@t{?U7BWN(0EJ#UAUJ2F5 o[MCCcdj殫D.B@ˏj^&ȕ)Knɝ+]aU9Gvpe )j Z {ÙBrjYB.c&vN,4Z9&jÄv,LD1HxDdUS_gU2j16taø:4SSx8J;_n|03L˅}I aؾVYJjkwNM0fQQUDVu|ەfyGLI80䦍>uuSn$ͮeu};c|!,\<"U:ʺTHA`2D'\V|l@e7#{;j&ˉLU]>Z;K+<@byǧ0+>K)~(2뜋?.M%ͱܰ]'3Rg, 9;[r/hНL$g&pp%;Cf^DFf5F&/nd ],b픃6RJ+tq9p /3%L@=[FOn:+#jJEqe:}ɂf G@;Wq? n*e{S՚3}!d8VQ]DM((`8Ne1b;VyO/%YtI2UFiYGWX%Jo1XP k rD:}hՈWI0 o"+")HfrM(1ըG2BX.T,!ppݞnUN*9"On|iPPo2B~miIRteG%dRuq³ rԈϘ.Бmkc w"[O8Jψf$3-9 .I0IrCom3LRxMCgMC/{3V+M3˾hJb5ҡz&0DN硑 YKy]H!'@ttP?àS.&{4pŶRjWQa3\Ix=P_u[(Ljk[;<X]IY6Lq]J)1*vqzvs>AaKgyۣODeC|gWt.$2k͉?\O}9x{Ƶs D1 U˚CU EʷWPduҲr9KYE>8fa.b!/ɦ.CgZ-LTʋ/4RgE;HaP? x-Tr2!PAAX@<==/ks<f&YoRwd[\&R&bn:]*0D"ŗ%;$Np6&y% *ESTKoʬ$wڴt8&]mS IIf`W:ˣu(nhKnz12~.m3kLJs{4G[u]>H,6<^]5•n]I/mߐyb(aԥ.5<嗲=|Yܹ;_^w(4H؆y5ƌq.4T*?0%o||C_CC}ȭWA$6Ӱ]RJc{%ou}A42}QáSx D$5Ba&_N@ݳk~Guu(tPW/5MܕkAFMUSA xٲyO r%ƋYy_o-czh|%ֲ ;]| e49<{V\<qş^$=0cV'A}W|6i%:YE' E+1 2]ʩp'<.9HrU&b8N)Tj_4N^L]16u JMc)ta‚*ݳ!Iߺ>P(m$h@&CBhtH1!gU~¼X.!!^w_VO|EP[},YQSdu;H:UZ-Tftʎn~>~:!ܴ4ziPQ 5ռ8WS$$? +ϼ XlQ|w~z#ey𓘦sx]7D<ԔO_*JGd {u;F4ezQ+oz}zԭx0;ڲ?2w@`Mdz\}tKI KԈ{99C-Te3\A N[GGKX.z㩷whCbgB/W-$f6e ۱_$caH9`hA|TUz&1We<9krJ`_ˌ|"2EhcN%P)jrS𝯟{ENu`6QƎ&5aaÎu-B}nR&.%!&\1T'ϑm_.*ˢp^m,)'&YU~YWu =Cv>w TW?e9]ô ;t WۛtL>bt-ME.${8{> ]ДLM\WcLӫj7m]5!;1]Gҳގ e7 P"j5uF c1;={ÐWՋZDf)H]F\lG P=7$ hVecʞ~%(JX|;LiWU:zF𲗷aRzFxsVOj^T]<-iVaґ] ϗY\`(7sUW2s̫Tr^ӣG^U7`!\EG1*jd|:cx%?fW8z߾]4ur7K|uV 裰`S\r0•^9K܅KI6Vc3|/B=B;;2w!BpW2ӠZ1ŏhȱS޼.؝C7Fy'SBO O䠂. kELv~pNཉ;Pef(;|`ߧmZGm%:FJ.\y70i~A|siY M-7Lf]Q5w a^Z) @Lb3ٌ2Z;S񟮞jʶjRU2UV!9 Y32*b(kph!7p/eW՛qkS%?l dOsK`H.ZE1Α0`eVdx P+@&nrIRŖXXyMx _-[+iyYiPZViBo Ka M$!A8* q\-]6`~Pm>[/ƴK gdSKD~n..rJo+k eH%Q˝Xs>v2t-bDUq'AԑJ`#]OfׁKW:z,9ۄ})~R]Z"^PZe8Z+(&t+B1qJ{X~)/٨&K]`Diyt}Hc;pTz$1Cۥδ0G EmzG5Jx~}+E yv,K_mLy,:ҵhCd"sPAE5EP+ޏ-2Y\, C#w=- W"/m\U7Rc1kȫ 6e0Ei;76y[[Kp ??)pWi]Y'0|Nb,9g؍)qq u%3HyZBtwۄc& MؒmEX2 vN8e^f? rk_.lg"3rKKK+E.m}cPV 5NKs+8+- oƼi`E0d;mg> mf/k/+yCdf"E e_ԅr` RZtH FQ͠R+t_b旹V]S'f)U^֋d=5^/Fq }!g:e-]WQPf u. Q7b,dѢnEP0Z%`t^GLb /M~-0qTUYȰ>|Xeq*ZLA Wh;b6'vA?xb^{j_#3aQ:s-~^}7=} ZʬS59db HIƊ_١L)+__?sUsd©Lp|HTR`o;cT|ILRK,sp{v Q񾃼8*C0EQEMqi,׎ YzH'+H *QEf%(<(*q2kf݂7nεe{¥6L6Ti& Y K {pCi b?aWZºe8)9bUW",osZ-8Xhyw#$.%y~eR%`<84[aX*ijIyEV֡QګW+lQwrL@/-, ,ܹH'n{3ֈy\/2!M6-<9ڣqCXu,\̛U.*W\wW8.J:߀#f:^DgxLR 1}f"CӘɥU-D *8[%T6r#vذ:*{-oyß?[,G5߄\k]6FOJ~pvqoB)Ḳi?ײ4]g\>NzP'1mG.v7Fj1SrǛq`/c^yLd?}aqx @CTq Oav͡qCRx%A' > \8xӺyXu +0ό)k2\-+5rnWZaV7;`bq-B¦տGA~en(~0,A~3C?#y qX!#.Our{' ^!#*>LT J`XkJ -p8f팷)sn]IpEԈtd9u}v]ܔwEM8.fa? dac^륒YugEL^ꑯquZKѮt]rHUp'ڤ|#pd{V/+f.-}4,1o -r_*~ͩEʾ)b=!@nQ%?h^t 7 aȆy^^m|&- CЈep0CRꊅ;ŌL,BD@ˤdj:ENedb؎͸q+SyBym '*\+cCP8/d#VG70MM*6c3ewU)/3hm}~g,=F}2˷paxḇ=gk9ֶIB%OJi4(;1z(O\.-FyrLU;l40KP?߲NK8ۓ]E՛$zI.U%8 R0A+Fnw7\k:qdgE$C,lɡ+.:F+"TEhŰ;{zsW;8gy}ƚb}znLAliGS֔hdC@jj}DŽm u_J/KH'6YR7o.$! Cr}b5kEKW/lЈņRe+D,K wEJ?]"Q/S^p X~iGVWH(\: Zԡ+Mzp:W6^w/Q Z:Ӵ/LM#4ׄÅHIub>D)!A#RZ=̏OYOX"c J1nJ6&} $٬qb<ϙ#]K،&l3$ujPlnh8F,cd2I|EضHCތ-4EFlw8?nv}vˀO:d2ZI|)߃3p9o2{(܁F@p\ĭ7`,dv0*x^Qi"z3=|J&0ΗK1EfNn3oqE8gom`y )K4ace pae&tY(OR LN>- 1 cK.jzQST]ʗ&+.5d5K啌1I{ceVP Ea=b>euֽ6s]*MWUmr ˾n:(Tq@)Ii섺w}TZk:viB -:zDS[jZ -kwByz4>_֕s{RUB|ƾj݂*ʢIZ&"TiG/n;:A?F/?.`( Q40?DV/~m7u 8qsC- B˶UVR{9xnZlvq2Fs8^8(yRHzMရ{mV&+knPTHxBkV/.ܽ]enO/ yuzoØϯ&LR^>Q\!TS! _Dw_x/r3^#B) :Oy:7/8Z|g'7 /oLRyqgN*na輸yqGJ⻿ sκEol%P6\?tO ⾒5G\RTpX{9uD8s 9=qo "~WPxf[HjED9̃2l2RM-5Mk*#ܩ@J1Ь#g܏Ctދ5T)6 up ktwC,UQ]3/dX09n.V ].Jdis*|mb4_42Yjq{`O<7khn̄Βi2U9 c/ ]ϗKPxM~؊m;2'FJp;jeᇟduEX2+0i(R+gdɌGցh_i ~e)xaPz;c UrRhD,ٳ̊DrgZIp-iD*$ }JNoKh$l:Ob= g>G z qؓQ`S5)7Sӵ,P!>ha^I-Jq7nY&I gj2 b-.|1G8L<(`Neg徾ܼfcJ3B)2V5WUEBY}dPM/,YMq`5g%YT}:6 2& x Βv6l$BCx#>EqIceMtM̋N}^|;fnxwP:j(IXQT#;C"5%q {<|-|R26]!нԦn䴵BmIq]Cz*^61]UP܅#(\7Sckx%IyFwy͙߄5}5'塶X+̐#|*H$vrY@rRXѴu׷uFF`EK{1d]R.9Jød1BT$0GZ "&1> skLwxA FMj`D%ZDGr{"*TM+Êd4zx2M@w /j}v.OZ= o}=i~c1 G c.mYߚ>T.)L "Hbc9"IXfNwڂ/G2y0׵}~HF$.kyY h 'F}=V~±R)R\& ~"2g>U{H&"юef$+L^n*Rw K:83aܲl\ g w`[i̘q~-b%.]mW&Y\ /=UC(jQxM/ٚ։O,X)Fp ߲nԕJTaYMQ/GT&/ #n,(.01]ObMlӵLalXynm.|{׿ZGH( ٚ>F҈9Ն(+e?v\LRKwB]S Dtb)16YDJOH{ Y|ai7*us7 rPM]M:tajbV$>!z>na(:^]J`B?2!WϒXa1>KIMFWQ4〪ٺak65o)G1Z% \ߴb"h-Rd}{(ܪGX@[uRv[S;}]jdOg)Z6@K/y|5YavRR _>m|':F L;*}1ɂjtX풹ۅNJ C]͑E~L6Ot%rJyW"t.EmS"C2LNY(~cՒS>s??ַ?\=`=bh\Qi(!UC]vN)=,8/ۈ ۜ!r6/j]kPuS  IH.#F(|0[Ae-uLN(Y1s(c#ͻIp[M}d{AĄǣ  )b0(z)6{2?oRÅk ΕTS&bRK~*K+M064wJ !i[鿉sOoEݖk|GÅ/ښ6I$M 23Pp>V@a*, j1\X_EUDÑwg]nu6aӥ߄ҥ Ⱥ# %/ STCUx#)[o \ʉmD+eln(/zX6>/ZN#M&܈(ޖ4M>k ϩ ~qة}n$x[v-^SꜬd*I~eu\d&wӀ(W"N̡(bt4 'sIiuϺ˵d/ ygeϘJ-D;@}`Bo n`)'`y/@|K M"IEEv|^b ̸q!*0nC-z^J%NZ#Ջ jqs#WJx DHWE^2@&* vEw\һt7s[ |i?O!{[It[Yt]hDhQђ _Tu1A&f[0C:%P ߍU7~ஈ(;P}PvD[QdAM`P9r5'ۛ]޸‡?v/ ^{"ԙ)1JuXXed){<HgWiPJ?Xl`|BV V)/t5o(? !Sb MʿR焏Mu8$l]Ʃ)P\4m X)8C@4]XX6ۏW(XV$K̿mqpL2r3&و%_g}T[!3#;kQY9IKp [ƯK]"IkXF"oI˩xcH`GEAj- jo5jfX#Ň΃[;TR [=1m) bybC]&Xؼzq%c7>"_wmׅUMԵBrSM{ Deȿ`xWO>h1=#"rpw{u~E=ImPY*La]x,TG=K_4e%GZ(_ЋtEҎ]ǻ0`Rz;&ۛ[x2y{L!JϓC&-ޡaz5ꪪΒx3D)|3G[S,-0KHydɉ͓C_;4bT "mDIM>Al[ߠl3or&ES$ʹgm[dԴ[ 4L];rvэƊ,1#<՛}R-)J&/۾r ŨU6G|W\p|ݿwZSZgяzjC?H Bwx1w6"c\znJ2BR7}xO!aRx8Xw%fC4Q^NU[(GST416ߨ5&VVpB^^|IN u~L7eD)TYKrw'kثu]֙:II t=dQM$PrSb6H%@>r Al: `B`p}x"d u s}Z$fBáMv->P<^]nIVBء6ͳ̨ aץ}>5 r$0gxz/{bQkZsJ,ʰ5*rb}ggR*vԅ.<1bhRSbYf"!ˍ١j0Ɂqw]WRpJ*'fV+[&$˃gn=Y|ΦqΌI~5d/¹5ƒ@&C9ṲJGNGřXsvT)mL ^IYo;lNS8!=z䊕vBì ɊXG-%:1{ܝ1ZnޟqkD)X%2f՝N `1M曨<^V8;YkxޜdxIPqMHyE\c'/ d:,a^7eW%1+teI &Vf+NF Vߑ_gigÊ}ɛzy> \'5"Kik#[,pٟd'axWr+3o0i+<7^߄.'2Œ7نWóշ q7fDدbd)=qF֟ӚBXvOWfgP4xԄbs/`L ( ;b';^ow+9SdesɗcitNEe}#tN`yAXl@&\'p}aEI8xX4]"tghǰ+[V}\*Ry|mb">GBvxr(päAVsS҄zU@ЩU ш2s:'f kWFɓ;]ftU) t jZ9@b;].OT`/oQ>_1a*~)ܓr8Zap,ŏ^`%J-^؛ԅêyg[_Wѵc6 %KS<,N> O-̼# ׇÏO֮[18Q~maZTLnV?󷏔@ { V]=70;b * t@k=cNd/+ 'v ;0F[;3Mm 905Y-Xj%n /s۹dh\ɨW^t۰.Q:ʦP, qZaZ:^J½t:{RY~ 욶.F;kJ 81vA UuW)%aj'^=#~qXn¶LwVQjpdFC*~/PEW 넕^AcWǞ;c&c^1& ״9+v(NV٭VrGS}c S؛%"Uӵd+`h>*Knʅmsq8픝UơAKL4x*B!.^RRhZ>Lݙ_W-tRfDp*mV:x02~I674ֶNoߏrx޳Ê"˫bPwE 2AXd;(1Z0Cw<49o<'yu؆PSھ6vAa@fGh IIDAvXl3*/I}VuZK66@.2ᲈb^rK{)\[}äZPx@!Ƽ7/_\8nj6UڦƎBӐ WJ8 ;$C lqjN +kг?j-g~"u0MXͬL Y] < /{/`$爕})d7nӳ,ɟe݆$9t7l*7y j o-tz{HZ gk\؈G z°|i*cE=*.PRoKJܶ^7.#t!Bc!ʽ_=aUZFkZ̻xQG\T\Eo '̌otIӕvJ0 &B销,aOkeޞnc1kʺJbdyt19!o։.>"J.'SxDϟn{AU\(T3O:oS&mcѫ ΊʩS}8Ĉ0rDF~~49ceU'iJqCEhXz,"Fa׫ZtWΒoyU0-Zh[2UZc<<^''|3p0,ʛ [rW1Y_6xxׁ c$x% + . q<_:oVy&%ќ(ep+i\ 3aFh._XZzby {a' ft;SE ='yCqy2ԎoxA) / )j[m=.m7ǔr1tBֽ2 Qie5Lw ,D7f9>;ѹb튌DP4_&/]^ih](. e6L=_>3^co'1]4Iow& Z>dkx²A\3gR0g}*!ծ6(gUpilҴ^oJ]θ4}Tt*@x1VEq wiT&,av.-{j*yR}ӿWחPMfRUg0:ྈwe!*[f(ɿͺ0k|_ 2YMz\Q cRG\X;lv^"霶_l{orF)XdeUb(eaeZw9aBYHL=XA%4F^o*Kҩ%d]WUsUə!N J Sx&8Լp?wJ%wB^ⵆkga8vtg3 0~.>TIB9MVuqbLjX!~6|#cta:?mT,0^>ͫwfl DɪՈ?t|OL\WFT|iiޚtRT) F)Nցt×J2+*SvW}N}Q^m؎8XO %r/t{--Zoo`?tsfnP4PFD*Mv|(9kcFЃeE R;X#d,;˪S07ы#q4غ}8HI3S>ycu4BgHِ!K2@:顟d(:Us)XӴI%Y a1ާ5UIR8[QV]"Ov%G2d:_^ˬ>d׵W?zȨVz WimZk\C}z 9aPstza[eX $Xm;;L 9< _8|0sz?Zp&K"󄮲R ᆱk bjE5a0g; 8%ϯPnYTC=Lhp?qm`_Gseؒ,+!khG-̱BUvr(?0+2Gj78IkeY\()p))4ͳQe95X׺iV\ƬbJj݁-yM9/?8q kQC,ͪᏬ!Ġ8Vk4 R=;\QőIdh- WIJd1F<%6BQIf N NX.hYyD= ͱͅgdowc*.4ɩ1yoȦ,<7V :ʂ )T+,lʔ\̾?5ytbj~g7Ok(1ZOJ"jWʩ-1o)'q;cxw^$RI){" rÒ=Wfփ'8AγD}lTkx8h{C&{IfuSuc2 xm׉LI(IakW?ag{]Վ{??1X SWYTQSl@w鴬8NT crGH 1? 9 r?)9*o7,n63cJ.##Wf]A1UJ~XpCNА C#ťh,辬d WcVʗ/qN39=x,= E0:ƴ]JPQ2 }BS10-1嵨d`io 9D;yps/qldODWEirk]tI:S. wlE ,kV _qd(/NU0mWT lG{| wwj'\^XvPLFTA*rPV_B!O{wlP uWhFQHfBQu+@,1ݫ$iﺲ!.K`Wzah, d+w`c zyM__oےd=b*MFBº\D<]fLxﻇ_.%$GiR\5J| vWl[i1ߴGONiOc`eB$nBGHS䪦!#5b"#dZ60Uo)=j~$lo{jʀ1ʻH)!+zb]Gޛsvi=N+81@g_AKa仄BXcP%g-(ٌ/[e.|GB 'W#+0yk8aƿUޮtEYaE'@IMf-CCY)s]3~/_F{C 1zBIN nC} A0H'e}JL[g?R; T8L晽^vA}8Bn,cF38>(/[`\^e|;NB0޶^kGdnK[TX8"Yܨ&&4J4)et[/@06O &;e |2ZTaI zȊlieow sq*TfeG))=I#\D}sN~gh>kkQI29:j&e'#ŞRCx`*ݨoM);QfQ8G3pA)y4j~hW3#[hϗ1|BNGC,Wγ%Iƈ"ĺ:>NQ#ƌw""sr?%˰fgJTU b1{Pa: T"QOqI02 m($#Yp*|G;Mvrn9;Ɣh̊*#oQ|tF^}q|b12BN :oTM2eI43]ዒ)􂮦/K]/V݁(5ѳ]!@͐bBnpcpKDfD!4K(/Eަk5qfYkŞMApQq0  ]zȤdM :6` >)݋w?Ugv#0H,n:d2s~}!uȄaxMD6ߌZw1SOa[bZsǑa,de%mz)8N(|C١ug f ڍ0#v7\7iY$HB(w`%dE6Ś>%b"#5Hr#8|l׽^y>_xN"un XHﰫ؍lt„vٿP{*v*|T$wuud!hٷj FQ-L81dd{Ϯ |.g&(D8 Ι DriRw䯿"uD歳Jd}hvEƘUBB/Fɗʶ>/$d+4Ŝ{JZvMyI ]EwyR ƭ.|~Xp ߻SP"p({ 5F's[u[J:AHθBLДM:?Cp)6Ӵ9m~+zDkSOp_yR&zTH)#$S05&yo;.;4bٛJfr7rM\s)3EXU:_qxjDPz͏{yxꤜ8 %' 2!WR$1r{cWh/'/Q6̒CM4BK![ xpo7 1NEm_ Rߗh$J"} a1>P!ƲKIig2,5/鮣&^s RV^b9]k;&O|gkʹ+}x5r:6t5ܧ@GbzAo!!`xlZ`Z+DtLyc>.+;l\Ws{r M5p'/%}Ma $2IC߲J0RH&P ! Upⷆ Cxm(,b%˓ͧ_oz1Y"&Y+IVE1—-%&rim|d⣅,֍.#EL5Ӯ=:~&ՔVQeaA/^Y Ys0B\|O/r7ޟzDՙg k({߇Wy$\{ʼ%$"iSŘyh_֨K|mͼ|Îљ2iH LW6-hP,7dmvEEd gkbXlq|Vac1h̟旿(?'ڌYגWYY&-B3kΦ0;yE{ Wa8F8,y5"t0 ="W˸ CA}1HԂH#=7ǐME(,'QC#6/@ށMraD0%^eWojrO5bb3f~.FW8q+ʦ,䖜}sOF%tn*ha ,VxB cqRN"|N7rKߎU,ʯ]))i4WC.Jx8~p:`d@qomƫ;_)~csmBp\$FnšpUYH h06j[=1!s9]աTEzٺt)un @,5jeD p)c6TN\͟aiMbc< eXM@w$ T T w[<{n>N3MF~E]pq 8kaFɵ&FCvoO,69)w_FJ:Sv1{mN'~8hvƔr98}Zcvn^va"1aRjLVEXYC`afQK W'`_po yRMT=tcUiɞLCZȑlfREn(+9/hp3pVŲs>KI&%˵{qq*2˄9?*L+4en:~eI^jݦ4GLiENs.$"C=GJLە4S zGxfbfƺ=&ykņ+"^Gkɢ\ExՁ`19=4J`EV,}^<@,P sPI?3irF)IVĈ7q>u|'b@`œLܵ~y01"iAWgxݟ}FWhy?/βCʷj*J@0;ޥhWQa: &IJ`[.0c봰ηuG /œݴb6Lc)^@̂$ "a)yޗM2d pLnQu-,'\طuW0cn_v:hGW{7k(L(=~˓Yr[6p5Czޤ]VM݂ECf$k&q^W4| X\vaDO]ڛ\5Uˈ۵$䚋D#աD,FB^=-վaaey_hk}:2K^Y\7+&i@F,kʣJa, 1kK=HqIv}f+cm {E(ep;fLn4Lp_&bpZzk١etI MuYޡraz̢)m7sY&s1,V'G mI61C$$= `pᮊES6Oc3=s?$%^g}sO Q_U2դسU>ƂW8 '@vngKburѶ+<" LT ,ak 鐠*M>uuzgU7zZm]MG_~$B"Y2))kȋ9p~L&2 Vd'ũUUNp̤֐ÛZBKI{ٓ{ R-}ڎ)@8X@,ޫ8 cEx`tD&yZ+#.gE[1{ +y=o0 Qt5DP("1C=n B0 :>'}K\-0|͌pγ ʲ잮ˆ$ə2bn_z_f1ZEOfe1b#oq O@͢5tI^ a&kB}lL`邈RW)8eU)U1.C0m 1^0?k,oۿڙ'3elCq*^\2wsŋ\GM5 d <'\&Bǩ,4HV'(~)zhûcGa61nw",ar+,e$*L zg)Y¹%ڂB>吔ma$Ok{~ҪA\*&0eb# ]L#*N.Fn\n&NPlљgHҦDjy#2ajTYF" qF „V >\(;v9T8lUɝUjfb"1J% i% \u:^hl[h/&pbHA]iWu#t>|OI5)Ԩls>RUTU^#aꚴIgTcFA~J|MUwF AWS&ҙnbModx:g!="#Xr+%O/73%7FZ5(B 67l^i4%'%.b(* p$q7xNTͼOl?D7mk-KpBun$mk9fژ'(|y Zp d +*1؛ۚ~PGdfPscڈai)9IŊrF X H'%^(y\$/թ;\Cg(x>α*kY]on+RSZKS5Pd5S2&R9e O[+}z;LĘ녯/Tߵ_7cE&YZiP0^Ճ,urdFI~υ9"|.o){LSeж}]PPVR1Dfq./'/u#3T;~؈γ<E,$\(Vwm>I #G:f' Ǝv!mYUI+H J(ꮡ?h!om xmeZ!PGrݚ%m>~>758#ܡ / Ue ]Xh]!PY,%B#]Gu.rIDiHOpii7UY/1R9Wo;qNݐBb9N}>19q~~ux^`w/'WޏO1 <=o6odHS*"on06v8*s AƜ2`+hA;Wν/X[]]&UfoF:Y;B3LD>Ziz6穚 Y/RjGV_؉'>qm7[ƕ{ݶEEIT̕Y~PK<9ߟvגmJ$"]iGMC,$Y)lr5yŶDž?1|b3 ʰGQe߼Dz&$6$eER*DDxlzа<}/^%YCP78|>~d]K\"#뺊h .MaPcŮ^$h$ i S畈Ԟze]U'SrVdc#Hy@bYrp6OWs#vL߶;fR> M!od^*Hqd3GŹnɄf#xw<^RU4~3iv.᜺|+n.z:8 'C:ZWtQ+%c4J0g\&VP"e0j6I`[.ʪ;һWcv4@ʙ/db9uօ qՍ7eO˛}?~?[0 +tukK|-!>RSwD&')LZMMNkQK)%NKf_8axCHtͼ0I”[ǩ&n=??c(l˙ mv֥<ے F2& `D'+z40G6 ?:5PGv<;gkS㘍Ols2YMG(QTOGH}_r] ==9 Aal1uZWKf#cjO4WN$UX7xER0i׮vUa1RX5"SH);Laxrn%LWx/_Yz;1^Q5YS(P8L\ZWH\h=ȈDk9HGOiܢ̓% ;ҺYNQqB>΃hCәGնGk~LV)NzR芲+ O1 lUnynDtc|w)Yz{(:S8Svjݵ{%UADi &$x, :(x#' 7MAF{I I^u`!6FGS ,p;.Ax(wN1|&[xXY?iE}Q4& (,y_4~mY!!u'gaouYzM'Cj%3fe(2 %@%啐ULm&1M 7._։j゚jwN ?<ϋ2a݆X sGvx]]-G&=Z er$\IQU[Ky5!J7S6[BW@=2"Wh7 E1XHy̓yA;b4^,ԒI'Q,үEa4T#4 $ $4c@7Quy.MC}a .(5~TPIfX^Z'Ґ 躳"p'IJ[KGAYr:=iۋBEO^S*hT+{Ow.1 /v[{&N v(x$;.f)UGlˁgoDCi|K~[hڇ"z\o]~ߞ<)~d1t&WuR|Od4.67"Al+&bEI, Cep$J rr8_$َsݲ$YQӤd6!"V0Bh"R%XbWc2C?c({~??M~43U5T~ izou_c&NeC2+MKVQI%f[Ng:w#2k],F|/!?ބ<`[zWtN"r)\ȇ__Ta@\ :A< ̴PQ5K^Կ̏?lWa0de`yEC69.!<5 &݃~(>MzũYM/rLsf[h8LͪʻS*SQjx顤lP.ʩC}9ɪy[IyBelaw!q2I:Ī2% Xwbc[M\M=`2,&lY3LPճKWx[PZR8VDw`Nd2*}GqMx6XNr-"^x,Ӓܪ&EXfmj%y.|$10?`*sz7?%v!=K]~]z bӅZ1B,xriEȺC+qe39[\CÏh)ORL)iI;ɦs$Tp1h;ATx!`! #yw:Bxu#R.i?W]wKy "{K_W4:6tJͭm-]aa--d7,SK\?;Q]v$0C3Յ X!n"^@GΩi.|ѯ5/`){uӘ&ĚLcpC5߯Wk :bZ:j7j_0Ą RiОXfdlk<[Y/n /WGNrL|2B3١ 1yWfiOXJa R* U^ X(/iW~p< $,` 4"* wݩy {00tZrmZ;g3:܅N\ tZ\K(#>\dL(wu ?QFY8_0$ϝn$Q*jpqtn|RSti %:ͫNR EWJCnw.ͪ*PɊ[mVL@Q̌Hu ]YˆCA# ;bf|ě{pѓV?Rp7YdYI_mSH_N/JH-/_;Sл1&>x:q_Ȓ[,2aKr)MW HMYu/ڑ4H44 WJKy.ˋ~gBYRK +N6ݎـA.y'&%|i i%1Y07F/'nN-7Ju]?Q.yX9˧L۝Cjݝi(r@PyPC2/* qI\`r5T7>h|k$ GU50; 7G݌CۆsIOnGvʼn}߯i՟+]e$?nHeqr}`{|4,xڭ+ 2[.>nYd̳ mzXb]t 3޺/Q9ٮPLֵw~HI"l$>6*sMdVRxh_#GE b.NEi>_MAš GyEGHMQnnmѶv ;u{2:KՇ§DEP%TKB3R1Om""= '…ݏ:2I_ UeyUh,km$…QǢl{clB< }ݵ!0&mFڲ}tn&ށ d]^G<ԧ,$/Ty:l PQHl_Xu]"Ϻ?Ъ*$FcDҵ8`Jqخ~ZLln]71\EASv FrH홏$9zC)rlᢆdLLa/"rb$RS承EۘIr:2b,{:@$}_ ՜2 -}Xg6C>_̯^Hh<_yB~'o NڰMBl?D zxH9b+)c2!wA>4so T([7^:4S,l(d}"«8t;ިfg8t@-qp;E- X|f?_Zyn_51L_6w!MOY[<9AكprFfdhtb̘ȗk%"I:GL~!mA@&KV8Q($X8gvHc;MMNђJ*% zzCb"^~6!$9[?491)mܫ&tDa=pĜ_Y!Il`WIkk*aWYd4JȬWm[ڕ>~2! yD6b ne*FYRs8uJZCQ2ddD^q xv'JV[`lΥm9vteL#MzY]N]$)F.[IRW=mnYѐ4ɁT!w9)v_EbKd:&-0Ŏbg?֗Iͽi8;o;0w/ӓu S1, ǯ>wʪO7tH}& yhsYxJS ^ 5aZZJ۴gQ7;juWrL{mI^=|? I?\$2ׁu%ɭO(r]W>V2(GR@ =M*"tyӅ&_Dū 6)Fenpu'qF6m$ «LrAP"EQzɠi^V3<A[1L_: /4;Q /BhkN"G} fx;h-/=zb WCm>vCg;+8NdXnKe-#^УJxz(!2l|K;wzSy[,<-}kߌn1soBnEF*ސUsh ~':A\Ti*a:e$[NeߴNå'ťJcraPjmHl*qxIƿ.9UbP/0<3 ԉ)C7f~{_S%H5v5K4€I ' pr, 0xڣ2˺Xΐ%~9:;+22iNxQү X2d$Ku=VXMV \lGd?.XlW6ӕ4e]%"d_$L ̀- Șkc ز84@8?^y&Bu,~$80>%XJ8wf>pLj3!vz.4e(ۣZ9F[I[IIW m, .ٓE}XGyh{KCgoo8tqT&Ȩ^J,JUU aZ+`snmӴaЃ8AYy7+%/n_2O"dYjl`i$4){wBo\V !k2CܛU8X pCa;csX<{8@,79ΐWH,z82MD.YᆌD+I ZNCx̅7V) 5%/t=j"+ u0| o]~$7CJ Hou!.Vw{zYJclSNkv0JP8_?/ݔ&z K״k; Q߶G;&QDtǻ >"Fq-}2#8&Y+~Cؕuc+юĢC-R-Z0'b$ߏ4͒?GꯏRb4d3adZD^5cn<ȡZX:odL,|ԋS 2E@lwi]b*Rq 83oRU ݃,|Wnޗ+K _[Yn" .:^G҈<^r0W֎t#f2* 5M>+ҕL~^ b:}5vTɖ(B`0NvXcۗOo Z"ݹ!fezq&˒eķT%NARe =`b}2Px@9dRPيe~nho Un̫w6 WbLޕernR )t.DH -!nW ^ Mθ \n$ǼƗ*ˤ1|2NZXpQF$:1IHӐWʵt_!9q:ZO^#*~<ۗc\ezzhLq]زh;;. 0 i1╨yEQ}# Xj^:|,|XymSXg!4+&mGWG֯ .X{/M GkG5TYB`Fsi 2,$o_L9xhujbLlN9?}x>n6i)6oˤA&&/#vG%1MfG6-3 lr2Ki6Ig#2W4o$-oBI<<7:[@~_ƞS+ c:hq 1)r.:kD۾Kʼ1髓3 -Pgu<@hHQAͣj(2bj$}1Eg0<6uE\"3U2٣.@1PQ/N e2(!9%z-FLdБ%mEhXFV,+RGdӖ5 :- W'wAVE4@|nbc+ɉLԦmlqtpY2O{EWl4*q`z$xE18z(ARi/|W%F=_9K `OF:et>&Ko{rC>EyRQS]k^sH+ӆN0_N.\W' )ɳOf` &mԦKvv # H0SCNrCX-Xa;zi &̉DÃhHi"N*C=_$id5 rk ihљupͺNZB42Mډ0lBg B"'L15Q(Ήno恎_$T9H}ez5G)0ѡ^yu_Aئ gr[+ \_Azʳ̔I'GU+WE@Dju 3Ha kPlԮ'Q-">v%I2*/΅'F"3qQrg/on8m0?=`xNt3]9DžS8r%.6r!* iûo&wԮ>w:yT'JBiC)D1dP,2O+s tV+3V^ QU>B[E#Iy)\Q蚴#?B v@IMI ])p=d0Ba8uNܔooH^ޭ501C5.Wٍ]l S"j( WJV",NYPDZ dDQ4[HEP3zSAFYO D hݚ" 'd)8 =-!:6Gd^)T]n` $Eދ!q+Jh7Ho5^& }o[;۹4yk1.ڰ>JŕkUY@eoxc9+pe|#W +,ܸ"ʂ|-㺄k r%ɻ{%l$/{Tm=mbBݝZX3Xb!F+\vv>͟5lHXM7EKQ==a3q[ ZP xcƱ{3dACvlba 2`&%lx7:"Xȑ)ܡʳ.n1]SA6C LK1dfwQFPYyp*w. WCAOLT,6TKǕ"4t_m4;%JUwhɬZ #YBA4*YO}_RlKx'=j &ЙҪnuy0Zm&eeB,^'DU iqy0=4szKy@(y`"#w4[%y4|chb]_Ia~+8rIo"eo⥍2&!XftM"ڿJO21p+悎em)a0vWֻ:v@"i$$ͮvLA]..+!Ϲ H얂:椔\fU^.C*]±x@\JU бKLX#vuQpr[k>JEAmY:V+HQLTxa3"2jOe^^\ BuJȕ0k1eGk%yi:u-ym 2Z:He8P */n-hXN&HK}ǽMJZ;btY T1"_u*/Z]vyw(PueJz}NNkUyᬖWEj<ќlz;8lzV@ N+uYdW0L!<<| Y/>u4IMhȤ31Aȃzd_ &Mt? g'rVX\83:O}(t]I k#j ` T_تC.l@CG*FcE}yVaŸZdrSD&k{jq_gZeߛaxetm,-هevsnJڰYz"ރU=B,h*:9&^#zHz>l{[JW)B 5V' )EU nw B&G[躴܊ɩM=<2*"#EE2=66H-EHg/d3{U܌c=Ox~v~@PYrmBhI4%2rSO^2iHĄDmo]>30/ڬ-8Y_m^#S^s/"H?w1Z\x*[H o;?4W厩-jirUcTfzOx '_i1Jn0\ ה%֧=r)hEcHnңELHPd]\6{`TJ;@zuaC7ƴ9z'9t0'&ˆ X%U%ՒbmYqI^/Eh!K1+9,9,]t薀׫~sZyHYT%MTȢ]…Ud nSVq7SB?{@̧\v=3&1]hMVשc x@1`O^ U^0rO9):_s#W«#ϕ)^2'H6*mQ+%CZq# ֔_:#(^.f2_FO].M^]r:Mw[z=!T"E ՉO{{e?BW]31I^wn7'9) Bty є$ z8v!MGL/gmCL`Qů Oo'Adz"\8mEYU"A%RTu @@3SA ß vySg{ki曺[4uE0I?c tS;#n+$By>?4psG23V2Kf24h0]=dT4*ݑ|^|` !Ԑ2m_t保6#NOY dPIڔqV'aq[`"x< AF%pZ=rO~F,+-{CDo,y&#u'\l8lofۤjÕ`Ї^KK92LԳnQugPV$Eaa"r& et! R:*ǚWhѴTlW.ɀ!v2#҂C|`6^xboN!F-LZ'7Ro'`PHdS=@8fW)@<|IģR!m]&n%)vX2<n'@^cU$sa"E9*ˡ|љF5e['/<"hƥ|Z{zs~&_#,YPG.+GVHڕm]{2JH!-]t94%>m f d.~5I% ߫Jߴ(`i.jW ?Xd:%8zMGȍXKψJ>lҦMή7L㦮^,wDD~i$t%s|Ls?M2w[2x_]O= eIs9*,A^^u9*ە#S?w,xŢCv ?[Å?SjSSР&9ĺt\?L~L@%,}wB2e;Xc`.Ie kdM%Χiإ08ׇe]fhLof5Oe8n.P5Dq:^!aI a)aLqYZ#^drq bDU`ZuNI&Q;伊{]W"qA ww,]1{T:/Sp$}mJO\r }&Wo¡Οؘ[eF-Vxʞ8(7IFۓ %04QU;_o E_K(m YC]Ltr8 'o'^YSh?-j+w]!Gt<=*b73ߌD )M]wV cg;Y84|PB3B#ck<. ~lgB],R6iK8R" YTZ Ir/tەBmǛ!|BֻmGmtUsJu-ι(nq\k4 u;=o> ɡϓۅll cEYuQ.u1 Jdv2T^"3> lb/JFVU(yc 69ey_M,`ιЫأĖYi4ʐTll K~piP<+4>\Uc q p:,e$ʐئz+ ؿutu$|m貊 ̦R}ѱ;LʂT zʅE q7{R9T*:E7&ԽL{#ˆiq(smC3UYk#_fG $ qR]~<2_}4!TI}E+ʌڒi8wG 5mnD~6 okhSc2?(ǟYg%^%oUHә#$c5Ai©UqV]¹-I-ȴw1ضm07n %򄓋2瑍V"#hk3m$zaF2y$$n! ş^MՁ\,H!<̳ s^D6[PϘGC%O|-)I.ɤN+ 3vW ,\bAd bQFӋC'|7 W9˴4ŏb?h fEdsQRYN8OP0{(,+l^RZAf'@FxmmW*v@tȢ?DU&H (+ )Ę$b0+iT(*CF~GJbԄpbeɲz)0T黥y.$Ρq/J4ky}xž3A|');D*Jd zK7:֡R6LxPoZ g7ʗU˭u;FDm!wJTȋ Kjte9%TV;HJ‚Z#t!gIveÎ4QrG.XLX^/Β(t*lQ:r;3/1E=n*>zNER`X g/⿑(ey0=5ZVzK)p ޓ\^@ń˓x Iʙ2P)\dC"p`B{bx2N걞Fq+w. ?a:*F:YW!P4#kLaX~/Tc ;z`_՟I9 {jyk we t9-*ۤ 9EK+ MH.(#b@wϝ [d;-=ҘpOe2d5/B*٣):QXIq=2c;6pj)MyxpKPҴ}H3]lC0Yڦ~Si=]]eD*hˠZ|w,Ԝu(Vp!1H8mҳVţ;FL$ɂhP0FHHD6̓S3s7^#v?Pi-1/5CW`9v10q8 /_soS?~XJNr N25ccf$J.#2w@4Uw^0~{*|?%3C΍ E 0.В&xЌ$f:oyU&y$UMW+2AZ.iWH+RHr[6v^ 5t Ijr6:_UIE|M8F=84tGD`)^5Wړ̇Mbp|".`zuJtEB*ހ >U+.*Q {/W ,-\žw<NufS)u-SfIl+oQ RM$G_\^E \T˱z 0 0x_b CH#a6^#`%5V P|G#8KB Vq*"HKK0\Q~(GDa <ؼKi V^'Rgz+t.Nvw u $FjYP\+!4X? wM*MVgnɏoCȺK*k9eGTasڞmrp;~cA!8W꼊HƯ0}ѼɚRCl"G5-\y"(/66k{1Anb'۶?v-T'+o-f[iU[H﫸]Q' IQ0#BVȇôvUM:qj𶔀CD *0p&Xvy5SÎqD3wB˶I–iq,CΩ:Xu 3/oP^.h^Nc_(sdv4[dr3 q08J$9ɑ%;Ql_[Y+.{MsE! *_ӳXvN`uc,My&{؅:? P-e:LPXVp}+y'܋x\]:&C ))^y6&c*B1NqЊ:E'8,wK|⨞te5mcl܂ƻX5&y1$HiGFEH.(DŽ,VN o//ch_U\Q!ZVEA <)"Xa="B/շw9o|`:ޒ-&s-i_2M\cJCJx[v朼%Uj}aGݎ2EEƿ1twqhҿf׏j{SWw=T$Chem:}QC+JXbhg,.1 ܊c<~fPcNl;NKRTMWUI&d-\4RwĩO0p]%HF+)McLY".rí<obYNBDŽ]ê||1^=u7@#'?Sfl9Qz"ߤoaQ,Ɗ7׾G]؈dz_;Cs:/} 1.*\HpV/fC`=#PqRbI'Qf}'|L&d5 Ѳ@慭J0,Xt`ža Y Ĥ݆ٱJtLo.Ma&I3hI#/ o!Į1*#1*30i{M+ j"?^g53L}U?}Zs#׆ v$kFjRِhɲ Ҁ"29{د؈%&D{%%pkf&y ߚ!~-&1]ӑQ*QX@Ce%,6JGBs+Yx40#F E2QaLf!Qj2==ZBQkSp?Qa sKzՉ"~N1C?=w8DZ}Ok_0`8!i9zцă5\RJα]z9&9?1/O㨿( aͰi*E&o0J|FjOQ\8kК4(s?_K~EyglWP5=T'Ł_XDՊL%$bJLK|e)Ej SΓf/-_t͋eD)BtO,JfӾɵUQ aB򢀭3׶rdga5-%tlK*iȰ:pY_?B, P(GȰ ϝ%喢q b,\ϜVOjޱV6)$Ǣ6יYe'[Ъ-frY[Ym`½o= H\g{hhaY"LKExIf$\ @!=XӚpĨ iyؓ)ZN ٌ,#+Ӵu`kKā mc\Ht)HFgGR9̜[_}Q:mϋ5|LacMӜ&$K1$*^8-z,]Է/x#,0B5vGx#dߒĊ`˜}w,gZ7@Պ^엽X˵zu\kq"I<u>!-;HXfj`" ƎIʛ^:zIQ8M=*n]VRTOC7YkMFMK#roE(`VD85OG/<K<.1PW3ܖa`9Կ$E W$fs%IS?~\n?xZt4KrK60UNy6-z.??dx? !.r]ii!/_L~fxהyZƊwe4"YKˑP@/T54J8x3=?^e[ 9o'h-4AmM>y~iH]rKmx  (/kR5u.:qk~Cj`PI LCЀm(cx8x_ ?3dK9k6Z^2w 4Umc_7?%UI^L2[$N0][\ 1xobmzbx#&,B$)7(aUrhڦDxv0,sYL`g9:vjsYٵ KPEj"tp$ !?Oo_c!#o䰺,o,[ziEw5^Z,XøG:R+s߁(/eF_f蓌ēڰ|Td{;۲J.i>bQ>B}hGr Ek ګEe-q9^HH6pZe%ƴe P }qp ̞$㋯iWcWjnVZ\׌=#MT^tTUVs~Z] i`(@!ۓ$I;^[Gʹ8/-6ok5"ː=&nXdi鲶8r[ Gh'-2gMKMvl U ݜޢmBJB}\q碊ŘraS!I%;&PEt<2t9-bلB'uUut i2 Ze+ʊA"  qd`R!Ho ^#Ry!5Hs2gY_..d=_gcڤ[e q|;`Wh]vD1b!#wA/6sD%pgS&g&"+dh9|r`sʼC8/%r= oѳ1d8)X#=ܾ/ѲoI핼#yR!K?I‡0D^bn%ɊfV)B#{HoٖGxDX̤K:^P~WG͹%H@MP ]IDzr*8{ ;I <_nYksuÙUܒ ᶮߺ*~}#tLʕGk&l*%`ᛕa G#W%ux 4I^lV%˔2f5?Idׯa/fbkw P[I:|kȊLiC7&tx(,`n#阕[%Cwx.0퓟b(&GZ4f %_'EC89\&w h\UfX )W<Rw17xg&:ƑpX6%79u27Um 45rj N|%kYdslzje9_%/55Y)ƑZ>\9 V6h g׸j{^*F&+2$Mr$>+N֣(u%wUUv ̴KRӉ'\;k'&9 RVUԒ*D(9@u :_ 'zw!3e?0b K? ~qR4Hy;Bܕ*Q$).e 6sQ{N,P/l"Za})~6qY#m4Ytb:('!%#_oE-4F"A^9#7?KGm`x4$lJ=¼ vcN yc?TU*Gb [8s{iPL4SmߞO;&fe͓dMطLK}8hڠDu6RdǶ.JXS/U^Werk`jt =dRaDgu0r`f7){7$ iX, w]udk;r(M">[7L\5MH⍶ELSFDDwbwak3ZCy nA\ {BA2Μx~E42w!ʗsA,Ɣi;W[Ya#΃%JC|*bm~,`{K+C7QO"K4MJV=TgMVld2ى+t1χєG럿?8v0$P:JecAOX# В ^'⼑ wGM鲢6IN/vu=s"b!kvgH;lg1OOKL!lRK'Dӹ?M3K\f.1o]׺ Q?٪W<"&)ba7gt NZx1ÊؗV1f]S!y}fJc\KB9)~,<,w ',h,0Hhmɕ->Շ29dg!8' 4j*cP=Eo'5`MYE(RU "wE%񎉮14-dI/t޲Iz[q;)űzRa!V%F^j2 0 NVMl8LNSH̃F)QBmBvC` :0BaYo85QVԜ}!{3ԓL3"'[XNRa.ܭ U߸oma6*_>PC2\ yBz_g]xCI[|A3c{ū3xNB*W`'Q 4(x!J1ƮtX9i=Jڴ0UeűkbpC+JK\"dZ/MF 哟oגg]xT%)˺:哅\ H"Ezj,|Ht`%4W銿`\8 y$+αiB8Rq1R=,D8)eP5zDʼU9:=,Z8\fz ۥL軉QM=Eim ]~Ih>j]CE2LU;rt!r*)θn|uY9 Y WmIwy|9dՐYAurOjz!P(«j/.~ޣMoU\[|DGqZJ jjS}g mHZeՉN{zAOHr0LȍN׮X:Lh- w{5V$x5-IߴS1ySm$&-~#b0Fd~jfj1!74'ɺކ;*gԩ\_|*}1%H5@ˆ8CW*ЎW/fD{{&ꮎdj*Lc!cvԬ>ZM|PtWrjvmzLjK,8C:,I'cB Z1@D{E/geE UٺcƗ0Lz*WeV0Ӛlt|{-ovնj@ UVP2'"º:^t[;F'TC"ՆG.-U^/+]U-NLZ6a]W̬7Kg-j=b (̮ )f83뵕ls\"BkvX!Cq&񨃏p[޴a(m'y2Qe-> !Y$nj3i%}r8-K HZU)EVNK0g;QN0ʷhy}N/P;z8M8zCyw Ի%t&WdI_(4)dIBD஀g8aHF31.%{xO8~a>^+JMҔԶIVԭ!+zŠPt*!1tWUSu`u8%$0 q]o|7Gzq@lEƽ'[awU-Ƅ_e-2EX!%d T%1kS1D0y/F*Y^/b'%T.܊\B{BƔD)h} y K ]&Ee+XZyP^]Ԗ/{xԃ,ȬehVÄPaòpֹHn"+b#p~ZCOxvV1e8nmN yN %8?нR9#֎cl!/ uS>c U.7]D?TB:{S%틻n]ėJ.kK$y(tS+{otАn5H= ׎+}җ4_sVKNp}HE9oIW .+i̳9a RC"~pXsR9¸)w}秏瑊o*)/yXC_z!ԏҹҮc13ʿ#Eɐdq]9EgF;~?\xڍdRӟ{uLh~Z|/DZ bjyX֕`UʴsTJe2=i[s-xIJi§b-QJ! `Xr/K-D*G8A{D"<\@NTLh^ZX8XnRCb(EܼZeUSW5kuE3K α6xaYbsx[N&_H&==)żIiMV)Ȇ*+$3\רACPa]חu!gg5ҭzaTI?ʆ<:8!Wś}>ggݔ<*Ʌ&QׅrχioPx(6O Ѭ*$v/iG8;!&/ޟWh#IȞ|sem8PR>bn^¿sH7.C\$҈ E Qd[E:Ni{#v.‰up_I*/GbǨ? ]iyte8hvxUX|b6dJQXY y4[{;zcazM<0yL 50_>""D*̓$qQ˼8蓔, ]{@I]'d?\ 5`n*Jz/6OZppd;]y΂ K)p| ,K%*.b* ;$f)MQhDbj쇼1frqdw;>#O?rMW) '$[f(ќS AC:9_rbWȡ^4YbX."XVwl{+_QHej –o8F7uS?;RFy;9)w/J|^XaW`2՝sNj! ޽~ 2Na^&=ծqOuS$᳚b)%9 i )-F`TJVI. 2'׆kuEr4pe& ŋP2,'W mz/'bW~+?_Lz^q,@ɐn15T`PXVK(BEi Yb)4w"_,cL$?K E])6G[Rd1TȁluMJo8 P2|!P?=.J$l|_bĿeҙRf3^[`ޅrGE b6(q5+n (0dz_J>ޖWp-U Qj" ?Aa ,,єc 0tb Gٺ /L*2CmiZ<&"^lT"ܮFk_b遮L&P3B;h d>.sU]UI$b![#,d3b$w%_ZVpا^a"L(2D%Wuh8e2i:B/l4M2Dm.F6 1yEՋ>s Ȭ뺦oCOMt׿^[E%$1#HWIg1ԗ'1h21|YƐzm?* j۶ʤʵ$u{S0 a\Few׀ Y.~>&<8%E&^el@6_&IaS+2^g]nr8Al1rHB)D(\'|%O isصy,.#␠-  ZJ/0P0xw?IţQ{=PluD6WP8(aw?cTڸcѸRw+n0(U% ^ n]hdE\3ԚPE٥sfRUnxxq{D 4`$#C*t"<?Ck~%rķ'uLBHR3Y8]PW(+)1'rM5uBj MŸ-t]-Iz;N7"cvdy+tfRѰuj~%noHēXbSBvqJbCt#Ǘt &k\yM]]#DЀ5RY"4 #N/Sc%2TqDxX, "ݬF*nt(2|×[N%_Pk 1BZd l*?a>\sZh %~?;:Py%'U Dy/eGw]@ X]ߌtF/=ct¦i;1dSc`d㾨 J7Ap6I#"I9lO+ȝSϻ!LkB]ﺂuhp]j1@5.,{^XqSCBXD?mvU*iLT"1]k%vi㫣/==B 7Vsdl~ĤjN}hvLʐ&O˺^឴YV$ŸQ\FJh ˁu&$HZF ?}`p@ 5p[YIyoD,J]I䪀yrsUeNe/c-|/袗uM+*Aх6Keƞ>Mo4i%*aiH,–^{JUm r~)EF0E1%FI4>oY֡F Pv>_ԏ~}Bwj_YmDma:h+v%S]vmrLN~.@ŭc;#X bM7+Tdj*[dFqL<#! kjB~OÜ^,Xiu{TI@D/ V5OV0܉4Fm46yh̀Z{Wp^ʄn7kx0^I+]QW˜ƪ4I o!A~9fM"6J&QU< [>HVU".ޥKdb>ȑ_~45$xܨ9"i!sE\i,L6m[EMe{/J[7H`3 2F%_mbpH*I~ w[_Mzus!Wy/a)Kن&lp:E:r J0!aߐ6ͽ=}6b+G jݻӏ/藿ua"9Z/uH:CY؊y*-d$ "K|w+eI*2Z"=$a˓ёpoPik_5#NH^Fװ^9L®\+q|M^7>V0O)j\˂(IҊ_y<%A#Dx#4XGv>LOLH*/_߶I b01-vh)eծ*-ǐ]d0G3}))UZErFTDɻVVt(́d"$iY  ##}DoRL2d)afe:-\7)pOHo8rI*\aURk.l{zs\=j3>QH-ĥon˗羼Ѽ݅1ږEdӠͬ!?qw$-xtgswi7 ,3PcxTFiӼRxeU(* uU+lqr3beRy?t^w^F->L :;^Wz_ϜgޅƦ.މ7{-u1;$j A{ՃcQ- &ι$o +@okd.3d? nuD)3lHыʆ&fNCMFSP*F8`02PpbO@rJMbPPW$c$ ,WM7Bx3)G</AtĿ$^/ 2xW7|\G[nZeۼiLI._=ִ xķcWJ8NsW2k*O\ct)Kx9w'5ndR_ɩb7ϛGI ;2PI!.șb}<3ʢHW/Zҹ_-%ؽ-UM"JV^m-;̻~鲺N.~뜤o:ZW%TTmAS>юsU황|TT.4O7BB[iCN11)I280T4Ŕ,̡-஗q9k &d\stlV&&uy`ʲғQ-$eP ͔!=F qrc,r—OTgEA <݂'ƍ2,A bQ Ja) UX pR2K$QÖ&vv E_1v:Csct.!z$(rT=U1ٞ`aG u/i+a~}?a"z!;^.Ij*)~GrQ~D>Ju.Btմ4qOzp mċ/W% Iʺ3'QV[q;HEPqwJvY v(l#F(6.˩_*0 njՕ5u )#"0a!VTSN .iȻ.>wu;&8k)Q"#JU%饜ڀ ]@TdXP!'^dc(-jSқmesd=!MUl#m+T1JF`K/AR`g~Yi6"Giy4Z ' %dlk}k?Y?\'p'![**rx#B$E)pYmRB),y翺>Χ2$sj>c gܥ2~/2̢ݐ*ѪY½,-!1ʝ=WMvZMá_y,}NCy?s쉝#*!Ե:j#Y]iIa -E8?xy۰Ii"1af6f% :ZM@h 2p` _z2* @-?0?qx(_ОM9߿@a!L12ɬ ͨ֯hkY֣݀+]A)\/?ԉ2r~n$DƏio T44)Q(I\;\ icqWf)dm5-Zw +*jN׆(ݱt(Aù4|߂giad鯌M:DL1H]֒וe͓rN:{Y 0'i0W;Q9ng6/#NJK4X`pe8ǚFL}=yɽ}DFG`PW 8fsbRX^Y?DٺyfC1O?Fی4\Ѥ, _v?k6$q1DVaNsuO"TYLS4 ~U ?WP0XR'W0 Rȩ#Y @Yk@ߕ`KBB *YN | [۴_湥t#7K65&!Ҫz1&\;r~1c'1|*"$ѭ Q.*~e焹894C(M=uAM2&Ͻ@9N]rh83嬇^Yȥ_yQ(d!aliں~H摦5T4tߤ gYe5|DY=KoZJ쯚PpIk69憙D7b<&cXB/ P{_7xX f1'f,OF^ǸYl$o4 YKܥW6'/k(/;IQ:j!oadq΋A}IV6+$}O}o.t&)/YB1BҤ& XU)d*wOM/H>.UU_#d8I gqh s*˝r0x[Mű6ܻR̐3}71n!")l-CBj ERx&%9񽠖htׯ/M{5ẌK24v*}Y.RWUNX9]~9u8LG`Qd/(ӫ ef7.sQyՕER^},,L\yD}T}~8 {^hp]wq|[jj$y’Jy'\swM{S4O: quYn/!"Qp|Cwbq $^ xOi=e2sv|A7P"MĿX@2D:Ê}FB֞v@p\<ԥ h-Ǘ4AY Z NL-``Ɉj w/uet. G?Ꮭܔ*#7ԥtq\]LwF 4c,aZF1+ R1RrNYu O5|\]6~UYrnj$ٗE6@.v~\@5"+pIR& d̷rj6i"ݣ%S͝w!c9 :2h(C\iaM,X+*Bq̲$QgatJ0@=4eŅOcZp 8;% 1v]c$x%U]CD1 S#].||4(f[cXe2_&8iu|ͷȒ$VMKΑv0(V,rc9l$˷¹ڥAqsC]:O!%X;9U]($B=5]f)ēk=#('Y:[/I/~Iֳ{~3=YYUU'*4k(W[AzT-9JBI4Fj<>B14̳+CDr\i?Fi!;W$.٣&+;%? i <ɠwRRkR}Uk XWښx"+1\ xF0LJjegȄm+ >aX/ZL֖& 6[G}W/ͮvA+eͅ slOWxБ*IJc)7V]]$iKz6@pI]DqC^%]ˎn2/LYUN}.t/^;:z1E(}WzH<&ڤ77)Pebԑ;jz=)< ;r?b|,塐j]Im~!r b=i3Gn# m/ЃTybSj"IEGM=\:\cQy$/J}S8%Ȃtmb;BUjoĊ!{z"Z,Z8gI<ɏC[pw >+g*sO F"_>'9闲oTWdDsc H`Nґtվ]|)<&XsO7mWunF0NWӽ71T7OY4o ˫#`e [monFr˒Ȝ9ү΄fl~}=ZZ]|]2o!EF6Az8`A@< SګG\8fX@'sf *8{Z|<)V5oe]V')S V_zzY=ljOXG+pHZ0Y^xz|oDKo}roiF!i&1 3xh^^1m^Bkr"ۤsCd*o `#)  +n_Q߲o>57~"iRuEoLV<"Բh4"QJKBM ɠ%|DHlAӴH7!r.cV@)|K`L(O$̠bg#0P.I磋\kSt wk;8㢜e,m>`]{vgHnSTAR!~"S ҵT^ Ed*r4kjc p'Pnn_F9e[? ,!\>LY§RYdyN\Ix/ozpmUT 'gB=>dFI<Wirtć0.:שU-,mEy'28Z~ u~< xBkiecCHP7S"+dQ!_伋$qKE../{9vxy~;W2IaoDľ~7ڢϵoIĖycB8wL`+qh4.Ýtk-M eUE}XJ͐ c&?˸ݲn%L JYѡ\!'k4ZBZ-8?Apq8S}P^YJִ"TݎԻ{{.m/L9#=eYi)t#+J>D>.EXl*pyoRPŤAfrrEa÷늑=H]@4E.,.S^{YNyJS$;kM0ERz)Xt!bDD)dYW e.%#pᒋPD慌T5/ MQ;te0Q oiuk;qr6\ ê#88ٲVy>2W x_dYz/MZ|iSXYx8.^r qȶ3 OB걺i½I혆IT”-'6|K\3~ڎ~=K?_qc$Qr(Mc9gcp)4"R 103$Ӕて;b^#j8"crvME躰a5?edmU7&0vWeWk4dy! *[hQ դq-^'7~&ԅJ8_ JRHjc`!ro1DRVLN^V1Jљ\Oiʨ0C ,_+~W&K2HNICD8o̴mjג}mGx*ڨ@|h3azio+ظlv~qH'.pTx8+jCXW] %}EFniR覢>O]0-<MrrvPJ81ڧSObbJvvryTt¶$D3E,葃uo/l|r^x64qeFگp5~5]WUţ͈EҴ1T'@@E8yɔL'>- ?Y9@W<֕nKT&9C CQ*Hv[YY:]oHZFĢ=\ȯmoE*^zk^vlQ5li=jWDd" Gn([`qf gwL@0k$7坲j2+>Z3S*1U_=ΰڤ *pw(!N ztb;A*dNBm!Ca凂ϭ|R$:T%ikE$s'׊L=*7V]@VU"_IkіF6'_zq>F*vYmL`ri^b؍ W)_ 3K(>$M9[khn&nH?WCqo65]BAW=8x9V"w w<1IVעa⯨e>묊,Ϫ2) ' "qBR]9UlRC[aP+rC =6>UnӻOyٜ6up ?ۖx*<'I7w uF&Cbgqڼ3/Dp|楝 '*<T q /#wDd4W "eFX I=V¨V9rޟ%🋎j9zR%|ĦbÎyqvNeswt,!2. 1puVl_uY5oT95ZeE^\甁;S$iF-ʲFb‬xEUFB/$]E'r خg!&7%9;$h?V="&*eTзAaYdRr|c ib< Vɼ Le1JRW~GN$ִ}l-:"UWaAGf̀&T#bȩ%n:ǠfUv!x] fFJe. erVp3"y땿zӽ1])0])mS|4RvYHF5WAw:m ?~&oƁe9^ n|&z{mѲQc_ ,8Iʨ^M/M[帞YM9xėYy%h\J '0CEá e{c. >ib(#6LJﴯQ^ʵpJV44 9gKL.XGj2K4KR]jGwWz^at:$+)cAATki:[ԛ/7ernaYaZ%| sHGjm,]`pӆu/ ;v z#NLaVZ|yL7BVkBȧC,bE)|p[$eԼQy$˩61x 0l(vc< 9k!)y2?ھK\܍2PM>BM9uG!lU r@iV;_X OrXt1i}/Ov2'u U Wе(R_ ;ѵFWH tK/192d=2ߕDMXLrmW{xm4O X[і*Lx "i#/97<%s~~.4}µ\<)CWA-VCDӨ)j~TC'֊:>"a&L=rJ堃m|<"%L=!(rP`-8!M:s.7R[y䅋D}nZ4AB)_$d"!X ~` kh%&J[w0g֓ GKM5@MrJtvdXo8Gў8*Q.wr (AAB&R,r* p%t5Xɚ8f!SJK6r<:p ^m\c#m2TDG =՜o3J5eP=gWȒwqP'dd (|?(XeRF⥊a׾#S٪ɠx1B; 4Iv^bgmIiLyOJ9wՅ! eԍDa~0V~wC\Thd\i&W߼--*%1CRz sPSA7/# S"l¼#k-5vi}dۻ2L_͕5QZ)0ywh꣥&>s{:&Z'qhrX mgS2ss2bq Aކ}iÃf_¤!MN)7myT6zh K3Y~JëH BiSmD'_ΙD!ო{7.a-"۔0ӟj}dυcr{tb]a 2KvY\ XY`o y?GI2o/ 9pF7ay<u Fd5{[ֈU~@QD(ثbFZ9M[6ݘF];a]2$edlJQ%Wnчa,DW3K `وh;c,5֓UWU"@!5/M&BH2B7wKcRgHk 6ۘ'f+?|="񊇛**39)XOޡ5J(%{c?k -1Nfm `pJM*܋PPμ+ҀTVYcMm\ŀ@vl$RiF,/@ΜNxA(9! Sa[(E}gq]9_V! #pzyHR:~";$qx1u-EJ+sVyi[v]C 3ޓ_gD+Ej\eRub {ZZ!K|pG ~Nwoq:I7] щJj:U~EbRY2ŗg]%K>6+B}\)WY~( ku)Z?쟣%D`dL¾y:.@م cXQJb{I#=Ps1$&C:VNQn|-?ʐΎn(]cup7CLgߏ_WX(ҳ\d6e)-E#$ea~=ǿ,[3x&X Hu+H豽LOw\lyD%ZPNձ3sbYl,F2+77չHn .Gp)!p(A۶ Q9x y~rŠ6\xS#)$?..og~ȗGCdYђS笍kQ,`}.],(h_ Ce&3; [ˊաgG65ٰ8Z ꇡ}ۮ7)$90mHES^^ey3ӑՉ%JHύzȉy aUƼWJA,Knx-/ Q_\GYe!LyV.ryU}9RzϬZm񹴕]jz3ED[O,}K'ï=mtLܯp*.Xu}L){P6j,8>.t{(Ok$עMْVZ-r0(zV{dy $jHNiKb`]U⛒ISJdHPAv[B}&:c? $;-g,M!eh,.WW|9_1XUA&sѶbä=ՖVqTiL%_1S7\vӆY)MIݰ+gUUjX;N]Obۥ0UE|3k K[ra^KXUćWT]Bnc 腉iPzQe闫X~VRVّ#~D5MQ$"\[:SyuoDW&8CӞl0.Fy0FC?I3^ZuV-b88 ZeH&pң XsK:dW1qYM{a F$?nꪬ-Į 9Y{]0WKh ^-GPUap5P?GaP%jsay: ߳{lR'(mF&U0N&?&Ee3I2صFc`9ZBF6wwy3N4u!6&[bJcV6ȐAhw,a'\Lez\A ~k+akݼ oztKl&UT1<)*+,D<#,ƑǧM"o^9erSw"Q?]`+ fWQ4V$! \1CN A[l45w2봂ZǤENV=.^i ]&K)B$>2~aLL,M@cV+J$HD~v#3.Ȧҹ`IۜPRV>LR/ZL8Şض^n8A\#Ov?u'ǡ/'ro-t$.̮Vzlq%=ܔU0u".FJ9?-eU?@ x ˮLQ<Ot}ZA-txfhW7-l/N T߯Ê"+:'GW31x3*թǣAs+^1Ub:0$|f. ?z%$o-ì.L`@Et*w `=& 4]pq_k0]4 /kLbZq=TBnնW Hq6lCDmbܿDp]hiGc8vDZ T i_^}ftZ=uUӌOS{NwƱo~R UI,~4UcN(ߎ^qj,xqY8I_' Wۑjyy Dnj7I!Z7x)brRZi*ۖ^&$(" ~>(!7ŕƙX}~CLV5I !bԗ ))Z]="d׫:ERFDp\,KU4AXk pd o]m9zҪ%"ew׸U -dĵl!BǢMihkhEsQVM:C8-&ert-n$C[h.q`i|v)"Kȏ3V캷I/"?#3JCL.q4)h#Zr!iNɇ ENHF,:L]_=dr1pjW/mwv΋b?oI0p!%1ƅҒQ/vc쇄Bl* ou"dZ}ytv@٣++ nR8_;pE ,ھ\LX;=0L7 dMz"HRL${nʄӣL8MV>1 U1i+>KUIi`;9ܖY9%޴=d'HK0L&pRiLKi"ߣRUtWŭOayZ>p‡5ݻ-*4u ULېح35ҒK ]6ыAյBj? uTCg,P;avK6롩aH)~.Ұ*KJLcX_WZ2ΐdަe7rǞuf5&T ZXfe>s/Yl+ RJ qt^X_Y{] ~+o FΒcWCIJt \S 'y^1:+;ge(wHqDf.L(02YP,GQ,W `+9eJXIWNx~!OV=O6;߇_oei˘9 OSiWxQĭ;4~q~QXACZhA;Q6'f^ uOazh3Ⱥhh W/\a` Ғdj@a3n"'h9C+\H7U^ƪ6Ku"Ȼ{ T_H3h$eb6s['eSU̿N%e:їk]f %kzˤ:bǾFHPs*g6竊o9tEN͟M֖~Wx-Izv"J)^kIQSKcM #5F8LZgr|x#>H_Wye]mzmr[T=c/ $IlQ[#EEq]U Zx\NEYhʊc,7ĵIZgc9~S![b!')myTbD|VvhPƠ ,޶NbK# Ϙeyna&#fʎXIJm" +*b1y.?h|ZDWʭrB|U}nu/siIHXY:[c B̵W.5:\ZS)#enW]BP|YQ< -Jb@ ZL$9q A"^)/^M]$40M=PhU H•


۪ =%h#R鼺J >k3i~R8ﱜ4,S\LRUfmRL!Vӳ[ .FF;3+]2yV:N<9Fe@VG(v˒Lk.E] :*9ز)+-A?wU=į+?AO2ok;Ӑs՚6!j}tN0Zw1//݈ &TNRܐXCRjCwIZhN쮇=>H>~RŠʕC}8&Ri%|ٝ߈`%bdoOLMrR˓0AdeU5j܁PIl F$Sf6J.!DN(wxt/Y:ܢt!zzΩPypZ4˟v&:Cgp_~?ðG1o`KeU b1)<ŨZa-nnw*n{ܕx ZV0mۭD6MAw;-٩~G>*gm-!/wQ厇QL@qK0y.(b0 &7Khê"V tط#. ǹGZԦ ]HRwrrA`L>Yd|fzuNHN yWBxڨZߴ0.y]IǞYOorPE?uK;2V& crحdV:YL|WcW%U$a9&tYGk ZpГvs[?rE#Gubx򣱽]ES`5MrSHʪD& Sk-8CFi){v)xš5zmC/n]bdp/ ] U!agt{,{4h_q7X,Z̽OYk0i6l_*c;ּ a͉g~qmBE:}(hE}B$nϾoyYWs_!KU٣ju*N ֏[mW~Ն\|A|/tr$E끭Ҧ: ЧN=C!j|nӢ}+CRXh:#xQ()=;*LmudE&\yl KpPB%\WU Xݠl$PLc3ڡc`;Q^p*zY _v ̓:]G޹q{=J*Ek/Xr|;!gw@J7..rZnqk-9=*DqU$Le snzR)f'DlIõTIaVde)7YC갊 QIz,F2>^@$wf^d3EJ3?gږ0ήw?5 j'=& 'r|^wTIw颡߷Lz,+s׉+d(obTҪG]ĽLC^0̗VF^x6bēt&"6gI܉ȥu9,mUer^3Y!wL[|h}PG: .*.?,B`3gz6bBBtW~տ\.(̤n e2t+6:oͳ"¿Bp2'<%|8e<y+ E4+\a2FzAqeHyJq.K!%hB3e 1]gU^TE1Rd:vp8U};H+?mK^N=Q /nLwljIy}>H;Cw\UUc&ܰ;fyȃW:Ĝk_B\nm,쳎u=2al9ƘppG0{*B jn0$cTL?a+ݢ1:/L!|=Dc៥wh)p7_sLA d0)m@;/-QD$(.A_pB-Mh >=EJ=$X}Xc8;o]uX[ğ a)r/, ˜dGN^VY3:iL:O=:SV$1 u?q"xsB`ʖ^NU&wPSg7B=b>zx 4=pntT^q?b%TP6գLA./F#81ש>jc.!{m}9OZ8.s"} \hg[#b7KD:6b8*"_+e&A Vp18nļj ~>0rgY< U@??V n\)~s= V '8R#;=QCHF2 #D4Wu{epJld-LU-X~{JϫTE"u&(V3s-Ղ["Rwդvm'z#5e_/["YWi(2oap2轠c .oʜbMcRw*)ɫEcIP0>焿0r⩾T. ڴ}ZfZ5xA_3I,u-}dz}c];J}-ŭ`QsjB@l~Ł4PW g>~xSyLc{^ʓW䜖WGLj8XIp/XQT􈽍yh#ƆI)doe59kk难ǶąZi dS A\nW_vI&S'so]뚺kOCs3K>x:k%K=ɘ7UHU2HWQ Bu(<1/{b\$_8ON2@ߩwZ0 :ӛ"Ub,uv- wd]#-lA %Y8;+%3 J6D$R o1Ə~]wKS&S~3C+SQ_`0=R-;X]Dޝ6îwQ[G IQQЩ\}̒)'pW?[vO KM2͒:ѩfV-t"^@ Go_ߢ`IUC geɎGgnЉ&)t *47X#uSz PNNdԱ?%yD~0u[4M&%4'uYxNeR DNB^RY٢W#.mϋu6*0ʻ^h,托벒~J+BGYDWnBn~ Ty ! 6=@Tej]ޞL @:|CzP?&V!-uqX +Fzf2w(pG.+ DOXdBAk&ʯ~ѥ-r2nXfT4L[-`f.HRNs/,fi>i]֐Vx;eh:gjP]ޞ r֠pqj%~\'RJvOtKp[?3I,3[hZ>vit,M+k+,LKE*n^qkhDFiOGlrH FeoO2s6։u$vKؓ `B|P/cНHLOxOD8{Y̠P0ewix|ѵ9)7.6$ Ba - 0OFj =Aq\͡t f;E>'?Ml&Jz/ϕl(BDUd2w% uU3$^[;w3ӘjAoc[pu4mG]])a5%TzwQ T5 }c'%|x?m(Vt 9SV`TYNi,sUUə/3#fFdhuRo+oy[ó^m:ɴ&llBkY ͎4Mpdr^ثo>L}G2nLh;KldUZI#TyƌIVIS#m#6Ok_f#p?KO34ow?\dV'ʆʆ|&ye*&ϓU'+!WbZj8y r{#y~Dpu9&H|)oM ),$. u-̑i % QʤGw؊WÂdD{M9| e?M%|ݢ< o*>8d8|RD玞Z~"Yi#X;*'ڕUѮ227KRs~=y!W1tP/>g$y/±ZoWp]C3mah=[ _Yᇟ&MnM {TJyt0`ƻs'=~a[9y&r:B$_ivM]>8HPP_0Ǔ/"dx%`xG-R] +߂Aҩݗä7g^&H!ec%ro>= ;HH` Iñ^J,2؋F# JtzTtq9M S_x]j:wN!vS|=& \4VpGL>+I+GR0bM bf9]/ Ijwɥ =#ѺY@(0BPh*׼Vaڶ TbRL(ff#Df0,2w"nZj`$̣%g&L I#a`2f'tRFWS45oh=7g|x?:j I=>S{ZID_XGk䇩+CX0\sIrj&S>UQ6~ #__{{+>9l9(7,KLzK-}yBc:&)}9a::w>VN2y#yPB?&'n׭5! tg5mgCp/#I,_aHB67fV.)I\P B8I6$PF8.CpyzG_Ɍx4s#6+*1YFD2ݓ,/;]I<#/_0N">_"|BEּw:a^KBURCpXK)tL={\H&M?UË慎sh_wI1]^y`2!}22 +CrCnruo˰9_vi^M%w;RHEXYcf!- '+ڞVcdzWD vf#X"{3!YWoC#خ\]]D.]1@/}|eX*.?-fdN+E-RWj.qq!\fld]@eYVЉ%"4m`/fůۋ@zMi"/8e0xOۼ"aL Y]>{.ńO;ɘd+CBV#9HOx/Q:>g[X_ggL0<٣E:fvgJpEwTYcdreǛ]O,۵^&цО8F{#M"Zwp@B;x]ܺZ,וw>3i<}OSx\18-9y(#(:̓v" 6$rމ/N-=8L|kڧ%&KˏME׮+=QwLhGzH@W[Cv*3_0Kw_m<+ hlM~"wTSI2!9"edDUQ~E%-wj+Q_GvpM |x>0L7 meڪ/]ULC!.SQD#;42 sq=hy@BKJDž+ilOEX[LJΒ{kX%&  18&`U{C13sīV.bfEGBN)KcEٰNC%{Kq{ ~vHo[sǽy?itc4?G0~C 7wYWIKQ-w}cm*0 ":fjpEhr~һ]0d,9LL`""bB.ZNI9MQI}tz]X' P!5>̘p^2sr:3v-OsxV!1+?W(ppiaݴ(y݃leh_Ha0EMۮINTk#4SѹSe<;;C9.?x!1Zft[ =`mS411, 1!)"0z3R>D0>cM6P!.hc%hDJ]"31PA^emNy9ⴇ3OTJR[Y盬bLQ4e9&B͐wFjpې(u,$ :wwy%##䨂r$aB igA r/^ڪky`Adz&aI$!7+K+ye{0*n;05$Xu {KGynZ8l-+Ghq$/޻MT;zvm$'J}ar7TtWjCӠg&Kْ"ͣΌܑL_v@ ݲą]jLĤ$An ާ͢GfJ&DiLȖe[-,0} {Q}WQǐ"*SKbW'.kF"y< e|Hm"VQf=6md(C*-1RR:a( DΤ玈|[l_f^0]@) t&.EBèJ;Ԯ*]FnPXNԢc>A8B˯KP '7B, ?mE3" 7"eAGQ a%|4C:}õ~8'uVwdBR`H_L$2؅mu:<\zj-.qk6#HZb dv0a2&JKX9x8H`dhk?]> 1r&/=پޤyZ6\ԥJHIZ{}rj6J1yiD!V0|z::XN3JޗB7ee6D` +$L'..89Db/7텄}ǥxUM,yYX岒1t=Y+w >2^~q]߿Wٵo2mn:E$Zܓȹٱ,{!^H0>C?k KTvdUgݱ:B W)[,}Uܐ(|6t#/s0R% Eh|: p(X Iȹ_ bQ*>,Z%nV(%AaDg;&.nqU_H2icՒɽb%c<3 #br񋕮&|>͙u-̞Q {u6*9 JKᑍ^iE'D!&wv-`B}{!*4M&+~dM?~Q ɖQBuH(u:V (ޅSznq'<}P3p)Yo(R_ 1GTh2cA&@JML޻K_5I]XZ[8ٲ! ;I/4Kap2 aiTNfz,g 8ϾNY6ỆadH̙mۙcו36]'MKz'SExǞѪ+02ݓ.E#W2qZޜE1mx}P۩E_TһG pP ewW_-vk`>>E+&flH 7LB2[%[H"eŽiyŠI@5Œ]·vn WݢHmz+JhL]?i=dS-FC:׭4ҔY15\s 3# .2s!Sv[&2Ѻф`q7ˉ~܅"Vu{XO*cZE !Cll&rzٕ&oW~e_j33}[ V.ghjOt +A?W]cש84$tSGܓ!-\2܈J24>&B!xD;$du݅RѽVOj/Cx6 {s:8'sB\?,Cx6qvJhVӑ1yi0%ېC\A8bOVV )wm续oF g5?+flCy7 0L?C&PhwH}l\8UPD0&@wuL:+CM%& br{Νm.TWHєmY&>"]Rc Yz1"W]`,da鄓}bLԇn?"TE7w(65kxIBx[b0D/ong^XOFSW^UԓL_SoR?Y'B!sIc|9HUI/MEABG F0мro"ee.𦓇{6#Y-wF1{@)Vڈ bcS9&mٌ~J]inVUtIky&410C1I/C@YkC N0+&UZ.3gfoO/isufQmH&7q^0]׼;T;,]pXGl![?ƒgjUڻ.PRbcEED~fJL#% $p i p t^~-c:>DZ=/vgf2ۄ~9 W-y[BYcd fˠ|)1,6 " k9sB|:D(+鍦XYV$wd= iwH26 hpQ^a5嘸.9/P+CLYf RG]uةB~gYiٯz*$ap)eguw2H&$VG^K]'3Dd1ڦj.\6",dKۡ ѯg٣:ʆ Xv- w 1T 0L>IaQe ).p_l[o,u-4< %Y8.+vz_.XyhfZx 'N_2VQ3A2/3q}]V=/m0X ΋B_eWIiÝ(9,ڴ0-Tal~ M%'-g]\ذތy1uyL1a,k#d)5Urlaz+%Fi|>5+'w˴:>]e^d\-P=:D+ZvZ~M1?w&!=7-)~>MpΚ+kP$ƛphz[J r(6ѓbѻ[_LSTo-`ia%-aL(,+"@^RP ieuwoxQA`~F%U(K_VM4-dzJ#H147(%: ,W YHvO921lo&m|]HUr֤D A!d/,ej6 T$xڼ&UѪtm'~`C:A^,raZ,S\|I Te?n)_ӻӗzێB5}rop?hpb%u"@ѷu0s6i;p~>7}bT-b\,薛'/i1rm>D;leVc'8ӫ1 I̙?fHMGCJ*kg6*\#2xT,츝[4F$pH3F-žXTW J 4Lrf~<^'\7lÃ8jtyᴄ9=M2MF,Ŭc,zV4(Hv8\ GLړ e$kTEj߉UG~ןR3~ǘEqRnI*o iۃRlKY2g+gB8ůH3RLx94B.86.ݢt%F8]bYdaT+iǘyBuRZ[u!,RixhUbrVAǨs^2;?B`ՙS(a?cO)vBɲ_\=ʓ$,;U^qi&&&L6d*4&=#Sq0/VrUG60%iGWei l&I!צc/"]jF<I"ax:ɶ-+š9B$s990B JiQT Fl\x⥔źɕi];?/f"u)YS'hӁR-gO_KiD]OVl/HJiG˶~=fp1ƄM [?UҮ;qHtRDԗmVQݤMxJV:E'%rbD/ek1xv} TxYe^yPõ*=Jkwe-t*J.N^bT[cr3wewMl}[2㈍UڒeJ-HG%iR#0d fG#=҃OUtXĺḾ$,\Kܢ Pu?DzH/QIpF+ *}MmaX^4fQÐKӵe5,8VDl@ŀ- \AbTD09ba9E3Hz]Y+m) 2ˏuVȤӎRRxrm/1U$lӹ9?s)2U&]FW:P^>XJ9]:,X ? M?DHoB ! ԬtH-ISZcPusro(TsMtPIeЦC&tDD!0' i'l:@g۱Rhȣ|}D(6΂ Z#4<~x߻fapš } cM.*A҉ۡIVԒ'ie ӄAXxkaV?zC"#Bv[XR^CW+U >$),f]꟢/? Dڣ%ӶNUD<*+n _Aoc+%NNGS[<>xۇӴܭnh}srS9ҞtL,\L]P 5 ǣMq ZE_T$;jzVwhSS?gHn3}?_<$JtыLNrZVD؀*0Ej=1uA݋B@:'4阇sEX˕CúM8] E1dLS ̬[x8XB5ͿCovD!on-m%!ecK%~zl6ˠrٌDwރ?/ȡBwCbodә.ў7&K Q..t23T2dc;-})g%oHQY6.b/L8UW'җ YnN7W=5zEw`7PY|BqRB¨p{4/puOA]]$Zk:o~:>/\е4->&;}JX_Ad»dKl᤾ÏEikE@7G'Y0 9Ԭ]"ӊئW!!< \Ts"c74r>"W8C P8rTlou|e/'!L'q1b0 /e.)hΓIR$^ s;-v-%}2d$L֬0!0ko`9wBs1{pkPy/^ݶ 2HJEM$6@тI=㢎GG.SSt!R6`FW:cR:<~_ܢ/O~m9E!/(4գP?;![&GȰ*sF7ߓl?Ր `{;>jBr{awx/SgY.j9_[-;aw//d)u7܍/lD,Ie%mrM`({+#@FqՔͣ;ǕgN,Ttb=<aQ1}pG\w2wXr&ܓP"&( +/ur"1F'1j4"[F6B)o' DQnd4V"bֹQGEƗ 3'+֢mƒ닿GȌ $1dCFҐ=_Ueq=o>A\yKry08eFyaLrE?wۚ8RB*􌵺Nh?FwJV lw2̒S^NOs?{ܶEVC^5!UeiBMCo+]5&`_h/_!>]dO5 - ºscnM[4Mƈۓէ^9"&w\b)aMQ{|!jt8Ģp;K[74R*Ei̯f0Bf27ص};tFT'_YuM'pcCMOwjhΤ1eKU 5HH=Q=Tv=Aкa1g6ܦiu7rAiy8$ӥKQI%R|;$QJ[,]6D|N Y Ym*cq<+S&[\La<}\*W_IoRV` 1fPʃu3֣%sN @z+37U% %Ve+039 (84*$2fYbCM&I%jssH 7 eq(БՈoU6wIQ{x%OOhzn/W|Dx9s67z]"i1Լ7\?^"Tޙ) A/Q(qn- nVݸ u}ߠ*՚ira%LY4߄dk”+][5BY@P? ׫v杮9pz'>L|dW>e8{C?^+i$LK6YipDQף~*"E9>H8Οs-'2ư}«#RxSŲ4YT0lGu9"盦3?M:Ǧiz_Ԛd1Vc,9P,|$|Ȼ@ii]XCYÄOL]pޑeq#Yu^$^ez~^d&= 3G[Y.Q c2 9A0t-q]io]k,$jA1m&x!Q60H\0L^S hN4ks#wHn~b[ճqY"A̾&^O;p.-&o%&H15YI:{{ˠh_7`/6|+:u1+6o\/fnVF"Q?7]opD%9!'_x˓]|! y̔^]m!j(yXe3'//ڃuVr4h+a`dRńWHPOI%zN}m* 4%qJ+U 'QO~<~|W˞2լK. iɚ1I,B-*ccX! f6pG+U%gބ\6EyC &sINrDʯ  08O_̡浧#AoOug(_yJpXz­4'r?įGUx0(Co|~{8#ӱlvᾸyQj&E`:%K(,6=PyCق6E𨿔-RKnGe "#-3c?ܫ7`q~Õp٘Љ%*ɻJ0$ ADVvaے-tdZxԡN*y׊ELy17A0u[)a}S&5ɐ~hG83 QyňspyŕVyK.jdxUgQ>,Y$fSay\[ fBG[Ԡ~Ks%Vw%o8ҩ 8VdՃH}"s,ĻJMZ>f6^ոaыKp5vx糛֩uWeY?4D ])Dv)9L(- {+\Ti+}|4$.# 3^~i>Sy^JZ#\"7;:2 ſx|fW˫΄(y[ VVS5OޱȗjB*J 0?$:aLxUl$ D,Y﫲d*U*\jEҐI,V)KyqqniSgM(qi̘$6#1;I$ .żNKQ8^Q^ײs ,,l{ɊWYun9J)&Ř 0͂5I/2^WžMv*+EkRW'_N1xx8,мzu6Ne9fy_Ȣ`cᇟl)Ɋ(.TW& !PZ}[jg4)Oth׻_ڂY ]Jyޙ+D~l[t{$3I&~ |QvpӦ[Ka%+iI G$AqD&Eq dH/Ve(D Wo #;z;*`p+~ K6P̫:j*AkWw:7k$'d<+amÏ<ClA^?-e :KoBl ewc6hnղhՊФwQλ+Xi* Uv3v78S)XG6 9{&n 2/ҟ)B=!C+6Nu* M{R&jI 6Mܡn8Z[]<Ka uGA9YUYE}X*u@dQYcaH,C܇_sx{cq'~zac(Mr{QUd3ɍhŴFh)FԮ^Loz-+$_S\ki⽺+pXVvICf[k:2h]<|ƽeXW4s{MG?O/.g`וVEvR*دY-eKMbUWYH-vϋG8[.W;3u=I}InF7egtSlbB"@َ12z<~ꮘpU BDnj4=)ZzPGэ:+,+,J6GC!rӣ+,Y ^TRmxobnB0gMYe!ezͫc(=q7(C@Wn! (@ '>wN 9hܴmE®->cd'0$MF}@[vwyOPR$a+/4v#QN8Ja!s2O%}Bř}-UkA*tDm'ǝ`oB yCfyGiU('+㽦 2ټPRb1Yܔ"g .K`#GpaI.Egb 9N0 ,&0Tv_iZ7+WBYyѐ{b-s;\0Pii ZEkE+rsڱI5m-yyd'7fJZ: Iכ:S!Tuf.eVXI^LɑXr$_ 5BrC] .в`P7:Ҋ\dј˓E%oy3eWʏv0 s>)]{FqUHC4րuiA Ɲxi o Ⴀ}g&\5/!$U"%vYI)\򽃲BqLQqKğ^|u1渄sxMYQuiU7( uw`W{AaW'eSG |#KĘ7*,F(X(zZͣfwK͊/\&وo؊k~SCNK\AӭjL dk^?>&C vCk%޽*${5Ed\/y ~j`9 WDlBdLNF?41oX1jiO pџ5{Kc1C?3{M_YjҵZ2P;XJu(`lvlhu+#$UܼXG+TXOw?-oEwl{ 4wGdCbKł| j#uBFXY?1n_^Ki H l-t³T-qP;d}*gn;i&,t˶]5Bohȫ/[eSB"$mCRi/jUP-8殍4i2lqxCE1R'\ow *%Nu&/{AgIL-u "0|}{j,d<3p3'{zFjkW#R@"A !Yv ګ %Pl 忛P]~Ibu-M:1cr`zQfwTj 垔/ãF{$b9_\ýzYcB2idv'ɓ0ލZM,XA;T'v*Lv!*F1.Ep S9O[7M?F?%3lӜdr+Go1.RuŸRT6K5?_zތVcZJ7Y7yD)i)enKJoakn?kU~$A hR[;/{-ϩkߎ_~u!eA~<'ﮫkIJd1FN`.'H(q쑸 K(Gc3'qi,xo#̍lSdBL5عzg"ke2ݙdTȘ'ցXfQcڢ`:Y3 !F\*;?gC>1mR0.>UJ{%W.iMϡ& ,OИd}dle=?ϿOaXU@U|I04ϒCBYIUcn;/@D!е+3M#Nmڳ$[\_˱ܤ6Fފ-yhHA d9G8ģQć=^k 2}ۿCkW YRK̑CMV%%\UA*lšr# y`ILqE-$m]m' ?pݽc}sgbIQ7-uUOx=1z0PءִYѪXk(pQ8Ez|}NrkO]nM%c]M.a˱eHU0LY0dg .Y} pi"!3,aAG9LO3 Mʺ ~=n G61IbH}hj1QY _1)@߈P:ސ ߢ1Wo#e uPV"gmUz̸{Sx`j'{+NFPVj˿,.![K,ULO N-GT{ҍCv$Yr(Vei{bTѤGvarϞHySu yq[B߿` 4>L3\>Dy&P2>l9ЦT|fH&@X)+ e"wާtIټ~if3\ײLb:N.E4ţ1m('?jذEt{I0V"2EcһՅk2"?WnGW.z½Xv+ڦ.5 ,xQQR2JF0UE/$qWl}mE7J!cN#)[glDC퇿Ӿk\ڈ,_h%"aЫxZ[Qb(J DMͿBЧЊ]Cz°ұa&( P'0+a~@/v`+Gٯpk?j2&Io f]TJ) ?w:]rʴ:'7 *]t{)LdKψ*XA`Lc@eD369a'? qbe5 RBx+K)Q7)+2r?. L;E3:܅ZF?% 2yNydӌPK2JFT7lXTzHeb̨4{"\C0~̦\zpwYh'Y ic m!!+i{Ø_o_׵#x$يP#qMlzzmvW4bYIf6׭"+:'XeH^q`-D^ܲ /QpXP$Ȕ'|#5~a58L!JO,|Ʀj7p[dOT{EmG*#tiqN\ 1}Qۦz4ϼ|kkBG_:`cN (q i$SDB7ƶ7mkӵ]oLYwUy1 ms [R)9Y[6gQHy{Jw$ݛAQHtJRroEG,4zv k&kuٚJASV>=LCtVI@"(nJJbZKIߢ%WLnVLvz#&\FuoECCD J ou|K>ok·o),DHp}o@]W??Pw߇F\eeWTi$fjG*2``V *9F؅4:(vx-x9 Ѧ+( q^RYW£L*=wqbh)Umb7 .boՆ %a*CAfy{\[<@woӤx/zfZ^$^_Dh:djRc܂ ,Q]AV('b+~Qi X{ed,_CjfQ.xGKk(U-lH\P>>/\E>jE0}D-+ ^#y/7E$f HJԦB|iG޻ VVvqG0ݡqh#¹^U!dy3.0Ny R|/lee6i{n[%LǰMz<#L^+?q9*gZL׳:d7t]|-ᅻQ*6SIB %z/^sv Rc&g+h;;ñ1*Oh@WK:+S%Ūgzʗ$~“/yw~C 7Hezo.rԽ^G$|ZBH|5[/[ Nbbf>J_ɚpwZFytd(H]"LI(g3pa؏]I[aGIO1am'SSAZIVc+R,k)KL3*Z:2`B.b:jqCe"'x0Q-!%d~ a$.,ϕn!کUj~ [`$. xQGN|DCt1DU2|ZəL^wa"P0pP JĔk LWx[ߒ#d-,ܞ!t-hƘr9i+QK2Kau*iWcr|_-a pޘyzU(}m\#oaȏ]|+m8~^x%C88, ]/ܹcudOi䮕nuݣ?-^-:ᕊ )jp, e%:;4*-YJD4s> 5faʼ %%bQy(,rKo))}WӁ&} k˅7874 =۾/ӏ_[CG&P愿y 4/#}ŮNPŽsjLP~}ّ'ù/5o&V׻ߊo+N_X$8R̉m;,Ȭf!r#]Ϗ~t:?,L`I&l.t1UOY4.[ay\D~^!'ZHTa*x . /L724<o-euuV5lgY>J}k$Nq(ZP`` ׀}[ H# DOg2'3MUr[]tli$z'ҜN8ւ %zyzrn)9^WTeuȢoWѮ /}:*hu訿۶U|-vJb(nFyAnYUW5IJ!_RK]BmqɋE;4Y*Bm]O" QpUieSd[ʊIDVWSJ^;/$s`c~8P]MY]Y Ya~oimB SwxE2 `iBgh{PHW^p;lG"e!P˳,$Z?P[,~{`DN%B}OȀ$7àSd`gY'ʱfEi )vaybgK&YGtEm{޽ew@cZ%VM.xƠԥ`"5 ָkP4yL'nJwi^*笧R2ҿb/JkaC?BDOB{hM0xܺ!Wzp>/~ԦXLEW6O]ger_h]iLЅ.=a!' {j}F<x\G]ۨB"$R&&/7/TjBȓf yUY!vi`(xE#"z$y dO1mr?u<,%fV/$9k4]h+"DJ^cdL|!$&8)KOBJ&]bi'GyphقӆzKd@!*CXUɤ٭ ( ,_c`y\*bLq}bΦzљ_W2Pߴ"r/|N- yV0ӞE[}0./-!A|mԡSy&gVǾcbfm ]t](ý 6p!J`UFzdDm J  ~+STd} YC޼2k[ѓg꺃iCJI(mՋm9&SjY7> ᦩ, +G ZE-M~ȤkHC7l" SK c爲pQV);VGmEU?We*H1Ԙ'vK(/Y\ Ǐ+i9eCe}}ٻg>k8"Tu48mTHzaˠ5=qf}f0ex4/{9BCNhc$nbj!~XK*KX{xY^΋2X|Bhfhh Ge֦Dpq[2Y(缽 <=ZƱ u})S*ԒzdI"_q = Uz WlʦKuͣ"E]]"A͞3K8>AHkť״9y*Ҫ݅.>{{ˬɻVWa s{̃B<ǣ R#p|R"BKY\1Lq0ɁrAr7TӀ4>'ybi-W&BN+>sPp%_[8mEɾDPǬRNg$:^[cDOw[fzr[jdAD]ic,=*vw11i\AqUr}RyLD (^]^-jrMEnZF[;,DEcӦb)sc*-nWfbDfC ZnU_/tQR7-YXYc E,UR+ޢbiǖQJOow*b&W҃Kt[eOIaXp-ú|ӥ0Qߊ8g}3?Bx<ͣw>4 ͙fH+ڕ]60h)޷<|jn1E,ҭ*Cގò \pY5D?ޑͰ֚sGPxZ(H:k-ʄFATu'$S,Gna)km~pqX *H@ ~&-%JZ5v xmѽjVր ueS ąb$BkKQR. - ݊ϱqȥI4iƾ]33?Lc=5&W/& }GShEyb$t F &pL,!R/FrRN&T"kB%і"$Aɯ(RDV#}m]q ]`?8A%y1sx_>.eH\r25#{arN,$x֜` }- y_;`aҼ_q±^Cc]blq$RVpW I2ʩl Y XG]ԯlA 5aqndY{*:p=I[0MrJ\eC朮 eAf.7:(, 1DhSHu񖶺KYxo%/g2@Q#]> KtF}9w;C%55'kHfƗ8],dm LSu] x#d?C Lglt.Be&3b8FEfmܻ%| cw.ɡgo EOA(lu3fāpм~ ŀ+1e.}<1C8ƿ0]amWGS>!aA6DRw"_)̌լIxWd^2֜ruV:pGU:TpVA^1]xW -']P>kkY7yRڼZ3/AN7 I  bh&#Rev(O%uuȗ _C~Kq6Z%cpGTZ>^b/V~W0~?Qc/gNEM(&[Ooۿ҇&k6ICoZ2  wO0ELƳ;Jei277NjZ8zaliF X\5-wm"0=cL%gK߁YƻrAi ̨$%NFgS~H~ n(Y8xXQz qTVR^>Rީ7* Bf]ne(.bWj-CI@ᾇ+t: %c߃+3?tJs`|]&1rc]8Ux$~bw4!4Q;  2YJZܬ1TY {O{x/߹MGlY5F]af̾ĿǪT<ц-Wdu Cn#MXB?*ϲ} p!]tU[iW%dڏU;\J1GMi2ԽUH19/`󢍔W{oOJF9ш?.]J~º5YhLHuBJT%Jg6B+9l:,s\`'*&Y[Sz+]|@qW^/Í++!kջ FYe-6M6@VIѮK~jC 7-9I?udwGr~мWpo&AAUU^G/' Up-I]_1= ˋء/Rx0aU!ꅀK3`0uIT$4Ÿrj՗ u0f:а+)mش)=25tOFPt[ڊL T ig$2jB+hMRŦCYcKҲ}i$"ڻBmQL V-kVH1d^Td.`/72/Ҿi~8#4mzL'p.`Aa^G{cbAEf:SP;R1TuuNOmjhCBO?c٣ ].: )ZTMR {j"r\L{L- j^vT|&rXuez8U%s qFE^^ +4-+H.1VzU d1Y9*QvI]ۘ,ه-1uͱ &^E i bó *x?9Xqs7\ׂ$M~zmpnڸqv(^vDL0,amAP>(I2/v$|&w"|.RzӃ,7;\.ʯն(lx_Qf:B]Yt+ƊH%K1F^=yV )9]̈I',,pBG+YF*h1wƟkq֋,bi03ʙX;Y73>b6|IP߮DI#<;oºZ-5U 1+lhP7ohMr޾L>g*_fф`İmܞݫk"npZ=4X,SE0t$%Iύx%tX&:ARG9 NWB`pPۣDrrj[`R"y[^rxVpQǕ'F>â4 jK&X!Gj/vbs&ӄB'+_";Dg{,I&r^~m辨2%p< zc*+SzWZЮ` B0eUH]^WQC~pRF.A%oz-8k:K] ݛXmqÝ[\/L P(!}wFo;y^1l1~*G "bj*Y_6eC5 *D:C9CЭ`~ڼY`$K~ӡ%G8˅B/M P :Ch76r1 ޫx=LFcP  4Մ6"Ϻ.+ ,Qq BPC w"_ĞLQW&z|=yG?mj|ZXc*'Vuaet•s-S"B3S?/=_I!*$ޭI/Zgr{{ bl7 9fJ[ոXP#( %~+Q+[z!hU0^!2uZBz[ se@Kr"arj״u!ey O E 6aJ2YNQƈ}VhY;L'LMRVtO:WR}MNJtT_WV x(vy=y>-k{Khk4nBUY$ ݪԪAd*~Zˆ_D9|ӽBsjk9iFm$_ -! DE\b^I<̲=S"$'E$T Xv/{r}Jr 0t\;;`B +5d^Bܣ8O=cXT:z 4C$K9Yd&2I,‚uP"kFR(m*Fv/L#GkG,;+qJ9dcdY/JJʺp)ɎK˵Yz:%|DI)2 $h:LjTYFdˋ в,,FK;Niv:q5 Yա56e}0JGZv@< F !n&Z$<9Dx{E$kL%dhk+ J;$zHwd}'dwy NoW{^/P^J(.NW *$2}Y89eoQ)/$\ B@߲"iO?T\"ճ4fЖTIem .j2-ҦwwW*a~r?WEp/yġ/*w.Z >PFzcR]ce&_ls|1m]'a5 U[NcRv;5h,JSd%ge}4+<*#gWB,u*qsf|zY_QTwxB/,O(xeY=Y=gA\.]teצ{8`Z[^N GbDb'D zΒyE:nj*pne[8B3u۝dō%^^b5q\Q/ X6B&j3x%=s$i:PRlj 1XZ_aa+ᅫYD; KĻ"Djׇ9q)&ES҅^k2c?G;ǓuY4 5 '&Z['YqYeI!ܡ!C]Iv9x(Pggo@.I@ѪMV g]n9pJQP$?Õ8~zM›/dzd9xӛ|4?_؍uSӴYnniyvrJF CQ}qvFYac'F5^mh|r_|nLBi$%U$pmkrZ^%>]a`T)=&aվln}ӬܧƲ\jY6Nj̍R2I6m:x$%k "T~$^0G\hpȜchGhY>_k#tne"sHXdM莛SQ>o+#;%@eZ7*i{t%&eק,p" ~Mڜ@hXAx瓒\Ќ. zAR3,XIl#S13³CzńN-G4z`7MS:Y(SN|s_M Om1Ye{^uD 4WdF;;`!4҈O5E.7K'1*y|Wp\0z͓~8҅$--mRRyNTm}qXIڿi|}`U,P\1.&SEA<˶RV1QIEF);m- ?1B"|^̱~61ǹ@J4ͣ3uiS ?g&(tV/R׏-V҅ sP_7!1yYlB&|sr*6UB.,~R<[)LDj7FVXt-c  V`/r @y*af9k_ɯ=@tYh•>򮌢JyN[ se;Sn|~JcJ8 y%$ k ̌cW(Zi /&gW-BN7;xTwJqJD|SMg2{2T ݚc$v5i?WCtX}:xHCOӤ WNL#٢l^nv!KܒX_/UPw (ss^RͯJ>eee]uG(FV/*{Q[^1>WBeEWt |vTYblBL5gGtj7r[ u$Ya<g}" )ǺFq6g)k7='<=TO mjޖeߔyejԶǞZH1F#p)^ 9;j~%9#ox()Ǖ810Fs[W5D|''솫bFiCa)=0grZFSl9HU%sw|3$ŴhgI?m+Ҽ8VZ/0yw:`m+we"a;!Kjx;68͘*dYEXQ6UmA M?fc#dKVxq_Ӎ{ ucB#p^< ?o:M ʖM2E؇{xp!MXW%h3^>LG. *B-_LF>`viG%yܒ I9Bz.?9}o⊄ݝyQ'w} >>9ݻ&:T-}U]oM k81nYXt@Ce@`_%EeX$[?x$e.6,=R Mٶ;tr,.)vn,+vhH̖0y#7) I~kksf),:/ƔZY8\QWﱒ%i$%CF!WnBҳ=ˮ&,*e*<ߟ}6B}4j.ӰR/B`uT#^YdHQ<h4 `A> KlyNE<)tŔ;K0O!/##wp?n]CIPTn c] 8!t٭֏>"OFCuU(vd@@ {u*AwS]g{Tɽ{XY z~EvTl~{, O~UQ$^N&Ѥ҇Czf*Y(O 3K.~|A]YBF,5\nRwuK#z4~\,TdYUH ʿ)?ꏬ3. {gW vęf+Dk~) "&&xT; "2;ؗZ חl9nmЏ}LVm 4&9/$:BQ+BG>.Z,HY|g)txVyR_\>H-11\J.Y\.aZ ʳOrj<(î-0xZQ6mx%I--zh:Z$VWEJ8M׳NcqG/ +M>3P 1y)4id'sS:O[![r)i|TxN}tPAEady(w'5mSIDQIT(D =DI(* !إ_G ¾.h*bB} cmVwErvApyVRl)r:3WE1{t(~#|Q簈dUT?7 eclx 9Q*"Q19fKusPW6P#&/ Z5;#uq|;dFߢՒ(Jbd%a:Zw&vIZIo2/xBn6Q+Doqk.tlnj}t01'(7a%Nʄ8 y֕ &΄%5jBXk6/ Tt*+dP %E\kV^|nwv,O1e1%+.J❰rJǢn劍ɥ֋q [Wy`\1|0$R&kl{$uX7?B_:ѣ@%h|6jɴr蹖ѐs5f49"k>DvRԯzk 9ԓUӲ?}@qHRأ4Co]hpǯ_=WpچRYp̨,`"+h۔v-doZ|\$?=n_c|GW{ ;:78R,EZ-04hUqb;cHDKH0nt (eR-U&ӏwB-I:x;urIМBWPrlu@y',]uE2^U}1]7>ꚺ.3DN AL,ZqfBBK` O\<{W$XxœɓLf)5{?cYS$LJ!Xi$/-բ\Bޯ ҕ{S$G|b 5'(CXN$ w:p6!h@C`uZ"c1G_ ./!VViBu%cq6|`_YqCjBѺ2y'Şz?H1GCB=XxGRv0_FrgHtU^\S* I*Q Ps?Ϯrp}s=Un z Ѕ:m>j ?u٫9 0tCU&:I L]/-'-]{IN[HR&J;52RoV'<„xVBϒ8`ʺ u-%_$3ۭNߵ" DxjX]ʧ>?_Yóؖm]R~M|tڹTdT7iJ 5֢Ib>ƱD07Ro'0L*]:3^ҎnB&S^v_!p~'-O"[S*0䩫&1,"o0\#,h4 _` ~N]:7ʜk74!'g[qv FJ˨3Ǎ";jYYɾ; O%h$Dn@!(B5]_VRtF@Cq\`Gf|Zz\B([CVoy  B*A"1IsIEEl4|e) }xKrcteE-N*; `0ւ kU'$ ?ѓ-$}%l R MT\ˬ*?5h,=em\S~(>C@m d %=/_?1E\7͓ H‘@RfJE}%C94"3Ë?I`vbҍ$DodП\Q(PGM2qp]d( .Amr|yO ~_jmޙ2i!W{TEwA?+-f%y oTΓ 6OE_quO˺ڄ [;"ёHg(]9*qqt/.Wb>&W4 Wr[x&o04ebE;W҄d!Gε.sREov-U߭iuӴϺkƚG߰e8kmC;k>.1Ra{0W  [_azTZp9uc {Yu34gЏe :=a>ʓ'i:X-?G- !0[ g|A2y9Tʻ2L7L] l(.]Y…$Mb7ɲק7 i^sk^+H]Q,-om͟+0l(a%S.l 5+Gz0PKAl?JKq2e`S1a9Ϯyg=e1u:#/^hEa(7 A\$AIwg#ǕTfzbIp{t݅'o{3_"1K;HSXҟ}x٫ċ/Mf(Y"!V6N:컠 u[4qr j3yYYXBÍpRu09M鏱<˟/?8+"ʘ$t#Eðz41\J't8+w*9$c ~⇊} >+O ˲n!RJ C]Jvѐ[z,;*|%IDWU"oVInDLJZd:*m\V\Ɛ 39#!,ë_=unް!)N 6k~!ߑ!IR\LFa*^*1I%83(:y1rIzp*&06J17+Eʛ8OG7,Ʉt uIXr`Eõ7KՄ#e㝻p)*yj6tCPIR8#][?6oDžٶmy)yXba %+A ^*J"0{USB`/?m!lI{iDO#UMRא&+Mtp<(0B%$'Ho˅G:H ef Cdss51$K6]xyM뢮X.稴+畦_J^Mx6;rH=e%"S[E]HPL4r'Jb3-nҋ ᔿKeu"-ҍa~MXW1YY,u?l_dM^AXDWSBTՋteG\rÕ;\ޥPF^| }H@5D9^X^v\^8wL,OÉ4ʨ$ C-ʡV24Y)Džܭxi]El :Ҙp\=;ؿN1A-آ*S*4_܎ձD ;ʮ`B:O Q0C M u˕PƟP"#YU6 Y9" 5oW(/I~G K!2@}/]FV]er6ݣYb%fkʀ҆ZͯmΫ4Lx]*CKPT =NfAUHY rtR,xˇM0V81Gk$(I:(95ZR.),ҊP[^d]D&yhMYr^5PR*cJ-w@[8w9(L~Rݞh*֓ܥtdYXNGT.@޼a >ڶ~鱲oAǚ}ǪȒvṆ=c}c)NJ218Ó_Ud)BpcB!=Κu`܅b)ID|gM '}/[o.CrC-.N9NQ[9@jkm/~iO>*p&75 ƈ\kbs`WWܗ}YqF+/Nm2Rzr[QEpպMIh]P~AUvIN\!)w3󂔎Z3}9¢pUz3Q]WCb MTHQ+tWbӷB\| KaM>B,L?؈v2]P۵MHeF]p">/"?ޅlGkyH [n˹2U|H6.1" I8mAXLc]LVMQ{ERgXAa}w3ǧ:7+ [HW.XIifcٻAnΥR{kY]2?./3Eֆ2'"/S?r}&0zN#,o_uIZBŸWԩd]e4hz*9]@Ϋl|ܥWF>ddiFi.ku4s3c,%ɺ ftf9Xd]VFtmb0= x󦫨C\nMOC=k(P.2ܟt3kOs6*R.yra sZYOӫzь8>RC749ˌЋ5Nq↺>_|B ǧ7^CY~Dβ:ioCM䲡6Y&Y4^"pJn_q.vZd$ͫv/ԕ霟<ڼbŽQKѵ]}?%ϕL™$i|0#Z® QZy8߱Ĭ\)q[%:skILCOnKQ6Y)g5wųf]0X@8P+[ASz%J*Cݓ hbZ7tt\~ݴ_MvefՎlLx ^*QzfujSS2k shDYc?솉I9-NOIߟ? [^40{u}mijUMejb^iyV5?Fɤ D7.LWl++џH8)d23%̭3]$B-keѬ^m0H\F#Fh@%US? G^ÿ8npa4˧~|k_U/&imPQy@m_Yj=LpV{%dY^>Rft.oȌQEGYTpB=RXБ0%0F,CO'&v硹.u'Bfld34a\:GI O6RjR@Wr*,NȖՋ7Byӆ78Ǽ?| \98& r/֔IŃ7HA+)xj!y%_.od>{^IJU[6ONBGT٦2\%l!vE1-Q\@0Aa܃X pm]?*Y}T ;Ͼ'%,9~Sc[%[Tic^8ҋN}Jgl3VA/k|z^qBydeK_Yٖm8*V/Z`#I`Ni/2+WH ut?\op(ntn,yG[I&́nk^wtN1 0Fk:1sap4U3w'/xy2t>e{$XRk^i q(X|٬.LeٖWez ${Da]3-Lv/8cH@ wΰL?"/.ǩӸ{]#w^|),. LT! Rrػ12Ě^mA0&۷ᅤǗk S/=M Y< VzUVѐ Ɖh{}B)2MØ~U4TܽMp0 qDGNJE2;U2`xf"&I.LoVV?)oYQE%iѩOi3Z5Ăag'-2ҙd93 6~r UZ3 =ſZXZ!>U~"Ku·ZWn YCC+]SiU+% UMt`9ٸ|\{RITSH!/K]ބCڵƄ6: 9L_MޏEÉrGkϢS  +=nqqJE;*Ɔ|o(wDߦPLtՈuah KcʨGyvl~y;YU{zҮa-Ls3HqT%5,;2. MS)$j ݅' h:=^yqI/5;k(q}ŖŴ%i^) pj aR;-uc7qwo`xX__UTuW|̣P a&dE!B/8,ߏkzI.1:gH[o KtMn,-[i{Ks4 I* |&;OӛY ŭ7.D v u.ʴ7bí2XPF;BǏ]GmdyRNvi U6.A*T^#S cࢫgtYAMrȇy^2UlY6[RwOrgS:N&A|7d/3⬥>b#n~:ex}4oIaC!DWpD EvY&3O{s+Lһmὓu8:OEe[[AJM_JCY18) W^,yz-96Dgp,g!X>Wo )I>S~\M$yF X2ć;hpBzȌWRa~%kt*\hBN4eDYNe8_!ߪ2Yţn |j*#H[u gbb|2m9BduO=Ju~!GG ɘ8% ȸ\xDv';٠S kl"9IO`nzfjzm%% @#-:-hI6s(Ki+LEfr3OUYtw4W ]=v%yMOx?T9\Y V&\inYT:k7&:QosV MY'E_5*A$fdz#6bW_y֚kݰ*ėyt!)EL ,<&jJ;jvޡ;'9\n?Xzxad4r`-Cԥ0yCXP Yvr?ZHnw}dɐ*a㓇BFd )LCxT"h l`:4ɑ| 2 o,6M4xw>4_&$ gVU]RHm jPSСV Ea 6 >g^;*sf8VP+,Yƒ צ}mBD8is2A ]EqG<$)ބ ߴ<л~v!xm6m%5+BcRia\%-" ΅CT vO j}45M1q+Ɏ0᫾ƘyMv -֥0W&5J579bCoE8Đ|0ޗj@EJ.4v~o*)S bn:I.uM3.hLEP*Z k<aܧ+ >09K9=o>FjU]DzW,C*!$my1Z7{Lp ls(l`IE*1U((Eې|;Y, O^B+3̛':_dЄpVOsOl4>a {\¾Ll*™(IU@v(2jH4rr&*Kmqf;fR(r_VsQsmgmQ'ǟsѕ4ֱ+IIB*_;_ XO\ r0"{f9HZ<4M W \yȒU0%Fe{!Qܞ/<0ƒ91Az(wyC_.GS7'\:tgLEPw%0p*OoC(вnYm]{#DcWu-AY'aK֎TȋiyEsNϟ{#X_swdn+YXbL(3œ#U$2:p u2OFSxa_c Ɛ8,=K}.2UvQUj~yWJ^Rnf_C7:bB]Sy#j#x"U`f!q#'_myǯGr]d,ɳ ǘޯRW,kiɩ%](t"/p麮umC؝!;y8 Ҋ|.6l.#,ҫ+ʺJ4 :( 3M;x^Ocm^Br["/+:22n3GKfo/c65aWU}xӆwZ$}C툙 }vXXþBXiv m-7SMj*OH߿V3vҏ)÷/YHR6D/U1Lp7٣Uxjq#fCjsw8xuk\JѴ.o_7*oCB-)s:Ϛ _x _h(©`Ý9?*TS*|25* 0$&݃d*3$tLOLm\wo X'oe&ׅ^+uҏs]<P}2u$?KGk߶ckS fSadOS8HGh66+hMV>%޻)ҝYq_0k90Vzë+m;ip켚GOʓP KY2bvE=J*j}'X9v\n8X>ʯ8|_̸̆ӂ6e5َlwWEk'qA 8dkHqo=e7˭kӃ'^֏DBIgҐQXJr$ՎG(+F!&xT%)wiHA h >9sٝn^-$9 `z㵅v avki[$DRv!xtQRO# xw n YDώs u_8:vyȪ9* R^ ptB/XaȐn|a:2MBEE*OMSHgݧ:? IG,L~~Ֆp7(p2DQˎŋ'av"8=(~HA_V)<'ӫI.0-mf8!%b'}0Zߐ~pGv2.pxQv,su"p/k8L]LGb.<k"0*C/e9U KL- '=[|NҘI %yrvD`iG2RXz}M.kBCLÌKLg~l!!Z/݉ʯ aE(xV"I=oEy2HWu%MBȚө Qk1|"хpF%o]jLQB#aIo,1WP2oFvUז]r R3着"c~%8Dw^Iw\Pp1=)n`[*nkSY<Ʈ/ΎKx>g1ھ_bu|\'$7mF.P!'HQ{տ&dz̦kI9Ǖ97r}|^ p M^"~Wzt-kqxz4p H+*6z{AQKɿ<$1";)(ƘSZ)8D;8;v-^rk,nkYM̯ +~ ׺UC(*5$#߂n|P'wM&ü. @[훆;Ρ]ydo++ CH+EɌ (4=1s&:OBqi8IԉlBNIxR֪ Y;~Hhꑑ֛Ҧ+Cʲ3O;&˺J3_euU$#̲-_ЯDN4lbYc!>%Y'-f pj~s" />C7kVv1~5VN%TMU8BxQ(z`ܱ$G+۝ J< ˬ_WVhv$eZt`5^?H56gyބ!3BZE}E!@RסZ@b+K wD׉Mas ۝,lL^B,1ϊ&c ;kc\Uf6B[Dl$Q0蹄qG,9ߵ,E e n͑8a<ڇWM,#nQw*R`WA#F=Ҩ gg3 BĻ''$X%~G*)kŲ2at'\pcTK+WQ ~}9e 9 k9ɘ:Z?os|JJ* RIPv{B[H]ږ m;WkP.ICAIl9 ; OL$QQ(5~70z^" X◧c;J6GH_ $NJR"='LW.PzE*mV10]2/H: P/*j 9VHg1 A:'8@7i=Ok eo&㚗}>mvɒ:bu.[A7̀]iHQ`{_nYn֐寳 bUd ?BSw&xLEtwK|~=1$zW`\Hl\⨝Ȑao}BDUaRDHh 3lXhxq<-XB4, G@ $%^zV`;l~ErsG1e0=[U"_]q/21N:{꒩&0I.˼򲽧7C/ˣT@d{XC;IIBz"7Ũ("js`!3^͔# S[Xzwj^,$ɛRۣ) Ƿ»Z>)qIb%i-cfpkM̤L YEǏ!ӁE=1{i! a*T0I$'qH18lfC}qoDi̔ÐM?;nqnQPa\`hw>9.ya ޻eHgHt'Wixhb{GgɭU$8RU*=!L+`HEµc4ӣEuVWMycl^bel+CΊ%.ݗPC:׊B_Ǒ0xˉ+:ouev! {Jky5o6N}WÛvæY D|P"f%1e]B ٚꨝ @HO+})e)ʎ cCߍLSV>_4]=귑8V7 K**W1yd*]bj,"`Үc0^KdgrK_ّCϧ#,ކ*kM0j7-NbMqE xL n[x}6X]>ˑNsiQ+uSݴ8N+*6&Ϟ2u}Wo+u'wdJWr7}.7Ax)4JL`0J#^)5ĩ{\ENj9"VMŝxwEf' di+$Xn6nlk ~##R8TMNUЈӥ=(g$c{ (*$T1ԓ3(~vS#I@9Kj!ͿHJNA,Y_=q^d,+ԑ+l]vpŜ6W-RUݬ&%߬TWL!Ģ`0&SR5+M{LJ({dЃz\Jq\̌ˇynRa:9:@<,+Mαčp2}kQ p`ؘITR;!U[-c;z?=FI&_/bD0!L.䘔uFkَEM5Vƽdc%S~b:&7'sYʺݹy%&Ýg ]uӫ2݁#Kc'Y℅|8hͼ-dO;9fxNk~K":H']:Z5 Ǽ 8@-0jeɹC jHa'yt c(-4 kH»4I# ,rCj eL}%eK48԰ N9 {H@m9&vmYɴ/&dstwMHwjE^NyH%9`"A >Ȱ0[~u|Nc#b@Vؗ1bRq qwʼ jM"y0cōK''^{C2X"XF?pю,N Rr6]uYu[Pjbv|\tUw,eS2yJd`0f_`a\ *D6Ci+rM*>{~mSsM~: r@G[wgw[Lԩh M8d=}VLgRK%jv%zgyd22#9M&L0N?|XTeb)ҳ\Cj2:5&8C#CO6eGvKdxVͶƯeGԇkDÖp6_.*mfW=0Mm,EWi,CeU yā_,B/0{?eb_EHyH$_t9HFQYpksDk`C0/L =s)s$J*ۺ!EX@YöXI4<)\J1NtVM kJŝbF ~I%mM6jZߋnt)x>523`7e]dB(Z4o!% rmP$pmHM |ܑxI$CNɈ Uk? |v{cȂ?#j%I5p[švvsGas%#Bcr߻Tt x܏1jl?6ZSiȉwNߟX^}sU#4,+tǵ8y/FMB|'>iXO?+^La/+|zLywډ^u.UFt(pNkwT&O֞FZhwp4 9W>\x9̅x |(t!NX5c)$r8y&EW/_i% n%uq^PƕREa1BEN)IfuNb*o@#s_QhǢ:U3[pƇeҒLJ2.ꐲ+BfuVXMįؤA׍M͹suV7ݒᾴ;cSޑZGT*ɲEƙ 7^!tl񔫟teql sݕ\R/WqhxM""Y?{f7[WWI)B*8JwxwU*6RQbdiq 2iڭ4~)\R?+$3^h K0Q  vpVUEr~ p-ybHu;oI`L(>%KE[xч {c͆EM-dE$mnR [?3գ r`,\C${$0U&P.eE9?^oL?L?iț,?l1Cg]nneɉ$I(h}Sc ewȻ@𘇠tX?G W-փ{4R}J{+촨:nW.43߮+ӣ_5a1hשTb3̳P_I~p_/hCLP`*3&ߣa"X]SԱTl1 0/Ypr&I߶5Z~"$ p{Wz9L9%b|3;$Q$dmU4Ex][] Pu޾dl'sPk϶'1ܛ8{1Sٿ/7*S%w E"#p<7aΡPD ywu%ڥvN%$s3` 134:~gUǒ_Z u2K܆dMG)UX݅<)pќPUmn`r,U(CUd_@BIY;G/yY"}0i E4X|;qDNIYXjU V$q"G*s`pUwO9ѻ̒׏3.adI{4ԥ<"~F|.$/bzI 4eJ$;]b ]]rGxVJ9ŠcR`fZidAП4Tfyj^K2Ǵw[ c~~ShW4]0ݲ_CLU K?ŗ՘"bI2!| 8ybjtv9 W2#eM@ԝiBǺy4#9d  DSҺCPL0DJ2U=#w5wolMҎ2=ה}\pl5& U,֢dW`daSO3\oX@:׏V6u- . 5]˖J _\DsyN}D%LS ?y>̯ L&_UWQ8\ˆxɃ%1Fs9EjRQQPZ\|,ElR(OXA.W+CE5a'O/Ĺ]{I,*SesiB9$sJpmST`C9:WRJIU,ĪqPAT4Dѽ]0Hw.2Axl^6kn޹9}]ݤ!jaPG-7F6߲u}:PW8\n~>|̉rk@BPn$N$ʔD'v_}-(?.KWWIʐõT5+S4 ZH* w OXy8m[]TUn2@R |E%Zǁ]-2'kbI)ˇ"wa~K3$NXR=lla"$cERN-sl5hc EAS a#+#:wNs?ϊ+$vҺx=z8ӼnSKαBC5wXGDRbzKj Ji#D} ()K3{g',>Cmi0Ov !ӝ Q%eW?mgN9PwVUʎ";,更0lsL̪8߫YB>gwX[W\c%-5ZXqqiqr6R9+F$6okzg|ՋƬPU.ƌEckӵ4U.=X,RZT^v8tw!s9ݡ-63`ťɻ*\I,T ̄kP@'*xI3BIcm&ʙg@y#],"G0KJT+eKe$fC uSηQ;܏30_ ϴ _̄eQar6]!zWH9d{Bg4R, J혗.d}W2ɷ{P*hb`;"[l1ŽC1H@<("ek^x^3xkz2w%qqK^VsA;!n `ۅ^nyX!}Uq"E=2 '-.BqBbI!r'SJ؏9PKR#~2Fq]Y^$!tMڏ'0L]ۏ?;ȟ O6g_^xWtt]͚L-b\p(J"65f@lXr$֎mUP*bH/e#SJ\̒hcԖ%ۼ8Rry[cMH RVEA&cS=RUnePىBr5peοO I~etg[a[N)~NhB}6Np`]$2?wBZȐC5i5SZD͘i_8?YӔI~)yck0p/ ܾPGvU )`xK^ YJwu/Bߕu2ȚoNvU$X٣I}!/2c^6;=uq erx  rNBOJ1>]]Rd=5% Fʘ%¤药royW?p 5&O+Pw8 *#x*6RTJ{VMP/*`;O2hB(>PYIno7嵮Ӻ۔"Kʐ b$حUE-)K('.P{N//ˣ$r^&e\, eβ[Pc֥4&鶾 my䰂V5wF ]fk[2A9ҿOh%śnL3n u=ZJd7dT1{RLwo y&p9tӳtMtyRcUƯ++CT:rΏ ^xk!Iޔ?<[nmɗ+ao\$9﾿`])]rT b Ok"C^^Z揀grWQNԛ[!{ a[m&_N:9x+Slnu=H z&)W8|S{i"mya.2VgsӕSU}% _bOLw$΋|Gj-i CǖEҾ߱dE8 _oo^)7MH dAIp"we{ D"rQSѩA"JM уHꂻ Rqe)SQ6~\H"nCT"xS5({7@\:yWH/}.od` k։W d~qp%RFfbeل_*{a5BbY U*c5XG2(3R|V^MtxH,%Z̭BꝢB}Jjj%Ue)=!qѐGHq43tOW7=((oѴ\5kESoBWC*}SѻNY~J$9]7-Ni4.z ?߆z)]W'ۖ1U=uq;ƹRNdMں<eC;^ՉkLyG+Ti8m$+k@Lo.@VJ;\q!Z ÷5d0c?!؄x]ZCxr˦#'%EO.LfRUtEGpy߶)п!}͐:+OA15z|MB*آmp;vVV R"V  ;Kwdsjp5r8?7ƆI0oA> I'ZE{w%K{l9F|4{)BdVBd+M=^h _~ Z(<ʧD:G Ο 3q4eB.Y]0H(;S$(Bwc4Ҭǐ~ZPUDm8RX@d-s"]" sF"ap3ɿӱ0 (m\q\EN 1Ո׃B !4gMk4IB0%?lq|6mT5&SDֲ ^8rBsX9pM_Ibv`;.Ԙ\+*>tuwPd4P Z UiF )D<&{lDn|ﳢlQ ESO&=!I/ƢP7q]@h%EXS"֘;/U0/Jrgo{I^RiCN+It|Z;Wjv| ׃y`.5XIBY}a5>(d]PƐ`Nc;:,^n;Tg~Xzi]ʅVGZ1,k4ɽ^WeVH$s;1$` zVȍuHb˜K/Xԝ5x\ɢU(Q-o-cRd{K7иڋIfLJFRlX![ 0|lӛI~ 뮖>XnL׆2F!"mN*MWE"8OJ|v0Wk>!ݟ-"X?^UVUY'nu^aZ(D 6raV0MpB+%*˩ɿ!o5WݯuQL܅+kzMLݐ~>_1Z|[C,МX ,8JThJhT|-~ae<63Rb83QdW614a4Tc{P A2"\Y c^D$ڈ+ʧ䠪7_6DOpmưLN~Ylm@”ÙWD:ۥKaH <gG2zefU+D-M8.}TvǜF5:;Ljk}LM:M i\ȥ C)FyؗգZL:XGR=9E>Ľ%ͰSbxl86V3J0eQ_X´9q̧rOgcǔ4@tw^!g*a6d)=If}F|\/9ԟ6} ޘ(M[$EAntnAKeVeUr$[+Wq<^PvV灯(ofb?7B^VEjѼ5\2w\FDjgG?υ1DF{ ;%S蹝fk}MS={LVI-BM'WS#7 [s'D~ΝԙKHyN9r֞7/wKL T,LGǽzFDB [[IKBd,G9Y$#2X*;qb^ӒvLJ{.T#=,ImsE^!%ܴv.:FI?hOK\/^;SGK c~F!O$U֥$> \:o69Ol:L[$q`WYHCwm 4__zCKVUnk(8Uv7%$ ![NQت?/kmdC?a1x`b,f80Iyizr?/$1a9"(*v ӸC#+*Z,p"wyd7Q~(*L=ڕC%( cs%@ezH%?2MY1Ÿ,m*"e/mTIZ$/\' 0Ss PPPieboź $bJkG2ѹp < W/3Ez.  ( KZ c:tRĔüD~HTa|2BN?`$:i[FGJtW§4&/ ܥNڽs.Ib[ix*ӀW7ۮ,&gBVdlɯpt`X)OF#3=^ )@o^X-ǖ11NN*%+\H4m|@ HQJ*%eŢ kFշ~YYzP62ҙi^zjTrf\lOQY1nFKew:&>#.>eeB9$%/Krפ12.wvu:r 6b7AqxT$ļb! s.%Яc.4jQBA/ǥjW/Ctp{55ㅦRy' \[Sצ; pyszFl? g4xaއ?gZp¿3Qn*//%ucX|9ᐢ`j$NHCc3el:@C:#, y^}/E(ILj3F;9yg#i\>n| L3^4J G>ݷ~V{zʕӌr{ ZZz\r^d2<-ȗc\hޫ!669YӥipljC$FH Ϫ5rT +DS*. 6,p<TǐAplS+fj)#WŤ.+H&sX*CC{_GKN¥L+q֛kaLCbY9Hiº]܆D z!@Fx#yx| mWnw*5c(G6U<x;i7գi8 4#P::cT~=澚~zl}VG7lW^t%&έCiCD~ ,_zzIlH7g``8JI&}rr"JQ~_u\YvxEyu:}TM4O+$=iHQٶ57ujM-鉐J/nw%Yp,W(|Dd+[SĹeGeF?HDscl#tƋrF]<Wqp]! 'w'hI+䛀eP N< ӟ&~}O) doL=pܤ:Wd q7]wO).02j92w@dʘBi8Axl@c!C㴳'T8{@9οLiVeل%XFhw!bHvP]a\wP{n7\hg:o<ѩ^ ?UUr|`P(y7a1/.Vq f%e nvϲ EInY.JXz+4G2ûB/)Y^;;VJ B#g)#6uO~¤n1t~MҵMY^ V%@DOvXp@Vu]溽cc+po`!`_zk/IdU5C"kK1[Y{j om$eZKULL 7~~mr! uۛk<ܫ$v quF\,][e0A#ߚ/"K =e%:Єee! 4OCʠÍj%'$i~LjUR[eի;M]$øL~&w6]Z߻{|=ax ͒5Ip"#.8T[j! EoNV 9+Klme]|yxŻ /\?2?uWdF ,`A~@@L?FNYG}]h)§ j(4 MDگت=^T)ZcGAi\ 5Y5^xPz⭦]Fz <9-KڥQ/,$Ol]]ѻ^ Cij6w7xяJ^ڪ-ЍԔE]9h#b&,]`VDyMƁ6vK*.FcBY+)Y<-buNM{vU_)xD$~|*7&Z!GJ; t4i!uY5a<sʨsԂh-I9|:Rq G~#uZp1l!/Rm]'cx4m~H@g"F`I Y|g!2ˋ.oc+U#KtRnWjP3Q5 p`iʘ\}׍DB׭vDltbpG(A65Dp`4/@ץ^o<5-ˊ. XA.:YQ6CׂGT֮4jFop>2 %up,m:6IxbɅQcaU#ULx )G6 kAw2< {Un8ISsxA|B$.y \W#[P4-#:JKJhQiqrի{(gn ]ayxILag|. K0Kq ,FNj¶譻Ta8>sK:4~>4EyHnޯ S~8ɟ+<);#L1gu'[qN+ ੯7'h𓝷޾(%_&.2c?~_`ףztCx\2; /og+*ۧ|cX(Zk>ZW1GYZd:d%2:_`%%k^IeɄW4mnޣV8HsF@姸&,7NL637;A_My +H+ Bp X `x)#{_?c6YB]jZr(Ô-VгxEW 5Iܷۤibݰ2;kM0˩Yp/eӤ=Ю2Zh'e?GBUҮt>IgІ9l!86|x7Zk%YYʰ@ˀ b^#b-tFZ2֝'ӾeǤ& Qc1]^ 3,xhK54~gG`ᛎnG&$ZeP%Nj6Yyq]zLY!.q_ S{VHxeLDc$+Ms-;_[XqjV4˱8$1!O &I#䕈$#z,cq,M>4_:F;y ID^|ez[S2 SeLBWyp^^ 'Y:;uC>{ج6Ԅ^#P/& I]vQLFfEΣ->W"D!dqUc㯉|?>[~+Ώ/Hn"Oh0J(2FJpv"a o?aRhyMa:r|O"m ~/y)*8C"*Dv(xޓ&D%ʚ:s:6>8ユ |^ )ecQt 0,S?ʮ҂j2Z(.fc!r(wzx˂-KBΗ')E,\xF]I盁uۙ"\-׆Z9鲰!aLWݤ\Oʓ5%4F>^Efڐ`1"8>7Lyo{hWƜm*Gm؅d9QVŀ;(t=DrjD.ȱiD0|Vzٻ1?8֯CB"IJӔJ#eݒ&o:p+w\=AO$ @5kLj_[:sY7oNaCmf.bMD'JOٙ8bjшc6 'zH;xog|0eGה!PVb'Q`GUh U&X:er~4OG{햶 ~_Qt<4E=Nr)Qp@ąBKO_¬j3!ѲBJ9,b-)וZ+F\bawY=m$ҤwR++W8jݥ\;WU<&$s3S 6 S3MݣaxQfyMHT6h(ZX`SJ(CbXJ"9~LϥoU[=e>;y`[/ӴD!gUHɚBSO%:r,d8XکG@)Ӥ4¡@~n+Z5Y&Z/ЮptxV BjM{O3ȈMBG|XepT}179fqWan|)lﵨa)SHɶ:KBV3CaWfx/^ J/!S1!N-:Ғh/kP&i7K?cZ,r,g7^~gLw]̋]Huyʦ[&ѴddX؉IVbj0wXP>=ˁ^0S&pYjʼnK{DAjmB^^+:c5KKJdεΙ>JcMK^pEdaN€/VHU^V ,jEg2u>Ց2mwVR+75VjfuRdS΋$ B*>!2Z1{L1;<Gøȳb) ʗ--L!o AҥEB-%oIH4V!gO:HI.f Ї 6ꬤo&#+(ʟ">+[PlWVZñ7ݺ!-M(B#E*H)b0xdXnFw'5?5sEjΩ&O0oa*owP$ut`8{Soc{K}[MmH(B,ũ7Z0VwbDHsXy"׃..)ڕ]%3Xh5R Z4$mX#n{cxt;E I()UIp8Z`tG!{B-*Q:Ef´t^˓}<^JTIOކS7 ZRe𣱧R6tWw= ˡHăЪTQzY]q/ur#͜//L]քWͪqtx"+Ga'XRX,d8w0U33lxSHG}?;95̪.KrjfJpK U ºu0|t.tn%u2~a/*lW\6\u~}ҸwC EalY7ubjNaDvȤwTղ)Hp$3sO$Zτb]YeӤK(DA) $_ک i!_ؕ'enXlkWpu:icG2dFH;Z8S'8~u%"G))x[z;*kaߴdF8,l!5L:YDު7y>P5~}l`߰Wsm#]RneK<:2I C}DіW=9#}i D:#_KK_cy O _!|aJ%P`VmtrZ#!ƫ5bPKѹcП;~-b勻povim% ]A8JW˔q3 ?,%dʜSL 2-8JU]ak_d!/ۚ Gl(b9%'&7 )癊VW%$O>/Fwd1u?>ԊmCn؉M7i兿&^%/W&!QW}&Xkzpv[@ mWH<̮D+R$rQsBI#zEKt1%/9ٙ$hƒ8tE+j9r~W>ڢ1_10Ps"VLu$ϰUϦo^pj{hOOznMR +"=WAvՂ+#HVcZyM;\q=: 2wpuv}yȥbYCo~:`Je=Tb.%59^2f˕/ZMY$'vVxNFݨ*4 T~(w$kbέƅKuPx\i #Ӥgr9VyoazO^e5 v q%ܖ 6ȻYB4ﲪ!H q^_9Xcu}L W&M>x&JG䬋rj/Yl[\Bف[o-\q> #8< 5\ICV^V{), ,ڌ*FXSmڥc=r1tZ8PaM8IZ+/FY[ewӼmUx/03sIbDn kQdF "X!怷HcO0_cdXX;CSViA0ـ8^DCtzŕ w--x{\T~]:\m[TsA'Q8fa.ŞSJ *>9m7}P7'xS zQ!G.@ (T⨃t[ \Cq$Aj.QCI粪v]7`:AZM^ ]hy%̧ }yxX~Cϫm[6d|9ɼ {?qU46>s0'K^a-UbGуȻ z rg!P+3|&ki4įv1LU_ QϺtt+]z*va_N`Ha-.{ {^Gr!u%WdPI^]s߽uQωBOdq$Np 4!Kr_fYˬ\G 9+hwDlg"!KbjXo!wlgIfM<2b Rm!LJ2jZ >Ƽ׵ hdM(7s;ppE#1CCa+$^"H?3_y "Ȋ6HJsR'R)DU#$^Qb(CѦoPz>{JCh14ӑIVY/9' GdvcHaLz`y=-&+kYuuSq[5៕g/xll$IvQ!'/A*5."C񐅁VEPU#rJ$S>r@,:Q$!ɓ։biZ" 14I=`c z`LS>wow Ij2/3/m(ߪy|ˮ.=6Vit>W]:I 1Pa'#5>-Wk]pP-XW4uFЍ2PCUc/ VE8NZlJS(vx:!>ɥ7rثX4+Q}X:[D3Ww yD%`}\ZJK0Z΄̿)>񬟍MlZyO8ʊۈ#S- 2c4",jg/"mSfُ?nАeE܏K<<.ntH}rmSMƴ%ˑ{Z$ ],)tJH8hSt21ra).hR~ALNGb$s1UL%7,m%ߑn1߄}-C(w1pG;KdIA4^yϱyQ sE6^lDVaed$Ď9g)뱋**EO8<82de1DLF~Џ؏ aY]V]=7(c~*93+RѩDڃ{TJPy?a,gPp奣eʧᏁc^f5^ (=t$*C/hAAv`qwmRA]>:E(9ZRlV>iAu-obS|mx/+|(D>u2SS+jSeAe]$c Z['{OTWizQbI(0 MZp}!qFzTB:Zsћoe%9egW=>$Gu] ʜHuwX!dg/>7rB n߿=yy]>8J!?&)"J`RJ8:+`dHhzMLz4exusQ?ypT҃!js4Ouj}%d0{͞]6s;=#_֢ 탸/ 7jsmkB<ƑGH 81 KVʪj\7ziQCGuBecBJ{+f%<.מo{?퐴KSZVYv zIIY]y'"+2ζ6RZEpGۿI@zj:r,^hGxNvȠiEoK,/a,v$!>LY&Ä%'̓NkS?Xen$udˮ:@U/V?qd^:B]jyvEr䯣~ۙLf41$m5Hv2aIR0Ʃ/ -̞_fqMP'Zȥ%UognG hV+hHM|]BKGʊ .eDĹ] *%ˆσȗ8#byC60QfRWe!/Y(JsLNI|׺X[ſ\7kxnrD]^,Շ8-Mo_0/Ǻ%P'.y˺~te7w])%ɂ`蹪TkWk)JwEI^\5)kbjXO:yuEE;b)Cl+2]=@>dZ{u{+͡"G/Ӵ˹O{} xvܕZw*f)m"j]8t9٦SfU%Hkr9\ɶnCU3o3YǶcxeHWPnIS@++ԥ2[+_%)\7 ْ>]!_F 7GatDJμ](ЯJXԷvšGQ+ :mpZT>S8 Hë%T~ۡ4+ܼlSMzNM(ZZbtlk!,Lh|Bm`R4 )63R~)۩5qbP) MԄOԛ9U'K!AE mG `ix$\2xQ!=z2)6jPzG=cFSFe s]֐_څ6v'ܖJB6ţk8K$D:C+rzwj ?F) G佳;y`)C&i$%\h{ J$+B`hkb6N2OR IBL iZLb~fԤj^ϱ,+,.uG&uA04?I xRHi`Ra%UB<~$H߽j$8T)U+5çB0芻S+V[=/(4P%RBw%yh FVq@ '+,&9,39D|XS'S&~DZ 9^og>|xN!ԳHEJ '/눍/9Mho<V'ugz,:ڄ]PVU]cBnV!\lq#igT ~%G; iK4Oi셅c/t{%{QaF0+\)~qq{V!(:{zJ?Nf*;~dm|>4O>MƓ 6V,eh% Zl uK`z;%\bjF, ium9WtH K CJ|+Ou$*$7Cu8PC(EXg;_+YՅŒ1SNG#+LE4 jE~zq'OZcSeX7 Dt ;EKe~L( a.cR:[qI&pE&T2`H(2KD:c??[aYqXk@÷P6od)V=l¦NqQI#^ԯ.6'w_ XLpߟ!r<#?af'Ly:UYɠrvY艫Ytp`F Eyl_x|)mA*"?cnܾK-m??u0 Ks#/Q 2o2I.!E_ck&y)3xΫB%)C1FDuSևjh^7Fs%d&X|OXt([Y իU{ slRT-X<7w"c4܁lCĶ^+B_KӶ+/2ckG[V̑Y୼v脣Uv}hSb2ܝI%;H’L uu޵YR@+p3 Iڳt;\qSFqq kFr_7͑rIu5X^Ƕ ;)uh@p̩!%QTVy?go6Š9{1J XrC$hIFmG|n^0{P8` 9:G4jb?ʇ'^RzӯnNOc>IʐumC:Ee$+ay=O2e:,ABK)ǔ6^ "H3w#oڲJ ̃F k)0B3)Ѹ-H!),T5ѡ;F͋$Gb[2C?ID"$]9Q.d"$D72Ke>ÂeWzt s=6nbIoQy(,JY5V6K iEoY)`+bszz>3h)._Sݫ[RfθT˂HXNa9Gd`쑙e3ړG:R5 %{Nngsa?kzi[Or{xrɈԕu#AkaI.IG@ ~P IIV葬T5/gQyr<]R`+走S& x>c8-p?u0JKS&]y*}t5qQ潉BaW,;@H'J,ɂdDZ|l)a2i'yW\Hjf$+ J^aG2̊ش%1r!G BW?@Ċt{zPcZPi5^/3 >n*.겪q&v,iuu!$jYm$K \yQ@lxa̫۬1ϺZ&_s/ihA(d2E9ϛGR_<#i,1fbfŎ3Yq 8Z"%jLzknY^y CI QgC 8)]ՃlA&‹IfBy˯X~u& M*V[u]y)KgHE5E/S* `b߉0׿?3!қwz.e,keME^XVRipږ&^QHP(!t^3vmU8O=$Q[x|"Eܯ83ٱz^9%"6ЪEaK{[숗і #6")eL?S(y]%jGdv8EHF1HƥrU)YIڲW6N1y,S"C9^`JWNv)`ȴ8pr[hi^JLyRslQ^Jΐȧ0IY%~Ij=8yJY^VX8[e8vV=5q уfV//JtAF#pOx( هrQ`EADД@T0#PYpEn %)Ȳ̓2<}n8?iMXII+b^e8\9Nn ?jN]Cq nUIoNr%vaw! {1 EOw}! %O HTз Z .-2%?o~b,ۘx(3O؇Ea`oB_]KE,Pzq0YpHFj5&Ǩ13!.*![p(O*Fk6a]sm@SJ+"5“+VeY}ou @A.F1YzV%Uc g] ޕb$LLge`O"w*unE+][bCvˇs/JkLm8*d* V#|x*\¦Y'l郈qs+)F ^7ݦ^B9v,fo!Hh[yf#+$#۟!O>~8s ):ZdiԶ< ނBvEcx9fIk,oH_p>l.doM>q Q/ 0I&B@8o ])U,G< t}l ;r-2g4 vrfr=ej͉҃,HKSÛيIkx.\-ZO%RZ_k,h<Y/4; )M +M%NaL*=jmap*y&cɻ7M oI9Gj@T0$)$u;B d*wځuu(!N]2N%pTD1)$n:TҮ:T']{~0ڛƹ:~/GUleMqro.DWP1w;8T]111[rhOap0rāF dgvuvYND^`%A{d1h#.Պ]2~쿛.rB'xk[n[ɲ=V9%q' I  2_n@VZTny֋N[)G=|\#1M1W#6FR?uJWnuR]ܦQ5h#C>TQi},k:Y8q^;A|yq SizZ5K$?hXZL$~ZB6'mN 8JỶ^;@wC?, {$7PFB )C@e~kN  zoIR0=9Ք]ӖIX⎚u9^}Z:ZB2w}\nVy*>JME.WuE+Qw m^--Kj~(:j"w7S$=;r2N#!xBHIXq~3X$ڷ$>A,hoA&` D ,)2]j.L4%$xO!LԢi=N/G0[- ,:~$[vt^&ARNKCӣR[yAɯ9_=/L} Y3SV7OYY7!_15ѹ)\.>ZB ѷ}~Oڰ.ܭdC6P09Ol#Θ*+VUTv7•$"0 _L3O$H۩L>O1\deJ0-ox ;B|ɊvXp)lg;q0fa6|ɆoLoc 7+?ۻ\UvNj/iw<B3pHxC}eh7XANkuã-VOEg?}i,6A@{*BVϘt\ K'y)BHĤ rygaUVJ0+*F GUT8500a5w xIܶeG8y{+vr[^eeԈ1"gk~ґ)pɈ/ t2d"**o<̊p;gD> b@'{G5vsoyXҚǹ[-|а"Oܭ5Gq} ! ),*H=}]xJʶKne5hmUW^qoJ)?xݝ,*nm CrIvJni^]DeÓ2BIDS) E+N!o!,zŜ;v6RT,˴XLM&u/MVy2F%/G 4Nr*gF瀂ϊVʊV*Ա=C:v n8XE(PKwyxqLX{rD^|{Ÿs5є = RvuzRVؕp&?Yނ3%XQG*mdjxRɣ.KOw&@1ug0K;KABqYQP#:.^jG+Ȕ$R]yusIJvB5fhr8/|ãm4FǡL&ɄyAeu,M:mӗEE:xzWD:CHRHLgqJoy+b^+_D">j:wR^7",lD*.8[ȥys8|PK6s O! d)EgD㮻,rYL( a%/ #r 쵒"ȥ䗃{mw3I/ibiXw)I-=/0u?$[F{ {:HeqI'&"HGezIpm s8F@4LD8jNrbqH2M7$[0=c2r(+RDڻ=*l]UFbmrT7|1qx""Qi-xXµ#3`~s-z[3囐gμRSo/:)buQU& 7Ӱ gta *p`A*F\"XFR"52gEfd5 R>Ow[kf6 χe{޴Yr VV&LDW!j*,e 0@ m/+y[]ˍNr_CE0Uz\1kRLr}$KΐV8Cy/ l[6]?MXWeEeK.yEMS}0p2k..uɗԾq唜%Ϫxy˄CDžnekVeIiUx HaNs)>>g>a/f- f 8Mmڥጬ(Jn,frcIEbyr{KV=!& 3,r^@pҬ*֣s[ޣu J1tnLYiIlYC#oC!?ۧuq8IQ+;ڽe] QN`wR{T UJZ1gF/i%!<[s/vu+QӅk6veҡܦTѹEk(),&9ߡ]y'+"IvzBVIz}ȓ/tey? n'?d}Q [=NLCZN$;ҩ]ŋezmDl7˟otV;!Rh(BOI~*񤫶!Ahpl 8H@KPkX*sw%6Ԛ+_C4I!|j0%]a42( 5%{ n8c#״HzbVOwmSl4b|Fo^ޡFiB6!7% -pթG$n(9:lUnJ9 D#;r4^0:*. "%h\ 8L@ҳH+VK+X ;Z!,óG~H=gw^QU.VqP CC, Ni2"ob4^hM#7o<(ɷ/+sɯ\IIL,PKki, v@2XF%% iY dK{VB\Zv+LҔe1u&Ja}Kk'+'҉9tQ ͂D* 7Zmv)srJ^>kBTَLHt)Yq|,H{b<# g9^BQhCʜ"t ]Ɏ,3I*-.0L O(B)Dk^=;liEk(C@em?tr#C i; mfaYע'xo`1! )1~k2Z*z`?GN9?=>fiya{?B{>@,Mnh /+Agn$Y((*$ܒllH6!}n,ё wR6EJ@ ^GX:xbbd!gLc9b*z[K$&뷯p\VMz&xsvMK1Iʧ4l<焩k^^CD!мi_.r^`цEH+6ӗYBr5&۾G3Y|iQtqyr n9T4f^bE-8jKHsNM0U4lhFYE ^4ȔtSG ވW^8YʽRZEK{dP/ݱݶ/<+!g]RR4}U8*jyC.J)UuNӑ/r2Tܳ%+TG  8*AT4i ͢*6VQ=7wM2)$">uxv:ݲҊxYtdMeXAl-,kYݡ"kI D&Dh&2{B.K|V7eXJNN_穂G"zt:OO`Ѯu%|LO6y[n G0Ve!']`/3CC mE!gA{uӌHn$NC.;̻dp<"|\ߗb )ʢit Fۃʆȭ0v'g")^<|4橛שQj{BC !/9t,ń8 SJa^\PM߁HP$X:w%:H"Z\$}}4i7aG$:[ɜEF]ꆮ ^@`G Ӎ Hx=\On<;/niyQ%TӥmCGYo ,PGV]qPp 0(#rc=G[$iuMOLᅴC;l_GWng=ݔD_ e]5IP%@ҥaN |]SCcռdwbL^)y#M'O;}ZX4΅2ʹQ;++x;; ȹ#rI0<:Y?^WㄗdG^Nk*}f#iG,DG3&CNRbᘪ?H_ɗ1äU/N-Q<@#ÕYeuķO |=[Ac35r;!$Hm@)( c7!xGfB31L!ykh^X1z3dRc9fgTc9dHB=f^>LSVMSoFgLrs*qsRx"iҎWaě\7<;]XBoom3Sܸ46u?%[SvɓO)5yqK[`߁x,Y,N>2BI Lq} S耗a]Gcm1dzuR83a\eKy՛lCVtqյN$a.렟wcZtNGe6,]Ib%rhiVY3"TFsѪ#U@Kc/#0!ܜQIePT1I9y} ü"] `,*&LaÊhyN)wle6~u$Zxx_^!-set7(*I?c/M, ND++8 q@ E .eLy62#aflw ->1qz[چMlPqs(dxw K€Pa)j DCpwо4IM(-)x֕ $ q` *Oe=6+Qxuqy]+|\,_xY̪,)۩>\J׍Ja"O 7XAxqI7Roe/YubYȔeӧP&G{()L bܖE@Ȍ2`Y 7QZiic1vxX4lK]Gf3?;ݕ8y@d4&ws/C? zLo˰U=eY$wԐm75z^^;|hE[šJ8|依/굯/Rn~2/'|(r#7UG<^jŨ^dr-)B\6bBv0߄XMۮ&T;x%]|ˆhQt1sQp߫dw5Mѕ<7CLplۯWͩ{B\{ 9cLu0BdKrQG:"%͹X0X Y%$3H=zbMdzv*)mnf-:On1:=BSEa]FIVYOW N3[WÀOfu dh1%N#uYGI/=GIqk^- t`Я m4<'grAXx(^i{(!MDg:],<=ϧp!N`s1[qrJ Zo9mHxk^[[EO~~g\mBOu.ۤ%z8]QT9U鑁IlWIX||E15>I#N]*h웼Vz'kᄅ^TVE^E*BU1w[P*tcaX:8=YЌCu#3L^!+kw 7nWw3YAlͺ벼M A#Zzs@P( Ρ\F%#I*~?Մ&YX#=4x+rh7 eN C jCmٵ֤D u?PKV?RNDhB*2=,׼d#F#u^0B\iܸfYeՄ*}V)gt@T-):J; pbdi>m^R!l62wa0y8_[$BWF~FПJӰ$tMٝ*f"OV6k#3E2zU[D\4&jUO""GgLI5\`w:$+ Ɩqv!?y%J:,!SUi.eav ;?JV:B?]k/h^OݚN®&Oɀ3g Ζa~W80DdAqX-]`E#Ur_Z`-$>3Z xɠzۼ3 tyq1Mݤ=yńau$ }rCqn@³@R6skMXrٲiuhN#SB3nöP-$1zӕT7zQG)4a3AAd"].^ؘ28qaܷH*JhW.~wϮ4v!]U-ɑ6jm}ApAڎ\–8+Cۇ>,(ImRV-DF5;H{;"Dp\uk!D,_(\3>5n ]BnKGې)C+sR ʇf7JQγGTQ!ee ު٩\:;=6,`2a"y 5kǟShߦi2uKMa0n(CO[̽ژd [hM7d _|_\pAg a|vu-?x iix1m:foWQ,FRVy.t!x> j^(K 8y9ndcm ;Ӷe%dE,V_*;KeNW8ilbH酞2{El$XioM[3ejgSۦӊ1^X7W>qR V`tW j49>D9gx4|5l0y}1MT<1o*n<>T,kp}.VRh'`*AYT߂Q)ouz,o*IXQw!qTQ8oDSH*ݴ׎ Zr[ְ(Ve,SQѥ.5SAV,ĩ8jXA7^Cv(@r{9MZIbW")[.O(=Vq=P#ρ(ؙaBTlC HM>C!BuI>_IN*N"A2Y Eԉw[&-Tli!ehǀg`<1d}lt骦L:eũH T#C6AD:sBU .E֮XվgtJh,컚:+`" {^m^qq-,'|iexL*;[fTiWꛢEhUJms\8V}V*#PU^,Xb^@QnNcޯbU4/=>BaJX .lÌUdXБڼ跳M|xn(̱i(>kQv ڬlnl7BqŢ_NI}J :V-nRF5܉Vu+_hpcYPR]ZCWd)yPx( J\ SIr;Z'9Q2 Dݞ/O+YR9=4>in!%;ف嬩$ 3ySgȨ_^"-aU `u({ dLCiv[,&_I)"^޴N7c)X:bH|fq]z+:{ fg;ޅ~j~n*ۘZN/GLZv˜(Sr|I7[tQSeNT\ 'b5$[u:VAZUp+J<;D. bKFyB%MT;3L-t -R7|7#QZf @WRkOS5 sM*ˌlt{v) ;A8AB#R$@}@.+ 67$ʭOdǹ9eݵM'EQ}] Y =dão>0Jw%OF0MI <6WEߞ1+zBKQJUW4L|IDvVٗp0Oh{s+ȪPxIG4F )TtAxLP|%tK̿`ҥWߪc?pYoY(dݢ~cS&\mjnY<q)|7{:SCReG!h|TxC:4Y8}_0d/$?b'nZ7JP\irAO H~BF{$ tyeK* ,7̒dֶ&*3eTٴER}Sp$𧧰WS#"Թ?`@P[hUalC[rb;ƲH_iq 'LfJ%dߒE[\K9 d Y<@IpI:D(pem'5ineH胸$V (8]H"W'E~E: ½6&]7|6|$p`if7ɦniD-QijrQ^he ժqh´P;OqX5\ܛe mz?~G!_~1N,UzEO#G'.0 VssXluZc\Ftސ#isxNLy߫P%!s}4?tu~!Go?G;}yKV2ujWRnݶLSN6:]ӾoK%.)zJ6,|BhE 7Y敲7T+'!Z%ɲfRoDX/mVzy.!icCVl=VG&RX ?0F h Z?~yrm'"X|m1]輆 -gGP<窱-Bև޹퍊*pC+XǑE R}z{"ju\^^?DEK~I+ٍMhQﰠ"WwP[okմG/Q,+tV=[IG}pxVɏ“J+eh4Kg~#{;AhP'CPAwp}8- vs)6 :{"Ң$es~\MNf3yZ#4f(}nA L;HWY*-Vz(,)%aFˏN/SoF0F]a`j"JCd\bu_O3?$^6Kp/#aIePGLĀ E qYN҉4{]deS1yrJI*fUׁ,dah-p.`Dl7 whf3x4d^Ҷ$wtpyP%{ SRĨM|{1ڗEWǟ.[ɇcD˴sMm%sJT!,"_"8OY(M$I!ܸ.SGl<`mX(TG&{-mHBَ\;2L6 Ɇ*)C"Ǭ*L[' 2^:o/'F4سpe˫^V]́#*axv3,)4,lϰu.>))Qq ҥ0Iѫ} @"=<^ȞoKٳ.?YazN=7MCrzv dqЂxI|\<@e^qn@įۦq9/)+9P!WRtAF{4XctA {G0SbxšP7I(:; A 6/Ej8x%?G, I8q݆u;+W-A"9|h9+L$JɃ0!56/ha@I<*NC0W Vz(/9޹`9+qc(&{3)*TyҾ6g^A'r.Upw(zի՞$-թ(/gQ+XQhLw*_ٔyZ}M+@B*;<D-pU91T+[r12B_wrFdRbn$RRxQ Tں# A0!`ն-VϏ(AʄoᎫ^ @z`_0rT39W:SIWES*<og\* a] 0%c"ګ?;DLj,YD&H&\EJ!;vWb(ɼ[[|Dd-%Վl0Hc^[\j?_)T'd&:;t"PihE9VQ'un43lic"b7з$z1}1Ib0g_b>}GfY}.7#Yx ?ϋ1EY]"kӕL+91:ΡuX_p̾H/&>±- [[mkpl8\K^A߱(ÛHbr@yϙP4@3 OT.xw0,  o쳱6T`ӟϾżB=ֻ_Y(fP0*)HK)\8.`q/B! _vg& $B*B> cɈCQ#!A\mW;s'ERQolFޓehҌvG75Uo)_uZEvHW `5Е,DN'f*>pdo뾌㶯㶽hz 7KW΋@eL!u*RQQ1)k%ᗽ.˴-;;m+>1MGH@s_m1ptY\]Ӗ$Ec% zKx8{ؾq ad9R_;u-/ #  2ßݻ̋2u&! dH*7n3lﮜyrVYxNxcΚ= OJ&VX/~]H2 S3.do.E1 uPjpT/iim#L{ cʪINC  zK}.>׊~=_a~]~.UoC2E~izR[MSEWbDcM="!NΎxb*?an:57{iYuV$C2 ]isOZPEL@֘ wJJɣWRezqZj e-iGK$bZ^+^6!2-n]DP`6i9"Oeb;|Gͷ!J c>s,*oxn E@K!ڐړ~C;B: v |1e=B|F@2jyr{LMo;u֬y9DPT / H0Dr#Ļrne6 `k |OQ'kVyo;: ΍ӄ%72SE#K/v:.te:5pp9e9%%-GBf.,۷sqBLJ]ÃVbJPl| Rb}S. .4^D\ Qo egB+Cuӟ +sé՘,|gЕ@K%#o+zlfLld L:*>d]Vf{Y^߮Sw3;ڑq8˼x#CҗY GߘX+." TìHҀ2Ȝs 6!k K"5ɤ m,8φ7;mcllHe_\ Sx j{q*~yP~ ܂?I`# aoHUB֚)]"c?l"/4t @vUwXLD\@}J[ƣ8<gpzȚ.tp|KF$q^㾽EM"ɺQKTC^b\Q Egɰ>žV3N?Sͽ<H?8Rw]4*DBHB!H\T-O #xm2l5ېɮ{\~hL6Rh3"MUYoWge rWP/$p&~: X ΢u]j8DK˲n$٪ ⭮Sx,-Xz,vZ}O?oxC(f >:1q@l&) .}S])Ou4at H4WB_2PΟ E7'uqـ+@@wv`RS]_"9Q]U¶REVTEop!1+ݩgȺiH=hO}1! ,Kkvk:y!Z;<3Hփ S u+1%wK^կk'LYۭȔM'ʖyKV=*."a!3 >a%aJpa{mo)hfE?R?ɬ~9/ЃD_C,KLM><:J+,ViV;NG|VgI df;H*u찄_'LZ&Ꝗv GqT@Ե 6+Eå[|[{vƳ-TfzBCL{P7/4+^c!UKGFP&偼 8ׯ5$;8KG}k6$]I/)Z ".6Xa8G[\2T 2e T=VTORtӏiC2]~q^ctcVpLŪ0# ‹A|i#Dme_4ĭ=a#&9E&{Ӷ9=p}܄NH64l0k.2D'N #byuwS?=Kd_4^H ϧ6cN´7DMWD"NVD0G6}$G12gm0cX14NyzJ۾ʛM&P %;$БT*kr=&m 'WG隴|˲5D9 p>-Ƶ@q`S\(;Oז7.U%&CH{Ri,rBqes)iU!Z1MGdRQ h)>L?B e)aj4pTxɫ \@s" YNdPQPBC*7yo/G"rq}.ǽlLDR(c4[='VK] pBs`%]dFB"f]J(ï=Q:LWT]0D ͎?T#PDGMU),BXh}hX2Cap;+u۔R u FV7 8i.Gt```D`t dFڢ\!dYQuFMp8Gr#IͪiKS6 ;=oEYBf-M%]7d?Buq6x(E_΀:C_5tE( | 3 Ki+@})>8SDf/t]=s8~R.êo:n&"͒y@GCq. 4u?2{}]3lF͌gejp)dUJudEzM9;hR0(L,~t%F8~GM^w4"$Ēu6̰YGܸec09dTl$$et˴n}G(LsSEd3F^M!ɒ֘U~vo1S\kGL)eHp1&B~fu\'r&cd/pG/d$[IzVtEiu J2 ˸~gϧlgJҧȋÂڊƩHV(^M*..?&xD)\E$4yiZ5ǘc5h#o3Yudŝ:{K<~&vDh>s`&xxzʐU djmɱ),ܖ  i[ _U E#nn ںBddMyBeķPLƗİ|sa[>R% /lGh (% }NqI=-Ώ^1͎'Ƕ4 dne"YKb&&v^KpL&ԟ%8&ߴ 3GڼGCw-s,f> !&,d&=zJ+O`BM21>4Uj"H##IW|_iEC<}ӬkLrE3TE\N\lS*eGXz59/. 5!Z<z4x&v1YUY U)O&rh9y;%ZK '*8/Si;'-E}m#֗`f7~BEҗVYo6A GKⓎdpqL۠ ۿP|-]n6LMׇ\# Q/^~zsC^/+߿z\1t sJA (dוetqm6N.- Aq˚9, UY$ Jh#T9+]bǩ[R1/1팦\TcLd{Ye]S'.ZE@}irF~R C&ZWY T;E'؇tѧGynL۹J-{-84e+2<,&!"Eم8x0E=P/P%uvMߕ\%DV(@ zRN8Ia Vr3B$0w[ uO/M*m{YqD"o6Ibe%%B?;,cJoKw4?0RGj.%bu`rLD :=nlJoy^٠آXu&eבT(VbG4%VBZRl.8|ȕ#biC[ysJm-ʺEZ\-|*TDuFPd fk-孊GIc >艳hC0yCڲI]ʾ6$%{%I.hyU*a`YˊK߬î v{b{1[4ln]]]TZC"jH)sh0Ⱦ|]cz 9V B/eF}9/>;kdOxE(ׂa&GV-cP|bFC G'R|ʲXV[i g%ݻt|PQ"Z--$++xzWRZ#ԩ]l;90it'Pd}h F&+wty>J:49OjɥՇ Q;Yhѱ R(c-"P&m'u$+,"pl~˶m\=ٹmMTv1K8Fdx}==*TTٴ`La**RTiBR)|B,9 ~dK˙Y3CH|-t9k*υδ/>/TMҠ)̣Gu)YHV`NJ|%8O$^Vcx$ zwOu_)PeQ{Z@Ur/+q>A#ʯe_xVloL  Pؼ;SClz5rc`Ufs+̄HMM% :N6 χ폚z>oAJm}RPVı2!0M(袺R*¡j9B9՗BGɝ݆5 lDVVujq)/11pBG=}zkhB7ݖdzH.~^OS{oɾjuyóe}X\>vp_%]o*a2? E.Pt_hNW¥T1<^mË.m7V'⏗аKoo65:#۲.68RDF- H*Ъ d _DTȹnY9Ȃ,{.o٥UMQu{ C ->X9w!h&>HL>\P;z0KOkC]:Pa89p}٪ҥdTa\@| P-YW|_,,UH&$qi|`q~!wX9s/I-\hn逷j)*_s;}Ii,0h'ۍv4m{s;#KU4MjT*zm䁂XV юytM!B|&)sD:1E>H7n4Gjh}ʮłg e5W+N،Mi]B$޾8] [qb{}]H8/p.򝂬8 1krh2_qVm tEz`Z&X,|8|[ -o|y(wl%ˤ!Q5&@Jß%[TP"8ƴȊ^jlA"I* (:,/[ٽ 'KLyQƝ çL8kq%P䬠mIjZMOp K#IÇ|5#^׸=HAisbjI_ebd< #JaYp% cq߰N{޹x-4-FƻEMw$$H4 BOqwx5鶘@9Xg`SQyߖЫ)vX| /^-?^--ĩ6YRFCB@~wӘǣ lu:<9p⧵+s(._dӏ㇟ڞP:${0* &' &ġ1ƒbpSpb?W!xr.u|V`zIB^„HSyy( ]+-BrqapJdCbD=brM(Z6NzUPo4\̬6iYH5ue:O/, Ϙb@k(y`meb?.-% ߂z381gm?p&Ri"zrYwapj 8wt,Ec|!z1M2F-w#4euߋmReWU Q_`!\?/2M4Iv8q@@]"a?=0RymXz[5':HV˲ =x؇`Q(MxhEVߋ}zqB݋J*+AbGMܖ/OAFR2VGJ^|2lj.5ћH>{ фKEr^ڔYxZyT.xU{].xI?p0?ɣ{ǩXV R)Qb<|v, :J]ix9qBWzӊh^3ڰI$XM_R5?Ŷ?pNP-iJ)KTTD%S7V~AF>lZd0hJ ?uK0uS}RFK/"jP#‚ <(V28~lz"ݒ%.U Z>~+I]=u,iUhc˴ 8}"tn^9F[0aT 7y귍vʼӶUI0xai @89%LRWj?ĈvwuaUyZa:סNN03Pr 1bmE`r,:,B`1?8es'zwy},L+.5~vauxWE$\b#I(~b`j AA.H㸳vo*Kn;v`%hv܇a ?od)kN sSjνT?x> נgjcgTZ| Ϙo$EGCZ$p,z1G0ҾH3*e7)9#=Be:۵uTIKA;C 1YwN];@!)zG`M~M7<6M ͔! /]U= K_s2Sݐ7lV\\So>HaBDWI3tɧ0Q%G>fP7}_K[ žiy鸶x z5ժ&yu.n62hY[ ";C0Pb]?~7~15aio*HMUj{x}J,^Uf.0xaeTL* R)#p -ꉶ KgU&W#%^y@H` -0]U' ,FpU_ z(]5ktd,lWrݎsbWA%%)` C$#Ϻ ]Wy'rq{8x>Oٓ2:6~>b=v m Dv>B OJ4z5yX$IŃgNMA*ei<nG_}?-dϮF0f!j5{ۥ8ZwB~T<-9KN@>PaV1]1𵼾?ݳȐ_P${̓ LշYknGz%_a4W"%.U|"e N# Cї+/kuٷ OۏK燮:;7 U!A'zSvd*L0s #~`' %;mt[T@i)h=1r2ED_BO+X}5xL2-f癍6Z6jza2]'n2{_>M&6ucu3&;6`_B'ϙ\1}6\S|$(X=/=k %-͸Cc {deUՊ.ًҎCl*@vj[ pۆuG6n r ,J~#87I0ح-d/%upFwp/2ab]='>ovde^!Ĵ!ד15:\B*TT_02bo&j }i )eeDKùT+&]ފMoØ/`26IÙЗH,Tm&h)sHTAI6bBWjczZ̎;e3ß?~GS:?sq[>$]D^hx#jz/Vt0e4ʰX\2O;Skly+=_v|ՆPLqᘱW1&O$۬ w5 $ER71n!Ғh30dN"q}N=&lsVٳL8VCxS70LKAcex%xdRZN! j pAdLpYv {PnL'\WmERw9h=r=} UFZGL|\&2.7>X 붸Kw;](r5C}EgLH2f=2$eDFŷ8z}w *d"&1&IPlc\*?6߸L\eE/}&4$>zvşY2%GhEehem`76}O^Ԉ!,. 0e(HQ_%rVTUч\D\N.bÇ' ,0@: E][TdbK?~g/qx@L " Eeۧ!Uvɵ=nc~~$ V;[1zre>-=sn/)E[ db`Çx&~bYӜ2' > D@%($ƚ,Ԟ#=ZVaue{Fu4]@z0nwmUm1L5\)] aI3P+ѷHl d/?W{X:GFzzdg;ٱ}v+F<>_֊m.rZep_| p?FTƗIJscL P8}SMj45TEkd$K.gI` 5\Ӄ:\%1~yy h deI6ܝ"3wD*JTL O*\U2J}%Q$*\~Մej?c&6֙d/:nO=-sc)+BL[>,W e^U&پlXlt;,:аZ @qxrU%İRף;k0YmU]) K^2t+BCcPG Q.95tAJꑡ"WEVUY Y\&r4˟ԡ`JKiEM L=y(Q*h_%L C;cd47`? .#ѷHy_p-IiHIK_B 8.TN20%x`>!/[,_׏=~vI`݇ESDfZѸ)Ww%\yYYgBu da8F&dq?Y!^5!~d]ʕtLd,"–EeLtIՈԗ@DzhMx-?h ޻Rk^{]Dn-;9&8x8}OHZ,&8\t?Ҥ6`V) pKNZgBSƪka4zEouY|I$8`<8Q6=IWy8X cb$4Y:rY7h,W6: ݼ>t#]I-Iw\lA2c.Y%N1)6ROP K{ߐaZU3u@c"@FR;"ܯ`NfjwjD+ӼRCM(ou nQŬqfM DI|țRK0 !E$ = t ji c ~%FZzP"[_,ؒ7‘%/C|,q@:zNNTOu*KS&5ʍ2 w{tpם)K>)vy(˒ԘY!ɸC>5`\՛ُB89Ės9_bh,ec_t|e7C`뾝#dˊlz2&8TZ?V6RcyZ[0yB}/燜%5vLw0wGu) >'Hd'5N>r գY2R=Ogf$o2#5|5"O,K `+ %F&eq_dPfv<مC=ͺNH13e?cHIF{FHj[o[<_,Hp'*B&vkhJ%i#+oA ?<bW7bDCh(5F'ۅjY P[DhNck39tªza'b'h;4!uP-Ղ%gmG+f.DQ$ ]"#XY8b{CdwBw'[.W)=g;/?F&f_BIEfF,T]@q"2@2x !SK.?[铷]|'Ȥ!rQ؅LIPw9< Ս]=JR3'_,dmg!EcBo~.q+)9z_j4vImKY&2hQ 0TaX8`I︫t58?g4Wxo3^haU_KoQ˔YܙsZ—QW^..% |t%mAF9BF,'5ȤxhG/"jt8+F43ÃQQa?pbU5=.Vn#8k'ۏmɥp.h6Uz9!Q8PAYx\]vd%T8ϡ `^_q1Y]J?J & ƫV#L ,lB/o? }ZiN0jm:U(KC!x\} D6R]R ȇ4l,Q|>q(R6MRG_}@j TI\I )uW IJ:(SY=OȻ þJ<7Q:\|-^M;wQ~J~p7:I8i$}e̝)Di$<ZNǚ2|\#zכWAK`-NƑZ󣙞i%mJ]A}uK*Le؆հ*-8؎r^O7+Ut ~k@-tTpyc׬ϝ G.ek߯6wå!3XUh+_/>r@0ˎMZzݗNtA9oL[Baf0w.C2B,.˲P  - wZRtX118{_psE?|r!cߔpHl@&0֌&CCIҚt$z_>r:Qv%/I?8#{dyi" [31lm]k Ï̺T%fmE^ЩBlGS>q>#p3nl#Qڛ}q٦>Xjz.?1_mM VrBgVQy%УZ'v*>Ēք2wUR0d#Ĭ&xr(|)N/Q=+SKӓ7m aSY>)iDH!z.%6vRMׁ zY6hyeƩ9ǧ)m{_ܯvnjDRiko5r#AsP243Ov]i+ɑszRЄ Jh'%+SFT WC 2P0EȔxNvеD~٨  CHczY<-eKsK{1dPp4i+--'R/; Ij.)yŸ,%i~;Af.2Y2ԞH}53BUc"lpԩPUA j4,N| 鞈5Jw~]kfmUWI[ ݄2G3%r!Z*ef$2E*1ZKq[_vgnhCTTmU}H$o8`jqԗ2v2! 8>aI0dXc_otjѪu֒a{c1C !\d)zK=ɖ=i|p1_ f30jݣrvuGV5v -LυPߥzkI3f/ħK5iB'kU^:o[0Eeu٧ dۧJH N8;8*W TIKnA}Ы,ۮ:Go/9(lU*im̲"m12`f D諈i㿊H!WWYbԖݴE(R-_XagXZa,‚/j>l8 x Qi'TMNIGuYʨA2EY$+2 %Z]m0%>0nE؞·[fY*a ʅܽP=&~l bV8:J=;$j!Yz=}8x0 D㇅6#MMb%..oaM"}쮐Z\ߝFKZaXJT^^,x ׭B_)1^;ןNqHLyT&G{WX+f|SqG%yъb.:_.e׍{[i넕Vv[kpl4ߓĒP( +(#. A80x%lb0v;3: $#ir=/\. C\HsQ-!h;펅W|B*txaԔ4ʋ ]ߘd9t_2e,߉!4>Ԕоs#1,cc͇KQmCk:8./l/ԕug!{4B CdbLQ66I=zGPrw~Î޿#iDŨ?v$$|NBIx5~ Θ]L[碡i*֔}١L #=QBy6%2s%^>˟!i&vr$ն,K,k-]UbRGv?ϋA We,9~ YZix\`ʭbq'P?& JOm"2V~伛AM8 ɐLmeIVE8("N.(!y]z %GoQNm1~ëKc!^9ȪQ[cQXESX"2 H3plimfWIY<ԺGP (Y9+{tx$_ ;%$T=4ޭʢM%| eg*|8\h}|EqW0Pv 8(=.O W߬gyo%Ý8ס/~dž}+t@ \ "ӲS}&H^~g׏@v|q`orJ9ZweԦfq< Giw0rxϩ]F+;11Kֳ4# 9V|޲l5rʎNs(&89 z"@Cbrd?;u䁑_.BqӚay㽮<>ar e4R<]CS2x1UyumeyiYgL9=$Yńe$Ð?3Tu.Q:b遉&7|!5 3} o䌘I5"XVfg]%TRHg4  NX4$xd0RqM?km{~ҏX]&KİlpPE?Y+rrWwLʹcYMM@-0RCE1/{ [_˰Jm.{tjq YK ii+EeO_w&dɋi-r*LQD-)<iw/dA,6pۖrpw=c/bu^w c.i\QЗ9(Dx(cؑC[`:!ft'">P#|ZZ"wh!'[kǵVߙu%/ma 1QԾ* 7@X}$BVV6 [.8l<1=~۴pIl䎊#ԇ:ZƅįvjHjk5;f0CCH7d7lfh?Bv3S}dLKȠ=.L|V+Iɏ4d:pl:t_9XTE0(x-p0&課.LK&1a#҇ \ QI G15䍐m⹆-\N4>#$Y"Vqxa}/*+-I+ǢV1Q ka.]_!#8&= DVJp/-MteRZq"m=ι=ND Dqd噴J`'[mF;ͲLύzt_J Dqd_Ys)yï.y1YvIIBxy%|2Zb*mrH&LJys >)y*eBY6D3*f}E[$ǤM7!dj@~FEc=PaQNK8Z?GZǐx:&uh%#ui;Q%]5rzdV[S>`M8}Ҏm_7WXc#ܐ:%ȬSR%7|`dtUtaonƃhK\n W-ׂFoW%2z?Yx%#]TC'(JCžEĭӿeweR2M :ϴ<+yeIToHZjoeYez| +{w &`Jv2xF-V >GZCro V/(G9)%j4$JaN[ ~^i#<' JTXN [W ާ{Zh&e$4]%6Bf WF@ˬ.w<{&E\ĬM~ݫsHU]EΘBӔ(0X0n>`7=|$M mlϲ44睕l4- ͏Kz,xt>EV  Y;Tw)mX65B !8lo ͡w§BTLkK:'}JO0,l.^qg {xoxB]&ʇ _X9t;\},|L+ӆ;#KKޡE|tih`.B+x'tycKEZh5 /R[VZN.L$+0W-Ȍ8, EiXjѾ{&мs 1xk2IBMX--rWaPYCX$aR;a`eպDXQqZ>\Pm$vRjvmH:Ѱ54j8_jCiªXtK=L*.WR_6ج,>^pM?C.1&xGc6GR1!Q8ApJdq)92I?Em{ٽk;C۟?GY<'"H_~ӞRt 9A 0B|i#Wmk m'hK2ihƾ0Y8(-^p{ o)d2d+?)`:826vbʮ29#kf}hNaQK@$DЮV+Xq\4i3I0E?Wowe-=܋>i1BRיZBC!,*s7\]rW7-aP2 &51d_הZ/60k9a1aK%D  s,m֊,6Ѻ$9)!*s{8ЇϠZf]$.E$Ur;U\,%so ҒQZ$ yhq'j$UWSޔy=`Iwb %MN0%[wC) vjjs_‚[~lhwNlI]f$צ%5u6 Ei}^{ =бSpE[Hz]5vfuUWd;K ]V8y-ph+RUv%oh;D."F\.yPЉ)ay:CyW#eI+pOn1 :&P@=92nOr~'L35l`5!+Io;f]h#%0–prk-%Y $UXe\ р\pLdIexNƐB%c$8-8K1 '>cNQ덹..9ohT^sK'{, #EGE^+Im`+4~Fg2Nz FT2ސoV*]<%dɭ=>1JǰI5zY3$X6RRۘ9=5 |򸘾.D` S)wj@":8 Ŵ[_3)wwO-Ұ>#E靂U_y1L졬|%WYU)vz$ٍ6$[]3-PK=kha s!w΂ h=/-V<ȋbG >/" gpy>"9 r趚yY&kZ"nLx-0LPCV%,wPt"N3-IZ{c 5S &RsW! lA<zBSG'qKv28KJ*1$g;nFkB"Uc#15 iPU<"Ca !l?i`?2_֑4!XIӺyIHHD);Mr7Τ=leF:@(ե˜..x%ZN{R1nZ~3>Y%Ƀqɓ#W҅w$ /;]xhu!.'z7u~j)vL,?(׬Yq+6Qڎ\AĢ|=XW!|ȝd'_yJ87X,\I,>2DNM*J25RO^ *y1A*jH*9Ю '!BCK["hՅ9N$2hO }`o>n F.ҝ~X(dä]NlQͭTNSޓ~b\TV{GV;v^Am3/gև6K(^Gɂa$p[:F03ON7u 8H\cH_NGN<4iӌ1;^IC#;i{P˧$.{b z:rx\dƄ͓emojLҋ{Ҕu"L p币"q2#^X4G[@Ku6W?펋8ɴ )C\6E0F!;xE*u3۔8lA|vebqI~8>`ChFw?,m:dτp G2a FN+x/3ql)̔9IE-:Q ƅeC%AɶK*"dҧ%EZ~vکBjN}t~.pB_hWFG: c?OӼ4y''MҵtU< 6~6V@ KR5/W|ET]4/}rﴑ(Õ$}2U'5w}x= 9*&qXRS (#2:YP(G phKq[ ־棫V&Ѱ.N[ʴ=TrVoVb/_M &}8teUTI!uCKrY,$өR U9/nާ #xYCRB<.ѕvb{tf2b;뺲5B<숕\ #Kz ՙk-JUBCō>g+7CO+Jb+RPi0"pMFW;:FpB/` ī/]D6-Tf/fode΅kضLfC_/7D98uehs{ug=؉`Z+*.vcGE>J!RO|+dGyQ%9#dVu&oHcޕA ]w᫓_ iXn e"|4q+ 3XZzTr1}tYN ɳcUEִIĂ.ot!3B/F^j[jdH!wsG^.v/Ww\paWHm>>$cKVz@.]<{V}=[TZb j\Vh#r3(+L8!+v-m4QA{D)^+de@:rTraŅ+aiWB؇B@CxKZh)ާ]"[ \RCF&U w\2&BqLKQXY :&FĮ1 z2~M[n$Ȳ>>/,t%]]b]H4Z(;ă \U,!*2b_3[Yto煤ew|証[yh7}֒"/Șނ~d ,YMz,Iv |y۹PЈb=;̋_owdӖU$Aȑ!b#*R,#֫n<_gnw^8!vim*0%gʱ~LI.mqZFq/3sX>q-0ZǜqSy!JM~mwj P%V~n0R F0\onH٣?"˨TIu}YGVE>yĊ@ 3K|]ˣ'rm]&($]GwV-E' .4mtvќ'*XO/Db<ʒJAv `sSEɛ*J& ^S$O0Һs&nj5Ե}e(*ĀfPjhwlyG`1/t,1Q*Y\[eE>I[H m$ }/+гbY-l:=%Ž7׎u L;(ifeECyqJ,}'thtPK'I| u?~[mG=Gmj˵ajpwǕG<´PH S.5ɞҶx/UBxQ2d9xִI0)`Ua2B(_3~QN,>`Tc![TRKlOFQ,UxU~Rj'TdUI%Sݱ*{0G/xp+3OI%~Bþ9H~c>fF>K$gHm"8r,s]_Jf/fy/ )IM/E{L>s\90㢉L^0,0*ER*gJis 9s/c{ՕE-E֛:C$Ly8uCml e I[*Jgk\sx4.iw[u50S 3*MON>/CYAܤ_iqD1n uBS2p&e08Nҥix%vpv>Ba&+n4F9Uy$XJqP!ÂO&c̒yrqL}YxiiȒ6|.!CtXf[%$VI s&r915&yC፿-b &\L&nPNuݰU|VhEL#J`>PuMmH"rDd͈Z >A`C~F76P3U:42}%Bm[2W[!I]aBSn*@?(EqX@ ZˤpCO)s)Px&OTQc NQ `c룖GJz~ߺɍDyPl~2tI\iHē"&)VzE;pxabbbx55RB) W,i !WnYT&!E^Eg$pQ^1QZsnKrVn$܋P }9|qk!?yyL?s{LjcQ #Þ.nD xZ^Q908Gig]եyZγ$(t+Hf!qɷBrh/IX9~ +kv4|5 ڕRPoWx 5qqbLF׿`Re'57\DZ )1Y&.zGA pa7@Z\B_tXU-!2芉Y6.z+P$aZ3="XQqa.V2ʲ>/+՗utY|֔uӲ]eX,uH/zX0~ۄAͧ( 'EhOȶ2%od6V W/$|6:+?UaRRKx4BkCVݯ2S$S7d3h>H`>)j~z yQcի/crg"Ovc|LΔsſ`ā^>Dj/KXk(څ *,KH^Kѐ"iLٲHeWEw퓱"FILb=q畍PN//rԊ*4}UulRo)=0Ӟ)l³+SyӰB-bngm%=!6o=j~=H1Qv|]ywn[%],Tˢ8Ya"V#r*.q0P:DOrMt\>fOR~^XCkiI{'ĕMR+UZA\@oŸW2ۏw%|*_eQ{p HN\"x+ĺđZ dL9ox|ܡʊi~/BW*T}&&&K-ӿEY.Wjf:;RQGEܑ_qauEeQ٢6- ߟNi'=b6 M]+"Ffiٮ3+su,1b4{BØpw!CaRi lQ^I gQr3Jz^r',/:'x׮5eN:9'eXInv9Iu:8<FBt%P;*ˤu }y~yM<~[qNdPZǀnqҒ," fE&NK^t^>5:L|h aUikQZkhxqNeCgZF1ν\$eP g/Jʥ:)ϗ!Q!&u~hQ<,MN" +'F-;x/WU* ۲v*ؔ+,:Baxni4ʡ6ٷy_yU.KQJ?maId` vhNN\+2[`x8@'~3qB'^M 2ta5E~dEtU"+KCe Q6vq˙ԭl2Ӑq{4Mz'tSҁ$Z@]d8P0gBC >h* z n14#*,۪JaD2 ",Lb pK$zp*@#+}x ~:dƅ$>_vxCuSz6>IHx;$o+6PΆXU$_ \1EiMEiN ۜ5-骤 muUUZ>ܳDȮ"'6 6ⲬJ]8#TRH/VGH?7griH1|t~QSey%M:HM}2Y KdBoTcѿxݻcRw-ۥ_r[z=̣0dY)0#ÔPJiAuc !g$7e!&Bi|%F瞡yyy]0uK YuwwyI2Jmqrص9qy&eN<˲8EXN\v%oϼkV6+I3DdATXoT4`",$2moMa(㛘x>Uk0/<}>y^m<5ճ zI}O'M$!eX%,-ɗc, Gu'e$ M|yʦ9Ly1cYZAWBV0.[:B<4I|y}1DuerNo~Nn2K<ßopkoܶI '1o=*Go Xcs21a\9#E J@Xr%+V;PEHW&(;KQh̃.݌[&1Q&]tѭ~]d֡,.JXg^>ێ:R/ዯYhHGוOa߭"mk$иB.ؤSQ%%NZ/H9_a4iZއf_ o2Uf2/É_B+^8 1_NRF-d*z/$Z,0W;yˆMEmC"e5JX'쐨HA - ]m67[z+9@8?md81k|L8~ɎLV?A+O}Q՘kQLw<Ք a18flʴ%AF|s0YmZ8F2*&&*Sx%%*D6= _[cFqޕ'q =p=j704X/R+9UJ  pɭ=C08Ջ敞(gHE xQ9Ow[L[-zQmsd|G4޵&D? .G5NJE~L|ԔF7O()jQ+Ydݱ@\=+&+{K-\UJaڶKBXCeefE,ƄG*p;)58`.!tBE^AEĊ!kVF҈!='d$f-,9%ƣ,CJ^Da"U{Ji;ئЂqeTeg=JDiBW6eLW" .ʾWE "ͪ8`a7:.L]M͹aDRRO0Ivuк먌ɺ,:84s`o GlC*1$8u>+KU}VZ|J*}/I 5DR~XK0uK̓&)o*܋ dPe±0a4-Dq79MLLZֳкL2)kjtJ ۰^2Yfuh '^VrJMDR#X@BB`:p8%u!F(trPVIډ0V6kAGHnzL('%v@gˑێIgP5vDn4w]*.]X[4i"4֫"VC :+9LQҮL}ڒQ߫wDA([$4~@`ClĥA&Pj0#˜vF/=mֆJ!k3=pZA _; W騖b^=R7 AZ1 _zy+)~sjRXn75a_nk*016̋r߁ 9 dp9ͥث 7dr$xf}{&b4uuo†֩狃YuE P yzBR7+Іd0y<Zig]z˥kB|Z$4M.2r7p|Y7ƗU-\0?$Ó2ڭ.m}c=5i!D˅@D-2^W ?+]8Kn2{`L88-t|l;˞Ld*^ʅnNשS⎷( ( VS1*Qϱvz}{[bf]ݩbjI;uCW6Ѐ*pټ&`' 'AM(4#ͺ ~6EŞN#qv1)p1wzeKةz"?HVհ2t7KS'n,x(j9R^BNSmx(Dd@&w)MTCG-ކa{1l'bmCb#jzJ"$U5%"oKtjZ wfG ȠuK>6uKbuC~@woBE| g~˗>t KZN8e7ѲhnR]`m+$;ul[h굜nм(Ϛp|-p& 9-,(&=ģ]W YqQ{8 _B2YSmnbl2uW ,LP#4,e ]GRXOb^,$hX"U@+4+8%["lU4 ~': G.%TV3„(1iy,U~|s?fwCְ֙]tHMF@=9ދqT:+*f b:URb#&IPa8&NoBڨSƏ 'F~Eh΃XTq8CsXdWxNMpijO) &<n黻REݘdMSJܵeǺmjCdfi3vKXv՟EyhS&>w+_&o/jJ2 -~qnʢ0?9/_4`.m2$P2:QCـ|*^b\)N_JqQupr⨲b"޼ҷ=lE< 9]ʺVį MV4w!hQSl׃b^2cA,bR),|D-|$,k<{9 ,1MM-!0pbڝաKB^t 4ZC;ًӤ w+Rg|YQ/UݦQמՙUrw Yzt\[\ߤU|=m@%Wʭ\8ckoIM/n2#Y xxY)KAA03ѨHtz^P F^ e$YV#c>*b".* E|.r_zr~1/A`EpeU$CPZ=҈ 1ʝ<ŢVeA?P<Oq_G7,$ q/HvJ"vǙd) J-BSe+;|0lweſsvpS ~ɍSSw>nx]7gaNnd9yqTpn4L*E )+ΐs&pk=y fEYdIKGM[?Ā:  ,nz&09%DslNN_7MRBʝ-4\fIO&|pѫOHN11=F)[mSD䐺V\VI6474=n(>v azQҮH;^ -I!,#|@[mDw=<$=DgKьw]VbϲBO=YQ,ؙHPF;<_KSSq]M~ԏ6EԆIS8`-:Q)yQ`C^|T/_ܖ6Y05(ˆC|88Qx́9}s1V=Qª'ׇ.Xde7Vr!Z*LG Sez]CĄzǤ+}Cd_/W.1'Á,!Pp > Mkvk~'&C2E WˬM ʗ4G-rЁMp _ QmZd2m<ꌀ:ĥj?qH%-@衻8d& 5Vymce xM1퐾-nBg %RZ7dn#WZ"{! 'ΝO}λFCMj# zݑ ӑ.4ZH?܆J7a!pY2KCDldK&$_b2Iװ,C|q+{±_:YHRQvOJ}xDR6IM.829 \ ^OQ/a{k\PFfp=g#2\RC⨢ubhQNNkwNhV&CR,[+fE %U<_z:RUdLXC>Nr[\A;-Ӫ۰\ú&H8RamhUX%!"eX2 ,q| YQ~‡ᮾ59'Huk;ln G|~/ O{_yVۋm9꡷߲\^jMZQVefmRFpypLzeS( ܩO$7 bF>E[t%ܘMx]*mxEWIq!]$ gJ*iճ»X)PyAѾ|D<_[Hd|xȳ)I[Z1Alt{4d"&_ vؤK._+{|-`XIڤɐĺ?Kg$к|Or -F؈+H@3 Own/Jn~ItXphڊo嬻! |黕=ҿZӁs &}_B},;y-R/"CvЊT2Jt-7{TNi_/x6]\.t-zZtUΎ2IaJ4m5w')6kSXӔ|;v=e 4b)W' Ej&ȱEϝ#<;+]!T4,0-𧶰p)%{0 qvdCtWQ'?~rT8|yJGVN~tuuΌ+I S"r ' ( w~\LFҪbZ!G;8ϥۇZd+Rsy@Ox}HpiTy$ _L.evWU]ş/F,Gh;TUQ2"2ί6*7SdMROkcNӪW4zplW"=2+3E|CrؼmgNe$wC=jכ*tqׄ{V~XQCzHd-j?ql aK%jeݙ[-}9!#{w-c zi C麭r;E0Ev8Y䰑;)7ͱ?-v]fUOf-5QFdl>c~DUCBU<`ZZfV^1!Y(צvde /smv訫v 2S.2:J/CzM?=<_&&YW3-w<-y@*c 24ž셎lG+\{$oqATy[A:Eu ΡN"DhNJ! ̢@Wf?=N+ե-JZsd/)TBD2 ޥg5tapE;^It-{Q_ =6\$ַj̔KƟG;^A !L!hU>ǽeOeRtx7yF7UEc],WҨ mP%.V !`JG^\(+`J/k CzD#;]|<˵A2nHwIoùw[ ĂʻAXѨ43޹%|>5%''buX2';x5 (aFh Y:4 񐝈ӧnܮ_=]nn}IҫG)ޢ_ &X s(9H`Ӯ\X6ݣxfO!dX)BOCkP mG&ǀ}Lj#{6L=x &;&Ė캕Y5I'~v4EMfpѰC^†Ո2Ԣ^[+Ӿ"6 B:K$wdB"qxLҌUń- (](ƭL$z}~Ds2JX^2xE)I-KFDy^㱂UI7CdܝڒU]U&E<|TQ d S;+qbf1v (I`L=&%[Ţ)֐VmJE \3 qUaٓ#/oe9/ݻޝ׫hQє%,gIr5SBi?=/U;%=6-vpá;0;/FYסO)ijM:L5pr`:ŔOcY/%'ԋK>SXwmPSB8q>X蔓d27ǟk}0 ɋTsR&`E"8&]Ŭ2Z!HO>̋qp]̔ק2 aPߒ-oc2!31\B^M;HQ| s`;o^)[.W X(PqHD1ͮu)ٱ?ȾyI.jIuN}# %{qڙlP"WF&#z75cL PTltn2OQGJ &XƀwF>^p'e YHuW6"+9r5rc*d>B,_}4hf!lbۏ]ϋ$m~ҎjL8q]iW5߰ɡ^ȼ{ŞD;1+!Rx4 `S'(Y<ಓrb„ݚ (j ٵɲeߡRqB Mpx^H_ZxڢPO@PC &Os?_sN/[|Zg} )ßM .l4"d+Z}P2ǎqe>eYB2~C7qPSZI8>o_p9%qbod:e{Jh*EtkA"%X`V` Z/ ɘUz%xB",XޭC=pgyLt*ZC(Y v6܁,[6uyISX!ˊ*i3W e*)FTG9i_vL1e'h )kT&s:нe$ IݍuaJ<s*dMBN{!>k7ئ"и̜IMYG&e闙m"k?,P%0YX)5e9E``dr1Uyg-J,N q"d?t,lC4E}#&e:UcP&r MH"/֊iNͼNe=mڶu9JGQ^ځ :9–iK'd.w|J-/2  R`tEM e]Kaʆ6Oe/;R0`[{ZвY9B`6>N Kuԃ^vͨl }J3ى5]јG2]÷rE2n&<(URb Zx~(It[ q.tc[:zdbGK&DX}?ʫ* Zo[,(p/,<Dz:Z<JQ{ZPsHag*C%r"dfy 7hɯ!q[2WL[aYGn{W̷.X+V}hx S%i]7Ө/h"w;eNfG8f2\Y@ԍ1<]x4`:( ¿ -姀K[3b1., {!4Į+oV+e:'"Q=Qx{Q+'փ162gU1?_"!͕q ?.Єe{Ϯ;QC-LQ21[ri%:i{Y3W`1^'h\`΢bo/#qTf,E$ƁQ 980My{Q4"zDiquڢ4)jev.fOZb;xY/jk?K.q[p˴Ki2V$sBlBQhCe}5IQv`pKu_yb߸s؊׸q":MIO2 YcX[^HUg ';tzt2>0 +C&0Ԑ8Nҫf#Trv:Ѹ~ؤdC^q+U诨ea6ڀ8ZW&JP.d7(l'`!aMz C&]NX揦0MVl몡:9iC7 21d@!Af2.vVEdQ[~.և/ך ׺(&ITy"n\G28RnGR?~ cyGK5/x'60gm"_(UaN<(? x$L .,N b.c$YQ>Q,~&1oѪbmIM3?oY %iE|Ѭ r^ZhWk\BQ’:av:rD5 B 's*[ZmYך|`9ue ߣV+bvƺrQ#$+`+>CbjUaG"]z!OeEJאַ ǪJ~]V;hQxSp6_r[{/ x̺CTc>۫gd]o峸 =eU ) \t-;Y`Y-ysŊs*-#OK>#$a2Lk_Y48q7el] SdNIe&1pebǑ93karP^Vmz t-n.Iݕa S-Y(/*^oU酲yƔhxş9Rvǯt7/m*̽1a AړrZ }8}+gNZṸl~Sͻ"9U؎Cɯ 1q_Du#Pڑ)08FJg(Y;MnY(م7ɚU8RjR (Ti@JDЪey|":|0}'{l|4$͋ ݭ)mH'udCZ+J-&+_(S׾z۶%h)^Yo) H+BܑV+8¸mo-9KÁ:b+JmE RT! jqW@T4&4qCylg8s o1kJ*9۫hZ.U1&A7&c|DYIѧ*UWnBimU&wk(vIL؋ٛ?KkZ;0/R,t1;dbh*pz |:la'|DͻHv{u5?Ns\eDDqeܮ*r%cQ4_O䏪կC{Q7MM0kXmҡ KKcT*M KRO.@_{|{LĒ&$( =zaKTbUXۙI6WĴ bAҁfe/v/p6br ~ئ-n̗4m 6԰gnu/.|w H .$'0Cb'pL+;E$» ?Ͼƒ1骲1$K6l:RAqlw!1̊B|)+9 `ݟg->~Y,z]m$BXVWuNSN\e MLTx|ցG"2+SWSi&tͳ{>|o1$w1| !h$wmUKA5Zġ?sDMJQKztfREAc] e #p* Q1_z~3dI ?w汧ЉnLVt)EA ^|Gw,?Yƺ.E/e&>TѢj$)q7"fr#Z }\ _ÿ^hfqELMK݆bQ3Q+&p"d_;e)fJ5bǑdۻ<˫JKOI^əG"R%-ds/+|J!"FID}>+zqzݫ^/"MvhåPdܕ:>D}PDCv 𪉰[ش fe- ~#\ dYV^8å%zF*siq"^XkoiT7 q^fգl˚!-Q0g6:cخ" W]^cl+ Hq rxKSYOEWdS m&p`.6 Y{ޣyy|Vmf!{u:c;<0v0xK]XSHVAh2*- VW#~D$EAġ_L1Hz?~mQu3l}_ϯ?^?L^+& oXOI5 ~ݙL]v" &P^V׏ne]Ӛ4#9 G?ˡC&g$_HpY)uAvU7q2:eDN^:E? qzl$]dxxS|$3OaVW֐5I$"'s8j ,Rfˉ8Ew1_ܸ)@e$qcC_>hJOGmR@?ȽVNq@qUdv<,͎|D}p$IBK3r$]غ5LZG,\je;|l d;TP"4, -KT*#ˏL1,&߬{ɏ7BpQʔlUhbO}y0܆ 0θ{W[g,:B|eF;YU-UȞ qsdZKD=x 2>"z+ Df,f#^_ sG,=YX C& b`}x+SPsݏpL-HWtjxAfT`hdoVǔm.^^WTi' R얔*s]wp؋Q6G7"ޝppP˭ٮ|q«jN Yz'o!ct΂qDzc|4j ~e3cˡQ7ބ-Tu:!'UhDLI`_`! \V+nWs8?^3'TSW$׎RX%OgǮ }<|S[ ]^soֆZ"g)Y!3aL!u+nq(1Շ)7\ lO2}lT: xS֛梑f٤MGtY`8v 'f8Kɨ<>A/m,̿F? xd:/S%MI[sUdÜي 4>X+=*HJr160a%9|P^6Yw%jKK+&R' .飵?g޳c :'2ߚw~3AW߿]9] Ҹ%c_)L$!p ƇX R)pǎ&NM6ώt7;F?:>\gY/4Lz qCRaub0 "DOXt2a 3rAXi)h>(tɱܖ2kЇ1 qx.Q `0V,$om/PS+) =RvGc^);v/*Řc#v)qW( )\&C0;wU,{|Pyԅ 2}V ҲdJ뤺yY"7/KJZ7zVмBxpӓ7B;5oF9vOk5gLn4f(4;]XIqwT^6.ѕZJoyP[rиW$ ޿>iUIa Q_\lۤhqS]ZWIx]K}QN؏pn\8% Ei03˼\mJJ?CSPFM*^ ; :9,ӄB~_j}lDp1wZB@+'<~,d ҒǤىjp(܏uZfO:kO)lg[߽,4Eʎ&9`Thr:SYt^'A/B;5d-[XiDrGZN! ^*t\;'::1 Ӹ@' ]ոД/,A}fF_/M:m59y0 |9UQ>RW"k;X!{YOXQ;l%rJ`&zWmIµ]ʧ_+#)„a_Eً(s- x7X;\T7G+V4yn"q^RLH~WBIջljA^|g-yh;*ISVr NhS6؇dIǂ?BJ2ч 9ܶO$ɺY}SRT #j[:ޗ<8\ N?qo%9?u$}t VvR+K s04Z<9][J"Ѯ4`V03$6acE.qF& gxrC\4a Mw1\ZBY N_*@n, U=t#ᐟ> ?~zEiU /dMĒbIVKt[#ҫ|RX M"'ޡcWBՇ2TL 'fLKH ).9RgS /{F/m[KVI6r8#Cgh 6CTRHm+3\_HL>uQ.P:*XS3M)0DkuuӃi_zi$@*&`$ R|\MU B&,y׷yM0MU&=vM.̃@z >5D=)jNtJ"c 3u]o|zpwIn5yRL]E m);ۙ(2ڒ@j-߈ܰ`?o躈te͏ĕjJz%Y^wa=_ 09JvOm- D(C_/iĨ4&%EUQ5KN3G4y,Cы%YN"oI QH 6)# &KR)-/jNBbԞ_:aLBg)n{A Mt[4wi#t_OVI,cZExVX!Hy pƓ?1|z1{$a҇2<PPNKԙH'~ݫVjZ+6KWbz/|'VP?/RSy++N$Tv&(9ޗI|hbb&>PG{!8+ħOëǷå尳ӺN i/MeMrFh F3$&t-{pSnr;_ ڸ,ůiGnpT&Io:Ȫ' A\F< N0~o^0kEVuMjDBTX(E6X_eR`7?2Syv~ ARiGh<`vD9f oJkf]Ѝs5:i6v) jI_kVg gC je" (~D Kg>!Vd(~M,auuPNɄ„S"ӈv# DVQZioҗ"Ggeb}_2Q#-juUWM:`;{tUؓ뼍ZS9P'VEWm6ǻ7?akG.10|GLWPqR 7H3;f߯-&EmqFL7…CC.p8pT@MoжL5,W9>~8 Uʰ(1BV*]21+ lGg#Ijja_0Ces||aיXC$OM!SHVh(^ު_٦;æp~+"O~ Kƫw,* VxA!w-ÑBB'PbC_Cx-7w*+P_/u*K ˮrXyFS֙@RB YZ (c.yG՚(oЕ%0ф(/ aFo2F9#m %w;Gή@]96~4z3`6Nn/76$Mv•\"B5P^ӨD)4R&KCtiI+c(`D}LKi~&U^U8['i5,LL%NPa_Jnr-i5"6e7m]$0*\$Ev0r)6J ;~^6Ca^Ov dXg] =]%kB |ȨSnC"L׉#UIjfG/6zjr CmT!R_ d'1B"UH0+9Bg?S CGW7?m8eхp.4/'ŀУ<,$F[zd|,BP}?;rsߋ;7\Nn?϶K(KھQrNZ]w44(<) ;G8\!2Í&wk~ˁp+}>͒&9ypⵋ}L;re;:{#*DazEMĕNC_ΖouG"\|7fnneA=ʂa_+ݯC[/ȑ=RRvjv0T΁zE{kM*X*/l$jUQdO{j7362"O9u-ơ5q{ͻIɩSNzZ}0 J"~LKCf=UnX㰍Eۘ!1Rt!BL=" KΛ,  g}xɇxn!HqWo҆SnRsj#K!^ת6L1<;y03CG##ٕf>t{el,%B;U f?+C i=p#=+xǃ$p^<SqcKEε k"K0)P;-!oY퐌85+4ДTA>ѐ>k CREӴMEŖpưR`L)1Sux͑we=C62+3v˯GL{x>1u [O+hv&T.>G%I./X4HjuC$ebJڬ˅M֓ꡒ,9w Unm֡RJw;DQu$p3Ԇ}8ў`nLiD8,(9/a]ݬ_ ԾO3JU o:mh@Q,N◓8M}Ѿݟ~і,wǯߌWoN?oMUoc(Â*&TG{d@uӃED\`+\(0ŲB6C**cKu[>] :+X=N(<)I*l1L( [Fe%NjdhԛmԥT) i> 4R㭃$buor ?y9.JZGl)HxB,Vx&#^=岨 Ŧ^<hV]_:zSBh0EZ.Um$g4Ij}ԍ9GJ,A߫WRځK֏f)/%(ıQ~Cs ^ @i8J(wL3EYљ87HZx9Yr2qJg}NdYS%{TZ8McAuKߪ_tWį5xK64+m+ ]p%UotWJn8K q< W*2lrTc뚙&Ot,Gs?OuԶHrFiTwuEEpaKd!Pj/X j2)Dž8uQV!xi՚&R7twA 9yQR^hぢRR&(Sc4eI+eCʖp[QԚ'l>&??Uٮp^!3&Z1B9Kަ_pLPS#8Kk~UY$oKT>6!N@O~[Pd-~)wL^vѼkױX}p#9ü+K)IQfyd)W ʡ#v?Cqà,^~4nާtnrxjXee: CC%X  1b nMd]..Q{4&P&'QC++i<@Z12<G!EћyH@O9x@ѳoD޹g>͆KQcĔiT-@7j)A }suV0 OK1Jt/w2/ QRJB; ƞ?ud3u˚v+V]qqC0~&Ť^ڋy$b0BzUt${:9-rE G8xqZǨɊڏXx>9_kK}~v'r tBI7i0MAL]~+,b1UUv]zoJ73k߈WeƒD<k^»ɍq"mr?B? .tZu? 6P,ÔZ/]نr+u[L Qxqz_.PT,CoI-%e(_w|,ϓt~Ǫv%C pdm"A#&BWLs%#/2ϱO㞑R2^geM)buI"5w"2@ml%x`}0Ùd^! >:G.СXNn6O,ɱ A10PR`FbUHC6NÕa}K$-vvXL?Uvwg fv3W "KqMUWZƈ8Y JAs /,`~1Nx|%k7jyْMSL(8 mw % Qܔ[-ذ/Ztpy!aS>[xKbceTi^M$0I¸2cNm_D`|ɄʠOX*r)~bXuY 6{bJAˇ|U),?bEi_LKqHI>zB?:cTB&IVk2mtdEU"w$0Tn;qE~Tp[x>ʻhMWFs \${؎쟷cfN)ޤFIRrhoq甏վ&X;MJ.IR,ÔM쏱z d's ʭqwrR~8-"NKP@ieĕJ ^WtR~ÁQwd`C,)JPͮ)u|G|]k\uű~|]7+}ynQZ)NB=& =ӋY{Z|Bl]G&TM8QLY Wd_Jr(7 /2v)uԸSi벝A!ms%ݑ\͆Ye![zdBXzAi(^G^8+j+lTBO=[YJl{Ynj-+z M˸^/jo>#dm&0` *W1N:HwyM \exd6%TYkhۅ"M&V$mbA&"91A9Y-] Ӊ ]*G|>0b._~/?ݙмr_ޅ]pe@vb@)g4YD]?'S 4>*{[F7pتk2#.1ڜNK%u5 I!{x46^lzB1ɭ"[Xӽ%N9:WQ†Ci@3*LJ5u[>SH򂼕C(zPT'(W)NqP |,^yX;g^yR>eRH#/kîs1Fv7a@^H1"aj+bb8NpP|žюI5yS Eri,|&Y4N"s bN }B+wTZ>ᖦkpEG- ,.".9K[vby-&9EI{8vkɒW1m5B*E26 %! 2mhBHV"m~fT„OzW Lufe+ITF\a ݾE qr)Ѝ <,Gck桑9/j: *@f>5 M U~-ISBMHbq M*MҼ'ldmGydV;bG|w/`c%pd87_9 2] "z:j![*fBTS̋;{z}.ں?"+wd. U,ͣ } 1U$,a_6ɮӾ66Lcek)\1D.75|1Y<. xCЩv[,JaK^j_EqL{M3Wa(g9r)m#i@]AF/PYYBFrL 3z\*dRr.rX,u*]/h&+RAI U ˶vBK:m݇7\$o GWfQ+ +anWB]\` Z Ym j&'pb7A^ʰE1`Jbt}ٕقLb6D {wap3Lk ?FX!wq[G\~kkM˒W4 _Gւj"U ~P/k&-;W 3( [Ruuj\(ፃp+jfz1#O=n3l#>xԽ+!~/^`.tm^qFŔmU#x-]0TBkE)/w,RjAo9>:M3gc<ew&bYaWrL @q'U1AeqL-[? QEe/У gs)4ԼC0!Mw8o+⼴hec\s;h]ڂps]2>VuE>8;2XU<9\^cWiKkb~SVeC.==DEA30M]t0ȀbIIq^M4[]d+2HK?'+sCƂLWa'?B&&j<ȝKmS̷8V>4KrgޖJڨT4Oc\zϰ6rzvVK.弤7}kiJ#wB_f&ռ6&4/][̫tFKh4| V1P*a7.·JH=^tbG EmCuQy? z[H}6+ZW=xB?`tBXX.bJ] }Wrtq+?Vߧ5-'种+~<΋( ꕩ+ ,yfLAL " c~+50 zbGrQd&8Kz>B6;ɭBcr,'ј"ϿIp>Lρh4qq| d|Z x@\GV-䇶ކx)p~˒vb$"$J&Z:1BҐLC&. |8T|^W_t/;e'ˊ`ْ\p2;e ! wQզ 2z)~㤎a5"(xuoep|s+(#pJ8-JPt|6:9yde~Km)g#\^쟏yk̯WswTnaU #yXX0n0{LSLVeTLKtYGB'bdf=8+EU߼6-!kՒd1E@"]XVϏ#viȰe){"O1jht?4$hgw  +X1H;j3NLQ ]G5- k2ޙ?&?2wZeL{nR bJap s{L/. K"{վkN"9ʫ8"y&&'ڄ 8ZXklC\PCC+aZRvhѦ b1 (/35 H䓇/ၓShb:ԥy/-`dQdh=fBL6((ɘ )TtrE,D0֎P l.g]Ւ"|:bPI{aSsq!E 0g^f| o~={>^yu}PS`y&>c_-H \RX.NWTƕP%B+KbHR.$;ӨRe'mT; 5;#I|~`u SK(C4*e*=L(v vA.U_7*rd/J6,AISIJIB@; 2:Zd+qu&A cOps\h{(~^~qyƚΛ$OUyYv"VZUTʱ+R}zf:a3tC9QUY'9IsJUcic,м2,vmAq/yԨJ^0QTy)[EqPdv0m""S@XJك F!I_Y 9m}5I4 It(8/2Cl;h%cX 2vF6H)E.CHv\oE9cz7@ϭկ(Xb&0X!#6CkAnzmb2 ԐB:mb]ľQPE.ˋcWuUCv68 [e9P.0aw Җ@eKH$ӄ2-TX9 (;ߊ/U~8Y1Tև tk~x:*.)INwi((d y-2O*hok  #VFou!,&_>S@ѯ~UU[S}mizz{oMd~دNa˲h7a!F/u'2o_Jyt|gkCΈ}6ezИ,r}{9[^o=R֞'4`], K}帊UMU}xg&YuxirUQ5ݣHt❪ v/1VOIy z>JYWfP2pB:iXT%|l:Tɹvr+ٹ׳vT}Wi(N0&56ٳӾ{(PYQ, Xh Blc!IxvPSeK$vw).m]",~J.693.BQ܄5ٔ2!F==5hFPRRwi/=;mfl_PjI'r(R./mTbwxǑHEAH3 7'FZQr`y93ɨ>EiuEǎIϮDPߡ&O{lp9;Vk,ŸR=|W[kBh? (]"R9^dGe~ӵ2lcg֓)̕ʤ!SMCcT[0 652ӶžKF^Zizozf3 7 AݾfzOz7unMB%ߴķF g`x|7!f=cL2ϬAǬ!/k/ya&taUd>‰;><Œ}mp'X$ nt"+F<1:U3#@&FռhΨ8Y_~G_T_~yo]ZQK%0Yv U ZȇV-oz7)bb$Gq&Qh "z ^)ʼ> m2Bv2=ϛcEJ!8bT Nj(G$q*"i1BtWeq}&V;#|"8|""L|VM&vQ <6-Ÿ/˳K ti:Ca]XAW%/\`?@te**=#waIN*&Jڬ۴S(ƴb%=ԏjNT S"npVd]\"it?6IeVyRrXS^&dԡb|8wOZN?sZPanIWe͐LJNqT![\ỿsrB-$l:EE ÝU}DV5IUdž-W] 򮍋J:zC*eں;#1{i~xӒ(8l¦_ʼ.2v4w CvaV D! kg߭z&Be"ж*OՅi"+1?/4iލnkT]28/L7G_HwB;~~v0O9Y=qq49Lf4*f0oCЮ1I&uգifR9. ~JPD#a ;VrVwN,ܦS*kG +lA nM`ڈ}*bJmlVf9x J3 Ŭ|יK$i&Q]9Zo WY^-$\TShv؊ȔI R6=E1wf\xosϲ=mG^z:R@T]Wȅ(RpHByvga z )Xyl3ÖTL zn;s+C Vl1?OPg wCf雪#ƞ<,zD-vG}/}areI&4G:Ea b3Z2Kb˓W“ڢx  "r8SXt2֋UI _12HpJ'V2o&\:ʦ(MVaMd\"œ( D~Q5 bMbM8>(C8I}6}v6GW3osW?_nq*.7I:TYؽW)a FJ_b!rUW[ ]0p}1nUc*AǓr*5e]%71F4hBX٦MGE 7s" wWFsY 2yVxoH~z?9>` txEYDW(014Hz#,< G98y0FGpF{~9 u+q"w"rƉ0`s!/?I+ SJCB4׫<mݎJ_HRx`ސ[9Qn2:/;?ma2_xet0l ̼b9WeD$mMGEjuxCI X;VoSUTAҗ#FJMBupi]*Jw5 Jc*pO9h`=Ņh@faF#F1\]<0mq ^6ᴯЃ#6w*.N"B6r+/h!:i$u >r4cqO_ k FUZ`daYh;.`,}'PR9OXVrTGs&70e~(P}I㰖4a$J1 "/)zk.8,~38Rue].94!4'[4y8$UN xkȞ}+su6R4JZ 'Y 1J`#S᫩ώWh~_.?8 6̚,gAܐue3U'MD)8kDgR|y>L_Ou/~3[o++qsas=&˺ ;rb(0엤礄Lc"cYJVq3~݃.z^d}βMb L>\@X=dGQ)oL\ȷ(C<ǩT0VYZTqGÀͧ:lS2mr,ۺ$WT6"S't"RɁ),;cм9 TYo=5O PLˇ KOmiNA˟>J@:ýv*y!Ll:U"H"ׯsKpqYvj•=DäjP5DcpfNyīKGOW5r\uu8r<`qT4;~t uw?-liۗ*f *u :p)/k4Tz-5'V?{@ عz_7ɴc*+3\rl|#N1O(<-k(ASD±I`7ž2})~5S~'h`zS;yQˋm6Q`.12w+ʝ'02WiU(1B] Sh.b/|~ UPJB9䛻xr[w`%8>ff{~l a5K(µ )J,#o. x(ɤd_xnMkɺ>X j#.7f=U#:#qNrv<ۅܗgl4w}MV ~qvp hLlYu%k,Ѷ27gv5~uį\̗AQvBIF?{Bov/ɒgM(b:0R #PFZ+"A P"  1m֗) Q>'҉V2Ġ ޗ2]hdwٕ&Rۮ,X\zv,E 8Lo ~CZI thA osYn>cM8o{s5mE"LJ2TN"\ҽڂmBxO${3\j .I>uk/:˪ W'hk8HE/3eX#5Gfg;*fXЕ"OK n2]591{jMK@1 BNO0uLY.HIeMr6?YBvl1gIVC,XQ- BiNF0MúX7)_k `&9lIa?Ohwf'|͑M )GPL5aH!Jk /L> 1uAOӼNkbқ!{U]\a!Qm)]ٝzd!ǩ[֛C3.dalYiv>m# 4ByW%EMZ.j^<0$ ex99e%K<zկ# `)~ |5k.Y*gʔѩriԤC]0N:ע4J^?R]ՈeWU?B}ei(nK'cB7xWx-rKT#XLxe C@6~D Y})۰+()䗨my'{OUxU%FqsṰJ8zs] oŘ6 ^m(mA"5Zo72~N apAIS6V](RZSVg=nB( 8pfq7s61^2n$q7 iW{WǰnrȆf[oEk-6leѶ0Tr'\@sukzbhZU\ޗf>8KҀR`+-4)7L vbQɄj 8Y%d 'ؖG?k vsBaL64'Zv +TyZo&wՑA76ee] _MEU^r`R0)4[4=udiu(dWQ\:T/S$h9/a ,y=_Ὸ|^vbtܔIZyt$Ę݊wd%"HF'd c?oY}lwFz6ͻ0miߞ08H*}:4ƨxP yAN/Aoa,s#uR~yBL?: Lazo)=jOd^Ql=X8&tPJ=Lh "iCl# ?2¥d =ʻk|@*;gc#%;R7&k?㦭\.жl+fji\;q˾LQ]+|ic?:i4T7 I!JSFVV<n As~N==lv?׋rÿ5N\~ox;}4+*wYdr7=u Jfg.He7.vB kh<>G.rҏ0g^2癡4k6I]Y!UݱT"C)H/ *9u`L&*Jsu xpl\!>i9uC0doa%azdAŢM}]ÅH^߀a/u5Y=am8 _ZuQa#<$M6GV~fڃĂ@3tʇ2*K\Kˮl uKkJV,CIY&2 5D=h^} |~]!Mi,j'od7VUV}!\.t/}+"*=v%G:E>QLqE76}~&UU>۶-Ɗx~>~&IkhpWR0}s$+ wxLl^`wbZT[7)Ҵ"axiXbtwwdQ(2n㷻9oKhT"6_EnpZ<ի.G|!٫0QopAAY] x!Tⵊ =Fו_&F_3M~3nA>WPAM)DACիh'%*~|ˑL\n1ֿ(3&M<ʪXu //%q60^14Lr{kxK$eWYɵO FkAGJ4cNLAm_To4d' E7G镡@Nc ]XzPȓG ]u|R``l9\D?i~SI:Ά!vPyqoQ'Ɍn X#XUG1"`\zB˨ţ_L4cKK#{U(YvqmC~Yp 7Wӄ`9y +_N ^3׋ ,Q-@W!K=##7suK"y0f ۸yE)3%QĬ_'stw-Ye;" !ɎYVCiztu^fm3N2}]6Z9Q)cҩ8N BR!~ylA >11հ|3? +"+K蔚袒GDN{icw_{oܙi6A `_BeemƉcUѱLZ*1.YD*=]}mNB*.pkɕ7|.?RҐ'U4ao6|6:RR' L:%dHLpO[38tiڮʪ3]4~f?޲Vp+U&}Ad4_1jY_yff,W[s *ԢDz#~9O /+ycm 'Ye8tEn7,-qkBadL}̋]ƽ*WK(d [16I$Ǿ1f3Pr5Sr,Ʊ'Bp1i| T /ҿk,^pi1,CRpDn]h"pHZ#Q|\󱮭۴'LC"!ޘBV0F.AݢJyR@ Bȼj\h@/`)Ɯ>Fmkui%g(j\ba_3<6e*NcUPVhRȈOZ}Vbaa&(kN0g+s?|x}<B ޶D EumWO2b*uO i9]a\:7ESKGlClad%vus?^}@m0;2PgE2szmM`Q 4 L!O*䰐޸$l$FI#e[YmR^7'`\Vi+^phyiy=5xOkqUVvZb(>uæ$1wN 6xŁA$gΏ9z_&ޫ|L.2M?ZxBRIފ6INM q!8&ҀmLau?-M_ʾH&c\myCjg>4_۔!B$C+_Y=B9HQ"}Jd5~&lJ4Z{`N^bu H ΎIC00{-87ean%YD~qeuxvc1ug*BJF1@X%Ŏ4E/f\#IC͊<gl%n.&ΤZӄ3Z+fOpFˉX7  ?k_(~StCx(L>rÌsFse]eI DrB.:_4YT^tZQ]jz1̱iqi]lưsT⇳x\_VZ,sAϊ*ly*K!7C$\ٞ[מ'~Y֨tddqd/y{X'I`+U-wbd4-ϡ&N]u x<˳~>Gu(Me7[ٛ,}kC)\ՋEIwaG7E4]${~/ͤ[ٽWSz>i#ء4W"k2in<",U/#=׭p D·+ QO x1JC̭$ 닜/urŸڳh2M"deY>*HݿWQ =NK⴨wRj0>d=HA+z:&ae% ~m]HR8rkK և"@/7*ıJx3\ĄAR1ݸpa_YeKK>rAȼ'v؅) !`X ]qm81yDŋx/_o,") Ynu=1T! 'i3{Ԅvaw?5Mү8/ sOOΏyfx|6¼JYQMjv˼Q6y [$)RƤ2қ&Xe=(IehIp_Lƃ:x݆"aWlHvzy O*Syeϟ~;ʑmcD蒰R`ztv(v7q'Dԋ @b BBx2k8²*:ԄS ]٠d¨wA*pa_=6.뉀HXQԲ&T"  cCOaAoń65A=lJTNGؐ͊IYӐ&cu#.^r3GJ?1@v&zr#1Jdᒿ| ;N2{ Z2k![0wzƏN aWF7ɸ=Xz^[+ɪ/fէ+NaW'6UM~'y8%[§l[cC /q`,*@ UjQP|`饂>a!|!f-oUY.rXƕR.c;qSPQ,#i {yPė{ϭJ$m>= b5vk<[?2G9 fUݣߌE!'imZkUUu|Zךj%=p7Ib p-/Ms].<9&gWCly@V3JeZGJ^H^kUIX^D;+1,ײeJTd6kdY_Jj(G>x y`&mp/w&D>mN;Rx$Pb2 hplSJ;ړV\:"& LOIw.c [" QU  )<`bBBRPh$؎5e1`hyV<㹎S4$M\vۦ|ޭe#-ɜ[W ! > YtPJdm;e֔^ H\coSi0#yZy[8ƒĞ0Ҋ_}BU$z!AeE<\96 fϾAU0`{k<?Ȃ?89v"+D^jNd>ṱQ~$Ƌ ?gn\3]<CP̳?_QZxbxc8eiiz}6dd{%YuC$+"EPLQ/!U®50an6RgM6  ):P6kd)&"eoƗgp,M2G%4ҽ4qV:[k$9 tһ O838F(ŒXƒpRfuɝO佉@dz %+0A&w:f!\ eU.:pLp\ڢmMrdMN~YNZB7Z^(\$c[Xi+6ËjM?U?dZݛWĪȪ"٦gQRR+l ۵9szSPS!=-E*t բ$ k2Mg;0\Ia-j7 K2/}p_ѤA6ėb&$%ȬsȜLr 3<&FHS^dDJ'cEս)iPXһSŊڔl" *@oyoAS/ |d]2,9tH*>pW[\o!e XBRnB\I\#i^y^gzDqc%^thЄtja -aXAtlJ݅`)L5n g .Nnua͡r\>6ObmXa-M-\bVJbi?v4k]J_?dhҁsyzEN/|1C]熺^MͪǏǫzLkj<%ǒ2K( N5[OLWo 3ua~6KSQGaO;$s+n7ձ0ﯕFdh{GƩ|p{78C=3apov4#Mav1EYgm\ہ,lVǰEː&$vq}zrbJ#qs8'rR g4醿44G ߴI1}*Q4zNsGr&$DvI:'2w++8s!0%c$^dB<1HԟsWk.(1=\9_ŏiz5eXd1#}5>&wTujqB{1+~d{K+zpNҝ.`.@2DGtՅ[Hr]cJsFk>i1Q{sYg{U7yM,8] o{,uk+͔D gDJ [kǜ%I.vʾddf0Z6M%) 1մ )JyۭkCՒV 4cqcu[*,zjP,Pҿޫ"'oLuuL:(Ħ.vx;{FE FZjתx1)i3듾g2o6<\B_1Qƞݣɩ]ut[?N$P 3J IʷK7y[d iMoZLiVS]I4)Dh|@5zgEW%TUuX\Y~%$.NpE#5 ba ]>x?nkSg<=l]zՃ)Ӟ4_d"-ziuC.PIۙSDprcD Y少k_'4VՔ%a~VR 9b\X4acdb2v"V.usBKhP'pnP4<6"M7 w3j5wb/KL3iJD7N4f˸nG/-[Ɖz/~WH*uBUu>*BB jӜ)wZ(#2^nO>w]ȌDLl} |!{pWIct*'*lxWrWDT.hZ%{ʺ?}{8T9d07Ne[e}MIXQK E!TXa[)Ft!d ~At`SN+zV ڬ4~$s,u$ MDh4qK"HE;qLq]mq!O &'K^1Sd aHRkXcry9|A҃e B .#iШ ]_!j1׵!f_^7¿`g= B#QBwW|2(ݜhE.a١a$<[C%K@|͊kz#YLa*<c0)-&'DJcͽ7xO43~(N:s-M[mTm`ë[! 2I>xx3Y1i\e!vtֵ_efYְ(1ϙGyMswGA%'ӄΕI()!A佻H.e'n\?Z̰B1oە[dDt=m&>&'b7(MZ*7YuԵ ۹Qz6b"'boBVbW}qi(xC߂&{MW9^4%\e%&gļַ΢xa)`^pM$8(Xa.\l.R a]:ܐy]#r[WYR%{(] x88V2*B!&}V|}E},4:99!3.eNѮ \\x{_Z@AN_l+ԥ'/׆F>8c Cikgmn5yuV~]nnfS=CzG/Wg6_i`/'XSR1Mv.T.n+CNTN~^e(qZ丘$l+'5)_eGMYE:R jöA bv5sQwI4E{;W%װ)Zœae,im ۊ+;(o T%}*xcAI籽Qk{?b!dMojN/d,<AXWC/["meΰ[q.G;>agG矿??tH1kf]d@T];b\{Kfa/Z8CJ8,2,=eߋ9Nk<*k*H354dZǡj6U;)rB11M!F7jR@~/][ ޑp!KH W~|dkXYfoK $"Or],n컰by Aftxg[|6዆qg&u鴊l%JIbW.!CJ=kVY0]SC䶐6SM(bZsv +e #ik.Ec*\\Y_5dlf |>F3v%Bu:6i7U\bqأbo|*_Z#Xd9c(w(–I~YI[w"RBx' ad!SQO}O!b@E~"Pr_yK&øk5لw>0_?t\_Z%Cn¢kORV,˽`wwk+R5+E}چ/,t~![AE(Ūۓ{١unz?1V5a.\ ([}9:f3f'@{ZTa$=_74$AՅ>m)\1`) ˱,>q)]@O -ў>cfX#u+ɽl!j7+&h"Z! gƴ0+bNǩ„PMeerѨAk.},&}O:2~(C5YBW%#H#[*wJF{xVփ˸NDnHKU2naM8_/;&`eHn1KsLBI)L9i80v=:i') Z3ş!%.?=> ".K,o2M#aC.E^sY0Ş \Zf9doK>5+z㝽,a3;dC#]J] Mt5MLEgd,p+VF,,1^>wld/˺:r,9|x-*iLWr܄U7g3Rsu;|Uwu"ehwW]+0Ec.&6}&γ=qIbqaN?RxLG摆/5 aɮ!X,9$_e[EiλAXcNE'yc׫]S`yFq7l!W+~B$ r(ˢl:T"Ehp`灣蕂sh% SqpWSiDVu n %"Ƶ+·عb!ʠҧkӕkA<-DǍB%BeuaW2܂t%bhil ,).]p8ItV(r>&0D5U0CCBE#tA>X&tۘz-] "cs/2w4t:cb*t)L6mVVaYBb!#=ae:e@J+Yğ|.~m|Ê#5d7Idk&"vpB.d]"~s1x1޽hiC2 c29s(lobMY%:Gį Z}SXW;F^VV(;?oeYm㍉Dԓm^UE+h խ4anՊED^(0~Fa&#Eϣej[?a>qU^02Nn v h߃aux|!,R qjKFZQÚC@@X+V.`*Uw\P0'=Ci6a􅄚HX ԖMw;=Rȵ0R>`zE'}9fS8&ʴfi•k]&ҪLf$Hݕ ^H~ܤ]4 R֜\ XU}w൫1m}ʁn0/|9z<ysĺM*YVM$&2I<;ajRKOU[6u5Ǝc[&!l6jVвQz_l$-DG.zqOcI JBRO>ZO?qo]{MN_u["]'9 M70 ҕ/}}ZuH+/. fKr~_oMJ+Et- u2cK1W@7g/QStnoϬǐ+d+ԱȓQ44)R%F4*$̣ʔqҢzF ϲ!IZRIp^M52(DܛunT.qLD;:)x̚poh{=vi $)!`'RuWѩdpˏ&DmHr8^}ȪteB_NŠV,w18d.BF{//fr6w.7\ k2BKe 2n꾪 TYM#9G߅#Zbv_LĪ̷Ą?Tj`5jDȧڭ4w Oyjn`K=3S>gD_tYGވ#ϒzh.\RHwON/t L7f*n=l6r0Rc|Z*,BJ䐤4_9Wlu0e!"GU Fjiټ#ELТ?"7Υܓyn a秝+[*RB7c[9W*U7Cqy,0(D!+a&z,wNS* ùc6aTɫ.oQzhV$^ՒCJ)s̪ 7Ygc?7`P _%%h:x#Wc EwM˲'J {LtQ[|uAb =JJp)?mPoamj"o T vPsO!7u9(P:Ʒa/AU9-뺘siδӄ&oηpEݵC0aL~Fxx\14+gDX^ !^{3m(oa!wIM;0 BvuX`MB&Zl >,'|*=F=͞fڢc+6jd,&GŠ]G>8ec:B=$3cw uݼLcb:;9I"kĶߖ]$ F (nVIH6-@mQt|clfs(ix'oM/ Ux̐7.Iz5"ngݧq?[n/bf2ix$*d6tf5ܕk,6=1'xjHzw z$(;_Y$w_rnU>\ Te$&#W l[:? "#lu#6~(?Ɏa=QBˮ[朆[֛VJ]NV @Z j_|lo~/#/cцҜ`iRYI޻iC&y|l[,@I7UJ\ۚRMyG\_ۼ UIڊnjr[~ysJzB5֓JVx[Ngn8"h!"y_0E_?t2͢ b8Ķ(h燔ptޫ(]BH#3VR!_y åZ+^:Z@Jhī*+⮗Nĭ;,7"驋{`'XI 2D#Ճt"z{*6#ӋPfn0uS1騚 BBTB| %o}!H^}n[1oj~m}i)JfEz=s{u duVw]ƌ8// ]щ/5?T*j8(cop0&= rCإ%ThC 54NL!tŗĉ^b]rY,'"3>q_WE`TdZ!Ys;!O+̩U).wzL(8+ Ao"$+$c#u}CM^m& $'RUTE_SI1T0Er qM<:u؛&TL9d(X 5'Y4|.+d[,BKWg%^u(+9lɇ^m]S8§ IUߞ.`E 4WD.EK+Ofu#uNht 5Rޞo9#X*/qux-B,PE++b>(=z FDu-brki\? 78"J$-`b_$ :(ĤHw1Ohl雎L)NWj0j]8HR "ώ y) k/f)g͒XsVUc6)ˑ\u8pXgQIƑX/?_4s@~KL4=_?O1nc4$J*+J%t54@;/4lb[*UNU觠=|X:Qa, _Y$>XG G)W4i%bmCMאw1Rƅ"cH y ϞzRp#\~P%RPJn+zJ4Vx"(}!cg5! 151 gqP%q: uTn4J,RqJȆl+I5y* ENWgSTǴ.fGoca?%lI_C&m\yY?+gUzNwQꮊU"0V[!HgfPGlINd8_rMhì{]^eE#u)aW י iCEq Oy|  LP03_b/v^S S,^=.N)+ld'=Gvx&{TSa&_L>D{: MW|p .ST@nB+5e4a *_ʵ:_0/ݧd]ªZx3|-L[weRT%eE#vv=&}>] L$@d{h6ù(/^d,Λf5X]%y Ct_^ +qA'QaPeuvDw?O`)*Bʝ#*&5yv/s)#nbW,T⾌$aY6G=m '8?kY럯?Mm3 g9;pZueT*]ƪ#Qd;2P@_ȏ5hQޢkAnH4,laFKA.cJႽMN}chz 7N ##I|8PyBKς=*8G 38_u} gʌ鹧Ϝ5\TlRka{H,"ph/xW 4EqofT?w,5r_xe._ڤ%zɵqE]IyW sd{ҹNj# G:E1Z8SNŗ6"k$].G ~wqC #'1x=Y,ʹ G%ܰUֆ<>)W0_=NR;n5Ai#i )4k2L yeێ",ɬn3BCX%Z{;+/bb#}=h(>Hs&懲=%~C0mdt}.-V) ~xZB]%T\˦?.gn( 1MF"ӇK ɇ!U3[^ܮkq9.ye]k} D!lmOjEʼ8 -E4Pqwr΅:O"ƿZn{Y_IgІs9 >~z3ߊ=/WNۺLiHE۲>$!~$*bȿ]od"oEףn 7%>]<_)uoa(dԳٳp*ABFļh^ᅃ`s!'[6pXFוMcvӛ`&"} IDಧu 8]qcU9wAt!F7H$(&_њ"Kr:`\{NMEZʓGzBAKVf!szXt$FFg̛jeޘqui Uޅ"8qMj3(J#+Vˋ,Uxqe1YX3lBmNsPb_=3(>޶~e%m}r< gϪq&~j?H:}Ƕ~S|م뽄}eH4јŋZG:M։rG"O \6{w۟H#IO>d=L5 B#NZa-tC=>c61w^2BI"D'L4l?-}W ^퐟sp]KSdX $.Fd^b?.삐K.[Ssp4R4Y#.iB_ʴ@@>Pxsc`1MD^I}>Y |lP]d"}1&9;S出*xy1B}<UR!ƴWٚw6*uSdIӁa((5;=]ı.2JtEW:7V ڸ$=oY&Rud8T.|7t&H8> L E"c~sL׼\GPY&=_鶔 h֋$X!WЁ+lw$S>+K' (2v1ا5!G1Y5| ^WB L^u1T*9Pب@duCaqd 1`̮Ono$_5uJݗ!M&AQ)؞4䄥()=^{NT'(qz2'a, 7C7ҌUוa(]opoL\,Va> >jE=]mbh,ױ%o,٥QAûVT]"G :=s-7*Kl X~EY!؄v^0Dfqh+Iʟz%`\3AJ␁QMS6ÅQ(< 4tP%FmB'5^Da 01A}$=P@ NۤR+9X#A\Q<݌%vi &sU)aEJsE 5cA&Ee{yݒ8_ ôsw$RnTTp]Sv򞇻z&̳z5-6MeTu RCchOh6!!y.6R!d閱kx{|r%/H׆k8*eUu`n[A.8IEޮ^iwxM 0ITJeaW~,9.#dbrqn#Zxj $!>oNj0q{4R"+nv?ZyqT8n2A]TyK3U n"E_:<_%7{&}0p2И"rGqrUힰF!:\umuԙlg=W"3]Tt!)ꎦVHFI%+\L~g|%tn+A{?LFs G{vP$#UyMJ C k$>O<"CB(_&Av02-Cyq?gybmݙ/:t[7u~L?U?Dp.U/:MR) &] O&lÁ _ v/ D`8@ nuᯭ A}C:3.}HT8j`Ncx4쿠yR,&xCT&J!#GT C4Ii]Z 4KJ^sxm(Sz57QN2$g$?ɘ/ bp u/[_B8 NtݐE{`#D1í_i_dm< Lon|'^[b22j,a#yaYxgZrWe~u7wV'ay2;89z/\Kmp^քŬ*:K{Ϛwr:G_=vzcUf<-}:ܸΓjk`~U?L=אu`EGZ":ZG/Xb5"^ ؀`JqXML, (qР}(Ԇ|]SH4,:jqA3Qpg#2Fq9^?W+0<`Z60ќ)1"4ݢ(i[[4cAV}1bsu-&}_x&1lX Gr%S>4m׭w 8!=q 7z)27,z87bOy"D)KWx]ba ڮ…Fߜж-.,S x0P!DW}Z- q_WE',mW$Ol O|7R om?Qz.z'[_!șӔqR6rKg"w̜!ۏߟYg6C]T!_3!܈pG>tC;'7OǣΚG8]Gu=Ǫn^&p&wJPRI+I靐`dk 8/p<̱a?Mɯ6Kg[&I5LO# b/]+l}9JX|`-Jdx/&ͯ~zsoǰ"k\yx$J'k:9?] VȭcncKe 1z/tl뚓)Ԅnk)MVINg)iH]֘4W+! bf)s?a\eF<_:dғW"_ȑxrK4 օ?JFZMޥʾLðŋߵ "wF20hPp#ZIBjEW# 63} /|^•geCig*L6 `SeXH윪ݏ/\Uz"8 쨙Sxԡfí Y43[I4P(WUݿ+Zf+G/Vj"vsoDouEVϴ!?}to0)LoQƒ6H@۵@d%&<;sM@؛bdI$>G:=PR^˫?:w`u]+x7mV"lb\xB#,Rk)M[$0qSt& &˂H bPBQF]ֵz$I6,2 Lcr[QU]܈5eD'dIp8ܝqu>us0G&51C N)=Vx`K0(_–bnV§&߯+lfi P{fߖIoP&REp|#W^JY$zzy?1!;(S˳GlnʌTx!| -O+=o4,r:/R}J/L M!EaB:|sؼSYҸ?źeen^ dmGVicȫ_6P=-҆*1YwL{qFB| ĉaWr:d(]zWA 15E'v"2!A+EwG X EYQd_;m%0EN20 A@ &e' 1"GD+F,ͯ\omcXh׳+*yrdUE`2 `Nz]02j0O\/N)I?iGpܺc6_d$U#?MAvպ˴ }Lښkd"t{9|-2EүMn$gM7rԇ:W-@ W s ;Vl4 f#$tyi<>+!MNEzh@`#LH 1Hu]ʯFkU?ߊ#wh >n=׸%# MMAꤙlEIž[\bAl}J a=F<))Uv+vR-5TBe qkN"NA f9J[i˛lTf6%T2ZCs,eQ7[eK>~8G5tZ[/d5ޥ#Yf!3%T!Ne3J0 ZՊ,G&!ZD1 3\4 ljǦ[J۵L+UI'늆e =14N=hGJ8&y):wU]9LAT: \ݟp+iʷ@DnI.hj 6SQ]SN{uOD "uj:i3 a2ݎѾ_t~uMf2ig+kjEǽNUz1JI"A!1/lRd W6_yL2̞gLLǷat0NO;U)0?t]d٨TMi2bMIWpQKI|!C ~޲#WID/!q#Ygjv0 QaUmoN1u&C;2w#!44ԥ Yګ,ɄkȺ2ñk18d0N@7*T|0dC<Э>cYU4κMߢ=8ynfƘɆjJcr JB5.B],EE'ICyntۼN#$a !'b'?W;?/ܘe]mQ>t9"80BS⁾Jd z]q?~h_=MICQP&S `O~`]\Lj_K/hH4w ^CHR9g&7^];Ҟ.5D(㳢9=rh`@5d)>֍1GD!h5VU{b4YDԞ@ >2L`uW `eM"a%"M ɱd *eL9:je<`lgP&vA ?*x!bziS> _"<>+hG'YۿkǏ9=~iʪ̓+|nўG!  f+6يNB׈XD*%{d9v:=IG(WYI~pIJLՇ XytY G/o"9+ߤwx\~ф'2v 0u7iKˊmht)(# Ruj>mtt)?j+ 7Op4ڞ2vO ElԤT'Z%]9/|zѴCm1,O)NBav+r'F#HeQvylXC/CQe /I{~Kr}sWG7b_a I2V&Qp&jgI&)Ovqa9I^hcnǦ,y{[e뮠8qeCH2 RQ* V8٣i'TFM4z$K~},$h,zKÝ311d\$D2'(]rpHSL Wϲ.yvgupl]ᘹK +#"veB8܍-L Q&ZCsBX3_dNZv]5eo[i/d}Ɂ(oN]q/VuDD'dQكXd/ByHtąF/ 6m4a`4NmsiM L"JNac"**-wLƤHIFˉ뙅L- lmsa;X}(C)%T}W3=-"?Iۍzp.8PFEWa/Y[T֣_?"#ᴍb:`Ln5K9Cy<ݤn,.lYyLB&.Ji2]Њ"~ߵO)r]"/?ՃR2 $: &bɵEbƑ(V /w;˰r@ڱYsC] n%="-gzBL|aˇ`߲*Q[DT'0\Aܟ%qI"T%6ssw]&Ұ[ԺOJ+!GVF/a (Ǹ.`!aN rB2pavR-]%1V{Xd1G^ChU&BGb֏sCyZKj0OCM!R qύmUUeRbQP+^Z$K'{V\sMqcuOQ>܎aҕ^n%9=7Pە^rtC "~;Bf2s$5 \[fnhBjozd&֟ΊH&c GC_eG=R݊_.9*8=}Nܿ8L8,eEG« 5Vdd?#{1x8p-@cДQ9t+ d_v3OV[2e*'>܏cL]P'm_2NՕ].f3_,ks4)BӜخ8 " |]z-]aCxbsdQo7UC_Ki >|%=I-U!hW:YE&A-xHg`I 莞=nΣB'UՅ$ɖc(biy=wәk{"MR"ǫ" EDW5۩~|s߲NST->86Kw}A23$Qţ1h"`@< &]yc1R p?+60??=dgҥ4a$MUJ#P$P]4P5$Cbd݊1Tv?_wr dP:y&Rһe+qOLjd[>X8 լV2|5p s**&-%?.oLq m`i.3lq1ؾ(_WJOh)M֢9Qقmц"{CUޔ4 [tyVg5eK$/uvM}ĩi`|©ÀB\+hV IԠ y/m\e&=[&#&L{2\Pjc=/}h."g!*M4mYJ22!ڧ0CX"^(zYcZ+n7{y+aő/Yl-lyfH =z 7 y^W,moLvB'Ѕ16@K!Z9Uhca@Ro=HWX+v!tZCMְE&*+%a"3`KU %mV$O5\v~1li^/Ǐ?GiW[cH 3?%,!i6OAiR4BDy1FU#XX{u.uV\lT}}8C[߶],ZB49G>aܫĢZ P |ഒ}p_4}8‡&*>QP#[4w͗1>l zYƉxiyNrA,q4:3eZ1-ӒL 5Fڨi1N,π3b3p~B;ZfGRc,~S:|a\eD&X$&+센(S$d$H7 ,G> G!ChǕ=x?#0,tlOZ}*C탩q :/|P9{&0g5sb?wqׄ,S{&vQ% -29%Ϻ Rxqӵİ0i25'(օ9q}| Tӫ4׺{{E^BA0v}AP"ZUR7t/6Ry%MHG\NE$H9dxM: d5U%QI^.: .K#GRAE>V"OPU$ dckl_eRdE6qJ߇x)+mD6 20DL uykH[iSS[Os:ҡIRO+oR>ȧd&BMHX(ɰkcσ/nᅧ鋂.kۋB54J|bK a.'WH)i*{ c._UHUUYWuWt +QF3K-bE)-BiW.Cn5ov _]OqgYze#V!Cgrdg&'ڋ^WG4b[ (v82Yagg-X س~\':UGecע `,}%N _!gŕ: ƴ;Lj9.0W/;jfw]w7#5UTe3:7X;hZDb'/ Ѓ9VɊ~g6%ܿ\I|E'=_ v`~ըũE/.ˁ|_:??ؒ9}D% LzU|,S%VW:GLOd+&݇A81FJ?|,BɛTD KH 8%y8I5%>'Φs'K'$yCY{Z]4I;R6!Ψ!^/^cjMqߊp}?.NWv$ +Ex18֩ L@Ci+@b(,=LTkoCvUi<7Z͒u2r0|]`Hߞ,)FA R]-)Xĸ>j%#Ihy얓LQHQTR׏mϰ!&kƑҗOXXþ24I%$+ZjqZ_>sk;9Lʍ8vs}-(`T +=ĝtI5q"lYÂ&:UJo55b&h <.8f_ vk7YWo=@Ax$ JXi*K%h)SaX4fsVoa?}*Sp  r4H:+Tz*Cgvt;i]"v#=RB90Nn/Rӆw>Y$Sf&X%Io lv(#pe]*kp;膈- o}f)H|ۓn $-4ȽX\SHQwA7 bi1 GU ܢe (}.D"~FeY=O[<-}s3~,4,zcJ.w8rh- ]b/m}M>yJڭ "ɛ.6RP݃ 7ted@w0:+>a/-  5eC?.% z[$\5:zk"3IH-gH+$()xXFi'>V^;GnV&2?@(QYiǦ>)gͨ5?$WOI/޲/LN|FPKm)3\MdYy1 h2JA.1ӕ7ъD@QT9_0ef</|6݀=zW6 ,ΊpFex[[eO$Ϭ|gh%eh"MRdmQT9u&-ɺ 9+Nx]h]-pFv,(8)NՕu[u-,8~ɪڴI!^LF>M@JQ[(,D@ ~Umd ܖI|hE恧q< Y(%+FGW&-5#+L&c0b'c;~+Uq% ꓘ*±|~N4rK^ނ_%)i]0جj$Œ\2 7q0 (uHHª' Ҁ9jE^ sȪzbKu@.ej:C *Sv5Bmn#4/<^2f(OC3\Ipm&s"뫒0Y.j80ˈJ`Z6 |eËDbgzUcRX5||ڲCvow.7RUi>A+ C݌ZKviRK GE>;ZZ$~rGQf_K% =3-i]j{Kb$S8~3I #M8LvڳоFyNʖB'o.ގh֗ Ӓ OiمVZ[ND'H?NyiA+ߊYF6aT:-c6e1wl{;_u[YrX Z%Bq*v#W8=^x#.ߤ+ lHlpWPv(r%UsV/]BJ-ݕ䴚oZ:B PZHhJQ S 2~ʒj+_+ D $̊حTL3ёm B٬3+܅Z,FX_]ЗDgG:j]W#'3p!ET?St_ +Xk3]zcmMHԍ[qv K}/]4|Jt_hV紲 8[,v='ʹkSTZ ;XOpv}@ꥉ{\TsQ 2kHUJ$:9p1ﲺk8LrʖF1KijQ(^ tw>MWWHњ_WѼiӶ+:F4 c:yU]}tjފ*k( V|},VᏵ! ˅IlʻY u^QTu%EdY^❀1NHǜt߯Bamg2)#u|X6m'/U5f~Tz7ҝH%2MEw2eEZD 2eI@+1wd5. ˹LVy8f8N'Z-1m O71KzٖI@Yp~q7vK|t;+>Լ.WޫSϳV1 1"ʏkh R!Ua duQL=w-7ULnƒxqҰ4ɻ$y8!},בh W+K٥DkPF&"d > I @OO3[ޜ2Os sKw:*.It0q|Op:ƙ5ӡd. jr;]$_v1#Ev@]dwM ?iSLaTeZjgU.V$N䮮C" 4]Q}' >F5yM1'h:āڨ:hQe)IrbI4rUXx`sk_UfQdK8283݅P飹cZ}H99$VQq?kぢo0 4+Lɲ 2OB A՛TΔkwL9+wbC$0B >`3P}mA UP^prÐQjr&a#MܘMY8;cuF"0l,E,4;8ҍIeǜƆzlux rte+LҢm{dGxxjƄ;.~G%;*f)fPp04'}HJ+\$ew!Ą4LOCSB1.>"p6E*8e~/6~|449,Ɛ-^4Lou};W*NlU$eBG#\w{O4]XvhouxIb%ץR/vIyp9Iu[IFN+wyYFSD%WXז&ЂE ԅȚU{`nńH SS}ho—Tï̺V}R?:Zщàؼʹ BqUG _าSlT.ɧ]Ue1)ƞWOM+s¨0rRZw"2N ֔& GX#u8ZP~Sd8*=pھoNt+&¶#dh}4S $t#Dx`N {TVZHLO&.GhWj3VݟWuC'@qa@CQ#DBKFr萼8a*)q؁s )߄ pYv92+o"y*Bj4w%6=p9!4ݖ~7ߤdB&pVɕN{:dfF şQ eyu^#ą;?>g7dJg4CĐbm.vʒqg^4,({Dto|p8>}9ek隮,=ZerDYf'Jb  bY|6Ư`H{ XF=it\$/B^Cc8AZ%wxy+SW]~%n(CEe٪tqWrbP1E?]MSRyx\=Jя&cZ3%M NS)=ڽGbq!(kܝg;Xh45ͬ]4l*cRp,iX'"ip/VY"b<!I`D9{TFpU6,,8?M.W^= lO.Y"j]=iy2fU͡iR5rYل ̅s6?] .R 2jM y ~Вec}RI4Pj: e ge?-zܑ/:1Mv飆kEѪh gZ5KH/hevJJh^c[|v"'}u"7 V1BKRA&?U bnahWܘ|3,=CIq0~M.S*/vLmJJRzE /t>vE,Gd"T-/.+p3yC/7?߻WXE>HJ3/E9 9>g I:C4!o˾/V&P"upe/ ̰Y۸|:J^Ɂ!&ZmT?]d|BG˝v,v%YÃbO0,ipfml_˶4';2'oJwc2O" j(Le+^8|JThVLԤ/=RC$iB[ \]h.CqHp3r[u kRe.Uwa)h%y@!0{뿭tާPծiy72B~)]k6:1vA(?fo#'ɓ]‹b#S" #f|eox^%d@rHC7>[-&9PDtЎxepR\.Vܮw"[8Wm-vn3"MeBF_zW}މ)pLDȬRax݉P$^%P$ Jj+&o?g(Ē;#ԵkPt%^cip FcY{}zYX[tC8of 'XzVxrJCjű=wBqA]Ū N}^_+q:i-1tټPJC|-(ɤT!#6ʪ DKy$VB6tǐ _ۇVƤPDD ދwX,>iiBB_7b 豏X\E!{>*^cb1,~ž^G icmc["aB* -@ַ+J{yޱhLL`##$)0T'6:CGkƅ$SҬj(Beuȅ[*l5޼>=ii ڽrM0ursNs+JҖthm* U #ZE(}!DA˴x;/B@~0:09r=.P"kpe ľS5@IpxwYb_ ^0 s3Dvfm\5k`d 0?S *T wĪNS R,/uAXZedעw'#0B??mݲ5&ijK0iԣ˫ZA[1N,q)*їL%9午K6o#JޗkMLl98mܒ:Kts Jbm IJY~ ]KSjyJ'oDbRkb!vM-kB8a1E4ً%jPb-۶5Gh33|wlCGV^ALB2\14J.)2W3(KXU"U}PKD';%]K^%6I0o::#ٙ+88a^W\.^0CB T'qO6(Yx,Lr^xI)Ec|oFXٽKj6x nۓu1\Byu]' rE7n+gBrީ?zhYiW{byKAIv9C\i@s[|. ]aL+&%{ ڝXnYŮ{dS^;/_݆Zj> 1泷ٯRʼ3钞!D2ị Zƃ q'i"+Zwlѱ05Ƿ=pCyƼ<" 4uEҒ8Y*RС)R<^"GBN&$+7 zl{ƍ@ː^<9$iKdMI#q1: 5+.ѸYy(, W'6yc۴b{@lq3)/>6iRI+qzC+.A!ObM$:c_< sQ]r(m(pDP+eudɱũ~΄Cj3FA~{-I# ݿ1`}I6+SB?q5s;0b2 ߩ/wEF%6nxq`m̹ \GhQy>6DɣC,;!ON:EGAl#H$1 'oq,N('6Q5uF!{ BIa}3F1؆;wJ1A!ʾRT">hI& 0]\t /F2-! ӼGLƉ%'z.pKԈ dX/ \I/)֓o3$PP6RbaWC$*^/gp0@iⴙH|L=4KzCk43ڶ)t8(R @~/2:-C2N"7Ɖtbnwuy,?'V>2c|>6hzAu~Iz8|k) WR$u5qp@l<(S@q P&{=#u3)O uy8 (}UPrW\ i>ZRbz-<&[1msSfiޟhW4-m2.}[VJCAu'V<`"]Xbcs)ӡpBd $ lζ5v<( 5]%Z'+a-~@B W*$zLݾ=p4H2hK<Eꇙ\VJC=;`U_t>][M9!o ?XU$;Y%6de(XFG?ZO8 ]BlUzJp)E.;n. 17n^`(Qg(i9Ne쟿/צ GXzTaae~o z |lz1PEw˧w6&Got*o%%MFIadfS3UGqA)Pp@[ ev"H1õ4^4e<Ӽz~T߫~JCYc:f;9j. @_VUұإvB3Ar?c|69;dL7K\DcLf 2Ra=Z1Td朗DX (ze.&|*{xZu.{<F N2|lڸ/8U>NtKVpFDJg(L7^[<|! G8yŭ ^5MVթ:&Tt& dߠ-,dr)"&Bg+{}q8%H鲴* i4[-!"YUZ'"5D gFT&3I<\FevriVX}h\qEw^+D ިhml2*͍Q8B‰,i0RVjIx9V"O|:v(*v.x)-H\Ga,90O!U[76owe>qMRA)zpDLCU~>=GsJ_bGK)2m4f]ga 4H.d*ڪK"PAcbOah<`O+M g"KX\qgLVmUOfZl=053O}NO~,9u$,=Tb#QD7ᆉK'O'3GرW2ayN<];{4_;=y|zS H%@W8T0&,rSiF//+ (|Hms\}-2|'i}nOs^ˎNTB42Tݨҫ"CP)N6.JeQr~/.=];YnKn w|EVƹI@b%a!8/)"9*:= D[BvJ+f;#qPEy8'8QQnihjRKI *uG+lpzCNGR)H=$Qw& <'ˏ{zkʼ*Җ9 _3YqE(U NQP@RX^V~xu^PR0/ͺqyX&0mXf!W#s.)+CXn摨I g\L!;$->و]#$%(_Qm(.jj.RX1ZDLfKq>x1OpX"Lx[&tO3N3"Ț'̳]M;=>̥)L.$6m\b鶫 {jʊޜ/lSk0mk/\Gھ-h&Z֋iF$R$^f/ͅη&'o6_jG;?^c|0ܘ%c]Ke^LI#]} BQVD ۔{]ٟh8,fk+9DQΡDOtyF&ImQўK*!fۏ`>yYqsJSXyN_ /WUi+bYNQSdgO^4Szݵ8#R\ |=C,ʅ`m<) zm4qK;SI\g.%^FoIt^z8JXorU;Go6A)FF :`+m\ eB%x'[:] rMT̻2afc:ep㙳|YYjH09>< ?K1E_jU:4b1N4a;.v,:0[Kĉ,kf2*!얘ioPuB6-DX@ M^|>s[<1T^LJ &jP:I|7KˤuY5*z @ZEfSZx` 9 Rq1ӂ>1E8'7LfBrX.ZO 8l/NdXE^3<=wjҹ0)/M5{ش]xɆeQ_ñjGP5NS6< +F-L4_4oo[`\7Lvcofi0MGB^VEfcʑŠ‹Ũ6f+Xm_?{Oe\Y\ڱz0<;h-npk#k K'[Ob"jK'R}'F%#Z0HR)lm1kǟ:lmzhQU_M*U[1+iy;%JY {NL#F§}ytL⟓8) y8BW/Ɣᵧɪ+ ?Yy_d`̠ ZLm9@K76mSTD\x sPX)o斏ʁBReCzRիE~cc8#"KV Ϩp%USfCDz ˲@ؐ?VV;]s1#l戴Cr: y|Xu} _Mt]B/֘L5} LPZUL9dl8W(~4ea,̾ 79,2.rw"]ڞWϦSI+,DXX{A͢G`k~AV `L0P(i"Mu7*Ay;xP!&AFBouY^vz jBOl´1T*,K`خecOK@/1:JPi_hg}={;ݐӤLQr- 5X6]x7, j/9{D%mF#++va]>˗ޕK<7p0h&/]Uu-,ao„*ASV^s|WU@\Ύ_^S[0F1CMν]Qq*(?JS8=m!jBtBiehhYpi"CхD0Cw*kF]t% A TF$g#@b N&(4, upskLB>A}AKO tcnQ[cNg0f6M /B6iY<GXcp {j]l}cOI,Fj'\H\PzY)b?Z)]V5uIb@W+"pkTn/V8nWWzNߑp==ώJ_FˎI_ oã:Lj6]vmh`7 3jMat뗁?/PiELuèɣg^`C0^In_[3]5!h*lr]+0Z!V:9q.s2syyHZ`c?L b0s^[K,b2rɊt&+ͣ]ovW] kg%GVW.]G/vU\<?jy?y` WC.+%+Zs41TZE wIPXF.ʬe4b|ID&$ Q|M K !™6=w &tNzz*8&".P?ñ('X ҌߪWH)iJ=kuKΕG٢7p|xE8d3VnviM$ANHK7||9 |\w.;r0)uUcb'4ڀ<c@GѢihgZ~@freu}Y/aY1M҅8Z &[յS2v{ߞFb )"fek] nuiGS:˫ddt[:FLH_'FIvܩhwWтf#%Ygh: = 4 0[!!VƼ)rÿF%>&+F: ll򓹶[ßyLn }E{sJw%#!A-;/lmQ\/TYZ8++5zR}I 8&PrYIEѲ(sQ9-bZR>W;0#1HeTP8Y9D+کZy(\l W3֎P ;+izɚtT$1/M.ܕԣ{_tRXP [;߼?e2obo Y&hd 5\)aSYR>=4Wpy"+9]1Ex5x^U685j{9}R@=ʦf ţGKc*5^kRETxSU'56<`S)|6+!zT]@"d! ESK@G[BWF:VyhHcSf#mE`<8oIJ1>oՌ`WmR::)"dy)^vwa'…,% ̥YzwcʰcM {e:MSҗCiD7}'P~ҎEw?{ufδr{ >ru覨>NSF{cȏf@ "f+t++_H VJҤDڌ?r9_B0KSUf`I3,hZC%bSɮeɒ.&218]KV-ſe;j#+?a7!ZDqM={hL^XCXR]EMN<ޮ<A\=^z( ,:d0 <8\ Ӧ&<<r/;`_Bo jF3\;ysn AY<}uYz o>82Әy\G%ow=abjkti¥4I6)hukY#nj KF&)#K n3̋kDzlR@;$?Ұ$G׫Ț<\>SuG2YFV%T94*Պj+SٻOZ|y"9my}hf|dYi(`R"*$BaAD:gBF#0]J L$П&%zq f\+jAS,9e+j/U 2T]4V2`y/L?gt-%|oİg, ZRhB1u^qBsEwi+ 3:9dpG eaq861N 14,G%bڤ15l!Sߑ6WFs|>zp}ڶ â5~EEy-]&KʐIN6K-|= J+rW =DEwX/S8+uGi0 N˳up[As4\]]鑛$t15EtP6ZM|r^-&a``U"$nɅ=jNwv oҘLnڦRI AA*tb< JXy(c?">3. 6 uKmB~= ʮw.VP1Yg:ZpNN=׍E+U1<##=%(Qb)".Ř0bM ܕ*zymЗkiG1elWLM YS4< * B4&8T('V[q?..@۰}lauMx5ƴE0iʢb|:UFvmJ8VhpBp]e :+fe1ܗb+10ɨnuו}k:":σ|M8;j3eJGql[;~9M{Oq3(Ⱥo6YoPv5n C#h[/D GWoDŽl~'uSɼS8lFk0qzc ΍zvf0jJN L>~|.p':V<車9A.m8{ۑbBOT$y2o,I&.dqh ׽@ ˈS{J$W|O+NO9_UZGR9YqLNlDIW;Y,\Ss%k;.OCz3plQ.FlϾAP1!p$- ɚFܪz$`{L)]=꾅#Z=? rCHg LYK^k/ebbuYWrԹ;pW'WI+ķc"VEZim~vxqGB5 y>N׫on0vhM48֯G󸒬 ryM:v<(0dڑi(1[%ڕ7HhG 7/cA8V(t[KL-὆#6omhOVMCѪjBtE/ !v^-X}h0׏LŐ& %cUTaΧ-V/$c ` #We#ٱkضǹ"31{_uȓϱɱA.ۼ2q%Xw .SWr˓p8c{-s+%LZK(foL;kdi>kmfܧRU]2y!ǴpW}UhD'.@ANN4{zˊj\AY2 䴒䂄3<.n:.hP!9_E*T%( |^0/]_Őkv38=Lc uې 'IyuO bHЗ{1A-K[iSD/t1ZfBa Y?!e0ٴ{қ9::Χi_! á>`C #y<v*%]‡H mə!&V[`V5t%#,.l5-.BdCMheWf ۸{.͢bDQ#^K Ԑ wa;+NDXXCEJ JG:Vx+G AJ('/%0,NNh_S,8k[_(j-2O ¨ %>=_eUTUb^@wcDHIHAivOXEM)/K8ɓId_֧"q(QA  ɾxꇟ?]n!$C/H>!cԵݭ([6.1>9j-QVb, djہau7cqf[1I[4sc2-A ׄ8Vێ8V14i3lBaySnLKBÝi=w+*-8yZ;εVa+wgY: Kd1Jȩ!+Kޯއb`.Ol$Ī\rCy#WyP},z1yf ?=!LI,]_uKk,lU UMVfH wh]8^ 2qY$Y`ϣuuqϸ]S_҈!]٤gGMRY֡[/<7$<ك Ho9<~07Li_Bv}0P_@Ҥ<$,h$Vt&J) N<аmfe `KSpˆLu3yjja j pe0(O燾N*S ʅ5d-\r>JٔO>mHX>QPge_}`1_1QM~ΰ (.; F U[cyޘEFB7~W/8R(u=,OLrײ,eY[ci/idAZJi)`)7nv/M64L@q쌒&Z74?ϋwI$M5uG.4l҆KԹSk-f㔈џ^?AOmfIO OYUp2Bt#Uww0vDNe&meDF)iD/.hVxOdAVd$+7B8`6 *Hl|AϣGCIfuŲ~qw{ch<#MkʴW"[&QhUJܤ 4 WՇYHss7||DserpGM:$s52q&->I'EV9">k`Y8:'ߗE/Oc汲N~pVV$h*M(UnS0J=t_N# la l{oo3iL,)B]L״6't^i%E_% -Ia/j1YT;`e%>>)rfxow)GmT$k*bVg⒘!3϶Kܹ'DԏQ5;nMoyԥڴn/\FUP_6ie{s&9vJX ݎBN4DI Һ_пa31/#h%]Lm[׵(tguVP^-l5fPᵽm'1 ;h ނQ,Ay/B{YH$P$O;=pfM2F)wID5NiF]47_E E=JHAZ_K $+8/g&4pi 2\Թ>Y"،šߪegʔ9a+pܺ:dS],k!B)<m,hyTDCC'1ua/Nzm}cIkIT5dYDSJ HxÐW}=a My % %1 ;I;zYu~*#}:nkv#<&E}M۸>~'rt/E6M[V&T3,JwF9e  ~Bmƿ3ۋl\5 3|D++氬5t,2O͎R~>Ӭ3VBVܢGAV~!B' fp N0@d"LCk%8-L(qRj2)o*rnm(P*]!WjZJɐ[ y}5RV0L.Jek54?KK㤘c1u>U{a&I% pBŤQ+EX(o{'Zߚ.Zpo҅GHaUjѽXZ`An@%k` qьqIڎq1nTaMڋ-(bSp-ó,"\NТyy:,a_hW%Zƻ)rYՃ4b(=LkAwʂ4_J̇Tc:+rbbJ&L6U>^#%v‘ʤ檾'{uwUV%P;T- ]`J/i) >nH`&gam`NU5ݿvoj|49نM:I!cǑI_]}h7 #Age'ܗWsyv1S U]*"ՉӜwbR8$–ݵ(O>ypńM,HS]rJGDZLm)vTd҄ʦ-uVt,agb ?I4P~?]]RT =hu]6L։ UB$Vm#,!F _\Վ <4S˪ RvuaFJ@y^v!}9}ܖR8L~=S31}+$n@Z1tj'UE|t. рxJrr6ø&N8㾅pNwjϓw0pX R6b"I0n [m>gwxi OXEzEBpz`d/II⼋bd-`6c}GUeRypt XY\m`K Yj`!r- ʅ^QcfR@+.lep)e ~17G-BHxx%ǭ!@*؞Ԟ"GIMvl0 6+:/+M WQ$׻{6Z0njhc:uy"f[OvK[$DnxYQUej,J/by_a& ?e\syxolne5Q э4t罸?0}Ug@ KQ r8[d m.Zb/5s 颹Nho5NV!h+o0K;t-E֞:()gU`0.rHwܑ_ Ï"!AAſp/lJ~ҽ#zBL|Qp&=aeXF;tIk0*yp牘6KrCגw&$opބ6&0YVEb)7ۥ|^2j/mY~t93. 2/[2U4 /L<&x 2PI@JW~M{ޥ'H߽/B{6.UE rEl`P bL]Lԟj)#OE|YD{ K=+Er.aT]Yԅ-2kj _!c_Ko/J(IX"5L,Ņ[# :ى \("iNNq:E}L1v\,TUY=#ؾq%ʋ4C.y4@Ih`_>W.bzA (|ªй-1b>e6FZhHR_5<%.Ej&liUtUJy`س;,q|# #n=JX n_>DsZ'3_5M 4 g $~T#wŭ/FvʋslP- {EY??q>.42'{ q`4Fwq/C|0P1"j[%TIJNY mI3QC&}>j,FoNLUZ5m_94W̖aL:&[U2ѹ\M}$˼L/ ZCXzA_')Rh&_$bdIoPߘzBc\dBlly\=T 㕣\+T8YVm#tv+oDax[jSfiXOʆ|ಲT$)7 +`k--*)+#_؏p6nK1LQ -e|}(yta,.yumLҴo i;%R݄q!ҫ6^e0R*EryH GczQb-q90Uzbl-y5 崉1 i袶Mq0Q%K/5 [YVC=O[qn24Rx 0='fdRC&]5 fZIlL7BkzyS0$ZI~CPR6 L ܀M $EGzx0%t*ŮQǣd Ns R[Ps2.'k(`0TQ$0Ac$ 5ti]W6@^υX]Y4hŋQaF]!Y;Z"F8Dq|c"Zt#8̷*Լ$?T \iZqmh=qxLdB_hLo ,IN&)kkNiè?y~mL K#-eJ0*lI,1+WBb;<jvjSʳlۤhn*C xo>l.ڋ K0{ |Fuxd״:X924mgVMydȏ'3!=GQWŇKe$=d1erK3Րz=٘a*hɺչ PwqL.嗩 vx#a\KQ>܆p*ͮyC[,$;^GڈyT_*\0# $:6^JD95HڕpƟ㍜ ?{"KW)O [4}{hTb(Lڢim؍&xv߄OB%gYfM2g Ca(BvIO#kuᇏd@IgmO UҜ,2ݢL?v'la Spb䄶O <=a _ɭf1frv"qݺĕcYǬ"(UxS׸ٝ6L8 KebVu߳mV>.ɜhME°c,Cj @VNTp28ҢECBrz(qlh6ͭ7`Y9"H̞|=V ||J@*}L/^Mq|D/pL<ӃJkԮM͔T%X,MV[ $3*UŠF+4$Mim3}|NT|]׿rМn2Mxl6|ӱ"h]Cl_G"gKWC Cύ<<㕤6ئ( G/I~-7>t1+D1ME71'?˜EX9%qt=>.)0L~ȏuaʺ$jAƜNRËUc(' @e6nYd7,4YOkN}jiʟ$jH]0HC0éoJ8r[HtOn·qvIˌW g1x FSW|aB@#.UVi赡zrN4BX '[u(ܦ}#n5 >AOʺLfy )M{>é˺5KIF顁 A&n ^:D/wt.]<$I =J&_4>WXr;ªm[vK%+))4U\;E*" 7E2I$S*h?l(77/|T-iZ5ວR$*#ˁĬ|ˬb.QINW%P*/e 'Ýͩ(p1i@Q!|8&Ύ}w08bɐS%VSXTa0ƞLEdr@`7".yhԕ/`Tg)Fe8rrQʝ0-|gЉ/IsRy+EoQBDYE%, %b$"סNAr[{1ID8K_vN2E4m+?4ֶ28<&&,p}Ó8{a.dX&3^@s0q~oHnG<$'}-X);wiӕ2[W2ܸ ǨRMNM[76%*S . 2wf,>dW) 7sllogKC^i+;uL[{hŦȭ5H7ғNrn_>s|aX˯3*˪ E+JN`:Am@E%JpK$P.hxezb9_/<3/qAqE¨6r9%&@EB8`}\[e}!g]H:)~܇#?fTs\%dJ>,6I?` $319iتV p#*6zz/>ȅ{RQi^Ҟ1 @Γ>9s5c*t)Oz#\щ^\/$4DYէoz*7*?wwLUs1Pg>%FP^r7cnZYenJelam)I&ycMϟ]>c#Rɗ*w'(Ɠ׻h鬓 +4a,( TSM R' _3rKͣ {@In\Aˠ(hv   9$v+|x鹣/O/ǩ;$$io -Y ijK.*:Fq" zּB$" ^+LBttɺ2kou)t/CYx$K;"6rbO m yؐ+ΓaEFW4c%KnDSE^|"Ra=-࿖-ҙ/7!,HiϧMfHp=9b"Ob@"Y!B%c{\hHa/$`(]nZ?M6P L[n#WTE~^ub5|c惴/ D*X|\ORa0DʃV,B [&I<pFjT%Q|UGm5X~ҺۘDe?}_݆btSHu*'ܐS Px^ .ga.f,Ļr![~ㅒTZ"7 BM=LljOKY'$.j6PM2' |И̷^D@W ZペZOZKE,v^ Iw| gߔ 'y15ۢpAu(_fdb,xs?܅Tv?B_fͲ;vx4=~t2uxa(֔(Ʒ)V:gUD=f%"t./&]o<bXIpYc)zv(Xcg"7b }I[lG8,ʥ}?2 񘆰ZonC~{kC zZsPqXB*g+j6:]&6^&wC_ޒw7t`Cx?kHڦՔNJ5Pq.)H RQߣ˗mcdt*.XӍIb'B]#z݉}lyneIn|mlģ<P ^=4gFs%Ew/q<›x!%>li?W8ttd U}9O_p= _R%cP4QCV[4EI)@6PCſhx~9q K../6va_vhvoUʃO& rP^D(יE,$EXq.2GL zuK_e˖otwB lSxLŵjVPp-[aZ^#9qv6pq#a\Qy3 Vc?pk ղCNc!&W@/:n,+=F^e!4,\R@mI?B,H%# ezl(hoSO͢67QQ[xpCOՕ1͕3hv/ػ2z0*,.6DObl3jڼ Yc1U!2L6wBD*zd:sLc-ɿ23k/x#Jj>34O;yZ5DOh4CFœԞZL ұ`ia9nw$M"© R?b33l8YȅtŹ"3Yऺ,BVze!)ǣSkx6F9V37P ^uY].6W9>e:Wn V&. #l?oTu]'}/W͇hgjZבLt%9-Dԩ;t@qD +*U pZӕm< HIA^v^^& YٸܚMu.",| uEYr_B}1:里V8V ?Q=PBz@+Tb~?‹$7NђiIJ/ǟ9[m6O*4*_01S· ؾ1+T%*a 7xf|px_A22UVwF. dUi~TB6aã\'z>vNSs_^?9t~%DYT€fN0aʈG]RE+Z9c$E.)wK#{^Ӻ)gȿ*¾])G"#2)ͭpIǺ9 ƒU¯ㅫ29=ñ"?n+~@"i*g/?_HWjKs.KC]ȤP xHEMRR&&V-ɹam]lxƒZ(mC$NjEXbU[1 @"*ʾZVN{pu뛴"V+)EPGRvhDSz  Q._%q8xyqEىu"?DTdyS%]."r'U 8)t[M6Hq[^>g [{~|kV֦Ȃ֨PV5 x6k>*tU9{[RQ醽; Ow̳⃽ l#] 6deެ>s_/PnyB@1(PY[q x.plKJuܺ2_¦e*algnQB #[q_T]him˙&4K@ Itu$;$] {X벷^UH_Od-ԏ_yHy.cđZAa8ˡϳ$էl49Zȼߢt@tK oqH3818;MKO"3+H9f.dw"X:ވ2AVDb2.&  I1zbRZu4,[[dխjk8V•G{/ 6^#S#y޿߻]},M4GBI޵*B᯻H!JhXI5 ?+dd̽Ƥ#MLŢ+|>|^,ff'~x*\}2]WEwHѳ1촀&=HcbHMd+%ʍhsq7$m}O<auL$31oʪhn$Pjj,Y6(|)~h<&/eYcOQ0,}M k-/'֘UڂT$ ͫGГe Q2%ߢI+o0IU$UZMGŔ/fdDj*ܠ2dVEUh{ܺ|GZVxή4]JxUު&ǁ2`S ZM "c@\:^<6 b ^_2Y D7^T@Ȋ+HXgyG$6?Eh}߽0SLMneG^ a'g ETMEBCB܆ŘfۭsQf>Pt<]q ͔VGI ׯvg>w!,{WNQnB18L: [5))ス@ 鼊KåI*P\u)] /'~j7b>ʵ%GXmݦXB5ڰӍvbDrʔ;dCk34quSu U:BQ(C !M!oHɽQ?Tea~CyL]И!# Y G; 揾?ɥ!7#N˛A/PGPJnVx|3sJA #ؼ͖\eS߈ YMf1у0B$FO/^W<.o*B?U7S."ɻkiZ"t*KKGbtPe_S8Y`u8GÝ L,)E86W/"~Gvv2B_T]qq$czYaGwso=,AV8 0z?bZÃA:yj۴ފvPQM=W/kxu(V On If2d oǏC#(+1:+, ELt#1V*tTXWcxfu' <6 ~Ǧqvf 5c2}aB)3 OP3۰(Mtyr*nnMגiwVDqy,Ti,듃rP ;b4{wxz>P &1߇EjaNC$45;]e5O/~f#uLy?0Τk|XvyD,)V0c(^!,RokYH@@&e@aE9c,âlic0Û4e]q#ٲR.a_ 3I+gUa0N3"k4<\GItqbJ68<`E$+HBʬsӂGwzFLGi豛..ly`G 75KJPZ0H1)/5I̦H]W Oֵ&|rr6|dL@&pMďY3%( =U7EGx7a"J= V#hW"v|wv0Y?=Ӽ9LNPq2'g4Sj%@5j ⧗DՋb 0o ۦZ9z?X>Gd2~3.TiOz⒜JjI`2TRSF\cXt{_~e?RVm܍8u!H~+ 09E5eS Z؏7MQc yC6]?hs}O*?\PdCko''f(nW&']҈ےG*AB I(cu&jӧѪCպg:,΄^ Kńڲx_xr"LJE "?DMв~Z\]QbLֆSXn ڙ8!Ha/qMiwM2$RBAeqr GmQ~V}s*zH&X(ab݊D5PRȼPHmVy 1'T:^ #^lKH8Ӛ6ܕz*ztZ^}'w#+O:!S8*9΢HyCX%i^Ñ_MC$Ka6ګ$}4qؽrn\4EKemE͹Y}ρ}A^kx{όnQB]RA?|^ʞ*d%q>[hݑ!ja$"`8-;DlߺnvXdK׺{'[x_6[V"b`oFr(?jǘ1O8,&@OM,"["(ݴ 93-یԩOGKQܚ:c"â߫B-+c Xnb KKJ<Ϗ>'/I/vE4CЪ0c(NL_XFep_y2Dq4WHDr.1/Y-֚P%U|{5{ՃG'tX Gq#UjTtRy"[܆+Ⱥa"SMGnomk[b/M꜊t,$Ì_xtQ2\wY+7/hq >UKrn$+u17S(/[YrF?dovYO ` r}}iIoyQ,|\uS*=*BA]z_vH\r q+ų~JFf\Ec?m(Vak|Iሴ\9`-7AcERtBί-5k7W3{ NhGXJMk[971ħwp~Ùaղ"Ud6$W}^VU(OX 5YQ061Q)tV 0O[?^B >(%;V⮮}n]S*2TW*}P6Tsl"Bc3#܈цx(nWfZ<针%(bUGarɍ"Xojj?#?bѝ]~/4߫.yVl VGKwM9ܢWdY tKDZhy=VŎ܇ڡLx'reUm( 4xW%Uo=")5 |&aSXמⓘ9Pd ˜ ]nbMm FF/cM|!!M] (-(3]O|{jl~]]>2\JL-Y@RDA/NTWP@~1~#sF[Ʃd]ʚ邻UkRm>\UvY~P@|kJ {{}&,F2Gׁ‘Ly}:7iyHv 1ySifQ;8C|nÚp1DclB׃1rJl"P0+юw O``,CSZ]i]>]gt1p1ۅ@&}I>b}++r|QXbt#*hDQUG 'Da)!󔙧BPmda嗔\,t:HoNٷT뮼y.}>z‹) /5-RJWv'4yT!e6T2LbDb) V*HyG߉ 1k#/ۦ|tćCgyHJɨd>'i{M 1P؂{ON'Y%>ipfq/]w}Oمم7Άc1a'i[[cvc~YsNE<ؿcsH _.{l%5 -4cbh+Cۉ} lB #\ OQ.+QaP0߼ݗ"1 چ *1\z ޤo8;`+1L؋DDdD*Մ«xTJq`@\# gu π3!_=@LѴINjE9YE/p>sm8v.@3 _w+'E6mu(` kZ+ \ , /,K?i#}Ϛ9apgȄ3TVGv{[祝LetE4N((:o QWJ)88&pbA[QvOҤ8^5xpRXI!b[Z#⠨|؊h.zk*eUh9MT!p&4U+ο h^'(8+9t4ҟzX=-ĒR$j"\Z7  bVxՐ  {|lGv}~'R9x!^r>*ʫL,Po탨-*\x$ӱ? *Ya@(2eb uȭQ*d9+7ᱮa2&(ԉ;oW7{Ph}D}^(=yw+ڰlbSκ^p6Zse!׋)x:kZ^Q|,Q/Oçsʫe}\{G|u](o?^3{s{ ;2P'{j6`7UcDDvIclVfa'KU0]z/6mʖqݟ,K?+\4V~[R kPi%∰7teG-[+%: d_57SsD};M]5"a@8&ww)u\H|8Ȫ^/IIUa";uWfI~UMLۨx'Pb1U~Afq?F/9)ҷ.l͋4ǮPBVOa#Nʫ2{uw/T& 83dE) av Ywm=ۄ#3/ ȢiLe/VejdSĦUUe{ъwt#,Ñ)tC2IReiQt%&CI#\07..cֽbb jE&Ta>=4ňн뗎T_:+:q|>e}NE( dL69XWYDܝ@wã\ T]8wJS2OЄgɄe>da'|BUݨjiJ&J֖;R0bU6B8m:m1P!f|LX=EukK_rŰܭ!UC #{(*]T"9Mـ;{w~\>_][o#zL>խtd'+^(b8*ŰHχ떖G㊨7 SfYwJ9eS6~׆-a8D">x$T qC}y{/}*ُv}!9i8D 1 ;A"2/ $)(7e< Nc,Շעu3E?tÝ0?&{V>m_=^q&GCQ$2MɇquXu@~9UJ[{_uf|iF.烿BӘZ.dX6E(bzϧ«W.;L[D'";_aᷗ~F)>;6)Ӕ*7+}F =FuNF8*Y~B8ApꛎcK(fh3+6[pFeV1qoJB҃tA qV{We`?&_ܫ۪LdQLMY%Ǡ", 242=Bж3rq99Ƒ)QI~[?w^ϋdZ V⥚ Bp3{ͨ䔵YȌMޖk8f+t53.F 1t"5pB<;0P2zLjM.,of ]WdyRp'в(@M-_@t$=÷CMʹRƨtG}{;WKnNo jƲ~2ڂ{7KSLnL6pMp[e@_8+fڦ.a{!0Dp al[\M&7I۲Lx:S먟nߪr2|9\Kj,,˛u%BT=S6H`yPHϑ4@+-44-a/6+g_J I; g$Q8a{ @3TlP<*גPQk)H5{-aHxe۝2Saz'f+7|ܕE  M25Eθ"\o`FAVvۧeTI{W/|\~ZӴQjX8\߅iZh<7ɦġmIS1AZrFE ؘ_e~\3KS'.i~{>/ /aKΓōeuU|y]p.%A:(\~\Őb7· kcYiOR>e#nSfB#F(T@Qn1dXi閰YRX h{C?M@ )Trh?9+]=\jd^|1'u 1Rl](^=e82U'æXnǮ&Nb'$f| 2(L􋜤amWSA.UYx89XIDJi.]V9þ?|N A9jEslѹX2WNmkw'lڗIaM+Xh✘^&]p JfeXˡUb,b!va{ؤZh1b+㟪o޿PwU8*W: &sVAXU .%d^ՋK7dv00id@$+⌶yUF lz@2dE뽾ä6jI4aa(5dq$u 'q4ǽ{s^.`hoĪ#2.zx6v_E6ܺ))v-& Ic5lgbm95 qʗPUL}_DŊۏO/*p !hLj뉾@VDRZSuypn2"q1edKEU3:tkN__n seT~1%H|,"H=wkfh3;_K8|RzfE^ %z/VdUZ_f{M*< YEg+!iq֫̏--}Ew:+SK\L1c=DNL] vNjoMI23uT#m,SS+=)ge^K>T '#ĎL ۿ&n>=&l8pUqpq6ހyQ Њ`1f8.{yhf_1/&Cz|%MNԲVU-/bN29)ї~Ew(+e&"o^>ʵl@͔~9?_\v䴅eYHYX-cA"?>F>k, a5kQϛyV!چ"6ltǺQ^eq Cb?D/=%ۦl%2O֤<\[9Z+ +7]ՙdJ:#"iώ*x@zrtˉYo&DQxUWc SLduu[jSvm(NlYЭcz&!V"MeЦ^Cb ! iρ'܌6{3[QeeR A.]Sq.I.B emc~.uC}EVz#7U$%B~򝲧@X(pU鿋 en1}ks^akksR&,*iY gbq!I.A~RdN}\PϤ3:r)&wCYԩGT6jn%"5 |AJyԴ fkG,f#pdڍ)$ 9VEkL+b,spxMu1eS&=hR")i`BURRȌv6 )+pʲ}o9_ Xɳ4tU}5E'^ l?fpV>+԰ yᖙVcƺִAN=wId{ؼjlk4ᩱZ`HQ0=l3KJȻ"ʢ2V&K_ *q092{&DQ9eb7x^%Iz,eLIܽVzn 57;4q95+t3GjfSA/R)t\&WQmJ\Ƶ\zyRP?w:2*J),moM*Ɯ6>q#'~C،4U@"*.W>O0usT g2<$BPΧA]AlaAբt[şԫ"cA"8tҡ]I{ۢ!ۯ.~%>ݔdĜ>L'Aڮ?6׽KLn?paSr4rB]y-Lþv*+TQ, !dL.| V_uTw|E!jj%m30D+|G $u 0i;j Лyx;pkx؀/JB\tTUn QR1I@qu{^=T x#H~:"PJ[;3I<;t7d`+pD|2-ӥkI`U OVX6>L3aMP_ރO&ϕR EUE}e[iv>_Eq/v/0# + N|lK&<):OMKJ4 CH+ˈ%?!e fw0>J)yYXu}[ٝ/H*(й.f0 Ŋ zԓL|屃3AV <Ɨ< *Yߑp_L!(G EQ{# z{h{b 2y'/cRf:Jfi.봮֭]P@z3mVߺRѱ(,؁}dlQGlq:XuĪ{yvd/U'6V6 Od(CUiԩQXh)+SDkݭZY^9֪Ir 7sz>X<Q,)>]WުѼp2AĀaxJy,d HMx&rD$82 9}V3)46d# ?tةm >5 hY=}"w$K]. kί^n|]Bgt!#ϱ6Snѥ:'+QVъfpbLԠxgKbc~>37&{Y df9Dx̎/ډ\I}xgC6uv{9# ӫi9iO6a#d+w,mWT$g Er>ݙ(;N{ o[%ux6+~9Jٲ6;èWȌ3?]|"~y$ )εeYu$B+XEdU~L}ۄIcG_FGQ$Ѳ&PbY)pfn PdYї<[ff.&L+S/qBgOKE""0PGux HLz;(Ɉ(G<@S ٟˢ+$ܔm Aڃ♝<"ehCSl}x5 1/z4.J6Y.ʼ d&W34Thkrm۵5KG 8Ã1s9E0^a&tH>|oB}j{ h*7ɘ'"\ $dNbVjC5pʰ=$gՉ[`(aLMe-QL[T@gP'L_$*,}E6-TrY`PS#[ Sԓ?,&;-? ]rR@є҈mu!⼧gJrVWR brBhs^uL'piJJH[y "Om{! eM`ѥgEq\O/^hOe3*Nue'GJy*h"(nb|̆tk%/[܂i~/ߒCPje#hy ߐ9%MܕiS1񈬴 \Zp)7ۻq{㦥|H֥եf i$ߓp{#tqş+bKKXcx|L?aXf禳=/l>qFʖTN=`(+!N T^Eҵi c2.y/~~KLe5U2Fs~# 2MUP))3 zw%(=&Y\  m}I*۰frڮ> }GPl,j,6EUz%r #= {Y^l4bY/igB_h# ;qS O P",;0qWFk_䆅BG U]֦+3ilf*IaE]x}[--1)`S"RX?l9?uTU&>=ׅ&T,D%}0*s5VC rk2VT+gGQѪa%C^ :G.̅G}ڴ[Y t*JV;a@&y H|;ftb,n4;8Sw+aqsOt,}h] mrоlJ񋚏;@p9敖x ̱ K{4.#^ )Kvy(ž/CcNL>vG$ݤHǒ$tWAo)m,6DZ"zĠzNrublui™~JQv6Ln{};k MB2vd L% PVbT WjFwbRd:gM؝gvݚ3@V]C>iX^%fYf*yyeXd.*e.@5eKr_#Ǽδ]5Io;6YQIí*6#ymlE^\9{Z/L[6>ßlaze a?#&/MNmnYĂ ]1[=T0sUj5E]6R?=VT'J(5wukcF.n L* Eͪ]4{<وM pGƖ1Xڬ$/V0mx`a*@dY:+t 04=f~oZX?~`w8KK/rSi'S4 ^-r+wʯK})J_?G,>;٭bC.#|( $B,E CHljdn1E Bdze#6 eOrSs2LSdʵ!\UWjD"X;nR(2;Xj ۙCx{gqeV1Xr|ǬSGK+"pwHPhDZl|S]_-͸fF*sψ>^\qAaP$aK[u6d;E4wXL9u(pY5Yw#vlўs7<ϰ-EœB4IM6lx) XE6M2D5Jk+T202<^ƕ4;C}e8\pwMժn>IyUuWک$48B:g9ܕִ^QĘNmV)xv@='<[X]$D5us{2i=x?1pkG=gU-5!Uo~i9đ]Ÿ@4m$XԄR޻-@$}, WZo F &B*Qc\w7ebM}Kd?G-~Մ:+YV(< }1Şy,ԍKn񥾇?LTf^7cuGS[yDLe c_sCݶmtD׺b.VE2.ug = .j ,AbBE ~|@H##Wca\m)0Yάf?VORv8P[ @;W9e2 Y*m y ~UI^{Fk#SBsYm F ^$7/7~_L/OΙǩzg7x=LV zI<}I,8߭<|!:?!VCLjnq^'䲸̓ma17K$%դu @IlQUi&n1>M~h/;w*!uY^%ug<*CSIxxHRC`lBXPfh,r_^ornDmX(qAI1_){ htݬObgrX94Ph/YǬcPk.yӵ49vj)'ӒW!$d8ԞYl *wPżVJط^ _JA64߆ǹP?Kd<#rD'kKECD`٨P s+{wI*s;ֆ`? :3tjPM#> ~>u ҐM6h+HT_:uh̹7M[eiFo"dVJ (`m 6}N~넉Npn!B)*蒺2ERNG݈cNa^dz҃~}5<򜅧(+se= bzWHuHxO}QJGP1 LYR-<_;ҺC+ݺ@)۫Ng+$t'e{o) O'pt%YX2IlN&Mq0}itd*&+ +~u]`* }a⋞N]>ta; \ 2-xkVkH >E dAN:>Ʉ<2f 0ϧcOM{y߂78mLCؑD5b o1J˓q\םl0I>`9|w"?Msջp:[VmToeXLBRLSvElG q|\wU}%@ 4CTb$m5JLAb>Q1QVӋfg7+Cw(d7â-wt[Q8Yet[H}xu?k~) N|/b*BRNyjdߠq0r#~ _xCyZ*'k!r5S%_櫸vSm2Ģ *9_y׍&#̫XẏFPF.u%9Vaǹ//,t k*^("w\zfdV2gq 'H}9. d h( `)ϓ'13uʰt6)+m5=n%n:%=S#bjO~U_X[$L1]{#lgV%I5)҃m^biAS]n9zG|~z~jL>BxTŅlBJMMTV,-b@-cev8YYp~{Q1*3 ŤOP{YQ*H/4cf9yBX:Jl1>uG_{/ND\:r~ϓW?%Q-;BRWEM[lʚ\ .Ie`Z\'J_ߋ5>?b.c:ib;̢{B궁wqED@lR{~}nh%Z(fN=Ye2ѰuL6Ɓ!z u^gʡ" ,.#2-~eTY, Z[PmMjflkr)1jlbk }b| E$F'_QhYI8,=wFS2t.YLQk p-xs3qȒKqxH+9mSH0y4hVΗE3 ҄3*A嗚ƌ.-ejO/:CoYRdY'x00 _̉YӁ;Jq&s{! .L1Mrͬ&g4=sz)KcD E$~mX-(MS$ċO`g,G b}1EkZ 嵒eBǏ,!yʼnlj]>&"Z6!_gLǒ}*I3]-l ϩ ?uk ۹ҭKVLu] Fj"df X#g@:(EmBc;{s5n%ԓN|%Nb3lSȀt,,pzV*n7s XB Rxحlbʓ-uΤn|uVkkGR=&ؤ^""D4ɺBTY]SCՙd1ah;+$v\&AMݥy~[ޗʮH:ܑZlE-1~B^d'`9M; ђEkw3$7 T\B7qϩ+M Iቀ xUaYKKus^ުYr&+K^P$YYw-(aБ d.hJó.z/i&4~ ]1PuzNMinet%rޣ>!$b>^xV2:"߼F7__ A%F&gb5AŜ͈Du$9 !U@y6AxWޛJ(}˄TrsU']C ch #[8(GpuP6O5-HgP`]{K1=L:ny,XGD2PM>_Kw1 oV̈@h PawPצwgMZ@S*]}9W|"mXRRu8wN*^l_[IXyQI/$3{anP#4GOr4+;Ce89na?j֔iB^2V|G6^x _;Z‰^꽾9D-a7u˟!OSYEȈR]F؁-/#)+Mm bvjС̫}c?#2f-.W?^Mꭐ,cgR1T$J;q2x 4}4N"CpK[6n)4=KlsUawua> qZG{/t#gx k؟Ә/cc8I¯CEa]\-ĝӝJS'SK2a'i^4;ھó.VY%#EFEQMV1NCE0E VzuQE/%~s"f6 g.R&vIT>Bej Ƅ1@j yIu̯]pysA~.4{ghFaم!UTj=$aTtޫI<b˯L̗ucu|-BPKf!_yȒ PC iL˾\FZm?;ÙdS<)}nM$鉤HfU^㚳'5'i˯gBmSF,{[?~?/MQ$D>VR疘܁3R8WymXa ?~$-MjyMV6YZ|ĘU-zh( |B!b%m\OQ)od ?2|+;tLtbe(HdF$x 3f4vM>]/#J:U/a\ ;nG&UAvtbc 2k5nܳxbHRy{߃{^D~:(y{8%&$ (]W~t@Z;pdĊ)3q13jS В&eǒ^ҀT߅f ՊR)w7eD"tRa/} BR̙BWsLePJE('c7iUA4{)NP${X+a5T"Q[|N)7w`ZPM+_)G3g.CJ LƠbK$-|{hi obOR@d1X>dI_+EgVo|9!Ϗin=KRa cKF1pȰZwf@B-ʗ1-L9zT ^^x9m6S9͢1OV1U]ʺ1G/:81Ս@ SkDYH=dȵgM氡ٚix y\(v kM‘3o]Ruխ:wLR*8kզ}ԝa!1Dն'RDW߇+yHʻӹ_eQ%+jpΐI.e-0oۉ{WYZfq>a>?^'_>y32 Ees<ޞ'/Lv头-D1 uz$EjB\z ]DhmnmsMϱ"ɪdWHB95h]$7= ͢m,<]UAYB,tJ qp"*/KU&8r>a'Jj4"XҙogE} ()DN Q9yX C +ڔ?E D$;H&)* Ѻn^'gMDa{y[iRҊslK#r'‘ 8f<UmGGerɌ‘"(t`GI* BX0Giŏ6"4(Y!14cxd  PW-Y58AH DS$ƢurfB_KC&iI]%,MDTB@ E87d\fB/"TO* {2dǟ~ a{˵yz&`/4ɷ:6 ]rsoX1Om]19;yUi=4,bCؘꨈ)*,ъޢE1, |dƄ֐vwY\ "rߔ%v:ݘpT]r~T4BwqbLrQc'Zݢ 5nS{;%Excވy+v?rXf NpXCT҃ i =ZI1#œ+G g'X:4ïZLv䜈^0 k4O}e+ٛj@)XMR.R (5 *08R/6n]V]Ur% e:һ`4K^V}xG K'^܌^aY >\,Bl /S K]b煋jRg}s8ʏBvҰ,g"۽o랃]P8'$K.'gySΥ5sN2_9v:䲮 d4cb|ŐR`S CS &S`,B-Ͳܰ5B/%LhcfUG YO$F,p {suY|0::h6]=K`q/#R8;Ǒl5w{]4#4/ F âGh \J/$T^ {jژ)ꍸti=.qF0%KՆ23Ew*:px &kAX,;%U^1ƴL}&o촼.5LQmԲ%v/Vf*U &T%} z8׃Ѵ;FYW9>{.TFO4hF36tPKJÖ\UH@Xr*j/1o[Zk&RO ~ |;vv绒M^,UykMi:\H~4Yр՘ن0=oSkGџIUaPZZE 0Ac*)ԁ.!+B}ц.&Taoz<9[NI[n ]bpVAc6ͯPg 骖|Yó>ܝf2윐TͭC4r1"v rZÝrx6!PEc|1=>B[YxBrG?yLv`L^VRœvs G̸wW?&Ϸ|AS` ʢZ`?ƨ?lY#~,DhIyv '+̳`:,E|S{[~&)%K>;@WY8DMQ0y- `[uI(ˇZ_CC\2cTɬY$Vʣg'7Ih e0{x2N6aq2IW2oh0 |!-<{8u`x,%)RB/*]8CR2@&cr;L&|1q:hUHa>+4 >^7wL)$J0?E3Z*yci.hLLәc62c%K` DVްzZV^ [_6.4yS$IS+ɭ/@v:ld K_^PM1Em e)ɨVCErȢz>n[H;]|;2/wrN3˖Ʌ~2u6Xu Z{(<+/ qoyDGeO;wBk#1"duNjrAK-HMԬ/l6驰p=L!ĤLEYUeŖ7FEʗ.rG]mDqTs>9r:t/ok-CGÜmGunc]걤:&EڗT$FV2!F,K»YgM6Fc{ eq#۬,Qk@.N(|?JA6YC CUdX ؅X4d/`sc04?fW(|K;:?9>ГښsRFr\u,q,cDZ$'=c?](RqG'ZcGl/ UvbGhYuأ[EaJY6smˠfHE.^^-H7DyI#$kCUvlea6XX9Ɓcuv)ۦ,lw2Z#Ŋ/#!aGdeT(O!l[׹% L$]ń&kh@Emr]0LvcI)5׊_$48>سg?fƅ״]$>\QʹY)zTyXYMɼ`YU؏"hZi+&د >FOۮ'~&'+Φ!a̭0U?܇X8Z>qvb4fd@[vDwx<sK;~ݓZ{Ƙn|F,uzB&uRGZX)94wӁ>N/=!Ӳ{N1w;~41?ݒu۲m omeèxoL'pkO~hCZO9tg}߷s S5K_;v&i&Q`ES.eQ). -^b01TDZPQ<2a +Ϩ8yh)](NJF~*|/_?"[W8-qZmU,JDc(~B#bJE3vؓp`;qMh/S@F,P2c09&Pa5G{sSTÛ׬RL an5L [i|G[c A Cɱ"b8KJ|X8'=ʎהP`r5N9ޡ#dF'YJK5~~4󗛳dvSvX$I3 meS5EVȔn2K+9YϮy&)Z͜˦)!|%M    &PoC@a&FD2 z/MhZf$>sL'YN[em]r2MmߪgcY8(XQCQL4sj!gn,$=bi D&KG[mBC+,|DyE+?%ni5Qݺ.ßV˱Bռ13;/3E:#-meuW~L wtr,`!5L< -<g/JN}/}|kPhpaV]}`)#DƕH|e ^**:5B4S*-?Icpt-/?cUVtɀbLy I!M$^XF 'JNS~[H?o/̰yR lbTf^#VYhPbPmؘDZt9 %#֛Xʹ3Gqt/4}0D}}Ã~vk]u3-|[yq?MJ`'+_|}"y'#^d8,<_.amKyl7Hsx-p4i >5G""73?ex,izDHׇle $oݪ'c<(kRW) RGFS.YJPFC|-1_h_\ -B?nw-'0 Mצ=)n=A[OQ>d%7PUMY\Fmq Zb~qCVzR&2dё1z1Fe3fiΓTyN.fڱRZؚ,FEz8)+7E15iW+\'_}%_#1nRDrHMo܂*?xSvU59S z^EA6.%"u\&V+eF}=.ͺ$m]$>E Xp;/e,%C(k{֍M?~*8Œ~EԿNK|/U,Z.BzĨja!G6dw=WEANR҅g]?b]]R *y&SI^xR܂'pqWGy)sav$>eCM}zd53MPn[ђi%zZv.9Ý| 8pes{hio΂pgɐHv&<n󷡴EaRd˼ b,IoGKmTӉ524$zba1P<"~v[ qSUIPMX6uwb5O* W:yӤk|rSTG/01ۣ9LITʰH2" )Tq%"EbrD8!e-on-.EIs 5#=zdֽmǹ?s[y)c؉ד7%IEbp&+l7MjqmlC. 4>_;%>b?zi͡  q,ϫO2ta4hu{pVɋPWLdA/s##.n&d!yPZF}υ 0˝m{BǘuY2&cYzP1bPM'Vd(Vd.3Do_'='U{}|0,pfbyt)BAIow\)9761'M=#.O%ԑkh$2釟PL2 g:eडu݄eRҖ[pٷ _fuxouja ]j@t-,kw8!ezN]b$p'x G %{xi4&y7Z?.hgWIJ.)xuqᣃ \"qVGlsM7/_:?܆eY(s$Y59.a&0,!4 Ba+DPpeP0pr]&LK<sk)ʪȩ1~o8hRѮ\)/&/dq' ]M ס@NG)ەEġ[TY%yQgB,b?C"]I)S򒹑_(b{gY+ҶI(C].#q|a/2Ȏ:۹=Є 9ӊX F~5w;t! %$2v0XuǕ:E+yP~Z2w&N_(&FmM SGc1rNvd[7$u/p-Z1}4oaJ` s,2j'HY1-w*}MENn=y(姃 ~CT"[6\x$yGshf?M; iEVBK^"B AbC,m; ʗe),l^9R4m:~ASjcЀS 4Q^{=ڪb{OKB1Tb!z7dx kgD[ZMxcĠ= c/e>{I|/1|M~ई.*BVvj ccŨO8Aq~VVG{ ThK.Z?#pprBuۤ .iBTHNw 20.e_~~Gjj^+#B½Lgۻ}yȊ&3U#H)@:+cؿXf@ h;"H%<|^KÉ8-vc-WU?/qh3S9=1b*9H[)A!y sR tZ\Ȼ3\4?,J)ݛ`u+&cUqA¦cUaKiT r*͚%ޑA2'1& MJJ%pgWI#OE;(^7Հ BB OFbq  ˧聧+5vOQ0`yݐ&ʱAsx˹e;)E֨2apGoIga&RX0N [f~! DjR"3*<|)5θ̎r0iE(JꧤPM6%2^DS$%8$0Z)~~h:[مGF(QϬD$-S~i9y?,,]nBkYڏ󛦹3!|%j8To6үLlYaCac}O[:ò|s]4m(b)ZPwQ f)gWbB9"7|I@s9} DFO.$m<`ar.1s`C_LGr0 u5~R$&kt+*-q;&bccxWT}-Dd 2Xvy{wd-I$$ Tu$ dJg_./q1HJ8@jn-Vx=ɾ;|HtJ - ǖ;S,'/7Ă-`~UqYl6c Ҹ(zx^Gӱ{{'_/Weӄ69)c#TSjMQ-̔n9ȶ^h2B _T2݋y,s?tkE4S/ʼn5\xH2ZMb=$J*.rx )nbjbq,˺%(&][U)'et%s{N8*@؅hqS/4XlwBq0Μ~ŭ-22*y<N^,Nvp 9U_!vJ &[Uge&MBF% G>ҷET"ZՈG` @2/}f@lBJV9Ǖ b{!n™! ݖ=s,GK:5d s+.&9](_ixn,,O=и5'Eg*{1G" #0r_nIy!z⾾rVz/_k\%,<@^[\WU~x(K6{gݑ1!V;(izs}!e6^+o̫nX:7mU';cB\de}*@l:ض{S !N-<ɞwhDtdӵLn2L?.]\9FtVg˼eцPtdLD׏,`kx^yU]wE2D}vݣ mwd4CDBL^v4ZDh-@J\jrkt_L1g]V%+Jƅ~8r}8/+ܴdĺ]T)ʓA@oU\ah] 9\ 1k`G|4$L Ih}zT6eY$o͓DZX9G1*wJbp85]yJŰ䀳ytGh^pB.9}ҕ$EH5G܇VJ V{4LH:7]l?]~x,r#}~xy!m슦JEjr#)+hpa@~rWVtwPX~ ypL(ߢE7 (dueveV~X"cp{jݣ$ #IT<^:zJgbOe?9RU͓ܓ(߂ZYԋEMC/Ry!U8!&-B!?|CO?ԕyݙ6O{MC hI]٩MO;F;Y9y{# ,zg[eRƅ~# ty/ CpyCCKTH]Lv!h&.TG 2y2m|5"`0e pilqb>RKݬv? MKIC&ܮ~$ǩO_jYpG|ZH)L(|t38)?ު1x~ScJ\NDΏD5EzG_!Z3W&RS)̗R4HgnؓR;1pBR_~ӷG._ʲi~iEvHAe"adEL,ZXd&B6)LvI:5 6;lkr*63k pP_zVE>1n^E.GA5V)sM t,C M*$S8t kFr?V<:r|ɠhhF_s Gi57yzM4g=?#FdM+h~ib ݩE?>&َVwmpI}s( QbLMԥ {qqUMu`{q=!Pp#צ_ژw!6!<Xed=HMׁ|,?Ix"+|1ysdjH9VY0Yq5ۛɾaخFyAV WD&z$TBۡ3"XC"A~>Zb'^mg !'?v.J?OXz,`T9 )5EN}^Qgp?):P5>8ꏬ'Ux\TPI-9ahzdpaTCHzבS7?S   #\щ)SZ~+CgSJ@q\9+IQQ-IVDnS;8bjZ&J wlvCgtք'nW:d(&9% սj&*%60>vCT|y;q(x[CIM\<}WhԵ Nw=υ{`u)D[zRlRgOviWkIxԀp96܈_; 9Gy*Ba8e'Vȅ]{peT5򜒂e!CeL6}uz7e#G—ԡTXkE}3$:.|P1uK{Yv%XQD[MQ|L/ KzΒAUa JK:%1ސK샜 \SW[}xLP̫γ..bIeXi krs4.X xp ~V|lYS+)/t+1} ]e(Yp+dQgMlh)m^NLǘEˋ%Z@fxTs- ytHgAr7?;5ʪ6ID:YH89(HCEOaכ8W-}#SK(˖F|;z LDP p(GwuDW%&򃵽1eBZT] ΛG4 3_*xme~/% u\8~ƳFSSMUDI E A@L,G0j 0G-y3ny.V6_u[[s 3u㽸ټ+xGNɚC㶢C^#Jը[KQ+_}Zd"O ˓[o_ѦK,T/8O<@ BL}G>(/˙*{R ۋfiwo3#nD!B,^ a Mɫi2vkZ  _t[YF%rÐr1 2.\Q/r:FRlx֕Kmy,u ,8/>܀VA^p3MӸpGч ?vx>o3pg>D? Y8ؓwGǥ3PXYQx)q^ٗۿ1?fn輔v{ er >Z6Y:/.+$q5Y-neBpy5d)N *o8<]8j21l4?zgL[i(t;%(̦ξ"-O7$CxcI;:T#﷞< '5{,{k4f-L['VRC~ѩxU6ߝG&p-AOKʣ(ւ5{Շ,T9{wT[Xtl gA{pLX)* Kŧ2 [m,m[f$찠Ǟц+*+yΦ}O3'3νH_ݮגwY5a ^E^(5q@rN5$M 5*݂\7͊`~Eض' ߒY5LI '*|0\&+t/Zz,KvA}vMoWLݾIڼguXy"fyzb1\B (#?ݖ5ZE{j8-γMӫiK]2P Ļb 9w'y{=6b%fcؼyCX`U$Қ0- `~ت])m  ŠD pP> $ >cP%I(v\Me\ _%gb8=u 3M%#D,,\KkO%x' )|$GE[ad䂘7*ygש_Bqn4XNuYdTa#Me :9 yA?]yv 9Z}(ȇwx .iE(?-ɵpe^'3)Ёb\LtZˬHcwLȊyhOTN(j/%;cwb˂'iUߧC Vǔ_kL:sаU <G4_( )tu^޾8v̞ zkc NM#5NS.*BCߜh&0ʝ`2}Sp 3?}RtEYI1z̊ҐGOj7䅭D&ZP\uϘH]jl* ̛h3iHϿvUۥgy wz|G 鶰k 1cYp7@yo?:z= ˱(V/L!ݫ#55֒M"77d@M]3B+GuH5l' fb*FX|_>a JJn670pwmΡV9erh%wGv ' ח i|sQ`z8?s=YMB? b3;kgtBt{J#@Jܕ.r`fe1Q; /|5w?n2IQF$m~$YlN7"`ڼYS&[ˠUk.P8xS:SR|/1i43m!_uC+zZMݼ*vZ|(9+DWt7[Fy}Y g?nZ7G){0u>=ۂ8" ]*'b}~KcYp>zTN9IZBa-T_{؈ԋMh^sv !SbTV!%]W;U:LBysz<k+ƔYZLCMp;TJ)!Qb7m(S7 d'*d~ccv*zVeuSWCid+Z .~v5Cw𸐮Y1 +C /m$,"M2 (K›y7(_5߯Zs+&v%[+U5g4x.R'H̫ͻ@2`(N976[miڱMϬy5}CD-Nuo,i89XҾENq\> ;9yZrg %;%7U AվuN#&h7wc6]= ]z1;a~t-Fi&b(3XT{ WD QE3<$_6GY@+03#˅5cUj&[҅_BXqG0{Z.eea dn}sڇB9ԋX PKҥBܑ\i[⍷E"R˥$Zސ%5 kXşU 8¹Ƙt(}KL\R\:h)+5ѯH9 ×c'{=_hJѽR MS7}UV<-}0T @*ȨE42>[f c]f# ե+kM+p LӚ#o$=*LuoFَ/Fiemoks"'𐕄Ū^Y BD2F 3Q~=ۡӔᬮ~?(܅n,Zr%]k6˓KIHNY{a=®ޝF<`jPp}xHd{@Y\jMVɖt5Yi;sk;>v$VrDlQI͒cΩҌb)>=摃?OLBc2oC-(jòLm'P`orcDcq1v.vJA 4ǚuaNpl^\72CtAfYJlÙHINӚ\guDƦ=:,߮wu]'eҖ+=Q`buC7bus0_PrRR5o,MPq3(i2뮤&pu0©3,kEBq!ިc8>vL~CWPē{gmD?5Np'DWG;F0L $.3ALY'q|gKpÈI޷]ͬs-_*c6|#wXs+; D#fe\#Q UB~Wג}2'T,ϣ-D*pa;j| (}=JAKa0$'}vwl8d'ǫNޢ-T9"9up(vFޝAB M{{uTcnnZf7M?^2 OhDirRg `)dy0@ 9*X"^\{ZZ^ BiU̯W(^E{]=' }^gWUYV_omCV$!Z{J+RT F>:21 <"I>vyE"lA,dmv0ϋeѕyU4dnC$2!AiE7 391au=_/d{wI8]L /눿z T2c y֬OQbQO9up KqӓOY 6/ 젇4&J鸠8 /n^a7څA|۞ m罬LSVUTt:Kqc{^ŖF3V<0މ!9)am_}6. ?hퟦ'R>i_LPpqya/+ rRv0imwH8xF+c}_ &dcY=˗&*qUYX˰N݁>J oօ^ :>L1]$Sx_9OkrIXU,R]v(.ekhS6j8&Wb: 21`"? GxY.lV7DdpLS98U%+Xڃy57mt٣T_ Y1T@+iG|!bh[ĞD)eGkɒHgDN{% BR D•eX1tnhyzIBZ gO*W]?s{8?~-EUP@0<(`JX@S0f,4QQکt_S9/=RںBm&J c4u%Qd+#24p$7⣸+U?}Y__w9A~o>$?SGaGDXd'jcPY>/=JF^OYfoN} yԥ +#g~R(c{}T<>%iy'ÞP՚I/u# V83WۧE7IJ8ϻHȪ D>(F,pi %CBp=xԟ9\Ű?̝XgϘ=D,*L^RPp#N' n^}|''Rc}fXHVK[}N,3ΧwƽjU[=Ƌ IG4V[)C֥%#գhQt ߄#?DRՀK/ʁD# Ppz]PwTs^үch3¿5dGM*C)V`KeYb] Wz2h Xؗ{ӅDǽ{GwKNqy6h^Ϫóab5%y\eԅ80_4X\(ֵ_$UF4U?gFcʲٌ3,y7V K]'IYٙ: \"i `( 9E0 C) —]u0tg_EtIq?s-:.Q"LdJUr#M!KLy ;Y6{bJBJ{\3اCԼK_4Z'H172k˴MZyFwNOP.:L^ߨl-[W;8=\̴y^9ldodoڈ\⪠CV`DF%ųx,yl(icxϬ #(_|w^!%hᄩ5iv vBCij  Q~'erP ?+E&r,Mf?Ty5Uh2:L!g]Aj7DY<=m+X}֤' W"Q2-8B D$I fɋoJ|{oPfg[gi}9HE$h6Pp_``7 &XyqG5՟2&ԉ9llP-p}Ueeth]Hi^Fg6 kTEtc)K e,W7yHe]c%#t^*['^ %Ֆ7ᷘ'Ǡ$O"j0/Û"ziF)`yQƜd+s{;02qӸ&}(fVKx=sO5kS%-HBYٶ.aL#wBzf|—W{_0AgO"dM:DD4t۩y|`܁ .$>ՂKN7(RwmfCoz+M7]R/F:VGq0VI{lqPFE']._oPϟ~ cEE:TN:-T%1%}(\4?L]1z]8KnOSxS<$Mԫ o#ˮ]*6tE);$.Y+d?B%Hۍ9a$N^yҎKh/ՏgQ*C{ʲNb&3ţ2zS[xLd'BD:瓪t1:ܙ+ν#MOvpW&4yK4tZVY\wLXDɛ'+Z9X & %cRq[Yi!vooњj9n.SM ~7{X]H ? 緥k:V1(PuQ#pyT`?mV\1#s*ZT28q2fq oprN+"t.IqsfǴj#lJ_ʇAi5F.)Kh)7ӐNE=cB)I83I$Pf_\4 #9"`Y%}|ؠWyeLxĊ20Yj%9`}T {b)(Ueݷ5>鏯mci?{p.b2NUVV'gTJD R.=1R H nuKs\Uɢ7I13Oׯ[ܕUy(MCY|OYcCs)iL)d# !s ǫׯ1^ oi2 j]TU~=s萋S"7 N5G_ۮzdHQfCRBIJ Fy:X5\'+ŋ ^}kd;ŗrCy{ɑ]AEVHאt*e0dnIvĢA0+}|La]-a 0mMB+B}i҂χwcO̝,mzλ,2\FVjxcԅs91Hqhw;ou'F'cT~;n_ p[cU"8Utv:szfeGyvngڴmM$EID MvJvS>Ni2Soe *!Gd? Hbyd9|!*a#{_{;ϱ(i|~!@#\zml|[YhâU.rq٩yz]p&uwY8qiюŵPgMnEդa;.R4j-`P+HJd6УZb£BܽY^xKxzrV2I'Ohh>L^𣧄< TB1JC'fDBB$,Qch.4|TcbrV)cme$ B,څ# ; s*Eg*K\:Z) UdR8v9+eH ^/yW:c1ln4x.ʰ/9ᑲ g+S)XO~.`RQ_ߩ(/, `Knmb2DeRy=_뢧tפa2͐H$%_ 梫 Xc'~g-um9/7!.%KnTQ.g N/#gßK1=JtRp~z.s>/ M|Q4o qH40eXmg@4pSnp>yN:D tʅ>.J& تC/C" J %1ڬX&_av8TtySy݆gnl^iR8fqdyZ޼9?{] uM#Fm1SN< 8B瑩?t؞+qƔMץA>(3a8j|ϨL#Od_%kOy|>0\ !r]B>dOi5e(ˬX\w1ۗnEqU`tJ8Y7.Xsyw,O|zmoQP!wmنӿU'HQ U"l<{?OX`8|}.E$X>..iAB*3a+5dLg'X*%I {r"'I\Ts>Go-c@X%v䪦,垊 &eP+]2X ׺RӵWl;%"{l4փrRd Xa8u ;x?; Y 3VͧQGg'r߽^2,|W]3vk꾘~\2u$/¥t]eOYa˞%`0hj){R&I&4L['f%ۍu2(@Ŏa,c@W9/}" $C?E .u3*Sswvajw |kGs+xBa$W#8KMy>R/_TLGvID>7zud*GC$@9ΌXDq/'C dЕLݐGo[+;i~8<)yCWZJtL&*͞1ם,{S&dڐ<úxX<Ȁ0*:>ACv?%&)ݥZ䠚jлCnLr , G#,! &8l̈́_/˛pdț2eѷ-"-f݃\]"N<17FV7KJFJv}ֶݒw),R|]\I׋۝Fp t"鋃& a[ӓLE~7dKg]nrVC+BiY'/#%^y@gv΋Ib5eUMGx)6o.IQ^hJ_#w4\6`==mĶިjIJΒ7Zy9;'Z5WuLPZ'1:[֑ }5UHbOՔwSO@^-T1N[QRkYEa'xsOgGx<^>_ϰ >jZ&y:+MK5$@-lƻP1V/t_I"e:w^o{E&Eo5*mE2d/fМAU@ EU I`hVu]ivDR7YV'fېRU1zY% 'qQ‡s__C;]R_*]N tc ?^S KAT.kN]A3bAQĪ $KGꂰhM:)Sѯncɧ/)EwQdEAdlO܆Κ!Q6`ovWYZ(CTbDɾ;#|T~7:+re'  _rC_#Wx ‡LNMވR Y_UN)y[X%`3FzHǔ~*OYT@uyt!< t,ħP2">Cof*ɉ8춰k);CODeG1u\0"tWa~q;6̍`ER\]Y P ZfC29ZZkM2!UmV8& 8p?i]dP`ҩD7i+͡Znlz ZXfDI+ n2Z 1`&K1N}LaORxָyw?u)̉jBK Ҽɲj1+~`nu'KB2(#&69a"Ԋ_O.|m[ژ#="*i΅c1) e)+]8\ G6?%(Pv4vK*î|%'i^ӱem#rD$.wSģ|!"cycddijh4.2C>װ\}DZg5tS$rG4AVDV_nHيO6=1o+^B+> c1Y6t;![tƫ,/YOyV= OPUM)&#8KGL@Ltx,GLhG{/E6POiG8aT f/ԃP(.pΪQ0rZ2xԏll?~iڡx>Sܰ ~Kk_VmC{T9`1pMd!_Z7e.m~"!9ֱV)ڶ+1K#EtrV/rp`NXl=0>Ŏ3Ҧŭ7ӿf~7!bvay'a1Nt΋Ib火$jΡr:zrhqyp|+&{ѶT׵T` =2|artr^Sǎ9i&K1~&ڼ>0SO ) ykj ^):K=M^,$l\n3Y?QvyH*YdZu2iYDwXKZǔ'!!x)1rݾzZMp]T^|mL+8+C;_J ;*LFP׻p]l)FrFi4Gì^v$B#t9P,? `Bq1 a]#&o!S93^)G>U/,Q4 tYOv{hwNNI+۟ng9# t]EwID歕!c"n!ؽ¬j T{nNP:;ug>NUTUz;mݜ3+t@9Oxr= bbBhNve07c|fǞfѧ{}V@wmEyzD6p$A |X5yp>f&Z0_WB|% t-/޹&rgW'NXݲ3o N&7"Y83a+dfϊ2 :a ha[^;Nwia+ҟk|?C_utuI.&V6*aqMq?1.#eWw/ċ.€f`/z*K(dbmG,P@U<и31_("M%;?SE hKo]1cU5o5,niKirE&v+?=r([ڠU{S2cV.(&[_,Zllw,ɓQN)ep#$JC#X%AŹ4pS F^a4ߠtklR>x5-MUWϺl; ,C/X9 Q-~ s/I'Wzu^.V v+V+wk:\:$c3^n;!WQ?e^X?r+}xfO4 0,C?)pL~rJgZVʼnű"[*Y)VpŽryAi `(\^Lv'Nsf㓿Y%擾#Mx my%#^eЮc9%T`'/-AuoBX@u~\MEeزceC'}9_d(W]̹2rY..ů\)+O Lє4.6]ޒlW+1j'*CX+6^2$-Ve`W;9Ke&yVՆ=9"Wĕ,V}EQhP 9Jr`^;czg9i՝E$eU<*)c a: 1"[g{2_哽*MOzӮym& &&J@u yW| |ʼn3_V+6Y΄ tӒ> @&[b4o )ͣ|3QɄb6loyŽqsцSޮ0m߷D|]aII!t?nHmTm4IȲytmP'^NȂ;x<P ڋ7X8\]$o~zD8} -wCk%&G]RTUUtq~0uD+CN!ND1V.p;]]WUaJz1:<`E޴Kb*͎a,ịCˑyW4﯉lF \X q@5&YRRTߴAƟF|¬Pd1}Kuj !\u^ӭ1YM =UܣD5zKp! RE6`(p-IGcȥ,.KJ &QR@v,}gYxȠX.XwcóS96AQd>nQ(Xhm29]$kmʼ-p;ň$ԃ]0:\kO2tЫ y0UIj@ex@5dմ<7 BgoEͦguu(y_2xSLє-ݚ<CSf|;.,vJc. 51#uXmP7ঐ=r4-IV7%&^\D^V]' "QyUJϿC߫|_ER^-$[zԆދF!8 -Y\Pj*́WyF.<Wn V<^VYs͇ !+\h!JjY ~{ǯaiѡN뢆vxݚpcnvG^L`a=<ޤ\8]tq>sC2@d?is3)-igC^4S=BXJ 3xf_=&ʨ_=Hj:]Xք+!UxǔEjvĈ&f|ZcMME hqr鞏._;/үlC Gg1#{4t·Frb߳XՌI]W`k;w7SХk ]VKIOue@v:P 1PYQu HYW)otT\:J^u[PݯP:y:G  pGE&$i޵SS#KdP0d,\*)5bğG#ЀZ`*+a*sk4#6_#&˒Z+Jf 8VXUTھkڿU{\Zݬa/wfmC.&z†ܑɀ A~'$N1LSvUK[-VeRcHZpiLڒҗ+dRʀ|k+vZ뻆!c=7١d>`R`W1O͑ l'Gn_o f\"<ڤeRF99#1rDu 1D޻Z->z-/%Qz-ގL\C͡K)%:_ \' ~ؐ˲(N62\XQ yDiE>!#y,;ǝCI(V$y_l2%le-z_Lݙy>tY~F0悟|q Ü֟e!~xq[7IM`J{ORY'Ci"g*vÌ7]xQCh6x7=}D)v.IH r* PUb 4ضaVw^Rx{,~_=_~]Ӷ5 eGv| Y{,H2R25^+[n9naWD:\]8%IkQ?:\Aj9(E$YV9%c&k7bv́" _6drqնF4-{I"R#NXO4pz$37h2deS1Gz Zo ]|P]⥻k> ӞL#ɿȴye8%4qf#΢!ZA\#x";bL]ǪJ24v:KP|d>"lC8onq4+J|t $q=3EOᡒQ=:e:5,, !E=tW^XB ݵÑW+QDȁzP;O[w$7Zu`CYFg:cϱ‘oLS";Npߊ`}WJ?|-ZK) ɱU4dm&u%\WFVor$!!cWJOEdYߘpcxvDi8( 1^6@coӰx)u߀2Mrɺu%lU9hb-$'H%q) t*Ye*@ӁrH DIz/6kop7ުiOɧM!4 t(殚B/=7N`1dT>NoB[2ݴkMWI+M'=bG9O=7A~'hy|UۛoWBrLFR2êvn";*]T0(?e qreC-{•C6#|ޚ8=aޫ4'R|e@mW%Los46]7XE>g 3L~ܒ+5+IR h!]l".aoEw'Ӆ/U&I|E]ǚiQ&wz>fpqk(ʲ;Xe-rf)WY;I6P&Ut"JfbCN[f~Z^[~,ȴGxw{BY$ X Ͼqv6F&궢V2 D8W-43^xt4;OEfQ˶Qĺ)t/Ҁ9x)Y)pqRuae@]0lʲ9˸-yr|?S[ttr*)$MEh w lbK@cׄߗ#[ׯ W[դw ݮl5ZaJ}jYRj`ag&&) _v9 /Ғl7Ҵnfβ{qemn74rͻLT.~$"鏥Vax:J/y۬b֒мu}?#tJȪv]ešIfMEte'@ɠ8S굋ۣZkoڊ@f9YTuǨ, rl`5Ʃ=XI`̃3x:rBv ~HL}0+̲c9Σ5i=9\׋6@֜ Ύ *w!G %dܝo2Hu/"ܡژnn }%/Ǎ߅m*݇ע GL]+ħ0JT=q|unkx &/e'eq6m9X oĒpPj)Oc j2M|XIYW>$ѧ?P;ze'4$D(燄RZ"4kZx>{`x9_86miGll۟U ˽.,Tͫ.l?i2#JvT/CV{IUpal\@!/'"i4íykur)¨ QjMt78T2Z9Hqqrđ?}vXCOwh8mÕR B8c䴂8cSA=zZ* #AIznRAV^vϷΑROڛ[ERN]m:CRrXQ b|8;wГ1$GdΑ$n4̎pvcj^~O1X?!6EIXq;O9}yWMWpǽ8,}o74MZY$6| ݆YKl :mtJ1rɮ 9'$5\פ%u qG3Mń?)s&>Vw {Mh-IPvA,^a뒐&>~A>*]qOf)R4Q.]8 )bnf|_P|c(|A0=IP}5۔^ρ)l2ɗ8 /.iRNϵ3Mb,]ZhEQ蝮g1ՁV" )ک ^O_{#|ײۧy]-:-Pb1 jD`K'q":0bnJF6_ZUy<_q7rRSDN*2{.u[NIS$k$!J6򂥺a,qY|Oٜҏ:} ; lƫcAhIԒ*:e,!8`Hm߁\O-7{Vf4H_3||ۼtɇ"l 1NIq GQ}En+SVCt^ ?LMe+'sm*˪ GTS?ڪ(mVnH[[H-aF)\.5̦[+1_tj҉9v2yWUhN\>w$({ߝvhW|Gd7 $[EG18]y>syƺ oy%Ϋ=qDT\G+jb{Dߨ|㽊L˜7y̾JL}2tsK\:$C\CoŻ/Ed}`ZR~O^o +cO07ڱYv-C5 tonl'o;)zAZ(O{fLG7j+u1GIj37Y w-v8 p)#p/DR„~p"f;W?;@A1!.nHۖLL&DLJBX*m[Y kN.9L.KD|k}vV&\o-?meXÖ"(+JnXV`ٝ*y91gq;"Qv q-2 Ja⮈YQ~]2$9Ɨ!j4f?6! bHJjr=( R TsG*`wPx|Fr]}şV1lWUECyh!6;@Ť&k C>+8 Yg g⎇cL*څ3V'E"T׺tC{b{ &vaJ 返g*҆E wg_#S@rU2y) ƴyyz" ;E=.\&LHfIn'2 kmnr^V2{un|G5==qU7 HXSUC%#݇2϶ubURBs2MAn*[.2W_;Ș ;$-?2۵Rzhs0y-ڝr M\ۮ3~„7=7([= jѨp, e$s PWmyMTE;BzxAf\ߺ]]8}7ۣkd,TZJGE)Fcw;cVQ]bqߝZp}S̪*W۰yҎ =rcEAXw ʾ21QXP BwHв#:[.,l~I4l_v\,0>޼~)LxB/dT`6Y}PzЇɐ )p֭Y!ӡ;ߘ,GV$_$M(D,\JL e‚+9\q!e"C~5e:&b]NE5: ߡޫ&_ b\ nOB/> 1ZF7?U~Nωs_X_IP7|#: S{诼CX/qԋW} 0 #ًV$U 8K1x]^K0Ւbwl~w3`͢ 9}w}0`M9x?߭鿓=!灰~yxz@)$ddwHW7b[虳q~{vUSq>"w$2 ޸c(#H>it9H *P#?_m\:S&< /#=ܝ,k#7 dpk=v,eJ "HIl\Z3ץQ\фNW4mQUVDHF2tJsI%&&/'bL/軽& …#qZ*ml^}!kLѳErS|Mvvܬ`7 hd q5K.ah'Mw۶՚Kcm6$Zue]I6/v-ZYQ=S ȎI^*1ɧl0rcfJBH9m{#늏mU7IdcN27jB(tUJ/30FuG0DRDbRth1HHޥJA^H-&^{2bMWŢ(z~̖/Jy]m¾J7?))Vn$7`mgh澋-p^bԸBPXF8_'Ba*Tb_AD2cbcP@Š b74_pxxL X7F/k0j"m)tVQ^bY0&K'75 Zyaɧq89^ch}uQ)&:p?tt" \c 5M)a@G?@:3eфӵ0gb,cdAmhBOqKq0At*Μ(l!1x)G ~ȊS*V0*9|1TlN9b2YRZ}ޕE>gc̫'y\]2~!-;{uJ;h߆2 {RvmJRoDH{R_>'Q"X#qИnlg KxB*k)l ϶Ҕ'!8ʜ?)_]̑,f\ )SL>r LosQY6W؇1Ehbn  2=Pk;2ٔ?d/`F)15 +Hw2ĈMz߸rvR!,#wL⨏I2*T_u'&0:r|Q EK Ep:vq]U#'lyBjU4ޭGJ6ͳE*2=VtbP]8C*E,d e,ˢU"ߝ/YmmZ̫YPPuXG(O[NxpXgH/;?^KW CFȅ'O\emNcݨ+[%h Se{lG"/q{UƳs:̛,n;=hۍNp݄a*v2/C*^MCFeԾ-,B",]]2xur$+kR'O}#qG&"J8BD\9ɔ=@V9yӿ# [Ruz,x(/ ];h/,&Q>۴q$`oe~=dC |8vL͛g_y6,Ņ7EsGQ)\}K hd2@G{Οz}##+mAPuQGվ@$ѤMSf ^glCدcqꉍؐɻp)yh&ټTx aQ Fp 8 |~D-lylyQ8: 1`=iEuKF]*E>2 $d-ſch!D{Fʯpt9qtSzk[ٲ==ˆJh1>i CUG0Eu׉^ n+Y*y*#?2COYΠC*sk),- txy}z&bq  M[e! vo|OGQ8L5d45W1x+%C cUH&k ډDy=_h?y7̧g,?z-~_O0YbFe[IW[Pc8͉FTY}3`r-v`VzQ$6œѧ {dkp3%5IOaH# ,ڇ 8`B;'X$J 3 #.J)@ɊkwT 9ő *1 wDU'M@meh-O۾/_f7UBVWݧP?]㎜-ܓI62!$]S%XzzfQ_1g]7+ 9h.&ӔKr (筫5K 0▂fGfKbF( ﳤcHYnkE:+FVJ?9U8֋H=ad"UL~ 27!|ٛ3gd;ݛM3yY۰]n$$/]qVJsRRwa\d$L(w+g1`~ٷ[7Z Fy[ldfy8_˪*yOuMBWysG>?vK9 1 Sas'ݗ4q7I5M6NhryBL\!1,lH-D"SqCj :9;9GĹ>n҇NʁBܦ ]m0Hc~dۅ=4ʅsZ9^EGMD#Faآ)'ӐR!-sUXBZ6 B  :MC|S M>;*y/1m8ڻ|?MeeQ8?3z) ?)VX.jN U|} ?vk =|Ocm*J(d r}*):殹pXOS$!ȨuG`!Po3kb%cߑjI;/:OtnW&lcf2|asF` /D'}}ZF q0MӐ|-gQ N< Ɛ2 } PJ~A.XY!8,5 y_Ƒ?dۋzy^٭f/S~7͋ cbpEVuqCZ *-rZlWXMU1[I ]NŒ1"WR@S3k1D k,rø/ñcN G7&ߐض* Ks)j<[%@wۛ!7콾hm럡b^.viʤGUebs۠3^QZ#,`23hbˋ=?4]iq@w!woG5=.JmMi/&s!bq[\!qs5WLJSsuq G -" :@[%oZd`BЊ*ZJھ6:c8dk_ϼe nÚ !0YEVF[q #Q򟞨տO3fϭ!H^4MBƼL_}.m,ϧy.%CL htJǜp)#mY[z?U b`eq8#-dޫ*dbũ"tk؀,܊lapxfD0*PLnLd)VqGVtMzbM]ߜćZ<_xUeUv({1:Wh杼!OmD]G]LEW$!GX&l)MG =z!Xͼas!,{ ! ǒl6,'eb}T\6nB~qk‘߶aW  z!i]>0sv+Wz(y} ATe܏sWma!TϢ녞_0vU0ChKLQ!,yZz]oYmd5 \t6i.S>?avr W^w6vRە ̹ԿRFB;s&\BokM芿dMV&Iݣ4L8Sz|@haBhgKmcޯI^,CM7ﱦ*>nTڐXiҤ&J_Lߤs2͏Kj:N XK;Ģ;;Te{kj ]EVӨU-z7XO"F|^Tb8nIܹ?RxW Hd؅&,K2c]$0^T;n:Ѷ2&I Eeգ(…p۪ 0H qL9\&(֕chѣV¿i}גKdk~8[fXm3&ޘ4.Msu Eut8@{%/!0@sO [YhLQM6e I*xBI$$;c 7+ 6g})z +)S_%5UR(D+Sȋ;sgW4W9" QIwmv`Fm] /7Ū5’T9,!Sicc97eTfE+|UL~{Y^J#cjG?ڱx3O&ʹdHQ00fW3^g[J'̻4C$!oP0lo}o~&lz? ʭ$ X$ǚP7ϚJ{ە  2ߞ F ʙI׭LLKɳT$3!U蓢8YO)̉D9զcPmiau(J\D(j!\)l4KuR_I r'>v`gQւp (h~n i2GDmӇ(Fe/ sWvXA)&u+2!#U"h6ϛYѳLLL䑼ke]9EZ$t'I:-`m)|IJCL7-QYmb> p|MJ>/ &O]Jh^Hm;QT?mA2BUHiW/`"1ө8N,#bO$ӐI{?sI-\ɇ劶 /nە_Mg$zT$q̏ѯ( #R_mЃyP@.Ӓ?-X}+)(i`>NQdrV0UQe:Yu5b/;%M4NEf!sE yP^rI1Z,@~Fev_OSPxMbŃHu}D;%HmۣRrBr| =7erI+6"9(SpeұR'(B8/CJN!B^ V#p0>ZcU ^2?~3Z*KUkz^0b$ ~#uCJ~Q*h'LŝIKݡaGeսa3ZnUyr ߨPqia髳jr&[ZJz%ޔE';Iᘸ#XҋnL3e-n&IC_s.xdIZD'*d^BxH> [J0DBź-j7.D歓_e;R<Ī5=v BC 8#qyN3MOlu NPX4Â{WT*vK"3ANeqNn$P\2I87@xAHEy,yIUmӚ^KXB=ۺm ELqTv]c5“$W:T,y=\K%탲GB.ݝ*&P_*uxO`GC+zYb[<E zyJ#aeNinۗn.J܀ŧ']쌰zݺCU+SV8{В7py-vZ55>y^aH%e?G32$)ד2 GЖPwSbhsdΜdƿSwHM<u@0NGÅ3mU8_Kau:!}tUyU6:'GH°p^Ed6RR 1?"\oKbƄef&%*"[aȉ^ūӔr:NޥKܸ߈DWkQXńGmf#fnWk^לRXjnak-,\|iwd,g '߽ρ/G#p(d},[j?a%221{Wy;Oth%}"D-{q+,)T*fImӈ`-$ɥNMѣQwvy̚<$9){P%XFԨC N,J݀HHhY.)y-dm>3ۑxsa}Tf|,-#!okdJ´G QČJGa~c[ujO[N Me:_ɜ; =ڊ/h%J"{W1GZpF_1WKDʃx0M]Ȇ}N丂"ꌦI4:1WD{# x#|$R=­N*1Uk̅6\c?CSa~ڢC^"ɴ̚P򓇚ɺ,EorL[]*'RaCNb`P]9xYExꚒJǢJ C7#񦈄OƖb:uڊEv0E.aNPԽyl֡f.!Ja=^KQyzL++*C^.np Hv#db_봄7\{E.u Wb?nz]˶dCz$ Ҹz!ᘇVDyr i"|N&o\_*Z,b g¼)*k;͒{Yh3b5<8D<"]۱+ W`%Aʷ#S7%%zG)e4\ ZpQ[2&0K]$]{w\yaDX=]I)iU2wNG|roz2%S=7[+WBB3> 0:oq}5MShi۪3~W<&I.b?+жk{^d،o H_tY)'dҏlơh~|`خ풀_xQMY {įxS#0T*pV8POيbABLVT]I`KR~H0UNMD򢐟{qߊ)D]׃+Sycvb @RHa ˜;ȥ%\~/K_YN9&,ݩ]y:F ~#<{:ٵ:k܅|3>/LhnVY*dsn u Ʒ{J]jȵtOZzcHο>i])á4 wtq{]wACGjƾ1bu&[Ǐ.!y]xm4gK%q*5Oa[̬*a (fŚc@6[12<{~u}t rA\.YW X{*k>ZYqcf|>ٽ땇}^xW1cz^>>;e\xp91Z+lن%9DJMl% 2c\IH<``ARqǡd,.%ێ{o|^ڼ YZfAFJtgc_)T)ն#SgVX}yQ>?Jöi&jYZ"iB@LǺX %Cٸcgr濦iq+Y*PBܺl:5 =UsQ`1Sb%}lN֕dLe J>Ӯ>(.es%Q碇n>k$Oi[ەYG0T^^S&# iWwUxO Qmؖ\aoUWiqe(["ud#H\±YTO.߿{6NR˒psP. dGVzS=jT*3 R.ɯ{cP^q]ʡb 7dnZdJy.p-//J>+Q.2/#P\.'f]D'e?eFf)D5І9;3s8F .h!v67Y[E"x1ECEt EwW[ IUG %G;'Qxif$[$pU^\ɮQ`8ޅ 'Dzߚ_CĦP0/ 6s+1BmST!\.!?xR`w.lQcs̊qq-rSkzd~(M;cC̹ɘXxòc;`s1SRtHٜ%/m.{ !~?;v%n]y+P1gU/7SA1Eכ&ޒP,h%-i.Do<)J*jRw]`SS$P| ;֊.l5 r=N0)/U:"mǘKF, "eW<-H hiGA`}qjV8j*RB'U2ɩ)H8- bK`XţONƖ==r 6/=_ǾfײJI|&Ӈ 1<"X=  PGpT tHU]ݲ߳~4<` 篊4p Ef6rDeuRLds=# IeNXd弄^+z6cO^$̄ik2Yk;fڦJ4k rR⠬!VO|RjX WO77ZI6ܨVYh !-L~vB2UYN&~RU]+2'qA &G.,9$;_z 'J fq]6 ofu=J1`KFJ0"S\ LXU<`$GaVm3bN5嶢Ҏnʖx(t#}1$o+4E[^4%};xX<'8oݐ@I1 k۩ļ2 pVLAtXEvب;^:Zwe3@dc/? _O~n%iFs0I);W3&Jtj L0Q9i = K!OD4XAYe{ H#΁}LEhLho'pvĴU& L.CAT7ʕ̋+#^ n}޽:/ }4%oIK^GZK}' ʹ?|;,,]l>sY!IʱKz]hhg1;T 0P2L``Y6x%o+uYt^:]"6gD_0`/5GAWƉ]E>HN|QeB I$XI^4}~_`9d*+sI2GSH#HRg9dbx.ڊ㍞Mwʙ&lcB\' Q4Ɋ6J@ؑ{e yoYƱ,B)6wfvuM KW\c4dP]olSW2M e ` qՂk}_}8ۋ&\ ͣ ;ʫq7gWcaWYqdN>ZobеUW$H\s0GCS$N_U%wnR+eDU.o\]W/8FЦi ˶UWBzcSvqm.ݶa+;b u ӏZL\*H3"5 ڇ];-5ؑAwd{q=)'K2Y4U?k4تnõSG]^ ( $)qHQvJ<@3gcW.M-8%M?VQP_E.bNL:xNFZ\yUQ o"Dpk艷 OHaKNCV&m9OjY^~sN@maQL뾟bÐlI.Eh`^#6Y}xY]TZ9;+#A V[}"yƺ9늽fU6/xG6J_VE >Tklr.vQ{{ie fM3Ѿmk~ܐ[rOd29jnǡ|N :U8>!\Cލa S%ύpx~2Ì ßϰ^ӣܔ,eIuei'ŴIw9e(\v8PJIb+q9b Cd!wh]V ;{.Nꪦk?eG{X[J}or%B#^%brv};As~ Yfqٟ[U8qፓ6K~j)"OCJCR2w*E8]1_>?_yD+4uv 8KYvU`êC骸qq0OS(y'mTrytUAKyN)|b涠;TQ%$/BY"Kxp{3b"өBK9]g^JL6M-^LI9iT cA?XV)*p 8b2>W^ɉv,'p|^FMU4UM)sR iڵg]m!vB|,[D|@5}/OgCywQyaoJ+%9!g$u%_޲e :`bIH;?'9]#+xz܊HfWshn}[Po!oyWY+N㉶kaG%qQNd##x37oZ30 GvM|FʼYm\ U](-(wԼVRFѓK$} YޜFkI~%mM.&[]T aYWFJv-8W3PJa? j)2KOmǾvz5䮓c蕮 ӗ;&w"-M]|pŬY{oߪXė9Z]2X Ѣ#_03.9VBXYdzџpk_0G/SxyےU%_"eh: YmCe-eWt-G葢 nh.ߗs!t+4aMq%6p5s(Dq:Py|R(po>V~J 2'*G[ǙEk#4,EBBFZH]X Alu2k.^٫{Dw _4mO]ЙqXx "}xUVtuNt  -yEAPW}{k V|RP|qN\m0vI;B*eGE"֏Y aQ`m!.~+/%";70[6T/ei0S$P@:ړ΂(kJ}B C{v|q{G/=L?VYEo9)~t'8G)x'"xq\,{BgpbY2#_',"EXz8%ԵU/bu1|!`m#ϑR_y^{ͯjIi|g%USVI?+r|ѵX@|?zeXW^6h!7d!;-Ӳǡ~iz-j\j{d,5ň4L5^CKC#?~&rBh4 HsHrČN2|P,R€#S$@Z;r}Ũ`LQ`DST&WPT  NvtV=xnA./Xxj{A-B-#=0 }Ri4g6vxv! K Cƹ;dReZst6飳#x""{$!5[^dᾐ9LX..r>sQ*uE[-t>lɣG)cipd|oN!\zQ}5R"?_)dvb#>u]q(. zcv8@(?#:ڽV2i!t' hL$g{g4ϓ 5fnjccU1EҌPjC11m{)^YSr >bu׋'כA7+0U+ )M0`:9K؏(]X\.]\rZ>3PdIrUK,#B(]w1Jxs=m]3_} J9E/ݢP˶2ɞ2ij$ !B.'óS֔\Q]w–K%XoE$xSMv2[f_֎Sex7mT7aڰ.)@9F_k"#\htǖ<_?˚],"؛*ǟ1c4}dT&4…s8a攄s:q+&S|;gK~uiO "rBev!R$p|,U wjRbQF "5xKRblo{ ]ϕ[B99o }r+jҩP¼ʧ* pFMMü'ȶ_U_hH, 4VuQZ-0L瞌޷/H]7obSeI\/)˴.UeS|j.;|=Vc6iw,r =A<ndց.|ܚU{Α%>^ʼc4 Ⱥ A1Ub`"bmfdn"FSg&g>P r_,Sş幘9`e>WMUlacZw _;#;: s jͲU[3eA3#uz/j6B2_IIU%l:gg2c {-=Z9uVusB$k_}"POΩ]8ѼIc.)iÌ!q&K=^)Տ-C'gKc#x[d`0@v!c! I~_l̄9_w\?Q]1C9phkt yW%}FI(g^$ Z [ B=Pʍry#4I"jk fą.UsWQJZT5Y@Zl8hCिm@j;g81ε3^}ut&1zʪ芬<%w(G^c@RsGF?/yNx2m" xLW ]#˺|ݵK;5#w6r6]DDt,Bt"&jOaWBp6`kA|¶m@]Λ=58f\XuMt#$(a!0F^!ΎBe.7ۮ~W>Dh|աY+Q`4@JXу$IĐPup=ewpC4Jk dqm&v GcnZY*!  \b `b@ 7/cӪqML`2CJӏO v7(<2EnY?e&|_eivi|YLx'̃$`v%V< 6nD>X,.*IRY0$1 AҠQqRgW0gC%9qZF] |gV!ʰmԯ|cIm8~*6oQd.kb2⟾MedWJD#1 jq/P?~$O韆Ӎ, ݤ1I,dQœI؋9?+$QݟD6u^XOiGyVט\%U|^Y ux}A FM$}(+'6{?lVq"ۋyd3DĴ24-y럣0fpP.,X$͵{ɑ+҂T.;(wEF)sǏ~jzΕU8NmS?=s a (blrJ$~8/ Y|tK/}s_!F,Nϥ;@M29T!qA.ĂH)(.@ ?vi]8弖נ(wWSW!y:VV]=R6hܭ…)Lrl?`j1-cS25cJo!駡JٌpŲ,?ag'#cQq}fuo~7o7ԈEc}OYqcdcj{`PƬ .A):/9Hxl!*w`:͏y Rr;V?rJ1Tv֘Y5:MђgdX .Rc!n+{:! X/&@\M1eU)2hBY 0eUpav,XP/ݑEv\$5spo˿l s냹u~ZQfu"w+wC-r_C\g90&cu-TIt9.갓V8j" ZN  ]8t⏾?B>vg5BRE]+B\&[e[X!hT<%6&Q嚾0t˄cAՁ7OjbZNu!"B5aikgNKiFxԒ<Mz^|LiRF2яqf ٷGM8hE$3.@L.|abFP ӓS#+Z]TEnC #w4v(9 5,ں*hXP 5äKF - AbJ&O >'>\Ӎ}I5=oDCێ,X5UWSuKnb!1 IAgb~np3NWQ?CI*w#ǨBU:Q5(`ؾvb,`0Cje/@axoWkSH=NEo25f9t0t,տqPT2GoeY|XTQhMVQ1@0lh!fA 7V ^>@m8'ɖqpCvQ;1z̢PQ5^Y]t>Q^w.~K:4)1Ӣ14c-(BD#K%^tB,do_g´.`MUQ1%U<8-Wq`#VGfP?p@Z~t9{4,,F}>gNߖhC;RRR+9ANu D|^w.7l}޻cDA'5.KeͭH2jErs ?]T~J>v6`0 @T.8DLL:49ăX $]U/I4biu4kL{ioFU׶5I  jN:)W$u ۳3b.OH/N!bc谘߻OW$)I2B|][L(bPFDZS'yeX޾\_ |}c7MڌMs&"B1K!;DZ7kcq KsZCO,o5n5s Jp)kԉ}Ohv#;L€ ]ܴ"RB6$#[ކd0$]qW,*2>j #[є.Nee}+}^KDȥHX2[. w%Nf)5e^xq>zwx @K ڵHŧoC4qA#+۝a|Sr]n^Yz\D`R@X$M}C6TM7ƶʦ 8W 8 ߁|8qS.buKyE)|8ي(;5][%ZV/2"Ha8v S=F$En}*"7VW6$86Q_t􆐭 ‰$Fo%E >XZl^gXlêFv8fŀGxR#@#~}ĜzJn[eq]%:O˛KsTMҖQNI^C5mCr8n t]6^#KdN*3ӂ~\Ii(ϺS?u,WM1 F e@th Гcʳt};tzҏ&!PZ  T2k!cӱ+ Q+fnʷHca?E*^[F$V̗qܢȺ'Kj0Ea8'ĈKnno%Hxu)鞿/E'"+*Y ҡ 2{ת9{;;wn| F<| Mv\-v.Ը=8dR:]`WFa FP윑0WPu.]eE݆|IY$4>n 8%J,WܡeC8.lخJXoN\:o8+슚֝WNq! `#9yAKrrHYpYi9VIe2ód^UW]n՜!oiMWĬ.*H_w[ IZ]OjvaÔs;$687ԭ,b4C}C;K{IN'-x'|WIr)jWnA!4aw\ y ﷱI|fkMFp2gI Y ݘcM?0QtYjj#KbX/ ;xS1b~QiVY|-[*E(ZErs"u R/gϋ=S'~eS #2Z2;[aP,vxTcqӁj?Do`oYTx2%CnybVE43qMShSg]]њ$9OTʔpڲ :M܄v]^~e4_K^5I]G]tUCT*mX. Nɿ7v&8I)tfG{i)J-#0-AF/ &|etU;QUi_T^YN,B`0dY"n PCp3(Ʋޜʲmv'4 _ e"$Ds#E)9-"?c,6V{]?Ci%E uM^TM[HVdPW:Y! Jg'\Dŵ֠z5sO2nNΪ*IhR*_H"…iTCV ӔB6YdYV YO$>dO1򧿍Zs6mBTRXֶ[Y6 A0N.!%f1YL8ʢD1ǟ&!=X.΢@-L: @Ωɚ@y/#f9ԔE{Q]Q*g_adAЪ /(Ek;-~pO c1efCI&[.//2JܠѬ(ڗ"W=y@vЎXßgiѕI $yתm΅f_ȇQʥ Jj4Pw&0UVַBAY4jFQr~aY+ TER.sv]יct!Ea0Q.8\dbw&VzFɗѹ`/et7{%7!\_nn8D$b ZD ET@ݞ" d0\̊0qd:G\m|KONk ,NwWL'QtɐedžnFJoF0 ca3=;N\(ܞ]y-ԣԈkG;]&@Sm`X sD.يdҗ, -UN~km&e7~dDV,`^ij:Bc9|)2at3]6[˲504xs9}r2Su긩­ؕTpd>I@=$;3D`_da@՘Ym n4n\Ok:L+m0!iU$ɗ߂ ~8Pvٳr \QFgMүVeiϳCLc@aYk1pYYdg@\(;Q[ rYtJ۵$yyܳ(+,Vs#Mt-$~{["x9*sSϊ4c#xWD^ y@5-/y˃ӹcVF29^KbЫ<-sVB*?|C?%9eTν+ce5J8uhAE'\wU' |.Wtf%Unq)dmVJNUP $9fQ).ޗ@ڄC4tu!狆Et]yUD%ftAj_޾)w ]U%Xl78]&_rԅ1ˏ vnb:i({\4 PDOcC)jP6~_Hsr!TmLN*dZ' ] ^Q#Wa%~wGh2c?W_ۉ)I 'Wɧr_OEtr[$s (D)z apr9]sګ#'yNퟧ_Fg C2+r7MW_[wP[(wWa- ` @ʅ"_ <=}h 04m~ijFZ UR0S^ARG#e4yh%Tu{ӣDO!zs?vƄՓeD/'۵;IhU؃_ h䞽/)B˗Ls(]|A3$Kӵ4u$][4os6_"!qv' Bꭂq*_ o=]EBbjܟdhJ3Z2.s[mT^=Ͳ8=nx7Gmm!Iy E],,VZ $- m yr)2fHZŶI|Tɔ_0ܥ鹆dI~ilhC1{˝1xM˴663uE<:RI蔒x4p|r*,q"@=:e6 q8o$D:'Olc L.;?)9OTQP.{L$1P&>&P%7FXZ78tvYm`j!ڡHLҶb0MAh< 쯙ֺUL*&NȘ]? 1n=T_,<#*yp4Mz~2/vdG~L},+JҷSR[i#LWyb ;4eJN02MtԿ#Nι j 4˷l\2it[abTbbJ\$DW|$1W.v>@˯ײ*(ã.u(}`enO[F}; ﷺ՝ xFƖp|f`&/^yo]$v'$᭒40OILp,t:̖C T M:d^ ;8~*[4FgOՑ3+c}y$Ir#Z$=ɋ PN&M\Tɯ3Jsi1FƓWr챦}{M{3ֹ$sĹ#O"$h6qDuB$"+A:App|&R:/}-aSA!Y ^VBDuvc3U"%`] gӑ E7^7,TmN4*:Ih|iR&!d}K$ s jt$Vssm5S?z: $f*)`aSuzAz v&=-twNuWF5}wI_E˂)6Mw[U#yTg|Ș^`.ق(]˷ e"74ac |bfNdE]&jЖ?zw54KU"v_ { , @ܡGϿ|p__ 2\yR$,~(DI) ./Bq_:!);IVV(י͟'?n8BֵLԠiדߦ+RcJz.p䳷|1*jnY̠zrY.8=9>p,E*HR![0%y},=[8Cռj14dfFgG  vxՆ]D A!u+A7V~Zѥq]y>ͬ-0x6y~&*|C0^7ICUTѵX ! i¨{ Q:\_# ƣɑ޷1c髣}Oӏk_J}Y?1Z%4ӣDY}aTK+-'Nb1 yy7BY =&)ͧk4yNfDإ*9 t7gE]*/})#j6CsGuߟaxO$1}i?dO%`8A#E\|tG|H_ ټI4\ja{?-P?^pEr_GmLL3^(i@qO=m0ITO+ODpҋ&Ylʙɮү9wYL94;$"bE(aOa+6»JX>bqAhV޷5T6ч=:h7$eP.#}Sp_ C 8_e|pHryK3,1=kv}O,|3F7bEE4ooĘ4r!| yRJ #;#͞F m#릱{_EYFA<#7ЁānC,嗒LIѣK.(h6qs$n^͒%s%IQ(sXj??߾\ ~]0 5%_~kZEԷvOh<3xD!!ŷbg~f &`P&eF l,zxDh=m2CWݯ} 1֦" ALI1;n,$UGҴO4RjuK]@L|AўP,I\L WZ:sA>H3L?ࣱygeޔyg,˺w>[6ʩ  EAJ~>L Vԁ/FW˜n g6I\BϘ/qԈ;@wrw%,L8-繄J'I8?Hq4c.ᘔX^ ed(MtuA p|dXIEAh ?y~ٌ~WUmI4T7a UZ,;^:L xܕ0&TFƇ?|0 N0=cz=7(렲)NZ $yq "*5L.I&UveQL Yj|x[[NEUEdYA"kgUp(K4iEA4 0LΕN/dٝ /GnZgu<_ ߛ9!LjmiIۮ]/N]]ȷŎh#MΗE?eYi8$K^ol o⮯KPjm9]$j >dB_JˋIv-|@Pr}2Djڽ9szAcFfBҡEqSJmN^Ur8qK !6Oѻ[2qpf}_>gL_eKkXe\%c@]h;2bWԍ:AdgH ߊy1?\ :kOvb}ih) OG$ \Z4z*+ڷΤnﮝpxCXCc˒J,gC%QݧU,ե2IF&6Y[uDW|!REyvԮ^V$n8N:R"Ir7n/pyݐoi{H(IiB4aI#;eZ5Ģ/XyĆz}3c'n.'?Q\hEQ\hݞ Yp )Q*(u>[`0~cU83wƑ oS51}5maD[Z#܏RHjj6Zv ] C✪%c{¨)xҸ3> ,+.i펣2g$7'%Ҳ߻T @ 7hdF8 ÛXEO*hP / D):W743o_ǰ4x?wYETեmCJŊ?u^@ߩ]:r:X_?׿!i2S=!c VJg8!ranӲbZ޾3}E 3 _>Q.S4=EBbš2vdguWt[9EL)Whաɾ]eG(KݵYE_GE=A6VT8r>]q? ܿXLN3F9vv|u6ykT2嫿(/78ɐ^dk!v>BJNJTYY;e?9_nT _}M b2'"rI Xp6=|S .C=xrc oEo.ɣnwah1*nzI2AOs S EyЋ|h?ڶޘyWLs4Lr}_+*j8%9D83w}$/1aby~YvEa$6ԺT92l6(|Y[ fV/BIs;{dd‱Znfk/UF zЏlR&j,T7x }W% ٣~ѩtYq*ݙoBN^J؋(giza$d0E\`m58,}]zE-3Xqr5iJ^A4=qNE3'#Ks%ү ॕ;}^"D6ɴsr˺*(Iɢn}U*Hkc.D xo0.KcDˣ#> e;yGY+r݇q5=XC}la&-(VQźc%p/^l_6rP %A#yu|NP# Q Bduey]y܅ ;*1\9W,J>,6^*6Aj:߶IeBBj !V*O swӅ~0)'>QQO">IT@޷H΃_H1UV*Q v5$ggT]!K݂6rw5AwWLe^ n]8|oů7-RV}"e>2V~}MR*6LSۥ40lkO}0SC_זF{+/OJ]S?ꋎ2Ui;RM]kجط?=XM\C85 {whse Ru#(gC/ʱzD7_{cx’&1e)*f7MPY$$"qop~kgQq(eXz/PȲz]yʼW2o:*yNg-wQ+>1J 1D =̖*{zuq>mu8I_Q=P0ITt&9@+ML-OFJ4ꁡ+yZg5:wdL,%oZ j1TcZf)QS^v6[|j$.t6?!Hꫂ#XX!dz\z!bZ',hrD8ԞmMUU1w5yCv\-TgF4\48BIQ9Mۢee?^㯖(|$pm Gܨg|XK]L7##'PvQ; !W ;oʖȕy2WiF 0povOTΜ@ +ZA9sOFXlxi+;VcYQU;25ZUS3 SeG[;VXyQ.Ҋ-G?~0wO wm_ڲ.9 6YUdzقYs&V4SoE|YxT%p,SHIeNsJ25GPt-'6_Wݣ+{Tgxc;"-]Y_:>Gi*v>bySLJ![^. alFH Aԇ@݌m<?+xL Śnѯ}x/Lċ^n iB ,k)([\F5qnZt92 t4WWmJnC֥BH$ mGҠ, pyyDCpoϿ>ѮviPS)GvyfKQ@0HUTSNj83ЙrײE",!Q{+`L4B`-x0%D/ռy~۝G< x ?foj/aޤ9Y gH!00De*q"Ӏ/A=I<.+*_t% F-5:؋w9 \maE1rX[e˵i< f2']qN1>NB1سIcqgn#e[)S}J'F"V0v:?znB Dʓ.9봮_w:Ӳs,[O Z[R<hz-)}?;(EGhJ_Zu,[ ]+9Pa }J+Y_y-8r^P$e܃uפ.ZodqsW}btLK+D.:yDf{QGWN}ohߕ勑-%c6+t`M*8AE(&fhcf[e1d*D"{2 QaԂk!  ɭ*W(ЋIe:c~?5KUM8ϊ|}DA1T\\4QĔ -(`za$Gz'ksgh䱞V)cA0e@!řA@nMSXA̲a%~f^NU/$S C?qx a׮(iS{$"*67jc=Tﯥ /]SndeoͤτEX]#Sa"T7xWGܹA(N+Șo7_͹.rD{웹c?|K9eBUyAb,.9R#J %T/>D~:ƌSZy+5҆Ifn 7U{Xz}lVZT`%_{&L\;1ޛ߳8o^&~ BVqSk۩ՙφQ3=~u(Q\jhvk9BI!O^LKp%U;e4mv*-\B2'@lCA QniUu ^NVMQ488;,oLh; *&u׷}O_tFս'jUU4kvCIIe,F(5sضC*%`v*LQU30Von7cKg6 1\(~'ݫ֮>CNbZѺAJ0Ir TZf:cnJa(ų_L|,}Rqג"@P7*h8 A1 PȢzcl_kT:o ˩&U|z29.s #b _ @'n`8>@[7ZO#ƹ|ݫ{=>n5eaqVmDDªrWz| ]rZ]H&fz^߻kgmLFG+ȗ%e[55-'2){f$e'4s0,)lbAvޥ\0y1,pMrRwQz[t>@aV.=;G ϘㇿeQ!V) ,rN{AiО ,Q }^K2K+_aSBp7xɪ4y;zG|f79a"W.oS*xUd.G;˃*;XvƂ-G(2~I.DLP^Lў, uhI&Q@`BEۧ:ra >12ܒ3+lD;~ZQLu6,i- ly p ;GR`7F"jt_.v=+ G 9mrbOy: Op42P>bh.?2Kv1]{󟯶~j[O4z_H. rz?vLK0ԵB 1qXh;e>O]-*.e:OuZ5cp:iL&A<}\zHfYD?ix.֊x. WIFiI+_ie)vذ1 V![\1gNz8%q*sɐB7';*뛽oeSuyJ^ uۂmQ8W2vňG{NJE!2dV\ӱ2Nv`J׼.*:K 31VP"G,0 A\=C$2jUpl}̭4ZS]Y/*]( EMQ>Q^k仯X1to G|^Q3}g . +Vj̉e"JYir?&˙}~+4UЛķœ +"6y Ӳc?v|N zavZX7CiI]cgG^L1xs,.BͺmOKv~`|2Cw%^;nZ_3~Q )j>U6GzaH{[$E,rM 2742~?b UK}5k~nHnQO|/_+~J-Q< CnF yՍh*@*Q8IӋT, 4/$:\ flZ&@Hܖ \G7ue V.Lr; `%f233QbFZZO6Vʼ (6'?, }82Aya,~vP`_>U/;l|88Q.TZt9v]ܿ2:/ڤ J22-.# ÅOxP+("\Y,Yɟ$cad8:VM7n%rƬH%Ԋp΁B< eG?-Kd;3F/ $d{NvmDǭI״E4SrEީNI.:ޝ*CI2ņWW}*jߘ6{C>W=u%d+iR(xk ZaS!:4j>;)p x55YR}~mpqQq1+җd bH%ŀ#2 ]fqZ0򛗺G.XRE|I(T%d]wv?(:Uɚ?vWmA\R=gfmS|}hy+5,_h߿>4-I*#Vj Bz|/Cdx('A#V=h ,|@Cdq-#T酆+_М-hh(.%;u]G_2q1LA"o?9 (p-2|"9|o^jw00 "GA# e`K";EEh/v'cv$QZ/2{cEG7;}uDσrϢjGMa5W56<KXr ]{ Yʖ<}\I8&,V g6)Kzt[n\Vf$K,dˬn4SIB!$ԭoyb߁41gfhqyiRmY|x#Ø@wRNI-,|W\BC, ޸,ͳ{>Na4o jޘemqZ)2A' B$X]H/ p/i?#Z<'ۘgxA`]wZS͈`d-r ~S Xq\EfbW6ߊ䦭%_&)8$s"nOlcp'jK#ƈrW*t%,WjIWTMԌhf"SwAL)sŝqυw1ϯrpT`U_J]A`-~:]3Eq|'>wY7<ȉSkȧ' Sz=WyiW7GK떭5Eފ&Q1VKԊRM:n96m;e"wߖui|5veSItL<뢡&8[߭ XJVVfsA&'y^Ӿ -"&+"&UC}철qل68X&/U p}ܸ6#܌ys3&uXNLyg%Y+e䃃"VaEAW}KaD/5iƹʶ =~>:}"ԉӲ|5.ʢ->MK-؉fu4p^(Qv-HɊEfy}]Z͋h^*%E E2)8C1,E؎ *]);fG~|EUl㺕pEϛPבJMH3!LP*,!nq\Bܧ^H 9,*Gfy+I}fW Ah8Vد2 u,R0n.m=S˛:o_6?Ǻ¯.o8iN ;F[VHLuKq1b_/j,2Mve&_mReJ2+JŠUS! IN;8G*E0tXx #KFr|WU?h<$̇uui)^UFjo%?v9 R!mpJJES"KQ2O f6r}zՏ KBV/&Mc,@ob6 /Q@VX ko'‡?o ՛N6ue_ؿqۄ~Œ,,`!K=Ĺڊ]{m!W̧Onp¾7ulyqw58Epw'8_C-d*_ߥ"  a̗m{+S w9N{_-jdF%]8w.-?dG8 Q`1ar9,蠒>$yݡ6* q=s`"Ɓx4z20~C8Ͼ{meKԡãK<R&SHd?DJ-K[g|׳v TIU'ʖ6 4KE]**yx^LO:v3[bB oH 2ɷ"|KWA+PLaR3\k 't].B}?*ge.D_mW&z8+W+cKU[a_ 넖䧌V d@YO$ˊ(T+ <^I cT ybA,eTҾzVm)sϯioR?4n]\|T]R~N@q8%j8{p*Uz2|M MJ08'H/Y֩_}P&3fnvUQm(9~4ӴsV !+7Rd*&KjƠ<$V3Lַ[g_)7k4וJ!+m)k jxE=R8-0(Y B{ʟpK픋̒}i,LGP# p^nJfܡt,m[ 1`C?1°yNJREr^vy*9!\VpBHՏϊoV^mz}T#CfDt3v^Hlu[ufMb6<) v}z[1oۮQŞh/j qw쑏,zNk.?̟gĩ۠n|YԞ8|9opO2QH=NwEv`I"/?ҸϽi^f*eɤȢD NiC*Ƈ ͐T0O)8×P-bA--raAn;+|˘B]l (`)=\IΒte#+MQJa0(RHc\D%FȦI%ؔ[^qCKw uw YDn?=py3¬q0n¹Y7gT@eAue4kҘ>ƒ2.0_Jvbc,Rv$2a^,qV@~sRI, "IJ:b΅ TDYJPI(!-ϯ]SM&s~NdԳ)y>]'S_Tslu}+릨h(KH6 Ez + 1|Mit{#ɇεAf x"ä5W*3ClE&D`aȤS3#71ۦn`$ Tācʲ ʜ>TcS_ HW^=>ra.@Ytg݈ߗ*m*w`mMڼRCETͳkxwpK_0=_3L8k^]jGj.߯Ww[>7RgYLWk$c2QX5ASegTϼ.eh!᳄ϗw̆/b"8r]Ⱦw\}$-*a%lU-u4FPB9U! yG{qe!Vn0|]n*ĺo7j`[VV\\dk"k1@$Ck C4 aKߋ+VY^fMiXhTfPOWIOɵ2#Y}`4)0A_u~z^?i+3Z$:c[6IJX&"Ѻp]ޭri^ZWȴ)1VՉGF b^@XQi\LĚK_eJJ'I:A@sR'*ճLgg"3-o,oڍ@ [,UY~HfYNmLmBg)8|6.m ]Y)Z@0|™gyݕ_E'qmwM_dXFW4`Q. e53/wB_Mrfx101)+*RRx.S‰F!;JSaGf꘺=l|f&X #G.szuM)([%l.k!tK׺zjKo4K'Jw|Ey(D ,1X=pOyU-e;,b2YV?h UQIhadjO@T%v "sB fyӡ ?&r!y}(GL`}sg$LV@ە+ cm-pJ& 2B;K \o-/X2MU!}A7ia24btb$4cV=R`u "{,P,/|8渗45͞OQ%(Ĵnl갛ȝrz&UtXadq_N;+ǗRX,?\B^嘬oQ,Pni2aoah`s_0";r/\\\DktMgwc)bD"`0Xe5$Oja ; c6~r=w--%bfF :nl=]^'ha'J}cdJ%1G(ztW'I[]}7s]ou|oSr]Xs#--{HBFĨ%|C?b Fmep+P3^/7E~-:Sx2&Sj rۏCY"V@@h{$T*PYR'$:7,L^?ķ?|{aύSw[5YN zۈZeJa90L#U?9}tM*㩋D$浌DGeiXu[ijKMkvhpWT_Vc6+,-Wznt,9_?ÎUonhJ0 0<۾oM?3_'I<./ѵו- 89TV-~W jeԘ9I[NpI])ƙ$*)3Yh[cR !UՈspnvn;ɂz˿`TQ҇0^UF|(܀ŏ"]YJL ] [semz2);? fj2n_MNpX${`+; BdMnd&93L,rcE)Tqځ.QkQcnDvM;?xWK$f$hTee%/{6: ' r]dtO_j#V7pP}3?u|8 HT\N>N\mDVbYV$ k 8\X/]-2+i?`|/?}WmD%D%_,@ CC)=$xr^4C7\JYLV) N\4ti.VW.L%]KUeQuy`lzp+[ar/!kמ?bdY{a6pv\4kee2AӾֵͮȴcZܭ ܍d xp'x 0!9Y w6-" rl"bYKizoKVA-,@|9w_htvWw>|,*Rr"eeɪ_ǘK}G1qx^ξr֝ie1C 9¼Hp1Z0\(28kx Av/e45$_z_ʯ%nfY0tD1& pso\^6.AηÁjAlbP{/ofYؕ+mF קF,-@Saƞz8ju)_`2d4 xy<G5jԏ&y(&sMc(j] .҆Qkoi-!l$\{!;4yx d>ݓ:lLڶyj(*+b<'gm;v5ʼnq^Y)DC0A&tzMߣ/>dLS_Xǁduqe; ;4 ˞ hP2"ލ=mcEӯ͵=Nݘp-M)KtɆF/Bo(ѠIgBYoF@?gE7{"Ĵ#x_*WikLaCXͰ,E&.LJZ7Kԗ=^f[Z ,dx>-_p _j~KV=QauGP*$ ^YT2D"AOr90s?^sL moı*k\dwy!L"9*n ڙ(m dAa =Ooh\Gn}i^$󧥝[OY|Hdf5q;/dğERӵs  @*4%$× JބmI Xpy'Y^gQ]˼ TuvVgH25o.qDis86k:[/X=f'(KfWu{ 4?sEU^0σ#؊:{|enR4DM E_ 1l kşHP3|$p?"oXHU>x o[P&F霉#ֻ&yiUt" 2&"hGbX8aw1Idy[GmI^\ZYT 'AZ)uDC1ȥ!"vQz?Q=:>Gʦ{3"Ȗ%mY.$]y1FvWe54HdmwE:F FXKT@+~!D)_6Pܴ_fn] f߷}b'utYݒ&ϱh|y25ײ.Dr_Ӯu' ubJ}Tzisog4*U.]jbV1LL7LK &!.?ObOǎǡnT>ױXe VnrxҊM͓zCIăzٜ7_ _V^5qS&/?h,|CſAbuVfvaCwt fq5v֐wH٭$q7̓M=OHiqdI6YCRJVE_6ݕ%0CZh GL+LgSFp ̕F"O'9\Kw?d&H񬶽N`r#F&zTr6SDFwʾ7A*h(?`ӽh[ u_#ӂ7߃yi$:dB$ 8Yѽϙ_whfm$y#s$k?WDb,@9{uR+z&xKĚƚ=zcYbXB'<{c嶣V]Dqj|:/u6źNmE <+c|  FpǍy.lW63oƱG^F"&Tc1CM~&.IGb 442!_<(&Ÿӣ+P N\6# <s[n{"^iBk5`':P4͐!IæD'|2HHYJ,(E< |4\oKQߖ<')OE~1F"u_YIsN w2xS$Amͷ:$ItbfTNxz΁0? ջޡ%>G!["L󗉌>/饨$4G |!ýfEH2"r`K@ c!oo{Y+*OL)kF12d6J;/}7rL#a~¨UsBhǢ+ؓ"-I L}G]o#ׄUi=m{nw)z ͌1̬q6O.<~g8Γ/L"K~Q5a%,0ѴU d8RCcp)+Sgi/fJbsxh/pJD#St>LL&Eγ, E2aZX gL* +XP: 98K|Ժ\#my~-:[-!0at7[] Sakg3f;zt5,} miw &9t0&N;.w|ĄC? W4ܥKGL=ſSU?g9|2f'<5?E~5O0S̩,I@)\9NZmXIךj$ΓOjd͝2AXBG)tAKf+ebh䎽URL揆?Ǭyo2MjgZW@'$nĀ Rf cÃ}t8:$S`\ 5m_as@r{=60D%m]*t) v7UMْ7?3LTSsԿK/TOfHx2pRA""ddu^I:%'y[IXtMg`+-Ia\D(1\Yer1t  em8rp7};e{fdR$BDr2/tyj*}kũy^rZ T1H_%M?EJC?x]aKrz\ = vtVv펮آDC7fXV/ri>}E(N3 ?M |]פ}^4T&3-:B+9_pUY $g(NZ/egdɰ&m eH8vcU|ڴ]ݒ?op퀴  )]] FBvI#|^" kr'@W(:2=CJl7pc2B?_q<&kZiT&dg a}6'KĔG8Rq FHerXlپ"W(d{YY<߯GV}uG$H͈̄vhO:Sv}dv9}6k$߉eI'*Ֆ@7mi3'֕Sk F3aWrKKZM7։7w-,:{Rm,9o9EW;(RwluҞ ~ЪV/$N^oq*\o_{\m ~dQiB̓.9%:Q#] "F$TecJ}+x97(>-X+fպ-µ#9PHܑcaP⨩744||g)9 Iݱ;%sЦŵ%ƐEtcVRY?zpoSvuwݜkϟx߰:f5W'{]ً.YK #,' [8pJe!8=>Vnb>nVSApJ?$黑GӼ,Y2{mJojDžW#q`Y=1:<7joD'dw`xʈL+,ysx^H[LN}_5TI0]5BхH8'VWI(%@z_Ϯ{^6[y1',M rW.p"GUNp[+Թ8]ث R"4Y}HiIxr+]c+ ָ0(2uA F-S-DT6I<h+1bn֗id9vmKh0Z@y7pQEH .0*_ofuT2Ƌ 2k$^wV#+{L'%ϜaZ٬3Mɭsm/u=a>ѱX}CiB%~QN+9ޚ#?<l4ĆgGјھœ]E|twDexmm{*˔v_wp5:KtP]ٰ$B¤bB>+*͒ Iix-yW:w5:T+$]]Gi)m4x0w?1z?G$lO4}O'kv|NY9<ҪxȪ:i[뚮fC,0#VH *LBpLwF-~x>7_ƛZl2ڹ?Ԓ׺`Dc Q;q)J}52O aQl=L_*<;ސkaycW}k`bhdb4nl7RXBy=+{Gw}?KJ԰n*(di[v0]~j(1K7`_3΍4δ8Cj2ZҴIťՄIӦ:gCuT;: &~3HͧO>|/4Gjsކ^u/DɄݴw*N 8bI]3{ls"!i?~k醦mt#м^}K&U|m˄6EaĂ 4_)W3FW3/JIBJ3'q%ʹk]Z+IQ-wT$._:\ݮ9SXDPd;)L1w&˸.yί$lݎ/q" 'IN,`(U6R'G2f!1ޫ}=ߐeZS|>'M*^9/e'ItUU]^W'*9Q;DwfI Nw҅n\ihzY]rW1-mr3Fzf2o-¹_^/u4K|ѴpդUF 2$M_ڼT>6H&Vgu:-l14:ķX7CfWqZ_`~7hYLwEV$yx]tUMpyJ~a!vC7;)KYpK] Y0 S=M#K JZXq*U3{uHTMSQ?/G&+ʒo2&%KTdQ 4髵~BT:` 6#cnb4eS';`ݠ-V1T閉5d(Ot{T1nwj,{, ,\-?uHC^s÷_YY?1})MifHU*2F@aI;X 5|UB `~`tQN

?,ü|N2툉]=deyԜ4'VV(-r :xʻaLVoh)g*g|*I-ڮ4Ab2)1Ʃ\!I9n=buĭMalAdNIeHr򅘏b8=UBKyC}%/&@JvbJ#}VAo18 _sƨ/{L%ꦎègI!.>/t!KI,%|l̮/uIںL*+ fE D1ꛥ gtUND~ }ssCAQ_hJdZ5S!(;K~ʰ~mV2{fuvΚ8WO\]dtFݔRePuI;l Êi]Ye13vN:>|SV-iD?$! \)zW _ٻ2!vB%!:bFRφa2ڇ~"-Ce 0 ɾgi*.;SROAQ@xx`_NV!Lܙsյ)w]=v^&ʄ!J_vyO" I^{Vv+ZMx[NzyI/BOH(2m'?ae6 <^ *  J]ey7 `̅ج0чگe*&m?LSxc0W&ɪ4)XQ$nā"qZ!߮<_d%\ 2EY(Ђ.i,ҦUQD"d?S~BUaОɆZ$~qꝴ1ۯKrޏJE뼣n#ȊV;IQJ³?9Z%P;Rf^Uj90ZYBP(w_"SHZl~|9hƪ194GEeyFIcnXʊ ]2QUEXZծؐ^%B>8?zRO^ogڜ*1O1ɟ**dnUT顪rqUc%XLj7F߮}ߛ%}M8+*`` WhABq}z߁$|KCq\%Fg^Hq1|lr[o°qUnQ(#W"F84'7,DS qߏ@9-B+]W 4'iዽbI*O[ҔP:t(I9!͘P!jЅ<yޮ9c%<˨(/M&]]Ua J*d^ӤZbȮ[dޓ|(2pC}$b"Utu~PknWִ$S sJ.HR#^SOs%mn\O6W;;N)",e+(;B># 2Љex?% v-izsz.'9̯|eǯqKDJS* j WV<G Wep{>FAýexɵ,h)](6]G~rK#TҪ 8V>,-묟aCi{N1>[6_M.A*6N%D+V)C/IU:'ɪ|vL&Cy m\khL~}oWcX%U/BxXҎǪ)(yщzQ':F0YtƜVɣq:O\Mp_OWnI1*gڎUpy.YZ'gH!}LC9j:obFIϬʴa:8%O1H4ŰLSܗɹbx&z}F' i^$/ D+_fq炓XUWh6t]?fF,,D Θ0}w(Ä%)bsJ1v-bJB({W̿,Bo]% NH@XrMd@R-yOgvBWd KXYYt xYj1eJ oNk4\0.*!%@rIg>+ᘣMwe%dZפ,p̻SrbW /\f`Jw:xQpwy7 ?5vWhuQ,mXfvLCJ SA, v*{ῶo &ܥ-{glµ&o. [RX2р | Z7&WݖjI;N˅Y#IyYR輕u wݩuѤW(/ԢlLb}`&!-K')m7˴I j &͛Ҙ@&} VY%r_hQ>PuĢ)!3X G"Ynd#âE:,N^DxI,(ϊ2(ZM`0Qs`ߪt$J\c􃒚~/HWꯇKge<*Z٦UaF8XTaîP) &W]kމq7'M'K1xGR]m[~.]!J0H/TtVFy OhfRΗX{dAýko=sU.‡(\*L)%9$ nLe ;|9er&#i<$bpZ-;K6hg% $5S eS4+.T~,xQ1Xƶ+ccHNYQ"Ub6   #k`M q9~~RR}p\Jo.a6yFռ&':rE<]ZJ0Еb Sm`1BM.6eE-uIK2Q05AΎp!X[#mSjai_?wT1E@~ *32S_()qL`qJyߪѕ#iYܠִB< &py'H]tw_` |$8 W9 G !k*ƹbK}77)Qژw>ψP `ddɮ!jJ_( p#Z;$dv TJqyqxO;MR,nť f|@;^~YMǒYE*\1H*Vy@qU(BynJ˺yXTyR1߫"9M )TdZ|o.7sä-6WY|#7ae&]tZ$sB_/BL$ .n\C {]YjIB}D+9 (M [u-N d ߘY-l{g.w$eqz*!#o>0«XP Swz3PHP8*ZV,>|ns&|J޵%CK. 8V 8{#YPVVO*S҇J-Ջ\U6i;Y}M M_"I+yNJd|%$1p>5ջ.&'82wuh`,_ #a`*%Y( ï/Qur+tS">}R"$Y~*1.ЃΕ( }r]$ʡ>y(ߧ~Zz߀"=3ٙɮ *ۅke.i]A@'! WSk|-CoIՇ ѫP|!PYPt΋L6-EL-FFkơsȤ@6"I6;/cڦ1sȇ&LIry^8./,tF$ (ǀ_ǮUyBvz0tA`frU x?E[YMD&žTQDP!%y>j囑m)*]lz$!##շA_Ǩ8 TwV5R.8'U #ANq !}͵3E<cjGgizȻY1emj,:اS5 +B+ȣFm`ί֒6PlS7װO;t,uŪ6= Z Su2>y@@XզХȀx:;9?V -qUmuqD߷$4o[5KKd@dѓY=vQ#r}WfbSU>\LZM5Ktb#(DAY\L^j,F᥾a,̟%m11%6՝H.X H,V9,V4M PѢk|l^6QQ03I'#_ƿow([IT[ʦ}LS$ :|T A!vOmˎfۻ|Ak{aXLg]\,V F8Y@h sV,%h8\ѵ$;^'\l͜D2#C7^rfI"њGlnEvVZU ʟ%@Ѓ۷od'/Ѻޛ 3V4\7+qzz-!|:-kM΂/D?'_i*ar0dTc&_ ˶.y]$QW4IDž4MrҸ<6@"XJJC@?p`MM:(, X&0 [J3~`Ֆ?Z7Os[˲k4- 48a\^l2K9~/B2"i$ʀfhb²* [NGy*(M`pVND֞' z)>MNDL+E7'l?+R"s8\K@t'RNwxSCIDV̨vzЋ-.K`wƒ5$Su؏cyIŒ_V! ː|,|i,g{ҋ.31G3!񋨯/"-_DoM0AR oV%;w\NM$շd<hqR]郛Xmb`[D7%2;۱+UVl2i50_6I*x- ؕAt:H)= BfM)/U9IܣJ-Ms sa21@FkP[: sZ8cް̆xy [4hl˜2-.FZ垴Y# ]!GbſD["=nnnM.hcu7Y& T'h1U;$}%m},A!jN< DǃlLuLxnL6i/'OyuE$逝D}DNšl6 ,}ANY$oΧ􉕉Uŕ3ew'2rhbbG\+/'N]8|v!1D.*3vvڨmU>A%!Ӄ6Ӎ F( gvDɉ̅c?WiSEbuS$;j4 BK(9ځȩ$A8"S6| ձ>z,q !}L+~pjؗfAzkTGβbeYV\LRO=<=f>^Զg҂YcV䤹c"tNz>=`-HCam=7) QEVR]ْ`΃B}7-vpwq4(ti_Ğ4QeՕyUBqqBb`5TIэ6[p{6GZ8CLܤ|-MI[a$BFRFPJ·X|Ǵa]_wm8]ho[g_RFxe(w<ܣdvs̾wdQ\wKfOuuA"f#y&0@{vCx 'k{s^eC֌wexIyʮ$- OQl>I[Wܶ޿ec}&^w[~\9u&>*U},5:l>D K}ahRٷOH7/#ּI P\X"5cqVG>1 E?WFh Tij_M|ƤeDn*rb7ɫ㾨3?,NQ3򊯋J|~1;ߚ\D|3Nh1eFOBז,)}eyTjdSD!Sd`cy{ 82i|'fKhji{RRcSez$o_2=a馟̗ōsj{_%U7Y%]~>5?ڮ,M qnӈ " ?V/WF/c2ei㰈©^ճ(0 k}I: >>/=X[qWzFzE8zYN5?SW`dsА'r),IJd3}u6p)$H?F՜.w+1(_p~Q]f+>LCIa׫i/z 10+̇΢ãcoԂہ@pJ$0W!ҘwR,6V~nscQ;V: CwY覡@bUPG4sEkPRl5\!vdM_$@bC7y5_0D |9C/zvfꞤElii: e\g>kyKU#,lz mrPތ]d:;LE'bȪ8mj>dbW|V>ܖuTJ &2(c]>QJdOdx0t8pjHۿe<2|jh\Q>deEV=asRrTrnRVY/,G=gҽ+U?!\[$RA q$ #urk,Ia.r Y=Qnkүpͮ$o%"GrpzE#`iypB5!==Yea3gAӷ׫^o]"M*Dy~QwϘtΗ( F|rZμ7} '^MIXkUe)pbS@|}x<Βr*m0^mY7f}D $<oe~4t1v(QMtIZ72c5OSNr%UgBr]ʁ鍔TB 9FNBͿR cfSIjrqߟX}ah n"w#NېMb#=h|"O#ݵx|lL0AP*% m=^ESZ _wWF6bؠG~t*O:U B^}_v[>4eF x$~/UC(^ &OHngepyQZQ=uO_:j$~!t# ݋ q-4iZ OKji_^F} j{ \'HRlǀ7MM(nsZqjJq;3E YYF5mk[B$u9;b#ƄB޾Wy{=kD]?iCĻ*5P䅑#4k?.{] ߮g?+>ؾ_FMr.0p9aK|G >)“1ksSOJIy[6YNZpDZ+tUZwU5p=s,P kr߉\}!YgGxj+9RGiIjf$tr)wA+FDIH>3oj\}$|K6kz:.O54piK[Igê Y[E|N)Ҥ,o->ԓ}<sUfye([G#塓@*8cوEMJ8o^lN}оI>7ay6RtCzMʊh]oZ9ex`RZ_p&kv8? E~|IlX>E$XfF𧻓&[}+V=DQ$ҊU/VBMQZ訌_:kIlP|m| Aj^D F8LT[/+bsi`|fQ*vx[Q&LU$VIX[O\KD&W$)f4>V)k0 &V"΁w3i'M_qm.d^|MgGe~NOVw&%6A$7549rSK5R=uSHOԧM5#x D+/k`/[p$|CJ3m7Q>d|eN7&ix7Y?@7qzu+.qA¯rG{r?XXȏfNLvnuT:I`e꯲kk-GiPi,̎W6 [LhDԊUr3.xϛn~upL=IDn$n#kשj'-t!™}UU1< $u\T2-LQ&7ȖqYwnm4)V'B_%#VO7ϺZ WAVlt2-yʄqb a\CיOY Q3ڧJ+0kЅb*#dQ Gt#1tW [/lF|| iFrKzm[۴܊yUYWV%p<ڕ~hyv2 Y@Ԓ zP/vbǗbwvY,!e7){ֶiFeG95,eK\dՙGڅȡ4v? θUWV,3?u*5~/;)b4 S+ƷƼqSEtO-{$8 b (4awJb"GskCi/T B=w1I!;v:tzKQ%$ڳX;wW?ۗb !oiłaj%ȿmŦwH_^ڷDb‘̉3af]VuGR:#} $*Hec'++t*&;OgIOL"vP)}@Σˎi뼏 ]ږ+(ie))vq)ճ?R/[c$>kMyBCTI73˲kUSNZ24ߦG{͒T7Qе)>@ĶM:c$Z0  _Dpj9uv;lholyt͋cvhՄKNBmDhA_|.sif8|'}ƹL7cYߗ4 -}LѼyTy6nHh&ƈ2v9>uVja@#؉`L+&-dQd,-A%uF[VqSD)vHnܱPz},2z=òh6sw(rD|?nmT.O :Iq`.en8ovʐI&N koynB7& Nj6QaqU1P%;KVCfR5;Y\hvIbm*DrṢqlKm  %m'^"WX8p164:V 7,=>:k_"5v'Xū6|(;}GAju ުը*@n_Lru־iO+Hjտ+)ª4oՅnE;£%bjءlBce;Oe]^˸B?u^2Mݫ&P>^hS 0N7:b^0؎/o- ~=>ϓpSJwO*hs\2i}١:.Y(a DH$Q\ m * А<0|^y儼F/T=/ ^q yV r)hsO}E)0=ǁ.W)y(IBވe~*"X7pUokƪoQ޻vۘ]Oa) Db.bz pci2CY#僚7gUCw҇!KLdPQ5EҀ"Tߥª@Ir΋deĉ}޼L7n[8Bcs|0ЂH,0'Sr) .8_wqkEu&_h%8rL&.$٦>"+d`^qqQ"WCևPTi{]?IoJ2>*O6mD%kcp0|z_I0^xw Hci^ތŨ 3Ƈk^#kG{3_Mk^7M BvW/c Y.*܁1j37`'H7)H2nŗ*'/c|mU`;KvyFz2kX-m`NR8Б%*PM':tU2u\wG*#ӤWɁap@L(=AzuOJRU]{z|[=mNTd"8L,- XBlaz_x>1P2:/H#WAʶf"QzȒ"2bJ*Sڔ*eGH) <0"&ڥSt6]BM{Fþ _GH>4 JE]y6<2B2+.| Q3:ws{^b.h}WEE˦j2V]*]ޒC!'% K8pGdˍ9謍 (dCFg+J*mOUE_Br~j+O?)6؊2,r6ū&CO;h^N8A&dfhC:/y1cYfs,~.R2b^l'ju،OZQ?ɿOc6>~3)I-0}{?UUV= vharM)--\8f!"B欹 Q_em7}%9Ŕ]oQe?X{Tinw\~*PCc fE#b̗8Bn^^FOkw_U>!>לS%eΕԓiOT)c*F."u{H”߸ִ"Btm&һϘ}ٟ.>^K_Q$[%>K:YҪe_J` Kɐ!'ڝEɦ62I$-11CoQAr R,O&a'!׍>98& %D=PF;`g%UGLoK:ٖz?k}uy&g._KӚMI[LIK9YUpA' v#*)@,T&ZWֆ 1i%>gf]ߑ쿫B8c(#P.mo*5Ғ.IݎLKh(#`yMcQ"P54.'**MXJݪ q_ W,hT'Su.Ċ} 3*(ȍ"~nq[-&!)u)fŪO9 vp1Tmoq;_Ϝ03[;nñžAdޘ{EuleG6 .}p+Tv1 l]pP xxy|A0Äwϯa_B7'z41QPwqt mL/ ,‚#wi?A7W:#0yM`ͦ,.xP^g(ɝ՜YS>иzT@&yuHXF) "0B,򱕴KGtv $3Ge*$rk.(2}[9d5=)r,kQb+AB! U t;]L8MTw$r<5ϡ^ObR-vW.C:#[ҁ U8}@= Y%n 4Oo"r4WKt*ghWzR8LE٪ǐ&(-?1ɜ6VUJB݆{{݁>u.#_SSZ/g0x\Xe'A<|>)/i0-aU$"U1K"k)Q;)cPR/<8ysHsa§ijf |Er'[wcO \2N6Ũfv-ݒ$%w`Ic9N3Jy،?koX$M3w/ Źngvph lT ޘ%+VR !J>Sn6_]TIŘ ҂iEUBĝ#9h.\#$s4k'mo*GP4={& 8I~^q!?0}x}ܦeuL =!b3UvrtwqZ=m3+Dž̴piE,oP6KwIa#®pa*t iשz$ K dZrpSμ| 2kB\ dBo+.$Ns_z0' O7< -0M|6mb(,\QH-MXbt!YY[Pi8p`S g\ ޠrcqGOMISD J'M4F\xwi[_U+v K_oUO=Vw$7g+:+A 6?.R 6CGkmN'AyWxBt,X[ k98i8];A`H_-Ŗ7tѹGpKHd#[{az~]pNwH:RI'L_RIj,o2,oD槤­gmQΦ0yդ CXB)G;^>yy*ᘉ; @q^<" 9qјD"6kU&5FY=IN9/~HN%8䤲|!\Jrd 3mu3l'Z1En$2]S.UPum~, $ʡor9ﭟ0nKL㮝i JcHdFq9vJQ N:WA6Kivx Ǥf+q@K(9)"(-9VhS/"B/tԩ-#* }Aq\,2Q } 9=d,TmIbu}Y2ʻp|J)|AF/SlXW-]A=UR(o.cRߤmYQa!x -f'KܧWXE oQv=˳z~9i5UCvV#m Xbd'XnAp}(js-vYci67UWMVy7F`Jyܞ/BG1W=np@~p:R\^c3+r Gݱgn&ObE(0]{`~ J TjOlVOxAu<'. +cV%X3>V"uW&R({clv]8Ƃ~80r~P*{!kӪJad!ք*B|||XT֠t\XmЩl:;a.ާ'i <[h6BD1YN-ز9c 5"9wPQX$> cx>Hk| JWVa*V!r|[eUTn n"$is0w`K@d4yQc$Rˤq$wm:&S1jcx`KÅ_>< lGR&H_9mD$1{P.QfXk)l>%'֧l1lG4R N ; (6 Og4dSeI]#ҒAU<&vM-'TCbiiK|-,@rooYv 7ٶeyLvvfuM:H+UCrL[0"&(1Iw@B((&Ejew_Ʈ K,q9 !geUi V Uv:BgbEO2O}D.._m} ;՘d[,\%ȤU*nz.b!"W)&&ҶrO C>P0G2hpL3Zd}WCG5 WIIuBzp{q$8I=uK}{C Bz $́\-ua,,ѮwX|[iIbhBcC:o=ȟ>ob^s tGJ\pF * I|!,GtO7<=v7)$r9/d/ŒtC"dJgBRU^4=:Bqy4ʀ8cً}3~[>xvP VצECТd"]# 0NGbЈ)JBF~"W:WZef]0)oڮk ^ /˃7/=E+䫈G'e} k!dOu]QtMZ>1XmUxUA^eX ^܀Vg~8|ǹ<;g[ 7ua&A#.UMP-ηS ?\G2HU.Hly^mD~мFdc\I>3M"-UxQH a䑢%C;IF5?mCɪ(䔂5fQfE,wcvqݕs* bرO.zZ\~Dp}Cs ,WAۗJEFb*.8U?=x{,oGэf.ǫRt$-'"L5:l@\bNJۜ*aXVY1ۋy޷EƗB]͐%BIn}_KgjS&P}_ѧCT 8#_w;BtQ7P|;9zI^06| *N|ȻKB r)Z_XP_HzN'(TXoOK~'\?l*'nk8BȬYUq iwfd (`9vx>)LcMd{ޟ*4Xխb$UcR#=+ԻxV%}+r{oIpW呸~ "*ID3_%~K~D3=s.Q{XB?_"]PXq)LJD+ 7[ Q 5-)T>ѾZ\r,E=W9o\)#UvC_4̒@mNH }dt%^V5WϿf7$0ϗ0'toROkƿKǀ_Dz}+c@N=xQ]&ČdAWi^>k_} u]Mo$:sy:< /# :Kb8ti\ԳҪ,4bX@Rת3:vIȌa) / ?#ًj"?´Q*%Vk@o:BtJC\\f]uy{Avh9+?{Zˑ|k\xb76ͤbD";mrP]^Emׁ YHDi7nQ_32O7لKGBCI^E7Ilkk<Ï CIhv%)-W.Y2Rnewjٽ2w#.g3EiY$|>8?'J} L.U'P;r2.?c. ZNQ;gpvH$پY4i2[s!n6KӗQM 8{hj5EZ62;z o+MJ dnB&ldӂu3CJQ Vn-z^.'G2*#^d."ş+%XW}KYBRal؉"Wy@ * ]8nCt;%H1k ;$\[;&zv/SOoadsfҭ.KWYavr>Tέ6|ݟVa _Ί1xz6t),m ,)\CMt:Og)#~~|UHN{dǎ?hP5ϫy,ڰT<.V/H 1N6 *KG$,q,b<o7`/뱟P1p0Y[Q5!٧*N VdߥdЁuRk ܎\s{1xY rZK6]VQkN|RïF1"Yż҈+ A/ Kyy ./&?a\&w$,cmgYmZA'w%ʞXס> dJ9 9Mȸ=2e~Y;=ər5<EmڤUGlж eX]+1^EJT* 2 B75R=8>OȌOX0~X$oneӪ68Ƈ#Ϙ:j[9wC Ikm|4`B2۶E-L6e1 g5s>Y@0 =TWVтq_F FɴB NaOGaY) R[ճ3E]$!Xp>+’4n!q(-4ddInr"7}\=/$}NFD->l@}[|Wh, oGf#6eڑnmR{Yd[*Ea[t)D\B=39XYmdUk1%)GV>Ko$KN.k׉ G92]f 10ѱU5Y dG6*o67e $*AR\pnbv:3Nk#4e!Ļe+կv-CڵuO@‰G֡-z BesF]!0IyQzt*賹<?<'.,Krچ-_슔Eaj2ʵ.,:!ԓ 8Mݏt^n캎vk/˪l g e[AAb&gDo[hnՋζ7u)8+"BdOΐzM@y08e;}a-HWJ/&v|[2OϗtJ3]]'E;5ɋ5q hMȁ2^,*㮓KaY`e}y_d/ w]UWI(5`rV,RBZ ej3v ?|a \[&? ތQ҅6tɻ|:'1uv;mAW}pFE(A*J 7X O{ˢ)2{C潑dK 0UMNArJ"*R fU~ d`.dm_JYw\"S^}+ålQ,8B=m5?i܍qInR0NFw 9rO6u%6&.")(H@pq/ g廏Ľ],Y"fv:d)ې}i'>LMq;qoP $x IԿmmZklL57b{y-k'7-!IQ20ڍV%$햢h,IGM[MgUGXI˺Q v9W4t2wRq.hqY? sjGdz?~n7~ ueXl#!([V2xS~|p3L!"MǪ)clЉJ䛮ý&Y˙ ~k2e+ SEYj!ʘiiZnS7MxU ;);~m V ҁTrjÀʲP _I $NJ™u"O_?ɞw^=]ce$N |Z'2ĺvq1яX'9mכbS-c %GcLEqP?d")}3 yc[%-S4lyD*l[ɀ_HU;ciXHA_-M?-g2k6ٿ1=uɚ6u%OٝhO {ũ`"!B 'F?Qa9-dq봮B#~mmPE#!h“d 8f^+dg'Em9FC|1Fjp&|@J$Ӫ_MxūѬG.3=#iݩl*OFTm_vXM wM0Dl"[NXLu{_@"#{Oɐ7=:krxQ`FG LD6LPP*F~cV0:o5MdIOz(s6ABxg'b{hK}Mn]J̌ %R#eXY˽:Bi[ G*pe[ctqYi 'Fz,ie_g-r(ubELE>0p- >8X." xd ] kM`h`{ u]7" ir;t4CkQL!KtF  3tY|H)ǙBKtzY]14m2}ٔ'u*RZk@% p̙֎p=4ZM_!II8ӴW0Dl%1e XdAH %ۑŶjM<_N %cАNNd*Ɏ9Ϸt"aLu^DFJ0|qY)_A4E+oK)h\,odISS#4^f;+íu*TfYD( }\K"⭲?|bPZw/1VMZ<mX?ljӚM}9ˌIܖX"~敫﬽#S}ə XoyV ![V}SvQ)Qa'I!Xs sei-'knF%7Ba.O*6ܲżS3 w$?evm^7<'Ӱaw3Ȫ)EЂқ6ei;ȌN#!Ȱbfյ+"KBũ[QJ,jxA +D@ԂQ`*مSXI>`4] ^($=|IĻ()ߥӗ-c~Zu|Һx^v,ZInJ4/R[ΫXC9/я}@eeߎ -e & Nd=_m3v׺রuyːp9 ;FT*8QXM>BbeEV2<OrH -z_Lnp Ǖic5%Hg/tR9Q<31ϯ%X=V?_E#UR,YۦI5\ "/I*Nڥ,iٛ>|Kja'ff!=aѤ֙2;j:;v~n(Q ¥KL !/lG]_q亣^kijBDĻ`r=[ƚǓ%'$(BjISE?jVČ;HYE[?Am"Pw;Ǫ 0BDR@5VoFUYisJo$yH}eKcR5by=`; f8vxN^"w7Vle႒l-Zn2SLc(f%z;p$WwQ,W_y:וi877Ym4uax#4M(T40"F-\gzA*_ǫܽ섗e9H_7 VQ˞qhޖ9N+&jo o'N;^,lZ`(%V ұ_ul&Oae߱x55i#bG#*4[pفf3!^ydyn=CBm6]yӚo{T1no%'e W\%ڐwI\K"5%VU]2iS7Q՚hQA2Zdyf1I]N"{}#@Lj:+XE'9Ykg /0X gHB “ʄj㏶_y1ld0VPp߻< dWLրW"]<4aN{>?c?ϛi$uQ2{€'EYǖ`X봯!S.w1qVɆuôx;uO1NPLe;^/d%VI,O =x6V=A-p\*i]0 Œ(j(EsRy=H.,l3Ul7h"#°0|AKcԐJ Jښ4R)5$ya]?USL2q _v/iQ,ɿӤ?<#L}w_+U%yIRW׋Cbl5TuMKؗkuH P8 8>^4Bѽ>Lz=gD{<>7^ԭ%w<5^U6ߠk!3%#9 ]&sϗ}wQ 72PE(P Aˑl<m:ˣy<{% &Y5v[78Fw=g)zlaf=tW|+_D7I2~t\]r2$ %KrbJ(Ini!L^MܟW@~'DYpxG~.s\_bu7^N$ț,f*I] l "qT$/0-6dQQ^>wu}irMU_̡SğvYIӀ19_!gXch`#(䕛bRd]u"ZnU\ Ԉ3>~j+auZm\6zv~,ُ_4aU##k{% ~[ if** PiPj58ҩ<<:!Hd&$0}8zϹl[P)HuȘ,’= )08|oe <}j xRꍼ-278’Jpue[px ^8?.G~#ԅ66Qȷ#=B a{yY%L- eQOj3@JDBlN%30: N)PW?ݸӫ[uY) yoT90ȶ>)}q\ S|4_|e`#gzKIY|S"}sp1i8]i/)…^P؏H)+JwWW8տq ߦIs51ScHuO[_$}%  kj^eE֞Ŏ4qWnul£%w@ƓVb6t UKK.EN4BF^ B t/U > UuP ҇oxLŠo$yY`d0$1^Nd=?QBs&v=ʸcJcV#9Q[Xm#S"pQuB90qon5vG;?.-\ljztbjȹ* !ȝ )%ØG& r鲲e%}>-UD\>_UjI[HFie_#yx^[M&U 6C"MuI(>烋mKy ϲx>]8B܌?3dMx^afU,E9ARd CH 1-_HX3^<3z2Tȡx17M86?䫅r G!("8)8o91ޒi]_2ӗe7y7R 44 \-h;i g`y,Lsk3Ԛi# +*')rhn$1!;&aPT}#eNUǃqnJ)F˵{Ee?X  XM47xS7ܞ\+vG}?CYGYd.:^!C>\. &U~X%Y,z;pW DcwIFzh22W^?CAly:C^;2U,)sK,' V |3&_.by}N.T/Ġun]MIgjYVM["׃T"eZXm9?#YJxMs~>¥|T$̉\,TMlu߄<#(V).2Aˋ nG}ϭs|1.u8º9-B 3 3f0C=Տ KpUf;]Ui;dpGRڏ8v 9"{]3dÄJ膧yVM Uϲi&kf^ơ׺٧# y =K7Sc@&|^Q/-ڒ|~ϼaagφ\yݜ0-k^hV&0:UKG0,%ٽE)gI]EsWcxPPM'29KZV(WRHtEEd`Jxpp#m?QFߑVK&3Xd(M@ 5p(_%Ť)lun;MyB\|+W߃<Ʋ!ن| n2Wbײ&g qGVʚa78 x2艌&|*{x_EE&-_[ap,:=>)?/2|q%zW2r~1JU֬%RPy7=49Ɣ&۲MѶϪnjE2t.l"Axth#)oK" ?(_V9 atuY2op4W1Aa Hs:Ģѥ̯i]qY"4׽}m_Ő}>I;Tцp57ŏbĺT7m.&,Jbw +XHW0_8wY8Q@ֆNEC~RnkQTz\aQYڏb u: 1< "9$te+wa|I7:W<*2sXB͵PkVgHqC *bj︷Tf%C>a74,2֐ mF5 NZQ+hk36b ۏlGk_M޿z;\&k6))/ ,$l C@t@]YE=!H&J`y@hDs9lCM+%k{KGJjWEGT৵)ڸϊDɯ~ T onctC~(1ՖA|)|W$q4}wE9D:V̌NdƂD5)N&uƛV3s,EHvDK@t!9ؖ,{!^+MR>uW$@jB. %@[ +@"OH*zϿ&Kpt5am / ;jTKiOdnSb3A2!| c]A˞ˇUCfIk0c!A筒HV?cc,bE_`rrMwx2A#۱+LͥJpZ%ZJi(z `!"9 n8 x ђ.ko$e!*DAf3||}ߏBc"D5As$̻(ұkb=}=6Lr.9ru~הO%*Hc$qMXbϜ! [!+r1d9m;G9մtկڼKԺ94! dJ%zi{C/\U($r-h髪&  E)DƼ [I\׻Iio)ׅS4v ޿(7[Xod}|<rcJ$KEH֨EH)n S)ܤ[ dXh\9Cд |DS`̄[5-LBoFǔNݲ=p+λ@OrzoR$ 5tmgYfKS6X }4Qrpy t\{LeO%%Wl5, /;UqvneFڴ\lfwk]2UQRpqxz9{';VGk'g aVW:"))>/;2'fί7qBј1F֢kPXnHp{]۶-Aۂ_( n8l6hDi4Bv'2[m ۹x_1o2L%%)h!E6(`h" ^$'|523iD CAg EzIBi.bPoyc>21!UNju]dTT2ծ|(yށBFوPA#@ I݄if3E9ϱ+ |H$h&.E}t|w Yq,,[&d4ũdB8yI{MT~%!/h&7͕h>MG W]ڛ֋MG=2rjͷIB- 'YQi5qucUJGb}/]0ߒbTD+}ȱXSXT,@d[5M]}GZWbd.TSdGYVr\g3d!f03 ŔBߌ+Cp룽-fw]SHo][GyYDp]PvE ז!+W \=N8}PA%o.וDfV_]IL"I-Mޖ1S|4q-Jە } Ik҇օ*c1%JYGD'ቂD6'sw)d_CMX.chAHKpUV~st!>1goZ+3-A"͐.sw:L`i^/u."t%#X@B#:y@i'Adhq`(\80j=6sBY"^fn;E7 qo/v"yeOaj XQ_{U}lmytU'ɿqp-Zή^唦.z:;VpJ *q oZ:/c;GRõ Dջp>,xwY*tՐm{=j$| Xh^ A+<:P9ʯXsz+ԚzouniL L1r2Bi,N K:'Ő!ss5Jveeߜ]߄U^(Ta ?GM+`%:zecpVGQꛟpt`ok?2d8r%5ECݮfOFt$aٺ '+a^|b!#B ){9sH{\U 2&~"H`<Ւ^^r{Qd5V]D`HA8=׶-DR{yEݼ:kB?ϕ6$버WKdb­-PCb")ǔgUܗ)_:֓ k^%,IY$a"&p2yD{K"".ɏƸ$;gҋՆŝ~}᧟ʯꂅgd1p+2AE2byQ`|hqHkD>ɩ2d7-))B}H}+¬3~U4F;9"o{PˮE6BI$D NCŦ4!ru,|S{B,6~=ƨl)dmLeK^}[o:!<=+ )ARN^cC+X/ʸ4u:v5_^Zy q($= Dƕ#ݕr>611pu_ܦ[|em @99Ĭ$w:C$1NƘf"3laP"Yދ59ZuWIb m_i iXI/!丂dN-֨NÒ?:LdmX),'`ulȵEnC v@zs&NY@i6zMoOr1;tS4mYYڕI#qa2#yJ#rQ+ *)ȯ+ mIwFB+GA9\u\%FіRԬQ&T DrDq;O`}r>b~f?P7YR#! r4 k:)%J"GL v1{D? /P!/Hvڋ&2IYraMnv,3BʫMY@|Xyd: SZzOJh]qv@4$y]h%:?:TٷU.(~ Z%ïG/l)EwO7UM4d:dc` d!f}ds&/UT!g+K7\;4#V%bS k7 .(X-˺j:$Lr1]s0q++LXQgVd:XK\NMo{o$!lՔֻ8kD24%I F+yp)fC׻Oךe^[lʢLwh4EH0-lՌ i-E)<"tż=)fG[mNʽ !~ Ӱ^s X0@jU*Q2U֜ۢ4%}3oz['BΒɐp|UД钶N$16ѨqH2o]w+1%}G@Nwtl%?5q8@wt2fKS}CۣIeWPo C@w^M 2j((˼Ū8\Ob sIߍ$kBƳoF2$%:ERzCC/DmS)o2sx?]c$8&:1Ƈ"&! 2.2p)"d/89Aߧ1D\FN;do/\FMF}:,#!l5F @-,"-S2íj9 5&_ty=6iy1m~*iq2L]iwu"~*B!H Zt*RqZ=,4v}X7< 4,T}=G…k˼r2hˮpH<=@&DN/CbB|}GٗDǸbڰL:#șƢ\E\(=D2re}웉<ѫO< a7dOD Y8"EG{du! bs@U-,& KHXỷ2nsBa~&k5+zkH;({b%09f=o׸e`sD++#LZQNjھ.q i]K2 #ځ0 ǚq41v: eBo<-WQ]hP: -u!+PMh|ɋӕH C)݂9=^$HC ]i57,fbMN"5dR("ZiJ7&c*9tg|sDLMrC_,2tW(~lij/_]{㷖i5Dnŀk/P^F0 4.NtUϬڅ#cN+01oڶS}>B#~ՑETC#H?n0X=NG?0dakץ/ OQ}@񤏐#K ĜޜA.yJmH neu  iԒY}c:S%w>c_MQrh9)tdjp*10(vZhTCF6yhmMD&j?ftkgm8T@;FV|*w*+cF0+6m&ʾaSG @asrr3$uyAP3;>^Xų F8_\~QEUR֢k. mI/{oK>,[G0'wkg;7zPI>4COgYmʃ ;xzDt $X zi1r:hfLd3}d?UҊP䊐ڐ'W|'ƮS2&8xYjibzwPbNL';.(~y[(ᖸUowm&iQJa:/C 1X;FgQV{/:TylʍFkX2)U&ˋ2MrauքFg sDw V*-{yz0oc 0~ YK3P%V 2k,!ǻpR۵m eXvG,\=8$]+Pi0Voi-P׽jZZ1G$Ǣ MORQLN], Iڽg*֦y/(w6Pΐ; HvϞO#W+r:D]}"+\ IaB/I8 D|aT )kũlc8n&1Ѧו)ÒT9$[6󯬓bk:\` ձ)BRVq-tՁ“zbj)].$U=n@.biG6_}BUuiYa=wm4)@㉨_80R1cYB<ke|u(BαT,D*9e)rRXQLEy LV`R=+/rPNXaܙ],'FUaϸpiݯeteZdCUM]q 8aCS D-{l m88^ w#vBԶi*(GKMP |wTOedGHF~,*GvGD,@#7%-k[Dzi k%V)($GRNQ5lչߺ,P9nP*1y 䩎r#oT#v1SVN=̒{`.myz@^d`̹S`K7๮ϯˌ4:2 &'OX"ҤWw䧹qdXh:R.Uk ҿ g0lv}k? I1^,$iNJ<^ķ#eU V8e]*NpJ_5hko-ɜMޕ.4\ʼK/`U1ORBXdZz(P8Zo*8+X4lPdT~lY5mHdqْx}Cd: Fkwjz?ɩqT<(xͤAnSy >\ShU5 aSzBytqQV4Zl{uyp(;WyKp$7׵^}mݦ% {.dT T2`A<1 @`b$Ýb>?ɰڋ%7s(L&YGSt\$.ޚ&څCzSa`'rE~WoG0+8rC06uY3„1YX\H)S9feS;c1$ 8=8=ּ 6B:63c>r?d糟5{@z=ҿ=#%ߴ-%D&rl>GihI ! yGAruR KX7]^I>G_T}Vu B?Ǩ4r\ ~|dZ0o­6f#} ٖ]fB+g4s}S&)rغPO~B0D vn-lQlzUKi/Z;5\ky>*a8at OZU-T5,b ;0v˯pS9 ~*۶}KQd9n1~\'&DX~,(w3t Ss;v V8RI`8*jkSnBH ;ar2MY>4S6̏py̍Uٛ񯓗<6)EuFre/(T{KD?Xmd#}N]c'u=CV: Gv4*+7,ߤ-ќlCJ^ގҰm"CM9]{ȡϲdǢizQ^Yc0X.S`mn oJ`z>f;[F5 v՗dC(u%t+TU>{ES,Wc}iJ]ňc'?B_ !@H-gŔyHc7<_VIzZ%&Zb18Ojmp^=_6$WsiCV ay7㯿L,H+CcY{a3IY{|[c0Fjv1 ո(P% RH6Cz* ,՟_Gk(Zt,?_YZ"!1ی_dSS?c$pTӍ54 t5Ժ*Π64U%fuE@欐CH 2۵y.GGZ_!3 ~L l6iս+dd":P%Nu#wLr,17ÕAvp\='+jaEϰ%18jsyQM8oU`N`iITD^&d'4*Ӕ+ꙧ0|CXqvsbв>XM7EU!ICeGNoh)3.R@*NBUTeڂG KxǬ>BGS/?(3쓴ɿ7nC'n*'"nBle6eƄD@ a}5xF%N;dI7ov͓MUYR؎YerZpI: Q]M2hlt7=l}Me1C;RffKܯC}>^nڲ(j2EIВK$ۀK_<" 7i-$ gLnE%,a=xtt8$ߢ?kXе's)M .>:=OuēU6%&KfcgES}@J# !m5P

vp.GD:Fʲ %pO0 |2/L`͐$OR#C27Ş$ eRHpI]仉1F.%BY t^eEȚO%L{{ ɧr6/{ƎUB%1KcHWxEhdyLvV'xJ sMm,xӉt'֦sf8&m(ۤYeeEjz{ _9ҋfEA {V;=wTg':|7- Jt畷UsZ* %UIw ]]Z_Х܆)h!gaݫ> 3 [n! agIT}W,V&y1yduM 9h t1Z77>434 Dwpb[mrF2*!RHoc2vIe`u^6w.v-W9͓8~_vYکkHMuy?j^FZ?-\(@7-@ɨy% 9qSqkA'.MhXgm_r|W&XtxWZJR,2GrUak,\bMJsof͠rXuzLtXͺtZqHƙ.d$1/\(`^*~/?8=sj{`1"LW$%@0>"hP*YexYqm ׋DLǁśٶi)`S<'; j$j-䥔i@bZ%{  `c (6 F.RhSl;M(9iR2%MIhɐn"tccK1d29 cHOd#rJ򝋮&factzڬ*,m#xK rWTȾ+ >e/?Bxa1}oDև[a9p֦)$ "RvmLPXQeV6Vl2l_b܉7kuuSfHm֓M"?X.TE֋UǪw@c~9p>q 3y"_y=Dp )bR_QO,vf|VPJ[^):0yHL:ph`<@l-FDv܋&d?; 1S۩/D9) AL,Ohc@gq)NҰE  ,Y6/]c z_:W)ʯ'wZ%1ugg[ؼtMC|m.!G[сK&GS;Ax1=u@N"u3] {+cbxG2<[BJ_;eT/B G..$J%nr,)uU c>Yx-$s] 0, @AmuE×mJZxI%0"PtQ Frdk0EHY7Q+UNڊJ*7ѱT}/~SLfӤb{˕gELO,cá`nokF49/ca AdGd9^YL )\RIL&2UYWcl/ -2n(ݝDhMs&:utcb/ɣ|_5A,u`؂?%^v%Hbv/<"RY "zsBeI`bUiV(g'[CINN[ <ݻ@JDQXʀ߶(Y\<`mZf 0?9"yr( ) vtт+B-S!'8A-JF&hрy3| 8y#n岲#F dBJx.y-yf uQ< zrN+T:֩m Ѫo?WVЄe0RPN^u fոi2KhVQYַQI 0>Zz`*BV% #N&%:R"^ECtpE7]Mdo#MA08 n1B4*> DCѧ4i pҩT)X)P8A@Fyе?mkΌdYܷ{S˫ ˽H&?oJDh'CUp8F)&_$IZ`m2??1(/HlZ%$\TF±85BLfM64q_%gD92CU2l"Iδ$lBs;y͒kG8NZ$*:z~?? k*vn)F)r: N a)ēi|>3{t/IJ-B*Y 2r[mrW̟yWm|(sMVSUOgf& C/"LDo"[^Y&O;qT}Y2Dޜ/RKYtVp +Y Oer.IUC G]]SUR߆5 tE~[JS$`H1 Ζ.~&Tx,n?Qu>}Xpe.mIPݙ-2IvEBTv<֩zp0Z sM;h2)[98 P&p퐴ۯaQ da#[4뻜^ BÃ*?Y8¡Cs$>6&cm]eUM&Wq /V!ޤwfe r8'|-R<7d6\u4"&CҐ|ZH2OM]>l|PN8}O}}[8Pv[P&C?A{pyYX")(3(tqyəlw=7"1q>󺅘pCH3 =1mujS)tʢ88&IWPSpmn\K"V(~;U0ʙ6pJn7FNj(:0H@w9~1'SC?F_eO,Y69ve=.U󫦒&7. dK&5RRBW|>Ru/,NSMhȡ1HLs:/´io˲\}8dx v<\)Tûq͗GwǾ/jC5KV>hG>Nvsg[>qQ(F֨?1bxW[ͷ#.(,Fq\M2eRiYAY LaW03yeb{3y }0@M.˦ n~<9J.Îu`#}|mg  w).Gs~Qnr]t"Ԅ*P(Z-AWOGpwdu6 Z>s&,߈!uLW+ 7,wGK`<۳ ^Pg\s}`?%.;;(oMG: gѳQxA6q[_\0|Ē޲\!cnŮCx/E%뺾rK(*ut:J0K_bB8R2ͺq\Pg0evǣ>_yۢt;EW F"!MaQHXo=zi2|o8GOttؒfߦ[UE@JYtY.+=@;9$n{="E1y\ab8뚺N*ƍӬmxEO.* )ZfNG#>m_(B|_?GKV>7Nc-ͽMFj2z ⬢$;*]2Rɽ_)0/񾤥ڇwEI(KE֓e #_20%Z ~D!#B;pyIeɞcռrWC?W 3\"bsLzD>d5~+%X$RPضc8"l0蒇@ڰ~nqC JUV[a%L*n{hwI%u]iq!_o%*YgøB*^a2ocP'EȲ2'AH03JմrO?ϕ1Gn e<5fݶeܙjo" "]mNd[wI0>$?NE̎?oh-rtoM6p0ѥ+7*YӀ2! YdX*%Y ƓSo"' UE %0X{be^c՛iF&צ,$֊4ѥu/(x!w-&=PxR:6 =f}増0b?_uWb+ē4}H&9kN* k%~MRouR "!K[D%<5xKQX~bMԺb {d']+:gAΫ6ċ 4*R.cT(lt1֨_%҂C7h$Q.=x9 ^Y^~ Q Vd԰tھ[/WS81a}JE6VɾPM*/iX4V-RO)ͷCsH/_r22j «IGZqڵ:C)A}%8ޒSԈ=_%h}]ål|8˺,uѬE.7`䭗N"t,1TU9xŌ0tCM,@Ɔ\Ca;CBcӼ<٘ԇ?ڐ_+*ۮLV.U1:+('*J,C@R0@:udPW[w+iͼ%ģoTf^RB*7i8UYb#u@8~.8oeo5~_ݴk?Ki*K0a'+ &Ue^^v8@E(}R%Ermn Ut߀<~.1R歓*tY0㮿% [Il¸P40߭:l Mi© Ҧ+T`f k#{m}]|3_I*|UqX^EV yQF?\ߋ WBQ2 l,kIUx&!X:\4: ;۫pt[HW/G dZfbL"]~ @=XUO2mRBM꺣J/&xd2]J9XnfP>ԓS޽:is#獤F/o+*=#ǜ-q<< ̨`#ޒax2_xnfI6yt\q.[uKb@"hhʈRJIi Ϲ& .kϘk$|*l.2_MUl.yѶ`P0W9wY[@j-')GHo 50x#<(`Td\@b :|&6]~3F/uњ]Om @1 f@W$kׄlnUEC`!JE>;_;,=J {H(`8'Iw% sRBBo:RZflכn*K/3}%4y-xHFgC?VE_(ns{:w îB2/[)*V˨o7&C8'"R'kVPvh6i>-`YtuH*:6ߜ UfySȴ/p&yw9tB~sxwduM(+iaT9=Rv hVB@~aj;Ο(1g){ EmMS).Hh!dT =оu{0F\)b!m8 Chs1IR;q}(=QB;w ?T97pՄ?Iqĺn4kZXc1Sjxu^ʺoPVYVnM-q2&}2R|؈+t/Ǻ|ԫ^+Yڇ΁Ȗf)l+I<\KYݗ1}-2U{a䔟lWJ"]ԧ>rf^ wǓ>yټ7|]p5i Ѻ~)e1sER{q)CbTʤmk=l6/NS6aA4suEieJd5z!* sG+1iJ8媀 lC^f0;Hh@VOfW_'\9WHFI~5yly@1QkM⹿=}7B< ň`nD&E;)Kt`M.4MlL0`~r *ɰJ}dPPU&/ۮ?:}^?/Ͷ?yr2~v@yzĞW 3e ݾl8Upt5-=׉|`*dINVI(+1iQJI e8y;qor~n4LsP.P]RҾ’ډ.t_/n#I61$߸'{Ӻ(#'{Y_bm >*کUxQ :?ۉ~b.(Ķ2eܗSheR\+2)LȘ _NQPWZw(,)G^5,Bty~<8)o{?2iNS& v@4PoCISIVT;`z ˝Z  8wPɖ7'b֚| $HrGPU(Ղв#nQmU֮ DxCHAt)22KȀ-oOG(~HxeWMHdMVrh]/re@¬eVEJ89wFr~lr:f w#Ԭqvp%!Kn½6a=KmHcUbonh Q}8>&OPD/-F_^rREZ/Kػ. V h0Ĝ8jȢ],_|H f;!bN!;WŢץI>}-L%Ʈ.'S Fb SR*-;D "o3K0qxtO~"t&+M׆ `"%$ZhL_+ .Q魾,MU_e^qZ{HETes$W(_z?-BVѢ h渖3j=Zŭ6SB49YͰ!ԥuEidBZ;qJ擻Oh"]JL$ 1s(%e<˿o6F%5G!MCYˈ U,#Q\xϴ]CBiPD4q `Dږ؁t¥!̽(hy-K=QGRJ[ wP3caa㖶 P<E`|8@VZvwkW^JI !?Ӷwt[CpsI96Kә:[!)#!Y{tE6"v .Qޡ2"?)AO[or'm|JJgk=ӴLR˵&kSPF*VN\"_t$ g[ZS%yN}VZ+~9­*1t2N;Aw$=ҵIQ¿2xBn5Y2$QfN#ZvW=Yʃ@~573l(QCl<,} =j [ImS7M F.Ev8U-(ދD,Rq8f!r*/]da'.eW%AY[ RuDwE* ~oZ'8kX@nTX)7d PC dvn_$KdV3)T4Uq~uA"I4bN3IEjGlW xnU_C |Z3 0q8#~Y7w>fKqy"Hr޽ZqߡԅC6)a'ݣ1ϴEfwLrGUW IO\}kT ](վ>wa` .(¼72_/O&ĭm㜽ba|zk]F!;L`&,Xp7 tLeh'jG'rGɃL-ODr1d1XW=ɽo2m!,.d"Bn=lNQmՂ.%sY\Px+ ;2r z3U'Ei\r4VL$xL|+B / ̣j2-%&8Ovtf $F$癿82+ %[|u_;nrdž*ƒ3- e qڨ$_hvK:Z@U~75Zu)BV6I= 0EeZAVȫ &䆁#;N(!Be>v]|9.?xOj}!-f!L AH6h&>!:ȼNƌjeF?3 G9jj&9ӃKzp%7Kcȶ"TTR d6b^44pN44gU[v?S2{d0sJ3z~"az7YO!|B"Tkە^ӂS<$|H-8(D0+׶1j\a'K*&G+A:;5EC}Xr 0FD5p؞{xrľ&Gʍ{u0WbXQWEr$|RξڈX(.4?5DF8<w̜%3O?< 7t SDyѿL#ׅ~W,(Y d]C*曮j)4½՗>N&;-o2@16 ;K[.eaH|?|OWMwI~;2ZZ'8n+Bpxv/h0aTϧw&$uyYLϖ͏úu$;d%A-DiEE{G }lYѽ !0ò-}3~Øm8q2_*kTMHŒB.S4]8/^®t6xA@ Y /oq #=e=u2OW~+^aWŽwhVz>ذB3S.B|oW8Ph qXuvvZ›a3nut' ~CU*Dr+J:4F!4ZJbxaHƪ´ur 8U8eyr0xL`M۰eɩFrdM~ l:kBa##ă>梒`D v!.=1ӑf*3)Q+-6k`3#]sdЂf+'>)6YbGL,.8S7$/Xj("?\{RNs`±[%m >܅A+t?*ٰ Kw+ؗ#{5r"Y̯9ߵE؍XH5JӖ:%ɦP<M%4UYOD> *̈́$652ʭ: _/j;c'^n‚C9ۡx>[|"ގ*ԷiܙAcKB7-[`͉#wީy{HW]ᅌ~6)%9_IOmϕ^|W%-(~|9U@U!tЮJ$*QGr?^a'7G j4IX.%tb>v: jLU#CUΌ(+:[픕m()߈|~JX-ɏK]hp]^^ g/d }?^g}UH1;),RK`Ҋ RKr#5Vׅ{K8RKnm=M}N]({vCz ]dLgxr%QQ *@E@ZpЄ;LwT'M?!I0ͬaJҰ-m0s\ _ CuZl0+{S]ML8^\d-]agB?UM!x"S9,?ە!#*-*^ࢫBG1JR% m!_2v E ;9Y ^O:>6U4qeWGU'Q*Stˀx/-$>;dO|OY=LXNVx$jcJZjU b]GC+}߱.3:VC[+Bȣak?q6/ a!R2֟Y^]Ѳ H-}SwLQC%"ٲ(KegF#Kbܥ.v&ާ )2cv)jhlL19mRLܥwCq`XM˜\5[g:1m`=+,@~ׇ9b6NQ^f| mʿO4Lᥫ>$SSo1E(L|~T˷H>޼d ] q?qRL&e͌\ZkD2n1\؏ŝ1ВBmICSǻlF~7HVi]-UQmv2 &Nh`9XVX~UZDf}-a|&FQև{`V{0hX2~1t:kǥWrg#יذ#Zٷ5-Ca5`=~^l&0s8 2yUFY,p+@$JP2|x;ke ڢmvQ>8$*2k  bH7HkS}KK?m&i[AmICyuNZJCWj.kV/p$mQVÚ#%x9*"+J9VB+r򼠥,Ǥ$e>u7ji 햺L[9Wjy4n$;,GV`ޡ&ve'VU WYI: a4\. `pb+zH7pG+@Fe@0/HWS|kǯjwVhI,E RaI_\Ğ$guHƬo\r7uFÆlСr9P(Vd-Kݨ5t!mp%WBO铚y.@M$_KULIn$xaBe·_5ّlȿڭ/xR{|)E>?<$0!3dvV%y+V'p}9Å^I[67$k{oyC\pYZ̴}(:*h)U^XI2|8҂lo)z?zyV,Ҿtfz됅;N/dZjMS2S0Si*6i.T-Z&בduBYYՄ:mO\K<}<{ 4g#EF߁y).#XU} ̸2.X2SjisIRn+s!+p(P Q)Ďw }=j] vtmjGI<^ U<7| m4Ɍ,lc*g]Z.Ȑ8cs)ÎQcR+3D8\GI!om4@ ̘ȏ(j+>`9P /rq2/d4ݒUǞsL%< Z2H] ܧO<6YCNnCALU窬>ŧqXtvuV_0ȕe Z沫iw: ERE 4͙~2s3Zٳ -+^N7yn"z}ʟW$_($] ڍTػ9[@Q+gb]~Q(~ES̯5Զx-7CKr˄쒓u.nuRT PC A8x^̾ OBc;vAY61xn#8S'4n ](S f}Wf|8Ǔ N 7v1,ezY~1>9$`r +cVR"%uq붙8NJ uTF ɺ8U*Nl-Tq8dxT1oF '8"|f\UQv{]"kY2'wBWv׶``1Qx8o5Q{GӜC$I-9p\OW,l: GsϿc+UkSG @0pI#%~6 1&z*ͶhJdy\p^ו&+|$t$GyϤX($-LMtՍ=V^1%!U +&UG kcKbvHRbX"u(Hr@ YKI[߶!sSUhPoc:%*uy) X`@BEBo) gTK Ln#'xNFI)CzOnt7*1Rpʕ]{SRgh(E0h*_"Tmg]XjcJY:YK Xvi:WEB4$pH v_QE!`Ȃm\JV2820s쮣1YI. XJO&J c<a%t뫚6y yI;mDIm,l@{eWE^C,C8?LIQo2IHeFʞ>bJDkRu&iefpeE ~+̩ؑ= +̒`[|+-mRHh;C7Y#x\(7S/{66%bwk9}+r=XrJdE1y .`%Iփe8NQ(4Y9;6ZѨRzYHpxshWeFQ%J]2r⅀X8v!\:񢙆]#y}ۯ;5ыuUW5M`;l=kc'yp RcJ.1͓)bO,7^Iu~k4Wdd1އl,vW"q A9-Ê*S&^c"koU̞a&dyϊWILM~WąT+KBӄSM]I4lƐgvEvRrǎҏ19F*X'ۦ 86ǫ<0tkiz<5MNO]%W_C %%g!uUuR NjZF "} eX| &}˓oE8\qVPF/OeE"UU  +waPԚa 1&+qʓc8\W ~<$VRxPN[JydE5tIYwvEH11"htDIH(kzЇD~~4&iL Ӻ#K{!G"v ɺTe}cy+=Di^: פ4օmSjxqÂl ͪF![* b辪bԞ'WgY$&Aيf~7&m8*ځy,F 8-:b̮zq|<ÙG O󲒰L681c'Pg\IL2.T}PCZ:vL.*ȫga{ ɨ e(Zk6 7\Ϫ_o⺩*vA]<6ڿ@: 嶹9rAqjՓ5]G?60jG;Sanڐ]Յ+C*DvEP8kt!+$2,Jy,&LDŝ5tVIWUi|Ҧm˯1ɼ, 2+Xja1+t;˵uUwI?aL3x exU<*j&'~b[?hV*iX5M4•7zP wdbbb8H$)ٍܷBتSh9?GPMDH'T4*ˢu(uJ#L0D;+eʫ}{|}"JD)X|}"_$KבNSH~ X@g!,,$bݲm˧ ߮nԷF;-]$I҅VR V[Þ//nRNwK~`7|g*k-t-z4qΏoVp{%`w6XS(bm$t9ypLyѱèZ2H@P.5kX&^E|;^~E&\)0m*TBe7Ehb< DM!t=$x9 {Kr74v L`Uz?ǯń1I8y 5D+*..ՊjUT.Ţlf\m[ m,۰r.t`'2}V{yuqR`1N=}d~V.p$cv%LWd ~j\! y6W[YL{=rR?}p(ӷ+jꗪ4I/_jZM SԺ~ǧV/-}iz)1>waEd/7^!kHVI \EIRY? 4$z)U#"] ~5͋ZD%1p>ċIdR%& ӲlpdS*;:Y?+B"}srN8==/y}Jw['9dIEu[,.Reyt!sF/(^J^L81΂vEf[xu_au%NTO{BM iєSH%,F?bwC>lCsCa]w}ߓ(Q_vlR͓ Z7&=o]Cʊ\r޽ɋ4}z.8ŞWȌM/?7mB?yKrOHTqɋo(]ix`H/W'4)T!?լ"C^íFeݒ3=u,&djq*zqWQ/̂)A1SБOi>IS2y! 6Cl/]$b IH*}%?2M3+apNd=ܾ7|{3ozگUeȄS( L|*G\~M@xNϽ%"elI32v&9X6*%&Bw:HvIQvJ+,Ls{o(<|tW=1܇a{rC4GuJ2y1yyx0rN:4dU$W9t=_˼^;uƛTц%$a)Gz,`F2_D' ~ĨBuMP ;Ne'L7/FJ9iK( A?'[ݒGgQgRGI,#AM&x[ )MX~ǀZ>PwʇyLj9[?H:sWvnĴF1EU6.:$A6ƎsXJ()\,}gpBIL3uۥM \Ɣ#PuҊ , e\HEfl'?=a=7%Yץ}:iþA\"WBծ/o!.ߋ)@O.WޞtvXj צ]$s-Jsh]k$V[ * (#DK pb(0fOf-H!7?~o4.MӦ,IDJGq bD.ZKO:3d?*l#KO*JS(f Q[U2w+K_F"X@JLKFE nT0o=w Kf*M.%uup8 S5? e%ʘȱ4nLPͭu]e i9DPt&wndItIuh<9UzCxbɲè|xiJj/{zeАsOaYsL5}[eyX( jSwYssmG6Ycag&O<`j6"=8M^VBp#R/ajy@:w+{ϟsP iR]|(kD˳4 h\uabB:E]JSnW6R`3o7,qYe#/7~ q|oLDW[5jӵIiHEZkJ})jE \Ѿx kn'~!q~FpSMe}ٚ{Ve2nEXx"^3I_;VoIRG :\Q.ZWZWjhΡ׼_9n\!\=4qm]ז]Kwi=ya Ay{X/x!ڿbUњo!V!|X\Ub,|D`oH(8kS9qϮtMJ.jSź"WNиJ0W/Xd38?fG(XU{GX>i>[0,sNΊdVWК)ړ®Ht "R=K9Ԑ8I%l. huexۓ2%M"8TFAEj'rТ~|<|R"XLB?H>B* f)ulAJ72u-EeJvi5[mu_JeD%幗.ٍ˨&,~IG& lfe7,n\R:TZKʥ2^.&Wi{&2,iGe(n]c VS>#pQ7^@r>p0 ˸X\2(t uOα2gifʢnڎ 3'0(:\*+3&v,N0Gn6m̟ f3z]_#~ta)UՄȢ3j(}Ѱ d9-RIv0ݑQ=__^ bu{v1k8yrBn6jAR)eA:6} jGOXV!bq*S m=ȼ?✙6&F `2Y$; e 6Nv C`"l{OĢ .ҭpgbߙ"Z >\|Q̬!@WDcKO]ߣHȮGOb6MO7m甼5G ч߅< /=a^)W#Nk\EL%W2{i HCKOaN*OgH{^ Ϧ{\ d /ڰ2͌y\q8ԜhRP{DJ#l5?^FR}?HNf8_m}\<ȲZx#C1*#?(rrZ(uNn-9ayB鋮m(%?Q[ʌRESq`y+O0^;3 W ,H6F'KDfǰg:w]hzCLwfSgI+Mrn;SШ=pwV&<,eC/f~p+~ }=JsˮXCwҦT5+NGn%6էBgڮ+~y隢@#׃<LohfR.8jڎh5,_5'_%c* tDLgGL`+Sbb.!r 9/qm[ $K\pYAx؉߾kO0EdW2j*s~%x~KH/r{B݇Dt@2M~O?Fe2 mAi\]W%;a<)kh`M7Srt'-[d`Ƚu%=K˙W|jgEK+ͪ_u?gyLEImJg[խ5ewjpeDfJEs2Jz&ٿw2F=X#3]p&^sBPýUa iDHJdiH vw$a;ʒ^"7(bGl1߽u]I+V%ʓ\KXz*o2qenɛX-V*b`߮#viiQdDV>,;iͤ ןGr)do!&'Tͭk&F#kU$m$uQ%"Ц߳oUϣq޼ypAmI#YԸ1a{,q6ŀt$ȫ~X&3\LV_~HӮ|1ܜnua(IRx)Vtqd (Á%S~d"opI_Pܔ;C4Ď̫>o@9d]v1AqidtiY b.}76MK >(ف~ ҧ~خ$&EE >Mi 7?6do&vӅ35 }{&K ׺$`滛`&ʥ !Ż"yqOIʝ eWR*TxF 冝!cK8AOv/`_R9F7xy50!%-emڳ#- 1pGN>%!CⴠV |YO|zcYlSf8AR|G\ّ@M.M'_̭!\D`L4uʓ O-0E^@,;Z *I` 2-Ly |wQ! SX F>Sm.#.yPz|y(10:j^1q۲?I@iRJQK[~UhIkvQ"-s2Hak]݇MgkE*LU};Z-S~_aV񂇉%ء3d}Ɗ^d%yJ˴*ʂz#sqFH%Ѧwoɴ;,Wwl}>YO $(aAPi&7ɱaښ!Y$ZxuCcZ^ lW7!{baOfg(m(>qn}tT 4ܠ(hfgQjq0IdbOZiCnLQʰp>ǽ\7LY9$SNAk*K(֘1| UPO:: >iWR#06aFdE]Y8&/dIPa-u|ئjk9Iƒb7\ բIim(J;^L^ %pOa*W9%5Js#>BBvBLxs&k'jDnz#J")Ttq> eTl;`sF`cq)x'}[DbHvJ?{Yvq\dq/ka< !)qޙ&&:fzUW:]B\O">#?<ΫS&B"OzTA=d%5.RixD9B{kWQң֔Uy4P:X۵$m3Lٖ uf`VIkIo _1ڊߜi^gKO]]S"#H2ɭ&t|B,^4t.@,}n )ڛ H1T?c5Ҩ|MrIv\)~Z,Mr~P8Q<^ cT3PTw+#EUÜٹ3.-x.:›WT%79eT,01[$!ADG6MqIsmYȓ>X/[Յ'"oeWS-$c'G+Z 9yƴk/d2pLŸv˶cRF#ªԑ}" 4=j(_QG(rPy5կᏡ,>4SW*97j~4c[n~6ǕӼTCVm:I"ۓ7_BLT0%{<ᚼLaÙ^0]?c%;96OÀRRCY6aa *1 و!sŌ*x]0=bet:· ]$[ӤDskȾ.(*й[h>\#l}: GQj8ؔ+5&! fG';}ÕlQdtJN?yἎpIAH'\Fo[mtTmd=.i^sk٩@QɲW9p.'$,ܥfC].M[&+K:ɇ w"V:ZVe'vJ\?tuK2L0P @sItjvWQ)@ E4ՖlIuN.V&EզB;vjZj(S7J*ɮҶXDۖaBb($aϓ&ey\ؕYٕiOQQVc+w{} (Ft+/XU< qkc.s#.\nJs pT.!mr0@O!?Be^yu5jFz_j*;%Ƞ0>2P h)K}LN*>->ڬcu'`z(Ā0m>9d 6vqnK,a8F&qQC ,cu$fPyz [I8)+[KUl̦T]lSkBѲU }pe0v8(0 CmIB1U(_pg1?Bm͗#ղ6W&]N[H]3haWR2ay=s@W>@u>.S5/do=UPQmROC& W%Eo.<冀#qWj</u,siS+s[0* 뺢JD"34>;PWG@1Eb=A1`*rW73om꧹r[߾WH>s}Âi=<;mP'w)7Mکm+lG A) O\qmcN,TrP5-kvZa J.un * UvҫBЕjC xҐ3e[_I_v6g_+/8u_:n~CunhDLz!wa3>IE2r?bd,RUX:%wUݚ$jFʪ}tiK\XbqL%υ:!yS\$%ڶfZw}ݪrDO٬2s)O7 [@a gZsm(;\-YWrk2T ΂LDJ_5B .83 ;gnX(WvbC9Y(Jd!59L$"cٵ#whKJ^o=+&DZv*`%p9lq<_4`>(!(aۘƺk*/MKtppF.,<`:^F|D_`|f! u27^^nUQuG|P)}#y0F:JaIb4 0n )K;hCޏ~j[CI5UWgr:fa̅F38؆HqVUvR8ƬPrD:5y'#4ƹߚbf!E4ĂAS EޭXrI0cG`;_i fSJVu0WPH!yd\ߢu A|<E|By#)d#M֘.1藖ߋ?4j#a>^ dZtwq8mH-bTӈבO'l[)Lx~BH ŔSGy)iiAPlϮ-Ġ@|: $HdDZdR/@Ern͕iƬrR@;lfm~BI!Ӫ*9{t)2p(S$mܵ5)Ecz4]p|ICnKAs+u撮fUu܄7KYw d{gu4qPSI~jA9Y;gtD-ۯrN| <澅қ75:JS) L]߈)=ݣSJqߚE6yio_[$5}48 'uxqs5AеK&?++;Loy.,>nel#ͭwk2X!O::7U"p= Ør.ooBac +i\CzoC0 o}Zb3 [ 84;XLW#_k#r B:P_x~a"*&4ρHM+pg\w SMW3EǢ+SWp+J~\q:u_SAiy0w :4ӏK{!d!KzZ(^w<f OA9g赥¯JUpHX Eҁm4ÍՐW^!Er!%iM4P(KmZ:#SYLS\KJM0_7?^&R?tkRʢrWmezX/aTkaq_^ѝa(p&F={CBGrd8*1\M%~YQC &ʬHhmi"l~<ܧ;J0^N {Qki{ߥsd[ȑ+2V}(J j#Qy,Z}K /p SsbUcnĹR/=ETN_ձz4(%\a 1U 'ĥ!.=p 4ػtA*Â͌q=|C9o?Ez&Ԕz]J#)sZ^9eP4kkLa&&\_cCg|Qiz]MdC=*;ɒҘL: ̓GGXu  |RĔ]Nz^*QHKppt#WPP~zTU-_Y5W:!{`JgV $Ü܋Sbå˴pf.PLIv]CPu*o"Iv%Z'.v^z`cukM1י:Ҹ^jT(R ]3WN {'F'ܕ<qΰp9JN 0O}5'Q[^"<:1)iYѻb&[DxqF,;ӼmV U^ KVy=_5b-;=s Ð mќ3bX'F2}`L}*h)c-#eyD:N\t[⼒MvÑ6n5/[CTbľB`w$6dO5>_d+Q77R!CIkf#f-iDj]`棳HrTH|[2Ank(?~FY]1DD|bgY%q!(,ɎnK"qv/J9H!KD:b5JNg^lS,i8i'E}VDQ{]DPf>,~#fm t.֯Ww1R'0҅a819` A}8Ym=Ĝ) ,`:yL]' *"g_w h#4Q+f/[t>>DIk r$9@>DG{~"^H[.2 'v 'ϴ7EfԲ!Dz󏤙e`hLG{ip:NqZ5飬yc Xv,'!VdxfRܠY\O&9F$Ȣ2ЀMeH0:+GFXayQUY%#eȘئñXǩf/$=z_R>U";'"ZoӼ h"!SO[XcEXcl>qqj \cMV4!“m"ѯXnx!~3λ6)Bh>UmQ8YEtB` وcɥA0pFY,;dՑxOyVs9`PXZ:$IUԌJ%v߿vVPLE /^B5I [ 5EGFu‘SGbwt]mՎH+9|yCi[OsCI6l_I697 6^:*LhI^P@F]|8H0-ͪ[ FcދDx{C7,y&U,[O#-ԖiS HݘE}+";a;h 9L9h. J_Gw},㒍eE^'k.Ѵ¾B ,^$QqA$RM h2G' KOHi6SxIreI+,F,:٭hcu,\xAI|Ϙj$:>>?#{b:Ɋzz%9Ȼ6Z_vJ0X-`!e52&AύpVs_&8ѶR D&fp% i5888ZP4sv % 3Z+Y>3\IcxLY~[4ZI5YuV E`|#|$ ]V+dq$6F9uCf<%%Wδe΍4soViB¸vC,\$P6مmYBGGb+%OBƶ. 5oΛ&ĕiLaY`$L< S')՜;}VUd lx"\Iya yX[PJ`]}N1rڞ*v%#ZS;yaL6yu,髩1S]6 )*M%uH8nU } %+YkUpG˶wIh;;5p RE65+!-?5 KlzEݚS;-"exs \$d qvĞto=hn*Ds#ok뮦ƚ[a³Rhp}uIȂd%1iKe\OZ X ΄uUEYzϏ gyvkkB eUO/w`deD.+pC8S%~Zٛ`4(YaNqB?@Mţ۳8C/BH"܂fb`A m/=NF\7P^ˢ2]zZʲ(oMUXH-VC-?CCQ/^Pۣ~nb%Ncl,'*_%02sۺ<1Ѓ #)V4 .|Dkٳy`*(KvjANotld iCCɇ1 W?0' 3Tgr/쮃 d͇g c]]VBʴfͳ}~k׾.&_Ƕ"Wu{%~ա'ܖ*9rpqpjr@2BccqI+_W,o\[/YA͢2JTˬ8܊d+s YG%Q]_#nvEq#%41\Jc(#QVU+2T6I1fDI9 ˜Jߢqam$CukJM%;T-A qޢa 'R3ޚdJa }#4^x8s5FF.)(i:m @;($/V$>+Z]ʶUCW?NqSٞl$uڤOy tq*"1\M .$RR$yVrMˢ_ 3G]e]'edϓ4Utl@"Ъ*{==-PVnMZ=Mעxhpɏv*o} 'YhiFڊ9 xp?1t!~yd>SM&Kms X]XBU(a̍)8yTI,WhZ6eBx9+FYJc/Er$Q!~p=RRn D@ ;ջ`ॗ'?(} -O!y?~ B+AVneG 衛ڕ n ? %;Vd4.ٴ>ys^QxYޮe޵&3I12 YrȕE.@ȫ|c)w")udR0?aW{/lfD~WMz6p4jmoD 1;rD~&,/DFY9/$MV5]BA`*X60U(TD͠0 K',OW$[_OKpưf9]8uKnB,I,JdNҗ:N5W,ψ8w搤-E`AL3l9Vnh,o|h,`P8DE^y gAb u҅׶H~iCk\#~9{@.t}Wa /ȢnY,$V~ܮ&U2!® D7Hy$Dyo +ѥTB#QA*jS<=0G?+ c ܋kg2(I( )< e!Sy8#;j3<e9P}DqvflE:Ԝax#¨1<8Mo &>ocE~oCLɊYk `ji&qts.L9Zʺɋ&%Բhi>20T ldⱵ*lX92HȔy䝈(Ci˦j})6K~ᾄC$}C.=)%m0ve3r[džY@DRHw7,c_64%\ڥ+䕤cNe椈1ԋåӻv,tV_.J~֣t~Lay[$GL8pYNyO+"+z}xx{q_[SH/ [e6u뛼pi2MD,Y<]}t̶ިeWQOg+Z'S3é8vdM8׼8Gp1D8RȞэD SU CP5:KlօN8Ϡ}):%场d:̑ػN#lX`Ced<» $t+ۜ%tkšP 7kd~|I敨`hQbMʬhypM/GF[&Y"Uu +>ZҘHLE]*|𥳐TzDrw+V|39%XtFŸOK2> X֛a,q0a!$K}- m' qC/½؏`=r{4>ؾ6\yh DxN$C⪪&_|DN_2iIÈ )|qE 0'1ȶ4`td#%5+Ư6Tunb^L81LҤʔxK" v2 ˆ+\IkPd 26u[7"0~2j!ٵ*R啕\.xEb~[8:vIճۇq%^dy$R"mJc\vऀǭ.wbEB #5OELLk黩J,l,\<_E^lD_"SXV"w>":rx 흦1ڟ8~e6 {HiM.(=y2MW?ށ1Cőbm"Sl/Fy#Ӟ|bh0Wၿ)}>|*oex˛.J:2! zWF5:Lz9($(A&?^yLPz/emN/+d/5鄬$hl6FJXN0/%ZXx)DpWUX?ɔ?'O;SM d,dLX\Ҳh:G cZh!"e|,'| >jqhr \I,${󛒚{YBSVȪ%&DɢAD"%_PhZLAvC dZOw3Յ6*Z="Hb1O%} /7: e6_XYY6 [FqђW\<0wBRD1"T-_P5a!\,mWFkqTdpyi I\/`N2;sf{{ܼ 8 64ߙHeZ5$`ӟ%c ~:Ī6'3]bր pZB ?V^ 0U!"H"j"ktӮ"{#]x[JVвqB'Gog1 U9sXyƇm>>}m452˓֙5& ;ƤM! #N^Q(@Faя޺)_}ݷ]'yJ4٘XW:=d1 EM8#L2IĢ])ޘ1yƴy1QL0N`3_QtP"r(_M!Xala\s6HF4v8M@N9U%*PO&5>C5ӴS<UHP#юEVܺFۼ9u6,bX{|BeV/ Q(f}/,Ƞ`rM[|$GPGACK!CtI l? kOCrYbj `Ɓ8,`Ƹ0@h .7Ց8ۙ8[tڊ rP ߦXˆÜSH8DA'C'hy*ѭ_egY2 )2<1b Z:W2ӛka|2LmXXUZf@yDpe\F $ew(emG7=5VmȔl.jIΪXVEX!#}Z1 [~Ha%_z5b7y2 7-'Q#UAdj `[:d Y _s<ޭ"P4#.2be) lyli2e1 ?9!%o}H/pR%1fUq:[CxrRI𥳄.V~py} TVnϐPK6uc ejҴ*6&s8VbRH/?+fl%[]% Y~/mw벒U_){E "fw# ur 0^^ۆT.$ɃƼĴlC™Ă(w ';#)ܞ/tcr+Żb +YL<7ik=ȴE/ )U4UÁ̅ep)q88ң +4$U!?UPHϱEa 8+IZ y^lx5+L]yRώyNߒ0g U!v7;r< Әxtb+w/ʘW>%klL3yATm\ ܡGZ~ 8邘EHTxFF/u~NQ15|B+1Q<нiRTpboia39C9,&Y8t`)LO8'*^{rɘyfrv҇ҲגWD OCH2`Ɏ%ҒR(VHp'ƈV!/xo^Iдԉq}Lwq2j1QV~5܁!Fķ$Ǖ^3dDV8P`=OB2i8&]]k׎"ն]vD\ H0Lqʍal#_z>u">_ѯᝑ/]ە-dÒ2/agZh=A@Y*M~0%x~.Ri.K7gZe뵻_̠658l#ޘ`+ Q3"]caSɣxx7q73S+{lNDIL]&ԤHEP :`|hF{ŗAaRde°uLwB{|V5q8`^^dw`&r`b<_ʗ8#SO9ٮδiN0"*e]&9Ў9 CXH4\39.}EDŽ؁Pt▍q'B@jBI9ݓ4(CEEIy9rPxбcF|nE ` ^zPSMC&ғaw¤$K(0,!Q;;Hm,zR%=Dm_+1%.]45Ž"\@|F2shꉦOSVo6Y37kK0 /T`YlXӵ<,^KB'_VY;V35Q-6p|j$[}z LzQ*Wl֙*#l(9݋Ga(1ɈWMzȂ2YC{zbq~~ /:Mfӏuid?am8úe[LE!yf/0ᔪz0Ő)aqc/ ô <%u/U]>h}J^E&. :.>^zb8' uꆳ+] EyILPB <^OnۅJr{ >ګJi IP'(dʩ|y! QF*F\4jhTwRIΪ^ew(TJ,0Dn&ERW oҒ4){dؖ/IXx[eGpnPCBBQELRpbj!pLQ|nt 0- /;# _:(eه9<%ݬbplաhR+CkM>0~rgdc,޼2̈́k~TwA"[٢A;G%bb.%#(R6!Tҹd0w/՟`8ob1Ϗe'+izdeU5R y!B^%nc$RjLwU>_Y:A 1)GHIB Lk^eZB<xRY" *XZ 0쀮BUrcۑd^i=kUv&&xeo| ''(Xqdc{dsA.8-Ak($*qm$Gz*@x?M̸u7cK)mq3&NTEw ;|U YªUuv!l E"Dԭ6d8!q;C\@wõto$)Nt4i%nΩ3%1!T4i$y-I5!+IڎVSaCguԆŨ'RBd/nKH4Q0Ԏ;u z)dO. l};ߊǟ%􍹏!VߍTD(.nMSc/YpWVD> ,|!m_1!aG7h4<2/L^%aVuS8ֺ zC S+8nj{켕]!qmաi0Xl5B★!LJd\a+X~!~ygU/nNxaceإ,I"АlΖ\ۡsxTv&vh<7ӟfiuoJ"u-迿A÷!_,(Uu}N<{iufsL< (/ܓPA[a"DN:J., _zJht8av!o!Rov~c&{k V!IQN2;ax9«jAwʣ>u;fXaTnS2iFћ9t#Dzt}qGI˃+9ПT10ZPJN[oq|z2cO0}^cU[ꃃ]^SIYQ;dD*/\!ӱGT:AKV[6rzoG",\g{(i(T_4mGq* rJl>w=Gtz78V{!pH׾JvV'2OgSw MBRtEAq迕9LsmEQ]:Lp$a7W$Vln܉*aޘ`c߂0 <<<1uR-s(4Uwkfq?G{[?t߆Z1]х܄8]I1jJxz F!5Y`y \8FWI#v2տ) hCC{\[:˒,؎(jDӮ(<HoFy OPxm56|,KOk{) BmR% v}$ekDB1V7̂*EF.W}ݚ@t B.GÇyKT&K$2,$2&WȟA@#N$oPnpWi4ypuKuBp?F^7A$}mZ.f4^LfѽaI >aIu1&oTi,q4 mmw[V4؄$&"Ia~Ma-ҟa#հ }D*ܖ$_ %eM} ``$(u5ŻebP(89wmBŭUd"t!講 ~jrli2ezo!W hVT%aʉ< J~yVFnY\lt7Ļ_6YM"۷ఎ tR%0LǮ`J/+)E&^ؿנM1MC)˨jJ_|Eڐ^h:]Zx(}Wf!cY[։xfgkyrSTYU$ȴ Ky HESL:aRc>A,c_3uΆW.BR fڮ"^o7s3i-_mQ\8L48ҶdQն!iE7LO۲P߶y9Dy9&l闢~Px4|PzjX[ [z>YlY-Ǿ/ ӴSv$KIJZ1骨զSB _T/Tri>x慠տ8BdY_FcS^!\P̃yHPmPu$/簂*d8 ?~ȅ6N,%:嵜S3揘L]o0nwAvɉ!iB+Np\#Cv+-<`"37pEs56MmBڡiΌm4)5t_mU$[/`կa"уg /uGR-lGZ2F 0@+idr4c(m!cVJސ&JdQAo.k;N,Z;ªHxXA~6 rz&噩[ ywa;NB " ddXxAg۶wbO?,+Z]|"$j 5%ps('Ů:0UKIf2u燾Uɔ$sbrxmhHQt%~Jc"6&u֮P`5µUYFQKO[xp _ΟW~j}8*nqkdaI4AʛWJQ(-XH.*qd1l9 G2$Vg}zXVH%oa},K"ĸ5,LƄdpU-h8! kfH%zqӖ@pUz,scy{,'1o:Gl1qIHthF8e3JF32Y8M8|}0H7\Y8By+PoL."!4q_,wd^ MmCWUO>]"B}XnhZ;lPvJ˦9iZBʑfC:/pOCjpaeoj,*xDDA\rIe*yؽZ". ACU2AGH)U&9 t"_$(<##М 66+dlHNSOڎ -ǭJB]eL[a0x܃yZaҲ jCws6] $dV)Q)/@stDN'Jq.y>*3.d FZLGee‘\%.UH_|P# BpS_i)IzX&pze k#U^%:z ;b] f ?|' F3d} '}H!ZQ؞Ofo6qnX.uK_[&Sf) )cj`#qV|y|S.ங~t]?Q󂐾SU*zaˣ8c3{\,=DͲݞroyBFq8>-&j- nE|*l?pLulVޗ/AZ^3ێo.WnRwI5tt U.,cqE& ,B$O3N=^(CyoMt:Uwx#* $c-y%Px@‘)F[hYB:0I[*- :R o%; )RwX;LV`l=N, <'Mg.e6>/ ,.U(V6MLń-);RI[YF@Ӱ1wk~e$1Q/ϵH2 {}VCyUʹj龫cM,CnV43 CJ^U/&n!\vMv*9! U%GxG ! Hh+l>,Nk{lF$sCJim9\"檑D_B$TN%ݕ'V#IMA\If%!{ECOm;rTd0`a/0Z6ެ#|缹߿o>aq|V_[e|'']SJ$Z:yK! ӹ~7Jh:$٭y\PUFpIyݔV!%Gc's1 b?S!CщT 2&}l6(󶩳,N0HKY,-TE^e:hE( xӋګ0!_ޤՆ} -5|no$ VwuҶTeghS}pIR]⽃ޮձb~2(ɓ 7x']*m~ʰoy=o?ma*MXczd;жMs+ ; TEHUtxNDov6SG}$_z+d1>HL0zZɤ5!p-} #.Iic2L= -<Ѹ7_.LzbQx +0wتUہq8 n e\&OZZє[JT+]CrB9bh?_tI LUcO>lE5ܟ7zu(&˺[Wfvb壐P2Ƀ74Vm L4>!O'/q^924J o EO7'j)UW7u:ϡu@Xdب?=\/]-'ǁu *ZY4#&mu)Uo CF&T(YG/9#D{EjLױKB ,: TzTBwV?InQ kif5bML؎m~wVW& /a-|O x-iz{Z#'ߕnM`woX6!+pôøӵzɋj} zxPyФ H\oaW`Q3= SgN6$ȷZBŸLyMc"5DAf;8 Uku~:g$CSÕcql+RM,.TeqCI S99aC.2f/ ɯDFjUi퀾`1$ @bQ}6.ɧO3")5ۼITJf4Edq $J҅^r8d8$1X65J|sTp'Χ.Y]!22M l9jC_a (:'oW=Aבּ!0N =zv} 0 ^^N$paBKCH9h 1}tǯ_"3mPHkTM#s.(D7J/pBXq-* &eDI:BCE/NtH.MH ^H=,γgMO3d6Kdl r$7F$lIx_ܩ~9@Dw^Dzw-d0(itBxxKꜰ i[xA 6DO *&dh EIO/_$]ID $ @ EKUEt8N޻Ӗ+8BAޝ܅cU*rעWQWz̈́S N5=.ښD|ݪR I h]{!W]\RLoROgAaQ[0$5ThNoӵU0BD伽ua_fcZ&8]xX@h9O7KL -ϜWr!,2Y%() XU2}ׄ.b[I-!2 ;ž&o4I:gsf T.ڋ'TD 7l~+(I]`wqc.v&ηU\bHAL,=$Q1'N sgV ~We)<Ő`okoRdp!@ib5 &w3;uTō+wMr|)2fżq:?.ʦNZ{ ݃/Ed"8] ]K>NW^I|TlHz],$B}ye7Qf hq˴U)a>]?e|g B;FBv܂SKcnuұ"}XG^/7F܂oamdH'ЊeZy≰C6쬲>m]$no]ߢRֈ6O(Y6|!]azB8 i./?QO(=0M˶e`xi+ʓ,+D:HTKlh<^჉*F4[c?so?|2qz, !!HE~p* Zgb#G0" (KESx>uρ?aDu'k3Zo]:ßiHcѽyp.,E,8 EϮ#NpJ!x7{{RRɰCJўF@pl]&/咼JNbT'_tqd0U EgOo{g~m/ Bt,Yo&,1z|X$yŮba#Z~-x⽱u%sj0ѨEVrWL<'E.g 0MU©l*&{Zm[)n$ eK3y/Rܼ-dut4EНY mU3C2䘇1W-a8% bͫ5l"@7lWG8߂iMB0]b(Lm1i.K*˚WNab)eGKR!L4Σq_p K=ҞW9UyүmomU[ibGTQ8HWbW@(w;N:S|,'cnަnÊ;G\v4]%J_tsUI{[ܺKsƎ2]i` Jx8+~LOɍ(!rއ)o-ʬJm{48Jiģvֱbc}kJ>rWƹ9~3/> …%E뚲-Cٵ _WTLNyFwP9~#Ot|ad@{P"4 2NH%'{ǭDx.S|J^xI6!ƍHdQ4!B&"7{)PS~{}yq>xՆ>'ɀ!Lub0I> 2Ca p5V{!3T6/)6OFe($܁R;%bÂU~ч=[[0mS!0 \QN#5d7se˄Rt&KݚdN6zX2M^ 1Z(䭐?NҴڎ\Yn=\g-Q8Ia1n ۏ_"ū$ +Zhny|5mMGV;BԇM3.4D4*Z.cQ&6fvXAY Sr8/D&/@t`rF$^;dkh3D"얲ɓi-sC/2H+epwt1 O3Oe2k3PaIl"q"X{SοE3S=vZ\Hj!mwK*- {z}tPti#IW4T8Vɱ{Bs^i XX+EFO),6B&U(FEFF׌rxzמv̅Iwi}ِ1(iq[L >qXqP):f0P /_=-s69\wLք JmܯlԼAcPl ίf1b& ,X_Q44!%} bi~J~3!$kĚH%u*ҸF6 8EF8n.IaΠa#/E%&>^%mYr2a:#+`pb'\,R-կ,N]r]y:]Ld\2\< u.ᥨ+a2K&+ޢꪐXl$%yw D"2SCzL${z=.!{NT5 tYa${IIXl]/"5kQ2`t^cijpWrIm([dx˝s~CzǰDzћKPSXGߥ_12$ҖdV];/R_jĿ:WubD )d#E\J8rӃiiKՙZ4͜`-BwXذd%KcWv9 1Ҕ n땆|16$o?-EVWD튦 P3QEo>bnQRdwenFXqug=)gaH'K t]ҍvM8 ab6QFu,e"e3\X ma0hQ'C_n͕jl͌t_ v%Oa2T21A$HnVf J{jqR+Cma=ҭQGòWƐ% Xf`L IG"jWd863W0L y az캚i)as3&fȕFߘZٯ-( Z\ [*2ZJ J=ba6~3_kįþNJޚ4VTޥm[PBޕ%+q#T^!p{ss"<v<*Pɦ~[y+6nEսzM]o^jG8&,a-†b]{/v/4I15["^]/8Zbq2IBcd&JarٶU&?3E+Gh" j Cz+i@S5--rJHݻ|/@~ΕͦU{ozhfvKW뷡: d UOrL_QA>&qNNc\\M<9x˒K*_x0)sj ' ZCߔف GzPb"/&\*@Km,hr {|uV6Tn2vdg&d[uf.ib'u;!ޢ C#V NrTY5ʂbo: '`Ƅ,%%Hגr8\;tJ L]-R\UdɌKb}Z.RI]KӶ4^K0U?v%?齾&!L/2gEs+D+"(FStңgO\]90[z&ѽxslLt i[YXkt)f.NE{eѥ؟unT݅}?ЅcB7М oErRvnd*weQ8ĄDorY"+ 4πKĮPdj4frbKTj#zeNz0nPG5É7D] p~0P*;")TD|Q85Sg5Ȭ{/|#Hb+:eۗ2|Hª 1AakTW,)ʦH6au4U #2X}VpvE+xA7*SjiL;uj^vx @+mϜPA oAOo7c]ME_Gr-]HcJ;dW|@:4?[Ьd^ h?.,+jQS5 \xI6W։cLMs<0~b[yR{UU6+ί[Qs5T ]GPڈ12Nʗ>#7/Mw.l<B5x DSҌ*W"v, i)`&S[R] [e*7[WκA9YMH ݼMPR&lMg[0gmBR**@0Z3Qݣpn.de|[f}HמÒfB.y8aR<) yلT%pAfkH+ +zOה?rEXWdqPX _G ~"ayRac%ŗ*?z0阇hѢ7{HݽO J8?G3}G& 7?+(7BN\5It9f;}r?0 miL4 3;>Df_Yye0F+++Yz\ yRQ|/RzZ;c޺l۞Sx &%aVDVPxwzK{zeA /(2-paE˷ۯe۽5'anqiI6EwjUFJA["QMnSxaNIzuҹ;q ~ ɄP3<]':|۵+ 2[!5hR݁:.^CV+T){Jh_@"[}## x5sqI-٧[iiZ'ZgjlSu&ӈ+,eY8]/sQ{Hgb)(/LA3:lqbk8؞,r02O@C=ƨEϮ߭HaZIU>m7b(KIWĀߌ~C52 5mz2DŇ( ӂ2P )uSl3d,=֯Ed),DޣIbtcBT0|XPW=0gBx#ji.b729,mN7oK/ CO=kֶe+%%SiRxYD/ʢErW-&j5yY[]E{ᴭ; v놆 6YwgpR"#|*n,zjT?EEf Oė덡AV K©+FvZ&lGQŸJVa4evxH[ߍϪ-+01wfD$BNع{L/Oӕ;B,?&Ԑv<*WXDFXxHJt-`PNؘnd9:>b~9d^8{PZ^9=&*7⦠8~̪]ՁL=\my(^98 3ɢ۶ 0*ad&>nyN%t6dt5$.Ye|_L{B.9+1_ԹleBEKsP,L$#_JsdP5c5Kf4sc|mU7fxヽ%oȴfCra(#kY[cCҸ u9T tIK{)ɽjm(׷SeTu ,70v|!ہ3v4MA8wW1^N Ţba7km6]R*lNL Ũ՛@v0Hr;.|%a?E p6*z:8ltSMu2^ʗ'ruy~@%@v1dh< 4.d0<( xvM'ꆕeKEq]E(]@,CE!>A=KuYȓo}*rN+M㺎-$a!i81ޑ$2j^i}JNQxfYϟs8t7Bʼ<t̡Y7s 5Qu1-ƤtYg[¥^SсI|;'%BoH}$G!G ]F:;8bwߓp- ~O+lA_^!ky2&YkyԳp1UuR8ͺr*91:j::;)q).Baߧu85K`3R6l I/vh]dd"#?cj/%ƒR̽chW ^Jv Biy7bUUcd 6i7kM|1dlUx41޵h 8mī r~|m=/,88X#i?|WŒ;5 `a<žLm|`xf5W gYB1V3xE Y@MM0bĩA21 C/9%l Qy@SQmp߆Ԫ j jYw+ZA~aƴJ(`fo-TԻhHxB<Y/ #2aʔ~Sń" z YUƟ:xD89[{"2I9X Wu"aDz0{I0BMR%ua- rol?+ϭ5#ho6M٢yd" ^O /]_9|O7+ˮM6i$ElbRp۩ߎ!$@5hnWև-}Ğs(O D;.v3Kmܤd>Qf"JL2]~!K[@pXv?M:R+LmYi=f.kLW'9y^Բh$ C$k`ޣFS@5gZ/*k?k?u*: Y?Z/AE!t]$*Jd٠@=_4(1bsvL`/?ko6aHDUbʙ$yYV "yݟҘ#uh9Tf UڼyUɁ5-,TU"ȊTAD[PHgb=q$#}\_m^]WRw%Ȧ`nb~twji 7Ƭ~@F䌑z>c9:z3 t]{bO)N 27L6a+ʚom\\;^].'sh0Bs, d;"5/ʺ.*]qChoiߣu[΃\O^:{MJ˅W]Tf8mMʤNio%jwp VoWFbLRjI`>{C_JG$9V497s(R5";'%sԆ%ҢQ"r)V'4kJKBě֔wUY0]CiW!8G|33qeW"c0D\J7:@,d.][B!yihh6Ȉ_-LbRxbˈZ'3TIMJ4T0ɯ&ФC$B NkzIhq~y ^`Nj=00 |8SMv(.#di Mt,,BzRi[bx~W:|$0NTikOЧ q}߲}ܧuy2BȒ*PٷVP!X#+$pŮ]dV`eO,ʚ0qӁ[T< MjP\7}(Z6QfJFV鰛Q`a#uG)AIQ@FJ##:';{SO e1Yԥ6[% ҩQ*\,dXwM;ŷbe @lK&1MPі]r[GB-y%;JFAW*<<:q\zEoAɬP -O_ʬ,*ݐ5S"<ڹ(;CN[2Gx *T$o';~k5ఐw򠡍3ybd-RP IPŔ .VRv #LGBxy3GIXH<շ-;)Px{Z/A {6Mw)l}+˺!ԘSqvlJ-~gś_R^v1% EXUGJ*\%1J[M5X DG_.e‡+v"3:&kǦm8=%sk `U'%PH4*+ʃ n@X@ 1VuW)Sz+14j)Zzdi1Y~@=/nB?pЅ+9_G %HnHc4-@.74}XMmyo]N)eSi7Ã++ R(ka{$:kσ(7t,4aӛB_X, s]lDJz t7ҤࢅqjIrѬSSZէHb?z} J eYdYl_Tԛ48 LHZj~S5@z>z'VQ=Ul"O\$ Jh:K{"]\'ĐE$V}@`ƔKm?} ,5•\ 4}*G2ZAW3eۓ $ߣș>F7naF&w=M M' 1*yXP9&by tesu]xú&~|LTvRw:\첮 Kn$Q̝z{4*P3:=1<tvNdV0U^yڈfV S#nga2 FuEWΘ;>%_޶m_5{@7Le\Ymd,27n&/?}y} Cca~p+QI2Ev c>d;cNũ;2My''Ya1P.\0T[&z/]dc F%8 WFm<"O~sUEW_ _Ɓ/8s\P|{i͘΄9_ۏײ'yp^ƞ!V~zd Id^m A0b!J ,3#'ru&%SƎOyzyenHQݐ+>b@/#%)YŘaƺ4Jϓ.}ih#~PWC>b"&u.Qhr!*ty-zǀ7 ԩZŗGoEwɛ(lTX> tV1xG=-;2~8ߠH]LUtHf(LL< t$:[xg| B.+8^M &$7ÏW6ҝ f(AŇ%2TM mjAXrC{" Uv\8K̶Eo&N7}맶o~z^AF֐%]Q4d9A*bB*]}$Es20z>X:NRƘap%۸ʰnw语,dmMfDxxAc FjpŝZuZm.a{Nvxq2nR/xxWzu1o4toITSR}YU0ō" 0_4 3/tC,cZy>iec&.ɇfNJ7'H0F-R`^ZȈ 1?PB?Eyµ+D\ eeRvLβ D]rc4bjX㥷$Nomd,/损y΀Kv]S[Wv<U$^:J⊦A0Ez,ܤ[L\B)iO-nH3;ZI/ʖ%QDf_@ivv2gX- U&RUU[$> 2Jz1z7ҪفFv%=2@<'4_s3Ts`8ӢfwWxQu¤SK<֒h0M#{'J]PKϕmEUV]2wE^zT*G~ed0jN${:?*d)8%=1}: EKŜ4hd7 w]EWU3JIe[8کyKwLNBYJuBrL! %f.,{5 LM FJc"đeDbpb L#>Y9-~|c;u26Bu%* ۿl&M#!S 4W?JئB.DR޿KSk?x?>Pϗɩ["^14)Ҿ.Sy05M!|{7n]EUj6[-2qNXo^fpH5,%The\/|Ƶ.+ uY Y6nL2nɕ q{ :!"Ilv)mSed&yM|6[ЕX{ȊpG {S3!TG;ʎ Y*N&k918RxJm?vsC-+<U48Pc3K޵j|g2!K9ViGjϰ  C*Ӟ<*HP6'c.^ef*Hr^YyI\j7~[Hgea[aFuԯڰgX4s/EߣEܠD9"8ߡ qJ4(H'yiPZ@>?O;L YUOS3"[{KNe>:pKJp9Pʿx_^>sgUW7CC=`dp )31ZڱbB #|e#oZDWﻹ@1 $9",GS펾 Qb<=9ʉg7̝uC5/)l ?>]F6;P>ca(<5e Ryg.W\qX0.03pf]sVEI6yH# =(:r*aYe^V/8ևeFd E?|"i;C $Ւx >]^ ATR{IZ`܃8fURHvyoj'iИGה3"6a-I5#" ʋdG/8r}zQyͦҵ .ɭhþiߵN~RPv0[ Ru'\* C|eÛ<*y"U dW'5Jӄ.ѧnVqJU5c 08W/h+,@71zϭpB/7xf;{XucGCwO]1S'R)%qBiU3-~zXr[^Uzq z\L EeK`Of{%wa7I!ϴ\Z)Ɣ꡵Sxِ@ЗK14nۍd (඼y0~?9yNw %丽=%VtӪ>ol^(.ige^ A r9$ g\:W#76v]ݴ\.nRh_ڶH\t/\ƛ%"cڕ>çmD^?YkB,veRǞ;)D$_47Dg$=2ec( dӔy*旐&4_[<“r_kV6߃~*<ڍ)8" 2L<9z]R~]8"̌wnjײɓ]2)-be#AUE^ H"z=반hh_ĠSW-x 9>DJO:{#aLS:CR@`+E. x2(6,G1_/J@\pB^V~Fvщ9|Y+)9<9uP DES+$ܡs @6"J+it.~ZYGηPDӌe '@( Guq>%2t)i>{`:dN&:+ˇ!˚No lyiG*b1v- fKy!D=|pOifr:C 풪P$H("y-T2{X^EcOD#O*DP0n%@}oeO_B?fZ&rd)I{VurA8~ X9Gޥ(,0bz'=JiM>%Io4ԅe+͢Rpr,`LQA28Cd6O|t#C ܴHAYv~5C »>rɋ~r;D_v& 3ww{ qJya5Qquuf3WFec^5ǹltr6X5iJ(4NQ4P̐ur  Xv⟠Rà Ӈy]%5m?Z"o`ycZVS4Zs^bс;$D QC+'z1o,!N|UXa޲!uXĉUHQ4m%emh$ŷ^QY-C_h2 ܄#?=cM .K"ϋ8wD-8kaˮ$t=wɧքxoՔviRjNz)Z"TyZlȥF(*G^5Ӊ|XGD{ɪ*JbHuG3BJ{!` 9ڃ+S<,D؆׉at"L@s 'ʃو~QO(Ymz<0+.Ӏ_u}*>+^I_X8r;Y_,oo8bࣶFH/F/|IE0n7 80Hq*umfK]zSJPNB-  BP{IVg)Vt%a~bXKPGF#TSd\6qp|G:z{(w@HWcKpx:m~\8dYQI k\ppЧ#բeqt^mXVP4iӟSq\B3X>_UH;. BKTD 8 (v@-D!]U iy$~mMCϩMIgyH$?tBC HкBH†H$hw∩:b0WQ*f?y$׏%k[t tD.葜VLB#r/a6-ok',2"\E$ڙM4hG#m- RD]N wB>Qq.5 {~j_!?p?-ԗM]STd$p S3vx'Eeyrl>F!HvX;NO 7簃[Dj?Y :;It jV)Q)xL:l՝Of0|mK5kX?,wJ7NھP>UaU0 `{PC+ϪNL~Wҏkק5{i)-FӔ]TYVֽ&3r|N* (| γ%<J*imhV7֪ :ߒO]&e]Xb)1%'|߁>VU3}gxrupIk:$\IKB _7“L1p•<χq7=J%T3ݩO~ $Wtph)^7 a V6Jp$ +·,~IP10]Kto*;2dց+:bTEvsئINu]OP|\N߽?q1yѾo4W0 #Ri(-Dc¹'tyIrf!'s/ inT"Z6RvE3AohU.DNQIv ȅm<4qu6Iq]?B mi6D tqzaT 7FzzE@竾kvuGizyB&,XnaQ~A?sP /IȜꋣu7u:Xb,<]rΖix.acC" 4(,2}9xIf G*$ED7)1kDFg&KLY>,U*yv.,-tΜO^t}4 5B'eUd]'IE(TXJj&nƂEA\*Ӓ.` nAgj7aʝv/Łщ޸v.{*Lʺz%TI H]HE d3 NǞ:GgYEf/̹+W_ KSS򖆝1](\rYy*u?)޴' z"i/R}FTuI2HrEP=!`R)" GSY+c}edI 罱,=$mGΌ6k<񒰘h)Z޲8> "X=,}US嵖|x}5&nuYmp(M1#O6îof_y*,'?bIT7ɗAռm&+Ѧ\"YHҤC@)s܄Y12"C9{yIƂi.{^=L]GUJͱ Iܵ C&bX,bC D:"+-a=.XuI֕d=LOѸ{a*DPNY菃/H܎C_iFĵZ6a %'ͣ3-jŢe(ZAs,>N|;J)|L7$.\yWP=Ԯ^ qYYv-|~!i7WZ2da$_frݒ¥dIYLAlx"{FXo١X_j&mYb~Gi+4QS#ҥSRЧ Vz-N.9崪@ZF*t.*d\R}oR ?֫EXa/ ݣ8zpƸD2҉.@JԲ¢wF)j&>e䇜8rAaIg͟`LJ^k1Ck,8Ҩ) 7!i2ij,Qn5A%_pa?( #C|J~yb;7an;:MS'DjvI!v!Ln"Ut Rbi?H,zm0~Ʈr+~mDe]WVqۅPYIdբca ]al{4yȽ4;S0$(BD X d~% U| iT q44{9M؛fDRJ^,eΜN܄9Nw{R3ذa[/3$yނ5IƺX5P"/ (Zzz|{w=N"\^|4|D]䕣~irrA>|9m:ZcA.D#~[XAr}L鉷8u,lnѐ'~eth)5JP#&\gLzT LDձ17ز)Mb[G*L.Z9؎3ʡn0%8`sj毷&aMc& ȾsnM]<,YN,]/YCXYW 8 1ʇ;rSyаn.T,p Q^"QK1rjxl'8dox]Yg09C͸LT!pےQG U8U%FJ+>Nsf0n|^Zc\*˪[i;V?;)x#["JGj,ݯs,RPqylp![N(CN-VPaL&/>7TamۇlѐffGܙ[Q1<&$m4])Pb0HqD`-k0猷v-mGh߹ n]L,Cd:dJPɤC0Sr0 ?G/Uy蔂||a)/?L} 5.9Ӊΰ"32=SSʼnՆW02EdT~6_;棯9~F-\tLUg҅rTviAXF(h^d:npscͫ7O# ʊLSf6/ !K(ƪ3O[؎kl;ߚY,螬o6}μl$&,a L+{$!Ie`Z~}a[mISm|sPBGձh !£G c3CO_\T<7㎢jf%,Ε /OP,)-qыJ³XyAAf6-2dZ>RGXG-R#،x>Y@'>+&Z36aFL_/^uZwye5E_ߖ&엪KGxcgڇsй`+٫`]_ E0XGGnNƥֽ?O_!i[7㎬,;NNq& 7Q^="Z+1 fDv%؅{|ŗ{w„* ua֜p {]q6`)mUQYF.Ñ$|V]|HXAAU0D[CL04Ƽ}[G:օ& 0sy^/(i* aͬiQ 9%( ـ5 0'bBeJH+d4ZOī8sjoXeG dCxtBjFO:&{+'|kvRc~tS1?M(~2[BTB. 㩩Y2I W,^ 5?vx^o6ÿbE6at1=2{ hB21D9J|_&gYosOK37~4f뗋LWt$9^6QW01XZZ(мkc8$)<$o'ۆzYz#9b4I:B.V*Fj1YYq]0~،JՉL뽼32pcyQ+qRN.eݵ,|_,ɔcﰮH/+=}5TBcoRӪ;~xM`LiXEwŢ-E^dhP ɗe&V2&HyzO&̔Nbm60?.Pd[[ԔׅļxsQm!r\{mGUjheFCmnR+J31XaNLYRc;Hr|<?5=_tA]b^l| jR M4ib>2/CmiT4^%C/H'VȐ@(EtU뽫/G Fj\o0|(8Aކܔ]XceNL(,aвV;ucK\ aP4jr3ODؖl?)2e^ܖYm*qG6~YەIBCyjkERKaꋻJ8b!I8 Y&G98qnNYhB˙ $+c^ 2S"R1K@08rA#(<ߺYW3د]AvU"5BtVr,Htx 48&J?l/Ęк΅@39].9YSr U6eLfo'd{&ɜuu5X̹ Έ>{Y ֯uʼn|/"dUa'7~Am}R5yxqsJ48_T+Eb(=A%r7L80ݳ}n$*lxid$* /ߗ]Y3<}vȯSVX7hVW:nm>, %yW2x˦goȵ/*?MKtjdiLmI_RR4utN:Nh@(otPx?Q.>lwmM goc#$BnX.:0K@Clv?5j`2~WMMR_Y_+vwP  !xoXI܈aMN4j([$j+Y-vNa9zDFEK9c]vG>C [M|p4ssgwHү >:̮9򺫪Kca% I*zC ,1NE"l_|y^Y~a툝^͒P5O ݫz*KS';d&bήR$1,;vt%70 o{-ƗK{vBp~rqnanגeluݣ- 늶PI"/jDvlac$u}03/ _(Y涉02O ۑ<~mUW)s-lk A)D6مúv2iC+ĂxA !(=.ͲBp~Z$pM$pڣCͫ~X{b,R|ߐHa|&r9@fL_M faIڅB~6]QnHh u0oEWT9+6,%<Ӌ'Bk71lpX5v5\ /,Sپ~zד_@:8U,ZPrpGW`U$QA'C>셌9X?s&:^Uj$J249O|vjg}H˰WcmþWj ~z"ʽL&m%yo<е [X 8TcJz)Ys̞KP17э( ҤA϶ue]$T㫣Nqba%5$ 񸏲>7) _:< n8RYU=d)X~in;FG[=ȷt[O}-]Ve] GIY8Ł/  f%y^۠mCNp^iʧ%Mkomʛ̪Yb֑fL=LgK`R˗P$l#Eq Bt?^2qzwwuV2Y#9ݡaT.@I"h `OaՁN%Q"˒+%n紿M§Z1Yd\)kMGê*R`wh- sĪdEnCnXtmR(gٽ;:yWfOҘcPՠCƷː A4D.]8^M)m{f,1ǔz&$1I?j'AշJYHT!Z !^/7:7$z%.fz0GozоYh~|s]R%;&']N$bB(# P\賯ż ۼmf7aeB6xnl! "w2HE==~ ~JEyp:-!p楃<}JM /7^WT4nee9ռn}OX`{e+,o|1MBaRl&.brWVw ¤jα |rڔGbs_yTEYUf҃C/ܬVyQ,)v!% >*|kG϶5ėqp>[a9 0P6H%1_CM%/p j@⣔H/9*Wk+/'\;H Æ)YӞW?*N)aþ^yω),u +F1["Wd?-qwMdШ2K#xZ.0.u/pǧ_NaE*{R*. 5ˣ+;V"ơ^;+Q {<G#L(]&1|ljCci.ꕍUC1J;h~w礐V9'1V8C ȎF uHN7uLO0/n/գE62k4Ϧʇǫ~u;,+GWw Qzߢ'ѩ S"諑*r~V[OVn_>|_隺Ҹ|XȭR=paBt sG%f)\U # kXxYBr6pQn>.2Xc~UZv$&;X BJ'|K ԣTFgac9Pu%$v I)˴[*I)Ķ-4r;]2wmj6!= kO u8z*c/1[ MuR;G -1mVX2ϨГd8v2r#bnUnGܽB?'nKYyW% 4 0tFSQThuV=gӭr~Hޟmiz.9T;iC3n[L݅diƇub M`]R ]eUb1B%WU(M~fӵ"g.-4ٻ޵Id:~[X^x`ĺ^si(e9^z2uBacI|d nS黢5 (y^I.P"-z7t޹).*J (u0N[%D^ry6~!oʮ4&9N0S>ꮈΏ*s i-caK/5(zD$)]$eC.c2t_: KQw|j0C˧-BJulpqHAN${^{&>[vS⺧z<=(F]phY8Y wEؕ$5_[^؟΋\V'+,S?k]ٶm~)b|4 w١DpV4iKlw37fWߘ@RLq4 dhusB.ẹ6Mʲ7oNj#f+e(x~pf9}6zǦ_nV W^s4STX\OKb]oޅ4.C'F@ Zw tBo^5&Mm락O4\Tl^k9#G3&+_9t/$&ySX`mf,Zy 5rt CYE"@E1k I5}a*ٙv9;'yWFÛqӎ}^d5irD%țP7M$KU>/'!/<_!&dhN>~))3˚8J*{uJF)2a87j땏pJ"}C|oZ]PDhS’𥉉P BxȼPq~OR+ tE*@³`rIˊBTNrΧAS$'anc}OiId[hZ㣋C)Ƣ$z~{9bg^nY7pmZ>H=.WeUWհgjHfB.|Z (¶T TbwI~l}q)dǔ+&#bgM׬fЋ1͢ Վ(6ŨWLSOwC>80u$ۺqݶ􌠳i=e񨳎y𝚦SGR&x5L .R!K]J ]Z^nuc,މLjַ-ۤ)hf]j 4h$֨"6Iz0xh)Nrm۬Wa¶—G]y QY'=rEHf8;^F tFRP_'-!{?8:~`5GL&૊d={qN!-Xw!Ul_&!(2#T-VNhYuzceױ dڃ?)al#ٽHej6xM%+YcjrG襷E6vcRLi?ͪ(Y6NKn'wl#Ȝ=%ָUX Ql~itIfU a}+[azRNYΆnF񞶆%uZ #dPV !o)4jJ3 ϙf A=Y bgXM)-ofYPU>^/Y@vL[=+E;O! xB ")HH_86_wFу p*Y&1TTsFS*6Oj$āg5[C% tZ|%r3@q2C{ $/lpv_,J0$_GoY[۵s\6KrzʚoHr*0tUu J`ܱoWN&"-ΰY~eAy rCvs"Km #JoqU"pk96H[Y7b_5T^v?%^ꖮ&9I$#ɐDGr9bi# @3=Ed!Y٤J4KjXrEڼ+oJ91e1A @,{ (:Ŕ] tEy?oe%o!w_1$;ʺ:]m+Te@wKytbй)x#"/Lx"-$<։N#6<l i1߰Y-B2Vc p'xZa䲼RH-SgɎ,JġZIʪD 0!le̠R9jU/%ru+éa]7}H[\7<e©oeFyK(49-緫g0gIC|3psx}a'E/1B~_I֥)Mz /d`Nf3lB Ko9ܮ15 ׁ#HS,1Zr2˧+ʦ-dc2CE'H' [ׁmnS98|.N{Nx !DB $Y&1&$1<"Fe] u;:x{d bˢ zN)?rӿqW!lS=2v!"\6-¸g|MoKtoG()4K_i+<Rpi*W1]o59 N!۪jd+~W=UFvcURI,ՂժlD.ie^ HS¡}.ĐԿUŦ+B1.T)%&'hnqQ^ŤkW2 @i!i}8[乓gQYc;QKUߕ^a!+ʴӱp4G1KfH}sY[2A,3/ ;'؛nT8۶uKw*Ί:)ޭsҹL=- 8R+X#x+"*]20`w^?n^h1mHm{wV[ϼd -b+ .hQ)F]"ذ8{?&+[HUʬ,`%qW[Hjh"^4 PD䏳T=λ[(4u?ѷ XР&# r+ )"g.ǂ67 ?'^5sCtQ*޴WjVEd z{,JgFH~K;xPM_= _BT3k.X"2䂊Pw%DNa|.eبqHJRhCbۗaH` u56q5ut"!g k օʸH"cUp%L8өRy^Tz='逥8c۹8R!9[B_'g ⛃J^>q~Ȃ*JĖ+ױWnM,pQJ)0VG!\ع 'Ov; ;Rzpx*ޚ.&^QDD6G};Q/qR" aIXő 'pDic0C[r?7T r_>OF,%6}?3?$wJIbW5 ~AND_.2Q0\ge]%S14ͩh|@*V⮘`pEqI`(Tl.}W _q1%k?q1o%qVIUU]S+?j|d1@+<PxݞEnqK$ 6&n“F"S?66VS%Hz*a,yQ8{*ޕK]~3D+Ol1< e 7j_i*&Ik\RQ;P 2vL$2% Y_Z _†߹$c}J|j "daЯ~V?}oGkkJ"ZDҔ&E9q(1C&1lm "׍;¼ mq~d$6/ʡ~ehkz=~C'm:/Z YOȩG.X֪w~Pk 7?x EU6z$p Rfj.Ƨ8ŎkvۀDuϜOɼƙGl\sw`|2 Q0YZZUi v33Ĕ>"Aa@{?ɌrwXk)LF!?hɫpUA='01szYHb#PB^_3WGτi{o3_4v bGtWD4U ɩ#+4ܥx-B-N\D*Dr ʈK5EC^*YuyXciv6m54>ڃ#J1¼@ޛx+`Op$P:EaXC$B3P> Ok)g[5il{hWwX L$HpwˤxsWM((/O&W3!2]خ$o2pš 0 ho?9hԸ3ޣAX<_"㋎ {îVXBG36žwI͕mPOx+bDILDLS3@>~|FGӬC)TտCr:9=HBoqRb9Gh\N15$e-q1ų?_n ݦ)Xpj_=PbsW:ĊNDz/JDSTa"Qܜ'.zW aݭ2̫FVE촐-zjx}F*$*-Hh@T%nL^0= &[3$3&y+5-/ݦ4}*jmęD1UOp"E0/NiDuݛ~m\zMioDӪY]9S'|!DRگZAcۂJ`XlGt-ᭌ ͩXf8X5\Qrmj5>S:ɍ߆RL*H@+"*)f8%d>ҹazʤ 0c oT/_ĐY0W܄z :9S!?,l!j-`TP {?Ű{됧ڗՍ+7Y]5ɉ4(irf9VBk.wV%偅v Vv?)klP2maf%U%~2/-oq*dT$t[MGV='Ht!2ЍLA4&irlC\/ߟ t.u1mxeZu1u*;iUШSOl^)B= tXFY?g.sv8Z=vqx}9GMY[Jނ ˲T)b@c~˾ 8[t'6X]fȨ&wl)[ΙgU?uBp2KMB?ձʔ0P^A1-IB 7[3>پ~dK/zc#uUޥ=J;RD8(CmY ^d|rHMW)§f 3 3Mukg@iArQ}^K>Xhzd52۫N 8l_特'9D4Zwln]ª(CdJJĮV?"SЍ[|ۗyB WM6uyK;}vE@㛻'VԇTJujޥAx$^KwELpIbIsA$:L7Ri0s*-1nX҄AH sWhI2J%d1a]85 #K(3^A!~o|^u gS!\径4y I - C؇ns%Zbl+2~N8qFI&ΉnT>'MU2Rb`=DNGUoEVr˙l=taX\Lr7m$KataQ"GuK芵}vU{y<-yTUh۲ qPltmBn cW?ϮCB zLIKf]tbHI6-Ph |P¥V95KL bOz$Gh Ec+3| ȼd+2f\2lv-&=G[1N.TưtB!)&j{-FQ`nҼM䴽0٩&eS"'!q23Y-ޯѓʁV!uʎ=|227>j,1Qqswκ#ɹ FpvIaԴJPIW0)t|%#W 7 7J g"ܯ+kˍ䒆{<7ed}y5;pCι7?WYi1PeWZg'9VCݝeAԢ#cgyC/!ߨVttEay~WXք 8y1& *25R^~W|DپݿV<~md<@`7%k6ٚkl+}/uBVmQ-JEV+@aD@g2Eo4w8oq_fX_+C$U< ٥ac-ޔK%ktjyPf@2XBB&0w3չ>n\2o SS6e!"-{R:Y\ѽ`$Oa`G|y4 ,߫ufwLӲnLޞaNiJsЄny*Cfx _C |u$qIf-d&˿aGiPAQb]Mw dixYDUdU Z@]ޘ?O ú]7~օҤH]*O E P1Y$jq1A|>Ϸ'p@YKb AT>p_n!o_v\WVe%2- %<qn+(pVeF+q, Gc[m6 V䰄.N|!qX22(!C4,e#|g+OQ&g$&"o׉"r#qXEl4!{YϴQԷ;?[L*t˻4m:$VO8CGi'P-Nժrjhڦ=Qc 4}'y̝y>ϙfثO8rMR¸k[[kOl,?zު[cJ`ԅ8š9nˊHE2u ~I_rߣ+i vt!cݵE, J` M=0iVcE?/?=3>,DmS21!/y{'H5RJ!B"PƎ,/ Vn@տ&hl=o{uWM&k"#Ni"ɮDq(Gt+ 9b~ãz S)= o }z_df7E~LdF jZD8q(O cO:4b3`b'wn} $^2bYUّc}W!`a!}AmOUHQJ>dLBo o0]XM4H#K^g%b}4_Hd`BcV%Lg9;;V8 NzDl"2 )LA*{aRFi|x,/:FoD܇ǕvyѤG <ʲ&.(j/Y1 -4^ewm2웊8WWy M"wDhT_$wSSN) W'Q]p5G1bLt#W\j:=Sz/U6j5@C6E5iE]x=O:,~=BѕE⳻BrNΧ1<$bUIbNQ9/eqEL4Rɜ9Og?PW76 JOC!OUQ 8_t Va d'}XscA{6t5u.}B}{-!d2)YQi)WwǎP[!  4JcȂhZGi }_m+jG$ *2Fi@aT&sw*YՎOnC +\&/If<,$U52ՕGo⪫(lTQ>C!7MldoPM.P #Ags _#x,#y}z/;^w~M[&s.0]("nUh=Fiܗ`WqL^KI4viW,F 7t8c]'Tg&P۵;2X ٵjkLEI> yflԇa8KI[fMP]NY]UG9&P`|Cһ QOr9˶r(UIbd!ȲDb<3(OK*WR|nx%-ѥ0^H+eN8,s-YGEBSZVY7iJw9rCBe#w@-@q\T+_S p>6Isߡ^5_y?iVtP}?IwjU~i il4: v-b9~?] *5$;Ȕ1bWP@USxBPe!HjyRdK XT~(*ERub*p-4-b$b>}L8t`Ta+iCuqS,98,yC ^X@`ЮAf?'m/r'.tqu!?a6U2f/Y؎~Jl4-q;*5Ѿ0y 2FITˏ˞kgYdd4))@Y]5-G^+.;x1ƿ~I vx(9#o[xd6Co&1zݜ J2 -G ҄JB m?!8(@؂CZ֍`͙dc"t=Wĺܮn#]G#]g{R]֚FY)3.y&Z.CƬKY^*:5CI)I%bH:=U0J$Ex=ΐZI8>τ9^f?hͫi(J|" y}<V8e40D)na6>uͯmyGD/Λ]/iuI c&O *ɣ+|9s| 8sۭ "$ˮ% \VK}~ d9&mX?$VǺLIJUn M>.ڃ2ELJ>/L<{ 2o19Bv.m_ߪ4 Sө}.EUb. "7w[1#Z$}ͨNM }R%,:"S6n}ή@+"P\!ZciMaÎ=H*oi )&~EL4 Vf\"ya+(%XjAU!- Id WnCF>1R|_ʪ߁Ben["NTY$))r'pswtځ P>sSet`K0'LXFƽbc2[cfjP)Ȑd'<Dќk"$҆<0NF/L5GXQ I$EaM?I !d"松Cpf6%a7#Zca4/mj܏5ҳ?ҠD /~!]9$fjqEKߔv@OZ%-y{*S'HT#wm^>Bd Dbi!?r?97?/Bw{b0l>lq^Wr?$lk<|7g.O6-2<sI"8Fd^0R? 0DMM2/ xf:(W}Վd:6?~}{6c|E/,C]GnYӸPЎgL;fi@[3Á{KQMtr&Y׏jD`X4 (,$ S-ⶕCRG0X^ mi9h3S ,IL|kÜZy 6=$QLnៀ&N%WAWGMnXIlGwVq6,{Z#mo ;`L'^+ 7ŰIҿDokHm9)Wa(Q.2KSח 9 gEF ue% hmXme{|_fK0Ej |Y0 8Ca@I[oimeRXf`fqVhPWybe~14U+e-{V!"JX.neӔvEM|Hb)Z:klabN_<<;ȠY(϶%. ;^ozmK_CB֕dѶ۱S_w>R+s|z1ahl^S6H&d7P>E 5Dbv%:YdQ$:wVF}q XZ2O>9<]֩\sjUkfE /BB&E:+E3LYA'Hsn^Op&' EB rG &-W(aN^.#ة=f5.+@랽b6һK콒gYz`T:*aX(H+ߋƒTZxp12sFP2qZVS՚ΉX*oX fa+"qeҮ=W6V8 Ɛ@E?EvM|g< KrYpžeA%ddn={uvaIIˮBW!E^ wi ~ǛxT\齀! 5B*Yꊓ tVoy8c7VYFX.~v{ZB,v&MAe[K^ۃ8d#B1]zJJX]uMP4#*й(T.}G U!"yK3#~u#PE@&9ԕ"I3s8-ѣI;/N_hHJ^t5G>_W˙_ukx1r Jh2vU/kB5++cpThz31qV^Zp~&E(4zidɛԺhK-ѧcnODVIT8RF2J|~Rc.O4_7Vix1pYDA%9Б=:b ˦+:~*c"cg,k8Gӫa}8v/פD¸]!) '<,a 1{@fJٿGg.!M2u[CїP3o~u*YթEֆ3mS&D!,~H%x$eAwVxaS|QFm% Sǿ"*S(Q ,zWT0<>fG2/ӛg?CC?<³>__6FdI~nؐ $ӱ){1fC_d L5,T)Cldɇ9_oG?v ιH,~GC&z*Yfs.+Tě_fڨpLLJ2hYw<7ɞ6P$h c7MgH:ڐ9Tڽj}-F"fwBUR@B\u_#:F/:x,J+Sz\%hA|.-ъN" % #\ 1Hz0@-yN%JLi_./$:B{!EJ;-1C6Ţ J2y@n"sn}S $aW ] NK'<ϏGȬٶ,icl^_|CInN,(Wq*"@`G`z*`};t=)$,Vm|U]$\l,L'=hɘtiۯ*qXda"$ z}]\PO&uTQ' XDrԙ*jC+֓2r͋󱜴wyi~sG.KYd4 !m-*F \<4y#E^&$ɌȲVoVe?/E†|hz-!T4#Uֺ$egVb$¡=N(xwn;~ ؖm{5N-y/~IՔgQx"| L Z*Tɯd>Onɫi˼}ϗG+YtO%5B[D4tgէ<.4PIE>Wr)׍_UulUjZ%" x]}敚v'<%"u#gO"eA4ٕn$eݏѹrac2M ~~$y]kCtss'´js4W%"X,>CmSԢv5o6drbECݼ-b=ނ:G)BйjuZ)j>J?ݶ-NËf9ؘ|B}YϳcPZLwQ@3n]^I`DŽyYjCܤT$̵  mˣ ]lkGI$x, B&2-]!m<!d ;Q 5a~#qە^.2g/ilYm|澟nez)?7_Ӵz9@%K))k.Ȝzu|#Dqt3Ukވ|s~1/ԅ"kFf:KJQH(#ETJTRE^J6eHCG 0 r2=\ȝ7u̾v4aR(2g)D#&-%b8vEja(^nܕd?yI, %/KKTR]FOFddļp-IprpYްW wMD= 秗k o'w q* 勤@zAӭoѿ_͡rmK,6mh[4$;(*a {_м޹@T_?`]ot6/ES$ 7diYuu$XFql|C㻧/C&>ワc3<4StQPS\#~Dꖲ T W"CF܁xOżO<]!§Mi@Xm>ZedaGiC]ULtNukQr(C%|kkI}#AeI*E+rΈ*E3 00AF}*r Kɵ&NjHxɔ] T3PMSi39^פF86B,I?lSKj9,\ 36wϡsny]p$| fl^V9˜TFJk/Q5"x^`pUspEE=I4&;Ӏ$rUrnΞZ.ns.]uUoBk2&Bą%ĮW`_Qb9YjzfU#ƃƖhRV-$OYޔ$[H~V RiI#B>ON#lCW {ҒjSeZORrs`V޹}WĘgq ^ on}ol;1앺ɚ6(%Y0 l'םB]BsՆUבbuK]&7j% 7'HN,XJܶ?]D%hËW~ʪJUE!hv¥YaAr*Xf.Q' SYNx tjv뺚,s?[JfS,앺N|jTؕRnyn2X>=_-1}wODfgiЌ!mXHi/[ZcEǚ}ApwylTX%Wu(A=GnD1ZbNYKfL+ˤ='xm)WnL|aR/êCp & qI-u_ܵZ+S[#,C*(/(JJpA,F 00nwOa6ڵB.ڰd!&JF's% -伒\Cz8bL -Tpf]M>[ гOC[6!;Z}j*!~s̰ښg̞2eށ#\M/8hQm8-,9:ϳ'2 :2.9%UKZ)v!6n_9 -\`v⫼$TcT-jº@?9nR}>GʋKRB{ ؼncZQ ) pR`!(IT~iFo78/c^Yճ<'.̞ݗ~ٵJmMI66؎Z1F^JH',u f~ ?s,2?s3, ^7t !^ӤT*?-GMAR0L@}Ս=)DCxy7k8([m5!Y.,2yAv9;1 ARX+G}#Wª֙D}̓[m3IE%ru.2"!D4yP,U$U&bt q[/_k ~b1ERZIcykh_WcWW_oƊϡF1*0ߨ]¥*#jQ{%N" i*rlK:rF7{[OkR8~IǪ|$ Z2'!lq4,Hу-фeD٧ZEMo-RkZ/}H ֟3ɕ[3-_muCGT-=!"2 aB.2\l,H\̖`tEΣHFraj:jBCn5LS2K=ښNe"`~UG_L1><nko,_]CV џθf]\伨é4mԎ֘5v4zo] ~c>$ Ɉ.OOGX#(M3O/Od~߃Mx!죰I9AȺڕ]5j6P,\dۖ +jV,h3,a[6lEFF;^ELL88•WC~ӆIk4Fӷ"FJ hxdªm%&ogivaVN F7wU& ̶MXJ GD~=(D,2 Qq.ȥ-vZIom'Dʐ_09NCZZtj? t[9iwYm?6忤0yYەЯ3VD FW+DW-4#W(" mIm&(JE%x*j״Ke%c|R+0;"䯠De?-ږ9|k~keJ/vjJӔmr-yܲ~IHe*۽0Ɲ^:*j=+ !&JMm\LPM6/ؾ-ˢI|!eјNnȭoKAZ2¶@n9|&_Aɕ.ܬ˘4ʊd?.װ)?fd 52Ryi(AI"S!YG?' z}#C{wS54)x)I\GI "PX_cXZ?Ѳs׬◾ 2É"Y0Ma n1]y idžB/em2€h=d8i" rsJ7[6O3< 5&sUubCVy%!Y'n=Z/h{HnE? H72^X8 A Dc\8etiޛPn;S#ZtYVvU[Q!RL١O:% D+A_ }]{0TÇrj%y&9+r VIB$߫\-%M$ޡK:&&RYc%8(zZD8,#\mL4!2tpb""9~K/kSX/vԍ#TId!:m F~";=tvԶz=lx)yݘTFFPA!Y+N&XtWڻ"9gQtZ@D+ CK" Gnȸ̊5 %5ߧ 44jurS"S 4]z*NrM)}P=~on`yZ8h>6u<_)+ӣD=Wå.UV"HZ FwzE ʿkp1I,mv`L.:H;<[ȿqT6!U{8|.\-D\{˒L9iY >_:Si \BRLPaYӱU16<4Ed'awpxjU vu[)ߣF/wǃb0QFȀ.e[;-RywD=qM0Qߋ(GoFls5N/P%2mycI@X8pˎrz?Of]gAVpcYےo&՗.e%] M1t>׾c>󷣨3,/if PN7 n '5rMv@Zt-dpQ^<@6@weZgnvѸ*3[f=q8ԗ K?ID(^"hJoˎNeiB~U9,0b 1Cx \rs^KG:Q%&6au  a7;̖b*nА~!Jz`0f҆cM(,\u$k6u_ 9]t*=I{( .s3xh yNBU'o[y{bv-&䫊,]h|x֔YPoPKa1CuٴCC٥QX.v8?l!gw+w,ٲXrpoտyo[MMy&?#3y\ʳdޭ Ң|]4x&J<'L-r;厢? oѼTZ >ʥL0*<83|tV3ooWXM5r2y)C,t\LubLw_wʡ>وLW3l7}s~t]k3y_+.6=cd<5< NKFvft'jS|0H%NOujƱܷҼoCZ)I"HRv5yaܕ bآjlEN2|jqYiXoo2Pf\.&,9ɵupWd !N48_D:9ڭLоN!éjY"-4io>LD-Hߵ558cLLɑT*K֧gq_%ݻ5y>Bruyq0PWٴ=/+G-+ʲT_2Kb4hWLږ(`$&+1Yk͢Q,}xS#|/'6&Ll ^P.[ƫݨ[a6q mkߟ6H|~edٽ]YkIe,W'KwlP`E`[Lp5zHQD$1>x`m%m ;>$nZ灲̛`5]\7jm" B9DPPoL \`x; l˯]ޠo~e B[ZJtx@b(N;ڔ;*gbZN9Ҩtcb\C,`j4%G#m8rQKvB D^7,-z@^+a!¯⹇)!V˴lyUW㫓e2"eNDȽ2T]eQU^ -ӚM+%vX@YHkjVjo2~X^֢5yࣶ$BZ XZ`9)߮v98\reh~ꟕVb 8`M)M[I~gMKF4T_&l`- Z,o/#A{GוѓjOm fvY`uW6M2#v(2$)I4ѿܕWC/]:GMNer0chZ]2Bfzp':;Zf8dlF-dQ~iHsk]VD*qd6 YIrC UU[Ru+Q?&m4%PirY>ޣl-*iB8ǖ5$x$#g\գ^ ZnyioЁ=cџirvaU@yaTdo"=RS#+B}q\9Ԋf[6xfFVڶ*)E&'q/ѹ]`<.0YWtՓ$#3q:0 'PbT<iQÓI2ț{4Ux2*TNv-#wupe 86=jW~ uG3/ +XuZ Ǭ#J1;UJkˠDN=Y04}D!䈗PԢysm Kx\MPTɜuVe4[3rޔ/6*AF je4B{j%ߤ'pY`#6.bRi>cQeA^pΎ%' }? !:qM nI5XiKg@yJ?iQjha,IOO)Ν\.c5c, 2 :MMSBWz.ЬT{ "5PSedZw9gWPWI+ ڂz0Ƚ=N/8)$݃M(]xLZX%]n\WXEn 8uFQCHU1qURwCU$óΛ=izj[ iځ.UbR9#kJu, [Y8=Iq:.pufǍ޵Mҡ:g~Ibм/ͻdMCddm择)t^H l<ıCVo ]_{ׅ]f´M@)jz}US.D`_NZ9w/"C $y`%y\ĈRm99e }BN['t  o Wd馗ϯq IORs?fq]Wtr*5N; G[e4~r{*/rb&jVВ4 e$p+(Ѝ> bGSPɱB?=1 UwD#49šHfW>P;8\ő@yXpmm!䩹L'k&#<2zs|,_CJҐ7 UyhCƍ=p/bOHm BUN4)̴9hJ͎?Lj~9Wu|S\Ί$>Bsyw]-[]iԤ "jL%m{7lOiZ=1{!˶ V3b1ƺ'Rx2 ֔ U8?&]F~ߴ뜝j!K'N 2S˻RWo= Wjj_Z_.ͧ.I-hܐ6'"X/IebҙJ_C.gџ |*3{54 1u[h\/3$] Q-6Pj'1甈_H|ǝPzpP>mвtUCM#*b[s|Cj7}a 2Z;0j$71.Z_&I-iY0_SFIk ,gHꖚ;IA2OpwZ=;%ꦙ bnf~9Mbw؄cu6r&|7X ~}4Z{rܽ ɒMȆo>;wjO7kO#XQue8ix]i])-$8cwy ȝNVN(ِeMlƶf߾V#;|>)'+VuM\H{r~/U@#vE!7X@M+*R~dڦ>JTڎCVrXZG#P'PςW*'ꌧБL.6 /tsf_(S(c2mO]Sdul9nȪˤBCe!Y?ͤ\5*x@;gJUەXe$k68#C oEl @DKsZxy?xQEMn_F]K%#)wh Q jɆT N7|E3a}0r=u\sLvE.G&K= ұ *=~Ѥq#hSvU}&kKhjM*w9Xkj,DK`,ԔGJIuM/oKwUE@ /|Q3c_yVIE.Vo RBp7KAPmH0.|> X%lVI|=`"ZޝKJR ژP){ )KAz.Yֈ#[LC#svud?a31M<$K,&ԙ(!j=OVHt$)A k51 ^MGoͼ5ڿ0u(˖lN}<!JL߷W2I!XMD[H# N̯#SҚdQS!2W#zVT\-efu#Tv%'y/ʙݟ!WCՃ$oKP*$yjXe62'#|TZ57LyPR^և_  oIh~cJUK\[bz}RE\.Mﮢl'uѷYHTR /zbxIZBs6jL3+Ck"d4LC_h+*@xJJGi#[05eV GP~-~Tc1iqgk'˴tZ*KI2UYaTT%@{z-,E?5q1mE^tV8f) #Y4x)DX}kśeʷc:w7ńV%1[֗ʵ14-M*d\&WgOw^B>7A.]g]_PLcd%‰leH,| Ы)^0YP4!yv/nr.|qf+qyVw"t";z*>_k]̈#d`,- ә%.h],="C*NwaM0 aU㯫9|+&vCIε δ }qʹT0;Q|x݇QwzW6,J f7.jETFq=?3#O?7]V8 ÖWQWhLWhET @yĔϫ_SX:By$/!js)K>7ꤗ[˽7n(vLQJLdã€FpBfʔׅq xǥ3I,C0-*=LQxz- ՚"wh>ZY_ڇ0j'p dkٹP P {|hV!sHī[M~νs2S%d´%LE58VHp%;iy0a4E\9#3+iZә'UQey37<>#폡jҊŴ]v d0dK甂(wYvw f ~sf/$.wtUd~%+H[KmuҡO?޼0{-2^B ˊyz2n fJ^ݴہ9[ Cm25 BT\{ɋ4cÊkL~y^.?M@q//'$u.B{҄+ J+PzR,<7!;NU"UeBқ 0!rTrM{ח%8 啖EI; Kw)`/닕%A-+=8WaI6BOG08tdद*I Kq,܊ r]c L9e\P~y]u[~痢/)fDjetKhmњ~d`{#օ+IX>_q54R#{fƂ+|4s' }";47cb ;mr[V7y2L*ٽ麬/ݴ)hi$x~Y:/R7l3- c>yM@fG72e)Ti #'PyǗ(rJ+AYA ڌ V?xc1^YzH}RRmzg2ŃWhW\)0>=Ʊ z4qVٮ o!R,k]N@Eͬh` #.f!^kږW{-Cb!•l6tZoO,Thd7 ?(2܍,:d CMZ<:RWɉ2 X†_ /AL.;97(h6Due#A}k`:: ~Zp-=ꭎ@6֖t#$81z.Xq4|bX)TȐýs0>թk!ܕ !aY(`c_#_@χ_czqkt$3y}wΣŰt#5ˆ۩Dj+WBpq`IM]Hh澇̴ W1U[齁$} ~('hF>G( ᖩɟLbzo-qڇp)ú >o~SӗЇZT(&*BPIAzAQⅥDsr _} hQU ,/@#*̹\hY[ݜ[gŝc狞b{.NdEjѓsLeQe[tDR T*Bi&g\ժ3R2 |ّ/Sn_e[1g|xZ{( {/V:+-Qi_K>isߎ7"LV6wPD1I [c{SX:ӝaoT^da n)%$R`sS}o,P\I[Z픇/%NDiXD'*p4~XX-1.p 0 7'w;U Y9g~nCb'1j橝$ *Vw1t4Ŵwʛ_B7IAy IGN?cc u$/͒p?>>Oť!P{U!+HuI(!BrcD`>Q%Hʚ I1LeJD%{írJFB_inAl&$$0MrTq!^6BʢBÄiS}o r!a >~g\r]ԡLeZDe{Kuw0R4-EKCsa"&b63[%2 c6BuYU?<wXZuն/2a޽éo U 飕Zʭ!>6v)qwp<*IU"!]]4] ` שQd\{;qn Ӭu-a5}.T6de Tb)a?cVHYҍgH!#`';8Wlujⶱm[:eT]hɄU4 |d+2ZP KoIFĘm3w*w` Cでn6$[և;ae2}V^2eҋ1_V]5/&eo:b&c2^j<*aF0& YG`?)FQA,(iL]TTujQ{x1Z68èj`j|W# :;WqJ(I^n[FGp:s׾v*~peH]SI|*(u^x,>†neQwEr=Yw#˸B-x'>ڦ.$ 6$g`_X@jG|r:,*s3t/4X/8/b(3Zn ]dIKCRT.S GPeV ձWͲz:08dO\:Z>ZtrIc=.n ݜ"k݊j&#>jTMvUOV_{$́Gv-S#5o(nERސBF!զP. YuHQ0dVê~^?xWcK&a2e1O2X^UҠVB?h?aN [brYkizu_!|_duӄ&I X"^* _yy&daſCV{mAfTEmz:Lmվ 6"'d 'z|SFb"@~E= i0ܴ]2p \"KZ+ F|}u0cn㇒whED 7Rf׸_~:hߕpbjUOcY|E@Ԕ{?&dO8ڂy~v2Gh0wBYgHVI,<*Ѓ MG>V9ɡAP+_)]( mI\˷ʺJM/CQVj5 :}>:X}F2Jd@*r#Nk^.ܰ"4ܒpw]d/ZYlC2(λBUoպcwБܲtBj;ji`Gxrf*U"kn`-բEA*^X7Օ޽wEuYPzI:W^"o"P2 oj⠈ؿ%÷Wsܛо]["VȺlZsA#S?G C rhwX;b5J@"~k,i^kK׵K]҅$luTIW2IEc=Δ [% {d 6^ Fם|O9yUS/=S*K^" +/Gs(Ҡۻp jmZ0iӞ7R<ft 2kx(ʊJJ^/*NOȏe:`#Guy.qw'o;Gum~3INs鋪.ԏr#$U>aݼyβ-DL7Ty@U%c%K&HҔt!?ceVw!7agQ_6Y_G- ,Y4+ CeШUPDKEB_v4OU'zXҼ cܙ![)LWik⋗YoBN2AˁA2 ?0W,sT~]7ZH>0O ,'fPoJ0´ *;E,8N ygf|y)c!M5]O ,\#sD=ڤ#hL,¤/Kز~{8ыu*IbyxKrD,,.^%@tdE1e &lAXa0#k3}َ/-I?"#81{l- E[c{x+<!,znwf/$]. 8 89~(UmnC&>噪씢(^|X oׂ,C Q݊Ox1bl}SNV}Ŵn2Mki˾Iß )G ؤ C &qsL_9F؋7KL봰"# {D'/4ޙwp.-IR~ )Ġw ^aAR0Q^Q{9rGE_R}T<(z?>F7ND![ِzx(~Ixhh?i GKAjEwV_S=-o|KA}Vp{H"PHK NW*O'#k_JwV/caƱ4v  #M^cuFlJ 8\LIqakWXY^ 8,o4V%JrBb)Iцdrg-5K}cuY%4XGqFe2SKKMbKF_E7Vș=s Mu_qumD*`%6%A`eV#4CXRb% z k.,\z*72Oa7%}sT.vTxJb2z ~[Y4PGSCf V̲ny 0]ץ\jSеԡI} [{y6EFwa\f=~Kye%8` ɾiq>+)\P„<. F/J^xI}[e_ PqX5U)鵄Lm[ތr0,Be5tnG1cڶLU՜jV ‰D[IHAs]1 \V!8]?P?0vM6oIn>X -:WQx:]} /b*Xx߼_/W?|" OZ,w IU]]som=lh_*-J>6hMTt#9BEME=$}HRpaX8i< o3?5(z<-G Fr6%˝T[]եY1sJ0~$Dp"kxE>-),{Rꑩ '&R-bԓ00RAgЅ?OA. /T˖JgsOlBĒ(-Mtz`VbBle@> X ?`񙅮$ze7a<3.y Χ;SHRXT!2G^P6J)[Vd\֗` Uj5tGk7is6lSSD HK/ Qn294c.qb1|Dd^lIl*G/bL\MW$<~Y~YB?lc8wߓ(| h{~, Q;HhuyG+n?ˢJPEw@$$YfѻȝK%6ѹ/n`rXY!εjSve7(;vOE.4аyUO%oeNa#=O0Ipxt߃ǃlȕB׹Y xH](ۦJ] a,uC3yյe?&a{o:Y]./l?PLT~8̴ >*muB ݤk6PCEI+_RXJltp{{JJ̛)}gy7Q1)x\,lo1dGRdaJ,"WT[G=Fa\(;JU~an2YʖQ a>4ځdClY7yX/JYׄq`(m+q66VLo(d|w'$Bf5꺸Fňag!h8E$Bxg׆*Xc./܏SP[r~6KN]/nĹcgJxp- l,ϞzXFIB=^ͻ6=Ŕ4f T?aL4' hxj`aCyRaF '(cYF~[d# ./nK;{xkCB;%wW-V\ GʷԪm" -E̠ t[./-_߿sE5>?!ю["ED)0P>To-,rbUvSy+2JOyi 2ӕS'ë=R#r?a:x]=k8oj/IvC=?M5O,2Lq qQR Vu5IJY-F],Kix dD0bi4Meָy Hr]EI?ь _ב$NF~Zjp}0,XU<nl8TEI难k+kLw$)%+ I/bׯ?:%-4P 5-2+3;%N:M45pHuk6᯺ԏx}#6C&IXqk^`rzqJe,QW+(?†Kݘ>xx;5Qa tI^e89@vUKrOp rh|4Z_#4dݍxb7v%6ňKFFe{iQ#_CQNa ٹ]SKu'mȕn4=ln!cۨb#"_'2m&đtLВҩNRwrWMirxs 8kܴܹ`ϋ{K7=n睬2lvf &MQrYԹڔi^I %2 2%pBt;Fjb-Ep:]_B=$WƤRiE]]m_ȡEoetJsh[Xq.&Q}$U)BX$w"l]Fۖ"*S&Fȵ:9:/mނ-W\ u^DzlfߞY>-sjmihN WZP2l:RhB;@de\d }6O=۲Rz*l*O^ p ]E]d)8oR [L+`P XtbjƝ!7!wDJm&#ޏC8"[~.9ó:]m,RaN/$a wPJ2cRb]I[连/yW"4 @'ÿ7H<+ T}]r". zVL!d$},=$~ bt`d`Kw^rL}pu !;)3ߥG>W{!F/Dܧ*_6Ȓ1̏WH:(C4J$v+[dJ$)ċPR1|Kf&1mQE3W,^aY*U!|8Z ]j[!W3@6 #QIJ 9Q1zXLr9D1G엄 $$C-Bg}2ώVքJe|cÚ d߆Ӣ#cWVC!YiԞf>M^ Xt̺6YrG.k{,k'- !gF S^(\ZL`ym}??|Yj.%n{ÿ́`}R@T=%]xMjat ዹ; Z]H|!DP7?r^:/ο]z~|ĻJRb>=60*X֫m]Ey pSycS;Sb "59p$+\wys?)s ZqK@^%yxؾ= }HDh(>y(IoC"cP=UqqiUy#O~Jss%0}]x:^STHh~F`MKQ@T ޺& 0ơ%mRt/>BSODDnV̫<|݅3,u򴴦G%!0! "тî,VeFOli+uUt/= #/ˑUkڲH^:x46tR&Jb\6%B*OP\f@1?d>Z}Դ)x_)/ybC""*Q|id|d7Ģ˴ 6?22!V'QHk 0\R{c7d]ueބ п؄3QLE,hbvq([E/gG{җr zWe\Ԗ%hɣ2{$PNt4o.H7A&VިV{L;a5ܱ6=pkPǀ-"NDc\|}ʈJ !ŇBh| l v;Kkib>;sթOzh7uQ] {L$lTH`A"A_q}8W8kvW+KѤ8Wf jAd"]JpNnaśPovv{3~umׇм҆qg#L˒s<#Jy~J(B(d8 ۂ VeOI]G{,B͒>ePYH,|D -$&si{WEl^|_D& zmlELI Rە9]ĶQq.lDL.\> ^m{ N}ޘ^B`Y _LA!A`D`|48nQ{P#y8bϱ+F+ϴBס_Zx^e5O:ށ.YO!:} 'VZ Z)Fj6lӼG̫6dSW!_ȃ 2]GJ4h+4CXS#l4}y)E[&#Tn;7<0aH:s/ iu,Le>y쭛Yֵ=~voki o?dæ9W.m+vHpXzm A̼>$'VR1я L} 1'Za4=߯_!_ًB+o i?Uֽ¼ ׍N DSe閿]?*jbW׼}*1V!̊(Pʑ! c F}:"}߿&[لMxiG]E9kxxÃ@P {?]K<~huVQ46T?Uv,?~?B5)#?,2i4DrH0q-pGPT:CFvR(bf{gN{JM(o7LrUYSgKc0Y9/8!TDAk6c*/ml3iC3v[&mǝ(N>0_fCWaE@cB]@m%CcBUҜWRL.v ss(,m \w.@=@.k&]'[дukMNDF2"|,q񅦊o2iez<0" $(aZi(،OJM>e'6LI-Jfae:9lerF"/dF>ۗ|k@-uR:2gŧTu87ݸliЗyJ,dLvV52YMǥaqZ[0njcw/y(;QLwMՒp1?}$sfw,Ϥ՚ /\wit1_RQgAʨì~GE3"Mئzt4~2v$^"K{6 D]Uk7D*W{QLw@]0s#Y4 'Qo~Fۆڂ̮5ߛҹ}3Ï_mGݻmV-!zd4bė WAX?V^`F5"egBP.u^iipYf6q&OAX0ri_0mv%HSO^~\\V): )&Dŀ(Dm/AoH`e+ Q_oRU1,]M4+69Jh+&_7e8#3*QS%>xFI EՋ&5Cݡdcu w촀9䆀%肼avLR$Kk_ .T*]=)@z27'21ym >4gcFMA0l7eE[t*; ;QʅDcPO/* q]v-BNwnWV4!B%-j,OT,12fV.!zv0Zc=+=ʧôiٙ*G 8~s~|v};mgBJ"ta;8'.D(X1!N02B:\%nYd)E7mNo_qP}Ɋ$rI  GߨCδP85x)냼 \)smK^p` )<-YEY;ī/ QAc w}ͯ8\{4gUs=ӺdωjFfw2g> L*_*u^ " 0&|8@/=_crÎ#@|=Y% O}lf|PGe5x  Gb8uT-6\[nݺﶝ$||VDY&i9q>2*>3hN nUC0ɴ]yW?$[}q_LYRW GRu%-47%ᓈNIpsglZXfğ_|}X{ ʍ!嗏jE[ʡ$bep$L!teĸ?]j>v\iu 1afW,N ^wx[g1u)^U7S ڍV28,^:g .B.۶j ,+RVE JƄcUwM_.5I4ys*S$}-KiBѤ8lFik4o5Do?#;*^ ہO6Z6{+jݔBQٚ6G)"UBLgxFzL,YbG@C>j| qc{F&O_ae1܂CcUՒ@Ձ\6_ۧKcŨ0e#%^F+7'&:T<_x|(bm~~Pk8)ٽ,yzfYO r[L*Ñ]>AơT &{4~nKR"C+cy?$s-ڍ8w EB<kЖŢ->M6us0LOkYŮV v*Bo]B,Х}ifP|SD1:j+GS,/4~#RtomXxEvl6Ym`KҵX;=cY5I C뺸&HpL8P8vޘO8xoko&l%CO/}U"J./eNr|`Hua/ 'Yi0ۻ XW`i'b)-\i>"URYFkNa5aBIc̠ HOȹbrI ;AJ +1R8-9ЉAC%E |w&\Hpv'M6~yF 6E۰<ϋ0S:{ cU%yxH: S BwZ {ݗRB~N;޺T28?@ITȆi\,rJ";-b˧R-EQ>ڊ;>2;Sz-SwhsVymJrLkd q"$UA{8;p:`|{Ԍ%&ci'-mz%eȨ g?Y#SµVWڻjm`A W1E/b@~iEiS$I^^ސP7MRPYJ<JJuKO-ZeY+ȉ_,GY(l1EWÇT3ڇJú˲9Y&9'v֐bU\$Zad A\Ud BFbp1{+TǤ3>YWgB~ENвoWkkM/SHI(EYndn^գL%cɲ$Ɨ//7.e$8R~N[-,Jq?5d앆A1Em!rDqoc(Z$ eNsV*#9smemA>OFjE"5 #\]׉$bdE_bgKpccoy0w7 $kV#G&ɁE"#c'^9QT  /!-/lJcr;޻Eb~9b+)Fk#فanĝXc*Ǵs('4nj)3ؿnJҝL6kЋQX2|D ~YҤlz9B 1OX}enNͦYԅb޳KNLq.O!0@dTޅ!yQV|p#%7Z&On4uMk™I}ӗYjY&b3†Pᢖk+ߝҋL..B VD5!uQ:8Ɉh^> VOnxKӖd +TB8IlT,Y}'% Ȓ{MXvu+ s|5r7k۬M.rnY'BcKǡB]dAC6^Fy[b1y+ćBhs4ǐwLce䂚ni&VZɌEa)Q$$;Yk1% k+?$bIEܕe#~:rȌC0U#|J~%F I2J49Ӓ3(H-$С^I,3PYMs}ȅ 0yRm27Q$Cv\JBXC"m%$):Zu=)P{^&"fzx\{{,q}ycʐ=3dp$ @/~Zc)֛xJMYiz%l@Zϴv0$ k"[E_E$w:V9 Xx$|޴]ʟ8.-7ɶ!u}k {%ҡ;(hʘE݆(h_{Chy -ϰw8 }~$9j,Jݶ2l ޾}٪PL뺸hI2o]men&Z80,vX6Cn.qxC7L2LyKC_Il YAÎH:9HPcJ ʩRYae-IV/JWwOvFC|,$yI}hb_z&"yn  ,P $)$YD*̐ ዹMܹe{BSy)c17 l~;!T(R.Xh`B\-a?4 (}ކ89|q*BdQBU:.o$Tksȕ>d.]]Rnay8pQ}Ʒ)A?B83L\H͖5n tZں adAgM U;t. J*OT*(_`P;mF`zS_a8QPqXuİ(Y`|88Ď8xޕG?n0(ɟL]ӑxp,0 G_3%*3Kذ}/\.wz޾}R]iɸFáªC=.dOl4ch$'3}+>D~CJ!exNO;-۽5vV :g(ܭ8e+hu1?s;-blĶ2`) 'G>dɪaI%-9fgg.Jl jF JODw22 B,b.9k>z$7EO5H(#Z 7Ǫvtoݸ,cgnjPpY>2icGk+:3䃩05M^Q xZ4NEݘ7 ,s_t_ff*񺤝̆FR()x'_CEZUj3n2тz%VtGT0SOu4c"򾰛"[;oE[T|)3hb6r]M|g~6f6h򿓝}EWz+9s!YVv%0U Fdp*bA.X@g<t"3kZvlxd1aILJø`_ōy PcݥyhӸX8+_fm}_SƜVIo@QP͟K"ãǐC^!ܲ#wnKo%XTcL.8+wEFDi L eߌk?f13_I[EmvOBcL՛T"œ@zB^m6YO.(||ctE]$kpSHfJ1zD~<)ܾ?B1u_?S5˿i~rc+uz.Mo)"4uw`(l()gu X5VvW'!Wȫ D<w)WRsYW!B2fs!jbA z+~Dcc7V7VL/dm؜;ɚgjHCOam2) %oȜ(zZ ycx$zȔ(;s|9A7jf7&囒lRg2 ^QRWټ(CPU VI\5"r=% +qqM/nߖU2&A ~ :؂hD+j>{e"zvbX8_kSк>UQ[h¢W(տw)jv!F^[BXgUOGS鵌ą,URe6fR|)ZQ>>d_eq%w.K|rL]+@v98z\!4 ZD+vU]9wc9?ߘpyReTjF<=j})[ؘ,c YMÀ5+`~АuߗPo չI/MgUJЂquJJP\,P4+@u5oKQ軽c yئ05C| j"bIW.n:r/s#Ol-bSzԑO Ae'ÖB:; wnFn*,~޸DO ]kUs(Q[+A|TL*zT+LDjK g?ȇX-Iq|6i&* aD~v!%[/%4į*]~ǴC+? "v$}SWВCJo^-4s>Σv߆gv*7Y;eqp$=I߲9Uȳv}|rLB0 qsmBʿs* 1N#IʸlFCDӇh*^;M馅)Ux][#;BmzU8 BYCh.0.!.ݏ ,nu_vC+;BVξ1vS “qĮ'6l_% ܁Cf;22űVE'|!+ՔoBmHA2(:>XXrHuX 4oF2.v ܋EKdTK~z!c΍f bdibdÑM2 K%CU'RNPßvnN#+pŗ:243H47^BP K=`j=+qY( Lو?:ƥN[`#֗/טvY:DR$8!t!Lz-xuŢBYAq?!W2wӚ7-;ֱ1|BY6o(e9r3"T,~:K^ޖU[7m .I"&J>ωqhG ^ݓXW=obm!m粘chvٸH{3 [OՆ_d'[̫AZxezyw@QO<|B:6a] UiYXon'g-yU -h֊}-(6VWz!g .bIT 0HI.-YpŭQ9>,?oaIukN;Cq"5S$-DcMNDnG̛ﯫb>tԇ GL[=BU_DD`8h?g\vʇNPʫ؊ wNаSh e9,lfy[C}ɒ)&j{^%-]&!XXp񇤄(hAKFh>o?$ݷGkeW$m( {Y9Y%dA<>D"J0q˲J)YJ\y,8 1ܡqwJc<+mJ%x# PH]#'wEOɾ?ʇ嵮-n6{ $#SRO.c!;PrH GУ^_S( Kh",y?_:߼*0O×,n(>:'l_  _R =M񘝊=%nj3<_Eۅ(Nm7%JS5ɝ(WlBϖ>]77#%rz#]F\2kBfI]i_h)n%j \}UCa_8,uGD:"$oܨI\;Kb w2LtĞ0$wBᶴU`|]mv,I$B;t0Kd$! %K$nː2ePRU/oaDZNJ/"T1;¤\_kYD ;5"mFv5}d:bЍeᗕRM( =B_ˡ9)qVKFV|j-<|H4)mHCdK z+6D#nhYq +۝Л-ɸ0!ŴYfzBE -QlC:Xp8R͏9Txsl,#fȲ$4o%Lt;C*zjXV?! 0X!>1Wt_:/R<ˤMB%&JiҾw5$T ϒN7OG^֗%c>B۲nإd_}Wqb0bZ!i]8JjrPB8_ab2Ֆe)06B{NB>exPf|(dHP BCYXxK.^&mQ!{,$ L+͢hƬ I!h^Nvl?lniB{`-,IJ}C*ˆeםCN TٟXϊEo$0S֕>Y6ewڨ6c spge&8BqzFd`zJ}|Kޅ# m+B:R$8!/SE2 œ@ى Eŷ?T,߫4Ms5jK,`rޥYYP Ĉx[.;;׍>uk&k6iz&o>QH5 }F#M)& ) &)/GeuZbtG:d00EܭݖmץW"}4Ea [ReFq."0 @5d,{+!-r'R97C\ yy܇@my S^ S+yGuVQ| 7 L%}HkEl?$B[CY[/4 ]#I Fɂsq,Xj%{7z},/Ivʆ#(`C &KhɅ)V)I)ެ7_.Ʌ>y%Qס51='-pb)7fBqJìYܑJ  ݾߟ*䎝RQ[4'P|ޜo ayX RpK/WhJXbV7W$Lz4ɛ2i9 OpE0ƒY&i$>y4>ǥHȎԭ ۴qAd*XF#0n~u'`*4=0ٹ}h58*cF"$8rm+[x%wlY7/wD?B$״åb^U: HA_pVY{JCY>&ϛۺKɊSKIDOWX_Dz?ĕpL)%Qަ2 tWt:ZKh"TI„, b`qHxr3APrqQ^%j7ABڗ7W$5M}aUCR5Ai-Ny.]_/%zɱ 5G^1 nM&Lׅ^-8Aօ8zZdjF \8g)iEFAt?mҸ%~>/.QhiNngJMfVϧ&2P^-:`cN)=*c3O qV&);dp˜05 A-o1ޗyP)[b֋ZEg3 "gBlĖ[7<ØW?wAI܅PE[mUchӥ`JET^Hsn{uƭl moYh&1fm?4q|<]PVZjeVn*M2m­ H{jǟ'6Jzy]fLQ׼ݷPVeKUf:OP-#yXXt`cFp%ֻƎ~ܟIJwt.ەh,zx.џ^:t8^{Tӹ1,+MLbXh"VX?x@/hğRk.~G=^{˳ mZ6v5g732'E'DPۉU`XlWoMul򪶫s] S_L^iɑ/ t Q\%^ ̻g*YuUcR% {& Ur$T  >(2. .C,ס>t֥LAݸeʦMRVV0wOWIV>u= ұ:4_y]ѺLQ1~xd?t (pO E5rch)k;sЅ.qO|Eiюݸ:ڕC=Wۙ1|?ue{LsӗQ$]xi"-*W*H "T"~J=x,-1Z٤̏y>ȭkבLUmVk^H-uNF|<b` i3:8s $]3ϗb/8\Wmt޹*ӵ}Ģ&PTf3:EQniH٣rG@A_xğ0H>vs֕i흮yXy+6k=BaZ aIF`CWeNexq7Gs3yh$%*BaitЊ Bf!H!;%G.MͥҡfrSII i4*[:@,DvDbȏ/ҏ|rw[7nN6I3<=1=*qJ\]^IV vSo}-YyEa)Y2<[MGʦ9C7B,,Lq-#u\8xZ~xx,]k ]sM >U;&(Oh<^EwDg[WjѰexnNf({V$kF]RJFi"DbɄWӂbbyuE_ǰO2MpVM,G:0dOn^XXH\Ӱ1DJ^@L?.ݖߧeZO@NKsv&tIV8Q̩Q 4u> YueFY>Ug4Ń7h?4ayY`W3$^h -X(#֢ŀ_*_ L^<W1$`8)I..ц90b  p%&ܥp9]W~iAp7ȼ}$۸eXG;?t^OҖdr,mͲ6q^0cYE0*0Kq :S<@?g;_Ru#g{/ÉI(M- u'sCB(~ HO\{M4<\w^O6Dvᵌ۶Sb~y)9m=K,Hld,\PâhWn.bŧD'*uV;LvZZ&P=Z4 YY']T0-SN>2Q O:ֻ-=&`|bS;&k'Pᧇ.,ur,{5HYUF\MPF >bdGE9wg߄竚mlP*Da"O+kL˸ 뢫ˤ _C.s`B@M"0cA)T&3D%\B9Es̸z8㶄p4-ݲL˔3n% A+dc{:%C 'bNTWd_FT2:CG(hVv>-;@YDžMq6wR}DUlJI<-Xې?Uvk`dE7;%ŎL%6;1 Œ^}uydU'y_Iz \J_x%ccO\0[Yx@Mrᩳ8l9ihws/bH/?g-m".?Z;Pxy#t"9BH0wm|6a\6M^x(l)?0Q-:1ZRl`)p_82`GLsHǮT0ܹc>dEn担V?#IS,C4c6@3kMH}ϙk.3a8=1HE e7dK0eVg`u+-'Ldj[ bbU;È)'L¬C8|4}h{şIIgWZ2e~IM)MOBAd]rƒwR,Q 0 ; ^)m0R.9>XcT/ 'TPL&(slM>`a]T O>J*MnzchTV Sf<ёX >eR>4LaUA)$ջf*:2nՋqdU\U4̡#ð吱ci׏gp׏;h,O 3YEY)Yr;^bgC3H` w\l䖥LEŇ_Ko$ B@KCR冷:D&2C Q O3U147||_<>"g//=µUb>(tT|)\L!ͨ^@ &J B z@ Չ'{r' mM!UB!lݦ<F|u_L(Bl0BEљXzcAˑ=*>U+(cy"(CJ~;aK[~!?e3~G~vZ)4^oHv2wWjpD#~ڶN䴇h߶_a/5zpMkᆰnMf jv x/0hJvRfU6MNFV9xZQ"˹WGEʄyB<7lUmn2̋]VyD}gm0%+=%ĸLL88/N/q d_?I<^"; 3Ar(TlD]E<%Wia!j~5aO v$_3p"]#MI˽mɋkˤ̅P A:T[[!BT RbTJN.9M*CHW3$lxݲxXUi[Bɍ # `Ň8Yz͡|4ų쥅gLZX/EWyw ]IT ɄԶ{UA0m0.Щ+N[ȵK6( ߇eN~ /99w ~DL pGDZ45KQAѴE"__בrvoJ:Z]TGy&+ SUH-`W"pCC[lUЗ RFEe7.t-㶮w3e}n)b&urًx&!^ԉH p)8(`DY>&M79U5o7ğ.^?ygH'fs^ɵ=s KD^UM!9/6F%UrV;}'cd1ީE#m92#gSv*Wwȫ](ͬ= dUG 3CqS_r'3A[Xf]桞Ƿ9ܘIъP\KDVX$kSZ/YtKZz~`ŧ@y%#}[?6NF;o7•dI>?e긒~uŽ:I8n+"HNI3)@k'F6Wid$mG3yzYm|Jڗhq` Ņ,*>yPY8h7ֻlE2OC[̡Y% B͏S{Oma2ޥ+fɪ*,9%.|:`C0&Ljc`%~y}+fn*{wʵt]@8B P8N;]3'.r~z_P4ii1-JWxՇ_P_yDCNI:GL,],qLdN^M݇Z]qNw<T1$PZ{oc (svZ;GwpD&kBPЄIPT9HF8Djw3р+ q0s[h6VS%r2KWE_j;I!<8-4Nhq竛wr!RADŽVߵP}Y (QzLܽs=#/뷲MzA䂘1!4ăo!C;ac0#1H:|ogw>8rF+7M:/,ycȀ Z{XXԈ37k}8rJ$4kvŤW簯w"IfPt%D Ĝ\D(B&9(@gLṃ㷮$N (?N74hXYb$FzXzGD Ks_(s"*E~jFT iIN^oI)z'AY9V^"zHe F*yv}vn:f^(.Bt]jnԥ# IeUFn.BHǘ=B-^~ގϥdG B?bIwثPtx(ve'X <%I/irՔÃ͇/dGzY>bM?zh 4oyh5kL 8܋I0۔#¾_^Jx+$z<pi n=bv\Ԉ]S] &DGK P)C S*K.f=iQ۰FR-fC99t+sԛwBcy=auVڲN2Wš>eM0gW# qq,<[%';B~-…lf5t/2Tܷ)KV{)rn[" UHhu0B#u0Kr;X4[wk=P$|nK;8KREcbzVK2i AdVeNWa,$ʋnE!<))ť!Û]dEy%<}tKUgYr؅duqM8>F:~EwNdrO-:==6J.݀~əlʶXCE;P.XR_qHB 4f]`|L^bB·d,'sL$Yu%["RQ, |Yq\u`<'o4Oo|$|V-G%aLJOUD8It~fWV GEx ژr+X1*2&q؉BJb| JXɫI2ߓ sχe,O`BâJ,E[9V5,4t%# 8+vHDH/U@ȄgU +bj}yaK1,¡_?^cl/BY }!I>,yܝ)VNN 2B:i:.!nHͼcM]mNH_Y7!u8`U+x$ A&3R FcJI+Bۼ"S%]I*84PZ[‰Yhe/\J7. ̢6gKbⓁWb3$/ #VvC\j8 :c*\LX&D/V v&*FphEeoC*"`!əh/hr1ї2yx$w8U?; 9^o=%k_|w⶷~ٔs~zS=QDéH_`BrD$ e w 5rz_9Ae)Ld!RV"*3Jxr fm?8|,mm銺M_dSsvjwAgqَ\GB[GaZóMԮȐoY.C -ʬM)CEϒ< Oɜ .g Mn/. nd}7JWWHy")\v#W*N0 z`Nytg πNo!r:cD&%FH P:A@Aު>7fk?d*O>DC^'.exyrKZBdS,Z?0Ú  fk+|/<0JO"<;dLj T4JMۛpH𧝚)o(Ǝ H.^`9l}1'=qp>NIΩ'a[TRĆJ׹è'ۼ$0>/$U" ڰF/F8R8s$EE wک}UhI_C2*c7a,ǥL"dWK2~<_@| -54wW53{Bm"Z;c4UQVi4enUE1Ma,K!+ 㗐ٓ؅f{H~r&\:~1\ae_Z$ UAep0 !>`s)ľO88~ *yNzڥMP~mp^h#OH$zZps~5ሄ [#M qbЊݤEh\U5[ֽh>Y1&wBM"lE(I$@@퇠vRYICy}ѩsR`yH܅! PSK|$EgTcO AISo6QE̟&`;X0PYYyd}꼷co[ucV~y8,&oNoaI>*G?HF(t$8BT,lrUWGhVYԶ65,,8ye4)==hqQ,\LI|&Zj&6|w㶸!>[x-4]%)yHz3*W`Eh$3_^XU,/lhCݘ^=%1h\1{V,5AV|~!_r0o'9?Y|4}Q $ mbڤlZSRk=TF;x[]tVY[ID $QsL1ųl>ƍ4ye~6Nf㞷84m Eュ:^4^I)$],@,61O_a"EsFܤ!`u)*0#L[ca}JV(e@ATd_QІ۫Y5Ӳ|˖Dz0WK(PʪH2#$;QK&` !sd.+:lVEe>BV#B%3R1< 9TolĮ*C|9MYF{> ^4(Dh$2QϿ.>3g=Q(b؛@ Ys~hm.%{USCu~=C Si}cx ĶxI(WM_D) ]! U_0 s kV<"̑ԥ ٗðՊE%q. ٸ>S  o"�hAlwq0|.`Oh8vd/wC^jCt9"9< p = jfa\Gh%R+!mW4uU'LK,uw2@Ec[.%pIaϋh-#~%sge՘"9< RdU l"3!8[#m3"T1#jpCK}&iĈL"~WCzfeP=omXYu]^4"U;::1nC/S0ex<|!LD~C&˪(إSǵ'`>~XΖ̫M[4r1YB0nCyq YLfR.\3.L*uB;;rϼSB IC O{9ېRG:h:uA)$c_ ,m7CYeM^!k,K ~U6/Vo,Ah$ WnLy^.+y_H ]]4m*<.ԓ)HvmS _W8*#3X1ab*7Iڤ^ױP"+?8$Cj#lO#?Wn(W">̚@echf͎]h(Z]btε偱~Bz -V, S 1\8&Q^46?wqHYItCy\p:FDN2ÜPp᥀iW.3^%?͉nqqe [uuϷfnLhԭ!\EE1t4C^BfPpK#a6ޟ7IoH<f}N>ɿ=cXWDRNz JⅡ'Eh9걸PfyhM>r^~CضlI;"D+L׆ZHWDZM|~$ mGm"w"}?R"լnEwӹT˒QZuMB&հWlZaŒE/+}Q+mRʗRUe(&dS1oU 9̹0MVNp<-ңYX%KːJ}35E?sUuϮ+߬Fedaez\8V$S֡ &FEb1~ilNkvH_uE 0]Nŗ怡9 $> 0⭳OD>x^1 &1m'--HLAi1 AlY\.ɗ c޼hyUopy&ŘWisRqQ >f{(3+_Ko~~uVb&2hϪm :"u1u-c/)A@,-1tӰqG|ʜ~9)1)Z)yz1nA#]l<$vWs/Ց + -H#  @t [} *2^Y ̛[RQ7]$DKq(#(:b#U) 1$':?ҡ(-\nJ^d! #5d)Zv# bt[yJ~2I$PQʊXyN:m5E!`>ѿ>3U81iu+˂4JDVSb]ǝVl^LxY-,cbBL> gM̹pNҫՃU Z\uĞ-OUN/- UҐ/K,C W0-b(jpJ͊yޡ]Fφ~֤TT]9Ji>`:/gN* a0vT|6|}q̣j u"Ԕ^(Q&A&v=ԚGci ZP8 Fj{UZ{HSZ,#sM`K6U@,"~Af@=%%.MY&?a}|:ބ[d<ݍɚ 9BOQ(Oj"kQwI7̿Du'bezP)#,q&%TɡǴcX& ‡ނةɮa7-%ֹݬ% HM>DQ͛d$nRMVnD&/o'<2Q;;%cU*/jy%Ɯ;O Kw9Uǜ#.˷&*te՚Kmn8sZ؈=0}zVڟ߇a9 #-!-Ǭ* h>0w3JB[O.=g:B4B[]i{< mLE*y#}mº:ZJ¡,CaeZP\7^x e_B6 hqȑm"Dr# rKeЁxsXZѿss'myh([m]'"P zAwk?-4 ߑ-ֹ;(4 #$ЌՊ[]9W .UN#`ˬI6}^*,mӟ W[%z&=W⑀!dzJly&3DFRą6ީ#E/.TW~$FK㽶|`cSVه>G#X2KZi*oQr )P<>NX,ش;5 ՌQ?1¢%-:bG}eJ l|>sz׊tm'mi RYQmFe%&b=a.n(vHne[]>B?rPL:$1хRˣ}ޕGυ4aEV,ñg'mz[ͅopY.8mLD2 (La~-XIfz8D k`9g'%vwo%$!5 cpŽ eڂECghiH,GC -pPE.6th[#֙2".\>LwHHm]ya02$]ר(51^;lIq!5~i< ykUm][V]`Y3O4#d}>tߨ Y.'VA<^8dI!X"Σ0Kڼ=f_JGܗmǼѐD UC|zoa#A`lŖ@<^EqjH$ؕCd 6 9/lo=qs+hu`P.7t X(ϕx$K e ɋE.b.Wf>mG(CZ6WY HU_k5&]`E.e}xIMZW6e^PD+Sg ?, %g!s$z#Ş]DL|[`7u2$Odm)P:~q[+Zu2. OHemɢb7xχ}rL>>tMx'tm}Wd{Zvh҇c&F}|VԇC$d_XtL,"bD{Mu%%,;'`U(B!>X*P2@^Kw;,$˼k%+hU4NG#ܨQo^ܯ_,^=}WhVǗuM0_)]ELBKJ28P;/%nE6B P7M8MK1 y/볻xUzSH&ĸh>׮p2]9 4 ?1#d믎P 1V]qoDʒΜD몚,!:eT5TOjGz8`j1!qGƒVI^5ȍi&9'C(Cw&!_r;EfYiC$X^'X~BR/)mDzB@PGg9u}>͛]Ҙ:źњH>Lb&[Rc +k?n]pщM؉0:mi<1$ie#KK]JMC잶O`ы\|y1]<];!iV~% oNW;pS?ɏO Ap[MxM\WC˝ WCqjw#@3<0s1A3'!}J6pDCY~%>\ġyD?cUQm"4LFUwA1 sr!3<1{Y|O;K(Ck R.j5NkhcBw=C6!42WŁ!B'v_ga ~!f".EV/ D"Rb*{ v[8т"\9 }#Z%&Esɢ HJz.-HBmU%wj^[2Wy(ې(qb값zP;aDY~B̂ZG0mCOKvr=o7fme({v*eѶ&Tuឬ~j4ȂE$_}H~?Ss%^2/ KxrVV牵>^'jy77?BnPx6پrEP'^^B]<xoz\yNØ~03efz~9A{[B+CAPe$yܡ'|+*,IW)яy^_tLm4+M'!;U2R }\ޛɵHj3#:d͞LПL_{VF:De)$c!D![m>ZS*NcdJ&VF 8JuUb@nU'P|R- OPOˊmMPJrml Z(҄RM\d\## "V9RD>HFbIUv+xiսӡڟGn;B+kJs^<(I= ӂ `fKvVc_ 5vv r}Z0aY[Jt*ɛ6~"$9d<h:6':2=˪3"6/}{, 6$69B5/ԮC)<6 `.zQ28F/i_ǻ+u"^?IgTze.#RI: @\+1Y"_LwX/&Hu7mL,,OZЍT;p4␍Y Vj_Ia+U BSU,+;nw 63~{5 8Peԑ' :E6>Yy]{w.; #;;C)UeMHLT9WB##{% A z9_ނr# g-~~wfJ?)#C}f7w2ˤ̝"QtPyh0sdo£f,mI5c~>e/ùYM9q\y)x e>5b9o'P^RF#|w( aʇ  ~Dwq+7fs5lv+; )̌f=h/SO 4Z[!Mz sD7Xe13[_EkNΌ-46&\BBx%SF,3᷶K)YzL].?L_Zl:F-r^dCc MU׸1bpzv@ {PqiX*Z4(ƯIvP2F2DjrsoʻxB8ֿmfҞp)t fZmf[xm]aַh2 x x m42O.IFG5j?TJʴS¾cys(M$u"j"Esz09g :0zql/S*%QDM_@]++lR$"4҉} J}'rC1jsv6`%QP$RTcA2i>s~z؊p+ N(VsXF |iǿx"&fCc4$(69ض 2vY\b&I ڲ9ZwuCNH{ zΫoi%7a)r!0+X6r^,÷5 +_wKE<ߑjOZU0JK|7Z҂8\&OzuVK3fVBSusO.pU{+Q} @D_oTŴ-He_.Ɣi up8AI:tZw??UuIFx])O4 CTt5u6DD7O0x4<ۍL2+߲qzs~^7?[(gM+BvvQLj,iML ve -/H 3%şW4IT|.]7N%p- Hf_v21eW\jױ4} P/#ǫz2uY4.35;NO'PĦA= Lq*ΦLQ%RG?-ӤbG9f@Ne#h4'>jC%ijG_>.Γ=ٌĞldv&lua-O/|ood}K:BKB `$!v8`rwYAYI.u̺jS~YD+"Mah!d7 Ca@#;8^G Lͭ򮣋L܃dۦũT-@n]U 4BBƄ"B|,C|;'`m1hvҚԏMRvj*j)*eXKo]J12IH[Kqs|y+ uk"ڦJ,ӶH  10 N ʛCL!T Q=xќCSC6(ڼ,N9p(GF]A?NW17jR9Wj7k|_i* #B+_5̦aY3_J]Eo3DZAKca cu6Tc'>A{c%>]v/]IޔqWr}UF9֔ ^RLYJ?jp B]Wok0QI]˄FE#^X hCGڠ m2{`9joj0_*5uD<%?B۰[;|1j  %sN{$?喻HNt,*},Uj5*A47S~D(?F|%H+B|#sĨ&?)oɴ&@X{\ ZkYP<3^a#43[6u%J`]j +^²B1>`NsDC y1"`Ȝd_3o;=1F 9#1R*mCsai_n.LKZp꺅d%ap&2#Uŗ<1vU\XHLTXVBվ *xr>>o?Q\555ᅮU55`ƯDMa+l,?52sѕS0o`_^ 1mezIdg5%~^x(}!ҷ/V>z##Yn=Bgq"59|bY% !:¸ T"t[P.1x$fqteonX%MtcʢQd\'^6Hs.UueZ_8=NGzUU:~Xُ}>sVLf|׿3_YUO8!L/$q戱A'š1G6#I>#[3QH )`?odQO뤨A+ S.Z =P_+ #մQ3.zѳg.M (K rqj ʇqZ3v4I߷0ԙp ԑ%]Z}]\3ĭq2!:+?3T;Gs3I=_C|U7䷤+id ^@"AVX; XFIG? P}t|w5i{,* ef-7ICK_| |=0}E ƍTED \!U2ZvPGe8K^Prp`O!b=o}`>ϴ\:ƿ4ߙ?N1Kl|,AR9C+Lʇ6Qjc(ón~*Ҹptds6%3ƱXH쐲ER{UR]Xn|sÌ v줶 ?o׵q4>˼e>EFߕBT\SZu!J~)E/1]WnoɕpWhc$ljHJozkW>ϯMDZ/Zh& =gāpaZ4`)BR7 &IiS 8JTDϰ֟^``fe-U,Wk#C|(7+rb+6a蹤hqnlc\rMjǞ0IovK3هFOQuVBei,dgFCRuY&^Uz 0tVU8lS^:+| 2uy)rSd8R#mdĆlmu!I/z ,x܇|y|QkQUQsQ z )b@zi% 9B`Aa> j"ŧafr_qwb63Mxy躱{S=LS;9!8h bRuaєtCGh$%ʘ<>EC)aotҔjm5nVUF{94Q.笓I1W[ea?Û~aA5(7-Xtχ×ȓ87i9BU0Q eEq%)qZcy]1m 9qu<[/m[23h\z.XŶ#aT Ţ%r=ҡKO / u%)2Ls`*^RL9UϗuxRd:;x7ãX )\2,sD-D /`Nt/]BTfEweë'=a?[!F^ikCmh#aEKFoH)UDxҮ84B`r9{x)M}f'~ęDnIƧS6%Lg7(eRa9Ϭֵ(d'41T_p};j3ȥ!>_Q㠵:(b dg+.qps#'.c%bޮڶd3 >y|s,LYcʃ`|\+e)da^ ܲI(_HV\>|owK게:6n~Z5G [`֪ nҞ2t})liUE]#* :jX[ SAoհCcOw׆ͼ˰6DK>܏8҈k2rN ǚ $F%߲S> 6I0=߽E '/ :XzK@etada> .ԏ6zhqBw5FհG{8YV*SPb嵱"˞6~[ј'_~ցFrhW cCLXPȔJdhb=4 c"'5,MLW;ٛL|kUY$JNo7ڳh|/Q6 |qs'">dPb%7_yn_e>Oݘ2S*ܓ qОHQp\Έr/5#w&wK>Hyf{U 7XQw}&!8\BزE̎ m2fa8e%Eߖ%=Bci'_u+F6G3\ 0 ._OZ3pWd[Dg]krl*"3$*`lp0 S7>J־8#2[o؈L&&O7nr]P ~SYW, 䝩]V](֠^\ugT!i'Qr;WtQb ~s%BA2`Lkŕ\Cwt]5G+>olW-;N&JXkaڃ>B鈞7lx04tLXkw3}~^bc J6D} jV_JQܒf: ge'F|d: SIP`y)Xe_Tu .3<,WgUD 9rK4튫KUA+*w_xH E+K,q Q^~ ⥓c#߽.-H9VF<=4k#5M@ܥ2˕ ƪJMfp;&89I|7FlȨchi1tI=vQ,cٲH|-!9XT3;t!1';q*Z֟8j[BmȜh1B;dhՈY)TE-JVxNӁ@f 04\g39I[}&cQ% tA0"-T$ATUwCЙT3 *r'~pDpx!N0p7$4As6SNO{Lҿ>ׯwCch/cKV .u $l2U|x3yK#VJ"̠'f :?}9VV4+ӜIE 8VA*0d*'e y< Wrȯa2GH`l ߖj,5F^IFe}tZ 0TTggq.A]`y52W)'cQ'(S` .$jp\Fb7ɉ?qsϭav4MܾǢU}8-&:FEpug\6a@9TX %@Xc꘻f,0 `p6:byKӢTONa/x!Yu# 26_; G{:j\X}iZ dl݇މpY`'{Ui&>h"*<456KsoG#˪2˻M.oTT:\/"g1tZl44lhܙeݼ$8/:z%$i|XWINTh,mVh"cTh~L?Cݹ|3HR=N♛+S+:_DwuQ q" jl☜Z ^6Z~=B=.И6;^cVux]c.|-eM)m\=G. Q Z߈~  垸+^ݾk!DT3>O3j!Y W׶%DzZ8%09WN`WYڇ$jLLjk܌_׾߾H|>}u|f;i, :sFp I6څBȗGy_?ǵu`I#,(MOp ÍGm2}?_d=|yᏲ4'u:TQadf*pV5?+dxyR5bۥVZ"&p'3 ƖG'ƟF -j? !/m{)E;^0>J#LxLt߉5֌8#ŷ*r&Y"=zrAnYD20U C C+GUW]dd͛o^MQ-i+hTJ;yCu}^ Uȥ`+xm{+x҄9B+fC9yi 7U:fkЋ3%4M]FWK&4~"ID}0"MPM%Hd;` 'p%9L*%p-{HfP:t+m}=L&)FP<wzWm EUD#^r I[q|icū̬%oy3X-|6FDxXz ՞JY i.Do2țI:{w2ܹX>M$8PkdV ]PƁF1_)Tw|Tsw[f6<\GhyX҅(8h#$: EE<=>h@7Lj GI-a«2O6"+cP!43d{]N4o3#\fS~nQ1hgWBOpzT?KS <Xu8:12;^~Ccf_X9hP4IH0_v6@ ֗x 桹,>"HxY-"mn56̘YۺI`zzI<|F0TKZ{wd~t~=H951xr_f1 $i_ F|ʥMf4ҭb%\DcPE~ٟ8Idd%Cs"Be->tM 4iĚR.I?UOD;g> W#v{BKv)E[Q}QM=|H ճ7c4oCd_g$Cy4uI4x݆He^13d&,,v8B À(@*C2wGHGuuGyM(,y"H6JC& 9 Ё.X$aj8֕/ 4YE U _'2̤+żmӝQkɪ,U~AnVMM~"z 8}{hf`x`_qb; nQ/p6keg\9R*6]ȔXƣ}4ݫkA"ImY|5[0Ο0~_?k]*9Q eVc!YBRT "cSSD}U*eˇuyX&UK-.OAM@X7ʢFroϯl:n--4vHGG?f-yiM;ʂ܆3;5bbE^KgE~qG]W|Aࣰ:`x!℉?.E%q9(UIPVE(Sbf!0:"]ZP֢G&C=Ui,eVfU{іMV֖r)ʢ>ԧ*")E|NZ7.-8Fp.0Nm}YTfHw'6t! EDE\O8;ם(>[M-Xr?sCxWEIkl3Ŵ> c$|u۟R07gM^UMAyinP4H* { 4RY`ʸNϒMX;V-${5l<鑋UE|@ŚVfHNRjY~R}{2TeOD.sRj-kկT5h:\ANt~lk|ͻkc#Q^/۳o@( P"Qc.w@RT/ų_asOK% ȨXTR%}dŨ`Z8-!2i1~-$Ůp&U4>ioq \U-1 ;43- s#YFO˰3ylҸ|cw_ʅѮUdZiBCzq|էk¥‚qjAݕ=oL|Ck9y+xe~UtESDTWHo #M%5€A)łcOY+#݋BICc 7ɦ{$O~JnfMMפ/!@nVvH$!-{ixm.Su(wif1ȡ߶;ϢS}Vj+b%傉3.@RϨ4(j^o╬DWOֿeN? o{7L[LKKBCү QΗGѮސύr=\*՛y}rZ5jYo'ٌQ'[@_ΰjaww*Zvv^޾,RlK?Ny]G}SIM%mR>^Uhsm/#4D̫ZX!3`,iѠm"S1#O2YPj]h"R%q=L.Ղ  <1_ɨsZ24_Fi5ͺ~Y[߰_J_U2W$vϜ*-Rh+!d\NC$|Q0"eo ڐ=eF++ :0FWn@, A˯L ]X lq%r49IV1=1\"6p"F =ABCa[ߛe[I0[O1C6KxOQNJgECr#@0$ wA5!ȑ+rm~aj}uUe4lNڋ([d-RbKuWp W%>;_ U??χϛh^k'yTeVOwZ*!r+&>v鲺,oU#A>UN;VP cU&tNzv. t˶YrlItTܜCCrnp[i^Vit=f4gۗ*r'3ic-=uNoBBvI{n߫ nW%Q I_Iq5u0$ t!5OGNy]QrBlG7T6*q%g[IQ4ȡ;T/nGĞb&= )Ao5|+kˏ|w_U#dn6m!,Y}IM, @T5(DP<.$lGHnZ@֝V ׯAxTIt34)Zm&MuT08D@>,]~6L&,nga1HVSj1]S4}q}7FMd.;"_ύ~=4/.:^%]WxcbLg[^ 0 bOFn@D<)M?`Ѣ # "ꪊcuت/|AU)4>ږ_z"t$Nΰ$'[g&&\Wμl= CNf5Oj:}8! @;MHbo)BҧlVĜ؏2tL8YC_C?wBd$CW5O>RPK>}*!N8sWԒ8>ĪXW; rBbU~' kBt h?9Zi'Y˅]f;ڡiy-I]itE: M J-;csN?~)0sC0>퓹̨i:o qys WD{Pv!pf'4mȝ|nWb}UYittP7ICrxXC̕_$ NķKn{eXyA=Kr3l]Syw5 %E9@ T=Ad[8 pOGbYWqbVҔ=Ӑ ]W.Cs WjU g_dq$WLru#n7K.2|f+6zׅ_Z>TIEbAσrG7ЊIqP{J&7_(d};2BfםdK,|6_&Q}XwY]]>ӧV'Q=/w *#eu@Pw 6>˭lH 5hk@N5قU9NK@m$v_\(Oֲ?L`L2EOU@oL B߈Y2pP^'$Ӱ֝!r$*ugXm3'. 5bH/ 8 kApH(9>hn%w:ڪm(,w-QV N9 7 SrہPɎ6F2ŗD<@Smqo7>TfѺuo bI[=rWy GJ/@2J(7W}'ś)Y'Q삆k`^0>qp(80FΜ) mh٫E5iC_ida,ޤ2{oʎi(ndQ )UJf,[s%ʵ; Yė3d<>ɧc]ZMt}~#U{+yZ'Xq?3,y=b 3dkޅ"T^NUgĞ\fǣY9<_A~d|i`|/ؔFomoժÐJD|4tlkeWAR.JZ&Y^7Q^KdRcۈBRr:CRLJf/kRyp}uF2_QXaΪayG_#lX2ͣ0_Em?.C!N+}@-G6N"u1j4y_HW!rt^בʸQ) x ƸCP"WW1>zZf%; 0Qv=Wh38?RV$d6 B݄RRo`jh a$ Xtt9 "oFSpʣCY0IJ2 nG^&˅ozaNO~l sJ!Ѧ1\hSJ~cCrW[Ωb |"4=aH2LܬMzaSM_u;d7?U݁}t2+)[宴ğS1Иp ӝ?}R~~OTիǪ}?0*i(qNz#aK`1+J8@QBZ'0aǻ/?3[&tM;@i&1X$ `[!!K<ttw}r5 Y!JBV((64v端)n1Jw܆YDzLn G Ƥe |EY I_MTVR䛒"\kѧxF;…1.R(Z՛ YAwɅҶ;(K_\9Ks`ll,-ɐprk "!f#SF?/u&GJ7;{PZYTuPH]T qgz@n-PE%V>i+>~\?џ{d½%M( Iwԥ*` YnJp&>n 20h >!ˌ7{%SPv\s_؁L#OU\nQI!mYՔEToRg %Lu..ն_.i`2*@"tQEWU@VR;0{SrNP5s2Kov x0oKN|"K7惗ѩ<ܟe>hdN_Zvc+UX~hW!y/8XL:J`L׏!~Wc5%X^0⇲y# 0>]Nx>%)=n(HU?W &닄i֝lyiX3BYZ >hq=1ADz9{ϘꡦKzMgE|DMݕ 3Aj`lP$_h j E-%kJ/]T"# Z+a ^6J_{xˎg~b` 񎯟p _3 n2bmg-du"bB#]Ȫ&jBCHN7 B O^7~ULafDn>ǺIS|ZXvg[U&KHIQ6? Dd0_k|(*d3\+$;rrM}MgևR5ehd?C7a69nm|l)IFɥ Jޮ.Zćs:AB%mG4}_z>3MSٽʱ0vYv*tI2qw3@~ ,O峐ɼT)qwBM)Q眔Dž/Jm˜42F )-~ n}?nWSc|VEw}_f mZAV+EB3w6}ބew|2 (WnȢj"XUUB K͐OMsVXZfb&(uCCjz~AߓQͳ(Udŗ6۩H״K T&@++J 7B~h鵫OkG՟detI˂-HtMOJˡ}>A5v3#z^'ZꢌխiuM~(bv Cy0D޼{hջsI%s$eJ ~6qt߇ʶ2S*@.,&Ӛ3HO8 NQRVnՃI,|Li$ar =xl\#E+ᒽ9TFȌW_!TIYFy; σc+Qxڔ&S"f\$[.'6,_”S-aZ˪"4fK։1Xbg}c2oFC <{4_>ZQ k^ƐCa  c[dT)Q@8OxQ4yuѵŊFX h(pX2d4Y(Y5qroQ7vRZRY$` 1vpXvǁ Q.ri0O4Ĝd9ڿ4mj臺WlTw`=GY0I~]G>SBI|_}{|HcjfIդ;C*V|Rd{``"Wn!eøV4~=Aaj,ie4 !/_ ݹ^]DU|p˕zr#ltF4>0:n rLԦqY2Ld`Er]Wt!gGV4ǯsG/Ji徘cc}MB V_7 YpM Y;HfOHm s͏OَFs A' j_%5XRQaIqeŎr MB Y `MYz*xuٝ5sc?}OZICHUpSő8Xk벼o}XGH2Km^#ܺ7nUut<[$SD z$"/%/;4s|9; )exa:,K3/ޗ,-ȣcb5dNG C%T~pzjqwS|Q+rn&ci,}19$Z޻lv0э@XTJl*%0qO_s_W!m}͒" ިǠ2$)*/h݌I0A*'8)DMzN5 UiG3[Pn;{aZWAKU;>k6n2D-*,hAQ9b $1 h,- KQhqt?2j !i !VxйMf u%z$J\pK^ 툨Ѕ'.V²d˱A0t}>zFSչDeCY$}M7~2M %4rǧ8 tt9ɀ (\dXcPD_f`ugcf2L$_:;"a_{wi*0IV<΂$مmfSp>質nda:lDACu4kX| PR"7ήu$@P~]÷([2bq<8ꮖI뭁Ԕ|j2|aT xAg#v*32,K@::-ȀfqZ8No@gյx8/&>,򤍳 HJ05HGFxп,11O.ysTt%vtP\ɿ7X#/"7"LW:/\amxmvqK_s٦(R?|=_ԕQ. ͗A=tZj# -?a@ryn6PdOFnVRf4 BPgP! bѲGбjwX(1 bu()&Z#9eWې{IDFޥ$BMR[ASEW WLӿ}#/mGg.+HuXs XPzTb|c$Ϳ2w6ˎk#~O+ fl^8k;*ݫx5ýCVMԿD O,Viʰ  rGdm&Oy$ xD N#AXIM߷ S]/)Y8WU[hC;1W 1=3!jk0~ҲȚ" 0>iBʍ.8q'9DHCpV v|Rpoiw 9LZf9IeE=7)(, ճX:m@ =t0) pn z~.یGȿ$d}o|VUܼeWjAcE!JY8@ 3Em0,B2\0~dQ=3ʙzONhEt%Z0vٖ_rS8>sw 36;rۦIheɝ*w(%IGHUehd.o/]r T63dƒT(LrH!eΩ~2d*}Z&ii4^*wLB6ei-YqG;EnMD-( 0XVuNfb% hj=w0fي5[rJf?P~}R|O VuWIosH0/5 a,#7n"; i!X 3Y׹ZA|JC.#e[w7+$:cSrw牗"u #Cmު񠷻E1sv}8@x4O Q8d(r[@_Ūv2 fZH* RD%9f WA||lӷw5queAXՆ!_紏0h So+!+0]!SծӢ'sМL쐽J7TKm ­4<훺˜fO t=ipvk{1(F8|WF:m[S?uOo!UKd@o]T_r*LSpjrjpXm p6(Q̄-|i)e]pLk! \NjM1mwu!=X}`E+ <IIgKO/x&f0b8nh٤uT*$ȩ,pZt9䌉p7<,ew`l ̒`$I)a30,c?aH.rɛʇ<6]ٔ B/?mXE .0P~rIؿ0 ~c fyOuXzd5<&W8/Ta^VJlwP8t"֐|rWV!FuYtW4{ޟrA'1:#+P+޾5;R%H0uv>(zHqX^MR$Y E]o%-o!V>vwrtq"@ )}ZL8g Bo0 ;*kXSMbu([7p"Q٘>|y"ˍLi)t&B]Yq+I~"gd̡ei:X)6jߋOn,ۃ$I<槴a2j^r~U?7: @~9݁ /~7ʰ?qn#/M*#K % \+UޡmlOC/ɵ~s|VU>:TX_<(}UDD$yձj&Y81ZZ5҈/ne?4`f[;O?ڑ{㜽mwgj~6]%1a4"sR0c0-G ːms*&t|X|2:́4|eU?]ȹMѡ.4]ߴK`TQDi!_EvunJ]^k:?¾مGe&X26ް(}x)Yň@B㳊}BԑO$. i&ͱF ]RU"djE#eIvV~e.%iEv@ȱ0 ]갋Mܺ}zzwʲHRĤ.ڣqpU >C j%$rOA-m M﫿s[/407W 1_dU X#Lt%#٪].!61~E|V;wICZo ˡHZ_Fm(u`s&%qAdXEJh?HmޤeB_I,`cx8l"z,qR[i'_}[.]*KZܹpJ2FX"yՁja;C@8Gt> e,4إh8{ƐHqcg;QmےKM`NS0Q$^3$8L b "Y HoU# X%_ dK-RrG4a`otY͟VWU8 {&ֶYo`(*QJ~yZ,AЯȝ+Kq6^:N3*ﲊ"Ohz',} >H0APY]cϚjW)آ:yٺ;O_N추$ˆ x<8'5;{UP5BK?8yǦ_Ld5OXZ멓:DZsHpez4۴лҚAƨe9.L:K xȱCCC~}U},uQYsT 2W(uqj!B5)JƝ29`:8֌~ nnY{ "W@#_]»UTq+ro}YN:X\~{B  eXL8$s">y}u*܁De:>M oy}ԩMii \s@&Qí;6_bLhN R&k~ Kb{I$~.N睨N.m^P\z./,1T&p>=~eASQ~ čR *FFVD%q;8N4Hb ;(\eW4;n*۔B"6N B:qÄz^ q ,B" wv%%έhZ5>˯߽VWGtɳ$;aWBuRpRM6NV'H?Ϳ|C*Jh+n66b7pW["TY$丈sjHNzMaOHmٶQ2&qTH( އ@<Ds H +R ԗAcb1^T7 J%T7%'`I]8!2Q~wJ0}^gdQ58ު$%bN/Ѩɠ3ړgBɹ'yw#0ƽܾĖ:!gL0XR~@zx2 0 _)/U3 ds-߸J-=Kψ*9)x`G?>/AwAL=`O-FU Z!q~\]vQS;1;gl0{h)SPeTT]Vs_dg],5>vxJXؒl@#[·\GFnD+hc>_IUW%ˢ͒s2DV$B,*QVbgO}NQz禕]{oir8>8V舘oUJk ĨVsg1wFCGLxkCoUXJ['&_L/1g%wl`X$XUy*h(qy>m"!{ߛlȻeX:1P#v xjhmIf)C"2F*B)s_է6z- V4#P Y;<ฆ":;ai{փ 8XΘDj{M몊%*o"~H~mp_|yRFΫYwlf \Ln'sCYemG:0 d[4X%V>h%ьZ}]}%/&'yKS5K*=VAk`Pv1Jo"ef_[VD ?TLlY?o_f?7[!XLU_$n jU-At@,lΫ |{W|)uN mn}訛q&jB[gS=4cK p{T֠FJg rvd& ^xOK@:5vo})Ҩ.˭v\ЅF+a#<@j`6]˛hu.~io=/470U4q׮ON4:8#HiUNYiy3~_e>y~\UVqf/aDDn@A0 v" dOh\FktB~%0$7E.mVn],Idz~’k_*w0L*w68$2{[WBfDZYȻxJե1CeVdtIآpo?r@d'QX8qڣU8!E%tA)(SY[L*sƃ-EFdhkǒ9=.m=bʃI>/:M5OJj$WՇp2,(1!iJ#|?WJׂlۖ%@eͅIZ8 D2y`%17B{7~fB9?ӬF5WpP #I8i!;:֌>LS ;?)4B4<%KRV`+dDEEmV pPahY2.9hϝhK7 UB fᕻE'UbuikəChбC+d @̩A} .*P0w "0Wi+Me>)ZfDWapaNdqP7]zoܺ^nG7P{_e~O -zB Cq# a4 BWfv7) 6;nC?>`e&JRkK^$'~(WJDId@gW8-5eqwvf=8wh<A~v֟h]%w3}d< cQ/i/ѲZbո+ Z'lwjhGJ: 9ɺNBh ZY*3[x MJeinFmt|-;ۇYYO|) 6ǺHJ …m PQX#kJ@X-3fz{3?}<̣6_]7IM$tkP=נ\%I_ vB$.q CQ$[nW~C.MmQ+BN+J; b紅$PR஭[+7}LM`JXʑ`83YYU?:eNo[j(dTПyIF9}itD%7D}`D"( 6=F֔LCh ueEJzof7US_$NxNV`̠ y5}ˈ4eҮ>S8]K, ;Y$_)ov2I(MXrkf+K5Pb>ƋD"ϡփZpIVlj|]$\>rv7rNr3Zi'HVPl3E"x[e1X~ʐõKt>]rbݼā}@\ ?|[V`}YsUKD/J"4Y7C@oA.\^xv)$QS5 [XE(,`#&7ס^2gQn="_u]>*!D` *z(;0pMF"]kוuY)n?M)!\+ܛI^9xR'l_IbnQ[ t6;pА1, +Qg߷蝠R)d(A}.z pYTLB`7*8H[=f2ҐLaI>`LUd qvX|l 5P%21P0mdy&%F%䶑 m|P-$c4^ $_dg)A vD9 KX5,!:Q+܁eI?ğ?ۄʶ)$Y&:0 "WʁytsbpwI`4]Ec|5]݈iNGʌo),,%Q$S| $9qiL%{fp-j_[ɚWw8L?(-Ӷ>"5j.760NgF|!Uq1oiŠ|%GKCRcigɴ&ғ.:(ءCET֊ƟA$I\!ߔ/_TOSV8M-?VoiJߦ90iwih3h.VV]}J'*_ږ^$9Ec݁HՇ_hH9;CML2R4q{GHAL?0RƃTraaWC:~":m~/<|:)"ްӋRbZ)ŠE$ zA7.xai8+u'XNN3_WC9y-CC%v#.D/Aᭁ$ggY ڲ(?o DIAUƄ[%0L (0Ǭ}'tLҧ`&O9^WMwECc)})Q0RfH@'I%iB&9D܊Mh봚+G 4I2~f]ƢO^v Cc(to8<' $ xV{|T6W?;)_Co)y[O>h֘U3.w>-hhDM$x-^v#rL<"A3Pm"o4o+9Q 6>odeTSM֯)U`V#M`QݤlPDs21ݗ%Ȫ-gmf~5:U)@ʩ Y]UN5: _|FT`}FUͷQ(h=~;=_f6*X!1-TJ2n@ȫ^ pxC k*΅;]Q>rʑ6?.㰵~ &c5F.kYVB6RP")tT%DpA)!^A"{ICGXM-Չ;pyȃ-w0;՟xUUj2@ !)чm,?Air*AOlaƠG3ʸGr5 3_`CA6ʨpJ*A3anS1}*{^iZvYf30&%4ܹ|ʨ^<uM8/lQ{lϜV#Se ]8n~u?DzCf0Zپ_EE]E2y~')vP0+D߅.D*K ӕ9 ]Ȗp[E%o4Fn4>Ax/ w(.锶$༐gu|wلC%cm^ɿ/eYs,w gs|Sx(Xhw`d|E2q* / @bp#JxFH9P5Z6y8R#<~m"MyAJx/bip\nϭ/i&HHocVNͷg78vL _;פM{z2Ahu}N?FoVͪơ/SbʐQ83P͗vMyſո3/>[+wzB Uݡ*Z:CǨ{gnTiRby'o$kW$xQ}XדۆelFKFEgӘëH27>y/]F;yudyWT4%4 -|=9Ww R⠁17Z?ê8-x|5mt11 @*EhـYh1] ;\bQ a_['qةs<&&nYBeIn0ykn|4߫d-0 /rew™x ]iO)"b9[ԍ2Q:V..:W8w`Xh}CטJG342oW/n >,|y0@=)PQq#`4e1{SGQqu 巿~/ᡧL$ɢ]JFFe9@>Df#k85}[wƯ22GZ Q:0V%ZD8j.І!ݔgn?-c:ڰbAvuuȦ4=iu3~JU>h04Mpt ;AྸɗCoj bʼ.o-ř6]erH-.D w>^ds7ؘWG&7#qxi^ʹ?۵XWD׾i2hΔ- /`|ϊWcH%'4t1$_ٗe9o4 MiE$ `٢'$7k74)N~/k3K5O:9Ŋ  `諿=LwĢ=s|fٴ4 Mtyu餺239 Q!Κ%_1YrI!ɛ4q+MxEl> }2 /joݤد~ ~%1; H.)#̶Da?C~>Q< a|3hLO)׭Qo Ww{XNKlQBpA.Wů'x|U{"eEWVI{| c@*)--,>iJ% ]e'4W;h&@h.oY){`H%J[jF09_p5r/D𡩈3uIǚD=i{տY_8Kt*/sx`: w'0*Y{d> uyh{I2dXޟ3<~'UVG}Ȯaq!*-yk`Nd~yː-[jT$ALcVC:ɫƼyoIwT2{s*IkGij t\I9@أЁvEyHS_wGQo0f9*ɳ tP:$=M ^Ewa&mb !S8~&8u.&:ʝy]u}vX*UԘjάQGj|4W}ײ`?BR=YSDd&M:"D@Iɍ$!EӚmm u7/_W4eGL_M?Cxs_GyU Z'u>[!2@7oI?cnvK/Dv\3c=˗IFœܗ]ScC(CCސ8帒qPrdCV=xAh&hϢg0W=Uե//y5!XN0]ԅ ,DX?ܔ:/Ǝ@-mX`,A"f.sBX#B6,w7*MBiu^P`9.U! .ҵ.)Q57n;h>H~u|};Di7M V{^PB 5ZR bxZ4t-5ʈXm~_Ki@XO|kG2J|ז'T6 XlVb(̂JP՜ ӆ ۻC%̙dHYUO77%%MδIVӜ u8Ճ8za[ˋ@o!#,j#/Q'-yLӊfdwp 1>Pb` @YT;A@צJx|J v#z?ۄ0a0fG`lE ! :8ΓRҚٗח'/-)UbdB]}2Ve?U,?׋pHNɣ6%e.lEtM?zt@G_Ki, cɹܙen8V6}rH$ m|*+ ^$lhuRheR-zv <^_S.kuiz>Oy`ky,\UdA%3^0pb = Txmydqsӷi;?*^敽^ +/(P"%i{^ d-p]pK‰faF 6h=09|L_B5=;<:}#qYʊkZ$OT1>l$4]B=AR1;FʛCgw$/'kEMmuqK3Ҽ él5dd\NBs(ĒCZfG[yGR/xUqp߷S n8bT粕 3?)_dT&`4-c&tU&-j){~0<-)3ZZ8~@cd7!6NԜwdz-Eo{ID;4%@v'*ځBx Έ-\xfRkYz/TKDXw2|>`ay?i #{%N:LDNP=jh4  hGr %羃?\?賮eB ?B2,N3[ȇN|2O`8%c,#ukp'!w/?UCoc‰Sj@\Pm~ݜݶͮ}Rv3RM{^_ 5ڝ$:ݞ"JpZJ"3_+r y[Xyr(,'09b?wy]3&oyp3ϩh/rX{jۋ: &3ζ {[I@0pG;,y5b te?%?JnZOd\RgJ FMn2#7TDgv/=4dR̻ 0n~ wPxҐ!U|`x(ej|rWKwv]jԷ-審/mW,h`/-I`.Xn Va)- '_v%)9Ӷ[\-^&Cs8ҝGo1cu ),_B<:kqvmDRJYw`M[؉NRU$ф?&Ǽrx!Bg_Z,w,HcvϚw=_='w̯iڡ{^]7_|EjB;Gھ6R,ʻĦ0c!CCy#rP@(wxH~%mK+G,G 1a]Ru "8zrNд8PǨվ_W}o eB" qENCŲ{w2k,^": ]|s:h;0p RbCH,Puf 0+Mq!R0J@;Ck$0Dɒ&JȂEο޸'|(‡}diM*k'7N#Ü8 U˂q(I`|>{~}ʏ[͊&>P|=L)m#~ @Rނ#FAQ npA8v^P&y|*= YՍ@!L1HAM[na!?Ә,uOw8(#W5|>|U璖]Vf>*`"W"˷xboŹEF:sbK8Xk "/9v.ޑA^aRW W=s#tKG}۶'~(uPR6՘ZA];z, Q®ػ(>h›'rv"u 0v4tͲ<e[Qy3Qt#̩R!>ch(QD,x.0-F3f?hǟo&.~ ~e<tidQҖo(µ0 T2c-XiX+ uV9⑒tfE_IEi$ ki҃8CO&r[C#jtǔ䚮qrFIsַѯ/#L*XBR6j,V Đ3yUX,ɾ\0d]Ac?'u/A4B2,3m 0x Dd0cxQTQ>A+}8۽ }]y8>C $ŏSF% RkJI9].פo㿞~^%MQLJ^ Aj(~~V;g#]gZyf)90RDcx| "v*+#Ya-H_N m#q"KifMA&iNKH#FxMg=봇!s#u?uxw&^e;aқG[EU羌ɒ<9QQ!f5"&kXtq۷xNN"Y>([7z_9U_b-N| 2 Е8CM(Z(w"]S+rA+ >! ~+7rlK^}x3 ;J%&PeTPd VuAt,ʚNPM"|Zo;u(Y; icY4e|Txu^tu,YmdhS3.emDvY)t0H7]2_zϳ/3fl0 TIudii˴Pf1몌ztP Vg4ˆ*1CPxHwZq>Ԩ,Tnf0a5M z#m0so#eI"z"K&隒;pGP`*аr"IxKL>迬V7|i+;\S BJ 1;"7HF(dC^#Wu|$9t;6X04x+8[@r,\|}YCb!3$r!JK-oYrfBhfPѽ05݆7k `ʲǐu$,ٚǗ責hަo9']6LYԯ몦Pտɫ-^c凳 Q&_پ?oOE̱JI`#D;4`qhfIMiSd9x9x,dUB@ziQA0hsmYـ̲ȯOI~ğ&  mv` .4GxlU;S2 Klwm~pk6~!K8O$> )eV" ${ESEZϸ2F&wBp{}#RlHw-;0NRW }EdM+R MW8 a d_9ִgNҹqQY닗uټiNC|yUYWhl WѴ[PXEÄrIv2'aS[]pe-c\[HzCڳ{kk^)Ryӕ-Ɛ"t *pJդWBfUZ_,#a>Edӯivl:۾;Y4۴&~4xz|j*Juut\J[#$X߅GUʬX*{QH`BxjqRӈs =Pu^w043׸1v]$&z4\SQv;*SVq8F9: GNHcQ;z_?jcl.tdQše4< x8)s+Ͱ ~[_`#aD^{ˣg!e442WĞqCD#E8G'Lx/ G G:H'RIXb䵃0'$>PCǗÑ/bZ[ׇxGYD !,QGAciWl"#B`@F1 q",."8UU4+VBR>ɔ.x踪C)-s D%*ٶ2U티8+uwUZ d{*wOJ2~/]E / ~s"`2٬Ϯ-RPFI53,k&iam`$6.謌ንP~au[_0.lõ}|R֘ga+ݗԭhBiB<&|tQUŤ0_Ҹt)%,$Z+S'΢YNX4X՞D.ʼnH'՜DNj:{bXJH^`w >8DuOJZȢEB꠸rdN 2iPzwނ$!'d'Kģcx**&9ՇVGw,sppIp809{JDZ|fx7n|y"AIH=m-mi˴]q8ߎ:!Q Y9Q<4)4i@˩KX i1 p_ %\N8,!3{Fv~q!3)`)-%:Vk5JM`)=,LTĉEcB%^m[^y.4Lv|ٻyWWfld%Xj}E}?B}Fӗ1xNgA^'_Ԭts!wn*noa09@.E>)Vm0D02<{i|σI&ZrB{;'J,)B T᪮Ņ 5$xoF@0HYU|mћ׼f6_zwȢvR3hrB<<% w}{X[Hee%Uȿ.ge-b!al䐚 Ks(y6ѻ6"ǁyfM. ޢKCwhZXT` 1%O!v)(οI- J @"7}ʹpn~=PzhAUY4[9qJ s EqAd2c,9Gӯ1N}(&%*ڤToT'#A8ۈ@^*tJ_67%'rԗU#^::y`Z,$Y:&{{vLZy"fYq$D"*'oTM ѝ2ZA10p9bSs2Z>]ӏcYn~YZk~e[ݲes)>kLCy\BJ*J?$J spc/a 0|o7+8^T~m nL[^4RXۂyXPøh^ gr@_(ah=u(2a%ON&oBo5e^imĭJi޴!HU, iVTR=2grTȁ2ˎmh`^r͛dL!+βɠ 9UR, -4US8p҅nfŁvޣכYzߤy/<txѽ'7_;&o":&i:_fO90~ "R8%&]o1Ka\%yHo]v=[eF4h˒UWSPH UdpNv;C@n?L>4/K~b_aytc]NJipzU$Ej-#|qi|IDŽl4?ЩF b =e{"m]{/) }-)+p~8sq\0Rz9ᾐ+%RP:(߳?Ϣ~;;42oKݴEielu)Rpgaρ݂7*P(a7·1L>APaR( ElA3ݿ=>{zY<{bWrDR0:VՀΨ1|sm- ŕ/2!}+);ͼ?(ӂ1Djݫ3Zf)ڊ@p@"SB9Ko#LuO}0la5k|`sjlVU:Ydb+Q}ic罦yWU4 6Gf4bLQjqc[\/`\!;rOh97 V0!5Adm%7bFkɒbJF,AP5;}T1VHO>_VFeǃ)󋭰`Heup_нIԔ2U/얹ǴIޫk̭~|X/<^v9`<]=Uč& Q"q>8t2_eTI_o' 3*Bʼnݔ,Jd/[@#U=c &4[&_Xu8,(h~~1`j_7I)cTP |sEJ ;0Ahw1=xկ7Ʈ<Ƈ$>n|HVP«&TV | vq:ymz yƩ,JcL?GsY'E;b|2E-9w2=(k_!mY.^t S^ z)DjK)gVu_skƢsx[ȷsg}Poݽ>n6qA⎸No=ႨR1KK)BԓMP;EA| I|[i [P cyND=oJ2&eY i)OOd):nrHIss6C9Yy="KdIZ$]Σj,y[*Q9Ɍ ;؇ˀ +y\JVM'X3_+t:`kKjo׺ &+E^Žj"DQh}/+ F#*NNIډ<BaEDFR9y _6D`AuZxqg}Uc1R.DZNMhDk '"yh]62Dx`KmHsg#=.f/twk*6"uhE=Az7=ᾅa5dFȁ{/m~83Ғ=%K6HmZj)<1Q+:#\-",͓/_xC/ߏM?l(/-%&]ӖuE¬ՓՂcpJˁDPHi#>VCo ֹYױ'vS4;N~5O٪<Ec%@/x:y>g 4oq 5Kx]c 7kCKvѱt2aL"ZhLmm,d臁Bm dN=9Jy#&+;oפ*Wʐ9)Ohs( oF/"@dQ[ g0ᴿ _NYc+ɣItVz8LM~lÍ]k,4ެ< dG/Apj?t[1[*gz>>شӌL:}|Jh1*/Ez>c;ipB)CurEIRS0_x"dmGnfyr4U[QtmCPF7 NvS]*+.sfn캭%/)T;.V~N>/0*FB~Kꊌf3cԒҟh9p^@>}+-@,̉Gp1Mc,UUQ; |C#R0zp;6A攏!RKI"gHRRKC/rGXYj_7lnnS5} IWIp|pmW;H0 XrI4yg0$Bnr9a8wk]!OF[|4o5r,& AתU-bW*}#%>\6,'c m1!'{*s}h_mɆ2&l&rɔ 0zu@~q+x&'g;\, ahÆwZ뮭c@+Gw HqB(9H1 c SiV4a٘[fYT>{7rZm6袇Uxb:rP+ PnHd1üm2goiWb2_IvQe{ $Kwk{bE hdHêZ1|I ۱RI>_1ف~.Sby' tW(I&aUΨC+֊h@jc8 .iюKռߣ#;Te1/[9wlLt6iS(y$=,˰H%>qI9MzDگzN9č3's=j?WY]ed$YI[R\ |8ma2&apc| rm"9,+N cpNXĀu+s~ qcgmZUWgF~c־YVXZ%4{68 |UEJX`93+P`z͓77˟l|¸$S^VEXܥL|\ՖeJZh؜&N&9ځ!(zcm`Kq<-_Gmj:J#EJU1Kh AsŅSxHɨ:v/-\ N&tķokӪNخtw4H&Ci?AR}$%͋ńI:vY0e}w_`uY*HaaE#..[#Yi,y6õ-f!O`G7%zޗ"j@ nΉ{V+K\FRCQ w/NynkqN4Ϫ?&y3"zįw]ϓ57:9vn@1EIPKj̶_օ"A\yJ$exKd4~xCe;x(v^Y^FQra)0lo|_З/< , R#Bg᎑# Y^"9::plף;Hv]?XfOb jIH5ELPa5>B~@pi&x򛇻Px%T̟C<]Ii}7Ѐ)"CdTb 'mCp|Ǿ|p1l!!DK2z0˪|dyXcZp؂s(sOF%š{мpX,֙e`i]}ow~FYU$T(KI 16 (!V 2f)[FBύV Vmw[w:BnV_aʛ(l43PҀ&;)(YXI9Sy^JUrk1G-{lh{3m_ֈ+riBAOn]7z) wMuuE[ PlU_YOm{}É/^$r肷\:CPfYBtRd ˥.<<i)gĹM)Jx=Z\p@J SB%?96DtڥK s֖y4FvrM6iD?BX(,.>.N,nI?cnfc^qШDL/1%:{mq[WL2:,K(M@:4=+YkΤII)!Wյ|w0KVeQ;{Qashdt# UK[D|V \`@(MN{39jz+2WRmϳf򼢃*C%" RPl@ZEt=BWN6pMY鳬|6ó9swg'uT4.4RSN6$ kP}g5#ђ)#c! z|"|"Я_T&ᙛf2VHI{)]^k ZC#l]weyY vu1Q P(d⿉-J>]C}kӢi4}$ex߆SmFαj)2 PᘵT:B)5)k/eQ737/ۋ4f-^g3{aօ_Bq[B]$%|i|hSmַID#.sJŖۥihðc54هRƈiʆ ^QHe^RL:}v '΢Qpc7sk,S/y,,o 7R4>2jkX JVZrI7&21°/l.m"G|H{ >4q o, #)]$m8sjA s.\mWUJ2 :zh|l/KL[XL_@ l*sWz|OTZk?ߓH~ODz3HD, ۵ȋ E3_:Qm6An떯Ln*EJ1e~ɤ^8d ʮ~P`o^Ėb3s_Oa>vK)H.|[ŋUϋfGHJ mW]b_}$/KvpeXhHe,",q8I- W9Nzb >*IT3sYwIU|PRSli( hn卲ũ"P{u"a˶WXNk-͋6 WeY-5+t$GpBB C'L;2?ԢoB ~!$ܗӁJzo2omp;0A VfG!RKrdZW9wZz^3֊Ǥ7KTZLkUI ׏UeGro*VX.2-Њc`29eFmWɈi|W4|~&FIZAfT`\lQ/ Ij+!t'a4i`R:.:x``ouXH|2 䨰;;IJxK($iIfPDLo F E?vL#^z{qq^_~-M$LR.ȞfA">J؃@hb煲y7n(tGihY4!WqP ;pLQM9H?)ovyXa*u}}CE#| ,&NxEҪVqX'-w|9l?]YOYo|%M)%'Mi[u4WkPrjG ֿ d{6㘾Ҭض|՟LS /7SrRŮNXU &{Ђ^-VR4\'VhM2`xף~DVyAXleW3˲TE/B-|/:\.;}v2#$ڛɁCUyLїm[7c?b'etgL&۳J-ce!f4uRGX$P+ɣfIlBMrjpzCb3 Ή`,2*g8*h5ƫPzNϺt-e͕,ͭM3mzӖ~l /a0r3m%i jEXFX5NX+:¯s>d{z |lR偈`J(FH2GI)r>Cp;T0R7Y/2^IRUtP!Q:TošIivwt$pߑ/ŵ%cDS&0WS$>TFmWe4&/A)J$%L y)A=mefVR- Dƶj|bv!&\ KwY SDihr7i&*wg|Zv˩O|ꋠW?h,N*9Q4R{:c9+(s/J~V(_yɭ,D&Nze"9+k?5k284/cO$]|v]H_&v#u 2CBJ-oG$p\V61M gc4XZY;V]!B0oV'e0 [k{4ҋ*S=P"$d" +nj׃u8!t/]ݺ˧[[ϧTٟlЄ'Q~0Hd # GtcbL߮ upiw?LoʐU2d519`K&K"=7br|W>Xp]xo=zg!ʄ[&&W +|bJm$ -ᓋb$ż^NquXN-^ᦺ+|uQTQ%ʖVSu iAd K|iˉr-Hrqޮs"? :ݥXsv\8+S7`W7<嶔D2QUҵSeak8vd2g$iR㧗~RHMQLYL~|\4jyu T<"&U *w9TC.J*2EJ4|1r=+P,6%}Y\pU]Uԋ?cRCnIE(v+"XO퀕eqV]6hr|͒,ORʳ2ʮ$?Q/<3wшJYTu" /s?:*z-u1e0)G{9<ʥکtNK30\dE}xG{?1 w'B.2_G@** {0p8/g1 ͣ,-˧?nvH7>xE3 V Eg0pkQ ,<&QҤ5S r/ .MwrnOQ>JtGXeʏ[!DƁ#l/ӶOQQ?9S$ W;G]I0G(ۍ < ?lX׵L08j~zQW2G1KS5cfuXJ"ߝdR"g*$ r05YŎ!Son/V5S7f[3 yOs MZB,yaՁ6$,*?x0\K|&0QߦQ/sɍ=H~F24*4:%.AA5H!ad;`ڏ| Xo47m%71})D7§buT[dZ ;Iќ&;۾yž3A߹/mlۦKeKCB !2#$:/\ݟ5K>s_t KK86U֎Ff,9p nUS^ |O8}mKܮ'b/Dޯyem05Ż~ŵʎ>+t0M T _=TɚӠfs[OrWle+B:b4 㑴(keE(GV@?#Ješ5b/u$z!es1-ɢ+"Ô4.y@ŕIȎ%C[ |4aewT#g2U&ʱ5f)wSnQ@گ)CI>gb(k\p-)GnweuѴFMݤ!TkLj^ȓ 2IAaHg9&xī^qIKq&OhĶ6N>Fk1VQ`\J W^P>tɐ8e6K|眯!\1 OPsMgAcR>,W1Y5t$^иT _aA3F9, #!HCn|QJ?@R9bvWY {hCHO$s) Qcbho | <>yXY$ (.AEN" 0Ch }ZE.@HeT"OR䨝mC/0me_BޱjW%)jbڛEmcrܣu(irB)}"}$, Im_疃jO˛i薊pz3xolny e~6n~r?HS_P[^AzI YM ^ ܧ$(-D NJE%?R?vpuT%%wjR- kdFK_UQ4e݌|x);-bX[w9)lB`I\ĜX_ŷC }Pv]ooge˭df󺹿6q _gq8zp=[y:MHfɼKkQ\4H$!;էdw/TG/4>'hBdc@u9Ao.vHϣ_zW$Ul>4]k/NķlIzĚ6m!n&y6uEj݀ˆ}|SNݚ8} Et9X;]}HƊ=KwL"5QnSc֬FMaˈ_#\/O{uJڤJjRT/iX}@UI +kJdKS<|cAO;WXK:`O+*҅VRL` ~"r<3U1<1Jzy\kh~Et] 0Ҩo(i;2E؊C-.%}cvYyb϶ܬ68?Gb%߼_/<Ē|)T`U["IzPίEW_<:XmGd?<E$c<["P6.,{v]K%1}`; ?Ҏ20 ZMWhօU<ĬLCOxFޝ%Xrd66_"Wn6)D,,( FkbX\\eSp0"IUF9'$s?y)ھ/IJT[fQb۶~hNd1T[PcQ#N_䬾bYÃ|yZ{$92|ҩC q g)/EW>׎kk+*iEvHu4 Y\sym/3/S !E1&.VfUsz%hEYe^q(1A'W(^kB΀&-R&>796R̍mֿJ|L_2cƾY/~Na2Soąꪳ,мN!a?}Y~>z #$u&w9v'f wH' BD8[w5J ( L|S%Ɍ=6QBsruꃾ1-5X-,2QDb D|ŠQ{ ? /%LGS`$n~_gv&~R+4Mm ⋛m+a%{>/;섷L@&So}od׬<4m}d`eџuʀ n v`d.'7h>$R$D|d.][kw8v-:"J2ʭm&)cB21]Rh>7Kg/uyu&"Al,-:PA +4^\bkda&s^w>_KQ!=}!z)p##.*J ;H_eGQp6~zlS,+ʲRB 朻!BSK%HZ?;Jlu4$dwҕ+zJOh|u!>ʢҴU#0.xF I;# .Z{(]A 9W҈hp*q1{)=ALJP;>)!@Q+ؤ0/Lɣ긦>#DeZx & x{BmaĈ{94ʝJc<`,&"Zd&5}ؙo*EʋJ,I #4Z+{I"Ǘ0ɯcҶy z_ 9YL7XV5ukJO, m"DmgCTh'̑/ƻ,?),ڋ 8LQ -'" 8dkFJ䮛+;|_~0*)#u6VAi]0Vp "u)ٚB ([OC'agAFo<4r;|4GKz+K( QaNB@gR[p#LO2,Y&L;m|ı{EƏmUuYFg ϟYvFaHniq 4Rɚ";(z]N|sl`D**J5Lk ,xa;,.pw+vQˆ6%?Y^p$WW4U1u{[m9vmZE-:ꈵEѕ(p@uڠ QF 0fma- dr|;m_%/Zʚ払e&q+]5# P }\2d1;0o@7YLR%{͉²6In :|d{\Ug/(cq6_VueIH_ij xI{v.wH\O{i1 + 0Os߄)o L<\o^p[E0!_=1DP `8.V:F)Xumg|ak"g;M^ږr~_O_RKrmTysCLmw)#\C:kKZ.,[dBT>̹>ETg^0vUIxTbR&L=R!=pĄ7lu!GۍszbSf+G"GɜQh N**&rG !w 0N/d/x^ufY4'/堌X-Ѝ!n|q8IG\" }Tj3+nٍ^(oR7j:v);˺fB{e=Blx ^+,6L??h}, gB TKfl$KDE 1-7tѢeKB0@pwz(UZJ}[Q&~lӗ͹(nDKƅ[sI_ VQ#;T\F ?d}IKg'z]N@2z+&W"̛/7"%Ox}-}ut&󆤻Uڄ"PfBBx;/c {IW:mМN{c[;%5^E"e94Pl0wqtzCJ!Y B4rAQ #vT6,+58ԵǗ\#V{^ŏ?fHOBUwqr\:\<9 Ŭ_&'ξy^HyM]#y j˼05B`Ѕof.qhcނȐGW4lsoטO˵WTiQG*ڄfH*)q"AY2s8>ER6x_}_KM)- JH12yˊ"%6\feyk𑠭?~@g~&iaHfLM>~D$riyhs$b*9%I3/(͇.sY6eK49}) UZ2S巭I(?S9IJ>uMF]gd;K'YAկy>:_ɉ4)BceJ2dU^6_+օ]]bLm944/ ˭ cQt:[/N˒2v+kIJAKKS|YE\`Ȧm Od9lxc)ކe|.`$YDd@VmV:)M6 JNvKYN]!R5tTu>=}̧Qi0DcAejWDRni8X͋.Л\"zQ Kg0jKiW$ww:K%c hz;_TDRr}_JG+FFK,c6@Œ$4dG9sㆹϡuM#yTEP[RB`R1s`9ܮ؆m;Zo8_WEFEHa[c:_"V3풙ƾ Ip]ѠF"ߠVI<$Q,nB1]qW%]|ξ< I+lMsˏ3,&SjSP彼6?A|@ j)yraƖ/Lc84&S4*I0Z ݘ 辤=LIa΁s[1Xw|-kynVGͬ/>00AEڸPxڽ$WI  P*˭,d$VG4&Z[bgŸ >LEN1'#l@Y{\nыD 瘧6^f\j$MRY6V*2\tA%oAv(%.lC d퇧 ww|b27+%UN=*+ES#"-dռm|l/B/?M?0NcK9y鑾Hv0mKå$e*ݗr͐fE1ԧP ]9:"DLcI>"P/adqc>ezRQ0?Ӵjhd5ğ6A1:v0IVݨ=H|I %I3zBf4|#X'YU"X'IĊ2Q3+B^̷¢u7wƈׅ4YLu@Ih$P9d@d)vzbe(^&삻bjNrŘ(ILa@e[87߿.4 49BV%2WG6 @ Gä@n R  ǁa3zcmJ2I"|uLQe:bV-b\ ? ^u2j \h[6]Jy}6jy럙eV<'D}mP釋XC޶VV݈ͪG9]]d'>@HF' L%DnyY44]~R"@̀8*߀,qTliJť*ƒ_vv6*uMXw>]YB;rKU A1)8reu(:*G_kj)9EpGK2|F#ZSͩB3e42V_-s2~~"48֪i2ׇ㮓71XLέ`VBcz 1I'xA+9d}fTɋƯ`1-FUM~ٱ .%^9meTQ}e,@HOw)0? D2w.n<^7Gk7h@O!'"iwS>gw5Rr23Q럲04pѠ t*P!J! GZc$ &вBo `4Vf+ CS}S˧'~Uu$PljW!AY Jw&b->~yy6rI d`]<;⸎j< Y'5pk{]8}攆s7Jc6iv;\_$4 CV?+]?|Ts-'UG2dߥ1dZQ[;L%JLրЋVS'a 4#cPS8D@a9J;hgO X~AK1]:jj/>qͱ޻Y^E= -c`ohаAI AՊSfy`0>4fcuc4cg۟1@G34bmdqXñ,i*/7[4nKbXys<< iX A6# ,tgC 'Y@ e+˼9isyqa~ziQvGut-n:VXQ?2K?ӄɦM%.]`hc5Fco|>\ҲSx#KԷaVi;$ ?)[<6ҙAH`M L^EH>5a{!DLfy4Pd1H!W+]KIzTd>t`(rIj=~::<+lX)2f&lyA/.6R./=/òs8~ f]6ytGpUoDtJaM#`;Qd[8 ^Mo*hdҜ{1ʱQ%n#FX:ү+,zv*^_$H5Mנj߁&B( [=½ ?^ YM]ۤ˫g0))&UdC\bȅ=G`Ĝ߭T,7}qɑ}ƇdɯF0CLβZ8aؐC,m+/xfciM>ѡ5uڕd%&8[A߶() :FNm$VJj %&n=rº~jMxk:69F48dz^P(Z Vq&}'n-'Zouf࿩˦&AR^S'[ CBN-*! *Ja|. )t.+e-ܛm[tn뜛ChllܗaM>vÏ)m-Gהme0%gQH! K> b 9 Tc}2RVf.s"BRf;ctx~qAG-ږb~8RؓV,L46K2OWh_6__mU*!+a1{DDr": 2rZCG"g/e]Ad^E& 07S;5a[.w@m,0ӪI#o*2HmM\8e$J]Y[ A.p&"[µߤ šM|28B59Mh~Jlj(yS6 ' Ji@"lz$RRguRD,/qc@#ت_` ?0+ƒ+`^zP6>73]sc2]1¥ͪ$*pS$75_]Gۦww}Ҩ*.Slj-;bjlDD]1AX_?$( oEeʓM~3#h߮C61(y8QBӵfobi~` ZPM2%*$юeӞc`F&d$pcԑvrco#xcr%}gFT\{~7Y47$R hrƷS|n}"@P+t[&rܗhQ2;)7Kys Bsڡtb!Wұ/%ei# `,lqjcf,m YT=.f3EV*'3+'-J)򁖜 ](Eޗt OwCi r-wYi2C;(E+.FB?`Uudg U`Yծ|WuA^^7y܅.&jKFw+ON:A`H,ѻ8ׅk4]7h0reKYSjєMYDo _MF7, A(y\:թngYb=!/|P oxȴİ{|E/WkM$i.Qѱ$\@ l2Z!bg#qr&iB 6 \hY)i'<\I6,dMjp9ݤEV3+)7%y1}wҠ]Zꢌ,[T6_@PD FѤi CC 6̾xϗTjq|q>.~_㵐\eң̨ͪ{f|Ll!C%VP:2n 2lqu:6)q]dږ'vF8[l~1"uqPrT[0r,8AKdz$eTDIaIgblިȗaeM¶nv *d"IS(APC# VaNlTt~8SkW>\`[0LҔiw뭊i&OULftIY%ZV!?fs jeYSa6{ٚG?\]5{uǿ;xzT&n@cђH:b )9xi-]R&ڗ0j9 } {+|[_c |2+wO22r;0*)E-95Cb8ˊD* 6̻5k*S5!d%J6a rPDs H"t+)!̅{yjHQK$ufm5&-~)aaD]4E'i/,QA׎yBބ]4z"xi2UpI$@,O믣b:1FRAwMre~y呼Ny^Y2SPmy*%u˫@5Q.!9U&*tlxHVt':9VTmSG͔@ZVmUg$i+*r Z^k\jg4~޼)NDr ϕ"lDI…#2qsΉ^'2+-cc4:>Iڌ6MVG毆V(,Q [𱻚Av2!MWN,ٍG mܫ9 ~f$ G <#h}}+mIF:Z B3`aI3F[` p#i+)6%1|/3Ml˴7_yh$h8.I}r&S$=FǸza+۬.鱼٧/k\eֈ *RBi`;de 6SG'h)65릨!$% 9DTք~W,ԭJ,f7'B>]Op=V7c/ۓ?'7"a7X'emU]Z&:ǥ)^n&ftEZsZ;tFÑBqGuwUѕ'r %8aiE(cNhN vd( Qefo6̄H[ifaY>M jZVS sD8e/]SɮPjwrh 0eἿ[|-3!|T2kXA gW]oL^fJE{H'Bv0F/r0m,c Nˆqg8+2~zWXԿYxlm:,3]y.:N;_X0V ႊZN+*pr /(\N/b-L޹WY^Gh_QT| #xKZE +B 0+Fi4s/.Ĩhx j1g\27 U}}&Hť;d\ ;$JJV?5KfWS ]dz[挺=f|bP_*K)dD3oH XXHâ`\ݖn#Jj"SH22j)J-Xy]~F /x ~N%Sť( 8wy+3lbCYBdF& xXtU ǸܧE/IvBY fkIk֨OSWq*_̡(G MFJ>Bg8A14mwNz%EXVqy21,@i,Mz->!1cWJ( >bc(R\xxHAa0>n ˾W:OťU4/[ 5e44㨍_ƴY)0 ەĜwxp;?1'$Y$=cIVF3m$o;+E8NA'΄Y(k[qO3=\1&V~k݂K'~%b@C/L=u -I/\?ˎ9[MN2P_j 5Z}dnC Q\:ҮJ8"/d6X;PEӃ\OnC~[32F>.w .M'Eܬ *8\,6%̉8\fhR5_^KM-_ҙ d)vRsyVPvF QKb=#e~YBQongQ_'i49;>T=q/l/q6?Q\KB?/7s_c}D<!Rt!jӫ= N;/y8C^( G_V5䓰ΉO1KVY9v[h-OKH!N4ΒPW9ipF/6u 1&pq4Nԭn8ŗ#{˖EV_KIYc&dgN( % Gk)-oJߺ2%1r|EYDo ;I8ߏ iRȫ;#f1e8n(ns]JjDevise qV<qTK4f#F`u4/C<+OO<TC>Nq.EMpRV],@ ZIh:_8 z#|>Y;ySi3+E45]2ūZՠ3QL'D˜L3o?@if[-DK˧;V]Y>h}\uVUeԱ.HyIMHBܑFA>ɐepBM9GdR^&wJcFp4ĢE.ڮH_Fn([C Q]Jtc`C Ydl65ԁ*g-.PɣtvJEJ9pMMM@Ppĸ{-*jPtYVve U(lʞ^Y<-1&Cc)L7~ QU]UT›JEn7E]pNUtyȀfwIjKVXұl>t+ij@TTZheC/g[y 'KSʓݤEg6)fc>\JVy%T$Sߔi TOaÚہkw^EHGea0kf|_u:}Kɢ>cO*Dls #^ y f!-Ϥ1\,ݚ-z֚lDmr_(+ E,b]61"1z+CiZ33,0).Q/RS0.ٵ**~jffq)3>YaL?.p#dcE~t:oXV}x+<Y;p c鑿iM(:qȑ.W,ˁ:1mSEC?jU0p\qʃՌ ^ĐR7O5I!?ǻm&{r.&O&wEzi)`X1n)c_H0:yr9[ 1~#U\@J&/N a@{ۑ|E(r0' B}6)߅mjLaL˖̮GrQ7uTƆ$9I 7*6lu)tPSIFAX0Kew覮{e]#?y'2MZVUdIY' oJpe8&pb\'ݮEa\@@gocͼ|yQ2e{3̪@t$rs"8?w7?7CoTDS ]TMц8> ̔ȋ&j;.G090kX@˿SUmnFl^0`+ !Z9躣ԄB˴6p;?weA!0!jgd/3%cY? IY$ڃ',`LCu[y̿:>ʢ%,mq#F Xx[vj^#HܠOtw;4y$IwG.0danzhͣ <_Aj}fq{,mH^X0phɗy|Q9߮z{4,YyPVs-ia7rpA$a0x*}c~U)7&ʭǟyr}|ތiѴ,e^CljFPNJ/b9j3**i.T:oVTD Uu_'w8pfsSui9q <479bd tBD6c5<XlD2u-&p>y!}DEIW4 3jPy k!'ӟE0 vGS%$ĺ5J}3DM`ͺ>9%(v#с+L鿜u 0yY&][ j&B UӚYX sFs|{()&r؎ a{kp$njdt #{O;P/K k9%7*!5R/0U}IF܁aPFxx'# I[iY$Ytn̓+S !(l_ܹ]\pv޼(Ġ<]=HWѦ%1b<(ɎSL811既ߪcat/O#iu޷0}O|i\BCf#y~Y9=nܟ?&Me(PݗO$?/S[jYƿ'ca/Qme۵m<,2!uN,z*">rf s^\rM`6NDĔ4B_0r'P2dR O, "K@`$W3 yWw9--$i D1ĄPSj a3 P{}mzPмf4K35я9~> FOdrӒKB ) }JӪ+i9;vz,HHIK| 0lWC:k(-u٦XP V !,DIX+(3(^Nz~gZ?fb%|pby |+IX>Ө'4OND4eWTҮ.+(I? dXI=7+ə&JW)rW0{-MH:-dz0zXI隣)dH\s?<*%BBkބ>(g~<+redTnҨfUu^ +Pr&,}WF1Z { "t՝\֘oXד$NUD`BET ̋cm[tӗŽ \̷?4?o>_%Y&m,}RZpa߬O+D͒ dizwhtڣU9}ax Qɠ5K扼N{ٯ_)Ή_^6WBꚬ 5ⷠ¨~a&4U=Νb,Ai%ke!b W\>&J,2'5]NERTJqujuW-PYH/(q,[C߲iM(+vxe4=%]T/apۃ(\ ؈,uH~,H-"ŷ!!ܕGRѴq]54HŜB~+E5GcF>2VX!jv_n()̳$,2ŷrr2MJuꉆ]qwVL0X y ۶n&Y*UeBhf8 U \p%〙ABTcF|[e2uE$?S5-WNc lS֊WK(31D7"s WB2^_@y=.Wy㠫ga⣵0b&t)ʼtӽtw"r>Zik3 %yYEK6E5u0ҝj"j1w)S N+>ۦ3{\oļlJ ?dx ˥EJS}7C vz-@SX"@<d4q^H|6 WN |m#5IRWIGo#? VV}_9J"Sje}PYg5[:*a?<ʆ~̟P+/ Tb-Y EARGs8RƵsޤ9@Y^H 3K\enQ+T\%60ppO]`K-6AoϽ܃Su{QhEW>QΒB:%|VZQ%# ƨiH;T+Dyv %4_ŶeZ$놸QHnJrT9"ۃ\Lejѣa-4, 4`tA!Q7ͬZuٷG4oXmw+괊j^dSah@w;z@W Y<PiK8?upQIbjmB+w&5H/U{CfN\~dgl6橱ٿ{ы)r_Ka~2eG Wt% NYcO> $1>[Lmkyy6 kkaܘj,ft4"h pEf3,5ێ.}R2a$U iմuͰ2e(WwK#_%/rQ%9,ɦ+cR&MHCcJW^s@nd0Q2N M||:+ln8n^ C䧞xEY6G|b#[ Ίʲ&+j5u :-V~P,s;AWrcMm:cgϟv%HڳKU2/i;T5|`9mV8T#VhvY45r[d桃:CxQe|^ ܑjTtF"X*5V`1>g)%}^^2Nƹ wo86S3Oyn楿ݫMĖ=SDPk{%8I@N'=T`Sm~[ͧ6y}k䔼ȉ5L٠R2KIDW1k7QIM͌ .$ yPE/*O(#uFt/ga TW #DAg/{v,_HyX0Ͳb!Ɵ@Fy$}:Fs~ʂA\QDkfX⢨{N%%x&)ehB^W5b$c \ ժ*Mb  +X84R:]KSoAoum,'\`!o9hDv ~LL؃zZL|B,|7c5繚i Y}p( RI\_U Ѣ>FuSl2^5qbDeV|%:eZ'fiŪȣyEF=XwZBT p +\N:MWyadJ^`}f3e4G]t1 Y7w 1-#CvxbR~Ei$IHey OW CTV._U~i%Q%àOXo*Q㡎*Pf5sXgwww"w}?h|ʺĺ"zAh: Xю0_ < O\!]u/|/cu9*I7y/WH`Tڮ),%FmMb+ŕ2Sθ UVj o Sorx+=ga>2a|N:.0׏ߚdzc/ ?$ˢV7v1CQbp$ii3ȪfRx)SՎ ˻wi;t27$fIݭ7S>VēʣDkƒ|I+Dh TΪ_%&?? r妬lH..mY2*y`q֋\3L獁) j "+%T6} Zo\§Q+|IDVފ .(VdtF[8qhzeG˫(<ޖ_6c$8@sA2_[ZA`=!̎rEPTB%AY-Lc3Ҙ 4C3>XN|>򶽎HRqou]%jt԰}$]M徼[}Hbo]Σ!hzyN4r_*EIgC@ T&axiaKI>N#GVoW&{me]XV%5é~j P}r_@T:͏ Ո]uJ`8%I\~,Lt݄FLzہ GUъf ]?knd|,|XF'WEMP:ԔQ*/e@ ~"#F0aO5{}sc)iUGyp>gUI+ix5Z<;\wX]SiQc8ڛf϶<(HsSXdE^#2MF̶r#BY^mۆibrer/hnPٌ9&? KX:=RD悂ũ ?`d ͤz_^Ƽ,eQ:+i|H|$ yY~YC+Ώ6S{¿P wF'l }bКa-fkp%T tRbO5=21g\?矔R!Hf_W#1<s,+jv!(h*$2*#߮ʩKǩ&|;BX|^}+L@\tijv( T H$W]~qL1(bDEA#ؼ-o*mV+l$LžvdeH*W9+ 0ƛ wlSR'DOQa*J#-X ƘC'=8&i\P nђB-j[Z[Ĉϛ*u߀d+^&7CVvO߳o$){#ec!~U0`C\U ֏ٕ,j,m f D|fVdh:vIF*ݑK$ovYVE}!YPﳷ.HCHֆ!${]jsϋ?~>H:ͷKёo4L4mI+fʅA%^h G C<Qcr[O{ⳙ, 9HwS%qTՒ=oIe~ L(}gM,<:&ic|W 4۾ + 3j_&u8l7dbS[Ix^JK J3ϳ6u_^MŒ#$`}کko4ܭ&Q,@ &9G{bvӽ$<&ګ̻b Ƒ%j鏘(Ig0CxձC\i?QduK q;)xȝ W 5rfI0RgkEuږmmC!$V=iӄ? 9ՈVBN*jyHj9dotO)r n"{)HЬehhwUOG,hg7V~N:5IЏI&Dy2be5CrnQ"ۈJ$c g(Ks,FF>d3ZƷ U wDs/MϦTNCq!G#j zMӏiGs|L/7_ObHԅWH}h᭫ 谲K ,34 |]u<[e./j.qj%%s`k~.@]חpr`(!_:տۙuuAד<-~6\'MC,suBtIH 0'Un&zKA6d:J{d9= D^DYɮo˙DдeYtkH~ l@b$qNӶv9t;ǵ;? ߈Ff85ɪkqUʖ4# DCԫwW`UnjVu- MNY>LB"'Gd5TmKU|Z> E֫(JB; # aFoo&hFMSK O4WJLQUR|  L{[Ua~לG?b]‹$ʔbUVdrboGoF:qCŀ}\SJ"** U^F}a+ԊD~Z3-U_U]7 }{6o]ggLf3t?T]$waGXBFcS#[I$~ 1wp@11 (yrNLdePTLc9 fֹhWEFy[T5K(F D+ ~^Nh;d|Iݲk񙾙sV7yl,2 g4$%Uu X='Y4y#!5;Wz#3$s딤,oH(ϲ`dC%Yv_~y'|4o`]%"ѨwGmwUFNF [BFiuq8|n71 x WetifY6L2]L/"gkdoMS'O~*""qoz?/=o/~on siu1Q.7[?X]ǪOE%9F՚bA؞P3Veh"wEJyƺ$vն+DpXA,SsJ\1&mLQmT]RƋ-y$G-?X ,\PK,*}aMd+N+$Q$///.)Un(Ylc2XkRc'$Y.^)nE*}<:ʪ=]dU ^-A] 4Ʊ~Nf0y<>fiʿ?sΒ:x_\&IP!3{VKK^qRm4|y\(eDc%QI&Y (Py(j Esvr2e^i Qʻy0=-Ņx%?87[T$b+R%S|Yv.ySI`*$'EWzKY/]~CJƀfZ3a,%xc􏛾6VЦOr2أZ;e*RJ ]02ly-}6/7=iD>fvClnh6M;2D 12}Jv$`nIu ?hEU-KXN) m~w %ܲmo~lhTf#d r zo`~H"y8Q /lʟO=ov2^:ϓ$w[RUV6E>Lڕ9_&0"ç논ع^};BS^Ɵ9Jj1* r܇*A.V p?? ,T*ILY?2}}g{&F'Ps >ʰ$s`; p[ۂB2b?\ [bTLd@վX âk䤩fSŜYU(*-ezQAY9\,oߺg[vmk;M7̲,mV4 r')XS 5 ( [H~c0RPθysXE=4@m>(V2 AT;/PIImo{{1YE1\LiQ$Nٮ\0hC6*eR49(:OO:՛: )Z \Pnj @~(p.,A/OIGwjh"^m| ,>zi[QAԫV# $0ɶB~ j|й%>PF3{i]I۪2NEWXZ[.:x[o Xl*jn H9\y|mWyMӶX~G;O pV{HD*֩_ǃS27]ITo?ʡɮj@YVEm5-}npV3h8\V$&0óg[UϿ]\bK7CuMϪZGW j%=3LmO;pɧYTZP~E*nh5@*aя|RoxX8|E45|u&;O^mT "Xr^ R~ Ngh~Z#U:C8qlV^?. /h2%8aň-.lݙr5=ª4=7I+kKG4n_\XJKD\#tҩvi8k`Z>g/98O uǷg>qǵSQQQyr"iB..6Uc-핏|<;n8ݝEvr깙[m+ "˶hӣ `WH}R0 N3_˄g8Wآ,:X߫ZRɻ HUL&ho 0cP04b78xƦC=jחnc3~>ʊTU>VQ2 je@2BjQahCC/s?T\$I\,S}5v02}A * żwhSz ,c[QmRsFwbXtP}Lj*UӲRLyhX(Q٤,:d"urӗӯ^V^25M.Ȇ' Z>MS!Qamv!s}y-IU(,r4}#_:v9I+|5V7Z ) #4AZ A?DIJ(z2 ?dm}hVЃ ;VdMb*Ɍ ߶+5˚Qe5zj0)HLƚ8 ZQT{LqRn}bQKȌ#z)ieO砇l(a324Tc?FFǍ}FOC`W#D=IJ"620eU⢂.{pyS|%-سcbY6fXQpU7gA|'SJbe$j8&t&842^cQu{.lD}2?Ac*4DEMZ/^;x REPJ">>Fֹ$3O2+ͪ-vU} >V1A1`HfW~zOk\h;%;:iVޚA'.Hq3sEbEfrH}$aucK0?KNƇFa;cFAfR_Vodwhu+@z 늆8k<(/ sOuVGGR6*ܢw ?֖ 2FPy6;siS%ATwJ))'17#V1`m_[duWu^R:utwp53YNjXVdXS[B}_i =~1jo?-gLE<ݴE)z! =vHz2;x>Jʔn6wW?k~V+TPLG0A@U A.Ä\Rd~-Y$*鶬À|V&,XqYvi<& e&]E4#jУ8| ^eSNp\W/˲-[h $[Ge+09dW ʡفw[TJ4 _6̖,|kz32)hqTR0}mQQN ,?%/.;EK~|~74u 5^'!n #he h:)̲Ӌrr識_lz%N!G<.H ݳ,-}^}mEPe'E垨(f2 ΢6f>Q~%MU[͏n6U-+J py@bdXFNiXM]u;Yu)t8!xDnC~P'wJ=)bJpCf>yqᏘ" J; z_m_q_-6U #^@cW\3*EY!\K-e|>n{q~ !f6&T&adIQKBF a4Iae ÖG_84a^+/QA^NTMUH3jm#i5ϧGH rW^,7@d[uRPUTI`gqRZɄ-<-n6BTlb4Щu\[nWKWK& :2bNQtmAIJϤwdPXH54Kܝ: rs]FqYȟb<a1Bf}vV$6뵳W4ua`8s3abl[ iH &D&=JscE|,GLM-bGid`+dOёLGItI!sꞣ?߫tbg:6䏶nok(IdZ_"EsU&Ω4t@ǜmKw>co寷䷾] ]=eGB%~Bj(ɛ(W!0UnV@0"pvXNSIɚT^k%VX=5LeBg`\6~CaF;5m!* _EȧEz½WPMWqj0KI$á,¯*?APxiSZiM~dA27_c弬LzBmళR9knciFGtl SPD[,qeHHEBuf8_ 58ZKbiwfK hZs0Uݖ;5"E$ р* ßU#?IOuYPo1#Lx=&**m$jAXA }#ӵÁÚ&I'[8nUMfLB~ ί _G*<].V.r3XkG<3Z+}a}(mI_UhÛXd>8b)~F6bi\MI게IpSPE:xݡ/㱰(>_!Surjx)2-KRxjQ.=J#+IZgF;h |2wrdۻ.Ⰼ Ѝm6d6DAD"w ,aҕV: {ZY0::m{f(Ǿu.v-YG6Miwj_?L_iDOc(O ٮ#Qr4e%cɿ¨/O*x<~}|&al+"WÜ1ɏAU[iXF8Ż[M7%c/XL/`cW^5JQTZԹZœ@ IW$ G%Ei\=)CuYq(<3`yt!wQlE4Z=Yn7G[E퐆+|;/?G`is1>s,1ޯEL&i%Oj{0Wzy!3},NrouNO* UsħE6m22-*.$@: 3x,;OܶT^c(Mk,O"c~Š\"; xDx"ide7,ZRRf |%Zsj;ywGo},\>+UmsZa؎L ƿRkZ9:C<}M^g[?Yi$ 3V$<Q//!pW"_3d)eaMaZ^sLA{.1_>ݱk]')gZ4>QwEAZצm(hልpz'cu'"-8Y *@+?#]sRb.ϒ_Ti"\7T7:}< z%bb#E6X ocv]<KIFS{1 y,Tت؏ ^" mwJ_izn=uf Y&*uZ` |LȾHW.B y)W$;_oʗu{oICWS-Yw_'ԮHV}ik;At2jB cɰɁNח{ɻFlvdG#Cڛh}k~%m7wQ%e1!(C-#y"RWA`A-%ƪ1TԖr[fΉ3Sj7>3 6(ģLj 0BlS8/);ΨOҽE$GoP_[eRf=Ѭɫe~USD'xe Lд_aH[vtgz.oLe!2z(:IR%*%yW4`%U? 2}d;~?1oxp >;9ϛMwy!]uUQ/nr{Y)mĀH*X^ND}P,e f?Hfy/+L2J6%XWly@RE;Ȓ2}g%#;E '+|z޶~Uu}*1i܋`K]U%LGP B0rV[OFSFs)ׯDdiTfUT'ٱa,Tb& 7 !D.(9gdYN[y봺&Mco̞J*H{AƲ+e/0D..X8/TY>ҐK#h@>#te~1a0 /Fk0)a 7}¿7)CJjqrwX&fe욌4u¥Hm9DK5ۭ.4Id ψp+L.5nQIW^)HY(!q%Ws8N` G&T3djq͏eu}ا7(yR+2 =i(^?Xq!ڻxIeκ_ܝEc;2Q^R^7yF5\Eh 8 5;PQGV"leCR5`aacn1j\HUA+# M: CڎCpJiC$% E^6C8Sf%>U+g;~VZ3A${ Xm4#"iL6\CWI(у@;S,By B$j'en\4=n A?|}1xɕC(8#3z/S2uvU}iE koѺTȯIWutKU C4vp;L: KFs??#V c2љb|T{sz[I桕1\M%7"N'P@~JJ^sBf7:ɧb06yueoFSi5D n`{#(u ^taf2.p\mfP=h; b=ʭ"USfY\B:H]B2z~-NF.?s2NH6be5'. +$!o^._RH}O6J'.YdÒf"}1G#C\ + 7oꍨDs(hYF*20֪QE7o;d0[:Uk%h>@qYLUfbCf~P7v%:tkfd+ɰ')6fءx! Y%u@hmXHoϏ$#Ǣ2%bUTB%H-01(-.@*3 7.&C16heγf4Qw&pmIZ1KI%WA_E`Yпn̬dnn  ڎOheH 8`DRʄEftRsN_L_ {HCwjs#=N + @80g @ˊKk'Y pMEhi:>:ʉISIg9"h$p}2 X%`tZ_y[T8j`T`#n)>ܗܟ>aԁ$X(.Ni"iJv!f`&k)>˛Ͷ}3Wg1sz0_ڔMDKbĴ~/ue ~2j)BWwM!gB:V&@ \7uK~p:YSg2. Tse~ dےIBjCSFς= O١gٿl)ʙ1љћyA4y2>GEVsq3k1A0\-m Aڟf ?鼜c>,-XǷ]^I"jU5,wCvE-:0%T>Ag')Z*1ppsJx]?Y@E5=1Y[Z|y]}U4(`>=#$êDK~ero\p2cƣ4|G?֙z0u*RP$os2U. &jVR5 Nrdž<,q;;fk]mVU7u4D# -1sT Qܕ0lq?/x1T29q.!#.ɒ4HXBϊ nZ* ! 72A "IH"r@tFoh1LUk{c&:ifl /+ _UF>>%ˋF#b@Z)\*elႱ=0Edž@PM>LI ϵ|_WQ&\K|޲ɹgdDDdC*~k>dNAv /wcvp?FJhgy+*˂q0a`C `@qVMq´qUv uz栔,(nl "K} 1g.0+cU'{_>5P&sq_s7Z2#tƩ 2(MGaf tF/eS:de4o3[ro-j_S, oU`2*Nd8-W`Q&|7o9.I1/w:F\Ë-Imצ{)/j!Z9冑qŰ2 `ϴ۬Gclxe?ݟcElnSzFV+fJ#ۣ +sVT?&^ңLKV+U>bGr:7yo"oP!XYS>V_jB|%8n`gK4D8)zBoiosw mYZ\+,8( 拯z`]dh~" ~a3ŗ~e"d d*_xͯƎ2y0C3 Ub+@V}=A =/@m-` 1 7$n}#7"vo?ѓ?]GdvT*a|<򶈋Җ|ڮ+wl?u,8#KӶ1>9b$#4K35$ R*hHJmY0 sj!= d<0; ;ÚQvbZT6oջC)/塵mle^uu" \%Az6A fC/G 0'-1az]Gx`_@mtHSvYEsx wYԘ{WG+Vko䉜`ǩ.,dD|+J7tsTc+4jߍ' AYdr a 1³s n y)QVD:HxXHόFOydvjz 9Y@4-ͷ`8H`3 7v?m*5}yl%^*tK5.ninU.U*;ږY& e3jGu7^VKx9PLmeZ_.IWP_ %7NƂ<00/w[^{Zb+JjravìW\6\@O~=46癛Yp <9;}"sјi[h˺Y;y7ǿ K?̼&.F;7Ҙ_G$ZF'1mRWP7 jlh@4]knB~i.ʦ+JL;4r/!(嘖WJ)7 TXH0v`pvIoF|㎤MOѰ#pn&Hz$۶)~@~>ɽ.1cC+ݪ-8M+Ϻl˺А0H֭0́_JX1qd&ί|/$W4md f4KrSmNcl#7 j$󔶲)>xlK'QK&=i|7^mI%%\|P9\X DH`!A.u_G&ReFO3C;3*KZ_RJO~!~mB"W\?l`"c~1k$]~ E5}Os__!(ߺX,dC>;vdLkh!d2Ohj=BI泘,ą9tXMPb0BЅ55^DLK/U*=Oᐁ, 2~]cox!…\JDžɤt&!r!OUf2LMjgYB^`xmD"보_^EٿrXTYCj}uW62yzY-~!qp˃s*FLJ`+:r5JpJST蕣͙J50{֕~NQ}_|THT/!d'YpFE/vM32 s7 @~)\X/@7* %xwJRESxK{Z!#4Fu:\ JK>_}"G\$H1T~:*m"ΰ"xz*lU6=ꬰ|M+.1t]t_ Gx]Z&[FU_a %eS˱)p.wvt26-dMkf[Z[nK"=x0`5Fc tBlg6yΩmM̊EBBY?~"^EWgb>:%`$h7L+޽ȏn|ιw̳٦&]Ea(?.Q"Kp)(O%~!,H c@7dYN^ysGx^<;togUl(/6'̾0K{OCPw$vQXI%FܭpQЈ9|;Qm›H: >?t_q+mH&8_Jh^\V/8.kUm58$=@-C,0YHa%\5fKԟ^f]}-.@$Y^TQ%b07eUBl @U,w _ ַNJ3z>b 755?_"9Cn*j)*^ [QO:ƨ$IDJz{owMmh+e,1}Wp^EG#?D~hD{c)VU>zD!%VQaEed?8]zV+cկ*u(?f~gvhE,Dir^ )Eߠ!Q5b9 BQ=AؙW-"кR p6hn*d (rAqZ=uJ{7Z^]J -@Be>dˆ"5Rq$Yab>.ۼ|y~M&y8  B;V *C\Nd0|XS"{LG!Cc61_l:'ƣԌz%yE q{*(4PjfƤq+f+|#/Do9&ʷ7+SgNZ^䤒g. JT#D3_m1&{(V.0NWزn"*y#dH)JE,@*]fcd Yu\AgnD/}r92'Ve5UF )]fBQ<8c<]4R2+[rWeKHhqepk6/q&_eUS"Fiغae^zydZ^ol 3m$' U//R[Dȫ u"~OB0Zc8YƥگtMzrJPwkeX0=&'sy~stKBV*S̆ˏ/ Z*=^}]-oq”$iN~z91eI$bIYфʊ,=:]'N)֛:Ċ-ד2BȬ~q2,/X%WoO+ݕSfψ9S!C*~vD; nZn$, Zk,Z2 N`dOawSH=7h|Ѩid>,u`MjJ&cyO7}96ؘ>5mSHϷ%:hrI97kh5f|̄b%3-yM1~9W./˨"Sy@~%¢k$9ʮ;\:wY:%Q|]_V%^H>=)?.RTX;6~MH6 ?n`~1?g3ˑ1UWJ%C â0 ~Hl@jr+鶈*6YIkj3ׄE!2VM*}Z Ce;*ƅa J'˲ۼ8n 'm<})D- E@ 'ጘpf =NkiM林/Ģх~^5]]k$NxThEPaID? Kꬌko']Y}.(Usaəm^o W*wL$|H ! 5>޾ߖ*Khk6K$`K!Y/f*tqC0%50OL6+ͮOK-轤Y$KNڏ4DR~ SJυ y`9 **@,`}Ѵua+Vӫq%9K:ѿ?Mnxwi?lcќ6tRD NWYZiD e#M7%){0g~"fBYw\~oL?܉BCWdg*.SCQ- B!N5EBd!9>:&3oTeP VDKPpNZ.:t#Qb...M9(I (*z&Y^ & xQ]څ#$v8CEH+"V8eY]JD9ﷇ|Ò*Ө3Ȭl8^fW$!>"J^:snE%e--PŇqa* ^GM{OVmeeI&A 7Ʋ#1ʒ $%aTa,. U6*Yin;1_=Ezc90+__Iͅ⶛lPN**K4Y|*q)5G^cTyL#^0&:.eJXnBMSq+iUmUUÈ(wO≿lm{ |!gE&ѹ tW(!sピȧХ++ !(03=y>_#f%O 6f$-?D{I]+9KJ 5U˽"(;z'6M U$- e~y,FI(!XZ$6J#LV4$Uu'0ho gmwA11@kb$$qb$d50NXvY0PȜ֥!􇟃ڌF4'7 !~ɮH5vY|iǡ{"(#RB !#c U0qI } ܨ)738LI4J^5?J9Y H9[T Nj| Ƣ \7d?!͑S\,ּ<"̶XV+ 27̊&>t%_$S3U^:Ơ=.JZwdF9/'`uޙ/w2؍e0ho%$`cypvD턲,(4!L]0+RL.p(^p[U)B&vRβiMN4m{Bn |RS1 ]g/^ qb,{(L ZC, Ϗ0_nצJ4:B"B* pIvYS!#B@1xMޕ+l a?#82>YeU#;} ^>hd<[ Ag >'##^F`yǩ*;0RY(w@sEPwtXKc8H1n(ˬGUǑ0LFeze|4=2/-UEciSB$#=3po_a%ϧ\W8ϥmcw;5UZ_ߜj7谂I˶Uh\@FSkī=o ) lRńRsVwTvqA_(8iuJN'XB_oe~S x;n.mu}ό+і)0a~k~'{j%'An;DD@"ǭ &}bhES1wa)"vr=$\dt!p2]l`^I_Aܽ94I.d@[ V Y`N&Gݏȳ.Fry?Ąs#zG[@O<0sJ4 BWXJ7IU~q?}4~IVJ=w=wQieڐ aABX$|.Є!r$[>p-I *{w] 'uw#S2"iW܈Lq@*d8%%(Lkt({fz=PUJښ%Ot } lȤng`t"$ˢ8diѴQ\27-ndz"[S@[ռ:Bd^$^/pBq0(A0ijֈFCJ3i>{̺h<'Zs^OgTH7e;)%wͨ!ۢ_,:*0v"}aKBi]W&;:Lvu/8Ǎ&Uepz$K]bR." =,~CO͠%Mdi3dItvP`(eX.9O>2.Yur6eu!-_,aT-ٹ;С?u#0 ,sęFvŮoo7샶,:G(hXٶ *9:)88?ǹ|w`x}/4qwB7m\/&U N#F8 |-qF[{鶕Uɹfe+n_"$ v m[%}&uC1kAi h4TKy؂N^&"p7Vj6ڲ8d9)eA d`+& t_h!yřm1bcUa]6|) ?vO6ͣ=J}rù 7H}~tGBp~-L7c-73f6^{\s_eE5ŏ 9پ֌3+3I?+6{V.#.l1z3In|9 zrY ɬJ3Wz;X.Bq7`Y;I`@;Ap8ϩ?7%ˢ.>4.Jcխ蠒RۜHUCt,YRT[6|(pa" f,]Uc߿)Lp{%`C_.?M,Q&ɗ"޵an&&mcyFĂvx "AbD_tSf7/_{uEmGVԀ q*~+B[NgI"4.#߿~h5nʒ$u^ IL,襥dɩ;$q!pve&sIUUCɩR/9y|~uMd"B߻R2*\v>QY%"%N_a;l=+eQD9ChTn# `bOʧ Rȥ6/پUMb.|&H@?_h'>cH폊{o<'k&fR1;xIbj wE8E6̕3/Vl☇0w%j$a]VDy Vfp%0)"+rEVJ$EO?d<`~EO*n3_-ݥ]o\ON5k ΂2;;'ak` '>' &HC\>/-B+Ҡ JF甀#@J#pdL\Um՛mL[Gٿ7XnhӾ}1|#UfQS<%Ȅ:(Xs˪សǂXǢ(sK]C7K,vEY]e}b_øȠd kj1DPR8w>6<o?ZA1} ,«S!HYҋ\d|$2pdЇ|:Cq;6wy(r6&r~FJWm/9FIFL4ʹ. ] &G4/P+'z^vZ,zrO`صO+2 S* Z,DUfRnn|QxVg)ppBwWq-*)S_yJZ-z Je aݍAGoXQ1qԤXgij[汿eVY%BJulRN9"kur h[_"Y-|>˩̑Ƨ$i 5Dnm,BLyUWzHD+dw(JD-dAIXv?(2HwݿF='Y^сM\)|v1b\2 F{2Z& wf_k&̶|fqwD[\[~(6r}QGD*ЈBOe{vGT$iЦQ$/=9e-{2IIKb nQ9RU #YFk8xe%:rƳ>HG1MQE%- Yq#hHD$MRRK }Z4r; q16y- 8 d<%b&]"cmH6վBd"~7Wv}]^L eB~4gȺ#I%z6PDG`puu*Q갫1fVz$!juRťzr"dP N}9@^4'1$b+!*Y8 jx3h>7Ec=)jTʐ(+΅L 1q,Hդp!D;%M jf;7k>rYVfy$GЗÖZo#R%ad-9H0ֲཀྵKldiWfȑʸe0b-Whw=ͭUƨa.t$q^ ˼Y{ {QAʂ|ԽﴱgYatȫ<4^IВXjCK/PI)E,w.RBhBBPlXbY[uCǏF3ֆ> ?܅Kd` SYC.nL^N)]ic_3%fW/^W"-c}?K7q*mVZ.j ^~:lFż{)rIT|m:L~&R3sR!wt 9`eTƈ $4\/\.E7a; 9~-vt{|] vg/Yi\Kp GBuSbYqzMՉ :~i:2[g~+_ÎƆc J*[[ZwUSּp[gjAtL="$ᐯA N]ŶeЀZVF#+a~iQCpdu+mh! $P;.IFD{.ǪFIBxVT,$ɻ!@9ՔNT"{YTQ"pV.SaA8Hс}J ұ1$:{&|ISn33EiD筹3mM)2$ґ:Wdž= (r.?) om\U.i4}9I%M `fE_ۉL2kex$kOP%AɅUkl?]\5V&/]Djڙ*1kP \NmYhOzOP,g'L{ᤦL䙻-\h=q'$:/kU%0>:}oM3cb_%׽Z%^Qd()E *HOʑ&'d8rJF鱂; MX1>.. ;ȷy̽vꤒh}2 1Ƀ]@db$+ôD Mϛ(vZjvϼM|כo:7f'7 x{Bc_ְ}!3a'CG$.IqӚ X H<'A2K^8ܬ=DYK2'kn"?ϱ X@+`9[a4I)5h\~,3$WUHp:9o -^`d0j!X 0 vh,/_rΝ XdI`a}׻Mh~NW>.ikHax3 b߰Gb t+4&gR~_-Zgs=SMI?ŗ]aQ`BDYJF4c;|q jrB,IH?oKSY%Or%1\gf,N%CObH{|rҳe?oJ2[}mv#iǚsWʋEy(XEƳo3pFR0Ɛd5kiOl۷cώ8њ3JZat .?~*܁RE4L* dZg/3%mc46m_S|2ۢߴ$Viz(%Pׄ;u{t`765 %.%6abONZ'y[FuµqٵE}oU @J{R&vm-R~>=%} 88\:"  K(<{,ȱJVS<inʎtJ߫m7Zf7_B PO,Ȇ:FV'# RBKeG-܃Ѝ {xP(xOw1[UMR8UG"r!]VD4^{C@IJ%@|pQqE*vd,yo:RKEzO.יC.t|MAYaey}3>?suʺ I?0c3|NiMdUS64(}3L[;T$@7HOn%{6y<ZƟm{JnۼaIIL㰚$볪 0L$EB/!a :W5 ?ӯi[5ʙO yT,O.pDT@WZ LHA*q,bVB.*p 1m\<2¿ 18 ;a~E%-8j)CܟSY$ܒ푑@& ` KH!=|OƙIcr L0ޤoE* tXn5C!|MI`}Ib:fR;5c>-z %Zڴ)e< b^M$Q<몶Kʡ\R~!ѶႋŇ v|,/ !"%PXQIjA)rYzm81={! 6!%tk|GWj劫gȺլΏ4CP4@c? ;t,P]oK5]J"C}L^iO7~I;i]&5M#"2? Tw@Ct?Π䴯,'_ =p1w/`q4kiE0fZ4i4yKeA>Qx%IY"W;df͇;ï7/*{X:Eet𐂜j%rkÙ% 2? D9h^#O/ DHko4Oo}&'a-h߆KPP9DBL}/WN`CngD\̜<\2_nEERHP9x|U`@aq* #}Z0*g#ï/@a3O\wzHQ's*X6TOG]X]ZGԊ];8׻ojpv^&5P-޶(|Qկ%1&?GHFd8w== D3cqcuTfLs,,-jp F49-I4,j¼'*4%bn$<F$2$;\{p@V"MȾ+囯2a̒Qi$)0T zz/(;cO橚4zIJ-i7" چ0f;XX <-:[EfZ4N)!nkVu`p`֭HrHbv^¨ /z&K# +,&Ikubx*-_ShD]HoJGg;<DL>궆Ո|C_Cs1DRwmKCd|IÜF C C7[~^D&x5$9!50ّc?l;'`pVKZ+^3-dmEYdy\M|p6 b6~nDncX68 tQGlX[ $e/y7_dyRe4}:):V#Eb'sV 0%uWvk w29"sT8%yuw*kR&mRIO"%C1"Ur'H)o.gb,/;ghJ9=ST$iYmeU4/,,c#@Sf'D_N(s38|?0fnI9i_mvj`nXmS6 z @GH0(#fĖ;!c_yE>;yл9 B-~D[/&%h ܮX ?8V([ pine+q-U&-9??_8}|7Bib1Zs@0hxHRl\DMs꿉y} zEC)MD[j.v aa 8aK~W4l)Q ODz,Ub+X %$( ̀qk޹XFohWfW5N[ώI`Yb,NMz!B/<)'wM{b['yW _S>l(um6tW ylu% 9Z9tD)!*2ϸnEZ$g_/FϘ~n0~FWM%M[{"r`--!!4ڇ I`'HRvNh]eECqÍ̗_9bIhJLUeRa~P^}F(OL#w0%:4b6od:-ôNxÊ5mMs.MBFUVZF,*|.gl-\TޱbiVQfR MepukMZ8,)ա8z1־Jޫz *ZQ6m\v 916!VH@đڸʋPon_SŢ-גX t nc!Xe1܅;Oo+Q䯨HDvX\&/_O>.1ˇf]`eܯgXTʍ:4ĨC A|_-`OZR΂+%4 }bY/0d&,C6<Tk  {o?wcؚݍ";_b?偫H@4#A!d-ZmXss24|+-e6'AIu*ˤ %fI`STƪ-pL4Ac¦kvH~)XiT&l!ʤ+0:'FVԟ84rAGh*_ fl8s. &iy~Ka,+Zٔ PH?8(V~p1A;ߟi27l!RBf,,( ,)r&FHOJgV%ˍ C|~_ O?U c]'J1Obw @#0T&aL>@A+&箐񗱮*AEoBc3?c^>e^?Z_CPI6:ʜTd$1$#PQUIxdiM_nleiIz[V<ųL?ˬbI5F|(%%I8岅."yr|q3VRag3לS:VY9fQhߵu/6:NcV*&!p!q?.wAg7E$켁{IH/})9)3"UvaTJZ䢙dk,H(%I̮/iA%5~ǔlCNOave'1k r!?m}GK܄9X EXrPs"}o^Kҏ#2V6*H 4[;xW5-Ɂ֢`WI/ȹ^hY/>, {dF~ee'3q #1X,4ʬe|nסFo@JH%idj_/rPUj~ ~0d^!pL+ PwmD`Lޯm-9K;5eh ?Ԕuҵ /ߩVibΡ @h+Vp-> 1웞_n'eēaW뗧loO*cShUd, ZxC3g{Q fEHɭ!~g$|n=zUD{dԂi)pW^3iEJ~sqyAIiIT|YH iɎqQj,s>Ǜ,mJ x!=qCQ:7iY q[x.̄'UmB*Ω$U4:"bio Cw`Hv(MW(%x-tʁbӰRjFBҡim\rNr!!g] [ȫ(\:MaSϷlf&#dтiI0-ZSrB[Z(Za4?Xh>E8ZYq_3~hkj&3vJgo&:._S89 1x.N;ҿ8pwudWAG^F>BSb k΢Baa`b hnH"=-+Q''9]yCCvD[SQl)oEE*8OE״NW_H`SR_NC63+ZκғŒۑȇ}8O/>:sZbE/᪭;' ͝Hfg~[͸d|\M>uͲ?jM u=}cyʞ_\I4hW69J̐ 9IQ4$&߱dg2)]hw 0mN |aօaTˊNc \0gݐ8t*ڨd_uO `8w]s~5}XI"%MҾDJЍD3FRgao9qd8y&5_ȶ&g(a/֞mq,G)(r苕\EB!c[} ;5=.gvs[Ovd=[ߤISGMrR#, t&J(]!aS_ØBjx 'WߛԬ{iay.ܷe8iJ&S8%H!i mp%4S$9njnUh gW-T@3 oִge2g͙DūdIQWu)(aq4@ZXe ג E ,?o]ay!0c9Lیj_bqTjD|ǔN)Q䀲}Lˬ q}իo^htkEk{,SU8VG ,˝r[euRY-I0(J_\( ^݅ɱ#-& Ȟ"2)zPIt{5O .sΓH@],rHIV\P$A6 :Nԏϭe(ǝau-wP$L? Qc+&w^DE ,ZZ@'rDn-yyeo]c]M1Ne ),M&Xs+z9*[ 7MEFVAB#Vwr"zx{hg C^dy&Qv&C6 d}9j10xq# 7+[ɿL89$c#0ަ/SL/ۨ2iZMmHYɇ&L,5|LЅ5vir khhլO:ohjYBY dy [!R iG Wш$2X{sN^Q<=,+čʮ6 &bJi42*d*@r)K)ks=#'4c-O26M0Dd\L"~+s1d1Nz-Nf˲*4N1?#-OHRHI>Q,Ѣ]C $p ~|ka%&_%˭k[SVYA""iR PЦN:F?2֫\n˸xyd(fz<Osҟxn;61 K[ ޴oL&U2b&$UVvuȹr!TNc(jN/neuYɢ۟u_6:HJ5}x!ݽHxބ\& dzN-g!r ؛+)QOdj24-ϗ3]2{LqK@GAbd /3 Fd^1_8"k|iq!A'b#7hTu'kgJ˲$`lb䣳,8X(14l50{_N.Ѐ{D*LbҵwߎaJ4n^w3)֓lz7L,k,u@I`-c rme!cy 6`m}7a%ޅV_,v]H<Ʈ%˺ku),0Z Uz":tП8ԕ繘 5]꿸/Y>~DğdUl<;SCvEd ܋À5~_],I#O 1-~) AC #Դm1'! V /%kjN|M6B X˫G7m|x:6tIM`^fUj R~Ag/ª&d,P^fHE3["Hov9QE,Cn)S}{ :\S^G)үXWi|͟:J&4^T={'e*H~'aҵ@eS8p 01OU^ #$qD!^gKr,FEԪ(i^B&kMI12L8h-q!ѿ% V9oONHMKeIԔRm-CE:R(p`NgFngN*/".sVk˯ MA6!L G4nvkksjuA.gi}Je\*s_GDY;q2Ksм=.x+>cy4h?yoF9?A@$i)VCuJ: 0+:%Q:bUBhISe0ؼY,.K ),c9˾5y `SىT%GC|>)q]wQ qRE~q弨`WC axϠ+KfQ(9. ϲ'v&U($ JaLZ ⴊv[dؕzͻf"ʄW#!}՟ȷXY*j*BL"-ȍ* ^s+H F6YӰ ͐f Y%.])8qkJ~ fEP S,_9ВS*`c8Mۺiq_~zh_m+ 5[T{oOaV½ m 7.,>ee؟?aU}qeEZy4?q^eT8`kpOTHZ`/I9ۇF%p+ūMh 5]UpchFi|*d:N/ArcQ12r2\tAq*8c\(Jv=Ġ<ۿ%mei>7xf?>B$z{"} L)ӆD @<YPńr)&O4?N,JedVQFJ|b! IJ/Cc16z!/hu,YkxϦ>I{L2mlڨgtoB.\KTH_kf7 So1I'$3$ .S̯5eK[`tw!*vAY*l"BR(Z}=F.,KF;">4-BPb H:"c%H9&w]Fꘇ? iaȯ8~E? ׯf @l}Jg-(NM!T\)MқEuv _uӘKV'q(2"KQ7 s:/5[:UWpc֨ZDb]K$#Y4%5Oh" J1`MsBFbMޫi0';_i{+tƮƟiZəXAJ]Q&a ́re`ھ[OȈZ,lXpIҲ?Mq X7r_Pp'ZVe,LK{̄aAirj#rx0mޖŇFR$\yѫR8ɃڊdfFQ78fʫ)<& *GJ*]*R[Lf4$b% Mw2u1`_δn}}y)yY^Ź"-y/+=oхF dߔ.cKdxÿX/HtvgPu~HİbzҬ Ӝ$$l<^ZOz]]~hznAkLWi|"a0+;|M>byTGjX oZ!K 2h` D)?.Fに|aD첱Ϳ߲~ߍjd~/IC eKIR j!_J5v #O.= BY|==iIt+ЖyD%(؛$ɒch4&݋*YJCcUSwuucJ nu߆=i'>@JE6Q5cR,c|T dl[L0Jta.([deCד5c=ʊҧ]mLyY]H I r@O6vη35.Umo*>ȤK:%<=(ȎHjceB#P҉eGHcwHI̱0sLֻ#OZ6MRĵ WcACgt}N@Ya=0PlL.7~%Nc̴0jfW9m7"Ʊx s* _g~Q\!dAH!:TF;V }qzO,Ǵ|3:h&ĹzV Yu3}N{bM39O3VW5  I^GN‹Czu}:ȪϲG,M?T'B"Q)/HwJ("; ,Ʒ}6>^=!ǰe>eRH $+@8IiˡL.[>]9|K/YlWLd۴.f^|-e ˆδ"']ޱ8-0ҏP#Wq@KS1/:Lme'{/3#[qիwM|&M'@jz 򸨤1ji`/yw끐mܟI3~Gi{JyO<%~s =LS-(RM$V4@$ẆB,,uϭE^iEe6)y$.JK'!C8 -Na䝉, |\ɄúfZYq&|[Ggd,3嗙0Đ&PZ  JrS0E2UZeeBۿSfϋr,.ɓq7_>^?e yEV\L/rH<(wK,=~`pUKv5؏3{!Fk&hg_߀cE등8:41 Lk/|`!@3BY(k&aD=;nBqӿI{⃊=bR[)HC.ҪP PGU@_zLA^N .( fgEiQ:4/BG_:F6CH\ё)F%BOp@ֺՑ40rՋZ}\Q*]:(տ҂ͧ wwL6fkYɵb,,S7γbDNXbVDs$mˬ|j- kZ$PkXaƢ$N\ yer'J *]I^pgo,_zkYU@{IQ*0bu<\yu(o%` cZ,0J*peX9hdݓ‡6چ!Ƿ$E[աrVxoNcTDJ܁.@}I )@-|=NrwjeQxY W6D}Q S BR/3<i ̗sAЊD(f1@0'0EY~]wUMeeEڰ5A#ARd ԂCn$ѻ2~63)Tq͛FR,죣CG#"g26 r @S@L z+׍bwtHlۄDb~=d+\%k΀"SY)9t1_:h)4KWsXK_[e]sCL ʋ1eWd`/2%9nw)U~}49^.K^mkZwzrlk>;eM%%ƲR[&p$†oK$*$C-Б3Y*kl>I`iW&/&>QfVuwezHJ;-E2R05 x/.`ܕw[$(eSE)2znjI?t8@W&~1b_]>3%ǃ/FuGiZ:ȘyDf^l5vTd,o4*p%F!6ZIsZx3IuƐk%;7eK&}߇).F_!˗8Kz0EHBSo|{ڋ92AEۘZh<ή$t g,s\;}29332_eYQ@$#RBxIϴ,a$:I菠 ?)-Q=7"ˬ$>qV,AU@(,7DJi qr뙨/mkQ.](Kh ?vc_Vu< қb92@wL 2k\5ϐqp>]gT)e YRx\nJ.rΚ0(8)ZNL!:yƠ,.n?8s\9 t_ 4٥mfmXGESSlW8a*;kȑ $'u؍bF~KȻv~cñߘemR]ؖNR61N BJ1SXiBi5fyY~-qR"Ab^>Or4NzUxѹSulkop 6^>_O%Ŧ9Fˋl)_̏Q(N3ʐd:LjwV"+ZzN';::* 4Gx  urz9 `K+Ƹ|gϣ4Ote[#7 McrλbdzdO`PxE.Ú |}IF_"trH!!_G*}fLVΘ_U]Ǩē=mQ%BJ-0 LT1"{/$zg/;,G>TQX'>bv~0 K9E=j_XnK~)gC6hi+^W>$]g d*~ p^Hvy9HLM OʐE+B׾~訖YE]O`GÑR6ND`~dc#%Cn}9cKlkEjragE(.Nї @ꍄw6vYfeFKAzdU-F^v} ?QtO|?T|vW Jh YyA=6%Ȃ0w$"hwܶp3#_hc1d[`o6 a@/oZNq 5s| x!C4ɿMp-7f]?}0ަiUDՓ}/*!C, Ct,!TF'Jsi8yW6y3lyI맜R&Q}S*h ӘPV*? }hd4: w RO)c n'/|"'doF.hS WwUY82ȸ$,`',1z"{$ٗRanh)l F˝OL<,ϣʧ C$Ƈع()L\ǧ2Gv?hYӼv~iZ5C+z <a}=.+Ui;_F-qNT<oOj6ɟ/դAP*:/?z/*-[ȼ0ݯ>d<\\n/W1Ɖ>> L ħ̫A|IקE֪h @eNp׍}.!L2gfcw4a-N>$uvB _X7NHI1xbenw=^= I{@('~сO}5@GOޅQ(ejIgTO`1ڣGT&Yv2̋)F%dk,?x|cB5)J/c|\a1~}k*$wծ<,.mM0,k28怬)Ғ=i.P*0Z,K2ǧ5 GW%WOg*Imf3veE8^adR@el_6cB֗]>IQ*af4޸lQn z*ssveE 0Ħ^i_]㓱.ƅꁛ# 2w(5#+G0:<pe kJĺsiWLylR1܇+g_`2ii/Z8t=R2C 2Ţ]e p]eM$f/㉊xH:{#V V~Z{: יClF83Scf-юނ2XZJ:RNxuH,,~#E6vs5`E3_??_% TMe4k뀟+UV (ځ кxC. NƔl+JL+|zRDY54L˶>F.r%#Ĩ)C9#h#Ђ y9 ѿ/]Ww>IFPLLsL#|$ԶN~:ƢzHv3 PZ0Ƃa09GIn|'?;{|*_յz`CW_|Y4x5@WUK\4_Q#_pyDR Y4?bᥢxDcJCKj!(4B;/_=}po9ނ)ʪmX|He0ɯP:(8_bRB*VB삺g&Pζf"kߧIQ|"M]X0)VR5ѫ/H;0+'|.AO|u>6`थ/тaqkO[1|!)oY~?q34n8k MgbzW]Nw bb:d&v9AJ7.1uJŔyI ˺̸ںX;!6EGtDydLx5' S*ϣ'H ]qw/}&8 7խx<6hH9Q\ 66a=qqo?~Yٿ-ʹ1JS quÒI%\HÖA&):Bgz>.W;v{͟f7^66m~Dm:D=u`H/ܭU~pba2$nߵD'7Ph#}TIQT_z(P;ѕyOR4ў *V;ӔyCυm4=XrFY]5תa9 $-+|Հ = _LܮJ1wO$.R? XZW,CRTPpe<%o{AZVyz%*¼-.'3Wb &O"ѽiVkĦP+x+N!.,cq(XZh8'|Zfl[&$\|1H}^E#=(>o@r"Êrpzw`ջ-|3B/ـ8e ik06rR}д7$e]V'׭`HC)_+}nx㌽KƎ ]f2 #WGH&r/2{7 ?g"aJID~XUgeV_RĻ r rzҹ0t:_w(üO˃.a36!fқAVUUIˮn HHH6So8ؓ*2,VciTğIXTg1Lr_b>Ci2nF3$*,[QY QI$p># tD#)WUvT7ٗEemg$^o-T8d5ue&I*+3)ḱ%$,%p czgJrT`W_3~Ыe1@͂ȈϦ7)REmAK,!wY?_]/d@8ҷP O@V_@[?;#QyFHHtYc@.1@E$Пt}SO Vqۏ;/Bm*(q!.;df%y`06XaRXHsNS* C)fIKW578v>w$(_T 園]En~#1$ MI ꔩk/ 5JB+Mx2.N3RKfGzBL9Op@yHsU$8n`jRl.?tazN!Շ$.^1RD*\VI^NfP$nt'lMQ8\bʼ;1ugvYE{% : ԝCuE`SUB×bJuͰe0*+Z6t/0^|iHM o}Č"I5s9zK9`1||"M}7{qhW9n_SV*ɥ~uW9ra*N )f.&wdBN}!`٧3k~SEY*b2trF@ƀX𤌳Qc.uKEXK+'"INN@~_̣$uɡÙU 2fӽg3S_%/v-UYWYф}VFFu]ޮК$͔ u<˴xᷴyE7B]_eg }.POIШ*gm&k_x!}ړ&@ 擤cZ=(!-{vjl2&zfGhT N$Ya`&8P5Z* NXIX.> I^ڴpX4WXa7if/eّt24GUSt~Yo=^ms?fƾ'_yI:LN`; )t_UJ|F4x1}t"eu1'̫v߯'ʜ.g^fU6"LJUH/i.1(cV?gfK %juUF]MReWg }KL, q%vtV3G-kg7דR[.72!v9&M_H%`/PO>n#M'މru @RFJ]ސ&D1Nխ"qC֡ ;_l P'X.|buĦx)y4"-Y׶k  Kp}a(cV9Dw+ _ln 4lkb>j? T㜂\W)DIm)ǁKNKP,% ${tDlP:欐>8i_l"H`}$;DmCEA!lI*4 5c=o16K;U}5C۳r+ǏV_#~t>!yѼ ywrt >LQB5 2Ս@1)nGnV2< "8~_>-UDoR,1$&HA/@E>[H)JHq?1Xv$[EM҄Ig8 ܎4Y5 d(X *Xj iHidߩU}IPn>ȈE YO˲pDƮ`_R_;(UЂffoom}эU]>fv'弰.sn-Fcw G`yjnUPw *J1g}k˄йP{C>]01m:U]*G̘ ǒIE,GgK0?}C̹<0C}iYVu*TE֕O+}a\]>ʱ2ŭB`ԟp-pYvޏYi*1'j]yYNZNGX4&cu~QErf-gi|>$TL/ᖣ&xq)%UYG _S kU+i엱N+p? ΰ}V1ճ)D^e]eZGImVppB4gAUDsgjyn q<ʐywTfj!'{]Bߗ/FXb8v<-ܯ8Pkf&N<}N$2o'&zv1?pZK%em0N(kO66xLf0߶tz1ˍΰGqNv[qOmqͧyJQ R5u2DžXK3!Z`YݎJOǁ'EjEHOE/wDo qj5rŇ}zRR/ZMجKϹZUEƁcf&ɉ Y8Vh]yR]`HTFIQD\Fm^>FӗIlY$ \;\\n 8ȅ|/g>ӟSӼΫ2ک,Id\c pZF (@O (1Ŀ(4I" ":8x~SM= DbMWΏ;vFTd7"M-sh 6Jȓ.kiZ5UPHQD2Q"fr.} _^tξ ní]ڹ9sF(LE{e )q^;S cXiG$tB( /E &P'hg*U|(' {E_6Fmm e_*+ O$NLw/Et&l4#JvgWeIW H+:2wVV{]>i={Y%c3o w I\Rb %˂":`F=?hmt&E"Q,Ƒ.b[{xQua"Wm循*Th}C^I^@ ֌R+b\q] f]y1zSK٦ŧK^ER6˃:Hos*5&Tg^y;}<\r*<^0miF)Ng)"-]ª~+"zo7mz`:PuaQ$k&0xO =_E1O(ōdLf$e(6M7¨J &ThϮ 6uF5Hݦn6O xy(XxCD<$u'OZ  ]ӏv\W>JQj&9W1iNf+M(K0)DIxAμ(6w& ϲp"bŲ ]AvbOnɨE( %FBqo=w?'<,ڬM?4O1#AJcMV0rhcAt8%⋢*4]$BEhq[>"cO_sMKà&Ͻ<3Ku9 g6Q4 CB!d}RT֑vߌ%d xӪjّE0岉c7b$(i~ܩoH^Goy;Or4Se$i VI~m}9u!pV.l^M ko`K3|m WQ?~{;Wijyv<mRj%>IIN9Eƙ?k)c4SW_UwlxQ> cS"CVdVU2nܥtj?A~D#=l,Է#vEϯhneid@ADF %c+2@bUWAsW!oCz;K< /e+z#>e&|ҤAPH/-0cYbA =ck)TƆbn/(?Æ__syi=qGR-IʚjEB\y%CqHB tݟ/&_Wymi"*dʃll!!e Z^xyT`rGF5$4;4y^Eɇ:Bz6@YمO)$L&t;@L*0DXBk"s+ed?U7 3]Uen&ʔj|6%zhؕ$!Reg>Ąƛt1:SI玐|w}}Ie$TOK"ժ"it`SITz҆^:3z|/>1 ef'yOV{ʼnH#BM5+}RHyM7MZy}*ڬO7mdIdwܐ :9Y*1%} SMHYyn܅StqqH땥_AOϑ#[.{3oK6U|.Q7)A? =-ew*EH__)l_7O4XI~$j*12_LR_V?vp=Fy((:Xun\ȏ'͕rRXEI6") HU>P+TfL0*S1~%❧|zp=3n&GLIcIQFGe$UhV1"f_U2D8TbTF-NZbϴ@ߝIpώ};|4.BC*KL|k^?I@h[7d!<ڲ @uY]&: NYFsjNiɽdp 1r&c,{vplB̽EIQ!*! V 2+jhJ6f ZUU.*Vg^4P 1yE(HI@1S9T1[(ʔ}dC*^fu"ý.&.TS;:_oAaE늃17H UgAݮ ,'ZЭh<~[ N!$aN9d) n>C"iWem?5FֺǮtʪUX42,k3_.Cy,klKAA1ֲ _&*=h!Ysh ". ;at~z_!7O$ñ[z•\I1KgMafÞuءvÙb^_XO@*  >߯0iYedp!d0{4*W0׼x\uӔm˗qҮ}S޶]vo_L3No/ kԚL-D )Ҵ. d3:<4 1>%$bWtGH.h y)$i?4:nX&(Vfq6n]<7}eI&[=>oL 4'\tLvцZ5rI̬hSb`x k/J2uM`zI;74ɻWtn<^S?#^WA:T[A+6S)"H(|6cvMs Ս>yuMtϪkM5bQ"XNZBo*p ! ,4\t)`EĿ:,_ DrQFv*(e,Z+h'&+r?p34V9$_l2r*i+KNcȉ(!n#J~EQKp ?֓߃̏>dͲ(c 2޾8Ik3A_J$ӼBhujsopo_̶HRpӴN]%;g;r'o=iT/Wp#…S`W e^q/|kO'A },>ōw'ڬjzc|R5yK4S{*#@b{%-,9If51?u[WƧ0cgHW3hg_MS=tw9n*N!됢" UUםXHY'`rb_Wa"|1wO]̧bm!ҤW+F Iaou$~h$6z_;8 euhd%iNV(̯s)|ql A 7Qzk6=.vR~bw~nUmF)@DiotlQ'$4_V /1I"-G.ҦUYEzQm~Ѯ>H*Xm y?mS;M]̴yRm"Srd~.M  aџ3ٛSBI[l{?y`uA4h$[ʴ G"J P(>lжTyFZt~|dUpFYa|jK8mҩ!j#UH'DyX߬?Nu]=oZk?~.m~{אv?};`UMQ+u‹+q§JK\AsC!?AHrt&v qQ~FI~iGb%7髠c e >$f)LmCZ6RDO|B?^$ݖdXH4ubf"HcPau;uUv{~ O/,?uRdgK&ɩo 4-=1ս$f@:)h?˾^w?iz3IdMUIJ^`r_|N/?*dzYdGD`Y6e#hu&k#"ZI˂襺h(K@ΪC@nRF$T~d!}هkHGJEZלzҦ4ZNJdn䋠h]9]Qr1$eYL:T\4CF+(D jT^퉯=7>#Q_C 'j><@0XN`:Ў'&/peִ; TѭX k";'<ꯍfsYk]'ycj+|)a;H\Fup<?,<)'6HOlITR{Ј Aufa5`X^<8CZt_Ĝsĕ'ĹWu2?OcBrUץ%dd$+ ZZRԱAidD;FUԍN>|s3Mʏ?flLm׼mޯcfwښlBchsJ *HI2$draV)uj|h7Y݂k[77")]F-%] ˅;y bP=#| z2t߱<ᯯ ;pIQ˻cB^}yM/b 12a,4 ٠Q;rymh)?qmk>k!e>nܧނX-F}UZ?Xa@_GN q݌~-L &ꯣT\JR' 0@*@sO2V%w{Bl<9g)0smNllRx!HC"%?4iKikZnR ^-&75)!3HV:iǁ^'~WҤc}_ͩ$*`osڗ9ɲipk&]vb•˗5+o.oBX&X[qoI[VUTTH+!#4]7M~48t5s|WGrMWyFhz+;$P pJwK3.4Lčg҈Yzu+)@!%|6DF74"J r?$ISL.u6hYrG'8&>$ܘ_b٥06z  dGLeQBV7#Xb+>#;%è9qڲ*!%b%#$QK7C8>K>}Elˣj)@]iA)~`.?%9ȷ#%.#YLt+MՇ_ey|deF%X-gI&.wXIZCt:1͢w,$v-$%% RPNJCଋѫHSMK@U&w撴?Rϕ'4>,yq0>*l]rխk6ϋ^+RX!=0-s@:c $e; z .&-ϞO. бC+z^T>@yl!*f]qer.F٤y vQqOrraZ\iG=Zk]/DZcJ{6.4y5BtnEub|?i;(MI2n.?:0VjfIauh2x0 iSħQE3oq@ۿ?_Iy팱s@HiG{9npEVTF blʅ\I߂=ai~W∄z͉E>b4! :}W#ÿ x2cRoP?ho,U,2űZfbxe@{{R^#zG[~}RiCK|&I7rf 1:+HւI߾ ׮ԷkBDAt?.*)U|p eM^ xВz8JA h'-q~\jMCF4ڛwuu[8 5>^mdaVAU( (UyD єȄTTaJp%ܕ/ռp ]Me؊ɱŶew/IOi2C)2VGmvL8-P1JԳZ YD0> 9~ᮧ. rDm'E0eNsJbT LP\ 9\6cUɖPn$>?1Ss?k}_Ɵd8q69MTMtJdʄVYҞ6f0΢{ D㛶`lw dIO1~5K;H{#UR "]  †5;qH-uJMB DM)|ędPԵ J.)%eb D5n)Ba&0^h<&؈+i\~ӱsA_md,s_`u]uU.!\ӦmHa@=ـdȠCf%^L# F$eLMneϓSnQ?Q%x;Vp@p()+ @Y kЪq>YEUqxQ+Z֨n $i"D|nz]u*<l!3 ]V=S'BSP#(/iI/-B[< [^Opt§bYyՑ/cS邰&$@8LܑCt.e lu SrU#?N+ J$By~ZNOUQa9#<"V#CJ1`cdy )v1Ï:x4vuA#8ߠ70J?q:Smv(Ok4چa &wddQ*`Fi<2C,t3Y;RZFMH, ͭw8 [ײFkYx  FSO8E˘2Fkm/ 7Bw3%P8K i;'5eAa6}l34cѕ="9i)C7SO=|`2ΔKh/mnEl2}H$ #XY&%%^8hsi9nQ&l]g;lnXPuȺPyPD- id6XnHh% f%&>$6 %2d4j25,!U@ ;hw)nAѵO\1Nafݾa]d)rUEG%w)k.KmVށP ƅ8mZ?4`Jc;{12{ v_㰶YWta'J$%֩Ȃ|#ˎ5cP/#}9f|wU.fT7BUaLx38I Aa;DMUGN-y(o=Qe5sm{r WBdվ&iU9l&<ʮ}4~%?+qanL~ie)HUd4ߙ^!LY,;͂ jL,,dt`'6 1!wNQMնqOkdEIXlki=,:J_n[saHcH12z&DpJ=$FE%_<%RK >p*H2sO:|.}P?4-8.r \o Ft Hy*hzlfqB,Bq UztdA7s`"%MSFJ?b|71SBE1FR(dž<jCnyzGg{9}$]C՟EzI?_~o}?Mm、į$WOn&?R0=P-wl m96G>vsS5ؑؾdWӯؽn`s6ΝYє$DC>TѩkE [} N~d: ={+itJIeUfu9ee-\;|U4#ӓ_/eSj} v@ɯѼQ>NU:)KJଉ$9"P /EȲ#W H߾쌚lWmEM [!R^d7@d`ǴD0Ydy$L:H/+^2l>rQYTt&HIK "?(24 :`/3x?#HpbNʕ{/IT$NxsK_R> q(@V}QU҈P4g)dоyv*n^)Iqm NA\&EfH:(~I8z_}~a#BQ6 _Wyˮ[F'V'kYCGYȄ \: ^gHr<ϹZl~LG@Ő2I|1K?Щi1k?t%Z@ +p"`)H/y ]mؖ!\R y.MX+:Y*4,@dWBDg70lBCy%cKC]qgܜLP H#7wN^;+2:DjI0=>VQ/GUg 5$pB6k@BT,wgaBC; EZc4Mw_bu!^Q kࡷ'Z=qH"s54aBIgL1/_-[>nN ̪FQސs UI1GfMD,̟몉'+Fd[fњȥuyR!ADp=`K7 xK̔#br-zS8C><|n3|n(5 M,SЩYe { wg+us\Yۥ}3KMn4O9wk U%jaY "JJðZ h R癆~]ݛp2|_+$ຶ$r$0NB<XC  QMD۳ $p _Pm)Xr}enOb$Eܙ꜍C, `#b)pKzc& q'Z :XvaWfo Pq{e˽"xEtq+aX@Zl_D~/2-] jIP!pR] 7Ȼ[to,`zt ;\ȀJ)Iӭ!Zխc>i odgd7LnnĉuP  ϛf^aLN|Ap,OHˌ欜mB!mD+>b(ddw 0H9H2Pȿ:}*+^#:wM OqB4a* Q2<5LT>]sQ]=NLMT5R6HWUUս:9\PcaL>.>2[tw!G5ƈ>&@&\b0XX>tLu Hl,bG?Ө(oO2$)T$UI  ĒNRW|kOX/*JR|uSt(v*]&//ŵWCޗV⸬?לr7HJE# Ѫ*N-N[7r[@@IkHq$C4|@߯xRðP$ Px?AeP TVď^96:["Ԃ*uY}*/+ufW.;v$w]2{E6J;[veWHY:HkZ|E0Sh=8ҝ=Si$:ӘZ/)򦴾2w7$9-$QJHg-l}|ldW4gm=Sbӟlg4c7ZKZ_f㫪ڗaI%Y54O5Hc৹&4`$s EU*w~ : ')dJwʇy<֮}ѬHqnk'Hh"o ?E šeNRpEH I`ӷyEF'ɗ0洩1j(u~;0)bˮǎmh!ں<}󗒖LU+4$0IBȮ:L)/* !M!yjXWOd*4jԔ:TR"md7r8{rCωu~qɟ[1kv]HyJ1sw )vMAb )/Թ/_e?r+S:fG3~˧-LeC|=@#"k)%&hpKʛ=y^gDlG#ى3AOܜ:#]K)RcતX9T&<MΏ7IlȢ=:yc~QΘ;/J|. 8DŘ8c:9#k? Э2 s+,;GC &bd"EUNK"26n3?܊ϓ,;M+KhTK *w9I@d;BU:Ix ے$'L!:ŭt'3A"#Iuءɗ#)UVlVQ4wu_I$͊*L?h)OU ݈1!nHQYC ~m cV>"dz}~vuAR`VCH"ccW_YP\ɋў ` _5=ޱ\%˭=/SJE)VW?IRiT?_JQ+* ,VLH&g!`=gUx/bDZrLY%-"vI `Z-4f|)|B}4wA;H~5A]}RTR.Y t)8gfe-'zwv ަEqc]o6Q#I &CN70%;`aJoejF.3)8Ⱦ];y;U7:qIMW~%՗1Ef5;l{ ؾd|oԧh7QXԾ>PqIpJayA[{U"gS $)Y+^iW>׏U$]]2 `i1ޖP\F{@daRn\b^pl ,ۦ: #'>I XxH%6U, k5DGQf|$xkV3 )IG5x}U5#$p"F@iLw[>2>G6El@ MVUF!#( +,0IƤ.+|}DW+y΃cqm[nDhr۵5˧ߙ{Fy+^$Fu%BTBqZ9 $dA|UFZʳd(:5y~HYQY*V0ץiZ) A}5"{Ũ+;C>H &qT:3/~cM4 0Mixa%d)l7 gEP(Hrph)VVjNu|$͆{qfC7{芌{YԾD0ē4E:r$iqӀp}l2iU-ɛ( "cc}%*BeHOqRo|7䞠`u HM!K|Br{#$ŁNNc`wHGL"HW ¡$i$Y ZŪc~F3W,ES;V'{^ܵ,۲a~X:`nr(QcwUZPE0Ady߯N76~iVInL;#c竹v[7V86;23Nl궎YWV{+TI.j@'P DuX/n3S?[hIeS6 BΫ W"i?IBt AM| z|~kÅ_T5ؒt7L=*u=UJ]@t_&IV|!LX7Ҁ ZM𽌤+}MF:ۖ  {D 16)JfԎ$mr|UW _4܂MTgNhzM=Nh_Cջ5re+۹9t8 2W۾76cmev])ѩ,`rR$ H˗iK"}iTj"|lWK?4Anz*x~K4#JR"ZOKjTeLrDqC=I,PyնP*b, 1S}Iߗh.n59yшF+^I³,CS9hSsc9W! > 4߃;s4~NDT ?4$ KsmkVt +U|WP'LX*ǾeiAU)鶦fL4_ZʶlAO"j!e c;۩WƁǷݫv`eL_ETu2Na>]LBb.ї PiuW+an2GKGə~^AەR| i^Q>~;COUe1B56i!w%r)<'Ir|,Xמqk}QWTIR. _%._iˋ[ kFֶd5P6G a( EM.wL%% E[YD]Ʀ*6d{O[Z4Ĩ6C&V cb 7f!"o DU՝ _]%%aE(2~:dUFE2> fjB&T55|(:Me="v:^ E|bw#mW^8Jve(O}®nKt=V0WkHɼr5B^lŰJ0s-1=q>/Y,.O-Tb2_P|]˚/9CBwSE-?lwT7rgܿH]z;/3žd@VЙ~Py}$1ї6b\=o00q[rm4S\sb\*c#bѧ<9. 9 !}}-c싰ݴLz>B}Q_SL^e_@k*NV XI[I"˻Cfqw/ Kn=}f]]%oKG 2—MIq݄H& :fd iN} ݰG7}pY%}3z^*cuD*,p@fK8YS5E,)"{xW[`-3y儉@NJujĵ;ZYBEGy rjVwuzOճ@5r0a^yZǰV{UwhDy 1H22B(da ģ&CNY}P'cR-r 6nK! YlArWH2$!'>`n٘R,) Me2QQgMzXzyNONc@|݅_a2qlOk uxK-/겆r[/I #ܬU гQp(t1fa!J7Q[''dj{(xoC.O76`( [åP ZʠG)'6IcIR{;Γ0puvױKhM7U;=rw<=I<k&m-6yb]lWåL#P&)cLy2+5?d?aurNg噒a%:Ja撻l\!{8 B4%kׅåȾLAxQxfԋ,*LR]ZzJ~-Xqw[egb-8y 7fhҦ-9qP #bsh@_&QD  IV-\}ձ5s2܃.6ɧTҴeڬC(ݡU]zc{9aa ܧvhdp{Qxcu]595~2F. T}9O]BSu[oÊPxX!u}V؍A #`OyEXw'C7K,j]!׮)KO!)@4pneY& ܷЂ)#7'A^OP+g˅䱀I ۛW8^ye|hjֹȮ# &i< Qs4M%WCxA[ I˫dùzL6ޯZDTe} ÝF13UŔ::;%u\Ψk&k4KRDYPZj]>PRYP3":Z \ (ՍK \sׯVMfIxKhT(˘P% G0z(.ζGU6, WH247B&~yo>yorZ@<_ p"%ZouiAGD7L6O># ,@#GFwSiw߮YO75qaTEWXDU/"^5莑?a2nt¬RkcR'LůIaK7j,@F'r|+CV !L֊%bv&y_HZ*.=[@'-tr4YiTNSjG;&$14gXNB7wD [Ȍ`$yBQê+`CFe3 b^$gd>(%jY/fiJDA|*~O02h[yo§g2(V̷_6u_TI 'Wm1#"[ͪwxԛn~x?ٷ-7iC.f4]ʛ4nY,&|v|sbu ޗ>_0fN._KbT]֦"{4ODDꠤ:~'n7>vڋ^7`i]V;HFEL$pkPU= 1wx:‡ 2k]^&H"=A*kSGWMf9El5?rq3&87]sa|6ͷ\ϖ&„KiJa&5jåtb=#V>+7`xPzzef9< ڮd@ Cs7KYo5-h 5oxa@9"%r̀elBpgw@+|XF iÊH>dmPhp;~JY6y-zW/,/R)o?R7m(e`![y|Ww4̈́]9Tǡ#^ppY NwȧDdu}ٽ/osoˍk)ZӅ{cz=Xؔ.9G]R+B`Z]󈕶{,hs}\z^lMU>ak |]a -V ~iJi ־LPAGgd-- eY16# ŧ1M1t†[yMo;$KWyDo?.Z\m$AgoZ'^GrfWötPNٯaG}Rh]z"Aߥ%M b/~]KQ6ɲ|Tڽ 4jF  >+Rv!ܥbeiwhZ&r9": NtM(ʩ mKm_"-'x:|V7-͝(L[(ZQQ`VhG:q0G餈oFB!OJ2[b> ׇ=|=ZZɠcJ0$F(@yycHq30 @KB&abM웩7K(fhC#תc7oGzCvPy#G]gmgvGsB܎0Ը$uH8y.$kY<ņH.]%ԧ1uR-NK!vYܤ1GV|^#˭+ysPmu$; < 4eUX,&6:\ua*Hn/0._MzḡbJؕZ\EyifWbBدtQQ?V5U]-o]|zz  0'D.G?~̼{03-a8yOIDg}jHZIw+b*<7Ci<@~ydwĞ81wc!T PҵI\n|)yb)T@|!E&mܺe(4 +X8G"kJۧc"t1 yuQÇx<¡$l{Jƞ-׼3d\sw^fYmTdtcFMm$0pEf1S2F>9.JfL xA ÆCrK GeMҪ#U>8y]ͫk AHo: 1taUIg="bx,n:6 C#͒dߦse:\9Vu-Eׅj&4(yzńJ$hEB'&c/ý蛘s5 /_vk++&1uӑFT'n&u JEdȽ-21 \y#^#>9^T޲i]uVvXIx,0e#/Oli>hiDq^Up bHiX+. ^V$-盾e|;Il}QUI%k;[,e7$E+w;hvTϛiZ~MXMe>є\ޯ±z.[PZQ꘰RjiL#} '!1p Z( | +2_Ȫ)4A!* l|7MbߩV)XJ^e>20:!

irU(B-¿?/1UdaɄ ì)w1S̩9W#}*bJt14 Ti¥f2yiKWM] q \N).2NB08 +p1(.wq1?ǟ§ѕ &m~ FbVgРtLzͣhɌd\)\xޑ#%\wjedѬyPd}vZ^aAo0C_S躔da5:%ՑeƐҁN}y '- f4CZFoSLO0O >J gz )آ(s:HcUH-]Q|+D.BDK[%s5em ֍zOSO>Sw {L2Э@JTlW@J!#XubLjLK,zg(1.nG}*`Xof '=3q-u+(uIRJFグ)z8K.ҬwX%ӳc9=ȱrˉ>>ӫ :YOUTy gOW.'?by5d3&1YWN>rQm>owFPpLzN+^=C<%Yfmxg 1ȯ|` ]|xbdw!{G5"Drp#w.dd>de[~ӾC2y肄E:yJmYnأ5r/M< 1[؞zLwd8*O昄GmdG5iӋ?'TM0wЌJ!CƠBa/l7yd \92ºYn=ruc+[MK(1tޮ'x Zv_$z+p.7r@ KiWgLt gKehlvɰ6B*BA*يW,7帆kYȑOd<"s3b6YFki# AG{^]7C@g7C("r3lm{W+l M1vѓxs";T IN%h^,Q|܁evPek8+yq:q ]\W.S{yw{?uen 7>^]i[umųJ>m4RgǮ&cN79ɰ2@ag&qz Nݶ=wb^EIx4=|ꬊ>WV^ƻUQ$D ]11])YTޝ15I2@4\yMi_ӵ^4%Bow6QъrSN,`ō3T^F&'28< =8|bjeǚxy72~ACC:X9AF^㯿cgw;|s*f&[ʼK;QhL s8 LKЅ{h-ˀJآl+MJcTGph]vepc(aGH9c3_W7h덡 57$JGSW]Z=/vy0+`L+TѵgKD<:"?35`ţI&_[4#%ߙב[zѶ&`q;,`D=•RDc<+N0Kˢbđ"($Ito![G[ 1 u1Bj lf96zffW|ieLn*wBFC,4)bz;%X+Gc |?@1|Ǡ *~cd<ܗBQ/#Qt1n% ĉ]rFh{v5Yٮc *.?Ln,JJBNVRlj0WaS~n@!ߔI"Fϻ]8@oY֦CA֕4Pnk8~.=V@>L.e =Ur#x2f@Z$ o3ᬷ{x?Npлwܘ1]:dSM7 3hRx+ Brߔ1JJ♅._5\ܥMOX'E#B_BUr &#a# Dl]g3ŘgiVDǼ}nLjtӶtwƄZIӞ1d|2kBci C[y:9Cnl)+Cacת`ƒ;TVu&I1 3$} ; Dx1W5ھ#G;I.|] 39G@o';}/=~:X)+"ˏe8BeWGw ̗# "Ӭ4C,IdXTb]40=摼<-)DsL+eNlǁ dHB9pfXe2#}|΄M{z%ꜫwmSCv~K/RdqQ^1q=T1m$ ڊpiufZzaR%O\Ae6v^=|, oskN/Ko^RV; ?6l8T~uZZƒ{3a3eAV:X+XQNfP|O/ȗz iCKi=$uђ,јQuGoմK%4 a ĺc}Q&D aG 9͒I=93Aa͕S9YÞ"hnѡ"B'&h[J8(NAH,!W9*Im*#HeoЄnJJ0pUgʢpnkRW.TH g3bͰYtݏ˶j$.F5i[i`"?_@WES=`&g qH'`?"zua[G2&mþ7oIن*8da C"6S=f,TQ N'\J۶3Vur{`‘d=LN3jvUrhOXä\nAx*QV=%Ps*)9LpLx(BVE#F_H0e$x]ժ4uXiH\y|ЭDsuɋcME\.O|f]M&5C߷O3|i$Sv7q/%P6}gT!V;(>WTHsZ/ Oêp+~,xq"T(mc<h O>2|Z\]R-!|i- wiTd/#$(3'NL&s?avЛ7,E oք%iwq'cSz֫ЫʠbĿ@Ђy 9kwՈQo~ e*v`/mgWp?I2O2]3Dnͫ[ dB]GS:'#+D ~f}оX;튲)kv#Z(e ÝYj h fDžy!YR\8BT?1ssF\;feK;R{NƹPeXy.{D!BZ)`R'zdL=zn^6Lei"4e"JMĖ̜BmwlDj},vHSjWO ͿÕ2}rmy+`gSg]SrOaa,b8fΰig^2[SMLxX`6ZLϘ"y~!؏H W7Iwf@EKʯWΨE4*ʖZ^Է?>-Wk<YN5e"ƈ~| ;#>a?d <&SQf&0'˅5}IX8(Sw'a]Me/ScEe G+k\BSX_w_O@e^*$gG6h#Zf ]%_" N2aKvNu\nm.|f`ȴhʖya8|ofB{@=WJ£Qx"Ąx xVqP$ߡ+^aLf]O;U=&Vf:eL:#ul)!r^B/|MsOLfBw9Z~IV5%:f cM>ܩ2-d^ҝq2!?H.%;Z~JjmrϘ#qG@y*HEt}Ds`;l=?{C8q~W ZTfEc4D|<\dPBLZ~A)姇uFqRN6n׺ZmVWYBsҁs욬D5m 0;"n;}$ySj'qmK/~܌tI!R5Q|lQbJɌjU$łX/e9F+C lBWf;wHVB9'~_A#)xb2S- 8G 2IjDRzmZzb"Ibe&uBbꎲP(=I \{1 kI#޿)}q|^'51]F"<—:oe3R x$+Un;.ZC\TEN>ty`\0T^eqn+^v'>nQH]N{r[D?=6\bX/}<^>bZsmP +Z 1V]n)M4+45]ޥBe~%šl'E#F>K 5 ?\LJI>3cA))ZtmhV9]\,Y$Ib*.m/b&6oZ3&}vuURZsJvݟӋ5YKk~Kv蠶!SHSXkv5do9-{×W t n2%bʂt> ҄l|N0F&4&|$ ~֥<(5(FH7)-O2Qex!JHF;P&k)?foS6pgWRK1C27^i|].uRQ?KWcb/w &;z(y|Ƿs*$G~ȟKxcr!Tvm56'0%Ja 2CAPYCP_Ԍ^39꧆gg",(큿ƹz^2'4+ J Y'"9Ν.乮~"j5r62 H6tZP[T ?~\|wE]˴]o,^/Q&h16o"㾅z1L`U[MhS -GNS)V-L>6Ω?Z8]Vsk_|3̛,\m2y"eDP=Scv".qNV:O?(sfbݨaF?t+dBĜY}ފ$HGkg:Οg/(Cgo%^2јae[4Ƀ2<vP{T5OT ,,3]_s M#"~D?EAY~>ԛ4i2'30VU%@X,x# ="|c'. U.n_3N$flq~}(am.e]"2k"[\{zQ 鰰<@.z]_毨RXLIB_r~;f5 ۊǮE{w8 LƼr;4пXCcyi w`!ίwTL}O_{% !phB]X'F:Wcs2 ~GMyULS̋pD1v55Lz O ëGh@ޅq]t\:Dh#gW|>EZ$YK e_{@z!Ge8@fG_2 >p; =:%ϰ2ȗ'a{sa\뱮$8e#\vIKv*rvWMFJ~.ω'kصl 4׆&E n)kUGr\=_NQ0)q`je!6_9%-Op)eYXկO m7[ljyTi yW_t(2 Jgo3$/:Zi)S1xRֶm"'&{E;~a 5yri 5 Fkh#MD?Y VX2I-D?|UK1ɒ@1ޤqНBcxOKE!>iѳvligJv='+R%ǔ77$oa=$9aW&|WLm`Khſ + rإ<ɱnÔg- H@d/0v9 R9]r`wWeNRu 6HjIL/ue(Ī2!V0τŒG#J^'I' A^tՂIW`1ɸl7h(y!-}%AKSFt0$E4h66T9VѢ ̈́!e"=XF/x=aҹf ڢ^N!Ʉ!d@Qeo=-yL&_mb%^P%Y϶cJOɲ . `Ha"$OgBYw} `#;RnuW;+CSN소5ˉުͻӣsO&13I]No/nWA39li7",9 gac0t~hQ `(xg._.e"#J>y69.֮P#'I)EE2| zTM-Ϟk@h;r!.$ց+ax~IeQq85LLt%&Up@*_%sfkر^lz5kdyS{)TC(7KNٮظWNz8ưN'kܴ֧n [sݽbTHYn6"#/s2> zfIYPɬkOxC-tz-&MR؊a+L#i5py#]|+j4 `|arz7&;Phe}BzW"_;0dQ]5JFV,Y8c&ptg(o;6*Ǥ: _Z`nQnY{YWɡ +%JYg t{O:ؽ`bhT(*w/؅Z>741Ixm/vJy[!ESDjq)\c{ᐠ%۝PO+AThxb67Y(SUq;@?<]e^i ^vbT7z-봔+Ξ~Q¡9Guu%M,[rk1<&1blwڅ'cM3zvXzXѓ5CކCōnꉭ($UkgPCGW>@BŔk/As&>ҵac\qa棶Srʩ {,sNmU94v?R^'AP Z,1Lq3ƬM!kx!eeQvEf[8c[ [,բ90Y feAWS'ӗ1\K0YњyH0Q,Pf=D@!E|ef>3f0ھMoZS&kp)uM]T.҈']Q(.WxRN[vڸ\-iI{I&%M@0zT'72R :dFyuך$S)WE=$H Ie[䎔ԭ/h_NXBI%*0e5UGAm "@&ԏZOynԟ]e]⛥oM1e,uD|ܘ '-J=(eߕ {I5T󢉠y9Mp,zl#~Vb5o(2/>Ym(];'XUҷbH-3$9t ;c0Hl>6D0[ yQUG_$**a9RW 'Fo ' ;Ctg~K0|ՆB #'Wļ<$2\LMH3)?_8'?xBL7yY8=~v+eq̯~)*,0P(7$i ͧX9m1HCa,Cj9#!FX2y2-?үuF"&P :Oidv2mԦJRhV~ٕvJ=HF{i^DE),<_%M_G|Q|)t|_W"97E˴ $GbЋQFΡC?h`A ^e懑9@Ќ Mx`u`BUY7,lQ'Up A.*Sa|u*HhHPK.%y -JW1!TEOTq CX}xu>6n.&bX۴-/c46u:S !wCaF tR"ǥ{î32>MypB˷Ns~DJ?rLwx4#3J K<HMm"W-HB\“" Ə}n1iaM_ߌ*=zeoxe3q;!EMwxeYYtiH|W!Rҫ%/*dxq/mVytѕG|D.ʮhwA#]>%?Owsc;/t,yChdf7ۛ랜I:(Cd&oOPU[`A#\8DerO|:H8`OE{(U4䙤'41Ӌ&JCW0YJiabD*~lv~ geJsmm(-i )^xea=^C 'L^TMLr\__P ރ!f J9>Po$B\?3 γ%ҷMvB$6^L(2/3Vu)) qioH8=W(S֪DB RVM}I& Za}-\H^THn8,tSր~+YcׂtAFw\Pv/ di5 Q\:^3&=#XY 辅g]\/⽎:Z@*I@@ufyW]&g1֍3ƊpV&&өnl>G4>N/v`RK杒P։E&)7ip .7uNԵP@ݔ460 ?e5h r)Mv1rn4Uqnw+PÉP8vvd,mcc-?QH:lSWa{t$ V:G|T- 6_G}ZNL?e#t]2bt4ܣlOAq2RQP}z#+[ul㦩JWuaEMEY$,k NR-8Z%6`dx㏗ثRB>4A#|Z dU1JSˍ"̩7ł7##AwL/ yH>0fX-b(TEIUM^ G?T2~}2_r8JAq x%IQyfv+q 7bJ2\MBN4&1,RpA[hA"^ M#6,ǃ Gȡrh)W>(6M^7KG U]^rR )rĮ[nPKS\ %kM)ViB_,3ܡV ~ CLcb,-j|LR,/|fO0E%4뫉hJpstYŔ c-0S┄uu?O%msex?Z%/[Ҩm R`c@jU2F^xC]ܙqs~wa/mmUd eJi9(^hΣud|l1geװy|]t@f/IgWq st0IYN~=ac;aeDT \Sv0ׇqY1,,*"hef:C)"{M!S3HOq )J`7ܿl__l+o'>B-;[*VtExXəxX8)(Cgbb ɋ]v0:i-qxiRNC=}3 GZqIizƪ"Nw(P R;e"Ʃs?Y}b~n^cԲ{+eMOR=/YZ kXaJ䠮V p- usHu?2ѹd⻒E>_"UIcq/ M茳6*|%!:#(D2%xR3f*$%Oh[}.jwbi&ۆNb0iqW莂bmX1X|{; YY2nAe39ڎ7M"bu(Ouy UbBّyO@WZ(Jxb1}?qJL<֨:-U8Nt7V]wN/8miz=] ;-[أ&C+YaLE_SV%UuA}X$kN S'+?|.8÷@q}GC-3o9NjHzV*Uγ:@Ϙ%6.$[#v*8 'ȔT2`'a/.Gkq kzg~o&#玤"uEpPqdEBq&#ngňRhO$iԟؓge"Ele^&T\I-GJLE[e#yXTָR_ P //d!K嵄1U$!$Z_RsϫE$o+t$!Z@ {p-RxfKO[|>mIrHx45"w|žsQ#te/R1 J&?t[ŻŬ)kE!k+l4sj1Iep92D+^<-<⻭ |G}yDM$Y Q53“ej,(ߍq*c]ҡ%$%r,UuSO)첰,]$,9h8vyƂR.K8%<$H/R#۔ҷ ST{-޷~![KrhIboZb]dY J!4k)95CtuacaYJS88Oܜ'ޯgUs/kuuho˪*ح+;֊BB)dxE)/?݅ŋ쩤7i*hfYFrKr7ۭe3bv ωCN) 7aǥҴf{zORWd/,QZȭl*يqkj:e`}^Δ=K\JAZ6)𜙜 sBD…(lǔ*m-qxƝs?K \1PyfXpZw=ZLJRJXK%R(Rag;hz/| ]baV|499']IZQg VZdB$;P\|Ø߃?u- j܎V4n#ᛥoFG ەXcz5 pl޻>>rL=y).IN#ƴ𦞖S ל;= 606PKWJuv YdOED؅N|''\Oʼi)%wtDLBSܮs]^ЈҠsxMUqLM+ޖؕ} 'LNPCQ!cM;+".Q tN:./6/ϗ麴Agޅ>(͉^ :lҘIJCmT#\Lb(5$5~35E_S\_MX,ٔ;ldd #慶=/ ^T+`LEY'UU,h4V!?\6T+EݬѭYN$#򧖣`ϰYZޔD3.Va8 R:d།F(Kآ1~d#pMU]e:)&J%n& 7T֩+-.ˋmiSwz^#.x0(չsf juj ߷z[r|.m}\rY|f?M`pF[L8-|[y[Z,wIځ01K'Mأ4w?,e% Y!JKkeĘy2i@.{de]ٔk ݭfaa".f7=|]kۯ6)(%Ik י0uL,O۾i Id"F:]YQg "Fq?^Y7OBPC oۋLJMS, Ryu9s4~p b?nKStu2+.u8xE[( kERjXu\.LN5L]+FD?EsXMsȕ2X佘hZju@4|Gc:+生b)Hۍ /t+"memBT/wJ^IX8[0Tu@OXoN*K!X5q^g>]_Љ%Q]X@/.9cD' /R/n)[, ~'X=1{)@sro72_ջufxa|h,)aOڰE~BT2@ł&ƈ n|7勾P2ȄBt4jf.͵0H&bZ;028\6(Jw!od;*֏+! =rؽ9a!qJ 2_Y#PɟeQ&s/'j}rA,]/Ƹ?r^D{@p\Wb bQrQU9Eϡ,ФL4s?oMͮ@0PVh߅eh\)`%dz* s) 0Dz֜vJmꦔhx4!PWfuwv+E\G{\/dSV39ugi0g?dzmcKJ]*QB{FUAqn.Wbt0xU&b)0,,+^j se2s#9Ґh1Fcʪ欗*hbGئZ%xz4J.,h/[Oۮ,3u ޴գ#cn8s`R!MX`#1Od81t(xZOz 4up&rh.%ҡFNO6]ne`a57?"k;>}-fW 74>҂Y94ce4Q%!nRوeVv1xu=/",Oڥ  ̚A^nǼ,N'e[cgQH z@&>"JJ(xg}O6ָ%'Ita(TM25#aY 6mOIb!Iѯqhi`@uLr{[`j!;/G~՚2mK306nom/i\,Z_C-s%$W_]8§  ɪl<+0攪&5rډaBb}qa(,tu 6s?.qY\6|i ۇ1YN<[11T]N  <:=: !zIژG~ŲT!mMYax ƚֵcH Ͱ_>%Ћ0"V/Rʋ؋yqX FC22yKD8!Cǜs䐄l`B! -4 ꢣ$<]äD,句hu2&]=e+WCO, 4It6XNϓ F}1;X}O|:ӲJ0scL@NeI`6?ohi"՜oJȓ+_aMhl;|Sxځ]ȀyC0+Es꽶Ke}VB(xM.H%aDi'rnCV MU *~sV |M`O?"2FI41Ί4ТoG]2N(1V-p2Az.9OFs?zE-gJvlXSl-ڶn#~ $,r$\V[)΢3vx<'[Vϒ"|~(<.΢U4U&UMEeL/zV'@2`NY6nRlޏ{|2&vH'9KsL=TUZ*MNǮ|Mf)]i:`E>:Oɯ1L׵ϔW/?mvz :n?߷li& #1K#,RqK>_?s`|—Ż@؆WVzVGVxLv)6j}MݻGh4:D9.::J3S[eA,O^?&̈́`-'i{?~W?d;?׾j:rF-g>&.08ނ%kڮ] :ՆVU: C6=إ-\'FoBKvx#0|Ky6-4C{LEyBofNq{ qXu0&99x8ދM)2FvaC6۵TYetR$ЁLa&PDאLOs%xH\o| er̊GG,qF-ѻZ@ȏ] l䤕{T*X 110zS:6aN W0ck&- 磥_Od>Hْ-sϫOMGs#IV0( EN+zlE{?ct4I6h_ڇrDI24R.L|T [CTW؋mnu\ƻ urA|Xlb2F]umO<Т+!|)`ʡsGFlx>˙u8BoȪ5kE-7ԭ rjR!d(4< y] ݀ z;ѷ jq;œzLVov.H6{ԡ${+5E'Rv pj^N.#&*r|N;RXvJ:_gn^s,5IHben($QݍC`XG$XcSH/&\dUp|mz$oSm:(0=\C/~|v E -3I-CnbNuS꿊]^0,.NK喛3rNiT]fQb\y@b+@S}ި)U"^u o2|eco"`{ڪ e3||b,0ᾉ`I&oѱ-̧ ߙwzT$Qe;NZrIpB!-(/5~^|ҩiZ].u#^ô8@$*^KU6XMrЭxc$>RoQ;#[To%] bEj:+w!umMjjR|O ^ޅ%@ ]~>hf3}H[~r~$ #cB߄l;S^nܲq:?C 92g\Xӧ:LyʧJžU|?g|y2|]E2Sӿe*W؋Z!넌=dP60~l4 No>Ӄw2(|%L w@Ro?;Www e7^s˴]2 x2EuT*=an>p9J@Kk.v릶0 ̶ FNu,.u W;]m(yXy3%v_Phj&U{5CrLg[fwd}ҵ }X8CRKNVmM5FEWq.̷Hld*Qjƍ6iʼ[darip2ukH*bZQ^Yh8{ M1֙nHss=My ~;`PgI+lIV%r)$ބ?.rHWM"/X&9l`apQK+pXxe 䫤ܣ}=u~ߋr~74KAhȪ*'$Y2=ߕ‹M.Bͯv4>ZO7/~񓶆ÖV'5W6/C¢'[%c¤Wq|tW@K[|a 2/ߞmkHqS#H&"+oneŁnj#0:SHa.)|OU縐/ 4sX*y%v,#IK8_k1S[oȒRi%Eu fѣQ; T/qRy0$ v ]v)&I~'`̔SS?rtZwI_—els`e» + |&ݍ q[b -?n(\݂rI2==xL*9bAVv2'=4ERC$݁#ٮ+C6g ʐ&1$ϟ/'<ܶ*5EUTiuw+A)>n,FҲc 3XgajP^4)HKYM=#? :2)EgtM>bpeӇ3uM4Opq" }1?xUey$[P֐"˺C~Gԙcu 3nO_wzoދB((iOOyݲ!41Dtkm4IUuILouK&:}A qWU?]n7/ʀ(S\$> <#!(VV֕݌0oAz!&RF]ʦm~Vφ E. /dź"I"+* A ZWiv{a~޻v:Ƅ[0^4֟ԕ@3"y=ޏd"F* EtXiD9)t'j5艝> ?6&W7ߦm4|O6f!|%eY=v%?H{B +kې Q[@lPI2[>PM <MVѢώFY4oRoc<8 GZ63ZwY{{;waPfEzb eQabGj4%'sN箻|S^tЋ*˖;j2rtHίEJu( 6%*wd]VT a1}qlihA^}ϟwgG ˀHQ^-,QZ4U-3rU,WߦiքV(blf.Ӵl5U]'M>vY3eW] WU_4-dun}-Uy '~ᇻ]A- 34]r&*E gnЬ2U(ʸJ%mD_n´|ɟkQYVJryЈ#vǨUw- bJgŢeܳy7|5M(EeIy{毪.8/Ir2 \icV"?paփ"203HHappeokwM,eÌ\CQܝ*d0)@h`Џ גIKػaѢGrZq_$^u fri6N>(+R;M QdY`T,pdȬO6 | %li/; '~hLk8tUudڕ!8. v*~NJ/K/,kGz뵅o^8WWyy.4 *hJғȎ|'QT1.wVq 9kz7U@e)e*cx臺n(IHNtJYekrX*_@1NLOCTRNRSP,(tH[]7e =hs8kH/e;$ %4Ҽ`0v)L0ڈԕE/H1$=LM(^{G|y.Z‡OЅw[`ɚN{qL0)BKXmFD#^Uz|Be {𝍬W'!zB~w0zFhII],,1).ݢ|Ww2o7(Y|Iyw:rzF >/]>`@6v`(LjU0H^軽óEVˇn^/98 >U)zKԵк c܇N8ä#]/1Yv`&>Nǥr3qJaD);dMlGL#PehK:&7tW cؘXq8Reki]vY|H_u,`- 竴UH~YDc"<mHl*&:6v4E!YUПeqJT o|]JXrUF4EɊ3Ζ<(QdykbEՃF=N#T8N Wfr]53;?<^-l]$6`b9R+}'p7p~;?S~ ;֨2\yñ.ndh]<\=zK4,Dx6#d $^ M2C$weTrA||G*X8WePFRVOazbޅ?&s ,wi@MkܩGR ݩuLe`Cqx9r~`YvXf6q}LP} YQ%;[^0rP\3-&Wрĥ%k R.dL=˲G]f*vQBu^7 o+:pzqq^Uy4?Bg\IQYw-z)?hSo %HMד(_|ѣJG3IόIQUQ !TEUŸ 7S^Ǵ"%*aPKwLL=K)bӶGUhK_h'=#?>K,쮓IgYYuss]_}G) 6aa Vxd1ýNrK2}CBy0uS6-QyT-;2鲑QDN 9\+g~+w~簔8c~*bE&+528Ţו|݂ о2g )Z<{+~>>|_S`_GO&>կyL_UN;RU| #{H!I`'/[X,7&=h=s?+M5VˋlByM] RXCl\v1.Pr{*3y R nE y]>O͟h= tu]$o$ mB](`VB&$-&nѾ'sgǔ0j֑ TK4 eYG{-"} []قAg4`:f Ͱ_#?Gµc5BCKȪ$#lr byHj/gc_jˍb=wpMIsOˆ,jhJڍZ,W`/+ނp,ww}-OzC?<%ӛs{k9Q^: ״:F*\ݶŐՍ C٨~V|Ec)Mؔ<Sf\ j2JJvįz4ud1`"R ۩}(h8u4M>lPMU5OKcVUP^*[B;d$?j= `&k{;bd :KK=bFXS)1Se"V @'¯]6-'޻.=DRqP>}h櫱hIh~\QuE,P*I)kEԋCӌcJ"[` !:CRy=e^d9 "?0ٟt.Eۚ&3E x)pL%W51_W1 Ţ]f KEdPzϮeS5yvGC܄T$GZB]TFMvNSI"?0@Kp YtpL^!Ue׃IΖ7UJߪF7ETW< 7:+) 'ސ-!Y+4XYoOX[6ErNO9vQUǃRvfITKXH- RPH F`a'FH%Wi?/>\D{*,V<-b8+=XGPg TTfyNpT^He-CVGr ˓ĚgF Qwm;lGj>{]]Z!gUɡqU674h'99Цgh0S _=HX4|M f ؚ_4R"ba*V/Cl~ .HmRUMM:FF]nKuvpd5%BmʪH 9&\m QÉaG<$d[Wi JO~LUx?Y/ۏٶ}C?mrŴmm4t;1lF(Z!w\4^K31_KmgDs؛u(q 9-xveȆneCTt*ùOAc,;/}@S uIYFB`i`sMd03K8oִZ&{`{Mh 虘Z{/n1ݼ}BnE'=cRMzRm~JQR 4Tb j2OBfNQ2K۶1i)떈u$}^C9ִd`*^`q-aRHR'L2;(ZTzN40 UjODq{Sխ?c-t60zYȫ}>MkrrYEL4aMahTzxbZW9ӅU(z jlqfLvcB2ʰd48F7&|գs5~=R 塒Z %_I"6K ̯.|)O!\bY`)]^ fYK&KC6F +@odI՘/7Fov/Ox46*ܧH5<_UHti,d+;+u/,~S&p5(ܐUtwԘsBdeUFcgȵ+ sU+w(jCqfwَ!林l}izd/)i1MJ ;OrVki|vq}O?y00 ֌օR[ޯ!Q,Cy[e29*&czU@+f-8 T;mZ, ?V ݫҊJ=E/Ǵ.@6W\zZ&7hʧ \!sV4MR 5. %2xhU#'H0Rh|-G< [k$,*wH[eJ&[ƒK‹-C.ϓ{*_@Yrɀ7Ǻ|)&+& 1\dDN&(ݢjKcVF9s: H,/|門INě&xY $kOaa2ec,y1[p%Syjc,?/^1a+ɡ03j w20όÛ3Vs$5"ߖ=Xk݅W kƦv17)h)M1He"Gi! ^8ZxKM~/'#[xcIR6y0TUSEOQQYdp$zBD[F W.pAͳB|QTCg.LVeyҭ.+Pd>`K0t$#O~?  X42`֑""e}0Y/kSVC<( M GmZ:o VX_'"R,6}[5f A:A/W.ko7ȁ;΁@bܓPX =vo; nޥQѹmrƾ}S~tm&T'9/4?D؅X;m]"a؎̣ F61J^ʶ?е{tGU!سbG{;VB R%tTo^L1L*Pc;|=wRB57LpO:?d*w%x!Px?CH"Y!4ٗmp_VevucŠIUcTt<@6aCS6u/N d2Rd]~.#3)|HBk]5Kq';'HVӣ˛Z:, GW"CC"C#]2-&纙6ٹK$e EY8*[,!D)MS4xBNEOtuLo(4#)OM V8*04|~lvB"'!G:8obE /] #4+a6zDp=߇ar^ y /]eֆꘌx㍪Ce\P,cc"{GJ˩b$\LO9٤[ e`빠EvR-&HWə:B] fBrdcF#G!$fo/oCh &[ $WMɡ8u]WOVC-B4Pp8SwE/&r*\<eD_Do9Nzf/."n] +_]TWLJ-b*~W?Maޯ|]77o9&;pF [,Ox| /6 ,~6 dL@ Mh|ZetX8^sw]UMڎb-yԥJs@$٢ww*;RLҔnP3ghB*yG2?GVԿe`o}GбK-cdz/6p6<h x`=dwyv8Jpl}t_CzZ”UIhkL ;Hm"_ 2݉wX|N:.PK#e^Mz'Ѽ2, ٫B[N׍r#i`EFܓ[اoFyi11X%q`.UtN2RcD#T^[C ]DNJ껫ޖl'}m5E容Nnc<+;1u*ȁi|Y(:B2_v.8YO-R%2x;IZin6mBZIى@k0j p1_DԵWQ}<אQmxÙTݣ]EY|c̽ (Lb͠$ M9K#٣ڋ8tvP& P6SkZ~{fo;7*ʢiSMj:˲4*KDDbP Lje^W¬%pL(=skERZu4ON^d[/ [(ݢs#/sch & 57i$ԔĸP{^ҰT`TV.8dx@" _/i؟8\29o#ܕ 5UIzr # "&xgu6)D)|u2`$E6+eGBؑǘ څagvK6)yu"eՖUG䰜4GQ8˔ElNfJ';N54].,qd__L*iB`G}V/ʲQ{ f^mGwt!ױct&J9_w 50')IN8QmQ+y^C#6UR|#s KUT$ţ W"a!++ΓEIzgA "e~PM»}IþC8gcY]2ĵ hvסW uȷ+I) B9d*a|>6<&p|dBr)釺P i$LE4^2)m3<{dWOS_,6WS~>#׼)O3m4vTrPB!mHMDSaIOB̾]Ǘ9lxT ޴Mdp% ġp X@/sZGߞ9WLXrDɮ_q l~idm0|4}ޯxIW^c&L]{}kp$Ir(=e#1y,xVTuMr8lCmf A ,Vg'ml56F-R).|vjֈC{G*a1뵘ִI^Qt-vd -;TVPb/-,=[gd8SJmga_WdkmBs]mI(;%U}0D1r\laWN#ͫZ lki{ =!Us됯%޵ 1m:b~.hjxEf "0Yqf԰}$;7z]K$"˼|PȳţgH (r,H m8X!%DZL.ڮύIWGS֬1@쿢SC;k҈X|uTBpxDx4Iī#ggտjR6kYhd)ỿ}@JL|ܩ]eTuSݷsPT*3ՇO}=N]!B!`H]F`ㆇwY܎(9mw}=jZC {-Xsۥ7dz>ĈWʳL+)sUkI\@.cx~r6|0\wIa1S92Cz-~yBX$欨TiuV>cкiC,לH˦ϷN]kGɺkM$")ք!P-/܆eK;3I^MlEoO95WZBg+frhr.UV<8v?/-,$޶ GLAS. ~)EN>\vP`wݝ G9Ƴu𹲒BoYފ -IX?B0Lv"߃q1I)I<ԘGS$.* 'y[\ z!bV[җ)&.'y# .^ʉ1z KC_ܙ̈́c71Y^.yߢȊan 58_B:0rK?y&_j_U׻<))%LkEmnzaǸ UT8rȃ&^M ѭH]h5u^mK^BޛgeIb* E*X6 pꡣ2kIFTlf9'P/*Fa|и>s5vӶN6^A:|eҒ?1RהKӎWKJ3/e?#H(9.VkZycMe=9\-72uD,4 E(??zs +@}+[#: 'z~¦Fʷ rU$K<(:A F!:Erq_X,N^MڱPɞ| ӈ,r 'p@XyO0yT."WBqAx&o(wB9\Q1D8,Md9:`wehsm%p| E'IU^1# TfYU80ۗc8o6' oJ톍̤eE Dž8_i%)]չ^XHxT5&j?;dgQ?ǔ]^waM/3>aZG'*DuGЙ3sjђs7x?yڒUQ]\x%w+Yvcj-))-w[RJɄj"[Bx?i*=3Rp)]rMfI&#MYd^]fŅMg$K9ʻ8W{m 3::F]%Őa2~U%\UR'` ;Vm v!|{H󓌧,U g\O,w8Aݣ94o6|L[5R=.}!0f5P}*aC%'ff sq^țߜG)XU&Zh9`!ǸȕǑ:m憆0Ud6HyymoU~eEtò t,gˆvEV-6MOݣ) gvZ)VGx4~] /7J&5n|S婇F}a_]( [tbZ)O4*Ŷě ` ]`,=K˼R bȄWs(䈌dV>s6RV^q[*hؓGV^:v.ؿ(ףNPp?QY,QInx" YiBvu[gBSۥnq_1dlb޾R2oʊrM.NUʈڀ1&;¦q'7z_JK?-nG3w4YJ߽p'dEX5骋w E'ɮC> [z.僼= ퟶf4bṿBAj=IІyܑyj[oQ}PZ-8/illN:sO>L\,ƏpC)*p+{;3sn’ЏUZׅ݈YkI F)%*#5G&XI< Jl і\Wi|ƅ??~kߛ?UYU? I*+ϗv00TT 7_7/)ɒj2!hAE,ŴtWz/ e]pLZ?y>2c5qPB? 5&UP_Ta5l{G DŽk2s/û1q&spRL6糕H7{h~9Y#/ܺϘ*HdQG *LlHtM1|RS4"> Y\.%.y+9D X#8HvEAg j/<}Nwˮ|~2z}Ĉ6ԾQ"b*3lρn)+$+C6E/';f\, Wfn!fɗu"pN|2~ ~ۘC(*)"!*F"Jq7^+|SɰuudTuxa_w/S#b;]rgxVM9ʴ[S72ъ|YKC: cd??b" ٥eIȎG .kƉWk9J,a$U#"Qc? pPERh[#diƑL9>#w4/܆rhJV9yߤP웫w}.ZheZ Ryג?A7}|Wn c,xv;>қ踥. K*~NuSwj+"˜)2d@AW.5"Gb{)4lecZ?ª. d2j"R#5X^B\hwB1dT[\b-'*uPn-n̋p9h+ugBu%~Mj4VNQ5NkI+,uhfTF{LrRn &1s ~k nŒto{f-'\l &6eu^MwȄ3U}>r$PCՃVǍx)Wa#Uګ/ܗ"Xt:Yh*ۍ-QZ`B3e^\a/>qymp#2mfIu|4W )U_DK82\}'e^~Jߊc>DaNuo) ]nq\4$֯Y53#5zp Hh@q^ jq8K ]cՂXޑ.%4R-ϐZbsoARK͠R Wd2s7]^-=W -qԊ,ʮHso81pߤS^;a'~= بZ,*>kjB,tE͈SP5h+Utu '(l#4֣\/`Quyҕp9=r >|w5=`1į.Jrl7c ?$ CwlCIwrh.p2,I2>F rN+RS(Y? C_vV֊˸9ԃE;ea՞~ąwS/ۥ J]&1jytUu;#@&cNejƊ uUzbnʦ>] TZG4JGd>y, ܕ!dF+> ^+5.ĽJ6IuURu,lɇp_:.ЙŇ*_*4/%vͲ=Iw2l^~.ldhWjb\AX1T>hUFhBwC/hrRi,Iẓl&, b$ MTx+>VVmo:MSz>Bq^g7/Kq)Z` EoM~1E:SUIDPwSI&e [Dӊ~rRg/S k4?m dm鲰%p%::"V\5R*Pz-rlqGvsa{[R6}Ed6eEaL|ƻJ]X[Jѐ /B3 o_zRZ-W ӡ.#*`,]N>IЉ"㧑1%4w{ÕraR^' |9q*D;\mLŬm[/VÒf(bbЛ~Uk;eNrٯl뵄kdVmJ.dw{vT0Vw!c!D0A܁1ޥ3D#U+hzbˣVlt҇Zk Qv䜞.dRK"vabBUZEL׊gGtt^pHyQYb.J]}";m[ԙk;$:6J ~KGIg2ugIkG9Cχv))DKJ|$P N7̋/'"J*h2Dݧ ^V$#Z^!͉O֕n2i~e'Ӻ:c " Lz^|mxI!R xʣD8"0"?u&R𙢗 FC;yܝ#5tteº/\ҕnE&98Fl4L%\|YEY&;4G0SbG|Ą-M镦PVEH訏\+bho],*Ed!uURJ42uyzDzui`K>SZUOo;T#9̣Ap>ycrJ÷k)ņ&tS9r]Bޘ{TUxT0V=./{dAظn[mplY,Z+ orLeFZv4VXy?8 As)C;<"v <=F'\țց$Ӳ3]&CLe.0Q]z\; !)(1~ƾgOU)"3m~ *Vn] UQUUrʓXWeV'xMtX .]^ ckq)|ym N-"tu!㈔e;hw|]`,LH()=.#/J-p]R G跥/U ÛSOt*ZŽ[G~lXeA2M+/;O$ݐZ5,z_΄+JLх7~4ؤi@,vm!}8zX˄~ڦ|m1[~̆~Lh3W|X ?ID!rjL{w '8ã۫[a_SҕUҬpyKi$WjU׵),{0O%?jd!/c<&/))w6TQfդGjy8?Ls4+5M1мմU.g*czgx$h,$ t wŚDq,4^C!£1-`f6&<B%3_nɡuVEs]}Г[P9},]43q'_|ߩ1\ڢKOiti^& .u_JՐ${0nG6Z9jނۖL*g|bx6hi/dVNQf8uNAu2%₁AJXF-zo{fzg겨H0]SW%*`C7y#ZB)ndkD9%&QbVu(ybGKσlz[ m&PrE)2`\ˑd#߼KdK:)kbqF3Bϓr Th=T0.6:L<6ɟ{RwZ*'fi6nֹ)s%IaZRaZkM{/|4z k6mڽ 7Il;90W8E5"TDNK*ݮ/S>)TFh0$_#yT#J{r,/&QdAgdjth]N=CYE[^I0`CNd>a"E.8_C2v_DH{8$\Q Ž\k2-*յ:]L!1d t~`pC"ude۴yr[&E ߪy@1a!_f2R2}^c~S^ϖ>ΔcÔḘܼts E|=4]LfƜܖ YzF•],HGt_b"#rL…iFweUx8ڐɒd2ʪok.F^8W,· :Em+{豅)o\tbB9 DŽxxʪ )PY`_e`y\J6q)g;>"(szPq#,+"3(wX2vP]/d>>?V\42'*E F:粌]}F#㨦ݴ-H(!..ƾ@f˨Rorg}eU'M4`: EJHE3#%P)w>\0*k[78.K҄B6?y=)*%գILUZ& TvW}9w*rpRujyt08_ uGYr89mu"s~MӺ@ pCsJށ褫ygۙ1ֱCf| {9St)5㰓ѽ ~߭68_zD<vtn&+!f?t-dfrsx1[;8tm}LR9* 1_4$$a+F a15 3!:I߾|)o:cBV,u$~_x5p=I%E5L+Y*C݆'+r]1=cKG y )鰹+) Hqz̫*dh*"q_=0zNxvd?i$bIƾͣm'GXr#DY!DcǤ|ybaA73Eq|5_C?$W)4(3zvo<wcL ͉c1K{gnIHҚ-_E۾hye^.+2&ߐ!tU vf4 ?eRJQܥquv7t7'!e2oPa6UIBpgeh98h0w0g_1lG>=s߇rCq]ŲsPݨ}qHPχa_v]1=%*!0T |vJ"m/=f0c8!|1MZ9/?hcnM< -g7{ƋyR)#'J[qLN ~- *K_$xl<4@1^N ӃHyu$_BjPͣ)ĤX(џ\b/o]G;䲜`^~y哭C1?}mkKuIO-™_"?;`jyR kIA=[w"-?fy`Ғ<}!+aMBZǠﷸO[ {%̸vJzхB5~ ai3 -ۺ =3=˲ìk>^ENqmj3p)S4eC2۰ WC"ggp'sĖxjlm4ysX8ԖB9b fJKb,$}&B+>I|'{ЛKU;":<\%#~BnY/,WB\խ ҐB[kZW&.HbY#NscKm!%l˃SB-o,G R6mk3C"JX١)W-F1kuxᙄ'Qŕ#ϓ[07 c!IcsR VgGVVN ·Z/L㽙MY7uskҤ,,Kv%SdqU`4H ,@Nl`abBHwgu"2dܯ}dc Y'% |-e!ܜ쐾 M zB2+?o kH> 7)i6!aDŽ.osw ?dYG[ET:QQePMY>f8[ sc+@OFmT],hKQ&ztm'@1Y3z6;Io#+]%}Nb\H!Ӵ~ag7fmTӰ%Ȳ}L * RR[,]t@lsx>lm]W$2al\FІy2f~ 6i"q3rߠW;́u?VjHrVlaM~ z<Ԙvnȓɔ3Bp"wi(}FZ36k[aAS;ڻwbK1>?2,zg]V\1H{uPBcrC?`L&X}^lzԠ ?~畛Yy9dK )?4Ug*U@;UéLJ?eq_g|˟ ";XqU6$Mݘ|45/u{]+$&Q Op?3[/@0>_޲M19kpilAPtnNY3rx]({To|'R\0i,MrC#t/UQrʿ|:4,N3vwcﳴBN8&V3]:o܆ y,ؘM%GI[e\7qoOmpUUJ!h,08G ooi;pLy=.BP,ՑX=L1sV!Y*[@CyOQr&}8`T=+z_K'@QELnT'Ic$1T~ј>N˅%~ͯi9PCN[{܈/LnIВD)h#_zc:J`(*gX˽v?pLhb7/\If"˓q @sP%To#]U^#n%jQl"E>sk6 _q=O8cDXΉOr*-!Љ|>thщKd)6!1doMdarf-c1rE:w?"TcIazPQRo:@(p&:O9E,*r!#Zݾ\Ǻ}R=y]̆lt{Y3 +:6`jHWҵnj\@U/r;RMX8@ւTÓ7?x?8yZLxYK̄_MwڊG@HN }L`ͳp$h uZ^9u+';\-$a(ފq/ Q "R# FHzMO+.Y VA6+ʮX z\mZSBEƻrAc`dj-nQ9`IBopL ;-$z#e0z<k5m WlH櫁=n55 yymYzP-2]%׳y\9Ǻ9?ҥc8YUEUQ+n՚1X+rwv3W7>W^i=L`e^y=#d娚"0Bt_|0HܮdB*.Wnʢ$}rgfMQ%WyDTey,ˌ8p28Z9<% +q30ZvPL-ۚ"ml֞=a$>Ji*.r6WXK]~g1>("gzQI!ɒ }JrH,6-(nr^Lw 5our8'H}J >[vѲ( 1IЉr٭*`t ]Q5T|"[%Lt]zPք 3\ocR{5uJ @DL%mf~߸ʢO*&T2KXA|ECE @Mc-aN`u OItkY2++03dAa&x\m;Zr`QW-Wj^V,u p 1m𰒲b!k_<B5,gLSGoק}y3j΃ xa@ऒKpf9[Onbۢiž\ve%+ b#ձ(v_ɹ_Y $U^b?0Ky& F?QٸirPN%’9UUj1BD%ҝw 8~P}:I&vfssukKԩڽ ~z$$UH类"q]1(}E"[KKO_];B%CR*HUxK~dhw&`fr#ؕVET2Z,k$Fj\2YUlZ2 _2yQG8^GvقZ(*Z N'$.,~2ch6k]Lc*YbK6bJ8M&×' e0vj ^zdyrd]ڷ9%vjz"EDȯ Lϣ!ljf u`Ŭ/?ݏ6 p2OȵG`kAwqQ DD}\VVxOypfZ)n tLٔeZ"JѪ#qea%fzQ< AHH RѸq5sϭ~I^֋YNI!?)ir,xNiyrҴIf5,z.^.EhY!i{WnyֱWKxy"~ 9) \4ZBdhKܴutR(Y}MH8 ۂ8"bUabMTYg5c ͙/8m'z0Mq,dU:Fa1=BbDLvVN].›ŦtӎSUr(7fozSĨ wm:p8nUj=]_*0zaD[ZXNu]iZ!uB=f]*.s:eڻ^hMHfؙuSRʴ}| =fMG7>~Ԧ2c82,yW "ӲE*b17v.p&`MH-=q~Iނ&LchfGv\QN!ޮ^Jjmý)CnwK`9*J$ zhKޝ4p5θޱdz8`@d {£lz0(}@j|ÆJ5|1ZfջC&F-K)9Hwlgi'#oVbXwwj WňO,|l!@N t7yWjb^ߒ>*U0-BY^~2qѶG=ީ2dmw,&B).n`NUwD Og.ptp_؊ 65t`JSD\~}ư?#Ռ2|~^.m& 9ԎezC,%Ufq] G+- xSl9/-Yn&!wT\0Geش2bb!H5$ $ ҬS$hҒ/AY|,* qǢRw_qڮ EH\Gt&Ձ LleJ.,^3u53o%f/mxRPTR5VtJ?z}W+O^ ++y:'68 ~clPW=JR,4Wֻ$*e;ۄҵiNrW_ VPEíV$xF_D;-)./M?. [E{5)<ޖ t<<>D-S)_&,}lE.+S9O~5ЈY3L04TZWT_q HIyHv,\~ H} a yDl[ycӇ]J'W.cLnY6Jll2l,7eˮehDaf{w޲6yy 髎Gjl1 YF\7*Oأ ߬4y_ϗ.,𤚺N,{]]6{PvWQC#&ۜZy3a#SۅV]zcw:,:)A&bW˚p}_(joq{=e9cl;_Gm؜la//ٰjkM9 ^ $5(@[N6^K|81+\=TLdTxB3Z5TY;)e#9#,Qv%0HVxBFcF멠`Bqxe03?q]F^xC\yk,]´aO(J *×Hc (BxHnb8( ??I+u.8.9,}+],:K^ ca*=# ֻD>]H%_ p" [rBPݾUH2uwt/-3-fc壆K\#n_&b- v Ÿw+).FWib~hƯ77˦۶H]I5 5Ɩ}=fG;&օ]"Hucl>(;/>y-M:<7/hc '?qȤjԅw}-6=qq:~C*2V]Kc䂈ĺo^~Ww!c &FDMPULla |_܇]c}tGS=*OOrpwʥj, HTЁ}Z|#8ׅ׶]$mFk+}g#ްf8+!#[D?P1"6n#^z/P!<Ұ"3&"'6@<65K($%;̔UkΌ;C39gr kB&;Yށ  h(^d1t܄(Dop&1v))OP_H$ER\;z?W9G\Ec Žɫ﩯站g9RpSM%: J߫hql8?nu|ɼ:{`IbD8--o"Z5Tmo_v|딷?McxVhCF~>^$YK lsáϏ|)aaOz\ y" a 9m e*1'eUmD/NGމb>N\ Ƅ ª@&pl"Α&]6qD?5At-McHfɰzmk"mv&GsLBՆrU4bؽb% 3tɇ{]72zO˺ZA]/aɓLj)G;wsG5OU;5S9¹AVCh^c5_5a#nzb×y2L,kc6Ηo Iܲ Y/ru"쪔TO2tJ!hwYIn~ۆ Iԉezډ[JHHtpUꔧ&*rX,ǵ" ²@>/ÎVRWIhj' c7sﯾ|3a '[py/y+y(RG<˫jBУ/DdqY>v@z{`SdeYDB}ܲyR4Q!&~J7K1]b#i;ǬA3ao*ngUl`+Xꛤfb e Ge4NjC+DCk#+I'Jͮq's;Wpy9e׋!"-w#Xʁ[ +Ԁϊ8iXpe+O(g2~Z'N ft_ϡb-ܐPI4##ۖbU L\ArvWUtcRBl*,{Y>N':뵆5߄zZMzt+\(yь]-qo1 .T6 /Z(twړ׷]>htpki݆w3vms?\F}e4=eGqZ {-o񏊑&AKdibU;)hcSY;dHn_J!:iҚ7mhKfe*~DVNHQM-)du`!mJ"1źӊM_p&lQirK0c++CNG$|mRRʶyT]]?(vk_NA)EU!†Zqq! ßՖ5^ݼ9y2Η4/Böc֥CL '꘾#SiZ1Vs`j%$ƙ({q_:rPii/͎<` Cy"LHdzpFW{x!\G,K^ El4\~w:|t?` L Xۡ$QVn&ynTĐx1rC>P+*aB*$jwEYZ Q=@p, ")ɤXμe5eSS oLl"qw*pN1L JWWһcŅO?#2qک훾,ɚP4ARmBAZE@'q@|n?{4n}sI=U,;rEQ.^1v*iD/BqP#{ɧdTm=s ;/&W_S밋iQOjѵqlz࠘v"7@W);v_p,K&sm"PB!Q&DDS;(PCȡ#/^Ӳ<d:-%.Ճc~Mâ!)a;ܭA˲I*EdD^t^& _"Bfx]`u3t|M[BCO[4Pt•j*$KdUQHhՎ?AjHwev$XSo8 Gqz9sc55_THJ&"V Α'"t.EWL-&/gXQ^tlw:?zxSayК!,yC%0E4ddrL).VSf6\,-Z`\7G9m kf {ӧZ,rlOu !w舥A++IA-RH`xJ^Mդs]G m;.]f1нV X[KhCNZ'kC:ʾsQ N?o"\?jf:g`~Ws^5 O {0%Zpwyo,LO^: [+32e3=^7v5L ~d(ɬ)"(z^pvŐx{(IwUd}e&WD ''fBrڶ+,HIPu?xӰ$+V>U˅+)*  7Pih<"TMGbDcӡEFd`Ʒ$4פo)76a7.Abl{6GER@M ح:/*TL }5%93W`|N7=M)l>^̾¥ޮSPVi0Ur{qss%N^|ɨzI/ O6oWx1[~|maT )oCҪR4>׽LjemG:i| Bph3 !e[ Fj&ӦiIeNM.y)/]$AhVX;<]/~@~m|Keϩ{Э&J͓2oǬ1)۱p?]&4V`,] wçwZT>#EkxqH5V`2 |+iWow(ԝ3er'xzʪQCxxsi)\0}S|H1q0+! ">966fD<>NYH!ԪJ}aox:̟ EA6żm _QU(:Gx!jf(O4%9~;I>biQgI9CwpZxNmPx~咴mYj&]"#w!9xcoDp}MCuCge{ϞvNc|!O0"z =LT(9Qޙ|b:0,tA@K0`,F+BU%X QjR" 9$C%}WP5D v)k>ޜhzm^\ǎQ ۄiix{C+R\T"ej=tv5QȎm\ŠURC{8BKH`W~tghOl5Y t6JV-xU*@pdgVZG, Q yiu$?50wf0ە"d^pwlD:ca$1OzeH6i|+V >ٽoihduɍ UL(=x_.R֑`x؞\(f(0_&rOPLGlZCwFPBt 3 EO%q@7]4 +Im?<׻~}=_CZ.Ƃ.u4* s (Rt7b%Ū*؈w&N,Z?}} aӬw>AGA4F$[1.>n Wy/in0&8c$P,y 3/j6:6=-A1&\gB*/kH8^Ag/\J$$jҽZ/~Y=ʦ$k%RS}<,ҽM]G\g̹#& la)$3SxjI5e^դ$ȕ&# hNT/mDž5~ 1z4uW> 7ly ȫCFtIdu3[lPXIWƖ!s ]Lx&ae5>U$aOX&@/2k:"ͣQ+Pf3b`ZzU$3) ֪T?n[V2xN}WEu$r'DH[G7 Ŵ1TϋϠGC&dW5ϗt$%~m{pK1)L@)pcZ__ 7)~ߺgڷCK\M٦yic0$V# 9=jv8 ޖ/f0"{G&!B`R[2߲e)O1ٚvLP"mSs;O/$VV=lsӼq1s?@m6BSؖ,h"kEP \;ҬGY4գ:K JW.2-M[zl- g6?n@D^6l^ys3>.8_WU]0 ʙnWa~4PTT꣺G/SJ>Js.a^>FwdF53EMԅ:M84=ʔ]!i2]ѤY|t9Ct#u$wa75B6iuuS umi,[!&dR>bijR/[^yN&k7KeOC : .б=C'D>],J1o忽H(FƼOUͯ.mIVV+aI:X` \<_oy^? 6?.LiO tI X>]E1ƊG]('c],/Y( ~[r"|uf,) dOK A3Տ:'4,biZU뵐4;NH >Uޠ&ře"ӃH ƌמkMR`F}$kIl孃 ,QX^f 9YPyDڡAbn^j}@g~-*QF~tBht􌑓_̘$TYS(BGYS9: 4N{B{S;8x z}MU^V_k-1lcMrWG9ѥӛIcT;~C]ZW[ !u&㨚(]2 TRi%Pu]2ų 9]pUMrBPSSih//n}Bs{]f={[|.\,$kQ)X,d[0;^HBڬx?_Wg~0ao$xX>_ãuiuj_o?~]ϷpsSu%uۅ>!^VMf <|N%FXb;S`{f]J3R9ʍT|ƾΑO67E&U;92VR)(dwȉ[N5YU]^A짣Kfw1adIGpRQIE]DCƃ7G o4ޖ(LBQoR ~ep'kpAôF{}XsȰ dҖ9Q88 9FձUYzG:x.'i(]°hR]7ɉWY}>gbE0L*Ydl4YB6y tM_=_$#:{MU'.k3tp?\C:=3Y[$ؒWgHqwdۓ6{;*^ =`YK5"V[![[AsJ: l ^M-v;գ?\~ﶩ{[\!x H2~ }r-Y-kK 6c[RDG^fIlmFMN#ʲ%Ea@ /:2dV|RB=~eKGIF}{/Ԛ5i;NJinVY#Ga":u!:`xT_Ӳ=Bݤ/S,?n~ MS>g_&]\R}S D&[SB?)00!e frtQEspd^YϻmFؕ$syСdUrꝂd:mp()  ܄%/XRtb}#OFu= %gV|T|&ImRzhjw0xzejd"9 X_k-n|3QWJ)fe#,4/_WW.KY,wkI^1N@VzKaPHvbfȎ=Q`r֮ۢ9L3OǯaԆVLQD4Ǿ,[Pw-bL_"O+]S'gHz eM$S?ڐX:y ׍G#kypFb1^phs\mU%w8u~=XyƴQ;3L|4郱 ]?w}%~a6G֓xXn)mEҼ>EU^CM2Kvv7 ,tpKRoVӛYQ|(ʹ麂^\LA=YV|Wpj\,\,u֋Q. u.N/3vKsn GeLd^t-DE/=f0O %cr}yYSjqP l/Ce~M97&oh`>~^j/ٱH[SMvbƼY»ŷ_~:FHh/4umW 2 ~̑v(x*$62V` :,+ybU!b-nnUQ=cUz&r&Un8WT.:׳@7$褬Z2ӏw }Ne_x9.5aKh`x6zl@Z(b#P `,P*HJVMvzW.r/5SEmz`ǢJ1-Jg%:F= a l߉ϠG?|, a3neqrT85r衘 .YuΥxQ׵1b.Zfyx?k" =m1_)o%ƅ_qQv3 W~Q]ƔCeqX'ry,_EuP qTry\DE1n^¾hꬫ?$ uldV *Nca p|wMqz?W3gsuMs$ CMKOJ?!xW$[Tc+&`WKR{01gzH.y˄`nkh6i CVa9ܢaFuVsAbLOGx]?ێ 쾿/U$2-.C߂gc@;j6]кc"v /-R2:Y5hLIƜIpIyIF*G‹;AQ/pB,:D]1f53/_Kui;u/dq#~PK=)eC#O%J>82^o'*{&c>BdJ-:s?SLDeG@wH`_ơV6u/YYb Ǹ+2-jQ`: dayڶN~ s92no4|'X)fѐ%IPkŘ#f9M g,`rw< 0/'\i_]1qҴmaF]T>Lp/QAB+F*ɪrѢ_}+RPsӽB0u94`aZ/;P*`!Ej3F*d#}{{ۧ_]y= f\ϗ"3mr.N|^z}5*pbr$ Z-¿XYEH%CN cÕPgu~*h\{}z;{qnyk00Z⑹E(3{qS`*Y'nLcN{( Z3M[UI'*.nv2 P5%ѲX(׊:L2Ս0rz8,(Vޅ┌8{;mҐ`Wj#{k[;2a^PY\Tţ&C/K%+--jiԝtQHP}˸qؖ\۶= 'ѽfeۆ7$etEϨThj,AW\9_BKpbOW;?Ƨe4fuyEGc4c5߽LMrS~&AtdW=QmƜReO3܍b.efULcR%Z_C's=FEkgY\2Ѷ4g[fG!#2bŻcWnU"7! ]4%dKRh$'Ir(L>ZM}G ReBj90D+]yܖg>.}V^S -]Q2XXEN3q1p}4SW٫FqY%ߑmӛiO!'HBsHBNd'oN=y]QjB_wELXw]"e;]%1Xbkk_ gM/] 2Z:Wsw&/T!.{,FO61jB7e=-:'>@^=Ma*F~ Ml.` p ,5kZ%Ύ _X<ƅe%._UEۦRDúh>L9Q'TDASbUGncq/q'x_[)ou> c`-2^7PiUn8>+bd4%BVS‚Gy!$ <7kTcdH7 +x.}(e fBqS +p;8)Cd,GEeD]-yy*w2Mf޾n[mۋ kasWeݶdWǵ|2HGi]) =;p\X=ŸļM]7fAH;3yRDx.^࣏lNiKq"iXtU-Y_:w(eY$&)@0we#J!HgJa6uV)\J2V$Ȥm. 1vQxsP9E5hS 7sh8[jcy jY ;s:m9bGuXa.{l_0U.2 4ͦ5#iv&)zf粿A-ncxQQpWe\3o\_4{D+|/ƕ8Et­jH"/CVշ^Ab+8 xMs,x&^ :Ө dU[mN"/pUFOv(h?a(+)KT`..ME!c/te_T KdrUN>Ȳ5c[qwD(>mSL_[_2~\r-c?D<NSF{/vd&XUp Wr'w,Jum2jjԪݨ0Ɉw dN2$dPs-,4KszQ, e]GY~;<5:\3G(BytY4B/Stp'hH^Y;٤ $ގ-%>d_*ܘ"y7 Ufv]\cgp?)R{ ؘY~ax>U \\_5of_ p,K&rP\ TqʷKSDă9ܩ]I PZT\ŷk]K]n_BaZ4kySV4YfIB}V=tӻ4e95-i3w6!mF]n}yoBI*M, Kp4K?M^94I" ([=eȈ,*HGy̩򚘰mgYN U&'>U] qV ZMVs_8g3~<L.™RtZNm_'˓6K;2[.]F0I nKZ9bYFIa2Qo2vqBmki:Z"*2 ϠCGI^o_‘t|z/fc߶/?Sƈ# |X]ݥ1QuT)gjg!'~QzEMYyrkL;x.yk>sRuT,J2R_ډLRlt"S BOQb"wKQVEj`Iq,@с(cL֞.qof'o?'(Vi٘Rh3%wuFfʵ:]P'83 W&4]rzWyٶQɷ"9S$όQQV`8YYe&CdjALݕBBGm,zxȈi׻#, +t1~qEE X(*nuaZ29ObLxrNx6O4d;ܻۣcNv@7-Mek| 믺R %Ii4~ h@Wtc\3:RF~?!XڬNsT{/*kK=+euX.Vcs >)lAr|וn%_xaZ 6pź8v%ߗ/oa#3ݫ=.'= } h!Bk+RA΅(%A b *TZKY'z^VLږEe`q2_f=\x] MWM 1m|VXU9-1uRIL~7Lż_|/u:~TWv-dYwe|,J+bq3=.s$/.r~V_IAu*&"]0A q@*e dä]ͤť^_8]³U0Q짹|]OObLX!o* JA[0diƃ |XYC/;ٛnϓI /4QkְrHmLhaRToZAx$1;V֏\aU,BoI:r٩=,V)rqCo=0Yq=K&u9FrP \"['dUz.,l#A"#TN.b0"qJBIqKȴYr4F*? UMl͸= 3IoKXP2nk]F',W.WZ84/iGn7m]&;Z QhC6_@]d1m|^%fD,2Д.}%ŒU;ɊXEF%Z8"F1Bt4_~;v9dvlz-s2Ÿ^ OƗp2i{?ONJm<4̻oL* JŐLVG4%& L>c*G os^D /m[jtco;tQY >${r4ƍ ?2kM=N*%ٱ<#v% tkп3o)oLmDO״7 ?N՗Uv3e ۊN 'ዃސ_dꗺ1;LӛņlGy% a1O"Ce6 %)-CsYtmc3W;Bä>ѽt+9>!_!, |/Z0"(gq,2֊ I ft^QCԸ׊i*(ky×MS$> +_PQ~ޅ&G(Oc8}X. ϾD[Kz n,3M&u NR:^RTn0KZ$1"_d O?y9z8odc0mS% \YG'f11b٪0I}<(̸OAM`ŔG.dգ541rSv_̒ ';%1h3fz]rz3K‘ -찆JLifٖly0*dhZZ 応}JIL*٢cu ײz}MΐZmե$Pd_X8`'ݱ'ʔGpo÷Gi148N*/9ڗms}0I%CW$Ōt̰y":sR(C@PCaF;3T9۬7ƌ>}RL .%}*KELeJ$8 ,X+eX;iw   fE="/Id,dNwP\ڻږ ! ThC 3pSb&%//6d s͌s?*,rބ^|epUri$:4 Ã.ʭ#Cw-.+I>g9>Afjy?U$ó@mD+TwÇr+j1Xаv8fT ~M}kdYnl"Z}6J!5+A߯)@=|). {8Ku#"E_+"b14֡SkNqiPyb <.X]U4IUl̖7jc-wZ_SR2'nON Rs@'ؿdsK@~+,{AfxO~6\*?d >1?1P.1C(1vF.%Up.wmXaq%zjv̐$w3d!$sI ?0Ovo>t* ҿʗP e51]SܺXfK+Ɗ.ˬb.i!'Su E2Lz3m3|Prl^V׀TNwJrȼ W(\b |@ZZv@{xQ u5ml>(( +`)uZvًIJdArgDe[dy{T&Vki֭m 'gp.y~ ~򘬋AQ;8 C_,1Ɣ$ta)Ÿfu|c1_wxFHBc~8~*k5潺{*x%m}`c_~yYeph=U^qvPDپʤA9[ISSE~F"UX$/IWT<2CJ!٣#vrZ,T1' R FNUZ(4j?LlmVS=MH8F7_>ʗRL]$&ҫvCcŀ_82;iTq)f~%"+.C=33w%MҳCyѴy /Űwz(? ܦ}p_Px]5Cy6?`^CFw2߯7EVI[k1 Ÿp˳ ui8IlTA/vP@cgx-%%"1ExH1U~9KBd%, X7C8׾tyvUtES'g{y2C!]_ ^-Ut'zYDz8 bX$DYO;X>CgɊǼ~"Lx-ȲAWNE`v9?@L \?:.Ĭ{4\x^Kh ub% XҩWE^[ vܜq_9a}MKG5V®|2nL8C('}I3# ”qIKSY]S )Z񩛵G.*q?Si~k|Mf"EX$pM `MQu* dXX9AV?+*W S4_=WX7bT&u ȟ @²`f,H(ًb*IҒx&t|d:tzãA)fpO[j%-me7MfY }##Q ݷ 5]@F"(vR#ds  ٧oKa6lSiݑ!&S7EH^+VE+w _{0twF zZ$=8ٛgGvb9>EwUs-.\iQ-J>;12ArGßO|B/=ޱLW. .]qjц;\j1pϔаN>e`I[|RLsU^b25O#G1mArZr:.K]4u~%RZwjeP; Kk2'GpE>M~b*8+IFؔ+?*jAX?j^M߇UbڼLKx᦬Phcץ|9Qd75J(Z}^sA&+e{Iǥz?6&n@amM.oV{zY*8T< /#5"]mb0݄RVfYjw1_+ےW>T(u)-\I]?[hUj7[0-rFKs% aWA.QB#& ƀ=\ھYF[rAq=p?bKJ@?\pK)vĔt/xFl>6K=9=g?9a<ʀuX<+䐏PAL(d8w hᝲy˄XݒD `B" n4Хvw#*h'7Z{d!K_ ߛGUEV9 YԠ_e2}D:`eOSΓW/[fA2sX5ӿƗAcAInȦb,V02)" W@2G缃B&mYtY-q~9k=paOo S@- LnWաP u' >rvI$wj9V~-a};$J76cH.m?9Z&HT)fpUGJS붦Q~x/S(: pT/y|=5IhI/˺\#KjLıqF?8mi!2e†+埝ˆهm^.wݏ&˒'wpdގšƏ+lL+(a) "4Yy\MN{7Ywƣ~ؠ=F/qjÀۢ Q.O M~Pk4G Ms']&C̙aI!qɎh&a*- "22D6;{ZW1L$ِ#&]p`_2Cз$GQr?r@@0İ[xd^EsRY{u>on7ZxLeO-Kc_4eX;IWAVu{ b;j"9Swu刎Ct6-,RFᐼG_&E ߬$:;T+ȏZ@A%վs_3[Ĺ{Ro>9ګ2b/ӆx&Z9o@@ >߃MzumDZ=M!~izp:otRQ'm!h^!tZ>V,A3Vy3`⥼fALY$,W cRWU"?(K-`QDxK635FLI(t4l:W`uK{,L6yJ1 K$k {U\6Ĺ|ȃ5a gWҬwI‚I ͂>ԓCodIvYQwrGJ&ϏHY B.禰(D,|4Q)^4GדϺIEv"=e'uɥeuSGXg"Wtr FI#l5SӣIOhq ,q[SSgs}XOLNq  'zWAƕodQ^%lh;Z/(hoMzUy6(£i .vBZ7!*r_(x߄5t7/fneE*ꪪ2]6oC5e(_Q<c}Er)7zwhȫI@_/ߴ ^39 'h2! \9^x %; >.U1V|,=m EV6I5PA*0oU<"vmB1LMtJRH&lYG恏A5p齜.=:v Tt-[OYoyڭ=]h#4Jtfͯew*o<,ίT<dž&X\i֟2;z8E X瞙>M8nru 4t].|5It =9ccE+\n=&Np8ٖÕLr8.ܶUzJwe;H6w̡x؛(PktM%RQddmH) Z(j Q7Rڼ&L7J"e}S7r|d~.QyTE'mxvYT'ͤlRpvW.u;ct$l& $٤߇w>u|<'mǡ'&Ert 7u벰&1t݃T-r*Z,0mv(."Z!G[auc[)'B4,\/Y2~3U<-d/.P29a+=Z{?Pkd,sOm,pʍW9]l,;]eRbPf a`AY"J@_##~5Oe$n5gULu,|WSM$oU͡Pkg c6wЗA#pd?K~ 8\23RaWEfh*az9!_7/dmVJ5Xޏ:K{(8UM!>Ȫc ^ww &bRz&$am}m)(x;DuE)MWuYQu9$x Ƿ#TOKES(҆Yg,>Li 4' LL_A0,(-JEÖ'2u>م6V$ELݘk, %Ъ)O\*JGDoR\K/^zw{tf[VT?P(YgcGȃ|-1Ѝﱇ)eP]Jl!P}׺c&zryi_\G,aYXUUN.]D^T\9e8wm.!V)}_!,^B*,Ю ڍOrsֶB«d}h}w@0(}@f*Ý1ƐNTl$uв.9y%PXQrG]͸u/r;\ Hwկ!8"XҙbH~^TZZiSz+'emtC-8CbkRZVҡ0Ch93|Rzbb _/X%c]K)+M| \Vε(^Ý0S?׸NM^6O~~]I^5 c|zdK2|V/#<1:{G}D\J<B:QYղ iK[ t-4fZQ>\[MV$ǤߩyЮ.tᤤ]2QыUDpX?!qѽ ߦ,{QUTP(ROeM5HBl{3PZzh#eǖ:ރ^mrx1pIsYۀ;+ΫG{PRtMS&,Bl,R )pA+Xɚ36iV0ޜ&4tJݗ XRt+>( H$ˊE 3rҎD?L33w3nL۳Q,{0WXErWVU콹j4L.7Ϟ U8W))J0[, ƅT%Pak88\<ҥ^9pX{b__M=^G&']yz@_Qo\x9ez{K)O:`3/~qR;Kft/{{a_م_;uU[Cϲ,7Z<+Nn0 #<e䋰S~Z7k>Ό%a C;6oB_ӕU&Y=Ts iIJr#(vO{uP*ax8uc?ʔeC2϶_}M ,ɤQG/=EJϗmLm%lܜ>ۣ%-CHhHa%uzpaPVb0kc[c1উʋ?9@GdiXQd Wlf7٦EeKi΋1=V [@m7')t|=S첤wRZɺGѩa  [WHJ:LaI.Ew\3!f 94azܤ$|$#9yYd']+ "8mHԈ  8Cy{#_`Y\oֈ Oc@{#E-X׆S{n?twƻ ]:CSrIpxEM dKe/'f؇`m/n՚٣U=z_MLMUIDJ2#,CPaXv<`AY~Q1?opqzԞVeU$|NS!x Dϊi RT5){ݷcEyuI|(8Z2NMiC򶤬< y #H# Ep%rɱmj^3҈D:čE쵣8T%VTCKF]*AiW̓voġcW۴[[&em)c_B+'sȒjʆ/YJ 8"@ Fň8󔛰*qG5>9oMd%Z7e\F.i#;B! x/]]MfH@+#<:/Aao8LzJd_@"=IHT+B^aƭ ^I}ʢȓR<eh@ؔ\4uh# 1 q Z16E-lrrJi~>KGmx)Fκ5g MXY(dᔱzM ^4 @VK7׺͋e8|uU%KJ8W=md;" ܂6nkx RyN>wdқ[r]UsYTPg66c7<}^KXUU(CAVp&b㹃鱸(Qp0c*?Z]h8M2$eNPy 3c 8-NUUbHԙ"/=-"[XJ=Y 4}X^RLV1vK%{~^B0\pPAt~Z2?aUuQ~(}lDQ' :_ ah^IUh Eֵ+XdcM ԧl+eoBO `+#q*yƲbr䅓=dثoZfYCG]a F,lAw0vI4̴pL[) %W%!U'1xVa79$;H-U(mZ=,Im]z/mY$[ xބ#X#H=bm =~x{OZ,IE}@ߟ^1.Nlʷ@,JFk2*Nn+ސ coMtcSwW71Me2M]N6j>ǡ5&w-('s^ԕ^B0w,|&#2>$peO΍ üT,+-*靤j*`gm&2*ut"p5*LR;T0L^٣a&jp-h[-Ьs=wi'S~˼a$$ǴUۑ}(6G.A]eN)F]!fH'S- 66h5g'Z:/ ž V"0xV"s j*|N~"v- M}$mi*&Ӟ/⼖e{(*p #&^NL1-}pc~9z'G^5&NhW_ɕyI'Qh[9Vkmh#&$&PP:t.I m&ԁ_E)K>C=V!z'0OEnr|8 }nAk|="FE ÛcWQb0*J$smzJa`;ɪу P@bl~\w}jh{֮&cuF~!#6bg NNvqn [@Nw69ܜ*T~Q=!A3i恄5vgb^ ]R]KUmRˆ̶ݢWԨUiư:ap·fZ9+GwƟ3uW$I63~!NòYf0oں+ӈE(ͣy x5 ?rvNpwd91qƜ9yǓn o>bB@eTɣBc c8YW ] @ާ~e"kx-Տa~|onPr(Bߖ큉) N՝C'&Q,x(ɡ#I+Dde0*ˢJ_8tMȔ(=RݠeaC[`w0ܖk,"3A<$(cMpI%Q"dpJ: Ȇ#֘0g|=d<~َ " th3 c'w&uNQeu*5,PD׏HX ߀qRO~_z d7uuTIGm_-^D%9-*jr];f̪)VoFyN-eNQmvm!HMPx]eoȢ#IRqzPU _W׃ sU roxBY+!A^ۭUI=5_i:tJSf ]%e0Φ6bOcU1_8bc<8a}rL)Fnw?[4 N[rTp*Nx CCJQTx~ѯH)m}+OD I/mWkA(Јڣh]+b WDvap0ٶAc1I߸[ Nj_֮fm1&܂SUU7k6B`%Je,#.j̭f.#b§^+#fswX +o4^|^ZEU]+G/t=[`vyrq#DF.rxĶ|)I5a}}ݶp&ɖN/;6^iE8֛:^ ~sHE7ŭ˔mv=(4Wb|`iG77t'=}B{s֍]Yecx #qNtHw [ n 6fA|BzCa 1o)rݵɫ2 L{/C_ы$IZLd( 7Y+y 1`۶~U>g:%s(i_"@HAoC Id2 BN=[2Z^5,T\ʬ mcrPd )-%7#05U.v:`,4b#{zdJR@<ԯMsS7*2O73>-ƹMߚP'!-\逥<Ȫ_ٗ*B&eFǹ{nq{w֗Wo;m`pX˓MftɪBj403]3NܖC~cT<H>]~co½ <"Ya22 ZF!ҲRTe]ɀT-i]&W$-~%X)*uR.'u&L3 M9u^Le5]I]tpNæ5ԺazHF)Eߗ-ϔA3̡VQ~IYTLtgLi~Dm[NA-"l!U0!pWAi_䓇ݹ['G3z##lJ>Е|-G?pK(!|?d0ڹAmxQ󶝯8Pو'\u`i(>yi$2o&*vUM~}S2e([P˸qGRhCh7D|fbPwM~qLeʶJޗpG,(̹&L޴.u0/"U%ըȊ g$>DeW6t3]U^}*ɸ [KRd$B&_&.2bg ЋPN{Bzo П^ C6O},'yh?hDrڳCr#"qlf19cPW<ra2Seh&\7ƈYW==h; aNfLLJN!o- W&Rxpwk\^!4A6Mk*Ğ$3fL8Jh /?WsA.IT0f y4&^9ⰄM:o3~z% 7$϶oKvcO˶>nW–L]6MR96u&s 9sC'._U'1JNn=cb fW?'c=9YI7yYq>a15 [L.I=#+FN~+XKa_Wo`N_ҘCX:ua=i"%ZQ# ;)!V# 04$y+GCL6NSY6ݟaq?̭ra.3]V6Ńl 50%цAnn#-t= _y>WMxW=eg:OmU_ aM0aꥊqJ$QGD0e V s4]>"8hZoo>u dJА Zؖj\k鈽"D|) @L9BM;@dPbОT#K#a&+%gاc֏M]VIPRo:iڱLYśf ܒEom"J72:SP?ϭȮl8"9߯O~"#~\Sl SXLa3,8?niY'"[ f;]DB24M }W1-yO֑SoQ,_/G,g $Bx}iÞL.ElV (p1<"rX@L6,(˫jԦ\T_Ty;{>!+LhE7FL: ɀ[Idd4 ɛ(kqH"K?v탦aćAϿÓkWS5Q>DqUÅ gKI" * ,3 &!m]y >ȋ$~AR[v@>@;`b3]&T_NS=NFqן^f׳Fa1R/KC@[L+*tk*sXyMp1F!·pV7^f dWl5 ?ÇLl=;m׉2?~x|NJ͇Ò˜`q}CFHJ]ַN)&&dL=cHqze[!\[4(4Kv1]CF#5:wL" P7o#C"ɖ^dk_Y" (^>Φz? %O*cp!8T.QJ=?te%s{2I6khn YW%aʒlTh̯sBԞb( =^'wiNvcn_Ǝ _ܶ'%&ČiXRLȕISػ,BXY0%9!g6V5 pW*:pl^5H`^c Ɓtc Nl9kf|yOLS1 4Yv-BYIf bNPaP٫ر[.@f"P~Fr|v)F3sc6CR.=:ްEe7LkUηЛuدK /R{5SZ{L{BJ:q![S*I5oK iA zd'-_+1Cפ_"dܸNB!ARd'vbRwQѳ}+[IJ̴ᣤabFT,ԕ2ꎮ &_c&JӴ@OoƭټM7X#~h״1E("ZXb*]/o[Ɣ0`1o'( E}sǗ#Ё9;͏fնJ{;lGq y[4 (a,~@fƘibRoضČ&V]>&Lݡd;IE\v^l)ǧu"$Af d:$y ɚ%~,|%3*Ne5wbJRNO;y~gXcxl%=-%]hob>6Q(n#UO:ȔʊJsVޥIK=~[AAZSxfe'?/#!x晅5"{on{?4e)ϲPթPkM,~S6Ç[2YPwfZL>ƿ'ބe^-LNPT.haVZx?J8 ti]xQC59MzלZEMm>*yhIb a1E(bY:k֘4-ϳ-+Ud䳆+#kZYWΒMX$8Vˏ_#Zc!gzck.nҾ(GØqW//CHាGa2ZY:Jpv͆C\g,6q|N(2ԇ'oҧ>UA6TOµl{| jx ٌD)I67ڠuDm6.B,- :jzW(W{aٻ78{r;>sD(oIntUWaY|pMHqb yHrA*?p FE\S5| Ô Ky?יڱYrN@&++@\=,E ӗ2DJۨY%T4L K&Pt^jJMN*HSmL%u%J/Pb„zL礱:| `Aba-(FcR)vbU{VXn%.( Iq!IF?;L žÁVX1b"gyyWj!5ڦurz7.L4 KSiVL'X6/s1lapQY /<`Fu35,qnǣ)f3t3,Á^'%97E*-4.ӣ*K:Edp4@~~l? ~d2+ɔ1OSҘ("Zی`JJ4 s"AwBU'+DJR";ԕ˧gm0io&k$}n^C8nb>+lJm{2ߤe-T*-DR; -oz% 2*J0JyDvaֻ#<'41^ SNۚ?=Rb!|Ѱt׫)>݉8NRVx=0tX^Wk,4; |ZnlΎyth|$TYSLkGGdތ΅o~7sܔ pM ;DGLAL#xJ Ymz^Ѵ?::Ty ٸ]G1EREGVA M0RFzc@NⷀŽp}r/M`'~&~= 57d,/8¢SZJ.CMc>3RU B9(k c$L[Ⱦ/L9XfuG$pHP~yݮv!&LN~'%|+ $1p ᩫ'd+L`UN@F"3R&O'WŢ1*"a%)}׵zSJUCne&߉V&ﴈٝ0ŵ[~å}UU)qt y򅆋 &Cy9KrMt,6AӓxW L(~@u`de{Qf4A:0_4om*Q(Dp~va2@1)KŨ}|_m^Za,q˦H1nYWhTD˰KCim}XqXNQ~BSR*.Z (W$W6qpQc9S>ϟ.dpզJ$b!"wFr@*P*5<=ψwQd"}u$N%I U,vYf`,>}RTK /i*9c#;a:ԓf|$CFu_(t\8/dz/]Y6e2L R-\Tt -;S,4H*iՌ\(]ʝS&4q=*y<| Dص$)/+K-,\ -2rBQX ;2R޼l=xuWsh.z*԰a2u5ǍVۣ8V9J?~چѵ! ǁ#)n^|1O} HX'kڏm`܃e%@NS@":jh\o8V$`m<<ޒu1,  l:JZ- %1a,&Ôf O۟-j$nIK3 D据xg̓$>ZjZ |073 _{x4N0S&%[ 2{UY$ bO0 06 -,/)Zhu`*2TPO2S&])f Zy%/6USRiu$aߥ0@W,mةY y9Jo^ÿd>Jʛdgɜ>UC{s][1wGRK!vYC- 8'(8Cy k7ȉ9ݗVwa.U>*2lyM &Z,HM}UP(0Y5柙z YrX ;?}u98iixƻ^* Z)M@|F@!> @U)ScKV=P_&r>gG * lg4y-]Wf?}mlmOUatVS 0c"!1_ L*ns'6ϙ_cFLT9<{e +"!:xi\}˅&G/ƩF^pm0\!T ۥr0 ^nhIО;>n{Vn7cJ6l鮒JUI6 Gl"Ë-]iˌHi @jE))}s#χ4rټ(:k,4E WԯV?EEjα4{}_OOJMC =n,dSO6Vm#~Y` HY1@t1\h'cg gց+.ȵ S$naj'[Otd> \˸!r35ZP,騌!L_.*{+*OV19ʡ2SiaCÃރ.:w΅I0'D@w|v{iP3>5eQy6W%a]=$b=:+x R.)UxNW#H*Z{7䲶/x@h ʞύӎXo;wʸ, ƙ@=>发GOl2 mLC e% uI\5GUwȶ?wjC)/2TʚGe#s-_i.UvI12o+;d8*Oȑ7*8&+DI$LVW[<9EU[%Uwoh_. 2 p8nJ7&,L ;8PSuP2Ťo!w܏pzmu<ȭhAODʆe*xi/]$t}1'&\e TZq(.GX?ѵ&F&Ŕe[20Õu9 LJQ2$k򷜯E oXž*O-!PMP6uvIUY4ʤS]q?KAnKſCJFfRJX|mW"zkB7mNK_t;KAcoÿip#o ]+yz4R𞤢iL/*BDϲC,Yd+Ԍ)sT@gaJƸ|̽`ʀ:3. wckM'4=eOVWŠ#wmH$g\2|RYx,u[SJTlI ԝ 4Lt+eBJ,$je&ז]2J3͛R wȪmQl;t3d7|߈4mdZZ$#1r9$E //-ޗ,ðg!wh>$=Cv&xϮm - ꬯3%yp#/&B;M~mUje+ ;+4+jM JU ̮vW7 ӯv'ZI>٥h67ώl>LGFԳ\iLXƗ w"vLvpH_|]4ؙ=mv%} Ť˾&hՎ~T!.˷-;t2Bљ$UH˳zĎ_x!"5.1yC#e!WRRTyb^V,2CzvD9 *r'?+a*c~6 Ur[hEL5K&p18*G}ՏPZ%Lkٳv( bog $! EfȯB4*@Fl'E'&1X$К_~mf5/X[<0 U$^Ijhś!O%BMBTf8]ɺvkyi 5gyڐe} 9CR.v5Jx%j*Kz&WL K*yEu$\) Bb014yPb/?Upp6HME·my]7᭩ԼkʪiA(=tr vuU:&,u`uɁCcp}z|h>0oqRGw7䕦Lnc6 ɲi#`)m!=(<ԡ2#ZDg6RYY$QÁ턁o,ՙ)a~~3(*/շdoS ]4Kp{ Ky&m^smOo~{JՅ2ԓI.$إ OTURѐpń)ɑv8;*c0 (1D?O[1-\ɲnJhܷj{>^4K1}S5QIBAqE(Z҂ԔgIng n.o Ĉ˱Rxyvӭ>K& @&DC¦W 3ba΅ϊE؋[orGcҚ5a)@+%@Jxmp̋AȺFYTsS!A麦kSܭ5<:<" P&*e*,֕Ư)-YM_I.e0mԏ/M󘿋`wo 98}P;Lc.x.,D~J#21;6I֍L'f|xRt1uojÙ_:%r,x­(^ݼuRNaшeE$-.*ޔoFEލPo&Q 3q*IBCg)BwYSĬW::]®>V˲m",PZx}Ҥcںlܺ\XI*/(ݓJ>Zqy։d+RĄ@]eף>*RL&\h #8|U,Ep¨)h^FJbaW=8J){R[_5N Cb.L\<;G!4iq2r%b)͓^1OOաe /BuMe8-em0,$0q;?Afyd!2,TA y#.-h˓Bey׮#b%Eb]h)+'ǘ)$PAJq',h,ms_\HD#pT6bRC&)ؒ> g'L-&DK./D9 ^UtC.R&%#^*˜ UC86.v#^޿d<(}[OU]ȿԮVn$=GS"J=UN"FY*O)# VrEXT"#;-DZi_DQeZ}XCpw [e Š\"*yq齘:; O~_Vڵj9̸o`5ưQapՆYY(~>C^٣n~ԡǏ_BmiL^TY䛦!cӡs,;:{$>Q ,VB䳬7v|~R7ϓsAev&'qhҡoZMܿS!XZ8@ E'2i"qcLZ%Q3z*e~ivp5Fgd#}h.u(iК'D*M']@&,e+|]I8_'ع{tB@{^ ]goDoL837Ӵ^R+*hnq>bpڈPT`y~'I>;5kyoy{D%ɄgM\f2©@I\hW];6:%$ޡ\L{HSkmMƾ뛂8Kb w7'>,MޭI^O_ }yXx)6 WYxAe}rEu)6mJQa N|Ȓ.\K~P`uYޮ"ʦ)dL!_WdM_2Wq)@|JT2=aʶڌ tPc>=0XC1+݊p~)XwLqU{Jz쮰zINU!AA>IfB8R5e\YSB* c%#Xʫ@,MCFUu!n=. ~K~@v] 5L7hIr76eFKLuhc"?`,Ua`n+0@7DHOe9s>73\7y*2M%\Fo;KwJ\@2bkSf#P E5Q 2%+L,_Fb2VmB8ɰ,E"#=g&{b< .q.=+ W&/C%W{Ao35ompʉٽ `dρ,R7CiJr2+24c#dE?mEgd%-41 z41rx՛:s1^.Oks[,$GLB֕*FR<2H)Wn9Dq 8ݖq,f#xLa3saXEL5TO`؆PP!)9[Zxi#)Ҏٌsiu!%IGD Ks2ܶ !/CϟfĬ$6 E/jao1EZ~UZ͔h1 \b \ _6gZMZ/fS r yvzoh7̎Uk3#bq*nQVkك~G[IT3[6|T3Ytjpv8ٕh 3,Qxv25.Vz&Wѧ3֝uj lQhK7ee5$VxLdglL v%jk+nݶj#*ɐ:N?c{o}.+1N;[7y4S1dny<B&e N/܊̙c܀-U,_ʲ,]2ůzGZ4 E":IAfi+uAu_*e9}Q|ɤ/G=}zq^qijꕓK/"f8O_2~f?$] (3&ϫd{Y6}bBOdG@J%qx8ϫ-Phu ~ۜ[s:XRZ>T^_Շ&m6JȊ@Vjc+!ﰁ gooy/Ǜ>]MExꮐ2 jR eP! , @rhvnw Hw'|,9$h[67}-]L(bٺJ%pIn䋱0<=@ps.w iu(Nքhzee[=g??>տ j"Pe^2<1@QXA`hN L&~OCiV\k!!:A@~zà)AMsn2fȄXU&G}vU.1ėJNW4ºH37 R |:oEm$fgu|2+j(Ŕ:va}&B4_ߘ?:`1YBiq/egڟ=)pWYi]H8 :fQ ,DriB6h_ld>FLZFR)缧m$7BaMO.Z52902%c%HD^#BGO#Ŀ;xMQҷ V$T YXo.T~iB0҈ᶴM #8*xTJ*}Le# ?t~E$.C"͹۶QOb)g=ؼ C #W34E-ULbf'l}kWtbBɎ@_wsqL|c.^\qhB=&̀.a'F^{u}?]?mJwA}(k/i6 ԃIS)p.{)1 Yۂ|z؍f1 UlkW9r{b*($P0cf\\c%Zow9ɻ^ ?tע6]TYm_T7b|^T1&KiDo3(K c+ȎO.CGF78oX *a5G%LY=lG:ȈEJ9BJfUo}Dbw"+R|_j$-ʪorYhJ@1vEQUGq$&RAn&7X}I2("7}eԸwN\I“,* ++HD8RDr IP=磱KǸeE6Y;Zՙ;4-(VpN7!CdD& LhYZrJLLwRX٘嫼*Ʊ-i`&9Q, ǯ/̕d]TmQ$w_6daupdiuo$q! gtuO?pKsUsoچI:J+խsV&,|U¾x/̀B2X{< *}}Mo.I/#~P{m&иN3xG>?'/tɧMU%!"m~qυmE-cCM4f*ǦNR` HWek#E";RD@~?h71j֍Pb"ot{_ziM$U!!ZUi-JrXdN,܃TzҚSm/!П^g{p)Yzb 5[{bʢa Li˒I` v%՗jJ!>+-#V+I3m8qx=|pmMHIEI}> ĚVR y)Os q-Vd|iA;W1P:$#86pޘd\#F.7 [] TX0R`ĉ زV0q3>+5︲8r/e(icP*F%O˪hOc Ki!3 G}Ȣq(xy z A*iG\q9I7ؠ zS.ҏct0Boet?.7!ag]ߔ̳,t$C.'x/ gw0Dj\.1bX/cpu:0g7-!Cδ!gM笰ZsSOA `O #oıo/&:]  >U~cz9*@yoG<Mf*%vMWz}v/@m]O/.z"aV<8jH?1|:ɺXb(*ORCӴ6éjT椄mL;0,F2[|m}">9~a}W¬6LYKYgɞmdqDwԊB6}we2^]D㿨_N \͆6e ?Bs9<+b] ZU&UU\)%1$Q(zDa {ցKbTEZ#,tRoJQ8.IӔz[*CܕO AhUR-?uQ(%8R GctX9vyEQfNJ8xW1I"Cq2':.ؑx]sPKN7uݬ`:k T@]Nl*OIY=^!"?#2-|/ XmPuF*a/}y4tOщESXI,^^]]72P{A4xdޢi~~|?/<]$~2Pc{aj<^b,Үnu㮁͋l;ܕ:U!" xqN Y Gpv?քBO:_58iǫv*D#17ᘾj߱1;@D 񎢣[^|֐ڊq̯}/ڵZׄ˘_RUmT<.ILrxt'NVE"vQ7 x)a q{)MiƀD/z*Õ4Id\i9Z޵@+= ,Hme]<|&O k< Y]q(~+x.w~0d>̅>W~$`guZP_lIMzThGg)[W76/<5256UuU*or).!cBq-|Iv[R&>|^~_( /hgeEqPQYYD[-2\%*aw=;DM}IBxϠ[]x YA^K[ylC!F9ŇӂUCEEC/ #di_n#uVwI4~CErƬ"n%GywwOOSM4u[Zs'SO~DzǡQ#ON3!.k|BǪsu A@M %T,D+eɧU$J#eסV !Ֆ1\kZ8=}_iXӄ!_ܴub)&m̟RۀHI/(5֢f+|>rp6~n۪CJ!9E3.EzBUEaUrGŦ{4N*.'lƺpZ$G,2CHE<[yPxV2=E|B2ÿvqZIjfKuɡ;1IhLj 6\yš )JpE'k p\"ɔn^m|Av0~;+iTЮX-bћX%?ቧrdJ^^+=ա#:ɢBF.>yr% ERzQYs\f,v^2#GL\x.-2Q6IJ*dJ*}SpLj^L Ry1D>#!緡$KO-HʅBJ.]}O8lC]H<Kx`  Ad#/晦eU\MwbQjV)jn$S|"KƆOwZa<_a F\7~Ƭ .~^_[x]VrVD9sxe%S{a)ce @^ Oe֛[%^қI2ԣ2_/Hr|8&em 3ClndD!`cOm(_jG9ϏqtR=F-WDy bׅaD9~uii ӲyN퓐&xǯ㣿oG!drhIbm19ψh^(bnG+ D$j[y;^ZfVV&aj_5# r__.GvVໄD$+!&ɴ M>Xș;w޶!kUCoScT*hu[mY++?BzÎ</s;&TEUIB_1yX,=qN|/ =ϧdB"8S6IlOp0'lDPXuu1%WrAyEq\4_S-xN`(^Q7%RB M.YݖMlreUvґ{aCK̳ 5yi\N*x|-~RtFDD,}KjJyhOlޤ[x-`؇Gvı#3^e7AAL[8ܶpFJ_abui70vPaaҸEi5*;Y8JBS!oMȰ^>ԭ*ZI %|Tԑ$nqT; kuh.rKf{u1l|]3~dT枲!xg15I>4BA%=X&(ؒm~_z@Ÿ>sWQY J/i/z҇D1H wBIjJ$KY܃9Do(qch3r oZǕ{d+r?nsT,6,{}:Ɇ3cl.UvH.A.<4}"!Үv_ne>ڕ|/e/IwۆfE%c Qޣ ll_Tor4+Iu|Z/KK8?[7[5I*,J29TG7grp1Qd2rVNN%}Y[yE_dNxWu%Y rPF^U,\4[unB.uOŌ1koiB2I+GB2ίnY;heRz\\IBH">:V8 /+v1VhJ<ɿM.J|[ۦn$#E#þ0fayTrEpǒ!V~ ƵDk9 P,˷e>š|yq27]+n/ Ow'yӐ)ˬ(xbS2Qav;gϓW.iL%L8ھTE(-jdM΋ X]΄ ߮Eе@Y ~myU#7'M"7Br)`dI"0kHcvtxd![-_\L7o]KCD 4=-(V@&?ƯxA}-A#c}Elw'^ &'mR/V Pw+p^Wy {3]ZpL&!.H.bʾygk$>cԼ?dHAig"\r=hg|I/pi,4l%YEJ<7^H=\bjϷ }s/{0g秷˴a ϱqu^ g< ۸;4i yd4hK0R\tБ"F Q>Q9Ybrl.N] snJ"2\\ԏ˿hEvg5r6v:1+,<|l=5_JV&ֶ6EVZsoD_!] jffC%,oAj"N;“1/C7#AsMxz 9:|Du}WveߗBJ|pR[]wC+ =NäV;tYille0B|3͖)\bg [_d2ʒU2Iۼ$8\HS`X(w 1zNg=TqWW.\o< &ׇg42 㦦_]E2>~\'E(bsdj>_*"Brz&-nqsOڼ 0<5U6%BI.(Ԃ1Ң\D % /=+(S莁ȇSBq_کwxBmLKz)ʖ.mtYVoMVH ҿ #[x'naso:678-ʦIZf]<2,_j%ͥZNh1AoW FU,IXmڜ`c#9ݔZ̙MN@D EY7G&~ގUOpr-FL[yH]qxQ*v9͈~=p~w0j"ӋnaѾ-zˆ/e7oh.+ '+_Si[E/êC/d8;촭fOQeiʍ#O)u1]bT(W-3ҥ8Uǧ++}lds΂^Y1Č19FgXхr^BRWSdt0R#5eʘB.$ȩp ^)W ˢ^ak`h*SUm}hcSanHPb>N[S.-\麲MJ)+MG(F"b.)pPV"\en?o^f4U(ڡP~u3Q"YӼ_ۘ"d#FdXZDZۋM*4B \.{Ht2Pu(6q~Sf>ט9ڌ>nW aSm ɩǂ~[/vub`ʲ~G[ .KQMWiEbM5W&9X Pړ]9Wڂxe.a f* ds7ͯ7fcg7ZW6N*6\ yc(:WnZu]sݶ\xHsnwkS?΋LdҚ+ X1uUlVEBvHqjF.,_M9 IxgHAzEc#9%JSc# W!Qf@!8殠 y M4lo)O!7Hj5gCq:ɢʋ.< "YgtGz@?b.ZP3/;T=KLK2PP@]GȆk3ӷ"t%1IBv|4jyv y,w#K3m2n7FbwȘ:Nщ5fx +cQ/ds xRœcQO旆ૡSq9&mE/ *Yq&b"7 ),M^ky_%w*#ju r 1E>5+J~X~!2K-3}WEU2=ʖy 'KnT¨HאY #{CoCz\dIFiBSX8@[4q..'=pz-:90q/ż׼Z& /4U(6`9'2.;=ˆ\<:.h iBmgӊ( m)o}mhTe#yX$4=(,ʓ}Jx/~WY> K웸 ZU9H~J{;s@H&BD֌ə} %qtT0Zb+CK2J#dz @̟Q5zl2].ɺ%㋲T6f1$Ol w<FIVmO8 )Tfb^JU. I X#߳GRILMl]mt퍃.xVο=n1>YF0=}h#y:7 f Y/'H6tK&&IdsC0_WG$t-%/ VRt3i׿Qu<YnliΦ+W6$g-` "x~(U [Gb-$o{|(?gۼ.MPgIZW eeEKA=N^T΋  j¡|A9{v;IHRky 4^P ?E#|u,m[Xazm{ϣG/׏eݸ UQ$ g1wDgmt]WJqewIvy{,InQD҆i?m( y7sO!I*8 0WLGǕHu2 Vt$|J޼3De,Z2_~]Ж=4'w:k8j =펂R̼ Dj2JǦt5&/+buz Dˎ`٫Te[;uN]0J@/He"Jjj$t%߲y tK0ىi&Bv i4\P@ 3V'a9rPLR+RB%o?렒8U׷G 4Xdwim~ ;Xts ._#7eAk m~KKI[ tU S@xOZ]h\Zb۝(0:fmcBUmYvJ /TC$ 8{|J'8<ɩϮ*a"7X„ΞCKü=q~ZNBQ1} TIytx-+Y6xWdݩS=kֽ~~ӧŘ&d$XلsTh<"ނd}SZ/=a5xeK}r8mR#9-kڃ1(lJ TU {p.8J4|紥's( 4BЀЀZ O.}U=`v [z+ R$ o'}yǂ((>ɂ?dD|aaI:sQe*[R}u8BPB b_b ҫO꟬=Ͽ3(1MdBPe?+E`:dAEŊZ%0\#ke?yɊ~jG7W+dFX[Ugrƽ%]8p}{bA9 䃷#7;z=9L~Ogݖ: 7&u_o:fSqѫ2eW Se4NZ%F"ص 6M4Ok7_(r\Ԧ0&Cn1*?:=KlPOn@RL.yHklN;Tԧ U(mL6;O6 c):4muqӉ:7a*wj9B$PM.TyarlsZs`%AMx,?r1-˶Nj WΩV)pJ=u,:åC^P`{yM2E$E1,A TW)F,@X'18F?ߗ),zXuZmꮐȭiDR:`R$ǙQx~̛ f$W^-~I R9ebX!F:A>'e1 !ܼ=k=w`u; PWHF7xYihrKS>db]<2۝poA*k\~Z5TKNB&o[|wdC&6.-U&뻼>cc B)뮝<]1P{Ёsl%'~]QT8C 0!,?aj"2:H"mUL*3#|y0S.Sc = "x׿Bȯ@LYTezSڒrPY_EZEjЧX[qRG84H,utDki`8LTP2:~ɚ2J2ZOe0KigM!DLc;oX.D'pAR2esM$ HOdyQc VJT'nà/Ϥrل'&E(Ϳݫ-re|NY}2<ޱ'\%ޑf̢e%r6l '??u]_SwyӕiKo3)֔uz2Rv*/\lqv2qI_*ģ_q̐r}f|^mlV0/ܴ'[`ZL% $PabTä'Ӿҽ/9Ty,[Lw*Ttߙq|??~ U#1{9{S3M0t0]rU4YܑV$ʦ*i-I-C7DlUkuNrgw9|Q!b9gnĕ&Rǫ $8/&5DŽ$"P]%X ΂>"-u5(t{yEye' jiӰx44Ff.Bth-1S&$2Y*.,&w7~^#ٱ-hu&Pr]c5&׎_v% LbH,U"%Ŋ:]Șߩap,} g "r8_%kΤ;z*Ba=V=QAr'ş?/(]f2` 7j_ͫz}%סne{;}HR2`dVbAJb%pKI|y40<#{s6??1.sy?~,7YJ'M8I* /DK'C?թh\ңA-8B<_cDyu!uFe &zIѾڲlNTTajj#?d~Lq鍲[9I %; Ћ}>? Ҽ.#-h8m̪\ 2>føF5<HAgnQ K86md2JQ!zQR. I29׺M49"Ymrӆʟ4Y 9@71ITłsj^ɉ~zJfA"'Rx Zn֮c30u*'\%uY2{r,#[VVJ~F bO&gzT4&XX a=uV_FK ]}Қ%51uvxWGNj J#0Luj\ιeGoI[MNNyJAfѸq,[KG!lTﯗ}oUWk| s; ]OklΤJD.!Ez}`Ncb".(TS>j5Nk\eQIK+%'AjbU ""CnZw( #9{7rԖaf 0c^Ch\NgmTF׼2e⡔,~qM\)EQ|c,_?no(a\?7 %CcQюXN;,t_IWmr U&ݭgHY. _-. Wc^%/JITak[ߴv%'4\(t,R3&TФ{%.::8 FGOzDSa t?v"Ϛ܄6BX"d(O̻U-`~a12k'y]f!]OYI" )Dfb4_6v*$c\yy<8B?Oׯtt̆y?J>dʆk) o)O;A8hnс-,Dq*wB=O~21SaBd>^'bej>\+J/۶\:۽֒`юk/> AsR?q㢊 dUhۤ}R^蠐ջ"iBp sYL&%&1"tG ;>MPr}|Be{/zl6mAtо^c^*G0{S4*]X&Vd<{snxjeq2x˵Piԇ 6+8Mu=uݘ2IdIUAŊ\-Q i QǘHN 秔]r0pffYɚz MWY.,YW'hZSOe'B*RfUi;u͂XM=/b{`L>m^f6rP:BGݻĉ1mVoë E-Wru-;5[H0\}ҶG'Wݓ?(L֍jgR?_!ʓ-o΋ÞOF; RPTn_:ÞlG"n߄lniyxWh"YfЍ)JXh&, KjqV2宠myV |bmTnIgʆv݈@g',;2n35WD6 & \p'E#5[!ߌT^%L,E' Y/Bn&Bܜy;?YWeg.7m>LݖЍeu_ZDl ` DVYIҼ.0q%A8ӯ|g,e &($mx감>u] C:,FsQ4z8\uB a%^a!b:2.!{>Crq-q}ߏ_1Uk^ez%#=Wc$r_hIC3ٵ!QzYdppl rO\uMQ&aTTM͠R\OR ŸB$|uzza%faH:0iQ?С90205yz]CrMxYHQ_5ysJQ@|KO;zGbf1MW&Ѥ&E8A"R+r[F/hAcqm ͱǴ0oF 5Y1RݨU^ /مO |>g7|ɋղ2<. )kʚ U9T^KjZwlt932ql/[BgӾr _^Ob̤Yh H$`z%ZE´rP %Y0iaڥ?^PĜ^|sIm8 U` Q׼Yzb4,|6Tu.b5YGz<&> HKw+Mȸ"S ŽE/^lϧ2T1v&v҅,WN]71]&鯭!qͲ=*V;*x=B#+00?!+j`y(H̔?^yьXNgN)0͉ #+m? v=lK5 `MUMFRXl!r7YtHvr_dKx$"4=]%uצUU/)*c&^8OmGl/t*@sEot3ؽ}ηϒBoMKNP\`9Y~0G^Xr_p4zx^{xك*8=b24e6Tjpa9ዃtIT{`. {f{p.Kk& niP *RHʎDˊ.u:U+,B8V51+;y[gC]ix4YHG2"cpr0&+D|xf^gw};E#w w[*,uLç`uV10q%" ]yW. WCk(MiZBA\ifdJ`?=s63x%uA47 9Ҋ]'q$Ɯ` `= b1Uɧb6|\v|ys.BO[CUUǁ y{VB=e.f>a>+>`y~K&kVyk6E_z|Cl ]bҝ37A+;G? !⼅`^B6\U8.")RQ`jjqa lʪV_7^՗7UmcITE();U g9dKq?i}H 2nqI eaF_WX%-k:Rf$*)p@4 *h31R "x*(#-Beorh"%"aFoV(uصߡ-iףu?6@ZRM#.0$%.=*Q9{\sBxqGȕ#CtEE$>Rղja:sE_4QYHc|H]5K@?6?o|WHƺM Kv|$c-$t+MTV;Sߤ놄Ŀ+ِ2i\.k}=b2CO66UW;`$X:XщE4W3VlBi"$vy\7!R~x=`P$TRt}FŠ%WR6<ӌi^h# \WCC4QguV'EچM1!AEP x۠M!jR) [VԖ&64zcE(&#KVGz l uk;"M33]9>J=JȀtϺtEVIkEu莋**AӭB1~ U`{K"vG6oַUaI]V'H"nxIJtv*#Ԩou'IK ߻lt=G~D>㫼=wM4$@j%܅ًLoN]ӽrYg͌‚mY:<\oֶ>lC*Kw5֫:B#ůղāyJ+H$R Nf}^'En,W7c1Z;6&*O+JR _,^Ϊ/9J)(}kJvWnEԹ^>о=y*RI,jl)wy Epw| QPH7s,Q ݖMb8k:mBI[Y'*]}1X;Z)sc$+_.X3s[DueK7qzVj.y ?Gi8t.rPAìK}*.F= 0gpm)_nv۶9~?MFDdlɐLeeDb}XDmh2c]@] `s?ǙקkQ%qx"˴1&ݶUdnv%ogu%u*^2`^ =]V(8?}I+svas0^OFn>qň7Ӑ\"u)E_U+^T+b,9&_wO#urUUDxg'/:'Z yvx\ɼgYrdI'̗Ѳ`E'^r#ǀg`7 K"Ni=aQ~f5s(z[ ٓX01J=!mQ'NpV$9 U}^S|A 5ׇ|ZrwF!yU`xaZNx!&)4ĭ)f?^ź__/;P ]'|Xh+}n@ĸ?ߢK0'ZMCO]HYSg(UpG q`mşn;&>JY e֕N=~. z]OkIL.Hf٥ enu^ڋv^Tpbm>X?odu^,uX“edxn_SɛT2JI(4Jÿ] vnh&_*i2>" f0X2mBEVtOZ8l71nl0Fϛd /ϐ3Cy/cή2-:&mS kAA ]5x!_+U%tC! q10g+Ve蓾<iWE6n&XoAC$x1(V<*_Ôa뺯ۊ V6q&c5 +K$`$!/s_t&+ɉ71d@C(_RRL"~$LjΌ׼5mdE2 u,p@wѯAe(?W%5>!HsOOጋu坮z¯IhT, TcLsEFXRVcBƋwRo+ifgNyf@B+ j9'$]Pd:b#w-3}[& z1@"]bbυk\ 2aSWڂORU7;eej_{1KcQX i}u;2=-r(AbRys4ٮCD|u]?YD@a #c[^(}Oo!(D$wk/. a7)D(Bb!^0-d,>*xFD>W.d.82NRU}YvJdz[/ :G둓vܮ%uFV9OU S & m=zc#;ʬ:9N׳ :_rR/K5PP^HV|cά%rӌC N)z|cJKWu߶Z4`{)K #a=mt9=H2Qg)y Bv侷4~6="N޵CLE *eRrG3U{XT]9*Ɓjie& !ќѺM$yr*.kӣ F, VFHȸ( ,@,?d"Nsh}X>WB&!6i(ӪKrG;fLs) b<>QB>(^_$hJPV֤}tTR}WisۊV=~LRQ4ʌpIk4>`Y HN*!ye$rH[5nHpQ/XwHru|=]z=wmLGFcɠL7,/ EǷqat3\T#dzytzxW _L[ň@Z/cunՁO}qO;! þ۬̾cpADTL'|㬄]̻|tbP9_:;l9{%x"6e"\RczGt;k0BIWG魽&ey4cąfs^1;AW< ?y)N? vQadHJnٱY /M',x,`y; /C3JT(XNd IքRHݢ>1{!^roB5Au<. /$Og ySXK7dP@8$=-\FiT%Tj++(&C4] %Lw)l>mzYzyȚ͛)hZQTnb#=N2>" >L[-~M#_'940 y.BF2u\ȎBJ Z0-K5K)Q|clz{>m ~=oC}6+quK}%b|CUJ{ce^IdHS sKv!*h ^ѮNri(G8HS)̮7PI&h"fNɦƿ?FXݴuÖ)}M۵+0Iyps# #* 1`iѿ!0J !w5W9slZ%$ f[5d?y1o]OjWgEeI>z07AzAW7Wq`׊}#KB ! meUf钟.9~b 'A]a# b2&+aaXz俕|ճ>y6<1׫iLa4Ϡ p!il=p;V'(7&x*[lB u}UɝHmw5aɋ3GƑG|֕Tz.fL;ɧJOГi zܿ w9Ciƒ/a.&&n7`wŹG恂R*zc4g@Wxd[ޯgrWX2Kޏ^WeN^%L#߰1Cj{9{(䊄̜Kx4Ʋ Mӥl&v2kcy=¹wa籏NJP$C1CݗZ'{8ơɫA" @Ct\}B}iKHnx[DDoKjɷ#M!!٘R4-Hxx ҆YQ TySt:DN놐?vhñaw|U-AvB,add_`~p&Q,RzWxYG *4 $O1)<-R8(UV 7&wJŻ2-R?'@]FXc(qy㖌I(H'`WG BCq7=5u4Ihʆ(a2/и3 -V㵣edYr!ҥ}  "[WE"zH1C $3l 2 [BSn"s"KDWӹ9Rw`#{^ku^-:I*# _n;at #6Z_ ewS (Mxr`BAj&P4$żgXf p};Yx!۸پx^ 2Ib&=vɼUF+,j?+ZeqJ?uhqMtOí~ȖЕ-T\:66QP|@JJtڭ;-OY7F Ov,df:,=|mCree+"Z?o}bY䕩6R (Pp D&cM"t-Be·$Zh~|o$9}YvqE.BO5E(k/T  :!M4"FOFْM n6^]ڼin82SVXUe-dupLaQ"kj"Odbp/2CH&.Bmm LDNJ4tw++PCuY֪JDaQɴZ޾){^>0 ȡ..cHC%Le[C4uMh.6}u"- d +i 9C?yRYuM!.XiDA;,ı?uF"*+ʿ g?cF, CuKESi/*N!]aa*b?eg @wθ(;Duz@h4\%L7/0꟦ ?Uf|-%7&JC̬JO<`> ^!K՘I)-S`JSd Wsi],D6 ŰΖ^riI9܁8Cû}F"zObzys,m1,n[},Y*/0f7=.bݖyg4M>.eMexZg߭Na`f#JT@0CȋHOOiyƂ\C}+7{qs(|1l iMEK{kjʃ((!WыoP""x}KldeЗ&Fގku^؆HtX+[1,rD@&pdV\*z6×tIg +㴬D Om^7fin{*۶6+IEonulXj$Rp*:1f> ^3/cm =x^4m_)σtYG$=нDWqwB˻0%dYej!Gɥ3Jo:Cjdk(} :~=2/=+`QȘ߼a>W^uvdnUTZy rdfZEw'+)AD(:=*, S`#hҵ;U1qCr* I$bip[jLKwUξɍZB=ltf[GicyO mpR$ҷuZS}RqJLXl7pZ橳nM8/s@s.&rr.A NDR ˘x !BHB3g)ZI?B[c?fCEU~mbUMa x9d. yD1BɾTI?;V3k&v"↵ Đ"#!4/"B* _‡ygD|ǎ\[k8/rB#$RFR g}RA C.'D~⭢U)R鬕WY,&VDѩՔr:h,B!g-QyNy[HC&+,YH]mIV1eZ-oڙ_=zL֑ORPT {.մ[E0W~zv K?X|_Lbx!ECjSt +pymI"fRYy` kAJ20%ؠey;>Y*ze1.bڗM|kKL.xe@:UIF.JK#Ug+>$n\u,%o\דn.o.t6 n0W~]֡K0U_W="' )ҫE`,a~s~x3V,1h+~oKA`ۥ{[tͫ*LxFN0~1 .7`0DɹZs;H5ﯮVTf]ROMei"HӾ8*|J2gx۔jewE)yDLuⲪ0C 10yդ&0%mVѠWOku9qC$ rqW~w~ƞ{m%x@Ut!mΑ=f[R[ץBViP*Wɕלϔ YVi¯?ӝ)"kZl^8ש X Q&b%M +WES"H43w;)r_ʶ*kM_Y<2N""ءT.W9 .m&]ϠiΧsS5Uz ಖ<5BM* JDLa^i]4 w{7>_"%UW[a.V= _UWm^p-a3]u-dcƨMLhMxҿKO+T|wx6n~+a^="Fj ->?p0 :'i?͡Ȼ4cRpy(዗4y!X) VS1qZ,tU~ބP܆vLiy;b_IB- ]WZ?Ki˦mqkg?8:4S>LrerdAվ6/RLn Bj2ٗ 8w1dxcE q5 2uJ`$1ZJ5R^FebàXv$ wn$g9#,hM2N˸'zM ֧f 8|C$,]u9B?WrtK E+#5WJ˭92?̉?9UɓuMzC)yxfi@YرH\@-@ |pB1juW$1},r\WKዣp)UY%}%Y80Ms' Yoec" x10-~fgVf'_BTvtзMm!-nySExˆˮʢPPwTz)㽌wKnoւj{U=6~IkY½:O|(CM7}䚪C}ipae&XT *NKz^y\Eld s-xv0fd]7Ij!y4IU[];2-r*f]ij_v-Ude}d2@+C YiʐOL:DԃEFdRGy : ˺:GrMZx w-{Glv71mݧwqrQ-DV9bivwf ]X-z~XG\,LUO]?x\>7& mޔ"d´{Zͮ&#y#*2)ͤ _.z/_wZ~֊#uG|5Œ9\I?EAd]ɘ.F7{>s3e3|Y֧T\8"5pqEJC݈Y҅eG01^\6x%g(/L@"X}b&'k]a\eHً KY+ԕUy{wOfW_MĪoP\]E̴z ]0+E?k' r-(b EYHpۼRG }g,2Ɍ쫺kPc*tXmByetI5'˼LȺ2͏<3΁%\;,M7'̒A?UF|aj3Lv~"+@qtIr*L]4"BV|dXyB 0;os{Ŝ$ aW-snh4tI7F3QTƴ$D#v^WWQzV攧uh!*= U.Z$A1^XY_֕B<1ߕ4K`L|m80 T%x2 Zp=dt!?e\ id;.Ŕ4 7:Sq1a+;&HŒuʔA]WtywTs[O7ޯ^*ԧUY5ErrN<~J2yNȣ`dsظ)ybxm?LYWK8>MbK85}ΌjsEkdne dyJ N ($sOT9 `7@RJ(`Vay\ 9g}ەq힓6,+x^qG/V7YEfZe6s &<>5ҳ Z7+6!W=j^4FIxLO%sJ t#ﰈ_6oD\Тvcd= Gsusx*옪_eYʓδgV!2=!{u\9.J5M:?W?צ~ uT~]fHI r>]isr >B:r$xz8bם5yY1m^#kF\yx'![Le*w9ݠuYS9b! 5=h9Fy(C];.^Top" * ޸KP;/9T{Aeq,L;ضWN?iC _:ha &?&_I/D8!Y9^:Xf;Cuk7IZ3-\–W?D~P4Ӗ$:U]XB-ʯtѢkʶJn%hV}a2P+S|VQwW$GFO&U''H.1:Ō*hc4C.[%9%p|.DZ&=V,ov1A |" 12Cu&,M8@p`hvBBK,;.Pfy; ~ixLӏQZ L)ԣ='} y2{Ȑe_vK]jV4@o,-ΙZL.sӻĹ<?BPENAͳ.6b!ܕ Q׹7NDfib_})>,O{75WOPy-53~Ad (˺'A7-u/# 3T>=IoP#@fJw>,F%ϋZq]c^,B*0ĐRۣobY+aiӛQ+=c'^]SCC$qR]du 2b/|bbčHw:wJQ#uD6XMV2/3˹W}:„'$CϛC%UL+BuQ$rÙ]:%Wܷlю,3P6?Ǿh.INnUF]U d288=(nمWtIwD$̑lx޸sBqo2r01x^mrQeѤKX-:E3+lܐp p&l>J9P"F6o}"~Rj* U0vUuK.NJ#um}nl~A+[~6t<^ s c)dvRY]1<Ȼ 9m IBObu${s)&&0M|Sq]v]$ٗzA<.̿UmG{cn#k)3fWVS&k SP Ynw+RZN51c|5v>qUt1dkWZdJ^q჌Tء |8? F0Ag|Sۄ$+DY'f|{fL[vmژ);N9%&XEcݙ_~א4LNS^+G+0NK$hIVP9:@ЉO/t'xX_ /Pkܚ܄jxBuR)*| 3R<|CׯDV/o3w,]~yE_'+O~KӱkqԿ/x 5J]\-}̲_^Q+pzS,܅e) 3x/zk5u$7n2pߊE2$}+ \:K}$t&K "UP~RK-iAhYdNl>\<09{]lpf&*"{& r`bdTWYL^. | QX֨=tKA6 qiX5R扎<1V)saZՊO29r˻|ǗЌ}uJ?Qeį֖\<6^@_qlG@J4kiT)&G6qΌm݅.[O.lGﴉ1YN']<eb!)(|ve[Ũ] FiÞvo>iTY2ﲤ.٨*WӟH2R+C~%+L_@I-U݆R>pj dUp# \cH(IFƀۯ]|ûYGm0BM~W/6$in'*$q;u9eyFCX3;fĥ8mǼuA%et!GIjIcŢ95ۉn1D;ط^3 bBfI+/EJpTduUp#~pP:rP2ߊg4c{V^43uqc`we㵥墴D>w!ׅoƢ%a9'wJ>]܆ګ 6` jƕ , shĠv(I邆XwH0IBшܗ^H0Pgic'% q9M'y,p&5XR)\ ɣnli]WCaK,sqa9~QqҭVkӵ1 y IӾǹF3a3?[v7h$䂆4rh@?IeէJ}j boLr.J!:Ҷ Dym8pۡyF4VX'Sb)的ÇN ul5C'|鼒Fib[ט` [wc@ݙe!lC(V(V IXEbtbQq*p朊Ϝ;_Jv~xoXeHiHG"ވ5KE2/з2 5^b\lB#_kCa~zz?]rlLK+L9w(GG`I,\0%9O~`4ey>Lf[x_4bIٴi-X{&z\`2(p=?jle{qENK'6dOr &IڢEE J _NeVnӦ a?_O ?Pt^!| b/[ިڬ?lEtr"XHBGYoAۗ@x " 's'aK%=mWd{:q$?tUSjQd$y:{V,d (h?K7O"Sun4FlB>@T8|ևvxhg;2cm$$rI贤& łcJePHٓfR:qW8@`c'NkQhDELyQ@JlI~XJA mx/?/|v}u\сXF&o*H0{ЂG#+TJ){br /Qfʄ,zݦznTS!UbLeU8Pf a̹>b|7i7:ߋ=2ېӔwyYm2&M0f#r>Ur>G\ܝqgK ]I5!E^ߘO@a+"Jv*D$$x}~  /1uqIcOBYdm,(oORv;+'֡i2FLJ9ث]í9#4(ෳ$XEdQ(MKKRpy_k 4Q%$R4# mg6л!&Jp3K'2K(ҷ/vC3iSxȺi ?d?jx*VT/ ),:,h GAlU`*pLiL}UJ ]p__V|_=$vpFer1-?}lv9jQg [Iv2Z) 0#W[Il~ dETvLjbÅ-! \x&+~&Ǘm_XtK?0o2qbw+S̛,-EЮ q wpP@W쌺-E9>4<}d،Kk._yumj?:̇(7c^ ,~$/P=Nꅃ 88-E oܟ,ufꖺsYޚ@C?pDGI"FmYv^pWU)bpJ!zԘ0T#ߴ(̗>P'x>%IfC5=DP;߂/'~>]g=~_RV?5:-DȢȿE6Xj B #u=UW?`n,;CJù~{E#\Qfn*w(k|; ۨ 0 GO \RK/i6%wl|65t,Ӣh(- Vɠ#6j 3!b~ޜqɤ?ᓵbۈre>3v͏uUrU?jaK%LζMũHz>4s"< @?{wbñuLB0~G01 [8@!z-L-*8sᑒ#Z"rسa`• }zsRנqtSQuYIdT"a7czȡ#nȅo$ ᛗuyACx `QqD *$&qߗ쎧ٲ:ﯛFvf_FP3v$Q{\VTyrg,a5A {]&jX"H^}՚46pʒ:0t(e]>,2L^YheQ%WR,u%R)$ (5t)/cg;we-J=6ZRG*g&p 1h氫Jih4Z~x}S7J^SVsA/#'m N1k_%;oj)$o(IIB&¬:.K^F{H#WK $p}PِHZ2^S2' UZ|Q FXJ~N8XB-f,呾lw {>Ɛ'1Rx #'4kCKyȀ[&opB03<6lubgr&{)n WmJt%d|caa <'y-uK3Ef]>tǥ-Sw/5UTSs(nB8xN+?ʺS D]hebO{7:sZcK~ևj:X]Ӱ%wQanp2F5Q^A8 1:/_YlM\S=\yP芦%U҆2LɌHFv vBL'zZ|B=JU!I-BXﱖ*xsJD轎EFr& F7yz'$EM./["'ERHu:dئP Z  ݅в`gE4A\ya1_Q1f'&).*IMwWA 9aH}"`_ͮ&==lvt#ay%]sG$T!2GĂ ,;@Qm(hSo_M۶Պ Z>i1OʸRSOK8D8XX( tN$`I-]k0BFȔU:WuUE%͏JbվK@SJ ~ z9KgkGoXDFmcccrTN wNwU&ҟaH22YfE,NsAB V>Ydw"*T ?W~UH0(y +j]de0;ti:[MBQ>6!>̮ Mӄxe}Y4Y0"jytwYai`??:ݡ_`0[vlh&~#ٮ,&i"HU]ռQZK(?QIdb NVkj"25b]Hbr'uddkN'@1f Qz%Ө9g5w }ölmϸlkr^WiiW^E"q >Z\>A72E^Ei+i"qlժm*,,.7V$(mwvMoЈ:ZD.ٗv>aZfuQmE!'$9a?ل2-O/~y{4q~6w~RZeyG׈u/:*BKY @m#~@ 0߄u dy]l gDAIY^=a/+ @ o/'&@iGhdYڽgӤ܅Gm#qFN|D VHc8BI*)_o [_ȫs(n+Br|kvu%6չUG=P ?:k9@ʫ$_:$96ZD7m}!/tf,|0hQP$I%jU kb4Iʨy=2IbH*i31D7F7"22du6)D1R9S~_2ı}c;N IyV31!Or~XZ9/4&2KpXB`Z%CnuNEZ[ d9ylycZm ,#G6Э@t۵dK^2/Gb3)^$?!-f?&3{W)qC~ڼJC 6#29,>r>JL ~xȏWbtC~;(.4NWo?A"|CҌ<7ai5L>LHbҮ<861I(Ⱥ!^O5X( .`Ʃ)V&*?+xf(jҭѶeZsTwjfX%B_@~G $EĐOIIQefzv5uIͶkۊ`_QT؀( -DLDB%còB[@>&eBzJYzYVY8ڹSv7(lNP_N ~ߺ̹waؔE|Zvg<ːDie)2?(&XtHdֺ8u28Pц;o,+}N #75(H481WoadJ.{ZV,>Z>]=\wVIvwOuw[g6~s [ΝX(]l;fd^/08A,6$7,uwC*4R$utqg\ɶjH p`̲6 3JhzgY/XNOYwYC:!Qӵb<bdӋ˴X;֞/*_?umF?mDJjŏL}+4Bu2z>S ~q7b_睬^K6my! y7ZQi2ɭUa5^@)54F0O{[#|Dmkp1FFPĶ&%Y[U| zIg:0EpBRXF%YdN#o±QH >7 z} 3k߉mKňY!NBp ŀ 氂[XJ6BZ[v(gO! Xi[Ws-}{"y{:늄 :MJTYMqC:őp eaFDb{Эk }m-;WZtZCxEm¨ưPƗ}Z[vާ@K;6hk@Ӳ|Y`_ߏ."t " _N%<'P)Kpc (_HHVG-Ѕj̞mpc|kGRT ІAu+!}e_m78 *}ee@tU 8>nBV!@ȿB5 _DfQL*nHN$2p[-8iGSřd_UUy}&XA 9Erҁ%{I~e9Y"ogCA;ԏ̺n1˺Nd ny,(]RI[煀_>(F.&j `(?Xi1j QF)|/)*_fՔ:ku)/[\b2?! ݕRY [+.<翌3GɂDvZB;saw̸^Wf#Zש]ėy5&%ߓ%lDPCu wO/N1bV6d]+Ce_d\$U4MI+2M/k΀w)%1SªX!*i_>6|͇׫rtX*򪊅1KOK" 3q~~%0/b|յ"kZ~WtϽdi66$>Y1ʇ ݘ\T %0 ׶]z7{!V/IW~gS/J}:LaĮ C:!C$xZ lG:v?Zb6N>˶-iyhQl^tuSLS(+l5*I *5sըcjY-|Ώ>eD}s^y\V+Y(@O>-w6*AlV56󚎥&Ε0az>ayK鸛uZ>4m-  2QᮀFn q>e=8m ON80«$I^w{3F!4#@w`7Zf'" hD8 V#^*!LxK,.cLD_y`0uVEW>ѢQ2@ԆpGdHM(E 8疪J7jI\EáN 9 Rqr'"\=^Ҙ![ӟVՇ9.ơj,6z1dQFSKZvi@"(F! pxg.&-L]z&r!#{!RB#0iƪ%2ĝys}„X W{=K/.lf[s!?&ʂ od9$eq|l%Q0$"%"a^3mذDbOO~Z-_Wt 1;tLIILgʀ` p{/߉\u0o sh]v`.&3O\=s1缇j}y=crd$ҭwg~W0Q9~ɮ.ɺm5=\j<Ǹ)CuFр (ze,֨y֧=/I~_^{]O}VQ/)3:>8cߓ*]ABQ_J#Ώ-H,s3/Qƥͺ=NokZri)nieuKGƷїYS0]2_`3ʂ$.r6."GbL ,ɞ.?R0x˦U~䘖 #m"y91+FcgܮߝQM֝T,J7w%>Hf6KOi[tbH0s:b.1Իsau:pu=LmWt3=i.$QBǀ%?9PBꌂ8~D?`FۚmLYɛhy8Te5qUW&m$;~nU08$Y-xxqŸ.v_՗3/l5|+iG҇%\bL -'Zϛ 0%m_)x/ְƭPl7hUdm5+aU]MR:ķ؊J+9md&ܘo򻔔[[2eM&e44zxvP9W&šTT9)0sVl&/v"m^?_>,uy}2G(tJ^80ݓ.4cчkyş;s4o벫+]W)}H ,P16s"HB)&C2VݿK3MSS><:}jKߍSt$>`&Bv i-eX3{Ĕ7Δ/gI%kV$guE!*N%*9O pFH1 9 Lʸ*@gۨ84y_3F9{5u]q/$1O`5V!420GUr|v}MfYw\#oRdB&u%A f0'֪pRkuruj-7F_w{/ci*2/=^RkۨQ6U.Q~)Ȁ L9-+{nB>Ge7hH!JISr)kBA>d !]0.; ISv7]~Lj sݏq+pL.}4O8RSp LF[9,}P|;+8=0R#4Љ-V$LѕdCӨ $S(b;N0+ ۣפHEnГ?ޟfbmEO̯$ux]ً} q)c"9wwnrZ%Qh%UVm煒j^KzI'oJޏ:3(MQ ŊeݕEjA^Ehw,aƀ;ꂏ*;Ȱ zs 9isӐ5:|ٟQ*ޔL)З-$I5 %4uwF3V}biʸUǟ@ceYL|]ihga}<@[@PMm ) u0_|F{x L}p0}hMz+-,'M4#XY*& #]c$ e%k/;v$ d2sSM)aAR8_!K^:p)u_5w!7YO Kٴ "qr;aΨ=PI,cp+y^fw 5DBCAsrĨUIWZ*OjJJ YNš>CT/&*KQXqg>)(hBWjALBJ اɧ͗w2PZHNm~~Mɫ")K9B5YޕB tb`򫕹EMq;P An/ݷj朌[[KlIT3ڠn_`?b}W\W4۩b+I+s02lY%JK=T)J^ n0sJֹMz>M=U+5ûjZۻ{Zg IxbXʍq[lO%h&'e>xprHRokax[3.<.˫u he~:ڏc FcDBO,Ap_]1 >fJZ}=;G%L<ǚ&JhG<+-a=ڏKD]79"}(Qy ~Fhl{};n$؝JZvXH$?)K?@fLh+vD`x t*cmL483ąM^w1nKemI~e$tOO Nnll,wNrgjã5[R#ijhp4)&P菝ߘ%/pɗ w"8!$3j^/+ ;RA-ouݽYv>X&M&ON+Zi,az4b-L.:Cn%3n7I%_R̗?Qٮ/ZZ!j1 i@* i„iU[+B۲fv}\EeWdQf5_Q#8or7$RGZ bM_߿6M?n wNnhv2EXvD1Ȫ*s%FVI: IR /ﳈ v"r$G($mVBo? V$r)@aT#{S#'~3y4S矒FL$ e~]LHz_F#@_?a#.v'gl7[bĪʄ2`"W &ΰUu"j\#Hm b˄(= [FM.:KZNak$Eչ~**ӠSpfGdi*|Ԛv䉩 \4]fYrR2?2-?~}5f*xī65D6S%^1M& TY$aT!Z] ʅe?DI@xVUu]u@U01N- LDmܺ oӍD.6G~e׿̛O w (,ƃW/]]́'5pV PW&b}̅t؏k&0XnM^}?,I,8I0pD0ZO%tARVNikMoR3%7$d4"Ϙg]kIƥ y& Stkq7IWO*{y$@73ROE=_GPZZ-BH1LYdB%{Q3z e̮K9z}YJ&K`'/$bR)faQ{uh?Zr{oIa7i/q;,D9jaP9бGe[ߒwA}/:B`<|q]ԍ5?cԋ|-Z RaL|Š'P)=uHzW/~e__†?BIʄФu0 WtXT='N RQ=HlcgM|YHmI\:3[t=ΤDh+IR|NNC92̀i^1 #N:_$]ᯅDVq_q+ڔ\>2?:sK#\!r '~Ya|dݙ1 gﭺ)Ƕ"E'ZtE׬ $:0 ){Bk>Fl1}lZξ_wױ|ffM?zI'QZL=R~WoKx[ÅqD 0No.7TD(_a+^BW]D.0A|(*'8H(UqqnCۿ[ؖǥ}]JN4h]Yg\ʔaSzIхRN5RT8H_>R!qll1v]2}9XݷyinikGǴnx|(XRѺ*m:&s/Ř_]a>[b2|SeV%jjCYNuL>HG&CKAvjBf\7&Ƞs媲۳I<)7Ŏ]itKv!d^]m*֮̈cek=PRk= (@nD\}٘gQy_-c/s6"rSC ~ЫхU 1 j%WdGi/q>ݏ$e?MW hC(Y;h$MO7ż"K6R]NUЖʨuuCVF PXX\fA~"VW7&XkkUkQ%a7}IޞY w^B( VW¬xq2'ڙw\wE RQguuh9]LȢN9 J(I?@`<^0pQNՋ([uk0G}-|_5шLj͗vdN> 齳 .sk"l>Mj-i zU,`#1uYSUr5DXm{vdG2*VN%"IH2^١cMy?w=|5|_՗suؒUb[FUW sOF8B kQ9Ȑ)vײJD6:Srq벻blH3&lw&g264`V΋,FJ+]I=~{P`X#NvQ7y}gMJ08v 6=0e C=d,.5q];>"XٔAfשgM̤0>+!AUVkk=pN|ҲϺ-{-|򯪥|\Om{IUd?ǿ$',˯xWg8ʯ&ô  0F ;A2M ۿEhEvц`ݗ!1^Jeض %`!FG0x*E:B&#}K|*:~p-rߟDGeHM[PQ8 s >pz^ +fFoK> nETuDzLmɓmcT4+jU-`Um1%'zI8B TZ j{֓f-ej 0uږwvwIۺ&WnH%Y&+ª㮅Ӄb |9s0xuOKΉu!{dV|ˇg"K6[r޼D\/*-|ΝB7sP}O_/ M >D E>/s}ZҺ%OzBo#[+ T~3ڗ iyKZDv[g3UѼHTe;r{9emCd}JZdt{쒭9UFpeu^,a.|#F4UCQ{kԌOimZ2Ar1/_GvZooxK^9/γwܾ,De)z2^U٪Y_T)k;$2 P, ^$:jE oߒf"kcyh[6*).&R@ `Ԣ&S`wwVV.o]&;f48}M㔽Z|)| Wס=Tt ?wK6xpP7*{-9+ݮ4OU"JzRa*Z|Q[q"zkX\`Μx=1QtC/OSWɎkJ(HP3nb'̐50H.rho\kInD!_Zfeݢ4| P,PK`9wfR0|^ ?p qZS߰s k"*v__d#8xNȭOX>ee;Q ^/fBχڄ;/oHIc?@GPyk $)o. |#}@Kwa$iRɟh\`G^H> H|fp  e3+~B~a/|Jkö[o-yw7 iY^6itčX]+jVv0 UNԡX#GȞJ`b0)|s:s^+l$$,w2m[M 54]mQΨ@^bŊ }fcxy˧ycx8K몧eLDikVxRhCE՛Ԛl΋ZMd‚GXn}gYI$|K]eiQ"EˆVt%I-\ Ww?U ( ,BI?Mc\UDltMR=q\)z`wRtAbnVx-O.< Í벌]䴭*3l1 ~Q My-Dq8H#-3Wa=5ɆGߏ;>>ёQԴ*08@69RdّL^c:B 6lh`vRPz5>ƕiS$Q9U.ۼmB #zjq@4@Pʜ@uKą>:n-Vxܩg(I.dyrEMKbY똢r*pێvި^ȍ2;ߣpa`Om^V&WX>LÝcǥa[+re Cw!c&9ʍ,rwIJoUb_xfiY  %-.񊜸kvMmPa'UM1aUH0` %/V%>Hrdg8*2+)(Q"VA Ӷ#g2j? "-Qp+x_7#I,5.3XDBlt\xcf3NODV@V ;na$XKbMxHgͫ俧ҧr"G%,ÔvUL@&BAE02[,î;$V/î}]2DE[[|HiI,,2%W+x.S ^ oZL:ŠgpbS2>>F(oؽ]P 1apʜTjMݗ6Ñ+;IV<^$6ʝL:^LvJ2j/]DK̻36QrUIGԕDSh6m qTc͑ȅ)10n^~ݏd_UZv18CB}ty̲<$]Y>&Y6AśKV "b$"騒p}Xǵ9h {Le 3"XôbЗa w"0,3I>Ǖ1 |,!eC$I% *qe'Fhˇ] K)hF}G>qAwvPտ|M1)3ɝHՄ^ȍw4 *QSqu}Rֱٖ՘整29mo62}cL?Z;XUEU&Q-|viؐ@/FFA(`4apT kCBK'_!ShEBY]0ݏxogMVE'/$SjՃԾ$r~|*3^qP>? @c77/.W] 9G2yG rƑ~$w ,wVM|-g !bw&$6'3 ,c !mȇ3*sf4M)B@M;SZB^Y |d/_nXgQB5~/M&%"%Q+YDf1<4!A` ]l őtS,|~Ys6r\|U3>h维nO2 @̹,R N@I% 2 [Wg"nlyW'i^%'󱴡e[>'e )C[d0io“m\ 5$S0wmgu%?iDo ?u"&eyZWu!SH牲0xT'5rNGj&b7*}8OٍhF|{/+}Շ01:/j._Q1hp:t{(}l;2?~7<},Su_ܱ<ɟyR,4MP ;=ʒcf,J59!Z a=#1dgweDx;]MI-y}vEk?4nK*eۀZYR -O^  N^$GAͳ<Î7v6ͣ][]iMƩHN:88킰z -^lVu$EچqeJ&Jo^1]A%y2ĴJF2.lDvODw"k\0a>Jr!\rHEԈAV0gRȰh6vfS]9{aE\0Vi-,u]ʶa&"M2 6ϝG!{ޅ} >4l藜8)I뺊Rxܶlw6?`"[ȝ:'fPV Fir<1<9&졨'iGfI$ޯIUq_g--EnռC:Ƃ³u$9^p3FpG=|4Ŕ'b,J~-QxI]e[vU (,BsjL%V U LJFgٚ1YF=U &=9tclちGYiӊF.JD IJBa9=@^jƗ1# c>vweyUXm䫐4.xH]Q#恝¸{BxMӸeZrZ;+SKEVvCяvyf`LiSeJf_b) @NUH& ͌?,UliHD "q}k%" _гCQsc `:Q,i!M(SPׇeE/qz^@HMF*); 6i|EU'4U+KZaRL^RX.-D6"j#YByI~M>D r= @1 rR)/hDCD{:JD*"k/rF!z}ޘ$W1ف¤W2퍠xi:'k&K(Ʋ8Jn(j 7>.qɫt\KQ*q^˩qh JnF\Wp^,o_Y&žJ+V-o0"?YV9Qx8 qkSFfKL"1^oZ8&o˹*| 35GLHww9UNº)@*1kVB-!H {;쏵/QbyMKަՂLAK'X $ *Uݝ2{ }QOxalb#տΏdO/{XˋSJ0x-h98po z`ΪKV8#מvVni;4ʷ(RhdoL&F; rSMֹs/ "إ>p2:*ì"/,x0Pv1h~,86 fRiT(Zpa۠Θ,% $+?/d#uXHb $R}Trd,h2"yT71˅ wЯixu2@>)mHFIғ DBhAQXъR{4qz^4SY8ݍsN8.d{q$*vWZ]PSG)ޒrK 슠]q3^>MRb[ }`Yb*v+%.aX 滍oB`]@wo;jfYk%Es^iRRXPX@Az/YJyTL.@fja#pI5̸O9/1J6i ܺN=TIeݔQXSvg]Q'ŁEŨZ;} hMb:ƙbXXx]/$_N9׺oqߝyIj;IMibÂ8VGzBdȑ8eP-X?W8ɅѮSm K`f^'MIS"zRID^`ex #0bW ,2"?ѫٸo;YhҟdcÐ I>̢5%!-,ReK? W66?|Zt(~gY2FRyYpaKphi?Жa/͋6/%i*ˆ 5b0ɤ8 >wn܇hF܍@T?R%}[oSU,MK0ު3L /ũP<}6@2\zO>i+½5|C%fLItie-db$p\ZN@2Gw%ZJg3/܆q(J QAe Y0>?i%NH F 0܈2N)Ȋr{,e(0ÕÔ#.&db >JSve/ۼ⛕7/|oZڼ(i4~Zw&Bw| -9  W/UW~!eH k{yv]"ɥcWB.]9I*LdHlE c1Bwv2Ǿz.T۵*r&c,%/{gdս p;R'ręMx0 Be'~")IJ G5 T4?V:@ #|3Rk{%j{8'e9ٗ )O{n``F}ua^f6u'as_fqS e!$4V((|0 'Ϙ QOO0>fLu4Ȝ!CGKDZ<͊H.#})IDv E"T(.J~w @v:?JfaYye%Vھ'no[2' ΰѪ}IfwRLS%Jqqn2ja?-} SowcK۶a"-hMQB |YyQy>Rs(gx0:S8h\[wÉaggoiv; >&D\zyMqVt@i5iydIhQ/;ׁ(* P/( ذa`\G .y%!oȅ%PD+%F12ƮPwд@t(&l $0kL\~Y3([,xz\ Xl P?rZerw2+i RRP;DG[E).@˞}EB %3r evanN QJ=`uϚ:A4bkB>?hJ_a_4_?CWIEcj-uUd Sib}4I3ahM|Wy&%BOsowG뤍˪ R&995x[R̋0ё\Ln-kN/wDoGG̾^ӃcrՆSudWu˫\'cT|`09),4Ytm]?z彬e6.PO$בVt5rm|OrfʀɩTe"w,!܀hek:}RWkLaiQپNExm5ۆ_H*g➖mB: <>Htb0&u1 օ%]xҧ<,'e5i&?ʩe RgNaBH^X>X+_& W{$ sO,w3\e_koצgrBڗMSNkjB`I+$5-u/"t}p@ii`vߙmҸp6]='[xGGٺK2Hw ݋ta6I|I]F .-Rd\Y|3ۓ/!>3s2]`k:gW0Ih)z~R 4,rbFa= )wY8-X3 UoWa^em?ޗ&)&NI9x,JYذrbvRB/K~WF#OpX5;5q>uN@ۃi3pc οYrJt%<#H['wcwkFs-r(cLǪ:M,.Q҅t"43rܵݜȋtJ(48t*hgapm0LWUڪ3]%XӿjSO?\_`@<7].Uh=/V)e*8X)yuLȪkz.F2$ymN>#YK4J;[1%ps5F<-8J;`.-.B1K$7âXE"a'VR_LmscriddBoՈpX*&]ppBT#1ذ<`tCs$S{\%<<I0mp{?"%]<~`B: 0UMY!L4O]9,m(Є"4<"*Ce2]6R#nw},?^MUGU7D79 ^zS|X `3vֺL|(U.ú,>2v~3wr_wci8UgZ%LN 2: KI=I/t'VO !qvpObh)* 7JZ\:IV#[ `E,ѱ N2T+G z%]d'Y̗fVܸ|nqxumI,&8{zJ:\ ӑJL2 bSa!ggE/lF )}cVQ5B xX7*@gdsJj"CK%*_ĸ8,ݺYC+q-Y˪*GʪM(^/ͥ*$È ݗE{|^ӻyn0>.7mhj6+z蚬)Temٿ_~Amia(Ӧ`fc $ t+1MfGwPfЀhfuva%5bZPRy,n"[;4Ae/~Ɗ<'݄|či,o A# oؘ֍}ܲ8q׹~~/3z. F/_i=ȯyZ9%vWSB S  \)$`.·_II_V;UGF=QRD+dZ ,DVo !swj)~kuЄ"Wm#>`lw7̗yȐ]F m[$%dAqBQFC\Ql VdL­@f5;6b({ߙ[)56-Z w1 mSwF7iX13r1%ƖqepSX6uuo^|)hgeFbEBDC,&2y84B~Uļ8ېm>1RFFw߶Kco2:eNQi2T }.2ء dF;1|_֘u_ISֱC. EV6S(~1Y:&8`~1JT?B7k^ۆie fvZby-ɢdn .jnPK/pX@td yp̻S#ȱxQR˪=⍶ɁՄ/=a4>v6i3\L7Ýp%~/CL[(8F.XasK[)SY!KUYҙb@`kݍ͌ք3}ΗeME`ˎde6R;ո[>ROI:;_ jj!6~{U@EMX[ -ɐQ"Ϙ ]]hβL<0 U%‡1.}U6gbf0퓀XgepLrLeyk<[7'ȅ.IYu<fgץq%Bo}Ts{u)3b+\Vm 1F  w+'̰} ݅*6Cr|O_%'˱h)mH"ojC;dRɋ! ]8}Ŗ u%M[gWJdRRd:]uK8KRD%= &qwNw_}Rzp X$79',i~e@`WenJ9k lH$3ḣ !F{9m6m@?{uk_vV—Q)8+^*`EO("\HN)ۑhg'Mt{'O+ebJg ?p9(8ª#Gw@jV\B퀛/7O>&j!伪" X%s |"A'\5!][VMYӶ<$*[F E&*+{Fd_Xѷ08;%)-J ;m,d%{GG"Alk?~Һj4IҚN0Et]D.7Ɲ ^ׂ!rhc[S%yۚ6|@͂0-2\a%ƔB;_4 ;U.:GzsuPe BX[Ci2I|XN.}Q2ԑb 02UXYs_orD3Im/c|$X?cIAN% 6OV)%zʅ2a>2!Z.l%WT鹴)hLu?9H^%̸a2.琔@!R1cƟs._hNdeK(D4zN8x D [clm͏.h{٫xd rnl6x `ҺۢkG@pU:2Ce!9drIW_DDxY&JAüiv6"Par@K7a6>0d_u#9#גr-.gݐ9mY4*k509!J@,_3ʷ pXkbTEX܇v bqH̸zs~(J[ɡ/;=VWUe`ZvZ[1Z'e#;,o.;]˿"%nnl7'A|w3ݚiqڄNkK_EHHY fKtJ-P4x%BNV_ o=izf~^UQG`K} ^%:_aC%%aBZjw. Rpv?k*AeOZ`(ʰP9.>J&r|x|.ۗ_y{_i1ȚFqhlY Ojk[/4`21E'e>kG\l,JⳮS/}s8~/(ʬJ-b3w +-e j2sfH_C֦H8Ж:s"Iּqlxk7ߎ$)} uwuւQ.‰p_`,1++s)yi^MOVc+L$EBuY:] @LĆG]bĮ@:] P||!D Xrx.2vqv<.4$YAAF3K(%LLLw:z.Kl%By *Za-0qc?q_(rm}lZ59uRT*C6J~LjV=?7DvALPnTƝJѢiX G~Gɨ6gs5JbtOqj0{"p:]lUִYa0/}O&JԟW!/f}`-K -(epw~٨n=|׶VFi-w4o"ěԌ@B/;P]dxL& SB ,)}wY'^u  `!ǡDT*#gńHM= M1hclQ&5m=HmyJFRbP9ch \\yBWdpًΥ?JՍ8IoK7,afLJQ2S% 18R?n0OƬ:?Tiw]ɷ|X%YQhFivEYj#UU_nn5P2z@y#םLb62{|N!hCJvdP ٿ0_q+>0-|:P0꓀_ { E!~'n ٩#Bm\5xLTFZHLO:cY!Kj]sZ_!_XJ1\'m\~Ǿ^;{{!Ӯi[(lUȄuJX g:Og@  7N'ɸ%>"/DtJlwBkDɘU To1=^k&c]=d/?߳<_`z|^ ?NUS/sWS4]tĢ ~Nɺ}O<A(Y,1'J>R?u_զ$ :t&nixBk,gI^W[yɫb܂K|w^Dr?g s]Lo/~S*/8j_nVLQZ^Fʇ(Ul,'.ǘa`'Ҙ__'?mG_9į#n)%_ _i c>:I+0y! xWr״mG(7݅A^ v'.{'mRu8Z2VlȰ@|wYH|LOj]gx-N RY:_yt%͉ytYgv֔\hxh+-c|~xB8P 0!ű3u)y| ?e0Roev6)֏KTeOʤTNP,&W1{Ӡ䒀W aLn=2(?4L)s.(F*(| Bq4JT!C=}|Aq\|d8:CPƾ1 #XRIKK.W휏KQ,eX=wӒNMNkzH_]PV kW Yd)T(^76MDӍ+U@D}9'{E$|&v=<,'a:&_[3wbŐr?/ukj5gͿ$"}ĸ"*vGN+AU巅 M5M]2UO:tCMI2ɡԾfY-)MDôQJ(ψR]֦PԀ, /ءPmWFNjG ߣƾC۟ބ!EQKk*j0/9ìSdix,o3_ZJ /xw^' NEЗx_ K$¡D*2>!-cX?pLoxM 3@mi]2P)?c_$J"VVxH)*@X; ?ߕ=gŸ٤s~ɾIIxcSk$<64PRX:;y~S0ֹ冐!z\cmc: +IWQſTX)EQx$_ ߦi};a81iRI2dФ" /m\|i.}SX C6٪j$p@OS`09m8 287Q}Mv.h02oj86{^0} ~8e/iLiLپn-LYeHQ?]fp?4A1f$ytewV.[h2ߕd~"{1cW鯦ʓWJ̡֞Mc̹Q2HnmLPYIcݝFwoD4Fn񦮳IVj.5*·h,DҲ`F!XcڻȋSD_m"zc͉x4K;!M1j 27/lyy-~wz{_/i:Oo4'㮪:q%(ɂ@c&.P"(;ukT~ Htԕp!m&g[_?1kMfy(6F>I.HY0 L˰(jGp]p.83wmDYnDyDhGzWUK d{f աN>:S#v>l_458z)4]D8p-IB ~H?TE K)i [7> ^صHI@&0=sem &wܥ)U} Grmh{vuICOzqyGqf-^$IZ$Ǐ77׻{Ɛm|&/Omi/ۼ 9NsKYD(TU;,Nx@B^GbCЄ(y9h V bf#Qg>O(KFe[PYٞ ~*u慟,8G`IiL/كD*bioG|\UtP.|ڰ"Iހ_ 0a|i(eu)>_Ln4gޔB#wxS$$YdpYo*؊~aJ,&0Qiv㼕+y<EOp?6<ٮa&7(/ H0RgPEU,t-V  Er;3WiⒸao|ce'L6 t~O~|Pڜ,K b>#aFk1 Bg fB8nZӵ>06}p#>) [ ,]WMA\0tOprߋ?WMjҾ@2cC{-Dž,>shʠL8.y?ov=Og僇J(KqVߚf=_L$qw HYngC_=߿Re$1=ײdd\>ܔ2FrN$M}uJq;:u Kc{4tx]iv1Ͽ*u"XV$$نFߕ 80"ixINu"zL\v|ZՌx}u)iE;la .,[G t}T<~ WqQK# V7P\o\߯g9A|f8G2}8=nMZ5 T}:?8MkG.\xptZԅ^E\Ȼ]05;9I@OOl?cڤβEcV%N~UrR;{][H`bK?M'/-ŤMsz|,DJEXt'd@$ID~QTś`Yd2au]:4/=IReȐ-Mȝ_7 &C2@_Y@ǀNL fa#=tu!}ؕP`:R*{}6lv Zh?X\ -j$_mq}X ;`)lT:fBNoyQ.>Kc{g;j#yeVq}) Ɂq?wT+;tbWO_bLv74/YZ ~- 47VI9^R N'WE 3#n5svUۏ,'|Ǻin~+ev,([&/FI8Ybi!W+ \Y_NQ~nT}1NdYý̱҄0HS CG,wE,K%19S{+?If1K6q/b6k$gp>Ѕr`j"M"bryw^^d9|%Wh.+i o-uB؛ :#2[̢FpAN͏atMe*G5j%-MbnT>т0?Ebze]0õ< hC U-Wy MQQGIc) q7]0T;hym㤂,pa&߭`HO徊7+tשND1nhPV5~:12V%׮IۍJEQ_}@fh\P#C4cYdJ.BFZ.VbfԺ:*L%ˢ i.*\YKcui*%(Db#ZY4֌!o%0؊ȰQ9fn0>%uthIlMd zE-6Y8k-\\a&?ΌaIn)m)9Nchf?1O1WVǢrCeouԉQZm>4ً_@n_~X ,IMy\&;soߜ4)˴ >}Y+`l`_bdB_L$CTcU {DO^hyˤI횺 !J38A ]`2KIFoy]5=׆Ǿ)Бg*:F?LylM4틪,ih{L Dq N$FJZpye E,Sdn ՁeGUn9O2jrI;gI`݈2uE`P\RTKL\ rG4u *w,?.ԉN< |#x^ӯC Riaaɜ&~ 2WZ\?ҫxuÛbC3ج47/{XǪ os֔j )1quһؙd+bR}̬OQG^Y-dw!۸MKWbs/[D띅K{\ ꨪExay4ohvjO% A7q'xsr#=Y):Ou0Co*A3a]`ƛxkeNl~i&joF$mn"?!2Xڢ +8k0k_s+q#y4{\eD.+r2L*&a3pK=ՒX:Վ1P XnM4"us]ZA NT]2nE$rOӌ;%;ZX9.-*Ҩ2m%)ߛ&OOU8(OYr&0к"}#$u%/O56|$?z󉯣a>ٍ0yǥwj}B h/#E*gT_#鋘'o3Tڃ8hwwUuW&v*XF w_~y-yNnQEW Z:v=ؠJ$EQ1 f!:=;oՍu /M]浏8t>tjN}&Hv-ȶ=3l]M }v0/2)n$p$tˮimu " .{ZCdp,` =G0p(TJI/C0c3qWU?_hW=kk[BVy ,[I*+LNcp P!-:w^${|ӗ^g{vuDE#3OVE`YpБk`$c/D /עxŞĶf"g8Gifs;)y[&ZT;Q\!A, 4:1$ȗ}'%"h_Q۽ڪHb-I*AS ?Ht5>H3Ge{I BۢB'yThC |8,M𸳪A0!~=.cUXr0\u5~_o{^]$-/}  HN(s,&ˢ݂hFg: 'E(H; Bn-Zr7 8Z\m^E)uye\y[p~FZC9{q03b?6;OMe{^>|,x'X^ԃ2`X!q Ob9x]ɘ+,>.YQM46>Jч#[:@(lf0}]0Mƭ MOr5959ZdH= 998Vx=laTLa@GI雫SEՇSFDK,oiBƗX,l}$A.QT\L@z,U=`|f"$ۿv'ߙhRu tuX%8u4*v6%%kU8pP~Se׻tEӣl]\}C+"hH!r{=>;6Ⲹ˂Nc~e4n UҮ2"~$p -!3gG EDG~ əaYFEز6xyzc7Oe^JI4q!FðV5`AJ)@_/#+oaҔ̗>&eGYc,cd)zCckcP6F`D& !ɟM5%;%"s[}p@s7n ? ډ^vcx/Иj#pb!!`[wM9bzӱ)\v6ǸzҦJ: (Ӓg"DCB1 :BZ\Yt%L)v qTm0eCZ(Y<'E?owB bc$ZnToy)iq|p(KEЂPwXy"jpAf<[dYIn fIߟ2yhwU^tZ=w'o݋yf uM:uhLK;a:HM[F K*,^L98G\EE .⛰9})mu7"9;]p4 Seٕt_0 FuF$Zm~A5=&{-9yDiʗ^C y̢4JidO U\ެ,/vɓ(ˤa=sE-Io2[B`UR|nucȵ\w}W91ەaew=}˦*1L2'/T+B_R遽#Ͼ,mkbNJi+qe8}IND)842rqohخ;xdXP|%7mQ`ڜ-,tF8ps+tE>f0@ל$Y|X\%DG2?Ԭڤ:/wkP+Z`h5S^D:cqBbnpZ ծ: -PSXf̤tgmfqK{^.B /W4c Lp;Y;g\.~&;+ 8uh²wa%+Q2&ᤫ 7!(P:5WCId䌢{21obW49k} f4+On|Bt@eq>1N4B2 mZBubrk,#LmX[\q^a L%P@w,%a2'r[q]D}S"fU뮨ڶ,yHb0,wF}^&;KpX>41-D 2kIr_y}}iS>&2G:['Ir`O mbC6ilƼ_X Y{[ҷgyfcMVYݑXueZi11ڦlKpV?! ݱ'H!rs:{a}Ĉܐ'Is068 5>t~}B v5;eutRi|,)(kҶjonjji$( VU*v^cY6̵ޅdWrxXlA_{YR/{wq>jr.H0kqEÛwc*:4cVB#f[Iy`ƕѽOi-HuY ̸2MB'=`|)$*_պnerr> O1 7A߅-:I&xò ~aڳk\t\QCFK%id+vP//Kx[ݽX4dǪjF7铑IO-8To}q󲉊{W$+Zޔm!j3@.$Y`%Jyӄ>~_x?o/}W?c6zXh>V0Y$U׻VR%9c|*f À"Z_Dmا1ǕIG&c$+6 _-Ǩx\ˑ+8KӉG"Cݟ:n8~2eicX̋AuA-l &u)D1]{F};.vOvMT{lz|[9.3bg`(}@&S+wBQ"迍p;d(&:] UNglX 6ܐ[{OS3Y毥jO_T0bcR™Q1ҡa=ەb]]Ǯ]e638À\ݽ_/6+r_ ENw3p@#0$+Ȋ _&HB1MI49]}4m0rw9i/K ]2>+X˥=)}QdbMMӐLǷ&Q6Jo ҲrRm-}D.F0m?UF{y1(lX.dыFP$@m&/fp %.]3}ϑI7D!DEU$&SHMԕOjȐAU@̲+{ّjjy|[2z=2?n-Ҏ$}u[P[;`Fq)qdq\PE]NlF.cBx˷cm #Ύ{ʔB{6CF8;953j2D(~wtcPfmQ;e {S=q ,C*4ݗ4蜥JxՐ؅6$lj Q^_gGC[It@L>`R{ P$>o،Th %i! orqǻѦq]a6?MoKNqlSSo"TQȳ,i>[93ɞc2-&ܑ]΍9 sKX.[D<6~!AsvWo&^ *I(NmbH,`Nߠ=xY RYoNh-<m˴#VUfdhr]`aޗ*t$CҞY'r_~?zqe8*d돁UOS6Qwïmoa1_b/ddٶ8[$YL%KWo|r;   oO,& [}xZҌQwsQ*Cɶ=$J/yT6?sHƥ.>?<(+#h3Bs8r@7!؊.2^RajPYI ǾT=ҰSw{Ÿn0P)raa"{;ò:J)IWW;q갊Irq\{ 󕅠^t<[Z00h=P&eI?Ms1e !j9 ;P/$AV1ߡ=Wo3I{a&I%raf䙘e@LhD k/J*QیxN'OfQ(p8 [$ZYҰu!]rw[m2 ĦL-I8fĸm$bDZ|T~m]$V&"sQUqW.cfqzT}Z^}MPԿegǛnx22r;H(B fRP: ^O1?Ê.*'ՖBܾ>2l3uX6٬碉;)h?ox{ƼRi89%_|du>cT{z3] 0]ǟK}=O#ky£"zVCȨ P+n.1?H#GiSn[;u4\f^q,6-,Gj􃶊\L\=HO ؔBOb Qrt'd-Qskf:| J˨&게V$)2B< DcK~!?)",a.?EKFCkȊ88 ΅1qJO!97u#qs&rMbuؑ񫫶&3Km eP .6䢓L ICBO 73Nl7KXf\}^`aSh1Whߝr+)r-;^8?-} kP&| %ĕ^lܛz.|Uμ)FnUЧwYΈKJ{OqS8E˲|؍[]AR D(`0S+9Pah1!N=oV-2*CgHAG5 nQ΅cjސmVi쨴bD qԩ,v~AٟNkd_mO6ba0%v؈0!,:M?+a4yX"1a:.J0Y缒 C /LW/NM|CveN,68Pt 9_E6&l:)f\U{OLyOK,|gb,n\0"V/if}w s*lύePƊ!,L,Y8x9g\/1q%Ywposmr!C\_N_$w! 7!Rp*X'$]Ňu+|XDrh}&SS*h0xr\xѦ&F+Ҥue>)W "{]UqENB $ WS  ы"vTr9/o M60 ۼUuXkM|.|/|ܖ"/xLb4jM/pp\d/\MCC|#bZ/3f-^c6Χi~.cC-;Ȃ7$4o_az|C#e;{;6z@nb{oj"SV~bdV]~ ! C. ^*P{~Sޯ /wVOIqVO%Uw6a0ۖ׆Ǖ2#h;É%ppk">૩>V_0$]U!4THX6q8^]ݧ@(X_ݳG#+|?rƱ?ZIwX3ʮM+A߼%h%JCJ!QWRWih%Cm(h՞G@0|5}k!.,$~zrV+,٣/z'uuDo%[R)J}+ϗt*8Y \"{Bf7g圬k{(C2sڪ%S%tAL`KQIL2z["}pK9pBµ&*|/7ӌ0 a".w.$ot]6GQ[; a]Qٷo[Rp+/xGNs;"{4ix\H4fgmi^ضcq0e w;gUUUq/xWMd}aa:cUhTF&@, J~h/;6EgUtMدBOOqUq*Fc׷ҕI>s.eC2E>,ڢf6*s QȫD"|d=8<xr(Z,bgcϓ}Ozc֔d1Kߦy6;ZbP@`G WRcm=fm]ULۄhpZ'q Wy_cNa1=FN˺# A'R 7` <@N3a51|ye|Ǔ&-60X$FLԙSŅ VꎎQ0 K󏌿)u7NN,chr~5K?@#<{A]SKߗ&ՍUN8&KF1cI|*H8$̈́~UkX/R+ua71~?';޴dn6 1Ԫ\=~Qj vځࡩ8kUFi '|En}H2W*%a|Xf5 cj66I|]N]v7.łxqukJfp/N|(fUh<$IdQ$ȗ`;IQ cLL|yEمΟh,NizdEOXF(rS}ɋx`~MЧEpB>JGmu;q/5٘4Y|tey@Y<_2bϊ)Ԝ/cp=,b^"ՆF`}:|M|I9SˮkR9P>ڭM2G4N.rɁgɟYo.?ȭ.W.tːP J(Aqji ي&]iOluwGʎ 1Vf]Swsp7% ߡƲ0PX{EnjaN?_= gzׯ4vZ6|-ܡ sXvU6mk(f/]%>3ι0Q2*ၣ0gN$6K;u1B>|Rdt9o-ey cз-$S F+]4!Fdi >r/#n|ˋ\4]av@s/>RfK,rrt`v1dQ{Xzt]BkfgɅyI5W퉾$1˪$`U:d ؉s \E/F{'ABgϘO5 ENmpby(h rk۾ౢ" ȲB.T %uhv]3,,#n*j̞6II LOOlq[A^Jo*Py5`rBQ2}kWcWF1o䚖Edb JdT[R9i=]",ѣLaYDV]?_:,E:yQRXUjI'M{@3m41=\[=^b݅wܗI'[N^%";cur@/"#LTi/|E/㇤·.q}& 8?]\VE}wͥUs$8]NoNj7n5MVt7*ڜE>xZ'{ C #&.Xncq•[G?;ir(ʼIx1F͗M|ǐCUv! )BNuNg\LznrEو[*M;*DuT.aB]}80kJ4Nv)W?В,~j,m)Yu#CLY(3{܁q˃F5wǥoIɶ?,òZZKU4mUՐ;`|)-iuNriN;x\1FONNnꝯZpINy3c, .qJMCP"M֐cu ;kt:2 1R^',9ȑk^mU,&tyX&xq8Fq'3L`Q'gLTdGIU?5,WNT=6JDŽKKAeeg/& Ld6M" 3)8 02sn5/2]CS44v|YQ5U[/KߡF*']G'~R `a^ eLw"-0x7<3ʥ '>a^?}I"ZѰ"m dPyϿv^g&@+(9M~W\~~op4MhOcgV`*:$J}EUpEO%Yusse toIwpȗψ QsK@{-uvrWK7?}^ƗOf0f]ƊHSY`>T# ~< BPP]I6D\Y7~|Wpf̖1ǹnk6γcRT^3>ShortRead/inst/extdata/bowtie/0000755000175100017510000000000012607265053017373 5ustar00biocbuildbiocbuildShortRead/inst/extdata/bowtie/s_1_aligned_bowtie.txt0000644000175100017510000034441412607265053023664 0ustar00biocbuildbiocbuildHWI-EAS88_1:1:1:109:548 - chr5 151311501 CAAACAAATACATTTTTAAAATCACATGAAAACAA *777*:::::::::::::::::5:::::::::::: 0 HWI-EAS88_1:1:1:101:522 - chr10 35505988 CTTCCTCTCTCAGAGCAGAGACCCTATCAGGTGCA ,7777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:121:595 - chr16 55311504 TGCATGACAGAGTGTTAGTGTTCAATAAATATCTC 55555::::::::::::::::::::::::::1::: 0 HWI-EAS88_1:1:1:83:580 - chr3 42422486 TCCAGTCTCTTGTGGGTTAGGTTTATCATCTCTGA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:95:513 + chr4 94552390 GGAACAAAACACCCATGGAAGGAGTTACAGAGACA :::::::::::::::::::::::::::3::41777 7759 HWI-EAS88_1:1:1:97:540 - chr15 77506543 GCCTGCACATTCTCTAAAAATACCAAATTATTGTC 24477.:::::7:7::::::::::::::::::::: 0 HWI-EAS88_1:1:1:115:738 + chr2 98506779 GTGAAAAATGAGAAATGCACACTGAAGGACCTGGA :::::::::::::::::::::::::::1::72/77 1 HWI-EAS88_1:1:1:117:578 - chr18 29610052 TAGTGGAAGTAGCAAAAGAGGCACACAGTGAAGCA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:112:238 + chr8 29528229 TTAGCAGGCCTTGATGGCTACTACTTCCTTTCTCT ::::::::::::::::::::::::::::::74747 0 HWI-EAS88_1:1:1:96:508 - chrX 117886178 TTAGTTGTAAAAAGGCTATTACTAAAAGTCAAATT 77777::::::::::7::::::::::::::::::: 0 HWI-EAS88_1:1:1:114:415 + chr2 99695065 CTGATTGCTAAATTAGTCCTGCAAATAACGTTATA ::::::::::::::::::::4::::::::177777 0 HWI-EAS88_1:1:1:117:462 - chr13 94473217 GTGAACAGAAGAGCCTTGAGTCTGTGGAACTGGAG 774776::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:81:571 + chr1 196527698 TTACTTTTAAAAACTTTATTACTCAATAAAGGCTG ::::::::::::::::::::::::::::::,2774 0 HWI-EAS88_1:1:1:122:660 + chr9 87840595 TATGCAGCTAGAGTCAAGAGCTCAGGGGTACTGGT ::::::::::::::::::::::::::::::77747 1948 HWI-EAS88_1:1:1:115:329 + chrX 8641018 GGGGACTGTGGGTGTAGCTCACTTGTTGCAGTGCT :::::::::::::::::::::::::::.::&7477 1 HWI-EAS88_1:1:1:118:518 + chr2 98507197 CTGAAAATCATGGAAAATGAGAAACATCCACTTGA ::::::::::::::::::::::::::::::77777 5 HWI-EAS88_1:1:1:120:704 + chr15 29527390 GAACCAGACTCCTGGCAGAAGTTGTGTTCCACTCA ::::::::::::::::::::::::::::::77777 1352 HWI-EAS88_1:1:1:110:692 - chr2 30903181 CACAAGTTGGTGAACTCTCCTGGAACCGTCTCTGC ,7477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:98:349 - chrUn_random 5889635 ACTGTAGGACATGGAATAAGGCGAGAAAACTGAAA 7,777::::6:::::::::::7::::::::::::: 2 16,24 HWI-EAS88_1:1:1:120:488 - chr13 27398425 TGATGCATTAACTCTAGTCTAATGTGTCTATATTG 1)1-)+:11::,,&:::-::::::11::::::::: 0 22 HWI-EAS88_1:1:1:115:889 + chr11 27330701 GAGAAAATGCCCCACAGCTGGATCTCCTGGAGGCA ::::::::::::::::::::::::::::::77777 1 HWI-EAS88_1:1:1:120:446 + chr3 149312234 ATCCATTCCTCTGTTGAGGGACATCTGGGTTCTTT ::::::::::::::::::7/::::::::3:74777 2234 HWI-EAS88_1:1:1:80:439 - chrX 95193511 CTGATGTGTTTAATTTTGTTATTAAATTTGAGGAA ,4677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:113:628 + chr5 81696161 TGTAACATAGACAGAGTTGAAAGTTAGAGTCTGCT :::::::::::1::::::1:::1:::11+:55)15 0 HWI-EAS88_1:1:1:121:143 - chr3 138145990 CACTCCAGGCAAATGGCATAGGATACACAATGTTA 27272:::::::::::::::::::::::::::::: 0 21 HWI-EAS88_1:1:1:101:353 + chr2 55907066 TGAGTTTTTCTCTTAGAAATGCTTTCATTGTGTCC ::::::::::::::::::::::::::::::72777 33 HWI-EAS88_1:1:1:97:502 - chr8 19623646 CCTGAAGCACATGAGCTGACCCCAAACCAATCCCA +2747::6::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:95:455 - chr5 137991226 GTCAGGTTCCATGACAAATGAATGTTGGCCACAGC 77171::::3::::/:::::::::::::::::::: 0 HWI-EAS88_1:1:1:123:424 + chr15 80876301 CTGAGAGGAGACACCCAAGAGCTACGACTTAGTGT :::::::::::::7::::::::::::::::77777 0 HWI-EAS88_1:1:1:98:361 + chr13 27275679 GTGGGCAGGAGTTTTGTGGGTGATGGGTTCCTGAG :::::::::::::::::::::::::6::::4727, 0 HWI-EAS88_1:1:1:119:458 - chr11 33034359 CACATTCTCCTCGGCTGCCAACACCTATGCAAGGA 27477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:121:629 - chr6 19201874 ATAAATGTCTGAGCTAGAGTTCAAGTAATATCTGC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:112:446 + chr16 45467769 GATCCCGTGGGGAGTCCCGTGTGGGCCCTTGCGGG ::::::::::::::::::::::::::::::77777 455 HWI-EAS88_1:1:1:118:565 + chr2 126799738 GGCTGGCTCAAGATCAGAAGCCGCTCTGGACGTTT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:106:886 - chr12 108091440 GGATTCTAATTGCATTGTGCCACAGAGGGTTTCTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:93:629 + chr2 98502407 TTCTCATTTTTCACGTTTTTTAGTGATTTCGTCAT ::::::::::::::::::::::7:::::::,7777 0 HWI-EAS88_1:1:1:79:878 - chr9 35112968 AAAAGAAACATCCACTTGAAGACTTGAAAAATGAC 7%%7%:::::::::::::::::::::::::::::: 0 15,32,33 HWI-EAS88_1:1:1:113:326 - chr16 93329139 TAACCAGCCCTGGCTAGGGCAGGGAGGGAAAAGAA 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:87:618 + chr14 28417016 TTGTCTGTGCCAGCACAGAGAAAGCAACCTGAGCA ::::::::::::::::::::::::::::::47477 0 HWI-EAS88_1:1:1:83:277 - chr1 163068612 AGAAGAATCCTTAAGGCTTGCTAGGCAGCAGTCTA 77777:::::::::::::::::::::::::::::: 0 23 HWI-EAS88_1:1:1:103:414 + chrX 30017731 GGGTAGGCTACAGTGGAGGAACAGGCAAAGACCAC :::::::::::::::::::::::7::::::7+717 1 HWI-EAS88_1:1:1:93:494 - chr11 16451552 TTCAGGCCTGTCCTGCCCTCTCTTCTTTGTCACTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:65:610 - chr4 6913304 ATGTCAATAGAAGTTCTAGGAGTTATGGATAAGAC 55-51::::::::::-:::-:1::1:::::::::: 0 HWI-EAS88_1:1:1:104:595 + chr9 8241476 CCGGAGTTTCAGTGATCAGAGTACTCTCTGCAGGC :::::::::::::5:::::::::::::::177/27 0 HWI-EAS88_1:1:1:107:489 + chr14 25109201 ACAGACAAACTCTTTCTAAAAATAAAAACAAAACA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:117:484 - chr17 45306513 ACTTACAAATCCCCTCATCCTGTTCTGCTGTGGGA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:102:619 - chr3 98925241 ATCTTAGGTTGTTCTGAGAAGAATGCCTTCCTTAC 77777:::::::::::::::::::::::::::::: 1 17,34 HWI-EAS88_1:1:1:98:190 - chr13 49151162 ATCTTGACCTCTGGAAACTCTTCATTTGCATACAC 77447:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:115:189 + chr11 49097805 GTACACACAGATTTGGGGAGACAGCTGCACGGGTC ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:88:462 + chr16 92402871 CATCCCTTTGTCTCCCTGAGTGTGAGCTGCTTTCT :::::::::::::::::::::::::3::::77777 0 HWI-EAS88_1:1:1:113:784 - chr3 27564436 ACATGACAAGGCAGGCAGCTTCCTGGTTCTAAGTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:117:503 + chr12 113816601 CATCTGAAAGTTCCAACCACCCCAACCACTAGACT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:465:808 - chr4 72904399 ATTGCAAGTTAAATTTTCATCTTAATTTTCTTTTC 74774:::::::::::::::::::::::::::::: 0 25 HWI-EAS88_1:1:1:88:396 + chr3 64607170 TGTGAGTAGAAGTAGTAGAAGAGAAGCTGTTGTAA ::::::::::::::::::::::::::::::7+777 1 HWI-EAS88_1:1:1:88:479 - chr10 54088176 TCTCAATGCCTAGATTACCACTGGCAAAGGACTAG 7%1+7:::,::::::::7::::::::::::::::: 0 HWI-EAS88_1:1:1:122:166 + chr1 154575629 GCAAATACAGGAAGAACCAAGGGAATGGAGGAGAA ::::::::::::::::::::::::::::::74777 0 HWI-EAS88_1:1:1:82:533 + chr17 81150594 TGTGTCTTATTTGTCTCTGCTCCCTTGGGCACCAA ::::::::::::7:::::7:::::::6.::76676 0 HWI-EAS88_1:1:1:94:520 + chr10 129847826 ACTGTAAAGCATTCTTGCCTAGAAAATGATAGGAT :::::::::::::2:::::::7::::::3:71777 0 HWI-EAS88_1:1:1:92:550 + chr5 52477413 ACCCCTCCATCACTCTGAGGCTGACCAGAAGTATC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:123:436 - chr9 3025862 ATTTTTCAAGGAGTCAAGTGGATGTTTCTCATTTT 77777:::::::::::::::::::::::::::::: 0 23 HWI-EAS88_1:1:1:109:580 + chr9 119934090 ATCTTGGATGCCCTACCCCCCTGTCCTCATCCTCT ::::::::::::::::::::::::::::6:77777 0 HWI-EAS88_1:1:1:102:549 + chr4 103786365 CTGAGCTGCCTGGAATTAGAACAAGGAATATTTTA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:121:318 + chr7 148749053 TGGGCGATGATTAGATCTCACCCACTGCGATTAAA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:119:279 - chr1 93630657 GGACTGTAGAGGAGGCAGAGACAGGAGGATCGCAA 77747:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:89:424 - chr12 21341127 AGCTGCTTGTTGGCCCATCTAGTAGCAGAGAGGGC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:82:804 + chr3 45654027 TTCTGGGTCTTCAATTCTATTCCATTGGTCTACTT :::::::::::::::::::::::::::,::77477 5099 HWI-EAS88_1:1:1:90:304 + chr13 113023027 TTCCGCCAGAGTTCCAGGAGGATGCAGGAGGATGG ::::::::::::::::::::::::::::::77772 0 HWI-EAS88_1:1:1:107:425 - chr1 148635275 GGGCAAAGAGATGGCTCAAGTGTTAAAACCATTTG 7*7*7:::::::::4:5:::::::::::::::::: 0 HWI-EAS88_1:1:1:103:853 + chr12 26445976 TTTTTCTAGGAGTTATTAAAAATACATGCTTAAGT ::::::::::::::::::::::::::::::7722/ 0 HWI-EAS88_1:1:1:115:514 - chr9 72652180 GGAATGGTGGTTTCACAGCCCTTGGAAGGTGAAAG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:99:337 - chr18 66702023 TCCGTTGTTTTTGTTGCTGTTTAAGACCAGCCTTA 77777:::::::::::::::::::::::::::::: 0 16 HWI-EAS88_1:1:1:91:364 + chr8 121963969 TAGGGACATGGGAGCCATCTTGACAAGTCTGCAAA ::::::::::::::::::::::::::6:::27777 0 HWI-EAS88_1:1:1:85:487 + chr17 94350740 GGCCTCCCAGGAGATCTACTGCAGCCAGGGCAACA ::::::::::::::::::::::::::::::77777 12 HWI-EAS88_1:1:1:113:509 - chr2 26341042 AGTGGGTGCAACTGGAATCAGGCTCTAGAATGGAG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:123:467 - chr13 95699951 TATTTTTAAATTTTAATTCTTGTAGTGCCAGATAG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:74:589 + chrX 106950434 TGAGTTCTTTGGTATTTGGGTTGCTTCACTCAGGA ::::::::::::::::::::::::::::::77727 0 HWI-EAS88_1:1:1:100:564 - chr4 129888766 CTCGCTGCCCAGTACTACAGAACTCCTGCCTTGTT 24774::6::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:98:771 + chr2 50906132 GGTTTTTCAAGACAGGGTTTCTCTGTCTAGCTCTG :::::::::::::::::::::::::::::677774 0 HWI-EAS88_1:1:1:88:393 + chr4 128917171 TAGGTGGACATGACGTATACACTCCAGTCTAAACA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:70:568 + chr3 151947827 GGAATGCCTAAGCATTTCCAGCACTCAGACTTTAC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:122:608 + chr15 73005135 GATCACAACAGACAAGACAGATGGGAATCGCCACA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:97:306 - chr11 116868860 CAGGACCTGCCTGCACTCTCCCTGCTGGGGTGAAA 1)-5-+::+1::0:&:::::1:::::::1:::::: 0 20,29 HWI-EAS88_1:1:1:121:179 - chr11 119472789 TGTGCTTGGGCAGTCACTGCCTGACATATAACAAC 55351:::::::::::::::::::1:::::::::: 0 HWI-EAS88_1:1:1:106:507 + chr13 103686267 CAGATGACTGGCCACCTGCCTGCCCTGGAGAGCAG ::::::::::::::7:::::::::::::::77427 0 HWI-EAS88_1:1:1:109:107 + chr7 77575507 GTGGACATCTGATTTTCTGCTTTTACCTTCCAACT ::::::::::::::::::::::::::::::47747 0 HWI-EAS88_1:1:1:380:636 + chr6 88467025 GTTAGAAAACAAAAAGGATACACATTTTTCAAGAC ::::::::::::::::::::::::::::::74477 0 HWI-EAS88_1:1:1:88:506 + chr11 60987562 TCATAGTTGCTGAGATTTACAGGACCCAAAACAAC ::::::::::::::::::::::::::::::67474 0 HWI-EAS88_1:1:1:70:476 + chr11 63555010 GTGTAAGATCTATGCAAAGTCGTGAAAACATCTCT ::::::::::::::::::::::::::::::77747 0 HWI-EAS88_1:1:1:118:160 - chr16 53463641 CGTCATGTGTACTACCTATCCAACTGGGAATTAAC 26727:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:737:593 + chr14 87984710 GATTCCTTCATTGAGAATTATCTGTTTTGCTCTGT ::::::::::::::::::::::::::::::777,7 0 HWI-EAS88_1:1:1:84:611 + chr3 134638627 CACAACACACCTCTATTAGTCAACAACTACAAATT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:114:669 - chr2 178250635 GGTTAGGTTAGTATTAGGGTTAAGGTGAGTTTAGG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:114:570 + chr11 36889387 CGTCGACTCAGTGGTTAGGGCCTACTCAAAATCTG ::::::::::::::::::::::::::::::77772 0 HWI-EAS88_1:1:1:366:851 - chr17 60066142 GGCTGGAAAGATTAAGAACACTTGCCAGTTTTTTC 35-45:::::::::::::::::::::1:::::::: 0 HWI-EAS88_1:1:1:109:150 + chr13 31083932 GGCTAGGAACCAGTGTGCATGCATACCATTCCCGC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:114:754 - chr9 65931645 GCAGCTGAAAGCACTTACTGCTCTTGCAGAGGACC 72772:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:373:636 - chr15 33268025 TATTTGCACATGATATGATAGTATATATGTGACCC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:119:991 + chr8 119776480 GTGGCTCAATCTGGCCTTGAACTTCTGATCCTCCA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:97:872 - chr15 102018926 GATGAACTCAAAATGACAGGCAGCAGGAGGGAGGA 77777:6:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:67:557 - chr19 55278807 ACCAAGGGAACAGCATCAACAACACTACACACACA 555)5::::::::::::::::::::::::::::1: 0 31 HWI-EAS88_1:1:1:355:795 - chr2 98507377 AATGGTGGAATACTTAGAAATGTCCACTGTAGGAC 77477:::::::::::::::::::::::::::::: 2 22,32 HWI-EAS88_1:1:1:495:692 + chr7 70657636 GACATCTATTCATATGCCTGGGTGTGTTATTTATA ::::::::::::::::::::::::::::::77677 0 HWI-EAS88_1:1:1:129:389 + chr6 16290023 GGGAAGGAAAAATACTGGAATACTGGGTTATAGGA ::::::1:::1:::::1::::::::11:::5-115 0 HWI-EAS88_1:1:1:100:552 + chr11 100308857 GCCCCTATGCACTCTAGACGTTGCTATGTCAGCGT ::::::::::::::::::::::::::::::74747 0 HWI-EAS88_1:1:1:100:399 - chr12 112645017 TTGGAGGAGGCCGAGGGAGGCGAGCTCCCGAGCCA 11555::::':::::::::::::::1::::::::: 0 25 HWI-EAS88_1:1:1:117:798 + chr9 3553983 GAGGTGCATTTCCTGTGTGCAGAAAAATTCTGGGT ::::::::::::::::::::::::::::::77247 0 HWI-EAS88_1:1:1:110:917 + chr1 95060791 TCTGTCTGTCTCTTAGGAGGAAACCCGAGGCGGCA ::::::::::::::::::::::::::::::477+7 0 HWI-EAS88_1:1:1:81:142 + chr1 70616476 GGTAATTCTTAACCAAGCTTCTATTTATAGGCAGA :::::::::::::::::::::::::::::627747 0 HWI-EAS88_1:1:1:117:822 + chr13 38591529 TGTACTAATCTCTGTCAAGACAAACTGTAGCATTT :::::::::::::::::::6::::::::::22777 0 HWI-EAS88_1:1:1:83:406 - chr3 51397238 AATGGGGACAGACATTAAGGTAGGAACTGGATGGG 77277:::6:::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:101:484 - chr5 72595028 CACGCACACGTTTGTCATTCCGTTTCGAAATCCAG 27424:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:962:565 - chr5 137548339 TGAGCAAACCCTGGTTCCCTTGACTGGAACATCCC 67777:::::::::::::::::::::::::::::: 0 25 HWI-EAS88_1:1:1:118:572 + chr2 14309097 CTATCTTGTTGATTTTCTCGAAGAACCAGCTCCTG ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:115:562 + chr15 67132730 AAAAATGCCAATGAGGTTTAGAGATACGAGGACCC :::::::::::::::::::::::::::::677777 0 HWI-EAS88_1:1:1:96:884 + chr8 59431019 GACATCAGACATGGAGATGCAGAGTTTGGAGTTTG :::::::::::::::7::::7:::::::6:2,,7, 31 HWI-EAS88_1:1:1:99:443 - chr3 101340562 TCTGGGATGTTTGCCTTAAAGTTCCATGAGGCTGA 72772::::::::4::::::::::::::::::::: 0 HWI-EAS88_1:1:1:90:379 - chr17 67983210 CACCTGTGGTTGAGCTATGCCATCCAGTGCCTGTC 74777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:111:977 - chrX 7207297 CTTGGATGCGGTTGCCCTGCTGAGACGCATCCAGC 77777:::::::::::::::::::::::::::::: 0 26 HWI-EAS88_1:1:1:116:879 - chr17 25793251 TCCCTGGAGAAGCCTCAGGACAGCTGCACCTGGAG 27477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:82:227 + chr18 39915116 TAGGAGTTCTCTGGTGGAATTTTTAGGGTCACTTA ::::::::::::::::,::::::::'&&:+62772 3811 HWI-EAS88_1:1:1:78:554 + chr11 115120689 TGGGGAGATGTGGGCCCTGGCTGGATATTTGAGGA ::::::::::::::::::::::::::::::47772 0 HWI-EAS88_1:1:1:101:329 + chr13 9319191 GTGGAGGCTAGCACCTGTTTGTGGCCTTGTGAAGG ::::::::::::::::::::::7:::::6:,4744 0 HWI-EAS88_1:1:1:401:703 - chr9 3028438 TTTTTCAAGTCGTCAATTGTATGTTTCTCATTTTC 74747:::::::::::::::::::::::::::::: 1 18 HWI-EAS88_1:1:1:158:505 - chr4 33828440 ATGAAATATTATTTTCCATTACCACATAAGGAATC 76777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:793:122 - chr1 103384115 GTGGCTAGAGATGTAATATACTATTCTTCTCATCC 777/7:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:446:886 + chrX 132203087 GTTTACTACTTTGCTTGACTACTTTGTCTTTGATC ::::::::::::::::::::::::::::::62274 0 HWI-EAS88_1:1:1:92:979 - chr9 55980151 GCGAGATGACAAGGGAGCTGAAAAATTCCCATCAC 74277:::::::.:::::::::::::::::::::: 0 HWI-EAS88_1:1:1:743:806 - chr8 84429869 AATAGCAACATGTAAAGAACAACAACAACAACAAC %7+72'::.:::7::::::0::::::::::::::: 0 18,26,29,32 HWI-EAS88_1:1:1:644:944 - chr7 82681418 GGTCAATGAGAGAGACTATCTCAACACACACACAC //2/7:&+:+:3:4::::4:::::::::::::::: 0 HWI-EAS88_1:1:1:80:638 - chr10 40361614 CAGTGCCCTGAGCCAATACAGCTCCCTTTTCCTCA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:292:800 + chr2 98502984 GGAAAATTTAGAAATGTCCACTGTAGGACGTGGAA ::::::::::::::::::::::::::::::77467 0 HWI-EAS88_1:1:1:120:758 + chr15 8508695 GCCCAAGAGAAGATGCAGTTGAAGAGACTTCTGAT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:84:882 + chr8 19737105 TAGGCTCCTGTCTACAAGCATAGCAGAACATCATT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:96:553 - chr17 27699048 GCCCCATGGCTCTCCCATTCTTGTCTCTTGCCCTT 5-1-1::1+::::::::::::::::1:::1::::: 0 HWI-EAS88_1:1:1:114:254 + chrX 8945578 CCACCCTTTGAAGGGTAAGCAATGCTTCAGACGTT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:189:938 + chr9 3024457 GTCATTTTTCAAGTCGTCAAGTGGATGTTTCTCAT ::::::::::::::::::::::::::::::+7627 10 HWI-EAS88_1:1:1:680:764 + chr1 117093106 GCCATCTTCTGATACATATGCAGCTAGAGACACGA ::::::::::::::::::::::::::::::77776 1214 HWI-EAS88_1:1:1:932:573 + chr10 129861130 GAGGGACACTCCTCCATTGTTGGTGGGATTGCAAG ::::::::::::::::::::::::::::::2644+ 39 HWI-EAS88_1:1:1:104:920 + chr16 8038662 TCCCTGGTATTATCAGGGAGGAGCAGCAGCTGAGC ::::::::::::::::::::::::::::::77772 665 HWI-EAS88_1:1:1:361:885 - chr16 66264786 TCATATTATTTATGAGTGTCATGTATGAGTTTTAC 77767:::::::::::::::::::::::::::::: 0 31 HWI-EAS88_1:1:1:101:99 - chr1 156153246 CTTTAAATGAGTCTAAAATTAAATTTCCCTGAACC ,7777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:84:601 + chr10 23218476 CTAACTGTCAAAAATCAAAACAAAACAAAACCCAC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:121:653 - chr1 93431116 CTGGCGTCCTTGGAGACTGCATGCATATGGCATCT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:108:748 + chr5 144905571 CAGAAGACTGCTCCTACTTAGCACGCTGTAGCTGC :::::::::::::::::::::::::::1::*77/7 0 HWI-EAS88_1:1:1:658:576 + chr10 65452571 GTGGAAAAAAAGATACATTTTCAACAAAAGGTGCT ::::::::::::::::::::::::::::::74777 0 HWI-EAS88_1:1:1:110:96 - chr7 139610865 ACACCCTTCTGCTGATTCAGCATGGCAGGTGCTCC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:761:681 - chr13 38472224 TCAGATAAGTGGCCTGCTTCATTTCCAGCTCTTCC 4-31-+01:+::++::1:0::+:::1::11::::: 0 HWI-EAS88_1:1:1:114:969 + chr5 38091139 TGGGCTGACGTCATGCCTGAGCTGTCACGAGCAGA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:91:488 - chr1 79737830 GCCGGGCTGGCCCCGCCTGCCTCAGAGGACCTCTA 447%7::::6::::::::::::::::::::::::: 0 31 HWI-EAS88_1:1:1:98:496 + chr10 82607222 AATGGAGGGCCAACTCCATGCTGAAAGCTGCAGGC :::::::::::::::::::::::::::::677777 0 HWI-EAS88_1:1:1:229:504 + chr2 169471813 GCATTAGGGAAGTTCTGGAGCTACAGCCTTGAAGC ::::::::::::::::::::::::::::::72476 0 HWI-EAS88_1:1:1:343:187 + chr9 35112883 GCGAGGAAAACTGAAAAAGGTGGAAAATTTAGAAA ::::::::::::::::::::::::::::::77777 2 HWI-EAS88_1:1:1:326:884 - chr9 89471099 TTTCATTTTGACCTTTTGGTAAACTCTTGTTCATC 66744:::::::::::::::::.:::::::::::: 0 HWI-EAS88_1:1:1:259:198 - chr7 106443757 GGGAAGCTAATGTTACAGATGTTCTGATATCCCTC 77677:::::::,:::::::::::::::::::::: 0 30 HWI-EAS88_1:1:1:905:603 + chrUn_random 5474428 GAAAAATGAGAAATGCACACTGTAGGACCTGGAAT ::::::::::::::::::::::::::::::77267 2 HWI-EAS88_1:1:1:441:786 - chr5 130297134 CAACTCTCCAGCCCTGAAAACATAAAGTGATAGCC /2)/)122:2::..::::::::::::::::::::: 0 32 HWI-EAS88_1:1:1:438:607 - chr15 30113482 ACAATCTCTGTCAGTATCTTTCATGTTTACACAAC 44724:3:::5:::::::5:::::::::::::::: 0 HWI-EAS88_1:1:1:122:325 - chr5 114938473 ATTTGGGGTTTTTATTTGTTTGGTTTTGGTTTTTT 74747:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:694:318 + chrX 146627765 GGTGGGTGGATATGGGGGACTTTTGGTATAGCATT :::::::::::::::::::::::::6::::76677 2686 HWI-EAS88_1:1:1:67:631 + chr13 30117647 TCTAGCCTCAACTCTAGCCCAGAGTCAGTCAGACT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:96:390 - chr12 103429255 CAGCCTGAGTCACTTTTGCTTGTGGCCATCTGTGA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:123:354 + chr11 62783324 GATTCTCGATCTTACAGCACAAGCCATTGCTGTTC ::::::::::::::::2:::::::::::::74777 1549 HWI-EAS88_1:1:1:66:327 + chr16 10776630 TCATCGAAGGTCGGGTCTTCAAGCTCAAGTTTCAG ::::::::::::::::::::::::::::::77674 0 HWI-EAS88_1:1:1:90:639 + chr11 53341749 GGAGTCTCTCCAAACTCTCCTGTCCCTGTGCATGC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:462:687 + chr5 64913204 GCACTTTGTAAATGAATCCCTGACCCTGTGAGAGG :::::::::::::::2::::::::::::0:2,32/ 0 HWI-EAS88_1:1:1:627:243 + chr15 102534496 GATAGATAGATAGATAGATAGATAGGGTAGATAGG ::::::::::::::::::::::::::::::67777 0 HWI-EAS88_1:1:1:213:730 - chr11 46888161 ATTTTTCTCTCAAACTTTTATCCTTAAGAGTTGTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:107:890 + chr16 56137956 GTGTAGGGGAATGCCAGGGCAAGAAGGTGGGAGTG ::::::::::::::::::::::::::::::77747 0 HWI-EAS88_1:1:1:298:233 - chr4 83752135 TCCATATGGCTTTCTGTATCTGCCAAAAGCCTCGC 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:722:589 - chr7 141500020 ACCAGGAATCTCCTTGTGTTTAGTACAACATTCAC 47446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:92:111 + chrX 139333123 TGTACTGGTGCACTGTCTGTAACCCCAGCATTTGA ::::::::::::::::::::::::::::::77724 0 HWI-EAS88_1:1:1:228:416 - chr15 60585510 ATGAGCTCAGTGAGTGATGAAGTCAGTACAGAACC 76777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:321:882 - chr7 49256021 TACTTCATTACTCCCTAGAATATGGAACAAAATAC 76746:::::::::::::::::::::::::::::: 1 25 HWI-EAS88_1:1:1:86:590 - chr12 103461832 GGTGGGCTGTGTGCCGTGACTCTGTGTACTACACG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:872:90 + chr9 3008120 GCCATATTCCAGGTCCTACAGTGTGCATTTCTCAT ::::::::::::::::::::::::::::::77777 78 HWI-EAS88_1:1:1:381:813 - chrUn_random 5249472 GATTTTCAGTTTTCTTGCCATATTCCACGTCCTAC 77776:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:331:120 - chr6 135096315 CGGACCTTCACACCCTCTTCATGGCATACCCAGAC 6+464:::::::::::::::::::::::::::::: 0 33 HWI-EAS88_1:1:1:109:436 + chr15 37955304 TGGGGCAGTTATGGGGCGGGCGGGCAGCTGGCCTC ::::::::::::77::::::::::::6:::77+%+ 0 HWI-EAS88_1:1:1:323:771 - chr6 108256045 CGAGTTGTTTCTTCTATAAGGAGAGTTCCTAAAAC 27776:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:170:530 + chr19 30155442 GGTGATTTTGATTTTGAGCATTCTGGAGTCAACCC ::::::::::::::::::::::::::::::74674 0 HWI-EAS88_1:1:1:570:691 - chr12 33045808 CAAACAAACAAACAAAACCCAATGTTCTAACTGTC 27774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:724:766 + chr2 84672060 GGAAGAGGAGCCACTGTGAGGAAAAGAGAAACTGT ::::::::::::::::::::::::::::::76776 0 HWI-EAS88_1:1:1:64:556 + chr15 93713928 GCCCACGCCCACTTCTCACTTTTTACTCCTGGTTC ::::::::::::::::::::::::::::::42774 0 HWI-EAS88_1:1:1:214:833 - chr2 51250763 ATGGCAAGAGAGAGTGATTGCACATATGTTCTTAC 64476:::::::::::::::::::::::::::::: 0 16 HWI-EAS88_1:1:1:85:155 - chr2 102194880 CCCCACCTTCTGAGTGTAGGTTTGTGAGCCAACAC 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:244:874 + chr1 158726947 GTGTGTGTGTGTGTGTGTGTATGTGTGTGTGCGTT ::::::::::::::::7:::(:7:::6::+4&+%7 1 HWI-EAS88_1:1:1:117:832 - chr16 17222480 TAACGCAGGTGTCCTAAGGCGAGCTCAGGGAGGAC 777271::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:917:573 - chr6 29460745 GCTTGCTCAGCCTGCTTTCTTACAGAACCTAAGAC 67466:::::::::::::::::7:::::::::::: 0 HWI-EAS88_1:1:1:78:609 + chr16 39722924 AGACACAACTCCTTCAAGCAGCACATAGAGTTATT :::::::::::::::::7::::::::::::77777 0 HWI-EAS88_1:1:1:113:666 - chr18 68539317 TTTAAACTTGCTGCCCATCCAACCTGGCCAAAAAA 77477:::::::::::::::::::::::::::::: 0 32 HWI-EAS88_1:1:1:737:698 + chr14 29380898 GGTTTATGAAAATGTGTTACCTGCACAGATGCAAG ::::::::::::::::::::::::::::::47242 0 HWI-EAS88_1:1:1:266:112 + chr18 21276366 GCATGTTTACGTATGCATGTGTGTGCGTGTGCATT ::::::::::::::::::::::::::::::46277 0 HWI-EAS88_1:1:1:362:99 + chr4 81221337 TACATATTTATATCCCTTTACTTAGGTTTTGGAAA ::::::::::::::::::::::::::::::4+717 0 HWI-EAS88_1:1:1:194:817 + chr8 100334502 GTGATGCCATAGAGAGAAATGCACCAAAAATCTTC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:74:916 - chrUn_random 4261776 ATGAGAAATGCGCACTGAAGGAACTGGAATATGGC 77777:::::::::::::::::::::::::::::: 1 17,23 HWI-EAS88_1:1:1:467:640 + chrX 110412423 GCACTGTAGAGCAAGTTCGAATCCTCCGTGGGCTG ::::::1::::::1:&::::::::::::(+)-44) 0 HWI-EAS88_1:1:1:594:462 + chr17 21515395 GTGCTGTCAATAAAGCAGCAATGAACATGATGGGC :::::::::::::::::::::::::::::,67446 0 HWI-EAS88_1:1:1:644:329 - chr12 116644041 AAACACAATCAAATTCCCTTTATATGTAAGGAATC 77747:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:98:85 - chr5 91942433 TGCATCTAGCATTGGGCATCCATCACACCACCTAA 77777:::2:::::::5:::::::::::::::::: 0 HWI-EAS88_1:1:1:465:739 - chr9 123086445 CTTCTATGCTTCCTTTGGTGTCTTGTGCATTTCTC -)4141:::1+::::&::0::::::::11:::::1 0 HWI-EAS88_1:1:1:189:394 - chr13 4027997 AATGACTATAATGAGGTCGATTTTGTTTCTACAGC 77277::::::::4::::::::::::::::::::: 0 HWI-EAS88_1:1:1:105:680 + chr7 126820203 TTCTCTGACGTGTTCAAATTATGGCTCATAGATAA ::::::::::::::::::::::::::::::24777 0 HWI-EAS88_1:1:1:395:208 - chr2 159270803 TGGATGCTCATCACCAATAGAAAATGATTCCCTCC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:730:590 + chr4 99048180 GGGTTAGGGTTAGGGTTAGGGTTAGGGCTAGGGTT ::::::::::::::::::::::::::::::77746 2 HWI-EAS88_1:1:1:467:751 - chr9 105192522 GGGCGAGGAAATGCAGTCCAAGATGGCTGCCTTTC 77667:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:532:767 + chr18 71682834 GTTCATTATGGAGTATAAAGTCACTAAGACTCATT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:762:272 - chr15 10869845 GAATATGTTCATAATTTACTATGACATACAGATTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:920:541 - chr5 9512873 TTTAAAGCTTTATAACAGGTATTAGGCAGAACTTC %4074:::3:::::::::7:::::::::::::::: 0 HWI-EAS88_1:1:1:70:512 + chr13 17647469 TCCCTTCTGGCCTTCATCTTCAGCCAGGAGGCAGA ::::::::::::::::::::::::::::::47647 0 HWI-EAS88_1:1:1:393:151 - chr4 79650067 CAATAACAGCCTTTTCATCAGTAACACACATCTGC &7717::::::::::7::::::::::::::::::: 0 HWI-EAS88_1:1:1:120:109 - chr2 122497729 GCAAATGCTGGAAACTGAGGTAGCCCAAGTTACCA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:682:585 - chr14 34552069 GATACACAGTTGTGCTAACATCTATCTTTACCTGC 66446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:942:226 + chr4 56283219 GTGTAAATGCGTGTGTAGTTGTGTGTGTGTCTGTG ::::::::::::::::::::::::::::::1777+ 0 HWI-EAS88_1:1:1:112:742 + chrX 149366751 CCATATGCCAAGTGTTCTCGTGTTATATGTTTTAT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:94:501 + chr14 104357152 AAAACTTGTTATCGCTGGACTTGGTCCATCAGACT ::::::::::::::::::::::::::::::74777 0 HWI-EAS88_1:1:1:406:898 - chr2 70261703 ACATACTAATAATTAAATTTTAAATAAAAAAATAC 727776::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:168:417 + chr4 146990452 GTACATTTGATGTCAAGATGCAATAATGAATATTT ::::::::::::::::::::::::::::::76777 0 HWI-EAS88_1:1:1:648:464 + chr9 3002760 GTGTATTTCTCATTTTCCGTGATTTTCAGTTTTCT ::::::::::::::::::7:7:::::::6:77777 62 HWI-EAS88_1:1:1:352:812 - chr9 42299005 GAACTCTGTGAATATGTCACTTTAAAAGATGGTAC 67644:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:158:516 - chr12 109489439 GGTGATGACTCGTCCGCAGTTGCTCCTCCACAGTC 77776:::::::::::::::::::::::::::::: 0 27 HWI-EAS88_1:1:1:82:318 - chr1 195475068 ATGAACCTGTAAGCCAGCCCCAATTAAATGCTGTC %2772&::1+:::44:::.5::::::::::::::: 62 34 HWI-EAS88_1:1:1:198:821 + chr4 123390148 GATATCATGCATTCGCCTCATCTGTCAGGGATAAA ::::::::::::::::::::::::::::::67477 0 HWI-EAS88_1:1:1:992:610 - chr5 41152931 CATCACTGTGACATGCAGAGGGATATGCTGAAGTC 15114::::::::::::::::::::::::::1::: 0 HWI-EAS88_1:1:1:216:192 + chr16 69531389 GCATACACTAGCAAGATTTTATCGAAAGGTCCCAG ::::::::::::::::::::::::::::::77764 4 HWI-EAS88_1:1:1:494:879 - chr8 49100547 CACTCTGGAAACCAGCAGAAGTGTAAGACTTCATC 76767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:497:682 + chr1 120679178 GCTCCCATCTCAAGCATGAAGACCTGAGTTTGAAG ::::::::::::4:::::::::::::::::63452 0 HWI-EAS88_1:1:1:90:332 - chr3 25759645 CACTGAATCTTTGAAGTATATGAAATGCTCTCTGC 47277:::6:::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:79:820 - chr16 57787398 TCTGTATGAGAGTGCTTCCCCACCCACCCACACTC /**//:::::4::::::::::4::::::::::::: 1 HWI-EAS88_1:1:1:463:880 + chr8 97621192 GTCTGAGCAGAGAGGGCACCCTGTGGGTCTGAGCC ::::::::::::::::::::::::::::::6+644 0 HWI-EAS88_1:1:1:307:819 - chr6 13457763 CCAGAGACAGCTTGAAAATTAACACCAGAGATTAC 11777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:216:412 - chr1 133707056 ATTTTTGTCATGCCTCTTCCCCATCTGTTTCCACC 716+4:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:94:412 + chr16 44147156 ACTTTAAAAATAAAAATAATGTTCTTGGAAAAAAT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:112:685 + chr7 116508643 AAAGAAAACTCAAACTGAATTGAGCAGGATTTTAA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:297:112 - chr12 101924695 GTTGCAGAAAAGTTTACAAACTCCTAGTGTCGGTC 77674:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:377:824 + chr10 93331652 GTATGTCATATTTGGGATTAAAAGTAACAGTAAAA ::::::::::::::::::::::::4:::::77276 0 HWI-EAS88_1:1:1:643:340 + chr19 56312821 GCCTTTCCAAGGGGACAAAAGAATTTCTTCTTGAA ::::::::::::::::::::::::::::::77744 0 HWI-EAS88_1:1:1:486:689 - chr11 102964183 CAGCCCGCCTCGGGCTGTCGCGCGGTGCGGAGTGC 74742:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:98:895 + chr12 6025965 GATGTAGCTGTCTCTTGTGAGACTATGCCGGGGCC ::::::::::::::::::::::::::::,:&4611 7257 HWI-EAS88_1:1:1:206:113 - chr9 76486175 CCAACTCCTTCAACTTAAATGCTGTCCTGTCTTTC 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:155:543 - chr14 45182408 CTGCCTTGGTCTGGCCTCCCTTGATTGCCATTCTC 44647::::5::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:103:621 - chr11 109511761 GGCGGAGTCGCCCACCTGTCACCGAATCGTCCCAC 77777:::++::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:618:814 + chr1 62348806 GTGGGTAAGGGGGACTTTTGGTATAGCATTGGAAA ::::::::::::::::::::::::::::::77666 1691 HWI-EAS88_1:1:1:115:476 + chr5 34556924 ACGAAGCTGGGGCTGCCTCCAAGAAAAGGCTTTAT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:221:561 - chr8 92773704 CAGAAACCTGAACCACTAGAAAATGTCAAAACTTC 27777::6:::::7::::::::::::::::::::: 0 HWI-EAS88_1:1:1:192:535 + chrUn_random 5813213 GACATGGAATATGGCAAGAAAACTGAAAATCATGG ::::::::::::::::::::::::::::::76767 2 HWI-EAS88_1:1:1:90:606 + chr14 100491335 ACTGAGAAAAACTGGATGAAGCTCAAGGCCGCCGA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:200:903 - chr9 3007123 TCGTCATTTTTCAAATCGTCAAGTGGATGTTTCTC 77777:::::::::::::::::::::::::::::: 9 20 HWI-EAS88_1:1:1:106:815 + chr13 65755374 GTTGTGAGCCACCATGTGGTTGCTGGGATTTGAAC ::::::::::::::::::::::::::::::77774 11329 HWI-EAS88_1:1:1:95:584 + chr8 5300717 ACATGCTGCCCTCCCATCCCCCTTTCCCTCCCAGG ::::::::::1:::::::::::::::1:::5551- 0 HWI-EAS88_1:1:1:432:157 - chr5 122971608 CCTACCTACCTACCTACCTGACCTACCTACCTACC 17644:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:104:642 + chr14 82150006 ATCATATTTAAAGAACTCTGAATGAGAATATTACA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:389:185 + chr8 6265632 GGTTTCTGAAGTTTCTGGGTTGATGGGGCTATAAT ::::::1:::::::::::::::,::+:::1--5%1 0 HWI-EAS88_1:1:1:226:124 - chr2 134165388 CAAGTGAACACTCAGGGGCATCCTCCGAATTGGTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:651:916 + chr15 31137094 GATTTCTCTTTACCATCCCGGTCTCCATCTAGACC ::::::::::::::::::::::::::::::47677 0 HWI-EAS88_1:1:1:101:878 + chr2 80879385 AAATCTGGAATCATAGATGCAAGCATCAGCAGCAG ::::::::::::::::::::::::::::::77777 2 HWI-EAS88_1:1:1:233:952 - chr9 60532291 TGTGGCCCTGTGAACCCACATCCACAAGCACCATC 31%55:+&0::::::&:::::::::::::1::::: 0 19,28 HWI-EAS88_1:1:1:86:206 - chr7 89906681 GTGAAGGGAGAGTATAGGGAACTTTTGGGATAGCA 74677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:60:425 - chr11 34907051 CTTTTACAGGGCACATTTGCAAAGAGAATGGGAGC 47777::::3::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:374:151 + chr8 3118444 GTATATATAAGTGACCCTAAAAATTCCACCAGAGA :1::::::::::1:::&::::::::::1::51111 3938 HWI-EAS88_1:1:1:356:618 - chr5 129140045 TCCAGATCCAGGCTTGGTGGCACACATCTTTAATC 44777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:69:586 + chr13 49537380 GTAAGAGTCCCCTCTCATTTGTTGTTTTGAGGGTG ::::1:::::::::::::::::::1:1:::%-&%- 0 HWI-EAS88_1:1:1:83:547 + chr11 56855742 ATCCAGTAATCTCAGTCCACCCACACCGGGTGTGT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:97:928 - chr17 34762939 GAGTGCACTGTCCCTGTCTTCAGACACACACACCA )725*::&:3::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:107:731 + chr13 65942529 TCTTCATGGGATTGTGACCCTGAGAGTAGCAGGGC ::::::::::::::::::::::::::3:::77777 1 HWI-EAS88_1:1:1:553:911 - chr6 77405836 AAAAGCGAGGCTTGAGGGGTGTTCTCAGCTAGGAC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:471:581 + chr4 154722117 GGAACTCGCATTTGTACACCTGATCACCAGCTGGC ::::::::::::::::::::::::::::::66767 0 HWI-EAS88_1:1:1:132:526 - chr3 119416677 GAGGAGGTGCACGTGGGCATTTGTGTATTCCTTAC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:404:557 + chr6 65383682 GACAGTGCAGCACCATCAGAATGGTTTGAAGGTCC ::::::::::::::::::::::::::::::76677 0 HWI-EAS88_1:1:1:558:961 - chr9 35113003 GAAATCACTAAAAAACGTGAAAAATGAGAAATGCC 2777/::3::::::::::::::::::::::::::: 0 27 HWI-EAS88_1:1:1:421:643 + chr5 3103723 GTCAAATGGAAAAATGTCCTTGATAATATATGGTA ::::::::::::::::3::::::::::,::64126 0 HWI-EAS88_1:1:1:352:91 - chr13 27613660 AAAAGATCTAATACCAAAACCCTTCAAACTATCCC 77776::::::::7::::::::::::::::::::: 0 HWI-EAS88_1:1:1:160:579 - chrUn_random 4739859 ATTTTCCACCTTTTTCAGTTTTCTTGCCATATTCC 77277:::::::::::::::::::::::::::::: 1 HWI-EAS88_1:1:1:119:920 + chr15 75776541 TCAGCACTGGGGAGGCAGAAGTAGGTGGATCTTCG ::::::::::::::::::::::::::::::47772 0 HWI-EAS88_1:1:1:924:101 + chr12 6776262 GTGTGTTTAAATGTAGCCAGTAGATACTACTCATA ::::::::::::::::::::::::::::::77+76 0 HWI-EAS88_1:1:1:667:780 + chr14 21969132 GTCACCTGCTGGAATGCCCTGCTCAGGTGTCACCT :::::::::::::::::::::::::::3::76777 0 HWI-EAS88_1:1:1:447:667 - chr9 59387868 GTGGCCTCTGCACAGCCCAGTCAGTCACCTCCCAC &%644:::,::5::::::::::::::::::::::: 0 34 HWI-EAS88_1:1:1:704:338 + chrX 94504587 GATGTTTGCTGGACCTTTGAGTTGAAAATCTTCAT ::::::::::::::::::::::::::::::77777 948 HWI-EAS88_1:1:1:480:517 + chr5 112962939 GCTGGGCTCCAGGATTCAGCTGTCCTGGCTGCTCT ::::::::::::::::::::::::::::::66646 0 HWI-EAS88_1:1:1:494:137 + chr5 20173292 GGTGTATCAGGCTCTTCCTGATGCTCGGCTTGTGA ::::::::::::::::::::::::::6:::7+740 0 HWI-EAS88_1:1:1:708:269 + chr5 61137181 GAAACTTAATAATTCATATTGCTGACAGTTGTGTC ::::::::::::::::::::::::::::::47477 0 HWI-EAS88_1:1:1:384:121 + chr1 75376681 GGAACACAAGATCCTGCCAGTCACTCGTCAGGCCC :::::::::::::::::::::::::::::376677 0 HWI-EAS88_1:1:1:962:572 - chr8 26314087 TGGGCAACATGTCTACTTTTGGACCATAAAATTCC 46466:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:670:445 - chr5 102897419 AGGTAAGGGAAGCCTATTTTTCAGGCCCCATTCTC 667/7:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:608:501 + chr18 26162501 GGGCAAGGGGAAGGAGTACCAAGTAAGTCTGTGCC ::::::::::::::::::::::::::::::74676 20 HWI-EAS88_1:1:1:86:257 + chr7 17160629 GAGAGCCCTGCTGGCTGCTGCCTCTCATACAGGCT ::::::::::::::::::::::::::::6:72277 0 HWI-EAS88_1:1:1:247:371 - chr15 95156470 GAGATGTGTGGAGCATGAGGCAAGCGTGGGTACGC 7677+:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:652:94 - chr8 10070379 CTTCCTTACCTGCTCCTCTACCCTAAACTTCTTCC 76447:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:94:396 + chr15 99736506 AAACTCAGAAATCCGCCTGCCTCTGCCTCCCGAGT ::::::::::::::::::::::::::::::77777 446 HWI-EAS88_1:1:1:115:492 + chr16 56873826 CCAGGTCCAATAACCCTAAGGGTACAGTACTGGTA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:771:633 + chr9_random 204671 GATGACTGTGACGTGAATAGGCTTTACCACATTGG ::::::::::::::::::::::::::::::%644+ 0 HWI-EAS88_1:1:1:324:316 + chr18 69778792 GAGGTGGGAACGGGAGCGCTCTTTTAGAGAGTGCA :::::::::::::::::::::::::3::::47764 0 HWI-EAS88_1:1:1:450:874 + chr9 35112970 GAGAAACATCCACTTGATGACTTGAAAAATGACGA ::::::::::::::::::::::::::::::76776 0 HWI-EAS88_1:1:1:700:595 - chr4 32657771 GCAGGTTCGCCCTCCTGCTGGTCAGTGTAAGTTCC ))3351:&&+:1++::::::::::0:::::::::: 0 22,26,28 HWI-EAS88_1:1:1:331:688 + chr17 8309936 GCAGAATGTGAAAATCCCCTTTAGGGTGGGACTAT ::::::::::::::::::::::::::::::67777 0 HWI-EAS88_1:1:1:997:526 - chr16 16115576 CCACATGGTTCTAAAAAAAAGTCTGTAATTACTAC %2627:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:951:242 + chr15 56522981 GTTACATATTTGGACTTTATATGCTTATGACTTCA ::::::::::::::::::::::::::::6:77774 0 HWI-EAS88_1:1:1:274:814 + chrX 35013066 TCCTGGATCAGCCACACACATATGGCATGAACGTG ::::::::::::::::::::::::::::3:47774 0 HWI-EAS88_1:1:1:71:613 - chr14 102072477 TAGTGTTTATCAAATTGGGCTGATGAATTAATTGA 76467:::::7:::::5:::::::::::::::::: 0 HWI-EAS88_1:1:1:85:378 + chr6 96710226 TGGTTGGTGTGTGTGTGTGTGTGTGTGTGTGTGTG ::::::::::::::::::::.:::.:,:,:&7+7+ 21 HWI-EAS88_1:1:1:428:867 - chr14 68491034 GATGTGTGACTTACAGAGTGTTCCACACAAGCACC 46444:::3:::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:550:111 + chr7 110634524 GGGTTTATCTATCTTGTTGATTTTCTCAAAGAACC ::::::::::::::::::::::::::::::47777 6638 HWI-EAS88_1:1:1:85:640 - chr15 88558386 AACTCCATAGTGGAATCAATCACCGCATGCTAGCA 77272:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:95:618 + chr11 34603374 TGCAAAGTTGCTGAGACTCATTTCTGTGTGTGTGT ::::::::::::::::::::::::::::::727/7 0 HWI-EAS88_1:1:1:831:272 + chr1 91061776 GATGGCTAATGTCGCTACGCTACTGAAGAGTAATT ::::::::::::::::::::::::::::::66777 0 HWI-EAS88_1:1:1:220:378 - chr15 7182647 TTCTGGGAAATGTTATTTGGTGCCTTACCTCTTTC 64++7:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:107:783 - chr15 41748710 TACAAATGCCAACACCCACGGGCCAGCACAGGGGT 77477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:96:133 - chrX 116706790 AAATCAGATATCTGTTCACCTTCTCTGCAAGAGGA 77774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:347:245 + chr3 88253630 GGAAACAGAGGGAGAATCGGCGGGCAGCAGGACCG :::::::::::::::::::::::::::5::74446 0 HWI-EAS88_1:1:1:73:379 + chr3 51001490 TCTGTAACTGGAAATGATCCCGGAAAACCAGGAAC ::::::::::::::::::::3:::::::::77772 0 HWI-EAS88_1:1:1:88:982 - chr2 143395483 TCCAAGGAGGCTTCAAATCCTGTCATTTGCACTAC 44777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:889:108 - chr4 109507423 TAGGTTAGGATTTTCACGAACTCTCGCTTTTCACC 4767*:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:116:380 + chr4 42605827 TGGCCTCGAACTCAGAAATCCGCCTGCCTCTGCCT ::::::::::::::::::::::::::::::77777 5955 HWI-EAS88_1:1:1:110:618 + chr12 112017964 GGGGGGGGTGTAAAGTGATACTTTTGATTTTCAGC ::::::::::::::::::::::::::::::77444 0 HWI-EAS88_1:1:1:109:646 + chr18 61567798 ACTGTGGATGTCAGGATGTTACGTTCTAGGCCAAG :::::::::::::::::::::::::6::.:77472 0 HWI-EAS88_1:1:1:152:655 + chr11 76453129 GAGTTGGCAGAGGGAGCCTTCTGTTCTTTCAGGAT ::::::::::::::::::::::::::::::7,246 0 HWI-EAS88_1:1:1:107:251 + chr10 75034546 GGACTTTCTTGGTGGACCTCTATTCCTCCTCCTCC ::::::::::1:::1:::::::::::::::55551 0 HWI-EAS88_1:1:1:359:247 + chr8 25541687 GTCTCCCTGGTACTCTGCTGTCCTCCCTGTAGAGT ::::::::::::::::::::::::::::::77476 0 HWI-EAS88_1:1:1:206:922 + chr10 15518089 GCCTCTTTATTTTTCAGGTTCTGGCAGAGCCTCTC ::::::::::::::::::::::::::::6:67777 0 HWI-EAS88_1:1:1:117:902 - chr17 66135895 CACTAGGATAGTTCACTTATCACTGTTATGCCTCT 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:344:204 - chr3 153531530 ACTGGAAGAGGTCATGCAGCCTGGAATTTCACCTC 44477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:960:238 + chr14 37045628 GGTTTCTGTTAGTAAGATTGTTAGGTTTGCCTTTC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:111:832 - chr1 47701520 CAAAGGGTGTGCACATGTCTGTGACAGTGGAAAGG 27777::::::::::7::::::::::::::::::: 0 HWI-EAS88_1:1:1:210:414 - chr1 159360031 CTGACAACCACAACCTGAGTTCTATCTCTAAGACC 2%267:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:113:423 + chr9 73109791 ATGGGGGAGGAAATCAGGTTGGTCGTGTTTTGTAA ::::::::::::::::::::::::::::::72777 0 HWI-EAS88_1:1:1:179:609 - chr12 112743285 CACCAGCACTCAGAGATCACAGCCAGGTTCGCCAC 63/27::::::::::4::::::::::::::::::: 0 HWI-EAS88_1:1:1:100:481 - chr11 119564002 GAGGTTTCTGTGGCTGATAGAGATGCTGTTTGGAG 7+777::,::::::::::::::::::::::::::: 291 29 HWI-EAS88_1:1:1:412:613 + chr4 123271108 GGAATGTGCCTGGTAAAGATGAGGGAAGTCTGGGC ::::::::::::::::::::::::::::::44764 0 HWI-EAS88_1:1:1:199:268 - chr2 73892592 GAACTGATGGACTGTGAAAATCCAGAGAGTGTACC 77627:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:106:79 - chr10 14480275 ACATCATGCTGGTGAAGATATTCCTCACCAACAGC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:496:630 - chr10 75295195 GGAAGGCCCTGTCCCTGAGGAACTTGTCCTCCAGC 77776:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:360:608 - chr3 153774512 ATTCCCCTCTATTGTGCCACTTGTGCTGGGACCTC 66177:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:61:311 + chr10 20188508 TGCTGTTACTAGGAAAATTTCTAATGCCAAGATTG ::::::::::::::::::::::::::::::71777 0 HWI-EAS88_1:1:1:84:831 - chr15 23300174 TGAAGTTGATCCAATTAATATTTCTATGATTGCTT /77*7:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:178:149 - chrUn_random 5495981 TTTTGCCATATTCCACGTCCTACAGTGGACATTTC 772466::::::::::::::::::::::::::::: 0 19,30,33 HWI-EAS88_1:1:1:277:916 + chr10 108813503 GGACTGTGAGATGAGAATGAGATTAAACGTAAGGT ::::::::::::::::::::::::::::::76776 0 HWI-EAS88_1:1:1:711:412 + chr5 103942573 GACTTTAATGCCTTTGAATGAAATAGTTCTCCTTT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:99:466 + chr1 92919260 TAGAGCCATTTGTCACCTCAGCCTCATGCGTTTGG ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:91:328 + chr4 84203001 GCATGGCTCACCACTGCCTGTAATTCCAACCCAGG ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:185:969 + chr7 147561908 GACTCAATAAATGAATCTCTTGATTTAAAAGCTGA ::::::::::::::::::::::::::::::76776 0 HWI-EAS88_1:1:1:82:493 + chr13 13268471 CAGGACTGGTGACTCCCAACAGCTGCAGCTGGCCG ::::::::::::::::::::::::::::::74774 0 HWI-EAS88_1:1:1:410:656 + chr2 163439071 GCTAAGGAAACCTATTTGACTGTGTGGGTCACCAC ::::::::::::::::::+:::::::::::267/7 0 HWI-EAS88_1:1:1:850:732 + chr1 177499321 GAAAAGCCATGGAACTTCATACAAGTGTACCAAGG ::::::::::::::::::::::::::::::44242 0 HWI-EAS88_1:1:1:333:226 + chr13 12898740 GACCAGAAACATGAGTATTACCAAGTGCCTGTGTG :::::::::::::::::::::::::3::::7%744 1 HWI-EAS88_1:1:1:341:723 - chr2 98506739 CCACTTGACGACTTGAAAAATGACGAAATCACTAA 14744:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:885:752 - chr11 54560619 GGTATGACTTATCAATACAGTTCATTCTTCGCAGC 46477:::::::::::::::77::::::::::::: 0 HWI-EAS88_1:1:1:370:865 + chr9 103721462 GGCAGGTGGAAGTCATATTGAGAGCCTAAGGGCCT ::::::::::::::::::::::::::::::76567 0 HWI-EAS88_1:1:1:195:373 + chr6 31379504 GATATGTTCTACTAGCTGGGCTGCCTTGTCTGGCC ::::::::::::::::::::::::::::::76477 14 HWI-EAS88_1:1:1:691:713 - chrX 127271312 GAAATCTTAAAGCCCCTTCTTCCCCTGTAACACAC 27666::::::::4::::::::::::::::::::: 0 HWI-EAS88_1:1:1:200:783 - chr14 67312024 TTATCTACTTTCCCATCGATTTCTGTCTTGAGTTC 67767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:608:471 + chr4 24833044 GGAGTTGAGTGCCTGGAGCTGAGACTGGGACGTGG ::::::::::::::::&::::+::::3:::77572 0 HWI-EAS88_1:1:1:907:589 + chr8 106537334 GACATGCCAGACAATCTGAGGTCCTAAAAGGTCAT ::::::::::::::::::::::::::::::74767 0 HWI-EAS88_1:1:1:231:898 + chr6 45680501 GGGGGTGTTACTTTTGCCTACTCATAAAACTCATA :::::::::::::::7::::::::::::::74276 0 HWI-EAS88_1:1:1:91:411 + chr16 39759874 CGTCTTATACATCAAAATGGAGTAAAAAAAATTGC ::::::::::::::::::::::::::::::77747 0 HWI-EAS88_1:1:1:187:290 - chr12 35349962 TGACCTGATGCATTCCTCTTGAGAAGAACATATTC 44664:::::::::6:::::::::::::::::::: 0 19 HWI-EAS88_1:1:1:652:723 + chr4 71689007 GCTGATTCTGCCAAGCCCATTCCCTTGGCTGTGGT ::::::::::::::::::::::::::::::71444 0 HWI-EAS88_1:1:1:65:447 - chr7 53532789 GAGTGCTTCTGTGCCAGTGTAGCTGCCTATGCCCA 77776:::::::::7:::::::::::::::::::: 0 HWI-EAS88_1:1:1:958:555 - chr2 56965751 TTGGCCCCTTTGCTGTAGATGGAAGGGCCTTTGTC 24444:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:376:236 + chr16 96817004 GACCCTCTGGTGGAGTGAAATGACACAGTTTTACT ::::::::::::::::::::::::::::::77677 0 HWI-EAS88_1:1:1:946:509 - chr12 30277069 TGTGTCCATGGGAATGACTAACTGGAGTTAGACAC 52677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:337:645 - chr1 116566389 CCTTTTAGCTCCTTGGTTACTTTCTTTAGCTCTTC 47777::::5::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:128:119 + chr10 32770726 TTTTGTCTTCCTTCTTCCTGAGTTTCATGTGTTTT :::::::::::::::::::::0::::6:.:&7777 1 HWI-EAS88_1:1:1:565:485 + chr5 28346557 GTGGGAAAAGCAGTGCACCACTGTGGATGACAGCT ::::::::::::::::::::::::::3:::76677 0 HWI-EAS88_1:1:1:405:164 + chr1 17147751 GCAGCATGGTTGGCTGTAGCTAGGAAGGACAGAGG ::::::::::::::::5:::,:::::::::2726/ 0 HWI-EAS88_1:1:1:212:578 - chr13 6479104 CTGACCACACCACAGATGTTTATCCCACAACTTCC 6476+:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:961:620 + chr12 79819294 GTATAGATGTTTTCCTTACATGGTGTTTAGACACC :::::::::::::::::::::-7::::::346464 0 HWI-EAS88_1:1:1:741:570 - chr11 62987228 GTCCAGTCCTTCCTGTTACTGTTGGCTGCAATCTC 62644:&:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:344:553 + chr10 55010320 GCTGTGCACCTAGATTGGGCAGATCTACTGCTACA ::::::::::::::::::::4:::::::::7727/ 10 HWI-EAS88_1:1:1:241:314 - chr3 105762738 TGGCCCTGCCCCAGCTCAGCTCCACAAATCCGATC 27677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:864:838 + chr13 103825003 GAAAGTTAGCATCCATTATGACAAACCCCCTTTCC ::::::::::::::::::::::::::::::77776 0 HWI-EAS88_1:1:1:925:551 - chr11 50912572 CTATGTTGGCCTTCACAATGCTGACAGAAAGCCTC 647+6:::::::5:::::::::::::::::::::: 0 HWI-EAS88_1:1:1:262:800 - chr3 88434327 AAGTCTGCAGATTCAAGGACAGGCTGGGATTATCC 77747:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:458:520 - chr3 16974505 TAACCAGGCCACTCAGTGCTCCCAGAGACTAAATC 27444::::::::::::::::7::::::::::::: 0 HWI-EAS88_1:1:1:715:921 - chr19 34158722 GTGACACACCTCCTCCAACAAGGCTACACTTTTGC +6774::::,::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:675:808 - chr12 22821024 CAGCACATCTGATGCATCCCATCTAACTACATCCC +7777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:396:103 + chr16 16580857 GAATATTATATTGAGTGAGGAAACCCAGACCTAGA ::::::::::::::::::::::::::::::77572 0 HWI-EAS88_1:1:1:797:353 + chrX 58967089 GAGAAGAAGGTATATACTTTTGTTCTAGGATAAAA ::::::::::::::::::::::5:::::::74662 1 HWI-EAS88_1:1:1:406:214 - chr13 98751823 CTGAATGCCTTGTAAAATCCTCAAGCAGTCTGCTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:219:829 + chr8 74418650 GACAGCTAACTGAATCTGGAATGTGTGTCTCTTAT ::::::::::::::::::,::::::::2::75767 0 HWI-EAS88_1:1:1:115:37 + chr11 30912580 TGTCTAAGGAACCGCCAGACTGATTTCCAGAGTAG ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:948:531 + chr3 22833876 GCTCAAAGCACATATTGCACCTCACACAATAATAG ::::::::::::::::::::::::::::,:76744 152 HWI-EAS88_1:1:1:889:553 + chr15 88661253 GAGGTCACTTACTCCAGCACGCTGGCCCCACAGAG ::::::::::::::::::::::::::::::76646 0 HWI-EAS88_1:1:1:106:213 + chr9 67031467 CTGTAACAGCAGCAAACTGGCTGGGCTTAAACACA ::::::::::::::::::::::7::6::::77+74 0 HWI-EAS88_1:1:1:210:690 + chr16 88433300 TCTTTTAATTAACTGTTGAGCCTTTACATTCAGAG :::::::::::::::::7::::::::::::7727, 0 HWI-EAS88_1:1:1:859:708 - chr3 153443662 ACAATGACAGATGCTAATTTAGGTCACAGATGTTC 7+774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:781:695 + chr12 112560834 GAAACAATTTTAAATATAGACAACAGGCTACGATT ::::::::::::::::::::::::::::::77677 0 HWI-EAS88_1:1:1:779:278 + chr8 93370018 GTAGCCATTGATGGCTTGCCAGGAACTCACTGTGT :::::::::::::::::::::::3::::::44426 0 HWI-EAS88_1:1:1:479:587 - chr2 98505313 TAGTGAGTTACACTGAAAAACACATTCGTTGGAAA *7727:::::4:::::::::::::::::::::::: 0 34 HWI-EAS88_1:1:1:489:529 - chr11 109193641 GTTGGAGCCAGGAAGGACAGGGACTGAAAACCAAC 7+477:::::::::::::::::::::::::::::: 0 27 HWI-EAS88_1:1:1:166:121 - chr11 50624595 CCTCAATTTTTATTACATTTAAACATAGGTACAGA 24727:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:999:490 - chr5 21763989 ATTTACACCCCAGCTAACTAACCATCTACACCATC 74466::::::::::::7::::::::::::::::: 0 HWI-EAS88_1:1:1:605:618 - chr5 20481976 TTTCAGTAGATGGGATACCTAACATTAAAATGAAC 66777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:354:822 + chr4 104744944 TACAACAATAAAAACTAAATATTTCAAAGCCTATA ::::::::::::::::::::::::::::::44674 0 HWI-EAS88_1:1:1:493:197 + chr3 98355078 GTCTCTGTGTTAATGAGAAACAAAGTGGTCTTCCT ::::::::::::::::::::::::::::::77777 3 HWI-EAS88_1:1:1:242:720 + chr2 98507280 GCACACTGAAGGACCTGGAATATGGCGAGAAAACT ::::::::::::::::::::::::4::+++77777 0 HWI-EAS88_1:1:1:174:678 - chr12 26465257 TGACCTCTGCCTCTGCATGGAAGTTAGAGACCACC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:612:761 - chr17 60066142 GGCTGGAAAGATTAAGAACACTTGCCAGTTTTTTC 55)55:::::::::::1:::::::1:::::::::: 0 HWI-EAS88_1:1:1:223:904 - chr11 75102617 AACCTGGAAATGAAACGTCTTTCCCTTTCTTCAGA 76474:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:84:350 + chr6 138276272 AATGCACAAACAATTAAAGATTTTGATACTAAGCA ::::::::::::::::::::::::7:::::77277 0 HWI-EAS88_1:1:1:790:347 + chr9 31978094 GACACCATAGTTGAAGCCCAGAGCTGAACAAAATC ::::::::::::::::::::::::::::::04277 0 HWI-EAS88_1:1:1:465:814 - chrM 3064 TTTAGCAACATCTAGCCTATCAGTTTACTCCATTC 02476:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:93:236 - chrX 34090612 ATGAATATCCTCTCTCTTTTTAATTTTTAATTTTT 777%7&::::::4-::&:::::::::::::::::: 0 HWI-EAS88_1:1:1:328:60 + chr1 39806605 GTGGCGCCTCCTCTGCTTGGCCTACTGAGAGGGAG :::::::::::::::::::::::::::::3424%7 0 HWI-EAS88_1:1:1:166:932 - chr18 64418758 GGAGTTGTGAATGAATAGAAGTTACAACTTCCAGC 74767&::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:498:217 + chr19 33402276 GGAAGTCAAGGCAGGAACTGAAGGAAAGTACTTAG ::::::::::::::::::::::::::::::77667 0 HWI-EAS88_1:1:1:540:820 + chr6 132316409 GATTATCTCAGAAAAAATTACCTAAATTGTCCTTT ::::::::::::::::::::::::::::::77767 0 HWI-EAS88_1:1:1:688:509 + chr3 91291942 GAAGCCATCAGCTTTTGGACTCACATGAGCAAAAG ::::::::::::::::::::::::::::::46447 0 HWI-EAS88_1:1:1:237:519 - chr9 42158436 TGTTGAAGGATTGGGTATCAGGTACCAGGCTGGGC 47+27:3::::::::::,::::::::::::::::: 0 HWI-EAS88_1:1:1:594:787 - chr11 49763362 TAATTGTCAACATGACTGAGGATGGATAACGGAGC 77707:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:842:367 + chr3 85433973 GCTTACAGAGCAGGATATGCTGTGAGCTCTGGTGC ::::::::::::::::::::::::::::::66666 0 HWI-EAS88_1:1:1:541:512 - chr15 21841648 TAGCAGTTTGACAACACACATAAAAGCTCTAGAAC 277/7::::::4::::::::::::::::::::::: 1 HWI-EAS88_1:1:1:107:630 - chr10 65700439 ATTCTCCCTCAAACAGACTCACTGGATGCCTTGTG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:386:339 - chr15 9805112 TGTTTATCCTTCTTAATTCTATGGCTCTTTAGTAC 77777::::::::::::5::::::::::::::::: 0 HWI-EAS88_1:1:1:800:671 + chrX 17987304 GTCAAGAGCTCCGGGGTACTGGTTAGTTCATATTG ::::::::::::::::4:::,:::::::::7/762 460 HWI-EAS88_1:1:1:307:339 - chr13 52192648 CGGCTGTCCACACACGTGTACCCCTCCCCCAACAC 1))550&::::::0::+:+1::::1::::::::1: 0 29,33 HWI-EAS88_1:1:1:334:635 - chr9 95659328 TTACAAGTAAGGCCACACTCTCAAGTCGTGTATTC 26/)2::::::::44:+:::::4:::::::::::: 0 HWI-EAS88_1:1:1:194:116 + chr3 19490690 GAGAGGCTATTGGTGAAGCCTAGTTGCAGAGGAAG :::::::::::::::::::::::::,3::,47+61 0 HWI-EAS88_1:1:1:765:305 - chr6 109227670 AAGACTAGATGTAGATTATGTAGATTAGGTTTTTC 77744:::::::::::::::::::::::::::::: 0 27 HWI-EAS88_1:1:1:453:472 + chr10 57002395 GGATGACAAAACTCATAAGCTCTTTAGGACCAATT :::::::::::::::::4::::::::::::72277 0 HWI-EAS88_1:1:1:194:868 + chr17 80210336 GGAGTTATCACAGAGAAAGGAGCTTCAGTTGGGGA ::::::::::::::::::::::::::::::74474 675 HWI-EAS88_1:1:1:585:958 - chr14 69835948 AATTCTTTTAAACTGGCATCTTCTTACCCATTATC 77467:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:878:124 - chr4 35616910 ACTCATATCAGAGATAGCATTCAGGAAGTGATATC 74247::::::::::::::5::::::::::::::: 0 HWI-EAS88_1:1:1:880:559 - chr7 29167745 TGTCTTTGAAGGGACTTCATGAGAACTGTCACTTC 24244:3:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:484:959 - chr18 61539992 TCTATCATCCCTTGGTCACCTAATCCACTGGCTTC 74476:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:631:798 + chr5 34543335 GTAAGACACAAAAGTGGAGGCACAGGAACTCGAGA ::::::::::::::::::::::::::::::76+74 0 HWI-EAS88_1:1:1:959:143 + chr2 15314287 GGTTTCATATGGTCTGTGAGTTGTATCATGGGTAT :::::::::::::::7:.::::7:::::::%4407 5 HWI-EAS88_1:1:1:97:817 + chr5 33971991 GTGCTGAGACGCCGGCTGGCCCTAGAGGGTGTTCC ::::::::::::::::::::5:::::::::44726 0 HWI-EAS88_1:1:1:513:570 + chr18 88174086 GGTATCAGGGTAATTGTGGCTTCATAGAATGAATT :::::::::::::::::::::::5:33:::+4677 8 HWI-EAS88_1:1:1:114:913 + chr11 73822624 TGAAACTCCAAAGTTTCTGCAAGGCAAAAGACACC ::::::::::::::::::::::::::::::77777 4331 HWI-EAS88_1:1:1:475:879 + chr4 108507641 GGGCGCTCTTAATTCTTGGGATTGAGAAGATATGG ::::::::::::::::::::::::::::::76772 0 HWI-EAS88_1:1:1:74:894 - chr13 98771228 GGCTTGGTGCGACCTAGCATGAAGCTAGCCACCTC 40777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:275:788 - chr17 80577649 TAGGCCTGTCACAAGGTAAGACTGTAAGTCAAGTA 676726::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:244:885 + chr1 60473612 TCTTGAATAAATTTAAGTGAATGGCTTCTTCCATC :::::::::::::::::::::::4,:::::2/577 0 HWI-EAS88_1:1:1:705:123 + chr16 34326682 GATATGTTATTTGAGGGTAGATATTCATACGTGTG ::::::::::::::::::::::::::::::2747, 0 HWI-EAS88_1:1:1:868:349 + chr15 59731032 GAACTGAACAAAGAATTCTCACCAGAGGAATACCG ::::::::::::::::::::::::::::::76477 18 HWI-EAS88_1:1:1:796:716 - chr19 19915124 CCCTTCCCTCACCAGCTGCAGATTTCCATTCATTC 47744:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:420:151 + chrX 141389154 GCAATGGTGTCAGCCTTTGGATGCTGATTATGGGG ::::::::::::::::::::::::::::::72747 10 HWI-EAS88_1:1:1:489:844 - chr5 104932314 CTGGCTCAGAATTGTTATCGTTTACTGTTCCCATC 74777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:112:809 - chr8 86264088 ATCTTGGGGTAACTCCAGCTGGTGCCCCGTTCCAT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:705:854 + chr11 10071950 GACCTAAAGCTGTACTACAGAGCAATTGTGATAAA ::::::::::::::::::::::::::::::77777 1344 HWI-EAS88_1:1:1:232:230 - chr16 38316488 CTCTCCAAGGCTAGAACACAGAAGGCCATAGCGCC 747475::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:500:289 + chr10 101898003 GGCTTTTGCCCAACCCCTGGGGGCTTTAACCTATC ::1::::::::::1::::::::::::::+:-3151 25 HWI-EAS88_1:1:1:495:528 - chr18 4077005 AAACCAGGTCAAGCACACACTACTTTTATTCTTGC 77677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:924:391 + chr2 98507129 GGTGGAAAATTTAGAAATGTCCACTGTAGGACGTG ::::::::::::::::::::::::::::6:47774 0 HWI-EAS88_1:1:1:366:70 - chr4 136210793 GGGTGGCTCATCTCTTCCCTTCATGTTAATGTTCC 44776:::::::::::::::::::::::::::::: 0 24 HWI-EAS88_1:1:1:112:318 - chr6 88946188 AAACACACCACCACCACCACCACCATCATCATCAG 4,&%&66...::.77.:7::::::::::::::::: 0 30,31,32,33 HWI-EAS88_1:1:1:608:778 - chr16 39740194 GGGAAGGCTCCAAGACCTGACACTATTACTGATGC 77667:::::7:::::::::::::::::::::::: 2 HWI-EAS88_1:1:1:140:226 - chr5 93792972 TGTCTAGAAAAACCAAAAAACCAAACCAAACCAAC 161+1&::::::/'::::::::::::::::::::: 1 29 HWI-EAS88_1:1:1:872:710 + chr1 105820669 GTAGATATTCAGAATTGAGAGTTCCTCTTGGAGGA :::::::::::::::::::::5::::::::70262 2356 HWI-EAS88_1:1:1:467:252 + chr10 27119787 GTTTATCCTCTGTATATAGGAAGGCTAGTGATTTG :::::::::::::::::::7::::::::::47777 0 HWI-EAS88_1:1:1:342:885 + chr1 40495567 GGAGCATTCCAGCCCCTATAAGGAGCTGGCTCAAG ::::::::::::::::::::::::::::::76647 0 HWI-EAS88_1:1:1:360:519 - chrX 17785061 GCTCTTCCTCCCTCATTAAAGCAACATTTCCTATC %7411:::::::::::::::::::::::::::::: 0 34 HWI-EAS88_1:1:1:860:372 + chr10 85765967 GCAGGCCCTGTACCCTATTAAAGTGTTTAGAAGAA :::::::::::::::::::::5:::::::.46264 0 HWI-EAS88_1:1:1:352:887 - chr17 13923541 AGAATTCCAAAGTCATACTTGCAGAAACTCTCTGC 76461:::::::::::5::::7::::::::::::: 0 HWI-EAS88_1:1:1:579:944 + chr6 19274392 GTCCACGATCAGGCAGGGGTCCCTGCCTGAACGTC :::::::::::::::::::-::::::2:::6)724 26 HWI-EAS88_1:1:1:369:87 - chr19 13934860 TAAGTATAATTTCTTTGAGCAATTGGTACATAACA 77777:::::::::::::::::::::::::::::: 1 HWI-EAS88_1:1:1:318:362 + chrUn_random 5665648 GGAGAGAGGTTGGAGACCGTACTGTTGGAAGGGCA ::::::::::::::::::::::::::::::77760 6 HWI-EAS88_1:1:1:310:838 - chr4 154696239 GAGGAAGCTTCTAGGCCACACTCCATCTAAGCGAC 13114::::+:::::::::::::::1::::::::: 0 HWI-EAS88_1:1:1:238:910 + chr16 37853307 TACATTTCAGATAGGTATTACTCGACATTTGTGAC ::::::::::::::::::::::::::::::272** 0 HWI-EAS88_1:1:1:735:691 - chr8 33529618 ACTATGTTTCATTCATTTACTTCCATCTTCTCTAC 64446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:335:499 + chrUn_random 5889997 GAATATGTCAAGAAAATTGAAAATCATGGAAAATG ::::::::::::::::::::::::::::::66477 1 HWI-EAS88_1:1:1:261:898 + chr13 23390543 GAACCCCATGATAACACACATATACAAAGAACGTC ::::::::::::::::::::::::::::::47777 0 HWI-EAS88_1:1:1:660:515 + chr7 138344976 GTCTCTACAGGGTGCCAAGGAGGAAAGCATTTCGG ::::::::::::::::::::::::::::::77744 0 HWI-EAS88_1:1:1:73:531 + chr8 68114923 AAGCCACAGCAGCAGCGGTCGCCATCTTGGTCCAG ::::::::::::::::::::::::6:.6::27774 49 HWI-EAS88_1:1:1:284:865 - chr15 36378939 CACACACACACAGCATGCTGTGCCAGGCCCTATAC 44447:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:116:169 - chr3 142008386 GCAGGCAGAGCTGAGGCACAGTCTTTTGCTGGGCC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:855:888 + chr2 160565376 GGTTGTCCTGCTTTCTGCTCTGAGAACTGGCCTGC ::::::::::::::::::::::::::::::44747 0 HWI-EAS88_1:1:1:263:912 + chr5 43866456 GAAAAGGGGTCACAGTGTGCCTGTCAATTGACATG ::::::::::::::::::::::::::::::47764 0 HWI-EAS88_1:1:1:72:318 + chr10 104922468 CAAAAAAGAAAAGGCAGTTTGAAGTACTCTAAAAT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:709:742 - chr10 74849829 GTTGTGGGGGTAGACTTTGAGACCCTCCTCCTAGC 74476:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:76:580 + chrX 4829958 CATCATGACCAAGAAGCAAGGTGGGGAGGAATGGG ::::::::::::::::::::::::::::::77774 1 HWI-EAS88_1:1:1:503:545 - chrX 34429223 CAGCCGTCATTCGGTTAAACTGAGCCGTATCATTC 17+46:::::::::::::::::::::::::::::: 0 32 HWI-EAS88_1:1:1:262:193 + chr5 30383649 GGTAATCATAAAGACTCCTGGCCTATCAGCTCAAT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:70:747 - chr10 100579133 CCAGCCCATGTATGCTTTTTGGGTGGTCCCCAAGA 1155-::::::::::::::::1::::::::1:1:: 0 30 HWI-EAS88_1:1:1:731:628 + chr17 26821445 GCATGTAGGCTGCACCTTCCTTGGAAAGTATTGAG ::::::::::::::::::::::::::::::77626 0 HWI-EAS88_1:1:1:479:713 + chr6 140361067 GGATTAAAAGTGTGAACAATCATGCCTGGCTGAAT ::::::::::::::::::::::::::::::66247 0 HWI-EAS88_1:1:1:460:241 + chr8 60320208 GAACTACAGCTGAAAAATGTCACAAGCCGTTGTAA ::::::::::::::::::::::::,:::::67444 0 HWI-EAS88_1:1:1:501:821 + chr15 65547625 GGACCCTAAGACCTCTGGTGAGTGGATCACAGTGC ::::::::::::::::::::::::::::::62444 1046 HWI-EAS88_1:1:1:1001:577 - chr9 20930823 TGTGGTGGTTTGGCCATGTTCCAGCGTTCACAAGC 44466:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:103:406 + chr19 30999499 AACAAGACAGAAACCTGGAGGTAAGAGCTGATGCA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:895:881 - chr15 23154304 ATGCATGCTTTATCCTATGCAATTTAGAACAATTC 77677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:602:870 - chr1 98872753 CATGTGCTGATAGAGTACACAATGGTACATTATTC 77276:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:643:875 + chr1 101716116 GTTTTATGTGAAGTTCCTTGATCCACTTAGATTTG ::::::::::::::::::::::::::::::77774 5333 HWI-EAS88_1:1:1:463:194 + chr2 71402859 GTGTGCCTACAGGACAAGAACCTGGCTTGTGGGCA ::::::::::::::::::::::::::::::77744 0 HWI-EAS88_1:1:1:217:848 - chr2 4025352 CCCTGGTCCAAGGATATACAAACCATCACAAAGGC 44447:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:283:435 + chr3 32496509 GAAGGTGGGCTCAGGGCAACGAGTCATAAAAACCA :::::::::::::::::::::::::::::344746 0 HWI-EAS88_1:1:1:236:529 + chr12 117544647 GCTCTGCTTTCTCTGTCTCATGCCGCAGTTTGCAG ::::::::::::::7::::::7::-:3,::7174+ 0 HWI-EAS88_1:1:1:99:940 + chr5 112789336 TATTAACAGGTGTGTTTGGTGGCGGGGTAGTGTGG ::::::::::::::::::::::::::::5:77777 0 HWI-EAS88_1:1:1:441:580 + chr13 46029797 GGGCATTCTTCTTGACTTTATAAAGCAGAGCTAAC ::::::::::::::::::::::::6:::::77677 0 HWI-EAS88_1:1:1:77:597 + chr15 98518820 ACTGTGATAAAACACCCTCCCCAGGGCAGCTCATG ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:835:882 + chr5 36641713 GCGTCAGTGTCACTTAGGTGTCTGATGGTGACTCC ::::::::::::::::::::::::::::::24776 0 HWI-EAS88_1:1:1:186:522 + chrX 73361585 GCAGACCCTCCCATCTCTGGCGTGCATCACAACAG ::::::::::::::::::::::::::::,:6%742 0 HWI-EAS88_1:1:1:779:887 + chr4 42477453 GGCAAGGATGGTATAGGCTCCACTGGCACCGGCTG :::::::::::::::::::::,:::::+::+4417 394 HWI-EAS88_1:1:1:394:247 + chr15 67840867 GTAGCAACCAGAAAGTCCCAGATGCCAGGAAAGGA ::::::::::::::::::::::::::::::44667 0 HWI-EAS88_1:1:1:596:935 - chr6 89346371 GCTCCACTCCTGGAACAGAGGGAGATCAAGACCAC 47474:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:609:86 + chr8 116595772 GATTAGCACAATATACACAACATGTGTGCATTCAT ::::::::::::::::::::::::::::::77767 0 HWI-EAS88_1:1:1:910:778 - chr6 30557002 CCTTCTGAGCACATGGATTAAAGGTGTTTGCCACC 77674:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:860:108 - chr16 84677794 TGAGACTTAAAAATCAGGTGCTGTTTAAAAGGCCC 2777763::::::5::::::::::::::::::::: 0 HWI-EAS88_1:1:1:123:569 + chr4 134255529 GGGGGTATTTCAGATCAGCAACCTACCATCACGAG ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:823:660 + chr14 63528461 GAATAAATGAATGAATGTAAGGTCTGTTGAGCTGA ::::::::::::::::::::::::::::::26764 0 HWI-EAS88_1:1:1:782:417 + chr15 62737092 GTTTTACAAGGAAAGACACTGATCCTACACATATA ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:937:791 + chr5 59705827 GGAAGTCAAAATATCACTCTTTGCAGATGATATGA ::::::::::::::::::::::::::::::77774 21 HWI-EAS88_1:1:1:78:296 - chr4 36873656 AGGCACAGGGGAGGATGCTTGAATCTCACTGAGTA 77677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:458:217 + chr14 66500513 GTTAGATCACGATAAATGGCTATCAGGAAACTCAG ::::::::::::::::::::::::::::::76644 0 HWI-EAS88_1:1:1:633:789 + chr13 17661991 GAAAGTCAACTAAAGTATTATTAAAGTGACAATGA :::::::::::::::::::::::::6::::60746 0 HWI-EAS88_1:1:1:946:587 - chr11 3055333 TCTTGGACAACTGTGCATCAAACTAACCAGGTGTC 22442:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:941:392 - chr12 10027785 AATATTAGGAAGCAACAATTACTTTTTTTAATATC 77476:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:68:266 + chr10 111470315 GCCAGTAGCAGGAGAGATCGCTAAGACCACTGCAG ::::::::::::::::::::::::::::::74462 0 HWI-EAS88_1:1:1:366:310 + chr8 18166847 GATATTCTAAGAAAAATGATTTGAAAATTCATCTA :::::::::::::::::::5::::5:::::67471 0 HWI-EAS88_1:1:1:340:800 + chr15 101762732 GTCAGACACTGACAAAGTCCCAATGGCTTCCGACA ::::::::::::::::::::::::::::::7%274 0 HWI-EAS88_1:1:1:229:861 + chr3 104316044 GAAAAAGCGAAACCCGAAACGCCAAATCCTCACTG ::::::::::::::::::::::::::::::74676 0 HWI-EAS88_1:1:1:216:775 - chr13 112407111 AATAGAAGCGTGAGTTGAAAGTCAGCCAGGGCTAC 66777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:698:761 - chrX 85643415 TTTAATCTTCAAAAATTGCCATACATTACAAATCC 46677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:123:566 + chrY_random 7783568 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ::::::::::::::::::::::::::::::77777 21373 HWI-EAS88_1:1:1:59:664 + chr1 188599577 GAAAGAGTCAGATGTAGTTATTTGCACCCAACCAA :::::::::::::::::::::::7::::::77467 2 HWI-EAS88_1:1:1:309:144 - chrX 163243477 TAGACAGAAGCACATGAAGGAAACCCAGGTGTCTC 67767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:284:523 + chr13 30160744 GTCCCAGGGTCACACCTAGTCAGCATGGTGAGTTT ::::::::::::::::::::::::::::::47777 0 HWI-EAS88_1:1:1:882:88 - chr13 105351782 ATTTATATCTTTCTACAATGTCAGAATTCATTGAC 76467:::::::::::::::::::::::::::::: 0 28 HWI-EAS88_1:1:1:61:241 + chr13 91813031 GCAGGAGGAGCACTAGGCAGGCAGCTGAGTGATGC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:130:654 + chr1 101301523 TTTAAAACTAATTATCAATATAGGAAAATCTCATA 1:::::::::::1:::::::::,11::1::55511 0 HWI-EAS88_1:1:1:738:180 + chr18 43912807 GATACTTGCACCCAAACAGTGGATAGAAGCAGCTG ::::::::::::::::::::::5:::::::67774 0 HWI-EAS88_1:1:1:635:515 + chr8 110888284 GAAAATTAGTGAGATTAGGAATCACGGGCATATTG ::::::::::::::::::::::::::::::7474+ 0 HWI-EAS88_1:1:1:684:593 - chr15 38380001 TCAGCTTACACGGGCTGTCCCATCACTCGTCAGCC 33566::0::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:513:963 - chr2 177504442 AGGAATGTCCCCCAAATACATAAGCGAACACATAC 77677::::::.::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:470:603 + chr12 82923288 GAGCTCTTCTGGGGCTGTAAAAGGAGAACACTGAG ::::::::::::::::::::::::::::::44724 0 HWI-EAS88_1:1:1:247:269 - chr6 46635037 TTCAAGGCAAAATATACCTTGCAAAGCCATTTTCC 44%76::6&:::5::5:::::.::::::::::::: 20 26 HWI-EAS88_1:1:1:554:883 + chr4 31000498 GGTCTGAGACTGTAGAACTTAAGGAGAAAGTGTGG ::::::::::::::::+::3+:442::::+6//*5 0 HWI-EAS88_1:1:1:721:400 - chr9 106846628 TTTGCTCAGCAGTCGTCAGAGAAGCTTTCTCCTAC 424773::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:356:92 - chr8 97105889 AGGAACATCTGCAGCAGATAGAGGATGTGCCAAAC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:95:479 + chr1 69270515 CCATATAATATGAAGCAAATAGAAGTATTATCAGC ::::::::::::::::::::::::::::::76/22 12 HWI-EAS88_1:1:1:89:735 - chr11 105144080 GCTAAAAGTGTTCCTAAGGACACCTTTTCTAAACC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:448:969 - chr8 129053334 GAATCTACCCATGTACAGATTTGGCACCCTTTTCC 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:100:747 - chr4 107414153 AACCAGAATTGATTGCACTCTCTGGAGGTCGACAT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:942:550 - chr18 4364056 TGGGCAGGGCTGAATAAGATGCATCTTTCCGGCTC 26462:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:92:897 + chr16 49863664 TCAGGCTTCCTGGGAGGACTCAATGTGAGTAGGGA ::::::::::::::::::::::::::::::71744 0 HWI-EAS88_1:1:1:243:857 - chr11 64298823 CCATTCAGGATTGGGAGGACAAGGTAGGAGGGAAC 77744:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:875:549 + chr17 46548277 GTCATCATCAGATCTTCTCTTGCCTCCAGATATCA ::::::::::::::::::::::::::::::42774 0 HWI-EAS88_1:1:1:357:398 + chr3 136870147 GATTGATTTAATGCAGCTTCTTTTTACACTGCCCT ::::::::::::::::::::::::::::::,7467 0 HWI-EAS88_1:1:1:87:816 - chr14 76025505 ACTGGAACATTCTACTGTGGCTTATCTAACATTCA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:167:649 + chr9 7683485 TTCTTCTTCTGTAAGATCACCAGCAATCCAGCTTG ::::::::::::::::::::::::::::::44624 0 HWI-EAS88_1:1:1:138:903 + chr3 11961887 GGTCCTTTCGATAAAATCTTGCTAGTGTATGCGAT ::::::::::::::::::::::::::::::47477 18 HWI-EAS88_1:1:1:440:836 + chr2 19120116 GAACAGAGAGCAGGTGGGACAGGAGTCTGCAAAGT ::::::::::::::::::::::::::::::46474 0 HWI-EAS88_1:1:1:169:429 + chr4 23687605 GGCCAAGTAACATATAAAGTCAGACCTATTAGAAT ::::::::::::::::::::::::::::::67767 0 HWI-EAS88_1:1:1:438:149 + chr2 150613231 GCCGGCGGATTTTCCGGCTGTTTTCCAGCTGTGGA ::::::::::::::::::::.:::5:+6::%2%2% 0 HWI-EAS88_1:1:1:207:932 - chr16 36726435 ATCTTCCAGTAAAGCTCAGAGAAGAATCAGGCCAC 76774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:79:164 + chr6 68516258 TTTATAACCTGGAGAGAGTTTGCCTGTTGACATTT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:692:733 + chr6 29281330 GTCTCTACTCCAGCCACATCTGTTGCAGTCAGATT ::::::::::::::::::::::::::::::74467 0 HWI-EAS88_1:1:1:411:235 - chr11 6381887 CCAGGCACACTATAGGTCACTTGTGGGTCTTCTGC 46774:::::::::::::::::5:::::::::::: 0 HWI-EAS88_1:1:1:589:804 + chr1 179800979 GGACTAGGTGGGGTGGGAGTGCTGCGTTCTGATGA ::::::::::::::::::::::::::::::42672 1754 HWI-EAS88_1:1:1:74:426 + chr19 55214035 TCTTTGCCAGGCCCTGAGGCTCCCTGCTGACTCAC ::::::::::::::::::::::::::::::67777 0 HWI-EAS88_1:1:1:108:901 - chr4 120221957 CTAGGCAGTCTAGTCATTAAAGACATTTTTACAGG 11771::::&::7:::::::::::::::::::::: 0 HWI-EAS88_1:1:1:276:401 + chr6 12678887 GCCATTAAATGGTTAGAATTTAAGTGCATTTATTA ::::::::::::::::3:::::::::::::75756 0 HWI-EAS88_1:1:1:671:730 + chr9 3014062 GTCGTCAAGTGGATGTTTCTCATTTTCCATGATTT :::::::::::::::::::::,::::::::24677 19 HWI-EAS88_1:1:1:442:703 - chr2 157046318 TCCCATTTCTTTTCCCTTCCTCTCTCCCTCCCTCC -4)4,::::0:::::::0::::::0:::::::::: 0 34 HWI-EAS88_1:1:1:836:281 + chrX 145728394 GTTAGCTTCTGTATTCCACACTCTAACCTGTGCAG :::::::::::::::::4::::::+::::+4/22% 6 HWI-EAS88_1:1:1:375:655 - chr13 43492985 GGCATGCACCACCACCTACAGGCCTTGTTTTGATC 77244:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:697:106 - chr6 138612338 CACCTCTTCTTCCTCCTCTCCTTCTCCTCCTCCTC 7/772:::::+4:::54::::44:::::::::::: 0 19,33,34 HWI-EAS88_1:1:1:207:915 + chr17 31199817 TATAGGTGTTCATTAGCAGAGTGGGTTAGCACAGT ::::::::::::::::::::::::::::::47477 1 HWI-EAS88_1:1:1:656:776 + chr19 61137687 GTGTCAAGTCCACCATTTCCTGAATATTTGGTCTC ::::::::::::::::::::::::::::::/5775 0 HWI-EAS88_1:1:1:371:249 - chr9 63628230 GCTCATGCTCCTCAGGAAGGATAGGGACCCTCTCC 45415::::::::::::::::::::1::::::::: 0 HWI-EAS88_1:1:1:192:836 - chrX 149420568 AGCAGAAAGGAAAAACAGGAAGACTGAGAAAATAC 76277:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:820:240 - chr16 47623082 TAATCCAAATACCCAATAGAACAAGACAGGAAAAC +77)+,,::::.,7::::::::::::::::::::: 0 28 HWI-EAS88_1:1:1:83:857 - chr19 61113994 GCTTAGCCAATGCTATCCTCAGAATTCTTACCTCC 74777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:444:237 + chr6 35409343 GCCTGCAAGTTGCACAGGGAGCCCGAGGGATGTAG :::::::::::::::::::::::::,::::67647 0 HWI-EAS88_1:1:1:77:278 + chr8 52136633 TACAGGATTAGCTCTTAGGCTCACAGGCTTTTACC ::::::::::::::::::::::::::::::77774 766 HWI-EAS88_1:1:1:324:830 - chr18 74967801 CGGCCGTGCACCCAAGCATCACGAACAAACAGACC 74647:::::7:::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:160:887 - chr1 20909434 AGAGACATTTTTGTGATAGCATGCTTGCATAGCAA 74777::::::::::::::7::::::::::::::: 0 HWI-EAS88_1:1:1:883:579 - chr10 120154582 CTCACAGGGCTTTATTAAGTGATGTCAAGCTCCCC 44424:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:219:729 - chr7 81767050 AGGCACAAATAAACACACTTAGAGATCCTTAGCAT 727*7+:::::::.-::5::::::::::::::::: 0 HWI-EAS88_1:1:1:718:906 + chr3 109294286 GGAATTCATAGAGGGGATTTGAGGATCTGGCATTG ::::::::::::::::::::::::::::::66774 0 HWI-EAS88_1:1:1:81:887 - chr8 78210594 ATCTGATAGGATGCTTGCAATAATTTTAATATTTT 74777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:669:891 - chrX 111281872 GGGATCACATCAAGAATTAACAATATTTATTTTCC 664773::::::::::::::::::::::::::::: 0 17 HWI-EAS88_1:1:1:578:500 + chr4 84169733 GAATTTTAACACAATGCCATTTCCCTAGTTTAACC ::::::::::::::::::::::::::::::74777 0 HWI-EAS88_1:1:1:190:55 + chr4 48169879 GTTAGGTTAATGTTCTAAGCAACTTAAATCAAGCT ::::::::::::::::::::::::::::::77767 0 HWI-EAS88_1:1:1:357:281 + chr16 35319124 GAGGAGTAACTGGAGATCTGATTCAGCAGCTAAAA ::::::::::::::::::::::::::::::74447 0 HWI-EAS88_1:1:1:740:881 - chr11 96691439 GAGAGAAGTCCAATGAGTGTGCAGGCCCGCCCCCC 77464:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:379:531 - chr18 55610334 GACACCTTTAAACTCTTGAGTCAAAATACACATGC 67772:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:98:807 - chr10 59347466 TCTCAGACACTAGGATTAGAGGTGTGCTGTGTGCC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:923:93 + chr19 58478181 GTTAGTTTTCCTCAACTTGACACAGAGCCAGGGAT ::::::::::::::::::::::::::::::27447 0 HWI-EAS88_1:1:1:692:765 + chr4 89942917 GGTTAAGGGAAATGCAATTGCTGATTCAGCCACCA :::::::::::::::::::::::::1::::75777 54 HWI-EAS88_1:1:1:579:797 + chr18 21737313 GTGCAATGAAGATGTGGAAATCAAGGTTTGTGTGA ::::::::::::::::::::::::::::::77644 0 HWI-EAS88_1:1:1:905:418 - chr2 17937214 CACGCACCTGCAGATGCAGCCAGCAGAATTTTCTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:341:479 + chr10 61318033 GGGTTGTTGGCATCATGAAGGCACACAACAGGTGA ::::::::::::::::::::::5::::::376474 0 HWI-EAS88_1:1:1:490:922 + chr11 68375151 GACAGATCTTAGCAGGTCCAGGTGTGAGCAGGCAA ::::::::::::::::::::::::::::::77674 0 HWI-EAS88_1:1:1:804:56 - chr3 104733674 CCTGGCTAAGATGAAAACCTCATCTGACATTATGC 76264:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:371:614 + chr12 39991191 GTCAACATCCTTAGTCATCAGGGAAATGTAAATCA ::::::::::::::::::::::::::::::26774 0 HWI-EAS88_1:1:1:365:281 + chr4 63329328 GCCAGTGGCAAGGTGGTCAGCGGCAATCCCCATCC :::::::::::::::::::::::::5::::72467 0 HWI-EAS88_1:1:1:90:437 - chr10 110564558 AAAGACAGGTGGTGACCACTGGATGGGTCCAGTCT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:519:801 - chr12 8600932 CGTCTTAACTGAACTCCTGGGAGAGAACCTTATTA 27727:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:55:174 + chr7 57926732 TTGAAATTTCCAAGTAAAACGAAAACTCCTGGCAC :::::::::::::7::::::::::::::::6624+ 0 HWI-EAS88_1:1:1:926:152 - chr3 92634964 TCAAAAATAAGTCATCAAATTCTGAAAAGATCTTC 62777::::::::::::::::7::::::::::::: 0 HWI-EAS88_1:1:1:594:65 + chr7 110235696 GTGTCATGGCATGTGACAAGAATCATAGCAACAGG :::::::::::::::::::::::::::6::7777% 0 HWI-EAS88_1:1:1:969:461 + chr10 91601940 GAGAGCTTCTAAGTACATAGACCCTCTATGACTGC ::::::::::::::::::::::::4::::267777 0 HWI-EAS88_1:1:1:982:414 + chr18 84509585 GTCCAGCAGGGAGAGCGAGGGCACCCGTGACATTC ::::::::::::::::7:::::::::::::74+44 0 HWI-EAS88_1:1:1:590:459 + chr2 98507409 GACGTGAAATATGGCAAGAAAACTGAAAATCATGG ::::::::::::::::::::::::::::::74774 0 HWI-EAS88_1:1:1:189:354 + chr8 95860503 GACAAAGACCTTTGACAGCAGCTTCCATTCTGCCT ::::::::::::::::::::::::::3:::74777 0 HWI-EAS88_1:1:1:392:197 - chr18 84010337 CATTTGAGCCCTCCCTGTCTTCACCCTGCCAGGGC 644+6:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:980:597 + chr15 36224994 GAATGAAAGGGCAACTGCTGTCCCAGGCAAGATGG ::::::::::::::::::::::::::::::76472 0 HWI-EAS88_1:1:1:309:892 - chr9 63046001 CACTGCAGAGTACTTCAACAGTCATCTCATTAGGC 26767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:476:232 - chr1 149329348 ATAAACTGAACACTCTTACACACTGTGGGGTATCC %4777::::::5::::::::::::::::::::::: 0 34 HWI-EAS88_1:1:1:617:931 - chr2 49745917 CGTTTCTAATCCCACGTTCACACCAGTTCTCTCTC 54451::::::::::::::::::::::::::::1: 0 HWI-EAS88_1:1:1:100:764 + chr14 40499982 AAAATGAGAAAAAACTTTGATTCTGATATGTGGCT ::::::::::::::::::::::::::::::77277 0 HWI-EAS88_1:1:1:680:770 - chr14 100005090 TTTCAAAAGTGAACATTGTACTTTGCTCTGGCAGC 72677:::::::::7:::::::::::::::::::: 0 HWI-EAS88_1:1:1:934:89 + chr12 88133136 GTAGGAGTAACCAAGGTCTTGTTGGAGGAAGTATG ::::::::::::::::::::::::::::::77477 0 HWI-EAS88_1:1:1:180:810 - chr2 72892471 CATGCAAGCCAGCCTCCTTGACCTCACCTTCACCC 2622*:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:145:681 - chr11 65274313 GCTCTCATATAGGTGAGTGACGGATTACCTAGTAC 322)6:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:154:732 - chr2 88483322 TTATGGACCGGGAGAGATGCAATAAGATGTTGCTC 44646:3:::::::::::::::::::::::::::: 0 33 HWI-EAS88_1:1:1:659:673 - chr18 7254708 ACTATAACCAGCTATACACTCAAACTCAGGTCCTC 77476:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:464:138 + chr6 21900193 GCTGTGACAAGGAGGCGGCGGGCACACCGTACCGT ::::::::::::::::::::::::::::::26775 0 HWI-EAS88_1:1:1:865:304 - chr1 156941051 GGCATTCCACGAGGCATGTATATTTTACACTACGC 44466:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:607:65 + chr18 32510769 GGCAATGAGCAGCTGATGGAATGACATCTTCACTG :::::::::::::::6::::::::::::::64677 0 HWI-EAS88_1:1:1:606:750 - chr9 6521376 GCCAGAGTTCAGAGATAAGGTGCCTATCCTTGGAC 64747:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:276:410 - chr5 53971040 GCTCACCAATATGGCCAATCTCCTAGCCAGCTTGC 24*24:.:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:179:375 + chr5 47782368 TCTTGCTCTGGATCATTTGTCCTGAGTCCCCTTGT ::::::::::::::::::::::::::::::77767 0 HWI-EAS88_1:1:1:611:79 - chr4 109292772 AGATTACCTCCATAACAATCGTGCCACTATTGCTC 13)%5&::&&:::::::&:::::::1::::::::: 0 14,17,32,34 HWI-EAS88_1:1:1:930:164 + chr12 25866440 GATAAAACCAATCTATTCATAGTGCATAATGGCTA ::::::::::::::::::::::::::::::77476 0 HWI-EAS88_1:1:1:531:966 - chr4 152871828 TGCAGGTGCTCCCTGCATACAGGACACTGCACTCC )67+7::::::::3:::,::::::::::::::::: 0 HWI-EAS88_1:1:1:108:402 - chr4 40651208 CCTGAGAGCAAGGGAAAGCCGTGCTTTTGTTGACA +2+7733:.:::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:80:642 + chr1 35962822 CAAGGGCAGGAGCCATCTGCACTAGAGAAATGTTG ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:205:696 - chr4 10995327 AGTGCAGGACCACCTGCTTAGGAATGGGACTGCCC 77774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:988:578 - chr8 11615345 TTAGTTCCCAGCATTTCCGTGAGCTAGCTGTTCAC 44444:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:210:508 - chr9 101639144 CCTCTCTGCCACTTTCAATACTGAGACTAGACTGC 24444:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:515:830 - chr9 26992010 TTCCAGAGCCCTGAAAAATGCAGTCAACCTGTAAC 76777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:904:104 + chr5 85102840 TTATAACCCGTCTTTGTCTCTTTCTTATACTGATT :::::1:::::::::::::::::0::::+:5-155 0 HWI-EAS88_1:1:1:346:321 + chr1 32024086 GGAGACAGAAAGAAAGAGTGGGAGAGTGGCTTTAA ::::::::::::::::::::::::::::::777*2 0 HWI-EAS88_1:1:1:832:50 + chr11 26556578 GCAGAGAATGGCCTTGTTGGGCATCAATGGAAGAA :::::::::::::::::::::::::3::::2+4%1 0 HWI-EAS88_1:1:1:90:716 + chr14 52360866 CTGCGACCTGAAAAATGGTGGCTGCTTCCTGACTC :::::::::::::::::::::::'::::::++777 0 HWI-EAS88_1:1:1:980:484 - chr14 106807648 AGCCTTGGGTCTGACAGTGGAACTCAGGAAACAGC 64444:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:832:334 + chr1 169599474 GGCAAAGTTGGGATCTCGAAGATTAGACTCAGGAA ::::::::::::::::::::::::::::::47744 0 HWI-EAS88_1:1:1:520:851 - chr7 149527166 AACTGCTGAGCCATCTCTCTAGCCCTCAGATGTCC 77727:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:488:376 + chr9 53047723 AAAACAAAACAAAACAAAGATTGTTAGTTTGTTAT ::::::::::::::::5:::::::::::::27767 0 HWI-EAS88_1:1:1:842:277 - chr12 30624107 CAGCTGCACTTCTGCATTCCAAAAAGAGTTTTCAC 46666:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:404:453 + chr13 7748634 ATCCACTTATCAGTGAGTACATACCATGTGTGTTC ::::::::::::::::::::::::::::::77777 83 HWI-EAS88_1:1:1:483:934 - chr17 15041865 AATCAGTATCACCAGAGCACACTGGCCAGAAAGCC 77477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:205:928 - chrX 91998074 GAAGAGTTTGTTTTCCCATTGAGATTCCCTTGGAA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:963:539 - chr17 65985558 ACAGCGCCAGGTAGTAAGGCTGTCCCACTCTCTGC 44444:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:479:312 - chr14 10418861 CGGACAGGTGTGAGGATGGCAATGTGCTCTGTCAC 47766:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:914:587 - chr7 16776484 AGAAGCCAAACAGGCAAGGAGGAACACTCGGTCTC 74776:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:107:471 + chr15 25306210 AAGGGCCTTATTCATTCGAACCCCTATTCTCCTTT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:559:113 - chr8 50069390 CACAAACAAGGGGGACTCCAAAGCACAAGCTATCC ,7477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:95:652 - chr14 79582034 TTCTCCCATGTAGTCAGGCTCCATGGCAAGTTCCT 77474:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:346:208 - chr2 126229406 TAAAAGGGTAAGCACAGAAAAGACCATGTTTAGGC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:59:586 + chr5 123262186 CAGGTATCTCCTGCATGACTTCTTCCTTTGTGTTC ::::::::::::::::::::::::::::::72777 0 HWI-EAS88_1:1:1:950:465 - chr9 3035817 CCTACAGTGGACATTTCTAAATTTTCCACCTTTTC 67767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:37:511 - chr12 112569389 CAGTGGCGTCCAATGGCACCAGTGTCGGGAGCGCA 77446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:842:298 + chr13 51449553 GCACGGAACAGAAGCAGAGGTGTGACTGGGGTGGT ::::::::::::::::::::::::::::::7*774 0 HWI-EAS88_1:1:1:728:418 - chr9 3024084 TTCCGCCTTTTTCAGTTTTCCTCGCCATATTTCAC 40766:::::::::::::::::::::::::::::: 29 30 HWI-EAS88_1:1:1:766:289 - chr14 65592611 TGTACACTGCATGCCTGTGCTTCGCTAGTTTCATC 24444::3::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:442:335 + chr8 99916411 GCTGACAGAAGGGGTTTGTTTGTTTGAGTGCACAA :::::::::::::::::::::::::3:,:364740 0 HWI-EAS88_1:1:1:741:333 - chr6 84142154 GCTTGGCTCAAAAGAACAGTGACCCACTAATAGCC -)3-4:+::::::1:::::::::1:1::::::::: 0 HWI-EAS88_1:1:1:471:619 - chr6 48996704 CTGCAGAGGGAAACGGAATGACTCAGATGTGTTCC 44726:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:432:389 - chrX 124926192 CCTCATGGATTCTTCTCCAAAATGGATGATACAGT 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:429:771 + chr4 112242027 GTTAAAGTAAGGGCTCTAATTGGCAAAGAATGGGA :::::1::::::::::::::::::::::+:5553) 326 HWI-EAS88_1:1:1:97:74 - chr13 53589422 AAGGAAGTTCATATCAGGAAGTGCCCTTTGTTAGA 77667:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:566:896 - chr6 29467360 AACCACAGGCCAATAGTTCTGCATACAGCTGTCTC 76777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:819:674 + chr14 65248061 GTAACTTTGAACTTCTAATTCTCCTACCTTCACAG ::::::::::::::::::::::::::::::72762 0 HWI-EAS88_1:1:1:172:671 + chrX 33576656 AATTTCATGAACCAACTGATATCTCTGTACAACTG ::::::::1:::::::::::::::::+::+33-5) 0 HWI-EAS88_1:1:1:70:991 - chrUn_random 5872863 ACTGTAGGACGTGGAATATGACAAGAAAACTGAAA 74777::::6::::::::::::::::::::::::: 0 24,33,34 HWI-EAS88_1:1:1:945:213 - chr2 98502417 TCATGTTTTTTAGTGATTTCGTCATTTTTCAAGTC 67777:::::::::::::::::::::::::::::: 0 31 HWI-EAS88_1:1:1:450:742 + chr11 99841702 GCCTGGTTCCTGCTAAGACTTGCGATGGAATGGAA ::::::::::::::::::::::::::::::77704 0 HWI-EAS88_1:1:1:206:572 - chr8 74045910 TGCTTAACTTAAAATATACATGACTTTATATCTTC 76177:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:876:554 - chr6 10913668 AAGACCTCTCCTGAGCATATATCCAGAAGATGCCC 45%3100:11:,:::::::::::1::::::::::: 22 32 HWI-EAS88_1:1:1:197:728 - chr2 76084622 GTGATTTCCAAACCATTTTGTCTGGAAGAGAATTA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:273:941 + chr9 3018047 GTGGATGTTTCTCATTTTCCATGATTTTCAGTTTT ::::::::::::::::::::::::::::::27777 27 HWI-EAS88_1:1:1:453:342 + chr7 119991870 GACCTGAGTTTAGATCTTAGACCATAGCCCCAACA ::::::::::::::::::::::::::::::76171 0 HWI-EAS88_1:1:1:383:476 - chr5 60669036 TAAGTGATACATGATAGAATCTAGTGTTTTAGCAT 37776::::1:::::::::4::::::::::::::: 0 HWI-EAS88_1:1:1:348:47 + chr5 36813946 GAGGGGAAAGAACCAGGCACTGTGGCACTAGTTAG ::::::::::::::::::::::::::::::74766 0 HWI-EAS88_1:1:1:366:313 + chrX 3402464 TAAAAATAGCTATCTTGCCAAAAGCAATCTACAGA ::::::::::::::::::::::::::::::67772 68 HWI-EAS88_1:1:1:235:340 - chr12 55632262 TAGCACAGCTAACTTGCTTGCTCGGGAATCCTACC 04444::::::::,5:::::::::::::::::::: 0 HWI-EAS88_1:1:1:107:687 - chr18 8078052 ATATTCTCTCCACTGTGAGGGACCAAATTCTCCAA 76767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:230:889 + chr15 88906807 GCTTCTTTAGAAGTGGGGACAGTCTCCAAGCTTTC ::::::::::::::::::::::::::::::46774 0 HWI-EAS88_1:1:1:282:781 - chr12 3109994 AATTCATGGAAAATGAGAAACATCCACTTGACGAC 77644:::::::::::::::::::::::::::::: 3 32 HWI-EAS88_1:1:1:150:685 - chr4 25004887 CTTTTCTTGATCATGTTATTTGTCTATGCTTTTAC 236232:::::4::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:904:762 - chr11 93969163 GACTTCCAAGTGCTAGGATTACAGGTGTCAGTCAC 67764:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:101:33 - chr6 67242125 TTGTCTTCACTGTCACAGACCTTTGGAGTAGGAAC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:226:671 - chr17 23672319 CCACGACCCTGAGATTAAGTGTCTCATGCTCTACC 47777:::::::::::::::::::::::::::::: 3 15 HWI-EAS88_1:1:1:89:837 - chr1 8056457 AAGCAGCCTCAGTGCAGCTTATGTGGCACTTCTTA 77777:::::::::::::::::::::::::::::: 0 14,19 HWI-EAS88_1:1:1:565:768 + chr6 93504853 GCAAATCCACAGCTACCTCAGGATTGACCTTGAAG ::::::::::::::::::::::::::::::77647 0 HWI-EAS88_1:1:1:661:630 - chr13 52038780 TTCTCCGTTCCTGCCTCCTGATCTACTTGCTACCC 44646:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:366:305 - chr13 17623312 CTGGAAATCCCAGTGACCTGGTTCCTGACTCTGGC 72477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:694:750 - chr13 67492772 GCTACCATGATTCAAGTGCTGGTATTAATGGCAGC 66446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:242:264 + chrX 147541949 GGTTTCCGTAAGGGCTTTGGGAGTGTTGCACAATT ::::::::::::::::::::::::::::::74677 0 HWI-EAS88_1:1:1:649:958 + chr5 76399207 GTGTGTCTGTGTGTCTGTGTGTCTGTGTGTGTCTG ::::::::::::::::::::::::::.:5:27+7% 44 HWI-EAS88_1:1:1:799:87 - chr1 29511051 AGTGGGGAAAGGGCAGGGAAAGGAGGCACTGTGTC 76067:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:251:341 + chr13 29019191 GAGGAGTTTGTTTTGGGTTTGTGAGTTTGGGATCC ::::::::::::::::::::::::7:::6.,4777 0 HWI-EAS88_1:1:1:984:477 - chr12 3109948 TTTAGAAATGTCCACTGTAGCACATGGAATATGGC 14174:::::::::::::::::::::::::::::: 0 14 HWI-EAS88_1:1:1:176:102 + chr12 102340086 TAAAAATAAAAATTAATATGACTCAACATTGGTAC ::::::::::::::::::::::::::::::47777 0 HWI-EAS88_1:1:1:349:688 - chr8 11235884 TATACAGCGGGCACACATCTGGGTACACTGAGTTC 47)44::3:::::::::5::::::::::::::::: 0 HWI-EAS88_1:1:1:430:379 - chr8 51378714 ACAGAGTGAAGATTATTATGAACTAAGAATGAATT 72777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:699:539 - chr17 27592681 ACCACACACACACCACACACACAAAGCACACATAC 62**/:::22,::::::::5:4::::::::::::: 0 HWI-EAS88_1:1:1:496:845 + chr4 53077909 GCTGCCTTGGCCATGGTGTTTTATCACAGCAATAG ::::::::::::::::::::::::::::::76742 0 HWI-EAS88_1:1:1:998:430 - chr7 25384942 TTTTTCTCTTGCAGTGCTGGGGACGGAAACTAGGC 66464:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:116:700 + chr1 126449933 AGGGACTGCTGAGCTGGCTTGGGGGTCACTGAGCC ::::::::::::::::::::::::::::::47777 0 HWI-EAS88_1:1:1:353:866 - chr12 88581933 ACTTAAAAGCGTGTACCACCACTGCCCGGCTTTAC 1,%%3:::+:&:0:(:0:0:::::1:::::::::: 0 33,34 HWI-EAS88_1:1:1:224:84 + chr11 106362802 GTCCTGTACTGTCCTTTGTCCCTGCCCCAAGCGTG :1:1::::1::11111:::1:11:::01::131%1 0 HWI-EAS88_1:1:1:640:539 + chr10 75421961 GATGCTTTCCACACCCACGGTCTTCCTGCTTTAAT :::::::::::::::::::5,:5::::::,64%44 0 HWI-EAS88_1:1:1:850:348 - chr14 41621594 TAAAACGGCAAAGCTTCTGTAAGGCAAAAGACACC ,5555:+::::::,::::::::::::::::::::1 53 28 HWI-EAS88_1:1:1:99:702 + chr8 64280802 CCAGTCCCTGTACATACTTTTCAGAGCACTAGGGA ::::::::::::::::::::::::::::::77477 0 HWI-EAS88_1:1:1:773:384 - chr14 24868884 GCACACTTATCCCGTTCCCATTGGTTGGTTTATTC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:855:104 + chr10 125377747 GTGACAGGCCTGGTCAGAAGGGATAACAGAAAAGT ::::::::::::::::::::::::::22::64476 0 HWI-EAS88_1:1:1:99:333 - chr4 149261220 CATAAAAATAAGCTGGCAGCTGACACAGAGCTCAG +7777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:203:550 - chr18 47329829 GAAGCAGGTGGTGGTGACCGCGGAGGGTAGCCTGC 64+7+3::3:::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:105:785 - chr11 96686230 ATTTTAGCTTTTTAAAGAACTTGGGGGAGGGGCTG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:166:853 - chr14 13866161 CAGTCATGCTTCATTGTGTTTTGTGAGAGAAATAC 47447:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:381:132 - chr10 119810465 TTCAACAAACACAAATCCTATGCTTTTATATATAC 64%775:::6::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:714:823 - chr2 60399038 AATTAATAAATGAGCTTTTTTACCATAGTCCAAAC 672*6:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:308:860 + chr8 129981915 GTGCCAGTAACCAACCCGTGACTTGAAACCTTTTT ::::::::::::::::::::::::::::::77477 0 HWI-EAS88_1:1:1:92:878 + chr11 64835392 ATCAGTTTTCCCAATACTATATACTATATAGAAGG ::::::::::::::::::::::::::::::4772, 0 HWI-EAS88_1:1:1:349:167 - chr10 107707487 TCAGATTTTTGTGCCTAGAAACTTGGAATTAAGCC 31555:::+:::::::::,1&:::::::::::::1 0 HWI-EAS88_1:1:1:860:554 + chr7 87010633 GGAAGACAATGTCAGATTCCCTGGAGCTGGACATA ::::::::::::::::::::::::::::::46440 0 HWI-EAS88_1:1:1:296:103 - chr12 79870259 GTGAGTCATTGCAATGATAACAGATGCTGTCAGAA 7)677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:196:721 - chr16 21171610 GAGTTCTTTAGAGCTTTGCTGTCTACGAAGTCACA 67327::::::::::3::::::::::::::::::: 0 HWI-EAS88_1:1:1:221:93 + chr16 9908456 GCTGAATGCATGATCACAGCAATGTGGGCTTCCTG ::::::::::::::::::::::::::::::76774 0 HWI-EAS88_1:1:1:67:439 - chr11 50571021 TTCAAGGACCTCTTGCTGTGTAGTCTTAGTAAGAG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:959:753 + chr6 116145663 GACTGTTGGGCAGAAGCTCTGGTTCCTCTTCAAGT ::::::::::::::::::::::::::::::62266 2 HWI-EAS88_1:1:1:723:636 + chr4 42059385 GCTACCTGCTTTACAGATGGGAGCAGTTTTCTCCA :::::::::::1::+:0::::0::0:::::4-443 1 HWI-EAS88_1:1:1:123:215 - chr17 41961429 AGCAGGACCTATGCATCCTGCCAGAGGCACATATT 55555:::::::::::::::::::::::::::::1 0 HWI-EAS88_1:1:1:95:737 - chr4 144484919 GGACAGCTGTTTAACCTTGCCTTTGGAAGGGGAGT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:813:830 + chr15 84624366 GTGGAGAAGATGTTAGTGGGGGTGAGAGGAGCATG ::::::::::::::::::::::::0::::040444 0 HWI-EAS88_1:1:1:611:34 - chr10 54966350 CACTAACTTTCATTATAGAGACTGTTCAGTAAGCC 27467:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:337:384 + chr6 92896494 GGGAGGCAGAGGCAGGCAGATCTCTGAATTTGAGA :::::::::::::::::::5::::::::::7+442 1 HWI-EAS88_1:1:1:117:908 + chr5 58245291 AGTCACTTTAGATGTAAAAACTATGTAACTATCAG ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:584:274 + chr19 33060475 TTATATGAATGTTTGCTGACTAATGAGTCTTTTCT :::1:::::1::1:&0:1:::,:1+:+0::)51,3 0 HWI-EAS88_1:1:1:241:287 + chr13 20403450 GACATTTCAGTGTGCACTCTATTTCCCACCAGAGG ::::::::::::::::::::::::::::::40444 0 HWI-EAS88_1:1:1:787:93 + chr5 40411697 GTCTTCCACATAGCTGAGTGCAAGAGCACAAGTCA :::::::::::::::::4::::::::3:::27262 0 HWI-EAS88_1:1:1:730:549 + chrX 163243386 GTCTGCTCTAAATCTTGGCCACATTGTCATCTGGA ::::::::::::::::::::::::::::::76260 0 HWI-EAS88_1:1:1:317:242 + chr4 129099097 GCACACCTTTAATCCCAGCACTTGGGAGGCAGAAG ::::::::::::::::::::::::::::::67477 61 HWI-EAS88_1:1:1:121:979 + chr2 141245719 CTTTGTGGGTGGAGTCAGTTGTCTCCTATGGTGCA ::::::::::::::::::::::::::::::+7477 0 HWI-EAS88_1:1:1:850:422 - chr15 16896739 TATAAGGCTCAAAATTTTGGGTGGATGTTCATCTC 77/67:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:65:863 + chr3 63617222 TTTAAAAAAAGAGAAAGATGCTGATGACAAGCAGT ::::::::::::::::::::::::::::::76777 0 HWI-EAS88_1:1:1:375:550 - chr15 12720207 GCCCGTAACTCCAGGGGATCTGACATCCTCTTCTC 76647::::3::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:126:412 + chr14 107589395 GCATGTGCCATCATAAAAATATAGAGATGAGAGGA ::::::::::::::::::::::::::::::47777 0 HWI-EAS88_1:1:1:432:525 - chr10 83081942 ACAAAACGCCTCTCCCCAGTCTTCTGCCACAGCAC 47666,::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:700:650 - chrUn_random 5249479 ACTTTTCTTGCCATATTCCACGTCCTACAGTGGAC 264263::::::::::::::::::::::::::::: 0 33 HWI-EAS88_1:1:1:241:563 + chr5 104173660 GTCATACTGACTCATACATAGCTCCTACACTCAGA ::::::::::::::::::::::::::::5:77724 0 HWI-EAS88_1:1:1:917:891 - chr1 55510902 ACCTGGCATTGATAGGAAAGGTAAACACGGGACAC 72724:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:694:592 - chr10 63629278 CTTCAACTAAACTTGCAAACTCTGAAATGTTCTTA 46677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:93:768 - chr12 48115673 AGTTCGGGGTATACTGGTTAGTTTATATTGTTCCT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:867:516 + chr3 113878743 GACCATAAGTGTGTGGTTTTATTTCTGGGTCTTTA ::::::::::::::::::::::::::66.:77776 0 HWI-EAS88_1:1:1:548:480 - chr13 20070663 GTTCTTTGGTGCATTTGTCTCTACGAATCCATGAC 64442::::3::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:475:646 - chr15 21907106 GGCCTACCTGACCAGCATCAGCCTAGTGGGTGGTC 574/20::+:::34::::::::5:::::::::::: 0 HWI-EAS88_1:1:1:185:417 - chr5 3816829 TTAGCTCACCCTACCTCATAATTTGTTGTGACAAC 2,62%33333:::55:::::::::::::::::::: 0 27 HWI-EAS88_1:1:1:695:799 + chr5 114319271 GTGCAATGAGCGCAACAGTAACCTGCGATCCCTGG ::::::::::::::::::::::::::::::77674 0 HWI-EAS88_1:1:1:59:368 + chr2 72531796 GGCACGTCAGCCTCTTGACGTCAGTCTTCCCAGCC ::::::::::::::::::::::::::::::77477 0 HWI-EAS88_1:1:1:115:192 - chr4 154460838 ACAGGCGTGGTCCAGGCTGCAGGCTCACGGCCAGC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:980:503 - chr5 136478377 CCCCTCACTGAAGGATTCTAGGCAGGGGCTCTACC 24664:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:333:616 + chrUn_random 5746062 GCTGCATCCTTGGTTCAATGACTTGCTCAGCCATC ::::::::::::::::4:::::::::::22776*6 0 HWI-EAS88_1:1:1:589:491 - chr2 168770559 GATTTTGGAGATGCCAGTGTCACGGAATGACCACC 66404+::::::::::::::::::::::::::::: 0 15 HWI-EAS88_1:1:1:106:818 + chr4 126937828 ACATCAAAAGGAACACTGGTCATACACATCCTGCC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:964:410 + chr10 7570859 GGGTTATGGCAAGCAAGAGAGTTTTCTGGAGGTGG ::::::::::::::::::::::::::::::42424 0 HWI-EAS88_1:1:1:86:888 - chr15 81660428 CCACTACACCTTCCAGGATCCTAGCATTTATATTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:427:493 + chr10 28251298 AGCATTTTCAACAATTGGTGCTGGCACAACTGGTT ::::::::::::::::::::::::::::::77477 5262 HWI-EAS88_1:1:1:176:639 + chr2 154677559 TAGGATCTGATGCAGTGAAGGAATGGACTTGCTAG ::::::::::::::::::::::::::::::77762 0 HWI-EAS88_1:1:1:590:246 - chr18 27280792 TGACTTAAGTTTAATGGTTGGGTGTAAGTATTTGC 77777:::::5:::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:260:261 + chr2 65418677 GTTCAATGACTGCAAGTGCTTGAGCAATCACAACC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:731:275 + chr2 36686396 GAACATGAAGAACAGAACAACAAAAAATCCACTAA ::::::::::::::::::::::::::::::77742 0 HWI-EAS88_1:1:1:849:567 - chr14 99329260 GAAGCGCAGAGATATGCCAACAGCTGTAGCAAACC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:162:973 - chr1 91442049 GAAGTGACCAGCCATGGGGTTGTGACTTCTTCTTC 04644:3:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:410:451 - chr4 25781534 CACTTCTCTGCATCTCTGGCTTCACCTCATTGCAC 717+6::::::65:::::::::::::::::::::: 0 HWI-EAS88_1:1:1:179:383 - chr7 142774930 ATGGTATAGCACATATACCATGAGGGACAGCTTAC 74774::::::7::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:188:185 - chr16 33332847 TAGGTACTAGGGACTGATCGGAGGTCCTTGATAAC 2+424:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:433:441 - chr11 108240003 GGACCACAACCATGTACCACCAAACCTAGCTTTTT 7722*:3:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:206:725 - chr12 113513201 CTCTGCTGCCTGACAGGCAGGGCTCCTGGCTAGAC 76667:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:808:657 - chr18 62755963 TGAAGCTGAATGTGCCATGTACTCAGCGAGGGGTC 26447:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:554:244 + chrX 101858868 GAAGGTAGGTGCATGGGGAGGGAAGAAGGGATCTA ::::::::::::::::::::::::::::::47774 0 HWI-EAS88_1:1:1:711:428 - chr8 116844688 ACACGCCTCCTCTATCAAGACCACACCTCCTAATC 66762::::::::::::::,::::::::::::::: 0 HWI-EAS88_1:1:1:924:770 - chr6 92193078 CTCCCTTTTGCCCGGATGCTGGCGTTTTGTGATCC 74777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:741:535 - chr9 3034640 CCACATCCTACAGTAGACATTTCTAAATTTTCCAC 6+667:::::::::::::::::::::::::::::: 31 20,30,31 HWI-EAS88_1:1:1:369:453 - chr4 24570663 TGGCATTTTGGTGTAGTCTGCTTCTTGCATCTTCC 26764:::&:::::::::::::::::::::::::: 1 HWI-EAS88_1:1:1:885:138 - chr5 110955887 TGCTAGGGAAGACATACCAGAAACCCCTTACCCAC %/)-3::::::::::::::::::::::1::::::: 0 HWI-EAS88_1:1:1:108:420 + chrX 111064812 ACACTTCCACATTGCTGTTCATCACTGAAGGAAGT ::::::::::::::::::::::::::::::77777 23 HWI-EAS88_1:1:1:866:613 - chr6 104498999 ATGTTCAAAATCAAACTCAAGGAGAAAGTGTTCAC 74766:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:499:872 - chr2 154522915 CTCCTGCTGCACCATGCCTGGATGCTGCTACGCTC 72774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:532:575 + chr16 54097763 GTTCTCTCTGAAGAATTACACAATGGTATTTTTAC ::::::::::::::::::::::::::::::77767 0 HWI-EAS88_1:1:1:880:866 - chr2 98502386 TCCAGGTCTTTCAGTGTGCATTTCTCATTTTTCAC 46774:::::::::::::::::::::::::::::: 0 26,30,33 HWI-EAS88_1:1:1:756:863 + chr1 69944995 GTCTTTAAATTCCACCACTCTTTCGTGCCTCATTA ::::::::::::::::::::::::::::::44774 1 HWI-EAS88_1:1:1:764:28 + chr15 97026683 GATACCGACTATGGCTCTCCAGTTCCACCTTCTGT ::::::::::::::::::::::::::3:::74624 0 HWI-EAS88_1:1:1:241:338 - chr2 59840331 ACTTCACATCGCTCATTACATCGCCTTTCAGTAAA )%&%/:&:&1&4:-:3::::::::::::::::::: 0 24,34 HWI-EAS88_1:1:1:769:714 + chr10 80879669 GTATGGAGCTTCCCTCTAGCACTCGCACGCTCACA ::::::::::::::::::::::::::::::76274 0 HWI-EAS88_1:1:1:240:932 - chr11 77968403 ACCCCAGCCCCACCGGTCAACGGCCTACCAGCCCC ++777:&::::::::::::5::::::::::::::: 0 28 HWI-EAS88_1:1:1:705:777 - chr3 62599070 TAAATACTTTGTTTATTCTAGACCCAGACTACTAA 47727::::::::::::4:::-::::::::::::: 0 HWI-EAS88_1:1:1:562:597 - chr12 49782535 TTACAGAGTACTATGGTTAAGTGTTTGCATGAGAC 46777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:676:156 + chr14 92039519 GAATACTCTTTCATTTTAGGGTGAAATATTCTGTA ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:431:544 + chrX 42960859 GAAGAACATAGTGTCGTCGTTCTTTTCTGCTGGTC ::::::::1:::::::::::::::::::::41335 0 HWI-EAS88_1:1:1:945:150 + chr14 85932619 GTGGGTGTTAATCCTCGCAGATTGCGACCCCTAGA :::::::::::::::::::::::6:6::::47274 6 HWI-EAS88_1:1:1:191:747 - chr5 27920815 AGAGAGCCACTGAGCCTGGCTTGAGTTTCTGAAAC 46477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:799:612 + chr17 58281063 GAGAGTGGGATAGATAGCTAGGGCGGGGGTGGGAG ::::::::::::::::::::::::::::::77644 0 HWI-EAS88_1:1:1:163:627 + chr11 5018235 TCAGTGGGGGAGGGGGAGGTTAGAGAGATGGCTCA ::::::::::::::::::::::::::::::64766 0 HWI-EAS88_1:1:1:245:700 - chr1 135274060 TTGAGGCACCCCAGTTGAGGACTGTACTCTACGTA 67776:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:376:244 + chr11 90214041 GTCAGTAGCGTGTGTGTCATTGCCATAACGCGTTT :::::::::::::5::::::::::::::::6/777 0 HWI-EAS88_1:1:1:123:267 - chr11 52653462 GAGACAGGAGGATGCAACTAGGCTGCCTAATGAGT 77774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:268:917 + chr2 130598775 GTATTCAAATCCCCAGCACCCACATACAAAGCTGG ::::::::::::::::::::::::::::::76664 0 HWI-EAS88_1:1:1:908:230 - chr9 71945140 TTACCACTTGGCCACTTCCTGCTCATCGTTGATAC 66677:::5:::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:197:419 + chr1 130307049 GGCAATATGTTATTTACCTCTCAAATGAGCGCACG :::::::::::::::::::::::::::3::77274 0 HWI-EAS88_1:1:1:866:327 - chr1 4202455 ATAAACAGAACTCCAATGACTCAGGCTCTAAGATC %4746:::::::::::::::::::::::::::::: 0 23,34 HWI-EAS88_1:1:1:57:637 + chr15 17631444 GCTGACATGCGTCAGTCCATCCATCTGTCCACTGA ::::::::::::::::::::::::::::::77777 1 HWI-EAS88_1:1:1:681:291 + chr7 18025669 GATCCATTCCTATCTCCTTGTACTAAGGTCAAATC ::::::::::::::::::::::::::::::74677 1838 HWI-EAS88_1:1:1:673:673 + chr8 7896236 GTTGTACAAGCCTGCAATCCCACCAACAATGGAGG ::::::::::::::::5::::::::3::::42426 4826 HWI-EAS88_1:1:1:968:531 + chr19 53623034 GGCCTGGGCTGCCCCTCCTGTGGCACCTCCTTAGG ::::::::::::::::::::::::::::::77066 0 HWI-EAS88_1:1:1:188:499 - chrX 160376728 CTGAGAGCACCCAGTGTACAACTAAACTGATCCAC +2777::::6::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:83:813 + chr3 80617174 AACCTACCCATAAAACATTTAGATAGAAAGGGAGA ::::::::::::::::::::::::::::::27777 0 HWI-EAS88_1:1:1:88:491 - chr15 38510553 GAATGTGTCCTCCCACTCCTGATTCTCCTGCCTCT 77776:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:194:801 + chr19 16016181 GTCACTGAATGCACAGCCTTGCTTGGTGGAATTTT ::::::::::::::::::::::::7:5:::67777 0 HWI-EAS88_1:1:1:689:169 - chr8 69772488 CATATCTCTTTTAGAATTTTTTCTAACAAGATTTC 77464::::3::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:581:905 + chr16 23078140 GATGCTAAGACTTGAAGTGCTCTGAGGCTCCAGAG ::::::::::::::::::::::::::::::74747 0 HWI-EAS88_1:1:1:227:975 - chr8 26384959 ATCTGCCTGGAGTCTGAACAAGATGAGTAAACACC 77225:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:886:158 - chr8 99512766 CAGACTTCTCCACTCTCCTTCCTTGGGTTTGTTCC 77667:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:243:676 + chrX 159385213 GAGATCCTGGGTGTGTCAGAGCTCCTGGGAGTCAA ::::::::::::::::::::::::::::::74764 27 HWI-EAS88_1:1:1:123:548 - chr10 126521221 TTGCCTATAGGCGTTCACCTCTCATTGTTCTCCCT 67%1+,3::::&::::::::::::::::::::::: 0 32 HWI-EAS88_1:1:1:216:402 + chr8 72039647 GGACCGCTTCACACTGTTGTCTGCATTTGGATTCC :::::::::::::::::::::::::::::626767 6 HWI-EAS88_1:1:1:118:696 - chr1 137517853 ACAGAATCTATTGGATGGAACACAGGGCCCTCAAT 7/7/&::1:::::::.::::::::::::::::::: 0 30 HWI-EAS88_1:1:1:268:211 + chr16 27977293 GGCAGGAAGAAGTCGCACTGAACTTCATATGAGAT ::::::::::::::::::::::::::::0:75256 0 HWI-EAS88_1:1:1:174:184 + chr2 27880843 GGTCTTTGTGCCATCCACCCATCAAGGTCAGCAGA ::::::::::::::::::::::::::::::77277 0 HWI-EAS88_1:1:1:80:660 + chr12 74577404 GAAACCAGGGCCCCTGCACCTGTTCCTTGCATTGC :::::::::::::::::::5::::::::::47777 0 HWI-EAS88_1:1:1:810:735 - chr4 34086152 CTTTAGACTGGTTTACAGAGGCTGATATGTTTCTC 3/327:22::::::+:::::::::::::::::::: 0 HWI-EAS88_1:1:1:474:263 + chr1 71336215 GTATTTCAGAAGTCATGTTTGCATCTTTGTCTCTT ::::::::::::::::::::::::::::::77766 0 HWI-EAS88_1:1:1:478:393 + chr19 24849407 ACCTGGAGGGTATCATCCTGAGTGAAGTAACCCAA ::::::::::::::::::::::::::::::77746 627 HWI-EAS88_1:1:1:163:211 - chr1 62953437 TGAGTATGTAGCCCAAAGATAGAGTGTATACCTAC 46644::::::5,5::::::::::::::::::::: 0 23,30 HWI-EAS88_1:1:1:988:555 + chr2 133667668 GACTAGCTTCTAATACTATAATTACTAAGAAATGG ::::::::::::::::::::::::::3:3:&4420 0 HWI-EAS88_1:1:1:854:533 - chr7 95344460 TGGAAGTAAAAACGACCCCTGCCCTAAGAAAATGC 27467::::::::::::7:::7::::::::::::: 0 HWI-EAS88_1:1:1:435:632 + chr5 50715185 GCCCTACTTAAAGCATTCCACCCCTTTCCAAATCC ::::::::::::::::::::::::::::::22677 0 HWI-EAS88_1:1:1:525:489 + chrUn_random 5263558 GCTAGGTGTGGGACTATGGCCTGGTCAATTAGAAC ::::::::::::::::::::::::::,+::41044 0 HWI-EAS88_1:1:1:200:836 - chr16 10994521 TGCTTTTCCCTGGGTGAGGCTTATCCATTGTATTC 236672::&:::+:::::::::::::::::::::: 0 HWI-EAS88_1:1:1:242:728 - chr1 187053498 TCAGGGGCTACAGAGCTTTGCCATCTTTGCTCTTT +1477::::::::::6::::::::::::::::::: 0 HWI-EAS88_1:1:1:621:412 + chr14 113068828 GATTGGACTAGAGGGAATGACATAGGTGGCCAAAC ::::::::::::::::::::::::::::::4%0)4 0 HWI-EAS88_1:1:1:101:860 - chr4 138564087 TGCACGTGGCAGCCTGAATCACTGCAGCCTTGACC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:777:729 + chr11 64869257 GTATCCTGACAGCTGTTCCTCGCTGACTAAGTGTG ::::::::::::::::::::::::::::::74744 0 HWI-EAS88_1:1:1:864:751 + chr16 73629325 GTAAGGTAGAAATCAAGTTTGAGTCCTTGATTGGG ::::::::::::::::::::::::::::::77277 0 HWI-EAS88_1:1:1:786:152 - chr12 109230419 CTTACAGCCTTTGATAAAAATAATAAACCCACATC 44477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:318:334 - chrX 53407449 ACAAGTTCCCTCGCCCCACTGCACGGCATTTCATC 4677633:3:3:&:::::::::::::::::::::: 0 22 HWI-EAS88_1:1:1:357:844 - chr18 83636587 TCAAAGGCTGTGATGGCTCAGGCCATCTGGTGTCC 47767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:54:518 - chr12 33337199 CAGAGTCTTTCCTCTTCTGTATCCGTGTGGTTTGA 46427:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:406:321 + chr2 98506541 GTTTCCAACGAATGTGTTTTTCAGTGTAACTCACT ::::::::::::::::::::::::::::::77467 2 HWI-EAS88_1:1:1:701:112 + chr7 68581094 GACTATTAATAACTGCTTCTATTCCTTTAGGGGAT ::::::::::::::::::::::::::::+34+107 0 HWI-EAS88_1:1:1:81:830 + chr1 105564744 TCCACCTATAGGGTTGCAGATCCCTTTAGCTCCTT :::::::::::::::::::::4::::1:+:77277 10694 HWI-EAS88_1:1:1:590:419 + chr14 106558713 GAGCACCTCTTTTTGACTTAAAGGAATGGGAAGCA ::::::::::::::::::::::::::::::74776 0 HWI-EAS88_1:1:1:366:406 - chr14 53070370 TGACAATTGCATTGCACAGCTCTTCTTCCTACATC 46477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:342:363 - chr5 87228828 AAGCAGAAGTAAGTGTGGTATATGCACCCAGAGCC 77647:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:351:700 - chr13 62810951 GTCAATTCTTACAAAAGTTCTTCTTTATTTTTAAT 77477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:603:503 + chr18 41053558 GAAAGAGAGGCCCATTGGACTTGCAAAATTTATAT :::::::::::::::::::::::::,::::74767 10 HWI-EAS88_1:1:1:366:923 - chr7 24982474 AACTAGTATGTGCATGCATCTTTCATTTATGAATC -55-511:1:::::::::::::::1:::::::1:: 0 HWI-EAS88_1:1:1:929:238 + chr3 107063886 GCACCAGGATAGAGAACTCAGGCAGGGAGACTGCA ::::::::::::::::::::::::::::::46766 0 HWI-EAS88_1:1:1:106:67 + chr7 148104030 TAATGGAGCCATAATGTTGGGGACAGCAGGTAGCA :::::::::::::::::::::::::::::,77144 0 HWI-EAS88_1:1:1:369:644 - chr6 93356241 ATCCTCGAGGCTTTTACCTCTGGATGTAGTCAGAA 4464+:::::::::::,:::::::::::::::::: 0 HWI-EAS88_1:1:1:368:437 - chr6 14104807 CATTAATGTATTTATTCACTTTATTTCCAGATCAC 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:106:319 + chr4 53819113 GCCCTTGCCTGCGTCTGGCAGGAGTCCTGCCACAA ::::::::::::::::::::::::::::::74777 66 HWI-EAS88_1:1:1:557:185 - chr12 119197313 TTGTTTTACAGATTTATAATTTCCACAAATCATAC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:71:183 + chr19 46396168 TAGAGCAGGGTGAGACTCAGCCTCTTGGAGGAGGG ::::::::::::::::::::::::::::::72777 0 HWI-EAS88_1:1:1:647:592 + chr17 69295642 GACAATCCATAACTCCAGGGTGGACTACTAAGCCC :::::::::::::::::::::::::::::052663 636 HWI-EAS88_1:1:1:126:215 - chr2 126229406 TAAAAGGGTAAGCACAGAAAAGACCATGTTTAGGC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:184:372 - chr9 99510895 TAGTAGAAATGTTGTCTACTCATCCCTGGAAGTTC %4)46::3&:::::::::5:::::::::::::::: 0 32,34 HWI-EAS88_1:1:1:309:188 + chr3 103241354 GAGGAGCCCCTGGGAGGTACAGGGAAGGAGATAGC ::::::::::::::::::::::::::::::66774 0 HWI-EAS88_1:1:1:124:392 - chr11 52110335 GACAAGCCTTCTCCCTCAGCCTCCCCCAAAACACT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:692:620 + chrY_random 28859341 GGTAATTGAGAGTTTGGCCGGGTATAGTAGCCTGG ::::::::::::::::::::::::::::::64444 1917 HWI-EAS88_1:1:1:767:338 + chr13 112850398 GGAGGACGGCTTCAAATTTGAGTGTAGTCTAGGTT :::::::::::::::5::::::::::::::24227 0 HWI-EAS88_1:1:1:83:121 + chr2 174234880 TGAGAGTACCTGAGAGGCAGAAAGATCTCCGTGAG ::::::1::::::::::&::::::::+:::15515 0 HWI-EAS88_1:1:1:98:275 + chr1 116089801 AGTAAAAGAATGAAGCTTGATATGTTCATGTGCCA :::::::::::::::::::::::::::::.72774 0 HWI-EAS88_1:1:1:278:728 + chrX 55214153 GTGTACATGCTGATCTAGCAATTCTGTTCTAAGTA ::::::::::::::::::::::::::::::74277 0 HWI-EAS88_1:1:1:218:362 - chr16 4790563 TAAACAAATAAGCCACAAAATGACCAGCATCTCAA 27+7+::::::::.::::::::::::::::::::: 0 32 HWI-EAS88_1:1:1:563:297 - chr11 50865423 CTTGTACTAGTCAGGGTTCTCTGGAGTCACAGAAC 44477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:259:940 + chr15 25799668 GAGGCTGCCTTTGAACTTCATCTTCCCACTTCTAC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:140:679 - chr15 85400829 AGCCCCTGGCAAGCACTCTCTCTACACCACCTGCC 60447:3:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:109:344 + chr11 57893963 ACCAGGCTGGCCTCAAACTCAGAAATTTGCCTGCC ::::::::::::::::::::::::::::::77477 85 HWI-EAS88_1:1:1:574:454 - chr2 135728931 GTGTCTCCAGAAGCCCTGAGTGGCACGCTGCTTTC 66764:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:594:454 - chr14 94065098 AAGCTTTTCAAAGCTCCAAGCCCATCCCCAGCGAC 77466:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:750:305 - chr1 146036887 ATATGGAATTGCATAACAGTTACTAGAACCAGCTC 74426::::::6::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:361:156 + chr9 75264392 GTGAATGGGAGTCCAAGGATCTAGCAGTTGTTCAG :::::::::::::::::::::::::::+::4444+ 0 HWI-EAS88_1:1:1:596:20 + chr13 117979300 GAATATGCCAATACAAATGGGACTCAATTCCTTCT ::::::::::::::::::::::::::::::67777 0 HWI-EAS88_1:1:1:499:747 - chr18 22028144 GGGTTACATGGAATCTTTTTGCTACTTCCAGTTTT 77647::::::::::5::::::::::::::::::: 0 HWI-EAS88_1:1:1:620:438 + chr14 52864319 GAGAGGCCTATCCGGTTTCTAGGGCCAAGACCAAG :::::::::::::::4:::::::4:2::2:57%%% 0 HWI-EAS88_1:1:1:577:505 + chr12 24388280 GATGTCTTAAAAGTAGTAGTCTTAGTAAGAAGACA ::::::::::::::::::::::::4::::26236/ 7 HWI-EAS88_1:1:1:113:638 + chr17 43292958 CTTGGGCAGACTTCAAGAAAGGGTCTGAGGAGACA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:615:446 - chr5 136138360 CTTAACCTTACCCTAAACCTAACCTCCACCCCACC 4*264:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:991:529 - chr10 12548378 GCAGATGAATTTTACCTTGTGCATTTAAACTCATC 2/6%60:::+::2:::3+::::::::::::::::: 0 31 HWI-EAS88_1:1:1:138:949 + chr17 16087054 GGGGCCAAGTTGACCTGCTATGGTGGGAAAGATGG :::::::::::::::::::::::::::.:54,774 0 HWI-EAS88_1:1:1:161:583 - chr11 116671085 AATGAAATGAACTCAGGCCCTGCTGGGACCTCAAC 44777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:853:122 - chr11 6039485 TCTTAGCTGGGCTCCCATGAGTGTATAGTGGTTTC 67647:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:593:709 + chr9 3037227 TGTATTTCTCATTTTCCGTGATTTTCAGTTTTCTC ::::::::::::::::::::5::::::.::77777 30 HWI-EAS88_1:1:1:980:577 + chr11 101001436 GTGTGGCACAGGTCTTTAATCACAACACTTGGGAT ::::::::::::::::::::::::::::::76664 0 HWI-EAS88_1:1:1:607:959 + chr15 40412980 GTATATTAGCAGAAACAGGAAATCAATGATAATGG ::::::::::::::::::::::::::2:::66677 0 HWI-EAS88_1:1:1:731:502 + chr16 23351281 GAACTCAGCCTGGCCCTCCCCCCTTCACACATATC ::::::::::::::::::::::::::2:::22/67 0 HWI-EAS88_1:1:1:408:607 + chr3 8850850 GCACTGACTAACAGAGCAGCTGTCAGTGCAGAGTG ::::::::::::::::::::::::,::::3426,2 0 HWI-EAS88_1:1:1:600:700 + chr2 29998828 GGCTAGTGATTCTGCTGCAGAGACAAAAGCTCTCT ::::::::::::::::::::::::::::::77477 0 HWI-EAS88_1:1:1:921:580 + chr17 14461130 GCCTTAAGGCCAGAACTTGTGGTACAGCTTTGTCC :::::11::::::+:01::1::+::+::1:33411 0 HWI-EAS88_1:1:1:842:893 - chr5 36767520 TCAGGCTGTCAGGCTTGCACAGTTAATACTTAACC 52776::02:::::::::::::::::::::::::: 0 26 HWI-EAS88_1:1:1:335:454 + chr8 19929673 GCCACTTCCATGAAGATAACACTGAAGATAAAGGA ::::::::::::::::::::::::::::::41444 5 HWI-EAS88_1:1:1:898:402 - chr14 55818025 GATATGGAGATGCCCCATGGAGAAGACCTAGATGC 77777:::::::6:::::::::::::::::::::: 0 HWI-EAS88_1:1:1:122:985 + chr15 81057375 AGCAAGTCATGATGAGAAGGGGCAGGTGATCTGAT ::::::::::::::::::::::::::::::67777 0 HWI-EAS88_1:1:1:87:44 + chr17 17141877 TTTCGCACACTCTCACCCTGAGAGAGTTGCTCCTG ::::::::::::::::::::::::::::::77772 0 HWI-EAS88_1:1:1:632:537 + chr12 3109884 GAAAATGAGAAATACACACTTTAGGACGTGAAATA ::::::::::::::::::::::::::::::66474 4 HWI-EAS88_1:1:1:85:771 - chr9 63777305 ACAGGAAATGCTAAGCCTTTTCTCTGTGAGGCAGT 77777:::::::::::::::::::::::::::::: 0 27 HWI-EAS88_1:1:1:479:384 + chrX 69921640 ATATATTGTTTGAAAAAGAAAAGCTAAGGAGACAG :::::::::::::::::::::::::::1:&/2757 0 HWI-EAS88_1:1:1:325:919 - chr12 39399093 CTGTGGAGAAACTGTTCTCTTCCAGTTGGTCCCTC 66767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:548:713 + chr1 171502972 GGATGGCCTTGTGGGACATCAATGAGAGGAGAGGC ::::::::::::::::::::::::+:::::72644 50 HWI-EAS88_1:1:1:709:757 - chr6 56837978 ACTGATGAGCATAGCCAACACCAGAGGCCTTGTCC 44076:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:421:463 - chr3 7874832 CACCAAGTAAGTCCCTTTTCCCCAAAGCATTTCTC 77677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:189:305 + chr1 172550695 AAAACAAGAGGAGAATGTCAGGCAGTGGATGCAGA ::::::::::::::::::::::::::::::44272 0 HWI-EAS88_1:1:1:121:559 + chr5 150295494 ACCATGGTGTCCTTTTATGCAGACTGTCAGTTTGA ::::::::::::::::::::::::::::::777,4 0 HWI-EAS88_1:1:1:224:985 - chr5 149715546 TCCGTTGAAGAGTCACATGTAAAATCTTAGGTTGC 46444:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:333:730 + chr9 77349179 TGGACAGAATCAGCAAAGCTCAGAAAGGCAAAATG ::::::::::::::::::::::::::::::76677 0 HWI-EAS88_1:1:1:295:481 - chr18 88971116 CATGTTAATTTGGTTCCCAAAATTGCACAAAGATC 67777:::::::::::6:::::::::::::::::: 0 HWI-EAS88_1:1:1:102:695 - chr19 43764369 GGGACGAGCGGGCCTCGGGATTCCCGTGAGTGGGA 66477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:208:782 - chr12 101714235 GCTTCCTGCGAGGGCTCTGGAAAGCTACAACTTCC 44646:::::::::::::::::::::::::::::: 0 30 HWI-EAS88_1:1:1:283:124 - chr13 106216589 AACAATAAAAATTTCCCCCCAACATTTAAAGATGC 74/67:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:348:926 - chr3 99538672 GTTTTGTAGTTTGTCAAGCTAATTACTAATTACTC 76767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:534:649 + chr9 35112888 GAAAACTGAAAAAGGTGGAAAATTTAGAAATGTCC ::::::::::::::::::::::::::::::77477 2 HWI-EAS88_1:1:1:57:247 + chr12 95443584 AAAATCTGAAAGTAATTTTTTTTTTCTACTTTGTT ::::::::::::::::::::::::::::::77+77 0 HWI-EAS88_1:1:1:371:264 + chr9 73120278 GTGAATGCAGTGCATGTCAAGGCCACAATAGGTCA :::::::::::::::::::::7::::::::77664 0 HWI-EAS88_1:1:1:119:447 + chr7 130527814 ATCCATTCCTCTGTTGAGGGACATCTGGGTTCTTT ::::1:::::::::::::1,::::::::1:51555 2234 HWI-EAS88_1:1:1:452:633 - chr8 109751349 CAGCAGCTGCTTTCACCTGCTGTGAAAGAGGGGAC 2/346:::::::::2:::::::::::::::::::: 0 HWI-EAS88_1:1:1:708:636 + chr13 72865562 GGGGAAGGGAACTCTGTACAGTACCTGATCCCAGG ::::::::::::::::::::::::::::::66244 0 HWI-EAS88_1:1:1:924:783 - chr6 86696490 TGCCCAGCAAGCACTCTTCCCTGGTGAGCCATCTC 24777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:955:62 + chr19 54431703 GCAGTGATAAAAAAGCACAGAGGACAATGGCAGAA ::::::::::::::::::::::::::::::77766 0 HWI-EAS88_1:1:1:831:864 - chr19 8651438 CCCAGAAGGACACAAGCATGCAAACACATGTAAAC +4672:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:230:664 + chr7 28363630 GCAGTGTCATCCCTCCTTGGCATCTGCTCTGTGGT ::::::::::::::::::::::::::::::47624 0 HWI-EAS88_1:1:1:67:666 - chr16 30187400 AGTGAGGGTCTGCCTGGGATGCCAAACAGCCTCGC 70467:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:71:122 + chr8 115811635 TCCCTACTATCTCTGCTATCACGTCCAGTATATCT :::::::::::1:11:::::::::::::::54515 0 HWI-EAS88_1:1:1:729:594 + chr9 3012271 TTTCACGTTTTTCAGTGATTTCGTCATTTTTCAAG ::::::::::::::::::::::::::::::7776+ 44 HWI-EAS88_1:1:1:763:790 + chr2 131371697 GGAGGTTGCTGAGGTCGCCCGGCTCATAAGCCTGG ::::::::::::::::::::::::::::::76477 0 HWI-EAS88_1:1:1:747:163 + chr14 79581708 GTCTTATTTCTATGTCATTGCCATGAGTCAACAGC :::::::::::::7::5::7::3::::::,76472 0 HWI-EAS88_1:1:1:171:940 - chr12 112902860 GGGGAGTGAGTGGTCAGAGCATCTAACCGCTAGGC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:427:673 - chr7 19324026 GGCCACTGTGGGCAGCACCATCCCTAGCCAGATTC 2420*&::+::::::5::::::::::::::::::: 0 HWI-EAS88_1:1:1:100:652 + chrUn_random 3903666 GCACACTGTAGGACCTGGAATATGGCGAGAAAACT ::::::::::::::::::::::::::::::47727 4 HWI-EAS88_1:1:1:82:416 + chr4 127997225 AAGCCCAAAACGTGTCAGTCACCCAGGATTTCCCT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:212:420 - chr14 75952284 CGGAACTCTCCCCAGCACTCGGTACTCTCCCCTCC 434330&::::::::::::::::1::::::::::: 0 HWI-EAS88_1:1:1:424:699 + chr11 34153610 GAATGGCATCTACACAGCACAGTGGCCCTGTCCTC ::::::::::::::::::::::::::::::27357 0 HWI-EAS88_1:1:1:68:587 - chr4 107296611 GGCTCTCTGGGCCTGACTCTGAAGGCCCATTTGGG 772/7::::+::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:620:296 + chr3 146911739 GTTTCTACTGAGGAGTCAGTGGTAGATATGGGAGT ::::::::::::::::::::::::::::::46264 0 HWI-EAS88_1:1:1:433:476 - chr6 129450714 TTCTTTATGGATGTGTCCCTTGTGAGATTACCTAT 46662:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:321:757 - chr10 45031807 GGAAGCACAGTTCCTCTTAAGACCCTCAGGACCAC 67677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:858:880 - chr1 100174508 GAGAAGAGGATGAAAAGTGAGAATAAGGTGCCTAC 67467:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:100:104 + chr12 74353200 GACCATATGTCATTTTGTAGGGGAAATGAGTACTG ::::::::::::::::::::::7::::3::4777) 0 HWI-EAS88_1:1:1:698:245 - chr6 98564914 CAAGATGGAAACCAAGCCTTTGCCCTCCCTGGCCC 27777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:607:839 + chr13 67521655 GCACTCTGCTTTGTAGTCTTTCCCTCCATGTGTTG :::::1:::1::::+:::::::::::::::51-4) 0 HWI-EAS88_1:1:1:672:737 + chr11 88364685 GAAGTCTCATTAGTCAGCACCGACAGCTGCTGCCC :::::::::::::::::::::::::+::::64666 0 HWI-EAS88_1:1:1:157:844 + chr1 173614620 GTCCCCAGAGTCCATTTCGCTCTGACATGTGTTCC ::::::::::::::::::::::::::::::42444 0 HWI-EAS88_1:1:1:756:357 - chr16 6420503 TGCAGTCAGTGCCAGGCTCCTTCTTGCCTGCAACC 17667:::::::::::::::::::::::::::::: 0 20 HWI-EAS88_1:1:1:363:132 - chr2 98507116 TAAAACTGAAAAAGCTGGAAAATTTAGAAATGTCC 722771::::4:::4:::::::4:::::::::::: 2 20,34 HWI-EAS88_1:1:1:460:575 + chr3 135434599 TGAGTTAGAATGGCTGGTCACACTGAAGAAAAGAG ::::::::::::::::::::3:::&+0:::/3)22 24 HWI-EAS88_1:1:1:139:586 + chr3 99468196 GCTTGCTAGGTACCAAGAGGTCTCACATAAGGGCT ::::::::::::::::::::::::::::::42676 0 HWI-EAS88_1:1:1:85:75 - chr17 11013366 TCCCCCTGCCTCTGCCTCCCAAGTACTGGAACTAA 2407)::::::::::::7::::::::::::::::: 0 HWI-EAS88_1:1:1:330:853 - chr15 87231619 CTAAATTAATGCAAAGTTCACACAGTGTGTTTCCA 277773::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:470:334 + chr16 62513434 GCTGAAGGGGTTTGCAATCCATAGGAAGAACAAGA ::::::::::::::::::::::::::::::62674 0 HWI-EAS88_1:1:1:410:160 + chr10 128257163 GGGAAGAGGGAAAGGGACAGTATAAGGGGTAGGAA ::::::::::::::::::::::::::::::55633 0 HWI-EAS88_1:1:1:841:671 + chr9 120654897 GTCAACAAGTCCAGAAAAATGTGATTGACACTGAG ::::::::::::::::::::::::::::::76644 0 HWI-EAS88_1:1:1:95:489 - chr1 57261469 TAATAGAAATTGAGGAAAGCAAGAGAAGGTATCTG 77777:.:::::::::::::::::::::::::::: 0 28 HWI-EAS88_1:1:1:972:553 + chr1 91352070 GTCCACCCCAACATCTACTCCATCTACGAGCTGCT ::::::::::::::::::::::::::::::66766 0 HWI-EAS88_1:1:1:693:177 - chr3 10279015 CTACCCAAGAGCTTTCCTTCACTGTGTGAGCGAGC 44477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:744:238 + chr19 31521175 GGTAAGACACGTACTCTATTCCCTCAATTTTAGGG ::::::::::::::::::::::::::&:::7442+ 0 HWI-EAS88_1:1:1:727:555 + chr1 186549400 GTACCTTTGGGCTGTTTGGATTCCAGGTTTTTAAT ::::::::::::::::::::::::::::::64246 0 HWI-EAS88_1:1:1:271:146 - chr3 69993825 TATTAAATAAAATTACTATTGCAAGATCCAAAACC 4%677:::::::::::::::::::::::::::::: 0 33 HWI-EAS88_1:1:1:950:165 - chr10 6956507 AGGTTGTGTCACTAAGATCTCAGGAGGTCTGTTAC 76446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:377:667 + chr2 152283384 GTGGCCTTGTGTGGCCTTAGTACCGGGTAGGCTGT :1::::::::::::::::::::::::::::5545) 0 HWI-EAS88_1:1:1:371:378 + chr12 15750846 GAGGGAGAGAGAGATTGAGGCTGTGGTGTACACAT :::::::::::::::::::::::,5:,::340404 0 HWI-EAS88_1:1:1:264:394 + chr2 154470423 GACATGGGAGAGAGTAGATCAAGACCTTTGACATC ::::::::::::::::::::::::::::::06)44 0 HWI-EAS88_1:1:1:624:792 + chr6 72605380 GGATGCTCCCTAGGGGTTAGAACCCGCTTTCCTGC ::::::::::::::::::::::::::::::77244 0 HWI-EAS88_1:1:1:853:327 - chr17 28644977 TCAAAAAATTCTACAACCACCATCATCTTACTGTC *+277::::::::6::::::::::::::::::::: 0 32 HWI-EAS88_1:1:1:265:361 - chr1 127557882 AAATAAATCCACTTCTCCTCCTGACAGTTGTCTTC 77747:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:243:37 + chrX 64309731 GGTGTAGCATTCAATATACCATCTCTAGTTGACTG ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:700:410 - chr2 155914257 GGAATAGCTGGGGTCATAGAACCATAGACACTTAC 74762:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:723:817 + chr11 69624706 GGTGCCTCTTGACGGAAGCGTCTGGAACAGAGAGC ::::::::::::::::::::::::::::::61446 0 HWI-EAS88_1:1:1:334:777 - chr16 39693205 TACTGGGCAAGACACCTCTCCTTGGAGGAGAGTTC 04467:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:163:362 - chr4 138614747 TCCAGATCTTCCATCAACTCTCCCAGGCTGCCCAC 46664:3::::::::.::::::::::::::::::: 0 HWI-EAS88_1:1:1:206:774 + chr3 136314154 GACAAACAGATCTCACATCAGACACATATGGTGAC ::::::::::::::::::::::::::::::74746 0 HWI-EAS88_1:1:1:197:150 - chr17 36270084 ACACTGGTAGAGAAGCGCTGAGGGTTTGGGACAAC 77644:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:353:78 - chr1 117296243 AGAGGAGTGGAAACAGGATAGTTGAGCCTGAACTC 76746:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:656:761 + chr9 110033571 GGAGGGTTTCCTGTAGCCCTGGTTGTCCTGGCTTT ::::::::::::::::::::::::::::::44460 0 HWI-EAS88_1:1:1:208:965 + chr5 7361379 GATATTCCTCCCAAAACATAATAATAGAACAACAA ::::::::::::::::::::::::::::::67774 0 HWI-EAS88_1:1:1:712:710 - chr2 129230917 GAGATCGCCTCTAGCAGCTGCTTTTGAATTGTGGC 40444::::::5::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:98:392 + chr9 9709749 CCAGAAAAGAAATTCCTCCAGACACATAATAATCA :::::::::::::::::::::,::::::::77767 186 HWI-EAS88_1:1:1:922:547 - chr16 76633237 TCTGATTGTTCATTCCCTTTGAACGCTTGTCAGCC 24466:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:349:906 + chr13 52437522 GCCAAGTGCCAGCTAGCCCAGCATGCATTGCAGGC ::::::::::::::::::4::::::::::24/%7) 0 HWI-EAS88_1:1:1:261:689 + chr9 77370003 TCTGTAACGAAGGGAATGTCAGAAGTAAAATGGAA ::::::::::::::::::::::::::::::77764 0 HWI-EAS88_1:1:1:779:699 - chr14 62468136 TTCTCTCCCCACCACCTCTGTCATCTATGAATCAT 22204:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:511:111 + chr7 53005167 GGAGGCTCAGTCCCAGCATTTCTGTGACGCATGGC ::::::::::::::::::::::::5:::::16177 0 HWI-EAS88_1:1:1:168:791 + chrX 8031885 GAAGGTCTCCAAACTACCCAGCACTACAGTAACAG ::::::::::::::::::::::::::::::76464 2 HWI-EAS88_1:1:1:540:235 + chr16 36613167 GGAGAAACTCTCCATGCTCACAGGCAGGCTGGAAA ::::::::::::::::::::::::::::::77276 0 HWI-EAS88_1:1:1:879:434 + chr8 55694925 GCTTTCTGAAGCAATATCTAAAAATACATGAGTCA ::::::::::::::::::::::2::::+++%,)52 0 HWI-EAS88_1:1:1:927:439 + chr17 16974040 GGAAATCTTAAGAGTCCCTTACCTGAACCCCATGA 1:::::::::::::::::::::::::::::43454 0 HWI-EAS88_1:1:1:454:839 + chr15 21415873 GAAAGTGGGGAAAAGCCTTGAAGATATGGCCACAG ::::::::::::::::::::::::::::::60222 6 HWI-EAS88_1:1:1:131:356 + chr18 5462322 TTGTATATGAGCATTGTGCTAATCATCTTCTATTG ::::::::::::::::::::::::::::::7777* 0 HWI-EAS88_1:1:1:410:806 - chr4 95519928 CTGCCATTAGCTCCCACCAGACTCCTGCTTCTCCC 7*466:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:173:649 + chr14 32569656 GAGAGGCTCATAGTAGGAGTGTGCTGCGAGCAGAA ::::::::::::::::::::::::::::::77764 0 HWI-EAS88_1:1:1:765:577 - chr17 16509278 TTGTTCACAACCCCTCTCAGGAGAATGGAATTAAC 34736:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:232:747 - chr14 63416748 CCACAGAAGCAACTTAAGGCAGAAAGTAGAAAGGT ,2727:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:200:860 + chr5 143550277 GCCAAACAACGGAGGAGGGTCTCCACCACGGCCTG ::::::::::::::::::::::::::::::46244 0 HWI-EAS88_1:1:1:226:301 - chr1 193909090 GCCCCTGTTTTCAGTACACCGACCCTCACCAAAGC 64647::::::5::::5:::::::::::::::::: 0 HWI-EAS88_1:1:1:720:593 - chr5 117721479 TTTGTCACGACAGCTACACCGGCCTGGTTGTCACC 22022:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:179:435 + chr14 54958717 GGATCTCAATGTAAAACCAGATACACTGAACCTAA ::::::::::::::::::::::::::::::47726 0 HWI-EAS88_1:1:1:334:739 - chr11 100841423 CGTTGGCGGAGTGACTCACGTTTCCCTCAAGACAC 47446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:527:570 - chr15 10799644 TCTGTCTCTTTATCGGCAACACCAACTTAACCGTA 5257/2:+:+:::4::5::.::::::::::::::: 0 HWI-EAS88_1:1:1:788:926 + chrX 42404451 GTATTAGAAAACAAACATTGTTCCTATTTGTCCTA ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:307:465 + chr12 40752491 GCACGCAGCAGCTGGTTTCTAATGCCACTCTCCTC ::::::::::::::::::::::::::2:::76757 0 HWI-EAS88_1:1:1:800:265 - chr12 106258463 CCACCTTCGTCAGAGCAGCTGTGACTGCCTGCAGC 44242&+,:0:::3::,:::::::::::::::::: 0 HWI-EAS88_1:1:1:69:120 + chr17 20667690 GTAGAAGAATTGGAATGTACTGGTAAAGGTACTGG ::::::::::::::::::::::::::::::77774 23 HWI-EAS88_1:1:1:567:667 - chr14 43324811 GAAGAATGGAAAGTCAGGGACACGGCATGACATTC 42673:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:164:144 + chr2 57416770 GTAAATTGAAAAACATTTTCTTGATGAACATTTTG :::::::::::0::::::::::::::::::5555) 0 HWI-EAS88_1:1:1:101:736 - chr15 7183990 TTATAGAATCACTCTGTATTTAACAGAAAGCCAGG 27777::::::4:-::::::::::::::::::::: 0 HWI-EAS88_1:1:1:715:680 + chr9 92383679 GTGAGTCAGTCAGGTACTAAGAAGAAAGAATTACT :::::::::::::::::::::::::2::::76257 0 HWI-EAS88_1:1:1:873:386 + chr15 25552486 GAAGAATGTGCCACCAGCTGTTCTCCTCCCGGGAG ::::::::::::::::::::::::::::::44404 0 HWI-EAS88_1:1:1:273:800 + chr16 33204791 GAGTACTTTGTAAATGAACAGTCTAGAAATCAGAA ::::::::::::::::::::::::::::::44744 0 ShortRead/inst/extdata/maq/0000755000175100017510000000000012607265053016660 5ustar00biocbuildbiocbuildShortRead/inst/extdata/maq/out.aln.1.txt0000644000175100017510000040065512607265053021152 0ustar00biocbuildbiocbuildHWI-EAS88_4_1_6_505_934 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagagaagtttgacttttgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_7_163_963 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_9_175_236 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_9_733_962 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_12_440_508 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_12_293_339 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_15_389_86 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_16_316_478 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_18_347_964 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_20_796_561 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_20_402_454 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_25_407_867 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_26_687_534 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_26_338_107 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_36_257_639 ChrA 1 + 0 0 23 23 23 4 16 0 0 35 aaagttagagaagtttnacttntgtagtcaacatc ----------------!----!---)))))))### HWI-EAS88_4_1_36_638_853 ChrA 1 + 0 0 23 23 23 3 12 0 0 35 aaagttagagaagtttnatttntgtaggcaccatc ----------------!----!---)))))))### HWI-EAS88_4_1_50_569_725 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_51_124_197 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_57_575_605 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagagaagtttgactcctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_59_934_643 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_60_449_118 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_61_671_133 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_61_164_18 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_62_851_658 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_67_837_274 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagagaagtctgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_69_804_185 ChrA 1 + 0 0 23 23 23 3 36 0 0 35 aaagttagagaagtttggactctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_69_116_866 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_70_954_879 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_72_316_172 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_74_908_747 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_77_324_548 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_78_998_596 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_80_381_562 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_85_636_154 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_87_864_224 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_88_211_199 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_89_908_419 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_92_816_658 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_93_566_937 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_95_845_393 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_102_351_841 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_103_997_210 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_107_217_826 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_107_71_977 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_112_750_464 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagctagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_114_317_567 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_118_207_399 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_121_642_529 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_124_905_423 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_126_425_312 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_128_605_529 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_129_714_139 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_129_879_918 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_135_394_765 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttaaagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_138_523_739 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaacttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_140_624_38 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_142_221_50 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_146_555_781 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_157_348_728 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_165_817_549 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_175_101_218 ChrA 1 + 0 0 12 12 12 2 20 0 0 35 aaagttagagaagattgacttctgtacgcaccatc -------------------------)))))))### HWI-EAS88_4_1_180_437_690 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_183_965_413 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_184_998_567 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagagaagtttgacctctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_186_241_804 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_190_96_602 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_191_401_219 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_197_362_263 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_198_21_166 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_199_377_859 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_199_550_924 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_207_336_676 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_208_329_98 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagagaagtttgacttctttaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_214_380_887 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_219_171_610 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_220_901_680 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_220_659_985 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_223_393_46 ChrA 1 + 0 0 15 15 15 3 0 0 1 35 aaagttagagaagtttgacttcngtaggcnccanc ----------------------!--))))!))#!# HWI-EAS88_4_1_226_94_519 ChrA 1 + 0 0 12 12 12 3 0 0 0 35 aaagttagagaagttngacttctgtnggcaccntc ---------------!---------!))))))!## HWI-EAS88_4_1_226_516_529 ChrA 1 + 0 0 12 12 12 3 0 0 0 35 aaagttagagaagttngacttctgtnggcaccntc ---------------!---------!))))))!## HWI-EAS88_4_1_228_627_50 ChrA 1 + 0 0 12 12 12 4 2 0 0 35 aaagttagagaagtttgacttcngtnggcaccaan ----------------------!--!))))))##! HWI-EAS88_4_1_236_499_460 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_240_681_913 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_241_643_582 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_242_252_257 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_242_65_952 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_245_177_198 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_245_806_819 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_246_701_623 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_247_169_893 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_247_812_955 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_249_875_416 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaggttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_252_774_765 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_253_702_960 ChrA 1 + 0 0 23 23 23 3 20 0 0 35 aaagttagagaagtttgncttatgtagtcaccatc -----------------!-------)))))))### HWI-EAS88_4_1_260_109_511 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_260_32_588 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_262_351_961 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagagaagtttgacttccgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_267_546_883 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_268_935_456 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_269_122_97 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_272_825_213 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_274_636_98 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_280_310_986 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_280_702_969 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_282_135_970 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_284_923_377 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_284_244_113 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_285_573_113 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_288_361_945 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_293_200_268 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_296_571_373 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_298_436_249 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagggaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_99_379_546 ChrA 2 + 0 0 22 22 22 0 0 1 0 35 aagttagagaagtttgacttctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_168_686_853 ChrA 2 + 0 0 15 15 15 2 12 0 1 35 cagttagagaagtttgacttctgtaggcaccatcn +------------------------)))))))##! HWI-EAS88_4_1_205_353_54 ChrA 2 + 0 0 23 23 23 3 36 0 0 35 aaagttgagaagtttgacttctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_289_504_719 ChrA 2 + 0 0 23 23 23 3 36 0 0 35 aaagttgagaagtttgacttctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_1_554_516 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_1_670_579 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_1_766_705 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_2_939_240 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_2_666_202 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_2_74_588 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_3_224_196 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_3_822_378 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_3_428_152 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_3_281_271 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_4_302_84 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_4_967_989 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_933_109 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_215_27 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_476_235 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_154_433 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_576_223 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagttgctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_931_657 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_683_969 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_767_356 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_735_96 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_353_316 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgagccgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_780_324 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_164_380 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_929_924 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_843_460 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_7_900_265 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_7_441_710 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_7_911_942 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_7_274_184 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttcttctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_8_587_220 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_8_475_773 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_8_156_449 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_8_941_976 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_9_105_638 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_9_260_582 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_9_275_157 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_9_598_626 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_9_281_484 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_10_336_522 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_10_231_590 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_10_909_844 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_10_518_601 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_10_468_329 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_11_876_81 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_11_483_84 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_11_549_515 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_11_686_794 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_12_687_64 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_12_399_681 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_12_177_488 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_12_724_741 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_12_333_34 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_13_365_664 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_13_765_808 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_14_443_868 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_14_983_739 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_14_598_919 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaaca -------------------------)))))))### HWI-EAS88_4_1_15_100_670 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_15_698_937 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtctctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_16_168_610 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_17_782_381 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_17_275_365 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_17_429_856 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_17_309_358 ChrA 51 + 0 0 22 22 22 4 14 1 0 35 tacccgtataagtttctgctgagctgtacgcaaac -------------------------)))))))### HWI-EAS88_4_1_18_142_762 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_18_388_993 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_19_578_127 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacct -------------------------)))))))### HWI-EAS88_4_1_19_687_139 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_19_611_543 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 taaccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_19_779_638 ChrA 51 + 0 0 15 15 15 3 28 0 1 35 tagccgtataagtttctgctgagctgtagagacca -------------------------)))))))### HWI-EAS88_4_1_20_211_45 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_20_357_830 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_20_230_817 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_21_672_50 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_21_870_905 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccatataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_21_937_43 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_21_785_946 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_22_348_187 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_22_344_199 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtctctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_25_776_318 ChrA 51 + 0 0 22 22 22 2 4 1 0 35 tacccgtataagtttctgctgagctgtaggcacat -------------------------)))))))### HWI-EAS88_4_1_25_152_91 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_25_968_507 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_26_994_219 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_26_425_640 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagttactgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_26_179_814 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_27_255_646 ChrA 51 + 0 0 23 23 23 3 0 0 0 35 tacccgtataagtttctnctnngctgtaggcacca -----------------!--!!---)))))))### HWI-EAS88_4_1_27_437_166 ChrA 51 + 0 0 23 23 23 3 0 0 0 35 tacccgtataagtttctnctnngctgtaggcacca -----------------!--!!---)))))))### HWI-EAS88_4_1_27_222_982 ChrA 51 + 0 0 23 23 23 3 0 0 0 35 tacccgtataagtttctnctnngctgtaggcacca -----------------!--!!---)))))))### HWI-EAS88_4_1_30_71_568 ChrA 51 + 0 0 15 15 15 2 14 0 1 35 tacccgtataagttcctgctgagctgtaggcacta -------------------------)))))))### HWI-EAS88_4_1_30_469_602 ChrA 51 + 0 0 15 15 15 4 24 0 1 35 tacccgtataagttactgctgagctgtagggacat -------------------------)))))))### HWI-EAS88_4_1_35_794_339 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcanca -------------------------)))))))!## HWI-EAS88_4_1_35_763_713 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcanca -------------------------)))))))!## HWI-EAS88_4_1_35_696_246 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcanca -------------------------)))))))!## HWI-EAS88_4_1_35_286_341 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcanca -------------------------)))))))!## HWI-EAS88_4_1_35_247_331 ChrA 51 + 0 0 15 15 15 2 12 0 1 35 tccccgtataagtttctgctgagctgtaggcanca -------------------------)))))))!## HWI-EAS88_4_1_36_468_589 ChrA 51 + 0 0 12 12 12 2 0 0 0 35 tacccgtataagtttcngctgngctgtaggcacca ----------------!----!---)))))))### HWI-EAS88_4_1_36_438_771 ChrA 51 + 0 0 23 23 23 3 12 0 0 35 tacccgtataagtctcngctgngctgtaggcacca ----------------!----!---)))))))### HWI-EAS88_4_1_40_359_742 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacta -------------------------)))))))### HWI-EAS88_4_1_40_456_979 ChrA 51 + 0 0 12 12 12 3 26 0 0 35 tacccgtataagcttctgctaagctgtaggcacta -------------------------)))))))### HWI-EAS88_4_1_42_765_439 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_42_988_704 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_42_328_130 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_42_974_932 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_43_727_345 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_43_897_716 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_43_494_109 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgaactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_44_656_493 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_44_448_163 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_44_751_711 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_44_195_474 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_44_676_1000 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_46_537_419 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_46_699_851 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_46_567_703 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_47_820_48 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgaactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_47_511_496 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_47_327_894 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagttactgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_48_831_163 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_48_101_426 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_48_461_518 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_48_367_291 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_49_749_341 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_49_297_670 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_50_519_35 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_50_911_397 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_50_265_657 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_50_471_607 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_51_722_659 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_51_166_596 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_51_987_611 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_52_343_550 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_52_613_232 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_53_906_222 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_53_302_895 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_53_251_886 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_54_740_970 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_55_478_507 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_55_529_406 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_55_980_989 ChrA 51 + 0 0 22 22 22 1 8 1 0 35 tacccgtataagtttctgctgagctgtagggacca -------------------------)))))))### HWI-EAS88_4_1_56_888_533 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtctctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_56_624_541 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_56_760_759 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_57_761_415 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_57_101_792 ChrA 51 + 0 0 12 12 12 2 24 0 0 35 tacccgtataagttactgcagagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_57_244_795 ChrA 51 + 0 0 12 12 12 2 24 0 0 35 tacccgtataagtttctacagagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_58_493_276 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_59_458_44 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_59_360_636 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_59_888_699 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_60_428_629 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_60_260_435 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_60_638_563 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_60_425_164 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_60_209_541 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_60_843_870 ChrA 51 + 0 0 22 22 22 1 8 1 0 35 tacccgtataagtttctgctgagctgtagggacca -------------------------)))))))### HWI-EAS88_4_1_61_345_328 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_61_393_363 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_61_516_693 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_62_706_506 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgagccgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_62_399_960 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_64_953_13 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_64_195_783 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_64_824_567 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_64_287_482 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_64_476_213 ChrA 51 + 0 0 15 15 15 1 8 0 1 35 tacccgtataagtttctgctgagctgtcggcacca -------------------------)))))))### HWI-EAS88_4_1_65_713_451 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_65_300_711 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_65_55_182 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_67_602_630 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_68_975_227 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_69_777_463 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_69_849_46 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_70_665_574 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_70_660_219 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_71_709_518 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_73_726_882 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_73_983_991 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_74_165_616 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_74_304_558 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_75_866_136 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_75_823_428 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_75_473_257 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_75_91_37 ChrA 51 + 0 0 12 12 12 3 32 0 0 35 tacccgtataagtttctgctgcgatgtaggaacca -------------------------)))))))### HWI-EAS88_4_1_76_638_869 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_76_599_911 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_77_149_181 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_77_759_942 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_78_510_65 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_79_225_387 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_79_586_578 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_80_491_462 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_80_922_101 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_80_321_54 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_80_824_610 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_80_476_339 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_81_868_661 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtctctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_81_401_32 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_82_894_629 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_83_245_634 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_83_904_85 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_83_463_804 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_83_878_496 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_83_89_343 ChrA 51 + 0 0 12 12 12 4 30 0 0 35 tacccgtataagtttctgctgagatgaagccacaa -------------------------)))))))### HWI-EAS88_4_1_84_576_335 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_84_644_336 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_84_835_702 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_84_938_141 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_84_919_792 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_85_349_392 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_85_862_309 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataggtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_86_581_64 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_86_567_651 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_86_618_340 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_86_290_785 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_86_664_283 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_86_346_704 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_87_607_484 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_87_481_131 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_87_409_756 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_88_600_97 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_88_959_372 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_88_170_563 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_88_711_941 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 aacccgtataagtttctgctgagctgtaggcacca +------------------------)))))))### HWI-EAS88_4_1_89_886_292 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_89_951_934 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_90_352_641 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_90_770_508 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_90_856_151 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_90_315_646 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_90_521_224 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_90_775_936 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_91_217_492 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_91_328_427 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_91_445_463 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_92_547_262 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_92_197_929 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_92_584_39 ChrA 51 + 0 0 22 22 22 1 8 1 0 35 tacccgtataagtttctgctgagctgtagggacca -------------------------)))))))### HWI-EAS88_4_1_93_898_338 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_94_784_401 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_94_579_347 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_94_319_41 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_94_961_639 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_94_629_109 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_95_312_344 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_96_962_132 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_96_753_420 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_96_866_167 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_97_451_304 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_97_615_686 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_98_622_163 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_98_571_422 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_98_466_903 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_98_265_987 ChrA 51 + 0 0 12 12 12 3 32 0 0 35 taaccgtataagtttatgctgagctgtagtcacca -------------------------)))))))### HWI-EAS88_4_1_99_899_239 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_99_502_692 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_99_646_668 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_99_974_785 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_99_88_981 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_100_614_308 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_100_982_17 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_101_874_781 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_101_146_787 ChrA 51 + 0 0 12 12 12 2 24 0 0 35 tacccgtataagtttctgctggactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_102_966_655 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_102_318_343 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_103_651_423 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_103_218_297 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_104_489_438 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_105_840_542 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_105_86_783 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_105_958_843 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_105_199_942 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_106_84_432 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_106_479_834 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_106_545_370 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_106_999_282 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_107_617_88 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_107_204_373 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_107_913_344 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_109_658_693 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_109_624_975 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_110_762_557 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_111_685_225 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_111_594_661 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_111_981_447 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_111_431_747 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_111_191_957 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_111_329_865 ChrA 51 + 0 0 15 15 15 3 22 0 1 35 tacccgtataagtttctgcttagctgtaggaacaa -------------------------)))))))### HWI-EAS88_4_1_112_611_472 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_112_934_899 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_114_653_144 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_114_298_235 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_114_494_118 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_114_774_468 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_114_538_653 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_115_904_185 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_115_175_228 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_115_504_833 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_115_265_756 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_115_538_847 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_116_547_634 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_116_809_128 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_116_116_773 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_116_265_952 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_117_631_566 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_117_430_508 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_117_654_456 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_117_484_632 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_117_727_367 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_118_31_314 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_118_67_453 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_118_118_442 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_118_407_511 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_118_571_378 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_119_550_357 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_119_446_122 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_119_637_173 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_119_823_82 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_119_389_698 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_119_851_942 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_120_732_162 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_120_290_298 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_120_971_602 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_120_900_960 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtctctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_120_40_964 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_121_567_532 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_121_639_276 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_121_123_944 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_122_843_437 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_122_830_593 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_122_247_567 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_123_150_346 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_123_871_789 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacta -------------------------)))))))### HWI-EAS88_4_1_124_402_502 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_124_938_389 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_124_943_753 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_125_614_325 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_125_866_777 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_126_85_230 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_126_369_824 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_126_891_922 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_126_932_503 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_128_589_455 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagttcctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_128_983_394 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_128_111_735 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_128_129_875 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_128_479_403 ChrA 51 + 0 0 22 22 22 5 28 1 0 35 tacccgtataagtttctgctgagctgtagcaccat -------------------------)))))))### HWI-EAS88_4_1_129_706_587 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_129_290_700 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_129_96_166 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_130_245_420 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_130_103_617 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_130_901_669 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttcttctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_130_860_473 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_131_703_156 ChrA 51 + 0 0 12 12 12 2 24 0 0 35 tacccgtataagtttcttcttagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_131_400_258 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_131_946_716 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_131_382_850 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_132_450_689 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_132_822_417 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_132_104_435 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_132_367_708 ChrA 51 + 0 0 22 22 22 1 8 1 0 35 tacccgtataagtttctgctgagctgtaggcccca -------------------------)))))))### HWI-EAS88_4_1_134_612_503 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_134_330_308 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_134_948_795 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_135_715_131 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_135_532_187 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_135_130_623 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_135_332_142 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_135_234_201 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_136_565_94 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_136_576_470 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_137_910_193 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_138_819_224 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_138_385_648 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_138_154_598 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_138_441_142 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_138_288_543 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_139_352_379 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_139_395_912 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_140_491_178 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_140_95_332 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_140_349_303 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_140_715_771 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_140_976_655 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_140_675_898 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_141_588_224 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_141_627_829 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_141_106_475 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_304_50 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_871_41 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_727_500 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_186_136 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_92_152 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_358_898 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_869_967 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_145_297_37 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_146_276_538 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_146_110_179 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_146_853_746 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_146_113_708 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_148_325_78 ChrA 51 + 0 0 15 15 15 1 0 0 1 35 tacccgtataagtttctgcngagctgtaggcacca -------------------!-----)))))))### HWI-EAS88_4_1_148_157_257 ChrA 51 + 0 0 15 15 15 1 0 0 1 35 tacccgtataagtttctgcngagctgtaggcacca -------------------!-----)))))))### HWI-EAS88_4_1_148_271_700 ChrA 51 + 0 0 15 15 15 1 0 0 1 35 tacccgtataagtttctgcngagctgtaggcacca -------------------!-----)))))))### HWI-EAS88_4_1_149_794_567 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_149_919_742 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgaactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_151_190_313 ChrA 51 + 0 0 23 23 23 3 32 0 0 35 tacccgtataagtttctgctaagatgaaggcacca -------------------------)))))))### HWI-EAS88_4_1_152_949_525 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_153_852_370 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_153_705_680 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_154_649_428 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_154_488_570 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_157_819_905 ChrA 51 + 0 0 12 12 12 3 26 0 0 35 tatccgtataagtttctgctgagatgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_160_88_593 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_160_889_791 ChrA 51 + 0 0 22 22 22 1 8 1 0 35 tacccgtataagtttctgctgagctgtaggaacca -------------------------)))))))### HWI-EAS88_4_1_160_674_142 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_165_368_62 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_165_29_522 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_165_259_416 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_165_906_773 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_165_995_791 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_166_809_486 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_166_458_803 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tatccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_166_537_760 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_168_961_770 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_168_490_159 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_168_534_317 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_175_112_698 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcagca -------------------------)))))))### HWI-EAS88_4_1_175_605_154 ChrA 51 + 0 0 15 15 15 1 8 0 1 35 tacccgtataagtttctgctgagctgtgggcacca -------------------------)))))))### HWI-EAS88_4_1_175_972_297 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_175_171_599 ChrA 51 + 0 0 15 15 15 1 8 0 1 35 tacccgtataagtttctgctgagctgaaggcacca -------------------------)))))))### HWI-EAS88_4_1_175_93_66 ChrA 51 + 0 0 12 12 12 5 38 0 0 35 tacccgtataagtctctgctgagctgtcgcccccc -------------------------)))))))### HWI-EAS88_4_1_180_530_275 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_452_358 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_480_750 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_842_313 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_178_795 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_181_305_574 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_257_310 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_962_646 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtagncacca -------------------------))))!))### HWI-EAS88_4_1_183_203_839 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_970_713 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_184_766_249 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_882_385 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_636_896 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_846_810 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_162_545 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_231_438 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_436_990 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_1000_559 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_186_123_514 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgaactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_186_455_449 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_186_650_292 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_126_568 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacctgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_491_774 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_686_663 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_730_402 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_117_491 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_24_291 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_581_802 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_177_124 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacctgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_538_465 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_421_175 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_142_642 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_168_855 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_520_222 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_951_674 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_655_308 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_880_30 ChrA 51 + 0 0 15 15 15 3 14 0 1 35 tactcgtataagtttctgctgagctgtaggcacan -------------------------)))))))##! HWI-EAS88_4_1_190_234_928 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_687_550 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_458_206 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_649_507 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_491_673 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_21_963 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_192_794_557 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_544_257 ChrA 51 + 0 0 22 22 22 1 8 1 0 35 tacccgtataagtttctgctgagctgtatgcacca -------------------------)))))))### HWI-EAS88_4_1_193_883_105 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_685_566 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_795_382 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_359_775 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_656_781 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtacaagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_809_458 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_747_835 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_686_739 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtgtaagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_767_178 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_915_465 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_519_286 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_42_290 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_202_931 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_807_639 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_770_415 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_305_805 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_524_957 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_868_422 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_400_423 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_644_838 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_928_418 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_900_389 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_923_376 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_236_768 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_919_682 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_839_348 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_510_101 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_397_622 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_274_564 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_213_153 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_408_525 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_227_880 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_181_936 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_53_101 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgagccgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_769_806 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_876_683 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_181_450 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_240_716 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_609_930 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_509_47 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_85_106 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_855_686 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_930_317 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_199_170 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_285_457 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_652_463 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_780_225 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_360_419 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_414_637 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_723_472 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_977_221 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_28_938 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_154_160 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_792_53 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_456_474 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_452_805 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_275_949 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_604_930 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_461_463 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 cacccgtataagtttctgctgagctgtaggcacca +------------------------)))))))### HWI-EAS88_4_1_211_795_381 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_855_34 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_152_620 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_749_56 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_327_378 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_60_389 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_927_698 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_837_360 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_832_577 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgaactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_424_551 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_593_370 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_506_253 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_373_107 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_21_252 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_293_558 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_746_879 ChrA 51 + 0 0 22 22 22 2 4 1 0 35 tacccgtataagtttctgctgagctgtaggcactc -------------------------)))))))### HWI-EAS88_4_1_215_163_822 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_587_831 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_920_421 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_438_512 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_362_66 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_668_844 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_439_468 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_192_858 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_49_622 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_457_857 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_711_988 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_219_649_268 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_701_534 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_116_141 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_159_658 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_673_440 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_412_283 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_494_612 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_378_674 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_373_619 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggnacca -------------------------)))))!)### HWI-EAS88_4_1_221_887_101 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_56_28 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_432_887 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_549_866 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_454_243 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_123_508 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_223_528_444 ChrA 51 + 0 0 15 15 15 4 2 0 1 35 tacccgtataagtttctgctganctgtagncacnc ----------------------!--))))!))#!# HWI-EAS88_4_1_226_940_30 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_623_199 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_576_620 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_824_208 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_976_394 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_855_159 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_745_497 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_88_624 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_228_610_567 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttctgctganctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_220_314 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttctgctganctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_229_292_106 ChrA 51 + 0 0 12 12 12 4 10 0 0 35 tacccgtataagtttctgctnagctatagncagca --------------------!----))))!))### HWI-EAS88_4_1_230_884_573 ChrA 51 + 0 0 12 12 12 6 30 0 0 35 tacccgtataagtttctgctgatctttacncnaca -------------------------))))!)!### HWI-EAS88_4_1_230_773_680 ChrA 51 + 0 0 15 15 15 4 10 0 1 35 tacccgtataagtttctgctgagctttagncntca -------------------------))))!)!### HWI-EAS88_4_1_232_647_877 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttctgctganctgtnggcaccn ----------------------!--))!))))##! HWI-EAS88_4_1_233_647_357 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtattagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_217_188 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_396_890 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_435_208 ChrA 51 + 0 0 12 12 12 2 24 0 0 35 tacccgtatcagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_405_177 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_129_332 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_602_269 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_679_774 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_944_888 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_668_861 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_758_997 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_81_345 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_78_399 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_394_64 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_480_461 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_235_449 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_715_556 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_409_731 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_801_104 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_279_677 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_617_980 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_242_194_140 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_244_416_239 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcncca -------------------------))))))!### HWI-EAS88_4_1_245_587_286 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_245_316_916 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgagccgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_681_146 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_321_576 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_699_834 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_19_940 ChrA 51 + 0 0 12 12 12 7 54 0 0 35 tacccgtataagtttctgctgagcactaacacaca -------------------------)))))))### HWI-EAS88_4_1_247_476_209 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_831_394 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_792_484 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_791_485 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_768_671 ChrA 51 + 0 0 12 12 12 2 20 0 0 35 tacctgtataagtttctgctgagctggaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_383_85 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_645_322 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_269_106 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_171_764 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_737_188 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_187_371 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_646_255 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_493_799 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_381_501 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_573_456 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_458_651 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_734_378 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_62_933 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_252_563_112 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_252_91_843 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_253_551_206 ChrA 51 + 0 0 23 23 23 3 16 0 0 35 tacccgtataagtttctnctgagcttcaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_772_502 ChrA 51 + 0 0 12 12 12 2 12 0 0 35 tacccgtataagtttctnctgatctgtaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_598_84 ChrA 51 + 0 0 12 12 12 3 8 0 0 35 tacccgtataagtttctnctgagctgnagtcacca -----------------!-------)!)))))### HWI-EAS88_4_1_253_582_583 ChrA 51 + 0 0 15 15 15 1 0 0 1 35 tacccgtataagtttctnctgagctgtaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_764_489 ChrA 51 + 0 0 15 15 15 1 0 0 1 35 tacccgtataagtttctnctgagctgtaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_254_738_845 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_329_354 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_680_573 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_26_645 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_564_258 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_626_621 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_78_698 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_523_534 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_772_515 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_678_203 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_717_779 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_743_816 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagttactgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_378_694 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_161_512 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_755_432 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_302_459 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_622_21 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_361_595 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_263_383_1001 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_162_313 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccatataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_566_672 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_710_87 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_514_924 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_840_944 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_542_74 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_322_178 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_367_782 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_649_368 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_173_53 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_122_857 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_487_312 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_144_434 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_650_739 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_368_498 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_26_470 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_281_83 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_690_345 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_857_463 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_157_365 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_587_772 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_290_871 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_892_277 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_117_279 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_215_575 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_652_721 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_272_399 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_798_25 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_673_977 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_273_329_277 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_273_781_314 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_36_507 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_109_486 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_973_783 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_276_770_460 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_232_401 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_735_947 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_855_971 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_704_988 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_655_19 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_278_376_780 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_236_280 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_179_482 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_34_424 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_685_385 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_888_993 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_357_202 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_692_791 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_622_237 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_138_998 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_242_727 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_763_94 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_861_930 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_31_151 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_358_886 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_147_374 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_453_23 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_808_820 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_395_566 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_51_364 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_493_98 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_870_341 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_568_167 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_435_444 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_732_285 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtatgagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_165_226 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_339_308 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_768_702 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_375_624 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_372_265 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_155_546 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgaactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_465_487 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_163_484 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_49_940 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_315_185 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_234_120 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_763_806 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_212_729 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_566_850 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_625_644 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_129_698 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_921_735 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_474_325 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_798_461 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_241_105 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_615_527 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_742_429 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_331_414 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_97_519 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_452_305 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_583_685 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_485_195 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_47_478 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_568_871 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_297_736_36 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_297_870_795 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_548_618 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_351_875 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_206_863 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccg -------------------------)))))))### HWI-EAS88_4_1_298_796_993 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_828_126 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_381_298 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_650_704 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_611_763 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_782_305 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_91_707 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_661_19 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_118_894 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_30_360_204 ChrA 52 + 0 0 23 23 23 3 36 0 0 35 taccgtataagtttttgctgagctgtaggcaccat ++-----------------------)))))))### HWI-EAS88_4_1_42_567_90 ChrA 52 + 0 0 12 12 12 4 26 0 0 35 taccgtataagtttctgctgagctgtaggcacccn ++-----------------------)))))))##! HWI-EAS88_4_1_84_647_783 ChrA 52 + 0 0 15 15 15 1 12 0 1 35 tcccgtataagtttctgctgagctgtaggcaccat +------------------------)))))))### HWI-EAS88_4_1_85_852_68 ChrA 52 + 0 0 12 12 12 2 24 0 0 35 taccgtataagtttctgctgagctgtaggcaccat ++-----------------------)))))))### HWI-EAS88_4_1_89_556_255 ChrA 52 + 0 0 12 12 12 2 24 0 0 35 taccgtataagtttctgctgagctgtaggcaccat ++-----------------------)))))))### HWI-EAS88_4_1_110_383_762 ChrA 52 + 0 0 15 15 15 1 12 0 1 35 tcccgtataagtttctgctgagctgtaggcaccat +------------------------)))))))### HWI-EAS88_4_1_138_964_202 ChrA 52 + 0 0 22 22 22 0 0 1 0 35 acccgtataagtttctgctgagctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_180_572_279 ChrA 52 + 0 0 15 15 15 1 12 0 1 35 tcccgtataagtttctgctgagctgtaggcaccat +------------------------)))))))### HWI-EAS88_4_1_196_371_63 ChrA 52 + 0 0 22 22 22 0 0 1 0 35 acccgtataagtttctgctgagctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_209_27_122 ChrA 52 + 0 0 15 15 15 1 12 0 1 35 tcccgtataagtttctgctgagctgtaggcaccat +------------------------)))))))### HWI-EAS88_4_1_241_321_218 ChrA 52 + 0 0 12 12 12 2 24 0 0 35 taccgtataagtttctgctgagctgtaggcaccat ++-----------------------)))))))### HWI-EAS88_4_1_263_418_901 ChrA 52 + 0 0 12 12 12 2 24 0 0 35 taccgtataagtttctgctgagctgtaggcaccat ++-----------------------)))))))### HWI-EAS88_4_1_276_104_117 ChrA 52 + 0 0 23 23 23 3 36 0 0 35 taccctataagtttctgctgagctgtaggcaccat ++-----------------------)))))))### HWI-EAS88_4_1_11_791_180 ChrA 101 + 0 0 15 15 15 1 12 0 1 35 cagctttttagttttcacgctgtaggcaccatcaa +------------------------)))))))### HWI-EAS88_4_1_13_514_596 ChrA 101 + 0 0 15 15 15 1 12 0 1 35 tagcttcttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_36_648_772 ChrA 101 + 0 0 12 12 12 2 0 0 0 35 tagctttttagttttcncgctntaggcaccatcaa ----------------!----!---)))))))### HWI-EAS88_4_1_51_638_881 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_56_611_301 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_67_684_559 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_69_801_661 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_71_987_730 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_73_690_22 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_76_889_789 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_91_981_885 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_94_394_46 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_108_560_901 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_138_625_488 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_165_469_971 ChrA 101 + 0 0 15 15 15 2 16 0 1 35 tagctttttagttttcacgctgtagtcagcatcaa -------------------------)))))))### HWI-EAS88_4_1_193_212_968 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_215_444_185 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_232_416_788 ChrA 101 + 0 0 12 12 12 3 0 0 0 35 tagctttttagttttcacgctgnaggcnccatcan ----------------------!--))!))))##! HWI-EAS88_4_1_241_75_622 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_248_642_940 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_250_372_60 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_252_729_227 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_254_716_653 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_274_40_854 ChrA 101 + 0 0 15 15 15 1 12 0 1 35 tagctttttagttttaacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_276_802_411 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_298_887_457 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_12_1000_484 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_14_688_438 ChrA 151 + 0 0 15 15 15 1 12 0 1 35 ttcgaggcctattaaacccctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_25_975_715 ChrA 151 + 0 0 12 12 12 2 24 0 0 35 ttcgaggcctattaaaactcggctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_43_764_665 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_79_384_542 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_85_692_526 ChrA 151 + 0 0 15 15 15 1 12 0 1 35 tccgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_97_428_606 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_202_266_568 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_207_525_148 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_214_811_380 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_272_840_571 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_273_260_580 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_278_470_89 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_14_446_215 ChrA 152 + 0 0 23 23 23 3 36 0 0 35 ttcgggcctattaaacctctgctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_25_311_196 ChrA 152 + 0 0 23 23 23 3 36 0 0 35 ttcgggcctattaaacctctgctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_70_948_414 ChrA 152 + 0 0 23 23 23 3 36 0 0 35 ttcgggcctattaaacctctgctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_154_938_263 ChrA 152 + 0 0 23 23 23 3 36 0 0 35 ttcgggcctattaaacctctgctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_217_324_105 ChrA 152 + 0 0 23 23 23 3 36 0 0 35 ttcgggcctattaaacctctgctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_296_335_731 ChrA 152 + 0 0 12 12 12 2 24 0 0 35 ttcaggcctattaaacctctgctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_1_689_272 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_1_247_616 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_1_765_530 ChrA 201 + 0 0 15 15 15 1 12 0 1 35 ttttctcgatgttttctgatctgtaggcaccatca +------------------------)))))))### HWI-EAS88_4_1_1_408_74 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_1_566_624 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_1_474_948 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_2_644_906 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_3_475_521 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_3_298_368 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_3_459_421 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_3_619_218 ChrA 201 + 0 0 15 15 15 1 12 0 1 35 gattctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_882_358 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_837_148 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_343_249 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_668_527 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_188_105 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_399_240 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_91_408 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_433_144 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_370_657 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_347_731 ChrA 201 + 0 0 23 23 23 7 62 0 0 35 tttcctcgatgttttctgatatgtaggcaaactcg +------------------------)))))))### HWI-EAS88_4_1_5_750_634 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_5_175_355 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_5_154_980 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_6_485_227 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_6_291_284 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_6_629_956 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_6_216_836 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_6_408_351 ChrA 201 + 0 0 15 15 15 1 8 0 1 35 gtttctcgatgttttctgatctgtagtcaccatca -------------------------)))))))### HWI-EAS88_4_1_7_274_72 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_7_975_642 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_7_246_382 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_7_941_56 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_7_340_449 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_7_369_42 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_8_486_24 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_8_889_617 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_8_790_848 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_9_500_208 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_9_532_773 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_9_863_353 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_9_452_339 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_10_863_88 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_10_635_779 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_10_514_210 ChrA 201 + 0 0 22 22 22 1 2 1 0 35 gtttctcgatgttttctgatctgtaggcaccatcg -------------------------)))))))### HWI-EAS88_4_1_10_125_708 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_10_599_930 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_10_199_964 ChrA 201 + 0 0 22 22 22 1 8 1 0 35 gtttctcgatgttttctgatctgtaggcacaatca -------------------------)))))))### HWI-EAS88_4_1_10_221_964 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_10_685_144 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_11_942_199 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_11_875_373 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### ShortRead/inst/extdata/maq/out.aln.2.txt0000644000175100017510000040444512607265053021154 0ustar00biocbuildbiocbuildHWI-EAS88_4_1_175_165_901 ChrA 1151 + 0 0 15 15 15 1 0 0 1 35 tttgtactccgatnccattcagactgtaggcacca -------------!-----------)))))))### HWI-EAS88_4_1_180_452_137 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_422_486 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_723_162 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_722_562 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_726_812 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_499_849 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_792_179 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_626_889 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaaca -------------------------)))))))### HWI-EAS88_4_1_180_673_993 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_757_364 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_709_540 ChrA 1151 + 0 0 23 23 23 5 40 0 0 35 tttgtactccgatgcacttccgactgtaggcacac -------------------------)))))))### HWI-EAS88_4_1_181_663_285 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_109_366 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_636_677 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_604_736 ChrA 1151 + 0 0 22 22 22 2 8 1 0 35 tttgtactccgatgccattcagactgtagntacca -------------------------))))!))### HWI-EAS88_4_1_181_982_96 ChrA 1151 + 0 0 15 15 15 2 12 0 1 35 tttgtactccaatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_241_252 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_579_856 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_434_740 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_301_554 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_183_907_317 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_25_353 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcacct -------------------------)))))))### HWI-EAS88_4_1_183_808_466 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_782_572 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_627_938 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_264_682 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_816_584 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_525_937 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_662_198 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_762_462 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_66_222 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_572_704 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_703_412 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_221_982 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_158_88 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_760_348 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_649_674 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_720_835 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_316_853 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_570_386 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_186_868_139 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_186_174_298 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_186_328_987 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_162_164 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_230_544 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_363_241 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_229_963 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattcaggctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_675_370 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_816_98 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_944_223 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_450_457 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_189_212_165 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_501_600 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_446_498 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_354_354 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttggactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_128_449 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_237_655 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_957_344 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_69_42 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_404_161 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_976_311 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_624_67 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_491_383 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_469_732 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_262_523 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_715_653 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_604_894 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcatca -------------------------)))))))### HWI-EAS88_4_1_191_925_314 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_390_512 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_304_487 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_585_557 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_859_346 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_513_411 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_670_155 ChrA 1151 + 0 0 22 22 22 2 4 1 0 35 tttgtactccgatgccattcagactgtaggcacat -------------------------)))))))### HWI-EAS88_4_1_191_196_457 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_646_906 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_204_328 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_967_701 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_486_952 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_85_654 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_948_870 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_475_957 ChrA 1151 + 0 0 23 23 23 6 50 0 0 35 tttgtactccgatgccatacagacaggagcaaaca -------------------------)))))))### HWI-EAS88_4_1_192_764_321 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_718_255 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_61_89 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_951_760 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_483_826 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_108_546 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_592_956 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_872_977 ChrA 1151 + 0 0 12 12 12 2 24 0 0 35 cttgtactccgaagccattcagactgtaggcacca +------------------------)))))))### HWI-EAS88_4_1_193_795_502 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_888_420 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_48_358 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_294_393 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_613_321 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_422_868 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_898_223 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_921_867 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_726_726 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_136_757 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_24_904 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_511_886 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_383_330 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_365_385 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_295_402 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_387_262 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_363_153 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_89_374 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_402_193 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_766_716 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_88_633 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_729_394 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_500_309 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_152_287 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_984_244 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_748_809 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_894_534 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_955_862 ChrA 1151 + 0 0 15 15 15 2 14 0 1 35 tttgtactccgatgccattaagactgtaggcaaca -------------------------)))))))### HWI-EAS88_4_1_196_227_537 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_492_199 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_453_633 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgattccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_504_531 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_200_602 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccaatcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_805_63 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_386_302 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_401_229 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_411_59 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_704_865 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_252_540 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_548_344 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_948_809 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_402_230 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_205_99 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_239_418 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_568_92 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_614_761 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_702_704 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_668_817 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_383_262 ChrA 1151 + 0 0 12 12 12 2 24 0 0 35 tttgtactccgatgcccatcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_202_326 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_598_501 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattcggactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_122_507 ChrA 1151 + 0 0 22 22 22 1 8 1 0 35 tttgtactccgatgccattcagactgtagtcacca -------------------------)))))))### HWI-EAS88_4_1_199_156_219 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_129_619 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_848_436 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_946_702 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_746_868 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_332_767 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_280_808 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_965_133 ChrA 1151 + 0 0 12 12 12 5 44 0 0 35 tttgtactccgatgccatacagactgcatgaccca -------------------------)))))))### HWI-EAS88_4_1_199_932_407 ChrA 1151 + 0 0 12 12 12 3 22 0 0 35 tttgtactccgatgccattcagattttaggcacaa -------------------------)))))))### HWI-EAS88_4_1_200_501_535 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_441_220 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_793_808 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtacttcgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_345_959 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_910_938 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_61_984 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_697_398 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_289_647 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_201_687_657 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_448_120 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_187_98 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_944_542 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_269_895 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_287_679 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_698_889 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_286_781 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_578_490 ChrA 1151 + 0 0 15 15 15 5 32 0 1 35 tttgtactccgatgccattaagactgtagtccaaa -------------------------)))))))### HWI-EAS88_4_1_202_306_167 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_596_525 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_172_252 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_740_685 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_86_811 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_523_851 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_799_461 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_589_37 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_284_351 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_590_565 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_775_150 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_67_465 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_534_760 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_547_548 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_567_928 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_642_954 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_934_247 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_481_495 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_551_300 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_485_353 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_205_687 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_45_121 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_425_585 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_536_511 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_821_621 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_768_704 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_869_840 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_284_48 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_704_886 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_914_845 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_324_976 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_942_964 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_110_329 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_865_454 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_511_456 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_123_134 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_629_890 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactctgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_228_807 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccatccagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_444_472 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_938_952 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_736_217 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_130_178 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_875_606 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_714_674 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_124_786 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_78_765 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_467_288 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_476_395 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_707_723 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_286_809 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_784_138 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_854_733 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_792_159 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_938_212 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_288_238 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_242_789 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_626_750 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_144_322 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_433_337 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_455_683 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_521_558 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_45_220 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_152_283 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_555_38 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_841_578 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccatttagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_660_603 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_238_44 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_141_379 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_29_734 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_118_650 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_329_419 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_543_413 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_209_381_729 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccg -------------------------)))))))### HWI-EAS88_4_1_210_658_411 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_639_202 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccatccagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_455_814 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_779_584 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_700_705 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_831_968 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_663_135 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_863_949 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactcagatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_471_855 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_397_560 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_649_461 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_690_87 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_841_298 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_664_727 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_226_604 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_383_129 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_292_717 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_507_347 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_560_543 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_346_601 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_755_756 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_729_796 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_458_730 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_112_485 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_669_785 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_725_492 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_308_685 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_783_751 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_278_863 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_428_812 ChrA 1151 + 0 0 22 22 22 2 4 1 0 35 tttgtactccgatgccattcagactgtaggcacat -------------------------)))))))### HWI-EAS88_4_1_215_586_28 ChrA 1151 + 0 0 22 22 22 3 4 1 0 35 tttgtactccgatgccattcagactgtaggcaaan -------------------------)))))))##! HWI-EAS88_4_1_215_738_687 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_284_622 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_215_649_713 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_909_104 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattcatactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_185_296 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_431_785 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_329_666 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_572_189 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_732_956 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_131_408 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_240_470 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_576_360 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattcagaccgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_468_766 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_643_705 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccggtgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_716_897 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_937_848 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_423_906 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_329_459 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_536_111 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_375_329 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_83_62 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_684_786 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_24_703 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_863_573 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_744_775 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_531_678 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_872_54 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_951_46 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_793_398 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgattccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_416_343 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_218_719_783 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_831_860 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_84_993 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_219_704_121 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_929_571 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_182_101 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_862_326 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_612_196 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_758_618 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_680_694 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_631_602 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccaatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_645_277 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_630_888 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_767_148 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_307_994 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_645_733 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_216_92 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_579_660 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_795_176 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_348_979 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_673_364 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_709_595 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_214_397 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_391_609 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_521_573 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_316_845 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_533_924 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_901_694 ChrA 1151 + 0 0 23 23 23 4 34 0 0 35 tttgtactccgatgccattacgactataggcacaa -------------------------)))))))### HWI-EAS88_4_1_223_611_65 ChrA 1151 + 0 0 15 15 15 4 2 0 1 35 tttgtactccgatgccattcagnctgtagncacnc ----------------------!--))))!))#!# HWI-EAS88_4_1_223_954_583 ChrA 1151 + 0 0 15 15 15 3 0 0 1 35 tttgtactccgatgccattcagnctgtagncacna ----------------------!--))))!))#!# HWI-EAS88_4_1_223_51_74 ChrA 1151 + 0 0 15 15 15 3 0 0 1 35 tttgtactccgatgccattcagnctgtagncacna ----------------------!--))))!))#!# HWI-EAS88_4_1_223_680_332 ChrA 1151 + 0 0 15 15 15 3 0 0 1 35 tttgtactccgatgccattcagnctgtagncacna ----------------------!--))))!))#!# HWI-EAS88_4_1_223_963_676 ChrA 1151 + 0 0 15 15 15 3 0 0 1 35 tttgtactccgatgccattcagnctgtagncacna ----------------------!--))))!))#!# HWI-EAS88_4_1_223_276_869 ChrA 1151 + 0 0 15 15 15 3 0 0 1 35 tttgtactccgatgccattcagnctgtagncacna ----------------------!--))))!))#!# HWI-EAS88_4_1_226_143_133 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgcnattcagactntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_501_380 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgcnattcagactntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_37_674 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgcnattcagactntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_179_898 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgcnattcagactntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_83_791 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgcnattcagactntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_228_74_73 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_411_222 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_619_698 ChrA 1151 + 0 0 23 23 23 4 12 0 0 35 tttgtacgccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_801_195 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_281_830 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_784_140 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_155_803 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_454_603 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_83_127 ChrA 1151 + 0 0 23 23 23 6 22 0 0 35 tttgtactccgatgccatccagnctntatgcacan ----------------------!--!))))))##! HWI-EAS88_4_1_229_826_72 ChrA 1151 + 0 0 12 12 12 4 14 0 0 35 tttgaactccgatgccattcngactgtagncaaca --------------------!----))))!))### HWI-EAS88_4_1_229_306_87 ChrA 1151 + 0 0 12 12 12 4 14 0 0 35 tttgaactccgatgccattcngactgtagncaaca --------------------!----))))!))### HWI-EAS88_4_1_229_705_139 ChrA 1151 + 0 0 23 23 23 5 26 0 0 35 tttgaactccgatgccatttngactgtagncaaca --------------------!----))))!))### HWI-EAS88_4_1_230_717_323 ChrA 1151 + 0 0 12 12 12 4 20 0 0 35 tttgtactccgatgccattcagtctgtcgncncca -------------------------))))!)!### HWI-EAS88_4_1_230_629_347 ChrA 1151 + 0 0 22 22 22 3 2 1 0 35 tttgtactccgatgccattcagactgtagncntca -------------------------))))!)!### HWI-EAS88_4_1_230_172_790 ChrA 1151 + 0 0 15 15 15 5 14 0 1 35 tttgtactccgatgccattcagcctgtanncnccc -------------------------)))!!)!### HWI-EAS88_4_1_230_234_525 ChrA 1151 + 0 0 22 22 22 4 10 1 0 35 tttgtactccgatgccattcagactgtagngncaa -------------------------))))!)!### HWI-EAS88_4_1_230_846_946 ChrA 1151 + 0 0 12 12 12 8 26 0 0 35 tttgtactccgatgccattcaggctgtgnncnagt -------------------------)))!!)!### HWI-EAS88_4_1_230_37_920 ChrA 1151 + 0 0 23 23 23 9 38 0 0 35 tttgtactccgatgccatagagactctanncnaac -------------------------)))!!)!### HWI-EAS88_4_1_232_627_724 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctgtnggcaccn ----------------------!--))!))))##! HWI-EAS88_4_1_232_280_802 ChrA 1151 + 0 0 23 23 23 4 8 0 0 35 tttgtactccgatgccattcagnctganggcaccn ----------------------!--))!))))##! HWI-EAS88_4_1_232_565_423 ChrA 1151 + 0 0 23 23 23 4 8 0 0 35 tttgtactccgatgccattcagnctganggcaccn ----------------------!--))!))))##! HWI-EAS88_4_1_232_775_759 ChrA 1151 + 0 0 23 23 23 5 16 0 0 35 tttgtactccgatgccattcagnctggngccaccn ----------------------!--))!))))##! HWI-EAS88_4_1_232_159_270 ChrA 1151 + 0 0 23 23 23 5 16 0 0 35 tttgtactccgatgccattcagnctgcngccaccn ----------------------!--))!))))##! HWI-EAS88_4_1_233_148_640 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactcagatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_749_849 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_23_710 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_476_708 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactcggatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_865_423 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_61_619 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactcagatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_121_248 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_519_656 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_683_317 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_140_884 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_292_455 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccg -------------------------)))))))### HWI-EAS88_4_1_235_614_28 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_504_947 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_377_826 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_464_957 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_861_506 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_264_167 ChrA 1151 + 0 0 22 22 22 2 10 1 0 35 tttgtactccgatgccattcagactgtaggaaaca -------------------------)))))))### HWI-EAS88_4_1_236_565_56 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_236_939_820 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_236_670_101 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_236_235_926 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_236_362_977 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_236_722_747 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcacga -------------------------)))))))### HWI-EAS88_4_1_236_879_125 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_805_196 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_162_681 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_901_284 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_485_181 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_622_630 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_705_635 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_704_636 ChrA 1151 + 0 0 22 22 22 2 10 1 0 35 tttgtactccgatgccattcagactgtaggcccct -------------------------)))))))### HWI-EAS88_4_1_239_365_347 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_490_25 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_743_665 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_276_118 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_771_591 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_456_232 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_305_278 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_676_844 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_639_902 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_240_823_476 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_240_817_511 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_240_375_507 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_240_511_674 ChrA 1151 + 0 0 12 12 12 2 24 0 0 35 ttcgtactccgatgccatccagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_240_799_989 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_60_411 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_97_266 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_407_48 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_436_709 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_715_792 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_559_649 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_242_182_182 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_242_454_313 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_244_429_934 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtaggcncca -------------------------))))))!### HWI-EAS88_4_1_244_419_937 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtaggcncca -------------------------))))))!### HWI-EAS88_4_1_244_376_478 ChrA 1151 + 0 0 15 15 15 2 12 0 1 35 tttttactccgatgccattcagactgtaggcncca -------------------------))))))!### HWI-EAS88_4_1_245_671_21 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_245_429_404 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_245_648_851 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_245_289_568 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_524_611 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_279_391 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_406_842 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_131_381 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_267_961 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_671_581 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_433_582 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_495_330 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_224_270 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_291_130 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_122_362 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_960_474 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_463_152 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_543_637 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_488_62 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_635_87 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_506_558 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_302_699 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattcggactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_424_213 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_816_813 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_438_740 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_449_942 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_262_630 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_377_103 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_226_199 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_554_791 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_239_867 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_269_84 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_609_681 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_492_90 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_690_144 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_695_711 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_223_897 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_219_530 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_376_644 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_376_123 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_378_728 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_218_819 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_222_829 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_190_862 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_252_174_596 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_252_193_669 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_252_562_930 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_252_31_167 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_253_156_265 ChrA 1151 + 0 0 12 12 12 2 12 0 0 35 tttgtactccgatgccantcacactgtaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_62_468 ChrA 1151 + 0 0 12 12 12 2 12 0 0 35 tttgtactccgatgccantcaaactgtaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_299_386 ChrA 1151 + 0 0 12 12 12 2 12 0 0 35 ttcgtactccgatgccantcagactgtaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_526_275 ChrA 1151 + 0 0 12 12 12 2 8 0 0 35 tttgtactccgatgccantcagactgcaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_871_51 ChrA 1151 + 0 0 23 23 23 3 20 0 0 35 tttgtactccgatgccantcagtctgttggcacca -----------------!-------)))))))### HWI-EAS88_4_1_254_555_684 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_254_560_804 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_254_668_587 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_254_90_36 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_254_859_668 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_254_131_144 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_254_489_951 ChrA 1151 + 0 0 15 15 15 3 18 0 1 35 tttgtactccgatgccattcagactgcagtcacaa -------------------------)))))))### HWI-EAS88_4_1_254_365_375 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_659_53 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_677_567 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_861_395 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_228_591 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccgttcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_95_580 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_520_209 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_636_363 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_55_652 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_377_862 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_256_860 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_305_746 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_355_981 ChrA 1151 + 0 0 12 12 12 3 26 0 0 35 tttgtactccgatgccattcagcatgtaggcaaca -------------------------)))))))### HWI-EAS88_4_1_257_227_567 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_48_630 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tctgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_99_350 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_138_641 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcatca -------------------------)))))))### HWI-EAS88_4_1_257_836_193 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_492_907 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_847_309 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtaccccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_600_909 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_123_93 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_462_188 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_651_460 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_631_196 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_640_790 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_161_245 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_249_535 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_772_419 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtaccccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_210_179 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_780_422 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_251_43 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_300_641 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_103_851 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_584_475 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_742_943 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_778_689 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_307_677 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgtcattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_461_679 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgacattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_203_461 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgtcattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_534_855 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgacattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_372_111 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgacattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_109_662 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_242_863 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_759_444 ChrA 1151 + 0 0 22 22 22 1 8 1 0 35 tttgtactccgatgccattcagactgtaggaacca -------------------------)))))))### HWI-EAS88_4_1_261_783_239 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_572_54 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_346_117 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_566_127 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_633_524 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_527_211 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_26_555 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_670_787 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_774_604 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_92_602 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_939_593 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_454_572 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_35_20 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_630_825 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccatacagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_653_923 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_263_889_131 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_263_305_350 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_263_388_57 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_263_421_442 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_263_534_834 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 cttgtactccgatgccattcagactgtaggcacca +------------------------)))))))### HWI-EAS88_4_1_264_86_487 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_575_727 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_607_708 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_250_815 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_418_844 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_307_758 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_34_470 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_113_362 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_906_202 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_577_32 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_114_221 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_165_830 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_955_331 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_856_608 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_128_883 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_485_372 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_519_713 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_726_875 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_696_915 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_365_996 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_580_633 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_251_151 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_247_688 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_438_902 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtaccccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_231_895 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_775_910 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_68_166 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_703_412 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_909_179 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_700_926 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_768_802 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_669_995 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_369_28 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_760_652 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_52_525 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_245_269 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_55_463 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_398_212 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtaccccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_659_763 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_569_917 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_500_976 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_88_947 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_678_986 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_695_235 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_133_319 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_316_613 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_744_618 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 cttgtactccgatgccattcagactgtaggcacca +------------------------)))))))### HWI-EAS88_4_1_270_491_800 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_625_862 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_142_871 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_828_662 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttatactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_812_449 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_445_347 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_650_393 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_61_99 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_64_84 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_750_504 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_885_134 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_190_651 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_715_908 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_835_643 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_662_425 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_927_106 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_452_89 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_836_200 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_331_594 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattcatactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_758_505 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_332_708 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_194_75 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_243_56 ChrA 1151 + 0 0 23 23 23 3 28 0 0 35 tttgtactccgatgcaattcagactgagggcacca -------------------------)))))))### HWI-EAS88_4_1_273_268_204 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_273_280_637 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_274_113_302 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_274_530_96 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccaatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_274_491_230 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_274_840_76 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_274_24_896 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_86_67 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_583_27 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_167_731 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_19_998 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattgagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_202_544 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_186_582 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_242_68 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_814_742 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_148_674 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_636_991 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_175_50 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_272_633 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 ttcgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_841_184 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_611_21 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_50_240 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_311_459 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_277_47_571 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_243_652 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_995_903 ChrA 1151 + 0 0 15 15 15 2 14 0 1 35 tttgtactcagatgccattcagactgtaggcagca -------------------------)))))))### HWI-EAS88_4_1_278_521_371 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_278_348_22 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_278_972_510 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_278_522_952 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_278_269_874 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_278_817_979 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_756_616 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_916_650 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_200_818 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccatccagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_188_200 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_444_758 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_142_224 ChrA 1151 + 0 0 12 12 12 4 34 0 0 35 tttgtactccgatgaccttcagactgtatgcaaca -------------------------)))))))### HWI-EAS88_4_1_280_780_448 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_279_586 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_43_20 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_343_99 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_562_767 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_41_201 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_382_630 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_203_463 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_93_931 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_215_676 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_708_682 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_466_953 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_638_893 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_433_367 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_231_535 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_769_401 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtaccccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_779_760 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_571_748 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_145_740 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_146_904 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_738_104 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_849_723 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_557_515 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_127_630 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_677_637 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_470_288 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_255_384 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_560_188 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_266_16 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_89_201 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_414_285 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_724_602 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_367_632 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_420_900 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_480_968 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_206_107 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_337_990 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_524_332 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_285_24_266 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_498_157 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_717_792 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_672_959 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_184_155 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_463_64 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_804_653 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_810_843 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_313_114 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_702_981 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_205_813 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_768_689 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_424_171 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_461_26 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_565_627 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_495_759 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_617_198 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_206_907 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgacgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_62_584 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_90_552 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_244_843 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccgttcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_469_29 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_289_588_342 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_289_930_44 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_289_269_516 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_289_765_764 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_316_662 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_690_340 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_394_930 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_743_950 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_479_562 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_784_976 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_112_430 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_379_256 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_94_199 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_269_779 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgataccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_501_504 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_432_866 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_645_155 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_743_72 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_121_392 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_416_184 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_522_49 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_444_89 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_39_887 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_54_182 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_95_409 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_681_414 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_796_77 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_350_464 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_31_595 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactctgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_399_239 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_46_837 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_375_957 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_84_634 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_302_780 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_277_796 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_471_916 ChrA 1151 + 0 0 22 22 22 1 8 1 0 35 tttgtactccgatgccattcagactgtaagcacca -------------------------)))))))### HWI-EAS88_4_1_294_219_989 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_490_25 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_754_331 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_922_652 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_834_524 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_469_952 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_743_866 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_287_669 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_893_387 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_52_248 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_739_545 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_300_245 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_885_305 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_596_585 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_224_530 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_585_659 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_168_375 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_963_212 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_263_918 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_290_998 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_987_353 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_901_962 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_297_208_101 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_297_787_83 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_593_178 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_553_520 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_138_270 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_305_736 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_965_694 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_133_495 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_170_731 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_85_542 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_76_258 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_198_699 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_211_191 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_708_625 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_275_637 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_671_638 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_806_610 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_2_680_125 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttttactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_6_435_358 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_8_939_640 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttgtactccgatgtcattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_13_574_465 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_14_52_750 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttgtactccgatgccactcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_46_344_473 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_49_475_700 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_53_584_821 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_61_965_204 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_62_499_699 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_71_276_62 ChrA 1152 + 0 0 23 23 23 3 36 0 0 35 tttgtctccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_74_955_763 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_81_386_22 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 atgtactccgatgccattcagactgtaggcaccat +------------------------)))))))### HWI-EAS88_4_1_88_482_346 ChrA 1152 + 0 0 22 22 22 1 8 1 0 35 ttgtactccgatgccattcagactgtaggaaccat -------------------------)))))))### HWI-EAS88_4_1_91_138_131 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_101_869_302 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_102_456_658 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_110_906_286 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttgtgctccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_116_436_387 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttgtactccgatgacattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_117_777_68 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_117_169_803 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_118_153_193 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_122_964_545 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_129_238_144 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_135_368_679 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_139_56_433 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_180_511_114 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttttactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_186_917_788 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_195_715_187 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_196_513_290 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_200_300_85 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_202_139_721 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_204_201_831 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttgtactccgatgctattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_207_828_128 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_207_591_367 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttgtactccgatgccattcagaccgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_215_650_870 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_223_789_953 ChrA 1152 + 0 0 12 12 12 4 12 0 0 35 ttttactccgatgccattcagantgtaggnaccnt ----------------------!--))))!))#!# HWI-EAS88_4_1_226_633_216 ChrA 1152 + 0 0 12 12 12 3 0 0 0 35 ttgtactccgatgccnttcagactgnaggcacnat ---------------!---------!))))))!## HWI-EAS88_4_1_235_583_31 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_247_846_234 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_250_144_475 ChrA 1152 + 0 0 23 23 23 3 36 0 0 35 tttgtctccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_260_16_377 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_269_870_651 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttttactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_278_654_839 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_284_774_594 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_285_241_207 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_285_112_835 ChrA 1152 + 0 0 12 12 12 3 28 0 0 35 ttttactccgatgccattcagactgaaggcaacat -------------------------)))))))### HWI-EAS88_4_1_292_606_842 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_293_736_486 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_294_165_735 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_294_545_165 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_298_421_350 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_300_817_405 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_2_541_123 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_2_141_608 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_2_452_372 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_2_196_900 ChrA 1201 + 0 0 0 0 0 1 12 0 1 35 ctagtttcactcgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_3_861_833 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_6_809_802 ChrA 1201 + 0 0 15 15 15 7 38 0 1 35 ctagtttcacttgttctgcacctgtagcaccatca -------------------------)))))))### HWI-EAS88_4_1_8_349_546 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_8_833_26 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_8_828_779 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_8_839_911 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_9_840_645 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_9_328_905 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_11_989_685 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_12_139_691 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_14_265_793 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_14_515_927 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_14_832_934 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgtcctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_15_300_277 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_16_639_553 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_16_123_317 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_16_567_237 ChrA 1201 + 0 0 12 12 12 5 36 0 0 35 ctagtttcacttgttctgaccctgtaggcacaggc -------------------------)))))))### HWI-EAS88_4_1_17_239_394 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_17_878_855 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_18_670_256 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_18_446_37 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_20_383_488 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_25_590_787 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_25_943_892 ChrA 1201 + 0 0 12 12 12 2 24 0 0 35 ctagtttcacttgttctgcaaatgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_26_184_540 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_26_186_778 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_30_552_455 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgtgctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_40_714_263 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_42_463_581 ChrA 1201 + 0 0 0 0 0 1 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatn -------------------------)))))))##! HWI-EAS88_4_1_43_187_265 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_47_405_391 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_47_248_134 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_47_793_62 ChrA 1201 + 0 0 12 12 12 2 24 0 0 35 ctagtttcacttgttcttcacctttaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_48_944_51 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_48_322_885 ChrA 1201 + 0 0 0 0 0 1 12 0 1 35 ctagtttcacttgctctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_48_463_968 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttctgcacatgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_50_800_346 ChrA 1201 + 0 0 0 0 0 2 4 1 0 35 ctagtttcacttgttctgcacctgtaggcaccaca -------------------------)))))))### HWI-EAS88_4_1_50_985_871 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_51_327_554 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_52_254_414 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_52_536_603 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_53_394_61 ChrA 1201 + 0 0 15 15 15 5 28 0 1 35 ctagtttcacttgttctgcacctgtagttaacccc -------------------------)))))))### HWI-EAS88_4_1_54_759_374 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_58_458_728 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_59_491_90 ChrA 1201 + 0 0 0 0 0 1 12 0 2 35 atagtttcacttgttctgcacctgtaggcaccatc +------------------------)))))))### HWI-EAS88_4_1_59_760_172 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_60_520_814 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_60_292_1001 ChrA 1201 + 0 0 0 0 0 1 8 1 0 35 ctagtttcacttgttctgcacctgtaggcacaatc -------------------------)))))))### HWI-EAS88_4_1_64_462_862 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_65_740_444 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_67_873_488 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_68_272_231 ChrA 1201 + 0 0 0 0 0 1 12 0 1 35 ctagtttcactcgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_69_416_586 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttctgctcctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_70_939_523 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_70_891_102 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_73_392_321 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_75_446_14 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_77_109_905 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_78_453_750 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_79_241_957 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_80_315_498 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_83_663_556 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_83_542_829 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_84_260_557 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_84_271_350 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_84_662_532 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_86_547_815 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_87_115_733 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_88_135_297 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_92_984_53 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_92_777_595 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_93_187_232 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_93_117_190 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_96_714_280 ChrA 1201 + 0 0 0 0 0 1 8 1 0 35 ctagtttcacttgttctgcacctgtaggcgccatc -------------------------)))))))### HWI-EAS88_4_1_98_840_599 ChrA 1201 + 0 0 0 0 0 1 12 0 1 35 ctagtttcacttgctctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_99_270_317 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_99_587_955 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_101_982_420 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_103_484_175 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_103_108_418 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_103_48_799 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_104_282_695 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_105_210_69 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_106_687_477 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_106_439_789 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_107_397_800 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_107_834_997 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_108_397_545 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttctgcatctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_112_714_473 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttcggcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_112_172_435 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_112_120_621 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_113_139_234 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_116_144_710 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_118_822_149 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_119_299_372 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_119_870_999 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_121_976_81 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_121_742_985 ChrA 1201 + 0 0 0 0 0 1 12 0 1 35 ctattttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_122_701_420 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_123_368_852 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_124_402_605 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_125_195_242 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_129_318_557 ChrA 1201 + 0 0 0 0 0 1 8 1 0 35 ctagtttcacttgttctgcacctgtaggcatcatc -------------------------)))))))### HWI-EAS88_4_1_129_898_772 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttctgcacctctaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_129_159_154 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_131_785_699 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_131_657_864 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_134_384_841 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_135_969_278 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_135_173_767 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_135_346_334 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_136_611_212 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_136_446_909 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_137_984_320 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_138_326_218 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_139_910_611 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_139_872_706 ChrA 1201 + 0 0 23 23 23 3 32 0 0 35 ctagtttcacttgttctgcttctgttggcaccatc -------------------------)))))))### HWI-EAS88_4_1_139_397_897 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_140_649_246 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_140_805_315 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_141_854_46 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttctgcgcctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_142_664_405 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_145_423_43 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_146_787_49 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_148_48_981 ChrA 1201 + 0 0 0 0 0 1 0 0 1 35 ctagtttcacttgttctgcncctgtaggcaccatc -------------------!-----)))))))### HWI-EAS88_4_1_149_838_74 ChrA 1201 + 0 0 0 0 0 1 12 0 1 35 ctagtttcactcgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_149_70_730 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_150_353_284 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_150_95_920 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttctgcatctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_151_451_377 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_151_155_350 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_151_48_804 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_153_770_83 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_154_492_642 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_157_207_300 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_165_27_872 ChrA 1201 + 0 0 0 0 0 1 8 1 0 35 ctagtttcacttgttctgcacctgtaggtaccatc -------------------------)))))))### HWI-EAS88_4_1_166_174_214 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_166_391_34 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_180_915_682 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_181_818_141 ChrA 1201 + 0 0 0 0 0 1 0 1 0 35 ctagtttcacttgttctgcacctgtaggcnccatc -------------------------))))!))### HWI-EAS88_4_1_183_269_287 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_184_509_632 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_189_293_972 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_191_891_642 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_191_340_220 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_192_513_745 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_192_995_674 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_193_683_625 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_193_901_395 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_193_33_145 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_195_902_772 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_197_473_569 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_197_249_528 ChrA 1201 + 0 0 0 0 0 2 4 1 0 35 ctagtttcacttgttctgcacctgtaggcaccaca -------------------------)))))))### HWI-EAS88_4_1_197_561_501 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### ShortRead/inst/script/0000755000175100017510000000000012607265053015754 5ustar00biocbuildbiocbuildShortRead/inst/script/qa-test.R0000644000175100017510000000046412607265053017461 0ustar00biocbuildbiocbuild## fastq nLanes <- 50 library(ShortRead) sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") nms <- sprintf("file_%d.fastq", seq_len(nLanes)) qas <- lapply(nms, qa, dirPath=rfq) qa <- do.call(rbind, qas) res <- browseURL(report(qa)) ShortRead/inst/template/0000755000175100017510000000000012607265053016263 5ustar00biocbuildbiocbuildShortRead/inst/template/0000-Header.html0000644000175100017510000000123712607265053020721 0ustar00biocbuildbiocbuild ShortRead Quality Assessment

ShortRead/inst/template/1000-Overview.html0000644000175100017510000000110212607265053021327 0ustar00biocbuildbiocbuild

Overview

This document provides a quality assessment of Genome Analyzer results. The assessment is meant to complement, rather than replace, quality assessment available from the Genome Analyzer and its documentation. The narrative interpretation is based on experience of the package maintainer. It is applicable to results from the 'Genome Analyzer' hardware single-end module, configured to scan 300 tiles per lane. The 'control' results refered to below are from analysis of PhiX-174 sequence provided by Illumina.

ShortRead/inst/template/1100-Overview-SolexaRealign.html0000644000175100017510000000021412607265053024066 0ustar00biocbuildbiocbuild

The 'aligned' reads referenced in most sections of the report are the reads reported to align uniquely to the reference genome

ShortRead/inst/template/2000-RunSummary.html0000644000175100017510000000223112607265053021650 0ustar00biocbuildbiocbuild

Run Summary

Subsequent sections of the report use the following to identify figures and other information.

@SAMPLE_KEY@

Read counts. Filtered and aligned read counts are reported relative to the total number of reads (clusters; if only filtered or aligned reads are available, total read count is reported). Consult Genome Analyzer documentation for official guidelines. From experience, very good runs of the Genome Analyzer 'control' lane result in 25-30 million reads, with up to 95% passing pre-defined filters.

  ShortRead:::.ppnCount(qa[["readCounts"]])
@PPN_COUNT_TBL@
  ShortRead:::.plotReadCount(qa)
@PPN_COUNT@

Base call frequency over all reads. Base frequencies should accurately reflect the frequencies of the regions sequenced.

  ShortRead:::.plotNucleotideCount(qa)
@BASE_CALL_COUNT@

Overall read quality. Lanes with consistently good quality reads have strong peaks at the right of the panel.

  df <- qa[["readQualityScore"]]
  ShortRead:::.plotReadQuality(df[df$type=="read",])
@READ_QUALITY_FIGURE@ ShortRead/inst/template/3000-ReadDistribution.html0000644000175100017510000000371612607265053023013 0ustar00biocbuildbiocbuild

Read Distribution

These curves show how coverage is distributed amongst reads. Ideally, the cumulative proportion of reads will transition sharply from low to high.

Portions to the left of the transition might correspond roughly to sequencing or sample processing errors, and correspond to reads that are represented relatively infrequently. 10-15%; of reads in a typical Genome Analyzer 'control' lane fall in this category.

Portions to the right of the transition represent reads that are over-represented compared to expectation. These might include inadvertently sequenced primer or adapter sequences, sequencing or base calling artifacts (e.g., poly-A reads), or features of the sample DNA (highly repeated regions) not adequately removed during sample preparation. About 5% of Genome Analyzer 'control' lane reads fall in this category.

Broad transitions from low to high cumulative proportion of reads may reflect sequencing bias or (perhaps intentional) features of sample preparation resulting in non-uniform coverage. the transition is about 5 times as wide as expected from uniform sampling across the Genome Analyzer 'control' lane.

  df <- qa[["sequenceDistribution"]]
  ShortRead:::.plotReadOccurrences(df[df$type=="read",], cex=.5)
@READ_OCCURRENCES_FIGURE@

Common duplicate reads might provide clues to the source of over-represented sequences. Some of these reads are filtered by the alignment algorithms; other duplicate reads might point to sample preparation issues.

  ShortRead:::.freqSequences(qa, "read")
@FREQUENT_SEQUENCES_READ@

Common duplicate reads after filtering

  ShortRead:::.freqSequences(qa, "filtered")
@FREQUENT_SEQUENCES_FILTERED@

Common aligned duplicate reads are

  ShortRead:::.freqSequences(qa, "aligned")
@FREQUENT_SEQUENCES_ALIGNED@ ShortRead/inst/template/4000-CycleSpecific.html0000644000175100017510000000227112607265053022241 0ustar00biocbuildbiocbuild

Cycle-Specific Base Calls and Read Quality

Per-cycle base call should usually be approximately uniform across cycles. Genome Analyzer `control' lane results often show a deline in A and increase in T as cycles progress. This is likely an artifact of the underlying technology.

  perCycle <- qa[["perCycle"]]
  ShortRead:::.plotCycleBaseCall(perCycle$baseCall)
@CYCLE_BASE_CALL_FIGURE@

Per-cycle quality score. Reported quality scores are `calibrated', i.e., incorporating phred-like adjustments following sequence alignment. These typically decline with cycle, in an accelerating manner. Abrupt transitions in quality between cycles toward the end of the read might result when only some of the cycles are used for alignment: the cycles included in the alignment are calibrated more effectively than the reads excluded from the alignment.

The reddish lines are quartiles (solid: median, dotted: 25, 75), the green line is the mean. Shading is proporitional to number of reads.

  perCycle <- qa[["perCycle"]]
  ShortRead:::.plotCycleQuality(perCycle$quality)
@CYCLE_QUALITY_FIGURE@ ShortRead/inst/template/5000-PerTile.html0000644000175100017510000000460712607265053021106 0ustar00biocbuildbiocbuild

Tile Performance

Counts per tile. Dashed red line indicates the 10% of tiles with fewest reads. An approximately uniform distribution suggests consistent read representation in each tile. Distinct separation of 'good' versus poor quality tiles might suggest systematic failure, e.g., of many tiles in a lane, or excessive variability (e.g., due to unintended differences in sample DNA concentration) in read number per lane.

  perTile <- qa[["perTile"]]
  readCnt <- perTile[["readCounts"]]
  cnts <- readCnt[readCnt$type=="read", "count"]
  histogram(cnts, breaks=40, xlab="Reads per tile",
            panel=function(x, ...) {
            panel.abline(v=quantile(x, .1),
                col="red", lty=2)
                panel.histogram(x, ...)
            }, col="white"))
@PER_TILE_HISTOGRAM@

Spatial counts per tile. Divisions on the color scale are quantized, so that the range of counts per tile is divided into 10 equal increments. Parenthetic numbers on the scale represent the break points of the quantized values. Because the scale is quantized, some tiles will necessarily have `few' reads and other necessarily `many' reads.

Consistent differences in read number per lane will result in some lanes being primarily one color, other lanes primarily another color. Genome Analyzer data typically have greatest read counts in the center column of each lane. There are usually consistent gradients from `top' to `bottom' of each column.

Low count numbers in the same tile across runs of the same flow cell may indicate instrumentation issues. HiSeq: columns are upper swaths 1 and 2, and lower swaths 1 and 2, respectively.

  ShortRead:::.plotTileCounts(readCnt[readCnt$type=="read",])
@PER_TILE_COUNT_FIGURE@

Median read quality score per tile. Divisions on the color scale are quantized, so that the range of average quality scores per tile is divided into 10 equal increments. Parenthetic numbers on the scale represent the break points of the quantized values.

Often, quality and count show an inverse relation. HiSeq: columns are upper swaths 1 and 2, and lower swaths 1 and 2, respectively.

  qscore <- perTile[["medianReadQualityScore"]]
  ShortRead:::.plotTileQualityScore(qscore[qscore$type=="read",])
@PER_TILE_QUALITY_FIGURE@ ShortRead/inst/template/6000-Alignment.html0000644000175100017510000000052612607265053021455 0ustar00biocbuildbiocbuild

Alignment

Mapped alignment score. Counts measured relative to counts in score category with maximum representation. Successful alignments will be reflected in a strong peak to the right of each panel.

  ShortRead:::.plotAlignQuality(qa[["alignQuality"]])
@ALIGN_QUALITY_FIGURE@ ShortRead/inst/template/7000-MultipleAlignment.html0000644000175100017510000000040112607265053023162 0ustar00biocbuildbiocbuild

Multiple Alignment

Number of reads matching 0, 1, ... times to the reference genome.

  ShortRead:::.plotMultipleAlignmentCount(qa[["multipleAlignment"]])
@MULTIPLE_ALIGNMENT_COUNT_FIGURE@ ShortRead/inst/template/8000-DepthOfCoverage.html0000644000175100017510000000037112607265053022544 0ustar00biocbuildbiocbuild

Depth Of Coverage

The number of times the aligned reads overlap a given sequence position.

  ShortRead:::.plotDepthOfCoverage(qa[["depthOfCoverage"]])
@DEPTH_OF_COVERAGE_FIGURE@ ShortRead/inst/template/9000-AdapterContamination.html0000644000175100017510000000101012607265053023633 0ustar00biocbuildbiocbuild

Adapter Contamination

Adapter contamination is defined here as non-genetic sequences attached at either or both ends of the reads. The 'contamination' measure is the number of reads with a right or left match to the adapter sequence over the total number of reads. Mismatch rates are 10% on the left and 20% on the right with a minimum overlap of 10 nt.

  ShortRead:::.ppnCount(qa[["adapterContamination"]])
@ADAPTER_CONTAMINATION@ ShortRead/inst/template/9999-Footer.html0000644000175100017510000000015412607265053021030 0ustar00biocbuildbiocbuild

@DATE@; ShortRead v. @VERSION@
Report template: Martin Morgan

ShortRead/inst/template/QA.css0000644000175100017510000000107712607265053017303 0ustar00biocbuildbiocbuildbody{ width: 350pt } table { font-family: monospace } td { padding: 0px 10px } th { text-align: right; font-family: auto } img { display: block; margin-left: auto; margin-right: auto } #header { margin: 1px; padding: 1px; line-height: 82px; } #logo { margin: 0px; padding: 0; } #logo img { margin-left: 0px; vertical-align: middle; } #locationline { clear: right; padding: 0px; } #pagelocation { display: inline; margin: 0px 10px; padding: 0px; font-size: 1.5em; } #pagelocation li { display: inline; margin: 0; } ShortRead/inst/template/QAAdapterContamination.html0000644000175100017510000000062212607265053023477 0ustar00biocbuildbiocbuild

Adapter Contamination

Adapter contamination are at either or both ends of the reads. The 'contamination' measure is the number of reads with a right or left match to the adapter sequence over the total number of reads. Mismatch rates are 10% on the left and 20% on the right with a minimum overlap of 10 nt.

@ADAPTER_CONTAMINATION@ ShortRead/inst/template/QAFiltered.html0000644000175100017510000000022212607265053021125 0ustar00biocbuildbiocbuild

Filtering

Reads avaialable at the start of each processing step are summarized below.

@FILTERED@ ShortRead/inst/template/QAFlagged.html0000644000175100017510000000013212607265053020720 0ustar00biocbuildbiocbuild

Flagged Samples

Not yet implemented.

ShortRead/inst/template/QAFooter.html0000644000175100017510000000015412607265053020631 0ustar00biocbuildbiocbuild

@DATE@; ShortRead v. @VERSION@
Report template: Martin Morgan

ShortRead/inst/template/QAFrequentSequence.html0000644000175100017510000000023312607265053022653 0ustar00biocbuildbiocbuild

Frequent Sequences

Threshold @THRESHOLD_LABEL@ = @THRESHOLD@. @FREQUENT_SEQUENCE_COUNT@ @FREQUENT_SEQUENCES@ ShortRead/inst/template/QAHeader.html0000644000175100017510000000123612607265053020565 0ustar00biocbuildbiocbuild ShortRead Quality Assessment ShortRead/inst/template/QANucleotideByCycle.html0000644000175100017510000000052012607265053022736 0ustar00biocbuildbiocbuild

Nucleotide Use by Cycle

Per-cycle base calls should usually be approximately uniform across cycles. Genome Analyzer `control' lane results often show a deline in A and increase in T as cycles progress. This is likely an artifact of the underlying technology.

@CYCLE_BASE_CALL@ ShortRead/inst/template/QANucleotideUse.html0000644000175100017510000000031712607265053022144 0ustar00biocbuildbiocbuild

Nucleotide Use

Base call frequency over all reads. Base frequencies should accurately reflect the frequencies of the regions sequenced.

@BASE_CALL_COUNT@ ShortRead/inst/template/QAQualityByCycle.html0000644000175100017510000000121612607265053022276 0ustar00biocbuildbiocbuild

Quality by Cycle

Per-cycle quality score. Reported quality scores are `calibrated', i.e., incorporating phred-like adjustments following sequence alignment. These typically decline with cycle, in an accelerating manner. Abrupt transitions in quality between cycles toward the end of the read might result when only some of the cycles are used for alignment: the cycles included in the alignment are calibrated more effectively than the reads excluded from the alignment.

The reddish lines are quartiles (solid: median, dotted: 25, 75), the green line is the mean. Shading is proporitional to number of reads.

@CYCLE_QUALITY@ ShortRead/inst/template/QAQualityUse.html0000644000175100017510000000033012607265053021474 0ustar00biocbuildbiocbuild

Quality Score Use

Quality scores over all reads. High quality scores are blue, low quality scores red. Lines are cummulative frequencies.

@QUALITY_SCORE_COUNT@ ShortRead/inst/template/QAReadQuality.html0000644000175100017510000000042712607265053021622 0ustar00biocbuildbiocbuild

Read Quality

Overall read quality. Lanes with consistently good quality reads have strong peaks at the right of the panel. Flagged samples are non-gray and appear in the legend at the top of the figure.

@READ_QUALITY_FIGURE@ ShortRead/inst/template/QASequenceUse.html0000644000175100017510000000237412607265053021626 0ustar00biocbuildbiocbuild

Sequence Use

These curves show how coverage is distributed amongst reads. Ideally, the cumulative proportion of reads will transition sharply from low to high.

Portions to the left of the transition might correspond roughly to sequencing or sample processing errors, and correspond to reads that are represented relatively infrequently. 10-15%; of reads in a typical Genome Analyzer 'control' lane fall in this category.

Portions to the right of the transition represent reads that are over-represented compared to expectation. These might include inadvertently sequenced primer or adapter sequences, sequencing or base calling artifacts (e.g., poly-A reads), or features of the sample DNA (highly repeated regions) not adequately removed during sample preparation. About 5% of Genome Analyzer 'control' lane reads fall in this category.

Broad transitions from low to high cumulative proportion of reads may reflect sequencing bias or (perhaps intentional) features of sample preparation resulting in non-uniform coverage. the transition is about 5 times as wide as expected from uniform sampling across the Genome Analyzer 'control' lane.

@SEQUENCE_USE@ ShortRead/inst/template/QASources.html0000644000175100017510000000031212607265053021012 0ustar00biocbuildbiocbuild

Data Sources

Subsequent sections of the report use the Ids in the following table to identify figures and other information.

@SAMPLE_KEY@ @PPN_COUNT@ ShortRead/inst/template/image/0000755000175100017510000000000012607265053017345 5ustar00biocbuildbiocbuildShortRead/inst/template/image/bioclogo-small.gif0000644000175100017510000001701412607265053022742 0ustar00biocbuildbiocbuildGIF89aN,{|~ghjffhźpps飯qrt刊⪤Q}’x׮[\^ɛF[[]B}͏kꐑ{S]岲b̚\]_轴aq߶ݙܪօݯiڟoprRքԂMMOוԋһΛAABA@BBAC񝟢rtvrsvNNP<=OOQ񓕘NOQ񴶹䜟pqsrsustw󭮰rtw=~򵷹ģ㰱⣣gik<ɴujNNQڏm⸿ٖǿ躺MMPMNOAAC!,N H*\ȰÇ#JHŋFHI  dIɓ(S2OH!jɳϝ lHt&%? -[uGϯ`Ê5^Q3`} \}i78fÈKК0k)¥An"tBe  qW5 dRװc3V͋~XE R/k7ߣ5tb\M_7dkߎ؁Q~mҏӿEm=A0e*:(2@ p$PB@P"qB!p!lH?А4a./; h?BmS BG;p-C &d`jآX@ Bv MlB4<5`wB!Br -ANq &Xa8q-Tb @6xC$01,!@A n;;Pd@rBsI!VXEl yC XKC< KH1!r"AE-Z <!1́ |6 2Y`"<}iQ!Av ,< ?uD-rF\ q@# HvCFx Dj:!pK"D`KlH-J ;ĢYB 1*R"8p v,qR"G ?!4,H!|qQz(AhQBĀDa>i, l-09"X²LjnHq`[XOgء$F`N&"q'd! a[@/d ?t]!@C ?  R X @ۆ0 Ig#i_8V-tBXAv B6i[ ˆJԲB}/ցFB%8D.O1.\8H ;)L?:Ѕm je/p ˁe1?LJ d\ Dkd!@`k rOfD|UXiAu %wC-#_ix9a;$D7DH d7S8THTX@ 8o`pD|hg$@D%'ppJnDT *4 [:~BdzpD%bt@NqZlSW7"C+d Q\B;-.u Q8nf t'a /TȆ-WMfhB ![2LfhPH#E[<~IhyOϳKh qEykȁ7nQ}^_Cc9|s BB7@ ~<Kh@XaW.jupJQ}DEs ` ,DtQ ^OB¨B%ic[8NøqZym `t#PpFبk5 t9QtpuiYFHC'W vk1I C{@+HuIhG]|vO<ڢ* "->S$@C R@ ` ,%Gq@\5EpQq@Z5R9e q6e0RB%D je+ehP"qggއ5R0p -E6%RlRIO6RQSpRWgRvYUR9 !44TYqY@q@.n! 5?:j0 Ȱ<Ƙu@KwQv[` {` YP 0LN` YvP0_p0/u i`pGEAȐC͵Y% p~uJEn {qpg pP@P%` \%GQcp ~{puV] ^>%M@Ax0 2i PoB"` Q ` 0xA@ Po@0 i`S ~@%.@l0  i`e *p{P0l`Q'4 '0o9`6@I ~` l0Yo p)` 0 AK0s0o  9sDءdɿLH͛7mQD~td194ӕXD7B4p䋃g?Gl SZ7 |DPz-#!hN@$J{J@0щt` L('3CȅYkҢI!˴"Q&EC p񜒧74)ML8`9l w=&&X"Zc!7蠃@T*F  =q#%)Bր%^*axc5zU88uE~֘4b 4LX%T`cT2@N*uO"&Yh@Bh8VjG @C9.~# 4h#%X8O@WEN v?ŏ[@  8W]cL˞ ? ꟪pN`%lfCQ8 dXJXaW8 MYZ(H⍝ 4J<">4 4:zǍdBVi~#i>$=4lux1%#0E,QAOHC!04iZ.4FT i?rHdWHD` %:B !!PNG0đ~A{H' <P*07 0 #$9"6b9Mkb%v% (>_D*U@ C?8Ml$} QsE&֠A$&VOyJ.ial&:B… D#%;b塇#C#1[C槉<CІQl$} ExsyDJAp"%(ne?±G|k#H*ɌѕVˣ\b,Vy^hKb#n?R1 ;C]X~2S~l 5UUc%kYzVzxJ cUsk]zWU{k_W;ShortRead/inst/template/qa_solexa.Rnw0000644000175100017510000001564112607265053020736 0ustar00biocbuildbiocbuild\documentclass{article} \usepackage{Sweave} \begin{document} \title{Solexa QA report} \date{\today{}} \maketitle{} <>= options(digits=3) library(ShortRead) library(lattice) @ <>= load("@QA_SAVE_FILE@") @ \section{Overview} This document provides a quality assessment of Genome Analyzer results. The assessment is meant to complement, rather than replace, quality assessment available from the Genome Analyzer and its documentation. The narrative interpretation is based on experience of the package maintainer. It is applicable to results from the `Genome Analyzer' hardware single-end module, configured to scan 300 tiles per lane. The `control' results refered to below are from analysis of $\varphi$X-174 sequence provided by Illumina. An R script containing the code used in this document can be created with <>= fl <- system.file("template", "qa_solexa.Rnw", package="ShortRead") Stangle(fl) @ \section{Run summary} Read counts. Filtered and aligned read counts are reported relative to the total number of reads (clusters). Consult Genome Analyzer documentation for official guidelines. From experience, very good runs of the Genome Analyzer `control' lane result in 6-8 million reads, with up to 80\% passing pre-defined filters. <>= ShortRead:::.ppnCount(qa[["readCounts"]]) @ Base call frequency over all reads. Base frequencies should accurately reflect the frequencies of the regions sequenced. <>= qa[["baseCalls"]] / rowSums(qa[["baseCalls"]]) @ Overall read quality. Lanes with consistently good quality reads have strong peaks at the right of the panel. <>= df <- qa[["readQualityScore"]] print(ShortRead:::.plotReadQuality(df[df$type=="read",])) @ \section{Read distribution} These curves show how coverage is distributed amongst reads. Ideally, the cumulative proportion of reads will transition sharply from low to high. Portions to the left of the transition might correspond roughly to sequencing or sample processing errors, and correspond to reads that are represented relatively infrequently. 10-15\% of reads in a typical Genome Analyzer `control' lane fall in this category. Portions to the right of the transition represent reads that are over-represented compared to expectation. These might include inadvertently sequenced primer or adapter sequences, sequencing or base calling artifacts (e.g., poly-A reads), or features of the sample DNA (highly repeated regions) not adequately removed during sample preparation. About 5\% of Genome Analyzer `control' lane reads fall in this category. Broad transitions from low to high cumulative proportion of reads may reflect sequencing bias or (perhaps intentional) features of sample preparation resulting in non-uniform coverage. Typically, the transition is about 5 times as wide as expected from uniform sampling across the Genome Analyzer `control' lane. <>= df <- qa[["sequenceDistribution"]] print(ShortRead:::.plotReadOccurrences(df[df$type=="read",], cex=.5)) @ Common duplicate reads might provide clues to the source of over-represented sequences. Some of these reads are filtered by the alignment algorithms; other duplicate reads migth point to sample preparation issues. <>= ShortRead:::.freqSequences(qa, "read") @ Common duplicate reads after filtering <>= ShortRead:::.freqSequences(qa, "filtered") @ \section{Cycle-specific base calls and read quality} Per-cycle base call should usually be approximately uniform across cycles. Genome Analyzer `control' lane results often show a deline in A and increase in T as cycles progress. This is likely an artifact of the underlying technology. <>= perCycle <- qa[["perCycle"]] print(ShortRead:::.plotCycleBaseCall(perCycle$baseCall)) @ Per-cycle quality score. Reported quality scores are `calibrated', i.e., incorporating phred-like adjustments following sequence alignment. These typically decline with cycle, in an accelerating manner. Abrupt transitions in quality between cycles toward the end of the read might result when only some of the cycles are used for alignment: the cycles included in the alignment are calibrated more effectively than the reads excluded from the alignment. <>= print(ShortRead:::.plotCycleQuality(perCycle$quality)) @ \section{Tile performance} Counts per tile. The dashed red line in the following plot indicates the 10\% of tiles with fewest reads. An approximately uniform % FIXME (wh 6 June 2009): do you mean uni-modal? distribution suggests consistent read representation in each tile. Distinct separation of 'good' versus poor quality tiles might suggest systematic failure, e.g., of many tiles in a lane, or excessive variability (e.g., due to unintended differences in sample DNA concentration) in read number per lane. <>= perTile <- qa[["perTile"]] readCnt <- perTile[["readCounts"]] cnts <- readCnt[readCnt$type=="read", "count"] print(histogram(cnts, breaks=40, xlab="Reads per tile", panel=function(x, ...) { panel.abline(v=quantile(x, .1), col="red", lty=2) panel.histogram(x, ...) }, col="white")) @ Spatial counts per tile. Divisions on the color scale are quantized, so that the range of counts per tile is divided into 10 equal increments. Parenthetic numbers on the scale represent the break points of the quantized values. Because the scale is quantized, some tiles will necessarily have `few' reads and other necessarily `many' reads. Consistent differences in read number per lane will result in some lanes being primarily one color, other lanes primarily another color. Genome Analyzer data typically have greatest read counts in the center column of each lane. There are usually consistent gradients from `top' to `bottom' of each column. Low count numbers in the same tile across runs of the same flow cell may indicate instrumentation issues. <>= print(ShortRead:::.plotTileCounts(readCnt[readCnt$type=="read",])) @ Median read quality score per tile. Divisions on the color scale are quantized, so that the range of average quality scores per tile is divided into 10 equal increments. Parenthetic numbers on the scale represent the break points of the quantized values. Often, quality and count show an inverse relation. <>= qscore <- perTile[["medianReadQualityScore"]] print(ShortRead:::.plotTileQualityScore(qscore[qscore$type=="read",])) @ \section{Alignment} Mapped alignment score. Counts measured relative to counts in score category with maximum representation. Successful alignments will be reflected in a strong peak to the right of each panel. <>= print(ShortRead:::.plotAlignQuality(qa[["alignQuality"]])) @ \end{document} ShortRead/inst/unitTests/0000755000175100017510000000000012607265053016452 5ustar00biocbuildbiocbuildShortRead/inst/unitTests/cases/0000755000175100017510000000000012607265053017550 5ustar00biocbuildbiocbuildShortRead/inst/unitTests/cases/PE_export.txt.gz0000644000175100017510000004530012607265053022637 0ustar00biocbuildbiocbuildK\˖ƒ\sEsP[b(ȅ@nE,$"##4~ 'c=UYU7(UUYU~9y^k'~}s~黮n;םjWiߧbD=};2+l|dO?= (<+\)UXT%^;πO\qT>'6&<{p/},*Zʕ, xo,x.-UJA^ :}aMpDEuI/ Kr 2O6`ڗ>?]U}6vdydlGT"ŷ {T\6F2 DnKVe5\D2iaS`_b!l}aj6:A'nH :AfD돶 qd`LAd2v?bH|"4X X蝿Zxv&1XD6,I2Iqqu\V`\nLS(ޚnY^ ,; "xuIy>]M X'B 3b/u;s\ݝl@+Jͽ.<|B6ˈW!u840ҽcl2)XӅXba=uX邛<]|龵8W 70 Ƒp)5ɻ 1®qyڙ۸; haǾA' ,Fr˷)&zO$y4*t?UOZabx+7 x 4+7Ĝǵ$ ͧ!(9 SyD2\[t9WiK f 8-'y"ۍ.I$s@r8UHzR fY1Tٶ"[6'DT}ni؜|&evֈ}_e~0iґFF ؞# H(#ڞyzfت՝s4=9WEtG]"@A PpBni&"2`[D ,tPb^ӽ;EMƉH\Yn#߱>)=*yTdA2냕VaKs~橒a|`^nļDRE0՗j>}*Dsjxw(9+r Z6{9Pm&WQVslKxME wpJ i]qj*~bsٖ,3YZ_JS?[iݧuJcXHfVH<|ҫ%u,z;Zó [NFV,5qvk@okHKf[OC9֘(9*="eUN| b0{?osbĤ/6tuָ1̝x-kӖ(OQ٠|XT}9߇~"^ঁUjݴxЊ'_y5ku, g c|]z:R U5ЃPVj!(Q vLOSUY>RnXANfLZ*%RclYPyg¦l@eQ^+޼^\Q, .MyE+"~A<&(aFA%b߄g.{y}oe7]$L$=ҟ盅! FP5E.[]hKj re+A,Ic3Cp$kh gMJT5}}o"Of`ְmXjU*`PZR|テS ,LldQ.aeG!y('9Wp`l$J)i*iɣTԍYQV$R2l*$YEݫ !/D,.SJ*RaTdކ~QlKk@ _qɪ HwbvA)(ېҘ2Hgz:l&MCD_qZsE/TwypX-rw [5΍G#Ym?o OP$=v4Io#V7ɂp i* o8eo]MR7%7{jҤ ͇:dJS{L8~у-tGRROqD@5ҜBsJT'+4|=68s! sGDqc|ʴʰQGFAOU!w,o*GX36atbxTd*ƯxD9U [ٸJn&2?0c wڔOqR;~iezw,gѼ֑}AjpsgoƢ%={EuчFy}( A"ՀnzfMLVT*?CK/iL0I(|$jܳ9ail=$B]nQ<.n~ J9Y|BLmUKmiQ*6nie4ٝ#ydg@)O{9Jo?~OJws#in&ilG E>`]\ B]Ћh9Zer%2ƋN;8 ,ZU@DĕJNŋR{"p%ɲ2Jm􍈁a$imd.gbQ\lF*Ǵ R;5{CMC=J=0L,)%yNb-\n{(o]$/ϕ^f={8f(7'3cP!n ,QaNi .WXrhwydan3^R;8ٖE)guH,2V`e/rs~a|SzGY u*E`Uj0rlRQ Vy%D.`+5FuOmPA7Υ{$kQ˼2ț`)}GEYOmL?; ;iCyMLڏe'?bE~HT8)nM( 'Saf='?w׾[eMΧisO} S CAtrcvQ\ iOO{%Qs򑐗Txo;h* 8`ܺbIi!OkSXC]F. :;=Á]c/nZ> k!EWenY#Mz[G^ /t,nz6в~GyvcCymƮ[|hɥʫ*~Ωp}Do=Y A'Nz; :Y͏!s%T[TOe$ 29tWwQlὠI2 ӳJQNPQK9qm 0ݸ=:008Hi3)O% bdîD+?MzJ6CrwnS۸l̘0dh%6ǞttJIG :?M::$2UǤyَcOy t' :A<%( M~f)|ˢ6ヤU|҉ ::46QTpָDA='VǰsUS"H-=LxD^IְJ!D:2e&~C=n 7 뇸@5%G{.ғ~6UQs#2/ȉZG${~<Օqmxv:U,kٗz' io34ɝt&V/[}*8UrSeejg XaN" <~<: oDRʀਫJ c8Q+Wdو':T7Vr^tpN u/u,I4aEkL1Ogk "[,C*:ZjZ]&9,dgy'?@Poʟg*qz⦖N @^s؉wl " B+Z y{豗X*4f /@%pc׺+|( ȷz4mg#M>nݕᑅqn\X@ְ~ *X^f+[`4NgzQN*2fuqGf\ΚmJD.C,@RDTW*LL$|W7GL>2<#3j 5rOU#_R%/d_`:LҞoݤEG3 \{ifU:AAAollfqD;sF .KH_f s$ =JX7gAL,_~V7\>9q-ɹ!.=;U&&F;gDq$ϩ˨DDFW.>VKT&T^b>l-}H-B*-8) cS/cMƙ';R K ts2 aB7,80UW%9~:{?LMbe{qh!۲ߥrSK(M`IfdИD_G)yϋ ADIezНWJ,E(uB5_sL’pC(YDhbk~'773AXvBVKr?;O:+/ Evyi!E\72 7͙ϮLGAnfןaz[# ysFa;i1:E *9.}\2N h.W(vsgB+wA:7MYs@ @o1a^xs7.y3ǘ61ߝSԡ##@<_eUBWNJW7m).-0 4Nޛ6[P}0e 6%g f*e#J["i}"=UN8KQ-%"+HYa>eˎstGD^ҭ `^"r##YUT$:B3a @wTI@| #w $֊7hk^ŗf)ō3}KC'5VU#_3 7(0az^4qrE̵0mf`ama[]lkT4BN[3kj al=7m!pgFh\I ];;I_xUr \J_TT\ԕLoWJ˝+"`E*#5w-z%Y?g L0 t(fsDU0zw%[ݙؙjTL! d ͥ4/&-ِf a]ɔ[ anƭ@??w/ / ٕK lVU.zW/,9< ,99Ky:X-?d;ʖ uӷZ]!W8gCV|i4[(%8.Qʹ~:, o(YHS"aAt@@D `^S7>Gz˕%SGڃfd\i e #ӕ܍dD]펢e qjF!p?)EV=DRh~r_?xjP] H+OfUҭ>Wb,bG=ڵ˰ (C5u@ Րxs#Y͋P<NJ??8 ^LJ)ԗ|sыɁPƍ V\ As1JR$Ep aу6SO!j= G~I d6^Ћ\KO+rV7]>!GI"ΊK*HGˆǞ9Gr0xK͠g]dYUy+TczGf+]@.cԽ8I}Q}bd)k4hX`H5&b_ei**lP6[fS\eNBωHbx2mfDmL!PE%tڔO[B7f׳v_?{|%I~ѓ׎/lUtahC%yW>՜>A/ǝ0kr bƧ<;'L\(Ic+lVK,@ڊsS~ݮ'!u }$(ҍ --rWaP~y˽1z1H57v ~s'3QnzREP%A<?J/{&;oD["l>k󻻈G*?"c%; 0yZS=~v//S o'"䟂 pRObn}S6SF~^)F2-ZĹ8;Iz(3d3HK5DLAssK}uH[9f! =̟o!BkX82kPm/$.(zn#HmaȄ2.DztD";/~9""H /X*s]iMK䅳@Pj"se%:q~V& ؕcvlpB T:0,[C^c#\8]{p6G/:t[ʌR>tJPPEǥe"k/v&+WyH=Fl[FE Y#a@gtb>[4) C1$%oRyoXE麠ltIto]͒-vЙRF\V2p$roڇ OOρUo,i{% #9~ 6<¯U/}Tj`QU{$%$G>g̭eP.SACnq wD8}/jqQ/p#'K6^kYlN%BߋܩS-F xN@VK7lVBM{T`H]|Q: UfWdqF!գZJ2lѾEc(QdwڌQ3%$6k*sQ1HQrXa :Ly2 ^}y홐&d &0U@z*#4~bY0gh愮b"Vi{ `ΒbгqGL7fl({lZ  r(uKcmuHE'_Zbǿq >onHuj$?ZYEn};? aZ_3|XF(!9Q~_‹VlX%jޙ?~\2kaUNWkͿ3ɴ~?ܢM4bb>N?it|f:dS0C*h.ot8S '*L;wB霟*|Bd>@aB+X܄DM  oSrRX}QQ@5{#l3!S@O%(+HPQXkyO^0=,֌\SbKA>LKDސར!=ɔNŦl7} vx$Iı:S 6`Sn]^CZ ѹNpxռe}ĺKI?ˌPoE &|p{Zk+~`&lxF3ߙ#&`EbUk7|*qJZNTV>1^#eg!{uq7><0&v#z~y.g (zI䘽VPPEt\Uc"{ɐ xm~+Ÿs'N)!q<=U%x$`ˢ,;ȍ Mx`̖K?SiLQtZ#}}ޯ.7Su[sݕ|NC2v~a2%A$.WIE#/I_vý~<wu;}t?^̏#4{΢iB,u.Jnj;$hq7TC7ŹVP_ed.Dq܍vw)8#Su[F$+ -W.Un {~^gZt,{QCכm`>c/L@}cZGV4CgZ୬-=O%)Yq9Tw S%~V;al]O?:Z2?Ck4x~c NW,x 4% 8ГjhIGz:>-J_w i~Jֽ=Fr&Hb;VXu_6Ãv۽꿏u]˹k6Wp&"Rru脀i(j\}-#Ǥ}fZ1]Wə(tC[zI>yw~4d6Ě r>Ç{[[ײh'>4[/-0wq+MUB8CXYG (WVI]^'#̋ziCu8MtD){o@oqԣ%#"P/jrxEQ,^+M奫LW%,O|p/v1ymi}SL ?h- ֔W,{`(W8~zov:T3ikꍫuyt,a}$|XC2LʃH r!e:t5䖔w[S^UmVv1v@`㹯E;}if ~A.{ G.i1a2%;ZmފIPy֝ t>ןu?4rk׿*|Qu'^ˋpSs|dƆj4t]Y=q~<wkӡk)qKx|i2Uނ E6;Zѽ[zͥ/W [׾Оf1W,N/KʵN&0k;/t@:=9DKF_RԿ/^I"_mBiI}b:Qohׁ /0,}H>?{fiÜ-J/MϹ:XZ^N ,ɓ[hmI0܍jf<<~tn_͟͵:޺XoY0m)˄(Օyv l76!/iDd!WҞ <8@0YhO~2ˑ ՓU6U7,myߏDvy onّ3eƆ g`Tq9'^U$d}Ik?ʽ]ˬ2(_?P-ocF׋۸ȩ$@Yr-S(9~ӗ$} =ӛӲ5M uMsv`e4ԁ[v6TFntqIZ"WBn ف`:ǂ[JbK[z-$A"joRQ..lt Lٮ@K]7WUݵUS}Sr.[K@lKt \8AqƮ6_?ת00. Bx:r$kU 3xv3cpi)M!) }{ vtgzJM$P' jϦYtfyu ]jO|D5-/lkޙv\pSbz&3Ad-KWK07\ՌhϿn,ŏs EJ/ 21!C~|o9>mN 7doBuG۰NplN\TViʋ=oȍ`+ zSm34%UC é W7ڻd~)]PP:Ťr( ==t3䀾$:e2PRNjfnķ+vÛ-wwv h7C ]v nl"kf7ooOg > pMlTA3oH1*;"Cm( [*:(8~n~8-G2ޭӦQsAn`=2jzjuQS]ZG.g) SZ^H*SzDl#`Lܢ~Xlc^~ҙ<=G0`IO@'Aۖ}_7=?_)Mu=?%6bVDscFu,b-ڎ cf=~Hн-}H0y*\P>H z%҂U&W;(!+zpL|V{`?V3f|/;Y{wͽVZi w OL7zAMA@5;ۥFn;;09qiYq >螵^; 6gSRjnq|+(twslM\:A`TX01W賌I:Jio$mkT4Ig7vk`-+w 9d 6*aR)9\ߴv)iW%SfahA45V֣p1˽ݗtϲ/; GnnN圛xAAxp0|%ώʦjeL&e&8Qǯh. fL @K,~5^Dnxoᙱ)/Gc=;x:+(QԀ';(2岶ir__ʬ*ZR" 2ӒRHg}3n4T 2aWnvd$#;Zҥ*qvzשKʕQd׬O@J dq]y)\'7.\ m"cRُ[mb?߃|S=@C*M c0QPhm.Sзew/o{{r|M$V.8dufB\.thg\VƊ82볫)-( # Xۦi[[—8Osk Ƃ.Mgd 80՝G֚^*h!goƥ 9'珝v\э]1ŖDg\Uu1bzѓ%鵕-\C<,R 0Q8 עD)R\NErm@o㔇 ]fU3.:sGs= SDZUC]CFI"[ƱP>y& a/w`69zWM_u0Ay+Mf lڍWLmi_^_Wu)׋F{AƱC.j揂*R~*rmc,Ӷ`ngaŲZm fXL[*]tM(aC7?)0No5=]{u7׬qJ`gGht˽ۺmG]4?kA5_DKCYJsEcPIߍAU#pТqݶ-y ]` tt!b.椒@SYm^X;,BXe0>sv^dҩ0jE[+] E *9MeV[Og)끺KN1ܭe¡MMw߷?վjV-| VOgOt(aH0yFJ/IwL(:Ti*Gxq(\l+|k"k%m^ϲB9 (Ym$^&o. 6ƋdXvb@5!(;Ѵ-C㲍d+o e)#dc4Y3 981?(R-{$SKU )~ҿRz3ԋbwW'."( / Oӛlm}Iޔb mϫ7C? >U;vKAZ( @r'LYڒ6~Fi%ixY* )u߽EEa`~y/Әr߸Qo\d]$S4UФ X "S9`[y0 JwV4"0zijؒ˼8h, LylkdRJP}+X&Qn;jY3!fڎ6K}ڞ7\=Ot4U0o_t1\꾬PviJt^vb7ehlNn~  =wg5=h۲_ DL=|o;&N{TU0;>\+ _׭L{V@+vI<[Hb+,ا_D(*ڊ3Gқ' T sE[om3}U~5+ňKɳB@J̒`ST\N B"Xx ڕF{k\QZ`[$'t^ixT8JͷI7`n,@dPMvP:AOe"z:Zbgh༓37Q2gfSWy50TӁ3ЊajOE09\'gR/9CȖ+vpuր}hXF)YbMsb7  sDqlTGȎ=-uYcXdUQ\ =ȖJ”ǖi`W81=#Wj@*M;^ /O#_d_ShortRead/inst/unitTests/cases/s_1_0001_int_head.txt.p0000644000175100017510000000073312607265053023527 0ustar00biocbuildbiocbuild#CH4:OBJ152577 11.7 14.3 -1.1 86.2 49.4 110.6 3.2 5.9 53.0 54.6 49.2 46.7 20.8 32.1 0.4 54.7 6.1 16.7 3.9 7.9 #END CYCLE 1 18.8 21.1 96.2 177.4 120.2 218.8 2.7 9.1 74.8 63.5 103.1 203.4 33.9 36.2 94.0 77.2 63.3 39.2 15.8 -1.8 #END CYCLE 2 55.9 112.0 0.8 15.7 340.9 164.8 2.6 4.6 129.2 76.1 77.2 168.4 19.1 11.8 10.9 80.2 2.6 6.9 8.9 31.0 #END CYCLE 3 ShortRead/inst/unitTests/cases/s_1_0001_nse_head.txt.p0000644000175100017510000000073312607265053023522 0ustar00biocbuildbiocbuild#CH4:OBJ152577 8.5 9.0 3.0 6.6 6.2 9.2 3.1 6.4 9.8 10.4 3.0 6.1 8.0 9.0 2.8 5.2 8.2 8.5 3.1 4.3 #END CYCLE 1 12.6 12.5 3.8 6.6 11.9 11.0 3.6 5.8 13.0 14.0 3.3 6.5 13.1 13.5 3.3 7.3 12.5 13.4 3.6 5.7 #END CYCLE 2 13.6 12.4 4.7 7.3 10.5 12.7 4.2 6.4 13.7 12.5 4.6 9.7 12.6 11.7 4.1 6.7 11.3 12.4 4.6 7.8 #END CYCLE 3 ShortRead/inst/unitTests/cases/s_1_0001_pos_head.txt0000644000175100017510000000012012607265053023266 0ustar00biocbuildbiocbuild -0.47 1073.78 -0.45 1558.67 -0.45 1157.37 -0.44 144.35 -0.43 1497.99 ShortRead/inst/unitTests/cases/s_1_results_head.txt0000644000175100017510000023255312607265053023547 0ustar00biocbuildbiocbuild>CMLIVERKIDNEY_7:1:1:112:735 GTGGTGGGGTTGGTATTTGGTTTCTCGTTTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:564 GGATACTCAGGCTGGCCCAATTTCTGGGCGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:558 GTAGAATTAGAATTGTGAAGATGATAAGTGTA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:94:531 GTGTTTGTGTGTGTGTTTGCTTGTTTATGTAA U1 0 1 0 chrX.fa 93540767 R .. 3G >CMLIVERKIDNEY_7:1:1:107:680 GTTTAGGTGTAGTGAACTAATATAATTGGAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:531 GCACCTTCCATTTCCAGGTCCTTACTATGTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:539 GCGAGGTTAGCGAGGCTTGCTAGAAGTCATCA U0 1 0 2 chrM.fa 11832 R .. >CMLIVERKIDNEY_7:1:1:105:577 GGGGTGAGGGTCCGGGCCAGGTGGTGGTATTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:458 GTTGTTAATGTGGTGGGTGAGTGAGGCCCATT U1 0 1 0 chrM.fa 12004 R .. 7G >CMLIVERKIDNEY_7:1:1:120:589 GAAAAACTTGAGAATCATGTTGAAGCTAAACC R0 3 2 0 >CMLIVERKIDNEY_7:1:1:97:605 GTTTTTTCAATTTACCATCCTCTTCTTCTTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:594 GTTGATTTGGTTGACATATAGTAGAGTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:581 GTTTGGATGAGAATGGCTGTTTTTACTTTGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:569 GGGGTGGTGAAGGTCTCAGACATAAGCTCAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:120:414 GTCCAGGAGATTCTCAATGGCTTCTTCTTTTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:113:396 GAAGACGTAGGTTTGGCTCTGGTCGTCTCAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:586 GCTTAAGCAAAAAATAGGTTACATTAAGCAGA U2 0 0 1 chr12.fa 122311748 F .. 15G 17A >CMLIVERKIDNEY_7:1:1:108:689 GGTGAGGAGGGGAGGAGTGTAATCCAAGTGCT U2 0 0 1 chr16.fa 56243177 F .. 1T 2C >CMLIVERKIDNEY_7:1:1:105:591 AATCAATACTCATCATTAATAATCATAATGGC R0 2 0 0 >CMLIVERKIDNEY_7:1:1:113:483 GTTTTCCCGTGCGATTGTGGGCTTGTTTATAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:520 AAAACTCTGAACCGTCAATTAAATGCCCATTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:534 TGTTAATTGTCAGTTCAGTGTTTTAATCTGAC U1 0 1 0 chrM.fa 2347 R .. 8C >CMLIVERKIDNEY_7:1:1:113:657 GTGGAACTTGTGGTCGATGTTGATCTCCACAT U0 1 0 0 chr2.fa 241841076 F .. >CMLIVERKIDNEY_7:1:1:117:511 AAAACACAGTGTCATGCCCATAGAACTAAAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:884 GTTGGGAGTAGGGTCTTGGTGACTATGTTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:711 GGAAGGTCTTAGCGCTGTACATCAAGTCACAA U1 0 1 0 chr2.fa 36629450 R .. 31A >CMLIVERKIDNEY_7:1:1:103:475 GGTGTATGAACATGAGGGTGTTTTCTCGTGTG U0 1 1 0 chrM.fa 12050 R .. >CMLIVERKIDNEY_7:1:1:97:862 GGGGGGGGGGGATGTATGAAGGCACTTTGTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:597 GTGACTGTAATTTGCTGAGAGAGCAGTGAACA U1 0 1 0 chr7.fa 138140031 R .. 3G >CMLIVERKIDNEY_7:1:1:124:544 AGACGCCAAACGCATTAACTGGCGAACAGTGC U0 1 0 0 chr19.fa 2222858 F .. >CMLIVERKIDNEY_7:1:1:102:591 GATTTCTGGTGCTGTTGAGTCCGTAGCATTTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:75:582 GTTTAGGGGATACATCGCCAAGCGCAGGCTAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:78:544 GTCGGTGTCCTCGTTGGTTCGGTACCATTGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:522 GCTCCGGGAGCTCGAGGGCATCTTCTCGTTGA U2 0 0 1 chr4.fa 2925125 F .. 1T 7T >CMLIVERKIDNEY_7:1:1:110:602 GTCAGAGGTTGCAGTGAGCTAGGTGTGGTTGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:597 GCTTCCTCTCCTGTCAATTCCAGGCTCTTTCC R0 2 0 0 >CMLIVERKIDNEY_7:1:1:118:503 GGATGAACGAGATTCCCACTGTCCCTACCTAC R0 4 1 1 >CMLIVERKIDNEY_7:1:1:96:606 GGGCCTCCGCGCTACCCTCCTCTTCTTATTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:545 GTGAAATATGCTCGTGTGTCTACGTCTATTCC R0 2 0 2 >CMLIVERKIDNEY_7:1:1:98:583 GCTAGGGAGAGAGGTAGGAAGTTTTTTCATAG R2 0 0 2 >CMLIVERKIDNEY_7:1:1:110:854 GGGCGGGCTATGGAAGAATTAATGATAGTATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:930 GGTTTTAATTGTGAGGGATGAGAAGCCATCGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:608 GCGAGACGGATCAGATCAAGCAGGGCTCCTGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:619 GGTTTACTCACAGTCATTATCAAACCATCTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:78:572 GACAGCAGCTAGGATTGGGAAAGAATGGAGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:87:586 GCAGAAAATACAATGAGGACCTGGACTTCAAA U0 1 0 0 chr20.fa 39574989 R .. >CMLIVERKIDNEY_7:1:1:113:773 GCGAACATTACTGGAGGCGCCCTACTCATGCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:93:419 GGAATGATGGTTGTCTTTGGATATACTACAGC U0 1 1 0 chrM.fa 14460 R .. >CMLIVERKIDNEY_7:1:1:102:793 GTTCCATTGTTGTCAAATGCCCACTCTCCATC U0 1 0 0 chr5.fa 179090403 F .. >CMLIVERKIDNEY_7:1:1:119:677 GGCCGGCCCACTCTTTTGCCAAGTATTAGTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:741 GAAATAGAATGATCAGTACTGCGGCGGGTAGG R0 3 0 1 >CMLIVERKIDNEY_7:1:1:111:717 GCAAGACCCTGTCTCAAAAAAAAAAAAAAACA R0 10 255 255 >CMLIVERKIDNEY_7:1:1:91:562 GGAAGCAGAAACAAAGAATTGGTCTTCTAGGA U0 1 0 0 chr3.fa 4862836 F .. >CMLIVERKIDNEY_7:1:1:123:493 GCCATTTGAAACGGAGAGGTGAGGAGACTGGA U0 1 0 0 chr17.fa 39451455 R .. >CMLIVERKIDNEY_7:1:1:92:638 GGCCGAGGAGGGTAGCTGTGGCAATAAAAATG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:520 GCCTTACCCCCCACTATTAACCTACTGGGAGA U0 1 1 0 chrM.fa 11862 F .. >CMLIVERKIDNEY_7:1:1:91:623 GCATATGCTTGTCTCAAAGATTAAGCCATGCA U0 1 0 2 chr21_random.fa 1678073 R .. >CMLIVERKIDNEY_7:1:1:123:632 AATTGTACTACCGGGTCACACTGGTCATCGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:588 GGGATCCTCCCACCTCAGCCTCCTAAGTAGCT R0 21 255 255 >CMLIVERKIDNEY_7:1:1:117:572 GCGGTTGGGCCCCTCTCTTATGGAGACTGAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:877 TAACTGTATTTTGTCAGGTGCAATAAAAACAA U0 1 0 0 chr3.fa 12600155 F .. >CMLIVERKIDNEY_7:1:1:118:477 AATAGTTATGTCATCCCTCTTATTAATCATCA U0 1 0 0 chrM.fa 10317 F .. >CMLIVERKIDNEY_7:1:1:102:228 GGGATGTATTTTTTCTAATCATCATTCTTGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:75:558 GGCGGTTTCGATGATGTGGTCTTTGGAGTAGA R1 0 2 0 >CMLIVERKIDNEY_7:1:1:100:276 CCTGCTCTTCGAAGACAGCAATGAGGAGTTTT U2 0 0 1 chr11.fa 128213498 R .. 1C 2C >CMLIVERKIDNEY_7:1:1:112:136 GGGTTGGGTTCCACTGTGGCCCTCCTGTTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:214 GCCAGAAGAAAGTACCACTGCAAGACATCGTG U2 0 0 1 chr4.fa 114523116 R .. 5C 12A >CMLIVERKIDNEY_7:1:1:110:591 GTCATAGGTAACTACTCGAGGCTCTGCCAGCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:477 GACAATTGCTTACTCATTAAAAATAATAGAGC U0 1 0 0 chr1.fa 110080721 R .. >CMLIVERKIDNEY_7:1:1:74:587 GTATCTTCTGTTTTAATTTTCTTAGGTTTATA U0 1 0 0 chr20.fa 39143226 R .. >CMLIVERKIDNEY_7:1:1:109:598 GCTACCACAGCCTTTTTCGGCTGATTCTCATT U1 0 1 0 chr10.fa 8046596 R .. 2G >CMLIVERKIDNEY_7:1:1:99:604 GTTTTTTATAGGGACCTTGCTTTTCTTCTTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:804 TGTATTCTCTACTCTTGACATTACTATCGCAT U0 1 0 0 chr9.fa 82103831 R .. >CMLIVERKIDNEY_7:1:1:123:186 CGCAAGTCCCATCGGACCATCTAGAAGCTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:120:855 GCAAGATGAAGTGTAAGGTAAAGATTCCTCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:552 GGGAAATCAAGAGTTGGTTTAAGAGACTGTTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:815 GTTTTTTTCTTAGGAGGGTTTTTCTGAGCCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:598 CTCTACACAGGGCTTGCTTTCCTAAGAAAAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:508 GGGTACATCACAGTTGACTGGCAACGAGTGGA R1 0 2 2 >CMLIVERKIDNEY_7:1:1:87:686 GGTTGGGGGTAAGGTCATAGATCAACAGGATC R0 175 255 255 >CMLIVERKIDNEY_7:1:1:117:596 GGACGTGTACATGCCGGGGAAAGGCTACGCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:85:690 GCTTTTTTGAGTTTAGTCTTAGGGTTACTCAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:104:901 GTAGCTGTTGAGTTGTGGTAGTTAAAATGTAA U2 0 0 1 chrM.fa 10118 R .. 10G 27G >CMLIVERKIDNEY_7:1:1:99:614 GAATGTTATAATTAAGGAGATTTGTAGGGAGA U0 1 2 0 chrM.fa 11059 R .. >CMLIVERKIDNEY_7:1:1:119:865 GAGGTTGGGGGGTCAAGTAATAAGAAGGTAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:82:814 GACAACTTTGCCTTTAAGGTTTTTTTTCTTTT U2 0 0 1 chr2.fa 108438354 F .. 2C 10A >CMLIVERKIDNEY_7:1:1:91:769 GGTATTTGTGGCGAGGCTAGGCAACATTGCGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:681 CAGGAAACAAGTTGAAAATAGCATAGATCATG U0 1 0 0 chr2.fa 160497720 F .. >CMLIVERKIDNEY_7:1:1:112:779 GTCTACCTAGCGCAGAGGAGAGGCTGTGTTAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:619 GGGGTTAGTCCTTGCTATATTATGCTTGGTTA R0 2 1 0 >CMLIVERKIDNEY_7:1:1:119:838 GGCATTTTCCTCCTTTTTTTTTTTTTTTTTAG R2 0 0 3 >CMLIVERKIDNEY_7:1:1:113:746 GATTTTTAACCAACTTCCACTTCTAGCTTCAA U1 0 1 0 chr11.fa 65024168 R .. 14G >CMLIVERKIDNEY_7:1:1:97:685 GCTGTTCACTCTCGTGTGCTGCAGCCTCTACA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:98:430 GGCATTTTGGAAGCTTTAGGCTCTGTAAGCAT U0 1 0 0 chr13.fa 21174264 F .. >CMLIVERKIDNEY_7:1:1:88:520 GCGAGGAGTCCTGTCAGTTCCGGAAGGAGTAT U0 1 0 0 chr8.fa 2679443 F .. >CMLIVERKIDNEY_7:1:1:112:900 TGGTGACAGACATTGAAAACATAAGTTACATG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:75:705 GGTGGGTAGGCCTAGGATTGTGGGGGCTATGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:399 GAGAGGATTATGATACGACTGTGAGTGCGTTC U1 0 1 0 chrM.fa 11763 R .. 18C >CMLIVERKIDNEY_7:1:1:120:494 GTTCCTTCTCCCTCTTAATAATCTGCCACTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:697 TCTAAACTGACTCGCAGGACAACATTACCCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:73:593 GATGACTTTTTTTGCTTAAGGTAGAGGGCCAG U2 0 0 1 chr1.fa 151882971 F .. 27A 30A >CMLIVERKIDNEY_7:1:1:105:842 GTCGTGTAGCGGTGTTAGTGGTTTTGTTTATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:457 GTCAGAACTAGGGTCAGGGCTAGTCCAGTGCC U0 1 0 0 chr11.fa 118474037 R .. >CMLIVERKIDNEY_7:1:1:114:328 ATTTAACATTTTAATATAAAAAACAGGAAGCT U0 1 0 0 chr17.fa 16066158 F .. >CMLIVERKIDNEY_7:1:1:110:631 GCTTACTAGAAGTGTTAGAACGTAGGCTTGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:456 GGCACCCTGGCGTCCTCGCCTAAAGGAAAGTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:381 GCTTGTTATAATTATGCCTCATAGGGATAGTA U0 1 1 2 chrM.fa 11548 R .. >CMLIVERKIDNEY_7:1:1:123:331 CGTTCTTTCATCCTCATCCCTATTCTTCCTCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:806 GTTGGCAGCTTGGAAGCAGGGGGATGGGACCT U0 1 0 0 chr16.fa 84172414 F .. >CMLIVERKIDNEY_7:1:1:116:529 GGAGATGGTGATACCAGAAGTCAAGGGCTGGG U1 0 1 0 chr17.fa 45800376 R .. 5A >CMLIVERKIDNEY_7:1:1:112:429 GTAAAATCCCCCTGCTAGGGTTTGCTTTATCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:576 GTTTTGAGTAGTCCTCCTATTTTTCGAATATC R0 2 1 0 >CMLIVERKIDNEY_7:1:1:115:250 GTTCAGCTCTTCAGTCATTCAGCTGTGACTCA U0 1 0 0 chr1.fa 2967533 F .. >CMLIVERKIDNEY_7:1:1:121:793 GAGAAATTAGAACCCATAACCATACACAGGCT U0 1 0 0 chrX.fa 37893628 R .. >CMLIVERKIDNEY_7:1:1:104:804 GAAATATTTGCAGACAAAAAGATCCAGAAAAA U0 1 0 0 chr2.fa 231021536 F .. >CMLIVERKIDNEY_7:1:1:101:660 GCAGAAGGTAGGTGAGGGGCTCCCCGCCCCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:83:211 GGGCAATTTGCCCGGGACTTTGATTTCATTAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:569 GCGTCATATGTTGTTCCTAGGAAGATTGTAGT U0 1 1 0 chrM.fa 4022 R .. >CMLIVERKIDNEY_7:1:1:118:754 TTTATGTTGTTAATGTGGTGGGTGAGTGAGTC U1 0 1 0 chrM.fa 12009 R .. 2G >CMLIVERKIDNEY_7:1:1:59:555 GCGCAATCCTATTCTAGAGTCCATATCAACAA R0 3 2 2 >CMLIVERKIDNEY_7:1:1:71:502 GTGGGAAAAAAAATCATATGGCTGGCCCAGAC U2 0 0 1 chr14.fa 74618883 F .. 25T 31G >CMLIVERKIDNEY_7:1:1:119:880 GACAGACTCGTGACTGAAAAACAGCAGGAAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:895 GAAGAACTCAAGAATGTTACTATCAATCTGAT R2 0 0 2 >CMLIVERKIDNEY_7:1:1:87:511 GGATAGTAATAGGGCAAGGACGCCTCCTAGCT U1 0 1 0 chrM.fa 15607 R .. 2A >CMLIVERKIDNEY_7:1:1:115:725 GGGGGGTATAGGGGTAGGTGCTTGCTATATTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:572 TTGTTATTATTATGTCCTACAAGCATTAATTA U0 1 0 0 chrM.fa 213 R .. >CMLIVERKIDNEY_7:1:1:111:439 GTGTCATTTCCTTCCTTGTCAAACACCCGAAG U1 0 1 1 chr12.fa 54840127 R .. 29G >CMLIVERKIDNEY_7:1:1:104:740 GCCGCCGCAGGTGCAGATCTTGGTGGTAGTAG U1 0 1 0 chr1.fa 107915036 R .. 14C >CMLIVERKIDNEY_7:1:1:117:482 AGGAGCTGTATTTGCCATCATAGGAGGCTTCA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:113:535 GGAAGTCAATATAATGTATGGCTTAATTTATC U0 1 0 0 chr15.fa 50735804 R .. >CMLIVERKIDNEY_7:1:1:110:670 GTTTGAGTTTGCTAGGCAGAATAGTAATGAGG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:88:601 GAGGAGGAGGAGGAATATGCCCTTTTACTTGG U0 1 0 0 chr19.fa 19038852 R .. >CMLIVERKIDNEY_7:1:1:120:898 GTTTGCTTTGTTTTTCTTTTGGTCTGGGTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:97:496 GCCAAAGCCTCCGTTTATGATGGGTATTACTA R1 0 3 1 >CMLIVERKIDNEY_7:1:1:122:644 CTAAATCTGTGTGTGAGAAATGGCAGGTCTAG U0 1 0 0 chr11.fa 64948725 F .. >CMLIVERKIDNEY_7:1:1:94:529 GTGTTTGTGGGTGTGTTTGCTTGTTTATGCAA U1 0 1 0 chrX.fa 93540767 R .. 23A >CMLIVERKIDNEY_7:1:1:76:631 GAGGATATGAGGTGTGAGCGATATACTAGTAT U0 1 1 0 chrM.fa 10525 R .. >CMLIVERKIDNEY_7:1:1:108:570 GTGCTGCTAGGGCTGCAATAATGAAGGGCAAG U1 0 1 0 chrM.fa 15299 R .. 4A >CMLIVERKIDNEY_7:1:1:85:553 GGCCTGGCACGAACGCGGCTGCACTTGGGCGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:99:317 AAAAAATGCAAATTCAAAAACAAATACACATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:767 GCTGTTCCTTCTGCCTGGTGCCACGATTATTT U0 1 0 0 chr12.fa 112250797 F .. >CMLIVERKIDNEY_7:1:1:98:502 GGGCGGAGGACGGCGAGCTCTTTTGAAAGTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:919 TGAGTCTGTGAAAATTGTATTACAGGAGAAAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:226 GCACGTCCTGGAAGCTTGGGTAGCGCTAGTAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:528 CGACATGATACTATTAAGTGTCTCTATCCACC U1 0 1 0 chr10.fa 72309597 R .. 6G >CMLIVERKIDNEY_7:1:1:106:874 GAGATATTGTCTGACTACCTTCTATGGCATGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:288 AACCAATAGCCCTGGCCGTACGCCTAACCGCT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:117:220 TTGAAATGTCTGCACTGGCAATAACGCCTGCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:799 TGAGGAGGCAGTAAATGAAGTTACAGGCTAAC U1 0 1 0 chr15.fa 75564644 F .. 31G >CMLIVERKIDNEY_7:1:1:123:391 CCAGACGTCTGCAGGTTAAACCCATTCAATAG U2 0 0 1 chr12.fa 40767570 F .. 1A 6A >CMLIVERKIDNEY_7:1:1:91:381 GAAGAAATCTTCTTTGGAAGAATTACAACTGG U0 1 0 0 chr18.fa 12330246 R .. >CMLIVERKIDNEY_7:1:1:86:700 GTTTCTCTCATTGTGTAGAGTCAGTGCTAGTG U0 1 0 0 chr3.fa 150339328 F .. >CMLIVERKIDNEY_7:1:1:96:713 ATTCTCCAATTATTATATGAGCTTCTCCTCTC U1 0 1 0 chr15.fa 58291887 F .. 28A >CMLIVERKIDNEY_7:1:1:53:543 GTAATTTTATTTTGAAGTCTCATGCAAGTTGT R0 3 0 0 >CMLIVERKIDNEY_7:1:1:121:229 AAAAGAATGAGTTGAATTTACAAAATCACCAG U0 1 0 0 chr15.fa 55517962 F .. >CMLIVERKIDNEY_7:1:1:99:826 TGATCAGGATTATTGCATCGAGCTTTTAGTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:467 TGGATACTAGTATAAGAGATCAGGTTCGTCCT U1 0 1 2 chrM.fa 8719 R .. 32T >CMLIVERKIDNEY_7:1:1:104:215 AGTCTCGGTAGGGTTGTCTCATTTTTTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:83:545 GGAAAGACCATGGTCAAAGCAGCGAGATCGCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:472 GCGAGTCCTTGACGTTGACAATCGAGTAGTAC R1 0 2 1 >CMLIVERKIDNEY_7:1:1:118:541 CACCATGTTAAGAATGAACTGAAAGTAAGACC U0 1 0 0 chr10.fa 38396171 R .. >CMLIVERKIDNEY_7:1:1:118:775 TTCAAACTGTCATTTTATTTTTACGTTGTTAG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:118:184 GAACTCTCCTGGCTAGGCCCGCGTTCATTAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:158 GTGACTCAACGTCTGTAATTTCAGCAATTTGT U1 0 1 0 chr1.fa 233570139 F .. 32G >CMLIVERKIDNEY_7:1:1:94:706 GTGACTTCATATGAGATTGTTTGGGCTACTGC U0 1 0 1 chrM.fa 3710 R .. >CMLIVERKIDNEY_7:1:1:119:335 ATTCAAGAAGTGAAAGAGCCCGAAAATCAGCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:442 GGTCATGCATCTCTACCTACCCACGGCCGCGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:756 GGAGCACACCTAGTCTCAGCTACTCGGGAGGC U0 1 0 3 chr4.fa 84723339 F .. >CMLIVERKIDNEY_7:1:1:90:493 GTAGGCTATGTGTTTTGTCAGGGGGTTGTGAA U1 0 1 1 chrM.fa 11506 R .. 4T >CMLIVERKIDNEY_7:1:1:98:761 GGCAGAGCAAGCATTCCCCTTTAAGAGCTTCC U0 1 0 0 chr10.fa 102790158 F .. >CMLIVERKIDNEY_7:1:1:75:607 GGAGGAGCAGTTTAACGTGTGAGATGGTGGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:504 GGATCCACAAACTTCCTGACACTATTTCCATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:638 AATGTGTCAGTATGCCGTCATTGAGCAAAGAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:94:571 TTATGTTCTTTCTTGTCCTTTTGTTTGACCTT U0 1 0 0 chrX.fa 102826849 R .. >CMLIVERKIDNEY_7:1:1:122:913 GGTATATCGGGGTAACGCGTGCTTTTAAGATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:626 AGCCTCGCTAACCTCGCCTTACCCCCCACTAT U0 1 0 1 chrM.fa 11847 F .. >CMLIVERKIDNEY_7:1:1:95:847 GGATACTGGCATTTTGTAGATGTGGTTTGGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:384 GTTTTTGGGACAGAGTCTCGCTACGCCACCCA U2 0 0 1 chr1.fa 16114545 R .. 9A 10G >CMLIVERKIDNEY_7:1:1:98:489 AATTGAGTGATCGTCGTTTTGGCAAAAATTTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:690 GCCGGATTCAATAAACTGGGGTTAATGCGCGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:87:447 GTAAGTCAGGAAGTAGCCTAGAATGAATCGTG U1 0 1 0 chr1.fa 26996843 R .. 7A >CMLIVERKIDNEY_7:1:1:121:953 GAATGGTAGCACTGGATTTGCTGATGGCCCAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:73 TTCCCCCCCTCCCTCCCCCCACCAGCTTCCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:638 AAACAATCTCATATGAAGTCACCCTAGCCATC U0 1 0 2 chrM.fa 3720 F .. >CMLIVERKIDNEY_7:1:1:105:786 GTGGGAAGGTCACCGGCGTGTAGTTGGTAGCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:80:21 GAAATAATTTTTATACTTNTTTACACCTNNTC QC >CMLIVERKIDNEY_7:1:1:93:486 GGCCACTTTGCATTTATTATAGATTTGTTTCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:397 GGCGGTTTTAATTAGTCAATAAACACCTTAAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:874 TTGAAACCCTGTATCCCTCTGAAACACTGGAA U0 1 0 0 chrX.fa 99771371 R .. >CMLIVERKIDNEY_7:1:1:117:434 GGCCGCGGTTGCGATCCGTTCCATTGCGCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:657 GTCATCATCTCCTCCTGAACAGTTATCCGACT U0 1 0 0 chr5.fa 179193203 R .. >CMLIVERKIDNEY_7:1:1:122:731 TTTTAGAAGAAAAAAGATAAATTTAAACCTGA U0 1 0 0 chr11.fa 65023785 F .. >CMLIVERKIDNEY_7:1:1:85:791 GGCGACTAGTGTGAGCGTATGAACGAGGGTAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:73:472 GTAAATTTAACTGTTAGTCCAAAGAGGAACAG R0 4 0 3 >CMLIVERKIDNEY_7:1:1:119:663 GATATTTATAACAAGCTCCATCTGCCTACGTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:197 GAAGACCCTGTGGAGCTTTCACTTATTAATGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:99:56 TAAGATGACAACTGCCCTAGACCACTTCTTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:558 CTAGCATTAAGACATTCATGGAAAGCCATTTG U0 1 0 0 chr15.fa 43443453 F .. >CMLIVERKIDNEY_7:1:1:79:463 GGACATCCCGGTATGAGCAGACCTAAACCAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:841 GGTTAATAGTGGGGGGTAAGGCGAGGTTAGAG U1 0 1 1 chrM.fa 11852 R .. 2G >CMLIVERKIDNEY_7:1:1:94:669 GAGATAGGTAGGAGTAGCGTGGTAAGGGCGAT U0 1 0 1 chrM.fa 5458 R .. >CMLIVERKIDNEY_7:1:1:121:114 GGGGTGCAGTTCCTTCACAGGGTCTGTTTGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:274 ATCCCTCTTATTAATCATCATCCTAGCCCTAA U0 1 1 1 chrM.fa 10329 F .. >CMLIVERKIDNEY_7:1:1:108:920 GCCTTGGGAGGGCCCTTCAGGAAGTAGGAGTG U0 1 0 0 chr5.fa 150388408 R .. >CMLIVERKIDNEY_7:1:1:123:237 GTCATTTTGCACCAGGTAATAGGGGAAAATTG R0 3 2 1 >CMLIVERKIDNEY_7:1:1:114:859 TGGTATTGCTCGGGGGGTGCTTTCCATTAGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:104:478 GCAAAGGTGCCCTTGAGGTTGTCCAGGTGAGC U0 1 0 1 chr11.fa 5204438 F .. >CMLIVERKIDNEY_7:1:1:76:566 GATTGGATTTTTGACGGGGCACGCACGGTTCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:415 GGTCAATGCTCTGAAATCTGTGGAGCAAACCA U0 1 1 1 chrM.fa 8166 F .. >CMLIVERKIDNEY_7:1:1:97:196 GCAGGTTAGTTGTTTGTAGGGCTCATGGTAGT U1 0 1 0 chrM.fa 10281 R .. 1C >CMLIVERKIDNEY_7:1:1:114:608 GCGAGTACAAGGGTCGACCCCCAAAGGCAGGG U0 1 0 0 chr3.fa 187944204 F .. >CMLIVERKIDNEY_7:1:1:119:136 GGATGTTCCTGCCCTGGCCAGGTACTGGGCAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:439 GTTATGAGACCGGCACTGAGGCCGAAAACGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:120:193 TCTGCAGCCACCCTAGCCCTCCTCCTTCTCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:620 GACCTGGCCGCACTCATACTAGCCTGTCGGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:437 CGAGATTTCTTTGACTTTCCTTAAATATTACA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:716 AATTCCCCTAAAAATCTTTGAAATAGGGCTCG R1 0 2 0 >CMLIVERKIDNEY_7:1:1:109:665 GTGGAAGTAAAATTGTTGGTCAGTGGGGAAAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:103:658 CTAAAGCCTAAAAAGAAAGACTCTCCCTTGTT U2 0 0 1 chr1.fa 177786935 R .. 5T 27A >CMLIVERKIDNEY_7:1:1:113:755 GGGTGATGCCTGTTGGGGGCCAGCGCCCTCCT U1 0 1 1 chrM.fa 9543 R .. 9A >CMLIVERKIDNEY_7:1:1:66:504 GGGGCTTTGATGTATTATTTTGATAAGTAGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:67:406 GGAAAATTTAAATACAGAAACCCAAGTACTGC U2 0 0 1 chr21.fa 34388496 R .. 12T 32T >CMLIVERKIDNEY_7:1:1:113:387 AAGGGAGCAGGCAAGACTGTCTGAGTGATGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:421 CTGATACTGGCATTTTGTAGATGTGGTTTGTC U1 0 1 0 chrM.fa 9924 F .. 31A >CMLIVERKIDNEY_7:1:1:118:661 AAAGCTGTGGACAAGAAGGATGCTGCTGCTGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:97:793 GGGAAGTGTGGGGGGGCCTGGGTGAGAGCAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:120:418 GGAAATTAAAGCACAGAACCTTGTGAGATAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:449 CGAGGAGATATGATAGCATGTGTGTGTCTAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:526 ATTCGAATCACCCTAACAAGCCGCAACGTAAA U0 1 3 0 chr8.fa 57149187 R .. >CMLIVERKIDNEY_7:1:1:121:291 CTTCTCCCCGGCTGCTGGTAGCCACGGTGATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:449 GTTCTTCCCTCCTGCCACGCTCCTGAAACCAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:908 TGCAGGGCTGGTTACCACAAACTCAGTAGGAG U0 1 0 0 chr3.fa 50312384 F .. >CMLIVERKIDNEY_7:1:1:80:802 GTTAAAAGTAAGAGACAGCTGAACCCTCGTGG U0 1 4 3 chrM.fa 2641 R .. >CMLIVERKIDNEY_7:1:1:116:566 GAGAAGGGATCCATGTGAACAGCAGTGGAACA U2 0 0 1 chr2.fa 132755102 R .. 6A 24A >CMLIVERKIDNEY_7:1:1:97:468 GGATTTTCAAGGGCCAGCGAGAGCTCACCGGA U0 1 0 1 chr5.fa 71182646 R .. >CMLIVERKIDNEY_7:1:1:107:880 GCCGTGATGATTTTATAGCATCCTGGGCATTT U1 0 1 5 chr11.fa 116411841 F .. 1A >CMLIVERKIDNEY_7:1:1:84:436 GGGTTTTGTATGTAATATTTTCTTTTTTGTAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:61:511 GGGAATTTGCCGCTGGTATCTCCACGACTGGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:525 GGAAGGCTCCATGGTTGTCCTACTTTAAGCAG U2 0 0 1 chr11.fa 65029257 R .. 1A 2G >CMLIVERKIDNEY_7:1:1:107:702 TTTCGATAATAACTAGTATGGGGATAAGGGGT U0 1 1 0 chrM.fa 8932 R .. >CMLIVERKIDNEY_7:1:1:65:532 GAAACGATCTACATCATTGTCATCTCCCAGAA U0 1 0 0 chr9.fa 32532806 R .. >CMLIVERKIDNEY_7:1:1:105:767 GTTAGGGATTGTCCTCCTCTGACATCGCTGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:464 GCCCACTCGAGCCGCAGCCATGTCTGGGGACG R0 2 1 0 >CMLIVERKIDNEY_7:1:1:91:763 GGGAGATTTCTCTCGTTTATCCATTGCTGTGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:84:858 GGGAGAATTCTCTGTGCTAGTAACCACGTCCT U2 0 0 1 chrM.fa 11888 F .. 8C 30T >CMLIVERKIDNEY_7:1:1:59:579 GGCAAGATGAAGTGAAAGGTAAAGAATCGTGT U1 0 1 1 chrM.fa 15273 R .. 30A >CMLIVERKIDNEY_7:1:1:116:695 CTAGGATATAAAATGCGGTTTTTTTAAATGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:75:622 GCCATTCTCATCCACCTTATAATATTTCAGGA R0 3 1 3 >CMLIVERKIDNEY_7:1:1:95:696 GGTTGATTATTGAGTTTCACGGCTGGCGTAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:651 GGGGATAGGGGTATGAATATGACGGTGTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:75:611 GTCATTAAGGAGAGAATGAAGAGAAGTAAGCC U1 0 1 0 chrM.fa 15438 R .. 16C >CMLIVERKIDNEY_7:1:1:99:62 GTTTGGTGCTCTTCCTTTTTCTACTGTTAAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:115:763 TGTTAAGCTTGTTTTCCTGCAACTGGATTTTT R2 0 0 9 >CMLIVERKIDNEY_7:1:1:96:221 GCTGAATCAGCGCGGCCCCACGACCCCGCTCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:761:671 GTGATAGCGTGGGGCGGCGTCCGTTTGATTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:320 AAAAAAAAAAACAAAAAAAAAGAAGAAGAAAG R1 0 68 255 >CMLIVERKIDNEY_7:1:1:103:198 GTTTGGCTAAGGTTGTCTGGTAGTAAGGTGGA U0 1 0 1 chrM.fa 1696 R .. >CMLIVERKIDNEY_7:1:1:113:914 GAAAATCTTCAAAGCCAACCACCCCATGGACG U0 1 0 0 chr19.fa 55000959 F .. >CMLIVERKIDNEY_7:1:1:113:243 GACGTCCTCATAGTACTCACAAAGGGCTAGCC U0 1 0 0 chr2.fa 121812768 R .. >CMLIVERKIDNEY_7:1:1:115:965 GGATACCGCAGCTAGGAATAATGGAATAGGAA U1 0 1 0 chr16.fa 33870842 F .. 32C >CMLIVERKIDNEY_7:1:1:53:599 GGAAAAGGTTGGGGAACAGCTAAATAGGTTGT U0 1 0 0 chrM.fa 10900 R .. >CMLIVERKIDNEY_7:1:1:115:901 GGATAATGGGTTTGCTGCGGTCAGCCACATAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:555 TCTTGGTTTGCTCTCAGCCCCAATTTTAAAAG U0 1 0 0 chr20.fa 35282756 R .. >CMLIVERKIDNEY_7:1:1:99:808 GCCTGGTTCTAGGAATAATGGGGGAAGTATGT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:115:625 AAAATCCACCCCTTACGAGTGCGGCTTCGACC U0 1 1 0 chrM.fa 10155 F .. >CMLIVERKIDNEY_7:1:1:115:154 GGACTATACATATTCTGTATCCGCAGCTTCCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:106 GCCCCCTCCTCTTTCTCGCTTTTTACTATTAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:465 GGGGTCCACATATGTTCTTACACCTGAGTGAT U0 1 0 0 chr2.fa 222016548 F .. >CMLIVERKIDNEY_7:1:1:120:35 GCAGTTTTTCGCTCTCGGGCCTCCTCTCTCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:548 AAACGCTGTCTCTACTAAAAATACAAAATGGC U0 1 1 38 chr12.fa 100209286 F .. >CMLIVERKIDNEY_7:1:1:71:615 GTTTTCATTTACTAAGAATTGAAAGCAATTAA U0 1 0 0 chr22.fa 22601942 R .. >CMLIVERKIDNEY_7:1:1:117:588 CTTTATCCGACGTGTATTCTACGTTCAGCTGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:616 CTGGTTAAAAGTAAGAGACAGCTGAACCCTCG U0 1 5 7 chrM.fa 2644 R .. >CMLIVERKIDNEY_7:1:1:78:262 AAGAAAACAAAGGCAAAATGTCCATTGCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:81:420 GCTAGGGTGAGTGGTAGGAAGTTTTTTCATAG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:79:550 GCTTACTAGAAGTGAGAAAACGTAGGCTTCGA U2 0 0 1 chrM.fa 9153 R .. 3C 18A >CMLIVERKIDNEY_7:1:1:120:851 TCGGATCCTCAAATGGGGGAGATCACGATGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:595 GGTGGTTTGGTTAAAAAATAGTAAAGGGATGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:387 GGCCTCTTGGAGACAGATGATGACTGGCAAGG U0 1 0 0 chr7.fa 130837333 R .. >CMLIVERKIDNEY_7:1:1:106:402 CCTCCATCACCCCTTCATACATTAGCTTCACC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:120:727 CTCTTTTCTGTACACTCAGGGAGCTAAAAAAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:224 GGCGGCCCAGCGTTCCTAGCGCCGTCGCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:733 GGACAATTTATGTCTATTCATTAGATTACAAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:462 TATGTATCCAAATGGCTCTTTTTTTCCGGAGT U1 0 1 1 chrM.fa 6686 R .. 17A >CMLIVERKIDNEY_7:1:1:110:674 GAGGGGAAGGTGCTTTCCTTACCTCTAAACAG U0 1 0 0 chr19.fa 50013642 F .. >CMLIVERKIDNEY_7:1:1:101:38 TATGCACATTCCACTTCTGCTCCTTACCTGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:875 GGATACAATAGGAGAGTCATGGTTATTTCCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:113:847 GCCTTGGAGCTTTTGATACTGACGATTGCGCT U0 1 0 0 chr14.fa 19851570 F .. >CMLIVERKIDNEY_7:1:1:122:244 ACGGACTACACCTATCACTCCCTAAACCCCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:225 GGGATAGAAACCTCGCCACCTTCCATTCCTCT U2 0 0 1 chr1.fa 38184430 F .. 9C 16A >CMLIVERKIDNEY_7:1:1:122:219 GCTCTTTTAGCTGTTCTTAGGTAGCTCGTCTG R0 4 1 0 >CMLIVERKIDNEY_7:1:1:81:779 GGACTTCATGTCATTATTGGCTCAACTTTCCT U1 0 1 0 chrM.fa 9820 F .. 9C >CMLIVERKIDNEY_7:1:1:109:533 TGGAGACATGTCATATAAGTAATGCTAGGGTG R1 0 2 0 >CMLIVERKIDNEY_7:1:1:122:182 TGGGATTATAGGTGTGAGTGAGCTACTACGCC R0 3 0 0 >CMLIVERKIDNEY_7:1:1:115:219 CTTCGAGTCTCCCTTCACCATTTCCGACTGCC U2 0 0 1 chrM.fa 9750 F .. 29G 32A >CMLIVERKIDNEY_7:1:1:108:978 GTTTGGATTAGAAGTCAGGGAGGTGTTTCTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:949 GTTGATTTTAGGTTTAGGATAGATATGAAGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:70 GTCGCGCTCCCCGGATGCTCGCCTGCTCCTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:99:215 GAAATACTTGTTGGCTGCTTCTGTGGAACTAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:60:692 GGGGATTTTTCTATGTAGCTGTTGAGTTGTGG U2 0 0 1 chrM.fa 10132 R .. 13G 31A >CMLIVERKIDNEY_7:1:1:104:671 GTGTTGGGAGCGCTTTGGTGACCGCGTGTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:683 CCCATCTATATTTTCCACTATAGACTTCAAAA U0 1 0 0 chr7.fa 30164378 R .. >CMLIVERKIDNEY_7:1:1:106:877 GCCACCAATTAAGAAAGCGTTCAAGCTCAACA R0 6 7 2 >CMLIVERKIDNEY_7:1:1:98:183 GCTGGCTGGTCCCCCCCGCCCTTCTTCTTGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:189 GTCCAATTGGGCGTGAGGCGTTCAGTTATATG U2 0 0 1 chrM.fa 2242 R .. 14T 21A >CMLIVERKIDNEY_7:1:1:118:259 AGAGGTTTAGATGATGTGGTCTTTGGTGTAAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:956 TGATACTGGCATTTTGTAGATGTGGTTTGACT U0 1 0 0 chrM.fa 9925 F .. >CMLIVERKIDNEY_7:1:1:102:347 AAAAAAAGTAAAAGGAACTCGGCAAATCTTAC R0 4 4 2 >CMLIVERKIDNEY_7:1:1:106:177 GGAGAGGGACCCTATCCTGTACCTCGAAGCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:143:877 GTTGGCCTCATTATGCCAGTATGGCTGCCATT U2 0 0 1 chrX.fa 2834019 R .. 1T 2G >CMLIVERKIDNEY_7:1:1:107:787 TTTCACCGCTACACGACCGGGGGTATATTACG U1 0 1 0 chrM.fa 8135 F .. 28C >CMLIVERKIDNEY_7:1:1:86:608 ACACATTTGTCCTCAACGCAACGGTCATCTCC U2 0 0 1 chr16.fa 19778851 F .. 1C 3C >CMLIVERKIDNEY_7:1:1:119:150 GTGAGCCCCATTGTGTAGTGGTAAATATGTAA U2 0 0 1 chrM.fa 11984 R .. 1C 16A >CMLIVERKIDNEY_7:1:1:95:198 GAAGTAGCGGTTAAGGAGGGTGATGGTGGCTA U1 0 1 1 chrM.fa 5315 R .. 25T >CMLIVERKIDNEY_7:1:1:120:130 GTGGGTTCCGCACCCGCCTCGGCTCCCGCTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:497 GGTGTGCAAGGGATGCGGGAGATGTGTGCAGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:80:716 GTGGAAGGGAGAGTGCTGGCCCGAAGCCTTAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:715 GCCCTGACGTGCAAATCGGCCGTCAGACTTGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:76:389 GAGGGAGAAAGTGGCAGGAGGTGCCTTAAAGA U0 1 0 0 chr5.fa 133946269 R .. >CMLIVERKIDNEY_7:1:1:108:464 GGGGGCACCATCTCCTACCGTTCCCCTCTCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:378 CGTTTTCCTACTACTCAACTTAATCGCCTTCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:69:565 GCCGGGGTGACATTCGCTTTGGGGGGGTAGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:71:625 ATTTCCTCATGATGTTAATACACTTCTTACTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:158 GTTGTATACTTCAAAAGACTTTTTCTCTTGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:876 GTGGGGTGGAAGGGAAAGCAAAAGGCTTGGGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:115:497 TTGGGGTTGAGGGAGAAGGATAGAGGGGTGTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:978 GTGGATGTGGACAATTGATATCAATGTTCAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:702 CTCAACCTAGGCCTCCTATTTATTCTAGCCAC U0 1 0 0 chrM.fa 3599 F .. >CMLIVERKIDNEY_7:1:1:112:221 GTCAGTCGGTCCTGAGAGTTGGGCTCGTGCGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:929 TGCTTGTATGGCTGCTGTGTTGGTATCTTCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:84:642 GTCCTCTCGTATTGTTGTGACGGCTGCGCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:451 GTCTAAATCAGCTGGGACAACACCCTTCCTGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:735 GGAGATGGCTGTGTATGTGTTTTCTCGTGCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:555 AGAGAAGCCAGGTTCCAAGCTTTAGGCACCCA U0 1 0 0 chr20.fa 44425279 R .. >CMLIVERKIDNEY_7:1:1:123:435 CCAAGAAAAACCTAAAAAACACCAAAACCAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:550 TGCCGGGCAGGCCACCTACGGTGAAAAGAAAG U2 0 0 1 chrM.fa 6939 R .. 26A 28T >CMLIVERKIDNEY_7:1:1:116:401 AGCTTTTGAAAGTAAAAGAGAAGCTACTTCTG U1 0 1 0 chr15.fa 99643570 R .. 8T >CMLIVERKIDNEY_7:1:1:111:620 TACTGCCTTCTCCTGCGGTATGTTCTTACGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:787 GTGGTCTCGTGGTCCTGAGTTCAGGTGATCCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:168 GCCGTTCTTCCTGGCTCCTTTCACTTTTTTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:271 CTCCACACCCACTCCCACTCAGCCAATATTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:49:558 GGAAAACTGGAAGACAGAAGTACGGGAAGGCG U0 1 0 0 chr11.fa 65023707 F .. >CMLIVERKIDNEY_7:1:1:91:652 GAAGCGTTAGGAATGCCATTGCGCTTAGAATG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:399 GGACAGATCACGAGGTCAGCAGATCGAGGCCA U0 1 3 219 chr4.fa 166216071 R .. >CMLIVERKIDNEY_7:1:1:116:737 CGCTCTTCAACTTGGGAATTTACGTAACCTTC U0 1 0 0 chr11.fa 66434990 F .. >CMLIVERKIDNEY_7:1:1:78:443 GCAAAATAGTGGGATGATTTATAGGTAGAGCC R2 0 0 2 >CMLIVERKIDNEY_7:1:1:82:180 GCAGGTAGAGGCTTACTAGAAGTGTGAAAACG U0 1 1 0 chrM.fa 9163 R .. >CMLIVERKIDNEY_7:1:1:119:688 GGTAGCAGTGGGGCGGGTCTTTTTCTGTTTTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:57:739 GGGTTGTTTTCTGGGTATCTAGGTCATCGTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:891 GTGAGTTTGGAGATTTCTTACTATTGCTTGAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:115:44 GTTGTCGTCCGCGTCGGGGCTCTGTGCAGCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:946 GGAGTATTTTGGTTCGTTTTGATTTGTTTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:178 GTTGGACCTGAGGGTAAGTTAACAAGGATGAA U0 1 0 0 chr10.fa 93713900 R .. >CMLIVERKIDNEY_7:1:1:88:815 TAAAGTGGGAGAAACTGAGTCCTTTTTTGGTG U0 1 0 0 chr10.fa 28380978 R .. >CMLIVERKIDNEY_7:1:1:109:497 GTTGAATGTGAAATATAAAGAATTAAGCAGCT U0 1 0 0 chr11.fa 95618811 R .. >CMLIVERKIDNEY_7:1:1:89:833 GCGGGGGTTGTATCGGACTGGGTGGTGGTTGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:947 GCCATAAGGAGGACAAGGAAGATCTTAGGGAA R2 0 0 2 >CMLIVERKIDNEY_7:1:1:113:567 CTAAGCTTCAAACTAGACTACTTCTCCATAAT U0 1 3 11 chrM.fa 12569 F .. >CMLIVERKIDNEY_7:1:1:123:398 GAGAAAACACCCTCATGTTCATACACCTATCC U0 1 1 1 chrM.fa 12055 F .. >CMLIVERKIDNEY_7:1:1:107:627 TGGAGATGGCGACTAGTGGACATAAGAACTAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:85:799 GGAAATGTTTGCAGTTCATTCTGTCAACTTGC U0 1 0 0 chr15.fa 59958150 R .. >CMLIVERKIDNEY_7:1:1:103:176 GTTCCATCAGATTTCGCCCTCTACCAACCACC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:60:401 GTTTTAATGAGCTTATGCGTGATCCTGTTAAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:818 TGCAGCCTAGCCTTCTTGTTTTTATTCTCTGT U1 0 1 0 chr7.fa 111616996 F .. 1A >CMLIVERKIDNEY_7:1:1:81:189 GGTGGGTGGAGCAGATTGTTTGGTTTGTTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:693 GTAAGTAGGAGATTGATCTTTGATCAGGAGAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:104:435 TGAATGAGGGATTTATGTTGTTAATGTGATGG R2 0 0 2 >CMLIVERKIDNEY_7:1:1:114:712 CCTGTGTAGATTATTCAGTGCCACAAATTGAA U0 1 0 0 chr20.fa 17535783 F .. >CMLIVERKIDNEY_7:1:1:120:206 AAAGCACATACCAAGGCCACCACACACCACCT R0 2 0 1 >CMLIVERKIDNEY_7:1:1:63:608 GTTTCAGGGGGTTTGGATGAGTATGGCTGTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:99:915 GCCAAGCACATACACCAAATGTCTGAACCTGC R1 0 2 3 >CMLIVERKIDNEY_7:1:1:118:520 GGCCCATCCATGAGTCAGGAAAGGAGCACTGC U1 0 1 0 chr16.fa 55499051 R .. 5G >CMLIVERKIDNEY_7:1:1:81:243 GTTTTAGCCGGTTATTGTCATTTAATTTTTAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:84:516 AAAGGACACGATGGATGTACATACAAATTTAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:77:642 ATAAATACTACCGTATGGGCCACCATATTTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:69:499 GATTGGGTTAGATGTCCGGCAATTGCATCTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:77 ATAATTTCTCCCTCTCACCAGTTAACTCTCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:85:666 GGTTAGGAGTGGGACTTCTAGGGGTTTTAGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:604 GTGAGGCCCCGCTTTCACGGTCTGTATTCGAG U2 0 0 1 chr1.fa 91625562 F .. 31T 32A >CMLIVERKIDNEY_7:1:1:97:764 GTTGGTATAGAATGGGGTCTCCTCCTCCGGCG U0 1 1 0 chrM.fa 6570 R .. >CMLIVERKIDNEY_7:1:1:92:559 GTAGAAGTAGAGGTTAAGGAGGGTGATGGTGG U0 1 1 0 chrM.fa 5318 R .. >CMLIVERKIDNEY_7:1:1:69:159 GGGTGAATCACTTTATAACAGTGGCTGATTCA R2 0 0 2 >CMLIVERKIDNEY_7:1:1:79:757 GAAAGATTGACTAACGAGAGATTCTAGATAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:23 CCTTCGTCCTCTAGGAGCATCATCACCTATTG U2 0 0 1 chr18.fa 72184599 F .. 5A 11A >CMLIVERKIDNEY_7:1:1:95:932 TTTGCTTTTTAATATACAAACCATGGTTTTTT U0 1 0 0 chr2.fa 111638510 F .. >CMLIVERKIDNEY_7:1:1:84:209 GTGATTATGTGTTGTCGTGCAGGTAGCGGCTT R2 0 0 2 >CMLIVERKIDNEY_7:1:1:123:111 TTGTATTCCAAGAGAGTTGTTCTCCACTTACC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:233 GATCTTCTTAAAGTACGACCCACATTTGTTTT U0 1 0 0 chr11.fa 77089589 F .. >CMLIVERKIDNEY_7:1:1:83:457 GAAGCTCGAGGCGAAGACAGGAAAAAAGACAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:368 CTGCTAAGAACGTTACAACGACCCCCAAAGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:55:715 GGAAGGCCACCTTTGGTGGTGGTTTCATTCTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:74:738 GCAAGAACAACATTCCCATGGTCAGTGACTTC U0 1 0 0 chr11.fa 30315626 R .. >CMLIVERKIDNEY_7:1:1:94:782 GTTTTATGCCTCTGTGCCTTCGTTCATGCTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:579 CAATTTTCTTCTCCACGTTCTTCTCGGCCTGT R0 6 1 3 >CMLIVERKIDNEY_7:1:1:109:750 GCGGCTGCTGGCACCAGACTTGCCCTCCAATG U1 0 1 2 chrY.fa 10645457 R .. 31A >CMLIVERKIDNEY_7:1:1:106:729 GTTCCATGTGAAAAGCAGTTGAACTTGGGACA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:80:554 GTCGGGTCTGCGAGAGCGCCAGCTATCCTGAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:74:374 ATGAAGCGAACAGATTTTCGTTCATTTTTGTT U1 0 1 4 chrM.fa 8521 R .. 4C >CMLIVERKIDNEY_7:1:1:99:523 GTATAGCCAAGCAAGCGTAGCATGATTTGCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:64:542 GACATACAGACCAATGAAATAGAATTGGGTGC U0 1 0 0 chr14.fa 63907003 F .. >CMLIVERKIDNEY_7:1:1:96:394 AAAATATTTCACCACGACCAAGAAAGGGGAGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:93:800 GTCTGCACGAACTTATAGATTTAAGATTTGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:73:424 GCATTTTGGACTCTTATTCTTCATCTCAGAGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:489 CCCCGATGCATACACCACATGAAACATCCTCT U1 0 1 2 chrM.fa 7233 F .. 31A >CMLIVERKIDNEY_7:1:1:122:285 CTGTGTTGAGCACTGGTCACATTGACGGCGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:443 TAGAAAACAACCGAAACCAAATAATTCAAGCA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:124:759 CTTAGGTTCCTTGTTTAGGGCATTTGTTTTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:255 CGCCTTATGGCGCGGGGTTGACGGGGCCCCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:756 GATTGGTCCAATTGGGTGTGAGGAGTTCAGTT U0 1 0 1 chrM.fa 2247 R .. >CMLIVERKIDNEY_7:1:1:120:669 AAATTTTTTACTCTCTCTACAAGGTTTTTTCC U0 1 4 0 chrM.fa 2130 R .. >CMLIVERKIDNEY_7:1:1:83:467 AACTCTTTTAAGTTATGGGAAAAAAAATCTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:713 GGTGTATGCCGTTTTCCTAACACTCACAACAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:490 ACATGATTGTTCGACGTTCTTGCAAAAATCTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:145 TCGTTCTTTAGTGTTGTGTATGGTTATTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:48:459 GGTTTTGTTTTTCTTTTCTCTGTTAGCCACTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:224 GGCGGTGGAGGGGATGGTTTTGCCGCCTCATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:470 GAAGAGGCAGGACACGTCATTGCTACCCTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:103:526 ACGAACTGGAGTTCAGCTCTTTTGTCAGAAAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:27 GGCCAATTGAGTGTTGTAGTTCGCTTCGATCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:76:879 GTCCAATTATGCATCAGAAACAATAGATAGGT U0 1 0 0 chr7.fa 11828110 F .. >CMLIVERKIDNEY_7:1:1:72:138 GTAAATGTAAAGTGTTGTTTTTAGTGACAGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:474 GGCCCATTAAGTCCCTACTAAGAGGGCGTGTC U0 1 0 0 chr19.fa 3927315 F .. >CMLIVERKIDNEY_7:1:1:120:300 ATTTCCTATTCGCCTACACAATTCTCCGATCC U0 1 1 0 chrM.fa 15565 F .. >CMLIVERKIDNEY_7:1:1:113:164 TGCAAATCGGTCGTCCGACCTGGGTCTCGGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:927 GTGACTACAAAAAGGATTAGACTGAACCGAAT U1 0 1 0 chrM.fa 10374 F .. 26G >CMLIVERKIDNEY_7:1:1:47:178 GTACACTATCAATCACTGAAGCAATTATGCTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:908 GAACACGGAAACCTGAAGCGTGGATAGAGATG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:944 TGGGAGATTATTCCGAAGCCTGGTAGGATAAG U0 1 3 7 chrM.fa 6640 R .. >CMLIVERKIDNEY_7:1:1:115:150 GTATTGGAGACTTTCATTGCAAAGCACTTACA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:72:128 GGCTTGCCTTATGAGCATGCCTGTGTTGGGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:97:243 CAAATTATCCTCCACATTCTGCTGCTTGTTTT R1 0 7 0 >CMLIVERKIDNEY_7:1:1:116:179 AAACAACCGAAACCACATAATTCAAGCACTGC R1 0 2 0 >CMLIVERKIDNEY_7:1:1:106:5 TNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN QC >CMLIVERKIDNEY_7:1:1:107:153 GTGGGCTGCGATCATGCCTGGGCCTCTGAATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:220 GCCTGACTGGGGCAAGAAAACAGAGTTTCATC U0 1 0 0 chr20.fa 32979352 R .. >CMLIVERKIDNEY_7:1:1:94:671 AAGTGGCCTTCCCGACGTTCTGCTTCGATGAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:894 TGGGACTACAGGAGAAGATAACCACACTAGGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:80:741 GGGATCTCCCAAGGAGTCATGTTCTGAGGGAT U1 0 1 0 chr10.fa 102248463 F .. 32C >CMLIVERKIDNEY_7:1:1:122:17 TGCCATCANNNANGACTNNNNNTGTACANNNT QC >CMLIVERKIDNEY_7:1:1:79:659 AAACCGCCTGGGTACTATCTCGCATGTGATTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:57:517 GCTTCAAGATGAAGCTGAACATCTCCTTCTCA R1 0 3 2 >CMLIVERKIDNEY_7:1:1:112:176 GTCGGGTTGCTTGGGAATGCAGCCCCAAGCGG U1 0 1 0 chr11.fa 84872677 F .. 26A >CMLIVERKIDNEY_7:1:1:96:831 GAAAAATCCACGCCTTACGAGTGCGGCTTCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:174 GTTGAGGTTGACCAGGGGGTTGGGTATGGGAG U2 0 0 1 chrM.fa 3573 R .. 1T 2C >CMLIVERKIDNEY_7:1:1:101:510 ATTCGGTTCAGTCTAATCCTTTTTGTAGTCAC U1 0 1 0 chrM.fa 10374 R .. 26G >CMLIVERKIDNEY_7:1:1:115:146 GGAATTTGAAGTAGATAGAAACCGACCTGGAT U0 1 0 0 chrM.fa 3087 R .. >CMLIVERKIDNEY_7:1:1:106:752 GCACAATATTGGCTAAGAGGGAGTGGGTGTTG U0 1 2 0 chrM.fa 10617 R .. >CMLIVERKIDNEY_7:1:1:120:444 ATTGCCCACACACAGATGCGCCTGCTTCCTCT U1 0 1 2 chr6.fa 108432948 R .. 21G >CMLIVERKIDNEY_7:1:1:92:938 GGGGGGGTGATAGGGGGTAGGGGGAAATGGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:261 CAAGGGTATTCTAGCCTGTACCATCTCGCTTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:82:844 TCCGCTTTTGCCATATCTTCAAATTTTCCTTT U0 1 4 7 chr13.fa 29935440 F .. >CMLIVERKIDNEY_7:1:1:108:704 ATTTAGTTGACTCGCCACTCTGCACGGTGGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:549 ATGAGGGAATAACTAGGATTATCTCGTATAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:215 GTCAAACCAGCCACTGCTTCCCATATCACATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:48:621 GGTGTGCCTTGTGGTGAGTAGTGGGTTAGGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:113:92 CTGCATTGGTTTTTTTTCCATTACACCCGTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:234 ATCCACCAGCCTTTGCATTCTCCTCGGAGCAC U0 1 0 0 chr11.fa 2866195 F .. >CMLIVERKIDNEY_7:1:1:68:846 GGTGTGGAAAGTCATGCATGTGGAAGGATCAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:889 GTTGGTGAGGTATTGGGGGGAGGGGGTGAATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:445 GACCACATCACAGTGAGCCTGGGAAGTAAATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:540 CTGGAATTACCGCGGCTGCTTGCTTCACCTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:517 ATTCCACCTACTTCAACTCATTATTGACTTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:67:568 GCGATTTCTAGGATAGTCAGTAGAATTAGAAT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:120:700 GTTGAATTATTTGGTTTCGGTTGTTTTGTATT R2 0 0 2 >CMLIVERKIDNEY_7:1:1:121:342 CCTGCCCCATGGTATCTACGATGAGATCCAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:797:649 GTTTTGTATGTTCAAACTGTCATTTTATTTTT U0 1 1 0 chrM.fa 5403 R .. >CMLIVERKIDNEY_7:1:1:204:901 GTTTAGTAGTAATCAGTGTGGCTAGAGATTAC U0 1 0 0 chr12.fa 10234229 R .. >CMLIVERKIDNEY_7:1:1:108:514 TGGGGCTTAGAGCACGGGTAAGAGCACGATCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:1000 GTTAACGTAATTGAAGATTCTGGCTCTGGTGG U0 1 0 0 chr21.fa 33847161 R .. >CMLIVERKIDNEY_7:1:1:97:369 CCTTCTTAGGCTATTTCCTTCTGTCCGGACAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:45:436 GTTAGAGTCAGCTTTTTTTTTTTTTTTTTAAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:87:307 CCTCAATACTGTCAAGTGCACCTACTTAATAA R0 2 1 1 >CMLIVERKIDNEY_7:1:1:103:629 ATGATGGATTGGCGACACTGTTGAACAACATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:640 GACCAAGCTGGGGCTCAACCAGAACAAGAAGG U0 1 0 0 chr5.fa 529355 R .. >CMLIVERKIDNEY_7:1:1:100:581 GGGGGGTGGCTTCAAACCCGCTTTGGGGGGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:162 TGACGATAACGTTGTAGATGTGGTCGTTACCT R0 2 1 1 >CMLIVERKIDNEY_7:1:1:71:411 GGACAGTGTGTGCTGGTGATTCTTATTAAAAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:51:560 ATGAACCATAACCAATACTACCAATCAATACT U0 1 1 0 chrM.fa 4719 F .. >CMLIVERKIDNEY_7:1:1:92:129 GTTTATTTCTCTTCCTCCTCCCGTACTAGATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:451 GTTACACCCCCCTCCCCCCATCACGCACGCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:981 GTTTTATGTTGTTAATGTGGTGGGAGGGTGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:93:211 GTTGGAATTCCACGGGTTATTCTTCCTGCACT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:73:689 AAACTTTTGGCCAAGAGAATGTAGGAGGTTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:811 CCCCAACCGAAATTTTTAATGCAGGTTTGGTA U0 1 2 0 chrM.fa 2788 R .. >CMLIVERKIDNEY_7:1:1:121:506 GTTTTTGTATTCTGTTTTATTCTGTTTTTGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:104:69 GAAAAGTACAAATCACAGGCATCAAGAAAAAG U0 1 0 0 chr13.fa 97848101 R .. >CMLIVERKIDNEY_7:1:1:82:882 TGTGTAAGCTAGTCGTATTAAGTTGTTGGCTC U1 0 1 0 chrM.fa 11329 R .. 18T >CMLIVERKIDNEY_7:1:1:112:393 CCTTCCCAACCATCCCACAAAGTCTTAGCTCA U0 1 0 13 chr6.fa 146153153 F .. >CMLIVERKIDNEY_7:1:1:93:154 GTCAGTTGTGGTCCTTAAACCTCTTGGCACCT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:122:250 CTCCAATGGTGATGCCTGGGTTGAGGCTCATG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:98:69 GTTTGGATGAGAATGGCTGTTTCTTCTTCGTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:692 CTTGGCGGAATCAGCGGGGGAAGCAGACCGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:627 GCAAGTGGAGGTATCTGGGTCTCCCAAGGCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:77:694 GCCAAACCCCAAAAACAAAGAACCCTAACACC U0 1 0 1 chrM.fa 349 F .. >CMLIVERKIDNEY_7:1:1:59:595 GAGAAGGCCTTAAAGTACGTCCGCGGGTTGCT U0 1 0 0 chr7.fa 100670211 R .. >CMLIVERKIDNEY_7:1:1:96:135 GTTTTTGTATTCCCTCCTAGGCCAGGCTTAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:669 CACCTTACTACCAGACAACCTTAGCCAAACCA U0 1 0 1 chrM.fa 1698 F .. >CMLIVERKIDNEY_7:1:1:117:428 CCTAGAAGTCCCACTCCTAAACACATCCGTAT R0 2 1 1 >CMLIVERKIDNEY_7:1:1:237:883 GTTGTTCAGTAACAATTGCTGATACTGCAGCT U0 1 0 0 chr4.fa 111136003 F .. >CMLIVERKIDNEY_7:1:1:121:140 ACAGCTCTTTGGTCATTAGGTACATATCTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:97:472 TGCCCACCTCAAGGTTAATAAATAAGGTTGTA U1 0 1 0 chr11.fa 63283050 F .. 14T >CMLIVERKIDNEY_7:1:1:97:514 CCCCGCGGATTCATTGAACTAGGACTGTCCCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:284 CGACTGTGAGTGCGTTCGTAGTTTGAGTTTGC U0 1 0 1 chrM.fa 11748 R .. >CMLIVERKIDNEY_7:1:1:110:46 GTTCTTGCGGCGGGTCTTGGCTGTATTTTCAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:104:277 ATAACAGCCCCGGCCCCAAATACCCCCACTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:61:438 TATGGTTGATATTGCTAGGGTGGCGCTTCCAA U1 0 1 0 chrM.fa 9048 R .. 32T >CMLIVERKIDNEY_7:1:1:98:561 CCTGAGAATAGGGGAAATCAGTGAATGATGCC R1 0 3 0 >CMLIVERKIDNEY_7:1:1:112:932 GCAAAATCTTAGCATACTCCTCAATTACCCAC R0 2 0 0 >CMLIVERKIDNEY_7:1:1:422:223 AGAACTTCTCCGCTCAGCGCTGGATGAGTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:94:814 TGTAATTCCAGCTACTAGGGAGGCAGCGATAG U2 0 0 1 chr3.fa 171498044 R .. 3G 6T >CMLIVERKIDNEY_7:1:1:81:431 GCCTTGTACTGTTCCCTCTACCCCCTTCAGTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:924 GGACAGCTCATGAGTGCAAGACGTCTTGTGAT U0 1 2 1 chrM.fa 8051 R .. >CMLIVERKIDNEY_7:1:1:99:735 GCCGTTTCTCAGGCTCCCTCTCCGGAATCGAA U0 1 0 1 chr21_random.fa 1677674 F .. >CMLIVERKIDNEY_7:1:1:100:952 GCCTCTTGGTTCATCACAACTGCAGCAACTGA U1 0 1 0 chr16.fa 20269487 R .. 6G >CMLIVERKIDNEY_7:1:1:72:744 GTTGTTTTCTATTAGACTATGGTGAGCTCAGG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:106:174 CATCACCCTCCTTAACCTCTACTTCTACCTAC U0 1 1 0 chrM.fa 5322 F .. >CMLIVERKIDNEY_7:1:1:110:581 TCGATTCCTTCCTTTTTTGTCTAGATTTTATG R0 3 0 0 >CMLIVERKIDNEY_7:1:1:121:457 CTTCATTTGCATAGGAGTATAACTTTGTAACT R0 11 33 31 >CMLIVERKIDNEY_7:1:1:73:245 GTGACTTTTATTTTTTAACCAAGAATAATCTA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:106:42 AGGGAGCCGGGGAGGCCGCGGTTCCGGGTGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:611 CGCGTACTTCGTTGTAGCTCACTTCCACTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:62:806 GAAAAACGAGCTTTGCATCTTCAGGCCAGTAA U0 1 0 0 chr7.fa 29646071 R .. >CMLIVERKIDNEY_7:1:1:73:183 GTGGCTGGGTCCTGGCCCGCAGCCCACCCCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:118 CCCGGCTTGAGCCGCCCACTTCAGGCTCTTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:65:596 GGAATGAGAAGCGAAAGAAAGAAAGAACACGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:60:664 GGGTTTTTTCGGTAGTGGGGGTTGAAATTGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:84:493 GGGTTCGATTCCTTCCTTTTTTGTCTAGATTT R0 3 0 0 >CMLIVERKIDNEY_7:1:1:123:321 CCTTTGACGCGTCCTGGTTTCTTACCCTCCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:85:260 CTTTTTCAGGTTAGTACGCGTTCTTCTGTCAG U1 0 1 0 chr18.fa 12020678 F .. 19T >CMLIVERKIDNEY_7:1:1:77:494 GGCCAGTACTTCTCATTTGTATTCTGCAAAAA U0 1 0 0 chr11.fa 117850740 R .. >CMLIVERKIDNEY_7:1:1:124:449 ATTTATTCTAGGACGCTGGGCATGAAATTGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:787 GGCGAGTCAGCTAAATACTTTGACGCCGGTGG R0 2 2 0 >CMLIVERKIDNEY_7:1:1:116:96 GAACTCTTTGGACACTAGGATTAAAACTGTCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:421 CAGGGCACATTCACTCCCTGGCGCAGTCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:93:732 GTAAAGACTCAAAATAAAAACCTAGACCATTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:89:86 GTGGCTGTTGTTGTTTTGTTTTTATAGATTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:905 GAAGCAGGCCGGATGTCAGCGGGGTGCGTTGG U2 0 0 1 chrM.fa 4827 R .. 5G 13T >CMLIVERKIDNEY_7:1:1:115:110 AAGATTGAGAGAGTGCGGAGCAGGCAGTTGAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:776:651 GGGGGGTGTTCAGTTATCTTTTTGGGGTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:162:481 GCGTCATATGCTTATTTCAATCTACCACTATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:69:519 GTCATCTTGAACTATCTCTTAAAAGTTCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:444 GTCACATCCCCGACGCTCCGGCCCGTGACCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:723 TTAATTGTCAGTTCAGTGTTTTAATCTGACGC U1 0 1 0 chrM.fa 2345 R .. 10C >CMLIVERKIDNEY_7:1:1:217:543 GGAAGAGATAGGATGAGGAAAAATGTGTATAA U0 1 0 0 chr21.fa 41513196 F .. >CMLIVERKIDNEY_7:1:1:65:545 GTCGTCTTAGCGAGTCAGTGAGCACCTCTAAG U0 1 0 0 chr5.fa 175706486 F .. >CMLIVERKIDNEY_7:1:1:122:511 GTCATCAACAACCGCCTACTCACCACCCACCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:72:927 GCTAGGATGATGATTAATAAGAGGGATGACAT U0 1 0 0 chrM.fa 10324 R .. >CMLIVERKIDNEY_7:1:1:113:622 AAAGTGTAGCCTTGGGACTGGATTTTTGCTTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:97:940 TTTCAATCGATGGGAGCGGGGTAGCTGGTTTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:27 GTTTGCATGAGGATGCCTGGGCCTTCGCGGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:94:445 GACAACATCCCTGGGACCCTGGAAACCAAATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:99:413 AAGCGGTTTGGTTTAGACGTCCGGGTTTTACA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:152:500 GTGGCCTTGGTATGTGCTTTCTCTTGTTACAT R1 0 2 0 >CMLIVERKIDNEY_7:1:1:122:279 CTGTGGAGGTAGGAGATGGGGTAGGGGGCGGG U2 0 0 1 chr22.fa 40632456 R .. 1T 4T >CMLIVERKIDNEY_7:1:1:122:625 CTGAACAGTTCCTTTTTCAGAGACATAGATAC R0 8 3 3 >CMLIVERKIDNEY_7:1:1:52:661 GCTTTGCTCTATAACTGTCGACTTGGGCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:362 ATTTCTCTTCCCCGAGGAAAGGGTATCCGCCT R0 4 5 2 >CMLIVERKIDNEY_7:1:1:123:520 CAGACTACCACACCTCACAAAAATGGTCAGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:81:599 GGGAAGGTGGCTCGGGGGAGTTGAAAAGAACT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:540 GGGGGATTAGCGCTGTGGGTGTCAGCAGGCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:665 ATTTAGTCAGTGAATACGGAGTGCCTGGGCCC U2 0 0 1 chr11.fa 8783965 R .. 1T 9A >CMLIVERKIDNEY_7:1:1:89:596 CTACTACTCACTCTCACTGCCCAAGAACTATC U0 1 0 1 chrM.fa 11289 F .. >CMLIVERKIDNEY_7:1:1:81:425 AAATAAATGAATAGGCCAAGAAGATCTACCAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:122 CTGTGTTCAGACCGGCGTAATCCAGGTCGGTT U2 0 0 1 chrM.fa 3068 F .. 4A 16A >CMLIVERKIDNEY_7:1:1:38:596 GTTTTCATCTTCGGTTTACAAGACTGGTGTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:882 ATCTGCTTCAGAGGAAAATGCACACTATTCGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:130 GCCAAAGCCTCCGATTATGATGGGTATTACTA R0 3 1 1 >CMLIVERKIDNEY_7:1:1:80:502 GCAAATAACAGCCACCAAGGAAATACAGGTGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:904 GGCTGGGACTGAGGCGATCCTGCGATCCCCTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:961 TTTGAAGTTCTTGTCAAGTCACAGTGAGAAGT U0 1 0 0 chr16.fa 11701351 R .. >CMLIVERKIDNEY_7:1:1:92:811 TACTAATCTCCCTACAAATCTCCTTAATTATA U0 1 1 1 chrM.fa 11053 F .. >CMLIVERKIDNEY_7:1:1:73:648 GTTGGGTTGACAGTGAGGGTAATAATGACTTG U0 1 0 1 chrM.fa 2402 R .. >CMLIVERKIDNEY_7:1:1:93:10 GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN QC >CMLIVERKIDNEY_7:1:1:81:927 TGTAACTTTAAGGCAGGAAAGACAAATTTTAT U0 1 0 0 chr11.fa 65027835 F .. >CMLIVERKIDNEY_7:1:1:115:462 ATTGGCTGTACACGCGATAATCTATCTTTCAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:488 CGGGGAGAGGCTTACTAGCAGCGTGCAAACGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:498 GCGGCACTCCGCACGCCATGCCGCTTTACCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:387 GATTTTTTTACCGATGGCACACACTTCAGGGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:788 TAGATGGAGACATACAGAAATAGTCAAACCAC U0 1 0 0 chrM.fa 9946 R .. >CMLIVERKIDNEY_7:1:1:100:115 GTGGCTGTCTACACGCCCAGCATTGGGCAGCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:836:667 GTTTGTATTATGTAATCAAAATAAGGAGCTTG U0 1 0 0 chr14.fa 30178778 F .. >CMLIVERKIDNEY_7:1:1:408:176 AGGCTCAGAAAAATCCTGCGAAGAAAAAAACT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:118:447 ACGAAATAGTGCACCGCATGTTCATTGCTATG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:91:465 GCCGGCGTAAAGAGTGTTTTAGATCACCCCCT U0 1 0 0 chrM.fa 932 F .. >CMLIVERKIDNEY_7:1:1:60:677 GGCCGACTCAGGTAAAAAATGAGTGCGTGCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:562 GCGGCGCCGCCGCATTGGTTTTTTTCTCCTTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:567 CCTCCTGCTAACTCCTAGCTGACTCAGCATAG U0 1 0 0 chr11.fa 33687265 R .. >CMLIVERKIDNEY_7:1:1:114:152 CTATTTACCATATCATGTACCCGCAGCCACCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:791 TTTCTGTTCTTGACCTCGTCCTCTTGCTGTCA U0 1 0 0 chr3.fa 65409523 F .. >CMLIVERKIDNEY_7:1:1:122:35 CGTTTCTGTCTCTCTCACTTTGTCTTTTCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:52:612 GGTCATTCCTGGCTGTTTACTGACCAGGGGCA U1 0 1 0 chr10.fa 6340817 R .. 2T >CMLIVERKIDNEY_7:1:1:87:437 GTTTAGTAATGAGGTTTGAGGGGCTTTCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:97:947 TAAAAGTATAAAGTTCACAATATTCTATGTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:91:314 ACCTCGCCATGGCCATACACTTATATGCTGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:203:882 AAAAGAACCATTTGGATACATAGGCATGGTCT R1 0 2 2 >CMLIVERKIDNEY_7:1:1:77:396 GCTTTGTGATGAGTGCAGGGATTTCTACTTTT U0 1 0 0 chr6.fa 160558371 F .. >CMLIVERKIDNEY_7:1:1:123:801 AAACATACCGGCTGGGCAAAAAGGCCTTCGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:658 GTCGTCATCTCCTCCTGTACAGTTGGCCTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:279:788 GGAATATTGAAGTGGAAATGATGAGCTGAGAT R2 0 0 15 >CMLIVERKIDNEY_7:1:1:75:515 AATTACCCCCATACTCCTTACACTATTCCTCA R0 2 0 1 >CMLIVERKIDNEY_7:1:1:51:507 GAGTTGGGGGGGGCACGGCCATAGGGGCATTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:701 GGGGTGTTAGTGATCTTTGCTTTTGTTGTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:85:590 ATTAAGGTGAAGATAATTACTACTCCCCCGCG U1 0 1 0 chr16.fa 82661071 R .. 14G >CMLIVERKIDNEY_7:1:1:96:374 CAGCAACATGCTTTAACCCCATTGTATGTTTG U0 1 0 1 chr1.fa 25042349 F .. >CMLIVERKIDNEY_7:1:1:94:424 GCTCACTGCAACCTCCACCTCCCAGGTTCAAG R0 255 255 255 >CMLIVERKIDNEY_7:1:1:88:918 GGGGAAGCTTGTTGTTATTTTGGATTCGAATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:85:410 TTCGATAATAACTAGTATGGGGACAAGCCGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:514 AGCATGTCCAGTATGAGTGGTGGATGGGGAAT U0 1 1 0 chr5.fa 178974452 R .. >CMLIVERKIDNEY_7:1:1:100:897 GTTTCACCATGTTAGCCAGGATGGTCTCGAGA R1 0 127 255 >CMLIVERKIDNEY_7:1:1:68:439 GTTTGGTGAATTCTGCTTCACAATGATAGGAA U1 0 1 1 chr1.fa 91625409 F .. 2C >CMLIVERKIDNEY_7:1:1:93:573 CTTTGATGAAAAATCTAAGGAGGGTAAAGCCA U0 1 0 0 chr8.fa 91706305 F .. >CMLIVERKIDNEY_7:1:1:90:384 GGACTCTTTCGTTGGTGTACAGCTTTATGAGT U1 0 1 0 chr17.fa 23551581 R .. 32A >CMLIVERKIDNEY_7:1:1:80:617 GGGCCCAAGATGCGTGACAAGGTGAAGAGAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:945 TAAAAAAAAAAACTTAAAAAAAAACATTAATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:818 CACAGTTCTAATTCTACTGACTATCCTAGAAA R1 0 2 0 >CMLIVERKIDNEY_7:1:1:106:303 CTTGGTTACAATTACTCGTTATTAACTCCAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:78:627 GGTGAAGATGGTTAGGTATACGGAGGGGCCTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:242 GAATAGGATTGCGCTGTTATCCAAAGGGTAAC R2 0 0 4 >CMLIVERKIDNEY_7:1:1:105:66 CCGCAGTCGTGCGCTGCGGTAAGCCTCTGTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:454 CAGGAATTCAGGTCTCTGCTATACATATCTGG U0 1 0 0 chr12.fa 121729590 F .. >CMLIVERKIDNEY_7:1:1:796:641 GAAGTGTTTGGGCCTAATATGGGCGTTGAATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:306 CAGGCTGTTCACAGTTAACAGGAGTTGCACTT U0 1 0 0 chr3.fa 69179321 F .. >CMLIVERKIDNEY_7:1:1:94:139 CTGGGGGCCCAGAGGAAGTAACTGATGGCCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:66:445 TGGGCTAGAACCGGCCTCACAGCCGCCTCCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:127 GGACTGCTCTTGCGTCCTCTCTTTCTCGTCAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:232:878 GGCTGCATGAGCTCTCTGTCATATTTCTGTAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:762:686 GTTCCTCTTTGGCTTGCATCTCATTGCTAAGA U0 1 0 0 chr2.fa 11274683 F .. >CMLIVERKIDNEY_7:1:1:116:453 TGATGGATAAGATTGAGAGAGTGAGGAGAAGG U0 1 1 0 chrM.fa 4926 R .. >CMLIVERKIDNEY_7:1:1:96:936 TAGCGATGAGAGTAATAGATAGGGCTCAGGCG U0 1 1 3 chrM.fa 13552 R .. >CMLIVERKIDNEY_7:1:1:88:530 CTGGTAATCTATCCACTAGGATGAATGCAAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:66:839 GAAAGGATAAGGATGCTAAATTGCGTCTGATT R2 0 0 2 >CMLIVERKIDNEY_7:1:1:86:219 TAAAAACTAAGTTATCCAGTTAAGACTTAAAA U0 1 0 0 chr17.fa 24607565 R .. >CMLIVERKIDNEY_7:1:1:88:748 GTTTGATTTTGTTTTTTGTTTTGTTGTGTGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:87:842 TTCCACCAATCACATGCCTATCATATAGTAAA R2 0 0 2 >CMLIVERKIDNEY_7:1:1:85:633 AAGAGGCGGAGGGGGAGCTCAGTGATGGTGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:103:608 ACGCAACTGAAAAGACAAAAAATCTCTCTCGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:151:415 GGAGATCCTGGCGGCCACCGCCTCCCAATGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:751 GCACATGATTGGATAAGAGGGAGCGGGCGATG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:277:763 GGTTTAGAGCCGAATCCGATTGAAGAGTCATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:69:854 GAAAACCTCATTTGATATTGACACAATCATTA R2 0 0 2 >CMLIVERKIDNEY_7:1:1:44:538 GTTTTTTAAAAATGTTCGTATATTTTTTAGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:217 GTGTAGGATTTCATCGCAAGAAACCTACTCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:35 GTTGGGTTGACAGTGCGGGTAATAATGCCTTG U2 0 0 1 chrM.fa 2402 R .. 5T 17T >CMLIVERKIDNEY_7:1:1:365:762 GAAGGTTTATGGATGCGGTTGATTGGGTGAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:72:576 GGTTAAGGGTCACAGTTGGGGCAGGTTTCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:150:377 GTTAAAATAGCCACTTTAAAATCTTTGTTAAT U0 1 0 0 chr3.fa 60778920 F .. >CMLIVERKIDNEY_7:1:1:101:286 ATGAGACGTGGCGATCCCTCTGGCCTTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:88 GCTATCTTCATCACTTCTATCATTACCTAAAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:9 GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN QC >CMLIVERKIDNEY_7:1:1:109:869 TTGGTACTCAGGGCTGATGTCGTCAAGTGAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:787 GCTCTGCACACCTCCTTTCTACCCCCAAAGTA U0 1 0 0 chr9.fa 80112847 R .. >CMLIVERKIDNEY_7:1:1:102:751 GTCATCCCTGATTGATGCTATCTGAATATAGT U1 0 1 0 chr2.fa 44401490 R .. 4T >CMLIVERKIDNEY_7:1:1:76:217 GCTTAATTGGTGGCTGCGTTTAGGCCTTCCAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:799:656 GAGAGATTGGCAGTATATAAGTGGGTTGAAGA U0 1 0 0 chr2.fa 160105166 F .. >CMLIVERKIDNEY_7:1:1:337:423 ATCCATACATTGGGACAGACCTAGTTCAATGA U2 0 0 1 chrM.fa 15205 F .. 1T 2C >CMLIVERKIDNEY_7:1:1:111:368 GGGGGGTTAATGGATGGTCTCGCTAGAGTGGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:39:589 GACAGAAATCAGGTATTGGCAGGTTTTTCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:133:580 ACCACCCCAGAAGTGGATGAGACCGAACATCT U0 1 0 0 chr1.fa 36565199 F .. >CMLIVERKIDNEY_7:1:1:116:659 GTCGGTTGTTGATGAGATATTTGGAGGGTGGG R2 0 0 3 >CMLIVERKIDNEY_7:1:1:428:884 GTTACATCGCGTCATCATTGGTATATGGTTAG U1 0 1 1 chr1.fa 559772 R .. 21G >CMLIVERKIDNEY_7:1:1:107:622 CTTAACCTCTACTTCTACCTACGCCTAATCTA U0 1 1 0 chrM.fa 5332 F .. >CMLIVERKIDNEY_7:1:1:85:358 AATCTCATCCCCCAAACAGGGTCTCAATCCAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:81:889 GAGCAAACCACAGTTTCATGCCCATCGTCCTA U0 1 1 0 chrM.fa 8188 F .. >CMLIVERKIDNEY_7:1:1:121:915 GGCATCTCTAGGCTAATTGCGCTTTCAAGAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:87:140 GTAGCTTACTGGGTGTGCGCCGGTTGAGGTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:72:172 GTCTTTCGCCCCTATACCCAGGTCGGACGACC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:595 TGAGCCCAGAGTCTTCTACCAGCTCTCATCTT U0 1 0 0 chr6.fa 49529348 F .. >CMLIVERKIDNEY_7:1:1:454:173 ATAACACTGGACCAGCTGTAAAAGTAAACAGT U0 1 0 0 chr10.fa 13220221 F .. >CMLIVERKIDNEY_7:1:1:120:154 TTGTCACCTGGCGCAATAGATATAGGACACCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:244 GCATCAGTGAGTGGAAGCGGCGGTCCGCACCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:834 TTTGTTTTTACTTGTTGTTTACTTGAATTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:89:547 AACTTCCAGGAATTGACTTATTTAATTAAGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:83:923 TTTGGCATCCTTGGGGGTTTATGAACTAATCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:407 ATGAACACAGACAGTTAACTCTTTCATAACTG U0 1 0 0 chr5.fa 74703763 R .. >CMLIVERKIDNEY_7:1:1:115:68 ATTTCCTGGCCATTCTAACTCGGCGGCGCCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:62:240 GGTGATATAAAATCTAGACTATGTTGGTTCAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:188 GGGGTTCTCACTCTGGAGGTCCACGGAGAGCA U1 0 1 0 chr11.fa 64655563 F .. 29T >CMLIVERKIDNEY_7:1:1:124:745 AAACAAGGCTCATCTCCACCACCTCCACAGTC U0 1 0 0 chr5.fa 10486752 F .. >CMLIVERKIDNEY_7:1:1:101:160 CATGTATTTGTCAAGAAACTTCTTATCTTCAT U0 1 0 0 chr11.fa 113821923 R .. >CMLIVERKIDNEY_7:1:1:97:768 GGCCAGGGCCCTCCTAATTCGGGGGCAGGGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:130 AAGACACTCAGGATCGCACTGCCAGATTACTT U2 0 0 1 chr10.fa 120822498 R .. 11T 16A >CMLIVERKIDNEY_7:1:1:852:650 GCTTGTTTCAGGTGCGTGTTAGTGGGAGGGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:60:445 GGATTATACCGTATCGAAGGCCTTTTTGGATA U2 0 0 1 chrM.fa 9429 R .. 2G 25G >CMLIVERKIDNEY_7:1:1:121:846 TCTCAAATGAGTTTTCATTTTTCTTGTCTTTT U0 1 0 0 chr12.fa 44628527 F .. >CMLIVERKIDNEY_7:1:1:83:748 ATTGCAGCCCTAGTAGCACTCCTCCTCATATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:779 ATCGTCTACATTCATGCTGGAATGGAAACGAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:951 TCTCAGGGTTTGTTATAATTTTTTATTTTTAT U0 1 1 0 chrM.fa 8490 R .. >CMLIVERKIDNEY_7:1:1:95:824 GCAGGATCCTGCGACTCAACGTGCAAGATCGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:84:204 CCTCATTCTTACCTGAATCGCCGGACATACAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:115:592 GTCTGTGTCCTGGACCTTTTAGAATTTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:104:701 AGAAGAACTAATGTTAGTATAAGTAACATGAA R0 3 1 3 >CMLIVERKIDNEY_7:1:1:48:798 GTTGTTTGGTGTGTGTGGGTGTAATGCTACGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:89 GCTTAGCATCGAGTTCCTATACATCCAATGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:813:705 GGAGGAAGTGGTTGTGAGGGGGAGTGCTGTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:74:959 GTTGATTTTATGTGATTTTTTTGCGTCGTAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:823 ACAAGCCCTAGTGATACTCATAGCACCTGTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:121 TAGCATCATCCCTCTACTATTTTTTAACCAAC U2 0 0 1 chrM.fa 10862 F .. 13C 32A >CMLIVERKIDNEY_7:1:1:123:43 AATAAGGCCTACTTCACAAAGCGCCTTCCCCC U0 1 0 0 chrM.fa 3142 F .. >CMLIVERKIDNEY_7:1:1:66:173 GGGTTTTCTTCCTCCTTAACCAAGTTGAGAAC U0 1 0 0 chrX.fa 19287739 R .. >CMLIVERKIDNEY_7:1:1:72:946 TAAAAACATACTTTTAGAAGAAAAAAGATAAA U0 1 0 0 chr11.fa 65023774 F .. >CMLIVERKIDNEY_7:1:1:124:410 ACGCCCTCCTACTCATCTTCCTTATCTGCTTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:113 GAAAGACAAACTCGAATTATGGATTCAGCTCA U0 1 0 0 chr6.fa 45037506 R .. >CMLIVERKIDNEY_7:1:1:105:583 CCATCTAAGGCTAAATACCGGCACGAGACCGA U1 0 1 0 chr11.fa 84872719 F .. 5T >CMLIVERKIDNEY_7:1:1:96:179 TCTATTCCTACTGTAAATATATGGTGTGCTCA R0 2 5 1 >CMLIVERKIDNEY_7:1:1:105:194 GCCCCTACTCCACCCCCTGCCCTTTCTAACCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:962 GGAGAAGGGGCGGAGCGGCAGTGGGCGGTTGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:788:646 GGGTTAGCGATGGAGGTAGGATTGGTGCTGTG U0 1 0 0 chrM.fa 14361 R .. >CMLIVERKIDNEY_7:1:1:67:799 GCCAAGCGTTCATAGCGAAGTCGCTTTTTGAT U1 0 1 0 chr1.fa 91625457 R .. 14G >CMLIVERKIDNEY_7:1:1:90:183 CGGGTTCACACTTGCCACCTGCAGGCATCGCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:541 TTACAGTAGGAATAGACGTAGACACACGAGCA R0 2 1 2 >CMLIVERKIDNEY_7:1:1:73:92 TATGATTCCCTGGATTATGCAAAGACAAATAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:294:703 GAGGAGGTTAGTTGTGGCAATAAAAATGATTA R0 2 0 1 >CMLIVERKIDNEY_7:1:1:115:194 GGGTGGGTAGCCGACGTCGCCGCCGACCCCGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:841 TGGGAGTTTGAGACCATCCTGACCAACATGGA R0 11 255 255 >CMLIVERKIDNEY_7:1:1:155:680 AAAAATTAGCCGGGCGAGGTCGCAGGAGCATG R2 0 0 2 >CMLIVERKIDNEY_7:1:1:117:399 AGCTTAGCATATTTTGAGTTGCTATGCTACAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:323 ATGGCTGCTACGTCATCAGCCATTTCTCACCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:255:764 GGAGTCATAAGTGGAGTCCGTAAAGAGGTATC U0 1 0 0 chrM.fa 11378 R .. >CMLIVERKIDNEY_7:1:1:82:909 GAAGTTTGTCGCTGATGGCATCTTCAAAGCTG R2 0 0 3 >CMLIVERKIDNEY_7:1:1:202:405 GTGCCCACTTCCTATAAAACATATCAAGCCGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:700:423 AAGACTTCCAACAGCCATTGCTGCTGACCAGA U0 1 0 0 chr17.fa 34659015 R .. >CMLIVERKIDNEY_7:1:1:192:890 GTTCTGTGATTTAATCTGACGCAGGTTTATTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:237:899 GTAGAATTAGAATTGTGAAGATGATAAGTGTA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:122:911 CCAACAATGACTAATCAAACTAACCTCAAAAC U0 1 2 0 chrM.fa 8662 F .. >CMLIVERKIDNEY_7:1:1:60:452 GGGGGCTCGAATGGTTCGTGAACTCTTTGTAA U1 0 1 0 chr7.fa 102793758 F .. 30A >CMLIVERKIDNEY_7:1:1:519:403 AACCAGACTCAGCGAGAAGTCTTTTTTGAGAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:532 CACCTGAGCTCACCATAGTCTAATAGAAAACA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:99:579 CCGCCTTTTCATCAATCGCCCACATCACTCGA U0 1 0 0 chrM.fa 14929 F .. >CMLIVERKIDNEY_7:1:1:115:402 GTCTTTTGCCCTTAACAGCGAAGCAACTTCTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:855 AAGAATGATCATCTTCCCAGGGTGTTCTCTTA U0 1 1 0 chr2.fa 8741416 F .. >CMLIVERKIDNEY_7:1:1:54:669 GTTGGGTCTTTGAGTGACAATGAGGTTGACGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:649:257 AGCCTACAGTGACTATTCACACTGTAACAAGA U0 1 0 0 chr1.fa 10133197 R .. >CMLIVERKIDNEY_7:1:1:73:211 GTTGATTTGGTTAAAAAATAGTAGAGGGATGA U1 0 1 1 chrM.fa 10867 R .. 8C >CMLIVERKIDNEY_7:1:1:107:88 TAGCATGGCTTTTGCAAGAGTCTTCTGTACTA U1 0 1 2 chr17.fa 20326034 F .. 12G >CMLIVERKIDNEY_7:1:1:102:188 AACCATTTACCCCAATAAAGTATAGGCGATAG R1 0 2 3 >CMLIVERKIDNEY_7:1:1:121:401 CAGGCTGGGACCAGCCCCAACTTTGCCTTGGT U0 1 0 0 chr8.fa 143815005 R .. >CMLIVERKIDNEY_7:1:1:254:820 GCCTACTGTAAATATATGGTGTGCTCACACGA R1 0 2 3 >CMLIVERKIDNEY_7:1:1:320:837 GGGGTCTTAGCTTTGGTTCTCCTTGCAAAGTT R1 0 3 1 >CMLIVERKIDNEY_7:1:1:358:642 GTTGGGGATAGGGGTAGGGGGGGTATGTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:88:430 GGAGATGCAGAAAGACAAGCATGCGAGCAGCT U0 1 0 0 chr1.fa 182164181 R .. >CMLIVERKIDNEY_7:1:1:89:111 TGATAGCTCTTTCTCGATTCCGTGGGTGGTGG U0 1 0 3 chr12.fa 20595644 F .. >CMLIVERKIDNEY_7:1:1:105:717 TGAAAATGAGGATGAGGAAGATTCCTATTGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:801:419 AAAAAAAACAGCATGTGCAAACCTGACAGATG U0 1 0 0 chr21.fa 46433697 F .. >CMLIVERKIDNEY_7:1:1:120:791 CATGGGGTTGGCTTGAAACCAGCTTTGGGGGG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:183:589 ACTTTCCAAAAAAACACCTAATTTGAATCACC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:835 CTTCTTTTTACTGAGGGGTTACTTGAATGTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:299:842 GTACAATGAGGAGTAGGAGGTTGGCCATGGGT U0 1 0 0 chrM.fa 3310 R .. >CMLIVERKIDNEY_7:1:1:68:617 ACGAGAACTTTGAAGGCCGAAGTGGAGAAGGG R1 0 3 0 >CMLIVERKIDNEY_7:1:1:103:853 GATTGTTGTTTGGAAGGGGGATGCGGGGGAAA U0 1 0 0 chrM.fa 13752 R .. >CMLIVERKIDNEY_7:1:1:76:147 GGTGTTGAGCTTGAACGCTTTCTTAATTGGTG R0 4 4 5 >CMLIVERKIDNEY_7:1:1:120:591 CTACATCGCAAGAAATATGTGAGGGTTATTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:67:517 GGGAATGCTTTCCAGAGGCTACCTAGCAAGCA U0 1 0 0 chr1.fa 202659542 F .. >CMLIVERKIDNEY_7:1:1:718:654 GGGAGGGGGGCCCTGCTAAGGGAGGGCAGGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:115:493 TGGCACTTTCTCTATGTCCTCTAGAATTAAGA U1 0 1 0 chr14.fa 34314957 F .. 1A >CMLIVERKIDNEY_7:1:1:71:547 TTGATTAGTCATTGTTGGGTGGTGATTAGTCG U0 1 0 2 chrM.fa 8648 R .. >CMLIVERKIDNEY_7:1:1:81:391 GTAAGAATGGTTGGTGTCAGCAGGGACGGGGA U1 0 1 0 chr20.fa 17891399 R .. 1G >CMLIVERKIDNEY_7:1:1:99:391 CAGGGGGTAGGGGCATGCGATGTTGGTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:222:886 GGCAGGTATTAGGGATAATATTCATTTAGCCT R0 16 9 4 >CMLIVERKIDNEY_7:1:1:42:602 GTGAGCTCAGGTGATTGTTACTCCTGCTGCTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:797 GACGGAAAGCGGGGCCTGTGGGGACTTGTGTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:84:475 AGCCGGAAGCCTATTCGCAGGGTTTCTCATTA U1 0 1 0 chrM.fa 13711 F .. 22A >CMLIVERKIDNEY_7:1:1:83:917 GCTAAATCCACCTTCGACCCTTAAGTTTCATA U0 1 2 1 chrM.fa 1400 R .. >CMLIVERKIDNEY_7:1:1:175:437 ATTTAACACCCACCCACCATTTCTCCCTTTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:255:781 GATTGTGTGAGTGCATGTGTTTTTTTTTTTTT U1 0 1 0 chr3.fa 129821553 R .. 32A >CMLIVERKIDNEY_7:1:1:123:736 AGATAACGTTGTAGATGTGGAAGTTTCCATAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:286:823 GAGATGAAACATGAAAGGTAAGGTCTGACATA U0 1 0 0 chr13.fa 32133657 F .. >CMLIVERKIDNEY_7:1:1:99:894 GCCGAATAAAGGGGCCCTGTGGGTTTACTGTT U1 0 1 0 chr1.fa 2486775 F .. 27C >CMLIVERKIDNEY_7:1:1:757:546 AAAAAAAAAAAAAAAAATTCCCCCGGAATTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:227:885 GAGTTTTAAGCTGTGGCTCGTAGTGTTTTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:736:450 ACACGATAAACCCTAGGAAGCCAATTGATATC R0 2 1 0 >CMLIVERKIDNEY_7:1:1:84:216 GTTCTTCAATCAGCCACATAGCCCTCGTAGTA R2 0 0 2 >CMLIVERKIDNEY_7:1:1:230:488 GAAAAATTGAGCCTTGGGACGTGCCCATTTTT U0 1 0 1 chr1.fa 167367634 F .. >CMLIVERKIDNEY_7:1:1:229:454 GCATCAGCGGGGTATCTGTGTCCTACATCAAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:16 CAATAGGNNNNNNGTCGNNNNNNGTCACNNNA QC >CMLIVERKIDNEY_7:1:1:92:630 TGGAAATACTGCTGTTATCGTTTAGCCAACAA U0 1 0 0 chr7.fa 30164850 F .. >CMLIVERKIDNEY_7:1:1:108:53 GGTGGAGTAGATTAGGCGTAGGTAGAAGTAGA U0 1 1 0 chrM.fa 5339 R .. >CMLIVERKIDNEY_7:1:1:784:642 GAAATGCTCAGCCGAGTAAAACCTTTGCGTCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:67:561 GTTTATCGTGTGAGCACACCATATATTTAAAG R1 0 2 3 >CMLIVERKIDNEY_7:1:1:116:785 CTAGAAATCGATGTCGCCTTAATCGAGATCTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:957:807 ACTGGATGAACTGAGGATCAGCCGGAAGAGAA U0 1 0 0 chr22.fa 37399151 F .. >CMLIVERKIDNEY_7:1:1:78:809 GGGGCTTTAAGGAGTTGGAGCTCTTGGGAGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:73:732 AGTCCGGACTGGCAGTTGGGCTGGGGGTGTCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:28 CCGCTCACTAAGCTGGGGGTGGCCGACTGCCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:81:750 TTACACTATTCCTCCTCACCCAACTAAAAATA R1 0 2 0 >CMLIVERKIDNEY_7:1:1:120:246 GCTACATCGTATACTCCACCCCTTACGAGTGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:183:222 AGAAGCTCCCCTCAAGTTTTTCCTCACCCAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:824:640 GGGCTGGAAACCGGGGGGGAAGGAGGGGTGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:234 CGTGCTCTTGGCTCACTGCAACCTCAGGAGCA U0 1 0 0 chr6.fa 18374777 F .. >CMLIVERKIDNEY_7:1:1:44:472 GCCAGTCATACCTTTCTAGAGGACGATGAAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:984 TACCACTTGCTCATGTCTGTTCAAGAGAGTTT U1 0 1 0 chrX.fa 120010609 F .. 13C >CMLIVERKIDNEY_7:1:1:65:387 GGTGCGACTTGTTTTTATGCCAGAAGAAATGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:169:606 GGAGCATCCGTACTATACTTCACAACAATCCT U1 0 1 0 chrM.fa 15804 F .. 2T >CMLIVERKIDNEY_7:1:1:90:482 GAAAAATCCACCCCTTACGAGTGAGGCAAAGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:997 GGCCTACTCAGGTAAAAAATCAGTGCGAGCTT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:116:457 TCCGAACTAGTCTCAGGCTTCAACATCGAATA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:113:119 GCTGAAGCAGATAGTGAGGAGAGTATAGCCAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:88:504 GCTCCCTGTGGTTCCTGCCATCGACGCCTCAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:770:478 GTTCAGTCTAATCCTTTTTGTAGTCACTCATA U1 0 1 0 chrM.fa 10369 R .. 31G >CMLIVERKIDNEY_7:1:1:115:757 GGATTTCATCGATGGGCGTGACCGAGTGGATT U0 1 0 0 chr4.fa 5509446 R .. >CMLIVERKIDNEY_7:1:1:723:454 ATGGCAAAGTGCTTCCCCTCATGGCCCCACTC U1 0 1 0 chr7.fa 66461545 F .. 27T >CMLIVERKIDNEY_7:1:1:75:669 GCCGCAACCACTTGCTAGTGATACACTGTATC U0 1 0 0 chr8.fa 91141537 R .. >CMLIVERKIDNEY_7:1:1:71:785 GGGGAGAATGCGTGTTAATGTAGTAAAATAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:220:571 ATACTTCTGAACACAAGACACACCAAACACAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:557 CCTCAAACTCCTGAGTAGCTCGCATTAAAGCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:230 GTGAATCTTCTGGGTGTTATGGCCTTCAAATG U0 1 0 0 chr17.fa 25099472 R .. >CMLIVERKIDNEY_7:1:1:91:385 GCAGTTTGTCGTGGAGTTAGAGAATTAGTACA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:156 GCTTGCTAGAAGTCATCAAAAAGCTATTAGTG U0 1 1 1 chrM.fa 11818 R .. >CMLIVERKIDNEY_7:1:1:237:488 GTACACAACACTAGCAAGCATGTAATATTCAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:127:907 GGAGCTTCAATTTTGTCTCTGTGCATACAAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:422:816 GTAATAAGCCGGGCTTGAATTGTTTGGTTTCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:370 ACACGACACAGTATTGCTCATTGGGTTAGGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:831 TATTATCGAAACCATCAGCCTACTCATTCAAC R0 3 0 0 >CMLIVERKIDNEY_7:1:1:303:819 GGGAGTTTTTGTGGGTGACTGAAATGATCTAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:86 GCTGGGCTTTGGCCTAAAGGTCCTACACCAAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:103:240 CTTTTTAAGTCTGGTTTTGTCTTGTGATAATG U0 1 0 0 chr1.fa 112103657 R .. >CMLIVERKIDNEY_7:1:1:123:637 GGGCGCCTGTAATCCCAGCTACTTGGGAGGCT R0 255 255 255 >CMLIVERKIDNEY_7:1:1:743:406 ACTAGGCCTACTATCCTTCACTCTCACCATAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:255:746 GTTGAAGATTAGTCCGCCGTAGTCGGTGTACT U0 1 1 1 chrM.fa 7912 R .. >CMLIVERKIDNEY_7:1:1:100:996 GAAATTGATATCTTATAATAGTATCCTTAATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:693 TGCCAGGAACCATATCAACAATGGCAGCATCA R0 7 5 4 >CMLIVERKIDNEY_7:1:1:76:617 GTATGTTTGGTGGCATTAAATTGGTTTCTTTA U1 0 1 0 chr8.fa 120326783 F .. 1T >CMLIVERKIDNEY_7:1:1:113:474 CTGAGCCCTTCAGTTTCATAATTGTTTTATCC U0 1 0 0 chr9.fa 2647392 F .. >CMLIVERKIDNEY_7:1:1:90:132 GGAAGAAGTGTGGTTCAGTGGGATGCAAGGAT U0 1 0 0 chr5.fa 179240915 R .. >CMLIVERKIDNEY_7:1:1:116:982 GGTTGAGCTAGGCTTCTACATATTGTATACTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:220 CCTTAACAACCTAAAACCCTCATTCACACGAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:475:902 GTTTAATCAGAGGGCCATTTTTTTTTTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:440:615 ATAAAGTTGAAAAGCTTTTTAAATTTTTAAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:685:498 AAAAAAATTAAAAAACAGTAGATGTTGGTGTG R0 4 10 35 >CMLIVERKIDNEY_7:1:1:115:421 CTTCACCATTTCCGACGGCATCTACGGCTCAA U0 1 0 0 chrM.fa 9762 F .. >CMLIVERKIDNEY_7:1:1:87:103 ATGCCTTGGGGAGTTGCGCCTGCATGATCCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:87:796 TTCGGTTCAGTCTAATCCTTTTTGTAGTCACT U1 0 1 0 chrM.fa 10373 R .. 27G >CMLIVERKIDNEY_7:1:1:50:488 GTGAGACCATCGTAAATGGGAAGGCCAAGATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:991 GTGCAGTTGCCATGGTGATTAGAGAAAGGCCG U0 1 0 0 chr1.fa 63761780 F .. >CMLIVERKIDNEY_7:1:1:494:796 GGTGCAGCCGCTATTAAAGGTTCGTTTGTTCA R0 2 2 0 >CMLIVERKIDNEY_7:1:1:121:774 AAAAAATGTATTTAAAAGAAAATTGAGAGAAA U0 1 0 0 chr11.fa 65023379 F .. >CMLIVERKIDNEY_7:1:1:64:458 GTTTTAAGCAGGAGGTGTCAGAAAAGTTACCA U0 1 1 0 chr1.fa 91625511 R .. >CMLIVERKIDNEY_7:1:1:104:112 GTATTGGAGAAGTATAGAAGATCGAAACATAT U2 0 0 1 chr11.fa 65023971 F .. 23A 28A >CMLIVERKIDNEY_7:1:1:243:517 GTAGTATTTAACCTCTCTGAGCTTTAGGTTCC U0 1 0 0 chr1.fa 116799815 R .. >CMLIVERKIDNEY_7:1:1:238:476 GTTTTGTCAGGGGGTTGTGAATGAGTGTGATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:493 CATTTTTGTCCCTTTGGAAGAAGAAATAGGAC U0 1 0 0 chr21.fa 29637790 F .. >CMLIVERKIDNEY_7:1:1:108:447 GGAGGAACAGGCACGCGCCAAAGAGAGAGAAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:764 AGCTGTTCAATCCTCCAACATGCTCTTTCTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:445:893 GGGGAGTTGGCCTCTATGAGGGTTTGTCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:234 TAATGATGTCGGGGCTGTGGGCTCGGAGGAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:437:778 GGAGAAGAGGAGGTAGTTATTTGATAGTAGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:487:775 GCTTTCTTTGCAAAGCTCCTTGTTCTGCTGCT U2 0 0 1 chr17.fa 44281632 R .. 8C 31A >CMLIVERKIDNEY_7:1:1:101:75 GGGAAAGTTGAAAAGAACTTTGAAGAGCGAGT U1 0 1 0 chr11.fa 84872770 F .. 28A >CMLIVERKIDNEY_7:1:1:218:892 GGGGAGAAGGGTCTGTGGTAAACGTTAAGAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:70:410 GCACAGCGAGTTATCTTTATTTTTAATAAAAC U2 0 0 1 chr10.fa 134029388 R .. 20G 26A >CMLIVERKIDNEY_7:1:1:169:494 GTTTTATATATACACACACAAACACACACACA U0 1 3 36 chr6.fa 154801193 F .. >CMLIVERKIDNEY_7:1:1:62:23 TTACAACTCCGCCTCTCGACTCTACCTCACCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:58:462 GGCCAAGGCAGGCGGATCATAGGGACAGGAGG R2 0 0 2 >CMLIVERKIDNEY_7:1:1:239:554 GTTTTTTTCTTCGCAGGATTTTTCGGAGCCTT R1 0 2 0 >CMLIVERKIDNEY_7:1:1:374:847 GTTAGAAGGTAGATCTTGAGATGATGATGTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:57:405 GCATGAGTAGGTGGCCTGCAGTAATGTTAGCG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:123:838 GCCAACTATCATTCTGAGGGGCCACAGTGCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:174:881 GGAAGTTAAATATGAGCCACTGGGTGTACCAG U0 1 0 0 chr11.fa 65026108 F .. >CMLIVERKIDNEY_7:1:1:104:519 CTTAACAGGGAAGAGAGAGGGTGGGGGAGAAA U0 1 0 0 chr11.fa 65025582 F .. >CMLIVERKIDNEY_7:1:1:119:4 GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN QC >CMLIVERKIDNEY_7:1:1:64:349 ACGTAACGATTCACATGCCAACTAGGATCATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:12 GNNNNTNNNNNNNNNNNNNNNNNNNNNNNNNN QC >CMLIVERKIDNEY_7:1:1:105:429 TTTCTTCCCACAACACTTTCTCGGCCTATCCG R0 2 0 2 >CMLIVERKIDNEY_7:1:1:652:652 GAATTCTGGTAGCCAGTGTTCGGATTTCTCTG U0 1 0 0 chr12.fa 100679059 F .. >CMLIVERKIDNEY_7:1:1:123:824 ACTCACCCTAGCGTTACTTATATGACATGTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:103:775 GCTGGTTATATTCTTTTCCTCGGTTGTGTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:113:957 TTGGTTCTTCTCCAATGTCTCCTTTTGGAGTT R0 8 14 7 >CMLIVERKIDNEY_7:1:1:87:946 GGAAAAGGGCATACAGGACTAGGAAGCAGATA U0 1 1 0 chrM.fa 7685 R .. >CMLIVERKIDNEY_7:1:1:95:449 ATTTTCTAAGAAAGATTGGTATGATGCGAAAT R2 0 0 8 >CMLIVERKIDNEY_7:1:1:117:423 TGTATATATGTTAGGAAATGGAGAGGTATAGA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:73:490 GCCTTCCTGGGGTTTGGAAATAAAACTTCTGG U0 1 0 0 chr1.fa 149235942 R .. >CMLIVERKIDNEY_7:1:1:35:376 GTTGTATTACTTTTTCTCTTCCTTATTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:788:687 GTAAAATGTATGAAGAACATCTGAAAAGAATG U0 1 0 0 chr14.fa 68923516 R .. >CMLIVERKIDNEY_7:1:1:215:876 ATTAAATGGAAGTAATGGAGAAAGGGGAGAGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:131:591 GTCATAAGTGGAGTCCGTAAAGAGGTTTCTTT U1 0 1 0 chrM.fa 11375 R .. 6T >CMLIVERKIDNEY_7:1:1:698:696 GGAAAATGACACGGCAAATAAATTAGACCTAT U0 1 0 2 chr12.fa 68281517 R .. >CMLIVERKIDNEY_7:1:1:85:156 TTCGTTTGTTCAACGATTAAAGTCCTACGTGA U0 1 2 7 chrM.fa 3035 F .. >CMLIVERKIDNEY_7:1:1:244:114 GTAGTAATATAATTGTTGGGACGATTAGTTTT U0 1 1 1 chrM.fa 10766 R .. >CMLIVERKIDNEY_7:1:1:158:572 GTCGCTCAGCGGCATCCAGCTGTTTGAACGCA U2 0 0 1 chr17.fa 39684369 R .. 5G 11G >CMLIVERKIDNEY_7:1:1:79:472 GTGATGCGGGCTTAGCGATGGGCTCTACTCAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:173:271 ATATTATTCCGCAGACCTGAAATCACTTAATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:62:472 GTTATGCCCTTCTCCCATCTCCCGCTCGCCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:152:483 GCTCTTTCTTCCCCTCTTCATAGTCAGCCTGG U1 0 1 0 chr7.fa 101619836 R .. 21T >CMLIVERKIDNEY_7:1:1:233:521 AATTCATTGAGTTTGAAGATGCTCTGGAACAA U0 1 0 0 chr16.fa 1714560 F .. >CMLIVERKIDNEY_7:1:1:84:631 AAAACTAGGAATAGCCCCCTTTCACTTCTGAG R0 7 3 3 >CMLIVERKIDNEY_7:1:1:396:755 GAAGGAGTTGTAGGGAAGGAACAGGGTGAGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:325:752 GTTGGATCATCCCTGTCTTCATCATGCACATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:721 GTTGGCGGGACTGTACGGATGCCCCCTCGCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:335:638 GAGATTAGAACAGGAGAGACTAGCATTGGAAG U0 1 0 0 chr15.fa 46364605 F .. >CMLIVERKIDNEY_7:1:1:765:629 GGAATTTGAAGTAGATAGAAACCGACCTGGAT U0 1 0 0 chrM.fa 3087 R .. >CMLIVERKIDNEY_7:1:1:430:919 GCATAAGTAGTCTTACAACTTAGGAAGATCAT U0 1 0 0 chr17.fa 24178972 F .. >CMLIVERKIDNEY_7:1:1:123:13 GNNNNTNNNNNNNNAGNNNNNNNNNCTTNNNN QC >CMLIVERKIDNEY_7:1:1:115:340 CCCACACCGAGTGACTTCATGTAGTCATCGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:186:623 GGTTTCTGCTTTGTCTCATACCTGGCCCACTT U1 0 1 0 chr1.fa 200237171 F .. 15T >CMLIVERKIDNEY_7:1:1:123:844 CTCGGCGTGGTGGCAAGCGGCCGGGACGGCGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:238 CTAAGATAGAGGAGACACCTGCTAGGTGTAAG U0 1 1 0 chrM.fa 6351 R .. >CMLIVERKIDNEY_7:1:1:774:643 GTTTGTCGTAGGCAGATGGAGCTTGTTATCAT R1 0 2 1 >CMLIVERKIDNEY_7:1:1:113:409 AAACGGGTGGGGTCCGCGCAGTCCGCCCAGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:461 GTTAGGGTGCCTTGAATAAGAGGGGTAGGTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:19 GTTTGGCTNNACAGAATTNNNATCCCTTNNNA QC >CMLIVERKIDNEY_7:1:1:70:863 GGCGATTTTAGGTCTGTTTGTCGTAGGCAGTT U2 0 0 1 chrM.fa 11583 R .. 2T 32T >CMLIVERKIDNEY_7:1:1:568:782 AAGGATACTAGTATAAGAGATCAGGTTCGTCC R0 2 1 1 >CMLIVERKIDNEY_7:1:1:63:844 GTGATGGCTGGGGGGGGTTGCTTTTAGTAAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:89:3 TNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN QC >CMLIVERKIDNEY_7:1:1:830:647 GAACGAAAAATTCTAGGCTATATACAACTACG U0 1 0 0 chrM.fa 3377 F .. >CMLIVERKIDNEY_7:1:1:169:878 GTTGGATTGTTCACCCACTAATAGGGAACGTG U0 1 0 0 chr1.fa 91625377 R .. >CMLIVERKIDNEY_7:1:1:54:694 GAAGAAGCCAGACGACAGTCAGGAGCTCAGTA R0 5 6 3 >CMLIVERKIDNEY_7:1:1:74:659 GCTCAGAGCACTGCAGCAGATCATTTCATATT R0 2 2 0 >CMLIVERKIDNEY_7:1:1:121:897 AATTTCTGTTTTTTTGGTGTGGTCTGGGTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:78:218 GCATAATATTAAGCAATGTTAAAGGCTTCCAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:65:216 GCTAAATCCAGAACTGGAAGAAAAGCTGCTGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:726 CTTTGGAAACCTAAGGCATGAAGGGGAATTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:89:515 AAAAAACTCTACCTCTCTATACTAATCTCCCT R0 2 1 0 >CMLIVERKIDNEY_7:1:1:674:648 AGCAGATTCACCTACACTGAGCAATTAAGAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:467 GCAGGCACGCCTCCGTTCCTCGGGTAGATCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:423:207 AAATGATCAGAACCGACCCAGTGAGAAAGGAA U1 0 1 1 chr17.fa 25536335 F .. 32G >CMLIVERKIDNEY_7:1:1:751:745 GTATTTTCCCTTGAGCACCCCCTCTACCCCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:440:900 GGGGGATGGGGGTCTGTGAGGTTGTGGGTAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:218:388 GCAGTGTAGACGTAGGTTGATGTAGCTGTTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:163 GGGGAATTAATTCTAGGACGATGGGCATGACA U1 0 1 2 chrM.fa 8201 R .. 2T >CMLIVERKIDNEY_7:1:1:256:721 GTAAAGTTTTAAGTTTTATGCGATTACCGGGC U0 1 0 0 chrM.fa 3245 R .. >CMLIVERKIDNEY_7:1:1:264:314 AAAAGCTAGCATGTTTATTTCTAGGCCTACTC R0 2 0 0 >CMLIVERKIDNEY_7:1:1:114:384 CCTCCTTCAAATATCCAGGCAGTGTTCAAATT U1 0 1 0 chr17.fa 70361220 R .. 32T >CMLIVERKIDNEY_7:1:1:851:665 GCCATAGGGGTATCATTGCCTTTATTTTCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:29 CGTAGCCCAAACGTTGACCCAAATCTAGTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:954 GGTTATTTGAGCATGGGGGGACAAAAGTGTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:275:655 GTGGTTTTTCACTGAAAAGGGGGGTACACCTA U0 1 0 0 chr22.fa 40633150 F .. >CMLIVERKIDNEY_7:1:1:129:388 GTTCTTCTATGGGGTGCTAGATGGGCCCATTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:721 ATTGGAGGGACTGTACGGATGCCGCCCCGCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:77:250 GGGCACTCTCTGCCAGCTCCACAGGGTGTGAT U1 0 1 0 chr2.fa 95414281 F .. 29G >CMLIVERKIDNEY_7:1:1:38:580 GTTACTGGAGGGCTGGGTGCTGGGCGAGGCGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:280:693 GTAGGTTAGGACCTGTGGGTTTGTTCGGTACT U2 0 0 1 chrM.fa 2759 R .. 7T 28A >CMLIVERKIDNEY_7:1:1:103:761 GGCTAGGGCATTTTTAATCTTAGAGCGAAAGA R1 0 2 0 >CMLIVERKIDNEY_7:1:1:240:467 GATGAGACATGGGGGATGATGTAACCCTTTTC U2 0 0 1 chr12.fa 54894075 R .. 5C 18A >CMLIVERKIDNEY_7:1:1:116:603 TGGGGGCTTTGTATGATTATGGGCGTTGTTTA R2 0 0 2 >CMLIVERKIDNEY_7:1:1:111:512 CGGCTCCAATCTTTTGTTCATTTCTTATTGCT R1 0 4 3 >CMLIVERKIDNEY_7:1:1:68:717 GGGTGGGGGATGTCGGGTGGGTGCACGATACT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:466:836 AAGCGCCTTCCCCCGTAAATGATATCATCTCG U1 0 1 0 chrM.fa 3160 F .. 32A >CMLIVERKIDNEY_7:1:1:86:904 GGAAAATCAGAATAGGTGTTGGTATAGAATGG R1 0 2 0 >CMLIVERKIDNEY_7:1:1:105:295 CCTTTTAACCCCTAGTCAGAGCATTTCAGCCG U0 1 2 0 chr3.fa 50338075 R .. >CMLIVERKIDNEY_7:1:1:95:254 CGGACAGAGACGTAAACAACAGCATAGTGTGC U0 1 0 0 chr4.fa 109759652 F .. >CMLIVERKIDNEY_7:1:1:297:877 GGAAAATTCTCAATGGTTTACAAAAGTGCACA U2 0 0 1 chr10.fa 43201192 F .. 11G 24C >CMLIVERKIDNEY_7:1:1:189:553 GATATTTGATCAGGAGAACGTGGTTACTAGCA U0 1 1 0 chrM.fa 11902 R .. >CMLIVERKIDNEY_7:1:1:476:758 GCACATATGACTTGGTCGTTAACATCCCTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:918 GGAGATTGTGAGAATTGCTTTACAGGAGAAAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:63:657 AAGATATTTAGGCTTTATTCAGAAGGCTTTAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:497 GCTACCGCCCGGCGGCGGCTCTACACCATCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:69:75 TGTATCCGGACCATTGACCTTCCGGCTCTTGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:77:444 GCTACACTTACTTTTTTTCTCCTGTGTTTTCA U2 0 0 1 chr3.fa 192592311 F .. 1T 30G >CMLIVERKIDNEY_7:1:1:104:171 TGTGAGGGGTAGGAGTCAGGTAGTTAGTATTA U0 1 2 0 chrM.fa 10957 R .. >CMLIVERKIDNEY_7:1:1:77:871 TGATAGTCTAACTACTGAGTAAGATCCTCATC U2 0 0 1 chr8.fa 120325808 F .. 13A 20C >CMLIVERKIDNEY_7:1:1:112:504 CTTGAGTGATAGGAAAGGGGTCTGTGATGGGT U0 1 0 0 chr5.fa 150387968 R .. >CMLIVERKIDNEY_7:1:1:111:772 AAGGAATGGGGGAGTGGTGGGGAGGAGAGGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:152 AGACCCCAAAGTGGATCACACCCGTGTTGCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:206:420 GCGACAGCGATTTCTAGGATAGTCAGTAGAAT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:229:422 GTTTATATATCACAGTGAGAATTCTATGATTG U1 0 1 0 chrM.fa 12633 R .. 2C >CMLIVERKIDNEY_7:1:1:270:682 GGGAAGTCCTGTGTCCTTTCAACAGGGGAAAA U0 1 0 0 chr17.fa 362681 R .. >CMLIVERKIDNEY_7:1:1:124:597 CACGCCTGTAATCCCGGCACTTTGGGAGGCCG R0 255 255 255 >CMLIVERKIDNEY_7:1:1:79:50 TTGAGAAGCCGTTTCCTGCGCTGAAGGTTCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:71:202 GTGAAATTGACCTGCCCGTGAAGAGGCGGGAC R2 0 0 2 >CMLIVERKIDNEY_7:1:1:75:24 GTTTTTGCTACTGTCTCTGTGCCCTGGGTCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:151:434 GCTCAGGCTACTGCTAAGGCCTTAGCGTTTTT U2 0 0 1 chr12.fa 51979373 F .. 23G 26A >CMLIVERKIDNEY_7:1:1:57:729 GCAGGGTTGAGTAGTTTTGACAGAGATTTATG U0 1 0 0 chr15.fa 27869625 F .. >CMLIVERKIDNEY_7:1:1:219:427 GTCTGTTAGTAGTATAGTGATGCCAGCAGCTA R0 2 1 0 >CMLIVERKIDNEY_7:1:1:110:282 CCTCTGCCTACTTGTCCCTCCAGATTCAGTTA U0 1 0 0 chr12.fa 2776421 R .. >CMLIVERKIDNEY_7:1:1:79:291 CGGCACCGTGTCCACGTTTTTAGAACCCTTGT U1 0 1 0 chr4.fa 9685390 R .. 18T >CMLIVERKIDNEY_7:1:1:104:495 CTCGCATCAGGAGTATCAATCACCTGAGCTCA U0 1 2 0 chrM.fa 9619 F .. >CMLIVERKIDNEY_7:1:1:190:604 GTCAGGTCTAATCTCACTCAGTCTAGGATAAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:428 ATAAAATCCCCCAGTTAGTGTTTGCTTTATCT U2 0 0 1 chr17.fa 71285518 F .. 26A 32A >CMLIVERKIDNEY_7:1:1:108:726 CGCAAGGATGCGCTTTCAAGCACAGAGTAGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:505 TGACTTTGGAAGTCCGTAGTGTCTCATTGCTG U1 0 1 0 chr7.fa 10946281 R .. 2T >CMLIVERKIDNEY_7:1:1:85:810 TTTTTTGCTTCCTTAGCAGCCCTGATAGATTG R1 0 4 3 >CMLIVERKIDNEY_7:1:1:109:227 AATCACATGAGTTCTTCAACATTCAAGACTTT U0 1 0 0 chrX.fa 43490430 R .. >CMLIVERKIDNEY_7:1:1:98:678 CTTGGATTAAGGCGACAGCGATTTCTAGGATA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:105:208 TAATGATGTCGGGGTTGAGGGATAGGAGGTGA U1 0 1 0 chrM.fa 12092 R .. 3T >CMLIVERKIDNEY_7:1:1:81:82 GTTGATAACGCGTTGTGATCTCCTTCTGAAGT U0 1 0 0 chr2.fa 47457660 R .. >CMLIVERKIDNEY_7:1:1:686:588 AACCGACTAATCACCACCCAACAATGACTAAT U0 1 2 2 chrM.fa 8645 F .. >CMLIVERKIDNEY_7:1:1:711:177 GTTTGGATGAGAATGGCTGTTTCGCCAACCCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:298:731 GTTTGTTTTAATTATGCCTCTTAGGGTGAGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:89:880 GAATGTTCCTGTTTACCTTCTTACAAGAGTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:790 GGTTGGCTTGTAACTAGCTTTGGGTGGTCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:77:900 TGAGAATGTCAAGGCAAAGATCCAAGACAAGG R0 4 1 0 >CMLIVERKIDNEY_7:1:1:86:36 GAAAAATTCTCGGCTATATACCACTCCGCCAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:409:763 GTTCATACACCTATCCCCCATTCTCCTCCTAT U0 1 0 2 chrM.fa 12071 F .. >CMLIVERKIDNEY_7:1:1:74:448 GCCTCAGAGTACTTCGAGTCTCCCTTCACCAT U0 1 0 0 chrM.fa 9739 F .. >CMLIVERKIDNEY_7:1:1:724:492 AATGCATCACATCTCTTTGGGTACCCTGGCTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:743 ATTCCCCTAAAAATCTTTGAAATAGGGCCCGT R0 2 0 1 >CMLIVERKIDNEY_7:1:1:524:815 AAAAAGGCCTTCGATACGGGATAATCCTATTT U0 1 2 0 chrM.fa 9434 F .. >CMLIVERKIDNEY_7:1:1:412:769 GTTGGATGAGTAGGCTGATGGTTTCGATAATA R1 0 3 0 >CMLIVERKIDNEY_7:1:1:104:866 TGCAGTTAGGTGAGTAAAAAGCAAGGAAGTGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:299:739 GCGTAAACTAGGGTGATGAGTAGTTGGGTGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:617 CTTGTTTAAAGTAAGTGAACGCTGAACTGCCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:75:711 GTTTGTGTCCTATGTCACCACCTTCTTTGTGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:744:491 AGAGGTTCTTCAGCGGAGAGGGTCTCCAGGCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:82:459 AAGCCTTTAGTCTTTTCCAGATGTAACCTTAA U1 0 1 0 chr11.fa 65028685 F .. 24C >CMLIVERKIDNEY_7:1:1:83:697 TCTCTGTGCAAAAATATCTCTTCCAGCTCGAA U0 1 0 0 chr15.fa 43445867 F .. >CMLIVERKIDNEY_7:1:1:82:193 GGTTTGTTAAGATGGCAGAGCCCGGAGATCGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:237:454 GTAGACAGAGGTCTGATAAATCCCTAAAAATG U0 1 0 0 chr2.fa 108277990 F .. >CMLIVERKIDNEY_7:1:1:103:189 AACCATTTACCCAAATAAAGTATAGGAGATAG R1 0 2 4 >CMLIVERKIDNEY_7:1:1:218:888 GTTATTATTTGTTTTGAGGTTAGTTTGATTAG U2 0 0 1 chrM.fa 8672 R .. 27G 31G >CMLIVERKIDNEY_7:1:1:571:370 GCGAATATACCTTGTTTGGTCAATGACTTTAC U2 0 0 1 chr17.fa 34211225 R .. 27T 31A ShortRead/inst/unitTests/cases/s_1_sequence.8_lines_illegal_nucleotide.txt0000644000175100017510000000037212607265053030131 0ustar00biocbuildbiocbuild@HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCXTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS @HWI-EAS88_1_1_1_898_392 GATTTCTTACCTATTAGTGGYTGAACAGCATCGGAC +HWI-EAS88_1_1_1_898_392 ]]]]]]]]]]]]Y]]]]]]]]]YPV]T][PZPICCK ShortRead/inst/unitTests/cases/s_1_sequence.8_lines_read_mismatch.txt0000644000175100017510000000036012607265053027102 0ustar00biocbuildbiocbuild@HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS @HWI-EAS88_1_1_1_898_392 GATTTCTTACCTATTAGTGGTTGAACAGCAT +HWI-EAS88_1_1_1_898_392 ]]]]]]]]]]]]Y]]]]]]]]]YPV]T][PZ ShortRead/inst/unitTests/cases/s_1_sequence.8_lines_read_quality_mismatch.txt0000644000175100017510000000036212607265053030654 0ustar00biocbuildbiocbuild@HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVM @HWI-EAS88_1_1_1_898_392 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGAC +HWI-EAS88_1_1_1_898_392 ]]]]]]]]]]]]Y]]]]]]]]]YPV]T][PZP ShortRead/inst/unitTests/cases/s_1_sequence.9_lines.txt0000644000175100017510000000042312607265053024223 0ustar00biocbuildbiocbuild@HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS @HWI-EAS88_1_1_1_898_392 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGAC +HWI-EAS88_1_1_1_898_392 ]]]]]]]]]]]]Y]]]]]]]]]YPV]T][PZPICCK @HWI-EAS88_1_1_1_922_465 ShortRead/inst/unitTests/cases/s_1_sequence.txt0000644000175100017510000007577412607265053022707 0ustar00biocbuildbiocbuild@HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS @HWI-EAS88_1_1_1_898_392 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGAC +HWI-EAS88_1_1_1_898_392 ]]]]]]]]]]]]Y]]]]]]]]]YPV]T][PZPICCK @HWI-EAS88_1_1_1_922_465 GCGGTGGTCTATAGTGTTATTAATATCAATTTGGGT +HWI-EAS88_1_1_1_922_465 ]]]]Y]]]]]V]T]]]]]T]]]]]V]TMJEUXEFLA @HWI-EAS88_1_1_1_895_493 GTTACCATGATGTTATTTCTTCATTTGGAGGTAAAA +HWI-EAS88_1_1_1_895_493 ]]]]]]]]]]]]]]]]]]]]]]T]]]]RJRZTQLOA @HWI-EAS88_1_1_1_953_493 GTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCTT +HWI-EAS88_1_1_1_953_493 ]]]]]]]]]]]]]]]]]T]]]]]]]]]]MJUJVLSS @HWI-EAS88_1_1_1_868_763 GTTCTCTAAAAACCATTTTTCGTCCCCTTCGGGGCG +HWI-EAS88_1_1_1_868_763 ]]]]]]]]]]]Y]]T]]]O]]]]VO]W]VZMXVOLS @HWI-EAS88_1_1_1_819_788 GTACGCTGGACTTTGTAGGATACCCTCGCTTTCCTT +HWI-EAS88_1_1_1_819_788 ]]]]]]]]]]]]]]]]Y]]P]RRTYYV][VZXHFSO @HWI-EAS88_1_1_1_801_123 GAACAGCATCTGACTCAGATAGTAATCCACGCTCTT +HWI-EAS88_1_1_1_801_123 ]]]]]]]]]]]]]]]]Y]]]R]]]]]]]UZZXVSSS @HWI-EAS88_1_1_1_885_419 GCTTGGTAAGTTGGATTAAGCACTCCGTGGGCAGTT +HWI-EAS88_1_1_1_885_419 ]]]]]]]]]]]]]]C]]VYY]R]]V]]TRVHPAJAM @HWI-EAS88_1_1_1_941_477 GAGAAGTTAATGGATGAATTGGCACAATGCTACAAT +HWI-EAS88_1_1_1_941_477 ]]]]]]]]]]]]]]]]]]]]]]]R]TPVVVZCSFLO @HWI-EAS88_1_1_1_984_473 GTTGGTTTCTATGTGGCTTAATACGTTAATTAAAAT +HWI-EAS88_1_1_1_984_473 ]]]]]]]]]]]]]]]]]]ETY]VJ]]]HTOMEQAHC @HWI-EAS88_1_1_1_570_435 GTCTATAGTGTTATTAATATCAAGTTGGGGGAGCAT +HWI-EAS88_1_1_1_570_435 ]]]]Y]]]]]]]R]]]]]]]]]R]]]HVTREEVHAA @HWI-EAS88_1_1_1_649_729 GATATTTCTGATGAGTCGAAAAATTATCTTGATAAA +HWI-EAS88_1_1_1_649_729 ]]]]]]]]]]]]]V]]]]VYV]]]]T]][ZVRVSSL @HWI-EAS88_1_1_1_867_781 GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGAA +HWI-EAS88_1_1_1_867_781 ]]]]]]]]]]]]]]]Y]]]T]OV]]]]T[PZJVSFF @HWI-EAS88_1_1_1_722_426 GGACTTTGTAGGATACCCTCGCTTTCCTGCTCCTGT +HWI-EAS88_1_1_1_722_426 ]]]]]]]]]]]]R]]]]]YYY]VT]RY]VVZPQMOO @HWI-EAS88_1_1_1_789_111 GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAA +HWI-EAS88_1_1_1_789_111 ]]]]]]]]]]]]]]T]]]]]]]]]P]]][ZZXVASM @HWI-EAS88_1_1_1_945_812 GTATTTTACCAATGACCAAATCAAAGAAATGACTCG +HWI-EAS88_1_1_1_945_812 ]]]]]]]]]]]]]]]Y]YY]]]YV]]]][ZZUQSSS @HWI-EAS88_1_1_1_974_468 GTGTACGCGCAGGAAACTCTGACGTTCTTTCTGTCG +HWI-EAS88_1_1_1_974_468 ]]]]]]]]]]T]]OYYHP]R]T]]Y]HHREEXIAMH @HWI-EAS88_1_1_1_321_368 GTCCCCTTCGGGGCGGTGGTCTTTTGTGTTTTTAAT +HWI-EAS88_1_1_1_321_368 ]]]]]]]]]]]]]]]]Y]]R]]C]M]Y][ZMXVAJS @HWI-EAS88_1_1_1_974_763 GACTGAATGCCAGCAATCTCTTTTTTTGTCTCATTT +HWI-EAS88_1_1_1_974_763 ]]]]]]]]]]]P]]VY]]]Y]]]]]EH][ZZXHSSS @HWI-EAS88_1_1_1_923_392 GCAATGGAGAAAGACGGAGAGCGCCAACGGCGTCCC +HWI-EAS88_1_1_1_923_392 ]]]]]]]]]]]]]]]]]T]R]RTRYECVVVSPEAHA @HWI-EAS88_1_1_1_331_887 GCCACCATGATTATGACCAGTGTTTCCAGTCCGTTC +HWI-EAS88_1_1_1_331_887 ]]]]]]V]]]]]]]]YV]]]T]]]]]]YRVQXVOSK @HWI-EAS88_1_1_1_681_650 GGATTACTATCTGAGTCCGATGCTGTTCAACCACTA +HWI-EAS88_1_1_1_681_650 ]]]]]]]]]]]]]]H]]]]R]]]]]]]PMVSMLOSH @HWI-EAS88_1_1_1_1001_376 GCTACCGATAACAATACTGTAGGCCTGGGTGGTGCT +HWI-EAS88_1_1_1_1001_376 ]]]]]]]Y]]]]YY]]]]]VTYY]CY]][QZMVFFJ @HWI-EAS88_1_1_1_812_666 GGTGGTTATTATACCGTCAAGGACTGTGTGACTATT +HWI-EAS88_1_1_1_812_666 ]]]]]]]]]]]]]O]YT]MV]]J]]]R]JVCMSCSS @HWI-EAS88_1_1_1_879_409 GTGACTATTGACGTCCTTCCTCGTACGCCGGGCCAT +HWI-EAS88_1_1_1_879_409 ]Y]]Y]]Y]]Y]]Y]]Y]]]]]YJJ]EVXVZXOHAJ @HWI-EAS88_1_1_1_874_833 GAGGCTTGCGTTTATGGTACGCTGGTCTTTGTATGT +HWI-EAS88_1_1_1_874_833 ]Y]]]]]]]]]]]]]]]]]YT]]T]HJVTZOXIFNF @HWI-EAS88_1_1_1_671_184 GGATATTTCTAATGTCGTCACTGATGCTGCTTCTGT +HWI-EAS88_1_1_1_671_184 ]]]]]]]]]]Y]]]]]Y]]Y]]VP]]V][ZZXQSSF @HWI-EAS88_1_1_1_770_657 GATAGTTTGACGGTTAATGCTGGTAATGGTGGGTTT +HWI-EAS88_1_1_1_770_657 ]]]]]]]]]]]]]]]]]]]]]]]YRY]][XZXASSS @HWI-EAS88_1_1_1_864_736 GCCTCATCAGGGTTAGGAACATTAGAGCCTTGAATG +HWI-EAS88_1_1_1_864_736 ]]]]]]]]]]]]]]]]]YT]Y]]YYYY]VZUXAOSS @HWI-EAS88_1_1_1_885_763 GTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCTC +HWI-EAS88_1_1_1_885_763 ]]]]]]]]Y]]]]]]]]]Y]]Y]]]]TRWOVJQOSA @HWI-EAS88_1_1_1_246_659 GTTTTTTACCTTTAGACATTACATCACTCCTTCTGC +HWI-EAS88_1_1_1_246_659 ]]]]]]]]]]]]]]]]]Y]]]]]]]T]][ZZXVSNS @HWI-EAS88_1_1_1_977_481 GTTGATAAGCAAGCATCTCATTTTGTGCATATACCT +HWI-EAS88_1_1_1_977_481 ]]]]]]]]]]]]]]T]]]]M]]]]R]EYTZOXLHOS @HWI-EAS88_1_1_1_844_119 GGCATTTAGTAGCGGTAAAGTTAGGCCAAACCCTGG +HWI-EAS88_1_1_1_844_119 ]]]]]]]]]]]]]]]NYVY]]]R]JP]CRJOXEOLL @HWI-EAS88_1_1_1_947_483 GAGGATAAATTATGTCTAATATTCAAACTTGCGCCG +HWI-EAS88_1_1_1_947_483 ]]]]]]]]]]]Y]]P]]YY]VY]]PTVYMCMPLOLH @HWI-EAS88_1_1_1_878_486 GAGAAATAAAAGTCTGAAACATGATTAAACTCCTAA +HWI-EAS88_1_1_1_878_486 ]]]]]]]]]]Y]]]]]]R]]T]]OV]VTMXZRQSNA @HWI-EAS88_1_1_1_966_456 GCTTGTTTACGAATTAAATCGAAGTGGACTTCTTGT +HWI-EAS88_1_1_1_966_456 ]]]]]]]]]]]Y]]]]]V]]]]P]]]YMPZEEVAKC @HWI-EAS88_1_1_1_786_629 GAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGAT +HWI-EAS88_1_1_1_786_629 ]Y]]]]]]]]]]]]]]Y]Y]Y]]]Y]YYXQVXLMAS @HWI-EAS88_1_1_1_817_744 GTATAAGTCAAAGCACCTTTAGCGTTAAGGTACTGA +HWI-EAS88_1_1_1_817_744 ]]]]]]]]]]Y]]]Y]]]Y]YY]]]]RO[ZTRQSNH @HWI-EAS88_1_1_1_726_628 GGATTGGTTTCGCTGAATCAGGTTATTAAAGAGATT +HWI-EAS88_1_1_1_726_628 ]]]]]]]]]]]]]]]V]]]R]]]]]]]R[ZZHVLSS @HWI-EAS88_1_1_1_985_406 GATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTT +HWI-EAS88_1_1_1_985_406 ]]]]]]]]]]]]]]V]]]T]]]HMT]JRWZZJASSS @HWI-EAS88_1_1_1_717_240 GACTTAGTTCATCAGCAAACGCAGAATCAGCGGTAT +HWI-EAS88_1_1_1_717_240 ]]]]]]]]]]Y]]]]]V]Y]]]T]PM]]UZZOVSHO @HWI-EAS88_1_1_1_346_566 GTTCCGACTACCCTCCCGACTGCCTATGATGTTTAT +HWI-EAS88_1_1_1_346_566 ]]]]]]]]]]]]]]]]]]O]]]]]YH]]MZVUVSHS @HWI-EAS88_1_1_1_930_759 GGCTTTTTTATGGTTCGTTCTTGTTACCCTTCTGTT +HWI-EAS88_1_1_1_930_759 ]]]T]]]]]]]]]]]]]Y]P]]C]]VMVXZZHVCAA @HWI-EAS88_1_1_1_441_780 GGTTTATCGTTTTTGACACTCTCACGTTGGCTGACG +HWI-EAS88_1_1_1_441_780 ]]]]]]]]]]]]]]]]]]]]]]]]]]R]VVZXVASC @HWI-EAS88_1_1_1_893_385 GTTAACACTACTGGTTATATTGACCATGCCGCTTTT +HWI-EAS88_1_1_1_893_385 ]]]]]]]]]]]]]]]]Y]TV]YJRVRVTOMHEOSLN @HWI-EAS88_1_1_1_860_742 GTCCCCTTCGGGGCGGTGGTCTATAGTGTTATTAAT +HWI-EAS88_1_1_1_860_742 ]]]]]]]]]]]]]]]]T]]RHYC]H]OVVZCRVFNS @HWI-EAS88_1_1_1_646_490 GTAACCGTCTTCTCGTTCTCTAAAAACCATTTTTCT +HWI-EAS88_1_1_1_646_490 ]]]]]]]]]]]]]]]]]]]]]PER]V]]PVZXQOOC @HWI-EAS88_1_1_1_484_791 GCTGATGAACTAAGTCAACCTCAGCACTAACCTTGC +HWI-EAS88_1_1_1_484_791 ]]]]]]]]]]]VY]]]T]]]V]M]YC]]TZZMOJSL @HWI-EAS88_1_1_1_698_397 GTTTTCATGCCTCCCAATCTTGGAGGCTTTTTTATG +HWI-EAS88_1_1_1_698_397 ]]]]]]]]]]]]]]HT]]]]]]]C]]V][ZZXVASS @HWI-EAS88_1_1_1_955_440 GGAAAACGAACAAGCGCAAGAGTAAACATAGTGCCA +HWI-EAS88_1_1_1_955_440 ]]]]]]]]]]]Y]]]]]TR]H]VPVVTOOHPMQLOH @HWI-EAS88_1_1_1_976_442 GTATTAAGGATGAGTGTTCAAGATTGCTGGAGGCCT +HWI-EAS88_1_1_1_976_442 ]]]]]]]]]]]]]]]]]]]TV]R]]]YYOPCPQHKO @HWI-EAS88_1_1_1_366_209 GAGCAGAAGCAATACCGCCAGCAATAGCACCAAACA +HWI-EAS88_1_1_1_366_209 ]]]]]]]Y]]]]]]]]]]]VY]JH]TY]TTZMLFSH @HWI-EAS88_1_1_1_872_762 GTTTATAGGTCTGGTGAACACGACCAGAAAACTGGC +HWI-EAS88_1_1_1_872_762 PPPPPPPPPPPPPEPPPPPOPPMOOPPOMMMPOOOJ @HWI-EAS88_1_1_1_361_357 GAAGAAATAACATCATGGTAACGCTGCATGAAGTAA +HWI-EAS88_1_1_1_361_357 ]]]]]]]]]]]]]]]]]]V]]]]]]]]H[ZEMVSOA @HWI-EAS88_1_1_1_804_628 GTCAAAAATTACGTGCAGAAGGAGTGATGTAATGTC +HWI-EAS88_1_1_1_804_628 ]]]]]]]]]]]]]]]]]]TY]]R]R]R]WXVRVLMJ @HWI-EAS88_1_1_1_864_773 GGGAGGGTGTCAATCCTGACGGTTATTTCCTAGACA +HWI-EAS88_1_1_1_864_773 ]]]]]]]]]]]VY]]]]]R]]]T]Y]Y]RVVMKHLJ @HWI-EAS88_1_1_1_561_780 GTTATTAATATCAAGTTGGGGGAGCACATTGTAGCA +HWI-EAS88_1_1_1_561_780 ]]]]]]]]]]]]]V]]]]]]]EE]YTRRVZVTOSKJ @HWI-EAS88_1_1_1_415_588 GTAGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTT +HWI-EAS88_1_1_1_415_588 ]]]]]Y]]]]]]]]]]]]]]]]V]]]]]PZOCVSSS @HWI-EAS88_1_1_1_862_123 GTCACATTAAATTTAACCTGACTATTCCACTGCAAC +HWI-EAS88_1_1_1_862_123 ]]]]]]]]]]]]]]]]]]]TT]]P]]]]UZZXVCOS @HWI-EAS88_1_1_1_686_617 GTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCT +HWI-EAS88_1_1_1_686_617 ]]]]]]]]]]]]]]]]]]]MH]]]]]]M[ZZJNSSL @HWI-EAS88_1_1_1_299_507 GTTTTCTGGTCGTGTTCAACAGACCTATAAACATTC +HWI-EAS88_1_1_1_299_507 ]]]]]]]]]]]]]]]]]J]]T]P]Y]O]RJVXOSLO @HWI-EAS88_1_1_1_433_756 GTTAACTTCTGCGTCATGGAAGCGATAAAACTCTGC +HWI-EAS88_1_1_1_433_756 PPPPPPPPPPPPPPPPPPPPHPPPOPPMOPPPNKMA @HWI-EAS88_1_1_1_604_463 GATTTATGTTTGGTGCTATTGCTGGCGGGTTTTTTT +HWI-EAS88_1_1_1_604_463 ]]]]]Y]]]]]]]]]]]R]]]]]RY]OYEHVTQHKS @HWI-EAS88_1_1_1_366_254 GCATTCAAGGTGATGTGCTTGCTACCGATAACCATA +HWI-EAS88_1_1_1_366_254 ]]]]]]]]]]]]Y]]]]]]]]]]V]]]V[RZXAJSO @HWI-EAS88_1_1_1_861_780 GTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAG +HWI-EAS88_1_1_1_861_780 ]]]]]]]]]]]]]]]]]]Y]Y]]]]]]R[XOXQLOS @HWI-EAS88_1_1_1_51_508 GGGGGAGCACATTGTAGCATTGTGCCAATTCATCCA +HWI-EAS88_1_1_1_51_508 ]]]]]Y]]]]]]V]]]]]]]]YTJ]]OM[ZZRPAJH @HWI-EAS88_1_1_1_918_394 GCAAGCCTCAACGCAGCGACGAGCACGAGAGCGGTC +HWI-EAS88_1_1_1_918_394 ]]]]]]]]]]]]]]Y]]]R]]VY]M]]OVJZPQKAF @HWI-EAS88_1_1_1_873_770 GAATTTACGGAAAACATTATTAATGGCGTCGAGCGT +HWI-EAS88_1_1_1_873_770 ]]]]]]]]]]V]V]]P]]YY]VVV]]R]PUOCOCMH @HWI-EAS88_1_1_1_712_190 GCCGTTTTGGATTTAACCGAAGATGATTTCGATTTT +HWI-EAS88_1_1_1_712_190 ]]]]]]]]]]O]]]V]]]]OC]O]]O]][QTCVSSS @HWI-EAS88_1_1_1_411_573 GAGTTTATTGCTGCCGTCATTGCTTATTATGTTCAT +HWI-EAS88_1_1_1_411_573 ]]]]]]]]]]]]]]]]T]H]]]Y]]R]]RZEXVAJS @HWI-EAS88_1_1_1_228_633 GATTTTATTGGTATCAGGGTTAATCGTGCCAAGAAA +HWI-EAS88_1_1_1_228_633 ]]]]]]]]]]]]]]]]]]]]]VV]]Y]P[ZOUVFNH @HWI-EAS88_1_1_1_359_604 GGTGTCTGTAAAACAGGTGCCGAAGAAGCTGGAGTA +HWI-EAS88_1_1_1_359_604 ]]]]]]]]]]]]]]]]]]]]]]EV]VV][ZZXMSMH @HWI-EAS88_1_1_1_303_791 GGATTAAGTTCATGAAGGATGGTGTTAATGCCACTC +HWI-EAS88_1_1_1_303_791 ]]]]]]]]]]]]]]]]]]]]]]]]]]TVVVZXOSSS @HWI-EAS88_1_1_1_998_450 GTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTT +HWI-EAS88_1_1_1_998_450 ]]]]]]]]]]]]]R]]]]CT]O]]YR]][ZEEKSSS @HWI-EAS88_1_1_1_697_640 GTGTGAGGTTATAACGCCGAAGCGGGAAAAATTTTA +HWI-EAS88_1_1_1_697_640 ]]]]]]]]]]]]]]]]]]]ET]]]]EPJTXQXVSSL @HWI-EAS88_1_1_1_961_516 GAAGCCTGAATGAGCTTAATAGAGGCCAAAGCGGTC +HWI-EAS88_1_1_1_961_516 ]]]]]]]]]]]]T]]]]Y]]V]TT]]YPTHVOQKLH @HWI-EAS88_1_1_1_676_167 GAATCAGCGGTATGGCTCCTCTCCTATTTGCTCTTT +HWI-EAS88_1_1_1_676_167 ]]]]]]]]]]V]]]]]]]EYV]TOTMV]JEHCENFA @HWI-EAS88_1_1_1_908_493 GATTCAGTACCTTAACGCTAAAGGTGCTTTGACTTA +HWI-EAS88_1_1_1_908_493 ]]]]]]]]]]]]]Y]]]]VR]H]]V]YV[ZECQSSM @HWI-EAS88_1_1_1_335_282 GACATTATGGGTCTGCAAGCTGCTTATGCTACTTTG +HWI-EAS88_1_1_1_335_282 ]]]]]]]]]]]]]]]]YR]]]]]]]T]VWZSEVSSJ @HWI-EAS88_1_1_1_706_512 GTTGAAATGGTAATAAGACGACCAATCTGACCAGCC +HWI-EAS88_1_1_1_706_512 ]]]]]]]]]]]]]]]Y]R]]JVYHRV]]WMZOKLHA @HWI-EAS88_1_1_1_927_495 GTAAGCATTTGGCGCATAATCTCGGAAACCTGCTGT +HWI-EAS88_1_1_1_927_495 ]]]]]]]]]]]]]]]T]]T]]]]T]HOOTTMMKNLH @HWI-EAS88_1_1_1_370_877 GTGAGAGTGTCAAAAACGATAAACCAACCATCAGCA +HWI-EAS88_1_1_1_370_877 ]]]]]]]]]]]]]]TVT]]]]]]]]JVPTQMRQJLJ @HWI-EAS88_1_1_1_223_238 GTTAACAGTCGGGAGAGGAGTGGCATTAACACCATC +HWI-EAS88_1_1_1_223_238 ]]]]]]Y]]]]]]N]R]]Y]]Y]]P]]VPSCTVHHS @HWI-EAS88_1_1_1_324_781 GTATGTTGACGGCCATAAGGCTGCTTCTGACGTTCG +HWI-EAS88_1_1_1_324_781 ]]]]]]]]]]]]]YR]P]]]Y]T]E]WTRJVMHKAF @HWI-EAS88_1_1_1_833_311 GGGGGAGCACATTGTAGCATTGTGCCAATTCATCCA +HWI-EAS88_1_1_1_833_311 ]]]]]Y]]Y]Y]Y]HTRVVT]MRY]VCEVVZJQKHF @HWI-EAS88_1_1_1_364_260 GGTTATCCATCTGCTTATGGAAGCCAAGCATTGGGG +HWI-EAS88_1_1_1_364_260 ]]]]]]]]Y]]]]]]]]]]]PY]V]HM]WMZXIMHS @HWI-EAS88_1_1_1_900_770 GGTCGCAAAGTAAGAGCTTCTCGAGCTGCGCAAGGG +HWI-EAS88_1_1_1_900_770 ]]]]]]]]Y]]]V]J]]]]YY]VO]Y]]TZOCLMOA @HWI-EAS88_1_1_1_674_661 GATATGGACCTTGCTGCTAAAGGTCTAGGAGCTAAA +HWI-EAS88_1_1_1_674_661 ]]]]]]]]]]]]]]]]]]OPY]TY]YE]UQZTQJSM @HWI-EAS88_1_1_1_524_466 GGTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGG +HWI-EAS88_1_1_1_524_466 ]]]]]]]]]]]]]]]Y]]]]]]]YHOV][MTPVHHK @HWI-EAS88_1_1_1_960_818 GGTTTAGATATGAGTCACATTTTGTTCATGGTAGAG +HWI-EAS88_1_1_1_960_818 ]]]]]]]]]]]]]]]]]]V]]]]T]]]][VZXMSLN @HWI-EAS88_1_1_1_227_700 GTTGACATTTTAAAAGAGCGTGGATTACTATCTGAG +HWI-EAS88_1_1_1_227_700 ]]]]]]]]]]]]]]]]]]]]]]]]]]]][VZXVOLH @HWI-EAS88_1_1_1_662_208 GTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGG +HWI-EAS88_1_1_1_662_208 ]]]]]]]]]]V]P]TR]]]]]]M]]]TV[PREKMLF @HWI-EAS88_1_1_1_635_393 GTTTCTGTTGGTGCTGATATTGCTTTTGATGCTTAA +HWI-EAS88_1_1_1_635_393 ]]]]]]]]]]]]]]]]]]]]]]]]]]]OJZHUVAFM @HWI-EAS88_1_1_1_403_780 GCCTCCAAATCTTGGAGGCTTTTTTATGGTTCGTTC +HWI-EAS88_1_1_1_403_780 ]]]]]]]]Y]]]]]]T]]]]]]]]]Y]RRZZRMOSO @HWI-EAS88_1_1_1_468_756 GCAGAAGCAATACCGCCAGCAATAGCACCAAACATA +HWI-EAS88_1_1_1_468_756 ]]]]]]]]]]]]V]Y]]Y]]]HV]OTRVVJMONHFF @HWI-EAS88_1_1_1_484_755 GGTGCTATTGCTGGCGGTATTGGTTCTTCTCTTTCT +HWI-EAS88_1_1_1_484_755 ]]]]]]]]]]]]]]]]]HOT]HCTOEYCCMHMKHAH @HWI-EAS88_1_1_1_973_421 GTTTCCGTTGCTGCCATCTCCAAAACATTTTGACTG +HWI-EAS88_1_1_1_973_421 ]]]]]]]]]]]]]]]]]]]]M]MM]]V][ZEEINSF @HWI-EAS88_1_1_1_497_908 GGTTATAACGCCGAAGCGGTAAAAATTTTAATTTTT +HWI-EAS88_1_1_1_497_908 ]]]]]]]]]]]]]]Y]]]]]R]R]YY]][VTXVSSS @HWI-EAS88_1_1_1_991_521 GAGCTTCTCGAGCTGCGCAAGGATAGGTCGGATTTT +HWI-EAS88_1_1_1_991_521 ]]]]]]]]]]V]]]]]]]RR]]P]T]]YTQOEVSSS @HWI-EAS88_1_1_1_495_814 GCAGTAGACTCCTTCTGTTGATAAGCAAGCATCTCA +HWI-EAS88_1_1_1_495_814 ]]]]]]]]]]]]]]]]]]]]V]Y]]]Y][ZVXVSSA @HWI-EAS88_1_1_1_703_438 GATTATTTTGACTTTGAGCGTATCGAGGCTCTTTAA +HWI-EAS88_1_1_1_703_438 ]Y]]]]]]]]]]]]]]]]]]V]]]]ORWVVZUQCHF @HWI-EAS88_1_1_1_730_507 GTCATTGTGAGCATTTTCATCCCGAAGTTGCGGCTC +HWI-EAS88_1_1_1_730_507 ]]]]]]]]]]]]]]]]]]H]YYV]HOYT[HMOQALH @HWI-EAS88_1_1_1_866_100 GCCATTGCTCATATTGAAGTTCAGGCTGTTATTTTT +HWI-EAS88_1_1_1_866_100 ]]]]]]]]]]Y]]]]]]]]]]]]R]]]]CZTXVSSS @HWI-EAS88_1_1_1_949_458 GGTATGTAGGTGGCCAACAATTTTTATTGCTTGGGT +HWI-EAS88_1_1_1_949_458 ]]]]]]]]]]]]]H]Y]]RRY]]]RH]VEMCMHCJF @HWI-EAS88_1_1_1_320_300 GACACCTAAAGCTACATCGTCAACGTTATATTTTGT +HWI-EAS88_1_1_1_320_300 ]]]]]]]]]]]]]]]YY]]R]EJ]]]YT[JZXVSAH @HWI-EAS88_1_1_1_996_317 GCTTATCACCTTCTTGAAGGCTTCCCATTCATTCAG +HWI-EAS88_1_1_1_996_317 ]]]]]]]]]]]]]]]]]VYR]]]]]]O][ZSXVSHJ @HWI-EAS88_1_1_1_843_780 GGCTTCCATAAGCAGATGGATAACCGCATCAAGCTC +HWI-EAS88_1_1_1_843_780 ]]]]]]]Y]]Y]]Y]Y]]]V]V]]]]YPWTENVNLN @HWI-EAS88_1_1_1_337_794 GTCTCCAGCCACTTAAGTGAGGTGATTTATGTTTGG +HWI-EAS88_1_1_1_337_794 ]]]]]]T]]]Y]]]]Y]Y]]]]Y]R]]]MZVXVSJF @HWI-EAS88_1_1_1_599_542 GATAATGGTGATATGTATGTTGACGGCCCTAAGGCT +HWI-EAS88_1_1_1_599_542 ]Y]]]]]]]]V]V]]YY]]Y]JCYTRRVEJENLLAF @HWI-EAS88_1_1_1_636_218 GTTTGTATCTGTTACTGAGAAGTTAATGGTTGGATT +HWI-EAS88_1_1_1_636_218 ]]]]]]]]]]]]]]]]]J]JRY]]VYVH[CVCAAKS @HWI-EAS88_1_1_1_801_780 GTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGAC +HWI-EAS88_1_1_1_801_780 ]]]]]]]]]]Y]Y]]T]Y]]O]EYT]]]TPZTVSCM @HWI-EAS88_1_1_1_753_627 GGATTAAGCACTCCGTGGACAGATTTGTCATTGTGA +HWI-EAS88_1_1_1_753_627 ]]]]]]Y]]]]]]]]]]]R]]]T]]]YV[ZZXQSSC @HWI-EAS88_1_1_1_234_684 GGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGAC +HWI-EAS88_1_1_1_234_684 ]]]]]]]]]]]]]]]]]]]Y]]]]]]V]RTZUVOAS @HWI-EAS88_1_1_1_915_728 GTTATTATACCGTCAAGGACTGTGTGACTATTGACG +HWI-EAS88_1_1_1_915_728 ]]]]]]]]]]]]]]V]]]]]]]]]Y]O][XZXOALK @HWI-EAS88_1_1_1_970_579 GCTTACTCAAGCTCAAACGGCTGGTCCGTTTTTTTT +HWI-EAS88_1_1_1_970_579 ]]]]]]Y]YY]]Y]]]]]RYR]]]O]RR[PTXVSFL @HWI-EAS88_1_1_1_706_163 GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC +HWI-EAS88_1_1_1_706_163 ]]]]]]]]]]]]]]NTVT]]C]Y]VVH][ZTPLSOH @HWI-EAS88_1_1_1_851_764 GAAAATGCTCACAATGACAAATCTGTCCACGGAGTG +HWI-EAS88_1_1_1_851_764 ]]]]]]]]]]T]R]]]R]OTRY]Y]]VVJUSRESHM @HWI-EAS88_1_1_1_963_398 GGGTGATAAGCAGGAGAAACATACGAAGGCGCATAA +HWI-EAS88_1_1_1_963_398 ]]]]]]]]]]]Y]]V]YVTYHYJ]VJTVWPZOHJHF @HWI-EAS88_1_1_1_706_182 GCTTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGA +HWI-EAS88_1_1_1_706_182 ]]]]]]]]]]]]]]]]T]]]Y]VTY]RVOSZHHLJA @HWI-EAS88_1_1_1_886_399 GATGTTATTTCTTCATTTGGAGGTAAAACCTCTTAT +HWI-EAS88_1_1_1_886_399 ]]]]]]]]]]]]]]T]]]]PYYYTVRMRWPVRQLAO @HWI-EAS88_1_1_1_975_702 GTAACCCAGCTTGGTAAGTTGGATTAAGCACTCCGT +HWI-EAS88_1_1_1_975_702 ]]]]]]]]]]]]]]]]Y]Y]]]P]]TRYVZVXQSNH @HWI-EAS88_1_1_1_634_538 GGTTAATGCTGGTAATGGTGGGTTTTTTTCTTTTTT +HWI-EAS88_1_1_1_634_538 ]]]]]Y]]]]]]]YO]O]YY]RR]]]E]MVVXEHHS @HWI-EAS88_1_1_1_803_696 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAGA +HWI-EAS88_1_1_1_803_696 ]]]]]]]]]]]]]]]O]N]]]]]]]]R][ZTOPKOF @HWI-EAS88_1_1_1_878_417 GAACGAACCATAAAAAAGCCTCCAAGATTTGGAGGC +HWI-EAS88_1_1_1_878_417 ]]]]]]]]]]]]]Y]]]]]]Y]]EJ]JTRVVRKHOM @HWI-EAS88_1_1_1_926_442 GACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTT +HWI-EAS88_1_1_1_926_442 ]]]]]]]]]]Y]]Y]]]]JP]R]]PY]HPVOXOAMO @HWI-EAS88_1_1_1_371_757 GCAGAAGTTAACACTTTCGGATATTTCTGATTAGTC +HWI-EAS88_1_1_1_371_757 ]]]]]]]]]]]]]]]]Y]]YRYT]Y]Y]VOPEIHJJ @HWI-EAS88_1_1_1_986_397 GCAATAGCACCAAACATAAATCCCCTCACTTAAGTG +HWI-EAS88_1_1_1_986_397 ]]]]]]]]]]]YY]]PYVRMVYE]YT]JTOZMHHCF @HWI-EAS88_1_1_1_553_75 GTTGAGTTTATTGCTGCCGTCATTGCTTATTATTTT +HWI-EAS88_1_1_1_553_75 ]]]]]]]]]]]]]Y]]]]]]]CY]CH]]MZZCVFOS @HWI-EAS88_1_1_1_692_494 GGCTGCGGACGACCAGGGCGAGCGCCAGAACGTTTT +HWI-EAS88_1_1_1_692_494 ]]]]]]]]R]]V]]N]]]]]HYRYRRC]CJORAJLO @HWI-EAS88_1_1_1_971_538 GGTTTAAGAGCCTCGATACGCTCAAAGTCAAAATAA +HWI-EAS88_1_1_1_971_538 ]]]]]]]]]]]]]]]V]]]]]]]PY]YTTPZMHNNN @HWI-EAS88_1_1_1_867_629 GTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCTAC +HWI-EAS88_1_1_1_867_629 ]]]]]]]]]]]]]]]]]]Y]VO]RVTJTPVQREAAC @HWI-EAS88_1_1_1_326_303 GAAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGA +HWI-EAS88_1_1_1_326_303 ]]]]]]]]]]]]]]]]]]T]]]V]]]T][VZCESHF @HWI-EAS88_1_1_1_680_172 GTTCGTTTTCCGCCTACTGCGACTAAAGAGATTCTG +HWI-EAS88_1_1_1_680_172 ]]]]]]]]]]]Y]]]T]]]]YR]]VVVTRVHRVFAJ @HWI-EAS88_1_1_1_997_339 GTGAACAGTGGATTAAGTTCATGAAGGATGGTGTTA +HWI-EAS88_1_1_1_997_339 ]]]]]]]]]]]]]]]Y]]]YH]TJV]]M[ZZRVOOH @HWI-EAS88_1_1_1_415_754 GCATGACCTTTCCCATCTTGGCTTCCTTGCTGGTCA +HWI-EAS88_1_1_1_415_754 ]]Y]]]]]]]Y]]]H]]]]]]]]]]Y]]WPXJQSNC @HWI-EAS88_1_1_1_629_192 GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT +HWI-EAS88_1_1_1_629_192 ]]]]]]]]]]]]]]]V]]]]PY]]]Y]YVEOMHJOO @HWI-EAS88_1_1_1_160_207 GTGATGTGCTTGCTACCGATAACAATACTGTAGGCA +HWI-EAS88_1_1_1_160_207 ]]]]]]]]]]]]]]]]]]P]TY]V]]V]UZPRVSJC @HWI-EAS88_1_1_1_705_461 GTTTAAGAGCCTCGATACGCTCCAAGTCAAAATAAT +HWI-EAS88_1_1_1_705_461 ]]]]]]]]]]]]]]V]Y]]]]]CYY]R][TPRQHKH @HWI-EAS88_1_1_1_584_460 GAGTTGTTCCATTCTTTAGCTCCTAGACCTTTATCA +HWI-EAS88_1_1_1_584_460 ]]]]]]]]]]Y]]]]]]Y]]]]]]TYJ]VZZXKAMJ @HWI-EAS88_1_1_1_434_845 GTTCTGCTTCAATATCTGGTTGAACGGCGTCGCGTC +HWI-EAS88_1_1_1_434_845 ]]]]]]]]]]VV]]]]]]]]]]V]]]]][ZVTQNSF @HWI-EAS88_1_1_1_319_700 GATACCCTCGCTTTCCTGCTCCTGATGCGTTTATTG +HWI-EAS88_1_1_1_319_700 ]]]]T]]]V]]]YERYRYPYYPEYM]MCOHTUIKHJ @HWI-EAS88_1_1_1_882_462 GCATTCATCAAACGCTGAATAGCAAAGCCTCTACGC +HWI-EAS88_1_1_1_882_462 ]]]]]]]]]]]]]]]]]P]]Y]]HTRWV[PVPHMJH @HWI-EAS88_1_1_1_346_126 GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT +HWI-EAS88_1_1_1_346_126 ]]]]]]]]]]]]]]]]]]]]OY]]]]]][JVXQOSS @HWI-EAS88_1_1_1_285_738 GGTCTATAGTGTTATTAATATCAAGTTGGTGGTGCC +HWI-EAS88_1_1_1_285_738 ]]]]]]]]]Y]Y]YV]VV]P]]POORVRVCPCAMCA @HWI-EAS88_1_1_1_885_551 GTATTAAATCTGCCATTCAAGGCTCTAATGTTCCTA +HWI-EAS88_1_1_1_885_551 ]]Y]]]]]Y]]]]]]]]]Y]Y]]]]VPWUZRXIJLK @HWI-EAS88_1_1_1_211_313 GATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCT +HWI-EAS88_1_1_1_211_313 ]]]]]]]]]]]]]]]T]]]]]]]Y]]]]TZZXVSSS @HWI-EAS88_1_1_1_905_706 GTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAAC +HWI-EAS88_1_1_1_905_706 ]]]]]]]]]]]]]]]]]]]Y]]]]]T]]VZUPMFLL @HWI-EAS88_1_1_1_364_133 GTTGATATTTTTCATGGTATTGATAAAGCTGTTTCC +HWI-EAS88_1_1_1_364_133 ]]]]]]]]]]]]]T]]]]]]]]Y]]O]H[ZVXVFJH @HWI-EAS88_1_1_1_984_424 GTATGCCGCATGACCTTTCCCATCTTGGCTTTCTTG +HWI-EAS88_1_1_1_984_424 ]Y]]]]]]]]]]T]]]]]]Y]R]Y]RTTPZZEOSSF @HWI-EAS88_1_1_1_885_432 GGCTCATTCTGATTCTGAACAGCTTCTTGGGAAGTA +HWI-EAS88_1_1_1_885_432 ]]]]]Y]]]]]Y]]]]]RY]V]YVY]]YORVJNOMA @HWI-EAS88_1_1_1_730_651 GCAGAAGCCTGAATGAGCTTAATAGAGGCCAAAGCG +HWI-EAS88_1_1_1_730_651 ]]]]]]]]]]]YR]]]]]]]]]]]VTW]XZZPOSMS @HWI-EAS88_1_1_1_571_420 GGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA +HWI-EAS88_1_1_1_571_420 ]]]]]]]]]]]]]R]]]]]]]]P]]]OVPOHCILFN @HWI-EAS88_1_1_1_721_668 GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCAG +HWI-EAS88_1_1_1_721_668 ]]]]]]]]]]]]]]]Y]]V]Y]]YO]]R[ZZXVLLL @HWI-EAS88_1_1_1_863_648 GCCTTCTGGTGATTTGCAAGAACGCGTACTTTTTCG +HWI-EAS88_1_1_1_863_648 ]]]]]]]]]]]T]]]]]TJ]YRV]T]YHMZZEPOFC @HWI-EAS88_1_1_1_714_518 GCATGGGTGATGCTGGTATTAAATCTGCCATTCAAG +HWI-EAS88_1_1_1_714_518 ]]]]]]]]]]]]]]]]]P]]R]V]]]]V[PZXOHHO @HWI-EAS88_1_1_1_832_717 GTTCTTATTACCCTTCTGAATGTCACGCTGATTATT +HWI-EAS88_1_1_1_832_717 ]]]]]]]]]]]]]]]]]]TT]]Y]V]]][ZJRVNSS @HWI-EAS88_1_1_1_345_593 GGGATGAACATAATAAGCAATGACGGCAGCAATAAA +HWI-EAS88_1_1_1_345_593 ]]]]]]]]]]]]Y]]]]]]]]]]]]]]][PCPMJLF @HWI-EAS88_1_1_1_833_651 GTAAAGCTGATGGTATTGGCTCTAATTTTTCTATGA +HWI-EAS88_1_1_1_833_651 ]]]]]]]]]]]]]]V]]]]]]]]CRY]]EZMXIALA @HWI-EAS88_1_1_1_794_763 GTGAAAAAGCGTCCTGCGTGTAGCGAACTGCGGTGG +HWI-EAS88_1_1_1_794_763 ]]]]]]]]]]]]Y]Y]Y]PYRRVR]OMRMSCMAJJL @HWI-EAS88_1_1_1_570_882 GTTTTGGATTTAACCGAAGATGATTTCGATTTTCTT +HWI-EAS88_1_1_1_570_882 ]]]]]]]Y]]]]Y]]]EV]HYYC]]RVVCZVXVOLA @HWI-EAS88_1_1_1_677_183 GAATGCAATGAAGAAAACCACCATTACCAGCATTAA +HWI-EAS88_1_1_1_677_183 ]Y]]]]]Y]]T]]]RVV]]]]]R]]]]][ZZMVSJH @HWI-EAS88_1_1_1_894_262 GAGCGTATGCCGCATGACCTTTCCCATCTTGGCTTC +HWI-EAS88_1_1_1_894_262 ]]]]]]]]]]]]]]]]T]]]]]]]]HV][ZVROSSO @HWI-EAS88_1_1_1_109_416 GTCGCAGTAGGCGGAAAACGCACCAGCGCAAGAGTC +HWI-EAS88_1_1_1_109_416 ]]]]]]]]]]]]]]N]V]]]H]TCYR]V[JPMHHAA @HWI-EAS88_1_1_1_168_329 GGATGAAAATGCTCACAATGACAAATCTGTCCACGG +HWI-EAS88_1_1_1_168_329 ]]]]]]]]]]]]]]]]]]]]O]MO]Y]RRVZXOSSO @HWI-EAS88_1_1_1_955_838 GGTGATGCTGGTATTAAATCTGCCATTCAAGGCTCT +HWI-EAS88_1_1_1_955_838 ]]T]Y]]]]]]]]]]V]]]]]V]]J]]]RQZXVSSJ @HWI-EAS88_1_1_1_451_882 GTGTTCAAGATTGCTGGAGGCCTCCACTATGAAATC +HWI-EAS88_1_1_1_451_882 ]]]]]]]]]]]]]]]]]]]]V]P]]RYJ[ZXCSKSS @HWI-EAS88_1_1_1_210_485 GTTATATTTTGATAGTTTGACGGTTAATGCTTGTAA +HWI-EAS88_1_1_1_210_485 ]]]]]]]]]]]]]]]]]]RT]]P]]CVYOHTCKSLA @HWI-EAS88_1_1_1_858_816 GTTGACAGATGTATCCATCTGAATGCAATGAAGAAA +HWI-EAS88_1_1_1_858_816 ]]]]]]]]]]]]]]]]]]]]]]Y]]]]Y[ZZXVKOO @HWI-EAS88_1_1_1_111_677 GGGCGGTGGTCTATAGTGTTATTAATATCAAGTTGG +HWI-EAS88_1_1_1_111_677 ]]]]]]]]]]]]Y]]]]]]]]]]]R]Y][ZPXQSLS @HWI-EAS88_1_1_1_669_439 GCTGACAACCGTCCTTTACTTGTCATGCGCTCTAAT +HWI-EAS88_1_1_1_669_439 ]]]]]]]]]]]]]]]]]Y]]]YO]T]]]WZZXQCJM @HWI-EAS88_1_1_1_176_181 GATTAGAGGCGTTTTATGATAATCCCCATGCTTTGC +HWI-EAS88_1_1_1_176_181 ]]]]]]]]]]]]]]]]]]]]MY]]Y]CV[RZXVSFS @HWI-EAS88_1_1_1_681_526 GAAATATCCTTTGCAGTAGCGCCCATATGAGAAGAG +HWI-EAS88_1_1_1_681_526 ]]]V]]]]]]]]]]]]TY]Y]T]C]]R][JZHHFFN @HWI-EAS88_1_1_1_734_219 GGTAAAGGACTTCTTGACGGTACGTTGCATGCTTGG +HWI-EAS88_1_1_1_734_219 ]]]]]]]]]]T]]]]]RC]Y]R]]]]WPCTVCQCMA @HWI-EAS88_1_1_1_643_478 GTGAGTTGTTCCATTCTTTAGCTCCTAGACCTTTAG +HWI-EAS88_1_1_1_643_478 ]]]]]]]]]]]]Y]]]]]]J]]V]]]RJJZORVSAH @HWI-EAS88_1_1_1_152_301 GAAGTAGCGACAGCTTGGTTTTTAGTGAGTTTTTCC +HWI-EAS88_1_1_1_152_301 ]]]]]]]]]Y]V]]]]]]]]]]]V]]JJTZZHVSJL @HWI-EAS88_1_1_1_864_228 GTATTGCTTCTGCTCTTGCTGGTGGCGCCCTTTCTA +HWI-EAS88_1_1_1_864_228 ]]]]]]]]]]]]]]]]]]]]RH]VJVROTCXCPHMF @HWI-EAS88_1_1_1_623_542 GATAATCCCAATGCTTTGCGTGACTATTTTCGTGCT +HWI-EAS88_1_1_1_623_542 ]P]]]]]]]YVT]]]]]]]]O]C]]]]][VOJPCAS @HWI-EAS88_1_1_1_851_725 GTTTTTGAGATGGCAGCAACGGAAACCATAACGGGC +HWI-EAS88_1_1_1_851_725 ]]]]]]]]]T]]]]Y]]TJT]YCOVOVCHQJJOCLF @HWI-EAS88_1_1_1_643_262 GTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAG +HWI-EAS88_1_1_1_643_262 ]]]]]]]]]]]]Y]]]V]]RVVVYV]]RPVTMNFHN @HWI-EAS88_1_1_1_664_726 GTTAATGCTGGTAATGGTGGTTTTCTTCTTTTCCTT +HWI-EAS88_1_1_1_664_726 ]]]]]]]]]]]Y]]]]]]]]J]]]OR]MCUZEKAOO @HWI-EAS88_1_1_1_736_517 GAAGTCATGATTGAATCGCGAGTGGTCGGCGGGTTG +HWI-EAS88_1_1_1_736_517 ]]]]]]]]]]]]]V]]]]]]O]M]]YR]WEHRMMML @HWI-EAS88_1_1_1_99_173 GTATAATTACCCCCAAAAGAAAGGTATTAAGGATGA +HWI-EAS88_1_1_1_99_173 ]]]]]]]]]]]]]CTTOT]REP]]OO]]RVSOMOSF @HWI-EAS88_1_1_1_664_501 GAGTATCCTTTCCTTTATCAGCGGCAGACTTGCCCC +HWI-EAS88_1_1_1_664_501 ]V]]]Y]]]]]]]]]]V]]TV]YVVHVOWMZEHJAK @HWI-EAS88_1_1_1_339_626 GTTATATGGCTGTTTGGTTTTTTTTTTGTTTATTTT +HWI-EAS88_1_1_1_339_626 ]]]]]]]]]]]]E]ERR]]P]P]V]YOCUEJCLFCA @HWI-EAS88_1_1_1_740_733 GGTGTGGTTGATATTTTTCATGGTATTGATAAAGCT +HWI-EAS88_1_1_1_740_733 ]]]]]]]]]]P]V]]]]]]Y]TT]Y]]PJZVXOOMO @HWI-EAS88_1_1_1_878_404 GCCTGTCTCATCATGGAAGGCGCTGAATTTACGGGA +HWI-EAS88_1_1_1_878_404 ]]]]]]]]]V]]]]]]P]]]]]]VYMP][ZCMQHCC @HWI-EAS88_1_1_1_822_121 GTTTATCCTTTGGATGGTCGCCATGATGGTGTTTTT +HWI-EAS88_1_1_1_822_121 ]]]]]]]]]]]]]]]]]]Y]]PM]]C]PVZVCVSFS @HWI-EAS88_1_1_1_708_703 GAGGAAGCATCAGCACCAGCACGCTCCCAAGCATTA +HWI-EAS88_1_1_1_708_703 ]]]]]]]]]]]]]]Y]]P]]R]]]PYY]MPZXAMMJ @HWI-EAS88_1_1_1_362_553 GTCTCATTTTGCATCTCGGCAATCTCTTTCTGATTT +HWI-EAS88_1_1_1_362_553 ]]]]]]]]]]]]Y]]]]]]]TT]]]]]][ZZMHSSF @HWI-EAS88_1_1_1_960_757 GGTATTAAATCTGCCATTCAAGGCTCTAATGTTCCT +HWI-EAS88_1_1_1_960_757 ]]]]]]]]]]]]]]]Y]]]RT]]]]]YPVZOXVLKS @HWI-EAS88_1_1_1_752_651 GCACGTTCGTCAAGGACTGGTTTAGATATGAGTCAC +HWI-EAS88_1_1_1_752_651 ]]]]]]]]]]]]Y]]Y]]]]]]]YYV]T[ZRUONFK @HWI-EAS88_1_1_1_754_734 GTAAGAAATCATGAGTCAAGTTACTGAACAATCCGT +HWI-EAS88_1_1_1_754_734 ]]]]]]]Y]]Y]]]]R]OY]TY]]]YMPTJPRQKJJ @HWI-EAS88_1_1_1_825_711 GATGGATACATCTGTCAACGCCGCTAATCAGGTTGT +HWI-EAS88_1_1_1_825_711 ]]]]]]]]]]]]]]Y]NTYYYVVV]RCVRPRRHSNO @HWI-EAS88_1_1_1_308_236 GTGCTCGTCGCTGCGTTGAGGCTTTCGTTTTTTTTT +HWI-EAS88_1_1_1_308_236 PPPPPPPPPPPPPPPPPOPPPPPPEPMPPPMPOFAF @HWI-EAS88_1_1_1_937_329 GGACGCTCGACGCCATTAATAATGTTTTCCGTAAAT +HWI-EAS88_1_1_1_937_329 ]]]]]]]]]O]]]]O]]R]]V]]]Y]]]WZVXVJOS @HWI-EAS88_1_1_1_838_878 GATTACTTCATGCAGCGTTACCATGATGTTATTTCT +HWI-EAS88_1_1_1_838_878 ]]]]]]]]]]]]]]]]]]]]]]J]]M]]TZQXVSNS @HWI-EAS88_1_1_1_414_792 GATTTTATTGGTATCAGGGTTAATCGTGCCAAGAAA +HWI-EAS88_1_1_1_414_792 ]]]]]]]]]]]YY]]V]]]]]V]]]HRRTVCOQJOM @HWI-EAS88_1_1_1_730_497 GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC +HWI-EAS88_1_1_1_730_497 ]]]]]]]]]V]]]]NYPNRYR]]]]YCY[VXXQFMF @HWI-EAS88_1_1_1_969_419 GAGTGGTCGGCAGATTGCGCTAAACGGTCACATTAA +HWI-EAS88_1_1_1_969_419 ]]]]]]]]]]]Y]T]]CRYE]PET]]VEJJQCOMLN @HWI-EAS88_1_1_1_104_533 GTCATGATTGAATCGCGAGTGGTCGGCAGATTTTGC +HWI-EAS88_1_1_1_104_533 ]]]]]]]]]]Y]]]]]RTVV]M]O]TVCWPZXAALA @HWI-EAS88_1_1_1_836_628 GGACGCCGTTGGCGCTCTCCGTCTTTCTCCCTTGCG +HWI-EAS88_1_1_1_836_628 ]]]]]]]]]]]]]]]]]Y]]]T]]]]YYXZEXSFFM @HWI-EAS88_1_1_1_596_390 GCAAGCTGCTTATGCTAATTTGCATACTGACCAAGA +HWI-EAS88_1_1_1_596_390 ]]]]]]]]]]]]]]]]]V]]]]]O]]]]MQZXEAOK @HWI-EAS88_1_1_1_987_447 GTCTGGAAACGTACGGATTGTTCAGTAACTTTACTC +HWI-EAS88_1_1_1_987_447 ]]]]]]]]]]]]]]]]T]]]]]VTT]ERRVZMAHSJ @HWI-EAS88_1_1_1_370_352 GGCCTTGCTATTGACTCTACTGTAGACATTTTTACT +HWI-EAS88_1_1_1_370_352 ]]]]]]]]]]]]YY]]]]R]]]]RRP]O[ZZXVFLS @HWI-EAS88_1_1_1_843_797 GCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGT +HWI-EAS88_1_1_1_843_797 ]]]]]]]]]]]]]]R]]O]CVY]]]T]Y[RMOOSSS @HWI-EAS88_1_1_1_720_664 GTTTACGAATTAAATCGAAGTGGACTGCTGGGGGGA +HWI-EAS88_1_1_1_720_664 ]]]]]]]T]]]]Y]]]]RR]R]]VTRVERVZEQSFF @HWI-EAS88_1_1_1_892_748 GTTGGATTAAGCACTCCGTGGGCAGATTTGTCATTG +HWI-EAS88_1_1_1_892_748 ]]]]]Y]]]]Y]Y]V]]]R]]CJM]JV]WZTEINOS @HWI-EAS88_1_1_1_569_417 GAAATGCAGCAGCAAGATAATCACGAGTATCCTTTC +HWI-EAS88_1_1_1_569_417 ]]]]]]]]]]]]]YV]N]]]]]Y]]O]VVVPNOSNS @HWI-EAS88_1_1_1_231_669 GACTACCCTCCCGACTGCCTATGATGTTTATCCTTC +HWI-EAS88_1_1_1_231_669 ]]]]]]]]]]]]]O]]]R]TOYYR]]Y]EPZXOOSA @HWI-EAS88_1_1_1_990_296 GGCTCTTCTCATATTGGCGCTACTGCAAAGGATATT +HWI-EAS88_1_1_1_990_296 ]]]]]]]]]]T]Y]]]T]]]]T]]O]JPRZTCVASS @HWI-EAS88_1_1_1_113_590 GCATGGGTGATGCTGGTATTAAATCTGCCATTCAAG +HWI-EAS88_1_1_1_113_590 ]]]]]]]]]]]]]]]]YV]]]]R]]]RV[QZXVCNO @HWI-EAS88_1_1_1_355_102 GATAAACCAACCATCAGCATGAGCCTGTCGCCTTGC +HWI-EAS88_1_1_1_355_102 ]]]]]]]]T]]]T]]Y]]MY]T]Y]YVMUSVEVNOF @HWI-EAS88_1_1_1_658_670 GTTTTCCGTAAATTCAGCGCCTTCCATGATGAGACA +HWI-EAS88_1_1_1_658_670 ]]]]]]]]]]YV]]]]]Y]]]]Y]]MTTHSZMQFFF @HWI-EAS88_1_1_1_699_385 GCAATGGAGAAAGACGGAGAGCGCCAACGGCGGCCA +HWI-EAS88_1_1_1_699_385 ]]]]]]]]]V]]]R]]]]]P]Y]Y]REV[ZRXAFHF @HWI-EAS88_1_1_1_943_855 GTTAACAAAAAGTCAGATATGGACCTTGCTGCTAAA +HWI-EAS88_1_1_1_943_855 ]]]]]]]]]]]]]]]]]]]]]]VT]]]][VZXVLKM @HWI-EAS88_1_1_1_465_881 GGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACT +HWI-EAS88_1_1_1_465_881 ]]]]]]]]]]]]]]]]E]]]]CHT]V]M[ZZHVFOS @HWI-EAS88_1_1_1_110_475 GAACAGCATCGGACTCAGATAGTAATCCACGCTCTT +HWI-EAS88_1_1_1_110_475 ]]]]]]]]]]]]Y]]]]]T]Y]TY]YR]PZZUNOLO @HWI-EAS88_1_1_1_334_219 GACGCAATGGAGAAAGACGGAGAGCGCCAACGGCGT +HWI-EAS88_1_1_1_334_219 ]]]]]]]]]]]]OYY]Y]]]C]PYY]]VCOXXVHOA @HWI-EAS88_1_1_1_313_372 GACGCTGACAACCGGCCTTTACTTGTCATGCGCTCT +HWI-EAS88_1_1_1_313_372 ]]]]]Y]]]]]]]]YV]TVO]]]]YY]R[ZZXVSLS @HWI-EAS88_1_1_1_423_931 GGAGCACATTGTAGCATTGTGCCAATTCATCCATTA +HWI-EAS88_1_1_1_423_931 ]]]]]]]]]]]]]]]]]]]V]]]OO]]]RPZTQOOO @HWI-EAS88_1_1_1_511_536 GTATGGCTCTTCTCATATTGGCGCTACTGCAAAGGG +HWI-EAS88_1_1_1_511_536 ]]]]]]]]]]]]]]V]Y]]O]]]]]T]VPZOJIHJC @HWI-EAS88_1_1_1_233_304 GGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA +HWI-EAS88_1_1_1_233_304 ]]]]]]]]]]]]]]]]]]]]]]]]]]M][ZTXVSJL @HWI-EAS88_1_1_1_239_243 GCCCTCTTAAGGATATTCGCGATGAGTATAATTACC +HWI-EAS88_1_1_1_239_243 ]]]]]]]]]]]]]]]]]]Y]Y]]]Y]Y][UZXVJSM @HWI-EAS88_1_1_1_705_445 GCTGATGCTTCCTCTGCTGGTATGGTTGACGCCGGG +HWI-EAS88_1_1_1_705_445 ]]]]]]]]]]]]]]]]]]]]R]]]]Y]YHPPJQLNH @HWI-EAS88_1_1_1_371_846 GCCATCAACTAACGATTCTGTCAAAAACTGACGCGT +HWI-EAS88_1_1_1_371_846 ]]]]]]]]]]]]]]RP]]]]Y]]]Y]R]TTRXSSSO @HWI-EAS88_1_1_1_921_496 GCAATGGAGAAAGACGGAGAGCGCCCACAGCGGCCC +HWI-EAS88_1_1_1_921_496 ]]]]]]]Y]YYY]Y]]]HYO]TYPYHCMEPOJAFAF @HWI-EAS88_1_1_1_322_845 GTCACATTTTGTTCATGGTAGAGATTCTCTTGTTGA +HWI-EAS88_1_1_1_322_845 ]]]]]]]]]]]]]]Y]]]]]]]]Y]]]]WZZOVSMA @HWI-EAS88_1_1_1_243_812 GCTGCTAAAGGTCTAGGAGCTAAAGAATGGAACAAC +HWI-EAS88_1_1_1_243_812 ]]]]]]]]]]]Y]]]]]V]]]V]PYTR][ZZNQJLH @HWI-EAS88_1_1_1_370_333 GGGATGAACATAATAAGCAATGACGGCAGCAATAAA +HWI-EAS88_1_1_1_370_333 ]]]]]]]]]]]]]]TY]]YY]]]]]]]W[JHMOJSM @HWI-EAS88_1_1_1_859_299 GAGTTGTTCCATTCTTTAGCTCCTAGACCTTTAGCA +HWI-EAS88_1_1_1_859_299 ]]]]]]]]]]R]]]]]]]]]]]]]P]R]XZZXMHOJ @HWI-EAS88_1_1_1_797_117 GAAGTGTCCGCATAAAGTGCACCGCATGGAAATGAA +HWI-EAS88_1_1_1_797_117 ]]]]]]]]]]]Y]]Y]]]]]M]]]]M]]OHHNSSAF @HWI-EAS88_1_1_1_748_430 GCGCTACTGCAAAGGATATTTCTAATGTCGTCACTT +HWI-EAS88_1_1_1_748_430 ]]]]]]]]]]]]Y]]V]Y]]]]]R]]M][RTRMLOH @HWI-EAS88_1_1_1_356_375 GACATTATGGGTCTGCAAGCTGCTTATGCTAATTTT +HWI-EAS88_1_1_1_356_375 ]]]]]]]]]]]]]]]]]Y]]]]]]]O]]WVZPQSSH @HWI-EAS88_1_1_1_655_181 GTTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGG +HWI-EAS88_1_1_1_655_181 ]]]]]]]]]]]]]]Y]]]]]]]T]]]TJ[PMPLSJA @HWI-EAS88_1_1_1_801_48 GAAAGGTATTAAGGATGAGTGTTCAAGATTGCTGGG +HWI-EAS88_1_1_1_801_48 ]]]]]]]]]]]]]]Y]]R]]]Y]]OR]T[ZZRVNSH @HWI-EAS88_1_1_1_802_724 GCGTACTTATTCGCCACCATGATTATGACCTGTGTT +HWI-EAS88_1_1_1_802_724 ]]]Y]]]]]]]Y]]]VV]EV]C]P]RREHSCRHHHL @HWI-EAS88_1_1_1_705_499 GTCAACCTCAGCACTAACCTTGCGAGTCATTTCTTT +HWI-EAS88_1_1_1_705_499 ]]]]]]]]]]]]]]]TY]]]]]YYT]V]PVZXQSOS @HWI-EAS88_1_1_1_186_694 GCGTTTGATGAATGCAATGCGACAGGCTCATGCTGT +HWI-EAS88_1_1_1_186_694 ]]]]]]]]]]]]]]]]Y]]]]E]T]]]]WCZXVSSH @HWI-EAS88_1_1_1_354_371 GTTAGGAACATTAGAGCCTTGAATGGCAGATTTAAT +HWI-EAS88_1_1_1_354_371 ]]]]]]]]]]]]]]]]]]]]]V]]]]]V[OZXVHKS @HWI-EAS88_1_1_1_967_272 GGAAAACACCAATCTTTCCAAGCAACAGCAGGTTTC +HWI-EAS88_1_1_1_967_272 ]]]]]]]]]]]Y]]]]]]]J]]]PP]H][HZXOSSK @HWI-EAS88_1_1_1_668_200 GAACTGACCAAACGTCGTTAGGCCAGTTTTCTGTTC +HWI-EAS88_1_1_1_668_200 ]Y]]]]]]]]]]]]Y]]]]]T]]]P]V][XZXIASL @HWI-EAS88_1_1_1_306_556 GTTTTACCTCCAAATGAAGAAATAACATCATGGTAA +HWI-EAS88_1_1_1_306_556 ]]]]]]]]]]]]H]]]]Y]Y]]]VV]]]XVZTVMMM @HWI-EAS88_1_1_1_881_561 GTCGTCACTGATGCTGCTTCTGGTGTGGTTGGTATT +HWI-EAS88_1_1_1_881_561 ]]]]]]]]]]V]]]]]]]]]]]]VYY]]VZZCVFSS @HWI-EAS88_1_1_1_238_692 GTGGTCAACAATTTTAATTGCAGGGGCTTCGGCCCC +HWI-EAS88_1_1_1_238_692 ]]]]]]]]]]]]]]]]]]]Y]]]]]]]][VZXVSSS @HWI-EAS88_1_1_1_443_888 GCTCAAAGTCAAAATAATCAGCGTGACATTCAGAAG +HWI-EAS88_1_1_1_443_888 ]]]]]]]]Y]]]]]]]]Y]]]]YRPV]]XZVUVHSS @HWI-EAS88_1_1_1_167_340 GTCTTTCGTATTCTGGCGTGTAGTCGCCTTCTGTTT +HWI-EAS88_1_1_1_167_340 ]]]]]]]]]]]]]]]]]Y]EMVM]YHJVECZPLCHS @HWI-EAS88_1_1_1_603_569 GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT +HWI-EAS88_1_1_1_603_569 PPPPPPPPPPPPPPPPPPPPOPPPPPPPPPOPOOHK @HWI-EAS88_1_1_1_718_225 GTCAACGTTATATTTTGATAGTTTGACGGTTTATGT +HWI-EAS88_1_1_1_718_225 ]]]]]]]]]]]]]]]]NT]V]]]]MY]H[ZZEKSOF @HWI-EAS88_1_1_1_406_412 GGAAAGATTGGTGTTTTCCATAATAGACGCCACGCG +HWI-EAS88_1_1_1_406_412 ]]]]]]]]]]]]]]]]]]]T]YY]T]J][VCMVFMS @HWI-EAS88_1_1_1_549_119 GGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATT +HWI-EAS88_1_1_1_549_119 ]]]]]]]]]]]]]]]]]]R]]]TYY]]]VVOPAAKS @HWI-EAS88_1_1_1_693_898 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAGT +HWI-EAS88_1_1_1_693_898 ]]]]]]]]]]]Y]]]]]NY]]]]Y]VR]MJQNSAOC @HWI-EAS88_1_1_1_183_559 GTTTTACAGACACCTAAAGCTACATCGTCAACGTTA +HWI-EAS88_1_1_1_183_559 ]]]]]]]]]]]]]]]]]]]]]]]Y]]]VTVVRVMSM @HWI-EAS88_1_1_1_314_891 GATGAACTAAGTCAACCTCAGCACTAACCTTGCGAG +HWI-EAS88_1_1_1_314_891 ]]]]Y]Y]]]]]]]OYY]]]Y]]]YYVVTSZUOOHH @HWI-EAS88_1_1_1_884_867 GTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTA +HWI-EAS88_1_1_1_884_867 ]]]]]]]]]]]]]]]T]]]]]]]]]V]T[OVXEJSJ @HWI-EAS88_1_1_1_878_444 GCAATCTGCCGACCACTCGCGATTCAATCATGACTT +HWI-EAS88_1_1_1_878_444 ]]]]]]]]]]]Y]]T]T]]]]TRYVMEVVRSRHHNH ShortRead/inst/unitTests/cases/s_2_0001_realign_3col_head.txt0000644000175100017510000000260012607265053025034 0ustar00biocbuildbiocbuild#RUN_TIME Thu Aug 28 00:51:44 2008 #SOFTWARE_VERSION @(#) $Id: qualityFilter.pl,v 1.8 2007/11/26 14:42:26 tc Exp $ #FILTER_CRITERION ((CHASTITY>=0.6)) TTAGAAATGTCCACTGCAGGACGTGG 11953 5 GAAAACTTAAAAAGGTGTTAAATTTT 0 0 GTTTTTTAGTGATTTCGTCATTTTTC 13000 3 TACATATACACATACACATACATATA 13000 56 GTGTTTTTCAGTGTAACTCACTCATC 13000 10 TAGATGCTAAATATCCCCCTCAAAGT 0 0 TGAGGGGTATGACTGAATATCTTCAG 13000 14 GGAAAATTTAGAAATGTCCACTGTAG 13000 50 GACTTGAAGTTATTATCATATAGATC 13000 4 GTATTTCACTTCCTTAAGTGTGTATA 0 0 GAGAAATAACAAAACTAACAGACATT 13000 2 GTAGGACATGGAATATGCCAAGAAAA 11953 71 GCCTCAACAGAAACAAAAATATTGAA 13000 37 GAAAATTTAGAAATGTCCAATGTAGG 11953 66 TGTGCATTTCTCATTTTTCACGTTTT 13000 93 TTGACTTCTTCCTTTCAAATTGTATC 13000 3 GATTTTCAGTTTTCTCGCCATATTTT 10906 57 GAAGGACTTAAATGACTCACTTAAAG 13000 4 GCAAAGTGAGTCCCAGGACAGCCAGG 13000 3 GGTATCAAGAGTTAAAGTTTTATGTA 13000 5 GGACCTGGAATATGGCGAGAAAACTG 13000 48 GTCCTACAGGGGACATTTCTAAATTT 11953 62 TGTATGACATGAAATATGGCAAGAAA 11953 10 TAGTAAAGTTTCTTTTATGAATGTGG 13000 255 TACAATGGTCACTAATCATTCTTAAC 0 0 GTGTATATCAATGAGTTACAATGAAA 13000 2 GAGAAATACACACTTTAGGACGTGAA 13000 49 GTGATTTTCAGTTCTCTCGCCATATT 11953 44 GTGGTTTTTATCATTTTCCATGTTTC 13000 5 GGACTAATAGCCACTTATCAGTGAGT 13000 8 GACACCTGGACAGATTAGATATTATT 0 0 GTGGAAAATTTAGAAATGTCCACTGT 13000 50 GTATGATAAAAACTTCAAATCTCTGA 13000 255 GTGATTTTCAGTTTTCTCGCCATATT 13000 44 GAATCCGGTTAAAGTTGGCAGTTGGT 0 0 GTGGATAATTTAGAAATGTCCACTGT 11953 51 ShortRead/inst/unitTests/cases/s_2_0001_realign_head.txt0000644000175100017510000001472112607265053024123 0ustar00biocbuildbiocbuild#RUN_TIME Thu Aug 28 00:51:44 2008 #SOFTWARE_VERSION @(#) $Id: qualityFilter.pl,v 1.8 2007/11/26 14:42:26 tc Exp $ #FILTER_CRITERION ((CHASTITY>=0.6)) TTAGAAATGTCCACTGCAGGACGTGG 11953 5 GAAAACTTAAAAAGGTGTTAAATTTT 0 0 GTTTTTTAGTGATTTCGTCATTTTTC 13000 3 TGACTGTTGGATTTATATTATTTCTT 13000 1 mmu_ref_1_37:179764953 F TGACTGTTGGATTTATATTATTTCTT 10906 TACATATACACATACACATACATATA 13000 56 GTGTTTTTCAGTGTAACTCACTCATC 13000 10 TAGATGCTAAATATCCCCCTCAAAGT 0 0 GATAAAAGTTTGATACACTTTAGACA 13000 1 mmu_ref_5_37:88334169 R TGTCTAAAGTGTATCAAACTTTTATC 9859 TGAGGGGTATGACTGAATATCTTCAG 13000 14 AATGGGTTCACAGGCAGATCGAGCCG 13000 1 mmu_ref_4_37:41300066 F AATGGGTTCACAGGCAGATCGAGCCG 9859 GGAAAATTTAGAAATGTCCACTGTAG 13000 50 GACTTGAAGTTATTATCATATAGATC 13000 4 GTATTTCACTTCCTTAAGTGTGTATA 0 0 GAGAAATAACAAAACTAACAGACATT 13000 2 GCTGTAACTCCCTCTATTAAGAATCT 13000 1 mmu_ref_6_37:12143858 R AGATTCTTAATAGAGGGAGTTACAGC 9859 GTCAGTTCTCTCCTTCCTCCATACAG 13000 1 mmu_ref_7_37:17322027 F GTCAGTTCTCTCCTTCCTCCATACAG 11953 GTGGCACACAGAACCTATAACCCTCA 13000 1 mmu_ref_16_37:41376291 R TGAGGGTTATAGGTTCTGTGTGCCAC 9859 TTTCTCCAATAGGGTCATACCTCATA 13000 1 mmu_ref_12_37:27398329 R TATGAGGTATGACCCTATTGGAGAAA 10906 TTCCTACAAAGTTTTAATTTTAAATT 13000 1 mmu_ref_3_37:14092109 R AATTTAAAATTAAAACTTTGTAGGAA 9859 GAATGATTGGTGTGATAAATAATGTT 13000 1 mmu_ref_1_37:116730648 R AACATTATTTATCACACCAATCATTC 9859 GAAGCAGACTTTTTAATTTTTTACTA 13000 1 mmu_ref_1_37:97868632 F GAAGCAGACTTTTTAATTTTTTACTA 10906 GTAGGACATGGAATATGCCAAGAAAA 11953 71 GGTAATTCACAGTTTGAAATGAAGCA 13000 1 mmu_ref_X_37:66984760 F GGTAATTCACAGTTTGAAATGAAGCA 9859 GCCTCAACAGAAACAAAAATATTGAA 13000 37 TGCTAACAGGTACTCATGGCACAGAT 11953 1 mmu_ref_3_37:22679356 F TGCTAACAGGTACTCATGGCACAGAA 9859 GAAAATTTAGAAATGTCCAATGTAGG 11953 66 GGGGTTGGTCTGGTGTTGCTCTGTAT 13000 1 mmu_ref_18_37:57492171 F GGGGTTGGTCTGGTGTTGCTCTGTAT 11953 GAGAATGCTCGCCTTTTATATAATGT 13000 1 mmu_ref_4_37:116267591 F GAGAATGCTCGCCTTTTATATAATGT 9859 TGTGCATTTCTCATTTTTCACGTTTT 13000 93 TTGACTTCTTCCTTTCAAATTGTATC 13000 3 GAGGGAATTAGTGAAAGGAATGAATA 13000 1 mmu_ref_1_37:154720925 F GAGGGAATTAGTGAAAGGAATGAATA 9859 GATTTTCAGTTTTCTCGCCATATTTT 10906 57 GTTTTCTCGCCATATTCCAGGTCCTT 13000 1 mmu_ref_2_37:98507289 R AAGGACCTGGAATATGGCGAGAAAAC 11953 GTATATAATTAGTATGCCATGTTTTT 13000 1 mmu_ref_12_37:62103751 F GTATATAATTAGTATGCCATGTTTTT 9859 GTCAAATAAATGCAAAGTCCTTCAAG 13000 1 mmu_ref_12_37:94072062 F GTCAAATAAATGCAAAGTCCTTCAAG 9859 GAAGGACTTAAATGACTCACTTAAAG 13000 4 GCAAAGTGAGTCCCAGGACAGCCAGG 13000 3 GGAAGGGTGAAAGAGGAAGAGAAGGA 13000 1 mmu_ref_1_37:184288690 R TCCTTCTCTTCCTCTTTCACCCTTCC 10906 GTCAGATATTCTATATAATGAAAGAA 13000 1 mmu_ref_13_37:40107677 R TTCTTTCATTATATAGAATATCTGAC 9859 GGTATCAAGAGTTAAAGTTTTATGTA 13000 5 TTTCTCTCTCTCTCTCCACTTCTCTG 13000 1 mmu_ref_13_37:118278073 R CAGAGAAGTGGAGAGAGAGAGAGAAA 10906 GGACCTGGAATATGGCGAGAAAACTG 13000 48 GTCCTACAGGGGACATTTCTAAATTT 11953 62 TGTATGACATGAAATATGGCAAGAAA 11953 10 TAGTAAAGTTTCTTTTATGAATGTGG 13000 255 GTTCCTTTGTACATTAATGGTCATAG 13000 1 mmu_ref_3_37:25517235 R CTATGACCATTAATGTACAAAGGAAC 9859 TACAATGGTCACTAATCATTCTTAAC 0 0 TCAATAAGTAGTAACGGACAGGTGGA 13000 1 mmu_ref_11_37:88900847 F TCAATAAGTAGTAACGGACAGGTGGA 9859 GGAGAAAGTTTATGTTGAGACATTTT 13000 1 mmu_ref_14_37:60444247 F GGAGAAAGTTTATGTTGAGACATTTT 9859 GTGTATATCAATGAGTTACAATGAAA 13000 2 GTGTACTAGAACATTAGCATTTCAAG 13000 1 mmu_ref_9_37:39813035 F GTGTACTAGAACATTAGCATTTCAAG 9859 GAGAAATACACACTTTAGGACGTGAA 13000 49 GTGATTTTCAGTTCTCTCGCCATATT 11953 44 GTGGTTTTTATCATTTTCCATGTTTC 13000 5 GGACTAATAGCCACTTATCAGTGAGT 13000 8 GACACCTGGACAGATTAGATATTATT 0 0 TAAAATTATTGTTCTGGAACGAAAAG 13000 1 mmu_ref_8_37:35218943 F TAAAATTATTGTTCTGGAACGAAAAG 9859 TGGAGAAGTTCTATGTTCCTAAAGGA 13000 1 mmu_ref_2_37:144191295 R TCCTTTAGGAACATAGAACTTCTCCA 10906 GTATATGAACATGTCTACATGTTTGA 13000 1 mmu_ref_1_37:173724022 F GTATATGAACATGTCTACATGTTTGA 9859 GGTGTGGGTGGGTTGTTGTTGGTGGG 13000 1 mmu_ref_12_37:8688329 F GGTGTGGGTGGGTTGTTGTTGGTGGG 10906 GAAACACTGGCAGGTTAACCACAGTC 11953 1 mmu_ref_12_37:119479603 R GACTGTGGTTAAACTGCCAGTGTTTC 10906 GTGGAAAATTTAGAAATGTCCACTGT 13000 50 GTCTCATTCATTTATCCTCAGAGAAG 13000 1 mmu_ref_13_37:89183794 R CTTCTCTGAGGATAAATGAATGAGAC 9859 GATAGCTAAAGCTGAAGTTAGTTAAG 13000 1 mmu_ref_6_37:54554544 F GATAGCTAAAGCTGAAGTTAGTTAAG 9859 GTAAGCAGTATCTGGGTAGCAGTGAT 13000 1 mmu_ref_4_37:30409546 R ATCACTGCTACCCAGATACTGCTTAC 9859 GTTTTGTCGATTTTATTCTTTCCAGG 13000 1 mmu_ref_3_37:112008324 F GTTTTGTCGATTTTATTCTTTCCAGG 9859 TTAATTCCTCTTACTCAGGAAGCAAA 13000 1 mmu_ref_8_37:108643109 F TTAATTCCTCTTACTCAGGAAGCAAA 9859 GTTTGGGAAATTGGATTTTGTTTCGT 10906 1 mmu_ref_7_37:146810559 F GTTTGGGAAATTGGATTTTGTTTGGC 9859 GATAATTCCACATGCATATGTCACAT 13000 1 mmu_ref_9_37:17363912 F GATAATTCCACATGCATATGTCACAT 9859 GAAAAATGAAATCACTTGAATGATGG 13000 1 mmu_ref_4_37:19271012 R CCATCATTCAAGTGATTTCATTTTTC 9859 GTCTCCATCTAGGATACTGTAGGGAT 13000 1 mmu_ref_14_37:47151876 R ATCCCTACAGTATCCTAGATGGAGAC 9859 GGAAAACACGGAGCTAAGGACGGAAT 11953 1 mmu_ref_3_37:145805803 F GGAAAACACGGAGCTAAGGACGGTAT 9859 GTATGATAAAAACTTCAAATCTCTGA 13000 255 GAGGGATGGATGCTATGCTCACTTAT 13000 1 mmu_ref_2_37:136005373 F GAGGGATGGATGCTATGCTCACTTAT 9859 GTGATTTTCAGTTTTCTCGCCATATT 13000 44 GAATCCGGTTAAAGTTGGCAGTTGGT 0 0 GTGGATAATTTAGAAATGTCCACTGT 11953 51 GTCTGCTATCCCTTCCTTCTCTTCCC 13000 1 mmu_ref_1_37:22573779 R GGGAAGAGAAGGAAGGGATAGCAGAC 9859 GAAAAAATATCAAGTGATCAAGTACA 13000 1 mmu_ref_2_37:86868605 F GAAAAAATATCAAGTGATCAAGTACA 9859 GATGTTTCTCATTTTCCATGATTTTC 13000 71 TTCAACATAGTTGTTGAATTGGTGGT 13000 1 mmu_ref_5_37:148339512 F TTCAACATAGTTGTTGAATTGGTGGT 9859 GATATGCGCTTACCCTGCTAGAAGGG 13000 1 mmu_ref_5_37:76436477 R CCCTTCTAGCAGGGTAAGCGCATATC 9859 GTAGAATTTCTGCTCAGAATCCATTT 13000 1 mmu_ref_18_37:19741659 R AAATGGATTCTGAGCAGAAATTCTAC 9859 GTTAAAGCGCCGCAAGTGTTGATTTG 13000 1 mmu_ref_2_37:48411382 R CAAATCAACACTTGCGGCGCTTTAAC 9859 GTGCATTTTTCCTTCCTTCCATCACA 13000 1 mmu_ref_2_37:54382378 F GTGCATTTTTCCTTCCTTCCATCACA 9859 GTGGTTTTTATCATTTTCCATGTTTC 13000 5 GTGAAAAATGAGAAATGCACACTCTA 11953 90 TTTGAATGATTACTAAGGGAAGATTT 13000 1 mmu_ref_6_37:6065828 R AAATCTTCCCTTAGTAATCATTCAAA 9859 GTGTGTAAGGGTGTGGGGGGGATTGT 13000 1 mmu_ref_7_37:60884160 F GTGTGTAAGGGTGTGGGGGGGATTGT 10906 TCTCCAACTATAAATTCATGTTCCAG 11953 1 mmu_ref_3_37:92135783 F TCTCCAACTATAAATTAATGTTCCAG 9859 GGTTGCCAAAAATTATGCCTACAATT 13000 1 mmu_ref_X_37:22779882 R AATTGTAGGCATAATTTTTGGCAACC 10906 GTTTTCTCGCCATATTCCAGGTCCTT 13000 1 mmu_ref_2_37:98507289 R AAGGACCTGGAATATGGCGAGAAAAC 11953 GGAAAATGAGAAACATCCACTTGACG 13000 23 TTCCAAAGTGTGCTTGCAATATGACC 13000 1 mmu_ref_6_37:18221380 R GGTCATATTGCAAGCACACTTTGGAA 10906 GGAAGTTTCTCATATTCTTCGATTTT 0 0 AATCATGGAAAATGAGAAACATCCAC 13000 67 GAATATTTAGAAATGTCCACTGTAGG 13000 3 ShortRead/inst/unitTests/cases/s_2_export_run_as_factor.txt0000644000175100017510000000233212607265053025302 0ustar00biocbuildbiocbuildHWI-EAS88 genome 2 1 451 945 CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC YQMIMIMMLMMIGIGMFICMFFFIMMHIIHAAGAH NM N HWI-EAS88 genome 2 1 409 991 AGCCTCCCTCTTTCTGAATATACGGCAGAGCTGTT ZXZUYXZQYYXUZXYZYYZZXXZZIMFHXQSUPPO NM Y HWI-EAS88 genome 2 1 451 939 ACCAAAAACACCACATACACGAGCAACACACGTAC LGDHLILLLLLLLIGFLLALDIFDILLHFIAECAE NM N HWI-EAS88 genome 2 1 447 961 AATCGGAAGAGCTCGTATGCCGGCTTCTGCTTGGA JJYYIYVSYYYYYYYYSDYYWVUYYNNVSVQQELQ NM N HWI-EAS88 genome 2 1 450 960 AAAGATAAACTCTAGGCCACCTCCTCCTTCTTCTA LLLILIIIDLLHLLLLLLLLLLLALLLLHLLLLEL NM N HWI-EAS88 genome 2 1 467 922 AAAAAAAAAAAGGACACACCATGAGATCACAGGGA YYYYYYYWVVMGGUHQHQMUFMICDMCDHQHEDDD NM N HWI-EAS88 genome 2 1 874 313 TAAAAAATTAGCAAAAAACCAAAAATGTAATTGAT ZZZZZZZZZZYZZZZZYZZZZYYZZZZZZZUUUUU chr17.fa 69345321 R A30A3 14 Y HWI-EAS88 genome 2 1 907 256 TAAATCGTGCTGTAACCTTTCCCAACATCTCTGTG ZZZZZZZZUZZUZZZZZZZZZZZZYZYZZZUUHUH chr18.fa 54982866 F 35 67 Y HWI-EAS88 genome 2 1 889 547 AATGACCGATAATTAAAAATAAAATCTTTGCATAT ZZZZZZZYZZYZZZZYZZZZZZZZZZZZZXUNUUU NM Y HWI-EAS88 genome 2 1 892 426 TCATCATTTTTCTAAGTGTTATGAAGAAAATATAT ZZZZUUZYZYZZZZZLZSZZYYUUZDUJIYUUULU chr12.fa 80537786 R 25T9 18 Y ShortRead/inst/unitTests/cases/s_2_export_toIUPAC.txt0000644000175100017510000000166112607265053023665 0ustar00biocbuildbiocbuildHWI-EAS88 3 2 1 451 945 CCAG.GCCA-CCGTTCACTCCTGAACCAGTCTCTC YQMI.IMML-MIGIGMFICMFFFIMMHIIHAAGAH NM N HWI-EAS88 3 2 1 409 991 AGCCTCCCTCTTTCTGAATATACGGCAGAGCTGTT ZXZUYXZQYYXUZXYZYYZZXXZZIMFHXQSUPPO NM Y HWI-EAS88 3 2 1 451 939 ACCAAAAACACCACATACACGAGCAACACACGTAC LGDHLILLLLLLLIGFLLALDIFDILLHFIAECAE NM N HWI-EAS88 3 2 1 447 961 AATCGGAAGAGCTCGTATGCCGGCTTCTGCTTGGA JJYYIYVSYYYYYYYYSDYYWVUYYNNVSVQQELQ NM N HWI-EAS88 3 2 1 450 960 AAAGATAAACTCTAGGCCACCTCCTCCTTCTTCTA LLLILIIIDLLHLLLLLLLLLLLALLLLHLLLLEL NM N HWI-EAS88 3 2 1 467 922 AAAAAAAAAAAGGACACACCATGAGATCACAGGGA YYYYYYYWVVMGGUHQHQMUFMICDMCDHQHEDDD NM N HWI-EAS88 3 2 1 874 313 TAAAAAATTAGCAAAAAACCAAAAATGTAATTGAT ZZZZZZZZZZYZZZZZYZZZZYYZZZZZZZUUUUU chr17.fa 69345321 R A30A3 14 Y HWI-EAS88 3 2 1 907 256 TAAATCGTGCTGTAACCTTTCCCAACATCTCTGTG ZZZZZZZZUZZUZZZZZZZZZZZZYZYZZZUUHUH chr18.fa 54982866 F 35 67 Y ShortRead/inst/unitTests/cases/sanger.fastq0000644000175100017510000000022612607265053022067 0ustar00biocbuildbiocbuild@sanger ASCII 33-126; < 59 marks as not solexa GCGGACCGCTTGATATCCATGCCCCAG +sanger ASCII 33-126; < 59 marks as not solexa !\"#$%&'()*+,-./0123456789: ShortRead/inst/unitTests/cases/soap.txt0000644000175100017510000000475712607265053021270 0ustar00biocbuildbiocbuildSIMU_0001_00000081/1 TGTACAGTATGTGAAGAGATTTGTTCTGAACCAAA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 2210 0 SIMU_0001_00000081/2 CATGCCCATGACACTACCTCAGGAGGTCCTGACAG hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 2708 1 G->15A40 SIMU_0001_00000082/1 GTATAAAAAGAAAAATGTTTATTAAACTTCTATAG hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 50653 2 C->2A40 C->9G40 SIMU_0001_00000082/2 GACATTCTTTAAAGTTTCACTTAAAAGATCTGCAA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 51126 0 SIMU_0001_00000083/1 ATAGAGGGAGTGGAGTAGAGGAAAAGCCAATGATT hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 20925 0 SIMU_0001_00000083/2 TCTGCGCTCACTATTAAATAAGAATGACCAGGAGA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 21371 0 SIMU_0001_00000084/1 AGACCCCAGGTGGATGCATTGGTCCTAGGTAAACA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 45408 0 SIMU_0001_00000084/2 GCCGCAGGTGCCTCACCTCTACTCCCTGAAACCTC hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 45856 1 A->3G40 SIMU_0001_00000085/1 TAAATTTAAAAATGAGAGAGAAATAAAGAAGGAGA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 57096 0 SIMU_0001_00000085/2 ATATTTCAGACATCCAAAGAGAGAAAGAAAAGTCA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 57516 1 A->6C40 SIMU_0001_00000086/1 TAGGCTTAAGGACAGTGGCAAACATGGCCTCTGCC hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 6075 1 T->7A40 SIMU_0001_00000086/2 AGCTGTCCAAACACCTTATCTTTTCATCTCTGACC hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 6526 0 SIMU_0001_00000087/1 ACCACTGAGGCCCGCTTTCCCTGCTGAGGGGGGGG hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 6827 0 SIMU_0001_00000087/2 ATCACATCACCAGGAGGGTGTAGAAATCTGTAGTT hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 7278 0 SIMU_0001_00000088/1 GACTATCTGAGTAACTCTTTCAAAAAGAATTGTCC hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 88610 1 G->9A40 SIMU_0001_00000088/2 TTTCAATGATGTTCCAATTTTCTAAAATATAATAT hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 89058 2 G->21C40 A->19T40 SIMU_0001_00000089/1 GAACTACAAAATTAGAGATCATCATAGCTATATTG hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 91226 0 SIMU_0001_00000089/2 AGGCTATGAAGTGTTGCACGTGATAATCCAAGCAT hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 91679 1 A->7G40 SIMU_0001_00000091/1 CTCGCCAAGGCAACACAATGTAGCAGTCTCTCTTG hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 31544 0 SIMU_0001_00000091/2 CAGGCAGACAGCTTCCCTGAGAACCAGTCTCTTAC hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 32056 0 SIMU_0001_00000092/1 TCTGAAACAACCTTTATTCTCTTGAGAGTTAATAT hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 63491 1 C->34T40 ShortRead/inst/unitTests/cases/solexa.fastq0000644000175100017510000000025612607265053022106 0ustar00biocbuildbiocbuild@solexa ASCII 59-126; 59-104 realistic GCGCGGATCTTTAGCATTGTAGTACCGGACATAACAACAATTTTGCC +solexa ASCII 59-126; 59-104 realistic ;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefgh ShortRead/inst/unitTests/test_AlignedRead.R0000644000175100017510000002633112607265053022000 0ustar00biocbuildbiocbuildsp <- SolexaPath(system.file("extdata", package="ShortRead")) aln <- readAligned(sp, "s_2_export.txt") .checkAlignedRead_identical<- function(obs, exp) ## can't compare external pointers { checkIdentical(as.character(sread(obs)), as.character(sread(exp))) checkIdentical(as.character(quality(quality(obs))), as.character(quality(quality(exp)))) checkIdentical(as.character(id(obs)), as.character(id(exp))) checkIdentical(chromosome(obs), chromosome(exp)) checkIdentical(strand(obs), strand(exp)) checkIdentical(alignQuality(obs), alignQuality(exp)) checkIdentical(alignData(obs), alignData(exp)) } test_AlignedRead_Bowtie <- function() { src <- system.file("extdata", "bowtie", package="ShortRead") df <- read.table(file.path(src, "s_1_aligned_bowtie.txt"), fill=TRUE, quote="", sep="\t") aln <- readAligned(src, "^s_1_aligned_bowtie.txt$", "Bowtie") checkIdentical(nrow(df), length(aln)) checkIdentical(as.character(df[[2]]), as.character(strand(aln))) checkIdentical(as.character(df[[3]]), as.character(chromosome(aln))) checkIdentical(df[[4]]+1L, position(aln)) idx <- strand(aln)=="-" s1 <- as.character(df[[5]]) s1[idx] <- as.character(reverseComplement(DNAStringSet(s1[idx]))) checkIdentical(s1, as.character(sread(aln))) q1 <- as.character(df[[6]]) q1[idx] <- as.character(reverse(BStringSet(q1[idx]))) checkIdentical(q1, as.character(quality(quality(aln)))) checkIdentical(as.character(df[[8]]), as.character(alignData(aln)[["mismatch"]])) } test_AlignedRead_SOAP <- function() { fl <- "soap.txt" src <- system.file("unitTests", "cases", package="ShortRead") tbl <- read.table(file.path(src, fl), fill=TRUE) aln <- readAligned(src, fl, "SOAP") checkTrue(validObject(aln)) checkIdentical(as.character(tbl[[1]]), as.character(id(aln))) strand <- as.character(strand(aln)) checkIdentical(as.character(tbl[[7]]), strand) sread <- as.character(sread(aln)) sread[strand=="-"] <- as.character(reverseComplement(sread(aln)))[strand=="-"] checkIdentical(as.character(tbl[[2]]), sread) qual <- as.character(quality(quality(aln))) qual[strand=="-"] <- as.character(reverse(quality(quality(aln)))[strand=="-"]) checkIdentical(as.character(tbl[[3]]), qual) checkIdentical(as.character(tbl[[8]]), as.character(chromosome(aln))) checkIdentical(tbl[[9]], position(aln)) checkTrue(all(is.na(quality(alignQuality(aln))))) with(pData(alignData(aln)), { checkIdentical(tbl[[4]], nEquallyBestHits) checkIdentical(as.character(tbl[[5]]), as.character(pairedEnd)) checkIdentical(tbl[[6]], alignedLength) checkIdentical(tbl[[10]], typeOfHit) checkIdentical(c("", "G->15A40", "C->2A40\tC->9G40", "", "", "", "", "A->3G40", "", "A->6C40", "T->7A40", "", "", "", "G->9A40", "G->21C40\tA->19T40", "", "A->7G40", "", "", "C->34T40"), hitDetail) }) } test_AlignedRead_readAligned_SolexaExport <- function() { obj <- readAligned(analysisPath(sp), pattern="s_2_export.txt", type="SolexaExport") checkTrue(validObject(obj)) checkTrue(is(quality(obj), "SFastqQuality")) checkTrue(is(alignQuality(obj), "NumericQuality")) checkIdentical(varLabels(alignData(obj)), c("run", "lane", "tile", "x", "y", "filtering", "contig")) } test_AlignedRead_readAligned_SolexaExport_filter <- function() { chr <- "chr5.fa" filt <- chromosomeFilter(chr) obs <- readAligned(sp, "s_2_export.txt", filter=filt) exp <- aln[grep(chr, chromosome(aln))] .checkAlignedRead_identical(obs, exp) obs <- readAligned(analysisPath(sp), "s_2_export.txt", "SolexaExport", filter=filt) .checkAlignedRead_identical(obs, exp) } test_AlignedRead_readAligned_SolexaExport_withWhat <- function() { src <- system.file("unitTests", "cases", package="ShortRead") aln <- readAligned(src, "PE_export.txt.gz", type="SolexaExport", withAll=TRUE) checkIdentical(400L, length(aln)) e0 <- c("HWUSI-EAS618_1:1:1:0:1122#AGCACGA/1", "HWUSI-EAS618_1:1:1:0:843#ACCACGA/1", "HWUSI-EAS618_1:1:1:4:873#ATCACGA/1", "HWUSI-EAS618_1:1:1:4:480#ACCACGA/1") checkIdentical(e0, as.character(id(aln)[c(1,2, 399, 400)])) e1 <- structure(c(41L, 2L, 72L, 4L, 17L, 17L, 5L, 2L, 8L, 70L, 1L, 2L, 1L, 1L, 1L, 37L, 1L, 3L, 2L, 1L, 1L, 70L, 1L, 1L, 1L, 4L, 31L, 1L, 1L, 1L), .Dim = 30L, .Dimnames = structure(list(c("AACACGA", "AACCCGA", "ACCACGA", "ACCCCGA", "AGACCAA", "AGCACGA", "AGCCCAA", "AGCCCCA", "AGCCCGA", "ATCACGA", "ATCCCCA", "ATCCCGA", "CACCCTC", "CACGACC", "CCCCCGA", "CGACCAA", "CGACCAC", "CGCCCAA", "CGCCCCA", "CTCCCTT", "GCGCCCA", "GGACCAA", "GGACCCA", "GGACNAA", "GGCCCAA", "NNNNNNN", "TGACCAA", "TGCCCTA", "TTCCCTG", "TTCCCTT")), .Names = ""), class = "table") checkIdentical(e1, table(alignData(aln)[["multiplexIndex"]])) aln0 <- readAligned(src, "PE_export.txt.gz", type="SolexaExport", withId=TRUE, withMultiplexIndex=TRUE) checkIdentical(sub("/1$", "", as.character(id(aln))), as.character(id(aln0))) colidx <- varLabels(alignData(aln)) != "pairedReadNumber" checkIdentical(alignData(aln)[, colidx], alignData(aln0)) } test_AlignedRead_readAligned_MAQMapview <- function() { fl <- system.file("extdata", "maq", package="ShortRead") obj <- readAligned(fl, pattern=".*aln.*", type="MAQMapview") checkTrue(validObject(obj)) checkTrue(is(quality(obj), "FastqQuality")) checkTrue(is(alignQuality(obj), "NumericQuality")) checkIdentical(varLabels(alignData(obj)), c("nMismatchBestHit", "mismatchQuality", "nExactMatch24", "nOneMismatch24")) checkIdentical(levels(chromosome(obj)), "ChrA") checkTrue(!any(is.na(chromosome(obj))) && !any(is.null(chromosome(obj)))) } readAligned_maq_consistent <- function() { ## FIXME: find adequate data to store in ShortRead pkg if (!file.exists("/home/jdavison/sharedrsrc/proj/ycao/data/binary_maps/s_5.map")) return(TRUE) x <- readAligned("/home/jdavison/sharedrsrc/proj/ycao/data/binary_maps", "s_5.map", "MAQMap") y <- readAligned("/home/jdavison/sharedrsrc/proj/ycao/data/text_maps", "s_5.txt", "MAQMapview") checkIdentical(length(x), length(y)) checkIdentical(width(x), width(y)) checkIdentical(as.character(chromosome(x)), as.character(chromosome(y))) ## FIXME: we'd really like chromosome to have identical levels, ## but info on levels with no mapped reads is not available in the ## text version idx <- match(levels(chromosome(y)), levels(chromosome(x))) checkTrue(all(!is.na(idx)) && all(diff(idx) > 0)) checkIdentical(position(x), position(y)) checkIdentical(strand(x), strand(y)) checkIdentical(alignQuality(x), alignQuality(y)) checkIdentical(alignData(x), alignData(y)) .checkXString <- function(x, y) { checkIdentical(as.character(x), as.character(y)) } .checkXString(sread(x), sread(y)) .checkXString(sread(x), sread(y)) .checkXString(quality(quality(x)), quality(quality(y))) .checkXString(id(x), id(y)) } test_AlignedRead_readAligned_run_as_factor <- function() { src <- system.file("unitTests", "cases", package="ShortRead") aln <- readAligned(src, "^s_2_export_run_as_factor.txt$", "SolexaExport") checkIdentical(alignData(aln)[["run"]], factor(rep("genome", length(aln)))) } test_AlignedRead_readAligned_realign_targetpos <- function() { ## column 4 can be target:pos fl <- "s_2_0001_realign_head.txt" src <- system.file("unitTests", "cases", package="ShortRead") tbl <- read.table(file.path(src, fl), fill=TRUE) aln <- readAligned(src, fl, "SolexaRealign") checkIdentical(as.character(tbl[[1]]), as.character(sread(aln))) checkIdentical(tbl[[2]], quality(alignQuality(aln))) checkIdentical(tbl[[3]], alignData(aln)[["nMatch"]]) checkIdentical(table(tbl[[5]])[["F"]], table(strand(aln))[["+"]]) chr <- sub(":.*", "", tbl[[4]]) chr[nchar(chr)==0] <- NA checkIdentical(factor(chr), chromosome(aln)) checkIdentical(as.integer(sub(".*:", "", tbl[[4]])), position(aln)) checkIdentical(ShortRead:::.toStrand_Solexa(tbl[[5]]), strand(aln)) checkIdentical(tbl[[7]], alignData(aln)[["nextBestAlignQuality"]]) } test_AlignedRead_readAligned_realign_threecol <- function() { ## column 4 can be target:pos fl <- "s_2_0001_realign_3col_head.txt" src <- system.file("unitTests", "cases", package="ShortRead") tbl <- read.table(file.path(src, fl), fill=TRUE) aln <- readAligned(src, fl, "SolexaRealign") checkIdentical(as.character(tbl[[1]]), as.character(sread(aln))) checkIdentical(tbl[[2]], quality(alignQuality(aln))) checkIdentical(tbl[[3]], alignData(aln)[["nMatch"]]) checkIdentical(factor(rep(NA_character_, nrow(tbl))), chromosome(aln)) checkIdentical(rep(NA_integer_, nrow(tbl)), position(aln)) checkIdentical(ShortRead:::.toStrand_Solexa(rep("", nrow(tbl))), strand(aln)) checkIdentical(rep(NA_integer_, nrow(tbl)), alignData(aln)[["nextBestAlignQuality"]]) } test_AlignedRead_readAligned_SolexaResult <- function() { fl <- "s_1_results_head.txt" src <- system.file("unitTests", "cases", package="ShortRead") tbl <- read.table(file.path(src, fl), fill=TRUE, col.names=paste("V", 1:12, sep="")) aln <- readAligned(src, fl, "SolexaResult") checkIdentical(as.character(tbl[[2]]), as.character(sread(aln))) chr <- tbl[[7]] checkIdentical(factor(chr), chromosome(aln)) checkIdentical(tbl[[8]], position(aln)) checkIdentical(ShortRead:::.toStrand_Solexa(tbl[[9]]), strand(aln)) ad <- alignData(aln) checkIdentical(tbl[[3]], ad[[1]]) checkIdentical(tbl[[4]], ad[[2]]) checkIdentical(tbl[[5]], ad[[3]]) checkIdentical(tbl[[6]], ad[[4]]) checkIdentical(tbl[[10]], ad[[5]]) checkIdentical(tbl[[11]], ad[[6]]) checkIdentical(tbl[[12]], ad[[7]]) } test_AlignedRead_constructor <- function() { aln <- AlignedRead() checkTrue(validObject(aln)) aln <- AlignedRead(sread=DNAStringSet(polyn("A", 5))) checkTrue(validObject(aln)) aln <- AlignedRead(sread=DNAStringSet( c(polyn("A", 5), polyn("A", 10)))) checkTrue(validObject(aln)) checkIdentical(c(5L, 10L), width(aln)) } test_AlignedRead_compact <- function() { exp <- aln[1:100] obs <- compact(exp) checkIdentical(as.character(sread(exp)), as.character(sread(obs))) checkIdentical(as.character(quality(quality(exp))), as.character(quality(quality(obs)))) checkIdentical(as.character(id(exp)), as.character(id(obs))) checkIdentical(alignData(exp), alignData(obs)) } ShortRead/inst/unitTests/test_AllClasses.R0000644000175100017510000000101112607265053021653 0ustar00biocbuildbiocbuildtest_AllClasses_STRAND_LEVELS <- function() { checkIdentical(ShortRead:::.STRAND_LEVELS, levels(strand())) } test_AllClasses_new <- function() { nmspace <- getNamespace("ShortRead") nms <- names(slot(getClass(".ShortReadBase", where=nmspace), "subclasses")) ## 'new' with no additional arguments ok <- Map(function(x) validObject(new(x)), Filter(function(x) !slot(getClass(x, where=nmspace), "virtual"), nms)) checkTrue(all(unlist(ok))) } ShortRead/inst/unitTests/test_FastqFile.R0000644000175100017510000000136612607265053021520 0ustar00biocbuildbiocbuildsp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") test_FastqFile <- function() { fq <- FastqFile(fl) checkTrue(validObject(fq)) checkIdentical(path(fq), fl) checkTrue(!isOpen(fq)) close(fq) } test_FastqFileList <- function() { fql0 <- FastqFileList(c(fl, fl)) checkTrue(validObject(fql0)) checkIdentical(2L, length(fql0)) fql1 <- FastqFileList(FastqFile(fl), FastqFile(fl)) checkIdentical(sapply(fql0, path), sapply(fql1, path)) checkIdentical(sapply(fql0, isOpen), sapply(fql1, isOpen)) open(fql0) checkTrue(all(sapply(fql0, isOpen))) close(fql0) checkTrue(all(!sapply(fql0, isOpen))) checkTrue(all(!sapply(fql1, isOpen))) } ShortRead/inst/unitTests/test_Intensity.R0000644000175100017510000000224112607265053021621 0ustar00biocbuildbiocbuildtest_IntensityMeasure_subset <- function() { a <- array(1:1000, c(10, 10, 10)) x <- ArrayIntensity(a) checkTrue(all(a==x)) checkTrue(all(a[,,]==x[,,])) checkTrue(all(a[1:5,,]==x[1:5,,])) checkTrue(all(a[,1:5,]==x[,1:5,])) checkTrue(all(a[1:5,1:5,]==x[1:5,1:5,])) checkTrue(all(a[,,1:5]==x[,,1:5])) checkTrue(all(a[1:5,,1:5]==x[1:5,,1:5])) checkTrue(all(a[,1:5,1:5]==x[,1:5,1:5])) checkTrue(all(a[1:5,1:5,1:5]==x[1:5,1:5,1:5])) } test_Intensity_subset <- function() { check <- function(obj, m, adf) { checkTrue(all(m==intensity(obj))) checkTrue(all(m==measurementError(obj))) checkIdentical(adf, readInfo(obj)) } m <- array(1:1000, c(10, 10, 10)) adf <- SolexaIntensityInfo(1:10) si <- SolexaIntensity(intensity=m, measurementError=m, readInfo=adf) ridx <- sample(nrow(m), 5) cidx <- sample(ncol(m), 5) x <- ArrayIntensity(m) checkTrue(all(intensity(si)==x)) checkTrue(all(measurementError(si)==x)) check(si[,,], m[,,], adf) check(si[ridx,,], m[ridx,,], adf[ridx,]) check(si[,cidx,], m[,cidx,], adf) check(si[ridx, cidx,], m[ridx, cidx,], adf[ridx,]) } ShortRead/inst/unitTests/test_SRError.R0000644000175100017510000000317512607265053021200 0ustar00biocbuildbiocbuildthrow <- ShortRead:::.throw ## SRError test_SRError_construction <- function() { checkTrue(validObject(SRError("UnspecifiedError", "message"))) checkException(SRError(), silent=TRUE) checkException(SBError("UnspecifiedError"), silent=TRUE) # must have message checkException(SRError("Bad error class", "Message"), silent=TRUE) # must have valid class } test_SRError_throw <- function() { err <- SRError("UnspecifiedError", "error message") checkException(throw(err), silent=TRUE) } test_SRError_throw <- function() { err <- SRError("UnspecifiedError", "error message") checkTrue(tryCatch(throw(err), SRError=function(err) TRUE)) checkTrue(tryCatch(throw(err), UnspecifiedError=function(err) TRUE)) } ## SRWarn test_SRWarn_construction <- function() { checkTrue(validObject(SRWarn("UnspecifiedWarning", "message"))) checkException(SRWarn(), silent=TRUE) checkException(SRWarn("UnspecifiedWarning"), silent=TRUE) checkException(SRWarn("Bad Warn Class"), silent=TRUE) } test_SRWarn_throw <- function() { old.opt <- options(warn=2) on.exit(options(old.opt)) warn <- SRWarn("UnspecifiedWarning", "warning message") checkException(throw(warn), silent=TRUE) } test_SRWarn_catch <- function() { old.opt <- options(warn=2) on.exit(options(old.opt)) warn <- SRWarn("UnspecifiedWarning", "warning message") checkTrue(tryCatch(throw(warn), SRWarn=function(warn) TRUE)) checkTrue(tryCatch(throw(warn), UnspecifiedWarning=function(warn) TRUE)) } ShortRead/inst/unitTests/test_SRFilter.R0000644000175100017510000001627412607265053021340 0ustar00biocbuildbiocbuildaln <- local({ sp <- SolexaPath(system.file("extdata", package="ShortRead")) readAligned(sp, "s_2_export.txt") }) test_srFilter <- function() { checkTrue(validObject(srFilter())) checkTrue(validObject(srFilter(name="Filter"))) checkIdentical(name(srFilter(name="Filter")), Biobase::mkScalar("Filter")) checkTrue(validObject(srFilter(function(x) {}))) checkException(srFilter(function(){}), silent=TRUE) checkException(srFilter(function(x, ...) {}), silent=TRUE) } test_occurrenceFilter <- function() { checkTrue(validObject(occurrenceFilter())) aln <- AlignedRead(DNAStringSet(character(2)), chromosome=c("chr1", "chr1"), position=c(1L, 1L), strand=rep(strand("+"), 2)) checkTrue(all(c(TRUE, FALSE) == occurrenceFilter(withSread=TRUE)(aln))) checkTrue(all(c(TRUE, FALSE) == occurrenceFilter(withSread=FALSE)(aln))) checkTrue(all(c(TRUE, FALSE) == occurrenceFilter(withSread=NA)(aln))) aln <- AlignedRead(DNAStringSet(c("A", "T")), chromosome=c("chr1", "chr1"), position=c(1L, 1L), strand=rep(strand("+"), 2)) checkTrue(all(c(TRUE, TRUE) == occurrenceFilter(withSread=TRUE)(aln))) checkTrue(all(c(TRUE, FALSE) == occurrenceFilter(withSread=FALSE)(aln))) checkTrue(all(c(TRUE, TRUE) == occurrenceFilter(withSread=NA)(aln))) aln <- AlignedRead(DNAStringSet(character(4)), chromosome=rep(c("chr1", "chr2"), each=2), position=rep(1:2, 2), strand=rep(strand("+"), 4)) checkTrue(all(occurrenceFilter(withSread=FALSE)(aln))) checkTrue(all(occurrenceFilter(withSread=TRUE)(aln))) checkTrue(all(c(TRUE, FALSE, FALSE, FALSE) == occurrenceFilter(withSread=NA)(aln))) sp <- SolexaPath(system.file("extdata", package="ShortRead")) aln <- readAligned(analysisPath(sp), "s_2_export.txt", "SolexaExport") checkIdentical(980L, sum(occurrenceFilter(withSread=NA)(aln))) checkIdentical(996L, sum(occurrenceFilter(withSread=TRUE)(aln))) df <- data.frame(chromosome(aln), position(aln), strand(aln)) checkIdentical(sum(!duplicated(df)), sum(occurrenceFilter(withSread=FALSE)(aln))) checkIdentical(15L, sum(occurrenceFilter(min=5, max=10, withSread=NA)(aln))) checkIdentical(13L, sum(occurrenceFilter(min=3, max=5, withSread=NA)(aln))) checkIdentical(8L, sum(occurrenceFilter(min=3, max=5, duplicates="none", withSread=NA)(aln))) } test_chromosomeFilter <- function() { checkTrue(validObject(chromosomeFilter())) checkException(chromosomeFilter(c("foo", "bar")), silent=TRUE) chr <- "chr5.fa" obj <- chromosomeFilter(chr) checkIdentical(aln[obj(aln)], aln[grep(chr, chromosome(aln))]) } test_strandFilter <- function() { checkTrue(validObject(strandFilter())) checkException(strandFilter(1), silent=TRUE) str <- character(0) obj <- strandFilter(str) checkIdentical(aln[obj(aln)], aln[FALSE]) str <- "+" obj <- strandFilter(str) checkIdentical(aln[obj(aln)], aln[strand(aln)=="+" & !is.na(strand(aln))]) str <- c("+", "-") obj <- strandFilter(str) checkIdentical(aln[obj(aln)], aln[(strand(aln)=="+" |strand(aln)=="-") & !is.na(strand(aln))]) str <- c("+", NA) obj <- strandFilter(str) checkIdentical(aln[obj(aln)], aln[strand(aln)=="+" | is.na(strand(aln))]) obj <- strandFilter(NA_character_) checkIdentical(aln[obj(aln)], aln[is.na(strand(aln))]) } test_nFilter <- function() { checkTrue(validObject(nFilter())) checkTrue(validObject(nFilter(20))) checkException(nFilter("alf"), silent=TRUE) checkException(nFilter(1:2), silent=TRUE) n <- 0 checkIdentical(aln[nFilter(n)(aln)], clean(aln)) n <- 30 alf <- alphabetFrequency(sread(aln), baseOnly=TRUE) checkIdentical(aln[nFilter(n)(aln)], aln[alf[,"other"] <= n]) } test_polynFilter <- function() { checkTrue(validObject(polynFilter())) checkTrue(validObject(polynFilter(20))) checkTrue(validObject(polynFilter(nuc=c("A", "other")))) checkException(polynFilter(1:2), silent=TRUE) checkException(polynFilter("x"), silent=TRUE) checkException(polynFilter(nuc="Z"), silent=TRUE) alf <- alphabetFrequency(sread(aln), baseOnly=TRUE) n <- 30 obj <- polynFilter(n) checkIdentical(aln[obj(aln)], aln[apply(alf, 1, max) <= n]) n <- 30 obj <- polynFilter(n, c("A", "C", "T", "G")) checkIdentical(aln[obj(aln)], aln[apply(alf[,1:4], 1, max) <= n]) } test_dustyFilter <- function() { checkTrue(validObject(dustyFilter())) checkTrue(validObject(dustyFilter(20))) checkTrue(validObject(lgl0 <- dustyFilter(10L)(aln))) checkTrue(validObject(lgl1 <- dustyFilter(10L)(sread(aln)))) checkIdentical(lgl0, lgl1) checkIdentical(lgl0, dustyFilter(10L, 100L)(aln)) checkIdentical(lgl0, dustyFilter(10L, 100L)(sread(aln))) } test_srdistanceFilter <- function() { checkTrue(validObject(srdistanceFilter())) checkTrue(validObject(srdistanceFilter("sdf", 1))) checkException(srdistanceFilter(123), silent=TRUE) checkException(srdistanceFilter("sdfs", 1:2), silent=TRUE) obj <- srdistanceFilter() checkIdentical(aln[obj(aln)], aln) nr <- c("GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA", "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA") obj <- srdistanceFilter(nr[[1]], 1L) checkIdentical(aln[obj(aln)], aln[as.character(sread(aln))!=nr[[1]]]) obj <- srdistanceFilter(nr, 1L) checkIdentical(aln[obj(aln)], aln[as.character(sread(aln))!=nr[[1]] & as.character(sread(aln))!=nr[[2]] ]) } test_alignQualityFilter <- function() { checkTrue(validObject(alignQualityFilter())) checkTrue(validObject(alignQualityFilter(70))) checkException(alignQualityFilter("foo"), silent=TRUE) checkException(alignQualityFilter(threshold=1:2), silent=TRUE) checkIdentical(aln[alignQualityFilter()(aln)], aln) n <- 70 obj <- alignQualityFilter(n) checkIdentical(aln[obj(aln)], aln[quality(alignQuality(aln))>=70]) } test_alignDataFilter <- function() { checkTrue(validObject(alignDataFilter())) ex <- expression(x>200 & y<600) checkTrue(validObject(alignDataFilter(ex))) ad <- pData(alignData(aln)) checkIdentical(aln[alignDataFilter(ex)(aln)], aln[eval(ex, ad)]) } test_compose <- function() { f1 <- chromosomeFilter("chr5.fa") f2 <- polynFilter(12) checkTrue(validObject(compose())) checkTrue(validObject(compose(f1))) checkTrue(validObject(compose(f1, f2))) obj <- compose(f1, f2) checkTrue(validObject(obj)) checkIdentical(name(obj), Biobase::mkScalar(paste(name(f1), name(f2), sep=" o "))) checkException(compose("foo"), silent=TRUE) checkException(compose(f1, "foo"), silent=TRUE) checkIdentical(aln[compose(f1)(aln)], aln[f1(aln)]) checkIdentical(aln[obj(aln)], aln[f1(aln) & f2(aln)]) } ShortRead/inst/unitTests/test_SRFilterResult.R0000644000175100017510000000606612607265053022535 0ustar00biocbuildbiocbuildmkScalar <- Biobase::mkScalar test_SRFilterResult_constructor <- function() { checkTrue(validObject(SRFilterResult())) fr <- SRFilterResult(TRUE) checkTrue(validObject(fr)) checkIdentical(mkScalar(NA_character_), name(fr)) df <- data.frame(Name=NA_character_, Input=1L, Passing=1L, Op=NA_character_, stringsAsFactors=FALSE) checkIdentical(df, stats(fr)) fr <- SRFilterResult(c(TRUE, FALSE)) df <- data.frame(Name=NA_character_, Input=2L, Passing=1L, Op=NA_character_, stringsAsFactors=FALSE) checkIdentical(df, stats(fr)) fr <- SRFilterResult(c(TRUE, FALSE),"A") df <- data.frame(Name="A", Input=2L, Passing=1L, Op=NA_character_, stringsAsFactors=FALSE) checkIdentical(df, stats(fr)) } test_SRFilterResult_logic <- function() { a <- SRFilterResult(c(TRUE, FALSE), "A") b <- SRFilterResult(c(FALSE, TRUE), "B") checkTrue(all(a|b)) exp <- structure(list(Name = c("A", "B", "(A | B)"), Input = c(2L, 2L, 2L), Passing = c(1L, 1L, 2L), Op = c(NA, NA, "|")), .Names = c("Name", "Input", "Passing", "Op"), row.names = c(NA, -3L), class = "data.frame") checkIdentical(exp, stats(a|b)) checkTrue(all(!b == !(b@.Data))) exp <- structure(list(Name = c("B", "!(B)"), Input = c(2L, 2L), Passing = c(1L, 1L), Op = c(NA, "!")), .Names = c("Name", "Input", "Passing", "Op"), row.names = c(NA, -2L), class = "data.frame") checkIdentical(exp, stats(!b)) } test_SRFilterResult_SRFilter <- function() { fa <- srFilter(function(x) logical(length(x)), "A") x <- fa(1:10) checkIdentical(logical(10L), x@.Data) checkIdentical(mkScalar("A"), name(x)) exp <- structure(list(Name = "A", Input = 10L, Passing = 0L, Op = NA_character_), .Names = c("Name", "Input", "Passing", "Op"), row.names = c(NA, -1L), class = "data.frame") checkIdentical(exp, stats(x)) x <- fa(1:10) & fa(1:10) checkIdentical(logical(10L), x@.Data) checkIdentical(mkScalar("(A & A)"), name(x)) exp <- structure(list(Name = c("A", "A", "(A & A)"), Input = c(10L, 10L, 10L), Passing = c(0L, 0L, 0L), Op = c(NA, NA, "&")), .Names = c("Name", "Input", "Passing", "Op"), row.names = c(NA, -3L), class = "data.frame") checkIdentical(exp, stats(x)) fb <- srFilter(function(x) !logical(length(x)), "B") x <- fa(1:10) | fb(1:10) checkIdentical(!logical(10L), x@.Data) checkIdentical(mkScalar("(A | B)"), name(x)) exp <- structure(list(Name = c("A", "B", "(A | B)"), Input = c(10L, 10L, 10L), Passing = c(0L, 10L, 10L), Op = c(NA, NA, "|")), .Names = c("Name", "Input", "Passing", "Op"), row.names = c(NA, -3L), class = "data.frame") checkIdentical(exp, stats(x)) } ShortRead/inst/unitTests/test_SRList.R0000644000175100017510000000107012607265053021012 0ustar00biocbuildbiocbuildtest_SRList_construction <- function() { srl <- SRList() checkTrue(validObject(srl)) checkEquals(0, length(srl)) srl <- SRList(list()) checkTrue(validObject(srl)) checkEquals(0, length(srl)) srl <- SRList(list(1)) checkTrue(validObject(srl)) checkEquals(1, length(srl)) srl <- SRList(list(1, 2)) checkTrue(validObject(srl)) checkEquals(2, length(srl)) checkEquals(1, length(srl[[1]])) srl <- SRList(1, 2) checkTrue(validObject(srl)) checkEquals(2, length(srl)) checkEquals(1, length(srl[[1]])) } ShortRead/inst/unitTests/test_SRVector.R0000644000175100017510000000071312607265053021344 0ustar00biocbuildbiocbuildtest_SRVector_construction <- function() { check <- function(srv, cls, len) { checkTrue(validObject(srv)) checkEquals(cls, vclass(srv)) checkEquals(len, length(srv)) } check(SRVector(vclass="numeric"), "numeric", 0) check(SRVector(1), "numeric", 1) checkException(SRVector(),silent=TRUE) checkException(SRVector("a", vclass="numeric"), silent=TRUE) checkException(SRVector(1, "a"), silent=TRUE) } ShortRead/inst/unitTests/test_ShortRead.R0000644000175100017510000000217612607265053021535 0ustar00biocbuildbiocbuildsp <- SolexaPath(system.file("extdata", package="ShortRead")) sr <- as(readFastq(sp, "s_1_sequence.txt"), "ShortRead") .equals <- function(x, y) { checkIdentical(as.character(sread(x)), as.character(sread(y))) checkIdentical(as.character(id(x)), as.character(id(y))) } test_ShortRead_construction <- function() { obj <- ShortRead() checkTrue(class(obj) == "ShortRead") checkTrue(validObject(obj)) obj <- ShortRead(sread(sr)) checkTrue(class(obj) == "ShortRead") checkTrue(validObject(obj)) .equals(new("ShortRead", sread=DNAStringSet(sread(sr)), id=BStringSet(rep("", length(sr)))), obj) obj <- ShortRead(sread(sr), id(sr)) checkTrue(class(obj) == "ShortRead") checkTrue(validObject(obj)) .equals(sr, obj) } test_ShortRead_narrow <- function() { obj <- narrow(sr, start=1, end=10) checkTrue(class(obj) == "ShortRead") checkTrue(length(obj) == length(sr)) checkTrue(unique(width(obj)) == 10) checkIdentical(as.character(sread(obj)), substr(as.character(sread(sr)), 1, 10)) checkIdentical(narrow(sr, start=start(sread(sr))), sr) } ShortRead/inst/unitTests/test_ShortReadQ.R0000644000175100017510000002077212607265053021660 0ustar00biocbuildbiocbuildsp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") checkShortReadQ <- function(obj, len, wd) { checkStringSet <- function(obj, type, len, wd) { checkTrue(is(obj, type)) checkEquals(len, length(obj)) checkEquals(wd, unique(width(obj))) } checkStringSet(obj, "ShortReadQ", len, wd[[1]]) checkStringSet(sread(obj), "DNAStringSet", len, wd[[2]]) checkStringSet(id(obj), "BStringSet", len, wd[[3]]) # ids w/ diff lengths checkStringSet(quality(obj), "QualityScore", len, wd[[4]]) } .equals <- function(x, y) { checkIdentical(as.character(sread(x)), as.character(sread(y))) checkIdentical(as.character(quality(quality(x))), as.character(quality(quality(y)))) checkIdentical(as.character(id(x)), as.character(id(y))) } test_ShortReadQ_constructors <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) sr <- obj <- readFastq(sp) checkTrue(validObject(obj)) checkShortReadQ(obj, 256, list(36, 36, 24:22, 36)) obj <- ShortReadQ() checkTrue(class(obj) == "ShortReadQ") checkTrue(validObject(obj)) obj <- ShortReadQ(sread(sr), quality(sr)) checkTrue(class(obj) == "ShortReadQ") checkTrue(validObject(obj)) .equals(new("ShortReadQ", sread=sread(sr), id=BStringSet(rep("", length(sr))), quality=quality(sr)), obj) obj <- ShortReadQ(sread(sr), quality(sr), id(sr)) checkTrue(class(obj) == "ShortReadQ") checkTrue(validObject(obj)) .equals(sr, obj) } test_FastqSampler <- function() { sr <- readFastq(fl) ## here to re-use equality checker obj <- yield(f <- FastqSampler(fl)) close(f) .equals(sr, obj) yld <- yield(f <- FastqSampler(fl, readerBlockSize=1000)) close(f) checkTrue(validObject(yld)) ## regression yld <- yield(f <- FastqSampler(fl, readerBlockSize=256)) close(f) checkIdentical(256L, length(yld)) } test_FastqSampler_rand <- function() { ## two samples with the same random number seed are identical samp <- FastqSampler(fl, 50) set.seed(123L); obs <- yield(samp) set.seed(123L); exp <- yield(samp) close(samp) .equals(obs, exp) ## different samples set.seed(123L) samp <- FastqSampler(fl, 50) obs <- length(Reduce(intersect, replicate(2, id(yield(samp))))) checkIdentical(7L, obs) obs <- length(Reduce(intersect, replicate(3, id(yield(samp))))) checkIdentical(0L, obs) close(samp) } test_FastqStreamer <- function() { sr <- readFastq(fl) f <- FastqStreamer(fl, n=50) i <- 0L; len <- 0L while (length(y <- yield(f))) { len <- len + length(y) i <- i + 1L } close(f) checkIdentical(6L, i) checkIdentical(256L, len) ## values equal? f <- FastqStreamer(fl, n=50) .equals(sr[1:50], yield(f)) .equals(sr[50+1:50], yield(f)) close(f) ## whole file f <- FastqStreamer(fl, n=500) i <- 0L; len <- 0L while (length(y <- yield(f))) { .equals(sr, y) len <- len + length(y) i <- i + 1L } close(f) checkIdentical(1L, i) checkIdentical(256L, len) ## small reader block size f <- FastqStreamer(fl, n=50, readerBlockSize=100) i <- 0L; len <- 0L while (length(y <- yield(f))) { len <- len + length(y) i <- i + 1L } close(f) checkIdentical(6L, i) checkIdentical(256L, len) } test_FastqStreamer_roundtrip <- function() { out <- tempfile() writeFastq(v1 <- readFastq(fl), out) s <- FastqStreamer(out) .equals(v1, yield(s)) } test_FastqStreamer_IRanges <- function() { sr <- readFastq(fl) ## basics rng <- IRanges(c(50, 100, 200), width=c(5, 4, 3)) f <- FastqStreamer(fl, rng) .equals(sr[50:54], yield(f)) .equals(sr[100:103], yield(f)) .equals(sr[200:202], yield(f)) .equals(ShortReadQ(), yield(f)) close(f) ## successive rng <- IRanges(c(50, 60), width=10) f <- FastqStreamer(fl, rng) .equals(sr[50:59], yield(f)) .equals(sr[60:69], yield(f)) .equals(ShortReadQ(), yield(f)) close(f) ## off-the-end rng <- IRanges(250, width=100) f <- FastqStreamer(fl, rng) .equals(sr[250:256], yield(f)) .equals(ShortReadQ(), yield(f)) close(f) ## too-short buffer to skip all reads in one binary input rng <- IRanges(250, width=5) f <- FastqStreamer(fl, rng, readerBlockSize=10000) .equals(sr[250:254], yield(f)) .equals(ShortReadQ(), yield(f)) close(f) rng <- IRanges(241, width=5) f <- FastqStreamer(fl, rng, readerBlockSize=10000) .equals(sr[241:245], yield(f)) .equals(ShortReadQ(), yield(f)) close(f) ## exceptions rng <- IRanges(50, 49) # non-zero checkException(FastqStreamer(fl, rng), silent=TRUE) rng <- IRanges(c(50, 59), c(60, 70)) # strictly increasing checkException(FastqStreamer(fl, rng), silent=TRUE) } test_ShortReadQ_coerce_QualityScaledDNAStringSet <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) obj <- readFastq(sp, qualityType="SFastqQuality") res <- as(obj, "QualityScaledDNAStringSet") checkIdentical(as.character(sread(obj)), as.character(as(res, "DNAStringSet"))) checkIdentical(as.character(quality(quality(obj))), as.character(quality(res))) checkTrue(is(quality(res), "SolexaQuality")) obj <- initialize(obj, quality=FastqQuality(quality(quality(obj)))) res <- as(obj, "QualityScaledDNAStringSet") checkIdentical(as.character(sread(obj)), as.character(as(res, "DNAStringSet"))) checkIdentical(as.character(quality(quality(obj))), as.character(quality(res))) checkTrue(is(quality(res), "PhredQuality")) q <- MatrixQuality(as(quality(obj), "matrix")) obj <- initialize(obj, quality=q) checkException(as(obj, "QualityScaledDNAStringSet"), silent=TRUE) } test_ShortReadQ_coerce_matrix <- function() { ## 0-length fq <- FastqQuality() exp <- matrix(NA_integer_, 0, 0) checkIdentical(exp, as(fq, "matrix")) ## ragged matrix fq <- FastqQuality(BStringSet(c("]]X", "]]]X"))) exp <- matrix(c(rep(60L, 4), 55L, 60L, NA_integer_, 55L), 2) checkIdentical(exp, as(fq, "matrix")) } test_ShortReadQ_subset <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) obj <- readFastq(sp) obj1 <- obj[c(3, 5:7, 9)] checkShortReadQ(obj1, 5, list(36, 36, 23, 36)) checkException(obj[,1], silent=TRUE) checkException(obj[1,1], silent=TRUE) checkIdentical(2L, length(obj[1:2,])) checkIdentical(2L, length(obj[1:2,drop=TRUE])) checkIdentical(2L, length(obj[1:2,,drop=TRUE])) } test_ShortReadQ_subset_gets <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) sr <- obj <- readFastq(sp) i <- sample(length(obj)) sr[i] <- obj .equals(sr[i], obj) } test_ShortReadQ_narrow <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) sr <- readFastq(sp) obj <- narrow(sr, start=1, end=10) checkTrue(class(obj) == "ShortReadQ") checkTrue(length(obj) == length(sr)) checkTrue(unique(width(obj)) == 10) checkIdentical(as.character(sread(obj)), substr(as.character(sread(sr)), 1, 10)) checkIdentical(as.character(quality(quality(obj))), substr(as.character(quality(quality(sr))), 1, 10)) checkIdentical(as.character(id(obj)), as.character(id(sr))) checkIdentical(narrow(sr, start=start(sread(sr))), sr) } test_ShortReadQ_compact <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) sr <- readFastq(sp)[1:10] res <- compact(sr) checkIdentical(as.character(sread(sr)), as.character(sread(res))) checkIdentical(as.character(quality(quality(sr))), as.character(quality(quality(res)))) } test_ShortReadQ_clean <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) obj <- readFastq(sp) cln <- clean(obj) checkIdentical(class(obj), class(cln)) ## FIXME: need a stronger test checkEquals(length(obj), length(clean(obj))) } test_ShortReadQ_srsort <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) obj <- readFastq(sp) srt <- srsort(obj) checkIdentical(class(obj), class(srt)) checkIdentical(length(obj), length(srt)) checkIdentical(srsort(sread(obj)), sread(srt)) checkIdentical(quality(obj)[srorder(obj)], quality(srt)) } ShortRead/inst/unitTests/test_SolexaIntensity.R0000644000175100017510000000622112607265053022777 0ustar00biocbuildbiocbuildtest_SolexaIntensity_construction <- function() { checkTrue(validObject(SolexaIntensityInfo())) checkTrue(validObject(SolexaIntensityInfo(lane=rep(1, 10)))) checkTrue(validObject(SolexaIntensity())) checkTrue(validObject(SolexaIntensity(intensity=array(0,c(1,2,3))))) checkException(SolexaIntensity(measurementError=array(0,c(1,2,3))), silent=TRUE) checkTrue(validObject(SolexaIntensity(intensity=array(0,c(1,2,3)), measurementError=array(0,c(1,2,3))))) checkException(SolexaIntensityInfo()[,"lane"], silent=TRUE) } test_SolexaIntensity_access <- function() { checkException(measurementError(SolexaIntensity()), silent=TRUE) } test_SolexaIntensity_io <- function() { sp <- SolexaPath(system.file("extdata", package="ShortRead")) int <- readIntensities(sp) checkIdentical(c(256L, 4L, 36L), dim(intensity(int))) checkIdentical(c(256L, 4L, 36L), dim(measurementError(int))) checkIdentical(256L, nrow(pData(readInfo(int)))) int <- readIntensities(sp, withVariability=FALSE) checkIdentical(c(256L, 4L, 36L), dim(intensity(int))) checkIdentical(256L, nrow(pData(readInfo(int)))) checkException(measurementError(int), silent=TRUE) } test_IparIntensity_io <- function() { src <- system.file("unitTests","cases",package="ShortRead") int <- readIntensities(src, type="IparIntensity", intExtension="_int_head.txt.p", nseExtension="_nse_head.txt.p", posExtension="_pos_head.txt") checkIdentical(c(5L, 4L, 3L), dim(int)) checkIdentical(structure(c(11.7, 49.4, 14.3, 110.6, -1.1, 3.2, 86.2, 5.9, 18.8, 120.2, 21.1, 218.8, 96.2, 2.7, 177.4, 9.1, 55.9, 340.9, 112, 164.8, 0.8, 2.6, 15.7, 4.6), .Dim = c(2L, 4L, 3L), .Dimnames = list( NULL, c("A", "C", "G", "T"), NULL)), as(intensity(int), "array")[1:2,,]) checkIdentical(structure(c(8.5, 6.2, 9, 9.2, 3, 3.1, 6.6, 6.4, 12.6, 11.9, 12.5, 11, 3.8, 3.6, 6.6, 5.8, 13.6, 10.5, 12.4, 12.7, 4.7, 4.2, 7.3, 6.4), .Dim = c(2L, 4L, 3L), .Dimnames = list(NULL, c("A", "C", "G", "T"), NULL)), as(measurementError(int), "array")[1:2,,]) checkIdentical(structure(list(lane = structure(c(1L, 1L, 1L, 1L, 1L), class = "factor", .Label = "1"), tile = c(1L, 1L, 1L, 1L, 1L), x = c(-0.47, -0.45, -0.45, -0.44, -0.43), y = c(1073.78, 1558.67, 1157.37, 144.35, 1497.99 )), .Names = c("lane", "tile", "x", "y"), row.names = c(NA, -5L), class = "data.frame"), pData(readInfo(int))) } ShortRead/inst/unitTests/test_append.R0000644000175100017510000000317312607265053021107 0ustar00biocbuildbiocbuild## Function: append (package base) ## x="AlignedDataFrame", values="AlignedDataFrame", after="missing" ## x="AlignedRead", values="AlignedRead", after="missing" ## x="QualityScore", values="QualityScore", after="missing" ## x="ShortRead", values="ShortRead", after="missing" ## x="ShortReadQ", values="ShortReadQ", after="missing" sp <- SolexaPath(system.file("extdata", package="ShortRead")) .equal <- function(x, y) { checkIdentical(class(x), class(y)) checkIdentical(length(x), length(y)) checkIdentical(as.character(id(x)), as.character(id(y))) checkIdentical(as.character(sread(x)), as.character(sread(y))) if (is(x, "ShortReadQ")) checkIdentical(as.character(quality(quality(x))), as.character(quality(quality(y)))) if (is(x, "AlignedRead")) { checkIdentical(strand(x), strand(y)) checkIdentical(chromosome(x), chromosome(y)) checkIdentical(position(x), position(y)) checkIdentical(dim(alignData(x)), dim(alignData(y))) adx <- alignData(x); ady <- alignData(y) checkIdentical(varMetadata(adx), varMetadata(ady)) pdx <- pData(adx); pdy <- pData(ady) row.names(pdx) <- row.names(pdy) <- NULL checkIdentical(pdx, pdy) } } test_append <- function() { aln <- readAligned(sp, "s_2_export.txt") aaln <- append(aln, aln) .equal(aln, aaln[seq_len(length(aln))]) .equal(aln, aaln[length(aln) + seq_len(length(aln))]) } test_append_exception <- function() { checkException(append(sp, sp), silent=TRUE) aln <- readAligned(sp, "s_2_export.txt") checkException(append(quality(aln), aln), silent=TRUE) } ShortRead/inst/unitTests/test_coverage.R0000644000175100017510000000407412607265053021434 0ustar00biocbuildbiocbuild.width <- 10 .mkAln <- function(position, width, strand) { n <- length(position) AlignedRead(sread=DNAStringSet(rep(polyn("A", width), n)), chromosome=rep("ChrA", n), position=as.integer(position), strand=strand) } test_coverage_leftmost_plus <- function() { ## 'leftmost' ## 1 2 ## 8 7 2 ## ++++++++++----- ## ....|....|....|....|....| aln <- .mkAln(8L, .width, strand("+")) cvg <- coverage(aln, width=c(ChrA=25L), extend=5L) checkIdentical(c(7L, 15L, 3L), runLength(cvg[[1]])) } test_coverage_leftmost_minus <- function() { ## ....|....|....|....| ## -----++++++++++ ## 3 8 1 ## 7 aln <- .mkAln(8L, .width, strand("-")) cvg <- coverage(aln, width=c(ChrA=20L), extend=5L) checkIdentical(c(2L,15L,3L), runLength(cvg[[1]])) } test_coverage_fiveprime_plus <- function() { ## 5' ## 1 2 ## 8 7 2 ## ++++++++++----- ## ....|....|....|....|....| aln <- .mkAln(8L, .width, strand("+")) cvg <- coverage(aln, width=c(ChrA=25L), coords="fiveprime", extend=5L) checkIdentical(c(7L, 15L, 3L), runLength(cvg[[1]])) } test_coverage_fiveprime_minus <- function() { ## ....|....|....|....|....| ## -----++++++++++ ## 3 8 1 ## 7 aln <- .mkAln(17L, .width, strand("-")) cvg <- coverage(aln, width=c(ChrA=25L), coords="fiveprime", extend=5L) checkIdentical(c(2L, 15L, 8L), runLength(cvg[[1]])) } test_coverage_width_names <- function() { aln <- .mkAln(1, 10, strand("+")) checkTrue(validObject(coverage(aln))) checkTrue(validObject(coverage(aln, width=c(ChrA=20L)))) ## no names on width checkException(coverage(aln, width=100), silent=TRUE) ## wrong name on width checkException(coverage(aln, width=c(ChrB=100)), silent=TRUE) ## extra width element -- ok checkTrue(validObject(coverage(aln, width=c(ChrA=20L, ChrB=20L)))) } ShortRead/inst/unitTests/test_filterFastq.R0000644000175100017510000000220012607265053022112 0ustar00biocbuildbiocbuildsp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") .all_equal <- function(target, current, ...) { ac <- as.character all.equal(ac(sread(target)), ac(sread(current))) && all.equal(ac(quality(quality(target))), ac(quality(quality(current)))) && all.equal(ac(id(target)), ac(id(current))) } test_filterFastq <- function() { tf <- c(TRUE, FALSE) exp <- readFastq(fl)[tf] filt <- function(x) x[tf] dest <- filterFastq(fl, tempfile(), filter=filt) checkTrue(.all_equal(exp, readFastq(dest))) dest <- filterFastq(fl, tempfile(), filter=filt, yieldSize=100) checkTrue(.all_equal(exp,readFastq(dest))) filt <- function(x) tf rule <- FilterRules(list(filt=filt)) dest <- filterFastq(fl, tempfile(), filter=rule) checkTrue(.all_equal(exp,readFastq(dest))) dest <- tempfile() file.create(dest) obs <- tryCatch(filterFastq(fl, dest, filter=filt), error=conditionMessage) checkIdentical(sprintf("'destinations' exist:\n %s", dest), obs) } ShortRead/inst/unitTests/test_functions.R0000644000175100017510000001147112607265053021650 0ustar00biocbuildbiocbuild## readFastq test_readFastq_autoDetectType <- function() { src <- system.file("unitTests","cases", package="ShortRead") srq <- readFastq(file.path(src, "sanger.fastq")) checkTrue(class(quality(srq)) == "FastqQuality") srq <- readFastq(file.path(src, "solexa.fastq")) checkTrue(class(quality(srq)) == "SFastqQuality") srq <- readFastq(file.path(src, "solexa.fastq"), qualityType="FastqQuality") checkTrue(class(quality(srq)) == "FastqQuality") } test_readFastq_withids <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") rfq1 <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt", withIds=FALSE) checkIdentical(as.character(sread(rfq)), as.character(sread(rfq1))) checkIdentical(as.character(quality(quality(rfq))), as.character(quality(quality(rfq1)))) checkIdentical(as.character(id(rfq1)), character(length(rfq1))) } test_readFastq_zerowidth <- function() { fl <- tempfile(); writeLines("@ \n\n+\n", fl) fq <- readFastq(fl) checkTrue(validObject(fq)) checkIdentical(0L, width(fq)) } ## alphabetByCycle checkAlphabetByCycle <- function(obj) { abc <- alphabetByCycle(obj) validObject(abc) checkEquals(length(obj)*unique(width(obj)), sum(abc)) } test_alphabetByCycle <- function() { sp <- SolexaPath(system.file('extdata', package="ShortRead")) sq <- readFastq(sp) checkAlphabetByCycle(sread(sq)) checkAlphabetByCycle(quality(sq)) obj <- alphabetByCycle(sq) validObject(obj) checkEquals(c(18, 94, 36), dim(obj)) checkEqualsNumeric(alphabetByCycle(sread(sq)), apply(obj, c(1, 3), sum)) checkEqualsNumeric(alphabetByCycle(quality(sq)), apply(obj, 2:3, sum)) obj <- rowSums(alphabetByCycle(id(sq))) obj <- obj[obj != 0] exp <- table(unlist(strsplit(as.character(id(sq)), ""), use.names=FALSE)) checkTrue(setequal(names(obj), names(exp))) checkIdentical(as.numeric(exp[names(obj)]), as.vector(obj)) srq <- ShortReadQ(DNAStringSet(), FastqQuality()) abc <- alphabetByCycle(srq) alf <- alphabet(sread(srq)) qalf <- alphabet(quality(srq)) checkIdentical(matrix(0L, nrow=length(alf), ncol=0, dimnames=list(alphabet=alf, cycle=character(0))), alphabetByCycle(sread(srq))) checkIdentical(array(0L, dim=c(18, 94, 0), dimnames=list(base=alf, quality=qalf, cycle=character(0))), alphabetByCycle(srq)) } ## countLines test_countLines <- function() { sp <- SolexaPath(system.file('extdata', package="ShortRead")) nlines <- countLines(analysisPath(sp), "s_1_sequence.txt") exp <- 1024; names(exp) <- "s_1_sequence.txt" checkEquals(exp, nlines) dir <- tempfile() dir.create(dir) checkException(countLines(dir), silent=TRUE) } ## sort / order test_order_stats <- function() { checkIdentical(integer(0), srrank(AlignedRead())) checkIdentical(integer(0), srorder(AlignedRead())) checkIdentical(logical(0), srduplicated(AlignedRead())) } test_alphabetOrder <- function() { ## setup oldc <- Sys.getlocale("LC_COLLATE") on.exit(Sys.setlocale("LC_COLLATE", oldc)) Sys.setlocale("LC_COLLATE", "C") sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") checkEquals(srorder(sread(rfq)), order(as.character(sread(rfq)))) checkEquals(srorder(quality(rfq)), order(as.character(quality(quality(rfq))))) checkEquals(srduplicated(sread(rfq)), duplicated(as.character(sread(rfq)))) checkEquals(srduplicated(quality(rfq)), duplicated(as.character(quality(quality(rfq))))) } ## _mark_field (C code) test_mark_field <- function() { fl <- tempfile() do <- function(s, fl) { doexp(s, strsplit(unlist(strsplit(s, "\n")), "\t"), fl) } doexp <- function(s, exp, fl) { writeChar(s, fl) res <- .Call("_mark_field_test", fl, "\t", c(2L, 3L), PACKAGE="ShortRead") checkIdentical(exp, res) } do("a\tb\tc\nd\te\tf\n", fl) do("a\t\tc\nd\te\tf\n", fl) do("\tb\tc\nd\te\tf\n", fl) do("\t\tc\nd\te\tf\n", fl) ## trailing \t are problematic for strsplit doexp("a\tb\t\nd\te\tf\n", list(c("a","b",""), c("d","e","f")), fl) doexp("a\t\t\nd\te\tf\n", list(c("a","",""), c("d","e","f")), fl) writeChar("\n", fl) res <- .Call("_mark_field_test", fl, "\t", c(1L,1L), PACKAGE="ShortRead") checkIdentical(list(""), res) } ShortRead/inst/unitTests/test_qa.R0000644000175100017510000000225312607265053020237 0ustar00biocbuildbiocbuildtest_missingLaneName <- function() { caught <- FALSE tryCatch(qa(AlignedRead()), error=function(err) { caught <<- conditionMessage(err) == "UserArgumentMismatch\n 'lane' must be 'character(1)'" }) checkTrue(caught) } test_no_replicate_reads <- function() { df <- data.frame(nOccurrences=1, nReads=10, lane=1) x <- ShortRead:::.plotReadOccurrences(df) checkTrue(is(x, "trellis")) } test_qa_alphabetFrequency <- function() { FUN <- ShortRead:::.qa_alphabetFrequency checkException(FUN(DNAStringSet()), silent=TRUE) exp <- alphabetFrequency(DNAStringSet(), collapse=TRUE, baseOnly=TRUE) checkEquals(exp, FUN(DNAStringSet(), collapse=TRUE, baseOnly=TRUE)) exp <- alphabetFrequency(DNAStringSet(), collapse=TRUE) checkEquals(exp, FUN(DNAStringSet(), collapse=TRUE)) dna <- DNAStringSet(c("ACTG", "GTCANM")) checkEquals(alphabetFrequency(dna, collapse=TRUE), FUN(dna, collapse=TRUE)) checkEquals(alphabetFrequency(dna, collapse=TRUE, baseOnly=TRUE), FUN(dna, collapse=TRUE, baseOnly=TRUE)) } ShortRead/inst/unitTests/test_readPrb.R0000644000175100017510000000216412607265053021216 0ustar00biocbuildbiocbuildsp <- SolexaPath(system.file("extdata", package="ShortRead")) test_readPrb_input <- function() { check <- function(obj) { checkTrue(validObject(obj)) checkIdentical(256L, length(obj)) checkIdentical(36L, unique(width(obj))) } icheck <- function(obj) { checkTrue(validObject(obj)) checkIdentical(c(256L, 36L), dim(obj)) } acheck <- function(obj, width) { checkIdentical("array", class(obj)) checkIdentical("integer", typeof(obj)) checkIdentical(c(256L, 4L, width), dim(obj)) } check(readPrb(sp, ".*prb.txt", as="SolexaEncoding")) check(readPrb(sp, ".*prb.txt", as="FastqEncoding")) icheck(readPrb(sp, ".*prb.txt", as="IntegerEncoding")) acheck(readPrb(sp, ".*prb.txt", as="array"), 36L) } test_readPrb_consistent <- function() { exp <- readPrb(sp, ".*prb.txt", as="IntegerEncoding") checkIdentical(exp, as(readPrb(sp, ".*prb.txt", as="SolexaEncoding"), "matrix")) checkIdentical(exp, as(readPrb(sp, ".*prb.txt", as="FastqEncoding"), "matrix")) } test_readPrb_errors <- function() { } ShortRead/inst/unitTests/test_readQseq.R0000644000175100017510000000250212607265053021400 0ustar00biocbuildbiocbuildsp <- SolexaPath(system.file("extdata", package="ShortRead")) checkBstring <- function(obs, exp) { checkEquals(as.character(obs), as.character(exp)) } test_readQseq_ShortReadQ<- function() { res <- readQseq(sp) checkEquals("ShortReadQ", as.vector(class(res))) checkEquals(256L, length(res)) checkEquals(158223L, sum(alphabetScore(res))) alf <- alphabetFrequency(sread(res), collapse=TRUE, baseOnly=TRUE) checkEquals(structure(c(1697L, 1639L, 1481L, 1706L, 133L), .Names = c("A", "C", "G", "T", "other")), alf) } test_readQseq_ShortReadQ_filtered <- function() { res <- readQseq(sp, filtered=TRUE) checkEquals(187L, length(res)) } test_readQseq_DataFrame <- function() { res <- readQseq(sp) xdf <- readQseq(sp, as="DataFrame") checkEquals("DataFrame", as.vector(class(xdf))) checkEquals(c(256L, 11L), dim(xdf)) checkBstring(sread(res), xdf[[9]]) checkBstring(quality(quality(res)), xdf[[10]]) } test_readQseq_DataFrame_filtered <- function() { xdf0 <- readQseq(sp, as="DataFrame") xdf0 <- xdf0[xdf0[[11]]=="Y", -11] xdf <- readQseq(sp, as="DataFrame", filtered=TRUE) checkEquals(dim(xdf0), dim(xdf)) for (i in 1:8) checkEquals(xdf0[[i]], xdf[[i]]) for (i in 9:10) checkBstring(xdf0[[i]], xdf[[i]]) } ShortRead/inst/unitTests/test_readXStringColumns.R0000644000175100017510000000523212607265053023431 0ustar00biocbuildbiocbuildtest_readXStringColumns_toIUPAC <- function() { src <- system.file("unitTests", "cases", package="ShortRead") fl <- file.path(src, "s_2_export_toIUPAC.txt") colClasses <- rep(list(NULL), 22) colClasses[9:10] <- c(sread="DNAString", quality="BString") names(colClasses)[9:10] <- c("sread", "quality") res <- readXStringColumns(dirname(fl), basename(fl), colClasses=colClasses) ## '.' converted to "-" in DNAString, but not BString checkTrue(all(gregexpr("-", as.character(res$sread[1]))[[1]] == c(5, 10))) checkTrue(all(gregexpr("\\.", as.character(res$quality[1]))[[1]] == 5)) checkTrue(all(gregexpr("-", as.character(res$quality[1]))[[1]] == 10)) } test_readXStringColumns_skip_nrows <- function() { what <- vector("list", 22) what[[2]] <- character() colClasses <- what colClasses[[2]] <- "DNAString" ## single file dir <- system.file("unitTests", "cases", package="ShortRead"); fl <- "s_1_results_head.txt" check <- function(dir, fl, skip, nrows) { pth <- file.path(dir, fl) exp <- DNAStringSet(scan(pth, what, nmax=nrows, skip=skip, fill=TRUE, quiet=TRUE)[[2]]) obs <- readXStringColumns(dir, fl, colClasses=colClasses, nrows=nrows, skip=skip)[[1]] checkEquals(as.character(exp), as.character(obs)) } check(dir, fl, 0L,-1L) check(dir, fl, 100L, -1L) check(dir, fl, 0L, 100L) check(dir, fl, 100L, 100L) ## multiple files dir <- system.file("unitTests", "cases", package="ShortRead"); pattern <- "s_1_results_head.*txt" mcheck <- function(dir, pattern, skip=0L, nrows=-1L) { fls <- list.files(dir, pattern, full=TRUE) exp <- vector("list",length(fls)) nread <- 0 for (i in seq_along(fls)) { if (nrows > 0 && nread >= nrows) break exp[[i]] <- scan(fls[i], what=what, fill=TRUE, skip=skip, nmax=nrows-nread, quiet=TRUE) nread <- nread + length(exp[[i]][[2]]) } exp <- DNAStringSet(unlist(exp)) obs <- readXStringColumns(dir, pattern, colClasses=colClasses, skip=skip, nrows=nrows)[[1]] checkTrue(validObject(obs)) checkEquals(as.character(exp), as.character(obs)) } mcheck(dir, pattern, 0L) mcheck(dir, pattern, 100L) mcheck(dir, pattern, 0L, 500L) mcheck(dir, pattern, 0L, 1500L) mcheck(dir, pattern, 0L, 15000L) mcheck(dir, pattern, 100L, 500L) mcheck(dir, pattern, 100L, 1500L) mcheck(dir, pattern, 100L, 15000L) } ShortRead/inst/unitTests/test_renew.R0000644000175100017510000000203612607265053020755 0ustar00biocbuildbiocbuildsp <- SolexaPath(system.file("extdata", package="ShortRead")) ap <- analysisPath(sp) filt <- chromosomeFilter("chr[[:digit:]+].fa") aln <- readAligned(ap, "s_2_export.txt", "SolexaExport", filter=filt) test_renewable0 <- function() { cls <- renewable() for (cl in cls) { def <- getClass(cl, where=getNamespace("ShortRead")) checkTrue(validObject(df)) } } test_renewable_non_virtual<- function() { cls <- renewable() for (cl in cls) { if (!getClass(cl)@virtual) checkIdentical(getSlots(cl), renewable(cl)[[1]]) } } test_renew <- function() { checkIdentical(aln, renew(aln)) labels <- sub("\\.fa", "", levels(chromosome(aln))) updt <- factor(chromosome(aln), labels=labels) checkIdentical(updt, chromosome(renew(aln, chromosome=updt))) obs <- renew(aln, chromosome=updt, position=1L+position(aln)) checkIdentical(updt, chromosome(obs)) checkIdentical(1L+position(aln), position(obs)) checkException(renew(aln, position=1L), silent=TRUE) } ShortRead/inst/unitTests/test_trimEnds.R0000644000175100017510000000336712607265053021432 0ustar00biocbuildbiocbuildsp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") rfq <- readFastq(fl) test_trimEnds <- function() { exp <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 10, 16, 72, 152) checkIdentical(as.integer(exp), tabulate(width(trimEnds(rfq, "I")))) rng <- trimEnds(sread(rfq), "G", relation="==", ranges=TRUE) checkTrue(!all(1L == start(rng))) checkTrue(!all(end(rfq) == end(rng))) checkTrue(all(1L == start(trimEnds(sread(rfq), "G", left=FALSE, relation="==", ranges=TRUE)))) checkTrue(all(width(rfq) == end(trimEnds(sread(rfq), "G", right=FALSE, relation="==", ranges=TRUE)))) exp <- c(1L, 1L, 3L, 3L, 8L, 8L, 12L, 10L, 41L, 41L, 38L, 43L, 47L) obs <- trimEnds(sread(rfq), c("G", "T"), relation="==") checkIdentical(exp, as.vector(table(width(obs)))) } test_trimEnds_unknown_a <- function() { checkIdentical(as.character(sread(rfq)), suppressWarnings(as.character(trimEnds(sread(rfq), "Z")))) obs <- tryCatch(trimEnds(sread(rfq), "Z"), warning=conditionMessage) checkIdentical("some 'a' not in alphabet(object)", obs) } test_trimEnds_classes <- function() { rng <- trimEnds(quality(rfq), "I", ranges=TRUE) checkIdentical(as.character(quality(narrow(quality(rfq), start(rng), end(rng)))), as.character(quality(trimEnds(quality(rfq), "I")))) ## FIXME: additional, e.g., PhredQuality } test_trimEnds_file <- function() { dest <- trimEnds(fl, "I", destinations=tempfile()) checkIdentical(width(trimEnds(rfq, "I")), width(readFastq(dest))) } ShortRead/inst/unitTests/test_trimTails.R0000644000175100017510000000472712607265053021616 0ustar00biocbuildbiocbuildsp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") rfq <- readFastq(fl) .check <- function(xexp, xobs) checkIdentical(as.character(xexp), as.character(xobs)) test_trimTails_BStringSet <- function() { .check(BStringSet("CCCBBB"), trimTails(BStringSet("CCCBBBAAA"), 1, "A")) .check(BStringSet("CCCABBB"), trimTails(BStringSet("CCCABBBAAA"), 2, "A")) .check(BStringSet("CCCABBBAB"), trimTails(BStringSet("CCCABBBABAA"), 2, "A", successive=TRUE)) .check(BStringSet("CCC"), trimTails(BStringSet("CCCABBBABAA"), 2, "B", successive=TRUE)) .check(BStringSet(), trimTails(BStringSet("CCCABBBABAA"), 1, "C")) } test_trimTails_QualityScore <- function() { .qq <- function(x) quality(quality(x)) checkTrue(validObject(trimTails(rfq, 1, "H"))) .check(.qq(rfq), .qq(trimTails(rfq, 1, " "))) .check(BStringSet(), .qq(trimTails(rfq, 1, "]"))) } test_trimTails_XStringQuality <- function() { .qq <- function(x) quality(quality(x)) .qb <- function(x) as(x, "BStringSet") qual <- as(quality(rfq), "PhredQuality") checkTrue(validObject(trimTails(qual, 1, "H"))) .check(.qq(rfq), .qb(trimTails(qual, 1, "!"))) .check(BStringSet(), .qb(trimTails(qual, 1, "]"))) } test_trimTails_file <- function() { exp <- width(trimTails(rfq, 1, "H")) dest <- trimTails(fl, 1, "H", destinations=tempfile()) checkIdentical(exp, width(readFastq(dest))) } test_trimTailw <- function() { b <- BStringSet("BBBBBB") checkIdentical(BStringSet(), trimTailw(b, 1L, "C", 3L)) checkIdentical(BStringSet(), trimTailw(b, 1L, "B", 3L)) checkIdentical(b, trimTailw(b, 1L, "A", 3L)) checkIdentical(BStringSet(), trimTailw(b, 3L, "C", 1L)) checkIdentical(b, trimTailw(b, 4L, "C", 1L)) b <- BStringSet("DDDBBBBB") checkIdentical(BStringSet("DDD"), trimTailw(b, 2L, "C", 1L)) checkIdentical(BStringSet("DD"), trimTailw(b, 1L, "C", 1L)) checkIdentical(BStringSet("D"), trimTailw(b, 1L, "C", 2L)) checkIdentical(BStringSet(), trimTailw(b, 1L, "C", 3L)) b <- BStringSet("DDDBDBBBB") checkIdentical(BStringSet("DDDBD"), trimTailw(b, 2L, "C", 1L)) checkIdentical(BStringSet("DDDBDB"), trimTailw(b, 4L, "C", 2L)) } test_trimTailw_file <- function() { exp <- width(trimTailw(rfq, 2L, "C", 1L)) dest <- trimTailw(fl, 2L, "C", 1L, destinations=tempfile()) checkIdentical(exp, width(readFastq(dest))) } ShortRead/inst/unitTests/test_writeFastq.R0000644000175100017510000000224212607265053021765 0ustar00biocbuildbiocbuildsp <- SolexaPath(system.file("extdata", package="ShortRead")) test_writeFastq_roundtrip <- function() { ## potential coercion from '.' to 'N' rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") file <- tempfile() writeFastq(rfq, file) fq <- readFastq(dirname(file), basename(file)) checkIdentical(as.character(id(fq)), as.character(id(rfq))) checkIdentical(as.character(sread(fq)), as.character(sread(rfq))) checkIdentical(as.character(quality(quality(fq))), as.character(quality(quality(rfq)))) } test_writeFastq_writeError <- function() { object <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") file <- tempfile() mode <- "w" max_width <- 10L .write_fastq <- ShortRead:::.write_fastq checkException(.Call(.write_fastq, id(object), sread(object), quality(quality(object)), file, mode, max_width), silent=TRUE) } test_writeFastq_roundtrip0length <- function() { dest <- tempfile() file.create(dest) exp <- readFastq(dest) writeFastq(exp, dest <- tempfile()) checkIdentical(exp, readFastq(dest)) } ShortRead/man/0000755000175100017510000000000012607265054014247 5ustar00biocbuildbiocbuildShortRead/man/AlignedDataFrame-class.Rd0000644000175100017510000000463212607265053020755 0ustar00biocbuildbiocbuild\name{AlignedDataFrame-class} \docType{class} \alias{AlignedDataFrame-class} \alias{append,AlignedDataFrame,AlignedDataFrame-method} \title{ (Legacy) "AlignedDataFrame" representing alignment annotations as a data frame } \description{ This class extends \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}}. It is a data frame and associated metadata (describing the columns of the data frame). The main purpose of this class is to contain alignment data in addition to the central information of \code{\linkS4class{AlignedRead}}. } \section{Objects from the Class}{ Objects from the class are created by calls to the \code{\link{AlignedDataFrame}} function. } \section{Slots}{ \describe{ \item{\code{data}:}{Object of class \code{"data.frame"} containing the data. See \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} for details.} \item{\code{varMetadata}:}{Object of class \code{"data.frame"} describing columns of \code{data}. See \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} for details.} \item{\code{dimLabels}:}{Object of class \code{character} describing the dimensions of the AnnotatedDataFrame. Used internally; see \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} for details.} \item{\code{.__classVersion__}:}{Object of class \code{"Versions"} describing the version of this object. Used internally; see \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} for details.} } } \section{Extends}{ Class \code{"\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}"}, directly. Class \code{"\link[Biobase:class.Versioned]{Versioned}"}, by class "AnnotatedDataFrame", distance 2. } \section{Methods}{ This class inherits methods \code{pData} (to retrieve the underlying data frame) and \code{varMetadata} (to retrieve the metadata) from \code{AnnotatedDataFrame}. Additional methods include: \describe{ \item{append}{\code{signature(x = "AlignedDataFrame", values = "AlignedDataFrame")}: append \code{values} after \code{x}. \code{varMetadata} of \code{x} and \code{y} must be identical; \code{pData} and \code{varMetadata} are appended using \code{rbind}.} } } \author{Martin Morgan } \seealso{ \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} } \keyword{classes} ShortRead/man/AlignedDataFrame.Rd0000644000175100017510000000163612607265053017653 0ustar00biocbuildbiocbuild\name{AlignedDataFrame} \alias{AlignedDataFrame} \title{(Legacy) AlignedDataFrame constructor} \description{ Construct an \code{AlignedDataFrame} from a data frame and its metadata } \usage{ AlignedDataFrame(data, metadata, nrow = nrow(data)) } \arguments{ \item{data}{A data frame containing alignment information.} \item{metadata}{A data frame describing the columns of \code{data}, and with number of rows of \code{metadata} corresponding to number of columns of \code{data}. . The data frame must contain a column \code{labelDescription} providing a verbose description of each column of \code{data}.} \item{nrow}{An optional argument, to be used when \code{data} is not provided, to construct an AlignedDataFrame with the specified number of rows.} } \value{ An object of \code{\linkS4class{AlignedDataFrame}}. } \author{Martin Morgan } \keyword{manip} ShortRead/man/AlignedRead-class.Rd0000644000175100017510000002175512607265053020011 0ustar00biocbuildbiocbuild\name{AlignedRead-class} \docType{class} \alias{AlignedRead-class} \alias{[,AlignedRead,ANY,ANY-method} \alias{[,AlignedRead,ANY,missing-method} \alias{[,AlignedRead,missing,ANY-method} \alias{[,AlignedRead,missing,missing-method} \alias{[,AlignedRead,missing,missing,ANY-method} \alias{[,AlignedRead,missing,ANY,ANY-method} \alias{[,AlignedRead,ANY,ANY,ANY-method} \alias{[,AlignedRead,ANY,missing,ANY-method} \alias{append,AlignedRead,AlignedRead-method} \alias{coerce,PairwiseAlignments,AlignedRead-method} \alias{coerce,AlignedRead,RangesList-method} \alias{coerce,AlignedRead,RangedData-method} \alias{coerce,AlignedRead,GRanges-method} \alias{coerce,AlignedRead,GAlignments-method} \alias{coerce,AlignedRead,GappedReads-method} \alias{chromosome,AlignedRead-method} \alias{position,AlignedRead-method} \alias{strand,AlignedRead-method} \alias{coverage,AlignedRead-method} \alias{srrank,AlignedRead-method} \alias{srorder,AlignedRead-method} \alias{srduplicated,AlignedRead-method} \alias{\%in\%,AlignedRead,RangesList-method} \alias{detail,AlignedRead-method} \alias{show,AlignedRead-method} \title{(Legacy) "AlignedRead" class for aligned short reads} \description{ This class represents and manipulates reads and their genomic alignments. Alignment information includes genomic position, strand, quality, and other data. } \section{Objects from the Class}{ Objects of this class can be created from a call to the \code{\link{AlignedRead}} constructor, or more typically by parsing appropriate files (e.g., \code{\link{readAligned}}). } \section{Slots}{ \describe{ \item{\code{chromosome}}{Object of class \code{"factor"} the particular sequence within a set of target sequences (e.g. chromosomes in a genome assembly) to which each short read aligns.} \item{\code{position}}{Object of class \code{"integer"} the (base-pair) position in the genome to which the read is aligned. AlignedRead objects created by readAligned use 1-based indexing, with alignemnts reported in \sQuote{left-most} coordinates, as described in the vignette.} \item{\code{strand}}{Object of class \code{"factor"} the strand of the alignment.} \item{\code{alignQuality}}{Object of class \code{"numeric"} representing an alignment quality score.} \item{\code{alignData}}{Object of class \code{"AlignedDataFrame"} additional alignment information.} \item{\code{quality}}{Object of class \code{"BStringSet"} representing base-call read quality scores.} \item{\code{sread}}{Object of class \code{"DNAStringSet"} DNA sequence of the read.} \item{\code{id}}{Object of class \code{"BStringSet"} read identifier.} } } \section{Extends}{ Class \code{"\linkS4class{ShortReadQ}"}, directly. Class \code{"\linkS4class{ShortRead}"}, by class "ShortReadQ", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class "ShortReadQ", distance 3. } \section{Methods}{ See \code{\link{accessors}} for additional functions to access slot content, and \code{\linkS4class{ShortReadQ}}, \code{\linkS4class{ShortRead}} for inherited methods. Additional methods include: \describe{ \item{[}{\code{signature(x = "AlignedRead", i = "ANY", j = "missing")}: This method creates a new \code{AlignedRead} object containing only those reads indexed by \code{i}. \code{chromosome} is recoded to contain only those levels in the new subset.} \item{append}{\code{signature(x = "AlignedRead", values = "AlignedRead")}: append \code{values} after \code{x}. \code{chromosome} and \code{strand} must be factors with the same levels. See methods for \code{ShortReadQ}, \code{AlignedDataFrame} for details of how these components of \code{x} and \code{y} are appended.} \item{coerce}{ \code{signature(from = "PairwiseAlignments", to = "AlignedRead")}: \code{signature(from = "AlignedRead", to = "RangesList")}: \code{signature(from = "AlignedRead", to = "RangedData")}: \code{signature(from = "AlignedRead", to = "GRanges")}: \code{signature(from = "AlignedRead", to = "GAlignments")}: \code{signature(from = "AlignedRead", to = "GappedReads")}: Invoke these methods with, e.g., \code{as(from, "AlignedRead")} to coerce objects of class \code{from} to class \code{"AlignedRead"}. Coercion from AlignedRead to \link[IRanges]{RangesList}, \link[IRanges]{RangedData} or \link[GenomicRanges]{GRanges} assumes that \code{position(from)} uses a \sQuote{leftmost} (see \code{coverage} on this page) coordinate system. Since \link[IRanges]{Ranges} objects cannot store \code{NA} values, reads with \code{NA} in the \code{position}, \code{width}, \code{chromosome} or (in the case of GRanges) \code{strand} vectors are dropped. } \item{chromosome}{\code{signature(object = "AlignedRead")}: access the chromosome slot of \code{object}.} \item{position}{\code{signature(object = "AlignedRead")}: access the position slot of \code{object}.} \item{strand}{\code{signature(object = "AlignedRead")}: access the strand slot of \code{object}.} \item{coverage}{ \code{signature(x = "AlignedRead", shift = 0L, width = NULL, weight = 1L, ..., coords = c("leftmost", "fiveprime"), extend=0L)}: Calculate coverage across reads present in \code{x}. \code{shift} must be either \code{0L} or a named integer vector with names including all \code{levels(chromosome(x))}. It specifies how the reads in \code{x} should be (horizontally) shifted \emph{before} the coverage is computed. \code{width} must be either \code{NULL} or a named vector of non-negative integers with names including all \code{levels(chromosome(x))}. In the latter case, it specifies for each chromosome the end of the chromosome region over which coverage is to be calculated \emph{after} the reads have been shifted. Note that this region always starts at chromosome position 1. If \code{width} is \code{NULL}, it ends at the rightmost chromosome position covered by at least one read. \code{weight} must be \code{1L} for now (weighting the reads is not supported yet, sorry). \code{coords} specifies the coordinate system used to record position. Both systems number base pairs from left to right on the 5' strand. \code{leftmost} indicates the eland convention, where \code{position(x)} is the left-most (minimum) base pair, regardless of strand. \code{fiveprime} is the MAQ convention, where \code{position(x)} is the coordinate of the 5' end of the aligned read. \code{extend} indicates the number of base pairs to extend the read. Extension is in the 3' direction, measured from the 3' end of the aligned read. The return value of \code{coverage} is a \code{SimpleRleList} object. } \item{\%in\%}{ \code{signature(x = "AlignedRead", table = "RangesList")}: Return a length(x) logical vector indicating whether the chromosome, position, and width of \code{x} overlap (see IRanges \code{\link[IRanges:IntervalTree-class]{overlap}}) with ranges in \code{table}. Reads for which \code{chromosome()}, \code{position()}, or \code{width()} return \code{NA} \emph{never} overlap with \code{table}. This function assumes that positions are in \sQuote{leftmost} coordinates, as defined in \code{coverage}. } \item{srorder}{\code{signature(x = "AlignedRead", ..., withSread=TRUE)}:} \item{srrank}{\code{signature(x = "AlignedRead", ..., withSread=TRUE)}:} \item{srsort}{\code{signature(x = "AlignedRead", ..., withSread=TRUE)}:} \item{srduplicated}{\code{signature(x = "AlignedRead", ..., withSread=TRUE)}: Order, rank, sort, and find duplicates in \code{AlignedRead} objects. Reads are sorted by \code{chromosome}, \code{strand}, \code{position}, and then (if \code{withSread=TRUE}) \code{sread}; less fine-grained sorting can be accomplished with, e.g., \code{x[srorder(sread(x))]}. \code{srduplicated} behaves like \code{duplicated}, i.e., the first copy of a duplicate is \code{FALSE} while the remaining copies are \code{TRUE}.} \item{show}{\code{signature(object = "AlignedRead")}: provide a compact display of the \code{AlignedRead} content.} \item{detail}{\code{signature(x = "AlignedRead")}: display \code{alignData} in more detail.} } } \author{Martin Morgan } \seealso{ \code{\link{readAligned}} } \examples{ showMethods(class="AlignedRead", where=getNamespace("ShortRead")) dirPath <- system.file('extdata', 'maq', package='ShortRead') (aln <- readAligned(dirPath, 'out.aln.1.txt', type="MAQMapview")) coverage(aln)[[1]] cvg <- coverage(aln, shift=c(ChrA=10L)) ## remove 0 coverage on left ends ltrim0 <- function(x) { i <- !cumprod(runValue(x) == 0) Rle(runValue(x)[i], runLength(x)[i]) } endoapply(cvg, ltrim0) ## demonstration of show() and detail() methods show(aln) detail(aln) } \keyword{classes} ShortRead/man/AlignedRead.Rd0000644000175100017510000000334212607265053016676 0ustar00biocbuildbiocbuild\name{AlignedRead} \alias{AlignedRead} \title{(Legacy) Construct objects of class "AlignedRead"} \description{ This function constructs objects of \code{\linkS4class{AlignedRead}}. It will often be more convenient to create \code{AlignedRead} objects using parsers such as \code{\link{readAligned}}. } \usage{ AlignedRead(sread, id, quality, chromosome, position, strand, alignQuality, alignData = AlignedDataFrame(nrow = length(sread))) } \arguments{ \item{sread}{An object of class \code{DNAStringSet}, containing the DNA sequences of the short reads.} \item{id}{An object of class \code{BStringSet}, containing the identifiers of the short reads. This object is the same length as \code{sread}.} \item{quality}{An object of class \code{BStringSet}, containing the ASCII-encoded quality scores of the short reads. This object is the same length as \code{sread}.} \item{chromosome}{A \code{factor} describing the particular sequence within a set of target sequences (e.g. chromosomes in a genome assembly) to which each short read aligns.} \item{position}{A \code{integer} vector describing the (base pair) position at which each short read begins its alignment.} \item{strand}{A \code{factor} describing the strand to which the short read aligns.} \item{alignQuality}{A \code{numeric} vector describing the alignment quality.} \item{alignData}{An \code{AlignedDataFrame} with number of rows equal to the length of \code{sread}, containing additional information about alignments.} } \value{ An object of class \code{\linkS4class{AlignedRead}}. } \author{Martin Morgan } \seealso{\code{\linkS4class{AlignedRead}}.} \keyword{manip} ShortRead/man/BowtieQA-class.Rd0000644000175100017510000000246012607265053017315 0ustar00biocbuildbiocbuild\name{BowtieQA-class} \docType{class} \alias{BowtieQA-class} \alias{report,BowtieQA-method} \alias{report_html,BowtieQA-method} \title{(Legacy) Quality assessment summaries from Bowtie files} \description{ This class contains a list-like structure with summary descriptions derived from visiting one or more Bowtie files. } \section{Objects from the Class}{ Objects of the class are usually produced by a \code{\link{qa}} method, with the argument \code{type="Bowtie"}. } \section{Slots}{ \describe{ \item{\code{.srlist}:}{Object of class \code{"list"}, containing data frames or lists of data frames summarizing the results of qa.} } } \section{Extends}{ Class \code{"\linkS4class{SRList}"}, directly. Class \code{"\linkS4class{.QA}"}, directly. Class \code{"\linkS4class{.SRUtil}"}, by class "SRList", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".QA", distance 2. } \section{Methods}{ Accessor methods are inherited from the \code{\linkS4class{SRList}} class. \describe{ \item{report}{\code{signature(x="BowtieQA", ..., dest=tempfile(), type="html")}: produces an html file summarizing the QA results.} } } \author{Martin Morgan } \seealso{ \code{\link{qa}}. } \examples{ showClass("BowtieQA") } \keyword{classes} ShortRead/man/ExperimentPath-class.Rd0000644000175100017510000000332112607265053020574 0ustar00biocbuildbiocbuild\name{ExperimentPath-class} \docType{class} \alias{ExperimentPath-class} % constructors \alias{ExperimentPath} % etc \alias{show,ExperimentPath-method} \alias{detail,ExperimentPath-method} \title{(Legacy) "ExperimentPath" class representing a file hierarchy of data files} \description{ Short read technologies often produce a hierarchy of output files. The content of the hierarchy varies. This class represents the root of the file hierarchy. Specific classes (e.g., \code{\linkS4class{SolexaPath}}) represent different technologies. } \section{Objects from the Class}{ Objects from the class are created by calls to the constructor: \code{ExperimentPath(experimentPath)} \describe{ \item{experimentPath}{\code{character(1)} object pointing to the top-level directory of the experiment; see specific technology classes for additional detail.} \item{verbose=FALSE}{(optional) logical vector which, when \code{TRUE} results in warnings if paths do not exist.} } All paths must be fully-specified. } \section{Slots}{ \code{ExperimentPath} has one slot, containing a fully specified path to the corresponding directory (described above). \describe{ \item{\code{basePath}}{See above.} } The slot is accessed with \code{experimentPath}. } \section{Extends}{ Class \code{"\linkS4class{.ShortReadBase}"}, directly. } \section{Methods}{ Methods include: \describe{ \item{show}{\code{signature(object = "ExperimentPath")}: briefly summarize the file paths of \code{object}.} \item{detail}{\code{signature(x = "ExperimentPath")}: summarize file paths of \code{x}.} } } \author{Michael Lawrence} \examples{ showClass("ExperimentPath") } \keyword{classes} ShortRead/man/FastqQA-class.Rd0000644000175100017510000000320612607265053017141 0ustar00biocbuildbiocbuild\name{ShortReadQA-class} \docType{class} \alias{FastqQA} \alias{FastqQA-class} \alias{ShortReadQQA-class} \alias{report,FastqQA-method} \alias{report_html,ShortReadQQA-method} \alias{report_html,FastqQA-method} \title{Quality assessment of fastq files and ShortReadQ objects} \description{ These classes contains a list-like structure with summary descriptions derived from visiting one or more fastq files, or from a \code{\linkS4class{ShortReadQ}} object. } \section{Objects from the Class}{ Objects of the class are usually produced by a \code{\link{qa}} method. } \section{Slots}{ \describe{ \item{\code{.srlist}:}{Object of class \code{"list"}, containing data frames or lists of data frames summarizing the results of qa.} } } \section{Extends}{ Class \code{"\linkS4class{SRList}"}, directly. Class \code{"\linkS4class{.QA}"}, directly. Class \code{"\linkS4class{.SRUtil}"}, by class "SRList", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".QA", distance 2. } \section{Methods}{ Accessor methods are inherited from the \code{\linkS4class{SRList}} class. Additional methods defined on this class are: \describe{ \item{report}{\code{signature(x="FastqQA", ..., dest=tempfile(), type="html")}: produces HTML files summarizing QA results. \code{dest} should be a directory.} \item{report}{\code{signature(x="ShortReadQA", ..., dest=tempfile(), type="html")}: produces HTML files summarizing QA results. \code{dest} should be a directory.} } } \author{Martin Morgan } \seealso{ \code{\link{qa}}. } \examples{ showClass("FastqQA") } \keyword{classes} ShortRead/man/Intensity-class.Rd0000644000175100017510000000772312607265054017640 0ustar00biocbuildbiocbuild\name{Intensity-class} \docType{class} \alias{Intensity-class} \alias{IntensityMeasure-class} \alias{IntensityInfo-class} \alias{ArrayIntensity-class} \alias{ArrayIntensity} % accessors \alias{readInfo} \alias{intensity} \alias{measurementError} % subset \alias{[,IntensityMeasure,ANY,ANY-method} \alias{[,IntensityMeasure,ANY,ANY,ANY-method} \alias{[,IntensityMeasure,ANY,missing,ANY-method} \alias{[,IntensityMeasure,missing,ANY,ANY-method} \alias{[,IntensityMeasure,missing,missing,ANY-method} \alias{[[,ArrayIntensity,ANY,ANY-method} % etc. \alias{dim,Intensity-method} \alias{show,Intensity-method} \alias{show,IntensityMeasure-method} \title{(Legacy) "Intensity", "IntensityInfo", and "IntensityMeasure" base classes for short read image intensities} \description{ The \code{Intensity}, \code{IntensityMeasure}, and \code{IntensityInfo} classes represent and manipulate image intensity measures. Instances from the class may also contain information about measurement errors, and additional information about the reads from which the intensities are derived. \code{Intensity}, and \code{IntensityMeasure}, are virtual classes, and cannot be created directly. Classes derived from \code{IntensityMeasure} (e.g., \code{ArrayIntensity}) and \code{Intensity} (e.g., \code{\linkS4class{SolexaIntensity}}) are used to represent specific technologies. } \section{Objects from the Class}{ \code{ArrayIntensity} objects can be created with calls of the form \code{ArrayIntensity(array(0, c(1,2,3)))}. Objects of derived classes can be created from calls such as the \code{\link{SolexaIntensity}} constructor, or more typically by parsing appropriate files (e.g., \code{\link{readIntensities}}). } \section{Slots}{ Class \code{Intensity} has slots: \describe{ \item{\code{readInfo}:}{Object of class \code{"IntensityInfo"} containing columns for the lane, tile, x, and y coordinates of the read.} \item{\code{intensity}:}{Object of class \code{"IntensityMeasure"} containing image intensity data for each read and cycle.} \item{\code{measurementError}:}{Object of class \code{"IntensityMeasure"} containing measures of image intensity uncertainty for each read and cycle.} \item{\code{.hasMeasurementError}:}{Length 1 logical variable indicating whether intensity standard errors are included (internal use only).} } Classes \code{IntensityInfo} and \code{IntensityMeasure} are virtual classes, and have no slots. } \section{Extends}{ These classes extend \code{"\linkS4class{.ShortReadBase}"}, directly. } \section{Methods}{ Methods and accessor functions for \code{Intensity} include: \describe{ \item{readInfo}{\code{signature(object = "Intensity")}: access the \code{readInfo} slot of \code{object}.} \item{intensity}{\code{signature(object = "Intensity")}: access the \code{intensity} slot of \code{object}.} \item{measurementError}{\code{signature(object = "Intensity")}: access the \code{nse} slot of \code{object}, or signal an error if no standard errors are available.} \item{dim}{\code{signature(object = "Intensity")}: return the dimensions (e.g., number of reads by number of cycles) represented by \code{object}.} \item{show}{\code{signature(object = "Intensity")}: provide a compact representation of the object.} } Subsetting \code{"["} is available for the \code{IntensityMeasure} class; the \code{drop} argument to \code{"["} is ignored. Subsetting with \code{"[["} is available for the \code{ArrayIntensity} class. The method accepts three arguments, corresponding to the read, base, and cycle(s) to be selected. The return value is the array (i.e., underlying data values) corresponding to the selected indices. } \author{Martin Morgan } \seealso{ \code{\link{readIntensities}} } \examples{ showMethods(class="Intensity", where=getNamespace("ShortRead")) example(readIntensities) } \keyword{classes} ShortRead/man/MAQMapQA-class.Rd0000644000175100017510000000243212607265053017137 0ustar00biocbuildbiocbuild\name{MAQMapQA-class} \docType{class} \alias{MAQMapQA} \alias{MAQMapQA-class} \alias{report,MAQMapQA-method} \alias{report_html,MAQMapQA-method} \title{(Legacy) Quality assessment summaries from MAQ map files} \description{ This class contains a list-like structure with summary descriptions derived from visiting one or more MAQMap files. } \section{Objects from the Class}{ Objects of the class are usually produced by a \code{\link{qa}} method. } \section{Slots}{ \describe{ \item{\code{.srlist}:}{Object of class \code{"list"}, containing data frames or lists of data frames summarizing the results of qa.} } } \section{Extends}{ Class \code{"\linkS4class{SRList}"}, directly. Class \code{"\linkS4class{.QA}"}, directly. Class \code{"\linkS4class{.SRUtil}"}, by class "SRList", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".QA", distance 2. } \section{Methods}{ Accessor methods are inherited from the \code{\linkS4class{SRList}} class. \describe{ \item{report}{\code{signature(x="MAQMapQA", ..., dest=tempfile(), type="html")}: produces an html file summarizing the QA results.} } } \author{Martin Morgan } \seealso{ \code{\link{qa}}. } \examples{ showClass("MAQMapQA") } \keyword{classes} ShortRead/man/QA-class.Rd0000644000175100017510000000703512607265053016146 0ustar00biocbuildbiocbuild\name{QA-class} \docType{class} \alias{QA-class} \alias{.QA2-class} \alias{QA-class} \alias{QAAdapterContamination-class} \alias{QAFrequentSequence-class} \alias{QANucleotideByCycle-class} \alias{QANucleotideUse-class} \alias{QAQualityByCycle-class} \alias{QAQualityUse-class} \alias{QAReadQuality-class} \alias{QASequenceUse-class} \alias{QASource-class} \alias{QAFastqSource-class} \alias{QAData-class} \alias{QACollate-class} \alias{QAFiltered-class} \alias{QAFlagged-class} \alias{QASummary-class} \title{(Updated) classes for representing quality assessment results} \description{ Classes derived from \code{.QA-class} represent results of quality assurance analyses. } \section{Objects from the Class}{ Users create instances of many of these classes by calling the corresponding constructors, as documented on the help page for \code{\link{qa2}}. Classes constructed in this way include \code{\link{QACollate}}, \code{\link{QAFastqSource}}, \code{\link{QAAdapterContamination}}, \code{\link{QAFrequentSequence}}, \code{\link{QANucleotideByCycle}}, \code{\link{QANucleotideUse}}, \code{\link{QAQualityByCycle}}, \code{\link{QAQualityUse}}, \code{\link{QAReadQuality}}, and \code{\link{QASequenceUse}}. The classes \code{QASource}, \code{QAFiltered}, \code{QAFlagged} and \code{QASummary} are generated internally, not by users. } \section{Extends}{ \code{.QA2} extends class \code{"\linkS4class{.ShortReadBase}"}, directly. \code{QASummary} is a virtual class extending \code{.QA2}; all user-creatable classes extend \code{QASummary}. \code{QASource} extends \code{QASummary}. All classes used to represent raw data input (\code{QAFastqSource}) extend \code{QASource}. \code{QAData} is a reference class, used to contain a single instance of the fastq used in all QA Summary steps. \code{QACollate} extends \code{.QA2}. It contains a \code{SimpleList} instance with zero or more \code{QASummary} elements. \code{QA} extends \code{.QA2}, and contains a \code{SimpleList} of zero or more \code{QASummary} elements. This class represents the results of the \code{qa2} analysis. } \section{Methods}{ Methods defined on this class include: \describe{ \item{qa2}{\code{signature(object="QACollate", state, ..., verbose=FALSE)} creates a QA report from the elements of \code{QACollate}. Methods on \code{qa2} for objects extending class \code{QASummary} summarize QA statistics for that class, e.g., \code{qa2,QAFrequentSequences-method} implements the calculations required to summarize frequently used sequences, using data in \code{state}.} \item{report}{\code{signature(x="QA", ...)} creates an HTML report. Methods on \code{report} for objects extending class \code{QASummary} are responsible for creating the html snippet for that QA component.} \item{flag}{\code{signature(object=".QA2", ..., verbose=FALSE)} implements criteria to flag individual lanes as failing quality assessment. NOTE: flag is not fully implemented.} \item{rbind}{\code{signature(...="QASummary")}: rbind multiple summary elements of the same class, as when these have been created by separately calculating statistics on a number of fastq files.} \item{show}{\code{signature(object = "SolexaExportQA")}: Display an overview of the object contents.} } } \seealso{ Specific classes derived from \code{.QA2} } \author{Martin Morgan } \examples{ getClass(".QA2", where=getNamespace("ShortRead")) } \keyword{classes} ShortRead/man/QualityScore-class.Rd0000644000175100017510000002411012607265053020262 0ustar00biocbuildbiocbuild\name{QualityScore-class} \docType{class} \alias{QualityScore-class} \alias{NumericQuality-class} \alias{IntegerQuality-class} \alias{MatrixQuality-class} \alias{FastqQuality-class} \alias{SFastqQuality-class} % QualityScore \alias{[,QualityScore,ANY,missing-method} \alias{[,QualityScore,ANY,missing,ANY-method} \alias{[[,QualityScore,ANY,missing-method} \alias{append,QualityScore,QualityScore-method} \alias{length,QualityScore-method} \alias{width,QualityScore-method} \alias{detail,QualityScore-method} % NumericQuality \alias{width,NumericQuality-method} \alias{show,NumericQuality-method} % MatrixQuality \alias{[,MatrixQuality,ANY,missing-method} \alias{[,MatrixQuality,ANY,missing,ANY-method} \alias{[[,MatrixQuality,ANY,missing-method} \alias{dim,MatrixQuality-method} \alias{length,MatrixQuality-method} \alias{narrow,MatrixQuality-method} \alias{width,MatrixQuality-method} \alias{append,MatrixQuality,MatrixQuality-method} % FastqQuality \alias{width,FastqQuality-method} \alias{show,FastqQuality-method} \alias{alphabet,FastqQuality-method} \alias{encoding,FastqQuality-method} \alias{alphabetFrequency,FastqQuality-method} \alias{alphabetByCycle,FastqQuality-method} \alias{alphabetScore,FastqQuality-method} \alias{coerce,FastqQuality,numeric-method} \alias{coerce,FastqQuality,matrix-method} \alias{coerce,FastqQuality,PhredQuality-method} \alias{reverse,FastqQuality-method} \alias{narrow,FastqQuality-method} \alias{trimTailw,FastqQuality-method} \alias{trimTails,FastqQuality-method} \alias{srsort,FastqQuality-method} \alias{srorder,FastqQuality-method} \alias{srrank,FastqQuality-method} \alias{srduplicated,FastqQuality-method} % SFastqQuality \alias{encoding,SFastqQuality-method} \alias{alphabetScore,SFastqQuality-method} \alias{coerce,SFastqQuality,matrix-method} \alias{coerce,SFastqQuality,SolexaQuality-method} %% Biostrings::PhredQuality \alias{alphabetScore,PhredQuality-method} \title{Quality scores for short reads and their alignments} \description{ This class hierarchy represents quality scores for short reads. \code{QualityScore} is a virtual base class, with derived classes offering different ways of representing qualities. Methods defined on \code{QualityScore} are implemented in all derived classes. } \section{Objects from the Class}{ Objects from the class are created using constructors (e.g., \code{\link{NumericQuality}}) named after the class name. Defined classes are as follows: \describe{ \item{QualityScore}{Virtual base class; instances cannot be instantiated.} \item{NumericQuality}{A single numeric vector, where values represent quality scores on an arbitrary scale.} \item{IntegerQuality}{A integer numeric vector, where values represent quality scores on an arbitrary scale.} \item{MatrixQuality}{A rectangular matrix of quality scores, with rows representing reads and columns cycles. The content and interpretation of row and column entries is arbitrary; the rectangular nature implies quality scores from equal-length reads.} \item{FastqQuality}{\sQuote{fastq} encoded quality scores stored in a \code{BStringSet} instance. Base qualities of a single read are represented as an ASCII character string. The integer-valued quality score of a single base is encoded as its ASCII equivalent plus 33. The precise definition of the integer-valued quality score is unspecified, but is usually a Phred score; the meaning can be determined from the source of the quality scores. Multiple reads are stored as a \code{BStringSet}, and so can be of varying lengths.} \item{SolexaQuality}{As with \code{FastqQuality}, but with integer qualities encoded as ASCII equivalent plus 64.} } } \section{Extends}{ Class \code{"\linkS4class{.ShortReadBase}"}, directly. } \section{Methods}{ The following methods are defined on all \code{QualityScore} and derived classes: \describe{ \item{[}{\code{signature(x = "QualityScore", i = "ANY", j = "missing")}} \item{[}{\code{signature(x = "MatrixQuality", i = "ANY", j = "missing")}: Subset the object, with index \code{i} indicating the reads for which quality scores are to be extracted. The class of the result is the same as the class of \code{x}. It is an error to provide any argument other than \code{i}.} \item{[[}{\code{signature(x = "QualityScore", i = "ANY", j = "ANY")}: Subset the object, returning the quality score (e.g., numeric value) of the \code{i}th read. } \item{[[}{\code{signature(x = "MatrixQuality", i = "ANY", j = "ANY")}: Returns the vector of quality scores associated with the \code{i}th read.} \item{dim}{\code{signature(x = "MatrixQuality")}: The integer(2) dimension (e.g., number of reads, read width) represented by the quality score.} \item{length}{\code{signature(x = "QualityScore")}:} \item{length}{\code{signature(x = "MatrixQuality")}: The integer(1) length (e.g., number of reads) represented by the quality score. Note that \code{length} of \code{MatrixQuailty} is the number of rows of the corresponding matrix, and not the length of the corresponding numeric vector.} \item{append}{\code{signature(x = "QualityScore", values = "QualityScore")}: append \code{values} after \code{x}.} \item{width}{\code{signature(x = "QualityScore")}:} \item{width}{\code{signature(x = "NumericQuality")}:} \item{width}{\code{signature(x = "MatrixQuality")}:} \item{width}{\code{signature(x = "FastqQuality")}: A numeric vector with length equal to the number of quality scores, and value equal to the number of quality scores for each read. For instance, a \code{\link{FastqQuality}} will have widths equal to the number of nucleotides in the underlying short read. } \item{show}{\code{signature(object = "QualityScore")}:} \item{show}{\code{signature(object = "NumericQuality")}:} \item{show}{\code{signature(object = "FastqQuality")}: provide a brief summary of the object content. } \item{detail}{\code{signature(x = "QualityScore")}: provide a more detailed view of object content. } } The following methods are defined on specific classes: \describe{ \item{alphabet}{\code{signature(x = "FastqQuality", ...)}: Return a character vector of valid quality characters. } \item{encoding}{\code{signature(x = "FastqQuality", ...)}, \code{signature(x = "SFastqQuality", ...)}: Returns a named character vector of integer encodings. } \item{alphabetFrequency}{\code{signature(stringSet = "FastqQuality")}: Apply \code{\link[Biostrings:letterFrequency]{alphabetFrequency}} to quality scores, returning a matrix as described in \code{\link[Biostrings:letterFrequency]{alphabetFrequency}}.} \item{alphabetByCycle}{\code{signature(stringSet = "FastqQuality")}: Apply \code{\link{alphabetByCycle}} to quality scores, returning a matrix as described in \code{\link{alphabetByCycle}}.} \item{alphabetScore}{\code{signature(object = "FastqQuality")}:} \item{alphabetScore}{\code{signature(object = "SFastqQuality")}:} \item{alphabetScore}{\code{signature(object = "PhredQuality")}: Apply \code{\link{alphabetScore}} (i.e., summed base quality, per read) to \code{object}.} \item{coerce}{\code{signature(from = "FastqQuality", to = "numeric")}:} \item{coerce}{\code{signature(from = "FastqQuality", to = "matrix")}:} \item{coerce}{\code{signature(from = "FastqQuality", to = "PhredQuality")}:} \item{coerce}{\code{signature(from = "SFastqQuality", to = "matrix")}:} \item{coerce}{\code{signature(from = "SFastqQuality", to = "SolexaQuality")}: Use \code{as(from, "matrix")}) and similar to coerce objects of class \code{from} to class \code{to}, using the quality encoding implied by the class. When \code{to} is \dQuote{matrix}, the result is a matrix of type \code{integer} with number of columns equal to the maximum width of \code{from}; elements \code{i, j} with \code{j > width(from)[i]} have value \code{NA_integer_}. The result always represents the integer encoding of the corresponding quality string.} \item{reverse}{\code{signature(x = "FastqQuality", ...}: reverse the quality sequence.} \item{narrow}{\code{signature(x = "FastqQuality", start = NA, end = NA, width = NA, use.names = TRUE)}: \sQuote{narrow} \code{quality} so that scores are between \code{start} and \code{end} bases, according to \code{\link[IRanges:intra-range-methods]{narrow}} in the \code{IRanges} package.} \item{trimTailw}{\code{signature(object="FastqQuality", k="integer", a="character", halfwidth="integer", ..., ranges=FALSE)}: trim trailing nucleotides when a window of width 2 * halfwidth + 1 contains \code{k} or more quality scores falling at or below \code{a}.} \item{trimTails}{\code{signature(object="FastqQuality", k="integer", a="character", successive=FALSE, ..., ranges=FALSE)}: trim trailing scores if \code{k} scores fall below the quality encoded by \code{a}. If \code{successive=FALSE}, the k'th failing score and all subseqent scores are trimmed. If \code{successive=TRUE}, failing scores must occur successively; the sequence is trimmed from the first of the successive failing score.} \item{srorder}{\code{signature(x = "FastqQuality")}:} \item{srrank}{\code{signature(x = "FastqQuality")}:} \item{srduplicated}{\code{signature(x = "FastqQuality")}: Apply \code{\link{srsort}}, \code{srorder}, \code{srrank}, and \code{srduplicated} to quality scores, returning objects as described on the appropriate help page.} } Integer representations of \code{SFastqQuality} and \code{FastqQuality} can be obtained with \code{as(x, "matrix")}. } \seealso{ \code{\link{NumericQuality}} and other constructors. } \author{Martin Morgan } \examples{ names(slot(getClass("QualityScore"), "subclasses")) encoding(FastqQuality()) encoding(SFastqQuality()) } \keyword{classes} ShortRead/man/QualityScore.Rd0000644000175100017510000000310612607265053017161 0ustar00biocbuildbiocbuild\name{QualityScore} \alias{NumericQuality} \alias{IntegerQuality} \alias{MatrixQuality} \alias{FastqQuality} \alias{FastqQuality,BStringSet-method} \alias{FastqQuality,character-method} \alias{FastqQuality,missing-method} \alias{SFastqQuality} \alias{SFastqQuality,BStringSet-method} \alias{SFastqQuality,character-method} \alias{SFastqQuality,missing-method} \title{Construct objects indicating read or alignment quality} \description{ Use these functions to construct quality indicators for reads or alignments. See \code{\linkS4class{QualityScore}} for details of object content and methods available for manipulating them. } \usage{ NumericQuality(quality = numeric(0)) IntegerQuality(quality = integer(0)) MatrixQuality(quality = new("matrix")) FastqQuality(quality, ...) SFastqQuality(quality, ...) } \arguments{ \item{quality}{An object used to initialize the data structure. Appropriate objects are indicated in the constructors above for Numeric, Integer, and Matrix qualities. For \code{FastqQuality} and \code{SFastqQuality}, methods are defined for \code{\link[Biostrings:XStringSet-class]{BStringSet}}, \code{character}, and \code{missing}.} \item{...}{Additional arguments, currently unused.} } \value{ Constructors return objects of the corresponding class derived from \code{\linkS4class{QualityScore}}. } \author{Martin Morgan } \seealso{ \code{\linkS4class{QualityScore}}, \code{\link{readFastq}}, \code{\link{readAligned}} } \examples{ nq <- NumericQuality(rnorm(20)) nq quality(nq) quality(nq[10:1]) } \keyword{ manip } ShortRead/man/RochePath-class.Rd0000644000175100017510000001173712607265054017527 0ustar00biocbuildbiocbuild\name{RochePath-class} \docType{class} \alias{RochePath-class} \alias{detail,RochePath-method} \alias{read454,RochePath-method} \alias{readFastaQual,RochePath-method} \alias{readFastaQual,character-method} \alias{readFasta,RochePath-method} \alias{readPath} \alias{readQual} \alias{readQual,character-method} \alias{readQual,RochePath-method} \alias{readBaseQuality,RochePath-method} \alias{read454} \alias{readFastaQual} \alias{runNames} \alias{qualPath} \alias{runNames,RochePath-method} \alias{RocheSet,character-method} \alias{RocheSet,RochePath-method} \alias{runNames,RochePath-method} \alias{show,RochePath-method} % \alias{RochePath} \title{(Legacy) "RochePath" class representing a Roche (454) experiment location} \description{ This class represents the directory location where Roche (454) result files (fasta sequences and qualities) can be found. } \section{Objects from the Class}{ Objects from the class are created with the \code{RochePath} constructor: \code{RochePath(experimentPath = NA_character_, readPath = experimentPath, qualPath = readPath, ..., verbose = FALSE) } \describe{ \item{experimentPath}{\code{character(1)} or \code{\linkS4class{RochePath}} pointing to the top-level directory of a Roche experiment.} \item{readPath}{\code{character()} of directories (typically in \code{experimentPath}) containing sequence (read) information. The default selects all directories matching \code{list.files(experimentPath, "run")}.} \item{qualPath}{\code{character()} of directories (typically in \code{experimentPath}) containing quality information. The default selects all directories matching \code{list.files(experimentPath, "run")}.} \item{verbose}{\code{logical(1)} indicating whether invalid paths should be reported interactively.} } } \section{Slots}{ \code{RocheSet} has the following slots: \describe{ \item{\code{readPath}:}{Object of class \code{"character"}, as described in the constructor, above.} \item{\code{qualPath}:}{Object of class \code{"character"}, as described in the constructor, above.} \item{\code{basePath}:}{Object of class \code{"character"}, containing the \code{experimentPath}.} } } \section{Extends}{ Class \code{"\linkS4class{ExperimentPath}"}, directly. Class \code{"\linkS4class{.Roche}"}, directly. Class \code{"\linkS4class{.ShortReadBase}"}, by class "ExperimentPath", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".Roche", distance 2. } \section{Methods}{ \code{RochePath} has the following methods or functions defined: \describe{ \item{readFasta}{\code{signature(dirPath = "RochePath", pattern=".\\.fna$", sample = 1, run = 1, ...)}: Read sequences from files matching \code{list.files(dirPath, pattern)} (when \code{dirPath="character"}) or \code{list.files(readPath(dir)[run], pattern)[sample]}. The result is a \code{DNAStringSet}.} \item{readQual}{\code{signature(dirPath = "RochePath", reads=NULL, pattern="\\.qual$", sample=1, run=1, ...)}: Read quality scores from files matching \code{list.files(qualPath(dirPath)[run])[sample]}. Non-null \code{reads} is used as an (optional) template for parsing quality scores. } \item{readFastaQual}{\code{signature(dirPath = "RochePath", fastaPattern = "\\.fna$", qualPattern = "\\.qual$", sample = 1, run = 1)}: read sequences and quality scores into a \code{\linkS4class{ShortReadQ}} instance.} \item{readFastaQual}{\code{signature(dirPath = "character", fastaPattern = "\\.fna$", qualPattern = "\\.qual$", sample = 1, run = 1)}: wrapper for method above, coercing \code{dirPath} to a \code{RochePath} via \code{RochePath(dirPath)}.} \item{readBaseQuality}{\code{signature(dirPath = "RochePath", ...)}: Reads in base and quality information. Currently delegates to \code{readFastaQual}, above, but will do more after \code{RochePath} supports more file types. } \item{read454}{ \code{signature(dirPath = "RochePath", ...)}: Pass arguments on to \code{readFastaQual}, documented above. } \item{readPath}{\code{signature(object = "RochePath")}: return the contents of the \code{readPath} slot.} \item{runNames}{\code{signature(object = "RochePath")}: return the \code{basename}s of \code{readPath(object)}.} \item{RocheSet}{\code{signature(path = "RochePath")}: create a \code{\linkS4class{RocheSet}} from \code{path}.} } Additional methods include: \describe{ \item{show}{\code{signature(object = "RochePath")}: Briefly summarize the experiment path locations.} \item{detail}{\code{signature(x = "RochePath")}: Provide additional detail on the Roche path. All file paths are presented in full.} } } \author{Michael Lawrence } \seealso{ \code{\linkS4class{ExperimentPath}}. } \examples{ showClass("RochePath") } \keyword{classes} ShortRead/man/RocheSet-class.Rd0000644000175100017510000000360112607265053017354 0ustar00biocbuildbiocbuild\name{RocheSet-class} \docType{class} \alias{RocheSet-class} \alias{RocheSet} \title{(Legacy) Roche (454) experiment-wide data container} \description{ This class is meant to coordinate all data in a Roche (454) experiment. See \code{\linkS4class{SRSet}} for additional details. } \section{Objects from the Class}{ Create objects from this class using one of the \code{RocheSet} methods documented below } \section{Slots}{ \describe{ \item{\code{sourcePath}:}{Object of class \code{"RochePath"} The file system location of the data used in this experiment.} \item{\code{readIndex}:}{Object of class \code{"integer"} indexing reads included in the experiment; see \code{\linkS4class{SRSet}} for details on data representation in this class.} \item{\code{readCount}:}{Object of class \code{"integer"} containing the number of reads associated with each sample; see \code{\linkS4class{SRSet}} for details on data representation in this class.} \item{\code{phenoData}:}{Object of class \code{"AnnotatedDataFrame"} with as many rows as there are samples, containing information on experimental design.} \item{\code{readData}:}{Object of class \code{"AnnotatedDataFrame"} containing as many rows as there are reads, containing information on each read in the experiment.} } } \section{Extends}{ Class \code{"\linkS4class{SRSet}"}, directly. Class \code{"\linkS4class{.Roche}"}, directly. Class \code{"\linkS4class{.ShortReadBase}"}, by class "SRSet", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".Roche", distance 2. } \section{Methods}{ No methods defined with class "RocheSet" in the signature; see \code{\linkS4class{SRSet}} for inherited methods. } \author{Michael Lawrence } \seealso{ \code{\linkS4class{SRSet}} } \examples{ showClass("RocheSet") } \keyword{classes} ShortRead/man/RtaIntensity-class.Rd0000644000175100017510000000342012607265053020274 0ustar00biocbuildbiocbuild\name{RtaIntensity-class} \docType{class} \alias{RtaIntensity-class} \title{(Legacy) Class "RtaIntensity"} \description{ Subclass of \code{\linkS4class{Intensity}} for representing image intensity data from the Illumina RTA pipeline. } \section{Objects from the Class}{ Objects can be created by calls to \code{RtaIntensity} or more usually \code{readIntensities}. } \section{Slots}{ Object of \code{RtaIntensity} have slots: \describe{ \item{\code{readInfo}:}{Object of class \code{"RtaIntensityInfo"} representing information about each read.} \item{\code{intensity}:}{Object of class \code{"ArrayIntensity"} containing an array of intensities with dimensions read, base, and cycle. Nucleotide are A, C, G, T for each cycle.} \item{\code{measurementError}:}{Object of class \code{"ArrayIntensity"} containing measurement errors for each read, cycle, and base, with dimensions like that for \code{intensity}. } \item{\code{.hasMeasurementError}:}{Object of class \code{"ScalarLogical"} used internally to indicate whether measurement error information is included.} } } \section{Extends}{ Class \code{"\linkS4class{SolexaIntensity}"}, directly. Class \code{"\linkS4class{Intensity}"}, by class "SolexaIntensity", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class "SolexaIntensity", distance 3. } \section{Methods}{ Class "RtaIntensity" inherits accessor, subsetting, and display methods from class \code{\linkS4class{SolexaIntensity}}. } \author{Martin Morgan } \seealso{\code{\linkS4class{SolexaIntensity}}, \code{\link{readIntensities}}} \examples{ showClass("RtaIntensity") showMethods(class="RtaIntensity", where=getNamespace("ShortRead")) } \keyword{classes} ShortRead/man/RtaIntensity.Rd0000644000175100017510000000267512607265053017204 0ustar00biocbuildbiocbuild\name{RtaIntensity} \alias{RtaIntensity} \title{(Legacy) Construct objects of class "RtaIntensity"} \description{ \code{\linkS4class{RtaIntensity}} objects contain Illumina image intensity measures created by the RTA pipeline. It will often be more convenient to create this object using \code{\link{readIntensities}}. } \usage{ RtaIntensity(intensity=array(0, c(0, 0, 0)), measurementError=array(0, c(0, 0, 0)), readInfo=SolexaIntensityInfo( lane=integer()[seq_len(nrow(intensity))]), ...) } \arguments{ \item{intensity}{A matrix of image intensity values. Successive columns correspond to nucleotides A, C, G, T; four successive columns correspond to each cycle. Typically, derived from \code{"_int.txt"} files.} \item{measurementError}{As \code{intensity}, but measuring standard error. Usually derived from \code{"_nse.txt"} files.} \item{readInfo}{An object of class \code{AnnotatedDataFrame}, containing information described by \code{RtaIntensityInfo}.} \item{...}{Additional arguments, not currently used.} } \value{ An object of class \code{\linkS4class{RtaIntensity}}. } \author{Martin Morgan } \seealso{\code{\linkS4class{RtaIntensity}}, \code{\link{readIntensities}}.} \examples{ rta <- RtaIntensity(array(runif(60), c(5,4,3))) intensity(rta) ## subsetting, access, and coercion as(intensity(rta)[1:2,,], "array") } \keyword{manip} ShortRead/man/SRFilter-class.Rd0000644000175100017510000000547412607265053017344 0ustar00biocbuildbiocbuild\name{SRFilter-class} \docType{class} \alias{SRFilter-class} \alias{srFilter,SRFilter-method} \alias{name} \alias{name,SRFilter-method} \alias{show,SRFilter-method} \alias{c,SRFilter-method} \alias{coerce,SRFilter,FilterRules-method} \title{"SRFilter" for representing functions operating on ShortRead objects} \description{ Objects of this class are functions that, when provided an appropriate object from the ShortRead package, return logical vectors indicating which parts of the object satisfy the filter criterion. A number of filters are built-in (described below); users are free to create their own filters, using the \code{srFilter} function. } \section{Objects from the Class}{ Objects can be created through \code{\link{srFilter}} (to create a user-defined filter) or through calls to constructors for predefined filters, as described on the \code{\link{srFilter}} page. } \section{Slots}{ \describe{ \item{\code{.Data}:}{Object of class \code{"function"} taking a single named argument \code{x} corresponding to the ShortRead object that the filter will be applied to. The return value of the filter function is expected to be a logical vector that can be used to subset \code{x} to include those elements of \code{x} satisfying the filter. } \item{\code{name}:}{Object of class \code{"ScalarCharacter"} representing the name of the filter. The name is useful for suggesting the purpose of the filter, and for debugging failed filters. } } } \section{Extends}{ Class \code{"\linkS4class{function}"}, from data part. Class \code{"\linkS4class{.SRUtil}"}, directly. Class \code{"\linkS4class{OptionalFunction}"}, by class "function", distance 2. Class \code{"\linkS4class{PossibleMethod}"}, by class "function", distance 2. } \section{Methods}{ \describe{ \item{srFilter}{\code{signature(fun = "SRFilter")}: Return the function representing the underlying filter; this is primarily for interactive use to understanding filter function; usually the filter is invoked as a normal function call, as illustrated below } \item{name}{\code{signature(x = "SRFilter")}: Return, as a \code{ScalarCharacter}, the name of the function. } \item{show}{\code{signature(object = "SRFilter")}: display a brief summary of the filter } \item{coerce}{\code{signature(from = "SRFilter", to = "FilterRules")}: Coerce a filter to a \code{\link[IRanges]{FilterRules}} object of length one. } \item{c}{\code{signature(x = "SRFilter", ...)}: Combine filters into a single \code{\link[IRanges]{FilterRules}} object. } } } \author{Martin Morgan } \seealso{ \code{\link{srFilter}} for predefined and user-defined filters. } \examples{ ## see ?srFilter } \keyword{classes} ShortRead/man/SRFilterResult-class.Rd0000644000175100017510000000775112607265053020543 0ustar00biocbuildbiocbuild\name{SRFilterResult-class} \Rdversion{1.1} \docType{class} \alias{SRFilterResult-class} \alias{SRFilterResult} \alias{Logic,SRFilterResult,SRFilterResult-method} \alias{!,SRFilterResult-method} \alias{name,SRFilterResult-method} \alias{show,SRFilterResult-method} \alias{stats} \alias{stats,SRFilterResult-method} \title{"SRFilterResult" for SRFilter output and statistics} \description{ Objects of this class are logical vectors indicating records passing the applied filter, with an associated data frame summarizing the name, input number of records, records passing filter, and logical operation used for all filters in which the result participated. } \usage{ SRFilterResult(x = logical(), name = NA_character_, input = length(x), passing = sum(x), op = NA_character_) \S4method{Logic}{SRFilterResult,SRFilterResult}(e1, e2) \S4method{name}{SRFilterResult}(x, ...) stats(x, ...) \S4method{show}{SRFilterResult}(object) } \arguments{ \item{x, object, e1, e2}{For \code{SRFilterResult}, \code{logical()} indicating records that passed filter or, for others, an instance of \code{SRFilterResult} class.} \item{name}{\code{character()} indicating the name by which the filter is to be referred. Internally, \code{name}, \code{input}, \code{passing}, and \code{op} may all be vectors representing columns of a \code{data.frame} summarizing the application of successive filters.} \item{input}{\code{integer()} indicating the length of the original input.} \item{passing}{\code{integer()} indicating the number of records passing the filter.} \item{op}{\code{character()} indicating the logical operation, if any, associated with this filter.} \item{...}{Additional arguments, unused in methods documented on this page.} } \section{Objects from the Class}{ Objects can be created through \code{\link{SRFilterResult}}, but these are automatically created by the application of \code{\link{srFilter}} instances. } \section{Slots}{ \describe{ \item{\code{.Data}:}{Object of class \code{"logical"} indicating records that passed the filter. } \item{\code{name}:}{Object of class \code{"ScalarCharacter"} representing the name of the filter whose results are summarized. The name is either the actual name of the filter, or a combination of filter names and logical operations when the outcome results from application of several filters in a single logical expression. } \item{\code{stats}:}{Object of class \code{"data.frame"} summarizing the name, input number of records, records passing filter, and logical operation used for all filters in which the result participated. The \code{data.frame} rows correspond either to single filters, or to logical combinations of filters.} } } \section{Extends}{ Class \code{"\linkS4class{logical}"}, from data part. Class \code{"\linkS4class{.SRUtil}"}, directly. Class \code{"\linkS4class{vector}"}, by class "logical", distance 2. Class \code{"\link{atomic}"}, by class "logical", distance 2. Class \code{"vectorORfactor"}, by class "logical", distance 3. } \section{Methods}{ \describe{ \item{Logic}{\code{signature(e1 = "SRFilterResult", e2 = "SRFilterResult")}: logic operations on filters.} \item{!}{\code{signature(x = "SRFilterResult")}: Negate the outcome of the current filter results } \item{name}{\code{signature(x = "SRFilterResult")}: The name of the filter that the results are based on.} \item{stats}{\code{signature(x = "SRFilterResult")}: a \code{data.frame} as described in the \sQuote{Slots} section of this page.} \item{show}{\code{signature(object = "SRFilterResult")}: summary of filter results.} } } \author{Martin Morgan \url{mailto:mtmorgan@fhcrc.org}} \seealso{\code{\link{srFilter}}} \examples{ fa <- srFilter(function(x) x \%\% 2 == 0, "Even") fb <- srFilter(function(x) x \%\% 2 == 1, "Odd") x <- 1:10 fa(x) | fb(x) fa(x) & fb(x) !(fa(x) & fb(x)) } \keyword{classes} ShortRead/man/SRSet-class.Rd0000644000175100017510000000547512607265053016653 0ustar00biocbuildbiocbuild\name{SRSet-class} \docType{class} \alias{SRSet-class} \alias{readCount} \alias{readData} \alias{readIndex} \alias{sourcePath} \alias{phenoData,SRSet-method} \alias{experimentPath,SRSet-method} \alias{show,SRSet-method} \alias{detail,SRSet-method} \title{(Legacy) A base class for Roche experiment-wide data} \description{ This class coordinates phenotype (sample) and sequence data, primarily as used on the Roche platform. Conceptually, this class has reads from a single experiment represented as a long vector, ordered by sample. The \code{readCount} slot indicates the number of reads in each sample, so that the sum of \code{readCount} is the total number of reads in the experiment. The \code{readIndex} field is a light-weight indicator of which reads from all those available that are currently referenced by the \code{SRSet}. } \section{Objects from the Class}{ Objects of this class are not usually created directly, but instead are created by a derived class, e.g., \code{\linkS4class{RocheSet}}. } \section{Slots}{ \describe{ \item{\code{sourcePath}:}{Object of class \code{"ExperimentPath"}, containing the directory path where sequence files can be found.} \item{\code{readIndex}:}{Object of class \code{"integer"} indicating specific sequences included in the experiment.} \item{\code{readCount}:}{Object of class \code{"integer"} containing the number of reads in each sample included in the experiment. The sum of this vector is the total number of reads.} \item{\code{phenoData}:}{Object of class \code{"AnnotatedDataFrame"} describing each sample in the experiment. The number of rows of \code{phenoData} equals the number of elements in \code{readCount}.} \item{\code{readData}:}{Object of class \code{"AnnotatedDataFrame"} containing annotations on all reads.} } } \section{Extends}{ Class \code{"\linkS4class{.ShortReadBase}"}, directly. } \section{Methods}{ \describe{ \item{experimentPath}{\code{signature(object = "SRSet")}: return the \code{\linkS4class{ExperimentPath}} associated with this object.} \item{phenoData}{\code{signature(object = "SRSet")}: return the \code{\linkS4class{phenoData}} associated with this object.} \item{readCount}{\code{signature(object="SRSet")}:} \item{readIndex}{\code{signature(object="SRSet")}:} \item{readData}{\code{signature(object="SRSet")}:} \item{sourcePath}{\code{signature(object="SRSet")}: Retrieve the corresponding slot from \code{object}.} \item{show}{\code{signature(object = "SRSet")}: display the contents of this object.} \item{detail}{\code{signature(x = "SRSet")}: provide more extensive information on the object.} } } \author{Michael Lawrence } \examples{ showClass("SRSet") } \keyword{classes} ShortRead/man/SRUtil-class.Rd0000644000175100017510000001512012607265053017021 0ustar00biocbuildbiocbuild\name{SRUtil-class} \docType{class} \alias{.SRUtil-class} \alias{SRError-class} \alias{SRWarn-class} \alias{SRList-class} \alias{SRVector-class} % constructors \alias{SRError} \alias{SRWarn} \alias{SRList} \alias{SRVector} % methods \alias{detail,.ShortReadBase-method} % internal method, not documented \alias{length,SRList-method} \alias{names,SRList-method} \alias{names<-,SRList,character-method} \alias{lapply,SRList-method} \alias{lapply,SRList,ANY-method} \alias{sapply,SRList-method} \alias{srlist} \alias{[,SRList,ANY,missing-method} \alias{[,SRList,ANY,missing,ANY-method} \alias{[[,SRList,ANY,missing-method} \alias{detail,SRList-method} \alias{show,SRList-method} \alias{detail,SRVector-method} \alias{show,SRVector-method} \title{".SRUtil" and related classes} \description{ These classes provide important utility functions in the \pkg{ShortRead} package, but may occasionally be seen by the user and are documented here for that reason. } \section{Objects from the Class}{ Utility classes include: \itemize{ \item \code{.SRUtil-class} a virtual base class from which all utility classes are derived. \item \code{SRError-class} created when errors occur in \pkg{ShortRead} package code. \item \code{SRWarn-class} created when warnings occur in \pkg{ShortRead} package code \item \code{SRList-class} representing a list (heterogeneous collection) of objects. The S4Vectors::SimpleList class is a better choice for a list-like container. \item \code{SRVector-class} representing a vector (homogeneous collection, i.e., all elements of the same class) of objects. } Objects from these classes are not normally constructed by the user. However, constructors are available, as follows. \code{SRError(type, fmt, ...)}, \code{SRWarn(type, fmt, ...)}: \describe{ \item{type}{\code{character(1)} vector describing the type of the error. \code{type} must come from a pre-defined list of types.} \item{fmt}{a \code{\link{sprintf}}-style format string for the message to be reported with the error.} \item{...}{additional arguments to be interpolated into \code{fmt}.} } \code{SRList(...)} \describe{ \item{...}{elements of any type or length to be placed into the \code{SRList}. If the length of \code{...} is 1 and the argument is a list, then the list itself is placed into \code{SRList}.} } \code{SRVector(..., vclass)} \describe{ \item{...}{elements all satisfying an \code{\link{is}} relationship with \code{vclass}, to be placed in \code{SRVector}.} \item{vclass}{the class to which all elements in \code{...} belong. If \code{vclass} is missing and \code{length(list(...))} is greater than zero, then \code{vclass} is taken to be the class of the first argument of \code{...}.} } \code{SRVector} errors: \describe{ \item{SRVectorClassDisagreement}{this error occurs when not all arguments \code{...} satisfy an \sQuote{is} relationship with \code{vclass}.} } } \section{Slots}{ \code{SRError} and \code{SRWarn} have the following slots defined: \describe{ \item{\code{.type}:}{Object of class \code{"character"} containing the type of error or warning. \code{.type} must come from a pre-defined list of types, see, e.g., \code{ShortRead:::.SRError_types}.} \item{\code{.message}:}{Object of class \code{"character"} containing a detailed message describing the error or warning.} } \code{SRList} has the following slot defined: \describe{ \item{\code{.srlist}:}{Object of class \code{"list"} containing the elements in the list.} } \code{SRVector} extends \code{SRList}, with the following additional slot: \describe{ \item{\code{vclass}:}{Object of class \code{"character"} naming the type of object all elements of \code{SRVector} must be.} } } \section{Methods}{ Accessors are available for all slots, and have the same name as the slot, e.g., \code{vclass} to access the \code{vclass} slot of \code{SRVector}. Internal slots (those starting with \sQuote{.} also have accessors, but these are not exported e.g., \code{ShortRead:::.type}. \code{SRList} has the following methods: \describe{ \item{length}{\code{signature(x = "SRList")}: return the (\code{integer(1)}) length of the \code{SRList}.} \item{names}{\code{signature(x = "SRList")}: return a character vector of list element names. The length of the returned vector is the same as the length of \code{x}.} \item{names<-}{\code{signature(x = "SRList", value = "character")}: assign \code{value} as names for members of \code{x}.} \item{[}{\code{signature(x = "SRList", i = "ANY", j = "missing")}: subset the list using standard R list subset paradigms.} \item{[[}{\code{signature(x = "SRList", i = "ANY", j = "missing")}: select element \sQuote{i} from the list, using standard R list selection paradigms.} \item{lapply}{\code{signature(X = "SRList", FUN="ANY")}: apply a function to all elements of \code{X}, with additional arguments interpreted as with \code{\link{lapply}}.} \item{sapply}{\code{signature(X = "SRList")}: apply a function to all elements of \code{X}, simplifying the result if possible. Additional arguments interpreted as with \code{\link{sapply}}.} \item{srlist}{\code{signature(object="SRList")}: coerce the SRList object to a list.} \item{show}{\code{signature(object = "SRList")}: display an informative summary of the object content, including the length of the list represented by \code{object}.} \item{detail}{\code{signature(x = "SRList")}: display a more extensive version of the object, as one might expect from printing a standard list in R.} } \code{SRVector} inherits all methods from \code{SRList}, and has the following additional methods: \describe{ \item{show}{\code{signature(object = "SRVector")}: display an informative summary of the object content, e.g., the vector class (\code{vclass}) and length.} \item{detail}{\code{signature(x = "SRVector")}: display a more extensive version of the object, as one might expect from a printing a standard R list.} } } \author{Martin Morgan} \examples{ getClass(".SRUtil", where=getNamespace("ShortRead")) ShortRead:::.SRError_types ShortRead:::.SRWarn_types detail(SRList(1:5, letters[1:5])) tryCatch(SRVector(1:5, letters[1:5]), SRVectorClassDisagreement=function(err) { cat("caught:", conditionMessage(err), "\n") }) } \keyword{classes} ShortRead/man/Sampler-class.Rd0000644000175100017510000001453112607265053017247 0ustar00biocbuildbiocbuild\name{FastqFile-class} \docType{class} % Classes \alias{ShortReadFile-class} \alias{FastqFile-class} \alias{FastqFileReader-class} \alias{FastqSampler-class} \alias{FastqSamplerList-class} \alias{FastqStreamer-class} \alias{FastqStreamerList-class} \alias{FastqFileList-class} % ShortReadFile / FastqFile / FastqFileList \alias{FastqFile} \alias{FastqFileList} \alias{open.ShortReadFile} \alias{close.ShortReadFile} \alias{readFastq,FastqFile-method} % FastqFileList \alias{FastqFileList,ANY-method} \alias{FastqFileList,character-method} % FastqFileReader \alias{yield,FastqFileReader-method} % FastqSampler \alias{FastqSampler} \alias{FastqSamplerList} \alias{FastqSamplerList,ANY-method} \alias{FastqSamplerList,character-method} \alias{yield} \alias{yield,FastqSampler-method} % FastqStreamer \alias{FastqStreamer} \alias{FastqStreamer,ANY,missing-method} \alias{FastqStreamer,ANY,numeric-method} \alias{FastqStreamer,ANY,IRanges-method} \alias{FastqStreamerList} \alias{FastqStreamerList,ANY-method} \alias{FastqStreamerList,character-method} \alias{yield,FastqStreamer-method} \title{Sampling and streaming records from fastq files} \description{ \code{FastqFile} represents a path and connection to a fastq file. \code{FastqFileList} is a list of such connections. \code{FastqSampler} draws a subsample from a fastq file. \code{yield} is the method used to extract the sample from the \code{FastqSampler} instance; a short illustration is in the example below. \code{FastqSamplerList} is a list of \code{FastqSampler} elements. \code{FastqStreamer} draws successive subsets from a fastq file, a short illustration is in the example below. \code{FastqStreamerList} is a list of \code{FastqStreamer} elements. } \usage{ ## FastqFile and FastqFileList FastqFile(con, ...) FastqFileList(..., class="FastqFile") \S3method{open}{ShortReadFile}(con, ...) \S3method{close}{ShortReadFile}(con, ...) \S4method{readFastq}{FastqFile}(dirPath, pattern=character(), ...) ## FastqSampler and FastqStreamer FastqSampler(con, n=1e6, readerBlockSize=1e8, verbose=FALSE, ordered = FALSE) FastqSamplerList(..., n=1e6, readerBlockSize=1e8, verbose=FALSE, ordered = FALSE) FastqStreamer(con, n, readerBlockSize=1e8, verbose=FALSE) FastqStreamerList(..., n, readerBlockSize=1e8, verbose=FALSE) yield(x, ...) } \arguments{ \item{con, dirPath}{A character string naming a connection, or (for \code{con}) an R connection (e.g., \code{file}, \code{gzfile}).} \item{n}{For \code{FastqSampler}, the size of the sample (number of records) to be drawn. For \code{FastqStreamer} a \code{numeric(1)} (set to 1e6 when \code{n} is missing) providing the number of successive records to be returned on each yield, or an \code{\linkS4class{IRanges}}-class delimiting the (1-based) indicies of records returned by each yield; entries in \code{n} must have non-zero width and must not overlap.} \item{readerBlockSize}{The number of bytes or characters to be read at one time; smaller \code{readerBlockSize} reduces memory requirements but is less efficient.} \item{verbose}{Display progress.} \item{ordered}{logical(1) indicating whether sampled reads should be returned in the same order as they were encountered in the file.} \item{x}{An instance from the \code{FastqSampler} or \code{FastqStreamer} class.} \item{...}{Additional arguments. For \code{FastqFileList}, \code{FastqSamplerList}, or \code{FastqStreamerList}, this can either be a single character vector of paths to fastq files, or several instances of the corresponding \code{FastqFile}, \code{FastqSampler}, or \code{FastqStreamer} objects.} \item{pattern}{Ignored.} \item{class}{For developer use, to specify the underlying class contained in the \code{FastqFileList}.} } \section{Objects from the class}{ Available classes include: \describe{ \item{\code{FastqFile}}{A file path and connection to a fastq file.} \item{\code{FastqFileList}}{A list of \code{FastqFile} instances.} \item{\code{FastqSampler}}{Uniformly sample records from a fastq file.} \item{\code{FastqStreamer}}{Iterate over a fastq file, returning successive parts of the file.} } } \section{Methods}{ The following methods are available to users: \describe{ \item{\code{readFastq,FastqFile-method}:}{see also \code{?\link{readFastq}}.} \item{\code{writeFastq,ShortReadQ,FastqFile-method}:}{see also \code{?\link{writeFastq}}, \code{?"writeFastq,ShortReadQ,FastqFile-method"}.} \item{\code{yield}:}{Draw a single sample from the instance. Operationally this requires that the underlying data (e.g., file) represented by the \code{Sampler} instance be visited; this may be time consuming.} } } \note{ \code{FastqSampler} and \code{FastqStreamer} use OpenMP threads (when available) during creation of the return value. This may sometimes create problems when a process is already running on multiple threads, e.g., with an error message like \preformatted{ libgomp: Thread creation failed: Resource temporarily unavailable } A solution is to precede problematic code with the following code snippet, to disable threading \preformatted{ nthreads <- .Call(ShortRead:::.set_omp_threads, 1L) on.exit(.Call(ShortRead:::.set_omp_threads, nthreads)) } } \seealso{ \code{\link{readFastq}}, \code{\link{writeFastq}}, \code{\link{yield}}. } \examples{ sp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") f <- FastqFile(fl) rfq <- readFastq(f) close(f) f <- FastqSampler(fl, 50) yield(f) # sample of size n=50 yield(f) # independent sample of size 50 close(f) ## Return sample as ordered in original file f <- FastqSampler(fl, 50, ordered=TRUE) yield(f) close(f) f <- FastqStreamer(fl, 50) yield(f) # records 1 to 50 yield(f) # records 51 to 100 close(f) ## iterating over an entire file f <- FastqStreamer(fl, 50) while (length(fq <- yield(f))) { ## do work here print(length(fq)) } close(f) ## iterating over IRanges rng <- IRanges(c(50, 100, 200), width=10:8) f <- FastqStreamer(fl, rng) while (length(fq <- yield(f))) { print(length(fq)) } close(f) ## Internal fields, methods, and help; for developers ShortRead:::.FastqSampler_g$methods() ShortRead:::.FastqSampler_g$fields() ShortRead:::.FastqSampler_g$help("yield") } ShortRead/man/ShortRead-class.Rd0000644000175100017510000001501112607265053017531 0ustar00biocbuildbiocbuild\name{ShortRead-class} \docType{class} \alias{ShortRead-class} \alias{ShortRead} \alias{ShortRead,DNAStringSet,BStringSet-method} \alias{ShortRead,DNAStringSet,missing-method} \alias{ShortRead,missing,missing-method} \alias{srrank,ShortRead-method} \alias{srorder,ShortRead-method} \alias{srsort,ShortRead-method} \alias{srduplicated,ShortRead-method} \alias{srdistance,ShortRead,ANY-method} \alias{trimLRPatterns,ShortRead-method} \alias{alphabetByCycle,ShortRead-method} \alias{tables,ShortRead-method} \alias{clean,ShortRead-method} \alias{[,ShortRead,ANY,ANY-method} \alias{[,ShortRead,ANY,missing-method} \alias{[,ShortRead,missing,ANY-method} \alias{[,ShortRead,missing,missing-method} \alias{[,ShortRead,missing,missing,ANY-method} \alias{[,ShortRead,missing,ANY,ANY-method} \alias{[,ShortRead,ANY,ANY,ANY-method} \alias{[,ShortRead,ANY,missing,ANY-method} \alias{append,ShortRead,ShortRead-method} \alias{narrow,ShortRead-method} \alias{detail,ShortRead-method} \alias{id,ShortRead-method} \alias{width,ShortRead-method} \alias{length,ShortRead-method} \alias{writeFasta,ShortRead-method} \alias{show,ShortRead-method} \title{"ShortRead" class for short reads} \description{ This class provides a way to store and manipulate, in a coordinated fashion, uniform-length short reads and their identifiers. } \section{Objects from the Class}{ Objects from this class are created by \code{readFasta}, or by calls to the constructor \code{ShortRead}, as outlined below. } \section{Slots}{ \describe{ \item{\code{sread}:}{Object of class \code{"DNAStringSet"} containing IUPAC-standard, uniform-length DNA strings represent short sequence reads.} \item{\code{id}:}{Object of class \code{"BStringSet"} containing identifiers, one for each short read.} } } \section{Extends}{ Class \code{"\linkS4class{.ShortReadBase}"}, directly. } \section{Methods}{ Constructors include: \describe{ \item{ShortRead}{\code{signature(sread = "DNAStringSet", id = "BStringSet")}: Create a \code{ShortRead} object from reads and their identifiers. The length of \code{id} must match that of \code{sread}.} \item{ShortRead}{\code{signature(sread = "DNAStringSet", id = "missing")}: Create a \code{ShortRead} object from reads, creating empty identifiers.} \item{ShortRead}{\code{signature(sread = "missing", id = "missing")}: Create an empty \code{ShortRead} object.} } Methods include: \describe{ \item{sread}{\code{signature(object = "AlignedRead")}: access the sread slot of \code{object}.} \item{id}{\code{signature(object = "AlignedRead")}: access the id slot of \code{object}.} \item{[}{\code{signature(x = "ShortRead", i = "ANY", j = "missing")}: This method creates a new \code{ShortRead} object containing only those reads indexed by \code{i}. Additional methods on \sQuote{[,ShortRead} do not provide additional functionality, but are present to limit inappropriate use.} \item{append}{\code{signature(x = "ShortRead", values = "ShortRead")}: append the \code{sread} and \code{id} slots of \code{values} after the corresponding fields of \code{x}.} \item{narrow}{\code{signature(x = "ShortRead", start = NA, end = NA, width = NA, use.names = TRUE)}: \sQuote{narrow} \code{sread} so that sequences are between \code{start} and \code{end} bases, according to \code{\link[IRanges:intra-range-methods]{narrow}} in the \code{IRanges} package. } \item{length}{\code{signature(x = "ShortRead")}: returns a \code{integer(1)} vector describing the number of reads in this object.} \item{width}{\code{signature(x = "ShortRead")}: returns an \code{integer()} vector of the widths of each read in this object.} \item{srorder}{\code{signature(x = "ShortRead")}:} \item{srrank}{\code{signature(x = "ShortRead")}:} \item{srsort}{\code{signature(x = "ShortRead")}:} \item{srduplicated}{\code{signature(x = "ShortRead")}: Order, rank, sort, and find duplicates in \code{ShortRead} objects based on \code{sread(x)}, analogous to the corresponding functions \code{order}, \code{rank}, \code{sort}, and \code{duplicated}, ordering nucleotides in the order \code{ACGT}.} \item{srdistance}{\code{signature(pattern="ShortRead", subject="ANY")}: Find the edit distance between each read in \code{pattern} and the (short) sequences in \code{subject}. See \code{\link{srdistance}} for allowable values for \code{subject}, and for additional details.} \item{trimLRPatterns}{\code{signature(Lpattern = "", Rpattern = "", subject = "ShortRead", max.Lmismatch = 0, max.Rmismatch = 0, with.Lindels = FALSE, with.Rindels = FALSE, Lfixed = TRUE, Rfixed = TRUE, ranges = FALSE)}: Remove left and / or right flanking patterns from \code{sread(subject)}, as described in \code{\link[Biostrings:trimLRPatterns]{trimLRPatterns}}. Classes derived from \code{ShortRead} (e.g., \code{\link{ShortReadQ}}, \code{\link{AlignedRead}}) have corresponding base quality scores trimmed, too. The class of the return object is the same as the class of \code{subject}, except when \code{ranges=TRUE} when the return value is the ranges to use to trim 'subject'.} \item{alphabetByCycle}{\code{signature(stringSet = "ShortRead")}: Apply \code{\link{alphabetByCycle}} to the \code{sread} component of \code{stringSet}, returning a matrix as described in \code{\link{alphabetByCycle}}.} \item{tables}{\code{signature(x= "ShortRead", n = 50)}: Apply \code{\link{tables}} to the \code{sread} component of \code{x}, returning a list summarizing frequency of reads in \code{x}.} \item{clean}{\code{signature(object="ShortRead")}: Remove all reads containing non-nucleotide (\code{"N", "-"}) symbols.} \item{show}{\code{signature(object = "ShortRead")}: provides a brief summary of the object, including its class, length and width.} \item{detail}{\code{signature(x = "ShortRead")}: provides a more extensive summary of this object, displaying the first and last entries of \code{sread} and \code{id}.} \item{writeFasta}{\code{signature(object, file, ...)}: write \code{object} to \code{file} in fasta format. See \code{\link{writeXStringSet}} for \code{...} argument values.} } } \author{Martin Morgan} \seealso{ \code{\linkS4class{ShortReadQ}} } \examples{ showClass("ShortRead") showMethods(class="ShortRead", where=getNamespace("ShortRead")) } \keyword{classes} ShortRead/man/ShortRead-deprecated.Rd0000644000175100017510000000206712607265053020533 0ustar00biocbuildbiocbuild\name{ShortRead-deprecated} \alias{uniqueFilter} \title{Deprecated functions from the ShortRead package} \description{ These functions are deprecated, and will become defunct. } \usage{ uniqueFilter(withSread=TRUE, .name="UniqueFilter") } \arguments{ \item{withSread}{A \code{logical(1)} indicating whether uniqueness includes the read sequence (\code{withSread=TRUE}) or is based only on chromosome, position, and strand (\code{withSread=FALSE})} \item{.name}{An optional \code{character(1)} object used to over-ride the name applied to default filters.} } \details{ See \code{\link{srFilter}} for details of ShortRead filters. \code{uniqueFilter} selects elements satisfying \code{!srduplicated(x)} when \code{withSread=TRUE}, and \code{!(duplicated(chromosome(x)) & duplicated(position(x)) & duplicated(strand(x)))} when \code{withSread=FALSE}. The behavior when \code{withSread=TRUE} can be obtained with \code{occurrenceFilter(withSread=TRUE)}. The behavior when \code{withSread=FALSE} can be obtained using a custom filter }ShortRead/man/ShortRead-package.Rd0000644000175100017510000000147512607265054020031 0ustar00biocbuildbiocbuild\name{ShortReadBase-package} \alias{ShortReadBase-package} \alias{.ShortReadBase-class} \alias{show,.ShortReadBase-method} \alias{append,.ShortReadBase,.ShortReadBase-method} \alias{.Solexa-class} \alias{.Roche-class} \docType{package} \title{ FASTQ input and manipulation. } \description{ This package implements sampling, iteration, and input of FASTQ files. The package includes functions for filtering and trimming reads, and for generating a quality assessment report. Data are represented as DNAStringSet-derived objects, and easily manipulated for a diversity of purposes. The package also contains legacy support for early single-end, ungapped alignment formats. } \details{ See \code{packageDescription('ShortRead')} } \author{ Maintainer: Martin Morgan } \keyword{package} ShortRead/man/ShortReadQ-class.Rd0000644000175100017510000002000312607265053017647 0ustar00biocbuildbiocbuild\name{ShortReadQ-class} \docType{class} \alias{ShortReadQ-class} \alias{ShortReadQ} \alias{ShortReadQ,DNAStringSet,QualityScore,BStringSet-method} \alias{ShortReadQ,DNAStringSet,QualityScore,missing-method} \alias{ShortReadQ,DNAStringSet,BStringSet,BStringSet-method} \alias{ShortReadQ,DNAStringSet,BStringSet,missing-method} \alias{ShortReadQ,missing,missing,missing-method} \alias{coerce,ShortReadQ,QualityScaledDNAStringSet-method} \alias{writeFastq,ShortReadQ,character-method} \alias{writeFastq,ShortReadQ,FastqFile-method} \alias{alphabetByCycle,ShortReadQ-method} \alias{alphabetScore,ShortReadQ-method} \alias{[,ShortReadQ,ANY,ANY-method} \alias{[,ShortReadQ,ANY,missing-method} \alias{[,ShortReadQ,missing,ANY-method} \alias{[,ShortReadQ,missing,missing-method} \alias{[,ShortReadQ,missing,missing,ANY-method} \alias{[,ShortReadQ,missing,ANY,ANY-method} \alias{[,ShortReadQ,ANY,ANY,ANY-method} \alias{[,ShortReadQ,ANY,missing,ANY-method} \alias{[<-,ShortReadQ,ANY,missing,ShortReadQ-method} \alias{append,ShortReadQ,ShortReadQ-method} \alias{reverse,ShortReadQ-method} \alias{reverseComplement,ShortReadQ-method} \alias{narrow,ShortReadQ-method} \alias{trimTailw,ShortReadQ-method} \alias{trimTails,ShortReadQ-method} \alias{qa,ShortReadQ-method} \alias{detail,ShortReadQ-method} \title{"ShortReadQ" class for short reads and their quality scores} \description{ This class provides a way to store and manipulate, in a coordinated fashion, the reads, identifiers, and quality scores of uniform-length short reads. } \section{Objects from the Class}{ Objects from this class are the result of \code{\link{readFastq}}, or can be constructed from \code{DNAStringSet}, \code{QualityScore}, and \code{BStringSet} objects, as described below. } \section{Slots}{ Slots \code{sread} and \code{id} are inherited from \code{\linkS4class{ShortRead}}. An additional slot defined in this class is: \describe{ \item{\code{quality}:}{Object of class \code{"BStringSet"} representing a quality score (see \code{\link{readFastq}} for some discussion of quality score).} } } \section{Extends}{ Class \code{"\linkS4class{ShortRead}"}, directly. Class \code{"\linkS4class{.ShortReadBase}"}, by class "ShortRead", distance 2. } \section{Methods}{ Constructors include: \describe{ \item{ShortReadQ}{\code{signature(sread = "DNAStringSet", quality = "QualityScore", id = "BStringSet")}:} \item{ShortReadQ}{\code{signature(sread = "DNAStringSet", quality = "BStringSet", id = "BStringSet")}: Create a \code{ShortReadQ} object from reads, their quality scores, and identifiers. When \code{quality} is of class \code{BStringSet}, the type of encoded quality score is inferred from the letters used in the scores. The length of \code{id} and \code{quality} must match that of \code{sread}.} \item{ShortReadQ}{\code{signature(sread = "DNAStringSet", quality = "QualityScore", id = "missing")}:} \item{ShortReadQ}{\code{signature(sread = "DNAStringSet", quality = "BStringSet", id = "missing")}: Create a \code{ShortReadQ} object from reads and their quality scores, creating empty identifiers. When \code{quality} is of class \code{BStringSet}, the type of encoded quality score is inferred from the letters used in the scores. } \item{ShortReadQ}{\code{signature(sread = "missing", quality = "missing", id = "missing")}: Create an empty \code{ShortReadQ} object.} } See \code{\link{accessors}} for additional functions to access slot content, and \code{\linkS4class{ShortRead}} for inherited methods. Additional methods include: \describe{ \item{quality}{inherited from \code{signature(object = "ANY")}: access the quality slot of \code{object}.} \item{coerce}{\code{signature(from = "SFastqQuality", to = "QualityScaledDNAStringSet")}: (Use \code{as(from, "QualityScaledDNAStringSet")}) coerce objects of class \code{from} to class \code{to}, using the quality encoding implied by \code{quality(from)}. See \code{\linkS4class{QualityScore}} for supported quality classes and their coerced counterparts.} \item{writeFastq}{\code{signature(object = "ShortReadQ", file = "character", ...)}:} \item{writeFastq}{\code{signature(object = "ShortReadQ", file = "FastqFile", ...)}: Write \code{object} to \code{file} in fastq format. See \code{?\link{writeFastq}} for additional arguments \code{mode} and \code{full}.} \item{[}{\code{signature(x = "ShortReadQ", i = "ANY", j = "missing")}: This method creates a new \code{ShortReadQ} object containing only those reads indexed by \code{i}. Additional methods on \sQuote{[,ShortRead} do not provide additional functionality, but are present to limit inappropriate use.} \item{[<-}{\code{signature(x = "ShortReadQ", i = "ANY", j = "missing", ..., y="ShortReadQ")}: This method updates \code{x} so that records indexed by \code{i} are replaced by corresponding records in \code{value}.} \item{append}{\code{signature(x = "ShortReadQ", values = "ShortRead")}: append the \code{sread}, \code{quality} and \code{id} slots of \code{values} after the corresponding fields of \code{x}.} \item{reverse, reverseComplement}{\code{signature(x = "ShortReadQ", ...}: reverse or reverse complement the DNA sequence, and reverse the quality sequence.} \item{narrow}{\code{signature(x = "ShortReadQ", start = NA, end = NA, width = NA, use.names = TRUE)}: narrow \code{sread} and \code{quality} so that sequences are between \code{start} and \code{end} bases, according to \code{\link[IRanges:intra-range-methods]{narrow}} in the \code{IRanges} package.} \item{trimTailw}{\code{signature(object="ShortReadQ", k="integer", a="character", halfwidth="integer", ..., ranges=FALSE)}: trim trailing nucleotides when a window of width 2 * halfwidth + 1 contains \code{k} or more quality scores falling at or below \code{a}.} \item{trimTails}{\code{signature(object="ShortReadQ", k="integer", a="character", successive=FALSE, ..., ranges=FALSE)}: trim trailing nucleotides if \code{k} nucleotides fall below the quality encoded by \code{a}. If \code{successive=FALSE}, the k'th failing nucleotide and all subseqent nucleotides are trimmed. If \code{successive=TRUE}, failing nucleotides must occur successively; the sequence is trimmed from the first of the successive failing nucleotides.} \item{alphabetByCycle}{\code{signature(stringSet = "ShortReadQ")}: Apply \code{\link{alphabetByCycle}} to the \code{sread} component, the \code{quality} component, and the combination of these two components of \code{stringSet}, returning a list of matrices with three elements: \code{"sread"}, \code{"quality"}, and \code{"both"}.} \item{alphabetScore}{\code{signature(object = "ShortReadQ")}: See \code{\link{alphabetScore}} for details.} \item{qa}{\code{signature(dirPath = "ShortReadQ", lane="character", ..., verbose=FALSE)}: Perform quality assessment on the \code{ShortReadQ} object using \code{lane} to identify the object and returning an instance of \code{\linkS4class{ShortReadQQA}}. See \code{\link{qa}}} \item{detail}{\code{signature(x = "ShortReadQ")}: display the first and last entries of each of \code{sread}, \code{id}, and \code{quality} entries of \code{object}.} } } \author{Martin Morgan} \seealso{ \code{\link{readFastq}} for creation of objects of this class from fastq-format files. } \examples{ showClass("ShortReadQ") showMethods(class="ShortReadQ", where=getNamespace("ShortRead"), inherit=FALSE) showMethods(class="ShortRead", where=getNamespace("ShortRead"), inherit=FALSE) sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") quality(rfq) sread(reverseComplement(rfq)) quality(reverseComplement(rfq)) quality(trimTails(rfq, 2, "H", successive=TRUE)) } \keyword{classes} ShortRead/man/Snapshot-class.Rd0000644000175100017510000002227012607265053017442 0ustar00biocbuildbiocbuild\name{Snapshot-class} \Rdversion{1.1} \docType{class} \alias{Snapshot-class} \alias{trellis-class} % Constructor: \alias{Snapshot} \alias{Snapshot,character,GRanges-method} \alias{Snapshot,character,missing-method} \alias{Snapshot,BamFileList,GRanges-method} % Accessors: \alias{files} \alias{files,Snapshot-method} \alias{functions} \alias{functions,Snapshot-method} \alias{show,Snapshot-method} \alias{view} \alias{view,Snapshot-method} \alias{vrange} \alias{vrange,Snapshot-method} \alias{annTrack} \alias{annTrack,Snapshot-method} \alias{fac} \alias{fac,Snapshot-method} \alias{getTrellis} \alias{getTrellis,Snapshot-method} \alias{ignore.strand} \alias{ignore.strand,Snapshot-method} % methods: \alias{pan} \alias{pan,Snapshot-method} \alias{togglefun} \alias{togglefun,Snapshot-method} \alias{togglep} \alias{togglep,Snapshot-method} \alias{togglez} \alias{togglez,Snapshot-method} \alias{zoom} \alias{zoom,Snapshot-method} \title{Class \code{"Snapshot"}} \description{ A \code{\linkS4class{Snapshot}}-class to visualize genomic data from BAM files with zoom and pan functionality. } \usage{ Snapshot(files, range, ...) } \arguments{ \item{files}{A character() or \code{BamFileList} specifying the file(s) to be visualized.} \item{range}{A \code{\link{GRanges}} object specifying the range to be visualized.} \item{...}{Additional, optional, arguments to be passed to the Snapshot \code{initialize} function. Arguments include: \describe{ \item{functions:}{A \code{\link{SnapshotFunctionList}} of functions, in addition to built-in \sQuote{fine_coverage}, \sQuote{coarse_coverage}, \sQuote{multifine_coverage}, to be used for visualization.} \item{currentFunction:}{character(1) naming the function, from \code{functions} to be used for data input and visualization. The default chooses a function based on the scale at which the data is being visualized.} \item{annTrack:}{Annotation track. If built-in visualization functions are to be used, \code{annTrack} should be a \code{GRanges} instance and the first column of its elementMeatdata would be used to annotate the range.} \item{fac:}{Character(1) indicating which factor used for grouping the sample files. The factor should be included in the elementMetadata of \code{files}, otherwise ignored. Used only to visualize multiple files. } \item{.auto_display:}{logical(1) indicating whether the visualization is to be updated when \code{show} is invoked.} \item{.debug}{logical(1) indicating whether debug messages are to be printed.} }} } \section{Methods}{ \describe{ \item{zoom}{\code{signature(x = "Snapshot")}: Zoom (in or out) the current plot. } \item{pan}{\code{signature(x = "Snapshot")}: Pan (right or left) the current plot. } \item{togglefun}{\code{signature(x = "Snapshot")}: Toggle the current functions which imported records are to be immediately evaluated. Note that the active range will be changed to the current active window.} \item{togglep}{\code{signature(x = "Snapshot")}: Toggle the panning effects.} \item{togglez}{\code{signature(x = "Snapshot")}: Toggle the zooming effects.} } } \section{Accessors}{ \describe{ \item{show}{\code{signature(object = "Snapshot")}: Display a \code{Snapshot} object. } \item{files}{\code{signature(x = "Snapshot")}: Get the \code{files} field (object of class \code{BamFileList}) of a \code{Snapshot} object.} \item{functions}{\code{signature(x = "Snapshot")}: Get the \code{functions} field (object of \code{SnapshotFunctionList}) of a \code{Snapshot} object.} \item{view}{\code{signature(x = "Snapshot")}: Get the \code{view} field (object of \code{SpTrellis}) of a \code{Snapshot} object.} \item{vrange}{\code{signature(x = "Snapshot")}: Get the \code{.range} field (object of \code{GRanges}) of a \code{Snapshot} object. } \item{getTrellis}{\code{signature(x = "Snapshot")}: Get the \code{trellis} object, a field of the \code{SpTrellis} object.} } } \section{Fields}{ \describe{ \item{\code{.debug}:}{Object of class \code{function} to display messages while in debug mode } \item{\code{.auto_display}:}{Object of class \code{logical} to automatically display the coverage plot. } \item{\code{.range}:}{Object of class \code{GRanges} indicating which ranges of records to be imported from BAM fields. } \item{\code{.zin}:}{Object of class \code{logical} indicating whether the current zooming effect is zoom in. } \item{\code{.pright}:}{Object of class \code{logical} indicating whether the current panning effect is right. } \item{\code{.data}:}{Object of class \code{data.frame} containing coverage a position is represented for each strand and BAM file.} \item{\code{.data_dirty}:}{Object of class \code{logical} indicating whether to re-evaluate the imported records. } \item{\code{.initial_functions}:}{Object of class \code{SnapshotFunctionList} available by the \code{Snapshot} object. } \item{\code{.current_function}:}{Object of class \code{character} of the function the imported recorded are currently evaluated and visualized.} \item{\code{annTrack}:}{Default to \code{NULL} if not intended to visualize the annotation track. If default visualization function(s) is intended to be used to plot the annotation, \code{annTrack} has to be a \code{GRanges} instance.} \item{\code{functions}:}{Object of class \code{SnapshotFunctionList} of customized functions to evaluate and visualize the imported records. } \item{\code{files}:}{Object of class \code{BamFileList} to be imported. } \item{\code{view}:}{Object of class \code{SpTrellis} that is essentially a reference class wrapper of \code{Trellis} objects. } } } \section{Class-Based Methods}{ \describe{ \item{\code{display()}:}{Display the current \code{Snapshot} object. } \item{\code{pan()}:}{Pan (right or left) the current plot. } \item{\code{zoom()}:}{Zoom (in or out) the current plot. } % \item{\code{set_range(range)}:}{ ~~ } \item{\code{toggle(zoom, pan, currentFunction)}:}{Toggle zooming, panning effects or the currentFuction in which the imported records are to be evaluated and visualized.} % \item{\code{initialize(..., functions, currentFunction, .range, .auto_display, .debug)}:}{ ~~ } } } \author{Martin Morgan and Chao-Jen Wong \email{cwon2@fhcrc.org}} \seealso{\code{\link{SpTrellis}}} \examples{ ## example 1: Importing specific ranges of records file <- system.file("extdata", "SRR002051.chrI-V.bam", package="yeastNagalakshmi") which <- GRanges("chrI", IRanges(1, 2e5)) s <- Snapshot(file, range=which) ## methods zoom(s) # zoom in ## zoom in to a specific region zoom(s, range=GRanges("chrI", IRanges(7e4, 7e4+8000))) pan(s) # pan right togglez(s) # change effect of zooming zoom(s) # zoom out togglep(s) # change effect of panning pan(s) ## accessors functions(s) vrange(s) show(s) ignore.strand(s) view(s) ## extract the spTrellis object getTrellis(s) ## extract the trellis object ## example 2: ignore strand s <- Snapshot(file, range=which, ignore.strand=TRUE) ## ## example 3: visualizing annotation track ## library(GenomicFeatures) getAnnGR <- function(txdb, which) { ex <- exonsBy(txdb, by="gene") seqlevels(ex, force=TRUE) <- seqlevels(which) r <- range(ex) gr <- unlist(r) values(gr)[["gene_id"]] <- rep.int(names(r), times=elementLengths(r)) gr } txdbFile <- system.file("extdata", "sacCer2_sgdGene.sqlite", package="yeastNagalakshmi") # txdb <- makeTxDbFromUCSC(genome="sacCer2", tablename="sgdGene") txdb <- loadDb(txdbFile) which <- GRanges("chrI", IRanges(1, 2e5)) gr <- getAnnGR(txdb, which) ## note that the first column of the elementMetadata annotates of the ## range of the elements. gr s <- Snapshot(file, range=which, annTrack=gr) annTrack(s) ## zoom in to an interesting region zoom(s, range=GRanges("chrI", IRanges(7e4, 7e4+8000))) togglez(s) ## zoom out zoom(s) pan(s) ## example 4, 5, 6: multiple BAM files with 'multicoarse_covarage' ## and 'multifine_coverage' view. ## Resolution does not automatically switch for views of multiple ## files. It is important to note if width(which) < 10,000, use ## multifine_coverage. Otherwise use multicoarse_coverage file <- system.file("extdata", "SRR002051.chrI-V.bam", package="yeastNagalakshmi") which <- GRanges("chrI", IRanges(1, 2e5)) s <- Snapshot(c(file, file), range=which, currentFunction="multicoarse_coverage") ## grouping files and view by 'multicoarse_coverage' bfiles <- BamFileList(c(a=file, b=file)) values(bfiles) <- DataFrame(sampleGroup=factor(c("normal", "tumor"))) values(bfiles) s <- Snapshot(bfiles, range=which, currentFunction="multicoarse_coverage", fac="sampleGroup") ## grouping files and view by 'multifine_coverage' which <- GRanges("chrI", IRanges(7e4, 7e4+8000)) s <- Snapshot(bfiles, range=which, currentFunction="multifine_coverage", fac="sampleGroup") } \keyword{classes} ShortRead/man/SnapshotFunction-class.Rd0000644000175100017510000000404212607265053021145 0ustar00biocbuildbiocbuild\name{SnapshotFunction-class} \Rdversion{1.1} \docType{class} \alias{SnapshotFunction-class} \alias{SnapshotFunction} \alias{show,SnapshotFunction-method} \alias{SnapshotFunctionList-class} \alias{SnapshotFunctionList} \alias{SnapshotFunctionList,SnapshotFunction-method} \alias{SnapshotFunctionList,ANY-method} \alias{reader} \alias{viewer} \alias{limits} \title{Class "SnapshotFunction"} \description{ A class to store custom reader and viewer functions for the \code{\link{Snapshot}} class. } \usage{ SnapshotFunction(reader, viewer, limits, ...) reader(x, ...) viewer(x, ...) limits(x, ...) } \arguments{ \item{reader}{A function for reading data. The function must take a single argument (a \code{\link{Snapshot}} instance) and return a \code{data.frame} summarizing the file.} \item{viewer}{A function for visualizing the data. The function must accept the \code{data.frame} created by \code{reader}, and return an \code{\link{SpTrellis}} object representing the view.} \item{limits}{An integer(2) indicating the minimum and maximum number of nucleotides the \code{SnapshotFunction} is intended to visualize. For instance, a \sQuote{fine-scale} viewer displaying a pileup might be appropriate at between 1000 and 50000 nucleotides.} \item{x}{An instance of \code{SnapshotFunction}} \item{...}{Additional arguments, currently unused.} } \section{Fields}{ \describe{ \item{\code{reader}:}{Object of class \code{\link{function}} for reading data from BAM files and returning a \code{\link{data.frame}}.} \item{\code{viewer}:}{Object of class \code{\link{function}} for visualization that returns an \code{\link{SpTrellis}} object.} \item{\code{limits}:}{Object of class \code{integer} for the limits of ranges to be visualized.} } } \author{Martin Morgan and Chao-Jen Wong} \seealso{\code{\link{Snapshot}}} \examples{ ## internally defined function reader(ShortRead:::.fine_coverage) viewer(ShortRead:::.fine_coverage) limits(ShortRead:::.fine_coverage) } \keyword{classes} ShortRead/man/SolexaExportQA-class.Rd0000644000175100017510000000367312607265053020530 0ustar00biocbuildbiocbuild\name{SolexaExportQA-class} \docType{class} \alias{SolexaExportQA} \alias{SolexaExportQA-class} \alias{SolexaRealignQA-class} \alias{report,SolexaExportQA-method} \alias{report_html,SolexaExportQA-method} \alias{report_html,SolexaRealignQA-method} \alias{show,SolexaExportQA-method} \title{(Legacy) Quality assessment summaries from Solexa export and realign files} \description{ This class contains a list-like structure with summary descriptions derived from visiting one or more Solexa \sQuote{export} or \sQuote{realign} files. } \section{Objects from the Class}{ Objects of the class are usually produced by a \code{\link{qa}} method. } \section{Slots}{ \describe{ \item{\code{.srlist}:}{Object of class \code{"list"}, containing data frames or lists of data frames summarizing the results of qa.} } } \section{Extends}{ Class \code{"\linkS4class{SRList}"}, directly. Class \code{"\linkS4class{.QA}"}, directly. Class \code{"\linkS4class{.SRUtil}"}, by class "SRList", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".QA", distance 2. } \section{Methods}{ Accessor methods are inherited from the \code{\linkS4class{SRList}} class. Additional methods defined on this class are: \describe{ \item{report}{\code{signature(x="SolexaExportQA", ..., dest=tempfile(), type="html")}: produces HTML files summarizing QA results. \code{dest} should be a directory.} \item{report}{\code{signature(x="SolexaExportQA", ..., dest=tempfile(), type="pdf")}: (deprecated; use \code{type="html"} instead) produces a pdf file summarizing QA results. \code{dest} should be a file.} \item{report}{\code{signature(x="SolexaRealignQA", ..., dest=tempfile(), type="html")}: produces HTML files summarizing QA results. \code{dest} should be a directory.} } } \author{Martin Morgan } \seealso{ \code{\link{qa}}. } \examples{ showClass("SolexaExportQA") } \keyword{classes} ShortRead/man/SolexaIntensity-class.Rd0000644000175100017510000000724212607265053021007 0ustar00biocbuildbiocbuild\name{SolexaIntensity-class} \docType{class} \alias{SolexaIntensity-class} \alias{SolexaIntensityInfo-class} % subset \alias{[,SolexaIntensity,ANY,ANY-method} \alias{[,SolexaIntensity,ANY,ANY,ANY-method} \alias{[,SolexaIntensity,ANY,missing,ANY-method} \alias{[,SolexaIntensity,missing,ANY,ANY-method} \alias{[,SolexaIntensity,missing,missing,ANY-method} \title{Classes "SolexaIntensity" and "SolexaIntensityInfo"} \description{ Instances of \code{\linkS4class{Intensity}} and \code{\linkS4class{IntensityInfo}} for representing image intensity data from Solexa experiments. } \section{Objects from the Class}{ Objects can be created by calls to \code{SolexaIntensityInfo} or \code{SolexaIntensity}, or more usually \code{readIntensities}. } \section{Slots}{ Object of \code{SolexaIntensity} have slots: \describe{ \item{\code{readInfo}:}{Object of class \code{"SolexaIntensityInfo"} representing information about each read.} \item{\code{intensity}:}{Object of class \code{"ArrayIntensity"} containing an array of intensities with dimensions read, base, and cycle. Nucleotide are A, C, G, T for each cycle.} \item{\code{measurementError}:}{Object of class \code{"ArrayIntensity"} containing measurement errors for each read, cycle, and base, with dimensions like that for \code{intensity}. } \item{\code{.hasMeasurementError}:}{Object of class \code{"ScalarLogical"} used internally to indicate whether measurement error information is included.} } Object of \code{SolexaIntensityInfo} \describe{ \item{data}{Object of class \code{"data.frame"}, inherited from \code{AnnotatedDataFrame}.} \item{varMetadata}{Object of class \code{"data.frame"}, inherited from \code{AnnotatedDataFrame}.} \item{dimLabels}{Object of class \code{"character"}, inherited from \code{AnnotatedDataFrame}.} \item{\code{.__classVersion__}}{Object of class \code{"Versions"}, inherited from \code{AnnotatedDataFrame}.} \item{.init}{Object of class \code{"ScalarLogical"}, used internally to indicate whether the user initialized this object.} } } \section{Extends}{ Class \code{SolexaIntensity}: Class \code{"\linkS4class{Intensity}"}, directly. Class \code{"\linkS4class{.ShortReadBase}"}, by class "Intensity", distance 2. Class \code{SolexaIntensityInfo}: Class \code{"\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}"}, directly Class \code{"\linkS4class{IntensityInfo}"}, directly Class \code{"\link[Biobase:class.Versioned]{Versioned}"}, by class "AnnotatedDataFrame", distance 2 Class \code{"\linkS4class{.ShortReadBase}"}, by class "IntensityInfo", distance 2 Class \code{"\linkS4class{IntensityInfo}"}, directly. } \section{Methods}{ Class "SolexaIntensity" inherits accessor and display methods from class \code{\linkS4class{Intensity}}. Additional methods include: \describe{ \item{\code{[}}{\code{signature(x = "SolexaIntensity", i="ANY", j="ANY", k="ANY")}: Selects the ith read, jth nucleotide, and kth cycle. Selection is coordinated across intensity, measurement error, and read information.} } Class "SolexaIntensityInfo" inherits accessor, subsetting, and display methods from class \code{\linkS4class{IntensityInfo}} and \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}}. } \author{Martin Morgan } \seealso{\code{\link{readIntensities}}} \examples{ showClass("SolexaIntensity") sp <- SolexaPath(system.file('extdata', package='ShortRead')) int <- readIntensities(sp) int # SolexaIntensity readInfo(int) # SolexaIntensityInfo int[1:5,,] # read 1:5 } \keyword{classes} ShortRead/man/SolexaIntensity.Rd0000644000175100017510000000374712607265053017712 0ustar00biocbuildbiocbuild\name{SolexaIntensity} \alias{SolexaIntensity} \alias{SolexaIntensityInfo} \title{(Legacy) Construct objects of class "SolexaIntensity" and "SolexaIntensityInfo"} \description{ These function constructs objects of \code{\linkS4class{SolexaIntensity}} and \code{\linkS4class{SolexaIntensityInfo}}. It will often be more convenient to create these objects using parsers such as \code{\link{readIntensities}}. } \usage{ SolexaIntensity(intensity=array(0, c(0, 0, 0)), measurementError=array(0, c(0, 0, 0)), readInfo=SolexaIntensityInfo( lane=integer(nrow(intensity))), ...) SolexaIntensityInfo(lane=integer(0), tile=integer(0)[seq_along(lane)], x=integer(0)[seq_along(lane)], y=integer(0)[seq_along(lane)]) } \arguments{ \item{intensity}{A matrix of image intensity values. Successive columns correspond to nucleotides A, C, G, T; four successive columns correspond to each cycle. Typically, derived from \code{"_int.txt"} files.} \item{measurementError}{As \code{intensity}, but measuring standard error. Usually derived from \code{"_nse.txt"} files.} \item{readInfo}{An object of class \code{AnnotatedDataFrame}, containing information described by \code{SolexaIntensityInfo}.} \item{lane}{An integer vector giving the lane from which each read is derived.} \item{tile}{An integer vector giving the tile from which each read is derived.} \item{x}{An integer vector giving the tile-local x coordinate of the read from which each read is derived.} \item{y}{An integer vector giving the tile-local y coordinate of the read from which each read is derived.} \item{...}{Additional arguments, not currently used.} } \value{ An object of class \code{\linkS4class{SolexaIntensity}}, or \code{SolexaIntensityInfo}. } \author{Martin Morgan } \seealso{\code{\linkS4class{SolexaIntensity}}.} \keyword{manip} ShortRead/man/SolexaPath-class.Rd0000644000175100017510000002026312607265053017713 0ustar00biocbuildbiocbuild\name{SolexaPath-class} \docType{class} \alias{SolexaPath-class} % constructors \alias{SolexaPath} % methods \alias{SolexaSet,SolexaPath-method} \alias{qa,SolexaPath-method} \alias{report,SolexaPath-method} \alias{show,SolexaPath-method} \alias{detail,SolexaPath-method} % transforming methods \alias{readIntensities,SolexaPath-method} \alias{readPrb,SolexaPath-method} \alias{readQseq,SolexaPath-method} \alias{readFasta,SolexaPath-method} \alias{readFastq,SolexaPath-method} \alias{readBaseQuality,SolexaPath-method} \alias{readAligned,SolexaPath-method} \title{(Legacy) "SolexaPath" class representing a standard output file hierarchy} \description{ Solexa produces a hierarchy of output files. The content of the hierarchy varies depending on analysis options. This class represents a standard class hierarchy, constructed by searching a file hierarchy for appropriately named directories. } \section{Objects from the Class}{ Objects from the class are created by calls to the constructor: \code{SolexaPath(experimentPath, dataPath=.solexaPath(experimentPath, "Data"), scanPath=.solexaPath(dataPath, "GoldCrest"), imageAnalysisPath=.solexaPath(dataPath, "^(C|IPAR)"), baseCallPath=.solexaPath(imageAnalysisPath, "^Bustard"), analysisPath=.solexaPath(baseCallPath, "^GERALD"), ..., verbose=FALSE) } \describe{ \item{experimentPath}{\code{character(1)} object pointing to the top-level directory of a Solexa run, e.g., \code{/home/solexa/user/080220_HWI-EAS88_0004}. This is the only required argument} \item{dataPath}{(optional) Solexa \sQuote{Data} folder .} \item{scanPath}{(optional) Solexa GoldCrest image scan path.} \item{imageAnalysisPath}{(optional) Firecrest image analysis path.} \item{baseCallPath}{(optional) Bustard base call path.} \item{analysisPath}{(optional) Gerald analysis pipeline path.} \item{...}{Additional arguments, unused by currently implemented methods.} \item{verbose=FALSE}{(optional) logical vector which, when \code{TRUE} results in warnings if paths do not exist.} } All paths must be fully-specified. } \section{Slots}{ \code{SolexaPath} has the following slots, containing either a fully specified path to the corresponding directory (described above) or \code{NA} if no appropriate directory was discovered. \describe{ \item{\code{basePath}}{See \code{experimentPath}, above.} \item{\code{dataPath}}{See above.} \item{\code{scanPath}}{See above.} \item{\code{imageAnalysisPath}}{See above.} \item{\code{baseCallPath}}{See above.} \item{\code{analysisPath}}{See above.} } } \section{Extends}{ Class \code{"\linkS4class{.Solexa}"}, directly. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".Solexa", distance 2. } \section{Methods}{ Transforming methods include: \describe{ \item{readIntensities}{ \code{signature(dirPath = "SolexaPath", pattern=character(0), run, ...)}: Use \code{imageAnalysisPath(sp)[run]} as the directory path(s) and \code{pattern=character(0)} as the pattern for discovering Solexa intensity files. See \code{\link{readIntensities,character-method}} for additional parameters.} \item{readPrb}{ \code{signature(dirPath = "SolexaPath", pattern=character(0), run, ...)}: Use \code{baseCallPath(dirPath)[run]} as the directory path(s) and \code{pattern=character(0)} as the pattern for discovering Solexa \sQuote{prb} files, returning a \code{\linkS4class{SFastqQuality}} object containing the maximum qualities found for each base of each cycle. The \code{...} argument may include the named argument \code{as}. This influences the return value, as explained on the \code{\link{readPrb,character-method}} page. } \item{readFasta}{ \code{signature(dirPath, pattern = character(0), ..., nrec=-1L, skip=0L)}: Use \code{analysisPath(dirPath)[run]} as the directory path(s) for discovering fasta-formatted files, returning a \code{\linkS4class{ShortRead}} object. The default method reads \emph{all} files into a single object.} \item{readFastq}{ \code{signature(dirPath = "SolexaPath", pattern = ".*_sequence.txt", run, ..., qualityType="SFastqQuality")}: Use \code{analysisPath(dirPath)[run]} as the directory path(s) and \code{pattern=".*_sequence.txt"} as the pattern for discovering fastq-formatted files, returning a \code{\linkS4class{ShortReadQ}} object. The default method reads \emph{all} sequence files into a single object.} \item{readBaseQuality}{ \code{signature(dirPath = "SolexaPath", seqPattern = ".*_seq.txt", prbPattern = "s_[1-8]_prb.txt", run, ...)}: Use \code{baseCallPath(dirPath)[run]} as the directory path(s) and \code{seqPattern=".*_seq.txt"} as the pattern for discovering base calls and \code{prbPattern=".*_prb.txt"} as the pattern for discovering quality scores. Note that the default method reads \emph{all} base call and quality score files into a single object; often one will want to specify a pattern for each lane.} \item{readQseq}{ \code{signature(directory="SolexaPath", pattern=".*_qseq.txt.*", run, ...., filtered=FALSE)}: Use \code{analysisPath(dirPath)[run]} as the directory path and \code{pattern=".*_qseq.txt.*"} as the pattern for discovering read and quality scores in Solexa 'qseq' files. Data from \emph{all} files are read into a single object; often one will want to specify a pattern for each lane. Details are as for \code{\link{readQseq,character-method}}.} \item{readAligned}{ \code{signature(dirPath = "SolexaPath", pattern = ".*_export.txt.*", run, ..., filter=srFilter())}: Use \code{analysisPath(dirPath)[run]} as the directory path and \code{pattern=".*_export.txt"} as the pattern for discovering Eland-aligned reads in the Solexa 'export' file format. Note that the default method reads \emph{all} aligned read files into a single object; often one will want to specify a pattern for each lane. Use an object of \code{\linkS4class{SRFilter}} to select specific chromosomes, strands, etc.} \item{qa}{ \code{signature(dirPath="SolexaPath", pattern="character(0)", run, ...)}: Use \code{analysisPath(dirPath)[run]} as the directory path(s) and \code{pattern=".*_export.txt"} as the pattern for discovering Solexa \code{export}-formatted fileds, returning a \code{\linkS4class{SolexaExportQA}} object summarizing quality assessment. If \code{Rmpi} or \code{parallel} has been initiated, quality assessment calculations are distributed across available nodes or cores (one node per export file.)} \item{report}{ \code{signature(x, ..., dest=tempfile(), type="pdf")}: Use \code{qa(x, ...)} to generate quality assessment measures, and use these to generate a quality assessment report at location \code{dest} of type \code{type} (e.g., \sQuote{pdf}). } \item{SolexaSet}{\code{signature(path = "SolexaPath")}: create a \code{\linkS4class{SolexaSet}} object based on \code{path}.} } Additional methods include: \describe{ \item{show}{\code{signature(object = "SolexaPath")}: briefly summarize the file paths of \code{object}. The \code{experimentPath} is given in full; the remaining paths are identified by their leading characters.} \item{detail}{\code{signature(x = "SolexaPath")}: summarize file paths of \code{x}. All file paths are presented in full.} } } \author{Martin Morgan} \examples{ showClass("SolexaPath") showMethods(class="SolexaPath", where=getNamespace("ShortRead")) sf <- system.file("extdata", package="ShortRead") sp <- SolexaPath(sf) sp readFastq(sp, pattern="s_1_sequence.txt") \dontrun{ nfiles <- length(list.files(analysisPath(sp), "s_[1-8]_export.txt")) library(Rmpi) mpi.spawn.Rslaves(nslaves=nfiles) report(qa(sp)) } \dontrun{ nfiles <- length(list.files(analysisPath(sp), "s_[1-8]_export.txt")) report(qa(sp)) } } \keyword{classes} ShortRead/man/SolexaSet-class.Rd0000644000175100017510000000754112607265053017556 0ustar00biocbuildbiocbuild\name{SolexaSet-class} \docType{class} \alias{SolexaSet-class} % constructors \alias{SolexaSet} \alias{SolexaSet,character-method} % methods \alias{detail,SolexaSet-method} \alias{laneNames,SolexaSet-method} \alias{laneNames,AnnotatedDataFrame-method} \alias{show,SolexaSet-method} % transforming methods \alias{readAligned,SolexaSet-method} \title{(Legacy) "SolexaSet" coordinating Solexa output locations with sample annotations} \description{ This class coordinates the file hierarchy produced by the Solexa `pipeline' with annotation data contained in an \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} (defined in the \pkg{Biobase} package). } \section{Objects from the Class}{ Objects can be created from the constructor: \code{SolexaSet(path, ...)}. \describe{ \item{path}{A \code{character(1)} vector giving the fully-qualified path to the root of the directory hierarchy associated with each Solexa flow cell, or an object of class \code{SolexaPath} (see \code{\linkS4class{SolexaPath}} for this method).} \item{...}{Additional arguments, especially \code{laneDescription}, an \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} describing the content of each of the 8 lanes in the Solexa flow cell.} } } \section{Slots}{ \code{SolexaSet} has the following slots: \describe{ \item{\code{solexaPath}:}{Object of class \code{"SolexaPath"}.} \item{\code{laneDescription}:}{Object of class \code{"AnnotatedDataFrame"}, containing information about the samples in each lane of the flow cell.} } } \section{Extends}{ Class \code{"\linkS4class{.Solexa}"}, directly. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".Solexa", distance 2. } \section{Methods}{ \describe{ \item{solexaPath}{\code{signature(object = "SolexaSet")}: Return the directory paths present when this object was created as a \code{\linkS4class{SolexaPath}}.} \item{laneNames}{\code{signature(object = "SolexaSet")}: Return the names of each lane in the flow cell, currently names are simply \code{1:8}. } \item{show}{\code{signature(object = "SolexaSet")}: Briefly summarize the experiment path and lane description of the Solexa set. } \item{detail}{\code{signature(x = "SolexaSet")}: Provide additional detail on the Solexa set, including the content of \code{solexaPath} and the \code{pData} and \code{varMetadata} of \code{laneDescription}.} } Methods transforming \code{SolexaSet} objects include: \describe{ \item{readAligned}{ \code{signature(dirPath = "SolexaSet", pattern = ".*_export.txt", run, ..., filter=srFilter())}: Use \code{analysisPath(solexaPath(dirPath))[run]} as the directory path(s) and \code{pattern=".*_export.txt"} as the pattern for discovering Eland-aligned reads in the Solexa 'export' file format. Note that the default method reads \emph{all} aligned read files into a single object; often one will want to specify a pattern for each lane. Use an object of \code{\linkS4class{SRFilter}} to select specific chromosomes, strands, etc.} } } \author{Martin Morgan} \examples{ showClass("SolexaSet") showMethods(class="SolexaSet", where=getNamespace("ShortRead")) ## construct a SolexaSet sf <- system.file("extdata", package="ShortRead") df <- data.frame(Sample=c("Sample 1", "Sample 2", "Sample 3", "Sample 4", "Center-wide control", "Sample 6", "Sample 7", "Sample 8"), Genome=c(rep("hg18", 4), "phi_plus_SNPs.txt", rep("hg18", 3))) dfMeta <- data.frame(labelDescription=c("Type of sample", "Alignment genome")) adf <- new("AnnotatedDataFrame", data=df, varMetadata=dfMeta) SolexaSet(sf, adf) } \keyword{classes} ShortRead/man/SpTrellis-class.Rd0000644000175100017510000000470312607265053017565 0ustar00biocbuildbiocbuild\name{SpTrellis-class} \Rdversion{1.1} \docType{class} % constructor: \alias{SpTrellis-class} \alias{SpTrellis} % methods: \alias{zi} \alias{zi,SpTrellis-method} \alias{zo} \alias{zo,SpTrellis-method} \alias{right,SpTrellis-method} \alias{left,SpTrellis-method} \alias{restore} \alias{restore,SpTrellis-method} \alias{show,SpTrellis-method} \title{Class "SpTrellis"} \description{ A reference class to manage the trellis graphics related component of the \code{\link{Snapshot}} functionality for visualization of genomic data. } \usage{ SpTrellis(trellis, debug_enabled=FALSE) } \arguments{ \item{trellis}{A trellis object for storing the plot of the genome area being visualized.} \item{debug_enabled}{\code{logical(1)} indicating whether class methods should report debugging information to the user.} } \section{Fields}{ \describe{ \item{\code{trellis}:}{Object of class \code{trellis} for storing the plot information.} \item{debug_enabled}{\code{logical(1)} indicating whether class methods should report debugging information to the user.} } } \section{Methods}{ \describe{ \item{zi}{\code{signature(x="SpTrellis")}: zoom in} \item{zo}{\code{signature(x="SpTrellis")}: zoom out} \item{right}{\code{signature(x="SpTrellis")}: shift to the right} \item{left}{\code{signature(x="SpTrellis")}: shift to the left} \item{restore}{\code{signature(x="SpTrellis")}: restore to the original plot} \item{show}{\code{signature(x="SpTrellis")}: show the current plot} \item{update}{\code{signature(x="SpTrellis")}: update the trellis parameters of the \code{SpTrellis} object.} } } \author{Chao-Jen \url{cwon2@fhcrc.org}} \seealso{\code{\link{Snapshot}}} \examples{ col <- c("#66C2A5", "#FC8D62") x = numeric(1000) x[sample(1000, 100)] <- abs(rnorm(100)) df <- data.frame(x = c(x, -x), pos = seq(1, 1e5, length.out=1000), group = rep(c("positive", "negative"), each=1000)) cv <- lattice::xyplot(x ~ pos, df, group=group, type="s", col=col, main="yeast chrI:1 - 2e5", ylab="Coverage", xlab="Coordinate", scales=list(y=list(tck=c(1,0)), x=list(rot=45, tck=c(1,0), tick.number=20)), panel=function(...) { lattice::panel.xyplot(...) lattice::panel.grid(h=-1, v=20) lattice::panel.abline(a=0, b=0, col="grey") }) s <- SpTrellis(cv) s zi(s) zi(s) left(s) right(s) zo(s) restore(s) } \keyword{classes} ShortRead/man/accessors.Rd0000644000175100017510000000352612607265053016530 0ustar00biocbuildbiocbuild\name{accessors} \alias{accessors} % SRVector \alias{vclass} % ShortRead / ShortReadQ \alias{sread} \alias{sread,ShortRead-method} \alias{id} % AlignedRead \alias{chromosome} \alias{position} \alias{alignQuality} \alias{alignData} % Solexa \alias{experimentPath} \alias{dataPath} \alias{scanPath} \alias{imageAnalysisPath} \alias{baseCallPath} \alias{analysisPath} % SolexaSet \alias{solexaPath} \alias{laneDescription} \alias{laneNames} \title{(Legacy) Accessors for ShortRead classes} \description{ These functions and generics define `accessors' (to get and set values) for objects in the \pkg{ShortRead} package; methods defined in other packages may have additional meaning. } \usage{ ## SRVector vclass(object, ...) ## ShortRead / ShortReadQ sread(object, ...) id(object, ...) ## AlignedRead chromosome(object, ...) position(object, ...) alignQuality(object, ...) alignData(object, ...) ## Solexa experimentPath(object, ...) dataPath(object, ...) scanPath(object, ...) imageAnalysisPath(object, ...) baseCallPath(object, ...) analysisPath(object, ...) ## SolexaSet solexaPath(object, ...) laneDescription(object, ...) laneNames(object, ...) } \arguments{ \item{object}{An object derived from class \code{ShortRead}. See help pages for individual objects, e.g., \code{\linkS4class{ShortReadQ}}. The default is to extract the contents of a slot of the corresponding name (e.g., slot \code{sread}) from \code{object}.} \item{...}{Additional arguments passed to the accessor. The default definitions do not make use of additional arguments.} } \value{ Usually, the value of the corresponding slot, or other simple content described on the help page of \code{object}. } \author{Martin Morgan} \examples{ sp <- SolexaPath(system.file('extdata', package='ShortRead')) experimentPath(sp) basename(analysisPath(sp)) } \keyword{manip} ShortRead/man/alphabetByCycle.Rd0000644000175100017510000000441612607265053017575 0ustar00biocbuildbiocbuild\name{alphabetByCycle} \alias{alphabetByCycle} \alias{alphabetByCycle,BStringSet-method} \title{Summarize nucleotide, amino acid, or quality scores by cycle} \description{ \code{alphabetByCycle} summarizes nucleotides, amino acid, or qualities by cycle, e.g., returning the number of occurrences of each nucleotide \code{A, T, G, C} across all reads from 36 cycles of a Solexa lane. } \usage{ alphabetByCycle(stringSet, alphabet, ...) } \arguments{ \item{stringSet}{A R object representing the collection of reads, amino acid sequences, or quality scores, to be summarized.} \item{alphabet}{The alphabet (character vector of length 1 strings) from which the sequences in \code{stringSet} are composed. Methods often define an appropriate alphabet, so that the user does not have to provide one.} \item{...}{Additional arguments, perhaps used by methods defined on this generic.} } \details{ The default method requires that \code{stringSet} extends the \code{\link[Biostrings:XStringSet-class]{XStringSet}} class of \pkg{Biostrings}. The following method is defined, in addition to methods described in class-specific documentation: \describe{ \item{alphabetByCycle}{\code{signature(stringSet = "BStringSet")}: this method uses an alphabet spanning all ASCII characters, codes \code{1:255}. } } } \value{ A matrix with number of rows equal to the length of \code{alphabet} and columns equal to the maximum width of reads or quality scores in the string set. Entries in the matrix are the number of times, over all reads of the set, that the corresponding letter of the alphabet (row) appeared at the specified cycle (column). } \seealso{ The IUPAC alphabet in Biostrings. \url{http://www.bioperl.org/wiki/FASTQ_sequence_format} for the BioPerl definition of fastq. Solexa documentation `Data analysis - documentation : Pipeline output and visualisation'. } \author{Martin Morgan} \examples{ showMethods("alphabetByCycle") sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") alphabetByCycle(sread(rfq)) abcq <- alphabetByCycle(quality(rfq)) dim(abcq) ## 'high' scores, first and last cycles abcq[64:94,c(1:5, 32:36)] } \keyword{manip} ShortRead/man/alphabetScore.Rd0000644000175100017510000000117012607265053017310 0ustar00biocbuildbiocbuild\name{alphabetScore} \alias{alphabetScore} \title{Efficiently calculate the sum of quality scores across bases} \description{ This generic takes a \code{\linkS4class{QualityScore}} or \code{PhredQuality} object and calculates, for each read, the sum of the encoded nucleotide probabilities. } \usage{ alphabetScore(object, ...) } \arguments{ \item{object}{An object of class \code{\linkS4class{QualityScore}}.} \item{\dots}{Additional arguments, currently unused.} } \value{ A vector of numeric values of length equal to the length of \code{object}. } \author{Martin Morgan } \keyword{manip} ShortRead/man/clean.Rd0000644000175100017510000000200012607265053015607 0ustar00biocbuildbiocbuild\name{clean} \alias{clean} \alias{clean,DNAStringSet-method} \title{Remove sequences with ambiguous nucleotides from short read classes} \description{ Short reads may contain ambiguous base calls (i.e., IUPAC symbols different from A, T, G, C). This generic removes all sequences containing 1 or more ambiguous bases. } \usage{ clean(object, ...) } \arguments{ \item{object}{An object for which \code{clean} methods exist; see below to discover these methods.} \item{\dots}{Additional arguments, perhaps used by methods.} } \details{ The following method is defined, in addition to methods described in class-specific documentation: \describe{ \item{clean}{\code{signature(x = "DNAStringSet")}: Remove all sequences containing non-base (A, C, G, T) IUPAC symbols.} } } \value{ An instance of \code{class(object)}, containing only sequences with non-redundant nucleotides. } \author{Martin Morgan } \examples{ showMethods('clean') } \keyword{manip} ShortRead/man/countLines.Rd0000644000175100017510000000303612607265053016662 0ustar00biocbuildbiocbuild\name{countLines} \alias{countLines} \title{Count lines in all (text) files in a directory whose file name matches a pattern} \description{ \code{countLines} visits all files in a directory path \code{dirPath} whose base (i.e., file) name matches \code{pattern}. Lines in the file are counted as the number of new line characters. } \usage{ countLines(dirPath, pattern=character(0), ..., useFullName=FALSE) } \arguments{ \item{dirPath}{A character vector (or other object; see methods defined on this generic) giving the directory path (relative or absolute) of files whose lines are to be counted.} \item{pattern}{The (\code{\link{grep}}-style) pattern describing files whose lines are to be counted. The default (\code{character(0)}) results in line counts for all files in the directory.} \item{...}{Additional arguments, passed internally to list.files. See \code{\link{list.files}}.} \item{useFullName}{A \code{logical(1)} indicating whether elements of the returned vector should be named with the base (file) name (default; \code{useFullName=FALSE}) or the full path name (\code{useFullName=TRUE}).} } \value{ A named integer vector of line counts. Names are paths to the files whose lines have been counted, excluding \code{dirPath}. } \author{Martin Morgan} \examples{ sp <- SolexaPath(system.file('extdata', package='ShortRead')) countLines(analysisPath(sp)) countLines(experimentPath(sp), recursive=TRUE) countLines(experimentPath(sp), recursive=TRUE, useFullName=TRUE) } \keyword{manip} ShortRead/man/deprecated.Rd0000644000175100017510000000100612607265053016632 0ustar00biocbuildbiocbuild\name{deprecated} \alias{deprecated} \alias{defunct} \alias{basePath} \alias{srapply} \alias{readAligned,BamFile-method} \title{Deprecated and defunct functions} \description{ These functions were introduced but are now deprecated or defunct. } \details{ Defunct functions: \itemize{ \item{\code{srapply}}{. Use the BiocParallel package instead.} \item{\code{readAligned,BamFile-method}}{. Use the GenomicAlignments package instead.} \item{\code{basePath()}}{} } } \keyword{manip} ShortRead/man/dotQA-class.Rd0000644000175100017510000000220712607265053016651 0ustar00biocbuildbiocbuild\name{.QA-class} \docType{class} \alias{.QA-class} \alias{rbind,.QA-method} \alias{show,.QA-method} \title{Virtual class for representing quality assessment results} \description{ Classes derived from \code{.QA-class} represent results of quality assurance analyses. Details of derived class structure are found on the help pages of the derived classes. } \section{Objects from the Class}{ Objects from the class are created by ShortRead functions, in particular \code{\link{qa}}. } \section{Extends}{ Class \code{"\linkS4class{.ShortReadBase}"}, directly. } \section{Methods}{ Methods defined on this class include: \describe{ \item{rbind}{\code{signature(...="list")}: rbind data frame objects in \code{...}. All objects of \code{...} must be of the same class; the return value is an instance of that class.} \item{show}{\code{signature(object = "SolexaExportQA")}: Display an overview of the object contents.} } } \seealso{ Specific classes derived from \code{.QA} } \author{Martin Morgan } \examples{ getClass(".QA", where=getNamespace("ShortRead")) } \keyword{classes} ShortRead/man/dustyScore.Rd0000644000175100017510000000421512607265053016703 0ustar00biocbuildbiocbuild\name{dustyScore} \alias{dustyScore} \alias{dustyScore,DNAStringSet-method} \alias{dustyScore,ShortRead-method} \title{Summarize low-complexity sequences} \description{ \code{dustyScore} identifies low-complexity sequences, in a manner inspired by the \code{dust} implementation in \code{BLAST}. } \usage{ dustyScore(x, batchSize=NA, ...) } \arguments{ \item{x}{A \code{DNAStringSet} object, or object derived from \code{ShortRead}, containing a collection of reads to be summarized.} \item{batchSize}{\code{NA} or an \code{integer(1)} vector indicating the maximum number of reads to be processed at any one time.} \item{...}{Additional arguments, not currently used.} } \details{ The following methods are defined: \describe{ \item{dustyScore}{\code{signature(x = "DNAStringSet")}: operating on an object derived from class \code{DNAStringSet}.} \item{dustyScore}{\code{signature(x = "ShortRead")}: operating on the \code{sread} of an object derived from class \code{ShortRead}.} } The dust-like calculations used here are as implemented at \url{https://stat.ethz.ch/pipermail/bioc-sig-sequencing/2009-February/000170.html}. Scores range from 0 (all triplets unique) to the square of the width of the longest sequence (poly-A, -C, -G, or -T). The \code{batchSize} argument can be used to reduce the memory requirements of the algorithm by processing the \code{x} argument in batches of the specified size. Smaller batch sizes use less memory, but are computationally less efficient. } \value{ A vector of numeric scores, with length equal to the length of \code{x}. } \references{ Morgulis, Getz, Schaffer and Agarwala, 2006. WindowMasker: window-based masker for sequenced genomes, Bioinformatics 22: 134-141. } \seealso{ The WindowMasker supplement defining \code{dust} \url{ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/windowmasker/windowmasker_suppl.pdf} } \author{Herve Pages (code); Martin Morgan} \examples{ sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") range(dustyScore(rfq)) } \keyword{manip} ShortRead/man/filterFastq.Rd0000644000175100017510000000352212607265053017023 0ustar00biocbuildbiocbuild\name{filterFastq} \alias{filterFastq} \title{Filter fastq from one file to another} \description{ \code{filterFastq} filters reads from source to destination file(s) applying a filter to reads in each file. The filter can be a function or FilterRules instance; operations are done in a memory-efficient manner. } \usage{ filterFastq(files, destinations, ..., filter = FilterRules(), compress=TRUE, yieldSize = 1000000L) } \arguments{ \item{files}{a character vector of valid file paths.} \item{destinations}{a character vector of destinations, recycled to be the same length as \code{files}. \code{destinations} must not already exist.} \item{...}{Additional arguments, perhaps used by a \code{filter} function.} \item{filter}{A simple function taking as it's first argument a \code{ShortReadQ} instance and returning a modified \code{ShortReadQ} instance (e.g., with records or nucleotides removed), or a \code{FilterRules} instance specifying which records are to be removed.} \item{compress}{A logical(1) indicating whether the file should be gz-compressed. The default is \code{TRUE}.} \item{yieldSize}{Number of fastq records processed in each call to \code{filter}; increase this for (marginally) more efficient I/O at the expense of increased memory use.} } \author{Martin Morgan \url{mtmorgan@fhcrc.org}} \examples{ ## path to a convenient fastq file sp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") ## filter reads to keep those with GC < 0.7 fun <- function(x) { gc <- alphabetFrequency(sread(x), baseOnly=TRUE)[,c("G", "C")] x[rowSums(gc) / width(x) < .7] } filterFastq(fl, tempfile(), filter=fun) ## trimEnds,character-method uses filterFastq internally trimEnds(fl, "V", destinations=tempfile()) } ShortRead/man/polyn.Rd0000644000175100017510000000145412607265053015702 0ustar00biocbuildbiocbuild\name{Utilites} \alias{polyn} \title{Utilities for common, simple operations} \description{ These functions perform a variety of simple operations. } \usage{ polyn(nucleotides, n) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{nucleotides}{A character vector with all elements having exactly 1 character, typically from the IUPAC alphabet.} \item{n}{An \code{integer(1)} vector.} } \details{ \code{polyn} returns a character vector with each element having \code{n} characters. Each element contains a single nucleotide. Thus \code{polyn("A", 5)} returns \code{AAAAA}. } \value{ \code{polyn} returns a character vector of length \code{length(nucleotide)} } \author{Martin Morgan } \examples{ polyn(c("A", "N"), 35) } \keyword{manip} ShortRead/man/qa.Rd0000644000175100017510000001022112607265053015132 0ustar00biocbuildbiocbuild\name{qa} \alias{qa} \alias{qa,character-method} \alias{qa,list-method} \title{Perform quality assessment on short reads} \description{ This function is a common interface to quality assessment functions available in \code{ShortRead}. Results from this function may be displayed in brief, or integrated into reports using, e.g., \code{\link{report}}. } \usage{ qa(dirPath, ...) \S4method{qa}{character}(dirPath, pattern=character(0), type=c("fastq", "SolexaExport", "SolexaRealign", "Bowtie", "MAQMap", "MAQMapShort"), ...) \S4method{qa}{list}(dirPath, ...) } \arguments{ \item{dirPath}{A character vector or other object (e.g., \code{\link{SolexaPath}}; see \code{showMethods}, below) locating the data for which quality assessment is to be performed. See help pages for defined methods (by evaluating the example code, below) for details of available methods.} \item{pattern}{A character vector limiting the files in \code{dirPath} to be processed, as with \code{\link{list.files}}. Care should be taken to specify pattern to avoid reading unintended files.} \item{type}{The type of file being parsed; must be a character vector of length 1, selected from one of the types enumerated in the parameter.} \item{\dots}{Additional arguments used by methods. \describe{ \item{\code{sample=TRUE}:}{Logical(1) indicating whether QA should be performed on a sample (default size 1000000) drawn from each FASTQ file, or from the entire file.} \item{\code{n}:}{The number of reads to sample when processing FASTQ files.} \item{\code{Lpattern}, \code{Rpattern}:}{A character vector or XString object to be matched to the left end of a sequence. If either \code{Lpattern} or \code{Rpattern} are provided, \code{trimLRPatterns} is invoked to produce a measure of adapter contamination. Mismatch rates are 0.1 on the left and 0.2 on the right, with a minimum overlap of 10 nt.} \item{\code{BPPARAM}:}{How parallel evalutation will be performed. see \code{\link{BiocParallelParam}}; the default is \code{BiocParallel::registered()[1]}.} } } } \details{ The most common use of this function provides a directory path and pattern identifying FASTQ files for quality assessment. The default is then to create a quality assessment report based on a random sample of n=1000000 reads from each file. The following methods are defined, in addition to those on S4 formal classes documented elsewhere: \describe{ \item{\code{qa,character-method}}{ Quality assessment is performed on all files in directory \code{dirPath} whose file name matches \code{pattern}. The type of analysis performed is based on the \code{type} argument. Use \code{SolexaExport} when all files matching \code{pattern} are Solexa \code{_export.txt} files. Use \code{SolexaRealign} for Solexa \code{_realign.txt} files. Use \code{Bowtie} for Bowtie files. Use \code{MAQMapShort} for MAQ \code{map} files produced by MAQ versions below 0.70 and \code{MAQMap} for more recent output. Use \code{fastq} for collections of fastq-format files. Quality assessment details vary depending on data source. } \item{\code{qa,list-method}}{ \code{dirPath} is a list of objects, all of the same class and typically derived from \code{ShortReadQ}, on which quality assessment is performed. All elements of the list must have names, and these should be unique. } } } \value{ An object derived from class \code{\linkS4class{.QA}}. Values contained in this object are meant for use by \code{\link{report}} } \author{Martin Morgan } \seealso{ \code{\linkS4class{.QA}}, \code{\linkS4class{SolexaExportQA}} \code{\linkS4class{MAQMapQA}} \code{\linkS4class{FastqQA}} } \examples{ dirPath <- system.file(package="ShortRead", "extdata", "E-MTAB-1147") ## sample 1M reads / file qa <- qa(dirPath, "fastq.gz", BPPARAM=SerialParam()) if (interactive()) browseURL(report(qa)) showMethods("qa", where=getNamespace("ShortRead")) } \keyword{manip} ShortRead/man/qa2.Rd0000644000175100017510000002207612607265053015227 0ustar00biocbuildbiocbuild\name{qa2} \alias{QAFastqSource} \alias{QACollate} \alias{QA} \alias{QAFlagged} \alias{QAFiltered} \alias{QAAdapterContamination} \alias{QAData} \alias{QAFrequentSequence} \alias{QANucleotideByCycle} \alias{QANucleotideUse} \alias{QAQualityByCycle} \alias{QAQualityUse} \alias{QAReadQuality} \alias{QASequenceUse} \alias{QACollate,QAFastqSource-method} \alias{QACollate,missing-method} \alias{qa2} \alias{qa2,FastqSampler-method} \alias{qa2,QAAdapterContamination-method} \alias{qa2,QACollate-method} \alias{qa2,QAFastqSource-method} \alias{qa2,QAFrequentSequence-method} \alias{qa2,QANucleotideByCycle-method} \alias{qa2,QANucleotideUse-method} \alias{qa2,QAQualityByCycle-method} \alias{qa2,QAQualityUse-method} \alias{qa2,QAReadQuality-method} \alias{qa2,QASequenceUse-method} \alias{flag} \alias{flag,.QA2-method} \alias{flag,QAFrequentSequence-method} \alias{flag,QAReadQuality-method} \alias{flag,QASource-method} \alias{report,QA-method} \alias{report,QAAdapterContamination-method} \alias{report,QAFiltered-method} \alias{report,QAFlagged-method} \alias{report,QAFrequentSequence-method} \alias{report,QANucleotideByCycle-method} \alias{report,QANucleotideUse-method} \alias{report,QAQualityByCycle-method} \alias{report,QAQualityUse-method} \alias{report,QAReadQuality-method} \alias{report,QASequenceUse-method} \alias{report,QASource-method} \alias{rbind,QASummary-method} \alias{show,QAAdapterContamination-method} \alias{show,QACollate-method} \alias{show,QAFastqSource-method} \alias{show,QAFrequentSequence-method} \alias{show,QAReadQuality-method} \alias{show,QASummary-method} \title{(Updated) quality assessment reports on short reads} \description{ This page summarizes an updated approach to quality assessment reports in \code{ShortRead}. } \usage{ ## Input source for short reads QAFastqSource(con = character(), n = 1e+06, readerBlockSize = 1e+08, flagNSequencesRange = NA_integer_, ..., html = system.file("template", "QASources.html", package="ShortRead")) QAData(seq = ShortReadQ(), filter = logical(length(seq)), ...) ## Possible QA elements QAFrequentSequence(useFilter = TRUE, addFilter = TRUE, n = NA_integer_, a = NA_integer_, flagK=.8, reportSequences = FALSE, ...) QANucleotideByCycle(useFilter = TRUE, addFilter = TRUE, ...) QANucleotideUse(useFilter = TRUE, addFilter = TRUE, ...) QAQualityByCycle(useFilter = TRUE, addFilter = TRUE, ...) QAQualityUse(useFilter = TRUE, addFilter = TRUE, ...) QAReadQuality(useFilter = TRUE, addFilter = TRUE, flagK = 0.2, flagA = 30L, ...) QASequenceUse(useFilter = TRUE, addFilter = TRUE, ...) QAAdapterContamination(useFilter = TRUE, addFilter = TRUE, Lpattern = NA_character_, Rpattern = NA_character_, max.Lmismatch = 0.1, max.Rmismatch = 0.2, min.trim = 9L, ...) ## Order QA report elements QACollate(src, ...) ## perform analysis qa2(object, state, ..., verbose=FALSE) ## Outputs from qa2 QA(src, filtered, flagged, ...) QAFiltered(useFilter = TRUE, addFilter = TRUE, ...) QAFlagged(useFilter = TRUE, addFilter = TRUE, ...) ## Summarize results as html report \S4method{report}{QA}(x, ..., dest = tempfile(), type = "html") ## additional methods; 'flag' is not fully implemented flag(object, ..., verbose=FALSE) \S4method{rbind}{QASummary}(..., deparse.level = 1) } \arguments{ \item{con}{\code{character(1)} file location of fastq input, as used by \code{FastqSampler}.} \item{n}{\code{integer(1)} number of records to input, as used by \code{FastqStreamer} (\code{QAFastqSource}). \code{integer(1)} number of sequences to tag as \sQuote{frequent} (\code{QAFrequentSequence}). } \item{readerBlockSize}{integer(1) number of bytes to input, as used by \code{FastqStreamer}.} \item{flagNSequencesRange}{\code{integer(2)} minimum and maximum reads above which source files will be flagged as outliers.} \item{html}{\code{character(1)} location of the HTML template for summarizing this report element.} \item{seq}{\code{\link{ShortReadQ}} representation of fastq data.} \item{filter}{\code{logical()} vector with length equal to \code{seq}, indicating whether elements of \code{seq} are filtered (\code{TRUE}) or not.} \item{useFilter, addFilter}{\code{logical(1)} indicating whether the QA element should be calculating using the filtered (\code{useFilter=TRUE}) or all reads, and whether reads failing the QA element should be added to the filter used by subsequent steps (\code{addFilter = TRUE}) or not.} \item{a}{\code{integer(1)} count of number of sequences above which a read will be considered \sQuote{frequent} (\code{QAFrequentSequence}).} \item{flagK, flagA}{\code{flagK} \code{numeric(1)} between 0 and 1 indicating the fraction of frequent sequences greater than or equal to \code{n} or \code{a} above which a fastq file will be flagged (\code{QAFrequentSequence}). \code{flagK} \code{numeric{1}} between 0 and 1 and \code{flagA} \code{integer(1)} indicating that a run should be flagged when the fraction of reads with quality greater than or equal to \code{flagA} falls below threshold \code{flagK}.} \item{reportSequences}{\code{logical(1)} indicating whether frequent sequences are to be reported.} \item{Lpattern, Rpattern, max.Lmismatch, max.Rmismatch, min.trim}{Parameters influencing adapter identification, see \code{\link{matchPattern}}.} \item{src}{The source, e.g., \code{QAFastqSource}, on which the quality assessment report will be based.} \item{object}{An instance of class derived from \code{QA} on which quality metrics will be derived; for end users, this is usually the result of \code{QACollate}.}. \item{state}{The data on which quality assessment will be performed; this is not usually necessary for end-users.} \item{verbose}{\code{logical(1)} indicating whether progress reports should be reported.} \item{filtered, flagged}{Primarily for internal use, instances of \code{QAFiltered} and \code{QAFlagged}.} \item{x}{An instance of \code{QA} on which a report is to be generated.} \item{dest}{\code{character(1)} providing the directory in which the report is to be generated.} \item{type}{\code{character(1)} indicating the type of report to be generated; only \dQuote{html} is supported.} \item{deparse.level}{see \code{\link{rbind}}.} \item{...}{Additional arguments, e.g., \code{html} to specify the location of the html source to use as a template for the report.} } \details{ Use \code{QACollate} to specify an order in which components of a QA report are to be assembled. The first argument is the data source (e.g., \code{QAFastqSource}). Functions related to data input include: \describe{ \item{\code{QAFastqSource}}{defines the location of fastq files to be included in the report. \code{con} is used to construct a \code{\link{FastqSampler}} instance, and records are processed using \code{qa2,QAFastqSource-method}.} \item{\code{QAData}}{is a class for representing the data during the QA report generation pass; it is primarily for internal use.} } Possible elements in a QA report are: \describe{ \item{\code{QAFrequentSequence}}{identifies the most-commonly occuring sequences. One of \code{n} or \code{a} can be non-NA, and determine the number of frequent sequences reported. \code{n} specifies the number of most-frequent sequences to filter, e.g., \code{n=10} would filter the top 10 most commonly occurring sequences; \code{a} provides a threshold frequency (count) above which reads are filtered. The sample is flagged when a fraction \code{flagK} of the reads are filtered. \code{reportSequences} determines whether the most commonly occuring sequences, as determined by \code{n} or \code{a}, are printed in the html report. } \item{\code{QANucleotideByCycle}}{reports nucleotide frequency as a function of cycle.} \item{\code{QAQualityByCycle}}{reports average quality score as a function of cycle.} \item{\code{QAQualityUse}}{summarizes overall nucleotide qualities.} \item{\code{QAReadQuality}}{summarizes the distribution of read qualities.} \item{\code{QASequenceUse}}{summarizes the cumulative distribution of reads occurring 1, 2, \dots times.} \item{\code{QAAdapterContamination}}{reports the occurrence of \sQuote{adapter} sequences on the left and / or right end of each read.} } } \value{ An object derived from class \code{\linkS4class{.QA}}. Values contained in this object are meant for use by \code{\link{report}} } \author{Martin Morgan } \seealso{\code{\linkS4class{QA}}.} \examples{ dirPath <- system.file(package="ShortRead", "extdata", "E-MTAB-1147") fls <- dir(dirPath, "fastq.gz", full=TRUE) coll <- QACollate(QAFastqSource(fls), QAReadQuality(), QAAdapterContamination(), QANucleotideUse(), QAQualityUse(), QASequenceUse(), QAFrequentSequence(n=10), QANucleotideByCycle(), QAQualityByCycle()) x <- qa2(coll, BPPARAM=SerialParam(), verbose=TRUE) res <- report(x) if (interactive()) browseURL(res) } \keyword{manip} ShortRead/man/readAligned.Rd0000644000175100017510000003540212607265053016740 0ustar00biocbuildbiocbuild\name{readAligned} \alias{readAligned} \alias{readAligned,character-method} \title{(Legacy) Read aligned reads and their quality scores into R representations} \description{ Import files containing aligned reads into an internal representation of the alignments, sequences, and quality scores. Most methods (see \sQuote{details} for exceptions) read all files into a single R object. } \usage{ readAligned(dirPath, pattern=character(0), ...) } \arguments{ \item{dirPath}{A character vector (or other object; see methods defined on this generic) giving the directory path (relative or absolute; some methods also accept a character vector of file names) of aligned read files to be input.} \item{pattern}{The (\code{\link{grep}}-style) pattern describing file names to be read. The default (\code{character(0)}) results in (attempted) input of all files in the directory.} \item{...}{Additional arguments, used by methods. When \code{dirPath} is a character vector, the argument \code{type} must be provided. Possible values for \code{type} and their meaning are described below. Most methods implement \code{filter=srFilter()}, allowing objects of \code{\linkS4class{SRFilter}} to selectively returns aligned reads.} } \details{ There is no standard aligned read file format; methods parse particular file types. The \code{readAligned,character-method} interprets file types based on an additional \code{type} argument. Supported types are: \describe{ \item{\code{type="SolexaExport"}}{ This type parses \code{.*_export.txt} files following the documentation in the Solexa Genome Alignment software manual, version 0.3.0. These files consist of the following columns; consult Solexa documentation for precise descriptions. If parsed, values can be retrieved from \code{\linkS4class{AlignedRead}} as follows: \describe{ \item{Machine}{see below} \item{Run number}{stored in \code{alignData}} \item{Lane}{stored in \code{alignData}} \item{Tile}{stored in \code{alignData}} \item{X}{stored in \code{alignData}} \item{Y}{stored in \code{alignData}} \item{Multiplex index}{see below} \item{Paired read number}{see below} \item{Read}{\code{sread}} \item{Quality}{\code{quality}} \item{Match chromosome}{\code{chromosome}} \item{Match contig}{\code{alignData}} \item{Match position}{\code{position}} \item{Match strand}{\code{strand}} \item{Match description}{Ignored} \item{Single-read alignment score}{\code{alignQuality}} \item{Paired-read alignment score}{Ignored} \item{Partner chromosome}{Ignored} \item{Partner contig}{Ignored} \item{Partner offset}{Ignored} \item{Partner strand}{Ignored} \item{Filtering}{\code{alignData}} } The following optional arguments, set to \code{FALSE} by default, influence data input \describe{ \item{withMultiplexIndex}{When \code{TRUE}, include the multiplex index as a column \code{multiplexIndex} in \code{alignData}.} \item{withPairedReadNumber}{When \code{TRUE}, include the paired read number as a column \code{pairedReadNumber} in \code{alignData}.} \item{withId}{When \code{TRUE}, construct an identifier string as \sQuote{Machine_Run:Lane:Tile:X:Y#multiplexIndex/pairedReadNumber}. The substrings \sQuote{#multiplexIndex} and \sQuote{/pairedReadNumber} are not present if \code{withMultiplexIndex=FALSE} or \code{withPairedReadNumber=FALSE}.} \item{withAll}{A convencience which, when \code{TRUE}, sets all \code{with*} values to \code{TRUE}.} } Note that not all paired read columns are interpreted. Different interfaces to reading alignment files are described in \code{\linkS4class{SolexaPath}} and \code{\linkS4class{SolexaSet}}. } \item{\code{type="SolexaPrealign"}}{See SolexaRealign} \item{\code{type="SolexaAlign"}}{See SolexaRealign} \item{\code{type="SolexaRealign"}}{ These types parse \code{s_L_TTTT_prealign.txt}, \code{s_L_TTTT_align.txt} or \code{s_L_TTTT_realign.txt} files produced by default and eland analyses. From the Solexa documentation, \code{align} corresponds to unfiltered first-pass alignments, \code{prealign} adjusts alignments for error rates (when available), \code{realign} filters alignments to exclude clusters failing to pass quality criteria. Because base quality scores are not stored with alignments, the object returned by \code{readAligned} scores all base qualities as \code{-32}. If parsed, values can be retrieved from \code{\linkS4class{AlignedRead}} as follows: \describe{ \item{Sequence}{stored in \code{sread}} \item{Best score}{stored in \code{alignQuality}} \item{Number of hits}{stored in \code{alignData}} \item{Target position}{stored in \code{position}} \item{Strand}{stored in \code{strand}} \item{Target sequence}{Ignored; parse using \code{\link{readXStringColumns}}} \item{Next best score}{stored in \code{alignData}} } } \item{\code{type="SolexaResult"}}{ This parses \code{s_L_eland_results.txt} files, an intermediate format that does not contain read or alignment quality scores. Because base quality scores are not stored with alignments, the object returned by \code{readAligned} scores all base qualities as \code{-32}. Columns of this file type can be retrieved from \code{\linkS4class{AlignedRead}} as follows (description of columns is from Table 19, Genome Analyzer Pipeline Software User Guide, Revision A, January 2008): \describe{ \item{Id}{Not parsed} \item{Sequence}{stored in \code{sread}} \item{Type of match code}{Stored in \code{alignData} as \code{matchCode}. Codes are (from the Eland manual): NM (no match); QC (no match due to quality control failure); RM (no match due to repeat masking); U0 (best match was unique and exact); U1 (best match was unique, with 1 mismatch); U2 (best match was unique, with 2 mismatches); R0 (multiple exact matches found); R1 (multiple 1 mismatch matches found, no exact matches); R2 (multiple 2 mismatch matches found, no exact or 1-mismatch matches).} \item{Number of exact matches}{stored in \code{alignData} as \code{nExactMatch}} \item{Number of 1-error mismatches}{stored in \code{alignData} as \code{nOneMismatch}} \item{Number of 2-error mismatches}{stored in \code{alignData} as \code{nTwoMismatch}} \item{Genome file of match}{stored in \code{chromosome}} \item{Position}{stored in \code{position}} \item{Strand}{(direction of match) stored in \code{strand}} \item{\sQuote{N} treatment}{stored in \code{alignData}, as \code{NCharacterTreatment}. \sQuote{.} indicates treatment of \sQuote{N} was not applicable; \sQuote{D} indicates treatment as deletion; \sQuote{|} indicates treatment as insertion} \item{Substitution error}{stored in \code{alignData} as \code{mismatchDetailOne} and \code{mismatchDetailTwo}. Present only for unique inexact matches at one or two positions. Position and type of first substitution error, e.g., 11A represents 11 matches with 12th base an A in reference but not read. The reference manual cited below lists only one field (\code{mismatchDetailOne}), but two are present in files seen in the wild.} } } \item{\code{type="MAQMap", records=-1L}}{Parse binary \code{map} files produced by MAQ. See details in the next section. The \code{records} option determines how many lines are read; \code{-1L} (the default) means that all records are input. For \code{type="MAQMap"}, \code{dir} and \code{pattern} must match a single file.} \item{\code{type="MAQMapShort", records=-1L}}{The same as \code{type="MAQMap"} but for map files made with Maq prior to version 0.7.0. (These files use a different maximum read length [64 instead of 128], and are hence incompatible with newer Maq map files.). For \code{type="MAQMapShort"}, \code{dir} and \code{pattern} must match a single file.} \item{\code{type="MAQMapview"}}{ Parse alignment files created by MAQ's \sQuote{mapiew} command. Interpretation of columns is based on the description in the MAQ manual, specifically \preformatted{ ...each line consists of read name, chromosome, position, strand, insert size from the outer coordinates of a pair, paired flag, mapping quality, single-end mapping quality, alternative mapping quality, number of mismatches of the best hit, sum of qualities of mismatched bases of the best hit, number of 0-mismatch hits of the first 24bp, number of 1-mismatch hits of the first 24bp on the reference, length of the read, read sequence and its quality. } The read name, read sequence, and quality are read as \code{XStringSet} objects. Chromosome and strand are read as \code{factor}s. Position is \code{numeric}, while mapping quality is \code{numeric}. These fields are mapped to their corresponding representation in \code{AlignedRead} objects. Number of mismatches of the best hit, sum of qualities of mismatched bases of the best hit, number of 0-mismatch hits of the first 24bp, number of 1-mismatch hits of the first 24bp are represented in the \code{AlignedRead} object as components of \code{alignData}. Remaining fields are currently ignored. } \item{\code{type="Bowtie"}}{ Parse alignment files created with the Bowtie alignment algorithm. Parsed columns can be retrieved from \code{\linkS4class{AlignedRead}} as follows: \describe{ \item{Identifier}{\code{id}} \item{Strand}{\code{strand}} \item{Chromosome}{\code{chromosome}} \item{Position}{\code{position}; see comment below} \item{Read}{\code{sread}; see comment below} \item{Read quality}{\code{quality}; see comments below} \item{Similar alignments}{\code{alignData}, \sQuote{similar} column; Bowtie v. 0.9.9.3 (12 May, 2009) documents this as the number of other instances where the same read aligns against the same reference characters as were aligned against in this alignment. Previous versions marked this as \sQuote{Reserved}} \item{Alignment mismatch locations}{\code{alignData} \sQuote{mismatch}, column} } NOTE: the default quality encoding changes to \code{FastqQuality} with \pkg{ShortRead} version 1.3.24. This method includes the argument \code{qualityType} to specify how quality scores are encoded. Bowtie quality scores are \sQuote{Phred}-like by default, with \code{qualityType='FastqQuality'}, but can be specified as \sQuote{Solexa}-like, with \code{qualityType='SFastqQuality'}. Bowtie outputs positions that are 0-offset from the left-most end of the \code{+} strand. \code{ShortRead} parses position information to be 1-offset from the left-most end of the \code{+} strand. Bowtie outputs reads aligned to the \code{-} strand as their reverse complement, and reverses the quality score string of these reads. \code{ShortRead} parses these to their original sequence and orientation. } \item{\code{type="SOAP"}}{ Parse alignment files created with the SOAP alignment algorithm. Parsed columns can be retrieved from \code{\linkS4class{AlignedRead}} as follows: \describe{ \item{id}{\code{id}} \item{seq}{\code{sread}; see comment below} \item{qual}{\code{quality}; see comment below} \item{number of hits}{\code{alignData}} \item{a/b}{\code{alignData} (\code{pairedEnd})} \item{length}{\code{alignData} (\code{alignedLength})} \item{+/-}{\code{strand}} \item{chr}{\code{chromosome}} \item{location}{\code{position}; see comment below} \item{types}{\code{alignData} (\code{typeOfHit}: integer portion; \code{hitDetail}: text portion)} } This method includes the argument \code{qualityType} to specify how quality scores are encoded. It is unclear from SOAP documentation what the quality score is; the default is \sQuote{Solexa}-like, with \code{qualityType='SFastqQuality'}, but can be specified as \sQuote{Phred}-like, with \code{qualityType='FastqQuality'}. SOAP outputs positions that are 1-offset from the left-most end of the \code{+} strand. \code{ShortRead} preserves this representation. SOAP reads aligned to the \code{-} strand are reported by SOAP as their reverse complement, with the quality string of these reads reversed. \code{ShortRead} parses these to their original sequence and orientation. } } } \value{ A single R object (e.g., \code{\linkS4class{AlignedRead}}) containing alignments, sequences and qualities of all files in \code{dirPath} matching \code{pattern}. There is no guarantee of order in which files are read. } \seealso{ The \code{\linkS4class{AlignedRead}} class. Genome Analyzer Pipeline Software User Guide, Revision A, January 2008. The MAQ reference manual, \url{http://maq.sourceforge.net/maq-manpage.shtml#5}, 3 May, 2008. The Bowtie reference manual, \url{http://bowtie-bio.sourceforge.net}, 28 October, 2008. The SOAP reference manual, \url{http://soap.genomics.org.cn/soap1}, 16 December, 2008. } \author{ Martin Morgan , Simon Anders (MAQ map)} \examples{ sp <- SolexaPath(system.file("extdata", package="ShortRead")) ap <- analysisPath(sp) ## ELAND_EXTENDED (aln0 <- readAligned(ap, "s_2_export.txt", "SolexaExport")) ## PhageAlign (aln1 <- readAligned(ap, "s_5_.*_realign.txt", "SolexaRealign")) ## MAQ dirPath <- system.file('extdata', 'maq', package='ShortRead') list.files(dirPath) ## First line readLines(list.files(dirPath, full.names=TRUE)[[1]], 1) countLines(dirPath) ## two files collapse into one (aln2 <- readAligned(dirPath, type="MAQMapview")) ## select only chr1-5.fa, '+' strand filt <- compose(chromosomeFilter("chr[1-5].fa"), strandFilter("+")) (aln3 <- readAligned(sp, "s_2_export.txt", filter=filt)) } \keyword{manip} ShortRead/man/readBaseQuality.Rd0000644000175100017510000000415412607265053017620 0ustar00biocbuildbiocbuild\name{readBaseQuality} \alias{readBaseQuality} \alias{readBaseQuality,character-method} \title{(Legacy) Read short reads and their quality scores into R representations} \description{ \code{readBaseQuality} reads all base call files in a directory \code{dirPath} whose file name matches \code{seqPattern} and all quality score files whose name matches \code{prbPattern}, returning a compact internal representation of the sequences, and quality scores in the files. Methods read all files into a single R object. } \usage{ readBaseQuality(dirPath, ...) \S4method{readBaseQuality}{character}(dirPath, seqPattern=character(0), prbPattern=character(0), type=c("Solexa"), ...) } \arguments{ \item{dirPath}{A character vector (or other object; see methods defined on this generic) giving the directory path (relative or absolute) of files to be input.} \item{seqPattern}{The (\code{\link{grep}}-style) pattern describing base call file names to be read. The default (\code{character(0)}) results in (attempted) input of all files in the directory.} \item{prbPattern}{The (\code{\link{grep}}-style) pattern describing quality score file names to be read. The default (\code{character(0)}) results in (attempted) input of all files in the directory.} \item{type}{The type of file to be parsed. Supported types include: \code{Solexa}: parse reads and their qualities from \code{_seq.txt} and \code{_prb.txt}-formatted files, respectively.} \item{...}{Additional arguments, perhaps used by methods.} } \value{ A single R object (e.g., \code{\linkS4class{ShortReadQ}}) containing sequences and qualities of all files in \code{dirPath} matching \code{seqPattern} and \code{prbPattern} respectively. There is no guarantee of order in which files are read. } \seealso{ A \code{\linkS4class{ShortReadQ}} object. \code{\link{readXStringColumns}}, \code{\link{readPrb}} } \author{ Patrick Aboyoun } \examples{ sp <- SolexaPath(system.file("extdata", package="ShortRead")) readBaseQuality(sp, seqPattern="s_1.*_seq.txt", prbPattern="s_1.*_prb.txt") } \keyword{manip} ShortRead/man/readBfaToc.Rd0000644000175100017510000000140412607265053016526 0ustar00biocbuildbiocbuild\name{readBfaToc} \alias{readBfaToc} \title{(Legacy) Get a list of the sequences in a Maq .bfa file} \description{ As \code{\link{coverage}} needs to know the lengths of the reference sequences, this function is provided which extracts this information from a .bfa file (Maq's "binary FASTA" format). } \usage{ readBfaToc( bfafile ) } \arguments{ \item{bfafile}{The file name of the .bfa file.} } \value{An integer vector with one element per reference sequence found in the .bfa file, each vector element named with the sequence name and having the sequence length as value.} \author{Simon Anders, EMBL-EBI, \email{sanders@fs.tum.de} (Note: The C code for this function incorporates code from Li Heng's MAQ software, (c) Li Heng and released by him under GPL 2.} ShortRead/man/readFasta.Rd0000644000175100017510000000563112607265053016434 0ustar00biocbuildbiocbuild\name{readFasta} \alias{readFasta} \alias{readFasta,character-method} \alias{writeFasta} \alias{writeFasta,DNAStringSet-method} \title{Read and write FASTA files to or from ShortRead objects} \description{ \code{readFasta} reads all FASTA-formated files in a directory \code{dirPath} whose file name matches pattern \code{pattern}, returning a compact internal representation of the sequences and quality scores in the files. Methods read all files into a single R object; a typical use is to restrict input to a single FASTA file. \code{writeFasta} writes an object to a single \code{file}, using \code{mode="w"} (the default) to create a new file or \code{mode="a"} append to an existing file. Attempting to write to an existing file with \code{mode="w"} results in an error. } \usage{ readFasta(dirPath, pattern = character(0), ..., nrec=-1L, skip=0L) \S4method{readFasta}{character}(dirPath, pattern = character(0), ..., nrec=-1L, skip=0L) writeFasta(object, file, mode="w", ...) \S4method{writeFasta}{DNAStringSet}(object, file, mode="w", ...) } \arguments{ \item{dirPath}{A character vector giving the directory path (relative or absolute) or single file name of FASTA files to be read.} \item{pattern}{The (\code{\link{grep}}-style) pattern describing file names to be read. The default (\code{character(0)}) results in (attempted) input of all files in the directory.} \item{object}{An object to be output in \code{fasta} format.} \item{file}{A length 1 character vector providing a path to a file to the object is to be written to.} \item{mode}{A length 1 character vector equal to either \sQuote{w} or \sQuote{a} to write to a new file or append to an existing file, respectively.} \item{...}{Additional arguments used by methods or, for \code{writeFasta}, \code{\link{writeXStringSet}}.} \item{nrec}{See \code{?readDNAStringSet}.} \item{skip}{See \code{?readDNAStringSet}.} } \value{ \code{readFasta} returns a \code{\linkS4class{DNAStringSet}}. containing sequences and qualities contained in all files in \code{dirPath} matching \code{pattern}. There is no guarantee of order in which files are read. \code{writeFasta} is invoked primarily for its side effect, creating or appending to file \code{file}. The function returns, invisibly, the length of \code{object}, and hence the number of records written. There is a \code{writeFasta} method for any class derived from \code{\linkS4class{ShortRead}}. } \author{Martin Morgan} \examples{ showMethods("readFasta") showMethods("writeFasta") f1 <- system.file("extdata", "someORF.fa", package="Biostrings") rfa <- readFasta(f1) sread(rfa) id(rfa) sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") file <- tempfile() writeFasta(rfq, file) readLines(file, 8) writeFasta(sread(rfq), file) # no 'id's } \keyword{manip} ShortRead/man/readFastq.Rd0000644000175100017510000001266612607265053016462 0ustar00biocbuildbiocbuild\name{readFastq} \alias{readFastq} \alias{writeFastq} \alias{readFastq,character-method} \title{Read and write FASTQ-formatted files} \description{ \code{readFastq} reads all FASTQ-formated files in a directory \code{dirPath} whose file name matches pattern \code{pattern}, returning a compact internal representation of the sequences and quality scores in the files. Methods read all files into a single R object; a typical use is to restrict input to a single FASTQ file. \code{writeFastq} writes an object to a single \code{file}, using \code{mode="w"} (the default) to create a new file or \code{mode="a"} append to an existing file. Attempting to write to an existing file with \code{mode="w"} results in an error. } \usage{ readFastq(dirPath, pattern=character(0), ...) \S4method{readFastq}{character}(dirPath, pattern=character(0), ..., withIds=TRUE) writeFastq(object, file, mode="w", full=FALSE, compress=TRUE, ...) } \arguments{ \item{dirPath}{A character vector (or other object; see methods defined on this generic) giving the directory path (relative or absolute) or single file name of FASTQ files to be read.} \item{pattern}{The (\code{\link{grep}}-style) pattern describing file names to be read. The default (\code{character(0)}) results in (attempted) input of all files in the directory.} \item{object}{An object to be output in \code{fastq} format. For methods, use \code{showMethods(object, where=getNamespace("ShortRead"))}.} \item{file}{A length 1 character vector providing a path to a file to the object is to be written to.} \item{mode}{A length 1 character vector equal to either \sQuote{w} or \sQuote{a} to write to a new file or append to an existing file, respectively.} \item{full}{A logical(1) indicating whether the identifier line should be repeated \code{full=TRUE} or omitted \code{full=FALSE} on the third line of the fastq record.} \item{compress}{A logical(1) indicating whether the file should be gz-compressed. The default is \code{TRUE}.} \item{...}{Additional arguments. In particular, \code{qualityType} and \code{filter}: \describe{ \item{qualityType:}{Representation to be used for quality scores, must be one of \code{Auto} (choose Illumina base 64 encoding \code{SFastqQuality} if all characters are ASCII-encoded as greater than 58 \code{:} and some characters are greater than 74 \code{J}), \code{FastqQuality} (Phred-like base 33 encoding), \code{SFastqQuality} (Illumina base 64 encoding).} \item{filter:}{An object of class \code{\link{srFilter}}, used to filter objects of class \code{\linkS4class{ShortReadQ}} at input.} } } \item{withIds}{\code{logical(1)} indicating whether identifiers should be read from the fastq file.} } \details{ The fastq format is not quite precisely defined. The basic definition used here parses the following four lines as a single record: \preformatted{ @HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS } The first and third lines are identifiers preceded by a specific character (the identifiers are identical, in the case of Solexa). The second line is an upper-case sequence of nucleotides. The parser recognizes IUPAC-standard alphabet (hence ambiguous nucleotides), coercing \code{.} to \code{-} to represent missing values. The final line is an ASCII-encoded representation of quality scores, with one ASCII character per nucleotide. The encoding implicit in Solexa-derived fastq files is that each character code corresponds to a score equal to the ASCII character value minus 64 (e.g., ASCII \code{@} is decimal 64, and corresponds to a Solexa quality score of 0). This is different from BioPerl, for instance, which recovers quality scores by subtracting 33 from the ASCII character value (so that, for instance, \code{!}, with decimal value 33, encodes value 0). The BioPerl description of fastq asserts that the first character of line 4 is a \code{!}, but the current parser does not support this convention. \code{writeFastq} creates files following the specification outlined above, using the IUPAC-standard alphabet (hence, sequences containing \sQuote{.} when read will be represented by \sQuote{-} when written). } \value{ \code{readFastq} returns a single R object (e.g., \code{\linkS4class{ShortReadQ}}) containing sequences and qualities contained in all files in \code{dirPath} matching \code{pattern}. There is no guarantee of order in which files are read. \code{writeFastq} is invoked primarily for its side effect, creating or appending to file \code{file}. The function returns, invisibly, the length of \code{object}, and hence the number of records written. } \seealso{ The IUPAC alphabet in Biostrings. \url{http://www.bioperl.org/wiki/FASTQ_sequence_format} for the BioPerl definition of fastq. Solexa documentation `Data analysis - documentation : Pipeline output and visualisation'. } \author{Martin Morgan} \examples{ showMethods(readFastq) showMethods(writeFastq) sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") sread(rfq) id(rfq) quality(rfq) ## SolexaPath method 'knows' where FASTQ files are placed rfq1 <- readFastq(sp, pattern="s_1_sequence.txt") rfq1 file <- tempfile() writeFastq(rfq, file) readLines(file, 8) } \keyword{manip} ShortRead/man/readIntensities.Rd0000644000175100017510000001123312607265054017670 0ustar00biocbuildbiocbuild\name{readIntensities} \alias{readIntensities} \alias{readIntensities,character-method} \title{(Legacy) Read Illumina image intensity files} \description{ \code{readIntensities} reads image `intensity' files (such as Illumina's \code{_int.txt} and (optionally) \code{_nse.txt}) into a single object. } \usage{ readIntensities(dirPath, pattern=character(0), ...) } \arguments{ \item{dirPath}{Directory path or other object (e.g., \code{\linkS4class{SolexaPath}}) for which methods are defined.} \item{pattern}{A length 1 character vector representing a regular expression to be combined with \code{dirPath}, as described below, to match files to be summarized.} \item{\dots}{Additional arguments used by methods.} } \details{ Additional methods are defined on specific classes, see, e.g., \code{\linkS4class{SolexaPath}}. The \code{readIntensities,character-method} contains an argument \code{type} that determines how intensities are parsed. Use the \code{type} argument to \code{readIntensities,character-method}, as described below. All \code{readIntensities,character} methods accepts the folling arguments: \describe{ \item{withVariability:}{Include estimates of variability (i.e., from parsing \code{_nse} files).} \item{verbose:}{Report on progress when starting to read each file.} } The supported types and their signatures are: \describe{ \item{\code{type="RtaIntensity"}}{ Intensities are read from Illumina \code{_cif.txt} and \code{_cnf.txt}-style files. The signature for this method is \code{dirPath, pattern=character(0), ..., type="RtaIntensity", lane=integer(0), cycles=integer(0), cycleIteration=1L, tiles=integer(0), laneName=sprintf("L%.3d", lane), cycleNames=sprintf("C%d.%d", cycles, cycleIteration), tileNames=sprintf("s_%d_%d", lane, tiles), posNames=sprintf("s_%d_%.4d_pos.txt", lane, tiles), withVariability=TRUE, verbose=FALSE} \describe{ \item{lane:}{\code{integer(1)} identifying the lane in which cycles and tiles are to be processed.} \item{cycles:}{\code{integer()} enumerating cycles to be processed.} \item{cycleIteration:}{\code{integer(1)} identifying the iteration of the base caller to be summarized} \item{tiles:}{\code{integer()} enumerating tile numbers to be summarized.} \item{laneName, cycleNames, tileNames, posNames:}{\code{character()} vectors identifying the lane and cycle directories, and the \sQuote{pos} and tile file names (excluding the \sQuote{.cif} or \sQuote{.cnf} extension) to be processed.} } The \code{dirPath} and \code{pattern} arguments are combined as \code{list.files(dirPath, pattern)}, and must identify a single directory. Most uses of this function will focus on a single tile (specified with, e.g., \code{tiles=1L}); the \code{laneName}, \code{cycleNames}, \code{tileNames}, and \code{posNames} parameters are designed to work with the default Illumina pipeline and do not normally need to be specified. } \item{\code{type="IparIntensity"}}{ Intensities are read from Solexa \code{_pos.txt}, \code{_int.txt.p}, \code{_nse.txt.p}-style file triplets. The signature for this method is \code{dirPath, pattern=character(0), ..., type="IparIntensity", intExtension="_int.txt.p.gz", nseExtension="_nse.txt.p.gz", posExtension="_pos.txt", withVariability=TRUE, verbose=FALSE} Files to be parsed are determined as, e.g., \code{paste(pattern, intExtension, sep="")}. } \item{\code{type="SolexaIntensity"}}{ Intensities are read from Solexa \code{_int.txt} and \code{_nse.txt}-style files. The signature for this method is \code{dirPath, pattern=character(0), ..., type="SolexaIntensity", intExtension="_int.txt", nseExtension="_nse.txt", withVariability=TRUE, verbose=FALSE} Files to be parsed are determined as, e.g., \code{paste(pattern, intExtension, sep="")}. } } } \value{ An object derived from class \code{\linkS4class{Intensity}}. } \author{ Martin Morgan , Michael Muratet (RTA). } \examples{ fl <- system.file("extdata", package="ShortRead") sp <- SolexaPath(fl) int <- readIntensities(sp) int intensity(int)[1,,] # one read intensity(int)[[1:2,,]] # two reads, as 'array' head(rowMeans(intensity(int))) # treated as 'array' head(pData(readInfo(int))) \dontrun{## RTA Lane 2, cycles 1:80, cycle iteration 1, tile 3 int <- readIntensities("Data/Intensities", type="RtaIntensity", lane=2, cycles=1:80, tiles=3) } } \keyword{manip} ShortRead/man/readPrb.Rd0000644000175100017510000000400312607265053016111 0ustar00biocbuildbiocbuild\name{readPrb} \alias{readPrb} \alias{readPrb,character-method} \title{(Legacy) Read Solexa prb files as fastq-style quality scores} \description{ \code{readPrb} reads all \code{_prb.txt} files in a directory into a single object. Most methods (see details) do this by identifying the maximum base call quality for each cycle and read, and representing this as an ASCII-encoded character string. } \usage{ readPrb(dirPath, pattern = character(0), ...) } \arguments{ \item{dirPath}{Directory path or other object (e.g., \code{\linkS4class{SolexaPath}} for which methods are defined.} \item{pattern}{Regular expression matching names of \code{_prb} files to be summarized.} \item{\dots}{Additional arguments, unused.} } \details{ The \code{readPrb,character-method} contains an argument \code{as} that determines the value of the returned object, as follows. \describe{ \item{\code{as="SolexaEncoding"}}{ The ASCII encoding of the maximum per cycle and read quality score is encoded using Solexa conventions. } \item{\code{as="FastqEncoding"}}{ The ASCII encoding of the maximum per cycle and read quality score is encoded using Fastq conventions, i.e., \code{!} has value 0. } \item{\code{as="IntegerEncoding"}}{ The maximum per cycle and read quality score is returned as a in integer value. Values are collated into a matrix with number of rows equal to number of reads, and number of columns equal to number of cycles. } \item{\code{as="array"}}{ The quality scores are \emph{not} summarized; the return value is an integer array with dimensions corresponding to reads, nucleotides, and cycles. } } } \value{ An object of class \code{\linkS4class{QualityScore}}, or an integer matrix. } \author{Martin Morgan } \examples{ fl <- system.file("extdata", package="ShortRead") sp <- SolexaPath(fl) readPrb(sp, "s_1.*_prb.txt") # all tiles to a single file } \keyword{manip} ShortRead/man/readQseq.Rd0000644000175100017510000000303012607265053016276 0ustar00biocbuildbiocbuild\name{readQseq} \alias{readQseq} \alias{readQseq,character-method} \title{(Legacy) Read Solexa qseq files as fastq-style quality scores} \description{ \code{readQseq} reads all files matching \code{pattern} in a directory into a single \code{\linkS4class{ShortReadQ}}-class object. Information on machine, lane, tile, x, and y coordinates, filtering status, and read number are not returned (although filtering status can be used to selectively include reads as described below). } \usage{ readQseq(dirPath, pattern = character(0), ..., as=c("ShortReadQ", "DataFrame", "XDataFrame"), filtered=FALSE, verbose=FALSE) } \arguments{ \item{dirPath}{Directory path or other object (e.g., \code{\linkS4class{SolexaPath}}) for which methods are defined.} \item{pattern}{Regular expression matching names of \code{_qseq} files to be summarized.} \item{\dots}{Additional argument, passed to I/O functions.} \item{as}{\code{character(1)} indicating the class of the return type. \dQuote{XDataFrame} is included for backward compatibility, but is no longer supported.} \item{filtered}{\code{logical(1)} indicating whether to include only those reads passing Solexa filtering?} \item{verbose}{\code{logical(1)} indicating whether to report on progress during evaluation.} } \value{ An object of class \code{\linkS4class{ShortReadQ}}. } \author{Martin Morgan } \examples{ fl <- system.file("extdata", package="ShortRead") sp <- SolexaPath(fl) readQseq(sp) } \keyword{manip} ShortRead/man/readXStringColumns.Rd0000644000175100017510000000601412607265053020331 0ustar00biocbuildbiocbuild\name{readXStringColumns} \alias{readXStringColumns} \title{ Read one or more columns into XStringSet (e.g., DNAStringSet) objects } \description{ This function allows short read data components such as DNA sequence, quality scores, and read names to be read in to \code{XStringSet} (e.g., \code{DNAStringSet}, \code{BStringSet}) objects. One or several files of identical layout can be specified. } \usage{ readXStringColumns(dirPath, pattern=character(0), colClasses=list(NULL), nrows=-1L, skip=0L, sep = "\t", header = FALSE, comment.char="#") } \arguments{ \item{dirPath}{A character vector giving the directory path (relative or absolute) of files to be read.} \item{pattern}{The (\code{\link{grep}}-style) pattern describing file names to be read. The default (\code{character(0)}) reads all files in \code{dirPath}. All files are expected to have identical numbers of columns.} \item{colClasses}{A list of length equal to the number of columns in a file. Columns with corresponding \code{colClasses} equal to \code{NULL} are ignored. Other entries in \code{colClasses} are expected to be character strings describing the base class for the \code{XStringSet}. For instance a column of DNA sequences would be specified as \code{"DNAString"}. The column would be parsed into a \code{DNAStringSet} object.} \item{nrows}{A length 1 integer vector describing the maximum number of \code{XString} objects to read into the set. Reads may come from more than one file when \code{dirPath} and \code{pattern} parse several files and \code{nrow} is greater than the number of reads in the first file.} \item{skip}{A length 1 integer vector describing how many lines to skip at the start of each file.} \item{sep}{A length 1 character vector describing the column separator.} \item{header}{A length 1 logical vector indicating whether files include a header line identifying columns. If present, the header of the first file is used to name the returned values.} \item{comment.char}{A length 1 character vector, with a single character that, when appearing at the start of a line, indicates that the entire line should be ignored. Currently there is no way to use comment characters in other than the first position of a line.} } \value{ A list, with each element containing an \code{XStringSet} object of the type corresponding to the non-NULL elements of \code{colClasses}. } \author{Martin Morgan } \examples{ ## valid character strings for colClasses names(slot(getClass("XString"), "subclasses")) dirPath <- system.file('extdata', 'maq', package='ShortRead') colClasses <- rep(list(NULL), 16) colClasses[c(1, 15, 16)] <- c("BString", "DNAString", "BString") ## read one file readXStringColumns(dirPath, "out.aln.1.txt", colClasses=colClasses) ## read all files into a single object for each column res <- readXStringColumns(dirPath, colClasses=colClasses) } \keyword{IO} ShortRead/man/renew.Rd0000644000175100017510000000576412607265053015671 0ustar00biocbuildbiocbuild\name{renewable} \alias{renewable} \alias{renewable,missing-method} \alias{renewable,character-method} \alias{renewable,.ShortReadBase-method} \alias{renew} \alias{renew,.ShortReadBase-method} \title{Renew (update) a ShortRead object with new values} \description{ Use \code{renew} to update an object defined in \pkg{ShortRead} with new values. Discover update-able classes and values with \code{renewable}. } \usage{ renewable(x, \dots) renew(x, \dots) } \arguments{ \item{x}{For \code{renewable}: \code{missing}, \code{character(1)}, or a class defined in the \pkg{ShortRead} package. For \code{renew}: an instance of a class defined in the \pkg{ShortRead} package.} \item{\dots}{For \code{renewable}, ignored. For \code{renew}, named arguments identifying which parts of \code{x} are to be renewed.} } \details{ When invoked with no arguments \code{renewable} returns a character vector naming classes that can be renewed. When invoked with a \code{character(1)} or an instance of a \pkg{ShortRead} class, a list of the names and values of the elements that can be renewed. When \code{x} is a character vector naming a virtual class, then each element of the returned list is a non-virtual descendant of that class that can be used in renewal. This is not fully recursive. \code{renew} is always invoked with the \code{x} argument being an instance of a class identified by \code{renewable()}. Remaining arguments are name-value pairs identifying the components of \code{x} that are to be renewed (updated). The name-value pairs must be consistent with \code{renewable(x)}. The resulting object is checked for validity. Multiple components of the object can be updated in a single call to \code{renew}, allowing comparatively efficient complex transformations. } \value{ \code{renewable()} returns a character vector of renewable classes. \code{renewable(x)} returns a named list. The names correspond to renewable classes, and the elements of the list correspond to renewable components of the class. \code{renew(x, \dots)} returns an object of the same class as \code{x}, but with components of \code{x} replaced by the named values of \code{\dots}. } \author{Martin Morgan } \examples{ ## discovery renewable() renewable("AlignedRead") renewable("QualityScore") ## instantiable classes ## example data sp <- SolexaPath(system.file("extdata", package="ShortRead")) ap <- analysisPath(sp) filt <- chromosomeFilter("chr[[:digit:]+].fa") aln <- readAligned(ap, "s_2_export.txt", "SolexaExport", filter=filt) ## renew chromosomes from 'chr1.fa' to 'chr1', etc labels <- sub("\\\\.fa", "", levels(chromosome(aln))) renew(aln, chromosome=factor(chromosome(aln), labels=labels)) ## multiple changes -- update chromosome, offset position renew(aln, chromosome=factor(chromosome(aln), labels=labels), position=1L+position(aln)) ## oops! invalid instances cannot be constructed try(renew(aln, position=1:10)) } \keyword{manip} ShortRead/man/report.Rd0000644000175100017510000000671112607265053016055 0ustar00biocbuildbiocbuild\name{report} \alias{report} \alias{report,ANY-method} \alias{report_html} \title{Summarize quality assessment results into a report} \description{ This generic function summarizes results from evaluation of \code{\link{qa}} into a report. Available report formats vary depending on the data analysed. } \usage{ report(x, ..., dest=tempfile(), type="html") report_html(x, dest, type, ...) } \arguments{ \item{x}{An object returned by \code{\link{qa}}, usually derived from class \code{\linkS4class{.QA}}} \item{\dots}{Additional arguments used by specific methods. All methods with \code{type="html"} support the argument \code{cssFile}, which is a named, length 1 character vector. The value is a path to a CSS file to be incorporated into the report (e.g., \code{system.file("template", "QA.css", package="ShortRead")}). The name of \code{cssFile} is the name of the CSS file as seen by the html report (e.g., \dQuote{QA.css}). See specific methods for details on additional \code{\dots} arguments.} \item{dest}{The output destination for the final report. For \code{type="html"} this is a directory; for (deprecated) \code{type="pdf"} this is a file.} \item{type}{A text string defining the type of report; available report types depend on the type of object \code{x}; usually this is \dQuote{html}.} } \details{ \code{report_html} is meant for use by package authors wishing to add methods for creating HTML reports; users should always invoke \code{report}. The following methods are defined: \describe{ \item{\code{x="BowtieQA", ..., dest=tempfile(), type="html"}}{ Produce an HTML-based report from an object of class \code{\linkS4class{BowtieQA}}.} \item{\code{x="FastqQA", ..., dest=tempfile(), type="html"}}{ Produce an HTML-based report from an object of class \code{\linkS4class{FastqQA}}.} \item{\code{x="MAQMapQA", ..., dest=tempfile(), type="html"}}{ Produce an HTML-based report from an object of class \code{\linkS4class{MAQMapQA}}.} \item{\code{x="SolexaExportQA", ..., dest=tempfile(), type="html"}}{ Produce an HTML-based report from an object of class \code{\linkS4class{SolexaExportQA}}.} \item{\code{x="SolexaExportQA", ..., dest=tempfile(), type="pdf"}}{ (Deprecated) Produce an PDF report from an object of class \code{\linkS4class{SolexaExportQA}}.} \item{\code{x="SolexaPath", ..., dest=tempfile(), type="html"}}{ Produce an HTML report by first visiting all \code{_export.txt} files in the \code{analysisPath} directory of \code{x} to create a \code{SolexaExportQA} instance.} \item{\code{x="SolexaPath", ..., dest=tempfile(), type="pdf"}}{ (Deprecated) Produce an PDF report by first visiting all \code{_export.txt} files in the \code{analysisPath} directory of \code{x} to create a \code{SolexaExportQA} instance.} \item{ \code{x="ANY", ..., dest=tempfile(), type="ANY"} }{This method is used internally} } } \value{ This function is invoked for its side effect; the return value is the name of the directory or file where the report was created. } \author{Martin Morgan } \seealso{ \code{\linkS4class{SolexaExportQA}} } \examples{ showMethods("report") ## default CSS file cssFile <- c(QA.css=system.file("template", "QA.css", package="ShortRead")) noquote(readLines(cssFile)) } \keyword{manip} ShortRead/man/spViewPerFeature.Rd0000644000175100017510000000456512607265053020007 0ustar00biocbuildbiocbuild\name{spViewPerFeature} \alias{spViewPerFeature} \title{ Tools to visualize genomic data } \description{ Use \code{Snapshot}-class to visualize a specific region of genomic data } \usage{ spViewPerFeature(GRL, name, files, ignore.strand=FALSE, multi.levels = FALSE, fac=character(0L), ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{GRL}{Object \code{GRangeList} containing annotation of genomic data. It can be generated by applying \code{exonsBy()} or \code{transcriptsBy()} to a \code{TxDb} instance. See examples below.} \item{name}{Character(1) specifying which element in \code{GRL} to be visualized.} \item{files}{Charactor() or \code{BamFileList} specifying the file(s) to be visualized. If multiple files, local metadata of the files can be hold by setting a \code{DataFrame} (values(files) <- DataFrame(...)). See examples below.} \item{ignore.strand}{Logical(1) indicating whether to ignore the strand of the genomic data.} \item{multi.levels}{Logical(1) indicating whether to plot the coverage of multiple files on different panels. If \code{FALSE}, the mean coverage of multiple files would be plotted. } \item{fac}{Character(1) indicating which column of local metadata (\code{elementMetatdata()}) should be used to group the samples. Ignore} \item{\dots}{Arguments used for creating a \code{\link{Snapshot}} object.} } \value{A \code{Snapshot} instance} \author{Chao-Jen Wong \email{cwon2@fhcrc.org}} \seealso{ \code{\link{Snapshot}} } \examples{ ## Example 1 library(GenomicFeatures) txdbFile <- system.file("extdata", "sacCer2_sgdGene.sqlite", package="yeastNagalakshmi") ## either use a txdb file quaried from UCSC or use existing TxDb packages. txdb <- loadDb(txdbFile) grl <- exonsBy(txdb, by="gene") file <- system.file("extdata", "SRR002051.chrI-V.bam", package="yeastNagalakshmi") s <- spViewPerFeature(GRL=grl, name="YAL001C", files=file) ## Example 2 ## multi-files: using 'BamFileList' and setting up the 'DataFrame' ## holding the phenotype data bfiles <- BamFileList(c(a=file, b=file)) values(bfiles) <- DataFrame(sampleGroup=factor(c("normal", "tumor"))) values(bfiles) s <- spViewPerFeature(GRL=grl, name="YAL001C", files=bfiles, multi.levels=TRUE, fac="sampleGroup") } ShortRead/man/srFilter.Rd0000644000175100017510000002412012607265053016326 0ustar00biocbuildbiocbuild\name{srFilter} \alias{srFilter} \alias{srFilter,missing-method} \alias{srFilter,function-method} \alias{idFilter} \alias{chromosomeFilter} \alias{positionFilter} \alias{strandFilter} \alias{occurrenceFilter} \alias{nFilter} \alias{polynFilter} \alias{dustyFilter} \alias{srdistanceFilter} \alias{alignQualityFilter} \alias{alignDataFilter} \alias{compose} \title{Functions for user-created and built-in ShortRead filters} \description{ These functions create user-defined (\code{srFitler}) or built-in instances of \code{\linkS4class{SRFilter}} objects. Filters can be applied to objects from \code{ShortRead}, returning a logical vector to be used to subset the objects to include only those components satisfying the filter. } \usage{ srFilter(fun, name = NA_character_, ...) \S4method{srFilter}{missing}(fun, name=NA_character_, ...) \S4method{srFilter}{function}(fun, name=NA_character_, ...) compose(filt, ..., .name) idFilter(regex=character(0), fixed=FALSE, exclude=FALSE, .name="idFilter") occurrenceFilter(min=1L, max=1L, withSread=c(NA, TRUE, FALSE), duplicates=c("head", "tail", "sample", "none"), .name=.occurrenceName(min, max, withSread, duplicates)) nFilter(threshold=0L, .name="CleanNFilter") polynFilter(threshold=0L, nuc=c("A", "C", "T", "G", "other"), .name="PolyNFilter") dustyFilter(threshold=Inf, batchSize=NA, .name="DustyFilter") srdistanceFilter(subject=character(0), threshold=0L, .name="SRDistanceFilter") ## ## legacy filters for ungapped alignments ## chromosomeFilter(regex=character(0), fixed=FALSE, exclude=FALSE, .name="ChromosomeFilter") positionFilter(min=-Inf, max=Inf, .name="PositionFilter") strandFilter(strandLevels=character(0), .name="StrandFilter") alignQualityFilter(threshold=0L, .name="AlignQualityFilter") alignDataFilter(expr=expression(), .name="AlignDataFilter") } \arguments{ \item{fun}{An object of class \code{function} to be used as a filter. \code{fun} must accept a single named argument \code{x}, and is expected to return a logical vector such that \code{x[fun(x)]} selects only those elements of \code{x} satisfying the conditions of \code{fun} } \item{name}{A \code{character(1)} object to be used as the name of the filter. The \code{name} is useful for debugging and reference.} \item{filt}{A \code{\linkS4class{SRFilter}} object, to be used with additional arguments to create a composite filter.} \item{.name}{An optional \code{character(1)} object used to over-ride the name applied to default filters.} \item{regex}{Either \code{character(0)} or a \code{character(1)} regular expression used as \code{grep(regex, chromosome(x))} to filter based on chromosome. The default (\code{character(0)}) performs no filtering} \item{fixed}{\code{logical(1)} passed to \code{\link{grep}}, influencing how pattern matching occurs.} \item{exclude}{\code{logical(1)} which, when \code{TRUE}, uses \code{regex} to exclude, rather than include, reads.} \item{min}{\code{numeric(1)}} \item{max}{\code{numeric(1)}. For \code{positionFilter}, \code{min} and \code{max} define the closed interval in which position must be found \code{min <= position <= max}. For \code{occurrenceFilter}, \code{min} and \code{max} define the minimum and maximum number of times a read occurs after the filter.} \item{strandLevels}{Either \code{character(0)} or \code{character(1)} containing strand levels to be selected. \code{ShortRead} objects have standard strand levels \code{NA, "+", "-", "*"}, with \code{NA} meaning strand information not available and \code{"*"} meaning strand information not relevant.} \item{withSread}{A \code{logical(1)} indicating whether uniqueness includes the read sequence (\code{withSread=TRUE}), is based only on chromosome, position, and strand (\code{withSread=FALSE}), or only the read sequence (\code{withSread=NA}), as described for \code{occurrenceFilter} below..} \item{duplicates}{Either \code{character{1}}, a function \code{name}, or a function taking a single argument. Influence how duplicates are handled, as described for \code{occurrenceFilter} below.} \item{threshold}{A \code{numeric(1)} value representing a minimum (\code{srdistanceFilter}, \code{alignQualityFilter}) or maximum (\code{nFilter}, \code{polynFilter}, \code{dustyFilter}) criterion for the filter. The minima and maxima are closed-interval (i.e., \code{x >= threshold}, \code{x <= threshold} for some property \code{x} of the object being filtered).} \item{nuc}{A \code{character} vector containing IUPAC symbols for nucleotides or the value \code{"other"} corresponding to all non-nucleotide symbols, e.g., \code{N}.} \item{batchSize}{\code{NA} or an \code{integer(1)} vector indicating the number of DNA sequences to be processed simultaneously by \code{dustyFilter}. By default, all reads are processed simultaneously. Smaller values use less memory but are computationally less efficient.} \item{subject}{A \code{character()} of any length, to be used as the corresponding argument to \code{\link{srdistance}}.} \item{expr}{A \code{expression} to be evaluated with \code{pData(alignData(x))}.} \item{\dots}{Additional arguments for subsequent methods; these arguments are not currently used.} } \details{ \code{srFilter} allows users to construct their own filters. The \code{fun} argument to \code{srFilter} must be a function accepting a single argument \code{x} and returning a logical vector that can be used to select elements of \code{x} satisfying the filter with \code{x[fun(x)]} The \code{signature(fun="missing")} method creates a default filter that returns a vector of \code{TRUE} values with length equal to \code{length(x)}. \code{compose} constructs a new filter from one or more existing filter. The result is a filter that returns a logical vector with indices corresponding to components of \code{x} that pass all filters. If not provided, the name of the filter consists of the names of all component filters, each separated by \code{" o "}. The remaining functions documented on this page are built-in filters that accept an argument \code{x} and return a logical vector of \code{length(x)} indicating which components of \code{x} satisfy the filter. \code{idFilter} selects elements satisfying \code{grep(regex, id(x), fixed=fixed)}. \code{chromosomeFilter} selects elements satisfying \code{grep(regex, chromosome(x), fixed=fixed)}. \code{positionFilter} selects elements satisfying \code{min <= position(x) <= max}. \code{strandFilter} selects elements satisfying \code{match(strand(x), strand, nomatch=0) > 0}. \code{occurrenceFilter} selects elements that occur \code{>=min} and \code{<=max} times. \code{withSread} determines how reads will be treated: \code{TRUE} to include the sread, chromosome, strand, and position when determining occurrence, \code{FALSE} to include chromosome, strand, and position, and \code{NA} to include only sread. The default is \code{withSread=NA}. \code{duplicates} determines how reads with more than \code{max} reads are treated. \code{head} selects the first \code{max} reads of each set of duplicates, \code{tail} the last \code{max} reads, and \code{sample} a random sample of \code{max} reads. \code{none} removes all reads represented more than \code{max} times. The user can also provide a function (as used by \code{\link{tapply}}) of a single argument to select amongst reads. \code{nFilter} selects elements with fewer than \code{threshold} \code{'N'} symbols in each element of \code{sread(x)}. \code{polynFilter} selects elements with fewer than \code{threshold} copies of any nucleotide indicated by \code{nuc}. \code{dustyFilter} selects elements with high sequence complexity, as characterized by their \code{\link{dustyScore}}. This emulates the \code{dust} command from \code{WindowMaker} software. Calculations can be memory intensive; use \code{batchSize} to process the argument to \code{dustyFilter} in batches of the specified size. \code{srdistanceFilter} selects elements at an edit distance greater than \code{threshold} from all sequences in \code{subject}. \code{alignQualityFilter} selects elements with \code{alignQuality(x)} greater than \code{threshold}. \code{alignDataFilter} selects elements with \code{pData(alignData(x))} satisfying \code{expr}. \code{expr} should be formulated as though it were to be evaluated as \code{eval(expr, pData(alignData(x)))}. } \value{ \code{srFilter} returns an object of \code{\linkS4class{SRFilter}}. Built-in filters return a logical vector of \code{length(x)}, with \code{TRUE} indicating components that pass the filter. } \author{Martin Morgan } \seealso{\code{\linkS4class{SRFilter}}.} \examples{ sp <- SolexaPath(system.file("extdata", package="ShortRead")) aln <- readAligned(sp, "s_2_export.txt") # Solexa export file, as example # a 'chromosome 5' filter filt <- chromosomeFilter("chr5.fa") aln[filt(aln)] # filter during input readAligned(sp, "s_2_export.txt", filter=filt) # x- and y- coordinates stored in alignData, when source is SolexaExport xy <- alignDataFilter(expression(abs(x-500) > 200 & abs(y-500) > 200)) aln[xy(aln)] # both filters as a single filter chr5xy <- compose(filt, xy) aln[chr5xy(aln)] # both filters as a collection filters <- c(filt, xy) subsetByFilter(aln, filters) summary(filters, aln) # read, chromosome, strand, position tuples occurring exactly once aln[occurrenceFilter(withSread=TRUE, duplicates="none")(aln)] # reads occurring exactly once aln[occurrenceFilter(withSread=NA, duplicates="none")(aln)] # chromosome, strand, position tuples occurring exactly once aln[occurrenceFilter(withSread=FALSE, duplicates="none")(aln)] # custom filter: minimum calibrated base call quality >20 goodq <- srFilter(function(x) { apply(as(quality(x), "matrix"), 1, min, na.rm=TRUE) > 20 }, name="GoodQualityBases") goodq aln[goodq(aln)] } \keyword{manip} ShortRead/man/srdistance.Rd0000644000175100017510000000443112607265053016676 0ustar00biocbuildbiocbuild\name{srdistance} \alias{srdistance} % \alias{srdistance,DNAStringSet,character-method} \alias{srdistance,DNAStringSet,DNAString-method} \alias{srdistance,DNAStringSet,DNAStringSet-method} \title{Edit distances between reads and a small number of short references} \description{ \code{srdistance} calculates the edit distance from each read in \code{pattern} to each read in \code{subject}. The underlying algorithm \code{\link[Biostrings]{pairwiseAlignment}} is only efficient when both reads are short, and when the number of \code{subject} reads is small. } \usage{ srdistance(pattern, subject, ...) } \arguments{ \item{pattern}{An object of class \code{DNAStringSet} containing reads whose edit distance is desired.} \item{subject}{A short \code{character} vector, \code{DNAString} or (small) \code{DNAStringSet} to serve as reference.} \item{\dots}{additional arguments, unused.} } \details{ The underlying algorithm performs pairwise alignment from each read in \code{pattern} to each sequence in \code{subject}. The return value is a list of numeric vectors of distances, one list element for each sequence in \code{subject}. The vector in each list element contains for each read in \code{pattern} the edit distance from the read to the corresponding subject. The weight matrix and gap penalties used to calculate the distance are structured to weight base substitutions and single base insert/deletions equally. Edit distance between known and ambiguous (e.g., N) nucleotides, or between ambiguous nucleotides, are weighted as though each possible nucleotide in the ambiguity were equally likely. } \value{ A list of length equal to that of \code{subject}. Each element is a numeric vector equal to the length of \code{pattern}, with values corresponding to the minimum distance between between the corresponding pattern and subject sequences. } \author{Martin Morgan } \seealso{\code{\link[Biostrings]{pairwiseAlignment}}} \examples{ sp <- SolexaPath(system.file("extdata", package="ShortRead")) aln <- readAligned(sp, "s_2_export.txt") polyA <- polyn("A", 35) polyT <- polyn("T", 35) d1 <- srdistance(clean(sread(aln)), polyA) d2 <- srdistance(sread(aln), polyA) d3 <- srdistance(sread(aln), c(polyA, polyT)) } \keyword{manip} ShortRead/man/srduplicated.Rd0000644000175100017510000000650512607265053017226 0ustar00biocbuildbiocbuild\name{srduplicated} \alias{srorder} \alias{srrank} \alias{srsort} \alias{srduplicated} % XStringSet-methods \alias{srorder,XStringSet-method} \alias{srrank,XStringSet-method} \alias{srsort,XStringSet-method} \alias{srduplicated,XStringSet-method} \title{Order, sort, and find duplicates in XStringSet objects} \description{ These generics order, rank, sort, and find duplicates in short read objects, including fastq-encoded qualities. \code{srorder}, \code{srrank} and \code{srsort} differ from the default functions \code{rank}, \code{order} and \code{sort} in that sorting is based on an internally-defined order rather than, e.g., the order implied by \code{LC_COLLATE}. } \usage{ srorder(x, ...) srrank(x, ...) srsort(x, ...) srduplicated(x, ...) } \arguments{ \item{x}{The object to be sorted, ranked, ordered, or to have duplicates identified; see the examples below for objects for which methods are defined.} \item{\dots}{Additional arguments available for use by methods; usually ignored.} } \details{ Unlike \code{sort} and friends, the implementation does not preserve order of duplicated elements. Like \code{duplicated}, one element in each set of duplicates is marked as \code{FALSE}. \code{srrank} settles ties using the \dQuote{min} criterion described in \code{\link{rank}}, i.e., identical elements are ranked equal to the rank of the first occurrence of the sorted element. The following methods are defined, in addition to methods described in class-specific documentation: \describe{ \item{srsort}{\code{signature(x = "XStringSet")}:} \item{srorder}{\code{signature(x = "XStringSet")}:} \item{srduplicated}{\code{signature(x = "XStringSet")}: Apply \code{srorder}, \code{srrank}, \code{srsort}, \code{srduplicated} to \code{\link[Biostrings:XStringSet-class]{XStringSet}} objects such as those returned by \code{\link{sread}}.} \item{srsort}{\code{signature(x = "ShortRead")}:} \item{srorder}{\code{signature(x = "ShortRead")}:} \item{srduplicated}{\code{signature(x = "ShortRead")}: Apply \code{srorder}, \code{srrank}, \code{srsort}, \code{srduplicated} to \code{\link[Biostrings:XStringSet-class]{XStringSet}} objects to the \code{sread} component of \code{\linkS4class{ShortRead}} and derived objects.} } } \value{ The functions return the following values: \item{srorder}{An integer vector the same length as \code{x}, containing the indices that will bring \code{x} into sorted order.} \item{srrank}{An integer vector the same length as \code{x}, containing the rank of each seqeunce when sorted.} \item{srsort}{An instance of \code{x} in sorted order.} \item{srduplicated}{A logical vector the same length as \code{x} indicating whether the indexed element is already present. Note that, like \code{duplicated}, subsetting \code{x} using the result returned by \code{!srduplicated(x)} includes one representative from each set of duplicates.} } \author{Martin Morgan } \examples{ showMethods("srsort") showMethods("srorder") showMethods("srduplicated") sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") sum(srduplicated(sread(rfq))) srsort(sread(rfq)) srsort(quality(rfq)) } \keyword{manip} ShortRead/man/tables.Rd0000644000175100017510000000404112607265053016006 0ustar00biocbuildbiocbuild\name{tables} \alias{tables} \alias{tables,XStringSet-method} \title{Summarize XStringSet read frequencies} \description{ This generic summarizes the number of times each sequence occurs in an \code{\link[Biostrings:XStringSet-class]{XStringSet}} instance. } \usage{ tables(x, n=50, ...) } \arguments{ \item{x}{An object for which a \code{tables} method is defined.} \item{n}{An \code{integer(1)} value determining how many named sequences will be present in the \code{top} portion of the return value.} \item{\dots}{Additional arguments available to methods} } \details{ Methods of this generic summarize the frequency with which each read occurs, There are two components to the summary. The reads are reported from most common to least common; typically a method parameter controls how many reads to report. Methods also return a pair of vectors describing how many reads were represented 1, 2, ... times. The following methods are defined, in addition to methods described in class-specific documentation: \describe{ \item{tables}{\code{signature(x= "XStringSet", n = 50)}: Apply \code{tables} to the \code{XStringSet} \code{x}.} } } \value{ A list of length two. \item{top}{A named integer vector. Names correspond to sequences. Values are the number of times the corresponding sequence occurs in the \code{XStringSet}. The vector is sorted in decreasing order; methods typically include a parameter specifying the number of sequences to return.} \item{distribution}{a \code{data.frame} with two columns. \code{nOccurrences} is the number of times any particular sequence is represented in the set (1, 2, ...). \code{nReads} is the number of reads with the corresponding occurrence.} } \author{Martin Morgan } \examples{ showMethods("tables") sp <- SolexaPath(system.file("extdata", package="ShortRead")) aln <- readAligned(sp) tables(sread(aln), n=6) lattice::xyplot(log10(nReads)~log10(nOccurrences), tables(sread(aln))$distribution) } \keyword{manip} ShortRead/man/trimTails.Rd0000644000175100017510000001455512607265053016517 0ustar00biocbuildbiocbuild\name{trimTails} \alias{trimTailw} \alias{trimTailw,character-method} \alias{trimTailw,BStringSet-method} \alias{trimTailw,XStringQuality-method} \alias{trimTails} \alias{trimTails,character-method} \alias{trimTails,BStringSet-method} \alias{trimTails,XStringQuality-method} \alias{trimEnds} \alias{trimEnds,character-method} \alias{trimEnds,XStringSet-method} \alias{trimEnds,XStringQuality-method} \alias{trimEnds,FastqQuality-method} \alias{trimEnds,ShortRead-method} \alias{trimEnds,ShortReadQ-method} \title{Trim ends of reads based on nucleotides or qualities} \description{ These generic functions remove leading or trailing nucleotides or qualities. \code{trimTails} and \code{trimTailw} remove low-quality reads from the right end using a sliding window (\code{trimTailw}) or a tally of (successive) nucleotides falling at or below a quality threshold (\code{trimTails}). \code{trimEnds} takes an alphabet of characters to remove from either left or right end. } \usage{ ## S4 methods for 'ShortReadQ', 'FastqQuality', or 'SFastqQuality' trimTailw(object, k, a, halfwidth, ..., ranges=FALSE) trimTails(object, k, a, successive=FALSE, ..., ranges=FALSE) trimEnds(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) \S4method{trimTailw}{BStringSet}(object, k, a, halfwidth, ..., alphabet, ranges=FALSE) \S4method{trimTails}{BStringSet}(object, k, a, successive=FALSE, ..., alphabet, ranges=FALSE) \S4method{trimTailw}{character}(object, k, a, halfwidth, ..., destinations, ranges=FALSE) \S4method{trimTails}{character}(object, k, a, successive=FALSE, ..., destinations, ranges=FALSE) \S4method{trimEnds}{character}(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., destinations, ranges=FALSE) } \arguments{ \item{object}{An object (e.g., \code{\linkS4class{ShortReadQ}} and derived classes; see below to discover these methods) or character vector of fastq file(s) to be trimmed. } \item{k}{\code{integer(1)} describing the number of failing letters required to trigger trimming.} \item{a}{For \code{trimTails} and \code{trimTailw}, a \code{character(1)} with \code{nchar(a) == 1L} giving the letter at or below which a nucleotide is marked as failing. For \code{trimEnds} a \code{character()} with all \code{nchar() == 1L} giving the letter at or below which a nucleotide or quality scores marked for removal.} \item{halfwidth}{The half width (cycles before or after the current; e.g., a half-width of 5 would span 5 + 1 + 5 cycles) in which qualities are assessed.} \item{successive}{\code{logical(1)} indicating whether failures can occur anywhere in the sequence, or must be successive. If \code{successive=FALSE}, then the k'th failed letter and subsequent are removed. If \code{successive=TRUE}, the first succession of k failed and subsequent letters are removed.} \item{left, right}{\code{logical(1)} indicating whether trimming is from the left or right ends.} \item{relation}{\code{character(1)} selected from the argument values, i.e., \dQuote{<=} or \dQuote{==} indicating whether all letters at or below the \code{alphabet(object)} are to be removed, or only exact matches.} \item{\dots}{Additional arguments, perhaps used by methods.} \item{destinations}{For \code{object} of type \code{character()}, an equal-length vector of destination files. Files must not already exist.} \item{alphabet}{\code{character()} (ordered low to high) letters on which quality scale is measured. Usually supplied internally (user does not need to specify). If missing, then set to ASCII characters 0-127.} \item{ranges}{\code{logical(1)} indicating whether the trimmed object, or only the ranges satisfying the trimming condition, be returned.} } \details{ \code{trimTailw} starts at the left-most nucleotide, tabulating the number of cycles in a window of \code{2 * halfwidth + 1} surrounding the current nucleotide with quality scores that fall at or below \code{a}. The read is trimmed at the first nucleotide for which this number \code{>= k}. The quality of the first or last nucleotide is used to represent portions of the window that extend beyond the sequence. \code{trimTails} starts at the left-most nucleotide and accumulates cycles for which the quality score is at or below \code{a}. The read is trimmed at the first location where this number \code{>= k}. With \code{successive=TRUE}, failing qualities must occur in strict succession. \code{trimEnds} examines the \code{left}, \code{right}, or both ends of \code{object}, marking for removal letters that correspond to \code{a} and \code{relation}. The \code{trimEnds,ShortReadQ-method} trims based on quality. \code{ShortReadQ} methods operate on quality scores; use \code{sread()} and the \code{ranges} argument to trim based on nucleotide (see examples). \code{character} methods transform one or several fastq files to new fastq files, applying trim operations based on quality scores; use \code{filterFastq} with your own \code{filter} argument to filter on nucleotides. } \value{ An instance of \code{class(object)} trimmed to contain only those nucleotides satisfying the trim criterion or, if \code{ranges=TRUE} an \code{IRanges} instance defining the ranges that would trim \code{object}. } \author{Martin Morgan } \note{ The \code{trim*} functions use OpenMP threads (when available) during creation of the return value. This may sometimes create problems when a process is already running on multiple threads, e.g., with an error message like \preformatted{ libgomp: Thread creation failed: Resource temporarily unavailable } A solution is to precede problematic code with the following code snippet, to disable threading \preformatted{ nthreads <- .Call(ShortRead:::.set_omp_threads, 1L) on.exit(.Call(ShortRead:::.set_omp_threads, nthreads)) } } \examples{ showMethods(trimTails) sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") ## remove leading / trailing quality scores <= 'I' trimEnds(rfq, "I") ## remove leading / trailing 'N's rng <- trimEnds(sread(rfq), "N", relation="==", ranges=TRUE) narrow(rfq, start(rng), end(rng)) ## remove leading / trailing 'G's or 'C's trimEnds(rfq, c("G", "C"), relation="==") } \keyword{manip} ShortRead/src/0000755000175100017510000000000012607325164014262 5ustar00biocbuildbiocbuildShortRead/src/Biostrings_stubs.c0000644000175100017510000000003712607325164017771 0ustar00biocbuildbiocbuild#include "_Biostrings_stubs.c" ShortRead/src/IRanges_stubs.c0000644000175100017510000000003412607325164017173 0ustar00biocbuildbiocbuild#include "_IRanges_stubs.c" ShortRead/src/Makevars.in0000644000175100017510000000013512607325164016362 0ustar00biocbuildbiocbuildPKG_CXXFLAGS=@DEFS@ PKG_CFLAGS=$(SHLIB_OPENMP_CFLAGS) PKG_LIBS=@LIBS@ $(SHLIB_OPENMP_CFLAGS) ShortRead/src/Makevars.win0000644000175100017510000000055312607325164016555 0ustar00biocbuildbiocbuildZLIB_CFLAGS+=$(shell echo 'zlibbioc::pkgconfig("PKG_CFLAGS")'|\ "${R_HOME}/bin/R" --vanilla --slave) PKG_LIBS+=$(shell echo 'zlibbioc::pkgconfig("PKG_LIBS_shared")' |\ "${R_HOME}/bin/R" --vanilla --slave) %.o: %.c $(CC) $(ZLIB_CFLAGS) $(ALL_CPPFLAGS) $(ALL_CFLAGS) -c $< -o $@ %.o: %.cc $(CXX) $(ZLIB_CFLAGS) $(ALL_CPPFLAGS) $(ALL_CXXFLAGS) -c $< -o $@ ShortRead/src/R_init_ShortRead.c0000644000175100017510000000465712607325164017641 0ustar00biocbuildbiocbuild#include "ShortRead.h" #include "trim.h" #ifdef SUPPORT_OPENMP #include #endif SEXP set_omp_threads(SEXP nthreads) { int n = 1; #ifdef SUPPORT_OPENMP n = omp_get_max_threads(); if (!IS_INTEGER(nthreads) || 1L != LENGTH(nthreads)) Rf_error("'nthreads' must be integer(1)"); omp_set_num_threads(INTEGER(nthreads)[0]); #endif return ScalarInteger(n); } static const R_CallMethodDef callMethods[] = { /* util.c */ {".set_omp_threads", (DL_FUNC) & set_omp_threads, 1}, {".count_lines", (DL_FUNC) & count_lines, 1}, /* trim.c */ {".trimTails", (DL_FUNC) & trim_tails, 4}, {".trimTailw", (DL_FUNC) & trim_tailw, 4}, {".trimEnds", (DL_FUNC) & trim_ends, 4}, /* io.c */ {".read_prb_as_character", (DL_FUNC) & read_prb_as_character, 2}, {".read_solexa_fastq", (DL_FUNC) & read_solexa_fastq, 2}, {".read_XStringSet_columns", (DL_FUNC) & read_XStringSet_columns, 8}, {".read_solexa_export", (DL_FUNC) & read_solexa_export, 4}, {".write_fastq", (DL_FUNC) & write_fastq, 8}, {".count_ipar_int_recs", (DL_FUNC) & count_ipar_int_recs, 1}, /* io_bowtie.c, io_soap.c */ {".read_bowtie", (DL_FUNC) & read_bowtie, 4}, {".read_soap", (DL_FUNC) & read_soap, 4}, /* alphabet */ {".alphabet_by_cycle", (DL_FUNC) & alphabet_by_cycle, 3}, {".alphabet_pair_by_cycle", (DL_FUNC) & alphabet_pair_by_cycle, 5}, {".alphabet_score", (DL_FUNC) & alphabet_score, 2}, {".alphabet_as_int", (DL_FUNC) & alphabet_as_int, 2}, {".alphabet_order", (DL_FUNC) & alphabet_order, 1}, {".alphabet_duplicated", (DL_FUNC) & alphabet_duplicated, 1}, {".alphabet_rank", (DL_FUNC) & alphabet_rank, 1}, {".aligned_read_rank", (DL_FUNC) & aligned_read_rank, 4}, {".read_maq_map", (DL_FUNC) & read_maq_map, 3}, /* readBfaToc */ {".readBfaToc", (DL_FUNC) & readBfaToc, 1}, /* sampler */ {".sampler_new", (DL_FUNC) & sampler_new, 1}, {".sampler_add", (DL_FUNC) & sampler_add, 2}, {".sampler_status", (DL_FUNC) & sampler_status, 1}, {".sampler_as_XStringSet", (DL_FUNC) & sampler_as_XStringSet, 2}, {".streamer_new", (DL_FUNC) & streamer_new, 1}, {".streamer_add", (DL_FUNC) & streamer_add, 3}, {".streamer_status", (DL_FUNC) & streamer_status, 1}, {".streamer_as_XStringSet", (DL_FUNC) & streamer_as_XStringSet, 1}, {NULL, NULL, 0} }; void R_init_ShortRead(DllInfo * info) { R_registerRoutines(info, NULL, callMethods, NULL, NULL); } ShortRead/src/S4Vectors_stubs.c0000644000175100017510000000003612607325164017501 0ustar00biocbuildbiocbuild#include "_S4Vectors_stubs.c" ShortRead/src/ShortRead.h0000644000175100017510000000702412607325164016331 0ustar00biocbuildbiocbuild#ifndef _SHORTREAD_H_ #define _SHORTREAD_H_ #ifdef __cplusplus extern "C" { #endif #include #include #include "S4Vectors_interface.h" #include "IRanges_interface.h" #include "XVector_interface.h" #include "Biostrings_interface.h" /* util.c */ typedef unsigned char (*DECODE_FUNC) (char); /* DNAdecode, RNAdecode */ typedef char (*ENCODE_FUNC) (char); /* DNAdecode, RNAdecode */ DECODE_FUNC decoder(const char *); ENCODE_FUNC encoder(const char *); void _reverse(char *); void _reverseComplement(char *); SEXP _get_namespace(const char *pkg); SEXP _get_strand_levels(); int _char_as_strand_int(const char c, const char *fname, const int lineno); typedef char *(MARK_FIELD_FUNC) (char *, const char *); MARK_FIELD_FUNC _mark_field_1; /* nchar(delim) == 1 */ MARK_FIELD_FUNC _mark_field_n; /* nchar(delim) != 1 */ int _mark_field_0(char *, char **, const int); extern const int LINEBUF_SIZE; gzFile _fopen(const char *, const char *); int _linebuf_skip_p(char *, gzFile, const char *, int, const char *); int _rtrim(char *linebuf); void _solexa_to_IUPAC(char *linebuf); void _as_factor_SEXP(SEXP vec, SEXP lvls); void _as_factor(SEXP vec, const char **levels, const int n_lvls); int _count_lines_sum(SEXP files); SEXP count_lines(SEXP files); SEXP count_ipar_int_recs(SEXP files); SEXP _get_SEXP(SEXP from, SEXP rho, const char *with); /* xstring_util.c */ typedef SEXP _XSnap; _XSnap _NEW_XSNAP(int nelt, const char *baseclass); void _APPEND_XSNAP(_XSnap snap, const char *str); void _XSNAP_ELT(SEXP x, int elt); /* io.c */ SEXP write_fastq(SEXP id, SEXP sread, SEXP quality, SEXP fname, SEXP fmode, SEXP full, SEXP compress, SEXP max_width); SEXP read_prb_as_character(SEXP file, SEXP asSolexa); SEXP read_solexa_fastq(SEXP files, SEXP withIds); SEXP read_XStringSet_columns(SEXP files, SEXP header, SEXP sep, SEXP colIndex, SEXP colClasses, SEXP nrows, SEXP skip, SEXP commentChar); SEXP read_solexa_export(SEXP files, SEXP sep, SEXP commentChar, SEXP withFlags); /* io_bowtie.c, io_soap.c */ SEXP read_bowtie(SEXP files, SEXP qualityType, SEXP sep, SEXP commentChar); SEXP read_soap(SEXP files, SEXP qualityType, SEXP sep, SEXP commentChar); /* alphabet.c */ SEXP alphabet_by_cycle(SEXP stringSet, SEXP width, SEXP alphabet); SEXP alphabet_pair_by_cycle(SEXP stringSet1, SEXP stringSet2, SEXP width, SEXP alphabet1, SEXP alphabet2); SEXP alphabet_score(SEXP stringSet, SEXP score); SEXP alphabet_as_int(SEXP stringSet, SEXP score); SEXP alphabet_order(SEXP stringSet); SEXP alphabet_duplicated(SEXP stringSet); SEXP alphabet_rank(SEXP stringSet); SEXP aligned_read_rank(SEXP stringSet, SEXP order, SEXP withSread, SEXP rho); /* read_maq_map.c */ SEXP read_maq_map(SEXP filename, SEXP maxreads, SEXP maq_longread); /* readBfaToc.c */ SEXP readBfaToc(SEXP bfa_filename); /* sampler */ SEXP sampler_new(SEXP n); SEXP sampler_add(SEXP s, SEXP bin); SEXP sampler_status(SEXP s); SEXP sampler_as_XStringSet(SEXP s, SEXP ordered); SEXP streamer_new(SEXP n); SEXP streamer_add(SEXP s, SEXP bin, SEXP skipadd); SEXP streamer_status(SEXP s); SEXP streamer_as_XStringSet(SEXP s); #ifdef __cplusplus } #endif #endif /* _SHORTREAD_H_ */ ShortRead/src/XVector_stubs.c0000644000175100017510000000003412607325164017235 0ustar00biocbuildbiocbuild#include "_XVector_stubs.c" ShortRead/src/alphabet.c0000644000175100017510000003044012607325164016207 0ustar00biocbuildbiocbuild#include "ShortRead.h" #include /* * visit all sequences in a set, tallying character frequency as a * function of nucleotide position in the read. */ SEXP alphabet_by_cycle(SEXP stringSet, SEXP width, SEXP alphabet) { const int MAX_MAP = 256; /* FIXME: check types of incoming arguments */ if (!IS_INTEGER(width) || LENGTH(width) != 1) Rf_error("'%s' must be '%s'", "width", "integer(1)"); if (!IS_CHARACTER(alphabet)) Rf_error("'%s' must be '%s'", "alphabet", "character()"); /* allocate and initialize the answer matrix */ const int nrow = LENGTH(alphabet), ncol = INTEGER(width)[0]; SEXP ans, dimnms, nms; PROTECT(ans = allocMatrix(INTSXP, nrow, ncol)); PROTECT(dimnms = NEW_LIST(2)); SET_VECTOR_ELT(dimnms, 0, alphabet); /* FIXME: Cycle dimnames? */ PROTECT(nms = NEW_STRING(2)); SET_STRING_ELT(nms, 0, mkChar("alphabet")); SET_STRING_ELT(nms, 1, mkChar("cycle")); SET_NAMES(dimnms, nms); SET_DIMNAMES(ans, dimnms); UNPROTECT(2); int *ansp = INTEGER(ans); /* convenient pointer to data */ memset(ansp, 0, LENGTH(ans) * sizeof(int)); /* initialize to 0 */ /* set up a decoder for the string */ const char *base = get_XStringSet_xsbaseclassname(stringSet); DECODE_FUNC decode = decoder(base); /* map between decoded character and offset into 'ans' */ int i, j; int *map = (int *) R_alloc(MAX_MAP, sizeof(int)); memset(map, -1, MAX_MAP * sizeof(int)); /* default; ignore */ for (i = 0; i < LENGTH(alphabet); ++i) { unsigned char c = (unsigned char) *CHAR(STRING_ELT(alphabet, i)); map[c] = i; } /* The main loop. Cache the string set for fast access, then * iterate over all strings, and over all characters in the * string. For each character, decode and map into the answer * matrix. * */ XStringSet_holder holder = hold_XStringSet(stringSet); const int len = get_XStringSet_length(stringSet); for (i = 0; i < len; ++i) { Chars_holder seq = get_elt_from_XStringSet_holder(&holder, i); for (j = 0; j < seq.length; ++j) { int idx = map[decode(seq.ptr[j])]; if (idx >= 0) ansp[j * nrow + idx] += 1; } } UNPROTECT(1); return ans; } SEXP alphabet_pair_by_cycle(SEXP stringSet1, SEXP stringSet2, SEXP width, SEXP alphabet1, SEXP alphabet2) { const int MAX_MAP = 256; /* FIXME: check types of incoming arguments */ if (get_XStringSet_length(stringSet1) != get_XStringSet_length(stringSet2)) Rf_error("'stringSet1' and 'stringSet2' must have the same length"); if (!IS_CHARACTER(alphabet1) || !IS_CHARACTER(alphabet2)) Rf_error("'alphabet' must be list of character vectors"); /* allocate and initialize the answer matrix */ const int dim1 = LENGTH(alphabet1), dim2 = LENGTH(alphabet2), dim3 = INTEGER(width)[0]; const int dim1xdim2 = dim1 * dim2; SEXP ans, dimnms, nms; PROTECT(ans = alloc3DArray(INTSXP, dim1, dim2, dim3)); PROTECT(dimnms = NEW_LIST(3)); SET_VECTOR_ELT(dimnms, 0, alphabet1); SET_VECTOR_ELT(dimnms, 1, alphabet2); /* FIXME: Cycle dimnames? */ PROTECT(nms = NEW_STRING(3)); SET_STRING_ELT(nms, 0, mkChar("base")); SET_STRING_ELT(nms, 1, mkChar("quality")); SET_STRING_ELT(nms, 2, mkChar("cycle")); SET_NAMES(dimnms, nms); SET_DIMNAMES(ans, dimnms); UNPROTECT(2); int *ansp = INTEGER(ans); /* convenient pointer to data */ memset(ansp, 0, LENGTH(ans) * sizeof(int)); /* initialize to 0 */ /* set up a decoder for string1 and string2 */ const char *base1 = get_XStringSet_xsbaseclassname(stringSet1); const char *base2 = get_XStringSet_xsbaseclassname(stringSet2); DECODE_FUNC decode1 = decoder(base1); DECODE_FUNC decode2 = decoder(base2); /* map between decoded character and offset into 'ans' */ int i, j; int *map1 = (int *) R_alloc(MAX_MAP, sizeof(int)), *map2 = (int *) R_alloc(MAX_MAP, sizeof(int)); memset(map1, -1, MAX_MAP * sizeof(int)); /* default; ignore */ memset(map2, -1, MAX_MAP * sizeof(int)); /* default; ignore */ for (i = 0; i < LENGTH(alphabet1); ++i) { unsigned char c = (unsigned char) *CHAR(STRING_ELT(alphabet1, i)); map1[c] = i; } for (i = 0; i < LENGTH(alphabet2); ++i) { unsigned char c = (unsigned char) *CHAR(STRING_ELT(alphabet2, i)); map2[c] = i; } /* The main loop. Cache the string set for fast access, then * iterate over all strings, and over all characters in the * string. For each character, decode and map into the answer * matrix. * */ XStringSet_holder holder1 = hold_XStringSet(stringSet1); XStringSet_holder holder2 = hold_XStringSet(stringSet2); const int len = get_XStringSet_length(stringSet1); for (i = 0; i < len; ++i) { Chars_holder seq1 = get_elt_from_XStringSet_holder(&holder1, i); Chars_holder seq2 = get_elt_from_XStringSet_holder(&holder2, i); for (j = 0; j < seq1.length; ++j) { int idx1 = map1[decode1(seq1.ptr[j])]; int idx2 = map2[decode2(seq2.ptr[j])]; if (idx1 >= 0 && idx2 >= 0) ansp[j * dim1xdim2 + idx2 * dim1 + idx1] += 1; } } UNPROTECT(1); return ans; } SEXP alphabet_score(SEXP stringSet, SEXP score) { /* FIXME: stringSet is XStringSet */ const char *base = get_XStringSet_xsbaseclassname(stringSet); if (strcmp(base, "BString") != 0) Rf_error("'stringSet' must contain BString elements"); if (!IS_NUMERIC(score) || LENGTH(score) != 256) Rf_error("'%s' must be '%s'", "score", "integer(256)"); DECODE_FUNC decode = decoder(base); const int len = get_XStringSet_length(stringSet); int i, j; const double *dscore = REAL(score); SEXP ans; PROTECT(ans = NEW_NUMERIC(len)); double *dans = REAL(ans); XStringSet_holder holder = hold_XStringSet(stringSet); for (i = 0; i < len; ++i) { Chars_holder seq = get_elt_from_XStringSet_holder(&holder, i); dans[i] = 0; for (j = 0; j < seq.length; ++j) dans[i] += dscore[decode(seq.ptr[j])]; } UNPROTECT(1); return ans; } SEXP alphabet_as_int(SEXP stringSet, SEXP score) { /* FIXME: stringSet is XStrinSet(1) or longer? */ const char *base = get_XStringSet_xsbaseclassname(stringSet); if (strcmp(base, "BString") != 0) Rf_error("'stringSet' must contain BString elements"); if (!IS_INTEGER(score) || LENGTH(score) != 256) Rf_error("'%s' must be '%s'", "score", "integer(256)"); DECODE_FUNC decode = decoder(base); const int len = get_XStringSet_length(stringSet); if (len == 0) return allocMatrix(INTSXP, 0, 0); XStringSet_holder holder = hold_XStringSet(stringSet); int i; Chars_holder seq = get_elt_from_XStringSet_holder(&holder, 0); int width = seq.length; int *ians = NULL; SEXP ans; for (i = 1; i < len && width > 0; ++i) { seq = get_elt_from_XStringSet_holder(&holder, i); if (seq.length > width) width = seq.length; } ans = PROTECT(allocMatrix(INTSXP, len, width)); ians = INTEGER(ans); for (i = 0; i < LENGTH(ans); ++i) ians[i] = NA_INTEGER; const int *iscore = INTEGER(score); int j; for (i = 0; i < len; ++i) { seq = get_elt_from_XStringSet_holder(&holder, i); for (j = 0; j < seq.length; ++j) ians[len * j + i] = iscore[decode(seq.ptr[j])]; } UNPROTECT(1); return ans; } /* rank / order / sort / duplicated */ typedef struct { int offset; Chars_holder ref; } XSort; typedef int XSEQ_SORT_FUN(const void *, const void *); XSEQ_SORT_FUN compare_Chars_holder; XSEQ_SORT_FUN stable_compare_Chars_holder; int compare_Chars_holder(const void *a, const void *b) { const Chars_holder ra = ((const XSort *) a)->ref; const Chars_holder rb = ((const XSort *) b)->ref; const int diff = ra.length - rb.length; size_t len = diff < 0 ? ra.length : rb.length; int res = memcmp(ra.ptr, rb.ptr, len); return res == 0 ? diff : res; } int stable_compare_Chars_holder(const void *a, const void *b) { const Chars_holder ra = ((const XSort *) a)->ref; const Chars_holder rb = ((const XSort *) b)->ref; const int diff = ra.length - rb.length; size_t len = diff < 0 ? ra.length : rb.length; int res = memcmp(ra.ptr, rb.ptr, len); if ((0 == res) && (0 == diff)) res = ((const XSort *) a)->offset - ((const XSort *) b)->offset; return res == 0 ? diff : res; } void _alphabet_order(XStringSet_holder holder, XSort * xptr, const int len) { int i; for (i = 0; i < len; ++i) { xptr[i].offset = i; xptr[i].ref = get_elt_from_XStringSet_holder(&holder, i); } qsort(xptr, len, sizeof(XSort), stable_compare_Chars_holder); } SEXP alphabet_order(SEXP stringSet) { /* FIXME: stringSet is XStringSet; non-zero len? */ const int len = get_XStringSet_length(stringSet); if (len == 0) return NEW_INTEGER(0); XStringSet_holder holder = hold_XStringSet(stringSet); XSort *xptr = (XSort *) R_alloc(len, sizeof(XSort)); _alphabet_order(holder, xptr, len); SEXP ans; PROTECT(ans = NEW_INTEGER(len)); int *ians = INTEGER(ans); int i; for (i = 0; i < len; ++i) ians[i] = xptr[i].offset + 1; UNPROTECT(1); return ans; } SEXP alphabet_duplicated(SEXP stringSet) { /* FIXME: stringSet is XStringSet; non-zero len? */ const int len = get_XStringSet_length(stringSet); if (len == 0) return NEW_LOGICAL(0); XStringSet_holder holder = hold_XStringSet(stringSet); XSort *xptr = (XSort *) R_alloc(len, sizeof(XSort)); _alphabet_order(holder, xptr, len); SEXP ans; PROTECT(ans = NEW_LOGICAL(len)); int *ians = INTEGER(ans); ians[xptr[0].offset] = 0; int i; for (i = 1; i < len; ++i) ians[xptr[i].offset] = compare_Chars_holder(xptr + i - 1, xptr + i) == 0; UNPROTECT(1); return ans; } SEXP alphabet_rank(SEXP stringSet) { /* integer vector of unique indices into sorted set */ const int len = get_XStringSet_length(stringSet); if (len == 0) return NEW_INTEGER(0); XStringSet_holder holder = hold_XStringSet(stringSet); XSort *xptr = (XSort *) R_alloc(len, sizeof(XSort)); _alphabet_order(holder, xptr, len); SEXP rank = PROTECT(NEW_INTEGER(len)); int *irank = INTEGER(rank), i; irank[xptr[0].offset] = 1; for (i = 1; i < len; ++i) { if (compare_Chars_holder(&xptr[i - 1], &xptr[i]) == 0) { irank[xptr[i].offset] = irank[xptr[i - 1].offset]; } else { irank[xptr[i].offset] = i + 1; } } UNPROTECT(1); return rank; } SEXP aligned_read_rank(SEXP alignedRead, SEXP order, SEXP withSread, SEXP rho) { if (LENGTH(order) == 0) return NEW_INTEGER(0); SEXP chr, str, pos; PROTECT(chr = _get_SEXP(alignedRead, rho, "chromosome")); PROTECT(str = _get_SEXP(alignedRead, rho, "strand")); PROTECT(pos = _get_SEXP(alignedRead, rho, "position")); int *c = INTEGER(chr), *s = INTEGER(str), *p = INTEGER(pos), *o = INTEGER(order), len = LENGTH(order); SEXP rank; PROTECT(rank = NEW_INTEGER(len)); int *r = INTEGER(rank), i; if (LOGICAL(withSread)[0]) { SEXP sread; PROTECT(sread = _get_SEXP(alignedRead, rho, "sread")); XStringSet_holder holder = hold_XStringSet(sread); XSort *xptr = (XSort *) R_alloc(2, sizeof(XSort)); xptr[0].ref = get_elt_from_XStringSet_holder(&holder, 0); r[o[0] - 1] = 1; for (i = 1; i < len; ++i) { const int this = o[i] - 1, prev = o[i - 1] - 1; xptr[i % 2].ref = get_elt_from_XStringSet_holder(&holder, this); if (c[this] != c[prev] || s[this] != s[prev] || p[this] != p[prev] || compare_Chars_holder(xptr, xptr + 1) != 0) r[this] = i + 1; else r[this] = r[prev]; } UNPROTECT(1); } else { r[o[0] - 1] = 1; for (i = 1; i < len; ++i) { const int this = o[i] - 1, prev = o[i - 1] - 1; if (c[this] != c[prev] || s[this] != s[prev] || p[this] != p[prev]) r[this] = i + 1; else r[this] = r[prev]; } } UNPROTECT(4); return rank; } ShortRead/src/call.h0000644000175100017510000000123112607325164015343 0ustar00biocbuildbiocbuild#ifndef _SHORTREAD_CALL_H_ #define _SHORTREAD_CALL_H_ #ifdef __cplusplus extern "C" { #endif #define NEW_CALL(S, T, NAME, ENV, N) \ PROTECT((S) = (T) = allocList((N))); \ SET_TYPEOF((T), LANGSXP); \ SETCAR((T), findFun(install((NAME)), (ENV))); \ (T) = CDR((T)) #define CSET_CDR(T, NAME, VALUE) \ SETCAR((T), (VALUE)); \ SET_TAG((T), install((NAME))); \ (T) = CDR((T)) #define CEVAL_TO(S, ENV, GETS) \ (GETS) = eval((S), (ENV)); \ UNPROTECT(1) #ifdef __cplusplus } #endif #endif /* _SHORTREAD_CALL_H_ */ ShortRead/src/const.h0000644000175100017510000000135012607325164015560 0ustar00biocbuildbiocbuild/* Note: This file has been copied from the source code of Maq, version 0.6.5, and is hence copyright (c) Li Hang, who has released Maq under GPL 2. The test for SIZEOF_UNSIGNED_LONG == 8 has been added, and depends on ../configure.ac */ #ifndef NST_CONST_H #define NST_CONST_H #define MAX_ULL 0xffffffffffffffffull #if SIZEOF_UNSIGNED_LONG == 8 typedef unsigned long bit64_t; #else typedef unsigned long long bit64_t; #endif typedef unsigned bit32_t; typedef unsigned short bit16_t; typedef unsigned char bit8_t; extern bit8_t nst_nt4_table[]; extern bit8_t nst_nt16_table[]; extern char *nst_nt4_rev_table; extern char *nst_nt16_rev_table; extern bit8_t nst_nt16_nt4_table[]; extern int nst_nt16_count_table[]; #endif ShortRead/src/io.c0000644000175100017510000006674512607325164015057 0ustar00biocbuildbiocbuild#include #include /* atoi */ #include #include "ShortRead.h" #include "call.h" static const int SOLEXA_QBASE = 64; static const int PHRED_QBASE = 33; static const int LINES_PER_FASTQ_REC = 4; /* * Solexa 'fastq' files consist of records, each 4 lines long. Here is * an example: @HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS * inst/extdata/s_1_sequences.txt contains 256 records */ void _write_err(int i) { Rf_error("failed to write record %d", i + 1); } char *_holder_to_char(XStringSet_holder * holder, const int i, char *buf, const int width, DECODE_FUNC decode) { Chars_holder chars_holder = get_elt_from_XStringSet_holder(holder, i); if (chars_holder.length > width) return NULL; if (decode != NULL) { int j; for (j = 0; j < chars_holder.length; ++j) buf[j] = decode(chars_holder.ptr[j]); } else strncpy(buf, chars_holder.ptr, chars_holder.length); buf[chars_holder.length] = '\0'; return buf; } SEXP write_fastq(SEXP id, SEXP sread, SEXP quality, SEXP fname, SEXP fmode, SEXP full, SEXP compress, SEXP max_width) { if (!(IS_S4_OBJECT(id) && strcmp(get_classname(id), "BStringSet") == 0)) Rf_error("'%s' must be '%s'", "id", "BStringSet"); if (!(IS_S4_OBJECT(sread) && strcmp(get_classname(sread), "DNAStringSet") == 0)) Rf_error("'%s' must be '%s'", "sread", "DNAStringSet"); /* check in R -- C-level R_check_super... is not adequate */ /* if (R_check_class_etc(quality, qualityClasses) < 0) */ /* Rf_error("'is(<%s>, \"%s\")' failed", "quality", qualityClasses[0]); */ const int len = get_XStringSet_length(id); if ((len != get_XStringSet_length(sread)) || (len != get_XStringSet_length(quality))) Rf_error("length() of %s must all be equal", "'id', 'sread', 'quality'"); if (!(IS_CHARACTER(fname) && LENGTH(fname) == 1)) /* FIXME: nzchar */ Rf_error("'%s' must be '%s'", "file", "character(1)"); if (!(IS_CHARACTER(fmode) && LENGTH(fmode) == 1)) /* FIXME nchar()<3 */ Rf_error("'%s' must be '%s'", "mode", "character(1)"); if (!(IS_LOGICAL(full) && LENGTH(full) == 1)) Rf_error("'%s' must be '%s'", "full", "logical(1)"); if (!(IS_LOGICAL(compress) && LENGTH(compress) == 1 && LOGICAL(compress)[0] != NA_LOGICAL)) Rf_error("'%s' must be '%s'", "compress", "logical(1) (TRUE or FALSE)"); const int compress1 = LOGICAL(compress)[0]; if (!(IS_INTEGER(max_width) && LENGTH(max_width) == 1 && INTEGER(max_width)[0] >= 0)) Rf_error("'%s' must be %s", "max_width", "'integer(1)', >=0"); const int width = INTEGER(max_width)[0]; DECODE_FUNC dnaDecoder = decoder(get_XStringSet_xsbaseclassname(sread)); XStringSet_holder xid = hold_XStringSet(id), xsread = hold_XStringSet(sread), xquality = hold_XStringSet(quality); char *idbuf0 = (char *) R_alloc(sizeof(char), width + 1), *idbuf1, *readbuf = (char *) R_alloc(sizeof(char), width + 1), *qualbuf = (char *) R_alloc(sizeof(char), width + 1), *gzbuf = NULL; int i, gzbuf_n = 0; idbuf1 = TRUE == LOGICAL(full)[0] ? idbuf0 : ""; FILE *fout = NULL; gzFile gzout = NULL; if (compress1 == FALSE) fout = fopen(CHAR(STRING_ELT(fname, 0)), CHAR(STRING_ELT(fmode, 0))); else { gzout = gzopen(CHAR(STRING_ELT(fname, 0)), CHAR(STRING_ELT(fmode, 0))); gzbuf_n = 4 * width + 8; /* liberal */ gzbuf = (char *) R_alloc(sizeof(char), gzbuf_n); } if ((gzout == NULL) && (fout == NULL)) Rf_error("failed to open file '%s'", CHAR(STRING_ELT(fname, 0))); const char *fmt = "@%s\n%s\n+%s\n%s\n"; int err = 0; for (i = 0; i < len; ++i) { idbuf0 = _holder_to_char(&xid, i, idbuf0, width, NULL); if (idbuf0 == NULL) { err = 1; break; } readbuf = _holder_to_char(&xsread, i, readbuf, width, dnaDecoder); if (readbuf == NULL) { err = 1; break; } qualbuf = _holder_to_char(&xquality, i, qualbuf, width, NULL); if (qualbuf == NULL) { err = 1; break; } if (compress1) { int n_out = snprintf(gzbuf, gzbuf_n, fmt, idbuf0, readbuf, idbuf1, qualbuf); if (n_out > gzbuf_n) { /* happens rarely, e.g., identifiers longer than sequence */ gzbuf_n = n_out + 1; gzbuf = (char *) R_alloc(sizeof(char), gzbuf_n); snprintf(gzbuf, gzbuf_n, fmt, idbuf0, readbuf, idbuf1, qualbuf); } if (gzputs(gzout, gzbuf) == -1) { err = 1; break; } } else if (fprintf(fout, fmt, idbuf0, readbuf, idbuf1, qualbuf) < 0) { err = 1; break; }; } if (compress1) gzclose(gzout); else fclose(fout); if (err != 0) _write_err(i); return R_NilValue; } /* * solexa/IPAR .*_int.txt.p.gz file */ void _count_ipar_int_recs(gzFile file, int *n_recs, int *n_cycles) { const char CYCLE_END = '#'; const int LINEBUF_SIZE = 200001; size_t bytes_read = 0; char *buf = Calloc(LINEBUF_SIZE + 1, char); *n_recs = *n_cycles = 0; char *p = 0; /* records and cycles */ while (*n_cycles == 0 && (bytes_read = gzread(file, buf, LINEBUF_SIZE)) > 0) { p = buf; while ((p = memchr(p, '\n', (buf + bytes_read) - p))) { ++p; if (*p == CYCLE_END) { ++p; *n_cycles += 1; break; } else *n_recs += 1; } } /* just cycles */ while ((p = memchr(p, CYCLE_END, (buf + bytes_read) - p))) { ++p; *n_cycles += 1; } while ((bytes_read = gzread(file, buf, LINEBUF_SIZE)) > 0) { p = buf; while ((p = memchr(p, CYCLE_END, (buf + bytes_read) - p))) { ++p; *n_cycles += 1; } } Free(buf); } SEXP count_ipar_int_recs(SEXP fnames) { int i, nfile; const char *filepath; gzFile file; SEXP ans = R_NilValue, nms = R_NilValue; if (!IS_CHARACTER(fnames)) error("'fnames' must be character()"); nfile = LENGTH(fnames); PROTECT(ans = NEW_LIST(2)); SET_VECTOR_ELT(ans, 0, NEW_INTEGER(nfile)); SET_VECTOR_ELT(ans, 1, NEW_INTEGER(nfile)); PROTECT(nms = NEW_CHARACTER(2)); SET_STRING_ELT(nms, 0, mkChar("reads")); SET_STRING_ELT(nms, 1, mkChar("cycles")); setAttrib(ans, R_NamesSymbol, nms); for (i = 0; i < nfile; ++i) { R_CheckUserInterrupt(); filepath = translateChar(STRING_ELT(fnames, i)); file = _fopen(filepath, "rb"); _count_ipar_int_recs(file, INTEGER(VECTOR_ELT(ans, 0)) + i, INTEGER(VECTOR_ELT(ans, 1)) + i); gzclose(file); } UNPROTECT(2); return ans; } /* * Read a solexa .*_prb.txt file into STRING_VEC */ SEXP read_prb_as_character(SEXP fname, SEXP asSolexa) { const int NUC_PER_CYCLE = 4; if (!IS_CHARACTER(fname) || LENGTH(fname) != 1) error("'fname' must be 'character(1)'"); if (!IS_LOGICAL(asSolexa) || LENGTH(asSolexa) != 1) error("'asSolexa' must be 'logical(1)'"); const int n_reads = INTEGER(count_lines(fname))[0]; const int qbase = LOGICAL(asSolexa)[0] ? SOLEXA_QBASE : PHRED_QBASE; SEXP ans = PROTECT(NEW_CHARACTER(n_reads)); gzFile file = _fopen(translateChar(STRING_ELT(fname, 0)), "rb"); char buf[LINEBUF_SIZE + 1]; int read = 0; if (gzgets(file, buf, LINEBUF_SIZE) == Z_NULL) { gzclose(file); error("could not read file '%f'", translateChar(STRING_ELT(fname, 0))); } int n_cycles = 0; char *quad = strtok(buf, "\t"); while (quad != NULL) { n_cycles++; quad = strtok(NULL, "\t"); } gzrewind(file); char *score = R_alloc(sizeof(char), n_cycles + 1); score[n_cycles] = '\0'; while (gzgets(file, buf, LINEBUF_SIZE) != Z_NULL) { if (read >= n_reads) { gzclose(file); error("too many reads, %d expected", n_reads); } quad = strtok(buf, "\t"); int cycle = 0; while (quad != NULL && cycle < n_cycles) { int v[4]; int bases = sscanf(quad, " %d %d %d %d", &v[0], &v[1], &v[2], &v[3]); if (bases != NUC_PER_CYCLE) { gzclose(file); error("%d bases observed, %d expected", bases, NUC_PER_CYCLE); } v[0] = v[0] > v[1] ? v[0] : v[1]; v[2] = v[2] > v[3] ? v[2] : v[3]; score[cycle++] = qbase + ((char) v[0] > v[2] ? v[0] : v[2]); quad = strtok(NULL, "\t"); } if (cycle != n_cycles) { gzclose(file); error("%d cycles observed, %d expected", cycle, n_cycles); } SET_STRING_ELT(ans, read++, mkChar(score)); } UNPROTECT(1); gzclose(file); return ans; } /* * Read a solexa 's__sequence.txt' file into CharAEAE objects. */ static void _read_solexa_fastq_file(const char *fname, SEXP ans) { gzFile file; char linebuf[LINEBUF_SIZE]; int lineno, reclineno, nchar_in_buf; _XSnap seq = VECTOR_ELT(ans, 0), id = VECTOR_ELT(ans, 1), qualities = VECTOR_ELT(ans, 2); file = _fopen(fname, "rb"); lineno = 0; while (gzgets(file, linebuf, LINEBUF_SIZE) != NULL) { if ((reclineno = lineno % LINES_PER_FASTQ_REC) == 2) { lineno++; continue; } nchar_in_buf = _rtrim(linebuf); if (nchar_in_buf >= LINEBUF_SIZE - 1) { // should never be gzclose(file); error("line too long %s:%d", fname, lineno); } else if ((0 == reclineno) && (0 == nchar_in_buf)) { gzclose(file); error("unexpected empty line %s:%d", fname, lineno); } switch (reclineno) { case 0: /* add linebuf to CharAEAE; start at char +1 to skip the * fastq annotation. */ if (id != R_NilValue) _APPEND_XSNAP(id, linebuf + 1); break; case 1: _solexa_to_IUPAC(linebuf); _APPEND_XSNAP(seq, linebuf); break; case 3: _APPEND_XSNAP(qualities, linebuf); break; default: error("unexpected 'reclineno'; consult maintainer"); break; } lineno++; } gzclose(file); if ((lineno % LINES_PER_FASTQ_REC) != 0) error("unexpected number of lines in file '%s'", fname); } SEXP read_solexa_fastq(SEXP files, SEXP withId) { int i, nfiles, nrec = 0; const char *fname; SEXP ans = R_NilValue, nms = R_NilValue; if (!IS_CHARACTER(files)) Rf_error("'%s' must be '%s'", "files", "character"); if (!IS_LOGICAL(withId) || LENGTH(withId) != 1) Rf_error("'%s' must be '%s'", "withId", "logical(1)"); nfiles = LENGTH(files); nrec = _count_lines_sum(files) / LINES_PER_FASTQ_REC; PROTECT(ans = NEW_LIST(3)); SET_VECTOR_ELT(ans, 0, _NEW_XSNAP(nrec, "DNAString")); /* sread */ if (LOGICAL(withId)[0] == TRUE) /* id */ SET_VECTOR_ELT(ans, 1, _NEW_XSNAP(nrec, "BString")); else SET_VECTOR_ELT(ans, 1, R_NilValue); SET_VECTOR_ELT(ans, 2, _NEW_XSNAP(nrec, "BString")); /* quality */ PROTECT(nms = NEW_CHARACTER(3)); SET_STRING_ELT(nms, 0, mkChar("sread")); SET_STRING_ELT(nms, 1, mkChar("id")); SET_STRING_ELT(nms, 2, mkChar("quality")); setAttrib(ans, R_NamesSymbol, nms); UNPROTECT(1); for (i = 0; i < nfiles; ++i) { R_CheckUserInterrupt(); fname = translateChar(STRING_ELT(files, i)); _read_solexa_fastq_file(fname, ans); } _XSNAP_ELT(ans, 0); if (VECTOR_ELT(ans, 1) != R_NilValue) _XSNAP_ELT(ans, 1); _XSNAP_ELT(ans, 2); UNPROTECT(1); return ans; } int _io_XStringSet_columns(const char *fname, int header, const char *sep, MARK_FIELD_FUNC * mark_field, const int *colidx, int ncol, int nrow, int skip, const char *commentChar, SEXP sets, const int *toIUPAC) { gzFile file; char *linebuf; int lineno = 0, recno = 0; file = _fopen(fname, "rb"); linebuf = S_alloc(LINEBUF_SIZE, sizeof(char)); /* auto free'd */ while (skip-- > 0) gzgets(file, linebuf, LINEBUF_SIZE); if (header == TRUE) gzgets(file, linebuf, LINEBUF_SIZE); while (recno < nrow && gzgets(file, linebuf, LINEBUF_SIZE) != NULL) { if (_linebuf_skip_p(linebuf, file, fname, lineno, commentChar)) { lineno++; continue; } int j = 0, cidx = 0; char *curr = linebuf, *next; for (j = 0; cidx < ncol && curr != NULL; ++j) { next = (*mark_field) (curr, sep); if (j == colidx[cidx]) { if (toIUPAC[cidx]) _solexa_to_IUPAC(curr); _APPEND_XSNAP(VECTOR_ELT(sets, cidx), curr); cidx++; } curr = next; } lineno++; recno++; } gzclose(file); return recno; } SEXP read_XStringSet_columns(SEXP files, SEXP header, SEXP sep, SEXP colIndex, SEXP colClasses, SEXP nrows, SEXP skip, SEXP commentChar) { if (!IS_CHARACTER(files)) Rf_error("'%s' must be '%s'", "files", "character(1)"); if (!IS_LOGICAL(header) || LENGTH(header) != 1) Rf_error("'%s' must be '%s'", "header", "logical(1)"); if (!IS_CHARACTER(sep) || LENGTH(sep) != 1) Rf_error("'%s' must be '%s'", "sep", "character(1)"); /* FIXME: !nzchar(sep[1]) */ if (!IS_INTEGER(colIndex) || LENGTH(colIndex) == 0) Rf_error("'colIndex' must be 'integer' with length > 0"); if (!IS_CHARACTER(colClasses) || LENGTH(colClasses) != LENGTH(colIndex)) Rf_error("'%s' must be '%s', length(colClasses) == length(colIndex)", "colClasses", "character()"); if (!IS_INTEGER(nrows) || LENGTH(nrows) != 1) Rf_error("'%s' must be '%s'", "nrows", "integer(1)"); if (!IS_INTEGER(skip) || LENGTH(skip) != 1) Rf_error("'%s' must be '%s'", "skiip", "integer(1)"); if (!IS_CHARACTER(commentChar) || LENGTH(commentChar) != 1) Rf_error("'%s' must be '%s'", "commentChar", "character(1)"); if (LENGTH(STRING_ELT(commentChar, 0)) != 1) Rf_error("'nchar(commentChar[[1]])' must be 1 but is %d", LENGTH(STRING_ELT(commentChar, 0))); int i, j; /* Count lines and pre-allocate space */ const char *csep = translateChar(STRING_ELT(sep, 0)); const int nfiles = LENGTH(files); MARK_FIELD_FUNC *sep_func; /* how to parse fields; minor efficiency */ if (csep[0] != '\0' && csep[1] == '\0') sep_func = _mark_field_1; else sep_func = _mark_field_n; int nrow = INTEGER(nrows)[0]; if (nrow < 0) { nrow = _count_lines_sum(files); nrow -= nfiles * (LOGICAL(header)[0] + INTEGER(skip)[0]); } int ncol = LENGTH(colIndex); SEXP ans = PROTECT(NEW_LIST(ncol)); int *colidx = (int *) R_alloc(sizeof(int), ncol); int *toIUPAC = (int *) R_alloc(sizeof(int), ncol); for (j = 0; j < ncol; ++j) { const char *baseclass = CHAR(STRING_ELT(colClasses, j)); SET_VECTOR_ELT(ans, j, _NEW_XSNAP(nrow, baseclass)); colidx[j] = INTEGER(colIndex)[j] - 1; toIUPAC[j] = !strcmp(baseclass, "DNAString"); } /* read columns */ int nreads = 0; for (i = 0; i < nfiles; ++i) { R_CheckUserInterrupt(); if (nreads >= nrow) break; const char *fname = translateChar(STRING_ELT(files, i)); nreads += _io_XStringSet_columns(fname, LOGICAL(header)[0], csep, sep_func, colidx, ncol, nrow - nreads, INTEGER(skip)[0], CHAR(STRING_ELT(commentChar, 0)), ans, toIUPAC); } /* formulate return value */ for (j = 0; j < ncol; ++j) _XSNAP_ELT(ans, j); UNPROTECT(1); return ans; } /* * _export parser */ enum { /* fields from the _export spec */ SLX_MACHINE = 0, SLX_RUN, SLX_LANE, SLX_TILE, SLX_X, SLX_Y, SLX_MULTIPLEX, SLX_PAIRID, SLX_SREAD, SLX_QUAL, SLX_CHR, SLX_CONTIG, SLX_POS, SLX_STRAND, SLX_ALIGNQUAL, SLX_FILT, /* ID, when calculated */ SLX_ID, /* length of ENUM */ SLX_ELEMENT_END }; SEXP _AlignedRead_Solexa_make(SEXP fields) { const char *FILTER_LEVELS[] = { "Y", "N" }; SEXP s, t, nmspc = PROTECT(_get_namespace("ShortRead")); const Rboolean withMultiplexIndex = R_NilValue != VECTOR_ELT(fields, SLX_MULTIPLEX), withPairedReadNumber = R_NilValue != VECTOR_ELT(fields, SLX_PAIRID), withIds = R_NilValue != VECTOR_ELT(fields, SLX_MACHINE); SEXP sfq; /* SFastqQuality */ NEW_CALL(s, t, "SFastqQuality", nmspc, 2); CSET_CDR(t, "quality", VECTOR_ELT(fields, SLX_QUAL)); CEVAL_TO(s, nmspc, sfq); PROTECT(sfq); SEXP alnq; /* NumericQuality() */ NEW_CALL(s, t, "NumericQuality", nmspc, 2); CSET_CDR(t, "quality", VECTOR_ELT(fields, SLX_ALIGNQUAL)); CEVAL_TO(s, nmspc, alnq); PROTECT(alnq); /* .SolexaExport_AlignedDataFrame(...) */ _as_factor(VECTOR_ELT(fields, SLX_FILT), FILTER_LEVELS, sizeof(FILTER_LEVELS) / sizeof(const char *)); SEXP run; NEW_CALL(s, t, "factor", nmspc, 2); CSET_CDR(t, "x", VECTOR_ELT(fields, SLX_RUN)); CEVAL_TO(s, nmspc, run); PROTECT(run); SEXP dataframe; NEW_CALL(s, t, "data.frame", nmspc, 8 + withMultiplexIndex + withPairedReadNumber); CSET_CDR(t, "run", run); CSET_CDR(t, "lane", VECTOR_ELT(fields, SLX_LANE)); CSET_CDR(t, "tile", VECTOR_ELT(fields, SLX_TILE)); CSET_CDR(t, "x", VECTOR_ELT(fields, SLX_X)); CSET_CDR(t, "y", VECTOR_ELT(fields, SLX_Y)); CSET_CDR(t, "filtering", VECTOR_ELT(fields, SLX_FILT)); CSET_CDR(t, "contig", VECTOR_ELT(fields, SLX_CONTIG)); if (withMultiplexIndex) { CSET_CDR(t, "multiplexIndex", VECTOR_ELT(fields, SLX_MULTIPLEX)); } if (withPairedReadNumber) { CSET_CDR(t, "pairedReadNumber", VECTOR_ELT(fields, SLX_PAIRID)); } CEVAL_TO(s, nmspc, dataframe); PROTECT(dataframe); SEXP adf; NEW_CALL(s, t, ".SolexaExport_AlignedDataFrame", nmspc, 2); CSET_CDR(t, "data", dataframe); CEVAL_TO(s, nmspc, adf); PROTECT(adf); SEXP aln; NEW_CALL(s, t, "AlignedRead", nmspc, 8 + withIds); CSET_CDR(t, "sread", VECTOR_ELT(fields, SLX_SREAD)); CSET_CDR(t, "quality", sfq); if (withIds) { CSET_CDR(t, "id", VECTOR_ELT(fields, SLX_ID)); } CSET_CDR(t, "chromosome", VECTOR_ELT(fields, SLX_CHR)); CSET_CDR(t, "position", VECTOR_ELT(fields, SLX_POS)); CSET_CDR(t, "strand", VECTOR_ELT(fields, SLX_STRAND)); CSET_CDR(t, "alignQuality", alnq); CSET_CDR(t, "alignData", adf); CEVAL_TO(s, nmspc, aln); UNPROTECT(6); return aln; } int _read_solexa_export_file(const char *fname, const char *commentChar, int offset, SEXP result) { const int N_FIELDS = 22; Rboolean withMultiplexIndex = R_NilValue != VECTOR_ELT(result, SLX_MULTIPLEX), withPairedReadNumber = R_NilValue != VECTOR_ELT(result, SLX_PAIRID), withId = R_NilValue != VECTOR_ELT(result, SLX_MACHINE); gzFile file; char linebuf[LINEBUF_SIZE], **elt = (char **) R_alloc(N_FIELDS, sizeof(char*)); int lineno = 0, irec = offset; SEXP machine = NULL, run = VECTOR_ELT(result, SLX_RUN); int *lane = INTEGER(VECTOR_ELT(result, SLX_LANE)), *tile = INTEGER(VECTOR_ELT(result, SLX_TILE)), *x = INTEGER(VECTOR_ELT(result, SLX_X)), *y = INTEGER(VECTOR_ELT(result, SLX_Y)); _XSnap sread = VECTOR_ELT(result, SLX_SREAD), quality = VECTOR_ELT(result, SLX_QUAL); SEXP chromosome = VECTOR_ELT(result, SLX_CHR); int *position = INTEGER(VECTOR_ELT(result, SLX_POS)), *strand = INTEGER(VECTOR_ELT(result, SLX_STRAND)), *alignQuality = INTEGER(VECTOR_ELT(result, SLX_ALIGNQUAL)), *filtering = INTEGER(VECTOR_ELT(result, SLX_FILT)); SEXP contig = VECTOR_ELT(result, SLX_CONTIG), multiplexIndex = NULL; int *pairedReadNumber = NULL; if (withMultiplexIndex) multiplexIndex = VECTOR_ELT(result, SLX_MULTIPLEX); if (withPairedReadNumber) pairedReadNumber = INTEGER(VECTOR_ELT(result, SLX_PAIRID)); if (withId) machine = VECTOR_ELT(result, SLX_MACHINE); file = _fopen(fname, "rb"); while (gzgets(file, linebuf, LINEBUF_SIZE) != NULL) { if (*linebuf == *commentChar) { lineno++; continue; } /* field-ify */ int n_fields = _mark_field_0(linebuf, elt, N_FIELDS); if (n_fields != N_FIELDS) { gzclose(file); error("incorrect number of fields (%d) %s:%d", n_fields, fname, lineno); } if (withId) SET_STRING_ELT(machine, irec, mkChar(elt[0])); SET_STRING_ELT(run, irec, mkChar(elt[1])); lane[irec] = atoi(elt[2]); tile[irec] = atoi(elt[3]); x[irec] = atoi(elt[4]); y[irec] = atoi(elt[5]); if (withMultiplexIndex) { SEXP idxString = *elt[6] == '\0' ? R_BlankString : mkChar(elt[6]); SET_STRING_ELT(multiplexIndex, irec, idxString); } if (withPairedReadNumber) pairedReadNumber[irec] = atoi(elt[7]); _APPEND_XSNAP(sread, elt[8]); _APPEND_XSNAP(quality, elt[9]); SET_STRING_ELT(chromosome, irec, mkChar(elt[10])); SET_STRING_ELT(contig, irec, mkChar(elt[11])); if (*elt[12] == '\0') position[irec] = NA_INTEGER; else position[irec] = atoi(elt[12]); if (*elt[13] == '\0') strand[irec] = NA_INTEGER; else { switch (*elt[13]) { case 'F': strand[irec] = 1; break; case 'R': strand[irec] = 2; break; default: gzclose(file); error("invalid 'strand' field '%s', %s:%d", *elt[13], fname, lineno); break; } } /* 14: descriptor */ alignQuality[irec] = atoi(elt[15]); /* 16: pairedScore, 17: partnerCzome, 18: partnerContig 19: partnerOffset, 20: partnerStrand */ switch (*elt[21]) { case 'Y': filtering[irec] = 1; break; case 'N': filtering[irec] = 2; break; default: gzclose(file); error("invalid 'filtering' field '%s', %s:%d", *elt[21], fname, lineno); break; } lineno++; irec++; } gzclose(file); return irec - offset; } int _solexa_export_make_id(SEXP result) { const int *lane = INTEGER(VECTOR_ELT(result, SLX_LANE)), *tile = INTEGER(VECTOR_ELT(result, SLX_TILE)), *x = INTEGER(VECTOR_ELT(result, SLX_X)), *y = INTEGER(VECTOR_ELT(result, SLX_Y)), *pairedReadNumber = NULL; const SEXP * run = STRING_PTR(VECTOR_ELT(result, SLX_RUN)), *multiplexIndex = NULL, *machine = STRING_PTR(VECTOR_ELT(result, SLX_MACHINE)); const Rboolean withMultiplexIndex = R_NilValue != VECTOR_ELT(result, SLX_MULTIPLEX), withPairedReadNumber = R_NilValue != VECTOR_ELT(result, SLX_PAIRID); if (withMultiplexIndex) multiplexIndex = STRING_PTR(VECTOR_ELT(result, SLX_MULTIPLEX)); if (withPairedReadNumber) pairedReadNumber = INTEGER(VECTOR_ELT(result, SLX_PAIRID)); const int nrec = LENGTH(VECTOR_ELT(result, SLX_RUN)); char buf[LINEBUF_SIZE]; SET_VECTOR_ELT(result, SLX_ID, _NEW_XSNAP(nrec, "BString")); _XSnap id = VECTOR_ELT(result, SLX_ID); /* FIXME: machine */ int n = 0; for (int i = 0; i < nrec; ++i) { n = snprintf(buf, LINEBUF_SIZE, "%s_%s:%d:%d:%d:%d", CHAR(machine[i]), CHAR(run[i]), lane[i], tile[i], x[i], y[i]); if (withMultiplexIndex) n += snprintf(buf + n, LINEBUF_SIZE - n, "#%s", CHAR(multiplexIndex[i])); if (withPairedReadNumber) n += snprintf(buf + n, LINEBUF_SIZE - n, "/%d", pairedReadNumber[i]); if (n > LINEBUF_SIZE) return -1; _APPEND_XSNAP(id, buf); } _XSNAP_ELT(result, SLX_ID); return 1; } SEXP read_solexa_export(SEXP files, SEXP sep, SEXP commentChar, SEXP withFlags) { const int N_ELTS = SLX_ELEMENT_END; if (!IS_CHARACTER(files)) Rf_error("'%s' must be '%s'", "files", "character()"); if (!IS_CHARACTER(sep) || LENGTH(sep) != 1 || *(CHAR(STRING_ELT(sep, 0))) != '\t') Rf_error("'%s' must be '%s'", "sep", "\t"); /* FIXME: !nzchar(sep[1]) */ if (!IS_CHARACTER(commentChar) || LENGTH(commentChar) != 1) Rf_error("'%s' must be '%s'", "commentChar", "character(1)"); if (LENGTH(STRING_ELT(commentChar, 0)) != 1) Rf_error("'nchar(commentChar[[1]])' must be 1 but is %d", LENGTH(STRING_ELT(commentChar, 0))); if (!IS_LOGICAL(withFlags) || LENGTH(withFlags) != 3) Rf_error("'%s' must be '%s'", "withFlags", "logical(3)"); Rboolean withId = LOGICAL(withFlags)[0], withMultiplexIndex = LOGICAL(withFlags)[1], withPairedReadNumber = LOGICAL(withFlags)[2]; int nrec = _count_lines_sum(files); SEXP result = PROTECT(NEW_LIST(N_ELTS));; if (withId) SET_VECTOR_ELT(result, SLX_MACHINE, NEW_STRING(nrec)); SET_VECTOR_ELT(result, SLX_RUN, NEW_STRING(nrec)); SET_VECTOR_ELT(result, SLX_LANE, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_TILE, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_X, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_Y, NEW_INTEGER(nrec)); if (withMultiplexIndex) SET_VECTOR_ELT(result, SLX_MULTIPLEX, NEW_STRING(nrec)); if (withPairedReadNumber) SET_VECTOR_ELT(result, SLX_PAIRID, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_SREAD, _NEW_XSNAP(nrec, "DNAString")); SET_VECTOR_ELT(result, SLX_QUAL, _NEW_XSNAP(nrec, "BString")); SET_VECTOR_ELT(result, SLX_CHR, NEW_STRING(nrec)); SET_VECTOR_ELT(result, SLX_POS, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_STRAND, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_ALIGNQUAL, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_FILT, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_CONTIG, NEW_STRING(nrec)); nrec = 0; for (int i = 0; i < LENGTH(files); ++i) { R_CheckUserInterrupt(); nrec += _read_solexa_export_file(CHAR(STRING_ELT(files, i)), CHAR(STRING_ELT(commentChar, 0)), nrec, result); } _XSNAP_ELT(result, SLX_SREAD); _XSNAP_ELT(result, SLX_QUAL); SEXP strand_lvls = PROTECT(_get_strand_levels()); _as_factor_SEXP(VECTOR_ELT(result, SLX_STRAND), strand_lvls); if (withId) { int ok = _solexa_export_make_id(result); if (ok <= 0) { UNPROTECT(2); Rf_error("internal error: could not make id"); } } SEXP aln = _AlignedRead_Solexa_make(result); UNPROTECT(2); return aln; } ShortRead/src/io_bowtie.c0000644000175100017510000001241312607325164016407 0ustar00biocbuildbiocbuild#include #include "ShortRead.h" #include "call.h" /* HWI-EAS88_1:1:1:83:277 - chr1 163068612 AGAAGAATCCTTAAGGCTTGCTAGGCAGCAGTCTA 77777:::::::::::::::::::::::::::::: 0 23 */ static const char *ELT_NMS[] = { "id", "strand", "chromosome", "position", "sread", "quality", "similar", "mismatch" }; static const int N_ELTS = sizeof(ELT_NMS) / sizeof(const char *); int _read_bowtie(const char *fname, const char *commentChar, SEXP ref, int offset) { const int N_FIELDS = 8; gzFile file; char linebuf[LINEBUF_SIZE], **elt = (char **) R_alloc(N_FIELDS, sizeof(char*)); int lineno = 0, irec = offset; file = _fopen(fname, "rb"); _XSnap id = VECTOR_ELT(ref, 0), sread = VECTOR_ELT(ref, 4), quality = VECTOR_ELT(ref, 5); SEXP chromosome = VECTOR_ELT(ref, 2), mismatch = VECTOR_ELT(ref, 7); int *strand = INTEGER(VECTOR_ELT(ref, 1)), *position = INTEGER(VECTOR_ELT(ref, 3)), *similar = INTEGER(VECTOR_ELT(ref, 6)); while (gzgets(file, linebuf, LINEBUF_SIZE) != NULL) { if (*linebuf == *commentChar) { lineno++; continue; } lineno++; int n_fields = _mark_field_0(linebuf, elt, N_FIELDS); if (n_fields != N_FIELDS) { gzclose(file); error("incorrect number of fields (%d) %s:%d", n_fields, fname, lineno); } _APPEND_XSNAP(id, elt[0]); strand[irec] = _char_as_strand_int(*elt[1], fname, lineno); SET_STRING_ELT(chromosome, irec, mkChar(elt[2])); position[irec] = atoi(elt[3]) + 1; /* leftmost-aligned, 0-based */ if (strand[irec] == 2) { _reverseComplement(elt[4]); _reverse(elt[5]); } _APPEND_XSNAP(sread, elt[4]); _APPEND_XSNAP(quality, elt[5]); similar[irec] = atoi(elt[6]); /* previous: 'reserved' */ SET_STRING_ELT(mismatch, irec, mkChar(elt[7])); irec++; } gzclose(file); return irec - offset; } SEXP _AlignedRead_Bowtie_make(SEXP ref, const char *qtype) { SEXP s, t, nmspc = PROTECT(_get_namespace("ShortRead")); SEXP sfq; /* SFastqQuality by default */ NEW_CALL(s, t, qtype, nmspc, 2); CSET_CDR(t, "quality", VECTOR_ELT(ref, 5)); CEVAL_TO(s, nmspc, sfq); PROTECT(sfq); SEXP adf; NEW_CALL(s, t, ".Bowtie_AlignedDataFrame", nmspc, 3); CSET_CDR(t, "similar", VECTOR_ELT(ref, 6)); CSET_CDR(t, "mismatch", VECTOR_ELT(ref, 7)); CEVAL_TO(s, nmspc, adf); PROTECT(adf); SEXP aln; NEW_CALL(s, t, "AlignedRead", nmspc, 8); CSET_CDR(t, "id", VECTOR_ELT(ref, 0)); CSET_CDR(t, "sread", VECTOR_ELT(ref, 4)); CSET_CDR(t, "quality", sfq); CSET_CDR(t, "chromosome", VECTOR_ELT(ref, 2)); CSET_CDR(t, "position", VECTOR_ELT(ref, 3)); CSET_CDR(t, "strand", VECTOR_ELT(ref, 1)); /* alignQuality */ CSET_CDR(t, "alignData", adf); CEVAL_TO(s, nmspc, aln); UNPROTECT(3); return aln; } SEXP read_bowtie(SEXP files, SEXP qualityType, SEXP sep, SEXP commentChar) { if (!IS_CHARACTER(files)) Rf_error("'%s' must be '%s'", "files", "character()"); if (!IS_CHARACTER(sep) || LENGTH(sep) != 1 || *CHAR(STRING_ELT(sep, 0)) != '\t') Rf_error("'%s' must be '%s'", "sep", "\t"); if (!IS_CHARACTER(commentChar) || LENGTH(commentChar) != 1) Rf_error("'%s' must be '%s'", "commentChar", "character(1)"); if (LENGTH(STRING_ELT(commentChar, 0)) != 1) Rf_error("'nchar(commentChar[[1]])' must be 1 but is %d", LENGTH(STRING_ELT(commentChar, 0))); if (!IS_CHARACTER(qualityType) || LENGTH(qualityType) != 1) Rf_error("'%s' must be '%s'", "qualityType", "character(1)"); const char *qtype = CHAR(STRING_ELT(qualityType, 0)); if (strcmp(qtype, "SFastqQuality") != 0 && strcmp(qtype, "FastqQuality") != 0) Rf_error("'%s' must be '%s'", "qualityType", "SFastqQuality' or 'FastqQuality"); int nrec = _count_lines_sum(files); SEXP ref = PROTECT(NEW_LIST(N_ELTS)); SET_VECTOR_ELT(ref, 0, _NEW_XSNAP(nrec, "BString")); /* id */ SET_VECTOR_ELT(ref, 1, NEW_INTEGER(nrec)); /* strand */ SET_VECTOR_ELT(ref, 2, NEW_STRING(nrec)); /* chromosome */ SET_VECTOR_ELT(ref, 3, NEW_INTEGER(nrec)); /* position */ SET_VECTOR_ELT(ref, 4, _NEW_XSNAP(nrec, "DNAString")); /* sread */ SET_VECTOR_ELT(ref, 5, _NEW_XSNAP(nrec, "BString")); /* quality */ SET_VECTOR_ELT(ref, 6, NEW_INTEGER(nrec)); /* similar */ SET_VECTOR_ELT(ref, 7, NEW_STRING(nrec)); /* mismatch encoding */ SEXP names = PROTECT(NEW_CHARACTER(N_ELTS)); for (int i = 0; i < N_ELTS; ++i) SET_STRING_ELT(names, i, mkChar(ELT_NMS[i])); SET_ATTR(ref, R_NamesSymbol, names); UNPROTECT(1); nrec = 0; for (int i = 0; i < LENGTH(files); ++i) { R_CheckUserInterrupt(); nrec += _read_bowtie(CHAR(STRING_ELT(files, i)), CHAR(STRING_ELT(commentChar, 0)), ref, nrec); } _XSNAP_ELT(ref, 0); _XSNAP_ELT(ref, 4); _XSNAP_ELT(ref, 5); SEXP strand_lvls = PROTECT(_get_strand_levels()); _as_factor_SEXP(VECTOR_ELT(ref, 1), strand_lvls); UNPROTECT(1); SEXP aln = _AlignedRead_Bowtie_make(ref, qtype); UNPROTECT(1); return aln; } ShortRead/src/io_soap.c0000644000175100017510000001434312607325164016064 0ustar00biocbuildbiocbuild#include #include "ShortRead.h" #include "call.h" /* SIMU_0001_00000081/1 TGTACAGTATGTGAAGAGATTTGTTCTGAACCAAA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 2210 0 */ static const char *ELT_NMS[] = { "id", "sread", "quality", "nEquallyBestHits", "pairedEnd", "alignedLength", "strand", "chromosome", "position", "typeOfHit", "hitDetail" }; static const int N_ELTS = sizeof(ELT_NMS) / sizeof(const char *); int _read_soap(const char *fname, const char *csep, const char *commentChar, MARK_FIELD_FUNC * mark_func, SEXP ref, int offset) { const int N_FIELDS = N_ELTS; gzFile file; char linebuf[LINEBUF_SIZE], **elt = (char **) R_alloc(N_FIELDS, sizeof(char*)); int lineno = 0; file = _fopen(fname, "rb"); _XSnap id = VECTOR_ELT(ref, 0), sread = VECTOR_ELT(ref, 1), quality = VECTOR_ELT(ref, 2); SEXP pairedEnd = VECTOR_ELT(ref, 4), chromosome = VECTOR_ELT(ref, 7), hitDetail = VECTOR_ELT(ref, 10); int *nEquallyBestHits = INTEGER(VECTOR_ELT(ref, 3)), *alignedLength = INTEGER(VECTOR_ELT(ref, 5)), *strand = INTEGER(VECTOR_ELT(ref, 6)), *position = INTEGER(VECTOR_ELT(ref, 8)), *typeOfHit = INTEGER(VECTOR_ELT(ref, 9)); while (gzgets(file, linebuf, LINEBUF_SIZE) != NULL) { if (_linebuf_skip_p(linebuf, file, fname, lineno, commentChar)) { lineno++; continue; } /* field-ify */ elt[0] = linebuf; for (int i = 1; i < N_FIELDS; ++i) { elt[i] = (*mark_func) (elt[i - 1], csep); if (elt[i] == elt[i - 1]) error("too few fields, %s:%d", fname, lineno); } nEquallyBestHits[offset] = atoi(elt[3]); SET_STRING_ELT(pairedEnd, offset, mkChar(elt[4])); alignedLength[offset] = atoi(elt[5]); strand[offset] = _char_as_strand_int(*elt[6], fname, lineno); SET_STRING_ELT(chromosome, offset, mkChar(elt[7])); position[offset] = atoi(elt[8]); /* leftmost-aligned, 1-based */ typeOfHit[offset] = atoi(elt[9]); SET_STRING_ELT(hitDetail, offset, mkChar(elt[10])); /* 1-3: id, strand, quality */ _APPEND_XSNAP(id, elt[0]); if (strand[offset] == 2) { _reverseComplement(elt[1]); _reverse(elt[2]); } _APPEND_XSNAP(sread, elt[1]); _APPEND_XSNAP(quality, elt[2]); lineno++; offset++; } gzclose(file); return offset; } SEXP _AlignedRead_SOAP_make(SEXP ref, const char *qtype) { SEXP s, t, nmspc = PROTECT(_get_namespace("ShortRead")); SEXP sfq; NEW_CALL(s, t, qtype, nmspc, 2); CSET_CDR(t, "quality", VECTOR_ELT(ref, 2)); CEVAL_TO(s, nmspc, sfq); PROTECT(sfq); SEXP adf; NEW_CALL(s, t, ".SOAP_AlignedDataFrame", nmspc, 6); CSET_CDR(t, "nEquallyBestHits", VECTOR_ELT(ref, 3)); CSET_CDR(t, "pairedEnd", VECTOR_ELT(ref, 4)); CSET_CDR(t, "alignedLength", VECTOR_ELT(ref, 5)); CSET_CDR(t, "typeOfHit", VECTOR_ELT(ref, 9)); CSET_CDR(t, "hitDetail", VECTOR_ELT(ref, 10)); CEVAL_TO(s, nmspc, adf); PROTECT(adf); SEXP aln; NEW_CALL(s, t, "AlignedRead", nmspc, 8); CSET_CDR(t, "sread", VECTOR_ELT(ref, 1)); CSET_CDR(t, "id", VECTOR_ELT(ref, 0)); CSET_CDR(t, "quality", sfq); CSET_CDR(t, "chromosome", VECTOR_ELT(ref, 7)); CSET_CDR(t, "position", VECTOR_ELT(ref, 8)); CSET_CDR(t, "strand", VECTOR_ELT(ref, 6)); /* alignQuality */ CSET_CDR(t, "alignData", adf); CEVAL_TO(s, nmspc, aln); UNPROTECT(3); return aln; } SEXP read_soap(SEXP files, SEXP qualityType, SEXP sep, SEXP commentChar) { if (!IS_CHARACTER(files)) Rf_error("'%s' must be '%s'", "files", "character()"); if (!IS_CHARACTER(sep) || LENGTH(sep) != 1) Rf_error("'%s' must be '%s'", "sep", "character(1)"); /* FIXME: !nzchar(sep[1]) */ if (!IS_CHARACTER(commentChar) || LENGTH(commentChar) != 1) Rf_error("'%s' must be '%s'", "commentChar", "character(1)"); if (LENGTH(STRING_ELT(commentChar, 0)) != 1) Rf_error("'nchar(commentChar[[1]])' must be 1 but is %d", LENGTH(STRING_ELT(commentChar, 0))); if (!IS_CHARACTER(qualityType) || LENGTH(qualityType) != 1) Rf_error("'%s' must be '%s'", "qualityType", "character(1)"); const char *qtype = CHAR(STRING_ELT(qualityType, 0)); if (strcmp(qtype, "SFastqQuality") != 0 && strcmp(qtype, "FastqQuality") != 0) Rf_error("'%s' must be '%s'", "qualityType", "SFastqQuality' or 'FastqQuality"); int nrec = _count_lines_sum(files); SEXP ref = PROTECT(NEW_LIST(N_ELTS)); SET_VECTOR_ELT(ref, 0, _NEW_XSNAP(nrec, "BString")); SET_VECTOR_ELT(ref, 1, _NEW_XSNAP(nrec, "DNAString")); SET_VECTOR_ELT(ref, 2, _NEW_XSNAP(nrec, "BString")); SET_VECTOR_ELT(ref, 3, NEW_INTEGER(nrec)); /* nEquallyBestHits */ SET_VECTOR_ELT(ref, 4, NEW_STRING(nrec)); /* pairedEnd */ SET_VECTOR_ELT(ref, 5, NEW_INTEGER(nrec)); /* alignedLength */ SET_VECTOR_ELT(ref, 6, NEW_INTEGER(nrec)); /* strand */ SET_VECTOR_ELT(ref, 7, NEW_STRING(nrec)); /* chromosome */ SET_VECTOR_ELT(ref, 8, NEW_INTEGER(nrec)); /* position */ SET_VECTOR_ELT(ref, 9, NEW_INTEGER(nrec)); /* typeOfHit */ SET_VECTOR_ELT(ref, 10, NEW_STRING(nrec)); /* hitDetail */ SEXP names = PROTECT(NEW_CHARACTER(N_ELTS)); for (int i = 0; i < N_ELTS; ++i) SET_STRING_ELT(names, i, mkChar(ELT_NMS[i])); SET_ATTR(ref, R_NamesSymbol, names); UNPROTECT(1); const char *csep = translateChar(STRING_ELT(sep, 0)); MARK_FIELD_FUNC *sep_func; /* how to parse fields; minor efficiency */ if (csep[0] != '\0' && csep[1] == '\0') sep_func = _mark_field_1; else sep_func = _mark_field_n; nrec = 0; for (int i = 0; i < LENGTH(files); ++i) { R_CheckUserInterrupt(); nrec += _read_soap(CHAR(STRING_ELT(files, i)), csep, CHAR(STRING_ELT(commentChar, 0)), sep_func, ref, nrec); } _XSNAP_ELT(ref, 0); _XSNAP_ELT(ref, 1); _XSNAP_ELT(ref, 2); SEXP strand_lvls = PROTECT(_get_strand_levels()); _as_factor_SEXP(VECTOR_ELT(ref, 6), strand_lvls); SEXP aln = _AlignedRead_SOAP_make(ref, qtype); UNPROTECT(2); return aln; } ShortRead/src/maqmap_m.h0000644000175100017510000000677312607325164016240 0ustar00biocbuildbiocbuild/* Note: This file is based on the file maqmap.h of the source code of Maq, version 0.7.2, which is copyright (c) Li Hang, who has released Maq under GPL 2. The changes to the original allow to switch the value of MAX_READLEN, which is a preprocessor macro in heng's code, at run-time, because Maq used 64 until 0.6.x, then (unless the macro MAQ_LONGREADS is not set) the value 128. */ #ifndef MAQMAP_M_H_ #define MAQMAP_M_H_ #define MAX_READLEN_OLD 64 #define MAX_READLEN_NEW 128 #define MAX_NAMELEN 36 #define MAQMAP_FORMAT_OLD 0 #define MAQMAP_FORMAT_NEW -1 #define PAIRFLAG_FF 0x01 #define PAIRFLAG_FR 0x02 #define PAIRFLAG_RF 0x04 #define PAIRFLAG_RR 0x08 #define PAIRFLAG_PAIRED 0x10 #define PAIRFLAG_DIFFCHR 0x20 #define PAIRFLAG_NOMATCH 0x40 #define PAIRFLAG_SW 0x80 #include #include #include "const.h" /* name: read name size: the length of the read seq: read sequence (see also below) seq[MAX_READLEN-1]: single end mapping quality (equal to map_qual if !paired) map_qual: the final mapping quality alt_qual: the lower quality of the two ends (equals to map_qual if not paired) flag: status of the pair dist: offset of the mate (zero if not paired) info1: mismatches in the 24bp (higher 4 bits) and mismatches (lower 4 bits) info2: sum of errors of the best hit c[2]: count of all 0- and 1-mismatch hits on the reference */ template < int max_readlen > struct maqmap1_T { bit8_t seq[max_readlen]; /* last base is single-end mapping quality. */ bit8_t size, map_qual, info1, info2, c[2], flag, alt_qual; bit32_t seqid, pos; int dist; char name[MAX_NAMELEN]; }; template < int max_readlen > struct maqmap_T { int format, n_ref; char **ref_name; bit64_t n_mapped_reads; maqmap1_T < max_readlen > *mapped_reads; }; template < int max_readlen > inline int maqmap_read1(gzFile fp, maqmap1_T < max_readlen > *m1) { return gzread(fp, m1, sizeof(maqmap1_T < max_readlen >)); } template < int max_readlen > maqmap_T < max_readlen > *maq_new_maqmap() { maqmap_T < max_readlen > *mm = (maqmap_T < max_readlen > *)calloc(1, sizeof(maqmap_T < max_readlen >)); mm->format = MAQMAP_FORMAT_NEW; return mm; } template < int max_readlen > void maq_delete_maqmap(maqmap_T < max_readlen > *mm) { int i; if (mm == 0) return; for (i = 0; i < mm->n_ref; ++i) free(mm->ref_name[i]); free(mm->ref_name); free(mm->mapped_reads); free(mm); } template < int max_readlen > maqmap_T < max_readlen > *maqmap_read_header(gzFile fp) { maqmap_T < max_readlen > *mm; int k, len; mm = maq_new_maqmap < max_readlen > (); gzread(fp, &mm->format, sizeof(int)); if (mm->format != MAQMAP_FORMAT_NEW) { if (mm->format > 0) { maq_delete_maqmap(mm); error ("obsolete map format; use MAQ 'mapass2maq' command to convert"); } if (mm->format != MAQMAP_FORMAT_NEW) { maq_delete_maqmap(mm); error("MAQ format '%d' not supported", mm->format); } } gzread(fp, &mm->n_ref, sizeof(int)); mm->ref_name = (char **) calloc(mm->n_ref, sizeof(char *)); for (k = 0; k != mm->n_ref; ++k) { gzread(fp, &len, sizeof(int)); mm->ref_name[k] = (char *) malloc(len * sizeof(char)); gzread(fp, mm->ref_name[k], len); } /* read number of mapped reads */ gzread(fp, &mm->n_mapped_reads, sizeof(bit64_t)); return mm; } #endif ShortRead/src/readBfaToc.cc0000644000175100017510000000361712607325164016572 0ustar00biocbuildbiocbuild#include #include #include #include #include #include #include "maqmap_m.h" struct seq_meta_info { seq_meta_info( int len_, char * name_ ) : len(len_), name(name_) {}; int len; std::string name; }; extern "C" SEXP readBfaToc( SEXP bfa_filename ) { FILE * fp; int name_len, seq_ori_len, seq_len, status; char seq_name[201]; std::deque< seq_meta_info > seqs; if( (! isString(bfa_filename) ) || ( length(bfa_filename) != 1 ) ) error( "First argument invalid: should be the filename." ); fp = fopen( CHAR(STRING_ELT(bfa_filename,0)), "r" ); if( !fp ) { char buf[300]; snprintf( buf, 300, "Failed to open file '%s': %s (errno=%d)", CHAR(STRING_ELT(bfa_filename,0)), strerror(errno), errno ); error( buf ); } while( fread( &name_len, sizeof(int), 1, fp) ) { if( name_len > 200 ) Rf_error( "sequence name >200 characters; invalid BFA file?" ); status = fread( seq_name, sizeof(char), name_len, fp ); status = fread( &seq_ori_len, sizeof(int), 1, fp ); status = fread( &seq_len, sizeof(int), 1, fp ); if( ( seq_ori_len >> 5 != seq_len ) && ( seq_ori_len >> 5 != seq_len - 1) ) Rf_error( "Fields bfa.len and bfa_ori_len do not agree. This is not a " "valid BFA file." ); fseek( fp, 2 * sizeof(bit64_t) * seq_len, SEEK_CUR); seqs.push_back( seq_meta_info( seq_ori_len, seq_name ) ); } fclose( fp ); SEXP res, names; PROTECT( res = allocVector( INTSXP, seqs.size() ) ); PROTECT( names = allocVector( STRSXP, seqs.size() ) ); int i = 0; for( std::deque< seq_meta_info >::iterator a = seqs.begin(); a != seqs.end(); a++, i++ ) { INTEGER(res)[i] = a->len; SET_STRING_ELT( names, i, mkChar( a->name.c_str() ) ); } namesgets( res, names); UNPROTECT(2); return res; } ShortRead/src/read_maq_map.cc0000644000175100017510000001547612607325164017214 0ustar00biocbuildbiocbuild/* Code to read in a .map file produced by the alignment program Maq. Authr: Simon Anders, EBI, sanders@fs.tum.de */ #include #include #include #include #include #include #include "ShortRead.h" #include "maqmap_m.h" #if INT_MAX < 0x7fffffffL #error This package needs an int type with at least 32 bit. #endif template< int max_readlen > SEXP read_maq_map_B( SEXP filename, SEXP maxreads ) /* Reads in the Maq map file with the given filename. If maxreads == -1, the whole file is read, otherwise at most the specified number of reads. The function returns a list (i.e., a VECSXP) with the elements listed below in eltnames, which correspond to the columns of maq mapview. */ { gzFile mapfile; maqmap_T * mapheader; SEXP seqnames, seq, start, dir, aq, mm, mm24, errsum, nhits0, nhits1, eltnm, df, klass; char readseqbuf[ max_readlen ], fastqbuf[ max_readlen ]; CharAEAE *readid, *readseq, *fastq; int i, actnreads, j; maqmap1_T read; char enc[] = { DNAencode('A'), DNAencode('C'), DNAencode('G'), DNAencode('T'), DNAencode('N') }; static const char *eltnames[] = { "chromosome", "position", "strand", "alignQuality", "nMismatchBestHit", "nMismatchBestHit24", "mismatchQuality", "nExactMatch24", "nOneMismatch24", "readId", "readSequence", "fastqScores" }; /* Check arguments */ if( !isString(filename) || length(filename) != 1 ) error( "First argument invalid: should be the filename." ); if( !isInteger(maxreads) || length(maxreads) != 1 ) error( "Second argument invalid: should be the maximum number" "of reads, provided as integer(1)." ); /* Check that file can be opened and is a Maq map file */ mapfile = gzopen( CHAR(STRING_ELT(filename,0)), "rb" ); if( !mapfile ) { if( errno ) { error( "Failed to open file '%s': %s (errno=%d)", CHAR(STRING_ELT(filename,0)), strerror(errno), errno ); } else { error( "Failed to open file '%s':" " zlib out of memory", CHAR(STRING_ELT(filename,0))); } } gzread( mapfile, &i, sizeof(int) ); if( i != MAQMAP_FORMAT_NEW ) { gzclose( mapfile ); error( "File '%s' is not a MAQ map file", CHAR(STRING_ELT(filename,0))); } i = gzrewind( mapfile ); if (i) error("internal error: gzrewind: '%d'", i); /* Read in header and map maqfile sequence indices to veclist indices */ mapheader = maqmap_read_header( mapfile ); PROTECT( seqnames = allocVector( STRSXP, mapheader->n_ref ) ); for( i = 0; i < mapheader->n_ref; i++ ) { SET_STRING_ELT( seqnames, i, mkChar( mapheader->ref_name[i] ) ); } if( INTEGER(maxreads)[0] < 0 || INTEGER(maxreads)[0] >= (int) mapheader->n_mapped_reads ) actnreads = mapheader->n_mapped_reads; else actnreads = INTEGER(maxreads)[0]; maq_delete_maqmap(mapheader); /* Allocate memory */ PROTECT( seq = allocVector( INTSXP, actnreads ) ); PROTECT( start = allocVector( INTSXP, actnreads ) ); PROTECT( dir = allocVector( INTSXP, actnreads ) ); PROTECT( aq = allocVector( INTSXP, actnreads ) ); PROTECT( mm = allocVector( INTSXP, actnreads ) ); PROTECT( mm24 = allocVector( INTSXP, actnreads ) ); PROTECT( errsum = allocVector( INTSXP, actnreads ) ); PROTECT( nhits0 = allocVector( INTSXP, actnreads ) ); PROTECT( nhits1 = allocVector( INTSXP, actnreads ) ); readid = new_CharAEAE( actnreads, 0 ); readseq = new_CharAEAE( actnreads, 0 ); fastq = new_CharAEAE( actnreads, 0 ); for( i = 0; i < actnreads; i++ ) { /* Various checks */ if( gzeof(mapfile) ) { error( "Unexpected end of file." ); gzclose(mapfile); } maqmap_read1( mapfile, &read ); if( read.flag || read.dist ) { error( "Paired read found. This function cannot deal with paired reads (yet)." ); gzclose(mapfile); } /* Build the read sequence and the FASTQ quality string */ if( read.size > max_readlen ) error( "Read with illegal size encountered." ); for (j = 0; j < read.size; j++) { if (read.seq[j] == 0) readseqbuf[j] = enc[ 4 ]; else readseqbuf[j] = enc[ read.seq[j] >> 6 & 0x03 ]; fastqbuf[j] = ( read.seq[j] & 0x3f ) + 33; } readseqbuf[ read.size ] = 0; fastqbuf [ read.size ] = 0; /* Copy the data */ INTEGER(start)[i] = ( read.pos >> 1 ) + 1; INTEGER(dir )[i] = ( read.pos & 0x01 ) + 1; /* '+': 1, '-': 2 */ INTEGER(seq )[i] = read.seqid + 1; INTEGER(aq )[i] = read.map_qual; INTEGER(mm )[i] = read.info1 & 0x0f; INTEGER(mm24 )[i] = read.info1 >> 4; INTEGER(errsum)[i] = read.info2; INTEGER(nhits0)[i] = read.c[0]; INTEGER(nhits1)[i] = read.c[1]; append_string_to_CharAEAE( readid, read.name ); append_string_to_CharAEAE( readseq, readseqbuf ); append_string_to_CharAEAE( fastq, fastqbuf ); } /* Build the data frame */ PROTECT( df = allocVector( VECSXP, 12 ) ); SET_VECTOR_ELT( df, 0, seq ); SET_VECTOR_ELT( df, 1, start ); SET_VECTOR_ELT( df, 2, dir ); SET_VECTOR_ELT( df, 3, aq ); SET_VECTOR_ELT( df, 4, mm ); SET_VECTOR_ELT( df, 5, mm24 ); SET_VECTOR_ELT( df, 6, errsum ); SET_VECTOR_ELT( df, 7, nhits0 ); SET_VECTOR_ELT( df, 8, nhits1 ); SET_VECTOR_ELT( df, 9, new_XRawList_from_CharAEAE( "BStringSet", "BString", readid, R_NilValue ) ); SET_VECTOR_ELT( df, 10, new_XRawList_from_CharAEAE( "DNAStringSet", "DNAString", readseq, R_NilValue ) ); SET_VECTOR_ELT( df, 11, new_XRawList_from_CharAEAE( "BStringSet", "BString", fastq, R_NilValue ) ); setAttrib( seq, install( "levels" ), seqnames ); PROTECT( klass = allocVector( STRSXP, 1 ) ); SET_STRING_ELT( klass, 0, mkChar( "factor" ) ); setAttrib( seq, install( "class" ), klass ); UNPROTECT( 1 ); SEXP strand_levels = PROTECT(_get_strand_levels()); _as_factor_SEXP(dir, strand_levels); UNPROTECT( 1 ); PROTECT( eltnm = allocVector( STRSXP, 12 ) ); for( i = 0; i < 12; i++ ) SET_STRING_ELT( eltnm, i, mkChar( eltnames[i] ) ); namesgets( df, eltnm ); UNPROTECT( 12 ); return df; } extern "C" SEXP read_maq_map( SEXP filename, SEXP maxreads, SEXP maq_longreads ) { if( LOGICAL(maq_longreads)[0] ) return read_maq_map_B< MAX_READLEN_NEW >( filename, maxreads ); else return read_maq_map_B< MAX_READLEN_OLD >( filename, maxreads ); } ShortRead/src/sampler.c0000644000175100017510000004020412607325164016071 0ustar00biocbuildbiocbuild#include #include #include #include "ShortRead.h" struct bufnode { int len; Rbyte *bytes; struct bufnode *next; }; struct record { int order, length; const Rbyte *record; }; struct records { int n, n_curr, n_tot, n_added; struct record *records; }; SEXP _records_status(struct records *records, struct bufnode *bufnode) { SEXP result = PROTECT(NEW_INTEGER(5)); INTEGER(result)[0] = records->n; INTEGER(result)[1] = records->n_curr; INTEGER(result)[2] = records->n_added; INTEGER(result)[3] = records->n_tot; INTEGER(result)[4] = (NULL != bufnode) ? bufnode->len : 0; SEXP nms = PROTECT(NEW_CHARACTER(5)); SET_STRING_ELT(nms, 0, mkChar("n")); SET_STRING_ELT(nms, 1, mkChar("current")); SET_STRING_ELT(nms, 2, mkChar("added")); SET_STRING_ELT(nms, 3, mkChar("total")); SET_STRING_ELT(nms, 4, mkChar("buffer")); SET_NAMES(result, nms); UNPROTECT(2); return result; } static int _records_compare_order(const void *a, const void *b) { return ((struct record * const) a)->order - ((struct record * const) b)->order; } /* fastq */ const Rbyte *_fastq_record_end(const Rbyte * buf, const Rbyte * bufend) { int id = 1, nchr = 0; if (*buf++ != '@') Rf_error("record does not start with '@'"); while (buf != bufend && *buf++ != '\n') ; /* id 1 */ while (buf != bufend && *buf != '+') /* read */ if (*buf++ != '\n') ++nchr; if (buf != bufend && *buf == '+') id -= 1; while (buf != bufend && *buf++ != '\n') ; /* id 2 */ while (buf != bufend && nchr) /* qual */ if (*buf++ != '\n') --nchr; if (0 != id || 0 != nchr) buf = NULL; if (buf && buf != bufend && *buf++ != '\n') Rf_error("internal: buf != "); return buf; } SEXP _fastq_as_XStringSet(struct records *fastq) { static int init = 0; SEXP widths = PROTECT(NEW_LIST(2)); SET_VECTOR_ELT(widths, 0, NEW_INTEGER(fastq->n_curr)); SET_VECTOR_ELT(widths, 1, NEW_INTEGER(fastq->n_curr)); int *sread_w = INTEGER(VECTOR_ELT(widths, 0)), *id_w = INTEGER(VECTOR_ELT(widths, 1)); /* geometry */ #ifdef SUPPORT_OPENMP #pragma omp parallel for #endif for (int i = 0; i < fastq->n_curr; ++i) { const Rbyte *buf = fastq->records[i].record; const Rbyte *start; start = ++buf; /* id; skip '@' */ while (!((*buf == '\n') || (*buf == '\r'))) ++buf; id_w[i] = buf - start; while ((*buf == '\n') || (*buf == '\r')) ++buf; sread_w[i] = 0; /* read */ while (*buf != '+') { while (!((*buf == '\n') || (*buf == '\r'))) { /* strip '\n' */ sread_w[i] += 1; ++buf; } ++buf; } } /* results */ SEXP ans = PROTECT(NEW_LIST(3)); SET_VECTOR_ELT(ans, 0, alloc_XRawList("DNAStringSet", "DNAString", VECTOR_ELT(widths, 0))); SET_VECTOR_ELT(ans, 1, alloc_XRawList("BStringSet", "BString", VECTOR_ELT(widths, 0))); SET_VECTOR_ELT(ans, 2, alloc_XRawList("BStringSet", "BString", VECTOR_ELT(widths, 1))); XVectorList_holder sread = hold_XVectorList(VECTOR_ELT(ans, 0)), qual = hold_XVectorList(VECTOR_ELT(ans, 1)), id = hold_XVectorList(VECTOR_ELT(ans, 2)); if ((!init) && fastq->n_curr) { /* hack -- install symbols to avoid stack imbalance */ (void) get_elt_from_XRawList_holder(&id, 0); (void) DNAencode('A'); init = 1; } #ifdef SUPPORT_OPENMP #pragma omp parallel for #endif for (int i = 0; i < fastq->n_curr; ++i) { Chars_holder x; const Rbyte *buf = fastq->records[i].record, *bufend = buf + fastq->records[i].length, *start; char *curr; /* id */ start = ++buf; /* skip '@' */ while (!((*buf == '\n') || (*buf == '\r'))) ++buf; x = get_elt_from_XRawList_holder(&id, i); memcpy((char *) x.ptr, start, (buf - start) * sizeof(Rbyte)); /* read */ while ((*buf == '\n') || (*buf == '\r')) ++buf; curr = (char *) get_elt_from_XRawList_holder(&sread, i).ptr; while (*buf != '+') { while (!((*buf == '\n') || (*buf == '\r'))) /* strip '\n' */ *curr++ = DNAencode(*buf++); buf++; } /* second id tag */ while (!((*buf == '\n') || (*buf == '\r'))) ++buf; /* quality */ while ((*buf == '\n') || (*buf == '\r')) ++buf; /* leading '\n' */ start = buf; x = get_elt_from_XRawList_holder(&qual, i); curr = (char *) x.ptr; while (buf != bufend && curr - x.ptr != x.length) { if ((*buf != '\n') && (*buf != '\r')) *curr++ = *buf++; else buf++; } } SEXP nms = PROTECT(NEW_CHARACTER(3)); SET_STRING_ELT(nms, 0, mkChar("sread")); SET_STRING_ELT(nms, 1, mkChar("quality")); SET_STRING_ELT(nms, 2, mkChar("id")); SET_NAMES(ans, nms); UNPROTECT(3); return ans; } /* Sampler */ struct sampler { struct records *sample; struct { struct record *records; int n, n_curr; } current; struct bufnode *bufnode; /* tail end of binary stream */ }; struct sampler * _sampler_new(int n) { struct sampler *sampler = Calloc(1, struct sampler); sampler->sample = Calloc(1, struct records); sampler->sample->records = Calloc(n, struct record); sampler->sample->n = n; sampler->current.records = Calloc(n, struct record); sampler->current.n = n; sampler->bufnode = Calloc(1, struct bufnode); return sampler; } void _sampler_reset(struct sampler *sampler) { struct records *sample = sampler->sample; for (int i = 0; i < sample->n_curr; ++i) Free(sample->records[i].record); if (NULL != sampler->bufnode->bytes) Free(sampler->bufnode->bytes); sample->n_curr = sample->n_added = sample->n_tot = 0; sampler->current.n_curr = 0; } void _sampler_free(struct sampler *sampler) { struct records *sample = sampler->sample; for (int i = 0; i < sample->n_curr; ++i) Free(sample->records[i].record); if (NULL != sampler->bufnode->bytes) Free(sampler->bufnode->bytes); Free(sampler->sample->records); Free(sampler->sample); Free(sampler->current.records); Free(sampler->bufnode); Free(sampler); } void _sampler_add1(struct records *sample, const Rbyte *record, int len, int order, int idx) { /* add record to sample */ if (sample->n_curr == sample->n) Free(sample->records[idx].record); sample->records[idx].length = len; sample->records[idx].order = order; Rbyte *intern_record = Calloc(len, Rbyte); memcpy(intern_record, record, len * sizeof(Rbyte)); sample->records[idx].record = intern_record; sample->n_added += 1; sample->n_tot += 1; } int * _sampler_wout_replacement(int n, int k) { /* sample k of n without replacement */ int *idx = Calloc(n, int); for (int i = 0; i < n; ++i) idx[i] = i; for (int i = 0; i < k; ++i) { int j = (n - i) * unif_rand(); int tmp = idx[i]; idx[i] = idx[i + j]; idx[i + j] = tmp; } return idx; } void _sampler_dosample(struct sampler *sampler) { int n_curr = sampler->current.n_curr; int n_tot = n_curr + sampler->sample->n_tot; double n_choose = n_tot < sampler->sample->n ? n_tot : sampler->sample->n; int n_samp = rbinom(n_curr, n_choose / n_tot); if (0 != n_samp) { int sn_curr = sampler->sample->n_curr; int *keep = _sampler_wout_replacement(n_curr, n_samp); int *drop = _sampler_wout_replacement(sn_curr, n_samp); /* save selected reads */ for (int i = 0; i < n_samp; ++i) { struct record *r = sampler->current.records + keep[i]; _sampler_add1(sampler->sample, r->record, r->length, r->order, drop[i]); } Free(keep); Free(drop); } sampler->sample->n_tot = n_tot; sampler->current.n_curr = 0; } void _sampler_add(struct sampler *sampler, const Rbyte *record, int len) { struct records *sample = sampler->sample; if (sample->n_curr < sample->n) { /* sampling not yet needed */ _sampler_add1(sample, record, len, sample->n_curr, sample->n_curr); sample->n_curr++; } else { /* sample */ struct record *r = sampler->current.records + sampler->current.n_curr; r->record = record; r->length = len; r->order = sample->n_tot + sampler->current.n_curr; if (sampler->current.n == ++sampler->current.n_curr) _sampler_dosample(sampler); } } void _sampler_order(struct records *sample) { qsort(sample->records, sample->n_curr, sizeof(struct record), _records_compare_order); } void _sampler_scratch_set(struct sampler *sampler, const Rbyte *record, int len) { if (NULL != sampler->bufnode->bytes) Free(sampler->bufnode->bytes); if (NULL != record) { Rbyte *bytes = Calloc(len, Rbyte); memcpy(bytes, record, len * sizeof(Rbyte)); sampler->bufnode->bytes = bytes; } sampler->bufnode->len = len; } /* R implementation -- FastqSampler */ #define SAMPLER(s) ((struct sampler *) R_ExternalPtrAddr(s)) void _sampler_finalize(SEXP s) { struct sampler *sampler = SAMPLER(s); if (!sampler) return; _sampler_free(sampler); R_ClearExternalPtr(s); } SEXP sampler_new(SEXP n) { struct sampler *sampler = _sampler_new(INTEGER(n)[0]); SEXP s = PROTECT(R_MakeExternalPtr(sampler, PROTECT(mkString("sampler")), R_NilValue)); R_RegisterCFinalizerEx(s, _sampler_finalize, TRUE); UNPROTECT(2); return s; } SEXP sampler_add(SEXP s, SEXP bin) { /* create a buffer with both scratch and new data */ struct sampler *sampler = SAMPLER(s); struct bufnode *scratch = sampler->bufnode; if (scratch->bytes) { int len = Rf_length(bin), buflen = scratch->len + len; Rbyte *buf = Calloc(buflen, Rbyte), *obuf = scratch->bytes; memcpy(buf, scratch->bytes, scratch->len * sizeof(Rbyte)); Free(obuf); memcpy(buf + scratch->len, RAW(bin), len * sizeof(Rbyte)); scratch->bytes = buf; scratch->len = buflen; } else { int buflen = Rf_length(bin); Rbyte *buf = Calloc(buflen, Rbyte); memcpy(buf, RAW(bin), buflen * sizeof(Rbyte)); scratch->bytes = buf; scratch->len = buflen; } /* parse the buffer */ const Rbyte *buf = scratch->bytes, *bufend = buf + scratch->len; GetRNGstate(); while (buf < bufend) { while (buf < bufend && *buf == '\n') ++buf; const Rbyte *prev = buf; if (NULL == (buf = _fastq_record_end(buf, bufend))) { buf = prev; break; } _sampler_add(sampler, prev, buf - prev); } _sampler_dosample(sampler); PutRNGstate(); if (bufend - buf) { int len = bufend - buf; Rbyte *tail = Calloc(len, Rbyte); memcpy(tail, buf, len * sizeof(Rbyte)); Free(scratch->bytes); scratch->bytes = tail; scratch->len = len; } else { scratch->len = 0; Free(scratch->bytes); } return s; } SEXP sampler_status(SEXP s) { struct sampler *sampler = SAMPLER(s); return _records_status(sampler->sample, sampler->bufnode); } SEXP sampler_as_XStringSet(SEXP s, SEXP ordered) { struct sampler *sampler = SAMPLER(s); if (TRUE == LOGICAL(ordered)[0]) _sampler_order(sampler->sample); SEXP result = _fastq_as_XStringSet(sampler->sample); _sampler_scratch_set(sampler, NULL, 0); _sampler_reset(sampler); return result; } /* Streamer */ struct streamer { struct records *stream; struct bufnode *bufnode; }; struct streamer * _streamer_new(int n) { struct streamer *streamer = Calloc(1, struct streamer); streamer->stream = Calloc(1, struct records); streamer->stream->records = Calloc(n, struct record); streamer->stream->n = n; return streamer; } void _streamer_reset(struct streamer *streamer) { streamer->stream->n_curr = 0; struct bufnode *bufnode = streamer->bufnode, *prev; if (NULL != bufnode) { bufnode = bufnode->next; while (NULL != bufnode) { prev = bufnode; bufnode = prev->next; Free(prev->bytes); Free(prev); } streamer->bufnode->next = NULL; } } void _streamer_free(struct streamer *streamer) { struct bufnode *curr, *next = streamer->bufnode; while (next) { curr = next; next = curr->next; Free(curr->bytes); Free(curr); } Free(streamer->stream->records); Free(streamer->stream); Free(streamer); } void _streamer_add(struct records *stream, const Rbyte *record, int len) { stream->records[stream->n_curr].length = len; stream->records[stream->n_curr].record = record; stream->n_curr += 1; stream->n_added += 1; } #define STREAMER(s) ((struct streamer *) R_ExternalPtrAddr(s)) void _streamer_finalize(SEXP s) { struct streamer *streamer = STREAMER(s); if (!streamer) return; _streamer_free(streamer); R_ClearExternalPtr(s); } SEXP streamer_new(SEXP n) { struct streamer *streamer = _streamer_new(INTEGER(n)[0]); SEXP s = PROTECT(R_MakeExternalPtr(streamer, PROTECT(mkString("streamer")), R_NilValue)); R_RegisterCFinalizerEx(s, _streamer_finalize, TRUE); UNPROTECT(2); return s; } SEXP streamer_add(SEXP s, SEXP bin, SEXP skipadd) { struct streamer *streamer = STREAMER(s); int len = Rf_length(bin); int skip = INTEGER(skipadd)[0], add = INTEGER(skipadd)[1]; /* start with tail of previous bin */ struct bufnode *scratch = streamer->bufnode; if (NULL == scratch) { /* first record */ scratch = streamer->bufnode = Calloc(1, struct bufnode); } if (NULL == scratch->bytes) { /* nothing 'extra' from previous bin */ scratch->bytes = Calloc(len, Rbyte); scratch->len = len; memcpy(scratch->bytes, RAW(bin), len * sizeof(Rbyte)); } else { /* scratch contains tail of prev. bin */ int buflen = scratch->len; Rbyte *bytes = Calloc(buflen + len, Rbyte); memcpy(bytes, scratch->bytes, buflen * sizeof(Rbyte)); memcpy(bytes + buflen, RAW(bin), len * sizeof(Rbyte)); Free(scratch->bytes); scratch->bytes = bytes; scratch->len = buflen + len; } /* find record starts and lengths */ const Rbyte *buf = scratch->bytes, *bufend = buf + scratch->len; struct records *stream = streamer->stream; while (add > stream->n_curr && buf < bufend) { while (buf < bufend && *buf == '\n') ++buf; const Rbyte *prev = buf; if (NULL == (buf = _fastq_record_end(buf, bufend))) { buf = prev; break; } stream->n_tot += 1; if (skip == 0) _streamer_add(stream, prev, buf - prev); else skip -= 1; } /* capture tail of bin */ if (NULL != scratch->bytes) { struct bufnode *next = scratch; scratch = streamer->bufnode = Calloc(1, struct bufnode); scratch->next = next; } if (bufend - buf) { int len = bufend - buf; Rbyte *tail = Calloc(len, Rbyte); memcpy(tail, buf, len * sizeof(Rbyte)); scratch->bytes = tail; scratch->len = len; } return s; } SEXP streamer_status(SEXP s) { struct streamer *streamer = STREAMER(s); return _records_status(streamer->stream, streamer->bufnode); } SEXP streamer_as_XStringSet(SEXP s) { struct streamer *streamer = STREAMER(s); struct records *stream = streamer->stream; SEXP result = _fastq_as_XStringSet(stream); _streamer_reset(streamer); return result; } ShortRead/src/trim.c0000644000175100017510000001257712607325164015415 0ustar00biocbuildbiocbuild#include "trim.h" #include "IRanges_interface.h" #include "Biostrings_interface.h" #define MIN(a,b) ((a) > (b) ? (b) : (a)) #define MAX(a,b) ((a) > (b) ? (a) : (b)) SEXP trim_tailw(SEXP quality, SEXP k, SEXP a_map, SEXP width) { int map[256]; const XStringSet_holder holder = hold_XStringSet(quality); const int len = get_XStringSet_length(quality); const int kmax = INTEGER(k)[0], wd = INTEGER(width)[0]; SEXP end = PROTECT(NEW_INTEGER(len)); int *endp = INTEGER(end); int i, j; for (j = 0; j < Rf_length(a_map); ++j) { const char c = CHAR(STRING_ELT(GET_NAMES(a_map), j))[0]; map[(int) c] = INTEGER(a_map)[j]; } for (i = 0; i < len; ++i) { const Chars_holder seq = get_elt_from_XStringSet_holder(&holder, i); if (0 == seq.length) { endp[i] = 0; continue; } int n = (wd + 1) * map[(int) seq.ptr[0]]; for (j = 1; j <= wd; ++j) n += map[(int) seq.ptr[MIN(seq.length - 1, j)]]; for (j = 0; j < seq.length; ++j) { const int wstart = MAX(0, j - wd); const int wend = MIN(seq.length - 1, j + wd); n += map[(int) seq.ptr[wend]] - map[(int) seq.ptr[wstart]]; if (kmax <= n) break; } endp[i] = j; } UNPROTECT(1); return end; } SEXP trim_tails(SEXP quality, SEXP k, SEXP a_map, SEXP successive) { static int init = 0; SEXP end; int map[256]; const XStringSet_holder holder = hold_XStringSet(quality); const int len = get_XStringSet_length(quality); int i, j, *endp; end = PROTECT(NEW_INTEGER(len)); endp = INTEGER(end); for (j = 0; j < Rf_length(a_map); ++j) { const char c = CHAR(STRING_ELT(GET_NAMES(a_map), j))[0]; map[(int) c] = INTEGER(a_map)[j]; } if ((!init) && len) { /* hack -- install symbols to avoid stack imbalance */ (void) get_elt_from_XStringSet_holder(&holder, 0); init = 1; } const int kmax = INTEGER(k)[0]; if (!LOGICAL(successive)[0]) { #ifdef SUPPORT_OPENMP #pragma omp parallel for private(j) #endif for (i = 0; i < len; ++i) { const Chars_holder seq = get_elt_from_XStringSet_holder(&holder, i); int n = 0; for (j = 0; j < seq.length; ++j) { n += map[(int) seq.ptr[j]]; if (kmax <= n) break; } endp[i] = j; } } else { const int nbuf = INTEGER(k)[0]; int *kbuf = (int *) R_alloc(sizeof(int), nbuf), ibuf; for (i = 0; i < len; ++i) { const Chars_holder seq = get_elt_from_XStringSet_holder(&holder, i); int n = 0; for (ibuf = 0; ibuf < nbuf; ++ibuf) kbuf[ibuf] = 0; int m; for (j = 0; j < seq.length; ++j) { m = map[(int) seq.ptr[j]]; n += m - kbuf[j % nbuf]; if (kmax <= n) break; kbuf[j % nbuf] = m; } endp[i] = j == seq.length ? j : j - nbuf + 1L; } } UNPROTECT(1); return end; } SEXP trim_ends(SEXP quality, SEXP a_map, SEXP left, SEXP right) { static int init = 0; SEXP bounds; const int *const map = LOGICAL(a_map); const XStringSet_holder holder = hold_XStringSet(quality); const int len = get_XStringSet_length(quality); int i, j, *startp, *endp; bounds = PROTECT(NEW_LIST(2)); SET_VECTOR_ELT(bounds, 0, NEW_INTEGER(len)); SET_VECTOR_ELT(bounds, 1, NEW_INTEGER(len)); SEXP nm = PROTECT(NEW_CHARACTER(2)); SET_STRING_ELT(nm, 0, mkChar("start")); SET_STRING_ELT(nm, 1, mkChar("end")); SET_NAMES(bounds, nm); UNPROTECT(1); startp = INTEGER(VECTOR_ELT(bounds, 0)); endp = INTEGER(VECTOR_ELT(bounds, 1)); if ((!init) && len) { /* hack -- install symbols to avoid stack imbalance */ (void) get_elt_from_XStringSet_holder(&holder, 0); init = 1; } if (LOGICAL(left)[0]) { #ifdef SUPPORT_OPENMP #pragma omp parallel for private(j) #endif for (i = 0; i < len; ++i) { const Chars_holder seq = get_elt_from_XStringSet_holder(&holder, i); for (j = 0; j < seq.length; ++j) { if (0 == map[(int) seq.ptr[j]]) break; } startp[i] = j + 1L; } } else { for (i = 0; i < len; ++i) startp[i] = 1; } if (LOGICAL(right)[0]) { #ifdef SUPPORT_OPENMP #pragma omp parallel for private(j) #endif for (i = 0; i < len; ++i) { const Chars_holder seq = get_elt_from_XStringSet_holder(&holder, i); for (j = seq.length - 1; j >= 0; --j) { if (0 == map[(int) seq.ptr[j]]) break; } endp[i] = j + 1L; } } else { for (i = 0; i < len; ++i) { const Chars_holder seq = get_elt_from_XStringSet_holder(&holder, i); endp[i] = seq.length; } } #ifdef SUPPORT_OPENMP #pragma omp parallel for private(j) #endif for (i = 0; i < len; ++i) { const Chars_holder seq = get_elt_from_XStringSet_holder(&holder, i); if (seq.length + 1 == startp[i]) { endp[i] = 0; startp[i] = 1; } else if (0 == endp[i]) { startp[i] = 1; } } UNPROTECT(1); return bounds; } ShortRead/src/trim.h0000644000175100017510000000040412607325164015404 0ustar00biocbuildbiocbuild#ifndef TRIM_H #define TRIM_H #include SEXP trim_tails(SEXP quality, SEXP k, SEXP a_map, SEXP successive); SEXP trim_tailw(SEXP quality, SEXP k, SEXP a_map, SEXP winsize); SEXP trim_ends(SEXP quality, SEXP a_map, SEXP left, SEXP right); #endif ShortRead/src/util.c0000644000175100017510000002237412607325164015413 0ustar00biocbuildbiocbuild#include /* R_CheckUserInterrupt */ #include /* isspace */ #include "ShortRead.h" unsigned char _bDecode(char); unsigned char _dnaDecode(char); unsigned char _rnaDecode(char); /* * Encode / decode XString wrappers */ char _bEncode(char c) { return c; } #define _dnaEncode DNAencode; #define _rnaEncode RNAencode; unsigned char _bDecode(char c) { return (unsigned char) c; } unsigned char _dnaDecode(char c) { return (unsigned char) DNAdecode(c); } unsigned char _rnaDecode(char c) { return (unsigned char) RNAdecode(c); } DECODE_FUNC decoder(const char *base) { DECODE_FUNC decode = NULL; if (strcmp(base, "DNAString") == 0) { decode = _dnaDecode; } else if (strcmp(base, "RNAString") == 0) { decode = _rnaDecode; } else if (strcmp(base, "BString") == 0) { decode = _bDecode; } else if (strcmp(base, "AAString") == 0) { decode = _bDecode; } else { Rf_error("unknown class '%s'", base); } return decode; } ENCODE_FUNC encoder(const char *base) { ENCODE_FUNC encode = NULL; if (strcmp(base, "DNAString") == 0) { encode = _dnaEncode; } else if (strcmp(base, "RNAString") == 0) { encode = _rnaEncode; } else if (strcmp(base, "BString") == 0) { encode = _bEncode; } else if (strcmp(base, "AAString") == 0) { encode = _bEncode; } else { Rf_error("unknown class '%s'", base); } return encode; } SEXP _get_namespace(const char *pkg) { SEXP fun = PROTECT(findFun(install("getNamespace"), R_GlobalEnv)); SEXP nmspc = PROTECT(mkString(pkg)); SEXP lng2 = PROTECT(lang2(fun, nmspc)); nmspc = eval(lng2, R_GlobalEnv); UNPROTECT(3); return nmspc; } SEXP _get_strand_levels() { SEXP nmspc = PROTECT(_get_namespace("ShortRead")); SEXP ans = eval(findVar(install(".STRAND_LEVELS"), nmspc), nmspc); UNPROTECT(1); return ans; } int _char_as_strand_int(const char c, const char *fname, const int lineno) { int strand = 0; if (c == '\0') strand = NA_INTEGER; else { switch (c) { case '+': strand = 1; break; case '-': strand = 2; break; default: error("invalid 'strand' field '%s', %s:%d", &c, fname, lineno); break; } } return strand; } /* * apply function 'with' to object 'from' in environment 'rho', e.g., * becuase 'from' is an object and 'with' an accessor. */ SEXP _get_SEXP(SEXP from, SEXP rho, const char *with) { SEXP fun = PROTECT(findFun(install(with), rho)); SEXP lng2 = PROTECT(lang2(fun, from)); SEXP res = eval(lng2, rho); UNPROTECT(2); return res; } /* * populate elt with pointers into tab-delimited strings in ptr */ int _mark_field_0(char *ptr, char **elt, const int n_fields) { elt[0] = ptr; int i = 0; for (; *ptr != '\0'; ++ptr) if (*ptr == '\t') { if (++i == n_fields) break; elt[i] = ptr + 1; *ptr = '\0'; } if (*(ptr - 1) == '\n') /* trailing newline? */ *(ptr - 1) = '\0'; return i + 1; } /* * parse lines into fields. * * string is parsed until a character in delim is found, or end of * string reached. * * return value is pointer to the start of the next field, or NULL if * no more fields. */ char *_mark_field_1(char *curr, const char *delim) { char *c = curr; while (*c != '\0' && *c != *delim) c++; if (*c != '\0') /* i.e., delim */ *c++ = '\0'; return c; } char *_mark_field_n(char *curr, const char *delim) { const char *d = NULL; while (*curr != '\0' && *curr != '\n') { d = delim; while (*d != '\0' && *d != *curr) ++d; if (*d != '\0') *curr = '\0'; else ++curr; } if (*curr == '\n') { *curr = '\0'; return NULL; } return ((d == NULL) || (*d == '\0')) ? NULL : curr + 1; } SEXP _mark_field_test(SEXP filename, SEXP delimiters, SEXP dim) { if (!IS_CHARACTER(filename) || LENGTH(filename) != 1) error("'%s' must be '%s'", "filename", "character(1)"); if (!IS_CHARACTER(delimiters) || LENGTH(delimiters) != 1) error("'%s' must be '%s'", "delimiters", "character(1)"); if (!IS_INTEGER(dim) || LENGTH(dim) != 2) error("'%s' must be '%s'", "dim", "integer(2)"); SEXP ans = PROTECT(NEW_LIST(INTEGER(dim)[0])); int i, j; for (i = 0; i < INTEGER(dim)[0]; ++i) SET_VECTOR_ELT(ans, i, NEW_CHARACTER(INTEGER(dim)[1])); #define LINEBUF_SIZE 1024 FILE *file; char linebuf[LINEBUF_SIZE]; if ((file = fopen(CHAR(STRING_ELT(filename, 0)), "rb")) == NULL) error("cannot open file '%s'", CHAR(STRING_ELT(filename, 0))); const char *delim = CHAR(STRING_ELT(delimiters, 0)); for (i = 0; i < INTEGER(dim)[0]; ++i) { if (fgets(linebuf, LINEBUF_SIZE, file) == NULL) error("unexpected end-of-file"); j = 0; char *curr = linebuf, *next; while (curr != NULL) { if (j >= INTEGER(dim)[1]) error("too many fields"); next = _mark_field_n(curr, delim); SET_STRING_ELT(VECTOR_ELT(ans, i), j, mkChar(curr)); j++; curr = next; } } fclose(file); #undef LINEBUF_SIZE UNPROTECT(1); return ans; } const int LINEBUF_SIZE = 200001; /* * open and check file; signal error */ gzFile _fopen(const char *fname, const char *mode) { gzFile file = gzopen(fname, mode); if (file == NULL) error("cannot open file %s", fname); return file; } /* * trim & check linebuf, return 0 if processing should continue */ int _linebuf_skip_p(char *linebuf, gzFile file, const char *fname, int lineno, const char *commentChar) { int nchar_in_buf; nchar_in_buf = _rtrim(linebuf); if (nchar_in_buf >= LINEBUF_SIZE - 1) { // should never be > gzclose(file); error("line too long %s:%d", fname, lineno); } else if (nchar_in_buf == 0) { gzclose(file); error("unexpected empty line %s:%d", fname, lineno); } return *linebuf == *commentChar; } /* * Return the number of chars that remain in the buffer after we've removed * the right spaces ('\n', '\r', '\t', ' ', etc...) */ int _rtrim(char *linebuf) { int i; i = strlen(linebuf) - 1; while (i >= 0 && isspace(linebuf[i])) i--; linebuf[++i] = 0; return i; } /* * Solexa sometimes encodes an uncalled base as '.', but the * Biostrings standard is '-'. Convert a null-terminated character * string in-place. */ void _solexa_to_IUPAC(char *p) { while ((p = strchr(p, '.')) != NULL) *p = '-'; } void _reverse(char *linebuf) { size_t len = strlen(linebuf); int i; char tmp; for (i = 0; i < floor(len / 2); ++i) { tmp = linebuf[len - i - 1]; linebuf[len - i - 1] = linebuf[i]; linebuf[i] = tmp; } } void _reverseComplement(char *linebuf) { static const int MAX_MAP = 256; static char map[256]; static int init = 0; if (init == 0) { init = 1; for (int i = 0; i < MAX_MAP; ++i) map[i] = (char) i; map['A'] = 'T'; map['C'] = 'G'; map['G'] = 'C'; map['T'] = 'A'; map['a'] = 't'; map['c'] = 'g'; map['g'] = 'c'; map['t'] = 'a'; } _reverse(linebuf); for (unsigned int i = 0; i < strlen(linebuf); ++i) linebuf[i] = map[(int) linebuf[i]]; } /* * Chenge vector class and attribute to represent factor */ void _as_factor_SEXP(SEXP vec, SEXP lvls) { SEXP cls = PROTECT(NEW_CHARACTER(1)); SET_STRING_ELT(cls, 0, mkChar("factor")); SET_CLASS(vec, cls); SET_ATTR(vec, install("levels"), lvls); UNPROTECT(1); } void _as_factor(SEXP vec, const char **levels, const int n_lvls) { SEXP lvls = PROTECT(NEW_CHARACTER(n_lvls)); int i; for (i = 0; i < n_lvls; ++i) SET_STRING_ELT(lvls, i, mkChar(levels[i])); _as_factor_SEXP(vec, lvls); UNPROTECT(1); } /* * Count the number of lines ('\n') in a file. * * file: an open file stream at position 0 * */ static int _count_lines(gzFile file) { const int LINEBUF_SIZE = 20001; size_t bytes_read; char *buf = (char *) R_alloc(LINEBUF_SIZE + 1, sizeof(char)); int lines = 0; while ((bytes_read = gzread(file, buf, LINEBUF_SIZE)) > 0) { char *p = buf; while ((p = memchr(p, '\n', (buf + bytes_read) - p))) { ++p; ++lines; } } return lines; } int _count_lines_sum(SEXP files) { SEXP nlines = count_lines(files); int i, nrec = 0; for (i = 0; i < LENGTH(files); ++i) nrec += INTEGER(nlines)[i]; return nrec; } SEXP count_lines(SEXP files) { int i, nfile; const char *filepath; gzFile file; SEXP ans = R_NilValue; if (!IS_CHARACTER(files)) error("'files' must be character()"); nfile = LENGTH(files); PROTECT(ans = NEW_INTEGER(nfile)); for (i = 0; i < nfile; ++i) { R_CheckUserInterrupt(); filepath = translateChar(STRING_ELT(files, i)); file = _fopen(filepath, "rb"); INTEGER(ans)[i] = _count_lines(file); gzclose(file); } UNPROTECT(1); return ans; } ShortRead/src/xsnap.c0000644000175100017510000002067112607325164015565 0ustar00biocbuildbiocbuild/* * An _XSNAP is a SEXP that contains sufficient information to create * (`snap') an XStringSet object from its content. It is allocated * once to an initial size, and grows as needed. Any `extra' * allocation is recovered. * * Basic usage is * * SEXP lst = PROTECT(NEW_LIST(4)); * SET_VECTOR_ELT(lst, 0, _NEW_XSNAP(final_length, "DNAString")); * _APPEND_XSNAP(VECTOR_ELT(lst, 0), "ACTAGAC"); * SEXP xStringSet = PROTECT(_XSNAP_ELT(lst, 0)); * UNPROTECT(2); * */ #include "ShortRead.h" SEXP _to_XStringSet(SEXP seq, SEXP start, SEXP width, const char *baseclass); const char *_get_lookup(const char *baseclass); static const int _BUFFERNODE_SIZE = 250000000; /* _Buffer, _BufferNode: linked list of XString data chunks */ struct _Buffer { char *baseclass; int *offset, i_offset; struct _BufferNode *root, *curr; }; struct _BufferNode { int n; /* number of entries */ int buf_size; char *buf, *curr; /* linked list */ struct _BufferNode *next; }; /* _BufferNode implementation */ struct _BufferNode *_BufferNode_new() { struct _BufferNode *node = Calloc(1, struct _BufferNode); node->curr = node->buf = Calloc(_BUFFERNODE_SIZE, char); node->n = 0; node->buf_size = _BUFFERNODE_SIZE; node->next = NULL; return node; } void _BufferNode_free(struct _BufferNode *node) { Free(node->buf); Free(node); } void _BufferNode_encode(struct _BufferNode *node, const char *lkup) { for (char *buf = node->buf; buf < node->curr; ++buf) { const char c = lkup[(int) *buf]; if (c == 0) Rf_error("invalid character '%c'", c); *buf = c; } } int _BufferNode_append(struct _BufferNode *node, const char *s, int w) { int offset = node->curr - node->buf; if (offset + w >= node->buf_size) return -1; memcpy(node->curr, s, w); node->curr += w; node->n += 1; return offset; } SEXP _BufferNode_snap(struct _BufferNode * node, const int *offset, const char *baseclass) { const int n_raw = node->curr - node->buf; SEXP seq = PROTECT(NEW_RAW(n_raw)), start = PROTECT(NEW_INTEGER(node->n)), width = PROTECT(NEW_INTEGER(node->n)); memcpy(RAW(seq), node->buf, n_raw); for (int i = 0; i < node->n; ++i) INTEGER(start)[i] = offset[i] + 1; for (int i = 0; i < node->n - 1; ++i) INTEGER(width)[i] = offset[i + 1] - offset[i]; if (node->n > 0) INTEGER(width)[node->n - 1] = node->curr - (node->buf + offset[node->n - 1]); SEXP xstringset = _to_XStringSet(seq, start, width, baseclass); UNPROTECT(3); return xstringset; } /* _Buffer implementation */ struct _Buffer *_Buffer_new(int n_offsets, const char *baseclass) { struct _Buffer *buffer = Calloc(1, struct _Buffer); buffer->baseclass = Calloc(strlen(baseclass) + 1, char); buffer->offset = Calloc(n_offsets, int); buffer->i_offset = 0; strcpy(buffer->baseclass, baseclass); buffer->root = buffer->curr = _BufferNode_new(); return buffer; } void _Buffer_free(struct _Buffer *buf) { struct _BufferNode *curr = buf->root; while (curr != NULL) { struct _BufferNode *tmp = curr; curr = curr->next; _BufferNode_free(tmp); } Free(buf->offset); Free(buf->baseclass); Free(buf); } void _Buffer_append(struct _Buffer *buf, const char *s) { int w = strlen(s); struct _BufferNode *curr = buf->curr; int i; if ((i = _BufferNode_append(curr, s, w)) < 0) { curr = buf->curr = curr->next = _BufferNode_new(); i = _BufferNode_append(curr, s, w); if (i < 0) Rf_error("ShortRead internal: _BufferNode too small"); } buf->offset[buf->i_offset++] = i; } void _Buffer_encode(struct _Buffer *buf) { const char *lkup = _get_lookup(buf->baseclass); struct _BufferNode *curr; for (curr = buf->root; curr != NULL; curr = curr->next) _BufferNode_encode(curr, lkup); } SEXP _Buffer_snap(struct _Buffer *buf) { int n_buf = 0, n_off = 0; struct _BufferNode *curr, *tmp; for (curr = buf->root; curr != NULL; curr = curr->next) ++n_buf; SEXP xstringsets = PROTECT(NEW_LIST(n_buf)); curr = buf->root; for (int i = 0; i < n_buf; ++i) { SEXP xs = _BufferNode_snap(curr, buf->offset + n_off, buf->baseclass); SET_VECTOR_ELT(xstringsets, i, xs); n_off += curr->n; tmp = curr; curr = curr->next; _BufferNode_free(tmp); } buf->curr = buf->root = NULL; UNPROTECT(1); return xstringsets; } /* Wrap _Buffer in external pointer */ void _xsnap_finalizer(SEXP xsnap) { struct _Buffer *buffer = R_ExternalPtrAddr(xsnap); if (!buffer) return; _Buffer_free(buffer); R_ClearExternalPtr(xsnap); } _XSnap _NEW_XSNAP(int n_elt, const char *baseclass) { struct _Buffer *buffer = _Buffer_new(n_elt, baseclass); SEXP xsnap = PROTECT(R_MakeExternalPtr(buffer, PROTECT(mkString("XSnap")), R_NilValue)); R_RegisterCFinalizerEx(xsnap, _xsnap_finalizer, TRUE); UNPROTECT(2); return xsnap; } void _APPEND_XSNAP(_XSnap snap, const char *str) { _Buffer_append(R_ExternalPtrAddr(snap), str); } SEXP _to_XStringSet(SEXP seq, SEXP start, SEXP width, const char *baseclass) { char classname[40]; /* longest string should be "DNAStringSet" */ int res = snprintf(classname, sizeof(classname), "%sSet", baseclass); if (res < 0 || ((unsigned int) res) >= sizeof(classname)) error("ShortRead internal error in _to_XStringSet(): " "'classname' buffer too small or other error"); SEXP irange = PROTECT(new_IRanges("IRanges", start, width, R_NilValue)); SEXP xstringset = new_XRawList_from_tag(classname, baseclass, seq, irange); UNPROTECT(1); return xstringset; } const char *_get_lookup(const char *baseclass) { ENCODE_FUNC encode = encoder(baseclass); SEXP nmspc = PROTECT(_get_namespace("ShortRead")); SEXP lng1 = PROTECT(lang1(install(baseclass))); SEXP cls = PROTECT(eval(lng1, nmspc)); SEXP lng2 = PROTECT(lang2(install("alphabet"), cls)); SEXP alf = PROTECT(eval(lng2, nmspc)); char *lkup = (char *) R_alloc(256, sizeof(char)); int i; if (alf == R_NilValue) { for (i = 0; i < 256; ++i) lkup[i] = (char) i; } else { for (i = 0; i < 256; ++i) lkup[i] = 0; for (i = 0; i < LENGTH(alf); ++i) { char c = CHAR(STRING_ELT(alf, i))[0]; lkup[(int) c] = encode(c); } lng2 = PROTECT(lang2(install("tolower"), alf)); alf = PROTECT(eval(lng2, nmspc)); for (i = 0; i < LENGTH(alf); ++i) { char c = CHAR(STRING_ELT(alf, i))[0]; lkup[(int) c] = encode(c); } UNPROTECT(2); } UNPROTECT(5); return lkup; } SEXP _get_appender(const char *baseclass) { char *class = (char *) R_alloc(strlen(baseclass) + 4, sizeof(char)); sprintf(class, "%sSet", baseclass); SEXP cls = PROTECT(mkString(class)); SEXP lng3 = PROTECT(lang3(install("selectMethod"), install("c"), cls)); SEXP nmspc = PROTECT(_get_namespace("ShortRead")); SEXP appender = eval(lng3, nmspc); UNPROTECT(3); return appender; } SEXP _XSnap_to_XStringSet(_XSnap snap) { struct _Buffer *buffer = (struct _Buffer *) R_ExternalPtrAddr(snap); _Buffer_encode(buffer); SEXP xstringset = PROTECT(_Buffer_snap(buffer)); /* concatenate */ SEXP appender = PROTECT(_get_appender(buffer->baseclass)); SEXP nmspc = PROTECT(_get_namespace("ShortRead")); int n = LENGTH(xstringset); while (n > 1) { SEXP res; int i; for (i = 0; i < n; i += 2) { if (i != n - 1) { SEXP lng3 = PROTECT(lang3(appender, VECTOR_ELT(xstringset, i), VECTOR_ELT(xstringset, i + 1))); res = eval(lng3, nmspc); SET_VECTOR_ELT(xstringset, i + 1, R_NilValue); UNPROTECT(1); } else { res = VECTOR_ELT(xstringset, i); } SET_VECTOR_ELT(xstringset, i, R_NilValue); SET_VECTOR_ELT(xstringset, i / 2, res); } n = i / 2; } UNPROTECT(3); return VECTOR_ELT(xstringset, 0); } void _XSNAP_ELT(SEXP x, int elt) { SEXP xstringset = PROTECT(_XSnap_to_XStringSet(VECTOR_ELT(x, elt))); SET_VECTOR_ELT(x, elt, xstringset); UNPROTECT(1); } ShortRead/tests/0000755000175100017510000000000012607265053014635 5ustar00biocbuildbiocbuildShortRead/tests/ShortRead_unit_tests.R0000644000175100017510000000005012607265053021127 0ustar00biocbuildbiocbuildBiocGenerics:::testPackage("ShortRead") ShortRead/vignettes/0000755000175100017510000000000012607325164015503 5ustar00biocbuildbiocbuildShortRead/vignettes/Overview.Rnw0000644000175100017510000003641312607265053020010 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{An introduction to ShortRead} %\VignetteDepends{BiocStyle} %\VignetteKeywords{Short read, I/0, quality assessment} %\VignettePackage{ShortRead} \documentclass[]{article} <>= BiocStyle::latex() @ \newcommand{\ShortRead}{\Biocpkg{ShortRead}} \title{An Introduction to \Rpackage{ShortRead}} \author{Martin Morgan} \date{Modified: 21 October, 2013. Compiled: \today} \begin{document} \maketitle <>= library("ShortRead") @ The \Rpackage{ShortRead} package provides functionality for working with FASTQ files from high throughput sequence analysis. The package also contains functions for legacy (single-end, ungapped) aligned reads; for working with BAM files, please see the \Biocpkg{Rsamtools}, \Biocpkg{GenomicRanges}, \Biocpkg{GenomicAlignments} and related packages. \section{Sample data} Sample FASTQ data are derived from ArrayExpress record \href{http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/}{E-MTAB-1147}. Paired-end FASTQ files were retrieved and then sampled to 20,000 records with <>= sampler <- FastqSampler('E-MTAB-1147/fastq/ERR127302_1.fastq.gz', 20000) set.seed(123); ERR127302_1 <- yield(sampler) sampler <- FastqSampler('E-MTAB-1147/fastq/ERR127302_2.fastq.gz', 20000) set.seed(123); ERR127302_2 <- yield(sampler) @ \section{Functionality} Functionality is summarized in Table~\ref{tab:fastq}. \begin{table} \centering \begin{tabular}{lll} \hline \multicolumn{3}{l}{Input} \\ & \Rfunction{FastqStreamer} & Iterate through FASTQ files in chunks \\ & \Rfunction{FastqSampler} & Draw random samples from FASTQ files \\ & \Rfunction{readFastq} & Read an entire FASTQ file into memory \\ & \Rfunction{writeFastq} & Write FASTQ objects to a connection (file) \\ \multicolumn{3}{l}{Sequence and quality summary} \\ & \Rfunction{alphabetFrequency} & Nucleotide or quality score use per read\\ & \Rfunction{alphabetByCycle} & Nucleotide or quality score use by cycle\\ & \Rfunction{alphabetScore} & Whole-read quality summary\\ & \Rfunction{encoding} & Character / `phred' score mapping \\ \multicolumn{3}{l}{Quality assessment} \\ & \Rfunction{qa} & Visit FASTQ files to collect QA statistics \\ & \Rfunction{report} & Generate a quality assessment report \\ \multicolumn{3}{l}{Filtering and trimming} \\ & \Rfunction{srFilter} & Pre-defined and bespoke filters \\ & \Rfunction{trimTails}, etc. & Trim low-quality nucleotides \\ & \Rfunction{narrow} & Remove leading / trailing nucleotides \\ & \Rfunction{tables} & Summarize read occurrence \\ & \Rfunction{srduplicated}, etc. & Identify duplicate reads \\ & \Rfunction{filterFastq} & Filter reads from one file to another\\ \hline \end{tabular} \caption{Key functions for working with FASTQ files} \label{tab:fastq} \end{table} \paragraph{Input} FASTQ files are large so processing involves iteration in `chunks' using \Rfunction{FastqStreamer} <>= strm <- FastqStreamer("a.fastq.gz") repeat { fq <- yield(strm) if (length(fq) == 0) break ## process chunk } @ or drawing a random sample from the file <>= sampler <- FastqSampler("a.fastq.gz") fq <- yield(sampler) @ \noindent The default size for both streams and samples is 1M records; this volume of data fits easily into memory. Small FASTQ files can be read in to memory in their entirety using \Rfunction{readFastq}; we do this for our sample data <>= fl <- system.file(package="ShortRead", "extdata", "E-MTAB-1147", "ERR127302_1_subset.fastq.gz") fq <- readFastq(fl) @ The result of data input is an instance of class \Rclass{ShortReadQ} (Table~\ref{tab:classes}). \begin{table} \centering \begin{tabular}{ll} \hline \Rclass{DNAStringSet} & (\Biocpkg{Biostrings}) Short read sequences \\ \Rclass{FastqQuality}, etc. & Quality encodings \\ \Rclass{ShortReadQ} & Reads, quality scores, and ids \\ \hline \end{tabular} \caption{Primary data types in the \Biocpkg{ShortRead} package} \label{tab:classes} \end{table} This class contains reads, their quality scores, and optionally the id of the read. <>= fq fq[1:5] head(sread(fq), 3) head(quality(fq), 3) @ \noindent The reads are represented as \Rclass{DNAStringSet} instances, and can be manipulated with the rich tools defined in the \Biocpkg{Biostrings} package. The quality scores are represented by a class that represents the quality encoding inferred from the file; the encoding in use can be discovered with <>= encoding(quality(fq)) @ \noindent The primary source of documentation for these classes is \Rcode{?ShortReadQ} and \Rcode{?QualityScore}. \section{Common work flows} \subsection{Quality assessment} FASTQ files are often used for basic quality assessment, often to augment the purely technical QA that might be provided by the sequencing center with QA relevant to overall experimental design. A QA report is generated by creating a vector of paths to FASTQ files <>= fls <- dir("/path/to", "*fastq$", full=TRUE) @ \noindent collecting statistics over the files <>= qaSummary <- qa(fls, type="fastq") @ \noindent and creating and viewing a report <>= browseURL(report(qaSummary)) @ \noindent By default, the report is based on a sample of 1M reads. These QA facilities are easily augmented by writing custom functions for reads sampled from files, or by explorting the elements of the object returned from \Rcode{qa()}, e.g., for an analysis of ArrayExpress experiment E-MTAB-1147: <>= load("qa_E-MTAB-1147.Rda") @ <>= qaSummary @ %% For instance, the count of reads in each lane is summarized in the \Robject{readCounts} element, and can be displayed as <>= head(qaSummary[["readCounts"]]) head(qaSummary[["baseCalls"]]) @ %% The \Robject{readCounts} element contains a data frame with 1 row and 3 columns (these dimensions are indicated in the parenthetical annotation of \Robject{readCounts} in the output of \Rcode{qaSummary}). The rows represent different lanes. The columns indicated the number of reads, the number of reads surviving the Solexa filtering criteria, and the number of reads aligned to the reference genome for the lane. The \Robject{baseCalls} element summarizes base calls in the unfiltered reads. The functions that produce the report tables and graphics are internal to the package. They can be accessed through calling ShortRead:::functionName where functionName is one of the functions listed below, organized by report section. \begin{description} \item [] Run Summary : .ppnCount, .df2a, .laneLbl, .plotReadQuality \item [] Read Distribution : .plotReadOccurrences, .freqSequences \item [] Cycle Specific : .plotCycleBaseCall, .plotCycleQuality \item [] Tile Performance : .atQuantile, .colorkeyNames, .plotTileLocalCoords, .tileGeometry, .plotTileCounts, .plotTileQualityScore \item [] Alignment : .plotAlignQuality \item [] Multiple Alignment : .plotMultipleAlignmentCount \item [] Depth of Coverage : .plotDepthOfCoverage \item [] Adapter Contamination : .ppnCount \end{description} \subsection{Filtering and trimming} It is straight-forward to create filters to eliminate reads or to trim reads based on diverse characteristics. The basic structure is to open a FASTQ file, iterate through chunks of the file performing filtering or trimming steps, and appending the filtered data to a new file. <>= myFilterAndTrim <- function(fl, destination=sprintf("%s_subset", fl)) { ## open input stream stream <- open(FastqStreamer(fl)) on.exit(close(stream)) repeat { ## input chunk fq <- yield(stream) if (length(fq) == 0) break ## trim and filter, e.g., reads cannot contain 'N'... fq <- fq[nFilter()(fq)] # see ?srFilter for pre-defined filters ## trim as soon as 2 of 5 nucleotides has quality encoding less ## than "4" (phred score 20) fq <- trimTailw(fq, 2, "4", 2) ## drop reads that are less than 36nt fq <- fq[width(fq) >= 36] ## append to destination writeFastq(fq, destination, "a") } } @ \noindent This is memory efficient and flexible. Care must be taken to coordinate pairs of FASTQ files representing paired-end reads, to preserve order. \section{Using \Rpackage{ShortRead} for data exploration} \subsection{Data I/O} \ShortRead{} provides a variety of methods to read data into \R{}, in addition to \Rfunction{readAligned}. \subsubsection{\Rfunction{readXStringColumns}} \Rfunction{readXStringColumns} reads a column of DNA or other sequence-like data. For instance, the Solexa files \texttt{s\_N\_export.txt} contain lines with the following information: <>= ## location of file exptPath <- system.file("extdata", package="ShortRead") sp <- SolexaPath(exptPath) pattern <- "s_2_export.txt" fl <- file.path(analysisPath(sp), pattern) strsplit(readLines(fl, n=1), "\t") length(readLines(fl)) @ % Column 9 is the read, and column 10 the ASCII-encoded Solexa Fastq quality score; there are 1000 lines (i.e., 1000 reads) in this sample file. Suppose the task is to read column 9 as a \Rclass{DNAStringSet} and column 10 as a \Rclass{BStringSet}. \Rclass{DNAStringSet} is a class that contains IUPAC-encoded DNA strings (IUPAC code allows for nucleotide ambiguity); \Rclass{BStringSet} is a class that contains any character with ASCII code 0 through 255. Both of these classes are defined in the \Rpackage{Biostrings} package. \Rfunction{readXStringColumns} allows us to read in columns of text as these classes. Important arguments for \Rfunction{readXStringColumns} are the \Rcode{dirPath} in which to look for files, the \Rcode{pattern} of files to parse, and the \Rcode{colClasses} of the columns to be parsed. The \Rcode{dirPath} and \Rcode{pattern} arguments are like \Rcode{list.files}. \Rcode{colClasses} is like the corresponding argument to \Rfunction{read.table}: it is a \Rclass{list} specifying the class of each column to be read, or \Robject{NULL} if the column is to be ignored. In our case there are 21 columns, and we would like to read in columns 9 and 10. Hence <>= colClasses <- rep(list(NULL), 21) colClasses[9:10] <- c("DNAString", "BString") names(colClasses)[9:10] <- c("read", "quality") @ % We use the class of the type of sequence (e.g., \Rclass{DNAString} or \Rclass{BString}), rather than the class of the set that we will create ( e.g., \Rclass{DNAStringSet} or \Rclass{BStringSet}). Applying names to \Robject{colClasses} is not required, but makes subsequent manipulation easier. We are now ready to read our file <>= cols <- readXStringColumns(analysisPath(sp), pattern, colClasses) cols @ % The file has been parsed, and appropriate data objects were created. A feature of \Rfunction{readXStringColumns} and other input functions in the \Rpackage{ShortRead} package is that all files matching \Rcode{pattern} in the specified \Rcode{dirPath} will be read into a single object. This provides a convenient way to, for instance, parse all tiles in a Solexa lane into a single \Rclass{DNAStringSet} object. There are several advantages to reading columns as \Rclass{XStringSet} objects. These are more compact than the corresponding character representation: <>= object.size(cols$read) object.size(as.character(cols$read)) @ % They are also created much more quickly. And the \Rclass{DNAStringSet} and related classes are used extensively in \Rpackage{ShortRead}, \Rpackage{Biostrings}, \Rpackage{BSgenome} and other packages relevant to short read technology. \subsection{Sorting} Short reads can be sorted using \Rfunction{srsort}, or the permutation required to bring the short read into lexicographic order can be determined using \Rfunction{srorder}. These functions are different from \Rfunction{sort} and \Rfunction{order} because the result is independent of the locale, and they operate quickly on \Rclass{DNAStringSet} and \Rclass{BStringSet} objects. The function \Rfunction{srduplicated} identifies duplicate reads. This function returns a logical vector, similar to \Rfunction{duplicated}. The negation of the result from \Rfunction{srduplicated} is useful to create a collection of unique reads. An experimental scenario where this might be useful is when the sample preparation involved PCR. In this case, replicate reads may be due to artifacts of sample preparation, rather than differential representation of sequence in the sample prior to PCR. \subsection{Summarizing read occurrence} The \Rfunction{tables} function summarizes read occurrences, for instance, <>= tbls <- tables(fq) names(tbls) tbls$top[1:5] head(tbls$distribution) @ %% The \Robject{top} component returned by \Robject{tables} is a list tallying the most commonly occurring sequences in the short reads. Knowledgeable readers will recognize the top-occurring read as a close match to one of the manufacturer adapters. The \Robject{distribution} component returned by \Robject{tables} is a data frame that summarizes how many reads (e.g., \Sexpr{tbls[["distribution"]][1,"nReads"]}) are represented exactly \Sexpr{tbls[["distribution"]][1,"nOccurrences"]} times. \subsection{Finding near matches to short sequences} Facilities exist for finding reads that are near matches to specific sequences, e.g., manufacturer adapter or primer sequences. \Rfunction{srdistance} reports the edit distance between each read and a reference sequence. \Rfunction{srdistance} is implemented to work efficiently for reference sequences whose length is of the same order as the reads themselves (10's to 100's of bases). To find reads close to the most common read in the example above, one might say <>= dist <- srdistance(sread(fq), names(tbls$top)[1])[[1]] table(dist)[1:10] @ %% `Near' matches can be filtered, e.g., <>= fqSubset <- fq[dist>4] @ A different strategy can be used to tally or eliminate reads that consist predominantly of a single nucleotide. \Rfunction{alphabetFrequency} calculates the frequency of each nucleotide (in DNA strings) or letter (for other string sets) in each read. Thus one could identify and eliminate reads with more than 30 adenine nucleotides with <>= countA <- alphabetFrequency(sread(fq))[,"A"] fqNoPolyA <- fq[countA < 30] @ %% \Rfunction{alphabetFrequency}, which simply counts nucleotides, is much faster than \Rfunction{srdistance}, which performs full pairwise alignment of each read to the subject. Users wanting to use \R{} for whole-genome alignments or more flexible pairwise aligment are encouraged to investigate the \Rpackage{Biostrings} package, especially the \Rclass{PDict} class and \Rfunction{matchPDict} and \Rfunction{pairwiseAlignment} functions. \section{Legacy support for early file formats} The \Biocpkg{ShortRead} package contains functions and classes to support early file formats and ungapped alignments. Help pages are flagged as `legacy'; versions of \Biocpkg{ShortRead} prior to 1.21 (\Bioconductor{} version 2.13) contain a vignette illustrating common work flows with these file formats. %--------------------------------------------------------- % SessionInfo %--------------------------------------------------------- \section{sessionInfo} <>= toLatex(sessionInfo()) @ \end{document} ShortRead/vignettes/README0000644000175100017510000000121212607265053016357 0ustar00biocbuildbiocbuildI have added an unserscore to the extention of the vignette file, i.e., it is called ShortRead_and_HilbertCurveDisplay.Rnw_, so that it does not get processed automatically. This is because it takes quite long to get build the vignette and you have to download some example data before building it. If you do want to rebuild the vignette: In the same directory that contains the Rnw file, make two subdirecties, called H3K4me1 and H3K4me3. Go to http://www.ebi.ac.uk/~anders/ShortReadExampleData/, download the content of the two directories H3K4me1 and H3K4me3 there and put these files in the directories just created. Then run Sweave. ShortRead/vignettes/ShortRead_and_HilbertVis.Rnw_0000644000175100017510000011645612607265053023217 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{Processing and Visualisation of High-Throughput Sequencing with ShortRead and HilbertVis} %\VignettePackage{ShortRead} \documentclass{article} \usepackage[a4paper]{geometry} \usepackage{hyperref,graphicx} \SweaveOpts{keep.source=TRUE,eps=FALSE,include=FALSE,width=4,height=4.5} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rpackage}[1]{\textit{#1}} \newcommand{\Rclass}[1]{\textit{#1}} \newcommand{\Rfunction}[1]{{\small\texttt{#1}}} \author{Simon Anders\\[1em]European Bioinformatics Institute,\\ Hinxton, Cambridge, UK\\[1em] \texttt{sanders@fs.tum.de}} \title{\textbf{Processing and Visualisation of High-Throughput Sequencing Data with \texttt{ShortRead} and \texttt{HilbertVis}}} \date{version 2: 2009-06-30} \begin{document} \maketitle \begin{abstract} This document serves a double purpose: (i) It explains the use of the Bioconductor packages \Rpackage{HilbertVis} and \Rpackage{HilbertVisGUI}. This pair of packages offers a tool to visualise very long one-dimensional data vectors (with up to billions of entries) in an efficient fashion that allows to get a quick impression of the spatial distribution and rough shape of the features present in the data. This is especially useful in the initial exploration of high-resolution position-dependent genomic data, such as tiling array or ChIP-Seq data. (ii) It provides a specific example by walking the reader through the task of processing ChIP-Seq data using the stand-alone alignment tool Maq and the Bioconductor packages Biostrings, ShortRead and HilbertVis/HilbertVisGUI. \end{abstract} \medskip \noindent{\small\textbf{Note:} If you are only interested in the use of the \texttt{HilbertVis}/\texttt{HilbertVisGUI} packages, you can skip the first section and start reading at Section \ref{secHilbert}.} \medskip \noindent{\small\textbf{Note:} If you have trouble installing the package \texttt{HilbertVisGUI}, read the file \texttt{INSTALL} in the package.} \section{Introduction} Bioconductor offers substantial support for genomic experiments, which, for the case of microarray platforms, including tiling arrays, has reached maturity already a while ago. For data from high-throughput sequencing experiments, development of new tools is currently (mid 2008) ongoing. In this document, I would like to show what can already been done by re-doing step for step the analysis of an already published Solexa ChIP-Seq experiment. I use this to demonstrate some aspects of the ShortRead package (by M.~Morgan, \cite{ShortRead}) and the use of my packages ``HilbertVis'' and ``HilbertVisGUI''. ShortRead introduces data structures to represent aligned short sequence reads and offers functions to read in such data from files output by the SolexaPipeline (the software that Illumina provides with its GenomeAnalyzer machine) or by Maq (a stand-alone alignment program, \cite{Maq}). ShortRead's data structures are based on the infrastructure provided by Biostrings. As an example, we use data from a published study, Ref. \cite{HistMeth_ChipSeq}, on histone methylations in the human genome. Although this was not the main focus of that study, we re-analyse the data for histone methylation patterns H3K4me1 and H3K4me3, as these are data sets of manageable size. We first re-do the alignment with Maq, then use ShortRead to read the result into R and then visualise the data with HilbertVis. \section{The example data} The authors of our example have deposited their raw data in the NCBI's Provisional Short Read Archive (SRA, \url{http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi}) under accession number SRA000206. Use the ``Submissions'' tab in the archive's ``Download Facility'' to find the submission (under ``SRA000''). You will get to a directory that contains all the data as output by Bustard, the base-calling program in the SolexaPipeline, as well as a number of fairly self-explanatory XML files with meta-data.\footnote{When I first wrote this vignette in June 2008, the SRA was still in a provisional state, and the presentation of the data has changed since then. You can still find the old files in the subdirectory ``provisional''.} There are 3 lanes for H3K4me1 and 7 lanes for H3K4me3. I have used Maq to align the reads from these lanes against the human reference genome as provided on Ensembl. Doing so requires converting the \texttt{\_seq.txt} and \texttt{\_prb.txt} files for the lanes to the Sanger Institute's FASTQ format and on to Maq's BFQ (binary FASTQ format). Likewise, the reference genome is converted to one large BFA (binary FASTA) file. Then, the \texttt{maq map} command may be used to perform the alignment. As these steps are described in the documentation on the Maq web site, I do not go into detail here.\footnote{However, feel free to contact me if you want to know details.} In the end, we have, as output from Maq, a mapping file for each lane. I have put these files onto my web page. So, if you want to try out the following steps for yourself, please download them from \url{http://www.ebi.ac.uk/~anders/ShortReadExampleData/}. Note, however, that you should use a machine with at least 4 GB of RAM to perform the examples. Of course, Maq is not the only choice to align the reads to the genome. You may as well use Eland (the alignment program that comes with the SolexaPipeline), which can be read in as well by ShortRead, so that the following steps apply to this case as well. Within certain limits, the matching functionality of the Biostrings package allows you to even do everything within R. Finally, there are other alignment tools specialised for high-throughput sequences. Recently, the \texttt{ShortRead} package's \texttt{readAligned} function was extended and it can now parse the output formats of several popular tools, including Eland, Maq, SOAP, Bowtie, and the SAM format used e.g. by BWA. \section{Reading in the alignment} Assume that the current working directory contains two sub-directories, names \texttt{H3K4me1} and \texttt{H3K4me3}. Then we can read in all the files of pattern \texttt{run\textit{xx}lane\textit{x}.map} with the following commands: <<>>= library("ShortRead") maps.me1 <- sapply( list.files( "H3K4me1", "run.*lane.\\.map" ), function(filename) readAligned( "H3K4me1", filename, type="MAQMapShort" ) ) maps.me3 <- sapply( list.files( "H3K4me3", "run.*lane.\\.map" ), function(filename) readAligned( "H3K4me3", filename, type="MAQMapShort" ) ) @ Here, \texttt{readAligned} takes three arguments: the directory that contains the map file, the name of the map file, and the type of data to be read, for Maq alignment data \texttt{MAQMap}. (Our example data has been aligned with an older version of Maq, prior to the recent change in binary format in Maq version 0.7. Using the type \texttt{MAQMapShort} allows to read the old format.) You may also use the type \texttt{SolexaExport} to read in mappings produced by Eland (see help page for \texttt{readAligned} for details on the supported formats). In any case, the function \texttt{readAligned} returns an S4 object of class \texttt{AlignedRead}. \section{The class \texttt{AlignedRead}} An \texttt{AlignedRead} object is conceptionally quite similar to a data frame. It contains as many ``rows'' as there are mapped reads: <<>>= length( maps.me1$run4_lane8.map ) @ %$ For each read, all the data parsed from the map file are stored. Think of these types of data as of columns of a data frame, even though you do not access them with the \texttt{\$} operator but with accessor functions. The ``columns'' \texttt{chromosome}, \texttt{position} and \texttt{width} show where in the genome the reads were mapped: <<>>= head( chromosome( maps.me1$run4_lane8.map ) ) head( position( maps.me1$run4_lane8.map ) ) head( width( maps.me1$run4_lane8.map ) ) @ %$ As we see, the first 6 of the 3.4 mio reads in lane 8 of run 4 were all mapped to chromosome 10, to the given positions, and extending from there all by 25 bp.\footnote{Note that Maq stores the aligned reads in order of their alignment. Hence, we start with very low base-pair indices, which then increase. Maq has also started with chromosome 10, as that one happened to be the first one in the BFA file.} The actual reads are stored as well, <<>>= head( sread( maps.me1$run4_lane8.map ) ) @ %$ as are the reads' identifiers (which here encode their position on the lane): <<>>= head( id( maps.me1$run4_lane8.map ) ) @ %$ These last two objects are not ordinary R \texttt{character} vectors but \texttt{DNAStringSet} and \texttt{BStringSet} objects. These are specialised data structures provided by the \texttt{Biostrings} package designed to handle large amounts of character (or sequence) data. They are not elementary-type vectors but S4 objects. (See the Biostrings vignette for details.) As they only mimic a vector they cannot be columns of a data frame. This is the reason why \texttt{AlignedRead} is not a data frame although its structure is reminiscent of one. Other information stored in the \texttt{AlignedRead} object is the base-call quality as reported by Bustard, here given in FASTQ quality string representation. (See the Maq web site for an explanation of the format.) <<>>= head( quality( maps.me1$run4_lane8.map ) ) @ %$ Each of the letters codes for for the quality of a base call, i.e., which stands for the probability that the base call is incorrect. To see the actual quality scores, coerce the quality BStringSet to a matrix: <<>>= quals <- as( head( quality( maps.me1$run4_lane8.map ) ), "matrix" ) quals @ %$ For an explanation how the letters are converted to scores, look up the FASTQ standard. (Wikipedia has a good explanation.) The numbers are Phred scores, i.e. the probability for a base being wrong is given by $10^{-Q/10}$: <<>>= 10 ^ ( -quals / 10 ) @ %$ Maq calculates from this information and from the uniqueness and perfectness of the alignment an alignment score, which is stored in an \texttt{alignQuality} object: <<>>= alignQuality( maps.me1$run4_lane8.map ) @ %$ The actual integer vector of qualities (one number per read) can be obtained with the accessor function \texttt{quality} <<>>= head( quality( alignQuality( maps.me1$run4_lane8.map ) ) ) @ %$ An alignment quality score of 0 may mean that the read could not be uniquely aligned and has been put by Maq at one of the possible positions, chosen at random. As before, the probability for the alignment being wrong is $10^{-Q/10}$, where $Q$ is the quality score. Bear in mind that all these probabilities are estimates derived partly by heuristics. See the SolexaPipeline manual and the Maq paper for details before relying on them. \begin{figure} \centering \includegraphics[height=5cm]{images/Strand_and_Dir} \caption{The \texttt{strand} information shows how the read is aligned against the genome. If \texttt{strand} is \texttt{"+"}, the \texttt{position} indicates the start of the DNA read (dark green) as well as the start of the whole fragment. The part of the fragment that was not read (light green) extends to the right (i.e. towards larger chromosome coordinates). If \texttt{strand} is \texttt{"-"}, then the fragment extends to the left. As \texttt{position} always indicates the left edge of the read (but not necessarily an edge of the whole fragment) it now points to a position within the whole fragment. } \label{strand} \end{figure} The accessor function \texttt{strand} reports whether the read was mapped to the ``+'' or to the ``--'' strand of the chromosome. It returns a factor with three levels: <<>>= head( strand( maps.me1$run4_lane8.map ) ) @ %$ You should never see the level ``*'' in an AlignedData object. It is used in other contexts to indicate that a strand information is not just unavailable (this would be an \texttt{NA}) but does not have any meaning. Remember that Solexa sequencing is not strand-specific (unless you use one of the new strand-specific RNA-Seq protocols). Hence, it is better to think of this factor not as information on the strand but rather on the \textit{direction} of the fragment. Have a look at Fig.\ \ref{strand} for an illustration. The fields described so far are available for all \texttt{AlignedRead} objects. Depending on the alignment software that was used additional information may be available. The slot \texttt{alignData} is meant to hold such information. The fields that you can see here are explained in the manual to Maq. <<>>= alignData( maps.me1$run4_lane8.map ) @ %$ \texttt{AlignedDataFrame} is a subclass of \texttt{AnnotatedDataFrame}. Hence, we can see the meaning of the columns from the meta information displayed above and access the underlying data frame with \texttt{pData}: <<>>= head( pData( alignData( maps.me1$run4_lane8.map ) ) ) @ %$ \section{Coverage} In ChIP-Seq, one is usually interested in the number of precipitated DNA fragments in the sample that were mapped to each genomic locus. This is best represented by what is often called a ``coverage vector'' (or sometimes a ``pile-up vector''). This is a very long \texttt{integer} vector with as many elements as there are base pairs in the chromosome under consideration. Each vector element counts the number of fragments that were mapped such that they cover this base pair. The function \texttt{coverage} in the \texttt{ShortRead} package calculates such a vector from alignment information. In order to allocate a vector of the right size, \texttt{coverage} needs to know the length of the chromosome. \texttt{readBfaToc} obtains the lengths of all sequences in a BFA file (binary FASTA, the compressed FASTA format used by Maq). As a BFA file has a table of content at the beginning, \texttt{readBfaToc} only has to read the header of the BFA file and is hence quite fast. \begin{verbatim} > seqlens <- readBfaToc( "Homo_sapiens.NCBI36.48.dna.all.bfa" ) > seqlens 10 11 12 13 14 15 16 17 135374737 134452384 132349534 114142980 106368585 100338915 88827254 78774742 18 19 1 20 21 22 2 3 76117153 63811651 247249719 62435964 46944323 49691432 242951149 199501827 4 5 6 7 8 9 MT X 191273063 180857866 170899992 158821424 146274826 140273252 16571 154913754 Y NT_113887 NT_113947 NT_113903 NT_113908 NT_113940 NT_113917 NT_113963 57772954 3994 4262 12854 13036 19187 19840 24360 NT_113876 NT_113950 NT_113946 NT_113920 NT_113911 NT_113907 NT_113937 NT_113941 25994 28709 31181 35155 36148 37175 37443 37498 NT_113909 NT_113921 NT_113919 NT_113960 NT_113945 NT_113879 NT_113938 NT_113928 38914 39615 40524 40752 41001 42503 44580 44888 NT_113906 NT_113904 NT_113873 NT_113966 NT_113943 NT_113914 NT_113948 NT_113886 46082 50950 51825 68003 81310 90085 92689 96249 NT_113932 NT_113929 NT_113878 NT_113927 NT_113900 NT_113918 NT_113875 NT_113942 104388 105485 106433 111864 112804 113275 114056 117663 NT_113926 NT_113934 NT_113954 NT_113953 NT_113874 NT_113883 NT_113924 NT_113933 119514 120350 129889 131056 136815 137703 139260 142595 NT_113884 NT_113890 NT_113870 NT_113881 NT_113939 NT_113956 NT_113951 NT_113902 143068 143687 145186 146010 147354 150002 152296 153959 NT_113913 NT_113958 NT_113949 NT_113889 NT_113936 NT_113957 NT_113961 NT_113925 154740 158069 159169 161147 163628 166452 166566 168820 NT_113882 NT_113916 NT_113930 NT_113955 NT_113944 NT_113901 NT_113905 NT_113872 172475 173443 174588 178865 182567 182896 183161 183763 NT_113952 NT_113912 NT_113935 NT_113880 NT_113931 NT_113923 NT_113915 NT_113885 184355 185143 185449 185571 186078 186858 187035 189789 NT_113888 NT_113871 NT_113964 NT_113877 NT_113910 NT_113962 NT_113899 NT_113965 191469 197748 204131 208942 211638 217385 520332 1005289 NT_113898 1305230 \end{verbatim} If you try to reproduce this example, you may not have the BFA file\footnote{I have not put it on my web page as it is very big and easily created from the Ensembl files.}. So, you can obtain the object \texttt{seqlens} manually with the following command (which omits the \texttt{NT\_}xxxxx contigs): <<>>= seqlens <- c( `10`=135374737, `11`=134452384, `12`=132349534, `13`=114142980, `14`=106368585, `15`=100338915, `16`=88827254, `17`=78774742, `18`=76117153, `19`=63811651, `1`=247249719, `20`=62435964, `21`=46944323, `22`=49691432, `2`=242951149, `3`=199501827, `4`=191273063, `5`=180857866, `6`=170899992, `7`=158821424, `8`=146274826, `9`=140273252, MT=16571, X=154913754, Y=57772954 ) @ In order to get coverage vectors for all chromosomes, using only mappings in \texttt{maps.me3\$run13\_lane4.map} with a mapping quality of at least 10, we first create a new \texttt{AlignedRead} object containing only these reads (note that we also filter out reads that map to chromosomes or contigs for which we do not have sequence lengths) <<>>= filteredReads <- maps.me3$run13_lane4.map[ chromosome( maps.me3$run13_lane4.map ) %in% names(seqlens) & quality(alignQuality( maps.me3$run13_lane4.map )) >= 10 ] @ %$ and then run the \texttt{coverage} function\footnote{texttt{coverage} is a generic method defined in the \texttt{IRanges} object. Here, we use its specialization for \texttt{ReadAligned} objects, defined in the \texttt{ShortRead} package. For the help pages, see both \texttt{?coverage} and \texttt{class?AlignedRead}.} on these: <<>>= coverage.me3.lane4 <- coverage( filteredReads, width=seqlens ) coverage.me3.lane4 @ The object \texttt{coverage.me3} is a \texttt{SimpleRleList} object, essentially a list of coverage vectors, one for each chromosome. Here is the coverage vector for chromsome 10: <<>>= coverage.me3.lane4$`10` @ %$ This is a vector with 135 mio elements, i.e., one number for each base pair on chromosome 10. If we stored this as an ordinary vector in RAM, it would need 135 MB. However, it contains long stretches of constant values, and hence, \texttt{coverage} returns its result as run-length encoded (\texttt{Rle}) vectors. As you can see, the coverage vector contains a few ten thousands of ``runs'', i.e., of repeats of the same value, and stores this information in the form of the lengths and the values of these runs. \begin{figure} \centering \includegraphics{ShortRead_and_HilbertVis-me3_p10} \caption{Output of \texttt{plotLongVector( me3.p10 )}.} \label{me3_p10} \end{figure} In principle, we could now plot this vector by converting it to an ordinary vector and using the standard ``plot'' function: <>= plot( as.vector( coverage.me3.lane4$`10` ), type='h' ) @ $% However, this command takes very long, as it plots one needle for each vector element, spending most of its time plotting over and over at the same spot. The function \texttt{plotLongVector} (in \texttt{HilbertVis}) produces the same plot with a decent speed: <>= library("HilbertVis") plotLongVector( coverage.me3.lane4$`10` ) @ $% [Output: See Fig.\ \ref{me3_p10}.] It does so by first partitioning the vector in 4,000 segments of equal length and the gets the maxima and minima of each segments (with the \texttt{shrinkVector} funcion). It the draws vertcial lines from the minima to the maxima. In case you want to write your own plotting function (because \texttt{plotLongVector} is rather rudimentary), you can use the function \texttt{shrinkVector} (in \texttt{HilbertVis}) to accomplish this. In the form used above, the function \texttt{coverage} counts only which base pairs the actual read covers. Typically, the read length (here: 25 nt) is much shorter than the length of the DNA fragments. In the present data, the length of the fragments after sonication, adaptor ligation and gel-electrophoretic size selection was about 220 bp including adaptors, i.\,e., approx.\ 185 bp without adaptors. Given that the immuno-precipitated histone can be anywhere on the fragment, not necessarily within the part at the end that is actually sequenced (the ``read'') we get a less biased picture by incorporating this information into the calculation of the pile-up vector. The \texttt{coverage} can be called with an \texttt{extend} argument to extend each fragment by a certain size. It uses the strand information to know which direction to extend to (see Fig.\ \ref{strand}). <<>>= coverage.me3.lane4.ext <- coverage( filteredReads, width=seqlens, extend=185L-width(filteredReads) ) @ Our coverage vector incorporated only the information from one lane. We get better count statistics by getting such a vector for each lane from the H3K4me3 sample and then simply summing them all up: <<>>= sumUpCoverage <- function( lanes, seqLens, minAQual, fragmentLength ) { res <- NULL for( i in 1:length(lanes) ) { filteredLane <- lanes[[i]][ quality(alignQuality( lanes[[i]] )) >= minAQual & chromosome(lanes[[i]]) %in% names(seqlens) ] cvg <- coverage( filteredLane, width = seqLens, extend = as.integer(fragmentLength) - width(filteredLane) ) if( is.null( res ) ) res <- cvg else { stopifnot( all( names(res) == names(cvg) ) ) for( seq in names(res) ) res[[seq]] <- res[[seq]] + cvg[[seq]] } } res } coverage.me3 <- sumUpCoverage( maps.me3, seqlens, 10, 185 ) @ Note that \texttt{for} loops are used here instead of \texttt{sapply}. The latter may look more natural in R but it builds up a two-dimensional array of all the intermediate coverage vectors, which is wasteful. Even with the \texttt{for} loop the operation takes a while. Let's do the same for ``me1'': <<>>= coverage.me1 <- sumUpCoverage( maps.me1, seqlens, 10, 185 ) @ As ``me1'' has only 3 lanes as opposed to ``me3'''s 7 lanes, we cannot compare them directly. A simple way of normalizing is to divide by the ``library size'', i.e., the total number of reads. <<>>= nreads.me1 <- sum( sapply( maps.me1, length ) ) coverage.me1.n <- GenomeData( lapply( coverage.me1, function(r) r / nreads.me1 ) ) nreads.me3 <- sum( sapply( maps.me3, length ) ) coverage.me3.n <- GenomeData( lapply( coverage.me3, function(r) r / nreads.me3 ) ) @ \section{Visualisation with Hilbert curve plots} \label{secHilbert} \subsection{The Hilbert curve} \noindent{\small \textbf{Note:} If you have skipped the previous sections as you only want to read about \texttt{HilbertVis}, here is what you need to know in order to start reading here: We have re-analysed part of the ChIP-Seq experiments done in Ref.\ \cite{HistMeth_ChipSeq}, namely the data regarding histone methylation patterns H3K4me1 and H3K4me3. We have constructed two sets of very long ``coverage'' vectors in \texttt{IRanges}'s \texttt{Rle} form, \texttt{coverage.me1} and \texttt{coverage.me3}, which represent the human chromosomes and have a length corresponding to the number of base pairs of each chromosome. Each element corresponds to a base pair and counts how many precipitated and sequenced DNA fragments within the respective sample (H3K4me1 or H3K4me3) cover this position. The vectors \texttt{coverage.me1.n} and \texttt{coverage.me3.n} have been normalized by dividing by the total number of reads. To do your own experiments with these vectors, you can download these vectors (truncated to only contain chromosome 10, to save space) as R data file from \url{http://www.ebi.ac.uk/~anders/ShortReadExampleData/meX.chr10.rda}.} \bigskip \noindent{\small \textbf{Note 2:} Since I have written this vignette, I have restructured the package and split it into two parts, called ``HilbertVis'' and ``HilbertVisGUI''. This text focuses on the functionality of ``HilbertVisGUI'', which provides an interactive tool to explore data using teh visualisation technique desribed in the following. ``HilbertVis'' contains further functions to produce the same kind of images but without interactive tools, i.e. solely from the R command line. If you want to know more about these functions, which are not mentioned in the present text, see the vignette ``Visualising very long data vectors with the Hilbert curve'', which is included in the ``HilbertVis'' package.} \bigskip \begin{figure} \centering \includegraphics{ShortRead_and_HilbertVis-pileup1D} \caption{Pile-up representation of the ChIP-Seq data for H3K4me1 and H3K4me3, depicting the whole of chromosome 10.} \label{pileup1D} \end{figure} \noindent A first approach to visualising the two vectors is plotting them with the \texttt{plotLongVector} function described above: <>= library( ShortRead ) library( HilbertVis ) library( HilbertVisGUI ) par( mfrow = c(2,1) ) plotLongVector( coverage.me1.n$`10`, main="Chr 10, H3K3me1" ) plotLongVector( coverage.me3.n$`10`, main="Chr 10, H3K3me3" ) @ [Output: Fig.\ \ref{pileup1D}.] \begin{figure} \centering \includegraphics{ShortRead_and_HilbertVis-pileup1Dzoom} \caption{Zoom into a small portion of Fig.\ \ref{pileup1D}.} \label{pileup1Dzoom} \end{figure} The two vectors do look different but it is hard to make out what gives rise to the difference. Is the number of peaks different, or their distribution, or their typical width? Given that each pixel on the x axis corresponds to more than 100 kp, each of the needle can as well be a small peak, only a few fragment lengths wide, a wide peak with a base of tens of kb, or even a cluster of several peaks. We might zoom in somewhere but this is not too illuminating: <>= par( mfrow = c(2,1) ) plotLongVector( coverage.me1.n$`10`[100000000:101000000], main="Chr 10, H3K3me1", offset=100000000 ) plotLongVector( coverage.me1.n$`10`[100000000:101000000], main="Chr 10, H3K3me3", offset=100000000 ) @ [Output: Fig.\ \ref{pileup1Dzoom}.] The standard approach would be to export the pile-up vectors into a genome track format such as BED\footnote{A function to do that might be added soon to \texttt{ShortRead}.} and then use a genome browser such as those on the UCSC or Ensembl web sites, or IGB, to zoom in at many places to get a feeling for the data. \begin{figure} \centering \includegraphics[width=.4\textwidth]{images/HilbertPlot_H3K4me1}\qquad \includegraphics[width=.4\textwidth]{images/HilbertPlot_H3K4me3} \caption{Hilbert curve plot of pile-ups for H3K4me1 (left) and H3K4me3 (right) on chromosome 10.} \label{twoHilbertPlots} \end{figure} The Hilbert curve plot is an approach to display an as detailed picture of the whole chromosome as possible by letting each pixel of a large square represent a quite short part of the chromosome, coding with its colour for the maximum count in this short stretch, where the pixels are arranged such that neighbouring parts of the chromosome appear next to each other in the square. Furthermore, parts which are not directly neighbouring but are ion close distance should not be separated much in the square either. Fig.\ \ref{twoHilbertPlots} shows the two pile-up vectors in this so-called Hilbert curve plot. \begin{figure} \centering \includegraphics{ShortRead_and_HilbertVis-HilbertCurves} \caption{The first four levels of the Hilbert curve fractal.} \label{HilbertCurves} \end{figure} In order to understand this plot you need to know how the pixels are arranged to fulfil the requirements just outlined as well as possible. To my knowledge, the first to study this problem in detail and to come up with the solution also used here was D.\ A.\ Keim in Ref.\ \cite{HilbertVisualization_first} (where he used the data to visualise long time-series data of stock-market prices). He went back to an old idea of Peano \cite{PeanoCurve_first} and Hilbert \cite{HilbertCurve_first}, space-filling curves. Peano astonished the mathematics community at the end of the 19th century by presenting a continuous mapping of a line to a square, i.e., showed that a line can be folded up such that it passes through every point within a square, thus blurring the seemingly clear-cut distinction between one- and two-dimensional objects. Such a space-filling curve is a fractal, i.e., it has infinitely many corners and repeats its overall form in all levels of its details. Fig.\ \ref{HilbertCurves} shows the first six level of the construction of Hilbert's variant of Peano's curve. Observe how at level $k$ a line of length $2^{2k}$ passes through each ``pixel'' of a square of dimension $2^k \times 2^k$, and how this curve is produced connecting four copies (in different orientations) of the curve at the previous level, $k-1$. Figure \ref{HilbertCurves} has been produced with the function \texttt{plotHilbertCurve} which is provided just for demonstration purposes. <>= library( grid ) pushViewport( viewport( layout=grid.layout( 2, 2 ) ) ) for( i in 1:4 ) { pushViewport( viewport( layout.pos.row=1+(i-1)%/%2, layout.pos.col=1+(i-1)%%2 ) ) plotHilbertCurve( i, new.page=FALSE ) popViewport( ) } @ Going back to Fig.\ \ref{twoHilbertPlots}, we can now see clear difference between the two samples. The following observations my be made just from comparing these two plots: The peaks of H3K4me3 are tall, narrow, and well defined, while those for H3K4me1 are rather washed out. In both cases the peaks spread out over the whole chromosome, but some areas have nearly no signal. These empty parts are the same in both cases. These points were not clear only from Fig.\ {}. Exploring the plot interactively as described in the following allows to get considerable more insights. \subsection{The \texttt{HilbertVis} GUI} In order to study the pile-up vectors, you can now simply call \begin{verbatim} hilbertDisplay( coverage.me1.n$`10`, coverage.me3.n$`10` ) \end{verbatim} \begin{figure} \centering \includegraphics[width=.6\textwidth]{images/HilbertDisplay_GUI} \caption{The graphical user interface (GUI) provided by \texttt{HilbertVisGUI}.} \label{GUI} \end{figure} A GUI, as depicted in Fig.\ \ref{GUI} will pop up that allows you to interactively explore your data in the Hilbert curve plot representation. First, press the ``Darker'' button two or three times to get better contrast. Then, move the mouse over the coloured square and observe how the small red line in the right-hand gauge (labelled ``Displayed part of sequence'') indicates where within the chromosome you are pointing. Playing with this feature allows you to quickly orient yourself on how the chromosome is folded into the square. You can also read off the exact position from the field ``Bin under mouse cursor''\footnote{The display of the bin's value is not yet functional.} Use the left mouse button to zoom in by clicking on one of the four quarters of the image. You can only zoom into a quarter, not into any part of the image, because this ensures that the displayed part is always a single consecutive stretch of the chromosome. The left-hand gauge (labelled ``Full sequence'') indicates which part is displayed: the full width of the gauge represents the whole chromosome, the portion highlighted in red the part that is currently displayed in the square. The coordinates of the first and last displayed base are printed in the edges of the right-hand gauge. With the radio buttons labelled ``Effect of left mouse button'' you my switch from zooming into a quarter to zooming into a 1/64 part, i.e. into one of the small squares in a though $8\times 8$ grid. Use the buttons at the bottom to zoom out. If you have passed several vectors when calling \texttt{hilbertDisplay}, you may switch back and forth between them with the buttons ``Next'' and ``Previous'' (or by pressing Alt-N and Alt-P) in order to compare the displayed parts. The two buttons ``Coarser'' and ``Finer'' allow to adjust the pixel size. Initially, each bin is represented by one pixel at your monitor's resolution, and there are $512\times 512$ pixels in the image. Pressing ``Coarser'' once blows up each image pixel to a $2\times 2$ square of monitor pixels, which allows for easier viewing but reduces the number of displayed image pixels to $256\times 256$, i.e., each pixel now represents four times as many base pairs. There are a number of optional parameters to \texttt{hilbertDisplay} that come in handy, e.g., if you have vectors of differing length, if you want to customise colours or change a few other points. Refer to the help page (displayed with \texttt{?hilbertDisplay}) for details. \subsection{The callback interface} If you select the mode ``Linear plot'' as ``Effect of left mouse button'' and click somewhere in the plot, a windows pops up with a linear plot that displays the part of the chromosome represented by 256 pixels around the pixel on which you have clicked. (256 pixels correspond quite roughly to the size of the cross-hair mouse cursor). This is useful to get a detailed view of the shape of peaks. To do the linear plot, HilbertDisplay calls the R function \texttt{simpleLinPlot} defined in the \texttt{HilbertVisGUI} package. This is a simple wrapper around the function \texttt{plotLongVector} discussed earlier. Here is the definition of simpleLinPlot: <<>>= simpleLinPlot @ You can replace this function by supplying your own plotting function as the argument \texttt{plotFun} to \texttt{hilbertDisplay}. Your function must take two arguments that should be called \texttt{data} and \texttt{info}, as above, and will be filled in by \texttt{hilbertDisplay} with the displayed vector and information about where the user clicked and which part of the vector is being displayed. Try the following example to see the format of this data: \begin{verbatim} dumpDataInsteadOfPlotting <- function( data, info ) { str( data ) print( info ) } hilbertDisplay( me1.p10, me3.p10, plotFunc=dumpDataInsteadOfPlotting ) \end{verbatim} Zoom in a bit, then switch to "linear plot" and click somewhere. \texttt{dumpDataInsteadOfPlotting} will be called and output such as the following appears on your R console: \begin{verbatim} num [1:135374737] 0 0 0 0 0 0 0 0 0 0 ... $binLo [1] 22950198 $bin [1] 22950262 $binHi [1] 22950327 $dispLo [1] 16921843 $dispHi [1] 25382764 $seqIdx [1] 1 $seqName [1] "me1.p10" \end{verbatim} See \texttt{?hilbertDisplay} for an explanation of those fields that are not self-explanatory. This feature is meant to allow for customised linear plots (maybe using the \texttt{GenomeGraph} package to add annotation) but can also be used for other things than plotting, e.g., calculating some statistics about a peak clicked on. \subsection{Three-channel display} In order to look for spatial correlations in different data vectors, it may be useful to overlay the corresponding Hilbert curve plots in different colours. The function \texttt{hilbertDisplayThreeChannel} allows to display three data vectors simultaneously, using the red, green, and blue channel of the displayed image for the first, second, and third, vector. We may want to see whether the areas with strong H3K4me1 occurance are at the same chromosome regions as the majority of the H3K4me3 peaks. Furthermore, we may use the third channel to indicate the presence of exons. We first obtain a list of all exons on chromosome 10 from EnsEMBL via BioMart: <<>>= library( biomaRt ) ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl") exons <- getBM( attributes=c( "exon_chrom_start", "exon_chrom_end" ), filters="chromosome_name", values="10", mart=ensembl ) @ This is a set of intervals and hence best represented as an \texttt{IRanges} object: <<>>= exon.chr10.ranges <- IRanges( start=exons$exon_chrom_start, end=exons$exon_chrom_end ) @ %$ Them, we construct a vector that indicates for each base pair on chromosome 10, whether it is exonic or not (bty means of the values 1 and 0). <<>>= exons.chr10 <- coverage( exon.chr10.ranges, width = seqlens[["10"]] ) @ \begin{figure} \centering \includegraphics[width=.7\textwidth]{images/hilbert_3col} \caption{A three-color overlay (obtained with the function \texttt{hilbertDisplayThreeChannel}) of Hilbert curves for H3K4me1 (red), H3K4me3 (green) and an exon indication (blue). The image shows a zoom into the first quarter of chromosome 10 (i.e., the top left quarter of the images in Fig.\ \ref{twoHilbertPlots}).} \label{threeColor} \end{figure} With the following command, we get a 3-color representation of the three vectors in the HilbertDisplay GUI: <>= hilbertDisplayThreeChannel( coverage.me1.n$`10` * 5e5, coverage.me3.n$`10` * 5e5, exons.chr10 * .5 ) @ See Fig.\ ref{threeColor} for the image that the GUI shows. While the function \texttt{hilbertDisplay} adjusts to the value range of the data (or can be manually adjusted with optional the \texttt{paletteSteps} argument), the function \texttt{hilbertDisplayThreeChannel} expects all three vectors to be in the value range between 0 and 1. This range is transformed to colours from black to a saturated red, green, and blue. Values below 0 or above 1 are cut and displayed as if they were 0 or 1. To get the pile-up vectors down to this range, an obvious step would be to divide by their maximum value. However, this gives a too dark value, and hence, I have chosen for Fig.\ \ref{threeColor} larger scaling factors, allowing extremely high peaks to become saturated. \section{Correlation with transcription start} A common plot to do with histone modification ChIP-Seq data is to see how the pile-up correlates with transcription start sites (TSS). This is done quite easily. First, we get a list of known TSSs on chromosome 10 from EnsEMBL (again via BioMart). <<>>= tss <- getBM( attributes=c( "transcript_start", "transcript_end", "strand" ), filters="chromosome_name", values="10", mart=ensembl ) @ <<>>= head(tss) @ Note that \texttt{transcript\_start} is always smaller than \texttt{transcript\_end}, even when the transcript is on the ``--'' strand. Hence, we have to use either the start or the end coordinate of the transcript, depending on the strand, to get the actual transcription start sites, i.e., the 5' ends of the transcripts. Then, we go through all TSS, cutting out a window from 2000 bp upstreams to 2000 bp downstreams of the TSS and sum these up these vectors of length 4001 (reversing them whenever they are from the ``--'' strand): <<>>= tme1 <- rep( 0, 4001 ) tme3 <- rep( 0, 4001 ) for( i in 1:nrow(tss) ) { if( tss$strand[i] == 1 ) { tme1 <- tme1 + as.vector( coverage.me1.n$`10`[ IRanges( tss$transcript_start[i] - 2000, tss$transcript_start[i] + 2000 ) ] ) tme3 <- tme3 + as.vector( coverage.me3.n$`10`[ IRanges( tss$transcript_start[i] - 2000, tss$transcript_start[i] + 2000 ) ] ) } else { tme1 <- tme1 + rev( as.vector( coverage.me1.n$`10`[ IRanges( tss$transcript_end[i] - 2000, tss$transcript_end[i] + 2000 ) ] ) ) tme3 <- tme3 + rev( as.vector( coverage.me3.n$`10`[ IRanges( tss$transcript_end[i] - 2000, tss$transcript_end[i] + 2000 ) ] ) ) } } @ $% Note the use of \texttt{as.vector}, which transforms the \texttt{Rle} vector into an ordinary one. Without it, we would sum up many short \texttt{Rle} vectors which is very slow. \begin{figure} \centering \includegraphics{ShortRead_and_HilbertVis-tssPlot} \caption{Correlation against transcription start sites for H3K4me1 (red) and H3K4me3 (green).} \label{tssPlot} \end{figure} Normally, one would add all the other chromosomes, as well. For this vignette, we simply plot what we have so far: <>= matplot( -2000:2000, cbind( tme1, tme3 ), type="l", col=c("red","green"), lty="solid", xlab="distance to TSS", ylab="" ) abline( v=0, col="gray" ) @ [Output: Fig.\ \ref{tssPlot}.] \section*{Session info} <<>>= sessionInfo() @ \section*{Version history} \begin{itemize} \item v1: 2008-07-21 \item v2: 2009-06-30 \end{itemize} \bibliographystyle{simon2} \bibliography{hilbert} \end{document} ShortRead/vignettes/ShortRead_and_HilbertVis.pdf0000644000175100017510000477267612607265053023103 0ustar00biocbuildbiocbuild%PDF-1.4 5 0 obj << /S /GoTo /D (section.1) >> endobj 8 0 obj (Introduction) endobj 9 0 obj << /S /GoTo /D (section.2) >> endobj 12 0 obj (The example data) endobj 13 0 obj << /S /GoTo /D (section.3) >> endobj 16 0 obj (Reading in the alignment) endobj 17 0 obj << /S /GoTo /D (section.4) >> endobj 20 0 obj (The class AlignedRead) endobj 21 0 obj << /S /GoTo /D (section.5) >> endobj 24 0 obj (Coverage) endobj 25 0 obj << /S /GoTo /D (section.6) >> endobj 28 0 obj (Visualisation with Hilbert curve plots) endobj 29 0 obj << /S /GoTo /D (subsection.6.1) >> endobj 32 0 obj (The Hilbert curve) endobj 33 0 obj << /S /GoTo /D (subsection.6.2) >> endobj 36 0 obj (The HilbertVis GUI) endobj 37 0 obj << /S /GoTo /D (subsection.6.3) >> endobj 40 0 obj (The callback interface) endobj 41 0 obj << /S /GoTo /D (subsection.6.4) >> endobj 44 0 obj (Three-channel display) endobj 45 0 obj << /S /GoTo /D (section.7) >> endobj 48 0 obj (Correlation with transcription start) endobj 49 0 obj << /S /GoTo /D [50 0 R /Fit ] >> endobj 52 0 obj << /Length 2610 /Filter /FlateDecode >> stream xڭrF`` aWNk'lr%r.I ,_ @ʒ@bfzq&ffW73gq峼WE&iow j_8wsw2oqg*-+Sd-֋u'??{\lvdAKk$yƹ@ ~A PȁHeh,!"SbiJZ z%7tf,4v˸g᷁mSdgq^&6z@ZGFݩhzܑGټ$.-LWNV/j"hKV'PA^di%$8qd<2g3qbsxXXao7cX~?_4a" ~ 8HiTʸs#Ziy̙+"d+venص0w'Alj-mኊohm(Sɖ=K1! 3B 'Y",0K:Qk>Y> #!1B1z qiNKNcPmE O+yVЌlQ6 UVĥ+g0qPqIƖ!$ ȞEDo?) Q3L5GFEWUt<Yӫ k%8D<3 #W" dU>]kLf! &?Y r b#ÙR-aBȡau$Qd>6 /؆D.6iLi$$oBFדt-QHupU0;= P"Q ,^hH]ӏff5N}TY٠i hiD!!G3!citA88L$(KU8 #sÜ(r; ^UŇ*0=o,sqxH6ALH4Dp|X`9U9ܲ9gE>{(Hwk뭓MFp8"^3\-Z sP}aV) XSl6{k;(ug FBА,C/rOZ45d}FSkDuऒ1/80~xV1<}:8zSG'*#}2*Ԛ%x>V'jZTj!cy&,1ða>W+3"_y9e),}g>鉔>BFٝ@/U ՙqf,qvFb AT J'׆ =4TJi;hV,-9Kk \/.$7y{5WfL{MXqU77J4CËS".οԡ^%'rA ɓ6KR;yK-eI%#6rL\gf[/J1[ė =὾M}-9 W m e+ͼt,[X<+HlfW~o ",B!eٳ$OHe>#:dǣ;{ +n'ES"I hE6IJcmQfVq,|K{@#i£tj{5A[|hd:ͫZ[Sʸ^4iowCwTd FJ`C0S PYOSN-{~Cz t |1lpz\T d͸// O, s^rdPOM!1^s^'N}UvVFu/PLG "HJl 2dx6m m CjS'r*H~o(S&uCEe I;~4jX.ǥi#yOY$b{\*/>P:(.jT}>/LBw 'yAŇ{Z<,;=FL9^t}ȅHXJD?Z +L'1⽜D' 7Fl:y[m^sz[Tb.({ITf+ Ԇ^o:-- /Jo(HNDxJT9Tiriwgl= h'yJ^09e,.uck+iJ͋^Uendstream endobj 50 0 obj << /Type /Page /Contents 52 0 R /Resources 51 0 R /MediaBox [0 0 595.276 841.89] /Parent 82 0 R /Annots [ 76 0 R 80 0 R 81 0 R ] >> endobj 76 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [270.004 350.366 276.596 360.321] /Subtype /Link /A << /S /GoTo /D (section.6) >> >> endobj 80 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [461.32 219.663 481.315 228.38] /Subtype /Link /A << /S /GoTo /D (cite.ShortRead) >> >> endobj 81 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [337.543 171.842 370.659 180.559] /Subtype /Link /A << /S /GoTo /D (cite.Maq) >> >> endobj 53 0 obj << /D [50 0 R /XYZ 89.292 765.769 null] >> endobj 54 0 obj << /D [50 0 R /XYZ 89.292 740.862 null] >> endobj 6 0 obj << /D [50 0 R /XYZ 89.292 318.436 null] >> endobj 51 0 obj << /Font << /F39 57 0 R /F44 60 0 R /F23 63 0 R /F49 66 0 R /F54 69 0 R /F59 72 0 R /F61 75 0 R /F8 79 0 R >> /ProcSet [ /PDF /Text ] >> endobj 87 0 obj << /Length 3752 /Filter /FlateDecode >> stream xr]_KD,L)kqjN$Dq̋LPQ܇~{m%'}i@i/gϞ={ϞU:\]OTn3mܤ4yVjuiLM-}:\Og z管y~+h Ჷv(n@ NeQf5h^|짫?{VN\VK&&s)Dw0g'$/t~txTS9ő<>{:q<*jTV00SFX FV⑕N~AW7)*"-5!<-" f9]F0(^B%7HA!8@<@$@ȿCboyr#;6}Xk4trˋ{`*`V k8 [!#YK9,f5y U0}yTeb}FD~W M"#s3~~Em)[>0b~'=XX],KC 5:a?s6s _WDj25yM\w=!0,W YZ% SMv{;{4]fAHKn(Zˈ"Vi|HCCYD }2Sӿ*z?7Vb#Oxk Y?: jGYx6pbLD-,.n-KwJ݉K(kmtKXx,Fn7];_U^`P3[ΖGElpy'I{Ʋ7+9|X pCjEhAN;‹sy=ˌA0=H085*QTu52AUVUu_;چ#yB8#<\#<+zMƶLuVD^0cYd(-|T]y ]eHOm!@IӑhUGFl) жׁ8d+6}H$a s)5U0'B& "2ȑ"nϋb&*@Ozf<.O"ދKſ<"Ӷ}n:y)%H#98\V|i&T:8* +M@Wȋ78x݊gEg3}]{CVbԼ}q+^#mdzN"2Ȃ9& w$NIQGC SQwOQVQ<u?e{%0\B?E Avu2:HSm% X@`价cVvHbza%06|C-M0^0b2d2A+h,d!}{+hn 'uNH9v6zl")WR$C:V[S [b|%c/iC GF*20Ź$4xqꄎEs)iPbOj/k1(V$ ^b6˷ͭLAƠm$C!*1j#TR3&0[aЎZڪ=e) MUXu.SV9{ްgwNbD~Ɂ۞$)YFjDVd0!no%1γ8 P݇ H;Y/ y?̧%i/FfųQo46b#+N549rݬpyIݪ@VV>y!R~ O);IǬ2cN?M{y0Q9l#.3>ؽ4ambdQDHa|ۄS1AeӀu5 I;4kql'?%}Mr7= B nNe T^*[q9ѣg(;X0.aE͞Qޮ'dH\j5kjJ Љ#T:خ%ɧ{/.u AW>Q@7t2i2ct(tycյf!Jx0cB` .{reyr~I@R`KȜå]9R\AM`z5)IvSWbһ_fp/1Lv@x? L` hMQgx%}M2nS\}Hi=h 7}QJ9t]uJ?ufF5 bP/QfU#{yՑ1/2BLB`6Q ؎<Wi#;]dR'h*0&k:-D%Aυ|bu덛P}"Q*NO|}xl79@ ߣqVJ_Ae3&_4>|=!w7DnJ~-ɘ?A.Z w\˰?.*@h4Џ!>Fne;YvJb6+6_6a\_5Lzj9D1YlޟS>Y哯yz=Seo^ laOY]V2 2\J!StV)xCFs3I?-77[EjzǫFɠ MWR{}I&{|oew\o6)=Ҟzk6~Esl[z[0<9 9iάc#~{#.cí~X|[5f-jj4?|[uo즕-׻Xwu)d59{5f$q~"'Q ZzH;=6~4~!ł(U1QC 2endstream endobj 86 0 obj << /Type /Page /Contents 87 0 R /Resources 85 0 R /MediaBox [0 0 595.276 841.89] /Parent 82 0 R /Annots [ 89 0 R 93 0 R 97 0 R 98 0 R 99 0 R 100 0 R ] >> endobj 89 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [355.116 729.903 395.125 739.828] /Subtype /Link /A << /S /GoTo /D (cite.HistMeth_ChipSeq) >> >> endobj 93 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [154.589 612.902 396.721 624.763] /Subtype/Link/A<> >> endobj 97 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [204.06 567.572 210.519 577.671] /Subtype /Link /A << /S /GoTo /D (Hfootnote.1) >> >> endobj 98 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [401.171 493.909 407.63 505.94] /Subtype /Link /A << /S /GoTo /D (Hfootnote.2) >> >> endobj 99 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [478.885 469.719 506.98 480.837] /Subtype/Link/A<> >> endobj 100 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [88.296 457.764 325.207 468.882] /Subtype/Link/A<> >> endobj 88 0 obj << /D [86 0 R /XYZ 89.292 765.769 null] >> endobj 10 0 obj << /D [86 0 R /XYZ 89.292 668.085 null] >> endobj 14 0 obj << /D [86 0 R /XYZ 89.292 336.449 null] >> endobj 110 0 obj << /D [86 0 R /XYZ 104.528 196.634 null] >> endobj 114 0 obj << /D [86 0 R /XYZ 104.528 177.686 null] >> endobj 85 0 obj << /Font << /F8 79 0 R /F7 92 0 R /F39 57 0 R /F75 96 0 R /F79 103 0 R /F80 106 0 R /F25 109 0 R /F24 113 0 R >> /ProcSet [ /PDF /Text ] >> endobj 118 0 obj << /Length 2539 /Filter /FlateDecode >> stream xZo_Ay s+ bYc'ؐ E3E!-a+<%F2E˽ \MZˑ/UfLAl(8"5g>XzŽ>`=3`G m4lSjኞAz1*vz'#x 8U9[#rfs^{yԼ"c4n 迎eW +6=u`N-Y= >rqߚ(Gm?v8vGacSNOx*d1ȯ["=4j5/-n,nWixnZ߳Uvzi$q#jS= R<طbN O-'ٺf:2Ɨ3r9m\_ikg=߬d-u@Ս SN0|xv P*⤌d~-ģ=Z$q+AaaӟLUņ(aY5X|ibv/)[wl+W| lmnK.`zI߁QG|B~/s,:x/˛j22jfB 6] 9J9QpkPqU6Dg[P'-b}l${s3%q;k+ε6C?y˥mK^$% MyXt1&a.%MaWZZbP!D'!jX.3 B7+-Mw.}W%AǨ^N|,$5)"/~).) eC}8 3̷b/3;BJ_ǏSŚ]ND)Ndx4q0`eR^f`:pڵ6F9py!c13- 0@Б5rBk@H )Onwp A #}Cْ%[ KK[NiݎVLeoOy5hpӢ5G@9DQ-F4l/SߓHLsg\RҸ'/X}r=b2ߜHxokٓߣE'NP% 7i'cUQFэWP*JiK`͵hc?}W:|?r͚"-֝*@} |CzNR1w<>HUBi .MK??/H)P:@jc_Dފ?tM5]iY̻f5ؤNX%2E9"CxͿK!K ~-}*6t6ra1Y5ͻHl Amm EW& Jv8q>YJdlC ߸pv&22;M#L9Gw k~nE">;ЧO?t;%UTio <1E/f{f3~{>ȍELc芖p{ @Sp`Ay>T aCV@y/'NeWf`S&}Zۋj;:s=x}1T>Ns 7&oVɡܿfS9Gl|$tIYX1n[51olUQ$IeHS4/d's*2loG3FHzPg1s-m{*O>Pyˮw9҅s>NVr`S"S.G};9:iu=v1tqjK3ˑ:YNig] be訋1-jOet3:鉙p+u,wg޽דՙ|+2e9ٝ,S+{{ז\n/q)4M-|Z2@F'\eM-沼 ͱ>E ^ iJ*lUV"vV๛C2~ڏN?R] CTHp-w~9 5?0Uլw HNRv_mk0vsϭ~ KkgYg秷\^~jҒ gzBY:(ʐhUܸWߪ ă&a#e0LW3c k. lj|*M գ" ߕ˟;endstream endobj 117 0 obj << /Type /Page /Contents 118 0 R /Resources 116 0 R /MediaBox [0 0 595.276 841.89] /Parent 82 0 R /Annots [ 120 0 R ] >> endobj 120 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [356.885 319.86 363.344 331.891] /Subtype /Link /A << /S /GoTo /D (Hfootnote.3) >> >> endobj 119 0 obj << /D [117 0 R /XYZ 89.292 765.769 null] >> endobj 18 0 obj << /D [117 0 R /XYZ 89.292 642.089 null] >> endobj 121 0 obj << /D [117 0 R /XYZ 104.528 179.935 null] >> endobj 116 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F39 57 0 R /F44 60 0 R /F80 106 0 R /F7 92 0 R /F25 109 0 R /F24 113 0 R >> /ProcSet [ /PDF /Text ] >> endobj 124 0 obj << /Length 2104 /Filter /FlateDecode >> stream xڽkSF{~ӆėpd&L3m' ߒLq_j%$i?zK+".Rut,V8/QYOJ"x y+ [.Db%B)G$w'2HxlXM$ ƣ`Sjr.iXXQ2 xٝ? J,Cc C7=$ʟV~ZqnrTb7lk65Z]F.:ݲsZJLBą1(gऻfRWxn*!Ls9ܟaM_GrWunM]2Q2`!".}7,B2BX0 [Slⱑa{lTMckn0Idvp>a6!.+3]Vl}1ھhTvmZbu ro{bgObja8+&wohu $ ds.g%gp)nn_3]ĩT|\]s1Zٛ$N=:җ$5̝"%!nfo:*>SXY'n'S%V]+_,E]=YRzwd!I!O^$~!ƒWWV2&N+X?FYjY={v鉉qDuZA?!n>˖T[p:% g;Ni/Ѱ52w+~+:tÒe;p pW(mt8cE4]"|8eN'z 4p('~E{&8.ȇl)Pen=We&_ QKCZ>Pҹpk cڱ3 e)ef `ZV6rCp@JpM&p`J]^9c*NםrP: "2X.L&!Ť-*wgkN~Sy ^.]M?muXWquG?=+ DKeE tIl(B+(=',&KF ̦nwT9zlA]m+8kwU ڥ 8nBն<dݶR2g5Lj:O3˞2ޥ3Ίp"m:zEâELL:NJ{ 3~ _كgƏfw3cl>W{̂$n26 gMnU}t|Dc9EVf֪/:)E ǝkt:W"pmpg!ȯ%fn_5x$Sʎ,W7n 6K0㈎ r}]vK6@ovצxe3>˷ &@u݈u{ִ]B\I^vŀ%rc,k^a7n Zj$/PfEL'/@hmsʬU mdW2mof?LGjZWL'ɓ +' %CzSrE~Sх}smlzVp2LcȎrr(9D!JQfJ=T6ܕQ"a I#jn`aa2'Q ,= >`X!mG+tʰBZX3׃#ssu_xl;!Ol:pL9ӜoׄKi X^^cc'E7rDAn!W ɞ^g[ɘؿc9j}1 N!muR:&\0: 0qrNa um\YgFٯ0 A|( endstream endobj 123 0 obj << /Type /Page /Contents 124 0 R /Resources 122 0 R /MediaBox [0 0 595.276 841.89] /Parent 82 0 R >> endobj 125 0 obj << /D [123 0 R /XYZ 89.292 765.769 null] >> endobj 122 0 obj << /Font << /F8 79 0 R /F80 106 0 R /F75 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 128 0 obj << /Length 1622 /Filter /FlateDecode >> stream x]o6~EqÀ+` HӴ5%%ʑmɶaeH")?]^DR~RʔJ:)XRNw7͔$D=0L S\6j?OɌTy#mH5uxx z`J6?3tqc"/ky.$BF-؜pkV5e7Q&k)=6 Rփ8ܳ._ZwUyجsŜLѼ]MKl',Y͓?S<+Jգg~ճAО"y5+ڪXl-R, =Z&ÏFw-7zB}3.5xQg#F)!47_ v-6RxJK#3;jA\Lg4Y,տwKi Wl.E2?@'X[+ݢnarWL#NJtt s l"f·7&jo?֪(j>@ۘ DMHfLHeͳ2BNX*]e\;Qi~ZLXuTP[+?_T:CޛVJ|J|ěhG ApB8hj_"? )-1P}٭<گv8Hos"-h Dja'-LzD>890S@@t SPecg89Ǚ= # GrNR3T;CGph-`h3wF5\!7(4j.)TLYܙf?IxR?i-_z,ο$I)>֞J{^cg^2証/6D8ֈ{Q;;́̌ Zכ]=qiW{w)Qo8^x`~j fMe Ku3g54СUqd p >bHFYQ~>:hl-[2P\ȱ.bh4fEc(}Lâ2TIJĹ[$X?#Rϸ77/H覥#0ٸиSFk&2¡=3\u0.kcA%r؛Ц Ym/P0EeչL (Yr#]g55"%;|[v@B{HTJ&e>ʖZsĞM@w#3`EK@'=ߛ.㘞Vjojk|Fqlԅ)AzZB1G-rMU~jVDZN~(zڹ-nR[e^<{-"-dFeZAOwÛeendstream endobj 127 0 obj << /Type /Page /Contents 128 0 R /Resources 126 0 R /MediaBox [0 0 595.276 841.89] /Parent 82 0 R >> endobj 129 0 obj << /D [127 0 R /XYZ 89.292 765.769 null] >> endobj 126 0 obj << /Font << /F75 96 0 R /F8 79 0 R /F13 132 0 R /F10 135 0 R /F7 92 0 R /F80 106 0 R >> /ProcSet [ /PDF /Text ] >> endobj 139 0 obj << /Length 2285 /Filter /FlateDecode >> stream xڥko6"reHJ#"4iyW~4ޕZ w^ɕ։[Dr83pBßY\ƹkeY6'VqEM0Z w'Fv˷xݟ?Yז2oE2_|Xԍ]RVͩɮṼ;xen̼:]>\ܯM2We^iD2^lYz^e˵]MV-PfOm= T1 <I7H[3L {:wbʢ^L`k{yT^63C*UU` y6h*K#`/":˔gjmdjkZJEjgt-+RaGRש05# \7YBvZO<}I@)0< h,&]x:s ŲɕS=Q$&DlMh\aCmL,jaʘNK',9W N ,:ړq;@Ӊ؄k C4$dz"uA'qI ֣؋3#A1iiй]=7$We#^>NQ0AƮx* <( #pr/"\E81VM'ul\B+l;ޕe5Ovܹ8/B9:dB5E=۲KDfa&UYF(AnV%eI]{;AXz1- >U`"MWB3 ϽP?뎿[YG d$iR๜{4;`\cmIO2` Er^)icܽQ; j{"hv>mO{>|\;t𽷳7RPe]YUbҔ h\W ..u3Z6RQMBolLRW>kT^I?9Q%]t[LU}q̫j*pPR⺕čt:uDɲw7M 83-lC1\-+v_;]K|VgHgၫ<? I7Q(6[z4a05|`&G]KT\piQ=$`侽xh*zDBߍb!8pM{)g]6h9X3o0|C{aDd!Gܭ6̅FeC& nt%dֆw /ݽR[/_,ҞV-lRTۨ$D4`26&@,Q1^A;F};y6H49ߪ{,Pk{xY*tOKm>2ښDmTVSin׶H[`q ml(wEMdA2GQ C+&#&.AόދL&@ C A<eh=`5uӻ%EX訬ۏ:^;nX:pIOeK/NIZcڔϫH`.> endobj 136 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./images/Strand_and_Dir.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 149 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 408.8 227.77] /Resources << /ProcSet [ /PDF /Text ] /ExtGState << /R4 150 0 R >>/Font << /R10 151 0 R >> >> /Length 152 0 R /Filter /FlateDecode >> stream xVKo1 WCĎ"!.QZfA-;cgThE_l':Gsm^~`{81ͥA{eEL>Zv9[$goqiBR) .0sZ`2J $1<A =hmd`.A#VJƀ|"3 P/؛Nf/.2Q2 /qϬDPqrmΌ讄S!M5rX}7\ZW nSr;%Γ-nj_ϫŋYza45%P_bOK˳f=GMoeglD Q.-M.JA f7O4w׻E[(@FvqC0`Pt|gCZuCR5 20p^'43(7]d},O[n)A%+3Rm?A_Ԏlf|Ѧ ?n~|vf(@dT  pn~:جV"\GRt9]ݱ2:%]SE"Wdm8!R_2Ϊɦ*|HDXQH +t}W=ZXrI,@z.8"4;;-x첗.!rn|}:rWΓ#ku^%N9>=|J'oDX}|~>]MC+/"Z<<9v;0%$Q'dVjityw,][ |endstream endobj 149 0 obj << /Producer (GNU Ghostscript 7.07) >> endobj 150 0 obj << /Type /ExtGState /Name /R4 /TR /Identity /OPM 1 /SM 0.02 >> endobj 151 0 obj << /Subtype /Type1 /BaseFont /AENNSE#2BTimes-Roman /Type /Font /Name /R10 /FontDescriptor 153 0 R /FirstChar 32 /LastChar 255 /Widths [ 250 333 408 500 500 833 778 333 333 333 500 564 250 564 250 278 500 500 500 500 500 500 500 500 500 500 278 278 564 564 564 444 921 722 662 667 718 611 556 722 715 329 389 700 611 883 722 722 552 722 662 556 611 722 722 944 722 722 611 333 278 333 469 500 333 444 500 444 500 444 333 500 500 278 278 500 278 778 500 500 500 500 344 389 278 500 500 722 500 500 444 480 200 480 541 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 278 333 333 333 333 333 333 333 333 1000 333 333 1000 333 333 333 250 333 500 500 500 500 200 500 333 760 276 500 564 333 760 333 400 564 300 300 333 500 453 250 333 300 310 500 750 750 750 444 722 722 722 722 722 722 889 667 611 611 611 611 333 333 333 333 722 722 722 722 722 722 722 564 722 722 722 722 722 722 556 500 444 444 444 444 444 444 667 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 564 500 500 500 500 500 500 500 500] >> endobj 152 0 obj 863 endobj 153 0 obj << /Type /FontDescriptor /FontName /AENNSE#2BTimes-Roman /FontBBox [ -168 -281 1031 1098] /Flags 4 /Ascent 1098 /CapHeight 1098 /Descent -281 /ItalicAngle 0 /StemV 154 /MissingWidth 1000 /CharSet (/P/S/W/a/d/h/i/n/o/r/s/t) /FontFile3 154 0 R >> endobj 154 0 obj << /Subtype /Type1C /Filter /FlateDecode /Length 155 0 R >> stream xeS}TS@Wh&#c?Ω wtN7XQ\ I$ 7_! IP"E:贮۴+z֝8g=<=ϋc1Iss S zfs^\-̮1Z[Dey.~hq"z<}L7eԆVKR_jJlKOOӡFImzB+T&V(T P*y*XQ{hV+RSSePzyuVVJZkd*@FF˪ܬzZ`RitvQ*WNPB ┪M.`,ƶaX!+~aob;xX,Ǯ11ÂdAJlQ?+ kᷗQֲ(>{ L$&`Pm(4i_`>GrrVAUAd W¸>a(7f ?ۣ8 > [)~Iu_lB(!)ZKEU%^m?ȬT-4߁wnݕj-kyGqY0b򂰏05֞${pt22f> 1GH.O{B[8!{i(KS~fkc̆F ?p?\L`agMoP3$=@hN#\_rb&oQKn /JzD|l30<&Vf 4c Vd{KqDcC+M@O`eVܽ+HC2mo-Hp 1qIOA G'L*'?Tik0aaBw7v^h9%vtt^]qvfL}x~Lc*$uRZq*$ՏX[@3zJ>pۣݾ~f4aU}8*=4No~u݆8.GjI{փY{o:DS/ZP~Zv9PBT+ja;͘f /_qwɍesp\;?sM5g(cɑDOI~(69Lhm9p1f+Cyl]l ;]]nsya7Ώ*-R5Uܜ;7pSU2?PmD MӢ!UM] ; x4 +Y桧!|e\yc Po?Ψϓde <ː= 2_t7D,d;ýaW<7{8a47endstream endobj 155 0 obj 1701 endobj 148 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [401.677 148.613 408.651 159.452] /Subtype /Link /A << /S /GoTo /D (figure.1) >> >> endobj 140 0 obj << /D [138 0 R /XYZ 89.292 765.769 null] >> endobj 141 0 obj << /D [138 0 R /XYZ 132.623 589.159 null] >> endobj 137 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F80 106 0 R /F13 132 0 R /F10 135 0 R /F7 92 0 R /F11 144 0 R /F88 147 0 R >> /XObject << /Im1 136 0 R >> /ProcSet [ /PDF /Text ] >> endobj 158 0 obj << /Length 2898 /Filter /FlateDecode >> stream xZ[o~>H5^d͢Imx4JE#9$ۇ>!ynL:o<Y V7oxrwp3-7sq睰^D+_1TYz9􂖚 |<ιb$ʉ&#L/YHB92m&\^HPJZtJ,Ei+> 1PCTDN۹i=YSZk16X}t)c[k/i}nSMvuj HIY8w2?v} Y&O v{H$*:[eJ8 5a<+C_VqBoAzK _ mGgq[=0$O$b5F)`U9R?YfQb0PrpH0˚e+A) Abl #gVȹv@&GY-moUr``_@q@EƐ`eT \J9j"1;G.+6JC'e܊tngM"@yN#k11[ RANB|w7@"?pTiY`|փ#}{=:@m[fy7befL񁣟C#4m2zS8%Y<p^vt]9)d|>DH;V[nA){sdr4l=60ti츥sٮi[i:8s̐aQ GN>Nt&zhxCY9%05۞SH _sR(QF'+]3x8S9dW+nzgzZ}yb]J'9bZtyK1y`KN$8JPn[y{@ɍMqt?*KܖJ#8PRv (}: >RJY`p^"G!~zw;^wUAV`UG(7Jn.LE6bmzaXGq_t?6}0LI UY9v7l-WB/ p)MsXZ{t/~%_==O Br=_P {W<p۪]NRBCy l|:vleܿ8Lf8Av@*JO:UOBhB=FER>]?v87*k}{q) Sv|*w:n] ѝƄGRbP#92HFCc@#/1C{䰨y8j&3_"3)~ ծK[T:ɏW0h$qHr ֽ59ɁطyIɐۍRwԯ_#wzQ8@Ȳf;{UsTPTlvLubW4eu@s^Vȵ]&ő逼LIj! єrM2!{s< [N6Lg&l xxfyBTXϪٗ_gxY"=@4E1۞4R@-\ߜ}>OdO(:%urNPTY3!v\? C{Ю);n:Mx Nr6 U̹u 1K;IJԧ9E!Ľ=BhR~= DT<_5܃܎պl9#t#>\*]**">'ĉRc_&ևx:{i>gzXw[YՑ"`ڀ@}6lpa*/R5Gn}$%/pҦLq kn#f)iK(K 786zG~-띀tpfӠ$m4 `Pcendstream endobj 157 0 obj << /Type /Page /Contents 158 0 R /Resources 156 0 R /MediaBox [0 0 595.276 841.89] /Parent 165 0 R /Annots [ 160 0 R ] >> endobj 160 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.675 292.603 148.134 302.702] /Subtype /Link /A << /S /GoTo /D (Hfootnote.4) >> >> endobj 159 0 obj << /D [157 0 R /XYZ 89.292 765.769 null] >> endobj 22 0 obj << /D [157 0 R /XYZ 89.292 405.071 null] >> endobj 161 0 obj << /D [157 0 R /XYZ 104.528 181.849 null] >> endobj 156 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F80 106 0 R /F39 57 0 R /F7 92 0 R /F25 109 0 R /F24 113 0 R /F91 164 0 R >> /ProcSet [ /PDF /Text ] >> endobj 168 0 obj << /Length 2930 /Filter /FlateDecode >> stream xڵZo#_hIprh@rHuVki}^__~ ܵĺ胰\rf8Hw_razAl Ic]\^[]ZPKCۺҵ}Y2G`ܷ)j3MOzbi[)ma*jMam:4nVxT{jΒYT ‚84-%ZTςJH%$iDB㪑,'*I;I=J¨>i$s%njC"2dMShhX$|>mi1kTd?Ti 3+:gX{bM4IcggeyM-e"M9cIJ EFR%C- !rH~kP_E~/ U7Ex]lu)ꤙ N B]SlXKBl(n R"9{6C!՗šv SWSt]@VS !LIe[JOcYY)Ø P|Є̌qPe1*tޤdͬU]uEy>a\Q2 QR~*vhqþdf,R٢֔~(o">8$ǣX\Z1 =,w2vjhW"㙼rm `_bL;?k8V%Uj$c(fU1b_whݦGV[;2(*.=SyG"s0fe;1P<"VnST;!/;ST6RW* uc\އ3-;!veT_TWa2T aL Y;.vd]!u*3EqK֡y䥟{:&cdYuħЙ̌4,YSyHuuA]Weh]q=\WI;;.Y]%Ca_V) 8s,p;9[/fFx1O%fN4[tH׫57by̲{/Gb3v)]/]a81rG۶Sߺ(ko u[=sY1g˃~^VɋI+JUP& X- 8zE%05PjH,zn}p$^_`F|[KAi s#|t1/pemt:{_mۛԾv~ݑ9;_<`ΛH^E8=Ir@29;1'=ƾm7"Oi#EB 8r;(*gumVGwP[!̘qиscE&E6m'Zl$(41܌QXC-,|u#3]c|!]>yQ+9sDTX ZԀQ_qAaڛ^Ho h5&٥nωl~}.XZWYp$` hbٖn,: aC1t69b QQ-ٻ6q8mBO2EZ) 6h{H3}:n\& K~AlLX|X́;;.p\߂W5uG@{}^b/6LZ_ME:mOd9rCy6ld3B~>cnj>X/PIz#s>tűxzn2Pـ mlH$۔7x]N713Xh#%F$Um8^|yȂ.mK=o_|x,. pkOMjbAj/YWL.[ 8I kB  uq#Lr+|y뒞uV$$=W!%#4v wϽg|>֦=Nv7@~ Www0}pՇn_0}p|k, 6?acv;'&3=UJcªSכ>eo=ڴ~cxkvh~-A K."zpehx1le+͗ _*WqǾj}v{su!RIlM#]0bR1/qƯTWyu=Lֆb)sDV5"K{{=S˓!7[o@IX|r`"}lN- ꎷS)vr1v}sR5&0Dl6}-xvU)!Al3=/q޸91&'SNendstream endobj 167 0 obj << /Type /Page /Contents 168 0 R /Resources 166 0 R /MediaBox [0 0 595.276 841.89] /Parent 165 0 R /Annots [ 170 0 R 171 0 R ] >> endobj 170 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [408.817 385.619 415.275 397.651] /Subtype /Link /A << /S /GoTo /D (Hfootnote.5) >> >> endobj 171 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [246.461 193.626 252.92 205.937] /Subtype /Link /A << /S /GoTo /D (Hfootnote.6) >> >> endobj 169 0 obj << /D [167 0 R /XYZ 89.292 765.769 null] >> endobj 172 0 obj << /D [167 0 R /XYZ 104.528 189.419 null] >> endobj 173 0 obj << /D [167 0 R /XYZ 104.528 179.935 null] >> endobj 166 0 obj << /Font << /F75 96 0 R /F8 79 0 R /F7 92 0 R /F80 106 0 R /F25 109 0 R /F24 113 0 R /F91 164 0 R >> /ProcSet [ /PDF /Text ] >> endobj 177 0 obj << /Length 1763 /Filter /FlateDecode >> stream xڭX{oF ߟD%Y6E׵CQlXLqכmӢ~<#YӑGxyr.u.Bέʬl~s@8eDÕ^)@@HmU}flrJXUj&U1(>aD! KXaCX)k{}w@!.3nQ⎡Fl:z#836;t{yDlB,EI@: f_Izq M}po1O[j _Gq5 1j [q?Q]emb{%5οĜI|"o #ȟӆv'z3ROM T}sݹy'</>ؗg\yvSx( Bp3B #JD'mH^1ser`;ae|Wt 8@N@4h'*A4Vi5!n{mk|ޫH8}JT)q8ݠ>%:0TmU i^Y ]X@o2ɰ[`VC ^odj77ظMsԺp"Ow~ĆҦ =d< *'V7.+4rُ?F`endstream endobj 176 0 obj << /Type /Page /Contents 177 0 R /Resources 175 0 R /MediaBox [0 0 595.276 841.89] /Parent 165 0 R >> endobj 174 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./ShortRead_and_HilbertVis-me3_p10.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 180 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 360 216] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 181 0 R >> /ExtGState << >>>> /Length 182 0 R >> stream q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 69.07 73.44 m 328.36 73.44 l S 69.07 73.44 m 69.07 66.24 l S 106.11 73.44 m 106.11 66.24 l S 143.15 73.44 m 143.15 66.24 l S 180.19 73.44 m 180.19 66.24 l S 217.24 73.44 m 217.24 66.24 l S 254.28 73.44 m 254.28 66.24 l S 291.32 73.44 m 291.32 66.24 l S 328.36 73.44 m 328.36 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 47.21 47.52 Tm (0.0e+00) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 121.30 47.52 Tm (4.0e+07) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 195.38 47.52 Tm (8.0e+07) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 269.47 47.52 Tm (1.2e+08) Tj ET 59.04 76.53 m 59.04 153.87 l S 59.04 76.53 m 51.84 76.53 l S 59.04 92.00 m 51.84 92.00 l S 59.04 107.47 m 51.84 107.47 l S 59.04 122.93 m 51.84 122.93 l S 59.04 138.40 m 51.84 138.40 l S 59.04 153.87 m 51.84 153.87 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 73.20 Tm (0) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 100.79 Tm (10) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 131.73 Tm (20) Tj ET 59.04 73.44 m 329.76 73.44 l 329.76 156.96 l 59.04 156.96 l 59.04 73.44 l S Q q Q q 59.04 73.44 270.72 83.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 69.07 76.53 m 69.13 76.53 l S 69.13 76.53 m 69.19 76.53 l S 69.19 76.53 m 69.25 79.63 l S 69.25 76.53 m 69.32 79.63 l S 69.32 76.53 m 69.38 79.63 l S 69.38 76.53 m 69.44 82.72 l S 69.44 76.53 m 69.51 79.63 l S 69.51 76.53 m 69.57 79.63 l S 69.57 76.53 m 69.63 79.63 l S 69.63 76.53 m 69.69 79.63 l S 69.69 76.53 m 69.76 79.63 l S 69.76 76.53 m 69.82 79.63 l S 69.82 76.53 m 69.88 79.63 l S 69.88 76.53 m 69.94 79.63 l S 69.94 76.53 m 70.01 79.63 l S 70.01 76.53 m 70.07 85.81 l S 70.07 76.53 m 70.13 79.63 l S 70.13 76.53 m 70.19 79.63 l S 70.19 76.53 m 70.26 79.63 l S 70.26 76.53 m 70.32 79.63 l S 70.32 76.53 m 70.38 79.63 l S 70.38 76.53 m 70.45 79.63 l S 70.45 76.53 m 70.51 79.63 l S 70.51 76.53 m 70.57 79.63 l S 70.57 76.53 m 70.63 82.72 l S 70.63 76.53 m 70.70 79.63 l S 70.70 76.53 m 70.76 82.72 l S 70.76 76.53 m 70.82 79.63 l S 70.82 76.53 m 70.88 88.91 l S 70.88 76.53 m 70.95 79.63 l S 70.95 76.53 m 71.01 82.72 l S 71.01 76.53 m 71.07 79.63 l S 71.07 76.53 m 71.14 110.56 l S 71.14 76.53 m 71.20 79.63 l S 71.20 76.53 m 71.26 82.72 l S 71.26 76.53 m 71.32 79.63 l S 71.32 76.53 m 71.39 79.63 l S 71.39 76.53 m 71.45 82.72 l S 71.45 76.53 m 71.51 79.63 l S 71.51 76.53 m 71.57 79.63 l S 71.57 76.53 m 71.64 79.63 l S 71.64 76.53 m 71.70 82.72 l S 71.70 76.53 m 71.76 79.63 l S 71.76 76.53 m 71.82 79.63 l S 71.82 76.53 m 71.89 79.63 l S 71.89 76.53 m 71.95 79.63 l S 71.95 76.53 m 72.01 79.63 l S 72.01 76.53 m 72.08 79.63 l S 72.08 76.53 m 72.14 79.63 l S 72.14 76.53 m 72.20 79.63 l S 72.20 76.53 m 72.26 79.63 l S 72.26 76.53 m 72.33 79.63 l S 72.33 76.53 m 72.39 79.63 l S 72.39 76.53 m 72.45 79.63 l S 72.45 76.53 m 72.51 79.63 l S 72.51 76.53 m 72.58 79.63 l S 72.58 76.53 m 72.64 79.63 l S 72.64 76.53 m 72.70 79.63 l S 72.70 76.53 m 72.76 82.72 l S 72.76 76.53 m 72.83 79.63 l S 72.83 76.53 m 72.89 79.63 l S 72.89 76.53 m 72.95 82.72 l S 72.95 76.53 m 73.02 79.63 l S 73.02 76.53 m 73.08 79.63 l S 73.08 76.53 m 73.14 79.63 l S 73.14 76.53 m 73.20 79.63 l S 73.20 76.53 m 73.27 79.63 l S 73.27 76.53 m 73.33 79.63 l S 73.33 76.53 m 73.39 79.63 l S 73.39 76.53 m 73.45 79.63 l S 73.45 76.53 m 73.52 79.63 l S 73.52 76.53 m 73.58 79.63 l S 73.58 76.53 m 73.64 79.63 l S 73.64 76.53 m 73.71 79.63 l S 73.71 76.53 m 73.77 79.63 l S 73.77 76.53 m 73.83 79.63 l S 73.83 76.53 m 73.89 79.63 l S 73.89 76.53 m 73.96 79.63 l S 73.96 76.53 m 74.02 79.63 l S 74.02 76.53 m 74.08 79.63 l S 74.08 76.53 m 74.14 79.63 l S 74.14 76.53 m 74.21 79.63 l S 74.21 76.53 m 74.27 79.63 l S 74.27 76.53 m 74.33 79.63 l S 74.33 76.53 m 74.39 79.63 l S 74.39 76.53 m 74.46 79.63 l S 74.46 76.53 m 74.52 79.63 l S 74.52 76.53 m 74.58 79.63 l S 74.58 76.53 m 74.65 79.63 l S 74.65 76.53 m 74.71 79.63 l S 74.71 76.53 m 74.77 79.63 l S 74.77 76.53 m 74.83 88.91 l S 74.83 76.53 m 74.90 79.63 l S 74.90 76.53 m 74.96 79.63 l S 74.96 76.53 m 75.02 95.09 l S 75.02 76.53 m 75.08 82.72 l S 75.08 76.53 m 75.15 82.72 l S 75.15 76.53 m 75.21 79.63 l S 75.21 76.53 m 75.27 79.63 l S 75.27 76.53 m 75.33 79.63 l S 75.33 76.53 m 75.40 79.63 l S 75.40 76.53 m 75.46 79.63 l S 75.46 76.53 m 75.52 79.63 l S 75.52 76.53 m 75.59 82.72 l S 75.59 76.53 m 75.65 79.63 l S 75.65 76.53 m 75.71 79.63 l S 75.71 76.53 m 75.77 79.63 l S 75.77 76.53 m 75.84 76.53 l S 75.84 76.53 m 75.90 79.63 l S 75.90 76.53 m 75.96 79.63 l S 75.96 76.53 m 76.02 79.63 l S 76.02 76.53 m 76.09 79.63 l S 76.09 76.53 m 76.15 88.91 l S 76.15 76.53 m 76.21 82.72 l S 76.21 76.53 m 76.28 79.63 l S 76.28 76.53 m 76.34 79.63 l S 76.34 76.53 m 76.40 79.63 l S 76.40 76.53 m 76.46 82.72 l S 76.46 76.53 m 76.53 79.63 l S 76.53 76.53 m 76.59 79.63 l S 76.59 76.53 m 76.65 79.63 l S 76.65 76.53 m 76.71 79.63 l S 76.71 76.53 m 76.78 79.63 l S 76.78 76.53 m 76.84 79.63 l S 76.84 76.53 m 76.90 79.63 l S 76.90 76.53 m 76.96 79.63 l S 76.96 76.53 m 77.03 79.63 l S 77.03 76.53 m 77.09 79.63 l S 77.09 76.53 m 77.15 79.63 l S 77.15 76.53 m 77.22 79.63 l S 77.22 76.53 m 77.28 79.63 l S 77.28 76.53 m 77.34 82.72 l S 77.34 76.53 m 77.40 79.63 l S 77.40 76.53 m 77.47 79.63 l S 77.47 76.53 m 77.53 79.63 l S 77.53 76.53 m 77.59 82.72 l S 77.59 76.53 m 77.65 79.63 l S 77.65 76.53 m 77.72 79.63 l S 77.72 76.53 m 77.78 79.63 l S 77.78 76.53 m 77.84 79.63 l S 77.84 76.53 m 77.90 82.72 l S 77.90 76.53 m 77.97 79.63 l S 77.97 76.53 m 78.03 79.63 l S 78.03 76.53 m 78.09 79.63 l S 78.09 76.53 m 78.16 79.63 l S 78.16 76.53 m 78.22 79.63 l S 78.22 76.53 m 78.28 79.63 l S 78.28 76.53 m 78.34 79.63 l S 78.34 76.53 m 78.41 79.63 l S 78.41 76.53 m 78.47 79.63 l S 78.47 76.53 m 78.53 82.72 l S 78.53 76.53 m 78.59 82.72 l S 78.59 76.53 m 78.66 79.63 l S 78.66 76.53 m 78.72 79.63 l S 78.72 76.53 m 78.78 79.63 l S 78.78 76.53 m 78.85 79.63 l S 78.85 76.53 m 78.91 79.63 l S 78.91 76.53 m 78.97 79.63 l S 78.97 76.53 m 79.03 79.63 l S 79.03 76.53 m 79.10 79.63 l S 79.10 76.53 m 79.16 82.72 l S 79.16 76.53 m 79.22 82.72 l S 79.22 76.53 m 79.28 79.63 l S 79.28 76.53 m 79.35 79.63 l S 79.35 76.53 m 79.41 79.63 l S 79.41 76.53 m 79.47 79.63 l S 79.47 76.53 m 79.53 79.63 l S 79.53 76.53 m 79.60 79.63 l S 79.60 76.53 m 79.66 82.72 l S 79.66 76.53 m 79.72 85.81 l S 79.72 76.53 m 79.79 88.91 l S 79.79 76.53 m 79.85 79.63 l S 79.85 76.53 m 79.91 79.63 l S 79.91 76.53 m 79.97 79.63 l S 79.97 76.53 m 80.04 92.00 l S 80.04 76.53 m 80.10 79.63 l S 80.10 76.53 m 80.16 85.81 l S 80.16 76.53 m 80.22 79.63 l S 80.22 76.53 m 80.29 79.63 l S 80.29 76.53 m 80.35 92.00 l S 80.35 76.53 m 80.41 79.63 l S 80.41 76.53 m 80.47 92.00 l S 80.47 76.53 m 80.54 95.09 l S 80.54 76.53 m 80.60 88.91 l S 80.60 76.53 m 80.66 85.81 l S 80.66 76.53 m 80.73 82.72 l S 80.73 76.53 m 80.79 79.63 l S 80.79 76.53 m 80.85 79.63 l S 80.85 76.53 m 80.91 79.63 l S 80.91 76.53 m 80.98 82.72 l S 80.98 76.53 m 81.04 79.63 l S 81.04 76.53 m 81.10 79.63 l S 81.10 76.53 m 81.16 79.63 l S 81.16 76.53 m 81.23 82.72 l S 81.23 76.53 m 81.29 79.63 l S 81.29 76.53 m 81.35 79.63 l S 81.35 76.53 m 81.42 88.91 l S 81.42 76.53 m 81.48 79.63 l S 81.48 76.53 m 81.54 82.72 l S 81.54 76.53 m 81.60 79.63 l S 81.60 76.53 m 81.67 79.63 l S 81.67 76.53 m 81.73 79.63 l S 81.73 76.53 m 81.79 79.63 l S 81.79 76.53 m 81.85 79.63 l S 81.85 76.53 m 81.92 79.63 l S 81.92 76.53 m 81.98 79.63 l S 81.98 76.53 m 82.04 82.72 l S 82.04 76.53 m 82.10 79.63 l S 82.10 76.53 m 82.17 79.63 l S 82.17 76.53 m 82.23 79.63 l S 82.23 76.53 m 82.29 79.63 l S 82.29 76.53 m 82.36 82.72 l S 82.36 76.53 m 82.42 79.63 l S 82.42 76.53 m 82.48 79.63 l S 82.48 76.53 m 82.54 85.81 l S 82.54 76.53 m 82.61 79.63 l S 82.61 76.53 m 82.67 79.63 l S 82.67 76.53 m 82.73 79.63 l S 82.73 76.53 m 82.79 79.63 l S 82.79 76.53 m 82.86 79.63 l S 82.86 76.53 m 82.92 79.63 l S 82.92 76.53 m 82.98 88.91 l S 82.98 76.53 m 83.04 82.72 l S 83.04 76.53 m 83.11 79.63 l S 83.11 76.53 m 83.17 79.63 l S 83.17 76.53 m 83.23 79.63 l S 83.23 76.53 m 83.30 82.72 l S 83.30 76.53 m 83.36 79.63 l S 83.36 76.53 m 83.42 79.63 l S 83.42 76.53 m 83.48 82.72 l S 83.48 76.53 m 83.55 82.72 l S 83.55 76.53 m 83.61 79.63 l S 83.61 76.53 m 83.67 92.00 l S 83.67 76.53 m 83.73 92.00 l S 83.73 76.53 m 83.80 79.63 l S 83.80 76.53 m 83.86 79.63 l S 83.86 76.53 m 83.92 79.63 l S 83.92 76.53 m 83.99 79.63 l S 83.99 76.53 m 84.05 79.63 l S 84.05 76.53 m 84.11 79.63 l S 84.11 76.53 m 84.17 88.91 l S 84.17 76.53 m 84.24 82.72 l S 84.24 76.53 m 84.30 82.72 l S 84.30 76.53 m 84.36 79.63 l S 84.36 76.53 m 84.42 79.63 l S 84.42 76.53 m 84.49 79.63 l S 84.49 76.53 m 84.55 79.63 l S 84.55 76.53 m 84.61 79.63 l S 84.61 76.53 m 84.67 82.72 l S 84.67 76.53 m 84.74 82.72 l S 84.74 76.53 m 84.80 79.63 l S 84.80 76.53 m 84.86 79.63 l S 84.86 76.53 m 84.93 79.63 l S 84.93 76.53 m 84.99 79.63 l S 84.99 76.53 m 85.05 79.63 l S 85.05 76.53 m 85.11 79.63 l S 85.11 76.53 m 85.18 79.63 l S 85.18 76.53 m 85.24 79.63 l S 85.24 76.53 m 85.30 79.63 l S 85.30 76.53 m 85.36 79.63 l S 85.36 76.53 m 85.43 79.63 l S 85.43 76.53 m 85.49 79.63 l S 85.49 76.53 m 85.55 79.63 l S 85.55 76.53 m 85.61 82.72 l S 85.61 76.53 m 85.68 76.53 l S 85.68 76.53 m 85.74 79.63 l S 85.74 76.53 m 85.80 79.63 l S 85.80 76.53 m 85.87 79.63 l S 85.87 76.53 m 85.93 79.63 l S 85.93 76.53 m 85.99 79.63 l S 85.99 76.53 m 86.05 76.53 l S 86.05 76.53 m 86.12 79.63 l S 86.12 76.53 m 86.18 79.63 l S 86.18 76.53 m 86.24 82.72 l S 86.24 76.53 m 86.30 79.63 l S 86.30 76.53 m 86.37 79.63 l S 86.37 76.53 m 86.43 79.63 l S 86.43 76.53 m 86.49 82.72 l S 86.49 76.53 m 86.56 79.63 l S 86.56 76.53 m 86.62 79.63 l S 86.62 76.53 m 86.68 79.63 l S 86.68 76.53 m 86.74 79.63 l S 86.74 76.53 m 86.81 76.53 l S 86.81 76.53 m 86.87 79.63 l S 86.87 76.53 m 86.93 79.63 l S 86.93 76.53 m 86.99 79.63 l S 86.99 76.53 m 87.06 79.63 l S 87.06 76.53 m 87.12 79.63 l S 87.12 76.53 m 87.18 79.63 l S 87.18 76.53 m 87.24 79.63 l S 87.24 76.53 m 87.31 79.63 l S 87.31 76.53 m 87.37 79.63 l S 87.37 76.53 m 87.43 79.63 l S 87.43 76.53 m 87.50 79.63 l S 87.50 76.53 m 87.56 79.63 l S 87.56 76.53 m 87.62 79.63 l S 87.62 76.53 m 87.68 79.63 l S 87.68 76.53 m 87.75 79.63 l S 87.75 76.53 m 87.81 79.63 l S 87.81 76.53 m 87.87 79.63 l S 87.87 76.53 m 87.93 79.63 l S 87.93 76.53 m 88.00 79.63 l S 88.00 76.53 m 88.06 79.63 l S 88.06 76.53 m 88.12 79.63 l S 88.12 76.53 m 88.18 79.63 l S 88.18 76.53 m 88.25 79.63 l S 88.25 76.53 m 88.31 79.63 l S 88.31 76.53 m 88.37 79.63 l S 88.37 76.53 m 88.44 82.72 l S 88.44 76.53 m 88.50 79.63 l S 88.50 76.53 m 88.56 79.63 l S 88.56 76.53 m 88.62 79.63 l S 88.62 76.53 m 88.69 79.63 l S 88.69 76.53 m 88.75 79.63 l S 88.75 76.53 m 88.81 79.63 l S 88.81 76.53 m 88.87 79.63 l S 88.87 76.53 m 88.94 79.63 l S 88.94 76.53 m 89.00 79.63 l S 89.00 76.53 m 89.06 79.63 l S 89.06 76.53 m 89.13 79.63 l S 89.13 76.53 m 89.19 79.63 l S 89.19 76.53 m 89.25 79.63 l S 89.25 76.53 m 89.31 79.63 l S 89.31 76.53 m 89.38 79.63 l S 89.38 76.53 m 89.44 79.63 l S 89.44 76.53 m 89.50 79.63 l S 89.50 76.53 m 89.56 82.72 l S 89.56 76.53 m 89.63 82.72 l S 89.63 76.53 m 89.69 79.63 l S 89.69 76.53 m 89.75 79.63 l S 89.75 76.53 m 89.81 79.63 l S 89.81 76.53 m 89.88 79.63 l S 89.88 76.53 m 89.94 95.09 l S 89.94 76.53 m 90.00 79.63 l S 90.00 76.53 m 90.07 82.72 l S 90.07 76.53 m 90.13 79.63 l S 90.13 76.53 m 90.19 79.63 l S 90.19 76.53 m 90.25 79.63 l S 90.25 76.53 m 90.32 79.63 l S 90.32 76.53 m 90.38 79.63 l S 90.38 76.53 m 90.44 79.63 l S 90.44 76.53 m 90.50 79.63 l S 90.50 76.53 m 90.57 79.63 l S 90.57 76.53 m 90.63 79.63 l S 90.63 76.53 m 90.69 79.63 l S 90.69 76.53 m 90.75 82.72 l S 90.75 76.53 m 90.82 79.63 l S 90.82 76.53 m 90.88 82.72 l S 90.88 76.53 m 90.94 79.63 l S 90.94 76.53 m 91.01 85.81 l S 91.01 76.53 m 91.07 79.63 l S 91.07 76.53 m 91.13 79.63 l S 91.13 76.53 m 91.19 79.63 l S 91.19 76.53 m 91.26 79.63 l S 91.26 76.53 m 91.32 79.63 l S 91.32 76.53 m 91.38 79.63 l S 91.38 76.53 m 91.44 79.63 l S 91.44 76.53 m 91.51 76.53 l S 91.51 76.53 m 91.57 85.81 l S 91.57 76.53 m 91.63 95.09 l S 91.63 76.53 m 91.69 92.00 l S 91.69 76.53 m 91.76 79.63 l S 91.76 76.53 m 91.82 88.91 l S 91.82 76.53 m 91.88 79.63 l S 91.88 76.53 m 91.95 79.63 l S 91.95 76.53 m 92.01 79.63 l S 92.01 76.53 m 92.07 79.63 l S 92.07 76.53 m 92.13 95.09 l S 92.13 76.53 m 92.20 79.63 l S 92.20 76.53 m 92.26 79.63 l S 92.26 76.53 m 92.32 79.63 l S 92.32 76.53 m 92.38 79.63 l S 92.38 76.53 m 92.45 79.63 l S 92.45 76.53 m 92.51 79.63 l S 92.51 76.53 m 92.57 82.72 l S 92.57 76.53 m 92.64 79.63 l S 92.64 76.53 m 92.70 79.63 l S 92.70 76.53 m 92.76 79.63 l S 92.76 76.53 m 92.82 82.72 l S 92.82 76.53 m 92.89 79.63 l S 92.89 76.53 m 92.95 79.63 l S 92.95 76.53 m 93.01 79.63 l S 93.01 76.53 m 93.07 79.63 l S 93.07 76.53 m 93.14 79.63 l S 93.14 76.53 m 93.20 79.63 l S 93.20 76.53 m 93.26 82.72 l S 93.26 76.53 m 93.32 79.63 l S 93.32 76.53 m 93.39 79.63 l S 93.39 76.53 m 93.45 79.63 l S 93.45 76.53 m 93.51 88.91 l S 93.51 76.53 m 93.58 79.63 l S 93.58 76.53 m 93.64 79.63 l S 93.64 76.53 m 93.70 76.53 l S 93.70 76.53 m 93.76 79.63 l S 93.76 76.53 m 93.83 79.63 l S 93.83 76.53 m 93.89 85.81 l S 93.89 76.53 m 93.95 85.81 l S 93.95 76.53 m 94.01 79.63 l S 94.01 76.53 m 94.08 79.63 l S 94.08 76.53 m 94.14 82.72 l S 94.14 76.53 m 94.20 79.63 l S 94.20 76.53 m 94.26 82.72 l S 94.26 76.53 m 94.33 79.63 l S 94.33 76.53 m 94.39 85.81 l S 94.39 76.53 m 94.45 79.63 l S 94.45 76.53 m 94.52 79.63 l S 94.52 76.53 m 94.58 79.63 l S 94.58 76.53 m 94.64 79.63 l S 94.64 76.53 m 94.70 79.63 l S 94.70 76.53 m 94.77 79.63 l S 94.77 76.53 m 94.83 79.63 l S 94.83 76.53 m 94.89 79.63 l S 94.89 76.53 m 94.95 79.63 l S 94.95 76.53 m 95.02 79.63 l S 95.02 76.53 m 95.08 79.63 l S 95.08 76.53 m 95.14 79.63 l S 95.14 76.53 m 95.21 79.63 l S 95.21 76.53 m 95.27 82.72 l S 95.27 76.53 m 95.33 79.63 l S 95.33 76.53 m 95.39 79.63 l S 95.39 76.53 m 95.46 79.63 l S 95.46 76.53 m 95.52 88.91 l S 95.52 76.53 m 95.58 79.63 l S 95.58 76.53 m 95.64 79.63 l S 95.64 76.53 m 95.71 79.63 l S 95.71 76.53 m 95.77 79.63 l S 95.77 76.53 m 95.83 79.63 l S 95.83 76.53 m 95.89 79.63 l S 95.89 76.53 m 95.96 79.63 l S 95.96 76.53 m 96.02 79.63 l S 96.02 76.53 m 96.08 79.63 l S 96.08 76.53 m 96.15 79.63 l S 96.15 76.53 m 96.21 85.81 l S 96.21 76.53 m 96.27 85.81 l S 96.27 76.53 m 96.33 79.63 l S 96.33 76.53 m 96.40 82.72 l S 96.40 76.53 m 96.46 79.63 l S 96.46 76.53 m 96.52 79.63 l S 96.52 76.53 m 96.58 82.72 l S 96.58 76.53 m 96.65 79.63 l S 96.65 76.53 m 96.71 92.00 l S 96.71 76.53 m 96.77 79.63 l S 96.77 76.53 m 96.83 88.91 l S 96.83 76.53 m 96.90 79.63 l S 96.90 76.53 m 96.96 92.00 l S 96.96 76.53 m 97.02 79.63 l S 97.02 76.53 m 97.09 76.53 l S 97.09 76.53 m 97.15 79.63 l S 97.15 76.53 m 97.21 95.09 l S 97.21 76.53 m 97.27 79.63 l S 97.27 76.53 m 97.34 92.00 l S 97.34 76.53 m 97.40 82.72 l S 97.40 76.53 m 97.46 79.63 l S 97.46 76.53 m 97.52 82.72 l S 97.52 76.53 m 97.59 82.72 l S 97.59 76.53 m 97.65 79.63 l S 97.65 76.53 m 97.71 79.63 l S 97.71 76.53 m 97.78 76.53 l S 97.78 76.53 m 97.84 79.63 l S 97.84 76.53 m 97.90 79.63 l S 97.90 76.53 m 97.96 79.63 l S 97.96 76.53 m 98.03 79.63 l S 98.03 76.53 m 98.09 79.63 l S 98.09 76.53 m 98.15 79.63 l S 98.15 76.53 m 98.21 79.63 l S 98.21 76.53 m 98.28 79.63 l S 98.28 76.53 m 98.34 79.63 l S 98.34 76.53 m 98.40 79.63 l S 98.40 76.53 m 98.46 79.63 l S 98.46 76.53 m 98.53 79.63 l S 98.53 76.53 m 98.59 79.63 l S 98.59 76.53 m 98.65 92.00 l S 98.65 76.53 m 98.72 82.72 l S 98.72 76.53 m 98.78 76.53 l S 98.78 76.53 m 98.84 79.63 l S 98.84 76.53 m 98.90 79.63 l S 98.90 76.53 m 98.97 79.63 l S 98.97 76.53 m 99.03 79.63 l S 99.03 76.53 m 99.09 79.63 l S 99.09 76.53 m 99.15 79.63 l S 99.15 76.53 m 99.22 79.63 l S 99.22 76.53 m 99.28 79.63 l S 99.28 76.53 m 99.34 79.63 l S 99.34 76.53 m 99.40 79.63 l S 99.40 76.53 m 99.47 79.63 l S 99.47 76.53 m 99.53 79.63 l S 99.53 76.53 m 99.59 79.63 l S 99.59 76.53 m 99.66 79.63 l S 99.66 76.53 m 99.72 82.72 l S 99.72 76.53 m 99.78 79.63 l S 99.78 76.53 m 99.84 82.72 l S 99.84 76.53 m 99.91 79.63 l S 99.91 76.53 m 99.97 79.63 l S 99.97 76.53 m 100.03 79.63 l S 100.03 76.53 m 100.09 79.63 l S 100.09 76.53 m 100.16 79.63 l S 100.16 76.53 m 100.22 79.63 l S 100.22 76.53 m 100.28 79.63 l S 100.28 76.53 m 100.35 79.63 l S 100.35 76.53 m 100.41 88.91 l S 100.41 76.53 m 100.47 79.63 l S 100.47 76.53 m 100.53 79.63 l S 100.53 76.53 m 100.60 79.63 l S 100.60 76.53 m 100.66 79.63 l S 100.66 76.53 m 100.72 79.63 l S 100.72 76.53 m 100.78 79.63 l S 100.78 76.53 m 100.85 79.63 l S 100.85 76.53 m 100.91 79.63 l S 100.91 76.53 m 100.97 79.63 l S 100.97 76.53 m 101.03 79.63 l S 101.03 76.53 m 101.10 92.00 l S 101.10 76.53 m 101.16 85.81 l S 101.16 76.53 m 101.22 79.63 l S 101.22 76.53 m 101.29 79.63 l S 101.29 76.53 m 101.35 79.63 l S 101.35 76.53 m 101.41 79.63 l S 101.41 76.53 m 101.47 79.63 l S 101.47 76.53 m 101.54 79.63 l S 101.54 76.53 m 101.60 82.72 l S 101.60 76.53 m 101.66 79.63 l S 101.66 76.53 m 101.72 79.63 l S 101.72 76.53 m 101.79 79.63 l S 101.79 76.53 m 101.85 85.81 l S 101.85 76.53 m 101.91 98.19 l S 101.91 76.53 m 101.97 79.63 l S 101.97 76.53 m 102.04 79.63 l S 102.04 76.53 m 102.10 79.63 l S 102.10 76.53 m 102.16 76.53 l S 102.16 76.53 m 102.23 76.53 l S 102.23 76.53 m 102.29 76.53 l S 102.29 76.53 m 102.35 76.53 l S 102.35 76.53 m 102.41 79.63 l S 102.41 76.53 m 102.48 76.53 l S 102.48 76.53 m 102.54 76.53 l S 102.54 76.53 m 102.60 76.53 l S 102.60 76.53 m 102.66 76.53 l S 102.66 76.53 m 102.73 76.53 l S 102.73 76.53 m 102.79 76.53 l S 102.79 76.53 m 102.85 79.63 l S 102.85 76.53 m 102.92 79.63 l S 102.92 76.53 m 102.98 79.63 l S 102.98 76.53 m 103.04 79.63 l S 103.04 76.53 m 103.10 79.63 l S 103.10 76.53 m 103.17 79.63 l S 103.17 76.53 m 103.23 79.63 l S 103.23 76.53 m 103.29 79.63 l S 103.29 76.53 m 103.35 79.63 l S 103.35 76.53 m 103.42 79.63 l S 103.42 76.53 m 103.48 79.63 l S 103.48 76.53 m 103.54 79.63 l S 103.54 76.53 m 103.60 79.63 l S 103.60 76.53 m 103.67 79.63 l S 103.67 76.53 m 103.73 79.63 l S 103.73 76.53 m 103.79 79.63 l S 103.79 76.53 m 103.86 79.63 l S 103.86 76.53 m 103.92 82.72 l S 103.92 76.53 m 103.98 79.63 l S 103.98 76.53 m 104.04 79.63 l S 104.04 76.53 m 104.11 79.63 l S 104.11 76.53 m 104.17 79.63 l S 104.17 76.53 m 104.23 95.09 l S 104.23 76.53 m 104.29 95.09 l S 104.29 76.53 m 104.36 79.63 l S 104.36 76.53 m 104.42 79.63 l S 104.42 76.53 m 104.48 79.63 l S 104.48 76.53 m 104.54 79.63 l S 104.54 76.53 m 104.61 79.63 l S 104.61 76.53 m 104.67 79.63 l S 104.67 76.53 m 104.73 79.63 l S 104.73 76.53 m 104.80 79.63 l S 104.80 76.53 m 104.86 79.63 l S 104.86 76.53 m 104.92 79.63 l S 104.92 76.53 m 104.98 79.63 l S 104.98 76.53 m 105.05 79.63 l S 105.05 76.53 m 105.11 79.63 l S 105.11 76.53 m 105.17 79.63 l S 105.17 76.53 m 105.23 79.63 l S 105.23 76.53 m 105.30 79.63 l S 105.30 76.53 m 105.36 79.63 l S 105.36 76.53 m 105.42 79.63 l S 105.42 76.53 m 105.49 79.63 l S 105.49 76.53 m 105.55 76.53 l S 105.55 76.53 m 105.61 79.63 l S 105.61 76.53 m 105.67 79.63 l S 105.67 76.53 m 105.74 76.53 l S 105.74 76.53 m 105.80 82.72 l S 105.80 76.53 m 105.86 79.63 l S 105.86 76.53 m 105.92 79.63 l S 105.92 76.53 m 105.99 79.63 l S 105.99 76.53 m 106.05 79.63 l S 106.05 76.53 m 106.11 79.63 l S 106.11 76.53 m 106.17 79.63 l S 106.17 76.53 m 106.24 79.63 l S 106.24 76.53 m 106.30 82.72 l S 106.30 76.53 m 106.36 79.63 l S 106.36 76.53 m 106.43 79.63 l S 106.43 76.53 m 106.49 79.63 l S 106.49 76.53 m 106.55 79.63 l S 106.55 76.53 m 106.61 79.63 l S 106.61 76.53 m 106.68 79.63 l S 106.68 76.53 m 106.74 79.63 l S 106.74 76.53 m 106.80 79.63 l S 106.80 76.53 m 106.86 76.53 l S 106.86 76.53 m 106.93 79.63 l S 106.93 76.53 m 106.99 79.63 l S 106.99 76.53 m 107.05 79.63 l S 107.05 76.53 m 107.11 79.63 l S 107.11 76.53 m 107.18 79.63 l S 107.18 76.53 m 107.24 79.63 l S 107.24 76.53 m 107.30 79.63 l S 107.30 76.53 m 107.37 79.63 l S 107.37 76.53 m 107.43 79.63 l S 107.43 76.53 m 107.49 79.63 l S 107.49 76.53 m 107.55 76.53 l S 107.55 76.53 m 107.62 79.63 l S 107.62 76.53 m 107.68 79.63 l S 107.68 76.53 m 107.74 79.63 l S 107.74 76.53 m 107.80 79.63 l S 107.80 76.53 m 107.87 79.63 l S 107.87 76.53 m 107.93 79.63 l S 107.93 76.53 m 107.99 79.63 l S 107.99 76.53 m 108.06 79.63 l S 108.06 76.53 m 108.12 79.63 l S 108.12 76.53 m 108.18 79.63 l S 108.18 76.53 m 108.24 79.63 l S 108.24 76.53 m 108.31 79.63 l S 108.31 76.53 m 108.37 76.53 l S 108.37 76.53 m 108.43 79.63 l S 108.43 76.53 m 108.49 79.63 l S 108.49 76.53 m 108.56 82.72 l S 108.56 76.53 m 108.62 79.63 l S 108.62 76.53 m 108.68 79.63 l S 108.68 76.53 m 108.74 79.63 l S 108.74 76.53 m 108.81 79.63 l S 108.81 76.53 m 108.87 79.63 l S 108.87 76.53 m 108.93 79.63 l S 108.93 76.53 m 109.00 79.63 l S 109.00 76.53 m 109.06 79.63 l S 109.06 76.53 m 109.12 79.63 l S 109.12 76.53 m 109.18 79.63 l S 109.18 76.53 m 109.25 82.72 l S 109.25 76.53 m 109.31 79.63 l S 109.31 76.53 m 109.37 79.63 l S 109.37 76.53 m 109.43 79.63 l S 109.43 76.53 m 109.50 82.72 l S 109.50 76.53 m 109.56 85.81 l S 109.56 76.53 m 109.62 82.72 l S 109.62 76.53 m 109.68 79.63 l S 109.68 76.53 m 109.75 79.63 l S 109.75 76.53 m 109.81 79.63 l S 109.81 76.53 m 109.87 79.63 l S 109.87 76.53 m 109.94 79.63 l S 109.94 76.53 m 110.00 79.63 l S 110.00 76.53 m 110.06 79.63 l S 110.06 76.53 m 110.12 79.63 l S 110.12 76.53 m 110.19 79.63 l S 110.19 76.53 m 110.25 79.63 l S 110.25 76.53 m 110.31 76.53 l S 110.31 76.53 m 110.37 79.63 l S 110.37 76.53 m 110.44 82.72 l S 110.44 76.53 m 110.50 82.72 l S 110.50 76.53 m 110.56 79.63 l S 110.56 76.53 m 110.63 79.63 l S 110.63 76.53 m 110.69 79.63 l S 110.69 76.53 m 110.75 79.63 l S 110.75 76.53 m 110.81 79.63 l S 110.81 76.53 m 110.88 79.63 l S 110.88 76.53 m 110.94 85.81 l S 110.94 76.53 m 111.00 79.63 l S 111.00 76.53 m 111.06 88.91 l S 111.06 76.53 m 111.13 76.53 l S 111.13 76.53 m 111.19 79.63 l S 111.19 76.53 m 111.25 88.91 l S 111.25 76.53 m 111.31 79.63 l S 111.31 76.53 m 111.38 79.63 l S 111.38 76.53 m 111.44 79.63 l S 111.44 76.53 m 111.50 79.63 l S 111.50 76.53 m 111.57 79.63 l S 111.57 76.53 m 111.63 79.63 l S 111.63 76.53 m 111.69 79.63 l S 111.69 76.53 m 111.75 88.91 l S 111.75 76.53 m 111.82 79.63 l S 111.82 76.53 m 111.88 82.72 l S 111.88 76.53 m 111.94 79.63 l S 111.94 76.53 m 112.00 79.63 l S 112.00 76.53 m 112.07 76.53 l S 112.07 76.53 m 112.13 79.63 l S 112.13 76.53 m 112.19 79.63 l S 112.19 76.53 m 112.25 79.63 l S 112.25 76.53 m 112.32 79.63 l S 112.32 76.53 m 112.38 79.63 l S 112.38 76.53 m 112.44 82.72 l S 112.44 76.53 m 112.51 79.63 l S 112.51 76.53 m 112.57 79.63 l S 112.57 76.53 m 112.63 79.63 l S 112.63 76.53 m 112.69 79.63 l S 112.69 76.53 m 112.76 79.63 l S 112.76 76.53 m 112.82 79.63 l S 112.82 76.53 m 112.88 79.63 l S 112.88 76.53 m 112.94 85.81 l S 112.94 76.53 m 113.01 79.63 l S 113.01 76.53 m 113.07 82.72 l S 113.07 76.53 m 113.13 92.00 l S 113.13 76.53 m 113.20 79.63 l S 113.20 76.53 m 113.26 79.63 l S 113.26 76.53 m 113.32 82.72 l S 113.32 76.53 m 113.38 79.63 l S 113.38 76.53 m 113.45 79.63 l S 113.45 76.53 m 113.51 79.63 l S 113.51 76.53 m 113.57 79.63 l S 113.57 76.53 m 113.63 79.63 l S 113.63 76.53 m 113.70 79.63 l S 113.70 76.53 m 113.76 79.63 l S 113.76 76.53 m 113.82 82.72 l S 113.82 76.53 m 113.88 79.63 l S 113.88 76.53 m 113.95 79.63 l S 113.95 76.53 m 114.01 79.63 l S 114.01 76.53 m 114.07 79.63 l S 114.07 76.53 m 114.14 79.63 l S 114.14 76.53 m 114.20 79.63 l S 114.20 76.53 m 114.26 82.72 l S 114.26 76.53 m 114.32 79.63 l S 114.32 76.53 m 114.39 79.63 l S 114.39 76.53 m 114.45 79.63 l S 114.45 76.53 m 114.51 79.63 l S 114.51 76.53 m 114.57 79.63 l S 114.57 76.53 m 114.64 79.63 l S 114.64 76.53 m 114.70 79.63 l S 114.70 76.53 m 114.76 79.63 l S 114.76 76.53 m 114.82 79.63 l S 114.82 76.53 m 114.89 79.63 l S 114.89 76.53 m 114.95 79.63 l S 114.95 76.53 m 115.01 79.63 l S 115.01 76.53 m 115.08 79.63 l S 115.08 76.53 m 115.14 79.63 l S 115.14 76.53 m 115.20 79.63 l S 115.20 76.53 m 115.26 79.63 l S 115.26 76.53 m 115.33 79.63 l S 115.33 76.53 m 115.39 79.63 l S 115.39 76.53 m 115.45 79.63 l S 115.45 76.53 m 115.51 82.72 l S 115.51 76.53 m 115.58 79.63 l S 115.58 76.53 m 115.64 79.63 l S 115.64 76.53 m 115.70 79.63 l S 115.70 76.53 m 115.77 79.63 l S 115.77 76.53 m 115.83 79.63 l S 115.83 76.53 m 115.89 79.63 l S 115.89 76.53 m 115.95 79.63 l S 115.95 76.53 m 116.02 85.81 l S 116.02 76.53 m 116.08 79.63 l S 116.08 76.53 m 116.14 79.63 l S 116.14 76.53 m 116.20 79.63 l S 116.20 76.53 m 116.27 79.63 l S 116.27 76.53 m 116.33 79.63 l S 116.33 76.53 m 116.39 79.63 l S 116.39 76.53 m 116.45 79.63 l S 116.45 76.53 m 116.52 79.63 l S 116.52 76.53 m 116.58 79.63 l S 116.58 76.53 m 116.64 79.63 l S 116.64 76.53 m 116.71 79.63 l S 116.71 76.53 m 116.77 79.63 l S 116.77 76.53 m 116.83 79.63 l S 116.83 76.53 m 116.89 79.63 l S 116.89 76.53 m 116.96 82.72 l S 116.96 76.53 m 117.02 79.63 l S 117.02 76.53 m 117.08 79.63 l S 117.08 76.53 m 117.14 79.63 l S 117.14 76.53 m 117.21 79.63 l S 117.21 76.53 m 117.27 79.63 l S 117.27 76.53 m 117.33 79.63 l S 117.33 76.53 m 117.39 79.63 l S 117.39 76.53 m 117.46 79.63 l S 117.46 76.53 m 117.52 82.72 l S 117.52 76.53 m 117.58 79.63 l S 117.58 76.53 m 117.65 79.63 l S 117.65 76.53 m 117.71 79.63 l S 117.71 76.53 m 117.77 79.63 l S 117.77 76.53 m 117.83 79.63 l S 117.83 76.53 m 117.90 79.63 l S 117.90 76.53 m 117.96 79.63 l S 117.96 76.53 m 118.02 79.63 l S 118.02 76.53 m 118.08 79.63 l S 118.08 76.53 m 118.15 79.63 l S 118.15 76.53 m 118.21 79.63 l S 118.21 76.53 m 118.27 82.72 l S 118.27 76.53 m 118.33 79.63 l S 118.33 76.53 m 118.40 79.63 l S 118.40 76.53 m 118.46 79.63 l S 118.46 76.53 m 118.52 79.63 l S 118.52 76.53 m 118.59 79.63 l S 118.59 76.53 m 118.65 85.81 l S 118.65 76.53 m 118.71 79.63 l S 118.71 76.53 m 118.77 82.72 l S 118.77 76.53 m 118.84 79.63 l S 118.84 76.53 m 118.90 79.63 l S 118.90 76.53 m 118.96 79.63 l S 118.96 76.53 m 119.02 79.63 l S 119.02 76.53 m 119.09 79.63 l S 119.09 76.53 m 119.15 85.81 l S 119.15 76.53 m 119.21 79.63 l S 119.21 76.53 m 119.28 79.63 l S 119.28 76.53 m 119.34 79.63 l S 119.34 76.53 m 119.40 79.63 l S 119.40 76.53 m 119.46 82.72 l S 119.46 76.53 m 119.53 79.63 l S 119.53 76.53 m 119.59 79.63 l S 119.59 76.53 m 119.65 79.63 l S 119.65 76.53 m 119.71 79.63 l S 119.71 76.53 m 119.78 79.63 l S 119.78 76.53 m 119.84 79.63 l S 119.84 76.53 m 119.90 92.00 l S 119.90 76.53 m 119.96 79.63 l S 119.96 76.53 m 120.03 107.47 l S 120.03 76.53 m 120.09 79.63 l S 120.09 76.53 m 120.15 88.91 l S 120.15 76.53 m 120.22 79.63 l S 120.22 76.53 m 120.28 79.63 l S 120.28 76.53 m 120.34 79.63 l S 120.34 76.53 m 120.40 79.63 l S 120.40 76.53 m 120.47 79.63 l S 120.47 76.53 m 120.53 79.63 l S 120.53 76.53 m 120.59 79.63 l S 120.59 76.53 m 120.65 104.37 l S 120.65 76.53 m 120.72 79.63 l S 120.72 76.53 m 120.78 79.63 l S 120.78 76.53 m 120.84 79.63 l S 120.84 76.53 m 120.90 79.63 l S 120.90 76.53 m 120.97 79.63 l S 120.97 76.53 m 121.03 79.63 l S 121.03 76.53 m 121.09 85.81 l S 121.09 76.53 m 121.16 82.72 l S 121.16 76.53 m 121.22 79.63 l S 121.22 76.53 m 121.28 79.63 l S 121.28 76.53 m 121.34 79.63 l S 121.34 76.53 m 121.41 79.63 l S 121.41 76.53 m 121.47 82.72 l S 121.47 76.53 m 121.53 82.72 l S 121.53 76.53 m 121.59 88.91 l S 121.59 76.53 m 121.66 79.63 l S 121.66 76.53 m 121.72 79.63 l S 121.72 76.53 m 121.78 79.63 l S 121.78 76.53 m 121.85 79.63 l S 121.85 76.53 m 121.91 79.63 l S 121.91 76.53 m 121.97 79.63 l S 121.97 76.53 m 122.03 79.63 l S 122.03 76.53 m 122.10 79.63 l S 122.10 76.53 m 122.16 85.81 l S 122.16 76.53 m 122.22 79.63 l S 122.22 76.53 m 122.28 79.63 l S 122.28 76.53 m 122.35 79.63 l S 122.35 76.53 m 122.41 82.72 l S 122.41 76.53 m 122.47 79.63 l S 122.47 76.53 m 122.53 88.91 l S 122.53 76.53 m 122.60 79.63 l S 122.60 76.53 m 122.66 79.63 l S 122.66 76.53 m 122.72 79.63 l S 122.72 76.53 m 122.79 79.63 l S 122.79 76.53 m 122.85 88.91 l S 122.85 76.53 m 122.91 79.63 l S 122.91 76.53 m 122.97 79.63 l S 122.97 76.53 m 123.04 79.63 l S 123.04 76.53 m 123.10 79.63 l S 123.10 76.53 m 123.16 79.63 l S 123.16 76.53 m 123.22 76.53 l S 123.22 76.53 m 123.29 82.72 l S 123.29 76.53 m 123.35 79.63 l S 123.35 76.53 m 123.41 79.63 l S 123.41 76.53 m 123.47 79.63 l S 123.47 76.53 m 123.54 79.63 l S 123.54 76.53 m 123.60 79.63 l S 123.60 76.53 m 123.66 79.63 l S 123.66 76.53 m 123.73 79.63 l S 123.73 76.53 m 123.79 79.63 l S 123.79 76.53 m 123.85 79.63 l S 123.85 76.53 m 123.91 79.63 l S 123.91 76.53 m 123.98 79.63 l S 123.98 76.53 m 124.04 79.63 l S 124.04 76.53 m 124.10 79.63 l S 124.10 76.53 m 124.16 82.72 l S 124.16 76.53 m 124.23 79.63 l S 124.23 76.53 m 124.29 79.63 l S 124.29 76.53 m 124.35 79.63 l S 124.35 76.53 m 124.42 79.63 l S 124.42 76.53 m 124.48 79.63 l S 124.48 76.53 m 124.54 79.63 l S 124.54 76.53 m 124.60 79.63 l S 124.60 76.53 m 124.67 79.63 l S 124.67 76.53 m 124.73 79.63 l S 124.73 76.53 m 124.79 82.72 l S 124.79 76.53 m 124.85 79.63 l S 124.85 76.53 m 124.92 79.63 l S 124.92 76.53 m 124.98 79.63 l S 124.98 76.53 m 125.04 79.63 l S 125.04 76.53 m 125.10 79.63 l S 125.10 76.53 m 125.17 79.63 l S 125.17 76.53 m 125.23 79.63 l S 125.23 76.53 m 125.29 79.63 l S 125.29 76.53 m 125.36 82.72 l S 125.36 76.53 m 125.42 79.63 l S 125.42 76.53 m 125.48 79.63 l S 125.48 76.53 m 125.54 79.63 l S 125.54 76.53 m 125.61 79.63 l S 125.61 76.53 m 125.67 79.63 l S 125.67 76.53 m 125.73 79.63 l S 125.73 76.53 m 125.79 79.63 l S 125.79 76.53 m 125.86 79.63 l S 125.86 76.53 m 125.92 92.00 l S 125.92 76.53 m 125.98 79.63 l S 125.98 76.53 m 126.04 88.91 l S 126.04 76.53 m 126.11 85.81 l S 126.11 76.53 m 126.17 82.72 l S 126.17 76.53 m 126.23 85.81 l S 126.23 76.53 m 126.30 79.63 l S 126.30 76.53 m 126.36 79.63 l S 126.36 76.53 m 126.42 79.63 l S 126.42 76.53 m 126.48 79.63 l S 126.48 76.53 m 126.55 79.63 l S 126.55 76.53 m 126.61 79.63 l S 126.61 76.53 m 126.67 79.63 l S 126.67 76.53 m 126.73 82.72 l S 126.73 76.53 m 126.80 79.63 l S 126.80 76.53 m 126.86 79.63 l S 126.86 76.53 m 126.92 79.63 l S 126.92 76.53 m 126.99 82.72 l S 126.99 76.53 m 127.05 79.63 l S 127.05 76.53 m 127.11 79.63 l S 127.11 76.53 m 127.17 101.28 l S 127.17 76.53 m 127.24 82.72 l S 127.24 76.53 m 127.30 79.63 l S 127.30 76.53 m 127.36 82.72 l S 127.36 76.53 m 127.42 79.63 l S 127.42 76.53 m 127.49 79.63 l S 127.49 76.53 m 127.55 79.63 l S 127.55 76.53 m 127.61 79.63 l S 127.61 76.53 m 127.67 79.63 l S 127.67 76.53 m 127.74 88.91 l S 127.74 76.53 m 127.80 79.63 l S 127.80 76.53 m 127.86 79.63 l S 127.86 76.53 m 127.93 79.63 l S 127.93 76.53 m 127.99 79.63 l S 127.99 76.53 m 128.05 79.63 l S 128.05 76.53 m 128.11 79.63 l S 128.11 76.53 m 128.18 79.63 l S 128.18 76.53 m 128.24 85.81 l S 128.24 76.53 m 128.30 79.63 l S 128.30 76.53 m 128.36 82.72 l S 128.36 76.53 m 128.43 79.63 l S 128.43 76.53 m 128.49 79.63 l S 128.49 76.53 m 128.55 82.72 l S 128.55 76.53 m 128.61 79.63 l S 128.61 76.53 m 128.68 79.63 l S 128.68 76.53 m 128.74 79.63 l S 128.74 76.53 m 128.80 79.63 l S 128.80 76.53 m 128.87 85.81 l S 128.87 76.53 m 128.93 79.63 l S 128.93 76.53 m 128.99 79.63 l S 128.99 76.53 m 129.05 107.47 l S 129.05 76.53 m 129.12 79.63 l S 129.12 76.53 m 129.18 79.63 l S 129.18 76.53 m 129.24 79.63 l S 129.24 76.53 m 129.30 79.63 l S 129.30 76.53 m 129.37 82.72 l S 129.37 76.53 m 129.43 79.63 l S 129.43 76.53 m 129.49 79.63 l S 129.49 76.53 m 129.56 79.63 l S 129.56 76.53 m 129.62 85.81 l S 129.62 76.53 m 129.68 82.72 l S 129.68 76.53 m 129.74 79.63 l S 129.74 76.53 m 129.81 88.91 l S 129.81 76.53 m 129.87 79.63 l S 129.87 76.53 m 129.93 79.63 l S 129.93 76.53 m 129.99 79.63 l S 129.99 76.53 m 130.06 79.63 l S 130.06 76.53 m 130.12 79.63 l S 130.12 76.53 m 130.18 79.63 l S 130.18 76.53 m 130.24 79.63 l S 130.24 76.53 m 130.31 79.63 l S 130.31 76.53 m 130.37 79.63 l S 130.37 76.53 m 130.43 79.63 l S 130.43 76.53 m 130.50 79.63 l S 130.50 76.53 m 130.56 79.63 l S 130.56 76.53 m 130.62 79.63 l S 130.62 76.53 m 130.68 79.63 l S 130.68 76.53 m 130.75 85.81 l S 130.75 76.53 m 130.81 92.00 l S 130.81 76.53 m 130.87 79.63 l S 130.87 76.53 m 130.93 79.63 l S 130.93 76.53 m 131.00 79.63 l S 131.00 76.53 m 131.06 79.63 l S 131.06 76.53 m 131.12 79.63 l S 131.12 76.53 m 131.18 79.63 l S 131.18 76.53 m 131.25 79.63 l S 131.25 76.53 m 131.31 82.72 l S 131.31 76.53 m 131.37 79.63 l S 131.37 76.53 m 131.44 88.91 l S 131.44 76.53 m 131.50 82.72 l S 131.50 76.53 m 131.56 79.63 l S 131.56 76.53 m 131.62 79.63 l S 131.62 76.53 m 131.69 79.63 l S 131.69 76.53 m 131.75 79.63 l S 131.75 76.53 m 131.81 79.63 l S 131.81 76.53 m 131.87 82.72 l S 131.87 76.53 m 131.94 79.63 l S 131.94 76.53 m 132.00 79.63 l S 132.00 76.53 m 132.06 79.63 l S 132.06 76.53 m 132.13 79.63 l S 132.13 76.53 m 132.19 79.63 l S 132.19 76.53 m 132.25 79.63 l S 132.25 76.53 m 132.31 79.63 l S 132.31 76.53 m 132.38 79.63 l S 132.38 76.53 m 132.44 79.63 l S 132.44 76.53 m 132.50 79.63 l S 132.50 76.53 m 132.56 79.63 l S 132.56 76.53 m 132.63 79.63 l S 132.63 76.53 m 132.69 79.63 l S 132.69 76.53 m 132.75 79.63 l S 132.75 76.53 m 132.81 79.63 l S 132.81 76.53 m 132.88 79.63 l S 132.88 76.53 m 132.94 79.63 l S 132.94 76.53 m 133.00 79.63 l S 133.00 76.53 m 133.07 79.63 l S 133.07 76.53 m 133.13 79.63 l S 133.13 76.53 m 133.19 82.72 l S 133.19 76.53 m 133.25 79.63 l S 133.25 76.53 m 133.32 79.63 l S 133.32 76.53 m 133.38 79.63 l S 133.38 76.53 m 133.44 79.63 l S 133.44 76.53 m 133.50 82.72 l S 133.50 76.53 m 133.57 79.63 l S 133.57 76.53 m 133.63 79.63 l S 133.63 76.53 m 133.69 79.63 l S 133.69 76.53 m 133.75 79.63 l S 133.75 76.53 m 133.82 79.63 l S 133.82 76.53 m 133.88 79.63 l S 133.88 76.53 m 133.94 79.63 l S 133.94 76.53 m 134.01 79.63 l S 134.01 76.53 m 134.07 79.63 l S 134.07 76.53 m 134.13 79.63 l S 134.13 76.53 m 134.19 79.63 l S 134.19 76.53 m 134.26 79.63 l S 134.26 76.53 m 134.32 79.63 l S 134.32 76.53 m 134.38 79.63 l S 134.38 76.53 m 134.44 79.63 l S 134.44 76.53 m 134.51 79.63 l S 134.51 76.53 m 134.57 79.63 l S 134.57 76.53 m 134.63 79.63 l S 134.63 76.53 m 134.70 85.81 l S 134.70 76.53 m 134.76 82.72 l S 134.76 76.53 m 134.82 79.63 l S 134.82 76.53 m 134.88 79.63 l S 134.88 76.53 m 134.95 79.63 l S 134.95 76.53 m 135.01 82.72 l S 135.01 76.53 m 135.07 79.63 l S 135.07 76.53 m 135.13 82.72 l S 135.13 76.53 m 135.20 79.63 l S 135.20 76.53 m 135.26 79.63 l S 135.26 76.53 m 135.32 79.63 l S 135.32 76.53 m 135.38 79.63 l S 135.38 76.53 m 135.45 79.63 l S 135.45 76.53 m 135.51 79.63 l S 135.51 76.53 m 135.57 79.63 l S 135.57 76.53 m 135.64 79.63 l S 135.64 76.53 m 135.70 85.81 l S 135.70 76.53 m 135.76 82.72 l S 135.76 76.53 m 135.82 79.63 l S 135.82 76.53 m 135.89 79.63 l S 135.89 76.53 m 135.95 79.63 l S 135.95 76.53 m 136.01 79.63 l S 136.01 76.53 m 136.07 79.63 l S 136.07 76.53 m 136.14 79.63 l S 136.14 76.53 m 136.20 79.63 l S 136.20 76.53 m 136.26 79.63 l S 136.26 76.53 m 136.32 79.63 l S 136.32 76.53 m 136.39 79.63 l S 136.39 76.53 m 136.45 79.63 l S 136.45 76.53 m 136.51 79.63 l S 136.51 76.53 m 136.58 79.63 l S 136.58 76.53 m 136.64 79.63 l S 136.64 76.53 m 136.70 79.63 l S 136.70 76.53 m 136.76 79.63 l S 136.76 76.53 m 136.83 79.63 l S 136.83 76.53 m 136.89 79.63 l S 136.89 76.53 m 136.95 79.63 l S 136.95 76.53 m 137.01 79.63 l S 137.01 76.53 m 137.08 79.63 l S 137.08 76.53 m 137.14 79.63 l S 137.14 76.53 m 137.20 79.63 l S 137.20 76.53 m 137.27 79.63 l S 137.27 76.53 m 137.33 79.63 l S 137.33 76.53 m 137.39 79.63 l S 137.39 76.53 m 137.45 79.63 l S 137.45 76.53 m 137.52 79.63 l S 137.52 76.53 m 137.58 79.63 l S 137.58 76.53 m 137.64 82.72 l S 137.64 76.53 m 137.70 79.63 l S 137.70 76.53 m 137.77 79.63 l S 137.77 76.53 m 137.83 79.63 l S 137.83 76.53 m 137.89 79.63 l S 137.89 76.53 m 137.95 82.72 l S 137.95 76.53 m 138.02 82.72 l S 138.02 76.53 m 138.08 79.63 l S 138.08 76.53 m 138.14 79.63 l S 138.14 76.53 m 138.21 76.53 l S 138.21 76.53 m 138.27 79.63 l S 138.27 76.53 m 138.33 82.72 l S 138.33 76.53 m 138.39 76.53 l S 138.39 76.53 m 138.46 79.63 l S 138.46 76.53 m 138.52 79.63 l S 138.52 76.53 m 138.58 79.63 l S 138.58 76.53 m 138.64 79.63 l S 138.64 76.53 m 138.71 79.63 l S 138.71 76.53 m 138.77 79.63 l S 138.77 76.53 m 138.83 79.63 l S 138.83 76.53 m 138.89 79.63 l S 138.89 76.53 m 138.96 79.63 l S 138.96 76.53 m 139.02 82.72 l S 139.02 76.53 m 139.08 79.63 l S 139.08 76.53 m 139.15 79.63 l S 139.15 76.53 m 139.21 79.63 l S 139.21 76.53 m 139.27 79.63 l S 139.27 76.53 m 139.33 79.63 l S 139.33 76.53 m 139.40 79.63 l S 139.40 76.53 m 139.46 79.63 l S 139.46 76.53 m 139.52 79.63 l S 139.52 76.53 m 139.58 79.63 l S 139.58 76.53 m 139.65 79.63 l S 139.65 76.53 m 139.71 79.63 l S 139.71 76.53 m 139.77 79.63 l S 139.77 76.53 m 139.84 95.09 l S 139.84 76.53 m 139.90 79.63 l S 139.90 76.53 m 139.96 79.63 l S 139.96 76.53 m 140.02 85.81 l S 140.02 76.53 m 140.09 88.91 l S 140.09 76.53 m 140.15 79.63 l S 140.15 76.53 m 140.21 79.63 l S 140.21 76.53 m 140.27 82.72 l S 140.27 76.53 m 140.34 79.63 l S 140.34 76.53 m 140.40 79.63 l S 140.40 76.53 m 140.46 79.63 l S 140.46 76.53 m 140.52 76.53 l S 140.52 76.53 m 140.59 79.63 l S 140.59 76.53 m 140.65 79.63 l S 140.65 76.53 m 140.71 79.63 l S 140.71 76.53 m 140.78 82.72 l S 140.78 76.53 m 140.84 82.72 l S 140.84 76.53 m 140.90 79.63 l S 140.90 76.53 m 140.96 79.63 l S 140.96 76.53 m 141.03 95.09 l S 141.03 76.53 m 141.09 79.63 l S 141.09 76.53 m 141.15 88.91 l S 141.15 76.53 m 141.21 82.72 l S 141.21 76.53 m 141.28 76.53 l S 141.28 76.53 m 141.34 76.53 l S 141.34 76.53 m 141.40 76.53 l S 141.40 76.53 m 141.46 79.63 l S 141.46 76.53 m 141.53 79.63 l S 141.53 76.53 m 141.59 79.63 l S 141.59 76.53 m 141.65 79.63 l S 141.65 76.53 m 141.72 79.63 l S 141.72 76.53 m 141.78 76.53 l S 141.78 76.53 m 141.84 76.53 l S 141.84 76.53 m 141.90 76.53 l S 141.90 76.53 m 141.97 76.53 l S 141.97 76.53 m 142.03 76.53 l S 142.03 76.53 m 142.09 76.53 l S 142.09 76.53 m 142.15 76.53 l S 142.15 76.53 m 142.22 76.53 l S 142.22 76.53 m 142.28 76.53 l S 142.28 76.53 m 142.34 76.53 l S 142.34 76.53 m 142.41 76.53 l S 142.41 76.53 m 142.47 76.53 l S 142.47 76.53 m 142.53 76.53 l S 142.53 76.53 m 142.59 76.53 l S 142.59 76.53 m 142.66 76.53 l S 142.66 76.53 m 142.72 76.53 l S 142.72 76.53 m 142.78 76.53 l S 142.78 76.53 m 142.84 76.53 l S 142.84 76.53 m 142.91 76.53 l S 142.91 76.53 m 142.97 76.53 l S 142.97 76.53 m 143.03 76.53 l S 143.03 76.53 m 143.09 76.53 l S 143.09 76.53 m 143.16 76.53 l S 143.16 76.53 m 143.22 76.53 l S 143.22 76.53 m 143.28 76.53 l S 143.28 76.53 m 143.35 76.53 l S 143.35 76.53 m 143.41 76.53 l S 143.41 76.53 m 143.47 76.53 l S 143.47 76.53 m 143.53 76.53 l S 143.53 76.53 m 143.60 76.53 l S 143.60 76.53 m 143.66 76.53 l S 143.66 76.53 m 143.72 76.53 l S 143.72 76.53 m 143.78 76.53 l S 143.78 76.53 m 143.85 76.53 l S 143.85 76.53 m 143.91 76.53 l S 143.91 76.53 m 143.97 76.53 l S 143.97 76.53 m 144.03 76.53 l S 144.03 76.53 m 144.10 76.53 l S 144.10 76.53 m 144.16 76.53 l S 144.16 76.53 m 144.22 76.53 l S 144.22 76.53 m 144.29 76.53 l S 144.29 76.53 m 144.35 76.53 l S 144.35 76.53 m 144.41 76.53 l S 144.41 76.53 m 144.47 76.53 l S 144.47 76.53 m 144.54 76.53 l S 144.54 76.53 m 144.60 76.53 l S 144.60 76.53 m 144.66 76.53 l S 144.66 76.53 m 144.72 76.53 l S 144.72 76.53 m 144.79 76.53 l S 144.79 76.53 m 144.85 76.53 l S 144.85 76.53 m 144.91 76.53 l S 144.91 76.53 m 144.97 76.53 l S 144.97 76.53 m 145.04 76.53 l S 145.04 76.53 m 145.10 76.53 l S 145.10 76.53 m 145.16 76.53 l S 145.16 76.53 m 145.23 76.53 l S 145.23 76.53 m 145.29 76.53 l S 145.29 76.53 m 145.35 76.53 l S 145.35 76.53 m 145.41 76.53 l S 145.41 76.53 m 145.48 76.53 l S 145.48 76.53 m 145.54 76.53 l S 145.54 76.53 m 145.60 76.53 l S 145.60 76.53 m 145.66 76.53 l S 145.66 76.53 m 145.73 76.53 l S 145.73 76.53 m 145.79 76.53 l S 145.79 76.53 m 145.85 76.53 l S 145.85 76.53 m 145.92 76.53 l S 145.92 76.53 m 145.98 76.53 l S 145.98 76.53 m 146.04 76.53 l S 146.04 76.53 m 146.10 76.53 l S 146.10 76.53 m 146.17 76.53 l S 146.17 76.53 m 146.23 76.53 l S 146.23 76.53 m 146.29 82.72 l S 146.29 76.53 m 146.35 110.56 l S 146.35 76.53 m 146.42 79.63 l S 146.42 76.53 m 146.48 79.63 l S 146.48 76.53 m 146.54 79.63 l S 146.54 76.53 m 146.60 85.81 l S 146.60 76.53 m 146.67 79.63 l S 146.67 76.53 m 146.73 79.63 l S 146.73 76.53 m 146.79 79.63 l S 146.79 76.53 m 146.86 79.63 l S 146.86 76.53 m 146.92 76.53 l S 146.92 76.53 m 146.98 82.72 l S 146.98 76.53 m 147.04 79.63 l S 147.04 76.53 m 147.11 88.91 l S 147.11 76.53 m 147.17 79.63 l S 147.17 76.53 m 147.23 79.63 l S 147.23 76.53 m 147.29 79.63 l S 147.29 76.53 m 147.36 79.63 l S 147.36 76.53 m 147.42 79.63 l S 147.42 76.53 m 147.48 79.63 l S 147.48 76.53 m 147.54 88.91 l S 147.54 76.53 m 147.61 79.63 l S 147.61 76.53 m 147.67 79.63 l S 147.67 76.53 m 147.73 85.81 l S 147.73 76.53 m 147.80 79.63 l S 147.80 76.53 m 147.86 79.63 l S 147.86 76.53 m 147.92 82.72 l S 147.92 76.53 m 147.98 92.00 l S 147.98 76.53 m 148.05 79.63 l S 148.05 76.53 m 148.11 79.63 l S 148.11 76.53 m 148.17 79.63 l S 148.17 76.53 m 148.23 79.63 l S 148.23 76.53 m 148.30 79.63 l S 148.30 76.53 m 148.36 79.63 l S 148.36 76.53 m 148.42 79.63 l S 148.42 76.53 m 148.49 79.63 l S 148.49 76.53 m 148.55 79.63 l S 148.55 76.53 m 148.61 85.81 l S 148.61 76.53 m 148.67 82.72 l S 148.67 76.53 m 148.74 79.63 l S 148.74 76.53 m 148.80 85.81 l S 148.80 76.53 m 148.86 79.63 l S 148.86 76.53 m 148.92 79.63 l S 148.92 76.53 m 148.99 79.63 l S 148.99 76.53 m 149.05 82.72 l S 149.05 76.53 m 149.11 79.63 l S 149.11 76.53 m 149.17 92.00 l S 149.17 76.53 m 149.24 98.19 l S 149.24 76.53 m 149.30 76.53 l S 149.30 76.53 m 149.36 79.63 l S 149.36 76.53 m 149.43 82.72 l S 149.43 76.53 m 149.49 82.72 l S 149.49 76.53 m 149.55 88.91 l S 149.55 76.53 m 149.61 85.81 l S 149.61 76.53 m 149.68 85.81 l S 149.68 76.53 m 149.74 79.63 l S 149.74 76.53 m 149.80 79.63 l S 149.80 76.53 m 149.86 79.63 l S 149.86 76.53 m 149.93 79.63 l S 149.93 76.53 m 149.99 82.72 l S 149.99 76.53 m 150.05 82.72 l S 150.05 76.53 m 150.11 79.63 l S 150.11 76.53 m 150.18 82.72 l S 150.18 76.53 m 150.24 79.63 l S 150.24 76.53 m 150.30 79.63 l S 150.30 76.53 m 150.37 79.63 l S 150.37 76.53 m 150.43 79.63 l S 150.43 76.53 m 150.49 79.63 l S 150.49 76.53 m 150.55 79.63 l S 150.55 76.53 m 150.62 82.72 l S 150.62 76.53 m 150.68 79.63 l S 150.68 76.53 m 150.74 79.63 l S 150.74 76.53 m 150.80 82.72 l S 150.80 76.53 m 150.87 79.63 l S 150.87 76.53 m 150.93 79.63 l S 150.93 76.53 m 150.99 79.63 l S 150.99 76.53 m 151.06 79.63 l S 151.06 76.53 m 151.12 79.63 l S 151.12 76.53 m 151.18 79.63 l S 151.18 76.53 m 151.24 79.63 l S 151.24 76.53 m 151.31 79.63 l S 151.31 76.53 m 151.37 79.63 l S 151.37 76.53 m 151.43 82.72 l S 151.43 76.53 m 151.49 79.63 l S 151.49 76.53 m 151.56 79.63 l S 151.56 76.53 m 151.62 79.63 l S 151.62 76.53 m 151.68 79.63 l S 151.68 76.53 m 151.74 79.63 l S 151.74 76.53 m 151.81 82.72 l S 151.81 76.53 m 151.87 88.91 l S 151.87 76.53 m 151.93 79.63 l S 151.93 76.53 m 152.00 92.00 l S 152.00 76.53 m 152.06 85.81 l S 152.06 76.53 m 152.12 88.91 l S 152.12 76.53 m 152.18 79.63 l S 152.18 76.53 m 152.25 79.63 l S 152.25 76.53 m 152.31 79.63 l S 152.31 76.53 m 152.37 79.63 l S 152.37 76.53 m 152.43 79.63 l S 152.43 76.53 m 152.50 79.63 l S 152.50 76.53 m 152.56 79.63 l S 152.56 76.53 m 152.62 79.63 l S 152.62 76.53 m 152.68 79.63 l S 152.68 76.53 m 152.75 79.63 l S 152.75 76.53 m 152.81 82.72 l S 152.81 76.53 m 152.87 85.81 l S 152.87 76.53 m 152.94 79.63 l S 152.94 76.53 m 153.00 79.63 l S 153.00 76.53 m 153.06 79.63 l S 153.06 76.53 m 153.12 79.63 l S 153.12 76.53 m 153.19 82.72 l S 153.19 76.53 m 153.25 79.63 l S 153.25 76.53 m 153.31 79.63 l S 153.31 76.53 m 153.37 92.00 l S 153.37 76.53 m 153.44 79.63 l S 153.44 76.53 m 153.50 79.63 l S 153.50 76.53 m 153.56 76.53 l S 153.56 76.53 m 153.63 76.53 l S 153.63 76.53 m 153.69 76.53 l S 153.69 76.53 m 153.75 76.53 l S 153.75 76.53 m 153.81 76.53 l S 153.81 76.53 m 153.88 76.53 l S 153.88 76.53 m 153.94 76.53 l S 153.94 76.53 m 154.00 76.53 l S 154.00 76.53 m 154.06 76.53 l S 154.06 76.53 m 154.13 76.53 l S 154.13 76.53 m 154.19 76.53 l S 154.19 76.53 m 154.25 76.53 l S 154.25 76.53 m 154.31 76.53 l S 154.31 76.53 m 154.38 76.53 l S 154.38 76.53 m 154.44 76.53 l S 154.44 76.53 m 154.50 76.53 l S 154.50 76.53 m 154.57 76.53 l S 154.57 76.53 m 154.63 76.53 l S 154.63 76.53 m 154.69 76.53 l S 154.69 76.53 m 154.75 76.53 l S 154.75 76.53 m 154.82 76.53 l S 154.82 76.53 m 154.88 76.53 l S 154.88 76.53 m 154.94 79.63 l S 154.94 76.53 m 155.00 79.63 l S 155.00 76.53 m 155.07 82.72 l S 155.07 76.53 m 155.13 79.63 l S 155.13 76.53 m 155.19 82.72 l S 155.19 76.53 m 155.25 82.72 l S 155.25 76.53 m 155.32 79.63 l S 155.32 76.53 m 155.38 76.53 l S 155.38 76.53 m 155.44 76.53 l S 155.44 76.53 m 155.51 76.53 l S 155.51 76.53 m 155.57 76.53 l S 155.57 76.53 m 155.63 76.53 l S 155.63 76.53 m 155.69 76.53 l S 155.69 76.53 m 155.76 82.72 l S 155.76 76.53 m 155.82 82.72 l S 155.82 76.53 m 155.88 76.53 l S 155.88 76.53 m 155.94 76.53 l S 155.94 76.53 m 156.01 76.53 l S 156.01 76.53 m 156.07 76.53 l S 156.07 76.53 m 156.13 79.63 l S 156.13 76.53 m 156.20 76.53 l S 156.20 76.53 m 156.26 79.63 l S 156.26 76.53 m 156.32 85.81 l S 156.32 76.53 m 156.38 88.91 l S 156.38 76.53 m 156.45 79.63 l S 156.45 76.53 m 156.51 79.63 l S 156.51 76.53 m 156.57 76.53 l S 156.57 76.53 m 156.63 76.53 l S 156.63 76.53 m 156.70 76.53 l S 156.70 76.53 m 156.76 76.53 l S 156.76 76.53 m 156.82 76.53 l S 156.82 76.53 m 156.88 76.53 l S 156.88 76.53 m 156.95 76.53 l S 156.95 76.53 m 157.01 76.53 l S 157.01 76.53 m 157.07 76.53 l S 157.07 76.53 m 157.14 76.53 l S 157.14 76.53 m 157.20 76.53 l S 157.20 76.53 m 157.26 76.53 l S 157.26 76.53 m 157.32 76.53 l S 157.32 76.53 m 157.39 76.53 l S 157.39 76.53 m 157.45 76.53 l S 157.45 76.53 m 157.51 76.53 l S 157.51 76.53 m 157.57 76.53 l S 157.57 76.53 m 157.64 76.53 l S 157.64 76.53 m 157.70 76.53 l S 157.70 76.53 m 157.76 76.53 l S 157.76 76.53 m 157.82 76.53 l S 157.82 76.53 m 157.89 79.63 l S 157.89 76.53 m 157.95 85.81 l S 157.95 76.53 m 158.01 79.63 l S 158.01 76.53 m 158.08 79.63 l S 158.08 76.53 m 158.14 85.81 l S 158.14 76.53 m 158.20 79.63 l S 158.20 76.53 m 158.26 82.72 l S 158.26 76.53 m 158.33 79.63 l S 158.33 76.53 m 158.39 82.72 l S 158.39 76.53 m 158.45 79.63 l S 158.45 76.53 m 158.51 79.63 l S 158.51 76.53 m 158.58 79.63 l S 158.58 76.53 m 158.64 76.53 l S 158.64 76.53 m 158.70 79.63 l S 158.70 76.53 m 158.77 76.53 l S 158.77 76.53 m 158.83 76.53 l S 158.83 76.53 m 158.89 76.53 l S 158.89 76.53 m 158.95 79.63 l S 158.95 76.53 m 159.02 76.53 l S 159.02 76.53 m 159.08 76.53 l S 159.08 76.53 m 159.14 79.63 l S 159.14 76.53 m 159.20 76.53 l S 159.20 76.53 m 159.27 76.53 l S 159.27 76.53 m 159.33 76.53 l S 159.33 76.53 m 159.39 76.53 l S 159.39 76.53 m 159.45 76.53 l S 159.45 76.53 m 159.52 76.53 l S 159.52 76.53 m 159.58 76.53 l S 159.58 76.53 m 159.64 76.53 l S 159.64 76.53 m 159.71 76.53 l S 159.71 76.53 m 159.77 76.53 l S 159.77 76.53 m 159.83 76.53 l S 159.83 76.53 m 159.89 76.53 l S 159.89 76.53 m 159.96 79.63 l S 159.96 76.53 m 160.02 82.72 l S 160.02 76.53 m 160.08 82.72 l S 160.08 76.53 m 160.14 79.63 l S 160.14 76.53 m 160.21 107.47 l S 160.21 76.53 m 160.27 79.63 l S 160.27 76.53 m 160.33 79.63 l S 160.33 76.53 m 160.39 79.63 l S 160.39 76.53 m 160.46 79.63 l S 160.46 76.53 m 160.52 79.63 l S 160.52 76.53 m 160.58 82.72 l S 160.58 76.53 m 160.65 79.63 l S 160.65 76.53 m 160.71 79.63 l S 160.71 76.53 m 160.77 79.63 l S 160.77 76.53 m 160.83 85.81 l S 160.83 76.53 m 160.90 79.63 l S 160.90 76.53 m 160.96 82.72 l S 160.96 76.53 m 161.02 79.63 l S 161.02 76.53 m 161.08 79.63 l S 161.08 76.53 m 161.15 79.63 l S 161.15 76.53 m 161.21 79.63 l S 161.21 76.53 m 161.27 79.63 l S 161.27 76.53 m 161.34 79.63 l S 161.34 76.53 m 161.40 82.72 l S 161.40 76.53 m 161.46 79.63 l S 161.46 76.53 m 161.52 79.63 l S 161.52 76.53 m 161.59 79.63 l S 161.59 76.53 m 161.65 79.63 l S 161.65 76.53 m 161.71 82.72 l S 161.71 76.53 m 161.77 79.63 l S 161.77 76.53 m 161.84 79.63 l S 161.84 76.53 m 161.90 79.63 l S 161.90 76.53 m 161.96 79.63 l S 161.96 76.53 m 162.02 79.63 l S 162.02 76.53 m 162.09 79.63 l S 162.09 76.53 m 162.15 79.63 l S 162.15 76.53 m 162.21 79.63 l S 162.21 76.53 m 162.28 82.72 l S 162.28 76.53 m 162.34 79.63 l S 162.34 76.53 m 162.40 79.63 l S 162.40 76.53 m 162.46 88.91 l S 162.46 76.53 m 162.53 79.63 l S 162.53 76.53 m 162.59 79.63 l S 162.59 76.53 m 162.65 79.63 l S 162.65 76.53 m 162.71 79.63 l S 162.71 76.53 m 162.78 82.72 l S 162.78 76.53 m 162.84 79.63 l S 162.84 76.53 m 162.90 79.63 l S 162.90 76.53 m 162.96 79.63 l S 162.96 76.53 m 163.03 79.63 l S 163.03 76.53 m 163.09 79.63 l S 163.09 76.53 m 163.15 79.63 l S 163.15 76.53 m 163.22 76.53 l S 163.22 76.53 m 163.28 76.53 l S 163.28 76.53 m 163.34 79.63 l S 163.34 76.53 m 163.40 76.53 l S 163.40 76.53 m 163.47 76.53 l S 163.47 76.53 m 163.53 76.53 l S 163.53 76.53 m 163.59 76.53 l S 163.59 76.53 m 163.65 76.53 l S 163.65 76.53 m 163.72 76.53 l S 163.72 76.53 m 163.78 76.53 l S 163.78 76.53 m 163.84 85.81 l S 163.84 76.53 m 163.91 82.72 l S 163.91 76.53 m 163.97 88.91 l S 163.97 76.53 m 164.03 88.91 l S 164.03 76.53 m 164.09 79.63 l S 164.09 76.53 m 164.16 76.53 l S 164.16 76.53 m 164.22 76.53 l S 164.22 76.53 m 164.28 76.53 l S 164.28 76.53 m 164.34 76.53 l S 164.34 76.53 m 164.41 79.63 l S 164.41 76.53 m 164.47 82.72 l S 164.47 76.53 m 164.53 76.53 l S 164.53 76.53 m 164.59 76.53 l S 164.59 76.53 m 164.66 79.63 l S 164.66 76.53 m 164.72 76.53 l S 164.72 76.53 m 164.78 79.63 l S 164.78 76.53 m 164.85 82.72 l S 164.85 76.53 m 164.91 79.63 l S 164.91 76.53 m 164.97 79.63 l S 164.97 76.53 m 165.03 79.63 l S 165.03 76.53 m 165.10 85.81 l S 165.10 76.53 m 165.16 82.72 l S 165.16 76.53 m 165.22 79.63 l S 165.22 76.53 m 165.28 79.63 l S 165.28 76.53 m 165.35 79.63 l S 165.35 76.53 m 165.41 79.63 l S 165.41 76.53 m 165.47 79.63 l S 165.47 76.53 m 165.53 92.00 l S 165.53 76.53 m 165.60 79.63 l S 165.60 76.53 m 165.66 79.63 l S 165.66 76.53 m 165.72 92.00 l S 165.72 76.53 m 165.79 79.63 l S 165.79 76.53 m 165.85 79.63 l S 165.85 76.53 m 165.91 79.63 l S 165.91 76.53 m 165.97 79.63 l S 165.97 76.53 m 166.04 79.63 l S 166.04 76.53 m 166.10 79.63 l S 166.10 76.53 m 166.16 79.63 l S 166.16 76.53 m 166.22 82.72 l S 166.22 76.53 m 166.29 79.63 l S 166.29 76.53 m 166.35 79.63 l S 166.35 76.53 m 166.41 79.63 l S 166.41 76.53 m 166.48 79.63 l S 166.48 76.53 m 166.54 79.63 l S 166.54 76.53 m 166.60 79.63 l S 166.60 76.53 m 166.66 79.63 l S 166.66 76.53 m 166.73 79.63 l S 166.73 76.53 m 166.79 79.63 l S 166.79 76.53 m 166.85 79.63 l S 166.85 76.53 m 166.91 79.63 l S 166.91 76.53 m 166.98 79.63 l S 166.98 76.53 m 167.04 79.63 l S 167.04 76.53 m 167.10 79.63 l S 167.10 76.53 m 167.16 79.63 l S 167.16 76.53 m 167.23 79.63 l S 167.23 76.53 m 167.29 79.63 l S 167.29 76.53 m 167.35 79.63 l S 167.35 76.53 m 167.42 79.63 l S 167.42 76.53 m 167.48 88.91 l S 167.48 76.53 m 167.54 79.63 l S 167.54 76.53 m 167.60 79.63 l S 167.60 76.53 m 167.67 79.63 l S 167.67 76.53 m 167.73 79.63 l S 167.73 76.53 m 167.79 79.63 l S 167.79 76.53 m 167.85 79.63 l S 167.85 76.53 m 167.92 76.53 l S 167.92 76.53 m 167.98 79.63 l S 167.98 76.53 m 168.04 79.63 l S 168.04 76.53 m 168.10 79.63 l S 168.10 76.53 m 168.17 79.63 l S 168.17 76.53 m 168.23 79.63 l S 168.23 76.53 m 168.29 79.63 l S 168.29 76.53 m 168.36 79.63 l S 168.36 76.53 m 168.42 79.63 l S 168.42 76.53 m 168.48 79.63 l S 168.48 76.53 m 168.54 79.63 l S 168.54 76.53 m 168.61 79.63 l S 168.61 76.53 m 168.67 79.63 l S 168.67 76.53 m 168.73 79.63 l S 168.73 76.53 m 168.79 76.53 l S 168.79 76.53 m 168.86 79.63 l S 168.86 76.53 m 168.92 79.63 l S 168.92 76.53 m 168.98 79.63 l S 168.98 76.53 m 169.04 79.63 l S 169.04 76.53 m 169.11 79.63 l S 169.11 76.53 m 169.17 79.63 l S 169.17 76.53 m 169.23 79.63 l S 169.23 76.53 m 169.30 79.63 l S 169.30 76.53 m 169.36 79.63 l S 169.36 76.53 m 169.42 82.72 l S 169.42 76.53 m 169.48 79.63 l S 169.48 76.53 m 169.55 79.63 l S 169.55 76.53 m 169.61 79.63 l S 169.61 76.53 m 169.67 79.63 l S 169.67 76.53 m 169.73 79.63 l S 169.73 76.53 m 169.80 79.63 l S 169.80 76.53 m 169.86 79.63 l S 169.86 76.53 m 169.92 79.63 l S 169.92 76.53 m 169.99 76.53 l S 169.99 76.53 m 170.05 79.63 l S 170.05 76.53 m 170.11 79.63 l S 170.11 76.53 m 170.17 79.63 l S 170.17 76.53 m 170.24 79.63 l S 170.24 76.53 m 170.30 79.63 l S 170.30 76.53 m 170.36 79.63 l S 170.36 76.53 m 170.42 76.53 l S 170.42 76.53 m 170.49 79.63 l S 170.49 76.53 m 170.55 79.63 l S 170.55 76.53 m 170.61 79.63 l S 170.61 76.53 m 170.67 79.63 l S 170.67 76.53 m 170.74 79.63 l S 170.74 76.53 m 170.80 79.63 l S 170.80 76.53 m 170.86 79.63 l S 170.86 76.53 m 170.93 79.63 l S 170.93 76.53 m 170.99 79.63 l S 170.99 76.53 m 171.05 79.63 l S 171.05 76.53 m 171.11 79.63 l S 171.11 76.53 m 171.18 79.63 l S 171.18 76.53 m 171.24 79.63 l S 171.24 76.53 m 171.30 79.63 l S 171.30 76.53 m 171.36 76.53 l S 171.36 76.53 m 171.43 79.63 l S 171.43 76.53 m 171.49 79.63 l S 171.49 76.53 m 171.55 79.63 l S 171.55 76.53 m 171.61 79.63 l S 171.61 76.53 m 171.68 79.63 l S 171.68 76.53 m 171.74 79.63 l S 171.74 76.53 m 171.80 79.63 l S 171.80 76.53 m 171.87 79.63 l S 171.87 76.53 m 171.93 79.63 l S 171.93 76.53 m 171.99 79.63 l S 171.99 76.53 m 172.05 79.63 l S 172.05 76.53 m 172.12 79.63 l S 172.12 76.53 m 172.18 79.63 l S 172.18 76.53 m 172.24 79.63 l S 172.24 76.53 m 172.30 79.63 l S 172.30 76.53 m 172.37 79.63 l S 172.37 76.53 m 172.43 79.63 l S 172.43 76.53 m 172.49 76.53 l S 172.49 76.53 m 172.56 79.63 l S 172.56 76.53 m 172.62 82.72 l S 172.62 76.53 m 172.68 79.63 l S 172.68 76.53 m 172.74 79.63 l S 172.74 76.53 m 172.81 79.63 l S 172.81 76.53 m 172.87 79.63 l S 172.87 76.53 m 172.93 76.53 l S 172.93 76.53 m 172.99 79.63 l S 172.99 76.53 m 173.06 79.63 l S 173.06 76.53 m 173.12 79.63 l S 173.12 76.53 m 173.18 79.63 l S 173.18 76.53 m 173.24 79.63 l S 173.24 76.53 m 173.31 76.53 l S 173.31 76.53 m 173.37 79.63 l S 173.37 76.53 m 173.43 79.63 l S 173.43 76.53 m 173.50 79.63 l S 173.50 76.53 m 173.56 79.63 l S 173.56 76.53 m 173.62 76.53 l S 173.62 76.53 m 173.68 79.63 l S 173.68 76.53 m 173.75 79.63 l S 173.75 76.53 m 173.81 79.63 l S 173.81 76.53 m 173.87 79.63 l S 173.87 76.53 m 173.93 79.63 l S 173.93 76.53 m 174.00 79.63 l S 174.00 76.53 m 174.06 79.63 l S 174.06 76.53 m 174.12 79.63 l S 174.12 76.53 m 174.18 79.63 l S 174.18 76.53 m 174.25 79.63 l S 174.25 76.53 m 174.31 79.63 l S 174.31 76.53 m 174.37 79.63 l S 174.37 76.53 m 174.44 79.63 l S 174.44 76.53 m 174.50 79.63 l S 174.50 76.53 m 174.56 79.63 l S 174.56 76.53 m 174.62 79.63 l S 174.62 76.53 m 174.69 79.63 l S 174.69 76.53 m 174.75 79.63 l S 174.75 76.53 m 174.81 79.63 l S 174.81 76.53 m 174.87 79.63 l S 174.87 76.53 m 174.94 79.63 l S 174.94 76.53 m 175.00 79.63 l S 175.00 76.53 m 175.06 79.63 l S 175.06 76.53 m 175.13 79.63 l S 175.13 76.53 m 175.19 79.63 l S 175.19 76.53 m 175.25 79.63 l S 175.25 76.53 m 175.31 79.63 l S 175.31 76.53 m 175.38 79.63 l S 175.38 76.53 m 175.44 79.63 l S 175.44 76.53 m 175.50 76.53 l S 175.50 76.53 m 175.56 79.63 l S 175.56 76.53 m 175.63 79.63 l S 175.63 76.53 m 175.69 79.63 l S 175.69 76.53 m 175.75 76.53 l S 175.75 76.53 m 175.81 79.63 l S 175.81 76.53 m 175.88 79.63 l S 175.88 76.53 m 175.94 79.63 l S 175.94 76.53 m 176.00 79.63 l S 176.00 76.53 m 176.07 79.63 l S 176.07 76.53 m 176.13 85.81 l S 176.13 76.53 m 176.19 79.63 l S 176.19 76.53 m 176.25 79.63 l S 176.25 76.53 m 176.32 79.63 l S 176.32 76.53 m 176.38 79.63 l S 176.38 76.53 m 176.44 79.63 l S 176.44 76.53 m 176.50 79.63 l S 176.50 76.53 m 176.57 79.63 l S 176.57 76.53 m 176.63 79.63 l S 176.63 76.53 m 176.69 79.63 l S 176.69 76.53 m 176.75 79.63 l S 176.75 76.53 m 176.82 79.63 l S 176.82 76.53 m 176.88 79.63 l S 176.88 76.53 m 176.94 79.63 l S 176.94 76.53 m 177.01 79.63 l S 177.01 76.53 m 177.07 79.63 l S 177.07 76.53 m 177.13 79.63 l S 177.13 76.53 m 177.19 79.63 l S 177.19 76.53 m 177.26 79.63 l S 177.26 76.53 m 177.32 79.63 l S 177.32 76.53 m 177.38 79.63 l S 177.38 76.53 m 177.44 79.63 l S 177.44 76.53 m 177.51 79.63 l S 177.51 76.53 m 177.57 79.63 l S 177.57 76.53 m 177.63 82.72 l S 177.63 76.53 m 177.70 79.63 l S 177.70 76.53 m 177.76 79.63 l S 177.76 76.53 m 177.82 79.63 l S 177.82 76.53 m 177.88 79.63 l S 177.88 76.53 m 177.95 79.63 l S 177.95 76.53 m 178.01 79.63 l S 178.01 76.53 m 178.07 79.63 l S 178.07 76.53 m 178.13 79.63 l S 178.13 76.53 m 178.20 76.53 l S 178.20 76.53 m 178.26 79.63 l S 178.26 76.53 m 178.32 76.53 l S 178.32 76.53 m 178.38 79.63 l S 178.38 76.53 m 178.45 79.63 l S 178.45 76.53 m 178.51 79.63 l S 178.51 76.53 m 178.57 79.63 l S 178.57 76.53 m 178.64 79.63 l S 178.64 76.53 m 178.70 76.53 l S 178.70 76.53 m 178.76 79.63 l S 178.76 76.53 m 178.82 79.63 l S 178.82 76.53 m 178.89 79.63 l S 178.89 76.53 m 178.95 79.63 l S 178.95 76.53 m 179.01 79.63 l S 179.01 76.53 m 179.07 76.53 l S 179.07 76.53 m 179.14 79.63 l S 179.14 76.53 m 179.20 79.63 l S 179.20 76.53 m 179.26 76.53 l S 179.26 76.53 m 179.32 79.63 l S 179.32 76.53 m 179.39 79.63 l S 179.39 76.53 m 179.45 79.63 l S 179.45 76.53 m 179.51 82.72 l S 179.51 76.53 m 179.58 79.63 l S 179.58 76.53 m 179.64 85.81 l S 179.64 76.53 m 179.70 79.63 l S 179.70 76.53 m 179.76 85.81 l S 179.76 76.53 m 179.83 79.63 l S 179.83 76.53 m 179.89 98.19 l S 179.89 76.53 m 179.95 79.63 l S 179.95 76.53 m 180.01 79.63 l S 180.01 76.53 m 180.08 79.63 l S 180.08 76.53 m 180.14 79.63 l S 180.14 76.53 m 180.20 79.63 l S 180.20 76.53 m 180.27 79.63 l S 180.27 76.53 m 180.33 79.63 l S 180.33 76.53 m 180.39 79.63 l S 180.39 76.53 m 180.45 79.63 l S 180.45 76.53 m 180.52 79.63 l S 180.52 76.53 m 180.58 79.63 l S 180.58 76.53 m 180.64 79.63 l S 180.64 76.53 m 180.70 79.63 l S 180.70 76.53 m 180.77 79.63 l S 180.77 76.53 m 180.83 79.63 l S 180.83 76.53 m 180.89 79.63 l S 180.89 76.53 m 180.95 79.63 l S 180.95 76.53 m 181.02 82.72 l S 181.02 76.53 m 181.08 79.63 l S 181.08 76.53 m 181.14 76.53 l S 181.14 76.53 m 181.21 79.63 l S 181.21 76.53 m 181.27 79.63 l S 181.27 76.53 m 181.33 79.63 l S 181.33 76.53 m 181.39 79.63 l S 181.39 76.53 m 181.46 79.63 l S 181.46 76.53 m 181.52 79.63 l S 181.52 76.53 m 181.58 79.63 l S 181.58 76.53 m 181.64 79.63 l S 181.64 76.53 m 181.71 79.63 l S 181.71 76.53 m 181.77 76.53 l S 181.77 76.53 m 181.83 79.63 l S 181.83 76.53 m 181.89 79.63 l S 181.89 76.53 m 181.96 79.63 l S 181.96 76.53 m 182.02 79.63 l S 182.02 76.53 m 182.08 79.63 l S 182.08 76.53 m 182.15 79.63 l S 182.15 76.53 m 182.21 79.63 l S 182.21 76.53 m 182.27 79.63 l S 182.27 76.53 m 182.33 82.72 l S 182.33 76.53 m 182.40 79.63 l S 182.40 76.53 m 182.46 79.63 l S 182.46 76.53 m 182.52 79.63 l S 182.52 76.53 m 182.58 79.63 l S 182.58 76.53 m 182.65 79.63 l S 182.65 76.53 m 182.71 85.81 l S 182.71 76.53 m 182.77 79.63 l S 182.77 76.53 m 182.84 79.63 l S 182.84 76.53 m 182.90 79.63 l S 182.90 76.53 m 182.96 79.63 l S 182.96 76.53 m 183.02 79.63 l S 183.02 76.53 m 183.09 79.63 l S 183.09 76.53 m 183.15 79.63 l S 183.15 76.53 m 183.21 79.63 l S 183.21 76.53 m 183.27 82.72 l S 183.27 76.53 m 183.34 82.72 l S 183.34 76.53 m 183.40 79.63 l S 183.40 76.53 m 183.46 82.72 l S 183.46 76.53 m 183.52 79.63 l S 183.52 76.53 m 183.59 79.63 l S 183.59 76.53 m 183.65 79.63 l S 183.65 76.53 m 183.71 79.63 l S 183.71 76.53 m 183.78 76.53 l S 183.78 76.53 m 183.84 79.63 l S 183.84 76.53 m 183.90 79.63 l S 183.90 76.53 m 183.96 76.53 l S 183.96 76.53 m 184.03 79.63 l S 184.03 76.53 m 184.09 76.53 l S 184.09 76.53 m 184.15 79.63 l S 184.15 76.53 m 184.21 85.81 l S 184.21 76.53 m 184.28 82.72 l S 184.28 76.53 m 184.34 85.81 l S 184.34 76.53 m 184.40 79.63 l S 184.40 76.53 m 184.46 79.63 l S 184.46 76.53 m 184.53 79.63 l S 184.53 76.53 m 184.59 82.72 l S 184.59 76.53 m 184.65 79.63 l S 184.65 76.53 m 184.72 79.63 l S 184.72 76.53 m 184.78 79.63 l S 184.78 76.53 m 184.84 79.63 l S 184.84 76.53 m 184.90 79.63 l S 184.90 76.53 m 184.97 79.63 l S 184.97 76.53 m 185.03 79.63 l S 185.03 76.53 m 185.09 79.63 l S 185.09 76.53 m 185.15 79.63 l S 185.15 76.53 m 185.22 79.63 l S 185.22 76.53 m 185.28 82.72 l S 185.28 76.53 m 185.34 79.63 l S 185.34 76.53 m 185.41 79.63 l S 185.41 76.53 m 185.47 79.63 l S 185.47 76.53 m 185.53 79.63 l S 185.53 76.53 m 185.59 88.91 l S 185.59 76.53 m 185.66 79.63 l S 185.66 76.53 m 185.72 76.53 l S 185.72 76.53 m 185.78 79.63 l S 185.78 76.53 m 185.84 79.63 l S 185.84 76.53 m 185.91 79.63 l S 185.91 76.53 m 185.97 79.63 l S 185.97 76.53 m 186.03 79.63 l S 186.03 76.53 m 186.09 79.63 l S 186.09 76.53 m 186.16 79.63 l S 186.16 76.53 m 186.22 79.63 l S 186.22 76.53 m 186.28 79.63 l S 186.28 76.53 m 186.35 79.63 l S 186.35 76.53 m 186.41 85.81 l S 186.41 76.53 m 186.47 79.63 l S 186.47 76.53 m 186.53 79.63 l S 186.53 76.53 m 186.60 79.63 l S 186.60 76.53 m 186.66 85.81 l S 186.66 76.53 m 186.72 79.63 l S 186.72 76.53 m 186.78 79.63 l S 186.78 76.53 m 186.85 79.63 l S 186.85 76.53 m 186.91 79.63 l S 186.91 76.53 m 186.97 79.63 l S 186.97 76.53 m 187.03 79.63 l S 187.03 76.53 m 187.10 82.72 l S 187.10 76.53 m 187.16 82.72 l S 187.16 76.53 m 187.22 79.63 l S 187.22 76.53 m 187.29 82.72 l S 187.29 76.53 m 187.35 79.63 l S 187.35 76.53 m 187.41 79.63 l S 187.41 76.53 m 187.47 82.72 l S 187.47 76.53 m 187.54 79.63 l S 187.54 76.53 m 187.60 79.63 l S 187.60 76.53 m 187.66 82.72 l S 187.66 76.53 m 187.72 79.63 l S 187.72 76.53 m 187.79 79.63 l S 187.79 76.53 m 187.85 79.63 l S 187.85 76.53 m 187.91 82.72 l S 187.91 76.53 m 187.98 79.63 l S 187.98 76.53 m 188.04 95.09 l S 188.04 76.53 m 188.10 92.00 l S 188.10 76.53 m 188.16 82.72 l S 188.16 76.53 m 188.23 79.63 l S 188.23 76.53 m 188.29 79.63 l S 188.29 76.53 m 188.35 79.63 l S 188.35 76.53 m 188.41 79.63 l S 188.41 76.53 m 188.48 79.63 l S 188.48 76.53 m 188.54 79.63 l S 188.54 76.53 m 188.60 79.63 l S 188.60 76.53 m 188.66 82.72 l S 188.66 76.53 m 188.73 79.63 l S 188.73 76.53 m 188.79 79.63 l S 188.79 76.53 m 188.85 79.63 l S 188.85 76.53 m 188.92 82.72 l S 188.92 76.53 m 188.98 79.63 l S 188.98 76.53 m 189.04 79.63 l S 189.04 76.53 m 189.10 79.63 l S 189.10 76.53 m 189.17 79.63 l S 189.17 76.53 m 189.23 79.63 l S 189.23 76.53 m 189.29 85.81 l S 189.29 76.53 m 189.35 79.63 l S 189.35 76.53 m 189.42 85.81 l S 189.42 76.53 m 189.48 79.63 l S 189.48 76.53 m 189.54 79.63 l S 189.54 76.53 m 189.60 82.72 l S 189.60 76.53 m 189.67 79.63 l S 189.67 76.53 m 189.73 79.63 l S 189.73 76.53 m 189.79 79.63 l S 189.79 76.53 m 189.86 79.63 l S 189.86 76.53 m 189.92 79.63 l S 189.92 76.53 m 189.98 79.63 l S 189.98 76.53 m 190.04 79.63 l S 190.04 76.53 m 190.11 79.63 l S 190.11 76.53 m 190.17 76.53 l S 190.17 76.53 m 190.23 79.63 l S 190.23 76.53 m 190.29 79.63 l S 190.29 76.53 m 190.36 82.72 l S 190.36 76.53 m 190.42 82.72 l S 190.42 76.53 m 190.48 79.63 l S 190.48 76.53 m 190.55 79.63 l S 190.55 76.53 m 190.61 79.63 l S 190.61 76.53 m 190.67 79.63 l S 190.67 76.53 m 190.73 79.63 l S 190.73 76.53 m 190.80 79.63 l S 190.80 76.53 m 190.86 79.63 l S 190.86 76.53 m 190.92 79.63 l S 190.92 76.53 m 190.98 79.63 l S 190.98 76.53 m 191.05 79.63 l S 191.05 76.53 m 191.11 79.63 l S 191.11 76.53 m 191.17 79.63 l S 191.17 76.53 m 191.23 79.63 l S 191.23 76.53 m 191.30 79.63 l S 191.30 76.53 m 191.36 79.63 l S 191.36 76.53 m 191.42 79.63 l S 191.42 76.53 m 191.49 79.63 l S 191.49 76.53 m 191.55 79.63 l S 191.55 76.53 m 191.61 79.63 l S 191.61 76.53 m 191.67 79.63 l S 191.67 76.53 m 191.74 79.63 l S 191.74 76.53 m 191.80 79.63 l S 191.80 76.53 m 191.86 79.63 l S 191.86 76.53 m 191.92 76.53 l S 191.92 76.53 m 191.99 79.63 l S 191.99 76.53 m 192.05 79.63 l S 192.05 76.53 m 192.11 79.63 l S 192.11 76.53 m 192.17 79.63 l S 192.17 76.53 m 192.24 79.63 l S 192.24 76.53 m 192.30 79.63 l S 192.30 76.53 m 192.36 79.63 l S 192.36 76.53 m 192.43 79.63 l S 192.43 76.53 m 192.49 79.63 l S 192.49 76.53 m 192.55 79.63 l S 192.55 76.53 m 192.61 79.63 l S 192.61 76.53 m 192.68 79.63 l S 192.68 76.53 m 192.74 82.72 l S 192.74 76.53 m 192.80 79.63 l S 192.80 76.53 m 192.86 79.63 l S 192.86 76.53 m 192.93 79.63 l S 192.93 76.53 m 192.99 79.63 l S 192.99 76.53 m 193.05 79.63 l S 193.05 76.53 m 193.12 79.63 l S 193.12 76.53 m 193.18 79.63 l S 193.18 76.53 m 193.24 79.63 l S 193.24 76.53 m 193.30 79.63 l S 193.30 76.53 m 193.37 79.63 l S 193.37 76.53 m 193.43 79.63 l S 193.43 76.53 m 193.49 79.63 l S 193.49 76.53 m 193.55 79.63 l S 193.55 76.53 m 193.62 79.63 l S 193.62 76.53 m 193.68 76.53 l S 193.68 76.53 m 193.74 79.63 l S 193.74 76.53 m 193.80 79.63 l S 193.80 76.53 m 193.87 79.63 l S 193.87 76.53 m 193.93 76.53 l S 193.93 76.53 m 193.99 79.63 l S 193.99 76.53 m 194.06 76.53 l S 194.06 76.53 m 194.12 79.63 l S 194.12 76.53 m 194.18 79.63 l S 194.18 76.53 m 194.24 79.63 l S 194.24 76.53 m 194.31 79.63 l S 194.31 76.53 m 194.37 79.63 l S 194.37 76.53 m 194.43 79.63 l S 194.43 76.53 m 194.49 79.63 l S 194.49 76.53 m 194.56 79.63 l S 194.56 76.53 m 194.62 79.63 l S 194.62 76.53 m 194.68 79.63 l S 194.68 76.53 m 194.74 79.63 l S 194.74 76.53 m 194.81 79.63 l S 194.81 76.53 m 194.87 79.63 l S 194.87 76.53 m 194.93 79.63 l S 194.93 76.53 m 195.00 79.63 l S 195.00 76.53 m 195.06 79.63 l S 195.06 76.53 m 195.12 82.72 l S 195.12 76.53 m 195.18 79.63 l S 195.18 76.53 m 195.25 76.53 l S 195.25 76.53 m 195.31 79.63 l S 195.31 76.53 m 195.37 79.63 l S 195.37 76.53 m 195.43 79.63 l S 195.43 76.53 m 195.50 79.63 l S 195.50 76.53 m 195.56 79.63 l S 195.56 76.53 m 195.62 79.63 l S 195.62 76.53 m 195.68 79.63 l S 195.68 76.53 m 195.75 79.63 l S 195.75 76.53 m 195.81 76.53 l S 195.81 76.53 m 195.87 76.53 l S 195.87 76.53 m 195.94 79.63 l S 195.94 76.53 m 196.00 79.63 l S 196.00 76.53 m 196.06 79.63 l S 196.06 76.53 m 196.12 79.63 l S 196.12 76.53 m 196.19 79.63 l S 196.19 76.53 m 196.25 79.63 l S 196.25 76.53 m 196.31 79.63 l S 196.31 76.53 m 196.37 79.63 l S 196.37 76.53 m 196.44 79.63 l S 196.44 76.53 m 196.50 79.63 l S 196.50 76.53 m 196.56 79.63 l S 196.56 76.53 m 196.63 79.63 l S 196.63 76.53 m 196.69 79.63 l S 196.69 76.53 m 196.75 79.63 l S 196.75 76.53 m 196.81 79.63 l S 196.81 76.53 m 196.88 79.63 l S 196.88 76.53 m 196.94 79.63 l S 196.94 76.53 m 197.00 79.63 l S 197.00 76.53 m 197.06 79.63 l S 197.06 76.53 m 197.13 79.63 l S 197.13 76.53 m 197.19 82.72 l S 197.19 76.53 m 197.25 88.91 l S 197.25 76.53 m 197.31 76.53 l S 197.31 76.53 m 197.38 79.63 l S 197.38 76.53 m 197.44 82.72 l S 197.44 76.53 m 197.50 88.91 l S 197.50 76.53 m 197.57 79.63 l S 197.57 76.53 m 197.63 79.63 l S 197.63 76.53 m 197.69 79.63 l S 197.69 76.53 m 197.75 79.63 l S 197.75 76.53 m 197.82 88.91 l S 197.82 76.53 m 197.88 79.63 l S 197.88 76.53 m 197.94 79.63 l S 197.94 76.53 m 198.00 79.63 l S 198.00 76.53 m 198.07 79.63 l S 198.07 76.53 m 198.13 79.63 l S 198.13 76.53 m 198.19 79.63 l S 198.19 76.53 m 198.25 79.63 l S 198.25 76.53 m 198.32 88.91 l S 198.32 76.53 m 198.38 79.63 l S 198.38 76.53 m 198.44 92.00 l S 198.44 76.53 m 198.51 79.63 l S 198.51 76.53 m 198.57 92.00 l S 198.57 76.53 m 198.63 76.53 l S 198.63 76.53 m 198.69 85.81 l S 198.69 76.53 m 198.76 82.72 l S 198.76 76.53 m 198.82 88.91 l S 198.82 76.53 m 198.88 79.63 l S 198.88 76.53 m 198.94 79.63 l S 198.94 76.53 m 199.01 82.72 l S 199.01 76.53 m 199.07 79.63 l S 199.07 76.53 m 199.13 79.63 l S 199.13 76.53 m 199.20 82.72 l S 199.20 76.53 m 199.26 79.63 l S 199.26 76.53 m 199.32 79.63 l S 199.32 76.53 m 199.38 88.91 l S 199.38 76.53 m 199.45 88.91 l S 199.45 76.53 m 199.51 88.91 l S 199.51 76.53 m 199.57 79.63 l S 199.57 76.53 m 199.63 82.72 l S 199.63 76.53 m 199.70 85.81 l S 199.70 76.53 m 199.76 85.81 l S 199.76 76.53 m 199.82 79.63 l S 199.82 76.53 m 199.88 92.00 l S 199.88 76.53 m 199.95 79.63 l S 199.95 76.53 m 200.01 79.63 l S 200.01 76.53 m 200.07 79.63 l S 200.07 76.53 m 200.14 85.81 l S 200.14 76.53 m 200.20 79.63 l S 200.20 76.53 m 200.26 79.63 l S 200.26 76.53 m 200.32 79.63 l S 200.32 76.53 m 200.39 85.81 l S 200.39 76.53 m 200.45 79.63 l S 200.45 76.53 m 200.51 79.63 l S 200.51 76.53 m 200.57 85.81 l S 200.57 76.53 m 200.64 79.63 l S 200.64 76.53 m 200.70 82.72 l S 200.70 76.53 m 200.76 79.63 l S 200.76 76.53 m 200.82 82.72 l S 200.82 76.53 m 200.89 79.63 l S 200.89 76.53 m 200.95 79.63 l S 200.95 76.53 m 201.01 79.63 l S 201.01 76.53 m 201.08 79.63 l S 201.08 76.53 m 201.14 82.72 l S 201.14 76.53 m 201.20 79.63 l S 201.20 76.53 m 201.26 82.72 l S 201.26 76.53 m 201.33 82.72 l S 201.33 76.53 m 201.39 76.53 l S 201.39 76.53 m 201.45 79.63 l S 201.45 76.53 m 201.51 79.63 l S 201.51 76.53 m 201.58 82.72 l S 201.58 76.53 m 201.64 82.72 l S 201.64 76.53 m 201.70 92.00 l S 201.70 76.53 m 201.77 79.63 l S 201.77 76.53 m 201.83 88.91 l S 201.83 76.53 m 201.89 82.72 l S 201.89 76.53 m 201.95 79.63 l S 201.95 76.53 m 202.02 79.63 l S 202.02 76.53 m 202.08 92.00 l S 202.08 76.53 m 202.14 88.91 l S 202.14 76.53 m 202.20 88.91 l S 202.20 76.53 m 202.27 79.63 l S 202.27 76.53 m 202.33 79.63 l S 202.33 76.53 m 202.39 79.63 l S 202.39 76.53 m 202.45 82.72 l S 202.45 76.53 m 202.52 85.81 l S 202.52 76.53 m 202.58 76.53 l S 202.58 76.53 m 202.64 79.63 l S 202.64 76.53 m 202.71 79.63 l S 202.71 76.53 m 202.77 79.63 l S 202.77 76.53 m 202.83 79.63 l S 202.83 76.53 m 202.89 85.81 l S 202.89 76.53 m 202.96 85.81 l S 202.96 76.53 m 203.02 85.81 l S 203.02 76.53 m 203.08 79.63 l S 203.08 76.53 m 203.14 79.63 l S 203.14 76.53 m 203.21 79.63 l S 203.21 76.53 m 203.27 79.63 l S 203.27 76.53 m 203.33 82.72 l S 203.33 76.53 m 203.39 79.63 l S 203.39 76.53 m 203.46 79.63 l S 203.46 76.53 m 203.52 79.63 l S 203.52 76.53 m 203.58 79.63 l S 203.58 76.53 m 203.65 79.63 l S 203.65 76.53 m 203.71 79.63 l S 203.71 76.53 m 203.77 79.63 l S 203.77 76.53 m 203.83 85.81 l S 203.83 76.53 m 203.90 79.63 l S 203.90 76.53 m 203.96 92.00 l S 203.96 76.53 m 204.02 79.63 l S 204.02 76.53 m 204.08 79.63 l S 204.08 76.53 m 204.15 79.63 l S 204.15 76.53 m 204.21 79.63 l S 204.21 76.53 m 204.27 79.63 l S 204.27 76.53 m 204.34 79.63 l S 204.34 76.53 m 204.40 79.63 l S 204.40 76.53 m 204.46 79.63 l S 204.46 76.53 m 204.52 79.63 l S 204.52 76.53 m 204.59 79.63 l S 204.59 76.53 m 204.65 95.09 l S 204.65 76.53 m 204.71 79.63 l S 204.71 76.53 m 204.77 79.63 l S 204.77 76.53 m 204.84 98.19 l S 204.84 76.53 m 204.90 85.81 l S 204.90 76.53 m 204.96 79.63 l S 204.96 76.53 m 205.02 79.63 l S 205.02 76.53 m 205.09 79.63 l S 205.09 76.53 m 205.15 82.72 l S 205.15 76.53 m 205.21 79.63 l S 205.21 76.53 m 205.28 85.81 l S 205.28 76.53 m 205.34 79.63 l S 205.34 76.53 m 205.40 79.63 l S 205.40 76.53 m 205.46 79.63 l S 205.46 76.53 m 205.53 88.91 l S 205.53 76.53 m 205.59 95.09 l S 205.59 76.53 m 205.65 82.72 l S 205.65 76.53 m 205.71 82.72 l S 205.71 76.53 m 205.78 92.00 l S 205.78 76.53 m 205.84 79.63 l S 205.84 76.53 m 205.90 79.63 l S 205.90 76.53 m 205.96 79.63 l S 205.96 76.53 m 206.03 79.63 l S 206.03 76.53 m 206.09 79.63 l S 206.09 76.53 m 206.15 79.63 l S 206.15 76.53 m 206.22 79.63 l S 206.22 76.53 m 206.28 88.91 l S 206.28 76.53 m 206.34 79.63 l S 206.34 76.53 m 206.40 82.72 l S 206.40 76.53 m 206.47 79.63 l S 206.47 76.53 m 206.53 79.63 l S 206.53 76.53 m 206.59 79.63 l S 206.59 76.53 m 206.65 79.63 l S 206.65 76.53 m 206.72 79.63 l S 206.72 76.53 m 206.78 79.63 l S 206.78 76.53 m 206.84 79.63 l S 206.84 76.53 m 206.91 79.63 l S 206.91 76.53 m 206.97 79.63 l S 206.97 76.53 m 207.03 79.63 l S 207.03 76.53 m 207.09 76.53 l S 207.09 76.53 m 207.16 95.09 l S 207.16 76.53 m 207.22 79.63 l S 207.22 76.53 m 207.28 113.65 l S 207.28 76.53 m 207.34 76.53 l S 207.34 76.53 m 207.41 98.19 l S 207.41 76.53 m 207.47 79.63 l S 207.47 76.53 m 207.53 82.72 l S 207.53 76.53 m 207.59 82.72 l S 207.59 76.53 m 207.66 79.63 l S 207.66 76.53 m 207.72 92.00 l S 207.72 76.53 m 207.78 79.63 l S 207.78 76.53 m 207.85 88.91 l S 207.85 76.53 m 207.91 79.63 l S 207.91 76.53 m 207.97 79.63 l S 207.97 76.53 m 208.03 79.63 l S 208.03 76.53 m 208.10 95.09 l S 208.10 76.53 m 208.16 82.72 l S 208.16 76.53 m 208.22 76.53 l S 208.22 76.53 m 208.28 95.09 l S 208.28 76.53 m 208.35 88.91 l S 208.35 76.53 m 208.41 95.09 l S 208.41 76.53 m 208.47 85.81 l S 208.47 76.53 m 208.53 82.72 l S 208.53 76.53 m 208.60 82.72 l S 208.60 76.53 m 208.66 79.63 l S 208.66 76.53 m 208.72 79.63 l S 208.72 76.53 m 208.79 92.00 l S 208.79 76.53 m 208.85 79.63 l S 208.85 76.53 m 208.91 79.63 l S 208.91 76.53 m 208.97 82.72 l S 208.97 76.53 m 209.04 79.63 l S 209.04 76.53 m 209.10 122.93 l S 209.10 76.53 m 209.16 85.81 l S 209.16 76.53 m 209.22 79.63 l S 209.22 76.53 m 209.29 79.63 l S 209.29 76.53 m 209.35 79.63 l S 209.35 76.53 m 209.41 79.63 l S 209.41 76.53 m 209.48 79.63 l S 209.48 76.53 m 209.54 76.53 l S 209.54 76.53 m 209.60 82.72 l S 209.60 76.53 m 209.66 79.63 l S 209.66 76.53 m 209.73 79.63 l S 209.73 76.53 m 209.79 79.63 l S 209.79 76.53 m 209.85 79.63 l S 209.85 76.53 m 209.91 79.63 l S 209.91 76.53 m 209.98 79.63 l S 209.98 76.53 m 210.04 79.63 l S 210.04 76.53 m 210.10 79.63 l S 210.10 76.53 m 210.16 79.63 l S 210.16 76.53 m 210.23 79.63 l S 210.23 76.53 m 210.29 79.63 l S 210.29 76.53 m 210.35 92.00 l S 210.35 76.53 m 210.42 79.63 l S 210.42 76.53 m 210.48 82.72 l S 210.48 76.53 m 210.54 79.63 l S 210.54 76.53 m 210.60 79.63 l S 210.60 76.53 m 210.67 79.63 l S 210.67 76.53 m 210.73 79.63 l S 210.73 76.53 m 210.79 79.63 l S 210.79 76.53 m 210.85 92.00 l S 210.85 76.53 m 210.92 79.63 l S 210.92 76.53 m 210.98 79.63 l S 210.98 76.53 m 211.04 88.91 l S 211.04 76.53 m 211.10 82.72 l S 211.10 76.53 m 211.17 79.63 l S 211.17 76.53 m 211.23 82.72 l S 211.23 76.53 m 211.29 79.63 l S 211.29 76.53 m 211.36 79.63 l S 211.36 76.53 m 211.42 82.72 l S 211.42 76.53 m 211.48 79.63 l S 211.48 76.53 m 211.54 79.63 l S 211.54 76.53 m 211.61 79.63 l S 211.61 76.53 m 211.67 79.63 l S 211.67 76.53 m 211.73 76.53 l S 211.73 76.53 m 211.79 79.63 l S 211.79 76.53 m 211.86 79.63 l S 211.86 76.53 m 211.92 82.72 l S 211.92 76.53 m 211.98 79.63 l S 211.98 76.53 m 212.05 79.63 l S 212.05 76.53 m 212.11 82.72 l S 212.11 76.53 m 212.17 79.63 l S 212.17 76.53 m 212.23 79.63 l S 212.23 76.53 m 212.30 79.63 l S 212.30 76.53 m 212.36 79.63 l S 212.36 76.53 m 212.42 79.63 l S 212.42 76.53 m 212.48 79.63 l S 212.48 76.53 m 212.55 79.63 l S 212.55 76.53 m 212.61 79.63 l S 212.61 76.53 m 212.67 79.63 l S 212.67 76.53 m 212.73 79.63 l S 212.73 76.53 m 212.80 79.63 l S 212.80 76.53 m 212.86 79.63 l S 212.86 76.53 m 212.92 79.63 l S 212.92 76.53 m 212.99 79.63 l S 212.99 76.53 m 213.05 79.63 l S 213.05 76.53 m 213.11 79.63 l S 213.11 76.53 m 213.17 79.63 l S 213.17 76.53 m 213.24 79.63 l S 213.24 76.53 m 213.30 79.63 l S 213.30 76.53 m 213.36 79.63 l S 213.36 76.53 m 213.42 79.63 l S 213.42 76.53 m 213.49 79.63 l S 213.49 76.53 m 213.55 79.63 l S 213.55 76.53 m 213.61 79.63 l S 213.61 76.53 m 213.67 79.63 l S 213.67 76.53 m 213.74 79.63 l S 213.74 76.53 m 213.80 79.63 l S 213.80 76.53 m 213.86 79.63 l S 213.86 76.53 m 213.93 79.63 l S 213.93 76.53 m 213.99 79.63 l S 213.99 76.53 m 214.05 79.63 l S 214.05 76.53 m 214.11 79.63 l S 214.11 76.53 m 214.18 82.72 l S 214.18 76.53 m 214.24 79.63 l S 214.24 76.53 m 214.30 79.63 l S 214.30 76.53 m 214.36 82.72 l S 214.36 76.53 m 214.43 79.63 l S 214.43 76.53 m 214.49 79.63 l S 214.49 76.53 m 214.55 79.63 l S 214.55 76.53 m 214.62 79.63 l S 214.62 76.53 m 214.68 79.63 l S 214.68 76.53 m 214.74 79.63 l S 214.74 76.53 m 214.80 79.63 l S 214.80 76.53 m 214.87 79.63 l S 214.87 76.53 m 214.93 79.63 l S 214.93 76.53 m 214.99 79.63 l S 214.99 76.53 m 215.05 82.72 l S 215.05 76.53 m 215.12 79.63 l S 215.12 76.53 m 215.18 79.63 l S 215.18 76.53 m 215.24 79.63 l S 215.24 76.53 m 215.30 79.63 l S 215.30 76.53 m 215.37 79.63 l S 215.37 76.53 m 215.43 79.63 l S 215.43 76.53 m 215.49 82.72 l S 215.49 76.53 m 215.56 79.63 l S 215.56 76.53 m 215.62 79.63 l S 215.62 76.53 m 215.68 79.63 l S 215.68 76.53 m 215.74 79.63 l S 215.74 76.53 m 215.81 79.63 l S 215.81 76.53 m 215.87 79.63 l S 215.87 76.53 m 215.93 79.63 l S 215.93 76.53 m 215.99 82.72 l S 215.99 76.53 m 216.06 85.81 l S 216.06 76.53 m 216.12 79.63 l S 216.12 76.53 m 216.18 79.63 l S 216.18 76.53 m 216.24 85.81 l S 216.24 76.53 m 216.31 79.63 l S 216.31 76.53 m 216.37 79.63 l S 216.37 76.53 m 216.43 79.63 l S 216.43 76.53 m 216.50 79.63 l S 216.50 76.53 m 216.56 79.63 l S 216.56 76.53 m 216.62 82.72 l S 216.62 76.53 m 216.68 79.63 l S 216.68 76.53 m 216.75 95.09 l S 216.75 76.53 m 216.81 82.72 l S 216.81 76.53 m 216.87 79.63 l S 216.87 76.53 m 216.93 79.63 l S 216.93 76.53 m 217.00 79.63 l S 217.00 76.53 m 217.06 79.63 l S 217.06 76.53 m 217.12 79.63 l S 217.12 76.53 m 217.19 79.63 l S 217.19 76.53 m 217.25 79.63 l S 217.25 76.53 m 217.31 79.63 l S 217.31 76.53 m 217.37 79.63 l S 217.37 76.53 m 217.44 79.63 l S 217.44 76.53 m 217.50 79.63 l S 217.50 76.53 m 217.56 79.63 l S 217.56 76.53 m 217.62 79.63 l S 217.62 76.53 m 217.69 79.63 l S 217.69 76.53 m 217.75 79.63 l S 217.75 76.53 m 217.81 79.63 l S 217.81 76.53 m 217.87 79.63 l S 217.87 76.53 m 217.94 79.63 l S 217.94 76.53 m 218.00 82.72 l S 218.00 76.53 m 218.06 79.63 l S 218.06 76.53 m 218.13 79.63 l S 218.13 76.53 m 218.19 85.81 l S 218.19 76.53 m 218.25 79.63 l S 218.25 76.53 m 218.31 79.63 l S 218.31 76.53 m 218.38 82.72 l S 218.38 76.53 m 218.44 79.63 l S 218.44 76.53 m 218.50 79.63 l S 218.50 76.53 m 218.56 79.63 l S 218.56 76.53 m 218.63 82.72 l S 218.63 76.53 m 218.69 82.72 l S 218.69 76.53 m 218.75 79.63 l S 218.75 76.53 m 218.81 79.63 l S 218.81 76.53 m 218.88 82.72 l S 218.88 76.53 m 218.94 79.63 l S 218.94 76.53 m 219.00 76.53 l S 219.00 76.53 m 219.07 76.53 l S 219.07 76.53 m 219.13 76.53 l S 219.13 76.53 m 219.19 76.53 l S 219.19 76.53 m 219.25 76.53 l S 219.25 76.53 m 219.32 76.53 l S 219.32 76.53 m 219.38 76.53 l S 219.38 76.53 m 219.44 76.53 l S 219.44 76.53 m 219.50 76.53 l S 219.50 76.53 m 219.57 76.53 l S 219.57 76.53 m 219.63 76.53 l S 219.63 76.53 m 219.69 76.53 l S 219.69 76.53 m 219.76 76.53 l S 219.76 76.53 m 219.82 76.53 l S 219.82 76.53 m 219.88 76.53 l S 219.88 76.53 m 219.94 76.53 l S 219.94 76.53 m 220.01 76.53 l S 220.01 76.53 m 220.07 76.53 l S 220.07 76.53 m 220.13 76.53 l S 220.13 76.53 m 220.19 82.72 l S 220.19 76.53 m 220.26 79.63 l S 220.26 76.53 m 220.32 82.72 l S 220.32 76.53 m 220.38 79.63 l S 220.38 76.53 m 220.44 79.63 l S 220.44 76.53 m 220.51 79.63 l S 220.51 76.53 m 220.57 79.63 l S 220.57 76.53 m 220.63 88.91 l S 220.63 76.53 m 220.70 79.63 l S 220.70 76.53 m 220.76 79.63 l S 220.76 76.53 m 220.82 79.63 l S 220.82 76.53 m 220.88 85.81 l S 220.88 76.53 m 220.95 79.63 l S 220.95 76.53 m 221.01 82.72 l S 221.01 76.53 m 221.07 79.63 l S 221.07 76.53 m 221.13 79.63 l S 221.13 76.53 m 221.20 79.63 l S 221.20 76.53 m 221.26 88.91 l S 221.26 76.53 m 221.32 88.91 l S 221.32 76.53 m 221.38 79.63 l S 221.38 76.53 m 221.45 79.63 l S 221.45 76.53 m 221.51 85.81 l S 221.51 76.53 m 221.57 82.72 l S 221.57 76.53 m 221.64 79.63 l S 221.64 76.53 m 221.70 79.63 l S 221.70 76.53 m 221.76 79.63 l S 221.76 76.53 m 221.82 79.63 l S 221.82 76.53 m 221.89 79.63 l S 221.89 76.53 m 221.95 79.63 l S 221.95 76.53 m 222.01 79.63 l S 222.01 76.53 m 222.07 79.63 l S 222.07 76.53 m 222.14 79.63 l S 222.14 76.53 m 222.20 79.63 l S 222.20 76.53 m 222.26 79.63 l S 222.26 76.53 m 222.32 79.63 l S 222.32 76.53 m 222.39 76.53 l S 222.39 76.53 m 222.45 79.63 l S 222.45 76.53 m 222.51 79.63 l S 222.51 76.53 m 222.58 79.63 l S 222.58 76.53 m 222.64 79.63 l S 222.64 76.53 m 222.70 76.53 l S 222.70 76.53 m 222.76 79.63 l S 222.76 76.53 m 222.83 76.53 l S 222.83 76.53 m 222.89 79.63 l S 222.89 76.53 m 222.95 79.63 l S 222.95 76.53 m 223.01 79.63 l S 223.01 76.53 m 223.08 79.63 l S 223.08 76.53 m 223.14 76.53 l S 223.14 76.53 m 223.20 79.63 l S 223.20 76.53 m 223.27 82.72 l S 223.27 76.53 m 223.33 79.63 l S 223.33 76.53 m 223.39 76.53 l S 223.39 76.53 m 223.45 79.63 l S 223.45 76.53 m 223.52 79.63 l S 223.52 76.53 m 223.58 79.63 l S 223.58 76.53 m 223.64 79.63 l S 223.64 76.53 m 223.70 79.63 l S 223.70 76.53 m 223.77 79.63 l S 223.77 76.53 m 223.83 79.63 l S 223.83 76.53 m 223.89 79.63 l S 223.89 76.53 m 223.95 79.63 l S 223.95 76.53 m 224.02 79.63 l S 224.02 76.53 m 224.08 79.63 l S 224.08 76.53 m 224.14 79.63 l S 224.14 76.53 m 224.21 82.72 l S 224.21 76.53 m 224.27 79.63 l S 224.27 76.53 m 224.33 79.63 l S 224.33 76.53 m 224.39 79.63 l S 224.39 76.53 m 224.46 79.63 l S 224.46 76.53 m 224.52 79.63 l S 224.52 76.53 m 224.58 79.63 l S 224.58 76.53 m 224.64 79.63 l S 224.64 76.53 m 224.71 82.72 l S 224.71 76.53 m 224.77 79.63 l S 224.77 76.53 m 224.83 79.63 l S 224.83 76.53 m 224.89 82.72 l S 224.89 76.53 m 224.96 79.63 l S 224.96 76.53 m 225.02 79.63 l S 225.02 76.53 m 225.08 82.72 l S 225.08 76.53 m 225.15 79.63 l S 225.15 76.53 m 225.21 79.63 l S 225.21 76.53 m 225.27 79.63 l S 225.27 76.53 m 225.33 79.63 l S 225.33 76.53 m 225.40 79.63 l S 225.40 76.53 m 225.46 82.72 l S 225.46 76.53 m 225.52 79.63 l S 225.52 76.53 m 225.58 79.63 l S 225.58 76.53 m 225.65 79.63 l S 225.65 76.53 m 225.71 79.63 l S 225.71 76.53 m 225.77 79.63 l S 225.77 76.53 m 225.84 79.63 l S 225.84 76.53 m 225.90 79.63 l S 225.90 76.53 m 225.96 79.63 l S 225.96 76.53 m 226.02 79.63 l S 226.02 76.53 m 226.09 79.63 l S 226.09 76.53 m 226.15 79.63 l S 226.15 76.53 m 226.21 79.63 l S 226.21 76.53 m 226.27 79.63 l S 226.27 76.53 m 226.34 79.63 l S 226.34 76.53 m 226.40 79.63 l S 226.40 76.53 m 226.46 79.63 l S 226.46 76.53 m 226.52 82.72 l S 226.52 76.53 m 226.59 79.63 l S 226.59 76.53 m 226.65 79.63 l S 226.65 76.53 m 226.71 79.63 l S 226.71 76.53 m 226.78 79.63 l S 226.78 76.53 m 226.84 79.63 l S 226.84 76.53 m 226.90 79.63 l S 226.90 76.53 m 226.96 79.63 l S 226.96 76.53 m 227.03 79.63 l S 227.03 76.53 m 227.09 79.63 l S 227.09 76.53 m 227.15 79.63 l S 227.15 76.53 m 227.21 79.63 l S 227.21 76.53 m 227.28 79.63 l S 227.28 76.53 m 227.34 82.72 l S 227.34 76.53 m 227.40 79.63 l S 227.40 76.53 m 227.46 79.63 l S 227.46 76.53 m 227.53 79.63 l S 227.53 76.53 m 227.59 79.63 l S 227.59 76.53 m 227.65 79.63 l S 227.65 76.53 m 227.72 79.63 l S 227.72 76.53 m 227.78 82.72 l S 227.78 76.53 m 227.84 79.63 l S 227.84 76.53 m 227.90 82.72 l S 227.90 76.53 m 227.97 79.63 l S 227.97 76.53 m 228.03 79.63 l S 228.03 76.53 m 228.09 79.63 l S 228.09 76.53 m 228.15 88.91 l S 228.15 76.53 m 228.22 79.63 l S 228.22 76.53 m 228.28 79.63 l S 228.28 76.53 m 228.34 79.63 l S 228.34 76.53 m 228.41 82.72 l S 228.41 76.53 m 228.47 79.63 l S 228.47 76.53 m 228.53 82.72 l S 228.53 76.53 m 228.59 79.63 l S 228.59 76.53 m 228.66 79.63 l S 228.66 76.53 m 228.72 79.63 l S 228.72 76.53 m 228.78 79.63 l S 228.78 76.53 m 228.84 79.63 l S 228.84 76.53 m 228.91 79.63 l S 228.91 76.53 m 228.97 79.63 l S 228.97 76.53 m 229.03 79.63 l S 229.03 76.53 m 229.09 79.63 l S 229.09 76.53 m 229.16 79.63 l S 229.16 76.53 m 229.22 79.63 l S 229.22 76.53 m 229.28 79.63 l S 229.28 76.53 m 229.35 79.63 l S 229.35 76.53 m 229.41 79.63 l S 229.41 76.53 m 229.47 79.63 l S 229.47 76.53 m 229.53 79.63 l S 229.53 76.53 m 229.60 82.72 l S 229.60 76.53 m 229.66 79.63 l S 229.66 76.53 m 229.72 79.63 l S 229.72 76.53 m 229.78 79.63 l S 229.78 76.53 m 229.85 79.63 l S 229.85 76.53 m 229.91 79.63 l S 229.91 76.53 m 229.97 79.63 l S 229.97 76.53 m 230.03 82.72 l S 230.03 76.53 m 230.10 79.63 l S 230.10 76.53 m 230.16 79.63 l S 230.16 76.53 m 230.22 79.63 l S 230.22 76.53 m 230.29 79.63 l S 230.29 76.53 m 230.35 79.63 l S 230.35 76.53 m 230.41 79.63 l S 230.41 76.53 m 230.47 79.63 l S 230.47 76.53 m 230.54 79.63 l S 230.54 76.53 m 230.60 79.63 l S 230.60 76.53 m 230.66 79.63 l S 230.66 76.53 m 230.72 79.63 l S 230.72 76.53 m 230.79 79.63 l S 230.79 76.53 m 230.85 79.63 l S 230.85 76.53 m 230.91 82.72 l S 230.91 76.53 m 230.98 79.63 l S 230.98 76.53 m 231.04 79.63 l S 231.04 76.53 m 231.10 79.63 l S 231.10 76.53 m 231.16 79.63 l S 231.16 76.53 m 231.23 82.72 l S 231.23 76.53 m 231.29 79.63 l S 231.29 76.53 m 231.35 79.63 l S 231.35 76.53 m 231.41 79.63 l S 231.41 76.53 m 231.48 79.63 l S 231.48 76.53 m 231.54 79.63 l S 231.54 76.53 m 231.60 79.63 l S 231.60 76.53 m 231.66 79.63 l S 231.66 76.53 m 231.73 79.63 l S 231.73 76.53 m 231.79 79.63 l S 231.79 76.53 m 231.85 79.63 l S 231.85 76.53 m 231.92 79.63 l S 231.92 76.53 m 231.98 79.63 l S 231.98 76.53 m 232.04 79.63 l S 232.04 76.53 m 232.10 79.63 l S 232.10 76.53 m 232.17 79.63 l S 232.17 76.53 m 232.23 79.63 l S 232.23 76.53 m 232.29 82.72 l S 232.29 76.53 m 232.35 85.81 l S 232.35 76.53 m 232.42 79.63 l S 232.42 76.53 m 232.48 79.63 l S 232.48 76.53 m 232.54 79.63 l S 232.54 76.53 m 232.60 85.81 l S 232.60 76.53 m 232.67 79.63 l S 232.67 76.53 m 232.73 79.63 l S 232.73 76.53 m 232.79 79.63 l S 232.79 76.53 m 232.86 79.63 l S 232.86 76.53 m 232.92 88.91 l S 232.92 76.53 m 232.98 79.63 l S 232.98 76.53 m 233.04 85.81 l S 233.04 76.53 m 233.11 79.63 l S 233.11 76.53 m 233.17 79.63 l S 233.17 76.53 m 233.23 79.63 l S 233.23 76.53 m 233.29 79.63 l S 233.29 76.53 m 233.36 82.72 l S 233.36 76.53 m 233.42 82.72 l S 233.42 76.53 m 233.48 79.63 l S 233.48 76.53 m 233.55 79.63 l S 233.55 76.53 m 233.61 79.63 l S 233.61 76.53 m 233.67 85.81 l S 233.67 76.53 m 233.73 76.53 l S 233.73 76.53 m 233.80 79.63 l S 233.80 76.53 m 233.86 79.63 l S 233.86 76.53 m 233.92 76.53 l S 233.92 76.53 m 233.98 76.53 l S 233.98 76.53 m 234.05 76.53 l S 234.05 76.53 m 234.11 79.63 l S 234.11 76.53 m 234.17 79.63 l S 234.17 76.53 m 234.23 79.63 l S 234.23 76.53 m 234.30 76.53 l S 234.30 76.53 m 234.36 76.53 l S 234.36 76.53 m 234.42 104.37 l S 234.42 76.53 m 234.49 79.63 l S 234.49 76.53 m 234.55 79.63 l S 234.55 76.53 m 234.61 79.63 l S 234.61 76.53 m 234.67 82.72 l S 234.67 76.53 m 234.74 79.63 l S 234.74 76.53 m 234.80 79.63 l S 234.80 76.53 m 234.86 79.63 l S 234.86 76.53 m 234.92 82.72 l S 234.92 76.53 m 234.99 88.91 l S 234.99 76.53 m 235.05 88.91 l S 235.05 76.53 m 235.11 79.63 l S 235.11 76.53 m 235.17 79.63 l S 235.17 76.53 m 235.24 79.63 l S 235.24 76.53 m 235.30 79.63 l S 235.30 76.53 m 235.36 79.63 l S 235.36 76.53 m 235.43 79.63 l S 235.43 76.53 m 235.49 79.63 l S 235.49 76.53 m 235.55 79.63 l S 235.55 76.53 m 235.61 79.63 l S 235.61 76.53 m 235.68 79.63 l S 235.68 76.53 m 235.74 79.63 l S 235.74 76.53 m 235.80 79.63 l S 235.80 76.53 m 235.86 79.63 l S 235.86 76.53 m 235.93 79.63 l S 235.93 76.53 m 235.99 79.63 l S 235.99 76.53 m 236.05 79.63 l S 236.05 76.53 m 236.12 79.63 l S 236.12 76.53 m 236.18 79.63 l S 236.18 76.53 m 236.24 79.63 l S 236.24 76.53 m 236.30 79.63 l S 236.30 76.53 m 236.37 79.63 l S 236.37 76.53 m 236.43 92.00 l S 236.43 76.53 m 236.49 79.63 l S 236.49 76.53 m 236.55 79.63 l S 236.55 76.53 m 236.62 79.63 l S 236.62 76.53 m 236.68 79.63 l S 236.68 76.53 m 236.74 79.63 l S 236.74 76.53 m 236.80 79.63 l S 236.80 76.53 m 236.87 79.63 l S 236.87 76.53 m 236.93 95.09 l S 236.93 76.53 m 236.99 82.72 l S 236.99 76.53 m 237.06 82.72 l S 237.06 76.53 m 237.12 82.72 l S 237.12 76.53 m 237.18 85.81 l S 237.18 76.53 m 237.24 79.63 l S 237.24 76.53 m 237.31 79.63 l S 237.31 76.53 m 237.37 82.72 l S 237.37 76.53 m 237.43 79.63 l S 237.43 76.53 m 237.49 79.63 l S 237.49 76.53 m 237.56 88.91 l S 237.56 76.53 m 237.62 85.81 l S 237.62 76.53 m 237.68 79.63 l S 237.68 76.53 m 237.74 82.72 l S 237.74 76.53 m 237.81 85.81 l S 237.81 76.53 m 237.87 79.63 l S 237.87 76.53 m 237.93 88.91 l S 237.93 76.53 m 238.00 79.63 l S 238.00 76.53 m 238.06 79.63 l S 238.06 76.53 m 238.12 79.63 l S 238.12 76.53 m 238.18 79.63 l S 238.18 76.53 m 238.25 79.63 l S 238.25 76.53 m 238.31 79.63 l S 238.31 76.53 m 238.37 85.81 l S 238.37 76.53 m 238.43 79.63 l S 238.43 76.53 m 238.50 95.09 l S 238.50 76.53 m 238.56 79.63 l S 238.56 76.53 m 238.62 79.63 l S 238.62 76.53 m 238.69 79.63 l S 238.69 76.53 m 238.75 82.72 l S 238.75 76.53 m 238.81 79.63 l S 238.81 76.53 m 238.87 82.72 l S 238.87 76.53 m 238.94 79.63 l S 238.94 76.53 m 239.00 82.72 l S 239.00 76.53 m 239.06 79.63 l S 239.06 76.53 m 239.12 79.63 l S 239.12 76.53 m 239.19 79.63 l S 239.19 76.53 m 239.25 79.63 l S 239.25 76.53 m 239.31 79.63 l S 239.31 76.53 m 239.37 82.72 l S 239.37 76.53 m 239.44 79.63 l S 239.44 76.53 m 239.50 79.63 l S 239.50 76.53 m 239.56 79.63 l S 239.56 76.53 m 239.63 79.63 l S 239.63 76.53 m 239.69 79.63 l S 239.69 76.53 m 239.75 79.63 l S 239.75 76.53 m 239.81 79.63 l S 239.81 76.53 m 239.88 79.63 l S 239.88 76.53 m 239.94 79.63 l S 239.94 76.53 m 240.00 79.63 l S 240.00 76.53 m 240.06 79.63 l S 240.06 76.53 m 240.13 79.63 l S 240.13 76.53 m 240.19 79.63 l S 240.19 76.53 m 240.25 79.63 l S 240.25 76.53 m 240.31 79.63 l S 240.31 76.53 m 240.38 79.63 l S 240.38 76.53 m 240.44 79.63 l S 240.44 76.53 m 240.50 79.63 l S 240.50 76.53 m 240.57 79.63 l S 240.57 76.53 m 240.63 98.19 l S 240.63 76.53 m 240.69 79.63 l S 240.69 76.53 m 240.75 79.63 l S 240.75 76.53 m 240.82 79.63 l S 240.82 76.53 m 240.88 79.63 l S 240.88 76.53 m 240.94 79.63 l S 240.94 76.53 m 241.00 79.63 l S 241.00 76.53 m 241.07 79.63 l S 241.07 76.53 m 241.13 79.63 l S 241.13 76.53 m 241.19 85.81 l S 241.19 76.53 m 241.26 79.63 l S 241.26 76.53 m 241.32 82.72 l S 241.32 76.53 m 241.38 79.63 l S 241.38 76.53 m 241.44 79.63 l S 241.44 76.53 m 241.51 76.53 l S 241.51 76.53 m 241.57 79.63 l S 241.57 76.53 m 241.63 95.09 l S 241.63 76.53 m 241.69 76.53 l S 241.69 76.53 m 241.76 79.63 l S 241.76 76.53 m 241.82 79.63 l S 241.82 76.53 m 241.88 79.63 l S 241.88 76.53 m 241.94 79.63 l S 241.94 76.53 m 242.01 79.63 l S 242.01 76.53 m 242.07 85.81 l S 242.07 76.53 m 242.13 79.63 l S 242.13 76.53 m 242.20 79.63 l S 242.20 76.53 m 242.26 79.63 l S 242.26 76.53 m 242.32 79.63 l S 242.32 76.53 m 242.38 85.81 l S 242.38 76.53 m 242.45 79.63 l S 242.45 76.53 m 242.51 79.63 l S 242.51 76.53 m 242.57 92.00 l S 242.57 76.53 m 242.63 76.53 l S 242.63 76.53 m 242.70 79.63 l S 242.70 76.53 m 242.76 79.63 l S 242.76 76.53 m 242.82 79.63 l S 242.82 76.53 m 242.88 79.63 l S 242.88 76.53 m 242.95 79.63 l S 242.95 76.53 m 243.01 76.53 l S 243.01 76.53 m 243.07 76.53 l S 243.07 76.53 m 243.14 79.63 l S 243.14 76.53 m 243.20 85.81 l S 243.20 76.53 m 243.26 95.09 l S 243.26 76.53 m 243.32 79.63 l S 243.32 76.53 m 243.39 76.53 l S 243.39 76.53 m 243.45 79.63 l S 243.45 76.53 m 243.51 79.63 l S 243.51 76.53 m 243.57 79.63 l S 243.57 76.53 m 243.64 79.63 l S 243.64 76.53 m 243.70 79.63 l S 243.70 76.53 m 243.76 79.63 l S 243.76 76.53 m 243.83 92.00 l S 243.83 76.53 m 243.89 76.53 l S 243.89 76.53 m 243.95 79.63 l S 243.95 76.53 m 244.01 85.81 l S 244.01 76.53 m 244.08 79.63 l S 244.08 76.53 m 244.14 79.63 l S 244.14 76.53 m 244.20 79.63 l S 244.20 76.53 m 244.26 82.72 l S 244.26 76.53 m 244.33 92.00 l S 244.33 76.53 m 244.39 79.63 l S 244.39 76.53 m 244.45 79.63 l S 244.45 76.53 m 244.51 76.53 l S 244.51 76.53 m 244.58 76.53 l S 244.58 76.53 m 244.64 79.63 l S 244.64 76.53 m 244.70 82.72 l S 244.70 76.53 m 244.77 79.63 l S 244.77 76.53 m 244.83 79.63 l S 244.83 76.53 m 244.89 79.63 l S 244.89 76.53 m 244.95 82.72 l S 244.95 76.53 m 245.02 79.63 l S 245.02 76.53 m 245.08 79.63 l S 245.08 76.53 m 245.14 79.63 l S 245.14 76.53 m 245.20 82.72 l S 245.20 76.53 m 245.27 79.63 l S 245.27 76.53 m 245.33 79.63 l S 245.33 76.53 m 245.39 79.63 l S 245.39 76.53 m 245.45 79.63 l S 245.45 76.53 m 245.52 92.00 l S 245.52 76.53 m 245.58 79.63 l S 245.58 76.53 m 245.64 79.63 l S 245.64 76.53 m 245.71 79.63 l S 245.71 76.53 m 245.77 79.63 l S 245.77 76.53 m 245.83 79.63 l S 245.83 76.53 m 245.89 92.00 l S 245.89 76.53 m 245.96 79.63 l S 245.96 76.53 m 246.02 79.63 l S 246.02 76.53 m 246.08 79.63 l S 246.08 76.53 m 246.14 79.63 l S 246.14 76.53 m 246.21 79.63 l S 246.21 76.53 m 246.27 92.00 l S 246.27 76.53 m 246.33 79.63 l S 246.33 76.53 m 246.39 79.63 l S 246.39 76.53 m 246.46 79.63 l S 246.46 76.53 m 246.52 79.63 l S 246.52 76.53 m 246.58 79.63 l S 246.58 76.53 m 246.65 79.63 l S 246.65 76.53 m 246.71 79.63 l S 246.71 76.53 m 246.77 79.63 l S 246.77 76.53 m 246.83 79.63 l S 246.83 76.53 m 246.90 79.63 l S 246.90 76.53 m 246.96 79.63 l S 246.96 76.53 m 247.02 79.63 l S 247.02 76.53 m 247.08 92.00 l S 247.08 76.53 m 247.15 82.72 l S 247.15 76.53 m 247.21 79.63 l S 247.21 76.53 m 247.27 79.63 l S 247.27 76.53 m 247.34 79.63 l S 247.34 76.53 m 247.40 79.63 l S 247.40 76.53 m 247.46 95.09 l S 247.46 76.53 m 247.52 79.63 l S 247.52 76.53 m 247.59 79.63 l S 247.59 76.53 m 247.65 79.63 l S 247.65 76.53 m 247.71 79.63 l S 247.71 76.53 m 247.77 79.63 l S 247.77 76.53 m 247.84 79.63 l S 247.84 76.53 m 247.90 79.63 l S 247.90 76.53 m 247.96 79.63 l S 247.96 76.53 m 248.02 76.53 l S 248.02 76.53 m 248.09 79.63 l S 248.09 76.53 m 248.15 79.63 l S 248.15 76.53 m 248.21 79.63 l S 248.21 76.53 m 248.28 79.63 l S 248.28 76.53 m 248.34 79.63 l S 248.34 76.53 m 248.40 79.63 l S 248.40 76.53 m 248.46 79.63 l S 248.46 76.53 m 248.53 79.63 l S 248.53 76.53 m 248.59 79.63 l S 248.59 76.53 m 248.65 82.72 l S 248.65 76.53 m 248.71 82.72 l S 248.71 76.53 m 248.78 82.72 l S 248.78 76.53 m 248.84 85.81 l S 248.84 76.53 m 248.90 79.63 l S 248.90 76.53 m 248.96 79.63 l S 248.96 76.53 m 249.03 79.63 l S 249.03 76.53 m 249.09 79.63 l S 249.09 76.53 m 249.15 79.63 l S 249.15 76.53 m 249.22 79.63 l S 249.22 76.53 m 249.28 79.63 l S 249.28 76.53 m 249.34 85.81 l S 249.34 76.53 m 249.40 79.63 l S 249.40 76.53 m 249.47 79.63 l S 249.47 76.53 m 249.53 92.00 l S 249.53 76.53 m 249.59 95.09 l S 249.59 76.53 m 249.65 79.63 l S 249.65 76.53 m 249.72 79.63 l S 249.72 76.53 m 249.78 79.63 l S 249.78 76.53 m 249.84 79.63 l S 249.84 76.53 m 249.91 79.63 l S 249.91 76.53 m 249.97 92.00 l S 249.97 76.53 m 250.03 79.63 l S 250.03 76.53 m 250.09 79.63 l S 250.09 76.53 m 250.16 79.63 l S 250.16 76.53 m 250.22 88.91 l S 250.22 76.53 m 250.28 85.81 l S 250.28 76.53 m 250.34 79.63 l S 250.34 76.53 m 250.41 88.91 l S 250.41 76.53 m 250.47 79.63 l S 250.47 76.53 m 250.53 79.63 l S 250.53 76.53 m 250.59 79.63 l S 250.59 76.53 m 250.66 79.63 l S 250.66 76.53 m 250.72 79.63 l S 250.72 76.53 m 250.78 79.63 l S 250.78 76.53 m 250.85 82.72 l S 250.85 76.53 m 250.91 79.63 l S 250.91 76.53 m 250.97 82.72 l S 250.97 76.53 m 251.03 79.63 l S 251.03 76.53 m 251.10 79.63 l S 251.10 76.53 m 251.16 76.53 l S 251.16 76.53 m 251.22 85.81 l S 251.22 76.53 m 251.28 79.63 l S 251.28 76.53 m 251.35 79.63 l S 251.35 76.53 m 251.41 82.72 l S 251.41 76.53 m 251.47 82.72 l S 251.47 76.53 m 251.53 79.63 l S 251.53 76.53 m 251.60 79.63 l S 251.60 76.53 m 251.66 85.81 l S 251.66 76.53 m 251.72 79.63 l S 251.72 76.53 m 251.79 79.63 l S 251.79 76.53 m 251.85 79.63 l S 251.85 76.53 m 251.91 79.63 l S 251.91 76.53 m 251.97 79.63 l S 251.97 76.53 m 252.04 82.72 l S 252.04 76.53 m 252.10 79.63 l S 252.10 76.53 m 252.16 79.63 l S 252.16 76.53 m 252.22 79.63 l S 252.22 76.53 m 252.29 79.63 l S 252.29 76.53 m 252.35 82.72 l S 252.35 76.53 m 252.41 79.63 l S 252.41 76.53 m 252.48 79.63 l S 252.48 76.53 m 252.54 88.91 l S 252.54 76.53 m 252.60 92.00 l S 252.60 76.53 m 252.66 82.72 l S 252.66 76.53 m 252.73 85.81 l S 252.73 76.53 m 252.79 104.37 l S 252.79 76.53 m 252.85 92.00 l S 252.85 76.53 m 252.91 92.00 l S 252.91 76.53 m 252.98 79.63 l S 252.98 76.53 m 253.04 79.63 l S 253.04 76.53 m 253.10 82.72 l S 253.10 76.53 m 253.16 85.81 l S 253.16 76.53 m 253.23 82.72 l S 253.23 76.53 m 253.29 85.81 l S 253.29 76.53 m 253.35 92.00 l S 253.35 76.53 m 253.42 82.72 l S 253.42 76.53 m 253.48 79.63 l S 253.48 76.53 m 253.54 95.09 l S 253.54 76.53 m 253.60 79.63 l S 253.60 76.53 m 253.67 79.63 l S 253.67 76.53 m 253.73 79.63 l S 253.73 76.53 m 253.79 79.63 l S 253.79 76.53 m 253.85 79.63 l S 253.85 76.53 m 253.92 82.72 l S 253.92 76.53 m 253.98 82.72 l S 253.98 76.53 m 254.04 82.72 l S 254.04 76.53 m 254.10 82.72 l S 254.10 76.53 m 254.17 79.63 l S 254.17 76.53 m 254.23 79.63 l S 254.23 76.53 m 254.29 79.63 l S 254.29 76.53 m 254.36 79.63 l S 254.36 76.53 m 254.42 79.63 l S 254.42 76.53 m 254.48 79.63 l S 254.48 76.53 m 254.54 79.63 l S 254.54 76.53 m 254.61 82.72 l S 254.61 76.53 m 254.67 92.00 l S 254.67 76.53 m 254.73 85.81 l S 254.73 76.53 m 254.79 79.63 l S 254.79 76.53 m 254.86 79.63 l S 254.86 76.53 m 254.92 79.63 l S 254.92 76.53 m 254.98 79.63 l S 254.98 76.53 m 255.05 79.63 l S 255.05 76.53 m 255.11 85.81 l S 255.11 76.53 m 255.17 76.53 l S 255.17 76.53 m 255.23 79.63 l S 255.23 76.53 m 255.30 79.63 l S 255.30 76.53 m 255.36 79.63 l S 255.36 76.53 m 255.42 79.63 l S 255.42 76.53 m 255.48 79.63 l S 255.48 76.53 m 255.55 79.63 l S 255.55 76.53 m 255.61 79.63 l S 255.61 76.53 m 255.67 79.63 l S 255.67 76.53 m 255.73 79.63 l S 255.73 76.53 m 255.80 79.63 l S 255.80 76.53 m 255.86 79.63 l S 255.86 76.53 m 255.92 79.63 l S 255.92 76.53 m 255.99 79.63 l S 255.99 76.53 m 256.05 79.63 l S 256.05 76.53 m 256.11 82.72 l S 256.11 76.53 m 256.17 79.63 l S 256.17 76.53 m 256.24 79.63 l S 256.24 76.53 m 256.30 79.63 l S 256.30 76.53 m 256.36 79.63 l S 256.36 76.53 m 256.42 82.72 l S 256.42 76.53 m 256.49 88.91 l S 256.49 76.53 m 256.55 79.63 l S 256.55 76.53 m 256.61 79.63 l S 256.61 76.53 m 256.67 79.63 l S 256.67 76.53 m 256.74 85.81 l S 256.74 76.53 m 256.80 79.63 l S 256.80 76.53 m 256.86 88.91 l S 256.86 76.53 m 256.93 92.00 l S 256.93 76.53 m 256.99 79.63 l S 256.99 76.53 m 257.05 88.91 l S 257.05 76.53 m 257.11 79.63 l S 257.11 76.53 m 257.18 82.72 l S 257.18 76.53 m 257.24 82.72 l S 257.24 76.53 m 257.30 79.63 l S 257.30 76.53 m 257.36 79.63 l S 257.36 76.53 m 257.43 79.63 l S 257.43 76.53 m 257.49 79.63 l S 257.49 76.53 m 257.55 82.72 l S 257.55 76.53 m 257.62 79.63 l S 257.62 76.53 m 257.68 79.63 l S 257.68 76.53 m 257.74 79.63 l S 257.74 76.53 m 257.80 79.63 l S 257.80 76.53 m 257.87 88.91 l S 257.87 76.53 m 257.93 79.63 l S 257.93 76.53 m 257.99 92.00 l S 257.99 76.53 m 258.05 95.09 l S 258.05 76.53 m 258.12 79.63 l S 258.12 76.53 m 258.18 82.72 l S 258.18 76.53 m 258.24 79.63 l S 258.24 76.53 m 258.30 79.63 l S 258.30 76.53 m 258.37 79.63 l S 258.37 76.53 m 258.43 85.81 l S 258.43 76.53 m 258.49 79.63 l S 258.49 76.53 m 258.56 92.00 l S 258.56 76.53 m 258.62 79.63 l S 258.62 76.53 m 258.68 82.72 l S 258.68 76.53 m 258.74 82.72 l S 258.74 76.53 m 258.81 79.63 l S 258.81 76.53 m 258.87 79.63 l S 258.87 76.53 m 258.93 82.72 l S 258.93 76.53 m 258.99 79.63 l S 258.99 76.53 m 259.06 82.72 l S 259.06 76.53 m 259.12 79.63 l S 259.12 76.53 m 259.18 79.63 l S 259.18 76.53 m 259.24 85.81 l S 259.24 76.53 m 259.31 79.63 l S 259.31 76.53 m 259.37 101.28 l S 259.37 76.53 m 259.43 88.91 l S 259.43 76.53 m 259.50 95.09 l S 259.50 76.53 m 259.56 82.72 l S 259.56 76.53 m 259.62 82.72 l S 259.62 76.53 m 259.68 79.63 l S 259.68 76.53 m 259.75 79.63 l S 259.75 76.53 m 259.81 82.72 l S 259.81 76.53 m 259.87 82.72 l S 259.87 76.53 m 259.93 82.72 l S 259.93 76.53 m 260.00 82.72 l S 260.00 76.53 m 260.06 82.72 l S 260.06 76.53 m 260.12 79.63 l S 260.12 76.53 m 260.19 79.63 l S 260.19 76.53 m 260.25 79.63 l S 260.25 76.53 m 260.31 79.63 l S 260.31 76.53 m 260.37 79.63 l S 260.37 76.53 m 260.44 79.63 l S 260.44 76.53 m 260.50 88.91 l S 260.50 76.53 m 260.56 79.63 l S 260.56 76.53 m 260.62 79.63 l S 260.62 76.53 m 260.69 85.81 l S 260.69 76.53 m 260.75 79.63 l S 260.75 76.53 m 260.81 82.72 l S 260.81 76.53 m 260.87 88.91 l S 260.87 76.53 m 260.94 98.19 l S 260.94 76.53 m 261.00 79.63 l S 261.00 76.53 m 261.06 79.63 l S 261.06 76.53 m 261.13 79.63 l S 261.13 76.53 m 261.19 79.63 l S 261.19 76.53 m 261.25 79.63 l S 261.25 76.53 m 261.31 79.63 l S 261.31 76.53 m 261.38 92.00 l S 261.38 76.53 m 261.44 82.72 l S 261.44 76.53 m 261.50 85.81 l S 261.50 76.53 m 261.56 98.19 l S 261.56 76.53 m 261.63 79.63 l S 261.63 76.53 m 261.69 88.91 l S 261.69 76.53 m 261.75 79.63 l S 261.75 76.53 m 261.81 76.53 l S 261.81 76.53 m 261.88 82.72 l S 261.88 76.53 m 261.94 79.63 l S 261.94 76.53 m 262.00 85.81 l S 262.00 76.53 m 262.07 88.91 l S 262.07 76.53 m 262.13 82.72 l S 262.13 76.53 m 262.19 101.28 l S 262.19 76.53 m 262.25 79.63 l S 262.25 76.53 m 262.32 79.63 l S 262.32 76.53 m 262.38 79.63 l S 262.38 76.53 m 262.44 88.91 l S 262.44 76.53 m 262.50 79.63 l S 262.50 76.53 m 262.57 92.00 l S 262.57 76.53 m 262.63 85.81 l S 262.63 76.53 m 262.69 79.63 l S 262.69 76.53 m 262.76 79.63 l S 262.76 76.53 m 262.82 153.87 l S 262.82 76.53 m 262.88 79.63 l S 262.88 76.53 m 262.94 98.19 l S 262.94 76.53 m 263.01 79.63 l S 263.01 76.53 m 263.07 76.53 l S 263.07 76.53 m 263.13 79.63 l S 263.13 76.53 m 263.19 82.72 l S 263.19 76.53 m 263.26 79.63 l S 263.26 76.53 m 263.32 79.63 l S 263.32 76.53 m 263.38 79.63 l S 263.38 76.53 m 263.44 82.72 l S 263.44 76.53 m 263.51 76.53 l S 263.51 76.53 m 263.57 79.63 l S 263.57 76.53 m 263.63 79.63 l S 263.63 76.53 m 263.70 76.53 l S 263.70 76.53 m 263.76 95.09 l S 263.76 76.53 m 263.82 92.00 l S 263.82 76.53 m 263.88 79.63 l S 263.88 76.53 m 263.95 92.00 l S 263.95 76.53 m 264.01 79.63 l S 264.01 76.53 m 264.07 79.63 l S 264.07 76.53 m 264.13 79.63 l S 264.13 76.53 m 264.20 98.19 l S 264.20 76.53 m 264.26 79.63 l S 264.26 76.53 m 264.32 92.00 l S 264.32 76.53 m 264.38 82.72 l S 264.38 76.53 m 264.45 79.63 l S 264.45 76.53 m 264.51 85.81 l S 264.51 76.53 m 264.57 79.63 l S 264.57 76.53 m 264.64 79.63 l S 264.64 76.53 m 264.70 82.72 l S 264.70 76.53 m 264.76 79.63 l S 264.76 76.53 m 264.82 88.91 l S 264.82 76.53 m 264.89 92.00 l S 264.89 76.53 m 264.95 79.63 l S 264.95 76.53 m 265.01 79.63 l S 265.01 76.53 m 265.07 82.72 l S 265.07 76.53 m 265.14 79.63 l S 265.14 76.53 m 265.20 85.81 l S 265.20 76.53 m 265.26 79.63 l S 265.26 76.53 m 265.33 79.63 l S 265.33 76.53 m 265.39 85.81 l S 265.39 76.53 m 265.45 88.91 l S 265.45 76.53 m 265.51 79.63 l S 265.51 76.53 m 265.58 101.28 l S 265.58 76.53 m 265.64 82.72 l S 265.64 76.53 m 265.70 79.63 l S 265.70 76.53 m 265.76 79.63 l S 265.76 76.53 m 265.83 79.63 l S 265.83 76.53 m 265.89 79.63 l S 265.89 76.53 m 265.95 79.63 l S 265.95 76.53 m 266.01 79.63 l S 266.01 76.53 m 266.08 79.63 l S 266.08 76.53 m 266.14 79.63 l S 266.14 76.53 m 266.20 79.63 l S 266.20 76.53 m 266.27 79.63 l S 266.27 76.53 m 266.33 79.63 l S 266.33 76.53 m 266.39 79.63 l S 266.39 76.53 m 266.45 82.72 l S 266.45 76.53 m 266.52 79.63 l S 266.52 76.53 m 266.58 79.63 l S 266.58 76.53 m 266.64 79.63 l S 266.64 76.53 m 266.70 79.63 l S 266.70 76.53 m 266.77 82.72 l S 266.77 76.53 m 266.83 79.63 l S 266.83 76.53 m 266.89 82.72 l S 266.89 76.53 m 266.95 79.63 l S 266.95 76.53 m 267.02 79.63 l S 267.02 76.53 m 267.08 79.63 l S 267.08 76.53 m 267.14 79.63 l S 267.14 76.53 m 267.21 79.63 l S 267.21 76.53 m 267.27 79.63 l S 267.27 76.53 m 267.33 79.63 l S 267.33 76.53 m 267.39 79.63 l S 267.39 76.53 m 267.46 79.63 l S 267.46 76.53 m 267.52 76.53 l S 267.52 76.53 m 267.58 79.63 l S 267.58 76.53 m 267.64 79.63 l S 267.64 76.53 m 267.71 79.63 l S 267.71 76.53 m 267.77 79.63 l S 267.77 76.53 m 267.83 79.63 l S 267.83 76.53 m 267.90 79.63 l S 267.90 76.53 m 267.96 79.63 l S 267.96 76.53 m 268.02 79.63 l S 268.02 76.53 m 268.08 79.63 l S 268.08 76.53 m 268.15 79.63 l S 268.15 76.53 m 268.21 79.63 l S 268.21 76.53 m 268.27 79.63 l S 268.27 76.53 m 268.33 79.63 l S 268.33 76.53 m 268.40 79.63 l S 268.40 76.53 m 268.46 79.63 l S 268.46 76.53 m 268.52 79.63 l S 268.52 76.53 m 268.58 79.63 l S 268.58 76.53 m 268.65 79.63 l S 268.65 76.53 m 268.71 76.53 l S 268.71 76.53 m 268.77 79.63 l S 268.77 76.53 m 268.84 79.63 l S 268.84 76.53 m 268.90 79.63 l S 268.90 76.53 m 268.96 79.63 l S 268.96 76.53 m 269.02 79.63 l S 269.02 76.53 m 269.09 79.63 l S 269.09 76.53 m 269.15 79.63 l S 269.15 76.53 m 269.21 79.63 l S 269.21 76.53 m 269.27 79.63 l S 269.27 76.53 m 269.34 79.63 l S 269.34 76.53 m 269.40 79.63 l S 269.40 76.53 m 269.46 82.72 l S 269.46 76.53 m 269.52 79.63 l S 269.52 76.53 m 269.59 79.63 l S 269.59 76.53 m 269.65 76.53 l S 269.65 76.53 m 269.71 79.63 l S 269.71 76.53 m 269.78 79.63 l S 269.78 76.53 m 269.84 79.63 l S 269.84 76.53 m 269.90 79.63 l S 269.90 76.53 m 269.96 79.63 l S 269.96 76.53 m 270.03 79.63 l S 270.03 76.53 m 270.09 82.72 l S 270.09 76.53 m 270.15 79.63 l S 270.15 76.53 m 270.21 79.63 l S 270.21 76.53 m 270.28 79.63 l S 270.28 76.53 m 270.34 79.63 l S 270.34 76.53 m 270.40 79.63 l S 270.40 76.53 m 270.47 79.63 l S 270.47 76.53 m 270.53 79.63 l S 270.53 76.53 m 270.59 79.63 l S 270.59 76.53 m 270.65 79.63 l S 270.65 76.53 m 270.72 79.63 l S 270.72 76.53 m 270.78 79.63 l S 270.78 76.53 m 270.84 79.63 l S 270.84 76.53 m 270.90 79.63 l S 270.90 76.53 m 270.97 79.63 l S 270.97 76.53 m 271.03 79.63 l S 271.03 76.53 m 271.09 79.63 l S 271.09 76.53 m 271.15 79.63 l S 271.15 76.53 m 271.22 79.63 l S 271.22 76.53 m 271.28 79.63 l S 271.28 76.53 m 271.34 79.63 l S 271.34 76.53 m 271.41 79.63 l S 271.41 76.53 m 271.47 79.63 l S 271.47 76.53 m 271.53 79.63 l S 271.53 76.53 m 271.59 79.63 l S 271.59 76.53 m 271.66 79.63 l S 271.66 76.53 m 271.72 82.72 l S 271.72 76.53 m 271.78 79.63 l S 271.78 76.53 m 271.84 79.63 l S 271.84 76.53 m 271.91 79.63 l S 271.91 76.53 m 271.97 79.63 l S 271.97 76.53 m 272.03 79.63 l S 272.03 76.53 m 272.09 79.63 l S 272.09 76.53 m 272.16 79.63 l S 272.16 76.53 m 272.22 79.63 l S 272.22 76.53 m 272.28 79.63 l S 272.28 76.53 m 272.35 79.63 l S 272.35 76.53 m 272.41 79.63 l S 272.41 76.53 m 272.47 82.72 l S 272.47 76.53 m 272.53 79.63 l S 272.53 76.53 m 272.60 76.53 l S 272.60 76.53 m 272.66 79.63 l S 272.66 76.53 m 272.72 79.63 l S 272.72 76.53 m 272.78 79.63 l S 272.78 76.53 m 272.85 79.63 l S 272.85 76.53 m 272.91 79.63 l S 272.91 76.53 m 272.97 79.63 l S 272.97 76.53 m 273.03 79.63 l S 273.03 76.53 m 273.10 79.63 l S 273.10 76.53 m 273.16 79.63 l S 273.16 76.53 m 273.22 82.72 l S 273.22 76.53 m 273.29 79.63 l S 273.29 76.53 m 273.35 79.63 l S 273.35 76.53 m 273.41 79.63 l S 273.41 76.53 m 273.47 79.63 l S 273.47 76.53 m 273.54 79.63 l S 273.54 76.53 m 273.60 79.63 l S 273.60 76.53 m 273.66 79.63 l S 273.66 76.53 m 273.72 79.63 l S 273.72 76.53 m 273.79 79.63 l S 273.79 76.53 m 273.85 79.63 l S 273.85 76.53 m 273.91 79.63 l S 273.91 76.53 m 273.98 79.63 l S 273.98 76.53 m 274.04 79.63 l S 274.04 76.53 m 274.10 79.63 l S 274.10 76.53 m 274.16 79.63 l S 274.16 76.53 m 274.23 79.63 l S 274.23 76.53 m 274.29 79.63 l S 274.29 76.53 m 274.35 79.63 l S 274.35 76.53 m 274.41 79.63 l S 274.41 76.53 m 274.48 79.63 l S 274.48 76.53 m 274.54 79.63 l S 274.54 76.53 m 274.60 79.63 l S 274.60 76.53 m 274.66 79.63 l S 274.66 76.53 m 274.73 79.63 l S 274.73 76.53 m 274.79 79.63 l S 274.79 76.53 m 274.85 76.53 l S 274.85 76.53 m 274.92 79.63 l S 274.92 76.53 m 274.98 79.63 l S 274.98 76.53 m 275.04 79.63 l S 275.04 76.53 m 275.10 79.63 l S 275.10 76.53 m 275.17 79.63 l S 275.17 76.53 m 275.23 79.63 l S 275.23 76.53 m 275.29 79.63 l S 275.29 76.53 m 275.35 79.63 l S 275.35 76.53 m 275.42 79.63 l S 275.42 76.53 m 275.48 79.63 l S 275.48 76.53 m 275.54 79.63 l S 275.54 76.53 m 275.60 79.63 l S 275.60 76.53 m 275.67 79.63 l S 275.67 76.53 m 275.73 79.63 l S 275.73 76.53 m 275.79 82.72 l S 275.79 76.53 m 275.86 79.63 l S 275.86 76.53 m 275.92 82.72 l S 275.92 76.53 m 275.98 79.63 l S 275.98 76.53 m 276.04 79.63 l S 276.04 76.53 m 276.11 85.81 l S 276.11 76.53 m 276.17 82.72 l S 276.17 76.53 m 276.23 82.72 l S 276.23 76.53 m 276.29 79.63 l S 276.29 76.53 m 276.36 79.63 l S 276.36 76.53 m 276.42 79.63 l S 276.42 76.53 m 276.48 88.91 l S 276.48 76.53 m 276.55 82.72 l S 276.55 76.53 m 276.61 85.81 l S 276.61 76.53 m 276.67 79.63 l S 276.67 76.53 m 276.73 82.72 l S 276.73 76.53 m 276.80 82.72 l S 276.80 76.53 m 276.86 79.63 l S 276.86 76.53 m 276.92 82.72 l S 276.92 76.53 m 276.98 82.72 l S 276.98 76.53 m 277.05 79.63 l S 277.05 76.53 m 277.11 92.00 l S 277.11 76.53 m 277.17 79.63 l S 277.17 76.53 m 277.23 79.63 l S 277.23 76.53 m 277.30 88.91 l S 277.30 76.53 m 277.36 79.63 l S 277.36 76.53 m 277.42 79.63 l S 277.42 76.53 m 277.49 79.63 l S 277.49 76.53 m 277.55 79.63 l S 277.55 76.53 m 277.61 79.63 l S 277.61 76.53 m 277.67 85.81 l S 277.67 76.53 m 277.74 79.63 l S 277.74 76.53 m 277.80 92.00 l S 277.80 76.53 m 277.86 79.63 l S 277.86 76.53 m 277.92 82.72 l S 277.92 76.53 m 277.99 82.72 l S 277.99 76.53 m 278.05 79.63 l S 278.05 76.53 m 278.11 82.72 l S 278.11 76.53 m 278.17 79.63 l S 278.17 76.53 m 278.24 79.63 l S 278.24 76.53 m 278.30 79.63 l S 278.30 76.53 m 278.36 79.63 l S 278.36 76.53 m 278.43 82.72 l S 278.43 76.53 m 278.49 79.63 l S 278.49 76.53 m 278.55 82.72 l S 278.55 76.53 m 278.61 79.63 l S 278.61 76.53 m 278.68 79.63 l S 278.68 76.53 m 278.74 79.63 l S 278.74 76.53 m 278.80 79.63 l S 278.80 76.53 m 278.86 79.63 l S 278.86 76.53 m 278.93 79.63 l S 278.93 76.53 m 278.99 79.63 l S 278.99 76.53 m 279.05 79.63 l S 279.05 76.53 m 279.12 79.63 l S 279.12 76.53 m 279.18 79.63 l S 279.18 76.53 m 279.24 79.63 l S 279.24 76.53 m 279.30 79.63 l S 279.30 76.53 m 279.37 79.63 l S 279.37 76.53 m 279.43 76.53 l S 279.43 76.53 m 279.49 79.63 l S 279.49 76.53 m 279.55 79.63 l S 279.55 76.53 m 279.62 79.63 l S 279.62 76.53 m 279.68 79.63 l S 279.68 76.53 m 279.74 79.63 l S 279.74 76.53 m 279.80 79.63 l S 279.80 76.53 m 279.87 79.63 l S 279.87 76.53 m 279.93 79.63 l S 279.93 76.53 m 279.99 79.63 l S 279.99 76.53 m 280.06 79.63 l S 280.06 76.53 m 280.12 104.37 l S 280.12 76.53 m 280.18 79.63 l S 280.18 76.53 m 280.24 79.63 l S 280.24 76.53 m 280.31 79.63 l S 280.31 76.53 m 280.37 79.63 l S 280.37 76.53 m 280.43 79.63 l S 280.43 76.53 m 280.49 98.19 l S 280.49 76.53 m 280.56 79.63 l S 280.56 76.53 m 280.62 95.09 l S 280.62 76.53 m 280.68 82.72 l S 280.68 76.53 m 280.74 79.63 l S 280.74 76.53 m 280.81 79.63 l S 280.81 76.53 m 280.87 79.63 l S 280.87 76.53 m 280.93 79.63 l S 280.93 76.53 m 281.00 79.63 l S 281.00 76.53 m 281.06 79.63 l S 281.06 76.53 m 281.12 79.63 l S 281.12 76.53 m 281.18 79.63 l S 281.18 76.53 m 281.25 79.63 l S 281.25 76.53 m 281.31 79.63 l S 281.31 76.53 m 281.37 79.63 l S 281.37 76.53 m 281.43 85.81 l S 281.43 76.53 m 281.50 82.72 l S 281.50 76.53 m 281.56 82.72 l S 281.56 76.53 m 281.62 79.63 l S 281.62 76.53 m 281.69 79.63 l S 281.69 76.53 m 281.75 79.63 l S 281.75 76.53 m 281.81 79.63 l S 281.81 76.53 m 281.87 79.63 l S 281.87 76.53 m 281.94 79.63 l S 281.94 76.53 m 282.00 79.63 l S 282.00 76.53 m 282.06 79.63 l S 282.06 76.53 m 282.12 79.63 l S 282.12 76.53 m 282.19 79.63 l S 282.19 76.53 m 282.25 79.63 l S 282.25 76.53 m 282.31 82.72 l S 282.31 76.53 m 282.37 79.63 l S 282.37 76.53 m 282.44 82.72 l S 282.44 76.53 m 282.50 79.63 l S 282.50 76.53 m 282.56 79.63 l S 282.56 76.53 m 282.63 79.63 l S 282.63 76.53 m 282.69 79.63 l S 282.69 76.53 m 282.75 79.63 l S 282.75 76.53 m 282.81 82.72 l S 282.81 76.53 m 282.88 95.09 l S 282.88 76.53 m 282.94 79.63 l S 282.94 76.53 m 283.00 79.63 l S 283.00 76.53 m 283.06 79.63 l S 283.06 76.53 m 283.13 79.63 l S 283.13 76.53 m 283.19 88.91 l S 283.19 76.53 m 283.25 79.63 l S 283.25 76.53 m 283.31 79.63 l S 283.31 76.53 m 283.38 79.63 l S 283.38 76.53 m 283.44 79.63 l S 283.44 76.53 m 283.50 79.63 l S 283.50 76.53 m 283.57 85.81 l S 283.57 76.53 m 283.63 79.63 l S 283.63 76.53 m 283.69 82.72 l S 283.69 76.53 m 283.75 79.63 l S 283.75 76.53 m 283.82 101.28 l S 283.82 76.53 m 283.88 79.63 l S 283.88 76.53 m 283.94 82.72 l S 283.94 76.53 m 284.00 79.63 l S 284.00 76.53 m 284.07 85.81 l S 284.07 76.53 m 284.13 79.63 l S 284.13 76.53 m 284.19 79.63 l S 284.19 76.53 m 284.26 79.63 l S 284.26 76.53 m 284.32 79.63 l S 284.32 76.53 m 284.38 79.63 l S 284.38 76.53 m 284.44 85.81 l S 284.44 76.53 m 284.51 79.63 l S 284.51 76.53 m 284.57 79.63 l S 284.57 76.53 m 284.63 82.72 l S 284.63 76.53 m 284.69 79.63 l S 284.69 76.53 m 284.76 79.63 l S 284.76 76.53 m 284.82 79.63 l S 284.82 76.53 m 284.88 79.63 l S 284.88 76.53 m 284.94 79.63 l S 284.94 76.53 m 285.01 85.81 l S 285.01 76.53 m 285.07 79.63 l S 285.07 76.53 m 285.13 82.72 l S 285.13 76.53 m 285.20 95.09 l S 285.20 76.53 m 285.26 79.63 l S 285.26 76.53 m 285.32 79.63 l S 285.32 76.53 m 285.38 79.63 l S 285.38 76.53 m 285.45 79.63 l S 285.45 76.53 m 285.51 79.63 l S 285.51 76.53 m 285.57 79.63 l S 285.57 76.53 m 285.63 79.63 l S 285.63 76.53 m 285.70 79.63 l S 285.70 76.53 m 285.76 79.63 l S 285.76 76.53 m 285.82 76.53 l S 285.82 76.53 m 285.88 79.63 l S 285.88 76.53 m 285.95 79.63 l S 285.95 76.53 m 286.01 79.63 l S 286.01 76.53 m 286.07 79.63 l S 286.07 76.53 m 286.14 79.63 l S 286.14 76.53 m 286.20 79.63 l S 286.20 76.53 m 286.26 76.53 l S 286.26 76.53 m 286.32 79.63 l S 286.32 76.53 m 286.39 76.53 l S 286.39 76.53 m 286.45 79.63 l S 286.45 76.53 m 286.51 79.63 l S 286.51 76.53 m 286.57 79.63 l S 286.57 76.53 m 286.64 79.63 l S 286.64 76.53 m 286.70 79.63 l S 286.70 76.53 m 286.76 79.63 l S 286.76 76.53 m 286.83 79.63 l S 286.83 76.53 m 286.89 79.63 l S 286.89 76.53 m 286.95 79.63 l S 286.95 76.53 m 287.01 79.63 l S 287.01 76.53 m 287.08 79.63 l S 287.08 76.53 m 287.14 79.63 l S 287.14 76.53 m 287.20 79.63 l S 287.20 76.53 m 287.26 79.63 l S 287.26 76.53 m 287.33 79.63 l S 287.33 76.53 m 287.39 79.63 l S 287.39 76.53 m 287.45 79.63 l S 287.45 76.53 m 287.51 79.63 l S 287.51 76.53 m 287.58 79.63 l S 287.58 76.53 m 287.64 79.63 l S 287.64 76.53 m 287.70 82.72 l S 287.70 76.53 m 287.77 79.63 l S 287.77 76.53 m 287.83 79.63 l S 287.83 76.53 m 287.89 79.63 l S 287.89 76.53 m 287.95 79.63 l S 287.95 76.53 m 288.02 79.63 l S 288.02 76.53 m 288.08 79.63 l S 288.08 76.53 m 288.14 79.63 l S 288.14 76.53 m 288.20 79.63 l S 288.20 76.53 m 288.27 79.63 l S 288.27 76.53 m 288.33 79.63 l S 288.33 76.53 m 288.39 82.72 l S 288.39 76.53 m 288.45 79.63 l S 288.45 76.53 m 288.52 79.63 l S 288.52 76.53 m 288.58 79.63 l S 288.58 76.53 m 288.64 79.63 l S 288.64 76.53 m 288.71 79.63 l S 288.71 76.53 m 288.77 79.63 l S 288.77 76.53 m 288.83 79.63 l S 288.83 76.53 m 288.89 79.63 l S 288.89 76.53 m 288.96 79.63 l S 288.96 76.53 m 289.02 85.81 l S 289.02 76.53 m 289.08 79.63 l S 289.08 76.53 m 289.14 79.63 l S 289.14 76.53 m 289.21 79.63 l S 289.21 76.53 m 289.27 79.63 l S 289.27 76.53 m 289.33 88.91 l S 289.33 76.53 m 289.40 79.63 l S 289.40 76.53 m 289.46 79.63 l S 289.46 76.53 m 289.52 79.63 l S 289.52 76.53 m 289.58 79.63 l S 289.58 76.53 m 289.65 79.63 l S 289.65 76.53 m 289.71 88.91 l S 289.71 76.53 m 289.77 79.63 l S 289.77 76.53 m 289.83 79.63 l S 289.83 76.53 m 289.90 79.63 l S 289.90 76.53 m 289.96 79.63 l S 289.96 76.53 m 290.02 79.63 l S 290.02 76.53 m 290.08 82.72 l S 290.08 76.53 m 290.15 79.63 l S 290.15 76.53 m 290.21 79.63 l S 290.21 76.53 m 290.27 82.72 l S 290.27 76.53 m 290.34 79.63 l S 290.34 76.53 m 290.40 79.63 l S 290.40 76.53 m 290.46 79.63 l S 290.46 76.53 m 290.52 82.72 l S 290.52 76.53 m 290.59 82.72 l S 290.59 76.53 m 290.65 79.63 l S 290.65 76.53 m 290.71 79.63 l S 290.71 76.53 m 290.77 79.63 l S 290.77 76.53 m 290.84 79.63 l S 290.84 76.53 m 290.90 79.63 l S 290.90 76.53 m 290.96 79.63 l S 290.96 76.53 m 291.02 82.72 l S 291.02 76.53 m 291.09 92.00 l S 291.09 76.53 m 291.15 79.63 l S 291.15 76.53 m 291.21 79.63 l S 291.21 76.53 m 291.28 79.63 l S 291.28 76.53 m 291.34 79.63 l S 291.34 76.53 m 291.40 79.63 l S 291.40 76.53 m 291.46 79.63 l S 291.46 76.53 m 291.53 92.00 l S 291.53 76.53 m 291.59 79.63 l S 291.59 76.53 m 291.65 79.63 l S 291.65 76.53 m 291.71 79.63 l S 291.71 76.53 m 291.78 79.63 l S 291.78 76.53 m 291.84 82.72 l S 291.84 76.53 m 291.90 79.63 l S 291.90 76.53 m 291.97 79.63 l S 291.97 76.53 m 292.03 79.63 l S 292.03 76.53 m 292.09 79.63 l S 292.09 76.53 m 292.15 79.63 l S 292.15 76.53 m 292.22 79.63 l S 292.22 76.53 m 292.28 82.72 l S 292.28 76.53 m 292.34 79.63 l S 292.34 76.53 m 292.40 79.63 l S 292.40 76.53 m 292.47 82.72 l S 292.47 76.53 m 292.53 79.63 l S 292.53 76.53 m 292.59 79.63 l S 292.59 76.53 m 292.65 79.63 l S 292.65 76.53 m 292.72 79.63 l S 292.72 76.53 m 292.78 79.63 l S 292.78 76.53 m 292.84 79.63 l S 292.84 76.53 m 292.91 85.81 l S 292.91 76.53 m 292.97 79.63 l S 292.97 76.53 m 293.03 88.91 l S 293.03 76.53 m 293.09 88.91 l S 293.09 76.53 m 293.16 82.72 l S 293.16 76.53 m 293.22 82.72 l S 293.22 76.53 m 293.28 79.63 l S 293.28 76.53 m 293.34 79.63 l S 293.34 76.53 m 293.41 79.63 l S 293.41 76.53 m 293.47 79.63 l S 293.47 76.53 m 293.53 79.63 l S 293.53 76.53 m 293.59 79.63 l S 293.59 76.53 m 293.66 79.63 l S 293.66 76.53 m 293.72 88.91 l S 293.72 76.53 m 293.78 79.63 l S 293.78 76.53 m 293.85 95.09 l S 293.85 76.53 m 293.91 79.63 l S 293.91 76.53 m 293.97 85.81 l S 293.97 76.53 m 294.03 79.63 l S 294.03 76.53 m 294.10 82.72 l S 294.10 76.53 m 294.16 79.63 l S 294.16 76.53 m 294.22 79.63 l S 294.22 76.53 m 294.28 79.63 l S 294.28 76.53 m 294.35 95.09 l S 294.35 76.53 m 294.41 95.09 l S 294.41 76.53 m 294.47 79.63 l S 294.47 76.53 m 294.54 79.63 l S 294.54 76.53 m 294.60 79.63 l S 294.60 76.53 m 294.66 79.63 l S 294.66 76.53 m 294.72 79.63 l S 294.72 76.53 m 294.79 79.63 l S 294.79 76.53 m 294.85 79.63 l S 294.85 76.53 m 294.91 79.63 l S 294.91 76.53 m 294.97 79.63 l S 294.97 76.53 m 295.04 79.63 l S 295.04 76.53 m 295.10 82.72 l S 295.10 76.53 m 295.16 79.63 l S 295.16 76.53 m 295.22 79.63 l S 295.22 76.53 m 295.29 79.63 l S 295.29 76.53 m 295.35 79.63 l S 295.35 76.53 m 295.41 79.63 l S 295.41 76.53 m 295.48 79.63 l S 295.48 76.53 m 295.54 79.63 l S 295.54 76.53 m 295.60 79.63 l S 295.60 76.53 m 295.66 79.63 l S 295.66 76.53 m 295.73 79.63 l S 295.73 76.53 m 295.79 82.72 l S 295.79 76.53 m 295.85 79.63 l S 295.85 76.53 m 295.91 82.72 l S 295.91 76.53 m 295.98 82.72 l S 295.98 76.53 m 296.04 79.63 l S 296.04 76.53 m 296.10 79.63 l S 296.10 76.53 m 296.16 98.19 l S 296.16 76.53 m 296.23 79.63 l S 296.23 76.53 m 296.29 82.72 l S 296.29 76.53 m 296.35 85.81 l S 296.35 76.53 m 296.42 79.63 l S 296.42 76.53 m 296.48 79.63 l S 296.48 76.53 m 296.54 79.63 l S 296.54 76.53 m 296.60 79.63 l S 296.60 76.53 m 296.67 79.63 l S 296.67 76.53 m 296.73 82.72 l S 296.73 76.53 m 296.79 79.63 l S 296.79 76.53 m 296.85 79.63 l S 296.85 76.53 m 296.92 79.63 l S 296.92 76.53 m 296.98 79.63 l S 296.98 76.53 m 297.04 79.63 l S 297.04 76.53 m 297.11 79.63 l S 297.11 76.53 m 297.17 79.63 l S 297.17 76.53 m 297.23 79.63 l S 297.23 76.53 m 297.29 82.72 l S 297.29 76.53 m 297.36 79.63 l S 297.36 76.53 m 297.42 82.72 l S 297.42 76.53 m 297.48 79.63 l S 297.48 76.53 m 297.54 79.63 l S 297.54 76.53 m 297.61 82.72 l S 297.61 76.53 m 297.67 79.63 l S 297.67 76.53 m 297.73 79.63 l S 297.73 76.53 m 297.79 79.63 l S 297.79 76.53 m 297.86 79.63 l S 297.86 76.53 m 297.92 79.63 l S 297.92 76.53 m 297.98 79.63 l S 297.98 76.53 m 298.05 79.63 l S 298.05 76.53 m 298.11 79.63 l S 298.11 76.53 m 298.17 92.00 l S 298.17 76.53 m 298.23 88.91 l S 298.23 76.53 m 298.30 79.63 l S 298.30 76.53 m 298.36 79.63 l S 298.36 76.53 m 298.42 79.63 l S 298.42 76.53 m 298.48 82.72 l S 298.48 76.53 m 298.55 79.63 l S 298.55 76.53 m 298.61 79.63 l S 298.61 76.53 m 298.67 82.72 l S 298.67 76.53 m 298.73 79.63 l S 298.73 76.53 m 298.80 82.72 l S 298.80 76.53 m 298.86 82.72 l S 298.86 76.53 m 298.92 79.63 l S 298.92 76.53 m 298.99 82.72 l S 298.99 76.53 m 299.05 79.63 l S 299.05 76.53 m 299.11 79.63 l S 299.11 76.53 m 299.17 82.72 l S 299.17 76.53 m 299.24 82.72 l S 299.24 76.53 m 299.30 79.63 l S 299.30 76.53 m 299.36 82.72 l S 299.36 76.53 m 299.42 79.63 l S 299.42 76.53 m 299.49 79.63 l S 299.49 76.53 m 299.55 79.63 l S 299.55 76.53 m 299.61 79.63 l S 299.61 76.53 m 299.67 79.63 l S 299.67 76.53 m 299.74 79.63 l S 299.74 76.53 m 299.80 79.63 l S 299.80 76.53 m 299.86 79.63 l S 299.86 76.53 m 299.93 92.00 l S 299.93 76.53 m 299.99 79.63 l S 299.99 76.53 m 300.05 82.72 l S 300.05 76.53 m 300.11 92.00 l S 300.11 76.53 m 300.18 88.91 l S 300.18 76.53 m 300.24 79.63 l S 300.24 76.53 m 300.30 79.63 l S 300.30 76.53 m 300.36 79.63 l S 300.36 76.53 m 300.43 110.56 l S 300.43 76.53 m 300.49 79.63 l S 300.49 76.53 m 300.55 79.63 l S 300.55 76.53 m 300.62 79.63 l S 300.62 76.53 m 300.68 79.63 l S 300.68 76.53 m 300.74 82.72 l S 300.74 76.53 m 300.80 79.63 l S 300.80 76.53 m 300.87 79.63 l S 300.87 76.53 m 300.93 79.63 l S 300.93 76.53 m 300.99 79.63 l S 300.99 76.53 m 301.05 82.72 l S 301.05 76.53 m 301.12 82.72 l S 301.12 76.53 m 301.18 79.63 l S 301.18 76.53 m 301.24 79.63 l S 301.24 76.53 m 301.30 79.63 l S 301.30 76.53 m 301.37 79.63 l S 301.37 76.53 m 301.43 79.63 l S 301.43 76.53 m 301.49 79.63 l S 301.49 76.53 m 301.56 79.63 l S 301.56 76.53 m 301.62 79.63 l S 301.62 76.53 m 301.68 79.63 l S 301.68 76.53 m 301.74 79.63 l S 301.74 76.53 m 301.81 79.63 l S 301.81 76.53 m 301.87 79.63 l S 301.87 76.53 m 301.93 79.63 l S 301.93 76.53 m 301.99 79.63 l S 301.99 76.53 m 302.06 79.63 l S 302.06 76.53 m 302.12 79.63 l S 302.12 76.53 m 302.18 79.63 l S 302.18 76.53 m 302.24 76.53 l S 302.24 76.53 m 302.31 79.63 l S 302.31 76.53 m 302.37 79.63 l S 302.37 76.53 m 302.43 82.72 l S 302.43 76.53 m 302.50 82.72 l S 302.50 76.53 m 302.56 79.63 l S 302.56 76.53 m 302.62 82.72 l S 302.62 76.53 m 302.68 79.63 l S 302.68 76.53 m 302.75 138.40 l S 302.75 76.53 m 302.81 79.63 l S 302.81 76.53 m 302.87 79.63 l S 302.87 76.53 m 302.93 82.72 l S 302.93 76.53 m 303.00 79.63 l S 303.00 76.53 m 303.06 79.63 l S 303.06 76.53 m 303.12 79.63 l S 303.12 76.53 m 303.19 79.63 l S 303.19 76.53 m 303.25 92.00 l S 303.25 76.53 m 303.31 88.91 l S 303.31 76.53 m 303.37 85.81 l S 303.37 76.53 m 303.44 79.63 l S 303.44 76.53 m 303.50 79.63 l S 303.50 76.53 m 303.56 92.00 l S 303.56 76.53 m 303.62 79.63 l S 303.62 76.53 m 303.69 79.63 l S 303.69 76.53 m 303.75 79.63 l S 303.75 76.53 m 303.81 79.63 l S 303.81 76.53 m 303.87 82.72 l S 303.87 76.53 m 303.94 79.63 l S 303.94 76.53 m 304.00 82.72 l S 304.00 76.53 m 304.06 79.63 l S 304.06 76.53 m 304.13 79.63 l S 304.13 76.53 m 304.19 79.63 l S 304.19 76.53 m 304.25 79.63 l S 304.25 76.53 m 304.31 79.63 l S 304.31 76.53 m 304.38 79.63 l S 304.38 76.53 m 304.44 79.63 l S 304.44 76.53 m 304.50 79.63 l S 304.50 76.53 m 304.56 79.63 l S 304.56 76.53 m 304.63 79.63 l S 304.63 76.53 m 304.69 79.63 l S 304.69 76.53 m 304.75 79.63 l S 304.75 76.53 m 304.81 79.63 l S 304.81 76.53 m 304.88 79.63 l S 304.88 76.53 m 304.94 79.63 l S 304.94 76.53 m 305.00 79.63 l S 305.00 76.53 m 305.07 107.47 l S 305.07 76.53 m 305.13 82.72 l S 305.13 76.53 m 305.19 79.63 l S 305.19 76.53 m 305.25 101.28 l S 305.25 76.53 m 305.32 79.63 l S 305.32 76.53 m 305.38 82.72 l S 305.38 76.53 m 305.44 79.63 l S 305.44 76.53 m 305.50 76.53 l S 305.50 76.53 m 305.57 79.63 l S 305.57 76.53 m 305.63 79.63 l S 305.63 76.53 m 305.69 79.63 l S 305.69 76.53 m 305.76 79.63 l S 305.76 76.53 m 305.82 79.63 l S 305.82 76.53 m 305.88 79.63 l S 305.88 76.53 m 305.94 79.63 l S 305.94 76.53 m 306.01 79.63 l S 306.01 76.53 m 306.07 79.63 l S 306.07 76.53 m 306.13 79.63 l S 306.13 76.53 m 306.19 79.63 l S 306.19 76.53 m 306.26 79.63 l S 306.26 76.53 m 306.32 82.72 l S 306.32 76.53 m 306.38 79.63 l S 306.38 76.53 m 306.44 82.72 l S 306.44 76.53 m 306.51 79.63 l S 306.51 76.53 m 306.57 79.63 l S 306.57 76.53 m 306.63 79.63 l S 306.63 76.53 m 306.70 79.63 l S 306.70 76.53 m 306.76 79.63 l S 306.76 76.53 m 306.82 79.63 l S 306.82 76.53 m 306.88 79.63 l S 306.88 76.53 m 306.95 79.63 l S 306.95 76.53 m 307.01 79.63 l S 307.01 76.53 m 307.07 79.63 l S 307.07 76.53 m 307.13 79.63 l S 307.13 76.53 m 307.20 82.72 l S 307.20 76.53 m 307.26 82.72 l S 307.26 76.53 m 307.32 76.53 l S 307.32 76.53 m 307.38 79.63 l S 307.38 76.53 m 307.45 79.63 l S 307.45 76.53 m 307.51 79.63 l S 307.51 76.53 m 307.57 79.63 l S 307.57 76.53 m 307.64 79.63 l S 307.64 76.53 m 307.70 79.63 l S 307.70 76.53 m 307.76 79.63 l S 307.76 76.53 m 307.82 79.63 l S 307.82 76.53 m 307.89 79.63 l S 307.89 76.53 m 307.95 79.63 l S 307.95 76.53 m 308.01 79.63 l S 308.01 76.53 m 308.07 79.63 l S 308.07 76.53 m 308.14 79.63 l S 308.14 76.53 m 308.20 82.72 l S 308.20 76.53 m 308.26 79.63 l S 308.26 76.53 m 308.33 79.63 l S 308.33 76.53 m 308.39 79.63 l S 308.39 76.53 m 308.45 79.63 l S 308.45 76.53 m 308.51 79.63 l S 308.51 76.53 m 308.58 79.63 l S 308.58 76.53 m 308.64 79.63 l S 308.64 76.53 m 308.70 79.63 l S 308.70 76.53 m 308.76 79.63 l S 308.76 76.53 m 308.83 79.63 l S 308.83 76.53 m 308.89 79.63 l S 308.89 76.53 m 308.95 79.63 l S 308.95 76.53 m 309.01 79.63 l S 309.01 76.53 m 309.08 79.63 l S 309.08 76.53 m 309.14 79.63 l S 309.14 76.53 m 309.20 79.63 l S 309.20 76.53 m 309.27 79.63 l S 309.27 76.53 m 309.33 79.63 l S 309.33 76.53 m 309.39 85.81 l S 309.39 76.53 m 309.45 82.72 l S 309.45 76.53 m 309.52 79.63 l S 309.52 76.53 m 309.58 85.81 l S 309.58 76.53 m 309.64 82.72 l S 309.64 76.53 m 309.70 88.91 l S 309.70 76.53 m 309.77 79.63 l S 309.77 76.53 m 309.83 79.63 l S 309.83 76.53 m 309.89 79.63 l S 309.89 76.53 m 309.95 79.63 l S 309.95 76.53 m 310.02 79.63 l S 310.02 76.53 m 310.08 79.63 l S 310.08 76.53 m 310.14 79.63 l S 310.14 76.53 m 310.21 79.63 l S 310.21 76.53 m 310.27 79.63 l S 310.27 76.53 m 310.33 79.63 l S 310.33 76.53 m 310.39 79.63 l S 310.39 76.53 m 310.46 79.63 l S 310.46 76.53 m 310.52 79.63 l S 310.52 76.53 m 310.58 82.72 l S 310.58 76.53 m 310.64 79.63 l S 310.64 76.53 m 310.71 79.63 l S 310.71 76.53 m 310.77 79.63 l S 310.77 76.53 m 310.83 79.63 l S 310.83 76.53 m 310.90 79.63 l S 310.90 76.53 m 310.96 79.63 l S 310.96 76.53 m 311.02 79.63 l S 311.02 76.53 m 311.08 79.63 l S 311.08 76.53 m 311.15 79.63 l S 311.15 76.53 m 311.21 79.63 l S 311.21 76.53 m 311.27 79.63 l S 311.27 76.53 m 311.33 79.63 l S 311.33 76.53 m 311.40 79.63 l S 311.40 76.53 m 311.46 79.63 l S 311.46 76.53 m 311.52 79.63 l S 311.52 76.53 m 311.58 79.63 l S 311.58 76.53 m 311.65 79.63 l S 311.65 76.53 m 311.71 79.63 l S 311.71 76.53 m 311.77 79.63 l S 311.77 76.53 m 311.84 82.72 l S 311.84 76.53 m 311.90 79.63 l S 311.90 76.53 m 311.96 79.63 l S 311.96 76.53 m 312.02 107.47 l S 312.02 76.53 m 312.09 79.63 l S 312.09 76.53 m 312.15 79.63 l S 312.15 76.53 m 312.21 79.63 l S 312.21 76.53 m 312.27 82.72 l S 312.27 76.53 m 312.34 79.63 l S 312.34 76.53 m 312.40 79.63 l S 312.40 76.53 m 312.46 79.63 l S 312.46 76.53 m 312.52 82.72 l S 312.52 76.53 m 312.59 79.63 l S 312.59 76.53 m 312.65 79.63 l S 312.65 76.53 m 312.71 79.63 l S 312.71 76.53 m 312.78 79.63 l S 312.78 76.53 m 312.84 79.63 l S 312.84 76.53 m 312.90 82.72 l S 312.90 76.53 m 312.96 79.63 l S 312.96 76.53 m 313.03 79.63 l S 313.03 76.53 m 313.09 82.72 l S 313.09 76.53 m 313.15 79.63 l S 313.15 76.53 m 313.21 101.28 l S 313.21 76.53 m 313.28 98.19 l S 313.28 76.53 m 313.34 85.81 l S 313.34 76.53 m 313.40 79.63 l S 313.40 76.53 m 313.47 79.63 l S 313.47 76.53 m 313.53 82.72 l S 313.53 76.53 m 313.59 79.63 l S 313.59 76.53 m 313.65 79.63 l S 313.65 76.53 m 313.72 79.63 l S 313.72 76.53 m 313.78 79.63 l S 313.78 76.53 m 313.84 79.63 l S 313.84 76.53 m 313.90 79.63 l S 313.90 76.53 m 313.97 79.63 l S 313.97 76.53 m 314.03 79.63 l S 314.03 76.53 m 314.09 82.72 l S 314.09 76.53 m 314.15 82.72 l S 314.15 76.53 m 314.22 79.63 l S 314.22 76.53 m 314.28 79.63 l S 314.28 76.53 m 314.34 79.63 l S 314.34 76.53 m 314.41 79.63 l S 314.41 76.53 m 314.47 79.63 l S 314.47 76.53 m 314.53 79.63 l S 314.53 76.53 m 314.59 79.63 l S 314.59 76.53 m 314.66 79.63 l S 314.66 76.53 m 314.72 79.63 l S 314.72 76.53 m 314.78 82.72 l S 314.78 76.53 m 314.84 79.63 l S 314.84 76.53 m 314.91 79.63 l S 314.91 76.53 m 314.97 79.63 l S 314.97 76.53 m 315.03 79.63 l S 315.03 76.53 m 315.09 79.63 l S 315.09 76.53 m 315.16 79.63 l S 315.16 76.53 m 315.22 79.63 l S 315.22 76.53 m 315.28 79.63 l S 315.28 76.53 m 315.35 79.63 l S 315.35 76.53 m 315.41 82.72 l S 315.41 76.53 m 315.47 79.63 l S 315.47 76.53 m 315.53 79.63 l S 315.53 76.53 m 315.60 79.63 l S 315.60 76.53 m 315.66 79.63 l S 315.66 76.53 m 315.72 79.63 l S 315.72 76.53 m 315.78 79.63 l S 315.78 76.53 m 315.85 79.63 l S 315.85 76.53 m 315.91 79.63 l S 315.91 76.53 m 315.97 79.63 l S 315.97 76.53 m 316.04 79.63 l S 316.04 76.53 m 316.10 79.63 l S 316.10 76.53 m 316.16 79.63 l S 316.16 76.53 m 316.22 79.63 l S 316.22 76.53 m 316.29 79.63 l S 316.29 76.53 m 316.35 79.63 l S 316.35 76.53 m 316.41 79.63 l S 316.41 76.53 m 316.47 79.63 l S 316.47 76.53 m 316.54 79.63 l S 316.54 76.53 m 316.60 82.72 l S 316.60 76.53 m 316.66 79.63 l S 316.66 76.53 m 316.72 79.63 l S 316.72 76.53 m 316.79 82.72 l S 316.79 76.53 m 316.85 79.63 l S 316.85 76.53 m 316.91 79.63 l S 316.91 76.53 m 316.98 79.63 l S 316.98 76.53 m 317.04 79.63 l S 317.04 76.53 m 317.10 79.63 l S 317.10 76.53 m 317.16 79.63 l S 317.16 76.53 m 317.23 95.09 l S 317.23 76.53 m 317.29 88.91 l S 317.29 76.53 m 317.35 79.63 l S 317.35 76.53 m 317.41 82.72 l S 317.41 76.53 m 317.48 79.63 l S 317.48 76.53 m 317.54 79.63 l S 317.54 76.53 m 317.60 79.63 l S 317.60 76.53 m 317.66 82.72 l S 317.66 76.53 m 317.73 79.63 l S 317.73 76.53 m 317.79 79.63 l S 317.79 76.53 m 317.85 79.63 l S 317.85 76.53 m 317.92 79.63 l S 317.92 76.53 m 317.98 79.63 l S 317.98 76.53 m 318.04 82.72 l S 318.04 76.53 m 318.10 79.63 l S 318.10 76.53 m 318.17 76.53 l S 318.17 76.53 m 318.23 79.63 l S 318.23 76.53 m 318.29 79.63 l S 318.29 76.53 m 318.35 79.63 l S 318.35 76.53 m 318.42 101.28 l S 318.42 76.53 m 318.48 79.63 l S 318.48 76.53 m 318.54 79.63 l S 318.54 76.53 m 318.61 79.63 l S 318.61 76.53 m 318.67 79.63 l S 318.67 76.53 m 318.73 79.63 l S 318.73 76.53 m 318.79 79.63 l S 318.79 76.53 m 318.86 79.63 l S 318.86 76.53 m 318.92 79.63 l S 318.92 76.53 m 318.98 82.72 l S 318.98 76.53 m 319.04 85.81 l S 319.04 76.53 m 319.11 88.91 l S 319.11 76.53 m 319.17 79.63 l S 319.17 76.53 m 319.23 88.91 l S 319.23 76.53 m 319.29 79.63 l S 319.29 76.53 m 319.36 79.63 l S 319.36 76.53 m 319.42 82.72 l S 319.42 76.53 m 319.48 82.72 l S 319.48 76.53 m 319.55 79.63 l S 319.55 76.53 m 319.61 79.63 l S 319.61 76.53 m 319.67 79.63 l S 319.67 76.53 m 319.73 79.63 l S 319.73 76.53 m 319.80 79.63 l S Q endstream endobj 180 0 obj << /CreationDate (D:20090701104130) /ModDate (D:20090701104130) /Title (R Graphics Output) /Producer (R 2.10.0) /Creator (R) >> endobj 181 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 183 0 R >> endobj 182 0 obj 128239 endobj 183 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 178 0 obj << /D [176 0 R /XYZ 89.292 765.769 null] >> endobj 179 0 obj << /D [176 0 R /XYZ 229.045 530.885 null] >> endobj 175 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F80 106 0 R >> /XObject << /Im2 174 0 R >> /ProcSet [ /PDF /Text ] >> endobj 186 0 obj << /Length 2676 /Filter /FlateDecode >> stream xڽko{~Q5[r߇^k{5rm?$+وU9!}(v.9=CW/䬎"=ZUuk}VI\"i9Wѭ}`ÿy}g 6 vycXLYrP*\ng,-}֌ /y坐İџWwl-( &/O($=(U\ B`;q/޿>_dY6jiF/Au7"u|BeIt\2j:Z ^'*C@q¹_׈ n)'@,:.UIBKfmvGvE{HiKDh`UR L[Lpmk>Ʈ)wE[wj ,-ok|* ʖpɰY_(^a*,u*P Ҍj|K/UTZPE^ԤB}xko,|4ShEl֕˼ 'T$v ߵĠA:$=OQ`khP=ǰv x Ɓ9BIո{!^@~漵\X2ЗLiXƟ#jSqR"KXCt@ #("˗\70'6:vԙ! Dfq?. wuUg`vHnz7!e0H0'X0 i\Ӈ!%D]'gIJ7a-'UqBiFq&4qK-;[8: ꜥ;D,$nY2e$sNq]n)u ,JW0I3Oto.daF(ZcB rmg@؝w7N-Äم d`9 &K՝ЄL#K]ӻtrL27]jAbzCOd?"άf&<,Z_J0v`sHsK SZzwD;Z8uBsoQqyf|X+wr "*lЋWi m:UyA,3 <M6#xQ%8,bbi, rfL%v7A^2ʵ f5k˦A 2Lˠe8 8.BNܭ˩# wQ-FQ#+*͜gT.@L5t2 <#E_Y8o7{i@yzr}$79-ϡ%&UCX /,:ʫ'dz} dy|Gie&L>6\;YF5".r qťvjNƾn¼(E]+lx}Mi.dgފ*=".K𝒿M)iٹM=guO;v±qf׸q}<U(_ 6FRD>  >KZ ;n_ZcI [u"[y|Hʴ}r`qese5sNE{?Hnٺv5Jc@:jp.]Lªaӟd}:h).73[8:3ٶIiyg|΅e2U14r{/[rNg_?tJkw ]HPˆ.9GIi kwѓ# lu9=|™y|gj6`W ]zBV)5q‘6|7^{ >E+~n񊁞WDJȩ5oj/ PK29FG%زLM+wRh=jO/hhHK_ND,q'r \C?B<3/lCb6%vk V$s}t^38-#>?ߕ@=Cد?Y{Ea:E|Bԝֻrs%,Hf1C8y_r0N;򓱫 /I ̘} 9'+ R8[/bU_Ԋy8?>*>j!<>v{˺r"A)ܿ*>jU*r8q)YiQ;6UiZ6o ^4ƿt ,.^}$ ~Qq:Pikb ˫){Gs\ʤs<[謴l }G[׆[qBq^ g!,<0@@&wY2B&0tmmE=*nFoglo7p1#w[+LPIgyi⺬ `֒-è3˰˝;d,+_Y[6-\'%6ϷDAP4OgRڥ$%u\UD%컫gendstream endobj 185 0 obj << /Type /Page /Contents 186 0 R /Resources 184 0 R /MediaBox [0 0 595.276 841.89] /Parent 165 0 R /Annots [ 188 0 R 189 0 R ] >> endobj 188 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [168.305 696.606 175.278 708.467] /Subtype /Link /A << /S /GoTo /D (figure.2) >> >> endobj 189 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [416.6 529.234 423.574 541.094] /Subtype /Link /A << /S /GoTo /D (figure.1) >> >> endobj 187 0 obj << /D [185 0 R /XYZ 89.292 765.769 null] >> endobj 184 0 obj << /Font << /F80 106 0 R /F8 79 0 R /F75 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 194 0 obj << /Length 3303 /Filter /FlateDecode >> stream xn$_!,68> ;# 4=v!ߞx!ȃ4lXU,"?WYօ9؜̦gҪ.?$66Qo3ZSd;{yF~7yxطkt#΅yP:O>^D8'w ]&-h'Ƽ:`Bbvkho@V'&⧋?-MkkWu``1IN@'q?qÿ7;!vK gM 6:{ЕW*JHpbmˢ>>J;e4pܲ[\m Nm @Y\,smHZm@J {{W h.cg!? AL,NKcRQ 5'茬kEʛٺmt ȍu1`]j2=$)G%'+> +VPUĦ#u 싧 :e~32_:e>Nd+S30e4X-ְb+60EJӈL\G3ziJa%;]H׎k&Ԗ!ovDD<"vSʔɫUUgn'Ub(O4T_0! TG[8XZ꯷^ϖ W'[voΩLӚs %A;iqc<9rkYaqˎPh2- w"$k"_[up#ɂEӉpawW^)1Ik5QErh)^ MypU1QX4? cBSAQH>Y,5ɿUNSDQ*(g)K;;9<7-P7Fֻ\LU9ЎE*S`Mfni,umh m "':@.m .pGq=OYSOK04c6Ih[7ޯq]!,Ģ)eỜ[],VNEUmYSR`H#[^=$GĀ < *&t*O0i%o욮T/N1Vg.U3]swu5Ԏ:mAKw>,*`xcyOa?#^9rW+̳" JogNPu38c֒ORy{YDMS&mUܾm0m%('"FD5>+Q\G%,<˱O}l;1Ndft `C|[""yN Mqv4ڧH.082n6? >:e4ů̩&٦D8wM KAq,gabj  <k"&.ϼɤ5"ُ4OzgJ grgRc׏~!FASTGE7.ن@b.KhɤݵO!(C}9*| #l|Dyd7-̬@'v,N73eRyDNKKezX&z~a>'+w#L qfIr]5KB <-ϛ!oN2#|2( KAw"/#CN#7@xbAMHa確,qN ҙˏF*23,p ¨Z?7$znm-{nWI\ i_xps$\+Wzjev桂f36{&msWVz8'X@_>s xU7SxՐi7&X: 'Ru+ i;a?W-?|yp vZx "^+y?7H]"2Ŕ؟煉=_5|Uy>=T7ʩr=|tFD#$ln'|\6AqǪ_ Xw=ht!,Ey(?L7| 9UtxVvZzpFXȝ"eal(C{|¨f崪GS3acx,dr°GE)l84Y?rO?dKBE7Ԩ/8\̚T9:W15oP84N}،*bχ!@۰`;.B&w'f99cfË գ'^yx,'mhzv{(;Uy ;Oׁ*0s>1d֗|׮\_u YK?(>'?\O޲SGܧ?>09Po"rԞ<@uMFs>Vx?{\J_*e?Q) X\-%gyaea~ Y,Įendstream endobj 193 0 obj << /Type /Page /Contents 194 0 R /Resources 192 0 R /MediaBox [0 0 595.276 841.89] /Parent 165 0 R /Annots [ 196 0 R 197 0 R 198 0 R 199 0 R ] >> endobj 196 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [139.847 539.229 176.951 548.849] /Subtype /Link /A << /S /GoTo /D (cite.HistMeth_ChipSeq) >> >> endobj 197 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [481.496 453.301 506.98 464.175] /Subtype/Link/A<> >> endobj 198 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [88.296 441.597 362.79 451.802] /Subtype/Link/A<> >> endobj 199 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [150.611 209.963 157.585 221.824] /Subtype /Link /A << /S /GoTo /D (figure.3) >> >> endobj 195 0 obj << /D [193 0 R /XYZ 89.292 765.769 null] >> endobj 26 0 obj << /D [193 0 R /XYZ 89.292 622.038 null] >> endobj 30 0 obj << /D [193 0 R /XYZ 89.292 593.681 null] >> endobj 192 0 obj << /Font << /F8 79 0 R /F80 106 0 R /F39 57 0 R /F49 66 0 R /F54 69 0 R /F61 75 0 R /F25 109 0 R /F75 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 203 0 obj << /Length 292 /Filter /FlateDecode >> stream x]PN1 +|L$vÑGEB/M_BUEI1煀]¸tVh̚ك>FӖ!g_{a|רѤA:\khzbP|q2bز*ko"ڋv?$ؙP3GsvYs(B^⩔o2,湗8%^U+|G7ДdlG̃.e>AA/LwByj)=#U:v0 "vBendstream endobj 202 0 obj << /Type /Page /Contents 203 0 R /Resources 201 0 R /MediaBox [0 0 595.276 841.89] /Parent 165 0 R >> endobj 190 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./ShortRead_and_HilbertVis-pileup1D.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 205 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 288 324] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 206 0 R /F3 207 0 R >> /ExtGState << >>>> /Length 208 0 R >> stream q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 235.44 m 256.73 235.44 l S 66.40 235.44 m 66.40 228.24 l S 93.59 235.44 m 93.59 228.24 l S 120.78 235.44 m 120.78 228.24 l S 147.97 235.44 m 147.97 228.24 l S 175.16 235.44 m 175.16 228.24 l S 202.35 235.44 m 202.35 228.24 l S 229.54 235.44 m 229.54 228.24 l S 256.73 235.44 m 256.73 228.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 44.55 209.52 Tm (0.0e+00) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 98.93 209.52 Tm (4.0e+07) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 153.31 209.52 Tm (8.0e+07) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 207.69 209.52 Tm (1.2e+08) Tj ET 59.04 236.53 m 59.04 263.63 l S 59.04 236.53 m 51.84 236.53 l S 59.04 241.95 m 51.84 241.95 l S 59.04 247.37 m 51.84 247.37 l S 59.04 252.79 m 51.84 252.79 l S 59.04 258.21 m 51.84 258.21 l S 59.04 263.63 m 51.84 263.63 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 219.69 Tm (0e+00) Tj ET 59.04 235.44 m 257.76 235.44 l 257.76 264.96 l 59.04 264.96 l 59.04 235.44 l S Q q 0.00 162.00 288.00 162.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 100.83 289.45 Tm (Chr 10, H3K3me1) Tj ET Q q 59.04 235.44 198.72 29.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 236.53 m 66.45 236.53 l S 66.45 236.53 m 66.49 236.74 l S 66.49 236.53 m 66.54 236.74 l S 66.54 236.53 m 66.58 238.38 l S 66.58 236.53 m 66.63 237.56 l S 66.63 236.53 m 66.68 261.40 l S 66.68 236.53 m 66.72 237.77 l S 66.72 236.53 m 66.77 239.41 l S 66.77 236.53 m 66.81 239.41 l S 66.81 236.53 m 66.86 238.38 l S 66.86 236.53 m 66.91 242.08 l S 66.91 236.53 m 66.95 240.44 l S 66.95 236.53 m 67.00 237.97 l S 67.00 236.53 m 67.04 239.21 l S 67.04 236.53 m 67.09 243.52 l S 67.09 236.53 m 67.14 237.77 l S 67.14 236.53 m 67.18 237.97 l S 67.18 236.53 m 67.23 238.18 l S 67.23 236.53 m 67.27 237.36 l S 67.27 236.53 m 67.32 237.56 l S 67.32 236.53 m 67.37 237.56 l S 67.37 236.53 m 67.41 237.56 l S 67.41 236.53 m 67.46 237.77 l S 67.46 236.53 m 67.50 237.56 l S 67.50 236.53 m 67.55 237.97 l S 67.55 236.53 m 67.60 243.11 l S 67.60 236.53 m 67.64 241.88 l S 67.64 236.53 m 67.69 241.05 l S 67.69 236.53 m 67.73 241.47 l S 67.73 236.53 m 67.78 237.77 l S 67.78 236.53 m 67.83 242.29 l S 67.83 236.53 m 67.87 238.79 l S 67.87 236.53 m 67.92 244.14 l S 67.92 236.53 m 67.96 240.64 l S 67.96 236.53 m 68.01 239.21 l S 68.01 236.53 m 68.06 237.77 l S 68.06 236.53 m 68.10 237.77 l S 68.10 236.53 m 68.15 238.59 l S 68.15 236.53 m 68.19 240.64 l S 68.19 236.53 m 68.24 238.18 l S 68.24 236.53 m 68.29 237.15 l S 68.29 236.53 m 68.33 238.18 l S 68.33 236.53 m 68.38 237.15 l S 68.38 236.53 m 68.42 237.56 l S 68.42 236.53 m 68.47 237.56 l S 68.47 236.53 m 68.52 237.15 l S 68.52 236.53 m 68.56 237.15 l S 68.56 236.53 m 68.61 236.94 l S 68.61 236.53 m 68.65 237.15 l S 68.65 236.53 m 68.70 237.56 l S 68.70 236.53 m 68.75 237.56 l S 68.75 236.53 m 68.79 237.97 l S 68.79 236.53 m 68.84 237.36 l S 68.84 236.53 m 68.88 237.15 l S 68.88 236.53 m 68.93 240.03 l S 68.93 236.53 m 68.98 237.15 l S 68.98 236.53 m 69.02 237.36 l S 69.02 236.53 m 69.07 237.36 l S 69.07 236.53 m 69.11 239.00 l S 69.11 236.53 m 69.16 237.15 l S 69.16 236.53 m 69.21 237.15 l S 69.21 236.53 m 69.25 236.94 l S 69.25 236.53 m 69.30 237.15 l S 69.30 236.53 m 69.34 237.15 l S 69.34 236.53 m 69.39 236.94 l S 69.39 236.53 m 69.44 237.36 l S 69.44 236.53 m 69.48 237.97 l S 69.48 236.53 m 69.53 236.94 l S 69.53 236.53 m 69.57 237.36 l S 69.57 236.53 m 69.62 237.36 l S 69.62 236.53 m 69.67 236.94 l S 69.67 236.53 m 69.71 237.36 l S 69.71 236.53 m 69.76 236.94 l S 69.76 236.53 m 69.80 237.15 l S 69.80 236.53 m 69.85 238.18 l S 69.85 236.53 m 69.90 237.56 l S 69.90 236.53 m 69.94 237.15 l S 69.94 236.53 m 69.99 236.94 l S 69.99 236.53 m 70.03 237.15 l S 70.03 236.53 m 70.08 236.94 l S 70.08 236.53 m 70.13 237.15 l S 70.13 236.53 m 70.17 236.94 l S 70.17 236.53 m 70.22 237.15 l S 70.22 236.53 m 70.26 237.56 l S 70.26 236.53 m 70.31 237.15 l S 70.31 236.53 m 70.36 237.15 l S 70.36 236.53 m 70.40 237.77 l S 70.40 236.53 m 70.45 238.59 l S 70.45 236.53 m 70.50 237.77 l S 70.50 236.53 m 70.54 237.15 l S 70.54 236.53 m 70.59 237.15 l S 70.59 236.53 m 70.63 238.59 l S 70.63 236.53 m 70.68 241.47 l S 70.68 236.53 m 70.73 237.15 l S 70.73 236.53 m 70.77 238.79 l S 70.77 236.53 m 70.82 237.36 l S 70.82 236.53 m 70.86 240.23 l S 70.86 236.53 m 70.91 237.15 l S 70.91 236.53 m 70.96 237.36 l S 70.96 236.53 m 71.00 237.36 l S 71.00 236.53 m 71.05 236.94 l S 71.05 236.53 m 71.09 237.36 l S 71.09 236.53 m 71.14 240.85 l S 71.14 236.53 m 71.19 239.62 l S 71.19 236.53 m 71.23 237.77 l S 71.23 236.53 m 71.28 237.97 l S 71.28 236.53 m 71.32 238.38 l S 71.32 236.53 m 71.37 237.36 l S 71.37 236.53 m 71.42 237.97 l S 71.42 236.53 m 71.46 242.49 l S 71.46 236.53 m 71.51 238.38 l S 71.51 236.53 m 71.55 240.23 l S 71.55 236.53 m 71.60 240.85 l S 71.60 236.53 m 71.65 243.93 l S 71.65 236.53 m 71.69 243.52 l S 71.69 236.53 m 71.74 240.85 l S 71.74 236.53 m 71.78 237.77 l S 71.78 236.53 m 71.83 240.85 l S 71.83 236.53 m 71.88 241.05 l S 71.88 236.53 m 71.92 237.97 l S 71.92 236.53 m 71.97 240.03 l S 71.97 236.53 m 72.01 241.05 l S 72.01 236.53 m 72.06 239.21 l S 72.06 236.53 m 72.11 253.39 l S 72.11 236.53 m 72.15 237.97 l S 72.15 236.53 m 72.20 237.15 l S 72.20 236.53 m 72.24 237.77 l S 72.24 236.53 m 72.29 239.82 l S 72.29 236.53 m 72.34 237.15 l S 72.34 236.53 m 72.38 236.94 l S 72.38 236.53 m 72.43 236.94 l S 72.43 236.53 m 72.47 237.15 l S 72.47 236.53 m 72.52 237.56 l S 72.52 236.53 m 72.57 237.56 l S 72.57 236.53 m 72.61 236.94 l S 72.61 236.53 m 72.66 237.56 l S 72.66 236.53 m 72.70 236.74 l S 72.70 236.53 m 72.75 237.15 l S 72.75 236.53 m 72.80 238.38 l S 72.80 236.53 m 72.84 237.36 l S 72.84 236.53 m 72.89 236.94 l S 72.89 236.53 m 72.93 236.94 l S 72.93 236.53 m 72.98 236.94 l S 72.98 236.53 m 73.03 244.34 l S 73.03 236.53 m 73.07 240.44 l S 73.07 236.53 m 73.12 237.36 l S 73.12 236.53 m 73.16 237.15 l S 73.16 236.53 m 73.21 236.74 l S 73.21 236.53 m 73.26 236.94 l S 73.26 236.53 m 73.30 236.94 l S 73.30 236.53 m 73.35 236.94 l S 73.35 236.53 m 73.39 237.36 l S 73.39 236.53 m 73.44 237.15 l S 73.44 236.53 m 73.49 236.74 l S 73.49 236.53 m 73.53 237.36 l S 73.53 236.53 m 73.58 236.94 l S 73.58 236.53 m 73.62 237.97 l S 73.62 236.53 m 73.67 247.63 l S 73.67 236.53 m 73.72 248.04 l S 73.72 236.53 m 73.76 237.15 l S 73.76 236.53 m 73.81 238.59 l S 73.81 236.53 m 73.85 240.23 l S 73.85 236.53 m 73.90 237.56 l S 73.90 236.53 m 73.95 239.21 l S 73.95 236.53 m 73.99 241.88 l S 73.99 236.53 m 74.04 239.21 l S 74.04 236.53 m 74.08 237.36 l S 74.08 236.53 m 74.13 236.94 l S 74.13 236.53 m 74.18 237.77 l S 74.18 236.53 m 74.22 245.58 l S 74.22 236.53 m 74.27 239.00 l S 74.27 236.53 m 74.31 239.82 l S 74.31 236.53 m 74.36 239.62 l S 74.36 236.53 m 74.41 239.21 l S 74.41 236.53 m 74.45 239.82 l S 74.45 236.53 m 74.50 237.56 l S 74.50 236.53 m 74.54 244.75 l S 74.54 236.53 m 74.59 237.56 l S 74.59 236.53 m 74.64 240.64 l S 74.64 236.53 m 74.68 239.21 l S 74.68 236.53 m 74.73 240.64 l S 74.73 236.53 m 74.77 243.52 l S 74.77 236.53 m 74.82 242.49 l S 74.82 236.53 m 74.87 240.64 l S 74.87 236.53 m 74.91 248.45 l S 74.91 236.53 m 74.96 241.05 l S 74.96 236.53 m 75.00 239.62 l S 75.00 236.53 m 75.05 240.64 l S 75.05 236.53 m 75.10 241.05 l S 75.10 236.53 m 75.14 241.67 l S 75.14 236.53 m 75.19 238.79 l S 75.19 236.53 m 75.23 241.88 l S 75.23 236.53 m 75.28 238.18 l S 75.28 236.53 m 75.33 242.08 l S 75.33 236.53 m 75.37 242.29 l S 75.37 236.53 m 75.42 244.75 l S 75.42 236.53 m 75.46 246.40 l S 75.46 236.53 m 75.51 242.08 l S 75.51 236.53 m 75.56 243.93 l S 75.56 236.53 m 75.60 238.59 l S 75.60 236.53 m 75.65 237.56 l S 75.65 236.53 m 75.69 237.56 l S 75.69 236.53 m 75.74 237.36 l S 75.74 236.53 m 75.79 236.74 l S 75.79 236.53 m 75.83 236.94 l S 75.83 236.53 m 75.88 237.56 l S 75.88 236.53 m 75.92 238.38 l S 75.92 236.53 m 75.97 241.26 l S 75.97 236.53 m 76.02 238.18 l S 76.02 236.53 m 76.06 238.59 l S 76.06 236.53 m 76.11 239.00 l S 76.11 236.53 m 76.15 236.94 l S 76.15 236.53 m 76.20 238.79 l S 76.20 236.53 m 76.25 239.82 l S 76.25 236.53 m 76.29 247.01 l S 76.29 236.53 m 76.34 241.26 l S 76.34 236.53 m 76.38 245.37 l S 76.38 236.53 m 76.43 240.44 l S 76.43 236.53 m 76.48 241.05 l S 76.48 236.53 m 76.52 238.59 l S 76.52 236.53 m 76.57 243.52 l S 76.57 236.53 m 76.61 239.21 l S 76.61 236.53 m 76.66 237.15 l S 76.66 236.53 m 76.71 242.08 l S 76.71 236.53 m 76.75 240.85 l S 76.75 236.53 m 76.80 239.82 l S 76.80 236.53 m 76.84 237.36 l S 76.84 236.53 m 76.89 237.56 l S 76.89 236.53 m 76.94 237.77 l S 76.94 236.53 m 76.98 237.36 l S 76.98 236.53 m 77.03 237.15 l S 77.03 236.53 m 77.07 236.94 l S 77.07 236.53 m 77.12 243.52 l S 77.12 236.53 m 77.17 242.08 l S 77.17 236.53 m 77.21 240.03 l S 77.21 236.53 m 77.26 239.41 l S 77.26 236.53 m 77.30 237.77 l S 77.30 236.53 m 77.35 238.18 l S 77.35 236.53 m 77.40 237.36 l S 77.40 236.53 m 77.44 238.59 l S 77.44 236.53 m 77.49 240.44 l S 77.49 236.53 m 77.53 239.00 l S 77.53 236.53 m 77.58 241.88 l S 77.58 236.53 m 77.63 237.15 l S 77.63 236.53 m 77.67 239.00 l S 77.67 236.53 m 77.72 241.26 l S 77.72 236.53 m 77.76 242.29 l S 77.76 236.53 m 77.81 237.36 l S 77.81 236.53 m 77.86 240.23 l S 77.86 236.53 m 77.90 239.21 l S 77.90 236.53 m 77.95 240.03 l S 77.95 236.53 m 77.99 240.85 l S 77.99 236.53 m 78.04 237.15 l S 78.04 236.53 m 78.09 237.15 l S 78.09 236.53 m 78.13 237.15 l S 78.13 236.53 m 78.18 236.94 l S 78.18 236.53 m 78.22 236.94 l S 78.22 236.53 m 78.27 237.15 l S 78.27 236.53 m 78.32 236.94 l S 78.32 236.53 m 78.36 237.36 l S 78.36 236.53 m 78.41 237.15 l S 78.41 236.53 m 78.46 237.77 l S 78.46 236.53 m 78.50 236.94 l S 78.50 236.53 m 78.55 236.94 l S 78.55 236.53 m 78.59 237.15 l S 78.59 236.53 m 78.64 237.15 l S 78.64 236.53 m 78.69 237.15 l S 78.69 236.53 m 78.73 237.15 l S 78.73 236.53 m 78.78 238.79 l S 78.78 236.53 m 78.82 237.15 l S 78.82 236.53 m 78.87 237.36 l S 78.87 236.53 m 78.92 238.79 l S 78.92 236.53 m 78.96 236.94 l S 78.96 236.53 m 79.01 237.56 l S 79.01 236.53 m 79.05 238.18 l S 79.05 236.53 m 79.10 236.94 l S 79.10 236.53 m 79.15 236.94 l S 79.15 236.53 m 79.19 238.18 l S 79.19 236.53 m 79.24 236.94 l S 79.24 236.53 m 79.28 237.56 l S 79.28 236.53 m 79.33 236.94 l S 79.33 236.53 m 79.38 236.94 l S 79.38 236.53 m 79.42 236.74 l S 79.42 236.53 m 79.47 236.94 l S 79.47 236.53 m 79.51 236.74 l S 79.51 236.53 m 79.56 236.74 l S 79.56 236.53 m 79.61 236.74 l S 79.61 236.53 m 79.65 236.94 l S 79.65 236.53 m 79.70 236.94 l S 79.70 236.53 m 79.74 237.15 l S 79.74 236.53 m 79.79 236.94 l S 79.79 236.53 m 79.84 237.15 l S 79.84 236.53 m 79.88 237.36 l S 79.88 236.53 m 79.93 236.94 l S 79.93 236.53 m 79.97 236.94 l S 79.97 236.53 m 80.02 236.94 l S 80.02 236.53 m 80.07 236.94 l S 80.07 236.53 m 80.11 236.74 l S 80.11 236.53 m 80.16 236.94 l S 80.16 236.53 m 80.20 236.94 l S 80.20 236.53 m 80.25 237.15 l S 80.25 236.53 m 80.30 236.74 l S 80.30 236.53 m 80.34 236.94 l S 80.34 236.53 m 80.39 236.94 l S 80.39 236.53 m 80.43 237.15 l S 80.43 236.53 m 80.48 237.15 l S 80.48 236.53 m 80.53 236.94 l S 80.53 236.53 m 80.57 236.94 l S 80.57 236.53 m 80.62 236.94 l S 80.62 236.53 m 80.66 237.15 l S 80.66 236.53 m 80.71 237.77 l S 80.71 236.53 m 80.76 236.94 l S 80.76 236.53 m 80.80 237.36 l S 80.80 236.53 m 80.85 237.56 l S 80.85 236.53 m 80.89 236.94 l S 80.89 236.53 m 80.94 237.15 l S 80.94 236.53 m 80.99 236.94 l S 80.99 236.53 m 81.03 237.36 l S 81.03 236.53 m 81.08 236.94 l S 81.08 236.53 m 81.12 236.94 l S 81.12 236.53 m 81.17 236.94 l S 81.17 236.53 m 81.22 236.94 l S 81.22 236.53 m 81.26 238.38 l S 81.26 236.53 m 81.31 238.79 l S 81.31 236.53 m 81.35 236.94 l S 81.35 236.53 m 81.40 236.94 l S 81.40 236.53 m 81.45 236.94 l S 81.45 236.53 m 81.49 237.77 l S 81.49 236.53 m 81.54 237.56 l S 81.54 236.53 m 81.58 237.97 l S 81.58 236.53 m 81.63 240.85 l S 81.63 236.53 m 81.68 240.44 l S 81.68 236.53 m 81.72 247.84 l S 81.72 236.53 m 81.77 245.99 l S 81.77 236.53 m 81.81 247.22 l S 81.81 236.53 m 81.86 240.64 l S 81.86 236.53 m 81.91 244.14 l S 81.91 236.53 m 81.95 239.00 l S 81.95 236.53 m 82.00 237.97 l S 82.00 236.53 m 82.04 244.75 l S 82.04 236.53 m 82.09 238.79 l S 82.09 236.53 m 82.14 238.18 l S 82.14 236.53 m 82.18 236.94 l S 82.18 236.53 m 82.23 237.56 l S 82.23 236.53 m 82.27 237.36 l S 82.27 236.53 m 82.32 238.59 l S 82.32 236.53 m 82.37 237.36 l S 82.37 236.53 m 82.41 240.23 l S 82.41 236.53 m 82.46 241.47 l S 82.46 236.53 m 82.50 237.77 l S 82.50 236.53 m 82.55 237.15 l S 82.55 236.53 m 82.60 237.15 l S 82.60 236.53 m 82.64 239.21 l S 82.64 236.53 m 82.69 239.21 l S 82.69 236.53 m 82.73 237.36 l S 82.73 236.53 m 82.78 237.15 l S 82.78 236.53 m 82.83 238.18 l S 82.83 236.53 m 82.87 238.38 l S 82.87 236.53 m 82.92 241.05 l S 82.92 236.53 m 82.96 239.00 l S 82.96 236.53 m 83.01 238.38 l S 83.01 236.53 m 83.06 237.56 l S 83.06 236.53 m 83.10 238.79 l S 83.10 236.53 m 83.15 239.21 l S 83.15 236.53 m 83.19 238.59 l S 83.19 236.53 m 83.24 237.15 l S 83.24 236.53 m 83.29 237.97 l S 83.29 236.53 m 83.33 244.75 l S 83.33 236.53 m 83.38 239.41 l S 83.38 236.53 m 83.42 239.00 l S 83.42 236.53 m 83.47 242.49 l S 83.47 236.53 m 83.52 239.41 l S 83.52 236.53 m 83.56 241.47 l S 83.56 236.53 m 83.61 240.85 l S 83.61 236.53 m 83.65 241.05 l S 83.65 236.53 m 83.70 239.00 l S 83.70 236.53 m 83.75 238.18 l S 83.75 236.53 m 83.79 237.36 l S 83.79 236.53 m 83.84 237.97 l S 83.84 236.53 m 83.88 237.56 l S 83.88 236.53 m 83.93 237.36 l S 83.93 236.53 m 83.98 237.15 l S 83.98 236.53 m 84.02 237.15 l S 84.02 236.53 m 84.07 236.94 l S 84.07 236.53 m 84.11 237.36 l S 84.11 236.53 m 84.16 237.15 l S 84.16 236.53 m 84.21 236.94 l S 84.21 236.53 m 84.25 236.94 l S 84.25 236.53 m 84.30 237.15 l S 84.30 236.53 m 84.34 245.37 l S 84.34 236.53 m 84.39 237.56 l S 84.39 236.53 m 84.44 237.97 l S 84.44 236.53 m 84.48 237.15 l S 84.48 236.53 m 84.53 237.36 l S 84.53 236.53 m 84.57 237.77 l S 84.57 236.53 m 84.62 237.97 l S 84.62 236.53 m 84.67 242.29 l S 84.67 236.53 m 84.71 237.56 l S 84.71 236.53 m 84.76 237.15 l S 84.76 236.53 m 84.80 237.36 l S 84.80 236.53 m 84.85 237.15 l S 84.85 236.53 m 84.90 237.36 l S 84.90 236.53 m 84.94 237.36 l S 84.94 236.53 m 84.99 240.64 l S 84.99 236.53 m 85.03 237.97 l S 85.03 236.53 m 85.08 238.79 l S 85.08 236.53 m 85.13 237.97 l S 85.13 236.53 m 85.17 238.79 l S 85.17 236.53 m 85.22 237.56 l S 85.22 236.53 m 85.26 241.05 l S 85.26 236.53 m 85.31 242.90 l S 85.31 236.53 m 85.36 238.18 l S 85.36 236.53 m 85.40 239.00 l S 85.40 236.53 m 85.45 237.15 l S 85.45 236.53 m 85.49 238.18 l S 85.49 236.53 m 85.54 237.36 l S 85.54 236.53 m 85.59 242.08 l S 85.59 236.53 m 85.63 237.56 l S 85.63 236.53 m 85.68 237.56 l S 85.68 236.53 m 85.72 236.94 l S 85.72 236.53 m 85.77 237.77 l S 85.77 236.53 m 85.82 240.03 l S 85.82 236.53 m 85.86 237.15 l S 85.86 236.53 m 85.91 237.15 l S 85.91 236.53 m 85.95 236.94 l S 85.95 236.53 m 86.00 237.36 l S 86.00 236.53 m 86.05 237.15 l S 86.05 236.53 m 86.09 239.62 l S 86.09 236.53 m 86.14 237.97 l S 86.14 236.53 m 86.18 237.15 l S 86.18 236.53 m 86.23 237.77 l S 86.23 236.53 m 86.28 243.93 l S 86.28 236.53 m 86.32 251.54 l S 86.32 236.53 m 86.37 245.37 l S 86.37 236.53 m 86.42 239.21 l S 86.42 236.53 m 86.46 240.64 l S 86.46 236.53 m 86.51 237.56 l S 86.51 236.53 m 86.55 240.23 l S 86.55 236.53 m 86.60 237.56 l S 86.60 236.53 m 86.65 238.79 l S 86.65 236.53 m 86.69 238.18 l S 86.69 236.53 m 86.74 237.97 l S 86.74 236.53 m 86.78 238.38 l S 86.78 236.53 m 86.83 237.77 l S 86.83 236.53 m 86.88 242.90 l S 86.88 236.53 m 86.92 236.94 l S 86.92 236.53 m 86.97 236.94 l S 86.97 236.53 m 87.01 237.15 l S 87.01 236.53 m 87.06 239.41 l S 87.06 236.53 m 87.11 241.88 l S 87.11 236.53 m 87.15 238.59 l S 87.15 236.53 m 87.20 242.90 l S 87.20 236.53 m 87.24 238.79 l S 87.24 236.53 m 87.29 239.62 l S 87.29 236.53 m 87.34 237.56 l S 87.34 236.53 m 87.38 237.36 l S 87.38 236.53 m 87.43 238.18 l S 87.43 236.53 m 87.47 236.94 l S 87.47 236.53 m 87.52 237.56 l S 87.52 236.53 m 87.57 237.15 l S 87.57 236.53 m 87.61 237.15 l S 87.61 236.53 m 87.66 236.94 l S 87.66 236.53 m 87.70 237.77 l S 87.70 236.53 m 87.75 236.94 l S 87.75 236.53 m 87.80 237.15 l S 87.80 236.53 m 87.84 237.15 l S 87.84 236.53 m 87.89 237.15 l S 87.89 236.53 m 87.93 237.36 l S 87.93 236.53 m 87.98 237.36 l S 87.98 236.53 m 88.03 237.36 l S 88.03 236.53 m 88.07 238.79 l S 88.07 236.53 m 88.12 237.56 l S 88.12 236.53 m 88.16 236.94 l S 88.16 236.53 m 88.21 236.94 l S 88.21 236.53 m 88.26 236.94 l S 88.26 236.53 m 88.30 236.94 l S 88.30 236.53 m 88.35 236.94 l S 88.35 236.53 m 88.39 236.94 l S 88.39 236.53 m 88.44 237.15 l S 88.44 236.53 m 88.49 236.94 l S 88.49 236.53 m 88.53 237.15 l S 88.53 236.53 m 88.58 236.94 l S 88.58 236.53 m 88.62 236.74 l S 88.62 236.53 m 88.67 237.15 l S 88.67 236.53 m 88.72 236.94 l S 88.72 236.53 m 88.76 236.94 l S 88.76 236.53 m 88.81 236.94 l S 88.81 236.53 m 88.85 237.36 l S 88.85 236.53 m 88.90 242.49 l S 88.90 236.53 m 88.95 237.97 l S 88.95 236.53 m 88.99 237.77 l S 88.99 236.53 m 89.04 237.15 l S 89.04 236.53 m 89.08 237.36 l S 89.08 236.53 m 89.13 237.56 l S 89.13 236.53 m 89.18 238.59 l S 89.18 236.53 m 89.22 237.36 l S 89.22 236.53 m 89.27 240.85 l S 89.27 236.53 m 89.31 237.77 l S 89.31 236.53 m 89.36 240.64 l S 89.36 236.53 m 89.41 239.82 l S 89.41 236.53 m 89.45 237.15 l S 89.45 236.53 m 89.50 237.97 l S 89.50 236.53 m 89.54 239.00 l S 89.54 236.53 m 89.59 237.77 l S 89.59 236.53 m 89.64 244.14 l S 89.64 236.53 m 89.68 245.78 l S 89.68 236.53 m 89.73 237.77 l S 89.73 236.53 m 89.77 236.94 l S 89.77 236.53 m 89.82 239.82 l S 89.82 236.53 m 89.87 237.77 l S 89.87 236.53 m 89.91 242.08 l S 89.91 236.53 m 89.96 251.33 l S 89.96 236.53 m 90.00 237.15 l S 90.00 236.53 m 90.05 237.15 l S 90.05 236.53 m 90.10 237.15 l S 90.10 236.53 m 90.14 236.94 l S 90.14 236.53 m 90.19 237.56 l S 90.19 236.53 m 90.23 243.73 l S 90.23 236.53 m 90.28 240.44 l S 90.28 236.53 m 90.33 237.56 l S 90.33 236.53 m 90.37 237.36 l S 90.37 236.53 m 90.42 237.15 l S 90.42 236.53 m 90.46 237.15 l S 90.46 236.53 m 90.51 242.08 l S 90.51 236.53 m 90.56 239.21 l S 90.56 236.53 m 90.60 237.15 l S 90.60 236.53 m 90.65 236.94 l S 90.65 236.53 m 90.69 236.53 l S 90.69 236.53 m 90.74 236.74 l S 90.74 236.53 m 90.79 236.53 l S 90.79 236.53 m 90.83 236.53 l S 90.83 236.53 m 90.88 236.74 l S 90.88 236.53 m 90.92 236.74 l S 90.92 236.53 m 90.97 236.53 l S 90.97 236.53 m 91.02 236.53 l S 91.02 236.53 m 91.06 236.74 l S 91.06 236.53 m 91.11 236.74 l S 91.11 236.53 m 91.15 236.74 l S 91.15 236.53 m 91.20 236.53 l S 91.20 236.53 m 91.25 236.94 l S 91.25 236.53 m 91.29 236.94 l S 91.29 236.53 m 91.34 237.15 l S 91.34 236.53 m 91.38 236.94 l S 91.38 236.53 m 91.43 236.94 l S 91.43 236.53 m 91.48 237.15 l S 91.48 236.53 m 91.52 237.36 l S 91.52 236.53 m 91.57 236.94 l S 91.57 236.53 m 91.61 237.15 l S 91.61 236.53 m 91.66 236.94 l S 91.66 236.53 m 91.71 236.94 l S 91.71 236.53 m 91.75 236.94 l S 91.75 236.53 m 91.80 236.94 l S 91.80 236.53 m 91.84 236.94 l S 91.84 236.53 m 91.89 237.36 l S 91.89 236.53 m 91.94 236.94 l S 91.94 236.53 m 91.98 237.36 l S 91.98 236.53 m 92.03 237.15 l S 92.03 236.53 m 92.07 237.15 l S 92.07 236.53 m 92.12 240.03 l S 92.12 236.53 m 92.17 237.15 l S 92.17 236.53 m 92.21 237.97 l S 92.21 236.53 m 92.26 239.21 l S 92.26 236.53 m 92.30 237.56 l S 92.30 236.53 m 92.35 236.94 l S 92.35 236.53 m 92.40 237.15 l S 92.40 236.53 m 92.44 236.74 l S 92.44 236.53 m 92.49 236.94 l S 92.49 236.53 m 92.53 237.15 l S 92.53 236.53 m 92.58 236.74 l S 92.58 236.53 m 92.63 237.15 l S 92.63 236.53 m 92.67 236.94 l S 92.67 236.53 m 92.72 236.74 l S 92.72 236.53 m 92.76 237.15 l S 92.76 236.53 m 92.81 237.15 l S 92.81 236.53 m 92.86 237.36 l S 92.86 236.53 m 92.90 236.94 l S 92.90 236.53 m 92.95 236.74 l S 92.95 236.53 m 92.99 236.94 l S 92.99 236.53 m 93.04 236.94 l S 93.04 236.53 m 93.09 236.94 l S 93.09 236.53 m 93.13 237.15 l S 93.13 236.53 m 93.18 236.94 l S 93.18 236.53 m 93.22 236.94 l S 93.22 236.53 m 93.27 236.94 l S 93.27 236.53 m 93.32 236.94 l S 93.32 236.53 m 93.36 236.94 l S 93.36 236.53 m 93.41 237.15 l S 93.41 236.53 m 93.45 236.94 l S 93.45 236.53 m 93.50 236.94 l S 93.50 236.53 m 93.55 237.15 l S 93.55 236.53 m 93.59 236.94 l S 93.59 236.53 m 93.64 236.94 l S 93.64 236.53 m 93.68 236.74 l S 93.68 236.53 m 93.73 236.94 l S 93.73 236.53 m 93.78 236.94 l S 93.78 236.53 m 93.82 236.94 l S 93.82 236.53 m 93.87 237.15 l S 93.87 236.53 m 93.91 237.15 l S 93.91 236.53 m 93.96 236.94 l S 93.96 236.53 m 94.01 236.94 l S 94.01 236.53 m 94.05 236.94 l S 94.05 236.53 m 94.10 236.94 l S 94.10 236.53 m 94.14 236.94 l S 94.14 236.53 m 94.19 236.94 l S 94.19 236.53 m 94.24 236.94 l S 94.24 236.53 m 94.28 236.74 l S 94.28 236.53 m 94.33 236.94 l S 94.33 236.53 m 94.37 236.94 l S 94.37 236.53 m 94.42 236.94 l S 94.42 236.53 m 94.47 237.15 l S 94.47 236.53 m 94.51 237.15 l S 94.51 236.53 m 94.56 236.94 l S 94.56 236.53 m 94.61 236.94 l S 94.61 236.53 m 94.65 236.94 l S 94.65 236.53 m 94.70 236.94 l S 94.70 236.53 m 94.74 236.94 l S 94.74 236.53 m 94.79 236.94 l S 94.79 236.53 m 94.84 237.15 l S 94.84 236.53 m 94.88 237.15 l S 94.88 236.53 m 94.93 236.94 l S 94.93 236.53 m 94.97 237.15 l S 94.97 236.53 m 95.02 236.94 l S 95.02 236.53 m 95.07 236.94 l S 95.07 236.53 m 95.11 237.15 l S 95.11 236.53 m 95.16 236.94 l S 95.16 236.53 m 95.20 236.74 l S 95.20 236.53 m 95.25 237.36 l S 95.25 236.53 m 95.30 236.94 l S 95.30 236.53 m 95.34 237.15 l S 95.34 236.53 m 95.39 236.94 l S 95.39 236.53 m 95.43 236.94 l S 95.43 236.53 m 95.48 237.15 l S 95.48 236.53 m 95.53 236.94 l S 95.53 236.53 m 95.57 237.36 l S 95.57 236.53 m 95.62 236.94 l S 95.62 236.53 m 95.66 237.15 l S 95.66 236.53 m 95.71 238.18 l S 95.71 236.53 m 95.76 236.94 l S 95.76 236.53 m 95.80 237.15 l S 95.80 236.53 m 95.85 236.74 l S 95.85 236.53 m 95.89 236.94 l S 95.89 236.53 m 95.94 239.41 l S 95.94 236.53 m 95.99 237.97 l S 95.99 236.53 m 96.03 236.94 l S 96.03 236.53 m 96.08 239.00 l S 96.08 236.53 m 96.12 240.03 l S 96.12 236.53 m 96.17 238.79 l S 96.17 236.53 m 96.22 238.38 l S 96.22 236.53 m 96.26 238.38 l S 96.26 236.53 m 96.31 241.67 l S 96.31 236.53 m 96.35 237.77 l S 96.35 236.53 m 96.40 241.26 l S 96.40 236.53 m 96.45 245.37 l S 96.45 236.53 m 96.49 238.38 l S 96.49 236.53 m 96.54 237.56 l S 96.54 236.53 m 96.58 237.15 l S 96.58 236.53 m 96.63 242.90 l S 96.63 236.53 m 96.68 237.36 l S 96.68 236.53 m 96.72 237.56 l S 96.72 236.53 m 96.77 239.82 l S 96.77 236.53 m 96.81 239.41 l S 96.81 236.53 m 96.86 236.94 l S 96.86 236.53 m 96.91 236.94 l S 96.91 236.53 m 96.95 237.77 l S 96.95 236.53 m 97.00 237.36 l S 97.00 236.53 m 97.04 236.94 l S 97.04 236.53 m 97.09 237.56 l S 97.09 236.53 m 97.14 238.38 l S 97.14 236.53 m 97.18 236.94 l S 97.18 236.53 m 97.23 240.03 l S 97.23 236.53 m 97.27 238.18 l S 97.27 236.53 m 97.32 236.94 l S 97.32 236.53 m 97.37 237.77 l S 97.37 236.53 m 97.41 236.94 l S 97.41 236.53 m 97.46 243.32 l S 97.46 236.53 m 97.50 237.56 l S 97.50 236.53 m 97.55 239.21 l S 97.55 236.53 m 97.60 250.51 l S 97.60 236.53 m 97.64 249.89 l S 97.64 236.53 m 97.69 248.86 l S 97.69 236.53 m 97.73 243.73 l S 97.73 236.53 m 97.78 237.77 l S 97.78 236.53 m 97.83 237.56 l S 97.83 236.53 m 97.87 236.94 l S 97.87 236.53 m 97.92 237.15 l S 97.92 236.53 m 97.96 236.94 l S 97.96 236.53 m 98.01 236.94 l S 98.01 236.53 m 98.06 239.00 l S 98.06 236.53 m 98.10 237.15 l S 98.10 236.53 m 98.15 237.97 l S 98.15 236.53 m 98.19 237.15 l S 98.19 236.53 m 98.24 237.56 l S 98.24 236.53 m 98.29 248.45 l S 98.29 236.53 m 98.33 236.74 l S 98.33 236.53 m 98.38 237.36 l S 98.38 236.53 m 98.42 237.15 l S 98.42 236.53 m 98.47 236.74 l S 98.47 236.53 m 98.52 237.36 l S 98.52 236.53 m 98.56 237.15 l S 98.56 236.53 m 98.61 238.18 l S 98.61 236.53 m 98.65 242.08 l S 98.65 236.53 m 98.70 236.94 l S 98.70 236.53 m 98.75 239.21 l S 98.75 236.53 m 98.79 237.36 l S 98.79 236.53 m 98.84 236.94 l S 98.84 236.53 m 98.88 241.47 l S 98.88 236.53 m 98.93 237.15 l S 98.93 236.53 m 98.98 236.94 l S 98.98 236.53 m 99.02 237.15 l S 99.02 236.53 m 99.07 237.15 l S 99.07 236.53 m 99.11 236.94 l S 99.11 236.53 m 99.16 236.94 l S 99.16 236.53 m 99.21 236.94 l S 99.21 236.53 m 99.25 236.94 l S 99.25 236.53 m 99.30 237.15 l S 99.30 236.53 m 99.34 236.94 l S 99.34 236.53 m 99.39 237.15 l S 99.39 236.53 m 99.44 236.94 l S 99.44 236.53 m 99.48 237.56 l S 99.48 236.53 m 99.53 237.15 l S 99.53 236.53 m 99.57 236.94 l S 99.57 236.53 m 99.62 237.15 l S 99.62 236.53 m 99.67 236.94 l S 99.67 236.53 m 99.71 236.94 l S 99.71 236.53 m 99.76 236.94 l S 99.76 236.53 m 99.80 237.15 l S 99.80 236.53 m 99.85 236.94 l S 99.85 236.53 m 99.90 237.36 l S 99.90 236.53 m 99.94 236.94 l S 99.94 236.53 m 99.99 237.15 l S 99.99 236.53 m 100.03 237.15 l S 100.03 236.53 m 100.08 237.36 l S 100.08 236.53 m 100.13 237.36 l S 100.13 236.53 m 100.17 236.94 l S 100.17 236.53 m 100.22 237.36 l S 100.22 236.53 m 100.26 237.15 l S 100.26 236.53 m 100.31 237.15 l S 100.31 236.53 m 100.36 239.62 l S 100.36 236.53 m 100.40 236.94 l S 100.40 236.53 m 100.45 240.64 l S 100.45 236.53 m 100.49 237.97 l S 100.49 236.53 m 100.54 237.77 l S 100.54 236.53 m 100.59 238.38 l S 100.59 236.53 m 100.63 237.97 l S 100.63 236.53 m 100.68 239.00 l S 100.68 236.53 m 100.72 243.32 l S 100.72 236.53 m 100.77 238.59 l S 100.77 236.53 m 100.82 238.79 l S 100.82 236.53 m 100.86 237.97 l S 100.86 236.53 m 100.91 236.94 l S 100.91 236.53 m 100.95 239.41 l S 100.95 236.53 m 101.00 237.36 l S 101.00 236.53 m 101.05 236.94 l S 101.05 236.53 m 101.09 237.36 l S 101.09 236.53 m 101.14 236.94 l S 101.14 236.53 m 101.18 236.74 l S 101.18 236.53 m 101.23 236.74 l S 101.23 236.53 m 101.28 236.74 l S 101.28 236.53 m 101.32 236.74 l S 101.32 236.53 m 101.37 236.74 l S 101.37 236.53 m 101.41 236.94 l S 101.41 236.53 m 101.46 236.94 l S 101.46 236.53 m 101.51 237.56 l S 101.51 236.53 m 101.55 237.56 l S 101.55 236.53 m 101.60 236.94 l S 101.60 236.53 m 101.64 236.94 l S 101.64 236.53 m 101.69 236.94 l S 101.69 236.53 m 101.74 237.15 l S 101.74 236.53 m 101.78 237.15 l S 101.78 236.53 m 101.83 237.15 l S 101.83 236.53 m 101.87 236.74 l S 101.87 236.53 m 101.92 236.74 l S 101.92 236.53 m 101.97 237.15 l S 101.97 236.53 m 102.01 236.94 l S 102.01 236.53 m 102.06 237.15 l S 102.06 236.53 m 102.10 236.74 l S 102.10 236.53 m 102.15 236.94 l S 102.15 236.53 m 102.20 236.94 l S 102.20 236.53 m 102.24 236.94 l S 102.24 236.53 m 102.29 237.36 l S 102.29 236.53 m 102.33 237.36 l S 102.33 236.53 m 102.38 237.36 l S 102.38 236.53 m 102.43 237.15 l S 102.43 236.53 m 102.47 237.15 l S 102.47 236.53 m 102.52 237.15 l S 102.52 236.53 m 102.57 237.15 l S 102.57 236.53 m 102.61 236.94 l S 102.61 236.53 m 102.66 237.36 l S 102.66 236.53 m 102.70 236.94 l S 102.70 236.53 m 102.75 237.36 l S 102.75 236.53 m 102.80 239.41 l S 102.80 236.53 m 102.84 248.25 l S 102.84 236.53 m 102.89 242.90 l S 102.89 236.53 m 102.93 239.00 l S 102.93 236.53 m 102.98 239.62 l S 102.98 236.53 m 103.03 237.15 l S 103.03 236.53 m 103.07 237.56 l S 103.07 236.53 m 103.12 237.15 l S 103.12 236.53 m 103.16 241.67 l S 103.16 236.53 m 103.21 238.79 l S 103.21 236.53 m 103.26 239.62 l S 103.26 236.53 m 103.30 244.34 l S 103.30 236.53 m 103.35 240.64 l S 103.35 236.53 m 103.39 239.82 l S 103.39 236.53 m 103.44 236.94 l S 103.44 236.53 m 103.49 237.36 l S 103.49 236.53 m 103.53 237.15 l S 103.53 236.53 m 103.58 237.56 l S 103.58 236.53 m 103.62 237.15 l S 103.62 236.53 m 103.67 237.36 l S 103.67 236.53 m 103.72 241.88 l S 103.72 236.53 m 103.76 237.77 l S 103.76 236.53 m 103.81 238.79 l S 103.81 236.53 m 103.85 236.94 l S 103.85 236.53 m 103.90 239.21 l S 103.90 236.53 m 103.95 238.38 l S 103.95 236.53 m 103.99 237.15 l S 103.99 236.53 m 104.04 236.94 l S 104.04 236.53 m 104.08 237.15 l S 104.08 236.53 m 104.13 236.94 l S 104.13 236.53 m 104.18 237.56 l S 104.18 236.53 m 104.22 238.59 l S 104.22 236.53 m 104.27 241.47 l S 104.27 236.53 m 104.31 240.03 l S 104.31 236.53 m 104.36 237.77 l S 104.36 236.53 m 104.41 237.97 l S 104.41 236.53 m 104.45 236.94 l S 104.45 236.53 m 104.50 237.56 l S 104.50 236.53 m 104.54 236.94 l S 104.54 236.53 m 104.59 240.23 l S 104.59 236.53 m 104.64 236.74 l S 104.64 236.53 m 104.68 237.15 l S 104.68 236.53 m 104.73 237.15 l S 104.73 236.53 m 104.77 237.36 l S 104.77 236.53 m 104.82 237.56 l S 104.82 236.53 m 104.87 237.36 l S 104.87 236.53 m 104.91 236.74 l S 104.91 236.53 m 104.96 236.94 l S 104.96 236.53 m 105.00 237.36 l S 105.00 236.53 m 105.05 237.15 l S 105.05 236.53 m 105.10 237.36 l S 105.10 236.53 m 105.14 237.36 l S 105.14 236.53 m 105.19 238.38 l S 105.19 236.53 m 105.23 239.21 l S 105.23 236.53 m 105.28 242.29 l S 105.28 236.53 m 105.33 239.21 l S 105.33 236.53 m 105.37 239.00 l S 105.37 236.53 m 105.42 238.59 l S 105.42 236.53 m 105.46 238.18 l S 105.46 236.53 m 105.51 236.94 l S 105.51 236.53 m 105.56 237.15 l S 105.56 236.53 m 105.60 237.15 l S 105.60 236.53 m 105.65 240.03 l S 105.65 236.53 m 105.69 240.23 l S 105.69 236.53 m 105.74 250.92 l S 105.74 236.53 m 105.79 238.59 l S 105.79 236.53 m 105.83 237.77 l S 105.83 236.53 m 105.88 239.00 l S 105.88 236.53 m 105.92 236.94 l S 105.92 236.53 m 105.97 237.36 l S 105.97 236.53 m 106.02 237.15 l S 106.02 236.53 m 106.06 237.15 l S 106.06 236.53 m 106.11 237.15 l S 106.11 236.53 m 106.15 237.15 l S 106.15 236.53 m 106.20 236.94 l S 106.20 236.53 m 106.25 237.15 l S 106.25 236.53 m 106.29 237.15 l S 106.29 236.53 m 106.34 237.15 l S 106.34 236.53 m 106.38 236.94 l S 106.38 236.53 m 106.43 237.36 l S 106.43 236.53 m 106.48 236.94 l S 106.48 236.53 m 106.52 236.94 l S 106.52 236.53 m 106.57 236.94 l S 106.57 236.53 m 106.61 237.36 l S 106.61 236.53 m 106.66 237.15 l S 106.66 236.53 m 106.71 236.94 l S 106.71 236.53 m 106.75 236.94 l S 106.75 236.53 m 106.80 237.15 l S 106.80 236.53 m 106.84 237.56 l S 106.84 236.53 m 106.89 237.56 l S 106.89 236.53 m 106.94 238.18 l S 106.94 236.53 m 106.98 237.36 l S 106.98 236.53 m 107.03 238.38 l S 107.03 236.53 m 107.07 237.36 l S 107.07 236.53 m 107.12 239.21 l S 107.12 236.53 m 107.17 240.23 l S 107.17 236.53 m 107.21 243.52 l S 107.21 236.53 m 107.26 239.62 l S 107.26 236.53 m 107.30 241.26 l S 107.30 236.53 m 107.35 238.18 l S 107.35 236.53 m 107.40 238.59 l S 107.40 236.53 m 107.44 237.15 l S 107.44 236.53 m 107.49 237.15 l S 107.49 236.53 m 107.53 240.23 l S 107.53 236.53 m 107.58 237.15 l S 107.58 236.53 m 107.63 236.94 l S 107.63 236.53 m 107.67 241.67 l S 107.67 236.53 m 107.72 238.59 l S 107.72 236.53 m 107.76 237.36 l S 107.76 236.53 m 107.81 236.94 l S 107.81 236.53 m 107.86 236.94 l S 107.86 236.53 m 107.90 237.36 l S 107.90 236.53 m 107.95 238.18 l S 107.95 236.53 m 107.99 236.94 l S 107.99 236.53 m 108.04 237.15 l S 108.04 236.53 m 108.09 237.36 l S 108.09 236.53 m 108.13 242.29 l S 108.13 236.53 m 108.18 238.38 l S 108.18 236.53 m 108.22 240.64 l S 108.22 236.53 m 108.27 240.64 l S 108.27 236.53 m 108.32 240.85 l S 108.32 236.53 m 108.36 239.00 l S 108.36 236.53 m 108.41 238.38 l S 108.41 236.53 m 108.45 237.15 l S 108.45 236.53 m 108.50 237.36 l S 108.50 236.53 m 108.55 237.15 l S 108.55 236.53 m 108.59 238.79 l S 108.59 236.53 m 108.64 240.03 l S 108.64 236.53 m 108.68 238.18 l S 108.68 236.53 m 108.73 241.47 l S 108.73 236.53 m 108.78 238.18 l S 108.78 236.53 m 108.82 237.56 l S 108.82 236.53 m 108.87 237.36 l S 108.87 236.53 m 108.91 237.36 l S 108.91 236.53 m 108.96 237.97 l S 108.96 236.53 m 109.01 238.79 l S 109.01 236.53 m 109.05 238.79 l S 109.05 236.53 m 109.10 237.15 l S 109.10 236.53 m 109.14 239.00 l S 109.14 236.53 m 109.19 239.82 l S 109.19 236.53 m 109.24 237.77 l S 109.24 236.53 m 109.28 236.94 l S 109.28 236.53 m 109.33 236.94 l S 109.33 236.53 m 109.37 236.94 l S 109.37 236.53 m 109.42 237.15 l S 109.42 236.53 m 109.47 238.59 l S 109.47 236.53 m 109.51 239.62 l S 109.51 236.53 m 109.56 238.38 l S 109.56 236.53 m 109.60 238.38 l S 109.60 236.53 m 109.65 238.18 l S 109.65 236.53 m 109.70 237.97 l S 109.70 236.53 m 109.74 237.36 l S 109.74 236.53 m 109.79 238.79 l S 109.79 236.53 m 109.83 238.38 l S 109.83 236.53 m 109.88 237.36 l S 109.88 236.53 m 109.93 236.94 l S 109.93 236.53 m 109.97 238.79 l S 109.97 236.53 m 110.02 238.18 l S 110.02 236.53 m 110.06 238.59 l S 110.06 236.53 m 110.11 238.38 l S 110.11 236.53 m 110.16 237.97 l S 110.16 236.53 m 110.20 237.97 l S 110.20 236.53 m 110.25 238.79 l S 110.25 236.53 m 110.29 238.79 l S 110.29 236.53 m 110.34 238.38 l S 110.34 236.53 m 110.39 238.18 l S 110.39 236.53 m 110.43 241.47 l S 110.43 236.53 m 110.48 237.15 l S 110.48 236.53 m 110.53 237.36 l S 110.53 236.53 m 110.57 238.59 l S 110.57 236.53 m 110.62 237.77 l S 110.62 236.53 m 110.66 237.15 l S 110.66 236.53 m 110.71 237.56 l S 110.71 236.53 m 110.76 238.18 l S 110.76 236.53 m 110.80 245.37 l S 110.80 236.53 m 110.85 247.01 l S 110.85 236.53 m 110.89 239.62 l S 110.89 236.53 m 110.94 237.36 l S 110.94 236.53 m 110.99 237.97 l S 110.99 236.53 m 111.03 239.41 l S 111.03 236.53 m 111.08 236.94 l S 111.08 236.53 m 111.12 237.15 l S 111.12 236.53 m 111.17 236.94 l S 111.17 236.53 m 111.22 236.94 l S 111.22 236.53 m 111.26 238.79 l S 111.26 236.53 m 111.31 237.36 l S 111.31 236.53 m 111.35 237.15 l S 111.35 236.53 m 111.40 237.15 l S 111.40 236.53 m 111.45 236.94 l S 111.45 236.53 m 111.49 236.94 l S 111.49 236.53 m 111.54 237.15 l S 111.54 236.53 m 111.58 237.15 l S 111.58 236.53 m 111.63 240.44 l S 111.63 236.53 m 111.68 240.64 l S 111.68 236.53 m 111.72 239.00 l S 111.72 236.53 m 111.77 240.03 l S 111.77 236.53 m 111.81 238.18 l S 111.81 236.53 m 111.86 237.97 l S 111.86 236.53 m 111.91 241.26 l S 111.91 236.53 m 111.95 242.08 l S 111.95 236.53 m 112.00 237.15 l S 112.00 236.53 m 112.04 238.38 l S 112.04 236.53 m 112.09 241.26 l S 112.09 236.53 m 112.14 237.56 l S 112.14 236.53 m 112.18 238.59 l S 112.18 236.53 m 112.23 237.15 l S 112.23 236.53 m 112.27 237.15 l S 112.27 236.53 m 112.32 236.94 l S 112.32 236.53 m 112.37 236.74 l S 112.37 236.53 m 112.41 237.56 l S 112.41 236.53 m 112.46 237.36 l S 112.46 236.53 m 112.50 236.94 l S 112.50 236.53 m 112.55 236.94 l S 112.55 236.53 m 112.60 237.15 l S 112.60 236.53 m 112.64 237.36 l S 112.64 236.53 m 112.69 236.94 l S 112.69 236.53 m 112.73 236.94 l S 112.73 236.53 m 112.78 236.94 l S 112.78 236.53 m 112.83 237.77 l S 112.83 236.53 m 112.87 237.15 l S 112.87 236.53 m 112.92 237.36 l S 112.92 236.53 m 112.96 236.94 l S 112.96 236.53 m 113.01 237.36 l S 113.01 236.53 m 113.06 237.56 l S 113.06 236.53 m 113.10 236.94 l S 113.10 236.53 m 113.15 237.15 l S 113.15 236.53 m 113.19 237.36 l S 113.19 236.53 m 113.24 238.18 l S 113.24 236.53 m 113.29 237.36 l S 113.29 236.53 m 113.33 237.15 l S 113.33 236.53 m 113.38 237.97 l S 113.38 236.53 m 113.42 237.97 l S 113.42 236.53 m 113.47 236.94 l S 113.47 236.53 m 113.52 238.38 l S 113.52 236.53 m 113.56 236.94 l S 113.56 236.53 m 113.61 237.15 l S 113.61 236.53 m 113.65 237.15 l S 113.65 236.53 m 113.70 237.15 l S 113.70 236.53 m 113.75 236.94 l S 113.75 236.53 m 113.79 236.94 l S 113.79 236.53 m 113.84 236.94 l S 113.84 236.53 m 113.88 236.94 l S 113.88 236.53 m 113.93 236.94 l S 113.93 236.53 m 113.98 237.15 l S 113.98 236.53 m 114.02 237.15 l S 114.02 236.53 m 114.07 237.15 l S 114.07 236.53 m 114.11 237.15 l S 114.11 236.53 m 114.16 237.56 l S 114.16 236.53 m 114.21 237.36 l S 114.21 236.53 m 114.25 236.94 l S 114.25 236.53 m 114.30 237.56 l S 114.30 236.53 m 114.34 236.94 l S 114.34 236.53 m 114.39 237.15 l S 114.39 236.53 m 114.44 237.77 l S 114.44 236.53 m 114.48 239.00 l S 114.48 236.53 m 114.53 237.15 l S 114.53 236.53 m 114.57 239.82 l S 114.57 236.53 m 114.62 239.62 l S 114.62 236.53 m 114.67 239.41 l S 114.67 236.53 m 114.71 240.85 l S 114.71 236.53 m 114.76 237.77 l S 114.76 236.53 m 114.80 236.94 l S 114.80 236.53 m 114.85 237.15 l S 114.85 236.53 m 114.90 246.60 l S 114.90 236.53 m 114.94 249.69 l S 114.94 236.53 m 114.99 244.55 l S 114.99 236.53 m 115.03 241.05 l S 115.03 236.53 m 115.08 244.75 l S 115.08 236.53 m 115.13 241.67 l S 115.13 236.53 m 115.17 239.82 l S 115.17 236.53 m 115.22 238.18 l S 115.22 236.53 m 115.26 237.15 l S 115.26 236.53 m 115.31 238.38 l S 115.31 236.53 m 115.36 236.94 l S 115.36 236.53 m 115.40 237.77 l S 115.40 236.53 m 115.45 236.94 l S 115.45 236.53 m 115.49 237.15 l S 115.49 236.53 m 115.54 237.15 l S 115.54 236.53 m 115.59 236.94 l S 115.59 236.53 m 115.63 237.15 l S 115.63 236.53 m 115.68 237.15 l S 115.68 236.53 m 115.72 236.94 l S 115.72 236.53 m 115.77 236.94 l S 115.77 236.53 m 115.82 236.94 l S 115.82 236.53 m 115.86 237.15 l S 115.86 236.53 m 115.91 236.94 l S 115.91 236.53 m 115.95 236.94 l S 115.95 236.53 m 116.00 236.94 l S 116.00 236.53 m 116.05 237.15 l S 116.05 236.53 m 116.09 236.74 l S 116.09 236.53 m 116.14 236.94 l S 116.14 236.53 m 116.18 236.74 l S 116.18 236.53 m 116.23 237.15 l S 116.23 236.53 m 116.28 236.94 l S 116.28 236.53 m 116.32 236.94 l S 116.32 236.53 m 116.37 236.74 l S 116.37 236.53 m 116.41 237.15 l S 116.41 236.53 m 116.46 236.94 l S 116.46 236.53 m 116.51 236.94 l S 116.51 236.53 m 116.55 237.15 l S 116.55 236.53 m 116.60 236.74 l S 116.60 236.53 m 116.64 236.94 l S 116.64 236.53 m 116.69 236.94 l S 116.69 236.53 m 116.74 236.74 l S 116.74 236.53 m 116.78 236.74 l S 116.78 236.53 m 116.83 236.94 l S 116.83 236.53 m 116.87 236.94 l S 116.87 236.53 m 116.92 236.74 l S 116.92 236.53 m 116.97 237.15 l S 116.97 236.53 m 117.01 237.15 l S 117.01 236.53 m 117.06 236.94 l S 117.06 236.53 m 117.10 236.74 l S 117.10 236.53 m 117.15 236.94 l S 117.15 236.53 m 117.20 237.15 l S 117.20 236.53 m 117.24 236.74 l S 117.24 236.53 m 117.29 236.74 l S 117.29 236.53 m 117.33 236.94 l S 117.33 236.53 m 117.38 236.74 l S 117.38 236.53 m 117.43 236.53 l S 117.43 236.53 m 117.47 236.94 l S 117.47 236.53 m 117.52 236.74 l S 117.52 236.53 m 117.56 236.94 l S 117.56 236.53 m 117.61 236.94 l S 117.61 236.53 m 117.66 236.94 l S 117.66 236.53 m 117.70 237.15 l S 117.70 236.53 m 117.75 236.94 l S 117.75 236.53 m 117.79 236.94 l S 117.79 236.53 m 117.84 236.94 l S 117.84 236.53 m 117.89 237.36 l S 117.89 236.53 m 117.93 236.94 l S 117.93 236.53 m 117.98 236.94 l S 117.98 236.53 m 118.02 237.36 l S 118.02 236.53 m 118.07 236.74 l S 118.07 236.53 m 118.12 237.15 l S 118.12 236.53 m 118.16 236.94 l S 118.16 236.53 m 118.21 236.94 l S 118.21 236.53 m 118.25 236.94 l S 118.25 236.53 m 118.30 237.15 l S 118.30 236.53 m 118.35 241.05 l S 118.35 236.53 m 118.39 236.74 l S 118.39 236.53 m 118.44 236.94 l S 118.44 236.53 m 118.49 239.00 l S 118.49 236.53 m 118.53 237.36 l S 118.53 236.53 m 118.58 238.38 l S 118.58 236.53 m 118.62 237.56 l S 118.62 236.53 m 118.67 240.64 l S 118.67 236.53 m 118.72 236.74 l S 118.72 236.53 m 118.76 237.36 l S 118.76 236.53 m 118.81 236.94 l S 118.81 236.53 m 118.85 236.74 l S 118.85 236.53 m 118.90 236.94 l S 118.90 236.53 m 118.95 236.74 l S 118.95 236.53 m 118.99 236.74 l S 118.99 236.53 m 119.04 237.15 l S 119.04 236.53 m 119.08 236.74 l S 119.08 236.53 m 119.13 236.74 l S 119.13 236.53 m 119.18 236.94 l S 119.18 236.53 m 119.22 241.88 l S 119.22 236.53 m 119.27 237.15 l S 119.27 236.53 m 119.31 237.36 l S 119.31 236.53 m 119.36 237.15 l S 119.36 236.53 m 119.41 236.74 l S 119.41 236.53 m 119.45 236.74 l S 119.45 236.53 m 119.50 236.94 l S 119.50 236.53 m 119.54 237.15 l S 119.54 236.53 m 119.59 237.15 l S 119.59 236.53 m 119.64 237.36 l S 119.64 236.53 m 119.68 237.77 l S 119.68 236.53 m 119.73 236.94 l S 119.73 236.53 m 119.77 236.53 l S 119.77 236.53 m 119.82 236.53 l S 119.82 236.53 m 119.87 236.53 l S 119.87 236.53 m 119.91 236.53 l S 119.91 236.53 m 119.96 236.53 l S 119.96 236.53 m 120.00 236.53 l S 120.00 236.53 m 120.05 236.53 l S 120.05 236.53 m 120.10 236.53 l S 120.10 236.53 m 120.14 236.53 l S 120.14 236.53 m 120.19 236.53 l S 120.19 236.53 m 120.23 236.53 l S 120.23 236.53 m 120.28 236.53 l S 120.28 236.53 m 120.33 236.53 l S 120.33 236.53 m 120.37 236.53 l S 120.37 236.53 m 120.42 236.53 l S 120.42 236.53 m 120.46 236.53 l S 120.46 236.53 m 120.51 236.53 l S 120.51 236.53 m 120.56 236.53 l S 120.56 236.53 m 120.60 236.53 l S 120.60 236.53 m 120.65 236.53 l S 120.65 236.53 m 120.69 236.53 l S 120.69 236.53 m 120.74 236.53 l S 120.74 236.53 m 120.79 236.53 l S 120.79 236.53 m 120.83 236.53 l S 120.83 236.53 m 120.88 236.53 l S 120.88 236.53 m 120.92 236.53 l S 120.92 236.53 m 120.97 236.53 l S 120.97 236.53 m 121.02 236.53 l S 121.02 236.53 m 121.06 236.53 l S 121.06 236.53 m 121.11 236.53 l S 121.11 236.53 m 121.15 236.53 l S 121.15 236.53 m 121.20 236.53 l S 121.20 236.53 m 121.25 236.53 l S 121.25 236.53 m 121.29 236.53 l S 121.29 236.53 m 121.34 236.53 l S 121.34 236.53 m 121.38 236.53 l S 121.38 236.53 m 121.43 236.53 l S 121.43 236.53 m 121.48 236.53 l S 121.48 236.53 m 121.52 236.53 l S 121.52 236.53 m 121.57 236.53 l S 121.57 236.53 m 121.61 236.53 l S 121.61 236.53 m 121.66 236.53 l S 121.66 236.53 m 121.71 236.53 l S 121.71 236.53 m 121.75 236.53 l S 121.75 236.53 m 121.80 236.53 l S 121.80 236.53 m 121.84 236.53 l S 121.84 236.53 m 121.89 236.53 l S 121.89 236.53 m 121.94 236.53 l S 121.94 236.53 m 121.98 236.53 l S 121.98 236.53 m 122.03 236.53 l S 122.03 236.53 m 122.07 236.53 l S 122.07 236.53 m 122.12 236.53 l S 122.12 236.53 m 122.17 236.53 l S 122.17 236.53 m 122.21 236.53 l S 122.21 236.53 m 122.26 236.53 l S 122.26 236.53 m 122.30 236.53 l S 122.30 236.53 m 122.35 236.53 l S 122.35 236.53 m 122.40 236.53 l S 122.40 236.53 m 122.44 236.53 l S 122.44 236.53 m 122.49 236.53 l S 122.49 236.53 m 122.53 236.53 l S 122.53 236.53 m 122.58 236.53 l S 122.58 236.53 m 122.63 236.53 l S 122.63 236.53 m 122.67 236.53 l S 122.67 236.53 m 122.72 236.53 l S 122.72 236.53 m 122.76 236.53 l S 122.76 236.53 m 122.81 236.53 l S 122.81 236.53 m 122.86 236.53 l S 122.86 236.53 m 122.90 236.53 l S 122.90 236.53 m 122.95 236.53 l S 122.95 236.53 m 122.99 236.53 l S 122.99 236.53 m 123.04 236.53 l S 123.04 236.53 m 123.09 237.97 l S 123.09 236.53 m 123.13 249.07 l S 123.13 236.53 m 123.18 236.94 l S 123.18 236.53 m 123.22 236.94 l S 123.22 236.53 m 123.27 236.74 l S 123.27 236.53 m 123.32 237.56 l S 123.32 236.53 m 123.36 236.74 l S 123.36 236.53 m 123.41 237.97 l S 123.41 236.53 m 123.45 236.74 l S 123.45 236.53 m 123.50 236.74 l S 123.50 236.53 m 123.55 236.94 l S 123.55 236.53 m 123.59 237.15 l S 123.59 236.53 m 123.64 236.74 l S 123.64 236.53 m 123.68 237.56 l S 123.68 236.53 m 123.73 236.74 l S 123.73 236.53 m 123.78 236.94 l S 123.78 236.53 m 123.82 236.94 l S 123.82 236.53 m 123.87 236.94 l S 123.87 236.53 m 123.91 237.36 l S 123.91 236.53 m 123.96 236.94 l S 123.96 236.53 m 124.01 239.82 l S 124.01 236.53 m 124.05 237.36 l S 124.05 236.53 m 124.10 237.36 l S 124.10 236.53 m 124.14 238.18 l S 124.14 236.53 m 124.19 237.15 l S 124.19 236.53 m 124.24 237.15 l S 124.24 236.53 m 124.28 237.36 l S 124.28 236.53 m 124.33 240.64 l S 124.33 236.53 m 124.37 238.18 l S 124.37 236.53 m 124.42 236.94 l S 124.42 236.53 m 124.47 237.97 l S 124.47 236.53 m 124.51 237.15 l S 124.51 236.53 m 124.56 237.77 l S 124.56 236.53 m 124.60 237.77 l S 124.60 236.53 m 124.65 237.15 l S 124.65 236.53 m 124.70 237.15 l S 124.70 236.53 m 124.74 237.56 l S 124.74 236.53 m 124.79 241.05 l S 124.79 236.53 m 124.83 242.08 l S 124.83 236.53 m 124.88 239.21 l S 124.88 236.53 m 124.93 241.67 l S 124.93 236.53 m 124.97 238.38 l S 124.97 236.53 m 125.02 241.67 l S 125.02 236.53 m 125.06 240.03 l S 125.06 236.53 m 125.11 240.64 l S 125.11 236.53 m 125.16 240.44 l S 125.16 236.53 m 125.20 239.62 l S 125.20 236.53 m 125.25 239.00 l S 125.25 236.53 m 125.29 237.15 l S 125.29 236.53 m 125.34 237.15 l S 125.34 236.53 m 125.39 237.56 l S 125.39 236.53 m 125.43 241.67 l S 125.43 236.53 m 125.48 239.00 l S 125.48 236.53 m 125.52 239.41 l S 125.52 236.53 m 125.57 237.36 l S 125.57 236.53 m 125.62 237.15 l S 125.62 236.53 m 125.66 236.94 l S 125.66 236.53 m 125.71 242.08 l S 125.71 236.53 m 125.75 239.62 l S 125.75 236.53 m 125.80 239.21 l S 125.80 236.53 m 125.85 236.94 l S 125.85 236.53 m 125.89 237.56 l S 125.89 236.53 m 125.94 237.56 l S 125.94 236.53 m 125.98 238.38 l S 125.98 236.53 m 126.03 237.36 l S 126.03 236.53 m 126.08 237.36 l S 126.08 236.53 m 126.12 236.94 l S 126.12 236.53 m 126.17 237.15 l S 126.17 236.53 m 126.21 237.15 l S 126.21 236.53 m 126.26 237.15 l S 126.26 236.53 m 126.31 237.15 l S 126.31 236.53 m 126.35 237.36 l S 126.35 236.53 m 126.40 238.38 l S 126.40 236.53 m 126.45 237.36 l S 126.45 236.53 m 126.49 236.94 l S 126.49 236.53 m 126.54 237.56 l S 126.54 236.53 m 126.58 237.56 l S 126.58 236.53 m 126.63 237.15 l S 126.63 236.53 m 126.68 237.15 l S 126.68 236.53 m 126.72 236.74 l S 126.72 236.53 m 126.77 237.56 l S 126.77 236.53 m 126.81 236.94 l S 126.81 236.53 m 126.86 236.94 l S 126.86 236.53 m 126.91 237.15 l S 126.91 236.53 m 126.95 236.94 l S 126.95 236.53 m 127.00 236.94 l S 127.00 236.53 m 127.04 237.15 l S 127.04 236.53 m 127.09 237.15 l S 127.09 236.53 m 127.14 237.36 l S 127.14 236.53 m 127.18 238.59 l S 127.18 236.53 m 127.23 239.41 l S 127.23 236.53 m 127.27 239.62 l S 127.27 236.53 m 127.32 243.93 l S 127.32 236.53 m 127.37 243.93 l S 127.37 236.53 m 127.41 236.74 l S 127.41 236.53 m 127.46 236.74 l S 127.46 236.53 m 127.50 237.15 l S 127.50 236.53 m 127.55 236.94 l S 127.55 236.53 m 127.60 236.74 l S 127.60 236.53 m 127.64 236.94 l S 127.64 236.53 m 127.69 237.56 l S 127.69 236.53 m 127.73 236.94 l S 127.73 236.53 m 127.78 237.15 l S 127.78 236.53 m 127.83 236.94 l S 127.83 236.53 m 127.87 238.18 l S 127.87 236.53 m 127.92 241.47 l S 127.92 236.53 m 127.96 240.03 l S 127.96 236.53 m 128.01 240.64 l S 128.01 236.53 m 128.06 238.59 l S 128.06 236.53 m 128.10 248.45 l S 128.10 236.53 m 128.15 240.23 l S 128.15 236.53 m 128.19 237.56 l S 128.19 236.53 m 128.24 238.38 l S 128.24 236.53 m 128.29 239.82 l S 128.29 236.53 m 128.33 238.18 l S 128.33 236.53 m 128.38 236.74 l S 128.38 236.53 m 128.42 236.53 l S 128.42 236.53 m 128.47 236.53 l S 128.47 236.53 m 128.52 236.74 l S 128.52 236.53 m 128.56 236.53 l S 128.56 236.53 m 128.61 236.53 l S 128.61 236.53 m 128.65 236.53 l S 128.65 236.53 m 128.70 236.53 l S 128.70 236.53 m 128.75 236.53 l S 128.75 236.53 m 128.79 236.53 l S 128.79 236.53 m 128.84 236.53 l S 128.84 236.53 m 128.88 237.15 l S 128.88 236.53 m 128.93 236.53 l S 128.93 236.53 m 128.98 236.53 l S 128.98 236.53 m 129.02 236.53 l S 129.02 236.53 m 129.07 236.53 l S 129.07 236.53 m 129.11 236.53 l S 129.11 236.53 m 129.16 236.53 l S 129.16 236.53 m 129.21 236.53 l S 129.21 236.53 m 129.25 236.53 l S 129.25 236.53 m 129.30 236.53 l S 129.30 236.53 m 129.34 236.53 l S 129.34 236.53 m 129.39 236.53 l S 129.39 236.53 m 129.44 236.53 l S 129.44 236.53 m 129.48 237.56 l S 129.48 236.53 m 129.53 237.77 l S 129.53 236.53 m 129.57 237.36 l S 129.57 236.53 m 129.62 237.36 l S 129.62 236.53 m 129.67 237.97 l S 129.67 236.53 m 129.71 237.15 l S 129.71 236.53 m 129.76 236.74 l S 129.76 236.53 m 129.80 236.53 l S 129.80 236.53 m 129.85 236.53 l S 129.85 236.53 m 129.90 236.53 l S 129.90 236.53 m 129.94 236.53 l S 129.94 236.53 m 129.99 236.53 l S 129.99 236.53 m 130.03 236.74 l S 130.03 236.53 m 130.08 236.53 l S 130.08 236.53 m 130.13 236.74 l S 130.13 236.53 m 130.17 236.53 l S 130.17 236.53 m 130.22 236.53 l S 130.22 236.53 m 130.26 236.53 l S 130.26 236.53 m 130.31 236.53 l S 130.31 236.53 m 130.36 236.74 l S 130.36 236.53 m 130.40 238.38 l S 130.40 236.53 m 130.45 242.90 l S 130.45 236.53 m 130.49 243.32 l S 130.49 236.53 m 130.54 237.15 l S 130.54 236.53 m 130.59 236.74 l S 130.59 236.53 m 130.63 236.94 l S 130.63 236.53 m 130.68 236.53 l S 130.68 236.53 m 130.72 236.53 l S 130.72 236.53 m 130.77 236.53 l S 130.77 236.53 m 130.82 236.53 l S 130.82 236.53 m 130.86 236.53 l S 130.86 236.53 m 130.91 236.74 l S 130.91 236.53 m 130.95 236.74 l S 130.95 236.53 m 131.00 236.74 l S 131.00 236.53 m 131.05 236.53 l S 131.05 236.53 m 131.09 236.53 l S 131.09 236.53 m 131.14 236.53 l S 131.14 236.53 m 131.18 236.53 l S 131.18 236.53 m 131.23 236.53 l S 131.23 236.53 m 131.28 236.53 l S 131.28 236.53 m 131.32 236.74 l S 131.32 236.53 m 131.37 236.53 l S 131.37 236.53 m 131.41 236.53 l S 131.41 236.53 m 131.46 236.53 l S 131.46 236.53 m 131.51 236.53 l S 131.51 236.53 m 131.55 236.74 l S 131.55 236.53 m 131.60 237.97 l S 131.60 236.53 m 131.64 237.56 l S 131.64 236.53 m 131.69 237.36 l S 131.69 236.53 m 131.74 241.05 l S 131.74 236.53 m 131.78 243.11 l S 131.78 236.53 m 131.83 241.88 l S 131.83 236.53 m 131.87 240.85 l S 131.87 236.53 m 131.92 238.38 l S 131.92 236.53 m 131.97 239.21 l S 131.97 236.53 m 132.01 237.36 l S 132.01 236.53 m 132.06 238.38 l S 132.06 236.53 m 132.10 236.74 l S 132.10 236.53 m 132.15 236.74 l S 132.15 236.53 m 132.20 236.53 l S 132.20 236.53 m 132.24 236.53 l S 132.24 236.53 m 132.29 236.74 l S 132.29 236.53 m 132.33 236.53 l S 132.33 236.53 m 132.38 236.74 l S 132.38 236.53 m 132.43 236.74 l S 132.43 236.53 m 132.47 236.94 l S 132.47 236.53 m 132.52 236.94 l S 132.52 236.53 m 132.56 236.53 l S 132.56 236.53 m 132.61 236.53 l S 132.61 236.53 m 132.66 236.74 l S 132.66 236.53 m 132.70 236.53 l S 132.70 236.53 m 132.75 236.53 l S 132.75 236.53 m 132.79 236.53 l S 132.79 236.53 m 132.84 236.74 l S 132.84 236.53 m 132.89 236.74 l S 132.89 236.53 m 132.93 236.74 l S 132.93 236.53 m 132.98 236.53 l S 132.98 236.53 m 133.02 236.53 l S 133.02 236.53 m 133.07 236.74 l S 133.07 236.53 m 133.12 237.15 l S 133.12 236.53 m 133.16 237.15 l S 133.16 236.53 m 133.21 237.15 l S 133.21 236.53 m 133.25 237.15 l S 133.25 236.53 m 133.30 238.38 l S 133.30 236.53 m 133.35 237.36 l S 133.35 236.53 m 133.39 239.62 l S 133.39 236.53 m 133.44 238.18 l S 133.44 236.53 m 133.48 237.15 l S 133.48 236.53 m 133.53 238.59 l S 133.53 236.53 m 133.58 237.56 l S 133.58 236.53 m 133.62 237.56 l S 133.62 236.53 m 133.67 236.94 l S 133.67 236.53 m 133.71 238.18 l S 133.71 236.53 m 133.76 238.79 l S 133.76 236.53 m 133.81 237.15 l S 133.81 236.53 m 133.85 237.36 l S 133.85 236.53 m 133.90 237.56 l S 133.90 236.53 m 133.94 239.41 l S 133.94 236.53 m 133.99 238.59 l S 133.99 236.53 m 134.04 237.15 l S 134.04 236.53 m 134.08 237.36 l S 134.08 236.53 m 134.13 237.15 l S 134.13 236.53 m 134.17 237.36 l S 134.17 236.53 m 134.22 236.94 l S 134.22 236.53 m 134.27 239.00 l S 134.27 236.53 m 134.31 237.36 l S 134.31 236.53 m 134.36 237.56 l S 134.36 236.53 m 134.41 237.15 l S 134.41 236.53 m 134.45 238.79 l S 134.45 236.53 m 134.50 239.21 l S 134.50 236.53 m 134.54 237.15 l S 134.54 236.53 m 134.59 239.41 l S 134.59 236.53 m 134.64 241.26 l S 134.64 236.53 m 134.68 237.77 l S 134.68 236.53 m 134.73 237.15 l S 134.73 236.53 m 134.77 237.36 l S 134.77 236.53 m 134.82 237.36 l S 134.82 236.53 m 134.87 237.15 l S 134.87 236.53 m 134.91 246.81 l S 134.91 236.53 m 134.96 240.64 l S 134.96 236.53 m 135.00 237.36 l S 135.00 236.53 m 135.05 237.15 l S 135.05 236.53 m 135.10 237.36 l S 135.10 236.53 m 135.14 236.94 l S 135.14 236.53 m 135.19 237.36 l S 135.19 236.53 m 135.23 237.15 l S 135.23 236.53 m 135.28 237.56 l S 135.28 236.53 m 135.33 236.94 l S 135.33 236.53 m 135.37 236.74 l S 135.37 236.53 m 135.42 236.74 l S 135.42 236.53 m 135.46 236.74 l S 135.46 236.53 m 135.51 236.74 l S 135.51 236.53 m 135.56 236.53 l S 135.56 236.53 m 135.60 236.53 l S 135.60 236.53 m 135.65 236.53 l S 135.65 236.53 m 135.69 236.53 l S 135.69 236.53 m 135.74 236.74 l S 135.74 236.53 m 135.79 236.53 l S 135.79 236.53 m 135.83 236.74 l S 135.83 236.53 m 135.88 236.53 l S 135.88 236.53 m 135.92 236.53 l S 135.92 236.53 m 135.97 241.67 l S 135.97 236.53 m 136.02 241.67 l S 136.02 236.53 m 136.06 240.03 l S 136.06 236.53 m 136.11 244.34 l S 136.11 236.53 m 136.15 237.15 l S 136.15 236.53 m 136.20 236.74 l S 136.20 236.53 m 136.25 236.53 l S 136.25 236.53 m 136.29 236.74 l S 136.29 236.53 m 136.34 236.74 l S 136.34 236.53 m 136.38 236.74 l S 136.38 236.53 m 136.43 237.15 l S 136.43 236.53 m 136.48 236.74 l S 136.48 236.53 m 136.52 236.53 l S 136.52 236.53 m 136.57 236.74 l S 136.57 236.53 m 136.61 236.53 l S 136.61 236.53 m 136.66 236.94 l S 136.66 236.53 m 136.71 237.15 l S 136.71 236.53 m 136.75 237.77 l S 136.75 236.53 m 136.80 239.41 l S 136.80 236.53 m 136.84 240.44 l S 136.84 236.53 m 136.89 241.05 l S 136.89 236.53 m 136.94 240.64 l S 136.94 236.53 m 136.98 239.41 l S 136.98 236.53 m 137.03 243.73 l S 137.03 236.53 m 137.07 240.64 l S 137.07 236.53 m 137.12 240.64 l S 137.12 236.53 m 137.17 239.82 l S 137.17 236.53 m 137.21 240.85 l S 137.21 236.53 m 137.26 238.59 l S 137.26 236.53 m 137.30 236.94 l S 137.30 236.53 m 137.35 238.79 l S 137.35 236.53 m 137.40 237.15 l S 137.40 236.53 m 137.44 236.94 l S 137.44 236.53 m 137.49 236.94 l S 137.49 236.53 m 137.53 237.15 l S 137.53 236.53 m 137.58 237.15 l S 137.58 236.53 m 137.63 237.15 l S 137.63 236.53 m 137.67 237.15 l S 137.67 236.53 m 137.72 236.94 l S 137.72 236.53 m 137.76 236.94 l S 137.76 236.53 m 137.81 237.15 l S 137.81 236.53 m 137.86 236.94 l S 137.86 236.53 m 137.90 236.74 l S 137.90 236.53 m 137.95 236.94 l S 137.95 236.53 m 137.99 236.94 l S 137.99 236.53 m 138.04 237.15 l S 138.04 236.53 m 138.09 237.56 l S 138.09 236.53 m 138.13 236.94 l S 138.13 236.53 m 138.18 236.94 l S 138.18 236.53 m 138.22 236.94 l S 138.22 236.53 m 138.27 237.36 l S 138.27 236.53 m 138.32 236.74 l S 138.32 236.53 m 138.36 236.94 l S 138.36 236.53 m 138.41 236.74 l S 138.41 236.53 m 138.45 237.15 l S 138.45 236.53 m 138.50 237.15 l S 138.50 236.53 m 138.55 237.36 l S 138.55 236.53 m 138.59 237.15 l S 138.59 236.53 m 138.64 244.75 l S 138.64 236.53 m 138.68 239.21 l S 138.68 236.53 m 138.73 236.94 l S 138.73 236.53 m 138.78 237.36 l S 138.78 236.53 m 138.82 236.94 l S 138.82 236.53 m 138.87 236.94 l S 138.87 236.53 m 138.91 237.15 l S 138.91 236.53 m 138.96 237.15 l S 138.96 236.53 m 139.01 236.94 l S 139.01 236.53 m 139.05 236.74 l S 139.05 236.53 m 139.10 237.15 l S 139.10 236.53 m 139.14 236.94 l S 139.14 236.53 m 139.19 236.94 l S 139.19 236.53 m 139.24 236.94 l S 139.24 236.53 m 139.28 237.15 l S 139.28 236.53 m 139.33 236.94 l S 139.33 236.53 m 139.37 236.94 l S 139.37 236.53 m 139.42 236.94 l S 139.42 236.53 m 139.47 236.74 l S 139.47 236.53 m 139.51 237.15 l S 139.51 236.53 m 139.56 236.74 l S 139.56 236.53 m 139.60 236.74 l S 139.60 236.53 m 139.65 236.94 l S 139.65 236.53 m 139.70 236.94 l S 139.70 236.53 m 139.74 236.74 l S 139.74 236.53 m 139.79 236.74 l S 139.79 236.53 m 139.83 236.94 l S 139.83 236.53 m 139.88 237.15 l S 139.88 236.53 m 139.93 236.94 l S 139.93 236.53 m 139.97 237.15 l S 139.97 236.53 m 140.02 236.74 l S 140.02 236.53 m 140.06 236.94 l S 140.06 236.53 m 140.11 237.15 l S 140.11 236.53 m 140.16 237.15 l S 140.16 236.53 m 140.20 236.74 l S 140.20 236.53 m 140.25 236.94 l S 140.25 236.53 m 140.29 237.15 l S 140.29 236.53 m 140.34 236.94 l S 140.34 236.53 m 140.39 237.15 l S 140.39 236.53 m 140.43 236.94 l S 140.43 236.53 m 140.48 236.74 l S 140.48 236.53 m 140.52 236.74 l S 140.52 236.53 m 140.57 236.94 l S 140.57 236.53 m 140.62 236.74 l S 140.62 236.53 m 140.66 237.15 l S 140.66 236.53 m 140.71 237.15 l S 140.71 236.53 m 140.75 237.15 l S 140.75 236.53 m 140.80 236.74 l S 140.80 236.53 m 140.85 236.94 l S 140.85 236.53 m 140.89 236.94 l S 140.89 236.53 m 140.94 236.94 l S 140.94 236.53 m 140.98 236.94 l S 140.98 236.53 m 141.03 236.94 l S 141.03 236.53 m 141.08 236.74 l S 141.08 236.53 m 141.12 236.74 l S 141.12 236.53 m 141.17 236.94 l S 141.17 236.53 m 141.21 236.94 l S 141.21 236.53 m 141.26 236.94 l S 141.26 236.53 m 141.31 236.94 l S 141.31 236.53 m 141.35 236.74 l S 141.35 236.53 m 141.40 236.94 l S 141.40 236.53 m 141.44 236.94 l S 141.44 236.53 m 141.49 237.15 l S 141.49 236.53 m 141.54 236.74 l S 141.54 236.53 m 141.58 236.94 l S 141.58 236.53 m 141.63 236.94 l S 141.63 236.53 m 141.67 236.94 l S 141.67 236.53 m 141.72 236.74 l S 141.72 236.53 m 141.77 236.74 l S 141.77 236.53 m 141.81 236.74 l S 141.81 236.53 m 141.86 237.15 l S 141.86 236.53 m 141.90 236.74 l S 141.90 236.53 m 141.95 236.94 l S 141.95 236.53 m 142.00 236.74 l S 142.00 236.53 m 142.04 236.94 l S 142.04 236.53 m 142.09 236.74 l S 142.09 236.53 m 142.13 236.94 l S 142.13 236.53 m 142.18 236.94 l S 142.18 236.53 m 142.23 236.94 l S 142.23 236.53 m 142.27 236.94 l S 142.27 236.53 m 142.32 237.15 l S 142.32 236.53 m 142.36 236.74 l S 142.36 236.53 m 142.41 236.74 l S 142.41 236.53 m 142.46 236.94 l S 142.46 236.53 m 142.50 236.74 l S 142.50 236.53 m 142.55 236.74 l S 142.55 236.53 m 142.60 236.94 l S 142.60 236.53 m 142.64 236.74 l S 142.64 236.53 m 142.69 236.94 l S 142.69 236.53 m 142.73 236.94 l S 142.73 236.53 m 142.78 236.74 l S 142.78 236.53 m 142.83 236.74 l S 142.83 236.53 m 142.87 236.74 l S 142.87 236.53 m 142.92 236.94 l S 142.92 236.53 m 142.96 237.15 l S 142.96 236.53 m 143.01 236.74 l S 143.01 236.53 m 143.06 236.74 l S 143.06 236.53 m 143.10 236.94 l S 143.10 236.53 m 143.15 236.74 l S 143.15 236.53 m 143.19 236.74 l S 143.19 236.53 m 143.24 236.94 l S 143.24 236.53 m 143.29 236.94 l S 143.29 236.53 m 143.33 236.74 l S 143.33 236.53 m 143.38 236.94 l S 143.38 236.53 m 143.42 236.74 l S 143.42 236.53 m 143.47 237.15 l S 143.47 236.53 m 143.52 237.15 l S 143.52 236.53 m 143.56 236.94 l S 143.56 236.53 m 143.61 236.94 l S 143.61 236.53 m 143.65 236.74 l S 143.65 236.53 m 143.70 236.74 l S 143.70 236.53 m 143.75 236.94 l S 143.75 236.53 m 143.79 236.94 l S 143.79 236.53 m 143.84 236.94 l S 143.84 236.53 m 143.88 236.94 l S 143.88 236.53 m 143.93 236.74 l S 143.93 236.53 m 143.98 236.74 l S 143.98 236.53 m 144.02 236.94 l S 144.02 236.53 m 144.07 236.94 l S 144.07 236.53 m 144.11 236.74 l S 144.11 236.53 m 144.16 236.94 l S 144.16 236.53 m 144.21 236.74 l S 144.21 236.53 m 144.25 237.36 l S 144.25 236.53 m 144.30 237.15 l S 144.30 236.53 m 144.34 236.94 l S 144.34 236.53 m 144.39 236.74 l S 144.39 236.53 m 144.44 236.94 l S 144.44 236.53 m 144.48 236.94 l S 144.48 236.53 m 144.53 237.15 l S 144.53 236.53 m 144.57 236.94 l S 144.57 236.53 m 144.62 236.74 l S 144.62 236.53 m 144.67 236.74 l S 144.67 236.53 m 144.71 236.74 l S 144.71 236.53 m 144.76 236.74 l S 144.76 236.53 m 144.80 236.74 l S 144.80 236.53 m 144.85 236.74 l S 144.85 236.53 m 144.90 236.74 l S 144.90 236.53 m 144.94 236.94 l S 144.94 236.53 m 144.99 240.85 l S 144.99 236.53 m 145.03 236.94 l S 145.03 236.53 m 145.08 236.94 l S 145.08 236.53 m 145.13 236.74 l S 145.13 236.53 m 145.17 236.74 l S 145.17 236.53 m 145.22 236.74 l S 145.22 236.53 m 145.26 236.74 l S 145.26 236.53 m 145.31 236.94 l S 145.31 236.53 m 145.36 237.15 l S 145.36 236.53 m 145.40 236.94 l S 145.40 236.53 m 145.45 236.94 l S 145.45 236.53 m 145.49 236.74 l S 145.49 236.53 m 145.54 236.94 l S 145.54 236.53 m 145.59 236.74 l S 145.59 236.53 m 145.63 236.74 l S 145.63 236.53 m 145.68 236.74 l S 145.68 236.53 m 145.72 237.15 l S 145.72 236.53 m 145.77 236.94 l S 145.77 236.53 m 145.82 236.74 l S 145.82 236.53 m 145.86 237.36 l S 145.86 236.53 m 145.91 236.94 l S 145.91 236.53 m 145.95 236.74 l S 145.95 236.53 m 146.00 237.15 l S 146.00 236.53 m 146.05 237.15 l S 146.05 236.53 m 146.09 236.74 l S 146.09 236.53 m 146.14 236.74 l S 146.14 236.53 m 146.18 236.94 l S 146.18 236.53 m 146.23 236.74 l S 146.23 236.53 m 146.28 236.94 l S 146.28 236.53 m 146.32 236.74 l S 146.32 236.53 m 146.37 236.94 l S 146.37 236.53 m 146.41 236.94 l S 146.41 236.53 m 146.46 236.94 l S 146.46 236.53 m 146.51 236.94 l S 146.51 236.53 m 146.55 237.15 l S 146.55 236.53 m 146.60 236.74 l S 146.60 236.53 m 146.64 236.94 l S 146.64 236.53 m 146.69 236.94 l S 146.69 236.53 m 146.74 237.15 l S 146.74 236.53 m 146.78 236.74 l S 146.78 236.53 m 146.83 236.74 l S 146.83 236.53 m 146.87 236.74 l S 146.87 236.53 m 146.92 236.94 l S 146.92 236.53 m 146.97 237.15 l S 146.97 236.53 m 147.01 236.94 l S 147.01 236.53 m 147.06 236.94 l S 147.06 236.53 m 147.10 236.94 l S 147.10 236.53 m 147.15 236.94 l S 147.15 236.53 m 147.20 236.94 l S 147.20 236.53 m 147.24 237.15 l S 147.24 236.53 m 147.29 236.74 l S 147.29 236.53 m 147.33 236.94 l S 147.33 236.53 m 147.38 237.15 l S 147.38 236.53 m 147.43 236.94 l S 147.43 236.53 m 147.47 236.94 l S 147.47 236.53 m 147.52 238.18 l S 147.52 236.53 m 147.56 238.79 l S 147.56 236.53 m 147.61 238.59 l S 147.61 236.53 m 147.66 238.38 l S 147.66 236.53 m 147.70 239.41 l S 147.70 236.53 m 147.75 238.79 l S 147.75 236.53 m 147.79 237.56 l S 147.79 236.53 m 147.84 237.15 l S 147.84 236.53 m 147.89 236.94 l S 147.89 236.53 m 147.93 237.36 l S 147.93 236.53 m 147.98 236.94 l S 147.98 236.53 m 148.02 236.74 l S 148.02 236.53 m 148.07 237.36 l S 148.07 236.53 m 148.12 236.94 l S 148.12 236.53 m 148.16 236.94 l S 148.16 236.53 m 148.21 236.94 l S 148.21 236.53 m 148.25 236.94 l S 148.25 236.53 m 148.30 237.15 l S 148.30 236.53 m 148.35 236.94 l S 148.35 236.53 m 148.39 237.36 l S 148.39 236.53 m 148.44 236.94 l S 148.44 236.53 m 148.48 237.15 l S 148.48 236.53 m 148.53 237.15 l S 148.53 236.53 m 148.58 236.94 l S 148.58 236.53 m 148.62 237.15 l S 148.62 236.53 m 148.67 236.94 l S 148.67 236.53 m 148.71 237.15 l S 148.71 236.53 m 148.76 237.15 l S 148.76 236.53 m 148.81 236.74 l S 148.81 236.53 m 148.85 237.15 l S 148.85 236.53 m 148.90 236.74 l S 148.90 236.53 m 148.94 237.36 l S 148.94 236.53 m 148.99 237.15 l S 148.99 236.53 m 149.04 236.94 l S 149.04 236.53 m 149.08 236.94 l S 149.08 236.53 m 149.13 237.15 l S 149.13 236.53 m 149.17 236.94 l S 149.17 236.53 m 149.22 237.36 l S 149.22 236.53 m 149.27 236.94 l S 149.27 236.53 m 149.31 236.74 l S 149.31 236.53 m 149.36 236.94 l S 149.36 236.53 m 149.40 237.15 l S 149.40 236.53 m 149.45 237.97 l S 149.45 236.53 m 149.50 237.15 l S 149.50 236.53 m 149.54 236.94 l S 149.54 236.53 m 149.59 236.94 l S 149.59 236.53 m 149.63 236.94 l S 149.63 236.53 m 149.68 238.59 l S 149.68 236.53 m 149.73 239.41 l S 149.73 236.53 m 149.77 245.99 l S 149.77 236.53 m 149.82 244.34 l S 149.82 236.53 m 149.86 237.36 l S 149.86 236.53 m 149.91 236.94 l S 149.91 236.53 m 149.96 237.97 l S 149.96 236.53 m 150.00 237.36 l S 150.00 236.53 m 150.05 237.15 l S 150.05 236.53 m 150.09 237.36 l S 150.09 236.53 m 150.14 237.15 l S 150.14 236.53 m 150.19 236.94 l S 150.19 236.53 m 150.23 239.82 l S 150.23 236.53 m 150.28 243.32 l S 150.28 236.53 m 150.32 237.97 l S 150.32 236.53 m 150.37 237.56 l S 150.37 236.53 m 150.42 238.38 l S 150.42 236.53 m 150.46 239.62 l S 150.46 236.53 m 150.51 237.36 l S 150.51 236.53 m 150.56 240.85 l S 150.56 236.53 m 150.60 237.56 l S 150.60 236.53 m 150.65 237.97 l S 150.65 236.53 m 150.69 237.56 l S 150.69 236.53 m 150.74 239.62 l S 150.74 236.53 m 150.79 238.18 l S 150.79 236.53 m 150.83 241.26 l S 150.83 236.53 m 150.88 239.62 l S 150.88 236.53 m 150.92 238.38 l S 150.92 236.53 m 150.97 237.15 l S 150.97 236.53 m 151.02 237.97 l S 151.02 236.53 m 151.06 237.36 l S 151.06 236.53 m 151.11 237.15 l S 151.11 236.53 m 151.15 237.36 l S 151.15 236.53 m 151.20 238.38 l S 151.20 236.53 m 151.25 236.94 l S 151.25 236.53 m 151.29 237.36 l S 151.29 236.53 m 151.34 237.15 l S 151.34 236.53 m 151.38 237.36 l S 151.38 236.53 m 151.43 236.94 l S 151.43 236.53 m 151.48 236.94 l S 151.48 236.53 m 151.52 236.94 l S 151.52 236.53 m 151.57 237.15 l S 151.57 236.53 m 151.61 236.74 l S 151.61 236.53 m 151.66 236.94 l S 151.66 236.53 m 151.71 238.59 l S 151.71 236.53 m 151.75 237.15 l S 151.75 236.53 m 151.80 236.94 l S 151.80 236.53 m 151.84 237.15 l S 151.84 236.53 m 151.89 236.94 l S 151.89 236.53 m 151.94 237.15 l S 151.94 236.53 m 151.98 237.15 l S 151.98 236.53 m 152.03 236.94 l S 152.03 236.53 m 152.07 236.94 l S 152.07 236.53 m 152.12 236.94 l S 152.12 236.53 m 152.17 236.94 l S 152.17 236.53 m 152.21 236.74 l S 152.21 236.53 m 152.26 236.74 l S 152.26 236.53 m 152.30 240.85 l S 152.30 236.53 m 152.35 238.18 l S 152.35 236.53 m 152.40 237.36 l S 152.40 236.53 m 152.44 237.15 l S 152.44 236.53 m 152.49 237.15 l S 152.49 236.53 m 152.53 240.03 l S 152.53 236.53 m 152.58 238.79 l S 152.58 236.53 m 152.63 240.03 l S 152.63 236.53 m 152.67 239.41 l S 152.67 236.53 m 152.72 241.88 l S 152.72 236.53 m 152.76 242.70 l S 152.76 236.53 m 152.81 246.60 l S 152.81 236.53 m 152.86 237.77 l S 152.86 236.53 m 152.90 239.62 l S 152.90 236.53 m 152.95 237.15 l S 152.95 236.53 m 152.99 238.18 l S 152.99 236.53 m 153.04 236.94 l S 153.04 236.53 m 153.09 237.97 l S 153.09 236.53 m 153.13 237.36 l S 153.13 236.53 m 153.18 239.00 l S 153.18 236.53 m 153.22 236.94 l S 153.22 236.53 m 153.27 240.44 l S 153.27 236.53 m 153.32 237.15 l S 153.32 236.53 m 153.36 238.59 l S 153.36 236.53 m 153.41 237.36 l S 153.41 236.53 m 153.45 237.15 l S 153.45 236.53 m 153.50 238.38 l S 153.50 236.53 m 153.55 239.82 l S 153.55 236.53 m 153.59 241.47 l S 153.59 236.53 m 153.64 240.64 l S 153.64 236.53 m 153.68 239.21 l S 153.68 236.53 m 153.73 242.90 l S 153.73 236.53 m 153.78 239.41 l S 153.78 236.53 m 153.82 238.59 l S 153.82 236.53 m 153.87 237.15 l S 153.87 236.53 m 153.91 236.94 l S 153.91 236.53 m 153.96 237.36 l S 153.96 236.53 m 154.01 237.15 l S 154.01 236.53 m 154.05 236.94 l S 154.05 236.53 m 154.10 237.15 l S 154.10 236.53 m 154.14 237.15 l S 154.14 236.53 m 154.19 240.85 l S 154.19 236.53 m 154.24 237.77 l S 154.24 236.53 m 154.28 240.23 l S 154.28 236.53 m 154.33 238.79 l S 154.33 236.53 m 154.37 239.82 l S 154.37 236.53 m 154.42 237.15 l S 154.42 236.53 m 154.47 237.77 l S 154.47 236.53 m 154.51 237.36 l S 154.51 236.53 m 154.56 239.00 l S 154.56 236.53 m 154.60 238.38 l S 154.60 236.53 m 154.65 238.18 l S 154.65 236.53 m 154.70 238.59 l S 154.70 236.53 m 154.74 240.03 l S 154.74 236.53 m 154.79 239.00 l S 154.79 236.53 m 154.83 237.56 l S 154.83 236.53 m 154.88 237.97 l S 154.88 236.53 m 154.93 237.15 l S 154.93 236.53 m 154.97 237.36 l S 154.97 236.53 m 155.02 236.94 l S 155.02 236.53 m 155.06 236.94 l S 155.06 236.53 m 155.11 236.74 l S 155.11 236.53 m 155.16 236.74 l S 155.16 236.53 m 155.20 237.15 l S 155.20 236.53 m 155.25 237.15 l S 155.25 236.53 m 155.29 236.94 l S 155.29 236.53 m 155.34 237.15 l S 155.34 236.53 m 155.39 237.15 l S 155.39 236.53 m 155.43 237.56 l S 155.43 236.53 m 155.48 237.36 l S 155.48 236.53 m 155.52 237.15 l S 155.52 236.53 m 155.57 237.15 l S 155.57 236.53 m 155.62 236.94 l S 155.62 236.53 m 155.66 237.15 l S 155.66 236.53 m 155.71 236.94 l S 155.71 236.53 m 155.75 236.94 l S 155.75 236.53 m 155.80 237.36 l S 155.80 236.53 m 155.85 236.74 l S 155.85 236.53 m 155.89 237.15 l S 155.89 236.53 m 155.94 236.94 l S 155.94 236.53 m 155.98 237.15 l S 155.98 236.53 m 156.03 237.15 l S 156.03 236.53 m 156.08 236.94 l S 156.08 236.53 m 156.12 236.94 l S 156.12 236.53 m 156.17 236.94 l S 156.17 236.53 m 156.21 237.15 l S 156.21 236.53 m 156.26 236.74 l S 156.26 236.53 m 156.31 236.94 l S 156.31 236.53 m 156.35 237.15 l S 156.35 236.53 m 156.40 236.94 l S 156.40 236.53 m 156.44 236.74 l S 156.44 236.53 m 156.49 236.74 l S 156.49 236.53 m 156.54 236.94 l S 156.54 236.53 m 156.58 236.74 l S 156.58 236.53 m 156.63 236.74 l S 156.63 236.53 m 156.67 236.74 l S 156.67 236.53 m 156.72 236.94 l S 156.72 236.53 m 156.77 236.94 l S 156.77 236.53 m 156.81 236.94 l S 156.81 236.53 m 156.86 237.15 l S 156.86 236.53 m 156.90 236.74 l S 156.90 236.53 m 156.95 236.94 l S 156.95 236.53 m 157.00 236.74 l S 157.00 236.53 m 157.04 236.94 l S 157.04 236.53 m 157.09 236.74 l S 157.09 236.53 m 157.13 236.74 l S 157.13 236.53 m 157.18 236.94 l S 157.18 236.53 m 157.23 236.94 l S 157.23 236.53 m 157.27 236.74 l S 157.27 236.53 m 157.32 236.94 l S 157.32 236.53 m 157.36 236.94 l S 157.36 236.53 m 157.41 237.15 l S 157.41 236.53 m 157.46 236.94 l S 157.46 236.53 m 157.50 236.74 l S 157.50 236.53 m 157.55 236.94 l S 157.55 236.53 m 157.59 236.94 l S 157.59 236.53 m 157.64 236.74 l S 157.64 236.53 m 157.69 237.15 l S 157.69 236.53 m 157.73 237.15 l S 157.73 236.53 m 157.78 236.94 l S 157.78 236.53 m 157.82 237.15 l S 157.82 236.53 m 157.87 236.94 l S 157.87 236.53 m 157.92 236.74 l S 157.92 236.53 m 157.96 236.94 l S 157.96 236.53 m 158.01 236.94 l S 158.01 236.53 m 158.05 236.74 l S 158.05 236.53 m 158.10 236.94 l S 158.10 236.53 m 158.15 236.94 l S 158.15 236.53 m 158.19 237.15 l S 158.19 236.53 m 158.24 236.74 l S 158.24 236.53 m 158.28 236.74 l S 158.28 236.53 m 158.33 236.74 l S 158.33 236.53 m 158.38 237.15 l S 158.38 236.53 m 158.42 236.94 l S 158.42 236.53 m 158.47 236.94 l S 158.47 236.53 m 158.52 236.94 l S 158.52 236.53 m 158.56 236.94 l S 158.56 236.53 m 158.61 236.74 l S 158.61 236.53 m 158.65 236.94 l S 158.65 236.53 m 158.70 236.94 l S 158.70 236.53 m 158.75 236.94 l S 158.75 236.53 m 158.79 236.74 l S 158.79 236.53 m 158.84 236.94 l S 158.84 236.53 m 158.88 236.94 l S 158.88 236.53 m 158.93 236.94 l S 158.93 236.53 m 158.98 236.74 l S 158.98 236.53 m 159.02 236.74 l S 159.02 236.53 m 159.07 236.94 l S 159.07 236.53 m 159.11 236.74 l S 159.11 236.53 m 159.16 237.15 l S 159.16 236.53 m 159.21 236.74 l S 159.21 236.53 m 159.25 236.94 l S 159.25 236.53 m 159.30 236.94 l S 159.30 236.53 m 159.34 236.74 l S 159.34 236.53 m 159.39 236.94 l S 159.39 236.53 m 159.44 237.15 l S 159.44 236.53 m 159.48 237.15 l S 159.48 236.53 m 159.53 236.74 l S 159.53 236.53 m 159.57 236.74 l S 159.57 236.53 m 159.62 236.74 l S 159.62 236.53 m 159.67 236.74 l S 159.67 236.53 m 159.71 236.94 l S 159.71 236.53 m 159.76 236.74 l S 159.76 236.53 m 159.80 236.94 l S 159.80 236.53 m 159.85 236.74 l S 159.85 236.53 m 159.90 236.94 l S 159.90 236.53 m 159.94 236.94 l S 159.94 236.53 m 159.99 236.94 l S 159.99 236.53 m 160.03 236.94 l S 160.03 236.53 m 160.08 236.94 l S 160.08 236.53 m 160.13 236.94 l S 160.13 236.53 m 160.17 237.15 l S 160.17 236.53 m 160.22 237.15 l S 160.22 236.53 m 160.26 236.94 l S 160.26 236.53 m 160.31 239.00 l S 160.31 236.53 m 160.36 236.94 l S 160.36 236.53 m 160.40 237.15 l S 160.40 236.53 m 160.45 237.36 l S 160.45 236.53 m 160.49 237.56 l S 160.49 236.53 m 160.54 239.00 l S 160.54 236.53 m 160.59 237.36 l S 160.59 236.53 m 160.63 237.97 l S 160.63 236.53 m 160.68 238.79 l S 160.68 236.53 m 160.72 237.56 l S 160.72 236.53 m 160.77 237.56 l S 160.77 236.53 m 160.82 239.41 l S 160.82 236.53 m 160.86 237.77 l S 160.86 236.53 m 160.91 240.03 l S 160.91 236.53 m 160.95 236.94 l S 160.95 236.53 m 161.00 237.15 l S 161.00 236.53 m 161.05 237.56 l S 161.05 236.53 m 161.09 236.94 l S 161.09 236.53 m 161.14 237.36 l S 161.14 236.53 m 161.18 237.15 l S 161.18 236.53 m 161.23 237.97 l S 161.23 236.53 m 161.28 238.38 l S 161.28 236.53 m 161.32 236.74 l S 161.32 236.53 m 161.37 239.82 l S 161.37 236.53 m 161.41 239.82 l S 161.41 236.53 m 161.46 238.18 l S 161.46 236.53 m 161.51 237.15 l S 161.51 236.53 m 161.55 238.79 l S 161.55 236.53 m 161.60 238.59 l S 161.60 236.53 m 161.64 238.59 l S 161.64 236.53 m 161.69 237.77 l S 161.69 236.53 m 161.74 237.36 l S 161.74 236.53 m 161.78 237.56 l S 161.78 236.53 m 161.83 237.36 l S 161.83 236.53 m 161.87 236.94 l S 161.87 236.53 m 161.92 237.77 l S 161.92 236.53 m 161.97 237.56 l S 161.97 236.53 m 162.01 237.36 l S 162.01 236.53 m 162.06 238.38 l S 162.06 236.53 m 162.10 239.82 l S 162.10 236.53 m 162.15 242.70 l S 162.15 236.53 m 162.20 238.18 l S 162.20 236.53 m 162.24 243.73 l S 162.24 236.53 m 162.29 242.29 l S 162.29 236.53 m 162.33 238.59 l S 162.33 236.53 m 162.38 237.97 l S 162.38 236.53 m 162.43 243.73 l S 162.43 236.53 m 162.47 242.08 l S 162.47 236.53 m 162.52 237.77 l S 162.52 236.53 m 162.56 237.56 l S 162.56 236.53 m 162.61 247.01 l S 162.61 236.53 m 162.66 249.48 l S 162.66 236.53 m 162.70 238.59 l S 162.70 236.53 m 162.75 247.22 l S 162.75 236.53 m 162.79 240.64 l S 162.79 236.53 m 162.84 238.38 l S 162.84 236.53 m 162.89 238.79 l S 162.89 236.53 m 162.93 240.44 l S 162.93 236.53 m 162.98 239.41 l S 162.98 236.53 m 163.02 241.05 l S 163.02 236.53 m 163.07 239.00 l S 163.07 236.53 m 163.12 237.15 l S 163.12 236.53 m 163.16 241.67 l S 163.16 236.53 m 163.21 237.15 l S 163.21 236.53 m 163.25 237.15 l S 163.25 236.53 m 163.30 237.36 l S 163.30 236.53 m 163.35 237.97 l S 163.35 236.53 m 163.39 237.56 l S 163.39 236.53 m 163.44 237.15 l S 163.44 236.53 m 163.48 237.97 l S 163.48 236.53 m 163.53 236.94 l S 163.53 236.53 m 163.58 237.36 l S 163.58 236.53 m 163.62 237.97 l S 163.62 236.53 m 163.67 239.41 l S 163.67 236.53 m 163.71 243.52 l S 163.71 236.53 m 163.76 241.88 l S 163.76 236.53 m 163.81 239.82 l S 163.81 236.53 m 163.85 239.00 l S 163.85 236.53 m 163.90 238.38 l S 163.90 236.53 m 163.94 237.56 l S 163.94 236.53 m 163.99 243.32 l S 163.99 236.53 m 164.04 239.62 l S 164.04 236.53 m 164.08 242.70 l S 164.08 236.53 m 164.13 242.49 l S 164.13 236.53 m 164.17 246.19 l S 164.17 236.53 m 164.22 238.38 l S 164.22 236.53 m 164.27 237.15 l S 164.27 236.53 m 164.31 241.47 l S 164.31 236.53 m 164.36 242.29 l S 164.36 236.53 m 164.40 237.56 l S 164.40 236.53 m 164.45 237.36 l S 164.45 236.53 m 164.50 237.36 l S 164.50 236.53 m 164.54 237.36 l S 164.54 236.53 m 164.59 237.36 l S 164.59 236.53 m 164.63 239.00 l S 164.63 236.53 m 164.68 237.56 l S 164.68 236.53 m 164.73 238.38 l S 164.73 236.53 m 164.77 237.15 l S 164.77 236.53 m 164.82 237.15 l S 164.82 236.53 m 164.86 238.59 l S 164.86 236.53 m 164.91 237.15 l S 164.91 236.53 m 164.96 237.56 l S 164.96 236.53 m 165.00 237.36 l S 165.00 236.53 m 165.05 236.94 l S 165.05 236.53 m 165.09 237.36 l S 165.09 236.53 m 165.14 237.15 l S 165.14 236.53 m 165.19 237.77 l S 165.19 236.53 m 165.23 237.36 l S 165.23 236.53 m 165.28 237.15 l S 165.28 236.53 m 165.32 239.41 l S 165.32 236.53 m 165.37 237.97 l S 165.37 236.53 m 165.42 237.56 l S 165.42 236.53 m 165.46 237.36 l S 165.46 236.53 m 165.51 237.15 l S 165.51 236.53 m 165.55 237.77 l S 165.55 236.53 m 165.60 237.97 l S 165.60 236.53 m 165.65 237.15 l S 165.65 236.53 m 165.69 237.56 l S 165.69 236.53 m 165.74 237.56 l S 165.74 236.53 m 165.78 239.41 l S 165.78 236.53 m 165.83 239.41 l S 165.83 236.53 m 165.88 247.84 l S 165.88 236.53 m 165.92 249.07 l S 165.92 236.53 m 165.97 240.64 l S 165.97 236.53 m 166.01 241.05 l S 166.01 236.53 m 166.06 239.41 l S 166.06 236.53 m 166.11 238.59 l S 166.11 236.53 m 166.15 237.77 l S 166.15 236.53 m 166.20 237.56 l S 166.20 236.53 m 166.24 237.36 l S 166.24 236.53 m 166.29 237.36 l S 166.29 236.53 m 166.34 241.88 l S 166.34 236.53 m 166.38 245.37 l S 166.38 236.53 m 166.43 242.08 l S 166.43 236.53 m 166.48 237.36 l S 166.48 236.53 m 166.52 237.15 l S 166.52 236.53 m 166.57 242.90 l S 166.57 236.53 m 166.61 241.26 l S 166.61 236.53 m 166.66 243.32 l S 166.66 236.53 m 166.71 248.25 l S 166.71 236.53 m 166.75 240.64 l S 166.75 236.53 m 166.80 237.36 l S 166.80 236.53 m 166.84 236.74 l S 166.84 236.53 m 166.89 237.15 l S 166.89 236.53 m 166.94 238.59 l S 166.94 236.53 m 166.98 236.94 l S 166.98 236.53 m 167.03 237.97 l S 167.03 236.53 m 167.07 238.18 l S 167.07 236.53 m 167.12 237.77 l S 167.12 236.53 m 167.17 237.15 l S 167.17 236.53 m 167.21 239.62 l S 167.21 236.53 m 167.26 238.18 l S 167.26 236.53 m 167.30 237.77 l S 167.30 236.53 m 167.35 237.36 l S 167.35 236.53 m 167.40 236.94 l S 167.40 236.53 m 167.44 240.03 l S 167.44 236.53 m 167.49 237.36 l S 167.49 236.53 m 167.53 238.38 l S 167.53 236.53 m 167.58 237.15 l S 167.58 236.53 m 167.63 237.15 l S 167.63 236.53 m 167.67 236.94 l S 167.67 236.53 m 167.72 237.77 l S 167.72 236.53 m 167.76 238.79 l S 167.76 236.53 m 167.81 237.56 l S 167.81 236.53 m 167.86 239.41 l S 167.86 236.53 m 167.90 237.15 l S 167.90 236.53 m 167.95 240.44 l S 167.95 236.53 m 167.99 236.74 l S 167.99 236.53 m 168.04 236.94 l S 168.04 236.53 m 168.09 240.64 l S 168.09 236.53 m 168.13 237.36 l S 168.13 236.53 m 168.18 240.64 l S 168.18 236.53 m 168.22 238.59 l S 168.22 236.53 m 168.27 239.00 l S 168.27 236.53 m 168.32 239.00 l S 168.32 236.53 m 168.36 237.36 l S 168.36 236.53 m 168.41 239.62 l S 168.41 236.53 m 168.45 237.36 l S 168.45 236.53 m 168.50 237.97 l S 168.50 236.53 m 168.55 237.36 l S 168.55 236.53 m 168.59 237.97 l S 168.59 236.53 m 168.64 241.88 l S 168.64 236.53 m 168.68 242.29 l S 168.68 236.53 m 168.73 243.73 l S 168.73 236.53 m 168.78 244.34 l S 168.78 236.53 m 168.82 241.05 l S 168.82 236.53 m 168.87 239.21 l S 168.87 236.53 m 168.91 242.29 l S 168.91 236.53 m 168.96 240.23 l S 168.96 236.53 m 169.01 247.84 l S 169.01 236.53 m 169.05 241.26 l S 169.05 236.53 m 169.10 237.56 l S 169.10 236.53 m 169.14 237.77 l S 169.14 236.53 m 169.19 239.00 l S 169.19 236.53 m 169.24 239.00 l S 169.24 236.53 m 169.28 237.15 l S 169.28 236.53 m 169.33 237.15 l S 169.33 236.53 m 169.37 238.38 l S 169.37 236.53 m 169.42 238.18 l S 169.42 236.53 m 169.47 237.15 l S 169.47 236.53 m 169.51 237.56 l S 169.51 236.53 m 169.56 237.36 l S 169.56 236.53 m 169.60 237.15 l S 169.60 236.53 m 169.65 237.15 l S 169.65 236.53 m 169.70 237.15 l S 169.70 236.53 m 169.74 237.56 l S 169.74 236.53 m 169.79 237.97 l S 169.79 236.53 m 169.83 236.94 l S 169.83 236.53 m 169.88 236.94 l S 169.88 236.53 m 169.93 237.36 l S 169.93 236.53 m 169.97 241.26 l S 169.97 236.53 m 170.02 237.15 l S 170.02 236.53 m 170.06 236.94 l S 170.06 236.53 m 170.11 240.85 l S 170.11 236.53 m 170.16 241.88 l S 170.16 236.53 m 170.20 241.88 l S 170.20 236.53 m 170.25 239.41 l S 170.25 236.53 m 170.29 240.03 l S 170.29 236.53 m 170.34 241.05 l S 170.34 236.53 m 170.39 238.38 l S 170.39 236.53 m 170.43 238.18 l S 170.43 236.53 m 170.48 240.03 l S 170.48 236.53 m 170.52 239.62 l S 170.52 236.53 m 170.57 240.03 l S 170.57 236.53 m 170.62 249.89 l S 170.62 236.53 m 170.66 239.00 l S 170.66 236.53 m 170.71 237.15 l S 170.71 236.53 m 170.75 237.56 l S 170.75 236.53 m 170.80 237.36 l S 170.80 236.53 m 170.85 236.94 l S 170.85 236.53 m 170.89 237.77 l S 170.89 236.53 m 170.94 237.36 l S 170.94 236.53 m 170.98 236.94 l S 170.98 236.53 m 171.03 236.94 l S 171.03 236.53 m 171.08 237.15 l S 171.08 236.53 m 171.12 236.94 l S 171.12 236.53 m 171.17 237.56 l S 171.17 236.53 m 171.21 237.36 l S 171.21 236.53 m 171.26 236.94 l S 171.26 236.53 m 171.31 236.94 l S 171.31 236.53 m 171.35 237.36 l S 171.35 236.53 m 171.40 237.56 l S 171.40 236.53 m 171.44 236.94 l S 171.44 236.53 m 171.49 237.36 l S 171.49 236.53 m 171.54 236.94 l S 171.54 236.53 m 171.58 237.36 l S 171.58 236.53 m 171.63 237.15 l S 171.63 236.53 m 171.67 236.94 l S 171.67 236.53 m 171.72 236.94 l S 171.72 236.53 m 171.77 237.15 l S 171.77 236.53 m 171.81 236.94 l S 171.81 236.53 m 171.86 237.15 l S 171.86 236.53 m 171.90 236.94 l S 171.90 236.53 m 171.95 237.77 l S 171.95 236.53 m 172.00 236.74 l S 172.00 236.53 m 172.04 237.15 l S 172.04 236.53 m 172.09 237.15 l S 172.09 236.53 m 172.13 236.94 l S 172.13 236.53 m 172.18 236.74 l S 172.18 236.53 m 172.23 237.15 l S 172.23 236.53 m 172.27 237.15 l S 172.27 236.53 m 172.32 237.36 l S 172.32 236.53 m 172.36 236.94 l S 172.36 236.53 m 172.41 236.94 l S 172.41 236.53 m 172.46 236.94 l S 172.46 236.53 m 172.50 236.94 l S 172.50 236.53 m 172.55 237.56 l S 172.55 236.53 m 172.59 236.94 l S 172.59 236.53 m 172.64 236.94 l S 172.64 236.53 m 172.69 237.15 l S 172.69 236.53 m 172.73 237.15 l S 172.73 236.53 m 172.78 236.94 l S 172.78 236.53 m 172.82 237.15 l S 172.82 236.53 m 172.87 237.36 l S 172.87 236.53 m 172.92 236.94 l S 172.92 236.53 m 172.96 237.15 l S 172.96 236.53 m 173.01 237.15 l S 173.01 236.53 m 173.05 237.15 l S 173.05 236.53 m 173.10 239.00 l S 173.10 236.53 m 173.15 237.15 l S 173.15 236.53 m 173.19 237.15 l S 173.19 236.53 m 173.24 237.15 l S 173.24 236.53 m 173.28 236.94 l S 173.28 236.53 m 173.33 237.15 l S 173.33 236.53 m 173.38 237.15 l S 173.38 236.53 m 173.42 237.56 l S 173.42 236.53 m 173.47 236.94 l S 173.47 236.53 m 173.51 236.94 l S 173.51 236.53 m 173.56 236.94 l S 173.56 236.53 m 173.61 236.94 l S 173.61 236.53 m 173.65 237.15 l S 173.65 236.53 m 173.70 237.15 l S 173.70 236.53 m 173.74 237.56 l S 173.74 236.53 m 173.79 237.15 l S 173.79 236.53 m 173.84 237.97 l S 173.84 236.53 m 173.88 237.15 l S 173.88 236.53 m 173.93 237.36 l S 173.93 236.53 m 173.97 236.94 l S 173.97 236.53 m 174.02 237.56 l S 174.02 236.53 m 174.07 237.15 l S 174.07 236.53 m 174.11 237.15 l S 174.11 236.53 m 174.16 237.97 l S 174.16 236.53 m 174.20 239.21 l S 174.20 236.53 m 174.25 239.41 l S 174.25 236.53 m 174.30 237.97 l S 174.30 236.53 m 174.34 237.15 l S 174.34 236.53 m 174.39 239.00 l S 174.39 236.53 m 174.44 241.67 l S 174.44 236.53 m 174.48 237.97 l S 174.48 236.53 m 174.53 237.36 l S 174.53 236.53 m 174.57 236.94 l S 174.57 236.53 m 174.62 237.36 l S 174.62 236.53 m 174.67 237.15 l S 174.67 236.53 m 174.71 237.56 l S 174.71 236.53 m 174.76 238.18 l S 174.76 236.53 m 174.80 241.67 l S 174.80 236.53 m 174.85 238.59 l S 174.85 236.53 m 174.90 239.62 l S 174.90 236.53 m 174.94 237.77 l S 174.94 236.53 m 174.99 237.36 l S 174.99 236.53 m 175.03 237.36 l S 175.03 236.53 m 175.08 237.15 l S 175.08 236.53 m 175.13 239.00 l S 175.13 236.53 m 175.17 237.56 l S 175.17 236.53 m 175.22 237.36 l S 175.22 236.53 m 175.26 237.36 l S 175.26 236.53 m 175.31 236.94 l S 175.31 236.53 m 175.36 237.15 l S 175.36 236.53 m 175.40 238.59 l S 175.40 236.53 m 175.45 237.56 l S 175.45 236.53 m 175.49 237.56 l S 175.49 236.53 m 175.54 237.36 l S 175.54 236.53 m 175.59 237.15 l S 175.59 236.53 m 175.63 237.77 l S 175.63 236.53 m 175.68 238.38 l S 175.68 236.53 m 175.72 238.59 l S 175.72 236.53 m 175.77 237.56 l S 175.77 236.53 m 175.82 243.11 l S 175.82 236.53 m 175.86 241.88 l S 175.86 236.53 m 175.91 244.55 l S 175.91 236.53 m 175.95 242.29 l S 175.95 236.53 m 176.00 237.97 l S 176.00 236.53 m 176.05 237.97 l S 176.05 236.53 m 176.09 244.55 l S 176.09 236.53 m 176.14 243.93 l S 176.14 236.53 m 176.18 244.14 l S 176.18 236.53 m 176.23 248.04 l S 176.23 236.53 m 176.28 237.36 l S 176.28 236.53 m 176.32 237.36 l S 176.32 236.53 m 176.37 243.52 l S 176.37 236.53 m 176.41 237.15 l S 176.41 236.53 m 176.46 236.74 l S 176.46 236.53 m 176.51 236.53 l S 176.51 236.53 m 176.55 236.53 l S 176.55 236.53 m 176.60 236.53 l S 176.60 236.53 m 176.64 236.53 l S 176.64 236.53 m 176.69 236.74 l S 176.69 236.53 m 176.74 236.74 l S 176.74 236.53 m 176.78 236.74 l S 176.78 236.53 m 176.83 236.74 l S 176.83 236.53 m 176.87 236.53 l S 176.87 236.53 m 176.92 236.74 l S 176.92 236.53 m 176.97 236.53 l S 176.97 236.53 m 177.01 236.53 l S 177.01 236.53 m 177.06 236.74 l S 177.06 236.53 m 177.10 236.53 l S 177.10 236.53 m 177.15 236.74 l S 177.15 236.53 m 177.20 236.74 l S 177.20 236.53 m 177.24 236.53 l S 177.24 236.53 m 177.29 236.53 l S 177.29 236.53 m 177.33 237.15 l S 177.33 236.53 m 177.38 236.74 l S 177.38 236.53 m 177.43 237.56 l S 177.43 236.53 m 177.47 238.18 l S 177.47 236.53 m 177.52 237.15 l S 177.52 236.53 m 177.56 236.94 l S 177.56 236.53 m 177.61 237.15 l S 177.61 236.53 m 177.66 239.00 l S 177.66 236.53 m 177.70 239.41 l S 177.70 236.53 m 177.75 240.03 l S 177.75 236.53 m 177.79 242.49 l S 177.79 236.53 m 177.84 243.52 l S 177.84 236.53 m 177.89 237.36 l S 177.89 236.53 m 177.93 236.94 l S 177.93 236.53 m 177.98 237.15 l S 177.98 236.53 m 178.02 237.36 l S 178.02 236.53 m 178.07 240.85 l S 178.07 236.53 m 178.12 238.38 l S 178.12 236.53 m 178.16 242.49 l S 178.16 236.53 m 178.21 249.28 l S 178.21 236.53 m 178.25 249.28 l S 178.25 236.53 m 178.30 246.40 l S 178.30 236.53 m 178.35 237.15 l S 178.35 236.53 m 178.39 237.56 l S 178.39 236.53 m 178.44 237.15 l S 178.44 236.53 m 178.48 236.94 l S 178.48 236.53 m 178.53 236.94 l S 178.53 236.53 m 178.58 236.94 l S 178.58 236.53 m 178.62 236.74 l S 178.62 236.53 m 178.67 236.94 l S 178.67 236.53 m 178.71 236.94 l S 178.71 236.53 m 178.76 236.94 l S 178.76 236.53 m 178.81 236.94 l S 178.81 236.53 m 178.85 236.94 l S 178.85 236.53 m 178.90 237.15 l S 178.90 236.53 m 178.94 236.94 l S 178.94 236.53 m 178.99 237.15 l S 178.99 236.53 m 179.04 236.94 l S 179.04 236.53 m 179.08 236.94 l S 179.08 236.53 m 179.13 237.36 l S 179.13 236.53 m 179.17 237.15 l S 179.17 236.53 m 179.22 236.74 l S 179.22 236.53 m 179.27 236.94 l S 179.27 236.53 m 179.31 236.74 l S 179.31 236.53 m 179.36 236.94 l S 179.36 236.53 m 179.40 236.74 l S 179.40 236.53 m 179.45 236.74 l S 179.45 236.53 m 179.50 237.15 l S 179.50 236.53 m 179.54 236.74 l S 179.54 236.53 m 179.59 237.15 l S 179.59 236.53 m 179.63 236.94 l S 179.63 236.53 m 179.68 237.15 l S 179.68 236.53 m 179.73 236.74 l S 179.73 236.53 m 179.77 236.94 l S 179.77 236.53 m 179.82 236.94 l S 179.82 236.53 m 179.86 236.94 l S 179.86 236.53 m 179.91 237.15 l S 179.91 236.53 m 179.96 236.94 l S 179.96 236.53 m 180.00 236.94 l S 180.00 236.53 m 180.05 236.94 l S 180.05 236.53 m 180.09 237.15 l S 180.09 236.53 m 180.14 236.94 l S 180.14 236.53 m 180.19 237.56 l S 180.19 236.53 m 180.23 236.94 l S 180.23 236.53 m 180.28 236.94 l S 180.28 236.53 m 180.32 237.36 l S 180.32 236.53 m 180.37 236.94 l S 180.37 236.53 m 180.42 236.94 l S 180.42 236.53 m 180.46 236.94 l S 180.46 236.53 m 180.51 236.94 l S 180.51 236.53 m 180.55 236.94 l S 180.55 236.53 m 180.60 236.94 l S 180.60 236.53 m 180.65 237.56 l S 180.65 236.53 m 180.69 237.15 l S 180.69 236.53 m 180.74 237.15 l S 180.74 236.53 m 180.78 236.94 l S 180.78 236.53 m 180.83 236.94 l S 180.83 236.53 m 180.88 236.94 l S 180.88 236.53 m 180.92 236.94 l S 180.92 236.53 m 180.97 236.94 l S 180.97 236.53 m 181.01 236.94 l S 181.01 236.53 m 181.06 237.15 l S 181.06 236.53 m 181.11 236.94 l S 181.11 236.53 m 181.15 236.94 l S 181.15 236.53 m 181.20 236.94 l S 181.20 236.53 m 181.24 236.94 l S 181.24 236.53 m 181.29 237.15 l S 181.29 236.53 m 181.34 236.94 l S 181.34 236.53 m 181.38 237.15 l S 181.38 236.53 m 181.43 236.94 l S 181.43 236.53 m 181.47 236.94 l S 181.47 236.53 m 181.52 236.94 l S 181.52 236.53 m 181.57 236.94 l S 181.57 236.53 m 181.61 237.36 l S 181.61 236.53 m 181.66 236.94 l S 181.66 236.53 m 181.70 237.15 l S 181.70 236.53 m 181.75 236.94 l S 181.75 236.53 m 181.80 236.94 l S 181.80 236.53 m 181.84 236.94 l S 181.84 236.53 m 181.89 236.94 l S 181.89 236.53 m 181.93 236.94 l S 181.93 236.53 m 181.98 236.94 l S 181.98 236.53 m 182.03 236.94 l S 182.03 236.53 m 182.07 236.94 l S 182.07 236.53 m 182.12 236.94 l S 182.12 236.53 m 182.16 236.74 l S 182.16 236.53 m 182.21 236.94 l S 182.21 236.53 m 182.26 236.94 l S 182.26 236.53 m 182.30 236.94 l S 182.30 236.53 m 182.35 236.94 l S 182.35 236.53 m 182.39 236.94 l S 182.39 236.53 m 182.44 237.36 l S 182.44 236.53 m 182.49 236.94 l S 182.49 236.53 m 182.53 237.77 l S 182.53 236.53 m 182.58 237.77 l S 182.58 236.53 m 182.63 236.94 l S 182.63 236.53 m 182.67 237.15 l S 182.67 236.53 m 182.72 236.94 l S 182.72 236.53 m 182.76 237.15 l S 182.76 236.53 m 182.81 237.15 l S 182.81 236.53 m 182.86 236.94 l S 182.86 236.53 m 182.90 237.15 l S 182.90 236.53 m 182.95 237.15 l S 182.95 236.53 m 182.99 237.77 l S 182.99 236.53 m 183.04 237.15 l S 183.04 236.53 m 183.09 237.15 l S 183.09 236.53 m 183.13 236.94 l S 183.13 236.53 m 183.18 244.55 l S 183.18 236.53 m 183.22 250.92 l S 183.22 236.53 m 183.27 240.03 l S 183.27 236.53 m 183.32 237.36 l S 183.32 236.53 m 183.36 238.18 l S 183.36 236.53 m 183.41 240.64 l S 183.41 236.53 m 183.45 241.05 l S 183.45 236.53 m 183.50 242.29 l S 183.50 236.53 m 183.55 238.79 l S 183.55 236.53 m 183.59 240.85 l S 183.59 236.53 m 183.64 237.77 l S 183.64 236.53 m 183.68 239.00 l S 183.68 236.53 m 183.73 238.18 l S 183.73 236.53 m 183.78 236.94 l S 183.78 236.53 m 183.82 237.15 l S 183.82 236.53 m 183.87 236.94 l S 183.87 236.53 m 183.91 237.36 l S 183.91 236.53 m 183.96 236.94 l S 183.96 236.53 m 184.01 236.74 l S 184.01 236.53 m 184.05 237.15 l S 184.05 236.53 m 184.10 237.15 l S 184.10 236.53 m 184.14 236.94 l S 184.14 236.53 m 184.19 236.74 l S 184.19 236.53 m 184.24 237.15 l S 184.24 236.53 m 184.28 237.15 l S 184.28 236.53 m 184.33 236.74 l S 184.33 236.53 m 184.37 236.94 l S 184.37 236.53 m 184.42 236.74 l S 184.42 236.53 m 184.47 237.15 l S 184.47 236.53 m 184.51 237.15 l S 184.51 236.53 m 184.56 237.15 l S 184.56 236.53 m 184.60 236.94 l S 184.60 236.53 m 184.65 237.36 l S 184.65 236.53 m 184.70 237.15 l S 184.70 236.53 m 184.74 236.74 l S 184.74 236.53 m 184.79 236.94 l S 184.79 236.53 m 184.83 236.94 l S 184.83 236.53 m 184.88 236.94 l S 184.88 236.53 m 184.93 237.15 l S 184.93 236.53 m 184.97 236.94 l S 184.97 236.53 m 185.02 236.74 l S 185.02 236.53 m 185.06 237.15 l S 185.06 236.53 m 185.11 237.56 l S 185.11 236.53 m 185.16 239.62 l S 185.16 236.53 m 185.20 244.75 l S 185.20 236.53 m 185.25 237.56 l S 185.25 236.53 m 185.29 236.94 l S 185.29 236.53 m 185.34 237.15 l S 185.34 236.53 m 185.39 237.56 l S 185.39 236.53 m 185.43 237.36 l S 185.43 236.53 m 185.48 236.74 l S 185.48 236.53 m 185.52 237.77 l S 185.52 236.53 m 185.57 237.15 l S 185.57 236.53 m 185.62 237.15 l S 185.62 236.53 m 185.66 237.15 l S 185.66 236.53 m 185.71 237.36 l S 185.71 236.53 m 185.75 237.97 l S 185.75 236.53 m 185.80 238.59 l S 185.80 236.53 m 185.85 237.56 l S 185.85 236.53 m 185.89 237.15 l S 185.89 236.53 m 185.94 237.15 l S 185.94 236.53 m 185.98 237.15 l S 185.98 236.53 m 186.03 237.15 l S 186.03 236.53 m 186.08 237.15 l S 186.08 236.53 m 186.12 238.18 l S 186.12 236.53 m 186.17 237.15 l S 186.17 236.53 m 186.21 239.82 l S 186.21 236.53 m 186.26 240.85 l S 186.26 236.53 m 186.31 242.49 l S 186.31 236.53 m 186.35 237.77 l S 186.35 236.53 m 186.40 239.41 l S 186.40 236.53 m 186.44 239.62 l S 186.44 236.53 m 186.49 236.94 l S 186.49 236.53 m 186.54 239.21 l S 186.54 236.53 m 186.58 236.94 l S 186.58 236.53 m 186.63 237.36 l S 186.63 236.53 m 186.67 239.82 l S 186.67 236.53 m 186.72 239.21 l S 186.72 236.53 m 186.77 237.36 l S 186.77 236.53 m 186.81 238.18 l S 186.81 236.53 m 186.86 237.36 l S 186.86 236.53 m 186.90 237.36 l S 186.90 236.53 m 186.95 237.15 l S 186.95 236.53 m 187.00 238.18 l S 187.00 236.53 m 187.04 239.00 l S 187.04 236.53 m 187.09 237.15 l S 187.09 236.53 m 187.13 237.15 l S 187.13 236.53 m 187.18 239.41 l S 187.18 236.53 m 187.23 239.62 l S 187.23 236.53 m 187.27 236.94 l S 187.27 236.53 m 187.32 236.94 l S 187.32 236.53 m 187.36 237.77 l S 187.36 236.53 m 187.41 236.94 l S 187.41 236.53 m 187.46 236.74 l S 187.46 236.53 m 187.50 236.94 l S 187.50 236.53 m 187.55 236.94 l S 187.55 236.53 m 187.59 236.74 l S 187.59 236.53 m 187.64 237.15 l S 187.64 236.53 m 187.69 236.74 l S 187.69 236.53 m 187.73 236.74 l S 187.73 236.53 m 187.78 238.18 l S 187.78 236.53 m 187.82 240.64 l S 187.82 236.53 m 187.87 237.36 l S 187.87 236.53 m 187.92 236.94 l S 187.92 236.53 m 187.96 237.36 l S 187.96 236.53 m 188.01 237.36 l S 188.01 236.53 m 188.05 237.36 l S 188.05 236.53 m 188.10 237.77 l S 188.10 236.53 m 188.15 238.38 l S 188.15 236.53 m 188.19 239.62 l S 188.19 236.53 m 188.24 240.03 l S 188.24 236.53 m 188.28 239.00 l S 188.28 236.53 m 188.33 244.75 l S 188.33 236.53 m 188.38 237.97 l S 188.38 236.53 m 188.42 237.15 l S 188.42 236.53 m 188.47 239.21 l S 188.47 236.53 m 188.51 241.67 l S 188.51 236.53 m 188.56 240.23 l S 188.56 236.53 m 188.61 239.62 l S 188.61 236.53 m 188.65 242.70 l S 188.65 236.53 m 188.70 242.29 l S 188.70 236.53 m 188.74 237.36 l S 188.74 236.53 m 188.79 240.85 l S 188.79 236.53 m 188.84 238.59 l S 188.84 236.53 m 188.88 236.94 l S 188.88 236.53 m 188.93 237.15 l S 188.93 236.53 m 188.97 243.32 l S 188.97 236.53 m 189.02 237.77 l S 189.02 236.53 m 189.07 237.15 l S 189.07 236.53 m 189.11 236.94 l S 189.11 236.53 m 189.16 236.94 l S 189.16 236.53 m 189.20 237.56 l S 189.20 236.53 m 189.25 237.97 l S 189.25 236.53 m 189.30 236.94 l S 189.30 236.53 m 189.34 237.15 l S 189.34 236.53 m 189.39 236.94 l S 189.39 236.53 m 189.43 236.94 l S 189.43 236.53 m 189.48 238.38 l S 189.48 236.53 m 189.53 237.36 l S 189.53 236.53 m 189.57 241.88 l S 189.57 236.53 m 189.62 238.79 l S 189.62 236.53 m 189.66 242.29 l S 189.66 236.53 m 189.71 244.96 l S 189.71 236.53 m 189.76 244.14 l S 189.76 236.53 m 189.80 239.62 l S 189.80 236.53 m 189.85 237.97 l S 189.85 236.53 m 189.89 238.18 l S 189.89 236.53 m 189.94 237.77 l S 189.94 236.53 m 189.99 237.56 l S 189.99 236.53 m 190.03 238.59 l S 190.03 236.53 m 190.08 239.82 l S 190.08 236.53 m 190.12 239.41 l S 190.12 236.53 m 190.17 237.36 l S 190.17 236.53 m 190.22 239.82 l S 190.22 236.53 m 190.26 242.70 l S 190.26 236.53 m 190.31 238.38 l S 190.31 236.53 m 190.35 241.05 l S 190.35 236.53 m 190.40 237.15 l S 190.40 236.53 m 190.45 236.94 l S 190.45 236.53 m 190.49 237.15 l S 190.49 236.53 m 190.54 237.15 l S 190.54 236.53 m 190.59 237.15 l S 190.59 236.53 m 190.63 238.18 l S 190.63 236.53 m 190.68 237.97 l S 190.68 236.53 m 190.72 236.94 l S 190.72 236.53 m 190.77 239.62 l S 190.77 236.53 m 190.82 237.56 l S 190.82 236.53 m 190.86 237.15 l S 190.86 236.53 m 190.91 236.94 l S 190.91 236.53 m 190.95 238.18 l S 190.95 236.53 m 191.00 236.94 l S 191.00 236.53 m 191.05 237.15 l S 191.05 236.53 m 191.09 237.15 l S 191.09 236.53 m 191.14 236.94 l S 191.14 236.53 m 191.18 237.15 l S 191.18 236.53 m 191.23 236.94 l S 191.23 236.53 m 191.28 236.74 l S 191.28 236.53 m 191.32 236.94 l S 191.32 236.53 m 191.37 236.94 l S 191.37 236.53 m 191.41 237.15 l S 191.41 236.53 m 191.46 237.15 l S 191.46 236.53 m 191.51 236.94 l S 191.51 236.53 m 191.55 236.94 l S 191.55 236.53 m 191.60 236.94 l S 191.60 236.53 m 191.64 236.74 l S 191.64 236.53 m 191.69 236.94 l S 191.69 236.53 m 191.74 236.74 l S 191.74 236.53 m 191.78 237.15 l S 191.78 236.53 m 191.83 236.74 l S 191.83 236.53 m 191.87 236.74 l S 191.87 236.53 m 191.92 236.94 l S 191.92 236.53 m 191.97 237.15 l S 191.97 236.53 m 192.01 237.15 l S 192.01 236.53 m 192.06 236.94 l S 192.06 236.53 m 192.10 236.74 l S 192.10 236.53 m 192.15 238.79 l S 192.15 236.53 m 192.20 237.36 l S 192.20 236.53 m 192.24 236.94 l S 192.24 236.53 m 192.29 236.94 l S 192.29 236.53 m 192.33 241.67 l S 192.33 236.53 m 192.38 237.36 l S 192.38 236.53 m 192.43 238.59 l S 192.43 236.53 m 192.47 237.15 l S 192.47 236.53 m 192.52 238.59 l S 192.52 236.53 m 192.56 239.41 l S 192.56 236.53 m 192.61 236.94 l S 192.61 236.53 m 192.66 237.15 l S 192.66 236.53 m 192.70 236.94 l S 192.70 236.53 m 192.75 239.41 l S 192.75 236.53 m 192.79 248.45 l S 192.79 236.53 m 192.84 241.05 l S 192.84 236.53 m 192.89 237.15 l S 192.89 236.53 m 192.93 237.77 l S 192.93 236.53 m 192.98 237.15 l S 192.98 236.53 m 193.02 238.18 l S 193.02 236.53 m 193.07 237.77 l S 193.07 236.53 m 193.12 236.94 l S 193.12 236.53 m 193.16 236.94 l S 193.16 236.53 m 193.21 237.15 l S 193.21 236.53 m 193.25 237.15 l S 193.25 236.53 m 193.30 237.15 l S 193.30 236.53 m 193.35 237.15 l S 193.35 236.53 m 193.39 237.56 l S 193.39 236.53 m 193.44 237.36 l S 193.44 236.53 m 193.48 237.36 l S 193.48 236.53 m 193.53 236.94 l S 193.53 236.53 m 193.58 237.36 l S 193.58 236.53 m 193.62 242.70 l S 193.62 236.53 m 193.67 236.94 l S 193.67 236.53 m 193.71 238.18 l S 193.71 236.53 m 193.76 239.00 l S 193.76 236.53 m 193.81 238.79 l S 193.81 236.53 m 193.85 238.18 l S 193.85 236.53 m 193.90 237.77 l S 193.90 236.53 m 193.94 246.81 l S 193.94 236.53 m 193.99 236.94 l S 193.99 236.53 m 194.04 237.36 l S 194.04 236.53 m 194.08 237.15 l S 194.08 236.53 m 194.13 236.94 l S 194.13 236.53 m 194.17 237.36 l S 194.17 236.53 m 194.22 237.56 l S 194.22 236.53 m 194.27 239.62 l S 194.27 236.53 m 194.31 238.38 l S 194.31 236.53 m 194.36 237.15 l S 194.36 236.53 m 194.40 236.94 l S 194.40 236.53 m 194.45 237.36 l S 194.45 236.53 m 194.50 237.15 l S 194.50 236.53 m 194.54 237.15 l S 194.54 236.53 m 194.59 237.77 l S 194.59 236.53 m 194.63 240.44 l S 194.63 236.53 m 194.68 240.23 l S 194.68 236.53 m 194.73 236.94 l S 194.73 236.53 m 194.77 237.15 l S 194.77 236.53 m 194.82 238.38 l S 194.82 236.53 m 194.86 236.94 l S 194.86 236.53 m 194.91 237.15 l S 194.91 236.53 m 194.96 237.15 l S 194.96 236.53 m 195.00 238.38 l S 195.00 236.53 m 195.05 238.18 l S 195.05 236.53 m 195.09 238.18 l S 195.09 236.53 m 195.14 237.36 l S 195.14 236.53 m 195.19 237.15 l S 195.19 236.53 m 195.23 237.15 l S 195.23 236.53 m 195.28 236.94 l S 195.28 236.53 m 195.32 237.97 l S 195.32 236.53 m 195.37 237.15 l S 195.37 236.53 m 195.42 242.08 l S 195.42 236.53 m 195.46 239.00 l S 195.46 236.53 m 195.51 237.56 l S 195.51 236.53 m 195.55 237.15 l S 195.55 236.53 m 195.60 237.15 l S 195.60 236.53 m 195.65 236.74 l S 195.65 236.53 m 195.69 237.36 l S 195.69 236.53 m 195.74 237.56 l S 195.74 236.53 m 195.78 241.67 l S 195.78 236.53 m 195.83 237.36 l S 195.83 236.53 m 195.88 237.97 l S 195.88 236.53 m 195.92 237.97 l S 195.92 236.53 m 195.97 237.15 l S 195.97 236.53 m 196.01 237.77 l S 196.01 236.53 m 196.06 237.77 l S 196.06 236.53 m 196.11 237.15 l S 196.11 236.53 m 196.15 236.94 l S 196.15 236.53 m 196.20 239.41 l S 196.20 236.53 m 196.24 239.21 l S 196.24 236.53 m 196.29 236.94 l S 196.29 236.53 m 196.34 236.94 l S 196.34 236.53 m 196.38 237.97 l S 196.38 236.53 m 196.43 236.94 l S 196.43 236.53 m 196.47 240.23 l S 196.47 236.53 m 196.52 236.94 l S 196.52 236.53 m 196.57 236.94 l S 196.57 236.53 m 196.61 236.94 l S 196.61 236.53 m 196.66 236.74 l S 196.66 236.53 m 196.70 236.94 l S 196.70 236.53 m 196.75 237.36 l S 196.75 236.53 m 196.80 237.15 l S 196.80 236.53 m 196.84 237.36 l S 196.84 236.53 m 196.89 237.36 l S 196.89 236.53 m 196.93 236.74 l S 196.93 236.53 m 196.98 237.15 l S 196.98 236.53 m 197.03 238.18 l S 197.03 236.53 m 197.07 238.79 l S 197.07 236.53 m 197.12 236.94 l S 197.12 236.53 m 197.16 238.18 l S 197.16 236.53 m 197.21 236.94 l S 197.21 236.53 m 197.26 236.74 l S 197.26 236.53 m 197.30 236.94 l S 197.30 236.53 m 197.35 237.56 l S 197.35 236.53 m 197.39 236.74 l S 197.39 236.53 m 197.44 237.15 l S 197.44 236.53 m 197.49 236.74 l S 197.49 236.53 m 197.53 236.94 l S 197.53 236.53 m 197.58 236.94 l S 197.58 236.53 m 197.62 236.74 l S 197.62 236.53 m 197.67 236.94 l S 197.67 236.53 m 197.72 236.94 l S 197.72 236.53 m 197.76 236.94 l S 197.76 236.53 m 197.81 236.74 l S 197.81 236.53 m 197.85 236.74 l S 197.85 236.53 m 197.90 236.94 l S 197.90 236.53 m 197.95 236.94 l S 197.95 236.53 m 197.99 236.94 l S 197.99 236.53 m 198.04 237.15 l S 198.04 236.53 m 198.08 236.74 l S 198.08 236.53 m 198.13 236.94 l S 198.13 236.53 m 198.18 237.15 l S 198.18 236.53 m 198.22 236.94 l S 198.22 236.53 m 198.27 237.56 l S 198.27 236.53 m 198.31 237.15 l S 198.31 236.53 m 198.36 238.59 l S 198.36 236.53 m 198.41 236.94 l S 198.41 236.53 m 198.45 237.15 l S 198.45 236.53 m 198.50 237.56 l S 198.50 236.53 m 198.55 238.18 l S 198.55 236.53 m 198.59 237.56 l S 198.59 236.53 m 198.64 237.15 l S 198.64 236.53 m 198.68 237.15 l S 198.68 236.53 m 198.73 238.18 l S 198.73 236.53 m 198.78 237.36 l S 198.78 236.53 m 198.82 237.36 l S 198.82 236.53 m 198.87 247.22 l S 198.87 236.53 m 198.91 239.82 l S 198.91 236.53 m 198.96 237.77 l S 198.96 236.53 m 199.01 237.77 l S 199.01 236.53 m 199.05 237.97 l S 199.05 236.53 m 199.10 237.97 l S 199.10 236.53 m 199.14 238.18 l S 199.14 236.53 m 199.19 237.97 l S 199.19 236.53 m 199.24 237.15 l S 199.24 236.53 m 199.28 241.05 l S 199.28 236.53 m 199.33 236.94 l S 199.33 236.53 m 199.37 239.41 l S 199.37 236.53 m 199.42 239.62 l S 199.42 236.53 m 199.47 237.15 l S 199.47 236.53 m 199.51 239.00 l S 199.51 236.53 m 199.56 236.74 l S 199.56 236.53 m 199.60 237.15 l S 199.60 236.53 m 199.65 237.15 l S 199.65 236.53 m 199.70 237.97 l S 199.70 236.53 m 199.74 239.41 l S 199.74 236.53 m 199.79 238.38 l S 199.79 236.53 m 199.83 237.56 l S 199.83 236.53 m 199.88 237.15 l S 199.88 236.53 m 199.93 236.94 l S 199.93 236.53 m 199.97 237.56 l S 199.97 236.53 m 200.02 237.56 l S 200.02 236.53 m 200.06 237.36 l S 200.06 236.53 m 200.11 239.62 l S 200.11 236.53 m 200.16 237.56 l S 200.16 236.53 m 200.20 238.38 l S 200.20 236.53 m 200.25 237.77 l S 200.25 236.53 m 200.29 239.21 l S 200.29 236.53 m 200.34 237.56 l S 200.34 236.53 m 200.39 237.97 l S 200.39 236.53 m 200.43 240.64 l S 200.43 236.53 m 200.48 239.41 l S 200.48 236.53 m 200.52 239.00 l S 200.52 236.53 m 200.57 237.77 l S 200.57 236.53 m 200.62 237.56 l S 200.62 236.53 m 200.66 237.77 l S 200.66 236.53 m 200.71 239.41 l S 200.71 236.53 m 200.75 237.56 l S 200.75 236.53 m 200.80 237.97 l S 200.80 236.53 m 200.85 237.15 l S 200.85 236.53 m 200.89 237.15 l S 200.89 236.53 m 200.94 239.41 l S 200.94 236.53 m 200.98 237.36 l S 200.98 236.53 m 201.03 237.36 l S 201.03 236.53 m 201.08 238.59 l S 201.08 236.53 m 201.12 242.49 l S 201.12 236.53 m 201.17 238.18 l S 201.17 236.53 m 201.21 240.23 l S 201.21 236.53 m 201.26 243.93 l S 201.26 236.53 m 201.31 241.47 l S 201.31 236.53 m 201.35 240.44 l S 201.35 236.53 m 201.40 237.56 l S 201.40 236.53 m 201.44 237.36 l S 201.44 236.53 m 201.49 237.97 l S 201.49 236.53 m 201.54 240.44 l S 201.54 236.53 m 201.58 239.82 l S 201.58 236.53 m 201.63 239.00 l S 201.63 236.53 m 201.67 246.19 l S 201.67 236.53 m 201.72 241.26 l S 201.72 236.53 m 201.77 240.44 l S 201.77 236.53 m 201.81 243.52 l S 201.81 236.53 m 201.86 241.05 l S 201.86 236.53 m 201.90 237.56 l S 201.90 236.53 m 201.95 237.36 l S 201.95 236.53 m 202.00 237.36 l S 202.00 236.53 m 202.04 236.94 l S 202.04 236.53 m 202.09 237.36 l S 202.09 236.53 m 202.13 237.36 l S 202.13 236.53 m 202.18 237.36 l S 202.18 236.53 m 202.23 244.96 l S 202.23 236.53 m 202.27 237.77 l S 202.27 236.53 m 202.32 238.79 l S 202.32 236.53 m 202.36 237.97 l S 202.36 236.53 m 202.41 237.56 l S 202.41 236.53 m 202.46 237.56 l S 202.46 236.53 m 202.50 237.77 l S 202.50 236.53 m 202.55 241.05 l S 202.55 236.53 m 202.59 240.44 l S 202.59 236.53 m 202.64 242.29 l S 202.64 236.53 m 202.69 238.79 l S 202.69 236.53 m 202.73 236.94 l S 202.73 236.53 m 202.78 236.94 l S 202.78 236.53 m 202.82 237.36 l S 202.82 236.53 m 202.87 237.15 l S 202.87 236.53 m 202.92 236.94 l S 202.92 236.53 m 202.96 236.94 l S 202.96 236.53 m 203.01 236.94 l S 203.01 236.53 m 203.05 236.94 l S 203.05 236.53 m 203.10 237.15 l S 203.10 236.53 m 203.15 236.94 l S 203.15 236.53 m 203.19 236.94 l S 203.19 236.53 m 203.24 236.94 l S 203.24 236.53 m 203.28 236.94 l S 203.28 236.53 m 203.33 236.74 l S 203.33 236.53 m 203.38 236.94 l S 203.38 236.53 m 203.42 236.94 l S 203.42 236.53 m 203.47 236.94 l S 203.47 236.53 m 203.51 236.74 l S 203.51 236.53 m 203.56 236.74 l S 203.56 236.53 m 203.61 236.94 l S 203.61 236.53 m 203.65 236.94 l S 203.65 236.53 m 203.70 237.36 l S 203.70 236.53 m 203.74 236.94 l S 203.74 236.53 m 203.79 236.94 l S 203.79 236.53 m 203.84 237.77 l S 203.84 236.53 m 203.88 237.36 l S 203.88 236.53 m 203.93 237.56 l S 203.93 236.53 m 203.97 240.85 l S 203.97 236.53 m 204.02 237.15 l S 204.02 236.53 m 204.07 237.15 l S 204.07 236.53 m 204.11 237.15 l S 204.11 236.53 m 204.16 237.15 l S 204.16 236.53 m 204.20 237.36 l S 204.20 236.53 m 204.25 239.41 l S 204.25 236.53 m 204.30 240.03 l S 204.30 236.53 m 204.34 237.15 l S 204.34 236.53 m 204.39 240.23 l S 204.39 236.53 m 204.43 238.38 l S 204.43 236.53 m 204.48 237.15 l S 204.48 236.53 m 204.53 237.15 l S 204.53 236.53 m 204.57 238.59 l S 204.57 236.53 m 204.62 237.15 l S 204.62 236.53 m 204.66 237.15 l S 204.66 236.53 m 204.71 237.15 l S 204.71 236.53 m 204.76 241.26 l S 204.76 236.53 m 204.80 237.15 l S 204.80 236.53 m 204.85 236.94 l S 204.85 236.53 m 204.89 237.56 l S 204.89 236.53 m 204.94 237.77 l S 204.94 236.53 m 204.99 244.75 l S 204.99 236.53 m 205.03 237.36 l S 205.03 236.53 m 205.08 241.88 l S 205.08 236.53 m 205.12 239.41 l S 205.12 236.53 m 205.17 237.15 l S 205.17 236.53 m 205.22 238.38 l S 205.22 236.53 m 205.26 243.73 l S 205.26 236.53 m 205.31 236.94 l S 205.31 236.53 m 205.35 237.36 l S 205.35 236.53 m 205.40 238.18 l S 205.40 236.53 m 205.45 244.96 l S 205.45 236.53 m 205.49 240.23 l S 205.49 236.53 m 205.54 238.18 l S 205.54 236.53 m 205.58 238.18 l S 205.58 236.53 m 205.63 237.77 l S 205.63 236.53 m 205.68 237.15 l S 205.68 236.53 m 205.72 237.15 l S 205.72 236.53 m 205.77 237.97 l S 205.77 236.53 m 205.81 237.36 l S 205.81 236.53 m 205.86 238.18 l S 205.86 236.53 m 205.91 237.15 l S 205.91 236.53 m 205.95 236.94 l S 205.95 236.53 m 206.00 238.18 l S 206.00 236.53 m 206.04 238.79 l S 206.04 236.53 m 206.09 248.86 l S 206.09 236.53 m 206.14 243.52 l S 206.14 236.53 m 206.18 243.32 l S 206.18 236.53 m 206.23 237.36 l S 206.23 236.53 m 206.27 238.38 l S 206.27 236.53 m 206.32 238.18 l S 206.32 236.53 m 206.37 237.15 l S 206.37 236.53 m 206.41 238.18 l S 206.41 236.53 m 206.46 237.15 l S 206.46 236.53 m 206.51 237.36 l S 206.51 236.53 m 206.55 237.36 l S 206.55 236.53 m 206.60 238.79 l S 206.60 236.53 m 206.64 238.18 l S 206.64 236.53 m 206.69 238.38 l S 206.69 236.53 m 206.74 240.44 l S 206.74 236.53 m 206.78 237.56 l S 206.78 236.53 m 206.83 237.36 l S 206.83 236.53 m 206.87 243.93 l S 206.87 236.53 m 206.92 239.41 l S 206.92 236.53 m 206.97 238.38 l S 206.97 236.53 m 207.01 238.38 l S 207.01 236.53 m 207.06 239.41 l S 207.06 236.53 m 207.10 236.94 l S 207.10 236.53 m 207.15 237.97 l S 207.15 236.53 m 207.20 243.11 l S 207.20 236.53 m 207.24 251.12 l S 207.24 236.53 m 207.29 240.03 l S 207.29 236.53 m 207.33 237.97 l S 207.33 236.53 m 207.38 238.59 l S 207.38 236.53 m 207.43 237.77 l S 207.43 236.53 m 207.47 237.77 l S 207.47 236.53 m 207.52 238.59 l S 207.52 236.53 m 207.56 240.85 l S 207.56 236.53 m 207.61 243.93 l S 207.61 236.53 m 207.66 240.85 l S 207.66 236.53 m 207.70 241.67 l S 207.70 236.53 m 207.75 239.21 l S 207.75 236.53 m 207.79 243.73 l S 207.79 236.53 m 207.84 240.23 l S 207.84 236.53 m 207.89 238.38 l S 207.89 236.53 m 207.93 241.47 l S 207.93 236.53 m 207.98 238.18 l S 207.98 236.53 m 208.02 242.90 l S 208.02 236.53 m 208.07 243.93 l S 208.07 236.53 m 208.12 247.63 l S 208.12 236.53 m 208.16 240.44 l S 208.16 236.53 m 208.21 238.79 l S 208.21 236.53 m 208.25 241.26 l S 208.25 236.53 m 208.30 246.40 l S 208.30 236.53 m 208.35 243.11 l S 208.35 236.53 m 208.39 242.29 l S 208.39 236.53 m 208.44 238.59 l S 208.44 236.53 m 208.48 246.81 l S 208.48 236.53 m 208.53 245.37 l S 208.53 236.53 m 208.58 247.43 l S 208.58 236.53 m 208.62 237.56 l S 208.62 236.53 m 208.67 237.36 l S 208.67 236.53 m 208.71 241.05 l S 208.71 236.53 m 208.76 237.56 l S 208.76 236.53 m 208.81 238.79 l S 208.81 236.53 m 208.85 237.36 l S 208.85 236.53 m 208.90 242.70 l S 208.90 236.53 m 208.94 239.00 l S 208.94 236.53 m 208.99 238.18 l S 208.99 236.53 m 209.04 237.36 l S 209.04 236.53 m 209.08 239.00 l S 209.08 236.53 m 209.13 236.94 l S 209.13 236.53 m 209.17 237.97 l S 209.17 236.53 m 209.22 239.00 l S 209.22 236.53 m 209.27 237.56 l S 209.27 236.53 m 209.31 237.56 l S 209.31 236.53 m 209.36 241.05 l S 209.36 236.53 m 209.40 240.44 l S 209.40 236.53 m 209.45 241.67 l S 209.45 236.53 m 209.50 240.44 l S 209.50 236.53 m 209.54 238.38 l S 209.54 236.53 m 209.59 239.82 l S 209.59 236.53 m 209.63 237.77 l S 209.63 236.53 m 209.68 237.56 l S 209.68 236.53 m 209.73 240.03 l S 209.73 236.53 m 209.77 243.93 l S 209.77 236.53 m 209.82 237.77 l S 209.82 236.53 m 209.86 246.60 l S 209.86 236.53 m 209.91 242.29 l S 209.91 236.53 m 209.96 237.36 l S 209.96 236.53 m 210.00 242.29 l S 210.00 236.53 m 210.05 239.62 l S 210.05 236.53 m 210.09 241.67 l S 210.09 236.53 m 210.14 239.21 l S 210.14 236.53 m 210.19 239.82 l S 210.19 236.53 m 210.23 237.97 l S 210.23 236.53 m 210.28 237.97 l S 210.28 236.53 m 210.32 236.94 l S 210.32 236.53 m 210.37 238.59 l S 210.37 236.53 m 210.42 242.29 l S 210.42 236.53 m 210.46 236.94 l S 210.46 236.53 m 210.51 238.38 l S 210.51 236.53 m 210.55 239.62 l S 210.55 236.53 m 210.60 244.14 l S 210.60 236.53 m 210.65 252.15 l S 210.65 236.53 m 210.69 240.23 l S 210.69 236.53 m 210.74 239.62 l S 210.74 236.53 m 210.78 237.15 l S 210.78 236.53 m 210.83 236.94 l S 210.83 236.53 m 210.88 237.15 l S 210.88 236.53 m 210.92 237.56 l S 210.92 236.53 m 210.97 240.44 l S 210.97 236.53 m 211.01 239.41 l S 211.01 236.53 m 211.06 237.15 l S 211.06 236.53 m 211.11 236.94 l S 211.11 236.53 m 211.15 236.94 l S 211.15 236.53 m 211.20 236.94 l S 211.20 236.53 m 211.24 237.15 l S 211.24 236.53 m 211.29 237.15 l S 211.29 236.53 m 211.34 237.15 l S 211.34 236.53 m 211.38 236.94 l S 211.38 236.53 m 211.43 237.15 l S 211.43 236.53 m 211.47 238.79 l S 211.47 236.53 m 211.52 237.36 l S 211.52 236.53 m 211.57 237.77 l S 211.57 236.53 m 211.61 236.94 l S 211.61 236.53 m 211.66 237.36 l S 211.66 236.53 m 211.70 237.15 l S 211.70 236.53 m 211.75 236.94 l S 211.75 236.53 m 211.80 237.15 l S 211.80 236.53 m 211.84 236.94 l S 211.84 236.53 m 211.89 237.15 l S 211.89 236.53 m 211.93 236.94 l S 211.93 236.53 m 211.98 236.74 l S 211.98 236.53 m 212.03 236.94 l S 212.03 236.53 m 212.07 236.94 l S 212.07 236.53 m 212.12 236.74 l S 212.12 236.53 m 212.16 236.74 l S 212.16 236.53 m 212.21 237.15 l S 212.21 236.53 m 212.26 236.74 l S 212.26 236.53 m 212.30 236.94 l S 212.30 236.53 m 212.35 236.74 l S 212.35 236.53 m 212.39 236.74 l S 212.39 236.53 m 212.44 236.94 l S 212.44 236.53 m 212.49 236.94 l S 212.49 236.53 m 212.53 236.94 l S 212.53 236.53 m 212.58 236.94 l S 212.58 236.53 m 212.62 236.94 l S 212.62 236.53 m 212.67 237.56 l S 212.67 236.53 m 212.72 239.41 l S 212.72 236.53 m 212.76 236.74 l S 212.76 236.53 m 212.81 236.94 l S 212.81 236.53 m 212.85 236.94 l S 212.85 236.53 m 212.90 236.94 l S 212.90 236.53 m 212.95 236.74 l S 212.95 236.53 m 212.99 237.36 l S 212.99 236.53 m 213.04 237.15 l S 213.04 236.53 m 213.08 236.74 l S 213.08 236.53 m 213.13 236.94 l S 213.13 236.53 m 213.18 236.74 l S 213.18 236.53 m 213.22 236.74 l S 213.22 236.53 m 213.27 236.94 l S 213.27 236.53 m 213.31 236.74 l S 213.31 236.53 m 213.36 236.94 l S 213.36 236.53 m 213.41 236.74 l S 213.41 236.53 m 213.45 237.36 l S 213.45 236.53 m 213.50 236.94 l S 213.50 236.53 m 213.54 236.74 l S 213.54 236.53 m 213.59 236.94 l S 213.59 236.53 m 213.64 236.74 l S 213.64 236.53 m 213.68 236.94 l S 213.68 236.53 m 213.73 236.94 l S 213.73 236.53 m 213.77 237.77 l S 213.77 236.53 m 213.82 236.94 l S 213.82 236.53 m 213.87 236.94 l S 213.87 236.53 m 213.91 236.94 l S 213.91 236.53 m 213.96 236.94 l S 213.96 236.53 m 214.00 236.94 l S 214.00 236.53 m 214.05 237.15 l S 214.05 236.53 m 214.10 236.74 l S 214.10 236.53 m 214.14 236.94 l S 214.14 236.53 m 214.19 236.94 l S 214.19 236.53 m 214.23 237.36 l S 214.23 236.53 m 214.28 236.94 l S 214.28 236.53 m 214.33 236.94 l S 214.33 236.53 m 214.37 237.15 l S 214.37 236.53 m 214.42 236.94 l S 214.42 236.53 m 214.47 237.15 l S 214.47 236.53 m 214.51 237.15 l S 214.51 236.53 m 214.56 237.15 l S 214.56 236.53 m 214.60 237.15 l S 214.60 236.53 m 214.65 237.15 l S 214.65 236.53 m 214.70 237.15 l S 214.70 236.53 m 214.74 236.94 l S 214.74 236.53 m 214.79 237.15 l S 214.79 236.53 m 214.83 236.94 l S 214.83 236.53 m 214.88 236.94 l S 214.88 236.53 m 214.93 236.74 l S 214.93 236.53 m 214.97 236.94 l S 214.97 236.53 m 215.02 236.74 l S 215.02 236.53 m 215.06 236.94 l S 215.06 236.53 m 215.11 237.36 l S 215.11 236.53 m 215.16 237.36 l S 215.16 236.53 m 215.20 236.74 l S 215.20 236.53 m 215.25 236.94 l S 215.25 236.53 m 215.29 236.74 l S 215.29 236.53 m 215.34 236.94 l S 215.34 236.53 m 215.39 236.94 l S 215.39 236.53 m 215.43 237.15 l S 215.43 236.53 m 215.48 236.94 l S 215.48 236.53 m 215.52 236.74 l S 215.52 236.53 m 215.57 237.15 l S 215.57 236.53 m 215.62 237.15 l S 215.62 236.53 m 215.66 236.74 l S 215.66 236.53 m 215.71 237.15 l S 215.71 236.53 m 215.75 236.94 l S 215.75 236.53 m 215.80 236.94 l S 215.80 236.53 m 215.85 236.94 l S 215.85 236.53 m 215.89 237.15 l S 215.89 236.53 m 215.94 236.74 l S 215.94 236.53 m 215.98 236.94 l S 215.98 236.53 m 216.03 236.94 l S 216.03 236.53 m 216.08 236.74 l S 216.08 236.53 m 216.12 236.94 l S 216.12 236.53 m 216.17 236.94 l S 216.17 236.53 m 216.21 236.94 l S 216.21 236.53 m 216.26 236.94 l S 216.26 236.53 m 216.31 237.15 l S 216.31 236.53 m 216.35 236.94 l S 216.35 236.53 m 216.40 236.74 l S 216.40 236.53 m 216.44 236.94 l S 216.44 236.53 m 216.49 236.94 l S 216.49 236.53 m 216.54 236.94 l S 216.54 236.53 m 216.58 236.94 l S 216.58 236.53 m 216.63 236.74 l S 216.63 236.53 m 216.67 236.94 l S 216.67 236.53 m 216.72 236.94 l S 216.72 236.53 m 216.77 236.94 l S 216.77 236.53 m 216.81 237.15 l S 216.81 236.53 m 216.86 237.36 l S 216.86 236.53 m 216.90 236.94 l S 216.90 236.53 m 216.95 236.94 l S 216.95 236.53 m 217.00 236.94 l S 217.00 236.53 m 217.04 236.94 l S 217.04 236.53 m 217.09 237.15 l S 217.09 236.53 m 217.13 236.94 l S 217.13 236.53 m 217.18 236.94 l S 217.18 236.53 m 217.23 236.94 l S 217.23 236.53 m 217.27 236.94 l S 217.27 236.53 m 217.32 237.56 l S 217.32 236.53 m 217.36 236.94 l S 217.36 236.53 m 217.41 236.94 l S 217.41 236.53 m 217.46 236.94 l S 217.46 236.53 m 217.50 236.94 l S 217.50 236.53 m 217.55 236.94 l S 217.55 236.53 m 217.59 237.36 l S 217.59 236.53 m 217.64 236.94 l S 217.64 236.53 m 217.69 236.94 l S 217.69 236.53 m 217.73 236.94 l S 217.73 236.53 m 217.78 237.36 l S 217.78 236.53 m 217.82 236.94 l S 217.82 236.53 m 217.87 237.15 l S 217.87 236.53 m 217.92 237.15 l S 217.92 236.53 m 217.96 236.94 l S 217.96 236.53 m 218.01 236.94 l S 218.01 236.53 m 218.05 236.94 l S 218.05 236.53 m 218.10 236.94 l S 218.10 236.53 m 218.15 237.97 l S 218.15 236.53 m 218.19 241.67 l S 218.19 236.53 m 218.24 243.93 l S 218.24 236.53 m 218.28 243.11 l S 218.28 236.53 m 218.33 237.36 l S 218.33 236.53 m 218.38 242.29 l S 218.38 236.53 m 218.42 242.90 l S 218.42 236.53 m 218.47 245.58 l S 218.47 236.53 m 218.51 242.08 l S 218.51 236.53 m 218.56 241.67 l S 218.56 236.53 m 218.61 237.36 l S 218.61 236.53 m 218.65 239.62 l S 218.65 236.53 m 218.70 238.18 l S 218.70 236.53 m 218.74 240.44 l S 218.74 236.53 m 218.79 237.77 l S 218.79 236.53 m 218.84 241.47 l S 218.84 236.53 m 218.88 239.82 l S 218.88 236.53 m 218.93 245.16 l S 218.93 236.53 m 218.97 239.62 l S 218.97 236.53 m 219.02 248.04 l S 219.02 236.53 m 219.07 242.90 l S 219.07 236.53 m 219.11 241.67 l S 219.11 236.53 m 219.16 237.77 l S 219.16 236.53 m 219.20 240.85 l S 219.20 236.53 m 219.25 237.97 l S 219.25 236.53 m 219.30 237.36 l S 219.30 236.53 m 219.34 241.26 l S 219.34 236.53 m 219.39 238.79 l S 219.39 236.53 m 219.43 242.70 l S 219.43 236.53 m 219.48 240.23 l S 219.48 236.53 m 219.53 241.67 l S 219.53 236.53 m 219.57 240.44 l S 219.57 236.53 m 219.62 240.85 l S 219.62 236.53 m 219.66 238.38 l S 219.66 236.53 m 219.71 238.38 l S 219.71 236.53 m 219.76 236.94 l S 219.76 236.53 m 219.80 237.77 l S 219.80 236.53 m 219.85 238.18 l S 219.85 236.53 m 219.89 240.23 l S 219.89 236.53 m 219.94 237.15 l S 219.94 236.53 m 219.99 237.36 l S 219.99 236.53 m 220.03 236.94 l S 220.03 236.53 m 220.08 237.15 l S 220.08 236.53 m 220.12 237.36 l S 220.12 236.53 m 220.17 236.94 l S 220.17 236.53 m 220.22 237.15 l S 220.22 236.53 m 220.26 236.94 l S 220.26 236.53 m 220.31 236.94 l S 220.31 236.53 m 220.35 236.94 l S 220.35 236.53 m 220.40 237.15 l S 220.40 236.53 m 220.45 236.94 l S 220.45 236.53 m 220.49 236.94 l S 220.49 236.53 m 220.54 237.36 l S 220.54 236.53 m 220.58 236.94 l S 220.58 236.53 m 220.63 236.94 l S 220.63 236.53 m 220.68 236.94 l S 220.68 236.53 m 220.72 236.94 l S 220.72 236.53 m 220.77 236.94 l S 220.77 236.53 m 220.81 236.74 l S 220.81 236.53 m 220.86 236.94 l S 220.86 236.53 m 220.91 237.15 l S 220.91 236.53 m 220.95 236.94 l S 220.95 236.53 m 221.00 236.94 l S 221.00 236.53 m 221.04 236.74 l S 221.04 236.53 m 221.09 237.15 l S 221.09 236.53 m 221.14 236.94 l S 221.14 236.53 m 221.18 236.94 l S 221.18 236.53 m 221.23 237.36 l S 221.23 236.53 m 221.27 237.15 l S 221.27 236.53 m 221.32 240.23 l S 221.32 236.53 m 221.37 237.15 l S 221.37 236.53 m 221.41 237.15 l S 221.41 236.53 m 221.46 237.15 l S 221.46 236.53 m 221.50 237.77 l S 221.50 236.53 m 221.55 238.38 l S 221.55 236.53 m 221.60 243.11 l S 221.60 236.53 m 221.64 237.15 l S 221.64 236.53 m 221.69 242.70 l S 221.69 236.53 m 221.73 237.56 l S 221.73 236.53 m 221.78 238.59 l S 221.78 236.53 m 221.83 237.77 l S 221.83 236.53 m 221.87 237.56 l S 221.87 236.53 m 221.92 237.15 l S 221.92 236.53 m 221.96 237.36 l S 221.96 236.53 m 222.01 237.77 l S 222.01 236.53 m 222.06 237.36 l S 222.06 236.53 m 222.10 237.36 l S 222.10 236.53 m 222.15 237.15 l S 222.15 236.53 m 222.19 237.36 l S 222.19 236.53 m 222.24 236.94 l S 222.24 236.53 m 222.29 237.56 l S 222.29 236.53 m 222.33 237.15 l S 222.33 236.53 m 222.38 237.77 l S 222.38 236.53 m 222.43 240.64 l S 222.43 236.53 m 222.47 237.36 l S 222.47 236.53 m 222.52 239.21 l S 222.52 236.53 m 222.56 237.97 l S 222.56 236.53 m 222.61 237.15 l S 222.61 236.53 m 222.66 237.36 l S 222.66 236.53 m 222.70 237.15 l S 222.70 236.53 m 222.75 237.56 l S 222.75 236.53 m 222.79 237.36 l S 222.79 236.53 m 222.84 236.94 l S 222.84 236.53 m 222.89 236.94 l S 222.89 236.53 m 222.93 239.21 l S 222.93 236.53 m 222.98 236.94 l S 222.98 236.53 m 223.02 236.94 l S 223.02 236.53 m 223.07 237.15 l S 223.07 236.53 m 223.12 237.15 l S 223.12 236.53 m 223.16 237.15 l S 223.16 236.53 m 223.21 237.15 l S 223.21 236.53 m 223.25 237.77 l S 223.25 236.53 m 223.30 236.94 l S 223.30 236.53 m 223.35 239.62 l S 223.35 236.53 m 223.39 240.64 l S 223.39 236.53 m 223.44 237.15 l S 223.44 236.53 m 223.48 237.15 l S 223.48 236.53 m 223.53 236.94 l S 223.53 236.53 m 223.58 239.82 l S 223.58 236.53 m 223.62 237.36 l S 223.62 236.53 m 223.67 236.94 l S 223.67 236.53 m 223.71 263.87 l S 223.71 236.53 m 223.76 239.62 l S 223.76 236.53 m 223.81 240.23 l S 223.81 236.53 m 223.85 238.79 l S 223.85 236.53 m 223.90 240.23 l S 223.90 236.53 m 223.94 237.97 l S 223.94 236.53 m 223.99 238.38 l S 223.99 236.53 m 224.04 238.79 l S 224.04 236.53 m 224.08 236.94 l S 224.08 236.53 m 224.13 237.15 l S 224.13 236.53 m 224.17 237.36 l S 224.17 236.53 m 224.22 238.18 l S 224.22 236.53 m 224.27 237.15 l S 224.27 236.53 m 224.31 237.15 l S 224.31 236.53 m 224.36 237.77 l S 224.36 236.53 m 224.40 237.56 l S 224.40 236.53 m 224.45 246.19 l S 224.45 236.53 m 224.50 246.60 l S 224.50 236.53 m 224.54 242.90 l S 224.54 236.53 m 224.59 237.97 l S 224.59 236.53 m 224.63 237.56 l S 224.63 236.53 m 224.68 237.36 l S 224.68 236.53 m 224.73 238.38 l S 224.73 236.53 m 224.77 237.36 l S 224.77 236.53 m 224.82 238.18 l S 224.82 236.53 m 224.86 238.38 l S 224.86 236.53 m 224.91 239.21 l S 224.91 236.53 m 224.96 237.15 l S 224.96 236.53 m 225.00 237.77 l S 225.00 236.53 m 225.05 238.79 l S 225.05 236.53 m 225.09 238.38 l S 225.09 236.53 m 225.14 236.94 l S 225.14 236.53 m 225.19 236.94 l S 225.19 236.53 m 225.23 237.15 l S 225.23 236.53 m 225.28 237.36 l S 225.28 236.53 m 225.32 236.94 l S 225.32 236.53 m 225.37 236.74 l S 225.37 236.53 m 225.42 236.74 l S 225.42 236.53 m 225.46 236.74 l S 225.46 236.53 m 225.51 236.94 l S 225.51 236.53 m 225.55 236.74 l S 225.55 236.53 m 225.60 236.74 l S 225.60 236.53 m 225.65 236.74 l S 225.65 236.53 m 225.69 236.94 l S 225.69 236.53 m 225.74 236.74 l S 225.74 236.53 m 225.78 236.74 l S 225.78 236.53 m 225.83 236.74 l S 225.83 236.53 m 225.88 236.94 l S 225.88 236.53 m 225.92 236.74 l S 225.92 236.53 m 225.97 236.74 l S 225.97 236.53 m 226.01 237.15 l S 226.01 236.53 m 226.06 236.74 l S 226.06 236.53 m 226.11 236.94 l S 226.11 236.53 m 226.15 237.15 l S 226.15 236.53 m 226.20 236.74 l S 226.20 236.53 m 226.24 236.74 l S 226.24 236.53 m 226.29 237.15 l S 226.29 236.53 m 226.34 236.94 l S 226.34 236.53 m 226.38 236.94 l S 226.38 236.53 m 226.43 237.36 l S 226.43 236.53 m 226.47 237.36 l S 226.47 236.53 m 226.52 237.15 l S 226.52 236.53 m 226.57 236.94 l S 226.57 236.53 m 226.61 237.15 l S 226.61 236.53 m 226.66 236.94 l S 226.66 236.53 m 226.70 237.77 l S 226.70 236.53 m 226.75 236.94 l S 226.75 236.53 m 226.80 236.94 l S 226.80 236.53 m 226.84 237.15 l S 226.84 236.53 m 226.89 237.36 l S 226.89 236.53 m 226.93 236.94 l S 226.93 236.53 m 226.98 236.94 l S 226.98 236.53 m 227.03 236.94 l S 227.03 236.53 m 227.07 236.94 l S 227.07 236.53 m 227.12 237.15 l S 227.12 236.53 m 227.16 236.94 l S 227.16 236.53 m 227.21 237.15 l S 227.21 236.53 m 227.26 236.94 l S 227.26 236.53 m 227.30 237.15 l S 227.30 236.53 m 227.35 237.36 l S 227.35 236.53 m 227.39 237.15 l S 227.39 236.53 m 227.44 237.56 l S 227.44 236.53 m 227.49 241.67 l S 227.49 236.53 m 227.53 237.36 l S 227.53 236.53 m 227.58 237.15 l S 227.58 236.53 m 227.62 237.15 l S 227.62 236.53 m 227.67 238.18 l S 227.67 236.53 m 227.72 237.15 l S 227.72 236.53 m 227.76 236.94 l S 227.76 236.53 m 227.81 237.15 l S 227.81 236.53 m 227.85 237.15 l S 227.85 236.53 m 227.90 236.94 l S 227.90 236.53 m 227.95 236.94 l S 227.95 236.53 m 227.99 236.74 l S 227.99 236.53 m 228.04 237.36 l S 228.04 236.53 m 228.08 238.59 l S 228.08 236.53 m 228.13 237.36 l S 228.13 236.53 m 228.18 237.97 l S 228.18 236.53 m 228.22 237.56 l S 228.22 236.53 m 228.27 237.36 l S 228.27 236.53 m 228.31 238.79 l S 228.31 236.53 m 228.36 238.59 l S 228.36 236.53 m 228.41 237.15 l S 228.41 236.53 m 228.45 237.36 l S 228.45 236.53 m 228.50 237.15 l S 228.50 236.53 m 228.54 237.36 l S 228.54 236.53 m 228.59 237.56 l S 228.59 236.53 m 228.64 237.15 l S 228.64 236.53 m 228.68 237.15 l S 228.68 236.53 m 228.73 237.15 l S 228.73 236.53 m 228.77 237.15 l S 228.77 236.53 m 228.82 236.94 l S 228.82 236.53 m 228.87 237.36 l S 228.87 236.53 m 228.91 237.36 l S 228.91 236.53 m 228.96 236.94 l S 228.96 236.53 m 229.00 238.59 l S 229.00 236.53 m 229.05 237.36 l S 229.05 236.53 m 229.10 237.15 l S 229.10 236.53 m 229.14 237.15 l S 229.14 236.53 m 229.19 237.36 l S 229.19 236.53 m 229.23 238.18 l S 229.23 236.53 m 229.28 239.62 l S 229.28 236.53 m 229.33 237.15 l S 229.33 236.53 m 229.37 236.94 l S 229.37 236.53 m 229.42 236.94 l S 229.42 236.53 m 229.46 237.15 l S 229.46 236.53 m 229.51 236.94 l S 229.51 236.53 m 229.56 236.94 l S 229.56 236.53 m 229.60 237.36 l S 229.60 236.53 m 229.65 237.97 l S 229.65 236.53 m 229.69 240.85 l S 229.69 236.53 m 229.74 237.36 l S 229.74 236.53 m 229.79 237.15 l S 229.79 236.53 m 229.83 237.56 l S 229.83 236.53 m 229.88 237.36 l S 229.88 236.53 m 229.92 237.36 l S 229.92 236.53 m 229.97 237.36 l S 229.97 236.53 m 230.02 237.56 l S 230.02 236.53 m 230.06 240.85 l S 230.06 236.53 m 230.11 238.59 l S 230.11 236.53 m 230.15 239.00 l S 230.15 236.53 m 230.20 244.96 l S 230.20 236.53 m 230.25 239.41 l S 230.25 236.53 m 230.29 237.36 l S 230.29 236.53 m 230.34 237.36 l S 230.34 236.53 m 230.38 236.94 l S 230.38 236.53 m 230.43 237.36 l S 230.43 236.53 m 230.48 236.94 l S 230.48 236.53 m 230.52 237.36 l S 230.52 236.53 m 230.57 237.56 l S 230.57 236.53 m 230.62 238.59 l S 230.62 236.53 m 230.66 237.77 l S 230.66 236.53 m 230.71 239.41 l S 230.71 236.53 m 230.75 239.41 l S 230.75 236.53 m 230.80 238.38 l S 230.80 236.53 m 230.85 239.62 l S 230.85 236.53 m 230.89 240.03 l S 230.89 236.53 m 230.94 248.25 l S 230.94 236.53 m 230.98 247.22 l S 230.98 236.53 m 231.03 252.77 l S 231.03 236.53 m 231.08 238.59 l S 231.08 236.53 m 231.12 238.38 l S 231.12 236.53 m 231.17 238.79 l S 231.17 236.53 m 231.21 244.55 l S 231.21 236.53 m 231.26 241.26 l S 231.26 236.53 m 231.31 243.93 l S 231.31 236.53 m 231.35 237.15 l S 231.35 236.53 m 231.40 241.47 l S 231.40 236.53 m 231.44 239.00 l S 231.44 236.53 m 231.49 240.44 l S 231.49 236.53 m 231.54 239.21 l S 231.54 236.53 m 231.58 240.03 l S 231.58 236.53 m 231.63 237.77 l S 231.63 236.53 m 231.67 238.38 l S 231.67 236.53 m 231.72 237.36 l S 231.72 236.53 m 231.77 241.05 l S 231.77 236.53 m 231.81 240.85 l S 231.81 236.53 m 231.86 237.56 l S 231.86 236.53 m 231.90 237.15 l S 231.90 236.53 m 231.95 236.94 l S 231.95 236.53 m 232.00 236.94 l S 232.00 236.53 m 232.04 236.94 l S 232.04 236.53 m 232.09 237.15 l S 232.09 236.53 m 232.13 236.94 l S 232.13 236.53 m 232.18 237.15 l S 232.18 236.53 m 232.23 236.74 l S 232.23 236.53 m 232.27 236.94 l S 232.27 236.53 m 232.32 236.94 l S 232.32 236.53 m 232.36 237.15 l S 232.36 236.53 m 232.41 237.15 l S 232.41 236.53 m 232.46 236.94 l S 232.46 236.53 m 232.50 236.94 l S 232.50 236.53 m 232.55 237.15 l S 232.55 236.53 m 232.59 237.15 l S 232.59 236.53 m 232.64 237.15 l S 232.64 236.53 m 232.69 237.15 l S 232.69 236.53 m 232.73 237.15 l S 232.73 236.53 m 232.78 236.94 l S 232.78 236.53 m 232.82 237.15 l S 232.82 236.53 m 232.87 238.38 l S 232.87 236.53 m 232.92 237.56 l S 232.92 236.53 m 232.96 236.94 l S 232.96 236.53 m 233.01 237.36 l S 233.01 236.53 m 233.05 237.56 l S 233.05 236.53 m 233.10 241.26 l S 233.10 236.53 m 233.15 237.36 l S 233.15 236.53 m 233.19 236.94 l S 233.19 236.53 m 233.24 237.97 l S 233.24 236.53 m 233.28 237.56 l S 233.28 236.53 m 233.33 236.94 l S 233.33 236.53 m 233.38 236.94 l S 233.38 236.53 m 233.42 237.56 l S 233.42 236.53 m 233.47 236.94 l S 233.47 236.53 m 233.51 237.15 l S 233.51 236.53 m 233.56 236.94 l S 233.56 236.53 m 233.61 236.94 l S 233.61 236.53 m 233.65 237.36 l S 233.65 236.53 m 233.70 236.94 l S 233.70 236.53 m 233.74 237.15 l S 233.74 236.53 m 233.79 237.15 l S 233.79 236.53 m 233.84 236.94 l S 233.84 236.53 m 233.88 237.15 l S 233.88 236.53 m 233.93 236.94 l S 233.93 236.53 m 233.97 236.94 l S 233.97 236.53 m 234.02 237.15 l S 234.02 236.53 m 234.07 237.15 l S 234.07 236.53 m 234.11 237.36 l S 234.11 236.53 m 234.16 236.94 l S 234.16 236.53 m 234.20 237.15 l S 234.20 236.53 m 234.25 237.36 l S 234.25 236.53 m 234.30 237.15 l S 234.30 236.53 m 234.34 236.94 l S 234.34 236.53 m 234.39 237.36 l S 234.39 236.53 m 234.43 237.36 l S 234.43 236.53 m 234.48 237.77 l S 234.48 236.53 m 234.53 237.15 l S 234.53 236.53 m 234.57 238.38 l S 234.57 236.53 m 234.62 241.26 l S 234.62 236.53 m 234.66 237.15 l S 234.66 236.53 m 234.71 237.15 l S 234.71 236.53 m 234.76 236.94 l S 234.76 236.53 m 234.80 237.15 l S 234.80 236.53 m 234.85 236.94 l S 234.85 236.53 m 234.89 237.56 l S 234.89 236.53 m 234.94 237.15 l S 234.94 236.53 m 234.99 236.94 l S 234.99 236.53 m 235.03 237.36 l S 235.03 236.53 m 235.08 239.21 l S 235.08 236.53 m 235.12 237.36 l S 235.12 236.53 m 235.17 239.82 l S 235.17 236.53 m 235.22 241.26 l S 235.22 236.53 m 235.26 237.36 l S 235.26 236.53 m 235.31 237.77 l S 235.31 236.53 m 235.35 242.70 l S 235.35 236.53 m 235.40 244.14 l S 235.40 236.53 m 235.45 239.00 l S 235.45 236.53 m 235.49 236.94 l S 235.49 236.53 m 235.54 237.36 l S 235.54 236.53 m 235.58 237.15 l S 235.58 236.53 m 235.63 237.97 l S 235.63 236.53 m 235.68 238.18 l S 235.68 236.53 m 235.72 237.15 l S 235.72 236.53 m 235.77 236.94 l S 235.77 236.53 m 235.81 238.18 l S 235.81 236.53 m 235.86 239.00 l S 235.86 236.53 m 235.91 237.36 l S 235.91 236.53 m 235.95 238.38 l S 235.95 236.53 m 236.00 238.38 l S 236.00 236.53 m 236.04 240.64 l S 236.04 236.53 m 236.09 237.97 l S 236.09 236.53 m 236.14 236.94 l S 236.14 236.53 m 236.18 237.56 l S 236.18 236.53 m 236.23 243.11 l S 236.23 236.53 m 236.27 237.77 l S 236.27 236.53 m 236.32 238.18 l S 236.32 236.53 m 236.37 241.88 l S 236.37 236.53 m 236.41 237.15 l S 236.41 236.53 m 236.46 237.15 l S 236.46 236.53 m 236.50 237.15 l S 236.50 236.53 m 236.55 237.15 l S 236.55 236.53 m 236.60 237.36 l S 236.60 236.53 m 236.64 237.56 l S 236.64 236.53 m 236.69 237.15 l S 236.69 236.53 m 236.73 237.15 l S 236.73 236.53 m 236.78 237.15 l S 236.78 236.53 m 236.83 236.94 l S 236.83 236.53 m 236.87 237.15 l S 236.87 236.53 m 236.92 237.15 l S 236.92 236.53 m 236.96 237.36 l S 236.96 236.53 m 237.01 237.15 l S 237.01 236.53 m 237.06 237.36 l S 237.06 236.53 m 237.10 236.94 l S 237.10 236.53 m 237.15 237.36 l S 237.15 236.53 m 237.19 237.15 l S 237.19 236.53 m 237.24 237.15 l S 237.24 236.53 m 237.29 237.56 l S 237.29 236.53 m 237.33 237.36 l S 237.33 236.53 m 237.38 237.36 l S 237.38 236.53 m 237.42 238.18 l S 237.42 236.53 m 237.47 238.18 l S 237.47 236.53 m 237.52 237.36 l S 237.52 236.53 m 237.56 236.53 l S 237.56 236.53 m 237.61 237.56 l S 237.61 236.53 m 237.65 237.15 l S 237.65 236.53 m 237.70 237.36 l S 237.70 236.53 m 237.75 239.21 l S 237.75 236.53 m 237.79 237.77 l S 237.79 236.53 m 237.84 239.21 l S 237.84 236.53 m 237.88 236.94 l S 237.88 236.53 m 237.93 241.05 l S 237.93 236.53 m 237.98 237.36 l S 237.98 236.53 m 238.02 238.59 l S 238.02 236.53 m 238.07 237.77 l S 238.07 236.53 m 238.11 242.90 l S 238.11 236.53 m 238.16 249.89 l S 238.16 236.53 m 238.21 252.77 l S 238.21 236.53 m 238.25 249.28 l S 238.25 236.53 m 238.30 250.51 l S 238.30 236.53 m 238.34 239.21 l S 238.34 236.53 m 238.39 239.62 l S 238.39 236.53 m 238.44 237.36 l S 238.44 236.53 m 238.48 237.15 l S 238.48 236.53 m 238.53 239.41 l S 238.53 236.53 m 238.58 242.49 l S 238.58 236.53 m 238.62 239.00 l S 238.62 236.53 m 238.67 237.36 l S 238.67 236.53 m 238.71 238.38 l S 238.71 236.53 m 238.76 237.56 l S 238.76 236.53 m 238.81 237.15 l S 238.81 236.53 m 238.85 238.38 l S 238.85 236.53 m 238.90 237.36 l S 238.90 236.53 m 238.94 237.15 l S 238.94 236.53 m 238.99 237.15 l S 238.99 236.53 m 239.04 236.94 l S 239.04 236.53 m 239.08 236.94 l S 239.08 236.53 m 239.13 236.94 l S 239.13 236.53 m 239.17 236.74 l S 239.17 236.53 m 239.22 237.15 l S 239.22 236.53 m 239.27 236.94 l S 239.27 236.53 m 239.31 236.94 l S 239.31 236.53 m 239.36 236.94 l S 239.36 236.53 m 239.40 236.94 l S 239.40 236.53 m 239.45 238.18 l S 239.45 236.53 m 239.50 237.15 l S 239.50 236.53 m 239.54 237.15 l S 239.54 236.53 m 239.59 237.36 l S 239.59 236.53 m 239.63 240.44 l S 239.63 236.53 m 239.68 237.36 l S 239.68 236.53 m 239.73 239.21 l S 239.73 236.53 m 239.77 245.58 l S 239.77 236.53 m 239.82 237.56 l S 239.82 236.53 m 239.86 237.36 l S 239.86 236.53 m 239.91 237.15 l S 239.91 236.53 m 239.96 236.74 l S 239.96 236.53 m 240.00 237.97 l S 240.00 236.53 m 240.05 238.38 l S 240.05 236.53 m 240.09 237.36 l S 240.09 236.53 m 240.14 237.15 l S 240.14 236.53 m 240.19 237.36 l S 240.19 236.53 m 240.23 237.15 l S 240.23 236.53 m 240.28 237.15 l S 240.28 236.53 m 240.32 237.15 l S 240.32 236.53 m 240.37 237.15 l S 240.37 236.53 m 240.42 237.36 l S 240.42 236.53 m 240.46 237.15 l S 240.46 236.53 m 240.51 236.94 l S 240.51 236.53 m 240.55 237.36 l S 240.55 236.53 m 240.60 237.36 l S 240.60 236.53 m 240.65 237.77 l S 240.65 236.53 m 240.69 236.94 l S 240.69 236.53 m 240.74 237.36 l S 240.74 236.53 m 240.78 236.94 l S 240.78 236.53 m 240.83 237.15 l S 240.83 236.53 m 240.88 236.94 l S 240.88 236.53 m 240.92 237.56 l S 240.92 236.53 m 240.97 237.15 l S 240.97 236.53 m 241.01 236.94 l S 241.01 236.53 m 241.06 237.15 l S 241.06 236.53 m 241.11 236.94 l S 241.11 236.53 m 241.15 236.94 l S 241.15 236.53 m 241.20 236.94 l S 241.20 236.53 m 241.24 236.94 l S 241.24 236.53 m 241.29 236.53 l S 241.29 236.53 m 241.34 236.94 l S 241.34 236.53 m 241.38 237.36 l S 241.38 236.53 m 241.43 237.36 l S 241.43 236.53 m 241.47 236.94 l S 241.47 236.53 m 241.52 236.94 l S 241.52 236.53 m 241.57 237.15 l S 241.57 236.53 m 241.61 237.15 l S 241.61 236.53 m 241.66 237.15 l S 241.66 236.53 m 241.70 238.79 l S 241.70 236.53 m 241.75 237.15 l S 241.75 236.53 m 241.80 243.93 l S 241.80 236.53 m 241.84 237.15 l S 241.84 236.53 m 241.89 237.15 l S 241.89 236.53 m 241.93 237.36 l S 241.93 236.53 m 241.98 237.15 l S 241.98 236.53 m 242.03 237.15 l S 242.03 236.53 m 242.07 236.94 l S 242.07 236.53 m 242.12 236.94 l S 242.12 236.53 m 242.16 237.15 l S 242.16 236.53 m 242.21 236.94 l S 242.21 236.53 m 242.26 237.15 l S 242.26 236.53 m 242.30 236.94 l S 242.30 236.53 m 242.35 236.94 l S 242.35 236.53 m 242.39 237.15 l S 242.39 236.53 m 242.44 236.94 l S 242.44 236.53 m 242.49 237.36 l S 242.49 236.53 m 242.53 238.18 l S 242.53 236.53 m 242.58 239.21 l S 242.58 236.53 m 242.62 237.56 l S 242.62 236.53 m 242.67 238.59 l S 242.67 236.53 m 242.72 239.21 l S 242.72 236.53 m 242.76 237.56 l S 242.76 236.53 m 242.81 245.99 l S 242.81 236.53 m 242.85 239.21 l S 242.85 236.53 m 242.90 241.26 l S 242.90 236.53 m 242.95 237.56 l S 242.95 236.53 m 242.99 239.21 l S 242.99 236.53 m 243.04 237.97 l S 243.04 236.53 m 243.08 237.36 l S 243.08 236.53 m 243.13 237.15 l S 243.13 236.53 m 243.18 237.15 l S 243.18 236.53 m 243.22 236.94 l S 243.22 236.53 m 243.27 237.15 l S 243.27 236.53 m 243.31 237.15 l S 243.31 236.53 m 243.36 237.15 l S 243.36 236.53 m 243.41 237.15 l S 243.41 236.53 m 243.45 237.15 l S 243.45 236.53 m 243.50 237.15 l S 243.50 236.53 m 243.54 237.15 l S 243.54 236.53 m 243.59 237.15 l S 243.59 236.53 m 243.64 236.94 l S 243.64 236.53 m 243.68 236.74 l S 243.68 236.53 m 243.73 236.94 l S 243.73 236.53 m 243.77 237.15 l S 243.77 236.53 m 243.82 237.36 l S 243.82 236.53 m 243.87 237.15 l S 243.87 236.53 m 243.91 237.15 l S 243.91 236.53 m 243.96 237.36 l S 243.96 236.53 m 244.00 237.15 l S 244.00 236.53 m 244.05 236.94 l S 244.05 236.53 m 244.10 237.15 l S 244.10 236.53 m 244.14 240.23 l S 244.14 236.53 m 244.19 241.05 l S 244.19 236.53 m 244.23 238.18 l S 244.23 236.53 m 244.28 237.77 l S 244.28 236.53 m 244.33 236.94 l S 244.33 236.53 m 244.37 236.94 l S 244.37 236.53 m 244.42 237.36 l S 244.42 236.53 m 244.46 236.94 l S 244.46 236.53 m 244.51 237.36 l S 244.51 236.53 m 244.56 237.15 l S 244.56 236.53 m 244.60 236.94 l S 244.60 236.53 m 244.65 236.94 l S 244.65 236.53 m 244.69 237.15 l S 244.69 236.53 m 244.74 240.85 l S 244.74 236.53 m 244.79 238.38 l S 244.79 236.53 m 244.83 238.59 l S 244.83 236.53 m 244.88 237.77 l S 244.88 236.53 m 244.92 237.36 l S 244.92 236.53 m 244.97 237.56 l S 244.97 236.53 m 245.02 237.15 l S 245.02 236.53 m 245.06 237.56 l S 245.06 236.53 m 245.11 237.77 l S 245.11 236.53 m 245.15 237.36 l S 245.15 236.53 m 245.20 236.94 l S 245.20 236.53 m 245.25 236.94 l S 245.25 236.53 m 245.29 237.56 l S 245.29 236.53 m 245.34 237.15 l S 245.34 236.53 m 245.38 237.36 l S 245.38 236.53 m 245.43 237.15 l S 245.43 236.53 m 245.48 237.36 l S 245.48 236.53 m 245.52 237.56 l S 245.52 236.53 m 245.57 237.36 l S 245.57 236.53 m 245.61 246.81 l S 245.61 236.53 m 245.66 244.14 l S 245.66 236.53 m 245.71 243.32 l S 245.71 236.53 m 245.75 237.36 l S 245.75 236.53 m 245.80 238.18 l S 245.80 236.53 m 245.84 238.79 l S 245.84 236.53 m 245.89 238.18 l S 245.89 236.53 m 245.94 237.15 l S 245.94 236.53 m 245.98 237.15 l S 245.98 236.53 m 246.03 236.94 l S 246.03 236.53 m 246.07 237.15 l S 246.07 236.53 m 246.12 237.15 l S 246.12 236.53 m 246.17 237.15 l S 246.17 236.53 m 246.21 237.15 l S 246.21 236.53 m 246.26 236.94 l S 246.26 236.53 m 246.30 237.15 l S 246.30 236.53 m 246.35 237.36 l S 246.35 236.53 m 246.40 236.94 l S 246.40 236.53 m 246.44 236.94 l S 246.44 236.53 m 246.49 237.36 l S 246.49 236.53 m 246.54 237.56 l S 246.54 236.53 m 246.58 237.36 l S 246.58 236.53 m 246.63 237.15 l S 246.63 236.53 m 246.67 237.15 l S 246.67 236.53 m 246.72 237.15 l S 246.72 236.53 m 246.77 237.36 l S 246.77 236.53 m 246.81 237.77 l S 246.81 236.53 m 246.86 237.15 l S 246.86 236.53 m 246.90 237.15 l S 246.90 236.53 m 246.95 239.21 l S 246.95 236.53 m 247.00 237.97 l S 247.00 236.53 m 247.04 237.77 l S 247.04 236.53 m 247.09 237.15 l S 247.09 236.53 m 247.13 237.36 l S 247.13 236.53 m 247.18 237.56 l S 247.18 236.53 m 247.23 237.56 l S 247.23 236.53 m 247.27 237.36 l S 247.27 236.53 m 247.32 237.15 l S 247.32 236.53 m 247.36 237.77 l S 247.36 236.53 m 247.41 237.36 l S 247.41 236.53 m 247.46 237.77 l S 247.46 236.53 m 247.50 236.94 l S 247.50 236.53 m 247.55 236.94 l S 247.55 236.53 m 247.59 237.15 l S 247.59 236.53 m 247.64 236.94 l S 247.64 236.53 m 247.69 237.15 l S 247.69 236.53 m 247.73 236.94 l S 247.73 236.53 m 247.78 237.15 l S 247.78 236.53 m 247.82 237.36 l S 247.82 236.53 m 247.87 237.15 l S 247.87 236.53 m 247.92 237.36 l S 247.92 236.53 m 247.96 237.56 l S 247.96 236.53 m 248.01 239.82 l S 248.01 236.53 m 248.05 260.99 l S 248.05 236.53 m 248.10 243.52 l S 248.10 236.53 m 248.15 236.94 l S 248.15 236.53 m 248.19 237.77 l S 248.19 236.53 m 248.24 238.38 l S 248.24 236.53 m 248.28 236.94 l S 248.28 236.53 m 248.33 237.77 l S 248.33 236.53 m 248.38 239.21 l S 248.38 236.53 m 248.42 237.77 l S 248.42 236.53 m 248.47 239.62 l S 248.47 236.53 m 248.51 239.82 l S 248.51 236.53 m 248.56 238.18 l S 248.56 236.53 m 248.61 240.44 l S 248.61 236.53 m 248.65 240.64 l S 248.65 236.53 m 248.70 241.67 l S 248.70 236.53 m 248.74 241.26 l S 248.74 236.53 m 248.79 237.15 l S 248.79 236.53 m 248.84 237.77 l S 248.84 236.53 m 248.88 246.81 l S 248.88 236.53 m 248.93 248.66 l S 248.93 236.53 m 248.97 244.34 l S 248.97 236.53 m 249.02 239.00 l S 249.02 236.53 m 249.07 251.74 l S 249.07 236.53 m 249.11 238.79 l S 249.11 236.53 m 249.16 238.18 l S 249.16 236.53 m 249.20 237.36 l S 249.20 236.53 m 249.25 237.15 l S 249.25 236.53 m 249.30 238.59 l S 249.30 236.53 m 249.34 236.94 l S 249.34 236.53 m 249.39 237.15 l S 249.39 236.53 m 249.43 239.00 l S 249.43 236.53 m 249.48 237.77 l S 249.48 236.53 m 249.53 237.77 l S 249.53 236.53 m 249.57 237.36 l S 249.57 236.53 m 249.62 237.77 l S 249.62 236.53 m 249.66 237.97 l S 249.66 236.53 m 249.71 237.36 l S 249.71 236.53 m 249.76 239.62 l S 249.76 236.53 m 249.80 239.21 l S 249.80 236.53 m 249.85 243.93 l S 249.85 236.53 m 249.89 241.47 l S 249.89 236.53 m 249.94 244.96 l S 249.94 236.53 m 249.99 240.64 l S 249.99 236.53 m 250.03 240.85 l S 250.03 236.53 m 250.08 237.56 l S 250.08 236.53 m 250.12 239.00 l S 250.12 236.53 m 250.17 240.64 l S 250.17 236.53 m 250.22 237.77 l S 250.22 236.53 m 250.26 237.56 l S 250.26 236.53 m 250.31 237.15 l S 250.31 236.53 m 250.35 237.15 l S 250.35 236.53 m 250.40 236.94 l S 250.40 236.53 m 250.45 237.77 l S Q q 59.04 73.44 198.72 29.52 re W n Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 73.44 m 256.73 73.44 l S 66.40 73.44 m 66.40 66.24 l S 93.59 73.44 m 93.59 66.24 l S 120.78 73.44 m 120.78 66.24 l S 147.97 73.44 m 147.97 66.24 l S 175.16 73.44 m 175.16 66.24 l S 202.35 73.44 m 202.35 66.24 l S 229.54 73.44 m 229.54 66.24 l S 256.73 73.44 m 256.73 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 44.55 47.52 Tm (0.0e+00) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 98.93 47.52 Tm (4.0e+07) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 153.31 47.52 Tm (8.0e+07) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 207.69 47.52 Tm (1.2e+08) Tj ET 59.04 74.53 m 59.04 96.95 l S 59.04 74.53 m 51.84 74.53 l S 59.04 82.01 m 51.84 82.01 l S 59.04 89.48 m 51.84 89.48 l S 59.04 96.95 m 51.84 96.95 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 57.69 Tm (0e+00) Tj ET 59.04 73.44 m 257.76 73.44 l 257.76 102.96 l 59.04 102.96 l 59.04 73.44 l S Q q 0.00 0.00 288.00 162.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 100.83 127.45 Tm (Chr 10, H3K3me3) Tj ET Q q 59.04 73.44 198.72 29.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 74.53 m 66.45 74.53 l S 66.45 74.53 m 66.49 74.59 l S 66.49 74.53 m 66.54 74.61 l S 66.54 74.53 m 66.58 75.29 l S 66.58 74.53 m 66.63 77.90 l S 66.63 74.53 m 66.68 80.50 l S 66.68 74.53 m 66.72 74.75 l S 66.72 74.53 m 66.77 74.67 l S 66.77 74.53 m 66.81 74.67 l S 66.81 74.53 m 66.86 75.18 l S 66.86 74.53 m 66.91 75.67 l S 66.91 74.53 m 66.95 74.78 l S 66.95 74.53 m 67.00 74.83 l S 67.00 74.53 m 67.04 74.75 l S 67.04 74.53 m 67.09 75.78 l S 67.09 74.53 m 67.14 79.60 l S 67.14 74.53 m 67.18 74.72 l S 67.18 74.53 m 67.23 74.72 l S 67.23 74.53 m 67.27 74.72 l S 67.27 74.53 m 67.32 74.70 l S 67.32 74.53 m 67.37 74.80 l S 67.37 74.53 m 67.41 74.78 l S 67.41 74.53 m 67.46 74.72 l S 67.46 74.53 m 67.50 74.75 l S 67.50 74.53 m 67.55 75.05 l S 67.55 74.53 m 67.60 74.72 l S 67.60 74.53 m 67.64 74.67 l S 67.64 74.53 m 67.69 74.70 l S 67.69 74.53 m 67.73 76.92 l S 67.73 74.53 m 67.78 74.70 l S 67.78 74.53 m 67.83 78.36 l S 67.83 74.53 m 67.87 76.19 l S 67.87 74.53 m 67.92 83.81 l S 67.92 74.53 m 67.96 75.46 l S 67.96 74.53 m 68.01 74.75 l S 68.01 74.53 m 68.06 74.70 l S 68.06 74.53 m 68.10 74.75 l S 68.10 74.53 m 68.15 74.94 l S 68.15 74.53 m 68.19 74.78 l S 68.19 74.53 m 68.24 74.83 l S 68.24 74.53 m 68.29 74.97 l S 68.29 74.53 m 68.33 74.75 l S 68.33 74.53 m 68.38 76.38 l S 68.38 74.53 m 68.42 74.78 l S 68.42 74.53 m 68.47 74.72 l S 68.47 74.53 m 68.52 74.86 l S 68.52 74.53 m 68.56 74.70 l S 68.56 74.53 m 68.61 74.72 l S 68.61 74.53 m 68.65 74.72 l S 68.65 74.53 m 68.70 74.72 l S 68.70 74.53 m 68.75 74.70 l S 68.75 74.53 m 68.79 74.78 l S 68.79 74.53 m 68.84 75.62 l S 68.84 74.53 m 68.88 74.75 l S 68.88 74.53 m 68.93 74.75 l S 68.93 74.53 m 68.98 74.75 l S 68.98 74.53 m 69.02 74.75 l S 69.02 74.53 m 69.07 75.24 l S 69.07 74.53 m 69.11 75.18 l S 69.11 74.53 m 69.16 74.75 l S 69.16 74.53 m 69.21 74.67 l S 69.21 74.53 m 69.25 74.72 l S 69.25 74.53 m 69.30 74.72 l S 69.30 74.53 m 69.34 74.78 l S 69.34 74.53 m 69.39 74.70 l S 69.39 74.53 m 69.44 74.70 l S 69.44 74.53 m 69.48 74.75 l S 69.48 74.53 m 69.53 74.70 l S 69.53 74.53 m 69.57 74.72 l S 69.57 74.53 m 69.62 74.70 l S 69.62 74.53 m 69.67 74.70 l S 69.67 74.53 m 69.71 74.70 l S 69.71 74.53 m 69.76 74.70 l S 69.76 74.53 m 69.80 74.75 l S 69.80 74.53 m 69.85 74.80 l S 69.85 74.53 m 69.90 74.70 l S 69.90 74.53 m 69.94 74.72 l S 69.94 74.53 m 69.99 74.72 l S 69.99 74.53 m 70.03 74.75 l S 70.03 74.53 m 70.08 74.70 l S 70.08 74.53 m 70.13 74.72 l S 70.13 74.53 m 70.17 74.70 l S 70.17 74.53 m 70.22 74.75 l S 70.22 74.53 m 70.26 74.80 l S 70.26 74.53 m 70.31 74.75 l S 70.31 74.53 m 70.36 74.67 l S 70.36 74.53 m 70.40 74.72 l S 70.40 74.53 m 70.45 74.70 l S 70.45 74.53 m 70.50 75.27 l S 70.50 74.53 m 70.54 74.89 l S 70.54 74.53 m 70.59 74.75 l S 70.59 74.53 m 70.63 76.30 l S 70.63 74.53 m 70.68 75.32 l S 70.68 74.53 m 70.73 74.67 l S 70.73 74.53 m 70.77 77.73 l S 70.77 74.53 m 70.82 77.06 l S 70.82 74.53 m 70.86 74.72 l S 70.86 74.53 m 70.91 74.75 l S 70.91 74.53 m 70.96 74.72 l S 70.96 74.53 m 71.00 74.78 l S 71.00 74.53 m 71.05 74.75 l S 71.05 74.53 m 71.09 74.78 l S 71.09 74.53 m 71.14 74.78 l S 71.14 74.53 m 71.19 78.57 l S 71.19 74.53 m 71.23 74.72 l S 71.23 74.53 m 71.28 74.91 l S 71.28 74.53 m 71.32 74.70 l S 71.32 74.53 m 71.37 74.83 l S 71.37 74.53 m 71.42 76.02 l S 71.42 74.53 m 71.46 75.59 l S 71.46 74.53 m 71.51 74.72 l S 71.51 74.53 m 71.55 76.02 l S 71.55 74.53 m 71.60 82.04 l S 71.60 74.53 m 71.65 75.86 l S 71.65 74.53 m 71.69 76.30 l S 71.69 74.53 m 71.74 75.48 l S 71.74 74.53 m 71.78 74.72 l S 71.78 74.53 m 71.83 76.70 l S 71.83 74.53 m 71.88 75.32 l S 71.88 74.53 m 71.92 75.24 l S 71.92 74.53 m 71.97 76.54 l S 71.97 74.53 m 72.01 75.46 l S 72.01 74.53 m 72.06 75.43 l S 72.06 74.53 m 72.11 74.91 l S 72.11 74.53 m 72.15 74.70 l S 72.15 74.53 m 72.20 74.75 l S 72.20 74.53 m 72.24 74.86 l S 72.24 74.53 m 72.29 74.72 l S 72.29 74.53 m 72.34 74.80 l S 72.34 74.53 m 72.38 74.70 l S 72.38 74.53 m 72.43 74.72 l S 72.43 74.53 m 72.47 74.70 l S 72.47 74.53 m 72.52 74.78 l S 72.52 74.53 m 72.57 74.75 l S 72.57 74.53 m 72.61 75.27 l S 72.61 74.53 m 72.66 74.70 l S 72.66 74.53 m 72.70 74.70 l S 72.70 74.53 m 72.75 74.83 l S 72.75 74.53 m 72.80 75.21 l S 72.80 74.53 m 72.84 74.75 l S 72.84 74.53 m 72.89 74.70 l S 72.89 74.53 m 72.93 74.72 l S 72.93 74.53 m 72.98 74.75 l S 72.98 74.53 m 73.03 75.40 l S 73.03 74.53 m 73.07 74.91 l S 73.07 74.53 m 73.12 74.97 l S 73.12 74.53 m 73.16 74.70 l S 73.16 74.53 m 73.21 74.67 l S 73.21 74.53 m 73.26 74.64 l S 73.26 74.53 m 73.30 74.78 l S 73.30 74.53 m 73.35 74.70 l S 73.35 74.53 m 73.39 81.69 l S 73.39 74.53 m 73.44 74.75 l S 73.44 74.53 m 73.49 74.72 l S 73.49 74.53 m 73.53 74.70 l S 73.53 74.53 m 73.58 74.70 l S 73.58 74.53 m 73.62 74.75 l S 73.62 74.53 m 73.67 77.35 l S 73.67 74.53 m 73.72 75.24 l S 73.72 74.53 m 73.76 74.72 l S 73.76 74.53 m 73.81 79.79 l S 73.81 74.53 m 73.85 78.55 l S 73.85 74.53 m 73.90 74.75 l S 73.90 74.53 m 73.95 74.83 l S 73.95 74.53 m 73.99 74.91 l S 73.99 74.53 m 74.04 76.21 l S 74.04 74.53 m 74.08 74.67 l S 74.08 74.53 m 74.13 74.64 l S 74.13 74.53 m 74.18 75.05 l S 74.18 74.53 m 74.22 80.04 l S 74.22 74.53 m 74.27 82.56 l S 74.27 74.53 m 74.31 75.51 l S 74.31 74.53 m 74.36 74.70 l S 74.36 74.53 m 74.41 75.02 l S 74.41 74.53 m 74.45 78.98 l S 74.45 74.53 m 74.50 74.75 l S 74.50 74.53 m 74.54 78.33 l S 74.54 74.53 m 74.59 74.75 l S 74.59 74.53 m 74.64 75.18 l S 74.64 74.53 m 74.68 81.31 l S 74.68 74.53 m 74.73 74.97 l S 74.73 74.53 m 74.77 81.42 l S 74.77 74.53 m 74.82 76.30 l S 74.82 74.53 m 74.87 76.70 l S 74.87 74.53 m 74.91 76.49 l S 74.91 74.53 m 74.96 76.76 l S 74.96 74.53 m 75.00 74.72 l S 75.00 74.53 m 75.05 75.51 l S 75.05 74.53 m 75.10 75.56 l S 75.10 74.53 m 75.14 75.18 l S 75.14 74.53 m 75.19 74.89 l S 75.19 74.53 m 75.23 75.65 l S 75.23 74.53 m 75.28 74.70 l S 75.28 74.53 m 75.33 76.92 l S 75.33 74.53 m 75.37 75.51 l S 75.37 74.53 m 75.42 75.51 l S 75.42 74.53 m 75.46 83.56 l S 75.46 74.53 m 75.51 77.14 l S 75.51 74.53 m 75.56 74.80 l S 75.56 74.53 m 75.60 75.13 l S 75.60 74.53 m 75.65 74.78 l S 75.65 74.53 m 75.69 74.70 l S 75.69 74.53 m 75.74 74.70 l S 75.74 74.53 m 75.79 74.70 l S 75.79 74.53 m 75.83 74.64 l S 75.83 74.53 m 75.88 74.70 l S 75.88 74.53 m 75.92 74.78 l S 75.92 74.53 m 75.97 75.78 l S 75.97 74.53 m 76.02 74.75 l S 76.02 74.53 m 76.06 74.72 l S 76.06 74.53 m 76.11 74.97 l S 76.11 74.53 m 76.15 74.75 l S 76.15 74.53 m 76.20 74.70 l S 76.20 74.53 m 76.25 74.75 l S 76.25 74.53 m 76.29 75.21 l S 76.29 74.53 m 76.34 74.80 l S 76.34 74.53 m 76.38 74.75 l S 76.38 74.53 m 76.43 75.16 l S 76.43 74.53 m 76.48 74.75 l S 76.48 74.53 m 76.52 74.72 l S 76.52 74.53 m 76.57 74.72 l S 76.57 74.53 m 76.61 78.71 l S 76.61 74.53 m 76.66 74.75 l S 76.66 74.53 m 76.71 77.22 l S 76.71 74.53 m 76.75 74.86 l S 76.75 74.53 m 76.80 74.86 l S 76.80 74.53 m 76.84 74.70 l S 76.84 74.53 m 76.89 74.70 l S 76.89 74.53 m 76.94 75.29 l S 76.94 74.53 m 76.98 74.70 l S 76.98 74.53 m 77.03 74.75 l S 77.03 74.53 m 77.07 74.72 l S 77.07 74.53 m 77.12 80.39 l S 77.12 74.53 m 77.17 82.37 l S 77.17 74.53 m 77.21 74.75 l S 77.21 74.53 m 77.26 74.78 l S 77.26 74.53 m 77.30 74.67 l S 77.30 74.53 m 77.35 74.78 l S 77.35 74.53 m 77.40 74.78 l S 77.40 74.53 m 77.44 75.78 l S 77.44 74.53 m 77.49 80.36 l S 77.49 74.53 m 77.53 74.89 l S 77.53 74.53 m 77.58 78.11 l S 77.58 74.53 m 77.63 74.80 l S 77.63 74.53 m 77.67 74.91 l S 77.67 74.53 m 77.72 74.97 l S 77.72 74.53 m 77.76 74.91 l S 77.76 74.53 m 77.81 74.67 l S 77.81 74.53 m 77.86 76.38 l S 77.86 74.53 m 77.90 74.91 l S 77.90 74.53 m 77.95 74.97 l S 77.95 74.53 m 77.99 74.89 l S 77.99 74.53 m 78.04 74.80 l S 78.04 74.53 m 78.09 74.91 l S 78.09 74.53 m 78.13 74.67 l S 78.13 74.53 m 78.18 74.78 l S 78.18 74.53 m 78.22 74.86 l S 78.22 74.53 m 78.27 74.70 l S 78.27 74.53 m 78.32 74.72 l S 78.32 74.53 m 78.36 74.72 l S 78.36 74.53 m 78.41 74.75 l S 78.41 74.53 m 78.46 74.70 l S 78.46 74.53 m 78.50 74.75 l S 78.50 74.53 m 78.55 74.94 l S 78.55 74.53 m 78.59 74.67 l S 78.59 74.53 m 78.64 74.75 l S 78.64 74.53 m 78.69 74.72 l S 78.69 74.53 m 78.73 74.78 l S 78.73 74.53 m 78.78 74.99 l S 78.78 74.53 m 78.82 74.80 l S 78.82 74.53 m 78.87 74.80 l S 78.87 74.53 m 78.92 74.75 l S 78.92 74.53 m 78.96 74.80 l S 78.96 74.53 m 79.01 74.72 l S 79.01 74.53 m 79.05 75.05 l S 79.05 74.53 m 79.10 75.37 l S 79.10 74.53 m 79.15 74.72 l S 79.15 74.53 m 79.19 75.21 l S 79.19 74.53 m 79.24 74.70 l S 79.24 74.53 m 79.28 74.72 l S 79.28 74.53 m 79.33 74.67 l S 79.33 74.53 m 79.38 74.80 l S 79.38 74.53 m 79.42 74.67 l S 79.42 74.53 m 79.47 74.70 l S 79.47 74.53 m 79.51 74.70 l S 79.51 74.53 m 79.56 74.64 l S 79.56 74.53 m 79.61 74.70 l S 79.61 74.53 m 79.65 74.67 l S 79.65 74.53 m 79.70 74.70 l S 79.70 74.53 m 79.74 74.70 l S 79.74 74.53 m 79.79 74.72 l S 79.79 74.53 m 79.84 74.70 l S 79.84 74.53 m 79.88 74.72 l S 79.88 74.53 m 79.93 74.70 l S 79.93 74.53 m 79.97 74.70 l S 79.97 74.53 m 80.02 74.67 l S 80.02 74.53 m 80.07 74.67 l S 80.07 74.53 m 80.11 74.72 l S 80.11 74.53 m 80.16 74.72 l S 80.16 74.53 m 80.20 74.67 l S 80.20 74.53 m 80.25 74.67 l S 80.25 74.53 m 80.30 76.24 l S 80.30 74.53 m 80.34 76.24 l S 80.34 74.53 m 80.39 74.72 l S 80.39 74.53 m 80.43 74.70 l S 80.43 74.53 m 80.48 74.70 l S 80.48 74.53 m 80.53 74.67 l S 80.53 74.53 m 80.57 74.67 l S 80.57 74.53 m 80.62 74.72 l S 80.62 74.53 m 80.66 74.70 l S 80.66 74.53 m 80.71 74.86 l S 80.71 74.53 m 80.76 74.70 l S 80.76 74.53 m 80.80 74.72 l S 80.80 74.53 m 80.85 74.70 l S 80.85 74.53 m 80.89 74.72 l S 80.89 74.53 m 80.94 74.70 l S 80.94 74.53 m 80.99 74.72 l S 80.99 74.53 m 81.03 74.70 l S 81.03 74.53 m 81.08 74.67 l S 81.08 74.53 m 81.12 74.70 l S 81.12 74.53 m 81.17 74.70 l S 81.17 74.53 m 81.22 74.72 l S 81.22 74.53 m 81.26 74.75 l S 81.26 74.53 m 81.31 74.72 l S 81.31 74.53 m 81.35 74.80 l S 81.35 74.53 m 81.40 74.75 l S 81.40 74.53 m 81.45 74.72 l S 81.45 74.53 m 81.49 75.92 l S 81.49 74.53 m 81.54 74.89 l S 81.54 74.53 m 81.58 74.89 l S 81.58 74.53 m 81.63 74.83 l S 81.63 74.53 m 81.68 76.65 l S 81.68 74.53 m 81.72 84.92 l S 81.72 74.53 m 81.77 75.70 l S 81.77 74.53 m 81.81 75.05 l S 81.81 74.53 m 81.86 74.78 l S 81.86 74.53 m 81.91 74.80 l S 81.91 74.53 m 81.95 74.72 l S 81.95 74.53 m 82.00 75.08 l S 82.00 74.53 m 82.04 75.08 l S 82.04 74.53 m 82.09 75.02 l S 82.09 74.53 m 82.14 74.78 l S 82.14 74.53 m 82.18 74.70 l S 82.18 74.53 m 82.23 75.94 l S 82.23 74.53 m 82.27 74.70 l S 82.27 74.53 m 82.32 77.90 l S 82.32 74.53 m 82.37 75.18 l S 82.37 74.53 m 82.41 76.30 l S 82.41 74.53 m 82.46 74.72 l S 82.46 74.53 m 82.50 76.16 l S 82.50 74.53 m 82.55 74.67 l S 82.55 74.53 m 82.60 75.51 l S 82.60 74.53 m 82.64 76.08 l S 82.64 74.53 m 82.69 74.86 l S 82.69 74.53 m 82.73 74.70 l S 82.73 74.53 m 82.78 74.80 l S 82.78 74.53 m 82.83 74.70 l S 82.83 74.53 m 82.87 74.97 l S 82.87 74.53 m 82.92 80.20 l S 82.92 74.53 m 82.96 80.72 l S 82.96 74.53 m 83.01 78.47 l S 83.01 74.53 m 83.06 74.61 l S 83.06 74.53 m 83.10 84.76 l S 83.10 74.53 m 83.15 74.99 l S 83.15 74.53 m 83.19 76.24 l S 83.19 74.53 m 83.24 74.67 l S 83.24 74.53 m 83.29 74.70 l S 83.29 74.53 m 83.33 82.83 l S 83.33 74.53 m 83.38 74.72 l S 83.38 74.53 m 83.42 74.67 l S 83.42 74.53 m 83.47 75.43 l S 83.47 74.53 m 83.52 74.78 l S 83.52 74.53 m 83.56 74.70 l S 83.56 74.53 m 83.61 74.80 l S 83.61 74.53 m 83.65 79.06 l S 83.65 74.53 m 83.70 74.89 l S 83.70 74.53 m 83.75 74.67 l S 83.75 74.53 m 83.79 74.75 l S 83.79 74.53 m 83.84 74.70 l S 83.84 74.53 m 83.88 74.70 l S 83.88 74.53 m 83.93 74.70 l S 83.93 74.53 m 83.98 74.83 l S 83.98 74.53 m 84.02 74.70 l S 84.02 74.53 m 84.07 74.72 l S 84.07 74.53 m 84.11 74.78 l S 84.11 74.53 m 84.16 74.72 l S 84.16 74.53 m 84.21 74.75 l S 84.21 74.53 m 84.25 74.72 l S 84.25 74.53 m 84.30 74.75 l S 84.30 74.53 m 84.34 84.11 l S 84.34 74.53 m 84.39 74.78 l S 84.39 74.53 m 84.44 75.59 l S 84.44 74.53 m 84.48 74.67 l S 84.48 74.53 m 84.53 74.67 l S 84.53 74.53 m 84.57 74.67 l S 84.57 74.53 m 84.62 77.65 l S 84.62 74.53 m 84.67 78.25 l S 84.67 74.53 m 84.71 75.67 l S 84.71 74.53 m 84.76 74.67 l S 84.76 74.53 m 84.80 76.19 l S 84.80 74.53 m 84.85 74.70 l S 84.85 74.53 m 84.90 74.67 l S 84.90 74.53 m 84.94 74.89 l S 84.94 74.53 m 84.99 78.66 l S 84.99 74.53 m 85.03 74.72 l S 85.03 74.53 m 85.08 74.70 l S 85.08 74.53 m 85.13 74.72 l S 85.13 74.53 m 85.17 76.32 l S 85.17 74.53 m 85.22 74.97 l S 85.22 74.53 m 85.26 75.24 l S 85.26 74.53 m 85.31 75.32 l S 85.31 74.53 m 85.36 74.75 l S 85.36 74.53 m 85.40 76.16 l S 85.40 74.53 m 85.45 74.75 l S 85.45 74.53 m 85.49 75.05 l S 85.49 74.53 m 85.54 74.78 l S 85.54 74.53 m 85.59 76.84 l S 85.59 74.53 m 85.63 74.75 l S 85.63 74.53 m 85.68 74.72 l S 85.68 74.53 m 85.72 74.78 l S 85.72 74.53 m 85.77 74.70 l S 85.77 74.53 m 85.82 80.12 l S 85.82 74.53 m 85.86 74.78 l S 85.86 74.53 m 85.91 74.83 l S 85.91 74.53 m 85.95 74.72 l S 85.95 74.53 m 86.00 74.72 l S 86.00 74.53 m 86.05 74.86 l S 86.05 74.53 m 86.09 74.89 l S 86.09 74.53 m 86.14 74.72 l S 86.14 74.53 m 86.18 74.80 l S 86.18 74.53 m 86.23 74.72 l S 86.23 74.53 m 86.28 74.99 l S 86.28 74.53 m 86.32 82.53 l S 86.32 74.53 m 86.37 79.22 l S 86.37 74.53 m 86.42 74.70 l S 86.42 74.53 m 86.46 76.89 l S 86.46 74.53 m 86.51 74.72 l S 86.51 74.53 m 86.55 75.08 l S 86.55 74.53 m 86.60 74.72 l S 86.60 74.53 m 86.65 74.75 l S 86.65 74.53 m 86.69 84.08 l S 86.69 74.53 m 86.74 74.70 l S 86.74 74.53 m 86.78 80.47 l S 86.78 74.53 m 86.83 74.78 l S 86.83 74.53 m 86.88 83.43 l S 86.88 74.53 m 86.92 74.70 l S 86.92 74.53 m 86.97 74.75 l S 86.97 74.53 m 87.01 74.72 l S 87.01 74.53 m 87.06 79.03 l S 87.06 74.53 m 87.11 74.86 l S 87.11 74.53 m 87.15 81.72 l S 87.15 74.53 m 87.20 76.84 l S 87.20 74.53 m 87.24 74.70 l S 87.24 74.53 m 87.29 79.98 l S 87.29 74.53 m 87.34 74.80 l S 87.34 74.53 m 87.38 74.72 l S 87.38 74.53 m 87.43 75.16 l S 87.43 74.53 m 87.47 74.72 l S 87.47 74.53 m 87.52 74.91 l S 87.52 74.53 m 87.57 74.72 l S 87.57 74.53 m 87.61 74.70 l S 87.61 74.53 m 87.66 74.72 l S 87.66 74.53 m 87.70 74.70 l S 87.70 74.53 m 87.75 74.70 l S 87.75 74.53 m 87.80 74.72 l S 87.80 74.53 m 87.84 74.67 l S 87.84 74.53 m 87.89 74.72 l S 87.89 74.53 m 87.93 74.75 l S 87.93 74.53 m 87.98 74.91 l S 87.98 74.53 m 88.03 74.75 l S 88.03 74.53 m 88.07 75.40 l S 88.07 74.53 m 88.12 83.97 l S 88.12 74.53 m 88.16 74.72 l S 88.16 74.53 m 88.21 74.72 l S 88.21 74.53 m 88.26 74.70 l S 88.26 74.53 m 88.30 74.67 l S 88.30 74.53 m 88.35 74.72 l S 88.35 74.53 m 88.39 74.72 l S 88.39 74.53 m 88.44 74.72 l S 88.44 74.53 m 88.49 74.67 l S 88.49 74.53 m 88.53 74.67 l S 88.53 74.53 m 88.58 74.70 l S 88.58 74.53 m 88.62 74.75 l S 88.62 74.53 m 88.67 74.67 l S 88.67 74.53 m 88.72 74.64 l S 88.72 74.53 m 88.76 74.80 l S 88.76 74.53 m 88.81 74.75 l S 88.81 74.53 m 88.85 74.75 l S 88.85 74.53 m 88.90 79.66 l S 88.90 74.53 m 88.95 74.67 l S 88.95 74.53 m 88.99 76.57 l S 88.99 74.53 m 89.04 74.70 l S 89.04 74.53 m 89.08 75.16 l S 89.08 74.53 m 89.13 74.75 l S 89.13 74.53 m 89.18 74.67 l S 89.18 74.53 m 89.22 74.75 l S 89.22 74.53 m 89.27 74.78 l S 89.27 74.53 m 89.31 74.70 l S 89.31 74.53 m 89.36 74.83 l S 89.36 74.53 m 89.41 80.85 l S 89.41 74.53 m 89.45 74.67 l S 89.45 74.53 m 89.50 75.65 l S 89.50 74.53 m 89.54 74.67 l S 89.54 74.53 m 89.59 74.83 l S 89.59 74.53 m 89.64 74.89 l S 89.64 74.53 m 89.68 75.67 l S 89.68 74.53 m 89.73 74.67 l S 89.73 74.53 m 89.77 74.72 l S 89.77 74.53 m 89.82 74.75 l S 89.82 74.53 m 89.87 74.80 l S 89.87 74.53 m 89.91 81.50 l S 89.91 74.53 m 89.96 79.39 l S 89.96 74.53 m 90.00 74.78 l S 90.00 74.53 m 90.05 74.72 l S 90.05 74.53 m 90.10 74.78 l S 90.10 74.53 m 90.14 74.72 l S 90.14 74.53 m 90.19 74.70 l S 90.19 74.53 m 90.23 77.00 l S 90.23 74.53 m 90.28 76.54 l S 90.28 74.53 m 90.33 75.51 l S 90.33 74.53 m 90.37 74.70 l S 90.37 74.53 m 90.42 74.64 l S 90.42 74.53 m 90.46 79.03 l S 90.46 74.53 m 90.51 87.71 l S 90.51 74.53 m 90.56 75.08 l S 90.56 74.53 m 90.60 74.70 l S 90.60 74.53 m 90.65 74.67 l S 90.65 74.53 m 90.69 74.56 l S 90.69 74.53 m 90.74 74.56 l S 90.74 74.53 m 90.79 74.56 l S 90.79 74.53 m 90.83 74.56 l S 90.83 74.53 m 90.88 74.56 l S 90.88 74.53 m 90.92 74.59 l S 90.92 74.53 m 90.97 74.53 l S 90.97 74.53 m 91.02 74.56 l S 91.02 74.53 m 91.06 74.56 l S 91.06 74.53 m 91.11 74.59 l S 91.11 74.53 m 91.15 74.56 l S 91.15 74.53 m 91.20 74.61 l S 91.20 74.53 m 91.25 74.64 l S 91.25 74.53 m 91.29 74.72 l S 91.29 74.53 m 91.34 74.70 l S 91.34 74.53 m 91.38 74.72 l S 91.38 74.53 m 91.43 74.67 l S 91.43 74.53 m 91.48 74.72 l S 91.48 74.53 m 91.52 74.75 l S 91.52 74.53 m 91.57 74.70 l S 91.57 74.53 m 91.61 74.83 l S 91.61 74.53 m 91.66 74.72 l S 91.66 74.53 m 91.71 74.67 l S 91.71 74.53 m 91.75 74.67 l S 91.75 74.53 m 91.80 74.70 l S 91.80 74.53 m 91.84 74.72 l S 91.84 74.53 m 91.89 74.91 l S 91.89 74.53 m 91.94 74.70 l S 91.94 74.53 m 91.98 74.99 l S 91.98 74.53 m 92.03 75.29 l S 92.03 74.53 m 92.07 74.70 l S 92.07 74.53 m 92.12 74.75 l S 92.12 74.53 m 92.17 74.70 l S 92.17 74.53 m 92.21 85.79 l S 92.21 74.53 m 92.26 83.92 l S 92.26 74.53 m 92.30 74.70 l S 92.30 74.53 m 92.35 74.70 l S 92.35 74.53 m 92.40 74.72 l S 92.40 74.53 m 92.44 74.67 l S 92.44 74.53 m 92.49 74.64 l S 92.49 74.53 m 92.53 74.64 l S 92.53 74.53 m 92.58 74.67 l S 92.58 74.53 m 92.63 74.70 l S 92.63 74.53 m 92.67 74.64 l S 92.67 74.53 m 92.72 74.64 l S 92.72 74.53 m 92.76 74.70 l S 92.76 74.53 m 92.81 74.67 l S 92.81 74.53 m 92.86 74.67 l S 92.86 74.53 m 92.90 74.64 l S 92.90 74.53 m 92.95 74.72 l S 92.95 74.53 m 92.99 74.70 l S 92.99 74.53 m 93.04 74.64 l S 93.04 74.53 m 93.09 74.67 l S 93.09 74.53 m 93.13 74.67 l S 93.13 74.53 m 93.18 74.67 l S 93.18 74.53 m 93.22 74.67 l S 93.22 74.53 m 93.27 74.67 l S 93.27 74.53 m 93.32 74.67 l S 93.32 74.53 m 93.36 74.70 l S 93.36 74.53 m 93.41 74.64 l S 93.41 74.53 m 93.45 74.70 l S 93.45 74.53 m 93.50 74.67 l S 93.50 74.53 m 93.55 74.72 l S 93.55 74.53 m 93.59 74.70 l S 93.59 74.53 m 93.64 74.67 l S 93.64 74.53 m 93.68 74.70 l S 93.68 74.53 m 93.73 74.67 l S 93.73 74.53 m 93.78 74.70 l S 93.78 74.53 m 93.82 74.97 l S 93.82 74.53 m 93.87 74.64 l S 93.87 74.53 m 93.91 74.70 l S 93.91 74.53 m 93.96 74.67 l S 93.96 74.53 m 94.01 74.70 l S 94.01 74.53 m 94.05 74.70 l S 94.05 74.53 m 94.10 74.67 l S 94.10 74.53 m 94.14 74.70 l S 94.14 74.53 m 94.19 74.67 l S 94.19 74.53 m 94.24 74.70 l S 94.24 74.53 m 94.28 74.64 l S 94.28 74.53 m 94.33 74.67 l S 94.33 74.53 m 94.37 74.67 l S 94.37 74.53 m 94.42 74.72 l S 94.42 74.53 m 94.47 74.67 l S 94.47 74.53 m 94.51 74.70 l S 94.51 74.53 m 94.56 74.70 l S 94.56 74.53 m 94.61 74.70 l S 94.61 74.53 m 94.65 74.72 l S 94.65 74.53 m 94.70 74.67 l S 94.70 74.53 m 94.74 74.70 l S 94.74 74.53 m 94.79 74.67 l S 94.79 74.53 m 94.84 74.70 l S 94.84 74.53 m 94.88 74.67 l S 94.88 74.53 m 94.93 74.67 l S 94.93 74.53 m 94.97 74.72 l S 94.97 74.53 m 95.02 74.72 l S 95.02 74.53 m 95.07 74.70 l S 95.07 74.53 m 95.11 74.67 l S 95.11 74.53 m 95.16 74.67 l S 95.16 74.53 m 95.20 74.72 l S 95.20 74.53 m 95.25 74.72 l S 95.25 74.53 m 95.30 74.70 l S 95.30 74.53 m 95.34 74.67 l S 95.34 74.53 m 95.39 74.70 l S 95.39 74.53 m 95.43 74.70 l S 95.43 74.53 m 95.48 74.75 l S 95.48 74.53 m 95.53 74.70 l S 95.53 74.53 m 95.57 74.80 l S 95.57 74.53 m 95.62 74.70 l S 95.62 74.53 m 95.66 74.97 l S 95.66 74.53 m 95.71 74.78 l S 95.71 74.53 m 95.76 74.67 l S 95.76 74.53 m 95.80 74.78 l S 95.80 74.53 m 95.85 74.61 l S 95.85 74.53 m 95.89 74.75 l S 95.89 74.53 m 95.94 75.10 l S 95.94 74.53 m 95.99 75.35 l S 95.99 74.53 m 96.03 74.75 l S 96.03 74.53 m 96.08 77.22 l S 96.08 74.53 m 96.12 78.44 l S 96.12 74.53 m 96.17 77.00 l S 96.17 74.53 m 96.22 74.64 l S 96.22 74.53 m 96.26 74.99 l S 96.26 74.53 m 96.31 74.72 l S 96.31 74.53 m 96.35 74.72 l S 96.35 74.53 m 96.40 74.78 l S 96.40 74.53 m 96.45 75.02 l S 96.45 74.53 m 96.49 74.80 l S 96.49 74.53 m 96.54 74.72 l S 96.54 74.53 m 96.58 74.70 l S 96.58 74.53 m 96.63 74.75 l S 96.63 74.53 m 96.68 74.75 l S 96.68 74.53 m 96.72 74.80 l S 96.72 74.53 m 96.77 79.03 l S 96.77 74.53 m 96.81 78.28 l S 96.81 74.53 m 96.86 74.75 l S 96.86 74.53 m 96.91 74.67 l S 96.91 74.53 m 96.95 74.72 l S 96.95 74.53 m 97.00 75.73 l S 97.00 74.53 m 97.04 74.78 l S 97.04 74.53 m 97.09 78.06 l S 97.09 74.53 m 97.14 77.76 l S 97.14 74.53 m 97.18 74.75 l S 97.18 74.53 m 97.23 78.95 l S 97.23 74.53 m 97.27 75.05 l S 97.27 74.53 m 97.32 74.67 l S 97.32 74.53 m 97.37 79.06 l S 97.37 74.53 m 97.41 75.56 l S 97.41 74.53 m 97.46 75.89 l S 97.46 74.53 m 97.50 74.72 l S 97.50 74.53 m 97.55 74.72 l S 97.55 74.53 m 97.60 75.89 l S 97.60 74.53 m 97.64 75.40 l S 97.64 74.53 m 97.69 75.46 l S 97.69 74.53 m 97.73 79.47 l S 97.73 74.53 m 97.78 74.70 l S 97.78 74.53 m 97.83 74.70 l S 97.83 74.53 m 97.87 74.70 l S 97.87 74.53 m 97.92 74.86 l S 97.92 74.53 m 97.96 74.72 l S 97.96 74.53 m 98.01 74.75 l S 98.01 74.53 m 98.06 81.04 l S 98.06 74.53 m 98.10 74.72 l S 98.10 74.53 m 98.15 74.86 l S 98.15 74.53 m 98.19 74.72 l S 98.19 74.53 m 98.24 74.78 l S 98.24 74.53 m 98.29 77.14 l S 98.29 74.53 m 98.33 74.72 l S 98.33 74.53 m 98.38 74.78 l S 98.38 74.53 m 98.42 74.75 l S 98.42 74.53 m 98.47 74.67 l S 98.47 74.53 m 98.52 74.75 l S 98.52 74.53 m 98.56 74.67 l S 98.56 74.53 m 98.61 77.62 l S 98.61 74.53 m 98.65 75.48 l S 98.65 74.53 m 98.70 74.78 l S 98.70 74.53 m 98.75 79.79 l S 98.75 74.53 m 98.79 74.70 l S 98.79 74.53 m 98.84 74.94 l S 98.84 74.53 m 98.88 74.83 l S 98.88 74.53 m 98.93 74.75 l S 98.93 74.53 m 98.98 74.67 l S 98.98 74.53 m 99.02 74.75 l S 99.02 74.53 m 99.07 75.08 l S 99.07 74.53 m 99.11 74.83 l S 99.11 74.53 m 99.16 74.72 l S 99.16 74.53 m 99.21 74.70 l S 99.21 74.53 m 99.25 74.67 l S 99.25 74.53 m 99.30 74.75 l S 99.30 74.53 m 99.34 74.67 l S 99.34 74.53 m 99.39 74.72 l S 99.39 74.53 m 99.44 74.67 l S 99.44 74.53 m 99.48 74.67 l S 99.48 74.53 m 99.53 74.67 l S 99.53 74.53 m 99.57 74.64 l S 99.57 74.53 m 99.62 74.75 l S 99.62 74.53 m 99.67 74.70 l S 99.67 74.53 m 99.71 74.67 l S 99.71 74.53 m 99.76 74.67 l S 99.76 74.53 m 99.80 75.32 l S 99.80 74.53 m 99.85 74.67 l S 99.85 74.53 m 99.90 74.70 l S 99.90 74.53 m 99.94 74.67 l S 99.94 74.53 m 99.99 74.75 l S 99.99 74.53 m 100.03 74.72 l S 100.03 74.53 m 100.08 74.67 l S 100.08 74.53 m 100.13 76.49 l S 100.13 74.53 m 100.17 74.70 l S 100.17 74.53 m 100.22 75.48 l S 100.22 74.53 m 100.26 74.70 l S 100.26 74.53 m 100.31 74.67 l S 100.31 74.53 m 100.36 75.73 l S 100.36 74.53 m 100.40 74.72 l S 100.40 74.53 m 100.45 75.10 l S 100.45 74.53 m 100.49 78.68 l S 100.49 74.53 m 100.54 74.64 l S 100.54 74.53 m 100.59 74.75 l S 100.59 74.53 m 100.63 74.80 l S 100.63 74.53 m 100.68 76.32 l S 100.68 74.53 m 100.72 75.18 l S 100.72 74.53 m 100.77 75.32 l S 100.77 74.53 m 100.82 76.81 l S 100.82 74.53 m 100.86 78.49 l S 100.86 74.53 m 100.91 74.78 l S 100.91 74.53 m 100.95 75.24 l S 100.95 74.53 m 101.00 75.08 l S 101.00 74.53 m 101.05 74.67 l S 101.05 74.53 m 101.09 75.59 l S 101.09 74.53 m 101.14 74.75 l S 101.14 74.53 m 101.18 74.67 l S 101.18 74.53 m 101.23 74.75 l S 101.23 74.53 m 101.28 74.64 l S 101.28 74.53 m 101.32 74.91 l S 101.32 74.53 m 101.37 74.70 l S 101.37 74.53 m 101.41 74.70 l S 101.41 74.53 m 101.46 74.72 l S 101.46 74.53 m 101.51 74.64 l S 101.51 74.53 m 101.55 74.70 l S 101.55 74.53 m 101.60 74.70 l S 101.60 74.53 m 101.64 74.67 l S 101.64 74.53 m 101.69 74.70 l S 101.69 74.53 m 101.74 74.67 l S 101.74 74.53 m 101.78 74.67 l S 101.78 74.53 m 101.83 74.67 l S 101.83 74.53 m 101.87 74.67 l S 101.87 74.53 m 101.92 74.72 l S 101.92 74.53 m 101.97 78.36 l S 101.97 74.53 m 102.01 74.70 l S 102.01 74.53 m 102.06 74.72 l S 102.06 74.53 m 102.10 74.72 l S 102.10 74.53 m 102.15 75.48 l S 102.15 74.53 m 102.20 74.70 l S 102.20 74.53 m 102.24 74.70 l S 102.24 74.53 m 102.29 74.67 l S 102.29 74.53 m 102.33 74.67 l S 102.33 74.53 m 102.38 74.70 l S 102.38 74.53 m 102.43 74.72 l S 102.43 74.53 m 102.47 74.67 l S 102.47 74.53 m 102.52 75.05 l S 102.52 74.53 m 102.57 74.67 l S 102.57 74.53 m 102.61 74.70 l S 102.61 74.53 m 102.66 76.59 l S 102.66 74.53 m 102.70 74.70 l S 102.70 74.53 m 102.75 76.02 l S 102.75 74.53 m 102.80 79.09 l S 102.80 74.53 m 102.84 76.16 l S 102.84 74.53 m 102.89 75.21 l S 102.89 74.53 m 102.93 74.67 l S 102.93 74.53 m 102.98 74.64 l S 102.98 74.53 m 103.03 74.72 l S 103.03 74.53 m 103.07 75.75 l S 103.07 74.53 m 103.12 74.67 l S 103.12 74.53 m 103.16 80.25 l S 103.16 74.53 m 103.21 75.13 l S 103.21 74.53 m 103.26 74.72 l S 103.26 74.53 m 103.30 74.83 l S 103.30 74.53 m 103.35 74.75 l S 103.35 74.53 m 103.39 79.82 l S 103.39 74.53 m 103.44 74.83 l S 103.44 74.53 m 103.49 74.67 l S 103.49 74.53 m 103.53 74.99 l S 103.53 74.53 m 103.58 74.67 l S 103.58 74.53 m 103.62 75.18 l S 103.62 74.53 m 103.67 74.75 l S 103.67 74.53 m 103.72 81.18 l S 103.72 74.53 m 103.76 74.72 l S 103.76 74.53 m 103.81 82.64 l S 103.81 74.53 m 103.85 74.67 l S 103.85 74.53 m 103.90 83.13 l S 103.90 74.53 m 103.95 76.73 l S 103.95 74.53 m 103.99 75.94 l S 103.99 74.53 m 104.04 75.18 l S 104.04 74.53 m 104.08 74.67 l S 104.08 74.53 m 104.13 74.83 l S 104.13 74.53 m 104.18 74.75 l S 104.18 74.53 m 104.22 74.91 l S 104.22 74.53 m 104.27 84.67 l S 104.27 74.53 m 104.31 74.97 l S 104.31 74.53 m 104.36 74.72 l S 104.36 74.53 m 104.41 74.78 l S 104.41 74.53 m 104.45 74.78 l S 104.45 74.53 m 104.50 74.75 l S 104.50 74.53 m 104.54 74.70 l S 104.54 74.53 m 104.59 77.90 l S 104.59 74.53 m 104.64 74.75 l S 104.64 74.53 m 104.68 74.72 l S 104.68 74.53 m 104.73 74.67 l S 104.73 74.53 m 104.77 74.67 l S 104.77 74.53 m 104.82 74.83 l S 104.82 74.53 m 104.87 75.27 l S 104.87 74.53 m 104.91 75.13 l S 104.91 74.53 m 104.96 76.46 l S 104.96 74.53 m 105.00 74.72 l S 105.00 74.53 m 105.05 74.75 l S 105.05 74.53 m 105.10 74.78 l S 105.10 74.53 m 105.14 74.72 l S 105.14 74.53 m 105.19 76.21 l S 105.19 74.53 m 105.23 74.78 l S 105.23 74.53 m 105.28 74.70 l S 105.28 74.53 m 105.33 75.94 l S 105.33 74.53 m 105.37 79.33 l S 105.37 74.53 m 105.42 74.80 l S 105.42 74.53 m 105.46 74.89 l S 105.46 74.53 m 105.51 75.24 l S 105.51 74.53 m 105.56 74.70 l S 105.56 74.53 m 105.60 74.94 l S 105.60 74.53 m 105.65 79.01 l S 105.65 74.53 m 105.69 74.89 l S 105.69 74.53 m 105.74 74.97 l S 105.74 74.53 m 105.79 74.80 l S 105.79 74.53 m 105.83 75.46 l S 105.83 74.53 m 105.88 77.27 l S 105.88 74.53 m 105.92 75.13 l S 105.92 74.53 m 105.97 74.72 l S 105.97 74.53 m 106.02 74.70 l S 106.02 74.53 m 106.06 74.70 l S 106.06 74.53 m 106.11 74.72 l S 106.11 74.53 m 106.15 74.67 l S 106.15 74.53 m 106.20 74.70 l S 106.20 74.53 m 106.25 74.70 l S 106.25 74.53 m 106.29 74.78 l S 106.29 74.53 m 106.34 74.78 l S 106.34 74.53 m 106.38 74.67 l S 106.38 74.53 m 106.43 74.72 l S 106.43 74.53 m 106.48 74.70 l S 106.48 74.53 m 106.52 74.70 l S 106.52 74.53 m 106.57 74.75 l S 106.57 74.53 m 106.61 74.70 l S 106.61 74.53 m 106.66 74.70 l S 106.66 74.53 m 106.71 74.86 l S 106.71 74.53 m 106.75 74.75 l S 106.75 74.53 m 106.80 74.70 l S 106.80 74.53 m 106.84 82.56 l S 106.84 74.53 m 106.89 74.78 l S 106.89 74.53 m 106.94 74.97 l S 106.94 74.53 m 106.98 74.67 l S 106.98 74.53 m 107.03 74.78 l S 107.03 74.53 m 107.07 74.64 l S 107.07 74.53 m 107.12 74.72 l S 107.12 74.53 m 107.17 74.83 l S 107.17 74.53 m 107.21 75.46 l S 107.21 74.53 m 107.26 75.21 l S 107.26 74.53 m 107.30 76.73 l S 107.30 74.53 m 107.35 74.91 l S 107.35 74.53 m 107.40 74.75 l S 107.40 74.53 m 107.44 74.83 l S 107.44 74.53 m 107.49 74.70 l S 107.49 74.53 m 107.53 75.10 l S 107.53 74.53 m 107.58 74.72 l S 107.58 74.53 m 107.63 74.70 l S 107.63 74.53 m 107.67 75.10 l S 107.67 74.53 m 107.72 75.73 l S 107.72 74.53 m 107.76 74.70 l S 107.76 74.53 m 107.81 74.78 l S 107.81 74.53 m 107.86 74.72 l S 107.86 74.53 m 107.90 74.72 l S 107.90 74.53 m 107.95 74.99 l S 107.95 74.53 m 107.99 74.70 l S 107.99 74.53 m 108.04 74.67 l S 108.04 74.53 m 108.09 74.70 l S 108.09 74.53 m 108.13 85.22 l S 108.13 74.53 m 108.18 74.78 l S 108.18 74.53 m 108.22 78.95 l S 108.22 74.53 m 108.27 77.38 l S 108.27 74.53 m 108.32 74.80 l S 108.32 74.53 m 108.36 78.09 l S 108.36 74.53 m 108.41 74.64 l S 108.41 74.53 m 108.45 75.29 l S 108.45 74.53 m 108.50 74.67 l S 108.50 74.53 m 108.55 76.46 l S 108.55 74.53 m 108.59 76.43 l S 108.59 74.53 m 108.64 74.70 l S 108.64 74.53 m 108.68 74.80 l S 108.68 74.53 m 108.73 78.14 l S 108.73 74.53 m 108.78 74.94 l S 108.78 74.53 m 108.82 74.70 l S 108.82 74.53 m 108.87 74.67 l S 108.87 74.53 m 108.91 74.91 l S 108.91 74.53 m 108.96 74.80 l S 108.96 74.53 m 109.01 76.00 l S 109.01 74.53 m 109.05 83.29 l S 109.05 74.53 m 109.10 74.72 l S 109.10 74.53 m 109.14 74.72 l S 109.14 74.53 m 109.19 76.24 l S 109.19 74.53 m 109.24 74.78 l S 109.24 74.53 m 109.28 74.67 l S 109.28 74.53 m 109.33 74.70 l S 109.33 74.53 m 109.37 74.72 l S 109.37 74.53 m 109.42 74.80 l S 109.42 74.53 m 109.47 79.09 l S 109.47 74.53 m 109.51 74.78 l S 109.51 74.53 m 109.56 74.80 l S 109.56 74.53 m 109.60 74.72 l S 109.60 74.53 m 109.65 74.78 l S 109.65 74.53 m 109.70 74.80 l S 109.70 74.53 m 109.74 74.67 l S 109.74 74.53 m 109.79 74.70 l S 109.79 74.53 m 109.83 75.67 l S 109.83 74.53 m 109.88 74.75 l S 109.88 74.53 m 109.93 74.75 l S 109.93 74.53 m 109.97 75.35 l S 109.97 74.53 m 110.02 74.70 l S 110.02 74.53 m 110.06 78.33 l S 110.06 74.53 m 110.11 74.99 l S 110.11 74.53 m 110.16 74.70 l S 110.16 74.53 m 110.20 74.70 l S 110.20 74.53 m 110.25 74.75 l S 110.25 74.53 m 110.29 78.30 l S 110.29 74.53 m 110.34 74.86 l S 110.34 74.53 m 110.39 74.67 l S 110.39 74.53 m 110.43 83.94 l S 110.43 74.53 m 110.48 74.70 l S 110.48 74.53 m 110.53 74.72 l S 110.53 74.53 m 110.57 74.78 l S 110.57 74.53 m 110.62 74.70 l S 110.62 74.53 m 110.66 74.80 l S 110.66 74.53 m 110.71 74.70 l S 110.71 74.53 m 110.76 74.67 l S 110.76 74.53 m 110.80 74.86 l S 110.80 74.53 m 110.85 84.86 l S 110.85 74.53 m 110.89 77.49 l S 110.89 74.53 m 110.94 74.72 l S 110.94 74.53 m 110.99 84.67 l S 110.99 74.53 m 111.03 74.78 l S 111.03 74.53 m 111.08 74.64 l S 111.08 74.53 m 111.12 74.70 l S 111.12 74.53 m 111.17 74.72 l S 111.17 74.53 m 111.22 74.72 l S 111.22 74.53 m 111.26 74.70 l S 111.26 74.53 m 111.31 74.70 l S 111.31 74.53 m 111.35 74.75 l S 111.35 74.53 m 111.40 74.91 l S 111.40 74.53 m 111.45 74.67 l S 111.45 74.53 m 111.49 74.75 l S 111.49 74.53 m 111.54 74.75 l S 111.54 74.53 m 111.58 74.83 l S 111.58 74.53 m 111.63 74.78 l S 111.63 74.53 m 111.68 78.14 l S 111.68 74.53 m 111.72 80.69 l S 111.72 74.53 m 111.77 75.40 l S 111.77 74.53 m 111.81 75.05 l S 111.81 74.53 m 111.86 75.24 l S 111.86 74.53 m 111.91 75.67 l S 111.91 74.53 m 111.95 76.13 l S 111.95 74.53 m 112.00 74.70 l S 112.00 74.53 m 112.04 75.08 l S 112.04 74.53 m 112.09 75.10 l S 112.09 74.53 m 112.14 74.83 l S 112.14 74.53 m 112.18 77.54 l S 112.18 74.53 m 112.23 74.75 l S 112.23 74.53 m 112.27 74.70 l S 112.27 74.53 m 112.32 74.70 l S 112.32 74.53 m 112.37 74.80 l S 112.37 74.53 m 112.41 77.57 l S 112.41 74.53 m 112.46 74.70 l S 112.46 74.53 m 112.50 74.75 l S 112.50 74.53 m 112.55 75.40 l S 112.55 74.53 m 112.60 74.70 l S 112.60 74.53 m 112.64 74.70 l S 112.64 74.53 m 112.69 74.72 l S 112.69 74.53 m 112.73 74.72 l S 112.73 74.53 m 112.78 74.72 l S 112.78 74.53 m 112.83 74.70 l S 112.83 74.53 m 112.87 74.70 l S 112.87 74.53 m 112.92 74.72 l S 112.92 74.53 m 112.96 74.67 l S 112.96 74.53 m 113.01 74.75 l S 113.01 74.53 m 113.06 74.72 l S 113.06 74.53 m 113.10 74.70 l S 113.10 74.53 m 113.15 74.75 l S 113.15 74.53 m 113.19 74.80 l S 113.19 74.53 m 113.24 74.91 l S 113.24 74.53 m 113.29 74.72 l S 113.29 74.53 m 113.33 74.72 l S 113.33 74.53 m 113.38 74.75 l S 113.38 74.53 m 113.42 74.67 l S 113.42 74.53 m 113.47 74.72 l S 113.47 74.53 m 113.52 74.67 l S 113.52 74.53 m 113.56 74.72 l S 113.56 74.53 m 113.61 74.80 l S 113.61 74.53 m 113.65 74.67 l S 113.65 74.53 m 113.70 74.70 l S 113.70 74.53 m 113.75 74.70 l S 113.75 74.53 m 113.79 74.89 l S 113.79 74.53 m 113.84 75.24 l S 113.84 74.53 m 113.88 74.67 l S 113.88 74.53 m 113.93 74.67 l S 113.93 74.53 m 113.98 74.78 l S 113.98 74.53 m 114.02 74.67 l S 114.02 74.53 m 114.07 74.72 l S 114.07 74.53 m 114.11 74.72 l S 114.11 74.53 m 114.16 74.91 l S 114.16 74.53 m 114.21 74.99 l S 114.21 74.53 m 114.25 74.67 l S 114.25 74.53 m 114.30 74.67 l S 114.30 74.53 m 114.34 74.70 l S 114.34 74.53 m 114.39 74.72 l S 114.39 74.53 m 114.44 74.75 l S 114.44 74.53 m 114.48 74.80 l S 114.48 74.53 m 114.53 74.67 l S 114.53 74.53 m 114.57 77.62 l S 114.57 74.53 m 114.62 78.66 l S 114.62 74.53 m 114.67 75.27 l S 114.67 74.53 m 114.71 76.70 l S 114.71 74.53 m 114.76 75.29 l S 114.76 74.53 m 114.80 74.67 l S 114.80 74.53 m 114.85 74.67 l S 114.85 74.53 m 114.90 76.59 l S 114.90 74.53 m 114.94 74.97 l S 114.94 74.53 m 114.99 74.91 l S 114.99 74.53 m 115.03 74.72 l S 115.03 74.53 m 115.08 75.18 l S 115.08 74.53 m 115.13 74.78 l S 115.13 74.53 m 115.17 74.75 l S 115.17 74.53 m 115.22 74.70 l S 115.22 74.53 m 115.26 75.94 l S 115.26 74.53 m 115.31 78.47 l S 115.31 74.53 m 115.36 74.72 l S 115.36 74.53 m 115.40 74.80 l S 115.40 74.53 m 115.45 74.78 l S 115.45 74.53 m 115.49 74.75 l S 115.49 74.53 m 115.54 74.67 l S 115.54 74.53 m 115.59 74.67 l S 115.59 74.53 m 115.63 74.72 l S 115.63 74.53 m 115.68 74.70 l S 115.68 74.53 m 115.72 74.67 l S 115.72 74.53 m 115.77 74.70 l S 115.77 74.53 m 115.82 74.72 l S 115.82 74.53 m 115.86 74.67 l S 115.86 74.53 m 115.91 74.64 l S 115.91 74.53 m 115.95 74.67 l S 115.95 74.53 m 116.00 74.70 l S 116.00 74.53 m 116.05 74.70 l S 116.05 74.53 m 116.09 74.72 l S 116.09 74.53 m 116.14 74.70 l S 116.14 74.53 m 116.18 74.67 l S 116.18 74.53 m 116.23 74.72 l S 116.23 74.53 m 116.28 74.75 l S 116.28 74.53 m 116.32 74.67 l S 116.32 74.53 m 116.37 74.67 l S 116.37 74.53 m 116.41 74.78 l S 116.41 74.53 m 116.46 74.64 l S 116.46 74.53 m 116.51 74.70 l S 116.51 74.53 m 116.55 74.67 l S 116.55 74.53 m 116.60 74.75 l S 116.60 74.53 m 116.64 74.70 l S 116.64 74.53 m 116.69 74.70 l S 116.69 74.53 m 116.74 74.64 l S 116.74 74.53 m 116.78 74.70 l S 116.78 74.53 m 116.83 74.67 l S 116.83 74.53 m 116.87 74.70 l S 116.87 74.53 m 116.92 74.70 l S 116.92 74.53 m 116.97 74.83 l S 116.97 74.53 m 117.01 74.67 l S 117.01 74.53 m 117.06 74.67 l S 117.06 74.53 m 117.10 74.70 l S 117.10 74.53 m 117.15 74.64 l S 117.15 74.53 m 117.20 74.72 l S 117.20 74.53 m 117.24 74.70 l S 117.24 74.53 m 117.29 74.64 l S 117.29 74.53 m 117.33 74.64 l S 117.33 74.53 m 117.38 74.64 l S 117.38 74.53 m 117.43 74.72 l S 117.43 74.53 m 117.47 74.64 l S 117.47 74.53 m 117.52 74.67 l S 117.52 74.53 m 117.56 74.70 l S 117.56 74.53 m 117.61 74.70 l S 117.61 74.53 m 117.66 74.70 l S 117.66 74.53 m 117.70 74.72 l S 117.70 74.53 m 117.75 74.67 l S 117.75 74.53 m 117.79 74.67 l S 117.79 74.53 m 117.84 74.70 l S 117.84 74.53 m 117.89 74.70 l S 117.89 74.53 m 117.93 74.70 l S 117.93 74.53 m 117.98 74.67 l S 117.98 74.53 m 118.02 74.70 l S 118.02 74.53 m 118.07 74.72 l S 118.07 74.53 m 118.12 74.72 l S 118.12 74.53 m 118.16 74.70 l S 118.16 74.53 m 118.21 74.70 l S 118.21 74.53 m 118.25 74.70 l S 118.25 74.53 m 118.30 74.91 l S 118.30 74.53 m 118.35 82.59 l S 118.35 74.53 m 118.39 74.83 l S 118.39 74.53 m 118.44 74.67 l S 118.44 74.53 m 118.49 81.94 l S 118.49 74.53 m 118.53 79.74 l S 118.53 74.53 m 118.58 75.59 l S 118.58 74.53 m 118.62 74.78 l S 118.62 74.53 m 118.67 79.44 l S 118.67 74.53 m 118.72 74.75 l S 118.72 74.53 m 118.76 74.67 l S 118.76 74.53 m 118.81 74.72 l S 118.81 74.53 m 118.85 74.67 l S 118.85 74.53 m 118.90 74.72 l S 118.90 74.53 m 118.95 74.70 l S 118.95 74.53 m 118.99 74.64 l S 118.99 74.53 m 119.04 78.19 l S 119.04 74.53 m 119.08 76.92 l S 119.08 74.53 m 119.13 74.61 l S 119.13 74.53 m 119.18 74.99 l S 119.18 74.53 m 119.22 77.71 l S 119.22 74.53 m 119.27 74.91 l S 119.27 74.53 m 119.31 75.67 l S 119.31 74.53 m 119.36 76.35 l S 119.36 74.53 m 119.41 74.61 l S 119.41 74.53 m 119.45 74.64 l S 119.45 74.53 m 119.50 74.59 l S 119.50 74.53 m 119.54 74.64 l S 119.54 74.53 m 119.59 75.51 l S 119.59 74.53 m 119.64 76.00 l S 119.64 74.53 m 119.68 75.46 l S 119.68 74.53 m 119.73 74.89 l S 119.73 74.53 m 119.77 74.53 l S 119.77 74.53 m 119.82 74.53 l S 119.82 74.53 m 119.87 74.53 l S 119.87 74.53 m 119.91 74.53 l S 119.91 74.53 m 119.96 74.53 l S 119.96 74.53 m 120.00 74.53 l S 120.00 74.53 m 120.05 74.53 l S 120.05 74.53 m 120.10 74.53 l S 120.10 74.53 m 120.14 74.53 l S 120.14 74.53 m 120.19 74.53 l S 120.19 74.53 m 120.23 74.53 l S 120.23 74.53 m 120.28 74.53 l S 120.28 74.53 m 120.33 74.53 l S 120.33 74.53 m 120.37 74.53 l S 120.37 74.53 m 120.42 74.53 l S 120.42 74.53 m 120.46 74.53 l S 120.46 74.53 m 120.51 74.53 l S 120.51 74.53 m 120.56 74.53 l S 120.56 74.53 m 120.60 74.53 l S 120.60 74.53 m 120.65 74.53 l S 120.65 74.53 m 120.69 74.53 l S 120.69 74.53 m 120.74 74.53 l S 120.74 74.53 m 120.79 74.53 l S 120.79 74.53 m 120.83 74.53 l S 120.83 74.53 m 120.88 74.53 l S 120.88 74.53 m 120.92 74.53 l S 120.92 74.53 m 120.97 74.53 l S 120.97 74.53 m 121.02 74.53 l S 121.02 74.53 m 121.06 74.53 l S 121.06 74.53 m 121.11 74.53 l S 121.11 74.53 m 121.15 74.53 l S 121.15 74.53 m 121.20 74.53 l S 121.20 74.53 m 121.25 74.53 l S 121.25 74.53 m 121.29 74.53 l S 121.29 74.53 m 121.34 74.53 l S 121.34 74.53 m 121.38 74.53 l S 121.38 74.53 m 121.43 74.53 l S 121.43 74.53 m 121.48 74.53 l S 121.48 74.53 m 121.52 74.53 l S 121.52 74.53 m 121.57 74.53 l S 121.57 74.53 m 121.61 74.53 l S 121.61 74.53 m 121.66 74.53 l S 121.66 74.53 m 121.71 74.53 l S 121.71 74.53 m 121.75 74.53 l S 121.75 74.53 m 121.80 74.53 l S 121.80 74.53 m 121.84 74.53 l S 121.84 74.53 m 121.89 74.53 l S 121.89 74.53 m 121.94 74.53 l S 121.94 74.53 m 121.98 74.53 l S 121.98 74.53 m 122.03 74.53 l S 122.03 74.53 m 122.07 74.53 l S 122.07 74.53 m 122.12 74.53 l S 122.12 74.53 m 122.17 74.53 l S 122.17 74.53 m 122.21 74.53 l S 122.21 74.53 m 122.26 74.53 l S 122.26 74.53 m 122.30 74.53 l S 122.30 74.53 m 122.35 74.53 l S 122.35 74.53 m 122.40 74.53 l S 122.40 74.53 m 122.44 74.53 l S 122.44 74.53 m 122.49 74.53 l S 122.49 74.53 m 122.53 74.53 l S 122.53 74.53 m 122.58 74.53 l S 122.58 74.53 m 122.63 74.53 l S 122.63 74.53 m 122.67 74.53 l S 122.67 74.53 m 122.72 74.53 l S 122.72 74.53 m 122.76 74.53 l S 122.76 74.53 m 122.81 74.53 l S 122.81 74.53 m 122.86 74.53 l S 122.86 74.53 m 122.90 74.53 l S 122.90 74.53 m 122.95 74.53 l S 122.95 74.53 m 122.99 74.53 l S 122.99 74.53 m 123.04 74.53 l S 123.04 74.53 m 123.09 76.38 l S 123.09 74.53 m 123.13 81.48 l S 123.13 74.53 m 123.18 76.68 l S 123.18 74.53 m 123.22 74.70 l S 123.22 74.53 m 123.27 74.67 l S 123.27 74.53 m 123.32 77.95 l S 123.32 74.53 m 123.36 74.70 l S 123.36 74.53 m 123.41 76.32 l S 123.41 74.53 m 123.45 74.70 l S 123.45 74.53 m 123.50 74.75 l S 123.50 74.53 m 123.55 74.61 l S 123.55 74.53 m 123.59 74.80 l S 123.59 74.53 m 123.64 74.61 l S 123.64 74.53 m 123.68 75.21 l S 123.68 74.53 m 123.73 74.83 l S 123.73 74.53 m 123.78 75.05 l S 123.78 74.53 m 123.82 74.70 l S 123.82 74.53 m 123.87 74.70 l S 123.87 74.53 m 123.91 74.67 l S 123.91 74.53 m 123.96 74.72 l S 123.96 74.53 m 124.01 82.23 l S 124.01 74.53 m 124.05 74.72 l S 124.05 74.53 m 124.10 74.83 l S 124.10 74.53 m 124.14 82.23 l S 124.14 74.53 m 124.19 74.75 l S 124.19 74.53 m 124.24 74.67 l S 124.24 74.53 m 124.28 76.59 l S 124.28 74.53 m 124.33 81.53 l S 124.33 74.53 m 124.37 74.70 l S 124.37 74.53 m 124.42 74.70 l S 124.42 74.53 m 124.47 75.37 l S 124.47 74.53 m 124.51 74.86 l S 124.51 74.53 m 124.56 76.27 l S 124.56 74.53 m 124.60 74.72 l S 124.60 74.53 m 124.65 74.75 l S 124.65 74.53 m 124.70 74.75 l S 124.70 74.53 m 124.74 75.70 l S 124.74 74.53 m 124.79 77.03 l S 124.79 74.53 m 124.83 79.47 l S 124.83 74.53 m 124.88 74.67 l S 124.88 74.53 m 124.93 77.11 l S 124.93 74.53 m 124.97 75.43 l S 124.97 74.53 m 125.02 74.99 l S 125.02 74.53 m 125.06 76.13 l S 125.06 74.53 m 125.11 80.44 l S 125.11 74.53 m 125.16 76.73 l S 125.16 74.53 m 125.20 83.54 l S 125.20 74.53 m 125.25 81.39 l S 125.25 74.53 m 125.29 74.86 l S 125.29 74.53 m 125.34 74.83 l S 125.34 74.53 m 125.39 74.83 l S 125.39 74.53 m 125.43 77.11 l S 125.43 74.53 m 125.48 78.06 l S 125.48 74.53 m 125.52 79.41 l S 125.52 74.53 m 125.57 79.58 l S 125.57 74.53 m 125.62 74.75 l S 125.62 74.53 m 125.66 74.72 l S 125.66 74.53 m 125.71 74.75 l S 125.71 74.53 m 125.75 74.89 l S 125.75 74.53 m 125.80 75.81 l S 125.80 74.53 m 125.85 74.70 l S 125.85 74.53 m 125.89 74.67 l S 125.89 74.53 m 125.94 74.75 l S 125.94 74.53 m 125.98 74.72 l S 125.98 74.53 m 126.03 74.72 l S 126.03 74.53 m 126.08 74.75 l S 126.08 74.53 m 126.12 74.67 l S 126.12 74.53 m 126.17 74.72 l S 126.17 74.53 m 126.21 74.67 l S 126.21 74.53 m 126.26 74.70 l S 126.26 74.53 m 126.31 74.70 l S 126.31 74.53 m 126.35 74.70 l S 126.35 74.53 m 126.40 75.89 l S 126.40 74.53 m 126.45 74.70 l S 126.45 74.53 m 126.49 74.75 l S 126.49 74.53 m 126.54 74.80 l S 126.54 74.53 m 126.58 74.67 l S 126.58 74.53 m 126.63 74.70 l S 126.63 74.53 m 126.68 74.67 l S 126.68 74.53 m 126.72 74.72 l S 126.72 74.53 m 126.77 74.70 l S 126.77 74.53 m 126.81 74.67 l S 126.81 74.53 m 126.86 74.80 l S 126.86 74.53 m 126.91 74.70 l S 126.91 74.53 m 126.95 74.70 l S 126.95 74.53 m 127.00 74.72 l S 127.00 74.53 m 127.04 74.75 l S 127.04 74.53 m 127.09 74.83 l S 127.09 74.53 m 127.14 74.78 l S 127.14 74.53 m 127.18 85.92 l S 127.18 74.53 m 127.23 74.99 l S 127.23 74.53 m 127.27 80.91 l S 127.27 74.53 m 127.32 77.98 l S 127.32 74.53 m 127.37 80.36 l S 127.37 74.53 m 127.41 74.80 l S 127.41 74.53 m 127.46 74.67 l S 127.46 74.53 m 127.50 74.86 l S 127.50 74.53 m 127.55 74.72 l S 127.55 74.53 m 127.60 74.64 l S 127.60 74.53 m 127.64 74.72 l S 127.64 74.53 m 127.69 74.70 l S 127.69 74.53 m 127.73 74.72 l S 127.73 74.53 m 127.78 74.78 l S 127.78 74.53 m 127.83 74.70 l S 127.83 74.53 m 127.87 76.24 l S 127.87 74.53 m 127.92 78.30 l S 127.92 74.53 m 127.96 74.70 l S 127.96 74.53 m 128.01 74.80 l S 128.01 74.53 m 128.06 74.72 l S 128.06 74.53 m 128.10 75.16 l S 128.10 74.53 m 128.15 79.74 l S 128.15 74.53 m 128.19 74.72 l S 128.19 74.53 m 128.24 74.83 l S 128.24 74.53 m 128.29 82.48 l S 128.29 74.53 m 128.33 75.59 l S 128.33 74.53 m 128.38 74.59 l S 128.38 74.53 m 128.42 74.67 l S 128.42 74.53 m 128.47 74.56 l S 128.47 74.53 m 128.52 74.56 l S 128.52 74.53 m 128.56 74.53 l S 128.56 74.53 m 128.61 74.53 l S 128.61 74.53 m 128.65 74.53 l S 128.65 74.53 m 128.70 74.53 l S 128.70 74.53 m 128.75 74.53 l S 128.75 74.53 m 128.79 74.53 l S 128.79 74.53 m 128.84 74.56 l S 128.84 74.53 m 128.88 74.80 l S 128.88 74.53 m 128.93 74.56 l S 128.93 74.53 m 128.98 74.59 l S 128.98 74.53 m 129.02 74.59 l S 129.02 74.53 m 129.07 74.56 l S 129.07 74.53 m 129.11 74.61 l S 129.11 74.53 m 129.16 74.53 l S 129.16 74.53 m 129.21 74.61 l S 129.21 74.53 m 129.25 74.56 l S 129.25 74.53 m 129.30 74.53 l S 129.30 74.53 m 129.34 74.53 l S 129.34 74.53 m 129.39 74.53 l S 129.39 74.53 m 129.44 74.59 l S 129.44 74.53 m 129.48 75.83 l S 129.48 74.53 m 129.53 75.27 l S 129.53 74.53 m 129.57 74.91 l S 129.57 74.53 m 129.62 74.86 l S 129.62 74.53 m 129.67 74.80 l S 129.67 74.53 m 129.71 74.94 l S 129.71 74.53 m 129.76 75.27 l S 129.76 74.53 m 129.80 74.53 l S 129.80 74.53 m 129.85 74.53 l S 129.85 74.53 m 129.90 74.56 l S 129.90 74.53 m 129.94 74.53 l S 129.94 74.53 m 129.99 74.59 l S 129.99 74.53 m 130.03 74.61 l S 130.03 74.53 m 130.08 75.08 l S 130.08 74.53 m 130.13 74.56 l S 130.13 74.53 m 130.17 74.53 l S 130.17 74.53 m 130.22 74.53 l S 130.22 74.53 m 130.26 74.53 l S 130.26 74.53 m 130.31 74.56 l S 130.31 74.53 m 130.36 74.75 l S 130.36 74.53 m 130.40 74.67 l S 130.40 74.53 m 130.45 79.33 l S 130.45 74.53 m 130.49 77.71 l S 130.49 74.53 m 130.54 74.72 l S 130.54 74.53 m 130.59 74.56 l S 130.59 74.53 m 130.63 74.59 l S 130.63 74.53 m 130.68 74.53 l S 130.68 74.53 m 130.72 74.53 l S 130.72 74.53 m 130.77 74.53 l S 130.77 74.53 m 130.82 74.53 l S 130.82 74.53 m 130.86 74.53 l S 130.86 74.53 m 130.91 74.56 l S 130.91 74.53 m 130.95 74.59 l S 130.95 74.53 m 131.00 74.61 l S 131.00 74.53 m 131.05 74.59 l S 131.05 74.53 m 131.09 74.61 l S 131.09 74.53 m 131.14 74.53 l S 131.14 74.53 m 131.18 74.53 l S 131.18 74.53 m 131.23 74.53 l S 131.23 74.53 m 131.28 74.53 l S 131.28 74.53 m 131.32 74.56 l S 131.32 74.53 m 131.37 74.59 l S 131.37 74.53 m 131.41 74.56 l S 131.41 74.53 m 131.46 74.53 l S 131.46 74.53 m 131.51 74.61 l S 131.51 74.53 m 131.55 74.56 l S 131.55 74.53 m 131.60 74.75 l S 131.60 74.53 m 131.64 76.46 l S 131.64 74.53 m 131.69 74.70 l S 131.69 74.53 m 131.74 74.89 l S 131.74 74.53 m 131.78 75.70 l S 131.78 74.53 m 131.83 75.08 l S 131.83 74.53 m 131.87 75.08 l S 131.87 74.53 m 131.92 76.11 l S 131.92 74.53 m 131.97 78.95 l S 131.97 74.53 m 132.01 74.75 l S 132.01 74.53 m 132.06 74.70 l S 132.06 74.53 m 132.10 74.59 l S 132.10 74.53 m 132.15 74.59 l S 132.15 74.53 m 132.20 74.59 l S 132.20 74.53 m 132.24 74.56 l S 132.24 74.53 m 132.29 74.59 l S 132.29 74.53 m 132.33 74.56 l S 132.33 74.53 m 132.38 74.56 l S 132.38 74.53 m 132.43 74.56 l S 132.43 74.53 m 132.47 74.64 l S 132.47 74.53 m 132.52 74.59 l S 132.52 74.53 m 132.56 74.53 l S 132.56 74.53 m 132.61 74.56 l S 132.61 74.53 m 132.66 74.56 l S 132.66 74.53 m 132.70 74.53 l S 132.70 74.53 m 132.75 74.53 l S 132.75 74.53 m 132.79 74.53 l S 132.79 74.53 m 132.84 74.53 l S 132.84 74.53 m 132.89 74.56 l S 132.89 74.53 m 132.93 74.56 l S 132.93 74.53 m 132.98 74.59 l S 132.98 74.53 m 133.02 74.61 l S 133.02 74.53 m 133.07 74.59 l S 133.07 74.53 m 133.12 74.67 l S 133.12 74.53 m 133.16 74.78 l S 133.16 74.53 m 133.21 74.75 l S 133.21 74.53 m 133.25 74.75 l S 133.25 74.53 m 133.30 78.87 l S 133.30 74.53 m 133.35 74.67 l S 133.35 74.53 m 133.39 74.72 l S 133.39 74.53 m 133.44 74.75 l S 133.44 74.53 m 133.48 74.67 l S 133.48 74.53 m 133.53 74.72 l S 133.53 74.53 m 133.58 74.70 l S 133.58 74.53 m 133.62 74.75 l S 133.62 74.53 m 133.67 74.72 l S 133.67 74.53 m 133.71 75.08 l S 133.71 74.53 m 133.76 76.19 l S 133.76 74.53 m 133.81 74.83 l S 133.81 74.53 m 133.85 74.72 l S 133.85 74.53 m 133.90 74.83 l S 133.90 74.53 m 133.94 74.97 l S 133.94 74.53 m 133.99 74.80 l S 133.99 74.53 m 134.04 74.70 l S 134.04 74.53 m 134.08 74.75 l S 134.08 74.53 m 134.13 74.75 l S 134.13 74.53 m 134.17 74.72 l S 134.17 74.53 m 134.22 74.72 l S 134.22 74.53 m 134.27 74.99 l S 134.27 74.53 m 134.31 74.67 l S 134.31 74.53 m 134.36 74.70 l S 134.36 74.53 m 134.41 74.86 l S 134.41 74.53 m 134.45 74.83 l S 134.45 74.53 m 134.50 76.02 l S 134.50 74.53 m 134.54 74.75 l S 134.54 74.53 m 134.59 74.75 l S 134.59 74.53 m 134.64 75.27 l S 134.64 74.53 m 134.68 74.80 l S 134.68 74.53 m 134.73 74.89 l S 134.73 74.53 m 134.77 74.86 l S 134.77 74.53 m 134.82 75.18 l S 134.82 74.53 m 134.87 74.78 l S 134.87 74.53 m 134.91 74.70 l S 134.91 74.53 m 134.96 79.85 l S 134.96 74.53 m 135.00 74.75 l S 135.00 74.53 m 135.05 74.80 l S 135.05 74.53 m 135.10 74.72 l S 135.10 74.53 m 135.14 74.72 l S 135.14 74.53 m 135.19 74.83 l S 135.19 74.53 m 135.23 74.75 l S 135.23 74.53 m 135.28 74.97 l S 135.28 74.53 m 135.33 74.72 l S 135.33 74.53 m 135.37 74.67 l S 135.37 74.53 m 135.42 74.59 l S 135.42 74.53 m 135.46 74.67 l S 135.46 74.53 m 135.51 74.59 l S 135.51 74.53 m 135.56 74.56 l S 135.56 74.53 m 135.60 74.59 l S 135.60 74.53 m 135.65 74.56 l S 135.65 74.53 m 135.69 74.56 l S 135.69 74.53 m 135.74 74.56 l S 135.74 74.53 m 135.79 74.56 l S 135.79 74.53 m 135.83 74.59 l S 135.83 74.53 m 135.88 74.53 l S 135.88 74.53 m 135.92 74.72 l S 135.92 74.53 m 135.97 77.03 l S 135.97 74.53 m 136.02 77.54 l S 136.02 74.53 m 136.06 83.81 l S 136.06 74.53 m 136.11 79.69 l S 136.11 74.53 m 136.15 75.43 l S 136.15 74.53 m 136.20 74.56 l S 136.20 74.53 m 136.25 74.53 l S 136.25 74.53 m 136.29 74.59 l S 136.29 74.53 m 136.34 74.59 l S 136.34 74.53 m 136.38 74.70 l S 136.38 74.53 m 136.43 75.54 l S 136.43 74.53 m 136.48 74.56 l S 136.48 74.53 m 136.52 74.59 l S 136.52 74.53 m 136.57 74.59 l S 136.57 74.53 m 136.61 74.59 l S 136.61 74.53 m 136.66 74.64 l S 136.66 74.53 m 136.71 74.72 l S 136.71 74.53 m 136.75 74.83 l S 136.75 74.53 m 136.80 74.78 l S 136.80 74.53 m 136.84 74.72 l S 136.84 74.53 m 136.89 77.95 l S 136.89 74.53 m 136.94 75.51 l S 136.94 74.53 m 136.98 74.72 l S 136.98 74.53 m 137.03 76.19 l S 137.03 74.53 m 137.07 74.70 l S 137.07 74.53 m 137.12 74.75 l S 137.12 74.53 m 137.17 75.43 l S 137.17 74.53 m 137.21 79.28 l S 137.21 74.53 m 137.26 75.81 l S 137.26 74.53 m 137.30 74.61 l S 137.30 74.53 m 137.35 79.77 l S 137.35 74.53 m 137.40 74.61 l S 137.40 74.53 m 137.44 74.70 l S 137.44 74.53 m 137.49 74.78 l S 137.49 74.53 m 137.53 74.72 l S 137.53 74.53 m 137.58 74.70 l S 137.58 74.53 m 137.63 74.72 l S 137.63 74.53 m 137.67 75.02 l S 137.67 74.53 m 137.72 74.70 l S 137.72 74.53 m 137.76 74.70 l S 137.76 74.53 m 137.81 75.43 l S 137.81 74.53 m 137.86 74.67 l S 137.86 74.53 m 137.90 74.67 l S 137.90 74.53 m 137.95 74.67 l S 137.95 74.53 m 137.99 74.67 l S 137.99 74.53 m 138.04 74.67 l S 138.04 74.53 m 138.09 74.67 l S 138.09 74.53 m 138.13 74.70 l S 138.13 74.53 m 138.18 74.75 l S 138.18 74.53 m 138.22 74.75 l S 138.22 74.53 m 138.27 74.75 l S 138.27 74.53 m 138.32 74.70 l S 138.32 74.53 m 138.36 74.67 l S 138.36 74.53 m 138.41 74.70 l S 138.41 74.53 m 138.45 74.70 l S 138.45 74.53 m 138.50 74.67 l S 138.50 74.53 m 138.55 74.67 l S 138.55 74.53 m 138.59 74.64 l S 138.59 74.53 m 138.64 85.43 l S 138.64 74.53 m 138.68 74.80 l S 138.68 74.53 m 138.73 74.70 l S 138.73 74.53 m 138.78 74.75 l S 138.78 74.53 m 138.82 74.72 l S 138.82 74.53 m 138.87 74.67 l S 138.87 74.53 m 138.91 75.65 l S 138.91 74.53 m 138.96 74.67 l S 138.96 74.53 m 139.01 74.67 l S 139.01 74.53 m 139.05 74.67 l S 139.05 74.53 m 139.10 74.67 l S 139.10 74.53 m 139.14 74.67 l S 139.14 74.53 m 139.19 74.70 l S 139.19 74.53 m 139.24 74.72 l S 139.24 74.53 m 139.28 74.67 l S 139.28 74.53 m 139.33 74.72 l S 139.33 74.53 m 139.37 74.72 l S 139.37 74.53 m 139.42 74.67 l S 139.42 74.53 m 139.47 74.91 l S 139.47 74.53 m 139.51 74.78 l S 139.51 74.53 m 139.56 74.64 l S 139.56 74.53 m 139.60 74.67 l S 139.60 74.53 m 139.65 74.67 l S 139.65 74.53 m 139.70 74.70 l S 139.70 74.53 m 139.74 74.70 l S 139.74 74.53 m 139.79 74.67 l S 139.79 74.53 m 139.83 74.67 l S 139.83 74.53 m 139.88 74.70 l S 139.88 74.53 m 139.93 74.67 l S 139.93 74.53 m 139.97 74.70 l S 139.97 74.53 m 140.02 74.78 l S 140.02 74.53 m 140.06 74.67 l S 140.06 74.53 m 140.11 74.72 l S 140.11 74.53 m 140.16 74.67 l S 140.16 74.53 m 140.20 74.67 l S 140.20 74.53 m 140.25 74.72 l S 140.25 74.53 m 140.29 74.72 l S 140.29 74.53 m 140.34 74.67 l S 140.34 74.53 m 140.39 74.70 l S 140.39 74.53 m 140.43 74.67 l S 140.43 74.53 m 140.48 74.67 l S 140.48 74.53 m 140.52 74.67 l S 140.52 74.53 m 140.57 74.67 l S 140.57 74.53 m 140.62 74.67 l S 140.62 74.53 m 140.66 74.70 l S 140.66 74.53 m 140.71 74.70 l S 140.71 74.53 m 140.75 74.70 l S 140.75 74.53 m 140.80 74.70 l S 140.80 74.53 m 140.85 74.67 l S 140.85 74.53 m 140.89 74.67 l S 140.89 74.53 m 140.94 74.72 l S 140.94 74.53 m 140.98 74.67 l S 140.98 74.53 m 141.03 74.72 l S 141.03 74.53 m 141.08 74.67 l S 141.08 74.53 m 141.12 74.64 l S 141.12 74.53 m 141.17 74.61 l S 141.17 74.53 m 141.21 74.72 l S 141.21 74.53 m 141.26 74.67 l S 141.26 74.53 m 141.31 74.67 l S 141.31 74.53 m 141.35 74.72 l S 141.35 74.53 m 141.40 74.67 l S 141.40 74.53 m 141.44 74.67 l S 141.44 74.53 m 141.49 74.64 l S 141.49 74.53 m 141.54 74.70 l S 141.54 74.53 m 141.58 74.67 l S 141.58 74.53 m 141.63 74.67 l S 141.63 74.53 m 141.67 74.64 l S 141.67 74.53 m 141.72 74.72 l S 141.72 74.53 m 141.77 74.67 l S 141.77 74.53 m 141.81 74.75 l S 141.81 74.53 m 141.86 74.72 l S 141.86 74.53 m 141.90 74.67 l S 141.90 74.53 m 141.95 74.64 l S 141.95 74.53 m 142.00 74.67 l S 142.00 74.53 m 142.04 74.70 l S 142.04 74.53 m 142.09 74.64 l S 142.09 74.53 m 142.13 74.67 l S 142.13 74.53 m 142.18 74.64 l S 142.18 74.53 m 142.23 74.67 l S 142.23 74.53 m 142.27 74.64 l S 142.27 74.53 m 142.32 74.72 l S 142.32 74.53 m 142.36 74.61 l S 142.36 74.53 m 142.41 74.67 l S 142.41 74.53 m 142.46 74.67 l S 142.46 74.53 m 142.50 74.72 l S 142.50 74.53 m 142.55 74.64 l S 142.55 74.53 m 142.60 74.61 l S 142.60 74.53 m 142.64 74.75 l S 142.64 74.53 m 142.69 74.67 l S 142.69 74.53 m 142.73 74.67 l S 142.73 74.53 m 142.78 74.70 l S 142.78 74.53 m 142.83 74.70 l S 142.83 74.53 m 142.87 74.70 l S 142.87 74.53 m 142.92 74.70 l S 142.92 74.53 m 142.96 74.70 l S 142.96 74.53 m 143.01 74.64 l S 143.01 74.53 m 143.06 74.67 l S 143.06 74.53 m 143.10 74.67 l S 143.10 74.53 m 143.15 74.67 l S 143.15 74.53 m 143.19 74.67 l S 143.19 74.53 m 143.24 74.67 l S 143.24 74.53 m 143.29 74.67 l S 143.29 74.53 m 143.33 74.64 l S 143.33 74.53 m 143.38 74.67 l S 143.38 74.53 m 143.42 74.67 l S 143.42 74.53 m 143.47 74.70 l S 143.47 74.53 m 143.52 74.64 l S 143.52 74.53 m 143.56 74.67 l S 143.56 74.53 m 143.61 74.64 l S 143.61 74.53 m 143.65 74.67 l S 143.65 74.53 m 143.70 74.70 l S 143.70 74.53 m 143.75 74.70 l S 143.75 74.53 m 143.79 74.64 l S 143.79 74.53 m 143.84 74.64 l S 143.84 74.53 m 143.88 74.72 l S 143.88 74.53 m 143.93 74.64 l S 143.93 74.53 m 143.98 74.67 l S 143.98 74.53 m 144.02 74.86 l S 144.02 74.53 m 144.07 74.72 l S 144.07 74.53 m 144.11 74.70 l S 144.11 74.53 m 144.16 74.70 l S 144.16 74.53 m 144.21 74.67 l S 144.21 74.53 m 144.25 74.70 l S 144.25 74.53 m 144.30 74.67 l S 144.30 74.53 m 144.34 74.70 l S 144.34 74.53 m 144.39 74.67 l S 144.39 74.53 m 144.44 74.67 l S 144.44 74.53 m 144.48 74.67 l S 144.48 74.53 m 144.53 74.64 l S 144.53 74.53 m 144.57 74.70 l S 144.57 74.53 m 144.62 74.72 l S 144.62 74.53 m 144.67 74.67 l S 144.67 74.53 m 144.71 74.67 l S 144.71 74.53 m 144.76 74.67 l S 144.76 74.53 m 144.80 74.64 l S 144.80 74.53 m 144.85 74.64 l S 144.85 74.53 m 144.90 74.67 l S 144.90 74.53 m 144.94 74.72 l S 144.94 74.53 m 144.99 83.73 l S 144.99 74.53 m 145.03 74.67 l S 145.03 74.53 m 145.08 74.67 l S 145.08 74.53 m 145.13 74.72 l S 145.13 74.53 m 145.17 74.64 l S 145.17 74.53 m 145.22 74.64 l S 145.22 74.53 m 145.26 74.67 l S 145.26 74.53 m 145.31 74.75 l S 145.31 74.53 m 145.36 75.16 l S 145.36 74.53 m 145.40 74.70 l S 145.40 74.53 m 145.45 74.67 l S 145.45 74.53 m 145.49 74.64 l S 145.49 74.53 m 145.54 74.64 l S 145.54 74.53 m 145.59 74.64 l S 145.59 74.53 m 145.63 74.67 l S 145.63 74.53 m 145.68 74.64 l S 145.68 74.53 m 145.72 74.67 l S 145.72 74.53 m 145.77 74.67 l S 145.77 74.53 m 145.82 74.67 l S 145.82 74.53 m 145.86 74.72 l S 145.86 74.53 m 145.91 74.67 l S 145.91 74.53 m 145.95 74.70 l S 145.95 74.53 m 146.00 74.64 l S 146.00 74.53 m 146.05 74.67 l S 146.05 74.53 m 146.09 74.67 l S 146.09 74.53 m 146.14 74.70 l S 146.14 74.53 m 146.18 74.67 l S 146.18 74.53 m 146.23 74.70 l S 146.23 74.53 m 146.28 74.70 l S 146.28 74.53 m 146.32 74.67 l S 146.32 74.53 m 146.37 74.64 l S 146.37 74.53 m 146.41 74.67 l S 146.41 74.53 m 146.46 74.67 l S 146.46 74.53 m 146.51 74.70 l S 146.51 74.53 m 146.55 74.61 l S 146.55 74.53 m 146.60 74.64 l S 146.60 74.53 m 146.64 74.64 l S 146.64 74.53 m 146.69 74.67 l S 146.69 74.53 m 146.74 74.70 l S 146.74 74.53 m 146.78 74.64 l S 146.78 74.53 m 146.83 74.70 l S 146.83 74.53 m 146.87 74.72 l S 146.87 74.53 m 146.92 74.67 l S 146.92 74.53 m 146.97 74.67 l S 146.97 74.53 m 147.01 74.70 l S 147.01 74.53 m 147.06 74.70 l S 147.06 74.53 m 147.10 74.67 l S 147.10 74.53 m 147.15 74.72 l S 147.15 74.53 m 147.20 74.80 l S 147.20 74.53 m 147.24 74.67 l S 147.24 74.53 m 147.29 74.70 l S 147.29 74.53 m 147.33 74.67 l S 147.33 74.53 m 147.38 74.70 l S 147.38 74.53 m 147.43 74.70 l S 147.43 74.53 m 147.47 74.64 l S 147.47 74.53 m 147.52 74.70 l S 147.52 74.53 m 147.56 80.23 l S 147.56 74.53 m 147.61 75.13 l S 147.61 74.53 m 147.66 76.95 l S 147.66 74.53 m 147.70 74.72 l S 147.70 74.53 m 147.75 86.60 l S 147.75 74.53 m 147.79 74.89 l S 147.79 74.53 m 147.84 74.75 l S 147.84 74.53 m 147.89 74.67 l S 147.89 74.53 m 147.93 75.24 l S 147.93 74.53 m 147.98 74.75 l S 147.98 74.53 m 148.02 74.67 l S 148.02 74.53 m 148.07 74.75 l S 148.07 74.53 m 148.12 74.83 l S 148.12 74.53 m 148.16 74.70 l S 148.16 74.53 m 148.21 74.70 l S 148.21 74.53 m 148.25 74.67 l S 148.25 74.53 m 148.30 74.67 l S 148.30 74.53 m 148.35 74.67 l S 148.35 74.53 m 148.39 74.67 l S 148.39 74.53 m 148.44 74.75 l S 148.44 74.53 m 148.48 74.70 l S 148.48 74.53 m 148.53 74.70 l S 148.53 74.53 m 148.58 74.70 l S 148.58 74.53 m 148.62 74.70 l S 148.62 74.53 m 148.67 74.67 l S 148.67 74.53 m 148.71 74.67 l S 148.71 74.53 m 148.76 74.67 l S 148.76 74.53 m 148.81 74.72 l S 148.81 74.53 m 148.85 74.64 l S 148.85 74.53 m 148.90 74.64 l S 148.90 74.53 m 148.94 74.72 l S 148.94 74.53 m 148.99 74.67 l S 148.99 74.53 m 149.04 74.75 l S 149.04 74.53 m 149.08 75.40 l S 149.08 74.53 m 149.13 74.61 l S 149.13 74.53 m 149.17 74.67 l S 149.17 74.53 m 149.22 74.64 l S 149.22 74.53 m 149.27 74.72 l S 149.27 74.53 m 149.31 74.67 l S 149.31 74.53 m 149.36 74.72 l S 149.36 74.53 m 149.40 74.75 l S 149.40 74.53 m 149.45 74.70 l S 149.45 74.53 m 149.50 74.70 l S 149.50 74.53 m 149.54 74.91 l S 149.54 74.53 m 149.59 74.67 l S 149.59 74.53 m 149.63 74.72 l S 149.63 74.53 m 149.68 74.80 l S 149.68 74.53 m 149.73 74.72 l S 149.73 74.53 m 149.77 74.97 l S 149.77 74.53 m 149.82 77.84 l S 149.82 74.53 m 149.86 74.64 l S 149.86 74.53 m 149.91 75.05 l S 149.91 74.53 m 149.96 74.70 l S 149.96 74.53 m 150.00 74.67 l S 150.00 74.53 m 150.05 74.70 l S 150.05 74.53 m 150.09 74.67 l S 150.09 74.53 m 150.14 74.75 l S 150.14 74.53 m 150.19 74.64 l S 150.19 74.53 m 150.23 74.70 l S 150.23 74.53 m 150.28 76.81 l S 150.28 74.53 m 150.32 74.72 l S 150.32 74.53 m 150.37 74.67 l S 150.37 74.53 m 150.42 74.70 l S 150.42 74.53 m 150.46 74.72 l S 150.46 74.53 m 150.51 74.64 l S 150.51 74.53 m 150.56 74.78 l S 150.56 74.53 m 150.60 74.70 l S 150.60 74.53 m 150.65 74.70 l S 150.65 74.53 m 150.69 74.89 l S 150.69 74.53 m 150.74 75.27 l S 150.74 74.53 m 150.79 74.72 l S 150.79 74.53 m 150.83 74.75 l S 150.83 74.53 m 150.88 74.72 l S 150.88 74.53 m 150.92 79.14 l S 150.92 74.53 m 150.97 74.78 l S 150.97 74.53 m 151.02 77.90 l S 151.02 74.53 m 151.06 74.67 l S 151.06 74.53 m 151.11 74.72 l S 151.11 74.53 m 151.15 74.67 l S 151.15 74.53 m 151.20 75.83 l S 151.20 74.53 m 151.25 75.40 l S 151.25 74.53 m 151.29 74.75 l S 151.29 74.53 m 151.34 74.67 l S 151.34 74.53 m 151.38 74.70 l S 151.38 74.53 m 151.43 74.75 l S 151.43 74.53 m 151.48 74.70 l S 151.48 74.53 m 151.52 74.67 l S 151.52 74.53 m 151.57 74.67 l S 151.57 74.53 m 151.61 74.70 l S 151.61 74.53 m 151.66 74.67 l S 151.66 74.53 m 151.71 75.05 l S 151.71 74.53 m 151.75 74.70 l S 151.75 74.53 m 151.80 74.67 l S 151.80 74.53 m 151.84 76.68 l S 151.84 74.53 m 151.89 74.75 l S 151.89 74.53 m 151.94 75.05 l S 151.94 74.53 m 151.98 74.70 l S 151.98 74.53 m 152.03 74.75 l S 152.03 74.53 m 152.07 74.70 l S 152.07 74.53 m 152.12 74.70 l S 152.12 74.53 m 152.17 74.67 l S 152.17 74.53 m 152.21 74.78 l S 152.21 74.53 m 152.26 74.70 l S 152.26 74.53 m 152.30 74.91 l S 152.30 74.53 m 152.35 74.89 l S 152.35 74.53 m 152.40 74.72 l S 152.40 74.53 m 152.44 74.75 l S 152.44 74.53 m 152.49 74.91 l S 152.49 74.53 m 152.53 79.90 l S 152.53 74.53 m 152.58 75.18 l S 152.58 74.53 m 152.63 75.24 l S 152.63 74.53 m 152.67 75.24 l S 152.67 74.53 m 152.72 80.17 l S 152.72 74.53 m 152.76 75.29 l S 152.76 74.53 m 152.81 74.94 l S 152.81 74.53 m 152.86 74.70 l S 152.86 74.53 m 152.90 75.27 l S 152.90 74.53 m 152.95 74.78 l S 152.95 74.53 m 152.99 75.02 l S 152.99 74.53 m 153.04 81.23 l S 153.04 74.53 m 153.09 74.89 l S 153.09 74.53 m 153.13 74.78 l S 153.13 74.53 m 153.18 75.97 l S 153.18 74.53 m 153.22 74.80 l S 153.22 74.53 m 153.27 74.72 l S 153.27 74.53 m 153.32 74.70 l S 153.32 74.53 m 153.36 74.83 l S 153.36 74.53 m 153.41 74.75 l S 153.41 74.53 m 153.45 74.72 l S 153.45 74.53 m 153.50 74.99 l S 153.50 74.53 m 153.55 78.03 l S 153.55 74.53 m 153.59 74.89 l S 153.59 74.53 m 153.64 74.94 l S 153.64 74.53 m 153.68 74.83 l S 153.68 74.53 m 153.73 80.25 l S 153.73 74.53 m 153.78 78.33 l S 153.78 74.53 m 153.82 74.78 l S 153.82 74.53 m 153.87 74.67 l S 153.87 74.53 m 153.91 74.70 l S 153.91 74.53 m 153.96 74.80 l S 153.96 74.53 m 154.01 74.83 l S 154.01 74.53 m 154.05 74.70 l S 154.05 74.53 m 154.10 74.83 l S 154.10 74.53 m 154.14 74.67 l S 154.14 74.53 m 154.19 81.23 l S 154.19 74.53 m 154.24 74.70 l S 154.24 74.53 m 154.28 74.97 l S 154.28 74.53 m 154.33 75.10 l S 154.33 74.53 m 154.37 81.99 l S 154.37 74.53 m 154.42 74.67 l S 154.42 74.53 m 154.47 74.64 l S 154.47 74.53 m 154.51 74.67 l S 154.51 74.53 m 154.56 74.83 l S 154.56 74.53 m 154.60 74.67 l S 154.60 74.53 m 154.65 78.82 l S 154.65 74.53 m 154.70 74.70 l S 154.70 74.53 m 154.74 77.71 l S 154.74 74.53 m 154.79 74.78 l S 154.79 74.53 m 154.83 74.67 l S 154.83 74.53 m 154.88 78.06 l S 154.88 74.53 m 154.93 74.72 l S 154.93 74.53 m 154.97 74.70 l S 154.97 74.53 m 155.02 74.78 l S 155.02 74.53 m 155.06 74.75 l S 155.06 74.53 m 155.11 74.75 l S 155.11 74.53 m 155.16 74.64 l S 155.16 74.53 m 155.20 74.91 l S 155.20 74.53 m 155.25 74.67 l S 155.25 74.53 m 155.29 74.70 l S 155.29 74.53 m 155.34 74.75 l S 155.34 74.53 m 155.39 74.70 l S 155.39 74.53 m 155.43 78.47 l S 155.43 74.53 m 155.48 74.78 l S 155.48 74.53 m 155.52 74.91 l S 155.52 74.53 m 155.57 74.70 l S 155.57 74.53 m 155.62 74.70 l S 155.62 74.53 m 155.66 74.78 l S 155.66 74.53 m 155.71 74.70 l S 155.71 74.53 m 155.75 74.64 l S 155.75 74.53 m 155.80 74.67 l S 155.80 74.53 m 155.85 74.67 l S 155.85 74.53 m 155.89 74.70 l S 155.89 74.53 m 155.94 74.70 l S 155.94 74.53 m 155.98 74.67 l S 155.98 74.53 m 156.03 74.64 l S 156.03 74.53 m 156.08 74.70 l S 156.08 74.53 m 156.12 74.70 l S 156.12 74.53 m 156.17 74.67 l S 156.17 74.53 m 156.21 74.67 l S 156.21 74.53 m 156.26 74.64 l S 156.26 74.53 m 156.31 74.64 l S 156.31 74.53 m 156.35 74.67 l S 156.35 74.53 m 156.40 74.67 l S 156.40 74.53 m 156.44 74.72 l S 156.44 74.53 m 156.49 74.67 l S 156.49 74.53 m 156.54 74.67 l S 156.54 74.53 m 156.58 74.67 l S 156.58 74.53 m 156.63 74.67 l S 156.63 74.53 m 156.67 74.70 l S 156.67 74.53 m 156.72 74.67 l S 156.72 74.53 m 156.77 74.67 l S 156.77 74.53 m 156.81 74.72 l S 156.81 74.53 m 156.86 74.67 l S 156.86 74.53 m 156.90 74.67 l S 156.90 74.53 m 156.95 74.72 l S 156.95 74.53 m 157.00 74.67 l S 157.00 74.53 m 157.04 74.64 l S 157.04 74.53 m 157.09 74.64 l S 157.09 74.53 m 157.13 74.67 l S 157.13 74.53 m 157.18 74.64 l S 157.18 74.53 m 157.23 74.64 l S 157.23 74.53 m 157.27 74.64 l S 157.27 74.53 m 157.32 74.61 l S 157.32 74.53 m 157.36 74.70 l S 157.36 74.53 m 157.41 74.75 l S 157.41 74.53 m 157.46 74.67 l S 157.46 74.53 m 157.50 74.70 l S 157.50 74.53 m 157.55 74.64 l S 157.55 74.53 m 157.59 74.64 l S 157.59 74.53 m 157.64 74.67 l S 157.64 74.53 m 157.69 74.67 l S 157.69 74.53 m 157.73 74.75 l S 157.73 74.53 m 157.78 74.64 l S 157.78 74.53 m 157.82 74.64 l S 157.82 74.53 m 157.87 74.64 l S 157.87 74.53 m 157.92 74.70 l S 157.92 74.53 m 157.96 74.67 l S 157.96 74.53 m 158.01 74.64 l S 158.01 74.53 m 158.05 74.61 l S 158.05 74.53 m 158.10 74.72 l S 158.10 74.53 m 158.15 74.72 l S 158.15 74.53 m 158.19 74.83 l S 158.19 74.53 m 158.24 74.67 l S 158.24 74.53 m 158.28 74.70 l S 158.28 74.53 m 158.33 74.64 l S 158.33 74.53 m 158.38 74.70 l S 158.38 74.53 m 158.42 74.67 l S 158.42 74.53 m 158.47 74.67 l S 158.47 74.53 m 158.52 74.64 l S 158.52 74.53 m 158.56 74.67 l S 158.56 74.53 m 158.61 74.67 l S 158.61 74.53 m 158.65 74.70 l S 158.65 74.53 m 158.70 74.64 l S 158.70 74.53 m 158.75 74.72 l S 158.75 74.53 m 158.79 74.72 l S 158.79 74.53 m 158.84 74.78 l S 158.84 74.53 m 158.88 74.67 l S 158.88 74.53 m 158.93 74.67 l S 158.93 74.53 m 158.98 74.67 l S 158.98 74.53 m 159.02 74.67 l S 159.02 74.53 m 159.07 74.67 l S 159.07 74.53 m 159.11 74.64 l S 159.11 74.53 m 159.16 74.67 l S 159.16 74.53 m 159.21 74.70 l S 159.21 74.53 m 159.25 74.67 l S 159.25 74.53 m 159.30 74.64 l S 159.30 74.53 m 159.34 74.78 l S 159.34 74.53 m 159.39 74.64 l S 159.39 74.53 m 159.44 74.75 l S 159.44 74.53 m 159.48 74.67 l S 159.48 74.53 m 159.53 74.70 l S 159.53 74.53 m 159.57 74.72 l S 159.57 74.53 m 159.62 74.67 l S 159.62 74.53 m 159.67 74.67 l S 159.67 74.53 m 159.71 74.72 l S 159.71 74.53 m 159.76 74.75 l S 159.76 74.53 m 159.80 74.72 l S 159.80 74.53 m 159.85 74.64 l S 159.85 74.53 m 159.90 74.78 l S 159.90 74.53 m 159.94 74.67 l S 159.94 74.53 m 159.99 74.86 l S 159.99 74.53 m 160.03 74.67 l S 160.03 74.53 m 160.08 74.72 l S 160.08 74.53 m 160.13 74.72 l S 160.13 74.53 m 160.17 74.83 l S 160.17 74.53 m 160.22 74.61 l S 160.22 74.53 m 160.26 74.75 l S 160.26 74.53 m 160.31 75.05 l S 160.31 74.53 m 160.36 74.83 l S 160.36 74.53 m 160.40 74.70 l S 160.40 74.53 m 160.45 74.70 l S 160.45 74.53 m 160.49 82.40 l S 160.49 74.53 m 160.54 74.78 l S 160.54 74.53 m 160.59 74.94 l S 160.59 74.53 m 160.63 81.75 l S 160.63 74.53 m 160.68 77.30 l S 160.68 74.53 m 160.72 74.67 l S 160.72 74.53 m 160.77 74.80 l S 160.77 74.53 m 160.82 74.67 l S 160.82 74.53 m 160.86 74.70 l S 160.86 74.53 m 160.91 80.77 l S 160.91 74.53 m 160.95 74.78 l S 160.95 74.53 m 161.00 74.70 l S 161.00 74.53 m 161.05 74.72 l S 161.05 74.53 m 161.09 74.67 l S 161.09 74.53 m 161.14 77.87 l S 161.14 74.53 m 161.18 74.70 l S 161.18 74.53 m 161.23 74.72 l S 161.23 74.53 m 161.28 82.48 l S 161.28 74.53 m 161.32 74.67 l S 161.32 74.53 m 161.37 78.11 l S 161.37 74.53 m 161.41 74.70 l S 161.41 74.53 m 161.46 79.01 l S 161.46 74.53 m 161.51 74.64 l S 161.51 74.53 m 161.55 80.85 l S 161.55 74.53 m 161.60 76.57 l S 161.60 74.53 m 161.64 82.59 l S 161.64 74.53 m 161.69 74.78 l S 161.69 74.53 m 161.74 75.75 l S 161.74 74.53 m 161.78 77.46 l S 161.78 74.53 m 161.83 74.67 l S 161.83 74.53 m 161.87 74.61 l S 161.87 74.53 m 161.92 75.83 l S 161.92 74.53 m 161.97 74.72 l S 161.97 74.53 m 162.01 74.67 l S 162.01 74.53 m 162.06 80.15 l S 162.06 74.53 m 162.10 84.05 l S 162.10 74.53 m 162.15 79.36 l S 162.15 74.53 m 162.20 74.64 l S 162.20 74.53 m 162.24 76.13 l S 162.24 74.53 m 162.29 84.30 l S 162.29 74.53 m 162.33 84.81 l S 162.33 74.53 m 162.38 74.72 l S 162.38 74.53 m 162.43 81.75 l S 162.43 74.53 m 162.47 75.75 l S 162.47 74.53 m 162.52 74.78 l S 162.52 74.53 m 162.56 74.70 l S 162.56 74.53 m 162.61 78.17 l S 162.61 74.53 m 162.66 74.99 l S 162.66 74.53 m 162.70 74.78 l S 162.70 74.53 m 162.75 75.05 l S 162.75 74.53 m 162.79 76.35 l S 162.79 74.53 m 162.84 74.72 l S 162.84 74.53 m 162.89 75.70 l S 162.89 74.53 m 162.93 79.17 l S 162.93 74.53 m 162.98 74.80 l S 162.98 74.53 m 163.02 75.21 l S 163.02 74.53 m 163.07 74.70 l S 163.07 74.53 m 163.12 74.70 l S 163.12 74.53 m 163.16 74.75 l S 163.16 74.53 m 163.21 74.70 l S 163.21 74.53 m 163.25 75.24 l S 163.25 74.53 m 163.30 74.70 l S 163.30 74.53 m 163.35 74.70 l S 163.35 74.53 m 163.39 74.67 l S 163.39 74.53 m 163.44 74.86 l S 163.44 74.53 m 163.48 74.80 l S 163.48 74.53 m 163.53 74.72 l S 163.53 74.53 m 163.58 74.91 l S 163.58 74.53 m 163.62 75.62 l S 163.62 74.53 m 163.67 78.87 l S 163.67 74.53 m 163.71 78.09 l S 163.71 74.53 m 163.76 81.01 l S 163.76 74.53 m 163.81 74.78 l S 163.81 74.53 m 163.85 79.50 l S 163.85 74.53 m 163.90 76.59 l S 163.90 74.53 m 163.94 74.70 l S 163.94 74.53 m 163.99 74.83 l S 163.99 74.53 m 164.04 78.41 l S 164.04 74.53 m 164.08 77.65 l S 164.08 74.53 m 164.13 77.22 l S 164.13 74.53 m 164.17 75.29 l S 164.17 74.53 m 164.22 74.91 l S 164.22 74.53 m 164.27 74.72 l S 164.27 74.53 m 164.31 76.84 l S 164.31 74.53 m 164.36 79.60 l S 164.36 74.53 m 164.40 74.75 l S 164.40 74.53 m 164.45 74.91 l S 164.45 74.53 m 164.50 74.70 l S 164.50 74.53 m 164.54 74.70 l S 164.54 74.53 m 164.59 74.70 l S 164.59 74.53 m 164.63 76.57 l S 164.63 74.53 m 164.68 74.75 l S 164.68 74.53 m 164.73 80.20 l S 164.73 74.53 m 164.77 75.10 l S 164.77 74.53 m 164.82 74.72 l S 164.82 74.53 m 164.86 75.65 l S 164.86 74.53 m 164.91 74.70 l S 164.91 74.53 m 164.96 74.75 l S 164.96 74.53 m 165.00 74.72 l S 165.00 74.53 m 165.05 74.72 l S 165.05 74.53 m 165.09 74.72 l S 165.09 74.53 m 165.14 74.72 l S 165.14 74.53 m 165.19 75.78 l S 165.19 74.53 m 165.23 74.72 l S 165.23 74.53 m 165.28 74.80 l S 165.28 74.53 m 165.32 77.03 l S 165.32 74.53 m 165.37 74.78 l S 165.37 74.53 m 165.42 83.02 l S 165.42 74.53 m 165.46 74.91 l S 165.46 74.53 m 165.51 74.70 l S 165.51 74.53 m 165.55 75.10 l S 165.55 74.53 m 165.60 74.75 l S 165.60 74.53 m 165.65 74.72 l S 165.65 74.53 m 165.69 74.72 l S 165.69 74.53 m 165.74 74.94 l S 165.74 74.53 m 165.78 74.72 l S 165.78 74.53 m 165.83 75.32 l S 165.83 74.53 m 165.88 75.16 l S 165.88 74.53 m 165.92 81.18 l S 165.92 74.53 m 165.97 75.10 l S 165.97 74.53 m 166.01 74.70 l S 166.01 74.53 m 166.06 86.87 l S 166.06 74.53 m 166.11 77.22 l S 166.11 74.53 m 166.15 74.97 l S 166.15 74.53 m 166.20 75.70 l S 166.20 74.53 m 166.24 74.67 l S 166.24 74.53 m 166.29 74.70 l S 166.29 74.53 m 166.34 74.75 l S 166.34 74.53 m 166.38 78.09 l S 166.38 74.53 m 166.43 74.70 l S 166.43 74.53 m 166.48 74.64 l S 166.48 74.53 m 166.52 74.64 l S 166.52 74.53 m 166.57 81.42 l S 166.57 74.53 m 166.61 87.06 l S 166.61 74.53 m 166.66 75.81 l S 166.66 74.53 m 166.71 76.13 l S 166.71 74.53 m 166.75 81.91 l S 166.75 74.53 m 166.80 74.78 l S 166.80 74.53 m 166.84 74.67 l S 166.84 74.53 m 166.89 74.70 l S 166.89 74.53 m 166.94 74.67 l S 166.94 74.53 m 166.98 74.83 l S 166.98 74.53 m 167.03 74.61 l S 167.03 74.53 m 167.07 74.72 l S 167.07 74.53 m 167.12 82.91 l S 167.12 74.53 m 167.17 74.75 l S 167.17 74.53 m 167.21 77.60 l S 167.21 74.53 m 167.26 74.64 l S 167.26 74.53 m 167.30 74.72 l S 167.30 74.53 m 167.35 74.70 l S 167.35 74.53 m 167.40 74.67 l S 167.40 74.53 m 167.44 74.72 l S 167.44 74.53 m 167.49 74.67 l S 167.49 74.53 m 167.53 74.67 l S 167.53 74.53 m 167.58 74.70 l S 167.58 74.53 m 167.63 74.70 l S 167.63 74.53 m 167.67 74.61 l S 167.67 74.53 m 167.72 74.67 l S 167.72 74.53 m 167.76 79.12 l S 167.76 74.53 m 167.81 74.64 l S 167.81 74.53 m 167.86 91.10 l S 167.86 74.53 m 167.90 74.64 l S 167.90 74.53 m 167.95 92.57 l S 167.95 74.53 m 167.99 74.72 l S 167.99 74.53 m 168.04 74.86 l S 168.04 74.53 m 168.09 77.41 l S 168.09 74.53 m 168.13 74.67 l S 168.13 74.53 m 168.18 80.47 l S 168.18 74.53 m 168.22 74.64 l S 168.22 74.53 m 168.27 80.50 l S 168.27 74.53 m 168.32 74.67 l S 168.32 74.53 m 168.36 74.67 l S 168.36 74.53 m 168.41 74.99 l S 168.41 74.53 m 168.45 84.19 l S 168.45 74.53 m 168.50 76.49 l S 168.50 74.53 m 168.55 74.59 l S 168.55 74.53 m 168.59 79.60 l S 168.59 74.53 m 168.64 82.07 l S 168.64 74.53 m 168.68 81.53 l S 168.68 74.53 m 168.73 76.24 l S 168.73 74.53 m 168.78 75.83 l S 168.78 74.53 m 168.82 77.49 l S 168.82 74.53 m 168.87 76.08 l S 168.87 74.53 m 168.91 75.37 l S 168.91 74.53 m 168.96 85.38 l S 168.96 74.53 m 169.01 74.83 l S 169.01 74.53 m 169.05 74.89 l S 169.05 74.53 m 169.10 74.67 l S 169.10 74.53 m 169.14 74.70 l S 169.14 74.53 m 169.19 90.48 l S 169.19 74.53 m 169.24 77.76 l S 169.24 74.53 m 169.28 75.21 l S 169.28 74.53 m 169.33 74.64 l S 169.33 74.53 m 169.37 74.91 l S 169.37 74.53 m 169.42 74.78 l S 169.42 74.53 m 169.47 74.75 l S 169.47 74.53 m 169.51 74.75 l S 169.51 74.53 m 169.56 74.80 l S 169.56 74.53 m 169.60 74.67 l S 169.60 74.53 m 169.65 74.72 l S 169.65 74.53 m 169.70 74.70 l S 169.70 74.53 m 169.74 74.70 l S 169.74 74.53 m 169.79 75.43 l S 169.79 74.53 m 169.83 74.75 l S 169.83 74.53 m 169.88 74.80 l S 169.88 74.53 m 169.93 74.67 l S 169.93 74.53 m 169.97 75.08 l S 169.97 74.53 m 170.02 74.70 l S 170.02 74.53 m 170.06 74.70 l S 170.06 74.53 m 170.11 77.71 l S 170.11 74.53 m 170.16 74.91 l S 170.16 74.53 m 170.20 74.94 l S 170.20 74.53 m 170.25 74.72 l S 170.25 74.53 m 170.29 75.27 l S 170.29 74.53 m 170.34 74.94 l S 170.34 74.53 m 170.39 75.65 l S 170.39 74.53 m 170.43 74.75 l S 170.43 74.53 m 170.48 77.62 l S 170.48 74.53 m 170.52 74.72 l S 170.52 74.53 m 170.57 75.05 l S 170.57 74.53 m 170.62 82.61 l S 170.62 74.53 m 170.66 76.21 l S 170.66 74.53 m 170.71 74.78 l S 170.71 74.53 m 170.75 78.84 l S 170.75 74.53 m 170.80 74.70 l S 170.80 74.53 m 170.85 74.78 l S 170.85 74.53 m 170.89 76.62 l S 170.89 74.53 m 170.94 74.86 l S 170.94 74.53 m 170.98 74.67 l S 170.98 74.53 m 171.03 74.67 l S 171.03 74.53 m 171.08 74.75 l S 171.08 74.53 m 171.12 74.70 l S 171.12 74.53 m 171.17 74.70 l S 171.17 74.53 m 171.21 74.70 l S 171.21 74.53 m 171.26 74.70 l S 171.26 74.53 m 171.31 74.80 l S 171.31 74.53 m 171.35 74.67 l S 171.35 74.53 m 171.40 78.74 l S 171.40 74.53 m 171.44 74.67 l S 171.44 74.53 m 171.49 74.70 l S 171.49 74.53 m 171.54 74.70 l S 171.54 74.53 m 171.58 74.78 l S 171.58 74.53 m 171.63 74.72 l S 171.63 74.53 m 171.67 74.70 l S 171.67 74.53 m 171.72 74.72 l S 171.72 74.53 m 171.77 74.70 l S 171.77 74.53 m 171.81 74.67 l S 171.81 74.53 m 171.86 74.72 l S 171.86 74.53 m 171.90 74.70 l S 171.90 74.53 m 171.95 74.75 l S 171.95 74.53 m 172.00 74.75 l S 172.00 74.53 m 172.04 74.67 l S 172.04 74.53 m 172.09 74.70 l S 172.09 74.53 m 172.13 74.67 l S 172.13 74.53 m 172.18 74.70 l S 172.18 74.53 m 172.23 74.75 l S 172.23 74.53 m 172.27 74.75 l S 172.27 74.53 m 172.32 74.72 l S 172.32 74.53 m 172.36 74.70 l S 172.36 74.53 m 172.41 74.72 l S 172.41 74.53 m 172.46 74.72 l S 172.46 74.53 m 172.50 74.67 l S 172.50 74.53 m 172.55 74.67 l S 172.55 74.53 m 172.59 74.75 l S 172.59 74.53 m 172.64 74.75 l S 172.64 74.53 m 172.69 74.70 l S 172.69 74.53 m 172.73 74.67 l S 172.73 74.53 m 172.78 74.72 l S 172.78 74.53 m 172.82 74.70 l S 172.82 74.53 m 172.87 74.72 l S 172.87 74.53 m 172.92 74.70 l S 172.92 74.53 m 172.96 75.08 l S 172.96 74.53 m 173.01 74.75 l S 173.01 74.53 m 173.05 74.70 l S 173.05 74.53 m 173.10 75.40 l S 173.10 74.53 m 173.15 74.72 l S 173.15 74.53 m 173.19 74.72 l S 173.19 74.53 m 173.24 74.70 l S 173.24 74.53 m 173.28 74.78 l S 173.28 74.53 m 173.33 74.72 l S 173.33 74.53 m 173.38 74.72 l S 173.38 74.53 m 173.42 74.75 l S 173.42 74.53 m 173.47 74.72 l S 173.47 74.53 m 173.51 74.70 l S 173.51 74.53 m 173.56 74.72 l S 173.56 74.53 m 173.61 74.72 l S 173.61 74.53 m 173.65 74.72 l S 173.65 74.53 m 173.70 74.75 l S 173.70 74.53 m 173.74 74.78 l S 173.74 74.53 m 173.79 74.72 l S 173.79 74.53 m 173.84 74.70 l S 173.84 74.53 m 173.88 74.72 l S 173.88 74.53 m 173.93 74.83 l S 173.93 74.53 m 173.97 74.72 l S 173.97 74.53 m 174.02 75.70 l S 174.02 74.53 m 174.07 74.75 l S 174.07 74.53 m 174.11 74.72 l S 174.11 74.53 m 174.16 74.75 l S 174.16 74.53 m 174.20 74.83 l S 174.20 74.53 m 174.25 74.80 l S 174.25 74.53 m 174.30 76.30 l S 174.30 74.53 m 174.34 74.80 l S 174.34 74.53 m 174.39 74.72 l S 174.39 74.53 m 174.44 81.37 l S 174.44 74.53 m 174.48 74.75 l S 174.48 74.53 m 174.53 74.70 l S 174.53 74.53 m 174.57 74.78 l S 174.57 74.53 m 174.62 74.70 l S 174.62 74.53 m 174.67 74.70 l S 174.67 74.53 m 174.71 74.78 l S 174.71 74.53 m 174.76 74.83 l S 174.76 74.53 m 174.80 80.36 l S 174.80 74.53 m 174.85 75.16 l S 174.85 74.53 m 174.90 74.89 l S 174.90 74.53 m 174.94 76.51 l S 174.94 74.53 m 174.99 74.83 l S 174.99 74.53 m 175.03 74.70 l S 175.03 74.53 m 175.08 74.78 l S 175.08 74.53 m 175.13 74.75 l S 175.13 74.53 m 175.17 74.70 l S 175.17 74.53 m 175.22 74.78 l S 175.22 74.53 m 175.26 74.72 l S 175.26 74.53 m 175.31 74.86 l S 175.31 74.53 m 175.36 74.75 l S 175.36 74.53 m 175.40 74.75 l S 175.40 74.53 m 175.45 74.72 l S 175.45 74.53 m 175.49 74.72 l S 175.49 74.53 m 175.54 74.78 l S 175.54 74.53 m 175.59 74.72 l S 175.59 74.53 m 175.63 74.72 l S 175.63 74.53 m 175.68 74.72 l S 175.68 74.53 m 175.72 75.56 l S 175.72 74.53 m 175.77 74.72 l S 175.77 74.53 m 175.82 75.48 l S 175.82 74.53 m 175.86 77.79 l S 175.86 74.53 m 175.91 74.78 l S 175.91 74.53 m 175.95 74.94 l S 175.95 74.53 m 176.00 74.67 l S 176.00 74.53 m 176.05 74.75 l S 176.05 74.53 m 176.09 75.97 l S 176.09 74.53 m 176.14 75.35 l S 176.14 74.53 m 176.18 74.91 l S 176.18 74.53 m 176.23 76.40 l S 176.23 74.53 m 176.28 74.75 l S 176.28 74.53 m 176.32 74.72 l S 176.32 74.53 m 176.37 75.75 l S 176.37 74.53 m 176.41 74.72 l S 176.41 74.53 m 176.46 74.59 l S 176.46 74.53 m 176.51 74.59 l S 176.51 74.53 m 176.55 74.53 l S 176.55 74.53 m 176.60 74.56 l S 176.60 74.53 m 176.64 74.61 l S 176.64 74.53 m 176.69 74.56 l S 176.69 74.53 m 176.74 74.56 l S 176.74 74.53 m 176.78 74.56 l S 176.78 74.53 m 176.83 74.59 l S 176.83 74.53 m 176.87 74.56 l S 176.87 74.53 m 176.92 74.56 l S 176.92 74.53 m 176.97 74.56 l S 176.97 74.53 m 177.01 74.56 l S 177.01 74.53 m 177.06 74.59 l S 177.06 74.53 m 177.10 74.56 l S 177.10 74.53 m 177.15 74.59 l S 177.15 74.53 m 177.20 74.56 l S 177.20 74.53 m 177.24 74.53 l S 177.24 74.53 m 177.29 74.56 l S 177.29 74.53 m 177.33 75.73 l S 177.33 74.53 m 177.38 74.64 l S 177.38 74.53 m 177.43 76.24 l S 177.43 74.53 m 177.47 74.80 l S 177.47 74.53 m 177.52 75.08 l S 177.52 74.53 m 177.56 74.70 l S 177.56 74.53 m 177.61 74.64 l S 177.61 74.53 m 177.66 84.54 l S 177.66 74.53 m 177.70 75.46 l S 177.70 74.53 m 177.75 75.16 l S 177.75 74.53 m 177.79 74.70 l S 177.79 74.53 m 177.84 80.99 l S 177.84 74.53 m 177.89 74.61 l S 177.89 74.53 m 177.93 74.70 l S 177.93 74.53 m 177.98 74.83 l S 177.98 74.53 m 178.02 74.70 l S 178.02 74.53 m 178.07 75.54 l S 178.07 74.53 m 178.12 79.17 l S 178.12 74.53 m 178.16 80.66 l S 178.16 74.53 m 178.21 77.11 l S 178.21 74.53 m 178.25 75.05 l S 178.25 74.53 m 178.30 78.98 l S 178.30 74.53 m 178.35 74.72 l S 178.35 74.53 m 178.39 74.78 l S 178.39 74.53 m 178.44 74.94 l S 178.44 74.53 m 178.48 75.24 l S 178.48 74.53 m 178.53 74.72 l S 178.53 74.53 m 178.58 74.75 l S 178.58 74.53 m 178.62 74.67 l S 178.62 74.53 m 178.67 74.64 l S 178.67 74.53 m 178.71 74.75 l S 178.71 74.53 m 178.76 74.70 l S 178.76 74.53 m 178.81 74.67 l S 178.81 74.53 m 178.85 74.72 l S 178.85 74.53 m 178.90 74.64 l S 178.90 74.53 m 178.94 74.72 l S 178.94 74.53 m 178.99 74.64 l S 178.99 74.53 m 179.04 74.67 l S 179.04 74.53 m 179.08 74.67 l S 179.08 74.53 m 179.13 74.70 l S 179.13 74.53 m 179.17 74.67 l S 179.17 74.53 m 179.22 74.67 l S 179.22 74.53 m 179.27 74.64 l S 179.27 74.53 m 179.31 74.64 l S 179.31 74.53 m 179.36 74.70 l S 179.36 74.53 m 179.40 74.64 l S 179.40 74.53 m 179.45 74.64 l S 179.45 74.53 m 179.50 74.67 l S 179.50 74.53 m 179.54 74.67 l S 179.54 74.53 m 179.59 74.67 l S 179.59 74.53 m 179.63 74.67 l S 179.63 74.53 m 179.68 74.64 l S 179.68 74.53 m 179.73 74.64 l S 179.73 74.53 m 179.77 74.70 l S 179.77 74.53 m 179.82 74.70 l S 179.82 74.53 m 179.86 74.67 l S 179.86 74.53 m 179.91 74.75 l S 179.91 74.53 m 179.96 74.70 l S 179.96 74.53 m 180.00 74.67 l S 180.00 74.53 m 180.05 74.64 l S 180.05 74.53 m 180.09 74.89 l S 180.09 74.53 m 180.14 74.72 l S 180.14 74.53 m 180.19 74.67 l S 180.19 74.53 m 180.23 74.72 l S 180.23 74.53 m 180.28 74.64 l S 180.28 74.53 m 180.32 74.70 l S 180.32 74.53 m 180.37 74.72 l S 180.37 74.53 m 180.42 74.67 l S 180.42 74.53 m 180.46 74.72 l S 180.46 74.53 m 180.51 74.70 l S 180.51 74.53 m 180.55 74.67 l S 180.55 74.53 m 180.60 74.72 l S 180.60 74.53 m 180.65 74.67 l S 180.65 74.53 m 180.69 74.64 l S 180.69 74.53 m 180.74 74.67 l S 180.74 74.53 m 180.78 74.83 l S 180.78 74.53 m 180.83 74.67 l S 180.83 74.53 m 180.88 74.70 l S 180.88 74.53 m 180.92 74.72 l S 180.92 74.53 m 180.97 74.67 l S 180.97 74.53 m 181.01 74.67 l S 181.01 74.53 m 181.06 74.72 l S 181.06 74.53 m 181.11 74.67 l S 181.11 74.53 m 181.15 74.67 l S 181.15 74.53 m 181.20 74.67 l S 181.20 74.53 m 181.24 74.64 l S 181.24 74.53 m 181.29 74.64 l S 181.29 74.53 m 181.34 74.75 l S 181.34 74.53 m 181.38 74.67 l S 181.38 74.53 m 181.43 74.64 l S 181.43 74.53 m 181.47 74.64 l S 181.47 74.53 m 181.52 74.72 l S 181.52 74.53 m 181.57 74.75 l S 181.57 74.53 m 181.61 74.64 l S 181.61 74.53 m 181.66 74.67 l S 181.66 74.53 m 181.70 74.67 l S 181.70 74.53 m 181.75 74.67 l S 181.75 74.53 m 181.80 74.72 l S 181.80 74.53 m 181.84 74.67 l S 181.84 74.53 m 181.89 74.70 l S 181.89 74.53 m 181.93 74.70 l S 181.93 74.53 m 181.98 74.67 l S 181.98 74.53 m 182.03 74.70 l S 182.03 74.53 m 182.07 74.64 l S 182.07 74.53 m 182.12 74.64 l S 182.12 74.53 m 182.16 74.64 l S 182.16 74.53 m 182.21 74.67 l S 182.21 74.53 m 182.26 74.67 l S 182.26 74.53 m 182.30 74.67 l S 182.30 74.53 m 182.35 74.67 l S 182.35 74.53 m 182.39 74.70 l S 182.39 74.53 m 182.44 74.75 l S 182.44 74.53 m 182.49 74.75 l S 182.49 74.53 m 182.53 74.67 l S 182.53 74.53 m 182.58 75.29 l S 182.58 74.53 m 182.63 74.67 l S 182.63 74.53 m 182.67 74.72 l S 182.67 74.53 m 182.72 74.64 l S 182.72 74.53 m 182.76 74.70 l S 182.76 74.53 m 182.81 74.78 l S 182.81 74.53 m 182.86 74.70 l S 182.86 74.53 m 182.90 74.72 l S 182.90 74.53 m 182.95 74.67 l S 182.95 74.53 m 182.99 74.75 l S 182.99 74.53 m 183.04 74.72 l S 183.04 74.53 m 183.09 74.72 l S 183.09 74.53 m 183.13 74.70 l S 183.13 74.53 m 183.18 78.95 l S 183.18 74.53 m 183.22 74.91 l S 183.22 74.53 m 183.27 76.43 l S 183.27 74.53 m 183.32 75.10 l S 183.32 74.53 m 183.36 74.78 l S 183.36 74.53 m 183.41 74.94 l S 183.41 74.53 m 183.45 77.00 l S 183.45 74.53 m 183.50 74.72 l S 183.50 74.53 m 183.55 74.70 l S 183.55 74.53 m 183.59 74.78 l S 183.59 74.53 m 183.64 74.70 l S 183.64 74.53 m 183.68 74.72 l S 183.68 74.53 m 183.73 76.46 l S 183.73 74.53 m 183.78 74.70 l S 183.78 74.53 m 183.82 74.83 l S 183.82 74.53 m 183.87 74.67 l S 183.87 74.53 m 183.91 74.70 l S 183.91 74.53 m 183.96 74.80 l S 183.96 74.53 m 184.01 74.67 l S 184.01 74.53 m 184.05 74.75 l S 184.05 74.53 m 184.10 74.67 l S 184.10 74.53 m 184.14 74.67 l S 184.14 74.53 m 184.19 74.67 l S 184.19 74.53 m 184.24 74.70 l S 184.24 74.53 m 184.28 74.72 l S 184.28 74.53 m 184.33 74.67 l S 184.33 74.53 m 184.37 74.70 l S 184.37 74.53 m 184.42 74.67 l S 184.42 74.53 m 184.47 74.72 l S 184.47 74.53 m 184.51 74.70 l S 184.51 74.53 m 184.56 74.64 l S 184.56 74.53 m 184.60 74.70 l S 184.60 74.53 m 184.65 74.72 l S 184.65 74.53 m 184.70 74.72 l S 184.70 74.53 m 184.74 74.67 l S 184.74 74.53 m 184.79 74.72 l S 184.79 74.53 m 184.83 74.64 l S 184.83 74.53 m 184.88 74.67 l S 184.88 74.53 m 184.93 74.72 l S 184.93 74.53 m 184.97 74.72 l S 184.97 74.53 m 185.02 74.78 l S 185.02 74.53 m 185.06 74.72 l S 185.06 74.53 m 185.11 74.75 l S 185.11 74.53 m 185.16 74.75 l S 185.16 74.53 m 185.20 74.89 l S 185.20 74.53 m 185.25 74.78 l S 185.25 74.53 m 185.29 74.70 l S 185.29 74.53 m 185.34 74.64 l S 185.34 74.53 m 185.39 75.73 l S 185.39 74.53 m 185.43 74.86 l S 185.43 74.53 m 185.48 74.72 l S 185.48 74.53 m 185.52 74.72 l S 185.52 74.53 m 185.57 74.72 l S 185.57 74.53 m 185.62 74.70 l S 185.62 74.53 m 185.66 74.75 l S 185.66 74.53 m 185.71 74.70 l S 185.71 74.53 m 185.75 74.75 l S 185.75 74.53 m 185.80 74.83 l S 185.80 74.53 m 185.85 74.72 l S 185.85 74.53 m 185.89 74.70 l S 185.89 74.53 m 185.94 74.72 l S 185.94 74.53 m 185.98 74.72 l S 185.98 74.53 m 186.03 74.72 l S 186.03 74.53 m 186.08 74.72 l S 186.08 74.53 m 186.12 74.72 l S 186.12 74.53 m 186.17 74.70 l S 186.17 74.53 m 186.21 75.27 l S 186.21 74.53 m 186.26 77.46 l S 186.26 74.53 m 186.31 75.16 l S 186.31 74.53 m 186.35 74.97 l S 186.35 74.53 m 186.40 74.72 l S 186.40 74.53 m 186.44 77.16 l S 186.44 74.53 m 186.49 74.70 l S 186.49 74.53 m 186.54 74.70 l S 186.54 74.53 m 186.58 74.78 l S 186.58 74.53 m 186.63 74.70 l S 186.63 74.53 m 186.67 76.08 l S 186.67 74.53 m 186.72 74.72 l S 186.72 74.53 m 186.77 77.71 l S 186.77 74.53 m 186.81 74.72 l S 186.81 74.53 m 186.86 74.70 l S 186.86 74.53 m 186.90 74.70 l S 186.90 74.53 m 186.95 74.70 l S 186.95 74.53 m 187.00 75.32 l S 187.00 74.53 m 187.04 76.02 l S 187.04 74.53 m 187.09 74.64 l S 187.09 74.53 m 187.13 74.70 l S 187.13 74.53 m 187.18 74.72 l S 187.18 74.53 m 187.23 78.52 l S 187.23 74.53 m 187.27 74.64 l S 187.27 74.53 m 187.32 74.64 l S 187.32 74.53 m 187.36 75.10 l S 187.36 74.53 m 187.41 74.64 l S 187.41 74.53 m 187.46 74.61 l S 187.46 74.53 m 187.50 74.61 l S 187.50 74.53 m 187.55 75.43 l S 187.55 74.53 m 187.59 74.61 l S 187.59 74.53 m 187.64 75.27 l S 187.64 74.53 m 187.69 74.64 l S 187.69 74.53 m 187.73 74.59 l S 187.73 74.53 m 187.78 83.86 l S 187.78 74.53 m 187.82 74.78 l S 187.82 74.53 m 187.87 74.75 l S 187.87 74.53 m 187.92 74.78 l S 187.92 74.53 m 187.96 75.62 l S 187.96 74.53 m 188.01 74.70 l S 188.01 74.53 m 188.05 74.67 l S 188.05 74.53 m 188.10 74.70 l S 188.10 74.53 m 188.15 74.72 l S 188.15 74.53 m 188.19 82.97 l S 188.19 74.53 m 188.24 81.37 l S 188.24 74.53 m 188.28 75.29 l S 188.28 74.53 m 188.33 74.83 l S 188.33 74.53 m 188.38 74.70 l S 188.38 74.53 m 188.42 74.72 l S 188.42 74.53 m 188.47 74.70 l S 188.47 74.53 m 188.51 75.13 l S 188.51 74.53 m 188.56 74.89 l S 188.56 74.53 m 188.61 74.78 l S 188.61 74.53 m 188.65 74.78 l S 188.65 74.53 m 188.70 75.02 l S 188.70 74.53 m 188.74 74.67 l S 188.74 74.53 m 188.79 75.13 l S 188.79 74.53 m 188.84 74.70 l S 188.84 74.53 m 188.88 74.67 l S 188.88 74.53 m 188.93 74.72 l S 188.93 74.53 m 188.97 75.56 l S 188.97 74.53 m 189.02 74.75 l S 189.02 74.53 m 189.07 74.70 l S 189.07 74.53 m 189.11 74.83 l S 189.11 74.53 m 189.16 74.67 l S 189.16 74.53 m 189.20 74.64 l S 189.20 74.53 m 189.25 82.94 l S 189.25 74.53 m 189.30 74.67 l S 189.30 74.53 m 189.34 74.75 l S 189.34 74.53 m 189.39 74.70 l S 189.39 74.53 m 189.43 74.70 l S 189.43 74.53 m 189.48 74.83 l S 189.48 74.53 m 189.53 74.72 l S 189.53 74.53 m 189.57 75.56 l S 189.57 74.53 m 189.62 83.59 l S 189.62 74.53 m 189.66 74.83 l S 189.66 74.53 m 189.71 74.78 l S 189.71 74.53 m 189.76 77.60 l S 189.76 74.53 m 189.80 79.88 l S 189.80 74.53 m 189.85 74.67 l S 189.85 74.53 m 189.89 75.05 l S 189.89 74.53 m 189.94 74.94 l S 189.94 74.53 m 189.99 74.86 l S 189.99 74.53 m 190.03 76.78 l S 190.03 74.53 m 190.08 80.85 l S 190.08 74.53 m 190.12 80.72 l S 190.12 74.53 m 190.17 74.86 l S 190.17 74.53 m 190.22 83.67 l S 190.22 74.53 m 190.26 77.84 l S 190.26 74.53 m 190.31 74.70 l S 190.31 74.53 m 190.35 85.03 l S 190.35 74.53 m 190.40 74.70 l S 190.40 74.53 m 190.45 74.70 l S 190.45 74.53 m 190.49 74.80 l S 190.49 74.53 m 190.54 74.72 l S 190.54 74.53 m 190.59 74.67 l S 190.59 74.53 m 190.63 74.70 l S 190.63 74.53 m 190.68 80.58 l S 190.68 74.53 m 190.72 74.67 l S 190.72 74.53 m 190.77 92.05 l S 190.77 74.53 m 190.82 74.80 l S 190.82 74.53 m 190.86 74.64 l S 190.86 74.53 m 190.91 74.78 l S 190.91 74.53 m 190.95 78.14 l S 190.95 74.53 m 191.00 74.78 l S 191.00 74.53 m 191.05 74.72 l S 191.05 74.53 m 191.09 75.46 l S 191.09 74.53 m 191.14 74.70 l S 191.14 74.53 m 191.18 74.72 l S 191.18 74.53 m 191.23 74.67 l S 191.23 74.53 m 191.28 74.67 l S 191.28 74.53 m 191.32 74.70 l S 191.32 74.53 m 191.37 74.70 l S 191.37 74.53 m 191.41 74.72 l S 191.41 74.53 m 191.46 74.78 l S 191.46 74.53 m 191.51 74.67 l S 191.51 74.53 m 191.55 74.67 l S 191.55 74.53 m 191.60 74.70 l S 191.60 74.53 m 191.64 74.72 l S 191.64 74.53 m 191.69 74.67 l S 191.69 74.53 m 191.74 74.67 l S 191.74 74.53 m 191.78 74.67 l S 191.78 74.53 m 191.83 74.67 l S 191.83 74.53 m 191.87 74.67 l S 191.87 74.53 m 191.92 74.70 l S 191.92 74.53 m 191.97 74.70 l S 191.97 74.53 m 192.01 74.64 l S 192.01 74.53 m 192.06 74.75 l S 192.06 74.53 m 192.10 74.72 l S 192.10 74.53 m 192.15 74.67 l S 192.15 74.53 m 192.20 74.70 l S 192.20 74.53 m 192.24 74.64 l S 192.24 74.53 m 192.29 74.70 l S 192.29 74.53 m 192.33 89.80 l S 192.33 74.53 m 192.38 74.97 l S 192.38 74.53 m 192.43 74.75 l S 192.43 74.53 m 192.47 74.67 l S 192.47 74.53 m 192.52 74.89 l S 192.52 74.53 m 192.56 74.78 l S 192.56 74.53 m 192.61 74.78 l S 192.61 74.53 m 192.66 74.80 l S 192.66 74.53 m 192.70 74.72 l S 192.70 74.53 m 192.75 77.24 l S 192.75 74.53 m 192.79 75.21 l S 192.79 74.53 m 192.84 76.27 l S 192.84 74.53 m 192.89 74.72 l S 192.89 74.53 m 192.93 76.70 l S 192.93 74.53 m 192.98 74.67 l S 192.98 74.53 m 193.02 74.80 l S 193.02 74.53 m 193.07 86.44 l S 193.07 74.53 m 193.12 74.67 l S 193.12 74.53 m 193.16 74.67 l S 193.16 74.53 m 193.21 74.72 l S 193.21 74.53 m 193.25 74.70 l S 193.25 74.53 m 193.30 74.80 l S 193.30 74.53 m 193.35 74.70 l S 193.35 74.53 m 193.39 76.70 l S 193.39 74.53 m 193.44 74.67 l S 193.44 74.53 m 193.48 74.70 l S 193.48 74.53 m 193.53 74.67 l S 193.53 74.53 m 193.58 74.67 l S 193.58 74.53 m 193.62 80.72 l S 193.62 74.53 m 193.67 74.64 l S 193.67 74.53 m 193.71 78.41 l S 193.71 74.53 m 193.76 82.80 l S 193.76 74.53 m 193.81 74.72 l S 193.81 74.53 m 193.85 74.70 l S 193.85 74.53 m 193.90 74.67 l S 193.90 74.53 m 193.94 76.05 l S 193.94 74.53 m 193.99 74.70 l S 193.99 74.53 m 194.04 74.70 l S 194.04 74.53 m 194.08 74.67 l S 194.08 74.53 m 194.13 74.70 l S 194.13 74.53 m 194.17 74.91 l S 194.17 74.53 m 194.22 82.29 l S 194.22 74.53 m 194.27 81.15 l S 194.27 74.53 m 194.31 74.72 l S 194.31 74.53 m 194.36 74.64 l S 194.36 74.53 m 194.40 74.64 l S 194.40 74.53 m 194.45 74.83 l S 194.45 74.53 m 194.50 74.72 l S 194.50 74.53 m 194.54 74.72 l S 194.54 74.53 m 194.59 74.70 l S 194.59 74.53 m 194.63 74.80 l S 194.63 74.53 m 194.68 81.53 l S 194.68 74.53 m 194.73 74.64 l S 194.73 74.53 m 194.77 74.72 l S 194.77 74.53 m 194.82 77.27 l S 194.82 74.53 m 194.86 74.67 l S 194.86 74.53 m 194.91 74.83 l S 194.91 74.53 m 194.96 74.64 l S 194.96 74.53 m 195.00 76.24 l S 195.00 74.53 m 195.05 77.65 l S 195.05 74.53 m 195.09 75.10 l S 195.09 74.53 m 195.14 74.72 l S 195.14 74.53 m 195.19 74.64 l S 195.19 74.53 m 195.23 74.64 l S 195.23 74.53 m 195.28 74.67 l S 195.28 74.53 m 195.32 76.19 l S 195.32 74.53 m 195.37 74.86 l S 195.37 74.53 m 195.42 74.75 l S 195.42 74.53 m 195.46 74.83 l S 195.46 74.53 m 195.51 74.72 l S 195.51 74.53 m 195.55 74.75 l S 195.55 74.53 m 195.60 74.75 l S 195.60 74.53 m 195.65 74.72 l S 195.65 74.53 m 195.69 74.75 l S 195.69 74.53 m 195.74 74.75 l S 195.74 74.53 m 195.78 75.08 l S 195.78 74.53 m 195.83 74.67 l S 195.83 74.53 m 195.88 78.41 l S 195.88 74.53 m 195.92 79.41 l S 195.92 74.53 m 195.97 74.70 l S 195.97 74.53 m 196.01 74.72 l S 196.01 74.53 m 196.06 74.86 l S 196.06 74.53 m 196.11 74.72 l S 196.11 74.53 m 196.15 74.64 l S 196.15 74.53 m 196.20 83.05 l S 196.20 74.53 m 196.24 77.38 l S 196.24 74.53 m 196.29 74.75 l S 196.29 74.53 m 196.34 74.72 l S 196.34 74.53 m 196.38 74.67 l S 196.38 74.53 m 196.43 74.70 l S 196.43 74.53 m 196.47 82.59 l S 196.47 74.53 m 196.52 74.70 l S 196.52 74.53 m 196.57 74.86 l S 196.57 74.53 m 196.61 74.75 l S 196.61 74.53 m 196.66 74.80 l S 196.66 74.53 m 196.70 74.70 l S 196.70 74.53 m 196.75 74.70 l S 196.75 74.53 m 196.80 74.72 l S 196.80 74.53 m 196.84 74.70 l S 196.84 74.53 m 196.89 75.02 l S 196.89 74.53 m 196.93 74.70 l S 196.93 74.53 m 196.98 75.05 l S 196.98 74.53 m 197.03 74.83 l S 197.03 74.53 m 197.07 85.54 l S 197.07 74.53 m 197.12 74.70 l S 197.12 74.53 m 197.16 77.71 l S 197.16 74.53 m 197.21 74.80 l S 197.21 74.53 m 197.26 74.67 l S 197.26 74.53 m 197.30 74.86 l S 197.30 74.53 m 197.35 86.14 l S 197.35 74.53 m 197.39 74.67 l S 197.39 74.53 m 197.44 74.64 l S 197.44 74.53 m 197.49 74.67 l S 197.49 74.53 m 197.53 74.67 l S 197.53 74.53 m 197.58 74.67 l S 197.58 74.53 m 197.62 74.64 l S 197.62 74.53 m 197.67 74.70 l S 197.67 74.53 m 197.72 74.61 l S 197.72 74.53 m 197.76 74.64 l S 197.76 74.53 m 197.81 74.64 l S 197.81 74.53 m 197.85 74.64 l S 197.85 74.53 m 197.90 74.61 l S 197.90 74.53 m 197.95 74.67 l S 197.95 74.53 m 197.99 74.70 l S 197.99 74.53 m 198.04 74.70 l S 198.04 74.53 m 198.08 74.64 l S 198.08 74.53 m 198.13 74.70 l S 198.13 74.53 m 198.18 74.72 l S 198.18 74.53 m 198.22 75.73 l S 198.22 74.53 m 198.27 77.33 l S 198.27 74.53 m 198.31 74.70 l S 198.31 74.53 m 198.36 76.65 l S 198.36 74.53 m 198.41 74.70 l S 198.41 74.53 m 198.45 74.86 l S 198.45 74.53 m 198.50 74.67 l S 198.50 74.53 m 198.55 74.72 l S 198.55 74.53 m 198.59 74.70 l S 198.59 74.53 m 198.64 74.75 l S 198.64 74.53 m 198.68 74.78 l S 198.68 74.53 m 198.73 78.19 l S 198.73 74.53 m 198.78 74.70 l S 198.78 74.53 m 198.82 74.72 l S 198.82 74.53 m 198.87 79.60 l S 198.87 74.53 m 198.91 85.35 l S 198.91 74.53 m 198.96 74.80 l S 198.96 74.53 m 199.01 74.91 l S 199.01 74.53 m 199.05 74.72 l S 199.05 74.53 m 199.10 74.80 l S 199.10 74.53 m 199.14 74.72 l S 199.14 74.53 m 199.19 82.83 l S 199.19 74.53 m 199.24 74.99 l S 199.24 74.53 m 199.28 75.43 l S 199.28 74.53 m 199.33 74.70 l S 199.33 74.53 m 199.37 78.19 l S 199.37 74.53 m 199.42 86.52 l S 199.42 74.53 m 199.47 74.83 l S 199.47 74.53 m 199.51 83.78 l S 199.51 74.53 m 199.56 74.78 l S 199.56 74.53 m 199.60 74.75 l S 199.60 74.53 m 199.65 74.70 l S 199.65 74.53 m 199.70 75.08 l S 199.70 74.53 m 199.74 75.08 l S 199.74 74.53 m 199.79 74.72 l S 199.79 74.53 m 199.83 78.87 l S 199.83 74.53 m 199.88 74.70 l S 199.88 74.53 m 199.93 74.70 l S 199.93 74.53 m 199.97 74.70 l S 199.97 74.53 m 200.02 76.00 l S 200.02 74.53 m 200.06 74.72 l S 200.06 74.53 m 200.11 79.01 l S 200.11 74.53 m 200.16 74.70 l S 200.16 74.53 m 200.20 74.83 l S 200.20 74.53 m 200.25 74.83 l S 200.25 74.53 m 200.29 76.65 l S 200.29 74.53 m 200.34 74.70 l S 200.34 74.53 m 200.39 75.54 l S 200.39 74.53 m 200.43 77.30 l S 200.43 74.53 m 200.48 74.72 l S 200.48 74.53 m 200.52 74.75 l S 200.52 74.53 m 200.57 74.70 l S 200.57 74.53 m 200.62 74.64 l S 200.62 74.53 m 200.66 74.70 l S 200.66 74.53 m 200.71 76.65 l S 200.71 74.53 m 200.75 74.70 l S 200.75 74.53 m 200.80 74.80 l S 200.80 74.53 m 200.85 74.75 l S 200.85 74.53 m 200.89 74.70 l S 200.89 74.53 m 200.94 78.95 l S 200.94 74.53 m 200.98 74.64 l S 200.98 74.53 m 201.03 74.64 l S 201.03 74.53 m 201.08 80.15 l S 201.08 74.53 m 201.12 80.20 l S 201.12 74.53 m 201.17 74.67 l S 201.17 74.53 m 201.21 82.18 l S 201.21 74.53 m 201.26 86.06 l S 201.26 74.53 m 201.31 77.68 l S 201.31 74.53 m 201.35 82.40 l S 201.35 74.53 m 201.40 74.67 l S 201.40 74.53 m 201.44 74.78 l S 201.44 74.53 m 201.49 74.67 l S 201.49 74.53 m 201.54 82.32 l S 201.54 74.53 m 201.58 74.67 l S 201.58 74.53 m 201.63 80.31 l S 201.63 74.53 m 201.67 83.35 l S 201.67 74.53 m 201.72 76.13 l S 201.72 74.53 m 201.77 75.94 l S 201.77 74.53 m 201.81 77.98 l S 201.81 74.53 m 201.86 74.94 l S 201.86 74.53 m 201.90 75.05 l S 201.90 74.53 m 201.95 74.75 l S 201.95 74.53 m 202.00 75.16 l S 202.00 74.53 m 202.04 74.80 l S 202.04 74.53 m 202.09 74.86 l S 202.09 74.53 m 202.13 74.75 l S 202.13 74.53 m 202.18 74.70 l S 202.18 74.53 m 202.23 78.17 l S 202.23 74.53 m 202.27 74.72 l S 202.27 74.53 m 202.32 74.78 l S 202.32 74.53 m 202.36 74.67 l S 202.36 74.53 m 202.41 76.95 l S 202.41 74.53 m 202.46 74.97 l S 202.46 74.53 m 202.50 74.89 l S 202.50 74.53 m 202.55 74.91 l S 202.55 74.53 m 202.59 79.39 l S 202.59 74.53 m 202.64 79.06 l S 202.64 74.53 m 202.69 79.09 l S 202.69 74.53 m 202.73 74.86 l S 202.73 74.53 m 202.78 74.67 l S 202.78 74.53 m 202.82 74.80 l S 202.82 74.53 m 202.87 74.70 l S 202.87 74.53 m 202.92 74.67 l S 202.92 74.53 m 202.96 74.72 l S 202.96 74.53 m 203.01 74.67 l S 203.01 74.53 m 203.05 74.67 l S 203.05 74.53 m 203.10 74.78 l S 203.10 74.53 m 203.15 74.75 l S 203.15 74.53 m 203.19 74.67 l S 203.19 74.53 m 203.24 74.70 l S 203.24 74.53 m 203.28 74.75 l S 203.28 74.53 m 203.33 74.67 l S 203.33 74.53 m 203.38 74.72 l S 203.38 74.53 m 203.42 74.78 l S 203.42 74.53 m 203.47 74.67 l S 203.47 74.53 m 203.51 74.72 l S 203.51 74.53 m 203.56 74.64 l S 203.56 74.53 m 203.61 74.70 l S 203.61 74.53 m 203.65 74.75 l S 203.65 74.53 m 203.70 77.06 l S 203.70 74.53 m 203.74 74.70 l S 203.74 74.53 m 203.79 74.70 l S 203.79 74.53 m 203.84 75.32 l S 203.84 74.53 m 203.88 74.78 l S 203.88 74.53 m 203.93 74.72 l S 203.93 74.53 m 203.97 80.82 l S 203.97 74.53 m 204.02 74.72 l S 204.02 74.53 m 204.07 74.72 l S 204.07 74.53 m 204.11 75.37 l S 204.11 74.53 m 204.16 74.72 l S 204.16 74.53 m 204.20 74.67 l S 204.20 74.53 m 204.25 77.57 l S 204.25 74.53 m 204.30 80.74 l S 204.30 74.53 m 204.34 74.67 l S 204.34 74.53 m 204.39 84.81 l S 204.39 74.53 m 204.43 74.72 l S 204.43 74.53 m 204.48 74.75 l S 204.48 74.53 m 204.53 76.16 l S 204.53 74.53 m 204.57 75.10 l S 204.57 74.53 m 204.62 74.72 l S 204.62 74.53 m 204.66 74.67 l S 204.66 74.53 m 204.71 74.67 l S 204.71 74.53 m 204.76 76.84 l S 204.76 74.53 m 204.80 74.70 l S 204.80 74.53 m 204.85 74.64 l S 204.85 74.53 m 204.89 74.70 l S 204.89 74.53 m 204.94 74.80 l S 204.94 74.53 m 204.99 88.17 l S 204.99 74.53 m 205.03 74.72 l S 205.03 74.53 m 205.08 87.90 l S 205.08 74.53 m 205.12 84.81 l S 205.12 74.53 m 205.17 74.67 l S 205.17 74.53 m 205.22 76.68 l S 205.22 74.53 m 205.26 78.11 l S 205.26 74.53 m 205.31 74.67 l S 205.31 74.53 m 205.35 74.67 l S 205.35 74.53 m 205.40 77.84 l S 205.40 74.53 m 205.45 75.13 l S 205.45 74.53 m 205.49 87.77 l S 205.49 74.53 m 205.54 75.86 l S 205.54 74.53 m 205.58 75.32 l S 205.58 74.53 m 205.63 75.75 l S 205.63 74.53 m 205.68 75.02 l S 205.68 74.53 m 205.72 74.99 l S 205.72 74.53 m 205.77 75.97 l S 205.77 74.53 m 205.81 74.70 l S 205.81 74.53 m 205.86 76.19 l S 205.86 74.53 m 205.91 74.78 l S 205.91 74.53 m 205.95 74.70 l S 205.95 74.53 m 206.00 80.47 l S 206.00 74.53 m 206.04 74.70 l S 206.04 74.53 m 206.09 87.55 l S 206.09 74.53 m 206.14 80.01 l S 206.14 74.53 m 206.18 83.75 l S 206.18 74.53 m 206.23 77.76 l S 206.23 74.53 m 206.27 78.76 l S 206.27 74.53 m 206.32 75.32 l S 206.32 74.53 m 206.37 74.80 l S 206.37 74.53 m 206.41 75.67 l S 206.41 74.53 m 206.46 75.29 l S 206.46 74.53 m 206.51 75.70 l S 206.51 74.53 m 206.55 75.10 l S 206.55 74.53 m 206.60 77.98 l S 206.60 74.53 m 206.64 74.72 l S 206.64 74.53 m 206.69 74.75 l S 206.69 74.53 m 206.74 74.72 l S 206.74 74.53 m 206.78 74.70 l S 206.78 74.53 m 206.83 74.64 l S 206.83 74.53 m 206.87 75.81 l S 206.87 74.53 m 206.92 79.66 l S 206.92 74.53 m 206.97 74.72 l S 206.97 74.53 m 207.01 74.72 l S 207.01 74.53 m 207.06 78.87 l S 207.06 74.53 m 207.10 74.67 l S 207.10 74.53 m 207.15 74.86 l S 207.15 74.53 m 207.20 76.87 l S 207.20 74.53 m 207.24 87.01 l S 207.24 74.53 m 207.29 74.94 l S 207.29 74.53 m 207.33 74.75 l S 207.33 74.53 m 207.38 74.75 l S 207.38 74.53 m 207.43 75.62 l S 207.43 74.53 m 207.47 74.70 l S 207.47 74.53 m 207.52 74.67 l S 207.52 74.53 m 207.56 78.68 l S 207.56 74.53 m 207.61 76.62 l S 207.61 74.53 m 207.66 85.90 l S 207.66 74.53 m 207.70 81.72 l S 207.70 74.53 m 207.75 74.75 l S 207.75 74.53 m 207.79 82.75 l S 207.79 74.53 m 207.84 74.78 l S 207.84 74.53 m 207.89 74.70 l S 207.89 74.53 m 207.93 74.67 l S 207.93 74.53 m 207.98 74.78 l S 207.98 74.53 m 208.02 85.71 l S 208.02 74.53 m 208.07 78.79 l S 208.07 74.53 m 208.12 78.11 l S 208.12 74.53 m 208.16 86.87 l S 208.16 74.53 m 208.21 74.75 l S 208.21 74.53 m 208.25 74.72 l S 208.25 74.53 m 208.30 74.75 l S 208.30 74.53 m 208.35 83.32 l S 208.35 74.53 m 208.39 75.67 l S 208.39 74.53 m 208.44 80.39 l S 208.44 74.53 m 208.48 84.05 l S 208.48 74.53 m 208.53 74.80 l S 208.53 74.53 m 208.58 74.83 l S 208.58 74.53 m 208.62 101.87 l S 208.62 74.53 m 208.67 75.02 l S 208.67 74.53 m 208.71 80.39 l S 208.71 74.53 m 208.76 74.78 l S 208.76 74.53 m 208.81 74.67 l S 208.81 74.53 m 208.85 74.72 l S 208.85 74.53 m 208.90 77.16 l S 208.90 74.53 m 208.94 74.80 l S 208.94 74.53 m 208.99 74.61 l S 208.99 74.53 m 209.04 74.67 l S 209.04 74.53 m 209.08 78.87 l S 209.08 74.53 m 209.13 74.72 l S 209.13 74.53 m 209.17 74.70 l S 209.17 74.53 m 209.22 74.97 l S 209.22 74.53 m 209.27 74.61 l S 209.27 74.53 m 209.31 78.47 l S 209.31 74.53 m 209.36 86.65 l S 209.36 74.53 m 209.40 74.99 l S 209.40 74.53 m 209.45 81.42 l S 209.45 74.53 m 209.50 76.08 l S 209.50 74.53 m 209.54 74.80 l S 209.54 74.53 m 209.59 76.84 l S 209.59 74.53 m 209.63 80.93 l S 209.63 74.53 m 209.68 74.72 l S 209.68 74.53 m 209.73 79.69 l S 209.73 74.53 m 209.77 77.60 l S 209.77 74.53 m 209.82 74.75 l S 209.82 74.53 m 209.86 78.68 l S 209.86 74.53 m 209.91 74.86 l S 209.91 74.53 m 209.96 74.75 l S 209.96 74.53 m 210.00 76.13 l S 210.00 74.53 m 210.05 75.75 l S 210.05 74.53 m 210.09 83.26 l S 210.09 74.53 m 210.14 81.34 l S 210.14 74.53 m 210.19 75.08 l S 210.19 74.53 m 210.23 74.83 l S 210.23 74.53 m 210.28 74.72 l S 210.28 74.53 m 210.32 74.72 l S 210.32 74.53 m 210.37 79.79 l S 210.37 74.53 m 210.42 74.97 l S 210.42 74.53 m 210.46 74.67 l S 210.46 74.53 m 210.51 78.47 l S 210.51 74.53 m 210.55 80.20 l S 210.55 74.53 m 210.60 76.02 l S 210.60 74.53 m 210.65 79.88 l S 210.65 74.53 m 210.69 76.76 l S 210.69 74.53 m 210.74 74.78 l S 210.74 74.53 m 210.78 74.72 l S 210.78 74.53 m 210.83 74.70 l S 210.83 74.53 m 210.88 74.72 l S 210.88 74.53 m 210.92 74.70 l S 210.92 74.53 m 210.97 74.75 l S 210.97 74.53 m 211.01 74.99 l S 211.01 74.53 m 211.06 74.78 l S 211.06 74.53 m 211.11 74.72 l S 211.11 74.53 m 211.15 74.70 l S 211.15 74.53 m 211.20 74.67 l S 211.20 74.53 m 211.24 74.67 l S 211.24 74.53 m 211.29 74.70 l S 211.29 74.53 m 211.34 74.70 l S 211.34 74.53 m 211.38 74.78 l S 211.38 74.53 m 211.43 74.70 l S 211.43 74.53 m 211.47 74.91 l S 211.47 74.53 m 211.52 74.70 l S 211.52 74.53 m 211.57 74.70 l S 211.57 74.53 m 211.61 74.72 l S 211.61 74.53 m 211.66 74.72 l S 211.66 74.53 m 211.70 74.72 l S 211.70 74.53 m 211.75 74.70 l S 211.75 74.53 m 211.80 74.75 l S 211.80 74.53 m 211.84 74.72 l S 211.84 74.53 m 211.89 74.75 l S 211.89 74.53 m 211.93 74.72 l S 211.93 74.53 m 211.98 74.75 l S 211.98 74.53 m 212.03 74.72 l S 212.03 74.53 m 212.07 74.67 l S 212.07 74.53 m 212.12 74.72 l S 212.12 74.53 m 212.16 74.70 l S 212.16 74.53 m 212.21 74.67 l S 212.21 74.53 m 212.26 74.80 l S 212.26 74.53 m 212.30 74.72 l S 212.30 74.53 m 212.35 74.67 l S 212.35 74.53 m 212.39 74.70 l S 212.39 74.53 m 212.44 74.64 l S 212.44 74.53 m 212.49 74.67 l S 212.49 74.53 m 212.53 74.67 l S 212.53 74.53 m 212.58 74.75 l S 212.58 74.53 m 212.62 74.67 l S 212.62 74.53 m 212.67 77.14 l S 212.67 74.53 m 212.72 74.97 l S 212.72 74.53 m 212.76 74.67 l S 212.76 74.53 m 212.81 74.72 l S 212.81 74.53 m 212.85 74.75 l S 212.85 74.53 m 212.90 74.75 l S 212.90 74.53 m 212.95 74.70 l S 212.95 74.53 m 212.99 74.70 l S 212.99 74.53 m 213.04 74.70 l S 213.04 74.53 m 213.08 74.67 l S 213.08 74.53 m 213.13 74.64 l S 213.13 74.53 m 213.18 74.70 l S 213.18 74.53 m 213.22 74.64 l S 213.22 74.53 m 213.27 74.70 l S 213.27 74.53 m 213.31 74.72 l S 213.31 74.53 m 213.36 74.70 l S 213.36 74.53 m 213.41 74.72 l S 213.41 74.53 m 213.45 74.70 l S 213.45 74.53 m 213.50 74.67 l S 213.50 74.53 m 213.54 74.67 l S 213.54 74.53 m 213.59 74.67 l S 213.59 74.53 m 213.64 74.67 l S 213.64 74.53 m 213.68 74.67 l S 213.68 74.53 m 213.73 74.70 l S 213.73 74.53 m 213.77 74.67 l S 213.77 74.53 m 213.82 74.64 l S 213.82 74.53 m 213.87 74.67 l S 213.87 74.53 m 213.91 74.67 l S 213.91 74.53 m 213.96 74.67 l S 213.96 74.53 m 214.00 74.67 l S 214.00 74.53 m 214.05 74.72 l S 214.05 74.53 m 214.10 74.72 l S 214.10 74.53 m 214.14 74.70 l S 214.14 74.53 m 214.19 74.70 l S 214.19 74.53 m 214.23 74.72 l S 214.23 74.53 m 214.28 74.75 l S 214.28 74.53 m 214.33 74.70 l S 214.33 74.53 m 214.37 74.70 l S 214.37 74.53 m 214.42 74.64 l S 214.42 74.53 m 214.47 74.70 l S 214.47 74.53 m 214.51 74.67 l S 214.51 74.53 m 214.56 74.72 l S 214.56 74.53 m 214.60 74.72 l S 214.60 74.53 m 214.65 74.70 l S 214.65 74.53 m 214.70 74.70 l S 214.70 74.53 m 214.74 74.67 l S 214.74 74.53 m 214.79 74.70 l S 214.79 74.53 m 214.83 74.70 l S 214.83 74.53 m 214.88 74.67 l S 214.88 74.53 m 214.93 74.67 l S 214.93 74.53 m 214.97 74.70 l S 214.97 74.53 m 215.02 74.70 l S 215.02 74.53 m 215.06 74.64 l S 215.06 74.53 m 215.11 74.64 l S 215.11 74.53 m 215.16 75.02 l S 215.16 74.53 m 215.20 74.67 l S 215.20 74.53 m 215.25 74.64 l S 215.25 74.53 m 215.29 74.67 l S 215.29 74.53 m 215.34 74.64 l S 215.34 74.53 m 215.39 74.67 l S 215.39 74.53 m 215.43 74.70 l S 215.43 74.53 m 215.48 74.75 l S 215.48 74.53 m 215.52 74.72 l S 215.52 74.53 m 215.57 74.72 l S 215.57 74.53 m 215.62 74.64 l S 215.62 74.53 m 215.66 74.75 l S 215.66 74.53 m 215.71 74.72 l S 215.71 74.53 m 215.75 74.72 l S 215.75 74.53 m 215.80 74.67 l S 215.80 74.53 m 215.85 74.70 l S 215.85 74.53 m 215.89 74.70 l S 215.89 74.53 m 215.94 74.70 l S 215.94 74.53 m 215.98 74.67 l S 215.98 74.53 m 216.03 74.72 l S 216.03 74.53 m 216.08 74.70 l S 216.08 74.53 m 216.12 74.67 l S 216.12 74.53 m 216.17 74.70 l S 216.17 74.53 m 216.21 74.70 l S 216.21 74.53 m 216.26 74.75 l S 216.26 74.53 m 216.31 74.64 l S 216.31 74.53 m 216.35 74.67 l S 216.35 74.53 m 216.40 74.70 l S 216.40 74.53 m 216.44 74.75 l S 216.44 74.53 m 216.49 74.75 l S 216.49 74.53 m 216.54 74.64 l S 216.54 74.53 m 216.58 74.64 l S 216.58 74.53 m 216.63 74.78 l S 216.63 74.53 m 216.67 74.67 l S 216.67 74.53 m 216.72 74.70 l S 216.72 74.53 m 216.77 74.61 l S 216.77 74.53 m 216.81 74.67 l S 216.81 74.53 m 216.86 74.70 l S 216.86 74.53 m 216.90 74.67 l S 216.90 74.53 m 216.95 74.67 l S 216.95 74.53 m 217.00 74.67 l S 217.00 74.53 m 217.04 74.67 l S 217.04 74.53 m 217.09 74.67 l S 217.09 74.53 m 217.13 74.67 l S 217.13 74.53 m 217.18 74.67 l S 217.18 74.53 m 217.23 74.75 l S 217.23 74.53 m 217.27 74.70 l S 217.27 74.53 m 217.32 74.67 l S 217.32 74.53 m 217.36 74.67 l S 217.36 74.53 m 217.41 74.64 l S 217.41 74.53 m 217.46 74.70 l S 217.46 74.53 m 217.50 74.67 l S 217.50 74.53 m 217.55 74.72 l S 217.55 74.53 m 217.59 74.75 l S 217.59 74.53 m 217.64 74.70 l S 217.64 74.53 m 217.69 74.67 l S 217.69 74.53 m 217.73 74.64 l S 217.73 74.53 m 217.78 74.72 l S 217.78 74.53 m 217.82 74.70 l S 217.82 74.53 m 217.87 74.67 l S 217.87 74.53 m 217.92 74.78 l S 217.92 74.53 m 217.96 74.70 l S 217.96 74.53 m 218.01 74.72 l S 218.01 74.53 m 218.05 74.91 l S 218.05 74.53 m 218.10 74.78 l S 218.10 74.53 m 218.15 74.80 l S 218.15 74.53 m 218.19 74.75 l S 218.19 74.53 m 218.24 76.97 l S 218.24 74.53 m 218.28 75.97 l S 218.28 74.53 m 218.33 74.70 l S 218.33 74.53 m 218.38 79.33 l S 218.38 74.53 m 218.42 75.29 l S 218.42 74.53 m 218.47 76.21 l S 218.47 74.53 m 218.51 74.70 l S 218.51 74.53 m 218.56 75.02 l S 218.56 74.53 m 218.61 74.70 l S 218.61 74.53 m 218.65 80.77 l S 218.65 74.53 m 218.70 75.59 l S 218.70 74.53 m 218.74 78.71 l S 218.74 74.53 m 218.79 74.70 l S 218.79 74.53 m 218.84 75.62 l S 218.84 74.53 m 218.88 74.75 l S 218.88 74.53 m 218.93 75.46 l S 218.93 74.53 m 218.97 75.02 l S 218.97 74.53 m 219.02 79.39 l S 219.02 74.53 m 219.07 74.89 l S 219.07 74.53 m 219.11 90.69 l S 219.11 74.53 m 219.16 74.67 l S 219.16 74.53 m 219.20 76.51 l S 219.20 74.53 m 219.25 78.47 l S 219.25 74.53 m 219.30 74.72 l S 219.30 74.53 m 219.34 75.65 l S 219.34 74.53 m 219.39 74.75 l S 219.39 74.53 m 219.43 74.91 l S 219.43 74.53 m 219.48 74.72 l S 219.48 74.53 m 219.53 78.09 l S 219.53 74.53 m 219.57 75.16 l S 219.57 74.53 m 219.62 82.99 l S 219.62 74.53 m 219.66 74.75 l S 219.66 74.53 m 219.71 74.75 l S 219.71 74.53 m 219.76 74.80 l S 219.76 74.53 m 219.80 75.67 l S 219.80 74.53 m 219.85 74.72 l S 219.85 74.53 m 219.89 74.72 l S 219.89 74.53 m 219.94 74.86 l S 219.94 74.53 m 219.99 74.72 l S 219.99 74.53 m 220.03 74.72 l S 220.03 74.53 m 220.08 74.75 l S 220.08 74.53 m 220.12 74.75 l S 220.12 74.53 m 220.17 74.72 l S 220.17 74.53 m 220.22 74.67 l S 220.22 74.53 m 220.26 74.70 l S 220.26 74.53 m 220.31 74.75 l S 220.31 74.53 m 220.35 74.70 l S 220.35 74.53 m 220.40 74.72 l S 220.40 74.53 m 220.45 74.70 l S 220.45 74.53 m 220.49 74.67 l S 220.49 74.53 m 220.54 74.70 l S 220.54 74.53 m 220.58 74.67 l S 220.58 74.53 m 220.63 74.72 l S 220.63 74.53 m 220.68 74.67 l S 220.68 74.53 m 220.72 74.72 l S 220.72 74.53 m 220.77 74.70 l S 220.77 74.53 m 220.81 74.72 l S 220.81 74.53 m 220.86 74.67 l S 220.86 74.53 m 220.91 74.72 l S 220.91 74.53 m 220.95 74.70 l S 220.95 74.53 m 221.00 74.72 l S 221.00 74.53 m 221.04 74.72 l S 221.04 74.53 m 221.09 74.72 l S 221.09 74.53 m 221.14 74.70 l S 221.14 74.53 m 221.18 74.67 l S 221.18 74.53 m 221.23 74.70 l S 221.23 74.53 m 221.27 74.67 l S 221.27 74.53 m 221.32 87.17 l S 221.32 74.53 m 221.37 74.75 l S 221.37 74.53 m 221.41 74.75 l S 221.41 74.53 m 221.46 74.75 l S 221.46 74.53 m 221.50 74.70 l S 221.50 74.53 m 221.55 74.86 l S 221.55 74.53 m 221.60 85.71 l S 221.60 74.53 m 221.64 74.70 l S 221.64 74.53 m 221.69 84.27 l S 221.69 74.53 m 221.73 74.67 l S 221.73 74.53 m 221.78 75.02 l S 221.78 74.53 m 221.83 74.67 l S 221.83 74.53 m 221.87 74.70 l S 221.87 74.53 m 221.92 74.80 l S 221.92 74.53 m 221.96 74.67 l S 221.96 74.53 m 222.01 74.72 l S 222.01 74.53 m 222.06 74.75 l S 222.06 74.53 m 222.10 74.70 l S 222.10 74.53 m 222.15 74.72 l S 222.15 74.53 m 222.19 74.75 l S 222.19 74.53 m 222.24 74.72 l S 222.24 74.53 m 222.29 74.78 l S 222.29 74.53 m 222.33 74.91 l S 222.33 74.53 m 222.38 78.36 l S 222.38 74.53 m 222.43 75.24 l S 222.43 74.53 m 222.47 74.70 l S 222.47 74.53 m 222.52 75.05 l S 222.52 74.53 m 222.56 74.89 l S 222.56 74.53 m 222.61 74.78 l S 222.61 74.53 m 222.66 74.72 l S 222.66 74.53 m 222.70 74.72 l S 222.70 74.53 m 222.75 75.13 l S 222.75 74.53 m 222.79 74.67 l S 222.79 74.53 m 222.84 74.70 l S 222.84 74.53 m 222.89 74.72 l S 222.89 74.53 m 222.93 77.24 l S 222.93 74.53 m 222.98 74.75 l S 222.98 74.53 m 223.02 74.78 l S 223.02 74.53 m 223.07 74.80 l S 223.07 74.53 m 223.12 74.67 l S 223.12 74.53 m 223.16 74.72 l S 223.16 74.53 m 223.21 75.51 l S 223.21 74.53 m 223.25 74.80 l S 223.25 74.53 m 223.30 74.70 l S 223.30 74.53 m 223.35 82.80 l S 223.35 74.53 m 223.39 74.80 l S 223.39 74.53 m 223.44 74.72 l S 223.44 74.53 m 223.48 74.94 l S 223.48 74.53 m 223.53 74.64 l S 223.53 74.53 m 223.58 82.15 l S 223.58 74.53 m 223.62 74.70 l S 223.62 74.53 m 223.67 74.75 l S 223.67 74.53 m 223.71 75.27 l S 223.71 74.53 m 223.76 74.99 l S 223.76 74.53 m 223.81 74.83 l S 223.81 74.53 m 223.85 75.89 l S 223.85 74.53 m 223.90 74.83 l S 223.90 74.53 m 223.94 75.35 l S 223.94 74.53 m 223.99 74.72 l S 223.99 74.53 m 224.04 83.02 l S 224.04 74.53 m 224.08 74.75 l S 224.08 74.53 m 224.13 75.83 l S 224.13 74.53 m 224.17 74.83 l S 224.17 74.53 m 224.22 78.93 l S 224.22 74.53 m 224.27 74.70 l S 224.27 74.53 m 224.31 74.75 l S 224.31 74.53 m 224.36 74.89 l S 224.36 74.53 m 224.40 74.67 l S 224.40 74.53 m 224.45 75.05 l S 224.45 74.53 m 224.50 80.63 l S 224.50 74.53 m 224.54 75.35 l S 224.54 74.53 m 224.59 74.80 l S 224.59 74.53 m 224.63 76.78 l S 224.63 74.53 m 224.68 74.72 l S 224.68 74.53 m 224.73 74.72 l S 224.73 74.53 m 224.77 74.75 l S 224.77 74.53 m 224.82 75.18 l S 224.82 74.53 m 224.86 75.48 l S 224.86 74.53 m 224.91 80.15 l S 224.91 74.53 m 224.96 74.70 l S 224.96 74.53 m 225.00 74.89 l S 225.00 74.53 m 225.05 87.93 l S 225.05 74.53 m 225.09 74.78 l S 225.09 74.53 m 225.14 74.86 l S 225.14 74.53 m 225.19 74.72 l S 225.19 74.53 m 225.23 74.72 l S 225.23 74.53 m 225.28 75.37 l S 225.28 74.53 m 225.32 74.70 l S 225.32 74.53 m 225.37 74.64 l S 225.37 74.53 m 225.42 75.10 l S 225.42 74.53 m 225.46 74.70 l S 225.46 74.53 m 225.51 74.67 l S 225.51 74.53 m 225.55 74.70 l S 225.55 74.53 m 225.60 74.67 l S 225.60 74.53 m 225.65 74.67 l S 225.65 74.53 m 225.69 74.64 l S 225.69 74.53 m 225.74 74.72 l S 225.74 74.53 m 225.78 74.64 l S 225.78 74.53 m 225.83 74.64 l S 225.83 74.53 m 225.88 74.67 l S 225.88 74.53 m 225.92 74.67 l S 225.92 74.53 m 225.97 74.72 l S 225.97 74.53 m 226.01 74.70 l S 226.01 74.53 m 226.06 74.70 l S 226.06 74.53 m 226.11 74.67 l S 226.11 74.53 m 226.15 74.67 l S 226.15 74.53 m 226.20 74.64 l S 226.20 74.53 m 226.24 74.70 l S 226.24 74.53 m 226.29 74.67 l S 226.29 74.53 m 226.34 74.64 l S 226.34 74.53 m 226.38 74.70 l S 226.38 74.53 m 226.43 74.64 l S 226.43 74.53 m 226.47 74.70 l S 226.47 74.53 m 226.52 74.78 l S 226.52 74.53 m 226.57 74.67 l S 226.57 74.53 m 226.61 74.72 l S 226.61 74.53 m 226.66 74.70 l S 226.66 74.53 m 226.70 74.78 l S 226.70 74.53 m 226.75 74.64 l S 226.75 74.53 m 226.80 74.86 l S 226.80 74.53 m 226.84 74.67 l S 226.84 74.53 m 226.89 74.75 l S 226.89 74.53 m 226.93 74.75 l S 226.93 74.53 m 226.98 74.70 l S 226.98 74.53 m 227.03 74.67 l S 227.03 74.53 m 227.07 74.72 l S 227.07 74.53 m 227.12 74.70 l S 227.12 74.53 m 227.16 74.64 l S 227.16 74.53 m 227.21 74.67 l S 227.21 74.53 m 227.26 74.67 l S 227.26 74.53 m 227.30 74.67 l S 227.30 74.53 m 227.35 74.80 l S 227.35 74.53 m 227.39 74.72 l S 227.39 74.53 m 227.44 74.75 l S 227.44 74.53 m 227.49 74.83 l S 227.49 74.53 m 227.53 75.13 l S 227.53 74.53 m 227.58 75.54 l S 227.58 74.53 m 227.62 74.70 l S 227.62 74.53 m 227.67 76.02 l S 227.67 74.53 m 227.72 74.72 l S 227.72 74.53 m 227.76 74.72 l S 227.76 74.53 m 227.81 74.67 l S 227.81 74.53 m 227.85 76.32 l S 227.85 74.53 m 227.90 74.67 l S 227.90 74.53 m 227.95 74.80 l S 227.95 74.53 m 227.99 74.75 l S 227.99 74.53 m 228.04 75.65 l S 228.04 74.53 m 228.08 78.17 l S 228.08 74.53 m 228.13 74.70 l S 228.13 74.53 m 228.18 76.49 l S 228.18 74.53 m 228.22 74.75 l S 228.22 74.53 m 228.27 74.72 l S 228.27 74.53 m 228.31 74.72 l S 228.31 74.53 m 228.36 80.04 l S 228.36 74.53 m 228.41 74.75 l S 228.41 74.53 m 228.45 75.54 l S 228.45 74.53 m 228.50 74.75 l S 228.50 74.53 m 228.54 74.70 l S 228.54 74.53 m 228.59 75.10 l S 228.59 74.53 m 228.64 74.75 l S 228.64 74.53 m 228.68 74.72 l S 228.68 74.53 m 228.73 74.70 l S 228.73 74.53 m 228.77 74.72 l S 228.77 74.53 m 228.82 74.70 l S 228.82 74.53 m 228.87 74.70 l S 228.87 74.53 m 228.91 74.75 l S 228.91 74.53 m 228.96 74.75 l S 228.96 74.53 m 229.00 75.56 l S 229.00 74.53 m 229.05 74.70 l S 229.05 74.53 m 229.10 74.72 l S 229.10 74.53 m 229.14 74.70 l S 229.14 74.53 m 229.19 75.08 l S 229.19 74.53 m 229.23 74.67 l S 229.23 74.53 m 229.28 79.41 l S 229.28 74.53 m 229.33 74.70 l S 229.33 74.53 m 229.37 74.75 l S 229.37 74.53 m 229.42 74.72 l S 229.42 74.53 m 229.46 74.72 l S 229.46 74.53 m 229.51 74.67 l S 229.51 74.53 m 229.56 74.67 l S 229.56 74.53 m 229.60 74.72 l S 229.60 74.53 m 229.65 74.67 l S 229.65 74.53 m 229.69 80.74 l S 229.69 74.53 m 229.74 74.78 l S 229.74 74.53 m 229.79 74.67 l S 229.79 74.53 m 229.83 76.51 l S 229.83 74.53 m 229.88 74.78 l S 229.88 74.53 m 229.92 74.78 l S 229.92 74.53 m 229.97 74.94 l S 229.97 74.53 m 230.02 74.94 l S 230.02 74.53 m 230.06 74.78 l S 230.06 74.53 m 230.11 74.80 l S 230.11 74.53 m 230.15 74.91 l S 230.15 74.53 m 230.20 75.05 l S 230.20 74.53 m 230.25 78.57 l S 230.25 74.53 m 230.29 74.72 l S 230.29 74.53 m 230.34 75.18 l S 230.34 74.53 m 230.38 74.70 l S 230.38 74.53 m 230.43 74.78 l S 230.43 74.53 m 230.48 74.70 l S 230.48 74.53 m 230.52 74.70 l S 230.52 74.53 m 230.57 74.78 l S 230.57 74.53 m 230.62 75.46 l S 230.62 74.53 m 230.66 74.64 l S 230.66 74.53 m 230.71 81.23 l S 230.71 74.53 m 230.75 78.22 l S 230.75 74.53 m 230.80 81.01 l S 230.80 74.53 m 230.85 83.43 l S 230.85 74.53 m 230.89 77.22 l S 230.89 74.53 m 230.94 76.05 l S 230.94 74.53 m 230.98 76.11 l S 230.98 74.53 m 231.03 74.83 l S 231.03 74.53 m 231.08 74.72 l S 231.08 74.53 m 231.12 74.67 l S 231.12 74.53 m 231.17 74.70 l S 231.17 74.53 m 231.21 74.75 l S 231.21 74.53 m 231.26 76.62 l S 231.26 74.53 m 231.31 82.67 l S 231.31 74.53 m 231.35 74.83 l S 231.35 74.53 m 231.40 82.10 l S 231.40 74.53 m 231.44 74.72 l S 231.44 74.53 m 231.49 77.68 l S 231.49 74.53 m 231.54 75.43 l S 231.54 74.53 m 231.58 77.46 l S 231.58 74.53 m 231.63 74.70 l S 231.63 74.53 m 231.67 74.70 l S 231.67 74.53 m 231.72 74.64 l S 231.72 74.53 m 231.77 79.85 l S 231.77 74.53 m 231.81 86.08 l S 231.81 74.53 m 231.86 74.67 l S 231.86 74.53 m 231.90 74.80 l S 231.90 74.53 m 231.95 74.70 l S 231.95 74.53 m 232.00 74.70 l S 232.00 74.53 m 232.04 74.70 l S 232.04 74.53 m 232.09 74.78 l S 232.09 74.53 m 232.13 74.72 l S 232.13 74.53 m 232.18 74.72 l S 232.18 74.53 m 232.23 74.67 l S 232.23 74.53 m 232.27 74.70 l S 232.27 74.53 m 232.32 74.72 l S 232.32 74.53 m 232.36 74.78 l S 232.36 74.53 m 232.41 74.70 l S 232.41 74.53 m 232.46 74.70 l S 232.46 74.53 m 232.50 74.72 l S 232.50 74.53 m 232.55 74.78 l S 232.55 74.53 m 232.59 74.67 l S 232.59 74.53 m 232.64 74.70 l S 232.64 74.53 m 232.69 74.72 l S 232.69 74.53 m 232.73 74.67 l S 232.73 74.53 m 232.78 74.72 l S 232.78 74.53 m 232.82 74.70 l S 232.82 74.53 m 232.87 75.05 l S 232.87 74.53 m 232.92 74.83 l S 232.92 74.53 m 232.96 74.75 l S 232.96 74.53 m 233.01 74.70 l S 233.01 74.53 m 233.05 74.80 l S 233.05 74.53 m 233.10 84.57 l S 233.10 74.53 m 233.15 74.70 l S 233.15 74.53 m 233.19 74.75 l S 233.19 74.53 m 233.24 76.87 l S 233.24 74.53 m 233.28 76.89 l S 233.28 74.53 m 233.33 74.70 l S 233.33 74.53 m 233.38 74.70 l S 233.38 74.53 m 233.42 74.70 l S 233.42 74.53 m 233.47 74.70 l S 233.47 74.53 m 233.51 74.72 l S 233.51 74.53 m 233.56 74.70 l S 233.56 74.53 m 233.61 74.72 l S 233.61 74.53 m 233.65 74.72 l S 233.65 74.53 m 233.70 74.72 l S 233.70 74.53 m 233.74 74.70 l S 233.74 74.53 m 233.79 74.70 l S 233.79 74.53 m 233.84 74.72 l S 233.84 74.53 m 233.88 74.72 l S 233.88 74.53 m 233.93 74.64 l S 233.93 74.53 m 233.97 74.67 l S 233.97 74.53 m 234.02 76.43 l S 234.02 74.53 m 234.07 74.70 l S 234.07 74.53 m 234.11 75.05 l S 234.11 74.53 m 234.16 74.67 l S 234.16 74.53 m 234.20 74.70 l S 234.20 74.53 m 234.25 74.70 l S 234.25 74.53 m 234.30 74.72 l S 234.30 74.53 m 234.34 74.72 l S 234.34 74.53 m 234.39 74.67 l S 234.39 74.53 m 234.43 74.89 l S 234.43 74.53 m 234.48 74.67 l S 234.48 74.53 m 234.53 74.70 l S 234.53 74.53 m 234.57 80.12 l S 234.57 74.53 m 234.62 77.95 l S 234.62 74.53 m 234.66 74.78 l S 234.66 74.53 m 234.71 74.72 l S 234.71 74.53 m 234.76 74.67 l S 234.76 74.53 m 234.80 74.89 l S 234.80 74.53 m 234.85 74.70 l S 234.85 74.53 m 234.89 74.72 l S 234.89 74.53 m 234.94 74.70 l S 234.94 74.53 m 234.99 74.64 l S 234.99 74.53 m 235.03 74.75 l S 235.03 74.53 m 235.08 74.89 l S 235.08 74.53 m 235.12 74.72 l S 235.12 74.53 m 235.17 79.25 l S 235.17 74.53 m 235.22 75.10 l S 235.22 74.53 m 235.26 74.72 l S 235.26 74.53 m 235.31 76.40 l S 235.31 74.53 m 235.35 74.97 l S 235.35 74.53 m 235.40 74.91 l S 235.40 74.53 m 235.45 74.86 l S 235.45 74.53 m 235.49 74.75 l S 235.49 74.53 m 235.54 74.70 l S 235.54 74.53 m 235.58 74.70 l S 235.58 74.53 m 235.63 74.97 l S 235.63 74.53 m 235.68 74.72 l S 235.68 74.53 m 235.72 74.70 l S 235.72 74.53 m 235.77 74.80 l S 235.77 74.53 m 235.81 74.75 l S 235.81 74.53 m 235.86 82.89 l S 235.86 74.53 m 235.91 74.78 l S 235.91 74.53 m 235.95 78.17 l S 235.95 74.53 m 236.00 80.91 l S 236.00 74.53 m 236.04 80.04 l S 236.04 74.53 m 236.09 74.72 l S 236.09 74.53 m 236.14 74.72 l S 236.14 74.53 m 236.18 75.16 l S 236.18 74.53 m 236.23 85.95 l S 236.23 74.53 m 236.27 74.72 l S 236.27 74.53 m 236.32 75.08 l S 236.32 74.53 m 236.37 75.10 l S 236.37 74.53 m 236.41 74.70 l S 236.41 74.53 m 236.46 74.72 l S 236.46 74.53 m 236.50 74.70 l S 236.50 74.53 m 236.55 74.75 l S 236.55 74.53 m 236.60 74.67 l S 236.60 74.53 m 236.64 74.72 l S 236.64 74.53 m 236.69 74.75 l S 236.69 74.53 m 236.73 74.72 l S 236.73 74.53 m 236.78 74.72 l S 236.78 74.53 m 236.83 74.72 l S 236.83 74.53 m 236.87 74.72 l S 236.87 74.53 m 236.92 74.72 l S 236.92 74.53 m 236.96 74.72 l S 236.96 74.53 m 237.01 74.72 l S 237.01 74.53 m 237.06 74.67 l S 237.06 74.53 m 237.10 74.70 l S 237.10 74.53 m 237.15 74.70 l S 237.15 74.53 m 237.19 74.70 l S 237.19 74.53 m 237.24 74.75 l S 237.24 74.53 m 237.29 74.75 l S 237.29 74.53 m 237.33 74.75 l S 237.33 74.53 m 237.38 75.54 l S 237.38 74.53 m 237.42 75.32 l S 237.42 74.53 m 237.47 75.86 l S 237.47 74.53 m 237.52 75.32 l S 237.52 74.53 m 237.56 74.53 l S 237.56 74.53 m 237.61 74.75 l S 237.61 74.53 m 237.65 74.72 l S 237.65 74.53 m 237.70 74.78 l S 237.70 74.53 m 237.75 77.24 l S 237.75 74.53 m 237.79 75.54 l S 237.79 74.53 m 237.84 76.49 l S 237.84 74.53 m 237.88 74.91 l S 237.88 74.53 m 237.93 85.19 l S 237.93 74.53 m 237.98 75.16 l S 237.98 74.53 m 238.02 74.99 l S 238.02 74.53 m 238.07 74.72 l S 238.07 74.53 m 238.11 74.78 l S 238.11 74.53 m 238.16 75.21 l S 238.16 74.53 m 238.21 75.54 l S 238.21 74.53 m 238.25 76.16 l S 238.25 74.53 m 238.30 77.14 l S 238.30 74.53 m 238.34 82.72 l S 238.34 74.53 m 238.39 76.92 l S 238.39 74.53 m 238.44 74.67 l S 238.44 74.53 m 238.48 74.70 l S 238.48 74.53 m 238.53 83.73 l S 238.53 74.53 m 238.58 74.72 l S 238.58 74.53 m 238.62 74.70 l S 238.62 74.53 m 238.67 74.70 l S 238.67 74.53 m 238.71 74.75 l S 238.71 74.53 m 238.76 74.72 l S 238.76 74.53 m 238.81 74.72 l S 238.81 74.53 m 238.85 75.08 l S 238.85 74.53 m 238.90 74.72 l S 238.90 74.53 m 238.94 74.70 l S 238.94 74.53 m 238.99 74.70 l S 238.99 74.53 m 239.04 74.72 l S 239.04 74.53 m 239.08 74.70 l S 239.08 74.53 m 239.13 74.70 l S 239.13 74.53 m 239.17 74.67 l S 239.17 74.53 m 239.22 74.72 l S 239.22 74.53 m 239.27 74.70 l S 239.27 74.53 m 239.31 74.72 l S 239.31 74.53 m 239.36 74.75 l S 239.36 74.53 m 239.40 74.75 l S 239.40 74.53 m 239.45 74.94 l S 239.45 74.53 m 239.50 74.70 l S 239.50 74.53 m 239.54 74.72 l S 239.54 74.53 m 239.59 74.75 l S 239.59 74.53 m 239.63 85.76 l S 239.63 74.53 m 239.68 74.70 l S 239.68 74.53 m 239.73 74.70 l S 239.73 74.53 m 239.77 89.94 l S 239.77 74.53 m 239.82 74.75 l S 239.82 74.53 m 239.86 77.73 l S 239.86 74.53 m 239.91 74.80 l S 239.91 74.53 m 239.96 74.70 l S 239.96 74.53 m 240.00 74.94 l S 240.00 74.53 m 240.05 75.18 l S 240.05 74.53 m 240.09 74.67 l S 240.09 74.53 m 240.14 74.78 l S 240.14 74.53 m 240.19 74.72 l S 240.19 74.53 m 240.23 74.78 l S 240.23 74.53 m 240.28 74.83 l S 240.28 74.53 m 240.32 74.70 l S 240.32 74.53 m 240.37 74.67 l S 240.37 74.53 m 240.42 74.70 l S 240.42 74.53 m 240.46 74.72 l S 240.46 74.53 m 240.51 74.70 l S 240.51 74.53 m 240.55 75.10 l S 240.55 74.53 m 240.60 74.75 l S 240.60 74.53 m 240.65 74.67 l S 240.65 74.53 m 240.69 74.70 l S 240.69 74.53 m 240.74 74.67 l S 240.74 74.53 m 240.78 74.70 l S 240.78 74.53 m 240.83 74.75 l S 240.83 74.53 m 240.88 74.67 l S 240.88 74.53 m 240.92 74.70 l S 240.92 74.53 m 240.97 74.70 l S 240.97 74.53 m 241.01 74.72 l S 241.01 74.53 m 241.06 74.67 l S 241.06 74.53 m 241.11 74.64 l S 241.11 74.53 m 241.15 74.70 l S 241.15 74.53 m 241.20 74.70 l S 241.20 74.53 m 241.24 74.70 l S 241.24 74.53 m 241.29 74.53 l S 241.29 74.53 m 241.34 74.67 l S 241.34 74.53 m 241.38 74.70 l S 241.38 74.53 m 241.43 74.67 l S 241.43 74.53 m 241.47 74.70 l S 241.47 74.53 m 241.52 74.78 l S 241.52 74.53 m 241.57 74.75 l S 241.57 74.53 m 241.61 74.70 l S 241.61 74.53 m 241.66 74.70 l S 241.66 74.53 m 241.70 74.89 l S 241.70 74.53 m 241.75 74.75 l S 241.75 74.53 m 241.80 74.94 l S 241.80 74.53 m 241.84 74.75 l S 241.84 74.53 m 241.89 74.70 l S 241.89 74.53 m 241.93 74.70 l S 241.93 74.53 m 241.98 74.67 l S 241.98 74.53 m 242.03 74.67 l S 242.03 74.53 m 242.07 74.70 l S 242.07 74.53 m 242.12 74.72 l S 242.12 74.53 m 242.16 74.72 l S 242.16 74.53 m 242.21 74.70 l S 242.21 74.53 m 242.26 74.70 l S 242.26 74.53 m 242.30 74.70 l S 242.30 74.53 m 242.35 74.67 l S 242.35 74.53 m 242.39 74.72 l S 242.39 74.53 m 242.44 74.70 l S 242.44 74.53 m 242.49 74.72 l S 242.49 74.53 m 242.53 74.86 l S 242.53 74.53 m 242.58 74.75 l S 242.58 74.53 m 242.62 74.99 l S 242.62 74.53 m 242.67 74.72 l S 242.67 74.53 m 242.72 75.51 l S 242.72 74.53 m 242.76 74.91 l S 242.76 74.53 m 242.81 80.20 l S 242.81 74.53 m 242.85 75.13 l S 242.85 74.53 m 242.90 75.92 l S 242.90 74.53 m 242.95 78.68 l S 242.95 74.53 m 242.99 77.27 l S 242.99 74.53 m 243.04 76.59 l S 243.04 74.53 m 243.08 74.72 l S 243.08 74.53 m 243.13 75.32 l S 243.13 74.53 m 243.18 74.75 l S 243.18 74.53 m 243.22 74.78 l S 243.22 74.53 m 243.27 74.75 l S 243.27 74.53 m 243.31 74.72 l S 243.31 74.53 m 243.36 74.70 l S 243.36 74.53 m 243.41 74.70 l S 243.41 74.53 m 243.45 74.72 l S 243.45 74.53 m 243.50 74.72 l S 243.50 74.53 m 243.54 74.70 l S 243.54 74.53 m 243.59 74.72 l S 243.59 74.53 m 243.64 74.72 l S 243.64 74.53 m 243.68 74.72 l S 243.68 74.53 m 243.73 74.72 l S 243.73 74.53 m 243.77 74.70 l S 243.77 74.53 m 243.82 74.80 l S 243.82 74.53 m 243.87 74.72 l S 243.87 74.53 m 243.91 74.72 l S 243.91 74.53 m 243.96 74.72 l S 243.96 74.53 m 244.00 74.70 l S 244.00 74.53 m 244.05 74.67 l S 244.05 74.53 m 244.10 74.70 l S 244.10 74.53 m 244.14 76.16 l S 244.14 74.53 m 244.19 74.80 l S 244.19 74.53 m 244.23 74.70 l S 244.23 74.53 m 244.28 74.83 l S 244.28 74.53 m 244.33 74.67 l S 244.33 74.53 m 244.37 74.75 l S 244.37 74.53 m 244.42 74.83 l S 244.42 74.53 m 244.46 74.67 l S 244.46 74.53 m 244.51 74.75 l S 244.51 74.53 m 244.56 74.72 l S 244.56 74.53 m 244.60 74.70 l S 244.60 74.53 m 244.65 74.75 l S 244.65 74.53 m 244.69 74.67 l S 244.69 74.53 m 244.74 82.04 l S 244.74 74.53 m 244.79 74.72 l S 244.79 74.53 m 244.83 74.80 l S 244.83 74.53 m 244.88 74.78 l S 244.88 74.53 m 244.92 74.72 l S 244.92 74.53 m 244.97 74.70 l S 244.97 74.53 m 245.02 74.70 l S 245.02 74.53 m 245.06 74.78 l S 245.06 74.53 m 245.11 75.46 l S 245.11 74.53 m 245.15 74.75 l S 245.15 74.53 m 245.20 74.75 l S 245.20 74.53 m 245.25 74.72 l S 245.25 74.53 m 245.29 74.72 l S 245.29 74.53 m 245.34 74.70 l S 245.34 74.53 m 245.38 75.48 l S 245.38 74.53 m 245.43 75.51 l S 245.43 74.53 m 245.48 74.70 l S 245.48 74.53 m 245.52 74.70 l S 245.52 74.53 m 245.57 74.72 l S 245.57 74.53 m 245.61 87.60 l S 245.61 74.53 m 245.66 78.06 l S 245.66 74.53 m 245.71 76.43 l S 245.71 74.53 m 245.75 74.72 l S 245.75 74.53 m 245.80 74.78 l S 245.80 74.53 m 245.84 75.73 l S 245.84 74.53 m 245.89 75.13 l S 245.89 74.53 m 245.94 74.67 l S 245.94 74.53 m 245.98 74.72 l S 245.98 74.53 m 246.03 74.70 l S 246.03 74.53 m 246.07 74.70 l S 246.07 74.53 m 246.12 74.86 l S 246.12 74.53 m 246.17 74.70 l S 246.17 74.53 m 246.21 74.70 l S 246.21 74.53 m 246.26 74.72 l S 246.26 74.53 m 246.30 74.67 l S 246.30 74.53 m 246.35 74.70 l S 246.35 74.53 m 246.40 74.70 l S 246.40 74.53 m 246.44 74.67 l S 246.44 74.53 m 246.49 74.75 l S 246.49 74.53 m 246.54 74.72 l S 246.54 74.53 m 246.58 74.89 l S 246.58 74.53 m 246.63 74.72 l S 246.63 74.53 m 246.67 74.70 l S 246.67 74.53 m 246.72 74.70 l S 246.72 74.53 m 246.77 74.67 l S 246.77 74.53 m 246.81 74.70 l S 246.81 74.53 m 246.86 74.70 l S 246.86 74.53 m 246.90 74.70 l S 246.90 74.53 m 246.95 74.80 l S 246.95 74.53 m 247.00 74.70 l S 247.00 74.53 m 247.04 74.72 l S 247.04 74.53 m 247.09 74.70 l S 247.09 74.53 m 247.13 74.72 l S 247.13 74.53 m 247.18 74.70 l S 247.18 74.53 m 247.23 75.48 l S 247.23 74.53 m 247.27 74.70 l S 247.27 74.53 m 247.32 74.70 l S 247.32 74.53 m 247.36 74.72 l S 247.36 74.53 m 247.41 74.72 l S 247.41 74.53 m 247.46 76.57 l S 247.46 74.53 m 247.50 74.80 l S 247.50 74.53 m 247.55 74.70 l S 247.55 74.53 m 247.59 74.70 l S 247.59 74.53 m 247.64 74.75 l S 247.64 74.53 m 247.69 74.80 l S 247.69 74.53 m 247.73 74.70 l S 247.73 74.53 m 247.78 74.80 l S 247.78 74.53 m 247.82 74.72 l S 247.82 74.53 m 247.87 74.70 l S 247.87 74.53 m 247.92 74.80 l S 247.92 74.53 m 247.96 74.75 l S 247.96 74.53 m 248.01 74.64 l S 248.01 74.53 m 248.05 74.91 l S 248.05 74.53 m 248.10 76.40 l S 248.10 74.53 m 248.15 74.67 l S 248.15 74.53 m 248.19 74.97 l S 248.19 74.53 m 248.24 76.43 l S 248.24 74.53 m 248.28 74.70 l S 248.28 74.53 m 248.33 74.72 l S 248.33 74.53 m 248.38 75.18 l S 248.38 74.53 m 248.42 74.70 l S 248.42 74.53 m 248.47 75.86 l S 248.47 74.53 m 248.51 74.70 l S 248.51 74.53 m 248.56 79.85 l S 248.56 74.53 m 248.61 81.45 l S 248.61 74.53 m 248.65 75.02 l S 248.65 74.53 m 248.70 76.19 l S 248.70 74.53 m 248.74 75.27 l S 248.74 74.53 m 248.79 74.67 l S 248.79 74.53 m 248.84 74.78 l S 248.84 74.53 m 248.88 76.76 l S 248.88 74.53 m 248.93 74.75 l S 248.93 74.53 m 248.97 75.08 l S 248.97 74.53 m 249.02 74.70 l S 249.02 74.53 m 249.07 74.97 l S 249.07 74.53 m 249.11 74.70 l S 249.11 74.53 m 249.16 74.70 l S 249.16 74.53 m 249.20 74.80 l S 249.20 74.53 m 249.25 74.67 l S 249.25 74.53 m 249.30 75.59 l S 249.30 74.53 m 249.34 74.70 l S 249.34 74.53 m 249.39 74.72 l S 249.39 74.53 m 249.43 79.79 l S 249.43 74.53 m 249.48 74.99 l S 249.48 74.53 m 249.53 74.70 l S 249.53 74.53 m 249.57 74.75 l S 249.57 74.53 m 249.62 75.08 l S 249.62 74.53 m 249.66 74.83 l S 249.66 74.53 m 249.71 74.91 l S 249.71 74.53 m 249.76 74.67 l S 249.76 74.53 m 249.80 75.51 l S 249.80 74.53 m 249.85 77.79 l S 249.85 74.53 m 249.89 77.35 l S 249.89 74.53 m 249.94 77.19 l S 249.94 74.53 m 249.99 76.00 l S 249.99 74.53 m 250.03 78.84 l S 250.03 74.53 m 250.08 74.72 l S 250.08 74.53 m 250.12 74.83 l S 250.12 74.53 m 250.17 74.75 l S 250.17 74.53 m 250.22 77.84 l S 250.22 74.53 m 250.26 74.72 l S 250.26 74.53 m 250.31 74.91 l S 250.31 74.53 m 250.35 74.83 l S 250.35 74.53 m 250.40 74.89 l S 250.40 74.53 m 250.45 75.46 l S Q endstream endobj 205 0 obj << /CreationDate (D:20090701105130) /ModDate (D:20090701105130) /Title (R Graphics Output) /Producer (R 2.10.0) /Creator (R) >> endobj 206 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 209 0 R >> endobj 207 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 209 0 R >> endobj 208 0 obj 263490 endobj 209 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 204 0 obj << /D [202 0 R /XYZ 89.292 765.769 null] >> endobj 200 0 obj << /D [202 0 R /XYZ 134.674 265.654 null] >> endobj 201 0 obj << /Font << /F8 79 0 R >> /XObject << /Im3 190 0 R >> /ProcSet [ /PDF /Text ] >> endobj 212 0 obj << /Length 209 /Filter /FlateDecode >> stream xMON1 +|Lq+X nrq(E 6KUE;3!r-Hh & Bh5wu!VO 77E r |OPz0_cfצK5bl\/Zw/錺ΦeJ=7ZMf4or@O(,ǢtKGendstream endobj 211 0 obj << /Type /Page /Contents 212 0 R /Resources 210 0 R /MediaBox [0 0 595.276 841.89] /Parent 216 0 R /Annots [ 215 0 R ] >> endobj 191 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./ShortRead_and_HilbertVis-pileup1Dzoom.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 217 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 288 324] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 218 0 R /F3 219 0 R >> /ExtGState << >>>> /Length 220 0 R >> stream q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 235.44 m 250.45 235.44 l S 66.40 235.44 m 66.40 228.24 l S 103.21 235.44 m 103.21 228.24 l S 140.02 235.44 m 140.02 228.24 l S 176.83 235.44 m 176.83 228.24 l S 213.64 235.44 m 213.64 228.24 l S 250.45 235.44 m 250.45 228.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 36.38 209.52 Tm (100000000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 109.99 209.52 Tm (100400000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 183.61 209.52 Tm (100800000) Tj ET 59.04 236.53 m 59.04 262.27 l S 59.04 236.53 m 51.84 236.53 l S 59.04 242.97 m 51.84 242.97 l S 59.04 249.40 m 51.84 249.40 l S 59.04 255.84 m 51.84 255.84 l S 59.04 262.27 m 51.84 262.27 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 214.68 Tm (0.0e+00) Tj ET 59.04 235.44 m 257.76 235.44 l 257.76 264.96 l 59.04 264.96 l 59.04 235.44 l S Q q 0.00 162.00 288.00 162.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 100.83 289.45 Tm (Chr 10, H3K3me1) Tj ET Q q 59.04 235.44 198.72 29.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 236.53 m 66.45 239.46 l S 66.45 236.53 m 66.49 236.53 l S 66.49 236.53 m 66.54 236.53 l S 66.54 236.53 m 66.58 236.53 l S 66.58 236.53 m 66.63 236.53 l S 66.63 236.53 m 66.68 237.51 l S 66.68 236.53 m 66.72 236.53 l S 66.72 236.53 m 66.77 236.53 l S 66.77 236.53 m 66.81 238.49 l S 66.81 236.53 m 66.86 237.51 l S 66.86 236.53 m 66.91 238.49 l S 66.91 236.53 m 66.95 239.46 l S 66.95 236.53 m 67.00 237.51 l S 67.00 236.53 m 67.04 236.53 l S 67.04 236.53 m 67.09 237.51 l S 67.09 236.53 m 67.14 237.51 l S 67.14 236.53 m 67.18 237.51 l S 67.18 236.53 m 67.23 236.53 l S 67.23 236.53 m 67.27 236.53 l S 67.27 236.53 m 67.32 236.53 l S 67.32 236.53 m 67.37 239.46 l S 67.37 236.53 m 67.41 238.49 l S 67.41 236.53 m 67.46 236.53 l S 67.46 236.53 m 67.50 237.51 l S 67.50 236.53 m 67.55 237.51 l S 67.55 236.53 m 67.60 237.51 l S 67.60 236.53 m 67.64 237.51 l S 67.64 236.53 m 67.69 239.46 l S 67.69 236.53 m 67.73 239.46 l S 67.73 236.53 m 67.78 236.53 l S 67.78 236.53 m 67.83 237.51 l S 67.83 236.53 m 67.87 236.53 l S 67.87 236.53 m 67.92 236.53 l S 67.92 236.53 m 67.96 236.53 l S 67.96 236.53 m 68.01 236.53 l S 68.01 236.53 m 68.06 236.53 l S 68.06 236.53 m 68.10 238.49 l S 68.10 236.53 m 68.15 238.49 l S 68.15 236.53 m 68.19 236.53 l S 68.19 236.53 m 68.24 236.53 l S 68.24 236.53 m 68.29 236.53 l S 68.29 236.53 m 68.33 238.49 l S 68.33 236.53 m 68.38 238.49 l S 68.38 236.53 m 68.42 236.53 l S 68.42 236.53 m 68.47 236.53 l S 68.47 236.53 m 68.52 237.51 l S 68.52 236.53 m 68.56 237.51 l S 68.56 236.53 m 68.61 237.51 l S 68.61 236.53 m 68.65 236.53 l S 68.65 236.53 m 68.70 237.51 l S 68.70 236.53 m 68.75 237.51 l S 68.75 236.53 m 68.79 237.51 l S 68.79 236.53 m 68.84 236.53 l S 68.84 236.53 m 68.88 236.53 l S 68.88 236.53 m 68.93 236.53 l S 68.93 236.53 m 68.98 236.53 l S 68.98 236.53 m 69.02 236.53 l S 69.02 236.53 m 69.07 236.53 l S 69.07 236.53 m 69.11 236.53 l S 69.11 236.53 m 69.16 236.53 l S 69.16 236.53 m 69.21 236.53 l S 69.21 236.53 m 69.25 236.53 l S 69.25 236.53 m 69.30 237.51 l S 69.30 236.53 m 69.34 237.51 l S 69.34 236.53 m 69.39 237.51 l S 69.39 236.53 m 69.44 236.53 l S 69.44 236.53 m 69.48 236.53 l S 69.48 236.53 m 69.53 237.51 l S 69.53 236.53 m 69.57 237.51 l S 69.57 236.53 m 69.62 240.44 l S 69.62 238.49 m 69.67 241.41 l S 69.67 238.49 m 69.71 241.41 l S 69.71 236.53 m 69.76 238.49 l S 69.76 236.53 m 69.80 237.51 l S 69.80 236.53 m 69.85 237.51 l S 69.85 237.51 m 69.90 238.49 l S 69.90 236.53 m 69.94 237.51 l S 69.94 236.53 m 69.99 238.49 l S 69.99 236.53 m 70.03 238.49 l S 70.03 236.53 m 70.08 236.53 l S 70.08 236.53 m 70.13 238.49 l S 70.13 236.53 m 70.17 238.49 l S 70.17 236.53 m 70.22 236.53 l S 70.22 236.53 m 70.26 238.49 l S 70.26 236.53 m 70.31 238.49 l S 70.31 236.53 m 70.36 236.53 l S 70.36 236.53 m 70.40 236.53 l S 70.40 236.53 m 70.45 238.49 l S 70.45 236.53 m 70.50 238.49 l S 70.50 236.53 m 70.54 238.49 l S 70.54 236.53 m 70.59 237.51 l S 70.59 236.53 m 70.63 236.53 l S 70.63 236.53 m 70.68 236.53 l S 70.68 236.53 m 70.73 237.51 l S 70.73 236.53 m 70.77 237.51 l S 70.77 236.53 m 70.82 236.53 l S 70.82 236.53 m 70.86 236.53 l S 70.86 236.53 m 70.91 236.53 l S 70.91 236.53 m 70.96 236.53 l S 70.96 236.53 m 71.00 236.53 l S 71.00 236.53 m 71.05 236.53 l S 71.05 236.53 m 71.09 236.53 l S 71.09 236.53 m 71.14 236.53 l S 71.14 236.53 m 71.19 236.53 l S 71.19 236.53 m 71.23 236.53 l S 71.23 236.53 m 71.28 238.49 l S 71.28 236.53 m 71.32 238.49 l S 71.32 236.53 m 71.37 237.51 l S 71.37 236.53 m 71.42 237.51 l S 71.42 236.53 m 71.46 236.53 l S 71.46 236.53 m 71.51 236.53 l S 71.51 236.53 m 71.55 236.53 l S 71.55 236.53 m 71.60 236.53 l S 71.60 236.53 m 71.65 236.53 l S 71.65 236.53 m 71.69 236.53 l S 71.69 236.53 m 71.74 236.53 l S 71.74 236.53 m 71.78 236.53 l S 71.78 236.53 m 71.83 236.53 l S 71.83 236.53 m 71.88 236.53 l S 71.88 236.53 m 71.92 236.53 l S 71.92 236.53 m 71.97 236.53 l S 71.97 236.53 m 72.01 236.53 l S 72.01 236.53 m 72.06 236.53 l S 72.06 236.53 m 72.11 236.53 l S 72.11 236.53 m 72.15 236.53 l S 72.15 236.53 m 72.20 236.53 l S 72.20 236.53 m 72.24 236.53 l S 72.24 236.53 m 72.29 237.51 l S 72.29 236.53 m 72.34 237.51 l S 72.34 236.53 m 72.38 236.53 l S 72.38 236.53 m 72.43 236.53 l S 72.43 236.53 m 72.47 236.53 l S 72.47 236.53 m 72.52 236.53 l S 72.52 236.53 m 72.57 236.53 l S 72.57 236.53 m 72.61 236.53 l S 72.61 236.53 m 72.66 237.51 l S 72.66 236.53 m 72.70 237.51 l S 72.70 236.53 m 72.75 236.53 l S 72.75 236.53 m 72.80 236.53 l S 72.80 236.53 m 72.84 236.53 l S 72.84 236.53 m 72.89 236.53 l S 72.89 236.53 m 72.93 236.53 l S 72.93 236.53 m 72.98 236.53 l S 72.98 236.53 m 73.03 236.53 l S 73.03 236.53 m 73.07 236.53 l S 73.07 236.53 m 73.12 237.51 l S 73.12 236.53 m 73.16 237.51 l S 73.16 236.53 m 73.21 237.51 l S 73.21 236.53 m 73.26 236.53 l S 73.26 236.53 m 73.30 237.51 l S 73.30 236.53 m 73.35 236.53 l S 73.35 236.53 m 73.39 236.53 l S 73.39 236.53 m 73.44 236.53 l S 73.44 236.53 m 73.49 236.53 l S 73.49 236.53 m 73.53 236.53 l S 73.53 236.53 m 73.58 236.53 l S 73.58 236.53 m 73.62 236.53 l S 73.62 236.53 m 73.67 236.53 l S 73.67 236.53 m 73.72 236.53 l S 73.72 236.53 m 73.76 236.53 l S 73.76 236.53 m 73.81 236.53 l S 73.81 236.53 m 73.85 237.51 l S 73.85 236.53 m 73.90 237.51 l S 73.90 236.53 m 73.95 236.53 l S 73.95 236.53 m 73.99 236.53 l S 73.99 236.53 m 74.04 238.49 l S 74.04 236.53 m 74.08 237.51 l S 74.08 236.53 m 74.13 237.51 l S 74.13 236.53 m 74.18 237.51 l S 74.18 236.53 m 74.22 240.44 l S 74.22 237.51 m 74.27 241.41 l S 74.27 236.53 m 74.31 237.51 l S 74.31 236.53 m 74.36 236.53 l S 74.36 236.53 m 74.41 238.49 l S 74.41 236.53 m 74.45 239.46 l S 74.45 236.53 m 74.50 237.51 l S 74.50 236.53 m 74.54 237.51 l S 74.54 236.53 m 74.59 237.51 l S 74.59 236.53 m 74.64 236.53 l S 74.64 236.53 m 74.68 237.51 l S 74.68 236.53 m 74.73 239.46 l S 74.73 236.53 m 74.77 240.44 l S 74.77 236.53 m 74.82 236.53 l S 74.82 236.53 m 74.87 237.51 l S 74.87 236.53 m 74.91 237.51 l S 74.91 236.53 m 74.96 236.53 l S 74.96 236.53 m 75.00 236.53 l S 75.00 236.53 m 75.05 236.53 l S 75.05 236.53 m 75.10 236.53 l S 75.10 236.53 m 75.14 236.53 l S 75.14 236.53 m 75.19 236.53 l S 75.19 236.53 m 75.23 236.53 l S 75.23 236.53 m 75.28 236.53 l S 75.28 236.53 m 75.33 236.53 l S 75.33 236.53 m 75.37 236.53 l S 75.37 236.53 m 75.42 236.53 l S 75.42 236.53 m 75.46 237.51 l S 75.46 236.53 m 75.51 237.51 l S 75.51 236.53 m 75.56 236.53 l S 75.56 236.53 m 75.60 236.53 l S 75.60 236.53 m 75.65 237.51 l S 75.65 236.53 m 75.69 237.51 l S 75.69 236.53 m 75.74 236.53 l S 75.74 236.53 m 75.79 236.53 l S 75.79 236.53 m 75.83 236.53 l S 75.83 236.53 m 75.88 238.49 l S 75.88 236.53 m 75.92 238.49 l S 75.92 236.53 m 75.97 236.53 l S 75.97 236.53 m 76.02 236.53 l S 76.02 236.53 m 76.06 236.53 l S 76.06 236.53 m 76.11 236.53 l S 76.11 236.53 m 76.15 236.53 l S 76.15 236.53 m 76.20 236.53 l S 76.20 236.53 m 76.25 236.53 l S 76.25 236.53 m 76.29 236.53 l S 76.29 236.53 m 76.34 236.53 l S 76.34 236.53 m 76.38 236.53 l S 76.38 236.53 m 76.43 236.53 l S 76.43 236.53 m 76.48 236.53 l S 76.48 236.53 m 76.52 239.46 l S 76.52 236.53 m 76.57 238.49 l S 76.57 236.53 m 76.61 236.53 l S 76.61 236.53 m 76.66 236.53 l S 76.66 236.53 m 76.71 236.53 l S 76.71 236.53 m 76.75 236.53 l S 76.75 236.53 m 76.80 236.53 l S 76.80 236.53 m 76.84 236.53 l S 76.84 236.53 m 76.89 236.53 l S 76.89 236.53 m 76.94 236.53 l S 76.94 236.53 m 76.98 236.53 l S 76.98 236.53 m 77.03 236.53 l S 77.03 236.53 m 77.07 238.49 l S 77.07 236.53 m 77.12 237.51 l S 77.12 236.53 m 77.17 237.51 l S 77.17 236.53 m 77.21 237.51 l S 77.21 236.53 m 77.26 236.53 l S 77.26 236.53 m 77.30 239.46 l S 77.30 236.53 m 77.35 240.44 l S 77.35 236.53 m 77.40 236.53 l S 77.40 236.53 m 77.44 236.53 l S 77.44 236.53 m 77.49 236.53 l S 77.49 236.53 m 77.53 236.53 l S 77.53 236.53 m 77.58 236.53 l S 77.58 236.53 m 77.63 236.53 l S 77.63 236.53 m 77.67 236.53 l S 77.67 236.53 m 77.72 236.53 l S 77.72 236.53 m 77.76 236.53 l S 77.76 236.53 m 77.81 236.53 l S 77.81 236.53 m 77.86 236.53 l S 77.86 236.53 m 77.90 236.53 l S 77.90 236.53 m 77.95 236.53 l S 77.95 236.53 m 77.99 236.53 l S 77.99 236.53 m 78.04 236.53 l S 78.04 236.53 m 78.09 236.53 l S 78.09 236.53 m 78.13 236.53 l S 78.13 236.53 m 78.18 236.53 l S 78.18 236.53 m 78.22 236.53 l S 78.22 236.53 m 78.27 236.53 l S 78.27 236.53 m 78.32 236.53 l S 78.32 236.53 m 78.36 236.53 l S 78.36 236.53 m 78.41 236.53 l S 78.41 236.53 m 78.46 237.51 l S 78.46 236.53 m 78.50 236.53 l S 78.50 236.53 m 78.55 236.53 l S 78.55 236.53 m 78.59 236.53 l S 78.59 236.53 m 78.64 236.53 l S 78.64 236.53 m 78.69 237.51 l S 78.69 236.53 m 78.73 237.51 l S 78.73 236.53 m 78.78 236.53 l S 78.78 236.53 m 78.82 236.53 l S 78.82 236.53 m 78.87 236.53 l S 78.87 236.53 m 78.92 236.53 l S 78.92 236.53 m 78.96 236.53 l S 78.96 236.53 m 79.01 236.53 l S 79.01 236.53 m 79.05 236.53 l S 79.05 236.53 m 79.10 236.53 l S 79.10 236.53 m 79.15 236.53 l S 79.15 236.53 m 79.19 236.53 l S 79.19 236.53 m 79.24 237.51 l S 79.24 236.53 m 79.28 236.53 l S 79.28 236.53 m 79.33 237.51 l S 79.33 236.53 m 79.38 237.51 l S 79.38 236.53 m 79.42 236.53 l S 79.42 236.53 m 79.47 236.53 l S 79.47 236.53 m 79.51 237.51 l S 79.51 236.53 m 79.56 236.53 l S 79.56 236.53 m 79.61 236.53 l S 79.61 236.53 m 79.65 238.49 l S 79.65 236.53 m 79.70 237.51 l S 79.70 236.53 m 79.74 237.51 l S 79.74 236.53 m 79.79 238.49 l S 79.79 237.51 m 79.84 240.44 l S 79.84 236.53 m 79.88 240.44 l S 79.88 236.53 m 79.93 236.53 l S 79.93 236.53 m 79.97 236.53 l S 79.97 236.53 m 80.02 236.53 l S 80.02 236.53 m 80.07 237.51 l S 80.07 236.53 m 80.11 236.53 l S 80.11 236.53 m 80.16 236.53 l S 80.16 236.53 m 80.20 236.53 l S 80.20 236.53 m 80.25 236.53 l S 80.25 236.53 m 80.30 236.53 l S 80.30 236.53 m 80.34 236.53 l S 80.34 236.53 m 80.39 236.53 l S 80.39 236.53 m 80.43 237.51 l S 80.43 236.53 m 80.48 237.51 l S 80.48 236.53 m 80.53 236.53 l S 80.53 236.53 m 80.57 237.51 l S 80.57 236.53 m 80.62 237.51 l S 80.62 236.53 m 80.66 236.53 l S 80.66 236.53 m 80.71 238.49 l S 80.71 236.53 m 80.76 240.44 l S 80.76 236.53 m 80.80 236.53 l S 80.80 236.53 m 80.85 236.53 l S 80.85 236.53 m 80.89 236.53 l S 80.89 236.53 m 80.94 236.53 l S 80.94 236.53 m 80.99 237.51 l S 80.99 236.53 m 81.03 238.49 l S 81.03 236.53 m 81.08 236.53 l S 81.08 236.53 m 81.12 236.53 l S 81.12 236.53 m 81.17 236.53 l S 81.17 236.53 m 81.22 237.51 l S 81.22 236.53 m 81.26 236.53 l S 81.26 236.53 m 81.31 237.51 l S 81.31 236.53 m 81.35 237.51 l S 81.35 236.53 m 81.40 236.53 l S 81.40 236.53 m 81.45 237.51 l S 81.45 236.53 m 81.49 237.51 l S 81.49 236.53 m 81.54 236.53 l S 81.54 236.53 m 81.58 236.53 l S 81.58 236.53 m 81.63 236.53 l S 81.63 236.53 m 81.68 236.53 l S 81.68 236.53 m 81.72 236.53 l S 81.72 236.53 m 81.77 236.53 l S 81.77 236.53 m 81.81 236.53 l S 81.81 236.53 m 81.86 236.53 l S 81.86 236.53 m 81.91 236.53 l S 81.91 236.53 m 81.95 236.53 l S 81.95 236.53 m 82.00 236.53 l S 82.00 236.53 m 82.04 236.53 l S 82.04 236.53 m 82.09 236.53 l S 82.09 236.53 m 82.14 236.53 l S 82.14 236.53 m 82.18 236.53 l S 82.18 236.53 m 82.23 236.53 l S 82.23 236.53 m 82.27 236.53 l S 82.27 236.53 m 82.32 236.53 l S 82.32 236.53 m 82.37 236.53 l S 82.37 236.53 m 82.41 236.53 l S 82.41 236.53 m 82.46 236.53 l S 82.46 236.53 m 82.50 236.53 l S 82.50 236.53 m 82.55 237.51 l S 82.55 236.53 m 82.60 236.53 l S 82.60 236.53 m 82.64 236.53 l S 82.64 236.53 m 82.69 236.53 l S 82.69 236.53 m 82.73 236.53 l S 82.73 236.53 m 82.78 237.51 l S 82.78 236.53 m 82.83 237.51 l S 82.83 236.53 m 82.87 238.49 l S 82.87 237.51 m 82.92 240.44 l S 82.92 236.53 m 82.96 239.46 l S 82.96 236.53 m 83.01 237.51 l S 83.01 236.53 m 83.06 237.51 l S 83.06 236.53 m 83.10 237.51 l S 83.10 236.53 m 83.15 240.44 l S 83.15 236.53 m 83.19 238.49 l S 83.19 236.53 m 83.24 236.53 l S 83.24 236.53 m 83.29 236.53 l S 83.29 236.53 m 83.33 242.39 l S 83.33 236.53 m 83.38 241.41 l S 83.38 236.53 m 83.42 236.53 l S 83.42 236.53 m 83.47 236.53 l S 83.47 236.53 m 83.52 236.53 l S 83.52 236.53 m 83.56 236.53 l S 83.56 236.53 m 83.61 236.53 l S 83.61 236.53 m 83.65 236.53 l S 83.65 236.53 m 83.70 236.53 l S 83.70 236.53 m 83.75 236.53 l S 83.75 236.53 m 83.79 236.53 l S 83.79 236.53 m 83.84 236.53 l S 83.84 236.53 m 83.88 236.53 l S 83.88 236.53 m 83.93 236.53 l S 83.93 236.53 m 83.98 236.53 l S 83.98 236.53 m 84.02 236.53 l S 84.02 236.53 m 84.07 236.53 l S 84.07 236.53 m 84.11 236.53 l S 84.11 236.53 m 84.16 236.53 l S 84.16 236.53 m 84.21 236.53 l S 84.21 236.53 m 84.25 236.53 l S 84.25 236.53 m 84.30 236.53 l S 84.30 236.53 m 84.34 236.53 l S 84.34 236.53 m 84.39 236.53 l S 84.39 236.53 m 84.44 236.53 l S 84.44 236.53 m 84.48 236.53 l S 84.48 236.53 m 84.53 236.53 l S 84.53 236.53 m 84.57 236.53 l S 84.57 236.53 m 84.62 236.53 l S 84.62 236.53 m 84.67 238.49 l S 84.67 237.51 m 84.71 240.44 l S 84.71 236.53 m 84.76 237.51 l S 84.76 236.53 m 84.80 236.53 l S 84.80 236.53 m 84.85 236.53 l S 84.85 236.53 m 84.90 236.53 l S 84.90 236.53 m 84.94 236.53 l S 84.94 236.53 m 84.99 236.53 l S 84.99 236.53 m 85.03 236.53 l S 85.03 236.53 m 85.08 236.53 l S 85.08 236.53 m 85.13 236.53 l S 85.13 236.53 m 85.17 237.51 l S 85.17 236.53 m 85.22 237.51 l S 85.22 236.53 m 85.26 236.53 l S 85.26 236.53 m 85.31 236.53 l S 85.31 236.53 m 85.36 236.53 l S 85.36 236.53 m 85.40 236.53 l S 85.40 236.53 m 85.45 236.53 l S 85.45 236.53 m 85.49 236.53 l S 85.49 236.53 m 85.54 236.53 l S 85.54 236.53 m 85.59 238.49 l S 85.59 236.53 m 85.63 237.51 l S 85.63 236.53 m 85.68 236.53 l S 85.68 236.53 m 85.72 236.53 l S 85.72 236.53 m 85.77 236.53 l S 85.77 236.53 m 85.82 236.53 l S 85.82 236.53 m 85.86 236.53 l S 85.86 236.53 m 85.91 236.53 l S 85.91 236.53 m 85.95 236.53 l S 85.95 236.53 m 86.00 236.53 l S 86.00 236.53 m 86.05 236.53 l S 86.05 236.53 m 86.09 236.53 l S 86.09 236.53 m 86.14 236.53 l S 86.14 236.53 m 86.18 236.53 l S 86.18 236.53 m 86.23 236.53 l S 86.23 236.53 m 86.28 236.53 l S 86.28 236.53 m 86.32 236.53 l S 86.32 236.53 m 86.37 236.53 l S 86.37 236.53 m 86.42 236.53 l S 86.42 236.53 m 86.46 236.53 l S 86.46 236.53 m 86.51 236.53 l S 86.51 236.53 m 86.55 236.53 l S 86.55 236.53 m 86.60 236.53 l S 86.60 236.53 m 86.65 236.53 l S 86.65 236.53 m 86.69 236.53 l S 86.69 236.53 m 86.74 236.53 l S 86.74 236.53 m 86.78 238.49 l S 86.78 237.51 m 86.83 238.49 l S 86.83 237.51 m 86.88 243.37 l S 86.88 236.53 m 86.92 242.39 l S 86.92 236.53 m 86.97 236.53 l S 86.97 236.53 m 87.01 236.53 l S 87.01 236.53 m 87.06 236.53 l S 87.06 236.53 m 87.11 236.53 l S 87.11 236.53 m 87.15 236.53 l S 87.15 236.53 m 87.20 236.53 l S 87.20 236.53 m 87.24 236.53 l S 87.24 236.53 m 87.29 236.53 l S 87.29 236.53 m 87.34 236.53 l S 87.34 236.53 m 87.38 237.51 l S 87.38 236.53 m 87.43 237.51 l S 87.43 236.53 m 87.47 236.53 l S 87.47 236.53 m 87.52 236.53 l S 87.52 236.53 m 87.57 237.51 l S 87.57 236.53 m 87.61 236.53 l S 87.61 236.53 m 87.66 236.53 l S 87.66 236.53 m 87.70 238.49 l S 87.70 236.53 m 87.75 238.49 l S 87.75 236.53 m 87.80 237.51 l S 87.80 236.53 m 87.84 237.51 l S 87.84 236.53 m 87.89 236.53 l S 87.89 236.53 m 87.93 236.53 l S 87.93 236.53 m 87.98 236.53 l S 87.98 236.53 m 88.03 236.53 l S 88.03 236.53 m 88.07 236.53 l S 88.07 236.53 m 88.12 236.53 l S 88.12 236.53 m 88.16 236.53 l S 88.16 236.53 m 88.21 236.53 l S 88.21 236.53 m 88.26 236.53 l S 88.26 236.53 m 88.30 236.53 l S 88.30 236.53 m 88.35 236.53 l S 88.35 236.53 m 88.39 237.51 l S 88.39 236.53 m 88.44 236.53 l S 88.44 236.53 m 88.49 237.51 l S 88.49 236.53 m 88.53 236.53 l S 88.53 236.53 m 88.58 236.53 l S 88.58 236.53 m 88.62 236.53 l S 88.62 236.53 m 88.67 237.51 l S 88.67 236.53 m 88.72 239.46 l S 88.72 236.53 m 88.76 238.49 l S 88.76 236.53 m 88.81 236.53 l S 88.81 236.53 m 88.85 237.51 l S 88.85 236.53 m 88.90 237.51 l S 88.90 236.53 m 88.95 236.53 l S 88.95 236.53 m 88.99 236.53 l S 88.99 236.53 m 89.04 236.53 l S 89.04 236.53 m 89.08 237.51 l S 89.08 236.53 m 89.13 237.51 l S 89.13 236.53 m 89.18 237.51 l S 89.18 236.53 m 89.22 237.51 l S 89.22 236.53 m 89.27 236.53 l S 89.27 236.53 m 89.31 236.53 l S 89.31 236.53 m 89.36 236.53 l S 89.36 236.53 m 89.41 237.51 l S 89.41 236.53 m 89.45 237.51 l S 89.45 236.53 m 89.50 238.49 l S 89.50 236.53 m 89.54 238.49 l S 89.54 236.53 m 89.59 236.53 l S 89.59 236.53 m 89.64 236.53 l S 89.64 236.53 m 89.68 236.53 l S 89.68 236.53 m 89.73 236.53 l S 89.73 236.53 m 89.77 237.51 l S 89.77 236.53 m 89.82 237.51 l S 89.82 236.53 m 89.87 236.53 l S 89.87 236.53 m 89.91 236.53 l S 89.91 236.53 m 89.96 236.53 l S 89.96 236.53 m 90.00 236.53 l S 90.00 236.53 m 90.05 236.53 l S 90.05 236.53 m 90.10 237.51 l S 90.10 236.53 m 90.14 236.53 l S 90.14 236.53 m 90.19 236.53 l S 90.19 236.53 m 90.23 236.53 l S 90.23 236.53 m 90.28 236.53 l S 90.28 236.53 m 90.33 236.53 l S 90.33 236.53 m 90.37 236.53 l S 90.37 236.53 m 90.42 238.49 l S 90.42 236.53 m 90.46 238.49 l S 90.46 236.53 m 90.51 236.53 l S 90.51 236.53 m 90.56 236.53 l S 90.56 236.53 m 90.60 236.53 l S 90.60 236.53 m 90.65 236.53 l S 90.65 236.53 m 90.69 236.53 l S 90.69 236.53 m 90.74 236.53 l S 90.74 236.53 m 90.79 237.51 l S 90.79 236.53 m 90.83 237.51 l S 90.83 236.53 m 90.88 236.53 l S 90.88 236.53 m 90.92 236.53 l S 90.92 236.53 m 90.97 236.53 l S 90.97 236.53 m 91.02 236.53 l S 91.02 236.53 m 91.06 236.53 l S 91.06 236.53 m 91.11 237.51 l S 91.11 236.53 m 91.15 237.51 l S 91.15 236.53 m 91.20 237.51 l S 91.20 236.53 m 91.25 236.53 l S 91.25 236.53 m 91.29 236.53 l S 91.29 236.53 m 91.34 236.53 l S 91.34 236.53 m 91.38 236.53 l S 91.38 236.53 m 91.43 236.53 l S 91.43 236.53 m 91.48 236.53 l S 91.48 236.53 m 91.52 238.49 l S 91.52 236.53 m 91.57 238.49 l S 91.57 236.53 m 91.61 237.51 l S 91.61 236.53 m 91.66 236.53 l S 91.66 236.53 m 91.71 236.53 l S 91.71 236.53 m 91.75 237.51 l S 91.75 237.51 m 91.80 239.46 l S 91.80 236.53 m 91.84 238.49 l S 91.84 236.53 m 91.89 238.49 l S 91.89 236.53 m 91.94 236.53 l S 91.94 236.53 m 91.98 236.53 l S 91.98 236.53 m 92.03 236.53 l S 92.03 236.53 m 92.07 236.53 l S 92.07 236.53 m 92.12 237.51 l S 92.12 236.53 m 92.17 237.51 l S 92.17 236.53 m 92.21 238.49 l S 92.21 237.51 m 92.26 243.37 l S 92.26 240.44 m 92.30 242.39 l S 92.30 238.49 m 92.35 241.41 l S 92.35 237.51 m 92.40 241.41 l S 92.40 238.49 m 92.44 258.01 l S 92.44 239.46 m 92.49 254.10 l S 92.49 237.51 m 92.53 240.44 l S 92.53 238.49 m 92.58 241.41 l S 92.58 236.53 m 92.63 240.44 l S 92.63 236.53 m 92.67 237.51 l S 92.67 236.53 m 92.72 236.53 l S 92.72 236.53 m 92.76 236.53 l S 92.76 236.53 m 92.81 238.49 l S 92.81 237.51 m 92.86 240.44 l S 92.86 238.49 m 92.90 241.41 l S 92.90 236.53 m 92.95 239.46 l S 92.95 236.53 m 92.99 238.49 l S 92.99 237.51 m 93.04 239.46 l S 93.04 237.51 m 93.09 239.46 l S 93.09 236.53 m 93.13 237.51 l S 93.13 236.53 m 93.18 238.49 l S 93.18 236.53 m 93.22 237.51 l S 93.22 236.53 m 93.27 239.46 l S 93.27 237.51 m 93.32 240.44 l S 93.32 236.53 m 93.36 238.49 l S 93.36 237.51 m 93.41 238.49 l S 93.41 237.51 m 93.45 239.46 l S 93.45 237.51 m 93.50 239.46 l S 93.50 236.53 m 93.55 237.51 l S 93.55 236.53 m 93.59 236.53 l S 93.59 236.53 m 93.64 236.53 l S 93.64 236.53 m 93.68 237.51 l S 93.68 236.53 m 93.73 237.51 l S 93.73 236.53 m 93.78 236.53 l S 93.78 236.53 m 93.82 236.53 l S 93.82 236.53 m 93.87 237.51 l S 93.87 236.53 m 93.91 240.44 l S 93.91 236.53 m 93.96 236.53 l S 93.96 236.53 m 94.01 237.51 l S 94.01 236.53 m 94.05 237.51 l S 94.05 237.51 m 94.10 240.44 l S 94.10 236.53 m 94.14 237.51 l S 94.14 236.53 m 94.19 236.53 l S 94.19 236.53 m 94.24 236.53 l S 94.24 236.53 m 94.28 236.53 l S 94.28 236.53 m 94.33 237.51 l S 94.33 236.53 m 94.37 237.51 l S 94.37 236.53 m 94.42 236.53 l S 94.42 236.53 m 94.47 236.53 l S 94.47 236.53 m 94.51 237.51 l S 94.51 236.53 m 94.56 236.53 l S 94.56 236.53 m 94.61 236.53 l S 94.61 236.53 m 94.65 242.39 l S 94.65 236.53 m 94.70 241.41 l S 94.70 236.53 m 94.74 237.51 l S 94.74 236.53 m 94.79 237.51 l S 94.79 236.53 m 94.84 237.51 l S 94.84 236.53 m 94.88 237.51 l S 94.88 236.53 m 94.93 237.51 l S 94.93 236.53 m 94.97 236.53 l S 94.97 236.53 m 95.02 236.53 l S 95.02 236.53 m 95.07 236.53 l S 95.07 236.53 m 95.11 236.53 l S 95.11 236.53 m 95.16 237.51 l S 95.16 236.53 m 95.20 237.51 l S 95.20 236.53 m 95.25 237.51 l S 95.25 236.53 m 95.30 237.51 l S 95.30 236.53 m 95.34 236.53 l S 95.34 236.53 m 95.39 236.53 l S 95.39 236.53 m 95.43 238.49 l S 95.43 236.53 m 95.48 237.51 l S 95.48 237.51 m 95.53 239.46 l S 95.53 236.53 m 95.57 237.51 l S 95.57 236.53 m 95.62 237.51 l S 95.62 236.53 m 95.66 237.51 l S 95.66 236.53 m 95.71 236.53 l S 95.71 236.53 m 95.76 239.46 l S 95.76 236.53 m 95.80 236.53 l S 95.80 236.53 m 95.85 237.51 l S 95.85 237.51 m 95.89 239.46 l S 95.89 236.53 m 95.94 238.49 l S 95.94 236.53 m 95.99 237.51 l S 95.99 236.53 m 96.03 239.46 l S 96.03 236.53 m 96.08 239.46 l S 96.08 236.53 m 96.12 236.53 l S 96.12 236.53 m 96.17 238.49 l S 96.17 236.53 m 96.22 238.49 l S 96.22 236.53 m 96.26 238.49 l S 96.26 236.53 m 96.31 238.49 l S 96.31 236.53 m 96.35 238.49 l S 96.35 236.53 m 96.40 239.46 l S 96.40 236.53 m 96.45 236.53 l S 96.45 236.53 m 96.49 236.53 l S 96.49 236.53 m 96.54 237.51 l S 96.54 236.53 m 96.58 251.18 l S 96.58 243.37 m 96.63 255.08 l S 96.63 242.39 m 96.68 247.27 l S 96.68 238.49 m 96.72 245.32 l S 96.72 239.46 m 96.77 242.39 l S 96.77 240.44 m 96.81 244.34 l S 96.81 239.46 m 96.86 244.34 l S 96.86 237.51 m 96.91 241.41 l S 96.91 236.53 m 96.95 237.51 l S 96.95 236.53 m 97.00 236.53 l S 97.00 236.53 m 97.04 236.53 l S 97.04 236.53 m 97.09 236.53 l S 97.09 236.53 m 97.14 236.53 l S 97.14 236.53 m 97.18 237.51 l S 97.18 236.53 m 97.23 237.51 l S 97.23 236.53 m 97.27 236.53 l S 97.27 236.53 m 97.32 237.51 l S 97.32 236.53 m 97.37 237.51 l S 97.37 236.53 m 97.41 236.53 l S 97.41 236.53 m 97.46 237.51 l S 97.46 236.53 m 97.50 237.51 l S 97.50 236.53 m 97.55 236.53 l S 97.55 236.53 m 97.60 237.51 l S 97.60 236.53 m 97.64 237.51 l S 97.64 236.53 m 97.69 238.49 l S 97.69 236.53 m 97.73 238.49 l S 97.73 236.53 m 97.78 238.49 l S 97.78 236.53 m 97.83 239.46 l S 97.83 236.53 m 97.87 239.46 l S 97.87 236.53 m 97.92 236.53 l S 97.92 236.53 m 97.96 236.53 l S 97.96 236.53 m 98.01 236.53 l S 98.01 236.53 m 98.06 236.53 l S 98.06 236.53 m 98.10 236.53 l S 98.10 236.53 m 98.15 238.49 l S 98.15 236.53 m 98.19 238.49 l S 98.19 236.53 m 98.24 236.53 l S 98.24 236.53 m 98.29 237.51 l S 98.29 236.53 m 98.33 237.51 l S 98.33 236.53 m 98.38 237.51 l S 98.38 236.53 m 98.42 236.53 l S 98.42 236.53 m 98.47 237.51 l S 98.47 236.53 m 98.52 237.51 l S 98.52 236.53 m 98.56 236.53 l S 98.56 236.53 m 98.61 237.51 l S 98.61 236.53 m 98.65 236.53 l S 98.65 236.53 m 98.70 236.53 l S 98.70 236.53 m 98.75 238.49 l S 98.75 236.53 m 98.79 239.46 l S 98.79 236.53 m 98.84 237.51 l S 98.84 236.53 m 98.88 239.46 l S 98.88 236.53 m 98.93 239.46 l S 98.93 236.53 m 98.98 236.53 l S 98.98 236.53 m 99.02 237.51 l S 99.02 236.53 m 99.07 237.51 l S 99.07 236.53 m 99.11 237.51 l S 99.11 236.53 m 99.16 237.51 l S 99.16 236.53 m 99.21 237.51 l S 99.21 236.53 m 99.25 236.53 l S 99.25 236.53 m 99.30 236.53 l S 99.30 236.53 m 99.34 236.53 l S 99.34 236.53 m 99.39 236.53 l S 99.39 236.53 m 99.44 237.51 l S 99.44 236.53 m 99.48 238.49 l S 99.48 236.53 m 99.53 239.46 l S 99.53 236.53 m 99.57 239.46 l S 99.57 236.53 m 99.62 237.51 l S 99.62 236.53 m 99.67 236.53 l S 99.67 236.53 m 99.71 237.51 l S 99.71 236.53 m 99.76 237.51 l S 99.76 236.53 m 99.80 237.51 l S 99.80 236.53 m 99.85 236.53 l S 99.85 236.53 m 99.90 236.53 l S 99.90 236.53 m 99.94 236.53 l S 99.94 236.53 m 99.99 236.53 l S 99.99 236.53 m 100.03 236.53 l S 100.03 236.53 m 100.08 236.53 l S 100.08 236.53 m 100.13 237.51 l S 100.13 236.53 m 100.17 237.51 l S 100.17 236.53 m 100.22 236.53 l S 100.22 236.53 m 100.26 236.53 l S 100.26 236.53 m 100.31 236.53 l S 100.31 236.53 m 100.36 236.53 l S 100.36 236.53 m 100.40 237.51 l S 100.40 236.53 m 100.45 237.51 l S 100.45 236.53 m 100.49 237.51 l S 100.49 236.53 m 100.54 238.49 l S 100.54 236.53 m 100.59 238.49 l S 100.59 236.53 m 100.63 237.51 l S 100.63 236.53 m 100.68 236.53 l S 100.68 236.53 m 100.72 236.53 l S 100.72 236.53 m 100.77 239.46 l S 100.77 236.53 m 100.82 239.46 l S 100.82 236.53 m 100.86 237.51 l S 100.86 236.53 m 100.91 240.44 l S 100.91 236.53 m 100.95 236.53 l S 100.95 236.53 m 101.00 237.51 l S 101.00 236.53 m 101.05 237.51 l S 101.05 236.53 m 101.09 236.53 l S 101.09 236.53 m 101.14 237.51 l S 101.14 236.53 m 101.18 238.49 l S 101.18 236.53 m 101.23 236.53 l S 101.23 236.53 m 101.28 236.53 l S 101.28 236.53 m 101.32 236.53 l S 101.32 236.53 m 101.37 236.53 l S 101.37 236.53 m 101.41 236.53 l S 101.41 236.53 m 101.46 237.51 l S 101.46 236.53 m 101.51 238.49 l S 101.51 237.51 m 101.55 239.46 l S 101.55 236.53 m 101.60 237.51 l S 101.60 236.53 m 101.64 237.51 l S 101.64 236.53 m 101.69 237.51 l S 101.69 236.53 m 101.74 237.51 l S 101.74 236.53 m 101.78 237.51 l S 101.78 236.53 m 101.83 237.51 l S 101.83 236.53 m 101.87 241.41 l S 101.87 239.46 m 101.92 244.34 l S 101.92 237.51 m 101.97 246.30 l S 101.97 236.53 m 102.01 239.46 l S 102.01 236.53 m 102.06 236.53 l S 102.06 236.53 m 102.10 241.41 l S 102.10 239.46 m 102.15 241.41 l S 102.15 239.46 m 102.20 248.25 l S 102.20 237.51 m 102.24 245.32 l S 102.24 240.44 m 102.29 251.18 l S 102.29 249.22 m 102.33 259.96 l S 102.33 244.34 m 102.38 256.06 l S 102.38 249.22 m 102.43 263.87 l S 102.43 241.41 m 102.47 249.22 l S 102.47 236.53 m 102.52 243.37 l S 102.52 236.53 m 102.57 237.51 l S 102.57 236.53 m 102.61 237.51 l S 102.61 236.53 m 102.66 241.41 l S 102.66 238.49 m 102.70 241.41 l S 102.70 236.53 m 102.75 239.46 l S 102.75 236.53 m 102.80 236.53 l S 102.80 236.53 m 102.84 236.53 l S 102.84 236.53 m 102.89 236.53 l S 102.89 236.53 m 102.93 236.53 l S 102.93 236.53 m 102.98 236.53 l S 102.98 236.53 m 103.03 236.53 l S 103.03 236.53 m 103.07 236.53 l S 103.07 236.53 m 103.12 236.53 l S 103.12 236.53 m 103.16 236.53 l S 103.16 236.53 m 103.21 236.53 l S 103.21 236.53 m 103.26 236.53 l S 103.26 236.53 m 103.30 236.53 l S 103.30 236.53 m 103.35 236.53 l S 103.35 236.53 m 103.39 236.53 l S 103.39 236.53 m 103.44 236.53 l S 103.44 236.53 m 103.49 236.53 l S 103.49 236.53 m 103.53 236.53 l S 103.53 236.53 m 103.58 236.53 l S 103.58 236.53 m 103.62 236.53 l S 103.62 236.53 m 103.67 236.53 l S 103.67 236.53 m 103.72 236.53 l S 103.72 236.53 m 103.76 236.53 l S 103.76 236.53 m 103.81 236.53 l S 103.81 236.53 m 103.85 236.53 l S 103.85 236.53 m 103.90 236.53 l S 103.90 236.53 m 103.95 236.53 l S 103.95 236.53 m 103.99 237.51 l S 103.99 236.53 m 104.04 237.51 l S 104.04 236.53 m 104.08 236.53 l S 104.08 236.53 m 104.13 236.53 l S 104.13 236.53 m 104.18 236.53 l S 104.18 236.53 m 104.22 236.53 l S 104.22 236.53 m 104.27 236.53 l S 104.27 236.53 m 104.31 236.53 l S 104.31 236.53 m 104.36 236.53 l S 104.36 236.53 m 104.41 236.53 l S 104.41 236.53 m 104.45 236.53 l S 104.45 236.53 m 104.50 236.53 l S 104.50 236.53 m 104.54 236.53 l S 104.54 236.53 m 104.59 237.51 l S 104.59 236.53 m 104.64 236.53 l S 104.64 236.53 m 104.68 236.53 l S 104.68 236.53 m 104.73 236.53 l S 104.73 236.53 m 104.77 237.51 l S 104.77 236.53 m 104.82 237.51 l S 104.82 236.53 m 104.87 236.53 l S 104.87 236.53 m 104.91 237.51 l S 104.91 236.53 m 104.96 237.51 l S 104.96 236.53 m 105.00 236.53 l S 105.00 236.53 m 105.05 236.53 l S 105.05 236.53 m 105.10 236.53 l S 105.10 236.53 m 105.14 239.46 l S 105.14 236.53 m 105.19 239.46 l S 105.19 236.53 m 105.23 236.53 l S 105.23 236.53 m 105.28 236.53 l S 105.28 236.53 m 105.33 236.53 l S 105.33 236.53 m 105.37 237.51 l S 105.37 236.53 m 105.42 237.51 l S 105.42 236.53 m 105.46 236.53 l S 105.46 236.53 m 105.51 236.53 l S 105.51 236.53 m 105.56 236.53 l S 105.56 236.53 m 105.60 236.53 l S 105.60 236.53 m 105.65 236.53 l S 105.65 236.53 m 105.69 236.53 l S 105.69 236.53 m 105.74 236.53 l S 105.74 236.53 m 105.79 236.53 l S 105.79 236.53 m 105.83 236.53 l S 105.83 236.53 m 105.88 237.51 l S 105.88 236.53 m 105.92 237.51 l S 105.92 236.53 m 105.97 238.49 l S 105.97 236.53 m 106.02 238.49 l S 106.02 236.53 m 106.06 236.53 l S 106.06 236.53 m 106.11 236.53 l S 106.11 236.53 m 106.15 236.53 l S 106.15 236.53 m 106.20 236.53 l S 106.20 236.53 m 106.25 236.53 l S 106.25 236.53 m 106.29 238.49 l S 106.29 236.53 m 106.34 238.49 l S 106.34 236.53 m 106.38 240.44 l S 106.38 237.51 m 106.43 240.44 l S 106.43 236.53 m 106.48 238.49 l S 106.48 236.53 m 106.52 245.32 l S 106.52 236.53 m 106.57 247.27 l S 106.57 236.53 m 106.61 236.53 l S 106.61 236.53 m 106.66 236.53 l S 106.66 236.53 m 106.71 236.53 l S 106.71 236.53 m 106.75 238.49 l S 106.75 236.53 m 106.80 236.53 l S 106.80 236.53 m 106.84 236.53 l S 106.84 236.53 m 106.89 236.53 l S 106.89 236.53 m 106.94 236.53 l S 106.94 236.53 m 106.98 236.53 l S 106.98 236.53 m 107.03 236.53 l S 107.03 236.53 m 107.07 236.53 l S 107.07 236.53 m 107.12 236.53 l S 107.12 236.53 m 107.17 236.53 l S 107.17 236.53 m 107.21 236.53 l S 107.21 236.53 m 107.26 236.53 l S 107.26 236.53 m 107.30 236.53 l S 107.30 236.53 m 107.35 236.53 l S 107.35 236.53 m 107.40 236.53 l S 107.40 236.53 m 107.44 236.53 l S 107.44 236.53 m 107.49 236.53 l S 107.49 236.53 m 107.53 236.53 l S 107.53 236.53 m 107.58 236.53 l S 107.58 236.53 m 107.63 236.53 l S 107.63 236.53 m 107.67 236.53 l S 107.67 236.53 m 107.72 236.53 l S 107.72 236.53 m 107.76 236.53 l S 107.76 236.53 m 107.81 236.53 l S 107.81 236.53 m 107.86 236.53 l S 107.86 236.53 m 107.90 236.53 l S 107.90 236.53 m 107.95 236.53 l S 107.95 236.53 m 107.99 236.53 l S 107.99 236.53 m 108.04 236.53 l S 108.04 236.53 m 108.09 236.53 l S 108.09 236.53 m 108.13 236.53 l S 108.13 236.53 m 108.18 236.53 l S 108.18 236.53 m 108.22 236.53 l S 108.22 236.53 m 108.27 236.53 l S 108.27 236.53 m 108.32 238.49 l S 108.32 236.53 m 108.36 238.49 l S 108.36 236.53 m 108.41 237.51 l S 108.41 236.53 m 108.45 236.53 l S 108.45 236.53 m 108.50 236.53 l S 108.50 236.53 m 108.55 236.53 l S 108.55 236.53 m 108.59 239.46 l S 108.59 236.53 m 108.64 237.51 l S 108.64 236.53 m 108.68 236.53 l S 108.68 236.53 m 108.73 236.53 l S 108.73 236.53 m 108.78 236.53 l S 108.78 236.53 m 108.82 236.53 l S 108.82 236.53 m 108.87 236.53 l S 108.87 236.53 m 108.91 236.53 l S 108.91 236.53 m 108.96 236.53 l S 108.96 236.53 m 109.01 236.53 l S 109.01 236.53 m 109.05 236.53 l S 109.05 236.53 m 109.10 237.51 l S 109.10 236.53 m 109.14 239.46 l S 109.14 236.53 m 109.19 240.44 l S 109.19 236.53 m 109.24 236.53 l S 109.24 236.53 m 109.28 236.53 l S 109.28 236.53 m 109.33 236.53 l S 109.33 236.53 m 109.37 236.53 l S 109.37 236.53 m 109.42 236.53 l S 109.42 236.53 m 109.47 236.53 l S 109.47 236.53 m 109.51 236.53 l S 109.51 236.53 m 109.56 236.53 l S 109.56 236.53 m 109.60 236.53 l S 109.60 236.53 m 109.65 236.53 l S 109.65 236.53 m 109.70 236.53 l S 109.70 236.53 m 109.74 237.51 l S 109.74 236.53 m 109.79 237.51 l S 109.79 236.53 m 109.83 236.53 l S 109.83 236.53 m 109.88 236.53 l S 109.88 236.53 m 109.93 236.53 l S 109.93 236.53 m 109.97 236.53 l S 109.97 236.53 m 110.02 237.51 l S 110.02 236.53 m 110.06 237.51 l S 110.06 236.53 m 110.11 236.53 l S 110.11 236.53 m 110.16 236.53 l S 110.16 236.53 m 110.20 236.53 l S 110.20 236.53 m 110.25 238.49 l S 110.25 236.53 m 110.29 238.49 l S 110.29 236.53 m 110.34 237.51 l S 110.34 236.53 m 110.39 238.49 l S 110.39 236.53 m 110.43 236.53 l S 110.43 236.53 m 110.48 236.53 l S 110.48 236.53 m 110.53 236.53 l S 110.53 236.53 m 110.57 236.53 l S 110.57 236.53 m 110.62 236.53 l S 110.62 236.53 m 110.66 236.53 l S 110.66 236.53 m 110.71 236.53 l S 110.71 236.53 m 110.76 236.53 l S 110.76 236.53 m 110.80 236.53 l S 110.80 236.53 m 110.85 236.53 l S 110.85 236.53 m 110.89 236.53 l S 110.89 236.53 m 110.94 236.53 l S 110.94 236.53 m 110.99 236.53 l S 110.99 236.53 m 111.03 236.53 l S 111.03 236.53 m 111.08 236.53 l S 111.08 236.53 m 111.12 236.53 l S 111.12 236.53 m 111.17 236.53 l S 111.17 236.53 m 111.22 236.53 l S 111.22 236.53 m 111.26 236.53 l S 111.26 236.53 m 111.31 236.53 l S 111.31 236.53 m 111.35 236.53 l S 111.35 236.53 m 111.40 236.53 l S 111.40 236.53 m 111.45 236.53 l S 111.45 236.53 m 111.49 236.53 l S 111.49 236.53 m 111.54 236.53 l S 111.54 236.53 m 111.58 236.53 l S 111.58 236.53 m 111.63 236.53 l S 111.63 236.53 m 111.68 236.53 l S 111.68 236.53 m 111.72 238.49 l S 111.72 236.53 m 111.77 238.49 l S 111.77 236.53 m 111.81 236.53 l S 111.81 236.53 m 111.86 237.51 l S 111.86 236.53 m 111.91 237.51 l S 111.91 236.53 m 111.95 236.53 l S 111.95 236.53 m 112.00 236.53 l S 112.00 236.53 m 112.04 236.53 l S 112.04 236.53 m 112.09 236.53 l S 112.09 236.53 m 112.14 237.51 l S 112.14 236.53 m 112.18 236.53 l S 112.18 236.53 m 112.23 236.53 l S 112.23 236.53 m 112.27 236.53 l S 112.27 236.53 m 112.32 236.53 l S 112.32 236.53 m 112.37 236.53 l S 112.37 236.53 m 112.41 236.53 l S 112.41 236.53 m 112.46 236.53 l S 112.46 236.53 m 112.50 236.53 l S 112.50 236.53 m 112.55 236.53 l S 112.55 236.53 m 112.60 236.53 l S 112.60 236.53 m 112.64 236.53 l S 112.64 236.53 m 112.69 236.53 l S 112.69 236.53 m 112.73 236.53 l S 112.73 236.53 m 112.78 236.53 l S 112.78 236.53 m 112.83 236.53 l S 112.83 236.53 m 112.87 236.53 l S 112.87 236.53 m 112.92 236.53 l S 112.92 236.53 m 112.96 236.53 l S 112.96 236.53 m 113.01 236.53 l S 113.01 236.53 m 113.06 236.53 l S 113.06 236.53 m 113.10 236.53 l S 113.10 236.53 m 113.15 236.53 l S 113.15 236.53 m 113.19 238.49 l S 113.19 236.53 m 113.24 238.49 l S 113.24 236.53 m 113.29 236.53 l S 113.29 236.53 m 113.33 236.53 l S 113.33 236.53 m 113.38 236.53 l S 113.38 236.53 m 113.42 236.53 l S 113.42 236.53 m 113.47 236.53 l S 113.47 236.53 m 113.52 236.53 l S 113.52 236.53 m 113.56 236.53 l S 113.56 236.53 m 113.61 236.53 l S 113.61 236.53 m 113.65 236.53 l S 113.65 236.53 m 113.70 236.53 l S 113.70 236.53 m 113.75 236.53 l S 113.75 236.53 m 113.79 236.53 l S 113.79 236.53 m 113.84 236.53 l S 113.84 236.53 m 113.88 236.53 l S 113.88 236.53 m 113.93 236.53 l S 113.93 236.53 m 113.98 236.53 l S 113.98 236.53 m 114.02 236.53 l S 114.02 236.53 m 114.07 237.51 l S 114.07 236.53 m 114.11 237.51 l S 114.11 236.53 m 114.16 236.53 l S 114.16 236.53 m 114.21 237.51 l S 114.21 236.53 m 114.25 237.51 l S 114.25 236.53 m 114.30 237.51 l S 114.30 236.53 m 114.34 236.53 l S 114.34 236.53 m 114.39 236.53 l S 114.39 236.53 m 114.44 236.53 l S 114.44 236.53 m 114.48 236.53 l S 114.48 236.53 m 114.53 236.53 l S 114.53 236.53 m 114.57 236.53 l S 114.57 236.53 m 114.62 236.53 l S 114.62 236.53 m 114.67 237.51 l S 114.67 236.53 m 114.71 237.51 l S 114.71 236.53 m 114.76 236.53 l S 114.76 236.53 m 114.80 236.53 l S 114.80 236.53 m 114.85 237.51 l S 114.85 236.53 m 114.90 237.51 l S 114.90 236.53 m 114.94 236.53 l S 114.94 236.53 m 114.99 236.53 l S 114.99 236.53 m 115.03 236.53 l S 115.03 236.53 m 115.08 236.53 l S 115.08 236.53 m 115.13 236.53 l S 115.13 236.53 m 115.17 236.53 l S 115.17 236.53 m 115.22 236.53 l S 115.22 236.53 m 115.26 236.53 l S 115.26 236.53 m 115.31 236.53 l S 115.31 236.53 m 115.36 236.53 l S 115.36 236.53 m 115.40 236.53 l S 115.40 236.53 m 115.45 236.53 l S 115.45 236.53 m 115.49 236.53 l S 115.49 236.53 m 115.54 237.51 l S 115.54 236.53 m 115.59 236.53 l S 115.59 236.53 m 115.63 236.53 l S 115.63 236.53 m 115.68 236.53 l S 115.68 236.53 m 115.72 236.53 l S 115.72 236.53 m 115.77 236.53 l S 115.77 236.53 m 115.82 236.53 l S 115.82 236.53 m 115.86 236.53 l S 115.86 236.53 m 115.91 236.53 l S 115.91 236.53 m 115.95 236.53 l S 115.95 236.53 m 116.00 236.53 l S 116.00 236.53 m 116.05 236.53 l S 116.05 236.53 m 116.09 236.53 l S 116.09 236.53 m 116.14 236.53 l S 116.14 236.53 m 116.18 236.53 l S 116.18 236.53 m 116.23 236.53 l S 116.23 236.53 m 116.28 236.53 l S 116.28 236.53 m 116.32 236.53 l S 116.32 236.53 m 116.37 236.53 l S 116.37 236.53 m 116.41 236.53 l S 116.41 236.53 m 116.46 236.53 l S 116.46 236.53 m 116.51 236.53 l S 116.51 236.53 m 116.55 236.53 l S 116.55 236.53 m 116.60 236.53 l S 116.60 236.53 m 116.64 236.53 l S 116.64 236.53 m 116.69 236.53 l S 116.69 236.53 m 116.74 236.53 l S 116.74 236.53 m 116.78 236.53 l S 116.78 236.53 m 116.83 237.51 l S 116.83 236.53 m 116.87 237.51 l S 116.87 236.53 m 116.92 236.53 l S 116.92 236.53 m 116.97 236.53 l S 116.97 236.53 m 117.01 236.53 l S 117.01 236.53 m 117.06 236.53 l S 117.06 236.53 m 117.10 236.53 l S 117.10 236.53 m 117.15 236.53 l S 117.15 236.53 m 117.20 236.53 l S 117.20 236.53 m 117.24 236.53 l S 117.24 236.53 m 117.29 236.53 l S 117.29 236.53 m 117.33 236.53 l S 117.33 236.53 m 117.38 236.53 l S 117.38 236.53 m 117.43 236.53 l S 117.43 236.53 m 117.47 236.53 l S 117.47 236.53 m 117.52 236.53 l S 117.52 236.53 m 117.56 237.51 l S 117.56 236.53 m 117.61 237.51 l S 117.61 236.53 m 117.66 236.53 l S 117.66 236.53 m 117.70 236.53 l S 117.70 236.53 m 117.75 237.51 l S 117.75 236.53 m 117.79 237.51 l S 117.79 236.53 m 117.84 236.53 l S 117.84 236.53 m 117.89 236.53 l S 117.89 236.53 m 117.93 236.53 l S 117.93 236.53 m 117.98 236.53 l S 117.98 236.53 m 118.02 236.53 l S 118.02 236.53 m 118.07 236.53 l S 118.07 236.53 m 118.12 236.53 l S 118.12 236.53 m 118.16 236.53 l S 118.16 236.53 m 118.21 237.51 l S 118.21 236.53 m 118.25 237.51 l S 118.25 236.53 m 118.30 236.53 l S 118.30 236.53 m 118.35 236.53 l S 118.35 236.53 m 118.39 236.53 l S 118.39 236.53 m 118.44 236.53 l S 118.44 236.53 m 118.49 236.53 l S 118.49 236.53 m 118.53 236.53 l S 118.53 236.53 m 118.58 237.51 l S 118.58 236.53 m 118.62 237.51 l S 118.62 236.53 m 118.67 236.53 l S 118.67 236.53 m 118.72 236.53 l S 118.72 236.53 m 118.76 236.53 l S 118.76 236.53 m 118.81 236.53 l S 118.81 236.53 m 118.85 236.53 l S 118.85 236.53 m 118.90 236.53 l S 118.90 236.53 m 118.95 236.53 l S 118.95 236.53 m 118.99 236.53 l S 118.99 236.53 m 119.04 236.53 l S 119.04 236.53 m 119.08 236.53 l S 119.08 236.53 m 119.13 237.51 l S 119.13 236.53 m 119.18 237.51 l S 119.18 236.53 m 119.22 236.53 l S 119.22 236.53 m 119.27 236.53 l S 119.27 236.53 m 119.31 236.53 l S 119.31 236.53 m 119.36 237.51 l S 119.36 236.53 m 119.41 237.51 l S 119.41 236.53 m 119.45 236.53 l S 119.45 236.53 m 119.50 236.53 l S 119.50 236.53 m 119.54 236.53 l S 119.54 236.53 m 119.59 236.53 l S 119.59 236.53 m 119.64 236.53 l S 119.64 236.53 m 119.68 236.53 l S 119.68 236.53 m 119.73 236.53 l S 119.73 236.53 m 119.77 236.53 l S 119.77 236.53 m 119.82 236.53 l S 119.82 236.53 m 119.87 236.53 l S 119.87 236.53 m 119.91 236.53 l S 119.91 236.53 m 119.96 236.53 l S 119.96 236.53 m 120.00 236.53 l S 120.00 236.53 m 120.05 236.53 l S 120.05 236.53 m 120.10 236.53 l S 120.10 236.53 m 120.14 236.53 l S 120.14 236.53 m 120.19 236.53 l S 120.19 236.53 m 120.23 236.53 l S 120.23 236.53 m 120.28 236.53 l S 120.28 236.53 m 120.33 236.53 l S 120.33 236.53 m 120.37 236.53 l S 120.37 236.53 m 120.42 236.53 l S 120.42 236.53 m 120.46 236.53 l S 120.46 236.53 m 120.51 236.53 l S 120.51 236.53 m 120.56 236.53 l S 120.56 236.53 m 120.60 236.53 l S 120.60 236.53 m 120.65 236.53 l S 120.65 236.53 m 120.69 236.53 l S 120.69 236.53 m 120.74 236.53 l S 120.74 236.53 m 120.79 236.53 l S 120.79 236.53 m 120.83 236.53 l S 120.83 236.53 m 120.88 236.53 l S 120.88 236.53 m 120.92 236.53 l S 120.92 236.53 m 120.97 236.53 l S 120.97 236.53 m 121.02 236.53 l S 121.02 236.53 m 121.06 236.53 l S 121.06 236.53 m 121.11 236.53 l S 121.11 236.53 m 121.15 236.53 l S 121.15 236.53 m 121.20 236.53 l S 121.20 236.53 m 121.25 236.53 l S 121.25 236.53 m 121.29 236.53 l S 121.29 236.53 m 121.34 236.53 l S 121.34 236.53 m 121.38 238.49 l S 121.38 236.53 m 121.43 238.49 l S 121.43 236.53 m 121.48 236.53 l S 121.48 236.53 m 121.52 236.53 l S 121.52 236.53 m 121.57 236.53 l S 121.57 236.53 m 121.61 236.53 l S 121.61 236.53 m 121.66 236.53 l S 121.66 236.53 m 121.71 236.53 l S 121.71 236.53 m 121.75 236.53 l S 121.75 236.53 m 121.80 236.53 l S 121.80 236.53 m 121.84 236.53 l S 121.84 236.53 m 121.89 238.49 l S 121.89 236.53 m 121.94 237.51 l S 121.94 236.53 m 121.98 237.51 l S 121.98 236.53 m 122.03 236.53 l S 122.03 236.53 m 122.07 236.53 l S 122.07 236.53 m 122.12 236.53 l S 122.12 236.53 m 122.17 236.53 l S 122.17 236.53 m 122.21 236.53 l S 122.21 236.53 m 122.26 236.53 l S 122.26 236.53 m 122.30 236.53 l S 122.30 236.53 m 122.35 236.53 l S 122.35 236.53 m 122.40 236.53 l S 122.40 236.53 m 122.44 237.51 l S 122.44 236.53 m 122.49 237.51 l S 122.49 236.53 m 122.53 237.51 l S 122.53 236.53 m 122.58 237.51 l S 122.58 236.53 m 122.63 236.53 l S 122.63 236.53 m 122.67 237.51 l S 122.67 236.53 m 122.72 236.53 l S 122.72 236.53 m 122.76 236.53 l S 122.76 236.53 m 122.81 236.53 l S 122.81 236.53 m 122.86 236.53 l S 122.86 236.53 m 122.90 236.53 l S 122.90 236.53 m 122.95 237.51 l S 122.95 236.53 m 122.99 236.53 l S 122.99 236.53 m 123.04 236.53 l S 123.04 236.53 m 123.09 236.53 l S 123.09 236.53 m 123.13 236.53 l S 123.13 236.53 m 123.18 236.53 l S 123.18 236.53 m 123.22 236.53 l S 123.22 236.53 m 123.27 236.53 l S 123.27 236.53 m 123.32 236.53 l S 123.32 236.53 m 123.36 236.53 l S 123.36 236.53 m 123.41 236.53 l S 123.41 236.53 m 123.45 236.53 l S 123.45 236.53 m 123.50 236.53 l S 123.50 236.53 m 123.55 238.49 l S 123.55 236.53 m 123.59 237.51 l S 123.59 236.53 m 123.64 236.53 l S 123.64 236.53 m 123.68 236.53 l S 123.68 236.53 m 123.73 236.53 l S 123.73 236.53 m 123.78 236.53 l S 123.78 236.53 m 123.82 238.49 l S 123.82 236.53 m 123.87 238.49 l S 123.87 236.53 m 123.91 236.53 l S 123.91 236.53 m 123.96 236.53 l S 123.96 236.53 m 124.01 236.53 l S 124.01 236.53 m 124.05 236.53 l S 124.05 236.53 m 124.10 236.53 l S 124.10 236.53 m 124.14 237.51 l S 124.14 236.53 m 124.19 238.49 l S 124.19 236.53 m 124.24 236.53 l S 124.24 236.53 m 124.28 236.53 l S 124.28 236.53 m 124.33 236.53 l S 124.33 236.53 m 124.37 236.53 l S 124.37 236.53 m 124.42 236.53 l S 124.42 236.53 m 124.47 236.53 l S 124.47 236.53 m 124.51 236.53 l S 124.51 236.53 m 124.56 236.53 l S 124.56 236.53 m 124.60 236.53 l S 124.60 236.53 m 124.65 236.53 l S 124.65 236.53 m 124.70 236.53 l S 124.70 236.53 m 124.74 236.53 l S 124.74 236.53 m 124.79 236.53 l S 124.79 236.53 m 124.83 237.51 l S 124.83 236.53 m 124.88 236.53 l S 124.88 236.53 m 124.93 237.51 l S 124.93 236.53 m 124.97 236.53 l S 124.97 236.53 m 125.02 236.53 l S 125.02 236.53 m 125.06 236.53 l S 125.06 236.53 m 125.11 236.53 l S 125.11 236.53 m 125.16 236.53 l S 125.16 236.53 m 125.20 236.53 l S 125.20 236.53 m 125.25 236.53 l S 125.25 236.53 m 125.29 238.49 l S 125.29 236.53 m 125.34 240.44 l S 125.34 236.53 m 125.39 236.53 l S 125.39 236.53 m 125.43 236.53 l S 125.43 236.53 m 125.48 236.53 l S 125.48 236.53 m 125.52 236.53 l S 125.52 236.53 m 125.57 236.53 l S 125.57 236.53 m 125.62 236.53 l S 125.62 236.53 m 125.66 236.53 l S 125.66 236.53 m 125.71 237.51 l S 125.71 236.53 m 125.75 237.51 l S 125.75 236.53 m 125.80 237.51 l S 125.80 236.53 m 125.85 237.51 l S 125.85 236.53 m 125.89 236.53 l S 125.89 236.53 m 125.94 236.53 l S 125.94 236.53 m 125.98 236.53 l S 125.98 236.53 m 126.03 236.53 l S 126.03 236.53 m 126.08 236.53 l S 126.08 236.53 m 126.12 236.53 l S 126.12 236.53 m 126.17 236.53 l S 126.17 236.53 m 126.21 236.53 l S 126.21 236.53 m 126.26 236.53 l S 126.26 236.53 m 126.31 236.53 l S 126.31 236.53 m 126.35 236.53 l S 126.35 236.53 m 126.40 236.53 l S 126.40 236.53 m 126.45 236.53 l S 126.45 236.53 m 126.49 236.53 l S 126.49 236.53 m 126.54 236.53 l S 126.54 236.53 m 126.58 236.53 l S 126.58 236.53 m 126.63 236.53 l S 126.63 236.53 m 126.68 236.53 l S 126.68 236.53 m 126.72 236.53 l S 126.72 236.53 m 126.77 236.53 l S 126.77 236.53 m 126.81 236.53 l S 126.81 236.53 m 126.86 236.53 l S 126.86 236.53 m 126.91 236.53 l S 126.91 236.53 m 126.95 236.53 l S 126.95 236.53 m 127.00 236.53 l S 127.00 236.53 m 127.04 236.53 l S 127.04 236.53 m 127.09 236.53 l S 127.09 236.53 m 127.14 236.53 l S 127.14 236.53 m 127.18 236.53 l S 127.18 236.53 m 127.23 236.53 l S 127.23 236.53 m 127.27 236.53 l S 127.27 236.53 m 127.32 236.53 l S 127.32 236.53 m 127.37 236.53 l S 127.37 236.53 m 127.41 236.53 l S 127.41 236.53 m 127.46 236.53 l S 127.46 236.53 m 127.50 236.53 l S 127.50 236.53 m 127.55 236.53 l S 127.55 236.53 m 127.60 236.53 l S 127.60 236.53 m 127.64 236.53 l S 127.64 236.53 m 127.69 237.51 l S 127.69 236.53 m 127.73 236.53 l S 127.73 236.53 m 127.78 236.53 l S 127.78 236.53 m 127.83 236.53 l S 127.83 236.53 m 127.87 236.53 l S 127.87 236.53 m 127.92 236.53 l S 127.92 236.53 m 127.96 236.53 l S 127.96 236.53 m 128.01 237.51 l S 128.01 236.53 m 128.06 237.51 l S 128.06 236.53 m 128.10 237.51 l S 128.10 236.53 m 128.15 236.53 l S 128.15 236.53 m 128.19 236.53 l S 128.19 236.53 m 128.24 236.53 l S 128.24 236.53 m 128.29 236.53 l S 128.29 236.53 m 128.33 236.53 l S 128.33 236.53 m 128.38 236.53 l S 128.38 236.53 m 128.42 236.53 l S 128.42 236.53 m 128.47 236.53 l S 128.47 236.53 m 128.52 236.53 l S 128.52 236.53 m 128.56 238.49 l S 128.56 236.53 m 128.61 238.49 l S 128.61 237.51 m 128.65 238.49 l S 128.65 236.53 m 128.70 238.49 l S 128.70 236.53 m 128.75 237.51 l S 128.75 236.53 m 128.79 237.51 l S 128.79 236.53 m 128.84 237.51 l S 128.84 236.53 m 128.88 236.53 l S 128.88 236.53 m 128.93 236.53 l S 128.93 236.53 m 128.98 237.51 l S 128.98 236.53 m 129.02 237.51 l S 129.02 236.53 m 129.07 236.53 l S 129.07 236.53 m 129.11 236.53 l S 129.11 236.53 m 129.16 236.53 l S 129.16 236.53 m 129.21 236.53 l S 129.21 236.53 m 129.25 237.51 l S 129.25 236.53 m 129.30 237.51 l S 129.30 236.53 m 129.34 236.53 l S 129.34 236.53 m 129.39 236.53 l S 129.39 236.53 m 129.44 236.53 l S 129.44 236.53 m 129.48 236.53 l S 129.48 236.53 m 129.53 236.53 l S 129.53 236.53 m 129.57 236.53 l S 129.57 236.53 m 129.62 236.53 l S 129.62 236.53 m 129.67 236.53 l S 129.67 236.53 m 129.71 236.53 l S 129.71 236.53 m 129.76 236.53 l S 129.76 236.53 m 129.80 236.53 l S 129.80 236.53 m 129.85 236.53 l S 129.85 236.53 m 129.90 236.53 l S 129.90 236.53 m 129.94 236.53 l S 129.94 236.53 m 129.99 236.53 l S 129.99 236.53 m 130.03 236.53 l S 130.03 236.53 m 130.08 236.53 l S 130.08 236.53 m 130.13 236.53 l S 130.13 236.53 m 130.17 236.53 l S 130.17 236.53 m 130.22 236.53 l S 130.22 236.53 m 130.26 236.53 l S 130.26 236.53 m 130.31 236.53 l S 130.31 236.53 m 130.36 236.53 l S 130.36 236.53 m 130.40 236.53 l S 130.40 236.53 m 130.45 236.53 l S 130.45 236.53 m 130.49 237.51 l S 130.49 236.53 m 130.54 237.51 l S 130.54 236.53 m 130.59 236.53 l S 130.59 236.53 m 130.63 237.51 l S 130.63 236.53 m 130.68 236.53 l S 130.68 236.53 m 130.72 236.53 l S 130.72 236.53 m 130.77 236.53 l S 130.77 236.53 m 130.82 236.53 l S 130.82 236.53 m 130.86 236.53 l S 130.86 236.53 m 130.91 236.53 l S 130.91 236.53 m 130.95 236.53 l S 130.95 236.53 m 131.00 236.53 l S 131.00 236.53 m 131.05 236.53 l S 131.05 236.53 m 131.09 236.53 l S 131.09 236.53 m 131.14 237.51 l S 131.14 236.53 m 131.18 236.53 l S 131.18 236.53 m 131.23 236.53 l S 131.23 236.53 m 131.28 236.53 l S 131.28 236.53 m 131.32 236.53 l S 131.32 236.53 m 131.37 236.53 l S 131.37 236.53 m 131.41 236.53 l S 131.41 236.53 m 131.46 236.53 l S 131.46 236.53 m 131.51 236.53 l S 131.51 236.53 m 131.55 236.53 l S 131.55 236.53 m 131.60 236.53 l S 131.60 236.53 m 131.64 236.53 l S 131.64 236.53 m 131.69 237.51 l S 131.69 236.53 m 131.74 237.51 l S 131.74 236.53 m 131.78 236.53 l S 131.78 236.53 m 131.83 239.46 l S 131.83 236.53 m 131.87 239.46 l S 131.87 236.53 m 131.92 236.53 l S 131.92 236.53 m 131.97 236.53 l S 131.97 236.53 m 132.01 236.53 l S 132.01 236.53 m 132.06 236.53 l S 132.06 236.53 m 132.10 236.53 l S 132.10 236.53 m 132.15 236.53 l S 132.15 236.53 m 132.20 236.53 l S 132.20 236.53 m 132.24 236.53 l S 132.24 236.53 m 132.29 236.53 l S 132.29 236.53 m 132.33 239.46 l S 132.33 236.53 m 132.38 236.53 l S 132.38 236.53 m 132.43 237.51 l S 132.43 236.53 m 132.47 237.51 l S 132.47 236.53 m 132.52 237.51 l S 132.52 236.53 m 132.56 236.53 l S 132.56 236.53 m 132.61 236.53 l S 132.61 236.53 m 132.66 236.53 l S 132.66 236.53 m 132.70 237.51 l S 132.70 236.53 m 132.75 237.51 l S 132.75 236.53 m 132.79 236.53 l S 132.79 236.53 m 132.84 236.53 l S 132.84 236.53 m 132.89 236.53 l S 132.89 236.53 m 132.93 236.53 l S 132.93 236.53 m 132.98 236.53 l S 132.98 236.53 m 133.02 236.53 l S 133.02 236.53 m 133.07 236.53 l S 133.07 236.53 m 133.12 236.53 l S 133.12 236.53 m 133.16 236.53 l S 133.16 236.53 m 133.21 236.53 l S 133.21 236.53 m 133.25 237.51 l S 133.25 236.53 m 133.30 237.51 l S 133.30 236.53 m 133.35 237.51 l S 133.35 236.53 m 133.39 236.53 l S 133.39 236.53 m 133.44 236.53 l S 133.44 236.53 m 133.48 236.53 l S 133.48 236.53 m 133.53 236.53 l S 133.53 236.53 m 133.58 236.53 l S 133.58 236.53 m 133.62 237.51 l S 133.62 236.53 m 133.67 237.51 l S 133.67 236.53 m 133.71 237.51 l S 133.71 236.53 m 133.76 237.51 l S 133.76 236.53 m 133.81 236.53 l S 133.81 236.53 m 133.85 236.53 l S 133.85 236.53 m 133.90 236.53 l S 133.90 236.53 m 133.94 237.51 l S 133.94 236.53 m 133.99 236.53 l S 133.99 236.53 m 134.04 236.53 l S 134.04 236.53 m 134.08 236.53 l S 134.08 236.53 m 134.13 236.53 l S 134.13 236.53 m 134.17 236.53 l S 134.17 236.53 m 134.22 236.53 l S 134.22 236.53 m 134.27 237.51 l S 134.27 236.53 m 134.31 237.51 l S 134.31 236.53 m 134.36 236.53 l S 134.36 236.53 m 134.41 237.51 l S 134.41 236.53 m 134.45 237.51 l S 134.45 236.53 m 134.50 236.53 l S 134.50 236.53 m 134.54 236.53 l S 134.54 236.53 m 134.59 236.53 l S 134.59 236.53 m 134.64 236.53 l S 134.64 236.53 m 134.68 236.53 l S 134.68 236.53 m 134.73 236.53 l S 134.73 236.53 m 134.77 236.53 l S 134.77 236.53 m 134.82 236.53 l S 134.82 236.53 m 134.87 236.53 l S 134.87 236.53 m 134.91 236.53 l S 134.91 236.53 m 134.96 236.53 l S 134.96 236.53 m 135.00 236.53 l S 135.00 236.53 m 135.05 236.53 l S 135.05 236.53 m 135.10 236.53 l S 135.10 236.53 m 135.14 236.53 l S 135.14 236.53 m 135.19 236.53 l S 135.19 236.53 m 135.23 236.53 l S 135.23 236.53 m 135.28 236.53 l S 135.28 236.53 m 135.33 236.53 l S 135.33 236.53 m 135.37 236.53 l S 135.37 236.53 m 135.42 236.53 l S 135.42 236.53 m 135.46 236.53 l S 135.46 236.53 m 135.51 236.53 l S 135.51 236.53 m 135.56 236.53 l S 135.56 236.53 m 135.60 236.53 l S 135.60 236.53 m 135.65 236.53 l S 135.65 236.53 m 135.69 236.53 l S 135.69 236.53 m 135.74 236.53 l S 135.74 236.53 m 135.79 236.53 l S 135.79 236.53 m 135.83 236.53 l S 135.83 236.53 m 135.88 236.53 l S 135.88 236.53 m 135.92 236.53 l S 135.92 236.53 m 135.97 237.51 l S 135.97 236.53 m 136.02 237.51 l S 136.02 236.53 m 136.06 236.53 l S 136.06 236.53 m 136.11 236.53 l S 136.11 236.53 m 136.15 236.53 l S 136.15 236.53 m 136.20 237.51 l S 136.20 236.53 m 136.25 237.51 l S 136.25 236.53 m 136.29 236.53 l S 136.29 236.53 m 136.34 236.53 l S 136.34 236.53 m 136.38 236.53 l S 136.38 236.53 m 136.43 236.53 l S 136.43 236.53 m 136.48 237.51 l S 136.48 236.53 m 136.52 236.53 l S 136.52 236.53 m 136.57 237.51 l S 136.57 236.53 m 136.61 238.49 l S 136.61 236.53 m 136.66 238.49 l S 136.66 236.53 m 136.71 236.53 l S 136.71 236.53 m 136.75 236.53 l S 136.75 236.53 m 136.80 236.53 l S 136.80 236.53 m 136.84 236.53 l S 136.84 236.53 m 136.89 237.51 l S 136.89 236.53 m 136.94 237.51 l S 136.94 236.53 m 136.98 236.53 l S 136.98 236.53 m 137.03 236.53 l S 137.03 236.53 m 137.07 236.53 l S 137.07 236.53 m 137.12 236.53 l S 137.12 236.53 m 137.17 236.53 l S 137.17 236.53 m 137.21 236.53 l S 137.21 236.53 m 137.26 236.53 l S 137.26 236.53 m 137.30 236.53 l S 137.30 236.53 m 137.35 236.53 l S 137.35 236.53 m 137.40 236.53 l S 137.40 236.53 m 137.44 236.53 l S 137.44 236.53 m 137.49 236.53 l S 137.49 236.53 m 137.53 236.53 l S 137.53 236.53 m 137.58 236.53 l S 137.58 236.53 m 137.63 236.53 l S 137.63 236.53 m 137.67 236.53 l S 137.67 236.53 m 137.72 236.53 l S 137.72 236.53 m 137.76 236.53 l S 137.76 236.53 m 137.81 236.53 l S 137.81 236.53 m 137.86 236.53 l S 137.86 236.53 m 137.90 236.53 l S 137.90 236.53 m 137.95 236.53 l S 137.95 236.53 m 137.99 236.53 l S 137.99 236.53 m 138.04 238.49 l S 138.04 236.53 m 138.09 238.49 l S 138.09 236.53 m 138.13 236.53 l S 138.13 236.53 m 138.18 236.53 l S 138.18 236.53 m 138.22 236.53 l S 138.22 236.53 m 138.27 236.53 l S 138.27 236.53 m 138.32 236.53 l S 138.32 236.53 m 138.36 236.53 l S 138.36 236.53 m 138.41 236.53 l S 138.41 236.53 m 138.45 236.53 l S 138.45 236.53 m 138.50 236.53 l S 138.50 236.53 m 138.55 236.53 l S 138.55 236.53 m 138.59 236.53 l S 138.59 236.53 m 138.64 236.53 l S 138.64 236.53 m 138.68 236.53 l S 138.68 236.53 m 138.73 236.53 l S 138.73 236.53 m 138.78 236.53 l S 138.78 236.53 m 138.82 236.53 l S 138.82 236.53 m 138.87 236.53 l S 138.87 236.53 m 138.91 236.53 l S 138.91 236.53 m 138.96 236.53 l S 138.96 236.53 m 139.01 236.53 l S 139.01 236.53 m 139.05 236.53 l S 139.05 236.53 m 139.10 236.53 l S 139.10 236.53 m 139.14 236.53 l S 139.14 236.53 m 139.19 236.53 l S 139.19 236.53 m 139.24 236.53 l S 139.24 236.53 m 139.28 236.53 l S 139.28 236.53 m 139.33 236.53 l S 139.33 236.53 m 139.37 236.53 l S 139.37 236.53 m 139.42 236.53 l S 139.42 236.53 m 139.47 236.53 l S 139.47 236.53 m 139.51 236.53 l S 139.51 236.53 m 139.56 236.53 l S 139.56 236.53 m 139.60 236.53 l S 139.60 236.53 m 139.65 236.53 l S 139.65 236.53 m 139.70 236.53 l S 139.70 236.53 m 139.74 236.53 l S 139.74 236.53 m 139.79 236.53 l S 139.79 236.53 m 139.83 236.53 l S 139.83 236.53 m 139.88 236.53 l S 139.88 236.53 m 139.93 236.53 l S 139.93 236.53 m 139.97 236.53 l S 139.97 236.53 m 140.02 237.51 l S 140.02 236.53 m 140.06 237.51 l S 140.06 236.53 m 140.11 236.53 l S 140.11 236.53 m 140.16 237.51 l S 140.16 236.53 m 140.20 237.51 l S 140.20 236.53 m 140.25 237.51 l S 140.25 236.53 m 140.29 237.51 l S 140.29 236.53 m 140.34 236.53 l S 140.34 236.53 m 140.39 237.51 l S 140.39 236.53 m 140.43 237.51 l S 140.43 236.53 m 140.48 237.51 l S 140.48 236.53 m 140.52 236.53 l S 140.52 236.53 m 140.57 236.53 l S 140.57 236.53 m 140.62 236.53 l S 140.62 236.53 m 140.66 236.53 l S 140.66 236.53 m 140.71 236.53 l S 140.71 236.53 m 140.75 236.53 l S 140.75 236.53 m 140.80 236.53 l S 140.80 236.53 m 140.85 237.51 l S 140.85 236.53 m 140.89 237.51 l S 140.89 236.53 m 140.94 237.51 l S 140.94 236.53 m 140.98 237.51 l S 140.98 236.53 m 141.03 238.49 l S 141.03 236.53 m 141.08 238.49 l S 141.08 236.53 m 141.12 238.49 l S 141.12 236.53 m 141.17 236.53 l S 141.17 236.53 m 141.21 236.53 l S 141.21 236.53 m 141.26 236.53 l S 141.26 236.53 m 141.31 236.53 l S 141.31 236.53 m 141.35 236.53 l S 141.35 236.53 m 141.40 236.53 l S 141.40 236.53 m 141.44 236.53 l S 141.44 236.53 m 141.49 236.53 l S 141.49 236.53 m 141.54 236.53 l S 141.54 236.53 m 141.58 236.53 l S 141.58 236.53 m 141.63 236.53 l S 141.63 236.53 m 141.67 236.53 l S 141.67 236.53 m 141.72 236.53 l S 141.72 236.53 m 141.77 236.53 l S 141.77 236.53 m 141.81 236.53 l S 141.81 236.53 m 141.86 236.53 l S 141.86 236.53 m 141.90 236.53 l S 141.90 236.53 m 141.95 236.53 l S 141.95 236.53 m 142.00 236.53 l S 142.00 236.53 m 142.04 236.53 l S 142.04 236.53 m 142.09 236.53 l S 142.09 236.53 m 142.13 236.53 l S 142.13 236.53 m 142.18 236.53 l S 142.18 236.53 m 142.23 236.53 l S 142.23 236.53 m 142.27 236.53 l S 142.27 236.53 m 142.32 236.53 l S 142.32 236.53 m 142.36 236.53 l S 142.36 236.53 m 142.41 237.51 l S 142.41 236.53 m 142.46 236.53 l S 142.46 236.53 m 142.50 237.51 l S 142.50 236.53 m 142.55 237.51 l S 142.55 236.53 m 142.60 238.49 l S 142.60 236.53 m 142.64 238.49 l S 142.64 236.53 m 142.69 237.51 l S 142.69 236.53 m 142.73 236.53 l S 142.73 236.53 m 142.78 236.53 l S 142.78 236.53 m 142.83 236.53 l S 142.83 236.53 m 142.87 236.53 l S 142.87 236.53 m 142.92 236.53 l S 142.92 236.53 m 142.96 236.53 l S 142.96 236.53 m 143.01 236.53 l S 143.01 236.53 m 143.06 236.53 l S 143.06 236.53 m 143.10 236.53 l S 143.10 236.53 m 143.15 236.53 l S 143.15 236.53 m 143.19 236.53 l S 143.19 236.53 m 143.24 236.53 l S 143.24 236.53 m 143.29 236.53 l S 143.29 236.53 m 143.33 236.53 l S 143.33 236.53 m 143.38 237.51 l S 143.38 236.53 m 143.42 237.51 l S 143.42 236.53 m 143.47 236.53 l S 143.47 236.53 m 143.52 236.53 l S 143.52 236.53 m 143.56 236.53 l S 143.56 236.53 m 143.61 236.53 l S 143.61 236.53 m 143.65 236.53 l S 143.65 236.53 m 143.70 236.53 l S 143.70 236.53 m 143.75 236.53 l S 143.75 236.53 m 143.79 236.53 l S 143.79 236.53 m 143.84 236.53 l S 143.84 236.53 m 143.88 236.53 l S 143.88 236.53 m 143.93 236.53 l S 143.93 236.53 m 143.98 236.53 l S 143.98 236.53 m 144.02 238.49 l S 144.02 236.53 m 144.07 238.49 l S 144.07 236.53 m 144.11 236.53 l S 144.11 236.53 m 144.16 236.53 l S 144.16 236.53 m 144.21 236.53 l S 144.21 236.53 m 144.25 236.53 l S 144.25 236.53 m 144.30 236.53 l S 144.30 236.53 m 144.34 236.53 l S 144.34 236.53 m 144.39 236.53 l S 144.39 236.53 m 144.44 236.53 l S 144.44 236.53 m 144.48 236.53 l S 144.48 236.53 m 144.53 236.53 l S 144.53 236.53 m 144.57 236.53 l S 144.57 236.53 m 144.62 236.53 l S 144.62 236.53 m 144.67 236.53 l S 144.67 236.53 m 144.71 236.53 l S 144.71 236.53 m 144.76 236.53 l S 144.76 236.53 m 144.80 236.53 l S 144.80 236.53 m 144.85 236.53 l S 144.85 236.53 m 144.90 236.53 l S 144.90 236.53 m 144.94 236.53 l S 144.94 236.53 m 144.99 236.53 l S 144.99 236.53 m 145.03 236.53 l S 145.03 236.53 m 145.08 236.53 l S 145.08 236.53 m 145.13 236.53 l S 145.13 236.53 m 145.17 236.53 l S 145.17 236.53 m 145.22 236.53 l S 145.22 236.53 m 145.26 236.53 l S 145.26 236.53 m 145.31 236.53 l S 145.31 236.53 m 145.36 236.53 l S 145.36 236.53 m 145.40 236.53 l S 145.40 236.53 m 145.45 236.53 l S 145.45 236.53 m 145.49 236.53 l S 145.49 236.53 m 145.54 236.53 l S 145.54 236.53 m 145.59 236.53 l S 145.59 236.53 m 145.63 236.53 l S 145.63 236.53 m 145.68 236.53 l S 145.68 236.53 m 145.72 236.53 l S 145.72 236.53 m 145.77 236.53 l S 145.77 236.53 m 145.82 236.53 l S 145.82 236.53 m 145.86 236.53 l S 145.86 236.53 m 145.91 236.53 l S 145.91 236.53 m 145.95 236.53 l S 145.95 236.53 m 146.00 236.53 l S 146.00 236.53 m 146.05 236.53 l S 146.05 236.53 m 146.09 236.53 l S 146.09 236.53 m 146.14 236.53 l S 146.14 236.53 m 146.18 236.53 l S 146.18 236.53 m 146.23 236.53 l S 146.23 236.53 m 146.28 236.53 l S 146.28 236.53 m 146.32 236.53 l S 146.32 236.53 m 146.37 238.49 l S 146.37 236.53 m 146.41 238.49 l S 146.41 236.53 m 146.46 236.53 l S 146.46 236.53 m 146.51 236.53 l S 146.51 236.53 m 146.55 236.53 l S 146.55 236.53 m 146.60 236.53 l S 146.60 236.53 m 146.64 236.53 l S 146.64 236.53 m 146.69 236.53 l S 146.69 236.53 m 146.74 236.53 l S 146.74 236.53 m 146.78 236.53 l S 146.78 236.53 m 146.83 236.53 l S 146.83 236.53 m 146.87 236.53 l S 146.87 236.53 m 146.92 237.51 l S 146.92 236.53 m 146.97 237.51 l S 146.97 236.53 m 147.01 236.53 l S 147.01 236.53 m 147.06 236.53 l S 147.06 236.53 m 147.10 236.53 l S 147.10 236.53 m 147.15 236.53 l S 147.15 236.53 m 147.20 236.53 l S 147.20 236.53 m 147.24 236.53 l S 147.24 236.53 m 147.29 236.53 l S 147.29 236.53 m 147.33 236.53 l S 147.33 236.53 m 147.38 236.53 l S 147.38 236.53 m 147.43 236.53 l S 147.43 236.53 m 147.47 236.53 l S 147.47 236.53 m 147.52 236.53 l S 147.52 236.53 m 147.56 236.53 l S 147.56 236.53 m 147.61 236.53 l S 147.61 236.53 m 147.66 236.53 l S 147.66 236.53 m 147.70 236.53 l S 147.70 236.53 m 147.75 236.53 l S 147.75 236.53 m 147.79 236.53 l S 147.79 236.53 m 147.84 236.53 l S 147.84 236.53 m 147.89 237.51 l S 147.89 236.53 m 147.93 237.51 l S 147.93 236.53 m 147.98 236.53 l S 147.98 236.53 m 148.02 236.53 l S 148.02 236.53 m 148.07 236.53 l S 148.07 236.53 m 148.12 236.53 l S 148.12 236.53 m 148.16 236.53 l S 148.16 236.53 m 148.21 236.53 l S 148.21 236.53 m 148.25 236.53 l S 148.25 236.53 m 148.30 236.53 l S 148.30 236.53 m 148.35 236.53 l S 148.35 236.53 m 148.39 236.53 l S 148.39 236.53 m 148.44 236.53 l S 148.44 236.53 m 148.48 236.53 l S 148.48 236.53 m 148.53 236.53 l S 148.53 236.53 m 148.58 236.53 l S 148.58 236.53 m 148.62 236.53 l S 148.62 236.53 m 148.67 236.53 l S 148.67 236.53 m 148.71 236.53 l S 148.71 236.53 m 148.76 236.53 l S 148.76 236.53 m 148.81 236.53 l S 148.81 236.53 m 148.85 236.53 l S 148.85 236.53 m 148.90 236.53 l S 148.90 236.53 m 148.94 236.53 l S 148.94 236.53 m 148.99 236.53 l S 148.99 236.53 m 149.04 236.53 l S 149.04 236.53 m 149.08 236.53 l S 149.08 236.53 m 149.13 236.53 l S 149.13 236.53 m 149.17 236.53 l S 149.17 236.53 m 149.22 236.53 l S 149.22 236.53 m 149.27 236.53 l S 149.27 236.53 m 149.31 236.53 l S 149.31 236.53 m 149.36 236.53 l S 149.36 236.53 m 149.40 236.53 l S 149.40 236.53 m 149.45 236.53 l S 149.45 236.53 m 149.50 236.53 l S 149.50 236.53 m 149.54 236.53 l S 149.54 236.53 m 149.59 236.53 l S 149.59 236.53 m 149.63 236.53 l S 149.63 236.53 m 149.68 236.53 l S 149.68 236.53 m 149.73 236.53 l S 149.73 236.53 m 149.77 236.53 l S 149.77 236.53 m 149.82 236.53 l S 149.82 236.53 m 149.86 236.53 l S 149.86 236.53 m 149.91 236.53 l S 149.91 236.53 m 149.96 236.53 l S 149.96 236.53 m 150.00 236.53 l S 150.00 236.53 m 150.05 236.53 l S 150.05 236.53 m 150.09 236.53 l S 150.09 236.53 m 150.14 236.53 l S 150.14 236.53 m 150.19 236.53 l S 150.19 236.53 m 150.23 236.53 l S 150.23 236.53 m 150.28 236.53 l S 150.28 236.53 m 150.32 236.53 l S 150.32 236.53 m 150.37 236.53 l S 150.37 236.53 m 150.42 236.53 l S 150.42 236.53 m 150.46 236.53 l S 150.46 236.53 m 150.51 236.53 l S 150.51 236.53 m 150.56 236.53 l S 150.56 236.53 m 150.60 236.53 l S 150.60 236.53 m 150.65 236.53 l S 150.65 236.53 m 150.69 236.53 l S 150.69 236.53 m 150.74 236.53 l S 150.74 236.53 m 150.79 236.53 l S 150.79 236.53 m 150.83 236.53 l S 150.83 236.53 m 150.88 236.53 l S 150.88 236.53 m 150.92 236.53 l S 150.92 236.53 m 150.97 236.53 l S 150.97 236.53 m 151.02 236.53 l S 151.02 236.53 m 151.06 236.53 l S 151.06 236.53 m 151.11 236.53 l S 151.11 236.53 m 151.15 236.53 l S 151.15 236.53 m 151.20 236.53 l S 151.20 236.53 m 151.25 236.53 l S 151.25 236.53 m 151.29 236.53 l S 151.29 236.53 m 151.34 238.49 l S 151.34 236.53 m 151.38 238.49 l S 151.38 236.53 m 151.43 236.53 l S 151.43 236.53 m 151.48 236.53 l S 151.48 236.53 m 151.52 236.53 l S 151.52 236.53 m 151.57 236.53 l S 151.57 236.53 m 151.61 236.53 l S 151.61 236.53 m 151.66 236.53 l S 151.66 236.53 m 151.71 236.53 l S 151.71 236.53 m 151.75 236.53 l S 151.75 236.53 m 151.80 236.53 l S 151.80 236.53 m 151.84 236.53 l S 151.84 236.53 m 151.89 236.53 l S 151.89 236.53 m 151.94 236.53 l S 151.94 236.53 m 151.98 236.53 l S 151.98 236.53 m 152.03 236.53 l S 152.03 236.53 m 152.07 236.53 l S 152.07 236.53 m 152.12 236.53 l S 152.12 236.53 m 152.17 236.53 l S 152.17 236.53 m 152.21 236.53 l S 152.21 236.53 m 152.26 236.53 l S 152.26 236.53 m 152.30 236.53 l S 152.30 236.53 m 152.35 236.53 l S 152.35 236.53 m 152.40 236.53 l S 152.40 236.53 m 152.44 236.53 l S 152.44 236.53 m 152.49 236.53 l S 152.49 236.53 m 152.53 236.53 l S 152.53 236.53 m 152.58 236.53 l S 152.58 236.53 m 152.63 237.51 l S 152.63 236.53 m 152.67 237.51 l S 152.67 236.53 m 152.72 236.53 l S 152.72 236.53 m 152.76 236.53 l S 152.76 236.53 m 152.81 236.53 l S 152.81 236.53 m 152.86 236.53 l S 152.86 236.53 m 152.90 236.53 l S 152.90 236.53 m 152.95 236.53 l S 152.95 236.53 m 152.99 236.53 l S 152.99 236.53 m 153.04 236.53 l S 153.04 236.53 m 153.09 236.53 l S 153.09 236.53 m 153.13 236.53 l S 153.13 236.53 m 153.18 236.53 l S 153.18 236.53 m 153.22 236.53 l S 153.22 236.53 m 153.27 236.53 l S 153.27 236.53 m 153.32 236.53 l S 153.32 236.53 m 153.36 236.53 l S 153.36 236.53 m 153.41 236.53 l S 153.41 236.53 m 153.45 236.53 l S 153.45 236.53 m 153.50 236.53 l S 153.50 236.53 m 153.55 236.53 l S 153.55 236.53 m 153.59 236.53 l S 153.59 236.53 m 153.64 236.53 l S 153.64 236.53 m 153.68 236.53 l S 153.68 236.53 m 153.73 236.53 l S 153.73 236.53 m 153.78 236.53 l S 153.78 236.53 m 153.82 236.53 l S 153.82 236.53 m 153.87 236.53 l S 153.87 236.53 m 153.91 236.53 l S 153.91 236.53 m 153.96 236.53 l S 153.96 236.53 m 154.01 236.53 l S 154.01 236.53 m 154.05 236.53 l S 154.05 236.53 m 154.10 236.53 l S 154.10 236.53 m 154.14 236.53 l S 154.14 236.53 m 154.19 236.53 l S 154.19 236.53 m 154.24 236.53 l S 154.24 236.53 m 154.28 236.53 l S 154.28 236.53 m 154.33 236.53 l S 154.33 236.53 m 154.37 236.53 l S 154.37 236.53 m 154.42 236.53 l S 154.42 236.53 m 154.47 236.53 l S 154.47 236.53 m 154.51 236.53 l S 154.51 236.53 m 154.56 236.53 l S 154.56 236.53 m 154.60 236.53 l S 154.60 236.53 m 154.65 236.53 l S 154.65 236.53 m 154.70 236.53 l S 154.70 236.53 m 154.74 236.53 l S 154.74 236.53 m 154.79 236.53 l S 154.79 236.53 m 154.83 236.53 l S 154.83 236.53 m 154.88 236.53 l S 154.88 236.53 m 154.93 236.53 l S 154.93 236.53 m 154.97 236.53 l S 154.97 236.53 m 155.02 236.53 l S 155.02 236.53 m 155.06 236.53 l S 155.06 236.53 m 155.11 236.53 l S 155.11 236.53 m 155.16 236.53 l S 155.16 236.53 m 155.20 236.53 l S 155.20 236.53 m 155.25 236.53 l S 155.25 236.53 m 155.29 236.53 l S 155.29 236.53 m 155.34 236.53 l S 155.34 236.53 m 155.39 236.53 l S 155.39 236.53 m 155.43 236.53 l S 155.43 236.53 m 155.48 236.53 l S 155.48 236.53 m 155.52 236.53 l S 155.52 236.53 m 155.57 236.53 l S 155.57 236.53 m 155.62 236.53 l S 155.62 236.53 m 155.66 236.53 l S 155.66 236.53 m 155.71 236.53 l S 155.71 236.53 m 155.75 236.53 l S 155.75 236.53 m 155.80 236.53 l S 155.80 236.53 m 155.85 236.53 l S 155.85 236.53 m 155.89 236.53 l S 155.89 236.53 m 155.94 236.53 l S 155.94 236.53 m 155.98 237.51 l S 155.98 236.53 m 156.03 237.51 l S 156.03 236.53 m 156.08 236.53 l S 156.08 236.53 m 156.12 236.53 l S 156.12 236.53 m 156.17 236.53 l S 156.17 236.53 m 156.21 236.53 l S 156.21 236.53 m 156.26 236.53 l S 156.26 236.53 m 156.31 236.53 l S 156.31 236.53 m 156.35 236.53 l S 156.35 236.53 m 156.40 237.51 l S 156.40 236.53 m 156.44 237.51 l S 156.44 236.53 m 156.49 236.53 l S 156.49 236.53 m 156.54 236.53 l S 156.54 236.53 m 156.58 236.53 l S 156.58 236.53 m 156.63 236.53 l S 156.63 236.53 m 156.67 236.53 l S 156.67 236.53 m 156.72 236.53 l S 156.72 236.53 m 156.77 236.53 l S 156.77 236.53 m 156.81 236.53 l S 156.81 236.53 m 156.86 236.53 l S 156.86 236.53 m 156.90 236.53 l S 156.90 236.53 m 156.95 236.53 l S 156.95 236.53 m 157.00 236.53 l S 157.00 236.53 m 157.04 236.53 l S 157.04 236.53 m 157.09 236.53 l S 157.09 236.53 m 157.13 236.53 l S 157.13 236.53 m 157.18 236.53 l S 157.18 236.53 m 157.23 236.53 l S 157.23 236.53 m 157.27 237.51 l S 157.27 236.53 m 157.32 236.53 l S 157.32 236.53 m 157.36 236.53 l S 157.36 236.53 m 157.41 237.51 l S 157.41 236.53 m 157.46 237.51 l S 157.46 236.53 m 157.50 237.51 l S 157.50 236.53 m 157.55 237.51 l S 157.55 236.53 m 157.59 236.53 l S 157.59 236.53 m 157.64 236.53 l S 157.64 236.53 m 157.69 236.53 l S 157.69 236.53 m 157.73 236.53 l S 157.73 236.53 m 157.78 236.53 l S 157.78 236.53 m 157.82 236.53 l S 157.82 236.53 m 157.87 236.53 l S 157.87 236.53 m 157.92 236.53 l S 157.92 236.53 m 157.96 236.53 l S 157.96 236.53 m 158.01 236.53 l S 158.01 236.53 m 158.05 236.53 l S 158.05 236.53 m 158.10 236.53 l S 158.10 236.53 m 158.15 236.53 l S 158.15 236.53 m 158.19 237.51 l S 158.19 236.53 m 158.24 237.51 l S 158.24 236.53 m 158.28 237.51 l S 158.28 236.53 m 158.33 236.53 l S 158.33 236.53 m 158.38 237.51 l S 158.38 236.53 m 158.42 236.53 l S 158.42 236.53 m 158.47 236.53 l S 158.47 236.53 m 158.52 236.53 l S 158.52 236.53 m 158.56 236.53 l S 158.56 236.53 m 158.61 236.53 l S 158.61 236.53 m 158.65 236.53 l S 158.65 236.53 m 158.70 236.53 l S 158.70 236.53 m 158.75 236.53 l S 158.75 236.53 m 158.79 236.53 l S 158.79 236.53 m 158.84 236.53 l S 158.84 236.53 m 158.88 236.53 l S 158.88 236.53 m 158.93 236.53 l S 158.93 236.53 m 158.98 236.53 l S 158.98 236.53 m 159.02 236.53 l S 159.02 236.53 m 159.07 236.53 l S 159.07 236.53 m 159.11 236.53 l S 159.11 236.53 m 159.16 236.53 l S 159.16 236.53 m 159.21 236.53 l S 159.21 236.53 m 159.25 236.53 l S 159.25 236.53 m 159.30 236.53 l S 159.30 236.53 m 159.34 236.53 l S 159.34 236.53 m 159.39 236.53 l S 159.39 236.53 m 159.44 236.53 l S 159.44 236.53 m 159.48 236.53 l S 159.48 236.53 m 159.53 236.53 l S 159.53 236.53 m 159.57 236.53 l S 159.57 236.53 m 159.62 236.53 l S 159.62 236.53 m 159.67 236.53 l S 159.67 236.53 m 159.71 236.53 l S 159.71 236.53 m 159.76 236.53 l S 159.76 236.53 m 159.80 236.53 l S 159.80 236.53 m 159.85 236.53 l S 159.85 236.53 m 159.90 236.53 l S 159.90 236.53 m 159.94 236.53 l S 159.94 236.53 m 159.99 236.53 l S 159.99 236.53 m 160.03 236.53 l S 160.03 236.53 m 160.08 236.53 l S 160.08 236.53 m 160.13 238.49 l S 160.13 236.53 m 160.17 238.49 l S 160.17 236.53 m 160.22 236.53 l S 160.22 236.53 m 160.26 236.53 l S 160.26 236.53 m 160.31 236.53 l S 160.31 236.53 m 160.36 236.53 l S 160.36 236.53 m 160.40 236.53 l S 160.40 236.53 m 160.45 236.53 l S 160.45 236.53 m 160.49 236.53 l S 160.49 236.53 m 160.54 236.53 l S 160.54 236.53 m 160.59 236.53 l S 160.59 236.53 m 160.63 236.53 l S 160.63 236.53 m 160.68 236.53 l S 160.68 236.53 m 160.72 236.53 l S 160.72 236.53 m 160.77 236.53 l S 160.77 236.53 m 160.82 236.53 l S 160.82 236.53 m 160.86 236.53 l S 160.86 236.53 m 160.91 236.53 l S 160.91 236.53 m 160.95 237.51 l S 160.95 236.53 m 161.00 237.51 l S 161.00 236.53 m 161.05 237.51 l S 161.05 236.53 m 161.09 236.53 l S 161.09 236.53 m 161.14 236.53 l S 161.14 236.53 m 161.18 236.53 l S 161.18 236.53 m 161.23 236.53 l S 161.23 236.53 m 161.28 236.53 l S 161.28 236.53 m 161.32 236.53 l S 161.32 236.53 m 161.37 236.53 l S 161.37 236.53 m 161.41 236.53 l S 161.41 236.53 m 161.46 236.53 l S 161.46 236.53 m 161.51 236.53 l S 161.51 236.53 m 161.55 236.53 l S 161.55 236.53 m 161.60 236.53 l S 161.60 236.53 m 161.64 236.53 l S 161.64 236.53 m 161.69 236.53 l S 161.69 236.53 m 161.74 236.53 l S 161.74 236.53 m 161.78 236.53 l S 161.78 236.53 m 161.83 236.53 l S 161.83 236.53 m 161.87 239.46 l S 161.87 236.53 m 161.92 238.49 l S 161.92 236.53 m 161.97 236.53 l S 161.97 236.53 m 162.01 236.53 l S 162.01 236.53 m 162.06 236.53 l S 162.06 236.53 m 162.10 236.53 l S 162.10 236.53 m 162.15 237.51 l S 162.15 236.53 m 162.20 238.49 l S 162.20 236.53 m 162.24 236.53 l S 162.24 236.53 m 162.29 236.53 l S 162.29 236.53 m 162.33 236.53 l S 162.33 236.53 m 162.38 236.53 l S 162.38 236.53 m 162.43 237.51 l S 162.43 236.53 m 162.47 237.51 l S 162.47 236.53 m 162.52 236.53 l S 162.52 236.53 m 162.56 236.53 l S 162.56 236.53 m 162.61 236.53 l S 162.61 236.53 m 162.66 236.53 l S 162.66 236.53 m 162.70 236.53 l S 162.70 236.53 m 162.75 236.53 l S 162.75 236.53 m 162.79 236.53 l S 162.79 236.53 m 162.84 236.53 l S 162.84 236.53 m 162.89 236.53 l S 162.89 236.53 m 162.93 236.53 l S 162.93 236.53 m 162.98 236.53 l S 162.98 236.53 m 163.02 236.53 l S 163.02 236.53 m 163.07 236.53 l S 163.07 236.53 m 163.12 236.53 l S 163.12 236.53 m 163.16 236.53 l S 163.16 236.53 m 163.21 236.53 l S 163.21 236.53 m 163.25 236.53 l S 163.25 236.53 m 163.30 236.53 l S 163.30 236.53 m 163.35 236.53 l S 163.35 236.53 m 163.39 236.53 l S 163.39 236.53 m 163.44 236.53 l S 163.44 236.53 m 163.48 236.53 l S 163.48 236.53 m 163.53 237.51 l S 163.53 236.53 m 163.58 236.53 l S 163.58 236.53 m 163.62 236.53 l S 163.62 236.53 m 163.67 236.53 l S 163.67 236.53 m 163.71 236.53 l S 163.71 236.53 m 163.76 236.53 l S 163.76 236.53 m 163.81 236.53 l S 163.81 236.53 m 163.85 236.53 l S 163.85 236.53 m 163.90 236.53 l S 163.90 236.53 m 163.94 236.53 l S 163.94 236.53 m 163.99 236.53 l S 163.99 236.53 m 164.04 236.53 l S 164.04 236.53 m 164.08 236.53 l S 164.08 236.53 m 164.13 236.53 l S 164.13 236.53 m 164.17 236.53 l S 164.17 236.53 m 164.22 236.53 l S 164.22 236.53 m 164.27 236.53 l S 164.27 236.53 m 164.31 236.53 l S 164.31 236.53 m 164.36 236.53 l S 164.36 236.53 m 164.40 236.53 l S 164.40 236.53 m 164.45 236.53 l S 164.45 236.53 m 164.50 236.53 l S 164.50 236.53 m 164.54 236.53 l S 164.54 236.53 m 164.59 236.53 l S 164.59 236.53 m 164.63 236.53 l S 164.63 236.53 m 164.68 236.53 l S 164.68 236.53 m 164.73 236.53 l S 164.73 236.53 m 164.77 236.53 l S 164.77 236.53 m 164.82 236.53 l S 164.82 236.53 m 164.86 236.53 l S 164.86 236.53 m 164.91 236.53 l S 164.91 236.53 m 164.96 236.53 l S 164.96 236.53 m 165.00 236.53 l S 165.00 236.53 m 165.05 236.53 l S 165.05 236.53 m 165.09 236.53 l S 165.09 236.53 m 165.14 236.53 l S 165.14 236.53 m 165.19 236.53 l S 165.19 236.53 m 165.23 236.53 l S 165.23 236.53 m 165.28 236.53 l S 165.28 236.53 m 165.32 236.53 l S 165.32 236.53 m 165.37 236.53 l S 165.37 236.53 m 165.42 236.53 l S 165.42 236.53 m 165.46 236.53 l S 165.46 236.53 m 165.51 237.51 l S 165.51 236.53 m 165.55 237.51 l S 165.55 236.53 m 165.60 236.53 l S 165.60 236.53 m 165.65 236.53 l S 165.65 236.53 m 165.69 236.53 l S 165.69 236.53 m 165.74 236.53 l S 165.74 236.53 m 165.78 237.51 l S 165.78 236.53 m 165.83 236.53 l S 165.83 236.53 m 165.88 236.53 l S 165.88 236.53 m 165.92 236.53 l S 165.92 236.53 m 165.97 236.53 l S 165.97 236.53 m 166.01 236.53 l S 166.01 236.53 m 166.06 236.53 l S 166.06 236.53 m 166.11 236.53 l S 166.11 236.53 m 166.15 236.53 l S 166.15 236.53 m 166.20 236.53 l S 166.20 236.53 m 166.24 236.53 l S 166.24 236.53 m 166.29 236.53 l S 166.29 236.53 m 166.34 236.53 l S 166.34 236.53 m 166.38 236.53 l S 166.38 236.53 m 166.43 236.53 l S 166.43 236.53 m 166.48 236.53 l S 166.48 236.53 m 166.52 236.53 l S 166.52 236.53 m 166.57 236.53 l S 166.57 236.53 m 166.61 236.53 l S 166.61 236.53 m 166.66 236.53 l S 166.66 236.53 m 166.71 236.53 l S 166.71 236.53 m 166.75 237.51 l S 166.75 236.53 m 166.80 236.53 l S 166.80 236.53 m 166.84 236.53 l S 166.84 236.53 m 166.89 236.53 l S 166.89 236.53 m 166.94 236.53 l S 166.94 236.53 m 166.98 237.51 l S 166.98 236.53 m 167.03 236.53 l S 167.03 236.53 m 167.07 236.53 l S 167.07 236.53 m 167.12 236.53 l S 167.12 236.53 m 167.17 236.53 l S 167.17 236.53 m 167.21 236.53 l S 167.21 236.53 m 167.26 236.53 l S 167.26 236.53 m 167.30 236.53 l S 167.30 236.53 m 167.35 236.53 l S 167.35 236.53 m 167.40 236.53 l S 167.40 236.53 m 167.44 236.53 l S 167.44 236.53 m 167.49 236.53 l S 167.49 236.53 m 167.53 236.53 l S 167.53 236.53 m 167.58 236.53 l S 167.58 236.53 m 167.63 236.53 l S 167.63 236.53 m 167.67 236.53 l S 167.67 236.53 m 167.72 236.53 l S 167.72 236.53 m 167.76 236.53 l S 167.76 236.53 m 167.81 236.53 l S 167.81 236.53 m 167.86 236.53 l S 167.86 236.53 m 167.90 236.53 l S 167.90 236.53 m 167.95 236.53 l S 167.95 236.53 m 167.99 236.53 l S 167.99 236.53 m 168.04 236.53 l S 168.04 236.53 m 168.09 236.53 l S 168.09 236.53 m 168.13 236.53 l S 168.13 236.53 m 168.18 236.53 l S 168.18 236.53 m 168.22 236.53 l S 168.22 236.53 m 168.27 236.53 l S 168.27 236.53 m 168.32 236.53 l S 168.32 236.53 m 168.36 236.53 l S 168.36 236.53 m 168.41 236.53 l S 168.41 236.53 m 168.45 236.53 l S 168.45 236.53 m 168.50 236.53 l S 168.50 236.53 m 168.55 236.53 l S 168.55 236.53 m 168.59 236.53 l S 168.59 236.53 m 168.64 236.53 l S 168.64 236.53 m 168.68 236.53 l S 168.68 236.53 m 168.73 236.53 l S 168.73 236.53 m 168.78 237.51 l S 168.78 236.53 m 168.82 236.53 l S 168.82 236.53 m 168.87 236.53 l S 168.87 236.53 m 168.91 236.53 l S 168.91 236.53 m 168.96 236.53 l S 168.96 236.53 m 169.01 236.53 l S 169.01 236.53 m 169.05 236.53 l S 169.05 236.53 m 169.10 236.53 l S 169.10 236.53 m 169.14 236.53 l S 169.14 236.53 m 169.19 236.53 l S 169.19 236.53 m 169.24 236.53 l S 169.24 236.53 m 169.28 236.53 l S 169.28 236.53 m 169.33 236.53 l S 169.33 236.53 m 169.37 236.53 l S 169.37 236.53 m 169.42 236.53 l S 169.42 236.53 m 169.47 236.53 l S 169.47 236.53 m 169.51 236.53 l S 169.51 236.53 m 169.56 236.53 l S 169.56 236.53 m 169.60 236.53 l S 169.60 236.53 m 169.65 236.53 l S 169.65 236.53 m 169.70 236.53 l S 169.70 236.53 m 169.74 236.53 l S 169.74 236.53 m 169.79 236.53 l S 169.79 236.53 m 169.83 237.51 l S 169.83 236.53 m 169.88 236.53 l S 169.88 236.53 m 169.93 236.53 l S 169.93 236.53 m 169.97 236.53 l S 169.97 236.53 m 170.02 236.53 l S 170.02 236.53 m 170.06 237.51 l S 170.06 236.53 m 170.11 237.51 l S 170.11 236.53 m 170.16 236.53 l S 170.16 236.53 m 170.20 236.53 l S 170.20 236.53 m 170.25 236.53 l S 170.25 236.53 m 170.29 236.53 l S 170.29 236.53 m 170.34 236.53 l S 170.34 236.53 m 170.39 236.53 l S 170.39 236.53 m 170.43 236.53 l S 170.43 236.53 m 170.48 236.53 l S 170.48 236.53 m 170.52 236.53 l S 170.52 236.53 m 170.57 236.53 l S 170.57 236.53 m 170.62 236.53 l S 170.62 236.53 m 170.66 237.51 l S 170.66 236.53 m 170.71 237.51 l S 170.71 236.53 m 170.75 236.53 l S 170.75 236.53 m 170.80 236.53 l S 170.80 236.53 m 170.85 236.53 l S 170.85 236.53 m 170.89 236.53 l S 170.89 236.53 m 170.94 236.53 l S 170.94 236.53 m 170.98 238.49 l S 170.98 236.53 m 171.03 238.49 l S 171.03 236.53 m 171.08 236.53 l S 171.08 236.53 m 171.12 237.51 l S 171.12 236.53 m 171.17 237.51 l S 171.17 236.53 m 171.21 236.53 l S 171.21 236.53 m 171.26 236.53 l S 171.26 236.53 m 171.31 236.53 l S 171.31 236.53 m 171.35 236.53 l S 171.35 236.53 m 171.40 236.53 l S 171.40 236.53 m 171.44 236.53 l S 171.44 236.53 m 171.49 236.53 l S 171.49 236.53 m 171.54 236.53 l S 171.54 236.53 m 171.58 236.53 l S 171.58 236.53 m 171.63 236.53 l S 171.63 236.53 m 171.67 236.53 l S 171.67 236.53 m 171.72 236.53 l S 171.72 236.53 m 171.77 236.53 l S 171.77 236.53 m 171.81 236.53 l S 171.81 236.53 m 171.86 236.53 l S 171.86 236.53 m 171.90 236.53 l S 171.90 236.53 m 171.95 236.53 l S 171.95 236.53 m 172.00 236.53 l S 172.00 236.53 m 172.04 236.53 l S 172.04 236.53 m 172.09 236.53 l S 172.09 236.53 m 172.13 236.53 l S 172.13 236.53 m 172.18 236.53 l S 172.18 236.53 m 172.23 236.53 l S 172.23 236.53 m 172.27 236.53 l S 172.27 236.53 m 172.32 236.53 l S 172.32 236.53 m 172.36 236.53 l S 172.36 236.53 m 172.41 236.53 l S 172.41 236.53 m 172.46 236.53 l S 172.46 236.53 m 172.50 236.53 l S 172.50 236.53 m 172.55 236.53 l S 172.55 236.53 m 172.59 236.53 l S 172.59 236.53 m 172.64 236.53 l S 172.64 236.53 m 172.69 236.53 l S 172.69 236.53 m 172.73 236.53 l S 172.73 236.53 m 172.78 236.53 l S 172.78 236.53 m 172.82 236.53 l S 172.82 236.53 m 172.87 236.53 l S 172.87 236.53 m 172.92 236.53 l S 172.92 236.53 m 172.96 236.53 l S 172.96 236.53 m 173.01 236.53 l S 173.01 236.53 m 173.05 236.53 l S 173.05 236.53 m 173.10 236.53 l S 173.10 236.53 m 173.15 236.53 l S 173.15 236.53 m 173.19 236.53 l S 173.19 236.53 m 173.24 236.53 l S 173.24 236.53 m 173.28 236.53 l S 173.28 236.53 m 173.33 237.51 l S 173.33 236.53 m 173.38 237.51 l S 173.38 236.53 m 173.42 236.53 l S 173.42 236.53 m 173.47 236.53 l S 173.47 236.53 m 173.51 236.53 l S 173.51 236.53 m 173.56 236.53 l S 173.56 236.53 m 173.61 236.53 l S 173.61 236.53 m 173.65 236.53 l S 173.65 236.53 m 173.70 236.53 l S 173.70 236.53 m 173.74 236.53 l S 173.74 236.53 m 173.79 236.53 l S 173.79 236.53 m 173.84 236.53 l S 173.84 236.53 m 173.88 236.53 l S 173.88 236.53 m 173.93 236.53 l S 173.93 236.53 m 173.97 236.53 l S 173.97 236.53 m 174.02 236.53 l S 174.02 236.53 m 174.07 236.53 l S 174.07 236.53 m 174.11 236.53 l S 174.11 236.53 m 174.16 236.53 l S 174.16 236.53 m 174.20 236.53 l S 174.20 236.53 m 174.25 236.53 l S 174.25 236.53 m 174.30 236.53 l S 174.30 236.53 m 174.34 236.53 l S 174.34 236.53 m 174.39 236.53 l S 174.39 236.53 m 174.44 236.53 l S 174.44 236.53 m 174.48 236.53 l S 174.48 236.53 m 174.53 236.53 l S 174.53 236.53 m 174.57 236.53 l S 174.57 236.53 m 174.62 236.53 l S 174.62 236.53 m 174.67 236.53 l S 174.67 236.53 m 174.71 236.53 l S 174.71 236.53 m 174.76 236.53 l S 174.76 236.53 m 174.80 236.53 l S 174.80 236.53 m 174.85 236.53 l S 174.85 236.53 m 174.90 236.53 l S 174.90 236.53 m 174.94 236.53 l S 174.94 236.53 m 174.99 236.53 l S 174.99 236.53 m 175.03 236.53 l S 175.03 236.53 m 175.08 236.53 l S 175.08 236.53 m 175.13 236.53 l S 175.13 236.53 m 175.17 236.53 l S 175.17 236.53 m 175.22 236.53 l S 175.22 236.53 m 175.26 236.53 l S 175.26 236.53 m 175.31 236.53 l S 175.31 236.53 m 175.36 236.53 l S 175.36 236.53 m 175.40 238.49 l S 175.40 236.53 m 175.45 238.49 l S 175.45 236.53 m 175.49 236.53 l S 175.49 236.53 m 175.54 236.53 l S 175.54 236.53 m 175.59 236.53 l S 175.59 236.53 m 175.63 236.53 l S 175.63 236.53 m 175.68 236.53 l S 175.68 236.53 m 175.72 236.53 l S 175.72 236.53 m 175.77 236.53 l S 175.77 236.53 m 175.82 236.53 l S 175.82 236.53 m 175.86 236.53 l S 175.86 236.53 m 175.91 236.53 l S 175.91 236.53 m 175.95 236.53 l S 175.95 236.53 m 176.00 236.53 l S 176.00 236.53 m 176.05 237.51 l S 176.05 236.53 m 176.09 237.51 l S 176.09 236.53 m 176.14 236.53 l S 176.14 236.53 m 176.18 236.53 l S 176.18 236.53 m 176.23 236.53 l S 176.23 236.53 m 176.28 236.53 l S 176.28 236.53 m 176.32 236.53 l S 176.32 236.53 m 176.37 236.53 l S 176.37 236.53 m 176.41 236.53 l S 176.41 236.53 m 176.46 236.53 l S 176.46 236.53 m 176.51 236.53 l S 176.51 236.53 m 176.55 236.53 l S 176.55 236.53 m 176.60 236.53 l S 176.60 236.53 m 176.64 236.53 l S 176.64 236.53 m 176.69 236.53 l S 176.69 236.53 m 176.74 236.53 l S 176.74 236.53 m 176.78 236.53 l S 176.78 236.53 m 176.83 236.53 l S 176.83 236.53 m 176.87 236.53 l S 176.87 236.53 m 176.92 236.53 l S 176.92 236.53 m 176.97 236.53 l S 176.97 236.53 m 177.01 236.53 l S 177.01 236.53 m 177.06 236.53 l S 177.06 236.53 m 177.10 236.53 l S 177.10 236.53 m 177.15 236.53 l S 177.15 236.53 m 177.20 236.53 l S 177.20 236.53 m 177.24 238.49 l S 177.24 236.53 m 177.29 238.49 l S 177.29 236.53 m 177.33 236.53 l S 177.33 236.53 m 177.38 236.53 l S 177.38 236.53 m 177.43 236.53 l S 177.43 236.53 m 177.47 236.53 l S 177.47 236.53 m 177.52 236.53 l S 177.52 236.53 m 177.56 238.49 l S 177.56 236.53 m 177.61 238.49 l S 177.61 236.53 m 177.66 236.53 l S 177.66 236.53 m 177.70 236.53 l S 177.70 236.53 m 177.75 236.53 l S 177.75 236.53 m 177.79 236.53 l S 177.79 236.53 m 177.84 236.53 l S 177.84 236.53 m 177.89 236.53 l S 177.89 236.53 m 177.93 236.53 l S 177.93 236.53 m 177.98 236.53 l S 177.98 236.53 m 178.02 236.53 l S 178.02 236.53 m 178.07 236.53 l S 178.07 236.53 m 178.12 236.53 l S 178.12 236.53 m 178.16 236.53 l S 178.16 236.53 m 178.21 236.53 l S 178.21 236.53 m 178.25 236.53 l S 178.25 236.53 m 178.30 236.53 l S 178.30 236.53 m 178.35 236.53 l S 178.35 236.53 m 178.39 236.53 l S 178.39 236.53 m 178.44 236.53 l S 178.44 236.53 m 178.48 236.53 l S 178.48 236.53 m 178.53 236.53 l S 178.53 236.53 m 178.58 236.53 l S 178.58 236.53 m 178.62 236.53 l S 178.62 236.53 m 178.67 236.53 l S 178.67 236.53 m 178.71 236.53 l S 178.71 236.53 m 178.76 236.53 l S 178.76 236.53 m 178.81 236.53 l S 178.81 236.53 m 178.85 236.53 l S 178.85 236.53 m 178.90 236.53 l S 178.90 236.53 m 178.94 236.53 l S 178.94 236.53 m 178.99 236.53 l S 178.99 236.53 m 179.04 237.51 l S 179.04 236.53 m 179.08 236.53 l S 179.08 236.53 m 179.13 236.53 l S 179.13 236.53 m 179.17 236.53 l S 179.17 236.53 m 179.22 236.53 l S 179.22 236.53 m 179.27 236.53 l S 179.27 236.53 m 179.31 236.53 l S 179.31 236.53 m 179.36 236.53 l S 179.36 236.53 m 179.40 236.53 l S 179.40 236.53 m 179.45 236.53 l S 179.45 236.53 m 179.50 236.53 l S 179.50 236.53 m 179.54 236.53 l S 179.54 236.53 m 179.59 236.53 l S 179.59 236.53 m 179.63 236.53 l S 179.63 236.53 m 179.68 236.53 l S 179.68 236.53 m 179.73 236.53 l S 179.73 236.53 m 179.77 237.51 l S 179.77 236.53 m 179.82 237.51 l S 179.82 236.53 m 179.86 236.53 l S 179.86 236.53 m 179.91 236.53 l S 179.91 236.53 m 179.96 236.53 l S 179.96 236.53 m 180.00 236.53 l S 180.00 236.53 m 180.05 236.53 l S 180.05 236.53 m 180.09 236.53 l S 180.09 236.53 m 180.14 236.53 l S 180.14 236.53 m 180.19 236.53 l S 180.19 236.53 m 180.23 236.53 l S 180.23 236.53 m 180.28 236.53 l S 180.28 236.53 m 180.32 236.53 l S 180.32 236.53 m 180.37 236.53 l S 180.37 236.53 m 180.42 236.53 l S 180.42 236.53 m 180.46 236.53 l S 180.46 236.53 m 180.51 236.53 l S 180.51 236.53 m 180.55 236.53 l S 180.55 236.53 m 180.60 236.53 l S 180.60 236.53 m 180.65 236.53 l S 180.65 236.53 m 180.69 237.51 l S 180.69 236.53 m 180.74 237.51 l S 180.74 236.53 m 180.78 236.53 l S 180.78 236.53 m 180.83 236.53 l S 180.83 236.53 m 180.88 238.49 l S 180.88 236.53 m 180.92 236.53 l S 180.92 236.53 m 180.97 236.53 l S 180.97 236.53 m 181.01 236.53 l S 181.01 236.53 m 181.06 236.53 l S 181.06 236.53 m 181.11 236.53 l S 181.11 236.53 m 181.15 236.53 l S 181.15 236.53 m 181.20 236.53 l S 181.20 236.53 m 181.24 236.53 l S 181.24 236.53 m 181.29 236.53 l S 181.29 236.53 m 181.34 236.53 l S 181.34 236.53 m 181.38 236.53 l S 181.38 236.53 m 181.43 236.53 l S 181.43 236.53 m 181.47 236.53 l S 181.47 236.53 m 181.52 236.53 l S 181.52 236.53 m 181.57 236.53 l S 181.57 236.53 m 181.61 236.53 l S 181.61 236.53 m 181.66 236.53 l S 181.66 236.53 m 181.70 236.53 l S 181.70 236.53 m 181.75 236.53 l S 181.75 236.53 m 181.80 236.53 l S 181.80 236.53 m 181.84 236.53 l S 181.84 236.53 m 181.89 236.53 l S 181.89 236.53 m 181.93 236.53 l S 181.93 236.53 m 181.98 237.51 l S 181.98 236.53 m 182.03 236.53 l S 182.03 236.53 m 182.07 237.51 l S 182.07 236.53 m 182.12 237.51 l S 182.12 236.53 m 182.16 236.53 l S 182.16 236.53 m 182.21 236.53 l S 182.21 236.53 m 182.26 236.53 l S 182.26 236.53 m 182.30 236.53 l S 182.30 236.53 m 182.35 236.53 l S 182.35 236.53 m 182.39 236.53 l S 182.39 236.53 m 182.44 236.53 l S 182.44 236.53 m 182.49 236.53 l S 182.49 236.53 m 182.53 236.53 l S 182.53 236.53 m 182.58 236.53 l S 182.58 236.53 m 182.63 236.53 l S 182.63 236.53 m 182.67 236.53 l S 182.67 236.53 m 182.72 236.53 l S 182.72 236.53 m 182.76 236.53 l S 182.76 236.53 m 182.81 236.53 l S 182.81 236.53 m 182.86 236.53 l S 182.86 236.53 m 182.90 236.53 l S 182.90 236.53 m 182.95 236.53 l S 182.95 236.53 m 182.99 236.53 l S 182.99 236.53 m 183.04 236.53 l S 183.04 236.53 m 183.09 236.53 l S 183.09 236.53 m 183.13 236.53 l S 183.13 236.53 m 183.18 236.53 l S 183.18 236.53 m 183.22 236.53 l S 183.22 236.53 m 183.27 236.53 l S 183.27 236.53 m 183.32 236.53 l S 183.32 236.53 m 183.36 236.53 l S 183.36 236.53 m 183.41 236.53 l S 183.41 236.53 m 183.45 237.51 l S 183.45 236.53 m 183.50 237.51 l S 183.50 236.53 m 183.55 236.53 l S 183.55 236.53 m 183.59 236.53 l S 183.59 236.53 m 183.64 236.53 l S 183.64 236.53 m 183.68 236.53 l S 183.68 236.53 m 183.73 236.53 l S 183.73 236.53 m 183.78 236.53 l S 183.78 236.53 m 183.82 236.53 l S 183.82 236.53 m 183.87 236.53 l S 183.87 236.53 m 183.91 236.53 l S 183.91 236.53 m 183.96 236.53 l S 183.96 236.53 m 184.01 236.53 l S 184.01 236.53 m 184.05 236.53 l S 184.05 236.53 m 184.10 236.53 l S 184.10 236.53 m 184.14 236.53 l S 184.14 236.53 m 184.19 236.53 l S 184.19 236.53 m 184.24 236.53 l S 184.24 236.53 m 184.28 236.53 l S 184.28 236.53 m 184.33 236.53 l S 184.33 236.53 m 184.37 236.53 l S 184.37 236.53 m 184.42 236.53 l S 184.42 236.53 m 184.47 236.53 l S 184.47 236.53 m 184.51 236.53 l S 184.51 236.53 m 184.56 236.53 l S 184.56 236.53 m 184.60 236.53 l S 184.60 236.53 m 184.65 236.53 l S 184.65 236.53 m 184.70 236.53 l S 184.70 236.53 m 184.74 236.53 l S 184.74 236.53 m 184.79 236.53 l S 184.79 236.53 m 184.83 236.53 l S 184.83 236.53 m 184.88 236.53 l S 184.88 236.53 m 184.93 236.53 l S 184.93 236.53 m 184.97 236.53 l S 184.97 236.53 m 185.02 236.53 l S 185.02 236.53 m 185.06 236.53 l S 185.06 236.53 m 185.11 236.53 l S 185.11 236.53 m 185.16 236.53 l S 185.16 236.53 m 185.20 236.53 l S 185.20 236.53 m 185.25 236.53 l S 185.25 236.53 m 185.29 236.53 l S 185.29 236.53 m 185.34 236.53 l S 185.34 236.53 m 185.39 236.53 l S 185.39 236.53 m 185.43 236.53 l S 185.43 236.53 m 185.48 236.53 l S 185.48 236.53 m 185.52 236.53 l S 185.52 236.53 m 185.57 236.53 l S 185.57 236.53 m 185.62 236.53 l S 185.62 236.53 m 185.66 236.53 l S 185.66 236.53 m 185.71 236.53 l S 185.71 236.53 m 185.75 236.53 l S 185.75 236.53 m 185.80 236.53 l S 185.80 236.53 m 185.85 237.51 l S 185.85 236.53 m 185.89 237.51 l S 185.89 236.53 m 185.94 236.53 l S 185.94 236.53 m 185.98 236.53 l S 185.98 236.53 m 186.03 236.53 l S 186.03 236.53 m 186.08 236.53 l S 186.08 236.53 m 186.12 236.53 l S 186.12 236.53 m 186.17 236.53 l S 186.17 236.53 m 186.21 236.53 l S 186.21 236.53 m 186.26 236.53 l S 186.26 236.53 m 186.31 236.53 l S 186.31 236.53 m 186.35 236.53 l S 186.35 236.53 m 186.40 236.53 l S 186.40 236.53 m 186.44 236.53 l S 186.44 236.53 m 186.49 236.53 l S 186.49 236.53 m 186.54 236.53 l S 186.54 236.53 m 186.58 236.53 l S 186.58 236.53 m 186.63 236.53 l S 186.63 236.53 m 186.67 236.53 l S 186.67 236.53 m 186.72 236.53 l S 186.72 236.53 m 186.77 236.53 l S 186.77 236.53 m 186.81 236.53 l S 186.81 236.53 m 186.86 236.53 l S 186.86 236.53 m 186.90 236.53 l S 186.90 236.53 m 186.95 236.53 l S 186.95 236.53 m 187.00 236.53 l S 187.00 236.53 m 187.04 237.51 l S 187.04 236.53 m 187.09 237.51 l S 187.09 236.53 m 187.13 236.53 l S 187.13 236.53 m 187.18 236.53 l S 187.18 236.53 m 187.23 236.53 l S 187.23 236.53 m 187.27 236.53 l S 187.27 236.53 m 187.32 236.53 l S 187.32 236.53 m 187.36 237.51 l S 187.36 236.53 m 187.41 237.51 l S 187.41 236.53 m 187.46 236.53 l S 187.46 236.53 m 187.50 236.53 l S 187.50 236.53 m 187.55 236.53 l S 187.55 236.53 m 187.59 236.53 l S 187.59 236.53 m 187.64 236.53 l S 187.64 236.53 m 187.69 236.53 l S 187.69 236.53 m 187.73 236.53 l S 187.73 236.53 m 187.78 236.53 l S 187.78 236.53 m 187.82 236.53 l S 187.82 236.53 m 187.87 236.53 l S 187.87 236.53 m 187.92 237.51 l S 187.92 236.53 m 187.96 237.51 l S 187.96 236.53 m 188.01 236.53 l S 188.01 236.53 m 188.05 236.53 l S 188.05 236.53 m 188.10 236.53 l S 188.10 236.53 m 188.15 236.53 l S 188.15 236.53 m 188.19 236.53 l S 188.19 236.53 m 188.24 236.53 l S 188.24 236.53 m 188.28 236.53 l S 188.28 236.53 m 188.33 236.53 l S 188.33 236.53 m 188.38 236.53 l S 188.38 236.53 m 188.42 236.53 l S 188.42 236.53 m 188.47 236.53 l S 188.47 236.53 m 188.51 236.53 l S 188.51 236.53 m 188.56 236.53 l S 188.56 236.53 m 188.61 236.53 l S 188.61 236.53 m 188.65 236.53 l S 188.65 236.53 m 188.70 236.53 l S 188.70 236.53 m 188.74 236.53 l S 188.74 236.53 m 188.79 236.53 l S 188.79 236.53 m 188.84 236.53 l S 188.84 236.53 m 188.88 236.53 l S 188.88 236.53 m 188.93 236.53 l S 188.93 236.53 m 188.97 236.53 l S 188.97 236.53 m 189.02 236.53 l S 189.02 236.53 m 189.07 236.53 l S 189.07 236.53 m 189.11 236.53 l S 189.11 236.53 m 189.16 236.53 l S 189.16 236.53 m 189.20 236.53 l S 189.20 236.53 m 189.25 236.53 l S 189.25 236.53 m 189.30 236.53 l S 189.30 236.53 m 189.34 236.53 l S 189.34 236.53 m 189.39 236.53 l S 189.39 236.53 m 189.43 236.53 l S 189.43 236.53 m 189.48 236.53 l S 189.48 236.53 m 189.53 236.53 l S 189.53 236.53 m 189.57 236.53 l S 189.57 236.53 m 189.62 236.53 l S 189.62 236.53 m 189.66 237.51 l S 189.66 236.53 m 189.71 237.51 l S 189.71 236.53 m 189.76 238.49 l S 189.76 236.53 m 189.80 236.53 l S 189.80 236.53 m 189.85 236.53 l S 189.85 236.53 m 189.89 236.53 l S 189.89 236.53 m 189.94 236.53 l S 189.94 236.53 m 189.99 236.53 l S 189.99 236.53 m 190.03 236.53 l S 190.03 236.53 m 190.08 236.53 l S 190.08 236.53 m 190.12 236.53 l S 190.12 236.53 m 190.17 236.53 l S 190.17 236.53 m 190.22 237.51 l S 190.22 236.53 m 190.26 237.51 l S 190.26 236.53 m 190.31 236.53 l S 190.31 236.53 m 190.35 236.53 l S 190.35 236.53 m 190.40 236.53 l S 190.40 236.53 m 190.45 236.53 l S 190.45 236.53 m 190.49 236.53 l S 190.49 236.53 m 190.54 236.53 l S 190.54 236.53 m 190.59 236.53 l S 190.59 236.53 m 190.63 236.53 l S 190.63 236.53 m 190.68 236.53 l S 190.68 236.53 m 190.72 237.51 l S 190.72 236.53 m 190.77 237.51 l S 190.77 236.53 m 190.82 236.53 l S 190.82 236.53 m 190.86 236.53 l S 190.86 236.53 m 190.91 236.53 l S 190.91 236.53 m 190.95 236.53 l S 190.95 236.53 m 191.00 236.53 l S 191.00 236.53 m 191.05 236.53 l S 191.05 236.53 m 191.09 236.53 l S 191.09 236.53 m 191.14 236.53 l S 191.14 236.53 m 191.18 236.53 l S 191.18 236.53 m 191.23 236.53 l S 191.23 236.53 m 191.28 236.53 l S 191.28 236.53 m 191.32 236.53 l S 191.32 236.53 m 191.37 236.53 l S 191.37 236.53 m 191.41 236.53 l S 191.41 236.53 m 191.46 236.53 l S 191.46 236.53 m 191.51 236.53 l S 191.51 236.53 m 191.55 236.53 l S 191.55 236.53 m 191.60 236.53 l S 191.60 236.53 m 191.64 236.53 l S 191.64 236.53 m 191.69 236.53 l S 191.69 236.53 m 191.74 236.53 l S 191.74 236.53 m 191.78 236.53 l S 191.78 236.53 m 191.83 236.53 l S 191.83 236.53 m 191.87 236.53 l S 191.87 236.53 m 191.92 236.53 l S 191.92 236.53 m 191.97 236.53 l S 191.97 236.53 m 192.01 236.53 l S 192.01 236.53 m 192.06 236.53 l S 192.06 236.53 m 192.10 236.53 l S 192.10 236.53 m 192.15 236.53 l S 192.15 236.53 m 192.20 236.53 l S 192.20 236.53 m 192.24 236.53 l S 192.24 236.53 m 192.29 236.53 l S 192.29 236.53 m 192.33 236.53 l S 192.33 236.53 m 192.38 236.53 l S 192.38 236.53 m 192.43 236.53 l S 192.43 236.53 m 192.47 236.53 l S 192.47 236.53 m 192.52 236.53 l S 192.52 236.53 m 192.56 236.53 l S 192.56 236.53 m 192.61 236.53 l S 192.61 236.53 m 192.66 236.53 l S 192.66 236.53 m 192.70 237.51 l S 192.70 236.53 m 192.75 237.51 l S 192.75 236.53 m 192.79 236.53 l S 192.79 236.53 m 192.84 236.53 l S 192.84 236.53 m 192.89 236.53 l S 192.89 236.53 m 192.93 236.53 l S 192.93 236.53 m 192.98 236.53 l S 192.98 236.53 m 193.02 236.53 l S 193.02 236.53 m 193.07 236.53 l S 193.07 236.53 m 193.12 236.53 l S 193.12 236.53 m 193.16 236.53 l S 193.16 236.53 m 193.21 236.53 l S 193.21 236.53 m 193.25 236.53 l S 193.25 236.53 m 193.30 236.53 l S 193.30 236.53 m 193.35 236.53 l S 193.35 236.53 m 193.39 237.51 l S 193.39 236.53 m 193.44 237.51 l S 193.44 236.53 m 193.48 236.53 l S 193.48 236.53 m 193.53 236.53 l S 193.53 236.53 m 193.58 236.53 l S 193.58 236.53 m 193.62 236.53 l S 193.62 236.53 m 193.67 236.53 l S 193.67 236.53 m 193.71 236.53 l S 193.71 236.53 m 193.76 236.53 l S 193.76 236.53 m 193.81 236.53 l S 193.81 236.53 m 193.85 236.53 l S 193.85 236.53 m 193.90 236.53 l S 193.90 236.53 m 193.94 236.53 l S 193.94 236.53 m 193.99 236.53 l S 193.99 236.53 m 194.04 236.53 l S 194.04 236.53 m 194.08 236.53 l S 194.08 236.53 m 194.13 236.53 l S 194.13 236.53 m 194.17 236.53 l S 194.17 236.53 m 194.22 236.53 l S 194.22 236.53 m 194.27 236.53 l S 194.27 236.53 m 194.31 236.53 l S 194.31 236.53 m 194.36 236.53 l S 194.36 236.53 m 194.40 236.53 l S 194.40 236.53 m 194.45 236.53 l S 194.45 236.53 m 194.50 236.53 l S 194.50 236.53 m 194.54 236.53 l S 194.54 236.53 m 194.59 236.53 l S 194.59 236.53 m 194.63 236.53 l S 194.63 236.53 m 194.68 236.53 l S 194.68 236.53 m 194.73 236.53 l S 194.73 236.53 m 194.77 236.53 l S 194.77 236.53 m 194.82 236.53 l S 194.82 236.53 m 194.86 236.53 l S 194.86 236.53 m 194.91 236.53 l S 194.91 236.53 m 194.96 236.53 l S 194.96 236.53 m 195.00 236.53 l S 195.00 236.53 m 195.05 236.53 l S 195.05 236.53 m 195.09 236.53 l S 195.09 236.53 m 195.14 236.53 l S 195.14 236.53 m 195.19 236.53 l S 195.19 236.53 m 195.23 236.53 l S 195.23 236.53 m 195.28 236.53 l S 195.28 236.53 m 195.32 236.53 l S 195.32 236.53 m 195.37 236.53 l S 195.37 236.53 m 195.42 236.53 l S 195.42 236.53 m 195.46 236.53 l S 195.46 236.53 m 195.51 236.53 l S 195.51 236.53 m 195.55 237.51 l S 195.55 236.53 m 195.60 237.51 l S 195.60 236.53 m 195.65 237.51 l S 195.65 236.53 m 195.69 236.53 l S 195.69 236.53 m 195.74 236.53 l S 195.74 236.53 m 195.78 237.51 l S 195.78 236.53 m 195.83 237.51 l S 195.83 236.53 m 195.88 236.53 l S 195.88 236.53 m 195.92 236.53 l S 195.92 236.53 m 195.97 236.53 l S 195.97 236.53 m 196.01 236.53 l S 196.01 236.53 m 196.06 236.53 l S 196.06 236.53 m 196.11 236.53 l S 196.11 236.53 m 196.15 236.53 l S 196.15 236.53 m 196.20 236.53 l S 196.20 236.53 m 196.24 236.53 l S 196.24 236.53 m 196.29 236.53 l S 196.29 236.53 m 196.34 236.53 l S 196.34 236.53 m 196.38 236.53 l S 196.38 236.53 m 196.43 236.53 l S 196.43 236.53 m 196.47 236.53 l S 196.47 236.53 m 196.52 236.53 l S 196.52 236.53 m 196.57 236.53 l S 196.57 236.53 m 196.61 237.51 l S 196.61 236.53 m 196.66 237.51 l S 196.66 236.53 m 196.70 236.53 l S 196.70 236.53 m 196.75 236.53 l S 196.75 236.53 m 196.80 236.53 l S 196.80 236.53 m 196.84 236.53 l S 196.84 236.53 m 196.89 236.53 l S 196.89 236.53 m 196.93 236.53 l S 196.93 236.53 m 196.98 236.53 l S 196.98 236.53 m 197.03 236.53 l S 197.03 236.53 m 197.07 236.53 l S 197.07 236.53 m 197.12 236.53 l S 197.12 236.53 m 197.16 236.53 l S 197.16 236.53 m 197.21 236.53 l S 197.21 236.53 m 197.26 236.53 l S 197.26 236.53 m 197.30 236.53 l S 197.30 236.53 m 197.35 236.53 l S 197.35 236.53 m 197.39 236.53 l S 197.39 236.53 m 197.44 236.53 l S 197.44 236.53 m 197.49 236.53 l S 197.49 236.53 m 197.53 236.53 l S 197.53 236.53 m 197.58 236.53 l S 197.58 236.53 m 197.62 237.51 l S 197.62 236.53 m 197.67 237.51 l S 197.67 236.53 m 197.72 236.53 l S 197.72 236.53 m 197.76 236.53 l S 197.76 236.53 m 197.81 236.53 l S 197.81 236.53 m 197.85 236.53 l S 197.85 236.53 m 197.90 236.53 l S 197.90 236.53 m 197.95 236.53 l S 197.95 236.53 m 197.99 236.53 l S 197.99 236.53 m 198.04 236.53 l S 198.04 236.53 m 198.08 236.53 l S 198.08 236.53 m 198.13 236.53 l S 198.13 236.53 m 198.18 236.53 l S 198.18 236.53 m 198.22 236.53 l S 198.22 236.53 m 198.27 236.53 l S 198.27 236.53 m 198.31 236.53 l S 198.31 236.53 m 198.36 236.53 l S 198.36 236.53 m 198.41 236.53 l S 198.41 236.53 m 198.45 236.53 l S 198.45 236.53 m 198.50 237.51 l S 198.50 236.53 m 198.55 236.53 l S 198.55 236.53 m 198.59 236.53 l S 198.59 236.53 m 198.64 236.53 l S 198.64 236.53 m 198.68 236.53 l S 198.68 236.53 m 198.73 236.53 l S 198.73 236.53 m 198.78 236.53 l S 198.78 236.53 m 198.82 236.53 l S 198.82 236.53 m 198.87 236.53 l S 198.87 236.53 m 198.91 236.53 l S 198.91 236.53 m 198.96 236.53 l S 198.96 236.53 m 199.01 236.53 l S 199.01 236.53 m 199.05 236.53 l S 199.05 236.53 m 199.10 236.53 l S 199.10 236.53 m 199.14 236.53 l S 199.14 236.53 m 199.19 236.53 l S 199.19 236.53 m 199.24 236.53 l S 199.24 236.53 m 199.28 236.53 l S 199.28 236.53 m 199.33 236.53 l S 199.33 236.53 m 199.37 236.53 l S 199.37 236.53 m 199.42 236.53 l S 199.42 236.53 m 199.47 236.53 l S 199.47 236.53 m 199.51 236.53 l S 199.51 236.53 m 199.56 236.53 l S 199.56 236.53 m 199.60 236.53 l S 199.60 236.53 m 199.65 236.53 l S 199.65 236.53 m 199.70 236.53 l S 199.70 236.53 m 199.74 236.53 l S 199.74 236.53 m 199.79 236.53 l S 199.79 236.53 m 199.83 236.53 l S 199.83 236.53 m 199.88 236.53 l S 199.88 236.53 m 199.93 236.53 l S 199.93 236.53 m 199.97 236.53 l S 199.97 236.53 m 200.02 236.53 l S 200.02 236.53 m 200.06 236.53 l S 200.06 236.53 m 200.11 236.53 l S 200.11 236.53 m 200.16 236.53 l S 200.16 236.53 m 200.20 236.53 l S 200.20 236.53 m 200.25 236.53 l S 200.25 236.53 m 200.29 236.53 l S 200.29 236.53 m 200.34 236.53 l S 200.34 236.53 m 200.39 236.53 l S 200.39 236.53 m 200.43 236.53 l S 200.43 236.53 m 200.48 236.53 l S 200.48 236.53 m 200.52 236.53 l S 200.52 236.53 m 200.57 236.53 l S 200.57 236.53 m 200.62 236.53 l S 200.62 236.53 m 200.66 236.53 l S 200.66 236.53 m 200.71 236.53 l S 200.71 236.53 m 200.75 236.53 l S 200.75 236.53 m 200.80 236.53 l S 200.80 236.53 m 200.85 236.53 l S 200.85 236.53 m 200.89 236.53 l S 200.89 236.53 m 200.94 236.53 l S 200.94 236.53 m 200.98 236.53 l S 200.98 236.53 m 201.03 236.53 l S 201.03 236.53 m 201.08 236.53 l S 201.08 236.53 m 201.12 236.53 l S 201.12 236.53 m 201.17 236.53 l S 201.17 236.53 m 201.21 236.53 l S 201.21 236.53 m 201.26 236.53 l S 201.26 236.53 m 201.31 236.53 l S 201.31 236.53 m 201.35 236.53 l S 201.35 236.53 m 201.40 236.53 l S 201.40 236.53 m 201.44 236.53 l S 201.44 236.53 m 201.49 236.53 l S 201.49 236.53 m 201.54 236.53 l S 201.54 236.53 m 201.58 236.53 l S 201.58 236.53 m 201.63 236.53 l S 201.63 236.53 m 201.67 236.53 l S 201.67 236.53 m 201.72 236.53 l S 201.72 236.53 m 201.77 236.53 l S 201.77 236.53 m 201.81 236.53 l S 201.81 236.53 m 201.86 236.53 l S 201.86 236.53 m 201.90 236.53 l S 201.90 236.53 m 201.95 236.53 l S 201.95 236.53 m 202.00 236.53 l S 202.00 236.53 m 202.04 236.53 l S 202.04 236.53 m 202.09 236.53 l S 202.09 236.53 m 202.13 236.53 l S 202.13 236.53 m 202.18 236.53 l S 202.18 236.53 m 202.23 236.53 l S 202.23 236.53 m 202.27 236.53 l S 202.27 236.53 m 202.32 236.53 l S 202.32 236.53 m 202.36 236.53 l S 202.36 236.53 m 202.41 236.53 l S 202.41 236.53 m 202.46 236.53 l S 202.46 236.53 m 202.50 236.53 l S 202.50 236.53 m 202.55 236.53 l S 202.55 236.53 m 202.59 237.51 l S 202.59 236.53 m 202.64 236.53 l S 202.64 236.53 m 202.69 236.53 l S 202.69 236.53 m 202.73 236.53 l S 202.73 236.53 m 202.78 236.53 l S 202.78 236.53 m 202.82 236.53 l S 202.82 236.53 m 202.87 236.53 l S 202.87 236.53 m 202.92 236.53 l S 202.92 236.53 m 202.96 236.53 l S 202.96 236.53 m 203.01 236.53 l S 203.01 236.53 m 203.05 236.53 l S 203.05 236.53 m 203.10 236.53 l S 203.10 236.53 m 203.15 236.53 l S 203.15 236.53 m 203.19 236.53 l S 203.19 236.53 m 203.24 236.53 l S 203.24 236.53 m 203.28 236.53 l S 203.28 236.53 m 203.33 236.53 l S 203.33 236.53 m 203.38 236.53 l S 203.38 236.53 m 203.42 238.49 l S 203.42 236.53 m 203.47 237.51 l S 203.47 236.53 m 203.51 237.51 l S 203.51 236.53 m 203.56 236.53 l S 203.56 236.53 m 203.61 236.53 l S 203.61 236.53 m 203.65 236.53 l S 203.65 236.53 m 203.70 236.53 l S 203.70 236.53 m 203.74 236.53 l S 203.74 236.53 m 203.79 236.53 l S 203.79 236.53 m 203.84 236.53 l S 203.84 236.53 m 203.88 236.53 l S 203.88 236.53 m 203.93 236.53 l S 203.93 236.53 m 203.97 236.53 l S 203.97 236.53 m 204.02 238.49 l S 204.02 236.53 m 204.07 236.53 l S 204.07 236.53 m 204.11 236.53 l S 204.11 236.53 m 204.16 236.53 l S 204.16 236.53 m 204.20 236.53 l S 204.20 236.53 m 204.25 236.53 l S 204.25 236.53 m 204.30 236.53 l S 204.30 236.53 m 204.34 236.53 l S 204.34 236.53 m 204.39 236.53 l S 204.39 236.53 m 204.43 236.53 l S 204.43 236.53 m 204.48 236.53 l S 204.48 236.53 m 204.53 236.53 l S 204.53 236.53 m 204.57 236.53 l S 204.57 236.53 m 204.62 236.53 l S 204.62 236.53 m 204.66 236.53 l S 204.66 236.53 m 204.71 236.53 l S 204.71 236.53 m 204.76 236.53 l S 204.76 236.53 m 204.80 237.51 l S 204.80 236.53 m 204.85 236.53 l S 204.85 236.53 m 204.89 236.53 l S 204.89 236.53 m 204.94 236.53 l S 204.94 236.53 m 204.99 236.53 l S 204.99 236.53 m 205.03 236.53 l S 205.03 236.53 m 205.08 236.53 l S 205.08 236.53 m 205.12 236.53 l S 205.12 236.53 m 205.17 236.53 l S 205.17 236.53 m 205.22 236.53 l S 205.22 236.53 m 205.26 236.53 l S 205.26 236.53 m 205.31 236.53 l S 205.31 236.53 m 205.35 236.53 l S 205.35 236.53 m 205.40 236.53 l S 205.40 236.53 m 205.45 236.53 l S 205.45 236.53 m 205.49 236.53 l S 205.49 236.53 m 205.54 238.49 l S 205.54 236.53 m 205.58 236.53 l S 205.58 236.53 m 205.63 236.53 l S 205.63 236.53 m 205.68 236.53 l S 205.68 236.53 m 205.72 238.49 l S 205.72 236.53 m 205.77 238.49 l S 205.77 236.53 m 205.81 236.53 l S 205.81 236.53 m 205.86 236.53 l S 205.86 236.53 m 205.91 236.53 l S 205.91 236.53 m 205.95 236.53 l S 205.95 236.53 m 206.00 236.53 l S 206.00 236.53 m 206.04 236.53 l S 206.04 236.53 m 206.09 236.53 l S 206.09 236.53 m 206.14 236.53 l S 206.14 236.53 m 206.18 236.53 l S 206.18 236.53 m 206.23 236.53 l S 206.23 236.53 m 206.27 236.53 l S 206.27 236.53 m 206.32 236.53 l S 206.32 236.53 m 206.37 236.53 l S 206.37 236.53 m 206.41 236.53 l S 206.41 236.53 m 206.46 236.53 l S 206.46 236.53 m 206.51 236.53 l S 206.51 236.53 m 206.55 236.53 l S 206.55 236.53 m 206.60 236.53 l S 206.60 236.53 m 206.64 236.53 l S 206.64 236.53 m 206.69 236.53 l S 206.69 236.53 m 206.74 236.53 l S 206.74 236.53 m 206.78 236.53 l S 206.78 236.53 m 206.83 236.53 l S 206.83 236.53 m 206.87 236.53 l S 206.87 236.53 m 206.92 236.53 l S 206.92 236.53 m 206.97 236.53 l S 206.97 236.53 m 207.01 236.53 l S 207.01 236.53 m 207.06 236.53 l S 207.06 236.53 m 207.10 236.53 l S 207.10 236.53 m 207.15 236.53 l S 207.15 236.53 m 207.20 236.53 l S 207.20 236.53 m 207.24 236.53 l S 207.24 236.53 m 207.29 236.53 l S 207.29 236.53 m 207.33 236.53 l S 207.33 236.53 m 207.38 236.53 l S 207.38 236.53 m 207.43 236.53 l S 207.43 236.53 m 207.47 236.53 l S 207.47 236.53 m 207.52 236.53 l S 207.52 236.53 m 207.56 236.53 l S 207.56 236.53 m 207.61 236.53 l S 207.61 236.53 m 207.66 236.53 l S 207.66 236.53 m 207.70 236.53 l S 207.70 236.53 m 207.75 236.53 l S 207.75 236.53 m 207.79 236.53 l S 207.79 236.53 m 207.84 236.53 l S 207.84 236.53 m 207.89 236.53 l S 207.89 236.53 m 207.93 236.53 l S 207.93 236.53 m 207.98 236.53 l S 207.98 236.53 m 208.02 236.53 l S 208.02 236.53 m 208.07 236.53 l S 208.07 236.53 m 208.12 236.53 l S 208.12 236.53 m 208.16 236.53 l S 208.16 236.53 m 208.21 236.53 l S 208.21 236.53 m 208.25 236.53 l S 208.25 236.53 m 208.30 236.53 l S 208.30 236.53 m 208.35 236.53 l S 208.35 236.53 m 208.39 236.53 l S 208.39 236.53 m 208.44 236.53 l S 208.44 236.53 m 208.48 236.53 l S 208.48 236.53 m 208.53 236.53 l S 208.53 236.53 m 208.58 236.53 l S 208.58 236.53 m 208.62 236.53 l S 208.62 236.53 m 208.67 236.53 l S 208.67 236.53 m 208.71 236.53 l S 208.71 236.53 m 208.76 236.53 l S 208.76 236.53 m 208.81 236.53 l S 208.81 236.53 m 208.85 236.53 l S 208.85 236.53 m 208.90 236.53 l S 208.90 236.53 m 208.94 236.53 l S 208.94 236.53 m 208.99 236.53 l S 208.99 236.53 m 209.04 236.53 l S 209.04 236.53 m 209.08 236.53 l S 209.08 236.53 m 209.13 236.53 l S 209.13 236.53 m 209.17 236.53 l S 209.17 236.53 m 209.22 236.53 l S 209.22 236.53 m 209.27 236.53 l S 209.27 236.53 m 209.31 236.53 l S 209.31 236.53 m 209.36 236.53 l S 209.36 236.53 m 209.40 236.53 l S 209.40 236.53 m 209.45 236.53 l S 209.45 236.53 m 209.50 236.53 l S 209.50 236.53 m 209.54 236.53 l S 209.54 236.53 m 209.59 236.53 l S 209.59 236.53 m 209.63 236.53 l S 209.63 236.53 m 209.68 236.53 l S 209.68 236.53 m 209.73 236.53 l S 209.73 236.53 m 209.77 236.53 l S 209.77 236.53 m 209.82 236.53 l S 209.82 236.53 m 209.86 236.53 l S 209.86 236.53 m 209.91 236.53 l S 209.91 236.53 m 209.96 236.53 l S 209.96 236.53 m 210.00 236.53 l S 210.00 236.53 m 210.05 236.53 l S 210.05 236.53 m 210.09 236.53 l S 210.09 236.53 m 210.14 236.53 l S 210.14 236.53 m 210.19 236.53 l S 210.19 236.53 m 210.23 236.53 l S 210.23 236.53 m 210.28 236.53 l S 210.28 236.53 m 210.32 238.49 l S 210.32 236.53 m 210.37 238.49 l S 210.37 236.53 m 210.42 236.53 l S 210.42 236.53 m 210.46 236.53 l S 210.46 236.53 m 210.51 236.53 l S 210.51 236.53 m 210.55 236.53 l S 210.55 236.53 m 210.60 236.53 l S 210.60 236.53 m 210.65 236.53 l S 210.65 236.53 m 210.69 236.53 l S 210.69 236.53 m 210.74 236.53 l S 210.74 236.53 m 210.78 236.53 l S 210.78 236.53 m 210.83 236.53 l S 210.83 236.53 m 210.88 236.53 l S 210.88 236.53 m 210.92 236.53 l S 210.92 236.53 m 210.97 236.53 l S 210.97 236.53 m 211.01 236.53 l S 211.01 236.53 m 211.06 236.53 l S 211.06 236.53 m 211.11 237.51 l S 211.11 236.53 m 211.15 237.51 l S 211.15 236.53 m 211.20 236.53 l S 211.20 236.53 m 211.24 236.53 l S 211.24 236.53 m 211.29 236.53 l S 211.29 236.53 m 211.34 236.53 l S 211.34 236.53 m 211.38 236.53 l S 211.38 236.53 m 211.43 236.53 l S 211.43 236.53 m 211.47 236.53 l S 211.47 236.53 m 211.52 236.53 l S 211.52 236.53 m 211.57 236.53 l S 211.57 236.53 m 211.61 236.53 l S 211.61 236.53 m 211.66 236.53 l S 211.66 236.53 m 211.70 236.53 l S 211.70 236.53 m 211.75 236.53 l S 211.75 236.53 m 211.80 236.53 l S 211.80 236.53 m 211.84 236.53 l S 211.84 236.53 m 211.89 236.53 l S 211.89 236.53 m 211.93 236.53 l S 211.93 236.53 m 211.98 236.53 l S 211.98 236.53 m 212.03 236.53 l S 212.03 236.53 m 212.07 236.53 l S 212.07 236.53 m 212.12 237.51 l S 212.12 236.53 m 212.16 237.51 l S 212.16 236.53 m 212.21 238.49 l S 212.21 236.53 m 212.26 238.49 l S 212.26 236.53 m 212.30 236.53 l S 212.30 236.53 m 212.35 236.53 l S 212.35 236.53 m 212.39 236.53 l S 212.39 236.53 m 212.44 236.53 l S 212.44 236.53 m 212.49 236.53 l S 212.49 236.53 m 212.53 236.53 l S 212.53 236.53 m 212.58 236.53 l S 212.58 236.53 m 212.62 236.53 l S 212.62 236.53 m 212.67 236.53 l S 212.67 236.53 m 212.72 237.51 l S 212.72 236.53 m 212.76 237.51 l S 212.76 236.53 m 212.81 236.53 l S 212.81 236.53 m 212.85 236.53 l S 212.85 236.53 m 212.90 236.53 l S 212.90 236.53 m 212.95 236.53 l S 212.95 236.53 m 212.99 236.53 l S 212.99 236.53 m 213.04 236.53 l S 213.04 236.53 m 213.08 236.53 l S 213.08 236.53 m 213.13 236.53 l S 213.13 236.53 m 213.18 237.51 l S 213.18 236.53 m 213.22 237.51 l S 213.22 236.53 m 213.27 236.53 l S 213.27 236.53 m 213.31 236.53 l S 213.31 236.53 m 213.36 236.53 l S 213.36 236.53 m 213.41 236.53 l S 213.41 236.53 m 213.45 236.53 l S 213.45 236.53 m 213.50 236.53 l S 213.50 236.53 m 213.54 236.53 l S 213.54 236.53 m 213.59 236.53 l S 213.59 236.53 m 213.64 236.53 l S 213.64 236.53 m 213.68 236.53 l S 213.68 236.53 m 213.73 236.53 l S 213.73 236.53 m 213.77 236.53 l S 213.77 236.53 m 213.82 236.53 l S 213.82 236.53 m 213.87 236.53 l S 213.87 236.53 m 213.91 236.53 l S 213.91 236.53 m 213.96 236.53 l S 213.96 236.53 m 214.00 236.53 l S 214.00 236.53 m 214.05 236.53 l S 214.05 236.53 m 214.10 236.53 l S 214.10 236.53 m 214.14 236.53 l S 214.14 236.53 m 214.19 236.53 l S 214.19 236.53 m 214.23 236.53 l S 214.23 236.53 m 214.28 236.53 l S 214.28 236.53 m 214.33 236.53 l S 214.33 236.53 m 214.37 236.53 l S 214.37 236.53 m 214.42 236.53 l S 214.42 236.53 m 214.47 236.53 l S 214.47 236.53 m 214.51 236.53 l S 214.51 236.53 m 214.56 236.53 l S 214.56 236.53 m 214.60 236.53 l S 214.60 236.53 m 214.65 236.53 l S 214.65 236.53 m 214.70 236.53 l S 214.70 236.53 m 214.74 236.53 l S 214.74 236.53 m 214.79 236.53 l S 214.79 236.53 m 214.83 236.53 l S 214.83 236.53 m 214.88 236.53 l S 214.88 236.53 m 214.93 236.53 l S 214.93 236.53 m 214.97 236.53 l S 214.97 236.53 m 215.02 238.49 l S 215.02 236.53 m 215.06 237.51 l S 215.06 236.53 m 215.11 236.53 l S 215.11 236.53 m 215.16 236.53 l S 215.16 236.53 m 215.20 236.53 l S 215.20 236.53 m 215.25 236.53 l S 215.25 236.53 m 215.29 236.53 l S 215.29 236.53 m 215.34 236.53 l S 215.34 236.53 m 215.39 236.53 l S 215.39 236.53 m 215.43 236.53 l S 215.43 236.53 m 215.48 236.53 l S 215.48 236.53 m 215.52 236.53 l S 215.52 236.53 m 215.57 236.53 l S 215.57 236.53 m 215.62 236.53 l S 215.62 236.53 m 215.66 236.53 l S 215.66 236.53 m 215.71 236.53 l S 215.71 236.53 m 215.75 236.53 l S 215.75 236.53 m 215.80 236.53 l S 215.80 236.53 m 215.85 236.53 l S 215.85 236.53 m 215.89 236.53 l S 215.89 236.53 m 215.94 236.53 l S 215.94 236.53 m 215.98 236.53 l S 215.98 236.53 m 216.03 236.53 l S 216.03 236.53 m 216.08 236.53 l S 216.08 236.53 m 216.12 236.53 l S 216.12 236.53 m 216.17 236.53 l S 216.17 236.53 m 216.21 236.53 l S 216.21 236.53 m 216.26 236.53 l S 216.26 236.53 m 216.31 236.53 l S 216.31 236.53 m 216.35 236.53 l S 216.35 236.53 m 216.40 236.53 l S 216.40 236.53 m 216.44 236.53 l S 216.44 236.53 m 216.49 236.53 l S 216.49 236.53 m 216.54 236.53 l S 216.54 236.53 m 216.58 236.53 l S 216.58 236.53 m 216.63 236.53 l S 216.63 236.53 m 216.67 236.53 l S 216.67 236.53 m 216.72 236.53 l S 216.72 236.53 m 216.77 236.53 l S 216.77 236.53 m 216.81 236.53 l S 216.81 236.53 m 216.86 236.53 l S 216.86 236.53 m 216.90 236.53 l S 216.90 236.53 m 216.95 236.53 l S 216.95 236.53 m 217.00 236.53 l S 217.00 236.53 m 217.04 236.53 l S 217.04 236.53 m 217.09 236.53 l S 217.09 236.53 m 217.13 236.53 l S 217.13 236.53 m 217.18 236.53 l S 217.18 236.53 m 217.23 238.49 l S 217.23 236.53 m 217.27 238.49 l S 217.27 236.53 m 217.32 236.53 l S 217.32 236.53 m 217.36 236.53 l S 217.36 236.53 m 217.41 236.53 l S 217.41 236.53 m 217.46 236.53 l S 217.46 236.53 m 217.50 236.53 l S 217.50 236.53 m 217.55 236.53 l S 217.55 236.53 m 217.59 236.53 l S 217.59 236.53 m 217.64 236.53 l S 217.64 236.53 m 217.69 236.53 l S 217.69 236.53 m 217.73 236.53 l S 217.73 236.53 m 217.78 236.53 l S 217.78 236.53 m 217.82 236.53 l S 217.82 236.53 m 217.87 236.53 l S 217.87 236.53 m 217.92 236.53 l S 217.92 236.53 m 217.96 236.53 l S 217.96 236.53 m 218.01 236.53 l S 218.01 236.53 m 218.05 236.53 l S 218.05 236.53 m 218.10 236.53 l S 218.10 236.53 m 218.15 236.53 l S 218.15 236.53 m 218.19 236.53 l S 218.19 236.53 m 218.24 236.53 l S 218.24 236.53 m 218.28 236.53 l S 218.28 236.53 m 218.33 236.53 l S 218.33 236.53 m 218.38 236.53 l S 218.38 236.53 m 218.42 236.53 l S 218.42 236.53 m 218.47 236.53 l S 218.47 236.53 m 218.51 236.53 l S 218.51 236.53 m 218.56 236.53 l S 218.56 236.53 m 218.61 236.53 l S 218.61 236.53 m 218.65 236.53 l S 218.65 236.53 m 218.70 236.53 l S 218.70 236.53 m 218.74 236.53 l S 218.74 236.53 m 218.79 236.53 l S 218.79 236.53 m 218.84 236.53 l S 218.84 236.53 m 218.88 236.53 l S 218.88 236.53 m 218.93 236.53 l S 218.93 236.53 m 218.97 237.51 l S 218.97 236.53 m 219.02 237.51 l S 219.02 236.53 m 219.07 236.53 l S 219.07 236.53 m 219.11 236.53 l S 219.11 236.53 m 219.16 236.53 l S 219.16 236.53 m 219.20 236.53 l S 219.20 236.53 m 219.25 236.53 l S 219.25 236.53 m 219.30 236.53 l S 219.30 236.53 m 219.34 236.53 l S 219.34 236.53 m 219.39 236.53 l S 219.39 236.53 m 219.43 236.53 l S 219.43 236.53 m 219.48 236.53 l S 219.48 236.53 m 219.53 236.53 l S 219.53 236.53 m 219.57 236.53 l S 219.57 236.53 m 219.62 236.53 l S 219.62 236.53 m 219.66 236.53 l S 219.66 236.53 m 219.71 237.51 l S 219.71 236.53 m 219.76 237.51 l S 219.76 236.53 m 219.80 236.53 l S 219.80 236.53 m 219.85 236.53 l S 219.85 236.53 m 219.89 236.53 l S 219.89 236.53 m 219.94 236.53 l S 219.94 236.53 m 219.99 236.53 l S 219.99 236.53 m 220.03 237.51 l S 220.03 236.53 m 220.08 237.51 l S 220.08 236.53 m 220.12 236.53 l S 220.12 236.53 m 220.17 236.53 l S 220.17 236.53 m 220.22 236.53 l S 220.22 236.53 m 220.26 236.53 l S 220.26 236.53 m 220.31 236.53 l S 220.31 236.53 m 220.35 236.53 l S 220.35 236.53 m 220.40 236.53 l S 220.40 236.53 m 220.45 236.53 l S 220.45 236.53 m 220.49 236.53 l S 220.49 236.53 m 220.54 236.53 l S 220.54 236.53 m 220.58 236.53 l S 220.58 236.53 m 220.63 236.53 l S 220.63 236.53 m 220.68 236.53 l S 220.68 236.53 m 220.72 236.53 l S 220.72 236.53 m 220.77 236.53 l S 220.77 236.53 m 220.81 236.53 l S 220.81 236.53 m 220.86 236.53 l S 220.86 236.53 m 220.91 236.53 l S 220.91 236.53 m 220.95 236.53 l S 220.95 236.53 m 221.00 236.53 l S 221.00 236.53 m 221.04 236.53 l S 221.04 236.53 m 221.09 236.53 l S 221.09 236.53 m 221.14 236.53 l S 221.14 236.53 m 221.18 236.53 l S 221.18 236.53 m 221.23 236.53 l S 221.23 236.53 m 221.27 236.53 l S 221.27 236.53 m 221.32 236.53 l S 221.32 236.53 m 221.37 236.53 l S 221.37 236.53 m 221.41 236.53 l S 221.41 236.53 m 221.46 237.51 l S 221.46 236.53 m 221.50 237.51 l S 221.50 236.53 m 221.55 236.53 l S 221.55 236.53 m 221.60 236.53 l S 221.60 236.53 m 221.64 236.53 l S 221.64 236.53 m 221.69 236.53 l S 221.69 236.53 m 221.73 236.53 l S 221.73 236.53 m 221.78 236.53 l S 221.78 236.53 m 221.83 236.53 l S 221.83 236.53 m 221.87 236.53 l S 221.87 236.53 m 221.92 236.53 l S 221.92 236.53 m 221.96 236.53 l S 221.96 236.53 m 222.01 236.53 l S 222.01 236.53 m 222.06 236.53 l S 222.06 236.53 m 222.10 236.53 l S 222.10 236.53 m 222.15 236.53 l S 222.15 236.53 m 222.19 236.53 l S 222.19 236.53 m 222.24 236.53 l S 222.24 236.53 m 222.29 236.53 l S 222.29 236.53 m 222.33 236.53 l S 222.33 236.53 m 222.38 236.53 l S 222.38 236.53 m 222.43 236.53 l S 222.43 236.53 m 222.47 236.53 l S 222.47 236.53 m 222.52 236.53 l S 222.52 236.53 m 222.56 236.53 l S 222.56 236.53 m 222.61 236.53 l S 222.61 236.53 m 222.66 236.53 l S 222.66 236.53 m 222.70 236.53 l S 222.70 236.53 m 222.75 236.53 l S 222.75 236.53 m 222.79 236.53 l S 222.79 236.53 m 222.84 236.53 l S 222.84 236.53 m 222.89 236.53 l S 222.89 236.53 m 222.93 236.53 l S 222.93 236.53 m 222.98 236.53 l S 222.98 236.53 m 223.02 236.53 l S 223.02 236.53 m 223.07 236.53 l S 223.07 236.53 m 223.12 236.53 l S 223.12 236.53 m 223.16 236.53 l S 223.16 236.53 m 223.21 236.53 l S 223.21 236.53 m 223.25 236.53 l S 223.25 236.53 m 223.30 236.53 l S 223.30 236.53 m 223.35 236.53 l S 223.35 236.53 m 223.39 236.53 l S 223.39 236.53 m 223.44 236.53 l S 223.44 236.53 m 223.48 236.53 l S 223.48 236.53 m 223.53 236.53 l S 223.53 236.53 m 223.58 236.53 l S 223.58 236.53 m 223.62 236.53 l S 223.62 236.53 m 223.67 236.53 l S 223.67 236.53 m 223.71 236.53 l S 223.71 236.53 m 223.76 236.53 l S 223.76 236.53 m 223.81 236.53 l S 223.81 236.53 m 223.85 236.53 l S 223.85 236.53 m 223.90 236.53 l S 223.90 236.53 m 223.94 236.53 l S 223.94 236.53 m 223.99 236.53 l S 223.99 236.53 m 224.04 236.53 l S 224.04 236.53 m 224.08 236.53 l S 224.08 236.53 m 224.13 236.53 l S 224.13 236.53 m 224.17 236.53 l S 224.17 236.53 m 224.22 236.53 l S 224.22 236.53 m 224.27 236.53 l S 224.27 236.53 m 224.31 236.53 l S 224.31 236.53 m 224.36 236.53 l S 224.36 236.53 m 224.40 236.53 l S 224.40 236.53 m 224.45 236.53 l S 224.45 236.53 m 224.50 236.53 l S 224.50 236.53 m 224.54 236.53 l S 224.54 236.53 m 224.59 236.53 l S 224.59 236.53 m 224.63 236.53 l S 224.63 236.53 m 224.68 236.53 l S 224.68 236.53 m 224.73 236.53 l S 224.73 236.53 m 224.77 236.53 l S 224.77 236.53 m 224.82 236.53 l S 224.82 236.53 m 224.86 236.53 l S 224.86 236.53 m 224.91 236.53 l S 224.91 236.53 m 224.96 236.53 l S 224.96 236.53 m 225.00 236.53 l S 225.00 236.53 m 225.05 236.53 l S 225.05 236.53 m 225.09 236.53 l S 225.09 236.53 m 225.14 236.53 l S 225.14 236.53 m 225.19 236.53 l S 225.19 236.53 m 225.23 236.53 l S 225.23 236.53 m 225.28 236.53 l S 225.28 236.53 m 225.32 236.53 l S 225.32 236.53 m 225.37 236.53 l S 225.37 236.53 m 225.42 236.53 l S 225.42 236.53 m 225.46 236.53 l S 225.46 236.53 m 225.51 236.53 l S 225.51 236.53 m 225.55 236.53 l S 225.55 236.53 m 225.60 236.53 l S 225.60 236.53 m 225.65 236.53 l S 225.65 236.53 m 225.69 236.53 l S 225.69 236.53 m 225.74 236.53 l S 225.74 236.53 m 225.78 236.53 l S 225.78 236.53 m 225.83 236.53 l S 225.83 236.53 m 225.88 236.53 l S 225.88 236.53 m 225.92 236.53 l S 225.92 236.53 m 225.97 236.53 l S 225.97 236.53 m 226.01 236.53 l S 226.01 236.53 m 226.06 236.53 l S 226.06 236.53 m 226.11 236.53 l S 226.11 236.53 m 226.15 236.53 l S 226.15 236.53 m 226.20 236.53 l S 226.20 236.53 m 226.24 236.53 l S 226.24 236.53 m 226.29 236.53 l S 226.29 236.53 m 226.34 236.53 l S 226.34 236.53 m 226.38 236.53 l S 226.38 236.53 m 226.43 236.53 l S 226.43 236.53 m 226.47 236.53 l S 226.47 236.53 m 226.52 236.53 l S 226.52 236.53 m 226.57 236.53 l S 226.57 236.53 m 226.61 236.53 l S 226.61 236.53 m 226.66 236.53 l S 226.66 236.53 m 226.70 236.53 l S 226.70 236.53 m 226.75 236.53 l S 226.75 236.53 m 226.80 236.53 l S 226.80 236.53 m 226.84 236.53 l S 226.84 236.53 m 226.89 236.53 l S 226.89 236.53 m 226.93 236.53 l S 226.93 236.53 m 226.98 236.53 l S 226.98 236.53 m 227.03 236.53 l S 227.03 236.53 m 227.07 236.53 l S 227.07 236.53 m 227.12 236.53 l S 227.12 236.53 m 227.16 236.53 l S 227.16 236.53 m 227.21 236.53 l S 227.21 236.53 m 227.26 236.53 l S 227.26 236.53 m 227.30 236.53 l S 227.30 236.53 m 227.35 236.53 l S 227.35 236.53 m 227.39 236.53 l S 227.39 236.53 m 227.44 236.53 l S 227.44 236.53 m 227.49 237.51 l S 227.49 236.53 m 227.53 236.53 l S 227.53 236.53 m 227.58 237.51 l S 227.58 236.53 m 227.62 237.51 l S 227.62 236.53 m 227.67 236.53 l S 227.67 236.53 m 227.72 236.53 l S 227.72 236.53 m 227.76 236.53 l S 227.76 236.53 m 227.81 236.53 l S 227.81 236.53 m 227.85 236.53 l S 227.85 236.53 m 227.90 236.53 l S 227.90 236.53 m 227.95 236.53 l S 227.95 236.53 m 227.99 236.53 l S 227.99 236.53 m 228.04 236.53 l S 228.04 236.53 m 228.08 236.53 l S 228.08 236.53 m 228.13 236.53 l S 228.13 236.53 m 228.18 236.53 l S 228.18 236.53 m 228.22 236.53 l S 228.22 236.53 m 228.27 236.53 l S 228.27 236.53 m 228.31 236.53 l S 228.31 236.53 m 228.36 236.53 l S 228.36 236.53 m 228.41 236.53 l S 228.41 236.53 m 228.45 236.53 l S 228.45 236.53 m 228.50 236.53 l S 228.50 236.53 m 228.54 236.53 l S 228.54 236.53 m 228.59 236.53 l S 228.59 236.53 m 228.64 236.53 l S 228.64 236.53 m 228.68 236.53 l S 228.68 236.53 m 228.73 236.53 l S 228.73 236.53 m 228.77 236.53 l S 228.77 236.53 m 228.82 236.53 l S 228.82 236.53 m 228.87 236.53 l S 228.87 236.53 m 228.91 236.53 l S 228.91 236.53 m 228.96 236.53 l S 228.96 236.53 m 229.00 236.53 l S 229.00 236.53 m 229.05 236.53 l S 229.05 236.53 m 229.10 236.53 l S 229.10 236.53 m 229.14 236.53 l S 229.14 236.53 m 229.19 236.53 l S 229.19 236.53 m 229.23 236.53 l S 229.23 236.53 m 229.28 236.53 l S 229.28 236.53 m 229.33 236.53 l S 229.33 236.53 m 229.37 236.53 l S 229.37 236.53 m 229.42 236.53 l S 229.42 236.53 m 229.46 236.53 l S 229.46 236.53 m 229.51 236.53 l S 229.51 236.53 m 229.56 236.53 l S 229.56 236.53 m 229.60 236.53 l S 229.60 236.53 m 229.65 236.53 l S 229.65 236.53 m 229.69 236.53 l S 229.69 236.53 m 229.74 236.53 l S 229.74 236.53 m 229.79 236.53 l S 229.79 236.53 m 229.83 236.53 l S 229.83 236.53 m 229.88 236.53 l S 229.88 236.53 m 229.92 237.51 l S 229.92 236.53 m 229.97 237.51 l S 229.97 236.53 m 230.02 236.53 l S 230.02 236.53 m 230.06 236.53 l S 230.06 236.53 m 230.11 236.53 l S 230.11 236.53 m 230.15 236.53 l S 230.15 236.53 m 230.20 236.53 l S 230.20 236.53 m 230.25 236.53 l S 230.25 236.53 m 230.29 236.53 l S 230.29 236.53 m 230.34 236.53 l S 230.34 236.53 m 230.38 236.53 l S 230.38 236.53 m 230.43 236.53 l S 230.43 236.53 m 230.48 236.53 l S 230.48 236.53 m 230.52 236.53 l S 230.52 236.53 m 230.57 236.53 l S 230.57 236.53 m 230.62 236.53 l S 230.62 236.53 m 230.66 236.53 l S 230.66 236.53 m 230.71 236.53 l S 230.71 236.53 m 230.75 236.53 l S 230.75 236.53 m 230.80 236.53 l S 230.80 236.53 m 230.85 236.53 l S 230.85 236.53 m 230.89 236.53 l S 230.89 236.53 m 230.94 236.53 l S 230.94 236.53 m 230.98 236.53 l S 230.98 236.53 m 231.03 236.53 l S 231.03 236.53 m 231.08 236.53 l S 231.08 236.53 m 231.12 236.53 l S 231.12 236.53 m 231.17 236.53 l S 231.17 236.53 m 231.21 236.53 l S 231.21 236.53 m 231.26 236.53 l S 231.26 236.53 m 231.31 236.53 l S 231.31 236.53 m 231.35 236.53 l S 231.35 236.53 m 231.40 236.53 l S 231.40 236.53 m 231.44 236.53 l S 231.44 236.53 m 231.49 236.53 l S 231.49 236.53 m 231.54 236.53 l S 231.54 236.53 m 231.58 236.53 l S 231.58 236.53 m 231.63 237.51 l S 231.63 236.53 m 231.67 237.51 l S 231.67 236.53 m 231.72 236.53 l S 231.72 236.53 m 231.77 236.53 l S 231.77 236.53 m 231.81 236.53 l S 231.81 236.53 m 231.86 236.53 l S 231.86 236.53 m 231.90 236.53 l S 231.90 236.53 m 231.95 236.53 l S 231.95 236.53 m 232.00 236.53 l S 232.00 236.53 m 232.04 236.53 l S 232.04 236.53 m 232.09 236.53 l S 232.09 236.53 m 232.13 236.53 l S 232.13 236.53 m 232.18 236.53 l S 232.18 236.53 m 232.23 236.53 l S 232.23 236.53 m 232.27 236.53 l S 232.27 236.53 m 232.32 236.53 l S 232.32 236.53 m 232.36 236.53 l S 232.36 236.53 m 232.41 236.53 l S 232.41 236.53 m 232.46 236.53 l S 232.46 236.53 m 232.50 236.53 l S 232.50 236.53 m 232.55 236.53 l S 232.55 236.53 m 232.59 236.53 l S 232.59 236.53 m 232.64 236.53 l S 232.64 236.53 m 232.69 236.53 l S 232.69 236.53 m 232.73 236.53 l S 232.73 236.53 m 232.78 236.53 l S 232.78 236.53 m 232.82 236.53 l S 232.82 236.53 m 232.87 236.53 l S 232.87 236.53 m 232.92 236.53 l S 232.92 236.53 m 232.96 236.53 l S 232.96 236.53 m 233.01 236.53 l S 233.01 236.53 m 233.05 236.53 l S 233.05 236.53 m 233.10 236.53 l S 233.10 236.53 m 233.15 236.53 l S 233.15 236.53 m 233.19 236.53 l S 233.19 236.53 m 233.24 236.53 l S 233.24 236.53 m 233.28 236.53 l S 233.28 236.53 m 233.33 236.53 l S 233.33 236.53 m 233.38 236.53 l S 233.38 236.53 m 233.42 236.53 l S 233.42 236.53 m 233.47 236.53 l S 233.47 236.53 m 233.51 236.53 l S 233.51 236.53 m 233.56 236.53 l S 233.56 236.53 m 233.61 236.53 l S 233.61 236.53 m 233.65 236.53 l S 233.65 236.53 m 233.70 236.53 l S 233.70 236.53 m 233.74 236.53 l S 233.74 236.53 m 233.79 237.51 l S 233.79 236.53 m 233.84 236.53 l S 233.84 236.53 m 233.88 237.51 l S 233.88 236.53 m 233.93 238.49 l S 233.93 236.53 m 233.97 238.49 l S 233.97 236.53 m 234.02 236.53 l S 234.02 236.53 m 234.07 236.53 l S 234.07 236.53 m 234.11 236.53 l S 234.11 236.53 m 234.16 236.53 l S 234.16 236.53 m 234.20 236.53 l S 234.20 236.53 m 234.25 236.53 l S 234.25 236.53 m 234.30 236.53 l S 234.30 236.53 m 234.34 236.53 l S 234.34 236.53 m 234.39 236.53 l S 234.39 236.53 m 234.43 236.53 l S 234.43 236.53 m 234.48 236.53 l S 234.48 236.53 m 234.53 236.53 l S 234.53 236.53 m 234.57 236.53 l S 234.57 236.53 m 234.62 236.53 l S 234.62 236.53 m 234.66 236.53 l S 234.66 236.53 m 234.71 236.53 l S 234.71 236.53 m 234.76 236.53 l S 234.76 236.53 m 234.80 236.53 l S 234.80 236.53 m 234.85 236.53 l S 234.85 236.53 m 234.89 236.53 l S 234.89 236.53 m 234.94 236.53 l S 234.94 236.53 m 234.99 236.53 l S 234.99 236.53 m 235.03 236.53 l S 235.03 236.53 m 235.08 236.53 l S 235.08 236.53 m 235.12 236.53 l S 235.12 236.53 m 235.17 236.53 l S 235.17 236.53 m 235.22 236.53 l S 235.22 236.53 m 235.26 236.53 l S 235.26 236.53 m 235.31 236.53 l S 235.31 236.53 m 235.35 236.53 l S 235.35 236.53 m 235.40 236.53 l S 235.40 236.53 m 235.45 236.53 l S 235.45 236.53 m 235.49 236.53 l S 235.49 236.53 m 235.54 236.53 l S 235.54 236.53 m 235.58 236.53 l S 235.58 236.53 m 235.63 237.51 l S 235.63 236.53 m 235.68 237.51 l S 235.68 236.53 m 235.72 236.53 l S 235.72 236.53 m 235.77 236.53 l S 235.77 236.53 m 235.81 236.53 l S 235.81 236.53 m 235.86 236.53 l S 235.86 236.53 m 235.91 237.51 l S 235.91 236.53 m 235.95 237.51 l S 235.95 236.53 m 236.00 236.53 l S 236.00 236.53 m 236.04 236.53 l S 236.04 236.53 m 236.09 236.53 l S 236.09 236.53 m 236.14 237.51 l S 236.14 236.53 m 236.18 236.53 l S 236.18 236.53 m 236.23 237.51 l S 236.23 236.53 m 236.27 237.51 l S 236.27 236.53 m 236.32 236.53 l S 236.32 236.53 m 236.37 236.53 l S 236.37 236.53 m 236.41 236.53 l S 236.41 236.53 m 236.46 236.53 l S 236.46 236.53 m 236.50 236.53 l S 236.50 236.53 m 236.55 236.53 l S 236.55 236.53 m 236.60 236.53 l S 236.60 236.53 m 236.64 236.53 l S 236.64 236.53 m 236.69 236.53 l S 236.69 236.53 m 236.73 236.53 l S 236.73 236.53 m 236.78 236.53 l S 236.78 236.53 m 236.83 236.53 l S 236.83 236.53 m 236.87 236.53 l S 236.87 236.53 m 236.92 236.53 l S 236.92 236.53 m 236.96 236.53 l S 236.96 236.53 m 237.01 236.53 l S 237.01 236.53 m 237.06 236.53 l S 237.06 236.53 m 237.10 236.53 l S 237.10 236.53 m 237.15 236.53 l S 237.15 236.53 m 237.19 236.53 l S 237.19 236.53 m 237.24 236.53 l S 237.24 236.53 m 237.29 236.53 l S 237.29 236.53 m 237.33 236.53 l S 237.33 236.53 m 237.38 236.53 l S 237.38 236.53 m 237.42 236.53 l S 237.42 236.53 m 237.47 236.53 l S 237.47 236.53 m 237.52 236.53 l S 237.52 236.53 m 237.56 236.53 l S 237.56 236.53 m 237.61 236.53 l S 237.61 236.53 m 237.65 236.53 l S 237.65 236.53 m 237.70 236.53 l S 237.70 236.53 m 237.75 236.53 l S 237.75 236.53 m 237.79 236.53 l S 237.79 236.53 m 237.84 236.53 l S 237.84 236.53 m 237.88 236.53 l S 237.88 236.53 m 237.93 236.53 l S 237.93 236.53 m 237.98 236.53 l S 237.98 236.53 m 238.02 236.53 l S 238.02 236.53 m 238.07 236.53 l S 238.07 236.53 m 238.11 236.53 l S 238.11 236.53 m 238.16 236.53 l S 238.16 236.53 m 238.21 236.53 l S 238.21 236.53 m 238.25 236.53 l S 238.25 236.53 m 238.30 236.53 l S 238.30 236.53 m 238.34 236.53 l S 238.34 236.53 m 238.39 236.53 l S 238.39 236.53 m 238.44 236.53 l S 238.44 236.53 m 238.48 236.53 l S 238.48 236.53 m 238.53 236.53 l S 238.53 236.53 m 238.58 236.53 l S 238.58 236.53 m 238.62 236.53 l S 238.62 236.53 m 238.67 236.53 l S 238.67 236.53 m 238.71 236.53 l S 238.71 236.53 m 238.76 236.53 l S 238.76 236.53 m 238.81 236.53 l S 238.81 236.53 m 238.85 236.53 l S 238.85 236.53 m 238.90 236.53 l S 238.90 236.53 m 238.94 236.53 l S 238.94 236.53 m 238.99 236.53 l S 238.99 236.53 m 239.04 236.53 l S 239.04 236.53 m 239.08 236.53 l S 239.08 236.53 m 239.13 236.53 l S 239.13 236.53 m 239.17 236.53 l S 239.17 236.53 m 239.22 236.53 l S 239.22 236.53 m 239.27 236.53 l S 239.27 236.53 m 239.31 237.51 l S 239.31 236.53 m 239.36 237.51 l S 239.36 236.53 m 239.40 237.51 l S 239.40 236.53 m 239.45 237.51 l S 239.45 236.53 m 239.50 236.53 l S 239.50 236.53 m 239.54 236.53 l S 239.54 236.53 m 239.59 236.53 l S 239.59 236.53 m 239.63 237.51 l S 239.63 236.53 m 239.68 237.51 l S 239.68 236.53 m 239.73 236.53 l S 239.73 236.53 m 239.77 236.53 l S 239.77 236.53 m 239.82 237.51 l S 239.82 236.53 m 239.86 237.51 l S 239.86 236.53 m 239.91 236.53 l S 239.91 236.53 m 239.96 236.53 l S 239.96 236.53 m 240.00 236.53 l S 240.00 236.53 m 240.05 236.53 l S 240.05 236.53 m 240.09 236.53 l S 240.09 236.53 m 240.14 236.53 l S 240.14 236.53 m 240.19 236.53 l S 240.19 236.53 m 240.23 236.53 l S 240.23 236.53 m 240.28 236.53 l S 240.28 236.53 m 240.32 236.53 l S 240.32 236.53 m 240.37 236.53 l S 240.37 236.53 m 240.42 236.53 l S 240.42 236.53 m 240.46 236.53 l S 240.46 236.53 m 240.51 236.53 l S 240.51 236.53 m 240.55 236.53 l S 240.55 236.53 m 240.60 236.53 l S 240.60 236.53 m 240.65 236.53 l S 240.65 236.53 m 240.69 236.53 l S 240.69 236.53 m 240.74 236.53 l S 240.74 236.53 m 240.78 236.53 l S 240.78 236.53 m 240.83 236.53 l S 240.83 236.53 m 240.88 236.53 l S 240.88 236.53 m 240.92 236.53 l S 240.92 236.53 m 240.97 236.53 l S 240.97 236.53 m 241.01 236.53 l S 241.01 236.53 m 241.06 236.53 l S 241.06 236.53 m 241.11 236.53 l S 241.11 236.53 m 241.15 236.53 l S 241.15 236.53 m 241.20 236.53 l S 241.20 236.53 m 241.24 236.53 l S 241.24 236.53 m 241.29 236.53 l S 241.29 236.53 m 241.34 236.53 l S 241.34 236.53 m 241.38 236.53 l S 241.38 236.53 m 241.43 236.53 l S 241.43 236.53 m 241.47 236.53 l S 241.47 236.53 m 241.52 236.53 l S 241.52 236.53 m 241.57 238.49 l S 241.57 236.53 m 241.61 238.49 l S 241.61 236.53 m 241.66 236.53 l S 241.66 236.53 m 241.70 236.53 l S 241.70 236.53 m 241.75 236.53 l S 241.75 236.53 m 241.80 236.53 l S 241.80 236.53 m 241.84 236.53 l S 241.84 236.53 m 241.89 236.53 l S 241.89 236.53 m 241.93 236.53 l S 241.93 236.53 m 241.98 237.51 l S 241.98 236.53 m 242.03 237.51 l S 242.03 236.53 m 242.07 236.53 l S 242.07 236.53 m 242.12 236.53 l S 242.12 236.53 m 242.16 236.53 l S 242.16 236.53 m 242.21 236.53 l S 242.21 236.53 m 242.26 236.53 l S 242.26 236.53 m 242.30 236.53 l S 242.30 236.53 m 242.35 236.53 l S 242.35 236.53 m 242.39 236.53 l S 242.39 236.53 m 242.44 236.53 l S 242.44 236.53 m 242.49 236.53 l S 242.49 236.53 m 242.53 236.53 l S 242.53 236.53 m 242.58 236.53 l S 242.58 236.53 m 242.62 236.53 l S 242.62 236.53 m 242.67 236.53 l S 242.67 236.53 m 242.72 236.53 l S 242.72 236.53 m 242.76 236.53 l S 242.76 236.53 m 242.81 236.53 l S 242.81 236.53 m 242.85 236.53 l S 242.85 236.53 m 242.90 236.53 l S 242.90 236.53 m 242.95 236.53 l S 242.95 236.53 m 242.99 236.53 l S 242.99 236.53 m 243.04 236.53 l S 243.04 236.53 m 243.08 236.53 l S 243.08 236.53 m 243.13 236.53 l S 243.13 236.53 m 243.18 236.53 l S 243.18 236.53 m 243.22 236.53 l S 243.22 236.53 m 243.27 236.53 l S 243.27 236.53 m 243.31 236.53 l S 243.31 236.53 m 243.36 236.53 l S 243.36 236.53 m 243.41 236.53 l S 243.41 236.53 m 243.45 236.53 l S 243.45 236.53 m 243.50 236.53 l S 243.50 236.53 m 243.54 236.53 l S 243.54 236.53 m 243.59 236.53 l S 243.59 236.53 m 243.64 236.53 l S 243.64 236.53 m 243.68 236.53 l S 243.68 236.53 m 243.73 236.53 l S 243.73 236.53 m 243.77 236.53 l S 243.77 236.53 m 243.82 236.53 l S 243.82 236.53 m 243.87 236.53 l S 243.87 236.53 m 243.91 236.53 l S 243.91 236.53 m 243.96 236.53 l S 243.96 236.53 m 244.00 236.53 l S 244.00 236.53 m 244.05 236.53 l S 244.05 236.53 m 244.10 236.53 l S 244.10 236.53 m 244.14 236.53 l S 244.14 236.53 m 244.19 236.53 l S 244.19 236.53 m 244.23 236.53 l S 244.23 236.53 m 244.28 236.53 l S 244.28 236.53 m 244.33 236.53 l S 244.33 236.53 m 244.37 236.53 l S 244.37 236.53 m 244.42 236.53 l S 244.42 236.53 m 244.46 236.53 l S 244.46 236.53 m 244.51 236.53 l S 244.51 236.53 m 244.56 236.53 l S 244.56 236.53 m 244.60 236.53 l S 244.60 236.53 m 244.65 236.53 l S 244.65 236.53 m 244.69 236.53 l S 244.69 236.53 m 244.74 236.53 l S 244.74 236.53 m 244.79 236.53 l S 244.79 236.53 m 244.83 236.53 l S 244.83 236.53 m 244.88 236.53 l S 244.88 236.53 m 244.92 236.53 l S 244.92 236.53 m 244.97 236.53 l S 244.97 236.53 m 245.02 236.53 l S 245.02 236.53 m 245.06 236.53 l S 245.06 236.53 m 245.11 236.53 l S 245.11 236.53 m 245.15 236.53 l S 245.15 236.53 m 245.20 237.51 l S 245.20 236.53 m 245.25 237.51 l S 245.25 236.53 m 245.29 236.53 l S 245.29 236.53 m 245.34 236.53 l S 245.34 236.53 m 245.38 236.53 l S 245.38 236.53 m 245.43 236.53 l S 245.43 236.53 m 245.48 236.53 l S 245.48 236.53 m 245.52 236.53 l S 245.52 236.53 m 245.57 236.53 l S 245.57 236.53 m 245.61 236.53 l S 245.61 236.53 m 245.66 236.53 l S 245.66 236.53 m 245.71 237.51 l S 245.71 236.53 m 245.75 236.53 l S 245.75 236.53 m 245.80 236.53 l S 245.80 236.53 m 245.84 236.53 l S 245.84 236.53 m 245.89 236.53 l S 245.89 236.53 m 245.94 236.53 l S 245.94 236.53 m 245.98 236.53 l S 245.98 236.53 m 246.03 236.53 l S 246.03 236.53 m 246.07 236.53 l S 246.07 236.53 m 246.12 236.53 l S 246.12 236.53 m 246.17 236.53 l S 246.17 236.53 m 246.21 236.53 l S 246.21 236.53 m 246.26 236.53 l S 246.26 236.53 m 246.30 236.53 l S 246.30 236.53 m 246.35 236.53 l S 246.35 236.53 m 246.40 236.53 l S 246.40 236.53 m 246.44 236.53 l S 246.44 236.53 m 246.49 236.53 l S 246.49 236.53 m 246.54 236.53 l S 246.54 236.53 m 246.58 236.53 l S 246.58 236.53 m 246.63 236.53 l S 246.63 236.53 m 246.67 236.53 l S 246.67 236.53 m 246.72 236.53 l S 246.72 236.53 m 246.77 236.53 l S 246.77 236.53 m 246.81 236.53 l S 246.81 236.53 m 246.86 236.53 l S 246.86 236.53 m 246.90 236.53 l S 246.90 236.53 m 246.95 236.53 l S 246.95 236.53 m 247.00 236.53 l S 247.00 236.53 m 247.04 236.53 l S 247.04 236.53 m 247.09 236.53 l S 247.09 236.53 m 247.13 237.51 l S 247.13 236.53 m 247.18 237.51 l S 247.18 236.53 m 247.23 237.51 l S 247.23 236.53 m 247.27 237.51 l S 247.27 236.53 m 247.32 236.53 l S 247.32 236.53 m 247.36 237.51 l S 247.36 236.53 m 247.41 237.51 l S 247.41 236.53 m 247.46 237.51 l S 247.46 236.53 m 247.50 237.51 l S 247.50 237.51 m 247.55 238.49 l S 247.55 236.53 m 247.59 239.46 l S 247.59 236.53 m 247.64 237.51 l S 247.64 236.53 m 247.69 240.44 l S 247.69 236.53 m 247.73 238.49 l S 247.73 236.53 m 247.78 236.53 l S 247.78 236.53 m 247.82 236.53 l S 247.82 236.53 m 247.87 238.49 l S 247.87 236.53 m 247.92 238.49 l S 247.92 236.53 m 247.96 238.49 l S 247.96 236.53 m 248.01 239.46 l S 248.01 236.53 m 248.05 238.49 l S 248.05 236.53 m 248.10 240.44 l S 248.10 236.53 m 248.15 237.51 l S 248.15 236.53 m 248.19 236.53 l S 248.19 236.53 m 248.24 236.53 l S 248.24 236.53 m 248.28 236.53 l S 248.28 236.53 m 248.33 236.53 l S 248.33 236.53 m 248.38 236.53 l S 248.38 236.53 m 248.42 236.53 l S 248.42 236.53 m 248.47 236.53 l S 248.47 236.53 m 248.51 236.53 l S 248.51 236.53 m 248.56 236.53 l S 248.56 236.53 m 248.61 236.53 l S 248.61 236.53 m 248.65 236.53 l S 248.65 236.53 m 248.70 236.53 l S 248.70 236.53 m 248.74 236.53 l S 248.74 236.53 m 248.79 236.53 l S 248.79 236.53 m 248.84 236.53 l S 248.84 236.53 m 248.88 237.51 l S 248.88 236.53 m 248.93 237.51 l S 248.93 236.53 m 248.97 237.51 l S 248.97 236.53 m 249.02 236.53 l S 249.02 236.53 m 249.07 236.53 l S 249.07 236.53 m 249.11 236.53 l S 249.11 236.53 m 249.16 236.53 l S 249.16 236.53 m 249.20 236.53 l S 249.20 236.53 m 249.25 236.53 l S 249.25 236.53 m 249.30 236.53 l S 249.30 236.53 m 249.34 236.53 l S 249.34 236.53 m 249.39 236.53 l S 249.39 236.53 m 249.43 237.51 l S 249.43 236.53 m 249.48 237.51 l S 249.48 236.53 m 249.53 236.53 l S 249.53 236.53 m 249.57 236.53 l S 249.57 236.53 m 249.62 236.53 l S 249.62 236.53 m 249.66 236.53 l S 249.66 236.53 m 249.71 236.53 l S 249.71 236.53 m 249.76 236.53 l S 249.76 236.53 m 249.80 236.53 l S 249.80 236.53 m 249.85 236.53 l S 249.85 236.53 m 249.89 237.51 l S 249.89 236.53 m 249.94 237.51 l S 249.94 236.53 m 249.99 236.53 l S 249.99 236.53 m 250.03 236.53 l S 250.03 236.53 m 250.08 236.53 l S 250.08 236.53 m 250.12 236.53 l S 250.12 236.53 m 250.17 236.53 l S 250.17 236.53 m 250.22 236.53 l S 250.22 236.53 m 250.26 237.51 l S 250.26 236.53 m 250.31 236.53 l S 250.31 236.53 m 250.35 236.53 l S 250.35 236.53 m 250.40 236.53 l S 250.40 236.53 m 250.45 236.53 l S Q q 59.04 73.44 198.72 29.52 re W n Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 73.44 m 250.45 73.44 l S 66.40 73.44 m 66.40 66.24 l S 103.21 73.44 m 103.21 66.24 l S 140.02 73.44 m 140.02 66.24 l S 176.83 73.44 m 176.83 66.24 l S 213.64 73.44 m 213.64 66.24 l S 250.45 73.44 m 250.45 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 36.38 47.52 Tm (100000000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 109.99 47.52 Tm (100400000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 183.61 47.52 Tm (100800000) Tj ET 59.04 74.53 m 59.04 100.27 l S 59.04 74.53 m 51.84 74.53 l S 59.04 80.97 m 51.84 80.97 l S 59.04 87.40 m 51.84 87.40 l S 59.04 93.84 m 51.84 93.84 l S 59.04 100.27 m 51.84 100.27 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 52.68 Tm (0.0e+00) Tj ET 59.04 73.44 m 257.76 73.44 l 257.76 102.96 l 59.04 102.96 l 59.04 73.44 l S Q q 0.00 0.00 288.00 162.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 100.83 127.45 Tm (Chr 10, H3K3me3) Tj ET Q q 59.04 73.44 198.72 29.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 74.53 m 66.45 77.46 l S 66.45 74.53 m 66.49 74.53 l S 66.49 74.53 m 66.54 74.53 l S 66.54 74.53 m 66.58 74.53 l S 66.58 74.53 m 66.63 74.53 l S 66.63 74.53 m 66.68 75.51 l S 66.68 74.53 m 66.72 74.53 l S 66.72 74.53 m 66.77 74.53 l S 66.77 74.53 m 66.81 76.49 l S 66.81 74.53 m 66.86 75.51 l S 66.86 74.53 m 66.91 76.49 l S 66.91 74.53 m 66.95 77.46 l S 66.95 74.53 m 67.00 75.51 l S 67.00 74.53 m 67.04 74.53 l S 67.04 74.53 m 67.09 75.51 l S 67.09 74.53 m 67.14 75.51 l S 67.14 74.53 m 67.18 75.51 l S 67.18 74.53 m 67.23 74.53 l S 67.23 74.53 m 67.27 74.53 l S 67.27 74.53 m 67.32 74.53 l S 67.32 74.53 m 67.37 77.46 l S 67.37 74.53 m 67.41 76.49 l S 67.41 74.53 m 67.46 74.53 l S 67.46 74.53 m 67.50 75.51 l S 67.50 74.53 m 67.55 75.51 l S 67.55 74.53 m 67.60 75.51 l S 67.60 74.53 m 67.64 75.51 l S 67.64 74.53 m 67.69 77.46 l S 67.69 74.53 m 67.73 77.46 l S 67.73 74.53 m 67.78 74.53 l S 67.78 74.53 m 67.83 75.51 l S 67.83 74.53 m 67.87 74.53 l S 67.87 74.53 m 67.92 74.53 l S 67.92 74.53 m 67.96 74.53 l S 67.96 74.53 m 68.01 74.53 l S 68.01 74.53 m 68.06 74.53 l S 68.06 74.53 m 68.10 76.49 l S 68.10 74.53 m 68.15 76.49 l S 68.15 74.53 m 68.19 74.53 l S 68.19 74.53 m 68.24 74.53 l S 68.24 74.53 m 68.29 74.53 l S 68.29 74.53 m 68.33 76.49 l S 68.33 74.53 m 68.38 76.49 l S 68.38 74.53 m 68.42 74.53 l S 68.42 74.53 m 68.47 74.53 l S 68.47 74.53 m 68.52 75.51 l S 68.52 74.53 m 68.56 75.51 l S 68.56 74.53 m 68.61 75.51 l S 68.61 74.53 m 68.65 74.53 l S 68.65 74.53 m 68.70 75.51 l S 68.70 74.53 m 68.75 75.51 l S 68.75 74.53 m 68.79 75.51 l S 68.79 74.53 m 68.84 74.53 l S 68.84 74.53 m 68.88 74.53 l S 68.88 74.53 m 68.93 74.53 l S 68.93 74.53 m 68.98 74.53 l S 68.98 74.53 m 69.02 74.53 l S 69.02 74.53 m 69.07 74.53 l S 69.07 74.53 m 69.11 74.53 l S 69.11 74.53 m 69.16 74.53 l S 69.16 74.53 m 69.21 74.53 l S 69.21 74.53 m 69.25 74.53 l S 69.25 74.53 m 69.30 75.51 l S 69.30 74.53 m 69.34 75.51 l S 69.34 74.53 m 69.39 75.51 l S 69.39 74.53 m 69.44 74.53 l S 69.44 74.53 m 69.48 74.53 l S 69.48 74.53 m 69.53 75.51 l S 69.53 74.53 m 69.57 75.51 l S 69.57 74.53 m 69.62 78.44 l S 69.62 76.49 m 69.67 79.41 l S 69.67 76.49 m 69.71 79.41 l S 69.71 74.53 m 69.76 76.49 l S 69.76 74.53 m 69.80 75.51 l S 69.80 74.53 m 69.85 75.51 l S 69.85 75.51 m 69.90 76.49 l S 69.90 74.53 m 69.94 75.51 l S 69.94 74.53 m 69.99 76.49 l S 69.99 74.53 m 70.03 76.49 l S 70.03 74.53 m 70.08 74.53 l S 70.08 74.53 m 70.13 76.49 l S 70.13 74.53 m 70.17 76.49 l S 70.17 74.53 m 70.22 74.53 l S 70.22 74.53 m 70.26 76.49 l S 70.26 74.53 m 70.31 76.49 l S 70.31 74.53 m 70.36 74.53 l S 70.36 74.53 m 70.40 74.53 l S 70.40 74.53 m 70.45 76.49 l S 70.45 74.53 m 70.50 76.49 l S 70.50 74.53 m 70.54 76.49 l S 70.54 74.53 m 70.59 75.51 l S 70.59 74.53 m 70.63 74.53 l S 70.63 74.53 m 70.68 74.53 l S 70.68 74.53 m 70.73 75.51 l S 70.73 74.53 m 70.77 75.51 l S 70.77 74.53 m 70.82 74.53 l S 70.82 74.53 m 70.86 74.53 l S 70.86 74.53 m 70.91 74.53 l S 70.91 74.53 m 70.96 74.53 l S 70.96 74.53 m 71.00 74.53 l S 71.00 74.53 m 71.05 74.53 l S 71.05 74.53 m 71.09 74.53 l S 71.09 74.53 m 71.14 74.53 l S 71.14 74.53 m 71.19 74.53 l S 71.19 74.53 m 71.23 74.53 l S 71.23 74.53 m 71.28 76.49 l S 71.28 74.53 m 71.32 76.49 l S 71.32 74.53 m 71.37 75.51 l S 71.37 74.53 m 71.42 75.51 l S 71.42 74.53 m 71.46 74.53 l S 71.46 74.53 m 71.51 74.53 l S 71.51 74.53 m 71.55 74.53 l S 71.55 74.53 m 71.60 74.53 l S 71.60 74.53 m 71.65 74.53 l S 71.65 74.53 m 71.69 74.53 l S 71.69 74.53 m 71.74 74.53 l S 71.74 74.53 m 71.78 74.53 l S 71.78 74.53 m 71.83 74.53 l S 71.83 74.53 m 71.88 74.53 l S 71.88 74.53 m 71.92 74.53 l S 71.92 74.53 m 71.97 74.53 l S 71.97 74.53 m 72.01 74.53 l S 72.01 74.53 m 72.06 74.53 l S 72.06 74.53 m 72.11 74.53 l S 72.11 74.53 m 72.15 74.53 l S 72.15 74.53 m 72.20 74.53 l S 72.20 74.53 m 72.24 74.53 l S 72.24 74.53 m 72.29 75.51 l S 72.29 74.53 m 72.34 75.51 l S 72.34 74.53 m 72.38 74.53 l S 72.38 74.53 m 72.43 74.53 l S 72.43 74.53 m 72.47 74.53 l S 72.47 74.53 m 72.52 74.53 l S 72.52 74.53 m 72.57 74.53 l S 72.57 74.53 m 72.61 74.53 l S 72.61 74.53 m 72.66 75.51 l S 72.66 74.53 m 72.70 75.51 l S 72.70 74.53 m 72.75 74.53 l S 72.75 74.53 m 72.80 74.53 l S 72.80 74.53 m 72.84 74.53 l S 72.84 74.53 m 72.89 74.53 l S 72.89 74.53 m 72.93 74.53 l S 72.93 74.53 m 72.98 74.53 l S 72.98 74.53 m 73.03 74.53 l S 73.03 74.53 m 73.07 74.53 l S 73.07 74.53 m 73.12 75.51 l S 73.12 74.53 m 73.16 75.51 l S 73.16 74.53 m 73.21 75.51 l S 73.21 74.53 m 73.26 74.53 l S 73.26 74.53 m 73.30 75.51 l S 73.30 74.53 m 73.35 74.53 l S 73.35 74.53 m 73.39 74.53 l S 73.39 74.53 m 73.44 74.53 l S 73.44 74.53 m 73.49 74.53 l S 73.49 74.53 m 73.53 74.53 l S 73.53 74.53 m 73.58 74.53 l S 73.58 74.53 m 73.62 74.53 l S 73.62 74.53 m 73.67 74.53 l S 73.67 74.53 m 73.72 74.53 l S 73.72 74.53 m 73.76 74.53 l S 73.76 74.53 m 73.81 74.53 l S 73.81 74.53 m 73.85 75.51 l S 73.85 74.53 m 73.90 75.51 l S 73.90 74.53 m 73.95 74.53 l S 73.95 74.53 m 73.99 74.53 l S 73.99 74.53 m 74.04 76.49 l S 74.04 74.53 m 74.08 75.51 l S 74.08 74.53 m 74.13 75.51 l S 74.13 74.53 m 74.18 75.51 l S 74.18 74.53 m 74.22 78.44 l S 74.22 75.51 m 74.27 79.41 l S 74.27 74.53 m 74.31 75.51 l S 74.31 74.53 m 74.36 74.53 l S 74.36 74.53 m 74.41 76.49 l S 74.41 74.53 m 74.45 77.46 l S 74.45 74.53 m 74.50 75.51 l S 74.50 74.53 m 74.54 75.51 l S 74.54 74.53 m 74.59 75.51 l S 74.59 74.53 m 74.64 74.53 l S 74.64 74.53 m 74.68 75.51 l S 74.68 74.53 m 74.73 77.46 l S 74.73 74.53 m 74.77 78.44 l S 74.77 74.53 m 74.82 74.53 l S 74.82 74.53 m 74.87 75.51 l S 74.87 74.53 m 74.91 75.51 l S 74.91 74.53 m 74.96 74.53 l S 74.96 74.53 m 75.00 74.53 l S 75.00 74.53 m 75.05 74.53 l S 75.05 74.53 m 75.10 74.53 l S 75.10 74.53 m 75.14 74.53 l S 75.14 74.53 m 75.19 74.53 l S 75.19 74.53 m 75.23 74.53 l S 75.23 74.53 m 75.28 74.53 l S 75.28 74.53 m 75.33 74.53 l S 75.33 74.53 m 75.37 74.53 l S 75.37 74.53 m 75.42 74.53 l S 75.42 74.53 m 75.46 75.51 l S 75.46 74.53 m 75.51 75.51 l S 75.51 74.53 m 75.56 74.53 l S 75.56 74.53 m 75.60 74.53 l S 75.60 74.53 m 75.65 75.51 l S 75.65 74.53 m 75.69 75.51 l S 75.69 74.53 m 75.74 74.53 l S 75.74 74.53 m 75.79 74.53 l S 75.79 74.53 m 75.83 74.53 l S 75.83 74.53 m 75.88 76.49 l S 75.88 74.53 m 75.92 76.49 l S 75.92 74.53 m 75.97 74.53 l S 75.97 74.53 m 76.02 74.53 l S 76.02 74.53 m 76.06 74.53 l S 76.06 74.53 m 76.11 74.53 l S 76.11 74.53 m 76.15 74.53 l S 76.15 74.53 m 76.20 74.53 l S 76.20 74.53 m 76.25 74.53 l S 76.25 74.53 m 76.29 74.53 l S 76.29 74.53 m 76.34 74.53 l S 76.34 74.53 m 76.38 74.53 l S 76.38 74.53 m 76.43 74.53 l S 76.43 74.53 m 76.48 74.53 l S 76.48 74.53 m 76.52 77.46 l S 76.52 74.53 m 76.57 76.49 l S 76.57 74.53 m 76.61 74.53 l S 76.61 74.53 m 76.66 74.53 l S 76.66 74.53 m 76.71 74.53 l S 76.71 74.53 m 76.75 74.53 l S 76.75 74.53 m 76.80 74.53 l S 76.80 74.53 m 76.84 74.53 l S 76.84 74.53 m 76.89 74.53 l S 76.89 74.53 m 76.94 74.53 l S 76.94 74.53 m 76.98 74.53 l S 76.98 74.53 m 77.03 74.53 l S 77.03 74.53 m 77.07 76.49 l S 77.07 74.53 m 77.12 75.51 l S 77.12 74.53 m 77.17 75.51 l S 77.17 74.53 m 77.21 75.51 l S 77.21 74.53 m 77.26 74.53 l S 77.26 74.53 m 77.30 77.46 l S 77.30 74.53 m 77.35 78.44 l S 77.35 74.53 m 77.40 74.53 l S 77.40 74.53 m 77.44 74.53 l S 77.44 74.53 m 77.49 74.53 l S 77.49 74.53 m 77.53 74.53 l S 77.53 74.53 m 77.58 74.53 l S 77.58 74.53 m 77.63 74.53 l S 77.63 74.53 m 77.67 74.53 l S 77.67 74.53 m 77.72 74.53 l S 77.72 74.53 m 77.76 74.53 l S 77.76 74.53 m 77.81 74.53 l S 77.81 74.53 m 77.86 74.53 l S 77.86 74.53 m 77.90 74.53 l S 77.90 74.53 m 77.95 74.53 l S 77.95 74.53 m 77.99 74.53 l S 77.99 74.53 m 78.04 74.53 l S 78.04 74.53 m 78.09 74.53 l S 78.09 74.53 m 78.13 74.53 l S 78.13 74.53 m 78.18 74.53 l S 78.18 74.53 m 78.22 74.53 l S 78.22 74.53 m 78.27 74.53 l S 78.27 74.53 m 78.32 74.53 l S 78.32 74.53 m 78.36 74.53 l S 78.36 74.53 m 78.41 74.53 l S 78.41 74.53 m 78.46 75.51 l S 78.46 74.53 m 78.50 74.53 l S 78.50 74.53 m 78.55 74.53 l S 78.55 74.53 m 78.59 74.53 l S 78.59 74.53 m 78.64 74.53 l S 78.64 74.53 m 78.69 75.51 l S 78.69 74.53 m 78.73 75.51 l S 78.73 74.53 m 78.78 74.53 l S 78.78 74.53 m 78.82 74.53 l S 78.82 74.53 m 78.87 74.53 l S 78.87 74.53 m 78.92 74.53 l S 78.92 74.53 m 78.96 74.53 l S 78.96 74.53 m 79.01 74.53 l S 79.01 74.53 m 79.05 74.53 l S 79.05 74.53 m 79.10 74.53 l S 79.10 74.53 m 79.15 74.53 l S 79.15 74.53 m 79.19 74.53 l S 79.19 74.53 m 79.24 75.51 l S 79.24 74.53 m 79.28 74.53 l S 79.28 74.53 m 79.33 75.51 l S 79.33 74.53 m 79.38 75.51 l S 79.38 74.53 m 79.42 74.53 l S 79.42 74.53 m 79.47 74.53 l S 79.47 74.53 m 79.51 75.51 l S 79.51 74.53 m 79.56 74.53 l S 79.56 74.53 m 79.61 74.53 l S 79.61 74.53 m 79.65 76.49 l S 79.65 74.53 m 79.70 75.51 l S 79.70 74.53 m 79.74 75.51 l S 79.74 74.53 m 79.79 76.49 l S 79.79 75.51 m 79.84 78.44 l S 79.84 74.53 m 79.88 78.44 l S 79.88 74.53 m 79.93 74.53 l S 79.93 74.53 m 79.97 74.53 l S 79.97 74.53 m 80.02 74.53 l S 80.02 74.53 m 80.07 75.51 l S 80.07 74.53 m 80.11 74.53 l S 80.11 74.53 m 80.16 74.53 l S 80.16 74.53 m 80.20 74.53 l S 80.20 74.53 m 80.25 74.53 l S 80.25 74.53 m 80.30 74.53 l S 80.30 74.53 m 80.34 74.53 l S 80.34 74.53 m 80.39 74.53 l S 80.39 74.53 m 80.43 75.51 l S 80.43 74.53 m 80.48 75.51 l S 80.48 74.53 m 80.53 74.53 l S 80.53 74.53 m 80.57 75.51 l S 80.57 74.53 m 80.62 75.51 l S 80.62 74.53 m 80.66 74.53 l S 80.66 74.53 m 80.71 76.49 l S 80.71 74.53 m 80.76 78.44 l S 80.76 74.53 m 80.80 74.53 l S 80.80 74.53 m 80.85 74.53 l S 80.85 74.53 m 80.89 74.53 l S 80.89 74.53 m 80.94 74.53 l S 80.94 74.53 m 80.99 75.51 l S 80.99 74.53 m 81.03 76.49 l S 81.03 74.53 m 81.08 74.53 l S 81.08 74.53 m 81.12 74.53 l S 81.12 74.53 m 81.17 74.53 l S 81.17 74.53 m 81.22 75.51 l S 81.22 74.53 m 81.26 74.53 l S 81.26 74.53 m 81.31 75.51 l S 81.31 74.53 m 81.35 75.51 l S 81.35 74.53 m 81.40 74.53 l S 81.40 74.53 m 81.45 75.51 l S 81.45 74.53 m 81.49 75.51 l S 81.49 74.53 m 81.54 74.53 l S 81.54 74.53 m 81.58 74.53 l S 81.58 74.53 m 81.63 74.53 l S 81.63 74.53 m 81.68 74.53 l S 81.68 74.53 m 81.72 74.53 l S 81.72 74.53 m 81.77 74.53 l S 81.77 74.53 m 81.81 74.53 l S 81.81 74.53 m 81.86 74.53 l S 81.86 74.53 m 81.91 74.53 l S 81.91 74.53 m 81.95 74.53 l S 81.95 74.53 m 82.00 74.53 l S 82.00 74.53 m 82.04 74.53 l S 82.04 74.53 m 82.09 74.53 l S 82.09 74.53 m 82.14 74.53 l S 82.14 74.53 m 82.18 74.53 l S 82.18 74.53 m 82.23 74.53 l S 82.23 74.53 m 82.27 74.53 l S 82.27 74.53 m 82.32 74.53 l S 82.32 74.53 m 82.37 74.53 l S 82.37 74.53 m 82.41 74.53 l S 82.41 74.53 m 82.46 74.53 l S 82.46 74.53 m 82.50 74.53 l S 82.50 74.53 m 82.55 75.51 l S 82.55 74.53 m 82.60 74.53 l S 82.60 74.53 m 82.64 74.53 l S 82.64 74.53 m 82.69 74.53 l S 82.69 74.53 m 82.73 74.53 l S 82.73 74.53 m 82.78 75.51 l S 82.78 74.53 m 82.83 75.51 l S 82.83 74.53 m 82.87 76.49 l S 82.87 75.51 m 82.92 78.44 l S 82.92 74.53 m 82.96 77.46 l S 82.96 74.53 m 83.01 75.51 l S 83.01 74.53 m 83.06 75.51 l S 83.06 74.53 m 83.10 75.51 l S 83.10 74.53 m 83.15 78.44 l S 83.15 74.53 m 83.19 76.49 l S 83.19 74.53 m 83.24 74.53 l S 83.24 74.53 m 83.29 74.53 l S 83.29 74.53 m 83.33 80.39 l S 83.33 74.53 m 83.38 79.41 l S 83.38 74.53 m 83.42 74.53 l S 83.42 74.53 m 83.47 74.53 l S 83.47 74.53 m 83.52 74.53 l S 83.52 74.53 m 83.56 74.53 l S 83.56 74.53 m 83.61 74.53 l S 83.61 74.53 m 83.65 74.53 l S 83.65 74.53 m 83.70 74.53 l S 83.70 74.53 m 83.75 74.53 l S 83.75 74.53 m 83.79 74.53 l S 83.79 74.53 m 83.84 74.53 l S 83.84 74.53 m 83.88 74.53 l S 83.88 74.53 m 83.93 74.53 l S 83.93 74.53 m 83.98 74.53 l S 83.98 74.53 m 84.02 74.53 l S 84.02 74.53 m 84.07 74.53 l S 84.07 74.53 m 84.11 74.53 l S 84.11 74.53 m 84.16 74.53 l S 84.16 74.53 m 84.21 74.53 l S 84.21 74.53 m 84.25 74.53 l S 84.25 74.53 m 84.30 74.53 l S 84.30 74.53 m 84.34 74.53 l S 84.34 74.53 m 84.39 74.53 l S 84.39 74.53 m 84.44 74.53 l S 84.44 74.53 m 84.48 74.53 l S 84.48 74.53 m 84.53 74.53 l S 84.53 74.53 m 84.57 74.53 l S 84.57 74.53 m 84.62 74.53 l S 84.62 74.53 m 84.67 76.49 l S 84.67 75.51 m 84.71 78.44 l S 84.71 74.53 m 84.76 75.51 l S 84.76 74.53 m 84.80 74.53 l S 84.80 74.53 m 84.85 74.53 l S 84.85 74.53 m 84.90 74.53 l S 84.90 74.53 m 84.94 74.53 l S 84.94 74.53 m 84.99 74.53 l S 84.99 74.53 m 85.03 74.53 l S 85.03 74.53 m 85.08 74.53 l S 85.08 74.53 m 85.13 74.53 l S 85.13 74.53 m 85.17 75.51 l S 85.17 74.53 m 85.22 75.51 l S 85.22 74.53 m 85.26 74.53 l S 85.26 74.53 m 85.31 74.53 l S 85.31 74.53 m 85.36 74.53 l S 85.36 74.53 m 85.40 74.53 l S 85.40 74.53 m 85.45 74.53 l S 85.45 74.53 m 85.49 74.53 l S 85.49 74.53 m 85.54 74.53 l S 85.54 74.53 m 85.59 76.49 l S 85.59 74.53 m 85.63 75.51 l S 85.63 74.53 m 85.68 74.53 l S 85.68 74.53 m 85.72 74.53 l S 85.72 74.53 m 85.77 74.53 l S 85.77 74.53 m 85.82 74.53 l S 85.82 74.53 m 85.86 74.53 l S 85.86 74.53 m 85.91 74.53 l S 85.91 74.53 m 85.95 74.53 l S 85.95 74.53 m 86.00 74.53 l S 86.00 74.53 m 86.05 74.53 l S 86.05 74.53 m 86.09 74.53 l S 86.09 74.53 m 86.14 74.53 l S 86.14 74.53 m 86.18 74.53 l S 86.18 74.53 m 86.23 74.53 l S 86.23 74.53 m 86.28 74.53 l S 86.28 74.53 m 86.32 74.53 l S 86.32 74.53 m 86.37 74.53 l S 86.37 74.53 m 86.42 74.53 l S 86.42 74.53 m 86.46 74.53 l S 86.46 74.53 m 86.51 74.53 l S 86.51 74.53 m 86.55 74.53 l S 86.55 74.53 m 86.60 74.53 l S 86.60 74.53 m 86.65 74.53 l S 86.65 74.53 m 86.69 74.53 l S 86.69 74.53 m 86.74 74.53 l S 86.74 74.53 m 86.78 76.49 l S 86.78 75.51 m 86.83 76.49 l S 86.83 75.51 m 86.88 81.37 l S 86.88 74.53 m 86.92 80.39 l S 86.92 74.53 m 86.97 74.53 l S 86.97 74.53 m 87.01 74.53 l S 87.01 74.53 m 87.06 74.53 l S 87.06 74.53 m 87.11 74.53 l S 87.11 74.53 m 87.15 74.53 l S 87.15 74.53 m 87.20 74.53 l S 87.20 74.53 m 87.24 74.53 l S 87.24 74.53 m 87.29 74.53 l S 87.29 74.53 m 87.34 74.53 l S 87.34 74.53 m 87.38 75.51 l S 87.38 74.53 m 87.43 75.51 l S 87.43 74.53 m 87.47 74.53 l S 87.47 74.53 m 87.52 74.53 l S 87.52 74.53 m 87.57 75.51 l S 87.57 74.53 m 87.61 74.53 l S 87.61 74.53 m 87.66 74.53 l S 87.66 74.53 m 87.70 76.49 l S 87.70 74.53 m 87.75 76.49 l S 87.75 74.53 m 87.80 75.51 l S 87.80 74.53 m 87.84 75.51 l S 87.84 74.53 m 87.89 74.53 l S 87.89 74.53 m 87.93 74.53 l S 87.93 74.53 m 87.98 74.53 l S 87.98 74.53 m 88.03 74.53 l S 88.03 74.53 m 88.07 74.53 l S 88.07 74.53 m 88.12 74.53 l S 88.12 74.53 m 88.16 74.53 l S 88.16 74.53 m 88.21 74.53 l S 88.21 74.53 m 88.26 74.53 l S 88.26 74.53 m 88.30 74.53 l S 88.30 74.53 m 88.35 74.53 l S 88.35 74.53 m 88.39 75.51 l S 88.39 74.53 m 88.44 74.53 l S 88.44 74.53 m 88.49 75.51 l S 88.49 74.53 m 88.53 74.53 l S 88.53 74.53 m 88.58 74.53 l S 88.58 74.53 m 88.62 74.53 l S 88.62 74.53 m 88.67 75.51 l S 88.67 74.53 m 88.72 77.46 l S 88.72 74.53 m 88.76 76.49 l S 88.76 74.53 m 88.81 74.53 l S 88.81 74.53 m 88.85 75.51 l S 88.85 74.53 m 88.90 75.51 l S 88.90 74.53 m 88.95 74.53 l S 88.95 74.53 m 88.99 74.53 l S 88.99 74.53 m 89.04 74.53 l S 89.04 74.53 m 89.08 75.51 l S 89.08 74.53 m 89.13 75.51 l S 89.13 74.53 m 89.18 75.51 l S 89.18 74.53 m 89.22 75.51 l S 89.22 74.53 m 89.27 74.53 l S 89.27 74.53 m 89.31 74.53 l S 89.31 74.53 m 89.36 74.53 l S 89.36 74.53 m 89.41 75.51 l S 89.41 74.53 m 89.45 75.51 l S 89.45 74.53 m 89.50 76.49 l S 89.50 74.53 m 89.54 76.49 l S 89.54 74.53 m 89.59 74.53 l S 89.59 74.53 m 89.64 74.53 l S 89.64 74.53 m 89.68 74.53 l S 89.68 74.53 m 89.73 74.53 l S 89.73 74.53 m 89.77 75.51 l S 89.77 74.53 m 89.82 75.51 l S 89.82 74.53 m 89.87 74.53 l S 89.87 74.53 m 89.91 74.53 l S 89.91 74.53 m 89.96 74.53 l S 89.96 74.53 m 90.00 74.53 l S 90.00 74.53 m 90.05 74.53 l S 90.05 74.53 m 90.10 75.51 l S 90.10 74.53 m 90.14 74.53 l S 90.14 74.53 m 90.19 74.53 l S 90.19 74.53 m 90.23 74.53 l S 90.23 74.53 m 90.28 74.53 l S 90.28 74.53 m 90.33 74.53 l S 90.33 74.53 m 90.37 74.53 l S 90.37 74.53 m 90.42 76.49 l S 90.42 74.53 m 90.46 76.49 l S 90.46 74.53 m 90.51 74.53 l S 90.51 74.53 m 90.56 74.53 l S 90.56 74.53 m 90.60 74.53 l S 90.60 74.53 m 90.65 74.53 l S 90.65 74.53 m 90.69 74.53 l S 90.69 74.53 m 90.74 74.53 l S 90.74 74.53 m 90.79 75.51 l S 90.79 74.53 m 90.83 75.51 l S 90.83 74.53 m 90.88 74.53 l S 90.88 74.53 m 90.92 74.53 l S 90.92 74.53 m 90.97 74.53 l S 90.97 74.53 m 91.02 74.53 l S 91.02 74.53 m 91.06 74.53 l S 91.06 74.53 m 91.11 75.51 l S 91.11 74.53 m 91.15 75.51 l S 91.15 74.53 m 91.20 75.51 l S 91.20 74.53 m 91.25 74.53 l S 91.25 74.53 m 91.29 74.53 l S 91.29 74.53 m 91.34 74.53 l S 91.34 74.53 m 91.38 74.53 l S 91.38 74.53 m 91.43 74.53 l S 91.43 74.53 m 91.48 74.53 l S 91.48 74.53 m 91.52 76.49 l S 91.52 74.53 m 91.57 76.49 l S 91.57 74.53 m 91.61 75.51 l S 91.61 74.53 m 91.66 74.53 l S 91.66 74.53 m 91.71 74.53 l S 91.71 74.53 m 91.75 75.51 l S 91.75 75.51 m 91.80 77.46 l S 91.80 74.53 m 91.84 76.49 l S 91.84 74.53 m 91.89 76.49 l S 91.89 74.53 m 91.94 74.53 l S 91.94 74.53 m 91.98 74.53 l S 91.98 74.53 m 92.03 74.53 l S 92.03 74.53 m 92.07 74.53 l S 92.07 74.53 m 92.12 75.51 l S 92.12 74.53 m 92.17 75.51 l S 92.17 74.53 m 92.21 76.49 l S 92.21 75.51 m 92.26 81.37 l S 92.26 78.44 m 92.30 80.39 l S 92.30 76.49 m 92.35 79.41 l S 92.35 75.51 m 92.40 79.41 l S 92.40 76.49 m 92.44 96.01 l S 92.44 77.46 m 92.49 92.10 l S 92.49 75.51 m 92.53 78.44 l S 92.53 76.49 m 92.58 79.41 l S 92.58 74.53 m 92.63 78.44 l S 92.63 74.53 m 92.67 75.51 l S 92.67 74.53 m 92.72 74.53 l S 92.72 74.53 m 92.76 74.53 l S 92.76 74.53 m 92.81 76.49 l S 92.81 75.51 m 92.86 78.44 l S 92.86 76.49 m 92.90 79.41 l S 92.90 74.53 m 92.95 77.46 l S 92.95 74.53 m 92.99 76.49 l S 92.99 75.51 m 93.04 77.46 l S 93.04 75.51 m 93.09 77.46 l S 93.09 74.53 m 93.13 75.51 l S 93.13 74.53 m 93.18 76.49 l S 93.18 74.53 m 93.22 75.51 l S 93.22 74.53 m 93.27 77.46 l S 93.27 75.51 m 93.32 78.44 l S 93.32 74.53 m 93.36 76.49 l S 93.36 75.51 m 93.41 76.49 l S 93.41 75.51 m 93.45 77.46 l S 93.45 75.51 m 93.50 77.46 l S 93.50 74.53 m 93.55 75.51 l S 93.55 74.53 m 93.59 74.53 l S 93.59 74.53 m 93.64 74.53 l S 93.64 74.53 m 93.68 75.51 l S 93.68 74.53 m 93.73 75.51 l S 93.73 74.53 m 93.78 74.53 l S 93.78 74.53 m 93.82 74.53 l S 93.82 74.53 m 93.87 75.51 l S 93.87 74.53 m 93.91 78.44 l S 93.91 74.53 m 93.96 74.53 l S 93.96 74.53 m 94.01 75.51 l S 94.01 74.53 m 94.05 75.51 l S 94.05 75.51 m 94.10 78.44 l S 94.10 74.53 m 94.14 75.51 l S 94.14 74.53 m 94.19 74.53 l S 94.19 74.53 m 94.24 74.53 l S 94.24 74.53 m 94.28 74.53 l S 94.28 74.53 m 94.33 75.51 l S 94.33 74.53 m 94.37 75.51 l S 94.37 74.53 m 94.42 74.53 l S 94.42 74.53 m 94.47 74.53 l S 94.47 74.53 m 94.51 75.51 l S 94.51 74.53 m 94.56 74.53 l S 94.56 74.53 m 94.61 74.53 l S 94.61 74.53 m 94.65 80.39 l S 94.65 74.53 m 94.70 79.41 l S 94.70 74.53 m 94.74 75.51 l S 94.74 74.53 m 94.79 75.51 l S 94.79 74.53 m 94.84 75.51 l S 94.84 74.53 m 94.88 75.51 l S 94.88 74.53 m 94.93 75.51 l S 94.93 74.53 m 94.97 74.53 l S 94.97 74.53 m 95.02 74.53 l S 95.02 74.53 m 95.07 74.53 l S 95.07 74.53 m 95.11 74.53 l S 95.11 74.53 m 95.16 75.51 l S 95.16 74.53 m 95.20 75.51 l S 95.20 74.53 m 95.25 75.51 l S 95.25 74.53 m 95.30 75.51 l S 95.30 74.53 m 95.34 74.53 l S 95.34 74.53 m 95.39 74.53 l S 95.39 74.53 m 95.43 76.49 l S 95.43 74.53 m 95.48 75.51 l S 95.48 75.51 m 95.53 77.46 l S 95.53 74.53 m 95.57 75.51 l S 95.57 74.53 m 95.62 75.51 l S 95.62 74.53 m 95.66 75.51 l S 95.66 74.53 m 95.71 74.53 l S 95.71 74.53 m 95.76 77.46 l S 95.76 74.53 m 95.80 74.53 l S 95.80 74.53 m 95.85 75.51 l S 95.85 75.51 m 95.89 77.46 l S 95.89 74.53 m 95.94 76.49 l S 95.94 74.53 m 95.99 75.51 l S 95.99 74.53 m 96.03 77.46 l S 96.03 74.53 m 96.08 77.46 l S 96.08 74.53 m 96.12 74.53 l S 96.12 74.53 m 96.17 76.49 l S 96.17 74.53 m 96.22 76.49 l S 96.22 74.53 m 96.26 76.49 l S 96.26 74.53 m 96.31 76.49 l S 96.31 74.53 m 96.35 76.49 l S 96.35 74.53 m 96.40 77.46 l S 96.40 74.53 m 96.45 74.53 l S 96.45 74.53 m 96.49 74.53 l S 96.49 74.53 m 96.54 75.51 l S 96.54 74.53 m 96.58 89.18 l S 96.58 81.37 m 96.63 93.08 l S 96.63 80.39 m 96.68 85.27 l S 96.68 76.49 m 96.72 83.32 l S 96.72 77.46 m 96.77 80.39 l S 96.77 78.44 m 96.81 82.34 l S 96.81 77.46 m 96.86 82.34 l S 96.86 75.51 m 96.91 79.41 l S 96.91 74.53 m 96.95 75.51 l S 96.95 74.53 m 97.00 74.53 l S 97.00 74.53 m 97.04 74.53 l S 97.04 74.53 m 97.09 74.53 l S 97.09 74.53 m 97.14 74.53 l S 97.14 74.53 m 97.18 75.51 l S 97.18 74.53 m 97.23 75.51 l S 97.23 74.53 m 97.27 74.53 l S 97.27 74.53 m 97.32 75.51 l S 97.32 74.53 m 97.37 75.51 l S 97.37 74.53 m 97.41 74.53 l S 97.41 74.53 m 97.46 75.51 l S 97.46 74.53 m 97.50 75.51 l S 97.50 74.53 m 97.55 74.53 l S 97.55 74.53 m 97.60 75.51 l S 97.60 74.53 m 97.64 75.51 l S 97.64 74.53 m 97.69 76.49 l S 97.69 74.53 m 97.73 76.49 l S 97.73 74.53 m 97.78 76.49 l S 97.78 74.53 m 97.83 77.46 l S 97.83 74.53 m 97.87 77.46 l S 97.87 74.53 m 97.92 74.53 l S 97.92 74.53 m 97.96 74.53 l S 97.96 74.53 m 98.01 74.53 l S 98.01 74.53 m 98.06 74.53 l S 98.06 74.53 m 98.10 74.53 l S 98.10 74.53 m 98.15 76.49 l S 98.15 74.53 m 98.19 76.49 l S 98.19 74.53 m 98.24 74.53 l S 98.24 74.53 m 98.29 75.51 l S 98.29 74.53 m 98.33 75.51 l S 98.33 74.53 m 98.38 75.51 l S 98.38 74.53 m 98.42 74.53 l S 98.42 74.53 m 98.47 75.51 l S 98.47 74.53 m 98.52 75.51 l S 98.52 74.53 m 98.56 74.53 l S 98.56 74.53 m 98.61 75.51 l S 98.61 74.53 m 98.65 74.53 l S 98.65 74.53 m 98.70 74.53 l S 98.70 74.53 m 98.75 76.49 l S 98.75 74.53 m 98.79 77.46 l S 98.79 74.53 m 98.84 75.51 l S 98.84 74.53 m 98.88 77.46 l S 98.88 74.53 m 98.93 77.46 l S 98.93 74.53 m 98.98 74.53 l S 98.98 74.53 m 99.02 75.51 l S 99.02 74.53 m 99.07 75.51 l S 99.07 74.53 m 99.11 75.51 l S 99.11 74.53 m 99.16 75.51 l S 99.16 74.53 m 99.21 75.51 l S 99.21 74.53 m 99.25 74.53 l S 99.25 74.53 m 99.30 74.53 l S 99.30 74.53 m 99.34 74.53 l S 99.34 74.53 m 99.39 74.53 l S 99.39 74.53 m 99.44 75.51 l S 99.44 74.53 m 99.48 76.49 l S 99.48 74.53 m 99.53 77.46 l S 99.53 74.53 m 99.57 77.46 l S 99.57 74.53 m 99.62 75.51 l S 99.62 74.53 m 99.67 74.53 l S 99.67 74.53 m 99.71 75.51 l S 99.71 74.53 m 99.76 75.51 l S 99.76 74.53 m 99.80 75.51 l S 99.80 74.53 m 99.85 74.53 l S 99.85 74.53 m 99.90 74.53 l S 99.90 74.53 m 99.94 74.53 l S 99.94 74.53 m 99.99 74.53 l S 99.99 74.53 m 100.03 74.53 l S 100.03 74.53 m 100.08 74.53 l S 100.08 74.53 m 100.13 75.51 l S 100.13 74.53 m 100.17 75.51 l S 100.17 74.53 m 100.22 74.53 l S 100.22 74.53 m 100.26 74.53 l S 100.26 74.53 m 100.31 74.53 l S 100.31 74.53 m 100.36 74.53 l S 100.36 74.53 m 100.40 75.51 l S 100.40 74.53 m 100.45 75.51 l S 100.45 74.53 m 100.49 75.51 l S 100.49 74.53 m 100.54 76.49 l S 100.54 74.53 m 100.59 76.49 l S 100.59 74.53 m 100.63 75.51 l S 100.63 74.53 m 100.68 74.53 l S 100.68 74.53 m 100.72 74.53 l S 100.72 74.53 m 100.77 77.46 l S 100.77 74.53 m 100.82 77.46 l S 100.82 74.53 m 100.86 75.51 l S 100.86 74.53 m 100.91 78.44 l S 100.91 74.53 m 100.95 74.53 l S 100.95 74.53 m 101.00 75.51 l S 101.00 74.53 m 101.05 75.51 l S 101.05 74.53 m 101.09 74.53 l S 101.09 74.53 m 101.14 75.51 l S 101.14 74.53 m 101.18 76.49 l S 101.18 74.53 m 101.23 74.53 l S 101.23 74.53 m 101.28 74.53 l S 101.28 74.53 m 101.32 74.53 l S 101.32 74.53 m 101.37 74.53 l S 101.37 74.53 m 101.41 74.53 l S 101.41 74.53 m 101.46 75.51 l S 101.46 74.53 m 101.51 76.49 l S 101.51 75.51 m 101.55 77.46 l S 101.55 74.53 m 101.60 75.51 l S 101.60 74.53 m 101.64 75.51 l S 101.64 74.53 m 101.69 75.51 l S 101.69 74.53 m 101.74 75.51 l S 101.74 74.53 m 101.78 75.51 l S 101.78 74.53 m 101.83 75.51 l S 101.83 74.53 m 101.87 79.41 l S 101.87 77.46 m 101.92 82.34 l S 101.92 75.51 m 101.97 84.30 l S 101.97 74.53 m 102.01 77.46 l S 102.01 74.53 m 102.06 74.53 l S 102.06 74.53 m 102.10 79.41 l S 102.10 77.46 m 102.15 79.41 l S 102.15 77.46 m 102.20 86.25 l S 102.20 75.51 m 102.24 83.32 l S 102.24 78.44 m 102.29 89.18 l S 102.29 87.22 m 102.33 97.96 l S 102.33 82.34 m 102.38 94.06 l S 102.38 87.22 m 102.43 101.87 l S 102.43 79.41 m 102.47 87.22 l S 102.47 74.53 m 102.52 81.37 l S 102.52 74.53 m 102.57 75.51 l S 102.57 74.53 m 102.61 75.51 l S 102.61 74.53 m 102.66 79.41 l S 102.66 76.49 m 102.70 79.41 l S 102.70 74.53 m 102.75 77.46 l S 102.75 74.53 m 102.80 74.53 l S 102.80 74.53 m 102.84 74.53 l S 102.84 74.53 m 102.89 74.53 l S 102.89 74.53 m 102.93 74.53 l S 102.93 74.53 m 102.98 74.53 l S 102.98 74.53 m 103.03 74.53 l S 103.03 74.53 m 103.07 74.53 l S 103.07 74.53 m 103.12 74.53 l S 103.12 74.53 m 103.16 74.53 l S 103.16 74.53 m 103.21 74.53 l S 103.21 74.53 m 103.26 74.53 l S 103.26 74.53 m 103.30 74.53 l S 103.30 74.53 m 103.35 74.53 l S 103.35 74.53 m 103.39 74.53 l S 103.39 74.53 m 103.44 74.53 l S 103.44 74.53 m 103.49 74.53 l S 103.49 74.53 m 103.53 74.53 l S 103.53 74.53 m 103.58 74.53 l S 103.58 74.53 m 103.62 74.53 l S 103.62 74.53 m 103.67 74.53 l S 103.67 74.53 m 103.72 74.53 l S 103.72 74.53 m 103.76 74.53 l S 103.76 74.53 m 103.81 74.53 l S 103.81 74.53 m 103.85 74.53 l S 103.85 74.53 m 103.90 74.53 l S 103.90 74.53 m 103.95 74.53 l S 103.95 74.53 m 103.99 75.51 l S 103.99 74.53 m 104.04 75.51 l S 104.04 74.53 m 104.08 74.53 l S 104.08 74.53 m 104.13 74.53 l S 104.13 74.53 m 104.18 74.53 l S 104.18 74.53 m 104.22 74.53 l S 104.22 74.53 m 104.27 74.53 l S 104.27 74.53 m 104.31 74.53 l S 104.31 74.53 m 104.36 74.53 l S 104.36 74.53 m 104.41 74.53 l S 104.41 74.53 m 104.45 74.53 l S 104.45 74.53 m 104.50 74.53 l S 104.50 74.53 m 104.54 74.53 l S 104.54 74.53 m 104.59 75.51 l S 104.59 74.53 m 104.64 74.53 l S 104.64 74.53 m 104.68 74.53 l S 104.68 74.53 m 104.73 74.53 l S 104.73 74.53 m 104.77 75.51 l S 104.77 74.53 m 104.82 75.51 l S 104.82 74.53 m 104.87 74.53 l S 104.87 74.53 m 104.91 75.51 l S 104.91 74.53 m 104.96 75.51 l S 104.96 74.53 m 105.00 74.53 l S 105.00 74.53 m 105.05 74.53 l S 105.05 74.53 m 105.10 74.53 l S 105.10 74.53 m 105.14 77.46 l S 105.14 74.53 m 105.19 77.46 l S 105.19 74.53 m 105.23 74.53 l S 105.23 74.53 m 105.28 74.53 l S 105.28 74.53 m 105.33 74.53 l S 105.33 74.53 m 105.37 75.51 l S 105.37 74.53 m 105.42 75.51 l S 105.42 74.53 m 105.46 74.53 l S 105.46 74.53 m 105.51 74.53 l S 105.51 74.53 m 105.56 74.53 l S 105.56 74.53 m 105.60 74.53 l S 105.60 74.53 m 105.65 74.53 l S 105.65 74.53 m 105.69 74.53 l S 105.69 74.53 m 105.74 74.53 l S 105.74 74.53 m 105.79 74.53 l S 105.79 74.53 m 105.83 74.53 l S 105.83 74.53 m 105.88 75.51 l S 105.88 74.53 m 105.92 75.51 l S 105.92 74.53 m 105.97 76.49 l S 105.97 74.53 m 106.02 76.49 l S 106.02 74.53 m 106.06 74.53 l S 106.06 74.53 m 106.11 74.53 l S 106.11 74.53 m 106.15 74.53 l S 106.15 74.53 m 106.20 74.53 l S 106.20 74.53 m 106.25 74.53 l S 106.25 74.53 m 106.29 76.49 l S 106.29 74.53 m 106.34 76.49 l S 106.34 74.53 m 106.38 78.44 l S 106.38 75.51 m 106.43 78.44 l S 106.43 74.53 m 106.48 76.49 l S 106.48 74.53 m 106.52 83.32 l S 106.52 74.53 m 106.57 85.27 l S 106.57 74.53 m 106.61 74.53 l S 106.61 74.53 m 106.66 74.53 l S 106.66 74.53 m 106.71 74.53 l S 106.71 74.53 m 106.75 76.49 l S 106.75 74.53 m 106.80 74.53 l S 106.80 74.53 m 106.84 74.53 l S 106.84 74.53 m 106.89 74.53 l S 106.89 74.53 m 106.94 74.53 l S 106.94 74.53 m 106.98 74.53 l S 106.98 74.53 m 107.03 74.53 l S 107.03 74.53 m 107.07 74.53 l S 107.07 74.53 m 107.12 74.53 l S 107.12 74.53 m 107.17 74.53 l S 107.17 74.53 m 107.21 74.53 l S 107.21 74.53 m 107.26 74.53 l S 107.26 74.53 m 107.30 74.53 l S 107.30 74.53 m 107.35 74.53 l S 107.35 74.53 m 107.40 74.53 l S 107.40 74.53 m 107.44 74.53 l S 107.44 74.53 m 107.49 74.53 l S 107.49 74.53 m 107.53 74.53 l S 107.53 74.53 m 107.58 74.53 l S 107.58 74.53 m 107.63 74.53 l S 107.63 74.53 m 107.67 74.53 l S 107.67 74.53 m 107.72 74.53 l S 107.72 74.53 m 107.76 74.53 l S 107.76 74.53 m 107.81 74.53 l S 107.81 74.53 m 107.86 74.53 l S 107.86 74.53 m 107.90 74.53 l S 107.90 74.53 m 107.95 74.53 l S 107.95 74.53 m 107.99 74.53 l S 107.99 74.53 m 108.04 74.53 l S 108.04 74.53 m 108.09 74.53 l S 108.09 74.53 m 108.13 74.53 l S 108.13 74.53 m 108.18 74.53 l S 108.18 74.53 m 108.22 74.53 l S 108.22 74.53 m 108.27 74.53 l S 108.27 74.53 m 108.32 76.49 l S 108.32 74.53 m 108.36 76.49 l S 108.36 74.53 m 108.41 75.51 l S 108.41 74.53 m 108.45 74.53 l S 108.45 74.53 m 108.50 74.53 l S 108.50 74.53 m 108.55 74.53 l S 108.55 74.53 m 108.59 77.46 l S 108.59 74.53 m 108.64 75.51 l S 108.64 74.53 m 108.68 74.53 l S 108.68 74.53 m 108.73 74.53 l S 108.73 74.53 m 108.78 74.53 l S 108.78 74.53 m 108.82 74.53 l S 108.82 74.53 m 108.87 74.53 l S 108.87 74.53 m 108.91 74.53 l S 108.91 74.53 m 108.96 74.53 l S 108.96 74.53 m 109.01 74.53 l S 109.01 74.53 m 109.05 74.53 l S 109.05 74.53 m 109.10 75.51 l S 109.10 74.53 m 109.14 77.46 l S 109.14 74.53 m 109.19 78.44 l S 109.19 74.53 m 109.24 74.53 l S 109.24 74.53 m 109.28 74.53 l S 109.28 74.53 m 109.33 74.53 l S 109.33 74.53 m 109.37 74.53 l S 109.37 74.53 m 109.42 74.53 l S 109.42 74.53 m 109.47 74.53 l S 109.47 74.53 m 109.51 74.53 l S 109.51 74.53 m 109.56 74.53 l S 109.56 74.53 m 109.60 74.53 l S 109.60 74.53 m 109.65 74.53 l S 109.65 74.53 m 109.70 74.53 l S 109.70 74.53 m 109.74 75.51 l S 109.74 74.53 m 109.79 75.51 l S 109.79 74.53 m 109.83 74.53 l S 109.83 74.53 m 109.88 74.53 l S 109.88 74.53 m 109.93 74.53 l S 109.93 74.53 m 109.97 74.53 l S 109.97 74.53 m 110.02 75.51 l S 110.02 74.53 m 110.06 75.51 l S 110.06 74.53 m 110.11 74.53 l S 110.11 74.53 m 110.16 74.53 l S 110.16 74.53 m 110.20 74.53 l S 110.20 74.53 m 110.25 76.49 l S 110.25 74.53 m 110.29 76.49 l S 110.29 74.53 m 110.34 75.51 l S 110.34 74.53 m 110.39 76.49 l S 110.39 74.53 m 110.43 74.53 l S 110.43 74.53 m 110.48 74.53 l S 110.48 74.53 m 110.53 74.53 l S 110.53 74.53 m 110.57 74.53 l S 110.57 74.53 m 110.62 74.53 l S 110.62 74.53 m 110.66 74.53 l S 110.66 74.53 m 110.71 74.53 l S 110.71 74.53 m 110.76 74.53 l S 110.76 74.53 m 110.80 74.53 l S 110.80 74.53 m 110.85 74.53 l S 110.85 74.53 m 110.89 74.53 l S 110.89 74.53 m 110.94 74.53 l S 110.94 74.53 m 110.99 74.53 l S 110.99 74.53 m 111.03 74.53 l S 111.03 74.53 m 111.08 74.53 l S 111.08 74.53 m 111.12 74.53 l S 111.12 74.53 m 111.17 74.53 l S 111.17 74.53 m 111.22 74.53 l S 111.22 74.53 m 111.26 74.53 l S 111.26 74.53 m 111.31 74.53 l S 111.31 74.53 m 111.35 74.53 l S 111.35 74.53 m 111.40 74.53 l S 111.40 74.53 m 111.45 74.53 l S 111.45 74.53 m 111.49 74.53 l S 111.49 74.53 m 111.54 74.53 l S 111.54 74.53 m 111.58 74.53 l S 111.58 74.53 m 111.63 74.53 l S 111.63 74.53 m 111.68 74.53 l S 111.68 74.53 m 111.72 76.49 l S 111.72 74.53 m 111.77 76.49 l S 111.77 74.53 m 111.81 74.53 l S 111.81 74.53 m 111.86 75.51 l S 111.86 74.53 m 111.91 75.51 l S 111.91 74.53 m 111.95 74.53 l S 111.95 74.53 m 112.00 74.53 l S 112.00 74.53 m 112.04 74.53 l S 112.04 74.53 m 112.09 74.53 l S 112.09 74.53 m 112.14 75.51 l S 112.14 74.53 m 112.18 74.53 l S 112.18 74.53 m 112.23 74.53 l S 112.23 74.53 m 112.27 74.53 l S 112.27 74.53 m 112.32 74.53 l S 112.32 74.53 m 112.37 74.53 l S 112.37 74.53 m 112.41 74.53 l S 112.41 74.53 m 112.46 74.53 l S 112.46 74.53 m 112.50 74.53 l S 112.50 74.53 m 112.55 74.53 l S 112.55 74.53 m 112.60 74.53 l S 112.60 74.53 m 112.64 74.53 l S 112.64 74.53 m 112.69 74.53 l S 112.69 74.53 m 112.73 74.53 l S 112.73 74.53 m 112.78 74.53 l S 112.78 74.53 m 112.83 74.53 l S 112.83 74.53 m 112.87 74.53 l S 112.87 74.53 m 112.92 74.53 l S 112.92 74.53 m 112.96 74.53 l S 112.96 74.53 m 113.01 74.53 l S 113.01 74.53 m 113.06 74.53 l S 113.06 74.53 m 113.10 74.53 l S 113.10 74.53 m 113.15 74.53 l S 113.15 74.53 m 113.19 76.49 l S 113.19 74.53 m 113.24 76.49 l S 113.24 74.53 m 113.29 74.53 l S 113.29 74.53 m 113.33 74.53 l S 113.33 74.53 m 113.38 74.53 l S 113.38 74.53 m 113.42 74.53 l S 113.42 74.53 m 113.47 74.53 l S 113.47 74.53 m 113.52 74.53 l S 113.52 74.53 m 113.56 74.53 l S 113.56 74.53 m 113.61 74.53 l S 113.61 74.53 m 113.65 74.53 l S 113.65 74.53 m 113.70 74.53 l S 113.70 74.53 m 113.75 74.53 l S 113.75 74.53 m 113.79 74.53 l S 113.79 74.53 m 113.84 74.53 l S 113.84 74.53 m 113.88 74.53 l S 113.88 74.53 m 113.93 74.53 l S 113.93 74.53 m 113.98 74.53 l S 113.98 74.53 m 114.02 74.53 l S 114.02 74.53 m 114.07 75.51 l S 114.07 74.53 m 114.11 75.51 l S 114.11 74.53 m 114.16 74.53 l S 114.16 74.53 m 114.21 75.51 l S 114.21 74.53 m 114.25 75.51 l S 114.25 74.53 m 114.30 75.51 l S 114.30 74.53 m 114.34 74.53 l S 114.34 74.53 m 114.39 74.53 l S 114.39 74.53 m 114.44 74.53 l S 114.44 74.53 m 114.48 74.53 l S 114.48 74.53 m 114.53 74.53 l S 114.53 74.53 m 114.57 74.53 l S 114.57 74.53 m 114.62 74.53 l S 114.62 74.53 m 114.67 75.51 l S 114.67 74.53 m 114.71 75.51 l S 114.71 74.53 m 114.76 74.53 l S 114.76 74.53 m 114.80 74.53 l S 114.80 74.53 m 114.85 75.51 l S 114.85 74.53 m 114.90 75.51 l S 114.90 74.53 m 114.94 74.53 l S 114.94 74.53 m 114.99 74.53 l S 114.99 74.53 m 115.03 74.53 l S 115.03 74.53 m 115.08 74.53 l S 115.08 74.53 m 115.13 74.53 l S 115.13 74.53 m 115.17 74.53 l S 115.17 74.53 m 115.22 74.53 l S 115.22 74.53 m 115.26 74.53 l S 115.26 74.53 m 115.31 74.53 l S 115.31 74.53 m 115.36 74.53 l S 115.36 74.53 m 115.40 74.53 l S 115.40 74.53 m 115.45 74.53 l S 115.45 74.53 m 115.49 74.53 l S 115.49 74.53 m 115.54 75.51 l S 115.54 74.53 m 115.59 74.53 l S 115.59 74.53 m 115.63 74.53 l S 115.63 74.53 m 115.68 74.53 l S 115.68 74.53 m 115.72 74.53 l S 115.72 74.53 m 115.77 74.53 l S 115.77 74.53 m 115.82 74.53 l S 115.82 74.53 m 115.86 74.53 l S 115.86 74.53 m 115.91 74.53 l S 115.91 74.53 m 115.95 74.53 l S 115.95 74.53 m 116.00 74.53 l S 116.00 74.53 m 116.05 74.53 l S 116.05 74.53 m 116.09 74.53 l S 116.09 74.53 m 116.14 74.53 l S 116.14 74.53 m 116.18 74.53 l S 116.18 74.53 m 116.23 74.53 l S 116.23 74.53 m 116.28 74.53 l S 116.28 74.53 m 116.32 74.53 l S 116.32 74.53 m 116.37 74.53 l S 116.37 74.53 m 116.41 74.53 l S 116.41 74.53 m 116.46 74.53 l S 116.46 74.53 m 116.51 74.53 l S 116.51 74.53 m 116.55 74.53 l S 116.55 74.53 m 116.60 74.53 l S 116.60 74.53 m 116.64 74.53 l S 116.64 74.53 m 116.69 74.53 l S 116.69 74.53 m 116.74 74.53 l S 116.74 74.53 m 116.78 74.53 l S 116.78 74.53 m 116.83 75.51 l S 116.83 74.53 m 116.87 75.51 l S 116.87 74.53 m 116.92 74.53 l S 116.92 74.53 m 116.97 74.53 l S 116.97 74.53 m 117.01 74.53 l S 117.01 74.53 m 117.06 74.53 l S 117.06 74.53 m 117.10 74.53 l S 117.10 74.53 m 117.15 74.53 l S 117.15 74.53 m 117.20 74.53 l S 117.20 74.53 m 117.24 74.53 l S 117.24 74.53 m 117.29 74.53 l S 117.29 74.53 m 117.33 74.53 l S 117.33 74.53 m 117.38 74.53 l S 117.38 74.53 m 117.43 74.53 l S 117.43 74.53 m 117.47 74.53 l S 117.47 74.53 m 117.52 74.53 l S 117.52 74.53 m 117.56 75.51 l S 117.56 74.53 m 117.61 75.51 l S 117.61 74.53 m 117.66 74.53 l S 117.66 74.53 m 117.70 74.53 l S 117.70 74.53 m 117.75 75.51 l S 117.75 74.53 m 117.79 75.51 l S 117.79 74.53 m 117.84 74.53 l S 117.84 74.53 m 117.89 74.53 l S 117.89 74.53 m 117.93 74.53 l S 117.93 74.53 m 117.98 74.53 l S 117.98 74.53 m 118.02 74.53 l S 118.02 74.53 m 118.07 74.53 l S 118.07 74.53 m 118.12 74.53 l S 118.12 74.53 m 118.16 74.53 l S 118.16 74.53 m 118.21 75.51 l S 118.21 74.53 m 118.25 75.51 l S 118.25 74.53 m 118.30 74.53 l S 118.30 74.53 m 118.35 74.53 l S 118.35 74.53 m 118.39 74.53 l S 118.39 74.53 m 118.44 74.53 l S 118.44 74.53 m 118.49 74.53 l S 118.49 74.53 m 118.53 74.53 l S 118.53 74.53 m 118.58 75.51 l S 118.58 74.53 m 118.62 75.51 l S 118.62 74.53 m 118.67 74.53 l S 118.67 74.53 m 118.72 74.53 l S 118.72 74.53 m 118.76 74.53 l S 118.76 74.53 m 118.81 74.53 l S 118.81 74.53 m 118.85 74.53 l S 118.85 74.53 m 118.90 74.53 l S 118.90 74.53 m 118.95 74.53 l S 118.95 74.53 m 118.99 74.53 l S 118.99 74.53 m 119.04 74.53 l S 119.04 74.53 m 119.08 74.53 l S 119.08 74.53 m 119.13 75.51 l S 119.13 74.53 m 119.18 75.51 l S 119.18 74.53 m 119.22 74.53 l S 119.22 74.53 m 119.27 74.53 l S 119.27 74.53 m 119.31 74.53 l S 119.31 74.53 m 119.36 75.51 l S 119.36 74.53 m 119.41 75.51 l S 119.41 74.53 m 119.45 74.53 l S 119.45 74.53 m 119.50 74.53 l S 119.50 74.53 m 119.54 74.53 l S 119.54 74.53 m 119.59 74.53 l S 119.59 74.53 m 119.64 74.53 l S 119.64 74.53 m 119.68 74.53 l S 119.68 74.53 m 119.73 74.53 l S 119.73 74.53 m 119.77 74.53 l S 119.77 74.53 m 119.82 74.53 l S 119.82 74.53 m 119.87 74.53 l S 119.87 74.53 m 119.91 74.53 l S 119.91 74.53 m 119.96 74.53 l S 119.96 74.53 m 120.00 74.53 l S 120.00 74.53 m 120.05 74.53 l S 120.05 74.53 m 120.10 74.53 l S 120.10 74.53 m 120.14 74.53 l S 120.14 74.53 m 120.19 74.53 l S 120.19 74.53 m 120.23 74.53 l S 120.23 74.53 m 120.28 74.53 l S 120.28 74.53 m 120.33 74.53 l S 120.33 74.53 m 120.37 74.53 l S 120.37 74.53 m 120.42 74.53 l S 120.42 74.53 m 120.46 74.53 l S 120.46 74.53 m 120.51 74.53 l S 120.51 74.53 m 120.56 74.53 l S 120.56 74.53 m 120.60 74.53 l S 120.60 74.53 m 120.65 74.53 l S 120.65 74.53 m 120.69 74.53 l S 120.69 74.53 m 120.74 74.53 l S 120.74 74.53 m 120.79 74.53 l S 120.79 74.53 m 120.83 74.53 l S 120.83 74.53 m 120.88 74.53 l S 120.88 74.53 m 120.92 74.53 l S 120.92 74.53 m 120.97 74.53 l S 120.97 74.53 m 121.02 74.53 l S 121.02 74.53 m 121.06 74.53 l S 121.06 74.53 m 121.11 74.53 l S 121.11 74.53 m 121.15 74.53 l S 121.15 74.53 m 121.20 74.53 l S 121.20 74.53 m 121.25 74.53 l S 121.25 74.53 m 121.29 74.53 l S 121.29 74.53 m 121.34 74.53 l S 121.34 74.53 m 121.38 76.49 l S 121.38 74.53 m 121.43 76.49 l S 121.43 74.53 m 121.48 74.53 l S 121.48 74.53 m 121.52 74.53 l S 121.52 74.53 m 121.57 74.53 l S 121.57 74.53 m 121.61 74.53 l S 121.61 74.53 m 121.66 74.53 l S 121.66 74.53 m 121.71 74.53 l S 121.71 74.53 m 121.75 74.53 l S 121.75 74.53 m 121.80 74.53 l S 121.80 74.53 m 121.84 74.53 l S 121.84 74.53 m 121.89 76.49 l S 121.89 74.53 m 121.94 75.51 l S 121.94 74.53 m 121.98 75.51 l S 121.98 74.53 m 122.03 74.53 l S 122.03 74.53 m 122.07 74.53 l S 122.07 74.53 m 122.12 74.53 l S 122.12 74.53 m 122.17 74.53 l S 122.17 74.53 m 122.21 74.53 l S 122.21 74.53 m 122.26 74.53 l S 122.26 74.53 m 122.30 74.53 l S 122.30 74.53 m 122.35 74.53 l S 122.35 74.53 m 122.40 74.53 l S 122.40 74.53 m 122.44 75.51 l S 122.44 74.53 m 122.49 75.51 l S 122.49 74.53 m 122.53 75.51 l S 122.53 74.53 m 122.58 75.51 l S 122.58 74.53 m 122.63 74.53 l S 122.63 74.53 m 122.67 75.51 l S 122.67 74.53 m 122.72 74.53 l S 122.72 74.53 m 122.76 74.53 l S 122.76 74.53 m 122.81 74.53 l S 122.81 74.53 m 122.86 74.53 l S 122.86 74.53 m 122.90 74.53 l S 122.90 74.53 m 122.95 75.51 l S 122.95 74.53 m 122.99 74.53 l S 122.99 74.53 m 123.04 74.53 l S 123.04 74.53 m 123.09 74.53 l S 123.09 74.53 m 123.13 74.53 l S 123.13 74.53 m 123.18 74.53 l S 123.18 74.53 m 123.22 74.53 l S 123.22 74.53 m 123.27 74.53 l S 123.27 74.53 m 123.32 74.53 l S 123.32 74.53 m 123.36 74.53 l S 123.36 74.53 m 123.41 74.53 l S 123.41 74.53 m 123.45 74.53 l S 123.45 74.53 m 123.50 74.53 l S 123.50 74.53 m 123.55 76.49 l S 123.55 74.53 m 123.59 75.51 l S 123.59 74.53 m 123.64 74.53 l S 123.64 74.53 m 123.68 74.53 l S 123.68 74.53 m 123.73 74.53 l S 123.73 74.53 m 123.78 74.53 l S 123.78 74.53 m 123.82 76.49 l S 123.82 74.53 m 123.87 76.49 l S 123.87 74.53 m 123.91 74.53 l S 123.91 74.53 m 123.96 74.53 l S 123.96 74.53 m 124.01 74.53 l S 124.01 74.53 m 124.05 74.53 l S 124.05 74.53 m 124.10 74.53 l S 124.10 74.53 m 124.14 75.51 l S 124.14 74.53 m 124.19 76.49 l S 124.19 74.53 m 124.24 74.53 l S 124.24 74.53 m 124.28 74.53 l S 124.28 74.53 m 124.33 74.53 l S 124.33 74.53 m 124.37 74.53 l S 124.37 74.53 m 124.42 74.53 l S 124.42 74.53 m 124.47 74.53 l S 124.47 74.53 m 124.51 74.53 l S 124.51 74.53 m 124.56 74.53 l S 124.56 74.53 m 124.60 74.53 l S 124.60 74.53 m 124.65 74.53 l S 124.65 74.53 m 124.70 74.53 l S 124.70 74.53 m 124.74 74.53 l S 124.74 74.53 m 124.79 74.53 l S 124.79 74.53 m 124.83 75.51 l S 124.83 74.53 m 124.88 74.53 l S 124.88 74.53 m 124.93 75.51 l S 124.93 74.53 m 124.97 74.53 l S 124.97 74.53 m 125.02 74.53 l S 125.02 74.53 m 125.06 74.53 l S 125.06 74.53 m 125.11 74.53 l S 125.11 74.53 m 125.16 74.53 l S 125.16 74.53 m 125.20 74.53 l S 125.20 74.53 m 125.25 74.53 l S 125.25 74.53 m 125.29 76.49 l S 125.29 74.53 m 125.34 78.44 l S 125.34 74.53 m 125.39 74.53 l S 125.39 74.53 m 125.43 74.53 l S 125.43 74.53 m 125.48 74.53 l S 125.48 74.53 m 125.52 74.53 l S 125.52 74.53 m 125.57 74.53 l S 125.57 74.53 m 125.62 74.53 l S 125.62 74.53 m 125.66 74.53 l S 125.66 74.53 m 125.71 75.51 l S 125.71 74.53 m 125.75 75.51 l S 125.75 74.53 m 125.80 75.51 l S 125.80 74.53 m 125.85 75.51 l S 125.85 74.53 m 125.89 74.53 l S 125.89 74.53 m 125.94 74.53 l S 125.94 74.53 m 125.98 74.53 l S 125.98 74.53 m 126.03 74.53 l S 126.03 74.53 m 126.08 74.53 l S 126.08 74.53 m 126.12 74.53 l S 126.12 74.53 m 126.17 74.53 l S 126.17 74.53 m 126.21 74.53 l S 126.21 74.53 m 126.26 74.53 l S 126.26 74.53 m 126.31 74.53 l S 126.31 74.53 m 126.35 74.53 l S 126.35 74.53 m 126.40 74.53 l S 126.40 74.53 m 126.45 74.53 l S 126.45 74.53 m 126.49 74.53 l S 126.49 74.53 m 126.54 74.53 l S 126.54 74.53 m 126.58 74.53 l S 126.58 74.53 m 126.63 74.53 l S 126.63 74.53 m 126.68 74.53 l S 126.68 74.53 m 126.72 74.53 l S 126.72 74.53 m 126.77 74.53 l S 126.77 74.53 m 126.81 74.53 l S 126.81 74.53 m 126.86 74.53 l S 126.86 74.53 m 126.91 74.53 l S 126.91 74.53 m 126.95 74.53 l S 126.95 74.53 m 127.00 74.53 l S 127.00 74.53 m 127.04 74.53 l S 127.04 74.53 m 127.09 74.53 l S 127.09 74.53 m 127.14 74.53 l S 127.14 74.53 m 127.18 74.53 l S 127.18 74.53 m 127.23 74.53 l S 127.23 74.53 m 127.27 74.53 l S 127.27 74.53 m 127.32 74.53 l S 127.32 74.53 m 127.37 74.53 l S 127.37 74.53 m 127.41 74.53 l S 127.41 74.53 m 127.46 74.53 l S 127.46 74.53 m 127.50 74.53 l S 127.50 74.53 m 127.55 74.53 l S 127.55 74.53 m 127.60 74.53 l S 127.60 74.53 m 127.64 74.53 l S 127.64 74.53 m 127.69 75.51 l S 127.69 74.53 m 127.73 74.53 l S 127.73 74.53 m 127.78 74.53 l S 127.78 74.53 m 127.83 74.53 l S 127.83 74.53 m 127.87 74.53 l S 127.87 74.53 m 127.92 74.53 l S 127.92 74.53 m 127.96 74.53 l S 127.96 74.53 m 128.01 75.51 l S 128.01 74.53 m 128.06 75.51 l S 128.06 74.53 m 128.10 75.51 l S 128.10 74.53 m 128.15 74.53 l S 128.15 74.53 m 128.19 74.53 l S 128.19 74.53 m 128.24 74.53 l S 128.24 74.53 m 128.29 74.53 l S 128.29 74.53 m 128.33 74.53 l S 128.33 74.53 m 128.38 74.53 l S 128.38 74.53 m 128.42 74.53 l S 128.42 74.53 m 128.47 74.53 l S 128.47 74.53 m 128.52 74.53 l S 128.52 74.53 m 128.56 76.49 l S 128.56 74.53 m 128.61 76.49 l S 128.61 75.51 m 128.65 76.49 l S 128.65 74.53 m 128.70 76.49 l S 128.70 74.53 m 128.75 75.51 l S 128.75 74.53 m 128.79 75.51 l S 128.79 74.53 m 128.84 75.51 l S 128.84 74.53 m 128.88 74.53 l S 128.88 74.53 m 128.93 74.53 l S 128.93 74.53 m 128.98 75.51 l S 128.98 74.53 m 129.02 75.51 l S 129.02 74.53 m 129.07 74.53 l S 129.07 74.53 m 129.11 74.53 l S 129.11 74.53 m 129.16 74.53 l S 129.16 74.53 m 129.21 74.53 l S 129.21 74.53 m 129.25 75.51 l S 129.25 74.53 m 129.30 75.51 l S 129.30 74.53 m 129.34 74.53 l S 129.34 74.53 m 129.39 74.53 l S 129.39 74.53 m 129.44 74.53 l S 129.44 74.53 m 129.48 74.53 l S 129.48 74.53 m 129.53 74.53 l S 129.53 74.53 m 129.57 74.53 l S 129.57 74.53 m 129.62 74.53 l S 129.62 74.53 m 129.67 74.53 l S 129.67 74.53 m 129.71 74.53 l S 129.71 74.53 m 129.76 74.53 l S 129.76 74.53 m 129.80 74.53 l S 129.80 74.53 m 129.85 74.53 l S 129.85 74.53 m 129.90 74.53 l S 129.90 74.53 m 129.94 74.53 l S 129.94 74.53 m 129.99 74.53 l S 129.99 74.53 m 130.03 74.53 l S 130.03 74.53 m 130.08 74.53 l S 130.08 74.53 m 130.13 74.53 l S 130.13 74.53 m 130.17 74.53 l S 130.17 74.53 m 130.22 74.53 l S 130.22 74.53 m 130.26 74.53 l S 130.26 74.53 m 130.31 74.53 l S 130.31 74.53 m 130.36 74.53 l S 130.36 74.53 m 130.40 74.53 l S 130.40 74.53 m 130.45 74.53 l S 130.45 74.53 m 130.49 75.51 l S 130.49 74.53 m 130.54 75.51 l S 130.54 74.53 m 130.59 74.53 l S 130.59 74.53 m 130.63 75.51 l S 130.63 74.53 m 130.68 74.53 l S 130.68 74.53 m 130.72 74.53 l S 130.72 74.53 m 130.77 74.53 l S 130.77 74.53 m 130.82 74.53 l S 130.82 74.53 m 130.86 74.53 l S 130.86 74.53 m 130.91 74.53 l S 130.91 74.53 m 130.95 74.53 l S 130.95 74.53 m 131.00 74.53 l S 131.00 74.53 m 131.05 74.53 l S 131.05 74.53 m 131.09 74.53 l S 131.09 74.53 m 131.14 75.51 l S 131.14 74.53 m 131.18 74.53 l S 131.18 74.53 m 131.23 74.53 l S 131.23 74.53 m 131.28 74.53 l S 131.28 74.53 m 131.32 74.53 l S 131.32 74.53 m 131.37 74.53 l S 131.37 74.53 m 131.41 74.53 l S 131.41 74.53 m 131.46 74.53 l S 131.46 74.53 m 131.51 74.53 l S 131.51 74.53 m 131.55 74.53 l S 131.55 74.53 m 131.60 74.53 l S 131.60 74.53 m 131.64 74.53 l S 131.64 74.53 m 131.69 75.51 l S 131.69 74.53 m 131.74 75.51 l S 131.74 74.53 m 131.78 74.53 l S 131.78 74.53 m 131.83 77.46 l S 131.83 74.53 m 131.87 77.46 l S 131.87 74.53 m 131.92 74.53 l S 131.92 74.53 m 131.97 74.53 l S 131.97 74.53 m 132.01 74.53 l S 132.01 74.53 m 132.06 74.53 l S 132.06 74.53 m 132.10 74.53 l S 132.10 74.53 m 132.15 74.53 l S 132.15 74.53 m 132.20 74.53 l S 132.20 74.53 m 132.24 74.53 l S 132.24 74.53 m 132.29 74.53 l S 132.29 74.53 m 132.33 77.46 l S 132.33 74.53 m 132.38 74.53 l S 132.38 74.53 m 132.43 75.51 l S 132.43 74.53 m 132.47 75.51 l S 132.47 74.53 m 132.52 75.51 l S 132.52 74.53 m 132.56 74.53 l S 132.56 74.53 m 132.61 74.53 l S 132.61 74.53 m 132.66 74.53 l S 132.66 74.53 m 132.70 75.51 l S 132.70 74.53 m 132.75 75.51 l S 132.75 74.53 m 132.79 74.53 l S 132.79 74.53 m 132.84 74.53 l S 132.84 74.53 m 132.89 74.53 l S 132.89 74.53 m 132.93 74.53 l S 132.93 74.53 m 132.98 74.53 l S 132.98 74.53 m 133.02 74.53 l S 133.02 74.53 m 133.07 74.53 l S 133.07 74.53 m 133.12 74.53 l S 133.12 74.53 m 133.16 74.53 l S 133.16 74.53 m 133.21 74.53 l S 133.21 74.53 m 133.25 75.51 l S 133.25 74.53 m 133.30 75.51 l S 133.30 74.53 m 133.35 75.51 l S 133.35 74.53 m 133.39 74.53 l S 133.39 74.53 m 133.44 74.53 l S 133.44 74.53 m 133.48 74.53 l S 133.48 74.53 m 133.53 74.53 l S 133.53 74.53 m 133.58 74.53 l S 133.58 74.53 m 133.62 75.51 l S 133.62 74.53 m 133.67 75.51 l S 133.67 74.53 m 133.71 75.51 l S 133.71 74.53 m 133.76 75.51 l S 133.76 74.53 m 133.81 74.53 l S 133.81 74.53 m 133.85 74.53 l S 133.85 74.53 m 133.90 74.53 l S 133.90 74.53 m 133.94 75.51 l S 133.94 74.53 m 133.99 74.53 l S 133.99 74.53 m 134.04 74.53 l S 134.04 74.53 m 134.08 74.53 l S 134.08 74.53 m 134.13 74.53 l S 134.13 74.53 m 134.17 74.53 l S 134.17 74.53 m 134.22 74.53 l S 134.22 74.53 m 134.27 75.51 l S 134.27 74.53 m 134.31 75.51 l S 134.31 74.53 m 134.36 74.53 l S 134.36 74.53 m 134.41 75.51 l S 134.41 74.53 m 134.45 75.51 l S 134.45 74.53 m 134.50 74.53 l S 134.50 74.53 m 134.54 74.53 l S 134.54 74.53 m 134.59 74.53 l S 134.59 74.53 m 134.64 74.53 l S 134.64 74.53 m 134.68 74.53 l S 134.68 74.53 m 134.73 74.53 l S 134.73 74.53 m 134.77 74.53 l S 134.77 74.53 m 134.82 74.53 l S 134.82 74.53 m 134.87 74.53 l S 134.87 74.53 m 134.91 74.53 l S 134.91 74.53 m 134.96 74.53 l S 134.96 74.53 m 135.00 74.53 l S 135.00 74.53 m 135.05 74.53 l S 135.05 74.53 m 135.10 74.53 l S 135.10 74.53 m 135.14 74.53 l S 135.14 74.53 m 135.19 74.53 l S 135.19 74.53 m 135.23 74.53 l S 135.23 74.53 m 135.28 74.53 l S 135.28 74.53 m 135.33 74.53 l S 135.33 74.53 m 135.37 74.53 l S 135.37 74.53 m 135.42 74.53 l S 135.42 74.53 m 135.46 74.53 l S 135.46 74.53 m 135.51 74.53 l S 135.51 74.53 m 135.56 74.53 l S 135.56 74.53 m 135.60 74.53 l S 135.60 74.53 m 135.65 74.53 l S 135.65 74.53 m 135.69 74.53 l S 135.69 74.53 m 135.74 74.53 l S 135.74 74.53 m 135.79 74.53 l S 135.79 74.53 m 135.83 74.53 l S 135.83 74.53 m 135.88 74.53 l S 135.88 74.53 m 135.92 74.53 l S 135.92 74.53 m 135.97 75.51 l S 135.97 74.53 m 136.02 75.51 l S 136.02 74.53 m 136.06 74.53 l S 136.06 74.53 m 136.11 74.53 l S 136.11 74.53 m 136.15 74.53 l S 136.15 74.53 m 136.20 75.51 l S 136.20 74.53 m 136.25 75.51 l S 136.25 74.53 m 136.29 74.53 l S 136.29 74.53 m 136.34 74.53 l S 136.34 74.53 m 136.38 74.53 l S 136.38 74.53 m 136.43 74.53 l S 136.43 74.53 m 136.48 75.51 l S 136.48 74.53 m 136.52 74.53 l S 136.52 74.53 m 136.57 75.51 l S 136.57 74.53 m 136.61 76.49 l S 136.61 74.53 m 136.66 76.49 l S 136.66 74.53 m 136.71 74.53 l S 136.71 74.53 m 136.75 74.53 l S 136.75 74.53 m 136.80 74.53 l S 136.80 74.53 m 136.84 74.53 l S 136.84 74.53 m 136.89 75.51 l S 136.89 74.53 m 136.94 75.51 l S 136.94 74.53 m 136.98 74.53 l S 136.98 74.53 m 137.03 74.53 l S 137.03 74.53 m 137.07 74.53 l S 137.07 74.53 m 137.12 74.53 l S 137.12 74.53 m 137.17 74.53 l S 137.17 74.53 m 137.21 74.53 l S 137.21 74.53 m 137.26 74.53 l S 137.26 74.53 m 137.30 74.53 l S 137.30 74.53 m 137.35 74.53 l S 137.35 74.53 m 137.40 74.53 l S 137.40 74.53 m 137.44 74.53 l S 137.44 74.53 m 137.49 74.53 l S 137.49 74.53 m 137.53 74.53 l S 137.53 74.53 m 137.58 74.53 l S 137.58 74.53 m 137.63 74.53 l S 137.63 74.53 m 137.67 74.53 l S 137.67 74.53 m 137.72 74.53 l S 137.72 74.53 m 137.76 74.53 l S 137.76 74.53 m 137.81 74.53 l S 137.81 74.53 m 137.86 74.53 l S 137.86 74.53 m 137.90 74.53 l S 137.90 74.53 m 137.95 74.53 l S 137.95 74.53 m 137.99 74.53 l S 137.99 74.53 m 138.04 76.49 l S 138.04 74.53 m 138.09 76.49 l S 138.09 74.53 m 138.13 74.53 l S 138.13 74.53 m 138.18 74.53 l S 138.18 74.53 m 138.22 74.53 l S 138.22 74.53 m 138.27 74.53 l S 138.27 74.53 m 138.32 74.53 l S 138.32 74.53 m 138.36 74.53 l S 138.36 74.53 m 138.41 74.53 l S 138.41 74.53 m 138.45 74.53 l S 138.45 74.53 m 138.50 74.53 l S 138.50 74.53 m 138.55 74.53 l S 138.55 74.53 m 138.59 74.53 l S 138.59 74.53 m 138.64 74.53 l S 138.64 74.53 m 138.68 74.53 l S 138.68 74.53 m 138.73 74.53 l S 138.73 74.53 m 138.78 74.53 l S 138.78 74.53 m 138.82 74.53 l S 138.82 74.53 m 138.87 74.53 l S 138.87 74.53 m 138.91 74.53 l S 138.91 74.53 m 138.96 74.53 l S 138.96 74.53 m 139.01 74.53 l S 139.01 74.53 m 139.05 74.53 l S 139.05 74.53 m 139.10 74.53 l S 139.10 74.53 m 139.14 74.53 l S 139.14 74.53 m 139.19 74.53 l S 139.19 74.53 m 139.24 74.53 l S 139.24 74.53 m 139.28 74.53 l S 139.28 74.53 m 139.33 74.53 l S 139.33 74.53 m 139.37 74.53 l S 139.37 74.53 m 139.42 74.53 l S 139.42 74.53 m 139.47 74.53 l S 139.47 74.53 m 139.51 74.53 l S 139.51 74.53 m 139.56 74.53 l S 139.56 74.53 m 139.60 74.53 l S 139.60 74.53 m 139.65 74.53 l S 139.65 74.53 m 139.70 74.53 l S 139.70 74.53 m 139.74 74.53 l S 139.74 74.53 m 139.79 74.53 l S 139.79 74.53 m 139.83 74.53 l S 139.83 74.53 m 139.88 74.53 l S 139.88 74.53 m 139.93 74.53 l S 139.93 74.53 m 139.97 74.53 l S 139.97 74.53 m 140.02 75.51 l S 140.02 74.53 m 140.06 75.51 l S 140.06 74.53 m 140.11 74.53 l S 140.11 74.53 m 140.16 75.51 l S 140.16 74.53 m 140.20 75.51 l S 140.20 74.53 m 140.25 75.51 l S 140.25 74.53 m 140.29 75.51 l S 140.29 74.53 m 140.34 74.53 l S 140.34 74.53 m 140.39 75.51 l S 140.39 74.53 m 140.43 75.51 l S 140.43 74.53 m 140.48 75.51 l S 140.48 74.53 m 140.52 74.53 l S 140.52 74.53 m 140.57 74.53 l S 140.57 74.53 m 140.62 74.53 l S 140.62 74.53 m 140.66 74.53 l S 140.66 74.53 m 140.71 74.53 l S 140.71 74.53 m 140.75 74.53 l S 140.75 74.53 m 140.80 74.53 l S 140.80 74.53 m 140.85 75.51 l S 140.85 74.53 m 140.89 75.51 l S 140.89 74.53 m 140.94 75.51 l S 140.94 74.53 m 140.98 75.51 l S 140.98 74.53 m 141.03 76.49 l S 141.03 74.53 m 141.08 76.49 l S 141.08 74.53 m 141.12 76.49 l S 141.12 74.53 m 141.17 74.53 l S 141.17 74.53 m 141.21 74.53 l S 141.21 74.53 m 141.26 74.53 l S 141.26 74.53 m 141.31 74.53 l S 141.31 74.53 m 141.35 74.53 l S 141.35 74.53 m 141.40 74.53 l S 141.40 74.53 m 141.44 74.53 l S 141.44 74.53 m 141.49 74.53 l S 141.49 74.53 m 141.54 74.53 l S 141.54 74.53 m 141.58 74.53 l S 141.58 74.53 m 141.63 74.53 l S 141.63 74.53 m 141.67 74.53 l S 141.67 74.53 m 141.72 74.53 l S 141.72 74.53 m 141.77 74.53 l S 141.77 74.53 m 141.81 74.53 l S 141.81 74.53 m 141.86 74.53 l S 141.86 74.53 m 141.90 74.53 l S 141.90 74.53 m 141.95 74.53 l S 141.95 74.53 m 142.00 74.53 l S 142.00 74.53 m 142.04 74.53 l S 142.04 74.53 m 142.09 74.53 l S 142.09 74.53 m 142.13 74.53 l S 142.13 74.53 m 142.18 74.53 l S 142.18 74.53 m 142.23 74.53 l S 142.23 74.53 m 142.27 74.53 l S 142.27 74.53 m 142.32 74.53 l S 142.32 74.53 m 142.36 74.53 l S 142.36 74.53 m 142.41 75.51 l S 142.41 74.53 m 142.46 74.53 l S 142.46 74.53 m 142.50 75.51 l S 142.50 74.53 m 142.55 75.51 l S 142.55 74.53 m 142.60 76.49 l S 142.60 74.53 m 142.64 76.49 l S 142.64 74.53 m 142.69 75.51 l S 142.69 74.53 m 142.73 74.53 l S 142.73 74.53 m 142.78 74.53 l S 142.78 74.53 m 142.83 74.53 l S 142.83 74.53 m 142.87 74.53 l S 142.87 74.53 m 142.92 74.53 l S 142.92 74.53 m 142.96 74.53 l S 142.96 74.53 m 143.01 74.53 l S 143.01 74.53 m 143.06 74.53 l S 143.06 74.53 m 143.10 74.53 l S 143.10 74.53 m 143.15 74.53 l S 143.15 74.53 m 143.19 74.53 l S 143.19 74.53 m 143.24 74.53 l S 143.24 74.53 m 143.29 74.53 l S 143.29 74.53 m 143.33 74.53 l S 143.33 74.53 m 143.38 75.51 l S 143.38 74.53 m 143.42 75.51 l S 143.42 74.53 m 143.47 74.53 l S 143.47 74.53 m 143.52 74.53 l S 143.52 74.53 m 143.56 74.53 l S 143.56 74.53 m 143.61 74.53 l S 143.61 74.53 m 143.65 74.53 l S 143.65 74.53 m 143.70 74.53 l S 143.70 74.53 m 143.75 74.53 l S 143.75 74.53 m 143.79 74.53 l S 143.79 74.53 m 143.84 74.53 l S 143.84 74.53 m 143.88 74.53 l S 143.88 74.53 m 143.93 74.53 l S 143.93 74.53 m 143.98 74.53 l S 143.98 74.53 m 144.02 76.49 l S 144.02 74.53 m 144.07 76.49 l S 144.07 74.53 m 144.11 74.53 l S 144.11 74.53 m 144.16 74.53 l S 144.16 74.53 m 144.21 74.53 l S 144.21 74.53 m 144.25 74.53 l S 144.25 74.53 m 144.30 74.53 l S 144.30 74.53 m 144.34 74.53 l S 144.34 74.53 m 144.39 74.53 l S 144.39 74.53 m 144.44 74.53 l S 144.44 74.53 m 144.48 74.53 l S 144.48 74.53 m 144.53 74.53 l S 144.53 74.53 m 144.57 74.53 l S 144.57 74.53 m 144.62 74.53 l S 144.62 74.53 m 144.67 74.53 l S 144.67 74.53 m 144.71 74.53 l S 144.71 74.53 m 144.76 74.53 l S 144.76 74.53 m 144.80 74.53 l S 144.80 74.53 m 144.85 74.53 l S 144.85 74.53 m 144.90 74.53 l S 144.90 74.53 m 144.94 74.53 l S 144.94 74.53 m 144.99 74.53 l S 144.99 74.53 m 145.03 74.53 l S 145.03 74.53 m 145.08 74.53 l S 145.08 74.53 m 145.13 74.53 l S 145.13 74.53 m 145.17 74.53 l S 145.17 74.53 m 145.22 74.53 l S 145.22 74.53 m 145.26 74.53 l S 145.26 74.53 m 145.31 74.53 l S 145.31 74.53 m 145.36 74.53 l S 145.36 74.53 m 145.40 74.53 l S 145.40 74.53 m 145.45 74.53 l S 145.45 74.53 m 145.49 74.53 l S 145.49 74.53 m 145.54 74.53 l S 145.54 74.53 m 145.59 74.53 l S 145.59 74.53 m 145.63 74.53 l S 145.63 74.53 m 145.68 74.53 l S 145.68 74.53 m 145.72 74.53 l S 145.72 74.53 m 145.77 74.53 l S 145.77 74.53 m 145.82 74.53 l S 145.82 74.53 m 145.86 74.53 l S 145.86 74.53 m 145.91 74.53 l S 145.91 74.53 m 145.95 74.53 l S 145.95 74.53 m 146.00 74.53 l S 146.00 74.53 m 146.05 74.53 l S 146.05 74.53 m 146.09 74.53 l S 146.09 74.53 m 146.14 74.53 l S 146.14 74.53 m 146.18 74.53 l S 146.18 74.53 m 146.23 74.53 l S 146.23 74.53 m 146.28 74.53 l S 146.28 74.53 m 146.32 74.53 l S 146.32 74.53 m 146.37 76.49 l S 146.37 74.53 m 146.41 76.49 l S 146.41 74.53 m 146.46 74.53 l S 146.46 74.53 m 146.51 74.53 l S 146.51 74.53 m 146.55 74.53 l S 146.55 74.53 m 146.60 74.53 l S 146.60 74.53 m 146.64 74.53 l S 146.64 74.53 m 146.69 74.53 l S 146.69 74.53 m 146.74 74.53 l S 146.74 74.53 m 146.78 74.53 l S 146.78 74.53 m 146.83 74.53 l S 146.83 74.53 m 146.87 74.53 l S 146.87 74.53 m 146.92 75.51 l S 146.92 74.53 m 146.97 75.51 l S 146.97 74.53 m 147.01 74.53 l S 147.01 74.53 m 147.06 74.53 l S 147.06 74.53 m 147.10 74.53 l S 147.10 74.53 m 147.15 74.53 l S 147.15 74.53 m 147.20 74.53 l S 147.20 74.53 m 147.24 74.53 l S 147.24 74.53 m 147.29 74.53 l S 147.29 74.53 m 147.33 74.53 l S 147.33 74.53 m 147.38 74.53 l S 147.38 74.53 m 147.43 74.53 l S 147.43 74.53 m 147.47 74.53 l S 147.47 74.53 m 147.52 74.53 l S 147.52 74.53 m 147.56 74.53 l S 147.56 74.53 m 147.61 74.53 l S 147.61 74.53 m 147.66 74.53 l S 147.66 74.53 m 147.70 74.53 l S 147.70 74.53 m 147.75 74.53 l S 147.75 74.53 m 147.79 74.53 l S 147.79 74.53 m 147.84 74.53 l S 147.84 74.53 m 147.89 75.51 l S 147.89 74.53 m 147.93 75.51 l S 147.93 74.53 m 147.98 74.53 l S 147.98 74.53 m 148.02 74.53 l S 148.02 74.53 m 148.07 74.53 l S 148.07 74.53 m 148.12 74.53 l S 148.12 74.53 m 148.16 74.53 l S 148.16 74.53 m 148.21 74.53 l S 148.21 74.53 m 148.25 74.53 l S 148.25 74.53 m 148.30 74.53 l S 148.30 74.53 m 148.35 74.53 l S 148.35 74.53 m 148.39 74.53 l S 148.39 74.53 m 148.44 74.53 l S 148.44 74.53 m 148.48 74.53 l S 148.48 74.53 m 148.53 74.53 l S 148.53 74.53 m 148.58 74.53 l S 148.58 74.53 m 148.62 74.53 l S 148.62 74.53 m 148.67 74.53 l S 148.67 74.53 m 148.71 74.53 l S 148.71 74.53 m 148.76 74.53 l S 148.76 74.53 m 148.81 74.53 l S 148.81 74.53 m 148.85 74.53 l S 148.85 74.53 m 148.90 74.53 l S 148.90 74.53 m 148.94 74.53 l S 148.94 74.53 m 148.99 74.53 l S 148.99 74.53 m 149.04 74.53 l S 149.04 74.53 m 149.08 74.53 l S 149.08 74.53 m 149.13 74.53 l S 149.13 74.53 m 149.17 74.53 l S 149.17 74.53 m 149.22 74.53 l S 149.22 74.53 m 149.27 74.53 l S 149.27 74.53 m 149.31 74.53 l S 149.31 74.53 m 149.36 74.53 l S 149.36 74.53 m 149.40 74.53 l S 149.40 74.53 m 149.45 74.53 l S 149.45 74.53 m 149.50 74.53 l S 149.50 74.53 m 149.54 74.53 l S 149.54 74.53 m 149.59 74.53 l S 149.59 74.53 m 149.63 74.53 l S 149.63 74.53 m 149.68 74.53 l S 149.68 74.53 m 149.73 74.53 l S 149.73 74.53 m 149.77 74.53 l S 149.77 74.53 m 149.82 74.53 l S 149.82 74.53 m 149.86 74.53 l S 149.86 74.53 m 149.91 74.53 l S 149.91 74.53 m 149.96 74.53 l S 149.96 74.53 m 150.00 74.53 l S 150.00 74.53 m 150.05 74.53 l S 150.05 74.53 m 150.09 74.53 l S 150.09 74.53 m 150.14 74.53 l S 150.14 74.53 m 150.19 74.53 l S 150.19 74.53 m 150.23 74.53 l S 150.23 74.53 m 150.28 74.53 l S 150.28 74.53 m 150.32 74.53 l S 150.32 74.53 m 150.37 74.53 l S 150.37 74.53 m 150.42 74.53 l S 150.42 74.53 m 150.46 74.53 l S 150.46 74.53 m 150.51 74.53 l S 150.51 74.53 m 150.56 74.53 l S 150.56 74.53 m 150.60 74.53 l S 150.60 74.53 m 150.65 74.53 l S 150.65 74.53 m 150.69 74.53 l S 150.69 74.53 m 150.74 74.53 l S 150.74 74.53 m 150.79 74.53 l S 150.79 74.53 m 150.83 74.53 l S 150.83 74.53 m 150.88 74.53 l S 150.88 74.53 m 150.92 74.53 l S 150.92 74.53 m 150.97 74.53 l S 150.97 74.53 m 151.02 74.53 l S 151.02 74.53 m 151.06 74.53 l S 151.06 74.53 m 151.11 74.53 l S 151.11 74.53 m 151.15 74.53 l S 151.15 74.53 m 151.20 74.53 l S 151.20 74.53 m 151.25 74.53 l S 151.25 74.53 m 151.29 74.53 l S 151.29 74.53 m 151.34 76.49 l S 151.34 74.53 m 151.38 76.49 l S 151.38 74.53 m 151.43 74.53 l S 151.43 74.53 m 151.48 74.53 l S 151.48 74.53 m 151.52 74.53 l S 151.52 74.53 m 151.57 74.53 l S 151.57 74.53 m 151.61 74.53 l S 151.61 74.53 m 151.66 74.53 l S 151.66 74.53 m 151.71 74.53 l S 151.71 74.53 m 151.75 74.53 l S 151.75 74.53 m 151.80 74.53 l S 151.80 74.53 m 151.84 74.53 l S 151.84 74.53 m 151.89 74.53 l S 151.89 74.53 m 151.94 74.53 l S 151.94 74.53 m 151.98 74.53 l S 151.98 74.53 m 152.03 74.53 l S 152.03 74.53 m 152.07 74.53 l S 152.07 74.53 m 152.12 74.53 l S 152.12 74.53 m 152.17 74.53 l S 152.17 74.53 m 152.21 74.53 l S 152.21 74.53 m 152.26 74.53 l S 152.26 74.53 m 152.30 74.53 l S 152.30 74.53 m 152.35 74.53 l S 152.35 74.53 m 152.40 74.53 l S 152.40 74.53 m 152.44 74.53 l S 152.44 74.53 m 152.49 74.53 l S 152.49 74.53 m 152.53 74.53 l S 152.53 74.53 m 152.58 74.53 l S 152.58 74.53 m 152.63 75.51 l S 152.63 74.53 m 152.67 75.51 l S 152.67 74.53 m 152.72 74.53 l S 152.72 74.53 m 152.76 74.53 l S 152.76 74.53 m 152.81 74.53 l S 152.81 74.53 m 152.86 74.53 l S 152.86 74.53 m 152.90 74.53 l S 152.90 74.53 m 152.95 74.53 l S 152.95 74.53 m 152.99 74.53 l S 152.99 74.53 m 153.04 74.53 l S 153.04 74.53 m 153.09 74.53 l S 153.09 74.53 m 153.13 74.53 l S 153.13 74.53 m 153.18 74.53 l S 153.18 74.53 m 153.22 74.53 l S 153.22 74.53 m 153.27 74.53 l S 153.27 74.53 m 153.32 74.53 l S 153.32 74.53 m 153.36 74.53 l S 153.36 74.53 m 153.41 74.53 l S 153.41 74.53 m 153.45 74.53 l S 153.45 74.53 m 153.50 74.53 l S 153.50 74.53 m 153.55 74.53 l S 153.55 74.53 m 153.59 74.53 l S 153.59 74.53 m 153.64 74.53 l S 153.64 74.53 m 153.68 74.53 l S 153.68 74.53 m 153.73 74.53 l S 153.73 74.53 m 153.78 74.53 l S 153.78 74.53 m 153.82 74.53 l S 153.82 74.53 m 153.87 74.53 l S 153.87 74.53 m 153.91 74.53 l S 153.91 74.53 m 153.96 74.53 l S 153.96 74.53 m 154.01 74.53 l S 154.01 74.53 m 154.05 74.53 l S 154.05 74.53 m 154.10 74.53 l S 154.10 74.53 m 154.14 74.53 l S 154.14 74.53 m 154.19 74.53 l S 154.19 74.53 m 154.24 74.53 l S 154.24 74.53 m 154.28 74.53 l S 154.28 74.53 m 154.33 74.53 l S 154.33 74.53 m 154.37 74.53 l S 154.37 74.53 m 154.42 74.53 l S 154.42 74.53 m 154.47 74.53 l S 154.47 74.53 m 154.51 74.53 l S 154.51 74.53 m 154.56 74.53 l S 154.56 74.53 m 154.60 74.53 l S 154.60 74.53 m 154.65 74.53 l S 154.65 74.53 m 154.70 74.53 l S 154.70 74.53 m 154.74 74.53 l S 154.74 74.53 m 154.79 74.53 l S 154.79 74.53 m 154.83 74.53 l S 154.83 74.53 m 154.88 74.53 l S 154.88 74.53 m 154.93 74.53 l S 154.93 74.53 m 154.97 74.53 l S 154.97 74.53 m 155.02 74.53 l S 155.02 74.53 m 155.06 74.53 l S 155.06 74.53 m 155.11 74.53 l S 155.11 74.53 m 155.16 74.53 l S 155.16 74.53 m 155.20 74.53 l S 155.20 74.53 m 155.25 74.53 l S 155.25 74.53 m 155.29 74.53 l S 155.29 74.53 m 155.34 74.53 l S 155.34 74.53 m 155.39 74.53 l S 155.39 74.53 m 155.43 74.53 l S 155.43 74.53 m 155.48 74.53 l S 155.48 74.53 m 155.52 74.53 l S 155.52 74.53 m 155.57 74.53 l S 155.57 74.53 m 155.62 74.53 l S 155.62 74.53 m 155.66 74.53 l S 155.66 74.53 m 155.71 74.53 l S 155.71 74.53 m 155.75 74.53 l S 155.75 74.53 m 155.80 74.53 l S 155.80 74.53 m 155.85 74.53 l S 155.85 74.53 m 155.89 74.53 l S 155.89 74.53 m 155.94 74.53 l S 155.94 74.53 m 155.98 75.51 l S 155.98 74.53 m 156.03 75.51 l S 156.03 74.53 m 156.08 74.53 l S 156.08 74.53 m 156.12 74.53 l S 156.12 74.53 m 156.17 74.53 l S 156.17 74.53 m 156.21 74.53 l S 156.21 74.53 m 156.26 74.53 l S 156.26 74.53 m 156.31 74.53 l S 156.31 74.53 m 156.35 74.53 l S 156.35 74.53 m 156.40 75.51 l S 156.40 74.53 m 156.44 75.51 l S 156.44 74.53 m 156.49 74.53 l S 156.49 74.53 m 156.54 74.53 l S 156.54 74.53 m 156.58 74.53 l S 156.58 74.53 m 156.63 74.53 l S 156.63 74.53 m 156.67 74.53 l S 156.67 74.53 m 156.72 74.53 l S 156.72 74.53 m 156.77 74.53 l S 156.77 74.53 m 156.81 74.53 l S 156.81 74.53 m 156.86 74.53 l S 156.86 74.53 m 156.90 74.53 l S 156.90 74.53 m 156.95 74.53 l S 156.95 74.53 m 157.00 74.53 l S 157.00 74.53 m 157.04 74.53 l S 157.04 74.53 m 157.09 74.53 l S 157.09 74.53 m 157.13 74.53 l S 157.13 74.53 m 157.18 74.53 l S 157.18 74.53 m 157.23 74.53 l S 157.23 74.53 m 157.27 75.51 l S 157.27 74.53 m 157.32 74.53 l S 157.32 74.53 m 157.36 74.53 l S 157.36 74.53 m 157.41 75.51 l S 157.41 74.53 m 157.46 75.51 l S 157.46 74.53 m 157.50 75.51 l S 157.50 74.53 m 157.55 75.51 l S 157.55 74.53 m 157.59 74.53 l S 157.59 74.53 m 157.64 74.53 l S 157.64 74.53 m 157.69 74.53 l S 157.69 74.53 m 157.73 74.53 l S 157.73 74.53 m 157.78 74.53 l S 157.78 74.53 m 157.82 74.53 l S 157.82 74.53 m 157.87 74.53 l S 157.87 74.53 m 157.92 74.53 l S 157.92 74.53 m 157.96 74.53 l S 157.96 74.53 m 158.01 74.53 l S 158.01 74.53 m 158.05 74.53 l S 158.05 74.53 m 158.10 74.53 l S 158.10 74.53 m 158.15 74.53 l S 158.15 74.53 m 158.19 75.51 l S 158.19 74.53 m 158.24 75.51 l S 158.24 74.53 m 158.28 75.51 l S 158.28 74.53 m 158.33 74.53 l S 158.33 74.53 m 158.38 75.51 l S 158.38 74.53 m 158.42 74.53 l S 158.42 74.53 m 158.47 74.53 l S 158.47 74.53 m 158.52 74.53 l S 158.52 74.53 m 158.56 74.53 l S 158.56 74.53 m 158.61 74.53 l S 158.61 74.53 m 158.65 74.53 l S 158.65 74.53 m 158.70 74.53 l S 158.70 74.53 m 158.75 74.53 l S 158.75 74.53 m 158.79 74.53 l S 158.79 74.53 m 158.84 74.53 l S 158.84 74.53 m 158.88 74.53 l S 158.88 74.53 m 158.93 74.53 l S 158.93 74.53 m 158.98 74.53 l S 158.98 74.53 m 159.02 74.53 l S 159.02 74.53 m 159.07 74.53 l S 159.07 74.53 m 159.11 74.53 l S 159.11 74.53 m 159.16 74.53 l S 159.16 74.53 m 159.21 74.53 l S 159.21 74.53 m 159.25 74.53 l S 159.25 74.53 m 159.30 74.53 l S 159.30 74.53 m 159.34 74.53 l S 159.34 74.53 m 159.39 74.53 l S 159.39 74.53 m 159.44 74.53 l S 159.44 74.53 m 159.48 74.53 l S 159.48 74.53 m 159.53 74.53 l S 159.53 74.53 m 159.57 74.53 l S 159.57 74.53 m 159.62 74.53 l S 159.62 74.53 m 159.67 74.53 l S 159.67 74.53 m 159.71 74.53 l S 159.71 74.53 m 159.76 74.53 l S 159.76 74.53 m 159.80 74.53 l S 159.80 74.53 m 159.85 74.53 l S 159.85 74.53 m 159.90 74.53 l S 159.90 74.53 m 159.94 74.53 l S 159.94 74.53 m 159.99 74.53 l S 159.99 74.53 m 160.03 74.53 l S 160.03 74.53 m 160.08 74.53 l S 160.08 74.53 m 160.13 76.49 l S 160.13 74.53 m 160.17 76.49 l S 160.17 74.53 m 160.22 74.53 l S 160.22 74.53 m 160.26 74.53 l S 160.26 74.53 m 160.31 74.53 l S 160.31 74.53 m 160.36 74.53 l S 160.36 74.53 m 160.40 74.53 l S 160.40 74.53 m 160.45 74.53 l S 160.45 74.53 m 160.49 74.53 l S 160.49 74.53 m 160.54 74.53 l S 160.54 74.53 m 160.59 74.53 l S 160.59 74.53 m 160.63 74.53 l S 160.63 74.53 m 160.68 74.53 l S 160.68 74.53 m 160.72 74.53 l S 160.72 74.53 m 160.77 74.53 l S 160.77 74.53 m 160.82 74.53 l S 160.82 74.53 m 160.86 74.53 l S 160.86 74.53 m 160.91 74.53 l S 160.91 74.53 m 160.95 75.51 l S 160.95 74.53 m 161.00 75.51 l S 161.00 74.53 m 161.05 75.51 l S 161.05 74.53 m 161.09 74.53 l S 161.09 74.53 m 161.14 74.53 l S 161.14 74.53 m 161.18 74.53 l S 161.18 74.53 m 161.23 74.53 l S 161.23 74.53 m 161.28 74.53 l S 161.28 74.53 m 161.32 74.53 l S 161.32 74.53 m 161.37 74.53 l S 161.37 74.53 m 161.41 74.53 l S 161.41 74.53 m 161.46 74.53 l S 161.46 74.53 m 161.51 74.53 l S 161.51 74.53 m 161.55 74.53 l S 161.55 74.53 m 161.60 74.53 l S 161.60 74.53 m 161.64 74.53 l S 161.64 74.53 m 161.69 74.53 l S 161.69 74.53 m 161.74 74.53 l S 161.74 74.53 m 161.78 74.53 l S 161.78 74.53 m 161.83 74.53 l S 161.83 74.53 m 161.87 77.46 l S 161.87 74.53 m 161.92 76.49 l S 161.92 74.53 m 161.97 74.53 l S 161.97 74.53 m 162.01 74.53 l S 162.01 74.53 m 162.06 74.53 l S 162.06 74.53 m 162.10 74.53 l S 162.10 74.53 m 162.15 75.51 l S 162.15 74.53 m 162.20 76.49 l S 162.20 74.53 m 162.24 74.53 l S 162.24 74.53 m 162.29 74.53 l S 162.29 74.53 m 162.33 74.53 l S 162.33 74.53 m 162.38 74.53 l S 162.38 74.53 m 162.43 75.51 l S 162.43 74.53 m 162.47 75.51 l S 162.47 74.53 m 162.52 74.53 l S 162.52 74.53 m 162.56 74.53 l S 162.56 74.53 m 162.61 74.53 l S 162.61 74.53 m 162.66 74.53 l S 162.66 74.53 m 162.70 74.53 l S 162.70 74.53 m 162.75 74.53 l S 162.75 74.53 m 162.79 74.53 l S 162.79 74.53 m 162.84 74.53 l S 162.84 74.53 m 162.89 74.53 l S 162.89 74.53 m 162.93 74.53 l S 162.93 74.53 m 162.98 74.53 l S 162.98 74.53 m 163.02 74.53 l S 163.02 74.53 m 163.07 74.53 l S 163.07 74.53 m 163.12 74.53 l S 163.12 74.53 m 163.16 74.53 l S 163.16 74.53 m 163.21 74.53 l S 163.21 74.53 m 163.25 74.53 l S 163.25 74.53 m 163.30 74.53 l S 163.30 74.53 m 163.35 74.53 l S 163.35 74.53 m 163.39 74.53 l S 163.39 74.53 m 163.44 74.53 l S 163.44 74.53 m 163.48 74.53 l S 163.48 74.53 m 163.53 75.51 l S 163.53 74.53 m 163.58 74.53 l S 163.58 74.53 m 163.62 74.53 l S 163.62 74.53 m 163.67 74.53 l S 163.67 74.53 m 163.71 74.53 l S 163.71 74.53 m 163.76 74.53 l S 163.76 74.53 m 163.81 74.53 l S 163.81 74.53 m 163.85 74.53 l S 163.85 74.53 m 163.90 74.53 l S 163.90 74.53 m 163.94 74.53 l S 163.94 74.53 m 163.99 74.53 l S 163.99 74.53 m 164.04 74.53 l S 164.04 74.53 m 164.08 74.53 l S 164.08 74.53 m 164.13 74.53 l S 164.13 74.53 m 164.17 74.53 l S 164.17 74.53 m 164.22 74.53 l S 164.22 74.53 m 164.27 74.53 l S 164.27 74.53 m 164.31 74.53 l S 164.31 74.53 m 164.36 74.53 l S 164.36 74.53 m 164.40 74.53 l S 164.40 74.53 m 164.45 74.53 l S 164.45 74.53 m 164.50 74.53 l S 164.50 74.53 m 164.54 74.53 l S 164.54 74.53 m 164.59 74.53 l S 164.59 74.53 m 164.63 74.53 l S 164.63 74.53 m 164.68 74.53 l S 164.68 74.53 m 164.73 74.53 l S 164.73 74.53 m 164.77 74.53 l S 164.77 74.53 m 164.82 74.53 l S 164.82 74.53 m 164.86 74.53 l S 164.86 74.53 m 164.91 74.53 l S 164.91 74.53 m 164.96 74.53 l S 164.96 74.53 m 165.00 74.53 l S 165.00 74.53 m 165.05 74.53 l S 165.05 74.53 m 165.09 74.53 l S 165.09 74.53 m 165.14 74.53 l S 165.14 74.53 m 165.19 74.53 l S 165.19 74.53 m 165.23 74.53 l S 165.23 74.53 m 165.28 74.53 l S 165.28 74.53 m 165.32 74.53 l S 165.32 74.53 m 165.37 74.53 l S 165.37 74.53 m 165.42 74.53 l S 165.42 74.53 m 165.46 74.53 l S 165.46 74.53 m 165.51 75.51 l S 165.51 74.53 m 165.55 75.51 l S 165.55 74.53 m 165.60 74.53 l S 165.60 74.53 m 165.65 74.53 l S 165.65 74.53 m 165.69 74.53 l S 165.69 74.53 m 165.74 74.53 l S 165.74 74.53 m 165.78 75.51 l S 165.78 74.53 m 165.83 74.53 l S 165.83 74.53 m 165.88 74.53 l S 165.88 74.53 m 165.92 74.53 l S 165.92 74.53 m 165.97 74.53 l S 165.97 74.53 m 166.01 74.53 l S 166.01 74.53 m 166.06 74.53 l S 166.06 74.53 m 166.11 74.53 l S 166.11 74.53 m 166.15 74.53 l S 166.15 74.53 m 166.20 74.53 l S 166.20 74.53 m 166.24 74.53 l S 166.24 74.53 m 166.29 74.53 l S 166.29 74.53 m 166.34 74.53 l S 166.34 74.53 m 166.38 74.53 l S 166.38 74.53 m 166.43 74.53 l S 166.43 74.53 m 166.48 74.53 l S 166.48 74.53 m 166.52 74.53 l S 166.52 74.53 m 166.57 74.53 l S 166.57 74.53 m 166.61 74.53 l S 166.61 74.53 m 166.66 74.53 l S 166.66 74.53 m 166.71 74.53 l S 166.71 74.53 m 166.75 75.51 l S 166.75 74.53 m 166.80 74.53 l S 166.80 74.53 m 166.84 74.53 l S 166.84 74.53 m 166.89 74.53 l S 166.89 74.53 m 166.94 74.53 l S 166.94 74.53 m 166.98 75.51 l S 166.98 74.53 m 167.03 74.53 l S 167.03 74.53 m 167.07 74.53 l S 167.07 74.53 m 167.12 74.53 l S 167.12 74.53 m 167.17 74.53 l S 167.17 74.53 m 167.21 74.53 l S 167.21 74.53 m 167.26 74.53 l S 167.26 74.53 m 167.30 74.53 l S 167.30 74.53 m 167.35 74.53 l S 167.35 74.53 m 167.40 74.53 l S 167.40 74.53 m 167.44 74.53 l S 167.44 74.53 m 167.49 74.53 l S 167.49 74.53 m 167.53 74.53 l S 167.53 74.53 m 167.58 74.53 l S 167.58 74.53 m 167.63 74.53 l S 167.63 74.53 m 167.67 74.53 l S 167.67 74.53 m 167.72 74.53 l S 167.72 74.53 m 167.76 74.53 l S 167.76 74.53 m 167.81 74.53 l S 167.81 74.53 m 167.86 74.53 l S 167.86 74.53 m 167.90 74.53 l S 167.90 74.53 m 167.95 74.53 l S 167.95 74.53 m 167.99 74.53 l S 167.99 74.53 m 168.04 74.53 l S 168.04 74.53 m 168.09 74.53 l S 168.09 74.53 m 168.13 74.53 l S 168.13 74.53 m 168.18 74.53 l S 168.18 74.53 m 168.22 74.53 l S 168.22 74.53 m 168.27 74.53 l S 168.27 74.53 m 168.32 74.53 l S 168.32 74.53 m 168.36 74.53 l S 168.36 74.53 m 168.41 74.53 l S 168.41 74.53 m 168.45 74.53 l S 168.45 74.53 m 168.50 74.53 l S 168.50 74.53 m 168.55 74.53 l S 168.55 74.53 m 168.59 74.53 l S 168.59 74.53 m 168.64 74.53 l S 168.64 74.53 m 168.68 74.53 l S 168.68 74.53 m 168.73 74.53 l S 168.73 74.53 m 168.78 75.51 l S 168.78 74.53 m 168.82 74.53 l S 168.82 74.53 m 168.87 74.53 l S 168.87 74.53 m 168.91 74.53 l S 168.91 74.53 m 168.96 74.53 l S 168.96 74.53 m 169.01 74.53 l S 169.01 74.53 m 169.05 74.53 l S 169.05 74.53 m 169.10 74.53 l S 169.10 74.53 m 169.14 74.53 l S 169.14 74.53 m 169.19 74.53 l S 169.19 74.53 m 169.24 74.53 l S 169.24 74.53 m 169.28 74.53 l S 169.28 74.53 m 169.33 74.53 l S 169.33 74.53 m 169.37 74.53 l S 169.37 74.53 m 169.42 74.53 l S 169.42 74.53 m 169.47 74.53 l S 169.47 74.53 m 169.51 74.53 l S 169.51 74.53 m 169.56 74.53 l S 169.56 74.53 m 169.60 74.53 l S 169.60 74.53 m 169.65 74.53 l S 169.65 74.53 m 169.70 74.53 l S 169.70 74.53 m 169.74 74.53 l S 169.74 74.53 m 169.79 74.53 l S 169.79 74.53 m 169.83 75.51 l S 169.83 74.53 m 169.88 74.53 l S 169.88 74.53 m 169.93 74.53 l S 169.93 74.53 m 169.97 74.53 l S 169.97 74.53 m 170.02 74.53 l S 170.02 74.53 m 170.06 75.51 l S 170.06 74.53 m 170.11 75.51 l S 170.11 74.53 m 170.16 74.53 l S 170.16 74.53 m 170.20 74.53 l S 170.20 74.53 m 170.25 74.53 l S 170.25 74.53 m 170.29 74.53 l S 170.29 74.53 m 170.34 74.53 l S 170.34 74.53 m 170.39 74.53 l S 170.39 74.53 m 170.43 74.53 l S 170.43 74.53 m 170.48 74.53 l S 170.48 74.53 m 170.52 74.53 l S 170.52 74.53 m 170.57 74.53 l S 170.57 74.53 m 170.62 74.53 l S 170.62 74.53 m 170.66 75.51 l S 170.66 74.53 m 170.71 75.51 l S 170.71 74.53 m 170.75 74.53 l S 170.75 74.53 m 170.80 74.53 l S 170.80 74.53 m 170.85 74.53 l S 170.85 74.53 m 170.89 74.53 l S 170.89 74.53 m 170.94 74.53 l S 170.94 74.53 m 170.98 76.49 l S 170.98 74.53 m 171.03 76.49 l S 171.03 74.53 m 171.08 74.53 l S 171.08 74.53 m 171.12 75.51 l S 171.12 74.53 m 171.17 75.51 l S 171.17 74.53 m 171.21 74.53 l S 171.21 74.53 m 171.26 74.53 l S 171.26 74.53 m 171.31 74.53 l S 171.31 74.53 m 171.35 74.53 l S 171.35 74.53 m 171.40 74.53 l S 171.40 74.53 m 171.44 74.53 l S 171.44 74.53 m 171.49 74.53 l S 171.49 74.53 m 171.54 74.53 l S 171.54 74.53 m 171.58 74.53 l S 171.58 74.53 m 171.63 74.53 l S 171.63 74.53 m 171.67 74.53 l S 171.67 74.53 m 171.72 74.53 l S 171.72 74.53 m 171.77 74.53 l S 171.77 74.53 m 171.81 74.53 l S 171.81 74.53 m 171.86 74.53 l S 171.86 74.53 m 171.90 74.53 l S 171.90 74.53 m 171.95 74.53 l S 171.95 74.53 m 172.00 74.53 l S 172.00 74.53 m 172.04 74.53 l S 172.04 74.53 m 172.09 74.53 l S 172.09 74.53 m 172.13 74.53 l S 172.13 74.53 m 172.18 74.53 l S 172.18 74.53 m 172.23 74.53 l S 172.23 74.53 m 172.27 74.53 l S 172.27 74.53 m 172.32 74.53 l S 172.32 74.53 m 172.36 74.53 l S 172.36 74.53 m 172.41 74.53 l S 172.41 74.53 m 172.46 74.53 l S 172.46 74.53 m 172.50 74.53 l S 172.50 74.53 m 172.55 74.53 l S 172.55 74.53 m 172.59 74.53 l S 172.59 74.53 m 172.64 74.53 l S 172.64 74.53 m 172.69 74.53 l S 172.69 74.53 m 172.73 74.53 l S 172.73 74.53 m 172.78 74.53 l S 172.78 74.53 m 172.82 74.53 l S 172.82 74.53 m 172.87 74.53 l S 172.87 74.53 m 172.92 74.53 l S 172.92 74.53 m 172.96 74.53 l S 172.96 74.53 m 173.01 74.53 l S 173.01 74.53 m 173.05 74.53 l S 173.05 74.53 m 173.10 74.53 l S 173.10 74.53 m 173.15 74.53 l S 173.15 74.53 m 173.19 74.53 l S 173.19 74.53 m 173.24 74.53 l S 173.24 74.53 m 173.28 74.53 l S 173.28 74.53 m 173.33 75.51 l S 173.33 74.53 m 173.38 75.51 l S 173.38 74.53 m 173.42 74.53 l S 173.42 74.53 m 173.47 74.53 l S 173.47 74.53 m 173.51 74.53 l S 173.51 74.53 m 173.56 74.53 l S 173.56 74.53 m 173.61 74.53 l S 173.61 74.53 m 173.65 74.53 l S 173.65 74.53 m 173.70 74.53 l S 173.70 74.53 m 173.74 74.53 l S 173.74 74.53 m 173.79 74.53 l S 173.79 74.53 m 173.84 74.53 l S 173.84 74.53 m 173.88 74.53 l S 173.88 74.53 m 173.93 74.53 l S 173.93 74.53 m 173.97 74.53 l S 173.97 74.53 m 174.02 74.53 l S 174.02 74.53 m 174.07 74.53 l S 174.07 74.53 m 174.11 74.53 l S 174.11 74.53 m 174.16 74.53 l S 174.16 74.53 m 174.20 74.53 l S 174.20 74.53 m 174.25 74.53 l S 174.25 74.53 m 174.30 74.53 l S 174.30 74.53 m 174.34 74.53 l S 174.34 74.53 m 174.39 74.53 l S 174.39 74.53 m 174.44 74.53 l S 174.44 74.53 m 174.48 74.53 l S 174.48 74.53 m 174.53 74.53 l S 174.53 74.53 m 174.57 74.53 l S 174.57 74.53 m 174.62 74.53 l S 174.62 74.53 m 174.67 74.53 l S 174.67 74.53 m 174.71 74.53 l S 174.71 74.53 m 174.76 74.53 l S 174.76 74.53 m 174.80 74.53 l S 174.80 74.53 m 174.85 74.53 l S 174.85 74.53 m 174.90 74.53 l S 174.90 74.53 m 174.94 74.53 l S 174.94 74.53 m 174.99 74.53 l S 174.99 74.53 m 175.03 74.53 l S 175.03 74.53 m 175.08 74.53 l S 175.08 74.53 m 175.13 74.53 l S 175.13 74.53 m 175.17 74.53 l S 175.17 74.53 m 175.22 74.53 l S 175.22 74.53 m 175.26 74.53 l S 175.26 74.53 m 175.31 74.53 l S 175.31 74.53 m 175.36 74.53 l S 175.36 74.53 m 175.40 76.49 l S 175.40 74.53 m 175.45 76.49 l S 175.45 74.53 m 175.49 74.53 l S 175.49 74.53 m 175.54 74.53 l S 175.54 74.53 m 175.59 74.53 l S 175.59 74.53 m 175.63 74.53 l S 175.63 74.53 m 175.68 74.53 l S 175.68 74.53 m 175.72 74.53 l S 175.72 74.53 m 175.77 74.53 l S 175.77 74.53 m 175.82 74.53 l S 175.82 74.53 m 175.86 74.53 l S 175.86 74.53 m 175.91 74.53 l S 175.91 74.53 m 175.95 74.53 l S 175.95 74.53 m 176.00 74.53 l S 176.00 74.53 m 176.05 75.51 l S 176.05 74.53 m 176.09 75.51 l S 176.09 74.53 m 176.14 74.53 l S 176.14 74.53 m 176.18 74.53 l S 176.18 74.53 m 176.23 74.53 l S 176.23 74.53 m 176.28 74.53 l S 176.28 74.53 m 176.32 74.53 l S 176.32 74.53 m 176.37 74.53 l S 176.37 74.53 m 176.41 74.53 l S 176.41 74.53 m 176.46 74.53 l S 176.46 74.53 m 176.51 74.53 l S 176.51 74.53 m 176.55 74.53 l S 176.55 74.53 m 176.60 74.53 l S 176.60 74.53 m 176.64 74.53 l S 176.64 74.53 m 176.69 74.53 l S 176.69 74.53 m 176.74 74.53 l S 176.74 74.53 m 176.78 74.53 l S 176.78 74.53 m 176.83 74.53 l S 176.83 74.53 m 176.87 74.53 l S 176.87 74.53 m 176.92 74.53 l S 176.92 74.53 m 176.97 74.53 l S 176.97 74.53 m 177.01 74.53 l S 177.01 74.53 m 177.06 74.53 l S 177.06 74.53 m 177.10 74.53 l S 177.10 74.53 m 177.15 74.53 l S 177.15 74.53 m 177.20 74.53 l S 177.20 74.53 m 177.24 76.49 l S 177.24 74.53 m 177.29 76.49 l S 177.29 74.53 m 177.33 74.53 l S 177.33 74.53 m 177.38 74.53 l S 177.38 74.53 m 177.43 74.53 l S 177.43 74.53 m 177.47 74.53 l S 177.47 74.53 m 177.52 74.53 l S 177.52 74.53 m 177.56 76.49 l S 177.56 74.53 m 177.61 76.49 l S 177.61 74.53 m 177.66 74.53 l S 177.66 74.53 m 177.70 74.53 l S 177.70 74.53 m 177.75 74.53 l S 177.75 74.53 m 177.79 74.53 l S 177.79 74.53 m 177.84 74.53 l S 177.84 74.53 m 177.89 74.53 l S 177.89 74.53 m 177.93 74.53 l S 177.93 74.53 m 177.98 74.53 l S 177.98 74.53 m 178.02 74.53 l S 178.02 74.53 m 178.07 74.53 l S 178.07 74.53 m 178.12 74.53 l S 178.12 74.53 m 178.16 74.53 l S 178.16 74.53 m 178.21 74.53 l S 178.21 74.53 m 178.25 74.53 l S 178.25 74.53 m 178.30 74.53 l S 178.30 74.53 m 178.35 74.53 l S 178.35 74.53 m 178.39 74.53 l S 178.39 74.53 m 178.44 74.53 l S 178.44 74.53 m 178.48 74.53 l S 178.48 74.53 m 178.53 74.53 l S 178.53 74.53 m 178.58 74.53 l S 178.58 74.53 m 178.62 74.53 l S 178.62 74.53 m 178.67 74.53 l S 178.67 74.53 m 178.71 74.53 l S 178.71 74.53 m 178.76 74.53 l S 178.76 74.53 m 178.81 74.53 l S 178.81 74.53 m 178.85 74.53 l S 178.85 74.53 m 178.90 74.53 l S 178.90 74.53 m 178.94 74.53 l S 178.94 74.53 m 178.99 74.53 l S 178.99 74.53 m 179.04 75.51 l S 179.04 74.53 m 179.08 74.53 l S 179.08 74.53 m 179.13 74.53 l S 179.13 74.53 m 179.17 74.53 l S 179.17 74.53 m 179.22 74.53 l S 179.22 74.53 m 179.27 74.53 l S 179.27 74.53 m 179.31 74.53 l S 179.31 74.53 m 179.36 74.53 l S 179.36 74.53 m 179.40 74.53 l S 179.40 74.53 m 179.45 74.53 l S 179.45 74.53 m 179.50 74.53 l S 179.50 74.53 m 179.54 74.53 l S 179.54 74.53 m 179.59 74.53 l S 179.59 74.53 m 179.63 74.53 l S 179.63 74.53 m 179.68 74.53 l S 179.68 74.53 m 179.73 74.53 l S 179.73 74.53 m 179.77 75.51 l S 179.77 74.53 m 179.82 75.51 l S 179.82 74.53 m 179.86 74.53 l S 179.86 74.53 m 179.91 74.53 l S 179.91 74.53 m 179.96 74.53 l S 179.96 74.53 m 180.00 74.53 l S 180.00 74.53 m 180.05 74.53 l S 180.05 74.53 m 180.09 74.53 l S 180.09 74.53 m 180.14 74.53 l S 180.14 74.53 m 180.19 74.53 l S 180.19 74.53 m 180.23 74.53 l S 180.23 74.53 m 180.28 74.53 l S 180.28 74.53 m 180.32 74.53 l S 180.32 74.53 m 180.37 74.53 l S 180.37 74.53 m 180.42 74.53 l S 180.42 74.53 m 180.46 74.53 l S 180.46 74.53 m 180.51 74.53 l S 180.51 74.53 m 180.55 74.53 l S 180.55 74.53 m 180.60 74.53 l S 180.60 74.53 m 180.65 74.53 l S 180.65 74.53 m 180.69 75.51 l S 180.69 74.53 m 180.74 75.51 l S 180.74 74.53 m 180.78 74.53 l S 180.78 74.53 m 180.83 74.53 l S 180.83 74.53 m 180.88 76.49 l S 180.88 74.53 m 180.92 74.53 l S 180.92 74.53 m 180.97 74.53 l S 180.97 74.53 m 181.01 74.53 l S 181.01 74.53 m 181.06 74.53 l S 181.06 74.53 m 181.11 74.53 l S 181.11 74.53 m 181.15 74.53 l S 181.15 74.53 m 181.20 74.53 l S 181.20 74.53 m 181.24 74.53 l S 181.24 74.53 m 181.29 74.53 l S 181.29 74.53 m 181.34 74.53 l S 181.34 74.53 m 181.38 74.53 l S 181.38 74.53 m 181.43 74.53 l S 181.43 74.53 m 181.47 74.53 l S 181.47 74.53 m 181.52 74.53 l S 181.52 74.53 m 181.57 74.53 l S 181.57 74.53 m 181.61 74.53 l S 181.61 74.53 m 181.66 74.53 l S 181.66 74.53 m 181.70 74.53 l S 181.70 74.53 m 181.75 74.53 l S 181.75 74.53 m 181.80 74.53 l S 181.80 74.53 m 181.84 74.53 l S 181.84 74.53 m 181.89 74.53 l S 181.89 74.53 m 181.93 74.53 l S 181.93 74.53 m 181.98 75.51 l S 181.98 74.53 m 182.03 74.53 l S 182.03 74.53 m 182.07 75.51 l S 182.07 74.53 m 182.12 75.51 l S 182.12 74.53 m 182.16 74.53 l S 182.16 74.53 m 182.21 74.53 l S 182.21 74.53 m 182.26 74.53 l S 182.26 74.53 m 182.30 74.53 l S 182.30 74.53 m 182.35 74.53 l S 182.35 74.53 m 182.39 74.53 l S 182.39 74.53 m 182.44 74.53 l S 182.44 74.53 m 182.49 74.53 l S 182.49 74.53 m 182.53 74.53 l S 182.53 74.53 m 182.58 74.53 l S 182.58 74.53 m 182.63 74.53 l S 182.63 74.53 m 182.67 74.53 l S 182.67 74.53 m 182.72 74.53 l S 182.72 74.53 m 182.76 74.53 l S 182.76 74.53 m 182.81 74.53 l S 182.81 74.53 m 182.86 74.53 l S 182.86 74.53 m 182.90 74.53 l S 182.90 74.53 m 182.95 74.53 l S 182.95 74.53 m 182.99 74.53 l S 182.99 74.53 m 183.04 74.53 l S 183.04 74.53 m 183.09 74.53 l S 183.09 74.53 m 183.13 74.53 l S 183.13 74.53 m 183.18 74.53 l S 183.18 74.53 m 183.22 74.53 l S 183.22 74.53 m 183.27 74.53 l S 183.27 74.53 m 183.32 74.53 l S 183.32 74.53 m 183.36 74.53 l S 183.36 74.53 m 183.41 74.53 l S 183.41 74.53 m 183.45 75.51 l S 183.45 74.53 m 183.50 75.51 l S 183.50 74.53 m 183.55 74.53 l S 183.55 74.53 m 183.59 74.53 l S 183.59 74.53 m 183.64 74.53 l S 183.64 74.53 m 183.68 74.53 l S 183.68 74.53 m 183.73 74.53 l S 183.73 74.53 m 183.78 74.53 l S 183.78 74.53 m 183.82 74.53 l S 183.82 74.53 m 183.87 74.53 l S 183.87 74.53 m 183.91 74.53 l S 183.91 74.53 m 183.96 74.53 l S 183.96 74.53 m 184.01 74.53 l S 184.01 74.53 m 184.05 74.53 l S 184.05 74.53 m 184.10 74.53 l S 184.10 74.53 m 184.14 74.53 l S 184.14 74.53 m 184.19 74.53 l S 184.19 74.53 m 184.24 74.53 l S 184.24 74.53 m 184.28 74.53 l S 184.28 74.53 m 184.33 74.53 l S 184.33 74.53 m 184.37 74.53 l S 184.37 74.53 m 184.42 74.53 l S 184.42 74.53 m 184.47 74.53 l S 184.47 74.53 m 184.51 74.53 l S 184.51 74.53 m 184.56 74.53 l S 184.56 74.53 m 184.60 74.53 l S 184.60 74.53 m 184.65 74.53 l S 184.65 74.53 m 184.70 74.53 l S 184.70 74.53 m 184.74 74.53 l S 184.74 74.53 m 184.79 74.53 l S 184.79 74.53 m 184.83 74.53 l S 184.83 74.53 m 184.88 74.53 l S 184.88 74.53 m 184.93 74.53 l S 184.93 74.53 m 184.97 74.53 l S 184.97 74.53 m 185.02 74.53 l S 185.02 74.53 m 185.06 74.53 l S 185.06 74.53 m 185.11 74.53 l S 185.11 74.53 m 185.16 74.53 l S 185.16 74.53 m 185.20 74.53 l S 185.20 74.53 m 185.25 74.53 l S 185.25 74.53 m 185.29 74.53 l S 185.29 74.53 m 185.34 74.53 l S 185.34 74.53 m 185.39 74.53 l S 185.39 74.53 m 185.43 74.53 l S 185.43 74.53 m 185.48 74.53 l S 185.48 74.53 m 185.52 74.53 l S 185.52 74.53 m 185.57 74.53 l S 185.57 74.53 m 185.62 74.53 l S 185.62 74.53 m 185.66 74.53 l S 185.66 74.53 m 185.71 74.53 l S 185.71 74.53 m 185.75 74.53 l S 185.75 74.53 m 185.80 74.53 l S 185.80 74.53 m 185.85 75.51 l S 185.85 74.53 m 185.89 75.51 l S 185.89 74.53 m 185.94 74.53 l S 185.94 74.53 m 185.98 74.53 l S 185.98 74.53 m 186.03 74.53 l S 186.03 74.53 m 186.08 74.53 l S 186.08 74.53 m 186.12 74.53 l S 186.12 74.53 m 186.17 74.53 l S 186.17 74.53 m 186.21 74.53 l S 186.21 74.53 m 186.26 74.53 l S 186.26 74.53 m 186.31 74.53 l S 186.31 74.53 m 186.35 74.53 l S 186.35 74.53 m 186.40 74.53 l S 186.40 74.53 m 186.44 74.53 l S 186.44 74.53 m 186.49 74.53 l S 186.49 74.53 m 186.54 74.53 l S 186.54 74.53 m 186.58 74.53 l S 186.58 74.53 m 186.63 74.53 l S 186.63 74.53 m 186.67 74.53 l S 186.67 74.53 m 186.72 74.53 l S 186.72 74.53 m 186.77 74.53 l S 186.77 74.53 m 186.81 74.53 l S 186.81 74.53 m 186.86 74.53 l S 186.86 74.53 m 186.90 74.53 l S 186.90 74.53 m 186.95 74.53 l S 186.95 74.53 m 187.00 74.53 l S 187.00 74.53 m 187.04 75.51 l S 187.04 74.53 m 187.09 75.51 l S 187.09 74.53 m 187.13 74.53 l S 187.13 74.53 m 187.18 74.53 l S 187.18 74.53 m 187.23 74.53 l S 187.23 74.53 m 187.27 74.53 l S 187.27 74.53 m 187.32 74.53 l S 187.32 74.53 m 187.36 75.51 l S 187.36 74.53 m 187.41 75.51 l S 187.41 74.53 m 187.46 74.53 l S 187.46 74.53 m 187.50 74.53 l S 187.50 74.53 m 187.55 74.53 l S 187.55 74.53 m 187.59 74.53 l S 187.59 74.53 m 187.64 74.53 l S 187.64 74.53 m 187.69 74.53 l S 187.69 74.53 m 187.73 74.53 l S 187.73 74.53 m 187.78 74.53 l S 187.78 74.53 m 187.82 74.53 l S 187.82 74.53 m 187.87 74.53 l S 187.87 74.53 m 187.92 75.51 l S 187.92 74.53 m 187.96 75.51 l S 187.96 74.53 m 188.01 74.53 l S 188.01 74.53 m 188.05 74.53 l S 188.05 74.53 m 188.10 74.53 l S 188.10 74.53 m 188.15 74.53 l S 188.15 74.53 m 188.19 74.53 l S 188.19 74.53 m 188.24 74.53 l S 188.24 74.53 m 188.28 74.53 l S 188.28 74.53 m 188.33 74.53 l S 188.33 74.53 m 188.38 74.53 l S 188.38 74.53 m 188.42 74.53 l S 188.42 74.53 m 188.47 74.53 l S 188.47 74.53 m 188.51 74.53 l S 188.51 74.53 m 188.56 74.53 l S 188.56 74.53 m 188.61 74.53 l S 188.61 74.53 m 188.65 74.53 l S 188.65 74.53 m 188.70 74.53 l S 188.70 74.53 m 188.74 74.53 l S 188.74 74.53 m 188.79 74.53 l S 188.79 74.53 m 188.84 74.53 l S 188.84 74.53 m 188.88 74.53 l S 188.88 74.53 m 188.93 74.53 l S 188.93 74.53 m 188.97 74.53 l S 188.97 74.53 m 189.02 74.53 l S 189.02 74.53 m 189.07 74.53 l S 189.07 74.53 m 189.11 74.53 l S 189.11 74.53 m 189.16 74.53 l S 189.16 74.53 m 189.20 74.53 l S 189.20 74.53 m 189.25 74.53 l S 189.25 74.53 m 189.30 74.53 l S 189.30 74.53 m 189.34 74.53 l S 189.34 74.53 m 189.39 74.53 l S 189.39 74.53 m 189.43 74.53 l S 189.43 74.53 m 189.48 74.53 l S 189.48 74.53 m 189.53 74.53 l S 189.53 74.53 m 189.57 74.53 l S 189.57 74.53 m 189.62 74.53 l S 189.62 74.53 m 189.66 75.51 l S 189.66 74.53 m 189.71 75.51 l S 189.71 74.53 m 189.76 76.49 l S 189.76 74.53 m 189.80 74.53 l S 189.80 74.53 m 189.85 74.53 l S 189.85 74.53 m 189.89 74.53 l S 189.89 74.53 m 189.94 74.53 l S 189.94 74.53 m 189.99 74.53 l S 189.99 74.53 m 190.03 74.53 l S 190.03 74.53 m 190.08 74.53 l S 190.08 74.53 m 190.12 74.53 l S 190.12 74.53 m 190.17 74.53 l S 190.17 74.53 m 190.22 75.51 l S 190.22 74.53 m 190.26 75.51 l S 190.26 74.53 m 190.31 74.53 l S 190.31 74.53 m 190.35 74.53 l S 190.35 74.53 m 190.40 74.53 l S 190.40 74.53 m 190.45 74.53 l S 190.45 74.53 m 190.49 74.53 l S 190.49 74.53 m 190.54 74.53 l S 190.54 74.53 m 190.59 74.53 l S 190.59 74.53 m 190.63 74.53 l S 190.63 74.53 m 190.68 74.53 l S 190.68 74.53 m 190.72 75.51 l S 190.72 74.53 m 190.77 75.51 l S 190.77 74.53 m 190.82 74.53 l S 190.82 74.53 m 190.86 74.53 l S 190.86 74.53 m 190.91 74.53 l S 190.91 74.53 m 190.95 74.53 l S 190.95 74.53 m 191.00 74.53 l S 191.00 74.53 m 191.05 74.53 l S 191.05 74.53 m 191.09 74.53 l S 191.09 74.53 m 191.14 74.53 l S 191.14 74.53 m 191.18 74.53 l S 191.18 74.53 m 191.23 74.53 l S 191.23 74.53 m 191.28 74.53 l S 191.28 74.53 m 191.32 74.53 l S 191.32 74.53 m 191.37 74.53 l S 191.37 74.53 m 191.41 74.53 l S 191.41 74.53 m 191.46 74.53 l S 191.46 74.53 m 191.51 74.53 l S 191.51 74.53 m 191.55 74.53 l S 191.55 74.53 m 191.60 74.53 l S 191.60 74.53 m 191.64 74.53 l S 191.64 74.53 m 191.69 74.53 l S 191.69 74.53 m 191.74 74.53 l S 191.74 74.53 m 191.78 74.53 l S 191.78 74.53 m 191.83 74.53 l S 191.83 74.53 m 191.87 74.53 l S 191.87 74.53 m 191.92 74.53 l S 191.92 74.53 m 191.97 74.53 l S 191.97 74.53 m 192.01 74.53 l S 192.01 74.53 m 192.06 74.53 l S 192.06 74.53 m 192.10 74.53 l S 192.10 74.53 m 192.15 74.53 l S 192.15 74.53 m 192.20 74.53 l S 192.20 74.53 m 192.24 74.53 l S 192.24 74.53 m 192.29 74.53 l S 192.29 74.53 m 192.33 74.53 l S 192.33 74.53 m 192.38 74.53 l S 192.38 74.53 m 192.43 74.53 l S 192.43 74.53 m 192.47 74.53 l S 192.47 74.53 m 192.52 74.53 l S 192.52 74.53 m 192.56 74.53 l S 192.56 74.53 m 192.61 74.53 l S 192.61 74.53 m 192.66 74.53 l S 192.66 74.53 m 192.70 75.51 l S 192.70 74.53 m 192.75 75.51 l S 192.75 74.53 m 192.79 74.53 l S 192.79 74.53 m 192.84 74.53 l S 192.84 74.53 m 192.89 74.53 l S 192.89 74.53 m 192.93 74.53 l S 192.93 74.53 m 192.98 74.53 l S 192.98 74.53 m 193.02 74.53 l S 193.02 74.53 m 193.07 74.53 l S 193.07 74.53 m 193.12 74.53 l S 193.12 74.53 m 193.16 74.53 l S 193.16 74.53 m 193.21 74.53 l S 193.21 74.53 m 193.25 74.53 l S 193.25 74.53 m 193.30 74.53 l S 193.30 74.53 m 193.35 74.53 l S 193.35 74.53 m 193.39 75.51 l S 193.39 74.53 m 193.44 75.51 l S 193.44 74.53 m 193.48 74.53 l S 193.48 74.53 m 193.53 74.53 l S 193.53 74.53 m 193.58 74.53 l S 193.58 74.53 m 193.62 74.53 l S 193.62 74.53 m 193.67 74.53 l S 193.67 74.53 m 193.71 74.53 l S 193.71 74.53 m 193.76 74.53 l S 193.76 74.53 m 193.81 74.53 l S 193.81 74.53 m 193.85 74.53 l S 193.85 74.53 m 193.90 74.53 l S 193.90 74.53 m 193.94 74.53 l S 193.94 74.53 m 193.99 74.53 l S 193.99 74.53 m 194.04 74.53 l S 194.04 74.53 m 194.08 74.53 l S 194.08 74.53 m 194.13 74.53 l S 194.13 74.53 m 194.17 74.53 l S 194.17 74.53 m 194.22 74.53 l S 194.22 74.53 m 194.27 74.53 l S 194.27 74.53 m 194.31 74.53 l S 194.31 74.53 m 194.36 74.53 l S 194.36 74.53 m 194.40 74.53 l S 194.40 74.53 m 194.45 74.53 l S 194.45 74.53 m 194.50 74.53 l S 194.50 74.53 m 194.54 74.53 l S 194.54 74.53 m 194.59 74.53 l S 194.59 74.53 m 194.63 74.53 l S 194.63 74.53 m 194.68 74.53 l S 194.68 74.53 m 194.73 74.53 l S 194.73 74.53 m 194.77 74.53 l S 194.77 74.53 m 194.82 74.53 l S 194.82 74.53 m 194.86 74.53 l S 194.86 74.53 m 194.91 74.53 l S 194.91 74.53 m 194.96 74.53 l S 194.96 74.53 m 195.00 74.53 l S 195.00 74.53 m 195.05 74.53 l S 195.05 74.53 m 195.09 74.53 l S 195.09 74.53 m 195.14 74.53 l S 195.14 74.53 m 195.19 74.53 l S 195.19 74.53 m 195.23 74.53 l S 195.23 74.53 m 195.28 74.53 l S 195.28 74.53 m 195.32 74.53 l S 195.32 74.53 m 195.37 74.53 l S 195.37 74.53 m 195.42 74.53 l S 195.42 74.53 m 195.46 74.53 l S 195.46 74.53 m 195.51 74.53 l S 195.51 74.53 m 195.55 75.51 l S 195.55 74.53 m 195.60 75.51 l S 195.60 74.53 m 195.65 75.51 l S 195.65 74.53 m 195.69 74.53 l S 195.69 74.53 m 195.74 74.53 l S 195.74 74.53 m 195.78 75.51 l S 195.78 74.53 m 195.83 75.51 l S 195.83 74.53 m 195.88 74.53 l S 195.88 74.53 m 195.92 74.53 l S 195.92 74.53 m 195.97 74.53 l S 195.97 74.53 m 196.01 74.53 l S 196.01 74.53 m 196.06 74.53 l S 196.06 74.53 m 196.11 74.53 l S 196.11 74.53 m 196.15 74.53 l S 196.15 74.53 m 196.20 74.53 l S 196.20 74.53 m 196.24 74.53 l S 196.24 74.53 m 196.29 74.53 l S 196.29 74.53 m 196.34 74.53 l S 196.34 74.53 m 196.38 74.53 l S 196.38 74.53 m 196.43 74.53 l S 196.43 74.53 m 196.47 74.53 l S 196.47 74.53 m 196.52 74.53 l S 196.52 74.53 m 196.57 74.53 l S 196.57 74.53 m 196.61 75.51 l S 196.61 74.53 m 196.66 75.51 l S 196.66 74.53 m 196.70 74.53 l S 196.70 74.53 m 196.75 74.53 l S 196.75 74.53 m 196.80 74.53 l S 196.80 74.53 m 196.84 74.53 l S 196.84 74.53 m 196.89 74.53 l S 196.89 74.53 m 196.93 74.53 l S 196.93 74.53 m 196.98 74.53 l S 196.98 74.53 m 197.03 74.53 l S 197.03 74.53 m 197.07 74.53 l S 197.07 74.53 m 197.12 74.53 l S 197.12 74.53 m 197.16 74.53 l S 197.16 74.53 m 197.21 74.53 l S 197.21 74.53 m 197.26 74.53 l S 197.26 74.53 m 197.30 74.53 l S 197.30 74.53 m 197.35 74.53 l S 197.35 74.53 m 197.39 74.53 l S 197.39 74.53 m 197.44 74.53 l S 197.44 74.53 m 197.49 74.53 l S 197.49 74.53 m 197.53 74.53 l S 197.53 74.53 m 197.58 74.53 l S 197.58 74.53 m 197.62 75.51 l S 197.62 74.53 m 197.67 75.51 l S 197.67 74.53 m 197.72 74.53 l S 197.72 74.53 m 197.76 74.53 l S 197.76 74.53 m 197.81 74.53 l S 197.81 74.53 m 197.85 74.53 l S 197.85 74.53 m 197.90 74.53 l S 197.90 74.53 m 197.95 74.53 l S 197.95 74.53 m 197.99 74.53 l S 197.99 74.53 m 198.04 74.53 l S 198.04 74.53 m 198.08 74.53 l S 198.08 74.53 m 198.13 74.53 l S 198.13 74.53 m 198.18 74.53 l S 198.18 74.53 m 198.22 74.53 l S 198.22 74.53 m 198.27 74.53 l S 198.27 74.53 m 198.31 74.53 l S 198.31 74.53 m 198.36 74.53 l S 198.36 74.53 m 198.41 74.53 l S 198.41 74.53 m 198.45 74.53 l S 198.45 74.53 m 198.50 75.51 l S 198.50 74.53 m 198.55 74.53 l S 198.55 74.53 m 198.59 74.53 l S 198.59 74.53 m 198.64 74.53 l S 198.64 74.53 m 198.68 74.53 l S 198.68 74.53 m 198.73 74.53 l S 198.73 74.53 m 198.78 74.53 l S 198.78 74.53 m 198.82 74.53 l S 198.82 74.53 m 198.87 74.53 l S 198.87 74.53 m 198.91 74.53 l S 198.91 74.53 m 198.96 74.53 l S 198.96 74.53 m 199.01 74.53 l S 199.01 74.53 m 199.05 74.53 l S 199.05 74.53 m 199.10 74.53 l S 199.10 74.53 m 199.14 74.53 l S 199.14 74.53 m 199.19 74.53 l S 199.19 74.53 m 199.24 74.53 l S 199.24 74.53 m 199.28 74.53 l S 199.28 74.53 m 199.33 74.53 l S 199.33 74.53 m 199.37 74.53 l S 199.37 74.53 m 199.42 74.53 l S 199.42 74.53 m 199.47 74.53 l S 199.47 74.53 m 199.51 74.53 l S 199.51 74.53 m 199.56 74.53 l S 199.56 74.53 m 199.60 74.53 l S 199.60 74.53 m 199.65 74.53 l S 199.65 74.53 m 199.70 74.53 l S 199.70 74.53 m 199.74 74.53 l S 199.74 74.53 m 199.79 74.53 l S 199.79 74.53 m 199.83 74.53 l S 199.83 74.53 m 199.88 74.53 l S 199.88 74.53 m 199.93 74.53 l S 199.93 74.53 m 199.97 74.53 l S 199.97 74.53 m 200.02 74.53 l S 200.02 74.53 m 200.06 74.53 l S 200.06 74.53 m 200.11 74.53 l S 200.11 74.53 m 200.16 74.53 l S 200.16 74.53 m 200.20 74.53 l S 200.20 74.53 m 200.25 74.53 l S 200.25 74.53 m 200.29 74.53 l S 200.29 74.53 m 200.34 74.53 l S 200.34 74.53 m 200.39 74.53 l S 200.39 74.53 m 200.43 74.53 l S 200.43 74.53 m 200.48 74.53 l S 200.48 74.53 m 200.52 74.53 l S 200.52 74.53 m 200.57 74.53 l S 200.57 74.53 m 200.62 74.53 l S 200.62 74.53 m 200.66 74.53 l S 200.66 74.53 m 200.71 74.53 l S 200.71 74.53 m 200.75 74.53 l S 200.75 74.53 m 200.80 74.53 l S 200.80 74.53 m 200.85 74.53 l S 200.85 74.53 m 200.89 74.53 l S 200.89 74.53 m 200.94 74.53 l S 200.94 74.53 m 200.98 74.53 l S 200.98 74.53 m 201.03 74.53 l S 201.03 74.53 m 201.08 74.53 l S 201.08 74.53 m 201.12 74.53 l S 201.12 74.53 m 201.17 74.53 l S 201.17 74.53 m 201.21 74.53 l S 201.21 74.53 m 201.26 74.53 l S 201.26 74.53 m 201.31 74.53 l S 201.31 74.53 m 201.35 74.53 l S 201.35 74.53 m 201.40 74.53 l S 201.40 74.53 m 201.44 74.53 l S 201.44 74.53 m 201.49 74.53 l S 201.49 74.53 m 201.54 74.53 l S 201.54 74.53 m 201.58 74.53 l S 201.58 74.53 m 201.63 74.53 l S 201.63 74.53 m 201.67 74.53 l S 201.67 74.53 m 201.72 74.53 l S 201.72 74.53 m 201.77 74.53 l S 201.77 74.53 m 201.81 74.53 l S 201.81 74.53 m 201.86 74.53 l S 201.86 74.53 m 201.90 74.53 l S 201.90 74.53 m 201.95 74.53 l S 201.95 74.53 m 202.00 74.53 l S 202.00 74.53 m 202.04 74.53 l S 202.04 74.53 m 202.09 74.53 l S 202.09 74.53 m 202.13 74.53 l S 202.13 74.53 m 202.18 74.53 l S 202.18 74.53 m 202.23 74.53 l S 202.23 74.53 m 202.27 74.53 l S 202.27 74.53 m 202.32 74.53 l S 202.32 74.53 m 202.36 74.53 l S 202.36 74.53 m 202.41 74.53 l S 202.41 74.53 m 202.46 74.53 l S 202.46 74.53 m 202.50 74.53 l S 202.50 74.53 m 202.55 74.53 l S 202.55 74.53 m 202.59 75.51 l S 202.59 74.53 m 202.64 74.53 l S 202.64 74.53 m 202.69 74.53 l S 202.69 74.53 m 202.73 74.53 l S 202.73 74.53 m 202.78 74.53 l S 202.78 74.53 m 202.82 74.53 l S 202.82 74.53 m 202.87 74.53 l S 202.87 74.53 m 202.92 74.53 l S 202.92 74.53 m 202.96 74.53 l S 202.96 74.53 m 203.01 74.53 l S 203.01 74.53 m 203.05 74.53 l S 203.05 74.53 m 203.10 74.53 l S 203.10 74.53 m 203.15 74.53 l S 203.15 74.53 m 203.19 74.53 l S 203.19 74.53 m 203.24 74.53 l S 203.24 74.53 m 203.28 74.53 l S 203.28 74.53 m 203.33 74.53 l S 203.33 74.53 m 203.38 74.53 l S 203.38 74.53 m 203.42 76.49 l S 203.42 74.53 m 203.47 75.51 l S 203.47 74.53 m 203.51 75.51 l S 203.51 74.53 m 203.56 74.53 l S 203.56 74.53 m 203.61 74.53 l S 203.61 74.53 m 203.65 74.53 l S 203.65 74.53 m 203.70 74.53 l S 203.70 74.53 m 203.74 74.53 l S 203.74 74.53 m 203.79 74.53 l S 203.79 74.53 m 203.84 74.53 l S 203.84 74.53 m 203.88 74.53 l S 203.88 74.53 m 203.93 74.53 l S 203.93 74.53 m 203.97 74.53 l S 203.97 74.53 m 204.02 76.49 l S 204.02 74.53 m 204.07 74.53 l S 204.07 74.53 m 204.11 74.53 l S 204.11 74.53 m 204.16 74.53 l S 204.16 74.53 m 204.20 74.53 l S 204.20 74.53 m 204.25 74.53 l S 204.25 74.53 m 204.30 74.53 l S 204.30 74.53 m 204.34 74.53 l S 204.34 74.53 m 204.39 74.53 l S 204.39 74.53 m 204.43 74.53 l S 204.43 74.53 m 204.48 74.53 l S 204.48 74.53 m 204.53 74.53 l S 204.53 74.53 m 204.57 74.53 l S 204.57 74.53 m 204.62 74.53 l S 204.62 74.53 m 204.66 74.53 l S 204.66 74.53 m 204.71 74.53 l S 204.71 74.53 m 204.76 74.53 l S 204.76 74.53 m 204.80 75.51 l S 204.80 74.53 m 204.85 74.53 l S 204.85 74.53 m 204.89 74.53 l S 204.89 74.53 m 204.94 74.53 l S 204.94 74.53 m 204.99 74.53 l S 204.99 74.53 m 205.03 74.53 l S 205.03 74.53 m 205.08 74.53 l S 205.08 74.53 m 205.12 74.53 l S 205.12 74.53 m 205.17 74.53 l S 205.17 74.53 m 205.22 74.53 l S 205.22 74.53 m 205.26 74.53 l S 205.26 74.53 m 205.31 74.53 l S 205.31 74.53 m 205.35 74.53 l S 205.35 74.53 m 205.40 74.53 l S 205.40 74.53 m 205.45 74.53 l S 205.45 74.53 m 205.49 74.53 l S 205.49 74.53 m 205.54 76.49 l S 205.54 74.53 m 205.58 74.53 l S 205.58 74.53 m 205.63 74.53 l S 205.63 74.53 m 205.68 74.53 l S 205.68 74.53 m 205.72 76.49 l S 205.72 74.53 m 205.77 76.49 l S 205.77 74.53 m 205.81 74.53 l S 205.81 74.53 m 205.86 74.53 l S 205.86 74.53 m 205.91 74.53 l S 205.91 74.53 m 205.95 74.53 l S 205.95 74.53 m 206.00 74.53 l S 206.00 74.53 m 206.04 74.53 l S 206.04 74.53 m 206.09 74.53 l S 206.09 74.53 m 206.14 74.53 l S 206.14 74.53 m 206.18 74.53 l S 206.18 74.53 m 206.23 74.53 l S 206.23 74.53 m 206.27 74.53 l S 206.27 74.53 m 206.32 74.53 l S 206.32 74.53 m 206.37 74.53 l S 206.37 74.53 m 206.41 74.53 l S 206.41 74.53 m 206.46 74.53 l S 206.46 74.53 m 206.51 74.53 l S 206.51 74.53 m 206.55 74.53 l S 206.55 74.53 m 206.60 74.53 l S 206.60 74.53 m 206.64 74.53 l S 206.64 74.53 m 206.69 74.53 l S 206.69 74.53 m 206.74 74.53 l S 206.74 74.53 m 206.78 74.53 l S 206.78 74.53 m 206.83 74.53 l S 206.83 74.53 m 206.87 74.53 l S 206.87 74.53 m 206.92 74.53 l S 206.92 74.53 m 206.97 74.53 l S 206.97 74.53 m 207.01 74.53 l S 207.01 74.53 m 207.06 74.53 l S 207.06 74.53 m 207.10 74.53 l S 207.10 74.53 m 207.15 74.53 l S 207.15 74.53 m 207.20 74.53 l S 207.20 74.53 m 207.24 74.53 l S 207.24 74.53 m 207.29 74.53 l S 207.29 74.53 m 207.33 74.53 l S 207.33 74.53 m 207.38 74.53 l S 207.38 74.53 m 207.43 74.53 l S 207.43 74.53 m 207.47 74.53 l S 207.47 74.53 m 207.52 74.53 l S 207.52 74.53 m 207.56 74.53 l S 207.56 74.53 m 207.61 74.53 l S 207.61 74.53 m 207.66 74.53 l S 207.66 74.53 m 207.70 74.53 l S 207.70 74.53 m 207.75 74.53 l S 207.75 74.53 m 207.79 74.53 l S 207.79 74.53 m 207.84 74.53 l S 207.84 74.53 m 207.89 74.53 l S 207.89 74.53 m 207.93 74.53 l S 207.93 74.53 m 207.98 74.53 l S 207.98 74.53 m 208.02 74.53 l S 208.02 74.53 m 208.07 74.53 l S 208.07 74.53 m 208.12 74.53 l S 208.12 74.53 m 208.16 74.53 l S 208.16 74.53 m 208.21 74.53 l S 208.21 74.53 m 208.25 74.53 l S 208.25 74.53 m 208.30 74.53 l S 208.30 74.53 m 208.35 74.53 l S 208.35 74.53 m 208.39 74.53 l S 208.39 74.53 m 208.44 74.53 l S 208.44 74.53 m 208.48 74.53 l S 208.48 74.53 m 208.53 74.53 l S 208.53 74.53 m 208.58 74.53 l S 208.58 74.53 m 208.62 74.53 l S 208.62 74.53 m 208.67 74.53 l S 208.67 74.53 m 208.71 74.53 l S 208.71 74.53 m 208.76 74.53 l S 208.76 74.53 m 208.81 74.53 l S 208.81 74.53 m 208.85 74.53 l S 208.85 74.53 m 208.90 74.53 l S 208.90 74.53 m 208.94 74.53 l S 208.94 74.53 m 208.99 74.53 l S 208.99 74.53 m 209.04 74.53 l S 209.04 74.53 m 209.08 74.53 l S 209.08 74.53 m 209.13 74.53 l S 209.13 74.53 m 209.17 74.53 l S 209.17 74.53 m 209.22 74.53 l S 209.22 74.53 m 209.27 74.53 l S 209.27 74.53 m 209.31 74.53 l S 209.31 74.53 m 209.36 74.53 l S 209.36 74.53 m 209.40 74.53 l S 209.40 74.53 m 209.45 74.53 l S 209.45 74.53 m 209.50 74.53 l S 209.50 74.53 m 209.54 74.53 l S 209.54 74.53 m 209.59 74.53 l S 209.59 74.53 m 209.63 74.53 l S 209.63 74.53 m 209.68 74.53 l S 209.68 74.53 m 209.73 74.53 l S 209.73 74.53 m 209.77 74.53 l S 209.77 74.53 m 209.82 74.53 l S 209.82 74.53 m 209.86 74.53 l S 209.86 74.53 m 209.91 74.53 l S 209.91 74.53 m 209.96 74.53 l S 209.96 74.53 m 210.00 74.53 l S 210.00 74.53 m 210.05 74.53 l S 210.05 74.53 m 210.09 74.53 l S 210.09 74.53 m 210.14 74.53 l S 210.14 74.53 m 210.19 74.53 l S 210.19 74.53 m 210.23 74.53 l S 210.23 74.53 m 210.28 74.53 l S 210.28 74.53 m 210.32 76.49 l S 210.32 74.53 m 210.37 76.49 l S 210.37 74.53 m 210.42 74.53 l S 210.42 74.53 m 210.46 74.53 l S 210.46 74.53 m 210.51 74.53 l S 210.51 74.53 m 210.55 74.53 l S 210.55 74.53 m 210.60 74.53 l S 210.60 74.53 m 210.65 74.53 l S 210.65 74.53 m 210.69 74.53 l S 210.69 74.53 m 210.74 74.53 l S 210.74 74.53 m 210.78 74.53 l S 210.78 74.53 m 210.83 74.53 l S 210.83 74.53 m 210.88 74.53 l S 210.88 74.53 m 210.92 74.53 l S 210.92 74.53 m 210.97 74.53 l S 210.97 74.53 m 211.01 74.53 l S 211.01 74.53 m 211.06 74.53 l S 211.06 74.53 m 211.11 75.51 l S 211.11 74.53 m 211.15 75.51 l S 211.15 74.53 m 211.20 74.53 l S 211.20 74.53 m 211.24 74.53 l S 211.24 74.53 m 211.29 74.53 l S 211.29 74.53 m 211.34 74.53 l S 211.34 74.53 m 211.38 74.53 l S 211.38 74.53 m 211.43 74.53 l S 211.43 74.53 m 211.47 74.53 l S 211.47 74.53 m 211.52 74.53 l S 211.52 74.53 m 211.57 74.53 l S 211.57 74.53 m 211.61 74.53 l S 211.61 74.53 m 211.66 74.53 l S 211.66 74.53 m 211.70 74.53 l S 211.70 74.53 m 211.75 74.53 l S 211.75 74.53 m 211.80 74.53 l S 211.80 74.53 m 211.84 74.53 l S 211.84 74.53 m 211.89 74.53 l S 211.89 74.53 m 211.93 74.53 l S 211.93 74.53 m 211.98 74.53 l S 211.98 74.53 m 212.03 74.53 l S 212.03 74.53 m 212.07 74.53 l S 212.07 74.53 m 212.12 75.51 l S 212.12 74.53 m 212.16 75.51 l S 212.16 74.53 m 212.21 76.49 l S 212.21 74.53 m 212.26 76.49 l S 212.26 74.53 m 212.30 74.53 l S 212.30 74.53 m 212.35 74.53 l S 212.35 74.53 m 212.39 74.53 l S 212.39 74.53 m 212.44 74.53 l S 212.44 74.53 m 212.49 74.53 l S 212.49 74.53 m 212.53 74.53 l S 212.53 74.53 m 212.58 74.53 l S 212.58 74.53 m 212.62 74.53 l S 212.62 74.53 m 212.67 74.53 l S 212.67 74.53 m 212.72 75.51 l S 212.72 74.53 m 212.76 75.51 l S 212.76 74.53 m 212.81 74.53 l S 212.81 74.53 m 212.85 74.53 l S 212.85 74.53 m 212.90 74.53 l S 212.90 74.53 m 212.95 74.53 l S 212.95 74.53 m 212.99 74.53 l S 212.99 74.53 m 213.04 74.53 l S 213.04 74.53 m 213.08 74.53 l S 213.08 74.53 m 213.13 74.53 l S 213.13 74.53 m 213.18 75.51 l S 213.18 74.53 m 213.22 75.51 l S 213.22 74.53 m 213.27 74.53 l S 213.27 74.53 m 213.31 74.53 l S 213.31 74.53 m 213.36 74.53 l S 213.36 74.53 m 213.41 74.53 l S 213.41 74.53 m 213.45 74.53 l S 213.45 74.53 m 213.50 74.53 l S 213.50 74.53 m 213.54 74.53 l S 213.54 74.53 m 213.59 74.53 l S 213.59 74.53 m 213.64 74.53 l S 213.64 74.53 m 213.68 74.53 l S 213.68 74.53 m 213.73 74.53 l S 213.73 74.53 m 213.77 74.53 l S 213.77 74.53 m 213.82 74.53 l S 213.82 74.53 m 213.87 74.53 l S 213.87 74.53 m 213.91 74.53 l S 213.91 74.53 m 213.96 74.53 l S 213.96 74.53 m 214.00 74.53 l S 214.00 74.53 m 214.05 74.53 l S 214.05 74.53 m 214.10 74.53 l S 214.10 74.53 m 214.14 74.53 l S 214.14 74.53 m 214.19 74.53 l S 214.19 74.53 m 214.23 74.53 l S 214.23 74.53 m 214.28 74.53 l S 214.28 74.53 m 214.33 74.53 l S 214.33 74.53 m 214.37 74.53 l S 214.37 74.53 m 214.42 74.53 l S 214.42 74.53 m 214.47 74.53 l S 214.47 74.53 m 214.51 74.53 l S 214.51 74.53 m 214.56 74.53 l S 214.56 74.53 m 214.60 74.53 l S 214.60 74.53 m 214.65 74.53 l S 214.65 74.53 m 214.70 74.53 l S 214.70 74.53 m 214.74 74.53 l S 214.74 74.53 m 214.79 74.53 l S 214.79 74.53 m 214.83 74.53 l S 214.83 74.53 m 214.88 74.53 l S 214.88 74.53 m 214.93 74.53 l S 214.93 74.53 m 214.97 74.53 l S 214.97 74.53 m 215.02 76.49 l S 215.02 74.53 m 215.06 75.51 l S 215.06 74.53 m 215.11 74.53 l S 215.11 74.53 m 215.16 74.53 l S 215.16 74.53 m 215.20 74.53 l S 215.20 74.53 m 215.25 74.53 l S 215.25 74.53 m 215.29 74.53 l S 215.29 74.53 m 215.34 74.53 l S 215.34 74.53 m 215.39 74.53 l S 215.39 74.53 m 215.43 74.53 l S 215.43 74.53 m 215.48 74.53 l S 215.48 74.53 m 215.52 74.53 l S 215.52 74.53 m 215.57 74.53 l S 215.57 74.53 m 215.62 74.53 l S 215.62 74.53 m 215.66 74.53 l S 215.66 74.53 m 215.71 74.53 l S 215.71 74.53 m 215.75 74.53 l S 215.75 74.53 m 215.80 74.53 l S 215.80 74.53 m 215.85 74.53 l S 215.85 74.53 m 215.89 74.53 l S 215.89 74.53 m 215.94 74.53 l S 215.94 74.53 m 215.98 74.53 l S 215.98 74.53 m 216.03 74.53 l S 216.03 74.53 m 216.08 74.53 l S 216.08 74.53 m 216.12 74.53 l S 216.12 74.53 m 216.17 74.53 l S 216.17 74.53 m 216.21 74.53 l S 216.21 74.53 m 216.26 74.53 l S 216.26 74.53 m 216.31 74.53 l S 216.31 74.53 m 216.35 74.53 l S 216.35 74.53 m 216.40 74.53 l S 216.40 74.53 m 216.44 74.53 l S 216.44 74.53 m 216.49 74.53 l S 216.49 74.53 m 216.54 74.53 l S 216.54 74.53 m 216.58 74.53 l S 216.58 74.53 m 216.63 74.53 l S 216.63 74.53 m 216.67 74.53 l S 216.67 74.53 m 216.72 74.53 l S 216.72 74.53 m 216.77 74.53 l S 216.77 74.53 m 216.81 74.53 l S 216.81 74.53 m 216.86 74.53 l S 216.86 74.53 m 216.90 74.53 l S 216.90 74.53 m 216.95 74.53 l S 216.95 74.53 m 217.00 74.53 l S 217.00 74.53 m 217.04 74.53 l S 217.04 74.53 m 217.09 74.53 l S 217.09 74.53 m 217.13 74.53 l S 217.13 74.53 m 217.18 74.53 l S 217.18 74.53 m 217.23 76.49 l S 217.23 74.53 m 217.27 76.49 l S 217.27 74.53 m 217.32 74.53 l S 217.32 74.53 m 217.36 74.53 l S 217.36 74.53 m 217.41 74.53 l S 217.41 74.53 m 217.46 74.53 l S 217.46 74.53 m 217.50 74.53 l S 217.50 74.53 m 217.55 74.53 l S 217.55 74.53 m 217.59 74.53 l S 217.59 74.53 m 217.64 74.53 l S 217.64 74.53 m 217.69 74.53 l S 217.69 74.53 m 217.73 74.53 l S 217.73 74.53 m 217.78 74.53 l S 217.78 74.53 m 217.82 74.53 l S 217.82 74.53 m 217.87 74.53 l S 217.87 74.53 m 217.92 74.53 l S 217.92 74.53 m 217.96 74.53 l S 217.96 74.53 m 218.01 74.53 l S 218.01 74.53 m 218.05 74.53 l S 218.05 74.53 m 218.10 74.53 l S 218.10 74.53 m 218.15 74.53 l S 218.15 74.53 m 218.19 74.53 l S 218.19 74.53 m 218.24 74.53 l S 218.24 74.53 m 218.28 74.53 l S 218.28 74.53 m 218.33 74.53 l S 218.33 74.53 m 218.38 74.53 l S 218.38 74.53 m 218.42 74.53 l S 218.42 74.53 m 218.47 74.53 l S 218.47 74.53 m 218.51 74.53 l S 218.51 74.53 m 218.56 74.53 l S 218.56 74.53 m 218.61 74.53 l S 218.61 74.53 m 218.65 74.53 l S 218.65 74.53 m 218.70 74.53 l S 218.70 74.53 m 218.74 74.53 l S 218.74 74.53 m 218.79 74.53 l S 218.79 74.53 m 218.84 74.53 l S 218.84 74.53 m 218.88 74.53 l S 218.88 74.53 m 218.93 74.53 l S 218.93 74.53 m 218.97 75.51 l S 218.97 74.53 m 219.02 75.51 l S 219.02 74.53 m 219.07 74.53 l S 219.07 74.53 m 219.11 74.53 l S 219.11 74.53 m 219.16 74.53 l S 219.16 74.53 m 219.20 74.53 l S 219.20 74.53 m 219.25 74.53 l S 219.25 74.53 m 219.30 74.53 l S 219.30 74.53 m 219.34 74.53 l S 219.34 74.53 m 219.39 74.53 l S 219.39 74.53 m 219.43 74.53 l S 219.43 74.53 m 219.48 74.53 l S 219.48 74.53 m 219.53 74.53 l S 219.53 74.53 m 219.57 74.53 l S 219.57 74.53 m 219.62 74.53 l S 219.62 74.53 m 219.66 74.53 l S 219.66 74.53 m 219.71 75.51 l S 219.71 74.53 m 219.76 75.51 l S 219.76 74.53 m 219.80 74.53 l S 219.80 74.53 m 219.85 74.53 l S 219.85 74.53 m 219.89 74.53 l S 219.89 74.53 m 219.94 74.53 l S 219.94 74.53 m 219.99 74.53 l S 219.99 74.53 m 220.03 75.51 l S 220.03 74.53 m 220.08 75.51 l S 220.08 74.53 m 220.12 74.53 l S 220.12 74.53 m 220.17 74.53 l S 220.17 74.53 m 220.22 74.53 l S 220.22 74.53 m 220.26 74.53 l S 220.26 74.53 m 220.31 74.53 l S 220.31 74.53 m 220.35 74.53 l S 220.35 74.53 m 220.40 74.53 l S 220.40 74.53 m 220.45 74.53 l S 220.45 74.53 m 220.49 74.53 l S 220.49 74.53 m 220.54 74.53 l S 220.54 74.53 m 220.58 74.53 l S 220.58 74.53 m 220.63 74.53 l S 220.63 74.53 m 220.68 74.53 l S 220.68 74.53 m 220.72 74.53 l S 220.72 74.53 m 220.77 74.53 l S 220.77 74.53 m 220.81 74.53 l S 220.81 74.53 m 220.86 74.53 l S 220.86 74.53 m 220.91 74.53 l S 220.91 74.53 m 220.95 74.53 l S 220.95 74.53 m 221.00 74.53 l S 221.00 74.53 m 221.04 74.53 l S 221.04 74.53 m 221.09 74.53 l S 221.09 74.53 m 221.14 74.53 l S 221.14 74.53 m 221.18 74.53 l S 221.18 74.53 m 221.23 74.53 l S 221.23 74.53 m 221.27 74.53 l S 221.27 74.53 m 221.32 74.53 l S 221.32 74.53 m 221.37 74.53 l S 221.37 74.53 m 221.41 74.53 l S 221.41 74.53 m 221.46 75.51 l S 221.46 74.53 m 221.50 75.51 l S 221.50 74.53 m 221.55 74.53 l S 221.55 74.53 m 221.60 74.53 l S 221.60 74.53 m 221.64 74.53 l S 221.64 74.53 m 221.69 74.53 l S 221.69 74.53 m 221.73 74.53 l S 221.73 74.53 m 221.78 74.53 l S 221.78 74.53 m 221.83 74.53 l S 221.83 74.53 m 221.87 74.53 l S 221.87 74.53 m 221.92 74.53 l S 221.92 74.53 m 221.96 74.53 l S 221.96 74.53 m 222.01 74.53 l S 222.01 74.53 m 222.06 74.53 l S 222.06 74.53 m 222.10 74.53 l S 222.10 74.53 m 222.15 74.53 l S 222.15 74.53 m 222.19 74.53 l S 222.19 74.53 m 222.24 74.53 l S 222.24 74.53 m 222.29 74.53 l S 222.29 74.53 m 222.33 74.53 l S 222.33 74.53 m 222.38 74.53 l S 222.38 74.53 m 222.43 74.53 l S 222.43 74.53 m 222.47 74.53 l S 222.47 74.53 m 222.52 74.53 l S 222.52 74.53 m 222.56 74.53 l S 222.56 74.53 m 222.61 74.53 l S 222.61 74.53 m 222.66 74.53 l S 222.66 74.53 m 222.70 74.53 l S 222.70 74.53 m 222.75 74.53 l S 222.75 74.53 m 222.79 74.53 l S 222.79 74.53 m 222.84 74.53 l S 222.84 74.53 m 222.89 74.53 l S 222.89 74.53 m 222.93 74.53 l S 222.93 74.53 m 222.98 74.53 l S 222.98 74.53 m 223.02 74.53 l S 223.02 74.53 m 223.07 74.53 l S 223.07 74.53 m 223.12 74.53 l S 223.12 74.53 m 223.16 74.53 l S 223.16 74.53 m 223.21 74.53 l S 223.21 74.53 m 223.25 74.53 l S 223.25 74.53 m 223.30 74.53 l S 223.30 74.53 m 223.35 74.53 l S 223.35 74.53 m 223.39 74.53 l S 223.39 74.53 m 223.44 74.53 l S 223.44 74.53 m 223.48 74.53 l S 223.48 74.53 m 223.53 74.53 l S 223.53 74.53 m 223.58 74.53 l S 223.58 74.53 m 223.62 74.53 l S 223.62 74.53 m 223.67 74.53 l S 223.67 74.53 m 223.71 74.53 l S 223.71 74.53 m 223.76 74.53 l S 223.76 74.53 m 223.81 74.53 l S 223.81 74.53 m 223.85 74.53 l S 223.85 74.53 m 223.90 74.53 l S 223.90 74.53 m 223.94 74.53 l S 223.94 74.53 m 223.99 74.53 l S 223.99 74.53 m 224.04 74.53 l S 224.04 74.53 m 224.08 74.53 l S 224.08 74.53 m 224.13 74.53 l S 224.13 74.53 m 224.17 74.53 l S 224.17 74.53 m 224.22 74.53 l S 224.22 74.53 m 224.27 74.53 l S 224.27 74.53 m 224.31 74.53 l S 224.31 74.53 m 224.36 74.53 l S 224.36 74.53 m 224.40 74.53 l S 224.40 74.53 m 224.45 74.53 l S 224.45 74.53 m 224.50 74.53 l S 224.50 74.53 m 224.54 74.53 l S 224.54 74.53 m 224.59 74.53 l S 224.59 74.53 m 224.63 74.53 l S 224.63 74.53 m 224.68 74.53 l S 224.68 74.53 m 224.73 74.53 l S 224.73 74.53 m 224.77 74.53 l S 224.77 74.53 m 224.82 74.53 l S 224.82 74.53 m 224.86 74.53 l S 224.86 74.53 m 224.91 74.53 l S 224.91 74.53 m 224.96 74.53 l S 224.96 74.53 m 225.00 74.53 l S 225.00 74.53 m 225.05 74.53 l S 225.05 74.53 m 225.09 74.53 l S 225.09 74.53 m 225.14 74.53 l S 225.14 74.53 m 225.19 74.53 l S 225.19 74.53 m 225.23 74.53 l S 225.23 74.53 m 225.28 74.53 l S 225.28 74.53 m 225.32 74.53 l S 225.32 74.53 m 225.37 74.53 l S 225.37 74.53 m 225.42 74.53 l S 225.42 74.53 m 225.46 74.53 l S 225.46 74.53 m 225.51 74.53 l S 225.51 74.53 m 225.55 74.53 l S 225.55 74.53 m 225.60 74.53 l S 225.60 74.53 m 225.65 74.53 l S 225.65 74.53 m 225.69 74.53 l S 225.69 74.53 m 225.74 74.53 l S 225.74 74.53 m 225.78 74.53 l S 225.78 74.53 m 225.83 74.53 l S 225.83 74.53 m 225.88 74.53 l S 225.88 74.53 m 225.92 74.53 l S 225.92 74.53 m 225.97 74.53 l S 225.97 74.53 m 226.01 74.53 l S 226.01 74.53 m 226.06 74.53 l S 226.06 74.53 m 226.11 74.53 l S 226.11 74.53 m 226.15 74.53 l S 226.15 74.53 m 226.20 74.53 l S 226.20 74.53 m 226.24 74.53 l S 226.24 74.53 m 226.29 74.53 l S 226.29 74.53 m 226.34 74.53 l S 226.34 74.53 m 226.38 74.53 l S 226.38 74.53 m 226.43 74.53 l S 226.43 74.53 m 226.47 74.53 l S 226.47 74.53 m 226.52 74.53 l S 226.52 74.53 m 226.57 74.53 l S 226.57 74.53 m 226.61 74.53 l S 226.61 74.53 m 226.66 74.53 l S 226.66 74.53 m 226.70 74.53 l S 226.70 74.53 m 226.75 74.53 l S 226.75 74.53 m 226.80 74.53 l S 226.80 74.53 m 226.84 74.53 l S 226.84 74.53 m 226.89 74.53 l S 226.89 74.53 m 226.93 74.53 l S 226.93 74.53 m 226.98 74.53 l S 226.98 74.53 m 227.03 74.53 l S 227.03 74.53 m 227.07 74.53 l S 227.07 74.53 m 227.12 74.53 l S 227.12 74.53 m 227.16 74.53 l S 227.16 74.53 m 227.21 74.53 l S 227.21 74.53 m 227.26 74.53 l S 227.26 74.53 m 227.30 74.53 l S 227.30 74.53 m 227.35 74.53 l S 227.35 74.53 m 227.39 74.53 l S 227.39 74.53 m 227.44 74.53 l S 227.44 74.53 m 227.49 75.51 l S 227.49 74.53 m 227.53 74.53 l S 227.53 74.53 m 227.58 75.51 l S 227.58 74.53 m 227.62 75.51 l S 227.62 74.53 m 227.67 74.53 l S 227.67 74.53 m 227.72 74.53 l S 227.72 74.53 m 227.76 74.53 l S 227.76 74.53 m 227.81 74.53 l S 227.81 74.53 m 227.85 74.53 l S 227.85 74.53 m 227.90 74.53 l S 227.90 74.53 m 227.95 74.53 l S 227.95 74.53 m 227.99 74.53 l S 227.99 74.53 m 228.04 74.53 l S 228.04 74.53 m 228.08 74.53 l S 228.08 74.53 m 228.13 74.53 l S 228.13 74.53 m 228.18 74.53 l S 228.18 74.53 m 228.22 74.53 l S 228.22 74.53 m 228.27 74.53 l S 228.27 74.53 m 228.31 74.53 l S 228.31 74.53 m 228.36 74.53 l S 228.36 74.53 m 228.41 74.53 l S 228.41 74.53 m 228.45 74.53 l S 228.45 74.53 m 228.50 74.53 l S 228.50 74.53 m 228.54 74.53 l S 228.54 74.53 m 228.59 74.53 l S 228.59 74.53 m 228.64 74.53 l S 228.64 74.53 m 228.68 74.53 l S 228.68 74.53 m 228.73 74.53 l S 228.73 74.53 m 228.77 74.53 l S 228.77 74.53 m 228.82 74.53 l S 228.82 74.53 m 228.87 74.53 l S 228.87 74.53 m 228.91 74.53 l S 228.91 74.53 m 228.96 74.53 l S 228.96 74.53 m 229.00 74.53 l S 229.00 74.53 m 229.05 74.53 l S 229.05 74.53 m 229.10 74.53 l S 229.10 74.53 m 229.14 74.53 l S 229.14 74.53 m 229.19 74.53 l S 229.19 74.53 m 229.23 74.53 l S 229.23 74.53 m 229.28 74.53 l S 229.28 74.53 m 229.33 74.53 l S 229.33 74.53 m 229.37 74.53 l S 229.37 74.53 m 229.42 74.53 l S 229.42 74.53 m 229.46 74.53 l S 229.46 74.53 m 229.51 74.53 l S 229.51 74.53 m 229.56 74.53 l S 229.56 74.53 m 229.60 74.53 l S 229.60 74.53 m 229.65 74.53 l S 229.65 74.53 m 229.69 74.53 l S 229.69 74.53 m 229.74 74.53 l S 229.74 74.53 m 229.79 74.53 l S 229.79 74.53 m 229.83 74.53 l S 229.83 74.53 m 229.88 74.53 l S 229.88 74.53 m 229.92 75.51 l S 229.92 74.53 m 229.97 75.51 l S 229.97 74.53 m 230.02 74.53 l S 230.02 74.53 m 230.06 74.53 l S 230.06 74.53 m 230.11 74.53 l S 230.11 74.53 m 230.15 74.53 l S 230.15 74.53 m 230.20 74.53 l S 230.20 74.53 m 230.25 74.53 l S 230.25 74.53 m 230.29 74.53 l S 230.29 74.53 m 230.34 74.53 l S 230.34 74.53 m 230.38 74.53 l S 230.38 74.53 m 230.43 74.53 l S 230.43 74.53 m 230.48 74.53 l S 230.48 74.53 m 230.52 74.53 l S 230.52 74.53 m 230.57 74.53 l S 230.57 74.53 m 230.62 74.53 l S 230.62 74.53 m 230.66 74.53 l S 230.66 74.53 m 230.71 74.53 l S 230.71 74.53 m 230.75 74.53 l S 230.75 74.53 m 230.80 74.53 l S 230.80 74.53 m 230.85 74.53 l S 230.85 74.53 m 230.89 74.53 l S 230.89 74.53 m 230.94 74.53 l S 230.94 74.53 m 230.98 74.53 l S 230.98 74.53 m 231.03 74.53 l S 231.03 74.53 m 231.08 74.53 l S 231.08 74.53 m 231.12 74.53 l S 231.12 74.53 m 231.17 74.53 l S 231.17 74.53 m 231.21 74.53 l S 231.21 74.53 m 231.26 74.53 l S 231.26 74.53 m 231.31 74.53 l S 231.31 74.53 m 231.35 74.53 l S 231.35 74.53 m 231.40 74.53 l S 231.40 74.53 m 231.44 74.53 l S 231.44 74.53 m 231.49 74.53 l S 231.49 74.53 m 231.54 74.53 l S 231.54 74.53 m 231.58 74.53 l S 231.58 74.53 m 231.63 75.51 l S 231.63 74.53 m 231.67 75.51 l S 231.67 74.53 m 231.72 74.53 l S 231.72 74.53 m 231.77 74.53 l S 231.77 74.53 m 231.81 74.53 l S 231.81 74.53 m 231.86 74.53 l S 231.86 74.53 m 231.90 74.53 l S 231.90 74.53 m 231.95 74.53 l S 231.95 74.53 m 232.00 74.53 l S 232.00 74.53 m 232.04 74.53 l S 232.04 74.53 m 232.09 74.53 l S 232.09 74.53 m 232.13 74.53 l S 232.13 74.53 m 232.18 74.53 l S 232.18 74.53 m 232.23 74.53 l S 232.23 74.53 m 232.27 74.53 l S 232.27 74.53 m 232.32 74.53 l S 232.32 74.53 m 232.36 74.53 l S 232.36 74.53 m 232.41 74.53 l S 232.41 74.53 m 232.46 74.53 l S 232.46 74.53 m 232.50 74.53 l S 232.50 74.53 m 232.55 74.53 l S 232.55 74.53 m 232.59 74.53 l S 232.59 74.53 m 232.64 74.53 l S 232.64 74.53 m 232.69 74.53 l S 232.69 74.53 m 232.73 74.53 l S 232.73 74.53 m 232.78 74.53 l S 232.78 74.53 m 232.82 74.53 l S 232.82 74.53 m 232.87 74.53 l S 232.87 74.53 m 232.92 74.53 l S 232.92 74.53 m 232.96 74.53 l S 232.96 74.53 m 233.01 74.53 l S 233.01 74.53 m 233.05 74.53 l S 233.05 74.53 m 233.10 74.53 l S 233.10 74.53 m 233.15 74.53 l S 233.15 74.53 m 233.19 74.53 l S 233.19 74.53 m 233.24 74.53 l S 233.24 74.53 m 233.28 74.53 l S 233.28 74.53 m 233.33 74.53 l S 233.33 74.53 m 233.38 74.53 l S 233.38 74.53 m 233.42 74.53 l S 233.42 74.53 m 233.47 74.53 l S 233.47 74.53 m 233.51 74.53 l S 233.51 74.53 m 233.56 74.53 l S 233.56 74.53 m 233.61 74.53 l S 233.61 74.53 m 233.65 74.53 l S 233.65 74.53 m 233.70 74.53 l S 233.70 74.53 m 233.74 74.53 l S 233.74 74.53 m 233.79 75.51 l S 233.79 74.53 m 233.84 74.53 l S 233.84 74.53 m 233.88 75.51 l S 233.88 74.53 m 233.93 76.49 l S 233.93 74.53 m 233.97 76.49 l S 233.97 74.53 m 234.02 74.53 l S 234.02 74.53 m 234.07 74.53 l S 234.07 74.53 m 234.11 74.53 l S 234.11 74.53 m 234.16 74.53 l S 234.16 74.53 m 234.20 74.53 l S 234.20 74.53 m 234.25 74.53 l S 234.25 74.53 m 234.30 74.53 l S 234.30 74.53 m 234.34 74.53 l S 234.34 74.53 m 234.39 74.53 l S 234.39 74.53 m 234.43 74.53 l S 234.43 74.53 m 234.48 74.53 l S 234.48 74.53 m 234.53 74.53 l S 234.53 74.53 m 234.57 74.53 l S 234.57 74.53 m 234.62 74.53 l S 234.62 74.53 m 234.66 74.53 l S 234.66 74.53 m 234.71 74.53 l S 234.71 74.53 m 234.76 74.53 l S 234.76 74.53 m 234.80 74.53 l S 234.80 74.53 m 234.85 74.53 l S 234.85 74.53 m 234.89 74.53 l S 234.89 74.53 m 234.94 74.53 l S 234.94 74.53 m 234.99 74.53 l S 234.99 74.53 m 235.03 74.53 l S 235.03 74.53 m 235.08 74.53 l S 235.08 74.53 m 235.12 74.53 l S 235.12 74.53 m 235.17 74.53 l S 235.17 74.53 m 235.22 74.53 l S 235.22 74.53 m 235.26 74.53 l S 235.26 74.53 m 235.31 74.53 l S 235.31 74.53 m 235.35 74.53 l S 235.35 74.53 m 235.40 74.53 l S 235.40 74.53 m 235.45 74.53 l S 235.45 74.53 m 235.49 74.53 l S 235.49 74.53 m 235.54 74.53 l S 235.54 74.53 m 235.58 74.53 l S 235.58 74.53 m 235.63 75.51 l S 235.63 74.53 m 235.68 75.51 l S 235.68 74.53 m 235.72 74.53 l S 235.72 74.53 m 235.77 74.53 l S 235.77 74.53 m 235.81 74.53 l S 235.81 74.53 m 235.86 74.53 l S 235.86 74.53 m 235.91 75.51 l S 235.91 74.53 m 235.95 75.51 l S 235.95 74.53 m 236.00 74.53 l S 236.00 74.53 m 236.04 74.53 l S 236.04 74.53 m 236.09 74.53 l S 236.09 74.53 m 236.14 75.51 l S 236.14 74.53 m 236.18 74.53 l S 236.18 74.53 m 236.23 75.51 l S 236.23 74.53 m 236.27 75.51 l S 236.27 74.53 m 236.32 74.53 l S 236.32 74.53 m 236.37 74.53 l S 236.37 74.53 m 236.41 74.53 l S 236.41 74.53 m 236.46 74.53 l S 236.46 74.53 m 236.50 74.53 l S 236.50 74.53 m 236.55 74.53 l S 236.55 74.53 m 236.60 74.53 l S 236.60 74.53 m 236.64 74.53 l S 236.64 74.53 m 236.69 74.53 l S 236.69 74.53 m 236.73 74.53 l S 236.73 74.53 m 236.78 74.53 l S 236.78 74.53 m 236.83 74.53 l S 236.83 74.53 m 236.87 74.53 l S 236.87 74.53 m 236.92 74.53 l S 236.92 74.53 m 236.96 74.53 l S 236.96 74.53 m 237.01 74.53 l S 237.01 74.53 m 237.06 74.53 l S 237.06 74.53 m 237.10 74.53 l S 237.10 74.53 m 237.15 74.53 l S 237.15 74.53 m 237.19 74.53 l S 237.19 74.53 m 237.24 74.53 l S 237.24 74.53 m 237.29 74.53 l S 237.29 74.53 m 237.33 74.53 l S 237.33 74.53 m 237.38 74.53 l S 237.38 74.53 m 237.42 74.53 l S 237.42 74.53 m 237.47 74.53 l S 237.47 74.53 m 237.52 74.53 l S 237.52 74.53 m 237.56 74.53 l S 237.56 74.53 m 237.61 74.53 l S 237.61 74.53 m 237.65 74.53 l S 237.65 74.53 m 237.70 74.53 l S 237.70 74.53 m 237.75 74.53 l S 237.75 74.53 m 237.79 74.53 l S 237.79 74.53 m 237.84 74.53 l S 237.84 74.53 m 237.88 74.53 l S 237.88 74.53 m 237.93 74.53 l S 237.93 74.53 m 237.98 74.53 l S 237.98 74.53 m 238.02 74.53 l S 238.02 74.53 m 238.07 74.53 l S 238.07 74.53 m 238.11 74.53 l S 238.11 74.53 m 238.16 74.53 l S 238.16 74.53 m 238.21 74.53 l S 238.21 74.53 m 238.25 74.53 l S 238.25 74.53 m 238.30 74.53 l S 238.30 74.53 m 238.34 74.53 l S 238.34 74.53 m 238.39 74.53 l S 238.39 74.53 m 238.44 74.53 l S 238.44 74.53 m 238.48 74.53 l S 238.48 74.53 m 238.53 74.53 l S 238.53 74.53 m 238.58 74.53 l S 238.58 74.53 m 238.62 74.53 l S 238.62 74.53 m 238.67 74.53 l S 238.67 74.53 m 238.71 74.53 l S 238.71 74.53 m 238.76 74.53 l S 238.76 74.53 m 238.81 74.53 l S 238.81 74.53 m 238.85 74.53 l S 238.85 74.53 m 238.90 74.53 l S 238.90 74.53 m 238.94 74.53 l S 238.94 74.53 m 238.99 74.53 l S 238.99 74.53 m 239.04 74.53 l S 239.04 74.53 m 239.08 74.53 l S 239.08 74.53 m 239.13 74.53 l S 239.13 74.53 m 239.17 74.53 l S 239.17 74.53 m 239.22 74.53 l S 239.22 74.53 m 239.27 74.53 l S 239.27 74.53 m 239.31 75.51 l S 239.31 74.53 m 239.36 75.51 l S 239.36 74.53 m 239.40 75.51 l S 239.40 74.53 m 239.45 75.51 l S 239.45 74.53 m 239.50 74.53 l S 239.50 74.53 m 239.54 74.53 l S 239.54 74.53 m 239.59 74.53 l S 239.59 74.53 m 239.63 75.51 l S 239.63 74.53 m 239.68 75.51 l S 239.68 74.53 m 239.73 74.53 l S 239.73 74.53 m 239.77 74.53 l S 239.77 74.53 m 239.82 75.51 l S 239.82 74.53 m 239.86 75.51 l S 239.86 74.53 m 239.91 74.53 l S 239.91 74.53 m 239.96 74.53 l S 239.96 74.53 m 240.00 74.53 l S 240.00 74.53 m 240.05 74.53 l S 240.05 74.53 m 240.09 74.53 l S 240.09 74.53 m 240.14 74.53 l S 240.14 74.53 m 240.19 74.53 l S 240.19 74.53 m 240.23 74.53 l S 240.23 74.53 m 240.28 74.53 l S 240.28 74.53 m 240.32 74.53 l S 240.32 74.53 m 240.37 74.53 l S 240.37 74.53 m 240.42 74.53 l S 240.42 74.53 m 240.46 74.53 l S 240.46 74.53 m 240.51 74.53 l S 240.51 74.53 m 240.55 74.53 l S 240.55 74.53 m 240.60 74.53 l S 240.60 74.53 m 240.65 74.53 l S 240.65 74.53 m 240.69 74.53 l S 240.69 74.53 m 240.74 74.53 l S 240.74 74.53 m 240.78 74.53 l S 240.78 74.53 m 240.83 74.53 l S 240.83 74.53 m 240.88 74.53 l S 240.88 74.53 m 240.92 74.53 l S 240.92 74.53 m 240.97 74.53 l S 240.97 74.53 m 241.01 74.53 l S 241.01 74.53 m 241.06 74.53 l S 241.06 74.53 m 241.11 74.53 l S 241.11 74.53 m 241.15 74.53 l S 241.15 74.53 m 241.20 74.53 l S 241.20 74.53 m 241.24 74.53 l S 241.24 74.53 m 241.29 74.53 l S 241.29 74.53 m 241.34 74.53 l S 241.34 74.53 m 241.38 74.53 l S 241.38 74.53 m 241.43 74.53 l S 241.43 74.53 m 241.47 74.53 l S 241.47 74.53 m 241.52 74.53 l S 241.52 74.53 m 241.57 76.49 l S 241.57 74.53 m 241.61 76.49 l S 241.61 74.53 m 241.66 74.53 l S 241.66 74.53 m 241.70 74.53 l S 241.70 74.53 m 241.75 74.53 l S 241.75 74.53 m 241.80 74.53 l S 241.80 74.53 m 241.84 74.53 l S 241.84 74.53 m 241.89 74.53 l S 241.89 74.53 m 241.93 74.53 l S 241.93 74.53 m 241.98 75.51 l S 241.98 74.53 m 242.03 75.51 l S 242.03 74.53 m 242.07 74.53 l S 242.07 74.53 m 242.12 74.53 l S 242.12 74.53 m 242.16 74.53 l S 242.16 74.53 m 242.21 74.53 l S 242.21 74.53 m 242.26 74.53 l S 242.26 74.53 m 242.30 74.53 l S 242.30 74.53 m 242.35 74.53 l S 242.35 74.53 m 242.39 74.53 l S 242.39 74.53 m 242.44 74.53 l S 242.44 74.53 m 242.49 74.53 l S 242.49 74.53 m 242.53 74.53 l S 242.53 74.53 m 242.58 74.53 l S 242.58 74.53 m 242.62 74.53 l S 242.62 74.53 m 242.67 74.53 l S 242.67 74.53 m 242.72 74.53 l S 242.72 74.53 m 242.76 74.53 l S 242.76 74.53 m 242.81 74.53 l S 242.81 74.53 m 242.85 74.53 l S 242.85 74.53 m 242.90 74.53 l S 242.90 74.53 m 242.95 74.53 l S 242.95 74.53 m 242.99 74.53 l S 242.99 74.53 m 243.04 74.53 l S 243.04 74.53 m 243.08 74.53 l S 243.08 74.53 m 243.13 74.53 l S 243.13 74.53 m 243.18 74.53 l S 243.18 74.53 m 243.22 74.53 l S 243.22 74.53 m 243.27 74.53 l S 243.27 74.53 m 243.31 74.53 l S 243.31 74.53 m 243.36 74.53 l S 243.36 74.53 m 243.41 74.53 l S 243.41 74.53 m 243.45 74.53 l S 243.45 74.53 m 243.50 74.53 l S 243.50 74.53 m 243.54 74.53 l S 243.54 74.53 m 243.59 74.53 l S 243.59 74.53 m 243.64 74.53 l S 243.64 74.53 m 243.68 74.53 l S 243.68 74.53 m 243.73 74.53 l S 243.73 74.53 m 243.77 74.53 l S 243.77 74.53 m 243.82 74.53 l S 243.82 74.53 m 243.87 74.53 l S 243.87 74.53 m 243.91 74.53 l S 243.91 74.53 m 243.96 74.53 l S 243.96 74.53 m 244.00 74.53 l S 244.00 74.53 m 244.05 74.53 l S 244.05 74.53 m 244.10 74.53 l S 244.10 74.53 m 244.14 74.53 l S 244.14 74.53 m 244.19 74.53 l S 244.19 74.53 m 244.23 74.53 l S 244.23 74.53 m 244.28 74.53 l S 244.28 74.53 m 244.33 74.53 l S 244.33 74.53 m 244.37 74.53 l S 244.37 74.53 m 244.42 74.53 l S 244.42 74.53 m 244.46 74.53 l S 244.46 74.53 m 244.51 74.53 l S 244.51 74.53 m 244.56 74.53 l S 244.56 74.53 m 244.60 74.53 l S 244.60 74.53 m 244.65 74.53 l S 244.65 74.53 m 244.69 74.53 l S 244.69 74.53 m 244.74 74.53 l S 244.74 74.53 m 244.79 74.53 l S 244.79 74.53 m 244.83 74.53 l S 244.83 74.53 m 244.88 74.53 l S 244.88 74.53 m 244.92 74.53 l S 244.92 74.53 m 244.97 74.53 l S 244.97 74.53 m 245.02 74.53 l S 245.02 74.53 m 245.06 74.53 l S 245.06 74.53 m 245.11 74.53 l S 245.11 74.53 m 245.15 74.53 l S 245.15 74.53 m 245.20 75.51 l S 245.20 74.53 m 245.25 75.51 l S 245.25 74.53 m 245.29 74.53 l S 245.29 74.53 m 245.34 74.53 l S 245.34 74.53 m 245.38 74.53 l S 245.38 74.53 m 245.43 74.53 l S 245.43 74.53 m 245.48 74.53 l S 245.48 74.53 m 245.52 74.53 l S 245.52 74.53 m 245.57 74.53 l S 245.57 74.53 m 245.61 74.53 l S 245.61 74.53 m 245.66 74.53 l S 245.66 74.53 m 245.71 75.51 l S 245.71 74.53 m 245.75 74.53 l S 245.75 74.53 m 245.80 74.53 l S 245.80 74.53 m 245.84 74.53 l S 245.84 74.53 m 245.89 74.53 l S 245.89 74.53 m 245.94 74.53 l S 245.94 74.53 m 245.98 74.53 l S 245.98 74.53 m 246.03 74.53 l S 246.03 74.53 m 246.07 74.53 l S 246.07 74.53 m 246.12 74.53 l S 246.12 74.53 m 246.17 74.53 l S 246.17 74.53 m 246.21 74.53 l S 246.21 74.53 m 246.26 74.53 l S 246.26 74.53 m 246.30 74.53 l S 246.30 74.53 m 246.35 74.53 l S 246.35 74.53 m 246.40 74.53 l S 246.40 74.53 m 246.44 74.53 l S 246.44 74.53 m 246.49 74.53 l S 246.49 74.53 m 246.54 74.53 l S 246.54 74.53 m 246.58 74.53 l S 246.58 74.53 m 246.63 74.53 l S 246.63 74.53 m 246.67 74.53 l S 246.67 74.53 m 246.72 74.53 l S 246.72 74.53 m 246.77 74.53 l S 246.77 74.53 m 246.81 74.53 l S 246.81 74.53 m 246.86 74.53 l S 246.86 74.53 m 246.90 74.53 l S 246.90 74.53 m 246.95 74.53 l S 246.95 74.53 m 247.00 74.53 l S 247.00 74.53 m 247.04 74.53 l S 247.04 74.53 m 247.09 74.53 l S 247.09 74.53 m 247.13 75.51 l S 247.13 74.53 m 247.18 75.51 l S 247.18 74.53 m 247.23 75.51 l S 247.23 74.53 m 247.27 75.51 l S 247.27 74.53 m 247.32 74.53 l S 247.32 74.53 m 247.36 75.51 l S 247.36 74.53 m 247.41 75.51 l S 247.41 74.53 m 247.46 75.51 l S 247.46 74.53 m 247.50 75.51 l S 247.50 75.51 m 247.55 76.49 l S 247.55 74.53 m 247.59 77.46 l S 247.59 74.53 m 247.64 75.51 l S 247.64 74.53 m 247.69 78.44 l S 247.69 74.53 m 247.73 76.49 l S 247.73 74.53 m 247.78 74.53 l S 247.78 74.53 m 247.82 74.53 l S 247.82 74.53 m 247.87 76.49 l S 247.87 74.53 m 247.92 76.49 l S 247.92 74.53 m 247.96 76.49 l S 247.96 74.53 m 248.01 77.46 l S 248.01 74.53 m 248.05 76.49 l S 248.05 74.53 m 248.10 78.44 l S 248.10 74.53 m 248.15 75.51 l S 248.15 74.53 m 248.19 74.53 l S 248.19 74.53 m 248.24 74.53 l S 248.24 74.53 m 248.28 74.53 l S 248.28 74.53 m 248.33 74.53 l S 248.33 74.53 m 248.38 74.53 l S 248.38 74.53 m 248.42 74.53 l S 248.42 74.53 m 248.47 74.53 l S 248.47 74.53 m 248.51 74.53 l S 248.51 74.53 m 248.56 74.53 l S 248.56 74.53 m 248.61 74.53 l S 248.61 74.53 m 248.65 74.53 l S 248.65 74.53 m 248.70 74.53 l S 248.70 74.53 m 248.74 74.53 l S 248.74 74.53 m 248.79 74.53 l S 248.79 74.53 m 248.84 74.53 l S 248.84 74.53 m 248.88 75.51 l S 248.88 74.53 m 248.93 75.51 l S 248.93 74.53 m 248.97 75.51 l S 248.97 74.53 m 249.02 74.53 l S 249.02 74.53 m 249.07 74.53 l S 249.07 74.53 m 249.11 74.53 l S 249.11 74.53 m 249.16 74.53 l S 249.16 74.53 m 249.20 74.53 l S 249.20 74.53 m 249.25 74.53 l S 249.25 74.53 m 249.30 74.53 l S 249.30 74.53 m 249.34 74.53 l S 249.34 74.53 m 249.39 74.53 l S 249.39 74.53 m 249.43 75.51 l S 249.43 74.53 m 249.48 75.51 l S 249.48 74.53 m 249.53 74.53 l S 249.53 74.53 m 249.57 74.53 l S 249.57 74.53 m 249.62 74.53 l S 249.62 74.53 m 249.66 74.53 l S 249.66 74.53 m 249.71 74.53 l S 249.71 74.53 m 249.76 74.53 l S 249.76 74.53 m 249.80 74.53 l S 249.80 74.53 m 249.85 74.53 l S 249.85 74.53 m 249.89 75.51 l S 249.89 74.53 m 249.94 75.51 l S 249.94 74.53 m 249.99 74.53 l S 249.99 74.53 m 250.03 74.53 l S 250.03 74.53 m 250.08 74.53 l S 250.08 74.53 m 250.12 74.53 l S 250.12 74.53 m 250.17 74.53 l S 250.17 74.53 m 250.22 74.53 l S 250.22 74.53 m 250.26 75.51 l S 250.26 74.53 m 250.31 74.53 l S 250.31 74.53 m 250.35 74.53 l S 250.35 74.53 m 250.40 74.53 l S 250.40 74.53 m 250.45 74.53 l S Q endstream endobj 217 0 obj << /CreationDate (D:20090701105136) /ModDate (D:20090701105136) /Title (R Graphics Output) /Producer (R 2.10.0) /Creator (R) >> endobj 218 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 221 0 R >> endobj 219 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 221 0 R >> endobj 220 0 obj 263246 endobj 221 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 215 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [389.173 245.758 396.147 256.597] /Subtype /Link /A << /S /GoTo /D (figure.3) >> >> endobj 213 0 obj << /D [211 0 R /XYZ 89.292 765.769 null] >> endobj 214 0 obj << /D [211 0 R /XYZ 240.931 260.642 null] >> endobj 210 0 obj << /Font << /F8 79 0 R >> /XObject << /Im4 191 0 R >> /ProcSet [ /PDF /Text ] >> endobj 227 0 obj << /Length 2875 /Filter /FlateDecode >> stream xێ]_!J+3%@ ı;.&6PĽĒ^j~}u8$"oA3s\k3KcMef<5Uˏ,u,qO~Q"Uf}1CvYu$ó?T: <\Vujkަ\o&?Lr=wOZ':7.y;x.`HZ9"Hlt˧x_ x'@05ę/qta[wt%78'[ ٱNFNder-ݾ}zvmLZ{O2YlP+:5 :|atTyog&c@os";ARMQIWkQmd@މW2Nӻ%R'x-f6M[I#sjO|5bi[x{xذ$8!y q== 4xS̡cɮ ɴmƌ|*:1?.tlְ:bbo3F0Fɠu1BN~P7P,jW8h̴9J$xEKX/B4#Էf)WBD=ldw bn(lC ji4Bl.:$@|]1M´a\6* 롈l˕O,lqA; H[oݐ|"b%TQBEHٯ9(*0,ǎ#\Q9<"k*0`nR )SbCdEL͇GQgrjNn"g;ط8GO~5bs>7zo&.,w<ϒUH44=Xj3^1`MEL`58nCܟJHj C7 3r˯qWx {QDm!=YDDpes0H;}qy xХ[xJMuA*NA֏ϣʝǢ<|$%uj!Rp]&-I{:(b6JZnS$/)>?*?NuO% l WksacAPl(<J["a6ﵞܥ@϶QgII'IhX"WR{!'BI/ f<UsS!ŵ2U\!pwռ܁`dXex{هrC\Ss߭1zRWqAM%Tܻˡ8qܛ %;uoa'UK9jBcTW׼вx'ŠZD2B7U{4)$AElJ k"%͹rXQoDPbll[Yٮ\J6YpC 1z9!࿆CQ(b(HY%NՔL.Q rsW!7l0`@[ޫц*C(M-U+@]7YK<*L&`.NTz9#a Z,usz-m Q0q( K7'P&Ϲ8S<p'q}, eҎ$W҅py.qvN:VpĄQFȌ4A P:.P:M) 㝆Iv| &,RUtz 0^̓lUie*cg qOnn7ip5;ە\_qDrVBy_&f7Z:!)SD:MYȋ"]ٙnL:Du'HAW9@d6idy[G"Pϼih=4M>U^~m&U3uԗjx6#ޠ VȬM(:8`/O~Y8y}_9&E9\ܳٳ;Qid'<0kŋ" Ҳ,N޾ϖEiWWˇe Xc_H p<oџuw؝)N*l%,BXpjtqoawV~\Dk-4k֜:g+R)!f4\ww_f;cUiVṴ.EI#R#Ws xendstream endobj 226 0 obj << /Type /Page /Contents 227 0 R /Resources 225 0 R /MediaBox [0 0 595.276 841.89] /Parent 216 0 R /Annots [ 230 0 R 231 0 R 232 0 R 233 0 R 234 0 R 235 0 R 236 0 R ] >> endobj 222 0 obj << /Type /XObject /Subtype /Image /Width 516 /Height 516 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 39328 /Filter /FlateDecode >> stream x~ו* 04=hLCa00`AB 7!{9p/N3^':q\y,t4jבkcɍ/Z?GQĽ mg{#n<|_}0_9/cX0, Â'XQ*G:Snշvȳ]͍~DhvP{c:_ +_uuM[Vs qpGo|]_'l\K0>iulbS^øvs#~f<絫<uϣwt6Db[a`X0, z,p-#AG2p$sn\8<.`+w{L| r{Ֆ!?Iˣ$uN|Wש-s `D?=7 vHOq,,3z}vR1Rי _Ͳf֌,LFrk<7 5nְmMbÂa`X0,Q`X0, łܶԪ(m14=>:_܈m(:Ogͽ~Æ Q/zXjH \g~nI=ћ #Y[0mHEne6|q 3k6nՑc5sDq\WA`DD/ma`X0,  u6yXt'~h+j윎f&,'#,G]g3s>gfqnW 7YiٲhC#x?:Md=]'߷i7;.Y+3f=6M.BedеXmV3=#̶BcXn4|a`X0,  tWb7*E3~5wf4FBœMK8 #y3넞, v}~#ƓРP,fvy`c%Sf.O\ˠ<#v$CԷfڍ=.> UCQѰ`X0, ˍ@ϬD=SSg(Nk?ΙzMLs X Sqgo)6/A^6U1E`9߰_#c·rO\F#գN1?.u!3̙1s19w ÂaB%Y<Y:Uo:n]e9FzN*k1-:_`YM:XizӸVe8z^\~UӽuEl2rdn[x㧟^SPA۪>KmΆ7WQMk8e?E"ܪ5S a`X0,|;J}%.ֱ󗵳\ 뾕9gp03eߜr&.iamг}Np}:[kQQs- Bv3p:Xf9̬`˻|y^X ÂaaAn_ gXް ބ) F_`:,ȼ*g7MQis1gyo9`Fgkl`5dmR3ǩbc15FcfjZѸqn{y97{b{Ѱ`X0, X+k̘k%rq@KYq:قl?Ga`X0,  ?;fUޛ(J[fig]婸؟vwʼ+d߱z#SZ&'zԧX6f9_ve/ƥmjF6 l<9[iԂ{ZŦё:\j,7ћ=Tbpweep:42'j Âa`XON[v[ ?3Uъu]V‰3C̳({4RW#/54ϐL_E֠ѸVg_I?2^X戲{1I5womXo4, ÂaƔil-\eP:*ױGwǨ]c|9+qX.`eU Âa@5(Ԭu 5?(s,pϱWS.(q2#0ݼhr5Zyb6R# pDza5̉k4Ojy障+a9h"Âa`X0,h˾_k\u_5Z.ލvf? #c_`˲ZuwOAt9覱mK4֮yxuNapnc9kMc7PkYH{/"|uj;|կvV.Ϧ 'c1qr 9 ɿځk Âa`XXd^d} j!ݼsoᰀ!Wbfϩ}>~o,q HpQj<Ej"mޜDúFe6F+gasSVF4cA~N?y@?N MugIY]H ww&>b ֚/'5 8, Âa)ͼ߄Ğ3Ѹ%2j1+1F+NUYm-2q FxM5Vyܧn 1ƚ=U8@5Iz~4w6Y8DV)Tjr-3"gJ9l@uO~D a]Dq7sna`X0, F?6QI;sx\ݝenJHc WrՑ(SV}=mNQr9aVmsd ƫĵ8<3l&?gp?<Âa`X0,pՊ]j~ 3'X)b_\Ԭ4*'lg]' \Z_>O&Nk"v~wQsMֻȟ78 7WriBT,s!yuloi{2J{BuSwW]`VRV\ Âa@}z;{,'Usx42hO9,`a/8"jc7֪:b檟Vf,pC[{#r9Y~scy8`X0, n4Qmygv.;\ZS?QN_}ٴ6W7;19)l-9n1gk/h?ςl5QiyyUb zhO8*!Q {ٽrיA^ crfMr&F˽t~YurU`k|w;{a8ĸUs71Âa`X0,hLiuwQƫFZ"w2ֆ$̚ɬ(375l}6 f=hAeMu7#;:Oy-gi*06SAg3a>װ$u\JwkE]4ݠzȽUtz;z2-H]g9Âa`X0,pك{?s^w<9RGTֻWq8w+\˃kU8]8 ^'빬lz{~)!tA*׬Ͻa*r5SnV1Y[ <+m.e5j# +;=FtÂa`XmƂ{;p:/qܥ<'LnqИRkU5@_>9R,Vfq\爸d]X>j179e"#WBs;9O+󣏮zuF:{[cl'>>Ű`X0, Aqzv p-Ķk&6g"踼1t_6X\ ~YU]G c/:!L\p~:٘oi< :x&]əS\\K8V-sÂa`X0,(}^:΋l՝'1hF?x|שy8įNsďS#se9[$:D#QəJMX}]&ĚV^E1{ )vj'nƪ{zf吼Q| 0, Âaj5s4!Efgd ,P~O:J.zq}~ ߋQ^k'aÜQؼKVik4 i'23j\r FoI-vo{pٝNgÂa`X0,6="SjR22tZIPQ X_}_[>e 738*bN9NgYpʕ7׉=DsyUJˍل،i.rnTTBZr%9OVcGSjRz3UbX0, ÂSn ȸ:+ũE7#Hn#Oj*. 4kd]/}`X0, =ݩsNjSQ׆ry3˜Ҭ5+ثhFkF׵avY'd ٠!lz_jͲ`+O9^F ~b=2 N9{X=yN58YWN+4 LF$7\TQ}љ9RD1~SSzo{̹ZWHNnw{ ÂaitM7_,og`olmʶ8ϵcx~|SWUKWň{\;}dYUPbz{,v&yf]kHn f֥_ڒNUMt.5|B3l`X0, YWGƖY/ڪ}5휝GƯRւm!9D<vtM6ۙoj<@ζdάi_Q{Uی7i׮=͍8f|ikVp+g2ެ}Âa`X0,hbJهxmJl0 33Z5fXRцN*+&+\dՆ5GݧR GPC;#߽'k>F >ݰQgt'_h< Âa@cJkrD"k53ufF^&# ̌kYѠPM v|/W!qD}=njM{3cO}QY٫OW;yp/O}ZWyxuگrufkNڰ`X0, wxr@0|~zP{q)4of  Âa`X8"Kr;D\slګ&r_.~::Sww~.֯fU>_+3>z~O>:ځ#RNmXTv/;Z sAt=T'l}ӣs8MuM]6ٲe{~Ok&pX0, ;v~ ~NSmtZyh-1#©*]eqOO3G)P٧wPs׉+.܏{ęu\+5֩=C8\GV\[]k43gKksM^kC=[<^w*5d q5, Âaj50.[D=S4ukb9JM.WשQzql;"E{߻N|>SDz΍l9jM{pR[$,%r#׸>ɘ{0GŰx_:{vL8+:;wS2_Z'r\d~o6 )$rY?ɶk0Y5q:gWÂa`X0,dqg,DX;s Էd7#y+*Yuj^uس^96pˀQv3ˍy{:!3BM|cƽOY+}Q @n<~ȸ##6f_:1?Seib;>~;+!8>^_q2Ϛ>5\ŗӪCcX0, W㲩G+eݳ)`4 {o6Y?'nD呬a"sD%Nj51&;ƨ황h!6MILmaP #Tφp9n|_:9©%k͗Oh0Eۄ9>3߽YS5;oTʽܬ0װ`X0,  ri\brtmJ%XȾ{w6?B0;n69ϯ=*8er챲=FnsUPԘjՠf C>eνBQ@qkt¨"MV˜v_StxM ֙1Sa`X0, lQc4՟_pY2ۢ׌1͛S GfnP$`cT ϋ9&+> T5^Ns?1+5l\s&A_.P[Um恌s*u2g1[͐m4󛣯lX0, ł>s9.P{o۠El15vS949N Mg+^vYx`VWáI9ܩw[Pf:ohO`Vw9'![3{r6eIξx<H_mw\S.W9&z e2+{GMEpѰ`X0, 34'^@Yy37\ɇr#GD+zdF7q9ȡ cNk;}6U{Σ7fCꁨ"7giƔjT `͏~tyVfdQ }pth,-Xeۥ啒fu6a`X0,  \<{!_usZI}T: G3:{ ffXa`X0,  {vp#[.5Z)Yna5>{zǶ9U>Ȇ}2^z'4u+lFS; ݆:5{ފc:uOb9zjo"^k-{  䞅%z?NÂa`X+;п~sȿ"kͦC_6XeiW28-5~OtE/g[5_k;,+ZYL(WHf ^!h5#Y;;1?u5b-x˾a`X0, ط=w9KHƊfPՋ!rM5'1i=C+ܹ6.=q7lg_yS},ڂO~n6O\aϛ_@ nw/fAb7m"QDޫ/k7ڜ.ǃ>c73Ws0Zp֜]8, Âacѡ9\Ti勬*aqww9,F']df#S1GYe94Vk+ss$6cnb$;}U41 +ouOyf5^fD] T-*޻N͸dc9vX0, %4x~d$ۖpcL}(K̚jr6zk 1|&K(^fOOYx:Sa7nf)59̞S?~z/ǔ& s<<0r8cOzҢ9~F5R.a`X0, <}7Zզ#oȱ9tMƼjr#g Wc{ ? Âa [րPJwcq7 .Lx4(9wv6'g6L㫎SM 7g\=ņoD|_'Z<r?~ӻ8uz2|-qΎ$maym|sMÂa`X0,0dەgAC?^w^ΤpQy75>Nu4AFޞ%1+5rme8;kצ^q]K|ڗ`\ q$VȸVẉY4c&GJ4xz/4oNGl8jO˖UDtl08, ÂaAe㞓uxLs5~י8\ >Gsydl"]2@3bz!}NG+ߜ<^~rZi"JsM!W;E? &Ѝ^wjCq_nX0, ƂB"Ǟ!}OxGk܁r2sPxϞu?8eN.v37OuNY#W#G4tF7/kQsx6m!}Lk\MṰǾnl5'wX0, ;OFleM鯓z\'lmNi$n^W'~;wս?kzy]$z& ь}Y3*[{U>7͚=+8lǴ >2+s|a`X0, 5s=N`h^;Ơ6ɸov\9X=xz5j]}/{ʵs֞WD92yFb71ӹuo}&8³2 -?VOΖ7r͆Âa`XmƂ<]LR:<~@ҧn/oQ}^k{3^Y)7ľ5hU>0׏:=֖q>x:M56iӼ_U]fnϬ[oW}l`a0X9lXn;bacÂa`X0,pX(!end^dzZ;zO>:wmvǩRiYUFޣڑT R?ȹVŸ r*R>UO~e{8RIX< Âa`XښkDۡ[Qh\m7巜qecۨ/r@c6q3)'8]~<,-^+|ub5_gf{B^:ك7 3u0Âa`X0,ИRe3T*vVH5m{ 6=ez\n"cO$XK9]O~rw`cXAZT9\[8R'N]G`X0, erˤfdᝋ֔Qllޝ5Bq_0~mi |ד.b9jd\ǾҥUx)e`5nnn>+N[?sDf4VcMq;4y1, ÂaƔ6<ޗ{ipΘJJ+Ok ٛ{3G8ԫ{GϤ˶K55@]ȁ&bǑj>{Nr퍂\F/U:u l_:amɾsF J{=|a`X0, #,{Ցv`[GБxΑBOng=5Yo+x 5LNS54@^FwW{i6M:NO]?ϾoBomNm`q1)Ù/ǭsO/ɯQg-F&=hz}fMsk6f |pZ# ׇnBTYy2, ÂacSrvUdXUb>* r}OgDzw)|56sV, Âac? gZ1<kx8Jٽ"iUSv➐\U1x\61o6X uRxg樓SS?ls1eo~u"n54SuN8?5,y|fa`X0, RheYi<_}5܋kUp|nv}ʹ<9Q~й:eNЛqcH2GgZ-Y&v(h+sNǦ Âa@5(xOn$kt%38_Wש܌ЃM؛#;>Tp~~fE uP^z;)'p9>yG#4k+dw\Uy^^=c o:#ct*0Jh̳9, ÂaָdODXt瘛㪱UΑ#~яϮi4a~q7s{;ȣiz5LW?(aNٌ?ްXQۡi"1NOP5Jol]M=&9znr4.2K?, Âaָ}(Քp_݆}~m_'烳ReRpLTFX;Ԙ`?R9.ky5c8]lԕ{0rE҈PJijV6垵;[|ʤ.x^ègl@f#1{raQ1꯮.`X0, ܑk4u+[cg>:7,ј \a`aoE_QhuoӲέ({19nˣ+jb{ l4I:\3Z6I 6~j:\VV\F^_Z Âa@YMҾ._;gߧ_x*¸=s6] }/y!{_\Glb{jp*{QsUh&Sy3QȫE>QfJس5Fڰ`X0, ;9%oli@\?uvPrv5^{hrϞ|yڹi,q-'=9J# c;1>p#o{5o&Q_ UJ6, ÂaƔuR\m%<k+|/5KN4y"ӹ`!ϟ픃:ٖaЍdx>}uBSq64N3qD6^Οrkl+Sr*. kN|YfMa`X0,  lН =U\FHH>x:?io]OSOu׵ G/NΞ+;|h]c0tyR9/y3dx5#EJ?zmݜ}kD8UvّÂa`X0,41bYp/*?:uF=/O~鸬 dLW$kGm=0-PGwg}lᩇO#NO9)' flkPDXPW+n/4G`X0, 9lYaM /`M+&g̹S%@+O4*YNlfGIcU-v_]W7^dGtZ3 NP9gknC\I9ԍa`X0, #rtS%~~UU]OVE=;1soVO#yplFȩpX'HGB%a b!N)4H:s >Zߢn\ Âa`XѽQܫdi|X} c}>YW4qA[?Tx95s`X0,  Lo ˩(,* Ogn3Ps1yhӏm~\F[^ j_eTO~9:yhmcDcn'{+^/pO`b^ۮ -Gw Âa:p/~sڸ%]F}u8 Ou7OiFz¨4{y::1oUpb{PCʥof ul Âa`XsͲE@oF~ux>NbTNoʹ]vy39Y6yZ=+==tW]э&6W,[^TMжHXʾ&ID)V:/-6-,ۏ||es-lƹjV Âa`X=T=MOg/5~3p4_!^pY=3~5ugl+xžH ,mpz#`$:M+WղyGz^uXU?g +* d+j_FÂa`X0,P,p^vG`{r^7^;B=oVǀi z_Х |oN.]0ϣ] s-%ȈCaT;{}uj4j0hўI8=IW}},_ua`X0, w4w/Z>NԆž=J~Ϊ}tt2{G]';߹NTA3lvn65k\;cWm`g捳;ޢj?aNQkd)s*G4[{8a`X0,| y'ɳ\EhX{pZ|X'px}\6AЏ?~:ap/ZO-$Z{Fr*G ^+*JL8)uOZٮɹW(#+ԫZE&N;EgG:h Âaۆهͭං =ZS3{On;߳''ygQM'5tps.G0r!~a͠=oqή˹Hf߳KMf5*뺲⓫,1+Ѷܦf"P=xB̲{qOt`4TD]:a`X0, 24uʘ}н]|3zOuV}hEʉnK+y1l1FCWo萟͝&o=Wv+k)uxthaA3Wcw:>ϙ{!UJ{rMyԱ\S.K G4, Âo'='9xy1d.=obqO'7/t׆'X?`j;|Wս=m)2߅e.ڱ Z_U{yBNFsV攲GٮfGGuZ_eF=['7ezޫ(4, ÂaƔQj$crFˢJؓ#$JZ6YH-u0N0*PX\',{:r"{iev`sઈ8 TeӾbm^f|||J@eXxqz/6ruߠv^d;r$9Y# Âac |vnt9A~SFyf$4ӳvz~u ~w2ǚ 7ըy%NYyP_3?N|#g}YsX>bLS^7ڦ9͸q?+;E Âa`XsDp>{aiYW;t(H3Out1sjr^oKT+؎Ш\; 7"FߑgYGff:n`~4++8^NVYiOb8ŗ3lpZc)sӺW8a`X0, 2GoV~x_f:{4y')AkєxT1[iw:164>A9RFp$5SM֬S?}U&|uSz&=)KsleUy$+G Âa kP4;cG} ssXM$g~W;dz#/F'8 kVU=1L<]ke015oZұU^3a`X0,  4{]{^8TPb4_}us͑{MiU{3_5QTK1GU3Ozu =`|-SqNȟ7/ jDy٧,*W]07nsU̙4#2:Gjk]!1Dwt+m^?ns{X0, Â5YoO~wbW˱vZ}OM}%5sQr{L7;jrʁ|뫊8[t/M$41.s^ ~*ʳy~qt=UT6]. +[V=N۟UʶQGŰ`X0, N׵q7r!PW8Âa`X0,pfy5jNbPŽ ܿo?r{ayywqP3н"0nT"VKuu!X̺4~ަ=*+>37+ȁ;U'yv9e4fc,Udqg8T=ŕb7AFÙeK̨hKS x# \4;ϫfw,p殖Ͱ`X0, }eƼ^%+5mjc+{H}#sKh}ЬK|Ook3(⪗ 89Y*6wl{Ь1\;(ӢUr4-N`AV|uq#Ք㈆Âa`X0,8wb?u25}pO}tvd?69P3Kx;Ņ{8[3T1?2Ȉm©fgd(_]'p_'j|Tc+jS{qZIGQ20,^  Âaی~N5ؒ:yϛS&e|a[Sx?xdo=/ >jL|mKVV>{(+U{]'qȞk<b:;Ǔ:G9.JuGcb;«,UǸ`X0, MLi:"w+ȣZO-Y^A8?m:7m]{+*3:a`X0,  t缌>4wNƽ_OX+Bsy ߳ jdkJITg4ړ:99ߥk$sJqi]*36dF+ELy4̺u<+Ttaa`X0, T3?=yY |bs9 L|1b5~wzΥ4L=v ?Z:Q}g 0_ɟkNcMUseMst}E(N;vy8t-d6<, ÂabAf z{ޟ^GZ{^ թZyc`nW=¬^lyorU?ש4[woUBc8UoU]Yhﰍ7:?3#琱Y}v~p"K>qfe>ntKucxX0, W˦㙫9/ 9*#*s~M`\vz܍-z*uėׇjj4|׽[ϯ9V#ӽuSgʡC G>4Y5ZY,W@ʴs~53Âa`X0,X#W9h5u᳏4^ ZQso#Ԓ:^l@oɬGj_]jyjLp[^pgn7Ir%%˳ɭ4, Âa9_RvB6 F#^RO(R^Y~BfvM"A^j!JvIr<\~*\xrv*+ڬr Âa`XbJK셛Z6D!vݫ{7w|Ujus=5Zgo^-mV;YAc\ՂA\٢f۬%7 |8RښNUj\Âa`X0,8,u4rmkfK}'vzdX^٢{31׸"=ޏ۾NcO {,8[hj7KpD,XZ}ӷӌTY׻vQ}MX)Kma`X0, r- 9d^3;b'k)zi6L{T#~^-uf{UfoZe5U?]z^VGyH;溙9{Kx<7sX0, 54rakr5Ƣ> NMa[Ԫ7ai5덦G]'?;]]<#ՅqsrMy/+34J[e$bN;=:{nޘ Âa`XQD5^-w;lë'ǰf X\;i+,nOưخb69N/"?]KY}܆OsT7#Q(6ȅ7#r1ٹ7< ÂaqD} UOr*>6sƺ$ya=̊_}ܣyiƹrPNZǧzune==EDSdv__h}ha`X0, 4͞=&'ׂ|UDwچp=J׶lAzOџd;fݬ܋#1w1Ugbu dI^9nj)^P{nuZeY%ɨ}Âa`X0,4U&|UXEgTO8ygbhJwZ 3 ׿ubr{v>kq?~SCZ{U,9b+fElpzmfE2%NGo]{נ Âa 7`3ĩS^WO"=T+=s8S lғ:O3j)| SqW4^bƠa`X0,  r>2k>{fmwi|O8} 8[__'~ {F6Tda]v#qMg5^͌ǥ4k!gw'uZp6f5<2U{Dt6췋§\^7, Âa{2<yZG틁Yr"0k(F20&gu– K~lsFLͲǀӓl8cUؽS$aTl-)iX0, Â?%,KO؉Vǁdꔨg` alr|lilP 2M~zjJV]}k< "42իuͣ?f-&W1iNz{/gN{Q~nņ_kvc+щjKȾxg7lحqVH_OfYI[e->}N$ 9߭<{نÂa`X0,SuF/9sՕff4=yg8bi]cװ`X0, 1M=[mNjko~sM4zusVvびϴ:Ieֿ1xU܍Lt,ܩ )sʣy6:Zr䆎m>`X0,  xNJ(?|,p6O޻׽6'iơdilf:~vsG[I|~s|_sTTO O+T6BEB9r+ ޚ[ìΊ:Sob,ceնµ';, ÂaAq=z(wyVMf+ze3(͜IGY]iw7 l8G03LחO8/*M v1`<;}!lrhH_ZW ǰ`X0,  @q Fyc>y|y1.7Q԰:ڶV沥ߍ g>9)E. "+9NP/ u%vϏضF$IX}VST[UЙ?ՠ Âa  um;>uUNku|Njw?OVrm^\}^&6d7M|GpS\:-ԟsWdA<Կy=sy /er{>ן'7ms[vZO:s..W!Y 3Kg(;}B~W٧D3=sWs.݋v1̫M Âa`XO}|ǧ3N^>$׍OOXsݷ}ScL#Yּߑ57lu>^-c#׸39Zeeͷts >Yq٧?, Âafzcq@ͩlݳ*NЩ+7s|an\{5֝c ;P}MqL)r*`4+箜L?f#zj%tmu~6UT-86/gY Âa`XZ,Ï5};|yȾFq{LYhU.GUlWOY'0'a s(ivF]MH6?U`U@#}T ϝtTdϘYm|掍xX0, N,xzhW]j#Z uBł't)w(S\jIAuz4m5v]T&Pk|MeQ5f,q˳xX0, 5Q^6pDuOB5A1]ĬF^?`:ѠcTKA:t A}eT9>_^'d~|߿NԱu_ol6syJ}&`Bp#M[Âa`X0,<ሚJסwh<˚Κlj.~xMFs/^8eɚLe>=:o>N; 0;\hau:9E_租^x=&Np9n&:&._Ydm6Âa`X0,*/AjCRn.ߑ}ܧuس%W]e}*噛gt3cvuӪ=,3sA}v_}u@ UbF81zq`Ձ'Ao~syD1iK{E'ܧ\6W@[!J rU\6r|NDC?YcM 2>h̜eʃv$um5W򀏎]T[N{  Âa`X0,h|0BG[pPu8_xHD4-_d9˙31Oʰv֣ka`X0, 2ޙLĤgrpAJ8;ߨ@ӆS:*M< ܲ8RV69ldߕldiU]Dqf4z$Âa`X0,p>)ۊء9u1muήr~P918э6V<2ܳ 6la5%\GPNG8H9w"NGDBg_}7k`X0, }{{s-j9D>&snW]',S\fUqN,k*4޺r\C(Ղڲ]/NQ:WywTs;Vۇ㨛`v Âa`X84ޑUW־fֈwnN z>~u9Eovsf[SU-tie滳NBݙO>Nԑtpowڳ؏?wэ=NE Âa`X}M|-n6չZv*۰sĬx65Ƭ}C߳aö;, ÂaAq-ݙ|ȑfMX!E鯿^SD%WUN>o>xnަ\ŭ(܈R{']3BziOxFX_5E da`X0, #{[8&:ffZG}E͸~GЫm>Gt 3װ^N]a 0 ?rNX/a`X0, 8{s=>K}aMg)|23ŸǠ5|Gkīڧ]q}\(7TK9^I=k5l)~1g>:c$ X~:_ °`X0, Y\ٯ5Zl7N=̌SMo}~Vǻ6VE&C~C=Ǭǒ2V#͚ g-F?Fv(Ӱ1ϕ14U5(SlU~ܺ=Z̥s|ΰ`X0, .:s(7rXwӼvu%n\rkǯ6̩F]!'뛨`YϣbͿ:EN+$Bi$3EYѶ8s֐ .tX0, f-XN3GR5Z4>whRk)9o}nQkg^)O QO_UWt~a Ĩ3^j{:rjt!1gof$yW77s6[XCרּ2fԖ Âa@@-nf)g3b+4[C>ϲN)Xp_ ֺx--i~ͩ>)4 G3!F=YQ*96XWn|676ԗ}O8S#<, ÂabAmo+ܽGAO-qn݂ d?21~ NUnlZiDeMtjG|o ,hS137t.&uolK 8v@[lX0, Â;nr ̝ ;>rޗW܋|lfsu:FV'l=Q4Nmz_r~}-^ 5N^8m Âa旝>9g(}#;ޖߗcD"okO2k8ƺ>բY4z#ڒe s PNsyEX;w-SŬrzl65l+z=0k"^jٰ`X0, ~(V# ~de]Xη;\ֽ5ZV]v5z%v}STxS{jOtW}m-tSV,mvV\Y _G%bwX0, Wi{;d:*^8+;6?;ݝvgOwj8:GY|\wvZ/6,=(\Kc?(rS"t}[72oX0, ,Ms׉~(UʊsNɹ{V s!?x]ޏSe<*؆f$}VCuTws_Ċ(mb{`X0, gs,^/RFlV]SpoZr3=~) fp%"z[g^Thіaf=(*:Pe*fle :r}^}vհ`X0, ͩ'.ũ[!]Fm}+k缪F佊AWyOﭣL_˜47>; wYQ9GjV(7ϽcO\UŬF)9G.muc2m^kIdȓ,+f *:qVff4fɊaÂa`X0,<9Oߵ\wڰ\qD^ƓY2YFɾy_U+^m{]o>Gy<}ؓhW\fhÙp,:pm[WQ+ú6xy-QzBݻj3, ÂarY?Hwt1҂xǓ= [Ć?Q{mWp\ܽZljg 果kXhͻĕi߿uA=q}(G͚-2>wmux Âa`XyV"=Wv4u"Jڡi&=iK_YE 8m%K^YQu] ,<,,s`s}B^5 }T֌UqdzFWn8mOoÂa`X0,pXzdǻ>57tVXpZ2w0*}> =;4F +ȽrzOpⷨQIAGnF۬=ՠѤ9eiDD|*]LtyUjH>N Bo~Ua_ _Xc}:9  Âa@9&#[}s'6[췺I&q㽷;m~G 6y}z| AwTa53V_3h[s"嗝V ÂaѬnEdא`oܚetWU$ivnNy [+fۨVa†le1v|u:[(?4n-nqt7:St% {X0, r <ّ8;zX lYfϜ"k=O*6VVu+C:_6#1\X~dD~{!NEUڕ=.vWWY{Ru3W6, ÂabA%hRU~{pYy Gy N+i=oӏC虍&3ہ̐8C]QYfӻ?^'t-w҆/Un7NRh^܍m7=2=A__'c~X0,  P]\eN|Sm F^dUW]U|OD6q -ڊҸ2r_na`X0, 24sY#ĨpVwjnŻ"yxcN3g؞g瞶Fo:Lxrl/[~y&]1Ac^5Ҍ^y\Hϣ\2 .z5qDÂa`X0,aA%|w( ]bKZѥD.B4«tN]:U0;e]ޣ #0 ԫqHoqGg{5·] U4M5 Âat~.ioqpY<B}uKtcqcOXS1Ϛ2)3j2p uOuN^>0@K[>W<Ȑ'l"8?;_vDY0 Âa`Xr͚QD9-F)[~xw>$@;rDs?{?=U=|8e)HXgM>Ի?t}+q@^61B~pձ(Ƭ➬席CM$coasmX0, evEIvGaqgnfV}̽2O>S(WZʜzi9&roԳ6Z`ӄ٬v Oض_:& p}ZflwF5+rF4lX0, f,wj.)mǙ[Xд4Nh9kzLV3|MߜkӎCmIXD|­ruꍺo20'anTO5.8"T}l ÂaŁJtAKlOȻ][n0 ;δf  Hq+| ]mѦ$*ɮ +_7]FT& U ʗ籘& *t'ZKžogqc c9>•[u&){f}7+FI)H`:sqIf">/F łbAX䚩n)zks֏{戊?Tv,H;6?O]Wԓr_ƳjD<+=[$ϳ)8>k^"ȮQwâDAk *S,( łbkV_D爮W8 rղkކL.NdYz~IǞ{?M>L+t9S7WHQ>Ga{S|6T6yNC58ԌPzOXP,( Y3NjOflroIBrI/'7w||N*{%w(JGW7ӯ%C6&}9=LL5&My*G8 łbAXԲ]ɀLj[_}u=L4ؔ@=>n#|rxQŕ%j-^i0^DP PenO| *ϖW8U\oK >s^_?/ łbA`Ui̳cN9"˖djȲI8H lHR>>$63G̳QD-!/+GUv،}ZྛN~g}T +r=, łbAVk# n]ɍ =EvLؾw;:vΤeT9繐hyJrprL?g: +1 з>scor2Me{x( łbAkV'$zvvvn>OV-:Hl=' ^ۢ|?}>@W#^'haĂN2Cs&P,( łbkVv{AeU2$j~Xch岩HzR2iLXU¹g:J҂Sٵƶ*A 7kRÜD# łbAXsT1endstream endobj 223 0 obj << /Type /XObject /Subtype /Image /Width 516 /Height 516 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 46996 /Filter /FlateDecode >> stream x{wU޻m+rj0PE{trԖ#TZhE㥅:rPnC-Q. 5LB +pS8Ҝ:<3|Y-g}|ߵ}k_׾}k_׍'|ߖ]}_e_u_UoI|?w'2_}̶>f[Wϭ_=+ׯEP9;}z&:z|/z/l:_רgwJ??/8:~*o韖L}}6L9TO9PG~̏GFT.?_S~z&:tflӻ3<_G_Og|}ege/yӟ^+*AVRWmG;{-,,,,,|.X禦|,39AgfGE%_{Hw}O/2_wt4ZG>Ct|ʥ5(MGG_WG9eXٕWS|e{qo离 5}<*|*{m u:+z cD4&=Oz/As[Gߏ;t{jY;LjłłłłłłyOJYMOd>V|Se\Sc8~9O\~t?k/A+KG]_GRu7BqY_q$3|o}o_ݾ >I?5gt} OYzƑ~c3lqgigE)K; sλM >Opǵזy$`````s]pAe9=b@>HQk[_}4د6P٣gK3k1FGFN:Z{{=hzKeIyIƖrIDwS349Gt>ߏV*6Q\}9E2Mڿ[}'Chmgfn0e5n[QTEQМ/ֿ;ZéG#/Gb" E.[c      hf,ЕBO9GCS(.AOt $oϛIK={[8[|*ߝ>s{ +|֤?\Rg#_G딞 ݔwk'cl;!:~I[t iQ$5pκ9FgZU'(O>îm@ըU՗>4)],X,X,X,X,X,϶YQwhv|ʼvb9KrWdPmkw4a1Ϲy(}$oJ֦:8]=JR{ĻNڣ3g0+ud+z9{'X_{:]W{RJsrޕ)gZ!'Z,X,X,X,X,X,P,xn<;套=Qe=~^2yɈ%]2JWPArwZ6|J#|9}R*ggWNafZ$O<[w[pѲzK^RF/,kEqDS4k&zw[]GJ:JɸFw_z.̫#)+d      ?UsoFYVjLIhשw&Lkޟr[*֩Me_گݻ.6aU&/;L}v|:?ɰOrNs gyP:>yZyZ9To4 _*B;)QbfedǜA{39+__2ѹϡ=[kXXXXXpĂo<ړ\6U򻜫s? z~n ]XO}JD]=o8əI=W\K85"*Ocz>ܥ}(zJkp$΀!JRKQ>NTc/i-y~ϰ93CJ{'OyJǥ5'=+%      SJ ud:Ϣר}3=}z{x/-_+s53S{GQ2yTy0Md._xHZ ۔pd^OΥʠ||Rr]_}?ޕfBu:9_{mLѹvXTIާ5;*823l_{łłłłłeϟ?2]ۨK첲1'v"Et5~Y̮}rse:LM|f|#ql4=B:  Y1teީrs6YU#uY$ /{;%ݡ"VIr޼*0s|r䘼3yNìw`````4(slJ|M>w\5µ'>kv쯽$w_2c=K9eLTcEp+Tk3r"gy oZEnށ()Z>GnmՋ/.45fHf=bbbbbbU3(sLq9utCцo:my&cOwE=w͛0us!3##*jPzzjdѦS/RĤ!#(Se~7hGH5.&j^&ݯh޶jM}e^6Yk/,,,,,L5o}q>o]O#%8=!&UxQF*k4TUF9CCQ2w͝Cc$ˑB&ܳ]dRbZy1K3xesG;RFέŬĤHcm[G(kGªiOj'hXXXXXXX@Ew,Cخd:=|h9+MN;c#iuvbR4KA\O#+'L"A8w5cst%4G3Ag{-]ʲ&$9x(=Z*h9\aH9b{΍:)wQbsQΤ8xl(|`6/,,,,,(lF%=_yehe_o!>%ӵ:T9Wu5(0QT]QT?酚i tH2󐞚nk%D _W=3Y.WGi"rdf47at8a\ם*;gy畽e5&n?1]      mMZrmgf`z^*#m}6̬T8֟קQ͝yɺY|4.WEXkvy?XF?ic ά̈Oq*so:ʝer畳8rV]tWѾ"t}ǟu'       H[c s"Z*g>O*2~͕֜/JO4 g:̕GT?̑1)##j=fBz39|!mg]`Gg`=^籬9s54rth (H|T?2$~pRo@C|k%M{ #nGAI]ӽz~<      (FI|) O}M(5}-Ϗ 5W]=eeθQ,++ Ӻ{r[>s4~i"0",3rtr8s%W1vw_[;wqI,W/~q1"|7<B łłłłłeC<[y2yURAd4}rޏOR1oOY]=sbfEx}&9gMOVEӈVMx$уI&fkWtc!ȉnCKN?̣dؖ8gJʓY=}k6Y~Nh9Lgڤx23Wy`````kͨfGC~k:Ltl'u%~^IFG,U~y&=k?kǧ+|A"a[yA;Q#ǯzI?%jHѰi$ϯ(T +s/MZ:]e?2 ցϫ7,32c`````cDsބ3bbis.=Xi,"B\3C1N龾sw0T.^TF:ʳk4Fc>}VuTgLWDfɴyիT'<)SfNY/W>;[#Lse?Q6QwW.\ :T],X,X,X,X,X,`ex',T(?_5Ewt݄J*>:ZgO{O/ r5٘=NT&T[ݵ>fbO}^R弯kF|b(Sj͚6I=9[(NHWXXXXXX1"Q(뗳"T;{{3SErFQ]kZ911FzPF峂tQw9Sj{[>{4R{lCłłłłł3P ؈w 3_k>V:4zbL蹒" 7PF}Lk5sN12WD#{MVutj[>|SNh}ۉ#32)P&4s8lY~(Ozc&hh*izOzQQOU̻D3Vv\.S9wB/,,,,,(8lΚUud,gcI+`'FlW{ѣ_hBYF9o@~g ӫ3?+Q땯,8 yey&8|w^eɗ73ϫuW<]0wϙ}򱢝ͽ@^ggQV}ϵɝWE#4'jBݤ/UtN)/8/,,,,,x)6&9?ϼ{ң;}Mvکw4c6"IJO~udg.갓 89#F9sOI4rTve~ž;B2C:\晲Q47Q* ߬8#m+FLy+|hcJxoCB#fzs[&$WJg      CtoaU n&J2C;łłłłłғdf❠s-qO}t]sMw@wrLEs}=j`````cD3̿N92yy~/v׻x4djWv`y~r u$$gʎ^Wwl}ʗ?wϤ3sS.nVpNsuYG7t&:DoxI:8AI&eZ]Au)5=#DG!ߵ`B1X}W=gS.qJ      D7+iEeQt\]04^Њo{׎Ι`#e? U-'&RmDk<ë^N+3H-i,T&}}3/eI(_wJO+h^͵#Pg*S=MɓS)2"(FXXXXXpsƂIFß4vLg9uVʹI2*NnIU|IYz>s38y |̤Z$~g=oK~d f.ɚGV@vR/K{1#`]K\٬"sڷO89q9&;ۼGbbbbbbbDAKiTGe^uX@cH@h= uQzrƐ4}2/#N,4aLK?V z~_Q@g'k-@G˱oIl?̹]Rn#=NHt)[sɑW k(7Q#ɳm&ؚǍVbbbbbbAe{R8pEOpzO{;n#G}#w*!h[{^{=u=S1._YsLWJa{f^3;ˈ%ϸbRgFgYܸ2Gy4 -Os3".,g-'tn})W$!}:L+tBL..,,,,ܜZ h;ܲ0L 4rFuһUE|^NecT;3xr,zШhϣOj{lW=emHE-:iQfɝ|"EQH=9"O^]B8~%H~ KZgzE jh3$kgm=Z~Lϳ }Aw']ċ̓WVQȿ*皳GR[R=Ja=VhUN(Pu^ ZTyvByt*|α\sr`````@ ,w]rU lT5jJh[+&pܷLrTY7EOxBY3_~GO_~&Ch#xAeZ98(GIs}IHn\dW2Q>㚯?vMYjޛew5R;⋺JDQXXXXXXsM'IK_~qG?}Fnj^_Os6fg E3Qޘh՜la'V; ɝsߕB ]WU8G(FRQ#ѕQFs1ϽZ_vJ::J[ԕ٧( ԧ9O;w#;=K!$ Głłłłł|]+-SVحj3ss}n@GybP"+`E鈉ך)b{D5suRhFfZ3 OG=5 e} C =63s>ڍNTQ;Jsgg~Τ?QHbbbbbbgAGG%ڛI{łłłłłǂ}RA+ȣz 2]kȋqd%uZjP';Dž\eOj9˜WyT86:LE]t3!7kM OǓqڟx\c^3td׵SyEfK >HPϭSR łłłłłł8y]+Y]p2bl*:,Je;6inYQ*Z{'LBq9RTe(+fJ30aH$hx>{UmN+}>5W,Ĭ1=Z;>9;O"^zwCfz{<ړϖsdIw٣*4]N]]łłłłłZPTWY'Z(dmM4ԟ龍G4)>F+ѯkFjYр"IΚjUQm qVV 6I}ٽn;R43ผ3ݮbA|9* )R7yD4'=H:՝G띉ևx4=l^kXXXXXX];[ZF](?;Q/9 ߕGVi&\g'~ۓZq?̿>Ɋ49WH_|qمygTSe2hη&zh "2Is3bf%|_ Y#1tLɺ:.eM5mr,ѾS/b!{XXXXXXt96.#eM2J> Qte>gq̽镪c=\zk|J^-;4Ӛx#9/d&-qXo--M?BFN"r +-g5XzKdS"Ng]rY0WHłłłłłłtA-o)ۤr9u0JpE7teU\,kL Tu⢋ʺr~=ks圚=rgFALI#G6rO5~]g H%~қ~̊WjHɼ &ǎ˹&y;~0F5 eG݅2ͯ}Gr!"Disi9ZO1݂r6`ߌIgÏEфP>?3k蜃q0ZwLZʴsjF4_A%2"^̞AzxۗضTkXXXXXX0_9Hc#٧oz>PF\58QҠ':Ts,+νrI>4?f:ӊ%Bgs}bu=̳ e%;k)u|;7U/(,J57f~dNYCϱXrGڼ{!%9!9_)r)wf nY*?Ov !+WPMև>TF*2Pˣz]grhYx 8ԛ8'iDLp=jetxb!o@e6s}`{>O;uJ>63&ݗ&u~U'?&I%/?f8CkbbbbbbciM:g=0A >>DdHQ n$1:&FO̝s6׋_;Ys rM\ /wxEVHfRs{N"xYb````TˈW)L KG$Hkt) b\T>_{*ܢ+Or?0ʹ3νO2,w9տ~e^MAϟB6yG~z"Pe39vٲC1A鈐9zE_FZnjx3bDDcG5/wzuLSj4fqT9)p.>^#WqңܟDG'JTEk6k v>s~pr|ڥ{{RJ(JC{9N9F <{RA9ʼ ~ƣ7m+X,X,X,X,X,X,Z3ZAZ&+qiF;w}([=`eMls0^O|q'wU9_yI=i;SHHU/G؜#+>2VΜizjqz+X%;H0*F)6~UQ2]'^k^MOїaY6,k:3(11&|YycNwn殽RR|z;wb~ͮlͱ&W_]     nXĵu^+r+KgEd&\!;i okqgWye%bNyEbK>xyOITmR7J4sf Z-{.ǥuIJqM}&Me~ZdD5[,X,X,X,X,X,jy~ugu^yQV2QN[ٷtl…ͽAnft\u8:JB-@:KxI7ɬ4i/|aO[/͵i(k_[ԫU5SASqvpMlbtO* 2<'﫮*\PU6=*8OoxC,p~/hWyۜ='fr_F'ɱI7Ϩ9YW OKw21g{L(ږ#?㯌Mydm;HνHłłłłłuen ^E^zS駗ΛDY뀲<ۚecs%,ۤ(:~:fiE4BHRn-Sƹ۝Mцܯ6ϊ9Ӊ3c".,,,,,E߿lRp)2+31g<:4N yQuqY2ײsee~W ʾp"J er$&Y}y4BB]&4r?Fͽ1!3w3?p=NTHA,IK wKYm:_(QSn›\^w;y_2:}$      ǯBWhVjVw Z\=C])"s᜙}d&e?'ɃѺP=5(r f &}CnIWdw{`ZkVFyN89GL'͙eD9!<^-;F=K/-|g]؝(5XXXXXXchd>d5yjfg&=םUunf=^:NƑ\~ c yk'tUyMIrJY$vG!RexfTgo]"Pĕ%|䯹׬Z=~l2hXXXXXXX@J9'H 9rg>a:󹔙YbF-ZTsgq:!WD mMzQdWF󽺳FY /%N17z sH}|S$U/Nj\ݑؘYEZ&ƩGǪY1],X,X,X,X,X, ,萏U(77~)O)G?M+3sGkUJ4G4#QGUaj2kUruRX.&Ncα_gYԧw^Y?e7?t&R_}=bӘ㐄~35sbt^s]Ix사7,u2njOu1%VMrZ,X,X,X,X,X,q>79>q+1JwYe.gNsh%>WɓO%\9^7&y=1eG#><3~"ZO[qHܫ s ճTG2G&s!9K [}B%gkki'?GFfbI       C;hW\yDw߻~9'o>yґl.+Ҩ@ QßmR䣗&O9R0А.s˚mK9,{RKa(g>!kGg=Q꬇#J"Dнg[C*iE+t3ǿXXXXXXY`y]Pfrg' :ڭ}",z'פ~~o1ݳe`&~<; OYV9yZQ(.ṳ1~s_=9bq'0ѣ&}9 )yeI%դ.QP׈u/ZWcL4q//·ۋ'9s,u4HOT47^!z#NzQ}|\嘺eyz{I}Q.D,YRccK%cy!|ùxko2#n!lO+Ts$3}s]1Q8w9kMc[ΡĞH7;ՔqA2?'w֮)?׽:*Wze/}i;^,X,X,X,X,X,z9ѨYW"$'0rQrϼøޯ]W#36 q\3~:;)%\|8hG\I Yۑ!xa&sWڟgAW'۟lJ[X뷣}]S2fd+򑢅łłłłł町ټ&:WGG C#c,%RWў(?Ot$d DI;滖&Қ0ߧ83Q5'ݟ\,X,X,X,X,X,\#lS˞2By(BygOj5G1}ͣUt2;oIOfܳmTV3~SMqF:LbkC:8D9=.JuG /RΙ(O{ꓩY,X,X,X,X,X,ZI/:MgEk8tf3u^Ɵ'nx&j~R5Ok3+6O=wߜyIx 1y9=Of@+T˨̤kC8(G.k=|KVri]J8NRXXXXXX@3ՔTeL*MQIRUsq&̜ &ﺺrAS AcWL y!.tVuYy=4/sfN:?P9y5_ ITezeܧYv;eU=j碜toXXXXXXl&KךɄJOXd2cһeݣ=?9ꩪyԜgGmVљ 3+nQ4+Fr9s>;+'U3$Dm|,0ͨ%mE'#]Et6&MbȭY330AG|ETk3wHLA2zO9L9T=̫UJ7R~k虗H|μڅ|c>0C'w~̽,E#B+w|dBåGS?]\ϝ)`ΰ< \?WuhN"2Qϗ>O/W/q|V:qV&۳=9L{Xf--_Ls~=eʩErċ'^#u"%N̽{&-L3_^־uI;?2R\ԳZ,X,X,X,X,X,Z\_vYY)%U ee1ҪzP@D0zn#壡Zso̽$N'7?(NuҕogbIu[ܴ}wfGL#׳ELWW'QV9LNgF@b [uxe}LַZ>>2<5&1@Ҹ&4Z"Yu0J浜ྋh9ixNvG֬^,X,X,X,X,X,Y>jCH%'5;N5r5װs&E vYW5הD·\WWAcW{]p]5(=&}]7s.sVmY̍>ښ}FbMd&M˖5N߼s5UhhκHt?f>a`````@WnV=LY`Z~^]EZso՜r61rywP^E+=+=NVgcq5t}$2\[@?q'깓w~G^?ei4ݬɐ5s'ϝrGkO(|'BslR+"+Zxbbbbbbiԃy rٙ23.f&XF!sMu҈Ig"?O4:Ýrp99eR[>[e_7c/;}phV:d|=ҙ/vmQVpߢc n?3,E]T[*^²߿/I u٩V#1K>KCޘyYcS۬G,WK`P5kH*Њ2/WW-3yȍG#i`.,,,,,p`|}^5欼~iQޜRRϙ^_K9YE̖<֬9Y[v;7̣"^X昒^H;|>οeޑjHfsG37ҵu!4U<9~ؤ$L5TOh#dz]l5kzTXFg2ѠX,X,X,X,X,X,U3zu^c\myNnGh<孲z-QdgBI}?H/3sȽeړ5"2K$sIەXXXXXX5)E٢G>RiO+,s&3ߟ| uɟ$4~Yݟi$={yի|4(>ln(s;=Xy#H7.k{s\[gL?(}ycˮ,*]]fow'?ńVkf>fօz/Ie\/kd$i/=?9qT|/bbbbbbךN9,:UBU˨?eߤ;1zF]9rlXgpV'=ST]G e/xAY x63{WR,qL}[F/OLލwE/*˻ ybwq<=&ֻ/‚r;W􈖯29ٛ!YGg1&דY4|4Q8̑\G D9M7[ڻy%$+My+&u ?& w;󶷕ɝ; Qwo!fp}'ziBjuYѢWJUh!+Z3#tsв[yG{Q6b}Cʜ/A>|I;c>)eY;g]u<?ZyXXXXXX@X@*m~$^ svܤWR9ˆ;LXfQFτ'6L>v2e*kf ͖-?e+^Ǘy<`````<^V{!lgJeL\!g/~-h٠ H ?KVQ(1=N(K'*ڄ:ɨf4kn)HhHdTdF9FZsm^F"ZIZ3lFǂ],X,X,X,X,X,P,\g:fD~xyL,WoR2ϐ|;ndrM}K^t&1s9?ZL8 yA)NOHΧ])vJ{G(IY{!+S,h{i'eYoˑ}bbbbbbLjH<:U]W5s]{n_3YZF7s>Hoz^E.WS"o+j/~yIDk*@,ߌ5.>͇\DZp/Ҙ-vꫫۨu0Ze8Zjzh>KeU\Ùgϓj9,,,,,ܜ`ڳs4'YVk{賒 =Lq΍&\5;$&8yv'MG&Dco~:g>.BI[f31ɟ7CgDM}+k v!g0s\ܺC>0#/Ӭo,I]UN bbbbbbkʬyy;=<E>4ʨ흞)?}\/ cVKuEOxcDl(9'qRs%_L^4ǂwۇO6A$D:jlɑOWRyN`N.gO;Z2A.Iv)D t r-g^ʲfoҢɫ* &ՈwM[w><^Dw8\|bbbbbb$wL1 Lzh4I*DimqeQ'Mk=gMb_|4𲬊볲n@^>:'J1k娔W3"ѵϳܱ=GWͫ}2OzR~hHrV$򬽙r"%:'(+᠎ͼbbbbbbAgtuTw|4aR~hI}wf~)_LXsWYE{d+k2:O7rIv܏}7ueU5(g|I*-W]V>E,5JkϨW|~/6:ׯp u{j~~]sMbbbbbbc#B,=y2S_{Sʌىz0 r嚪j5=]wue_es5$su ;${(Lřy#zƒpz.utsywA~)Q:k_`Yߩ܏ޏ[)SԬ⻻q@      yV0˱oq[N8]\D@1g#K=Nk%eyrLV^Yc/uQ@5ҟ\,X,X,X,X,X, wFfsg9se;fHMSώ-=?G7M?55P37+<)?N=< Eism äc<57557~[.TYuٱ)ϊ=L?ee4Tz^ oה_diu0H#"óFJݎ&łłłłł=ZVF7QNϭdbbbbbb厩${d3&5k35>шȼy|xsȫd/J=(4n=H,ϺCfΫdN4Os>g5遐frַ.{:)ܛo)}6N:aR$3M[b3>yeGXXXXXpĂ  ~>/jMq(<;3俲eelіn[v| ]bKR\"u^hOy!RW4*ϧiѣcwj5;<)S'\0Sp?*ʸO>٫&9t.,,,,,(dLz&ͱӱΐMygZY!&<:>C6s%yݛ&h8ʙ deVVH?gWLguio@ޒM6zg]uN~|ogiNq!W_櫬7>69[#lējruք8)./,,,,,ԣ +6=2RgTwb ylF|K LU A1S-]mԙsqpdRVGəI\s>w1{4#OS,3ʨ:CZ9w{߲V&;&+ssj,w q̫'WT_O~]U;yfOQIٟ(Afy|{̵x!F[޲L{M(2Wz*iK󒙭 tX=x=E˪sYYX-J?NCֿ_1Ѭ ܤn"wrłłłłł3d߮~tscݨ2K+1kgeIPƵ\Ot5t_sMYk+rSSgȨAH Y_~ߚhj4st#u.)<²c&C2Wtny!VE]Y}-,,,,ܜ1&5{ʫ]sm(Fq^NX~LbαLdhFɜGkn=<c&a&cC(ǔe +b,%ǯ6#8`>s"΍t].bbbbbbךy\rL?yeݗLuF|o̜OH88w~he25FSMg37h:jf[9*\zi[ϊ{ݫL5v/-s sR[Jk2ףwzIz]W{p^Fg+ "nPRɜqXXXXXX0 O/38ϼcx΃LjU\j1O5w(2y>zUS}&b 43z 2Kpfމvs}xΞ%~iTm sG-(R rK27{ .ߋF2gg} ]v yłłłłłe㾂sFykĎ)cqmsnR 4`:t}_2$ȦZ'" e>'h]dBKj2!\U2sHLzA'ڎ)F5( ݅|4bG-,,,,,8L|nSYV?g8i?6$9P4Tm)]8Q[Nw*G}Wgy [s;ߩg7Nz'>aDu,{=wC\n(#U@$_{md]gh9(_0`Gf|gԧQjJF_qy?XXXXXX@fY#DO٣ĵ F WA+u\D|59v5B0WL9RTK;mݒָRʴflx"G>>-]\3!׎M*a'yłłłłłe{mSCgl~7}7gHs) g8=!ǁߥy=|w]Nu53D-mJ#@:TRkxbJ~xYTuG 4SDӣYb^#x񄎦ވ6)_|qf;l?2UE%j^H^+<~5(wq"&]8=3"}ɱM?[{res-_yCN9,G&]fbbbbbbGȽS΀O}>G\w++h?I_̡g]\ 0a=uF]6Qn?s5LwqK1/]EV{cFHN_<5RڵW&-Tz?@x4<f:,,,,,,|9aAP K9rӲÓyN=&{k&t=+☥KI[s!ՎSyIbfjho*=zr9qϐc-/NRt3 u^9.yYm>Nee뜰e:BEłłłłłł/',O&ǹ;6=5(FZⴊsǽT=Z537j234E+Z- IłbV'_1"j媫r #ę+{Gfi%>?(Z9'Gy?ЬE_łłłłł;E]IEy^ Cdzw]:9ð+2GWLXyʹyElt<Ъ' 8U#z:6sޜ;WʹTPϴqt+#~ \yoSҤ;-L|H'{xO\w3$vIS>łłłłłł=C;̟aP 3GYy a?g{e}1&YY _^4]< L#QGȬ=Ɋfդ#':*pqۓzsۏߢ>5>uiet)FDQc$r G~``````#ҧe?~SQ*N?w_=k!=ll}g|wSDg/z95H.٣Q/1ݼb_YٛT\ ;)PtˬF/D&b$"Yzg=lcw`````XU0~pYO}b2:o.ˈؘ+Y>P_"yʝI_*TO'\OG#gW9>g+9g}2k面Ke%qEi,uh v Fiw?Gbbbbbb >4zŖ5μ2Y-y8G v:yI^87¹Һ&+ko]Q-9s{e#QFIYuzx芜ฐl79N'k6Ҽ5qtESݕ b{;ʈGW9n#-M_hXXXXXXX}]pAmo[sY/,>?A;8X`=G['I@a]/ 8UYϟ Wh)Ј-,,,,,(Pn3+z/Z3g+JY_On(ZκGS.bTSsGI3%pltE! c"ymCs4t/񰇕=;rE$]ۄEI]bs;G O#=*w' ZJ)_$^bbbbbb_Իs)BQue6=B9:QgެӕS < Aێ1[ϙ>IQ&3Bsʴʒޡ&@Mx´op~gўx <3<{wEPi'{TZz#9{})NWϟ.IUlʔIڄl!]DUov*9ͻ79F_~S4پ+˨.kM|e+;d [P9\c>wEr_W>f{guWbbbbbbiMb>gUFђRMn(_t=Fv͟'y|^5CU=dDN$oح$4>8$7JG82Gde9h7n^sMY=)Seʔo:$q|{;@?LxnB#YD\łłłłł(w&K ˺lCcA? G'Z?$+-u*WL9OG+({KcLbդk !5H}^EOzիgHSt|{zxݵ=O3J:@<'4͉MlI3Δ+{M       (tȹk×֫GB_.lxeKt7O,//gXrST^9i>){˲Bm#'C?w4tA㻿L? /ZbcdmI_x ?;S,+i>Kow[ܢLk<2z)Ǐ櫆_9+]g]FL~6e]EؿXXXXXX@1"=yuUa|f'FJ1\Nά3ѾfD;_?e͊͟+`Г>r5 rvfoA;ˑ=9SP=f'V&KQ [-[}=`x˄)ңEeo{YPh"BkBB2t%܈*7tQY V1[C Af2D 111$! 1 CLp2Q#mPYxwq773y8wy繟>sU~i๲:Tǎ      H3)SV9yS1҈=)r-8QuB>T~80NL=i\y}k%]x(;$^[ZF'\V:^^1x |=]gf4o5&-9RZ6`````ʼnTkI?P縓H1X0X0X0X0X0Xб޹N^LQ*j85ukV?_ =dҗ꽫,bx#%w˨΋bkиHiYϓv_eCy"kO_@G0jG?'Tu5U%ՠo"]+]I/oYi$$RAy"EY] !dOIAQ_vC;:g{UHXLXi,8=2P 5ջ)zWy;YrJ^T,,,,,,P,Lq2TAC笑#h]ʕ yhnǎ-okQJtozn$OKT#4dLw}f?3]k<""bw{`````@k.ڽ*wײRDeU:PyeBtQ'8?1 DRGqq{ltז.I&Fyߡ$Dތfu$컑|>av,-Z'J^:o&V_gpqC0ZD;RO3kәIb````b޺P~92A7GߤsISs:zGgHtso^ھ EяCE}_צ̙?ũ]w-eI/ͫ.Y\y#ab$~@uuP\GrѼzy^Sū:Qg;r&QpR߯_яh     fu UӘ۪_U (ϾOMbJy`RNJkW*hg,EgHSpZˉ;~j}_+.R4"ҭk'I}275t|hP v$k|D#SO-#)NӚM4HG~%u=yr~%7߼L{`W+Uhv[3:を~VD^Dt4TCX=6e #I _2ʙV*ϧ8@oB{GFvR-TѬ𾱛r<|$.E O&<[Žܲx``````jVQ3Ss{Yqu;V'"W!_^}@T]xΊһ hj|_<閞t3_Wt&Rկ.z^Ox5|WPVCG)1K+%Q;ʒ{e6[?;:|HWSaI*.,,,,,,ܱ>_ ?"KZ7ݴk|iXkv|;9ZIoG5k 'y?C$}gfe=S/7B>RDϻ{ϖFhPP]ߛFmRS%Dya`MzyoY{]:~xى|qA'?ͪ׾ܿzjZG;1ǾktT}/?4#hnG]t}L(z>#I)(zE臟'b4^&5ώbV>;hR| ͟1x)՚     \XGz[nYV߯:N'Ir8=ֵ+'#lovR?L!}_{$AW۪)DeZp_^M<~)6EAD(Y&Mfx2uq$Gɳ5xS,,,,,,Xs,%,;~|Yؾ2+,CygY{:[UzwTKW[F*|߇uf?QV)Ө=cx     6|?Q3?_bY/gQgUWӘ߮_e=w=u(T; .sWU z9Sfr=^+a\Ǘi>ڳUWy"TѢq#|Ht?yBq(1:h\RcD#Qt|6{~?o~ hq*q?첮@׮|;Z3y: 4K"ENxI"mL揪th O|x]D_ yiR};r성kԑ>C\5]3cRe`````@cDARITFUYTGnH+'WpksJ3c- 7si &, ڇ$zb#(Da;"}f/{EΓ﫞:(zځP{ZZL.GV]V5:X0X0X0X0X0Xбgpw籀*)T;z잍:SЛVћQIS+v35ٳדrJuUIv<7t]^%eOQ,wj6=ǒG,uM71L|/*sb].` Pj:+~elؼnҙԯ;:X0X0X0X0X0Xc&AS=s91>eզHyz%TIx߇ƣF?svoqYVQRWu-|B)]?!E3ȗ>+W)ׂrj)EoQޟ)gLHxܦ}/=>'CzZ      SWHUBҩKڳz[z]Uy#`,m`|S+:!~`t]zO?:MAGH]T ?syz.vD'$%P!?O?w=X0X0X0X0X0Xcԯtyd)(w߽_m^%/}pJ (HϴT2(PH蟸6"$W"upZ#ZGg%UMPFYiFyʒE On597ĒUqHq"M      4FI㦫U\z/#2-];2J#=}zE 7,9{xh#Hto#P6ɳSWJUQHZD[I_ Kz}9|z+IZ4_      (w(BꜨ]n}T|ϫu: ԫb#@]c#?eՓ%tL:}G Dك 5KzF4 J9ח !gQ68!)iY;,e,Lf{1X0X0X0X0X0XX@jlLHGe(1hӊ!>st0 >t]khST_|*ʣ ݅^T;|$*yKtISM<1z4W@b PVhb_$1=K#s.e}2cǖh|!֚      eyiɺguY3-}zFqتǠyEvf׾H*K{O1|c ~c5WkRO#0|79>g#eK>#uqDzZ^P|Png:8RlֺO/``````5K޻'K_+ן!#ez *8i&+Q1Kt;9Z| _Rk&ʾz#(/_CXK~Ǒ*E8K*Kyv, %ڕ_D%OOe|<      oZ/O5,:u>K_aROc눑 arb}!w=x @xR/>+hC}F=ӫMr;D 1h/ h=K4QL;x6{__LJb}      Wq~ZMJߔihWjtׯJ{>y &RSbNRo^s=:(#1:& >y~PER*K!zƄT zMViv%\(L< b\!2?}     \X+ǩƜ"NOQ_}Gy#E5>+iőzU|eS%UN^Ѯ_92z=sDqQ{ʑqALVFk)GWN;ϥ&DUTF9=$V5zMzm=^^8Mss<:wJu[{7 |[}       }$T~k 7{lYQ) 5'8v3:WHz'٨^syp[$|јF/)#D 'w0u%_ҲӧVgGhoYiWwaH:z;,<쥗yH>ݯ@u|Py`````jʹAULMa8F>UU+~?~cU(hR6uIn:UZ^-aA(|9ve5;Du~r)EkP"ƴ*_{Xՠ>e~Fހ 뽲T6X0X0X0X0X0XsǔU/,1t5W"E=oW lė&z֢OJYtDI'DY}k3=XL%I"oaLKކ)I|/#kg>sfYә^sC+sL,,,,,,X5o=.$e֛wOxA}(.kz% H^a.9 h+5PD)N HPU 7*t֙j嗗USS]Wz)KLײv$*9)K?5esoN 0{E !i     hVзoXkF&9B{MV1Q9:z(]6 b1es'8X0X0X0X0X0Xt&ݖ;ۓ:>\~tYӞ/,ӳ{值ڱc[Hϱun0͜$k1tP"IrpTG#G4O1`xe#j,LCaMk4 RHY">E2"GEe/Lg#Mm-,,,,,, N)gĉeٮGu^:=z7iy~vcYS/Z^Kպ鹎_ieJ9@Z͊T#B nGw,u?[O!f{6bJQlX{m>2!PRVr˲qh{}[g <4O}K­*9|W"+j!f"0PLGVJi7ax6;%6v\a|΢|egV"]``````׬ε=ˮfGiA*3Ĥw;% kP?l&EKꎝ5TjRߨD+IIwZ#`9pѻx|P挏{\ NE,,,,,,P Sgs> W_Y3VԭFj%I'Ρ齃_Os}SvG = PϺ%CXpuLZ?a\1%諨|7sK{kS$:E )E|\8ң>)c>H{9&$)x}oڿ-eN-{e"(s:iLH:Q/W5wϤTtĊgogk&^      $ڕު~xrzw*9Yc`+(=gU{(D^yVt^+oq!}tBk:UQ$FZ\7ݴ~e[Me5MTMY}%_Ils=gaAͺҎͯF|'D,,,,,, N)e+|Qϰ(:nBѯ~xZ#}SLI+w|~s&oHbqIWPXǦ_5+YkXy=y.3f yfܴs-O|pas'1$Ŝ ]t܇af"[ӻc':>F>s4;H4䛾"N+ӳS 'E52.:EWtvW/[gcQW0uq'Sw נ<$yڼ߼5C 4f<2"5X0X0X0X0X0XXκz2_~4<U7OsUI}<䕢}7Q O;Q3Sf j(jԹR4D%}yI%fojA_WQyL3_EЧQVf7Wb.+``````bA]*ۢjv٥.;ʎ3YT譙? N=|˕~}Eg& ȕYTyF1u!d'Pcx %X~?I1:]+l^Μ#X^G}      h/ %UA)>sW~䲣5#nV'q>7gJRF+wgIbS^P^+L1P$O ]=Uhv3,#6jG0CwiTz v?eG2Y>ߨ{9Rz]=IGK1%>y{_y*V)UN' ߒ꓾ڵ&߽duez6ROti/Aj$ |INg̟m`````4(ȧQhڟ1=NtM_M?>5唣)lN-e2> 㗿\Vw yKsf_?Wx_į>^ɜ*^ң[|RmQDc`````@9t_kJk :~Qc+7Y_C<ʝQ4)RJrt>&?ׯd*뿾-toOKNͮa^R{,J?      ,#Im|PjIAgfethAL[?'@`$uI yc,T1U93$>MyB j?V)fʲ^y}kHf_RPtQcDժzپs^Êz~UvHS'C9^-"bTeF<[#UQnZVڲsw͵Јe/2EhuU=^eĂޕk!)B>> 4kyW>9|$~#^yoNz@\5K1Od)6Wx{stzV!)WM'XXлmݗhPQ6Y4.      g1!ٽ? ~ V-)xKtA5NYlZgP_Eک(?W3]w-; FS˚ɔo-,h VI#=}ⓐҝF12X0X0X0X0X0Xos1s1s1!endstream endobj 230 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [150.611 440.739 157.585 452.599] /Subtype /Link /A << /S /GoTo /D (figure.4) >> >> endobj 231 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [143.929 417.386 150.387 429.418] /Subtype /Link /A << /S /GoTo /D (Hfootnote.7) >> >> endobj 232 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [300.168 333.7 307.142 344.539] /Subtype /Link /A << /S /GoTo /D (figure.5) >> >> endobj 233 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [444.908 287.812 471.787 296.529] /Subtype /Link /A << /S /GoTo /D (cite.HilbertVisualization_first) >> >> endobj 234 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [151.016 263.902 178.881 272.619] /Subtype /Link /A << /S /GoTo /D (cite.PeanoCurve_first) >> >> endobj 235 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [237.247 263.902 262.193 272.808] /Subtype /Link /A << /S /GoTo /D (cite.HilbertCurve_first) >> >> endobj 236 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [295.341 202.193 302.314 213.033] /Subtype /Link /A << /S /GoTo /D (figure.6) >> >> endobj 228 0 obj << /D [226 0 R /XYZ 89.292 765.769 null] >> endobj 229 0 obj << /D [226 0 R /XYZ 131.987 564.225 null] >> endobj 240 0 obj << /D [226 0 R /XYZ 104.528 161.006 null] >> endobj 225 0 obj << /Font << /F8 79 0 R /F80 106 0 R /F7 92 0 R /F11 144 0 R /F10 135 0 R /F14 239 0 R /F25 109 0 R /F24 113 0 R /F91 164 0 R >> /XObject << /Im5 222 0 R /Im6 223 0 R >> /ProcSet [ /PDF /Text /ImageC ] >> endobj 247 0 obj << /Length 225 /Filter /FlateDecode >> stream xMPKO!+(3v=m[nꡮIM 2|/,/t5NC j='ڀ1,66Emu=H@3KߟZs}|5*휓Fi̻ŢosHNz9GQ'CU> endobj 224 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./ShortRead_and_HilbertVis-HilbertCurves.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 249 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 288 324] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 250 0 R /F2 251 0 R >> /ExtGState << >>>> /Length 252 0 R >> stream q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 61.20 205.20 m 97.20 205.20 l S 61.20 205.20 m 61.20 198.00 l S 97.20 205.20 m 97.20 198.00 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 57.86 179.29 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 93.86 179.29 Tm (1) Tj ET 43.20 223.20 m 43.20 259.20 l S 43.20 223.20 m 36.00 223.20 l S 43.20 259.20 m 36.00 259.20 l S BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 218.89 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 254.89 Tm (1) Tj ET 43.20 205.20 72.00 72.00 re S 1.000 0.000 0.000 RG 61.20 223.20 m 61.20 259.20 l 97.20 259.20 l 97.20 223.20 l S 1.000 0.000 1.000 RG BT /F1 1 Tf 1 Tr 16.83 0 0 16.83 54.54 217.36 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 16.83 0 0 16.83 54.54 253.36 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 16.83 0 0 16.83 90.54 253.36 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 16.83 0 0 16.83 90.54 217.36 Tm (l) Tj 0 Tr ET 0.000 0.000 1.000 RG 43.20 205.20 m 43.20 277.20 l S 79.20 205.20 m 79.20 277.20 l S 115.20 205.20 m 115.20 277.20 l S 43.20 205.20 m 115.20 205.20 l S 43.20 241.20 m 115.20 241.20 l S 43.20 277.20 m 115.20 277.20 l S Q q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 196.20 205.20 m 250.20 205.20 l S 196.20 205.20 m 196.20 198.00 l S 214.20 205.20 m 214.20 198.00 l S 232.20 205.20 m 232.20 198.00 l S 250.20 205.20 m 250.20 198.00 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 192.86 179.29 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 210.86 179.29 Tm (1) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 228.86 179.29 Tm (2) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 246.86 179.29 Tm (3) Tj ET 187.20 214.20 m 187.20 268.20 l S 187.20 214.20 m 180.00 214.20 l S 187.20 232.20 m 180.00 232.20 l S 187.20 250.20 m 180.00 250.20 l S 187.20 268.20 m 180.00 268.20 l S BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 209.89 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 227.89 Tm (1) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 245.89 Tm (2) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 263.89 Tm (3) Tj ET 187.20 205.20 72.00 72.00 re S 1.000 0.000 0.000 RG 196.20 214.20 m 214.20 214.20 l 214.20 232.20 l 196.20 232.20 l 196.20 250.20 l 196.20 268.20 l 214.20 268.20 l 214.20 250.20 l 232.20 250.20 l 232.20 268.20 l 250.20 268.20 l 250.20 250.20 l 250.20 232.20 l 232.20 232.20 l 232.20 214.20 l 250.20 214.20 l S 1.000 0.000 1.000 RG BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 192.87 211.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 210.87 211.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 210.87 229.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 192.87 229.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 192.87 247.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 192.87 265.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 210.87 265.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 210.87 247.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 228.87 247.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 228.87 265.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 246.87 265.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 246.87 247.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 246.87 229.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 228.87 229.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 228.87 211.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 246.87 211.28 Tm (l) Tj 0 Tr ET 0.000 0.000 1.000 RG 187.20 205.20 m 187.20 277.20 l S 205.20 205.20 m 205.20 277.20 l S 223.20 205.20 m 223.20 277.20 l S 241.20 205.20 m 241.20 277.20 l S 259.20 205.20 m 259.20 277.20 l S 187.20 205.20 m 259.20 205.20 l S 187.20 223.20 m 259.20 223.20 l S 187.20 241.20 m 259.20 241.20 l S 187.20 259.20 m 259.20 259.20 l S 187.20 277.20 m 259.20 277.20 l S Q q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 47.70 43.20 m 110.70 43.20 l S 47.70 43.20 m 47.70 36.00 l S 56.70 43.20 m 56.70 36.00 l S 65.70 43.20 m 65.70 36.00 l S 74.70 43.20 m 74.70 36.00 l S 83.70 43.20 m 83.70 36.00 l S 92.70 43.20 m 92.70 36.00 l S 101.70 43.20 m 101.70 36.00 l S 110.70 43.20 m 110.70 36.00 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 44.36 17.29 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 53.36 17.29 Tm (1) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 62.36 17.29 Tm (2) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 71.36 17.29 Tm (3) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 80.36 17.29 Tm (4) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 89.36 17.29 Tm (5) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 98.36 17.29 Tm (6) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 107.36 17.29 Tm (7) Tj ET 43.20 47.70 m 43.20 110.70 l S 43.20 47.70 m 36.00 47.70 l S 43.20 56.70 m 36.00 56.70 l S 43.20 65.70 m 36.00 65.70 l S 43.20 74.70 m 36.00 74.70 l S 43.20 83.70 m 36.00 83.70 l S 43.20 92.70 m 36.00 92.70 l S 43.20 101.70 m 36.00 101.70 l S 43.20 110.70 m 36.00 110.70 l S BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 43.39 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 52.39 Tm (1) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 61.39 Tm (2) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 70.39 Tm (3) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 79.39 Tm (4) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 88.39 Tm (5) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 97.39 Tm (6) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 106.39 Tm (7) Tj ET 43.20 43.20 72.00 72.00 re S 1.000 0.000 0.000 RG 47.70 47.70 m 47.70 56.70 l 56.70 56.70 l 56.70 47.70 l 65.70 47.70 l 74.70 47.70 l 74.70 56.70 l 65.70 56.70 l 65.70 65.70 l 74.70 65.70 l 74.70 74.70 l 65.70 74.70 l 56.70 74.70 l 56.70 65.70 l 47.70 65.70 l 47.70 74.70 l 47.70 83.70 l 56.70 83.70 l 56.70 92.70 l 47.70 92.70 l 47.70 101.70 l 47.70 110.70 l 56.70 110.70 l 56.70 101.70 l 65.70 101.70 l 65.70 110.70 l 74.70 110.70 l 74.70 101.70 l 74.70 92.70 l 65.70 92.70 l 65.70 83.70 l 74.70 83.70 l 83.70 83.70 l 92.70 83.70 l 92.70 92.70 l 83.70 92.70 l 83.70 101.70 l 83.70 110.70 l 92.70 110.70 l 92.70 101.70 l 101.70 101.70 l 101.70 110.70 l 110.70 110.70 l 110.70 101.70 l 110.70 92.70 l 101.70 92.70 l 101.70 83.70 l 110.70 83.70 l 110.70 74.70 l 110.70 65.70 l 101.70 65.70 l 101.70 74.70 l 92.70 74.70 l 83.70 74.70 l 83.70 65.70 l 92.70 65.70 l 92.70 56.70 l 83.70 56.70 l 83.70 47.70 l 92.70 47.70 l 101.70 47.70 l 101.70 56.70 l 110.70 56.70 l 110.70 47.70 l S 1.000 0.000 1.000 RG BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 46.24 Tm (l) Tj 0 Tr ET 0.000 0.000 1.000 RG 43.20 43.20 m 43.20 115.20 l S 52.20 43.20 m 52.20 115.20 l S 61.20 43.20 m 61.20 115.20 l S 70.20 43.20 m 70.20 115.20 l S 79.20 43.20 m 79.20 115.20 l S 88.20 43.20 m 88.20 115.20 l S 97.20 43.20 m 97.20 115.20 l S 106.20 43.20 m 106.20 115.20 l S 115.20 43.20 m 115.20 115.20 l S 43.20 43.20 m 115.20 43.20 l S 43.20 52.20 m 115.20 52.20 l S 43.20 61.20 m 115.20 61.20 l S 43.20 70.20 m 115.20 70.20 l S 43.20 79.20 m 115.20 79.20 l S 43.20 88.20 m 115.20 88.20 l S 43.20 97.20 m 115.20 97.20 l S 43.20 106.20 m 115.20 106.20 l S 43.20 115.20 m 115.20 115.20 l S Q q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 189.45 43.20 m 256.95 43.20 l S 189.45 43.20 m 189.45 36.00 l S 198.45 43.20 m 198.45 36.00 l S 207.45 43.20 m 207.45 36.00 l S 216.45 43.20 m 216.45 36.00 l S 225.45 43.20 m 225.45 36.00 l S 234.45 43.20 m 234.45 36.00 l S 243.45 43.20 m 243.45 36.00 l S 252.45 43.20 m 252.45 36.00 l S 256.95 43.20 m 256.95 36.00 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 186.11 17.29 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 195.11 17.29 Tm (2) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 204.11 17.29 Tm (4) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 213.11 17.29 Tm (6) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 222.11 17.29 Tm (8) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 236.78 17.29 Tm (12) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 250.28 17.29 Tm (15) Tj ET 187.20 45.45 m 187.20 112.95 l S 187.20 45.45 m 180.00 45.45 l S 187.20 54.45 m 180.00 54.45 l S 187.20 63.45 m 180.00 63.45 l S 187.20 72.45 m 180.00 72.45 l S 187.20 81.45 m 180.00 81.45 l S 187.20 90.45 m 180.00 90.45 l S 187.20 99.45 m 180.00 99.45 l S 187.20 108.45 m 180.00 108.45 l S 187.20 112.95 m 180.00 112.95 l S BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 41.14 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 50.14 Tm (2) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 59.14 Tm (4) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 68.14 Tm (6) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 77.14 Tm (8) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 159.46 86.14 Tm (10) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 159.46 95.14 Tm (12) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 159.46 104.14 Tm (14) Tj ET 187.20 43.20 72.00 72.00 re S 1.000 0.000 0.000 RG 189.45 45.45 m 193.95 45.45 l 193.95 49.95 l 189.45 49.95 l 189.45 54.45 l 189.45 58.95 l 193.95 58.95 l 193.95 54.45 l 198.45 54.45 l 198.45 58.95 l 202.95 58.95 l 202.95 54.45 l 202.95 49.95 l 198.45 49.95 l 198.45 45.45 l 202.95 45.45 l 207.45 45.45 l 207.45 49.95 l 211.95 49.95 l 211.95 45.45 l 216.45 45.45 l 220.95 45.45 l 220.95 49.95 l 216.45 49.95 l 216.45 54.45 l 220.95 54.45 l 220.95 58.95 l 216.45 58.95 l 211.95 58.95 l 211.95 54.45 l 207.45 54.45 l 207.45 58.95 l 207.45 63.45 l 207.45 67.95 l 211.95 67.95 l 211.95 63.45 l 216.45 63.45 l 220.95 63.45 l 220.95 67.95 l 216.45 67.95 l 216.45 72.45 l 220.95 72.45 l 220.95 76.95 l 216.45 76.95 l 211.95 76.95 l 211.95 72.45 l 207.45 72.45 l 207.45 76.95 l 202.95 76.95 l 198.45 76.95 l 198.45 72.45 l 202.95 72.45 l 202.95 67.95 l 202.95 63.45 l 198.45 63.45 l 198.45 67.95 l 193.95 67.95 l 193.95 63.45 l 189.45 63.45 l 189.45 67.95 l 189.45 72.45 l 193.95 72.45 l 193.95 76.95 l 189.45 76.95 l 189.45 81.45 l 189.45 85.95 l 193.95 85.95 l 193.95 81.45 l 198.45 81.45 l 202.95 81.45 l 202.95 85.95 l 198.45 85.95 l 198.45 90.45 l 202.95 90.45 l 202.95 94.95 l 198.45 94.95 l 193.95 94.95 l 193.95 90.45 l 189.45 90.45 l 189.45 94.95 l 189.45 99.45 l 193.95 99.45 l 193.95 103.95 l 189.45 103.95 l 189.45 108.45 l 189.45 112.95 l 193.95 112.95 l 193.95 108.45 l 198.45 108.45 l 198.45 112.95 l 202.95 112.95 l 202.95 108.45 l 202.95 103.95 l 198.45 103.95 l 198.45 99.45 l 202.95 99.45 l 207.45 99.45 l 211.95 99.45 l 211.95 103.95 l 207.45 103.95 l 207.45 108.45 l 207.45 112.95 l 211.95 112.95 l 211.95 108.45 l 216.45 108.45 l 216.45 112.95 l 220.95 112.95 l 220.95 108.45 l 220.95 103.95 l 216.45 103.95 l 216.45 99.45 l 220.95 99.45 l 220.95 94.95 l 220.95 90.45 l 216.45 90.45 l 216.45 94.95 l 211.95 94.95 l 207.45 94.95 l 207.45 90.45 l 211.95 90.45 l 211.95 85.95 l 207.45 85.95 l 207.45 81.45 l 211.95 81.45 l 216.45 81.45 l 216.45 85.95 l 220.95 85.95 l 220.95 81.45 l 225.45 81.45 l 225.45 85.95 l 229.95 85.95 l 229.95 81.45 l 234.45 81.45 l 238.95 81.45 l 238.95 85.95 l 234.45 85.95 l 234.45 90.45 l 238.95 90.45 l 238.95 94.95 l 234.45 94.95 l 229.95 94.95 l 229.95 90.45 l 225.45 90.45 l 225.45 94.95 l 225.45 99.45 l 229.95 99.45 l 229.95 103.95 l 225.45 103.95 l 225.45 108.45 l 225.45 112.95 l 229.95 112.95 l 229.95 108.45 l 234.45 108.45 l 234.45 112.95 l 238.95 112.95 l 238.95 108.45 l 238.95 103.95 l 234.45 103.95 l 234.45 99.45 l 238.95 99.45 l 243.45 99.45 l 247.95 99.45 l 247.95 103.95 l 243.45 103.95 l 243.45 108.45 l 243.45 112.95 l 247.95 112.95 l 247.95 108.45 l 252.45 108.45 l 252.45 112.95 l 256.95 112.95 l 256.95 108.45 l 256.95 103.95 l 252.45 103.95 l 252.45 99.45 l 256.95 99.45 l 256.95 94.95 l 256.95 90.45 l 252.45 90.45 l 252.45 94.95 l 247.95 94.95 l 243.45 94.95 l 243.45 90.45 l 247.95 90.45 l 247.95 85.95 l 243.45 85.95 l 243.45 81.45 l 247.95 81.45 l 252.45 81.45 l 252.45 85.95 l 256.95 85.95 l 256.95 81.45 l 256.95 76.95 l 252.45 76.95 l 252.45 72.45 l 256.95 72.45 l 256.95 67.95 l 256.95 63.45 l 252.45 63.45 l 252.45 67.95 l 247.95 67.95 l 247.95 63.45 l 243.45 63.45 l 243.45 67.95 l 243.45 72.45 l 247.95 72.45 l 247.95 76.95 l 243.45 76.95 l 238.95 76.95 l 238.95 72.45 l 234.45 72.45 l 234.45 76.95 l 229.95 76.95 l 225.45 76.95 l 225.45 72.45 l 229.95 72.45 l 229.95 67.95 l 225.45 67.95 l 225.45 63.45 l 229.95 63.45 l 234.45 63.45 l 234.45 67.95 l 238.95 67.95 l 238.95 63.45 l 238.95 58.95 l 238.95 54.45 l 234.45 54.45 l 234.45 58.95 l 229.95 58.95 l 225.45 58.95 l 225.45 54.45 l 229.95 54.45 l 229.95 49.95 l 225.45 49.95 l 225.45 45.45 l 229.95 45.45 l 234.45 45.45 l 234.45 49.95 l 238.95 49.95 l 238.95 45.45 l 243.45 45.45 l 247.95 45.45 l 247.95 49.95 l 243.45 49.95 l 243.45 54.45 l 243.45 58.95 l 247.95 58.95 l 247.95 54.45 l 252.45 54.45 l 252.45 58.95 l 256.95 58.95 l 256.95 54.45 l 256.95 49.95 l 252.45 49.95 l 252.45 45.45 l 256.95 45.45 l S 1.000 0.000 1.000 RG BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 44.72 Tm (l) Tj 0 Tr ET 0.000 0.000 1.000 RG 187.20 43.20 m 187.20 115.20 l S 191.70 43.20 m 191.70 115.20 l S 196.20 43.20 m 196.20 115.20 l S 200.70 43.20 m 200.70 115.20 l S 205.20 43.20 m 205.20 115.20 l S 209.70 43.20 m 209.70 115.20 l S 214.20 43.20 m 214.20 115.20 l S 218.70 43.20 m 218.70 115.20 l S 223.20 43.20 m 223.20 115.20 l S 227.70 43.20 m 227.70 115.20 l S 232.20 43.20 m 232.20 115.20 l S 236.70 43.20 m 236.70 115.20 l S 241.20 43.20 m 241.20 115.20 l S 245.70 43.20 m 245.70 115.20 l S 250.20 43.20 m 250.20 115.20 l S 254.70 43.20 m 254.70 115.20 l S 259.20 43.20 m 259.20 115.20 l S 187.20 43.20 m 259.20 43.20 l S 187.20 47.70 m 259.20 47.70 l S 187.20 52.20 m 259.20 52.20 l S 187.20 56.70 m 259.20 56.70 l S 187.20 61.20 m 259.20 61.20 l S 187.20 65.70 m 259.20 65.70 l S 187.20 70.20 m 259.20 70.20 l S 187.20 74.70 m 259.20 74.70 l S 187.20 79.20 m 259.20 79.20 l S 187.20 83.70 m 259.20 83.70 l S 187.20 88.20 m 259.20 88.20 l S 187.20 92.70 m 259.20 92.70 l S 187.20 97.20 m 259.20 97.20 l S 187.20 101.70 m 259.20 101.70 l S 187.20 106.20 m 259.20 106.20 l S 187.20 110.70 m 259.20 110.70 l S 187.20 115.20 m 259.20 115.20 l S Q q Q q Q endstream endobj 249 0 obj << /CreationDate (D:20090701105139) /ModDate (D:20090701105139) /Title (R Graphics Output) /Producer (R 2.10.0) /Creator (R) >> endobj 250 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 251 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 253 0 R >> endobj 252 0 obj 33526 endobj 253 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 248 0 obj << /D [246 0 R /XYZ 89.292 765.769 null] >> endobj 244 0 obj << /D [246 0 R /XYZ 215.228 260.642 null] >> endobj 245 0 obj << /Font << /F8 79 0 R >> /XObject << /Im7 224 0 R >> /ProcSet [ /PDF /Text ] >> endobj 257 0 obj << /Length 3449 /Filter /FlateDecode >> stream xڵZܶ~h]VIQ-$v\ҢT=ݕRt@?D<~Cˋ/E5Y\\.T^dڔY4+9¯[i%vZ-ˀŦ{z k&GR8V.}Ah6"'qqM_Hl{KY(JG#eJX_ sͫz݊- b\bIk۬(bTXK}!̼TL46!a-9ͼZ[mH-7b/&9S]I+/Sy"uB {wDGSD܇&;k"Zfb,-5ǰʹGW~8߸h cIxs׼oNy\wYj^J?wSk2M{*==n}wjR5'Lj~5/;dI~?Z^8~<{;Ț6 2~%駥,s3wYPn TI9i6;.s9 ܆=2Vxɕ(w@ICvk;$!aYvCh73h½WXPn:[&s HGf\9JԣD9ѐ[ӓ E>t!Z<6x@ X}ꙀjK Ƽ}g=aȮuJ;'s}ld>@z (dݖ6Q4H&f/ w5Фc$Q;\ >IJuYeB6Oft3ҹ.HA-2ZƁ;+߹z%}nZڎ=N=ifBp1L$Yކר`@q#$&7,aV?b;bY5c8t܀nL747fqx ]ei@L/|#ď=H/<_$xS?{8Ad$y90v&b1SzL9=M{eFI&xՉo#;?Lls~PfEZWY])Z)PR.8:m!)03qiha@jJKx3SDbQw0C`;<ι!"Eif3냣͞}i=s}B_{Uh'E1ý˳w^/i4>2AeC/3DN!^*-6m:$RCcTdV%A=3V&+Fu@ץQDuy e- blZJ S'!TK y@0IP"?Hjf04 Fk$}PA1£ ' 3v2x0[ .(2 Kj?xǘ!"@@x $Y6imjYT:p F\'̎gC&]qd 1 .&sUKR 8Җ8PXgo]3s꣭=Y)\\)_mɖy< ]g*(CD/#35 FB:B9 ZNU2lzDg$x'd񉪞٥ӵ?|M%8*%KՑ2VI`5tˆaмI|c!q HM;Rs{FfzC3 n1CTiRlvٵ ]1`ZѼI=p@2k1Y^,LV*1ͬhN#J͑ҹuɣɯ|O஘y,.5ZxQx!!|8u'p%K]"+k;5nhkSM< A`9t I$F.Yp2DMWi5udRuB|x.L0x7].Y`B,>d8$!c/(#o̬NjU]8^6[$x<*hxG ?xHP)r7y lm}?P hw2UlD(;#p$;յ,1EeT@rJ4UL|:&F|-D^0sҕ3EK7\C#M6XɘGtf,<@7ה7|0oPic dfx D>S % ZoޠP „%KN=$g6Cua幻!hy?-秄BSP)^L\r7rEэN0;VAQPYUƫX:So,$`r:3I{T_3.D;̓T2q;Ruþ:cntV\zvI}P0c/\[\@ϳz߱>37OǗneD=+p~:|>oF&9?.h¨0T!!vcqtO蔀'ȸZ{|iW[_6ڵ_ ^t OknefG*%ݲ>~:@/a64Wan)d>F&{BVIVƔ9i*=&2(Oe:+k][٥NoqnTMzM5ľy,Y8&oEG46ߵL̽<76(P:Ӻ<@rprF\*2 Ŝ|-W@38o#0BooWߛ';:ס'8q]/_d.Qo;HΚb]Rr&es8A8[%";bSbu|fNONݝ5A8&訐[_K7=8cZMPeig?/g3@:M@g؟!aY;oZ#n_.lT5{0Ge61@ۦB"Sad˙~'FH᳁?KݝHaeO'/tqvM3k̔IJCendstream endobj 256 0 obj << /Type /Page /Contents 257 0 R /Resources 255 0 R /MediaBox [0 0 595.276 841.89] /Parent 216 0 R /Annots [ 259 0 R 260 0 R 261 0 R 262 0 R ] >> endobj 259 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [134.698 727.691 141.672 738.81] /Subtype /Link /A << /S /GoTo /D (figure.6) >> >> endobj 260 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [186.457 592.478 193.431 603.318] /Subtype /Link /A << /S /GoTo /D (figure.5) >> >> endobj 261 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [220.787 446.601 227.761 457.44] /Subtype /Link /A << /S /GoTo /D (figure.7) >> >> endobj 262 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [221.335 376.803 227.794 386.902] /Subtype /Link /A << /S /GoTo /D (Hfootnote.8) >> >> endobj 258 0 obj << /D [256 0 R /XYZ 89.292 765.769 null] >> endobj 34 0 obj << /D [256 0 R /XYZ 89.292 519.776 null] >> endobj 263 0 obj << /D [256 0 R /XYZ 104.528 166.482 null] >> endobj 255 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F80 106 0 R /F39 57 0 R /F44 60 0 R /F7 92 0 R /F14 239 0 R /F25 109 0 R /F24 113 0 R >> /ProcSet [ /PDF /Text ] >> endobj 267 0 obj << /Length 280 /Filter /FlateDecode >> stream xMPN0+h n &Ej {։F:ޝJI^q"(8Ƈ膞J*[L\;Ť\m"u 45Hmr  cUZkoXei{m2<-nː}ɝ1S~EIי7a-&rd <-}VdžUcnLYͰaG> endobj 254 0 obj << /Type /XObject /Subtype /Image /Width 522 /Height 876 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 70248 /Filter /FlateDecode >> stream xinUu%5F1_UT@PAEDEEQ0(+* bPb1 * F4**Mh؁H(vآt~Iw޹fͽW3;?m.]t{X`>O~]^y?1מ{\.]t=)؟A ?#Ϲ뽺tҥIo$$/x|_sW+O{eozh.]tr>wZkꌧ|7}Kߺ߷!]tEˋͧv?׋m_=A(Lp䪳_x^uҥK-#?+ߺ2|_WN|4L='?'=?tͦOtº5xT.X^+x4ӟ-GlOeT|ջNаt{₩2,ۢ`J}zmц%}uǩ|=nw?]q7L^Wh}u̿%%;"Ҫ I7|ħkݟ{w{߰2|%mQFk{ w|N0/p5eKZE<%8 h ~[?D ;a}_pC7m aM}3O>giwݎݷ©_&7E:ooSb}Et8þwŷo_仗T~+o_{W~ W~77,K?_|AK?jjMtïna/+ox_Z_ګ;%5wGb7]~Kk%[y<:_՛nz\ 'o|ߨdvmzܽ_njŴbOK/{93o} zXO=URv#v0iڦk[6O@i;):S%W^pEK.%N7LooSb7O|>Ox=؇~D Ho}푻<| jڼm6uSw'17co}6nuчmSz?a>5w#1]{K t7=_?ģ};n~4Royn:R+\/~عY*~ؽE;qk㫦?=ax҃}S +}g}6I|]Y ?=u.:9f)ϙb~XSnmӛo9kC9/G:&: tm9k%7mў]o8z…=y:;Lz=bm;zDžpKwY\O55~wM6WUm*8f'~g^Ӛtࢯ.'\©\rE@mQ~?6 e{>w5WmƏ+}m{|Cg!{}m?^p7=_\#׎3v׽هݽ>O{|۞NYvmgÇ_|ͭt#?_]{taO ߹yGu>1;]|7x}7n+[])[6nhOK_q4 ?~}7ll7 ;?|>\Wvi;z΃#wZ\O=!sj^Ljoh=ZT>z@~E÷.tR[[\K/˿ teͶ%G{o=b]n.T?~ t80Q>d!NoG'/ͣYL6Wu/>r9ktԟmṛ/'>?n_?5l'G>fW,dDY [#ړ=pk#px'ýwJh?3޸L?*)j{hj^Ljoh=ZT~@/aM:\t|Xx:,lw:/Le…ˮ+.:oo[E5g߿`çNx?өmv'iĕk۰Fi_4=뽇m"~{)!ӕw㭟z;f :?M]ی^)ڤ8wmm7lg=bǧ|k]~WO^r#§tC?rr1/|Ns[ >u~g>zùrv隙pΡTYL0S/禿>>q>Iӷ83'xz}4>}w#GN=iϧJn5e67fڦr nAzy/ް.'o蠿- O-^^y7x/wӟx/}\;. _u?曟l'~O뮝oߺSm{p;Mv%x\}WR͕|SNznwj͞ypԵȍg]o߻gO[yMk\3? 7=mW>~Ox$7K-7R+L-ǕuNx~=GO7>={a}믯wo: .?v9;XR7jt@#쒩cN;Ӊ5OW<{7^"khkdM y1B;w{&[:g_|+\aӚO׶zeMނg5e :˯+/p\~w.:ooٹ]?Aqß~m?v3=.{?[=^ [|StT-6r:=>p=vjꯞ>_>w1s5Gm^[S}ܘ{m;m}6F_y}.Lʞ;ȯݕ>y~\w/|]oǏ\Ol_ =x-r6۝e;OgnaN?~:~<vԱS._x~znn:3))ϻ_or(kn~>UoV۫W?MC/yƧ޸n3ݦ㶻x_~iL+k:m|_oCiE[m8b=Ӄx|6_I^ [l*?n6jSL8TۧontaC|_}}6LoCgOőlI rrǕOmvLɣֳq-?/۱K.]t'PJwҥKtP.]t\&h3׏5oF??\z.'0_j.?\w\G~ 7-z? QN}V_\k ԵߚG{|zEkOt\q\>󙹜\>{\.`.<3Λgs]y.e K/c| sAQ}w)^+ڇnyW0B.xjKx}z.}FW?+Z g'hhthththththtXt$ދkRBp7Wqě巀BQq+ڷ<7.J~#<3D&3:pC qo:#jޜ ԫ/ѳ>+@}ˮ}Ek o11nlgLS):WFPy`"OFϥr dȵ,TWt)9ݔٽ0];[7:4:4:4:4:4:3:mb'}Ӂ:9ƫֱ+uV(ǠOqp!jpmtr/%+4-tzb5@ 8D`lSVM; Mj#Y5u\,mq-PnV8-&` `>`E=/UlӪ3םaX֚7jthththththtFubXIìmItX3 ̈^g::L,:2>%++<-0 /b^Ak;nqs>=94qk}y6r Y WG6jxsk7I#}/@dbMMvs.زȽhK7ݝqqgC=κuEkh|Vꇠ}XkD&>õGuV/OAqpn-Q>lthththththtXgIG+[9+ S >jDz~i5 9`}/|rDYϴz䑞v#%T2Fguo:5BX ]T-z=c[4^IcA^;\Kd?LjU${ɾWlqFA82 s#\-lv~J;[rS]Pؐ[sa>.Ly <∹8pz8n: )Zf삉<ɰ3r[\ e*]mΛEtb.FR r;̅w prS=60rv՚7iE#הa;[ؒ])RW(9{շq:I2Ũ?3x~fpvdg%v-CrFuYerg56FX(3w:'~ M1VCm.skQ#^K^I֥$>~Si炽 ubesF&>WV̒gU6I$mCCCCC0:$}Ioeзֈ{kg= ׭#=뱭\sXF|vLw\v:l/'9IwۜӤFs>4jTNoW+oXGj\pW/ᤖ?Z\`@^kS{!;M`IJ9 Paz~Gu὏+Zm+'ɽA.h'nj8YxB0<`n:KfZfkwֳlgb^X@փ֒'WfezTwOIVYYrDs W0v W= I$xJCRH 6sxZ͍СRBMc{p⾅0ɭt*s8ӿ22:z'x8/ Uau bi^Dql[~ l`Jbo ;>vK<&FFFFFF<ɬSYb+M`ЙN'S5_GTut\ܩscyŊ@ 5 LܜhKҵgrQ~uu4ڈG}s;}os͋p*|`c|y|ue=)sa *ԾowL5?)$ay=$d pL~.סAsFFFFFFatPIѦ=cY[fkŝn4%~^Ink s̭Y.9KC}NpڳB15S-[3l9"ڐ!:JM=X[XU{R3';g#q'ԱDo]/RѶL*FFFFFFatH15R{:gWׄg{nC-8OsFV(_tqY>ēY{ AY3pD{WP98#A9P|9MBq9ջe83oVswjOffch7^55ޮѡѡѡѡѡaj=I1X3-'z̭W[ryqmŖQ};ol{rgswBKF9 }Wqͧv4^`. {tۜXR$y cWkjF¶uTsdٛ\ʕfɸV $;m%3FFFFFFP[ԃѱ^(ueƝٓrq0{s:e*p}5OusHdQ§l.;F3 3v'U8s"խ%.Gfqu}XMdi2ۓ}nG LkF_!^<4jY ՑhD_s^N,{3ѡѡѡѡѡa!:8ڃ19]N'2tSN'>K$r,HwI{|k@I?WSQRT3)ʭLʮZYr4QGG&鹗rs;U/wƻ^Zc`]>)Dɧѡѡѡѡѡa!:,{jXk]ēf 8N2yÈ'GӨeQ@m$ʄՍ3`)Pб3$gֵ8;۩Fm} Rf,j F$T=Kk.nWj $T-gkNn׽ gѡѡѡѡѡ!, _p%״Y:itUUǹ9X+;7G_z ޹_i.QŹuu27Y}N Tqi]c^ŦxH&'e]V]GmqܪQ _Q{7sI/3ywr<{ nthththththtX5BH0n;ƣGۈ\$x!sA&N3[5 TG!:jϭ;ì95k4ǫ%[o2#uZQ鷊tRW.PuVkv.1S;G9ϲ"eul]7:4:4:4:4:4:,C:g=k){E&v ѡ$7g8U$`?0θ|̬u>dp.})=s}!#ʐB==SluʚR3U19Fz\ٵոΈ |F5ΨwG謮QO<.x^9>k4ܫC=5ֆD뎜P˝,9D< _g5Zn9"p'>/%~tO%-؝z\ys$zQJaϵ s+n<µ"۩#(چ8=jͲ٧TJ'vW6pN4͒vz~Da%BfBBBk\]QF͈'<2pe#Nsq~n\7Ũ?jI7q(?[{j{kѺj:|kiVG&dkVzlw{?M0h#Q;Ug c ՠF6:4:4:4:4:4:nnUW Lgc3wrE[Ywįnc\чF~V>N.:F] uMp嚓D9[HFA:\u_Hݬp6]L݌ʽјƾ$´u2u{.0:}uDkJ5_;8VlΧڿiI/O>Q9v:Feۮg#BZFFFFFFytVe༢ΛDr%4F8_g{_tq M߈q ME7 _NkQch_Vǖ&WnG"~ָ~yrh-k٘2߆k&w9ڬ!]7FFFFFF!əqo0cZxpgW1OG4ߩL F<"8V% vV8@ܜ[5<VQ@ _s$\l2'|29ymNxߞ\?Ծ}?::J1Zks3> A?=pg:͑`]nǝ**6eLT]}58!qR[xj s V]\d(jog'=}kK=:prj-w(~˻\X&[0\JH{ݞDVG>`4:4:4:4:4:4: JHvX`|.w^Rh݇uTKU4~isɭcFZRN֌NP㣓*=U=Ku&n\`?Ż' dEw sxnԋ?H<kiCs`ZsllSUۿ{yf&,IEN(Pi.2fĊcɈ9S7u/4/ՈPZXhthththththtXH4ɹF-@㎛ dױ*9hL D`A;:X$iI1y܇Idͩ㭏?~.uI\ם<=.ԞL,ڟlA~[0M[eKp5'[-`e=\^`՚&{|_:7Rjƈ/p\gѡѡѡѡѡѡ~1ǫMSkcMxs:YWC]g\"m͐kZ\ 4ȅfK8xLgC-gtsF2G&:v:+5!PMVNJ:oڳԭj6ϩTk&kMu"{Q{.<_M *P9-;_#7{jĐr ^ڵe6'lM|;~ߘ 1U1q:^\{:h.P݄y,}Ǽ|yݾ(m`w!a*]Vh$Ԩ'CvJuͭ"0c0NV'V :㎛ cV`e,@=B|FKk.9e-CRvz?;mڷ9_V"!Ե'3Yh.E9&Z̥(;;(䚄L@j U߱8Bw{.ʹh9+*tgCCCCC0:gE3lۉfԟɱ]Tqz7?Z7ʐ͐ Y>hRpZ:p&qo(6e;kVtJ2} {_|[I&g}J]'9Rcӟ,˄R]9ohzPKsNcNRջǿqZ嫬Gl|O4AM~.k^~Y-=cFNQ q8Q5]U[Ke"ga7ѡѡѡѡѡa~f~Q餖rfL_ ]m|Z9"~网\>މ?j}f}Fe=$sj6p^<j!XiU:@v6MdHVӏwcn\ǫ:֝Z;Rr@YSkP9Ú%޽;nۍ ѡr݈#.qY(lvf\.Sv, |9jIΑڢ:8j '2<Mg` C֒810vNSظsPnueuq꓌dU5{`n>l:3B>< KG94:4:4:4:4:4: Cͮ,#3l*P-뱚S8 ٳv]q9[ߒ_5́N 9&G/&_a )[IZ՚%\j{ei;$0Ѡ2`Ż8lBպbf=!W5Epѡѡѡѡѡalqs.*GOa<{q s9n;IZwg{gRkhD,D֒\Ś1P VfIbF}ɣ_ݵrW~Wdw|DHS\'* g4C;tCCCCCJלr'Z9[gp#+g)X FY~zv%QN5cmqtINW?Qn "v:DA-4j/iq]&hFOf\Zg:v@ g?~.!l__\>؍pYJD^5|?сO|.IѷsY|y)#e:+-I/x! 0:4w(<~^en\z圍&ys}uު j{g^%<%X0Kհ& ҉=U& fizPap.IX™XJVw+[r\W5'xĵn^#Z}\u.936"- ©[!Y)|1aX;RR|;aY $TrX[y|:yvZ%]1pY^%=\K:$K$qv\RkfsV)e嚴|vZZۖ3&,N7qj֠q@S孓n%z|5:?UsF6Rg|n^[K$5JXx\|N˗x?3 \w\" {.(P'4Wlrkg+=E_3pt&GNO_Kb̤Z$Y Ҳ`Tk~r9p5W\'B-0j(6sJ0jdfKfV}z,L=P$L52[(;_"'?Ay=mfG|F|\rp\[EY2A _d=kU \|{4~withththththtF.Y[}~xBj@f}jusm5H31ţsgV>ʒd`oqknuρ_4|=ao9X9 sϝ ][DgJ5:4:4:4:4:4:fpjV{~*juI=^O,eW\O1/c̮[IV9ov ӕNV1jܜ[`׋/ɠso Q яte?X41nJ_zbM£յJwf0<'.3kQkW{&3d}Fuy|Pp&]\ɕ!N_N>5/ʵ" BCCCCC0:0-~~YW';-N+bClЮ-` WN9e.lmױht&تesT4GW}'O,<.8@r]֨^qdto,V{ "$*djTGjap2YnthththththtF''̨¹i ` ʨTK'0W;yqʂU|V`$jJ:k:ͨG'H"j\͋^G\.Չo}<:7]?|˸Ǎ[8rןlv [*сF)렴'rx\mrV*anthththththtpp.S|~с|fHXppvN;n]Y2}N촞UVoiŹ^:lqy^r{n.&P$nu=ɨ*6ͷ y$msRC9\U?e=pP$y6:4:4:4:4:4: xZ5Ҽ9V['\fp:LcRNVxfQiV\F-[5 R:z9׺$VuQmRrމ> +ْURwuįuȭɻ(R8u.x;N aVCCCCC0:ԙ&j)enF="rT͘Q}<$V$jbMF+nt]' Nw'zٺLGq:ױuv|/0UbM|P-se8OGE=kѝUW78n ѡѡѡѡѡAI:È;[̌x8Y/Sd84 ǹh;:`"s|9?5׶DOO֪Dmb}OEAkƼ?6;0E&ȕ jJm2pwwe}5I/YAz9Yw,Ԣ::$,m,Szbu:UD;XܚU~-/Z{QsQ[ij(FrƩ96m{[dڦ<13ZZZk9PsԜҹAku_k[C`bbۭuJn28E:c*O8NY X7:4:4:4:4:4: Co~k>]\Љϭ/0[ $YGv"ɗE~Z뵩$6;V{&r&BR=S9\*E:xJfs΍8M\eK"SUfe=H{,?h#}\u9m޲4t.pYerޕQ<3ܮ#q?-'ۂsAwPDS;n.nG+32AQ)2Q0xGCr9s|YΗ%n4 u^/j;^f[T$+V-%?+3x'h0';52MNr=yy$6fL`Y{̅ݯW|kT2vFFFFFF,}8K!zX=v.'< Ajyz- | jD%ިWGn mΆX[UcysqUXP${dViT2r:Q`XF 绑dY:̨GkCCCCCC~ puj#1{sY՘x.r;7ZJ\^=ˉuoI[:k,tCZVEI|j\&8[GZ. yˆc)G^*]d0\aә\m+'gg\ߒr8a=ӨMuq@*s9~\8f]_-kVdv=K?|q̳8\7ΫDW^ ry;:'/czѡѡѡѡѡa%Tz\ƶ$/82O<_dӁLHCs-Hl&fqjA[ +悸!fetۉ*ډZOlЎ Q`KPΧu#|bߜ2Gh|ašͳfp20aq;AFFFFFFatpֱZzc-i.~LZJ;3jY9^k$y:C MOf 2 mq> q~kFGkWcU~.{yꙹ}4~m4. <_k} 75GcP UV>@QlthththththtXtces?6ϏUXgyteR{%  tJx"s4'Zt*^Nzؑku[?34ՊYOywsܮ$dW0*tWvs 9othththththtXUW\v\%W`}]޼^((pr=v_z Px p-BtIsa:sԞj){J賜#l#fvZsHEF7y.@d. k>Fȡ2Hԍ~ZGvTEY'Xėѡѡѡѡѡautp-Hq.P: tNsΓ/k!YlL*16iT\Oy\jA{kR37z*50F:V(Z,8K1Q7 ]t^֚ʱ#%0;0Nkr.}/(j_Sw~wgZۓZ'g.㎫%Zyps#Ywq.K %Uir`3ed}t \~m||'gҬF?Zb:ggU18XkED%xjKWg1WWx&v\^uѡѡѡѡѡaSVZ17Sn\e^v9C jL+/rcb$ qf('Ku'7ز>sywr\t::UPfu+-;:3ʹUs[q5/ess^ ~!sq2 F98h,LykthththththtXlsa+ ;*Wf Z?]wWuLךyHד<29͌%Db;Nrc]+6vp*g?q\?}kM>zlFYZ};@}=\ONithththththtFZcH` #e Ń/c%Gc;ut+Wu֥$ڳzKU]G'j[TMc<HfDv|]hKn!4Hjɸ5]^Y5lF4r_-YlbFOyLM`"F%8C8P<8QԈ띸N s:f US4=UVkT. 1 0,a9vF&=< ȧr<0e ;ł\6X>.>Yn$%4:4:4:4:4:4: ףZ[qʭl9!?iyEs^ͣ8ILJBY^xwnEi@&ڻ9|֖d$b[yKyQf(-r; ++ŖP|BLX&6JԜo~z"Qk3vIkW*45C|othththththtFD>G3} LhZ$/sLn3s%.hQ=A;ps\y;."ѕ)Z#f@':묹`Es$I~ WA{@-_K2y2o~UwMv\E:C έѡѡѡѡѡa!:hQ-+ƻ௸7[͖RmY\˵&hV4:4:4:4:4:4: qOcۜaW>qr1J ,[;ǧE¾j<kuVfk?*sٵz~~VBf[M5ISb]Gbwdct{# 7CΎ2 v¹ p\l+QCCCCCJvz?g˲pݘLC#Nk3}8kLf6E[|Ot {du4~~" 7]AM8IF\<uUbȻz\-\=.k!W --ɼ鲕GcQ5FRio;U~KhthththththtXȤ1,/ndC/q\p' FV۠Q:'QfYdӨrD;2>1f~f%}qbNN3:v.F3`"x吏]تMUk8\Ԛ $g5i[G3@JFFFFFF x%m0+Eg.Dgpt>Uy0['yd.k?F])^=FO }+ IZ],Re{Kg5wGy!{ΰFw3!tHQ7:ѡѡѡѡѡajը Y-eM'O2,ʭ0hYC%\%ڞ\;3%խޣ.'y rc9t4c\-Y2jx]P]Ӥ1+5Tm M.Oۆz83ZWuR? X_gpCCCCCBtSiX%{]`\?\"U"knduskKZ䘕jjkfYuMW(k>I;fEΨFwwIZ»m[Z2~ssl;!Qo.zS泜G:ѸCK=뵟둭q$,5:4:4:4:4:4:8RmYr}(!`X׆<.&_el%zgd\-Giɸ$kd\75c-Ykbe>шT, ت7Ruׇ ̼mPn%]>]G֌ud-ztFFFFFFu;B$j[<"9Kg$~v"f\~[vFţ;[œaT/Ty,>d'ദ۹a[`k.UkmC6J֯*yvʙn]Ի'^ѡѡѡѡѡa%t[}r3\ksgj sVZq3mZ+$~$9$iSڲɼ~wک;vL$pk0 |9\sdՊ]UkTVvunEjkusB0T?ܓ⫾GuJeryF-0PkWr8":S:#'GgHIarvRN's3yt\|:Ng[WfY9Ȝ4V\My$W)1u^3YLBò՚GQ.%$Q9Ʃ^<8bc =NG9d_f]E33?ɵ[gQc f)%Qs.ݫnG孾Y\cՖk< i+;ТpKmQƱcxiO:~d|i4:4:4:4:4:4:,DQIbp*(@$ Q?izb|'LXshQkrm5gWDw.Z iReڶIYO H8\wfqլ6tsQ9 rYsQCnkjz=|?n$ьlN*> N'υVd.kpnٯmn}s5W߈-TaCCCCC0:}ͷ:Fil Z%k|"U7bnԿƻܓSoַZ:9u|͖ίE$2\<[3;@\a%YЩ뽜M,euj<VhuL˵"VOu, mը3KB݌ETIDs&e<:UQK؉Ue&{Zg40;p9gMuqnſU^Z#uJģ~Uѡѡѡѡѡa}ѡ;e5"Jȟ[o:;f-eɩS[G 2u<ң6Qe~f?[aZSjd_T#){z8'wL;]{FFFFFFۄ]2{Dr\|.PO($wGꠜ0DӘģuFhwk )V$N)3"jr4g:(78639Y̙<9>mc;O+K aw5h/%Qcѡѡѡѡѡa:8 \k-뙯|b^v9;V %msN5?"3i6*e&?G6_GAΠ~v\S_3v|ϙg΅3erɐeES%|2w"OFdtCCCCC:h%FjPIdb},vg|F΢^o~U>*\OUmeij {97FV٫ⴝN6&09!'Y5ᠼljgn=Kw<Թ=:%rX0nMs=q^ب^RvAeVȚ%#Ą\Wa-KQXEW^9w|N{6:F3VHJSN X>nZ:{Gͣ;ޚHP ȳ0)Ϝbm3jLY#r-IJ̏C[q!^ :Qnkͣѝ@ɬהfO|2 9rG;g'/ypSV[sLw=oIQanrbNQeDS `&4M$ n/ؔpՄE%=/ܾah{]\q3eTYrh:Hf-,(r,4*?u^sn}^ESh&=u\!W5C|-sf g0$Rѡѡѡѡѡat3z__}2e0Vϟ򕴙sGr|g8ʉ4Ss#u\[|f.]Z!P.ȵm{kf0 :O{`.xu,I$KZΗXPV4w0ސ(F3nd'K =]bV6:]D>֨^_asWk&6a:j.,㧨 4v'RSxԖk7:;sH7r/7^b?qF Q2/o~!HD$dY/DxCEm0Ow:j|I\ 7:4:4:4:4:4:ޡ < 1`4}8+m&ohh!g0چGB%2 gM,qUؚ_vn,ZH&ɯUlkئkUUy\øbW,s{E ଷ.`~\CUs3O FrV{$'Gzo(r>AI7Ӹ9Az$qFpm6>[f~^CŒyQ \ﲾܷy4K(ck`8^^כ7:4:4:4:4:4:4:JMw1$Yu:;b,Hn*0.FDcVѩk{WMn& tsqR1h:Ctnt{yoϱ_1]ZW7͓FFFFFF;tʫ9LΛqz[\yտ-{tt -yniNt::.{-7j-kF v׳T_\m.BpT^lK?{~+ FuGJײѻp:mI~҄5]Y5"OU0:FFFFFFuCذpsSx~j'6ܫWzr"cjW;M׭R;'Ɉk-per z 6fcV9roIʚi&Z&P@sYAݻ;Qtqq3A9篶s4q4n;':$Rg]*? w30 wsnDO`r~ ߩlw D[Q'sKERa92FF1Gw/1h5?fEnW!}˾mthththththtFw:uAP@zU {EEDD"@KҫAiRۼէ{xup;93Y{C:{gZ2g0/q1ݙ4mvjw7ut^،q/v;`C^ån`aw`'k|}Pǯ][$1I|3AeNYc/i3#x-L6n{lfY7nj"cE:w&j>7 v;`kX.}yM \wLBKd.>Cko܌E #rYLF:ϑ7n ٱVKѵ^&QG#/2?ڤpcH<"LAҽ#sZT`v;dU[3-cYQݭq o,D-ϙB[pk2YkREqteYc 2Nli1Ϝ9hڴ0|_tgۿf"|uME٘VNyv;l%z.6W4KmJ;YH7d{#2( ^cZ׫cat!YW)_;GWxeicōE;9ɓ=onz)\hl:`^3HF Rv`-MkYt5Knh,Ko$rK81 [qy\mmFWc % c0X1s> JMSb`q%پшm QopZ&YSF`v;;Q__2Skg~ٌ,g6)^;rp{^+l!]`[(P^bx{꼠g~a딘Ԍ "oI \~UR6D0|n(u(j`vv6,l;DnM/LHoX"fH|F= zvL=RMv\gd 3Nd :~S~#̚3s1.U3Zݪ3)?cw\(Di 3仛zf7H"Ϙ#鏶<*ௐE`v5vg{,جaY= L٧>LJ׼$fgƴ{jtv7Ñ$_D%MSྏۂ2e'æ=36V~\F+!m⮘ɏTwTLQV/V; `v;2;&ln[yާ۠ާ@mÌe{C_[mnsaݒۂٮ55krDzs{$k pwV I"wm7#K䞻4&k6}>od {f f-߭_Ħ6Ke͌v;r_'/쳅s%ޮXLρe)~OD]tqWX U6 _ lD PM[o m/L˯<ƅA$ 9~2cKZy[rg5v;`C@v0r"4Kmdۤ=hɢ4nn_zTS{X,_1֝J6=-nYn}Χ|xMHݖ%5Q;*\OnFУJXX^OKF~3F|6l^ F `vlywDR=MaҴ{lz}g`kۣ*D)1=UE)5=%b-&GHcGKrגھćcƍ18v;` q->ϴUbh6ڢ+|2+\I0oʭ[K|q1|߭igtG{6ymǺRmJ*32m|bƄ1[w3IVپ2G+{wKI< j|j`vn[|l+asoAqu&Uxnmy >GE-OofyR۪+w.'QHÜwpgs{'B*򬬼֌59~tg_M}Odl_fӯZ5`Y)͖oFɖ::[ cn˯DmKv{`1[ܫ%-g$1[N"Sd;`7; ppsϛ,= K{۴ޛ~w9nY̖lzywfC6 RIb3?߯0n/v1mdiܑjBw׀;Ԕ_eׁD>2^$^}_Gv;`feәqfr]^y#|ַfsдڢ eߵ`r ʶ{#۝n[u sW[ mzWy*e5XXopEnik>uW{fm1;`!;mLrO37+m%= 7͕n˝d>ku[ݍ]r-Wf{0o 7}[P+eki/ݒж*X[rkM#0+חo0[{WnMx,͚g}˫:t[xjv;-{"Yb|~w^kZuZ[_Izw$`ڴx҉'w<좶7;30DL궧W/:tO6ǀ`Z2fg]P~۳5ʙ7Slӹz]3`j6 l) v;`ov+e./1Čo`>KAK$ߋn ɪm<_X"!]vv[_3#Tľ(:7]myAof[uS$wv7[(6kٽ=F Ѥ%XL,Uucf>`5 Y#lk.he#2sb ۬̒uQc:l߹e1V` cH9 ܹ $ͱ\I4GY_P޳r _/`ҭ sM_m؝Tri;`! ;:۾m;VkQ׮.ŌwM$H D_gDY^|Hz{6/Fbef D46/r+\Cw$l Mj/GnIcӆI4rv;?vg0ԃ-$3bvR*bf5<]#6<*{+/[W^%Lض#.~HK$<],7qKTGZ܍$ύ'Av;`ovYSSnf 5koXmMm5l 6Kug ߑk@6[ezVJ4Y*AktY"z [o8G//Ҟc5er>MqG졒v(Kim+"f'^7(v;oAjnw\2 ^oG6[%0I?Y}گ_YZ)yr}Lz!3þfjbz X"[w5߼4cF=%Kasذ0\`rd,4M=V;`7;f7vk3#~OK^3sڏ- c=N{1/ȵ(~-~-ff7gB^nˁ7.fłagmw۲I[s o5e ~`vxjzz2sиۤays[$zm;m>+ rkfny!ʯE'M5V>gGW%aeK43<m^t}{jv;` Ɯs~ە$M+RuZc1IO}vy@9w3(I$7v˯T2+Oof{sKwH4{Kr[^El=~a+^Jlfhufv;`AKr#6Ih[lcwK0}P%6#=m]R^xJdMm6]ɤt:ӆձ{MCn{cXyصcVmVD2RѬ[zC3 \[.QZ2Џizf.Efv;7w=enk:yBHz,y fELw<2DKI($#|]jߦ^`p۪.}ZS~"a9~.s̞h֒)oݞr]NSac:\?z.]_vm+^l^+~Y=[[nDv;|M#gir$z'&G+Zle"=і%mrϔyR2ۼm1U$˸;K }9=0u;~[ d3.K[<DZ.Eu=FFlYU2K/ѪGA_,U|;`7;Wϓ˲eya0tM=̰],iuݔ\n4x6ɵ'ecjܽ^Җ;`!A#W]lompVgm &6k[ˉ]ge뉱d[8H6%ZAR<9 Ǡcp&zʕa,[F, 6i%H<7GS3t$ZY˨v;` vQ8l~.Tϭ{9~z:~=Nܲ'6#YgLXޚVl=JMҲG/f|'Ko?|,3UӦѠAsRHX%odqG4ևڼmI+֝ܖN 5* `vG}M+k{w>/B]?<8 T7;e4yfIrKl:`9O}-e\oLg,;n93 uV]\WlU[Mʳ/ǀ64r(`$qsl}ͯ{[:c`q_瘱gzͻhD_{%yqk >&;HܚdܹGg^_w-03_;a#B>pgs)fݲ/IN盺Dw'f9`vy3ųf][66)9wg fV/:f{;ӯ|S[^Z l;-Wmt/Ys,oe1ra): Ӗ:njr<:d_LFwup2`j$lozf/ s*YMyv;bbfCmF6aJݱB3̶LnKOOtI+ Yodq#a `>SiF0m|29q Jb4SZy=rLo?X_I_Ajja v;`ovy}nk.U-M>FN V{w;4{< Ineչ;;\?fcn ,cK%fkG6aFײ _y% E6 %l5Vo,}˼qllZl3?}Ab;`dy=?2g~{܂LgtP_hc%m59n& =F,cQgL*~GY|쨺mWJO4Yf ô# 9V6v;|׸͎tدpU&q4݋aRu+arH, r,ՉcG㤙&rnKq~Ȣkde)ǿ|czQme5cUqOllb6e['ݧcP<";`! ;-86 Ng&m<&Aknə`]9BL*rCn)ǵQ0<ڛ$iCmU)<,X"9yKH74~L{jESeyir+7|7Sʹ5`za`vvY Qώ-y'FF^ϲܯ7n Co_6-bڿ$qyO[`1JAo0u<ܺlMolGͳEbw`}xA\GYG۴K|e"v;A{|wv;`CnYz Ӣc|\Y't]~\|U, #g>젳^,rۦ֭Y ڌlӷؼm^`IJ6b{;w~ɺEw|9f{c|M"s'D.+tnAnMv;bblΤ(y0w1翱?1M"y=¯&$྿ oImgg$޿ x*"Ƚ$$fyU[[ qmϦ(":/Q=ΪQNPRYFk`v;d9#JYtm-JUx;uny%VÒ<~ ܑRT.c#c)i]&!{lyXq =m+wVJm:U9XPv;H~Θ l 6Ϻ8ڛKeē΃l7O{n͞6 l.垙ؔzPݮmm.I-&`3;|@!;`v;``C/Uc1v,Bi+RHɒ%5m2O;sbݟ?]P ;o&غeI5jXV#(:;蒜De:cǼre322>mJ*=ح'#z}kMLLLM-鞎'>:D; ߰a._d!Ҩ5kԠK*T(߷;&%%jTn;'j1nv2@afFV\Y?o.a/ `׶u̚muyˬ+-*[̐"߳{4δstIJ.c}.;ªUۛO$7nX|B⣨`;'j1ΤsvJS'ﴝ Pف$I\{Gz~lݲɼvyÆИߡYZ0ovZRk)ݮ]g{g?>>swɌS2y~AE"e䜈bYO(t[p͛*zoӧMam=rh)qqqtH5+JV/^Xbܙ +VGbٔI'$kwkz2[1d L@Q#Tqbܙ>PZZڝéGRSKv3ٶ)D1CDC#޹ 7֭]}{:DXϲy&;NkByV'sfMY`kǡ{Q?u|_Zj~ihO:d Zzϲjs &ߧNn8YaÆ %JCVOg[=rİg~.6֭[m\bIzzAW>aBBBOڹei+UE5+hbb 4t'۽s+h޿t;noР~|qժU (Ɓ})RdқX%.3%X؁WÕ(Qi$ɂ'lκ]۔͛7{gj负N"\쁮]LVIIIڵ!!!iiq-7E14_ܬia]wm{QG1Hh6y P!%iW;s 4>Ƿ;03h`t;"sf0v ;ͳ/7l (J%%M (f`4 hP;v(;; S&1ެpvoc\&4KQs*ڱrJϊιrv^VJJx;v;sbݜ?쐟-Z4OII ֖uͪe͚6t-[;n~DQY9Oav͊rsdgOrPh!?W }5Rxqؐ4l|҅lUV ߚ[Di?Q vPhQ/j\gO3g$o3֭o.Ҩ5kHLLP|>ϳZjSRf~}Wd!={<'.4v+]VA$/MjHUV5!!!= (wVY{ȗNKM-鞎'>:ė>ָqqc_՛J;oy ԧ;|޵c3ViCz'h^Z@Ѽy3N|z^GV z݁>M&>W_u%D%!?ybQs^ÝJB#1t҄~gvX`.w/Oh׾rMS6;HP`_p{vm;̛;gNߙmu7nXlҥKXv R*ðk"hE%:=nu(jQmHmbV 0KgmҨQì{5WZ#R Fmۺimڴ4]gx١uV.[6gnuyW]fD<2}{S!*46 7:#%KΚ15=;z7^Kh?bŊyS&t[Mȷ@+ڵ%_-O3Bz1&ܳ=7 /$^paT9tBݬwɺ0SM4!bwtTKDF{l}TdoPϷjRoG v;{4ЏcGЏwߏ".;ФNR7 Hj,^{αv4/}^BH"Ҁ{9is ::zN?WׯǙ@dgOR1h"Fm`)nAI@:O~[Qm訖 ,;6e/^;x^>g҅\ |D1NK#;DA-oxmؒ%K£>hjO|0h`EJz]4i܈ޑHjE:zZKє}5mITI+WS Sի [nEÕesڦ$K%gpz/va{ُS!%4$!{cj9 R3wΌb!I27ւr&viť rWq  ;8܉ 3̙=cΣ!DOC>!VsukWծ]+!!TnF;`vf v@DMyC$ v QUB`K6liPؐ#;(lذaV(77;PP8v;`v;DC/BY:/؁2oŊk۶YsgN߻vnLDnV~ٓ;UP?b,oGע[੏/_HM!Aԯؼy3b}CD tmM4nӦ5߶]3I֫~% K.MQx$l0]2׭3k:`+az?ߋ1uʛ{vogj9VvDgQ(w-z2eʬX(*;gN/v0=!z XOR'JIIYƻS2ӽ{.]-V\,ITz+V|!i(YЏy(<9I|UvQ.Ԛ6fnɢf5_qpA3? =ڍҏ?47eezl vs xʩG%qɹSŸ?{yfJ۩iSX(^$Ryp_]Gf$:3Lvv +BϼݑC{#aucUV:>=a.aCMj+CT'wv#,%?Znec"ĝ)<.c^i>7ۢH̑6NˣpAI%aCy?xӦNBfV돘3k:bG %%aEE}H y!"׀lZbIÆ nzsfw㮝[ޚ?zjnvA4^|qժU (] vJc)߯w[u׫K]{V1lY;ߥ}+WJg{(S̴NҭŠ=:j/E䠳Ca`["E=е˱#kjTغuIoNȑwݵ퓒ԯ7{ efMD Q=Bm߲9vmSRR$Ĩ%4=Z @=앚ܳ=e{#Cv;;`  9Ca{wv;`;uq[v;\*ur=ǎ "V̚NtϿmaǎy*ig~Eu^h>Gn޼:c+RSKhosܿqZ鞎'>:8BKFԬQP|>睖@QS:~/UmH+Uj挟ʿ]D3Xp^iѲe];6YqF$ٚ5k ;|k_CСqc_ui 6;=sL2{?룣<=ODOb^ݺ7[90]2׭&6ɼ3[i2B8|C׾r֭.oj -=p[zv~1~, !޾bbw,d֩S;TZ_h`yTTD桨qqqq2!%J 9؁HaMm۶nڤq6i-ҿ_w-_rm4j0kcKjT^'ii ѱ{Ro3&7x7:635KQ=iD9NE,mU{ y@WַccqcXfW]YlŋSFr̉فF^ ͻ ,O}v:w!!!xgԏHGAxY,YrY["A0ߓ-,/]X3Oh۳gOjjˣByQ^dl%ߣs C.:Gdx;l~o#l<Y*9bXaf/˿//\yVV hNGs 4%_.M+X= rTϢF.U\9BIoN6ӄyOZТ]64dmHzڹei+U`kzz{: o͟CS 4 thICVwκ$-Yg+4kꫮt| ΐL{/baU֛7n)+sʥ_|EիWSd67'kQOlκ][')5SӤ ##F}soqſۈ4i$Oӫ8; vXf{vo_pMgzxв/~ >={v޼y4}^6Z #R}Nڏ?HQӦTR99؃ݺqկW[jjNtn[9kV-gN+Z(h4y҄v ;x GMĵw4j#磋Z2 ;f*ſ*{v5@V >ⷄ 2 2лBKh}{];fҬT{;uY-6eeC[bhϹ3'6_K?C]3?xkǭ 'H`FCFG丸8O{\fW]Iŋ덍SŊ4|X~5滘?zx"@v!Cg$ԶNAMH߹z2݁M-}䡴4҆ut溵}حk:ժUsK#sl^cvD@`v](t6Z [.|#b9P\(DžBdk2%qgٗ[^^E+*E=|E܏k]?IvrWTP h,hv o!wn}Vh.)Z8O.}2>)/4.Woc czk>+vtf09^_</CSaYvIB_YqgJ?4!>7*]!*t)|啚Tuȭ޿?9{20d}ZԻE\Y{h GkAGX-ffI6wO Bgcf( 8dq>qMd^Y~=Zk5g£`b3e=h_:3fкk tZgV>3򣑄.$O{ݦr _gQO4KjgBPz(4 h燡Plɟ jӊ{CPPhV40,j,ϖk?jG,RDwjj8b}[j$V+{ci/N{&Tj\77rMoڲ{CĿHElo'"iyG?J||OpqD(y)\eO.y2`BذMذ#;@၃7;(l P- f=(;`v;`x{P(t|-p1a]ݻwT鲄ҥKrMkV-;fvؽskFFƍ7^|vm[z^u%ϟ=ɹS`KnڈǎǏiii={:\lْy$lIzӬv7ݸa ҥK8lHwТEoܺeǧ@QVui?p@:uj/\0v,^4j*{qUt_;T'Y}QoA:d u >alZmVc>;~|<%%e}ӧdkf%]6ꁯ #k$>9wc GﷱCFF]x;7eedm+V9wh`͛%Tx"Ǽ|ZMQ9h"N]N5k8ŋO:FyvJתUsK#! 6lMݵcszz[niŲE{vo@ywա~Y3i~aJOyÞ?{;nkP3A޹f S&ѿ_o蝹kV$$$$&&FVc yŊh"v-7}{envΜk[h~wW,n͚6 iAWhA}T߾5pS?/矫_ZW_|R}ӟ_V_Rw~tMЕt=݅Ew$z=M%rPiLT2*J%rSM} =m.F^v֨6Nf~ƩީЗA_ }!NїG_%}QuӗM_=jMPˠA j7z QKD0jgڨQˣG"Hj:RKJ.`jԚMS˦M:xjs)&y'|=;2;Ŭv;@.]`Cdq`Rs쀹v!_a{Yjg;`C)s<s"Elb/0w;.Qv*ϝ9nGV)1wcG{͙٬iu쓳;]v;> v8$ǵ.s]7_^ӦNn԰aRRbRt/>Zlq/\St~?nLڵ.3򳧏cv;r?5EmܸѸ/ω7osfwϗFY\B}̙=$Uh7ƏV*9}jէݴ&=Pw֭[m.86oBr*~G+O8F7Qav;|mҨQì+W,!٢ɖoܲ9u۷7w&ڽs su^` NZJhќu˦G]*sI{K:֬Z^tw̷Qpg%Jع}w9M1ʗ/o^vǏ$dOQ֬ZgϜF fSRRg̘>%#=;y`w`;l}u]^Ucb/~9_O7P£<݄v6g)6R?@FPc**/Uo`vx1UwJV_CUܿU?{v_3=J,1v̘Ui5alk_ES#[az5Բ/q85&H u6^3~]Dݛtɱa}őC{y uv ?s)+$k˨sgN- %4wժяgJ>pw:΢_F\>*U*>qw~kܾ# ҹ>NmUb UrU~vC%~jTM;݃CwT/ݣԭoĿf]`Xpaذj:vؖ-[RSSPi <;Mx0 ;tcQTvǕAaZUVN_Tv蜪S݋%uɪUU:#q:ڳn[3R;U^=['NǾ`inԮ]S|n,zkޏsr,%VՆG,ՙ}j/VwC4KMS>R,.4eXpLbY4M2fiRmd"$5jca:Wj`ҌjWv(AH)%O3rİفX~:qԻ/^uyp`G?NLL߯c-YXJ;п_7tqF<5rx2ef͘va5aC/b_oTqUvhxM*/b?W _uM P}Jj>D]MN]:A_2PSv_Q?)ukז/U עk#Lm>/6UQwtP?/4VR7P.fUor] dǸ0;-߻:J_vXjM۶77nhSV檕Kk֨$;A"E&9Ё=~' 4t'۽s+L~ޗ;\+YdIrd{ &%]sUsgpwrM[ͯ~FN&ERR"qt˖-KqPJި2nTF"ߪ?d]<娪lPae^U]/_Ggۆo@ p=z.c?.Lu}S73lw|Oa?6gn?tji{jԽjexM$; >,?.\^l;zSWO^421:;S%|.C˫JKP7Pw%[vзf͚III Q$LP6i萁4Q_sW599/dc_(0,~ga^ /?{pGjGx{:go\,ݶR%P |VV_DlvfibMblm-N=.M0;пpc6;ܐzAԣȥgءrJܡXcD4S%[Dgӄo lrvht+V- au#T'uOw^gmϫ;D,,=<, CLR2e Gò?`n | 0m[nTOg3--UަSuyC=u[muK蚥?ekek]`-~5sfس{hFгӈ J⿈bNR{໹(=w7'2%JϼM5toT_ Uz% \찬Sr~^` M7IsuojdC[gYnTQ%9wXvUڵJJ춊p%F*p*=,q*3;T晴~ vUT_K/XkRߨcsfcTN߇=Zo4ֶYacU*+zWhSαcǶmVTѺ*5v55~JvrmIսSM,o;VRZSUzvͰsJ._d{>/{ֱv%ԤDs` SJXRlsCV~٤J_OEed6|ZuU⳰Gk9tk5\*Vk_ ׫jKJV5ݯ +P~%J(ث6V_TSWQ giMa%Cm⾎jCMDn=ZU=ZNV-/RD}jʗU3oAOPi+HH8K`ء`5 Wv;rH@_–[ 6qPؐ#;(lذaV(77;FP8v;`v;e˄B>5W/='vk;ѷJ.C{s}{wh71-.%Q{q~tvع}3Pơ{ڷWҡ'FbBq9Bv*y":9^5f*OΝ?!ժUMHHHO/l &:~wuHNNNKK)" o+Eb=-נAEk hQ.rq6@Pjs1_E#jDD4&_b4`BJ1މr1JPaEQ$EJTLשRtg2;,,,LLwOowϼCbb.֖,5NI!gH trr)[xjŖ);+3$$mYRb>HS->2vh*Xtt\v`(?D57֓A<ݸa]x3E__tАֲ~𮯯}- WT&U%NJ(%1[xAy,KHɆ #'M2P:,Aiz+M )[7_j`8w8] (Hq1jciIa~o fh6RC]u&C\̙ӡ\. 񯚝cO'';SOtoՙR?N|Fy((A yqvJ8R'OUkLt@t#K\l9N}fIď,>PQP.p@vAiC9>tgMFPI1uPRtpjKW١L9K': (upk;[wZiz-d%.H[) yigS*dN3KN+OrNan<ֱ.WzVRNۉ |}ϼQ ;vPV @E,;:U:x@y`fA8ҨZgQ..FvP+mj\oOS^JA7*m..FvP+-z  䅅=ͮ7Vd[Jy ^ X" qgMܴ#A^jh6S+4`Rb.ulǣ{Ԅ~ >޽{k-4:4rҎV- (vA1ZiK bPN]1ɞl(j6xp˖&&jy Q}8;`vCv(-)?/00Յ~_-=?)Z|(4}{<5QsF)vRiS@.i@i0S^IQ=5$a`@UT\lyY)Y(o\ haehtO+i?ZV_]+\\]]=z`СEҿt Gjw>Oo.9TzMO*uܖ(š a`uDi_ˀvP6a.1iS^U+N'1̙39;бq#bz>q\kSP?3QFNm)Uoo (vn;|"E޼NCې^M#p{㺗$M*n`u~a֬Yd5/[o$6EF/5gV8쑞Tɰo.&\j=2hP{3܏d@\UylA6zgA4ko+}ڧAWW0];2; ƍ#1ײDNGM)W:Ie jLW/ONNAqd`5Ue!o&d2Wh|@~-M0FkVjj=^BJUihїCf9{ʊ݌}lKΑ}"Ouw +td /ML-L8lX-JQQ46\ ^:e$ ";(j%_+i??z~8$8X$0ޓ @ 6bN]]]藎@C}: @?Mvsv  1v;`v; Cw\i;d'TkwC[=.W,x{{ϟw+^;ڔ ؈H&8c,t˖dƆZ҂1#b`W3K3F2,w:gxpGt`1C nX[v$2rkT:Uf*H$+ɦvԭzf_>K6r}Y1ؑSSȮfs^`%I\icQ]UQr?R>3 'R F;;yaI Ng?7K )P뙱lE_SMݯ4~/ɲ|b]-?/]qúghА֪Õ&J9eKMdWrCKfi4&!)17II閏7ҸE$|EOSR(Y̲f[÷.?;e2g_>m* q󌱌'If;Ԙ*)O֬^E&Ƶ-\@}?FV)'%MaǏmJkL9쥤*O[m;ȜPi^d,)l֫%U^V*Mԉ;Ѓ8iݬ(are6^p&(cEdzxxE dC9)~켫@Qh}||}E D)@`j.6f" ft83jA젖Tj+`4~/)$ bv)ZO.?Zvs'M2 $DYXg)prdujKPPkޑ^)QT%%t32Vdnel޴Dw͍4<D-McũOԞ7ZppʸC\ˍ2eT4BWA6;ZjY ?",`#.K&^Avd2|Mqww;ǎMJ5aء̅eQYؘe_..*;v̐!Cbb. *2rkTG~0\x{G(=&Mn |g[?vXׇ10||丽wN[;/qbtԚxTƊSyٽ7 ˗.R"!׭U ; qTc$X2rҷKҳ$_T,N)fK-)=x:T5xzz&''Qa2[u^UyŖk bZ͏ZU \kB_cSTige<&';(Xy;xF)ف/"*فꇺ?)J>ULiip'T6'Nʊj ӧOeMj;nx6ZC0uNJDLhlGVՏtdjyxx9euZU>ha|vV&((vg66ԟ#K;ԇŮ*ojk^O\Xl[ѽ0jIH:uDcO5c4J@W'Rn ̧+HuN7{Ɵ3lz6]u,%qKG&nbիPƂC+__3o+*OX7j%U%!;L! SQ#GԒ=WMi^j2Xq}{w&ml%ְ_ɞVժ|Fvmao? /6*VjokaiGl,tY6vU}˒u:l%_S3:2VHVTjIѐ ,<4ʥA߷K͢7ێt{HH$zvzY#^_{ Аzvmao@|䜗^$vkin {õfyUTչ Jv0V"S SJjT]4%k=vUv6+SeQrhDXG^zJ SW`K1~?91+Wxy41A߆kmH@Us^ԪOWW)S&R])===fʿVv;&LJ9jx:;,;O%Kx?4    4v.@4@4@;`S4;PQ-B.";  vG%;> endobj 264 0 obj << /D [266 0 R /XYZ 179.143 238.66 null] >> endobj 265 0 obj << /Font << /F8 79 0 R /F75 96 0 R >> /XObject << /Im8 254 0 R >> /ProcSet [ /PDF /Text /ImageC ] >> endobj 271 0 obj << /Length 2329 /Filter /FlateDecode >> stream xڽYo=B@9x(vӤ0-&ye l^QZ']wp H@s}||jQualM(MVuz\l*i\Yc᩻#LL.+]XI=Ow?-ڃC3dw}BRiEF$n-Z:p2QL+cϝ~P)Y#;0CdFLܰ⎢e۵GI'1sf B|6C: ܻMg*4` @H4$O7Td8Io^cOC ^Vھg(w-Q H'z'HNp*$ 4aj˓[񃑓caW7re9'_w"X@bN3}~1DU,HZ^#uzgMH~uik>P#?rpޒ`,av ?uaAA4?="8?{ㅲimmbY$ՖV.3}8qViK3yV%op#I(ڌ*Z73!12i ,D^v@ UH!l3Hcшkc!S+i(4|"c i_3:'OyHJ^o %Q|b<;Mҥg0$]Iv-q1aW֞ew;8a"?]`)G0 RɇAl߈1_k ,Vp W@c79](|LzHjk^}XR:N+O"0~w.Z.B7C+TD@U7g %̥[7w\ru˳yTEj? S>#{+ِs* p &Т0=)\k5\3RӮ%~r9i]oۇ3;DP ت|,3eԅLpH;M 'fɹ^ @; W7bCO1зɏPqջ'a&Yzu3f'3!(\% mg‘ΨjqR[r6Wj+V.~fzߍy> endobj 272 0 obj << /D [270 0 R /XYZ 89.292 765.769 null] >> endobj 38 0 obj << /D [270 0 R /XYZ 89.292 690.576 null] >> endobj 269 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F39 57 0 R /F80 106 0 R >> /ProcSet [ /PDF /Text ] >> endobj 276 0 obj << /Length 2247 /Filter /FlateDecode >> stream xڽYY~ׯRL00+JX;Ѧ d,%]ߧϙ00GOO_4_=2(2W7E\,"*jvX vfvړ+[Ѡ tGɘG2sR2rhF$GEQ?hjԕ#Dnei0̋L%J|3F<˽4> gEU7![g=*QFG pk]w+ -)3CKQ2,Nv G:D`)MZ: фGm9EA^S! n.9V%4خYF?|z<,yzBMHpFݚSR0 JB3k3]W ao7GfpF "_~'$?J>s*wqw?MOwG"ӬkXb:8Rqرy-s+۵<']0瀙2}> endobj 277 0 obj << /D [275 0 R /XYZ 89.292 765.769 null] >> endobj 42 0 obj << /D [275 0 R /XYZ 89.292 527.746 null] >> endobj 274 0 obj << /Font << /F75 96 0 R /F8 79 0 R /F39 57 0 R /F80 106 0 R >> /ProcSet [ /PDF /Text ] >> endobj 281 0 obj << /Length 544 /Filter /FlateDecode >> stream xuTM0+|4Rq<6[mmO+q@w Y y{&$Qڒi B}NL SuĀVv u՗޲1yHCHd2dЬޱ e sVo:~ıGfzf /g" '㙂SU򟩪xGq 5ۇK# i@>1UM@eӗpqH_W\SuvHq<}pb e@ea| {M1'Ob!1h#J AAYK&2TEּxy'͝" 8нg/1x߽A6:ݻwh66 "߄.ik$C'f9Ju@nןe+RJQ<4)pkH\e8hrc?NcY]Gי"tvq@sNm.x7I%)|endstream endobj 280 0 obj << /Type /Page /Contents 281 0 R /Resources 279 0 R /MediaBox [0 0 595.276 841.89] /Parent 278 0 R /Annots [ 284 0 R ] >> endobj 273 0 obj << /Type /XObject /Subtype /Image /Width 514 /Height 512 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 95646 /Filter /FlateDecode >> stream x/he[E-bv!@LD2E(ScsLD΂]Ehm EzE]\Dˏ.q+]x#ogjggs9ǟks4\}ohdžpmX, {{~d8qKǞcm_:+s6,W3peX t='r=}j2'{Swq4 A G\O3#Cr9[|bmH8ږO[]C^x I?|ϐsoyf8yjX4b|t={75=3~ixl;2hi?ޭ  >qU_z\-:Wci83 7kC\?^bF]qw6Z\ZMaϠ9W45>+bhit%W5\rhoo}H\'WVDbiF1?u?rUaƿ9 y|K؜'j8m>* :bu7q`ᩡ5[kÁ!ƁWsaqw;ߞtG bhà Jw?5pOp!C{ jwnoZGx(Ka|k>0 }37>?vZ 1ښ ¢lu݈f8쯺iw6?f)bqxdGs@Fuާac'@'ޮqxGU; ݝṃ!F$Y6W'SG֯dx^`x~ N֭#[n׋0Gc < vk=uh4g^.5u)G&9>Y3kf^ѷܬ 'O݅Gj8~݋f# \>7<4gcmj⮟hiicɇFLq񧥊g3l~geh]kʒgAnC\Zru8>EqfX 0G a|__n# C\?=iB53=N!bKC^ D|h}: pަYuݩr?sSpm Z.RPZY 8 g{UYV(1^i-j[;t%9'ݑ{[uOJ^L㌘O:v2J ̈́3Ꮖe'sH̰CbD^`x^`3ŗ}4 y t88GV$[߫Hm]Uqgj5m00H KMP1.!pĠy8 Z j##vj:0޼0ܿ4^wԩ!4ډLnIRq )63/+R0 w x|{5NG,Kqțhv7sjx`h7̫K_ppݚcaeAs&gKSw+s9o{cl:Y14Xl?6ܶvhS[+W{ح! kl눯J(AEvOPo)jE"AUx80JK7+.*"JZY aE)yRpUsouy:yn{UV\ jBb' dž?rvxc\ /0 /%Zt,_v)Zfxr1)Yj_}%0bq^}X6NxrRQ =~$_Ľ_~_geQ۩UOJzʼngXVkSY3I|z)zV+ߤ7 5h3˼rQ>_'1ޏu-~ͯՅ,sϽөjю ?  ({<iG<ʿ C0n,3s{*}f;Oo1lSGdv Եv׆SZCݯU#.=kBʒ.1mmNC],Eʮ/E;52qw|w <_Q^ {ͱhqNjdEZ3TS5F"&Z_Ê]SFjMuL1؈-[>-bQbjgym֥[ҿ]~&sڷ;rqߦ?Q|pW/0 /0fȳ謄s\|L\ES%Nj<G-kV\j(W^beݩwGI]L0秆˵O1=rqO~~0,a[/NyfkoJ,SĩUO?3C @ys`wYN\y-Xplx8^<;Y?Y֓7["dF_Z3g(^@(r*X&Cod~la2^zp誢wMb6þ^[+L"&\rqUdXsWxUs:CZj'S_ԱFoO ӕUhy|Vy6V}вum6[]ŢC63`?s /0 /RaItZAz23sxgI+B6 /rJ/1fcSLvFM^t LbsG=`B}.ic&MVr^sg]}ے]Z`6pJ6p̉ϧ#5kDU3v=\ގT[84{$Hl^Mm:n iWvR`9MoHB<-SNdEL,vm^{ddUy.Rr瀌IOxjq!JNzbP|[zڟ-]hulwX>ʂuT@TC*/erF`/Lfm^o~:9ݘcwI[ֽL( /0 'O- b̜S'o! 1Q.i؟32;ck/Ց~jܭʿh͙:Ehə*6;9̯ 3BTI'qw-Ux#=b_5M vbF<ΰgX/mc-t꼻kW{Q 8+Y݂ԂN,'bX9{-<ጹ%;u9WZ'U8"&jS7ch<2fc^m\+ \nNOHz=O3O;!RQ9'L^^w29bDdOq3;'VS 3zz.ed>ю:vؘ'{w1gFu1֑jftגkc^`x^`\*hMřE!keGo 76$5ӂK'Ou_$~#[NIE]x5u[tD#^WX2q;Net=S4M:fЕ<>7k*l8R0ԱfKФǨ*x3ܠb?am0ۓ7_uVwPy8,uj[k 6J (U,0B1yGw/$'@1;KG"XPg ;G\g ^/4=Œѕ(zz|+Gȡ㿽jjXȈea#L5_ŵj%)1أvzީzVo`H!0O4w_I+g7./ +a,gr\ /0 P jX>3Pun NoZ`\%ӁA`͑alYQ 壭wG妥vg0y}Fkv̐r=>Q4BV^8ۀVpfe—*R?M/AcVX®o%4\膛 [>X:oFm譺e1 WD?*xӸaM^u#'_2EGQ ']^`D*^b,cSO셥/EP]ٛԷ%u'(ZC47Zڌ=; /0(Ui(sw;VDL?L FN/:2s5s;DGj㴮W͐V7!Nq7y:~cآt*NU-*E |11tK[6Ҭ//H<~P/Jv1=rT؉:}m T_q6*I\pEV@1MT'< |h43թrrd+U)[ OtNAJȟ5o2T]Λک])ň"t=.?uURPTNݎ%o+GґG&]GT ~V3]tDM)9z؋JeRޅfo( ~ݦ#P^fƫu /0 /@(EEKC\mMy'uY'wyӏ/SCZRdg,Ypd>3huH,rzPEyyF\ CNQAgs.w}::mV&la`N@UYֻ2>4\#4Vؓ{M}Aڈlѿk<핍j%TrcY ՘LЋO^Ż̠r^toy7OGh濧~mPT>,Po硫] /0 hv)~".8΁;3(߾>0( j騣gqpf$=Z]|!t?9枵5\,:]RaTM/< r' `שݟ6w(13C9jei. ؔ%ٞ:2`K~9i 0*P(>u'/ '`L#``>:j4x`wF!S70.B:Y>&KWk댚WEVQP+B;:Z:d7mh ÛcçSv$#Z[=QV*rw /+7O]6ٮ3a OΦP~^ДGXDE?p4.`s>L^`x^ 1b)vpsl+t&|_CycÖHFcëS㑁 v+Ç=4#VОNVbϾm_bHKU==h͘.9ⓩrbENC< xr;7/o^Kwvm'^.Fh0y9}"ȨHUvTaB"&gv!յʍH ̐nP5J}e{Ov^y::BǡէSwr ?ZQ.%Tx ѣNv&;q@ O` ӏmA_ͨSfcxg_ԑk`dTu/;#:LK/0 /0@+Ѧ L VA/Kywբ2q^hVk-(c9)toh6˪k[zٱ?:3GWqsgh{8ʃK 7*\0HQQSτ-5Ek/CJ9r] {#BGg1rzINJS<vrͨOkÖX pRe/k )nYUo޶֑dh4cߢ{M 9 8ʅ;U.^n39:ャya~1)0:*UbeKuf UNB!(7 ܰ3/d{YaRl8WF8߮m|6;Vȼ_MͽZ}Nn^`xJBYcNXSAUI=Y=/v>0$%=ӤС0B+BP`Q(>Z3htfxgkۧy ek5\x;Ei\YVLQFjƭć2k)9c>>@R(aZ2yĞ8UxSj>抅j=mI9*ibc%V^%e7ĝfEXK6p$O5o·Aɪoxx26uTFəe۽ 5~Bn+*+ {j2!WYwyG%{bQ;u(2rQ8mkO EB[Ȩcx^`x%E\i9ÞTWj7&m3%OZק>-Kgi7J_O*/_ fjC%t_Gh2p0ujes&L^Y>UFh>}u'E ާY[n;PV2$JlWVQD*Xz1?DDp6C-5bj^Rd +Jģ;ڭ3H$_W_MQx.ZK]BfQ:Յu'١_OwēR&ljA#je+;2GoohϙR%k0+fhES>J2ޠ0oT͠Q KVMIZ?گKa6= /0 /T* ;#"?#\9zb4|~- 6l0b!=j*^/ {B&qhWݶCrpm(L +[9:75XS&potx}:N.N6*=XCkGyGHZqUzcw;.^`x{C]d Ϲݠ{ H+/VV;/Bd >;) o:NslfQ%ܵ"KO'օ]N:\s;C;:ԧv7ݺMf yp[CCk2kNBЅI]$&ecb\3:z guKs69∫>AZm3z<'oceh9ߗ&pR5ѝb#jפ98|Q MLD?^*5c{[) _׊ݎwlq)J/5#"䕢|{)IΙY}Uy7ѡmR}S9ǎq:>-:˽K "w[C 9a #:u5zQ[Ψw^`x6KU- #z 5 S/7zoVSHZ'" :YXצb;Zҝvpf-K|ieh2h?@Nѿ^-:_i&+ǧOS+jYQ6Lyޏ>kKvuVq2yv)?4ł{sD1vx؁ܟoIbl(z7a+[sɨ3_$jf<'+!L+߯g=cq#aozi3x7ey*?Bu9^Df)iB^h*02X/gL+뗿4mOqЅkuhGfiyXK\)uY me1FX /0 D͡~5@_gBL ??6(3?W~o0zz6=Yl;ٿ uU(bvӽ3D&K-ޫAغ?/XMd.RoQv /kbK3;BÉ%y$tU,.jހ#Ö7ydU)`U[[tЪ>7pVT^50K$=JAI՗Kԫ*'Q{]O ~BuVͷДمZ!}{u0u^Uty4NTnS%fJWb++XY=*QEd64a._M7dž s'_ ;տcPnþ(H*Pxz^ /0 /hCel)C]}vwXk*M,·L215>c=|iଋIKE-`x^`xRTfTK-=NTN|f9-TO԰%EeC"S7xk?~NEjdu!>2tG`E1(ĪBl~adJg\df +ZTȇƱ95{xu`P\ěFg wd\'4V%ig[_< ޹.şfǯlH툕9;슟O1( n<53Zxx~:J\vuG3gB)҈~4>҃K|x^`xYU[f2wXG0/E8-pYCEp6~iP%b5mYωGs鴘fBjŠ>gt&kbKhe_Ҧ)J6_V}wlHnK9A#][;o :YmШ4#)*E9[ȑ O[b- N)")> _*?7}!2=/Ϩvqnc_MkHZQ/ v{WbwG%akʍPآB~$Fwe?;ϳB vKM)Gęwg!N^ Pt)o{f(*VvʺXcx^`x83у̳N[P+팟O$=};CCv#8T!qSK=IRFT%@FF"oS~8πɚUK"$' -MK԰CIňW/ R/tw蘽!kWr+u1ʏ <:R}F;OGfo^"3hwCElosLڣmhX瀝ٛ>8ӾH_Ξ]plybYQ酞ӌY%f?wRF. t(-Ю&u;r 1G\#HsfeBQ, gH%^`x^`xthY\*bC6j2;A )/NRXpŇy%f*(3n^4+Ḥ3kG\yuCmcRn6vK1@ i]V*x ?<7*W V@vj;񺐃N I:RL$dVo1.?=fgMuPI{!ز?Iqrx^`xb/:\ȼNviU.4CGԫE@]e:?5J(OQm r>o9A3[|A?d` NֈA/͙_ tXIc.:aDhdKoo hW:!.(O`B'/2nOB=w"׬اF`|݆zTTaauK;(h$gfrӋT'L'͡,*W b8)j\jq혼bհ~ָHsr Ov)K=UAT!ʠ8oT햧x0tj)gk1ޮnDj bi\YԹ`x^`xRM@Q43&{/"XEFà BϽv=߹cuVzm`3C9J;>M*_ǜV\򞻙!n\ E09Dq WwcqPn7uq6]uHJRq%\gOH@VG{E%^~/3ʱSjdA]W]FČ+odD(lGrd['?b T"ɻV-e%Q gUZh)]X;ݎw>Ц_(PTU&Դ``F(M#V/0 /0@UIy"1 \RUv`'umLIa˵g:ؤ-]Z~77("jϠ؂pj80 QEC2&͚7`+&xYV>DS@tZ1bO 3Ct`y-j}d蕕nmZ̴UK uf]#<,N/ZNiO UE`SDМo֙m=ߤ\**("b|.{1i޿0$[(*>JfdNn OAxd ՜xd5> 9{Vv1O^ 1絓ߗ'1Q1-Xؤ[Zy4"Ozx^`xv)TU#p CFO-ĊȖ'Pij䙓-3C2镏O-:gu lnё+Wa`IB7j5d{S+<'@+VSy䰐YK oxba|)8kwzUBΐT}g&2OT :ՍmI=bE}ĭi3G._V{~;+ű!;ݨ*UMVJ$+T1#\C)6ˆw`]4ko{OӌaXY[qsƑ%WP.tEyߗc} /0 /0@} G q]@#=;NaCbdBc&8ڰ\-.>'u]Q׃VqWJyhx:uȂ7-28ʇ:BuZ>[h$ `"R w YJO*}[䤓vk[Gbfvk_ 9:Onf SX(&?hCl1 cnx?_dW]oS}Vɦ};t1WS_roJ7w:0w.^lxUgst'&,v^T8HJ5}Kiatw /0 /zO2F-" pk{n/ 懧]ZQu:8Bzϻ zW_֡3^;Y-għ+t/Y(N2⪮bcH`9^03cf fW)tSwXxp#D$P{ ?!V? =CJ[tKo7ȀSZewa>̺STkZqި'ˏ-,E)(>>ݩ-drh)1SOW;ȼW&s~Tˣ48+ wz޷sS5 /0 l\_s%V&]O`Y.yvnV_9h Xazj!9QbK]lUa[x w&-ה9_O>,j>1kyl:.NdU .՞Sβ6QNЦF^tJ%_w4[Җ:fPOY7:}hf- /E0kwKiB`_rA y6u̜V (inʏI]`x"Ձfq0lcB5jMNF]Z[v8dtc3GLFC\&c&RM 4k~1EAs>*Y"(V^=L_[Nq-9TF^`xw*6.AR sF4#sŮ|6am0P{Za`+X2,gg Q/ R*qhcOz !ls;bS\Bv@?ZUŸTu @eE|I 6LL9j7->O&zT^ċ-5[lx+rQz9 fYG E>6G9ƒu`8{5&l A30,9L!xOJ*3Εxrdll5eF:`,=/+Q͂ќ?96˕ S8:cRӻ%Vڒ89 /0?(9EGIOԩPu7'c7o19TA꿕Nz" eXH3ZwtWT$sudPH|o:jVbu"\|uGɲA7ulqVG?:MknO?۩uq+*!uͥB l66ɴg:R3K4&slI xP*}c`#y*(ՁLPX^lHO_=N^lj'{ĽS$O!,˩#$w"~ /0 /Y!}OL9zԉI:~_*AE#;JIW"*ؙ-d '@7 {Z}wEZTK^]9%BT`Q]%rs(#ؘ)`ʷz{}&Rx:Rݣ|UDM-\p* hT|SWL2NbfF[AH3Y#C3yy2 &T[ u:o`#$[+%ёJReI"TQ/]]mK.8Y RRM;}Gԫss~x^`xR9>F4ؓ g3COaU!ڭΊ.Rֺ7(nNLc.rZ:\v/ !g$%;CXT(W7bb4U?Kgg[ l2:DD.Y9IOQOu4r(#O]ūUؒ,z1JSljδtbW m:S{] .{i[J,beUIXd#a'++DRm&VQ>'~?ӋjJ_V2E*_ _ǶVKXRhdO[;|Zܗ{1r bvY^`x%uΪCꔁ❒5B\Tz{&)k5G=TJ_A=ٖ/W/:X)k$ڢ#i0ZO{zfD- ހYIʒvqyVr}:R"y[?^Bte}2jn#;,>oЪW/̬b ^?wdL^xN<)uY%BQD}FOoItWs<8TVP~Cd0-* *9_vn(✡.gݔ IGV'Rb˕ud緰U8@a94zFGj⾅E]r8ǼD"U+oN7g^`xHYy)O h`#b>i'g~kq$ZKfYpfn2Mw!F뗆)ѳ:G^ҽL "<RqަS4:ı,[wrVY 7c7Y, mT0?8ȍ\b-;n*scRVzv/G<*j/YDnaF/zZϡf́o a]= ł'OQ"3tÒm"츂w}eМI{PzR)?`{Kssd.-us}ydSii #<Ը^`x^`xw^61Ņ.-yҕrкwa KZGK흹]ɽI|m.6Z~#Imy}H\ȆnB%YS=,sWB>q}{0ϳ#>_{!U~.H{-ݔ0ȧ5ÿd2=sV O*1cH=rhTNқաǨ_ /0 HUԕnwtdF}0'O闆ޜmf@j]ߖu ٹO-uXK敐wk2:*e7P`oҩbkS;G+{\(M.4W4ݧ%2P+]oZvQ͕w5BFYNIYZć@q-l)ۃ~4J2G=D2StpSTkuL+:u9^ÚjκppH+ 1N/R"Z-{f^H{Q|4繢~=Z;jZ{]V/0 /O%.y7]);+9,XJFVe{eE㾨ԁUk9[+='摡9-3{gP=3eu]-:l~g)swj+SqXy @T)<`XFLCH=|̯s1_]\* 盾W#pd5:Zt3YE*b3>g7>N׿0|83pkS֏9Md߇sɩCqt#sq͈VAO:$P2Oi=fxHX!FJԴV&5jͪ7I/r3=[N=輓o$+iYZUdiS|e~VƪɾYCԼ݉֨bbUgR+ /0 / telW Rl8?@yD{&fKc q]}cS%Rz|8/W]*'F60xw5euZ׿Q'پ:Noۢx̺iH2WQnBs]kEsC#FR'2\= C蒳Q!y ub;// 7Wc}!&s[1u=85?Kg#urޗ"*~z W+f޵Ee괦UkWN9=}F:uD_$U;c:[,vܲFg?f+8QUFEڪEh /0 ^l):Wb7<" Y-a VH[Ȯg^#aR*EU!@{Zu}s,X䩻5^{_ʛ=>)ݛn?si9[hټ& .ո>3hVDvzZtɿEEKP5oIa/UzdآN7rä<{:4L#u؁'f#ZwI!^`xHk]Ei@n=5T9+ S-bj'9W hUSC^E urJBc̠sb5Z`^=&ʋK&uX]?GݜGs:LDE$d/baZY^;qǢ1qnzj qHaX/ɼͫp6 SݠQ=]ѯ|:Mg2~8IvU:/`]B0JKJCUmSmavS2:ZYM{yUV9^SEkrDmfFpi_E/ڳZR2ت12b%*  /0 /28,9f{/c,)_InUOw>*fԡH>rL8GIfB5r4bOZG+i{U'4W?#_Dw-"YlĖ@혓no1>p0y%K{C~6JUj'L~d3sna!*f1%RW|j C999m5kV\و;E4|lMyPl7xxҦ-:kǎ~xi GWYj,PJ ^]5F*Wm.)?R1ܬ*ʴ"Yb<93<a-wl6yfo[*<+?NQjs/0 /0@e峫J]XE81d<a1XFwSaK5p_ġNά ;0Q=}tYKmkWUdVfTħ93ŢC\C=/z8OY<ۤc5rD4 ̧d10c:`BҨ>6ëOמq`-xc!UxFOJBuܽXt%poђ<1\O}ϳ"$^*8+ca5#sDz{Zl*,&L\M)zUحE+{eu_v&fJK\U&UYT;Ɏ._^ўSsL%ä5[Vk0]ٹw')Uwhj^`x^@'h [N{XTMCN$1B=zXsY}?!RW fisB -{YI P=\L#]~糯Յ!}q1+y-Ra4k3 J+i%A*_mMo ZYu'׾)bdHli gEVO_zXXt;"W=qԑ􀂛]>ZOCT-sS:j.;_UZ^qZbR%8R >`d),o+4H࣎eQOu/1=g^`x^`x^mW*`ƈ+ʆEun{85pdblyb3O6|sJWJwG#"qBƬj" Ü?s嶗XEj7=kN#Ew' sW+CCce3K[1S O ݈>U;vLOV:NGH+fus^`x^`WT]w ԹE=POO:׃qm8dMYY,wĬJW4LQa(}Ўѕ>E,ZXb;UaeNv>d&"p3H^Jv)c^Ԩ'Zòo[C3 Vyh&^sֆofrŎt9%MR^ч<:†{ؒ_u\; KGI? <zw3Eu\ O2>(:z" EՁJMԐn^M^/ r6o鐭\+^ɡ!+F* YnjZJ;'V^`x^ 1*0 FgugK;"J}-dgc]ŹLOms/ |%E}iSjާ2U)FTy~:âIWzSը|nڡ̸0q/G K ZSWB5A;sk\ejcd1SN5x^aY V)2!bS麪v6uŢ#% CudW2GWm꨼:G^CW2s}8jPY}Eg܉^E)`;6D_՟ mm7x$>.:İ `t#v_u.Gtf{sO͠ѸYu 'FAkɷ+*#˱K k (۫i4<b_ȏ6?|g`e%ӚT KL{K*;j5o"6QG+>E֙JIiJ1kY~rJ~Ě^`x^@=?3x \3SLdۑX}Ҝ[[u5r1Tc r"ԬlWyLMdJ?P3dz. Q* %oRt QyBgYuΕ[)B;;#{\\EΚZ_IDCȤˎZv8 N黽ͪuo6uXth Az}׫cl"cR|?#zyǵ֐Fyd7XU^9 IfoًyřֳEGbh!kqኽCwf\C툂FMfW_R;O2اߥ"6?W& #ƜQ;{CNnPօyjxl -Tf^`xs̎Ӝ^fY52frXZY<<Ð4_T| eA:Udcٽ]b6^OQ#PWD>uHqڭ *s @%p3}U۩5zR V>2xW76'c۱!j<;y<՞niЕ3RqV$'gG}L6[څ^>bDH66BQk}aTGT: upȇ?/N5v]ÇOm';GT#&{Q@ECNZkʀӦ*U&zP4TJY|<:ڑk)SL5_eߩR!URQ< /0QsZAe@o*Vk"'jkFEh:݀q"|##}#G^?3}wSGol8tb]`*%F}[T*MxjS=P3"9T'qur{6^ެ s؋3\[;m>pd * D5UU"l+&aamʪzy. W1D7Og{D<42{Z #^w FUDp|kl~Fγ#AR^SCbkD+`K՚5lC8)Y::y^NqPnZVWŒ%^FV(Ԃkn-UP2MyIϕWָ2e,eGmp<_OK[w&'o$ϞP{ëޑv%jٮ+ZUHx%yPYgo+ǍWRUXyXtdҷ0?Ɣygν*U>34*>Ãcro8ۤn{c=5`^ŷkʼnDnobWi5ʡMoV\mW2 /0竩ؐ8lH]mLy7eg]rCks/:6'y|ghsA̗vCk'M=3N°%Xz5rjn GVaxC030OF.eQK\pqo+O>}bj`vq~&/Z];7v;!pu$vtx%r>3Pb@V]4/YHXGfVssat9}X"*R)PFNKOߔ֗i> k+3+فTLDkUqx{q^t4SCru EBg˹^`x^[tpS$}2"G^AWʠN泑 %@#^xr7QR>HHaae@3-т{ [*)9nrC(ˣ#bMAGա-ngapR 8OԱŢcVXe#61 7ΰ 9ޅj;j\ ɒn 5j'/NۃA)6EE$KKC@_:T0}Kl6lqao=s<5(K(>j1-s!#3WHnrM:M\krJZ1U*J1[ي2'SN+FU*6lUWJbDA]p{$'vS}iQNj:g=SuȮP1*ݶFxQש^ IhҞ]c /0 3{Z3a}cZ}iZj*)yv.T0]~5u\0qxHf!~.k/ Rcκ`̊jgDtKXzCuJ'SX- >̎#_O>>^u*YZ֏ͽT-QmMu3L~oQ+B{4h٦x&! +|B_Ѱ>1{ <2๺5ӊv:e2 u /0 _WM 70 W@Z!\&H9 #INgLAYr>V\0gQ,veHf˳Z[C_ Z 9DňR jť,Vp̩XA g2tA{ƖO]`u~f|&UsʩBb +` R؋?gtYbnzzQ Ui)0{ަY65bSե]Ik\th)vis. Qy!IV47g'M͢rb>C ~np7PI$̉Y=/ϦT}6u(:BzYyvnr>+V6GVsߣs8w^ʙ6P@\| i0^`ur jy籤>?d1KӣT .ֱjk!MX>Mh#P#># J*=ԙۚA ]PV}#g䴢A/0 /0YI;fCqؤI,_[GtTo آ š@ą[C ,4 kvYWcTaaf]pꏲҲg-N}O:B"1؁.I>\c'ʹPl{'[7% +R[<=;d!S?|E1a^"Y!Ɣq. w0(SYQa5>dH y{NTnؑ xhV?zQyZGbOج`;rj'/ZCz5],/3?.4 /0BE f~fn/3[G.-s&l4vM=s`ΓC f zfAsRƜdccV=6x U^'INJ`@ٜ56oЩk#vK [ɈNR2ZPj\Rr>H]-}DB]a䷭c+CR!r6dk2RweM2Qټuw,́> $^|x5U,vL~R#)/z;8hн@ t/н@a#6ZfbgVH&REh:G'7F7L9ҩ$ƳaK0:E #5wW" \՗pC( y_E zfkЬШbҵv` n{Y, jY]?I{jO S%'Iy=Ƶvl; 1Χj9k8#o)6}lN̨gOB<&=Gkw篨2:%}<%^YL7YM7$EνRoN}GgcjLž*:"mV*4 "݋8LɌV`0G&u!f~% 2R9猲d[|>$ Ŕ&n t/н@ t/:e3qu>Ig5uoͩA'Oq/'Gke)kȰ;O\E:E53ͮAnp|44$ƶi\|+|)FfV{7jF@̚C g u]Gg`e'VCa]AyXji^(ew_OˍCûA}:3POdgY.%_RR.l\|3X8xNbr(W\׺rUNպҹVm~+dzK%ZKG+cV:WlչROǜ3ΩoT{ G/(ޖ1.Z{e$s wJӖ +uNU=3X\ѹIiT!`Qu#vFO5([yx^r⦞-bi:^{^`<RESө*2АjUy\YV3u0Y:sE |Θsk_mn_]Ҹ8*AU{,\[ZiߌT?c>K_ʿo^8@IH`N#LIxL)-t.>Ƭ5+R}hH>4|m۟oT#*/ Oxwbc3L;|_TGz; t/н@ t/м! Ƞ%E==O 1R[RtBw3DE 'H43>ㄞu(ŋS|5 (I{Gbglxۡ9qӽ@ t/н@PeP͔;SK}ܲsBH#L9`ZV$݊uy{1BgsC0+ 1֑'#)rTt_p!FXtM`Y5?oZs" # 둺ՊrM>Ȥ@(/U<2)"UJ^zʹ;Tev,*"J|0cN'QY-9%!T{Jk.4Dq#ʐFWxx1g2i$Ʈ;_jGO-= &%7̄0;CsjQ9Sz7w/н@ t/нн0L2LD I/jb4ÝI:k2 ~+Ơ^x 0^ *ܥ(cS4SoToȠ[U<R'"N3; V~9;q Ldc&TZ|UB/P[c0EQ.JW= s /@sʔa1=u"(XoVb22)mff`- hh>GYBs o 84|8bu{T~&0=C={e8~iH|cׯ2kq`5G2Bĺ{fs m/Sw^{^{۞hr ̹ǥXނ a?5OouʡhJ'f Qԝ!!wyա_(k<2)mxMd>Q/ % ?:3~MdEP2LEPPsi (Jb9ƒk/դ5u`ndq/8a^`](.Y%vfKP]z<3AYu zuNnԯgwͩ+Qtyk!j]\ =VؼӌM^u՟' ))ïqǢQ'X4{ հ\t/н@ t/н@Z];SQ@~4s|H%nw }ǡDO<.T*pbu-z|LUgL_ԍ]Ŋ׫Gդ*5՘G'.1̥L(^9:Z,j%Dxb~WkSu`n[XkKI%[]l +ˬVNyyTqVvRnQI8E=V3q8sLk;TEy76|4;DWf^y%mYjKD6GVR}Aloı[=#M6j\WO>>{^{P/  7$É!b\ c'3j.Wp9{"5b G]Cy"@Ȥ¹`5 n*Ds- B]Q6ڠȬ7IɘimjYD!j֏/͗ifB9`(;$Ј4jgEQx>Nŵg"k|sw .α#_;y쓯v7[Fr'zgC!ŬQqіóM,?h @o~̵}hVʤcfG#߽@ t/н@zjO!iQ1+Tؘ/j_F,Dtaux&"HT$c \ Az棚aϮ)1i9Na&t_9lۺ˯ M/՗zpPԽ U'eU*zX9F`<3g VsՌG$"c~pD>NKlT?jʹƸGllizij%,]`ܱT%P_MEO?5HY6(CGmocpleۃxsEߟ>m ÿ{94*!N9A+jdվF#S)8^{^ 1?(GFn/MN5kR:b:|vүdnJPak֔S{ʥ3wf*7PwlHa˹4]g.~;6L5`sDnU~-:lW8eK-ڛi̦,;rXn>m7֗Cs1VF?Ss450KS>0=Uod(k}1G'GGa)bH:}#m hA/Vݧk=c2U#ztV?5sH`TƆi5g=ŎZU} Ƀ{=RBw,LUY)ZYf2_/xHk0C~^B>yE)COj ~}gh>= /ۯ yplh+Zu֠"y~c } k3^{^@׹[gLV&ʙP:S oRZg4T.i2j9mYQD+k{stE҃PD%Ffbe9pَq|hΒ>-qMYZ G!ǵh>甧y+. :/G|v-{ԳڃCUߥPLK(wƆHy$3EM/ L*W8+-C11y[HW/"aX|jR2Eܮwj.Zkvk!=g-t%3?Wf?Ysy;:0?9ė\l|cHz*5 EEV2WPJ77 ԝigUYk?Mu[*_G ;wuex>W#uO? rї[og":#Fu56~C0NGv qx0X;ݾCܽ@ t/н@{AgXAH}IN 8ҡp5 )*2ŦP#KPuG?ޡ+#kTϯg7Ȃfp_D:\99a\0rPX`0M`аfҺak3d4@Y͋eWW+8 *1T^>쌿lv>؛#p} udE ǂ.OeE]t.DkfƼǜyu跾AW'v%Oׯ߷F!,v ;sg!ˊ _{^{45PxϢ3e)!'}9Ano?ĺn~f )m xc* NV9{TWASg՛uJafDQpN7ffiVV`֘[ʕsB> _A.B5Ru^ʥyJ@~ ;W1=mhzQ6#ƾU_XQ,\gկd|*$6*^i#DG&Q A+$.(r՘Gɿo 7)EHFzhv>FKg_.~iqhX,&2*Bתxr5|ֱW t/н@ jGӹm]Ȍ@WwI=~"\_tbPwwm3Lv~g_Ȥ~""r4*7ŲC?M`tW*Z~tys[lӮૡU;_"hUDVSdB8n Q[jF=•[s@%~@F~YR!DMc#{XX'{?M*ĪWy*_<}oq)5G&Cd,U*w|fa2݅vkÅ6Wv!g0-(l}Ao_>РW,jwsb^{^]d" %n~>3')jpzhka:w!֒4'=V*TdUʎgW8?.[cn+4r8i,س}~|w1.$;x*!v(T{[ZFYU1Dp|gH}4;jvZ!/ڟz~ңoslPvGgcC t/н@ Z+%J`Dogk.ݎ 1ڀ7P܋0loRy!=I%?ds]ʙG 2a*SN~骭Wuzػܐx*k74m25X}gV2ЕN5^ı-AAD/S <).jV_I'X` St"g c֪κ[VBXcFj T+!6BT Mha`]LqS-[F:\ x'R=u^iӠ+9v(>A ^{ RuhԹ#ܮSkjbCkA3Ѧ*Y1惋 Xg&E,^8YS3,։Uwtcj=f0{#b_svFgeRwc2``Dhm ;f[[RZN=#EfޫuZc?:Wņ$U2Ghv&j$H9oEvxUEg",-=b|AZ]rC ѹT!D|":g@E3뺚eW=nYMnFpdtIví1W目A%UpAwtP%4o z90TdVDT/?_0{6^{&^g')Ÿћz ˃ڭZG% OޜTVdc(yZΩF9yPdʳGE/νx:mQVJ.Cg =`0T˕2UZJ`gWZ~yv0Y?R7ytO>Az9軐 OZKӀtE(kL[Ç}}1CdU@f-Vj:.0wxEl|ǜz}xT(\U(Zb60գVW#K6(*vA_PkyXyYQdR"GXywG%xP2)bY%5:|Ybu=Tq]3'5w Ɯ&5RW4g?Wq-ܯƟOEʔX} fOEyf4%w|hsNNT&ijFewo.TǙf ,roH Zxv t/н@ $ 9+QQ+YD,,=3:.2%*В'3uba]LDgLj)n~p֌ZŴV{|ث.] -ɪ 鸞STJ^Gjrei+:&5 H{QG5i⻮}stm/T(ڕ~&AIEs2j 0 ^eǖym1ɺP*b;d̐Leʪ#=v }%.Zh?&i*%dU/´97$nE׳{. ɝd1(?9G;cތT[ {^{^{=j=C#"^Bf`#2,X{Mpy𳌴uf׽~vu (ctU iVNXGeXRҙKW_nY uvaOViGbtӗx VV5VPcM0uPcZE`EىCoڣ;C|@)l kK{sgdS|悋b jKƌĺd*(judxkd8YwQaX QydyJB,؁,-.W;pˬU\sq7ê;4[Fؠ--LwN.E5i|+^Sx Uw;^{HspgCCH/a:%ݯ꣤hyxo}82(B)C:wL3xjthh4 ؓ}p ;}Tgu;#ƱU1.hDWUcfkO qb+(o\c-` Y<gGrFEʩ(CC`;~24\nD ǽ͏{)z.mʄ4mYD2y{v[(hED9oP{eS5YARM/\$S.Yݤ,YZOR,Tz )W%CtNKVD֑! gCqH=vHט]əjNCv7_ aYc]J^{^{49V4Q x*#Շ'+#xb陁q'ՑBwR{N|:>82o ˮʞ_?7hdj'\{@ ɗђ`v-(qбo,N5jT,rUFZ*Cc 'z4)/d?3_ gڮdHgȱzv@+Xo9=WΌmpϮC9p!kϸ Gs\-ku y>!10. VPU:Ʀ yeh)+~`}%Ѷ YsDɜ@N(b%VT@9kΤUq 3e7 j7Y|' o7W#8~FкzEZP#Lн@ t/н@2F_N+FyU{iźTW8fQPǹ滱!JzO٥3=c#T/yVphCmTw bHKggq*,Tͭp)#x n y ~ d5nGVg߻09v 򰚷]:;4h0UގcCUK͊Ws ,Ӝ$Em+˩/TM54ľ{"MlN*:zdlXloe. ש[2黐gN[ ]LoDa[ tmymPuc84uPBV@%^_ t/н@ t/ x֎q͓'q~Iڂ¸kc^gE]όk1aIX t/н@ t/tn|\$kQzjqΙij2EM`luY8UΨ?Ѣ%GNc ^Yk9WUWj$yӷo*VxsT:*OX4}|ak3f*J,84=4$>z7d!x; ?}io+~3l7#<=aFš!*8-yUT_bp)e>8 pNVp+>w I3Qا9XDK/Uypkk3~aXjp vؖLkXʻR?a"!$ckQՋi jpW01f`A50a +j=I ʛYHO=T&f }g t/н@ t/P{S!`p~94D,,vlڂ#N aO SݣUdt*kؘBTRTs/=;>ts^ՓrDVSdR) @8'%3m#uCmS()r څt5\RL02ZçC?m o?>ldV!Fx'm0+?8) Z42&I'5IĠ^zKF{ƞt6=N 1ETv0mA\gI'I'n7NUF̘O!(ozәn$JTv_Y ';ḷʹɊj f^{^yTN>'hЌ}k {3yRf󕉩&hoVPQK =Z\vH>utc_] 8'ѺpUzW~ ׻i];wF(쉳+ڣ,B߽27\iwNֻ+*o8IO)`ė4O|E,Fbddk84Hi=>QgSb~ b{{iC_2<6 ,J5T/c̕WMM~Z3LHRH]M (7K z@5q/:4ܘo عgplPV3aN.۱TL,_^{^{ԱjJ6+8o^fg~|ex@MT]KAɕ,+,gi\G LF77曮a?1%Z3"j17_ o-)isx~Tµ{8ժ7͹r "k8;s]ÇWWy|2ow < /7{2w ,\M5 #p;C&>) Uy{AZ3zpvhP݉]ߟ~81>fw q!ix8594Ȣ;5uPI;WǨv<ukcEStdZ|h;OP-s>PSz!?5iI[{lo/ى:>1\>3u1L|eȸVB٤RV_ݏak7lΦsG*iUqwe SYk CQ ^6QQ~һZgl1{Vř2tJo]ؠkQ%'r/N7#@>JCԢ"@QϣsjE8S^{^{b/Pq^ȬIQ.AqРUԉe,-&%u#_XjN6l-#7T Ri3KB^Lَu*oi6:'p~vc\Q{jg diVA:F$5YW%i0^?ʙ߲e4|74s.jkz .ݑx*uzPJ դ Yuqy%*]Flx;\OOJۗ=}uq3PM}|3RWe|);h[qhiKQnU).ju VGWbMJa)ϫݻ^;"9xzi>*fjUY-28hdͼājRY`w/н@ t/5dTy9znЩzh РӋNCa/XL&;̖V뭪HP'J<@Eȕ̈f>th0炣MFI5ȦupdlHu%f[)uj:RFF/+<5H'zxՄ}41zb/LzrhHl`VfVpWWʮFȠ@Do#Eӭ3D顁W;L^{HI=,91׿7|*[v3 U[Sz ?d Ze*#dfKƌ9ETV1 !xI*m86D.V2z\v5L!ғflH&ҳJW<>4l5`=k9F+1LqXG) WefX<8k@31NGZr#17לY 6gCon qeh$of@EAow YV#6z\ZsÛ,86IeHQGf,IfW5 WU;_1kY$c6[pNW+=yEE=&6?c$X^yuUOsՠȡ>{^{Q-Y2&[Z^Btj.GrU(8Beo$Ki N)ֈtJ-,,~&hYʼ [D#/}3zFdR-nnu ~ АUӫ?uTM>1ϜGy{6Id'eR X™" X$s87=@ SjR1?Ξm.N6s Q'3 yp_~oo4~anhd0LHY:+הSԴX+k2KKZ9 eI?oⰽ)cNEV43ϊHPtg-W{ԫ(+dNwϱj^{^u |ܐu_5L^JO69TQ|q\~VuT БscVOQNV3A@y`Ѿ940%_GCT-Bo(>ē>C܋W}&Xb2'>v*) ?er5F]syT Y[Aʻ]?7|5<mO_d@!է_>|wڵ+JA =r~ɦƒ]9Þ! Q⒙eA^5k`]WcS1~^[hHʛQ #c>Ĵh7.S:"FdQ^{`/2{'؞ŶukRqkĠ,؏qXo qr 9JTB.Xg^Sdrdj00ugi) 9y:SiY¾[3n ypC` X}}sRodba$^U E-+ ; }ΔI5)rG_Cd>WtUuœK+ha6A]{Ûv;.w ȣ(b&k|5TM*‰Yd7xƔ!{/Ṙu_GClf.Кrgu{<3u9)/dɕeW-0ݥdT9` ,XcQd G1?CYxVj G`|$I1A?erP7_h@u4!bvʨ.U۪0f%t])k}~~3x}b4Fu ^X{ddo#yT1/QwӮ9=x16Lԋ\m .3ͨؠ|ܠGrkjZu@3|wĠO'jB&+4L s{ t/н@ WU+*5[j9dmlOZ^OQvms@Z3@Y]9d#J ~W%N+)j65W'qh3xh8?v~Rv86Dn(<)5 afM%ΓS;Uylb#{lw4~i-Q3C0b/WeMxTKYפ=8={I2c yeéAx׻  O_ g!w~=C8/ͿJdޯ*[Q_.v/н@ t/н@~lZ dȥuՀ7ɞo3iTU%1_EE596$CNjWh?|VTNRJ !cNU>/[F*G^9{bPnxUGxPQYTIK+S'lSͭj*XbEƘz۸7qPs(_Fuv 9HYA-$ؼ\ɣ/6_O_9Pj ANM"Xju/*2iP DNzFX,T|# ﲘO#);ML^ׇ찮d ˨j1=FEDK7NZB>xnTpZYrBkS}{^{b/P5ӹI3\|wԞ?)vkxg1F zgC6"R)Okd,i78\3p$tQEQ]LnwzSgw1'FWX<1~ʻ"-9\˲r1 7.d,* ]jI ֘X*ͫwvS|iyGWC>EŨqg6G.ab'a2OLΆZnU[jOnuUPRV=gN8Vh({԰~1祷~6r ԝj^VܦjƹF|BGz4J #t pXeS|蝥9<1vİ^{^{tٟVe-0vn84t͗O=4n !NNmweE"+/zõ_ kUdb(y}5"Bt*K /FOqpͥQCG޴^؛FYɹd<|Z2kAKw Ltɏ]j'2gM\>9Ey~fx:ODS,FYS\Q2y~ yGi5+WuVkDCGU|x}[3GAgFnǧW䳦3ɡ*&Đ{Kg䇣A={>4L~GLјڙn4/U= em^{^@j}*<T-$ۀ@`) ?U΄ ŋ"=ȸϴvQV9s~ў+> Ԡ}b(OCs:!=\Ui) Q;ccܦy*s8#dʓʹSlFj\KlKNshìavzWxbMsE3ֹ;2跲&#*$}PP gNn2U e0#jme| O'{cgzZE~cGvi0Lu ؠo^{^{=syRu'dNy#bCAk‘Pv{tyT¨NQ^8^jޤ*m9;4i5u786ęv$l;4=&lja7*SEo"FBwcn,?{&UwD>p@8UJ~9[z.INj8ĂީFO^{^ E9fCrS-128eegf0ZĤ &eQgj=tE6Z᳘Ӥc͢d]?}?gөuźUj:#U2.?}8AX VaT9 <+j 7gGM}U3}Cq7?q<6wc$H?؎G8TE`|eRc> ⡪PȌ{uדEg&C5$w ns?u$M?^Nk ܆NIW=5@uEOnNsGY`=`\Qh.09Xˁ^T鼈-ՙ [{6)z RkѮZS_e7CC[^{`l0QEOX QtvxC^@rk8%>8RݠւN~6|*UlBaH~0e3SSM"r*z>tS*fv }ksgd89s8/]Y[``X$"gw~sAg5s•jkB=3=Ib N91ٽv܎ =q 5bbxRW(o:bFw0{`s뤵_߿ k"<$]DU~]PԖ#8=UPf L=7t4 D #_y|{WT#W}usYퟖ8kOk1Z۽@ t/н@kyWRQjJ=\}Kptd;>8S\q'~N® v*=(ۂxWpKD"tKc>^HFM|~M\қ. ܿ[k~ bVn;e]^5cJ~z%G㹠svzŊ+Nbo]VO( Gf*f8Nb89] < ;AwLqL4\@]ˤQ [wc] 3ʽRԑܠˤ^:|pM~8[Wn1w {->MR}wunҾypx=Zv/н@ t/н@~E_uUIA|EoIв|s>4\4=j_~.s? 6v?,'.ƪQ~ɦKco#tP{LVgժbOUqGi'mQHR$S++cU53LQ$wtd=#f<9)q9YS顷^)Nb/gMxn5Kj fofb6(Fz1:>4(_9뜕 3]dsUN+U< Z`H&J얓־q!x %8?S 5ֽ@ t/н@UK)'Hź}`>S beE)gnB]'MCUfwUMZ:Vf G~W@i qo Ƞ+f)*v2_xGR:Ih&[RNu%ZgΩ( 罂x﫪է+Z0k\un+ɬqhC\,i4ԩ/mNp3H}q٥h94D5ׂWapXɄg$o UlHYcOCh`spGσsw8vdwghw zd>P9+|z }S9d"n^{^ !*"bo!F,.*PWWCx10M\Ah"&y{nNkbuQ:<{[>qA{ƠZ5 ̼򑁞oR>CǨ} t/н@ t/Nϰ,Y1X d(^H.{~fd(Vj ˽e?Ӫ/Q>Hq 3U[9ֈh aڃ- {ViεɮݗNe ]r{.^n XhoU؛U+,֚۽3L~v~_DXvglVI3WLw~ўV*t@yy c$Ev͘WLh]-D߽@ t/н@ qȪ$z1¨SOa{XP!xtȢ®Թ{`E%W{w5w E-߀;4ޞIģN"߿42$-˒d?{HЃFM/LI1oD>USzIjLe~K^;ڊha8WٛFuε,uu?Q=1!@)*~UIفB%%׈!ڑ!Tih ?iTwusoȨ`ᾂQI*c $ϳ>yzhhGGW;C4"? c\~\n"cTeGLw5φ.? Y  -U[%ML}B t/н@ JG}s+հcE7<նS*NәQYic &dp^%]+lU–\өj2,XQS \xSwao|lH3N]χcРʴ8[WXTG:Yڒ]2 =ZDj,sD^<#+=rbMmzi\Ĝ݋&EtZyIyn܍0df3apa<0yy^QQ tɅ)ɽ<5D9 N:SiM nj.MVUܕX+{:4[hWC*=Y껋]T^ږѽ@ t/н@S~qutd  il,YêۢN|fdvL=M5jdCPUOd#lcG%V='I1r 3£g$>^ IɅk_jN>bcSv=y[Um&:*ӔOEGaz*ـ+^Q)pɆo/2JWE"U/͉'yja8?6;7om7SVcCf]C_W؇']ab~6'ʌtMlfbX Fg"鷉ۡ0\ 1ő!H6opCCS[8u:4p৺ZARщqcnʺ^{^ hTUKibYԪJ#5F4H74ӮFCiJ s.oqƒc5;JNndžE_e4&7-bo󿒮Xơ=vɧ݋ib/UڏX1#OtmJin+o7 Lq*u?Nja@OSe{ݻM\6\TOF~J5j^vCu JAٽ@ t/н@*!ۡ!"F-mX+Kٟ LS|C$ڡ8BeK~JOy̭ܱ*|t.N5YJ@d[:ZLicgy =^ÝFDsTVjZ֚#n+h \V'V+v RoQ,E632XG*zOαVݤ&sdl >]QE=Pi]?ߏ9c]_ԡ)Ij-'&Bhv4"$oơAҬV3*ZĶkI i/ӳQ_* IKYiC@#^0Vp7wQ^{^ u7k|Bu ՋMCddPcV́ԉ~ٲU&TYr+uSP7حU@! z=eSEO'F92GrVR_L&gCÛ!q[U^)WWZ`_Up5kj<}EZYP\S")+8 {{7Cu= oxQL+Qτ=~bSwׇ`{c'&{74phgU:!tQCOxp(;ŢȚ^w`Riه$N~uϫOգ M%bJEs=΄{^{p< MUW-i)Pzh+K_+ *SV: gE}2NO&q՚1(7xh ۰rzΩgv,hMԂKїLXO=J]،S!+X`+l;xxv FSvUH]10c6z4&B5tUBIn e1''aRrchO74LnQ:uJms=4tGG%;3#e#kn;0%190ͺ:u2FK^#v•M֏{fˮxZ239x^{'=dPDHg%d!A(ozzBڎ9 mƋd@LN5+}ǚb@UpVaK:jު *G\펯oAX MqUG֯w<{|s\2tgdȄp;4<FoBviqQFx2[U~*EnWbN[B;jJ#]ݴh%}iH&N Q:RR. Yv/н@ t/нG3li!yU^E=U:a6rVܝ 'cCH![O'uuSTxAT 䂺u<vf~v$/QY".P^z{R|BJ.j\&NŚw?UGx Um]:ѮTR#r>cb3,k ټ{a7<=;չ#Ρ!ί T~_@tus NRwU9quإS-86owqYonGCb OK$'֠l9篵eu/н@ t/н@׀nBt"k,ƀ9z762ֳsZGrjsj&_Hօ3l+uKoxPxjКB~==||9oMP{by$l)3ݡJ}ֻIQ*՚]/'+a ҕ9$q׮5r#!/ɈB1= bDT\A1܍CCCOcgxߋg`e|qW9ȉ ۭ+Ű &ENӝnm e5MBu+KWݬ8ܘf RT?! ʻА<#x2YU^ѪS^{p/)Sw$NR蝇%Ip݋9,fA;z5FR\-03{i“ yR؏1nǡr95GCS<cጌƗ e(U~jB~V4e&c^=<2p*h IS@_~SΩWisԌzb͗RsC߈"Y#-#2#bŰi*oKT̪S [\ٮ:]00]ߑLvJ7O<6k˖z \v?/=^OvoeG^{^{BysgxF*?~=6pĩ5ZĘ Uz )/4lJ SRBF˷H:*"<?.59ۋ3iP\MZ}7 +I3d9Q?p t/н@^tJ IezΪ&)kʷrFNf9x2*^ kWJ_;:3U2NdCN-3rq+">0>dz6y_5?xolLJ7 US^2`Ě[UswvexRefXX`SGr g ݗ2 O;eW3}@Sͺђ PqU_ԑNLk>sRlъdslzvVcjuFʥS Se*:؉ڑ`P<>0 ǻ˂~M]]k\&jX@;^{H:HA"_cä0jGWz/JNO!ȱ:TK9JfX_:p!Xx†DW}H#>#7'_.ƆU\J^-)O=dOT,M ϚZ>[2բ2!EQ2N•+~UeF~بXW5R}ڇo* l"8:[e1~Zc)2QsPFcEu ZV]ʊXPn[G!oyzx"ǣ#0i{EG{G¦) y?YϴRZ;I}^{^UIZUgW֘ VC;QI/`g4AةuʷJ_n}sIvEq2s]CTE>nC_%O uJTƪuܜ]'kRb* 7{#ÂOEjEʋej+e5YFF r3ƉQS d!sngK>\xjYQ8)_CmxZS6V2-iL䍉J \OXuO#܍ etVĻJZULLݔj2}NQ{Gчql8nϠTpGwmMw|tbTG]T/ Mo quW^{V}!0_Y5S9jre 3 CRRj)[uMVqbEO Z18O掰IqDb,17Z4߼4pCN4O קӑ~rF +5oƯ GC֠~#uFjellە#z1ZH&u/Q0O-7u-KG[pF/~{YAvcuOMT,30Fr bz8j2s6"S8oܡ>pM7 ׎O\k=hy"K"fE_cK-ljƾl{ơ+e_Ϸ B^{^ lE19Rlmϭ: dUW1|uU%`3/:O!RQ97wu];* B%g]!bcHUndY)34$s'9a|o 6 b3,JT<(hU pkX9w#QxHvqd7MwXY`Hng^gr75t1&FnZIdQf ,ѹ*#x@Y^b4':>W:%vwƤ:/*fv/н@ t/нv'2,?c굈j/ os:qLj_;ouR;]DMB?ZɢVd2Խ;7m P݋gVeFZPK3(jUqh`VS/ nPz =y(tkWߏT{?"(i͓5y̱:/$O^7ɤOPWA]bfd_֢@bbt5CR͚Tl"N9Wg|{U駑a7eAV&LET{^{g+cTHQ#4*#q9%7k@۔Y -ix[*Wk<5j* ,]WUOoH$61K^©CM4_Vr X_wx֠( 7''Nő! b- 7}rbQEXt$zcFO61c`QN5{ QFyj) YGf9BWșW M| nSQz \QZn=TtbcZRT͚'ǡA / z;,pnLc>T,Kv t/н@ t/ qnP@}FkՕ5k9Q8KƠ<:kDYNU+DqAdMY#.^'q2V3ZfT6F 8Av԰fXN2W2\aE\ʆPD*ɼ R<\fz"KueY!&60dbK&%HVHd" \I!C*Gj0 F&5d`@ (` | `TZ:9uTU#s{ן99Fܵ6bbT  ݹP5sO3٭\p ~Om@pq083 /p4sR$+ȱ@y|Of5MO:CKE5Y8 Sw~uFL|}௨Cf`3f%-3M.˅zUG) aa t/н@ t/ VW,XeC̢^?>ی~h O_8ı/H-.qd&חX=`MjPYj|~)b6U!ZQYS8͈clxnw d_ Q +b^Ē]Ekumvd= fbdEEhg>φ0ⲵpD%b?Wkɓhsru|3 "`<yr!^蝱O'rJX{r$N5nTyJ|4U+l#gv,suȼ6 ލ?j<[ξF!^n~@]f),p۽@ t/н@S*EeU'3nb}F93v-@gةIPʴF:ө<P[(J1o6!]*Pyy<7#n. 0àHQ|a^=X/Յc?Qϝ (+?NP_EXgפb!ǿb02r(2#;LUN^۹C;Ő SX ^cC31:RŞ!T&>_<$EaN3u&ʂQ3u]f/91Bkf%IjJNw+SlK[hF l7YHU"0"|?Dj/=4 3wo t/н@ t/P׆dž˯ R/ .V!eBezj>0$L8iz!mHZU03T݅^dԻ'L cfiSy[uVI?Fz>˞/%)*ѭ2 ՎSW\36vf'zxqy`8;6\o Zd`U0 zYɬGL%R3RcQbh;^DR؁m)~ 9gH>=̻Nv \w+K go[( Ssr4CܿbDi6`PS|T0v1bD:z`oݫ6ГU>E53{^{,՟ɹA Sg>5 /4].?#{ei8MUȕ#>t,PV-i3iB䄽`3"-=,sd-z{!y«`1:ϿI*TLu?!_,c2骛}lѾ6>o#.|awUc{qF"j1DžX[.$ö{E+psgV\ErsUbVвzL ށUT^{^o dbtuiwC0!e̪˧mZxjSّL .^Ϲذt!.uu?>d#VT&9ª#^j Q賚8%# LǤJ]h>&oz^=3-SgD+41N82(q5*FdȊiMWt$xn/QDwuGTUWUڥl-n=n+j-yӤ1 mC;7NHTOG V\I{ѼB<+:!sG Hc{5|F釗7:6"k6DUW7È(]N?ŭo_"_ '&s=e5Ɇpt/н@ t/нBb uPmlrd  xsI'ӝ6B`[JAL@:~5W]#wЩ\aM?W%E52ȫR8&=SתѰվj6>sR9UqrDZ쾪#.i&YU`3B:zTK45 xEXHvPY'_,=q۽^kM #&8"R&Q\Pc`:xW4هUr;sGhp5!QJPόPEhҹꀑO6#{ƢB3Y6`PJ/(˧2;\{˦̈ "&"B t/н@ -{<Ԍ4z?_bE|m?vw: J/$ckђv'@&cφ3#7X^zn5Vʘrغ(T4D>N)k/>^_)g(9\E~)xܠNMDZ*6XH9TYo zonћ#˭abfvzU˃6fq6_%Yn6J4TxRmKwP~Iys;y ǝvȡGd㽗0ytvVYo̡4s+E^{XhL=q=qm3+q霈 f2+Oʀ?=ǜ W&1E\W{Xח8w[h*iuɕac0m U&_̈́I cTg] #7VPJRRGzy4F^qm r>6u<3!:la94ӈX[e<F=-HoMz`͈VOP^O;KwIvs0^BŞj0":*ʧfmFߢ{X%^;7E ^{X;=D%ǜmO=7ڗ/ ?_~n`$'tc@LP<19yЧ}L~N>S`I6ՕQG[o(*q1EpALf}ml)uyd2n7##5$u{ѡ/n?/H|5K W0RlIA4 m]^A3x{`fۣQ⯾:7kbr,3%62jrMs9Gb/59"mUVe\C';q!7,p QJ=z5^{^{^׵!y)FD跆r:f{aY.IJ=듃+[ ^{^ ZB?>gϨ \3_pą!}$57bE0}s(l.೒ Oi$KC6"G]E9i#j2˩oM L;2>+cn0=/o7#+&Qr@Fr%>:pAVrǠ1oGc[Ûěwjk$1 rֽ 6aw{mDU$B4 XSWcVia$fl8惲 M5O6ݝ. Ԫө"qѣrcU%&{È͈^{Ho!eEּ@F!Z>ukLMz?j)yk83aQ8\弪,ċ4 @exv~ gD<;mLo' r&|\}̰<5:6p`6K춸swJ*CBĝBTz'1!JO_ #Rݲ` zyvݦ$F,*`e )"]X^+Pid^bդsKQ\} ob\GcF֞5=)ͫ;G t/н@ ;F xTN9Z'fw/ CB]iM)>/Ň<߫J?% ƌ3;шH9C[]XiLǤ>kObT)I4b`W\dH}Z uQLNk6IX׽0sw9di߶aͮA6=i#^v3B6A_KyՐAR ߶CCU-9C) `ތ&K*o@ S&.TO}gKL^`dwwd&Il<0#ָUNYbzoq3}X t/н@^?Sٰcp\I?%#ρ_~1wjkH sCt'#wScPcmUV+gBJ`R9ub]mU381 /ȘgD3r2*H е:'7$.ë/vbl>ߌӁATl0!Y#,y S|cy15o zqNU1YY]r&FRжE\Ʈ3A ޓ(|tB̬ݩZ@14SwPOoQ:w%+M_-5fPLX t/н@ t/gIb 9/TǻgPN"Vg^h0A)oT*NyxcЕJUe7/i;0fD(C%<*[2|C,*<CUDzTCXnv)U\3U3zsǖHb3SWd3u*Rݮf͎pڈFjSk۪VqΈC{dܡ7{ =qK*ɻEpfsa5 I*N%D t/н@ DT!YY;ԅN7j!'g^:now ;9gdo?UyJWiUOӥ>8]{J#AgPKwvܾhrJN+tVn.DKb#9qU_Js]#gkռjm'zR=0l#m sH1!frmN OfY Z9w%O!+걝Fj~x᠍^;}kîj=7V$'81އ1CX)Jhc.1JucC^{^{aq943+?qP&b}zpDVWOV=:`"3AQ>e+ BZ0YR% C[dߌKzgO}.v A dv,i> PWMo*v;Fֈj UlckQuZ3HAAyUe'%$檀d#EÜB 1S=*xLU1kNl({kG+HKR"Bzꙫ z݆-]7$z&G5a}]4YQۈENyfHQv1 zv4sbT- U t/н@ /1G Ψg 羟=C=3budT]wZg!ђ0dz?N~D2:Z7fr_b r%,dgQf\ s/RE(TTXrW$pإ:DlϹZ!<|m2|}|S< ٱuPk3ns#NliS^_7{6#C#C귂e熞eFd'0Zע>4ւmw3MjPIO5 Fe-{^{ +7tBGFMt/н@ t/н@ +0#lUlI[DsRQ=Ag?Eo~H [W!GĂf #XAWGÈ-}L]G_n &7 cGڗC;<ޫ,]Sś:%gux?skfۋkjNsC\(%XAs{u5nnǸ9d'gDh}~̣aeSWD}:Or☞ Ȓ1Į,,) NB~f0iMu>^{^@b h sOXبBbkxkCX*9&OzûSCe{x+[YE21J?BﶆTIHNѾ-+}@/yոfc?Y;7 0sqj8AYՀ8w ۨ8@(T`ޖ֒.P$dGO/İY'33÷GdžGU?7i`=uvlm. 7{'eZ0dwHcI;f+2#^f%+ˮ1ԯ̬u3tϪ@MORiWUţ  "#ǿ†w/н@ t/н@75tsPGXVfqS[_tDoodNu &[ƘwnVPr;Q+~/V1'u!p͈Iece";4k, ͛Ϸ0i'#˼hABKb)tʇJ[OѦOmM^,jqPcG'3VOIPt]m t/н@ t/z(q+{@-k#Txd؏g?6ROzNś'KgI30~5wxw\UՏ2{ט~0V]/էL~,g/U;a4tktR~Vau$1`cOqVƾKk9pn`3S_껹O<IWkmem` ZjWc7`7%9+hL`:X.s t/н@ $ BA1uWnX"z|RbGJǓ2 ͺO=7^lF\!<4՘ )u[h|zylX|ȱPcqXNId^HEk#F3a$ŠxT(ϑupVUٹl.MVsD|loR0!pz!n@7r%OIu^-1<ΐ"0b=F$-uXHF2n5vHr1BOAtֵ&J<" ݫ{>jSbdmݭUىGWDv\ӟ&u[Z`^{^o ,g=J|k:ԩީMW6Ñ!,:pxJPyNTRf<;h#F/\kvO#&=zpNuvds'Y{pe^C?@[]@`!y y/BC:܋r*_]őrWiop4ёn^օ*xWf wF7lSͧ6ɫH=k$mY3s꟪cHdǪ%Lۤ.5^ҶWhƬנ﫝N@dڠTɹ"gL 3TsAWݝe鯺^{^`LCǁgjBiijR ĝYqgH+QyX=5=lCA'ZS3t/w;j2wP 'X} ۘ5ǐs܀춫5%O5 kFwGbh lrMecq GJd %Rku)06+rK,ߧ!`b/x)"GmU~g_wўY[C;23 t/н@ t/0}_ŗV۩O 62;=VgF9Lwf0]MĮʡ6%;E.Q0 0h%8g'AYZCx1逑ǸQ1n ~~'@8}[&BЃ}3[W4J%_6^#b<嚟H?NUf֒OTĉJWx0bpw|u`Bty̪Q}H]{b_W^@T$E2k| vVP8|w*'O xAoes|~ gk5fկ#jOE8%wqz.TO.'C+]1"ͺ`kSC t/н@ L<~Ͱ5+:_{(U`dE3Yˮ ;4u|:Wℕx\yv@9m׆ǃAZ.Kq #:8=<_Ԡ(܋=O w8wENwU#V?TճvJJ+V"Zl;Pцܥ hO \6u׎es:Ъ_Ō"+ٛ9o["k7?yyogAgSA;Uą~Q&N蔱-\ ; ;z ۙdA]iUq`3L,h>z#p&hosy0z֠x4K^{^ cUEc%~ l ODTDK/؜&4t?FĉyR3M(=}0B͈OFӌOCIQH 6?~؜.xj_!J5ZWO%J|L@Tl޷G]_NTP [.5*W =/uUe2| V^A1u&VBۼ0fu_^^{^OJ)=?NL^p&Ms+[jjNX)Q?>5愳[CnZ,ڐ?bJ q#C]X"Nb6tt ~X|M* = LmzӟQT0yp)K!XΞ#rPt, /B~+rb*;l큁mY'|9G\d PIs`H^TH1,3Wݫ^(|1Vu>Ѕ :=Du3)JGC u V&/޴wԎAaϺ4Hrн@ t/н@F)T3`{KNjjp 4l o qNzCQ+w#0檨W-le^)gm<n ’;2W1B̹ni 汬8F,Tzv1ZW`r`oslA7ބ6+?l QZW{{y2fwCrMvۈfHV߷'~7tEEDD_tah?F,hp,Ԏ"ZYL 0D8|f(xi#Uv 9hhK]Ox׺n ߗ\d+131T[~5{^{Pi0o0eیsV?$HkwĐz7#"Es |f N,cp;#|m#xX{F/UfUB=~zh0}QVYiǐv_$UY2%kOo Uj9g2`7V>`~ǁ#ڽ@ t/н@)^30rRF=M+u"uA}Oai!5k)sHur"MA}ր%ב<0PSgmr~I^jdt}B~v e>:0<NVcV VOW1Y8) @'GC5IەU,=&93ÔG38|w 'qV}5yc?6ld1Vy0*C:b"6e:ј4¨ *F,C r5O]ke+0hVSY>Yp"+\ONT0Ţ<5ec!+Y)ꮪQ}^{`BZw̆0gAkd:_@} Z-lڌ`W7x6Ɂ8aKR!͉8TS&2YdKS jv6vRt91? dF-3MYUW ڎ%V*Gmzͮo"=Zw4]Mդ> y%#'ZZӈ "jnCK}tMǵ2TdZ]115_n6PKTΓzοXEYk5Yge.V܁sk^{^@ هu׎8K7n3̠Uf`\(eak-Xz`ֲ.` ͘fw^??olDDjSw!E.UwxHYB2ayLe_Խ~'zv V V8 ǭx)#jx9¹`5SC6ǴO+ ߪceƎ 񐴻+e)~(|JUyQƣ\9/aջIvTv/н@ t/н@D(G@q쟒 I9j/9&. _p ;5,ԶicI*,[D0)VKU۬#eWōl/?]OY{(.(˳'Ϩ9ñ!bD{ƔbC>XM3Z$I?XP)Ռ_qY Cq]T Gf'4KvvF8Ekl*׼3T##RW)NO)گlϻtvJ/q։Mt^{ 92e3e|h-a”*f86()8\ڭ 'f1DE44VtX0ETY*XPl1)Ys^U'TzH((:9{[y`}S^ qݑ6zܳ|jeY7z 2 εR1;{$iFE!ut(&=MZoL34&TlYr,VnʥU4b<*dVa_ZYX Ą VNk UqUA($^nvQ˟!3^JS}xN{8۔@ t/н@^ g^5TPiE;eLt.wJO QL'-D'r@'U*.Gi>ϫ0!91L\|~ 782A]zKMp-XojM+Qt}+WYSWS1YTfK6Hc=>T07cٟsWx$@F!jmdDjnO뷪j֝-|]T ,AE"· \xa\eA,f&^a\팣?M~AVT#85lۈ܌b~^{XOLfkT ѳg`̧45!j2 WWr)N2j֑<5|lܙd_v~Dg4ռ#)]b~zul`S\TQ.RJC **~lm0YYa δj'OUךNՏP݆k Q0hȲ^3Z5[Q(wh6l)=r𣏕7?} 2cFf9 ]Y#0*$\1sgVfA3h8<}lRդ-#ێ t/н@ t/@Uћ8=Y|)~m XRy E#"/v:2T >jT2KrkIҌZ2=O(oхL@ ׎\g0&[i' tM*\hWw_Xw}`PiMcAمD2fÑ]]`*5Ȭ(']TTݙժ@@vc+VʣV`I")P驲̱rtT&smBJ\Zї'[HMz.sXKu㥶6R>3T2#Dm'U, \ƽcJ4ÊreZ Q!9Vu8zop t/н@ ,T?赩h?7#dXȵ Y6]YI)ݴ6"cuT%;?r_bX<)K:״K~0XśQcA`ո#nOպ;od ag}vBř.uLbZ~5U-aΰ UuWvR:C]lT&1NQd=vfL`V:.acguWL岎 >kyXy)< ~ΣJ3. FD,xUeNjԐ41zͨz߬2B9I}0,ȭwQ|{^{R ʬ}qXѓr`=^{^{7u1K)"d|*ԃ ;3(M9+͎!JT1clH>[Ods*`J]2z㚡{34'{m iBsG~!zCFZXf 8CéCj:QҴc Vp/P#"*0(G2"ka8^~pT T*W,Iὑ'10G|;dw  SLύȍasCu\Zo=)W{j>U+z^=Xz {:5t/н@ t/н@UH3J9m ƓZ#%K`dKSWً?kǙNXGۂ 1"2ΪM== )+Z_bΧfROV\+٢گjQab'`|j_YAot+sB!TL+BҸ׽!Mw[bnIi ,YT{T'XSߙlט\UOJճG)͓:{YZE&MeYP)Ű@φ+&Hw>wR*7e%V¡CљjyN䲖,|+#;<}N0""iÈ/Ǜ t/н@ t/p'ZhNb: { )\μ^cCITq*_FWZh  0ND.8PT_VshD"$gW">7)f=tk-g)z9bZɭjx?>!aRV=>~N &x:qVJ13K 0Jpj5 RGɪ]%%WNvXS9e9aMP*՘-_)u=ugrd}jʮf!Oh߅*ܛU֑T,ȽYk#pB'JJ#xrNmc\coëՠ>4zK_%ũt5p:^{`U[XIvyF7>wKV9tagdzYP)z||M׹mSm?㇓?-ߛ}>S)J2i 첕Y#ѫ9{R}&te>yk6* w]…V"i2ސ1 8HBLbAT9)Lr%kLKBo&k.Y3[v\U21ժFVj*ceVBDTс׈mqeotGY|È;Y ؂( IVϕxvV'\t'2e{ݶ6bA(km9g{loQxYl\T cANQ upGBl 둼~a4o!њ&gl[՟Ft4Ł!goo67bT͈139&Hv@1.>ANsw?!=k;hObJ״WQKʴi#^{^M\bMzқ_TDy޶m<@ D(P_lLYɻ #cL&^?VO $ԿKکZ;-mhkg3bŪ}U)~U9W|Y5+1a󵒅_R[S1)j[ +x5;_3˕|M9kpXx"`d;^aeZiO.N 񍴷AkV0$mzfEW+կ^r./0BazK^{^ X+q2qẮ gOFEIymcBtGݝO9y>Vfl1&%C܃اzzz&נxbtn+TyF1"wd | PVXisj5&#T".R(Uv/fҙg)ygkef{&?p\^`KUګ^xU4Bx+Fا LžJmܕVR#$I)V=VaB^עe3mLJ僡yvsO_iZV_FpqI/v YiO9|쐮s]~!-mEBcTJTeTSÉiS&׸SuL<_SDWJύ0=+=hvqh2M׆_88QChׯÈALf6N\I3N^7H>zRш]}aXcq^{^{q}4z|ncO t/н@ 3>*R&]Whd.xƯo<=j:i#[3"F#<6_՟uxFnDڪ^^3K{4)`Ia!R*߯Q"sa|tP?0)shNV_q񕡆]Y`.umAV:/RB#;f*bAUczP}8@`9's#No8ͮA@E<ζ;7=2y5uS|P(/?b9UD 0.Kʊ@Fs4HչEI#fl5Gq_8n _q7**CDgF!Fd{^{Rߐ>fJaUc!bp\4SN uʝzC#RT>AQ@}^TB\ %]{Ë^aPYKU5V"+v$n1'[TLUC^*HXT#wM)GR:>ξ4 #TB :͝ZPq=0p{`x{jg4V͈-*\C%{$*Ņ^6=]U2BI/{ꙅ† |Ѿ{8R%S6V*T3a~Yzn{Ll*ZM3iv/н@ t/н@<"@ S ++38%h':È,py9z9쩿77,}IfSe0U$NMJ/TifMXAY#ځAV ,\)k5o ^UȘL0^9qsl%VP )IlrB#TQwx3<#1R[#uG /'Gma;r|ửamS \IVNlm:)f #EW}eu+t iͦNɹE=#;kw#͈&+?w Z;6p$&ӟ&vl  t/н@ t/%2-u)k8 GJVg矨-+HkA_G;Ū?BA_iN଼Ř׬%+Z O ZEl{ YscM#4/[aϬ$Q# qS 6 R/Mհzr Z,mTMWA.~uq}W*w%VNnsEx`8i#֎ gkˍ W ƳZŕee/0)bD%:bfB2-vwkqfq n'jff,"syj0B;\“7н@ t/н@;>C58=OyMQ_ذyfr7ͥdg%BX#U9J~i0g0"sHь 뽠+^ceoL!CWYf1{stȋWn zȞCK3cG\;,|oR;uuDp^2&Q2QWPY,ʥng=sCՇ\sT2<X ׃/{]9rIċ!WPOl4$U/.=%reut/н@ t/н Sa|]é\sFs f?)Ғ*Zߑ5)~O j\em/cl5R$iLgŤb) ѕ5^[M9uRŽ_Xu-|hd3eV#Q/J<(tJխ4Vy"{}Qѝ\( )F$pAMUqĔS1T~  E"q^_Qp`ױީQƬhB) W̧))Nhb ;bbdsk \fN): ԣ9Ujoz_vSrq5LC^Bլ:8J t/н@ t/PycWݐII'213<1i)\oI_H?b9uv[%lJ^}Vw0U&q%B%Wj?4 #Z sˣ.§fm~&EKu]tN_D"<*?cWX+~ ֊`/ A]fo⦖N{}ak#iz≟#[/áVU"y0Q,bϔy- UpԠr_T#M_Mf73v.{iWw>ߌ+_Lb^{^{̲;WnpUJ g;q?R܇/$!Dɮ/ <&4X/ԛ9rsTauY*ˣٿceE2ڕKqerP{ʪg)]c+8ֵ^7E\"e{'9.gV'YO>;1N"Yr@@~OŴum0fD!UFtԲ1Jnbtg\UTl12N-⨺<5T\w,o 8n'-l: FOKAƻx/v hF9N,Ц$"\(Z*tPҭMÙL~gx9!ʢn9(+:HPg KvnjL7tZ.J;jPQ<* yagȼ>ތ:7\49'fYH=HY^{^{)Wsɂt#+q>xc k+e_Lu^1Mʺ9bydQS2t!i-`ָ#ЉF/Ԭ+Z~i\cXA5pF^n;E G\eTX_2>biXqF/?WW5) >z=o#-@#CxVWߢpF_Hh92̐&u +`i]PaeO^t՝/CdN#*^>|jr]h2]kC!w;lI[@&)W'S}t\G|.L31fFV֮^{@Z)z. <zǥsj*0pǪ8+t+Xi*!puҐ9j lԭzǺ/IV]&䴊7ӔV¡Ѓ|" [G> 0UAW3|"/\HlrjLiG!mzرӤ-^: KlUlǠOr_lYqa4a)$;OmD+TXb .jm2g}Z!e$*[[-"3Q?CL6mO|ÈK#lZeڇa7#Tf폝Cڍ=X t/н@ LߺOV?k{'TQzP-|ߟ@/ &i? K!Cϑ-TXR֔Eo![Z E/pbS);8'TO+19%i3yT#58lW9y,UNCԬGo;Lzo'-}p?'v+ tr\ϪXFRmMJsEkբTMmzze l1mƍn#;kcr"p]5-6~^T#du)_=Q< t/н@ t/>/v wp6BИp 1KUی`(2܏#|ŜOW~dlx:DZo޽*֨{R٨ز-usFLO(nV?Ɋkn!giZ+(εR ZFtxƚKLxa~VJsV HЎ U[}j]\k_# pgP6PA"[Y{tz̊V&ËaDvʑ#bG~86t/н@ t/н@2+-?Nd'd_#%xƚ1giVz(?Z_guV?x ?ͯ?:ŷ'#C^x_S&1eըKaE[sAIЩW aNN%b'+Q*~V[Qcq[ccQEh#yK5mSCkX&zuDva P ;,|\;[aŖş -T Mqs`ZP5/dVmLb֚*+w ym^{^`U:켮yFv ;"+5m\=ΑC\:juD~7݋H*#B> 0k'p vd\3|u`hS&ٸ Uz'3I-`N ӺΠaUѪ"66oOX>GgV"Q0y|N>$)תWե#ۼjSYk#L Xv)sNWs"u ZٽOԜ;#p3Uȫֵ2Gh@ďWiɃnB鶅1CΐnI5y ^{^{)/k'NοS ]<\j5&>ۈQctrLt̽iynZ$4pZ×Y#B.]$E;rjM~72fi71T#BeE/4wJ)w'[@eMԺ=0BՃQg(2+l{ PO,"g<53uV>ͨLVj-JUg*Oڈahw7CѡKl'dPA>շsT5k}.{7m UgaN EN Um',+~NBtۛx#~#W3^{~+zQ!U>#"s #4VnYREG5;Jr>b05?҈Y5JNۈ[Z{`J << F{[\~ X1 s׵@dsI5Wy!'a֛]c%~q%Dq8DUW&ǑVe=3cAkcjkPzlW%k0]v屁#ql69!6X/"sJ5_SԑL{Ӿw#|A;3oYͺh]G9R}D~R*K*3Ez,XPst/н@ t/н_9ՕJןij礑y5TkiF=$>\Q k:;0D]?g1Ŷnnk/}$E j˦T9.09W&*֘kܘgAM#+1jUE;j&D k}N&A[s~gȻ&}I(⹦ <'qMEɒ/LtE$P8 VmmJuzEQ;F!+T*_}eH_}A6([^Q-} t/н@ {FlR$e@02vkSxS6+ZNO+Lj))Y5&"N̳c w"9Xؓ"B Qd[raѵ$bym_A,:̸aqCf-}VR)v|O%o[X h.)j{u)>1{*֬!ţ;''VrZЇĈN2{\jO'{^yi}NPxN)EɷV:S'u9KGt">aMuk&1xwcC ¦)VbI+ a^{^ a6Xը_96BĆ||ܛ*/#Τʙ>?~5EָT5ZE)úҩ-51Gf؁hA(v@.fTn5JVrI[D+hUӕ,8xYޢ5?0/)͌P&QV=[rZ;o;ä4YQ},J)kۨyb`Yȓ*- <㟬,siB^w(  3w z {VH幠v:)f,M[Z^{HޡR8()GU)q?'ܹLYݔyUY $f i];"Sϗ"fXNp\vʙa6T)ѼT')Kˏ^Y8di=*HqJsqqKfPhQLevT{Y#"ov޷MqEbh!4>kÈ{ ]{ YJ&=vK@?/w <="Bdzn>jBvϰpH{dkTKkeYdDTBB t/н@ R-V7Wyty_娹d/py_jik s\ˤJsea{ÓŠՓ1Zb8\˚_xMVU]r)_w3ԜsO~[&ٻ*ltqYӕ-Qt3jaqHs(K*u[dgHU _1 B%[e+4X'OTF8ۚ+#BƶX*'N61,RQy>|@gB-glٮɏWԉR ܉ ʌPE\8dÃ'xkxzosF$ʘaΞnFj7EoNuA}G&.DqSh(~EړSf%Nbӽ@ t/н@AzʜϬ;>ތ9 Vj'_eX11DV1g|0/qM2٥_߫#{1d7}qjg.=)UɬΣ#!ۢ>#B'q sÙ@F߯jD$S*j2vuQͩQsAu?u*)T`o ~W'vW=־H!*_uqFhm.5q̱^{6dZkj+׃9G3_?3__";r@U'g4kXթ=ZۉC ^1+ OxUk_ ]T #b_rN֔o!ȞC:$ 7k;otA\ yFJW{k{F1S'bD)aoܧ*"*AcbV<6PH|1ȷ^<Ȏ^z1H<:Lq5I6|SM)9ТŬR`.I95/] > >> endobj 282 0 obj << /D [280 0 R /XYZ 89.292 765.769 null] >> endobj 283 0 obj << /D [280 0 R /XYZ 133.945 321.099 null] >> endobj 279 0 obj << /Font << /F8 79 0 R /F75 96 0 R >> /XObject << /Im9 273 0 R >> /ProcSet [ /PDF /Text /ImageC ] >> endobj 288 0 obj << /Length 2403 /Filter /FlateDecode >> stream xَ]_qsȱ vċ29ZrVrW #cw%飺ꮪGe @-Z#ÓEQerѓ4{):AܕI1tDI{l~+vH +5{!&{z;}VE0mI옥',QF~:O$`oA9_1 g{ސ?9)δ]g? ߛK~]:6vKbj+󦧺TC!rg;U 0kvTkЍoyrׯEϰڙ4ߗHOlHboĚ$JX&C./5m` h{ /&v A=\+һ]D±dRw!*4o"p#|?-9KSd"bWa+ѹ{H kEt2久dd]d.~c {F_˃uϠ p˃hJa .DW hH#F _ԝvGV[HyV / E_ vd&:Q'tO{V#)a[x}Sf%Bp3ڟoþD:gQs^Qe*C| KЊ! :wV>EVh n;2Oi?EF]#01nƾ|QUmc8M<Ƽе.7^813|-S!AVU_@O#ut]Hdy :Bբ(1`S#M*IS-(CM0魧|2 :{S>nUigV!yɘ@Wzd2|/"p=@/Et@EnfZJ)ѥz5N8'e~XC=Ae^v9 =Ͽ̍<1t\pVY$ftKfg)C](㹰*sAC^ g*.Ray0G5A~zYL/.q[3vyq7&c=i?𲧔I>쓐vr^KN]FoB-C.+:k:ฟ8^TStǗ<"z4iF?">0;Yq@_h!΢?(ٿ{C%=2oCbj60o4Ia}IU&_B)_'= T,8&_xendstream endobj 287 0 obj << /Type /Page /Contents 288 0 R /Resources 286 0 R /MediaBox [0 0 595.276 841.89] /Parent 278 0 R /Annots [ 290 0 R ] >> endobj 290 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [438.032 680.15 445.006 690.989] /Subtype /Link /A << /S /GoTo /D (figure.8) >> >> endobj 289 0 obj << /D [287 0 R /XYZ 89.292 765.769 null] >> endobj 46 0 obj << /D [287 0 R /XYZ 89.292 654.525 null] >> endobj 286 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F39 57 0 R /F80 106 0 R >> /ProcSet [ /PDF /Text ] >> endobj 293 0 obj << /Length 254 /Filter /FlateDecode >> stream xMn0 w=Gy"RԱGc `Ď}R@ !?R惀F+[ PUUep\eݝիm@ ϓ88tM~n_e@}*U)n?>Ay9]Ei4##y95kOi+Ge oH$A=3gq%5H{*: ڗ_VaǍ2Tn8*9@(SdT*if}endstream endobj 292 0 obj << /Type /Page /Contents 293 0 R /Resources 291 0 R /MediaBox [0 0 595.276 841.89] /Parent 278 0 R >> endobj 285 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./ShortRead_and_HilbertVis-tssPlot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 296 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 288 324] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 297 0 R >> /ExtGState << >>>> /Length 298 0 R >> stream q Q q 59.04 73.44 198.72 191.52 re W n 1.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 80.53 m 66.45 80.58 l 66.49 80.60 l 66.54 80.59 l 66.58 80.59 l 66.63 80.62 l 66.68 80.63 l 66.72 80.62 l 66.77 80.60 l 66.81 80.61 l 66.86 80.63 l 66.91 80.65 l 66.95 80.64 l 67.00 80.65 l 67.04 80.61 l 67.09 80.63 l 67.14 80.63 l 67.18 80.64 l 67.23 80.64 l 67.27 80.67 l 67.32 80.67 l 67.37 80.68 l 67.41 80.70 l 67.46 80.73 l 67.50 80.75 l 67.55 80.75 l 67.60 80.73 l 67.64 80.74 l 67.69 80.76 l 67.73 80.74 l 67.78 80.74 l 67.83 80.73 l 67.87 80.72 l 67.92 80.70 l 67.96 80.72 l 68.01 80.74 l 68.06 80.71 l 68.10 80.71 l 68.15 80.72 l 68.19 80.74 l 68.24 80.72 l 68.29 80.72 l 68.33 80.73 l 68.38 80.73 l 68.42 80.72 l 68.47 80.71 l 68.52 80.73 l 68.56 80.73 l 68.61 80.72 l 68.65 80.73 l 68.70 80.70 l 68.75 80.73 l 68.79 80.79 l 68.84 80.81 l 68.88 80.82 l 68.93 80.82 l 68.98 80.81 l 69.02 80.81 l 69.07 80.83 l 69.11 80.81 l 69.16 80.81 l 69.21 80.79 l 69.25 80.78 l 69.30 80.80 l 69.34 80.81 l 69.39 80.79 l 69.44 80.80 l 69.48 80.80 l 69.53 80.82 l 69.57 80.80 l 69.62 80.81 l 69.67 80.82 l 69.71 80.82 l 69.76 80.84 l 69.80 80.85 l 69.85 80.86 l 69.90 80.87 l 69.94 80.88 l 69.99 80.92 l 70.03 80.93 l 70.08 80.93 l 70.13 80.93 l 70.17 80.88 l 70.22 80.89 l 70.26 80.88 l 70.31 80.89 l 70.36 80.86 l 70.40 80.88 l 70.45 80.91 l 70.49 80.89 l 70.54 80.87 l 70.59 80.89 l 70.63 80.90 l 70.68 80.92 l 70.72 80.93 l 70.77 80.95 l 70.82 80.99 l 70.86 80.98 l 70.91 81.00 l 70.95 80.98 l 71.00 80.99 l 71.05 81.00 l 71.09 81.03 l 71.14 81.02 l 71.18 81.04 l 71.23 81.03 l 71.28 81.05 l 71.32 81.04 l 71.37 81.03 l 71.41 81.02 l 71.46 81.01 l 71.51 81.02 l 71.55 81.02 l 71.60 81.01 l 71.64 81.01 l 71.69 81.03 l 71.74 81.02 l 71.78 81.04 l 71.83 81.04 l 71.87 81.04 l 71.92 81.03 l 71.97 81.04 l 72.01 81.04 l 72.06 81.04 l 72.10 81.05 l 72.15 81.05 l 72.20 81.07 l 72.24 81.06 l 72.29 81.10 l 72.33 81.11 l 72.38 81.12 l 72.43 81.11 l 72.47 81.13 l 72.52 81.14 l 72.56 81.15 l 72.61 81.19 l 72.66 81.18 l 72.70 81.16 l 72.75 81.19 l 72.79 81.19 l 72.84 81.22 l 72.89 81.22 l 72.93 81.22 l 72.98 81.23 l 73.02 81.26 l 73.07 81.31 l 73.12 81.33 l 73.16 81.33 l 73.21 81.36 l 73.25 81.33 l 73.30 81.34 l 73.35 81.37 l 73.39 81.35 l 73.44 81.35 l 73.48 81.31 l 73.53 81.33 l 73.58 81.31 l 73.62 81.37 l 73.67 81.34 l 73.71 81.37 l 73.76 81.38 l 73.81 81.37 l 73.85 81.35 l 73.90 81.33 l 73.94 81.33 l 73.99 81.35 l 74.04 81.35 l 74.08 81.36 l 74.13 81.35 l 74.17 81.33 l 74.22 81.34 l 74.27 81.34 l 74.31 81.30 l 74.36 81.30 l 74.40 81.33 l 74.45 81.32 l 74.50 81.35 l 74.54 81.32 l 74.59 81.31 l 74.63 81.30 l 74.68 81.28 l 74.73 81.27 l 74.77 81.25 l 74.82 81.26 l 74.86 81.32 l 74.91 81.28 l 74.96 81.25 l 75.00 81.24 l 75.05 81.27 l 75.09 81.27 l 75.14 81.24 l 75.19 81.25 l 75.23 81.26 l 75.28 81.28 l 75.32 81.26 l 75.37 81.26 l 75.42 81.29 l 75.46 81.33 l 75.51 81.37 l 75.55 81.41 l 75.60 81.40 l 75.65 81.40 l 75.69 81.41 l 75.74 81.44 l 75.78 81.43 l 75.83 81.44 l 75.88 81.45 l 75.92 81.43 l 75.97 81.39 l 76.01 81.40 l 76.06 81.46 l 76.11 81.46 l 76.15 81.48 l 76.20 81.45 l 76.24 81.47 l 76.29 81.47 l 76.34 81.47 l 76.38 81.48 l 76.43 81.47 l 76.47 81.47 l 76.52 81.48 l 76.57 81.56 l 76.61 81.54 l 76.66 81.55 l 76.70 81.54 l 76.75 81.56 l 76.80 81.56 l 76.84 81.54 l 76.89 81.53 l 76.93 81.53 l 76.98 81.55 l 77.03 81.55 l 77.07 81.56 l 77.12 81.61 l 77.16 81.62 l 77.21 81.66 l 77.26 81.66 l 77.30 81.64 l 77.35 81.64 l 77.39 81.65 l 77.44 81.65 l 77.49 81.67 l 77.53 81.67 l 77.58 81.65 l 77.62 81.67 l 77.67 81.66 l 77.72 81.69 l 77.76 81.72 l 77.81 81.74 l 77.85 81.72 l 77.90 81.71 l 77.95 81.72 l 77.99 81.71 l 78.04 81.70 l 78.08 81.71 l 78.13 81.71 l 78.18 81.72 l 78.22 81.76 l 78.27 81.76 l 78.31 81.76 l 78.36 81.76 l 78.41 81.76 l 78.45 81.76 l 78.50 81.75 l 78.54 81.77 l 78.59 81.80 l 78.64 81.80 l 78.68 81.83 l 78.73 81.83 l 78.77 81.85 l 78.82 81.84 l 78.87 81.85 l 78.91 81.83 l 78.96 81.85 l 79.00 81.85 l 79.05 81.86 l 79.10 81.87 l 79.14 81.90 l 79.19 81.89 l 79.23 81.90 l 79.28 81.87 l 79.33 81.86 l 79.37 81.87 l 79.42 81.87 l 79.46 81.88 l 79.51 81.90 l 79.56 81.91 l 79.60 81.92 l 79.65 81.94 l 79.69 81.94 l 79.74 81.94 l 79.79 81.94 l 79.83 81.98 l 79.88 82.00 l 79.92 82.01 l 79.97 82.01 l 80.02 82.01 l 80.06 82.04 l 80.11 82.09 l 80.15 82.11 l 80.20 82.09 l 80.25 82.10 l 80.29 82.11 l 80.34 82.11 l 80.38 82.12 l 80.43 82.09 l 80.48 82.10 l 80.52 82.11 l 80.57 82.12 l 80.61 82.12 l 80.66 82.14 l 80.71 82.14 l 80.75 82.15 l 80.80 82.15 l 80.84 82.16 l 80.89 82.17 l 80.94 82.18 l 80.98 82.17 l 81.03 82.16 l 81.07 82.15 l 81.12 82.11 l 81.17 82.13 l 81.21 82.13 l 81.26 82.16 l 81.30 82.15 l 81.35 82.13 l 81.40 82.12 l 81.44 82.13 l 81.49 82.12 l 81.53 82.11 l 81.58 82.06 l 81.63 82.05 l 81.67 82.05 l 81.72 82.05 l 81.76 82.07 l 81.81 82.09 l 81.86 82.06 l 81.90 82.06 l 81.95 82.06 l 81.99 82.07 l 82.04 82.04 l 82.09 82.04 l 82.13 82.02 l 82.18 82.02 l 82.22 82.02 l 82.27 82.00 l 82.32 82.00 l 82.36 82.02 l 82.41 82.05 l 82.45 82.03 l 82.50 82.02 l 82.55 82.03 l 82.59 82.04 l 82.64 82.04 l 82.68 82.03 l 82.73 82.02 l 82.78 82.07 l 82.82 82.09 l 82.87 82.10 l 82.91 82.07 l 82.96 82.07 l 83.01 82.05 l 83.05 82.06 l 83.10 82.07 l 83.14 82.08 l 83.19 82.09 l 83.24 82.11 l 83.28 82.11 l 83.33 82.13 l 83.37 82.11 l 83.42 82.13 l 83.47 82.14 l 83.51 82.15 l 83.56 82.14 l 83.60 82.16 l 83.65 82.17 l 83.70 82.19 l 83.74 82.20 l 83.79 82.19 l 83.83 82.20 l 83.88 82.18 l 83.93 82.13 l 83.97 82.08 l 84.02 82.05 l 84.06 82.04 l 84.11 82.06 l 84.16 82.06 l 84.20 82.07 l 84.25 82.06 l 84.29 82.07 l 84.34 82.11 l 84.39 82.11 l 84.43 82.14 l 84.48 82.15 l 84.52 82.14 l 84.57 82.10 l 84.62 82.15 l 84.66 82.13 l 84.71 82.11 l 84.75 82.13 l 84.80 82.12 l 84.85 82.11 l 84.89 82.12 l 84.94 82.16 l 84.98 82.15 l 85.03 82.14 l 85.08 82.09 l 85.12 82.09 l 85.17 82.08 l 85.21 82.07 l 85.26 82.11 l 85.31 82.11 l 85.35 82.10 l 85.40 82.12 l 85.44 82.13 l 85.49 82.14 l 85.54 82.14 l 85.58 82.12 l 85.63 82.09 l 85.67 82.10 l 85.72 82.07 l 85.77 82.06 l 85.81 82.03 l 85.86 82.02 l 85.90 82.05 l 85.95 82.09 l 86.00 82.11 l 86.04 82.11 l 86.09 82.14 l 86.13 82.21 l 86.18 82.23 l 86.23 82.21 l 86.27 82.24 l 86.32 82.23 l 86.36 82.22 l 86.41 82.24 l 86.46 82.25 l 86.50 82.25 l 86.55 82.29 l 86.59 82.32 l 86.64 82.33 l 86.69 82.30 l 86.73 82.29 l 86.78 82.29 l 86.82 82.28 l 86.87 82.29 l 86.92 82.28 l 86.96 82.28 l 87.01 82.26 l 87.05 82.28 l 87.10 82.25 l 87.15 82.26 l 87.19 82.25 l 87.24 82.26 l 87.28 82.27 l 87.33 82.29 l 87.38 82.28 l 87.42 82.29 l 87.47 82.28 l 87.51 82.30 l 87.56 82.28 l 87.61 82.29 l 87.65 82.27 l 87.70 82.31 l 87.74 82.30 l 87.79 82.33 l 87.84 82.31 l 87.88 82.36 l 87.93 82.35 l 87.97 82.37 l 88.02 82.34 l 88.07 82.32 l 88.11 82.32 l 88.16 82.31 l 88.20 82.27 l 88.25 82.29 l 88.30 82.30 l 88.34 82.29 l 88.39 82.31 l 88.43 82.30 l 88.48 82.31 l 88.53 82.33 l 88.57 82.30 l 88.62 82.26 l 88.66 82.24 l 88.71 82.25 l 88.76 82.26 l 88.80 82.25 l 88.85 82.25 l 88.89 82.28 l 88.94 82.31 l 88.99 82.32 l 89.03 82.33 l 89.08 82.34 l 89.12 82.35 l 89.17 82.33 l 89.22 82.34 l 89.26 82.36 l 89.31 82.33 l 89.35 82.33 l 89.40 82.31 l 89.45 82.31 l 89.49 82.32 l 89.54 82.33 l 89.58 82.35 l 89.63 82.33 l 89.68 82.33 l 89.72 82.31 l 89.77 82.27 l 89.81 82.27 l 89.86 82.28 l 89.91 82.27 l 89.95 82.25 l 90.00 82.25 l 90.04 82.25 l 90.09 82.24 l 90.14 82.24 l 90.18 82.26 l 90.23 82.26 l 90.27 82.25 l 90.32 82.24 l 90.37 82.30 l 90.41 82.30 l 90.46 82.30 l 90.50 82.33 l 90.55 82.35 l 90.60 82.39 l 90.64 82.35 l 90.69 82.41 l 90.73 82.38 l 90.78 82.39 l 90.83 82.40 l 90.87 82.40 l 90.92 82.40 l 90.96 82.43 l 91.01 82.43 l 91.06 82.45 l 91.10 82.45 l 91.15 82.45 l 91.19 82.52 l 91.24 82.53 l 91.29 82.50 l 91.33 82.50 l 91.38 82.50 l 91.42 82.54 l 91.47 82.53 l 91.52 82.54 l 91.56 82.54 l 91.61 82.54 l 91.65 82.55 l 91.70 82.57 l 91.75 82.58 l 91.79 82.59 l 91.84 82.57 l 91.88 82.57 l 91.93 82.55 l 91.98 82.54 l 92.02 82.53 l 92.07 82.54 l 92.11 82.53 l 92.16 82.53 l 92.21 82.51 l 92.25 82.51 l 92.30 82.50 l 92.34 82.53 l 92.39 82.53 l 92.44 82.56 l 92.48 82.59 l 92.53 82.61 l 92.57 82.60 l 92.62 82.59 l 92.67 82.60 l 92.71 82.62 l 92.76 82.60 l 92.80 82.61 l 92.85 82.59 l 92.90 82.58 l 92.94 82.54 l 92.99 82.52 l 93.03 82.51 l 93.08 82.57 l 93.13 82.51 l 93.17 82.50 l 93.22 82.56 l 93.26 82.54 l 93.31 82.54 l 93.36 82.54 l 93.40 82.54 l 93.45 82.52 l 93.49 82.53 l 93.54 82.51 l 93.59 82.51 l 93.63 82.53 l 93.68 82.50 l 93.72 82.49 l 93.77 82.48 l 93.82 82.49 l 93.86 82.55 l 93.91 82.55 l 93.95 82.54 l 94.00 82.55 l 94.05 82.53 l 94.09 82.51 l 94.14 82.52 l 94.18 82.51 l 94.23 82.52 l 94.28 82.54 l 94.32 82.55 l 94.37 82.54 l 94.41 82.54 l 94.46 82.51 l 94.51 82.51 l 94.55 82.51 l 94.60 82.50 l 94.64 82.44 l 94.69 82.45 l 94.74 82.45 l 94.78 82.42 l 94.83 82.42 l 94.87 82.46 l 94.92 82.44 l 94.97 82.43 l 95.01 82.42 l 95.06 82.39 l 95.10 82.40 l 95.15 82.40 l 95.20 82.45 l 95.24 82.46 l 95.29 82.50 l 95.33 82.53 l 95.38 82.51 l 95.43 82.52 l 95.47 82.51 l 95.52 82.54 l 95.56 82.54 l 95.61 82.54 l 95.66 82.56 l 95.70 82.59 l 95.75 82.58 l 95.79 82.58 l 95.84 82.58 l 95.89 82.58 l 95.93 82.58 l 95.98 82.55 l 96.02 82.53 l 96.07 82.54 l 96.12 82.53 l 96.16 82.53 l 96.21 82.49 l 96.25 82.50 l 96.30 82.49 l 96.35 82.53 l 96.39 82.51 l 96.44 82.53 l 96.48 82.52 l 96.53 82.59 l 96.58 82.62 l 96.62 82.61 l 96.67 82.60 l 96.71 82.62 l 96.76 82.62 l 96.81 82.61 l 96.85 82.60 l 96.90 82.58 l 96.94 82.57 l 96.99 82.56 l 97.04 82.57 l 97.08 82.57 l 97.13 82.57 l 97.17 82.56 l 97.22 82.56 l 97.27 82.57 l 97.31 82.61 l 97.36 82.63 l 97.40 82.66 l 97.45 82.67 l 97.50 82.66 l 97.54 82.64 l 97.59 82.64 l 97.63 82.62 l 97.68 82.61 l 97.73 82.61 l 97.77 82.58 l 97.82 82.61 l 97.86 82.60 l 97.91 82.61 l 97.96 82.62 l 98.00 82.62 l 98.05 82.63 l 98.09 82.63 l 98.14 82.67 l 98.19 82.71 l 98.23 82.72 l 98.28 82.70 l 98.32 82.72 l 98.37 82.72 l 98.42 82.75 l 98.46 82.80 l 98.51 82.81 l 98.55 82.82 l 98.60 82.84 l 98.65 82.86 l 98.69 82.85 l 98.74 82.83 l 98.78 82.83 l 98.83 82.82 l 98.88 82.80 l 98.92 82.78 l 98.97 82.79 l 99.01 82.78 l 99.06 82.78 l 99.11 82.76 l 99.15 82.78 l 99.20 82.73 l 99.24 82.74 l 99.29 82.74 l 99.34 82.72 l 99.38 82.70 l 99.43 82.70 l 99.47 82.69 l 99.52 82.70 l 99.57 82.73 l 99.61 82.70 l 99.66 82.72 l 99.70 82.68 l 99.75 82.67 l 99.80 82.65 l 99.84 82.65 l 99.89 82.64 l 99.93 82.65 l 99.98 82.67 l 100.03 82.68 l 100.07 82.69 l 100.12 82.69 l 100.16 82.70 l 100.21 82.67 l 100.26 82.65 l 100.30 82.65 l 100.35 82.65 l 100.39 82.63 l 100.44 82.63 l 100.49 82.64 l 100.53 82.66 l 100.58 82.67 l 100.62 82.68 l 100.67 82.69 l 100.72 82.68 l 100.76 82.67 l 100.81 82.66 l 100.85 82.65 l 100.90 82.69 l 100.95 82.67 l 100.99 82.65 l 101.04 82.64 l 101.08 82.64 l 101.13 82.64 l 101.18 82.64 l 101.22 82.64 l 101.27 82.66 l 101.31 82.63 l 101.36 82.61 l 101.41 82.65 l 101.45 82.67 l 101.50 82.69 l 101.54 82.70 l 101.59 82.68 l 101.64 82.72 l 101.68 82.75 l 101.73 82.72 l 101.77 82.75 l 101.82 82.77 l 101.87 82.76 l 101.91 82.77 l 101.96 82.77 l 102.00 82.80 l 102.05 82.80 l 102.10 82.80 l 102.14 82.80 l 102.19 82.81 l 102.23 82.84 l 102.28 82.84 l 102.33 82.84 l 102.37 82.80 l 102.42 82.83 l 102.46 82.85 l 102.51 82.83 l 102.56 82.85 l 102.60 82.88 l 102.65 82.88 l 102.69 82.91 l 102.74 82.93 l 102.79 82.90 l 102.83 82.92 l 102.88 82.94 l 102.92 82.95 l 102.97 82.95 l 103.02 82.95 l 103.06 82.95 l 103.11 82.97 l 103.15 82.96 l 103.20 82.95 l 103.25 82.98 l 103.29 82.98 l 103.34 82.96 l 103.38 82.96 l 103.43 82.97 l 103.48 83.01 l 103.52 83.07 l 103.57 83.07 l 103.61 83.07 l 103.66 83.07 l 103.71 83.04 l 103.75 83.04 l 103.80 83.05 l 103.84 83.04 l 103.89 83.08 l 103.94 83.07 l 103.98 83.09 l 104.03 83.08 l 104.07 83.09 l 104.12 83.13 l 104.17 83.12 l 104.21 83.08 l 104.26 83.12 l 104.30 83.11 l 104.35 83.10 l 104.40 83.13 l 104.44 83.17 l 104.49 83.20 l 104.53 83.20 l 104.58 83.23 l 104.63 83.27 l 104.67 83.28 l 104.72 83.28 l 104.76 83.26 l 104.81 83.26 l 104.86 83.24 l 104.90 83.27 l 104.95 83.25 l 104.99 83.24 l 105.04 83.22 l 105.09 83.21 l 105.13 83.23 l 105.18 83.25 l 105.22 83.24 l 105.27 83.24 l 105.32 83.22 l 105.36 83.22 l 105.41 83.22 l 105.45 83.25 l 105.50 83.28 l 105.55 83.25 l 105.59 83.24 l 105.64 83.26 l 105.68 83.27 l 105.73 83.30 l 105.78 83.28 l 105.82 83.25 l 105.87 83.25 l 105.91 83.20 l 105.96 83.20 l 106.01 83.25 l 106.05 83.26 l 106.10 83.24 l 106.14 83.24 l 106.19 83.27 l 106.24 83.27 l 106.28 83.32 l 106.33 83.32 l 106.37 83.34 l 106.42 83.32 l 106.47 83.35 l 106.51 83.38 l 106.56 83.35 l 106.60 83.36 l 106.65 83.35 l 106.70 83.34 l 106.74 83.38 l 106.79 83.40 l 106.83 83.43 l 106.88 83.44 l 106.93 83.42 l 106.97 83.38 l 107.02 83.38 l 107.06 83.40 l 107.11 83.40 l 107.16 83.39 l 107.20 83.40 l 107.25 83.42 l 107.29 83.43 l 107.34 83.43 l 107.39 83.42 l 107.43 83.44 l 107.48 83.47 l 107.52 83.46 l 107.57 83.46 l 107.62 83.45 l 107.66 83.46 l 107.71 83.47 l 107.75 83.50 l 107.80 83.52 l 107.85 83.56 l 107.89 83.60 l 107.94 83.58 l 107.98 83.60 l 108.03 83.60 l 108.08 83.58 l 108.12 83.63 l 108.17 83.64 l 108.21 83.62 l 108.26 83.61 l 108.31 83.64 l 108.35 83.64 l 108.40 83.67 l 108.44 83.66 l 108.49 83.66 l 108.54 83.68 l 108.58 83.67 l 108.63 83.67 l 108.67 83.66 l 108.72 83.71 l 108.77 83.70 l 108.81 83.70 l 108.86 83.73 l 108.90 83.76 l 108.95 83.77 l 109.00 83.75 l 109.04 83.76 l 109.09 83.74 l 109.13 83.76 l 109.18 83.81 l 109.23 83.81 l 109.27 83.85 l 109.32 83.87 l 109.36 83.88 l 109.41 83.89 l 109.46 83.88 l 109.50 83.89 l 109.55 83.91 l 109.59 83.92 l 109.64 83.91 l 109.69 83.97 l 109.73 83.95 l 109.78 83.94 l 109.82 83.95 l 109.87 83.97 l 109.92 83.95 l 109.96 83.97 l 110.01 84.00 l 110.05 84.02 l 110.10 84.03 l 110.15 84.02 l 110.19 83.99 l 110.24 83.98 l 110.28 83.97 l 110.33 83.99 l 110.38 84.02 l 110.42 84.03 l 110.47 84.01 l 110.51 84.02 l 110.56 84.04 l 110.61 84.04 l 110.65 84.03 l 110.70 84.09 l 110.74 84.08 l 110.79 84.10 l 110.84 84.10 l 110.88 84.10 l 110.93 84.08 l 110.97 84.07 l 111.02 84.07 l 111.07 84.10 l 111.11 84.11 l 111.16 84.12 l 111.20 84.08 l 111.25 84.09 l 111.30 84.09 l 111.34 84.11 l 111.39 84.10 l 111.43 84.06 l 111.48 84.07 l 111.53 84.08 l 111.57 84.10 l 111.62 84.10 l 111.66 84.09 l 111.71 84.07 l 111.76 84.08 l 111.80 84.08 l 111.85 84.11 l 111.89 84.08 l 111.94 84.13 l 111.99 84.12 l 112.03 84.11 l 112.08 84.12 l 112.12 84.11 l 112.17 84.13 l 112.22 84.14 l 112.26 84.14 l 112.31 84.12 l 112.35 84.13 l 112.40 84.13 l 112.45 84.14 l 112.49 84.15 l 112.54 84.17 l 112.58 84.14 l 112.63 84.15 l 112.68 84.14 l 112.72 84.22 l 112.77 84.19 l 112.81 84.20 l 112.86 84.23 l 112.91 84.25 l 112.95 84.23 l 113.00 84.23 l 113.04 84.24 l 113.09 84.22 l 113.14 84.18 l 113.18 84.19 l 113.23 84.20 l 113.27 84.24 l 113.32 84.24 l 113.37 84.26 l 113.41 84.21 l 113.46 84.24 l 113.50 84.29 l 113.55 84.27 l 113.60 84.25 l 113.64 84.23 l 113.69 84.25 l 113.73 84.26 l 113.78 84.25 l 113.83 84.28 l 113.87 84.28 l 113.92 84.34 l 113.96 84.36 l 114.01 84.34 l 114.06 84.43 l 114.10 84.46 l 114.15 84.47 l 114.19 84.49 l 114.24 84.45 l 114.29 84.47 l 114.33 84.49 l 114.38 84.50 l 114.42 84.53 l 114.47 84.54 l 114.52 84.53 l 114.56 84.55 l 114.61 84.56 l 114.65 84.58 l 114.70 84.58 l 114.75 84.63 l 114.79 84.62 l 114.84 84.62 l 114.88 84.62 l 114.93 84.66 l 114.98 84.66 l 115.02 84.63 l 115.07 84.65 l 115.11 84.66 l 115.16 84.68 l 115.21 84.69 l 115.25 84.67 l 115.30 84.68 l 115.34 84.65 l 115.39 84.65 l 115.44 84.70 l 115.48 84.74 l 115.53 84.76 l 115.57 84.76 l 115.62 84.75 l 115.67 84.79 l 115.71 84.78 l 115.76 84.81 l 115.80 84.82 l 115.85 84.82 l 115.90 84.81 l 115.94 84.80 l 115.99 84.79 l 116.03 84.79 l 116.08 84.85 l 116.13 84.85 l 116.17 84.86 l 116.22 84.84 l 116.26 84.82 l 116.31 84.80 l 116.36 84.77 l 116.40 84.76 l 116.45 84.80 l 116.49 84.79 l 116.54 84.77 l 116.59 84.79 l 116.63 84.77 l 116.68 84.76 l 116.72 84.77 l 116.77 84.80 l 116.82 84.79 l 116.86 84.81 l 116.91 84.81 l 116.95 84.80 l 117.00 84.84 l 117.05 84.83 l 117.09 84.85 l 117.14 84.87 l 117.18 84.92 l 117.23 84.91 l 117.28 84.91 l 117.32 84.94 l 117.37 84.94 l 117.41 84.94 l 117.46 84.99 l 117.51 84.98 l 117.55 84.98 l 117.60 85.00 l 117.64 85.00 l 117.69 84.98 l 117.74 84.99 l 117.78 84.97 l 117.83 84.99 l 117.87 85.00 l 117.92 85.00 l 117.97 85.07 l 118.01 85.09 l 118.06 85.06 l 118.10 85.07 l 118.15 85.11 l 118.20 85.11 l 118.24 85.11 l 118.29 85.11 l 118.33 85.10 l 118.38 85.10 l 118.43 85.11 l 118.47 85.12 l 118.52 85.10 l 118.56 85.11 l 118.61 85.09 l 118.66 85.11 l 118.70 85.13 l 118.75 85.16 l 118.79 85.16 l 118.84 85.13 l 118.89 85.15 l 118.93 85.15 l 118.98 85.15 l 119.02 85.13 l 119.07 85.14 l 119.12 85.16 l 119.16 85.18 l 119.21 85.14 l 119.25 85.20 l 119.30 85.17 l 119.35 85.18 l 119.39 85.20 l 119.44 85.22 l 119.48 85.23 l 119.53 85.25 l 119.58 85.23 l 119.62 85.26 l 119.67 85.26 l 119.71 85.32 l 119.76 85.32 l 119.81 85.33 l 119.85 85.36 l 119.90 85.39 l 119.94 85.40 l 119.99 85.40 l 120.04 85.37 l 120.08 85.42 l 120.13 85.46 l 120.17 85.49 l 120.22 85.52 l 120.27 85.49 l 120.31 85.52 l 120.36 85.56 l 120.40 85.57 l 120.45 85.60 l 120.50 85.61 l 120.54 85.60 l 120.59 85.62 l 120.63 85.64 l 120.68 85.67 l 120.73 85.67 l 120.77 85.67 l 120.82 85.68 l 120.86 85.72 l 120.91 85.76 l 120.96 85.74 l 121.00 85.76 l 121.05 85.73 l 121.09 85.75 l 121.14 85.73 l 121.19 85.77 l 121.23 85.74 l 121.28 85.77 l 121.32 85.78 l 121.37 85.75 l 121.42 85.74 l 121.46 85.73 l 121.51 85.72 l 121.55 85.71 l 121.60 85.72 l 121.65 85.70 l 121.69 85.70 l 121.74 85.69 l 121.78 85.67 l 121.83 85.68 l 121.88 85.71 l 121.92 85.73 l 121.97 85.71 l 122.01 85.68 l 122.06 85.71 l 122.11 85.74 l 122.15 85.77 l 122.20 85.76 l 122.24 85.83 l 122.29 85.84 l 122.34 85.90 l 122.38 85.94 l 122.43 85.92 l 122.47 85.91 l 122.52 85.94 l 122.57 85.90 l 122.61 85.91 l 122.66 85.93 l 122.70 85.92 l 122.75 85.95 l 122.80 85.93 l 122.84 85.93 l 122.89 85.95 l 122.93 85.95 l 122.98 85.97 l 123.03 85.94 l 123.07 85.96 l 123.12 85.99 l 123.16 86.03 l 123.21 86.01 l 123.26 85.98 l 123.30 85.99 l 123.35 85.99 l 123.39 85.99 l 123.44 86.01 l 123.49 86.01 l 123.53 86.06 l 123.58 86.09 l 123.62 86.08 l 123.67 86.09 l 123.72 86.08 l 123.76 86.08 l 123.81 86.07 l 123.85 86.05 l 123.90 86.05 l 123.95 86.02 l 123.99 86.02 l 124.04 86.03 l 124.08 86.01 l 124.13 86.05 l 124.18 86.02 l 124.22 86.07 l 124.27 86.08 l 124.31 86.12 l 124.36 86.12 l 124.41 86.15 l 124.45 86.18 l 124.50 86.21 l 124.54 86.21 l 124.59 86.18 l 124.64 86.22 l 124.68 86.21 l 124.73 86.27 l 124.77 86.32 l 124.82 86.33 l 124.87 86.33 l 124.91 86.33 l 124.96 86.33 l 125.00 86.39 l 125.05 86.41 l 125.10 86.41 l 125.14 86.45 l 125.19 86.49 l 125.23 86.54 l 125.28 86.51 l 125.33 86.53 l 125.37 86.54 l 125.42 86.54 l 125.46 86.58 l 125.51 86.55 l 125.56 86.57 l 125.60 86.59 l 125.65 86.58 l 125.69 86.57 l 125.74 86.57 l 125.79 86.62 l 125.83 86.60 l 125.88 86.63 l 125.92 86.67 l 125.97 86.66 l 126.02 86.68 l 126.06 86.68 l 126.11 86.69 l 126.15 86.71 l 126.20 86.67 l 126.25 86.65 l 126.29 86.68 l 126.34 86.65 l 126.38 86.64 l 126.43 86.64 l 126.48 86.61 l 126.52 86.62 l 126.57 86.63 l 126.61 86.65 l 126.66 86.62 l 126.71 86.61 l 126.75 86.65 l 126.80 86.61 l 126.84 86.66 l 126.89 86.67 l 126.94 86.66 l 126.98 86.66 l 127.03 86.66 l 127.07 86.65 l 127.12 86.68 l 127.17 86.67 l 127.21 86.64 l 127.26 86.65 l 127.30 86.64 l 127.35 86.66 l 127.40 86.66 l 127.44 86.66 l 127.49 86.66 l 127.53 86.67 l 127.58 86.64 l 127.63 86.66 l 127.67 86.66 l 127.72 86.68 l 127.76 86.65 l 127.81 86.69 l 127.86 86.73 l 127.90 86.73 l 127.95 86.76 l 127.99 86.76 l 128.04 86.76 l 128.09 86.75 l 128.13 86.73 l 128.18 86.77 l 128.22 86.73 l 128.27 86.76 l 128.32 86.76 l 128.36 86.73 l 128.41 86.74 l 128.45 86.74 l 128.50 86.76 l 128.55 86.80 l 128.59 86.75 l 128.64 86.72 l 128.68 86.72 l 128.73 86.71 l 128.78 86.69 l 128.82 86.68 l 128.87 86.67 l 128.91 86.66 l 128.96 86.57 l 129.01 86.55 l 129.05 86.52 l 129.10 86.52 l 129.14 86.50 l 129.19 86.47 l 129.24 86.47 l 129.28 86.49 l 129.33 86.47 l 129.37 86.43 l 129.42 86.40 l 129.47 86.42 l 129.51 86.40 l 129.56 86.42 l 129.60 86.41 l 129.65 86.42 l 129.70 86.43 l 129.74 86.44 l 129.79 86.42 l 129.83 86.40 l 129.88 86.43 l 129.93 86.43 l 129.97 86.45 l 130.02 86.45 l 130.06 86.44 l 130.11 86.45 l 130.16 86.48 l 130.20 86.46 l 130.25 86.47 l 130.29 86.48 l 130.34 86.50 l 130.39 86.43 l 130.43 86.42 l 130.48 86.47 l 130.52 86.49 l 130.57 86.50 l 130.62 86.47 l 130.66 86.52 l 130.71 86.58 l 130.75 86.54 l 130.80 86.58 l 130.85 86.56 l 130.89 86.51 l 130.94 86.53 l 130.98 86.54 l 131.03 86.54 l 131.08 86.57 l 131.12 86.58 l 131.17 86.56 l 131.21 86.53 l 131.26 86.53 l 131.31 86.54 l 131.35 86.56 l 131.40 86.55 l 131.44 86.51 l 131.49 86.46 l 131.54 86.49 l 131.58 86.45 l 131.63 86.47 l 131.67 86.41 l 131.72 86.42 l 131.77 86.43 l 131.81 86.43 l 131.86 86.42 l 131.90 86.42 l 131.95 86.43 l 132.00 86.41 l 132.04 86.37 l 132.09 86.34 l 132.13 86.36 l 132.18 86.34 l 132.23 86.36 l 132.27 86.41 l 132.32 86.45 l 132.36 86.51 l 132.41 86.56 l 132.46 86.59 l 132.50 86.56 l 132.55 86.57 l 132.59 86.56 l 132.64 86.51 l 132.69 86.50 l 132.73 86.48 l 132.78 86.49 l 132.82 86.47 l 132.87 86.55 l 132.92 86.58 l 132.96 86.60 l 133.01 86.62 l 133.05 86.63 l 133.10 86.61 l 133.15 86.65 l 133.19 86.70 l 133.24 86.64 l 133.28 86.64 l 133.33 86.66 l 133.38 86.68 l 133.42 86.72 l 133.47 86.69 l 133.51 86.70 l 133.56 86.70 l 133.61 86.67 l 133.65 86.65 l 133.70 86.64 l 133.74 86.65 l 133.79 86.71 l 133.84 86.72 l 133.88 86.74 l 133.93 86.77 l 133.97 86.74 l 134.02 86.77 l 134.07 86.74 l 134.11 86.71 l 134.16 86.72 l 134.20 86.69 l 134.25 86.67 l 134.30 86.65 l 134.34 86.68 l 134.39 86.73 l 134.43 86.71 l 134.48 86.72 l 134.53 86.77 l 134.57 86.80 l 134.62 86.84 l 134.66 86.89 l 134.71 86.89 l 134.76 86.95 l 134.80 86.96 l 134.85 86.99 l 134.89 86.99 l 134.94 87.02 l 134.99 87.03 l 135.03 87.04 l 135.08 87.08 l 135.12 87.08 l 135.17 87.10 l 135.22 87.14 l 135.26 87.15 l 135.31 87.18 l 135.35 87.16 l 135.40 87.17 l 135.45 87.16 l 135.49 87.14 l 135.54 87.16 l 135.58 87.19 l 135.63 87.16 l 135.68 87.13 l 135.72 87.16 l 135.77 87.12 l 135.81 87.16 l 135.86 87.15 l 135.91 87.13 l 135.95 87.14 l 136.00 87.16 l 136.04 87.17 l 136.09 87.18 l 136.14 87.16 l 136.18 87.13 l 136.23 87.13 l 136.27 87.13 l 136.32 87.10 l 136.37 87.07 l 136.41 87.06 l 136.46 87.08 l 136.50 87.04 l 136.55 87.04 l 136.60 87.06 l 136.64 87.05 l 136.69 87.00 l 136.73 87.00 l 136.78 86.98 l 136.83 86.98 l 136.87 87.01 l 136.92 87.01 l 136.96 87.01 l 137.01 86.99 l 137.06 86.97 l 137.10 86.97 l 137.15 86.96 l 137.19 86.96 l 137.24 86.97 l 137.29 87.01 l 137.33 87.00 l 137.38 87.00 l 137.42 87.00 l 137.47 87.02 l 137.52 87.03 l 137.56 87.09 l 137.61 87.08 l 137.65 87.08 l 137.70 87.09 l 137.75 87.11 l 137.79 87.11 l 137.84 87.10 l 137.88 87.07 l 137.93 87.05 l 137.98 87.05 l 138.02 87.07 l 138.07 87.08 l 138.11 87.11 l 138.16 87.08 l 138.21 87.03 l 138.25 87.03 l 138.30 87.02 l 138.34 87.05 l 138.39 87.02 l 138.44 87.00 l 138.48 86.98 l 138.53 86.99 l 138.57 86.99 l 138.62 86.97 l 138.67 86.96 l 138.71 86.95 l 138.76 86.95 l 138.80 86.94 l 138.85 86.91 l 138.90 86.94 l 138.94 86.99 l 138.99 86.95 l 139.03 86.90 l 139.08 86.90 l 139.13 86.90 l 139.17 86.84 l 139.22 86.78 l 139.26 86.75 l 139.31 86.71 l 139.36 86.72 l 139.40 86.72 l 139.45 86.72 l 139.49 86.72 l 139.54 86.71 l 139.59 86.64 l 139.63 86.60 l 139.68 86.61 l 139.72 86.62 l 139.77 86.59 l 139.82 86.60 l 139.86 86.58 l 139.91 86.55 l 139.95 86.59 l 140.00 86.58 l 140.05 86.56 l 140.09 86.59 l 140.14 86.53 l 140.18 86.56 l 140.23 86.60 l 140.28 86.58 l 140.32 86.56 l 140.37 86.56 l 140.41 86.56 l 140.46 86.58 l 140.51 86.60 l 140.55 86.63 l 140.60 86.64 l 140.64 86.62 l 140.69 86.63 l 140.74 86.56 l 140.78 86.52 l 140.83 86.49 l 140.87 86.42 l 140.92 86.37 l 140.97 86.35 l 141.01 86.34 l 141.06 86.33 l 141.10 86.36 l 141.15 86.38 l 141.20 86.39 l 141.24 86.37 l 141.29 86.34 l 141.33 86.32 l 141.38 86.27 l 141.43 86.19 l 141.47 86.16 l 141.52 86.09 l 141.56 86.10 l 141.61 86.15 l 141.66 86.08 l 141.70 86.02 l 141.75 86.02 l 141.79 86.03 l 141.84 85.99 l 141.89 85.97 l 141.93 85.92 l 141.98 85.92 l 142.02 85.88 l 142.07 85.87 l 142.12 85.88 l 142.16 85.86 l 142.21 85.81 l 142.25 85.74 l 142.30 85.69 l 142.35 85.66 l 142.39 85.61 l 142.44 85.55 l 142.48 85.57 l 142.53 85.52 l 142.58 85.50 l 142.62 85.49 l 142.67 85.47 l 142.71 85.45 l 142.76 85.41 l 142.81 85.39 l 142.85 85.36 l 142.90 85.29 l 142.94 85.25 l 142.99 85.20 l 143.04 85.16 l 143.08 85.12 l 143.13 85.05 l 143.17 84.97 l 143.22 84.94 l 143.27 84.88 l 143.31 84.83 l 143.36 84.80 l 143.40 84.78 l 143.45 84.74 l 143.50 84.72 l 143.54 84.68 l 143.59 84.65 l 143.63 84.63 l 143.68 84.61 l 143.73 84.56 l 143.77 84.52 l 143.82 84.50 l 143.86 84.49 l 143.91 84.49 l 143.96 84.49 l 144.00 84.48 l 144.05 84.45 l 144.09 84.42 l 144.14 84.40 l 144.19 84.41 l 144.23 84.39 l 144.28 84.41 l 144.32 84.37 l 144.37 84.35 l 144.42 84.33 l 144.46 84.32 l 144.51 84.30 l 144.55 84.27 l 144.60 84.27 l 144.65 84.27 l 144.69 84.31 l 144.74 84.29 l 144.78 84.26 l 144.83 84.23 l 144.88 84.23 l 144.92 84.22 l 144.97 84.17 l 145.01 84.17 l 145.06 84.15 l 145.11 84.11 l 145.15 84.12 l 145.20 84.10 l 145.24 84.09 l 145.29 84.06 l 145.34 84.05 l 145.38 84.01 l 145.43 83.96 l 145.47 83.95 l 145.52 83.99 l 145.57 83.99 l 145.61 83.94 l 145.66 83.94 l 145.70 83.94 l 145.75 83.93 l 145.80 83.90 l 145.84 83.90 l 145.89 83.88 l 145.93 83.88 l 145.98 83.83 l 146.03 83.81 l 146.07 83.75 l 146.12 83.76 l 146.16 83.75 l 146.21 83.69 l 146.26 83.66 l 146.30 83.66 l 146.35 83.66 l 146.39 83.66 l 146.44 83.67 l 146.49 83.64 l 146.53 83.58 l 146.58 83.51 l 146.62 83.48 l 146.67 83.48 l 146.72 83.47 l 146.76 83.45 l 146.81 83.44 l 146.85 83.43 l 146.90 83.43 l 146.95 83.45 l 146.99 83.44 l 147.04 83.41 l 147.08 83.41 l 147.13 83.41 l 147.18 83.41 l 147.22 83.41 l 147.27 83.41 l 147.31 83.38 l 147.36 83.37 l 147.41 83.36 l 147.45 83.31 l 147.50 83.30 l 147.54 83.30 l 147.59 83.24 l 147.64 83.26 l 147.68 83.24 l 147.73 83.21 l 147.77 83.19 l 147.82 83.18 l 147.87 83.12 l 147.91 83.11 l 147.96 83.07 l 148.00 83.02 l 148.05 83.01 l 148.10 83.00 l 148.14 82.99 l 148.19 82.94 l 148.23 82.96 l 148.28 82.94 l 148.33 82.92 l 148.37 82.87 l 148.42 82.87 l 148.46 82.83 l 148.51 82.84 l 148.56 82.83 l 148.60 82.77 l 148.65 82.77 l 148.69 82.72 l 148.74 82.68 l 148.79 82.68 l 148.83 82.67 l 148.88 82.63 l 148.92 82.59 l 148.97 82.54 l 149.02 82.48 l 149.06 82.42 l 149.11 82.39 l 149.15 82.36 l 149.20 82.33 l 149.25 82.34 l 149.29 82.30 l 149.34 82.27 l 149.38 82.31 l 149.43 82.32 l 149.48 82.30 l 149.52 82.30 l 149.57 82.27 l 149.61 82.25 l 149.66 82.24 l 149.71 82.23 l 149.75 82.22 l 149.80 82.18 l 149.84 82.16 l 149.89 82.12 l 149.94 82.11 l 149.98 82.08 l 150.03 82.07 l 150.07 82.02 l 150.12 81.96 l 150.17 81.96 l 150.21 81.97 l 150.26 82.00 l 150.30 81.95 l 150.35 81.93 l 150.40 81.90 l 150.44 81.90 l 150.49 81.91 l 150.53 81.89 l 150.58 81.91 l 150.63 81.88 l 150.67 81.89 l 150.72 81.91 l 150.76 81.93 l 150.81 81.94 l 150.86 81.91 l 150.90 81.90 l 150.95 81.88 l 150.99 81.85 l 151.04 81.85 l 151.09 81.86 l 151.13 81.85 l 151.18 81.85 l 151.22 81.85 l 151.27 81.87 l 151.32 81.86 l 151.36 81.83 l 151.41 81.78 l 151.45 81.79 l 151.50 81.81 l 151.55 81.80 l 151.59 81.77 l 151.64 81.76 l 151.68 81.77 l 151.73 81.77 l 151.78 81.77 l 151.82 81.79 l 151.87 81.79 l 151.91 81.79 l 151.96 81.77 l 152.01 81.74 l 152.05 81.74 l 152.10 81.71 l 152.14 81.69 l 152.19 81.66 l 152.24 81.64 l 152.28 81.61 l 152.33 81.60 l 152.37 81.56 l 152.42 81.53 l 152.47 81.50 l 152.51 81.49 l 152.56 81.49 l 152.60 81.48 l 152.65 81.47 l 152.70 81.46 l 152.74 81.46 l 152.79 81.46 l 152.83 81.43 l 152.88 81.44 l 152.93 81.45 l 152.97 81.44 l 153.02 81.42 l 153.06 81.43 l 153.11 81.42 l 153.16 81.41 l 153.20 81.40 l 153.25 81.42 l 153.29 81.41 l 153.34 81.41 l 153.39 81.40 l 153.43 81.36 l 153.48 81.38 l 153.52 81.38 l 153.57 81.39 l 153.62 81.41 l 153.66 81.40 l 153.71 81.41 l 153.75 81.42 l 153.80 81.41 l 153.85 81.42 l 153.89 81.40 l 153.94 81.40 l 153.98 81.44 l 154.03 81.39 l 154.08 81.37 l 154.12 81.41 l 154.17 81.51 l 154.21 81.51 l 154.26 81.50 l 154.31 81.46 l 154.35 81.43 l 154.40 81.43 l 154.44 81.43 l 154.49 81.44 l 154.54 81.45 l 154.58 81.45 l 154.63 81.42 l 154.67 81.43 l 154.72 81.43 l 154.77 81.42 l 154.81 81.39 l 154.86 81.38 l 154.90 81.38 l 154.95 81.38 l 155.00 81.40 l 155.04 81.42 l 155.09 81.44 l 155.13 81.42 l 155.18 81.43 l 155.23 81.45 l 155.27 81.44 l 155.32 81.46 l 155.36 81.42 l 155.41 81.41 l 155.46 81.40 l 155.50 81.38 l 155.55 81.40 l 155.59 81.40 l 155.64 81.43 l 155.69 81.41 l 155.73 81.41 l 155.78 81.39 l 155.82 81.39 l 155.87 81.39 l 155.92 81.41 l 155.96 81.40 l 156.01 81.42 l 156.05 81.41 l 156.10 81.44 l 156.15 81.42 l 156.19 81.43 l 156.24 81.45 l 156.28 81.48 l 156.33 81.49 l 156.38 81.50 l 156.42 81.51 l 156.47 81.51 l 156.51 81.56 l 156.56 81.58 l 156.61 81.57 l 156.65 81.57 l 156.70 81.57 l 156.74 81.54 l 156.79 81.58 l 156.84 81.57 l 156.88 81.59 l 156.93 81.57 l 156.97 81.56 l 157.02 81.57 l 157.07 81.60 l 157.11 81.61 l 157.16 81.62 l 157.20 81.65 l 157.25 81.65 l 157.30 81.62 l 157.34 81.66 l 157.39 81.68 l 157.43 81.70 l 157.48 81.69 l 157.53 81.71 l 157.57 81.74 l 157.62 81.76 l 157.66 81.78 l 157.71 81.79 l 157.76 81.80 l 157.80 81.81 l 157.85 81.83 l 157.89 81.79 l 157.94 81.79 l 157.99 81.81 l 158.03 81.81 l 158.08 81.82 l 158.12 81.81 l 158.17 81.81 l 158.22 81.84 l 158.26 81.84 l 158.31 81.86 l 158.35 81.87 l 158.40 81.89 l 158.45 81.90 l 158.49 81.91 l 158.54 81.91 l 158.58 81.93 l 158.63 81.91 l 158.68 81.91 l 158.72 81.90 l 158.77 81.87 l 158.81 81.88 l 158.86 81.87 l 158.91 81.91 l 158.95 81.91 l 159.00 81.91 l 159.04 81.90 l 159.09 81.88 l 159.14 81.90 l 159.18 81.87 l 159.23 81.86 l 159.27 81.84 l 159.32 81.84 l 159.37 81.86 l 159.41 81.87 l 159.46 81.89 l 159.50 81.90 l 159.55 81.92 l 159.60 81.93 l 159.64 81.93 l 159.69 81.93 l 159.73 81.96 l 159.78 81.99 l 159.83 82.00 l 159.87 82.04 l 159.92 82.05 l 159.96 82.04 l 160.01 82.06 l 160.06 82.06 l 160.10 82.09 l 160.15 82.10 l 160.19 82.07 l 160.24 82.10 l 160.29 82.11 l 160.33 82.09 l 160.38 82.11 l 160.42 82.12 l 160.47 82.13 l 160.52 82.13 l 160.56 82.14 l 160.61 82.15 l 160.65 82.17 l 160.70 82.21 l 160.75 82.23 l 160.79 82.26 l 160.84 82.28 l 160.88 82.30 l 160.93 82.30 l 160.98 82.30 l 161.02 82.31 l 161.07 82.31 l 161.11 82.33 l 161.16 82.34 l 161.21 82.34 l 161.25 82.36 l 161.30 82.35 l 161.34 82.37 l 161.39 82.36 l 161.44 82.36 l 161.48 82.39 l 161.53 82.40 l 161.57 82.42 l 161.62 82.44 l 161.67 82.44 l 161.71 82.40 l 161.76 82.36 l 161.80 82.36 l 161.85 82.36 l 161.90 82.35 l 161.94 82.39 l 161.99 82.36 l 162.03 82.35 l 162.08 82.37 l 162.13 82.36 l 162.17 82.35 l 162.22 82.35 l 162.26 82.34 l 162.31 82.34 l 162.36 82.31 l 162.40 82.30 l 162.45 82.30 l 162.49 82.24 l 162.54 82.24 l 162.59 82.26 l 162.63 82.21 l 162.68 82.13 l 162.72 82.11 l 162.77 82.12 l 162.82 82.11 l 162.86 82.13 l 162.91 82.13 l 162.95 82.11 l 163.00 82.13 l 163.05 82.12 l 163.09 82.11 l 163.14 82.14 l 163.18 82.13 l 163.23 82.15 l 163.28 82.15 l 163.32 82.18 l 163.37 82.18 l 163.41 82.16 l 163.46 82.14 l 163.51 82.15 l 163.55 82.20 l 163.60 82.20 l 163.64 82.20 l 163.69 82.22 l 163.74 82.24 l 163.78 82.22 l 163.83 82.21 l 163.87 82.23 l 163.92 82.20 l 163.97 82.20 l 164.01 82.22 l 164.06 82.23 l 164.10 82.21 l 164.15 82.18 l 164.20 82.17 l 164.24 82.17 l 164.29 82.19 l 164.33 82.21 l 164.38 82.24 l 164.43 82.23 l 164.47 82.23 l 164.52 82.21 l 164.56 82.22 l 164.61 82.22 l 164.66 82.21 l 164.70 82.23 l 164.75 82.23 l 164.79 82.21 l 164.84 82.20 l 164.89 82.20 l 164.93 82.20 l 164.98 82.21 l 165.02 82.19 l 165.07 82.16 l 165.12 82.17 l 165.16 82.16 l 165.21 82.17 l 165.25 82.19 l 165.30 82.16 l 165.35 82.19 l 165.39 82.22 l 165.44 82.25 l 165.48 82.28 l 165.53 82.25 l 165.58 82.22 l 165.62 82.22 l 165.67 82.20 l 165.71 82.21 l 165.76 82.20 l 165.81 82.22 l 165.85 82.21 l 165.90 82.20 l 165.94 82.19 l 165.99 82.18 l 166.04 82.18 l 166.08 82.19 l 166.13 82.19 l 166.17 82.19 l 166.22 82.17 l 166.27 82.18 l 166.31 82.20 l 166.36 82.18 l 166.40 82.19 l 166.45 82.16 l 166.50 82.15 l 166.54 82.15 l 166.59 82.13 l 166.63 82.15 l 166.68 82.14 l 166.73 82.12 l 166.77 82.16 l 166.82 82.18 l 166.86 82.18 l 166.91 82.19 l 166.96 82.21 l 167.00 82.22 l 167.05 82.23 l 167.09 82.24 l 167.14 82.28 l 167.19 82.30 l 167.23 82.31 l 167.28 82.34 l 167.32 82.32 l 167.37 82.37 l 167.42 82.36 l 167.46 82.34 l 167.51 82.31 l 167.55 82.34 l 167.60 82.34 l 167.65 82.35 l 167.69 82.39 l 167.74 82.40 l 167.78 82.41 l 167.83 82.40 l 167.88 82.41 l 167.92 82.39 l 167.97 82.40 l 168.01 82.41 l 168.06 82.41 l 168.11 82.43 l 168.15 82.45 l 168.20 82.44 l 168.24 82.43 l 168.29 82.40 l 168.34 82.40 l 168.38 82.42 l 168.43 82.44 l 168.47 82.44 l 168.52 82.40 l 168.57 82.44 l 168.61 82.42 l 168.66 82.43 l 168.70 82.44 l 168.75 82.47 l 168.80 82.50 l 168.84 82.52 l 168.89 82.51 l 168.93 82.50 l 168.98 82.49 l 169.03 82.49 l 169.07 82.49 l 169.12 82.47 l 169.16 82.46 l 169.21 82.44 l 169.26 82.43 l 169.30 82.43 l 169.35 82.43 l 169.39 82.42 l 169.44 82.42 l 169.49 82.42 l 169.53 82.44 l 169.58 82.43 l 169.62 82.43 l 169.67 82.43 l 169.72 82.46 l 169.76 82.46 l 169.81 82.47 l 169.85 82.46 l 169.90 82.47 l 169.95 82.46 l 169.99 82.45 l 170.04 82.47 l 170.08 82.46 l 170.13 82.46 l 170.18 82.48 l 170.22 82.51 l 170.27 82.54 l 170.31 82.58 l 170.36 82.60 l 170.41 82.57 l 170.45 82.56 l 170.50 82.60 l 170.54 82.61 l 170.59 82.59 l 170.64 82.61 l 170.68 82.61 l 170.73 82.62 l 170.77 82.64 l 170.82 82.63 l 170.87 82.63 l 170.91 82.68 l 170.96 82.71 l 171.00 82.72 l 171.05 82.74 l 171.10 82.75 l 171.14 82.78 l 171.19 82.78 l 171.23 82.78 l 171.28 82.77 l 171.33 82.81 l 171.37 82.84 l 171.42 82.87 l 171.46 82.89 l 171.51 82.89 l 171.56 82.91 l 171.60 82.97 l 171.65 82.94 l 171.69 82.94 l 171.74 82.96 l 171.79 82.98 l 171.83 83.00 l 171.88 83.06 l 171.92 83.07 l 171.97 83.12 l 172.02 83.16 l 172.06 83.08 l 172.11 83.08 l 172.15 83.10 l 172.20 83.10 l 172.25 83.07 l 172.29 83.11 l 172.34 83.12 l 172.38 83.13 l 172.43 83.16 l 172.48 83.17 l 172.52 83.17 l 172.57 83.18 l 172.61 83.17 l 172.66 83.20 l 172.71 83.23 l 172.75 83.26 l 172.80 83.28 l 172.84 83.27 l 172.89 83.25 l 172.94 83.24 l 172.98 83.26 l 173.03 83.26 l 173.07 83.31 l 173.12 83.33 l 173.17 83.34 l 173.21 83.33 l 173.26 83.32 l 173.30 83.37 l 173.35 83.38 l 173.40 83.38 l 173.44 83.40 l 173.49 83.41 l 173.53 83.42 l 173.58 83.41 l 173.63 83.44 l 173.67 83.45 l 173.72 83.51 l 173.76 83.50 l 173.81 83.51 l 173.86 83.50 l 173.90 83.51 l 173.95 83.51 l 173.99 83.50 l 174.04 83.54 l 174.09 83.58 l 174.13 83.58 l 174.18 83.62 l 174.22 83.61 l 174.27 83.61 l 174.32 83.59 l 174.36 83.61 l 174.41 83.69 l 174.45 83.76 l 174.50 83.75 l 174.55 83.77 l 174.59 83.81 l 174.64 83.83 l 174.68 83.85 l 174.73 83.86 l 174.78 83.86 l 174.82 83.85 l 174.87 83.86 l 174.91 83.88 l 174.96 83.90 l 175.01 83.91 l 175.05 83.93 l 175.10 83.95 l 175.14 83.96 l 175.19 83.99 l 175.24 84.01 l 175.28 83.99 l 175.33 83.98 l 175.37 83.98 l 175.42 83.97 l 175.47 84.04 l 175.51 84.04 l 175.56 84.05 l 175.60 84.06 l 175.65 84.10 l 175.70 84.09 l 175.74 84.10 l 175.79 84.10 l 175.83 84.14 l 175.88 84.13 l 175.93 84.15 l 175.97 84.19 l 176.02 84.24 l 176.06 84.24 l 176.11 84.21 l 176.16 84.23 l 176.20 84.22 l 176.25 84.23 l 176.29 84.24 l 176.34 84.29 l 176.39 84.27 l 176.43 84.32 l 176.48 84.34 l 176.52 84.32 l 176.57 84.34 l 176.62 84.33 l 176.66 84.35 l 176.71 84.36 l 176.75 84.38 l 176.80 84.40 l 176.85 84.47 l 176.89 84.43 l 176.94 84.47 l 176.98 84.49 l 177.03 84.51 l 177.08 84.47 l 177.12 84.49 l 177.17 84.53 l 177.21 84.54 l 177.26 84.54 l 177.31 84.52 l 177.35 84.53 l 177.40 84.53 l 177.44 84.58 l 177.49 84.60 l 177.54 84.62 l 177.58 84.63 l 177.63 84.67 l 177.67 84.70 l 177.72 84.72 l 177.77 84.75 l 177.81 84.71 l 177.86 84.72 l 177.90 84.76 l 177.95 84.80 l 178.00 84.82 l 178.04 84.80 l 178.09 84.82 l 178.13 84.85 l 178.18 84.86 l 178.23 84.82 l 178.27 84.84 l 178.32 84.83 l 178.36 84.88 l 178.41 84.90 l 178.46 84.93 l 178.50 84.93 l 178.55 84.97 l 178.59 85.00 l 178.64 85.02 l 178.69 85.02 l 178.73 84.99 l 178.78 85.03 l 178.82 85.01 l 178.87 85.01 l 178.92 85.07 l 178.96 85.09 l 179.01 85.09 l 179.05 85.11 l 179.10 85.14 l 179.15 85.15 l 179.19 85.17 l 179.24 85.17 l 179.28 85.20 l 179.33 85.25 l 179.38 85.31 l 179.42 85.32 l 179.47 85.34 l 179.51 85.35 l 179.56 85.35 l 179.61 85.36 l 179.65 85.36 l 179.70 85.36 l 179.74 85.37 l 179.79 85.41 l 179.84 85.40 l 179.88 85.38 l 179.93 85.35 l 179.97 85.34 l 180.02 85.37 l 180.07 85.39 l 180.11 85.36 l 180.16 85.36 l 180.20 85.37 l 180.25 85.37 l 180.30 85.38 l 180.34 85.34 l 180.39 85.37 l 180.43 85.40 l 180.48 85.36 l 180.53 85.33 l 180.57 85.38 l 180.62 85.40 l 180.66 85.44 l 180.71 85.49 l 180.76 85.52 l 180.80 85.51 l 180.85 85.54 l 180.89 85.56 l 180.94 85.58 l 180.99 85.59 l 181.03 85.59 l 181.08 85.58 l 181.12 85.67 l 181.17 85.69 l 181.22 85.73 l 181.26 85.73 l 181.31 85.71 l 181.35 85.74 l 181.40 85.77 l 181.45 85.81 l 181.49 85.80 l 181.54 85.85 l 181.58 85.83 l 181.63 85.84 l 181.68 85.85 l 181.72 85.89 l 181.77 85.94 l 181.81 85.93 l 181.86 85.93 l 181.91 85.95 l 181.95 85.98 l 182.00 85.96 l 182.04 85.97 l 182.09 86.01 l 182.14 86.03 l 182.18 86.05 l 182.23 86.00 l 182.27 86.01 l 182.32 86.03 l 182.37 86.06 l 182.41 86.03 l 182.46 86.05 l 182.50 86.06 l 182.55 86.05 l 182.60 86.07 l 182.64 86.07 l 182.69 86.07 l 182.73 86.10 l 182.78 86.14 l 182.83 86.17 l 182.87 86.18 l 182.92 86.17 l 182.96 86.15 l 183.01 86.20 l 183.06 86.20 l 183.10 86.19 l 183.15 86.20 l 183.19 86.22 l 183.24 86.23 l 183.29 86.25 l 183.33 86.31 l 183.38 86.35 l 183.42 86.38 l 183.47 86.42 l 183.52 86.46 l 183.56 86.50 l 183.61 86.52 l 183.65 86.52 l 183.70 86.51 l 183.75 86.52 l 183.79 86.55 l 183.84 86.56 l 183.88 86.58 l 183.93 86.63 l 183.98 86.58 l 184.02 86.61 l 184.07 86.64 l 184.11 86.66 l 184.16 86.65 l 184.21 86.67 l 184.25 86.69 l 184.30 86.67 l 184.34 86.71 l 184.39 86.75 l 184.44 86.76 l 184.48 86.76 l 184.53 86.76 l 184.57 86.81 l 184.62 86.86 l 184.67 86.87 l 184.71 86.86 l 184.76 86.88 l 184.80 86.93 l 184.85 86.92 l 184.90 86.99 l 184.94 87.00 l 184.99 87.00 l 185.03 87.04 l 185.08 87.09 l 185.13 87.08 l 185.17 87.08 l 185.22 87.16 l 185.26 87.20 l 185.31 87.24 l 185.36 87.22 l 185.40 87.27 l 185.45 87.31 l 185.49 87.34 l 185.54 87.38 l 185.59 87.42 l 185.63 87.47 l 185.68 87.45 l 185.72 87.47 l 185.77 87.52 l 185.82 87.52 l 185.86 87.53 l 185.91 87.55 l 185.95 87.53 l 186.00 87.61 l 186.05 87.63 l 186.09 87.67 l 186.14 87.63 l 186.18 87.62 l 186.23 87.62 l 186.28 87.63 l 186.32 87.67 l 186.37 87.72 l 186.41 87.72 l 186.46 87.72 l 186.51 87.71 l 186.55 87.76 l 186.60 87.82 l 186.64 87.83 l 186.69 87.87 l 186.74 87.91 l 186.78 87.92 l 186.83 87.93 l 186.87 87.92 l 186.92 87.93 l 186.97 87.93 l 187.01 87.98 l 187.06 87.97 l 187.10 87.94 l 187.15 87.95 l 187.20 87.95 l 187.24 88.01 l 187.29 87.99 l 187.33 88.06 l 187.38 88.11 l 187.43 88.13 l 187.47 88.13 l 187.52 88.12 l 187.56 88.14 l 187.61 88.12 l 187.66 88.15 l 187.70 88.21 l 187.75 88.20 l 187.79 88.18 l 187.84 88.18 l 187.89 88.17 l 187.93 88.20 l 187.98 88.23 l 188.02 88.30 l 188.07 88.36 l 188.12 88.35 l 188.16 88.42 l 188.21 88.45 l 188.25 88.46 l 188.30 88.49 l 188.35 88.52 l 188.39 88.57 l 188.44 88.56 l 188.48 88.59 l 188.53 88.60 l 188.58 88.66 l 188.62 88.69 l 188.67 88.72 l 188.71 88.73 l 188.76 88.76 l 188.81 88.77 l 188.85 88.81 l 188.90 88.78 l 188.94 88.78 l 188.99 88.84 l 189.04 88.89 l 189.08 88.85 l 189.13 88.86 l 189.17 88.85 l 189.22 88.81 l 189.27 88.87 l 189.31 88.88 l 189.36 88.86 l 189.40 88.89 l 189.45 88.90 l 189.50 88.94 l 189.54 88.94 l 189.59 89.01 l 189.63 88.97 l 189.68 88.98 l 189.73 88.99 l 189.77 89.00 l 189.82 89.08 l 189.86 89.08 l 189.91 89.09 l 189.96 89.13 l 190.00 89.21 l 190.05 89.23 l 190.09 89.25 l 190.14 89.28 l 190.19 89.33 l 190.23 89.34 l 190.28 89.36 l 190.32 89.36 l 190.37 89.39 l 190.42 89.41 l 190.46 89.39 l 190.51 89.39 l 190.55 89.42 l 190.60 89.46 l 190.65 89.46 l 190.69 89.46 l 190.74 89.51 l 190.78 89.55 l 190.83 89.59 l 190.88 89.58 l 190.92 89.67 l 190.97 89.68 l 191.01 89.68 l 191.06 89.70 l 191.11 89.70 l 191.15 89.73 l 191.20 89.73 l 191.24 89.75 l 191.29 89.74 l 191.34 89.76 l 191.38 89.74 l 191.43 89.69 l 191.47 89.70 l 191.52 89.68 l 191.57 89.67 l 191.61 89.66 l 191.66 89.66 l 191.70 89.63 l 191.75 89.67 l 191.80 89.70 l 191.84 89.71 l 191.89 89.70 l 191.93 89.67 l 191.98 89.61 l 192.03 89.63 l 192.07 89.58 l 192.12 89.57 l 192.16 89.61 l 192.21 89.63 l 192.26 89.65 l 192.30 89.66 l 192.35 89.71 l 192.39 89.70 l 192.44 89.67 l 192.49 89.69 l 192.53 89.70 l 192.58 89.67 l 192.62 89.69 l 192.67 89.68 l 192.72 89.69 l 192.76 89.70 l 192.81 89.75 l 192.85 89.73 l 192.90 89.76 l 192.95 89.76 l 192.99 89.77 l 193.04 89.78 l 193.08 89.75 l 193.13 89.73 l 193.18 89.74 l 193.22 89.75 l 193.27 89.75 l 193.31 89.71 l 193.36 89.68 l 193.41 89.68 l 193.45 89.66 l 193.50 89.66 l 193.54 89.65 l 193.59 89.59 l 193.64 89.61 l 193.68 89.66 l 193.73 89.62 l 193.77 89.64 l 193.82 89.62 l 193.87 89.63 l 193.91 89.61 l 193.96 89.60 l 194.00 89.59 l 194.05 89.60 l 194.10 89.61 l 194.14 89.59 l 194.19 89.61 l 194.23 89.58 l 194.28 89.54 l 194.33 89.53 l 194.37 89.55 l 194.42 89.54 l 194.46 89.53 l 194.51 89.48 l 194.56 89.48 l 194.60 89.48 l 194.65 89.51 l 194.69 89.54 l 194.74 89.56 l 194.79 89.54 l 194.83 89.54 l 194.88 89.49 l 194.92 89.51 l 194.97 89.52 l 195.02 89.53 l 195.06 89.52 l 195.11 89.48 l 195.15 89.48 l 195.20 89.47 l 195.25 89.48 l 195.29 89.48 l 195.34 89.53 l 195.38 89.53 l 195.43 89.56 l 195.48 89.60 l 195.52 89.57 l 195.57 89.56 l 195.61 89.60 l 195.66 89.61 l 195.71 89.59 l 195.75 89.60 l 195.80 89.60 l 195.84 89.57 l 195.89 89.58 l 195.94 89.57 l 195.98 89.59 l 196.03 89.58 l 196.07 89.59 l 196.12 89.60 l 196.17 89.57 l 196.21 89.54 l 196.26 89.56 l 196.30 89.59 l 196.35 89.56 l 196.40 89.57 l 196.44 89.55 l 196.49 89.48 l 196.53 89.50 l 196.58 89.46 l 196.63 89.46 l 196.67 89.40 l 196.72 89.36 l 196.76 89.36 l 196.81 89.33 l 196.86 89.32 l 196.90 89.31 l 196.95 89.34 l 196.99 89.34 l 197.04 89.30 l 197.09 89.26 l 197.13 89.25 l 197.18 89.27 l 197.22 89.25 l 197.27 89.23 l 197.32 89.26 l 197.36 89.26 l 197.41 89.25 l 197.45 89.23 l 197.50 89.24 l 197.55 89.21 l 197.59 89.29 l 197.64 89.29 l 197.68 89.30 l 197.73 89.31 l 197.78 89.26 l 197.82 89.28 l 197.87 89.29 l 197.91 89.27 l 197.96 89.28 l 198.01 89.25 l 198.05 89.24 l 198.10 89.21 l 198.14 89.18 l 198.19 89.18 l 198.24 89.17 l 198.28 89.14 l 198.33 89.09 l 198.37 89.13 l 198.42 89.12 l 198.47 89.10 l 198.51 89.08 l 198.56 89.07 l 198.60 89.07 l 198.65 89.02 l 198.70 88.97 l 198.74 88.97 l 198.79 88.94 l 198.83 88.98 l 198.88 89.00 l 198.93 89.00 l 198.97 89.03 l 199.02 89.04 l 199.06 89.07 l 199.11 89.04 l 199.16 89.03 l 199.20 89.03 l 199.25 89.03 l 199.29 89.04 l 199.34 89.02 l 199.39 89.04 l 199.43 89.00 l 199.48 89.01 l 199.52 89.03 l 199.57 89.05 l 199.62 89.04 l 199.66 89.03 l 199.71 89.06 l 199.75 89.04 l 199.80 89.05 l 199.85 89.06 l 199.89 89.08 l 199.94 89.10 l 199.98 89.13 l 200.03 89.17 l 200.08 89.22 l 200.12 89.22 l 200.17 89.21 l 200.21 89.25 l 200.26 89.24 l 200.31 89.22 l 200.35 89.21 l 200.40 89.23 l 200.44 89.27 l 200.49 89.28 l 200.54 89.26 l 200.58 89.35 l 200.63 89.35 l 200.67 89.34 l 200.72 89.37 l 200.77 89.34 l 200.81 89.30 l 200.86 89.29 l 200.90 89.32 l 200.95 89.36 l 201.00 89.37 l 201.04 89.34 l 201.09 89.41 l 201.13 89.40 l 201.18 89.43 l 201.23 89.44 l 201.27 89.42 l 201.32 89.39 l 201.36 89.37 l 201.41 89.32 l 201.46 89.33 l 201.50 89.35 l 201.55 89.32 l 201.59 89.28 l 201.64 89.32 l 201.69 89.32 l 201.73 89.36 l 201.78 89.42 l 201.82 89.42 l 201.87 89.45 l 201.92 89.42 l 201.96 89.45 l 202.01 89.46 l 202.05 89.48 l 202.10 89.49 l 202.15 89.49 l 202.19 89.47 l 202.24 89.44 l 202.28 89.38 l 202.33 89.37 l 202.38 89.34 l 202.42 89.38 l 202.47 89.34 l 202.51 89.34 l 202.56 89.30 l 202.61 89.31 l 202.65 89.32 l 202.70 89.33 l 202.74 89.35 l 202.79 89.36 l 202.84 89.38 l 202.88 89.35 l 202.93 89.35 l 202.97 89.36 l 203.02 89.38 l 203.07 89.43 l 203.11 89.42 l 203.16 89.47 l 203.20 89.48 l 203.25 89.48 l 203.30 89.49 l 203.34 89.51 l 203.39 89.53 l 203.43 89.51 l 203.48 89.52 l 203.53 89.54 l 203.57 89.57 l 203.62 89.58 l 203.66 89.57 l 203.71 89.58 l 203.76 89.58 l 203.80 89.60 l 203.85 89.56 l 203.89 89.61 l 203.94 89.60 l 203.99 89.55 l 204.03 89.55 l 204.08 89.54 l 204.12 89.52 l 204.17 89.49 l 204.22 89.54 l 204.26 89.50 l 204.31 89.47 l 204.35 89.48 l 204.40 89.44 l 204.45 89.44 l 204.49 89.44 l 204.54 89.45 l 204.58 89.42 l 204.63 89.44 l 204.68 89.43 l 204.72 89.44 l 204.77 89.48 l 204.81 89.50 l 204.86 89.54 l 204.91 89.53 l 204.95 89.55 l 205.00 89.57 l 205.04 89.50 l 205.09 89.47 l 205.14 89.45 l 205.18 89.44 l 205.23 89.44 l 205.27 89.42 l 205.32 89.41 l 205.37 89.41 l 205.41 89.40 l 205.46 89.37 l 205.50 89.37 l 205.55 89.42 l 205.60 89.41 l 205.64 89.40 l 205.69 89.39 l 205.73 89.41 l 205.78 89.47 l 205.83 89.47 l 205.87 89.46 l 205.92 89.43 l 205.96 89.43 l 206.01 89.41 l 206.06 89.41 l 206.10 89.37 l 206.15 89.38 l 206.19 89.39 l 206.24 89.38 l 206.29 89.35 l 206.33 89.31 l 206.38 89.31 l 206.42 89.30 l 206.47 89.30 l 206.52 89.31 l 206.56 89.31 l 206.61 89.33 l 206.65 89.34 l 206.70 89.35 l 206.75 89.36 l 206.79 89.37 l 206.84 89.35 l 206.88 89.31 l 206.93 89.32 l 206.98 89.29 l 207.02 89.27 l 207.07 89.26 l 207.11 89.27 l 207.16 89.30 l 207.21 89.34 l 207.25 89.30 l 207.30 89.27 l 207.34 89.24 l 207.39 89.22 l 207.44 89.19 l 207.48 89.14 l 207.53 89.10 l 207.57 89.05 l 207.62 89.03 l 207.67 89.03 l 207.71 89.08 l 207.76 89.05 l 207.80 89.04 l 207.85 89.00 l 207.90 88.94 l 207.94 88.92 l 207.99 88.88 l 208.03 88.88 l 208.08 88.81 l 208.13 88.79 l 208.17 88.85 l 208.22 88.82 l 208.26 88.84 l 208.31 88.84 l 208.36 88.85 l 208.40 88.87 l 208.45 88.84 l 208.49 88.81 l 208.54 88.76 l 208.59 88.78 l 208.63 88.77 l 208.68 88.78 l 208.72 88.78 l 208.77 88.77 l 208.82 88.74 l 208.86 88.68 l 208.91 88.66 l 208.95 88.62 l 209.00 88.62 l 209.05 88.60 l 209.09 88.54 l 209.14 88.51 l 209.18 88.48 l 209.23 88.44 l 209.28 88.42 l 209.32 88.41 l 209.37 88.42 l 209.41 88.40 l 209.46 88.33 l 209.51 88.33 l 209.55 88.35 l 209.60 88.35 l 209.64 88.29 l 209.69 88.25 l 209.74 88.23 l 209.78 88.25 l 209.83 88.25 l 209.87 88.27 l 209.92 88.30 l 209.97 88.26 l 210.01 88.26 l 210.06 88.31 l 210.10 88.39 l 210.15 88.35 l 210.20 88.33 l 210.24 88.32 l 210.29 88.27 l 210.33 88.28 l 210.38 88.24 l 210.43 88.22 l 210.47 88.23 l 210.52 88.24 l 210.56 88.24 l 210.61 88.24 l 210.66 88.21 l 210.70 88.17 l 210.75 88.20 l 210.79 88.22 l 210.84 88.25 l 210.89 88.24 l 210.93 88.20 l 210.98 88.20 l 211.02 88.21 l 211.07 88.23 l 211.12 88.22 l 211.16 88.19 l 211.21 88.15 l 211.25 88.16 l 211.30 88.19 l 211.35 88.17 l 211.39 88.19 l 211.44 88.22 l 211.48 88.23 l 211.53 88.23 l 211.58 88.17 l 211.62 88.18 l 211.67 88.13 l 211.71 88.08 l 211.76 88.11 l 211.81 88.11 l 211.85 88.11 l 211.90 88.12 l 211.94 88.10 l 211.99 88.07 l 212.04 88.04 l 212.08 88.00 l 212.13 87.98 l 212.17 87.99 l 212.22 88.01 l 212.27 88.00 l 212.31 87.98 l 212.36 87.94 l 212.40 87.90 l 212.45 87.90 l 212.50 87.88 l 212.54 87.90 l 212.59 87.91 l 212.63 87.91 l 212.68 87.94 l 212.73 87.89 l 212.77 87.91 l 212.82 87.95 l 212.86 87.94 l 212.91 87.95 l 212.96 87.99 l 213.00 87.97 l 213.05 88.02 l 213.09 88.05 l 213.14 88.10 l 213.19 88.11 l 213.23 88.08 l 213.28 88.02 l 213.32 88.04 l 213.37 88.00 l 213.42 88.01 l 213.46 87.97 l 213.51 87.98 l 213.55 87.98 l 213.60 87.99 l 213.65 88.02 l 213.69 88.04 l 213.74 88.05 l 213.78 88.09 l 213.83 88.13 l 213.88 88.15 l 213.92 88.13 l 213.97 88.18 l 214.01 88.15 l 214.06 88.12 l 214.11 88.12 l 214.15 88.18 l 214.20 88.19 l 214.24 88.21 l 214.29 88.11 l 214.34 88.11 l 214.38 88.10 l 214.43 88.13 l 214.47 88.16 l 214.52 88.14 l 214.57 88.15 l 214.61 88.16 l 214.66 88.18 l 214.70 88.16 l 214.75 88.15 l 214.80 88.20 l 214.84 88.24 l 214.89 88.26 l 214.93 88.26 l 214.98 88.24 l 215.03 88.25 l 215.07 88.23 l 215.12 88.25 l 215.16 88.26 l 215.21 88.23 l 215.26 88.23 l 215.30 88.28 l 215.35 88.29 l 215.39 88.32 l 215.44 88.32 l 215.49 88.32 l 215.53 88.32 l 215.58 88.31 l 215.62 88.29 l 215.67 88.31 l 215.72 88.29 l 215.76 88.32 l 215.81 88.34 l 215.85 88.33 l 215.90 88.37 l 215.95 88.36 l 215.99 88.41 l 216.04 88.48 l 216.08 88.47 l 216.13 88.49 l 216.18 88.49 l 216.22 88.42 l 216.27 88.42 l 216.31 88.40 l 216.36 88.45 l 216.41 88.53 l 216.45 88.55 l 216.50 88.57 l 216.54 88.55 l 216.59 88.59 l 216.64 88.59 l 216.68 88.51 l 216.73 88.50 l 216.77 88.49 l 216.82 88.47 l 216.87 88.46 l 216.91 88.46 l 216.96 88.46 l 217.00 88.45 l 217.05 88.47 l 217.10 88.42 l 217.14 88.42 l 217.19 88.41 l 217.23 88.41 l 217.28 88.41 l 217.33 88.47 l 217.37 88.51 l 217.42 88.52 l 217.46 88.53 l 217.51 88.56 l 217.56 88.58 l 217.60 88.57 l 217.65 88.59 l 217.69 88.60 l 217.74 88.60 l 217.79 88.64 l 217.83 88.66 l 217.88 88.63 l 217.92 88.61 l 217.97 88.66 l 218.02 88.64 l 218.06 88.59 l 218.11 88.55 l 218.15 88.61 l 218.20 88.62 l 218.25 88.63 l 218.29 88.62 l 218.34 88.63 l 218.38 88.60 l 218.43 88.58 l 218.48 88.59 l 218.52 88.58 l 218.57 88.57 l 218.61 88.51 l 218.66 88.53 l 218.71 88.57 l 218.75 88.54 l 218.80 88.53 l 218.84 88.56 l 218.89 88.58 l 218.94 88.59 l 218.98 88.55 l 219.03 88.55 l 219.07 88.55 l 219.12 88.56 l 219.17 88.59 l 219.21 88.62 l 219.26 88.61 l 219.30 88.59 l 219.35 88.60 l 219.40 88.62 l 219.44 88.64 l 219.49 88.64 l 219.53 88.63 l 219.58 88.60 l 219.63 88.59 l 219.67 88.61 l 219.72 88.63 l 219.76 88.63 l 219.81 88.56 l 219.86 88.57 l 219.90 88.59 l 219.95 88.64 l 219.99 88.62 l 220.04 88.60 l 220.09 88.58 l 220.13 88.57 l 220.18 88.59 l 220.22 88.62 l 220.27 88.58 l 220.32 88.58 l 220.36 88.64 l 220.41 88.58 l 220.45 88.58 l 220.50 88.63 l 220.55 88.67 l 220.59 88.76 l 220.64 88.78 l 220.68 88.77 l 220.73 88.77 l 220.78 88.79 l 220.82 88.82 l 220.87 88.84 l 220.91 88.88 l 220.96 88.85 l 221.01 88.87 l 221.05 88.87 l 221.10 88.85 l 221.14 88.82 l 221.19 88.85 l 221.24 88.84 l 221.28 88.88 l 221.33 88.87 l 221.37 88.84 l 221.42 88.83 l 221.47 88.77 l 221.51 88.79 l 221.56 88.76 l 221.60 88.72 l 221.65 88.66 l 221.70 88.67 l 221.74 88.67 l 221.79 88.70 l 221.83 88.67 l 221.88 88.68 l 221.93 88.71 l 221.97 88.73 l 222.02 88.70 l 222.06 88.69 l 222.11 88.68 l 222.16 88.69 l 222.20 88.69 l 222.25 88.68 l 222.29 88.67 l 222.34 88.65 l 222.39 88.61 l 222.43 88.64 l 222.48 88.62 l 222.52 88.65 l 222.57 88.63 l 222.62 88.62 l 222.66 88.59 l 222.71 88.56 l 222.75 88.53 l 222.80 88.59 l 222.85 88.56 l 222.89 88.60 l 222.94 88.59 l 222.98 88.57 l 223.03 88.58 l 223.08 88.56 l 223.12 88.51 l 223.17 88.47 l 223.21 88.47 l 223.26 88.51 l 223.31 88.44 l 223.35 88.43 l 223.40 88.40 l 223.44 88.38 l 223.49 88.38 l 223.54 88.38 l 223.58 88.41 l 223.63 88.35 l 223.67 88.36 l 223.72 88.32 l 223.77 88.30 l 223.81 88.27 l 223.86 88.27 l 223.90 88.28 l 223.95 88.25 l 224.00 88.26 l 224.04 88.24 l 224.09 88.23 l 224.13 88.21 l 224.18 88.17 l 224.23 88.18 l 224.27 88.18 l 224.32 88.18 l 224.36 88.16 l 224.41 88.11 l 224.46 88.12 l 224.50 88.06 l 224.55 88.01 l 224.59 88.02 l 224.64 88.00 l 224.69 87.98 l 224.73 88.02 l 224.78 87.99 l 224.82 88.00 l 224.87 88.00 l 224.92 87.96 l 224.96 87.96 l 225.01 87.94 l 225.05 87.96 l 225.10 87.95 l 225.15 87.98 l 225.19 88.02 l 225.24 88.03 l 225.28 88.04 l 225.33 88.11 l 225.38 88.07 l 225.42 88.03 l 225.47 88.02 l 225.51 88.05 l 225.56 88.04 l 225.61 88.04 l 225.65 88.11 l 225.70 88.15 l 225.74 88.17 l 225.79 88.18 l 225.84 88.13 l 225.88 88.13 l 225.93 88.12 l 225.97 88.11 l 226.02 88.09 l 226.07 88.11 l 226.11 88.08 l 226.16 88.12 l 226.20 88.14 l 226.25 88.14 l 226.30 88.10 l 226.34 88.12 l 226.39 88.15 l 226.43 88.16 l 226.48 88.12 l 226.53 88.13 l 226.57 88.15 l 226.62 88.14 l 226.66 88.10 l 226.71 88.11 l 226.76 88.09 l 226.80 88.09 l 226.85 88.08 l 226.89 88.12 l 226.94 88.12 l 226.99 88.13 l 227.03 88.13 l 227.08 88.08 l 227.12 88.08 l 227.17 88.09 l 227.22 88.06 l 227.26 88.09 l 227.31 88.06 l 227.35 88.01 l 227.40 87.99 l 227.45 88.01 l 227.49 88.04 l 227.54 87.99 l 227.58 87.94 l 227.63 87.92 l 227.68 87.89 l 227.72 87.89 l 227.77 87.90 l 227.81 87.93 l 227.86 87.95 l 227.91 87.98 l 227.95 87.99 l 228.00 87.99 l 228.04 87.98 l 228.09 88.01 l 228.14 87.97 l 228.18 87.96 l 228.23 87.92 l 228.27 87.94 l 228.32 87.94 l 228.37 87.92 l 228.41 87.88 l 228.46 87.78 l 228.50 87.77 l 228.55 87.77 l 228.60 87.79 l 228.64 87.77 l 228.69 87.74 l 228.73 87.74 l 228.78 87.72 l 228.83 87.69 l 228.87 87.65 l 228.92 87.67 l 228.96 87.72 l 229.01 87.73 l 229.06 87.73 l 229.10 87.67 l 229.15 87.65 l 229.19 87.67 l 229.24 87.62 l 229.29 87.57 l 229.33 87.56 l 229.38 87.55 l 229.42 87.50 l 229.47 87.50 l 229.52 87.49 l 229.56 87.47 l 229.61 87.51 l 229.65 87.51 l 229.70 87.49 l 229.75 87.48 l 229.79 87.45 l 229.84 87.45 l 229.88 87.49 l 229.93 87.52 l 229.98 87.53 l 230.02 87.58 l 230.07 87.58 l 230.11 87.60 l 230.16 87.60 l 230.21 87.61 l 230.25 87.60 l 230.30 87.58 l 230.34 87.55 l 230.39 87.55 l 230.44 87.54 l 230.48 87.52 l 230.53 87.58 l 230.57 87.62 l 230.62 87.64 l 230.67 87.62 l 230.71 87.58 l 230.76 87.64 l 230.80 87.63 l 230.85 87.63 l 230.90 87.64 l 230.94 87.60 l 230.99 87.63 l 231.03 87.62 l 231.08 87.65 l 231.13 87.65 l 231.17 87.64 l 231.22 87.63 l 231.26 87.64 l 231.31 87.62 l 231.36 87.62 l 231.40 87.57 l 231.45 87.56 l 231.49 87.56 l 231.54 87.58 l 231.59 87.58 l 231.63 87.62 l 231.68 87.64 l 231.72 87.62 l 231.77 87.57 l 231.82 87.58 l 231.86 87.53 l 231.91 87.57 l 231.95 87.57 l 232.00 87.55 l 232.05 87.56 l 232.09 87.54 l 232.14 87.55 l 232.18 87.53 l 232.23 87.54 l 232.28 87.50 l 232.32 87.48 l 232.37 87.49 l 232.41 87.51 l 232.46 87.52 l 232.51 87.50 l 232.55 87.50 l 232.60 87.50 l 232.64 87.57 l 232.69 87.58 l 232.74 87.61 l 232.78 87.58 l 232.83 87.58 l 232.87 87.58 l 232.92 87.57 l 232.97 87.58 l 233.01 87.60 l 233.06 87.62 l 233.10 87.59 l 233.15 87.62 l 233.20 87.64 l 233.24 87.60 l 233.29 87.61 l 233.33 87.60 l 233.38 87.59 l 233.43 87.57 l 233.47 87.54 l 233.52 87.53 l 233.56 87.51 l 233.61 87.49 l 233.66 87.47 l 233.70 87.44 l 233.75 87.45 l 233.79 87.45 l 233.84 87.40 l 233.89 87.40 l 233.93 87.41 l 233.98 87.43 l 234.02 87.39 l 234.07 87.38 l 234.12 87.38 l 234.16 87.33 l 234.21 87.32 l 234.25 87.26 l 234.30 87.25 l 234.35 87.23 l 234.39 87.23 l 234.44 87.20 l 234.48 87.19 l 234.53 87.21 l 234.58 87.18 l 234.62 87.20 l 234.67 87.15 l 234.71 87.13 l 234.76 87.13 l 234.81 87.14 l 234.85 87.08 l 234.90 87.06 l 234.94 87.06 l 234.99 87.08 l 235.04 87.06 l 235.08 87.04 l 235.13 87.04 l 235.17 87.01 l 235.22 86.98 l 235.27 86.96 l 235.31 86.94 l 235.36 86.92 l 235.40 86.86 l 235.45 86.85 l 235.50 86.81 l 235.54 86.79 l 235.59 86.78 l 235.63 86.81 l 235.68 86.76 l 235.73 86.78 l 235.77 86.76 l 235.82 86.80 l 235.86 86.79 l 235.91 86.82 l 235.96 86.80 l 236.00 86.77 l 236.05 86.78 l 236.09 86.81 l 236.14 86.80 l 236.19 86.78 l 236.23 86.78 l 236.28 86.78 l 236.32 86.75 l 236.37 86.69 l 236.42 86.61 l 236.46 86.58 l 236.51 86.59 l 236.55 86.56 l 236.60 86.54 l 236.65 86.59 l 236.69 86.56 l 236.74 86.54 l 236.78 86.49 l 236.83 86.56 l 236.88 86.56 l 236.92 86.58 l 236.97 86.60 l 237.01 86.61 l 237.06 86.62 l 237.11 86.61 l 237.15 86.62 l 237.20 86.65 l 237.24 86.63 l 237.29 86.61 l 237.34 86.62 l 237.38 86.61 l 237.43 86.63 l 237.47 86.58 l 237.52 86.54 l 237.57 86.51 l 237.61 86.47 l 237.66 86.45 l 237.70 86.40 l 237.75 86.42 l 237.80 86.42 l 237.84 86.38 l 237.89 86.37 l 237.93 86.37 l 237.98 86.40 l 238.03 86.40 l 238.07 86.40 l 238.12 86.38 l 238.16 86.40 l 238.21 86.39 l 238.26 86.42 l 238.30 86.42 l 238.35 86.40 l 238.39 86.36 l 238.44 86.32 l 238.49 86.30 l 238.53 86.20 l 238.58 86.20 l 238.62 86.20 l 238.67 86.19 l 238.72 86.16 l 238.76 86.18 l 238.81 86.19 l 238.85 86.24 l 238.90 86.23 l 238.95 86.18 l 238.99 86.19 l 239.04 86.16 l 239.08 86.16 l 239.13 86.15 l 239.18 86.16 l 239.22 86.16 l 239.27 86.09 l 239.31 86.09 l 239.36 86.06 l 239.41 86.06 l 239.45 86.09 l 239.50 86.06 l 239.54 86.03 l 239.59 85.99 l 239.64 85.97 l 239.68 85.96 l 239.73 85.99 l 239.77 86.02 l 239.82 86.00 l 239.87 86.01 l 239.91 85.99 l 239.96 85.99 l 240.00 85.95 l 240.05 85.90 l 240.10 85.86 l 240.14 85.85 l 240.19 85.81 l 240.23 85.81 l 240.28 85.80 l 240.33 85.82 l 240.37 85.84 l 240.42 85.79 l 240.46 85.78 l 240.51 85.81 l 240.56 85.77 l 240.60 85.75 l 240.65 85.75 l 240.69 85.77 l 240.74 85.76 l 240.79 85.75 l 240.83 85.73 l 240.88 85.69 l 240.92 85.64 l 240.97 85.63 l 241.02 85.63 l 241.06 85.65 l 241.11 85.64 l 241.15 85.59 l 241.20 85.54 l 241.25 85.47 l 241.29 85.46 l 241.34 85.48 l 241.38 85.50 l 241.43 85.53 l 241.48 85.48 l 241.52 85.48 l 241.57 85.46 l 241.61 85.47 l 241.66 85.44 l 241.71 85.40 l 241.75 85.41 l 241.80 85.40 l 241.84 85.40 l 241.89 85.36 l 241.94 85.35 l 241.98 85.39 l 242.03 85.37 l 242.07 85.36 l 242.12 85.37 l 242.17 85.37 l 242.21 85.36 l 242.26 85.31 l 242.30 85.28 l 242.35 85.26 l 242.40 85.26 l 242.44 85.25 l 242.49 85.21 l 242.53 85.21 l 242.58 85.23 l 242.63 85.21 l 242.67 85.20 l 242.72 85.14 l 242.76 85.14 l 242.81 85.11 l 242.86 85.11 l 242.90 85.09 l 242.95 85.09 l 242.99 85.08 l 243.04 85.05 l 243.09 85.06 l 243.13 85.05 l 243.18 85.03 l 243.22 85.00 l 243.27 85.00 l 243.32 85.03 l 243.36 85.06 l 243.41 85.00 l 243.45 84.99 l 243.50 84.93 l 243.55 84.89 l 243.59 84.92 l 243.64 84.90 l 243.68 84.91 l 243.73 84.91 l 243.78 84.93 l 243.82 84.91 l 243.87 84.91 l 243.91 84.95 l 243.96 84.94 l 244.01 84.95 l 244.05 84.95 l 244.10 84.95 l 244.14 84.93 l 244.19 84.94 l 244.24 84.88 l 244.28 84.87 l 244.33 84.81 l 244.37 84.81 l 244.42 84.78 l 244.47 84.78 l 244.51 84.77 l 244.56 84.75 l 244.60 84.77 l 244.65 84.79 l 244.70 84.82 l 244.74 84.79 l 244.79 84.77 l 244.83 84.74 l 244.88 84.74 l 244.93 84.76 l 244.97 84.73 l 245.02 84.74 l 245.06 84.74 l 245.11 84.75 l 245.16 84.69 l 245.20 84.71 l 245.25 84.74 l 245.29 84.78 l 245.34 84.70 l 245.39 84.69 l 245.43 84.67 l 245.48 84.68 l 245.52 84.69 l 245.57 84.69 l 245.62 84.67 l 245.66 84.68 l 245.71 84.67 l 245.75 84.68 l 245.80 84.70 l 245.85 84.69 l 245.89 84.65 l 245.94 84.64 l 245.98 84.62 l 246.03 84.62 l 246.08 84.63 l 246.12 84.63 l 246.17 84.61 l 246.21 84.62 l 246.26 84.62 l 246.31 84.61 l 246.35 84.59 l 246.40 84.59 l 246.44 84.59 l 246.49 84.54 l 246.54 84.52 l 246.58 84.50 l 246.63 84.49 l 246.67 84.47 l 246.72 84.46 l 246.77 84.41 l 246.81 84.40 l 246.86 84.40 l 246.90 84.40 l 246.95 84.44 l 247.00 84.42 l 247.04 84.45 l 247.09 84.42 l 247.13 84.39 l 247.18 84.42 l 247.23 84.44 l 247.27 84.43 l 247.32 84.39 l 247.36 84.34 l 247.41 84.35 l 247.46 84.38 l 247.50 84.36 l 247.55 84.37 l 247.59 84.32 l 247.64 84.30 l 247.69 84.31 l 247.73 84.35 l 247.78 84.39 l 247.82 84.39 l 247.87 84.40 l 247.92 84.37 l 247.96 84.33 l 248.01 84.32 l 248.05 84.33 l 248.10 84.35 l 248.15 84.36 l 248.19 84.34 l 248.24 84.30 l 248.28 84.27 l 248.33 84.26 l 248.38 84.22 l 248.42 84.24 l 248.47 84.26 l 248.51 84.27 l 248.56 84.29 l 248.61 84.30 l 248.65 84.28 l 248.70 84.29 l 248.74 84.27 l 248.79 84.34 l 248.84 84.36 l 248.88 84.35 l 248.93 84.38 l 248.97 84.38 l 249.02 84.37 l 249.07 84.39 l 249.11 84.40 l 249.16 84.37 l 249.20 84.34 l 249.25 84.37 l 249.30 84.38 l 249.34 84.41 l 249.39 84.43 l 249.43 84.40 l 249.48 84.40 l 249.53 84.39 l 249.57 84.36 l 249.62 84.35 l 249.66 84.34 l 249.71 84.37 l 249.76 84.38 l 249.80 84.35 l 249.85 84.33 l 249.89 84.30 l 249.94 84.29 l 249.99 84.29 l 250.03 84.32 l 250.08 84.36 l 250.12 84.39 l 250.17 84.38 l 250.22 84.40 l 250.26 84.41 l 250.31 84.42 l 250.35 84.41 l 250.40 84.43 l S Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 73.44 m 250.40 73.44 l S 66.40 73.44 m 66.40 66.24 l S 112.40 73.44 m 112.40 66.24 l S 158.40 73.44 m 158.40 66.24 l S 204.40 73.44 m 204.40 66.24 l S 250.40 73.44 m 250.40 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 49.55 47.52 Tm (-2000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 95.55 47.52 Tm (-1000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 155.06 47.52 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 191.06 47.52 Tm (1000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 237.06 47.52 Tm (2000) Tj ET 59.04 75.11 m 59.04 239.58 l S 59.04 75.11 m 51.84 75.11 l S 59.04 116.23 m 51.84 116.23 l S 59.04 157.35 m 51.84 157.35 l S 59.04 198.46 m 51.84 198.46 l S 59.04 239.58 m 51.84 239.58 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 60.10 Tm (0.000) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 101.22 Tm (0.001) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 142.34 Tm (0.002) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 183.45 Tm (0.003) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 224.57 Tm (0.004) Tj ET 59.04 73.44 m 257.76 73.44 l 257.76 264.96 l 59.04 264.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 116.05 18.72 Tm (distance to TSS) Tj ET Q q 59.04 73.44 198.72 191.52 re W n 0.000 1.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 85.10 m 66.45 85.10 l 66.49 85.13 l 66.54 85.12 l 66.58 85.11 l 66.63 85.10 l 66.68 85.10 l 66.72 85.10 l 66.77 85.10 l 66.81 85.12 l 66.86 85.12 l 66.91 85.13 l 66.95 85.13 l 67.00 85.14 l 67.04 85.13 l 67.09 85.13 l 67.14 85.11 l 67.18 85.13 l 67.23 85.15 l 67.27 85.17 l 67.32 85.17 l 67.37 85.16 l 67.41 85.16 l 67.46 85.09 l 67.50 85.04 l 67.55 84.99 l 67.60 84.99 l 67.64 85.01 l 67.69 85.04 l 67.73 85.02 l 67.78 84.99 l 67.83 84.99 l 67.87 84.98 l 67.92 84.95 l 67.96 84.94 l 68.01 84.93 l 68.06 84.90 l 68.10 84.93 l 68.15 84.93 l 68.19 84.95 l 68.24 84.97 l 68.29 84.96 l 68.33 84.97 l 68.38 84.96 l 68.42 84.96 l 68.47 84.94 l 68.52 84.93 l 68.56 84.93 l 68.61 84.96 l 68.65 84.95 l 68.70 84.96 l 68.75 84.96 l 68.79 85.01 l 68.84 84.98 l 68.88 85.04 l 68.93 85.05 l 68.98 85.05 l 69.02 85.00 l 69.07 84.99 l 69.11 85.01 l 69.16 84.99 l 69.21 85.00 l 69.25 84.97 l 69.30 84.99 l 69.34 84.97 l 69.39 84.98 l 69.44 84.96 l 69.48 84.95 l 69.53 84.96 l 69.57 84.94 l 69.62 84.93 l 69.67 84.93 l 69.71 84.91 l 69.76 84.94 l 69.80 84.94 l 69.85 84.95 l 69.90 84.95 l 69.94 84.97 l 69.99 84.94 l 70.03 84.90 l 70.08 84.86 l 70.13 84.86 l 70.17 84.91 l 70.22 84.92 l 70.26 84.91 l 70.31 84.90 l 70.36 84.90 l 70.40 84.90 l 70.45 84.93 l 70.49 84.91 l 70.54 84.92 l 70.59 84.90 l 70.63 84.88 l 70.68 84.89 l 70.72 84.94 l 70.77 84.94 l 70.82 85.00 l 70.86 85.00 l 70.91 85.06 l 70.95 85.07 l 71.00 85.08 l 71.05 85.08 l 71.09 85.11 l 71.14 85.09 l 71.18 85.13 l 71.23 85.12 l 71.28 85.12 l 71.32 85.11 l 71.37 85.12 l 71.41 85.13 l 71.46 85.17 l 71.51 85.22 l 71.55 85.24 l 71.60 85.31 l 71.64 85.33 l 71.69 85.30 l 71.74 85.33 l 71.78 85.34 l 71.83 85.37 l 71.87 85.38 l 71.92 85.41 l 71.97 85.45 l 72.01 85.46 l 72.06 85.47 l 72.10 85.48 l 72.15 85.47 l 72.20 85.49 l 72.24 85.46 l 72.29 85.48 l 72.33 85.47 l 72.38 85.46 l 72.43 85.47 l 72.47 85.51 l 72.52 85.52 l 72.56 85.54 l 72.61 85.55 l 72.66 85.56 l 72.70 85.56 l 72.75 85.57 l 72.79 85.60 l 72.84 85.57 l 72.89 85.62 l 72.93 85.61 l 72.98 85.62 l 73.02 85.62 l 73.07 85.62 l 73.12 85.65 l 73.16 85.69 l 73.21 85.73 l 73.25 85.73 l 73.30 85.77 l 73.35 85.76 l 73.39 85.79 l 73.44 85.80 l 73.48 85.80 l 73.53 85.84 l 73.58 85.86 l 73.62 85.86 l 73.67 85.85 l 73.71 85.86 l 73.76 85.85 l 73.81 85.88 l 73.85 85.90 l 73.90 85.88 l 73.94 85.91 l 73.99 85.90 l 74.04 85.89 l 74.08 85.92 l 74.13 85.90 l 74.17 85.90 l 74.22 85.93 l 74.27 85.94 l 74.31 85.94 l 74.36 85.94 l 74.40 85.98 l 74.45 85.97 l 74.50 85.99 l 74.54 86.01 l 74.59 86.05 l 74.63 86.06 l 74.68 86.10 l 74.73 86.10 l 74.77 86.10 l 74.82 86.12 l 74.86 86.12 l 74.91 86.12 l 74.96 86.12 l 75.00 86.12 l 75.05 86.17 l 75.09 86.21 l 75.14 86.25 l 75.19 86.25 l 75.23 86.27 l 75.28 86.26 l 75.32 86.25 l 75.37 86.25 l 75.42 86.24 l 75.46 86.24 l 75.51 86.23 l 75.55 86.23 l 75.60 86.25 l 75.65 86.26 l 75.69 86.25 l 75.74 86.25 l 75.78 86.25 l 75.83 86.23 l 75.88 86.22 l 75.92 86.20 l 75.97 86.20 l 76.01 86.20 l 76.06 86.19 l 76.11 86.20 l 76.15 86.20 l 76.20 86.19 l 76.24 86.22 l 76.29 86.25 l 76.34 86.31 l 76.38 86.35 l 76.43 86.39 l 76.47 86.42 l 76.52 86.44 l 76.57 86.45 l 76.61 86.41 l 76.66 86.43 l 76.70 86.46 l 76.75 86.50 l 76.80 86.56 l 76.84 86.57 l 76.89 86.60 l 76.93 86.60 l 76.98 86.65 l 77.03 86.65 l 77.07 86.66 l 77.12 86.66 l 77.16 86.66 l 77.21 86.63 l 77.26 86.63 l 77.30 86.58 l 77.35 86.59 l 77.39 86.54 l 77.44 86.53 l 77.49 86.56 l 77.53 86.63 l 77.58 86.64 l 77.62 86.72 l 77.67 86.76 l 77.72 86.81 l 77.76 86.83 l 77.81 86.85 l 77.85 86.85 l 77.90 86.88 l 77.95 86.89 l 77.99 86.92 l 78.04 86.93 l 78.08 86.96 l 78.13 87.00 l 78.18 86.99 l 78.22 87.01 l 78.27 87.00 l 78.31 86.99 l 78.36 86.98 l 78.41 86.99 l 78.45 87.07 l 78.50 87.17 l 78.54 87.25 l 78.59 87.28 l 78.64 87.28 l 78.68 87.24 l 78.73 87.24 l 78.77 87.28 l 78.82 87.32 l 78.87 87.33 l 78.91 87.35 l 78.96 87.35 l 79.00 87.36 l 79.05 87.32 l 79.10 87.35 l 79.14 87.38 l 79.19 87.41 l 79.23 87.37 l 79.28 87.41 l 79.33 87.35 l 79.37 87.39 l 79.42 87.38 l 79.46 87.42 l 79.51 87.42 l 79.56 87.47 l 79.60 87.52 l 79.65 87.61 l 79.69 87.61 l 79.74 87.70 l 79.79 87.73 l 79.83 87.72 l 79.88 87.72 l 79.92 87.73 l 79.97 87.73 l 80.02 87.76 l 80.06 87.80 l 80.11 87.81 l 80.15 87.82 l 80.20 87.86 l 80.25 87.87 l 80.29 87.87 l 80.34 87.81 l 80.38 87.79 l 80.43 87.76 l 80.48 87.76 l 80.52 87.76 l 80.57 87.76 l 80.61 87.76 l 80.66 87.81 l 80.71 87.83 l 80.75 87.88 l 80.80 87.88 l 80.84 87.95 l 80.89 87.96 l 80.94 88.01 l 80.98 88.05 l 81.03 88.09 l 81.07 88.09 l 81.12 88.13 l 81.17 88.15 l 81.21 88.14 l 81.26 88.16 l 81.30 88.13 l 81.35 88.16 l 81.40 88.17 l 81.44 88.23 l 81.49 88.22 l 81.53 88.22 l 81.58 88.26 l 81.63 88.26 l 81.67 88.24 l 81.72 88.29 l 81.76 88.38 l 81.81 88.41 l 81.86 88.49 l 81.90 88.51 l 81.95 88.50 l 81.99 88.50 l 82.04 88.47 l 82.09 88.47 l 82.13 88.50 l 82.18 88.50 l 82.22 88.51 l 82.27 88.53 l 82.32 88.55 l 82.36 88.55 l 82.41 88.60 l 82.45 88.61 l 82.50 88.66 l 82.55 88.71 l 82.59 88.71 l 82.64 88.77 l 82.68 88.78 l 82.73 88.79 l 82.78 88.78 l 82.82 88.80 l 82.87 88.80 l 82.91 88.80 l 82.96 88.82 l 83.01 88.81 l 83.05 88.85 l 83.10 88.83 l 83.14 88.84 l 83.19 88.83 l 83.24 88.87 l 83.28 88.88 l 83.33 88.92 l 83.37 88.94 l 83.42 88.95 l 83.47 88.93 l 83.51 88.92 l 83.56 88.92 l 83.60 88.93 l 83.65 88.92 l 83.70 88.93 l 83.74 88.92 l 83.79 88.95 l 83.83 88.97 l 83.88 89.00 l 83.93 89.00 l 83.97 89.04 l 84.02 89.06 l 84.06 89.08 l 84.11 89.07 l 84.16 89.11 l 84.20 89.12 l 84.25 89.14 l 84.29 89.21 l 84.34 89.22 l 84.39 89.25 l 84.43 89.25 l 84.48 89.23 l 84.52 89.26 l 84.57 89.29 l 84.62 89.29 l 84.66 89.30 l 84.71 89.34 l 84.75 89.36 l 84.80 89.35 l 84.85 89.30 l 84.89 89.30 l 84.94 89.27 l 84.98 89.28 l 85.03 89.31 l 85.08 89.34 l 85.12 89.35 l 85.17 89.35 l 85.21 89.32 l 85.26 89.32 l 85.31 89.26 l 85.35 89.28 l 85.40 89.26 l 85.44 89.27 l 85.49 89.22 l 85.54 89.23 l 85.58 89.24 l 85.63 89.25 l 85.67 89.24 l 85.72 89.28 l 85.77 89.31 l 85.81 89.34 l 85.86 89.36 l 85.90 89.38 l 85.95 89.41 l 86.00 89.40 l 86.04 89.40 l 86.09 89.42 l 86.13 89.38 l 86.18 89.37 l 86.23 89.37 l 86.27 89.42 l 86.32 89.43 l 86.36 89.46 l 86.41 89.46 l 86.46 89.50 l 86.50 89.56 l 86.55 89.67 l 86.59 89.66 l 86.64 89.68 l 86.69 89.71 l 86.73 89.75 l 86.78 89.80 l 86.82 89.87 l 86.87 89.93 l 86.92 89.94 l 86.96 89.90 l 87.01 89.80 l 87.05 89.75 l 87.10 89.76 l 87.15 89.80 l 87.19 89.82 l 87.24 89.84 l 87.28 89.84 l 87.33 89.84 l 87.38 89.88 l 87.42 89.89 l 87.47 89.90 l 87.51 89.90 l 87.56 89.97 l 87.61 89.98 l 87.65 89.98 l 87.70 90.01 l 87.74 90.02 l 87.79 90.00 l 87.84 90.02 l 87.88 89.99 l 87.93 89.97 l 87.97 89.94 l 88.02 89.94 l 88.07 89.95 l 88.11 89.97 l 88.16 89.92 l 88.20 89.93 l 88.25 89.86 l 88.30 89.88 l 88.34 89.94 l 88.39 89.97 l 88.43 90.01 l 88.48 90.01 l 88.53 90.01 l 88.57 90.05 l 88.62 90.02 l 88.66 90.03 l 88.71 90.04 l 88.76 90.03 l 88.80 90.04 l 88.85 90.10 l 88.89 90.12 l 88.94 90.14 l 88.99 90.17 l 89.03 90.19 l 89.08 90.29 l 89.12 90.28 l 89.17 90.25 l 89.22 90.25 l 89.26 90.23 l 89.31 90.25 l 89.35 90.22 l 89.40 90.25 l 89.45 90.26 l 89.49 90.31 l 89.54 90.32 l 89.58 90.41 l 89.63 90.42 l 89.68 90.40 l 89.72 90.44 l 89.77 90.49 l 89.81 90.53 l 89.86 90.60 l 89.91 90.64 l 89.95 90.63 l 90.00 90.68 l 90.04 90.73 l 90.09 90.73 l 90.14 90.75 l 90.18 90.78 l 90.23 90.76 l 90.27 90.68 l 90.32 90.63 l 90.37 90.60 l 90.41 90.60 l 90.46 90.59 l 90.50 90.60 l 90.55 90.63 l 90.60 90.63 l 90.64 90.63 l 90.69 90.67 l 90.73 90.66 l 90.78 90.65 l 90.83 90.63 l 90.87 90.64 l 90.92 90.65 l 90.96 90.64 l 91.01 90.65 l 91.06 90.65 l 91.10 90.66 l 91.15 90.69 l 91.19 90.65 l 91.24 90.66 l 91.29 90.69 l 91.33 90.75 l 91.38 90.85 l 91.42 90.89 l 91.47 90.90 l 91.52 90.93 l 91.56 90.93 l 91.61 90.98 l 91.65 90.96 l 91.70 90.98 l 91.75 90.93 l 91.79 90.93 l 91.84 90.85 l 91.88 90.84 l 91.93 90.84 l 91.98 90.85 l 92.02 90.87 l 92.07 90.88 l 92.11 90.85 l 92.16 90.85 l 92.21 90.85 l 92.25 90.92 l 92.30 90.95 l 92.34 91.00 l 92.39 91.03 l 92.44 91.02 l 92.48 91.02 l 92.53 91.04 l 92.57 91.02 l 92.62 91.06 l 92.67 91.04 l 92.71 91.04 l 92.76 91.11 l 92.80 91.11 l 92.85 91.19 l 92.90 91.18 l 92.94 91.20 l 92.99 91.24 l 93.03 91.25 l 93.08 91.27 l 93.13 91.27 l 93.17 91.31 l 93.22 91.26 l 93.26 91.25 l 93.31 91.26 l 93.36 91.29 l 93.40 91.29 l 93.45 91.32 l 93.49 91.31 l 93.54 91.33 l 93.59 91.34 l 93.63 91.34 l 93.68 91.33 l 93.72 91.31 l 93.77 91.28 l 93.82 91.30 l 93.86 91.29 l 93.91 91.30 l 93.95 91.30 l 94.00 91.32 l 94.05 91.34 l 94.09 91.33 l 94.14 91.34 l 94.18 91.34 l 94.23 91.33 l 94.28 91.30 l 94.32 91.30 l 94.37 91.31 l 94.41 91.32 l 94.46 91.30 l 94.51 91.29 l 94.55 91.27 l 94.60 91.27 l 94.64 91.27 l 94.69 91.26 l 94.74 91.21 l 94.78 91.20 l 94.83 91.17 l 94.87 91.14 l 94.92 91.11 l 94.97 91.11 l 95.01 91.04 l 95.06 90.92 l 95.10 90.92 l 95.15 90.87 l 95.20 90.87 l 95.24 90.86 l 95.29 90.82 l 95.33 90.80 l 95.38 90.77 l 95.43 90.77 l 95.47 90.74 l 95.52 90.77 l 95.56 90.75 l 95.61 90.75 l 95.66 90.81 l 95.70 90.82 l 95.75 90.83 l 95.79 90.81 l 95.84 90.79 l 95.89 90.76 l 95.93 90.76 l 95.98 90.77 l 96.02 90.77 l 96.07 90.72 l 96.12 90.72 l 96.16 90.74 l 96.21 90.72 l 96.25 90.71 l 96.30 90.70 l 96.35 90.71 l 96.39 90.72 l 96.44 90.76 l 96.48 90.77 l 96.53 90.80 l 96.58 90.77 l 96.62 90.76 l 96.67 90.77 l 96.71 90.74 l 96.76 90.75 l 96.81 90.71 l 96.85 90.70 l 96.90 90.69 l 96.94 90.65 l 96.99 90.64 l 97.04 90.63 l 97.08 90.58 l 97.13 90.61 l 97.17 90.62 l 97.22 90.62 l 97.27 90.63 l 97.31 90.62 l 97.36 90.59 l 97.40 90.60 l 97.45 90.58 l 97.50 90.58 l 97.54 90.57 l 97.59 90.50 l 97.63 90.53 l 97.68 90.57 l 97.73 90.58 l 97.77 90.59 l 97.82 90.58 l 97.86 90.59 l 97.91 90.63 l 97.96 90.59 l 98.00 90.51 l 98.05 90.49 l 98.09 90.43 l 98.14 90.41 l 98.19 90.43 l 98.23 90.40 l 98.28 90.40 l 98.32 90.45 l 98.37 90.44 l 98.42 90.43 l 98.46 90.46 l 98.51 90.42 l 98.55 90.40 l 98.60 90.41 l 98.65 90.44 l 98.69 90.42 l 98.74 90.40 l 98.78 90.43 l 98.83 90.43 l 98.88 90.43 l 98.92 90.44 l 98.97 90.50 l 99.01 90.57 l 99.06 90.58 l 99.11 90.58 l 99.15 90.60 l 99.20 90.61 l 99.24 90.68 l 99.29 90.72 l 99.34 90.76 l 99.38 90.80 l 99.43 90.81 l 99.47 90.81 l 99.52 90.77 l 99.57 90.79 l 99.61 90.78 l 99.66 90.72 l 99.70 90.75 l 99.75 90.79 l 99.80 90.81 l 99.84 90.77 l 99.89 90.68 l 99.93 90.66 l 99.98 90.68 l 100.03 90.74 l 100.07 90.79 l 100.12 90.83 l 100.16 90.87 l 100.21 90.90 l 100.26 90.94 l 100.30 91.00 l 100.35 91.05 l 100.39 91.11 l 100.44 91.12 l 100.49 91.15 l 100.53 91.16 l 100.58 91.14 l 100.62 91.14 l 100.67 91.16 l 100.72 91.20 l 100.76 91.21 l 100.81 91.21 l 100.85 91.20 l 100.90 91.20 l 100.95 91.25 l 100.99 91.24 l 101.04 91.26 l 101.08 91.28 l 101.13 91.29 l 101.18 91.32 l 101.22 91.36 l 101.27 91.37 l 101.31 91.32 l 101.36 91.28 l 101.41 91.34 l 101.45 91.38 l 101.50 91.40 l 101.54 91.40 l 101.59 91.40 l 101.64 91.42 l 101.68 91.40 l 101.73 91.44 l 101.77 91.50 l 101.82 91.57 l 101.87 91.59 l 101.91 91.63 l 101.96 91.59 l 102.00 91.60 l 102.05 91.57 l 102.10 91.59 l 102.14 91.62 l 102.19 91.69 l 102.23 91.76 l 102.28 91.80 l 102.33 91.83 l 102.37 91.88 l 102.42 91.93 l 102.46 92.01 l 102.51 92.05 l 102.56 92.04 l 102.60 92.08 l 102.65 92.11 l 102.69 92.16 l 102.74 92.21 l 102.79 92.22 l 102.83 92.25 l 102.88 92.31 l 102.92 92.34 l 102.97 92.40 l 103.02 92.44 l 103.06 92.47 l 103.11 92.46 l 103.15 92.44 l 103.20 92.46 l 103.25 92.48 l 103.29 92.50 l 103.34 92.61 l 103.38 92.66 l 103.43 92.75 l 103.48 92.74 l 103.52 92.77 l 103.57 92.82 l 103.61 92.89 l 103.66 92.91 l 103.71 92.98 l 103.75 92.99 l 103.80 93.00 l 103.84 93.04 l 103.89 93.09 l 103.94 93.14 l 103.98 93.17 l 104.03 93.19 l 104.07 93.26 l 104.12 93.25 l 104.17 93.20 l 104.21 93.23 l 104.26 93.24 l 104.30 93.28 l 104.35 93.31 l 104.40 93.32 l 104.44 93.31 l 104.49 93.32 l 104.53 93.35 l 104.58 93.39 l 104.63 93.43 l 104.67 93.44 l 104.72 93.48 l 104.76 93.52 l 104.81 93.57 l 104.86 93.64 l 104.90 93.69 l 104.95 93.74 l 104.99 93.75 l 105.04 93.74 l 105.09 93.73 l 105.13 93.77 l 105.18 93.77 l 105.22 93.81 l 105.27 93.83 l 105.32 93.87 l 105.36 93.86 l 105.41 93.87 l 105.45 93.88 l 105.50 93.91 l 105.55 93.90 l 105.59 93.96 l 105.64 93.95 l 105.68 94.00 l 105.73 94.03 l 105.78 94.12 l 105.82 94.13 l 105.87 94.15 l 105.91 94.16 l 105.96 94.21 l 106.01 94.21 l 106.05 94.27 l 106.10 94.31 l 106.14 94.38 l 106.19 94.46 l 106.24 94.53 l 106.28 94.53 l 106.33 94.56 l 106.37 94.58 l 106.42 94.59 l 106.47 94.66 l 106.51 94.69 l 106.56 94.72 l 106.60 94.80 l 106.65 94.82 l 106.70 94.82 l 106.74 94.84 l 106.79 94.84 l 106.83 94.86 l 106.88 94.87 l 106.93 94.85 l 106.97 94.80 l 107.02 94.81 l 107.06 94.86 l 107.11 94.87 l 107.16 94.87 l 107.20 94.91 l 107.25 94.93 l 107.29 94.99 l 107.34 95.03 l 107.39 95.04 l 107.43 95.08 l 107.48 95.11 l 107.52 95.14 l 107.57 95.18 l 107.62 95.24 l 107.66 95.30 l 107.71 95.32 l 107.75 95.34 l 107.80 95.34 l 107.85 95.40 l 107.89 95.41 l 107.94 95.45 l 107.98 95.51 l 108.03 95.60 l 108.08 95.63 l 108.12 95.67 l 108.17 95.73 l 108.21 95.79 l 108.26 95.80 l 108.31 95.80 l 108.35 95.79 l 108.40 95.87 l 108.44 95.96 l 108.49 95.96 l 108.54 95.98 l 108.58 95.95 l 108.63 95.94 l 108.67 95.99 l 108.72 96.02 l 108.77 96.07 l 108.81 96.06 l 108.86 96.07 l 108.90 96.06 l 108.95 96.11 l 109.00 96.16 l 109.04 96.23 l 109.09 96.29 l 109.13 96.31 l 109.18 96.34 l 109.23 96.38 l 109.27 96.39 l 109.32 96.45 l 109.36 96.43 l 109.41 96.46 l 109.46 96.47 l 109.50 96.56 l 109.55 96.57 l 109.59 96.60 l 109.64 96.60 l 109.69 96.65 l 109.73 96.66 l 109.78 96.71 l 109.82 96.76 l 109.87 96.86 l 109.92 96.87 l 109.96 96.92 l 110.01 96.97 l 110.05 96.99 l 110.10 97.09 l 110.15 97.20 l 110.19 97.31 l 110.24 97.35 l 110.28 97.34 l 110.33 97.32 l 110.38 97.29 l 110.42 97.35 l 110.47 97.39 l 110.51 97.43 l 110.56 97.44 l 110.61 97.43 l 110.65 97.47 l 110.70 97.45 l 110.74 97.43 l 110.79 97.42 l 110.84 97.42 l 110.88 97.43 l 110.93 97.41 l 110.97 97.40 l 111.02 97.41 l 111.07 97.43 l 111.11 97.51 l 111.16 97.54 l 111.20 97.63 l 111.25 97.65 l 111.30 97.73 l 111.34 97.82 l 111.39 97.82 l 111.43 97.83 l 111.48 97.82 l 111.53 97.84 l 111.57 97.90 l 111.62 98.02 l 111.66 98.16 l 111.71 98.25 l 111.76 98.33 l 111.80 98.36 l 111.85 98.34 l 111.89 98.38 l 111.94 98.44 l 111.99 98.60 l 112.03 98.70 l 112.08 98.78 l 112.12 98.78 l 112.17 98.81 l 112.22 98.83 l 112.26 98.92 l 112.31 98.96 l 112.35 98.95 l 112.40 98.96 l 112.45 98.93 l 112.49 98.95 l 112.54 98.99 l 112.58 98.99 l 112.63 99.06 l 112.68 99.13 l 112.72 99.20 l 112.77 99.28 l 112.81 99.38 l 112.86 99.42 l 112.91 99.52 l 112.95 99.63 l 113.00 99.65 l 113.04 99.64 l 113.09 99.72 l 113.14 99.71 l 113.18 99.79 l 113.23 99.81 l 113.27 99.84 l 113.32 99.84 l 113.37 99.84 l 113.41 99.87 l 113.46 99.91 l 113.50 100.02 l 113.55 100.09 l 113.60 100.17 l 113.64 100.19 l 113.69 100.21 l 113.73 100.23 l 113.78 100.21 l 113.83 100.27 l 113.87 100.29 l 113.92 100.31 l 113.96 100.37 l 114.01 100.47 l 114.06 100.53 l 114.10 100.54 l 114.15 100.61 l 114.19 100.69 l 114.24 100.74 l 114.29 100.73 l 114.33 100.84 l 114.38 100.90 l 114.42 100.99 l 114.47 101.08 l 114.52 101.18 l 114.56 101.24 l 114.61 101.30 l 114.65 101.24 l 114.70 101.17 l 114.75 101.16 l 114.79 101.25 l 114.84 101.35 l 114.88 101.39 l 114.93 101.45 l 114.98 101.54 l 115.02 101.58 l 115.07 101.62 l 115.11 101.69 l 115.16 101.76 l 115.21 101.86 l 115.25 101.96 l 115.30 102.04 l 115.34 102.06 l 115.39 102.06 l 115.44 102.13 l 115.48 102.23 l 115.53 102.37 l 115.57 102.39 l 115.62 102.44 l 115.67 102.43 l 115.71 102.45 l 115.76 102.53 l 115.80 102.54 l 115.85 102.58 l 115.90 102.65 l 115.94 102.71 l 115.99 102.75 l 116.03 102.76 l 116.08 102.77 l 116.13 102.81 l 116.17 102.83 l 116.22 102.85 l 116.26 102.91 l 116.31 102.99 l 116.36 102.98 l 116.40 103.07 l 116.45 103.12 l 116.49 103.19 l 116.54 103.26 l 116.59 103.30 l 116.63 103.30 l 116.68 103.37 l 116.72 103.41 l 116.77 103.48 l 116.82 103.58 l 116.86 103.68 l 116.91 103.72 l 116.95 103.71 l 117.00 103.83 l 117.05 103.89 l 117.09 103.94 l 117.14 104.02 l 117.18 104.09 l 117.23 104.12 l 117.28 104.18 l 117.32 104.25 l 117.37 104.29 l 117.41 104.37 l 117.46 104.45 l 117.51 104.50 l 117.55 104.49 l 117.60 104.61 l 117.64 104.72 l 117.69 104.79 l 117.74 104.89 l 117.78 105.00 l 117.83 105.03 l 117.87 105.10 l 117.92 105.16 l 117.97 105.25 l 118.01 105.33 l 118.06 105.40 l 118.10 105.44 l 118.15 105.51 l 118.20 105.60 l 118.24 105.70 l 118.29 105.70 l 118.33 105.78 l 118.38 105.75 l 118.43 105.84 l 118.47 105.88 l 118.52 105.89 l 118.56 105.95 l 118.61 106.01 l 118.66 106.05 l 118.70 106.12 l 118.75 106.19 l 118.79 106.29 l 118.84 106.39 l 118.89 106.51 l 118.93 106.61 l 118.98 106.70 l 119.02 106.79 l 119.07 106.99 l 119.12 107.10 l 119.16 107.17 l 119.21 107.24 l 119.25 107.30 l 119.30 107.43 l 119.35 107.51 l 119.39 107.60 l 119.44 107.70 l 119.48 107.79 l 119.53 107.85 l 119.58 107.96 l 119.62 108.01 l 119.67 108.12 l 119.71 108.19 l 119.76 108.26 l 119.81 108.35 l 119.85 108.39 l 119.90 108.54 l 119.94 108.65 l 119.99 108.76 l 120.04 108.89 l 120.08 109.00 l 120.13 108.98 l 120.17 109.04 l 120.22 109.09 l 120.27 109.12 l 120.31 109.19 l 120.36 109.25 l 120.40 109.33 l 120.45 109.36 l 120.50 109.32 l 120.54 109.29 l 120.59 109.31 l 120.63 109.35 l 120.68 109.42 l 120.73 109.40 l 120.77 109.44 l 120.82 109.51 l 120.86 109.65 l 120.91 109.77 l 120.96 109.92 l 121.00 110.02 l 121.05 110.12 l 121.09 110.20 l 121.14 110.31 l 121.19 110.38 l 121.23 110.42 l 121.28 110.42 l 121.32 110.51 l 121.37 110.62 l 121.42 110.70 l 121.46 110.77 l 121.51 110.85 l 121.55 111.02 l 121.60 111.08 l 121.65 111.15 l 121.69 111.19 l 121.74 111.26 l 121.78 111.40 l 121.83 111.54 l 121.88 111.64 l 121.92 111.80 l 121.97 111.91 l 122.01 111.94 l 122.06 112.05 l 122.11 112.13 l 122.15 112.20 l 122.20 112.30 l 122.24 112.39 l 122.29 112.49 l 122.34 112.57 l 122.38 112.71 l 122.43 112.79 l 122.47 112.82 l 122.52 112.84 l 122.57 113.02 l 122.61 113.09 l 122.66 113.17 l 122.70 113.23 l 122.75 113.30 l 122.80 113.41 l 122.84 113.47 l 122.89 113.50 l 122.93 113.57 l 122.98 113.54 l 123.03 113.56 l 123.07 113.61 l 123.12 113.71 l 123.16 113.81 l 123.21 113.95 l 123.26 114.05 l 123.30 114.10 l 123.35 114.20 l 123.39 114.33 l 123.44 114.37 l 123.49 114.40 l 123.53 114.52 l 123.58 114.60 l 123.62 114.60 l 123.67 114.64 l 123.72 114.73 l 123.76 114.81 l 123.81 114.83 l 123.85 114.95 l 123.90 115.02 l 123.95 115.06 l 123.99 115.13 l 124.04 115.16 l 124.08 115.29 l 124.13 115.42 l 124.18 115.60 l 124.22 115.76 l 124.27 115.88 l 124.31 115.97 l 124.36 116.23 l 124.41 116.38 l 124.45 116.50 l 124.50 116.60 l 124.54 116.74 l 124.59 116.82 l 124.64 116.92 l 124.68 116.98 l 124.73 117.10 l 124.77 117.25 l 124.82 117.35 l 124.87 117.48 l 124.91 117.55 l 124.96 117.66 l 125.00 117.74 l 125.05 117.80 l 125.10 117.90 l 125.14 118.06 l 125.19 118.22 l 125.23 118.30 l 125.28 118.40 l 125.33 118.49 l 125.37 118.61 l 125.42 118.67 l 125.46 118.77 l 125.51 118.82 l 125.56 118.94 l 125.60 119.16 l 125.65 119.42 l 125.69 119.66 l 125.74 119.81 l 125.79 120.05 l 125.83 120.13 l 125.88 120.27 l 125.92 120.32 l 125.97 120.33 l 126.02 120.41 l 126.06 120.52 l 126.11 120.57 l 126.15 120.64 l 126.20 120.76 l 126.25 120.78 l 126.29 120.84 l 126.34 120.93 l 126.38 121.08 l 126.43 121.20 l 126.48 121.34 l 126.52 121.45 l 126.57 121.55 l 126.61 121.73 l 126.66 121.89 l 126.71 121.93 l 126.75 121.98 l 126.80 122.15 l 126.84 122.27 l 126.89 122.43 l 126.94 122.48 l 126.98 122.59 l 127.03 122.74 l 127.07 122.84 l 127.12 123.02 l 127.17 123.11 l 127.21 123.19 l 127.26 123.29 l 127.30 123.35 l 127.35 123.43 l 127.40 123.54 l 127.44 123.58 l 127.49 123.69 l 127.53 123.81 l 127.58 123.78 l 127.63 123.83 l 127.67 123.94 l 127.72 124.10 l 127.76 124.22 l 127.81 124.34 l 127.86 124.49 l 127.90 124.62 l 127.95 124.73 l 127.99 124.84 l 128.04 124.94 l 128.09 125.10 l 128.13 125.14 l 128.18 125.21 l 128.22 125.31 l 128.27 125.51 l 128.32 125.65 l 128.36 125.73 l 128.41 125.75 l 128.45 125.81 l 128.50 125.92 l 128.55 126.00 l 128.59 126.01 l 128.64 126.22 l 128.68 126.36 l 128.73 126.58 l 128.78 126.77 l 128.82 126.90 l 128.87 126.96 l 128.91 127.04 l 128.96 127.15 l 129.01 127.26 l 129.05 127.40 l 129.10 127.47 l 129.14 127.70 l 129.19 127.89 l 129.24 128.11 l 129.28 128.28 l 129.33 128.54 l 129.37 128.71 l 129.42 128.79 l 129.47 128.92 l 129.51 129.06 l 129.56 129.24 l 129.60 129.39 l 129.65 129.59 l 129.70 129.66 l 129.74 129.82 l 129.79 129.98 l 129.83 130.01 l 129.88 130.07 l 129.93 130.15 l 129.97 130.38 l 130.02 130.56 l 130.06 130.68 l 130.11 130.81 l 130.16 130.95 l 130.20 131.11 l 130.25 131.24 l 130.29 131.36 l 130.34 131.53 l 130.39 131.67 l 130.43 131.68 l 130.48 131.70 l 130.52 131.82 l 130.57 131.89 l 130.62 132.04 l 130.66 132.25 l 130.71 132.48 l 130.75 132.61 l 130.80 132.80 l 130.85 132.91 l 130.89 132.98 l 130.94 133.19 l 130.98 133.45 l 131.03 133.63 l 131.08 133.72 l 131.12 133.84 l 131.17 133.98 l 131.21 134.10 l 131.26 134.33 l 131.31 134.43 l 131.35 134.55 l 131.40 134.71 l 131.44 134.80 l 131.49 135.05 l 131.54 135.27 l 131.58 135.52 l 131.63 135.65 l 131.67 135.88 l 131.72 136.04 l 131.77 136.19 l 131.81 136.40 l 131.86 136.53 l 131.90 136.82 l 131.95 137.06 l 132.00 137.22 l 132.04 137.38 l 132.09 137.58 l 132.13 137.82 l 132.18 137.98 l 132.23 138.12 l 132.27 138.26 l 132.32 138.38 l 132.36 138.50 l 132.41 138.68 l 132.46 138.90 l 132.50 139.04 l 132.55 139.25 l 132.59 139.35 l 132.64 139.49 l 132.69 139.66 l 132.73 139.78 l 132.78 139.95 l 132.82 140.12 l 132.87 140.23 l 132.92 140.33 l 132.96 140.39 l 133.01 140.60 l 133.05 140.69 l 133.10 140.98 l 133.15 141.26 l 133.19 141.40 l 133.24 141.64 l 133.28 141.81 l 133.33 142.13 l 133.38 142.39 l 133.42 142.63 l 133.47 142.93 l 133.51 143.16 l 133.56 143.30 l 133.61 143.51 l 133.65 143.67 l 133.70 143.83 l 133.74 144.07 l 133.79 144.25 l 133.84 144.33 l 133.88 144.46 l 133.93 144.64 l 133.97 144.85 l 134.02 145.17 l 134.07 145.22 l 134.11 145.25 l 134.16 145.19 l 134.20 145.22 l 134.25 145.36 l 134.30 145.49 l 134.34 145.70 l 134.39 145.92 l 134.43 146.21 l 134.48 146.43 l 134.53 146.66 l 134.57 146.99 l 134.62 147.45 l 134.66 147.89 l 134.71 148.19 l 134.76 148.39 l 134.80 148.67 l 134.85 148.91 l 134.89 149.07 l 134.94 149.27 l 134.99 149.34 l 135.03 149.41 l 135.08 149.58 l 135.12 149.70 l 135.17 149.81 l 135.22 150.06 l 135.26 150.24 l 135.31 150.33 l 135.35 150.54 l 135.40 150.62 l 135.45 150.84 l 135.49 151.03 l 135.54 151.22 l 135.58 151.41 l 135.63 151.51 l 135.68 151.63 l 135.72 151.70 l 135.77 151.81 l 135.81 152.05 l 135.86 152.21 l 135.91 152.40 l 135.95 152.60 l 136.00 152.79 l 136.04 152.97 l 136.09 153.13 l 136.14 153.46 l 136.18 153.61 l 136.23 153.80 l 136.27 154.13 l 136.32 154.29 l 136.37 154.47 l 136.41 154.66 l 136.46 154.81 l 136.50 155.03 l 136.55 155.24 l 136.60 155.38 l 136.64 155.59 l 136.69 155.68 l 136.73 155.94 l 136.78 156.00 l 136.83 156.16 l 136.87 156.38 l 136.92 156.61 l 136.96 156.82 l 137.01 157.02 l 137.06 157.26 l 137.10 157.51 l 137.15 157.64 l 137.19 157.81 l 137.24 157.82 l 137.29 157.94 l 137.33 158.00 l 137.38 158.16 l 137.42 158.22 l 137.47 158.38 l 137.52 158.49 l 137.56 158.82 l 137.61 159.03 l 137.65 159.14 l 137.70 159.35 l 137.75 159.55 l 137.79 159.70 l 137.84 159.69 l 137.88 159.76 l 137.93 159.91 l 137.98 160.13 l 138.02 160.36 l 138.07 160.50 l 138.11 160.68 l 138.16 160.74 l 138.21 161.02 l 138.25 161.21 l 138.30 161.40 l 138.34 161.67 l 138.39 161.95 l 138.44 162.32 l 138.48 162.40 l 138.53 162.61 l 138.57 162.75 l 138.62 162.97 l 138.67 163.18 l 138.71 163.30 l 138.76 163.41 l 138.80 163.51 l 138.85 163.52 l 138.90 163.64 l 138.94 163.85 l 138.99 164.05 l 139.03 164.30 l 139.08 164.49 l 139.13 164.66 l 139.17 164.83 l 139.22 164.98 l 139.26 165.10 l 139.31 165.28 l 139.36 165.47 l 139.40 165.64 l 139.45 165.84 l 139.49 165.94 l 139.54 166.18 l 139.59 166.26 l 139.63 166.49 l 139.68 166.67 l 139.72 166.88 l 139.77 167.05 l 139.82 167.25 l 139.86 167.40 l 139.91 167.58 l 139.95 167.79 l 140.00 167.94 l 140.05 168.09 l 140.09 168.22 l 140.14 168.35 l 140.18 168.57 l 140.23 168.72 l 140.28 168.95 l 140.32 169.10 l 140.37 169.29 l 140.41 169.36 l 140.46 169.42 l 140.51 169.57 l 140.55 169.72 l 140.60 169.79 l 140.64 169.97 l 140.69 170.15 l 140.74 170.28 l 140.78 170.45 l 140.83 170.67 l 140.87 170.84 l 140.92 170.91 l 140.97 170.98 l 141.01 171.10 l 141.06 171.17 l 141.10 171.38 l 141.15 171.67 l 141.20 171.75 l 141.24 171.95 l 141.29 172.09 l 141.33 172.23 l 141.38 172.30 l 141.43 172.39 l 141.47 172.65 l 141.52 172.77 l 141.56 172.95 l 141.61 173.04 l 141.66 173.10 l 141.70 173.45 l 141.75 173.58 l 141.79 173.63 l 141.84 173.67 l 141.89 173.73 l 141.93 173.79 l 141.98 173.80 l 142.02 173.90 l 142.07 174.16 l 142.12 174.33 l 142.16 174.45 l 142.21 174.52 l 142.25 174.76 l 142.30 175.03 l 142.35 175.34 l 142.39 175.52 l 142.44 175.60 l 142.48 175.83 l 142.53 175.74 l 142.58 175.97 l 142.62 176.22 l 142.67 176.37 l 142.71 176.47 l 142.76 176.62 l 142.81 176.81 l 142.85 177.05 l 142.90 177.23 l 142.94 177.50 l 142.99 177.80 l 143.04 178.07 l 143.08 178.05 l 143.13 178.01 l 143.17 178.00 l 143.22 178.03 l 143.27 178.25 l 143.31 178.35 l 143.36 178.43 l 143.40 178.58 l 143.45 178.67 l 143.50 178.90 l 143.54 179.05 l 143.59 179.21 l 143.63 179.37 l 143.68 179.60 l 143.73 179.79 l 143.77 180.25 l 143.82 180.75 l 143.86 181.07 l 143.91 181.44 l 143.96 181.64 l 144.00 182.09 l 144.05 182.27 l 144.09 182.48 l 144.14 182.61 l 144.19 183.03 l 144.23 183.34 l 144.28 183.73 l 144.32 183.95 l 144.37 184.16 l 144.42 184.44 l 144.46 184.73 l 144.51 184.98 l 144.55 185.16 l 144.60 185.41 l 144.65 185.46 l 144.69 185.84 l 144.74 186.06 l 144.78 186.13 l 144.83 186.48 l 144.88 186.75 l 144.92 186.99 l 144.97 187.16 l 145.01 187.43 l 145.06 187.75 l 145.11 188.03 l 145.15 188.39 l 145.20 188.83 l 145.24 188.93 l 145.29 189.11 l 145.34 189.11 l 145.38 189.38 l 145.43 189.53 l 145.47 189.80 l 145.52 189.94 l 145.57 189.96 l 145.61 190.06 l 145.66 190.13 l 145.70 190.11 l 145.75 190.20 l 145.80 190.36 l 145.84 190.58 l 145.89 190.80 l 145.93 191.11 l 145.98 191.36 l 146.03 191.77 l 146.07 191.82 l 146.12 191.98 l 146.16 192.08 l 146.21 191.99 l 146.26 191.93 l 146.30 191.97 l 146.35 192.22 l 146.39 192.37 l 146.44 192.58 l 146.49 192.67 l 146.53 192.74 l 146.58 192.76 l 146.62 192.79 l 146.67 192.86 l 146.72 192.81 l 146.76 192.93 l 146.81 193.04 l 146.85 193.13 l 146.90 193.21 l 146.95 193.01 l 146.99 193.07 l 147.04 192.98 l 147.08 193.13 l 147.13 193.08 l 147.18 193.11 l 147.22 193.16 l 147.27 193.44 l 147.31 193.60 l 147.36 193.67 l 147.41 193.66 l 147.45 193.54 l 147.50 193.43 l 147.54 193.32 l 147.59 193.16 l 147.64 193.16 l 147.68 192.98 l 147.73 192.89 l 147.77 192.83 l 147.82 192.72 l 147.87 192.63 l 147.91 192.55 l 147.96 192.29 l 148.00 192.16 l 148.05 191.93 l 148.10 191.75 l 148.14 191.61 l 148.19 191.44 l 148.23 191.18 l 148.28 190.93 l 148.33 190.71 l 148.37 190.54 l 148.42 190.33 l 148.46 190.22 l 148.51 190.02 l 148.56 189.71 l 148.60 189.44 l 148.65 189.40 l 148.69 189.26 l 148.74 189.24 l 148.79 189.02 l 148.83 188.87 l 148.88 188.55 l 148.92 188.32 l 148.97 188.19 l 149.02 187.98 l 149.06 187.71 l 149.11 187.62 l 149.15 187.31 l 149.20 187.04 l 149.25 186.80 l 149.29 186.54 l 149.34 186.36 l 149.38 186.15 l 149.43 185.98 l 149.48 185.79 l 149.52 185.54 l 149.57 185.35 l 149.61 185.06 l 149.66 184.72 l 149.71 184.51 l 149.75 184.17 l 149.80 183.90 l 149.84 183.60 l 149.89 183.35 l 149.94 183.14 l 149.98 182.88 l 150.03 182.54 l 150.07 182.19 l 150.12 181.85 l 150.17 181.54 l 150.21 181.04 l 150.26 180.70 l 150.30 180.45 l 150.35 180.11 l 150.40 179.70 l 150.44 179.40 l 150.49 179.10 l 150.53 178.73 l 150.58 178.32 l 150.63 177.88 l 150.67 177.60 l 150.72 177.28 l 150.76 176.87 l 150.81 176.48 l 150.86 176.07 l 150.90 175.78 l 150.95 175.53 l 150.99 175.20 l 151.04 174.99 l 151.09 174.69 l 151.13 174.35 l 151.18 174.14 l 151.22 173.86 l 151.27 173.55 l 151.32 173.09 l 151.36 172.63 l 151.41 172.22 l 151.45 171.74 l 151.50 171.29 l 151.55 170.85 l 151.59 170.56 l 151.64 170.11 l 151.68 169.68 l 151.73 169.30 l 151.78 168.91 l 151.82 168.53 l 151.87 168.22 l 151.91 167.84 l 151.96 167.52 l 152.01 167.14 l 152.05 166.82 l 152.10 166.49 l 152.14 166.08 l 152.19 165.64 l 152.24 165.21 l 152.28 164.56 l 152.33 163.86 l 152.37 163.31 l 152.42 162.77 l 152.47 162.31 l 152.51 161.61 l 152.56 161.18 l 152.60 160.78 l 152.65 160.39 l 152.70 159.87 l 152.74 159.46 l 152.79 158.94 l 152.83 158.49 l 152.88 158.22 l 152.93 157.80 l 152.97 157.36 l 153.02 156.99 l 153.06 156.57 l 153.11 156.17 l 153.16 155.80 l 153.20 155.27 l 153.25 154.83 l 153.29 154.46 l 153.34 153.95 l 153.39 153.50 l 153.43 153.04 l 153.48 152.75 l 153.52 152.31 l 153.57 151.86 l 153.62 151.37 l 153.66 150.88 l 153.71 150.35 l 153.75 150.04 l 153.80 149.67 l 153.85 149.50 l 153.89 149.06 l 153.94 148.70 l 153.98 148.22 l 154.03 147.89 l 154.08 147.65 l 154.12 147.41 l 154.17 147.19 l 154.21 147.04 l 154.26 146.92 l 154.31 146.64 l 154.35 146.37 l 154.40 146.09 l 154.44 145.73 l 154.49 145.43 l 154.54 144.97 l 154.58 144.63 l 154.63 144.35 l 154.67 144.12 l 154.72 144.06 l 154.77 143.92 l 154.81 143.78 l 154.86 143.54 l 154.90 143.28 l 154.95 143.04 l 155.00 142.83 l 155.04 142.61 l 155.09 142.44 l 155.13 142.40 l 155.18 142.28 l 155.23 142.24 l 155.27 142.05 l 155.32 141.92 l 155.36 141.80 l 155.41 141.65 l 155.46 141.66 l 155.50 141.67 l 155.55 141.77 l 155.59 141.71 l 155.64 141.86 l 155.69 141.94 l 155.73 141.99 l 155.78 141.83 l 155.82 141.83 l 155.87 141.85 l 155.92 142.05 l 155.96 142.27 l 156.01 142.56 l 156.05 142.70 l 156.10 142.98 l 156.15 143.07 l 156.19 143.37 l 156.24 143.57 l 156.28 143.91 l 156.33 144.09 l 156.38 144.44 l 156.42 144.65 l 156.47 145.04 l 156.51 145.33 l 156.56 145.78 l 156.61 146.13 l 156.65 146.58 l 156.70 146.98 l 156.74 147.52 l 156.79 147.96 l 156.84 148.54 l 156.88 149.02 l 156.93 149.51 l 156.97 150.02 l 157.02 150.53 l 157.07 151.28 l 157.11 151.78 l 157.16 152.15 l 157.20 152.50 l 157.25 152.92 l 157.30 153.35 l 157.34 153.81 l 157.39 154.54 l 157.43 155.17 l 157.48 155.74 l 157.53 156.47 l 157.57 157.11 l 157.62 157.61 l 157.66 158.24 l 157.71 158.98 l 157.76 159.88 l 157.80 160.78 l 157.85 161.53 l 157.89 162.39 l 157.94 163.27 l 157.99 164.08 l 158.03 164.91 l 158.08 165.91 l 158.12 166.86 l 158.17 167.96 l 158.22 168.88 l 158.26 169.85 l 158.31 170.89 l 158.35 171.85 l 158.40 172.97 l 158.45 173.93 l 158.49 174.75 l 158.54 175.90 l 158.58 177.00 l 158.63 178.01 l 158.68 179.19 l 158.72 180.44 l 158.77 181.86 l 158.81 183.26 l 158.86 184.55 l 158.91 185.85 l 158.95 186.86 l 159.00 188.09 l 159.04 189.19 l 159.09 190.08 l 159.14 191.22 l 159.18 192.52 l 159.23 194.06 l 159.27 195.07 l 159.32 196.11 l 159.37 197.24 l 159.41 198.24 l 159.46 199.41 l 159.50 200.53 l 159.55 201.85 l 159.60 203.16 l 159.64 204.80 l 159.69 205.97 l 159.73 207.15 l 159.78 208.12 l 159.83 209.08 l 159.87 210.17 l 159.92 211.03 l 159.96 211.99 l 160.01 213.11 l 160.06 214.15 l 160.10 215.07 l 160.15 216.05 l 160.19 217.17 l 160.24 218.35 l 160.29 219.28 l 160.33 220.15 l 160.38 221.03 l 160.42 222.28 l 160.47 223.65 l 160.52 224.98 l 160.56 225.99 l 160.61 227.07 l 160.65 228.00 l 160.70 228.96 l 160.75 229.87 l 160.79 231.15 l 160.84 232.26 l 160.88 233.34 l 160.93 234.24 l 160.98 235.03 l 161.02 235.78 l 161.07 236.49 l 161.11 237.29 l 161.16 238.09 l 161.21 238.85 l 161.25 239.53 l 161.30 240.24 l 161.34 240.81 l 161.39 241.28 l 161.44 241.98 l 161.48 242.70 l 161.53 243.36 l 161.57 244.00 l 161.62 244.57 l 161.67 245.13 l 161.71 245.73 l 161.76 246.15 l 161.80 246.74 l 161.85 247.12 l 161.90 247.59 l 161.94 248.06 l 161.99 248.46 l 162.03 248.76 l 162.08 249.10 l 162.13 249.45 l 162.17 249.76 l 162.22 250.07 l 162.26 250.27 l 162.31 250.65 l 162.36 250.78 l 162.40 251.01 l 162.45 251.40 l 162.49 251.83 l 162.54 252.11 l 162.59 252.48 l 162.63 252.83 l 162.68 253.18 l 162.72 253.46 l 162.77 253.65 l 162.82 253.84 l 162.86 254.18 l 162.91 254.38 l 162.95 254.78 l 163.00 255.06 l 163.05 255.32 l 163.09 255.57 l 163.14 255.74 l 163.18 255.97 l 163.23 256.15 l 163.28 256.26 l 163.32 256.46 l 163.37 256.61 l 163.41 256.76 l 163.46 256.85 l 163.51 256.94 l 163.55 257.09 l 163.60 257.26 l 163.64 257.34 l 163.69 257.49 l 163.74 257.54 l 163.78 257.56 l 163.83 257.60 l 163.87 257.60 l 163.92 257.74 l 163.97 257.75 l 164.01 257.81 l 164.06 257.83 l 164.10 257.87 l 164.15 257.69 l 164.20 257.56 l 164.24 257.44 l 164.29 257.37 l 164.33 257.30 l 164.38 257.37 l 164.43 257.23 l 164.47 257.21 l 164.52 257.12 l 164.56 257.03 l 164.61 256.97 l 164.66 256.90 l 164.70 256.76 l 164.75 256.77 l 164.79 256.71 l 164.84 256.71 l 164.89 256.51 l 164.93 256.46 l 164.98 256.27 l 165.02 256.15 l 165.07 255.85 l 165.12 255.68 l 165.16 255.34 l 165.21 255.13 l 165.25 254.84 l 165.30 254.67 l 165.35 254.49 l 165.39 254.38 l 165.44 254.27 l 165.48 254.02 l 165.53 253.72 l 165.58 253.37 l 165.62 253.10 l 165.67 252.85 l 165.71 252.64 l 165.76 252.42 l 165.81 252.37 l 165.85 252.24 l 165.90 251.85 l 165.94 251.45 l 165.99 251.16 l 166.04 250.75 l 166.08 250.51 l 166.13 250.28 l 166.17 250.00 l 166.22 249.67 l 166.27 249.08 l 166.31 248.59 l 166.36 248.31 l 166.40 247.77 l 166.45 247.35 l 166.50 246.84 l 166.54 246.43 l 166.59 245.81 l 166.63 245.35 l 166.68 244.57 l 166.73 244.10 l 166.77 243.61 l 166.82 242.99 l 166.86 242.49 l 166.91 241.79 l 166.96 241.24 l 167.00 240.77 l 167.05 240.27 l 167.09 239.71 l 167.14 239.29 l 167.19 238.60 l 167.23 237.91 l 167.28 237.02 l 167.32 236.17 l 167.37 235.40 l 167.42 234.66 l 167.46 234.13 l 167.51 233.30 l 167.55 232.71 l 167.60 232.30 l 167.65 231.61 l 167.69 230.71 l 167.74 229.67 l 167.78 229.24 l 167.83 228.67 l 167.88 228.02 l 167.92 227.28 l 167.97 226.47 l 168.01 225.66 l 168.06 224.86 l 168.11 223.98 l 168.15 222.89 l 168.20 222.03 l 168.24 221.23 l 168.29 220.61 l 168.34 220.24 l 168.38 219.63 l 168.43 219.31 l 168.47 218.75 l 168.52 218.10 l 168.57 217.49 l 168.61 216.93 l 168.66 216.43 l 168.70 215.86 l 168.75 215.19 l 168.80 214.74 l 168.84 214.34 l 168.89 213.85 l 168.93 212.98 l 168.98 211.96 l 169.03 211.01 l 169.07 210.44 l 169.12 209.83 l 169.16 209.42 l 169.21 208.95 l 169.26 208.52 l 169.30 207.78 l 169.35 207.19 l 169.39 206.48 l 169.44 206.07 l 169.49 205.70 l 169.53 205.36 l 169.58 205.15 l 169.62 204.79 l 169.67 204.41 l 169.72 203.98 l 169.76 203.71 l 169.81 203.38 l 169.85 203.20 l 169.90 202.94 l 169.95 202.52 l 169.99 202.16 l 170.04 201.78 l 170.08 201.68 l 170.13 201.51 l 170.18 201.32 l 170.22 201.01 l 170.27 200.84 l 170.31 200.50 l 170.36 200.33 l 170.41 200.07 l 170.45 199.85 l 170.50 199.70 l 170.54 199.59 l 170.59 199.59 l 170.64 199.60 l 170.68 199.61 l 170.73 199.57 l 170.77 199.54 l 170.82 199.41 l 170.87 199.45 l 170.91 199.43 l 170.96 199.30 l 171.00 199.11 l 171.05 199.04 l 171.10 198.95 l 171.14 198.78 l 171.19 198.58 l 171.23 198.46 l 171.28 198.25 l 171.33 198.18 l 171.37 197.97 l 171.42 197.87 l 171.46 197.75 l 171.51 197.59 l 171.56 197.44 l 171.60 197.34 l 171.65 197.33 l 171.69 197.29 l 171.74 197.20 l 171.79 197.22 l 171.83 197.19 l 171.88 197.08 l 171.92 197.23 l 171.97 197.28 l 172.02 197.32 l 172.06 197.24 l 172.11 197.19 l 172.15 197.05 l 172.20 196.92 l 172.25 196.90 l 172.29 196.86 l 172.34 196.85 l 172.38 196.87 l 172.43 196.77 l 172.48 196.84 l 172.52 196.63 l 172.57 196.44 l 172.61 196.17 l 172.66 196.15 l 172.71 196.22 l 172.75 196.33 l 172.80 196.28 l 172.84 196.23 l 172.89 196.14 l 172.94 196.17 l 172.98 196.03 l 173.03 195.89 l 173.07 195.92 l 173.12 195.89 l 173.17 195.86 l 173.21 195.83 l 173.26 195.63 l 173.30 195.50 l 173.35 195.33 l 173.40 195.24 l 173.44 195.17 l 173.49 195.13 l 173.53 195.05 l 173.58 195.10 l 173.63 195.23 l 173.67 195.29 l 173.72 195.20 l 173.76 195.13 l 173.81 194.96 l 173.86 194.78 l 173.90 194.69 l 173.95 194.55 l 173.99 194.43 l 174.04 194.43 l 174.09 194.33 l 174.13 194.25 l 174.18 194.21 l 174.22 194.13 l 174.27 193.97 l 174.32 193.70 l 174.36 193.54 l 174.41 193.39 l 174.45 193.36 l 174.50 193.24 l 174.55 193.16 l 174.59 193.06 l 174.64 192.89 l 174.68 192.67 l 174.73 192.58 l 174.78 192.44 l 174.82 192.30 l 174.87 191.97 l 174.91 191.90 l 174.96 191.79 l 175.01 191.71 l 175.05 191.55 l 175.10 191.42 l 175.14 191.23 l 175.19 191.13 l 175.24 190.91 l 175.28 190.78 l 175.33 190.59 l 175.37 190.41 l 175.42 190.20 l 175.47 190.00 l 175.51 189.80 l 175.56 189.48 l 175.60 189.32 l 175.65 189.15 l 175.70 188.98 l 175.74 188.69 l 175.79 188.46 l 175.83 188.17 l 175.88 188.02 l 175.93 187.83 l 175.97 187.68 l 176.02 187.50 l 176.06 187.49 l 176.11 187.45 l 176.16 187.38 l 176.20 187.37 l 176.25 187.25 l 176.29 186.87 l 176.34 186.58 l 176.39 186.45 l 176.43 186.51 l 176.48 186.47 l 176.52 186.37 l 176.57 186.20 l 176.62 185.98 l 176.66 185.74 l 176.71 185.62 l 176.75 185.58 l 176.80 185.61 l 176.85 185.37 l 176.89 185.20 l 176.94 184.89 l 176.98 184.74 l 177.03 184.54 l 177.08 184.34 l 177.12 184.25 l 177.17 184.35 l 177.21 184.30 l 177.26 184.25 l 177.31 184.12 l 177.35 184.08 l 177.40 184.04 l 177.44 184.06 l 177.49 184.02 l 177.54 184.04 l 177.58 183.97 l 177.63 183.83 l 177.67 183.66 l 177.72 183.55 l 177.77 183.37 l 177.81 183.09 l 177.86 182.97 l 177.90 182.86 l 177.95 182.68 l 178.00 182.57 l 178.04 182.56 l 178.09 182.45 l 178.13 182.37 l 178.18 182.18 l 178.23 182.12 l 178.27 181.93 l 178.32 181.82 l 178.36 181.74 l 178.41 181.66 l 178.46 181.52 l 178.50 181.40 l 178.55 181.35 l 178.59 181.07 l 178.64 180.88 l 178.69 180.82 l 178.73 180.69 l 178.78 180.81 l 178.82 180.82 l 178.87 180.78 l 178.92 180.80 l 178.96 180.76 l 179.01 180.59 l 179.05 180.47 l 179.10 180.25 l 179.15 180.15 l 179.19 180.03 l 179.24 179.90 l 179.28 179.84 l 179.33 179.86 l 179.38 179.88 l 179.42 179.89 l 179.47 179.83 l 179.51 179.83 l 179.56 179.84 l 179.61 179.79 l 179.65 179.86 l 179.70 179.90 l 179.74 179.84 l 179.79 179.92 l 179.84 179.86 l 179.88 179.81 l 179.93 179.73 l 179.97 179.59 l 180.02 179.42 l 180.07 179.47 l 180.11 179.53 l 180.16 179.48 l 180.20 179.40 l 180.25 179.35 l 180.30 179.20 l 180.34 179.08 l 180.39 179.14 l 180.43 178.90 l 180.48 178.75 l 180.53 178.51 l 180.57 178.46 l 180.62 178.35 l 180.66 178.25 l 180.71 178.23 l 180.76 178.11 l 180.80 178.06 l 180.85 177.99 l 180.89 177.85 l 180.94 177.77 l 180.99 177.66 l 181.03 177.68 l 181.08 177.63 l 181.12 177.63 l 181.17 177.59 l 181.22 177.37 l 181.26 177.12 l 181.31 177.02 l 181.35 176.84 l 181.40 176.80 l 181.45 176.63 l 181.49 176.49 l 181.54 176.42 l 181.58 176.19 l 181.63 176.05 l 181.68 175.96 l 181.72 175.75 l 181.77 175.64 l 181.81 175.53 l 181.86 175.54 l 181.91 175.48 l 181.95 175.35 l 182.00 175.24 l 182.04 175.13 l 182.09 174.90 l 182.14 174.67 l 182.18 174.44 l 182.23 174.28 l 182.27 174.18 l 182.32 174.09 l 182.37 173.96 l 182.41 173.68 l 182.46 173.45 l 182.50 173.29 l 182.55 173.08 l 182.60 172.91 l 182.64 172.75 l 182.69 172.57 l 182.73 172.35 l 182.78 172.13 l 182.83 172.04 l 182.87 171.83 l 182.92 171.70 l 182.96 171.57 l 183.01 171.42 l 183.06 171.16 l 183.10 170.89 l 183.15 170.78 l 183.19 170.71 l 183.24 170.45 l 183.29 170.35 l 183.33 170.09 l 183.38 170.00 l 183.42 169.84 l 183.47 169.65 l 183.52 169.52 l 183.56 169.35 l 183.61 169.14 l 183.65 168.92 l 183.70 168.84 l 183.75 168.73 l 183.79 168.46 l 183.84 168.25 l 183.88 168.11 l 183.93 168.00 l 183.98 167.93 l 184.02 167.85 l 184.07 167.64 l 184.11 167.39 l 184.16 167.05 l 184.21 166.92 l 184.25 166.76 l 184.30 166.56 l 184.34 166.38 l 184.39 166.25 l 184.44 166.10 l 184.48 166.04 l 184.53 166.00 l 184.57 165.75 l 184.62 165.61 l 184.67 165.42 l 184.71 165.12 l 184.76 164.92 l 184.80 164.91 l 184.85 164.79 l 184.90 164.60 l 184.94 164.51 l 184.99 164.39 l 185.03 164.27 l 185.08 164.07 l 185.13 163.98 l 185.17 163.78 l 185.22 163.67 l 185.26 163.40 l 185.31 163.24 l 185.36 162.99 l 185.40 162.90 l 185.45 162.84 l 185.49 162.69 l 185.54 162.50 l 185.59 162.43 l 185.63 162.28 l 185.68 161.83 l 185.72 161.57 l 185.77 161.25 l 185.82 161.05 l 185.86 160.80 l 185.91 160.54 l 185.95 160.26 l 186.00 160.05 l 186.05 159.83 l 186.09 159.63 l 186.14 159.38 l 186.18 159.20 l 186.23 158.99 l 186.28 158.82 l 186.32 158.66 l 186.37 158.40 l 186.41 158.17 l 186.46 158.05 l 186.51 157.88 l 186.55 157.71 l 186.60 157.53 l 186.64 157.34 l 186.69 157.35 l 186.74 157.13 l 186.78 157.03 l 186.83 156.81 l 186.87 156.52 l 186.92 156.44 l 186.97 156.36 l 187.01 156.18 l 187.06 155.93 l 187.10 155.83 l 187.15 155.66 l 187.20 155.50 l 187.24 155.38 l 187.29 155.11 l 187.33 154.98 l 187.38 154.86 l 187.43 154.73 l 187.47 154.55 l 187.52 154.49 l 187.56 154.44 l 187.61 154.41 l 187.66 154.23 l 187.70 154.10 l 187.75 154.06 l 187.79 153.88 l 187.84 153.74 l 187.89 153.54 l 187.93 153.34 l 187.98 153.21 l 188.02 153.07 l 188.07 152.95 l 188.12 152.76 l 188.16 152.45 l 188.21 152.24 l 188.25 152.09 l 188.30 151.98 l 188.35 151.90 l 188.39 151.91 l 188.44 151.86 l 188.48 151.73 l 188.53 151.73 l 188.58 151.52 l 188.62 151.29 l 188.67 151.16 l 188.71 151.01 l 188.76 150.83 l 188.81 150.82 l 188.85 150.68 l 188.90 150.51 l 188.94 150.41 l 188.99 150.25 l 189.04 150.24 l 189.08 150.08 l 189.13 150.01 l 189.17 149.95 l 189.22 149.85 l 189.27 149.77 l 189.31 149.67 l 189.36 149.49 l 189.40 149.36 l 189.45 149.22 l 189.50 149.03 l 189.54 148.90 l 189.59 148.86 l 189.63 148.76 l 189.68 148.60 l 189.73 148.53 l 189.77 148.57 l 189.82 148.52 l 189.86 148.48 l 189.91 148.32 l 189.96 148.21 l 190.00 148.30 l 190.05 148.23 l 190.09 148.21 l 190.14 148.09 l 190.19 147.99 l 190.23 147.97 l 190.28 147.95 l 190.32 147.89 l 190.37 147.80 l 190.42 147.69 l 190.46 147.68 l 190.51 147.69 l 190.55 147.62 l 190.60 147.65 l 190.65 147.58 l 190.69 147.59 l 190.74 147.56 l 190.78 147.44 l 190.83 147.32 l 190.88 147.18 l 190.92 147.09 l 190.97 147.13 l 191.01 147.02 l 191.06 147.02 l 191.11 146.93 l 191.15 146.86 l 191.20 146.82 l 191.24 146.72 l 191.29 146.67 l 191.34 146.58 l 191.38 146.49 l 191.43 146.40 l 191.47 146.30 l 191.52 146.27 l 191.57 146.24 l 191.61 146.21 l 191.66 146.10 l 191.70 145.99 l 191.75 145.93 l 191.80 145.92 l 191.84 145.94 l 191.89 145.78 l 191.93 145.57 l 191.98 145.46 l 192.03 145.41 l 192.07 145.38 l 192.12 145.25 l 192.16 145.19 l 192.21 144.98 l 192.26 144.83 l 192.30 144.75 l 192.35 144.73 l 192.39 144.59 l 192.44 144.45 l 192.49 144.30 l 192.53 144.15 l 192.58 144.03 l 192.62 143.96 l 192.67 143.94 l 192.72 143.79 l 192.76 143.77 l 192.81 143.72 l 192.85 143.63 l 192.90 143.38 l 192.95 143.21 l 192.99 142.97 l 193.04 142.78 l 193.08 142.61 l 193.13 142.36 l 193.18 142.25 l 193.22 142.18 l 193.27 142.02 l 193.31 141.81 l 193.36 141.65 l 193.41 141.48 l 193.45 141.18 l 193.50 140.95 l 193.54 140.77 l 193.59 140.59 l 193.64 140.39 l 193.68 140.25 l 193.73 140.11 l 193.77 139.96 l 193.82 139.74 l 193.87 139.63 l 193.91 139.49 l 193.96 139.33 l 194.00 139.19 l 194.05 139.06 l 194.10 138.83 l 194.14 138.66 l 194.19 138.54 l 194.23 138.35 l 194.28 138.19 l 194.33 138.02 l 194.37 137.82 l 194.42 137.70 l 194.46 137.55 l 194.51 137.50 l 194.56 137.32 l 194.60 137.19 l 194.65 137.20 l 194.69 137.09 l 194.74 136.96 l 194.79 136.80 l 194.83 136.68 l 194.88 136.56 l 194.92 136.48 l 194.97 136.31 l 195.02 136.21 l 195.06 135.98 l 195.11 135.84 l 195.15 135.68 l 195.20 135.43 l 195.25 135.37 l 195.29 135.17 l 195.34 135.15 l 195.38 135.15 l 195.43 134.94 l 195.48 134.81 l 195.52 134.67 l 195.57 134.60 l 195.61 134.43 l 195.66 134.32 l 195.71 134.17 l 195.75 134.09 l 195.80 133.93 l 195.84 133.76 l 195.89 133.65 l 195.94 133.49 l 195.98 133.38 l 196.03 133.23 l 196.07 133.07 l 196.12 132.90 l 196.17 132.75 l 196.21 132.65 l 196.26 132.43 l 196.30 132.34 l 196.35 132.15 l 196.40 132.05 l 196.44 131.97 l 196.49 131.87 l 196.53 131.74 l 196.58 131.61 l 196.63 131.53 l 196.67 131.44 l 196.72 131.36 l 196.76 131.24 l 196.81 131.07 l 196.86 130.97 l 196.90 130.73 l 196.95 130.60 l 196.99 130.63 l 197.04 130.49 l 197.09 130.50 l 197.13 130.40 l 197.18 130.33 l 197.22 130.29 l 197.27 130.31 l 197.32 130.25 l 197.36 130.15 l 197.41 129.97 l 197.45 129.85 l 197.50 129.80 l 197.55 129.66 l 197.59 129.59 l 197.64 129.51 l 197.68 129.44 l 197.73 129.27 l 197.78 129.19 l 197.82 129.09 l 197.87 129.08 l 197.91 129.09 l 197.96 129.04 l 198.01 128.96 l 198.05 128.89 l 198.10 128.78 l 198.14 128.77 l 198.19 128.73 l 198.24 128.62 l 198.28 128.50 l 198.33 128.43 l 198.37 128.42 l 198.42 128.41 l 198.47 128.35 l 198.51 128.09 l 198.56 128.01 l 198.60 127.98 l 198.65 127.92 l 198.70 127.91 l 198.74 127.90 l 198.79 127.81 l 198.83 127.67 l 198.88 127.58 l 198.93 127.45 l 198.97 127.28 l 199.02 127.13 l 199.06 127.05 l 199.11 126.88 l 199.16 126.80 l 199.20 126.72 l 199.25 126.72 l 199.29 126.65 l 199.34 126.61 l 199.39 126.55 l 199.43 126.51 l 199.48 126.44 l 199.52 126.41 l 199.57 126.27 l 199.62 126.23 l 199.66 126.22 l 199.71 126.08 l 199.75 126.03 l 199.80 125.88 l 199.85 125.76 l 199.89 125.69 l 199.94 125.66 l 199.98 125.53 l 200.03 125.35 l 200.08 125.23 l 200.12 125.15 l 200.17 125.12 l 200.21 125.13 l 200.26 125.08 l 200.31 124.93 l 200.35 124.81 l 200.40 124.73 l 200.44 124.69 l 200.49 124.59 l 200.54 124.48 l 200.58 124.45 l 200.63 124.48 l 200.67 124.40 l 200.72 124.39 l 200.77 124.33 l 200.81 124.25 l 200.86 124.16 l 200.90 124.10 l 200.95 123.98 l 201.00 123.91 l 201.04 123.87 l 201.09 123.89 l 201.13 123.85 l 201.18 123.71 l 201.23 123.63 l 201.27 123.54 l 201.32 123.43 l 201.36 123.43 l 201.41 123.41 l 201.46 123.37 l 201.50 123.32 l 201.55 123.24 l 201.59 123.09 l 201.64 123.00 l 201.69 122.91 l 201.73 122.89 l 201.78 122.84 l 201.82 122.80 l 201.87 122.74 l 201.92 122.78 l 201.96 122.80 l 202.01 122.83 l 202.05 122.77 l 202.10 122.71 l 202.15 122.69 l 202.19 122.72 l 202.24 122.62 l 202.28 122.66 l 202.33 122.65 l 202.38 122.61 l 202.42 122.53 l 202.47 122.46 l 202.51 122.47 l 202.56 122.54 l 202.61 122.51 l 202.65 122.55 l 202.70 122.48 l 202.74 122.38 l 202.79 122.31 l 202.84 122.32 l 202.88 122.27 l 202.93 122.19 l 202.97 122.19 l 203.02 122.05 l 203.07 122.04 l 203.11 121.98 l 203.16 121.90 l 203.20 121.85 l 203.25 121.77 l 203.30 121.72 l 203.34 121.74 l 203.39 121.71 l 203.43 121.72 l 203.48 121.76 l 203.53 121.72 l 203.57 121.70 l 203.62 121.58 l 203.66 121.53 l 203.71 121.51 l 203.76 121.43 l 203.80 121.36 l 203.85 121.21 l 203.89 121.12 l 203.94 121.11 l 203.99 121.04 l 204.03 120.96 l 204.08 120.88 l 204.12 120.87 l 204.17 120.84 l 204.22 120.75 l 204.26 120.69 l 204.31 120.64 l 204.35 120.57 l 204.40 120.44 l 204.45 120.34 l 204.49 120.28 l 204.54 120.25 l 204.58 120.20 l 204.63 120.12 l 204.68 120.13 l 204.72 120.03 l 204.77 120.00 l 204.81 119.97 l 204.86 119.93 l 204.91 119.84 l 204.95 119.69 l 205.00 119.64 l 205.04 119.52 l 205.09 119.42 l 205.14 119.28 l 205.18 119.28 l 205.23 119.18 l 205.27 119.18 l 205.32 119.18 l 205.37 119.14 l 205.41 119.16 l 205.46 119.12 l 205.50 118.96 l 205.55 118.95 l 205.60 118.82 l 205.64 118.74 l 205.69 118.65 l 205.73 118.49 l 205.78 118.36 l 205.83 118.30 l 205.87 118.26 l 205.92 118.32 l 205.96 118.33 l 206.01 118.26 l 206.06 118.22 l 206.10 118.15 l 206.15 118.08 l 206.19 118.08 l 206.24 118.08 l 206.29 117.99 l 206.33 118.01 l 206.38 117.92 l 206.42 117.78 l 206.47 117.66 l 206.52 117.65 l 206.56 117.58 l 206.61 117.57 l 206.65 117.49 l 206.70 117.52 l 206.75 117.49 l 206.79 117.41 l 206.84 117.41 l 206.88 117.27 l 206.93 117.20 l 206.98 117.14 l 207.02 117.17 l 207.07 117.09 l 207.11 117.03 l 207.16 117.04 l 207.21 116.88 l 207.25 116.71 l 207.30 116.60 l 207.34 116.50 l 207.39 116.38 l 207.44 116.34 l 207.48 116.30 l 207.53 116.16 l 207.57 116.11 l 207.62 116.01 l 207.67 115.92 l 207.71 115.76 l 207.76 115.63 l 207.80 115.56 l 207.85 115.50 l 207.90 115.45 l 207.94 115.41 l 207.99 115.34 l 208.03 115.22 l 208.08 115.19 l 208.13 115.08 l 208.17 114.96 l 208.22 114.95 l 208.26 114.93 l 208.31 114.96 l 208.36 114.91 l 208.40 114.85 l 208.45 114.72 l 208.49 114.67 l 208.54 114.69 l 208.59 114.65 l 208.63 114.58 l 208.68 114.50 l 208.72 114.38 l 208.77 114.33 l 208.82 114.37 l 208.86 114.29 l 208.91 114.27 l 208.95 114.27 l 209.00 114.22 l 209.05 114.16 l 209.09 114.12 l 209.14 113.99 l 209.18 113.94 l 209.23 113.84 l 209.28 113.78 l 209.32 113.71 l 209.37 113.67 l 209.41 113.60 l 209.46 113.57 l 209.51 113.55 l 209.55 113.50 l 209.60 113.38 l 209.64 113.27 l 209.69 113.23 l 209.74 113.18 l 209.78 113.11 l 209.83 112.97 l 209.87 112.83 l 209.92 112.72 l 209.97 112.65 l 210.01 112.55 l 210.06 112.53 l 210.10 112.49 l 210.15 112.44 l 210.20 112.35 l 210.24 112.24 l 210.29 112.17 l 210.33 112.07 l 210.38 112.00 l 210.43 111.84 l 210.47 111.72 l 210.52 111.64 l 210.56 111.63 l 210.61 111.63 l 210.66 111.61 l 210.70 111.51 l 210.75 111.55 l 210.79 111.49 l 210.84 111.41 l 210.89 111.36 l 210.93 111.29 l 210.98 111.26 l 211.02 111.18 l 211.07 111.02 l 211.12 110.96 l 211.16 110.83 l 211.21 110.82 l 211.25 110.81 l 211.30 110.82 l 211.35 110.71 l 211.39 110.65 l 211.44 110.65 l 211.48 110.57 l 211.53 110.46 l 211.58 110.38 l 211.62 110.30 l 211.67 110.16 l 211.71 110.11 l 211.76 110.07 l 211.81 110.01 l 211.85 109.92 l 211.90 109.82 l 211.94 109.70 l 211.99 109.57 l 212.04 109.49 l 212.08 109.39 l 212.13 109.38 l 212.17 109.29 l 212.22 109.21 l 212.27 109.11 l 212.31 109.09 l 212.36 109.02 l 212.40 108.97 l 212.45 108.88 l 212.50 108.81 l 212.54 108.74 l 212.59 108.68 l 212.63 108.58 l 212.68 108.57 l 212.73 108.58 l 212.77 108.58 l 212.82 108.62 l 212.86 108.61 l 212.91 108.60 l 212.96 108.61 l 213.00 108.55 l 213.05 108.54 l 213.09 108.47 l 213.14 108.52 l 213.19 108.44 l 213.23 108.39 l 213.28 108.37 l 213.32 108.26 l 213.37 108.23 l 213.42 108.18 l 213.46 108.19 l 213.51 108.11 l 213.55 108.10 l 213.60 108.00 l 213.65 107.95 l 213.69 107.84 l 213.74 107.78 l 213.78 107.72 l 213.83 107.65 l 213.88 107.56 l 213.92 107.46 l 213.97 107.36 l 214.01 107.29 l 214.06 107.22 l 214.11 107.15 l 214.15 107.17 l 214.20 107.14 l 214.24 107.10 l 214.29 107.06 l 214.34 106.99 l 214.38 106.93 l 214.43 106.84 l 214.47 106.74 l 214.52 106.66 l 214.57 106.65 l 214.61 106.66 l 214.66 106.62 l 214.70 106.53 l 214.75 106.44 l 214.80 106.42 l 214.84 106.35 l 214.89 106.30 l 214.93 106.27 l 214.98 106.21 l 215.03 106.17 l 215.07 106.08 l 215.12 106.05 l 215.16 105.97 l 215.21 105.84 l 215.26 105.79 l 215.30 105.78 l 215.35 105.65 l 215.39 105.60 l 215.44 105.51 l 215.49 105.44 l 215.53 105.37 l 215.58 105.37 l 215.62 105.33 l 215.67 105.20 l 215.72 105.20 l 215.76 105.20 l 215.81 105.17 l 215.85 105.17 l 215.90 105.12 l 215.95 105.09 l 215.99 105.06 l 216.04 105.06 l 216.08 105.04 l 216.13 105.04 l 216.18 105.03 l 216.22 105.01 l 216.27 104.99 l 216.31 105.02 l 216.36 105.00 l 216.41 105.00 l 216.45 104.94 l 216.50 104.86 l 216.54 104.88 l 216.59 104.80 l 216.64 104.78 l 216.68 104.76 l 216.73 104.69 l 216.77 104.66 l 216.82 104.62 l 216.87 104.57 l 216.91 104.57 l 216.96 104.57 l 217.00 104.57 l 217.05 104.51 l 217.10 104.49 l 217.14 104.50 l 217.19 104.44 l 217.23 104.38 l 217.28 104.35 l 217.33 104.25 l 217.37 104.20 l 217.42 104.15 l 217.46 104.08 l 217.51 104.05 l 217.56 104.01 l 217.60 103.93 l 217.65 103.95 l 217.69 103.94 l 217.74 103.91 l 217.79 103.87 l 217.83 103.81 l 217.88 103.73 l 217.92 103.71 l 217.97 103.65 l 218.02 103.55 l 218.06 103.52 l 218.11 103.53 l 218.15 103.52 l 218.20 103.51 l 218.25 103.50 l 218.29 103.43 l 218.34 103.49 l 218.38 103.44 l 218.43 103.40 l 218.48 103.35 l 218.52 103.31 l 218.57 103.22 l 218.61 103.21 l 218.66 103.17 l 218.71 103.16 l 218.75 103.13 l 218.80 103.10 l 218.84 103.09 l 218.89 103.10 l 218.94 103.13 l 218.98 103.14 l 219.03 103.08 l 219.07 103.01 l 219.12 102.93 l 219.17 102.84 l 219.21 102.77 l 219.26 102.67 l 219.30 102.59 l 219.35 102.48 l 219.40 102.42 l 219.44 102.34 l 219.49 102.26 l 219.53 102.24 l 219.58 102.22 l 219.63 102.21 l 219.67 102.15 l 219.72 102.10 l 219.76 102.03 l 219.81 101.96 l 219.86 101.91 l 219.90 101.89 l 219.95 101.86 l 219.99 101.81 l 220.04 101.85 l 220.09 101.79 l 220.13 101.77 l 220.18 101.80 l 220.22 101.82 l 220.27 101.76 l 220.32 101.76 l 220.36 101.72 l 220.41 101.69 l 220.45 101.69 l 220.50 101.61 l 220.55 101.59 l 220.59 101.61 l 220.64 101.59 l 220.68 101.57 l 220.73 101.53 l 220.78 101.54 l 220.82 101.56 l 220.87 101.58 l 220.91 101.59 l 220.96 101.58 l 221.01 101.56 l 221.05 101.57 l 221.10 101.53 l 221.14 101.47 l 221.19 101.40 l 221.24 101.32 l 221.28 101.24 l 221.33 101.12 l 221.37 101.05 l 221.42 101.03 l 221.47 100.97 l 221.51 100.95 l 221.56 100.91 l 221.60 100.92 l 221.65 100.81 l 221.70 100.77 l 221.74 100.78 l 221.79 100.72 l 221.83 100.72 l 221.88 100.71 l 221.93 100.66 l 221.97 100.63 l 222.02 100.56 l 222.06 100.53 l 222.11 100.51 l 222.16 100.50 l 222.20 100.50 l 222.25 100.46 l 222.29 100.45 l 222.34 100.41 l 222.39 100.36 l 222.43 100.36 l 222.48 100.39 l 222.52 100.38 l 222.57 100.34 l 222.62 100.35 l 222.66 100.33 l 222.71 100.28 l 222.75 100.29 l 222.80 100.27 l 222.85 100.24 l 222.89 100.18 l 222.94 100.14 l 222.98 100.15 l 223.03 100.16 l 223.08 100.09 l 223.12 100.02 l 223.17 100.00 l 223.21 99.98 l 223.26 99.96 l 223.31 99.95 l 223.35 99.89 l 223.40 99.94 l 223.44 99.91 l 223.49 99.93 l 223.54 99.91 l 223.58 99.94 l 223.63 99.91 l 223.67 99.89 l 223.72 99.85 l 223.77 99.83 l 223.81 99.77 l 223.86 99.73 l 223.90 99.73 l 223.95 99.71 l 224.00 99.68 l 224.04 99.65 l 224.09 99.62 l 224.13 99.53 l 224.18 99.54 l 224.23 99.51 l 224.27 99.48 l 224.32 99.47 l 224.36 99.43 l 224.41 99.43 l 224.46 99.40 l 224.50 99.39 l 224.55 99.38 l 224.59 99.27 l 224.64 99.28 l 224.69 99.26 l 224.73 99.21 l 224.78 99.15 l 224.82 99.10 l 224.87 99.05 l 224.92 99.05 l 224.96 99.03 l 225.01 99.01 l 225.05 98.95 l 225.10 98.96 l 225.15 98.90 l 225.19 98.90 l 225.24 98.86 l 225.28 98.85 l 225.33 98.79 l 225.38 98.77 l 225.42 98.75 l 225.47 98.72 l 225.51 98.64 l 225.56 98.61 l 225.61 98.57 l 225.65 98.48 l 225.70 98.49 l 225.74 98.48 l 225.79 98.42 l 225.84 98.44 l 225.88 98.46 l 225.93 98.45 l 225.97 98.47 l 226.02 98.44 l 226.07 98.40 l 226.11 98.39 l 226.16 98.35 l 226.20 98.27 l 226.25 98.22 l 226.30 98.22 l 226.34 98.22 l 226.39 98.27 l 226.43 98.25 l 226.48 98.28 l 226.53 98.26 l 226.57 98.22 l 226.62 98.15 l 226.66 98.08 l 226.71 97.99 l 226.76 97.94 l 226.80 97.91 l 226.85 97.91 l 226.89 97.91 l 226.94 97.92 l 226.99 97.93 l 227.03 97.92 l 227.08 97.92 l 227.12 97.92 l 227.17 97.92 l 227.22 97.88 l 227.26 97.86 l 227.31 97.80 l 227.35 97.79 l 227.40 97.74 l 227.45 97.70 l 227.49 97.72 l 227.54 97.76 l 227.58 97.73 l 227.63 97.72 l 227.68 97.68 l 227.72 97.67 l 227.77 97.65 l 227.81 97.64 l 227.86 97.66 l 227.91 97.65 l 227.95 97.69 l 228.00 97.72 l 228.04 97.65 l 228.09 97.66 l 228.14 97.64 l 228.18 97.61 l 228.23 97.59 l 228.27 97.53 l 228.32 97.57 l 228.37 97.56 l 228.41 97.52 l 228.46 97.44 l 228.50 97.42 l 228.55 97.40 l 228.60 97.41 l 228.64 97.41 l 228.69 97.37 l 228.73 97.30 l 228.78 97.28 l 228.83 97.26 l 228.87 97.24 l 228.92 97.21 l 228.96 97.20 l 229.01 97.26 l 229.06 97.24 l 229.10 97.18 l 229.15 97.13 l 229.19 97.09 l 229.24 97.09 l 229.29 97.07 l 229.33 97.00 l 229.38 96.96 l 229.42 96.89 l 229.47 96.85 l 229.52 96.81 l 229.56 96.76 l 229.61 96.74 l 229.65 96.77 l 229.70 96.78 l 229.75 96.78 l 229.79 96.76 l 229.84 96.75 l 229.88 96.74 l 229.93 96.67 l 229.98 96.67 l 230.02 96.68 l 230.07 96.68 l 230.11 96.62 l 230.16 96.58 l 230.21 96.54 l 230.25 96.56 l 230.30 96.56 l 230.34 96.55 l 230.39 96.52 l 230.44 96.55 l 230.48 96.53 l 230.53 96.55 l 230.57 96.50 l 230.62 96.48 l 230.67 96.46 l 230.71 96.43 l 230.76 96.41 l 230.80 96.35 l 230.85 96.37 l 230.90 96.37 l 230.94 96.37 l 230.99 96.33 l 231.03 96.34 l 231.08 96.34 l 231.13 96.36 l 231.17 96.35 l 231.22 96.36 l 231.26 96.33 l 231.31 96.31 l 231.36 96.28 l 231.40 96.29 l 231.45 96.27 l 231.49 96.22 l 231.54 96.19 l 231.59 96.21 l 231.63 96.24 l 231.68 96.20 l 231.72 96.17 l 231.77 96.17 l 231.82 96.14 l 231.86 96.13 l 231.91 96.01 l 231.95 96.00 l 232.00 95.99 l 232.05 95.93 l 232.09 95.87 l 232.14 95.83 l 232.18 95.79 l 232.23 95.77 l 232.28 95.76 l 232.32 95.73 l 232.37 95.72 l 232.41 95.73 l 232.46 95.73 l 232.51 95.73 l 232.55 95.74 l 232.60 95.72 l 232.64 95.74 l 232.69 95.72 l 232.74 95.67 l 232.78 95.63 l 232.83 95.57 l 232.87 95.54 l 232.92 95.52 l 232.97 95.48 l 233.01 95.48 l 233.06 95.46 l 233.10 95.52 l 233.15 95.44 l 233.20 95.40 l 233.24 95.42 l 233.29 95.44 l 233.33 95.39 l 233.38 95.34 l 233.43 95.28 l 233.47 95.28 l 233.52 95.29 l 233.56 95.28 l 233.61 95.25 l 233.66 95.25 l 233.70 95.20 l 233.75 95.17 l 233.79 95.13 l 233.84 95.09 l 233.89 95.06 l 233.93 95.00 l 233.98 95.01 l 234.02 94.99 l 234.07 94.95 l 234.12 94.94 l 234.16 94.96 l 234.21 94.90 l 234.25 94.89 l 234.30 94.90 l 234.35 94.88 l 234.39 94.85 l 234.44 94.81 l 234.48 94.74 l 234.53 94.71 l 234.58 94.69 l 234.62 94.61 l 234.67 94.58 l 234.71 94.57 l 234.76 94.59 l 234.81 94.56 l 234.85 94.58 l 234.90 94.53 l 234.94 94.52 l 234.99 94.51 l 235.04 94.55 l 235.08 94.54 l 235.13 94.53 l 235.17 94.54 l 235.22 94.54 l 235.27 94.51 l 235.31 94.50 l 235.36 94.48 l 235.40 94.47 l 235.45 94.46 l 235.50 94.45 l 235.54 94.42 l 235.59 94.42 l 235.63 94.39 l 235.68 94.33 l 235.73 94.31 l 235.77 94.32 l 235.82 94.31 l 235.86 94.27 l 235.91 94.28 l 235.96 94.26 l 236.00 94.20 l 236.05 94.13 l 236.09 94.13 l 236.14 94.14 l 236.19 94.11 l 236.23 94.04 l 236.28 93.98 l 236.32 93.98 l 236.37 93.96 l 236.42 93.95 l 236.46 93.87 l 236.51 93.81 l 236.55 93.81 l 236.60 93.75 l 236.65 93.73 l 236.69 93.75 l 236.74 93.73 l 236.78 93.74 l 236.83 93.67 l 236.88 93.66 l 236.92 93.69 l 236.97 93.69 l 237.01 93.74 l 237.06 93.72 l 237.11 93.70 l 237.15 93.64 l 237.20 93.56 l 237.24 93.54 l 237.29 93.55 l 237.34 93.51 l 237.38 93.51 l 237.43 93.49 l 237.47 93.46 l 237.52 93.40 l 237.57 93.40 l 237.61 93.41 l 237.66 93.42 l 237.70 93.44 l 237.75 93.48 l 237.80 93.44 l 237.84 93.43 l 237.89 93.44 l 237.93 93.43 l 237.98 93.41 l 238.03 93.41 l 238.07 93.44 l 238.12 93.42 l 238.16 93.38 l 238.21 93.31 l 238.26 93.28 l 238.30 93.26 l 238.35 93.28 l 238.39 93.28 l 238.44 93.29 l 238.49 93.28 l 238.53 93.26 l 238.58 93.20 l 238.62 93.20 l 238.67 93.19 l 238.72 93.19 l 238.76 93.11 l 238.81 93.11 l 238.85 93.10 l 238.90 93.11 l 238.95 93.07 l 238.99 93.07 l 239.04 93.02 l 239.08 93.07 l 239.13 93.07 l 239.18 93.06 l 239.22 93.03 l 239.27 93.04 l 239.31 93.03 l 239.36 92.99 l 239.41 92.98 l 239.45 92.96 l 239.50 92.98 l 239.54 92.94 l 239.59 92.89 l 239.64 92.87 l 239.68 92.82 l 239.73 92.83 l 239.77 92.84 l 239.82 92.85 l 239.87 92.87 l 239.91 92.80 l 239.96 92.75 l 240.00 92.74 l 240.05 92.75 l 240.10 92.73 l 240.14 92.69 l 240.19 92.67 l 240.23 92.67 l 240.28 92.64 l 240.33 92.63 l 240.37 92.60 l 240.42 92.60 l 240.46 92.58 l 240.51 92.56 l 240.56 92.52 l 240.60 92.51 l 240.65 92.51 l 240.69 92.51 l 240.74 92.49 l 240.79 92.48 l 240.83 92.47 l 240.88 92.48 l 240.92 92.44 l 240.97 92.42 l 241.02 92.37 l 241.06 92.37 l 241.11 92.35 l 241.15 92.32 l 241.20 92.25 l 241.25 92.21 l 241.29 92.17 l 241.34 92.17 l 241.38 92.15 l 241.43 92.13 l 241.48 92.18 l 241.52 92.15 l 241.57 92.15 l 241.61 92.10 l 241.66 92.13 l 241.71 92.10 l 241.75 92.07 l 241.80 92.05 l 241.84 92.06 l 241.89 92.07 l 241.94 92.06 l 241.98 92.00 l 242.03 91.95 l 242.07 91.92 l 242.12 91.91 l 242.17 91.91 l 242.21 91.91 l 242.26 91.95 l 242.30 91.91 l 242.35 91.93 l 242.40 91.93 l 242.44 91.91 l 242.49 91.84 l 242.53 91.82 l 242.58 91.76 l 242.63 91.74 l 242.67 91.71 l 242.72 91.71 l 242.76 91.70 l 242.81 91.63 l 242.86 91.56 l 242.90 91.54 l 242.95 91.50 l 242.99 91.52 l 243.04 91.50 l 243.09 91.52 l 243.13 91.51 l 243.18 91.47 l 243.22 91.45 l 243.27 91.41 l 243.32 91.41 l 243.36 91.40 l 243.41 91.37 l 243.45 91.38 l 243.50 91.32 l 243.55 91.25 l 243.59 91.21 l 243.64 91.20 l 243.68 91.20 l 243.73 91.25 l 243.78 91.30 l 243.82 91.32 l 243.87 91.30 l 243.91 91.31 l 243.96 91.27 l 244.01 91.23 l 244.05 91.20 l 244.10 91.18 l 244.14 91.15 l 244.19 91.17 l 244.24 91.20 l 244.28 91.19 l 244.33 91.19 l 244.37 91.18 l 244.42 91.13 l 244.47 91.10 l 244.51 91.05 l 244.56 91.02 l 244.60 90.98 l 244.65 90.96 l 244.70 90.95 l 244.74 90.98 l 244.79 90.99 l 244.83 90.98 l 244.88 90.95 l 244.93 90.94 l 244.97 90.93 l 245.02 90.89 l 245.06 90.85 l 245.11 90.84 l 245.16 90.81 l 245.20 90.81 l 245.25 90.77 l 245.29 90.76 l 245.34 90.75 l 245.39 90.70 l 245.43 90.65 l 245.48 90.67 l 245.52 90.63 l 245.57 90.58 l 245.62 90.57 l 245.66 90.57 l 245.71 90.56 l 245.75 90.54 l 245.80 90.52 l 245.85 90.50 l 245.89 90.46 l 245.94 90.43 l 245.98 90.39 l 246.03 90.37 l 246.08 90.34 l 246.12 90.34 l 246.17 90.31 l 246.21 90.27 l 246.26 90.22 l 246.31 90.19 l 246.35 90.19 l 246.40 90.17 l 246.44 90.14 l 246.49 90.11 l 246.54 90.11 l 246.58 90.09 l 246.63 90.10 l 246.67 90.10 l 246.72 90.11 l 246.77 90.11 l 246.81 90.07 l 246.86 90.02 l 246.90 90.00 l 246.95 90.00 l 247.00 89.98 l 247.04 89.95 l 247.09 89.94 l 247.13 89.93 l 247.18 89.91 l 247.23 89.91 l 247.27 89.90 l 247.32 89.86 l 247.36 89.83 l 247.41 89.77 l 247.46 89.73 l 247.50 89.70 l 247.55 89.68 l 247.59 89.65 l 247.64 89.64 l 247.69 89.64 l 247.73 89.65 l 247.78 89.66 l 247.82 89.65 l 247.87 89.64 l 247.92 89.63 l 247.96 89.63 l 248.01 89.59 l 248.05 89.62 l 248.10 89.65 l 248.15 89.58 l 248.19 89.55 l 248.24 89.48 l 248.28 89.45 l 248.33 89.42 l 248.38 89.39 l 248.42 89.44 l 248.47 89.49 l 248.51 89.50 l 248.56 89.48 l 248.61 89.46 l 248.65 89.43 l 248.70 89.44 l 248.74 89.44 l 248.79 89.47 l 248.84 89.48 l 248.88 89.47 l 248.93 89.50 l 248.97 89.48 l 249.02 89.51 l 249.07 89.51 l 249.11 89.52 l 249.16 89.50 l 249.20 89.48 l 249.25 89.49 l 249.30 89.50 l 249.34 89.52 l 249.39 89.49 l 249.43 89.49 l 249.48 89.50 l 249.53 89.53 l 249.57 89.50 l 249.62 89.50 l 249.66 89.49 l 249.71 89.52 l 249.76 89.54 l 249.80 89.62 l 249.85 89.61 l 249.89 89.63 l 249.94 89.63 l 249.99 89.57 l 250.03 89.53 l 250.08 89.52 l 250.12 89.51 l 250.17 89.47 l 250.22 89.47 l 250.26 89.48 l 250.31 89.45 l 250.35 89.45 l 250.40 89.41 l S 0.745 0.745 0.745 RG 158.40 73.44 m 158.40 264.96 l S Q endstream endobj 296 0 obj << /CreationDate (D:20090701105328) /ModDate (D:20090701105328) /Title (R Graphics Output) /Producer (R 2.10.0) /Creator (R) >> endobj 297 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 299 0 R >> endobj 298 0 obj 122462 endobj 299 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 294 0 obj << /D [292 0 R /XYZ 89.292 765.769 null] >> endobj 295 0 obj << /D [292 0 R /XYZ 132.24 260.921 null] >> endobj 291 0 obj << /Font << /F8 79 0 R >> /XObject << /Im10 285 0 R >> /ProcSet [ /PDF /Text ] >> endobj 302 0 obj << /Length 1841 /Filter /FlateDecode >> stream xڭXKs6Wh|%L;;4}mOhKKt%ۉ{_b= /~XGfУˑ&SZdهv=ɲ_<+|?N̓v HUwD5VI= cmگO07tv. )7LaiaTrk^c 4ѸAIG8=Jɬ1stQmZSZ Pk4vcUMߗnw).0~y QSޓOa8!'0x07ȎOk?<9M8U@;٣}-jiڑLEjMܳWc̞ge_ SI~|/_&Y?&Ky c%!D}G)&+v I7xXxh[gvIMA~g͆ W_~87LJf6]y29%t+ oZ4ey%t }+t!6IW[h hŽ8/mSѣ齃N$}!vBt ʎ+_9ҧ4BP>P(.΂/P\h\%=N6]Eaԟi|C.F~DUHKP822Ҽ`[:tNmy81fbvn[&%?b=٧PH~J|]eqa c1A9:E3DGvi]H[k"FS bĕXCYbS*>':򪈧aoז~I0Λ."%0xӫu 3Bobk#`3[E V3_@G{`L;aHC*;!8nZ4ڱ[23"|ŠE+yM6wX uG3(l<=+endstream endobj 301 0 obj << /Type /Page /Contents 302 0 R /Resources 300 0 R /MediaBox [0 0 595.276 841.89] /Parent 278 0 R /Annots [ 304 0 R 308 0 R 312 0 R ] >> endobj 304 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [150.611 639.741 157.585 651.602] /Subtype /Link /A << /S /GoTo /D (figure.9) >> >> endobj 308 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [136.813 218.502 228.408 230.363] /Subtype/Link/A<> >> endobj 312 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [136.813 154.741 292.945 166.602] /Subtype/Link/A<> >> endobj 303 0 obj << /D [301 0 R /XYZ 89.292 765.769 null] >> endobj 305 0 obj << /D [301 0 R /XYZ 89.292 600.449 null] >> endobj 306 0 obj << /D [301 0 R /XYZ 89.292 329.731 null] >> endobj 307 0 obj << /D [301 0 R /XYZ 89.292 257.855 null] >> endobj 115 0 obj << /D [301 0 R /XYZ 89.292 257.855 null] >> endobj 243 0 obj << /D [301 0 R /XYZ 89.292 214.019 null] >> endobj 241 0 obj << /D [301 0 R /XYZ 89.292 182.138 null] >> endobj 300 0 obj << /Font << /F8 79 0 R /F80 106 0 R /F39 57 0 R /F75 96 0 R /F14 239 0 R /F7 92 0 R /F88 147 0 R /F99 311 0 R >> /ProcSet [ /PDF /Text ] >> endobj 315 0 obj << /Length 655 /Filter /FlateDecode >> stream xڍTn0+t(TT[ڲR^Sˣ4| oCyt>!rU!b:`d{xXVRF>R߀=3=Mw9]0 w0$9n/ v(+--^nӀGͿ$mibldnjy0#`:^p|u9L'dendstream endobj 314 0 obj << /Type /Page /Contents 315 0 R /Resources 313 0 R /MediaBox [0 0 595.276 841.89] /Parent 278 0 R /Annots [ 317 0 R ] >> endobj 317 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [268.189 715.457 399.137 727.318] /Subtype/Link/A<> >> endobj 316 0 obj << /D [314 0 R /XYZ 89.292 765.769 null] >> endobj 84 0 obj << /D [314 0 R /XYZ 89.292 742.854 null] >> endobj 83 0 obj << /D [314 0 R /XYZ 89.292 710.974 null] >> endobj 242 0 obj << /D [314 0 R /XYZ 89.292 679.094 null] >> endobj 313 0 obj << /Font << /F8 79 0 R /F88 147 0 R /F99 311 0 R >> /ProcSet [ /PDF /Text ] >> endobj 318 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis 197/.notdef] >> endobj 310 0 obj << /Length1 868 /Length2 2545 /Length3 532 /Length 3171 /Filter /FlateDecode >> stream xUyƏ 3;}[Wtl]917\WɁK\F)#=QҼ!R8pp |m$W< /W ږI}> {j"lP63=XGS<ϕBI'doj4<ၷغLJJǪBkpeDHXPӧC}zעj҃f9ؠw͂[mM+_־$F< MD$M|kg-QviM!X0G>@/{r^N4;NxХ\;ci$J'KV`LN >SW_^եt.%{A58|^6Գtl| |W^F>gF9QBo3,i{iܩ'ؚ_YƂ>Ӵl9[qfZ9TK[kϛ#`'32oW;)F-Ŋ㪷Y/aG}+ʆ3ƩGlZDV#. *7&=1tY_V ;V%@i:~6vO+{Wn==/+bb]1VI_Wx?sBNt^̖T9ס>oTWLb̹T;wM3Ggc aeeNt9 Hotɀ!+1$pϬ8IttWp*^;N Ѧ#jYۂp;tlݏC%1=+a?Γߤ$LrYv\]_V"K?,u-3EwX_\VZ DNM/Jʍ FaQx)3fz uQs.:/7ضgXˇ+k)ff>Ƶxdt./)X$!f5M^@xH)Oy WFrSXjf=O֤i0TS:V`-wflI̦fM]wvζ Nrq>{?*γjc^ތ u.()sxtN>J4 mˈ ;ֽ$:T\z1UDMw׭n >9sQ%ƞ$)||Fӕm;Sh姓!u^Gm5'-Nݛs nrcibXfZ9DPՄM'ӗTxJc4f:God~uFֻpF--^?qhrJ]wPP ۘ7G&5 I2K4]3Im>SI ?HV\)E=ͩ.)-zu.>EJtrȅ^:R*Uاc᝵;>g{}NgIy/E?aK$6G-m0{ϑt0ZTZ 9(>m[A8 pЃ!^qm؁Cv;ґD2H3iVendstream endobj 311 0 obj << /Type /Font /Subtype /Type1 /Encoding 318 0 R /FirstChar 49 /LastChar 57 /Widths 319 0 R /BaseFont /BBJJNN+CMBX10 /FontDescriptor 309 0 R >> endobj 309 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /BBJJNN+CMBX10 /ItalicAngle 0 /StemV 114 /XHeight 444 /FontBBox [-301 -250 1164 946] /Flags 4 /CharSet (/one/two/three/five/six/eight/nine) /FontFile 310 0 R >> endobj 319 0 obj [575 575 575 0 575 575 0 575 575 ] endobj 320 0 obj << /Type /Encoding /Differences [ 0 /minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/arrowright/arrowup/arrowdown/arrowboth/arrownortheast/arrowsoutheast/similarequal/arrowdblleft/arrowdblright/arrowdblup/arrowdbldown/arrowdblboth/arrownorthwest/arrowsouthwest/proportional/prime/infinity/element/owner/triangle/triangleinv/negationslash/mapsto/universal/existential/logicalnot/emptyset/Rfractur/Ifractur/latticetop/perpendicular/aleph/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/union/intersection/unionmulti/logicaland/logicalor/turnstileleft/turnstileright/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/angbracketleft/angbracketright/bar/bardbl/arrowbothv/arrowdblbothv/backslash/wreathproduct/radical/coproduct/nabla/integral/unionsq/intersectionsq/subsetsqequal/supersetsqequal/section/dagger/daggerdbl/paragraph/club/diamond/heart/spade/arrowleft 129/.notdef 161/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus 171/.notdef 173/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/spade 197/.notdef] >> endobj 238 0 obj << /Length1 809 /Length2 810 /Length3 532 /Length 1392 /Filter /FlateDecode >> stream xRkPSG* A#ja\PyH o t.&\I 77 /K :EPP,b(#h Z B| *G|qJ:;ߞzqHPLA6 ã.@\ Q #U(]J > \y\Wa Ĥ# PIL ⡜!Be aҰP&ac7 *!l1&@b83@$H*iQi hbiJ i%}T2Y*+?i>2BEAbHⓩkqP䓳~*DB\*qbsSCqF)8qd)}B8dԗO.粹\&{37.".<3@I0 #>؄ C5jZ1}֤ A2ƾ 8r W)qG*)=s8HC's.twq?KTAUr><_"IScF;9K0}P$Dn ŧI.k2n~et..m/&N ], f""Sy~жL-*7o35f_:K]k#ߓZK%+L➣/2b$I;7Gok\~l$z)B=p+ #/ُ3C>eИӌ`a{.(ceoxm&)T,1Op6*z`3 ۊ홱e]ֳtpߣr;]sm$KZVnRpdttMj=Z,:E?{evas)f,ZrpE}"3*Oݼ3礗MU M-Yڍ[#XvMLk=Zrܐ Ť\^s3[+k[;+f.ϛcu7{[~p <):ks_7jpRfN,`/ʘޝ#qN&Nj&ϝ1\-|3篨iZ(;r0N˻A/o*FMRYFkGׯF(I1|q,VPix٦8rmSՎ?Vʴ 3heȮC]" eNsq=O JR%"endstream endobj 239 0 obj << /Type /Font /Subtype /Type1 /Encoding 320 0 R /FirstChar 0 /LastChar 15 /Widths 321 0 R /BaseFont /VBZKLM+CMSY10 /FontDescriptor 237 0 R >> endobj 237 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /VBZKLM+CMSY10 /ItalicAngle -14 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/multiply/bullet) /FontFile 238 0 R >> endobj 321 0 obj [778 0 778 0 0 0 0 0 0 0 0 0 0 0 0 500 ] endobj 322 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde/dieresis/visiblespace 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/dieresis 197/.notdef] >> endobj 163 0 obj << /Length1 1056 /Length2 4154 /Length3 532 /Length 4857 /Filter /FlateDecode >> stream xg\APiCJ t. Ф $P& 4T6lMDi R9q{Owg]}gZ3B|F(#Z %$` >!$tBB4a5D>.$(H(@tB:@$Y@M8!>$i8!=SM T=<;7FI` D.,!3swM&@$"" Phg:t?ŵ|<< ??HOG%<>D4ǡ?S-zG0>'UQF+@$XFcQ@* z%"La38?` BaD'u¡0X/$1CNt8'ʻz )j.U5՞ J xq (< VCSOf|f9-7~wU~Z~Yldm1#kḧJ0,"gœU-5ǜH1)<-u\3{(.|tjsǝnG+R UPQɳOm#"G!؛˪9ό8/j&kxs }m;QKUMT"Oۮ%uޟ_KD~FLv,wOɗo_.ğ%t ¼iE<3ܽG?su5YcMal|gWmtT:9QjG^] 9t IKsB⮨:3Ua=7Bg}?XqBN}|˪}_$NEHoI}3|zWl[=d =㤴탠o..MO:8 lY旵C 67U[V QZCp$nQbyr:PP'=!¡bXC*m)#3 '45kޓV~EY|̞N5Aoivĥ& ׊;1ܔf% l|`!:ߞ]afm.Ӿ;wvC4!N Eh']}GFXP`ILדeZzD*gzfgin^31[C5OGEPdxk.;~ny5J {uJ9X"W~z?QLglmO_q{5JN9A^o'ҹרnП/ʐ/C6*"%,pz,MCZfdƜ:lu$C,_֘pk_"u S. #[5ͳSU0 9>*K*&&X1Lɤ?bMBJ0 QLx~ 蕰A ?|9Vn hЛ3U7ox'LC_aM{9<)=iXTҵԍ+y_u`%!7A1dUj{zk{~鷽[JE">g(8 ";J f+<ɗ4[q:\`\ JRmfKߥp4);ޭ 8[ z/Ȅpna!f|=YEt/[o:JuMvuANoA$X#5gf9TXAGYNU@E8I+m5]|W7(B@a ՝{=ޟ^kookLy?={Z$jkיg<'v.y)sM^z(ZOB%t2?r#pIKLh ЉF1Cyr],]&Q^7%.;#ʗ>۰r5a :?/oe6bKB~YϓP@H|r݄ƣؤB~[ecwK,j˧@̃Y+׶/ڳFI(WNω:/ՋbQOAOvپ-]'iҩ:j^ U"4˾xQ.3#Ƕ+&nwmzȉM[(ƻLޚf3)w9ܖT6qӺsҹEp%% _6T(ր9ZHcEK79Zqdt.LV (L(=OѸllS~B%8|~ȫs|qzK@LWb[r HfW+"|zp-OA5M8/7p t$A63 =wjGZ\i#Z~3BeYGWSߕyH*R2n0AJ3QC^Ge VNsamaDО**ɣ#}<[JaP6h:hB* \(hSXɗ!yZc:p.wȑJxu2R:*,rC6^:ql%:}p3璄nȸs4=5oGX ~Cs͒҅W6o!.pިo=~2y'A }@ܥ{!}IML@s^,}9!wSo7.s׵` >S MxWT ֎I;UfrHD|v"@0~{y*uZݵݫv#nr=b=ۜ^k3v͉;/&#zi:kP/^ _^?ZI}kUC͙K6i)'#}3{ t w_ķ1vzoi䇏X0<x־#3;Lڌ,v4lܵ|bsjf3{V-&eX,NcB~uMIsl%o|/́It4-=Cm ׈#9"XOMH9Η|CWh# :j> 2??Diu[˷F]nL D8НT{} Ok\=-لND'Ql#I2 ݆ŮcӼe!;_ERƥUkЖ܄u5!LBs|֝D~Mk*\l*k=ْTck3h^  G>prKZPէѽ w:Kz]mAN) C[{?ހ)ը9JbG=1n,Tvuavil :& l!ӗN-dy`R y}zl!SɋT 9U=9_ۅЗ\GC`x!QEz')R,\vft9҂Kg<\gLxȨn$Q&;[_.;GGeǹE'> endobj 162 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /LCJTDG+CMTT8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-5 -232 545 699] /Flags 4 /CharSet (/question/A/I/R/S/a/c/d/e/g/h/i/l/n/o/p/r/s/t/u/v) /FontFile 163 0 R >> endobj 323 0 obj [531 0 531 0 0 0 0 0 0 0 531 0 0 0 0 0 0 0 0 531 531 0 0 0 0 0 0 0 0 0 0 0 0 0 531 0 531 531 531 0 531 531 531 0 0 531 0 531 531 531 0 531 531 531 531 531 ] endobj 324 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis 197/.notdef] >> endobj 146 0 obj << /Length1 1375 /Length2 9432 /Length3 532 /Length 10274 /Filter /FlateDecode >> stream xeT\۶ \ <PH -w%Hpmιݓg]U?7\s}5Z( 5 fq PvafgaH*kʳY$ih$. X(`^/^?<<4I@'IW/@27M]5Msœ ngPk3@ trZ ,@.3<Wῇ܀NίR5'h̪y] C?˸٩UNqS{e@\]Ne :)-@9*bj2[\,l\e@@ 55wO %_A5SE`'of_賽v5W4b[8yNNȯ蕸z!.SXBVK_j` :<ſC|Vs$y5[`^^)CV赊ʿ﵊?ZEjCfZםj4_տu ? ?Jv૆?oX|p_5W ?U|jZ૆Π?χÛ*]Rn666>NN@ߏl z=@yqb.lZ']8YGL^<Ґ.r*=4 $ U`(VZXr6 xk,` gh A`gG-o;41.Q]u(|-1l}%͂j'0M)7r, ), d\Tb889[9pڐX[إ@<nؙ4B?F;&p2kY?h1~+%z6DTlȊ1/oL ("B/xd V΃lX4iP,qoB-|Śyf#}ܐ d/>cworQoNCIPt `Ŋ^.mݒw ꗚ$m_r9Qb*UrX԰ ,p ۠e|(^ hl3wd =c栅J8TjaP+wjmI'j|-~!xW&}7=ܼ 3$=haB;-rA >C^sz}=̗}:&[!G'(B:7GC]ľ|MQ X7G_N"v'[VΜggϾ:K?O5( @:ܠܶI{1+NfdHS%i2{|b$qHqB6q(k9Y :iϊ(,XixS' 'ܙU~c~rh!_W1Ŷ=_EUx9 H9hՒ>j>˴pfwj>MiK&zD"1G.#eG)k!M$hpqMDB;ٹHM)rg7t -XU:@*K!6w:V 9N OЌFVAB \q)ϒշZuRۯ0/*.$>FUDzE3ryv5 e{ē註Ӊ:n%EQΞnEpfm\yy-mFRn^;7v.2.'ayeK}/Sv ?lW:jo@jrNQKv0hwm~@ g _O-rC`d OU\^T}vU~8V"fzQ3eZ,JW[f Rk )+8Rdߝ8P~\P2]kbMM?{nͲ&'^FcA{}8ȑ6Ja{#2ƦfomFcb$ c9?@,f2aı~$*r=]V4=f# pv+]hKzK158MHoݝ2/^c8W+I#*ċd3'k`3[ވj1+~ <hea=7r/8A^+ /Q*K:w׏uh!%x}mpH-uB&B.xX5Q(i8dm(3k8GBX$lh` ӮUZhga'IJw>Ufpmmd0>d·q/ͺ RWZ+iqyاNxU%YipҚ4#Vuk-fV$`<[PKӑTXw-YC D?,Uy.;4߫7~y/"Ln_E{pyg"vK0JuqaU)7f cG՘0Q=2SLhL٪0%|yhoɊ NDz XQV1N*bM׆{߁>hBS4!:Չ=8Ӗ G+mUbӊf]K_N 8C}sA>z֚^< )'ەE)zSH^q@.uQt[Ss #+R 9xkGރ(F>Y"wޑ9b:1{oZi]M6,ShFš˔K8n7; ၶUGu\!|zcQ 5[C97xh|J޲2~0o\n)C~{n <0R$/!_K~~[H%DSg8r.Y٣QH^~xy\X[T] gITwoDۡKKf(oј+R@S'>Jb!3В_y:xԀn+wkۮ.“Xۥ]Tɔ:Z&&9_7a\=tzeuxDhoŖlZ\ 軡sd0ۗxMiultMLܼYIq ner4;}-7hݘRD:P[B~=vL/üylj6VJ;񢢧LڍS(zb[)(\5YK8~qM[al9g,zp)mr~!_bn y5?@^+&1Jr$ Ҹg6IrO ?zɠ"jd,E,z R*3#1Rl[ PG}YLw\>TT?-C]PWU\A;~M\igAG9aË1S|`MmR|t,wMի|kE?GF!V>B5Rv0rݭ$ H\mC÷x(uvoGMբpV O{J>bk@2Dq+Aepz}(ldKfQj1UL"~ 8BM֔5I }d!:oґ~@U\W/OV'߸5luYa#w/~VZNO}t"X0s tXEYAc׈e:B(=)z\XGOD͔uBkeU^3C`)<rBSʫBoqCgE|I0=n)L bݔ`GP %ft3W% h}7=̽D6zD%XEƸɚ=.w)I,-a.,0} F]jG[R@PsR#٣ѰlF,Eh+?CFXvaܲ#[i|G&)I-wVt}\4&Vu$;H.ҸE19kI*A휴oaPLM',?ýIfsR373Fɧ?]rzmA::"%lܟ9 H Tlq6|t8{V{P(bnJwuWc g<4zJ>c[:ٝ$@v\IלI{2w ,`/^/o·]KCn^(8py9g\)HXMb#)zi, w%6H{ׄM>p\41B _(MM["ӣ!|G Li퀖|f1JP}ÝKYݶp# =]#5_ {,sH2}N"0nž-n aL.sig[^ ƣ?aX`0/N7yRjaBEf3]D~ۋ%'lӼԻ,ڽ¹5qpVFCaڲ1h۟cXa DFe dO9-yj. vTFY=e_@q Dk_I(#_W|ϙ=4L82Q TDLX>I!J1I6dM_);꼸28QEsbW 7tV}iDN8 } _/7Ԑ `/\-ZvXwITF`!ک&=͙:5DB)!x1cƃ^w:aʱ{:'@SK|}nUF>4v-hɶ:,zo?F'~>Vt–@Elh6jFj@p:\tAH555=a&] j^ba~_l0zLk/=Mѽ-cGp,&~\=3I^_Ir\@[! :tN!8]?Bo+%QpPJ[rNh3|Zs=C/&xe$ƃpG* yY5mu?d+YQDGe (#)=Yqm0ʁV *}p0=,Ea:(&L6:KlP$Rs5+bƋuozʽopd=u7/2FnݟP'x:i'ٺ (&9?60*h4 2&0+xYc&M.X4uEȊp6{3I/,U0]٧}LYrأT5!Z-Sq?Y/}T-$-1>W^ 7V+ :3Gd4U~݃awּ֠=xE>O3_`>:DiSn!FP&p[իpIg An} p!ԟ@]qma} /25 gȂ xҟbx{.@[ol1x6mtzA[ٴv{G.(ar\f_h\w/7w4]n=RTj<@:*OKlTĮßx3XezvcJU^ ͣ:UgT$BXGuYƆ<k;MԽ6 0eWsߨl~dPf-{ riq߫Qţ pN m0NZ!u<)IFU>cHk9`-Ƞ<Ԁ-"nnN*[_jDa FKƸ?gI|I!]stL3tsdS0NfFV܄HY;'NZE-(fq0bÀ}JFf _$ YhV`)#A
    [a 91geU^<ǟ ՇaX*sg $3o[S˼:;@6$5sitPΏxfE3~aԫڅߞ>T8 [ᶬg0BY^Xpֵ+Nƃ#=bw=_RUfFdhee$ KH|66$UiP?:At؉xpoh&^ҦߦLȿsSÔ r}_6c# @໌,0sq-('+a{ o e59gZ[pUvݎ+.BLh/E0"Uӹo$y5'j AD5kq{1XHi;NsLN!>d#Xk\8A> cldz#ܘ'Qy_V#wYJeN=X-+3m{ȚhHk%fZ߾G_ߏgZ+s,+; Mς> >\ &R3&Z<'9D҈CE֦_,b0pwQ gߛ,'.&S65q<> v. V NΦQSvW [/h9KStEWϕp!;BYr$mål.V^,!2=SH.Y˷:3R'Ţ1ߙtw'ۍfAˇ֑*?Eh״NtMznM~6dg#furZra\7pSϖXͳ֪Eedi*b ~1iT@Gr1MûP _^a^֭,-w hyTؙoa1IKPFM,K5JxWR]9X+%VRcjj1onJ4x{ RdQRd0m6+m ;0!0}XwreתRažS뻍R|} Yz*j,DxGDmL]gA0xQִ:my̦r5"*fu.TQ/%> !u$s!ȡzED<XD!ЁOJ,h.Q/3 ݧ \Arprd Y3`SB6 - p9Nl[.oS_A+X>s\g U^GC낇lP&9;؟VLkBt餪w 10<ClyU SUc'jFerIj)?\*+b2>$K=>Ehf /1QY3"AJԒktY%6S#v2`6G-Om݃rjk (qZ.[t^ u2ԩxfqs6k'd 2+oQZȜo/d01XߖQeDŽkAbF[VKZSN uVҽ( qx%z=3$c^ ?#’yh4itNs*rӑzYuX sƮ2a#Ar`*#a}iN@\.t[ y&6z%i4XeGS yaR6?Ķ!d>Z3a˼f.bWڀ DIyl6)Wj$Zao|l aMƥx;eI'Ge3oX ZN`'u5*7/~~ǼeAODt~"r-LRՉH-#9B(`n4ur؛:"/~Hendstream endobj 147 0 obj << /Type /Font /Subtype /Type1 /Encoding 324 0 R /FirstChar 12 /LastChar 127 /Widths 325 0 R /BaseFont /UXVJDI+CMTI10 /FontDescriptor 145 0 R >> endobj 145 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /UXVJDI+CMTI10 /ItalicAngle -14 /StemV 68 /XHeight 431 /FontBBox [-163 -250 1146 969] /Flags 4 /CharSet (/fi/hyphen/period/colon/A/B/D/F/H/L/M/N/P/R/S/U/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/q/r/s/t/u/v/x/y/z/dieresis) /FontFile 146 0 R >> endobj 325 0 obj [562 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 358 307 0 0 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 743 704 0 755 0 653 0 743 0 0 0 627 897 743 0 678 0 729 562 0 743 0 0 0 0 0 0 0 0 0 0 0 511 460 460 511 460 307 460 511 307 0 460 256 818 562 511 511 460 422 409 332 537 460 0 464 486 409 0 0 0 0 511 ] endobj 326 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/omega/epsilon/theta1/pi1/rho1/sigma1/phi1/arrowlefttophalf/arrowleftbothalf/arrowrighttophalf/arrowrightbothalf/arrowhookleft/arrowhookright/triangleright/triangleleft/zerooldstyle/oneoldstyle/twooldstyle/threeoldstyle/fouroldstyle/fiveoldstyle/sixoldstyle/sevenoldstyle/eightoldstyle/nineoldstyle/period/comma/less/slash/greater/star/partialdiff/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/flat/natural/sharp/slurbelow/slurabove/lscript/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/dotlessi/dotlessj/weierstrass/vector/tie/psi 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/tie 197/.notdef] >> endobj 143 0 obj << /Length1 785 /Length2 1439 /Length3 532 /Length 2018 /Filter /FlateDecode >> stream xR[XSW%J@CH!b"ST@ $'!ZDb;C$RZ#:^b rQ+A 8*C@t֯Ǚ엽b\q$RGX," B T 7 T+3 Phdg/DR`煛&Q]!,9HptLP B\'DBQĀ̕I>b!$Fo I*_ ř2KhZ~&?"P;C,ȤXb.SCXW }Bމc]!@[!}~3>,&i4H! &!!9%8D=Q>?ƀ9b$ `#[?"="%`.$\#@L~ti Mr3 8B&$;q,Jld+ٕݰ` TWa{f5-Z/)wxhXOlŭψBFF4?2PfB9ċ-"qיF˰ScﻬE?^c~v7zQ];s4.`;FscekȤ GèIJPyxk]RSl-trTFuїJgb"tS׶njބONjU+ctVkGs\ʸ=ˠ5fFXqmfr/G*$=dջ*ӟiC]eMT4}Md4fWcBޙMlucIM_󿶥XOw;֌ crHn]=~1:rg,5MOh(Ze>xueݱ/ޏØӮ, ~2}=3]Ņ֐ZMk}%Țlt@MX_gΊ-sCX]aBFLL=m:bG|2_> endobj 142 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /PEDMFA+CMMI10 /ItalicAngle -14 /StemV 72 /XHeight 431 /FontBBox [-32 -250 1048 750] /Flags 4 /CharSet (/Q/k) /FontFile 143 0 R >> endobj 327 0 obj [791 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 521 ] endobj 134 0 obj << /Length1 798 /Length2 1515 /Length3 532 /Length 2104 /Filter /FlateDecode >> stream xRk(yƔ-; `{4Yn1W KvG* .GOk*ΧvU7hTʼ&Jڡh4{Ņp}IJ35=c| ,X%k\?7XU|!S|ewwZ?M$b`/g7wS =IvC9atL!14\?3k{DrRkU*0Ȓw 7H1[cξȗM>|]4Z⋂ȹ/DZzu'QO3Q}Jw5*'.cCO>INz+\{]ACXBo08ΆKfוj ҺQQ-UwNd풔SZpy7yX?<<ҡ͟8H7#>RaǕ _!Eq!@еݰE;/˷Y kܫ5#ccBZf5WU[^_ڲKFM'ȃѬT;XjOKK Tnka)Ϋ.+5hXYgĀ9Invg[sݾNItKoh56ī7(e>CT:Has`7U(endstream endobj 135 0 obj << /Type /Font /Subtype /Type1 /Encoding 326 0 R /FirstChar 61 /LastChar 107 /Widths 328 0 R /BaseFont /PPCHHW+CMMI7 /FontDescriptor 133 0 R >> endobj 133 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /PPCHHW+CMMI7 /ItalicAngle -14 /StemV 81 /XHeight 431 /FontBBox [0 -250 1171 750] /Flags 4 /CharSet (/slash/Q/k) /FontFile 134 0 R >> endobj 328 0 obj [585 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 607 ] endobj 131 0 obj << /Length1 767 /Length2 581 /Length3 532 /Length 1130 /Filter /FlateDecode >> stream xSU uLOJu+53Rp 4W03RUu.JM,sI,IR04Tp,MW04U002225RUp/,L(Qp)2WpM-LNSM,HZRQZZTeh\ǥrg^Z9D8&UZT tБ @'T*qJB7ܭ4'/1d<(0s3s* s JKR|SRЕB曚Y.Y옗khg`l ,vˬHM ,IPHK)N楠;z`9FEzjCb,WRY`P "0*ʬP6300*B+.׼̼t#S3ĢJ.QF Ն y) @(CV!-  y Q.L_89WTSQ-мTOS CGKRJB0~Z&0TSS+Rn^Onɚme X9X&u3SjM*,y־% mHx֮"&4׻,^5+Åa3>_xV/'x楼pZkBZAo`(&^y@O+{?x(@Cҳ36*8" :|/mLj}5?뀂{́xLp'X61q^&7":LnWa_TՓlgcx'k]K9j;/rhD; U-z?!f>$̯_6ai|mӻ'uRe"V]v~K-rʋο^1cʗi;'{U7|TrUs/J%G8͸}BwS4/?[\VӁN߸Y~;6!GLwIA5O-*+OHty"_ZF+$9ʝ7g?|" U  ר€ĢĢl..vp:endstream endobj 132 0 obj << /Type /Font /Subtype /Type1 /Encoding 320 0 R /FirstChar 0 /LastChar 0 /Widths 329 0 R /BaseFont /FAZYEI+CMSY7 /FontDescriptor 130 0 R >> endobj 130 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /FAZYEI+CMSY7 /ItalicAngle -14 /StemV 93 /XHeight 431 /FontBBox [-15 -951 1252 782] /Flags 4 /CharSet (/minus) /FontFile 131 0 R >> endobj 329 0 obj [893 ] endobj 112 0 obj << /Length1 1581 /Length2 9273 /Length3 532 /Length 10183 /Filter /FlateDecode >> stream xUX\ۖqnSN hpkp'C ]{ӏ>zטBK*aʂAVN6N!Vh!@! '@H]ll!)ƿ$v 9ai[!l GG_o4n@W''؁Y [;O0@%PE+0`FcWCBMoHgqYwGGsC{Nv;9CeCuRSZٹ;gVbhg)q8sZA,mn@J@߫wJv_cf 퍫:?Jd A/ / ؁^ԗ @_@[` vEk19vFn;p̿y8@#(Gc0%wnl A߅]P0B- Vmj>D Mj2?oG7qs~?]7AU!hU~oC\ =V{*7AKXCЯ   TЖОP'?*B~#' B ZP+?jB  ZyP+`ٽ@ٗ{rX[ ?/ sqKCw/࿎+@lhK`KԆ2rD&XI*]_уaG]j*2vw(=^E˞|H{0i~+C 3keIOvW` =3Cd3߇qSi`_NJ@X ļ|nsǽ+@M|29#nH5g [wr5c桌.lnybn}h'D07IWџ-he6t4ϓeU+kp!PdƮ4\2{=l~ 7zNwBhI'+GhX<~+l :)> x/L 80d+P`M4<#k95) G uIIR Ւ"MW_˱Cf\b38CT@=/[4i;l4LMgg㨦tX?Xp +%]kSJEh s [iThD= "^{ر$ "``=Q]%G$ qw[B2UvnQcCIŭ.bLI2(}bC$ڣ(7a$L\D~搇ŠlyAmgtB]Lc؆∫U3ܩ>Ҿ9CyD}ˌf"x{-*=T(mP}|'6([{·k!9{*q`9tX5-Iqً(/ v)]d]c QYidxfSqc QgLAKm7An~*cԆM 81Tz#=LEYxZYϏL݆(f_CXKT7 y}4C ]m$pLP0/La[~d/J,_4[rSCRF}]pt0LKhxϱ4滟S`)T`>Sx @x5*f[X `/E'yӏR3qɔc>kI#1Y+W cy &NdnJ/!]KvcdT[FNhJI4v<^;~hoeŢB*Zs-ɋAweFs"uWn{"CeswZ$KJ -9&J((,^4G~dkڤO;ˁlIhv;DB,#mR,* ~/"JeN8zW&J#$m=?#}҃#ƍB^*#Amnj~~8C3%~DcIa@Jj{LT NU y}7QBǾ饺ƦHKi&}Nnw" {9urU=JhKC8F[V9=E/#v܊d 6m<<Д"6>I59';lơP~Y)s0&:@`MΛ ekezq7Eps8GסLEFi"vkQRmT˝ĩ3ns{RFy>Aѷ+^ åF\ cK^bXt"scm%[!~jpj7Yoz%l`q=?Hl?(">a5^&˶l!`(k2pu#W3AՎhJ@ pA4uO/H<ʶZ̘(_yQUTgbP'q:t4Mˆ-:ZtqGSFDgc!9ӗ[ۑ A/, <Gݻ0㴰Ydg:c!߬_ :0FDTǿ ڧsq6m>*ڍM5ͱ24i2.s+&[ф*qfW(4cʺ0ӾNfl$ye8QX˝̚ |_<gܲ (Sq Q_N H؋F>D۟`yWjkIx;-y:`cG0C}Q_H^BOES6Dڸ&sjᛱ.X闾\_ {~F,?eɜM<"$օ?wa"궂ǗHy*3wS ug SE>RyHo6dO;qa8_heIl(i1|bݹuUAc av%p]ڢvNg|-]m4öV1-^ BK[Ff1ٖc"ߢ vk \_ϳ+<8Iڢp({,wJਢa f([c# 32Q5~d'7oJjLq]JkBBI#KH11Zp$w T(Ϣ%_8dhΣn,SL9!qH"[6 aV)˶j.ɞe4@GHBD-1(/_D[ PrS޴{8fksmT{fʈZɭxn|wM4yUv41I&:Xu9dz[62afowfqMI׭ݏ'1.׮5 ἫTcl)]A*jE#/$CD]dt4OI~[HڽF)(T?u&D>ba`C\/̚+-#dC׆c/4eFpszq~i|?owAf&ۧ %o%C ZPQUWVAYL}EUe/^ 6QrK*vf5m_a[G摾>ܩ\{ZbTHPI֩bZr\߯LCJW}VhYbm;ikg+ޛ,W~+3aZ_>@mrot*[6yoh.wz՚kk;_|ĎY Vo`dpea~ۯn?c;DdהTd?.ic{L \745ڭ/L59q## ٧OJ#Y.WAbԗnOSϒ=Y4-}B?xW{63D؛;is ^+|onjLĹ&t;xא6uN[jqtQKo |P@Bˢ1a \r\ZS^a"!OF83(b?4s.|KuAZ;')2iASƎ\WfzJ3U 4D(aj) ȸ/2u(O,b W(P"Qq{h@]XNk8{ s1]Wn윅Y{WyRoIrbmL~UjF?ʆl|oF)~xM?W&[Zv$V&F;LޏŪҕprvY Rn.H[U"XqBfpuTkfqҩƨҐ\Uv=5s'{Z /]uHYGM_Xnrq5hqvwI̷9 ^U'v`Hc}n_[6=שh¼Kfqʖj0a嶸XNX!Ӣ5)xyf%; b_$1|@Eg9!fӇ#elہ&X<&۝픽)F'ڸXGBmt2Qd5̸e+I_`j%.Yv]]P/+&o_2E/J $sc&g'CouUYl?7}X$Gy 6-|xKSGrOzVe=Ͷ}! ֧SrSaSE pޭʸVsŲ5?›Di/QE<=9bF M9q^ `k:)!u6h.~uT6 Wj(hC qm5G{^zxS7sӡqF(;_>2neL]t^KOI7㐖P'q@$nDн-/0^eg?/BQWrbA`Z^GP98S0Q>7Me\U9נD -z5/\xx,cB)h'gXVNs#HRnBf|쥕y[(}BB }dUFE?nęg 7Ղ=q^tUԕ|o30˿n^ZԫG%G$´2lgvqhJ_(G1.5$puT]pEnV1"H!W8fpq}kpw@ V|CY @t`+!_CňDk?̎zYw!rv D # 5/Rtm-ظ&]y\e?&&Q^53:Z1yvA9ᛌ UJeMi&6k; "}bرk]-bW ݻ RUhMQXC/ #5?`@zc7tch-.1y"w/;:pЫ," 5~߁) ſgY.LX,_.lO>8s*Qs-EO=t͛=L.~_H8,QVj-L$!{!Bh[d/7՘)vJPԃm5bJΰ1YFg5lH)'yZofB&J߂+@<0> Ս}9H:sDrNlj_ϭg*MOd8γ$l Nj,ZˆK 죗D-mӬ ȣ7 aN.=D ;ԕ* *6ldAo;Oh\ރ!>#afd!|6JDx&m|8rk31Fbˁ:+EJt_~ s.by I1tw7(-K(MfB MV:GMe58co%95|E'S;떶gynfs$Yk,:_V?#o N½/7N`I6^-bM#v}CErUוaj/:,+D3TucGcKPD+}޷ԼH5+ {wNTOJe,Tbg*=^(s~GS*vV$\!:C3^:J'ǐ.ưoSE0?_%/AXa!IBH{ktpxqgn!3 #2[d5FO_n{u>oo+.ϙ1]Qx;1~>8ƪ?!6..XR9] J"E أ 񭕓e(gyOȓ;z8H I4&+ q5,Wiǧ£Wj{T@۩K'LتFA,~eQmKe6/1+=3ݹ g?3--WR xU"r9ڭn?:361is':mJ =$(8p⩊t'o4z/fv{hr<]҇YBlu3g" DA8,53?D{Hut<>W Ol&}1̜zt\>2!Y65&;yNKv ziNus>\Jn5(z0Z14S- <%[Oݢ /0)ZobI7:]vg(ׯ"̍xD,2<&sC%] rR2+$ׅHFu8k5 eG!x%V8aTʈQkrbB+O>Y%;ցo`{ϒhz\YhdU&;|oXX)VwӪS2|ѱ\/v7BuE8^Vb! \Da>*-xo0k,?%}9U5YL!|hU_qp8jj.Q} \ i\&{1͍/B5¼\'~-Exׂ3+@Ȋ |H({CsC  V"nh9}>1rۣ=47g>'jd°.𶀞HtV}8@HH8Jz¾VZ+8D^%c5z쮴qeB" 7{*HN!%D1jRv1g`^_~]SgTߥ2aqjf]3F9u\Ujf`J%>-).okK4Unj` >f޻q q p [s'=L8kJgR8pxOGz>L-ڦc:4v!&UŹ-Rl! >;JX-[ym"srL͈?[!ૼHTc(SƜW:>8Ψw!1~ B.95N¶(dȺ*68,(`H^-0G2Op' X:]!`'sW[]endstream endobj 113 0 obj << /Type /Font /Subtype /Type1 /Encoding 318 0 R /FirstChar 12 /LastChar 122 /Widths 330 0 R /BaseFont /HKSEPC+CMR8 /FontDescriptor 111 0 R >> endobj 111 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /HKSEPC+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/fi/quotedblright/quoteright/parenleft/parenright/comma/hyphen/period/zero/one/two/eight/A/B/E/F/H/I/J/M/N/R/S/T/W/Y/quotedblleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z) /FontFile 112 0 R >> endobj 330 0 obj [590 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 531 0 0 0 0 295 413 413 0 0 295 354 295 0 531 531 531 0 0 0 0 0 531 0 0 0 0 0 0 0 0 796 752 0 0 723 693 0 796 383 546 0 0 973 796 0 0 0 782 590 767 0 0 1091 0 796 0 0 531 0 0 0 0 531 590 472 590 472 325 531 590 295 325 561 295 885 590 531 590 561 414 419 413 590 561 767 561 561 472 ] endobj 108 0 obj << /Length1 894 /Length2 2391 /Length3 532 /Length 3020 /Filter /FlateDecode >> stream xRy<΄4*l$1cX׾˘ya6lEGž !UQJ* E)KANuΟu?}y~_Yi{e,4!B0S0Dd1j--`*B][UK[ ȔP*ϟ)|iDǠI%94'c =4T&A_O¿1#ȀwˠQbT' p"b$B(qPsI @Bsz*'N&Rt X ğft41 @@;C@ ph ƃ$!8mnlojkmJ6h<JFP! LEr?<( CIu@h* O‚! tӒpGBSMS W;$OR``* 3P4Q 2AFW44$Pl2R4P*.t$1'7àRAr9c ctb~+8Z[ʣew+ff.. W7\e{vMLJ5>6;޿1< {e[u}(.gK] ;s;6,՝YӚbIp=}㰪`zPؑ`D'|J/?|yISe{zYD?:Y l^jtRnvZhLb؁ة6W ={yj6!.ڽmFQ\KJD=#&T%hﳚ=7pD#q9~\݂`j\0{I7FX}cm#lxv Y7>R Il07ӏb +}uFkeYӶj|,h9ő'Ӹ*XwdEfC)qy$ޢQus+wDKӞ)ғ`ͽ컏DbKS_\x}$s'n(d/+TDǦIeJ0T (<3&z$1Xv]s[[@voӃi(`Y["q)k9MvNaيOi1E`gJq8*s=L/owkNG;IMfIsl{#\/=`zIm@GHR\0"犞ATUʥe6nv{:,z+۹7칿a^c:r#N/l^[=Lƅ?<=),(snlSh[E!f BlW8&n.)o40lFͨge)BerZ4Tǹ]<01^6nc@<Qo}njluD1&@Inge$%Bm-䬻qtzg e([NzkM1u|Xl4?鏛"m"WT˦c+1noUqk,ba@i(MG1Yh`vXJv-WT#mkrKޗ[X'^5n5 Í<°J(+Q4R۫o\s;-VSƥr-Nq#Guaoy)n 4Jxaի3<^H3;Y~bWb>7 vm{:POD!o@\M0s3<9YNA"yDq7F=#-]ʋ=1Ti>}\va~Tid3iD"FF2,w qmi[Ŭ!3 %t_ ԧӌ 딹vR|Uc/.lލl{-H*]lJ.^yw\.W^{('&(i'Y\ SY,hqT7vMӾL6]F+/l9KV2m3,Pϵ~=zKj=UgON3 ;Ï;OBFXVxŷq]h~U|Ne9mosǤǏy|kb=^-摲˯Oi6=ZY?WZ{տyP[/4:',5dC>56!K) yotՆl/y0IЈVt*#V\)P쬺־+eO8d,rݾw3d潴1sJ&3w : 5YU|Hazv][7@8{3T9"ѺǷ/N>Tg¿LZGqTOvi6-_ ) #h\{AI[̛ by^ab_> endobj 107 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /DSHQOT+CMR6 /ItalicAngle 0 /StemV 83 /XHeight 431 /FontBBox [-20 -250 1193 750] /Flags 4 /CharSet (/plus/one/two/three/four/five/six/seven/eight) /FontFile 108 0 R >> endobj 331 0 obj [935 0 0 0 0 0 611 611 611 611 611 611 611 611 ] endobj 105 0 obj << /Length1 2097 /Length2 12726 /Length3 532 /Length 13890 /Filter /FlateDecode >> stream xUXͶk4w=;!%hp=d}yyㆷWիXQ^h 9330ʫȩ23130!:-vbF"fnnf"as"83+9(™J$N"a[4 @$lcCND'+ę`ni'i;3 M]g2ED2IMh 2!0~ 'oߓK|1g0WH$48T ۓZQig#Ka;s=7-$,&DΎ. LP7,U=DL *;3( DFF;3)`t}B}ee#btp:Lm )=Ihp49ǸlAQ'#P׌fcM`eW%fvg ' +(=n5z1Zx[Ce '#'h%G{r>l+d ^1v]3K׿2@v@ou(;ȪFY #5{Y8@.Ff}xR~';TE $)Nʈ8AR|';!N uw˽H]@_M\ =w)HO@z*; N =wVL ecP?lt{dt`L[*7>7ȵ;\@E3 鏿 ABWd/ 0fg(LL\L8@zlA%&K&VMSߠ7>-G@14pZqG"RDM%=_! e .@1$hR$kY-|D߳cPԩa }Z$ t`*mOL =M}{ \<ďI>b}/Q`'`&+g{=uLU4N2+գe[Ojx6ě[IFlHkI(p~ʪmfhpX`u>tsV/h gU5ՂؤLwYsԼзHɝ/1~q|RiM}&ʏ`pVo c~!?^kess+p_UtGߠ/[fޚ֗[Y8E !^ ZJEK&‡ٖ` 2Nbv >VSBc\tأrSoQ} d; 64"Ux#3h7V E,ʓ*ߵ*cWA؟k堈FsD u/a=On$m6C-#yrȓDÖyo-~?r|K#,uy4%.f2"ۯ#q߽O]YZ&\HO/J9<4D0y Lq[N}L2FNN)21@wE*W8,hbv7?; Qst5E["98$5U-B} Â54-d\[$T@H!԰ݡ=U Q rr`m["Ǵ09"_Lop[D1GKɠ BDןA/fK>VVFn>p{ Bulw#-AHO$D>Rz & Uұ9\ڻ#?bӑp"oSsiaqERU겆2 3,&/4 jҨfR+Z8E/bbiٹmq O_3Iɞ>mkK[8 )2ЭkWM(Eh̴WKDc7"P4P,LRDR6%\6@*v2ē?zM3YQ#rȪdiٶv|C`ީԭ%{#lSM(+90>?fEc>7[TOz|Ԟkе@ ٛ˪(N3;gꝤQ ǫ ˨b肵v:>":H5_rX#DoJkt`&q(r:|uG+-H㳯`~b%_4vY'>מ~/C.*ڐzOT, z0idg2u:MyZ+#8|I(L6C}ZF9Z7/׷Dnnb-&g`8ோa5:1$`eXWq O-;#! um1e 4PsGAװ^AZ%rw?חӳ ?&j ڕ+sNrnKK=,at:.|+qw`*)[ ^#laTva^ Z8SiHRK' aȓ)f0O:}Xszc2 l>WnG~xSbʗ Isµ@3Ew}򪙈݋#{Ɓ綧*iֱ-P@iǏSH8t!O:'_D \d^CJ6WIOcF_X_qPn? }m&zagN?MbS@E/`<J!\ew 8(~S2!m[c@C,u!nϑa,Vk_0}wpVҐdٞ8sڋeS&U4ڊqYEKOC:sX}A9>Hnk nkK9(Tgn+ns f eViHpʽA’ ngAJN? TfS8 E<H/O3L ~d )ǏG&z,\i3%Q.[[>TXfGз$}uON[ݴpG嫔{eƠΙ,yO%9Xèw00?7I! 0R@ o}|tþNebTT[nT(N?/pl]f8})6l\\[|c)|o6#,JQ?ukGǑPO 㙽tqPPPl?&Ϊuª& )vfB_gvHB&<.dg6עJaiř {k]$)Z~#\l}C6$̔sV̶l9Xt_ZgVxmb-ϱm),_ N;둂$jp^_;:Wtw͊9 %*_s])q~vZ 3=MG Ts@p*EǕo+MnWzM sԖAP+:bˆ~yRd)&Wz[9jmW,bq㶋"YOz "aJT&Qnh,cFAц1b΢k_5NB*uxFP0w6@O0Kn}>.($qgCa`n՛7y٧W [zFא=ΐ`zV<00jÎүǞf-ZʾT%40+PT+~Ԍ4`Xvz$v=A]i95Ds <:@g3u$gc=i1!KJ\AeT ^U ]ìYCtЀz@YgyȈێC9>h+Ktϝ%}ttC^@2Ry݄6s}I)ᆞ0Bq \%n3V!22OueIa |s,c) w,ksxۜ~{DYn+~p(nkQ#{aßjao 3@|t&#%,ǰ$NɂRcOxwi1}-Kd@=g&% "CJ"h!</p؅TqŖ:x-*UL_Pt XV"W X"J弑hW:Eb~'F{Dx\;e! f~y{$ϒU )h [ȬD< {->4cjRK X ѤdZΤu/F x^ۼ %xlb"X<λdXu$& 0$&b~XFmpfcI3qB@Fg"-?QQ+M)M4Фi}R20j>lZ=l#2^?;|iAmf,d@[o4W`dHY ej+1\;Ѱ7GG /e^pḷZ^.j1 y;{+WS0zmѯXBM^GɠKV;h Ik \qaa|rvzvQ123ӫQ)iyrʬMHx֚u]1Q8r@ķ'&W4\zOB 3e vcJZboeԖIIoHENibQX"+gui-h+U>g}]Ye4I"JdqEtRnq@X+kZH1:#Džr SIKm#q7,7cz`2 0 ~;R&ϖ2.>:xY %dO${,;o%W&: $ #!׉?)N28|TieJ. âdAFkN#Vq =5nA4sB Oi:p(0QO%P;ښs;j5-=ЌW )µSQװ-1;` n]3tek"-_%>j?XݹrHnRrIQ /4_׊X vCA"앑tk |!=/(ӺĊ`Feww,`Ը VAX:&Wn O ǖ%ٙ©Mg X6UFt,PS䈝ߕ3R[|1,َnodRtoO5j@Ϭ3W>,zKqpUD.X8KYxQ%McʊtZ^ ptVbO%ڝw̻LżHc΢ΝǫFwzigUՖM0Jءd!i:}GY" sZGw@ls,w;'+8Cqn" h#]Hoz|$eK*6?IjT]uH,&ͭ$~^NBz /oh7}I\CPl;Wp< b]bEEoNc7Qk MabT.dLV:t! QU ;:#3cddɌ}96Iڔ3Mu>mN6[F+*hA6a(0T^iXjy[рsDJ>)uNڍׁ/rݛ]SUW(Mh AEA m'oOi3X[YkcLW3X'TCP*&3֦6PHPK6G|}7t(SKG]s3yWE  >LCKszew?ɏRLhO =GwTޣeCsh]&I^k`+7ളmlcr?fuQSK0YǷƽ2\w?>0ˆZD.Z('i_|n<Mu5`?-Д2q7ThL3ŜL`L*k..b n*iu?HcHxa@I|$ B^FtO+vI+9X_?<  @]s]?)Ve8eMiI97{KpL}M>pZ&Yͽ־S\B:8p%m]Z0&bg$?ZBk^5oLcrgV0׭._'}\`WG(Pˆ M'+OIG87y.VCc '$>B3Gh*SKzEKhBMܒZ[~E xb#GXh q9A~gz7qpGv%S~4|[CXdbdt^tIyapHD}E_o&ĖFeGwѾZ9by,})-f%f}'BlCSu>ʭLa,GrKBWn0Cjs[N6(ni.Pz-Q&IB& Z~*пvS7о*(GtſC]^4GYr϶i+\M ۵=ZZ7~Rfl2GF0^4Wmjms\ Wve`*D3}4fs x0E `l*{@$Z-ja5l1+ @zD;0*Os%5(CL,oX Kf`FσX=/ wW'_s;k~rlO1:U^9?52v&+!] IH}lcA$xNr+;tтuqh sX#m@ЍO+Y0)F̬:(?zL"mw!F0/A6"׸'Xn8C RrhOr(&F3/4aQ?t%'YC+<;q1"׬̭.fL2ߑ} 2ΛgVt#OΌ&ع]j8ĺ–!V qy:uI`zS_6-~|_d ^cٲ6_|W)tE\_V^/.;Em.lP^r3)3ֹhs#l:.g&[6}5e V|8~/r~K:{o`;rLVo P ė<"}~ׄUXAn`xG ͂+JSiٟdrr$y&CC|1gZđrF g U$Uh)zhh ͶIy`_*:}?z0 )L^;x5{d`yGUgzK/d 0R08@J`*K+lʀ{ƯS{$-pkxLj'+:Eo `_BM+n/'Q;xڛ`0*xkO[~tU5ܰٞQA|<5 ȯn6]^]pzGzX-R)0.up}cyҺՆX0 ,$?XAt̩՘5[ )\HnNz6?1CMGM߅#@>L^YZJ pܳqXº"$YCrfsRɬˌ9m~eSʼnؽsjvrhc}jX[:vbہvVac2Ć WEi?=UX`XQ\4 \G#yLy&]d5ЅQRI!n>Q|Lp%&2^ɽl<1DG@<,p%l _: 8Fk.6OEطT&/flePZE6nK!0KRX᷿h fHJ*I|޻ZqP? -LX/'ZT沘ou/f~>{2QK;@o`v_gble|`ʴjNxb05h% $Zlɇqt"9T_dmkWՓ'a]Xja"K?bͷ]|=҂eꆷ#7!wjjk`㳜5O4AtL#iL .,ڏ+O("OWS 2OG~˼ثj {d_Ye8rF0;ZF>b2)XܭHb @QSV,f6ڡo8$ jhE`+ E*3C*WZb-#T|x#(c"Ҝp7==1{aFWƛ3MSW^] }1qڝ؃vw0^w 302nh KABGx\7sw4Env :貔Ja7P8gPB-h^H3]PReVߘNY[+D00YTd<{ |뾞-MC3;l VMfP,qfkaD #k#IdgZw@-eKpR,njiFzG%E>"2ЙyGngw뺕h'3+dl W$rF Br1T.uKY**fUo_6H Yuhp7;&ybMPWj]RP}e)'|]WN9KAF~'xZkN'>3]\V?("`dZCǢeɗ C.A u`/P>q"^ " ڄj]fקQjVaSЭE9I?ipko~K$) }?b7Na7,B\&׈F{9I܇HH3Gs~NSTǟf"ϓ yZ^g;Ց=UKPtdgC`Qn{r4P}CQ7u?cBYNj%;SNgB76ɒ/Q_z1pb xiU&+p9rA|WI<o4td^JO, lfML1oAkfCIށYIh/f0 {[6XIW ztw6s9CrtJwV|Y;WEc>zd]qۏѾL7a78=uU= s&fr7qUӫv'%i3Zc`;T)͸%%>w-<ަՏE, |*,pU沂J7ဉ [_λ{=WwgEZ#ˢrp]Kk=w] >4aR(:09 JOpm|w("Ui:y$oulc#KΩʎ]Gi5H hwQ-]jH;Z KCK'bO"}2BTE>M)tq>8H)[ޗk҂ҏ͊ReXeXX\Z҃w Ki1]p9@kqwXHz}v71޶45 33=_f J;t/}9g4fwr4İ} isb8fVV4F "3c pn+ffhٙ dƪxWO iFd _oH~B}49cB򊜇0cD;O =գ={aH K0`=,&i4L']eȫ0"a[Z; 'Dfw}؂o;2YjzZ8R1 Q>]>Kq&?%X{0Α;y-)`K)zeH#$ZH(lHH\{+fB(iLCg+:sz,Ǎy1~~,! YH;Bʐo` bz\`. *1dC\sVrmf98RO#r^-r|{j :@ʵ<˛1DT /T9:Tē? 0Pќ&TD| yO]8[[~Y!AfEOToi =Krq_.fFۊʈ9%2pb#];ngU %twF=^DTl-qCGu!B&\o; ]Q.m&;MՈ}ѷD-a[gK2ja=Xףw7ll]}Ub`sVf8 $OWر#^'?|8?RYdʢRإ{]9|9HtlӑnGt!dD4 . [-LxL/vԇұ?T\mCW >ԯ]s>o4#*Saѐ~nqOה,A=R6q/XQkpSouItf:^u6C{rB7HƔ6+EpCTUSQ3WNT[XN=0< g tU4&!i.^5į6?'Mvu<4u4]m7sk4H]lB3m;Ë`p1}X&6_o?0ؽXjO׌ !Ian“fS50>r{;OK[&ltnys҈ 82Y@=;DY,Vy9pxdwXYvlf\<ǹC*.A."%vw6c[q?hKpd; Z ZCøfGHjl Ë5eXc=U =) )Mtsa[ b720 x$F4m_51}S޷ClU|dtOx)P\?=5~ρW$61Q3}^0yBPl^٪? Kd.1-&D<+~O,cί$vYG=.+BXSZtEa࠱^Y>੫/磩I\i& cW5t,M Tkk{V\ܨk"!9e1p 1X}Z4\c4j $|| ǻ|ǚ^vmZ_<0tL^1w\czEp- ͘~R +8d.2&Vڒ@К3rXFa8C&=qts9G[xW1!b3Fхendstream endobj 106 0 obj << /Type /Font /Subtype /Type1 /Encoding 322 0 R /FirstChar 34 /LastChar 125 /Widths 332 0 R /BaseFont /YKRWKB+CMSLTT10 /FontDescriptor 104 0 R >> endobj 104 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /YKRWKB+CMSLTT10 /ItalicAngle -9 /StemV 69 /XHeight 431 /FontBBox [-20 -233 617 696] /Flags 4 /CharSet (/quotedbl/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/less/equal/greater/A/B/C/D/E/F/G/H/I/K/L/M/N/P/Q/R/S/T/U/V/X/Y/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/l/m/n/o/p/q/r/s/t/u/v/w/x/y/braceleft/braceright) /FontFile 105 0 R >> endobj 332 0 obj [525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 0 0 525 525 525 525 525 525 525 525 525 0 525 525 525 525 0 525 525 525 525 525 525 525 0 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 ] endobj 333 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/exclam/quotedbl/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde/dieresis/visiblespace 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/dieresis 197/.notdef] >> endobj 102 0 obj << /Length1 767 /Length2 1134 /Length3 532 /Length 1699 /Filter /FlateDecode >> stream xRkTSWU$7X9*LEJK|bLj p!%E,PAeV*t,O+VP䡈"ฺ5ksϾ||lQ< a N'",0XtKK$+vIGG8q׉dG%0i8 6H\,&+PLC9!ˀ. 2^8 a4$@AGbB)3,a8ཱྀQUHDS&ʤ,B PFgz]r0TU%y obA,d( QH(R7T]>)agT a8op,FJI" R#Tz6 "c 76 R"bXE%($8) BK&@0 c3 *gElYv1qlز;';O)UرX,.q*١y[aT@ l9W},ѥ*zmC?ե]xNϾp݄^^V{rlL4̮ߴ9F3G'GA5Ш#?|8;. "bӱ sI{N}+ȅF̎%xoiIP^{vcfp0[}N++n6,z`sNa)f/u2'l F#N!^wî<Ǽƥ!h[ Z=+qkr櫇qԪ7~9ĕSXgYOdk8 rYؗVfD"ڌcHOnW[JktiI$/8v̏nGDg{eͷFK4mi(NN70sjxy'^j;<~ANn;M F}KN;N>bM*<_M:ڑ#~vϳV4JyfQ.x^uZn{ҟ^ZAm-"Q6cis 42EVk7 s@_aKM m+gnf#vS~E*?P'0S~KIF煁e[WTV|+MޢZN˖內Sܩy7.Gb^8>(᦮',+ 9Wyf4?>Lv/aw@w^X,v⯵fug Mǘ5wT^\M?:h UW<~1C85vn}\5`6$=zxrt)E5 4/& ?rF#KX>ro{ĵ2ԫ]/%GV[>`?{/.b-\|N#P<ju߅iebOSBloDKޙvze#ߚzT&#vgԕ򬿫|`5Z+C|A$.^5;pj*kn$ s8> endobj 101 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /WVLLOJ+CMITT10 /ItalicAngle -14 /StemV 69 /XHeight 431 /FontBBox [11 -233 669 696] /Flags 4 /CharSet (/x) /FontFile 102 0 R >> endobj 334 0 obj [525 ] endobj 95 0 obj << /Length1 2193 /Length2 14295 /Length3 532 /Length 15503 /Filter /FlateDecode >> stream xUX̶h n =6Mwww wWy~x`̪9j*1P WSca023 QPF`K{;1#0 vX9,̼쬐$ ; @41-1Ll&@;#@'*@' hʈ04vHL8Iۙ+l?M.@D @/MD` 4CbRdB\߃K8(3*Zڸw{[g07wWMM-mw4D`Tlb Lr2`WREWXߣ_!Yt!et|oz+9`#A8,K;SfbC>`fBgEL`?-09vœ&S{#П2ځĸLF4wfg `wufNl6N)@c`3v[1dO2 O2 {;࿙bv[(;D]'b!N@\! Bp@T,g6}al-3 :)'lg9!\;?Ҝl,韫O"nlj- "+ b"*oJ!I!dCr]A+!Hv7$dWC*]AJ . ?!Hv$1H"g 9؃l>j9 AoiE[bg:m:Ү~HF}KDC16uep7+ty#oͳWЊeZYGyJbj{P=:.=A\%mC)HU0RC\1a&}BZV~۷;c= &@ݛEd/LX 3s銙߯E}@5w1QgTUG̶-}]V5hLoH~IBUWR *P*D]` .P0Hv< 9]de@`rMv}[;>h܎{(fNgه-tv~S@'1ݤ5)jٹmGnqjO<1TvK_zޮ0x?ׄ8q*B|z[`irWGuWRPZIw|!8۷LG> n %#5fK[pY^1T3,l%in Yԝqg11!Wݛ Q$E/]HcT])ec3@I*'?C ]qCγr\/ k6,5&٤>;Е;‘:2OP/~SO.kc["Kvd 1 mXP;|ɕQEw(]\}:sB_ ˯+ژ+c' 2//3=§MS~ZzpCn,1n奞z-K$'71Ce$|4\Qd)+*;0ܓ5/SawU7<8Ydlbx\VșxܫV?3>7dI3-ͼ:j\mX4ՊxJbPu~*FB B|1wxų݌`Y]Jz|:22aMsS_.jv0i* ~eOl{Ͳ|a l;ܯsW0&gW@_xu3½{ |ȇO>:gKxې4+lN->zd`bic >1_&RVx<-9Q-S&r_;SLf+匯b`':󖠹jvcАQ4{p\S:OXܳl^({ jZI#cϓh /37ѵvhЅ(*#, =.[CڟPp &A*+fRZg5U%/6>Z~!ƕRʹߺBg^sLJDĭTGz\0N}CC)HaY @)muĔG*Sr!?y+ƿ˹nX@/XWbDLXZٹ 4ȭZς9y;G+;a }]W_h^?D8& Rv\*XuLTחDRfFׁrt-Ҍ=ʬ3D=2VKb^t%LHpY䕰Ex_"f]}bEY)b:#LsvpUzYEiK}VFhM@p b[ :Eܤޚ;{3k2LlbAuR*kWčba7ٛ(S& Ț922w2hXo]h9W?Yq9<(t}D@aڳbF $ 7,5,> Q?Ee9.;)8"7Pb;F&+]"+RS/`0۱}vFdE =!3:\3I^+Ő> H떊{޵h!J7O~& [例sSh:q$%ovy6o(,R׮rPC]iYB%Q_WD,'`70:r*ȶLa5*"YRl-'ep, {P+{#&M%C05!e#nsv1a=Dm쳙Lо v'Bp#غ㓐4?}I+/g-WօMaS w|AKGX+N8?uiϜwx077oy"J $_3bǩO/:n 'n"MӐA-6+c.6@J;*h⚛;G5SIҀPN~_hΩ,7NP(@$|;?qȣUHߚyúl#;B'G^'S )WXW_lsO!ڔ'6wu{!C_؀39«ڙ:܇nAw%xym揨D99ͧ ~¯f'K|2Hx-OEcB'vG<75oQ$ l}Jnl+eѺhzx/[1ʔ`Q#\ GK:hY]VFUnN tQ OϽѼ0Ъ@{?0Vj3 wgIkb@*b.lZ?F"8SHjHoѓGRP/=1;_jKȧWkvm縅PO^؎YHBK:s/'籠L]eJ'J2O U[GؔNli(-E ]v**Dva&x}!{EWl ğw?D1D:WHohj(ϵ4:'6q@Mܔ]XTJq D s3URTy7HL;sbnR9>KURGakƻ/{؉7r{5O84ќe@'u{Rpy{"]/7 V5{5N- mfߔ?5`rE*>GޙY CW*WArQiE͐=7X. ' ">Sվ`(: Oj`msB*O[g 䔺zfJlY(e.F6ekېq.zN Eo⭙4J5 Fx{bJr8Z[i¢x X̳pњ,i!n+YVЬD3p.c @_2A~w_rg&Ia\F L13n/XSg +{pU46پLz]ys`~j@#1&*KhyEX1D+w?dUj59܀6Zjttv/DTT P/s~Y忇1yzjƃs k(&1 {mT} OJu/h["-mc JcS "+hK7q>oF\sъQl/S7k0}lj%ѢjY)GYN}X [g/u8Z!VZ=lC}V'5zQE#*#ټ> o3~³E)mF2, i2;'nFiQ=6;_y/*h{4Fm'AzM)$uTOЖS)Zg=Hҳ*)6Z'2q9O[mEG7 4皕z.g\qA=/ED_ °fWAiHiѪ}||+\lCt2/Hg%SsJcka@7%#518_YKS @ ۟dg##{c /8ёaB2yB*gjpF5aV:&9J̘̚"F%]Ւ1uc҂:nggN7}+,b*SS.uV|儷Q(&76':2'7𭴤忕8l2ChZ@ }u?:t~bTR`qw̰3̵dmH0k܈I߭0*12|LyB>I hVZ)D~*l06UΆe#,Guwlum\k%gf܉Ji.4hާm4BN'Q~>=kr۱]z[ 3ѱLO{1Ω^DɂG[T|Sɋm{لLjH69Ǖ=KLzZT8n+FҮ+j;k,Sݠ ۏ zՕ~%@[ϒ̍;b+./&4W/,ɵ0}GcsMlvER^ՙíaXUG@A])}r/;:x|Rm:F4uAF|g"مT11 L[uJnyaJ|_s8D} kkKb6z3wocfB &l(Q"9M~=b<`ƋmG'^E*.)"CY\~L+ssE+%9R|6Ұi`xGsMFzLsE|1b*wP,vÔ'Fjce!a"s}[T{=A";Y3[ӥvc tiφnJVH%rH#4zƤw/; …)GG)[ٴ?%i =^3P af=d XK;`1FG9U({84 ~^(n#%:D:ۄâh B-!pa0nP#1Ag~Z^(Ϗ~Eߗo!KoFMc_OW38DŽPcN3u\IeYaYs6ZcjG)Z޳}u޿yqjx:t3ņf.X_MEuoG7ZՇČ]JO6mT.Hwc|Fx-M۪BwAKmѿwg2UvE sk1!e87j_il+gk YYMs 9u5~]E| ׳kߵՇTԦrz4loMsvzEH|3З?iPM Qd)`yG-q[E4*wŸR ƖfuQ ™dsE 2@({wo?)k:;\z3>+Y9MLP,pt>˻Mw'0V'ڰ,y& #({AA4N+xn _k1.AooROTWe8M;EKʷ)E$qMS>F.$hw!NA"CU 6_;^c,bq]n~ER 5l,})eB#&lya6?7)%%ː8: ?2~}ҽ" 7|*wc8IRrxk9 ҙ )2 y}k5U?5br~;F1򼟡8OY.@J p+ϙT vg\4D,4xVgc<~WrK|Q. ,ˢV-[7-{!^9iZEĺlcn;O5)6Uq95cZINB-hYulgV/7\ܪMXmq=g8tX|ڜSL4:!ሄs؎ziM\^oYtV6:Ej5Kj!(txT<\AnH$i+i ^˘* t`5C_ 9)DݿIBU%%5*>$??.p {`K9D@3LnA\n%,w0biWy.#g*&zZY\oX)](eBnȝoIÚFgf P=u~ޅj3'KxBE2<:N^e^![PR,PK\p kKPs{ QD+8k)'>S<[1Dj8BM%&Z A$EI_W7{$ ʼ򛬄4(R'Lp i2ZB~#Ș ̷8VD71[iΣր3qꛣ"oi~-8\Jm64Ž5߻+ ^)~:@NJ+j츮kOIp%]`G VdQ'#Ħn0-q>Bm(6ڪSV9 3.Ë́AOA|)9ǸxDVSrH]ǂ/kբîSYZ 4n$KPR vDQkv~ "(`Zg:v32U/M&B]/tKn #.+/nbVhVMH0#!^ӺUP-EnQAm{ gu-IwiJM'"y2yVӭoLttL ;ۗ2L :(c|>M!{7v }ZX+G%PNҪDSK\{vjXlI-{dx8753uQ m-[d5&Qm!"B^ޭ o04S|*x9b3^CF1{-L/;6-jlws`ZkMuƯ\N7$𦬋u'J)BΦ?#ݾ4Dȅ/{rj|I8҂Aemg2Q⏑In؟{[K!_;Vk~`)Ac!ufd%!*qh{zkSc7Bw D!Um@uJ?K/P'oEP'#rf!V9rSۜFg@Xrse*3F2PL@E3O"v^:z)sLW1C@h^-]= j%O2oO6T^u!0wfbQ0u?";8#T>ʶ\Ko"vۧD ~jT J03SX3uT0 RF2) r٬% otQ9VA"ԳYI.IՏNy?' ͮ VJ4gHc)/|*Q}>L-hžCsB~DDy%m0:l}&(Zmx8I Mr?MC З/W3 ˬ o©Yv86\TƐmXYi* Aw_P <%.`k|OuuzHӀjX4*?$!O^hi˸w% 7lPZxB})wOy~L*oICqpj~v%+"5Gl.W$ E< YkeoCc|KghLsA]&qЃ"Ev6V>%v)OɁ|3Q%_ 5OjNP?xinSDrQ1e^n̮,am"hiqz; ^FﮞH6jC=1⻓-K5#|]|I\W3'٬8ߋļv=Úg/<3w+s$Zq]-_UZ0?Քg߶ņgƓR=N\3ט]"%3Bo!PӁmP+FMKTgj~W+I"zXcD;s¥*AG鱆 u vOS1,$#ݏ1ݹ 8\韜VTXEn Lx`EEEx >K+u ό#uI*cgZv"CtDH?ߕuSʂ4ESM80Wd0]HA?#JLp y !% +o3vpYvz*Qb0Jݕ:U;MAy`"!~"|:( ~2a 34٭c xy04k"nHl\*9̕MGG\{ ԓQg݁S9ү`xΖ= z{ AyIC&;i-YxJ6yOu:MnV3f`Kor,\'[sWpD!/7W nY&Ă):iL RUрi ;^+Fb ( P/G0BOmDQ:b/Օ!ʧKJzw3P ЁQu' CT8J*hlC[SU>NW"N)  ^i"ċJ VIEҳ4Kuok߮㨧%-86<0&$7-1txnPP|5ʹBl.*|u!tG9=iWuL{r'x'!F^O$æ=2 Q sb@ѨQu'93zz4ɡVq|(Zoxjkn% )۪dKv1B".` q0Gauogizolɡ #CuyEH E -U' ˶4/孼nC"l7]:}ּ+GLhD૞~ 7 s|5?& qQGd{f=mh@ -|+AK7\iTx7dᒻn開H)]<&n?Y.I&O}huMHƹaױHW zWl(na. v,d^V/i"5OeתP9m1+v Od^^,uybJ[V$HW2?\j;|%s  [BftQG hLIpD+A<8.<h7xONunW!:3 -&g-47dJ B4 c^On.j?aýfʫߺJF)aI ۴j@ u=yen-v|"kj =W6q#C3WO9>8.HEPf~p9g N:Ȏrg{jNVjYnp;]b5{Uq lGT)/:!CZKzUQzjvg%FҫZ'#<%Y-l麀W\|F*e#{HBjWw 8膇@uU[,ԫyt7sՔQ>b9.6ODC]R];ת"2݂XXf ~_;*p+)u6*>: @ősY5t[MJ<\ jp 5V`STQzBm̛zQX_@!flc?q;rRӡKJ *;o Й k5)+{.uX}@ ,e`^և.KKeȈugg!kP|,ZѬw3?EFM}?B/{䟕JmK)i(*3|<톹n'EhJ-^Ɍ_cn07%h_VDoH"ֽzg`Z! 8wtӨ+B~ Ld7WJ|ǸWXZyo_]9I".#(c$D+')|g©YB/vh4xQV&]p*AD2vR\7"*kRW%xh-*8d$e~a rUoW/+Yi|%MÃTю)}çm"֝~+0».Ho&X3Htt'wzOgfώxzjW*<ڥX+g헑 m~Cm,kΡ33'?tUv.oS0<\|t?9O0 tOl)u䱐cq$Vڭ .̱ <. ]rǬ_vOWo5z0ҠK6NMmQW*e%q[(PRQ7K`w1OOx!Ĉ\é! drg7K?R[ؒOݧE*yeڒE:w87&\H6z_'Sz'8%(N%W?"D1[;ߓK+3V߯H棔PG}\ D~Y W+:0Vo5ȶ(fk WN g-!LZ Lw3pt4(ng>y oH>8ɛW$rS<k!QO.(`=!]P@i)LC6+OEf-[_;Vt.Os.}|aNΫν6ӈt.n52Uq!vt2EnA6D9i僟߼qm^o &fnزx$I>M8B5eXkT\ywZNr6@Î}%=-qO8hhg̷=3״}1E~HܬnA_=9%7QjCap zJdzye5~ Rp HZ=F!;H˗&1-!ӛ\F#AU8ek_HhQendstream endobj 96 0 obj << /Type /Font /Subtype /Type1 /Encoding 322 0 R /FirstChar 34 /LastChar 126 /Widths 335 0 R /BaseFont /JGHMPQ+CMTT10 /FontDescriptor 94 0 R >> endobj 94 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /JGHMPQ+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/Q/R/S/T/U/V/X/Y/bracketleft/bracketright/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/braceleft/braceright/asciitilde) /FontFile 95 0 R >> endobj 335 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 0 525 0 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 525 ] endobj 91 0 obj << /Length1 911 /Length2 2531 /Length3 532 /Length 3177 /Filter /FlateDecode >> stream xRi<N% Eȃd 3}klc:̃a0-YR,Y6. pd(!˙oxΧ;幮__J{xI \2 (3D@mȾ2 khi+!R>(#2E^ HxpEY(,{c@R"O[B@"obpyp>x@'&Q  DV(@R`EDqp @,^ +#d,ݞ5UQl 2 $<$~:?!@4{ՌbpX0DcLƐAd4u0F插5 #مi]al0YBǗopx4Ǻj@@CXԀSpCaʫÓXGHN>x2UU ,IhJ 8OHjp#Q(J>x2j BP"~O`ŨJ?ta5eV 8\YPw=L Ya0 & :6 a7ddC|;8@ eMWp:FEXji6?t}Z,tm?lsM`j泍숆N وA_gxn?Y/o&^YpaK}wS>CI3ZU٦~;:qS(<%9}&cz/SPAaQ#YM͒hEdr~1ta`qsf*:qARfIԮ+ǥf%vj`-)ϳs =##&t + Ƒl-$J~rĊSc?靕vU9"عqZ 7N#kGEj-KV~epz[ŷFSWƌrMhuq6NfĽ@ۓC[f鱕/fŬ b9wwRl֭aoUM*2r\0(_uP!g.pn'UWgU )sn8Yh. "5ve/ITL BѰThceN>JЙ ר\&'-3<-I Kiᮾ%e%gJxͪo֫G `]6poM56SUk7]A0@!xMmL4deܻ{Bf2+W;-_ hc2*0uIfV^3ynYٖuS/p!c<^/7~3=%,hܡ| /v0cy<1Fw!ݙe7i]]Gdוo1$'Wp]dUDb2uu쎫3akTў9D4wmZOծs:OdY-ȼ)ny,;nB%FaAő_cc/eX&RuSEy?)t.>6@_&TYpP78|n͍간zn/I9N+y6)LZ3U}pe}3)H"oC-W楢;W9zWvA,GETE5MeB^Oo"l~ "Kw-\=Qi5xc_ )#cOJFh@Bh*;iso++=k R1on*7oy VFQؚSlvUtfg9Kk R 4z0ˀ"rZ_6߱ `"AsWb_ǹ+KuF/0JYtGA+:T4CU*d!Ac[++Ei|1-'%L--4<[.WsD&xf2r!Ew?lMP t#/Q{}aCNi\d_dA3*w+JeҜSoYH6!`w [(,ǪBzyKY_}qqaIj\;4V-Q7:;_myn ܐ#c(mC.?| 70Ƃ( "@ e6endstream endobj 92 0 obj << /Type /Font /Subtype /Type1 /Encoding 318 0 R /FirstChar 43 /LastChar 56 /Widths 336 0 R /BaseFont /FSHVFS+CMR7 /FontDescriptor 90 0 R >> endobj 90 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /FSHVFS+CMR7 /ItalicAngle 0 /StemV 79 /XHeight 431 /FontBBox [-27 -250 1122 750] /Flags 4 /CharSet (/plus/zero/one/two/three/four/five/six/seven/eight) /FontFile 91 0 R >> endobj 336 0 obj [877 0 0 0 0 569 569 569 569 569 569 569 569 569 ] endobj 78 0 obj << /Length1 2039 /Length2 14724 /Length3 532 /Length 15836 /Filter /FlateDecode >> stream xeT]ͶhݝK\[osvrޯh9fQUcQ*1;$XYxITYIXE()\&n֎&n^VI)DʍFI\$"k37+=05͛DΎD'\IT9# )% Gݝ{ "&- PΛ`Ǥ|N.nghbO  [yG{'w7 9OM`nnGeLD,$YJZ{̬̕H,L\rR`RҖPPkLM?Y/fX{1O]f$$&..&p$_ks (|X G6LYhdc'arvwt{'3_#3LdpXe |?)\mـs]f&"$LVNV?!NSDB\$Lv&V"$L>?"aq Oퟂy5 ܻ0P+p@UEY㟇87^'-yE0&CuKC5K!zPBW*.r". .J!n!!h!h!x.bbbf pgؐsEf@ 9!!$V!&!(6!/J@+?leL!/Z9ܿhs;B_r V! V!/Zw}:z2;?;C?gj8X/8s03sw չ;f k7 0[[q4 숨(LRlZ]MsjUtyD2#y윔(ǧ_gS9roTuNٗ4 zmùa\ڒ9v-Tl(YQ쑛(i)s60]뷎}hJaR?a&a ]TE 7|o%Ts!9:)Zј'a{V"JSw6;%VŁUj9MJc]< 3g>@k?TxM}Z]HRnrl/9>,Hyx"pdNBi9"p(lDiL?W>-.h'D |+ظ𶠠7Ha%ZY!R|6a/)T\Gk,pU( qFCQ'4Jg^]s!V9tm~ ŵVHoc>QMID3a|1i &>OrA㝋+s.AR_Z;(RI.JAP2o0dT!XKKuۏ3jɡߞqӕ{nǦ3dScQ::ZpP4/8Q-aIb;}Wg q3fQwo|׫kA@LjTpYNJCl/Ũ]h{Ob)FYmڥxڢ(-a^ ׀dord蛙{'84idmSv?!)lY$)Gn+Slod9 t)ұ/6bC\yqUzbFwwt>/,@I[nrB}jُ.^86F2DGYue Gd #p m>ߞKȽ) *j4Me"&C9G: 4R,{MKx8>IzT7'6%?Nэ-jta# 3+dYOԟqɐ?Eo{+:@^IF@YVڷP-{"wh:5Qf:RP} 7c {O9d[5\%\^𸢣4Dƒ$ gφU2^6F 2?Mu|5"]5B27КG `H|vzn:T<2:Ƴ-h?a(| g3 R@EH<1wyZ-/J^L[m '` _0I1״D?]Wj8ql2Qy8`"G3!'`9-@#=~G ״qtȁ ,Iu\0ȝu)v\+Bq6BF}F ~gvyy;\Ucf9GL wE +0=h E ,BPDU8qo(9F E)"_$œY "I GQ=51N.]ŪX9_YG,)A4nt4;j<L\Qad>f. ʺ$5$b2hS_b) R]Agd!j]qW,&';_/J|nD!9 Hk? Qr ņ&޾$ҏoI&9Xؽ5ws˓x+F.` L][k$'d>WqvڱE1{WWzl?q*ߗX&7 5rqAHѿ//4$ٽ/_(|{}pQc kvT>hla&itC_cfTΆ(yQ@6d9Z?PB0 0F_ܯ>FXs۠Ud-q#בP7LqoMS=!?NN%%<.&K?մ5E:$O(GFM0 %kzh>e(%lO2XY$rIUdسILogPr~?wE-|r&D;Wt%1~P9%͢1xz>})nR7urZ c3:`h* e0oթ6 tg)A^|B%U[Tw(f."qhfM$*3XJ/+|fa.I7k/@-nIH3FcU) pg}:v]RG\ @p̠hBK}J8~#Vj=46J~rb y]FKRC>@tqL𘶘xO&GDאR! w)0 }b r ĤXdȏJQa)7,]{cS1dyq>@ʙ#m0}E$| iȩ]3KKR|;1.U"3Iv潜Ԥ\1XT' In~*m6D^4- ݎ!wq&罜Q3R'+T-F*!'oCc4vߤp^:b\ء!lUPq#N_T&z3Pe3 kܼ2mm+_6 4P״$?iZ|>n(0J~u>^-ݻ?Ҕ,'FB]6BPA~-H":Tr*la;v_cT%]6y̓KLSmVudC۶蔈C )/lFV*Hpr~+::3Wꀟ4]__p;T2Fwh8n'6{[Wd CF\xL~wyJ5Sp53ߺ.^]?hb΄ȓ3sS 7K΂9S ˢڙ [gf-Z$f6fL9X MQ;/%ŷa$hsV׻^qt&L$1˜p-f^R#ZbXLEMZݒݰ9zS?#g #:ܵ=Ioj]h0>g}Eq#܈ gC$j e\)H<^¿RUJ W\Q5y~WaKb4@^F]аB.B>)"|LZ9J#˃ySy[L9VRU%~P˟SmKQ0@9qt?fS~?Mq,AuqÉuI&5UFxkӌovMx8yi_!b}N.1j6_Scϻ8Ӹ@eLcD9ULIޅNOQ'-JE<3H&ȎD?{jmza}QsœD>ѽ&8uS߂|K E=2Γ!9r{egaRIޮԺT U6 (Ue$R8-fn$|vmuo7EsNw4^LwZ֋ktvN؃XgcGl -1Jnw'KߴJ>e W75(y}xo9b^#s+Qc(Z/N'g/~43m=v:`ztT^10UK0Nu:mwtѱVlF^dCCou9YNZXjΪNд@R#S$KI y/+t`LA/硑53i֯Flb?7$25 8R:Juʖ?1/}Vȅtv Aj7eaR)rsQʺ46Nہ#0I'drN\j'J裙/`tE Gjh¨"4Od_7G9/I6h`jVϜ8W(v6&%<$hu*߷-*~b=Z1jq܁ˎ~kG b)LY+R\(UO=&|csf TxAIxӔJ0e!4XI'skA^zY=}}/k*{bӂV!c![SvF"5"gagxܒn\E̟dX.˱O]ђJf Q-ly:|?\a?o>2=qNL9X[6xl]=S즥yͦ+]\XewiLJJV$Z "Dl*G4\n`ғIJi0X* žDv)Khb}MPV3Sm+[ y!Eƍ.Y;>!*}Z.0O<^$Z*[v x#>yLcmOVHn[~ѣY tWXԮQOnO]IʝGh灇g~ߜow~I8jS@GM@>7PġW{p;Ŭ:]^ gk vpʢ}#1Y P V+8w_2ѹZbk#iO`\ L{<.d%=䆴||6GO<#Fr n!02ɪ{}e[He#WI+ "D~&glG3!4. 7MV\`ccSR aRz`dzRE|uCsYfd H 4O urK;x~Ƃ3Vn Ym +hvAVȗ_{9 Zg=k^b c,P(A.¬{c'\6$"ĊyB_d3FƠ_xȼ._k`wW!ߙoE+Av&xZ!uZ(jE~^pjcWAh^*7WxJ!,<,u$&d~<WyKGF"GAQ6>k*&u׃1Z:B?Πg,nXgǙ%R4#1t▸גǢԳCz~ʟ~K[,ky'Im53[a=)ZϺ.\O0/>fpoa7iЖS= FWYX@\jk[ڱ#MP;bpyqo,PپR{>ITϩWcȁO,Yϝ6OA_zQ9{`[rsq-LF6&]H+㮗J{M/r!)i",p۷E_t!u_s/)YJR\zZ=O'>[Od7/szdDDHwpUq#,i- ǶpS%fv٠ҰF˓Eʼ%d*zNTW$[oTF_5FDgpqgʵ_02*j-8E7,kIp`Y_THl'ㇻg>~\RӨ2}z/$1䁳D{=)/ZxW FTe'CN_ /D+L.𷎨sUrOYK40}i{m'}n/_Wg'u]Me ܥ+:1a!gÏKa+ɰEPF=0%$jp)fn=twҫ'}a9\>GaZ`Ӏ&K<ޙc<$;?8b'Cա'!0C2 #_G@(㾌 U^X]VcŠ-1X~>=$>T;[ON~UNP@A̎J@tpnPKCٵKMPJWvs{,I@ɗW{S_5mCUDX!˰60* l0d9p0 3"hI N1Xn) Q?QoPX<_tyiAYB:Q G)%@|YJS\r?{Hr<+}fCmZrݴa]\!r ڠq?vukVVc0ZY0.S8%UU/a$-ϗb$v {!/՞G7f_*|yi!I+/wj1Ďi$%oezݥD3Y7qȽE)Qiq'3Γ|!+w "9jkGz6> B6u+Ckhz1x@d}WО5'2 8N ?86쬧i@0N 7kX()t]I*mM^_k9QmO\"˥ J9~9.]?5.KCLJx+gۂƄ|2F#3K *."(B8VQuM5\nB痌8?VXZ:-R] jouKF KjPFI)qN3#Wtiش`:AVs1r ~t@Wu{ ӲmrtNc[v1cnAy%be/Fsh{&ieʼnShJWN k)˪(JX`gmaFW["LilOg/ 8bȷkz.2%cI%=x|ц!dr5_tLqIS;G%v~Wfʘ+kUR>"F;/_t[(YބvD,| EM+2r7h+e=KڿdIb*Ui׶Mh3 rU W4UĺgOs܂ݞ\HUH S:sO[P&)QQ+34^1=0V#ᓒVkh:Xj7 W"sa=%0h4g"~k}FРwoj_PdƓ홴:xQßK;Rdzr ٬z 2r_W6[ PXN28sK6Q2_$.7Oֳ"MwjfG *_yF߻,@Bi(X>Oi :k. Xd?LĪ`~a[*UE{d3$n$S3vP@H$_HˇK胾v~-Oy j"F1b7ϟ- 'Ȉ1O!2d>o,D ,ߩ!Gbe%YPZk`q-y#=Le2~Ljh>/|W(tPf0/l:#af9d]2ua};yS-P1/7mFm=ъPu~tƴZys[׊B:y`! 92pj`QzE)-] -?O`Je9׍8$&ޥeVeܷ$iO$&\nV`Td곗 K,4~6*D`Z\ޡ{إ=V4{zɳ_sv?i.=b7lWHabpzɦ8o 1[$"\o$¬u;_@?/ NU?>GwVb;>\}H-zODy҉'Y&/iyy~ 9jXzZT/?Pq岄Ɉ2M1ӄkJ+|:Ӛ< mPW@4&.mT5L/ 0~Y~< [5YL)V\[:ǧ*&A_)3s!.7S_ =Ll;ֺꗺZ䜂 tbw8'u1"qZ#+.c\AхdO`|Nz>[8c)3#[Ji>F>ٟ(T*e`yL,cF ԰z(3%m]~y>];I0@V\6& yXyWJok,O{'DMglO'g;z>\ m|[R! D ~ޫ3茵WX;+$I,֥x )dLG#yK~?5ad("%H:/C@=%S/٬iFVm|X!32n ܏W?`8[wP@tLVJ}\Z[2-=Fv3=@޳ Ç&o{rpBJ@ˏ7m|-AID2Q8uaRB-~ I6NJذê=*P(]/_D+^yM93 \*u7N=G̭9-?AC;FM#fEh6a7:>>SuOQKV" ȺؑD.lvyH5 uz8*"UtJ@!Zuܼtz8I^ط6z:覸J=7I)w[-K5܎WżW1{8 )Lwu5/2?#Sn4ⷎ$x*q[@+]lC7 %6#e6~p$O9٫`skLza KYB!GÉh?kWmxFێS _j`?S(\!QR&(Sr -ϔ]M~>)~t uz ɾ.K;`\NɊ0xDgg!gIIai&-Yipb{ScLܣ cZn zb`O(޵(IJc]_˜X 7m\uP#W]/:MĔus0כRs_S]"k95p@\t|r=Plfo+pV6 -9!bj/kGP"E_ZJ뽞( tʍ:=βBn!]-D{X}uE[Z7;sڒsG;74N*$kCR!`=9J:8*u^d 54J箨&=4F1PΟ hU$B n}C>p9KESRKTvIyԄ*SТw+$F~7G2Y6qQaa`-Ͻy2ǡ ~0dI+-hT"VNNԦ+nBxz4HG}0EdpvsyjvԹ]Ҫ(p+Ofv7G{[Zendstream endobj 79 0 obj << /Type /Font /Subtype /Type1 /Encoding 318 0 R /FirstChar 11 /LastChar 123 /Widths 337 0 R /BaseFont /OXEQUP+CMR10 /FontDescriptor 77 0 R >> endobj 77 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /OXEQUP+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/ff/fi/quotedblright/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/question/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 78 0 R >> endobj 337 0 obj [583 556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 278 389 389 500 778 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 0 0 0 0 472 0 750 708 722 764 681 653 785 750 361 514 778 625 917 750 778 681 778 736 556 722 750 750 1028 750 750 611 278 500 278 0 0 0 500 556 444 556 444 306 500 556 278 306 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 444 500 ] endobj 74 0 obj << /Length1 1379 /Length2 6925 /Length3 532 /Length 7772 /Filter /FlateDecode >> stream xeX]AJB`cf`FAR;D;E|溯9/[kk}0kqʀ``E# pqc33VT dAQ~AQ^~lf`gʱU$ql +=aclo. k@{A\<< ` sb2]ݐHlE @MWt@4kH-m?0gwЀp9;gVaqACn^`CA99j?{;Ӷr"]_Á;xLyG/ EAn卍<H  %H08_/ +wHtX>`8w@A (y߄SjJTM|oBWMHMHN7!&~P7!&oBj>h9߄|gH;v ҏ4":ȶ?7 B@d_ }@$ ҆"mxF "lsWFV)"]fupu26p8 yͶț {mfa6b ?b5ktN'B \ٿV?* آrjQ< rOiz~pGR?}/5u8E^Oq^6/(L8݂Boވ̕Olb"ʟBը[8M Nv'OS Y-U@P6 ^bf/Nٓ$p+FƬwQ<|abKΔͨ_G4mtqŦT3vJadv՜nn*K%^M2eϭ*\B9v1:+,;XH$O ۝n8 m)7`Fﴭӝ?ߕ T)B+\sC|KSf̶kxoK" ?337jd֗e 1V h]MfLZ/CVBtb̩[JW@ǏhKfYubNrkF<9PUz]>ue̎Uaݕ\#T-?њ6bOG_,y~L\-Nu X}8t%D`Ήe /9vy.T~SL޽n>'fl7)}wW츾/\mB]XU5[GgۦY}d 0I@7P}6V RI ,|';8Fl^H!'8JeNW#ZQSZT9JC=Sl[ӸfB 1ws8-~E'22]񜘼d'޼ȾՅpv6hMHc)?g @26  /MVϪqgfpI0M TUKp|#Qh0|=);=7V9I¤>I83Eo!4Ǐb i5>{) 7uH"g6{1n;fmR4q65~tcHN5(q j;3ᲇ$={WZU&aķS? M!_T/s)L)?p T *˵9;]R_ŌψzU9ѱtN'#(5_XڶyEBq*;ja@'9:ob},W?{(1"RS$CC+܉rɹq'-_Bxj,;}M5qJ` { <>EF>qߋ_ʁ! d!h,7̍0dTh1e.RƽUj]Jm`zLrtMQJ$hC#O8-ĖgaٞlbcEZ6UG,*?Ca'~fio7 PJ:08DrX3r߀ !gT 0نߞ:]8}D~wkZd:sۤ;(JJd/Izoi䷯i̾"=NR jNw#sukbs5ͧZg.R$8܋Xl/1tгZ^dat~ `I T(3r32s >N}|zEjpcU#sMo3g!X# L[0 ēXid o7']^q esg,.$3\gQ\+cw.s$U$0+lwͩraOZʹAM  gfXЋ Ώ;2)tDǪf?LBąڒr.+ aąW\jRVkfLIBa|"gDĔ|n׷'Ɓa$+oF!9yd=1ޕ#P~:ajU~N f`*,!6:~f1_}b{ɴݍT챗5Uk4ڞH@4;80(0Nd]WNvF@3gkJs|oGr]vV b*7," ~c?w ƻl?1[%ia- / ?-p!b@纜vYlh*Gqp)gwP|5Ӄ" nCN[dc1H{1 |=,c{:5}O95̰A_:JDBwF1H%t-pC<0)hm|ȉXx~;b9IY"L;MY$]r*yLV&D.]BjH= JΫ\zbB^ }p+@UEzʿz"D8D=F -`僯`ZXZqILMhݩƼ_yt*:r1EPgar](aT% ~at`krVZ%=b SĨr(H\] ;\ص%Էx0io!uN6O)w "B^"vj7D5͌EMcjTb{$톂Hѧ_폯]V'|f{*8sґoqk |]9YcP>e̫oY0ۖUF>-oӗVLٲOdn!'R<&>$nNR'BLP'"cXQ JYX=d;:0[" -ʖ 92K7T >DS)E}nTMHGրW(=BY&zƫ+usD>wK'G$oML%?U<$Ů,,z 9I!|hXW!yRe x(lmA!uy6bE,40HRC]*qT#G^߷0LU ş;5kcs֨߉WYQ+Kbzf=k T8b׌|gK3\z=Ǭe׌UՋ{;Werm; wdŒ)aa]PqY_5oX2us -BdyפptL>Ѯf{['ݴi[\l͏jKOߌ{O:[4j<;"̳Rå߃g|Ɏ¤(uʪ_hEjޘe:;xwv!3U8//KXq_9'ժNm@{6Ƭ n #ڨk;tFPe{ׇSyK)S=5\i$l[ H=>y+X䣓Wԏ<ؓQK;S|Q$o㛘6^AQky!LbaNEIVmQ[qy~\r#fbhSO]%;"} HH/H: mq% d.4&Z:}.Y41F`5hƞ b6ѷDecKo))/e&fpq9 +6ɻ&G9#s9w#@Y%gi g@&.MG q|2J{\ƁQ#;3ǰ ݄nR`Z&駈ώc~fͧXc;#`֗܂esYA!﷏EO'n!&\"];9ǛCn.R]Mr8:kCR /oqt6A<&6SȢ84iL,aR@ k$󇉯>YY6]uLf(#Ū)jκ4{zCiMQcV1F}LitDܸùHW8CtM\3Pd`:RnWp-xCt͠)l 2EgerߢtXQUh/:{. [U?zܑR+Kt\px?.p(zɀ?.NU=}'ys4=X6w~xȸʽ5^NCxՆ#!{ʢ~,+%yvYb ˽Xl,gOy;h ̗(h[? \VDxA;9N:q Ɩkiү aO-s-CxNZ0[cP[{a~ϭƊt&Qvrϊ[1ڛ;%.wVl! _=)0>iwLF1ߣ2B"}k.D|e 9ﳥיgh$$5LRV >9 Z?lYSIg2k>9 N՚m9v R5z$n!FBTWls#/ 9>nM0[{כ`Xz;nsՖ!8Ջh4,.'p:mٿ[s c7G]~CO6kmSKOផ@`O"A:U&,$,>ԧQמ)n')۪y.y,G@Vp _!endstream endobj 75 0 obj << /Type /Font /Subtype /Type1 /Encoding 322 0 R /FirstChar 46 /LastChar 126 /Widths 338 0 R /BaseFont /KACSVP+CMTT9 /FontDescriptor 73 0 R >> endobj 73 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /KACSVP+CMTT9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-6 -233 542 698] /Flags 4 /CharSet (/period/slash/zero/one/three/colon/A/D/E/G/H/I/L/N/R/S/T/U/V/X/a/b/c/d/e/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/asciitilde) /FontFile 74 0 R >> endobj 338 0 obj [525 525 525 525 0 525 0 0 0 0 0 0 525 0 0 0 0 0 0 525 0 0 525 525 0 525 525 525 0 0 525 0 525 0 0 0 525 525 525 525 525 0 525 0 0 0 0 0 0 0 0 525 525 525 525 525 0 525 525 525 0 525 525 525 525 525 525 0 525 525 525 525 525 525 525 0 0 0 0 0 525 ] endobj 71 0 obj << /Length1 923 /Length2 3165 /Length3 532 /Length 3812 /Filter /FlateDecode >> stream xi<ƭE"ʮ`e7e\dh-d)ddHeBd-*$BB"[?~<}]oyw|:jR@bIޠ HQ+5C+s 㐒2$h D4BS@MA8(5a05)F|)Ox X)?&(R$<؃ 9*r O dN!jAAr = K)#bIDB}8$] =GMkOC6O? +$:d ߻4AqP(TM O>hB 'WqcKճE->"2>p)`p]D '%*&a0< `(=0THЏD>$2ϝ@&ej#ߤ @" uI?~ #\tq?~ H @A i!`[Hğ͍ SWRU ϦO7 ct:*^|YJV@=mqyZ_j"79++(%̗LE;&~ h,IOX~]\HbJfs5[fN&ӟ7%FKcTsb<"+Wy:;{ar>ӽ|?fuXHJcO@09t>ڴwK"{'Ul 7FyGʑϙ.=ݸ $O{TAdfIS114rةΝ^'1}}md}7?wR2˷^Ex÷[goJM쿁D'oKv0ڲB/&[2(8Bv;t={?$G2Bj?u%ku'pu:*׳-r6grq&қ!SDcs?SyθKhdMHqs(M ZRRE6sê_$!t}HO^ q0)Ȱ\Ⱥ-;R|NȪVX7Z ?R Qy>wO73$24phX:M pS I};wj)Ue2m:DGS{*[3+MԪ5 G-)}CB[vLnyINC{ 8zhtp-#NTߜ]ҸK̖<ޞ\#Vک-< 3}P+L"Y.-R/BkLfQb?Y')^B2*5~2FvMIa}ﶼ`g4G a?n]Oݝk-_ʘ%qrՋ7bV*dWшs`MncFgϖkͧ58sr KdāM݆Rf =W-w24͊.~u;h ZWc ^PM *^HJSu+L7*N6'RIDBleq.+[WK5׺/Yxա:dlF݉kjU{QF(^i`Cd_Ppt]t̞޶^c^NVg%8J[?v5rQT=gK 2L?!u8d3_ߚr8-킚Z4CES[Fz\Ү)潰[ۛHr|/vء͸4nK#F\{bkd3c[SB6qE7*x.E+O{{`Ql0.tnM="O@w$HppM[U;z3R!o#Pݳ=5)~5I4 Z9}O0"FEC:YbbX3e 8CҮ.^֤]XO˿ $&זO&-[W㦹f{Tv"]CDeppJF_edDst{4y#W9a1|#EQ>4W k򔙕kocʢ}+WtܹD4\KḪ6t u|g`ܠmU) jj381kw+9I`3ݥNm>C*;lƊL3nyɨ =u^.^<?nAŞ@XQӚ,̉%K &6;CO8|/7@klsNb⒮~ yexEMDaaůj'tܮiJLp:W' su_7UB֮?-OB}? hQ{N̑խ"J]~]J>y1*Mav5u%YXD̕\ SB^Yԋ5K~I)l*[&tƥD>lYޚgnJVJݰ Ɓ͏K a5ʒ]^WQ/cvjiʜ@{<̊NJW ɗOE7Ll %tn#'pKeO6dKEġOd~ DjbPƣ4S}})e~|y㦕St?7?ҡ jfs+Zv8:+%p%nuzuhVLj /r''yNN-$NOpb0eQ1վt]ϸ a߻efg ;. =0CmGL;h+Xl"V9$穸"OnG9 \fgvǭe7DlfBQG]٘.4R]S\Ze7$j76Ydf S^}E3Ȝ*5߯GqG7|^"[_N1||_3%9?nGSZe9#[Az2! mX%rw.uG.c{,Ba X;N7i> endobj 70 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /KUYJFE+CMTI9 /ItalicAngle -14 /StemV 70 /XHeight 431 /FontBBox [-35 -250 1148 750] /Flags 4 /CharSet (/G/H/I/U/V/b/e/i/l/r/s/t) /FontFile 71 0 R >> endobj 339 0 obj [794 763 396 0 0 0 0 0 0 0 0 0 0 0 763 763 0 0 0 0 0 0 0 0 0 0 0 472 0 0 472 0 0 0 315 0 0 262 0 0 0 0 0 433 420 341 ] endobj 68 0 obj << /Length1 1773 /Length2 11134 /Length3 532 /Length 12135 /Filter /FlateDecode >> stream xUXͶp [ph!;FCpnkrsss;kT|(IELR.L|qU^+ %8hb`/aD]-l,V.>v^>N^J@#N ndejlP0vځkL.LQ[[?O8T@Ќ `fe0ZX#0#co܀ g,I +9z̀̊เ`7?{el=;`̀ /5fe\mLE-l Y9KY͔\L-ƶŁf)޶)0kKH4R6wQpwY0xo@V=&V@|SIڛ:Yكہ ` { L/Vt23;`B0l! ??f'W3a1ho 4+ n`gg' `p q`' `v5v0{A`={࿙lb g?3`g_*<:pLj![!'oI!?`Cx?A>?5x<H7o%f 6/۟ ?|K0^:LxL' xYf!s!xBP˿ҿ:,a-lBdk` 5B/B`+׿l>.B_w#fddgj[9e$,,,c'j .ߋV[t",-8Y4JMBAY4)uv .C9ѭj?cA|~&phV::fB}Hvx8w} 4>V?u>xL#JGϭ'#[[*V#4T-թ$#t3ZR@_Pf vW&,[p|P2 R!ㄜx%B\"\F]9]Z&ħm?:c†MiM\ss ~v%,IRH↕M͏q zPWm2aٱ-c[iY BZԎy}^_.HRz? d. X,ry aC^%uPhq'6lHyW p;wj"DPt2J'0 L(J(,ҏƉ@|kKt Wk5Wtq=Z{cIEUk@[|s,|!U #5B"rw- 3uBDz>7,1)j{"Oء)kcod~^͐ZZ`QiY {H\jP1o Jī_䴪Z3kSp2@O??x}}&aX敠[; h3K_HpCGɥ͘\4csO+QfKh;5CS܎v‚KR(j,:ǽ[ryfjB|[b{"BҲYݩ>Y уei_h^tIڟǫh94W!{u8|6֊V8^ zYO_킌92X:ضDIZЏ\供X)0DXvUypDl ># S|Wj#ﲧѸtA%{֘Ukk> W6y AKg(q> ^)w.\^F*yNe̔%jW3U FwhTw ~&1Sɒ1O^q MiQ,7!BR61y' *Rc<4?Qq*N`8 ņһn=T,MFHWyG$KdJit7.XC1C-cXȷ)!9X6 ބj?b}\btk*}&TgPgx:yiG/=Sa]C>2ԆHW6EAT~PsJ2N$C1[ ScwLMh#EDa\&e OY{Wps^>ue!Md@^=̙%tWf69#s{|WY~>L1Wc,WjGR:?iPvUւ(+(NGX8@ŅZeL3lT^i8~ PDB{!":+:fۗo3NgU8Y dzrKuzGRl^bLnder7<FW HW *W50)t燈-B/p5[v"uksƇd8!rsA.P2PBȓ 'aܛ`@NgdC%\l{kEk>o<7xW._grSם6~*nQ.@4p>l1F(Hts#v72<noY1l) O{?{o✖y (K"BoLm*x=8$\h_ [5>^,?U\IhDO۰0SA5݌5*' 7{Ŭ\Å Xԉ4gm6 * mӐT9}M2bd/Ei\L]?Xpb9RB[N>xq(\?xmZS Za2ЍEy+-Iɸ ud N ?/㺞(2[{4R]oadXc8YQށv&xѱ!if2hF& )$1;YϙJ SaQ2|!F?U ku.O~ ʹSѢÏOLjYBIB l<[(8i I.*10 OXy.BvՋ g=e_sy=i @ȃzStFHxgPi.Wxգ4EJv)TvG#jKNܐ $đNE+)\^à'96Z9& b BpIGC|ϗD:)0RT<wd  K#'Wc~p B}c?0nڂRy3~ox19i\x$!Wj󳯟tmL^/ܮu a?Ua3cLI@3-aF(1Bn)3}[Ǩ>6B'IIàt‹"q+$䂹 ۀ/1X!bh6ZΟ,ʸ:p7Mϸzc˟ iYOJޒNG*KO_֖"ДÝ Qtf"oer 6e0Ea}Pa'WC)QH/FrQ}>0XMcJňLpeuFR(,h Sr^d@97K7D-\,&+|䛑n2ǯ͸c=;\jϝղ1x$0g8u/a?C\?dCג$t]* sh]$zdtcGi,z2>rl\9$hQ((pF$"-}Օ/NIYg,]؀NbNY$T!4U='dKYy%׺ƚp>'fۛ&枅~ck(fV£HE*{Kl腻 8PTaVІl&5{̲R\x⚨+ kgN >kns a8ĥ+ʤLhte\JJa)8 #tvꨋǃ*4.h[m%tSsQJ}}#LC ;SnaTUr҉:~oZe^MzhED]LmIsH/[ee5cVưKQԭZeW 嵺~auQJ.MG)yᴜ pgרݦN -5Ucm _jըߠ722IU9l42d_mzz$Ϊ.Z4:M8H%~c24`kn8LSlttfğPb0yGzFEJzAZ (Y5X!j >5DYԂ6)0&@Fje­<ͱZB;uÒ%,wppy\8gH,&r+ʛ>jr+fETNF=q:e&4橪zH (NtKQ W2VIyU5FP.ITOYISкA{ i/ Slϥ岼s"J ;[sPژ6maKgOz'KkI}/ȷk$,gѰ2 }wܦ'G0ɾ"ebt7-}ֳ'qߨiD8cFwӐŵ8`^p;{<8+IWI3>=;K gGOvӰ`Otٲ'tz+Y.#uLȬ̽*&哉8׺gԈA$M$?h<:CĚs_[olzqAfًvt5j { !Pt N/ WBFF?}nŬ MM3#>(C"QW*'9x3QH}G2ndA˕߁Wq :2)[—ocrECҌbyPOdr;?_'wnK'/{gvْ:i:BIFuBUZ[kW36=.o2X}גh~:PPNp|Tkldg ;e'UHRVQc+IAe'5; S 9 u6eG48|%/Is{SW[Ue~kj f;4d3@udu '}\ ) c|cږ3ϷN+M q(/^;{_+ߧ{[W-T2 ZNVЃӛL&w, /uz*uxu4Yk:3>9$%Hj^"c<$zC{G~nJS/J^=QsmbZvJ 8S+El)ɚ W' G &WNx4Cx m]]\n[k4ǠGQIpMg$XpXEv_4 [Jݨ60l וs*/KEO98:7ܓOP fKsu|VY:2`f#S7K ]d&t\:0ԠM}JY8Pҗzٵ,BJ0>ղڻ)En R/ok Hsz}J;JZ>3!8 zWW۟ dàba*LvI0%_n[X NJSdFVm{S'rBw(@U \D!wT᾽'oK|U84k6.0m%24zGd؆2wmg  H^'͓eK{IU1Cޜ\YΆ1ti=D:N{7g_ l CACDYic̾4lg[F^߱<:m%MlxӞZs{8 o_Wu9{v /3B8^jo5|~$㷅jO mv`^Է&":xL9} &,8&PnlfH}W]*bUǁIkև 2AyHLELC7_WJ5}iYw-#Kn̎|t=cᨵeDَӽx/RZsQʎfnLs^R.q&yo޳ͤVe; { Rӵ9Kpiԏ`qĂ%+nC7d]ts4=*.|\E#ulE pM2PAzbEDM=$/ǟA)y~IĖU) 5%ے%g RhV K xIAgܢU&s nkeb%=lH1i؊vt݉ IՋW8BN N/0[yLr?e WH&+vpU(o$I>i $% 1GXߗStjqW+aG;yf6t&s>^hi5EKOTe2>i LA?f|>8|_";9Ezbma&õz;BjWuw\8el_"!FDe@ 27{1Eľ)~7ۍs/˦#@AH%,4O`2cH[yDn4 7ݣ+#@LܩIMzC_e_PF&:%Uڎ0  rțiX %E~T_JXMC&4tBXѸ&iFdv-F>m{_9%gk`YtKBLH|v]6Rsgyy22} 0/hgSMpW2FIr'rUk}!CBl/I^$Ctdx?Qhn%gKoإ0= aDZL _;;r/RDJ>"C mU üӀ?W 6#:I=%4RG.y>VLM]U|QnJ> #^yzoP1>GSWJz(;U R@d?>_<+ɂ:(lwKE}oϏ{I p+}L8l{G?֐q}Օ翾ORN;a07kIr#>ش@W3-uH3)zzy8WuA-o]=/x^><;jvt[\sߦ I sIN#hqyȜR[&}ǝHSFhbE`)0OaG<-Oq^GY[VT9Z{S"Y`N%*; шժ\Q)ᥲ ?6Tmwp5\۹Ub  -0Kv zu/rF!b/^-Ƙ:`DHt;|])* 4NlTϞnuIJ~&ʥ\ە$-%>"XWxñc!@c4%W/M_4gã&4JfGYʏ<"_*H\hP(uk#%dd|JZK=H#3 /ڔ%]JtN7/EnR=CD$e{RK~܍߁Vge: Wk\.ƻzTקXKƽхA;DO/%"^IG̼5FeU0DL$QL[TF{#bB5|^rl b R6|k@+ƏlDenEg,q~hxSVm~Px{[ê*/#K;h()ѫ (ѐ8IL8X7$ "+7(CV]\69B uSn;ꮸ*xKQW7-,eAY r,Dʤ(:LNIDڇmPL55+>ܳl33G//hCoղRg8 tX]1#5IMG"#BEY^Mle$ ]\ِOzhKUH "QꝈ84oPhQ4"7.Յ 6 63|Yܿw APNK`rj(~e5kԚ5k3F"fCD=i5{Pϔ,vɦe#U|He׳DeJ|"-cI˔,.uە8Y_,D mpV㫎LÃ" nJzxD6}x IUn2;͹:Y5g3hփEs1Dj&74gtmC%m8pERCmhv.Q~E+-Dyr! R㗓1Em~[ lvR}0S7zbqj%P6yɐ\BH< aKů[\NIU+>`:ÌwdJ5tL+!HSlFLE.Yx+?yV)go&@08BKͱyULW9CIe۫,zr#ιnj< Z?w~a\ NSR{t]k ]pdoΉ|+D~ 8]V@5 gNm1MԻݩs0.v0)'=qھՑO^*(!eާooc6\GDlR~SP Q6yU6 _C|]oo;eoFJ|$+8&iޡ:ņW텈C^07fB^5NfpLILz1A~^x,-LMJe9rb~D߸GO7sDa%#_zVfʑ%JMfSbm+Fr[^ uOQL BCZX_e45CVͥC7)]i^>U[dKя;">{mW>ցZ?ɬ=:\+lFRQYW_ N]My 6WfR-4'\3S=W}_WnTwyP_ͬL=?$d貮VhaBQIs05TɽZdU[݋v('luX'8]oב[ C&ov1Y~(`j 48l1D#endstream endobj 69 0 obj << /Type /Font /Subtype /Type1 /Encoding 318 0 R /FirstChar 11 /LastChar 122 /Widths 340 0 R /BaseFont /CXGQFC+CMR9 /FontDescriptor 67 0 R >> endobj 67 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /CXGQFC+CMR9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-39 -250 1036 750] /Flags 4 /CharSet (/ff/fi/ffi/quotedblright/quoteright/parenleft/parenright/comma/hyphen/period/slash/zero/one/three/four/six/seven/colon/A/B/C/D/E/G/H/I/K/M/N/P/R/S/T/U/V/W/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z) /FontFile 68 0 R >> endobj 340 0 obj [600 571 0 857 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 514 0 0 0 0 286 400 400 0 0 286 343 286 514 514 514 0 514 514 0 514 514 0 0 286 0 0 0 0 0 0 771 728 742 785 699 0 807 771 371 0 799 0 942 771 0 699 0 757 571 742 771 771 1056 0 0 0 286 514 286 0 0 0 514 571 457 571 457 314 514 571 286 0 542 286 857 571 514 571 542 402 405 400 571 542 742 542 542 457 ] endobj 65 0 obj << /Length1 921 /Length2 2683 /Length3 532 /Length 3326 /Filter /FlateDecode >> stream xy<}gbR%ˌee,F,s3? c!k$K'E")&&k"R{Zy_}sdl TOCЕ*HY@ xeei NRLtP@jk#C7(u&,`LOycAhx `9x2`O%@z `H&7,҂@ / I: z(S٢yH-HC"ūjMeJ?D=9A&[ޤ~$rPtXQ P'6#*Ux2`H&⧉!1A-N8xɁ;H!]k?:0>ic4l$ DY` \*>)@%(uDx  6iBd VUP+#}@LnZ*Jfw JP5lĞ*Ob<$mv?V =S5U_]3/b쳑yZ-[Y$R[@k"wME (+Afw"'L){'><@Lj}+źuή/Aeݖc5#0 fׇ=51z[y9*䍿MOV46c='K/u_791J t- !;V³kčS9Gi82ZS+c}fk5Q.fYN&UnzC/>[QZ_V=)(qjóOXv/X^֧s7%' іK{W%iU#} ё3_SOg~8;ZRa#BJKV#@`KY2kDjIVkn(n%k$feOLM /yHmo9oϸq { z#6 .%dU\;NM;6lƣT)YʭH_^N3|28.W[WY6$z||9z9x(Կ7b cgoU5W6dVֶK/5>h`e93ƭkžcg,Շ45Eg#2_tULEza`29-Gf G/x:OMadα&,w?rO% b#۝47;\MUT/!/y|Dv3kE W[g]I+\)JNHE\Hc7 o_.6Mzr@j`XqW.6Ǐfk:xrId-:ů[ܠlQWw!,K(q!ST\(bu:R|FVvLp`ljSj=橝Ҙyਬ >oEIA,F, –me2Md߳A{^xV%.nQQHJJ["P}%.-ELDEۭyf]d*/DSX~,ReVce;wx0J"K==(E-B^wɩe̊YJ^9$`fUZ(!+&gTt7U yՕm.L lľ[*0f)O.V|RXRÇ4fQ*<Ԉ6FhO5]'bxBMb,XyE={w"!նnNF;iH7+oC&|uujR5B6x Lֻ:8ňS+ɾ_>սBT [SӈGrFdڽ%y2_9.6tA}ܤ$f8V[ 0;7!լ;g'fE 15PʯͽgDxhCzH5q3ը35(4]xѐ_c̫ɞK<$-JM-ztMMVW%Qxn[}eBDuT-?9_JgӕbCJ\.ɇq]:O0{:+ron$ٴĞd5=jg#WmKmkMKS΋;}->^zt`Jcoݻ+^{[?&[q?iCr.\279so#ti}|FH30"NWg96Dz5nD(KX(Нe*BPQb O_Q)[_buK:qt#/}h.{-[~Y`69fmA>ׅ?Zwwߍ9QĬL64*"~ @C&l^^a31H RLCWМ㭬*+ĄsgȭqMQs8ft'q1H3Z]qϹ+ucշJ#Bn,09?䴪ih@,.먈cΙPgRt.˵>b.D潠wD_ѻH׏f¸'rS2P GjTΡZ\rE**'Xo`b*rmxi? p{Aa 3Ѫxe++:ϕ{keΎGn\@_ZSGR-wqCJirlS_=.1T;h@/.!~}9c3{O-G;ER^V;N\94tx>uP~pb+MnIL.;54&z\tk!G$ A> endobj 64 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /VTCYOS+CMBX9 /ItalicAngle 0 /StemV 117 /XHeight 444 /FontBBox [-58 -250 1195 750] /Flags 4 /CharSet (/two/colon/A/N/a/b/c/e/o/r/s/t) /FontFile 65 0 R >> endobj 341 0 obj [592 0 0 0 0 0 0 0 329 0 0 0 0 0 0 893 0 0 0 0 0 0 0 0 0 0 0 0 924 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 575 657 526 0 543 0 0 0 0 0 0 0 0 0 592 0 0 488 467 460 ] endobj 62 0 obj << /Length1 1275 /Length2 6591 /Length3 532 /Length 7397 /Filter /FlateDecode >> stream xe\fAZZ$bf.nPFA@晽yWs~3ߵ[k]}3kpXC-A P@VM eb,`(Dzȸ^g"πLY(CXe*8`+ @arBjXY8tV`“ k @qyy`+d eHbvw wA"MGO5GB:a?\-kH#mv_P'+AAp:gVa:B`ZX8 i9-(0o(&ʿ$&dN_B^NCEM~V/{?yc"{Ȧ?yʐ? ʰ?9bTvCFDŽ石s7y̢""ȡ}:=,@Q+W8A@#6`ypVbi͡~Em[;PKTW 2nalѹPDU>{fFep bi[T>F <;? ĂY 8OWoWJSk H FP'Ȅ<-4=~ by|%(dg2Y֚?`gNdy.Yұيg'UBƴh蛖@oUd+t\ܮ7njyՋR mN%bȲ\&7uYiXEe^],H%q[q@e8/7yT?`ҷ \#+c u iJR]lM<N2sDҎgGj٘E}Cƅ=)%VZ:dy/qDx5h/P / R,w=0C~s=~47#6J_ڶqځIU]~U@Z׼|bRXPGfno*$3ZTnݦ*äl3i~H26NleƻGPC (Zㅓ\jFPp[ݬhQwjt ~m9bYԮ=k9K'J]_d.xq?i6Sba;ٚMyoPYD'GDt>>̱01MMP} -5's mӁff ':U摕4fʩv/9ʻ]M)ps9?NfZ&{2~: kЮck+f0(S.ZSK3`#Iug_o kyH. j|њvrK=_1eܼ %nO% &=!/KcoңliF?F54fuO?{x${"?/gpOSZ}Ȋ|9=}BQ,nW@/-< ǀœՊ$ENw/t.>:Oଓӌ֑ {dyFC]:D*9ټ1ƢlA7G~xvhd?Rd9(]>Fy5.%,%`pZ 6bb4P,?K bl ,v6[cE.Z\W<>P Q#7ujdL8P['z͋N̵,~}%D&4,g$cmdжbTȓJ@4;aܺ?[J̬GDo}FUJ;sEBt qw},Pilg*;yΝmm[4VW߯Uo S.Z7 T!.qmEd Ǡ4U&'IaBXw 7 {Nw&uog}|];5]8p06m2)դ(y5s x*4gq]ӕ&sϗzhȃKyXOCU( NIҽ#[ܑ6qEY:Ղcs,Y$pȳ`elō:}%ñSeD$ # Bc9kհB,{N3Hg,njlYBN6! t'y~R @D5dN F-ʕx)$l2#)XQ5U/ >w<똲&m#bE go-&U_ebV g F0.̻B^(12ڄ]br)&O&02, 8N_ ~[_Nڠ7:u2+`h6Q[/ic8#|X=_`ӑ$OU6ft Wp->˔ЬIp (~ͻ[gǡm M H/ԙlڢ PRxrPd(QoVs9-p/W(a Fgf/[Lļ26J"0ty@!&fQ :DB3qě3A[) D-c_/ToCSlkכ ۆRg?Cuyv .4Թ]{ V+_->4IW{>߿v F~F! Uh <ōx|AH<άaw;.}wPZXկQ6tN2^߈OxuY$5qA-Z -*z`N^;rZJI_}Ѣ¡i[`:=Ã5<<=> endobj 61 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /GLJXEA+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/comma/hyphen/zero/two/three/six/nine/colon/A/B/C/E/H/I/K/S/U/a/b/c/d/e/f/g/i/m/n/o/p/r/s/t/u/v/x) /FontFile 62 0 R >> endobj 342 0 obj [272 326 0 0 490 0 490 490 0 0 490 0 0 490 272 0 0 0 0 0 0 734 693 707 0 666 0 0 734 353 0 761 0 0 0 0 0 0 0 544 0 734 0 0 0 0 0 0 0 0 0 0 0 490 544 435 544 435 299 490 0 272 0 0 0 816 544 490 544 0 381 386 381 544 517 0 517 ] endobj 59 0 obj << /Length1 1086 /Length2 4511 /Length3 532 /Length 5229 /Filter /FlateDecode >> stream xeXTmiI" = 14()-! 3 3С( !ݍ ])! g}~<ӹ_o׵)165 +*چ`Q,,Bͭ⊀b*`@q q97qvEc^?$%'+EP=  z J(n> ꁀ  6;$;h[ g g řp4#lA:\/P:P?NH*0NX+#\,5AiNG;3{ E!aJh;3tSCz!zH,#~h?==U诤z;G/͸qEz"""`\!?F0p$7 &Ǎ$_0D^ g$`q=l189#+@P("IQIHo@N/>7I ,"!!~C\7Ĺ qn!7@N#b~CoSv qee$D/3B#]wT )1_Q+lč$ᅀ``8$?їC̏lWS8XG4t.6=MDyVw[m3%&i|z)٧t'Y{љ0h|ho]_w`Kvw[mkoxU /M^k2(mJy4UKF= .%%;DٔDSAH+&1iqVncs Z>El槶[wܶɋ ϭav 췾O9lt2ln<};e5:WQ<*LS2w{~1wh6LrAk{v5'auDpф)*g7pndtQm)gN跇/,|-K>:& =cZŀΘ6gyY,k0xd?# v8qpߔzCH§2rGKg?* :nկ~d޲2XHmrJ4BQia!`9`>KV/v]v,f~]3+QLU`u֭.ځaRW (C1Oމ5-_Kpu{7*+A*9i'Ч4Rέn-Ә"֞4Mپ4en,iՄ3p磭cšur\kSg/uT4I{,ݮ?$)wL.$}UvH3vGq /%϶:~v>=>;LYİIIѼ0gcOeDŽ; O͕<^Hf=]tcRyYŠdT_gɶZVĩCq'EzD2ަŅ{,V2?3ʎF%%rK-`oiT7Qٔ-VATmjx$kyjiORso(NA6Jsȋ+6)c=ӪEa+Pt)gf.٨gԌ FeZLuT7!2wי^Rmm_  4E?Y{r\ roPW~¡u ?}&tdž=]|` 6&J%̖ b} \9ȔGy xeDsU5(,[Y߳ ʱŇ\~a VE;{Af;Ѫ w&@fc$+njHr2>=te ~$*m˱&w!/b{!,e0Hd܌j5#w}s!s Hq2W)c4`/(m~IWQ ')^{3.3 Ӥ9ϤY缉|̇4TX&?mzs;3TڸzRP:)%6]b˻Yб<ueqzs B$덳w)_D>IkVtn7j-t/BY!8%⓾9&pIң}:+ŸtS͋%?,) Dh5< &V4.Quv$hY |$L}|w}t5a 9Kf):V=),y$q]Ry|9#br+Y6"TpkPY]eb=OvSZo,埂\{vevz[{/Nx6d ;OAXNSV'p4w$;,~;E>ޞ3S#.eC+1T9iHȏ4Sr]F%wD\3mxۍ'PM̱7[=*VwWjhM,V7u.TE9YN*ypgdS o#wZf3^fnf^rU ~OW*&%>]юZM/CŸfa^-ѭ苚:xz;D[]d9e tuI(tdx}d&͔f0S"jFāV츚0a~qfƃޠ-BsfnJ_!1gRɼOm^}\k l f5RM'-2f3}:_%q7d L,/-¾:XP*_a$Q7w?_mmTnA@K;=?,ame;bتyeؐ-󶇚M\ѳ]m=v|$j $ %io[͍<#]אcJDEDLMɺ헦 v9OZL.z7lA=:I¾\RIsR; O?I\ɳ AaR?x^(f(4]@4HTֈ l(,O hIGv]TSm 9Ax@`zfG߁C%&C^QK{Uv/FVZ[i>Ƿ] R}h2,dtVk5c+"XA_8.:b^~ s~R-Nq@y;XlSIWa [Z0Rdug 鬑{s6meELCt Ҁ4/ǾT/udot^ϷnG[Zn;-޶A)ёV7B@Ғ^٢ߗ1Ytp~3~|EnzR|ɀ:ƽև,zmh3/\Wݻ籹xY7+?t=}Ȯ&<{XZM ϺrT.j1Yr b@gnϺ{eV/jms3 1onyHwU&0_IZIKԻW%cnUsroo`]bQɭN$5,7}wEV;[( NbTZlxSPӢz)X#p.gǒgw?%|e F'0~?L('t&O.7M뺈̰ש氕gqbFjlA9:=ss/wOuUWW[*-)OrdNDk>V h؃,gGAWUN.+oU,0\3sq+4S g>4Gk*EAYN)ɯ ֵ?8X;xLgY-OKkH)SY]LƷ)N:+GVKԫ#o:[V YH9۲-ӯd݀TIPOK=;;(K pz/ >ؑW9'pAMaoS{vkWK|` i[O $qn>ɢj ç2h,|{βg@lpHa"^hV1bcY~}D2.rF-<=djk@uv.!mKfLuwb֗æ.; itff9.ti\gdq >}[-^_\52yCn> u=V QE׌80@n*3iΧ`qI46>@?1O=} K\ruU1dɺ]9Dg2x7VщRtAIΈlψNL&)kSF\!x'ۛ*4"=_-LQVn!/=W. N[M-,'^k "08A] ݓendstream endobj 60 0 obj << /Type /Font /Subtype /Type1 /Encoding 322 0 R /FirstChar 46 /LastChar 117 /Widths 343 0 R /BaseFont /CINPND+CMTT12 /FontDescriptor 58 0 R >> endobj 58 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /CINPND+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/period/at/A/H/R/S/V/a/b/d/e/f/g/h/i/l/m/n/o/r/s/t/u) /FontFile 59 0 R >> endobj 343 0 obj [515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 515 515 0 0 0 0 0 0 515 0 0 0 0 0 0 0 0 0 515 515 0 0 515 0 0 0 0 0 0 0 0 0 0 515 515 0 515 515 515 515 515 515 0 0 515 515 515 515 0 0 515 515 515 515 ] endobj 56 0 obj << /Length1 1412 /Length2 7516 /Length3 532 /Length 8361 /Filter /FlateDecode >> stream xe\EZz`CnNADPKRN >_={PRR0/_.F6@OuCe;jCl Em b0 |jlx +MKZCT'F|"C頲 Jue-kTqKBVOi3e>>$ɕ)}9'et->1h0r gpy쉛dy,.m5?ՈQ7ֆu%~]iyԆ{ja\խiL4Ifub+uT2 H%,hT{g1[s#EM>/?20AL5ϳYxgd2]wJj"q4f6_s(4 .H'ឈlEw7T&!.%_hs*A?)S\2_l {cCmŘX`b)LtM "9@E}s ucR +p|E2>NuS8 :cbL=)jU}a?PqVZcmbd3;@sAmzO wbX~}aqtn: wUr;0SݨxༀBJ_Wj~S-X@>k^^»\\,|TbK7kqt@@{'ݱcxuGV; Ȟ0v7XnvpI$6'م/,}ř:ys)@-svE9,J*Y#"/HIȱ__0j-hK%4TPvgŋ`wqrYwUaBjG6 8ToOv=53{2ӊ]Q~l]F]fDڝ vN}³'ډ[XȺx}r1.\]g mP:P-M@1GҺz,MI o#a^1h>7L'a*#k, -{Н)exVѴE~nQnd>ZsEaܡSg|a1aGl|W|CKd!K``6%WUK"'c49aӉ'׵a8D!RJ3UQ&a6,MeSdDЂ{Ҫd( =)" uhȴ"cf՞>)UoQ&H \-Ls߂]C0Oo7<= j`os] Mn+]0bBζzv|ii 3ݻsz}|@*ğ@/!, !cLmF$!D}_zOtywvE.A'ݿyy?Ȥ["fW]3X|ihaZI‚9(aߏ?QkV'1̣I%,ĬGp?@V̡fT̬//uܶH+chŨL1.cr`Ï$?WHkWjƏ*Oʷ`aL6(7"%Rtk+pF, ;nvVy\S\H7(Φ% OXv1l12c^M!WgQwMߋ˩ջ{ƕo.vq|p/+ӭN?"N̗c֬u%&5f:UB̍c9% 9y5geN XE_֖}\{NQ]lKf;_[N lAS'`&R_M~bS{!LX=c'^ώ.SK[J'L MuF,`jU7oZ>wMOhكV4Eϻyr|ĕSDeR8N\R%2 V"mX@8_ U>OІ]^9YNUqi!!ҐDՏGņnb /+kao9n3_Ë# $-e]g6-ƛؽ>ܝ U&ÙRf-HoQ=RL{)/"/DwG~ipIs?0K.Lcu-: !jt lAjN|vAL7<7'a;ݯ} 7_!&%\ԢK( :m,H:LRYRɒ+xxbRYd,RSaqC"_7gZCcϬu_p3^podZb'lRW*IX+fV60䮍!&A5כVL{g`4SH !UL=wRP:I.:^&Wn&g>[AQj9noqorC6Ij9c.Ԩ[A],:b{Zʾls92XۭoL2ҳ ۼY×,lOۏDZ*3k8vBJwgJ}c>)|6׻utؓt-4Q^OS<'4n;ynzEmmL2ЛQ[<p@N$3.b}l[?'2}y|DnJsH͏2WDKRlFsld5G9~4*.0ƒPu0.6zzX#6)b cz<έzVlpv.dx6~{Eve<& 9m)BƒQ꣆!8w_pEV9~ZC1g:YAvsw%Mym&=b27,-(MTt8Ԓ7z eG'~Hq aHi`SW+FMvqq}[A_7V? yE1<#^P C2:4Dq`8_q~4W1|S:Aƫa'&9⣦~r.4kO'}BcBululc#ic3fR-qvFg7Sq$QK t˲7+181;?κyT$)]ex=#mO=jBhU=txWѼ׿j^K<-9X1z5ʄWtSQJ{GѲV7^G=r0 Qod\%za63}C,M>xWS`PҨI^!yRell؅YyWӕ<-QvmkK@tgj{٣dޞp&G.k>f5 8ŷ?,سEGtM]4LvQsAfť)[UbE(TKa.=i:&d6`s)ٞ[^Gp~Jx>3-% +z竃TQ^w1yY+Ё ,}X2;>p|v 8>( kP(BQnƞtoDxЀJ5nx"Rj7Շ>EldĬWe0MU_bܫv4"t+cyd)|NLvJTD^O"3f҆Nx(ILNX&J֒?U5 RyShGn'tZ [`0>JqY}P2{9ȓgˎI mMGt啋3,~OM615y;~^&6"׾CH|N zݜ)s nGQJ<$ YMB{i5PK/ 4qf͏k- ?uT]"u9hD*M|2/ɫǥS 'ŅNwK/A k<1w[sof`U5ƃ\,<8;{J]8zYnNKύL'h;ѯTr{Ixv6Ygԣ9 L0afL'7i44(Kt)6KY̎xėDqaXKss}ZxAyVtL8Qͱṣ4 KwvB8_MÅG0KaLP4| N e}>bp˨=^11M`52&B.W)J/Z8bvNȜ.#51O:sѝU/E byy "X*U&5s#EӗOmPH/;"{Tx)$zwϽ+#3K&t/H*-[ou.%Dkzhx{u@H.^d{_<8ʽnӡhtK<^5䈫0ȭ5tn}6QkSa[\W6[yTD7v4Q떛GWhb%R}w 탳~aP o?:׮# IQ|U>ۆB-NNv5:!_G Wܔ; Gt=E3DTꝐrK:@_4ngq2Ib/hMi6WsbVPٽ űT2i)_4ZN״>ةܸqbCuVh&ġV7(BWHbx_Npןs)WS{GYYsJE@c7zHMt+;E44+&UΎ\Sz_grtq9}?g\UEԭ/Bkq.q];LB$3K߮ 5m#Wk Lh{xڊ^R/w]-71>H8pu*>,+)ܝOQ jN OGӮ҈Gs㔲+dJGc(+Sґ\U'Fi7\5}%_%Wll%rIo$M#ɮU1:XBS?Wic CȞfMZI> endobj 55 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /EJBUVJ+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/hyphen/period/one/two/three/four/five/six/seven/C/D/G/H/I/P/R/S/T/U/V/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y) /FontFile 56 0 R >> endobj 344 0 obj [375 313 0 0 563 563 563 563 563 563 563 0 0 0 0 0 0 0 0 0 0 0 813 862 0 0 884 880 419 0 0 0 0 0 0 769 0 839 625 782 865 850 0 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 563 625 313 0 594 313 938 625 563 625 594 460 444 438 625 594 813 594 594 ] endobj 82 0 obj << /Type /Pages /Count 6 /Parent 345 0 R /Kids [50 0 R 86 0 R 117 0 R 123 0 R 127 0 R 138 0 R] >> endobj 165 0 obj << /Type /Pages /Count 6 /Parent 345 0 R /Kids [157 0 R 167 0 R 176 0 R 185 0 R 193 0 R 202 0 R] >> endobj 216 0 obj << /Type /Pages /Count 6 /Parent 345 0 R /Kids [211 0 R 226 0 R 246 0 R 256 0 R 266 0 R 270 0 R] >> endobj 278 0 obj << /Type /Pages /Count 6 /Parent 345 0 R /Kids [275 0 R 280 0 R 287 0 R 292 0 R 301 0 R 314 0 R] >> endobj 345 0 obj << /Type /Pages /Count 24 /Kids [82 0 R 165 0 R 216 0 R 278 0 R] >> endobj 346 0 obj << /Type /Outlines /First 7 0 R /Last 47 0 R /Count 7 >> endobj 47 0 obj << /Title 48 0 R /A 45 0 R /Parent 346 0 R /Prev 27 0 R >> endobj 43 0 obj << /Title 44 0 R /A 41 0 R /Parent 27 0 R /Prev 39 0 R >> endobj 39 0 obj << /Title 40 0 R /A 37 0 R /Parent 27 0 R /Prev 35 0 R /Next 43 0 R >> endobj 35 0 obj << /Title 36 0 R /A 33 0 R /Parent 27 0 R /Prev 31 0 R /Next 39 0 R >> endobj 31 0 obj << /Title 32 0 R /A 29 0 R /Parent 27 0 R /Next 35 0 R >> endobj 27 0 obj << /Title 28 0 R /A 25 0 R /Parent 346 0 R /Prev 23 0 R /Next 47 0 R /First 31 0 R /Last 43 0 R /Count -4 >> endobj 23 0 obj << /Title 24 0 R /A 21 0 R /Parent 346 0 R /Prev 19 0 R /Next 27 0 R >> endobj 19 0 obj << /Title 20 0 R /A 17 0 R /Parent 346 0 R /Prev 15 0 R /Next 23 0 R >> endobj 15 0 obj << /Title 16 0 R /A 13 0 R /Parent 346 0 R /Prev 11 0 R /Next 19 0 R >> endobj 11 0 obj << /Title 12 0 R /A 9 0 R /Parent 346 0 R /Prev 7 0 R /Next 15 0 R >> endobj 7 0 obj << /Title 8 0 R /A 5 0 R /Parent 346 0 R /Next 11 0 R >> endobj 347 0 obj << /Names [(Doc-Start) 54 0 R (Hfootnote.1) 110 0 R (Hfootnote.2) 114 0 R (Hfootnote.3) 121 0 R (Hfootnote.4) 161 0 R (Hfootnote.5) 172 0 R (Hfootnote.6) 173 0 R (Hfootnote.7) 240 0 R (Hfootnote.8) 263 0 R (cite.HilbertCurve_first) 243 0 R (cite.HilbertVisualization_first) 241 0 R (cite.HistMeth_ChipSeq) 115 0 R (cite.Maq) 84 0 R (cite.PeanoCurve_first) 242 0 R (cite.ShortRead) 83 0 R (figure.1) 141 0 R (figure.2) 179 0 R (figure.3) 200 0 R (figure.4) 214 0 R (figure.5) 229 0 R (figure.6) 244 0 R (figure.7) 264 0 R (figure.8) 283 0 R (figure.9) 295 0 R (page.1) 53 0 R (page.10) 187 0 R (page.11) 195 0 R (page.12) 204 0 R (page.13) 213 0 R (page.14) 228 0 R (page.15) 248 0 R (page.16) 258 0 R (page.17) 268 0 R (page.18) 272 0 R (page.19) 277 0 R (page.2) 88 0 R (page.20) 282 0 R (page.21) 289 0 R (page.22) 294 0 R (page.23) 303 0 R (page.24) 316 0 R (page.3) 119 0 R (page.4) 125 0 R (page.5) 129 0 R (page.6) 140 0 R (page.7) 159 0 R (page.8) 169 0 R (page.9) 178 0 R (section*.1) 305 0 R (section*.2) 306 0 R (section*.3) 307 0 R (section.1) 6 0 R (section.2) 10 0 R (section.3) 14 0 R (section.4) 18 0 R (section.5) 22 0 R (section.6) 26 0 R (section.7) 46 0 R (subsection.6.1) 30 0 R (subsection.6.2) 34 0 R (subsection.6.3) 38 0 R (subsection.6.4) 42 0 R] /Limits [(Doc-Start) (subsection.6.4)] >> endobj 348 0 obj << /Kids [347 0 R] >> endobj 349 0 obj << /Dests 348 0 R >> endobj 350 0 obj << /Type /Catalog /Pages 345 0 R /Outlines 346 0 R /Names 349 0 R /PageMode /UseOutlines /URI<> /ViewerPreferences<<>> /OpenAction 49 0 R /PTEX.Fullbanner (This is pdfTeX, Version 3.14159-1.10b) >> endobj 351 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.10b)/Keywords() /CreationDate (D:20090701105700) >> endobj xref 0 352 0000000001 65535 f 0000000002 00000 f 0000000003 00000 f 0000000004 00000 f 0000000000 00000 f 0000000009 00000 n 0000004434 00000 n 0001299106 00000 n 0000000054 00000 n 0000000084 00000 n 0000009757 00000 n 0001299020 00000 n 0000000129 00000 n 0000000164 00000 n 0000009816 00000 n 0001298932 00000 n 0000000210 00000 n 0000000253 00000 n 0000013124 00000 n 0001298844 00000 n 0000000299 00000 n 0000000339 00000 n 0000028687 00000 n 0001298756 00000 n 0000000385 00000 n 0000000412 00000 n 0000171739 00000 n 0001298631 00000 n 0000000458 00000 n 0000000515 00000 n 0000171799 00000 n 0001298557 00000 n 0000000566 00000 n 0000000602 00000 n 0000832965 00000 n 0001298470 00000 n 0000000653 00000 n 0000000690 00000 n 0000906989 00000 n 0001298383 00000 n 0000000741 00000 n 0000000782 00000 n 0000909663 00000 n 0001298309 00000 n 0000000833 00000 n 0000000873 00000 n 0001009641 00000 n 0001298234 00000 n 0000000919 00000 n 0000000974 00000 n 0000003713 00000 n 0000004492 00000 n 0000001024 00000 n 0000004316 00000 n 0000004375 00000 n 0001297035 00000 n 0001288394 00000 n 0001296875 00000 n 0001287940 00000 n 0001282431 00000 n 0001287780 00000 n 0001281898 00000 n 0001274222 00000 n 0001281739 00000 n 0001273820 00000 n 0001270216 00000 n 0001273661 00000 n 0001269409 00000 n 0001256995 00000 n 0001269251 00000 n 0001256640 00000 n 0001252550 00000 n 0001256481 00000 n 0001251978 00000 n 0001243927 00000 n 0001251819 00000 n 0000003861 00000 n 0001243020 00000 n 0001226904 00000 n 0001242861 00000 n 0000004012 00000 n 0000004166 00000 n 0001297610 00000 n 0001138144 00000 n 0001138084 00000 n 0000009997 00000 n 0000008476 00000 n 0000004645 00000 n 0000009698 00000 n 0000008646 00000 n 0001226594 00000 n 0001223141 00000 n 0001226437 00000 n 0000008809 00000 n 0001222183 00000 n 0001206399 00000 n 0001222023 00000 n 0000009002 00000 n 0000009154 00000 n 0000009305 00000 n 0000009501 00000 n 0001206176 00000 n 0001204193 00000 n 0001206012 00000 n 0001202251 00000 n 0001188075 00000 n 0001202087 00000 n 0001187770 00000 n 0001184471 00000 n 0001187611 00000 n 0000009875 00000 n 0001183747 00000 n 0001173283 00000 n 0001183587 00000 n 0000009936 00000 n 0001136622 00000 n 0000013246 00000 n 0000012772 00000 n 0000010153 00000 n 0000013063 00000 n 0000012910 00000 n 0000013184 00000 n 0000015765 00000 n 0000015586 00000 n 0000013402 00000 n 0000015704 00000 n 0000017741 00000 n 0000017562 00000 n 0000015860 00000 n 0000017680 00000 n 0001173056 00000 n 0001171649 00000 n 0001172898 00000 n 0001171324 00000 n 0001168939 00000 n 0001171163 00000 n 0000020376 00000 n 0000025169 00000 n 0000020238 00000 n 0000017873 00000 n 0000025046 00000 n 0000025107 00000 n 0001168659 00000 n 0001166359 00000 n 0001168497 00000 n 0001164727 00000 n 0001154170 00000 n 0001164565 00000 n 0000024895 00000 n 0000021587 00000 n 0000021643 00000 n 0000021723 00000 n 0000022795 00000 n 0000022816 00000 n 0000023078 00000 n 0000024873 00000 n 0000028809 00000 n 0000028333 00000 n 0000025355 00000 n 0000028626 00000 n 0000028472 00000 n 0000028747 00000 n 0001152806 00000 n 0001147667 00000 n 0001152645 00000 n 0001297724 00000 n 0000032615 00000 n 0000031976 00000 n 0000028966 00000 n 0000032430 00000 n 0000032123 00000 n 0000032277 00000 n 0000032491 00000 n 0000032553 00000 n 0000034722 00000 n 0000163916 00000 n 0000034603 00000 n 0000032760 00000 n 0000163793 00000 n 0000163854 00000 n 0000163281 00000 n 0000163426 00000 n 0000163526 00000 n 0000163550 00000 n 0000167303 00000 n 0000166795 00000 n 0000164039 00000 n 0000167242 00000 n 0000166942 00000 n 0000167093 00000 n 0000172506 00000 n 0000437595 00000 n 0000171859 00000 n 0000170781 00000 n 0000167398 00000 n 0000171678 00000 n 0000170944 00000 n 0000171108 00000 n 0000171318 00000 n 0000171527 00000 n 0000437007 00000 n 0000437069 00000 n 0000172387 00000 n 0000172015 00000 n 0000436946 00000 n 0000436329 00000 n 0000436474 00000 n 0000436574 00000 n 0000436679 00000 n 0000436703 00000 n 0000702069 00000 n 0000437456 00000 n 0000437167 00000 n 0000701946 00000 n 0000702007 00000 n 0000701795 00000 n 0001297841 00000 n 0000701178 00000 n 0000701323 00000 n 0000701423 00000 n 0000701528 00000 n 0000701552 00000 n 0000705309 00000 n 0000744814 00000 n 0000793926 00000 n 0000793281 00000 n 0000705122 00000 n 0000702167 00000 n 0000793096 00000 n 0000793157 00000 n 0000791987 00000 n 0000792138 00000 n 0000792292 00000 n 0000792441 00000 n 0000792615 00000 n 0000792779 00000 n 0000792945 00000 n 0001146371 00000 n 0001144700 00000 n 0001146211 00000 n 0000793219 00000 n 0001136744 00000 n 0001138204 00000 n 0001136683 00000 n 0000828447 00000 n 0000828509 00000 n 0000793807 00000 n 0000793502 00000 n 0000828386 00000 n 0000827790 00000 n 0000827935 00000 n 0000828020 00000 n 0000828120 00000 n 0000828143 00000 n 0000833735 00000 n 0000833087 00000 n 0000832136 00000 n 0000828607 00000 n 0000832904 00000 n 0000832299 00000 n 0000832449 00000 n 0000832600 00000 n 0000832750 00000 n 0000833025 00000 n 0000904221 00000 n 0000904282 00000 n 0000833616 00000 n 0000833256 00000 n 0000904160 00000 n 0000907049 00000 n 0000906809 00000 n 0000904400 00000 n 0000906928 00000 n 0000910593 00000 n 0000909723 00000 n 0000909483 00000 n 0000907156 00000 n 0000909602 00000 n 0001297958 00000 n 0001006690 00000 n 0000910454 00000 n 0000909830 00000 n 0001006567 00000 n 0001006628 00000 n 0001006416 00000 n 0001010261 00000 n 0001009701 00000 n 0001009291 00000 n 0001006808 00000 n 0001009580 00000 n 0001009430 00000 n 0001133677 00000 n 0001010142 00000 n 0001009808 00000 n 0001133555 00000 n 0001133616 00000 n 0001133043 00000 n 0001133188 00000 n 0001133288 00000 n 0001133312 00000 n 0001136805 00000 n 0001135697 00000 n 0001133776 00000 n 0001136378 00000 n 0001135852 00000 n 0001136439 00000 n 0001136500 00000 n 0001136561 00000 n 0001136003 00000 n 0001142759 00000 n 0001139307 00000 n 0001142598 00000 n 0001136195 00000 n 0001138265 00000 n 0001137697 00000 n 0001136962 00000 n 0001138023 00000 n 0001137836 00000 n 0001138361 00000 n 0001142991 00000 n 0001143043 00000 n 0001146591 00000 n 0001146649 00000 n 0001153048 00000 n 0001153222 00000 n 0001165030 00000 n 0001165364 00000 n 0001168861 00000 n 0001171529 00000 n 0001173259 00000 n 0001184122 00000 n 0001188009 00000 n 0001202809 00000 n 0001203173 00000 n 0001206375 00000 n 0001222763 00000 n 0001226836 00000 n 0001243520 00000 n 0001252284 00000 n 0001256859 00000 n 0001269843 00000 n 0001274044 00000 n 0001282187 00000 n 0001288184 00000 n 0001297348 00000 n 0001298075 00000 n 0001298160 00000 n 0001299178 00000 n 0001300509 00000 n 0001300548 00000 n 0001300586 00000 n 0001300812 00000 n trailer << /Size 352 /Root 350 0 R /Info 351 0 R >> startxref 1300967 %%EOF ShortRead/vignettes/hilbert.bib0000644000175100017510000000575212607265053017623 0ustar00biocbuildbiocbuild@article{HilbertCurve_first, author={David Hilbert}, title={{\"Uber stetige Abbildungen einer Linie auf ein Fl\"achenst\"uck}}, journal={Mathematische Annalen}, volume={38}, year={1891}, pages={459}, } @article{PeanoCurve_first, author={Giuseppe Peano}, title={Sur une courbe qui rempli toute une aire plaine}, journal={Mathematische Annalen}, volume={36}, year={1890}, pages={157}, } @article{HilbertVisualization_first, title={Pixel-Oriented Visualization Techniques for Exploring Very Large Data Bases}, Author={Daniel A. Keim}, journal={J. Comp. Graph. Stat.}, Volume={5}, year={1996}, pages={58-77}, url={http://www.jstor.org/stable/1390753}, } @article{HistMeth_ChipSeq, author={Artem Barski and Suresh Cuddapah and Kairong Cui and Tae-Young Roh and Dustin E. Schones and Zhibin Wang and Gang Wei and Iouri Chepelev and Keji Zhao}, title={High-Resolution Profiling of Histone Methylations in the Human Genome}, journal={Cell}, Volume={129}, year={2007}, Pages={823-837}, doi={10.1016/j.cell.2007.05.009} } @article{Maq, author={Heng Li and Jue Ruan and Richard Durbin}, title={Mapping short {DNA} sequencing reads and calling variants using mapping quality scores}, journal = {Genome Res.}, volume={18}, year={2008}, pages={1851}, doi={10.1101/gr.078212.108}, } @manual{R, title = {R: A Language and Environment for Statistical Computing}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = 2008, note = {{ISBN} 3-900051-07-0}, url = {http://www.R-project.org} } @Article{BioC, author = {Robert C Gentleman and Vincent J. Carey and Douglas M. Bates and Ben Bolstad and Marcel Dettling and Sandrine Dudoit and Byron Ellis and Laurent Gautier and Yongchao Ge and Jeff Gentry and Kurt Hornik and Torsten Hothorn and Wolfgang Huber and Stefano Iacus and Rafael Irizarry and Friedrich Leisch and Cheng Li and Martin Maechler and Anthony J. Rossini and Gunther Sawitzki and Colin Smith and Gordon Smyth and Luke Tierney and Jean Y. H. Yang and Jianhua Zhang}, title = {Bioconductor: Open software development for computational biology and bioinformatics}, journal = {Genome Biology}, volume = {5}, year = {2004}, pages = {R80}, url = {http://genomebiology.com/2004/5/10/R80} } @misc{gtkmm, title={gtkmm: {C++} Interfaces for {GTK+} and {Gnome}}, author={Murray Cumming and Daniel Elstner and others}, url={http://www.gtkmm.org/} } @Manual{GenomeGraphs, title = {GenomeGraphs: Plotting genomic information from Ensembl}, author = {Steffen Durinck and James Bullard}, year = {}, note = {R package version 0.0.9}, url={http://www.bioconductor.org/packages/bioc/html/GenomeGraphs.html} } @Manual{ShortRead, title = {ShortRead: Base classes and methods for high-throughput short-read sequencing data.}, author = {Martin Morgan}, year = {}, note = {R package version 0.1.23}, } ShortRead/vignettes/images/0000755000175100017510000000000012607265053016750 5ustar00biocbuildbiocbuildShortRead/vignettes/images/HilbertDisplay_GUI.pdf0000644000175100017510000024450012607265053023073 0ustar00biocbuildbiocbuild%PDF-1.4 1 0 obj << /Pages 2 0 R /Type /Catalog >> endobj 2 0 obj << /Type /Pages /Kids [ 3 0 R ] /Count 1 >> endobj 3 0 obj << /Type /Page /Parent 2 0 R /Resources << /XObject << /Im0 8 0 R >> /ProcSet 6 0 R >> /MediaBox [0 0 522 876] /CropBox [0 0 522 876] /Contents 4 0 R /Thumb 11 0 R >> endobj 4 0 obj << /Length 5 0 R >> stream q 522 0 0 876 0 0 cm /Im0 Do Q endstream endobj 5 0 obj 31 endobj 6 0 obj [ /PDF /Text /ImageC ] endobj 7 0 obj << >> endobj 8 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [ /FlateDecode ] /Width 522 /Height 876 /ColorSpace 10 0 R /BitsPerComponent 8 /SMask 15 0 R /Length 9 0 R >> stream xk_E-wqmEADDP10yEP#((ڶ( *" >iV| W@ޙa3g$5ا~V׬v 6X%jM:wܹz70i?c sɉ;wy=Ƀl 7|1wkΝ;w^O7x_!b֏ҹsΝ5S0?[~xS=9Ou_ҹsΝ5S-fۇFPṛy^w;wy|ݏ=gۇF]?0۾p5gri/|BW| ֮YCuۆ7~tYkC{aӍ/L%.fPPaD LX\RXr/>]CNoeӿr^'/ÒX1]哔-*?ܝz֛?:CCV"oG7ro}mEiASm%uy}S~Gߋpnx,BƩïW9/}~pקqo7?r/YO G?/?9LUS}pզa﫮SobAR*7{F =+~盃.zۖL~zK_79g_mvާ%o&|d9;n;-s|Wǡ0Cv4o%_8|+WX.>wl=<>4Z;o ~;-p֦i [o t-eõ7\ Donn7zA},>h_v/z^=wg .W{>fK}H/y^Sa"O#ޕ>g.G|!r{3|7NɛGݾky/;v?fd>wHNnǐv/=p=6ۼqyO|іn3VS~?}wbលg.|VTeVrvFov}s7>j9_{|3znֱ|=w%/~_~uamzmǶO=5[q̍.:Y3j)LZC[͇9ts6\eчN}QKNxmntjM.iyFq6&'-%mlƗl:3<{./wgn7l];>/cun ;?]ma5}*i;ڐ/=f ÿӁ_}ۜipM+n#4\r v#A},zp<6~sp+Vya̓>gnm=6?m9_^J3ֆmv΅ |9~GXԩ^nz$y/mmu3ÏK3-ny|XixXXwx^ .%7"zL:: >ۧ{K0SFttf$ 󢡯/1"UO,J' Gv[=eϿN'됧zY2qߴóLt+g`gLqI8|tp/}3\|;n9rCgԀ_{Xr=^ޭ|ŜKN|ap4#=BA̕ïm;+O˽ϨCkD:zǒtx<,+=gyp!O<>4[_ma 4Lֆ/ A|K3-n庛nn[p7vK>c|Kvk։==?G9ڋG׋#_Ap?aZDѩ 5LJw3wj 42zg?`ޖ}a܍gl} N9hzn nu&Pȴ6Lkb23qG;ᕫ:EO:й߰ iiZն6פ)bZŇ?Wueo3-n O 7t{1ca~qG~M>/wwimW|n߿ew]/׾p{,_^ ^Ӧ_Z8|g}7~z.zO{vpIAӏYrc[^|DƗl>#]77oyf?\-uLk3 hFBd>t}3q޺ʵI?:6=: ?M<>4_ԽZ2ckC>ˏ;-OCmMKneu >Fyjs+ׯq65/d26 ߿` ~ _3c&ã:g$rxF;śh˱ph#o߶3.~s6Z&To;OǫǒLCvM^̱˞oʽnN[ntĪC:c=c׭7:[m|KNI8+_{mO?~9E#1s^5g*O)G}~9= #U3J[T 7|Sl{l7̟~C\E{m+s5(t9X2Qd''0##;8XT᜼ƕ՚j%2ͬ63ȴ&3t^슇W?w#^I_xYkCm՟|w;-nΝgfȸ?}Ov|yk&NO{;ߋ6d>@Ǯ͖~Мuny6Kz9E<1XFvyF[o/ySxx`jC|ݩZg8W>Ľv[>t}{ϟ4<>4om|u>ޱE<1XFY5ss_Pי󟴆ڷyA?z;wܹ8vNxWsΝ;:wܹhxV^wN.U?;)y1/[6f$\w-]:fX1=k}dhpPڗfmU5uט6GQ.1KW-_%m+s?\gɒ1c1c1_{Y_<.MV>cY*[nRhј_(#g g~2ϙ\T?u\GZy#z% s)tv6t2Ovi}Xe+\hFFϰP*5[`f/u?sS9b]_<2ێ;d{QߕʽgSZY~F{ǘk_ʘO;m̋NgLޛ9^1kjk B!G<0B k;c4Mį@0о<0qM>1;=3=H^meuF:XlE3n:O;:ͨf<QI=۫.鯪tO%V* .aTf)c'GA9-3]qX_ڻ2aigMlǎc=+7抟#^\NF;~EKI<"Se9qcF_@1m][9㚳Vx']a]:X֩N-d+ӖUo52,T)dIA֎Z3FRC֥FFFuT3gϳ`$4Ǎ%[ji41%{&U q(moF:\W?>"f`_F Vwޘw_.YO\_JFde)93??t5%ݩrkAmQsl#tXOe}9\ҁ;MOxa3.Ԃ4ӷE1E'ڝFw/4cU[eӖ?*.wfW^99\BX.B}Et(L38|tIKy~,u5e p]g\k*-ꍱǘ yׁzl&FSgyrSWֱh 2>2/ fCr*tV_ut "K(?̈,ihARt<$a3gYK&:t`% t^0\6-?+Ot2*y^Qh7FFFFFFYJ -òB\wA780{Wѯ>O_Ae-ͺ, uEuѨFFմP<=iG_Cpx>u'W#wVWMPùX#X{yWs o}t1|bo-zݵ Qq-K]NT_Q+h%Xς3Ej2wstf1߫>DEp}z ƌoűdגɍ%t{yO NҕDmW 92p8#*"k;c ꬞1%JOv3ǨgN^N_UϬ3 BG=fn߰㽦o H|Vw_TD]Qr\'P]OrC-IS:.gd髷r…cr{=^*'GN=<s̓SJW=gkL"WNnO`yP9<}̀ 9!6!!< -ٟۃf|}W>]<ތs]_9l)}쫑Zw  gOIw 4G;=[Fn! 3%x~Dc̘ka>A |v« :,;CYAIN:dT8?S69ghYàq0QqaTϝr~[ʍ7S,GũX~njJ ?@p?=N؃%1:>׻.9,0lthththththt)֩ӳ+pjWt%&?9۪-@=՞xY7! \-7j5۬{rU%FOq8hIa1";42^4]FFFu 4rhc.Ąx 4Vt/#Ǹz$P^}G1(xE.4-4#Ejq/b M4ikc]mFp"7oqzuTO; 赎7Z%+=N`m%މIݬʁ ?gvmfyUϊaR6ϹcP_%ֈ+YZ%_a:u+hththtX?AqsAL?sO^]M`@F^7k~Ө9wȰ wEBk}Ap$ЯnMg3P):n\s @8Ok=ˋ[c.qAn*AGמܳ]- _m!j xVɗe{=,>1{挳3o+^";q(]r#95u mY-IM ^k晌9M{{fg_6:5 Tk{n\dOvLǻ*R1ux;y~}ylh B~xe~V:+P5ѡѡѡjWCFjnu8kowp˺S+|f믬~N pӾ4 Ohv ge +cpwU?SphaRͩȢ";t@:S wޘ-T -QQ)W4ûh)|oftVuHѡѡѡѡѡAī~+~R0=E:zSDCbD'G$8_(2S9v /| 2ۋr1X~YNn8us>K&~:7>7c<y5+{nNýl!G 9^mγ+dtxPYY}5:v 5:4:4:4:Ș"`dQd|sh8`ϊ#*p5R4:4:&5:4:4:4:T8[%[nrظ3p`c&K[֯ӊ){N+5Fs&G~tG<1;OҘaj8g;դAͳ WTerV7s-Tirv6s+4)w3e{\萵!PI:+>RIn گo8/(m"a`% Lg!*΍=ۣھNuG꼖Zq (**48{qQ~k9U:"^ mIiӨՎ'ʁ;;, խgϣ\іʇ,eMy=.H'꩸>(:ky-k5<ie}g;V+sj n&bJ [ rk:XO*8+p+7:XFFmFF'::ά,>Q#JͭE: +1 I-91pV?^~YR[n9fύ;K [ דϚEk:W{]!bfL%yv7g3a_naRMp6ȱV7uz|F2͔4:hFkAYO% k;͘-3xY'us5%gW ##%wI1¡UglN7S"~e_5DtСӦRS* ﴽ5 Aw:Ot<`uѡѡ۬ܣ:+1ց'22cNrgvϧNvAwRbԼ>8vIZGt^%"Rz.0:(#i_ه~#.*wlq^G~uNgVpZhVy5](v9SԱѡѡѡaKithtѤOOWW#SuujF[?\}N@?ZP}u0STn+:rDkyt:z{6Oĝf-s:sT=of}cNY nޘ1g:{\syc5kxוaMǷF(UtVeO3tWyNj1c: = GrTXwxorR9:$xt/\ySX+ߍ{Q,sZij:?]QIYb)oo9>YZWcABW3UzRh4:4:4:4:?&}Lx^E4v4d{t6ޅ (ZWq{:ښ^+N֬Ja݃iM{/21a'8Z<ޛGPaWQN~pZ*n^,b1|2 Hᗜ7qdJΨSѡѡѡѡѡabtPOaYFnXu^wb.hҐ+Lq]O값WIe^1>:oíʹ4fS1rL~U TAf\Ovrqپk![Y.ZR8iR:yb\,Z-4Ǔs'Zda|Zj\ :]NvJ sƌo,^:+9Ur]hjtz谾C:iBşNj.3wk` @#sLyBd/Rre֚UÝwr]/gt^yx.GZkCowmو꭛Ҭk)LL4:4:̠'V/`̺CUc(~}YrMЁa1НkSδtu};k>;Lw<%,MxuP߈:z:}%Smэ3cᾸeܫރ'ȧ 9ZR,嗢\^7/R]v4nYZ5a2T2H&F]-Q̙"q9LuVsf7f ~= 4ǭ/o378Rw ;q܌3ny%b,1y~(07;<<^%.v+gJ's;v9{平Gg/N[*]y 9Tp͵Pb>:)ق.Z4%絜5qOOw2|iۘwü 1IΊz_)j B iJ;#_ug *./(-kCjm6cDe6uV3ZnCa1ʞ0s#ZkTqKM4]mjحdrwXx8| I}r8۵L ]Trn?֋9u<{]l7$F4݁;u,| oeKfTOo;t>? ͍ԕ; {u(%W|#'koPnththththtPrhx?2Zͤ߼KIOpz뤟5y=[d+褖 +wT^|r̟?f{w+ks\w'o0)`݌|"r2SF9l)+OLC@ǫz!>nw9T.o5_T߮=r- G糱*j %cTxŖ1]t|ve3.gvژy)3r,}@߇E6:h Y㻫·pZA^uAr^%vʳ&о}||,KwYe͸4!X8{r\ʪK3:'Ƕ\V-R$boy8_3v0=>$Mڽ3}T%>VϵyW{wLskMH8-q ~8^m8ޟց_wy̼{AOp6;; zM|j[sX.{EgB (wo3By^e籀f挛 9Yͮ"K.þ݈([]W6B#vy!tc5 {D DzAɮ9[tZ K` hZ_Zeҵ_Wޫı,I-:@ʍFFFFFNEGz<7.L= vСu,`p4I\o<1%#p'L3ZfcTθ/C9]x\oKɫy8?G=fcGi ƌRy8_,dӀ3G)i8Jx ?q3okqW~8szEGź8>'OV<asokkFg9XnGW)qz褖Q5ХJ%1"nϖ91cG ##0}5:4:4:4:*S%=/_5<'S33=LcJ&~L9g>\r%UU6 UTl99~ͣsZ ~SP&VQol >٭;ku31~#/~sRȒvvP)[t ROɖy.ѡѡѡѡѡAy㊥T," NnG+˝4gGj[akoCÊ8tqbqWNZ(WQ) wcFd '7u={仐T~+3AK>dw*YϳQdYFo||OPݠhU*-7:4:4:4:4:TЁehFN=8g#uvڞuU{WB/3WR%TC/ Xb濶7E%Sܬ#}9-usv8Ϭ{ɨ':R&+YD0y$EIձ trB8_Q_{YUoNz3ۍZ%d'UH#zrӨ6qQz[lٚ\{Nq՚4UZsuɖ"C:P^L-Jl鳳͌M'Ku\1ԮtVW+ȳ/<[r\%K!T/6f縊Ur1}e=Zs3)W#]oޮla6:4:4:4:4:TzVު9òSQ[TM{d_=.ѓe\ޕ#!Pi[8ԜgJtyfHyP;in+`UÙ6E1 (ѳ;*FFFFFF*T糸~~'뒳8N9ޒ7d[p %Cg{Y"{u˳n5ki(127*1;|̻jR=d9Za. ['/D?E=bMگ\R״]vYP!y{-]<Jnthththththt%:S+(2=g9V%vqknw Vݽ|v嚩ү㸑åu)#B} 4w9u* Gg]YtOuCxEJ]47`:U^Z5ɝ6s`N^hƌq<ґO/8liththt{=tpamaf[9D)^އrq)csvщyquksMmpRU"O-(qqOKBsrm%]&N^s]k.JȈ])K[szrwEv'lކ߭3[P=)|E3YYVY4:pjtFGCCúJs>=hV'\ޑUy'kڠUyW+kWZ0+xm%r{R]:?\?9gy]T)j}yk{Wwen3EFKnG=Tp9:{'1d-pT3z^`fFFn|n%W-bgt'Wgmw \:dt,B5-HOD_IJ gt&dx c7U76ʨٲe9ޚWe^iTi:Ig_8ڔBy~|#Dž %)#QN^ޯ`%Kwvw5:4:4:落.'ժ Zq%ţPaC[Qc+)e%tD9՜ϕ"9XLB=*r_Tq6ّizPJ|ovKI*'!GQ^KTFW*/y\{^k:3}aY deI՜FǷFF|ovKI*FC}WpSΰ0_+S)6f w+Xr}kHyZ[mWdd{]kLk9X:9R=8<;=:f|6?(/3W2LsKp>J1"E5 '1>Sa FUjtȩZntht@ZAy{8uD,)FaE*!q9ܝcV[5}55Iz+-yrkd2rT`yfSE Wq1 r$[]/cy1Ϙ7[<W Rgm%s^]kxؕv.7~^IERN +6cqQ>7"U++ecagL:C7ާ4;6d~.f85:8>7:( t $;{M3%^8fծYN^u{9eU̖8R LgEYX.;r-UC$s ݕh N31wrgPVhјmӬsE0㯋x>0ѿ{;ѡn4?0gb&"o-vOO_5VnGv gTA[u~+ȫeNh=ڲЪ2, os/ e]GmKan":It=u]cqeW灠}/1谖SCCFu9έͲvqiI\sYkܡu|~TQqӤx똴ǵ+|xd`=wϸL*CժN+kku.>ӆYca 7o̼ -8rmBx.QkJ!jCC*{otp׌8_.9oP%;MvWFFVY:JJDiv^qU5}q"+wu2]$yvs _׵sQ?kfV/d:3Tg</`=ۍѴFGsEW*сXh#gN{zMR'Y-;k3;戮E}WkIR/RSeTrdVod }ޜ۷F긿&u*sܦgGäf{fȈM!"ֻyU~A:.huTOVɍitX7ЁuRee1SvlA4lzWgT?d1BI멂򚲧uJNʕ~+3J_ kkA Ag;n*޵hfX=7?R#Uw%:oa>1chQyw:{0/3R߆|$k{LO!V*谾˝دOY3Y+\ͬƝ87ȽTFgny%UE'+xi9qNFr>7]}{ V02OpQhgjk.:Ժ/>{QiAS:ሥƋp 4:4:LFǷF[Q(7b< ܋wCr](R/yy]eof#Ug[絲5FWtz;z١Kq7]((S^oAGXFGzI%^lGv᫠J;iⳲj88c<蠧`9I1lM)ݫPʱl_Nǝ䰾2TWf)dYk{1YaftkJ-˝H'rO^vYBA+ JaA6sp7HGOuw{{wX4e:bJx[Ne qO -8JON'3kM}:XԷZT*EYʨ.kjkX5\A Y ձ2o;W^>)TtϜ/^R$Sr'';+vF9(/t mB+ԬGv^"r&9p+jjt5<4\;Fs㘳~2Zq4:Ff7F,I9jjy=:(N?$1<7Y>)J$g5f0r ~K/8T&VOlcD?̼2o1ouD1P5+x6UwׯK|Mwd'up˶:تz(f/#}>Q6g,7h2o)eѧ %!y>$Ef\gI7j9fe:>׬[Y>Ynү 1k <ѹh^FKǽuq*Xiȑ+woK9tJYKUO9 l1-9wBxW)[:4㖢ۍp :uccot:xCKK|B=d/X0/3N<@|Ե=Hzv7F"Z}˾.??f{aq>b}Ku+-YRr~e r8Rg:\' U2%:JtNm] ·h +i1:G4リV,)\kZѡaCء2%SyȣݢEc>18[}ǼbkTSƵXƬ< y7#7v6q)o6'YUJ;)u;LkdwcW 59Jr%xG4p9{ŵUUT[X:ء($4kr G-*>bAUQy 6aqzF^gH챝&SIijthththtX7ЁTsT*Rs[S~+UFzw^˱z94ʽwj,O~>{3f~KsG0+|m,S2 ^\BqCict^;rY*XV!#~F=˿^9/hs/X K,FFFE1n˸zO1t\.e])W?mN'U] 5!s_mmcs/=JO͐%_bC7c{C|*ˌ8L'ZvUV qkʌR@Dbdʙΐɳǥ]8XoңnZz'=Vo>+'ٝRCI?r/:(TKu7j·@tW29󇮦{~gF=k!!m:s_ 2zDd > 4CTrۧ%RǢ(:+mRj9,!  :"O۳v~,kEn!+[VKTzQovY;usDŔ;td)ntX.5:pjtproththtpƺ Ǟ䘹4>OzJI(ySG1 ~HV~+шT)SB|& 8a{qUB[P{t'HN}޵[wq4{G`.CxaqBٝd uxUJϺg\Zs4dƂV'85:4:4:4:0:'w-GRσS&VKF v`\Bں*1+=Ep;@g-"tic5etJ{Yf=v0.λֈy.Zo9$">6f 2.#QEg_َjRWd_lY9nV[(8j<ٽ*mththtiFgEK9Z_*\t*zR)x:?yNc+<5§!R>c:p ORǟ숣I.b /  #x>c&0PP49bMl$Wf;Yst:[S?墭9Qӕѡa5cltpitht^tęţbGvs#RtwϤNju:QgU{][hN& Wŋnj[c)2N?8;g>;9ֹ4m3QWyx$*O5!sb9LwƯOWeo~gݍ^5:8qmthtE4:<Ё[1[}F#=倮<:>kʖ5f"U='-qdTsxQFPNfϩ8'(WT .[9krH= zv:G4#R\K 'B#q .YPYI"[FᴴȂ~]kS w;+-?3-7:4:Gr̽5i:"\>ы׸K.>f:Tk{ ޝ)5WeExrN{q5T 1ny3G9sC#5+iڎb:2,װ̦8꧛àN~(<[r<;kr)gͬjibH]U j=sRǮz~CެK:8$i@-2><<4+? 38 ENH6m_=+EeǚuG }/t)ET縡=r5ᝫnG(GQ3ǬVzb+=Yxv 3^fg#uxz u䱫cv>-y X'yX3dba{Tgr3:(O2YKyͅ\at>Gh{˕F_}}\cn,vQq-U燝V3P⾱tÍIN/ vr;_u1J/kW$Xw_Ԛzt*W@--#x3@ po;2=܎,WCCCC{Q;SFwgpvhLh8崮❴\αN4*垝.iAis-ψ澷. Tk2#:q!cVѯX2 Zt8I[8&=KF`>y75zS켁{CC mththtp;Z3T'm}nWDm孫0{: YߜVp<;Ok kAΦOV}_+X}Nj˩u=z֟k\J.1`;@ھ\=|"~_)@v'kWR : =ZSwN=5\ЧѡѡѡѡѡabtvtUǨ0\V+qWُeH_W[Fצ3W^jŚæZ 'ʽ徜uO: nW*J}A78KCCCCC%I:|QϚVTǸ}-5f'n8٫yL3뤙K7t܎pq ctQ#SETbezƂf &I]pa&ۓ.{ ĔiT%dv0NNo8i3s!{J;FFFFF :8t$37A(X+z_KQ.U"BuͲ{᜗UN~ѐ=F *mfTzy=T7K D9zTgkMuef. !\hnoA+f\5yw1i kAxp ѡѡҎѡቋN2N9xOX.yՌײy7r*Vl%Kv^xdZפqƽq:wһry~g׋i;IM9.3kj+JT~jGbG쫳,x U,ޕ*ig\v:mٕab[[PdS}n-YH6U6]!Qҷf3Lj ~Zdΰ&WYFn3'CNZqa*XSu4T?i j&G7Gb^}N{>flp d^|C5vpVWoD:>o0ǻp/PSƬwUߍQmthththththt{',erT˱:9r4=U!?}]Ζ=y&=lߍNu5kEk^&Ŕl5ԯ]A6{lǙ jjlWN:k|Zu{܉kr}- S껨 tyF]mW'bDCCCCC5jݲ0^޻Ş \:1&k#[9hӠ-Y"y xSgD+U/4}K5=ruJ7Ж{wȞg#uc''TpKxN֑EOwrJ݉T_A-"<܂R|Ֆ QKU['g@344:4: 5:pYS"vȃJsdʳZ;T'V}3'oQiVt_,ғg>U"u\9\Ѩ *Q˳78'.:YT4|^0r)v(X [{e)j}}w3<>Y#s8RtpJVëFFeMhthtXiˤVyω;m՘+φ5x4oG/m9:grrWhǽ\4Oڂ mmhߨRiq>E[7@0o HJ͸fjm>>㌹b_FS>9ƫ,xFFFFFF9pn\2 :~Ku t~G9<[eKWydƈ: 9a}[Vȕ[,5:dg4:4:8j'(۩ێ^gyƌQCp/~E^L]Ic#r\꽪-:.Og˔;94׻\*;`+˳T6u@#B~X1t\oq91NF9Ky厇 #NyGFVM_5[DPf9{tWFhthtxCmԎXvxr3"&dȎO5D wKT۳u>ܝ{k=rou̇d|:ʝު*#[QZ:f_5fA&HN+]vkrʣ"fUTë\lѡѡiHlCСn}uKqk1(cqiR\`*-_{l_\ߤx r|cҔfRܩXӤ)[D^s! '})}SݙGkC$X>/mߝ$7.=+LC-(.SfhI˾]g:[x-+SCjA[-SyNI=ŗW程CZ.\tAe3J޲+wQ֟5AtI} Ocv0,eczefoQnZZb :Ucm%ٖ3+˓=nes͛\n8O'i=;ml%Yno jh MZ\-+}._'=Dz'}CC<_eFhm'J$Wx*& :cۭ\6?R;gU*[̶g jpf=Q&R1M#EvȈ葆1S2gM9WYe3wk=>=S5b&KG_)չ)y'oncк3:Wd=< 'jFٯEnvPv݂6;x45OmOdlmnO6ĶL1Wx3Ǒ˰Y`VQ-ʩg`LcyiދcW#^s_8!!ء<=5vvhojh[ov{m@j!<.eulz,:Yd)zz$ om?9ZWSTVz4yTR ;%O9fK@ Av`vvn5]O=SY|J#ma-ꉱ%Z)%!ءGОw}K;;;;;;`Ye%A, K5m=BQOp|:3V63f<ڧkߺD|JTn{deɹ2~GYa]9?7?8b"样oR;}Y0iko [ںt ;66~㤍?ԇlng[? !-9]oܫjh[l-=LQi~R<9*3.(cG2~GI[sЧtyy]LSZyzsñY{ l*X]黹s\`J m w؏.Ziq3+~Zd``z4*!!A3A{D~PvoRquoHx˾jw2ي#3GA?A{ݶ!h}L}Ukd-[tfKC;|ؿGlS1*6GOOرmrJQ ʪPV;;d3YydXJϺ-,x83ǞXY),ۢߢҞ%`>X/h-k;`Lܓң!:dOnO-%mDQY  +A15d^'1 -aQgwr-^,=v<{n#c;;;;;;T'w (l|PG7h$gO,|q9:N@l9nJã([uvȐC?MCӄ`6fe& :[Dg2>b9_'`z| R~:}B`=FEﰕka!/T_7,%1K V;d{N<:q$cO`q}8>@cY G[ !!!ء vv`m)m\MzXz[<+_:oG꯴ȵ^=g_f[TwSI'y]8q˖,Zڥh@S /hϒ[Ҷh=2a9cP?Lf<,;kNk H-.-gD +/44Wfm/=@tkg0g,ǽes vvv!!ء۟,j~ي=r1\|uX(l vG&ZzS𚱘~IcI b9L,j vvvvvh c-rUֻ0`ǔ k&)6MI~T&Io뼧:iXi|UvHJ߂ԶWd"l"^<յr@vzq932_mu`>4ƣ_glQb(={b=\ˬe:}vӃrPmtC<1o=̾ G5WV v}cAe]Cfi'|vgڳy0bYnYyS"iu`E+~s)XcF-aLyKg)kkZz${A;;;_mX}'nӷ'~gR_DȘ_D}S6Gڈ{=S"iFUK?j h0˩Dn[7/Iد۶b=vzh-euFYI \E@R_G<gQKbǯ h]f<ȎǾR=Y{j"ך42ʔ=`J`:&?d= k⯳?^=Fh>E6Z:m%ҫ"xkvM7l\[`VJ^AuX`(=P& Ͻh͐:ÝZ6ku{ t0mGP j m?6w'1M<:^Y9vCGzO{5b!2Mru{ҬzlZg.W&J} ^۲E.)ء;;;;;4;d+66F{}lzôr3 K2l?}F'+K~ųl`hk k'g*/$^N2_:yNė^,#' m͗_^fy:krFAһ#Ss ,nW!;T3;{߳y?l%%Z0gsK׺қx/>-Lچh*Z|39KP 2a{VeKҖ%\kP>k_pKc V u,\fOU?{݉Jx->GmuJl;ili'h-15a3•G]Cq1JCGJ:>9\_ Qņ+j mIICNunS;6\{.g(3S*H5ء;;;陎Fvk޵Ťіm-I>߃$1<. z<2oΎ%V&x7$0o Z$F}):OvnV!AzYt@BjD#|O/a-md=YcW1cS_LfFk]ٝ`AӦ!$ܥO!%{DZ{o=&)Yƒ#]>0?3˺?qK|s@j&PUvvvvv=m F}j~{Ni6 GgcM{^|Ҟ:<Ͷ$R][V='< 5_OIAvi! zE$W]G<)(-칐})V2ggk(Rm`BCCCCYc@댽5,Gk]l#+˓B? [ YσŰg:^,p"x~C^qpZ>5uI,9CLd[W'aROf{2RxĞb_YBG Vxm+!!ءiǬ LqS٪mgdžWdy=c 5گi[f!mʵ-Zc'޽p蒬w\O? aO A*-)[PWLOt@~dalMu@G=*+0gv*;;;;;<4"4lAykz36x2~WK\~9x-d˳^IkYGCYwa=Y08mOݧL{sfmjl9/H߹l+ Gس=^X/d3mRLbt7;кXmA[rWbcI+چkۋldf{h''+m,fЮ65vL2Kd=JE[^/YM_fyזg- '3aPcaee90(2 sl}7O-?;;;أ#؁դف=15?J#T>kN_q5PoS=?Qr}>L>ZJ^oQ1UiVg,}^Gx2\ և3{?KPcvwYP涯#:@~eg g.LuplՖ_>kk GN J3+˖G=H0jלpOKVvyz͗L`C&jjr vh-'|d-իNn>MU#QxA>#"90Ӂ|φ1 xrC c|WPpa}2ݛacm&M*hf3fZ".!fZqbmzɟ cmLC1^{O?^x2X0][KYu孁c /MPl!Ask>–~k%/_-gshm5^um̅ >o6G0 cۅnm)*㎆ eL܏*zoi[a md`MXOuZKi\YZ7SO-` ,}e`[9dնq$pI\Xgm;&&JV $Fauڈ,,:&hk/|!@=9 ,o֕Պh>+gٵˮ ʓ.}e5[J{ s<"PKP&&5-؁#JI V|Iw-y~i$; l! ['=X'+{ƬYSbzϘ X+u|OE|N {~`ix~e2ddvf#{lͣc&+v8as!Oϒ;;;;;К-UGt/RVYg>.^W"jl?薊TGg'xl]Y-CZ_zZ%w2k}D3cK}#}̙iEX۪{x[MkQoV```L,m\)zM \e(XUF2x^ݿxoc2-Sرh;qrr>E -وf[Pyoa4Xjڊznm׫լV"```L';6MJ_1@+}co]c=EF ^,[QZ'dXlQsWe-bxu耰5k_= pƢKmߑ;h*,L'=l{G|( vvvv,`O)Fv6M3hYtY-L+(9K2pkf9c1'*>:SQ$^Zk:9}Ǘm?7TLm/ iZ{|Dv{ѳs ۢzl.G=UFCh|CL6̿DF ˟=AWG-rA`AڷD4J.Bۚ`j4XM<:Y0(`b4ۋ豇(rTٮy־`2b-]z'v$P!;>-{GTV#a>;i~uT}ue^xt3P&6sy'k}I?نHV<(pbcᩳGqm9ٽW6=¾c~->bc3ƪ]N``````߈u7XYz*+G8Buڻ",>#1>ji 9BPf+0OUY3}>'cFxWPAhi)3yzlǒa}hlj s5j̖ |;Lbƣe#n/Wx',@o`2 vvv`,0et}:7W=0M5ӣ/:O>h/gH)YŖ{Ym&`V3r@-Ş!扚3@)< ږ2U¬ux`+A`i$xl2WCq+60fCC+`&`>Uaή>b-,C{0lлR8Vs1e֞],c>ѭۮ^xm8 mkٽLO0ޣ޴G+ք4Ж"Iךm6ZZ;H`$G<0Io,'`~4̞`6N mEm#{zVA~>!؁5MCCab]Vs6Yw 2acM>K2VYbKޯ^Ԩ=#>CJKSGg|AL3+䗞_Cx[2,Hv-CܝyJJ)ge{KXXj׈Y<ל3``z/^;;`XjSddzzZcS `aĶxY-g2[7 olh cO=rXQeG樇vYțϸ^OBv_e%Zf!=ۥ=HQ_飬O+v<6VVa{$vDbPXyhUdl~kgp}/[Xz- D}c$5岻l 5G,9I6k=WYNO=0`_4۾^hYS;Ov\Ƌ_v][t>t$l_ac4u̾1L3YXႬ4v-hjV=gut>扵e=zl=)\-QYמ:Q-z[```zrc`!ء_:-ҫZ2Bǟsjγu{4m& 2sXՌz+G1LjT Y_d=f5k,{VrmyrzhExcSƾv:FfCNAg K۲ey,]ž3= ejbtOz$TmySD[-="V):OH^?zibOK_ ry|sSN/k{_Ŕ8쀳P`V.~r)yxx;$ְ!no3!؁e0q GMր#K7l@e^ -r&N/_*c4dsz`)p㷥MR g;שp?*J{praCz|5sе'Y _00N5Ж߱\{m2߬_n1?!c:7-";```[nT96 G'gU3 )ݓ20klge+-ml/G@v@L{#x{Q: .cժSG.ߡc=i<-=%yW"` sc젥i</}!;am[LT6DZ\G-2'[=ٿDh+{@Ps0w,}):~N.'odUZl;5֖_p>^AS)Ev&w)m>":!!!!ء=Z[fG?4=%jݳ Qmmik#+x S2xcAxF>QI^;hLz蜱E7N3dTTbښ Je^ef;m^_5:n;4iOCCCkdlm=tP]q~+Pj6GN U{[%3˜<3 kkߋ~^G4vm{Pb:^Ƌ>}2b1lo$+k2f>;<p{Zcos@m<Kd޳fˌSh X(`F ZcZ/;Os=4Mir/pUnȵV`߱uLb>+ CYL{Y,g| Ka3 j,!Lڞȯr} yȯ)k6z 3m y1/eDaX V?wuN54zRz vvvh.vG@ y=4vr>_/N}cuO6Rvvvv𴺹؁iRY/%5Ы<򅻦XOBUƳ~>2f#?ʰtJ#m;r`Lc7@=rվ =~>ImU'?bG=vc{YqRp̢ѽ`F xWCCCCe6=Oķi#H)izM?y gɓuc^9Xr`i}ꈼO[cYVcJ/+1K،5OÏQYXܪIV4nawaaCV o;];gOeu_+{~޴-)->' wn[5 Y5ǖL5mDk=cr`ѧI׬3=?alĶ݆-Bvψhz]g&؁əR.1~ڃ$OL&Mt7pjgU>xj=g,=9N8}j]_GX$GsPye-&ޏ=l8>&ҧ"GYg"390[ ;;Tt`mJc멟ױjD~=,H2WCٓĶV9_W,HZ,>ڷ$PWKhv7h=׶}HDfv-JZ}QKYEe 'LCqmu3BI``2a g[#;)l<~V 4`ӜKoTfQYg:KAs5b0-v/ huJ=Zml]x$lY 5iؠ]h!Yϊd&N%I 2 k]ƞ!H٠X~Az5\q%^8=!Ug  gCkg̍EMs̘<αFmTсc*ck5[Y-v=⩛e̢~fZf`f{ݑyq1 C`K4A+*! \ݿ[CÆ`̃}zD鳻['4l@y؊tX)Yl]s 5ˁ JΔO[7qw**+ `򫖭eh1~GN|ľ(*f8X[χ1)c@g````BCd֛^нlۍMY7 *Zr]؃v7T) 1 Kнi;6:0?Le2ZI+콸vctJ) ̅P̆a+.\Y_\.1,W}YXLZDv v` vvh9vnM<ٓ eG+>M3UWq<#纚gdFHreRv0ʓ>rc\.1C{>:KاC0{uz}>kWr.s>"BCCCCkd(aڎP}[l1K+Ni] ~SڄjdrkڢM3IϺ<*uا:h`)=>ٞd{\іV9#JO!;4@v`;5v`th젡򝝧C?) ^SYhX9EDOѬ{+E-L{ vt̓<#DZxi?3-޻R֛YSj+ yuw*1Y{ٮg_7湲LKw0il!o t+K/Qe4yA"Z\v&v` uy笆̶X gjBe~;G"{ ïz4oa<9gY+a?kȞ`̏;t u{m]C(~SyCeeh1=] \SF y:4`f؊Dc*HK-{챃<6c{+kYyS>oJڣsj LGO/eiK'*SOa p vP6P~/um72GJ-3;T֢`5k;@ C;@DC @ @;@DC @ @;@DC  O/<˽ގ&">*@;AVvBz1C_{UѰέ[63աC0H h'^}emb랟9㞃>hȐFuvA[d*<_y{թS~4̞jj%w}Ç ҥKϞ=:nOMFKL.o2y-{~O?wl=v뮩)kYH}5H$KճC­<`[6&^t6j>P#XzK{'/iS,~hWx|ɈwnܲyC5g5aՉ=6d=%ϭ|EʲKS Mi6>=:%H$K iw2__XLXyw&]uܳy{k]3>昣tGuUOo~uTŲVϞ=?fͼhS&\xGrXʔ`'_YF",ƨKĥ~WZHcVwK?$7Mij쪧77K)I?s9kȐobi>z_xYP,z QDo317#D E;ZTdGkίZɓ־f/w^=׬Zģ{\7Z}׎mwK/ysggmWC>z|&;{7NV/;}Tj˺kFu '_wWZ`OIAӿQnMvHs׆2 ڛFq=s>lw[R|Aݺu+>z$cn[6%T/Fb4=1ɤ[$wA4u2N~Y O( I kIU%R)55fθ$UKKp^z+<]ħIxI=171i7I3%I$Λ;;=wz3]޹հCo)&LdG\P(K )4պ+/U}8=я;lϸL 5СC@߀Nb2 줘O?ޙ~u4Mi:Qv!ŸB㜐 fO>T tٳlCQJzk%񬪬XJXWvҍw뮻Iom"ilxI%~mo'z١yto˖s>3 v\2T)7O*S#bMIcϾfQeܳg=_JuKzR^OE adf8ջwoF쐬.bE)O\_taԱ+*Q;m!~i->Y32vκDӊzrR/ZxYSUC3H 8iSz,\{͕Cl飋 ICJ(OOJDq^v%zJ2%9fywWEA~(T gIhDOwʯoƊg耺y$WeKaɭJvH.zdg_vUz=wɿ?䧱*>V,}СIg3fۛH]Qn>PN?mG.RFb_ &^7O>iozu}"4M--:Rۓp,~sH>lhqq7= =36yH}iMz7+ T/۷Ui*k!Ν;'rI7wvʧh!ore?xpicm S %c .Qz轵d&tci:tq=iXZT#faFSXSS3C5[c݋.zw2=$k=fLed2ݍ8>QO~lmmqřUl ׯk׮stu_hM#F OPIU &b~v0rU?g)2fSs]`}{i$M|}݄kLhG'w-zxA i6%i̟SSӭ'$бczB?I4 Tɐ!=V4{5*/:sJ vhh@vl?*쪧ϛy+-LS.٫ Ag]u*Xҹs^z^d!hoh*=;4 B%6`aCD P SP*a B% LA]E.0<* 0gd\;J4w"DD!LA@ ho3B"`C/@YDC @ @;@DC @ @;@DC @ @4 ;<\.{;RG 6 fYBnƌšgO?޹u˦aT;!ëMD5C}>٥Huf h%СOr~1|X.]FΧh{ޱNڵthveNܳWRg9CةS7l,)}#F e]8b kzr!9|m6wޗ]T>]O+ׯ_&P,l K~5عs=z[Wh{] @ D5Gz%?GxzٺkFu 'oSF콧=e[cw@ O!^s<?|TjH!1Bi̘чzGN/{!{7Nɴ/t飋铬Qdt6j> X Kp//OE?͛^yfdTumԿxo+a hj !}>tJl>;ݞKVⓕ􉡺w쪧9y`Vb-yeɿɖ,ۭ[7,'Q<.JQCt{MM3$bm׿d@@P;Y/&[G v]w;6}0~vEرuO3aIUE {r;VηB9ر>UO5jd^=>f7QC]$mUe*lvJ&6;|ܶݻء[O=,_T=W [۷H|V?2]\db+֮aIh]Y VzႹ_taɩcOI1F u;8UhmO- %B_a]iI#]MHSNxa틫Sdqۦ/$7MAvuϬ*` Qy]SlPy*[4?ܟ7";cp5wBv@*;ZزqtЈo~iۯ3G?h~6;뱧|ĈiKܷ?}~]^]f{5W5;Vu }Ze_r͓'}i͆_7H%K;3SPoV^f@e C{qf]Fv+xԥKѣq=[;Ɖ'tuaSM 쀭yءew`+yҟv4'@!Nھ BثW3N?od-ӏwnݲIOtAk `'$g?ʦvh2dbϮ=]v!<4QjV!I,kgxÆ~ߪ@Μ.Ƃi4C߂~vwkk8^| /tϴ;gvF-ء2;'UUDT?@{ftO+cVgj(8:{4QF&jvi^ѳg;~sk1f mۺH!)Yguo2yӽ{~x^6 ?;C98Y#+~2lǶO<)M鮩m??۷ϕݷ,yJƔD2Æ]ʥ'rز1%t6j&%,\07]ozu}zI(l =xzٺkFu '_z ~pQGQO=ŽӦ)M<4wn&HkR{WeTOe;q ;v|~*Iln@(QD ֯{~̘чzGN/{!{7N[|AkVZģ j^޽pͻl2:{̘$tL.^XLJ^ky<%AM7wv"tN<|fcɐ4C2KjSSYօ|^ݟ]T9W[ ~qeԱX'&a^"!]}QO.{L5uVWpb$[蒇%~M7gvm۶L{g{"fM!!Y~vEO|!<(gx`,,OIK1VA_iwߙMaSOv߽﮻xRO?Y/;iQ% ˄{6;n=;wKdNLN&u5=z){JfiʚM$P0?8,}tM,{ё#;k(wM`⇊Y}C95\XۛݶooKRX|yVv麵k=fLzNI ~Y_e;4[L㯽LDҫ]&HӏvH 9Jl4s裊 ީw.dɒD IיC>I#Czlކꯊ~!eHf]@ݢó?oM,^0=\v%v0;_Ez|O.\fΜy2e{1}|?oi hhcrœ0sνz[6;߾}zww})oݷ|mv/;dm{f7^'QF|aʔ)G=zW@vhп~ۋY&gozV3Nt;mc=[o'ogC hovh{o_}/Y\zq'&;zQ]Mg;G`ޜ/7߲wr28١uy3KgLM?gzɯ@ P%`F!BvlvhG@ 4 @ v"!`@  @ v"!`@  @ v"!Fe?oG4*S&&RDH'{T+]:̝z=!P:tѣUE [lgVgkdMRر}ӧec؇W֦n vU聰~3gs [U|5gO?8O/K7~ޡDeP%EUy{թS~4b-S&?xp.]ܳWwl=vF]SSRJY/YÇFO_M~vܹv+.Z!Px?E%˯̞jj'w1|Фl={83v=E^7ڃQ,1Eۗ>QmjH z`jWP\ウKVqWfG3CRnƗW\>$~([_ېh}JԱ$]][4^`YIѣJSuk׌>N8^nYm3+'Vv*}-70@ZVף)pO@q%j64_ei|%+0- C͗aAu kIIt'׽{gW=U~uRRV#+IԓK%~ٻK]aN3gSj#@DYN/h2_*x¢&ig,=p^^_Z{1- F>%[Kr`PR$b0-6;| B:ru.ݻwz0+s+Sʕ+)" QR +Ȋ S#l_'oK%G8­S&_Qevճg;7żY3-7 uI^dg0͎z+-i$S/N7|vsmSPIwYgb/I7H)t#+* adl ȪO~|1&E%/{5ij쪧70DS~}6vs֐!z'58>غdS;o=BҐ,qh c,߯3G?h~vXr͓'}i͆_7YKx>}LMOf,^S?bKWJaYkUW\~i߾}gvF“Q@@AvyuɎ֢UkV-{=p+M;w|٥$7w}&4͇ӯ]tѾۂaua}$*)>#h~Æ:-ad,;zDdbխ.?(Y 2h6z!MGg3ܗc!!v`@ !v`@ !v`@ !v`@ !v`@ !v`@ !v`@ !v.zrr=Krc ]¿|Oܷs=sNO[s Ӹ$|\U[qYa~܏e]v_#:8cz9u=sDa=ةcݏ8[?U~f5%:v‹J4n/K._/;o]֤㽕U1;ܔ r=s۔?+@G.%;1;ry)_8;2÷'|{{\W^ޭG/q@cǜyǙ M7aÄ[>ꗮ>k;j_7sm&(Uq{񮄃}go*/sBMrOr+7kYJ_7fJaxء,uY=39t^⿿ j2wQ6{U ;gaG끅/rbGk[Ļ,)m,I1+l}eܚ\*`n.=y'|T(w&O1[qYYwnuW[61qĄa&<>],I17o?Oj0_g|o~quݵ鷞^q{[oLe_ b%*f<-ln;h `Hrc s.78A=VZˍ,g؍&rGCɿxoee~vn{v6\yWw~wqv,>V|律N]:uޥ>s}a7nOֵx@Vv(ﭬ!cY/Y;pC'喜gCi\nUk3!1?}-?`@ !r"aCpC ~`C ЮP/;g,eTlv(;R@ DC @ @;@DC @ @;ޙEq_KN(ܠcl4jD4+x(CflILE:fi3tuWuu[g :ABH !AFPGh덜 -RIaddKccc{{N8ADPTpFP  gg_8EF;.-AQ_VPYz rWZXX͜1^ ]^FFFp9^\=vhjU O's"-ߩSG.y٭k)t^AMZ8z >9ٙ8 ۿ#AAG䟸ːKѾĈ+as:$Mx|=nnm͝%籄Of}҆%! 4Vꀣ:ׯ^T% ޾7Kp0y0O+TNvnS_"߶:MȾ[gy%A49Qrghohh]Ny0OKPL?<`nn1ޭ[68;;P\tGgDLVEo^Y:}vKWJ23;sA3_p^``K*AMוfǰOe gOG=kYR9@L0Fyzx\\KK[$obx<}{ϿZEzo (PhAsu_L/Z7mXWTpm[7Ο7Kjlllbbv @;uz/oΝ{iilW]hVAY}͘kP,P0.OLLZzv$AM}UkW-׺u;:/ ADC_AcbBKBWu  BmhP/]vlmZGGh\] <<:tNK@Pnݠ{wz}8!CW`P>FQ`7Əa$<N|O3a,x3΅aBX.(XVh_aCaش l[avxعanػd8xRS!-  ̄c ;rsI8}Y8 x.]+W5~JKm(+{(/GwSx> Gx ~?~ohL)1=ya/3xn,Ke’aXV,1K׀W׃W׆W׉W׌W׏u5u5u5u5u5m-큭m-턭m-퇭m-튭m-퍭mvր6Vvփ6Vvֆ6Vv։6Vv֌6VvodTcOuWۀ5_+u_u'.RRRRc8:::::>$u u u u3ZHHHYj|w u u u?;@@@@ԣ:ȟSxiO?yIw u ucuq'&88h{j;Vw u uhvrIĪ5(d O߁ 7<_vJ]\'VLW ߁ԁԁԡ^@CCE2TF3k[l3vΝ:L?'T);%'2(GN`cGvilbmHHHjׯ^ӻ_u1[h 00\sU O<ɩ98H8F]*):4rۿuq۳2ܽ}Dα.~'OR;G XoLV,_Bq$^Y)fl09R!Cw)7'+--|u%hZ~^nXhH=Y݉;pWQ%E\`W/GMqsk;olDAAϙ =T|G{K6I?|ގKu<(?+%Pg5EOZlYp.K.F֭RRR=SۥWq:(_];bѹo[YYJb)&kmBۜ:9}o>/hnn899>e j1FZX򆣾|!bzuX`|jy0GC@/;Wٳo5ZPĬ]hP^!& > _2Huk66R)-h&9Ǖ7C?[jDnX>(c7"Mwذ>ƽ];g29~dONwئ;oϚ G]c>P'<СC,t7ۭ$whݾ%{n%` C2rpΝ?[98쌏-+^E-mLu_)~|5Щ򘶫c0޻Z\" t)X~ԫÈLF.Vq`RXp ?%'PYV~Ecf^i  u2Ty@x3majuH-a w;S3^z+3Zo: J?¿ `1W8OO_DnᴃlIB\```ekW_Xh Πװmx*-uh߁:((pci=wK~' mQ,LMMPp)`Z +WUcMo+;8)աG?0z!Y Z fߪW!˕LQ)7ĝk_Tsb=Q˗o(3/.*}Up7 ѣ!-pUuXO9o z{nU?fx&ad[e&arӹ5W~d ZpKsXc٪? h555wh3B*IK,DGА1kװ_-,,7:,5'%ϔ}gn !Pq{b̒j0NكTxyeRXJ$aL:LX=4$ ,~"uhRZ|k aAꙥM]{:Ũ WCeLxRpCBTCꙥf աV:z;7~`:H:r<;I|*#Vӕ//!3} }aJu4  CޅW樟Y2YZ&*7D:gyfIEb^VՓ#ӆ(#'\ *7UVLq0&Fè.R; >0 T?]R@R;juhܴlzp<+=aW|qѹI#9c΋@C#5~}橴3w!L|gf,;T{Z^>;/YXϟJCJ8|ga^juߛ*gH_Vv%TzOxOi}~Mw8ܡC{ccc[[ kM T+.ER89T0|uC1q*=O=vi-Tk;Y/o7Z*;L` :7ZJKKϞ=kkkoؗ!j,WcH V%/?!r&uT>ww/,!ݽ.O,jow.Ro~RFG7Zc,ZC?KC|;XϠ9?Yrz]1~@xg=Tj >R:&ǯf͆B0L˰@_Yb>-[::: _/.D-[|lV摄qb)4$87'+5eVK/Tר6R*B ݻm :XˆwqgsmS8:<on v.[pqm.]逸rãDy/DMqIn\b#c.b *5Y GkG,Q:m v7Μbpw,M1c>(ìbsgW/̓  QJvUݲ?=xpXiF;6GƮK*EqmM*5VPj7AZ#*PWJ,I 9ٙ=30)tJMfIKᒣ@NIvvvÆ"]" A\J@AhAJcXP;jiii}0p=5Y(0t14T'kVG K3 V)R=lsyR6#q.( J(Pu\#+.ԨE 7mXWTpowm8^ԷgpppҘ])W u7zt ]PJq$cgeY"*tǎ}յjT)RXXܬ/,Z8_\bר6RUHWAM?$Ą G . }snnnS&Gr?B$4Ε>|PvHj+..d0*4]du#vݳDϟhӧ?_6a ƿ5Msq8nmm9q+A/ݻJEmL $Mtt|!>n[qѹYduܟZ OԮlbꐓٳgjqJ'RKہ!Aܪb@$>)lwܲy|Ahƙob>,,yk6u޴aFڀXæ[0w}}1zeqyeddtPtj$q:Qg6PQQѫW/4~,r߾}cnjǍQ(%8XR:̯./U8:Bc>}2 i$) a711n޳U+ E؀&꠶i$Q Ơ-;3((B k&K]Xo:8;;}P8,ӧmOfu4<6#"5)a~ \}gŌeee'ڶu۱1ۀڠ6}r HOEz6ni4\0W9egky0yX$bIb`jjsf-[H܋H֬G-7VE*+uJ-ٳ;8T0ݥ4+66 @Yku $Fm@u6􂹨={tGҒgio^,VuuXtRлwoN&)T{v#&)2z+WDqڌ9M11!!Fwh*6pyu d*m4QaH,{속5ZTD%q KRiѣG}A?{!A$[RE*ed(*8s2c󦏘YrTp.[hG1x泌.sMlcGwlhۀv `.]^>p]]%nIbEڪCnN ;w^\#[[[cS-"223ٶU+pyk6͝rdvFz[ioAQw,9o5isxvIJhuuUJ2}~oM;/xQ'PYKg;{vyfbw> Ǫ/p_gSSӀT"+[8DBvơ/],@k+/S8:2Yɩ95ckڴq622R(ˣ)ȫ= AhH]a1hx흓r %QP5̿_xxƟ?T"+;q~/*8ÜW8\Dqoڸ=嚛'&ij.{Λ;RD.bQ_(==$PN\\:KpAJV0*Ve_^@EDݾUxYJ'zMY3)q 5ՁoW#[[[JWy^7T>kbY͕q$^t-79!&D&ů3':h+/c,^MwӆuEg~~֍ byfeY"*t.:)cǾrdhHpXhȥ*Q,a_:HN7Zkb@$,,] B7]F+QcpW,>1!œ{vMG_4W.)g~^ݺZYY~CXX(ZiXh:rd BÚѨx*_T"ᴃ,7Mv.ԎTҳ/3 ,Uddf֍Qǎ*XhHFz*z1NS_pm!+u`KBc(Vժ޽֖Xc-B@g+xV: %XFz ߃{@DvĢ.Jְ/4:`0U| aųzCW."lSeO:+-Fŋٝ=o{3aet#αެu*L&ڢ XUwTҞ=eii∇=|Pj;6GwĒ7Tp::w¦.UA`U%kH.)T{v#UV ?#i)Tz~x$~\m܉ 񵭫Tz[7g#-d8H,Uݲ66l&VB jܝ) }w=8̆;TQ̒Ȫ5 !AxΔ._C"^J,S9x0Duh.-6X336o5k%loPC: rR@=BO /ȡI9? 'u#PrA>PC: rZ~!54T9@}AWcuhAQB5P:躀(P_mP ѬPyE ,iP܂:O1o@A͖{7P،~y:/A['|u0tp'}#  ʁ3k fq^ٕ.A b5ADsCE?6 endstream endobj 9 0 obj 74314 endobj 10 0 obj /DeviceRGB endobj 11 0 obj << /Filter [ /FlateDecode ] /Width 63 /Height 106 /ColorSpace 10 0 R /BitsPerComponent 8 /Length 12 0 R >> stream x[il\uUGm pu dil'UqĂDzd[hj6"%68Cr/3pHZlm) %}H&qp}w9ܡeӣER᳁-?\yɽ':|`Ámg?x`;x&kUG[qn{λ`ӞmOv<mz"x2$F?b`?^㇂j͇[ƲwGC{Wvo׋/笩y5=v4{˳}mo-6yQSm_oчC{w>!g}߳xeϯZ_=kug[2foy%-5oYe|,_-Y?x)6o~q3-nzº'g=lYYjMK*זgFl&UD֗+>||3ehT|3b3#3'fNM̜939 ,L,2s2:;=>3QNӄsTN3sg::4; ~4N[ L b0lORd  DD|̅tn<2 !"ZBy26%#t!gvd$' cXtd8^^__hpw#G)2ve@7J&i'5}IM15p ϻdbeq0S0Ld.\H j &"B1JPE2X@><קtAr& pFFmR+c:Hk0En:': {"!<&Ğ' uH=LDd<B0D`k+4!1 0b2C-+V$<8y$HVBpMy'FO!'`\a Hē[.'DW0R Y6z> =i&'0n+s# ڐ=z:\aeS9~\yt+]h1G8#N庙mZ0asz21ӷ3O\TT$::]M" [hG"* ` ͑&/uEHjDH"A#!1#4d!y.-z4'u,HʞB(F#%r֩d EOavH(-ĭHv 'xB)NոX ER\> )4RH&F\Glet| hid&GY$ %U+cR\ܲ +2jIxSe4ԜNiVJ@^$=Sq#Yt2 2tbVbuK6mqH%F R 8OGcA< gHcºdv&I}ԋIMTj&!: 撞fɬ|%1V,~sVId&M)&䅿!j?eIRhXyX=~Kz*X9TA>WjGbd"BkZ-3;[\$SVfdC0ec*y$q˪\D<ȏFiRSB'e<@ ;zRӯBKEu32IDybukq>mz$:YvRS^gx1y`Ffꦏ &SՅbu!!zh*HISuGIԘ2;.&B鏤n#a? )c$xעHFZ<鼤itH ]ҍVA{zCCIc-e'e1 5U }o9Ưh0aD L&~D1 mbX\ɔyU-QX Yi*oGb*n TғRNЅ#t[:21:zA 5-ƹsPg2h\S%r!Yj&[Ƥ:OLh64tMK q񉙋L@*ZAt&7Ixt.W(T~B{.)ΞU`J+Ѳ^0`&YȂЃIzŔ][SuXaUke@uDrsȾT{1'h1Is^kG.P!r*,heX|xx9O.|*,{ 3 cd84 .K$,4L"L=ȍɲIj&kR%Ok%  %,X.Ka -U¨]Bd?<7Dch| ܽA逯l`<4Fz4Fl𵯧04U?9VgKWo4<ؠPTxaN{Ѫ* z!`9{wv{ 9.gK{=nNGNC}@>1>~g ua\>.ȏEZVni4N/0ҁY6gwWڀA.Hy vوv |}]!d?n`VVUZ- =Tq55b؇] n24 "Z_W ԡPNj\%Ej Omi( CJ<;51zSq`Cڴw ;> [![t+LzZ6 / ) Ysa)-.逈r[M1& _iki,+9j!` '29z䰵@afJ[wcA8pxKa`/ oy 'R }D8Bmu%L%, :KSm7!:΁+`Af/٬B%UՕWTfi%S]~C6 ]a*螽KN-8 \@NyyqqIQ;899611zw0hF8JN;z`$Pvxsc݉D.!grRMFi l8woIϾx7o?}e Dݳx<QSg.a x;1[S}u}Mn }=]}AGKS}mS_/?c;.Tv۶q-FuwG<.W|z:>0xMo{1Cokg|eG t?Y8Ĵ'Ԯʪ fm*,EZgXCC'"CLr lf==\=v[R(T{꽖fmuy=mp[hV*ŁㅁcGdg !C0Mu N@U#C}&Ӗn0Jdlhb|(s|t`|l 2`X MuёeEA 9l@"yAhWx£v;zb<" v8͉ࣷl0uL@V$A@ q2RX~ ȹ`āmF 9+f wkr=Y˙`zS8>|.[sj& 5@DmKs=U -ՙZCApj0Dq^$Pôy7A|Ű5wgi26xv"X[WW0mZ yh.v {C#,8'2ʊ@;1z:G2ȡZхydR˵qt:Pc҂Q`Q[L\L'WT t#eLTw[Hcid*?_4@A&DQ4mRIxg^$! @>\0j(6(;iO?i䰾6 G<[WOwG lHQęSgNM68szΪ$jHҔh({\X6Brڀ'F^Z(=ɕz? qMMa j>X> 6S}FWz8bΞP0i5靜 ‚! be|RBN|1V b[?E(PW 1?a"{v{KxWEр ЎY U $0ks@. ²u}0(=08E_<"i:5&*jA'^X{{:`U?t;&dגPKXa}l* SWSTP5UK+ ê¸ʔɹK1@GnQ%ʕkFOqfvk]( endstream endobj 12 0 obj 7731 endobj 13 0 obj endobj 14 0 obj 7731 endobj 15 0 obj << /Type /XObject /Subtype /Image /Name /Ma0 /Filter [ /FlateDecode ] /Width 522 /Height 876 /ColorSpace /DeviceGray /BitsPerComponent 8 /Length 16 0 R >> stream xұ 0 iq4;09,Ҧ;ghNcH8-VXp=v6 endstream endobj 16 0 obj 504 endobj 17 0 obj << /Title (HilbertDisplay_GUI.pdf) /CreationDate (D:20090630172118) /ModDate (D:20090630172118) /Producer (ImageMagick 6.4.7 2008-12-12 Q16 http://www.imagemagick.org) >> endobj xref 0 18 0000000000 65535 f 0000000010 00000 n 0000000059 00000 n 0000000118 00000 n 0000000300 00000 n 0000000383 00000 n 0000000401 00000 n 0000000439 00000 n 0000000460 00000 n 0000074970 00000 n 0000074991 00000 n 0000075018 00000 n 0000082890 00000 n 0000082911 00000 n 0000082927 00000 n 0000082948 00000 n 0000083641 00000 n 0000083661 00000 n trailer << /Size 18 /Info 17 0 R /Root 1 0 R >> startxref 83848 %%EOF ShortRead/vignettes/images/HilbertDisplay_GUI.png0000644000175100017510000030726712607265053023120 0ustar00biocbuildbiocbuildPNG  IHDR l:sBIT|dtEXtSoftwaregnome-screenshot> IDATxy\U5ꎙn0$!0AĠAF[g bk Sd& !HBHBuskV콞'NUϾaP>hbW3222222vqÝO>wؤ孝GM(5~pPنe+Z_S?>hb'cbt\?fdddddd|(54u}cќW[f @!$|@NJX9:V8#####c=?{{,]C6)؅|[;مUd!!####o?5v'VckO:./m7Nѷ[; {0N?upFFFFFƇNlXkm1DGGd;׏owu5@Gg'V,xo_N<: `naĞ^ƚH}ֿM<6<) 0x)hZ;^E/Yv kT׀{lE1a{[?S.=?vG6? ٲWWg'ֶtuv3lg%9m1γoggW.a1&vKVΌJC-}> |qVK)׽Cpqk*}>vזun?ȹCpce=Qg y|4?~a)&Oaeݱa _x}t|s̫s0z_z;/Xs-m8dS.1zHyWZPu~+a.\?FCg^{V>}<)ʄl7Đ>Wb%Q*;{|{m愫x\D|e)k~Q ){b`1OǼ7Vr0q/AVP_g^oD(wuxv㿇]vοY3u+EPs;V[;'k??k\{k ם3n8g]qWwÿN޿r]?E߈f,I}?Y|cOa)bƇ;rc_Œgǧp#6d7({∽;m>;n}v_qbGƼspҧ'?1eɆi:~f?okJuco,\֎N `JuS<}>O#&c1`+>R}'qow'}Vuo]uݻ}u2c@ &o7|cŦdzo,.]7oĜgA]S_ݺ',5`.h7g_EmkO?8F hĨzoF~6 x?Sv6 X'&ٶ-ӯog8 L4ge^|ܤw%JmPls~4aH|N]/.ۋ{Vkjao#4bE?>o^Zh?hp-u&G+Zq?_щַya5񯳳QZ;~*PvaDO}@! )}&` -婕6jc_ybp+;xUxe~!1vukÍw?^G>q졥Xú5_\5h?bwk&V._뿷wt`=Wf`Ǎ?&4?o1VE*w]sXmmx71~D=.82^{ϵ~bѷ캩uf{5ȣŕ/ W_!mXly -}1z` ~G[߆WSqhgB5zc\]^=>`xEk mmhn ,އ,]сU_o—LwohLEdU^Vq~uњ RO|8|d[MãއmF;J1 #FbɪNm ἵwt퇕ۺ l? ^wN;|<~XxzXKZY+ z(KJu++`ώ[)Z1L70j +1aD=8pï:GO^F6{b00aؚm+gQz;Jbf ]ƱC*yQ9I]k_w݃ήz顿T* *pR0}S7evew|=//v ﮿ߐbl5x %){gWvM]娠VZ;Sos3qŝ3;găٱh;:Xu_O49+ u=/)|ŗN; }cA ŵ?CsCVo=_>m~qڡWc[Pާoʥ 7$7+⑿|(-? =46SN ~,q>c~ݹo{M@<Ɗ}~sgPЙsö¿|:\ܻ.}S{o zr* ,eʙ⭙/SawoFC 8<`;9O? 7`斛dW΍B{uD[W*i~gB m:GG]9 M-}P_z98b psV\Ġ~hh:hzZau]Tj/eDEzkC!\v_whi^]א=45֘_)wŝ3Om(ʻ_o]ϖ _2_2wi3jVzYzQ(>D>uߟ Fo V-y7[ `>xt2O+:Z'?Ü+)~ͼ l?wG` xeO?m;._\Cn9æ||Xۘwߕpףmtb7bO\ C5`#P;|lzUe=wӹz`ѻ`]WUeRRx{ȗpȗpo^Jxz.uHǛ f{\sՎa`\6}n ?`UG53} >sXKq͕c!Ӱf]l^=`S`1'-\yq'?5=

    s$66T\Wb{mhm50r`6Ԍ-G^c&eUWno /yhmD:l27`Kѿ_mϵ+ _M4O=[BKsղԺ.*VR!{-ᮗ+Յ=7m1o]&,]G2c6j+NzMN"^}pͿIz:0et=+ vWΫsy+>+QvG_-QH`mY MGe?$/ϛl²U] M l28dFn#v)a&Є4bU{!.U xpȖMxF,]tv7vkLkxe:4mӈUg~~5a&w_2J;8x&nV67m3Vc WXԕ\ܻ.}9uLkO Gk#6V]7Zo8m/o/6ǦCJh01]m+=aGp: l2|Pڪf.U]@Pl: ÊqUZ/IYG׵70e&l<Wl5Q*7zwiDKF,o+d``Q>~lJhTo{оA0h- <(pWm% tdzD\C*a^?v6կb2>TcPGſ]ra*IP8h6Ԉ O?O8ghclaſZm5rMjذذe?WG>jEzfϳ~q~r̘׎Úѷ->GuRJ; uu%ԛ'[׮ſ&I!#C3{][<#q`N S1#b`oc6Lٲ6܄yc;aMa!]h,LXth|QW*6{N]>ꛨ+z*mخ_Q,zBFFƺ3z٣[yk< u ҷ}ƕTߗ=}çYډSn!(|GkYP(_ŻaN_g?d6!######cM4 6 _m<7ΚU^?~[lP~w%{ݎwءz[?_AQx60EaO mT{Sƫyǧp1+Zu}Wtq\C$ǻ3?:>F&ܾQ7m_ÿ׭oqvuOsgV13#######@aL%cVESI9%-D~&I9 ݯl]UU[%jۙ<:ըY%HR'8NUy$~)Tvf뇟uj{:O?bl"Wӻs=|[}3EE:qbQnM~^GQ7z4zKݧ~{Q|SY5H,e+>??TT׏2':ߺ.xvy}Μ&\Xrzn>Z_Rq=G_8(.QȰX7FIdx)lq^yռTWH)yd~&乤Y馢6()=TQ[QrGsW̓s|Xh&%Mpk?uL*p8i\⊢|晢x_|{EIeUjȊW_-J#ϒ5'דy`}OP ϏC5p_}%T#|:p>'mG﹎C5N3Z h=n}g9'#FףL2/9f`WD0m5*BG2 IDATan,M4*qUyRmiGJ/z:jNFo梶=7~|)#EϑfeF_Oqh Wy{R}t9D碌1Q2LldF!######âP F ]%cJrζCE%T/vm)FE8 y̪Y%WPɖ׫M yW;J:"w6P(C iNZkOǫy .M2|Eh]Vs55 С 5o?zWT"uuQ[f9 E%h<~Ġhpj܏P:yj2.Jϭ`sb̘v%F> ૐ ʢ+mm (i|H ~d|(1 iΖ,ǀP ˷t>n<+,|><8E2E~2Ez;^2K*"_E$ѳ>j ƨ?>7+of_yL:O|V\ke>t2.?5iq27)uyFo[8묢<]χq}1Ѽz&s ~sEH;:Cko8QM'(]v)33҇ǽӓ}2222222ErP+"؜ IGlf MSkBU#Ip}ˡqm\zBwRc#ۥ{6NޝQ]G."Q\tc4&AFI4}}<]DWm_\ӡg>.Z \׿1"F\31?iʐ8_(JFǧgGy;M1Ҁiwu.۬OQC_2B0(4O"b2]yd{/޻(?nU&p>> D?J\B5e;%8:zF(#5$j.ҏ4 i5VO$՛y+G icj9(ip-H%1 ocGzۮ{wQ~EyEuꢂF4gŢ>L&n~{7̹)ΕzdFBSz[5ywv2}BDe\#z]-?}Eh|:F1)#Dff!3 E0TҦCͅiV 5gհRиZJjjT {p^*4LKPO+S(Cls޳'%mڑ4(C\+GD(}$IGzju}.9}"@s-Jetqig8[p/Adw>.AtVW5ȗ"Y$;(J6l+-::p#bR~i.#,u?t̄[On]\Ǹq\z'swk婂(dddddddXT%TU!AI$Y-%5[`^xOsg hSRZmzϝ %K22+Ff5vf$f0#gE;IΫWK_pFtԌ}#S5;i.:Ey<AqqoC7dc2juU&\y1d w:)A0((S9D>Uy=$f"v!;']ϊ5?2QEfL)Vq*!~xQR~4~tTcb&HBdٴՔTC_^?֣z!V3qx[|0ܙ z],Dt\k!Xs]D_Ի=U㈢6MZ2^ޚqi  ?@ΗD[sΎp$̲f%OՔ`jbFu}S%3}1z6%Z_Us'# /l)Svx&Ϳw3/O2tzֳZ 3 EF(e~xDu=ES^|(+z\^z6ޣ% ) RޢdNmZB5}ο?\g>.GPdPy=DGA3{(iuQCwg8(Qۘj.j#rǻu~V۴:j47'9S}RsrcpL98w?%3Fy4Ec8Z}XRa>QPs> 2|ߝMih^hl烔5bn<}ty}<[1Tw2.Q=签ݣ }lW3:>eO8(5#.#]4_BO8^F͟Ef2222222,*^W|(iNu%'ԆM cGL%" &8.o@ .Yg h}g344Zm+24w+ftzt#i> n_ǔ84Ub??rT#OͼډDP:.]u̩WΆ\._[ >o^Qһ>^ʐEC91[.*T}Ih!K/-JA"`̀ο2:?P:2  *.)*YF%XBpJ^mV|؟o.JԆDh"Kqp?.CfA} "TR29olH#|Fy(WiLD> (FMSQJ OQ;PkB!çyNTSͰ|64?EĔѺ}5: `բd+Je]7.Y0NC!F6JQ3B}L;|$jL}j+wFsw} k2j(C9՗ʝqQt1O>Y^?ӟ%Ag8|\@Ŧ㈘ `T_B^̣v ϕ|oaԃ<Eoylf2222222,.7}QloɫT)[lםjF-5{kFl Чq5FڪN=ݩSR5AwDk.pHډqSPhx jQj]Nç͙ϙ կIibjZzᇋ*Y+=Q#:]2bR|]o}Q2g?[XQ 2Ζ*E#EShDOTD>L| fV'B&1 f%t~oE/dF!######âٌYPL5{l~^F?yh(a$ѧ@Dp۩^QEԷ PM4]> ̏2F:&pūΗj4#_(@E]DLUjey{b)~ep% ~EEI߄[o-JFA1+~R8_;9ZQfJWO垯( dlT11c p\Sƙ WW쟙QȰ"Uҋ$lU_2 *IL?le.W|$Hj5F&6?(i{$yiq|^jL}W HIQG2Xz(5stc%5p6sWG3j=xr9ysew~OC/7q:[Zgi:ue|h(5˴iɄ龭>_L_ ˄Ϗf${{23%/dzV4o6yR(~1ϊ%kT ʢ`Ui\n39%jޚHj.8[L}E <좤Gƅ㦆CEi}^5)R͈SSs9գxy{j^Bׇj@|py uרBקC5/}J4~:WNLef9.chFar6iw;Evxۿ8>͠ˊsŹ(.e(L9G cɊJeZiyq)%/(_Td2d]h}O]dF!######â^{tsX4Nϗ%(HRRdn;6OgFϼ^#з0X&yͰs^q2c#MR9j,?Hs4vW2z(Eq8 ^zN=?; Vu8=p3w;oww}dۏuO%apL|>]rf>< WTZ9:c+>).ŽwO=UYʢd^2ͺԇ̄J(!1dѢ=;{&N<(dddddddxT@GpCh2IW5K`\T IyRfdIEz~F́Q%HFP/ۧBMWiQF7٦#&Cw>3|u<3 CclԆfs[!j{w5y+3u=E*z(8Fнa~EPj*E%<׋jƛ{ uj~ Xr_΢iKƜ)R3j/c¢̐ѷ>c1_A%J}߻Y+BQQYs~qLrII:ѺM/ʱpg$O#A'c2 Ζ6H$yt'ſk{ ?=.0>5%QF5fTA8 CySsQY.#[^<(a ƩL;;&in>\ȇ"z| YN#uW e>ok?tyB"9֧y[tԼX}/)0/线A֢ӷLoG!######c]P]UYw:N#ROTIDiPۤHM^O⩒۠P(%_2 T7py(k;ykGQ;t9 0s'3ܩ>5(FID#-}\9u2՚`](*wIs5]4BOͼӽGqqgG9SU(c8f%uwy \{Q;sl2u?f]>?MMEd?؞]q0?ӗhZ-ɌBFFFFFFEuINbQ?҄#_(V5FFh&ȷAO|,"MG5kGoBAPCqAM9#yG^ޑS!B[1O=4T_5⶝EhD3aFS1n]&=}tܙ"8M7OF>e$ DyXt4㣶q#5>ާ;,?Oַ+>K4NSwQnZ{Ĉ$}y@2sh:EwED&ȌBFFFFFFEe$)j+t D:I J^PmYKޝrj yYN3"f>ūS5T"A*]A MĤzI}u4w]:uytζz;M_2lt|^1KqyfQ:TKTGgϑOVtv[|yeȧE󻰝v%G*3ajFl=%z;YơM2g>O2 6WN2DKEɸC-_ udf^dtf$(繶yIPmʰ0ШNJ?-ʣ._OtkͨGA j($9D%^oF52Ӎiar IDAT.u82 n/Qb}iNswLOD3Qp7ytg 8݇uĹqD>i4h"ǸV(dddddddXT# $SJ:*IE *h4Sͅd5Cf^ѩ_.?KE9dX0} (r<ԀWM -O-si9zG޷pS LkLϜhd8/ Ũ 楠׽Ө4?jp"R 3DDyG\~  η&Qh{nq|ίpg8ȇ AqysyOF|o_{i#suQ5.(dddddddXT7&:V%@!;I̜ pPL5waO%?A&lFU]PwBsϘQ^UD.J!5S_jD܊;\WSsv6C}Өp1>ѻٌ\"W SS5ZEI;_7j[/n!ts^ڎ"[½}D>u{\\Q6HhRDy(z!3 Eee(S >UwRzyw*@Ƃ̇ vŅzv-\͋ d.(>FCqHUF>8r ZF pX?}\1PJ|--߻se|e\{;r OǧDj>d8o|W(R3sFECDQuROty ߡ"twyOaΌBFFFFFFEbX]f$DH͋6e^(*JzvQRSS wJ[ p4~kΫFDIوuF}k3|1|l&`;!eH|]9*w JfQ̚NDtCjg\&Be2NoQa3^(inQ/w=|22u ʢԸbYE54sC?m/X=9 :$>"'ɼes\ZpOO͉Q3r>F%y5GL~p>#.JA5:oln^"8s3r=R׍jL\!Gp„զu[gF* >8B"qqLj91:\EIrd)N޸3cpO/y(dddddddXT]<YR TԀ'ORގy$(7vBI|Iuh&O.JJ\PwY^?CAOSߊ(IQWEeT]}ߝFDqQ?]#Wύ3Ӝ s`<:M*DE >j껤~582U;fpz~3"R EWB Yv/Hgφ[?I 5-Y(dddddddXr 'ItST2Q"3lxd,ԦpE?]v)JjBLt~iet/Rm|֦Ni@:b"zy<3%wg s998lո"[*Ci(g3Z.~(.\>%|.\~E>n!]C=yuH!< Vo>/EQ}u kdF!######â:U$/ P J)-I&1}vr ʰ;ostշE98 ŋ;[2̚c4/Eh? e">zu<+1P;MinQtrjđmEz\׼ >|8ܾ}|V{>OԾca{;3@ש/c u]~AQȰ.缍](~75i.3}();MJ ' a`v. 2'\]̀IIu1fL"DSǀFJڪ1#߇TJm >wuݻ3։jr:]zsO*c2upr "͞2FK :h shBFUh41`$IByLYf2222222,v:'U㠦K ^m. ֣%4BF1Q3%}&TeFEO ^Δۮț86>;@h{`\ތȧ@%(3Ew󠷵 \[BD.J"izz?u1Lp>L=yq*gz֣q֯( Rs Dj^͋_Z3N9:\CdF!######"XIyOk栚95`o@8'%)]FT8/WW1vG8߇(5c1}&xp#&PMMKiQP۟A7 鐪 }sjx|&\~D6<:oQ jNnoc(3R_+=$3sV>97]L;"]7ts:ƭ_(dddddddXTC ]%HuJ:Z Zِۣ͍-;D]a=qbyS%VÌ~όHAڨ<Ə/oŁd*Qxgi*#zΙ't\c|&>^ydFF4Ԩ Yys~3d7}dlnFy ,w驃.jD}"f'{yG[ߏh\|QZ.Cg7CEuU(dddddddXTm-M5(9'1xo.J=/_vm*i\Ly( Jj협)QI ler+};[ilnw{dw@Il.iwAFD̄_pMG>(GF&E Gu>CgI}ΔAv^| Ӣvlǔ5(12%PdF!######"-&8kw6D$jSGQFa\}QUU/]MolvHQBSCϕg PcWzi,tEiRpes:I_mrez\TDFOhis4W~v7_1BZoe1vhI.t3L[S0E>=@kkQr?V-mq6z_Q?C48ԇ#b.Se}eF!######âjt⯼Rj#w6NI*Y ʿ:k6SIQ|w޿+ީYGak)s4?J꣠+D(jhGF>!?K^^]pAQyfyjd.D̼"Z:o絭j4/2w?:>3)æ 2fn|49pC#\F(g]7W>zF1c1y_\ݟ|\G(OKsADgP{-:+%Ϋ{nUgF!######âjly[%',Jz7Sc]ݪwC͛.R}lˉ0U'w+Jjp<=RPNbT55<\QNTF|tTxn'GIuLwj㡇O&0|8N2c'T=5}l_Wo]}eeL8^#Fг:(SO~(*(GR}:t]FH=1,z_Zͦp| Aͧc\G1^yʌBFFFFFFEu<*yQs]|$Ai\l^΃zsޝR%:F+мյז%5.+JՄ4>(QIj;c?N]5:eZTT_ dhxgd 9"d2 lRoBsFGwp6_}\d\<6#C|qX:oLj^ |S1(Hq<'·'_i^}sg. շ\4ͷpDo7(ScdF!######"Q"9IM:yjR w!UƪdzgLܨl.֝?T"!Lg.7J:wW 8q:qEɼI6۬(2L(}85Z ix%ǭ>·A}8=HUqL *Oǭ+zR&E-hN3ywq"Oܸzrvnqy|2M*88ZN< 7~ǔEk&f̌BFFFFFFGe&u*yᔼ.~MVlN|EỹDe>txnC 8(/(5i=*Ay;p6hC2aX>$MrEE̟3㎢,RM|mt](^z*9O.3j1uz[O22I Z}q4[(#LuP4NgkwNA'{US{._R}e*$9FIh( .53(Bߩ6,b\D fz(d2WNRDSvEIol~O j]UYE3.8j=䢌N?s#j<*鮭M}vOxzGj45%5(O?r٪5FM8MQ&٪5j\O7w %VS8l Ò>2 +|l"ezWel_9iF8{W}RϚ|g,Dw}sc\Kw92Q(\e$ݚYy%z2 *qƢqԀN8r=n<"u5?~6aާg0/]O8M}ߣv5[5LY*JfbdTԩE<.^ي >ΧUz!u GiFhFIsQLN#"AȆa2)f1Luypb7ya4Bh?s c]T-EeEy߫|(et>Dn;bL.2aQ=Aݩk༄WJB̨4G=LnL"N3i#&$҄#3bn;שfChFȖ2Fhأ Ǡ\;X\OsuU1b*+ӣuQӡ{]_< ^{tsX4>ENsi׻98N~EqDd{2zΧÍ;1O0zˋ2zOۥzEk{*yrpSIsCD Wg&)Qe8S?ݺ}̗@^5wtΓ˰;(+"zbm?;U3iڿTuw̮^8r .FPu2F޲3q)eF!######ãzȶ$fyU#xS':mᄏ(icv|e2w!l^3 G/xpfT ױ>~$=Ey)h5;gY=0pk}tһx*2|z~29fmv\=\zvcLڎ輝zjQB_t֊["5# qOg}\=P8F(uD35o Wa~/U/dF!######âzCQٺ"FyJQ^vIh63'q3(\=. .5.>Ҁ5?ܩ9XOS\B3Cε^x?_^2 > a: H(æu];hOO梌?O^/G4*E端I8#|/n4Yב2quwPj՗'b^]AeR4czZ w8FCwe$s{y˹fe U@Sw:&tX3!3 xwͪz C$SdcR[mtw˕6wHzӦ/ƉSt<ӦUn/>7B˜$_=3)ztEy\d$$0[9R}T\wi~|Smϼ̛<2zZJEy9w(sQd44qz:^L.At6fQgh?>g'"ƀPHhnIկr݋cSeLt>Ehw/ƛm D.*AӔ4mY9`4!5U8$ssu:G덢JTFxbQi|kFDd @s>kk˜:F]dĸ/{q~w78~R ȌBFFFFFFEe&1W/PɩM%:5QNOShDQ&lTN$YQ$ojλ>IQCu}FLQY})qYW|)(ޚ)YRxy?qQ22[Χڤ5Zōϝ>/y0q%5?>C2i}{9mpLmE'2 VOeG9,S\bqLy IDATtޕPũimO%Bɪ!UQwڦGhK}%EI75ZO72i?13lڟ(G:si~DQܽk?Ֆ:QTG(L:j_^u~ؾfyK/{ A|jeucFS}zjE^Ͽ'WgY'w6Ϩ u|8G擩2QȰ,55%s$BGIpO3WgLh.7W/oj䧹18@?D+jq2=zSӧfȨ )PI嫚 j"eaݧHezB7O. c4ʁ>~Tcg*=V`xt?a TSgY5dzcRܾ󒚙554uT/jQ ?󙢼NZdNM8=93 (%R%(׸kVZ"mp͋w4HRqS# \N"wQWٸ5%j=SRߋFǓԸv4%}\O|U弐мdƮ>FĘqK@Sr;M`K5tToB}"yC"̜߱3rqgp.סKO3r]1B_ɠqmD+J ^oY QQY(4Gwj\)SQ՘UvI i^l'(J\ՃHlcqԘTu D>UlSUxujz}d#[ޯ~4*\fG8,5IVdyk?ԇP$Ӌϛ@ QׅPߎ̂,uѳy#_,Os| ܾE32* 3jǽWQ^(_zsL̓O,%qi|>^~f?w2aQY$4HW J8z䦒_TC"*%X=m/W9K?;ۜiGF@G5Kc 8ߴ)Shjpn\dp(~3e~L8f?mz@Fyl7 3g%t{lQjFyD>+FCs͐=T_NeM@v_|:奄.J> ʠ;0uzqψud(5mZy@(JQȨʢmM!UU#pcdSV۝J.Sj:Js,Ns("4EAQ8͏-!.c̋{jdNdS5HsߝezCEcD̆B]G>ܨQ9_yeQ~KEIFd=wbODgpG,mt{ߢSb]Tc\&Ȉi%|6|)nuEmp_%H}O 1QPA}|թzgF!######âj@IƝĦjr"ʘE+2i:e\nqSңi 1ն}>(Iw#:uVh7͗[>;TiWׯ4F)3]tTW޽_|@w:H]wn_qslE6Hcl>F,߳{)J5uWQ&=7O~ QtqGQ)nLH8I;^ھٸ|8>DS(ʄp keJRs=jVT>/~rzS%=իf4{EaG Cj^1In;_EE?͠Q4 wj4+̍|!F躯(dddddddXT٨R3MGʔ(t&)3SHo@mNUے~++8O4Z%RpǫFyMl(DO◵Pk_5(n< Gd_[CƝ ]7f'KzRmܚ3rF l/8B E]B},5/>H_֌n>2&M*Jbɿ\QȰ,ª P/jȔiQV)NWd$4.!:M^Nf%FU I̐E&F㤝īiT;^ϑmV5=2SIk=-SSq"UӈՇڋHMuG<>-(V%էEO} 5E8ot|Y2h\.@LڶCLc7QThX?QcO}wߵ=pog<1шd7FՙQȰ,D6$J._J/Y0"`%v"L>|gk~#YZ#DIQ)F{$N^eƜ3mF _Z.zQ `qIT^"l>$~r~ {վI=V^i7_W00 i[md2NG[sqRxa Lϟy\-^cr*}>V_7zآ\sxSY`{&IDR E4-H!2z\49Ix9aqTG]p~X%%1aM*3Sχ՚('9/ysֿKw 8q1^xW7ut3h-d)a-.Lr mp_MR\}yj>GV75ZM`5oC >}-( >6 UH ј*,>k;}j>`2^m>Y}oQ"&7JcVKާ۴M`L|pkrka@Ƕ'07p quw/ 0  8Gf_^)yͿ:UI1y>U+ُzEGk6LBRVk}7Դ8#0Y(،Ŷ\@|61 -*rϯq*>1W_$mCۯaroIԮ5L\呎״Mc|G iY @Iږk9>NUn[>wbEpt q|01WL1`0 K\O[ 8fqxŕ,:3^I6qS{,[Kq}[m-+P޼ eKZU7IW37:f5}q> %-BbMy-ϖ41@^dW<3 u$`VG[-3WDS[FQCě>uG?|r!:_4?DP;  0  lS"tJ'So{䑭0dc2"&uWɷÓʗ&>3gj*m,W$ڄ(y[ 1oТMZ?=9/s`%HI:xl7FqhhJ=oka.ޙA[3i\)s'3g8xR~pfhvj`0 Ǘ-w|R' W >nH>Xkdh1|{V qvi<8q?`v7Z|-H/}Om1y x+Adh>o`0 {p||P< f R>2Z"Wv%ƂOOQidQftM@[S-3 ǹXhU )it`4k'ηGߪ˦#STJ~Q|]I8Ak ]d {]\;[ӆZ~Wx?ߵnmm<3N2ߥQ1y&f} b43_Q `q|k_H-J 8]ܬRee8Rl#YƎK7h! 0OVTo,mFPL]hOKV|{5>TMvq^&3z%ͳN)ZZtj"[GTՏ|[{&0N79O0 _Oޗ|{?OZ"?R a`0DiEJ Z,\va?ʒk?xdb;{kopv_S&V~Zq[l-s!}66SfyZ~߬s.uwֵF0 G*LV"+_o+-ۚ\ժp)45I U.T m ͧ<:q_WWM~E2ƛ'&)LOOj?/Y)gB5a9EQJNXW8IqU]eZވư5)w`uWo-L Z>ogF~~Ru4_):~(mfa6-cPbW5azUίFLB{.̐f-i6xVѴ 1#U̓ d d|kέg{kc> J/yɤ?y_Fa0 8oX؎74-V>|FT/Lƪ1iZ?qԩ@ZJ!|0||PjZӒT;U[ј9X KH>V;!E'=KRIpFL:/F~@/V*1 FcVM UaPSyyb{2~~2g|dn|$Rp?L~9:I( `08K>IϻxH*dPSL+多nUV\+C8Uz:NR>{?;vjdѤ:{4f'iVojꈩFE;xޯYz=1go&V 2Ck+Ui}2i,簨iK&~򸩑_kl7nw(ZOʤsaMk?L`0 Sp|8gꈷvSGl{Vi %j1آJ+f {FN<gl{ّ%ŊrȞOR_,߳[c4}5C9̐w JFX^pX\FYj^դTۯfM Hs){h|'Z)1Fh{Z5{'=0 `0 "fXI"?ťM-^wMqzh5'xVU) 7*f,KTd]0G*xD50ϝ7%=<.Tȍk޻h,fxRH30 `0 "/!A٪t 7YN \Z%.3mV>^cVq^ %UIkku| VIƜ͇д-=t6U)+Y.M2#\bR8}^ΰ4?-:1{[*ݓv{Z}oQqozv>e0/ Ǒ2x}q ްCKd[ IDAT~?s\oHLa۝Q5x`0 ǗTbŁ/|>P'' _Wp*f5TY{g\h>X}qhXv5Ӱj}NyV咢 VoZ=4 EncԽ'CܓOn->ϦNic(}ыkۯ^<כej7'wƕ4m| Znbj4M|7cqח1 ς3+zQK)*׏~L 0  R WAZyEJ" @01[ZTXm}"np|^Vso%TI[ИjSfz gR"igg9ǛK>l%2eyWz%j[o=&!i|lyqZHژ-AF>HHHi?6IʓwQ`))-1|?W\q8ndf `p /eU-igs?%Iݰ [ X{^IP[n7|9?JZ ZTwe-9]%3EG$X2õh_vtƩrJ}9\*h!|x[bj K;O3iUՒ32-dxƭ̌`0 &+p+J+Fge}4rStAYVƟ־[ $gޖ49ynSm x?Uߘd'-If.a`:ky/_z\l1߽ҘVi%,t4fZ`O10?Xy#ELR5SǗ87S^yr92q8m>]dQ)(>~KI_ߞU!}bq}bT;}[oo-σn;|oO-d$7UoU,fg YfPhf`駕-U݉H |ij[FC>ONe/r2}徧F!18Xڮޚׂk繪Ǫ/?*ۼky&r64)}iE= /C@o֔=ޘJ//DIo |Q `qa9k_([ \3"쓥KU ]Z X*0R|b ־4}Wwo$>M<~Ҹ@o2e8μ=M???1IXܤݿK딮f"iSSӀm0I5 ~5c&; ihjtHyCmun}LZU/>ϦQgEشe0 `0 "/mE8,uYAeBZ]L+ս=×JnnS}yHLK'&?X>{yтIs\yBb<*H1 l/1 {y6F)똞23IÆ 3ZcZߍjJ,LCyQ `q|I,{$Uk>k#bb n=HC꽷qVU*eb[hƓ/m)|}o1~GG?LRU_RW7Fj\ ,RWU|5sմ`9<2}ƴ}j۷ԹoT&uM%y;p/IqGe0LƎi`0 Ǘ\me&3XQ-epF4~,,AnӊKe˸24^[h>+KWEV- ܳ{v^ 8mS[ΖHUoJ|Jn-K4K){$R{>@zo$&–^yur]hhSRDO`ѯ֊IZt=/ڥޢ. 0  -}:%MR]'Z o'hHSp_zP Kb?`,˼;ۘt=Ӹ3/ǒ2hj,y-yHl{lsl&~|H|Sga`0 gG=$K֝8ޖ|TK9LOnW\Dۥ\yYq2 ﵯZg->x4O1E5{}ڭJ$ږ4UK7Y{5"ZSN>>u"o-S)ݯ}H*|W,Mk:~?O齒,V֞U1{k>$8L3o?ӭ}w~gk_}Jm~@b5l޷.8ͭE˓2pa`0 g쨇T9]ؼ'o+?^ёZV`g7-m*\_+GZVi,t2my RM g$˩hK:NLi{OgZc?-0tjEŚ1aoi~{7F)1GM ԘU=6[56޴?o]RTc{wne[{饇y`1Õ[0 `0 "(E%8Yxe:ުW6QobY[J)}a͗hKš8qzDԂTqz~XV"M5HJ20$zˇp[W_5j: z?Z4GCqjN~oo(fI落 L{'MC>v?H{<6 ~GY0ll4 `0 Wy}_ԏ3t|W*:fkm 9O-8[?cnX4֪4~D879ytFKjbqq.[?۴%z8.|D$LnMA_bvu<0h4;[{ըxV-!s5:co5ԽSg8E^L{8Z! =OLSOMw/ 0  쨇Tw>.,Aկ>>xN]qcDW_x۸^*Z~|o&Hq0JV'_y "1 Vksk?}󛷖ԫ !ES8km4Rm5Ic@~kK{I5Xj>͂npj#iRL2/q*E_y4^I<́E?wܱ7xq`ȆQ `q|iJqQ \9k~&ڪO+G|/~hj.wwU{-C~ϊfۢJL04-jU1|9͇޴ i獦0ZfB3 ri-t_:icf?e> Du pbix%u j}TII51p [x?M{řO0@00El$#,x;o}kkaLe~j4Tn5&aoT571Oc/Ɨkʜx~̼ 3O͏QU}Q `q|I||JVRuoMK^r?S[>82j2RCSޒ9}ŪO4[w,ioJK2)J8#cc,Z9༞%j_Z?O}jkU;Ү+oF`i83UFbH9Nz.1Q+fsahBn-$FӵGȻ}D~xkM<&f0YOfMߘ'&iZTZz_KvƘ߭jv``0 Ǘͷ\3:d]ݓOn-h+?[i|M 5StHV Ac,2ST@[b/5Yb4K 8?ӭsk񭓑/StAɢ[rТ?<8}l>f紐|kZk=>>PyAU0CLFZe(Cvm9>igdĹ7OÿO0j~< M۷D 0  lB ylI"䒭eE~ SjuSłsSjVW?if-U9l&h>T-uiLa`05B[ +1Tf5<M*P,CNbF]ls@'_aBSݧfȼOOew޹_`iFe:Pp>j3Gso˥6-X]9~~ͷ8b`2Zx[VUǾT] $x#c%$---LJCbZ}/yV ?^َ 'ɼc\bp +wWo_\W7JXb~[^lXrm1]77O_xO:y`%f$س0`0 tM}j^:P,a;| Fb" Jy/U KK@qpRNpg,[U%E;ʚ-E2V]ږHZ;$V5eUc ,6,$B4D!p<3[Xx:%Z c탣a|k 5XQT >siZ=5jSsf0np;/e6'j`0 kQVLa ŷ K_Ź$$ػOHZ*~!ંfbRMv:@k0>iT-uKB r 0wy˼f.@bZGh&7L;"ɼb{,8?m G֘L׀?$1 }C?1{kf6Y~+OQFz*K f)_&$E-߱#Fa0 A٦s{sqVAlaˆzg%̆Wǧuuft\g8h~/'WK:7f&3H*xv|j$4-* {eu-*,>րn׮W~ c~؞Z1f|U-5-( `08Ǘ^4WnwN}u6[.B[w=j]uzղ?1~6xn0 `0 "֢6LX;34SjWf,[r%Օ57jAx3}ߪ08m-&y2;;#1R|U ?ȓcէ\]ҖhӰİ_,ۿ%7GӁ1,@i>jG S֠=-Z ߩ8aH~0*~o?o==#sõmpQ `qq\RHH񸬌hYc9 W˷oS?{3d)5j\VINkK.1%-7}mˡI>Dg7׾I⌽규 IDAT$!o?pU4s'F,#~y\>ϋF*qrM߉4_z=2hPÿ3\w4)0IU Zv)1_0 `0 "/!%T8Y7ܰ2[KC29N߻ĭ6qM癢9jTM31(lʕN{WYۢI*yk?~q_A`Zsx4yVSkw;Ӿ\k\C4c.qع3?m-Kb{3YwܱT#L, K\LaK cR`|)J3:Q`0 ΃KL+WiEfXIYVy8.ZU mۃf1rHq+NVy{۸p5uxT=?j H_4W5>F~u<8tS5[)EbI*O׍̧\_%s$䓟+Z'oq_zމYy<$009~3.k pR gLDZ"j czv0( `08o+``_SR'uZ8-\rcA|#[7~nN*8TOy|^>-3&6̃-dq^0gdTx59!UKhL8oGC˻2]qf`}LUI̙cfetTH#%kfx!OF0f{2#S4T{<0i>lyYiq #G̘K51Uݿ 0  ,| )tO+*Q輢f,m8#Y"IkL@c$Ej씫Ŏ78d#9HWGeޫy wЎN$!Hi`@b 3iQHGc֢VIJWv>?q|ə^3jf+}S&/}ik?yk2#u OPRZeur#Fa0 AĢXͯVU٨f_- |sޭuz[)8XelQW8]|_0]p^0>֦//؂J&&$uHF5hm>m5 E*mWkiIσ1'$p[4 UO7Rf<V;G2#s8 ^A'kD؛!U=G7 _VMrշnCBl2.!i&Z~Ga9KbVU)s}/:x?M@Y\^eGm' &#|i\ǖ~bm`~uK~_ ?f̢2{Q `q|ɒV 6+H+6'q6x`$#YpMujO*6νHYiU#ͯnkm)5 %Omk97 @|Yh }_0SL^v}"g^'DžeS|>HLUb`yjh)'0'"1bm. )?CҜs'|m%~9-=R^~1H̎ta`0DmB$}*'YO]u2ɠe؏#q)[Um㎭-V!UpQsc!-c5$_cO՚Ufgot Xjky̷o{kZI|m>iv5LB8ɰ~hZJ0>ů}{~U{m;)i0܌a&[j$F]0#=#ze`0 g/YŔ,{ceeU:}\?eo-_2hpV'=EGZz 1WK+Poe`K˖WŹ\h'-Hz[änQB11V/4~cfV5oε(FO\}@?ʾ+wfRwBya?o>7߼;[O[LZ3@@x饇[`&i߃|yy%ǶQ^{߅H[˴ռFc|`>Q `O-FW쬬ZrfbvFFg0Kd/ _\mqi15RKq?>g5 uMaK>j}-J ū{7c5ZYj/'4J'uyƨi/jU[ǍfOU?1i\ M^7xxܷuk~>z뷶՜qFFj#U={u'_檔Kj4QMR^a`0D9דqբi?O+ngY}۱Rv6T>.+TVg;k[V&վw=w u\g^7ߨzA[y'pWߎ}ObNEҎ~̯vǖr\$QVDoGC|q~[o`YZN!yVRub}s?A{[o )sf~s#H5pV36}O\Fa0 8{)2bLSV88)+0WJڊ1$]rekK)ja_,s' i |J|ëzjudQ= #i#oZFuic[Qz=Cb,s,DZGؒN-L߿-jiSڄ6R4KA2uI%#*ځa`0DOy5虣 tR8|EyH~M͛V{SmK޾h5X0x Us>QYlRuKNe 0ɉH;gT]Fa0 A&NZ%Z$6ejJߖUȷZJ:pʸYƩ gGvke䊧ChLIp*cygxjhן'1˖!oݾ3[||q$4&ԟUD5y֒sFC34wh'|ۯK<%5l?\T2i7d}ze451DD̅ ( `08r5{ʅ~W_~N+VnOSTO7[$eDV|>\~y2%z;/^9' eLN_{fZ7:O_Eg}ӍK SE7lSoYS7ChҘm~'F x_O?1V[gw/ 0  R>0n}VI7yƓ q _VWj8JzR߶tZFm2r3 dc*jYeS5{-S?/f 31 ɂ?GGuIYhckZ|ڷn&cyW#ոAV9 p-䏀H xVt4<_z~W9N0 `0 "^j QO3G)+UKmbIe댃i@W-qmk)s烙ewT[B f4Es?-`ڛ?hU-Q\xƵZ#y;ϓcy jwݵ8Rdq  縌 `44HU–>LBjz4n31RǙf!nGQ;fU'Q `q|)c5 X1V*$ $K&i$X|+dq*fW'jnpZ{<ު\u*SH=hhX$|5ؿeR4ٴ5|߫_}* F!?7o[UKwk3|aOz$TG֢9%#noLޓI;a`0D-8u==sl9-8C7ZI%j:#18iV)L^mbx@fH-·{a޾eӸZF^K>ŭ_1֨H=xӸ~s?oqDSq<`f Mk^_-h=>?tv)&Oe{2Y!kI,TL7?0{}U[OX+bƦi/?L ׅsD9(t<3 MeqA{@z>g``0 gkJ>V_Xg4C=^aES_.;[TI/}H'jdZ=O{ gM0YOj Eq}fi|)+ Lzu~T\cܞT߄IH#õ3〤j:ȴEza`0D_B؇,q{3gxP|'j{[KiV-ڄ4kKBI{mp?Ru>m-Xi<*WRm46Đ8SW}l݌LJD ;fh!R>v|}|?yޤoIi[X=~z:}Z 0  Dʸ۪w&*\ZIm&!eKܛY,bg,T՗\߃n- e,TUX&Fi5CgZ`U(_c{N|[{-3|о߷i ? ~/jכ|/(Z+{$Y)-suI0@[s\s_c|RI_G:Q Iw( `0X[z$UhZxݪo2YH^ Mk8*R `}o\'␟Ş3$hR3>訔>Tin$E^,hϩ8u}NR 38c>aa[WfR @R#S^Noy]b R _>>fZ}ZtBzn< G0`0 K[xɗԵJE4>4?1IEЪUz\$Y,Iza~kkmQPⵯZ|$3uײ;6j.y,t]Zc;㤨c؛6K%2a^z;r]Ж]HLK-*VFCV0`0 3p| z^TW}:^bE'q|>wrkr~2 ^u P8h]3LTL _/nZ/]]ɟRn'4˭>||Zi;#=ɒM'?y-R] 5iQ|y&FLCM>Lujv}Qf/8/@YqSm 2[p ޏ&&j;jk@zx`Q `q|IӂmI/uoƸUxs{[^^u7 Y-w>,ZɫorYi4"YjpsR LJL4ɟR61}ɒl*m0hM{~7!elxT-t G5R4O }5f)Y~j) Լ> ?kӢFlռ+;a`0De$X]yGOEZO=W-dIۇ1,]GLqL?+F]v/~pࡇjI5MN;[O?g[_,Xy=e0>6MIHQѳ1iGAfm{Kk` Lh*{m( `0Fbų&վK;R=~7n$_몶+[|[k2ߛHT΍11p46͂\7w Zb>MX}-7 kkɨ|_t7!][@(o s[7[dL_y3^U@˳b뚢 ԬF4`5*T M{^WŽZT2} Hcx!I8gAg>S=r0 0 "4SS ƪ:;Vm%_LS{?aaY_,FO2Z\/,G!N\W.q~ܤO>dִE~Ƥ1pȿҳU -ӤoLEIKjyl j'R5!SJZТx`< G:T3E$30  p ^p֦Vj~kӸSvU$qU;Jy|J'5u(VUi3<`n8iA^r>^va?G̀׼pGS8nE8~֊ kTZd&4;Y-ZE;<ͻM}mFH(4~G)l$@"?o޸0`0 30$`Sڧ/~ՂN}䑭EJ2$&EhqϞ|;?$ E$K&/I̅|=wǎü:k=>~3 lfx-y56z>IhH6ρB}Ռ2$c>_(k@H[#ТC%'*o0_0VnʽiX Ft@bpZHLI;O 5SU|SMgZ}Za`0D[RWWu[04MeoFet#wg@d>z~Ռ9}I!3vpz_$mk1S2`0 =gY ~Rb5H>+h HZor^}vR2kuH]wK+9i&-{>ii֟84[f8򎐯}R+"-}c<ڞ}d*Is4 C%hsb[F/ѿCdsJ%wD=Z+>{e`0 -gkRa*ֽbM ^ѥ\MIpoHQ"Ϲ$o+lg^K[_'gHSbNxp]`$<> |{%fXx4FJH'ǵL<.`җn-G}hH5&4Y-:&el2[tBz<}I1L/̝+QGOkSy$x0  4F뷖[/nJ>+dIX4l4_4LV}ǾgN {5_YRŒp4A_E1? [_b&lQ^u#BJ||N4Mx)NH`"{Wopu62Yʍi^{f.RUzf#Te216 >omߧ0 `0 "/%۷+_9-~:ʬ:'uAc0ΫFN ̍2mo-Qw}WV&e<ګMHN3z#O UϖLؘju8Eڏq<9Ib|@x?߮ `{gJsEem )Rt=wm>6}_]zZ&ͳ)ꪨITX#j~^y<{`0 kKvS(j`lɠRmڍW'|`hz*3,fch#%gZ'_gӮ$_UdJ$[}i[iiU:}OU8RbR|~N| oAIi;?akѪ&8vܔ31P=O?1 lӊ0Sf9͂#Fa0 A`[!XV ’!-,Ԕ^f~ox^$͟T_mn#S? vx`RB,敫mZ&􏥵4!Ze}tk+qÓ׹%먄F!%Fi%ZtOdxoO31>D%F:|&XtBa`0D[)LL^޾^?j?NU߯ðZ 2YnjWיkKMH3eLsH{0fʱp8_V{˄g&z4i%Fˌc;h^,$~O b 38yUC2`m?4G0`0 ox ƪ|?'%pհج^[$-8|<3V;L>UzC28z`Q7"倷ϛ Z 27k9AijU$yp|^ǃjh}kTHH(D\}ifd;vPfvM?׋"FҲ2 ) N[~֤)MVyh wb>x 0  l鄕G%c`K>XZ4$Y龧j{)YZaWrےm58Rɪ/ru{Uh|G>Ƕxbkؼ|êfHw/?ZϿ>C& {av妛7Hcn6 C̈́1tlYFa0 AK@i׿e(-s>>๏Too˾tzWxJM˰,ռ-CbT~Ƀb p}Ә$_1o3@y| Vۂ4n\r~yb)rX}nk}6Yx8mZ|dkwǶj)+ *CNEMt+34^s98|KL^hm`0 kаOhips-gKXྠES\uR%#i[O8p4;ťFU7YN-rxhuLrRwx0a$zȬeq?a Ĥϰ<Dgyu˦5Z<,*1o5Ci3RI][_?-/ó0`0 5B? m !g[bYy2>4 (Sahʴf]:>NHZؓo5=f^=[-d$- 0S`)Uᇷ$:X-4U/%p#*۽[{u[8ajK^~־U[聤=irthUzbFLªϟ0ޞo[{ǷI>EE)r[~X͑QΔyɷƓK-~^+/Y\_"3|߬112y~ :]!EW?(`}[Wo-yɜȁӆpFD_gI?lupҦ_4 Co-jBkc>N`ް營'׫aH 91r`0 LSJm{pIF'KMݒ>ՅŕǭͲX2Wvwv[[C 0  4?ek5xa VV'V%1I T -r.4|]RARl6ho5QW)]Ŷy2X~΀H;ޱ}֢i 8J,1Λ~D;`Q,q0麥yeIEt~>>BoiCƸ?1'T^f&s⹿_Fa0 8i|h90 KHg$Vwݵ8 >gQ}?x,``;"Ƿ9_dx[:?AGX1֤|fc^X`:px8nhxО0?jǕ[㧼I232y?2 -*1vC:OQ{]ŏs8`0 L#ia~9"pl_uziHKc['K؂2DhǷȸrdF7=QX͌,IU>̄ZL[#%|<00!~~aoӮ )H{`-JG?Z _GU^4sdG0`0 m%2Z%{Z ~1(,^>}k̀4,S3 ?ktW5iOJ}U(4tVkKr_2j ӂg;,7m4W&$ w ɰx;3 #Euj K, 0  b͔_% Xx≭䒭MU]S>Fׄh-3?6a ʝ$4FG~3]|<xl e$̐ϣHLPSŧ`&ΗA3]WkG3$Pbi14.'\ HmU#ua`0 g^dԃ/PKa[Z|}n+n[ iEע.i~j&IT&Myu\u5#P9ݾ֖#jR{#sWn/4|ϩ:-Ha3xzg95*s3M޻%1$OLb>[fϖi] Q `q|ɽm55mϫ:lpߓ6!eK-6,.[Z„4_ab|\}mk m)f,mh]Դ Jc{cjy5Hy\<>,4Z_T]]τVSYFa0 A%Meb˪ ߙ= ó|S~ǒs=w[ >?|?7˻}> qsB?XBI*y/kdRxR'5?h*yp?)@ 7l#l-́j(yf-?0-ӧČ5-k$Eo873nY̚JO@7?yΦ( `08J#j[d^+n3yQk̫/}ikx< K6`Cgkx`kcn4K7~1oZɱ'w 3ɒ1o,14~q([<֭}[{-ڂM+S&Ͽ4 3ipz94fV8N%b뷷ʧqBFa`0Dʵ׼/+zV _uL+C؎8`1,E >=^ٱrt2HqFp稀[;5*:>s=?/ϼo;nC;oSQMS¾(U!YY_Ѯj{kC;N`uI&&a/`(llM>01/?SO虿w/ 0  שU2r*cadbsS+8||on-Uˬ NK+OK+baw۷<ܮekߣnߪ<>}>V-ԯ %fv?~ 2?(쓶jM>f#)cv#VZ&罍g5 1LI wIHBNfLwFa0 AÏgT,ԓ :Ľs<|8Lk R4HU|<[&)gx֭NH߯|eZT_?Ow/4$(hITu/Sa HTF-YI̦OXx{ݓ+MahcR3O):YzE0`0 KG L/!NǙ|SIibf2A<35ZMT_ܾ]2(g5vSS5 Zߎu$JLW?+MHC;(ڞϪ&3.J ᭽⊭u ?} Hr϶1Z6e5ݯ4%  ?Y{ƄhU'W$;vjo⼬[󛜁a`0DQH;c@3boḒO`?b44_UP5Gf4_*C|hiUtsKоpKj{}ƙ,Uy<[{ǷO`~_}fwBT?i4m̩Q^ɇ~缊-km"YFbiLMcqcu^~c[KtSz(I>9cZ?Zz7^Fa0 AKfVBR٫@3e,lվ* ?rzGxrygN؛oo h40^h*R-BX>X~OexX(@hTFyΚj:=FbSs2[؛ F&@4MAb4i{Nՠ?>ƭuT!0mуFa0 AKVޖ+`!X!?Q ^z뮧{;VxE l%[0J74fNE^fUcn^pqVW H%ؚmQUYf=\s}R1'U]/xUmź_s[o-,MgG^ktW" $KrOLogZ;b5Dy&(!Uq;c2E!eVѮ^Fi.hxwYFa0 AW"޻ۉϴW>I%4>@6+7V`}ۇ DX;Ԯ_S7K[>| {4F3f,4V|&nS-Mߧ~hohQ&s=-}nkSf8oCZji4쵬)1)?kEa}=}\PE0z`\<S4h',HWѢ;{8*mBӄZ= }b8f+헴y2NKrj G>OEN3 0  R*'x8c[is%X*W]djt1e[#U' V5\lKyk)ϛ/zf=js,ShC^q8 31[Uϯ;)}oj~ߴ=euWZpavFڮًŔj+EZ){gg<( `08KkOٙhuȇ`XquPx䑭E}o0NHm zXh\c^]SW[Z!_=THjT&8.;_g e^ۛssՕ2+_&8?-Ѱah"UQm|MO>jqS@kvy~W3&K,r CbZZ ?o)`#罹Hy>VݩLC:OWsM̜KG0`0 KٳbouJ+oZ!QPqSLm9O|0RDZ|O\/,4yjdVwja=8s֢yIr;כNA{[ YjjSq}m͋-ռ-hcuddIkQ">N:85OB{~ثUu tR^6裤[}s~cl\#1^R"/ }s=`0 4I5ŕ|z3J WbVP[.1hO=FBD{0|8Uߵ`1fq̐ Imƽ3eI{Ŗm$Ơ0H'ؖkOڭ4P),i4VfLIIm5 bBX _<=wUzsۢyxxRi&0 `0 "^$ BL@z?eẘ<M@U-29E<|hHQI͸}p 1߫+cjp>{k5Vh`F`|m>9'yޫ)Ip5զBoVaV:{}mOLaU1-?o׫1!Iړ[2Fw1om}G?BZra`0 gRZTZȬlPcGOR"o1Ȩ%||8$fS&U|Z6-׾vkm9?'? f׼™XzO7FboFA,(?=Fe7gj\ hϟvV`,hKO̓HY2iL]rILPc<5ll-vkt,`' fOq"N⺭j4|1~|dyO=iIL~L)#bnu>IsN׹U^!B]Fa0 8T[ Gxu#^qߛ:8[9g5i\HyϷ̛k|וjD; l =Z+LOYa&qiLE,Zcjڥ5Er﯎jHͧm>XϿpBfj$_>g%|ynUec+:P3f`0 Ǘ<'k:<{krk8X)Uڠbyk \,Z+q CEF=R~`xѮͷ|85i$Z5lKPOH-EW$ ,ʶ]_ xZdAcl7-$M˽n-QLG-e.iz3gGU ;=#`0K<+H+nx^zZ0>O=hK,2Z@@J#T쇶,۠ On-ĤǧhӪZy~oG1xHWS'f[&fxVsznV'Kv/ԴF"Kϳs*h4~-[ }C[m-E4~U;4|IZ}2\0 `0 "ΎzHT1Y^HwjLzǂWEjTp>VZI5\*Mɇ둘)AVױi2:|oɔ gy^~]0 I~4^ƱE~猯}mkaN8?7x| ( `08ǗM,V,k+hgŊ+BVwxTUǿ)$@$*nH {/);H/ PbE|- M@D}ߟ+J"E wVvsw!y<7s=ܻ3sfqf_PQ0a$NfIS0iR9inM:ߔY'MYZ=٨߻Zt<N\ͫ Y {^~sczϙ4uWɇJjFG Xj=} p/|nPm}5|2L4d~qU)F:#dI>KZ1]w` 8ca19wiQzol[M|/fSSH>6ռۥEQEQDHRV5 s<3"ArIҤ4HH&MJ:g<`5^0՚ihC$/Sq7Fj3zL"S&X;ה& N$~bBc$5 yUq8z)ig!I& Ӷ-r3EHZbS"aS0Y*/G~r˰P((\9M$$@ $ KU G$ҥU *4%@yԅ)>7^UɖOH)c{׀:L8 E(\4i)osw5f\W}8ZIWɂb9&o~{:[$2ʫ@sjY(Z!K gR^@HdtWwj^ 鹗VKyxujQPEQ%|Ή0͉*i4 .rZMs(A!_d]|WR"I{sV &%y,=*UIۤ n,PSZXz\1e:!Y0zs͔0YJV}WQq -RZo-?J, ol l[OdѣՁG%}Lţh2ɂ&YZ8V-|#SȾ}-YH 肥S- (XS1w>Ig@c3BI%| \iny}2nyZ,~W$'1+fLPR@}$p4`Ơ(\EAQEQ"$yJ4i$Jx>O吤J$^'IO?r$I֪fi UKy)xfJ^)^ުgVtLρTUSjf|w8%% yrM[ni*EEr \#˗϶%o+l۱c5 H3kL51YvZ8&5YM4eّ/2P@p  ZkBHsZ$:~yQ=4~8[0߮jQPEQEĹcZK*& U/c) &IGz97wtL^kB- d]*g~~pYnWUSsN$ #sI<|x>;>R47/+5e)o]W7Yg5a2qwG¤)47|만r\fq%Oʧ T_k\Ŋ-Yh}S\ڵs,_Ul_m_|ѱV` Ǫ 1EI> nᲺɢe5Ac0emK]E1vYC- (dsä)&D%߅r& :Z4'%aS|xh*l)32r\Ռ[wydZj53x}&$i95K>S%C) ?)ZݐE 46:&9nO!$[ A{Ym'o8W%LqLrM\0i}K3i*Rt aA0@?_@ |YZ?癐澥$Jb%}6i8:jƍj0cWeB4e8vfLHyWb3&owOeRq\}iۖ<ڴɶ۶m[ۖ)ʂRyomR:۶Z5MQωjF^kHHҚ!VY}?K5^-i ˕dUe jQPEQ%R-afV⭖cQ& KizST)?dj!Kjk=E=Hs Ys"/sW8, &G1H']Q,HVϔT%M֪ɛr~3Ǵݤΰ!gvgOdWLxV[mK|~["Z 3@- (8A$IJ%sK\R2yOkLsZei8 IDATp)Ct(8?iR3s+4uG/ǹ)3)UP=Aw7ϗ|\L -.^ҥ[,='}, oےEOwm9s 'S)XXk53|J r(=7Կt=d|&KoO?ٶ%=|39~WW4՚<9ZƔ?'+Y܅gHݲŶfzNU(("U $,`mۿm%>zJ",ʰFqYװL ӖyjV ^.f7#yC[ͭnH S\ՑkV5H%ox ^N+aKs|s_eJ@%N!Om[>( EvX>5#5s#eRXZ!L R;$Ǚj'#H/|\#cj"(wy.Hk8Ԣ((J8}$MAH29836̱el[Oinݹ3O#af7$!sɗ[ ,d0MYޔkZ\S4O>6Rg;M$](G0 m–]pMg}z}Gπd9[D$dI%}fkijHCLCR>Nh{mK=3?_X\?oU$ >L3&XxEAQEQ")I$)sX>ͽ~ƿg(/y%y#z5tvIEV3}vHKUMKR;MsR;LT![J2 MqR:=mΑ,pq?Z)ꃦ|r uQ?5" ml[=`Q=-;wukhH 8,=ˤS;޾rS n)UDCCm[o((;dxy48?mmtK,4isob*Y~|X+Aۖc>-~]fL[ot<./!2:JpZ9Yn*45g%͂kIS: V0L9M>79kWT*V aIQ &ސ|&ģjL'yymK QZ+D dY0E9'fX"}N.OH4zW, {=ۖ!Yh.-9=?~?Ǫ%<^~ogOπajQPEQEƹJI㚄M^$AQ[ 0e*}+FYn(شng@:Uo~ $[|]17i|56/v P}|q%tߏmy4}hΜ20%t>ABqHKk&H@Boq q;n)6)E"!b@͛۶?T.Ypx>^)ɧߧ 2~EAQEQ".iΔJq۶ٶV5|$6b]M]]$2q7U\p5*oZNjը^Y~[pHzEH6=c09 Ȓ Es;:S?QQ )I'Ov}L5tGg|-Ryܒ&EH9G~!I"?L.Ԣ((sQOL%Izy9;wu{$K޾&\]E$b鳫KU\[~)I%2kpՂ&Yv]]ՒρcQM4.#qI^t |~#;{kԟS4Ǚ+B&֜e)W _qj~i?Ǵ*չxB,$ Li4.I1TU \37eju}9RizNaE?G|{M#$˘/}kwH{*̑ƩtR{.B$iM삏[ɻh>^}LR|sR)z']t\|`۶F LQ~rpmKk5y=מKkCg|v<&_'EAQEQk"4i${y~ۖjvFIbFdu~천|MHBsA9_F-ͩZ"LI帪pM[6Lyܽ歷&Ld2iئ)dI14*$Hl4(Y$˚)4|*?Z%˝i >}y Vi!e϶% ?ض?~ߨ-@h|-̣bќ8bO*ܕI7äٺt}R#i8WA*#KsÄ4L#V-C&~n q^aբGUph5㝐5Z\ޥq@|cʰל,< ~=<k((("T:~{S(;g߲ү݂,/;4sW5,t=WkVvQP((("(("*((("(("*((("(("*((("(("*((("(("*((("%¾}Q|nҺ\'ڐdqKWWEQ,[>*JHt o,Yc{v"W\oÆ (asض9sč?7cO5(X|}}QhOUQEQ{[S h"(V-[kX |BpeDiV4hªaiHIIqZ}V#8$U#"1j8$$ؖ],mur8>!!ªmnwФi+Nh,Zy }_菊Uж}g|D}a:>6@.!ڭ5VUEQ#> 3Oc˖~"&L;mƲQd cVc2v6+VrZ7ƍq QLiS06FFKF |qibbpaܺT$&&Ν;E0k<>?>m2ɓHHH@ϥk7q/HIIAHc{$ojsFd\EQENmv}sL8~`?~𽏏}mzvރ&/6s\j[ӫ/7kC`?xCDJJ |}}ѸQCL< }oۿ+WB @jMYf ϟ|LH[i[!2\R;EQE"`\tߋT1}7 IIIXn=7jt׫vT-?Ͳ?x0jE?xA%K:Xĉv:F 8V-[㍟}ܳ.ܹs \)i;Kx>>>8ujG#a:J' c:#EQEq גpe$$DBB8ӁxÏS6rb˶ t-^…p ,]=ʸЭ[g9|+VJw\gV-[ؿǀ0qT$%&""ܹ8u4 =>y.~xfwsEQjD>G/OubPEQ=UPG=V'REQ ()''R,h*c///\hQ<3TPPEQEDEQcj[S (Guh.TPPEQEDEb> ܵ+[Qx}lܼy3͡n_XJܐNΨ^c7{ѺmGT.ݞٳgЮCT ٳg5̗T 3j7{E6N]_lu^|fC6l`rtɷo6%-- > '*V FQx[}Ke+5t-|=c2zV>ڰ~o#v}%SJU"K.Y3gLGP ~,Y3L8e˖'1axyya~hѼ)f2GE_wRRPS8xC&OÑ#޻kqk8x|Lc{x&NQѼYS\|NEc6e"p%:|ľ?k4c^x{cܸ1(axylxy*`i6q^|quYŘ6e" * `ș+L bɘ:m\F1hT˗Oӱ2v.\)))[V˕EP<.K.j*T |^1wނtfBo1(s6l֭ѨQt#f=˗ _|2 (pOXE>>>xu\n5s3|f1=pxy;s'W^E޼yQA#wܖ-]*sPRx\Y} ΝC&j%J<B:Q@߀˗/xQ2|||P^]ԯWj_A?o={) *\rbߢUȸ9ĉv:F b'x>>>8|("#k_ʽ'#"UŠA3.ŋ?…o~,Yo!EʕKXnO?gZ"ʕ3={>>(X^~y*zB )RG W?@jjpz**2mמǯ/7lxϾcaڊ|˔;òejǗۏN]#4fW[gGq:oW. 1};=>eޢ`% DvIAʽ#> ~"'Ob%p(EQ ߻L c(sԩȓ'7Z4ogwa,(CVrPln(a4[QEQEQAÃN=((C >Ԣ((Ѣ+ϯh*d% J^گ(Yc=QQEQ.efTUEQEQaAVEQGBӨEQEQDTPPEQEDEQEQDTPPEQEDEQEQDTPPEQEDEQEQDTPPEQEDEQEQDTPPEQEDEQEQD<.(۷eˇ͛.-=IIIEQEypIP] \ <G{v"W\o((, ;m=;/_> 2ܾE 555q~JIIXY(%(.ELRxgpIS7{E6N]_:-ٴSVkBT ;'ճf;hҴCQn4-^wDVP1 ti;|vDH={?:tA*i=Wnܸ#FRX"jy k?u7BʈqqoY.gaej4lOV C0B琉h.OQE~|3s۷˭ ooYXx ^zi*ˋ'cXz3*o8>`=_1/Np8w_aq([ N<  s8nȟ? -\iS&`0q raʤ(X Ofo&M#Gwڟ0p0kEL8G GfMqe\u7 5kcڔåKpc[~JNJʰVEQ-Afd(P/ZGCXJ޽b0xw5/6mƊ7" g3f`l.ź5R0vHLaCuH=UzD~ж>ж}[^DGG``qs庈$ĮѼyS@"44ؖ=&[wEQᖠ{+gN̙_0m :vhr/\8IIIHNN[;s $$ؾ?bE'NDBBuΡ4$&&Ν;4Br ʗs.11Ql[P̙~2NFh0Eu:ꓧN֭DԊ4֝wSFmzV]QEw8v}sL8~s'GܹcƉit9sLMM<ɑZf9re(gN_k嘮6vw 9.]Uދ)6Zʔ7rEQvb NnSC\%`\tߋ1}37o^˗ȑG-_S; p!ҥ;wn?+fBm?:ulm * oooK~U yܺRA%+WN[j"~wF;PQ~C@, .]FBM! g ~:4Z!($)Z-|C b*ɓ͚6Pdv\~o]ga⤩HJLDDD5ܹsqi ɓ-[4+`nYXJ_k@<~GԩS9|}evۭGL6}&|}|VعSEFm4]IHU㖏B67///)R `9(6mt90q 7i0 <Æ\ԩ1rXteJ?_Oo/B87(_,u6u&M]ݺvB0_{7oqwFE<kAX<3gŵkDa^>Wz-9W3m =;+W.2%%3th.Z<$''/ 086nxk};i=kAؽ{76mނbq QX(\8EAXXe 6_ew 1"Q6[P|BpeDi&;uTnpv\Fѱt@pH8:u_~9SҰaM߻;\t mڴ‡}V#8$U#"1j8/{g3ݚIV GXxIME*Y?ŋ`(W,Jx۵EfMd4V[;yDT–ef<^n!KgpY>Ccq_+WW~T:tnpjv.]v‡m@ܪ`tpCJJ}L< G{^Ż}U~"&L;mƲQd ƾsݳ{tz\F/K/Mgn@__L:ݾA0w)?ѲEslذ oDuPp|1nlߺ ˖GݪoXn=&M6cFd}VAd4Z4o'Oѣ ^ݧXOVxmbL2#ȑybʤӏ3?Na?~i%|zL?˖źT ` }f֮[ W\屈 ooo$$$7űdԬY}<\r)))N.XH(Z-S}VJ*޽bwϙKC~kL7oė[}v V$#aԈa-.sm,]gN(>kmy\|=\Tr΍/rLWRhX[  f |&;wM4[ <9\'>Cxt͢@ѨQ#;xyl??ro,s%v @+:|M­[Q{cf?q2J(0@``qbe[8{mہ+V9-#($)Z-|gϝ{b_c@~8i*6nΝ;ӧϿo,xq$|ݿq¯ VdMx{{[[Z6ǧ~mۿB˖[O&o޼h(̞#G~k|"<Nl;wΝ;@˖-UIII0m$/_tGCѵKG, Oغu;:t슦[رx|)RG W 2׬r}VHJLĉ'a`Ipuo]B0kKhF4i qˆC`߾hܤ%X>MзFqhԤZ逕+WGAŁ4"G7A~Q1oͲkul5ir΅5;2&p@w)S_BLsB9}`ڴAHʕB__Pk(rPR(6}IΌΝ;mۢ|(].\??? 4|9Ґ'O˛9sh(/]rPxBo,Z׮]СCqa۷(rQA@Ț3Ob`Ԋ'xb˗aa~@bP+(?֓2xԯ v>?p(v܉_y.EQ%nCZPȑ#bzUVoݠ.GTC\( Gsd={َl#---@KKKCDT >yg(rB\Zv7ǩ@ٮEQ~DNM((?  HF=(("(("*((("(("*((("(("*((("(("*((("(("*((("r}lܼyEQ^< jCRRR!X 5k=CpA\fG.}䍅hܨ(///͛KaYΝ{v"W\~ʺx̚=s缂ț'Z<$(;mFΜ9 )@ 7oa'kP@h"xyyy. 55M7tx+  @ѢE~~~NM#ԭ+#NŽwФi+Nh,Zy }_菊Uж}g|{;3:o~m: 8$t/qѰqsqƠTPΞ;ig1h߮5?|e˖lڼQ#@ֽG2jFm&,]3#|(??b\};/ú'M#Gwڟ|L0^}JeQY.*ERX7i]r)))۷ocX̝=uDG!V$Ǝui_lڌcF! Q:Gz +uGCXJ(]zk+III]ɓơy(^Qs.ס(e˔ }F61hP߄[fu<֯~ /^}JeQxu9._6LCOat4lƍ'O"!!ݺ?pNZZq9 RRRlRA+WHJJBrr2N:[Q+2:|};cX DF6R=uSłWøu+N0k<>?>m2kϟ~X3Rh(]`߄{+Gv}sL8~s'{5oRS026vw 9֮Y;P%H@vROzI:/:ʔ7ۧ(?ӻǏG``tZF϶+ܺu 1y:d ,1dH5ĤwƾQZ:3)BS9GJ߽3W5⨌3y\|.D9zU^]ԯWj_A?oJ BܹqT%DQYn:L *\rbߢU[@Q<՗+$Y^ mÈe<%(8q׮]LjCcѪe |o?{>OG$[i3hRP?8RA/#}f>P|" AA%HѢxm2dN8+WY>@<~GԩS9|}evп&NDDDTÝ;wp >Nƀ'O4kfCEpuvvZÄ?bz3㋰vΝ:XÕWD.]FBM$$$@|<ތCjj*!ݱ=ĢKPp_+gӕXXu#bŊUٻ︦ eV@uomu*UԺ ։ZkwWkju*bTT@@~$E|ޯW^I=9IrrsonFP(:Xb(~Sc\433;D Q(8::gkkK`a$]}6l;##{ekHs)J-dvp(w$ qcG3a|ckkXl%dʥÇ ɑM[>3sss<=۷NXX0'OG7V bƬ4L?;;[,Z͛7qvrwڇ[6P(jʴo׆s횄?᣹s]t&hh`vY8?Kټ} `Ҥ5Xri#Ԙsrqqfꔉ_I\\j.[7<,9+++ыr'ZȺWֽ(5n~q6i_䋢 n&DqqAQxSM2DZZdiӪ@40/dgnE_%hԄw!xZweXZZҲe/4IN(ʻ-/ȿ"Q7_OgYe.ŃD !^lG70./hxl6>xS8 ! B! DA!I B$QB!A(! IBa$ B!0H!B$B! DA!I B$QB!A(! IBay~*c50^A a0l!( @$P. vw}ҦB㬁ejFv 2JUw^~7,-hNKڎo[=?orϛ$y3 + &enIު:]ûbf_\HurxgQ‚ȘHݶ$"^ WD!8Ь<2xҀ9)| p t~Qo&}(Dcd2BAε҉Kr/_QL:4InXXh[[ϔ6/WPc;!x`+$pP{$ e+L>$Sx{xVxbҠrD.^(X?v5I6^̪3Yf)@8i,,n-}Ogʛ< ki1،kle@)˶4Mͮ'i3d}[hvTGL19{x BB\v.Ys2v.v$M$]LQB<CI}Jε.%鳬TLi=q7) )4vڄ ]ζh7=J 1&g{Od.5onVEs@d8§h3S =0 [Y$-%!kie{qo&- B̹35_9jrdK:L.Sw=m١U0T&ȜIvB Qe\j@4qZ363fJ;*{4-xF69@R%mmd6A9ʔTR,Bַ% fJ+#)mo8Wrrڲ?\⑋L*{03эÛ|{xLerPʹ 4t v|w)ijgluF7 o6z452ɨs1{x C9\U\RB!&DS( DSL|'9mo쳬) )1bp؇x+9m__{OLN@HwѬ[!̩g|@=hg)hg&Of,4ǔ6gĶ;+帟q_]ji) F?r?ek%^Ƕ~Лky&J %qS^e,-9s>N:$#VsL2\8t"i5M.Ǎ?n0x`;UpҹIx1 C=m<1N!hv74G4R<[s%:Mf` %h~)LMl`$=9e/3y0޳MyĸDVu\mǵFg.I] 14Ǩ3iii8s$[MJ&w^cQ)(Ynh<8}'eZx}ImW*֩k5W+{ɃE<f=v&0h, Nb|ŋ_-V4/7XEPn3 Qܝw2d,^@s ! |CVgݟt]i=j!Mż?!2X\3D3B9*:3(lٸV­[)Y$%hh kFB!xN5pF ݺ#r<7 +F-JZ.~BD!ެ_ OMƏê˴8i*~נ ,37V7s¡СS7j&1޹sN3cfmwNxдykV^]n}]i#11?/yyBb]>|ߤwyR%Csev0zx;pPǙRw ̟7RJb_oyA}BQ(]ϿxxT+WB`t֙eW_Q oɉ !Œ3 ׮GR0Z/11ӧ]:RaAokמ';i8kQre{?fMBǬ[Eiڴ1e˖qL6;vPL7nȧ}mkߧѵKg /BQ,]J[[͵Ժ5AChfϚ- ~q;64zgIzz:7o߯t_!л:ƒRhР3 .E{HZh?nQlto۪wR]6 ʘY-W3B!80hߗcggGش}ƒ)U$+V@Trܟ4m?ΞJJN`n^fϜ܈ 4;>ىU*cccCLMj|:v> |ksZ!ō/F}3FG(_<8x~FakkK`a$]}6l;#ryQ(ƄIS8ާT90RW.iii=wWeэ7BSF_!e./_O?{k3q4nߎdɒҠ'  !dN8ʊobyQ*,]wFeH>aCprr$j /OXZTPOjeB2Q4k0:%M`ؗtZZdiy#B<3Gu­S8GweXZZҲeBQdH4h،ҮnB!D.{!!EDgg(` 233L(TjL$~sc0yOr@~KzZ'Kהk~* > V\=='_Eۑ]I!t{q)BQ|+QpruZ!((&' Nn܍ EZ!((&' *dFA!DA׌($BQ^_ 'W7w(OM9!ui<|HJJ*к/bF!scsiw*WNW;dيb/(5Bcm}}}8~WJJJ"0̌Ea#'N9êk^s^ZZtuƘff8B渺<0RT(粽ȏbF! KZލo333/]cG4kц*Rţ:#G%!!Ț4i };Nظ8hØqQ5IDԦ-4hԔ*_Ejk366"$IB]9gݻǐ#C}x\3NsxЫO_.է?>~uGmwNxдykV^^dr#tԍs_B`eeзoeJ3%sCNc;wY:[|%/ı88koݺE=hР+/̌Wy,.3ZGaɲFFA( ɜBes‰sb_Ϊk/aanΜeQp?vǎh];v<ϢgYA60\sK*gZp^}kE1B"!!cԨEu0ozS'OUTa@~2{͗Kg\]]5?~̺Q,^4MSl7jiٱcN&ÿU*W~nۋxQ'3AoE;{GPT$''cm?_\tهW۷e޻ڲ:vSWVV(< ./=4m;R ,@Hp>ׁp(Sޯ[o8Ch}Ejj*&eX[[3axOz1TS>]dqnB `7w~x,!$&#`ѭ1xTpK,+~=Jwڲ5rvvv"%%T,-- ϕ+$&&ҷ@tIKKӖy(39Q(]t ˣP(HJJڥ33Mɑ3g`H>" Om0117qw̞d>ObmE&sv=ǵ!(SO6Pa>]`Z0q7}R88Y~?ѐi|DDw9rqqq Uս1/$eKCaX !I؂04Mޥ! ߁oCdL,A$Ņ s~)I,߾m Jeָ( ۋxgRRRشe+:̞5gM~aښƌtٛW<=<% j(Q`U2gDA |)o /5uKfqnp$e<T=<T^f쯽 k5*q`]HtRz9?pv-ܮ*sp |y֋FEG_4jX[֨Q#6oz~ ֏VIV_d*xă u mnjO (- U[ݿYBߌ 8! ,-+as ]x%JhqcG2v-Q:*̧D ;3RS$(pwP実ZVs}3V IDATT t;RJH `SfнTV ¤>\\:e"DZK>lNNDmA߾} >'/ČBzuMOSgYfaaп{ [A(4 Cy͵_PSTEP}喀M"P~\I*N83PYB9_ԍ砼C`OuMMÑN(W bkjv5pHN' _X7Œ]z DBب`Ǥk6Vj0OTYvk{kf߳m7a D! _'2GGG6Ee4ܵr( + 6ACW^=ݫYTP3 ¸JJ4: Yx77QZ!ҳ+0,u43JSX=\')YA3 }l3ڙX59K-h 8e œg*`W (5%=T xeWeGw36N*7ӽ26CFtKV;w[cQ\ayU3 4(`Nm4+,nEKw$u43C-f,Ff](biU_mx M}'I-P|J.?Ks'NPN y@kW&C;MYGpR 2)pI7QP!t,s$ p(v _N*Xǘ-3S6yjE.1vi_V2Pv2h8_ˀRZBp̶ ,@>)PiC%WfP4K9z_>k~"*~?‘fׂ]^T !C;7__޽ Zybh}n O4ʪS)Sj վc5uSJ02XTS%L#ht`WI``bm)`fǰ_|ϟw/Q(F I/ M3j8F.VZ7қ@7kʜ@lۡ ;>\*" JߒZjjfK*J;=N)hh/ٳCyX[[3mTz)LQ"5=yMTÌ] v)l:;+=sw'AB3Ctrns |Y"+ࠂ %YRwO$_3 ɂ\bf8Aۮ-+eciiɺuٰ!#{˜y|U7k@y_v7d 뽳3`4Q0LUŧR)4gBhָacljO[oB!:F!0h3 L!EDuB!xΜrńBa$ B!0H!B$B! DA!I B$QB!A(! IBa$ B!0H!BT(¦[yQ3<|X=eEO:IIIfqBCBriz韫\9w|8.Z4l;[[e!3sSU1k c~{B—D!DJeD͛jڷkss5.m !zpvvE{qr[ʞ[.^>mIW;@Yz-jZ<==[ާMשQӟFMZtJ :xx贝SBB'MϿ4ae:}јצ1gN8ǯ} ::'OѭGj֦g~DGG< ,KII`ǟмe[{עqVlA>?ڼ]B愣RLel)OOйK}է?ׯgB!4hFkG?6_<js CQ(5c]ϝ;wE}2'/cƌFu/ʮ]{LN^:Lw>Jskifݫnn( ~w&P(ptt՟-;Ƃ,v]ȃٰq329o1?gʕ(ʊk7nWʦ[9~$M6ܜ33zΫVىA2)^/C .X!^TO#UWu+J.y&_m 6''G6ma`o>:ƏΖpMݻv3SLdHPuBN><|ŜOOT*,[PڵH@?Ǝf)p!.[Ijj*>>5YrS?Ao `ܹ{]:44Фxz-+[!^Vf=v\gľ}s BჹQ}QOBa$ B!0H!B$B! DA!I B$QB!AN~W&MFm@m4e:[a\:u/,$ERE#/bōɉJ"4,3Cة aбcgMMyT<1z)*|}}8~OÇi٪ gHޱ+5jӬE}$W ǫ kAӊ矒C)6L>%ˈgj|ѯ_?zɒ+:eѶ˽}6o|.;#ennSAjUq#ײ_~.Wׯ}dߏ?Dh\B۔.W՘Z=)JBx?ϏI֟.rɾ}:8;;;;>ٷ9\gh%$$0qTQA/YZ6iyfVyt:;hN~uܬߋʤDa2e/]Dͱy\666L4[?Wad嘛gMr h;ZGM^bjCO`ID.YNh,SJ",|ɱZ0r knLM_ 0K쬬{n}?@hXZNrLKd9^ %>>?Ξ#55W_+i)4Q5/uؾc!3,Z8}~ƚuff̜9Cep"[u?o.~9Jc˖Yfֳrl>GQp?vDM6C~ ))~Cjmۖcǎ]dgY\gJ,11ӧ]:RaAokg6u2kPreg6uT\!9~g:yZ CϿ譧V4e:3UlãֱvE0yt.Y&&$txՈ '>cтwYd%r2@sa*j CcǬ[Eiڴ1e˖qL6;vi߭[7j[Y׫˔I1i8kQre1fHjT~z 6?ޗ)#{{@ﲙ阔(ܹsWWW'O,~t݉3'O>wsBf௳ڵT*||e~\_ju3UvrrS,99Tbvvv"%%Ec7Fmʒ7˳MZ~L?wҥs':vxݤX~9ǫ12^59shҸǍϿd<24FrD=ei܎%-- ӧ080W5V@}FG5çw5s}6 ϙ(&Lll,2ԩѣGԩ}m\bc5f=w4cfU|=?O'QSwRnCfΘʠoj.^Īk֭ %ڵU&#r9^ @Je*U޽{T*υ0k~#jfl߶URɣG2_{F7~1&7/ f7jw}E-EDEEi%r|A._&0poEq_W/e˖΁lףqrrBTx.D=^ J*!&&*UuQ(|8W$/^Lw>w.Ŷ6?rWWlmm5,dBܿφygD@˟rug٣ZUAK))) <2a@/!1a#FjG-x5Dƫ27b>s琘kѽ+ 0xt%Jyk~ϝ`eeŨ#4&'S^]8{W˨#pwwܜ[>o\pM櫟LVىAUǔϑ I( (&aRPBx^?y!{iFxeϪώе)ܿ. <,9+++ыO^ˋ:+++:PWN x/({V!"E"UE!M@CP=e !ȒDA!egB! B`鿝B!D7Q~!Br1 B!0H!B$B! DA!I B$QB!A(! IBa$ B!0H!B$B! DAQN:IIIϵC.{`SNӫO;VVV;!G&{Rlќ8cG~QRdED#n߾͛ߦKw)Q111̚=3CX quuy8xk׃9axyz<{^BB'MϿ4aejgN8ǯ} ::'OѭGj֦g~DGGՔ>OGfh-'!^FN_qQ@3vmo'>>nҸIKזm۾v'[jZ1{>-Rݻb˖rh?9/=MBGQ)4,|oYM h;?` 899v X`q(amMh,>2?__"kZ#^eɤojBJ$''_eKB-\Bbb"}ԩNrr2iiiFcV*ݏ6[ѦMkڵm7ah8;;GS!^zGucԘ ޕo.}ݶBڴvydƕS(g[c=w`cmM)RY8C._$Tcggd}oۊ}RT*T*h1~fo|YɴY8?5L|Eq4rLjog=fsD߸SwE߆AXŕ+Wquu!,4֭Z)n0ݎ59|nݦdɒԯWԮE@g4kVҪe ;sScGrݾ}7M BhXUU!ƍ\~7׫__޳/"4l.armJXUrF  Q|yݻǁ߱|jU}T* ޿.Jmܾn?%Jd}KannKYB}.:{EAz L4?zkЄKVMZ9tt:;hNMY\}/+W2Ṗ0i4EU{1$@o,]i߮-nneEu//:q<yx~j4>>5?n V.kS:uOu5dԙ$&&YСS7j&| [w-7mŖ-ĶmNڿ o6oͪksm줳^g :w遷OuBNa}{07:dN8/^fGypNɉ`ՄPƎD kkBCf9c5zc3c6eh;FdEl۶Znee?RJ1bPа־ʙ&7s띉}̞5]e!11Ç./Uv^̌3Qreo |<ޝyiXnͥT0;8S&kr]bo G5r( FMR %OhDDQfaN\6G}f]dgΔObb"_}-6ûFuͮ]{x;pP3M:YorH`ޏw_O[6v$ڇ18gV4e:3Upi<<)j w>.Y&&sO}Ƣb/x((׮GR0Zϔ[.nne2i'MI&MS.]FRѺuKpww{1GcV||4PlOLhh${Ҩv2e8֛:y}:$P% 'O"|<" _gٵkQTxk|}\&ky^NNxy%''}Q[_ˏ Eh,E,̜9 ?_ư`bfϚR!̌ӧϰl*pGQ$''}w jժOhӺmڴ]֘ϕ+$&&ҷ@8Ӎ) ߞ;8FAi4X/{DJJ \zo =QcԘ ޕo.~4bfU"w;ju8 j֮݀ې32hڲ.ju_|IviղE&yu9;;PREmYJw*؏V|9J%/EG8d*Ǎs3ndT*E*RTc1f͞7gwo1M_q vI-=.ę +cQ@7!2uaHN 2貸ڐ:MqSMq ݃Ҏ~?oڞ`}||vG΂ 8&y_djFw9Sl6 Պ=P*Q^v9]] .N ىeQK!=  ܽ{>vwO`R]Yn_0WvCW_Fd|oo23#= ESCV~ʝy;ZI,R(ۇnz !¼x45pZ(X,CX0cׯ߀2brpị!1됓|Ypxgw&b^.*>D_qfq" Hye#E,8s੍XPPhyqM)PC$pވXD"d2,QNy<~Q /0S #;g}}:y; iiTUנ h<|[6o0ǃx۶#7ǑPT0h3qRNRD}Ih4pJ7Zܶ{ ?!.n=H$h;oRX,T*E^nJJ+0:2kjEgWzz~G^nkb^.N`fAOlSYQҲJlKMT*fVd~] `C=#)911A[E {PS[~ R)*JH) v,fj1>nk)@WT0_ǃT*|u9 ;q_ ŋ/N.cLj7@|kĠpJ`0`#ưzu47{ٻ p_DVF?͉@V.s'ϞmEfÉk?o%vֺ-dVfDcU6gSs< M&zW@DDDP """X(K,% DDD """r> v\8\n g{S``4C`cKD4d%" 6\}86&}-߳?DDDcobwmF~׃_ё)f4RnycDDD[obVmFxÄ 6A*}$"""/"V(LWODDD'.|C]&zv[IENDB`ShortRead/vignettes/images/HilbertPlot_H3K4me1.pdf0000644000175100017510000014566712607265053023052 0ustar00biocbuildbiocbuild%PDF-1.4 1 0 obj << /Title (HilbertPlot_H3K4me1.pdf) /CreationDate (D:20080718102900) /ModDate (D:20080718102900) /Producer (ImageMagick 6.3.2 10/15/07 Q16 http://www.imagemagick.org) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R ] /Count 1 >> endobj 4 0 obj << /Type /Page /Parent 3 0 R /Resources << /Font << /F0 8 0 R >> /XObject << /Im0 9 0 R >> /ProcSet 7 0 R >> /MediaBox [0 0 516 516] /CropBox [0 0 516 516] /Contents 5 0 R /Thumb 12 0 R >> endobj 5 0 obj << /Length 6 0 R >> stream q 515.936 0 0 515.936 0 0 cm /Im0 Do Q endstream endobj 6 0 obj 39 endobj 7 0 obj [ /PDF /Text /ImageC ] endobj 8 0 obj << /Type /Font /Subtype /Type1 /Name /F0 /BaseFont /Helvetica /Encoding /MacRomanEncoding >> endobj 9 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [ /FlateDecode ] /Width 516 /Height 516 /ColorSpace 11 0 R /BitsPerComponent 8 /SMask 16 0 R /Length 10 0 R >> stream xݙ[=(5a+5(QȠD"D<DdQDӴփiZӧ)_Y,^ֲ$qm{p~}kxsҥK.]tҥK>}G~YKU?~:zVIٯ'OG/Y?Y?G1_MzeuR)5OwG}]#w_?M& =L wPMZďȮ3<#jG-?s%oHtSdu)+x䒴ȥCk9ODy4M>9-,IO,9,8,8,8,8,ؓk:\M^2&7VMTg.!{tHJcLz$S|֔ZKkw[w[^k_{GY5%M[jT vq#{p>Ȯ%N6Sr|aҨ.iGN}JkB4I&}mLs4S:,8,H,c]dH….Wq)\n JzwL9E.Iۓg>JE֩ϦwyqX??Gw/a4MYrt*qmvD( z#OȎS9RW$uZeζh{^jWbJYsrFzFGsDaaaaaA0Kr=wK{}V oݏn,C=Or-PykS|{1֡o_}dq7}ַyNԳ^p\Rvv5h8sjrE;񙿉S2=%nYӳ~[Ae*ѩe:,`;   >,,MTѫQ4;`M k.M.w ҿI;˻XsYz@q!ň4{2yZJ|Ƶ؋{/:wh$qZ3!ENISs6ɤgޘ9 g/~#tX@ R)}LX7C8:(}w% LvAKLGy],=f?hGb!t2t3"WSRmDXU𑵚=G{|O<߅'IY'gzcMژv9. 1i{G O܉9~gp:o$'_qXpXpXpXpXpXXŊVw̴-Flҥ BdƎvP:,8,8,8,8,8,TjyVI71L[$r?:\ۄn˿T_5oSr=!hMkUB_?M7v>D$ɛivѱ4wg)5¥%y[{!c;ɘ|=˙xXpXpXpXpXpXΚq%ɣ"!п~+/ay#.HU ^P-F#ߣqtW `.YH%=f&L{NV<=(/iJ H>|i9TEOߞDk<ÂÂÂÂÂýerC7iZ eވ9R_;+qU7YULo/ ?:T)_񵖓庾Zw9!jbCp9qɣvxҳ?-dF=i'}e;zcwHd.>-ף= ۲#YD$"nGƤ'f&v%l6%V}U>^{jER~  %]:,H9,tX~b]ʔNVSU._.Q%n7Qygk.ykܮΫowz g6yyłb;~\&[K\;u%ɽ JO%[-w ݹG~vI^+E\+rY(Hk~ɚ#]xyڗ/={=J  -6ة-$,:Âc'쑼{EGZ]ƩoJ~j _G)+y_)./á=zH>Zex=u)'ϐLpnӷ3z߸LӎNgt9zb1uVtIу%}u$U:_=2XNyќ.R;e%XI@1m2:D)|T ܙӣ~B=,8,aaaNp(qzQ(w_C!mjG\RV"qO8=H+ti]5--EnIxN]˔G&Ign$&o={dمFߤc,ˊ3xwFʓuHyV;Op{^}f/w_tXpXaaa\&$G/ shEߎr#&S۝6(v4FŠ;z6"u_0mvHXo\F,u y SПJ{i?aKy+3<~} kkڛVFԺ%zki3mxϔpఠ?uXpXpXa"բ$$/O6NR:]sպqNZ;N(l6yXpXmdyֵ@ ca?bVo>ųɧ2$mwz ڣ# WY͎XFTM><}[uۓ3LXVd'?[?M|I3^?ۘ]F).V@Jt=޵Dg,ةlG=ai^s xLϾDdE}_B>ۚ'R     >>,Hс78鷼ՋFg1 <+%MUm=6;mc_J龩ūR4=:=O:OI4(Ji%qI9Mwi3!i?3;.-tc4VH5tw]_}d]0]k5;)ܕ   ީ]I  >V,`d173)x0i!Hx.5Q@Oӳ9xNt;eIWtr{dfޥƻh. jv~W¸ν5"EX(IRNj \B+]c'~[ǒxSWd}Il*iܽGMj 1u2qఀ#8 H'׀3r.ؑvQ?'Mw{pNޯ# y3Fk{K7OS {R=@¬C]<;sXP;%bٮIX_Frciw/k:r_sﶰ}X,尀鰀>,8, H5Q[^Ͻ^IpӳqO/;n&/ПbM8 Vp]w/_& r1EO>xI"l'݃<Ki6zWC(uOQK.:$hL.;L0)u~pK?8iz_4t8KxŖSݖ?e(7޽GYSDeKQʇ |XpX1a3$O;1E~y[cGZv*i-X%~(Btr]UzInI"WI-$R49eىu&NÛ1\ Et[cguzo5WYM&OQݓ,(hWkGG;_JJzz-1к g%~XpXǂ~[D2ojW9R7E:u/݋_?K-L=~Uc&ʢɝE7xR^t-M %a]7i珬} ݦmo@:|dMj[XFBҊ4o鸰ǂlmg#`YK9YeL)pćEUewXpX n'Ʈ*92Ǖք'7ks?~dٔTm~ˏLdݫg2ΊRGl6]cwxQ m&k%泗2Hј3wtpD޲>s8jT+'~n{&.*aa HC:o?|WU'x/TR\!JI,$GE߅%1f$|Lz40'pOrQ8<׹GJ{ǙFSvW#! ˓nԑ˫dHgcDZ~wt>$E'+uX:Â.w-o> fWcV"u1ѯ[H#c%/;YBdwo$I$ݱ8Hvoɴais'-uW=i`?nH]ZMޞ%]O8^|O<,8,H\ ( >,إSR :}VѾvsi&vb}N+5y֎ᴓpT-n]xBR]Wd;]ʝZO1QlS;-}ugTw |3fH]iv¦+ra4I  >M,HH%xB8O;1[baw9qCmLNt?@^؂gobJ'qX|uii斴ߤMF9b;>OѺ壴ciUNOo`cf .,zuXpXpX>t,`n5]Fit~WszLjKXtX߶t^J8 \ܻüӯWB{ΤIKO4j5m}(Iw{SR!I+Ƥ?#+5YQs;e&Ŏ_;[Kb[g{udMz9JS-(9~{ Q{{(vRG_u~h_U'V'&T; ;-+{%''MHxd!Hu:nGhڅWeD\Msg=L׮nSO~ǵԋ j$JҨN}ԋ4ɍL%E, G[K>t2{~ˮҗ#'sOw:LjVrFt1(xGۿ}dE#bL})56Tl5&ns}B1vї:3Lt&IuMsW!<_|lo3T?Ɏ&M '{Is3 z:,8,8,8,4 I6F@I[#CR_Jj24v],n;D~jYc^\?T%.-)IOn1e9*I4GKZp^KiΖM<%߹:J'Vӛ~^ s%-/&_=#sb}?^ylG];E;D#LԺ>,-L$ޥ wĮBԣD%,p_D^NI,hs{ڤii^|X4<=uXpX>,s/+n]$OkoធԒ8"$w<7uiN[]^,QK654uI({sZ^Ktz}/"]֩e;GI$ӄ4/:f%tf }H w:,8,8,` ȁե½ޚLw4drLSc~՚n$u_-yg>d]sX33=r)o|XнP9}\>7 IW{I>)_IҨ^GI:8 ]DL%zjQk UcY?;ü7mY=w$OE z/# u #1odwU.eϾ<$M>,8,8,8,ch❷[LҗJ%yV֋&$9ƱGun= őEJi7y]=+*l=fcǗeBuHjU;Cgı}sߝKp%.ЭC8S0엳>qt~8OKN,c.P^')&MuivNI-4t?}X<_Wn+Nݫsw_ \j<Ox9>Q PZ!Pypi,d>sHCp=9mթƮɔ~b it^*D?'69_J3XrXpXrX|aLJdkÔ(z#BZI'z<3,u)$nRx7)Xzஓv𻩽\qd t{-{RcD>+|op:I_D[VDEH4J:F,K=*iը5}U2YSXyϲ%,{pXpXpXpXpXpXoRi\^wpwnI҇o)Q~^ݚ\g3Ղ+VƝ vJ"S';>Qs*/YX.+F+˿ +\WZ'}v9\O_"~&.3gm^{hSz}~QOxB6ghK찠P:,8,8,|LX@׻7i]cpzcWSsHf/IxGjJ2i.n \"uögM뮴Aώp:=EY>0I'-7|ʽ$8" e!1.$;gj﶐fG&ÂT BY||XR>^龺.I7%\M5wn#|LoE{"QDžnM{ 8RKgmzͣ@wO:mzԅc̯WkGz4ϵQs}|oD1:'! 3E}KNcQ 6%I->aaaaaaoIޯkZKHs:'e5m\DžUǎϮV҃ћW$gҚn}Z[wNk._Kz1%\Woikl+O)65ϔ6]o|k;:a`ik쇎o3t..;?oGjGifcB[}-ZDߚwW 9ݷtчwx֢6K^hS-BkoYsnxs<&mьttPaA]p?;һXHsAR|WTz'J6А"'ICrOTj'Q' [kUؗ4'Rg9SG+mo'ʲMi2[H'xB簷(=umI3_i-ގ%GOG^g=iy{XpXpX~  z_F')uAoIMuc\NkMF H8K⃗(d$#zZN 2cgޟFmSxJn*YP@e~A,6M@oc5:Ƃ)BQK̥ոݲ97ȌJǨ <^tXpXе\codP ,p/e:YҽT'IG@4{hm'z,K:b1􈜯oOt[<#_+49ƹMڧ,$Mﴆ_;L>j(-=,8,H   >M,筒OH< ׏>9L$zi꽿!v={}א<цD&K0vi[t#niˌei&ϐRN0 v/p/H?2b&xӜ|_r/GU$ >>,/yJZ;+8c쫧E۟r &M.~23m$%?md[O%oϟ-Z_!L)nYZirs/߱/ci^Ė$ݗv mi,yaaAOłmZ*5֮'>$%i2r3N+S50{f;[)igEwOM-'+\'MN-Ӳ7Ӹv3OrLiVh %3e_ '͑?,8,p$N$?>,Hr=+iÓ)B˓sI9)2&>Ц.#JVȞ*neKn/MHz+K&)43q`i!ib -+ $OO/#,}8O{Ƨf˜srv{|DÂÂÂaA$=,eMG?dKWˎR_&9vֻt$ΥN!ZSo,IIcݏo{MbO֟za̳k^gGIj䞯+rH3.(=ĉI7F[RWY='QqW_P=,8,8,P:,8,8,fIuBZSoJ6*\ZuJHczZjXcs[6vzݷ'[F,tn콤z^G)tH쨽MN[3lkeDˌKґ+^gN-7U4G)4ሒ||aaAS a3y{EX#ǿrZmדT''Evv+_{>)ʂ|fANtyo;)s>Ru9;[")FDYUz 3sp혜?,tXÂDaaWZeݱ/A]kf6_qDzzy/*^~vMXmKgDɇhix-gɦit=-X%qܺL_U=~;iU_YÂvXpX? >D, ndG<“x%,Pwr|>vv{ZJ )A?Ea3+Hik}ԝ _۵LBY΅^,(2[XK3_ls1^mj{y鞣ߜ!_!>9kϿ|a Sq`A3M*1(_N5υ=$ē& sG?zdådS;:u-Jn,Ǖq{I{k{)klF5Jo:yN"EQ>ͳhTI~RYq4ҤN9,ఠ?/qXaAp.᮷\Umt[Fkvk5MWkR[0󙭱γӶȫy,v" jNׁgslu[jY|瑻2:Axyf0kU>,8,H ѓZ>,8,Pб& ,NzN֜E?$?FǘJ'z-%=g1SE:r[t.)HK]OʫKcDTWޒ ~ۏo<׿Ȋ >R1y봏TUR'aA{ఠKK ,;lO\"5GsI~ngR5vkA|ע''K&I❞/6NG@H^=U|{Jr_r6]w|d0ڻsa o^>:/`I  HᇈVx O?7'ߴҿJ//Iyե3hϮR:}ٴ|9ğ!n$/<|r%C%`\6$Ow4f]xdWim:<.5q% R`~{ÂÂ)`J=s>HQ|Dx˔J'xמS$v^Фs;@ UHjQ+]]$ӭ{9aPodZ: N|hݯ6N={;"w HЦLx}B`Y)߅J)&ڌ9а}/[rI[)J9m-Lq$raGtX@j|g{yaaabjN:gUj2l׍gu>kmHyˈؚ|[R;RZ(_J|%ӗShRcTk~N]?,wHͤ9W+b۩c4kJSfiA~X䞴koE    Xua򊽤w7R%H^ۓg9[b:vzٔ0dJ']I1W=wR{bD"u,ivI,mYj7}}rwPD ='χkR}GIߔ  :I+-uџ7KT'8W?#=ſtTqe-k;Zc(i-{G1*zQ1z֬kEC>ҎLzzB=갾Gx;9|WI4=;.zఀ`aNJ#@|-#} Pwts-X<Dn;'h&}cB~rŢmSon_iNHf)||6G`kG. S7&mYFɂb{TYdrhlIԾ<4/u36aaA  XתNj_^x[qO?~d ջ=n0 b鋢)Db>{νئq,`˾ouRÎݻ_M~'޲zA.D#EW|&ziC=QjSɟ#[KJ{ÂǁK;I=e%|&IPz׳5% a LVw:eaaaaA.>>c}y"Du:0]֑n,q3>$Ņtg3-Q^?D墧 7qw/M٣iԔfץ}&CzˢJviH'SIǎnG;G(yOWyXpXpXpX5`c‚½IhNnӿ~mIM^P}޹G剆eFY|Ѣtyq=-뙻Eʊvt,q},o`6qY>q=}D,O4m<}~-3!mIևݚ  q|LX@&Mf&[coK{JO̥#݂-CE䞞}KE[f匡I=ZS9d*;wM>ajq/Vv>,]. (:< odL1g%_k^YBI}i҇ÂÂ.ÂÂv|(XxN=Sq6񻞒'rŇk٢3Ye#ӖtLfkȳ~ α}Իg~vmZnjOz},>K9㨺'3! 3iNBa ܕ//9,8,xc tXZcbrږҳ^Oi9o:GŅfRNNu:kR:{ncpA2:4|7IQ³XRtWDy S~eK |A|P1=ⷿ}do)2{4v>뉋t.֚|]N11z~?#KoS\rjaIoHaaaaaAOp}6rh~Ȣ}dY&7}vqo3=q_I-c]ڽbe݊BҢ+|լ{޶=NB5I{]OޮIUk=.Cؚ|{y}푽eyMWot_jtXpC;K72[&.Ї}͵oEm-3ҚcǯD9j& \jvol5OG%+ѷ`R}_w#Ǖx@f~z.ED]I-4/:H+frWj_J v[8,W3 wHTڻȽs&aЮ=Zh]~nH7MGtR/E0\oW/Y[~Gbrwm} S9?I>w}}Q_?2e$C)C޳66yݎ:I<FPb5QwXtX!bO=)f-z~w;iin,[#t=fяY_?2=n;>wc/w[O28=.te77@ŎV,4m$g:I/#}hi.#:,|X!񼿉-o*+/tma$;J$y*_raݼ;)vSԲ|7C?쑿GS__w:<{^گ_T&8,­#!8ѡSlI|-}oyN 5vַYc{ɢ{ZGJ{TҨDD'ƒ8Dd9,8,H Iఠkǁ<Kd6{駱vo{?GeaF xgdǓI;Sq6T]Dz|)Rj' (K "@V){<.u)>e횰xO{o7\|GzXpX=,8,8,࿋&|XlAϊ*|R"m?I^`LH=vnDtoB;zoI_%Dz^g9쳾en%jOvt?~w:ٹh$bA*7ej싲+k˨Ҧki?hBn;ˈOYGX1 =3aMurI#[£C}֡{GV Q&կi,KF`AQ?EOdGwGzzD5X?|n [޻r[55p }:7wQ[   7  :ԙ :)9%ֹK{TZ\^"~#D5e}}}d#|'%N8FB:rc<2IumE12 )=b P\{yʥ{]״ˮ[,XsAOOaع+^l&YPIKK C髹_7I-EZRL듞Ի証.Rɱ }$fR0wI\-^-$is.%sQ     >e,ҩWR:o5{{ Ic^i6xT- GIh  fԂST2q-I:NTydv0#uFSkBm~WH7yi󇴣p>,8,8,X%~XtXc"YA9$-V{=n}ھVO:]۩#Q;rJ:xZB/ߑ,:sjg/Z>[IgW,4xQK}h+Q)1oY~NT%ZqX`ηÂÂDa bAҺSb7jiqFw8/^1ǣ'վJn6 "8]Z_CSu)MώӳD FoUщEW闺|D?#ٝ~FN U1j֪#*oYQsvѱnG6J{9,б`Dq@_rmyȨBWZt~o[0{q=k*.2?1ntׇEWϳhw"No~)E$e=2~"VɯVsV;"زxNY**)ZG՜Z=mkc҇sXpXZk@@Ă?,v4:Kݏ'W;fZIJα9oKJ=E  X,gێ wߞ'IZf;C#voa^$=H񫴚oJ#)YSL`Bu.풥x\˜$Ȕ#bT(^Y@uZ[-+HZ'/#'faoLDȇaaaAOIK?,ೝ ouSK_zygm?#ޗT=iCzttHqtHFG;;/_Fe2>|Zi_i 2%S>_*ݳ%J^߱|KҿJx;){aAٟ:,8,e}XtX`Y+ٵk~sJtB?IoYSxg5 ]KsZ(QxH<ܥS>$(Bڽq.N3y%IYɓy^?CoO4L]SM5ITM$ˢ.%\MzఠL^|XMLR>':|ty͵dX7}K[}ACjxo?Ж1=iX'Ze_Y,E0;u_"xi_M]NsOKQ!'DFr Iu>yϻm   R:,, >,H5Kk ^R(I]smb&,xz/i잿G:ؗkT햞?H-w>jU i2IpuX@opMJqIK%ǎ.;T}OQg|YsQs/Y\]mTt=3EY4k8vڦ|N5Wdd,aaAXpXpXqc>_dHz_yKF pY 0y RS_ks ,K|yv#3 gĹ=B'}{9wt?sGt"b x g|hB~ᰠI59,H?,c݂:W]|yg;=^K nR+?ϵ0$=l.dץgߟ]"!Kр}#ڵ쮉_uay?CLY2Y(QS"}Iv*Vb^tH=T\\N.R>,8,HSƂlS\Ԧ^(Q?Gx{z.W G|=K{y9'4KӨ%_%}#`ΗU^}j잰K'EI84Za{Ґ]/u SZ<˻f[-Zp RZDM-{ j 0C1ɟS\r髯4#Hb]F~cB]sщt=,xo|8,8,8,R{`֓EhU+-$q5]SaXFKygw^,k:-v.i./v_K#r~zRvwv^ӫ>g鰀  v  >,nΓ#aEFr?~o0)q]~־,ZRJlٽoᒧ=VCN.I2Zh| ?vG;Rig;FT緿}dv?O%R]jt>Egl҄Eaɽ-=,tX<Ij]Ri~-?M4xHXн?#3vgx巠2'S]c{R{9oHL8Bp{B<*u KZKӵ]t~ˏܑBUPh5&ayyaAz }$  :%o|wNe,H<$, IJR] ,=ߣLuoo'LOo ?6zg9֥M4_^}w,/ ?PMwJGBRy$]K뷸[NR.YHaAoaIKaaA?]<uw$dIuא/6m)J ֵc콿6K~ZSz|?'JQ 6pv:%6)v< KSlX9y楅i8,8,pSRxX%"otKgy.Ɣz%$Y!bϯ~~N%nR{ Wy"IZ63%.g oSQXB_X ?sdt?~t{Ӟo5EK<oa\:,8,Q:,Svo}~kZZ'{/"ȲQQ]iW#YRܳ IS}&}r(`_)K vS=nU9î9]K{&牭i{%j5 R[L{Zz˝/5jGeB:~6_Z 2'͟ĥ䫽ZcY9EiSG%[l3iFwkpgIR:r-?;F{X,  O > wHΎK4ɫ/L}4V;H)Mb϶Ef: _~#vEGUuƔFIZš]?wm;eM |sK;f9'.'[8, ÂÂÂ>uX>7>R?IcxE O(Z*7{L][KDjJkʾzu:O!,IkđOIHjO=fhi#?\1+(>)jgB?Pg9vX<^}q=  |#v7Bjy)Oޕ)I0b'%t;SSkd)ѪFȌܳH@ ]FjmimOc}&~~=#Op/c'=w9gӬzEӦÂt  pG<oȩ~u32ejZS|Hv΁ʹZ})>L/^xKԣ 7MGVk?w'-ӮȤ{)Rgu{ǚ:JoFn;o$ LjCI{ һ?{I=Lo_I,%=Qo/+i™Ŋ;|R6!'?O{֥6}ǯK3BJOrO! [)9}fۣSfKC)uXtXpXZtXQPO DwlE)-a& Żv}cW'<4ݙ{“By7r'}g1垙vi/FW/l<ѐ5oS봤p   aaAҟO \^>x_Jҽ{ԓK-Yq&,+d݇^,kWZwTS6ɔO:~ʵR/.3t=LA\Luc>dBEK$Hd(Y?}IzyuXpXpXpXpXpXX8J]p{mtq#Imve}WglɂI_ylVSsLMIj7(VN|>=n_bAҥ4Xp3eɅwQT"MvQ:,8,8,8,8,H:,vmt$aڲ<}:Rce\,_“4jقsF~OZͯOIz9ce=E+LLS"!i{|}p>-I~Ϋk})/%[4J]}VcSJKaAҮE^~XpXcA꫿?{n~t:I47^KI?(aВ{?%%eZ2[L-cjAW$2/*i/HZt#Hc[H(@,HA}XpXaaaaRFp^Qcc :Z-QIJga:%> a{ɞ=vYw=ty}!JvsN셳EĂ}FcV0[흭3>saly{_I aaAఀv ?٭5E .owݮ[>!ŗH3{o\ֈS/ZOiΣrM#;ҝ|&tM,&D)jh,`OaNJi(}gm8v1HQ2dr voZ+K_I.ˈvutb*Qֽ‚w.S\>!N #fUH\]6ogR3[X֭`O}·KJ|j­ %e,Wm&a)^Yx;{,h"QKަv A>#* z}xl)/Iq%O_#>=eG>jdG$ yTKȒ'{XÂć vJ;v}XioI O)iF?,? ]Nx·/J Fɒ6ij):}lIE*QxtH mGNȥ],GO+_yd̲-^K{n)kf:Rux_m tXpXg  >V,x-%~7K!g;R%/ͧ7}E .$O5ne;,HsGZ4tT#6N!;K){=ӟ>/B =姱:|\WIQ=#N{RJgIR.n0N(׏6RHߘqX    >5,?w?"Mܥ;dm;j<;jҹ(%{?yY7}rX;OG>O1zrbY$Nj?iȮ{=3B³zyOզ`O&(O'+5%ڝq =',vG=O5ѱ${ަC+%dBƎVEtٱ#>ƴST>Y( ,oeѹ$)+hHI$-r\]/z}O8k~ęuMsa aaaW85JO9=rze[K5~NyʌTtRUKW{Y9NO[ΈB7O{%Y$z_KH}~GGJa5i>h`w:!"xi<     Zew~ttvכ[5Do_-È6zWlIaf\HU/´g9iIHg;.q0G]Ӧ׳$V=?'o?~+)!o@[8v=yfKEhV?UM#⌅ g{6):Ǵ>?,T2FOO:,8,8,\? XD:O]ryVo[CҿzK-cTF5L/MiySF(L-OD\KFQD;wFES_5QNKw]f23].lOH|XrX?{XpX:,HXpux)?IN*Xy-: .$E+v~.Iޢ!y֟vԞsj!{w+rO/~nԢbyg(z|-- a$=vDJwhaS5 gsXpXpXFaAzqtIoɾI%\¿ϳ!FG绦-:{:+{i{Ͳ]k}upt}/eKFHa߳vLʒ4S\(v?g ]_CäI^]KÂÂO RM}5gT~uLp/I>OxumYb!đw[[,ʵW\~{k=i](ݙ#,-sD{ cG1SW@LIg}{:,8,8,cbAE[Fwa寧aq.[%ճ\>r{ ;qGrY/*=Vg(Y,tc ykK,Yq״es]0;'S~%aݱO%~? #<  N{ Ϥ?ɥˋZ,EZS_eVh H?[$/6u?;%mPOȂ|_r)7fv>W^d B`01^E\"Uh$sufz{F=?gUyf'iՆ{{ܱ@Wբ胺ÒDѿ0X0Xp  \_;8~p]+Uy[:7;&2B1{s ,Yfޝ {R/+qetwr4kz[R\hN~шRt%yc{Q6cK{VKۧ(SʍKA>kc>g``   )Zᢽ@[<~M7X\)vv2U|EOcriN$x!4yJYVb[=W(eIp)$Ԓ(Ghrٟg\?*+^ggÃ":X0Xp  4,mpԂυS>J*'lyC[v?7v_ ^yȗbZis"ZIWNrwgQkx;N;(]\hf>h#^P Xӣg,y3[;"E 8guv{J5'UO]lk ȳrC it4g{T‰nd^h'ĵBu|l;i-h-|N[ik;O,,,   8VD /xr!d99DZOV5ΓG2v8}5^kK.kmجrzl(ەZ&sޥc"ĭ+vΓd?oG2W?O[l=Fk]յF/ ܴE4X0Xp.`A,s+jG-\`ĭ:{\%V .YZZ<>mFܺL.8""; ~ޚcKq%('=^8r%ڱ.(l޽~/ʭU=j ?J```h``@ϠpXWW6eU [ϕOe.[k;6[㳧/_y'{c w{?9Ɲv0,05,U94>ka?CAzkɜ^m[x~:X8t2 Xp!S:)UcsUz6315MyqKXDa~Z?SSyd̰)^,1.==U{*|7serj{w(K&0Cn```h``%48Jܿpϫ[1>{jQZoRߔ6$wvPh"B's%/<_.p .'xg\+271|"]=Ϲ-:b, WWMBtg͟w_Lz]䔦~@%6X0X0Xs`A.a \Yn `N5f R+ɹ5vKs k 2"OKOռ N-[}<êvr9jU Zp5Gucݦ-mڨv\gz#FX*ϫ~g!I_Ptų-WLNgr 7_3|8XxyLU;uNj9Jy\s56a?PrJ.yHw~] .eo:,2&p\U9 wXF,,` Y9\T'd6}ላjq+79g`ACֹ^c'm ,py   ^ vk 'Ϻw<219$z9]u_k~|!wIեVCk|# ekQ>W)7X]I=R61s-l.&:\mٚ8tk>jp<,ЧN \WӁVS^2tR _\B-ac;kK^ŵp;~f4cxHwr4y#已1 '1p?'l?WْzW``GΣ\Jָuѷ~`Ћ̧b ~p;(+4%k,Ϫbwy/ۃR6r[TWzw$K c}29*HR}ao&FDJ3NHYijQ0X0X0Xjܗ``ׂ8\E<"x6V0wk6G>ͽ˧Lhs '͟ςp֒:i4zϚcysvhoirD[_DžQ(qYq-ͳ}rnlUt}#IYJ*YNy c_&TQ^p*sþFlK] 'k$0_V\ N>f׋"*'      @gE!ͷv^H{F2Ta?=#cNI}J1׳yf{o]ds,E٠saG<#̱^ ¹֣3[Y&h_*'aȲ5%4뾏^;Iij$ֵ̳:˩̵85\\Bgy/=9D].'W׿? o;. B?l4[uϭ1_YK2 rU4XZa``,hzn㙕~f}hfϙΥfV֭mzhH#ݥV4HQ _8| LkT8քnkt;[{鮫F#n[ŝ w0ny`34X[=X0Xkm,ajh {UiMߥk{EN2.WtUM9yjΧ9 hb7pv[9{1v|QsߍX}:pՌ v[P { [rh`i`kĂNg|r>u6P5qIu'9kgUj@Kk9Y_9rr-x$^Sȥ'f0<2V/ǥt'4m|QS`}+^e!ZCXA+FO\A,,,`i h[5Wr_̡G>y@{(Hz).lhޓ;Z-'#j9 wi~ l!.B'D[2㱜Džs- +KzREw-M%ZV)A2<pM 6Ԕ|fk_£~3Xp    4}@ys=6{I3,I`A#H Ν`s9ϼJ1ê7n7o>͌}\q?eff^K,+3bDةo%;dԧzڶ+G/+[GmfmhTG}O `h 2XpOv=TQfEHg@OpÞzaEحqgnS.A-UL_y>3A`\~]Nѯ%'Ix?2 T:vuZ3/snDkձDwl,8'WajY,Băޙ UϜS2죲W_E8gU 4r:R;W[Z>E_.W[%.r4:⑛kwL o|{,焖+戓;AWsy=#`ݵ}S  }f>}y_=#֯4/}e|t?A pC"̉w=R3✄hjԓ8u(:|ZMckژ֛GPJEGyRvruMjWۛ}H?W9϶ݔep)kZx/@NH &g<\Uj\3''JKwƱI|rR\PPav63gv63Xp  4,,x7,prONgMOTp GRwii.sq嶻TCn<4X<    ?8ɻޡQ}O*Zw<{zWcFnԔ#[ΩEq'wU~^qc9M֩NF͈X:<n8'F~8.XG````{bqzoUߓXt o].ˮF}d󵻊JMwzQ+kpGPj .; t'7*2k%xN'U_qKljΩrQ^v}:X<    ?^%4vރ$|]lKO){KD W9t99GNn:}Kٴw__5cV^>'$kߏG ;<8%q $\Ϟ\48XZ,s4X0X0Xҳr:.̪wߐ*9_,詉d2?= +wM ༥+_4\ Nue\|FyV/Grxn}qF:{,x-   \U`XKXgT=WՒ4hϕ_{v_*R0\2{rsX, >2sT1 endstream endobj 10 0 obj 42618 endobj 11 0 obj /DeviceRGB endobj 12 0 obj << /Filter [ /FlateDecode ] /Width 106 /Height 106 /ColorSpace 11 0 R /BitsPerComponent 8 /Length 13 0 R >> stream xڝ{ƵſM7Iżm8mFҙ,fS)޽k?ƍ>֭/>x`⋫s}u|ŝ;V7>NxV'<Թyڵ>:4ϻwwEz}޽W-eyuoi(dyG?h wӴ?o߮<}c#uQzsܠuFo^W__/+..:ƃN}:Xܟ{Nk:{ySzok:Z=OZY7ˁ\TDn_o:4f:g[ N,=Ib=B[_PSN?\ dnE>uUuR ;[_W7?^s$>=dB$է_>Fڤ55IfOrJ.jAйy6eNWz\VW P,J=$0C2*'j/Qmm`-4Q X5#CA脷k ~QXtQOhN(ǟ5`&D +jիXL[̟~{v ɕ̹KϞ_^ bַ2+#ѡ=ԥ[QԢA-rSmBInVӂ%%؄R*ɢjjzRcRe#z\cא3"uyU]|.߮ln:?_q"g& Q*iҁnrc%/?^{[VҪDd2A f4jS_jx/hP}N pPnh+B˗yd `%}\Nlvl  :,g. 5SD:ӵoأ yu(Y0ef} fI RMz(۵&@opr 1vo6>#b/tD1 \@=L|0FgPf0d,fَif"(A$`=Zo>Hn9z]K}^0|yr!xȦ^ݼeŃ($`^JIynkSXt "'K sʐqQiӢoR㆜hD/'ZǬjI*섮!ﶀd %h7χgK6ET@[+<!$rdžLS  扉eЀcW B$H=MUm73^[B]Ms*AE,bfY4'^d$~`Nǯ-'_Y*S-82o1D޲\9m;t]qd9y nDWeӝ1޼9QT*$:vJ%,tQ#{Xє'ao&88')=#(d3kCR+;AJ8m;i_&p1^ѐ8<>4UGHug1{ ⎙MIl@XO~QšrMgQ /Q $8%m}U4H>Z&&%IPlCP֌x 0"|0O@[DVҎy P0Q!cJ%d,%dd4%)@/ÃInsbq`ǥvێ=2d$q݋Z\c,.%eV8秊j) AKWnrp{9GM/I뽥|ѣ n ~V 蠡=xdda5* t,-cQ#,81b[vuH':- J/y&S4#0!y:D =-&ntSH)70ּ6Ӗ{ $?>`LJ:)=(_tCvTe@=@R G0J)2࢑GNwJr!ĖOKQBfz00@dWރi uR 헄1N!Ԇ55VJbܐbTe4"=SDܡŭ@2YNul'΁̇3y0@٩y;I9-V&J=yJ%Nn))$Zˉ`D7٦,Y0XuY2|rR4.3.#?SSt s ǩ`DWxF!6({PVtz,2ۚ'H$#62^LJCީޒɋ?~쇿 ^3^ױw{U rvlV&t栊a-~rPk ݻwyyB_ ){.̉J!+Vl,I,즼41N.;0uU&>':}^j0;iꕉNta'%HEC=5ea?t.(EBdDH'A knSҨVMĽ{_*$巛))Qk~ZwLv?̇s1eK wő[ٳ+*Ь 10g1R&wb @>n<Ǝ .ǩp^]Q" Z-f5MRg m}5DCх=a*Y#Ug(,\tFNTver)mIH%\H`^W_V 52;BFU_TN8aȄ]d0rƹXlji+H.Au {N} ':|te,4ᡕ/F<)dEt.ܘ<ah˵_,) Mb u 6#I^3VD$gJ7F1$A:+MCچ@a]}d&^Jq&d}0+?m+4,sR4tJ.@Ci[eUW}sg n!瘊*(9e YC |LRlKB~2=tJDz3_VCx֭~8{1KYY DDS%,Bb|Nk K9GNĝe@`8ԋD_b=I0Dv 3_bb`"rdmD:*Z:6Е\^v~kE͖H%quX: 8#&AC]g֑9M6ܱB=$.9ZNL ҚY}ag!:m7iP2!c914UC3Đ& aaYP('ILW" KN,ԃŪ($% uqJto<;3Ĩ!s< ]pJgⲍf,nԌlk{n7ҝ) rT- ,~HC2n"O$-HaJqǒP+L%4_Ț)QLYG}廘H<{%!Xϐ놯(,BiW?Agw{:hYx^~|Y'"-qڡ5n>2n(e-\R+8Ny1w"dY9/Po o{ ts`E%&ƾىzcIaOx~{weJuWz(w\(0B$v͆N8nCNYI)xn~Er?lzI4L_Jϯ2gH!zFp^1I;2U\5>}MFln >PV-uBq`EfWXuYlY9t%N|Qp󰂽xΆg#܃ uz;k#"r?E,Dd ߶_^(v~!K '/b[,|!\x#2.K{hGd&Z-˼uaH[Db.VrcYpWPIE=% NQGBvJ/Qy pG׾8-/cN[ 'h8rJ@뀼 l>",_A?$Hv/d4]fKT[FPrai:ǼNQ2s*9duS ;d׳'ȨX ]m]1C3jXws C@W'V vN"t!cpM^2M=jJ/]wron wnh{r.gH9SJ3Nؽ[4Lt:GsHzal \)mWޒٽ$PP2YQwEj#|BobY=Kb|#iJ]GJ+K0Ep_~3^yp;o)qN!"'BBS'u`8JLV#!VŪ"]\{aѩ?S-ˑΐ5[qqn;Ht .-fayԖ)ez* 9ա~ F5YaKxq3S쵒$5tٿsե oߜ䚼FCȵ-giB^4ˈ{rcSerO.KSndȽ)Mdee[67}<uJvMqi&F!vrW89ӹ)@ U mK_$ê!*NS"bgEēg˶zu mnZ,cѴvܽ]aNe(v D#8vlwۏKh_}X4Ց 5eKWBƏXy7eS*,LOe}:{KE8@(`Fyr\G^@^{>shS0Vz>JTǢ4<KL@di[M*Q4\)8)slx/wN{%R=MWǯg `V~ۅ_FH_H]7(Û=M(w!,=Gnrrg o]A=qc"PsVn<܈e@z ><[}~)lu]뾬y֩ endstream endobj 13 0 obj 7413 endobj 15 0 obj 7413 endobj 16 0 obj << /Type /XObject /Subtype /Image /Name /Ma0 /Filter [ /FlateDecode ] /Width 516 /Height 516 /ColorSpace /DeviceGray /BitsPerComponent 8 /Length 17 0 R >> stream xmH@k< endstream endobj 17 0 obj 280 endobj xref 0 18 0000000000 65535 f 0000000010 00000 n 0000000195 00000 n 0000000244 00000 n 0000000303 00000 n 0000000507 00000 n 0000000598 00000 n 0000000616 00000 n 0000000654 00000 n 0000000762 00000 n 0000043577 00000 n 0000043599 00000 n 0000043626 00000 n 0000051181 00000 n 0000051202 00000 n 0000051202 00000 n 0000051223 00000 n 0000051692 00000 n trailer << /Size 18 /Info 1 0 R /Root 2 0 R >> startxref 51712 %%EOF ShortRead/vignettes/images/HilbertPlot_H3K4me1.png0000644000175100017510000016531312607265053023053 0ustar00biocbuildbiocbuildPNG  IHDRf6sRGBbKGD pHYs  tIME ge IDATxkiU=ҧvS(^ 0 dE)Ц14&@Lݤ4%TBR#Qfdaؼ0340tǓ8~xrqox~_f.ƫ|}K߿m<߶}K?gkx|ض?=/no8}q9_ar!O4>}y8sOݶyx gu3?vz|& O_rU}u\W;φ3#너b|9m'oxu?޺m?kxKz`b0 tƁa\r/~q|AnuDžq}X=89 x<_=zlz<>8{39> x\S׳11&1i>4&O?5 U2 A;G ڽg O427$ؽ=1n8v!}#ۖ*ȱaя>@2N+!I{]'}/1~߈LVB.F8 &{s۶߿mϣڶw߽m_fL>~̴x;6{E@s|o߶yΕ3r+&׌=|8.ҥa;:r^E6i7b|?RLf]}9mKU0Wx^qs G/b{TRDL{{ ۾e@5HH#e{3'!/̓U嶴ߦ4cx :vjAڱQt6rxGT:K9dSj 2)ٵXhBz,܇]6KrqNc>; g-ϑofn)vEW{R3r4%1O3f|8HmJx5ǦGIl3e'}nXfI뜫Ҽn @3==`llllll3CGEgwߢzg5B>)Q:IϽOTC6xx +Z9eda#S?wO /߷Rh 9Tv޼Z}\ƽ{]xh~7 ^m_=usπCNgV/zZZՋסvV1'w˿mѕh:6$۪ 97KwʡJ9 stCh]M`Q+ǺJ(Ixa.*:ce4wi2HŮL 9]zT{8Ϟ=:[{Ƴcܒ\bΊضĦZAC ͳNYJ I6ϷCrcV7uU[Es/y#t-{ޯ꿓Wc|\RK>͟V}zh]UL:-999>= MXw H1\s863CBz[*\m̍ʼi^sXk`l jLמs{ߧS'K )`Qݔ>Hבbh:"ƓO1"flQEɍ|KȵeG'Dz+և'e7GOtt6yS,2!ծ\!a\!?hjNY)w|[;@aGz^Oa`HWt?MSPkY;~Rϝ8yyɱҫwN/ž ׌k_ou1 E \R1!׻;l٧>uأ~sH8)A}[xrж%K #zu_wCĨ"dzyƃxMy?mQ&uչ?_wFmHL}RǦy<~OtF˿ C0666666v!+?5\s#v )< {\x.M3ߞس ^A/~|U/zy {{a*]l慭lk#%<yIUUfc$Da,1Ue&;(MCmYfKa$:oRt_̨%Z [5BHalysg??m_5&U٬*q}nBcɈ}^$⠏y8Grz=9h]f#vRly vbEF:~߸@/5?ǍGG.sij!f0f?R,3!jζ6\lZj2J1swY}J Vu)Q6?IɐgjrSNLh.k7ݞ֫ߐ;=v_|ޭ ݺ\6B`㜲 .~m #87 C0666666v̀c P6g? HuVTMa+LmKV6F9rx,kfO1llO{xԭr΢5{[7bm7?ŮW"?p41Aj FS3Cq}NTn]3MY(oB) u !ԃJZ{-eK oSLA^'1QVmӺ~z_L4L:0Tp\a.2Mxb =2b"ձUd3bIsCwDS0$x|f-x-Ux0&0\'5ėTnosѪrlFm{-:l `7F7޷}^6D׌uz>|˷l_wݕ#NzG{y^o/NY($fߺH&c AC3J6/a\oO,!y$lk{©7XM7]c%FMv/zEsww3r|Ru $WU*rOk1?1W/v[LݱR/@Iꎕ4}0`l*Q]GZIHSⴾX!.Տ7K- ֿmK=yT}rR`%tʫmӅ q?U/uɡ媥 Dccccccc'c )&dc!RѹYB)!<; Bp2p=d3Q`'Q}~ qZͭH皴16/L˱{fh]ޚ"=?Cܞ 7…wL׈1G:PXoG܅~na}[́2ַ: ZBUBi~&+>O3)3#:ѕ!z~Ϳw5\s>K̑+Uw|KmS(s}}+-Yd=b hZHSlڞuY^ q@z):Xׯ>gL Lugbt*%\UFuY9t}IϛƥHL^cnYמ^g*^d׫H2U74Ku ae|VJW7Q1f;& 4}z?El[r8_ou;/* a.3d[,س1Mُ`M,1Ťt`C-ʄرmۺ_6,L0T1aZ9-u,i+`-%ŲC)Wc۾!pun!1I7%ͣ4^ߩ*qMry4Sd>ۗ|r ^ӌLq=jdị_r>-F߼gx<wn6JfR!nHI1L<64֟1#89YBOHݵq $m=Vk/_mKw u\E %'$Zj],k6vщh|I]}ޏ/UH ){|3rtZ5Pnؘ\YO&K7z@@m߿m_mKN[q LC{<§w 2C>H距bq% <GGsg&Xz֞n},uVhسt104M`~ A3r`!;E-IQ͈e7,$&.?'oTea-h ͼ/$lhJz A ߔRUߤJLH똫zEZATi4iަ [>/ca 8`;7(Ϳt m~[o`llllllHBKNvlRd>9{>~?iR"KR̴1*Csl_R0PBYe~\x%6Ah=!I#nC+8=k;>)PJ㋞ [iHLjnXc.09]vl+Hsjbsb6+ Cƒ$>@W}+':#߳cbXU s" ߹FxFƮN]%>1AqXUC !szO'DײOѬ4>Lq30Z ox\-';ضĸsb-}ߏibZ5TbZF's>O?LXbe5G  G˖4 E !zǮղ%1<io< Pyљxc֎wMU ŐR6qʾnSJY$”R(=ESp~sB5H#cϤϑSnÔU&sVP}Y/'ᮃiViJ㜦M$m z뭧{ Ye5Wcuzz(1*G6쨂k=`llllll2CД\_֔ WVNSw7כ: SdڷaSnL& >yqA"iSncZjlD*9_}%G01VLdl䄨Z8u,Ҹ%F,[7M0QI*cf$b0v̧ԫ9P|b8So|_ 1̟udBa5:򼳎\ֿTݖ( C0666666vQ y &iqAx|﮻-SO3y "u3sa@< i`)!4_9%1)?eIh 7fMt40'j&݉dAw^z.2=V!&زōEqIF)wjJ=DtY1o52SzO<=rG֏(^ Lϫ.HGb{:.]jk#%K1^Xhu{c1!S7إ=GrmY6go<$b"Gτ v~#v~Fb0Sx2y#Hʸg 7f'0Bk [B>^Hu1OmHi;bb2ZRf~Vx֩\.'C[VOah:Ɇ!Xb궗4G<9wk])k2պ7zHxm: > r0zն%Sŀ*O[&wTc{1R)'}l=?BOU{F;'bTƞϻcx߾gm zf(oGw)z7g'?߲z 6u):ej4Vbt O Q:Џ*MP4%;rd㘺%yx(P-痲[5AEH1(z) )'6߼՘ʺC`]t}KS\}?&9a Ap.A~b?gOb%rǃ{O{d`{bO)۪—[$G1@}K]ZHʎNmUK-g%d&1PH1 &ŌX~ӞDsrJ Iu> ABGcͬ?4 Ou1YF ɣJ{TObY܈l@jE쒬U~AL^hJwGVܜ%nDӘ1lM hi~ϯ_B-[uOLfRMZqovޭ!ۃnG?4cdĘ}oJ3!ud q^HR|s:"c߽֭.ŕihllllll8&<乥K<0+9G>mɲy,P3M)ў.O쪧Rϓ* dW-yGVzY86nnY<09=*!y4YBiWc0sӔ|_sym$Sv=睪r[|Z<&rRz~_5kO?U>aߕ3¤kEtk3)*2$z$q~WS&LH0~A 4yO(F16ʨ$O&fCڶ7pz Ibfwt<OO.!u]qBFd *9VmD<"JL;dI1֙ ph)mdAc{bdSL>/#gIJvB=H~RօQ`llllll"C<si][=oɎY5ϙg؂[% sǠ'|f~j׏{'},^o}ČlOGHC'ɽ"zjLP:+ѦSv'P4%tR}{{n npI͟c?B<9`z.?|YXQ|oʊ-ghNjTU'Ni:2i]\eR~H 3x߹Hf`t2C<{F[L{6s>myg}1bK7uQK C{Vd&:٦~]7ACF;!K`U yU2Ht:&֓T^vT~zn6o u#U$XesתD#t&C؞ aofRLc|<~qhllllllRmکg]nF =18g㑳!Q\EHƞroUp߾m{tc/͐$4O2R}SkCBoʕ~7G#ܮ"p\@y71!UeLu1Si?9P>1ki˥ǑNzf0ؚL1a̋3׹L.4&U_V ?4F5y޴hllllllR8`gAz#GrWu_㺛Xƌ`8'?m&(w&&)<4}N91}鸭um?=߭}鮌f&:敏y:[?iݧ=8`뒋#mIsNSitA?k|KPV{2vWC{.>GM#җߛ 2'0|H#˛90MIcTy#h%gb`:k>X0y\'Guh=߶oD&|}ODxx;r8d^ [Iybඥ<4Sby[U[ՁXHLCr/ó%V5)\$ߧt<MV1zYw)ئܣ<*׿ҩ{\`'+ERвdž~I#?)ccX^G"YM.տݿm9_'g@_35ǽ V3&6hMsi1U#kJ=&NN%σe-|ܯ} rz~>qf =cByy>pGwu}`kM#1?8|\jDrTZU+uFK֮TNPԷhllllllBnQ#EV̪rv73 |߿m^wڃ>YG,<15o~ݻ7ȕ@_b0 χ?mxH 7"J Td)Fa18ځc1I2~p>UB|=Nr}izWsZucVBm: mkϯ1lC׭FVk9Lñ$ONlPnZ +qJ|TTԪmf|{D:lߏo=cвe[NA%rNV=^m<,y뗽l} ѷm۾sU]Bz#rS`0ZFzAnj!+X1$3U!~TukL%㔞_4^viOݗ4_إ5ĽSsnzοC0666666v!Hّ h]nyVkŞ]7B` [o2kq9=|:zUA1ں&Ons$W曷-#9p,4F 62N\W5#VoD #u9W !/αej_?I*Xve3.ׅs>\$%ܷ$$ƙun\mKoBҍk=o5 m|K U:;y4-r Q^!3Hғ,}plJu5뛧㖔͚nYx ! 9y̶%|O{~iƠ}?1< qz`yI?䒤lf̱~zFn ylI&#xubUG s%`KQb}ߕtzxJ9FV/!Xe䪧37-wGK 9"t}L#*"8$)'u1 sy4.CϿ^_`:'d9t43i\:M#{H ַqpQƉ%dO|pm?~eb gs}0Ϲ@:Ƥz>ܝNzbC99}~I:^IO{ m_$z<%dz$F1WyoGIAs j,;yxEmƈ@)f ѱs=\,l#-{FğEY0.\$w)H1ꌹ#} , O2K=wJ!Ս2w/Cx9`}x~/:{޳m;HZb"WJyHIIUU)4<'?sؔiW Tr`m{N_Oz>Ec\w<0cccccccdg@س疐J1k;%7F }eL^=I>#m9Z۝cNce^87!!%>/K#!9VlƁN>ulu֭^BHf ܕLu1r->ݻϑk烬] sC STzN=\ 8.w:-=eۧuJ ҳ㱏==~|9:U4=VM]sF3fV{߃km?MczaioOf %7eM7F ykA#ArܳGjIDbHͣ2 Gϲ 7퉃SaE<* DZVg)֗Vqw>yo[AH/)3Mz[-lۧ=}n]d&*u6U[?riTxJ05RF{>ϷqHֽp)IVkƪSE IDAT~ٴ~j hllllll_QSty#Mٷͳk١S,yV-3n1j dz.PMo Ǜ؛KFlӟoxynEBOyi&4nH9eŷu=1q. k=`iޓ[ЪZ] '#"NJ^xP+N=ҭ^Ӟ8ٶ l> /wf!>)"]oc6!YKV;χ'rLP0DbȉY8:_SU 1$1^p[. t3o;<EWrbQqNI|n׿~˃KF|~~yOU2 A&ӹ&tOuPʕ="ujlI6UE&n_;g̘g^=&4)RH=9:f|x{\s5?#ogORdc`䰚E#!B#Xo}cHY fO4!Ӕb'Ŵ*@^7yۢqθI1J A3@gER,Ӹ%ęL\mVElG/㾹mmGs_ѣ~mmA~؏q/:0amej|t̷Vc|`=IJ|={ όԅ'kbxO׎6doDҐdS3"b_#[@ʞM@WxZE)[1 Ѵoy*1L6,U}8CS}=_ eger!7f 1QL$:ϚB^[W8z8][~~wGu{ppyENC]2G<4O1橵,ntٲ[ly#MزKZ^RVb!{OܶΞ'^كNZ U6[=lGU4}SKOF 1i쏪ryg|!eŷaO =ԟ:e97<5#'?1oONBBSNY-VSgy^Ъ%Z#Y=I?~:[Lx5ِLBƫ!,ӓ̈\3<{ ~u;Y_ @ՎyAi"z{E/IHь&1Čg֛%45f#sUlUA/1-GAN {33'u?׾v҃]jr0΋-687g Ab]HB 9e7$|;߿6ujU<7H<s8p_4SŊ=68IulKX{8:͜5I]w+2Kz@w{~n[tO&or/Vu1\c2`KiH绪:~|Si YcUC㳎 mK.?`llllll2C`TWӈ\ OtϝR*bOL[UKuΫtҕ%@h}[N#!^˵B"% o]+j9 [e \M#^p %Fb(#%J˃?Z=ĀtXԘƳul4ݟ\6|^<09OX;O_g;M9dys/3is{D8!1-&oi2EAH 'ǷESzle:>ӯ]zN.\۟?1ICVqNwSjob86:1h(^?)֜<K>z Ѯ2 [˲g;k= VIzM0(y[-,U֣J9hWD%]ܢK8>u6O>^OqΩkLXS^w]%7 Eb |w, O KH cNt>y5< nrCvW*r&#`O٤-1zK4f#?~ƃ$=7ў?z2 C0666666v!`zx<]gYw;o&owJ=Su6'>l[4YI1ToE++vLhwiJJ[ζMHk%r0VI$fਦ|c2IL{[J )7!1,91`i Qiu\ $,\4Zs/݀zx{C@]]rKc~8y0cccccccNFBXN-U<]Y'$Af(pO>OuL=4PO/;W*T+Uۀ#C??=2'= ؘk<`1ǴTcgkAm:J<oܟc9gݐ ϱ?ʞ6o28w8r˙3߱4g#h"4]eVGjV?׏VmZ(T_u%YoO]IWqIJC=_W{ܗS,0# ]~gP^{'F@^Cy 42L2 ]Gdr<GGn> 7=o4hպP 2gg,#2)jsҺ@Ca>9OR{:ZqI&Hh}V43:V uձzֳۥ]oFi\9;ޱm'ܶp0:mK0ccccccc&Ϟ=2X˂''tۖꁄe|'޺G%<䑯jc=NJ{ڪU!\`>v\w~'U%V571a&K2^Y4^0cccccccUmكnDE/Xk=7տUKjv=S<7g*Zx=ܿo=Bk rjjVN GkQ6{^eVqn](3RjHȿe_9 fjUlf=K?_a _mGcV}N냫X8I99aTC$ Sܙ`llllll"C6D!7>)VٴzXnb\Rwsjdʙ|Ik9~{:}Ȟykm2K[̿c'U8 hAbG*'?3e DcccccccpX 1"baw>mRH}=)< =Sj]w=\E4h_MjE _E~:e5U`U(N 7cgFg5&i󯭯)#[uAʶoks%Rߋ_mɖx3m'E٣@ka4-f _Ii`lllllludГ5]l z>@ʚ\Wxl~?L~.)i1jב<)7"yU2b]\ů95jҎt5VGyz{^b jIfDzA4dz&*PuI\eԪ_VnZ??=/ogIUWQx{coj2 )d!Nz #Gehb|d~yhO1r0\ZU\U<7hwţŽ!_qV{?- =)X?ُ{_$f˅3a``oEC>Ori AB(V>J1,b\:y̮t}ͱ[q^H}W=eyЫ b.VvuH x|[֐!8]epq+]?`˒o V4v:U&=]ꆤuMAyFBS_Eϵٟ#IϩN՞O ӹ}ꓥnhH!nIHnjGJh0RwCϹ/+O65*^ZZU]N^.m-+1~>|ݮ~uqa14.v]e!b=`llllll"CD#S̳)5M73`αag˷ܦYu%%S(Hy۸>ss~3e>OaYi;vN|申?H뫓B\|ܔB'RX]6ݏ:&M1hUKQ9Mzm?m|:z1f\OiP,yxN3h^K1 eF< yFZGtN^b]_˦.iG:!l⣟c<\=Wo1~I*&ܜnU7I׉Asp4gM]/O ),6V71[)U?=٧o;tuq \yz~^zRW{}8g u'KҚMF=s IDAT󼏧9n$gtCɉXA{>s }h~7]A: hN@BliYY2e'FfB:OE"vLLUF1DW vkȚ7b-{&}5#ãz 73P>*Mt}W;޷v{T1kRST;S:"+Wu:Se0666666+86ll4 ٠ԇ:c&D'=se%#+X;wv131~'Lj qU@bUO(szQVq8J v+MyC|ϟ/?U3nWj~۷?.كhY ({|Ĕ>=sb1>}86?mK !;ўnHt56JoūʬLVMzfj7EUbŮ}6 `笘b~?3j GZL7!eY_[OKr5z[ie{RUڅua81=F{c Uy鼬Dӿ1ML Ӟ{~Wa.3);YɃG'2=8{Xy9fb6[##oF3*D<䦕m02-uhfv^w7D3JQHHe[;!,Œ|r@Y&Ƥg*;:)^qFpllllll,3@R,uKٰ 11Q0fn=Bb|>!{lS״t݉qC?wB )ܘnn %sU w=]fnu)[2?i[;÷-ٔ]Z6\zf{?h~;1ц'+tZv/WF>T\#l?3]wݵmcc5RKQůWl[buIvSMUZ5O1UEtݭ>r5m02}0cf'wTAtT.ev(nxnog٧ltߧjWXvG(S}cNjqjLMCΩ;ݹYi{4ֿkV5uAh9=};[2)pMۿ}Ϝ1SyW#|܄ܸZMqPM}덬zֲϽGv&U~4WGUVϊm}cqswܱm+#o3s/Đ!f$= 1>إQڃz4ϓXQu@'R퓟<ЕzW=iW!V oܶľ|pREg&nx[B(j7bsIqnw6 E ig>s'>m06c[(Mk-Rj1MqZ}f:U~[۹]3?XIGx~}Emm[z 00_uW>?NKm_ur\vu-6)l AtL$yAxW9mͿ{nom۾e{iFJpHu򸵬W#u !ާq)W!X̆cr j{-u֫u2ȯxkG{D%g~70cccccccu-v\WGB,̈́0~llf7+0nQjz )ƈ'|ǽZY1Rp.7vOo<_ݶzq6SXx5HzF&:ܶ07tzsD.j@b~ӞWjnC҃hr =R{j3A'0r'qs=nuU C0666666v }xiO;ٝM}4szƍQhvFy-u׶une' N#)y_;woۿW잩`<ɵ9{7+L.*cɒbcF8u޿c4a=rxN[gk>9g(?ќsןQ (5F1ĉYHM7^VsURnuB*omۧ?}!#Im93Dq<.޿mĶyƾ,ubҩkjȿ}>e 1"VG7n|d3/&/#^ˊ1I 1\zĴ:s( u۷+_y>?y8er?zՐ~UFl/1AftΝMiL]13 3g罯番:if=7]s} e$u1;b3hAX:fg5Tim3zN7mW|j8z1Ϝ6;mQ´Rii`llllllbAH0i;utx֮3^ESlYzb,gܲL[ܘ nsjP3cbwIAg8y7qH x6)w±-!Jk9\wV{K\[&rR^^yA:WK^w46ߪ{RvCeζ?QKe3wt>#jn҅hllllllRC0 ISŃG _>O79{N܆U}ԓ6l1{KHHȡŸZ]zB)>mK_4Rǩy(1/[,.)g6)!CʡH>170T=$&,}7\XxGn~sΊǙ*7_71jym~^-3Ъyܘ~*8 9T荸ϯ2(bZ$1Z)w롙*[m$OOO r^r=|5˶SwokHaU#{KM= 3`HWP}r#ٟ/ut5h3C 90NbcĆY/@~ɲnp~aX[q1_{F/;kYiI y'e(\mO2:!.sHcIJ̥&z %Fb = Oz$eFb3̶+b짍{r\ z#|=MaUs簭ϫ H֍X9{iHR޿u |XXWXg쁰u_s{l6Do)ULv0' B*="h^qX٭yٴ z]ybO7ŵuG|]+jiEѐ\{4n9ϴnXs4yϧg=kanǙs"ҺJ,sOBF0IѪǰĸK̄G|=fxr|Sna;G>ߏ`r^6(d1oKq#'u<C0666666v!huSq7Ay<1BwwnM؎nneGЪ%2`HVuZo4䱚-z\b˝Xe>"Oyn=>G4vm(V'в1 IDATz7`xnRRCI,|H0~~;!1f·߯|Efy v=|zZ]IW&QVqWOߗ>\{sD38_W50}1]e`OcUY϶xeϘ\<߷}r#3pV=uoS lcfPR}=U t]>LMҶ$90-d\Fͳ{ܗUG#[SxkhU4WFc^O'OتMVgř2z]~e.fǺgȂg3w{ V%W~?I 7]wÅXO~`xi"sHy C0666666v!0H :Z4'Lo[:_JCnk7E -:)@\~ɮ9H*0.檈UV "txMg )z22Fɬٲ}``r.ZUUr> O tF8U8 b)`~ևĤ`>4OqS:9߾m_|0Ezujk.z{ {Cv9Lܶ;9lo!HYF z>OV'_:!)X].غb7N#?Ūfz4£=RnE:Tq^[o`}@*u UG~@Iq\Ǧ}\>#[>oE)Ut|u NHlx )jI̠nb|^Ir#\`$zJ@Bzt=̠$ObR*#f*@)g*S>ez]\hllllll=)'uc|10ڿ[3LݸVvŜHL-Z@(ͬ:hPJ놦B:(J--!)nFXeK6"cG.g{W&{>g߽~ւ XxmKHmjߩt~;+|N7q)]{}FQ蜨((k 2DX3k53LTxo|<^%iúT<3r9Mא#IQӘ5;7嚦N'OVQLۗRzz\ZU?uKǝ{w]ԯo bL@Iubn2 rq>%o &.__QIHε{1o\O/0ʟ) j41PJVڧ']#0RZ(( |{6F'/ݿ۶͙/G,kSy7ZQH5uLs9Rkn<.gvƟ]ڱ{a2)[g{|7w\r~̯O)Xڱt}_J޶'_W;+'=AJ*@y쌥Sۉn8mSE)/ 0g/F *$\Q;'*("k\֐~闶ְݶ:5:) L|UQYu[uKBZk$w/9 h-c |nV$f|LPҲZ] T50Ugk9 YL=uWv&}ygJcIY^,)loջFph/NlWBbhpL}:fZuxUɮBPEQ!fʤ1֔~i ZjyDGh8vsg){RʄcGkmLy\kO]PQujZ Wc؎irskͺO}j||?sU{TIk:BpIOT<4q\"CwUi~Q$ǩT[mLBDEQEQ\߸hstͅ,UIKI>s[zi&y*jݗe̚ꗫxگQGȔEbVkVm>'?!21.eIsam׮ZSZm@p5m_LΉ+':j5l } .v m<v~RBվ*TX8Jc 1V\9T!((B0e)*;T\oƒf%4r'gitާRΏiR~I3[ӌWQ7aO㎶OcfbR-/哫pm)QtsSd.9w~glŐ S0Ȩ9N92Q/1eW9*cf |V~w}9vadJ~ ?|gٞۛR-s((%ԛ1f:8rU0SucqbH{ߝ?1)CK ,1mfB#y\;q&L ]]5TI~z}]eKTȸ]̐n=B&sc?V_ޟWYd?߇T]6EHS;A(T2TE"ﱽΣe]5K0fd|UBPEQU 1F;:F?]s[N ޤ'9ֿu*SURj.2cW M3w:>\,t>iދ7zb$GչvVMknj:!%ZwFfj(Gkp= Wm)Y"#;A'uk]~NaYU\svv AQEQWfTѯ2) FO:C\mGS49I7a3e=8bYѦZ!=:Z1}/Jܹ|aLo>T~>m%7m[I||Qt<2XRȰy+]pQ򬑢՞Ib cbRUZ*f_/|Zab6 ۓA:ϪS$ŔĬΉ(TșfxrZLѸ˴j]q7󷾵ikf.D[u3QW|̒ )nS{ssa;!L$fJ$R1/}9sҘ*'G2TW9<*W엺O)x((9|'*._ z壣>gݿS\\\}Nup4 AQEQWc n\cKy<]QF7e*mhmw<!lNa *˺o)*ozO\m AQEQWΙy`tl0:ouF4ͿwySFa_*[`i5;1 ).N!zm{UpA4u>׸2~G1Iy:bR8}Ni?1s"HI$֚Aƨ0&|{?}={"f+e.*Bk0uuӬoۏ~tbs۶o}UVS2Iμ12NU( ftJ gtbtQ'u>ʭQ9lbhS5u4:%G0 R;sYH޶}p^Np3yq4#9#NsEg;qzL󒷾W[ +*`Z .;YQɩ11FE&MPH=U6br9 JpJP =v.95ZS")-U!((HǎF]sfk1wכyRj|S&*[5 IZv)~.{Fk:~rЛ2שp4k>Vo0Gup>dtOVkqvc 8~Oa=~`2UVEQEq\!p3$զjMS嘽jF̙sK3iw)t56^>U##ITnȐ 8!\#U3}v*[Y8SйݹU:2UX59)*>'\޶rٱsŬ$,172{7NR#!)5֤rbwJ (V{OlƄ$G1EQEQxq&j5'TW=L}&fGt"y[v31#Vd[Ͱ(7MkOAl7l[`O~!MKe*8U*iQ)P>s,2m3][*{Nuc>00|Fo<\ϗw#:鹿wJ뜨((knfFF!/y22L%1VW͠ßOZ)_UFf?HH1Tfؿu|8N;}4mmoӪwxRV*J\Fگ:=fD]S>=Ord~oCwE'GY㻬rR<ωq>2q^`By=?kPLߏqcn((^Q8ř^bR)\j͝Jc .*\bebiv)羯?\(F.m3i0vUGga+p)@wʹ% R9ⲛ-eA9]o'9v-.&)+C9N>xjC:eXsAgT)KSgL(~g tNTEQqLRPbu-uZ1wn{LxNg{ϐ$ڪ?Oǟzt隠Sʒm;}>~LT1:Rba֐ S޺:*:pkԫ'/qΩƇs$u VquL1;vWclS'Ɯ8eeBPEQ뮵 ?NqQ^Q%\EhŵOPyHssG;eUKΛ1w2bhRT<XӍ_Gc`Gi1S_ [7U61:*kR$Jgj)rJN(BcLh5hj bI\sO{ڍݬ=:rymZEg7cN V=\>muw.uO>mU0:{j~֎}yuǙ]hL];2e9ei+)| ZQc 33!V 8u*PEQE]&sSHgA2F2 :zA孧vSEK@I 1Y)fUfl]ۮ,۶߿g?m{l?sχU4];cf~9!2 >~Әtzglo-8NXU\A0fgHzNnSڪbezj^/nקcY;V!(( mx`ҫ|'kn,I4>k.&wOLJKZM3]gZg_5k:[{Z7o[U$cR=$_e WLӘİoXCE'2M2Xާ>d6s5g?O3ߴ?m"a'ylW+1sVqU{R\͋*EQEQT!HL^3w| IDAT34S:M+}}V^:3婳V#Ąf'(*3ڿ˲` -ӧ;eh.9u׾=y]Rb~t?b|(A&秘e/|S!і~[v*UuL5]OGId L긗wy?.< Řje?BPEQE7S'2B8Mi͵22 9̉Iq :~SƚXRs]Z{TV[`2~1x΃DW6=l[USw;?U(g|[Φ^ULrOcs^)vhL[>)3bUp{Ny.99frYɉqCe{}}O@Rrp\qk_;8L߭5;&*Jb%`oy}^ϥ~vwY={x_W3,$OW]/lΉ(+o~_m1zbFOwE:3p473YENYr̛VKץZ`-pt\t7eTTq8Ob̾HN*ۗ}`m6|gdt^s)URm?<=}bZCtxQ4:9 <ݓg VB[ڼ=`^4]lk/9Mްmx=)P"y$*1R*cdupY$_]Mw}wY`Y?}u}蜨((1RNv5:dZfh7=eSTp3c7NUwG)]OC?UN?5sLo1 *9씓OivY=hu拻)"|?O_לv6ꃱ:>qUiLԩĝ9(ZuH顲-Sʀ9QQEQ E3E^*oV[W}sp3i=t(WR|G\ս䰘#ŸhUaQL;zLɤ(^=RtT$ c=RǴ_ gBZs4^gq瘽k?}ΘS=fLǓ4.ӳEZ|ߜSW2{CKe>*EQEQ 9NZ˾{n۲zZj8w>]uz|)c\:񼼯iuj}ucNfYu1` 79o:H~1O>Q} =tRPss1.Ip1\?pL)iz*>fa{7"fAtNTEQ wxLo:4*[y~_ZqpfzXu)_5@߭6ݟw z^NQ;Ȼ>^1:;O7/ I1}yλ;w@(UOȶU~O޻>2tUs3R{z.f|tMGCկ5Qսp ?e]uٴjS穆J((*)F1?py7٦:nfb(\f\KvJ]5)VkL[)[#;E^bT-յ)S`:nrZ3h~BlQs|`,g,};VepIKPAt`6k8eחb\\̆S>@PadϝRW(( i\Ja7{~U˒<[O,ѳo1ٞd>iOu(_8\3>?O:]7} 8>񒱐q.zMZWԽ!T`]{~Noۏ|\5U`u1)4O}>yx|ddr}!(("+G ZJiF|څƂFLt92s[Ngc=k(h^*3;ׯkitZg1<6!V;Zc\d.:=o>g)\br>TTeoȇDבK/㎽b}}\ SRJX\߳$iLS?#m?ڕJbMTOpQEQѩL=O3UܚRPSdV=e.[M3i::n{N<% dbΉma3Yb\t|Ɗl^i$ӟ39J1x;ONncYnMEӁM3npy-<}ΐWtM1U9ֶվך ϝ B)16ݚ~nq+LNPkA<墽S;H s~ ]V^H}ßx,*Hi|qSS-}O kS8^W]̒,ݿEQE1WLqpϔɜb脦bv3ͼydNK^acuOcr#sWqxѤp驶QLNX OĶpw\Sߊ1!C>ltsU9~b=Y Nr*RJ'B.6%^NI50V!((bU! ͔Qo 1}Vyo|<өl8&*lSJkYwi)ifuboח'\&sw}*O)#EPaq*/~P [Vb!eB_S>S&Z\TqJ`p#)0p?`MJ>qԍ:.*EQEQ|XG=AQǜkNIHrF/F™,|9SW<0?y4W?4V>ٵ$]X5HoN1*J}uy~yɄsH. 55Be`z}_΀)Ztw]GIb\ ff/aOBQI1U#wwU(L1U3 1ZpѰZN3QFsi LKS'3h\|KVbT>ܴ~e L=ߧgʣNuWRkV*S{$F2ez\38 ).1ڤDMx7A)e/pUR]SG_~Ჵ=9JrU(( C0]#KyG'7.9]qfjZSZ[;vki?:!ƬOkz~?2M)Se09瘇SD5|\4|bP?y|jW,4clH)kTzUX)3*6O%w~&ɯ#ګ{?]W((*iM(w31\\jIσ3qԙ<~wا.߶=ak-~z<\{\?ە><~\ oݏ[]N?'V{j01<>?)LӚb 3O(vUd6ǃiMiMT9>&% AQEQ> Hk)~C's,l\<|m+'EWukn-]oDkvai4;}orrAt3=3^g\;U}{8]>ň?x~=\~;Oz/ )xRr)U%tHHיc=E EQEcVfHӵ:PwӱK EUX 3618ve ﷼eϴXO)锈؜s0$F,gF(6?d1K1-3U.\lAO-;sZYRSy.&JI, Mb/\L99&G?BmxR31ͲKu5 i?EQEQX%<WY dlq) gmyYjznm-tlxo[ͦ(]S{/k|Ba1NX\Ժ2C}_9B)a.:ݶwyQ뢨u)-Pm[9d :vNsb {gCA.y<|v>09ؚ4.}SXEQŵ?4v~=mO5i4f:/gәcnǙH<1:O3mm"s[^ujOg~{Ϡ$/ԟK9Z=Lk>cvSEsm\ץi5>fCy?1 fTe,[<:3z꧙88=oER 8. QeA>z-֪=eUJ9qi=}/RGRj\ftIAsx:~:0=4m7(\Vk]Xs((hV2TLW[2p牯8cR4$= 1''1$fڑ._ϓI\f+_i}tb@^Obf4Y=^R\<ŵvQZPϋ/n[՝OՍ;nLsLǙֆ*GL5).viM>?ޏs*.)1鸫2TE)SR\ [ƢwK_ڶ[q۪L((*ٸ11fV̛tkZL>eHY?ڶ$.e޶>zCcM+CEQEq3?3CnjOW},1'vy\s_@38=6Cmwo2"K9yO PIsp$9V7KFŀ1};>\{VlALZZ3UyRߤȤZ<}6?,4t%Q M8>}_):~>}{[(( 72'\ )9fhatl@HW>&pey*i*ssYXOz!uJ~&P?VV>gj jXiHz誗RzOEV};)EU C1Kz{um{hT!(("+Zc`iNΌ\,BuWNgN͸H LM׵u>=jgsR;bޮ kFK'K9Nk5]8=[(35L]&ZUhRjSL1yp#ǀVy~G\S,wץ1DHqp1Ә0)r\{*EQEQ$@3t$4H QnڷTkb2624O 4v36e7 Ig;F 8suh_-ťU'L^1zBN`dA*ozo|s:.$4UwtB1uttbnqR;>_ BcRXsXN|5kQJ۫EQES,gٶZCdf~bjsLUyZdÄ́XKΨus?Gum?0p7?Y[2c:2΍"]֏/3:uo):3{2%41]N~NڽSŤPNk\=N#e#րY2yn;9濪Ŵ~U(( ^j&N2b ̈́x~KI"u<2:Z6~EflOϰ܌͜m7hJ:ڳu1v Ĺ2|DH1 : 2K F撓 IDATqg~){JQzWKZN7u^<(\:}X:ԭV'=:K{m)R֒kT(V oضPN((*LUub42Q0?]3%͜葯vu\9;~t7vw3L[# 2UY SWHzʯ2n_i~97ڬ{n7ROW,#9y5fђNk$?vAGKS؃X!ݯ{~_bRY)>:_1;>g oEQEqU!HU¦kZz;}͠&/eAk1/W>>?wy8>m,cG//f?XW|uH'pjH2|ۖyb2z.QvI]qWJujU%1iYuT$ܸ(uz8OW g/\;Mۣ AQEQ(kfJ|'/m&)oGѓ^Qbop()s!-dOӌr6tZ3}K3lݚ "Ւ R}x};JQ۵TQs JΔm7^qǣ}OJ4b>O+4ܬm+'U[2wU(xݵ4q3:2g$I>@ az^Izw~VJuSւcb[EP1?=X\:ہ 3K3յک_4Fk ہz`"9Ed*YZ/vHJ{OCvjT.WewT|<~U!((基Z%5 ec,gfb)3~_Hp}QusٯW4oj:yJ{{Z~z}Eղ_iMM;شgbQazX)s&v)龗FJZpdW%"vq)Ӛ9=8NUV'9q>19K!ܸT((C:3]nLڋsK3@,b &əۉsyF ,8fʉL=e*]Cm/y۾Ҷ}m˪$5u nޙ?]gZweLۋ qӸ6`;"}9^Ϫ2U" * GHp{xKUVϭRɗ+U(P3O|q:}f.:Y1׈R0sz alW9 >ie&1Lb踦WUʁSR}k<4(,;f2m_v~?\Z_vw1Ljgǘ]SDY~$`;Kvqs((4 k%tHZ͓~mp9fϙjVMQ:_b*Tʟ2„ܦQNp~b PIL_>ɿaxr;3~,7(TL39;E\ŃS1#i?1U%))Ӭ ڗΰg~ܴjby?%cbU((W7O#|̕گ[rUm?mmvi*Z/<6v)ERLs6ͣ^cj')1_/X緭,X`xW L=QVW?Pkn|":֭_}?@rKlwt_}~ տڶmm{s5;5P7NVav|qEQEqU!HQ1)7qy^ZC-fp ՟ڕ"FڍYtl*Akbj1+( 3aM /)MӼ+zn[H~,¥,b9W!((B|R18!R?"m__WԼUH%曯*5SϩΟ=O,"*Q+?9}<׎)`5O7bw*U?q1BPEQ+ Mdʄ '1P^[InF{jO})\zGT:ͥ?WK5Hs4Ni"{@߉*GS8_KۉK}zq@)J}JYJwSb|n?'tgݶ?#V"RpR?:X,1vAeCn((^Q Ezϫ e:y53tL kZ&3:huS&s*sqY1~~)wLX<}nN1IL!qUL֤ΤR %bd\ߟ_qڝ:c R{rL69&gRe$D"NqT1A=[G<!9nIq AQEQf0NtZ_ͫMp.AAE>b~Sc!wJVbȉOޙ1#{5KeՐ٭Q[G0m/^}GWmu=U>r1{=*zS&xbs:&E[ Zs:~wI x/YeR痂m\GDEQEQXĀ㞛aMgPCjfץ?sysֆWMbtGg/2uKYGcWRêCj8wd*^G8Z^VQaҨQT֠e*@{{= Om?n}۾=iPBIJi;ˣtTPOi/9o((B0fwyӺS2Q)F1iԛ=9T8~8;Nվ@b{I9W:.c%!SҚ=S;A=c_1j}op0{D=wZAO_{% 쀣]jjKRe·I휎ڃkR2#U]b#Q(( g.y:Թ̈3@5Fnt zNd"0ڎ샔ǟo';'"15UG$3ϨlLTS@};}}/~O)VBש}l|`~{fi]u\UjY$ * S?YIv~g۲fCsytNTEQŵL8F.eR @¥᫅ڸ;ܶ>~<Rj2Y7͖pd4էwOWw %'AwܟO )}?5'ΖIbpUoès6M=p 5% NsuUBPEQU lDG)4ڳ>_*{SZgЬO4|ǟꨧviA2TmJɘ)5}/T I%8Oc^=^Qx;Kwkg+7j8FR0qŌ7 $4{}m[9eRrq_9QQEQצ31PoŦ"ť W+j%=Nk㻵Ug=7_=Xun~HƸX D:k:~9}$-f1Hig~fʙkS $m&F7m8TsxmFlSuEsJ]SOL3⪿Ar;-pQΗy\=X =2sGt?ߺ>1:2<;σ18Ƥ"znsHU8yo~>y.Vws((Jb,zO<]͸XՂmjCAyфy=sd{L9ӟǭ퓉Nq(ժWUS]R&Rtwbn)Nqa3czui維btm??"GO_R\^rtJA9[&~M<{?MO+SDEQEQ\sL0A _QU]oSό_zi?Ӛۭ*J gt jf&!4"Q_9s]*d 8ӬT).ܵo!W#EKRRlú_VP |`$e AQEQWDŽklgT{L IDATƶUcVpspyT>İUfO}q]VQdfS&ju!el)ÞLc2nTzR8s>Hާ}m2wGVcU;f7%f|V`R ~j˒l6Smo}?)1/G,BabL./Iuu((^QuL!O3 )ȁLMuu^`|JULOVcL1t^ǘ\mԯ%V)`?bS?uW[1^'ЧRb \Ћ1[)B~%㎯f"~Oʺu!EQEqU!pяn3? OϰRkz?L T I1RUUVk{jṊN UbҚ;,Dw޹]7_J卪r8VYRy*YƵv2x]~s¡c&^_韾R릲"Oj')b:sb }Rks((Sst3_ʹ>m׮L^6giu^\8rS5/?[ݏc.Rkt1>ࢹȹvOFϝ2%{qFʀS*B_|%w.R((W)'g|+T3R9~yߪf) í9%R!Oxhد8vN_MH^1)u>[uLqssωOszS4N\"UZjVF9lJkttY)䈨v~rO1ް:03ݧ~iq3p g>c#\l{ܴ1[A( ?su;^Q`4+BPEQV*KO\4).UC]4ziVF''6ԡ/4\Fy!v~i1:IYF.$Ŧz(ti%J:}LQN_]JbUϵ?c3@%UN;gJk:,k%qU_BPEQ+ L3=܋$ }HL;3u2ގ璘n?1լerC1l# 2U.$yiL;/@f펳j8?W= ?gsn7އSơ AQEQ(kmkEQşQT!((u>vM3IENDB`ShortRead/vignettes/images/HilbertPlot_H3K4me3.pdf0000644000175100017510000016355212607265053023045 0ustar00biocbuildbiocbuild%PDF-1.4 1 0 obj << /Title (HilbertPlot_H3K4me3.pdf) /CreationDate (D:20080718102906) /ModDate (D:20080718102906) /Producer (ImageMagick 6.3.2 10/15/07 Q16 http://www.imagemagick.org) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R ] /Count 1 >> endobj 4 0 obj << /Type /Page /Parent 3 0 R /Resources << /Font << /F0 8 0 R >> /XObject << /Im0 9 0 R >> /ProcSet 7 0 R >> /MediaBox [0 0 516 516] /CropBox [0 0 516 516] /Contents 5 0 R /Thumb 12 0 R >> endobj 5 0 obj << /Length 6 0 R >> stream q 515.936 0 0 515.936 0 0 cm /Im0 Do Q endstream endobj 6 0 obj 39 endobj 7 0 obj [ /PDF /Text /ImageC ] endobj 8 0 obj << /Type /Font /Subtype /Type1 /Name /F0 /BaseFont /Helvetica /Encoding /MacRomanEncoding >> endobj 9 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [ /FlateDecode ] /Width 516 /Height 516 /ColorSpace 11 0 R /BitsPerComponent 8 /SMask 16 0 R /Length 10 0 R >> stream x{ vWU_QAP"^(ˆBtTc 1^`Rܬ@Bm5jbVZNJ_E_?yo~+dd<>{s1s1s1:qВ?.9xpɽ.Կue^_5uo?%yeg|IUfIYRnu5U^d/ےu$u3$_"6L;߼&dSl =g9K>%UNځvے~IFZݛ~/7͔tZцi%,Bˤ^Ü$c/#Y^fRo{Zʼ^-'K^%\ƪ 23Sx ZqUbGv: 9\O-^gL>]E5m|LVb"$}z3Xr5K;+Vb3s-dz09~g7ɏK.Yeco_,%u}qJyӟ^bYZt^!CrMy2#홭`/]b{()$L ^jhF9Xk yۉG*l֊"rDwύ c[%F=VTgq:Ɔ-Ec.z*xRWJX1_ʏyxRN1!g-9cZ7X W9_;z޿%W]$mnHR~(Vٙ xș%o]Iȹ%} 7w"Ygge)R*Ӟy>7&{̝}MKxMǝw.Hpppppp?g(k]vL/LyZ[x'r0fц#L%=cD3X͵Xcΐf &Z c;k!#\0\0\0\0\0\\`s}Zen\Q ^цDˌGIӸüo#,{8c [[mL(dDJ pf<’/@\sOS[kP^wџۜysGg(Ե{臖UKKZ̚sY'[֕yϙfBeṡk^ُJmXy65L4f1c{V\wyDHӪ'Y[ksֿbQ,+v Ű"EigcOXXa\%ye=CbL-I>{ISs+F>3B`,D*|0z6}dQ)p S;$YWڐaC3cӟXiVnaRF ׄ^gc}ʼ -Y׈euC31̴~ZiX֞GMfA}I;......H.0̡"7ܰĢ|ӛ$2?Fg$zz[>VUBa6cNfc=ȕƤscDf[вv%Ȟ55KjGqDz%a5;nWv^ثk5.Fu+d%% K aüh`[b6dv{#_k(oks2eY0јl{'U,;8K|+`$[df{Ӓ=F'V|iuܵ\m_(hUcyZ= qfk3Pbh{.a4k /]l1^lސ(m#{[^>eX^gvG>r_>0b 1Ȑ^ejh *26b-Sx~$ΗHwHZLV -+-,1\To-wȺz6hd{e6e9[+aa%Cؖ^9͑×dIz`````\`߃1ϒm_Ƙv+ʞY>"Bof{%[M$'Z[13 gQ^r? cvK{ 3mYVv}KYK֥V933 VrEwCaXJܩ{˶;=8dy>жmhMa4a_<ϡC/C˞R]*Sq1eVjF{XrF*߿+Km/\8cqrI#ɿ/ XK5S͉oq;؞CL DNs3ĥ َ5٢͑=C{Myİ&W/H(# m9......H.vٌy6a+j~` 1'> mF(.9%պ-6XrbdY{-؂)S;l5qK25XNr7N:i -ُf0yȐv`-ט"\B9omY q"01C4`y}ZSoy nےki|````` -y+kuhiIyLWܲ4L=3KUsŒT/'9<%Yy,zv:r\1\0\0\0\0\0\@.)+3"mXϞmꙑɌ,{n9'*HȌH+ {sj{KrǞgsnzKv0D<!Qbs9+;dɺ&wM韩i?!,-Ϙ/rt2Hi1aiZlf YobԸ},Oha˵ԭ"(Pͤ8N\qS<3\0\0\0\0\0\\hWųik32nuIXXGTT [Ό?%\}KYBkWֱ-,~Clf }\b2Z#{KYo| j'Y`KPa%$J,-["db =bQj潹c?xVͨH_/^/d......H.zil;3HȤ?щ~|B=='jY0#y&Q[pVQܥ9k'oe%&e7lя3g7ZX2#n,o3>"п8{$Y>gf2nDƌUr.k-+~{}evG^ܖ2_^=.+ZLD *e````` OX[ c/C4\LoY>2M*1Y;ӽj'2;6ڳ}hj:NF#Ol%$4]Zn|;JZU+߰˲,'-sHN`vJ'L_r[\u+ځ4\0\0\0\0\0\\\fi1FȖL,k9K91e(vNk8ә_dC5ҕk~xc~/}%=[dϞ-\Iַ.}­ئ9N{K¶׾DiCÇ+І >7.IJn9e3Yo~Fe|Z>coOdA.rS"?f3lLh6qYZrL?j϶Xl<ϰ[=-M\UHԵl"PD* Ə1#roROˎ>ڭJ+v3j#tٺ^lafY{߻4L6ߗ^3 y(_̵ث2sL{#pfrGxLCy×/.P>~! {OoaruƆ2N>y UnqIfbj9rO E)#*-HޒV=n(SiObg)Dv`````\`ObEiws -)r1Dퟗ}ZəGZ8ϟvڒʗ-x룷~\˶'wE~):-zŸS2`qTtp’-yix۾mf41Խ9ͼgn,'ظ[Q|wn!N_ {#]ҧ,}z/Oz2UppppppArOϺ}+di>osF=֥5"F:s=K$Qx Jb&=zmČ`OA马T0+տߴi/x/]<lu]YC/{m:k5kcF c(V;yj[/ZԽ&w*{͒a0Bk 3bǵe\|jX;;G ꌞRar}m0-÷x=%5lĽԍ6eD*'gbaZQ}p*81L4r.2` {e<ꯖ /3C@CKgd-oS+Ä-k1~\ln3鴹1-^L&V#%9ZeϬ=@EՒȝlHiF>>y9Kzmb#pC)y9g3iC"yWA{ [{=CJ}b&5[Yb/d1p,fa_v1Z [}^~rlk~n_ uye<\0\0\0\0\0\\ DftoZ;$d5QsOYZIfNlpzM:*Uv>9mKD>x|=imAF/#\>+mv;k+%KIF )z_ʻjƖy^^ibĨplM7_g.[]خ#CWVy["|{uM"Ufg%|Y<\tђWzI}}f[B6˻޵HYQϝg2 H2Cc.g9 AKaW9գU˱.̣5_*}W{Lðgr)KlאLD ?V瓛mkFloj x8јL]GUz^zVEqv````` {]֒1ߕu/}*ڴ|~SG~s7/cӰEVJ0w,|w/̔-m'*9';ԁ]_,bi F`=,iO=YQ,v!z,ͭmz '/|_%= z㿴u~$Jt 2>zI8=|fվL?ԣ3qq\z6VZoo0TdлǐT8wk1lh%ppppppArq1gh*gtgcI߻K"&JE"pZv80˺>2b̻U0RߣehlB$|` `C9[Zm<3>4z38k:c)nYoܴO2FzP"ur-}/U*_9{Qv......H.`lɞ5|FpKE7q=/6glb]¨ccG{]S߂+#~̦le\?Bj^1ޘsӉ]ܔ~_UKiMM:b] ʞD-{!mF_ؕq~fIC,;VNrrhZXڜv#O}جbJvvǸ^r{&[Иbo......H. :%z&-_~>͕W5zKخ,_sm= XaEn562r,]+֘%&[ʼ9GܾOBQ95rĘ,isqy?$^ke }s2|f~,KJ%6n[Rdf8|F R>fX;#N \|Kvcsx/lw%9Z\r|g VgY`s%my...... #}Cj\G~]ZZ{{EV_~aDoYtFe\U5i<[0_O,y!]1i2QI7¬F s0-KcgY֐) u3*D,~ܟWfϾߒ-ʈ&6ǙR. [-sUf >imP,gF5wHcm4VYiRg^=rtlJa%=ƈO6+ V+-#6-ԜLgo2kjI~)uyf1.j'[z}iK Lj......H.~),d[U{Wˏ,W闚o_%BD9fI_Fl-rJgތU|d*V; Yale+XZ`XU 9LWV^5+Y\zӲlb4r(q;cLA&gװd%>nf4\0\0\0\0\0\\gmsډӲni-n:VY ,t{kS͞%V\bK_'2[2'4Ljņ̆|/yLNlF/U )?Iv/3QVlQ,-Fq2s C{'팍0r2[Y%<\0\0\0\0\0\`\'5Fm֪/r J9#M\ɸMJ '@5[Ħ|NӳX~1-PINϖڜCwޕg^o ɛ䔺[)jwD|b#uAax\0}G\i`bV%N/szYB5\r3Xo{ppppppArq%7-F 9w?MD̵Z8_iQG-hܣZy欳X[,'^Sjca޶y[B!;02y̧r:>%6L g18vGlɘ(ZMQRҹֺjEr<٢^fm9YAzN4e5ros]b^Ƽ=-Vs'2NɹN>;[. %aYIOZx3Ő*[Q#6f>b/%uw ?Xlp9K詞X vɖl%Z}jKRk{k6aa{> `g_֙0Ciɾ`KS}_ӏ\B)Yr?w<\0\0\0\0\0\`5!#iHen3yV%K̚qD~!&b}XW|qqY؞GYO5Z1~Jr*woՕ>hC1I'-鳘2ӳ쳗%Qk}˶S um80&uMwK/]-87 soC7/xH X|a଱~.y{Iύ'Cz6jLj LcEq O1R>،QlkHUY^fTR%;kٿ˗= J%0SFEQLa B21+ӜWM=],z6vdc̤ xȌH6rE#gh/5dSOȾ~dJ˯|>d39ݽ~hIY ;d]lEؘ Od%m-+1.;Ö9h}+| XR|e}r<0}%8Z/$ww\U56,l`QZ[lӛX~-& KNTƌ==E\"yG}CHb p>7mYآ55Ed6Yc"!7e{3G6J!\iz'e~44LO;ZclnZ3 =k̋g>sا1j7# \ӧGWIKyppppppArEyb{ס`y y'wF]SZWlEg 0d."DMzOQēO_b/]0fs!#殻|3{hgL[ȗ9;O4 kdv kDk뫥5ferRxdp)s= m/-IMGliǶ ؁1ÝӃ@b2N>y~ԁVσfoq=-iwQ%7]=+> W/dLϿݻ{&/"R[9`Hұ.= y%77ԲƘ^yEV$su:zԟ6a&$\n,ө]O      $XY&z cLqLO_bdg(C<-"ާx$f~W/^V,G,h1dul$6mڏ~1RԪgo|Њ]+E[0~jDv vqF 3i7[q%K 7OiBDvʾkϵ 'ƃ!y͕ %r'ϧi՞%ʚCϕ$ƹ=cZ']5zQ$+N[@K!+1rփ:3jyIoƼ~````` V\k2^O+ 1w{S0fqy˨`{{ȰLFWr.RY# >2S``hlhgl؞y+m^2+9NBJk|/?]wiHf}j8|dTXm,HbW >[/8LMʚy%ְ~}-K!&5Ss g/٢<ʃ2%-%JL=s]q.d%lfg2K+\Ro[|."1;G9Fme%6klWAM pl6ˑ-=7^Imro%Kw9s}8Hκl$9u޲K,gه: 1\0\0\0\0\0\\veQoSsUw9K$K1Yu>%zQ`|Uvl)aKkbnd-}9c2+6j<^'SGٰz V"p c]Rhc(ƧyYaٝ5zKp BriCNkγGf{k7o%wJ     $le{ȩ96c|[bH^\8l"nL_NToGf=&ԍ̵ǖqJL8=˨{%m`W2rUQmcsm*w%\E\RD =JD23%G9,b} 2j('c$XN/yT< Tϲ:ҳ)[dZ8+:=̈"^eY>1j3Tɇ?1ɼyoYuKz$OM:{#u06KYf\8EkОD3Vt6gr"*51݌xXl32,6H0Dbl"b{z u&Wcf$G!r'5y308%lcv[տĖႾu;oqAa Sqd{W]Na4wU,r>:qwծMi .XRcZYؼUPԍ2+n{DΈe]kz3TF`Տ{z23҃\[XΚ:|,/Sz|aazh {1ZwV톗ђe$      $ٰJ/\0Z|%;1ӉBQ4}Ӻ8+ɝ^%!̵az`z{dyؓQ=>$X9ԖђGLz:]y/’mIfM_B.bao?#yط_ W7p֘}3SqbV~'iDKf: :~Xq/(To3YGwtf1gJꤓO,y l8fq_-y1&%z30C6yE',5㐻J-=#1oly/>GV8s<˵}~eZd!ǥm,I 9h͇̽>-zȲAmSg"YMʌ`̸~ǭ7^g;D|+2{3(yx~ӏ45'.e2s3b3ri HXT׿w߽$VcĽl)ihl5G8M+2&kg֮dls7w75ܶFed$[FppppppqA_1zܞ;έpG{,}_z G_"neYjŨcR rD߻0ܰk.Τ1 .k2[gc5L`ls5#c6-cZ1/؛5';ƿeJ2E-=cf-u64~:%W_$[U{QkMY#C*Zσ"z4Zsj[8RͱZQxe/d9G; k|~[ءGȒI6up:[<.fDߟ]ެ==F>}z$q\xyF/n!]ݶXY{a9t3mLy/H ӿ`ݛݫ\#RharחR ?%y/krjuU,η߾ߛn````URZٗײEC{a֑ʨ/Vh+FqҐM_g[`|z_0K&Rhڤgp+"QV2 8ٲ? l1]zM9(sG~-+4trln3K~kI;֛ 1\0\0\plW>۞o0[zrds^?JD!i]=Ty}0s{|cnѠ(b1!=um!r,Xiؒw9VָY`XmJC$/Fy什5K}jX.+CHfo#~aDe5dvΣش*}7\@= 7.y/gȬx߷ݶ$mŖlS#beU#h>"]Z>DfftbЌf4VHC:=س#"'Q r=32δ2{&[|g'YfZ.vsE^㫹MY*GkغtUk=̬Ldk; \PGe_bqK,,Z8Jz9% ޢ=o[ZF*L ~-N3DEZlhӁefi'˷n-6dv۹~1{ͮsy}zQ޺%,b <~aTdɼ}c...rxk'z!ﭘяlQbJDKFEWDZcD=1sUd[mYneɓwd-LTOےCbKԭv)r5B0c5\a3yа-_jh~f o=oɝw.1kQF|/!9QdD:SO]bYi#ُJ?     $ObxӞb/5't1Gp2E^-7DqUKu/a?K +¯n 25b>ՙYn2d3O0̴GڤFs]171 cډI σc(e]㙹@Y?|d^ok1^'yUi?%xŒUr,cy?%Eu>G~X#-*y}Sg ~eg[, ͬxoCkQ+,z\bf9GIM^C,zMav丌.kc.M$#<ҿDPż C- 6Z,E2@4R8iOx?۳vj6#8x6geKi;Xœe^[կ^KdK$X/e````` hW" e]}j/$X\"R\O#濗^zns(˯{7̒=XT3v5Q^_mٺK ՙ}iyoN3Y1Rۼ."\c)ιwϏ3{nepp̵CKsm^ޒl cse&@k3Jz*r>|LdiX^bٖޞysϋ>yYƬĻ2;oђ/^ROٵ>wlFCfMۼŨ&luc[-o'0/K{+)1\0\0\0\0\0\\ H߅ɵ=~~x%s6lyhF.| b[vmL/-uO ;b-ZU|ɣƅnqI]S=^......H.0g~eڡږ~s:%GZrw9zg31c%ͥ"]}GȻ,멉P]hgkq=> {YZQ۾`Yf` ɭ]ƀnDZ>Ɗm ׸q1}r^̸ٝԪVMԕgZ)ѲEуj~jI5\sV~԰ֲ&Gd_EK 6ڗ2kJ&w8 -F=啌aN; 3g/g'X|˖=^z6[d+`cڸ[65گ-3vE摬IOZRRl魷.ypMpppppp12sb#˱n9K# #!u#KnJ=-vl˖3YGf=g8cE˛4/bW6{yf4jw.K+уX]"lfbְ8$"JXf(zg 3gRumG t````` }u[52/!Q=+ϼ0KL[pemfmF8x0[gpI'[}jE SC!K\Cܙp /n-M,ԑ~6@l7܂{2-w8I6.ֳFQ[XR{ԽޫCo~= 㩾E#2;}Cikw'5Aڄe-;ޱFTl;s-[ZSQֳ53c>>㖜hُ 鵞nw^ Mekb2Gq&M}^LgIɯx d|^6T4;{wYi_vsR>q 5Ğn8O&O{ 7 Om߉72YZi[djg! %ҚU05Ѵјq\A b2ks` 9%W\XWr}>}}QK-mh;\0\0\0\0\0\\1\KlYjQaX&_я_ #?sgX"Pd*xiB{FuŌ P uiڦ%S#3=3>~w^~7`ayf}zͲ`ְ YBbkV%/޾a5c1rq,u[i-c}'ŲX......H.+ -#0YsȐ~%S QYOd-U !̬3M,i|Ƥ 雈`1CiF7ĶiOȒ1ok358_okƌ~"j f;C ]EXv>@}OVԞnnՋ=茗%ff`````\p(( el /\k3z=F7GT8ce(jDt赧`߾Ğy}Y/7{ 5ŜM92>x%0X&K o;58=sbz5g^Fw~璌w{ɏ޹]ڙOf]}ڧ [;=NH=HU.a9NyWlG˓#e=ƹ3 f{(P#rGV 3nlːּa1Ȗ|_i%ʙ7MYW.9ȢXR̲Z 5"0bdha:Y7ݴʴcD'sioKeKjnf ',1fTo}yZ&%W5%?3KGMʺhCH(|c u#{"6b=-1^c蝵^c>u;F**.[r9KRC7OS+f<䂺|0p΂_PD˼1~oC{eK٢|덈WQCCTM\sђ'C/#݂[ӧ,'̷KXN`Je\lOϵ[V`ܒ?~IeJ{mKF{r?1;$ѿi17K|b *,fh2dĜ*⋗dYQ-J.0eش6y*0%\zyo}+ƮLE 赴WҏE->w)CC019륭EI9dq,s^sKU,&.U9xŒ^mqڙ~%jYRCk]XzZ&c6']̯dЇloNYϊ}!v&ژƨb7CNO: 1q<̈]XxR5-iq7.drkz>/1P -3y0wқftc[a^iI`޿kDfVbq=krȿgD{+Ӹ c;{G'#?;{&9ziKvq\dr8g.rl3wr ec\c, NϙoX$bo92s [wP4y,pho=>K3P?d-cY\3eiZz-3fOk;3kr||aesd,f|1H u܏[Ti,=YR\cw6i }[ E|*5T{m`ᴃ=q천5#c+Eԥlu'Kuilьq3]^Z=;XRO}ie2/7o{kJiI7T&3^pUmvI, ylmoQIRo|n,5PfɴppppppAr3j։י [Vk~%mTrij4f#9[A 068&?fKfHȷrIJ~'Ny~ݞ\YJd1z o~!{ӟ%0QCz__-q'ד[oA=L~hA1LU+)[rf?ےww~ϗ{5"@[aM......H.Z6OAu|vĮdEr9%UӇ16XǑ2Z֒fm|"ѕXD5YR6|Ӗz&919֬9_9R#99fҳfl5ە& 5|܂Njfs vκrݯmX ͒:5z0N{`````@i+g yrwzgQ^aCla*[Q]g9fI ц-l~vڼڳC{w\5Yy"W\b1ȾKr~ǖD-2T?JH,b戭&%1wRldC r"Y>dS_Y;%gz=ZR )l]>]VUW-z=1ct1w,^33}F,_ HYZ9%IUc2 8Kld},?ȘﺦI(}9x/13kd䠴mIl+veKֿԁ8b/a+I?Z 1?g%H9ήb߉ed먧'W)vjrA^mIeҶܲy/?\bsE~-$>_N/~g6ە-kj $1qXKh \v~=KL78W{壭bi9@Ե|ܥ6IIe^%wݵbqn+*{q9Cu_/]bVRC$5dZ[QCr[,i}o^XN ͳY/1i~>=#A9asO-*CԤ!mA F Rc~c^f+>lMtedfҟ%vp,ޡ 7k_3J~هu1}TzEh19=m7+b/m Q^c-ayʖZ&Ǔ      $P+Ll5Wʒ/`IU-5W.!MK^%...... Y{3wѯ{r4#e&kؖ,oU/s|K?ͮܧ8c퐈HKȕ[;\0\0\.&.\]6cP;/l#9ת< r22vi-qUO|撼~;5n`#-i#l|ўKidc/1fymP3y '#JCfhyqK%ײ<52......H.Hg^[GG\h+҆ܗ~O/h [tK~뷖0VQDWaw"V*2{*eZ.D׸l%ycN2҈11ƨ6g9fk6oh:je[vżخO?}ު+Kgs_:wޒ,zq"~Y1m2\^.....N/TDxO@ފ|V r͔l3ˤ.>iaW!Xle5e4<-5U,FɣVbd3˗[\V5LmOB{,r f-}:oDni=)\g2Nj)ĖQwo.p<0"iE`29lh͸F5![]qnǬg9^^oq#1au_(l0w-,f24Y~>9+YN3oٳ-UEG_;gi bۗTߠ_B=kppppppArA#U2q q!{LtfzYK^?[Hr+f-}b>ӏׄT`tXRrppppppArŧ.:jX{^}GV=1?OR^V2A#“,YoRY7e#,OW.y;ڷV5Y>w,b*ϤZ3̖ZLzKvًJoKg҆\_a=%֙;Xb|1\0\0\0\0\0\@.0SմX&ewkIRG}ŻקgsoȜ%似Pfn,y|.1.MRѿ$6: - y/˱e3bafkbC?f1fPTCӤxW)Bj<%)X&Ld;+dc)kƳdc````` 8Yojj7D(VE^ϳey Z,]30˶#XXޕd<<۳}X=Bs]Ƥ 51>%f}.[ 3 -ӳu7rK,L7*cXag ?%w޹:s/x-ƥ]oZc6r!ͽ2  LTmɷ$JfSb!mZLajyj s˒.K s͒q7;-l.ZCc-k|7/+s_-f#Eu|04yCEe䱏]rQKz.5[ԓb\N{-u$S    l'0b-ؖ?}I46664пtg^9rz4Zu][ɽ+ {>̈X(_^R;e-["aSh\Y]8YreK[1کU/ƈM^jԋǘɑ\_JtJ5%QŶ,m``/2E~%KXƝqƒvE5cϼ%_vw|NM y.slP}Bv|yq2Ng}z025Fz3*#ZTK_b;"R֊/U;߹XATNu[r6oV 9#gK?xw'vrAjVg^qrm֣e uێ}v3ʊ7aI|=K%9Ș1J3^c|+a55ƌ]oojc-S8cŻ ϗgKg]dz^Oy @bJBYoɜy'l/>E,xg/w^wYf`z QEՇgLfKGIjn%hd]9,ɻ:$Kv,2;uO]Ra ޼1imgzLF])Y"ZU{՚z 4gk<#k'\;͞mt.-c+_XOq]EyY;hUfGKm׹J33\0f'mXW3f78˷r֕ڒ;{o]B1k)֗r=\0\0\V..qA's1 j| c@,M=-M٪\|VڜG̿%[3!aoGz[R7K}V1%Gc2-igl֛e%XJ-hlkw(Fϔ%[Eœ$&/,!닖^fvKEe%mϬ!:e{y[3ֳLa }RO#U...z \a𷱀{FYJ+mI;!9>C Ӱ=cޛ}o^ds7Vg i+[ggm)ɽ&"8р0D2;_thIS=eOU6caRb>I'.yӛ0>;?K3yáqj,f 1$adh]z1XE]HUڣȅ*e|Se>wKm9,%#ϰdO9i#6fZ#[#䠼v*s1.k1v0H:O^oL:ꍶ0mz25ad@jk- ٣ _d р>;8{hQlo8`1fĖ>s4*[ʝ+ G DGؘ3k46!}faOyؖ8g0KΨ۲Nmъȸ:YW|fȭ,qNFu5ɺo1b 8eqXoߘl58W)rDi(ufڳe|6d7 Cx=y\hL1&3کo5W=:jw/ESO3a=[ۉJAmkHZ,*a#Wf䓗j۲$_ՖD|JmvYu߯!UĐZ DK!5*!SAI$N`ClLИ_ L21 QvttfF_&:#Ό&06C=\k^{}9_ȧ۟y-KzC]?#K̼ľjLD ,l,q`#մmO̡6| gŮ_֙eԈG 7,Mڬ~Lm6^;% oYsrD,Jyr'so}k){ǽʉwdK4ܳt'/e9%r? Sǹ*gq&S҇6N)s2Op!F/W+KlĚw♫ά\29,OYw :h7{ay<'l"wj?^ %O/wo_v/ѕ&C|C8I<rX?fdF)[Z3Js(ws"U7~cYt\1g$vcc:\0\#2\0\.ָaG2b{,WߙMy u~#[{<)hҟvr͙/wyi/lͨ0ffǘ#=bW̓u<Q__=7߼vZyo¸2......H.x #y!cWޟ\WpYβvuI?{̚:֔ۯcbX?!b;f۝fw߽FGɱ52ɥ߾I!ӫBfUMƀdJC<}>u$cgGp.H? Yf.:+zrJ1~l_,ep4{=vhOLAz aX5[z0*ک-[/FɑZ{n̷eiH\di? TdS+-m, m݉3CzhsZأW߸zl~mk_Aԝ>g dt    p ,hH`ʚ_Qϒ,nYFgn2c6?Y[aY ؓk=[8XgcGO調pSZJ4K.gqOa6H:^kztd :1#[ƶ\SMj>`|dN;mOҟ- ¼Zw/5Lvgޫ]cO{Vo?q,&+l̯d[uWPC?Fᶡ!9y0k˳8.#*cs<;߼CgʼnK0* u]C^zcj3ly3>qKoN'0M;e!*~cK WBqy&So~Ҍ}!<9s}z8}Hk ϖ67`G6`Ē5Z'ڑEl/Xi=C׿wݵbidIc+GHAړ`5sM,({Ty{Oc%sǣf6vֺ1pAzc``` k.҅QT3X~)>Y?cWpY?+{Z_]IK WĨ*YOW,Ɍy,%y`"F3dyH>Ue g?K [w8 -X~g>`b#"|9g;Ų8m(dspppppAJEH,L'QO.evsl@a1 /{8Wد.УȖ̓M>cD&UVCN2W7\lxO-2\i,9On<*ϲ9_|Rn)K¾k[-hy˱˒;;xK)g63Y^XYwϳͩ}R:w_j,om      pA=,-묋#D$fMw,ח_<3yu5\X8VR}lѮ}ZN<-)Ĩ|ы=9@g)b\ʑb^wV {Omcޭƀ}\1e'd{fZHu3pAppppp>-ԥzpqcD)&-}/K1n#~]%بoK^ZZeY;QG@^`+6.׵{"L ͸2pijEǽ4߻Ø֣ʾ|d)Y=qֳi+...... ԑrwɧ?p^Iѣ~CGͳ Fog`Y*V2zy\'ZPo+bZ~/xRO'>l36&U_RҳKK˪z}˹㐣3'ad=wb'wh3~]*B}V [1O/#j`````\@ ԝ$_\1f,CWذg;H;ZCc{'9PRb;0Ye ;ޱjc;@X7!,6MxUku'_'(8aTgY=k1me}3L.0     d 0J>᥅ntڊW7yi^!r=baqsYŏcYCLy$V Mi!vm|Ӓ JxL?ϣ(뿾:Q׆`匩\Arǿ=Qm_ |Gٜʲ2G*ZUm`d2lv/wj~"9W8}jU?w|B_2zӐ9kC6[{Ì=EBƼvk23k;Sߵrv.|U]vvdJ"d۶-9sv_;`vs\Ȓ9%}̿qZRkӒd;azG [9ϵ\iy Xg^Jm'c~Dxnu-K),x۹fEuc3ҧn=jпKr?XjsB2jltIܯ/*fZ2\0\0\0\@ۮ>.D/٣Uj][>^](sD缮df c2"-o[`x}O%[G"SrdN;Z5E:ӇYX-{jֲBjPqoy~]f&䣭J+}^4\/qH楶Zb9rJ[ZZ %5R/qw 눖2 YCs=@ I=N>~|$w{ݭ~Yfg74=ϝD9S[-)޼m-)g> F=sW; %ǽbΒNѶg`_ J ݫ ^nii=}/WT<3KY5||+Z e z$;V5%v+K:G\yk2s׉#?pZ?،(-33zKN'=ii=EX pppp)F,#/ #"!G{Pll39]p.k{~GL˼#syľI3&.82\0\0\0\pަXƍ F^-2fv[ңY͞5<ǽ<^XAcF[0T+hr$If&Tzx۵UM컍upz [vvJ)Y>kf!yeoڑ1pő႒r\Y(J~H/=o/+Pp_l`Fٟ~HaN=;7-pQl0q4y+ɟ,e$T/~qi_Tc:dƘ6w~,V'\-LC=<LfwG J [.;^q8WbGF7u ~݆1G 3]~A~Jˣl%Y#hb=Vn7߼h2v ?}5L~,sTb?3Kͥ;sE慍=ޢ`,@^%G v"d`ହTtrJFf0Ό@F!Uc)> ZrmK`Zhe+Ծ;\JZ@ 5 fZRgҒ0V8KL^]f[?zbвLcjϴ߉m8cv\4....xlHݴ+î~dK쥹'-"U H=MC_3>F0>wXVQRե#RQ֏ϵ]Vj杸l+Fk|93=mHg|eiv{%\³d>)}6Kl%q{6K1'E=+ߴĘv+7ܲ4,p xѿ-V[g-gZq2^[൹yِGz"ľH~h72lN =3يc+_˅lFjq pAa+ ,쵭oc7v͢7}K3'GẠB*G=k.?(u2$Y2[K~K !tiC, ^On_"@i[YYf 0$*FF2kk=2תpp  p| >.`m`\mJ: Qc뵦Tsu(KrabE0zD{j+;limai(r9Kҟ,%Zy['o_[HVW GDV2-s<;a3.GdD 8f2wܱ}4I};'Ⴋ Ҟ9|]$S%uۗl~Z-,B,%7LK 'HzMoZzi|KKYGo%D*kmTC|߸~#TO2qwTs/tx6=0mjoSǣ>aw=nv7DϜ?   XW:dUdn7.=D<C2W5GO2=,w@R-1tJ48Xò?k1L ّ<5Wu3Gu[jxbh,V}!SxsfߟmRc04`}bVl=s}6Royn. NK .xg-=c~ =Zo}RCϔqUYU,3#Wbou>>I!-\d }ZP/mOIec{,:̗/ƒm۱X#ћ9v5 j9wݒ=lXgce"^el'1l*iŢ@:bܗ=ʹkd5jg:>\0\0\0\0\8'!CiE]uu޺穴61}[1o;Hy^=wBZr'b{o|ԏտ?t];@bN$2?oD~D>#l'õ'~C9/k0k4mZ5\0\0\0\0\0\\+zu{׻>+:ԧ.5d%--֟wG.}.q ˯~egqdzO#DN%9q`g ![(oI̶Ռ>x.Q4n̾ico`]6%     $0Vme<Ozi~seK9Rlη?ҮHvg.{7"@ K+|_*Մ% az4AfHͧ_\q)G3zu3FTϧICTֳ!,6[ƴ}3ۚ;1ogD`HJ6XωHYC?;K-gO#"^uSf=}}Υu$ws<ǻuóޙ2H OߕUAk۸?zQ5Ԣ Y8#V? % Kk,YCK[}b z{^c2GD3LT     Ȳwvaɯ-˶ܭWY\ORDig$4~YtH)1M_qS 9Fu/6F/d6ǰob&ְ5<{ig>nm.\$ ${a63zdG-WɅ?vۣWV3&pppppw-s{mW.|+e85f_(0ˈT&f3=kڝKJ#0ǩJ>2""WG!k nqrK;;f5IfYƬ}o  zukZ,i0os 1~Z0ϓD:yOhѵYs}[DGQiEǢxbrՂv6;1?ƽf[l͐[eJ|slbV\K}Nwլ7޸{i e.>]YU$Ÿ#hvV/--#2k nY@F$:~qdLZ2l.a{S-sL3mS%}DVY;ENaIl0|~af+=/L=\0\0\  \\ؗkޥl洇GMg!ć>3 [zbLf7asXer|Eз,ocQd粽۰jghLCzG,1I 5ټ&N-*Xo֐GX=icWgY}[jn>gx}Ӂ%z*`ߪ0:]8=d~={m[󟿴B{ [#AibȚG!a,H#:F1/Y3ٶo;˕7f}ڬbbgm6{%!ʕ4C+ɻKo[ϡ7l%v9k1g|,oCkѦ_b[uiqeFyoC3!3ٯ> y ѕ^e ;5z kܳp)inU~?.9v9\0\0\0\0\0\\@5l23[_"0c"^gzB'f+je5qs(MyӖ2wT>`VFD`/rO SOТx8X,cod}בQ/,M;(Ä6Qs[f)/m#0d````` lט '֗lѾ-ȼ|҇cK^HkXڋqoz^ۻ,r(ю\cY̘gxH >Oy/YTXfZ>Z~Y.p"So?]J-o9זm^ʑ 2N̕ȶ~XpV0\0\0\ e.FRs^b=K|u_*btRj1ra2`mLa !Xvdyf!a{j\mZb6ߙ0w 蟾~|Ż,b-Bwe|2Ԣ0gYiGb~'w(G{ʣ~beĥ/Ck 8:+,S86gVr{i[wJWĽ˿XIV,4F,ϑ|NҲgY[fyn; c̐qaHol eՑݥݷU%g_4z,}x0oװEd~K84ٙSB_j~.82\ f}ÖG[Su;osĥ/;\@fd>&e+iqnkei*;LmL-s"k6R?Tpe֦?-Ӟp/1|hbhO<ɩ_̹-,Ͷ_WuiQh8d^wpő>ϓ 'vhH(yՙ/WRm/YÕ"9,!0 3-~zxޔ|Wf?ދȷ'bg,1re2zffs,ӏZW޾`XZw?Gr?}='G zxd``,gqLh$kb^);w"RFEz;x캞)Y= y&/2uIl@_'瞥u6WCq:kα1sxhH}c}ɢ`3(Ɔi}j_4ٙm%N"dpőႾ*VV22ܱV+.Z! 3Y z$aOc^CiYb0c̾EϚZy`>[/Or/0ZΊ<#m˿\-Mjjpl6j6H9hߒv2M KvƆ n|FpppAZ2\0\0\n-v/fGrY4.˗y}̂F{٣Ji !nfi ۢ7zOhsQ%kF@{2R q|&so~s)ZY"-/-뙦&ی"mcqԌ%}>V3_hL=KF{$5W6"gQj.1\0\0\p\`Hޥ#zR8W@.u MMdv6^}y[a}.cy^P+\YbN]9F)p*318I7KyVλҒݷ_gmy$}HbpɛRڙwE034sGť#M>w K . =\0\0\Pr\:yǏ5sq^.}ҳx,qx I__=ZlrWl=v{Z/ ,YOk,`-d,SÞ=pl%ONzVw'"vb{G. [EKiphD*󌡇Ti4;kIsgc%./ᛍiz|\Ӯ s_澝sC3S;6HhHzZ)?'Is|'>_0wzQ뱏ĺ6w*>f͂ N D.ȴ}J6yo? 2򚚫j=/= fl6v6garEٷg58=@ 8gG|m[-בjc\W/H5Xj0̜ڙp--1_sZ_k/ -Wl1ws`>...c߯zRТZ,gO_ޏJ/2N%{d7Ȗ=v1hA} T> szS-'hd.36kh󓞴曗{;\jQK4=:mB#36O3`HhÃGMfd%  H  difY]U}KyGC " eכcYofͼ7duhLLyno5~ZFgLʜls ~0ރ~1?lnuiԧ-MԥfF܃s0]Yfs₊zwĿ?}T.~H3wJ ڞpppAE" *[αq?+ѱ>n8-Vl8f%mXC`G\ꬊ k/Μo'̛9Nos.A2;(5Vu[2$iK=[lBpiY2\0\0\q.:-5"C^Γ J9h(c2rcVe ѯ!⧵is9*لoC0V|v| ܪ9g=&2V_|9]};wKwQᮣ=;xBqF     \\ ^K:;!3bnY_ce=ɧDT;NNیv~%q kh1Z = ܉jc8-2$$e͌ublW=Ak1ŎXsOY%g/%{>({&rc%<$Jo w ~}&խ9}2\ R vd&eƥf=GH8iC~tqh͎d]omY,3V޲Ӟ}vgOְ9U 1&?r EUQ}_2pb_R+.F5W\̲l!yJk0-2VၣڬxZ W d/A?=`z vbqgω֞)bquZ-**šem႔k 8.#oZK H}y_`c)!q {Kf ->*YoepXJ/D*᥆=yo+D*S1ZdqA 3sFQ2qmm?IZn;cdd``2\}rȵ,! endstream endobj 10 0 obj 49373 endobj 11 0 obj /DeviceRGB endobj 12 0 obj << /Filter [ /FlateDecode ] /Width 106 /Height 106 /ColorSpace 11 0 R /BitsPerComponent 8 /Length 13 0 R >> stream xڝ]i6mΗ98qz4mI-R}w@c?֫d&Hi]`@<^&'OL?M^};'/^L{7!'_wR?n^j@U?4׶o, 9<~<{wl+/?-2ON~z۞uگ_ܯÃ2aIeaG%^WpmWoNN&؊^[lq駻Iîfۊ} ]?+];P7ɢoIyӎ.R5 3MOpsy1/a ͛VWWn`,œ|vZllrEzf +.ruHlfֲ\uսR[i/ , e=[f̅r"3%ʏ5t3NtpP! &3#ZXIu\{?/>hb%f%*F(^K|~ARV[ -R5PkQfq?Dy2V YA>?+&EU5ArFPz7zzزBYq4D1LTMՂX=&rQqI:э#ƥgeZrA@JH`5*ZWp3[2՝W>?aʹ\8Siݤb[2nϚGٗES qFm`嚵dj qq !`-&+MՇ&qHqд8C{9@*^qFj/$SjFH5˯'Ur H)OWPȢ lSJ EFYj{-59"X޳`IXmj~;{i;`- ,Uyx}UbIiE7 ԺUzU O'׍_WUgj;.`alwEهz˓"ܜ/0'ԢnRkDșBn. be_:2QX)v:jl+J驇zBE$߅hYb=@eG`oDyt \ЩOOKbTGrq5lDAxJ8{tPpH\חe}5,DWՋ#,a//ӪN5h0!t<o[TD[rA^<>%B:[VM4RU_ٿ*VGKwFQi8߾>g4QD`U N+[$`Dh"Bsu=%#PNWLGuvy(AO-*=Y_R=l}IQ;E6k(gǍVELEعӨ,Ū3WzNN?m@3Z0]T7v91FUS8T_t*:(7H=9UAY  RZu:Y2ʿ{kGIad̽Hd~{uY>}}+y1l jFPwrQD+4J;\ztTV?Gd1ڬ)K C0ΘS,V>!NZZ2<pDZAi5M?tmӗ/5J xJw6w} }ljvv V=A ٴdDzٜNo+tk-#W8b*Z&t}z`%{ ,JF=C?6;(I B[KXŎ"^妩*iPz5 œjt ,r r f@\^̺^$&X"SEm(u#фNrSZhgbI=`+ Kx0,@]*NB 2BTVm U]w4tʌۅuDs$%=+dh5讘D3Z*`1@gg,圶ԫK򢬯eHb 3'hDT!Z^Uc\jP%[I-K P鮯ʫBa=h釅yjgPh>D7 *]~=-朗U6KGˁX849 *_PH2:ciS{*Ekg9H*CHۭd92PZ&kDCrBĐ,7a::|qE>!1FaacGmi~ ǎU,]nBadӝ掾b'ٝ(Q?~:{vPmr "Trqř0w#2\6RͰϟOŇQ[U--K ^Wr] <rnx1_o(GIIxl4TtlμvҪFj\T%90=dlkn#"0p;[1`^ Qppbۨ.*^UAV )! +T)m)fYPCGcP9{wz0\:aHDvwٌG>&?TW}(c'1Ejizo޴AidIGu|RG?H Uf=mvw ;W?6⧝ϷǝE٩__.W~dvչT~5F'*1M sJ4}j]Ea@ܵ59 I2*twW(Όpy/1㕥%o%*tT 8mx|CktXw"P^r^Ю]ҭr]dH&*eӶ̎FVs%"Jng:ﶍ#RTE(nRMآ8dشzIun+ ^;ioeZ~nIt80M|h0i%XDemCyHy<%)qE! _l isk:FFvbʪNdd5دJFѶQqt Ƥ~mjHN:rtu^^i*b Pw{3sp0n4jFb  2]! =wC_N{~UCI2rs=.陵~ ȫJolbջ`6V zGO\LiMUU>l)R) p~VئC_ nW^./Z+& Fd'ZaPn@ʈ# Vxx:n(1|c%I+鳲m91ůaޜU{T)V<N+e_6ٸPy̯h]^se0׉aL,`u\(y 8؎*Kj[9\o>Zdb q|Tv{k1nbn*x1ന1e:.?^/ȬӒ<)'t ۢmQ븕^_Ubu\#kQ`83vad<j3&h9$꒕nb0͍Ԣ_S٪vW*d!N8ҋ}hmRnK=G] ,(^N%aK:+qr=oǍfZpΝf «| VϪ/'ƮJ&f)6tU*Ģ5 XݳR=+G=c Yd{a:8qW ˚m mU1tDŽ+{Gr|~( ݑ,y!eo=նYc˔:y2Tz̾jƤuq°p<+ώ׷/µ>yWޔ!ֈzCV^hA6R˜Ü50޷S cwU ڱPrA_~;mtH< 3m\{ }Q`Dt5lyqqmm hbPfzj&r1e;14`V:8hCKJ`R&9abEWF#~#y&'YzɓvJ=H@>&׺ZS-<Dۘiwb}%Yp8P;ΤTϭk_ʗ"V=~zIviO{# *g>.ߟfPlC7g7L=䗎4ߞ_Mnc-(!I[܌`i-3N;N{cHr4ʹP/[km[je;_]쨹)j,DB,1 '͓'dHo2)Os6V?Ɠgr?uJ> iU2B1~Ő>f=D[:1gr?J_ &O+fͩM䵳}% b/^tFcҳQrEq`>OJ/Uy m> RgaX#^A\)'Gai04sD5ї[qoq i|p)R= mӣy-Us"_};QZC*v\d`2;pb_ӆtu@:{z$5@xvZ:nrK@j?yy P?+=%τV2F rvNh؎Qr//ZY 6;74 iF~O}#q<(;ۅ/:۫:jXbUӶ;uG;wr]l2Q'@?bڛU\Fh7V35PU3a^_[?s!dt:ݨ(TH։e<_Ƴytz];.`c?2|us~h?/{]˱8}Xqj ׯ#>N<<кR)n1 Ch*^kړ;e jIԃ$16!ŏӍzU5h8 ,(QoQwbQʹqNxkʵٷITUJ*c (oFs,Rh?&Fd*f{|̴昅\Vqmk[R!4Sxґ<> Uzn&kF%u7[Baxtf֮tq{rj*9z*u眽49 [fs0uS8L;?b 4ou<:񛤒<(izUnB#UǘUe~3ķC79w)4ID{C_//>JPwEpPĆy]mv7T^]jmHܾr]1 R -AAOq NWԫZd0? aGߞ,~c/fыw~a{݋Z۲Fw4hUG:tv9B~{bIxȫl.uqӖC#1-' ӕzOXKpUU,)R#С{x<F^` 3:UM,c1 d(Ԟ.E^iՏڔ#qz6$ Blӓ8l9{{?; 'ԑkwZmqD#V2[5y2E8:lDڛ8齜yNG!&WipsFm}DhDmgcR5|g18ܯzrZ_U]]᭚~GLűťGJRNuL۫C;/{*Ff[whP\h,GV4h2hF6ejb$kjlOOJtcV|$o]߬UuV&xhA8i|h^.m6zzJ vlµ endstream endobj 13 0 obj 7749 endobj 15 0 obj 7749 endobj 16 0 obj << /Type /XObject /Subtype /Image /Name /Ma0 /Filter [ /FlateDecode ] /Width 516 /Height 516 /ColorSpace /DeviceGray /BitsPerComponent 8 /Length 17 0 R >> stream xmH@k< endstream endobj 17 0 obj 280 endobj xref 0 18 0000000000 65535 f 0000000010 00000 n 0000000195 00000 n 0000000244 00000 n 0000000303 00000 n 0000000507 00000 n 0000000598 00000 n 0000000616 00000 n 0000000654 00000 n 0000000762 00000 n 0000050332 00000 n 0000050354 00000 n 0000050381 00000 n 0000058272 00000 n 0000058293 00000 n 0000058293 00000 n 0000058314 00000 n 0000058783 00000 n trailer << /Size 18 /Info 1 0 R /Root 2 0 R >> startxref 58803 %%EOF ShortRead/vignettes/images/HilbertPlot_H3K4me3.png0000644000175100017510000020025512607265053023050 0ustar00biocbuildbiocbuildPNG  IHDRf6sRGBbKGD pHYs  tIME ,܀ IDATxwngUM$FBH 7xAQQD ǐMĂb(GA EZ BHBBB;'Okc.;\7?k,|}1qSO=U[[[[[[mc۶m5Ƌ.n4k^sW^C\Z]q,ir>o7߻5xccx?\Ηru{;s7GΓVoO̯}ǟr߻-.ǽuώycmsu>}9/?6O[*Hhunzb>>bezn蘍V=av{O}[{xc|gs<>[j|NnkN:}Y@*&bYxdDT!pV!/"[n|bZVvjZ|xdro~st,׀!ICK97- c&~ZnYOdLLa?5#uk_{4ƃ|y9; =x>>1yCy#b"SC`4%`l+כJ*k<:z۫jzo0A\aP3e,o)"|縌r5Wϫ3_M+"> f<9:8G knZVp_!{F^}>!Sfq \r!rq[1JyU-j뭾7y_-i][K7"*תbr-Fn9%s>d.y|?15뒌;P٨r8_{c|ׯ|>YӘf63D@\0ty;∩B_emWHb:K4Tu7nuzVo!93d:3lroY[I:e~?uugވĉ,9ӿo9_TZ 5ߞ",G9^~_6P/񶷝_/_ qm2+c[XUOc x|/MKCdH;`7.>Hژc\WKzU@~!hkkkkkksfdUoZյWh)qcv+e`cX9Bƣ|Y?=RއfX2YùOf,;zi'?g 3DU7 `udLAOGx[_Ua,91~!WI] N{cHs#E~JT:1ZVW^kAc,'~cr?**0|aD3mmmmmmmW3K+cegIǩbHWȎHPS>5ܪnbT橛_ՙ'grLYRJDCX 2# 7ߐ2<ٲuʜ[??'c -׋+>f.=yv"T}RfШ7A:Jk^3G?zim3C46o֋Z|Յ1Vz|A>rMbWTM`UJAʽ0EyU̱B̮9Tߕ&|>Ѩ.ũy}y/M?9$A4 \96>*&Y1cޓG>rR߳z|/ A[[[[[[f4yU=}12єz\Ч>u`Z$931VGGIYӕG_16UR$^T m=^!*YXZTk+ eo~W,L)(ZKuIcPm|vt쮻ί 2MhTNcdN oF2Cy[12AQ>wӿ'a9~9/VžmfL)1Joy@Hǘx^:hW e!d&hYK^c7k }ņ11$iqCUU s۫+{.Ku iuzS;9F,C:Et`yYo+v7~9Nt n353ksm~8=hxAG1:{޿!J)1yu cb*ſ&zi`̐1-˜c*cd~=}ɺ,6o=-'sz{zr9N~}g1ƌB|f_lo}k`7ՋGj9?muyHbrΛ2_Wf>Q[[[[[[S=xD\o7۔, Bfe=_cU^5U_N'$±:G]^Ry3&ê L鑌1fVbҊj U/2F6 ?gVLR,it12FͲ9d:`c r{1b3"16u㗿Tuy߾jF`U\sa!+Ľ;vU43b, R}{af,YGΛl -**;ݔȀT1Xrlro_ybɺ;(Y}1z[a%;6/L>4а}3@Alm3CP)7Y&f+7-n YfV榠_czXyUoMDƘq<0+z=wiY/Ɣ VAWUȜpzdoViۺ7D\ՓW1PVcnd+vc4Tc.N$d8 XU y몷1*{}s2̘4~|{Z1]|Vʫ~} 9^?1:J14 1Z]г1߳aЪ+^eWJl^<`2F^ xAZ̖v:ROo2zγLI0ʲ+o󼫘aqǭgxLw!Z|~IaX-͒qsCŷ QXisU=0q[Kr};cLw@c6L^+EAqYuaܖ C].=r>p}WR6x@5l5fZeӳ"clT)Y׭ y3&ǀWP+ϗo@n*bYE=uƐv/\K`Xb<.xp1-RU]~1;y~+”u`O7"=oAŪQ!֥-o}0Fedֳz0$h61!Ygo JLT'&GGU_Sd/߯"!hkkkkkks<!~/xz6u3x"Ӑ.oc)2%LӒ7_!TiGDV)x_bK,&L:8/Q1*"l7&ٰcRdu]0{5Иr1!Uz)ƴU}} {a! Y6]SǜHdx1|ݑW^8Z.)ܒtz1Fa6MCe٬[sbnm3C'޴̓c̍ysԾư^۔XՇYq[/ʪ9˺n*o: a1:dN\ߘ9VLi[ G0{cb3D^ӝ6.{?}/Soi 1$2j}r>(&^yW"7L!)qr1e*~)S폦Tici=rLǣI> cey.ٿYnu4Cv5C@3myDZ*$׬ffb]q3OЪ,1e }~Y|Tz4EH7#Z̪ عUQ3K_o=2}ssgl-1>qk,k3f>u۶1>9_"Vb ?l9r Zʱ$"} ցݏۏjU) ss-?kO&h99Tёɩ~K%{L_" lm3C@.lUЈ,he''ⰺݪ+[39ż=z|^M@<(#3QκMv=ŜK&fFd1M[=/caZΙCBKq\qN3zQ:c!+~b;`Yܕ^-F}uזS15vl]yG/L1ccu>fre8U@Z 3\Gg0И/2)lgEoczlߎn1;y%C A[[[[[[f`S_\zȶG KNO5=v!c B&2ß9c2:xXcnBl[zȹC< o.eYٰش19\{{{'??E b1FZuy4]~~)P)}Z7U"k/elXv}3ص?WX. |#`#ӱYjƴXRJQֿu/2(NXY~rV1l>Q[[[[[[*5bYQn=eZ,ʢźy?糊)'! 3U|r~L,:ob-{rV!Cu9AǮy9$}msz%B1+Mُ:%|1G{K̍1ydH6w$b!;˅Ibr_2UQ>C>ذ|_掹R|Tߪ*bXU=-]U!_~ʐesV\Ӯ'_ڋB,9QGM7!c [.1"9@"$42j~}r^iZDmmmmmmmD\,aU7%3cv6y֝+ iS[6= h| ah xĞSe.e JLsr ,փuK|9jj|iǏ}nCWbi`R/R\3CsdfL]SKsV W̆1|rîjZ}~Yb9X̲7dy0&rDl߬rw̘\LZ˱\0ՙp2e[9ϖf A[[[[[[fȑuU?=|?<?obVlJ{?|cQ V)UU;ܫy A[[[[[[feU,inWZ )O5G5o|,waȖPScꂍٱبԷxc?Ȁӭf,<@#;ِeWϑַ=_*ž;ːjuU =a.|Kc"()mRϥZu[v9@ |yRa[[[[[[3ސիWʖ P!ޥA񾙕OβzMʲǷUHݺ1@VGmٵԏd4=3 IDAT:3rCVO'ׇ!O=1\h[ܙ)VZ6HΌ[nc:b>zʘ>eCDk8Yﬦɨm*1c cc9C'>kTe\o?厰%uyf co}}m A[[[[[[^?`}3e3IU洪yND혇lLDbٱhU4F$2>d01ׄLjm!03yZv,gHbd>?}c\?|N\LbTBr!J!e O+*2XU5\//['YUa~f9`v>b-Js?.VS1U/ 2K6?Un[3mmmmmmmX6!qzEDg`uDLg1N*B0DW}cL7sL#cHbd1pMDyQ@&۵۶1aկ^_yhC&0:tbU޲íNߋBg+E?CWUmmU.Ku7,ٟO>yq8_5 /{?|>2CaR&r+ޥ UUUR1+v?y7frVuWxq'jkkkkkkTh3c/ӯ@Hl<1]2=~wz|rַحn5Yxێ=xox:97i,< 1X1q|级Uh#dZL9'EU6|X7A4XnV_X)C{7ϙJsYg`~^y;^{l߻zk'y~a9Y/*}f6+V̲-61a̓RdmDXֻ1Wy[b(, י1LAwcdc,kt >ٺ,ZֽeVYA\&V0{=1 )2 ό_{H@>E#IO" [7tMcjȪ@ Ay.zR0W۪u4=+/༙2he'Xt3=A^-UWRGNse琟1CcUbQo{@dV*lkkkkkk[T8nȩzv[!V:=CfϚFvΧٗ;i [hby2/lr]20zN"-[0ǡRaCaHԐ!lEY?<1Lg4yކy29s#sLØM} œJ 콫zX Wu:}ʡJbI 3f}c ߋ!}3#])SZ[~9?!hkkkkkk۬TH`e1VuŖd߳J ڦ ؘGN<)Eyƀ]wyÐhi^ [!6^H꿫>޺V4nLY6B53vI+{Ř"h=gXzsAfU C|^m}UP,j߰!ðjb1VRUEU=>Oc*zlʩimźM VթsX52!8?v֬ύ1Jw;lT?y&['v'AjT| VET\ͫUĖ*yV.GrSVUYVu&,?C3X=J ]8x̩F0ePWŞ`TL)Rqf1H1no9JKj6V_ܡc>Q[[[[[[ۦzRUi QD6Ē]scLW6C{@1i{u#A-kCps ( UՇYտ<`lTuk!ccCZ[]\>Qj̘?y˞=Or73EªnېMzZFo#{1>bL SGZU]k} zAn`bK>Ūsb1߲ f63;~Px7b}gc5?9q%{? \=XScX 3|ׂyUb$g!b{˜R* 5ov\C֛̎)YliP?_{NK+FׯQ[[[[[[ۆyZ⠙0*B"zӛn YDU=arŤsggmcLx}!0l}01fS4iZ笢y2ަ`9n>Q[[[[[[ۆ!@2'bljp #44Zu,XCDozͣe1 i?Y&BҼ'^UgoiJ|*>B\^2\R,c~3an-g%yUR{mݤ>Q[[[[[[&:}C<mP%6KOַo>E*x`sy>u5o}ث yG?zֽ-\C8OO^)E}Y2h mVyenq>+]S, Cv|_V^)V ˍ REsTv\9ˍf* ?j8UDTLi~=G0$oRG[fXglE!PX3^rz7+.^AԺU ek)eB3[eY{;ϤTJqD}C$=1usJl*lqGl^,}cb e{cjlߡ^JUR)V=Q\c -Gֹ3_u'nDmmmmmmmD|}_m9k6>TY9/Cn7 9qshgec<)C`edSܪ2!1"Tp11o}ʼXwJݘ0iX!w\W\/[UoH<(Rm1t2sg1SO;9G>r/y<=yJ1.[%Bdυ}?Ҟ+A[:?p$q1{ˑ0rYVP{V/Ld̛1?UJ}kzWV)l[,T[eW35C=wѬUUUaIՅi}\x:ݯujZM>e<\"v;6׼fz3GP)P bȆMK|T&sO#CZIRoӮ,5ҴqyOAb`Nzu'WCέJ "b^ڝR0*7'>cy A[[[[[[UR!Z3dկ'O"GqF7H,-Fn TU V+mhrWr%j/U\#.vMy?0[%P! O]TqX/s~އusT]-ٔ+>Jy?x'8LGR}v!ye*0w1~Uz2R Sc€|3S2fm 1>c]=5RrD|' mziXrЇxۮG`yOnBy#'Z)ghH#bza`XLYϪ)L1[,Dn9^Z_u{_)f=^G7SPb2Iߘ#"1ڄUW;2<\DdvUy*;:8`0QmReFa篷g+%UרGvqy3*72*Q1VI3mmmmmmmT1&ReVj1VśF Rb\< d~,g4Xj+b4Wͳe!SsۭXDY981&ӐOtU1|ԡr}l\|*=֯rv C0zw}3bEU_T?[ex\特d#D3]R]z*'u3mmmmmmmśOmc>c*AxaxA 9mfJ]L$yV?E|ރNG4G?z9WIF'a\?Sc| BCe~,ꎪ^zwD93az OGl 1U sT}-w1cOn/?7V.٪75/z+U A[[[[[[jy|Uri1@~nҎE+>nz8TXR3D'3F=|>;u##in̟C_xAz|>A'<9熄 #'Of0=_<]D9>0c^_v#bv!zWR 9caJ)ov} U#xyk:xDtd.~ϝ~zpo]?cت&kVdL\g?`}Xo *Z.).}갥Jd4Cv#^O{ڶYbᖝk}ū,*֮f]!ϭfVݲB-KYA@ is^xAT=9S({]c$%}POKeA߷>VeS_{uF&VYܦN%E{L"e=ӐdluZ=i8y/Ɍe &80]Pɑt~nuem՞TzU2.:f[Kߥ9,m]"D:LҢ&gìZ"\1ffRŸJq6c!9 D|vf[Wݰc+ C|P-OSt3dbVkt1[) 3e |dT,mTcal߮_ ~8ƗdS={eټ~g9FG6fr'jkkkkkk0<O}1 Ǔ<,U ֙Ҧz 3eU{Ɛ A[[[[[[^U2C[՜MP0nViң4m|Yc*_?_=t)f^1Zl̘ V U֭R :h;1Dc¿'֫Mc muzx# A[[[[[[:[zN`2m~+OR`"!/pK4Wrz1 IDATouc4jbwL{YV:AOyo'6ַG6?tw#T"3ASaLuXnk]/!13g 鶰!'.uXeO,ɘc.J_˘^21|/܄}9xƶjuul;V!YzRU9=.?7 s :)cN,G^fĔ*\ӟPyV\!-uY<37ޞ 9'>Đm=]zkw1ʠRy﫬k{^yNgnGehA=`U\UzUUә'W$R:.}9Ub-.tpL2(UXt>8ˠjKnխ<1"7¬CXԒ:n" }n_E,15ygֵ1f s6s|{ǘ> %4 iYOuOҽ.s0e4Yr̓ sc4䭷Dd&c±vc]:R Y |7]v)5 CA\Gc(몘P%[{ǎ1U w_?1fYټ=fUHo\[U&iI0YUK*^NSf}y:ǴضXl6!b`+CuXnvo# Hf_x}W]ҳgoZvȘb ͬΛ?&~~SǪalǘ9cyފꆪA-Cc=_s|'L*kd?2(ޣ^'.f63=iyNUsVOl|?1P2 `H( _8( Vr~MsZW϶29>bA$ 4M 낗}2Y0˲ȸXJagD\Uׁ!'",2rz}< #bS&>7>/70EPWklVNc|lc`99W!}cXdTU.\OaDꍘhիR;gJ@s}7Cֶ!HhI󈱪u!2f"'WYXnOYR׽3jW#9O7%BC$\K}wafUW12bu#0e1;!Chn\?y{<(omɼE!*Gy>+SE0t"ƬP:ǪxTȘgj=r>츖[cЮc '>qIR zېHn:j^,a6(Ş3v-5nȹj~/19[cub,7bUNgL7F7_t;x;uگ O S!-3h6XȞ憐*YI4tȌes/` N=w^u?4FMqe"VqSF;qVju̾C mU߲90EC^o_>"s4cVM\q>}Șc,˛HHrs'e68̟JϘTPeS*Iy}CEM\͘SaifVC'X)R^5]eV٠^ԃ8ЙoVU*Or5ٔUkHUɼ~fs#<^y>}g CEYZPCP;{n?5 c,g#י|7[?~oySe˘Rez#e[ZYWJ|c#eC&thg5cYw /#g6n=/l=7Cֶ!bl rNvd<rU\Lw@®r/,ղ+&4y'@ė*2?0zU7ZwRfǛBžyf?<ꣳ_箳Zfɪv|'̟1\Oֶa5=%"'{]Ʋډ y1f= YɧO69v[$l_󐭊ϓeD !'4oT XU!ÜϺKؼ)3k)9ZY칚6ze7Do]LW'E/gco~hUu|nw6{}{-g,{VgX.'ܘti~:B&^h9\=SN-o9Ƨ>uQ/{Uw:7W 9U[6{m*D^) t.Qn:lCtT=% r*DV]E(b?r˽bVX80$o!h)r9WVd ys*Yk2{g%3o jZuYVՃ~f6>g$؅,uUݴyѨ1>Fݏips,rE3e9d,y1Oٲ⫘!5C@`D 5ƠB+] ~ߔ!g_XS3SթWJmN Io d,®Ǫ sܘc1#9V-PU1'l}qޘ"s ؼ}+Q?x}K]xd> e̺q^%LZ=or*fRάAlCTH{jKd8˵7~1ヿzcX{xzֶfڮrCXGݚ'k%{<:JO1`3.z9>Vjs3 m>SO]TTHض1^C:UmedMYbʦg2=RJ4 V]>UV{X1k[x{!^{u9R+bHb+%FS rZҊ)4FbdVlj`\pԚ.U{O8az}r`5UU4C:U,c]W5\cT<8=a]SحbQ=j*#4NեBv=#1 UmǮ eP ,U.Eҝ0U׎{yO/rUs01upVu|Ȑp=~kc| Ǹnۚ!hkkkkkksPO2-l281Zur XSͺy{)bY2 A3Fm9dXs"Of Duo1R*v#3nDrV!a{ LW{+&2#\G푞5Uu"ec|ֳV!g&JDnxz̚O1h-I seesdcr5x]<cJbÌa:ZjnheێLbKu,6΄:o`ߪ;e^jW*fbio*7Rr걪j*i?)Lrv1c~/pUʜ0㏟'M־KmS5f ΑG?7>oU=qomÐHbv[>"b~fWVVUͪ}M>Q[[[[[[="*BųԧƘh3C9ꨩXs =*OȲIop1ː,+yVߚ%&ax;_bl]__~gJX Ÿ8?jz'oȪ.}V]Rz1WN>|?7H7Δ2F*kݮ{4$O=}K`ȿ0C̕Ej fu?icL@c]wNi}~QИ97Y]pc|Gǘv[ A[[[[[[f=?|]6ﱐQ`ƲXþo}-ܴGH-fj_]OcR$r}O㡇߿)}#o `g UCC.V^y]3@".@2[ʞs @dd1FǘʇϩBv?oʧ(c9aOg&Lw!Wg^~яy<1cͦIojZ&7s<= xjH}mk*7b9D.;]SS|r 8Kc֧el:{su,e*m|oÃLMnåQru2KX> IDATY1)+_^͸.uӋY:Ob9,{^c?"H9ܓt!1&?ܘs*U۶mk*G?`b\L-&FdJ͓5CQic*,e *rr~"n>\s|lbDeKH#RŤ+dU)ZloȂBkS*4ϔ> 1>{{m^iWL!v/t0gm}"dUU{7}O|{d17csQܛJblX@{If6TO|@ʘ*6j1q `)o|czݦ@B`ϝ!翴o!zꢗjWce)},,([WL$"S<뙽8Eϟ|b -ƪLw0Ȕ6mlQ}UUs2LIW~e~2}1c|;e= l}Z7cz{1=6楚?Glߤ>Q[[[[[[R$fVu#Gdx\9)UJA\Z-`BN m)+\u c61;BN Ycbv>f:b+ NJ1>K# ܓ0>u}Jb\/K{~ a쓇2x_|.|?1șgUZne6Q0LϵbKyηـ߹Ƿ`tr/E6?1&+7 -5C gρʂKocf9oVͰ*̐1{SaxPߞXlKs9-]Wdf Xe/Ǭ T]TXѻ1'˪vk4\{^%\TLd߱G>r{oz@\!hkkkkkk*zH`͓3O39E j Ēc1}ED\tuL3KV.cf*$d1s=|VZLJag! /UH3E *oBn^ImwW:tcQw֭ρ{g'KsA*F2B!h:kS)Yim7Cܿybi1_HnV͑ϟ}1ցdnG5  cH1Ȍ YSx=_"jZ}o5 %W:UzS="rCUECv> -X1o"09DnIdiݍ{bWO6;q/b'8Hܲܪ^$UNbb]볫j]{ܥӝتRĪ{j +Fޗ!l{/Rio1LY=˕^:3/Ӟ6 A&Ǻ&=t/6gbSQaWu|zM+oA~̒Mݫy`-8uc.=Jt%r=;\K~n] A^B ).Yud> Ś(y[Lʽ>ƘeGO1RE_2FUL1-h V,Wr`-˟!17~cg?:^ˠʓi[SS#‹J<{x?y&1wv^TK]3t"e%`ȩB2fcKm\cYc|ԣ^/6eA!A$V)}ZҪ@acջ`jzA-UL˅yTǥbdL9:Y7q}K˞|wmz]8ƿnkm3CPXDSVo١oL/!tUs:Y>1FDz/cL9 9'izgGYm-gnCQ[[[[[[=K2J!i"OX<*[d#5L-mFF[*DPum,\1UױbˆiU@{V-@G&7G h=OueUXv1>O=^կ[KU=RtX ~:^-VotkXT3}6 3oO+[}3rLy%CE笺 u/}1=Ƙub\U">v@Lg]c -c}#*;B}0x IQ‹-nzX5ur]fן)U nʙdg/&'rfՑK,͡1妔zmS4-{F:եcЇƘ>NeH_A22E>zLsK؞O\RT(+DBֺV]6vZPi2Kez^.tV?nYμ{,jzs iFU0g{O.ގ믐)%2g_rb{nU]G5yo1L/ck:!RlȘªJr>Q[[[[[[FzIZ6~eUo1GU*3Ŵvs3dOg4>.V :,VV*< [_y{O+F<⠝b&1nu޶?ھhe﻽sؼVX4sڪ1{v:~c_Og 81]jyپm j~7>OֶA=-eytK׿z{i7A^gdcs[KfHbZ*ʚ6>jyJ~iu!^ocL !TzDffYU΄іn*Vkb.4+rq` 3xŔt:i̘uUsS1pKcU1.Y`Ih7ϥ°o;O A[[[[[[+㡧[4?y}sVjW:rZVyb48U7OcbvϦvuwcBsL?7O֥b6Y1H|NeWpӠJ#bBڐ͗o\/T+?7Hηny5E8{nܟ=%uB7d]Ak95p8̝{g fUE`=,²̣1/[妱Z _crr^G>rmN3mmmmmmm L*=VCd^y E S1>k*[fVVh1@zg1 z]^)(ZȪט2jgU!<{g {{d]=zy#*2YT diDdeNI*SB0S*:Tʠ6U#TO- MKjZas`LҘ܏)r=8`?z} CDQZ;yOnieg-{![fGT0֐Kb9T1UD[E_?(8V߬^L9U%~o̲mnhSs?o|=!22hHîߺc~{ygIueJ|ɪ>ލ*m)d/#/|(|'-3`̄?{ߺ:FLzI?jjms/zmNĜ7zŘ*=>#jZ>vH)Wݻ*gYkpFz5dr]^:e.Y`іCRL X꺙@FFK( |D=y| qTzT U5GUznx\{^sZ!k{Oq}ʪ1*&PU3PUT=}xiA'c`<1F3c%n(~*&XOֶ)ύ=wwbJdT1꣺nfs]p޷mcꐣf70gϫ޷Zڵή:6}_{Y K{'Tzj7fHzŸVTJY#'-Yg#$3c)ZZO9OS?~>l_VgEo WKd;F*ύ;7\S/ ߶^LĘVd!hkkkkkkDaGA sq&:=8-fǟ[=)g smkYU6a/7ޗ[غ.S'&ź-k?1J\ c׉1\cڔNԪyz^ݰ|T)|m\M>ycGc%UXՂ1copmUS1__ԑ0̪"}g?xS&t7 әoVOֶJIJd 37h1|#QG{̆4m1^i/ ٙ yϟܺU],۔b\DgH"o3x{RmJǀ/8O:iIsx_Rߘ2_Axd*c!r>MFulUպYܫ̠)qyKd1 |?^O澕C.} ױ)ay?UwƥYC_/~Ȯsϝj"k;|9nʇ>t A[[[[[[3,-^-H%=ųfW5(TUDD6mݾثV2̃mVeX}t>1 %7[ u;#sP2/O|zI͒ ?=Ȉ1 Yf{`!,ONFߪ >~PS78"rAǾswLs "pd~!30&nAݏAD&[͂~ju9o\u"Lͮοܤ^{1b;]/-`UCg`rbl_rlq.>RT庰Ǣ'D93d }6 vݖ fTU%Y52hkkkkkks cA Rb?,ت,LAm0֯ Xm<畞B[c*ƥK) x}|Iqy72mUwM>$?7/rwϙ1sa$$tjLW˜վd ~Si/¿_icØUS}ۿM{}qhQDmmmmmmmD Rbiē}F_{-lX\[+5 1gvy'a}6s5LI"1>W'SF*?]HwFY[Vi1>W1]-!zSdSDVG1Bb\G`;Fy7Ur>ɾfi[V}LPuQ)c*0}јϦHk9UoZV՛Z$muY}X5?/c8.d2smjRj3Dczâx yrfLߺGY*W{UrΣySb bA"aR,&l1M1r^Q WU9;UD,UwK>7rW,/t~)91>!)pr>* p}_ZdߏJg/^2`e`ȿ2[kNեZ« IDAT'1cMa)>3?}Wb=C a/ԋ #5?7fO Imm3C`-V6=xVa e٬f2"9z,1@_LJi Xy$OGJ鎞iERjqT:4C U5MH>wm{^y/:ft7F֍pdr9 bOe2<^wdc.eaO c0gi߳*0׬wW]_M㧟~)s;?7x?cW}l׭VjǏϿe ug3mmmmmmm+VuOLo+%dLj Xv2_reҴk vK-=p:0di JcUFeB 9|SDx!b㳟=WzAsov+;ޟŐMêgy=h|?:z#R,uoͺr4#z#U#AE)DQǠ7۞:p਽3Zs9szﭻ&3gOuI:U%^ 7Ś[yMoQ%OqK׳S )'E4~5Qo&dcUrOiz"+9g7  mzV6>3])>ާuys%;^N7i*-bS=_}""?K:~᠜8g}HL^7QMww߉|et BP(3^'{L_1 y^}آ:gƿEz,M@bJ]fuC&O,HݕWq ǯSϯ݂U׫>~:DU-O_6JP)^rEUUxLbh^#jD71–[ξ:_^څ_7f@X"&/_礼& qꯦ=bj _s {tE^KuGHe6"}Kot>;֒|uu>W7~bADBP(rB1L[:T i7|ڢ=[mWbڒ󥘥{6~^nypRKU NU8S#-lR2G ee4u;#(x ܫ RU(">gn)6zDu>bu^I?"!1;ɃMʑTP5yo?/ =T@U yzT_4y}Đs}&* B@U7r1>R 곽 ,i?u]W=6k"uש(O{S7<7AJ^-fKϕ?h>Q%JZ@xb6JCo9 R~]~ TQAA73뤞wo~s;u)|svy0 ÷=dDSY&* B,yP#@y(vw-tǡ>ܽʇI('bx\[=R#c8ITB ntSCA#U-P ѫzc$yq{ 1XtsRԨݟ'j1Z*UG]?0mz6zys2^1C/n۷ò5'׳'<O:oC&qQcF'~MT( Ba=|)fKRTAٝcKݹRz8HI71%dY'%0 yx']yBθP\$%3|*Le'FQUк'NZ)'u/YB>1Ts:#<[Zow&M(ީbR^H9^`H=F9XS.|S.G}͙ Ub{σ43W޿o!( BpC@*G$1^vKK4)%FYIqK3~)?:q&_*#"J9:TEŒg?gLۿCz~JʠO4{9O*K|TG W0ӣ:iu1Te(Pb@+yXK]SpثFy^R%&\%BLPgXX,w:{m7Fbz?z%%O߇+yTM.A>O?Iy{ jV y2b^!( BpaByHc/ Tn?1qĐR'N{ب떭4~w޹oznjw>GuU ߯T'eJPur\ T/BP( 8U'gݲJc<6J!,є#ˊ4)65oT_{B(S5YཌJ&1IًH{%y!F^'ݐL-&SwQsfɧ3#f)1ɓ/%::x}w1A#?F~7ߺxFOI/!m4U O<`NQ(BP( w8Pݷ[L2v -%L7yx6*kϟvYO^RZWĸr^x~So!  cĜosq&* B@MY{LdiQLFc3}}NY:6|l9\'KлbLAEW/bc~ΐ(%fZTbIQ~wAwD ?JFuBY>p/5F}fL )/J^?g9=O,}8.a1BP(2pc'-NR%$Y٦ؖTIɫ7fCg}HʄnRl¿?ވysص)?ȂFׅpSj~)\瑩ǟ#KiyG*\SB:|zybb(Iq=΀]uOyJ/o}ŤQUS3f RNHz^'`<.PKg6HOwdgwtBP( w0䙸CݩdxnYVb}d&/)Ĺ,OgH(wu:H?e2Zpܯ<.Ӟ>G]1yAYȃyL/S_TuzPn1[8Bsgpz=U`uu)$^TmrYr?^LIß/~(GC?a?yx]{Ro&EiQ"͔W񵯝~%Ɣ7>ϝ13\*+Obb|8L=w|K>"~wBP( u*Hs<#tS:{):ydE2ņR*)c ]<=p=Vv TbЛ+)thz{$f ۸%fJuy.l6#^8{%ݘu!%ciztgފr?O\0 6 0v^çnI"n IDAT/{G uå}EIU BP`,$I/i2.O3#'!yTI XA^GO ߴ/h[Lχ3/>lqbf~zLu :X:&*t|"<"z&ϊ%1,)VP7ybN?ػ_{39tf uKz^"=1pb\u_N]@=S/jut]3fFG?6zx:zZIg _/P( w;XJOl#˜<;ꕐb) y@i}K ]w>=\F)CnI#U>>I@<]ytnO߻˒&x61!?|33DŽ |g? }hz{U Sůߛ BP(,?\oW6)<>q䞀{I\-Pn{X~>Ygg.}>Ku~:OͩHuI__{c]ǥ6>/t1HzH/_/tbH٤כ~gR3Ā`NBDBP(rqˮ7K\vi);S,H0GG)zU?0 ׏ E ܠZGIyO%BgI;h<驤b BP(A j:Y~Yd QlbqTGK{{y8 4^SIs<^I+nj~`ѣw'| =Ui=(A>q msK oOL>OMU"=zCP( BBcOebnj'-d JZK}Jz懪&zʩ>7Ű|5#&<=I{!O-gz0t.(JU?CA=(N:;ۓtԝ3nyN#ymKgAs}/3 ?rH1Z)0 /wr~ܣ:}ғϏzMUA!}zIq?ZW BP! ^ϙL'~VxT %.R"慔ܓĀPd :'KSH]=HBP( EN6)%=3y&ԙmίcޮF̄Ĩy@߮O);,AkoB׳=6W;hʲG\}a;i㮻NϷ1dӔ6E=S'1Lb K,Ů'lTz}HϿϯ#=s(GgQ[2>$֙IRaP( bp"aҶ7N?'P{2niʒg'L{DI_r@1Cxܒk(x̒cp&!iSux)W U!e=.=CRKf/RDyO#&HN?ys> ]zi@ s.T o@s_<įQj㷾5fN'f1~?)se~10>?1Htz)r%H&1/c.z^hWwmL)U S2{?}o~y'Qt?O͓_Ͻz_`Su 1,P2D]t}(='}}SIb!( BP cqݒY[yz/{Y%x^tQ8`|+屬yyLKW7y~>OKQu^uy#ۨxHTEI,/P̐+=fJx^b\ H7ݴg1.u?MO~2>@9-ʂuE+zPiu|\TD:ďwmj5'/UkzCP( B[xd1:p 1u(e:b,V4K_u⟘%Kom\TIK;]EbANGz~Rΐ7UML!=W ~u*07W BP!PlC,NyEQw.oۨޘ+kR^b4^% ymT7;IA:_ooe{婺K+ zySi!K 3. eU}&kLq$ũ(yLi|N=6I :PnOCיn=T\uO6t,>ib\9uԥ3s u43Cʋ<(P( B?C SesSkoYco?x7٤_GIk)^7\sFi}'}Og}ިWrHi4m늘91Dl3pfA;3Đ}L~o)O _8})P( B?C𱏵Q1woWF2Cu'QYPB"yI>ŞNjo}.e'eBe!S0iGH^weIR8ȓ'_g=/={>QI1Szj6׵o<<|mTa_iP5?N&u:߳(k'U)$EѤ7>hh?!ƒߏG+U+I?Q}]RwԳ_}yۨ?g3WDBP(~Wy-pE!̭y0 e:Q$f 1>EL)bnI{rA&{rͭ-=bPHSߟ<8XwnBP(!p3(y-Un]Y|cLJeC"s % rb8t<A|RT#~A?y81N~=\/~A-j ֜uH㴏uR+F ($=~{΀UlBP( n㖧_xawwc"RlIźv;ci-z[Sy5uz_'1 Luɒ~~R:m?_ !fdެ}X,y^_X>V }jaN_ε~_WO>NaNX~¤HCv )gσ3Z {/Yhڣ#OIU>Ϥ3@u׵QI9rHR#}=WLMH慺*'(U?-ڇe BPXH,!;5u&YNkܢʱb:2)Q-Ꞗ:Gz{h/ZLrK~9D+ʹZ{үC=(6 F{'&9:5&=4I=6*۟by:y.3Z^;_֙?Ho]/)\s&* B@/y7n^ΌP ň6Yឲ3s ucPY!b[A+)wĻH^F+?KB៣F {Ļ6>zshy?Ob*)'I1ry;CL{^]뜎L'OJw-M:;{o$bnHo@_vY]V{/җ/P( b }Nl6mEҫYMꝽ8R-ԩW [ФUO=$C!O]!A Լgm嗷q ڨlxϥ挎3Q{9 R+fsT=jY瞔@HH9EI~OɢrDBP("% ̶cin;ml k^WrP3q]=dm'FaRNP?e5&6yJ4߽3ꂪ,wbjiHOo㓟<{^VQ;<0 go}LƆ'>bmug;Ĵ瞿zuƁr(׈։K_')/-UPFzn3CP( B}B(<`r4 ?q7|'{b v}|)V))4}]~@x6@̃{Zk'yN"S̀>wmTֺ_ c|^9G;fH3GYGڏ%U9%Lb" NsѠ,ʉpϟGsb(U9MT( Ba!Y`?S?|oj|uu<儤yy<6+W}c fzϑ@ \ zQX'>Cߔ?o~/P(  A,N'yP +TWtS4,gzs7>_ߺ`I'"y)yyOzǮyOUn'ωt|$eBvG3 콎:yp[`OkR(sώI/UWP1*ԅzUF}SL[;iQT)7$){~!O?uC$&%UO}~im}U&ƇbIcLʬ]/(7#ou׍PϑgךcFu]|*)>Q.UϞc@gS?BP(0 )HfJKݵ (+޳ݒt>*Ȓ'yݣ41^z j^S\u7u{:\2Kz]^Ű0 pwu^OJ'=G1?A,9sVY|`=gWD%\G8b1ik}J{ʱqƆrzҾ%&tb5a BP^P=7eՒEZW-P <>uf{GOL@[!y}+돓k~j O,uYug}Q,qǒ'ɶޏbZ=KF׏w)ݟ~R\ʊ~'='ן9$Fƕ[iܮHiJ~|SDRvl BPXHEyHd1]g䱻ALc'O+u)L];=֦tRo/y맘9YY&L QGiGF=IIL1\^MPW9+T5Rby}<ͧ~w'HbDw3놞vI:b BP(dʶTL-dy{v%eBe}պ>nɻ9%=|^Ư} "y~)IPv2KoW=b8iGmjϧ.aRwRL>y²/Ϙ,7ue\zl0xmr7__cЇrR=1mQ̏zIP{yyz%OʻCQ4y*9r 4^vYbETA]|딪RՇ紾gB_z~SIruIU ʩ}$~ݽ]5!( BX0uw'K<ʂlbK1a1Όb?ΌxmuԽj^Ow4tOYTg, s[ȳ!yTN=yh=PV5k <&_6י9oĐPzZߊQl܏HO%)1;̚+X@ ӫwAKR$@]~ػSO %uƒrPW$nBP(2Cbp^'-ki{lszUGֲr\;:\Rn fkT'u1YfM?(:miy Ϯ#p'i֓AY˞rzh_F 8BYS7N(FL13U'9oVyB )wM>i:>EL1=:ɦ#/~ꡁze BPX =C[<^[G7Y2y_eǝW[܏1"ʢM[Iq2/_h)_mr Ů㧮tPTE@LRbz<(ȏL̼yZϏ{47A:Xw:K=ROORL?U{0z~~"ߗrhyCbіB0 P~u׵s!( BpC@{nQLP{Pj6;X Klͧ=#>Ƨ>u63 x1neX,6)6ǥwҔO+ ^b|!HSS=*q8ĩ!) 2II?߫]tU>IΟ~y\TUAmt`RuVԅ=jT+!1& ^iS5b"RNꎚ=eaXofax/b֛O BPXC OuRۗF:vyl'L٣p ;yӧ==8oXTbVjɒ$KY]ey'e.t]+H Gu,^ÙZW)^Tm@/tSKHвg\se|]yM1BP(IG%yjZWTNzTC%bB_A"UN/bRw46_$F=N118~s?KR$}!{ f9=/!( B,h/1"U'Q²8lز,k|[xam?qO~b%Kl^15L)6F^@/sgL{%tݣ"O<xS7@5SbHIbTC %O_R2뿞}^Ayr.(w[RV$O6bs91tR#8C::ύ6r*2'nHotcP<ݯEe BPXpSMeIu(pMlS/ILgFŚazKt "%]S?ԏ=e 3yO19|RTMT;y۔R+\cמ{C .H1n?/|`i}rRb=@b1OǥzSo/ ʹ |}RwyN1BP(!H)I8yRd3nq+a/^0 ð6ϫۚbFaR  yD%Oe^뽓G6e{1 I?YKLIzA{S%F[]rU<=< g4$F+^O[м|Swb;&{5Rָh&* B!gvOEL[LI<1<^ &sl/[o=L1VxF i>J]۳rh})'\PN{ߨ y螓B(ͼCH9Ivj$R-P( b,W-EPv$ '-o~cmq[M{$mx}mʿ<Sw.8g~A;BWTJl; 1TNZWT_nqh~'>{syoSCO{׻foGOX7#ϒRUWRN1 狀+h:Z~Ӽ%zDzΠSDk1BP(3[vKpO=ѻzK_: u׿ƽnaZn!e(<G{}=JaK#{{J^G2޺g<ڙ mTyδqqCRأ,|2_ֺt>}2 szU(ƏG9yI1u|kaٻ0 }xQ AP( ;UEǸRlݢ~dQ@!N^2w)F n ҥח,^zd4SA4W_ן1Sn틴~oR$@,y^O1q~~; KHL$11*Tsu:2S1ptT]Aޜ1~翧NSoe_:z&CP( BaX -#﫜R][`󝱇N,?2Hԟ--]e떷ϫW9@&&'Yuzǵ)'O eOUIGs\_<_~T 1<zN'Ŕ{=ӫJNS,eRG>QUTOO4^erh]$f Rĥ!bKzsu]|*P( "dR~w]w[,F/M{rIѬ7디O[LB-hިjҺI#1 w~!( B!pK<(SL,A?|ڂVk4tlb:dSM7Q OI)쭨"ʂLP <+upCKQO3K^}]aUA&>yTN3A'ezp.bzcTu(SbR go|btÀbTSIm_PU=i^@Hz )G+uob BP(,f"!>HuQ<{pS H{Y=f劉nQjot^;LL7_GG1^Ƈ<>':Ũo=ggR&f"y~tC$[>;Ǥؙr`b|!)15>~<_sELZb sbzxF>O=1)L )&lڸm{w߽;>O1UmI1BP(!H"$=G4eyx IiHyl%iRqW<up{_cDŽݵ{5SrS ?5qrnsyO]BF3~I9FYѼ3D$,uzKrt9z\~eq뭧?G뛞~93uI]Bx떓rm7CP( Bpe[{jY'~XIGyS/VʍtHO,|#L략+zNr(}߼ _*m|cfknoICO]]}>ruZTD 'CP( BRIDATz,Nvv ZIAX*i'2Ru :{d+睲~sb~}N(Q9]wR]> 07dh>qzsֺ{`7H^w-yVz?zh>|~9Iן#zc$ʩ)K=d|}{1Db|FyW=z&fN_]bw X->\6QP( ؖ{bw-3bnRL=o{l/iyUliI {~I90;[2~wH]7Xh/3Rz)hzz9b\oʑ 11*Dm!9L7uN1ΟzX2iɣ'')Dh;L_tO %U]PLb8\Fsa?q掺)ץp}e BPXTe@Իb6dRw6LuEWƲm+"PݯyjZ_@̏{\+ˠ.`nS< {Z?~IߛeN]J]KrzZYƨ{O$Ukx 7ZA| ŸL Zs6>K'sDoݯ߉]vN?-jϿaa K9 yG=>b BP(,V*L3Y1)y ۸m\om4XT=/z٧s3pOcȔk盪8>%yT ѫd[~uGH灺[^ ԍ?='w]|({~}:ҴL>5OʟtiRWuf}W_O_Iy27W/?~rSuM^5 BP rR$?i{SvonnQ)ǩ:=*2lY<'ʾ͵Q@o; *:^Rs3e/'ޫ,7yJ"14Jjf4Rt8==Q =RUQ#} ڇ)'b:M7זQ1sbU{;[/HV9I/\$~߈(P( b )PQet( łRۓ^3W_>wLY1&<%Fӳk{{ PLק皐ǘʉ) #uLYİ%Hzg׫$RLʎO] }.~>/xy4hQ:>]j׹H.vjV"Wkz=KKMz"ܠץ`JCP( B,N>F&K(YNI#dǤ HUtq˶H?žcVxy!PvStBF b:qF/O ž+lBŢ: VX|GH-VxU+?B<\b֨ƫhG~ZmŠ=U*;w BP(,&-/$8,%*wK-V5؜ 6t&{Wor=|]$80=׫1ĈO s)74qO=)H+3 hzszIoqcBJuF1o>7+k?6=znq|znuS.?Gz qya'r<~i?+Ag^=w) s)mg)MT( Ba6fǂl} BP )zqF=gL+ +K:OYf6IꞓRsYߛM'O ) !'ES \J~=#}Wb > =9'!fciǝ ]WC(^;~ݏ+<`6cD}Hřuߙb0hߤk#=Ǩ+<pmSMU~i>>=!( B! /|([O0 po9NWA'}wUY4oGr8Rr'sb&H|zI8:Z- YӮXGѫmb\rL3@'FCSOgJh^ [C>~j Z7\N}>$3s{IΣ*i^y4n;7=U xFO8BP( Y-+9izrls[uI O,V3bek!'@ z' QwoppS}9y><yRH!=,hTC̆3[~_u^BOoy}kmnyJ둔r uaZTݒ;(7d^[׵.{UQ)22?~ϹYQ6QP( E ()%=HgN rz7/ ,i\ ]ORj ]HtI'}@PWHV gR7KZ >KCGŸ'eE*P( b[o|؂uK<wwcE={}ky=}Gm= $ɳ#QLݙ*CH:?(GHC1\P)%b({>^1i_&] 2U}r y{I;o[=B1>{ՏrY&y"W1?*}"6`56/os1t!( B!p b\|xޯz{{L;Qս_t})'@S/Gy!y}HpP rr3%r8y71K@O ]~W0\yo:Q 1(&* B@nM[Wz~Λ%K<5s N[G(]9Or (?ۯ<.O 3K{ xLJ:nt)O/)-^jL?A9X|s2RKoi]ziآw~^rrHs'Kv כ>wMm^XLb6!( B0DbϊQ}[di3ZduH%ҥcb]}:ӢuJQNEH[Y@u'ϟzU9At|R5GoLOT%zWzt7#h>0=oAou'MZg CJAwimI/i(WkT:Ck_o>)e`|i/ҹ܇ԣ BP!NCRyC6=Y)fJu:3@vh~oWK_(MΤE)Q P=|¦ w\71:%/~zgxו;@ul맜FŎի}J2>Di=Q9>^{MO^1E:튐׺9\@1l= O[{]6^uժ1kһ6yCr˘`(JꞃnddY>yB1?'1Ĭ}r=KbPRDozUyQN jWֿB^pՙ*Ð);)@x/B #;]'y:=OJG+Q}7`P_9N;UPn yx;pwku@9EcOt_P$>6>~לY' V[M3Z5[W?_5o BPXbR¢~I,-_׷_nkS/hc'Ob;\\: %ԓ'N_gG[OjSnigQ辒Ǘ3- Q<|}yA*ޮXz||my}Yo-|ԛDR51{lCP( Ba1C_u8yRnZ3aoY~.OꮶȩmQjPux5mtiObIᏲ})t_WΜy?9U?("i]uxz^#raP( fR^_<Y`kABxQcKv4ԽY\,=Y*!-SZ')FOǣبgW'faE\~g_tAsacexUMtI!U)Hiu2TTC6Rss_ }UsAP( fH<^wzlLVw)iW\FewzVbTWyRuf-XF {ԓ_RKAGW$FzgL9Cu@6:ŜS߯Ù?({t\[<AQL<#Bݳ:uc#AV! X:=:t=qpA4ȕ%﮿~|Hyr*|D.P(  ARr- ŦunzӖ}WbdaS*yR.ٞ&1 z<='7yzI -Tz1OJOL{P>bٞ-ͫzzhU~l0͜\rIzړL̎_͛Rp) Sr_gҧ*56 }uotkK*P(  Յ㖺[p1 Y++&O٤dSI.yj?T 4>ϭl51 :~|CP( B% )8nMz+aչu2ŞV[)A9$"1~޳)=ݫ!g(P( yJtu=,"*nf3ǖO[ҩ~rM>s%˟",-'߫#ܣ&? Ţ)I1Tǟ?둺:M'iK߾"PuӚ!9.Hyt޽uwƌr9$}10g9mqI: ~_R#um$=ElBP( rP)I+va1MZ'{u˔ts@]HN\GB*'ObwysRBt#f}NԳyƩkebWh¼Lҥm \h\|} ]ßbi?$]Đy7ޓNjaQ:hN;}k/qDۙ/o[Nc*BP( r, Y~_joo<2\ժ V"_|qNYPB0Slbmsc^cTMF">(fKGBwѦ%}ޒ y4OλymnifzgS=>sAʹ{󄺭sĉ%}.l2_CCEʜ BPXC@,b\\3@Y=߶eaU<olZk-VSB]G<"):]_7e駬v zƒgOϷׯS>kYwuӝ}~P/{۵b;0=>9rgOJ<۞gki zrYmRK6Iu֙^s(yƫH_AI ERe BPX ˴<H+p7#BjSݯ{C=ckY2&SK'1 ~P=+iމ"Oh&T}B9(=סy\U@"0qR7Wb|&}P7>/z~rK>;H~1 SM@Ab!( B!AnۡXaDܢ^%R+YӠϑO:~I_ACZ6 PCbFȣ>t])K/w}'E6:W_9^GЃz s49(Q 8İlGʉ}P*{3>\Y BP(d< WtK<'@]HpWϓ{vȒvZٷ3<x׿wndiSw:b :Sq'U,z)Is,Ͽי R$UMo㬳8{y$IT-~1Bɯߟw.<χ8(Ir'U{ѺWȻCP( BC_^P( 7!( B0_Ud1hnIENDB`ShortRead/vignettes/images/Strand_and_Dir.pdf0000644000175100017510000001142512607265053022321 0ustar00biocbuildbiocbuild%PDF-1.3 %쏢 6 0 obj <> stream xVKo1 WCĎ"!.QZfA-;cgThE_l':Gsm^~`{81ͥA{eEL>Zv9[$goqiBR) .0sZ`2J $1<A =hmd`.A#VJƀ|"3 P/؛Nf/.2Q2 /qϬDPqrmΌ讄S!M5rX}7\ZW nSr;%Γ-nj_ϫŋYza45%P_bOK˳f=GMoeglD Q.-M.JA f7O4w׻E[(@FvqC0`Pt|gCZuCR5 20p^'43(7]d},O[n)A%+3Rm?A_Ԏlf|Ѧ ?n~|vf(@dT  pn~:جV"\GRt9]ݱ2:%]SE"Wdm8!R_2Ϊɦ*|HDXQH +t}W=ZXrI,@z.8"4;;-x첗.!rn|}:rWΓ#ku^%N9>=|J'oDX}|~>]MC+/"Z<<9v;0%$Q'dVjityw,][ |endstream endobj 7 0 obj 863 endobj 5 0 obj <> /Contents 6 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 5 0 R ] /Count 1 >> endobj 1 0 obj <> endobj 4 0 obj <> endobj 11 0 obj <> endobj 12 0 obj <> endobj 9 0 obj <> endobj 8 0 obj <>stream xeS}TS@Wh&#c?Ω wtN7XQ\ I$ 7_! IP"E:贮۴+z֝8g=<=ϋc1Iss S zfs^\-̮1Z[Dey.~hq"z<}L7eԆVKR_jJlKOOӡFImzB+T&V(T P*y*XQ{hV+RSSePzyuVVJZkd*@FF˪ܬzZ`RitvQ*WNPB ┪M.`,ƶaX!+~aob;xX,Ǯ11ÂdAJlQ?+ kᷗQֲ(>{ L$&`Pm(4i_`>GrrVAUAd W¸>a(7f ?ۣ8 > [)~Iu_lB(!)ZKEU%^m?ȬT-4߁wnݕj-kyGqY0b򂰏05֞${pt22f> 1GH.O{B[8!{i(KS~fkc̆F ?p?\L`agMoP3$=@hN#\_rb&oQKn /JzD|l30<&Vf 4c Vd{KqDcC+M@O`eVܽ+HC2mo-Hp 1qIOA G'L*'?Tik0aaBw7v^h9%vtt^]qvfL}x~Lc*$uRZq*$ՏX[@3zJ>pۣݾ~f4aU}8*=4No~u݆8.GjI{փY{o:DS/ZP~Zv9PBT+ja;͘f /_qwɍesp\;?sM5g(cɑDOI~(69Lhm9p1f+Cyl]l ;]]nsya7Ώ*-R5Uܜ;7pSU2?PmD MӢ!UM] ; x4 +Y桧!|e\yc Po?Ψϓde <ː= 2_t7D,d;ýaW<7{8a47 endstream endobj 13 0 obj 1701 endobj 10 0 obj <> endobj 2 0 obj <>endobj xref 0 14 0000000000 65535 f 0000001191 00000 n 0000004477 00000 n 0000001132 00000 n 0000001239 00000 n 0000000967 00000 n 0000000015 00000 n 0000000948 00000 n 0000001616 00000 n 0000001370 00000 n 0000003423 00000 n 0000001308 00000 n 0000001338 00000 n 0000003402 00000 n trailer << /Size 14 /Root 1 0 R /Info 2 0 R >> startxref 4527 %%EOF ShortRead/vignettes/images/hilbert_3col.pdf0000644000175100017510000036127312607265053022030 0ustar00biocbuildbiocbuild%PDF-1.4 1 0 obj << /Pages 2 0 R /Type /Catalog >> endobj 2 0 obj << /Type /Pages /Kids [ 3 0 R ] /Count 1 >> endobj 3 0 obj << /Type /Page /Parent 2 0 R /Resources << /XObject << /Im0 8 0 R >> /ProcSet 6 0 R >> /MediaBox [0 0 514 512] /CropBox [0 0 514 512] /Contents 4 0 R /Thumb 11 0 R >> endobj 4 0 obj << /Length 5 0 R >> stream q 513.936 0 0 511.936 0 0 cm /Im0 Do Q endstream endobj 5 0 obj 39 endobj 6 0 obj [ /PDF /Text /ImageC ] endobj 7 0 obj << >> endobj 8 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [ /FlateDecode ] /Width 514 /Height 512 /ColorSpace 10 0 R /BitsPerComponent 8 /SMask 15 0 R /Length 9 0 R >> stream x?h^YN(B&('UR*DIJ*QI@Ic:i044&x j8> nw2L0o:9{ |Of/p8ѳpИ>+tEi`o4Ný~ pw3yqu05 oS`$K'۩Aһ 4/1}q,kS*<;=ׯ7ᷖd~F-'\YzNpdIU>;pbonnhnKO^WgYzGEJcyqU-%Juv8XAў~~@s՝vNN=e3 +07?7GQo H]N3]#)f8pH6cʼ#3le;YηSARQғM7hRB:8@e<|7'7j9!\e[Y}Ů7Һ,z_>z}%TUN'd-9O~'Z|"9V{j(i=:? wsWOH lqxu8Jrޯ3 ǛcY3{jpr$7[)i ݟl%Q ey>D~4|i^teXh5 G+ENIW843/&2uWs-H2e=&^lN~$]5;1OJNv㬙syvz;ًG8,rrŦ'V`XaV`XZ Ύro?4X$s`ac < Pwg؞'4nL >x}gIHk0$D[gOl'?zI2!.)}MI6~6 5'C'#99T ٵ`{Ok;+9v젟A+K ?Z|ԁ [G&[p?7,cMg|ɡA~M ym 4ǭ﫽wk1|q#~bݥ(Ġ9挗h [@} DXQ;^% K x9""D&"`OnSpĪ:ky:{V1! ́_;体Q"5 +0-ͦaEsvAqJֳ;]M}*qVZW:Do$FO'"ϯ'[x0rRf7~8oORZt.slVY8=gXVLz:֤xl|J6iBe gOp~ ODco/#;Z>MY.hMPy3`0o?>nevœGw"`m㪙o,<@xTg;OŸţ]#p=O }&f_;)7_._N 5CQ#ywW:z뽀rkC; ZYb޺]_a;5!iy{ؿ.h<[˃/ ' 4p?'VF2qt|jFx*&*cŖ(r"@>`_yQԫTOr>K,xİ +0 8D(sv<O<-*_Fxsiph$@_W\L >)вX>6 sB4Usa3hɆϥay7}"U踚hv|=ιǭ$"A 5|406\5ߒ*RV4qMü*q-])@t +]-KDOɕZV \]|m1K^nWD9-Zшyg%& 5>}όG-127dF㓫ǨVY6q,E&ST.ݬmzS>&STiMhy13h;; cw6\|.y<5,㜏 Mq;5|O|eVkL +0 wC'"v% lSb}cay:Ka/y(5r|d׋bGsU8|65:ݼ:]v2~؎֓]a>Y{Ŋ% y4Y1Q(o`,Z5U߼EziP@OX5]j0Ĝp[S)>b0|bUʼne:C熅Śς$+A'nO\ҙ7pG&XSz變\[8ٚyjxMĒs*[04*asKrr|20?,<**\5-+ɪZ2z/c=jƈKn5.֖X_z1sÙnO pN9ohs.Xs_m2 -u8˜# `\+_a͖`,eF#YFUK9#0 uj8\9-ʛ'aJ ّuH֏-3y3:3%Qu_J?QDEan`,w-cTI[rV1V`XaV`X2935FS֝la5&%--!! Oze~d38ҷO}V_:r(/0+n/pPl ڭDgg˜QUQz9, $A=C-Į"$Q+2M)C3`Q+"XE7vVlavI;̻fрK砈[P v%I8-9U/sۮUK#~$fNjXB2_<:k_"io83=#$~\괓QGeQ-~`f Ltys}d + {r`40*U͵jsN['Q{( 98<n rx0] +0 +0NUÐU)Yd|^[;#0?b:pc9aܗ_OvuksuS碬p2g%z)^>bTAo* 8ϘASJZz7-YgPy֜l ΡXE$z|\= D?c, *cmi/%Fm(jKAv+|mJ#9rβb]OF@f-݅"G(k{k_Ru$\{V烝]HSQZ[/J_IYv?V[/*!`md%7Ļo]5 Q+=Ss T{otQ !FFe(gBoNsGz~sgmy} <N&goa>w> +0 B 9s➎Bԥ-n65*[ȟ zm<#/Vup6X YƤi7~oZGkDlד׉Ee,+WZ/@Vq8ZWڕoG];W<zו֫d7G6ܢHS{h12fA-E6@P-㆕7eԱr#y03#~.QcٮXK.l/m;ғ:Z7T|s_elDjiuԘPV!?߾Q:"|ܰclvˇ@Ymuwg[֖-~8O"r0]| 3C_"ٰ =; +0glأ^0\[| syqjP6 p|"? jMUROuveuu*e{Do<5]m'ItlRYwݢS:[6Ҍ/kMwԸ`fA(508=|yl/Q[l|j2%ޠ1&Ԃ[mUx 0J;$(DHF@L%5 $Bo5,Es ^h}ߤhλ EFz.z*uP}#)exNNZ"T,+7_=c 9I}{eqpf*ޱ ]FmO_kdXaV`XaTKYyH+ /m/XVE{—]bik-;f09s֑.Vu(\0-BWo|z2ƕPX>C0=r15xӚ=;}vzw^#>_b›=g|wyޟvX="%X>OQ|jߜ.(wmV ~平U6 )e0u [HIz<5<>|d+ zx~V`XaV`XV+/jSh7WKݷSN6>/ScB%ȼT`Xvgcfͫm"ա>I ,9@W~=S3n2f~׾5 <:㶘(ւg.L/cг%{[q;Ŵ鞞\@i,;ض&'SvHWU ]'*\8k̪qY]k_}l3N Kj'ݮD/ w%?VzwЎ'I0s'\?<Q5[{ֲN{_=D6ߔR]c YF)ckzJf˕$92Dg½SU#?%&(h[uTe zy];5\4ɇV`XaV@%D(Ozr#kw}{+݁:Ge,9Y)cn=lzCMN,9k3\M 7ix(C~Sl- |gۀ+W=,əf"༶DoHH9r8}^2Nr  _+qhޚUo{O}''FxW`N kMؗvڱe\FEOi@IJcBY׾fzNZz~@% ["|GQwfEsL?>6K(k[ߜǜtpedWq8Sԍζd{Q`]5!kr(I蹣1=](_"](g!]́%&!1Wtzf'WΡℳV$ǣpJd/c 艷%E"}^j 3\&n/5Evv!򺦆xԥފ9A%iZϸFFhdeyWXuQVF(o725huZ~jV #d>L¼߾gV'M$߇V`XaVȳ(%V\pPvU鞬3\d5hNyֳ=ȗw:\0FT񨞑|51si@VC^lh&Ɠ5 KC)ޫ= L gauȞQjh$&[ON]Vyj_@9 0<D`b5wmEiFЧa\\\ci} NRa煐u ɳM<$Juڥ烀j&+MwyJ|&+JgjϦ*Ky_Xe/A^}X+eGepoQ?5Iv\6ZV}u06 vXF rKa5 +0 +/ ` mK2E4:9pPgɳVdq}:S3trN%O_W_rjXVGFyZ7S#iw{n)1&7+Qoͯdj]zgRq>u3NO.~g@*N6ѿ s%q"O Cggs8`?5 o߲G l͛9_]>@}B=rBYAb^]ja>8Ky_PӢ-S Cox ]XЂD戽>hL])}G羭_KjQDVp4;Maxz7*oTF9F1Jrvɬ˧d_KHR +0 +PTk3Kz_ɘs ^28?ӏykؾ9Xv\WϠ(s Rg|߮>l4 Q_rFEm'/S; ۢ?\$(5_$x׉ U+9@N\m}ɲ>P4^-)Y|'A&N #р8Q<ǔ)~.m ]W=Ur|Z SW\agwN/yֵW3_`G{$H}ڭy4R>6vXj0b!{T hN4C&甽6+94~jj2[p7sÛ S۫j &Z'Z;~\s/4qEfsk-Z] +0 +ٷ"]FE}K{@hk+!/K`f^82x!VJWN7!d6w"I'2RHΥԠ<>hJ{pPP<ڗS*”,z?xE?32z?grSGl^% c/Ozb-QCI;\[ \Ԡ9} |*gإvѪkGcy؅.s?%FVkJ>&2koA׿4<L wk:Nr$h=ѿQPn(iTH| rW\A:7}5_ +0 +@dCoX; %nwvHu c"θ8n8yLȓZނ[v`k>]5-Fg6 zYrߙIJhK$YAhH=*o(cD ?%? ۷c2_:۾ ZYݞ_dQ&RJ3+j#\f_GkB L] pUreլ}Oh)xexjJaS +l] LީSLI yu.#V,* VrN㬚ت$֚J&=aҦLȅ$eI!ӎ+3eRgeG-`XaV`Xa)*{TX,Oy'|7p:;XứscޮxGF'WE=T7ʐoӷ1%U]_: ke QҢW CXݝtO>{.eor4f\Uᶗ-z!ZzFU͓);ejwh?͓J,\$H5.0Z N^ħgu{nPȃ+{!r)0lJF^L ~Gy]?9bgs>;?9DY, .ҵ]γdE{?ܟ.Yk'?W挢HgX(x QF!KZ +0 +PΪb]= FNW_qqN1Zi]Q G~:v\/SL1Ny"e!rLKvH`vY?I`GT`?;2Jn揁2kg ]Y CHp_zz'';N#' .r87 u{\I/9%GLӀ/ %>S&,#jfmM;ϖ#3%#  P1;7Vo&kT실9(~< = Xc+>Tzed49RchVj/v살KHՈЮd;f gqd"7z< e=J.G&鯆V`XaVI/RyP9xſ,]|f*. r%~̵|ᵔ*5XvfR~4i~r^S?rm.ʋOiGX3r|W^Uv! '#r{V]x?ΚO?fr,m]dJg|Utjd35I^m=Kixڷo-NKyOQeh9w5;hX:*)=KWrOYbW%C;GϖlcPN77 4]WqeMEؠR{FBt#b%GO;qWSMńCj-ۦ"(:bNrݹks 3~%OѰ +0 ⹲CL81u>ƹ p޿= Y<,Y7:c]u#"\Z/GVO-W/SUJU).OZ>UP|"#QgoQ,#קɼ_$:^ρ\ؕ53,kœh {[{,>Iԝw~D==ӹ~o/P|_=.%v6);Dm BB{؂FSN\0cѲs߫S+\K); r}Ot*Y~`~<_i ( ^^QrUI+x<5N8$ȭFu*Pr)^hM QbES:N+0 + ibޮzӎ(W]uMNyT<PKjpFsz[4tK#XMƿA1/E?#rcΝ:os>l2-_{u#G?WϏ9et9S,+DN׬kn5U$=م/Be0z~ sh`愼\5p k _m|İ8:OeK\%w5c\m6W#:t>Y齁o`FoWzui/Q.ڶH2m"ktw#jRCݔj>uiȷ+>\w!ö~rbXaV`XaTlƔ1ރDQxρ570Z( >\yT&-kӕ"lyAæ{d {aI,H{(O>ͿhaU6 橺kh@PL#Tjqtk̔R9`;s1$ySÛ͛eXV`]b3:jXaV`XaxWdG[>]M\qw{9 cH|S@9_\e>úU$<5_n7zf(oN(XFޖL1$]"a9- +(G ״f +0 + *O H-7@v1ը;r|JQ1ArT<.lKc&5kC⚻Hh-[^.7Gi4#z7pɐc*ַaCdO^I>0{|ӄSYXɿ97q7<[kBW }^=óp+kf>M;=IrmmwT>, |7wx먅=ǿuGRAaƀ\?场OhZë@un e%dO{==ű3?*(M+5 i=,^ !k˒昈iYr0k|[ݯG;el  +0 |OoHO gәFWˌF #Y+tbgdnj*>M<}d(Az^s>MK! :bjaPu+ƣc̴ pFBo/"{wĹ26G>YJ+Qx)Ň`+HťwgFBJCcy #$S]uK#7z5w2xX%c[T93JUucɄ·:Z7|: ~7WaCܹ1^2orb{$nZEpa)[^ubIb?J#}NId"XK/2gN+2沋4 +0%CD(Dp/;2('5qQNS W%!hiY>%}=y I6J~S`ixs>5nFɀ|6{pMvn(^c div1jaIfg[1:`2Vz/RrrݮGsC̜@;Oܖޝ.]c!WV=x0˷0#C΍Ǭ%sJ@H[ODdJ ?pEﰀKf՝ DY-ya/*h(K:wVlki䇻9Gd=Iz^l~$[FO^R9>CnXaV`XaJПEZ5b&Nmf 5W>󫧁y"QϠ~ZYc4<8y!]ˀ 67~?FexӓFtI]F4{mL8oɹCf-E+2(q`Gef(l2JWy 3~4ʦزi5j/ x\h^uB, w{wU:hWώ[.Erv5iɟh$y}aRچv/) 2JozZǧ7M=#U始ӓdͫ/G4kGwQSO^V`XaV`K|]F'K'«`5kݕ3/A@or?5[Ov^X9ب!Ć3s}嗹<>iU8 K/5mן)煵=E;٢C{v&{Suty|rJeK i؛)~'}So6 yqey.[E{iB`p+q԰$0Z$ٖʕLSÛ͛Zױ&~ɸ:ִh#Kk=ٝ#H׵>Tk8yPaYʺljҳπ Wȼ+U2^E5LСgϕ(SXRǯ[.VJHbXaV`Xa|"dgH3|O0O4xmUOt aXW11jxX$K۵2v:(2|FC|ԛuQ 6-oO< M1b3.Qvn/!= [qת"uD_4J(- 3ͧ`Tpfk<3p>m~,{];E3颲r |EwF']/pZޛ8j&_??F {X5+L13 ĘXRe n >qD%;)ݢZsP[OW*TP+BwTօ%tc}hEFImw9<*R2~ӘzpyNC>h^'Rc? 3V1|.b?TEby$R1*_%υ7$KSK`N(Zfu֞,}Ӝ}Wog%MgǕH y[BBul2G >cc YXJKwv*~c`oG*WZJ]{zO(GlV?%^]L 9Ūrf֓H^]V<5$4XBċf{/6#{9&[[VPG"V<]T]yК5 ֝wa8kȗSCI~?;+0 +0@;#σ:1`q,9Hn`{s0guUga"K؁h QXsc3K7- O)ְY`cyRFtP>3Gƾ{ Ur/uo@Mxe=];繡=F+ZT@f!( hT_vRV8RYl1UDJD(=3~dXLVVL-zj+UՙvӼ֧?IZ#%ʬR%½n/aw*"WW6h%7[A RJL;!mUU +0 D>u$A*3E Q; .O~ɶMk]=PvT8Ӯ+{K^S;x(6>#uy<5u"5npbf$]]?,Ͽ lGxլ)kr6uYqOZA?<جvȳܰI?, EPLwe| jˮ59b,׳_YkV#a'#Z]¢W~,h }.I8N4p<_[cH'ɈcK6 N)O0eLxe^TWS@ϓdGvw{cMxYF. [`j80 +0Fȟ|2ݏr?`6I^c[ϐn+r.;giGY5Sآ6rwJm8wL]\E=\h/A)Shmz>g͜)򮌁 X2{RłS^c?!ST= Ƹ&2EqA@2= ǓdT]hg/;xEw.=O3XeN=-+yPV`XaV`X28^ OB.Wg'V1^xnқ>̯U*WJsZ/zN|q7+Thkt?uj ^go@ۗyN`˖uV:Koh-%*i3+i38: :cT{ެ!WfCRA'qLyr!)J֢ueNM קY>?uwDy'nCbO$@eHK׌Kd!B]UN1ɷϑj`vdo5 Bn}cy>PL ڷ, 1m=JDRUIcLʄaV`Xa&\[Du+mL-P؞ynMA+r_ [WFY9F:U!пg~8 (ID HQ~>UTtlhvkNb{.%Mo ' ]MK[ΌC/]le? %p4{'ʵYب$AaM3Rpf}C%T&bM?L_d!s&hZ~g,uAz/Sy$A2_(D[rg1OKV#z˩,)# ]!Lgq [ȨQ޽ON2sJ%@=m۱'ט<,ڽ`E<U1Ք:=YCv +`^;|Eًn[7՝csx g:U(eXO\sy{E^4kuoKbs@]?a~d\ᙽ3? <~v?4~sw}^:l}[&КGQ#lz;*/ߧWա9PUP6 ~Q?.Y0S,?y,p/Ɖ{Nj׸ƼxӔN}H>;O7@6Qk2NZTMrYZ)D3 9+!Bd:ִ>oQwGgf2w_+DSz}Yoߕ/{WӪSZ'þV #/:k,nyw |Y,_U' +0 +r%7'4K"˃/KKc.rq|P"S~|8/0zg\1-v]wW"-Ӻ~GԠuz?o̬9]&i]9*u5X>͔t%0 t(6%JKU}Ө!zY ٔ:UЕo7ۀ'lҷmi^y@Y:ϿJLx)^?}E@񕣣zͼ7 m3bn&K48HEkV?xCkW'[#3^΁_dURso<>V=VmPC :KW"*HzYgV2!jҿKtl2CXRևxrvV`XaV`X9J7ǜzx14J'-ʌHߜ'2vxs٭5],DXqN\e<:}Z7ehS%'ϰo|25>X}ǟ7 sf=wT'uWξޫ2f9 06K]]R_{sx?563wp4mf;LQd{s(@.u0[1ނr^r ϵjtlzƾ]ji#SCQ]u .YԇXwއ`?s`Y(nYŷuEef*ٽ>}ɹ*Xb#V6;n H&|J;br,'mXaV`XaJ.FOCUEF*Ґj O-# #Hߥ)>FLɪ@s.֎ӊ[ O5PGk2w9]ZB2t 9<U7 Ԩ{Y\kxn(҇dEz4wqEW.LE֟VEZ+у٭)qH^`M>5 Av[֬7إ ?[ia>c,ϱakۂ!+vrZ NGԗg3XK`uaV`XaS0Թ ⫂)#x1Z԰wrlJiK`\b28xxx, &ek9p*p4g':+~}^Eu+쬄+Ǫz_;N>5,{]o9 yޟh&Mzw`g'ȇuW'b_Ň,BoUf˘𳫀rz, w^eӰh$BqѪ%O!!HNOG*ٝ513aջGWR$9Tj$v2 ;vzGvB\Ƥ!zaV`Xa(kYEEZpsLwzx*Ն%^O>7Uz=[ZE<2IBQc,s[* 3Qi[FC4keR0S?N FB_|Q4) =%=C< EXj2ڲG>aWsSS@"2|=ףX;X8Hpe|NՅJϋ-+-TT0#id\/4=x AAMIv`湾/QJW3Tf3w`&zi˾WSo=l++w3c,ՎXO.9=E +0 +P<80gU2;P+Y[ <;;Y"GYOtF1a;mGA>YRF`}uU$WsܨKr{?C`H[T:vqJ_G*WKUArf|r =,^Evoߵy=^5 y*X"9]*o@; 挏V`XaV`XF ZN`uʊKGVcdmu$a1<:FS}xm[i A*Gwrzmfp=}9rn=nȒ ·UeiGzwW:Pc5_z+t>Nd?y( ؕlF1,i\4>灢o Ћ1TBj0e!iT́׿ ȟ=c.XPNCEHi'3%Kb*yǀ$OS9fH9n+׬ьKi2 L8CV8){ݚ+ R3+AB>i硟Dw1e貕9%cx QҳћO\h ^F5ݪ/Qִ+0 +0NR)tђ"-Hk4YsY=CH9/B 67 [Ve9;oR[,/MCjjXD+3˜ۥǏϼW'*-gx:xfS_ɢ]%R#d^~Lӈ}JyFuEh6KSYYO }嬭.y˷ .6 \ ɏof 7SW W%V55H ߕ795l^lf|n8y150jbZײַ'}CT*5S {j(7;=O+8¬BSݑQápG,yfyi&9}G%co8ze"%e j V`XaVO[HsDloA}wԥ<Ě+gOX9ӫnώQ\ grelE(+Er1,umPFt@ ,U5jmKBx`O%{HjfܙY{F!ɨdo媆d_E3'L'NLҀq.a1q[Bv~2Tɡv:2س6\CrT3ekb]~˰ +0 |.dQ\>v1+gA(<׳6YFgLˀKψ$[_gsCUF-a: @:+ ^ZJp݈\jd6bʰbG.7y*JfhG1SĈYT(V}s0 +0 +<~s ׋r()3Y"S˷DrR[4 [JQ;bH׼R=50TIѓlۤOs:0ksV·}U^#Ɏg8ՔSEǼ?S#Pjn7 ~ӓ7>|}Ѽdiz 5w,J}H?|>SnjȒ~< j~O$˕4m]SD/@0k꣬!wՌVO}Q-MĐݲ3*CQϯ*X;I ND~N}< <۵ gn_݂ PR_ +0 +P** j'TƐYw*Q9 ̪G2e?)%\}_Z8qtߧX@1$z*q8OS$r;70Eym'3oU6SJynM3.v٧Zԅhz#s;5# f^;sece*,d̗4QAPthay@^]t=|15զ%Wsp! />PsnPbnMmN֫kٷe׾NEӓK>Jϣn;GN.[u:Rwnnj_oAO[]?O {Uew=Y%ÈA-L d&V:`Yg2鍛h]0sz5rxu[ U^0oԎc=aV`Xa(;;# \z@=S<}C.: *kRu \2Ϋ6;3 wPP /iqYrQ#Zl@Ω+XCC 0?Q7^<v;Ti ^cAW|5oTk}%3=-2/|MsM +0 +N=B2z`x(wiNs!=)1վvcҲ{h)0H-fjy! (!Vu@}]ھbM[NTSajxw07l}jj :קv1cX2hBVQ`}Eo0Vr'Ϧ~Lwݾ劒cŦB^r8̚tN ŋvQ7yJk|jG,cbW9,{/\7 )w*(}2C[Dв hYUұdr<<Jyd e\(VhYR٢̰ +0 ب z躳=fZ>,,1o5_sOU$b(՚mxZs ~1a՗u6S@a~Y+Cj-LwdvWw_O )Lm^"ۉwW mO$?wŶӀc;,~@f?Г35yN IĞmַ|x}aމԕFvV ]G p}pԄ#W Zf[dۼ#E/\xQK3||iqdIU`d}Ϳ怸 x/ djNLR:ڃLݥ4⇋aV<ŚM?dX_eQ+,ܳ@ݢ< +09TeD9}\ii?|X)ZN78Q|*c#&ۀ:h}~Kyxd^7P G@AuIʮs /YsY ݳ;y)6ֈwY+囖F+#-nAi5F?uWo -!+' T : ,\gb{yXSRNpSo̚d=yUo2 c.:B.IVԇoH$ny4@?VU۱t#֩fDZ o!RYowB|&QFrY_>27֬)ro׊SuwM~PzHKN,l@7 vjxw$ +0 +py05ܟJM'5zC wjcz9b?7Sv`7Zb嘐vb 2xP#!f_3V>ML\Œ+QkHvJwGۧIY,My%5鹑>ϭbirfy=@䴹X4Pȓu^K#wMŬ=湡ɬnp2VvYkAj~~F xQUe!aa 5k' NvԬq?Ѷ^u7L}W?,{Bg?{'xǗS ̤W%:v&RzLwOHUV`XaVai~ȧvI/d!eOAjYzX:,ˏs8 [B.yRߜM#}dއHVAr,q7@Rq.;|}jWxˀe/L}\|m֐GCkQwXyggvQ*;q E0q¯ĥc%ӕ|*vC)u7@o༸!z kN}CƮR!9/dӇ_rw5 ]ĎTl(<=OTDXp%c΍/-:aHkL6Ίߴ/vWoM{|ёs28)-A+0 +0zi#}XwF>M@OA@ZJ#;s>G.7SW7bN݂TgX) ?)Tuq9P4f'jYdoU.bue+]w"ܽ ,igNMëoӀGJ˞GYgq_BOnGفl0ݣSwǖg4V4q9u%(bI+ ViE[FȄa(Ӻs-drre@=hv/5^U8v;!W۹aYWG$M]V`XaVڌ2o,g*UMɳsW _L _n<5\mJ$$eˀ1frNqM"~(f䍥5ir2F5w;`+cg=#y( ,yi6 'K?g\ hT<}/WR?v,SyMYOe%gUW5ѦfPd׸yK\ {Y|u&`Oo^$<7Ǜc<@}XB3aс+TozދDSi Ly's>ؽ\~DZչ:]T<WV7/#Cj=W`̈"9v\+%o63T[|r39YI@JY**ֲ2 +0 ++\-زVXAN1I#r=|Kcē@I`^~:-DEeG[Ĕ}~=5sOSC*N+[x0]H&;hRaDzGOU?si:L{kBzo\+KGA,Kz3renGk|&ǡto+LVӒ&-3o6^iՈ8y^;CJeN+fj_8HwaXaV`Xa\kutjF7T.#SR۞I`k|Lte͇ fydeJͳv^ɭ!ޯP.<Úy[E=PcCGoTƖRӘ lrFeZW.tu<睳QP=cGT@gߋyOaezrH9́JUT &XTJ-2idr7+ITD{̙l$twpHYUd^G@LrV`XaV`Xk׍0%Y)E{ŰߎR 7Xu]WYXsKpiſwV^E@~7l׻zsJO#$Ŏn K^ :'}jDFK+zi=FPoi˨c̞g&R (U7IpQ׼H< /X[YpgWꃖϽb$sE){y[\Z1CkƠLt$HN> RzuvrSۀ.z:Dz>Xw^v5e']8fJk %&9+S2V9_اsY`/-i8S At{(3wpABo(ZT>aV`Xa8h]x[+YϣjlܭkY? ΨRP0?Ob\@=s!smXzjwt :yiieܠe,}#3Х9Gsq(8CWCξG[3ɛ\S`We,|X^ԏE SǹcʎY* ж8NEsƭ5> k5Lu%R=sxJNUV&T. RDhfY]5bjezF"%(e)}kEwgIsԂpI@19F=<7־4\!0sXcC^ {_N hRRz6 +0 +0#=}͢R;ڼY*=VVowJWkwM{{Q^{P9ui^c3ѫ9*kLkUױ:_L:F$rOC:s5؝KEFv1lE')Ny={ (2ZՕd'pi: ~UdU7zrv֓ik{lJh&}M i|L3]ٌ 5FI(%x3Eϝb)zչM9^+kZfFT-$Ns]0d`j\N+>eS9 W8R/N n(ݏ牧=|u*ۺh/sDO!23SjL |u|:V˃#_`;:PC&{?)~-Av) W6_f]8G;,Se7 3.ix^`x)Iv80YKUćԹ!gseYH#S+r<5 nAQ֝!"͊b%:Xat{>5nT$EVyCbom{ΕBS>!SCJZ>Lt+vTu[Z¸1F+VY6_6,"ɏz)DcVjT3#5ÖDTYa1Нm,ũ}*G,;AXdT"W!%Z/ KJxV} ZN~5Ήy_)'(9!qwĤeh(> ;K[j>LjD-2[R2fx^8xs5G` jM{"ET!v9};O /0 /+k=1?Xat9LXǁq.Qh˃3bȥA(~V:{a.qeEXo.h]Ⱥ 3 5<.iltUũV2KuOȫtFH\5wBLHX&<7禡d&yzjC3jQZWwXbʉ-d2;#rQQ}KVS=)_9꤃M zχ/Ә*jǤ87t~3JiVIyWf^`x^ jbĖ։a@{ꉬTC=#ܓΛNNY%0gj4zR}{+1^,b7_S IP (nt m XteDTMSNzb沂)Z4~&9=JL~Ka}Ozb/9*;60v:cn3CO랚ӷ0^!*1#wTj>7)q75 /M5w+JIOiP?| U|vҟ(aDL >?8("#ڮ vljN Ȯ_^0%,_.ujIs3S=F{lH0θ6zA/0 /0RЗĕz>ksc+ny-hlFum`8<1{ap`D+5tWѹ_~ Wm8!) ݀8wcTSzF<7/6 kLilPϡ}Z-ReiG%H#C;~b#~]vR=TxU1¹pɏhz| ob7̆_yй!E\;듣' 㿚ubr?<302gBEiUoְ޳F; kD2ݿ4${3W)KKEnϚ~{7\YA0C*X5'x7 ?;w+iYE6c(^r%+W%gףP{ﰟnI= /0} z1\frZ(W_<1ӡa>vsÉ#ke)jԐ,j *e]S$Us1s gSCRl+Q:S6o8~{#2h+п P6Pz%*`1e'~vPuKz1d$<=5}JĹFs1'l (ee],<^/+h/%Kԩ!eG3Kcf҇# qHJմJa&+ю-=79 AO>j]c?"}4Nbkpǘ?|K/U{%p58g4:cx7d-WCGiǽɿ7^`x/+  60es'M^5b'`. >ꭦG?zVq `3b^(E゙dc0wwSUtvd`?>e5D+uɔ.l :/$g (tn;16>d9u.uy@GC+cV(;WlU‘$F/X:lȖw՜MXLC+T,m(qk,MnWiSuR^3m)~Ne%XdD(6#d{1RO|:hr>s=%VVOX`Z>34:OJɣjÚ;]?zjL6J o aa#vCsjVQ9KSn}^`x^`x3ݡ{ynTWx$"E`e¬hXvSf+ZL( :[A<7$ffE/J~#=@cS4Cٽ6]o[*v-gvy`gtx/S ,"`%R3v58ӪdZ`bRϊ}!Xw K_AAp|gĎAdiEG`NJ/Hu|KWȤ,26f#xdzGQc#Kw-sCngu#dKW1܋ WOo^%PUFMy*Bĺ{js^*1 /0<ǩ=FZFuVh-TPBuO[]b(@;CU <O Q;C/|Ũ5s\6<&OԸmڇ?Fd? {<(t'RI2E کIkPci CCW b%ӠX~{wcIOig=/ʍ7JZʌ%oz]KO玺Ƞoسݢ,An=YOSydSUW\:4MC交6P^2`q{QϺG' ))ïqǢQ':50+z!VVWky^`xHAk_Z;x;x(= <,^ GM3W=nyj+"ŌK,#ѨI٭*h4;h&SE[(\ -Qv x-KLx,,`92FK .r%kq-ֹ|IX Dڞ;-h_eW4Fdi: :U̓OQEk|PYLL*<i?+JWH,oMgHrnǟQd.Z҅8kO9oO_?_ ֠zkи5NI=i `x^`x7 Rs(b5ΞE(sEpnӂi.DR>C7hhjv_g4S.h`80jmK|˹[RoL:? _y imDj8!uЬ~aW. p{&#ɡ+8ԻY[Y~Vo.W`L8v1w / iU1r)eO[YXSrO,6=>wD`?"[;o:/c]+븒T9<U꟬5+0 I;ػƞ.`BJnU}kÛyj~ِl[z5 /0 /^EwJUgĭOXXi&0w?󴞴iž&{PTVfbĂcIDPpR0q%{֎EsFZ17%Y¤|iOj7c)}75Ԥ#`mdQF2oc+r77tkf{f,\,sO[xw/eŐR7OFp)Y0;C۫?HV? /0{t#}i[_Tzmϯ+SN+eitQ7ڭ[{Ļʥ3'F6Z/{;7$ݰr\h䥬X,VXbbѕ{jUu^n6sT/ ѿykWSwlO?xEAF`JUOީ֠hwv]+OW5'^`x^@OAcQUdGzZLtVOwAS/|jnd73fxF,U{7(W׎:{SN+x=a_Rcxvu>ctm.QD8Χ\RQo hqU]צ {Xyx^`xn7]{AgXAp&UCfRǟL|p`*d[r.pҠӡWȳNdTT8j"UndNȫF ]-x"NF-'/}/;Z2 FHT-kFlRjJ7qPuY^:G/Ù-pAd ݂Qbœ>m!`\4ˇC jīpoϛ6-T5ʪi?S+˰vi2)O$Vͧyu跾AU݊&v΅d `eƐ֑Q{`|o(*ʬ]\{KR5^^`x^@SC1 e!J,2 +)lG*U;\Z?f熫ϧ_oj|~Dkդ>䱳ZgzZ^l"':} /0 /0ͦ䉁H{(k⎼ _u{85اxéM@'nA]N/cbb޵N֌\PbW=4l>嗭!j6 =md f"/Ѓ{`zYxJC4g77 |+'Sߥx+Nzg8^;R!t=ϩrc]huLJ-g+O|W-s;쪭ze_?4>]H2Sb+s!H^ռ#Gj{2Hl_[oI̢rs8u%'!lXtA1ٛNsH0~5nO o0737KCZz^`x^`xݩ,[FUVKM69r#\ * N WΟ*F~9'{9^ x7^^=_W12|SQuyp _6 Wac+N#TzӑyX<s(=?rjcN2c4 NU_TNyp3Dm!T7ho3 B:ח>80^87>z@@5썶C`CMcҸzXfEM>Qsb T+~~2KbKɰuCd,\J\/W7݅vO΋+#67v!g(U|J"D0 ?Ԡxsb^`x^U~jމ'_uk'ܾtdݪG Q5b?h ZPM kA~GYv<'^EO]Vhq6R{5OEbԯk"^W)̚:}7[-H#Yk1MPU2TOI*NY{dNg)=0zO<0#P+i>`hוj`0 /0Jz10r&z gfTO3λb˙1:Z2ju8S^a{Sg ^O4D'v ;ޠpדenޝޥǤЗu"3chMNQM$KCaݰҴ1x熈83#!f8y!23uʵ4ȶXUgϜAÄFR3"Ώit@ H3Y˲[bG$r`\kVgݿ\_ILF;+!4O`iyɒQ-~moMuyS.[2+yRcr<!&FO]əC|/uԸ /0 /0ՐbG;qvZS] ?>5g-}j>xFR] 'k :uE:0D#P}-U8 _3Y(;d,AFhߌѷԡk9Ռpvbxtf5v{ņ$~mlvC¿G;VRƻLGG>?1}l9^%*тPY">GU{.QSu&U6ָƥ;/>.k~s7SC/ p8;C^=,R;vz'X i3 /0 /0@_M3:Ÿ-M=ʅ dG}Y-IW >RW{wnPS[QMh9{Mbag; /ͽx:zA5")ʪqgl\+Ð5:VWujfʚ+\O{[ޑ'r[Cf'h<z~q70)V4[)8uXve4k]|5|86(3A_񙴓1M5E$(=ߒ( (n3q+ 'x 'WΙ\sRV B{h;\Kh pĐVS"5Z~=-8n_dJ^`x^AecR彬7p.!>Aӹ 9uUI * ձasi*]GbF ;~[B@_b^җGUgvO$14bDǐ:z^gkԕ}ϮYʤe6PƼEyXȖ|<5F<%>Bo_Ѡ5֓|^SfWd ) ٟ|&%ر`Vt]#_=N@<=>^f=3$1o5Ko®_2Hiȝ-s_ iUZdެs2ayd_+YhcPu1j0~G /0 /"VedѨQ}q;~΄0\<7vghutsM9̫b팟9-ƕϻ!Oz)**p>Jzg^Iq^%[CAyJ~^Ԫf2=~d(3tsscb64uq|~ՕLZ8>_͑x=ZYN?jF&?}J-#M!`S&WqU C@Um|c(wD8?|jϑ'E ]bŴH>9g-df%jG>yhv!QGiЪ=0#3x /0 /2eN i_v_ W/ z?l(tiVo˯wp׵?98fF Cs),NqV5P|T2x53mCbKgp/HнЃP2iPug)ÿwQOc{rez`*e;O0e\c,N\jh_dY0k g1^UJa})y(~jwnA;)8kDfB\j dIﺰFs/c{㨚 l4]:K.ڸAF_ʩZ~ޠQԷEs2r 0Ɗ^eǖqmҘ`xjuVj JZ:aWPjYV]X s]"Ҥ; Tl%w-YYt=;xJFP/ŀ`l>cfZX' /0 p-GΡH1=q*fam.Keԛ^gvKgW%πR0J/ZnnPLj:Ū8zY%wR^\RոbӐEg Ec۸v|jHZ->ͷŨ/| VVV)H֘Kώ8+{%jŀ0zL SC_SKTNg4zǻԵ%_ؽ9X3X"‰`jM4PHka օ:`{"Nl] }LKX>/^-pbi_Y[]ޯvЖy,\0ǸIhyraտ-ghnPݖzZnX&3/^φw;^`xHspgCCtNV":j{уOQhxslϊ}85(N=BTe:o9bnӜ+`w=tSիaw4Ş5j՘SBwBJpd-3&kx:¿#%QOAI # ƑXy|{ @+ udĖh><nlD ǣ͏ 3Ϯm~cdjdQqIOm5YxE bD9o;dLfЅ,Iȧ\-vrPSm1'U_~1N /E^FkAmp ;CO]A:yRٗkBv>6nbףVl*W /0 yαɚw<rHoÓvS|nSyӺ(TO#Ƣq(U'';x]'־'w۩A1bUgL5Gyef~;5J$_FKU̺tfgL k6][8W֨XŪi.>ֳ94K'gFsű+1BzL&Fup>SGֆwN`nޑc&= &uP>\ړzΑ|jKmk$Vþ&^;U:rSo%^;ie`,MȻSC.bcfGK׵c\±+Д?v<7pG}q87h-ֽ֔l%f2> /0#Cg|>SGfrUXKm~n4(ު̛CtaSwuug-!b)YyV~EUG):̺UT"gb~_kq;Ŝ5?arJ?~aFDTsxᷯW*d(}b!M!(_]vO^zdEJFľ==NAGLYg'@h[,OqUfA"#̊=\MW΄`CF#ŌV(&ed=Wͫn4ϚY>.P i|'ૡǘ jjx=73Gp]kAL)Gax^`x-w65l qua:Dʮ_UWQsJ+ݥL?Ds9Ei#_3<sͷsC[>ys#7ucá QWf{Ɲa 4s+ZʈEWOM]W6o]ȣƍ(۪pȸW_Sǡݑ'1|o:)fe^r2QENa;y@(ҐjcM"BB;:eOn96]pַ"Oچ&Oc):$[A›`I#j`RWqH ;ikAJq?>4w2&(*^,)q:2H=j_2 9%Fd8 3V$c(}Q1sr )ⷤ>R#OYsCmllgzc,6!3 65|L~|j`F /0 /妁I,vM3YOWnAؒuY8U("wOvSs_UgV =ĭh+B?)8}{hF_^ U/oV% 뙆o߾o bi@(*7 -qtxGP?gQ'lp3WFǟrPߓ%!W}hFAUê¡Ov]A{f,k\s,E("As޿չak?7Dr5 / vؖHkXΪR?aK9xm>ZrUg5\9+3xA90aۋu+j5cg坒'E]&&s3Z^`x)U08u޾AJd;7ۂ#^žzޣ*2A:Jρ9ld!ok0;*(<ͫzRJ%Ǝ9̯+g4/uڏyR*_9Ro2˝,+*dO!(ozn$ު۩R <4O|EFbddŵzDjN. ʴ|TgSb ?o)=4G{>3~iAQx]UphH6diXNJ;AfBڗ"Gjeզ850U eo9f72BӳZxL\387LwP,8`0 /0V(*z% E7 gљ?3,)LJ屏9RNvT{.>! r&M|Y]/h97_N )oOghBjVp$NMsmsQ +p0Y?><7̿2CT˗+IFaΈTHkӜg%]Dًѻֱ5sm Q(ڽAJ1j|rco6 ⒯f w['sCxUXTI($嗊A#V1KD—|LQrˊ+?j\0=97pmfojo(S3jZ:"6 /0 /@~65¢|)3Nb&6)sTt]I15F@x67Nx?>x35YZ_a("PTWOYc҂Ӎ@B 7q_bY!am91/x݋r> gP蛧#yXkMz=hGifk!1~=䩃{h2Πs394|n`~/N ݦ!2iB= M'7;,'~RU15^-J\[c.NvԼjvPxA+vk>Ck8so 7wxS"ً֟}6|5իAdrῒޝnx^`xRZ<8V+٢Ks"MU6Ŵ3ʊ^auJ5Er&5ץ #y6.lI5pV9ذw>usiOѥ…m}9@_̙@Vp_ >B?\2Hw^5;j̣Cu[9sK 1g>W8A1_jnjzF0O}pC4nowsjX#qq* Z*+b Y#;:-ƜLHJ+Y >_"̌0\_06d KU^M dSWr34]j^`x^`x[x?3\|mφ[wk~ f~IJdC!f':DX0P e J>s?G])guNqkJ.޸_*-cuvn~j`k:#"xe^Ӻ+3FfR&VEQMᛩܐ$ g[\5A>.qxf+k=95ІP}Z]] _)c(|ͩA`D= 5V޸s`h"FW~.EحՒHۖ7 _IZ {oYGY-syP}@U!͓Wb% ԣ*f6)xL)ܒkz燏\܊-CL5@|krV5)1 idkF#JLjOSC\v|\tuwJ=N\@_7YQi'^mGHԪ#8SfCQsD|eWXb5F,n\/V9G_:1O/UFVː a I'GQOvp2ԺYY^`x^`xd|W%XM'MS"ͷynXbΧl>SbxL>(Y_kI|1X`E҄Y^ w萞򄣟dzMAA_<^`:o QRX-k9ò%ƹXrn}-9ywКSg4H %{c24Sëf@zݢ U᷇,N`9ĵg7YWPNqRy ZX2S,ָ*NxqH Vϸ-5$gQ6HqR8ū"A$*sn<;4W b /0 /bmj1QJzg{8rztjmSqpOY9UwsoQ| 1俒 ~КE. =3Dtv01!O; ?j,>2⯾_2c|&,v}i0Z"^e6\WZCb:OƬpJ"]q GU[V4T$MUYh鵊MDxkٮvx^`xR= LgTv}n(`^'mV%őWc1-V4 Rs9+v 1!EFVM{tCaGng K2ΆZ(QKh~xmQgtn{󊸰|䢰#4]s+K,\f-zj5ǎ!8k#nWdž  O7 [O_dϥ&PO2'Ckת(U&a{o3Xc'|$mRH?E6 K\"1Hl/_}zp3xG=ӫ:{dH]o8Ȍa>E'(qŭO_rsGd, /0 GVWY)d91Y5՞yk˹A'SYwiX􍊕H˗k0yfW"rj>b= [`%F]{Ys\"U, R\N2|G l%UpܐvcNs+e֭D ;WRxtgy -F5U"}NϏ?-u{|+:gޚƬa1\yk:bdӴwyGA8xcY֒x_O Q dR91CFD\'9^-6(7#fN*;|4xn8|}~/ߞˌe8xN]s<5$v]>y7O 0g`x^`xxc߽tlOBZVv _:~<5ȶ/#a;LR<͚ ΤZ{µx`, 1}StE33uC|H>XE$׫H׼+?KAIy%/ǩ<t/2} "_HGGPU|ZXenp{>=-/S$WUEt}]y U\3]ʶUa|KRԒ@f6.}"<]L1YEKsGK㏪I9U5v;^Azʼnkmjo GgLIbnnLi?KIWKV2>c> Tfl[MLexf'&׵478BCNng8+K*fS0nkקO>S;yh=;0D/QSCa^/ K-4MZz(;=^W"D]ߋ=4=YWё; ;`l><1ekAgAͳxYéAsKwR&~iL*{ /0 /:)3/t',.<P&s~?5(*+VIZwa!*B~"%M6ڙ|lm'e6bd@#vë:›(%nA#)VNND: UUǜPƽDmhA7)+9eRH*y4n2|Bj@͛;ydz+FܿK.i#fS&5*ND!Z݋J_āI1CW  e)_>㻌{$CYaG!z}Jɚed5aNO}awdђ>i5ʢxi 2@_C"J;9 /0l=J'Tg m"긭ST:VYcI(ngtL+6+e3~#epQɍtK̮`xoaߺ.fVzn;t I|s*4ycag7 /04?JUY Yw#ûc!U[q t9Y9Ԇ|Wfd,򲪈]oG0sQ5BT*sߪ$VC=5IzsCG޴^XFYٻs#|7Qqz skk,X5 sJtɏ]r^+oS>"ի&GoVl[>}:5H1_:sqn^lߑR4f8v' /K)vB^`xP>ssRm@v PWB^"KwEO3?Ӛ91ٓ=g|h_Q" af>G[A%}b|OgSա9q/TxZ`u׿b*ʗQj_EXs+dK\˓ՉO wDn^C {: CIƱ1nӼFDuft$rZdsrVź DݫT{0-ogCKo3觩y%GX_FoS~++6)T!p$ :P&^LYzFsCx`THw\ =O_ѽ ;K{U zԟ>"f} /0 <3=5A%rcDqs :-Ύׇ8!.EQէ]bmL+SѧXLϊKCgi-YxV~|y{m`%7J#:]gߣ6JBr5U *SZkS )0 ѓvGxjU5s\SQ9Y'uJ<6\Zwakl#Λ͛3eGj1 GI[A՜yΊ« #Lv'{z/WZy{祃dWo_LyȁE/X 鮵syF5E]-Ց4D'++'讂b/>>bx0A}ZEjsܷ|4H*Fwk [9Q^y#~/1D=Fڟ /0 /0@:Qz<²rf`-Du1J=SdlxrQoF/r/iO| :y7[ݝB\ntb Waq52[yTYGcJu]y-OHjxGKmW G #Ya-9VFz6p}ǻ&#j2 Qm;&w_ ]x]pN'ۏ5U(\QGk^ęUIus~v~_DT^.8 2]Řg9=2`UX+隁yy1f+Oz4@D? /0+<,v$z1Sm2 N@_6(`lU+97pIאfzk~!| AFSuu/ǣrt5#N}WMD%!'U:AkL p{<7tjV."T-291]>Lh74[%yU[%Շr'u1 /0mjUAKVcу3j_ܐc=zOg^eM '憃'S2ӂQq+Fg&jjK4ve* =Za5Klx4o'} ՛B3Ǹ_Kjrv/^KTQi΃a͇ :j ˆ+;CΏ)_QR%OeMrԝ*LOkz^hvܔr5kXE̽sV|WԨ>4[hWezY껋=}]Sn{i[>V /0 §Qhlk<3eDE:+:TpKm*cY:؛oO49=uc=1qG+?GI13\[ԭ'nA7?eTb3*Y) Ga3ƿǡOja:=N˷RYg/ͮ\r5?7\|azL_]^mW;zTsCV]C_W؇sg]ݦAQoihnueElfbl(097!F7WđJ/ jވFMmTVv~ʋ.53dG'Rݚgx^`x-> ZVA/y 3?E$aUiuQLi7/]tOQ݃,OΑh;uwkLy'O 8?BfҸ^@Ul'PQXBYU4Kq/ j&Zx=_U j3+<fWdD84D.bh,q[|aE"^/gГa;7r:5}ҘsCtoz*ֵW.橁=vuOӸ*[/|WLFqA7zn*o7 ւ-tJm'ϡ|jؗ{OSf{ݻu-nUy.vO2?AMn(Xu;={ig/0 /0@rRWOĆ>:(M)Om;xvS+kti?"_ #j,,Ivyұ"YrGg?qT ig\@)P:2 9ǕX9q !'s] +ԕROv o @ בX_BHc-}v|%;1][:ħL #|5Pٹae'=Z; 1+-nql[ĴӨgU< .sE#09U#VӾ};\1μ͢@Lqv#FӨ. %aWXeV'F%él {]vC=ɋ*2[~g8"+ Yۭ!Ɓy) F⊣F5kK\NLl||{£O/3j_j /0 /Pϧ+"bi!yY^.L'FΊ'Sg4J֬zIU]Q}בYԸg5!Uܑ2'Zqag-NZ K$/]PU".P^g{t% 4q)GIj u!J5qG[[%{s/ V\_,{%x2QhHCA&7_N w2fr3'+Tcji/!5*TWݙ#:q(* JG 3R^:Q8pm,I[u؊ynP?u>Jg9KyEi|5ՙ_++9?Wve /0 /0>pZI3Pci:KG x`z,+le'P>jkDִ(Yt[phPw? Q7+MhnJAgd'y~lQ_[Ξbx=y4ȗz2k|y,xnPSÿ"sBrMSJ| TJstɧmz>vFj*ָ*¤sH{Pl*9'BwVkbg69,kO |xn:6<>j?wsG$Ջ!/ S:us Mc⪰K\ynH=we}vi ID:uxjɉ5ꐱݐ#e /0 /0@א hGDUoꡥM^^KN^ j2;ʑU13,gY?)ħ!F螳¹gu |[kUy% [H>AJcKNXn{dy2zq ʧk3P3Wq=dV0rzACf;4w yyju(Q_in`E{,9݇.widOe0'=o 4tM/V(99?BsOwy1mWYMuyF<'$V?!Ε۩!yFd֝grYUgOޣr /0 /^ *S{w>TDŽtB<,I;WTKsܕT3^ Rn1;Z*;s5Io kzǫ?~d<;5$M|,\<#AsC2*.?5 w%LJ9#@!EĘWO5kc\ʲJjzv&5ju'ig}|f?GͨG|.=; ];~DΖdp6Fv1lZ;Λ}{JYya+B+0 ?ew$S,͓ Za'yﲥ΁N㕮=)jדݫ9 T;p*`pȿ^`x^`xz7󊟗x ᨲ?{97pĩߘXQPF-k | SKp=oQOrbxN rV(ΤɛG,s5yj(&H%8&}>|U/tOP$V >;zd^(s]Y3tUVLjJԻ:2M6P臫~s>}ߥ́S+i5Y{ʓ 8QN׽'iNjŗ֊~oþOb"ך;cYXы>NE<=|ww.K-CU#vCE8ZW|Y/0 / 06=[_v ǬQ[9#'~F"Jx23j)DU2ׄf8mD?HzMM*y%[4P+8Ŗ}axƠA]<>|i.bEW0pbMFk@빻2i<#b!sldkWW8hk<|ap,*뼒_+/uf n􇊫ʆ +ϩcV$cc~&}6oeCĎJ;\_V˔ )'~riOan892pf+ y]#{3 _'S s١ACb=п&yѲk+Dm,;\q< /0\_I "E|UajGUjU/LNtaɽ(50*~DX4ǘI'򘢟7^:p%.dC5q׎zħ K вQz {`(y{_ɲ+7@I"APJA2$ *RJi)d&I I`:0JbLT25d2.PC41g\0jiַ߳Nߪu";mg9;*g}==]ۂGZ̤kH"bV9}y&>J ՅG-Ov٢N{Jl :LqCbƜSx#gmDq&,V;\_q-:̪ZPn[XBu2dҸ#呦 ׼GC &?SC7``]KRZ;4V: t,Y8L U6VMTEX8>Ujk >S5uȷJ/+:[(HsI++5`Uے9QpᏛPWn%Oʆa%քO+ ڡTEU{[槆ՉN燭:m)-3Tr|ctA /|oU#9+NEI?C;jcC WE"㠻|ՆiMhX8^uc"V]'wmDFÈ>OW[x&eJS+w3c^SKN*RQVkjg8=Fl =1Ċnhkue2UR2eٓ[KWMo+d566&՝-Tzt^`4VsەA?5Շd΢qr`|͗\?|(ч5G|͹˜9kM)q;`CwFx 1OdI\+z[mAg/סޗmKvr$k̊1%"23: t,Y`1 5Sus9uG%+L-bWPFsX 7 Zv$¿KB=1cφ΃_ʹi>·GWFܬFAx ]3=U}GAQQ-֧~t% w?z;R.= 7n+SՒ{-fHz"]z9w QT Y,\U( xbLd^mTסr(Y%⨋6[w_Y@g: F/}$ fQcUV|K~9,^sՓzfD47+*]$m~!he^<^ zŭ;=FȾR?Iqh\}%)n 6<_?3T0# uZ? IT8fcmmv6XílqDTnQl$G_yW 1~%LjGr3UlzrS[e _zSq9B@ʪiW_O_>k"93s9 Ob9Nmu1WRMT5Zc)wY@g: V/}3B}ɢ_t>^]fkH^'忣KIKrM!Z@azSnkP^JpL3^-O TQO0l5BV=Lʼn!T;vgn6_ռU H=3ޘ|aSmHu:TW^|eH{߬ϔ-O Tx };kG)~[ܺ)kө"=j}$:T>to< #}p@ՋռgsCUEkga: t,Y61 @WÈP\ KV=/z-z^leUiAImDqS5,[gxY!72#T1> |]gt ;>b&,\wg]_S= }ب_Hmusi/7w m:6b'R}9EeZu^:hʜQ#@g: t_Y5<2`sL,PO<]r=~!/| I O O9Љc!?;L+k}+lחX{:TOq9 >GEU^x&=mB,5.RuxuOz?>ds"Ku6HS z. ao 筍֯|F wSF<ҎV6?:7GBI6pќ34 E @1U+Aeh}ZdyT4(}熴#;hR:ȡ5aZ+x梆MhPkDSgjVJj[iwa'"dzBcWp0\X5{Cg: t,C[ⷻ&(,SWHpynBֵa!bMx;C~nzfgEZ[ -bl\ץ$OE'ÈX<1֩NA!aU3Ugeo6]quҎE;OxftZ@γaDVKehB^ WcPg: td9ϊvT3nHMZN`ݙ k˚I-:`߅.9)߭D,Oq-_ň*³Zk?/%{F#JF2Csp<׮:[Cg: t,P ?w4z4aͼ2ݵF\R5h)6))RǽcDm`=(XG,mxPkSrRbNM* ⯔uVI #R</X޺\3ȂRT-5WbG~ᙁ+.3+uj)ap5h+>TuH9dVΣCv%R=Ƣ(hHU&13۰,^d4v{ձtmH?歇v{v\//yΧm1J)ý+i~iDij$QӃsYDGPfpD5NHɰ _LOYv): t,Y>Ku=dn ?GX9eKyS1l!Y`dk~f.md]9e$E%لgܩJ34}&#q9붥;Rxj8aPW=8?Szm3ĪJrX:l3X6YD2nYf)z0ԛp>y/cL);NM6s>UF(;0EA#.~lT ?4μXy|,_ #U[/x8sss/%=En( ;ֽnYEq[3~F#u,Y@g, 2#~ldpjN^# iܻ]~FRΟTMQTW힧଒P jILj4笴0Uzn [T<1㝁P|Gܤ%I8HW8xj61XU屻!#cgf6WJ g``4jD'8(TVzOz>@,Y@g,MU3{0o]tmVar÷%+G5Fu93 J[DN҈fZx'g]r^QWJ(/) źONd)8Pձ34~nH#+x]d36z Dó+ڠykk\H+*+[Y`rzZގƤD3vQH q .p2)0}{0Y&+ On{՗g}6nƆbAK8cVF(@df)PYzjRQF8jFaT}ZHzÒzz80Ȇ^\Y_9b:: t,Y@go|wp߆8#{'\u-<;:zMX;O5|ʫB{E!/ [Dբ;=KH%摥=3y[1ԚE'JkW~\w!;-Tʮ a1\ܶ6BqwՂ寝Cro>3T0-R\UA u6h8|vMUUP[ ) ~RD." (iFyՅvpVTѶF}ηʖrXӋ_WbQa"!Ĕ27>g i ^E1mV`Ƭ3*RԱI31RY׽$qPpe@g: =@V<[C+<)-eJ?I|FW Om;h񜇏 gRHy?3S0H+]&9ªC/JV?vYcRSLJV¯KN&F͡Ēn}n+.v)[b(,HhRr[$K(:޴J.7pZ~1ʴJ<[˰~ͺR-E?/s4&Q~[jhzꍇ~!#kSS]lx~@g: tX.j ҏO2vě}L:OEo+\ǿ5]<}_L9ôc$Ia뷰Qa}ՄmD|fش8G#|eշE+UU4*›f*xrZV#?1By#gAуf=g3SAa ǯkƌRrh_qYn00b?t;#t!yEX1.+,0XI F5<+}IgsGhjvDvsE,?]7bظ#O+Y>ŝHّ%.[6 -5ɤu,Y@gg`걺Ah?5Ċ[Q}42tHl[TK&̨Y do2l0LQ^;CVcDsoD f)A:놩K);yUW !f,|龰ٓ:2s}jB}bϑ@u˝AC3|#ÍIjgx5wێi=*Qq1wO/>Ul6ʞ򡸃 )Ѷdv".vJ^oѨ<:oG;CqOW>'r)Pe9t,Y8 Pg O^C,z燿jfd]@Ӵ,9>y W81^ ߖ?3U#R d!gq}_s7EU e^b&oGDNw[C(@1*AHyv5rw+eb4Ġ,1WcU!4.Ǜsݯ ѩzCFhnmGF70=3\o ̊#5DU^HU<; /O+w\;ZNoSd{*TS Ï#cMaG kL:}*ܽDE>ܘ" u: <'v,Y6 9={D%\?fow|0D] }@%'tے TsX%&9qN+S9#w("/f-!g֋frRtUEWQ4zHYD^z o)-G3d5Bcdf9ƒ٬9 P?ouoy;C=՝p㹺j#A%4k6Ӯ^A3xwdjĻnW_=1(k,WZ#ֹ5!T4WH @3I5ܶ7EEYDPiˎ%BZe?3X}jy\$Zҝ: t,wIjǿ7$ O:%m(B1#NGh5>'O!i>F\9쭬,#⽊ _ 0vCĠlX9tҴ8F:RITe>;*TFG$!<_xaw?jaճ7ɵbIKg8mÈd@SSz8.?}qs LWخ}Dڋfx:N 7*gÈӭ_haG]ʢ`O݈] ׅyt,Y Ԉ[߈;Ekh.n =>g/N1DhI͍Xь6d.R>Q9YQJ}NJJ$K51 B*]Jw*k3/`zWeN5K鿃ԯOXs5ëP=◷G x?'bP}[IE_:Y˵Acv7[vWj5a !g`80\iҗޜ #ڴ%k-KsZӘٕ4EF tN;朵uʼnZ;WZHJ*!\lgd; t,Yo^ u°wVŚU3Dm}=K/ ~\"ܜksO\5F'OAvUYs3uiSՅ+Jn"ӻh̄r[]_UQ"'Dqf[itiW"?" w۬2Nu$Z*W__=7 # ƯO  Q%Cv[` ;Du苧UB~sCtzl?H; FZҐu̮)Xٮ'_%Rg(UeM:k_Rq-_vjdYӝҼstxȣ@gYwd&c鹼]+O ]{zĚ?HsCy^GyTKzoc(P~:,=xBǪ EɅ,Hcyd4)Ǝ6DtդlU`OW#Zi?Y)"Uӊ.O`,;&?w\7塵lSį0}Ի0 ܞ/7]MWߥQkD2G :}2ne[5L=Dr3ٱ9% `w(&eUrTaBuws%ce4owydPuX^: t,Yoҙqzj815u:N ]WXó_Gs֐>iN/;\7C93>kN[ |i %{+D-ʱxnϘpy`mj5+,j?fZBU+k/;?+jjq^g|FbWGj ̷_ ~v,/8Zf#^haShb#*.H>Pl|ԮYA 1WN_}D@Ҭ9k/YirJnAvxȣ@gY9 TYU,=/?1gSy"P:d>2va|;SY:i(]4}rD wyQ{/9Xx5:0yT' #.FDXN;=֞9=dwbM33O[QBWn<}O?3S4c3tGL:u^MM1?UK"e ڮFܬ GF?YUҷP~boQ$(t!l2<ӛ1V:UۛuK;ps+&kRf/Y,Y@g*y5N&EC ?Ь8vc${)ZϽ.}O_O"b.~ D2]CDT:DрA~.]ԉphrga&2T1gQ-U=s!VbJVWAҗR9.ő3xj^6b7xdai-'jTCJU&nz7ͫ#Qs)dEwUVZ)C9'OE9ڈk_z9/ aDM uf#EY-0v>ZKT)¤ɋ,cxt,YZ4shgF~_cIX+BxVWwV=2`3AV1Ly.~"vXARX?s"JmMnH2naOc Y"U-u$yOC);x;I/!iO7G$N;5(Wpb@>4[ϑ1OY 3[&DC=Z en -՞Ȥ镊gd?@M޴º|&69|A >JFRiF1z0RZei91J` Y,Y@gT#wbN*;C՞x|2y&}?rXZg!NBX687edûk!ޘOJYfME\kUR+ڝKHsT1v)gֻ2=3]`=j ]ko^ȎMU69ys#"pgNQs=NbYq7;CʷeS 6]fj-:ȡԿIv0)׼wt@4vƌoQjw1<: t,YfrJu7jyįSCН"<Ʌm>{x31}ʈ׳J.TkjTڼ=2jg,Rzi3 N:;_ gX+Òu!Rl{1Ե_cyJO*ca?Ý`bM%۶z2; ?V#Ȋv)na#J&"s5"S$C2-EUbGi&jO ";W6gTym _oV#^ņzS/riK5/%O:^#KY,Y@gRUTBe$-ќ;zGx֤H [5w 0"jؖ<&*Ar`=cqNi k/֣S_hnЅ. DH>1L`H\W \ !>昪=0w)7/ * Fۮ>WD2Ǻ@ΙçÈ-W_U)ZN:U#?jĤw y`=MI9,pD?!{fЩI6NY@g?, D=+E̡%.t9h=~?i42ų.k2pNRcP7@XnTk㨐\4֋Ŕ h̵LAj ) d\gjd)8(ugÈ5za^6'e^`nQu2\?2>h#OW1:Ԝ v uw?1hF%1RAAӰId>Ui+Z5s5Lb gN}A!VbW[)DEMBq~2wæ>; : t,ò2;Ptg#Y@p? /-\l j!,ysVkx3+ӟ*J*ƿ"L_t[C$!7 >GU]qb?;r|. 6(5sV4 `C mi-tgeQSGO5^Ta;ZNf/w oN voN?7i`]:?1^6ƐOħ {DEZՑ\ 1ˌddRWg㺩v~0sW MORU~ţ7 LJ??†w1<: t,Yf75ts(#~ w)?)qUPj"t ~{dP)›H^=5Q4VEJ3C9[Tv\_,W, 9a=J߽wTNxyRno]Yo>AdFXx i tFƾKk߫9@驯'`rJ+3Vm>+m>̹}Q7`6%Kb蘩>F)[ڑ\q fݛÈ^n6ՈPr{W6=j=XF:1,wƑ6*BWIˉ8 V͂T/[q0B̨X>~~Az-m~V"$fG\kAcESy`êT>D䎕Hƹ>"~'n^BrJ!YwxfEx 2$F*aDk(ҾPﮌ[NGX<*T55UĦ]ؐW^W;OMZ gQ]h۴iE7Ʈ ]3\ZjPNW߫ew,Y@g fysx>)ީ#Mpm!,:rxJԡx68buf&g%<)3YdmP?CҨy=TSFl;һ: t,Y@g)2 ɪ~ QO wS3͠ڹwjVo 8fGE}͉s9=3ͷx7/q) m3wZXFiƹtvSpvЈ8/h,?4i)?GKOڈ͘WŕεY-U=sG O|Wɚ_8۞A/Ȑfuh#D2+Wz2>V{`Æ6u1fm@f2ɯߪ%v@ihyՔ,7zl.JK5GzIfDnQu"=K}(KkS?T$1>FL~Fêm JSq6&B4~On~3/sA)RuA xl=`av>NYKVοQxدZA^'l~n8^ w毞9<7:'idާ}^1zHR2J;+9XʉI^ERէa3NU&~ud)]6sz8kP8ҥiEukv׎/ : t,YTԯI3l a0/^x<LDMrGTdE3].4ct<1 s#:/n smax0t=˒,=||F2;9F'ÈCZJcTKvuf rc(?JS 8{[5]Nۈ8oœ}^gLw#T5Bt|ÕX֎fYlQ+ȱ"Qܛvg;z뻜IɪZQ=hBe5`v jNJ;b5۝O{eE%Yoi7+vQGlr:fAn-ܨſ7eΡYÙa ٔ5Z|qX{ UF>IArF0c [tQ;ͮЖbA0eέrY}0fuջ o6: t,YOJ)ݝ?NY,M#g4]N:aS|;`[CΏl,Qީ!>agn:yI t.& j=n#FRu>LcdVl,"Yohr;<8ի!s=9G]x|aѯ'^J3ŻX`U ;{'_玨~fZX\TT{k~F5CZHR7}̙whȒVw>T-z:Xhw; jʘm%<FJӆUv >hGT!2+?3U~_vXEK}V- Rl֠ϼ: t,Y@gF}96xV#ܡU+; Ǖ?5$W_ݓՈКH|bYޗ 2=#bT#|2H#3Um Q6݋ ;&bߣTN]i.LIP`&2^=<b scd)سR95LwVtE&z5 ׷Èk8_T-TBJ&f@&ceZ,|%=Y,s8MF%WqJTDeO_=z0}Q/*#l#Ҍ!wS%kOƤ0B sW;g2u0^#NJG@g: tH~."1>GÈZ*y7/l^u}36CkC<&O # R?El ʳ0 s8HS3ty}8ǂvօr=:Tx kVJUoY5,W! |Ȱ>mdF*5Iͱ/&?YuЯ^NOPޓYլs!f#=&P- C2bאRe:} Ԙ4Y "F,Cap"鷔9w=j9:fvq,Sx]AR>r١*Z^󪢩yufˆ{"]IuWԨ~{g: t,l ԭ#t@m+vuf8A3f(9ZK[tT}XGS59ħg.vdF{"E9|LJ"oe2U O ̞d+꺆 @Ok O+?8i+5xa-sZ{i& (ٓ>'yրQc&eEE'ݠ5(rmJ̤~XH T^ſXgcшFD8$VX`ãZ"O3ٟ<0U7~qQwAZ6' qAI ;x`kԐy6`/+Qۘ9!$S: t,Y ~G1&-@ FTQs'}k'˯kk#b2N7I?]#S*z.#޴6B*oh'蹗\ܑ]|=.6]/`<{wF qUdAh؍ ٴjh%"մl˾;~3W;o[Ԏ >'<KL3M׉KƦ&e쐲Jc!$S,G񚯔0sBO{0()*PB g--y)Z wgP<-DLJmy@QrBvY@g: ʡa;f[ilg]+Usз8O ׏ z/%xph84[N]Ǖ>"jXn S+<(o q ou# ]KAYYP0bbz$*(Ef9R~|WY)veʒTIɝ\9͉!4Rֳ>xf"{PG@IŃh@~Bzj7׬wi'Tj2~#%&'U []U3wo_\Aʶ#S`ķh{ԭ}̛yD%4a1zR1Y@g: ~F9@K}aJf81rQ|N:y}Q}bL0чn+:,'E Cttl<V D,"uQu}ȷ &/!?];D5sfI}]i]ו59wjZ7=Z}߬_Y`G_N xf"4&زGX dɪ_ *9IPiYai`,nUEւfF/U”h,~_`$5M+>wGٲdQԛؓt"bz{6ZYc6/Y@gNY@^N 0 -R'4Uc'N5_fZt/u_JnZYDLa|T=*Y .^:\A~-W?1i R"4RE-5AwGZ8k'w"}>7 k甸MvcL^~M1If$?pR+4CXGUKEk9*Yq=;Z<{}Q-rd( ֝ 3>UXYM [v#83nۈ>_u]ڸNg: t,PBi}S0z?N>1jm5t{ V\S?D_䑜1Kq:1pܿ=:8+3q FǞPSۗYEӐTX>WU[JVGm̻'/!MpƖԝ3>'ie1 7̠7v,Y@gqѵ>VכqѭX#7߽χ6"39|ʣfxK_Trk~ 7S WPhٷcCb>sRT'#zD"ӍUx.y~fh>\ oAc ]oW#m i&p#0Fs;Or uaix>d"&s}slvTZeI\6uPq^Bվq`A,Gŭ+7".XNF3X)V׽AI%FeT=5_k|`MU=3"jv.T: t,Y*p<7=,k>)b@ͥrڊ)F_l#5jI %/!=&gD| )k(lw/dU]ޑ T0JEd>18fM]ԝ\h~S >2HesZH]CC7դz}h#}ꋪ;}5ZqlU$:"q)oa'UV%b nP׆ʆU9KYۭfRՉ_|eĭ:]_sӗ 0`턾M;Pk/hԽcJ4Ca:2Ic Sd:B87d; t,Y@gxQ%,W#hX) ^6}ՕX /zB]IX)RuWyXQ\ iӓGfD]BFuδs a>? *g3gیf.7,짶~UZ: t,Y \hĒP U_<_75ӑzU@$jDkpfK˰C,F 7b& ksSq|VC\}f2lambQUgvL , GdJ!3>fAgʃ}e^mEuTNſ¬Nˆ)?g74`#S-e`՗-$gS 9Yiji4`Ȓ1ԙKEtw<&՚Ttȴ{j06JUo# =叚4m_)R{'EotW/$C%D! ߺ: t,Y$ xCvQ+5SvdtY h?FLgWtqujD+$Rxb}  J}PxȤOZu1f2qԠF5kf8n'=uJk?UZИ06KyLOͮG 2ZdRv W)=(Z- {v! X9KV8SJqELթðv%$Q{9d|Ivנ(A, eXwaDB3WAEނ"Hj_*"iGQg: t,`FznJ~<3)G϶)"/_0K=yoyus8%Jצq6Yppf̹iލ1l[W4K}U@'k:91W'q8ݴ3Պ.5'd7i G/g.x1 :i&jtҴcέf^QhU*PQݻU )=W^]%iKvm`0گ o wIsc5rc8gV.>kVz]+Z5RmF4竪{6<0t,Y@gEQq7&,օϒ%3MW \e/gP];Μސd[!QQg`wOBd ʦK``̤je|X2S$ݙ"VUlԓJQ E%ʹbyYnpy U)DREv`w_BNĚRd>\^~]xRlQJ^"oM7G&TdX`XuNv>^눥T͑AuQdTe%V'wG.k1Ա c^A6%lpx5@g: t1O+qUM';@́!y˙+. bЩx덬&{ 0tD\gRqAPQE*U_0Op"N ITc򘜞Ϯ3)>7gɇf9tU)WXƾ9Skx=%>!aR~V=>MhFwB_㌔&s&moʡ>Ѥ,LeGguW<.Dz8]ǪV湪Qh=Z/6mvpN7aCR_ڨ߬F8N\|h8~4̤ sק9_X6,Y@g,2u_:jB>F_{tzfP gZ|ӉϝHfb~`V"U3ש$E8iĊ!Oe %k&֩yy*s+y \)<.>M1kt\auEMJ; ;XzTfg :ΓA܋,$ђE+*oaZBL?GRZyk#"pBUsߨWA_;+VV+ՠ<4zKJҩiїv8: t,YQm5c%a9xy3wXiѤ+ ;#Lԣ#QL.jYs.T)춟T-/oq$`O},NAI%oAHcTGmu4s~ULgukkT!E_ʗRFƒ Qyw\frBur=3짊 Ƶ|ԿTkVi;.z6F;N'ճ=11WYcw!T Et 5]T O)3(.׆7[Bq;E#4CÓ/Ӆ"=XP{~|kޞVn#E#^F#: t,Y@gʰvѳ2 #bmk} p'R5}{Ng{:FZ}pj붵ɆTOFWq2TlRAձkZ?b7B_ @"Owuҋ 傶ȺB5/qY{4/)U/ř.4Rϋ#C+lV7)2Dp|jͿn w:};*fH=THꓪykګW19Oov;mDg: t,@%~ޗ=yө,PrJ@b}rWgX}B}"$Ԁ 'L+'Zvm1'nX:H6,%UVjRZk5kZUsՈ)nLS'ShժW.KVzE9&UC+6v>ͽ٬ZYZ+?0E#lt{^<+f`YZwPmǘubߕ3U/fNt~>^U;OL 51G9`YEisj4&WXtmSY".~ZHYqC)f5C>,/K+MUaFdNm [QMb"0} 97q?,{*غw1nÈßFekzw\nW.W|Y@g: $?šոP8C_J1J7b;?7=zbx6PfFԎ'Z)>0y<4s]>4t'fNE81Ug䴊k =ez[JUHXe:y* /,zإ Zw%s83Tۘ:3.>Z%ۿ%FɤkC08#--Ǐ+5. -S[RǨ>G+QM;*>ɵZ):&i,C"۫FNW;׍ n \t0WaıiZGwde#ƉG=FDmXm5>+ >RhĮ>3T]KcY@g: TV7JO3[M͢ tRӜ.x FݯrgU,emny? ne2=Rtr~O* LSϋ<;Z Pa ;GsxŪQZ-! ?t!woKTt`ui*ġ_O<ʮ94k^l=4 pudʶk+?x%jі,Ïlv5i叅BXJi/_xY@g: 3>"'YWh ㌶EI4~QISٚ6BpؠU~Y6!:' ,0}||XdI3JSs|d{wK+?2΁h@^tLfIn8?=E_D#$Bzl[XED,Ⱥjl+WG^{VN܄fyn ?R<η;G=21EM_}AQE~Ie(r䎔K%T)>Ͻg>|IIGz7HѹY*unsǍ~xw#!TX5=׋#CP&; t,Y@gzs1ƊRbY9A4yr;7D?ϡo FT3j8:c[æK%5V0 T#y%^-,SjAB"kO9tK!;|>|4`%D '#1WQc5~sg-dtq=2e=2;3fX@=Vԙl W(O[=!j*R{1ut=ʹZuT[7/{Iaiw5E1)Y7V]fO>hޡfTMEaQ4sfg: t,w걃1;_IFos=8zѲ ɬSÈ^ NɧGӜ_N^3vͦarINHY{v[ a^.4OjrUT3dW=`\)bJi8k.{EBj23xh͉!KZA/+BɺyuhBqҋvOb1w*uG 6B9~bjkXm\ISWAO1c}% yXgY@lʔ[tc=FkH-N0ՑjD g3'}Z;1p$f5ɧ?ךX?]3: t,Y@g2ħO:t5C8]DeUgGĈ ˯)G;U> vxC\*dXk![͇5[JJZ+'鬍}X>s4oadaj`AL(}uR_kQ@Ȫ#g-?yr4#,ɂ9LPwƠ L7-b/}馍SA^o]7SOqՂx3[bѓ'Ab %뇻69t K{kP-׿Xҗ)b!TqlC?5oU,Y@gR(. XHJ⾣76RF֘|mEhV$'}װ^tɸD|lHQZ5 ãz 'Q_Lr͛?9N窃sǻD(ȝRT.S5j|zr( U^ڈF]}dž}ĩ{Ctba-sr:RxQE#LB/#B)پhU@TVϽ: t,Y %XYBs *xҫOW#Xk6m׵?#;k[wVĸ_FռRu4&3b絯u R<" 4׋h~c0T 7Yf7Č̙NENCxo/:wi0. O1na)E4ԩ~ ԆP G:+5J͊V(:Ű#$ÆK'؀]-Xx֪**K̈9sgr'I -ekl壿 W⓽Fo S!`亨bV: t,Y $O7xR҉G&/7x|e#Tx˅G3z#8h<{G,dcUjBu}"!KE}Q,ӓVޞPm>F00Xp /$J^o%g ZץiA/>aIF@͠Z[#}yb߯n 2{5TmjuYз[L+O;dpQzFRw! =jW\ UR56DFLuA+vF:6Eyv#qҟ;oH>*x{d*`3!bU_j; t,Y@g\ewܣTgvFj֝u}܇pOI%A^sn&^"?fif, X[jهQ̥]>RGaR8@gkXJǸb;yr.` ٬KǙJ'dt%_FDF(2ԦUf:^iuk0jDkpRG͛6JU,R3=̕[1qRnG噡^:sݱpN@[ e|*Cxۆ7`/ש֚f\Y@g: $NXaU|]+ f ,n \#Q၏a|=W-ڇ|7nJPp\o* Ո+ZG Ÿ%* {x6̰PKy6#vGUL`rFDwL" { }ƽ헆6hgpcbqzҘ̊ǘ-\ь<. # NpE 9 UY>ƺjr]hRN XIrvzkXzS'SWw5_lڅuu{LN##`i : t,Y@gRt_cOv:eDHץs_7a?=k_A}4.!:nHz(U(K3;qkޱhB8I?!0;䴊|/Fo'Z^7hafߧkq StxOĘO|{m1jҎBaǒo7x \C`ZD89*V2 5|[?1$E 3!xz3h>w'x/ F:߿0d]Ϋ.FtGKb⾧YTX0>mR%.m-,aĴ7:LZ#;tévƴ;?qA1Vڇ յkhQ: t,Y u^ wp6B1}(TYZy jD#8g]9,6j)_8Q~i>+{=EAlز-uuFLOGfEIV+QLUsY}T?Qk%4yJla`K {Nᯛ|r]+YKze*;#Tj]]"q{, /0mvˬ:[dcVp__YѤHS=FnI,+.xտtױ#-汣Sd"y9G; b0lg̰@5upڈiG~0V#R?b^ڑŏg]ī#Ce͒a5=N : t,Y@#䡓lj4kh>X_Ofi(ͺe+r%)*+ y푕RezW3;ziu&HENN%WQ`(a+1#1?뒱:Jk֠v_\ _<3f`eWH. ؐ; ǵs5(Vrü!Մ,ǎ6\A-lS92p#K?p+6&U֚*+w<}: t,YTWr0u-ծ%"nSf\=̑cucFP#< nqk?9p1\pm7W#THz?i+/MB%}mU݂u=O 3M.qA/foѣFr0zNi]lgL>Adc*'֔jdtz]HxT?@10 ;GV_V.f~M筍rdT$9s=Tp .Ղ#;D̹x}d 7S"^h]ke!+Z#B3T<-f&k*n[rZ7: t,Y`KD5j/F_<|d7>=-9_ۈQcVW,O t{S:Z$g=b.bgs,ΰK5S?IHɴZR# +d=("PUʊ^iߞ:^kWFP zG0Bуg*dlTScCTud>~͒,3!>*ҩx ?Tv6bF\`^8;/U; ۹ÑBU7segjks|eHZ(UV8QCݙ!j*f >L|Btۛ4~#f: t,Y@gȷ1:ĵ3fc(B>0Bc%F6_1T,St ?]#گ#_^ZA,Y굇U Y!^H(r;.Dc62 /ǿVr`d}I}W,IfXQՂWtxFEۻL=;;CgD?PEa[oyrwרtlN yCxϱO ڨG)>Yk}d8j㴯P/>1bUiV3.Zh1T%ѕOJB}%Rrc߫Wrlxg: 9??=xo>1| Z/ΩGF5bL:Llp-ͨ=ydgR\|T5WΏ Wni]8]lۈfἦR 7glʲ)Q5s[U5<97$T*3J|D];'(`օ5>'FAܪ_n y漤*&-R> ɚl͐yJ^;3+ m#-ߣӽ}N;ĕkzQ{r?c)iP<3F*J^#w #Я3bYs݆?5|We!׿!2^E0Q:=X.: t,YZ#6c٩$y@0O ۭAwa4N$oy'LR<'b7O^odVEK281nj7AɉZ{jE(^}aK i@۾ɳ\0k ga{ĮIo<;͉!i;~a+U4`E3ʤ9t,Y@gVks=}`7׎Rׇ ET.so~WD^FI3}I]/VKQY|:oU6jת<ճ SD%Qd #,̨nU%+>[D+*N֨ӕ,j2ZUE#rkvxdHanfGCg05)E.5WG JwF <;4: e3!C@k|m# TB\0*n<h5u]t/'vwE:,OqDF5~ޘ-D\-Ɛ:H*fLSLl̍FrQx`4+X4ZYK"' $dIi2),xy`pH@ yNWu Vk?{Taհȕ޾: t(Q@G uwʠS@(/)K=q1Z}| RkU,XٝgaFCl /#-_ocHĬś<%:QiLi2w/4T5mƵ5"r0?+K9d؄BǗJj0Xh5DRVf- 1Q8E[)E_Gl}kF ~L,ر!w7oT>79K7l!_Eb<ܟfQ@GQ9wtWWGR8tpS8T+q>{ܐknAߺ↑w]Qm$J]UdRw9{FAeYT ;K:I^z~Ͱg YW1YzZ$v<V3HWhZa,yMEٿ|7"~۹Kkq[H !t0-ouὋ.U߫x*m̈,.ӽ#%{G5)To^ߙwDUך%QM yGl(,P@^WRݜqW|sSv~m(|wȏq4bŮ~. 0d<7Ua[oߘU#3RƓXSσt,=\{Dgz8*Kwf\xjcfsčF&s %*nWn2>A2ׄUݡk(Q@GDDbEsav۶j+_/zMz$F7Z#hE>?^!ؤ}dʒKb?C1w{RS̝>_΅%/72-֘=UѮ+gGzvL)τ`d'"."sT齝 &*\[3z5Ǜ؛fuA]6MkShA}E^G ?>: t(?BvgAzѢ;b]F1nOxtȲ[:'k}g=v.f5Gq_GzHzizTGΊߪӷJݓ{юVHxȉ^Xs)>N.]7#^iUk:x R47fnK[Bڢ>"Hm$?h -Lu')Ցٲ J40Ww>azS N7~'s껴0;p$mg>C;E#(oώ: t@.i251"3 utISWVb.L9͈Kcy? b0-UK*-z+"פ*jR F#Ŝ5D''Aoܟ# :v9#g]Zݯ75(Rԛ#AjIˌS+^aTNX΋ }):T-șjzD9x`ɍȉP>J9TPX{}"2UWߞwW=Ib@ݯGn&WF;`һN#j0bq\Utx`(Q@Ggu%2|ݤ9 dǜQ-U{Q}f}Ify|QW 7#ԕrƘ5Z˜Qes}.YL+R&sF 1SOpDpZW8O)"j-33v8RD\> stream x|WdYv&7ۛc{w#z73oJSwUWUW&I6]pDH4AB@Hz0z =H I}nr$qk}fc4_A.|<,Adaanj5*-2q_nGz[$}c6'QO#Qa,nQQDPLQP,ǐDHAsGz^\.39oV>|5h/ot'-u{[ŦhB-"g pq]&L?=r3vBO`,PK % S")JIk(??*@_Q6]/9r66z,շSrx7. G ]mTE:n( %»+71N[Ao|u:b=_;dݛ@oE~7gbb>/?&l|/?ѫB!X֞IlKqUZǢ(0wa/dQRzoU~3;ix)͆L wlxo=qՓcyM[ZmE3DJMU'e5EIM }fVOtqNmX&I 2~AIFLPaUW:ɶ+QWH +s':QD2Ie1S1sRQ +$RWg銽̪DpUF!5wc:qk2Dbuײty*/?j3󯟿\pMwi8b|0RVWpIU{6[5Hr$):/unKD &,a2j[QĜiaX{_?h1{I{GX;L#y?pv {ȩΑh+8m:!sb"BƼ"歎dxW-~t_v:B{tZP }Ă  ,mTĚpCsN[/Uf/nUc= cXSzBwX\bKԽT&171y.r )G>oіF\'>^bř 2~Hˈ!VLTvd+ցjh%ZbXPy|[jCtsރհtskup8n/Bt'_\{6, y2s=my+ß~q](d)fm|P|lRHP)P%PlP2@}lGr mBDqN+*5Bd iI- X&6jMZaqGHTRL%Qu"'LO1&\쎒;L Yq.RtuteL{^# EJ۽/Z]{ph W=T: Øv~s$O yQ/sޟvvFA]*^ z@Da '0G; q4OmRB ]u[Z' ͘ĎYv"`HH;JHIsxT3E 2P#.8M!U)\2'kŪ&,.8Dq`(H!8HTlU/-*4U:ƥEQB*@ t$fq;j/&'K^u[A9rDaQ^gmQ pDZtt t`ܠr M=FjWIU,.- yXw]2MK-ϧևbA1. .[wRv!KDJC<B* Lf4.WXjK?#kp,;b"1K@,RK;D$ 9RUYXfϓ.XXp>*=(:?R&BW( kEԢtLlFPa_Ӯ@QgoKQI&V y)Zz] ) ZB%ZC<,jA9y^ML>u7EjiZDubfkQF֌Nݽr2tT]}HH_؈zBz" L2 `A/%|s09_gߔ?,14|""t? n9ʤ3I*nK\8w9_av8dXwJ2+p؟))`1YC #ܮ} =[CԪ+K: аw;]uBov]| ׺Z2J*ݞFKǖLc?_lIk>>$)1nOx(DyG}ś|BR_ ȵĦe:Y;KW}&Ɣ8bh;ڡbE6\6Hp[J逄`Mۍ֚^i-oX\./PocT,a)hT 5ʄ||^%gr "C<(%m N$?eM 9UZwf_ @" +pR뎼L{fE*O<*Dnde GPX,7Z8 x4s@Ҧ_)e(QqAƂ끬,+ ^Ofo?jJͷw;hXDP  buɘ=Qv=kvoΈfq"EHg[\GapmZ- l *"3<;21-IV mkf.%J`|1%Pۜ YLٵ^"2ԂT^p1A Q@ff \ LKcQѮDil3P/adnm>z@<ٸ(>x;o9w+,Ut"S & $6: U.AbTXThʰiJ&)-clGJ%Y`P[c~o.Jum2Ċg?Ɨ|ި+p<ye GgH!NxCĬ6zj4`3M(èfM^5xt.et9ɜidd# {gW}ՠ' )˸?n!%n!:B|nVj(ʁIYR`w٧(j*R0mxBvV8;Mŀi]-VXy  I& TGc}r(Kʢ><( Tr0wmdeH)7na6X.޹%ǜ~GZ5jP|MMSJ.yZΗ|/윰<ŬGߓ6;7h{E_n=,LV3,ڲ)?N"(%E˂qM Q^>H)Kح7[*2 4Tr ctojl\‘ uc[H`lFFk@9ypuog;I柈|6.آ2+97K\`*oo&W~AC x9ս!(ˏ?:?ftb'}2@ 혬Tp2* {ף{wz*Z$9U|nPH]i((j[e<ϺUtx2mLMW+"k|4f[$-mQioz0n q̣uZ=6JOV2+OEgyphy ,%XNOdQLۃn<|v?|*r4~]'k3M{ոգ;>u28j !ӝa$ٴ,Գ+,M7nn^ىpJ(vbÏsf+FT$'ח+:+6VX"Q"oGB'{CBB2x9Z-gٲ9ivfMN FHz vFjBhC24 NȕOtvg<|"T6Fz!уhh_%wJ3^\_dW EگTji0ky.VhzўId/?9QhC lZbsR]p;X?̦SQfYכ~u绨ܷۣi5`Ϙ*ti+%Φ|JS/#WjrgZy4ݪI;(0\f, HYP …%17m: Iz;d*T䊸&՟iu<Ow^^~yk磄K5o4N{^ζ;1l2WC~4-V iôzJ\yȲ⠘GV6NW aӆŢf:ԅGm2_I<!y=\-B"iӼR3 'Ӥ ӯ\wz>[Mn/C:i-D9"O9.Ua~_)|yZHٵ+F >8%a$nGM򌰷0}ҏ1IX@lb(X6zE(|JҐmՉ~2f~Do|%KE4b?_ Dhu*&B \;")Nv?7c܃ŇՏ!zPPoneg[{eFTwˊ_j~n7̋H  ڽQы64w.Nffz?"d"BtPL6;N~ۛ.(|f,fʪL(g:4/d`ֱU!yPf\IX!,3ˎΪ#|sU^Q4:Mc#s"il2 s+) ǎ4 Rd,2G- ;WXZ@g&.m{ ~@S 1p xQډY &SqV齫ύV~xһLz|_N./NVx:)[?62H˚ڽiE2)p[]n v(OЇo/WAlc:N bАH!vzFnIm:~ PF (XZNvj" hi]q?ԥM}?r}D8Hde /f%m%*[쳋;n.W1fJ Ge=ڝONOXF]_֯,@fdRLVXpiY(T:!m _z!7w2lk2Nș g ym?o- 9 205E  QOqW "//qxiX,u#(&ƎXNb]hˣ?zIJ6i&֝OT],i gv%vg'{;El fVEy(w[ S.)ژX;7:͎Hg:L$|#&t٠\]~AA8AXQ1wmm[%EB^{48R!%R"\!rEyLƗ:ᄁ{n^Ba y{͌%QqoOThuG{ I<*On^rxZIYz{(ruKf0W|wsf1>\feHcيL!Z<v/yw\-WGw=P Pjٵ<A`QDY(KүPŢ Ki@%= @ &蓐:LpwtuN@]+1 5BzY똦$RԈjxvqg>4. ,|Q"dE$IY(?{-W3dW_ov*~wo*'5 Qˌ^ (%E[mD֣0aWo]J;G}ߵ2i/F"l` :H*I82W1ُݛJ* ڽ(zVgbOc?a@zH;1mS5 t3d3Ho^# oOW~ݯ\($&"*[iVP$cPBYĻh@!SxolM~gG$1'CNWaTz@$*HD@l7G(ۛΜ&l[FZ}ҹ^LַBՂGiN4;a|q ިN̦+B@E> Xp%\8^׸5Tqxzp{=Ÿ痏>\.c{!J(%>||0+ohJOPӅ)cv3sx.,eI)ncQU48M5kC{0QӐ"MHI4V7>큨Bf]=P$A*2udBL-D4̀tS )i+5Gf&"73><$]zx5r0^$A .=?$p<ڳ-Pb}Ts'iT3d7j7qp(#r k<˘8g(p2CUvcQIH y5M9s;ai7M5 F4;Jؔyr=Se2=db'3:q(٦y ˘,P'ӎwuDG$oRկuLE*B@تHDU!Uԅ~:gQnLF:[\o.=e17i'x, RwFF4"58 }TtnD&}8EftyL8V_޺}E>k_<^]^O[^s"Nu.Xz{vjtdPK$E(!CF!I|R:mqeҝvlnz͕/oNJVpM/7K AYM;LJ")c4Wn4F&I tv ơ&w҄&ަҶq}ovqcZTa羚tŃ86'njTw:|j.<|qD@TTݪٽJex4Ӥ;=(@u LmJ(tP`ՑX{_~V&p=ref6mI5ڌ@$%G nM㞾TMygKt搈gtpoIcpnFy ~zֽ2N&/}j6C]ɿ~10A^s^,փ=R D$fgN" :>c{omC=.^i5U.QnfρkfOQs'jUw*Ze v^lL5S%$eB=] J@pmܤƸ l ؝p)Gb8Nz}^U9 {?Xoq2L&6Nqwj%*eU$@umvޏ> -t@$8%rի=ɪ7;,AipDy;&ANm@}dSb [p赌&$2 ǂ>W;{?բr/D^߿w.QJ91.mAS>Av"[J( ?濢lD3$($Vpo?wo!v1q1fϰi7'F킒 DM Itgެ!'r TL=PFa#fTOMz7)?ruIK@(ϿZ/1S{gmߣEh1YΞ LKnțYG*D!Ã4=][5ȝvhE|xK=4a=_Z i ѡpGu>SՖˬXOwn몠Әk{kaS|35bɳl@tQ=Ȧx*"aQM2 75"8Hy@IfI@{7j-~[Q^ݲ N.㟤Dm ]+xד,W4 bxZE=vf*D]9WUdz=;/]" Fm6|'7݉KR:X.ӡF yQ|Dx9Ne06j AzIlq3B] "Uӻ)-;}{͗OGu+MqG읾7&/:a6,/3j|A-'Z~(VP.f /t5/3l#L>~GܳKxAEk~XN${3T[q!hu.sT!i.7.;1Hlnm!q̼4hBƢ$LKS. Xa%xHєu~No2seZ{\+Fr'tg_u-?}T7`\TtTy̢Uo;:zRk5 8Dd=3ӻWݡ=<,&IW CG~ ZHfs jNz|p4R$Rd/dRµ>$`lk5 f-gSBMK4g -ѴƝy6+{X1\d{u{]wp:'ɉNV>;}zylS_Th^?6b/ϟwnfc[2IŹLO40Kɪ7g)G4 1xyZik;R7X66v4& qfͩݥ' B=Ovi:d /ib+6'Om3ߧUoZxTͧ@8H]BZ晜$,@qop̗`3٠wTw~ZQ)EmLjl׿~w զOd=\x1(H 6Ѻ&71:J  Iiϰ$:d&~+1^ɆQ NVBEb 3 (Nul 5KЫm;6[!'mF2v9B}b|F( RaFeH/Iz}'= <4;j%*c2 3ud׬]o})RU1ە)mvCeooDt8Ԟo7tg"w\?3֜3jd=1p59A$,v֢~4A>n;VyM8WZxc0v8VũBdlm#E![bWwۺOdbmVAʦRhz<%/ VA.+Q!> seF>hSDb;ĊUi(-$m+I> )=b:l"mMP9'vo>Udg`*l"id6974q3XB޸'xYph .lM*& 2?gmQbfV C-JZx7Ȥ,j^p ZfzEgLzPVC1X*IxyD>o|). CaLJnYn꺢-'ad?'=Y`2!`~%'P_U4[.`omE#ԍqHpĭS?!I_"StsH{@϶U*HEqKKtݬ|{k `/F.|,+P4)ҴW3pDHYlGw0xe6c\WQPv.Yjһuev2xX؝&f26\'N[G,q@) RBH"B+p=܄N=/~%`:v`o dR渝P4L-z͚(yU>xAi'\U~ROX %ӽ9 SLw7f[X2HtP;1eih~hf͗e쒰4{e:w.?B}h߱lYN\'Ayoo0:"n|J G],}W:dS P >tɇ. fzii&14'=Rzrtzlۆ+p!7e.?n>2µe{^r *q"RtL>ZuePzQb39zC%e9ʭzng(eRd̔qI:Rg&BV=6KXT7;q .AHvzs1, (2'͇U= {, ݹhFʱOJbN|N87sā<|h]:cӓg(7I*A#7x a6n>Frȭo (+b1׃^E@Q7jX+jҸf璙ZhM"|?#b^R(yIU{O,n(v3㥙Gz]y>B>rzm;s}ێá,|'v;(u\5oWn̝*PZ/$/(,Nk<y|/mK`##݂|$Ӹ c > 衼 TEcY2vI<taz*"-l amϫ]M_옮'R'&e55b02|OVX`kJihE`u\9A8Zq(Fx#@AN^{ɑvAD`y7nccn=\nH ul2oӼwg;V'Xl0ٗXe=l}.Uuk륪}zz}p4Cr(C"i6 Aņ/6`~r RY4 T%61{xzݕI e7;: k:Z7E ODa!)w@:f3w"}y>"Q ]&op9q,Ѐ"6 vاdՆ>]=/? {4E쫀?=X?A5oP /'ڋeH6Ve@6,XD7ҴB i>MuVV 1TU/LAX133YֽLҽڛ d 66Xv+M#~7&i) tlDyx=d'#6}Sf)*ȵEY$XZRLM4y:F?hg~.Ӹ&[ nۛ0K~`bZåm{*L*gi+.#jeb&F9ѫh2 ~0 k߁jǬ`sʦ1ٔEP.! } 6xk9Btf )xË5X>T,Ԏ~yg g 񇴲x̑aa,DB{j<}Y*DRKȱxȽFAi~5܈$HAuZ5qsM`YyWN"X:`e=?^:RX/A!;PyBZ V6ALux~BA"A ZX8NErbh7QЕ<oo$ }}2#u{EF2[JwyR]Pz~ibu(rܔy8caȴQ>ŭsI㣝2n "B:eYE5Ul8xuw~JHʉq/d&}A7R?Pw"HPicpѸ4E 2#xrh1{J| *XY߃1H[p0DLjG|]>;Iy^L1L`ht"`D4"jP 8^c8U(t s!v&Xt9y>Jޛ[*{! PyKw⛗_^?F/7W4 RoTk!t-4b݄$q%f'aXiE5=l h,ly{K\!pOBY6rHKLIjXi =8QDA/aaLI+PgGbK,VEGlͶXp(>鰧UĚ8-̪e"m\>+/%d8{ŕB k2/Iy1oԘ:UA <};|$i/-d@PJ0>f?@Gv,40ϵI#wIi\)܄nUVtT㐬[鴣g*tٯiclҷ)$̫8akp<Jo*0I~I臈<a QkAM&x[l<5\,F"V 2]dzUGe *-k +%ȄbF12O歄/mJ}ܷE& bX"\ YNu;{-ND0,Uj|!sS4*F3ȁ`(f9< LZѡgX&b^ĈL8ȘY 仫?$>A}1@iA#=diDY9QqXiT6F@{P7a"3؍܋- &oɟ\sYVK5h5N8NL٭j23њ) ' ^fj/j&~rY"V/qMqw.gwO\23;RH\Jס R `%wu2̇C߻ޕǮ_Ft 88LpVg׻ѳgGC^8GA-,((IL aLw9klPX+x/11#0ice)Q{ BwcɈ 2 ۨ9~46~Ů~$Xx՗L?zhmYD,b=txIW7&j:NhA0pywq^6 rj̰{S=mFwb :ñZreLlU+e$nߍDNƑmϡ_ %tf/7r;2Un7T%ZZ$0aC柍7Vo~{x8-ybe/v2ig&g߃SdA:/S}0UZK21+But(ÀbO($AZw}Ofp^8ՋV> lCjnX(̙ t۷}T #kA/LY_}.B:=O^q\+icx.g~g1Dޥ̎٠ut<|rm]peǺiH4BEG[#B,naz#ҦT<4F{I W@A?q]LE/->xxs$ w3ߵmB.a"}G7MGv:8t N 䚑v$IF$_ Swc'|ӽNWs Ap3J1cb Gdę7^L$-F )ڑ| :G~કI䲁E.>IIAbJc (L)<$[_`SjtC=VfĄ#w,-[x .SӜ 'ypyb{nqE}8q-Q7|B7@ s={Im9xvS̸ $6&~0h*+hVl9I!eF/%$>&_~=dZ݈T0ILCM$]~kE\zk 3A? !@VL:4>Xgy5S~˾_kW-q$,䟍{d*@O-ۜMfOsBwf*BݓFu@55M|"lgvr[o3vѤ-PZhY-eZQO&I(KS x茛Gi+=VR}?2ߋ&‹b?!>f! /d&];t͒F8/%yͣjR-{!I,m/bn-t~W$up$[SBNTNlr,TI7nً٤ rs C:k@3~rHbӺ"B QG#SEΚ} NApQ0!,ɠsc _uk'e<jcBlV,u7f]F&tiGBG,ɁXkitΦX-kp۽fq}gʠC(Q7I~חHmz| n=w4/R!l,ZT4-y65 w!Bx@hU}$ X"m)rn7ȹea%o|U|_cϝ4 & <bbN^ɜbi!eQ^L89&6K&t/:Dj鸓XNd^" ua$[c;q`cXu P@guTڹ2(DT,Ji܈0ƍ@4Q}X+n,y.|տ6Lg8 鞪0 T _mcYp1Neʔ_u+v_t`],l;1lV *L<-,_]U1> ۽ -? L줥KЋ>re4tݐ&qm SP'Pv:*8Ԅqr#EYsi-k3"L| 9 Tf3S n ,HF3b c$BRT lU!Ӛ퇻-Tf4l?iæ wBNM2ER񢍊ʻ"Dh7U$3*IһV ۄ>3v ;Xi_-CHw }X5&E2v/(~Yv,@ؖilU7nlybbh4$s[OU `22n(j0б9ஈ6F^< xˣ–M%)/K!zlqwj9d.tk2c!MT'UQ{C'mr[`b=w c}S [ސ~ B / M .4 AdC򁉼T\4HCVݮ%aуkѻM^>)QcºU3KP[1㘿h7}iZZ<5F+yqAV;,"JV#XN12ٍe2moEw }EUg˸ ^B *'ܹ5+S-P*ϿL3 1@<rLL20+?#+/^ A~K'=ۃ0$nEYzR'Y֟q4v0yEH7'[BNt:ɳT x.,ƀJz7 BVxvQ꒹No_=j*mE:%ʷJz_npP*ڑNѤ7LNm~-@'1hm.Cy G+)PVܯ m?x{mv]"WQOEȎZpԋl Uo, S@Ӑ ibyGl/֭4:8 [ؗX*0nm-8+A~=᏿]SV3E&>H#kF(%(]=IhnRv >UëIu>IBf~vRvh]+l-t^לo , DhUEkAmV+aOo?B6YEˆϛniHƬ"|PJTb׸0TNgvKo' xgs8lnn?nW`P7X?cҫpv=ߜF Ϟ( y?<1Bc/dؔYf3*W1K+/Ǜ۳Y%!x C{..fY+5LMb0Hfp{UUԕ UJԘ8e#x@HOXbKZ}GS03.-3Iz턤סP&Q4b*;zBPܙϿ/?ō"Sq Zbn2yf`s1@V[@`^HN?fNz# _zk.Xm81< !^ODŽ:uadW@PșA,uw *gB ၁Z:-u}L+BE'{ߊg4MzJk&tM 'ub A=vV=_fI5j@ S*R MP/+xʟdp3L֐ZK%,½,ک2}ZЊ9|`kNXGY7܌SK{`gt%jKehNXfImRL#.=FQׁgץr;(g1Z3 ӧWϾߚ~"Mݦ0 `@~!횇E˞Η6ۥN̪mH=!ٍr ×*9 Ѧv;Q蛽X%Ӄd=$rd?6|}h`lQ_' C&j{{Tw%"A5S<355P32&A78kZzԅkVk_T(Oga7v抽ๅA48u)}Q|ͻ3YZcRkdYh!(&}w?K@6o.vcKUo>3>'T栧p-guZ[Ϸw=mM!x@S| b<-nydiEVQ4vM'4 Y0x{dok e5use&lX xpf@>)i7c.9LZED ) OM( ]7m\bpL&F( v`{O@@M|~bIsoATbL_P'=_@RQdG2eeɡ$HJȆ,:9 ͖ EC jf'4[`}d=Ѐ&RU08a<'%=cX>*З0İ*taOij2ˆrzVHG 9UˉL endstream endobj 12 0 obj 24077 endobj 13 0 obj endobj 14 0 obj 24077 endobj 15 0 obj << /Type /XObject /Subtype /Image /Name /Ma0 /Filter [ /FlateDecode ] /Width 514 /Height 512 /ColorSpace /DeviceGray /BitsPerComponent 8 /Length 16 0 R >> stream x1 a n&8 endstream endobj 16 0 obj 277 endobj 17 0 obj << /Title (hilbert_3col.pdf) /CreationDate (D:20090630171833) /ModDate (D:20090630171833) /Producer (ImageMagick 6.4.7 2008-12-12 Q16 http://www.imagemagick.org) >> endobj xref 0 18 0000000000 65535 f 0000000010 00000 n 0000000059 00000 n 0000000118 00000 n 0000000300 00000 n 0000000391 00000 n 0000000409 00000 n 0000000447 00000 n 0000000468 00000 n 0000098144 00000 n 0000098165 00000 n 0000098192 00000 n 0000122411 00000 n 0000122433 00000 n 0000122449 00000 n 0000122471 00000 n 0000122937 00000 n 0000122957 00000 n trailer << /Size 18 /Info 17 0 R /Root 1 0 R >> startxref 123138 %%EOF ShortRead/vignettes/images/hilbert_3col.png0000644000175100017510000035030512607265053022035 0ustar00biocbuildbiocbuildPNG  IHDRsRGBbKGD pHYs  tIMEQ IDATx]d%坈s@8}||?N9_f8~}uqӧb@~WG/~078n3YϯaͤS_1ɴ:~sX_+g!?XyxgݓoBu-mP?Ƽ.gr"ǿSe{㜱?8dS|lr;XN>yٶmiu[sp\GR i"?Btbͫ/Ϫq̯~Z}o8yil^'Lk3e}oN|y9 '`ϯ  @^f0K9oq]Y|Y1 [7^`=n >o N~e~\Y38\߅0lߗ9߃_̜5JaI aa e ?:飢e-L7D@*gp=hڏ_E7Hq0_~[!״1 }?3L3o1y2#kW΁GA^̇ğ >ӅfB ~>&B&D_#q Wad40wCc>S d^#s8ٺc97 Wп >V!+e>]=I9ց|<\v7-# V~¸񸁬B\|\iLLeSQ @fˠ^GIps$y_K5{>rWm~52-1Sy/}X9|`dj\O~z}5?|Neg}{o-b-;uU*Bc43,m?T),SM绡 saHߟ/o,zq|j?9I!RwiW">Dtp_ˆp?;]A]Khy >Kr8 tutODgr_7&>\=1!3 J6Hvw?'};\L,29H/r->~u%Λj~{7pQ$㙀4V𮂁xQdT2y{ +sahpSr]:HHmR! Izz*<•r_L^~De <'hq_`@  ~~#`ZxO|iv@>'k1A쿲1byl糫d̓ b1n ,}?]XcЯmd{FBc²)-kn4 b `%oE?><qgm.@l[lm_ oo} ,dmt}bF`pODNKH-|#5E@ fSHf" )2x ِ!0H  ֳ@Pw*L }f왗\Jt*S Iy|GRU,eob>}>ϼ_U T|,$5g ܅VCfbYyi\TbΣ7oy_ޗ0γ`-F4<&cLLIJe,q{h?LM}w!,'-:f`l x ìO܍&_:p'dy9_ƞXo8l W7z}+W s7u'CO(^Y[lvGN!+\G^gYujCCD0[DD GfYO<2܅W\g+Ǖw<⣥ޒO7+|?З+p!0_hU[c5CPhD)ćK"|k{2D,HP aj12=A J^<̥;'=*S`Jߟ-'A3'B]̳xT/w#5(erAcȉY3`~3H˷+8ۦc;0fdU >\K3y,0Yc\g,-J1wR4#׹M aFz~ _?sբ}3d}yq3F K9I"%sogCu$Y(/}̣_y/SfEcшbX0k~Y2M7`w:_03c2UJ !2[lv'wdng1e#gT^X(-+IgǨa ѯTf%h&/Ki0)|W[|RsP0AVo;L$rW3/>!( y{{Af. },xDm2(iΛEDhPLT}C %[B1Crҿ?W?E^9x.j?(1c%G&!S 5Pa%,xdD1H=":s{!QTkizVC_ qX2Y y줯4MM"vA>{kgI  IrfLbnjFj#12`Saf-vE_?_w${L^SZ^kR~ݟ?ss;fz )׭u]ܵѼq7߈1[lvGNQ6jeQM%d aDy)3}x>sXv\Hc#cRIf&;NX5qHS|#yQP% HWfW.w-l-: T$T&\7ܪFl15R]LR%8-Si& !ߺ¾gg&1خ.Hd,#ZzcشڣDTc}O56dʸ &(T߼ +r5N_}U#͌czw%%:gK+֕&xMfZyvÂ| 'iցd'q>:oe#<U M`u7l,oɜ=λ%MuSвo%j0ϤđyG_/apl_g*>p<-b-;ULIJ%,Sjbo_PzJjuȫBy4mFND$c)5 X7ٻL Q-^ꄧZLnA$Q0-F^c6a`i7Q]iǒE?K371HIS@M޹- hASNR#zif6Ty"q_CR_JB @"V?~&#LiSE1og҂|7M}T6Dw~|K`Ԥ׷ho"B]P-_D| RDjV+Z/V}m\z#`DNW_3+UվNI5+hY8l+)`X= 8 YRe>&.zK. [1ո]6-c1']*ZUuˆX}0b-"#чw{ ^ߏGv;oZkymߞ|lm8,G$3Bk &|g$<1-ˬD|*, ў(MmC+A%Hr" E5Wp8%Zxliײ2ćQѹ0- EMweȬ\L@R0؅n#;F?Wcd<,Ee$G{k!{9Y= c+2[~6k>BDY,A-Ƥ BZ}>fgyoGk/9;2ˑ_MEq҆IL,o~ǖ!a Daޠ昊?YT *Y_J)|}gKn?_rXQo"2e>ȽV\U ~@go?ȼPݴPAN>ǺlS Uc=!S,"hF=*C^qrWpH>Tc`f[ a1Acb胭1-]7 k;/*E us<0 r5ۯ8sfF*YKY؝yFA*%18Tcu>yN˺(5Bx&ʥb,\*]aX(ɘg@|!kʼ<;\8ΞW qe}: ׻_wp?oވ1[lO+F`7m#TKR{(b E0h]"e؟W=y_H,NZؾ ~ }s}5 RDH"u'Hu40%|U3EXR|ۢ0E,Jhu/˳idlaKԏ{ &E3}ȍIxڌv!(ɤs(gsY*-VS 4 Gk^R'Z~/:Of֖`UgV {|Zmɨ$Rͭz0Xջx9a <9mzM Cgm *srPsȜ::{`*c!NTϵx#ǤQwfÌRw1k b-"#pa_CnFmŞ0:mO+K3ÂJ48xO q8 ykqSo{GX^":3ALBCpX0x!HKxgC$cAvD} Y$T}Pj)g5#oS,!Mzmާ,a~b-bگLG&|yeb1|ϬFw ׹7PCH&3 o'(X*J AR LZU}C=Xo]]H_叫bۂ|_bu fi01>C0__ovShwZ#ZgoZ.\#4d:|BYmZccÜ=;]?^VTȌz&Ū11~V'ӠJA5ED?Ǻ|C!DE?& Bƞ02MMbaT)2PY4+!)E90 7?V/c7#I}SU]6ɼ +XWi>}mﷄe͛oDb-b FigE˜;>006T| !zo|ց|գZMPtUS#JdOmC%׽%?μOdo*1i2~xbvm8kк̀:Kl#e2'BJiĚXo@_mF( GwZh3Z8 Q';Gd0V*6 @_(ηLBfY<:($;J8U;]}WO~-z:S ((m r3kZbɞN|UB)Y=7UqzQ 5Gj ת;ʼ&ƵD>%!/^7tGR #2g~ؕn2b?Gl^:]wzdta$Q}o:##[l[lwt^͉G4?k3Тܚqp?s"XcY/\+Zkof]p:Dz]|/ e-sb7UNgW=2l [ka%C6  0bf B@NazJ=SϤPQ@Ŵ63SZ{ ȼeںbK-Sψz-샅'YV;}Loy]Hf;YmaL+/[zc6eHYK72[1m=\s UZ+]e.=P~ \y#`sy̚m*Bi![l۝ܪZm:^7hMUyK,Gt.`Us7YϓuS*2 *|8KӰȨsXnc+ّ!8GK zdL'Q!qƖu8TVd~9MFRdXi}ssc5h,[̪iz~'&hM B߇9P#c0Ft1\- O|[_g;7!kb2գœM\ʻ2>s\|mL4&(* [l[d9пSM y kQy?F_zߦ1aJԬU-L (iOQ mծXrZ}SimBnr9"0|U"v'3l>Npˌ`+'e1+FZ-P#Py/UO,^܂00+s ( (@d`ly\ZI"I ^gJڙydyLQy^͗iOD(z1.~=I̍2=UҞ̴}w,'U UQ93d-K3|J!La.8xʞ7`mz,",/.͓SOIhҐ@l[lEF*F 90}܅(E;8[ilq3ksbU>"%Xr;s[uJo-YUͺ|XRƦtEϗ  O>7ۮ]֝ܳ(gG`oVK$;q ZK }kvqmA|ŢjelY XiJ{xo =?$|+P/տx^+(D.o^g@!ȫ,gr@oI {eb?]^!S`x,ǺMd<^Fw֌0GU}Imxo ̷,y] _v].R <9\G𷩐f)SjdS8-?opYx.taQhׂ !6)В bU,YK@] d'=~eE2_;la$%hퟩ|_@l[lEF$F 3*0#˺#}D="T˗]D{Ws*ģ/֧p_u-k* 9H,c& '@[CA]X]Q]4m">jkGe[ HJ+zv#r!U*alU#yϗ+87XHhT?1!"MAw"ױ*0Y y+wY陏`Ji*Ryc1KJ-_< ^!bu.x2o @Rx} 1(rx<ؗ1ߴ1Qw|}cB~e`ޛm43gXe-ʏ0Z Rz&UC'D7n|{zF`pdͼqBr-b-}vH|=k }ajr[@c6/$bg'w#,+֏MKhKyZx&%CTCDt(iD!ZԌ:e*U[qzё}eN$죶So3e|NL_MDZxsT}Et{ ut[rO<3]z GT2HuRn/Sj.NxecKW ¯ }E޲NrQ,S7V]vuBd ijE9 jcD!uy-`⫧R%r+Ϗ0Hz2K2ϐ)<}ݐh/\k|(ӕ)3l "5iZEϲcT GgQjJ))E O3ۢ )C? ekn.qqm7G ( wzob-bw;uX- I %V1!}osf٨Vh>X_ >c DYkf/ $rnW .ed-FU<ѷgq3,iQGyX{a Y޾ľ* 5 >Lq0%Lo !yWU)$j>9JixQ鷽Eoyu`uB.>LConVHeeT5ݕq4GUT <yz%3Sx="7%Ia|<.ȸLa" 0U' _7i|S{!"4D߰b8-.q 1_}*,:bub$ )46fKc*T#f`0f9ra 3J\ukfj}&1wNj=rU2l o15@4n|u=;ܗP@:%v/"#[l[l0VLH}Z5|U/*@`Y^",k+d;_+KIh /7k hQ m .y`aXXAĩ?5G'}x=c\,( R`ϱ -WYp}ՂWdO-h6尙G5BAvLhM/g>u!H4Uy"sc?f־ U^G|Sf9|;1 Kk@$ k Lg͌;!UESa^,:xe?es`L{b(qa^TlA5y'hThkH!Nzf N:2_y! X~H*kQɰ_a3Ꞗ dԇWz-J_P{ 0i;70XۤaQ%H W~W+߳آ|@WeެvQhζ$V1d.L7xF2b-b-2}?}OჾKd~ 0ͅ%FT;K Hhߔ:׫ 'O>Kg(rW" ZdlނJ_>Gi@뎤Z e yNy $G 0ŸכN3TH]ڍ*|\g&eOԘZm F0"PC|![Unj}2FK,R_7^BB&s~?.c! ˻~Wϲ|!H=3b $ Q J]su('?B80*C'&A|~TVd V/eM\\s=f3~gfM{/b-bk{$ѩ/b S ,Z[y? ƖHu)Z\k]ܦ 6?u- Xj 329XSdT~x%$CM'dX9̘1Oo|yfxkݷOT5fn<1Agt9Pj-A>SQy>;c&)'pfXk|E1Ȓu9oջ/s~O|_63GJ8(3hI?]*^"+5e|$XĶ-Kl®b0v'\I1_i!Jn@db-bnޓ-`ZKf/J~뙀 }dTt#RW%)~"+xE,dahw)H:њߧ=xǂX&?^F>ʲ}# 5Ra~j ױ(reҲxH'_c 1*p $d6VhAQ˝GgX o_3QGLk̹yKy^>͉(+aRL먯b]~XGf,&Z+d!qhF|Aֹ r,ZOyy9,+b|pAM/k aKk' \{|{ُ<\T4ǁ4v*~}`5)ȐyՐ)k$QY838 nh[[& f|MQ/}x؟MRn -XLWК;\a"#[l[lwp#TWZZZ V[s\R *E'u5YhI=\V}|>\W?zߦEoNZզ˞JcW~Έ4q?}d7Ls.-ߗM>kJ`IYcZ[JԮ8TiO;2n#R-nEPǾSwX@Hx?''* ~ Y v_u"0TG@yW("6t 3Szg#RbV2 ZehMK=ZzKW 됈U$m:*s'xv2FZvZK\Yk|~} pu?BJmfB&O=?~y^c P5ĸk+ŵ74Iu̩gj3='Eb!-b-;ukYi.xKcsADH=Jd/ rxAv#]`L}$j_Rkۜ #FɎDSkfopEo<NVhDmmp~hAA]hߞ7~hc< 5 MD%}X, |`cR2ۦb[Ԥ縿LKrPF0C?^TYF SiGlS2nf.LyuK,2L1[g힤g=!=/Ѥa}%–3m bGP5/g}1PtX{ |2_+$>((e&vbTgfu"wdeXWn"EiP(~*RyYdb-bnU퐀Uu$u׃D3교Ûz7Q%+AXI︊atי}퉥_;N=rb[ tZ%##c $|40S`.>kWضW(t(Q^{_ul*nE#^U^u"2Z$v 0sh?)א b!y]1<D<q-r‡||"μ)Ҙ43CC4(wkJ9/P )D-[y>\n4)v[%h6x}}kkk K7?TI /i3q᫙gmʚ,;S1F b-"#`YX,Q!kFlVO\Bꁗ9$+/ծVOz m'Jm|}[hkȡK_| H"T/4#cˇ>ܳ8e9_R-E(cGpK736_f2-JjiH~J3'<-vve?`Ek:H`|,[l[l8=#0V$zDe'U4oL)piyɰһ<2du! LS_OWQ;KtߑQ7цp?qޭw;N%x p}~0:|9 %Tg;;YkxF? -XJ0} x_+1kaL4[[ʏG}fDAV \YGP+$]6)+YLt(:Oױֱ^|(jU3'g#fW 1v}^l*)jX:P{GTD|0x֣ZƈI 1D~'$yQnK,`1Pa9Hؒ5!D7!l"[7VQ-T!|@{v$4Ӂ?~oξw.k{/y= 8A6TMe]k@bb-b;G^[4 R4z_,T,IU|cE5ECoibI/~ǖ%j`x-AAc_VnxLK4^jClkHVsZ? ł| Y2\ʒ]Qs2&d҂ehTHDϴbG?dF ̷jZ6?#2Fd}˥GuqIֆk Ojdpq"m4f5Ϲ63}3?+Eik*FXdiJۈ6\o^wa=B>ivH"zGQfDZ?ܒ !@BOy3Ѿ!14R=ڤYXԁ}&ec"1~YӬKc|Q}T\Sa:?q[֫2{#[l[l80jըԢo >8> >֪r?ʠX?yzBN߭(3K4>gmynZH2빋8-Wh IDATC5-× g~-x+fxk 0P<K?xrR pܶ2 s]_X]O#[q@Y~lzO_`6iK+U('>MfȢe^L=2$8X-KHkHHIMٳ? 7_Di Ƴ"*yj5a?^Rk0:uHțL}o }i 3׵"w"nePkǩD?$b!*ߚeQ ߣ~kJ<LfE|&^b-[O5 sĚ2;Th6/)쿿b-bnH,'Z7<+E^hl @CE>an5Է_)Q3Qg{DZuFXC|8_WZ_EQۈ ^8}+-滣?ު Yb=0)}@|6W$'K>{T-{WcަZ 'pPzׯ-H%vĢMyGk5:"4`A1j[w6j{60Ta %D+R;xE<;rϟxXT'63GZ5qXv-ߗZ2m4"(6\/  ̻x2Oo Xˋ697}@uBƅ(iN eJm,oKKu1]yA$p>L\&>JM,#_Ҧ1dY;4j az- zT,e6B.0YZ#7g1S\mCZUV1ydye{PjD;JTIZl_fWB0o~w#[l[d>R,kfL(x>B qA̿쫂}<|&bYQ97/x*Vs-ɢx@5f|Ԋ^E^ jS)i|_u R+łT!Q_寪Gs7}Zw>6# e",&K,AqwJ~șOX, 1b@/բq#cr]u+~A}~Z,Jּ_`mʞa5Bt^J-Djozؠa ~ a 5e{Dkv!`Rh /W*2[>m)EI {a@wϓ ^sZ<+,(A VMf-b-#` v=oiRaqsՎ${@te * eZܠiEFr`*UÙ;wr04z_^7g̉2="1qzGҪqɠ9U4:V%R. (C'92 n'Z+3;;3 ɒ(T\ꪬVO/樓GFa~ލK!_GeQ£ȢoתC5C #& =fҌ ZE2Ң-Z XPIiȯne7(1ȕR:,d :fWI+mc,h0%T]. my a "Uᅪ('_+?@>t0% ǁYt[%;[זΧ|I[]mN/;>kP$0mFV I?m>V{n'd>u\o2!yig"yϼR> xl?G]JEcLxyA@}n 5 ǐ7g  =<3_SRtGfhTPt=fз(nxėHMِ E Kd1 R岐JϯL$95Zv~3TJg5Hcd/${,߅w͞bUzK q  ?H5LP *Dse~ R޳FF b-V-DxŔI}fIթEGBx .@ż@u^| +q#ܧ(jrJYMP_ 2HR!f8( ' /"X5@]N_΁hSS]õnxKk;ۺ-9pk'qLѥ|y `!6Obo R @P]8?wU=w2 D}\[l[l+ N[,TiQ3]Jw"#?*7_0AGR@է7V Krjq[чM$6Y2V1k]N. E^7K8  Uڔi([KA6CE2H^@4߃EkYh?gP0%! Q̃]Ft[gN̹LgD{j1P9$oYeiQQ mzˁiԃDkqPvZv3LiNȕ(0+Mz0`h1_2J]>kH4E3 g3 ΅Gco%mQ?c(o6$h\jujU8ys=3`,1_~<*d˺6/^VOu}#[l[lwvR苯D|[޼qRY$F:Ey Z{bFKղ L|zVTdj^L H}ФgȂu&qd-EiV]3<ߧK}0}:mKS&C pzmo08GcW`޼4 cJ|6^S^8ѻȦ͈/bN*%~L #PNg9M'Z;~bCƮC!+Z*H6H)QK^~*1٦a"y;W^ ?/ +PS%T+6b40Kͳ=u)ӗ:ߵ_hhHNTm ƎY#v.,4Tu0g;0XVeVZ dzd|֏aWWȌ_?1[lejyh}֪f ,[|Ӣ]E:3o \rOoFZTJf?dbqS)>"jU@׉V> &㺿_Z+,}/2FLò ´ϽH~C6ϴD"}:)кG̀< ^hi4ƝZ7i9d LDlGeQq:eBHZ(/2 8 '2Hf-cMT֭kO<gۀ?3[Ju)9 2k{a0UY6g{URbhDa`-AԌ%k:+ZCؓi (1FrmxxBcZt.RK̚2a=Ch®?O1kx#Q Jdb-b-2w{CM,6Ti΢tX=i^[*D nd)AXyߠewГeb陎GB|[nE„tǞ U3:UK?~s(eq/w1Qd\4#L<-Kx&ʢO`Y#; Awb/J̃hHm׽o5`?WY΂m $+ g"LUK<2ϭ%=Szzg ɶ;qה)yhl'-l 4-Z̅nÖX!+*+~ޣ'YT{TEH8^ck|߿^cPXݺO픠ZcL)/JMcQCքP4L;2փ>EF b-V n-%oef-PƢg<|hz_V/ F7 I](˲%_Z-Bc4$j߲%:|_ `G3!'=,|T{7wD1y 78 Ee3Ɣ}`XTcܠ@m^A|$JxV˻Cϱ`ĉf&&9|_LR{MߦU, DK|;ԌeMѰ6~+ U eʉeKKQ v VN-b!jzM7D VA3&ʇV3d3$ˉgDhɏKacЪoflT\}s a r}q4}W![+Q'Ƽ̄1_0teZK% Ju6|ʜF qG?2y ds>`ĵ.9>Z}b|H aX^A50 JFjѸw.UdY.L5{[8>%@ ԣ gWg~X*@PP3Mnbg̀1 !9G,#}Bt꼯ydXcp$ÇT J2S ݐ }jGuZݸ΢/* EK |Z\cU^p,=7jFzF`vT?hD6](g/t$d cTpz&5G, IDAT}ɏ(_2d5+n)/Po4$2 ]4ROq tJ#?>?\oap~%:0c3pU<=.Fh$Q̏oS}D_7"6d̓@Cm ƎKź_%AzcV] mMGD}`0,b>n:g +L <}k%Wzd"D,Y#2/x~Ss[Sz$S3LH9\js(j/eHS12u[- G#R9n`?*o90[To0{bWM.|7/b-bpos,%8Ol Ƴ juC LG[X6#dt<:͈2I%0BM<؇S_z|G@Nơh_i͇ê.UyQTZ<mkx^=2#2j>l<0@ճ[`qhoϽddާo0oXUE}Ȇ0$<;Y|ߥW_|u3|>Ϙ1Ɩ_B~z1= R|ooq<{H<9@RK`:on{Cl5L6G?n! YBl̠F,S zUMd̶ x%^y4}Ob\>= ^4U@ߍ š e X=RFň'Z-W|fD*eUkox ?3kϗn3chB!TdDF b-6/ F kCwU$|/aޠ~eEI͖-eSV+dz mwh0:E Gp#T|n:dަhħW)[b2b"XSV+=b#"|'L`!w;+}A |/In[zקp}oV%?8/(>!|Ck-;QH\Li. ZaDDpހL\'YY#O.,C1!/TГy7`F.9F '@3`ɡߟRRpUdu} f}L W->u?x;[izY'>DJW)c+Q;d:GRo l&DVea 3)U9b~\m8$GBGVU$ҧꞟݐWh&1}M*4vI9? #HX՘.S4߹x 2d|?2.R}֙TTf0عZv0GMѲ#L^ !p ![lݼ@#OiIqcX"U-aSS_E݊U[>&{})m8|;,(@&ϫkb)GE#Ur] 2?/#Or^S-Y'pE?f?R/ɵC#֦y{iusƸ\ %@2 cTҾoø`Kc|943%0u }ע#:N-p}7HpgG6'ȈT֠@ &׽5^ 0x| 7* 2yycBs̛2>bq.1׌͇.1NV &xf!|ZU1Ә aRh123`<5=(5MgRz0 DFt²E6#2 %6@kzwHj G5[l[l8ШLku,<!XS_'˳>afG5p>W#&/^BM"*>Wq=f_\yF1eMߡ*"%jcԲտr1{U|zC{{ ]ePQLCT=fP,w"[D T)J֓+;k)rdg dx~t(c?0}Η(LE޿]G͋oA qlgf9(Yrd&-c&fʋ/s f#0Z0W]Q}بΗ7_@l[lEF+#‡cы3g⑾F->o͛L4}# <:y.UDjJ[|<'!֟Gu~}"q=HeT"QO_k/Ke[jÇɘ! 9Ke)DW3fa*F49Ȭ\  T/-is/Q|-ͪ7 BP8ppm̓ep52Y<5EGʅDZ-Pc~X$VMε ?>{-0"]T߫E}J/?mbnv3gD'g꣢ ~*XbH 2U F;"B}<Ҭ \w؅]0 h ϑ&2Ժ'B<λM v%f1= F jaR~mwIJo/-A DCf"5(97O$|@G21[>+@̚藌yy{AZjg(mԤ0njgRa&`VmU\ _>.*F f}Buu?jyZMeqPDdԔ[賂-]gWwjӖy˪(&0$uYaWf.MGS 1F b-"#p!f ///_ j>Ś"ggI* B=y2J!Q%Q.G2LC䏉 1&e1>!Y~,O>?]Opg'~\JAĩ079ͳ$fYΌ&fA'}$؊#0@sgqDÜ趟G% ^/+"/%6Ğ13ꋷ<}d"*e7Wd'+|k>"^|׭V/!o^mZz<:O_<^0;1c _dSK\|d򩏑xfvW",2(0/{oby7kץiqO9 Vwo_Klp~JI•t &8-An{"IWЎklڦJ JHTh}v5?N5?ZoQ?Yϳz *k>g&3A(YWGp<@w%Dï _qudkU[c9°iݽee$%(2uѫ$ò'2Og}~^Qʤȼ3Gh?O@dɒ%K;!G x%/{ 숇nfCh;_;yP4M uJG.&cv i 5:l: B=D:7؅,_Q:yD67_V,Ҍikm) jC@ȩ};~Q@PXAՎԉ{@?A=>0ýBK ҧb%H~UwBb*AsǮGԿS@27O4 -'ˁd/y3o"pqs?z ޿fQj6ԡyevK@yC "Q!~\ɱh5E1a}@ Th5Sk#<3I7Uv,m^O=ȸnzk^/ *0Rݯt9MWuQNң&HVq2w3ƌR3Ubl7I{$K,Yd0F DًDR1v\~c6UzӠ᱾5/E٨FO~GX@HT3y*^m1SdP8h^>]%Ƥ}ueɞ +ԍ_.KR%3,[jROK9 @h1j Ia1T>d9gWUHwOG >[?T+;(ynqysCEZW9> Z"GM |@ ou5a q$ڪ'}."r<ЍXbifAcXz?yWQaЏjy_7[< aC>Ye+^'#E6QM4n*nd 0^[[Uy\Ɓ_/!˞GKE̩)w >v|$no~?[.FQ%-_A咩*T鞨`c`q|Vw(+ [H,Yd#>()b/ElΉ^s(}{c-fe$z2 pMT3,L<#n1}p-: ()Z(е3}T*J=Jf.E Lx8\W"s\kN'2jb<ן^ nauZt=?~eWZ!뭈U).X2-̆_}Cy}w4}g9.;b\ޜt#DP  *lox.&WJ5օScx]%#s\԰Λ: 0Fb#2FqAS .90a@SPV|;Bc4͢o1˙ Ϙf%;G~Wya0yg^5]ѮAO`)+=٤{~t|x;1ɒ%K,YbF`&cF)q+ U޳۬K.Roi(֩1=} ݞt& x# m7u!l3oAo^=AZAq1|Dc3yh|HdA1d%3z< f̜29d^1QĭL~ GqI0[5G>2]C38[I$3q&W 1x]Ɖ<+dRS]Ȥjb1wl9 9>:|viE IźN {)9(*[X76cgnM үG1?铨|ѯed̴CAk}= rqOA"s*0\C/?Ar$WiN@8 U|ĦY@*XK&>{@BXSAl$P,xODjNXr3}8M0cq%kODqul;eJ8q]œ \q|y~_OưJFۂ YV<75ƪdQ` ۡAu{$U7#bD*=O>{=\PρiDu-Y&խ+?6>THi>$ƟiǁGf9^>7?֣Hb"H@{nHFc7iϫ{f,fe,23ϺX0% =+fͯA<u7rTy~Q}6$vN}(rQh/,1qIwB6*JKZm;aUG懜:Wt)b^glXxyF'[߫Zg,]!q#_߿|>د/XwL%\Өָ@_bJ{ r6w3) &K,Yd͆0 <*YSê(٭jcn[e5wzZDf?D xT/?g|7<]o97 ϟn|Fp LP-r||'R]: I}!WTMq }U-Jlz]tzÕ:yC4>TD! s>a[ ;Ǜ%`q g}^{ׅX ~\x梔ͤ IDAT*\Ǹ90gB%?//qqu(Kx"%u}Z- d-:.-&LeDY}{v= &H?E;[?(t֑)H}>΋m`?;36|~7Io_ź]lH\$#,Ydɒ6/OwXjrXRvH#J<$#odnKA ِv ^0%*zb'ޟixb[{5mtdDTY?+TbɼϙbA__ Ϻd1~!F2Pnڵ#b¯3 p}l^9"Z1Ypލ|:'ߓy̘]DĪZp%UĤ6LYA뭻 L[]JAzsWMLJw>Gղ'3꜡0Yܲ [Y?6U,dA_ ?i|`>^:}6ߋ}sC~x#,Ydɒ#b,G*wj(֌)1 f?>gsϵz~_m>3Od\ 'Stԏ+xL)(nVw1_#k{vdWa2Lj1Bʇ`n=䪐'6c]8%'`:*x~_0\Z,m+֮:L烽@;l{_}XUcTG}^!8I愺T@dUȜy^;Ǘ<8Md/]/[k~;>kۋ{38}>ysRL,Yd#t󰬮K@# X~73f6%$ݚN>Wi"(a1{bO|͊Z۸>dY߂sUx8@,}XGNÊ^טG: ~krS0 b+0dɒ%K,1l*|st8d}w㳘isةdNXVdiCBRZDbcڕK'T6O} ի^4@iCKP 3tʟ {xa$g'p=CPy!']T3ͺtr oWvג@}UImuUKryo6']!8}NQDXE@f0ٱ]wlV:?xyu(J쇉H,Yd#pKd 4SqP xE1QAX[1ܞGY͋b^žk:OA`=o ^B6z3߽ױ,+ڟ_QaozL.Ff ȕqfr|lbHT<Ґhy9/0ߚqI}G1ܞ,ؿfYk5a,&-!Df웺 \w0=]C3fUѥ/̜(Ӫ$ə_cXDy#1B%q<&sed麲ꙍQ&^{ޖ:<̽ҫ1 _U_9D[EjwP1N;n.g=kw[ 4VsQ3;eyr\|@ 3%kSDwe*Xf w>qXW#,Ydɒ%FCO6(Dݻ4kp> O4<6?O _٭z# jK[dM-U_]K?9.2E櫌&G 0AݩZk=rԁQFS_LX^ ղy#@})S^ Qj 7BL&B&bHsay k_YTG].q}0Ydɒ%KGWF\+f?q`*hQ}Í5; [{\!]ϬeQRݐ.xtLvʽg">ܼkn-;sv |Nʉ}%U rr z2o3VAݐI1P=ȥ0HwF{u[KQd``\=e܂ȺeSG^zeU /nsG}΁P @dɒ%Kvol5olDj3Vz;Qg8@'S<ޓ[4+EKkQJ"=|hyN:4óan<4G(s۔׬u셰j z "hA斻C&`V.ydL+_Y5'Hus <Ĭ\1d>k&USFb+AeE1u[Ga]rmflh_w|%WLCן`UHg_#G/CQ#jU~Pqk>>uqBN~L@dɒ%Kv[S5^q/\12`zdW+Ń.wV "vI֦e 4V$Hu(OY'z%8O=nU`6oksc|E$&ʤ[O#Duq2R߬]F+5ZƢ0@',) Ke!8Au< F9OCDf`}]xm)L2Mc^;!XUr;XFsOǜ"̳ާ O`3F[ Qr~Muأʴ=o}A1=#aLp LIү3ۯn&P6|0d>ϯ~컝2>{4Tf߽8Q.n;jv˵H`yzH,Yd#A%HmxDK'z'SV{憵0+ 'BiEEAb{=<3It~8֬b&⥲3fy 98\zDEtDMi{҈,xI~YCynN mA˪VL#fz…Tz CUS$i @PFO<$Ctƌh}m?Z٠wloKCd{γ[|`߯U?5תw^_L<2{x( &`sHFh>yEZ2HdҤ:kAw%_sپqyR@dɒ%K"G`^5@L̇OCg_Nx z;6I!H WS-<"{MTdӞf}V_TJ[a59jopHWL"``Is!H_c-ηXw#Bbuzg|'H0Lq0x-fF0fUbfwC: ǼԽkt)Ϻvy/~0*S#ӱ dһB!܄k5챏}_cX^!EJJ߃a7t# %ֿ]6Ƹ/a/hg~j!bNEEм%\VhB}r$Vm_ xe `>dVMA+oc  î{CLlA0GJ$RF-G鰛+2 ca >ǣ+37ō3 oR@dɒ%K;#@8ha1_tr+Zv=lefs#'<5uLR/j 769_1؏!zd\JE##T77 qYkvoٚb!Zv \FGX5Md^aW>D(Fb,Ϝu≛6v}cwA!^k6s2NX-Rn8kO͠${;hO]? f gy !r<*eQ,ՌCgSdK{Ĕ2 a) C(z ܌0L<]OEA5c~*9FcѼ }h%zwЮw?$p[S CbjeNcR'V`ޞ7Cq"?pS7e\HScޏyns]@st6/J9ɒ%K,Yb#`b!Hucn{@g?߼^@LY tSr|)z>d"pA!έnakn{:r۰Km-aPc/ScWd(\Yє5A>U3eR" GfIUDYeDiGN4G#D3LbB1=Ws3޷ \ QEbs.orY-X -fpHf)Oon=;juaJ2V$^pD0EgC#3}oUeK`{.̵ݽm Xnе"r<"c_%],9.ľ~ z_u+qCɱ0/g8UW9 0r%K,YjMǡ}Ydi^w Fb`O|0utdzsڕ_ze/zb"*͢Á1j괋x=gd~1m0DzCi5k j÷ *eI3W)E#@ڽ5M-1~7d[ M?癖Z4ҫE~^\56?eN|D#P3Q{ꐌ4=_wNؼ܎zILC_4;y܇}XV+e݌Lq\ b>]'* *qU~PEBL9m٫г[Us8Ζ%x`d$YҜ*mZn7EqsU|R߀V q2prxguUyE#8#,Ydɒ}Plok=d㷾ٚ Tc}8ȟE˥"Yq>r *giY2עO8 Vd_)-(Fiy8]| 7ߚ -$fKȟY:ۂl2#L ?ޕqҜH~hnYsuYVi4܏XUvm=S=^ sZD?4fo>I IDATև#6U<%0ĉW${TŽ1Ak!d:Y+ $0UuȄ0wۺ ƪdTs=~\csTχxO݅y02gp_F5GU}Ԓ# !0v߯.|TwfX?^69;=7v/;ɰx~L˓l:7 3#,Ydɒ%F}i]je)Yƅ*̓:Sq.xu#ZWЫxX`g0.x'.}d0j2uP }z>0\l̜13`v琜K7yaLReX.T$K,Ydoxǰ(gʘkdU&u7#D0Ӯ{ -Yk2{f}_oS9ӏĪnZMZk8e<ad0^ܝq}q}zl!5<!sn´*kw㐉>ੇCTXL~_x= ;TEzd`TF?Oe8*ُH,Yd#!X7bu1A.󻷺=sH%K,Ygl#ZT`8[[b=AXRG{P"lߖfAF T9s/Z$>*{D/@~o sϤGzdHuKVu?/5TRr5^s׳Ʌp˯ )HNZt[$ =to%F Ydɒ%Ku}Oj/It0(ΞGdxl"qCcXfW)]5 .DzoȺ gM)CHXX7A}nלgBd.rZׅR愑&;$ "ϧ]u>1+Y'Koy)!d3LfFy" y{`dp?0%|y\?ߟHW`:gq,b_`\F{N@dɒ%Kvol!8O\iƤy;O{#FoY%H'KLAMDxfL(v.PxV7ͺ(U\-}%D*(C6hN3&9_?c0&87deYxM<4ݵ1[`^6|0o}c9J#7θFUyÜQӘ |&xVwB]ga yd :Vd8gMk S}]og2u]桿2wT#ӥ!\?>Q}aڥ3oQKur9/ 2o20XvOz9"u3L- a^U@>}y^NtdRuLdL3,AsN[Ǿм<_O,9xVzO9o}OP$K,Yd?ӝ+=N;X<#XG-fnakZ:VLRULbArmi<3RX&1V{`@5YfA;Ma YPWZM} ܊9 EDzb^R'=s-N[$z_Q& s݌?+ȃHkU/ջ~p>ҹar5/Li#v:ǿRECv+{sA_z;:o/L|_goeuﲟjC!s4!RՓc?on~f>粊b%L!OVa oYϦ<5<[~T]qӃgy,ZLD&qEfok7R%T}z }." saz%ۺe=јvl z)HSuĘt|[ƌ(&zuOV=[IzH3+9]Xq3%6?+Ble 2u CdǪ5Z]伦GF`?;^9aq>@IyBzb?Qo"̂y,+0x?]FS`Vx]}9'1P^~-nOb r?dɒ%K,1݆zTOe.Qq 1;|nx{V-,]z`5;Yw@b<])/noevgZjin8FR쮶f]8q G*;8c0؟y֢TV!' 5=: ]MQi)#Au2A5;x1NJD}n-[@w^>$UqOx_)Bg>q;@Y_܄'kH,Ydi !Z.x]GX GrV3Hb02_#d͹7,WCx{Aj k@:,:C3'x R[,Sh[HALnx˖:b^=Jgā?1JDb 9 Գ@5௯.'ZW(?P)ϝMĶyEjyf k"?ڨ&@"1\8FЕ`NOT+׻(UR1sZwo=V^7cS$U¦2b{A!5";s9^f=-pd2fy8\/^E.JvR`1x+SF2ϐ}`?o yOIk?~^A{Ms<+f:]ɺ o?XKƠb諌,!VWGU*߬aNB! VaTYXt+{?3Pug;Hz](sz (JL ϫ-q|I@nB7+axNu3oIUsr-0 2fÀ}=POV1<E+_L_%]*>DF 9;*g1,qyG.wS@dɒ%K.7<\*0zݞf/iI?7^Dg, ]4{x g])!z5J5y0jB*-2 :t3iW" avuPh}9[.IS^u^>]z90Ksw{"#/!wL81uM7w_T`E#,Ydɒ%F; #Uyok*7`mq{"=Ƴy-qș<|x87s&}wE>Gw7,o7Wxv@:=Jj [ndf unߔ8O*TcঐX XdL " C^ R#AXj2>Zr-T6GH!t#isA`5 m|hרwyш kss=%r9qWשa?"l6D٭՝Q:h="~Y`Kps>sd#RA-=&y^ګfxTO2kL십j~v3\U՜)> fL QC )1FduhiN[/M>́GD`>7c ']ד@dɒ%Kvol!\yH`dv7"b0xV;Og3DzrH[ YMaz^?0όeC6)ᕱ^s?vgߊ]J|0w٤MubLIQiKUA+_|Gzua"~1ؐMzڅh'΃!nҝ`ǂ,IJ2M#V$'J:8c&Dž0*Dnf䪴zsfFY6 To1# ,u䔘Ҝ_oDE!֋DAGqQG)wg Չi136ݔdNGIb΄dگJsDypWy&hӞ N;WWu.wk%c\~Uލ Nc2U071b9C_l%v\NJE>o1“= ϳgXǹ+ u>HiJwZPmX>d\JaF4/: ~i}z,LOc:EWE܎yi̤LU3<#~dc$ nQ[y΍ψIOHwSu6k H; Zç'2b'q#$I#ҷcMoz~#X9u{ZjuClsxe}8ƫDeih^$[Xq)"z\ϲN4Efͼ] Ab}%6ފ B? $qc!k= e.Ve2+x-7fV@!7VR[1w`}~ꏧD4usPV-d+ «\cԜE[~_ ^ ްNW:-7W0[*::1 C ޟav=#.*:YEʴn ˞ М#=*LɐLe<1mk~߳#g E2e8QfeRC1c[7 9U=1ɒ%K,=lo%zdK#J7L<"aI+:{@7t<tWf:!L?m s4 IDAT/ "a3@&YD>̲`}gRu#xρ8kO58}Z ]3ɽccBSͳqy jA0)xDֵLJ.|djA(^t!$Hd4Fĵ֥?<r dnȴ`nE- ZQt e>p}rBק:eH骥{`ɪF4CwX \"~.sotH.tZ "r_au^нX.2E1}ÙC+<+* G.(6@/k(kJ+PZ<z8gvsy ~ϋ;#,Ydɒ}%[6E8Gl,Ѻ^G< 2+Ӻy'^A iiU?RsE=JHNK1 py.=Fuazr]uaf>QBrE*M.Ec)1f.V̊t4-~T`h.~'SCF._"{J4K z ~wyZ |J'| %K,Y|eMqGeEx}"֗gB50 z!m>Y]X0v# JgŞ@i11#j/.g' IN|q %` Jz:99}3bzYљƲ0j?DAȈ7:z^7bTΫ5;-Ұl3X̚.x* h*Kkse)94?|/#GlTɝyκ{dɒ%K,1K2a]Gt`T?}d1Q"İ\uMU $v3lAWگVwHI é 90Tfc{˵0*u>|d=n)9<2 ki엹C#[ S`Uj30y{~oJ%̇Is[H,Ydikz TDd1x&z|b}O7cu@~=Lw*Vuq3Q*EoHHI߿e0b.CvMJ.oCQ nH݋ Hk>9oK[ UqLs ajуȤtz=b#{'>_?+†l5jQrclͥO2_$K,Yd:# Ҧ1<*K8"h7M._ Js&g z9XO#Nsr=mH,YdaC8ϡ`MQJ{DI_)]98=K" O d?^D 1R ]0$Y=s֑U fR{,i=zHYO vcA񫆾 7Ɯ2zʌ Y<*=n끈`X?^H0ƨd===F2ϳP8 M;`xM8,!(ֵz7hn|Jr(r!6@Eam(ݺI)P?eDO$W^7CR)Ⱦ9 :9"T=D >{yz(CqE1UkmjWBU}n:@L{(?֭;x)ˁk^Lw pH*Pjž3`~7>7XY`W;~vŻH,Yd#pd3K4 <5ϩt4?_x3NuxׂGGkERf}7Q^^2k1Cx;ԩ/2˘〬WuzV'<3/|#Zu  "R3اfeҟ VCAA~zҍMA,ZףY¬F&Z:0h\gG=|U?mT^,~"u2|3ώt#@ +J=l_!bjH DGdq'[u.0`V1: We4%"!8ru{aSt_ĺ!ާ:>*/bsgN4ٲy}_BYwP@eXҰXχ ο=U?CV~3GBJ?ϼz $K,Yd9eA\xSeLhY8,_%8"]Q[alY(0ѓ\21]oz$JOb ϥsD@C^B[ Gz7sP-lyk0TS('0(ƈIJc}:11UV5帮v1/1/$rfTGW[b%K,Y{\Kāh3 }18 Ofυƒ"IPF"JӃ]ϙH![<==2jYWDr[<Y]g&ckURS[sO߼׍DnDP$H8 +x;Pݺ'"1L#ATD:|~i\)󼛬8o1ׅ ~4i׍T yaPRG1 o<{@hELkoV{[2}ηhWsI4=Y@֥gKJl32&.(]J[/~jXپљ~=Z9ڵSS"}>շ#HrjБQ]<ꙋJ[wvzg>V݀Jϯab%K,Y{oaXiNV>0>-i%2}sG^w{AcZU+ܲ\rx{3sUEXnU z}=SnSV<2lu ve2c|-)d\KEuL[&Q܇!2dݷb' *OTteϿGL0{0twfRc "jG-Lnu=ZZi9+2?ZUD!tom'Ta>sY"׫_[dLB!LBL*f=~fb,/Uwky Q;>?Cڭ:sk~_Ȅq*Vb%K,Y|hZ̆%b yۺ2ry6+l][d;{=6naptA{vՊ36/=1z szeA*X`v+J D,^zV =0ydf{_!LV70k"Xun#09ƿzȿ'ۨ|m#x_D=?zU+i Jijg;7=ߺ1'8 y#9FDε[=|8y c%`fbu1u39ڽ8(1\azFArFng-a^5Ό@T1r#AAzN+< _ mΆR6*H[ճ$v>*"Zr @?eU T -F_g~_(QfUF- `ønVK]f]vxs=̛]a`2~X-*tyH,Yd#piX"J<475(c*Ϭ&lnkúA_  ݝEb?j1N닽==|SG~!5͠haǜͭPO=2w:rUc!ҕ׿rgypti{_z9؅rc !t|MTiA.HDW-%!&1er_+M͑}D oO)Fƫ8ϟPGfb]%=ؤ{sĄ QS&D>M LҗC:瑰+y&C0s# 0US8Ϣ{r|t <0o`&3D}L@/iuM,5XwKQcv0~dɒ%K,15h8Qﱲq5f̮L9Q<+njIl\SY =.٬A1U< ir,2{ZkLߍТA\n[N9 d~=߼nz73AOPr[D*Ur-(\^9xĭrsx8oUA3nfcX Sxh^ϑ hRcA%b>{! ]8ta]|A68O+Ǹtw7qUV:ּ<#L"MAyY^Põ30M{-)6c(rQ `|{gJLb/~"渌3}A+r|z IDAT@b<,)n|q*ȁ9|U ;}aD1#YMz{a\ZVkȾ.8FâJ8Pu jDRz eju2әײ/+Ck2(}ٿƞqrР醹fsߧ]a~ulmȴ7dHwSRdɒ%K6k xF'>o@V#cBĨٞ&BC+@]:X3wXx6Ĥ C@k@`gHfmcA~3ЪkE}D٨>}9|ed!9 s@~<ؘYywS<~21b0}#ed@ ^~Gj߼EG6FJD*+;FĆ#ܑ ^Ξ0۽ڳDR[=Q"n&5we(nDNkvK4Ⱥ5DQ.X˘7?9 @0 rw;O-Tz?#{ 5yd΃7[z'~_H~~5$K,Ydv!ע0Sd:~|œPsf_xЫP`ځYu1=zbxS}td} dXk 1Bb@V"=Ag%`.<\B1B'劰#1pieKvlsxڹ [~|jCRqD<sfJQTl1&:D;c,"P. @ 7礇smJv_0i)Hf`H,YdakrCxFMX.A.1gGWOzP&d#3a2VƁ}Ur Ua! F+ɁuѣqVGbZg{ICخ!"N0/4?.qEݽ)WBX,~wg bZ%_|FyYw={#!5 ٲf>n?ĥ9aV@6/<"bXmUd ?|]Kq|cg=?CJ8T9T!QgM9~Y裔z vy0ۂKepb^D?{"ug d">P[!ɨv&m v7Ө6#T $@ŕհ#>fl%pϠ6,+YLٸLi)HJ:^6Mw/;]ø/QQw{kJY3E0Z-ͳT?QU,j2L-㿔ͼ7xё#Fz= HLݑ?z8D46\"  8Lq!4Zj_ƚcʎBFwSvܹT"bim:qɔTBJ X}%r'r;iUW'~7C)Uw~/#;cE q0&dGPJB 3+08AvP=!˜`~'c@Ed A(<%A x'ڂ7q6oG1/ؾ?ۡs ~ XvϯpWy*lxa:C]->yFD`l1[}ǻ=JO2S."iD%?Ds/T7=庳c>;"v~xod8<&#ZbU(s5>d2sEzZ z]Yf0~ΕzNK\^ )>f88hZв,]yPQ癊R1OCC~~\1.ZjZbd6 #=h96aVUb};ы&2"|G?*Jˌ؎DmӁZd Z7Ȏ6gyرVjCӢl +J!ݎ~~9}ȧ~Xq;̽㣅4y}T={/^hvⰝm[V7#wƨ̚*f+A"W B'iHx8޷Z/AtVSZJwr_k,1ɣڝϱX*9 PTz9Έw?}XK cGfKPB(񦿍J~#PZu0;\p\j8^s˚P~neEIl|9z$bDhXZa3Z@DZfmn +ʔ)ʲ4P玗h~&s+x+X0o+L8.Z~GWPy31ZjvwHƪ#Rvz2cR< >һGsncՁGzDm3U9ײԘ[Awljw) #[<]Ɯ\{1"] zI$U^ {@p/[]y93X:R,F)ջ 1FU*AZLIYq}2LG1fY1wFd45*tqfUs=d gsϐ=Ku5oພ6|&N*jd-ɱlcr`l4~ CqU!o#b8sѶzma G堧jw2W&gb|Ea µȺb*d|X:`Y8'&"zl`~UX?_}Y%|0ou:Y~|fmSVzމH-RK-5Y512ftں?~;@C=b5sb88 ټ2vRGbhT T4H׊4_[շbyD/ݎUֹOKD~A\(c[{xyQ<6`XT21ql{|^5 6Bbj.ɔƈ.࿿$jS2Dd5k:PGNBhxyOS3_G<۟ O|2ި~^P Ca~)Ӹ]q 3Ǹ.h.n43^LڰњZjpDt߿Vg°*C̞4%U%kU 3 ~3hj6X퓘RPãJ@CLu|kZe'Co#ZjZj# %x掕;Z8-͈rzn]>w lZ^}^tڞQbVNHIՋ;g#U-|g=sYq_3l9YpxǝTF.^1f<buIN;Gdn(?;_Um~ιG .Wqz*٘3WL3DN}|~|n{%5 7Fp!n[+kP3zyUgzgcppݬR({X1~x5p=R.8=TVT_h&,Z c셳uxl t" "Re4DDry)% qjriZjjd(VfଛiYj<4fHY1keQ9-ڍeU@?z *3}p_&gRK-RK 8T|OhTSwwOsG+;UrEx8 ڎfd SW>ي V`09sV]kxyIxP]ϻs1u+vBc<ЪX~^3.Xu`ZGZqԇLo!jF42s:myX7[W#ZjZj#P1ljB5;pD,&-1S'1|L>w#{߿Hg2o %KGeDoNemVEůADX5}>=̟Β o:MkZJy.!!b754xú1 5}jN/r]gZ1rA\Aa>ėC42-y7G<V+PgTbUBXT>ɮcN9}QQ7\qV#suN&hyIЩ mU-%õ*K&IKdC}O;譓"BjYhI!k3J4 -S#:UHRt3j~duʇsr~l+ۅ0җJs_wkF8971o.Muk)k RK-#p)hCNU.LkUw׹AZp=ns=1nz+4>?uʤ6A}+BjrB_jZSᚓGntu[zD%;Du1L"VBU3tͧV|!옚Z 2 Fwb8Pɳx(VEV$nànFd2YO.֍Ƙ}Qͼpc"0_ϩfUP YȨq%e}4SZs_jVz}8q|Os>'?ϭ|@ec=`f \?֑ZT ǝ\!JF쾍9%87_un#YO 3K<'g$}+1ZjN;$z&H%sfyGc% *,6&<`guը&` (v']~g쑼 Ö##eCXH*=䡶`cơ{mxYVru:!VUb=xF>XXg=zԒظFVPVԪm3ߏXxVޙT[٭*hH^[> )nơئiYoWB7B) PX2(-܌A!ȩYjn zc0D{<34Or~Sh{57p>8͸s ŶC,;^Ifa\)ѫȖͿf5=o8cV菼{fXT2CyoYZͱ0%X׿Xqk3-|M!c@=os|zi(*2 8ޜHXXY8@eϒRS|ג@jZjԭArQE H1[bTDJ9Odw ^^x$?vZk-3FƝk܊xUO؎f\x i5Ԙgb K.ȴTJY8uww䎞H}c.}!O)}̏\bߦXD*LH` h{dnOI,F8!ZRcBMq=UW&LݎSFi8~7< 4fgw맖}ǣ s&fQ)OwI'Ӿd_񠁫PYT3!I&N%=NƎ86_ & J 9}dѽ|RK-RKnU,mdבj&Vz1_#$mo- qY>LPŻkx=WQ56EYzz/<TTZ_A#z^SdƝL;v\*aw"NXgoyI&Bc+1]/M{fh>!Rm2hPc:Q+#>,"t3GԴ""߁22#мс hnܮqeOƗDc>FtzZq_`'YGnBJ KaV^X?\�b'DM?૰ onԷe#-.yHӨWc?.#`:B ;2<^cQ&eb 2 sO0curO)NUBُ7oe&F RK-n|lG"H+H>{Dj11g;d[+ !"?2fފ᳚NҼhM Ҵ#vI{:dukkVp}|VGVJ{jcwj-@{4 7?Y[] Y6bdooWǾnm1SG̏eDƃVal!E7Q| j`bjz2iű5VѼs@3O/pZLc8Ɉ=Xq5AK ߟZ?np,9n$Z/,[Ϝ1\~˯8&-׳ݿ|6NqAڏ*z2xOu 6=Xqj 5<<[\:MD߈œhr4sx}x0qؿ|OcȠpNjLpj}aNTߪ&&Z_?ꃩZjY+ǪI 7Z khU3:M 7AըuxG?\90/7Uٱ bal'4,Nx<UQW"ΐ({D{zقFcżpcx}U!s/nvЯe6d!";rKfСi]+[@b "Z iUCc5jmhxXV ,}e1(-#Hj>:bzWƝ̛9AJxdN7f*yI#tqaɤ1DK5=b`kN.?/8Fch9ve~1oK_ֳ'BLqUx&s71@82}~ރ3 'S>v@z{T +4QKշy)>ƈD81BFbAVkFʀMM|:: a\4oY2B4m; 5+Ab+ u?̂V =N0P":`|m9J,FA} A@eDZ]3rT[}Lql>"k`0;$Hfb> {P$Z5X]` g >0m!}@z|-TT~LD5&'+?y·d<4!T߃Ƞ)8`?W Og־9\@qحUߏGjzjd*h&L1{ƊLGw\II#ZjZj@A5"z!BtݪY :qǴE8=ZJi8)a'ΟԪ@;8N-N}`#P"Bu\߃@&f/Ox΋@w%9o#Α#ay\{ W±oI#V6n\~ϽbD~8+["UhKVAdRUVV3nf9ed)K@jZj4k ̀ # U- z~͏f5eSC3P.VIU/<4f}3l9) e'YD:]i-L:: ̪~Ę puŒ#>ڟ=B);\͙#ېz ;VxyNLLO|O `}EOPbYV)A} ~f&9 J̙f3݌֛OĶwH5aM-LgʛϛǛy}w{T<W.jdƧ< `cxַϽ0 U~##~ ڼ<ŊcQ֗h]J!6<.H,?/s|0¬ς_/ujbRK-RK-1drQrP4R5;;Sj,&'лTXxpնpg5Ap|a OkV-x&Cb=F-:ATvۃq?qk[|wcz!y%#wӬJޖ{v=8+6ed ꜨRص@w|je*OZR5o3 ̻#ni|fCrF~ozT9> 2nibƾߔ}ɸGΣҏiFR1 NCy΁;`$N?y0= ݅ϯӸޫG@\|[˦ϩn]y"lb"՞!|~o.I-|0 B z}y}YhX ̷+28TPi1`ḞJr^R+Q Zjkl:}#1Zj|JHYZŐk+HKQg}.;#qu#;Wz3c;PUыߞ^\ݍH5Au8U#BbTC!F_vĴ(' eU^ǬuX{݌FN[5#a(Yxj58!x;׿մܱ;ۯ իƾ[ռtف8RzaDy)eQg1AUd?sfϗ+Z{&@}&&t d>B1}Brͮ!j?a8Цh?lh^GHט1L4kY V;[p߷"DM:ud1j(Cu)RK-R?ϯ66c kL_lt5AFS VLNb #ovnf0H'"yDP|~E3Aؤ2r]@c;T'Y7iyh[ y.YO&j9_xAuTYPɑ"_̣3u Qx? Gg<0&Ywg>f qܮ!@6kN 6q|U_u'cgKv _cx(lb}LƐ?ge3bɔdOoc~c]u݁׿, XT:LC iYNaL^5L3 $TFGۊ ڋJ}.8nQḱxZuӨFWF RK-n a˯ēj$W^@T"$qacG|aEPV7=guGqgdu)89EeR=HuQCP!NEZKB%LRK ˃%L%mm,Qd\8N2&fs\N~|I2O_̦bXUߏ0wanJc~ Ĵ*"Ʉ+cT TUfHM֬:Yv Tcy&,8s!_G`2/@`.c\G`癜\ǝ,͋7̯_Qk9H-SsTLklļ dP N!\o#jE85-k\ϫNG~<ڲhc*Q:ٚ+#O`W~Wv3hY3ڭZjMV~~hL(hI7To!"K >Z zAΚws'gI_u,#Wf{gWƐ"xELCfg>$U鉵 jhr)dxs E74}|2c /Hvwk4gg,Isk* ~3-GO2}2pwSRK-RKm&D TZ;1d=QFQcZT';[i1;ǘz?VI,2Ĭ[yfU^Zڅ ;h|n$UZSmy!7?h C" C'r2I߾h( [6KUk5N}a @ͻn֠{iv~|3Ĵ螗r2^٫Ts0Fz3D&:Tq<0>v_SiΞT- F`f"•YL;uќL?c282[e ~o|5vǵ dP t aj20o ~dF{9QEs#ݔ5ZjZjns;JqKͼ7DvAbV;4ƚXF]hgmp 㑋[k|WcGR缥i_`yuLfhfjLQ0nƣ9xQm Oɣ6m ueƇj5 U?TH)Smךe d_ucjV'CS [ X5;*t) IDAT3xֲ5fF"5 Ɛ? cXbæfTȟ߁Fdί}҈n̚㝅F)s`jŨE2̈́:~I5>XBD{?-fPO*abRK-RK&n@K5,1kvߓ몊O!b/:IŶ5ֺT#H!n$b;/Ɣ.fsvդVS3-!4,btn2 WQ<㊨yP1f󽗿tkvOs;Oм2p<`?Ϣ@vqX cD.;(H=Hl5a5l;s|*$̈́!y4YSd BZmS}?Z H;:瘗>']#AjՍ !I܇:u0lkMW$-d8g@?˜O5u5?o WH}S&dʞwXxN'Oaد22AMmd~nrOP_tX׉Cϵo6qg3zQQ<}_~V=UFA]};iRK-RK-1QF;IuǶx1TךJu1kXyd"3hkaZ;d-*TsUU-tZ[Zkn"aJ=oFUg+I3~;4)ڎG Y>S?gLWa}#2nZH'研qAܪo>Fhu lq3NTmmH:~ Mh j۲^3d Pփ^If\q'v^n⸘yzZ至X;'W`Y*̉ҏo2#)H8,jdfF69X3%0`k 7wã޳qt3_BZD5QoōM^=Ϭ=F8E6ۛ_eTƽCSejt}"<#ZjZj 'ء09ti^;2p&cTԐHHb{d-$Xcm\/XV ~gȺ|#;xjԻAtCLI'*pS J^.;_:HW}A4bUK5`̍H';+b;3t6G@2tf#rYk'A2;g`矋=C<+60ȿٙ(3 〈F90V@aA:XK:Ke.׻%7Kz#+s}ڱjt7qy(S)eHtc*9N{w3Ad`y`pػ"0BH ;HGI?q}Zӡ/10s"tH溷py-~9XE>aӣ0=a ])C5u_MbRK-RK&nMolܹfʪSλ* ̷%XVCe'\kxEh8 yiuE>pGü{8dJZonʜ?NA@v1LWy3#JU_@ L~K*9[?7U_Mk6Oǎ7P}~(l_iOFi':*YG '#ƅ֌uCk&7F RK-nb!^XjR+H,CƎNovY}# ֞0bX\!(xDKP&jh=o˽;?| }"eHd"f`O^Ssۗ!_a\.s/^Iu;3q>N#Wx#A7`j/䆤ڦ 2#vv/Ek2~#z=oa x^y5bf ŗij}>[:=99`; >|30 >]L\5~ơ:w"c)LZg<hu/7׭'32/?ȄiuVFw(@?>|~ʹ [j?V{L~x'+ʱ03yG8\r?ZYjV"h5>)\.󌱣Hx=R맊 ?ɯJvY }w*q}8|y}c fjhغVd( .N/abFne` 1Yw3e-cB5׻0 9\Z%wy+?b%(t^\7C~^K_r;=\ zm"bf*q))LjW>2`crkK'u|d=}X?•q I8jRascV0N?qur.-ֱ{V%tk 䇞X2ǀfjH]3i[x K6PL{R0vdwZTjHr_}яx&g2[̥Ɉ:;U5+!U`WGkKXJF!j(h5O:ICתAƷ_"B%az[ ”*C;Fd_g?cqvy?BR d|]1AQQY}RK-R[/uA;;UUe[G 5s( ՝;NC𢥨#1AU,Y̹* 1LmhOj} Xu#u\6;xԼl}ցtLL1)Zi W=R"Ac~Uظ6/J,"|? _gR~oz+~9>;IB3sv =j0dXh.;+γmf !F [ύS/uSLqZ07d֤@-t4ouԁ ԗ oC Pj.~Ra.oz_WR[g{>:_{F`_8oDd_HV wFJbRK-RK&nI#B(Z:`IzK̪EQu׭:v 喝 1n/, C#R*^Uwiiw"oWaf,,Z"ĺ h ]طg!1[& 9!/:V^ CQ,G_{Zg\˷bй O"6* HQ-3'Įąw"OLjEhg2o85 `h`~0ˀeۼu[?hhOaZ, ~]$ A|{ߙHW`߬U[ϛZZj5^?wRwtu,rǐZj}{w#];@^gL粣t{d\D[2w" z_"׃ݏp/z[|Z*Z[ŗf#,iU 9RZݒWijA\ǣT5#a x$| (=L#\0}38V5Sb텹VM|>u؆򧧼Td̼lwSW9z\[-~hDd>V2 N7Vkly\1M0-VK-{`f ^swu~B}qD?kh&'هggeJzcXa\?8cX&Q s6Ѭ:0zy ユRK-RK-17;#@ǝe{ |ɫT-Ϟ;#An}FC쑼yᆲJ2"JƄUuXG*r\GK/ fNIuvW͐)"f י߉3dDn!h]tѳAH52k_ӣFl'YDcP A|~:)?x[iU9f< {13ך7Y\}6-nLcG5 NG~{ H^qHl?"=j"U q^ȟύZR|,ԳT'3~k\̿!t3Ĵc.r_"]#No1չg\Jarϛ繃bf?MvfAP3aךvYh G[V 856j{:Sݑ"I]~RK-R[2fe,Lvn)=|_wZP a} VWkNyWUH4\ (3ͨ]UDu /E{Ό11w@sfxsͨk HGS=^Aj~0 | 1 cu:  %4jM|IU; b)N6`x{~׏yY @?R 8)Aru~9{Z=5" A_Zjd ǰd5YƊۑ+OkZ${$CR~;W ufR$Gүc+AceD<ѝ<[j>t=sO;vpe6=Onmyuߓ 0ft; R1uL0X%guHh5iW͏|kRcQ}2{А Rcv6:|y&9?FIL0>tؼ~+i "8C`?/ D&er(H?5̟*0T7N; y5bV-;Fuӫ >U^ w*0 t4XNq%իO7ziu>w߭[0{`; 6) y*j^uKyu[m+"U_"HBaR  v0~;ojwciD8-C8=mܹc2(R7U~ ;[ƏdgNDwC9;t"x[;YO~ AY{Ov<=ǪCQKδhU7zJU t?C DgLI.4F?KD@rOx4sǭ!eo| D6u^{v3ӴH6òր??M$AKƈsZxFhZ12@lۿTÛ\g0dIXkb=}4P.|<[9 ߣ0\ LEQjE14"TAKSㄟ^C¿6"|E:~v-@9|T}0RK-#p#F6ά=~g7yWR2߱j7K IDATsڎ;2T*_gZ?Sla=#&3=UFJbQou2iӓ#2*GGKY|%nFɴ0lPs?e5K* u~w̋c9PJMs~\R;3 o.H\QR=o_9gV )E;ڊ3p`Lk2䬱B?%q:!d\O>cǭߍZjMV~~#hj xSӃ߁ϿpoosaRo/QM5ΝUUZ!P7AWs235 qZ_/΃uG^Ϡ_Į%VQևL:Y}o9mB-dze`(%/}Uy389PY/12 r5ZPۡP@/ko;'H+[j7d䞍ɷFZ*c%·_aǿl1, K1όj;'=֪A4>U7UeUb;c?N,F!Le5IAxщEI y ~d d4 I3~|v`ocYG <fXV~w$RK-RKG؀Jl/PO~+ I km;y:x)e[Ep(o**Z~#^xw,a*qMi0dqSP*\ĀY]vޒOZ JzH9pp!2?R^wȚZ׻` ėbün˳16}('YfiRF1s F}i,ϓړIʻoa%yyU 8.)VpIfϐO<(2|0;gLD 1`|YQɰaqʚ)5>Sh){^mǍܘ*j&dYem*Ί*"O-'fm*yK619ANZjZbnrl?]q„qc8~"By21^"I.ϩAUcl16C6F7v @A%ȨVR[!}${T8r{q8|HeL"0Vj^NDϬc4D{ z(%{)2g0i~"IqZVV߯ꫢ1PYg9Y>Z'=HRK-RKϯr6iBG=!;}qs?ϰTvv/mHڊۡW}B|H;O:Ra̛Z :qg]eXޮ^|־W+o7x4@@ƻ3aڢi_)_h  9)>QK>z9YR3r#Vm|h5elCE}v#!ZȔAF L"IoxBF΀//T~@xN#8>f9s-;Ts`|jZ|1|f! 1 BLĤGOxrqUM=X!?~3q4 lII+@}|漵2Fj- q{:Ab>A:NX޷Ԋ(VɐA&3DЭ@#ßFFAdOEۆ?u /~ VW9 muΡ/4{6wgKdXU`{D,T]}{0d۬c|1+g>&BvwaL枱Ӫd@řc ~RK-RK-1o6Q@rxku6Y?[{o !ꯛ_Wx ^"5N`U^KV2`9Ὲ<΁8VT[~7؏Þeafœ"HZ4S v#Jk;Sl^ػLe޿g**2+af綱@zŭ>O 2Ԃĩl!{mZd7Smc Q;*8/p_wD|%dXVdP˱o@f9m;Bls{[1nԀ 1yDd0md<%>/Ukd-??0Sxc(k9>EaȬN1]r'#jH-RK-9f;i &v)G[Lh@B1G5I-G^[zB/D;T+W4qd'}ױxρtpx`ȣA>`wt&#wal?yĪ~5 qnF$l~w2oFGM5 ĺb;_**}j%Iɴ%(4ϕZI߫f|+C}@'<&#X%A߅+ ̗T=Rs9q.?̋OټϽ9<>Ƥ[ p%Tþ jxdVF:-A?ZjMܼF  ]Ng/Eԃн|~bŧg;D7X -VXk+%RG7 3} -3TӚ'ϘTDr3Ip*X1[OkS @%A5 }O4{C 2ך eٰm9?3 NsԊL*!k:`νz0ܼU> 1v584N +8lsyB6=B*?ovpuwE]w ѣVL>F? ﯟҼ ' >A8qjX{L?5L2Lj 8^`Agd7'qvӸq7' i"qLq}'H-RK-NOMY1İL#:t# gd{6$ɲ>raVATC  qZ9a>0m~Ά*1_E֌JσT;]'aBPk_ >\:XYgaxy}ˢLġndXra乌0 +:ouW\Dž2!(j?hXe<'V%4gx߉֑c4}ǧ RK-R[5y"* v=<;> ܼyssԍ nƬki<=q'8UTT]{2mY{;*d!gg*Z7R;ށ?oRK-RK;<:}Q b֖|zjy\VcD 5o#UJy:]6plgrwʌݞa=rA܌Fkca50 fe.mAr6MKGfl:J!UAȵ J AX8 !r9Ɯܤ泳miU/iYXy3A%IZ6N$mRdICAu+:͑O;}D/HXˣfBk.'DoBlTyL37d;1 + M;ݙG@Xowo{"u d#x*AbHɮRcgִ5eX^OwycwH /2Sk6+=6.noKlxTMת*YR‘F8^?U'22^w|9;ǿWp#bKN[٠dV.Z)S=CFdRX2r~0!A⼉TMm+"'HW~w\wͰqƳM1U"&oUc^:#cwKc֥ga9z~ɥQ5$zٿ7fD>i5MY.DQڴcr>`h:28lzkufuKvg.yݦw;2buXȲ2#-[lٲeF%;wc^Z p4ޣ14OI6%Q6<#R5,rN$k*fi-=ObRC/8s-{? xޏH‚?v# jqO_v8Nf1bxT102< `ŬlN )KW&1 <^bQs5kwC/h`yD&_BOH dGޝSɒgLȪ q\%PrUUs*]B)CA[{;+IL: b\B92;FWW|T=?~93ٲe˖-[f8 F#ŲKiώ{EZ?1ؘ+˴==?`d{)kyb{QJ630X *y[K Ҵ=>䧇jv $4Dgۧ"VGdG1_kV3b<.Ka_u<*lJ[wGP&"W՗ bo+fH!XaZ(y:wa`1'>b҄A|5Ρ1@@ls y?6a~<A̹w"wC:Pp 9aϽKI0 J*ڼguw/]c6L'e]waG0FwZa=¶{f]0Y`9N+a\ &}!\cdse˖-[!,Y=(sz2'j%W 27 / 1B8xK2Wo'Q iИ?pU¡ @! X7O<ž03*AzG/ώLi׍KT U˞}Q/@TYb׳s@[;ϑA$c#TT`. usa_Dǃ0Uz{_\a8?=1TW*mߐ`>>#z=";w<ӄ GwRtl99_8߸ݸ)Ɂjt pɮ\ >}0[lٲem?{CPðldzZD 1K_7ip!xQb#ƿH DܤI4tII1C5MًLWz1ljsv/`Z4Z H!b%c0 ʁhH)jkS>E*Ls;%Ο)ڼb6v4jJT5F̍V?k\?4Ώ9 _@.颛G_C0nTi~0װ#tƘ['ߏ}3cc?aOR!68 <κgNSn;R~vc\9.'xݏ,ak3O݅ _9;˜1wuN3]qR^ǯlٲe˖-3wfͺ ixLg1F2͔sܢU} 'V0W棗] J-GD@ dY݆@=#kN㷁X,+|ۋ8SLFgʆ1GA2g)]㿿 5)Pv3Pr)V)׋Ʈ]j ΓcGV HɉiׅZƷ嵱)Az2T_s\-2 @vRgqգWy!C`]k?_xڐ7ͫq&(VKGȍ2edVȼ,v{1?^͞: ^9!ʐ֣=f=/V5Pldn^݊n35rJOn1DŽ܅}0[lٲeˌ︫6sF-,o1']ϲ{T?;sԝǵv5緰ڵٔ##4&ЬϽR"?[Mt+yPqdxa3 F2H5="u8 <)ew<.Ȭ`Hs{6|Vvtin YvZ%L> b!uI}1TYPrB.Q> ܇ ]aKc<" sThW,CqOu{#~vu.gX erZa48<$D|zVV1*Ll҆$*vQ&Gs+T\#͒+ K uDZ'hu*I oSon^Zx#-[lٲ6pi!ly1&L)u=hW|(&í\0O#y_d,Fv<@z`G%=$6*<Ěz]j#7dz"t{+q{fG:|yzryl{hLBouA6GrZ/4!LR}ܵk(Eq2G富* DJ8?P&U|NUb֫e= J:l}ɸ5Afo}E"Rr[g{"{]S1rGJڗuL̟_#T#Ȼfƽ_A?VZRUkSTG PcF2^[#pH,~_j(7f&pZNaȦ)=WLQdF [lٲem?{{!Uu) =Z?ؤu6vG}d\G@݇X {H{ |m3=ҵgG@(SOL{O2 =F[AKor3; Аx$7 *QG륙=w. l($dL`Z4ht^Ѵ샟w;\ MF䐘"#h&zy`ĢUsY+RW0F=QAy z=_2sd(Vu5d(#.{&Ѻ^Ʃq.oQM#-[lٲ6x'DS9㴺_A>"|Wm a<! 0[qD yq'5fzRĺYyǗx n~QZa_W6ʞz̘bԍl ;{*-n3|^*G)ko4{(p:&DLi>)sH,i乊0Tc.¬iiw#{sXֿ'0>.pA?v|4)\QK9bϤu${} lz֏|m 6Oxpz ̗P"Ou$DAB2V։jj_nǓX)9"ʼl۷Q4a܂TבQ&V8ċaʖ2+V=P{{q虀73#Ȗ-[lncr-f%K!c[RWZZ\(+s Zm>ٺ!˕HH9~ 渻/8!7!;دt.]x-{QPtkMOT5S1$MO9JB1fu]ƥSx*ɯi}اZ.{oSAIЬaMC=Wr ȶ< >'uJ!Цܬ;aa<ɬ> Ro2kfA< ϳDʏiV*LZA"<i1 9 ,EU+:X 7 Z)iZMeX@T= 4 _U\9kHdhn2bgZ,jJ到Z(b:󟊙Z}?9ٲe˖-[fU'2D-]Ոx۔y>=qC^$F5y"S28Mn{'v֐Z@ ۢH0쎅z5T H#`@JP\h.R7DY(]1990J' {4 0.K&ȟ_`O!f01K0[Vz?meA,T!5]* (UUW0M0_d\,.R )iULB#_壜al܈T!WK~F}pe~F/w5w`ftos$ Sq<lٲe˖-3BAx}םǬvC{zU}^ĝi)WޢG Kwu7C pu ٚQ^=tgvwnHCf۰?/N/%StS d@;c#/s1ΓaYU4:mч#6c"Bۛ HPbƎ Fƞ%գҢWfL}&c@'hE$[tS'NN,/1,UUObDa `$vx@dݧk=DxLvUG~μ#e@)U%z&ۿ% SXr^Mn {#9{>CO~hLZ*1 ÜHT*ݐ<ˮ4?ɩ~*m?Sla?</b,v/ ʺ-16{1ul I`L\s]Wީ[z=Xl4f9}ǜWcB@%lO"sm̃Y0syq>Rfe˖-[Wrws̊4%csuɾ&R0]f `wCC4xYXt)Z;(V\#]((I+*Z3b(,Sǁ؏^sbq7n'ۈͳo["RA#AYLShG_S_I1G:Ql~pcgvJBQ{ y(<~@޵ X"M"9cyވxY}"7żdxV֫VMsBcQ[H$ǁ"H/#j2oB7Npu?Sb,iF!;-hYcȿI"1ngڄ.ZŠL?ng21u17Eb'~d˖-[l 1`z/6hSDOc&'(b-1C:qP 388~{^s< <7ں`q)""쇅QEz|Tbs"2$^0LMVSЃ>Tېο !{&7u}g.12^\UdظH ɚnIl7(u\"E+ֱ#cHH,^<ԍg׽C8«nĸ otw"Bw뚧U'A-Ϋ=Z8bV@UGnuE_u$)蟧ZoMԻ׊4)&HLCFa?z>zy_Sm|OdD[)yH=2_lA7[rXFB"JU]{` .@lٲev[ vD7<# D8<#]z.c^ŏvyh;9h08M 1S|֟{3 <*={-0ڃ]ɕ޺*xj3)%{D d,mw0gW7mU}KW9뻾G)kLfAKVsFz=?O*rjЏ\tL |9sGE!9'`x"ܙ !AjCb<[*j1'Qf~|ג;E>^d:Q ULHr_jgiyj yj@q1xui=. ǪGߑ0?j(vVzs.}xn+DףU ^z%`u9jse˖-["FEAٛ"Fxv#ew%鷩n{Op=R4=듈 IObvhW@u<}\Wz$0zB%~$CoqQ$/Um NiXH0rlݦoH U^?leb }N!qn(Ye|Y;Rl}bAuy~Z˵W ̯vJinb"jmp?ߣ JH(q?Ĕ̎*ծjR$y|s$6sSA5@t ٦|Ȱs?vz&S c܏*CUrVſy|NBdƪHvW5wG竨grj >]R ]OG%ϣ*_##j̟0EJi4}Qeu[Efe˖-[۞uk/;{*tQqߣI}5RP\5-[lٲeFpTgݭGP[f+5ү;Ȧa;Ӑ?b?e̞1̳x ?\sXb3*v?=ulzu-4bIi׷@ԌsLar-mW"" =RP1E"Wݐ.1[\t& d** u~>D0w2,=7At*j6ҵ>]k(gI-],/G+QKUXG{cd_敁2%>c/RLz4+XRVMvWXg[Z3dr( dkr03!O EJel"O}Ԣ$X eH63 E#%Tֿ*#y("X{}hxk/xD|^M 뚉uσe>p~ԏ*F@'U~~kk_Jh 89 ӤTB)3:^ zisČ"8M IDAT4?yyO<%9E1eɘ3a^8NOu@2#-[lٲeF9}d1=)'m] œg_hy'yy.c v+/=tAD5 Au3sf OkEN!0*byAD-NC֢Ie=T]ƒnǰ_hٿ!|= x0PLgJqO5"$z}W׷/MC8ꯏ `H1ʂ4a6ڛcHt+I JiAFRnLjJea"輘`D_r`Sƃ08o<0R&Ő~(3=W<%{o19B;>Aw\y5Ȗ-[l2#pDͲ qd3 H\ʨT.xn_BwJDW;w1KA;uKOUND9 <o{&bQdJԥ[1|{vے@){onBN5ȵ1'GZA`Y bU.~f^Hh"py{  /$.*p$ϙN+[uҾZ=;Rfeqy ⲘvzcA] YVI }0/U9E>?8Ǥ"eGDW ҬU'{ȱqW]¨j)+ QVY[" L/2n7F֗u9 4:pvXtD PzblpkA8ߛ %K@lٲev[ Ƣ`U2OYk;Σn$?O9a IĄO$:<5\3١^ݻ<3d쫢"e2>˿sn $\ہhߢ1{OTJ<~j5Z-ZbΪ$IXb/7g~p~o{?ЍxPwnOJ7`nyƥM$u~\S嵊 qkU۱Ies".Y<& .DD.R-|FzjqPMxED~]TU 9"v !H#gGTX-DzgJA $Y_2n.S(^Ba0j(U89gT92j./w f8y0c-%2ǙȖ-[lnk[޸= V:GRO1 x1vk fy!]^ϱX{"ixRӮ? ۋ7@G8c9繄m_T18?AF(jB_;O a?b EFqw8ybR ">(r]HRe,LI.$;_l_3 ꩇ&e_wbnE)eb5ՊǠg,4$U?#h#yqu?~NMSoV/j9130&Bc7VC?^e6exUVV ~l8.5*KRQ1#Z1~6'AT?lٲe˖-3:1#zHxY[Vx7EX&bϡT%4yDWY7ky1v=@@X)=4Ʀ/6zelgٝ] faȅG̎^s[:bA ˆt$x؉BʤE֨@9R,ȳO!Eژo1SLdFr*ΩbZ"ЮnHE U=,hZJS>'2 ]VQU 4tV1EP')! tQzb o<̄gb%wtdTb(Q2i3D3`U`ܭg` EB[ ӣudtNehuF;x_lٲe˖-3w@YP#H}eԽKɭc!ԺiD[4}^ҿ!.%/ið<Թ~{ߛJo5˘}"z~ UxCNq6~k 2$$R*Qt^%FvȺ1 V>?M @UK!;?9N+OOWFZᦲBڢpShe!Dj"ߋLTb܋ $$m0HN 2^y  uST0bdLYOb &q`ϡz֧M<x_'ZŠGD<{%]wGAōPnQn݇n}T#TR83t˿ʂٲe˖-[fO[5+Rb'*Puﹲ_{r,i-aV^ z$2E%-|tS`u9'[ė y^jTH>bޚGf9jִzRGKMof-3"xuԥt1>$ݺۄ] ?$W $cG­}" RWXD DIb9mr!WT_#(V. mz aV~$^LD"[R=SetMb~q{#&slyuf Sz4NuR_{ ,qTq="Kx3+y~Kya]D|v=B+_.9G [lٲemE_ӮK}\k< EEF~f+\'D%1:n[ɞnfz>ɪ Ezn{<5 SЫe8i*GMTυ)Vu_uA~xySD~;{LYd7?=N:LHsNrP̯˖:q^`@#G:&#p'>| Ȗ-[l2#:8ğBpUX?i9ɋͣ)_,R >?Gn}\{G<|Jb7 pu[m;Ϻxy($VdKGz# -mpw8mq^N:k˞dv}# HPbq} 6<"-9M֡է 0O 1%aa"\ݏ`ٟuj]tHW< C2b6uU2MҪ4wJGVJHlS忐@~&DSa 9ё\) ߽ߛ=L*{|ٯt?`>KM^0$IbN/w'1[yuMsȁ >7{L|RXYTkeF [lٲeˌݞ0 |E4̲ט=|hA$܄ƻ}1~Xf۪[Ht+Ci:m a $R*v`Gnaԇ+-WHݢh}#uVϻ%2!L'|SƸS0-e(EYRf%Gspcf$KF.HHDuC%ȮHܮdgց02nM9C\+QDnv [ q'UIP/"XBu}3 Q^myu=€qgnN)):Fm?=-}G_it7g \~d:evm4x =>9m﫯eelٲe˖-3w]CdT9x3Z O6Co=i"Y7U/!Fk!Zt3l^k|c Ol٭R?k2.m2b\M1s2F`F&EXc#LѲ+ no.̒!RSS ?T-'B%~?`/?H( [5Qdn{:wޚ@z?7.}R-|6#p!U OWW`"$ET mBz\X@&:z~ 9GɈi{vDEcf}׳Hު=S*UkJH#ǃH~hi\sRsduAE.yG|Nx׶1?y5Dq`CTJ1ֵf+\ U5ʄ99ș E1 6q=D`JΗ}8cʐvPw_Lơϧ3`wC0P4$3rZrCd]"swzKªv;NWy8g!rȖ-[lnkcX*oEY@ 3UfښG#gS_=Px4{O=b*]jυwL̑"T o@7Sܽ7ݗcH hV{@\!_}a6I$ T r75XE/ǪOX5s$W=ӮbEo}]$_%Zy1 j bd1 A~dzUZ?n xVQc#2y"xƎ*{Y&"L.ax Z*%6ݰw0(m6.z,Ĕ$>/Sb"u\Bt"XJ^OއKv{_q]cێ{ G)0`$1URSH B z3JMq{-<7NgF [lٲehw=B<}4k:{EBK%3<=,@DLS^>yn,C(<ʨ^FU6I$!9ߋSKt%wEzx2!^̽8LpMxjVO0` ނt΋)su4r^^fe˖-[ YaeuS\v9k!r"͂P@pVK.ib?_"WB=o7Fz]A7K`DzB/V%tG] /JCbA4hՃoE2[/.jo\,sd؛bG EzRI k;#?P =.yޡӪ<+Q>& \C4#? AbDD?U|kNKR cgE=aC_{{y91QO7C`d.s !i!nl\2[gJ`Vܺ] J|a kU?P-۩v(7Cj~ܦ~E$1wnNlUdrhlٲe˖-3w4fb3lugWgH& F6^UQqQ~:*#8O?f d4w-|LL5[ߩr a+9(SEgc=l*QkNOwWq/|;sRd$-N?˙Ȗ-[lnk~TK]ւm6? 9R9L &TQY6qF IKWU߽!߬X>g`0=3􄣾3<^Q75`ͳ>9Di7 =y bQ-E ~t]SDU)S2_f]0[$X*6{#Jb1;@`C`{TCŏi߳F"g>2.:gm[@#/Hs Cy =fl\s?. u"^2s}2>u.p?_~F"ՕR{Yc3dy: =-}M?![shyή5hZA"Rф8LNIr2Dّ󕊓^9zӭʌ@lٲev[#.GRY~ORۻ~D>"\~WO^5c].0SQYzA6"1l,%r ; {Uhd}'X"8g)JPE0V!HjͬϔW֟^vGK]h6^'ȭszjY_ ?j#Bbp氰chs;^̭sC0}7{4n˜H]%q 60Vo &#ٶGԦ(BAHh`ؼ.!-2[Xvhj!:us`Va ~/(gǏ;a=gW}d˖-[l őyBKcw 9<8ŭ^<Ŏ|{SպVYg;}dHv߫Z{6 y+n :P`ۮD quH=bn}8v|~ێ!W d˖-[lerKWORr >Ou䭿4+3[SPD8[;r2/3᩿AQz3}[!ZRfݟ\v+1&} 0e@ϩ6lk\+9>eǂ2|K=1$5isPbja`J/x$Y BzdW72J]_DAƨiQKU”ˬ| FCaޏ~RiVR9b!O}~ >vt r;rӈ櫹j [lٲem aumbADtp}4$VM=BG=?G⑆}൭۷{D3&բgl/!$gp!ƾړcx ^!BbvHHZ-uf)SS!j-kԟ$bsݠ= X=,ce$ھ7O VE]%wC7zj2 Fԩ^f|S "L _"oGhZc(I[ߓ ֥_G@dȯw۝]~iwb庸ܥye_7Z ej{{؋f]a aJ!:~rEλ=E'2;G9ڧ9o_}D!1Ⱥ\v= 3)!lٲe˖ں 6uAN=Hu ԹDfLh饐t[a ɳ/s!'Atw;o'žW}#A]O[g[Ag=#2# ԟyhK0J5Z(cv]ydxE?cЦ8 rU ȼ*ǭiH0f[au Y#_Y?"g̃u7}^vqckF2}_x|%.ڠ뻤!gWPr*uXYSѪR`hL~*$%Ck[x }zfuFh0?+e, ԑgD/2BUd§_5xMd\8|l9Fw=0=`t`lٲe˖7ʂ ^ܭ [c4fَGϚQ+R8&"~M5y_4# 1ӢQN_ݲqup?}?/sbgjl߳z{γ$߽ ȺP*P^͌@lٲe˖7k#gҔORnރ dif6q^8k~7inj.9j)\# A@e BD1ЏLtZ?ۮzo֬jR#q>zyWr}zq"gLQXHltDH! f0@G թ0ĺK$?A7v#BƏ:8idor~~lm  bֽGK2~ (QwퟧdBl\SҦ6{c]3 ;P!$̪#C^t5TdzY˼fczᙿ"sE?goɺ&kEfu(79ΗǣQ lٲe˖vA!T~s2<\llv:Of uȃ xWL$6r&W7ROoxgB@^JS&z~O =ZeJ.@] 炼UpkI7B`z_-`]İ_Wx߲n^sc"/翆^,.r8\ Ƙ1Jt~`ݝȏCR=Z'o2&8: TK إAQnM&}?7vo*}(ise˖-[:=yfv/)u]0*ER_|}}$ @J)Lb@z qW5qU)dۯ':{;%~oH a9JӔDSHV?Ig,W '\S,i};&|m7eG2 KʼؐH1!z !W d˖-[lu:[/ ?4?zEU2Os?ֽp[q}Dz.5W:Bh]>:~@SoEYPҦGQ^"+gVh%2W1ZsaT9L/ͪZ# S@*v i*G3 {gȸZ K:D#"TVTQTdxӌcT-?ѫd^֠{* r_}W0,RץJ^D%1:(}Z;Vc_Q'w0H Sd^T~tݗ_u!s>g֢^ dm_9ٲe˖-[fx^*lߨqZ_px${n2 0cl>};ie4y=#@'?7^|~F$5!{ kH!)mI|<Р7g 4e6sU&"ꯝ`;V?OBi,Lƒ2% \ +"LIHHKoʀ0;#AuT_<ٍS@xa= {`=_Ղl у ɤ;A8ߋyZҝ~[8Y<$}$# +5Ϡ N0eB#C@B(9qB~/]gl+\3*>H݇M_y?90OTFRD}ΥߢZ#yzV#=*Y׬&Kzz&κ#q:bȖ-[l2#1zd$Yօ bc05X9،v ssp[-Kr">Nǵ_{HiMc'6: /wu HDZ١gܬ7;>VBc>KnZrV̖-[l2#pǯ<-x|55𸪿^=L4}w^k!Xm13fc_zdSrbbcM;S]@Ϟ:c7nO/<òJIqk/CX Ve2V/OX|"nN9#y%XяRu') uݽN9޵GP TTEucz2|@Jv~=r%R"_- ĵ^^qf îb[> <53F~o#3_|#iULc{\xMGeW_Ɍ@lٲe˖w xa®lIDATlBAp_%`@~]b=ؖY2+<6$?:f T_۽qYu뾆UX-f,ݐus yF׿a1V!hE[V!$[vGkw{~@5)YЃAY}PfL]X3Tb%20d\,G^ѺgB*s<7Q-P"KeB'@kcLᱻΏsݰ~ jg _3 [q31 m\^@ݟ^~:DVzFKVG3'oPu>?WA<$s(t!,<A 1Q4(׎s`L6~n;-1?< uLퟧI/t~wj*LTc4ϩ ʺן71Ȗ-[lncʂQ#mZ:sęm,Ivg -Vxe|s[#a8ݮx7&2FJY?z{:M|벜4bTngOW rP=㲺BbۼN=$'R?GQ$$A!,[qn_Pq~x=U!]c~׿]8JzRub RWN&o*= x5TMZn$*nE %QeIy-DEl%Z 2 c s-lw۝}bZi׵q=SR'SziBy/d˖-[l xL=扤rD?<ᙑ)/hl;@,oVj`80zg.<ܑ DtU"p'r=R pcA@| )Qvr]DsKk/|V=na?;0/($\qqќBiWkTdclb_' 7RQJz ?~k?an$ɍuAdDds<+ }.d\:FIA}U&+yڬ_F* 9o*xs}_<믧rjsP\[l]`=sg*[TMTAyFW¬=V][g^yfF [lٲe؂ fO21τk7ɨ]P`{RLĪ܄# |B'c~\H< :r>0Fl OiG= x]-tj~o9 \Vۏ!]#It9+) 38=&=B.rQ7Dض Kqø&s ЍFNBei_x(Rynr$s ڊY4xkòK+X*bT)hU3 T&Z)ו<Hu SӦê砀)>G.ƞU5yV>T; l!5?]hڪ}^DؔKYOfDZۇys@lٲev[[;g܈_gcTzX>"+:F^~ G8&r5ϣ|{YrW^p^,"G d ujAylٲe˖6.GGn1;XjI2E kx<}zin{Qwvx 4WU$AΨ:oܺb~v.NBdh`]E]n/bH"%^i # Bb'@b}Y'y*BE- J6DIc5.Al''aRB?AoU1u#)/oz⾥=Z6GtHF5(|-v>%c R8N`MT !m|^g2`y4T }j!LrVЃ`zEv?"#߳&r=I/gniVS] $hkJ*9_9G [lٲeˌFA7*j5GcKy ~AkHwaS1,{ hqxax%]cjVo="{톽-f .kȪ^1SgDq[v)̙(gJ&~|  E2{/u ̝>qWHW ȶ ̕W#K/-ק_!Uc7B2J1Nx/}vshׅٔCYWKaYooLds[x;׽U>7uQ1uf  &I0WQ|#)HF#-3ٲe˖-[f޸E!gXGcv:av֥0|ѱ_06c ,6{) Иb,0O cC$+Ҹ֏lTyX't ğ/QL-b8KZkUĔ0n4qm#pdfTR{>3Gg {o=3${9N-x$#[E9E;s$RZcnDl'+! E Xvg L=AS}%bw9P7*w݅a^ֶ#@_? FJ?Nw;'wg?oێ¿[߻Zj^npwcnxN { 08jp8Xެ6͜<+j-sS\߅9-{|I$9 QݽQ1!CU̹CހGyFpv{ xn4JpwX%G(ߜ~BܙAPHfn_kr@8zWh@xtQ{g2.czqѤT5#dq|?c/f;ARd24$omy)xBϐ*H'_)>TA2ks6\dz e8 mYK&_ל>@AfLe5(\+^dBavz'Pt{sRyw~`@q0ߝGs;(_RZIYO(bn2N^h /=OY"힁T]n-JEZ3P$]=T)$I: 5ϴfePfj]לӗ@hg_D @a}А'5F4Iא7TCٷqh>}{4'ʆB|<խ MyzA;7}$ڍMLXr:6 g+m$ %eiM՛UTؗנI;tt?x=0vz{#3{C~:u0qz \B|-zI܎vBRw6@iM^+XbW;>)?:l{Tm+vlG``K8ߋs`W% Ju?'b%`0juB}a=SI0̱2Ú7ˬ°_jc䎕0HP?0ZSMޗIg2s`(^V}.X'GlqD0-RqwQ[0oZB$"a&v*j y $&aҶyL}D-0uIroy H+y0=qCLKg\@"֍-O36&0KaoU}ì`rM8 s=ڽ|QlskG~kIgr0xw Z\] wv' k22EW(rRg,߹l̒saW[/֫Z Η2ՏH.)4C _F<J:YH;^$j)W]XϮUaհȡ MjVkydNnW Xo[99$ ֹO.֞`TxD${Am:dCda_t% ^<:u=뾵< I.;GwڃL90~mZ;6"xOFFCS 6=%a^uI6>n_f-;`^{BCSM\m?lgD¦[R_ ȣǻc.vV]_/}Ad"$ffV &t5/їeۏXyz=լzM}x+C(NVTgj`KYsVN>| ەgv &ĸ;`mYl#9}>{Al{?oۏ҂W-5Mc vIw`G@ݝ;K5a2@o춨n]ˆzze8oTun IEy㧰 {ѷ#r!ъ Q3C|w yc襋`?zE$1ʹ- iO{(ɦd --i] <G4 Hg(;f neO`&&>qA k-l(\:_*v YXr2MT~)%?A'cVȭj J-Z$7]AA*v b d2gj JXs!P8gDvE:(c:|@(/ h|z~࣠ ~8Кk֠ko9N2uT_ A R ԤEMP Da{O4ڻ΃")l-'uYN;ˀ&~y_{д;AUЩs{ _+h=TA wmZlF›eh%a#A1ڋwC6oF@Ñڔ{ބA&B}ߵ:t۸sNzzϭǠ~]9A߻Y_a7~K\x z^ѧ @I (;;>U*_7yAGiq l;TUnƒ9pX]E8թ 7 T!'Ei.lpCąQZpx8{݅}(q*8l'Wюp~Յ̕pXuVd_pivg,ñ6p)8siT8Y?N I o]`t\!!h0\]ce)y07|pF5ܫF|1'˜50<uq ?ugRp6%_uPbLŽp`Zxz3R.s-o ,aԳ>ZZd0tN;,z_ Vsne~8B͊`d<Km>bAOin5=.,vvf;X 6+f/Ptb(X>+̎]`5=+-f3`Y$Xc e+_9`ݮ.j>I9ZSǴwʻMX;\&-Ȼ!ҭMJ`m sEM>Pl;+6miTZk/ؔPo`[rK^|F6)?tuPM;Y`OU^ݿOրIn~|8w q*_+;=օݦ`O=v˫'~u_fXo`/,]x9nU*nY[= 4K6p|·x4Y+_ y #yp= (pyĵNr{,B{TU8U3Z\<'ξd%pZPa N>=5#l|"/sc-paN"S&sBBRsc:otlK̙;ws2gN.ȵcΑ/w2c=w>oNxޥ77kWQr>/YXe ]hd4EƯkAw)>cX噥A[>1Wz"d<ܙC4;-H/Y+@j$Z4B ~HI Ufm?M/xBx4d۟} V>YI k/vJ"dS<;S'َcE3 \fG{xfÅ+!/"7ȯv|'+v]^! g_~EnP):,yP<"u}7@[֑<(%YޡCuhy(kqo#V2AEiA?T&>4:+$rscQm.9XWKm_`bZ\/zjaw@' &Ev׋ 0;vpS>L#FA05ZtJ02}LjY3O?on 3VG.n)^5Q0?l>0sW`9%0_m̷.i%<4v[R =unBz (;XwDY0)i*dX}灥qXz}qΎ<͠ò| S;, 3?ހǣVZCgXm̽^+ 7kX|$X[Ca-$"kO'g`BXΫq19 .ް~ӢZmZ w_ȰrB\ZCAfmTeKd[M A(}Q"6ƒy@|},\J@[2qldOԙklToP`$@W6 q( t'Z`sZ}*l IXm>+;`5s-lTA!@T#Ɂ3$>-QuU%ۿ;[2 ÖLiٷԗ68f y ;ÞÔs-bܹ] ,M}NNl{EhzUk5P V<JnxP*r-]~udN_'c79"ja,z:@c WmNA$ew? ]3ߙn-kiM+h绲v`yZ1 ڇhoAϼ{t]R@]a{:脕@wZo2W$E7⣎:yг}o-<㟚@o}.蟪L>ǀ>Y8Ap`A{ z\ovsݿJec}_ZaWXd/N #k7s_kP;r8u 5@SЦY)8L߰a R&C[ਗU7D GҞ ew8 |[Tan6prµ`^^8v~>oǿ7E<:M0! âȼ`P4PXpxk&a+G^Zoa >4Fb\33 FKbtȎ/hn]9L'1ir{'xcuh[`%Kk&%yx;nb,u\[?1&q:9̫4t?n (Skovs`P>28pkM~޺=WrC : _vJ8-w0eާI:S-DxWZp=dsQW4Xn p54ɦx`m| Sxkw*^T_ <h|dӎ3M|` ֟4o^/Ke*#,_,"O. "`6PVˆb`}3%q|?V(XN5jzl>F2+o`m XO6s6$$rX698U9˳=DYU Mir pn8R@ӥ;^wU8 icm~$d#$v#'89r3$8 &p0ޠ'U9YC=iA&sg߷3>d7d֣*3':Ĝ)[_9Uh-Ɯ6$9Μ =v{lEQ1՛1Mo%A6x xgS[ 'Rρp}%=S<I<88 A悺`o6j? w@Xq Eϫ5Ol!*_D/ =< OˣՅIDu$89+z %'J~7Bzq-u4HxZYzr9qӢ2_&}J,%`) -&S߄ia[!/Crq*o^ @^o^woN>W;q/wU&L:Ao@(.iQ:U 3[x㱍goU('ތ>]嗺 +dBE7JR*['7Alצ{P{m'Iġ"Tm5me+'W5i@ҽVstFC} P". UuHTY/DH4H6 ՗D`Tc2T@k+@1h,sjCb.=P4ߋgK@zt78C'6/G:gZ\NݲEwaO*Gt&@yoob(/R%ݨpa=to/PgAC|PD*.@/<zԼ=$s+IWj%+U z.O@6'~^C;#, -_տ#À'WX[O@冭0`6bz: N Т{ +YWta9^y g6N*w`siN OD^b;uY0%Y+;kz`LΜ;u o6qڟ74_uT^Ưa_~Ä'{m01ykx&Ky7wP?#&Ok7Hwxd5Lդjg”$eLCwq0G/~R]r OGm0[} ̒+Yۏ0XeQ[]y c¢#A{t^ʖ\h l  ރ-OPKfȋ6Pi+ϘlcmT~M=1 I2OQ4ؾlkl';λa,r-;uyŽID|ޞdGN))ΌFE.^8R _sYJN0̗U ؍>)3y:5{T3-o N9?ajCW'81ji 5'Pu) O~&>cŋK0Ѽ=b:9VpԚH< G[Hp\h"=Dp 0c> x쭗p,^w;;"6 _|/|\Z0d7ncy J$ke0>k党i`D7col\+ tdqoY*`z& gT̳ iիn0[xӸ_& ׎s Lg>0y5< ͈۽`6P*rC5`p};aB/-$}S+w|7sef}墝\^d.yّ /]W k>O'x2Qsar`Du?P2>Lm9g7H:8v@=p#p/>m9hQ> J&(CA v(ϝxY]\5gQX"MO%6S,ɾ`Jo~,a^}+`yt/ k4̤cw`-̰T+tXIw('2R{ yG:{xǚISJN=˺n}'~ VSjX/4 j|3Ze`VU,ִpD: 3-0uHLzNm*o 6'Պ`#33`nh`v^*͜) ~ `諸zBةuj]2켷e;}϶M`_>KO(;S3mO8R})3`-\l oI`hʶapw1G3}Xh:pOp._rg}G"-QB28Лd?6~VX}OU\KKGsqn>=\m^ZqhK{=:똫\oIR,l}vp,ak\z˜ >\?izKqNy*Gz^[z3XQ<EprS}4N+~Ji]x 6{$)C-8 }'6u1ikW_7$]Zm8eJ_|*Иǽ۬~J̱+K-K dN]ۚ+ ERSg&O0|MĜ1cW3g#Y~e?(3\ѭH Hthf#]B{Kf'9 _W8_ QzjZASz,Lǧj@򣦷=w4[ArOmd)ݧvR u] |#'dWe!ݺ2u+, ? }4Ⱥ1Ny8imt r wD }<5F;Y7 ^]G|IƈЮPtá1#a6p8(l͢Y(ɆZv'B)s&(U2J`k~I(,/R>KE.*Ay%đGZP9hhET~J7*l=ˠz^gWAͮ_S TuPfATFGP?h ިL`N\?JwA./jhK!wkYI]z /-[FUv6Z-'u3yrh~}ڿ7~ҠZ,_:Ths;xo1tz<wFUh6 ΆcJўV üC{v`t?R::zTg{l&b?B/C/9SCu#ʬjL1diz/ ChCJ=.L~\` N 'ˬ|CT9Y :mHU- x܊Mq IĬ RϞYCiN+Ð3 kJ0}Z-/`XI9( <#RNJ0Ը hb0j ^єXhuzi{haT^o[[l-?«aII LW} C<'L6>=&}!Qar)<>8ZĪH)1^6LW; 4 O#UڝANsn0, 3ZaQ~0wR-dz"E0]r 0"ֺMaAgD,E{pXg`Qy(,zv\ZKhn,,-rŵ]dX /펬E󞝷`:(ÂT1΅VC?N@~Xm{䢶+, UJ+aCq塉,X+'0ÚqV["~,1ee\Xnrf5RbW_APmn"ՄjKA|W v(w>o? % $ vnAm m@Y9Ÿ-ga#saD'}ؐJoC6nbvIY@D5%\Ł~#؜JX }M#xl bX_͏y )D{ o "sGOR .-xU!If/@u~5ƞo; eA9Q ޹:Xsc9An§ DKp ~ba>V [ۯeGaP]p׽{ l ,ˀo#ڰ}~le~Oe}y? u|ގ#[v&>%0M[(*tk}݆OaM vc`w0%@9v7 =_¿v;=qx5-y6Tr` y)>f] p=T=[:s漭ga_c~RjlQ+a?۵iGH 5@$­~ܗxע 8林@Nl Utz ~ig H4Y'Ȃ>ƟWqd@# 뚽oEh#'=Ҭ1i$ȗrl } Uw@~="Urvz` }"Lf4*_+fP3\YQC2~H !6$@ݭt^#qFAvP-.KWEG%U`l3}uDWǂqS>`hxQٕY=:c` Po71}=0&n: D=`TDs\Ew/ L KnefU`>$浡_G|ʨK px":" уH3on@/Y$׀==ϛ)Jpo }+ \gL[7z`緣<_W}7Em\o>cE-$3ꥁ;BxgA# cV/JhǼe%0~X  a|NbC2Q>qc)؅K_SLG 3`mdͅ צނR&@ ؽ<~5`Z_|챵^8L8GaP8_Kr~p"zu Unq^~"gu gyh8?ezLW'U[p~Kqoq[prW[ws:sJ~rNp} 7V!ܺwgQ\N98#׊%i3kQ2&/'տ{s=/j Z2n]d0}9U ws#'֍{*ĉINK.ϫ:z)PP68m>­b(ߖ)1;[?9Q*ec:n."J<#ZJWocD%o߶cN,gfgNf\}RC;Ȝzʻ|hm>3g Y8'Ü?:t`}u>19/|L1osIL^Љ ַ]?>ʍwNmoqHAT,.Lp˱KϮؗ# ry_,ݰ({ܽzBM!9;z>j􊖮:O >k{$N! IFrH|v@jgcݐVԗtupUAX:o*Lϐx %k- 񐽷iѝI8T@O_ȕW? -̝w^Ðw;4!@-꩐"9M],8A j ›ʲ4Ѓ&>>XšhAhL0<,tٱ|hzo0M7ley]ؓNҜF9h뜘X^~%h7\P41N!ZvWoOߠwg tJEC+x_3HeG ]tX3tYwo!]J}l:toCOݩУ zMv/л| 轾=# }" 7`̚8}8W\- t ?*l/À9#".'߁;apZcdePxW+=`h1 C_逯y0Lpҹx> /ZV-K |^;D 0 9ȍQx~׀\2mQ˝#C0sOZR!`LZjuC. ƩƼ70"+\ ;gkCG`^V&΋f`ᇁ0) HCa?MTѭ{&L90ݠbCL d´jl:L߾Xtf̢Ҩf^(j?lW"0;[Z|7_P qD^kXeƽz_l3oyEV10=s">wBZ,l {buJ ,7zât9.X;.(Ōr,e#u&,"2\5Sߊ}+C.\}+Zܗc cRՁbq XU\7:|c\GioVkú2y^'X?9uk(GR/ Aa ї`wn{D\N$@LJ}wÛA8D{ * Pd6~:\V+$Yt-:ldLsVG@l(`XѕTt4I2ؤ}M;eh6TO M¦mH6C޵jf65' g9=;}ߒMAă>bm!も1cUJϺo?uNk(cy41/d`˯\Ee,ak{CB+alDwv(ȆmfZJ1l.loV$.~ i}{ؾ?HaCN(]Ah\y` ;(å`O҉؅.cҖFn…`w3Q5v6(>잫4LxI?&w^94 {锥`ื&Ys}y;{X0^s<쏗5^9sOBDxuؿ-eءq!$7I/uH${o -rJNi N,iv 33 YR8' rc =e//cu-ioiV/2揀l(2)V/H4--,q,TV+rC|e!w) z6U- @Qp#byר0e 8(i7Yv PJ{R'I5ҝ4}{k JOyj!(^*SG*-nXwṔ:m\ 6ugzd =;Z@-Jzꭐ{"@}&[y/ulAv(MFo hF^8FAimkʐ2h{?v뎠= Zut@Оcg?hwʍA)^V:Љ'|L5^fOq.{A߻en9\l@lm7m*.׻@6K5pSȡT$z' .Y 5cWu {rۚEx\pCOk0XxX, G٬=h*G;uVqIþgp ؠc|MEKaS)N4m*pFezñ8n}/'Wru0}x% ^óoh0^evicuz(qUx|V0k} g:'|p&0Uo\ L/`bͯ2s`z-3ągWE3(Gjo;QY C0?=t96@-l@K{~v^kf``H`y˂,x`ͣ'}ك@[Jxw燳=.Kmoz>§f= DRP=L9pxdÿ>Ot8&V4 c.ReRS\ ovK6H9Xk2\Èbe~&}>⸔cBFg9v,Xۏ$cn?VqzQܶ|9VFkbN+{I?E&WYQ]>y7E` E`}_= D`|H`@lÕJ`+t耭BcIsVlbBgs;\};؞UO^۷HvP-U`5{'7 컕< 7?d2vL9vE7k~31ma絁6=C |{oO}6'X+Q Qq2kvs-x6Dڧ.M6[(บce$'a18kur QW\mgKFe$8bƃ%h>%NE)N}U5|L~No{rsp:_3hGp>'llg98.'5u2p.*MTozpQd%sb4pTx 6<0~bҤyfejy<̟rhT3GYߟm^dW\k~G{:s?5>cӘt{1t1]u3[9?n 5s#niYû$, <ӾJcTU|v*;9k,3'Jd +~ wBH߻!t\]ά7u_ N;6D-6ArGM2s~|wⲖ1WB2|˅zHx ?ϻ 1|/gA2M[J,(; }p6w־^o)"Y'n2/ YH.5Ql-۸uh6]qG ZAq|ro6L+@>,`b|?S7YSP0>bS/? |vnjvC7~vw4BIcP;FJ >'݊]|~B|rYn*({_Bj95- *DE J.HPj5ؾ4vf$LCP+X">j1s(#G* lÛ<(D #kˡ!a\n.4|52v}wah̤Wwb,Sb橉QB#H%ZծYTC|cKhz5t Ĉ=헿Ҡ#unPie ނNDa)cʇ/wAGkɑߑ, reE os]ٿR{~ז>c+( NBuiN =E (b]~л͉nO}y`e4?>%ۓ~v$[uBǗ{ςO0%& S e/4j`s;Z3 ʃOA0_?U CWa@-l7|7ӇV:bGA  _HlȌ5z80Z{n܄UOuA#f0Zc@ a&b+ǫ5Jh/0nn]v11cfgD}7 pN`!$&&N<4Z{cf`L%Kz”$0K:LX=i}aZ[Ӯmao#a:,jU LL3 /Mmx BZ1= fO ?}ka8}#G/v90̯3Zwk\w;e ,$"=oi X1sUڒ,9(gnX42 cJqai+g KawS,]#,)rc`*orW6V蝙`IϦ`US# V{v'ZֶGis{`Gj'S\úCXẇl_u$zxnr}o,R\{t$Q<֏lak gz B|V@(PKBu}tFmd ]&N,lT-?_lXi?|͊k f'󽺰#sy&GVæxĂ)T2>Ml!|26z mqڻ.h[nÅ߃'N#Hխ ē=>IJKX7$.bʕM& :{-JioԴְu7Ö:;Ԝ@ّ5 \I>0mKd=gj~ץZ'>ö!}l{BZ`D]Y]7n<8vca㰳Щ\~vp_iYn;sCOaRR,v=$#\,# z`P뻛f}Nv-?\R۰;최X3{6lCV}nU}+>M Oxv}i 拓_ض%{T W/a?KˍLs' fDy!߼#qQu^u, R]U^ k1 ] _6}css |pd;7wA64k S /g!˂!\yA*7?͜ r6) 6zs;RēWjAh W2E6j1P4UTKl@׿1 ʪcA {PWt_+?@јYˮu\n_~F gV2~RPfx)VU2|lbn^8z?V_惺p*<ֽԫ$ jÓ{Z@}=jX)? 晋ƻvg]%fZ>AP 4Ǟ:]Ж:m#cb8hA珀yԊŰ]OA#n0hOյ@ui6\t{oVxk8 ;YoJo7,@?)Kdr5rp yDÍ'@Z$~}Gz\{>)랈ԳᰶLq{'8l뾻Piƫ!^X8O e_^߂ìeU3ui? GUv38*8[$G,S 8:#慣gk3p ,Asˮ]p<فh8F>*U7+p|w|+KoOQG0BꂡvһY U=`m7 c`lviIz>a1ȾLq+]&'y0^ؚgF2{02܇im C0C~-so?\0f9Odq3Ş`^1]l?fl`RNV̹OZ[Ԇ'ViwtU%aS܃}ˤ>Sv<on4J-|\M 򲦹,7'u{O^+VO7r-PNG@<6T? !.p_74P xBْh`f\my7eW^'`$깣Ś|,6~R%m.|54JfC} ,?`-{w93{sz!t,{ᇎkO;kw[S0z˚~\VDE[- zV+(!,Z_Ux]Pi>w~<_*Ik~yg&+ܺk>l%ӇDȄz|8Od WZu،AOr]he ή`= peR9)s읒o&ϠG_逝l6]C  r$g\iö5`w,xQ`b{\H'=G:Ȓ  "媃Stv(8FG~ REۤ08{*ՊE0)gLv4Y<908a6Qs^fNҺGψUsy ?-3NIuBup(NWx'8M[΂Ӧc8o-50;ΰυE\Oo5;Ni폁ԙ1IFц&98ĮŧE΂p"Mk ‰% NnJംq\hW8[9~o)gR49!=sz72J% 3߭0|O.}pǝe9t<- ]AJ;G!!E@i1T:.5zJ~]Yen(? u:!z5b7\{$o #Bk!!Es$Al!zZSv&R|?⪷o>@!"on&D%LBKM,pg0|2w߾5#^N٩~?soa@wH]&/N羐wTIf /LǤtj F:wU8J0i20Oˇ2 )ٲ>01:q5*z_wL.̆;*ZOKa,y5 `v0ϼQu tͯywY~|`!3,,vWl8,v)Dâޕ`TyXCGXYo4J%붙f)Xnh]ȆesE㪰JxrfևpK*d+7aGU0VVm/6Ư{ k zaNXs`yn3X}a7ro W*WI1Ţ"{ @ZP`'F.@Γc/Ja纃GpPS(%@Y1Җ BsLLgKӆA MOrݟNo!Z\+-WsE )ts66֗&ai(lFn-+ͭ[6atWJ"lzF ، dNQZiՎ'AZ).Df˄zW|qӥ=;l RiԏRioX Ė䏂a.ǥ^]Sp+?ت>u~cphu -=J+pm1[a{U}e1>ϣTVu'DzdkaQv;|w:v>#N=ߊK4lVSniGI+aqD>&4]W^cRk^"o[{kO_[ 5Wد*}c-:ww>19_B*-R%aCtNp;[sS/Vڹ~`Lǐ$#F_څArc\AZ56Y HawZAJ:Ons^ (66^ (دvց4e^!bZʧA־YTn .iM /dt,y\O[MڀCn49>I7A1k>Z%A~yq8Aoa @C EbjVQgPtjb%)(..@r~v٠$:zzʉ.PfB}5(e5Ai0:(_ASoUrx%PujY%<vZFFqJP#Ԕ0 '7jyP\;=jMlPauԳ 4i)b,5Z Ha\}h١mը,֏v>XoihacoA+'1nJ%ZGѦ7A, h.iMA` _|rbnk#K/فN۬k,7,~+3gAϋ^ӆj= c8EIˀ"s8+"7?ρBk8D o0SCM-k3K(,1Opx(r!^=ZoGvLa{,74¾9h~3oqɖo@h1zp_\>O}Uǫ.p_ipj9 ǡp_kz y|;a4\ ڕE`GˍH=1ސ4P鳤 0yĦe\Qa l6ya;Eɳa]50ިxk*c"\k\ 9dy魹d0!z=һQ0i ov% 揋G*.:bXj9t1voF8`b ; gkBw>I ;J`Օ?~ȕ/ ,zsم@ID.D.Qdx-pl_GX6p͙*/x.wU2(LN9<£xC<(+J1%t|O ,ޚ$э[/`:^qHXn],S˗G5'ʃ(kfXgV+,ߛ8 Vϧ+|ga7`m_,X{Y4:VPFc.ܞVI'~YZX5G27b] #Rj}E`k$\ y`M|[EhJl9˂g "f_mG ƀP4?O[`/}Sd5k{CZU:{8cqkNvYfY!sioOH `8'/; ]urص'h,= Cn[KtK-N*{@Fݏ 2~g % >8W.|$@r811=,+p~MS̫zծP8~ 3D 8[j^'c>p2 —sR/8kSfܨIOI@ 8OVi߰u!p޹X]}# ns+pF$Kxwy3=V8 /: '#IsupTvNk+ÉN* INB[wiı{S=}G$]cϼaO)^ʜ|?ud찛ho:sjߪ?D.1g3i:lcrV2熄Gax&9 wu/Z;r gu6n`uCV}?ϒ@ؑos!(]ϐ`ݧr=Yc,܅ ?_!"Ƨ&v6BљgwAtC鷣8\ w&A]lvg"]#" ĒnnHj^ݮY[6AjMI[H^#j@:dhnl̖5&(/ dӨÐ]V{ {%v4܆)[DR ޸@2ȧ}>J  _ECh`SܯP ^| _q+,| Šoʓ!P̟%_,+(-ՊP:QF+?B P>b?D&BoPI[lw*Jj֏vVjxxf树Y .D \;`&12f"Y fSG,]̮~v;^s k+anb!sE%߯0| "0o2.uϯZBRϫY`lfb̘qXZ7.[W]9-1X zsC?ҫlA#XrR,[Hf$wQVGwŠc-D VhLъ=t6V  a-:/6מZlm]d $X_8%u/<„T }=@ПNR ͽZܪ'k*ր.x&Q;!mD?BCkF5gWYD1E{fi~=L 6FknH`Cs>5w)a0Gڏ&ءlN3 k ¦q)t3=6?[v^G,Dck@4۽XR z&-&`e_v& EU bfTm] ;\_{3j~_/u% >;9Gng4{>G vc'Ɵ4l3S .:\T\ov ͆˒5xa^fI_؎?^6wviS-fmeZر6^mP onDni}|RvY_M Mo;`wbKصt] !D^؍ 䙭#"tgB}=vPrƯ_:Z*lڶɻɠl[MgAɋʩ8 ʕ/O$~N"a@y0x}.({=FAQCvvUjJ|T&AƄRuɊK]+jVPOԫc/AzumPN9_ou Z~ITʉ\=4;LA3"< 曫{@]|}C-c.ԣ ]W}f?ڣi߮y=Pﺸ~˻dJc\:^& :iiЗߐ%rxfu3 lT&7v5X 5V9͝T !7pPy7=k Z 3N B־Sxpʳy8j9^[Rp-`l*X-(_x-u e }ge[~u89p<Gz?cq`Fvُv>Ns}w^#[ =u ч>Y? `, l *w/#uSI8e KUJw#&Ƌ}f3k&&S0з`~1Tsa^Q/=fDګTC0CdbZH&iz0ԋq]l:;́'7Vt0Kk^uvxuC{ZCEk.Zp!wʧNݟvmOX 4 _@tڋ[=\]q eQ*;;_QfWIOg|Φ"wscIS@ߗ-]Xݔ[0RwD/vZ4QE4Kн2n1eMr+?k>/-=(+UʤAzXU]+Ldƀ6XTN +q$>* ց j:$rgdURIiOC*sx<^G`= >En2/si…\ؙ5Zկ\\qWWCn71lۧ.6`;pq{K?J2\o(SCOimŶǹwXЂuE]`jTH&eq.<iouH1徾ߖq:yg#fJp^=Ge͏3s]$8$7KqJX( 3޹Ynpw32|28;+ g_M^8zH5{xލQ%O=2_n{o?Y[G,&%E?AN[tr{NJC-(cD9 !_z5:٢/5Pp\ {6sC=P4Xj)P|f{V%Vm&~t(U eޜj%P^Uʗ8mOPys*i*$ 񼇪>@6Ty|T)fqP<wommܶx$^p@mgP u nmBzo{@:  n1qGxGb&1:v0az; |IfAޡQg-odwm]|;/ 7av~!F ӂn0m㮽nbC0WC_g7-V.8vmL*2^yW^< ŎP IߍIae@N;JA zFkyx@Jy=^T1.m$ 0e5 27}6җhCi9pҖ롄EݩgZa\!H/oX9N:N<`Tm ϙ ¼>7x`YiqW_wѢB| _zϔ ۀpm!)X~J,|CϹH1,r왆ŵġ6 X4 Oy7).hX|TVzsu9/RTv47,5\`imS;rmհ {j(,\Y% *g,KWvgas^ ,G?)lh:CJ-b~;BoOV?(sZ? 6,m=gaԎ lIcͰ9xgÓkaA V MGNqM=i`Q: lV4o[/kxǿeIe+FlWH~-;`NmZK`^ ̆m\CضO{5=Z?vjť@6k!/[ճIȆ1nifMn-,(~ցˤT"5ɷA30ȕcܲ#2`I<,q, -mt|7$;[+V8vy$ aWKv#sإ\g]y3{Fr]3eW{,-v Ne䪢 { T- {;'aʉ2 Fa_% W¾<*m&A0.ؿ^qv;(oq@*8$_ "oAq[_vn<?nOLȬkT$ۿ0`I ~ve{"A pT{c;AؗxlTKc @u>zpZP7ԋăvsjMP X=jw Z{dPIPGoSXj /בMo"hjN>/.͢=wZybhmݽ/vdm}NoM_Z7[GAοQS.K]CȬ۽'tҹ ;h'W*bo1*QA?i<+@q4zӹz[)o5?UƁK(sk0L|%s*~ m)Gk38wnˍz02\w)\y0p-=` O +/ow~ Z}v|;W;sq0Ñp1@2#X)g P%ѣr)N) #ѣ3Yq 0SԞ1nmwwA 09"zt?R_#T)?Q%\0ͭ.K%i?SzC[t?TgLo<8 fwkR̐>F0#S錮۸W0S~,dܜ"y_:W qqBY!ѣj#@f Y%ѣOt9V>s}BXڸ>$X3[ܤ K~%kAzW̸S%ŁEn9Ž_,Vʹ`tk$ ଆ7`{^[KdOuqi@ra΁UksնDr~DDV W=3JDZ#\%zu218,lR6s ඩ*:l-+m6ޓl/`;>:hlW;ej(G썗.xYػnZ};sc4ʃ߾˞*'/~ٌQV3tU'=O9+-N:EcM9>1%ta}8pgz7\# BC+M`xGuTVpp`̸m9|ގ1psƟ~őNZ߹yDƿ3GIBgxy⛜e:8[-o9& .%=-QZ~R-s>G86H)<="Ʋ_c^lY |$du9a,9ojN{H]@9[*W^X"O8e aoUo6tC5"A (NةmvݔPF5fYAܞr'"p@˷IBȹ1ł !󱧐A7H6)x{{dC%m+ μcԘɲ吶J,-׷zJC9hcȨ *5cR %~)31b53uȦ~o)ϗ:kOpA݁3M7}/%4wCiY \Y{ Tj9;۶ EGu@qPBPlY%n(m7<zA/ $@y_eT(? >1 iјKP 8;oCeQB}?ʮ c5~^jW%@-j/%韡.Q:P[4$RWP/_U_=<b_({Bc+?qvHh<+x!h>XMY՚ܨ)( x7[YW{J=4utCOɺR>>-gUZ6œ[Vwõ}к7ߓy)R?mKйa*;3Άvl:.I: ΦO@3i*oy :(:;WΩwdS[\ OO>R|N蒨[vpO:tc2>/=ݢ4n趏60WѲ) | =f) 2+1+3QzFWgVrH98z@+-H)oy_~ m~;ns ~yƄ n7`ˍ`p| ]T$ WTuɅ0^{z._aYVΰ ^axqqя0|lYw0o,dFOD`q"}J]_00Ȯ1G!*d {ƣ05SyM Sn7^VvL$]ۮ]ʅ04cd[S`r9{ \Mɿ`o{v˦Bax%:pТ%Z^0sxfbMUM0}f ٵf/NEJl~쪍HB@NN YpAG6Hn{$?ީI9K=BR. юz^úy:Ai_;' *)Z sk\KU^9mnu]j|}.+}y?ad?=_3yvR#_ӕ/[l0:y'b̭#c&[Ȓl~z  O2 ' Paz2r ['|#a}9jX7=o2a]e>I^ aFr-jO;g lN Z\6kn0Im'-}n]ף}四YoSU!^A6WȻ?jN VHȯ<@6-P:Ղ"{KGP6+ɕe20tn'(w<fاPq JΤ :(_M~J.eiSRkX]Ub P/Y]f1ׄ^Xj$Sl"5^isk\{ j2^ԇY;ɠj s~.xrՃ&1NNU{VDU\Bi4<eXV6Xkxu,( Z0A bA{  |Xsl<X#n̗?{`6Muz~k:,\qKV[E6زr¡` GmpMa;0D- P #5ϡ>.رmX`E}@$%e%`W63`ץXv%-^!`w *{`zϭGnU3{".3>p|pk(%ƏpPm8g'a8P]~ 샃c^;(c2ઈckA#9-qʉ4I2wTkZ lW:? N9YY>Ro&n] r7׆N)8(>ܳwO)ќ!xhr9)4'Ŭ;L#|w [?po5DU%BTQb4D+B7H?WՍ@|i?8On 'Hj!CY&Hj?I'* ,R" EHԅƆOY i'Z }:nH%o!B͞ dE|Y[k{lҾېk5B=y uc|=غ r \^]:2sJإɰ /Es@E˭}O *}* O|9UQG_eCuY=TKCAukQ-唘Z#p*y#FUM5Pg3[L@=;sUˢZ@Y뀆]y<74FL!UhAggr9QYƫdM4.9m1ɋ=-u)/@wë2A$B\OjY.tdˡmw, =BO}_T[](4ЪgMš3#rVzuw]v{$'^ m>UAJzs}'βfb 5+,H/i<&HDxm`.~jFkrm]ˢ/sz sWck?|OHza~60f"̯+ڭ(ƫrʹ0 [3gw?ix }U`a%,\zFqX캳!Z#b]p,+\ ?3sGru`1&qeEH"僥 7s߹ʳGNe`鳛Ցϰ >w'ϗXf5*k$z$,wlh%+}ѵ[ڹa{eF8l }``djkl$U$8dy%٨7 3֘ -W@Eg kApuR۷ʷkf7Uww@ Q} vF$/J~ -6yB~.aܘ 8co%΀ \ ]&T vvbžz¤)۵&>[/CW~E{䟰,[!*}A~A&X)Eof?k`e&d͂bvPdoVEӮ@~e.¾c<7ƀ1zv%$G%釜2(7NtCͯ{HVZTׂ%cKoiv*U{{PG|ؿ[@x20fzV&ߛ>{ \w۝*^!;A'+.W9:LM왍:д(G@i}'z'h X,hܞQ-A4h99CTAn[WZ]XwW>@B>AHotk;)m}?@kf~tU_ uK9"JAʪ-Ièh,}檿Ƨ{G|P:] M/a`8M^WÔ5G:&F 3`d~}20k ]ڙ0Fv{\/^{ e3@L$4 rŢ]@ߎCqhCsjcv/X/ظ?_D *uCM" m@|~"'ݢI"\5&eF#l7A_:$}uZn`e`<>|tͼps:w g Lo)o`ʩiScv 71`Z_L: Lg'NّUL- %5%Ws '!rNCٮvԾT f$`^|[yG~VW~9f|`޻}`~[YS 欔p`q6%TpIod?#`q88eH;5%׸,'OP0xuu>{vJPY >*gDN,J'"''>."-*D΅[DNRUD͏DνWcDΣW.9]Wꉜ> ߀*X;xkVc~o3 6N`y ӏ3`K@*[![ۄ|<ù ,7W'+(?ݜWrOdU#㆗$}صl[%)``&OŁ}%g\ȩ0K "+"YB^"ϣI&3,ʠncJ 3]7>L,pۺRY8H,& ߇cnqp9Զu)֌ N"59XcQ1f_\+cQڣ:Ƙەd-|j/c~x,*vF/cqM=pP2wP/Lwg\Ca~Ԯl<7_ģ?z;`A97 ^Dd~*5+mbk_顴8eXsفVDڍ\E.0Є &@Aev/K;5"᳹y B^.*PM!'0ÔrtAķ(xͶ;WthĚA[D5!q;$w]9 a&{$GBDyi O>:NTҖe?,yq=oI0vԕ$Ȭ\Wz ."L:]|IvPw!d, Rw3P(gr(Z\ș"Q|\E7w 'C~c }y켡 /텢݃(n(&^4{rJ:>UB)\Pjx8x槩CP]x'wj#7lΛ/7A5 E?_z*W,? UGO޶-j<vW6{5 P xOQsZu3s1j~Aԁ-Z9Bu+ٺ>hNZ׏ANhm)r&BVINh I} \W+JB coT.=ր@ͣW}Ѷ9=BB{\t&:jC.:.B'йٻze Hmt9ܞ_^XsU4t.\ ȅ4T螷ky(% vuI~/*nSK3pLTC/SQ|rXgk}\ ˝<` YʜkaYRo ukN a9=nGX<ψ?I;V!닂~_6{X9^y=Ў1=<]ȅ'_{0*~iXu27#oNGgJyG\PFB)kMI;.{jAOi{ I^Sk8ńuVY gi°e3Α#NFygܩ>ؐ4\V 6kڋ `}d1ĞqI5oy(l^W܄Mh_iUW]Vg!L[z4–kf_lBSak&l}1 =M]4#)}n?9LuC-?%֡ ۻ>'4S}̹g?v-: bXi쫻 ~32S1j o}6G(rF _n#pr  ͱA:3 #+/ZSULD7v(v^.n.NnGG\dE _`W( ;%5"`&痭Xۜv=OF5ݽK,v{ul% دrqU%[>ש>*aS+ӵk`/W>]_ Ja:WԄ)QP_.2oEnV+APlAk'gr|ܢ)r |P_٣ZtI:zIr'\>V؂*> ݫA ǯӭOu @Mӹ'ŇFWzkӏߛs@mY8)[)}wr6 MX 2?UGe@Jph#s^+^0q~8;0%0_ͣ/PF˅.KBD9KX?K^L3y=m}XrE`-CpOw4gX۶_+\vpSɀXob V+s7U4ryɘ7U:zrě閣OzijXoy4_WoS-T~\z0Ys ];csݛ[\F[ L=t΋`D]oKh%,Ly:خ :۫{ؾ޶c{4}q;RēD>/}"6ig7J}5^a'׻n 'Vʪkv--o}J]8^%Jmrw,4N>?gH̀ Wm#c?l,ua *C`)3}d0ez]Z粝}Ӕ#"ASp(xrڗܝ[!sIކhȯlQ~ /Oo&B~R|ɋPY-˄±uӣrP<.NԄbdk|E N ߅f; eӡ{&:&n> ţGAO78zK4H^D:wI5=#yg/O>Yp l~"eڡ_w8=nCox!0LƏS0U% _Dr/ ;ϩa(HI+Gʵ EfA_nܚ {R k_kR֓j ]R6W缵ϋV>via%F׼N΍ aN}nv=dEa~rհD̓27+yna0/7j~]Ʃ60^z<6(B5:Xh ߽6jE/u|XrZ,vG{WaMmX\5G[ ,&*2M17XKEjl0K]ݰXŝՕQXfg*RaY,qST=raԒCh-& Y6p{úR[]WHh0#VNl!=ҴV;*+*`=eQqۏRaU"beHbvXu%_U7%JO |J_~ԧH4Mkz'ft/yg>|Ŋ:ou͙U 5x_]){m`=myd =l}NF\]ؘvw6جV6ۿh.in8c|l JCFaS}$ 6Ottf 0ʏ-7V_ƏLga v]5b ۭ%m\b`K m|JO>'<}~SZg@/'l( 6?]c2v=9\q@y# m%N|눞i ڀ{)ݨM`{ɳtۓ-'|n/۵bp~DҰOŋ}][faf.{7PaYXu5emĊEBhml.=ʲڕv>yP?Joi@9yיTPoKQ`JA] '&qPkUL`JP5/^ӠTᚱu#Fg?'n"꙾mBum*:n1P3~rc'\֚ǃ#{v.hV^J{[@[Zy>vh>ji] Z%7в:ʾvu﹮> ݠL̡{fҠ rt ޠ[(ݱ&Y(uFje2~\oŰQc Mj:, c_Їwt_m!N`,Ywr#`$Ny3՝ZmQP0__[&FMwU -+(r6 n`u?s\/~D`;L?ospaL`n%.u"~̿ Rݍ ȠP-^% +k| Q]cVdT`}@@K?7g+R5`)[׹ g< .H]~X[sEs0mNŁir 0b҆Z`:H4sElG`^-`;>P 2\W~0=Y fve`ͺ?`_|8's`t{BGè`6wiD_I)U>WRULzBŐWw%@:0~ ,_R) n㫷"'neja5WZT?aߛ(Z$C;fcVϿ'zVw}`zL?VQTПo੝VrPZYԅ-yAwGDo5>x)ϋVoC`럍ך[|h>>S{#[mJNv = lfJAv?˒z4($M"|:% MNԾLxĸd/g/n:;vc_w8rY`\\wCtŜ?v~u g.'wƒpUQ-ׅ臵oo탃w[_/cK+͇pinwa cs[+޻ LYϺ˟C\`07z +o#C|:l_7!$iHdt <﭂ W0$^'g@Jm{8O'nmS;!&4=2dl􅇺g<駪Q̅B&[Z/2})w*CVFRt8d'8o}&+v!'z~|c'YAڭS-!7םCsW>?D/eYƘP}:h .1-BQ՟cφ#$(rLs$AiˢG@i-?N+(8̳M#Cijb\'fȩP16בB%*ISPi==Uɢx@5pڐ ToO@ӇÒj+ A| ;ԾLN4&:C]EQ; |b+P?gwC&B<ߥl&<_t ?b*L6Bpb /4jNL;ЦV[ڛ' C;]V2o1$ }tpIlO{Zt7TM C'22܅ )۠ظI|nXDs{%|0U#$-gN-*]kBjtw?n=LA!y^zZ]Os0>(%\V/}Q3iзhwZ?Kc秵ACb: Ԟз.w{`/ `%Ue*:]`0⸮2]F04߻`+z'_ᒂ{0 _ .> *ĭ ,:Ka" 5<`t7Y1&uyØ/`xԛ1/`|GG6`ݺmf2Lj< ckHL]Y)g> 7U흒FoSy'S(L+EEλawiTL'GP_L:($a4f);lYd0o٢τՎm?nW|w@Z\^ Ex&8RroF" YlH7I!db֞A=waOY }SO_N@P̵fj & dB`'f0߳1y 녚oW'qoyO/ C]|Y;NǛJB٢\-_ |^S/Ld "Z o'X=:pzba=s \şUI&G,9A?o]d:7rUF92ٿ9oU2 ձ.{p`ٵX^A?Mby Ǝׄ N|)?f*]WXL?K _X*N?[y"b 11k#=};vO~o" o;r#?3 #@?eCek=?/ef%_5V[AU(ShJxaC?|z=l86 R6kތ&_3<6,xdɨѓ#lNx++;)EJ-Z& &I xZ}➕Y[&O)m*' 刺}; w%?{Z''vRr}#e ѫX ½ ߹t|#Э;_y7rbI5| fAsǯ9xlQ/ȷ>V"e lj4|e'I!7* vǽj+;C[a(7u{v$zawL3.{ɨŒ&4{+#7w?k/9v|Su//^/.W5)ea~!5= ^\M>zC^m)GZ2c 9Z8;}۷F $_H)ER{~rН1P{A|F[arz$)g@psJP}޷ &?Ā2t)PƵ 2ԚP)z@j :kT[ZoP]m_wg|U2AMH k^+jQy /=G#:74эt[:^m@sJOU0mCL#h6['vvRl"hyf5@_1p<CP)נm \}~ BT@#u&0Gjj\d r0)}6hI~0vK} 8]ȫ0]vQ{\J90K6A<κ OH׆~׸@zX3*wwlpnW:N< l/= lQKF':ceD󁣻L](5C_D}#p)Pj`1 0t=j+uhoyH5NU00,0!|uVSL8` ;f)+,L.^7I5 bN0iztCy{L[W\Նų`BlD!|1j`k? zؓ/2<ެ,5FA0/|X1̒Ç'}{u\`>ZP9EyV=t]0e` ORY\VT~.n]lJ|zIE[?9{ϿhYW%tz[÷y+%d,>X}39h["$9mj߿Xu!&ݓE#;E^x0j'Z+(M;n[/B$d,H2u Pvau$ftt̗#T4H8p "ny|*Sm| r"QbuN791]uƣo= s_j XTř 1A; Qc3$*A2}P/{/okݎǚJl8 R=?Iݐzx!wg8AAGD2"J^ўOU;OAf|D YGKXjdOI ë_[F,f~EF9;zLh rOmu!N ߚw72N]9 ;@Pj.^6]MP<[2ŔVtnbK3M0?k ҃B<,6oWi. e_>?;|Ms Y݊Pq}V*&'۠2j'\-X#G-ᵜ$m5e_ٽqP۾A}unZN[3 YOAsi܎2ew* nzҚP iߟfA biA# in4RBQfW :_@c=g/3aM$՚kƽY4s3>qʡ Ah~ʽTZb>[@˦0/6^3MV|9g ZeCR}o0ހA^rO,ڡO/^=|Y]nЮ{mj4GtZbtGe+roz3tOȘΕ͏8lЙO2[Sn6n-ޕI[wqS8z&Z^@KL[M W`/qk :ViAoj}rLyA^~k?ki+Ƽ6BץK4ao^!#۬`w| 7({s/-E`(y4 N|%M'w0:Km˳Ʀ`8_e2 4>^ #@pV_|F97ϖ=QÝ >cƥYV1?>m⯝an_}10ysyO9Ǐ;*a㫧׺An=ߊa2~7mKQnKH2A2.MZ,'^A/6>PNb.'V[:˕Ez ݬjVGd[3tkXWW`i a.8/ {`n/6b=];87̓=* G`~c)#̛yC|`޻~_c.,)6B|ځLVX؎Z!X, )37a'T=X S5l`qvϷn˟}/\ŜGtX|,%3qq?EɌ 2 A(q ȁowg? 6% WڔDoQ3y]@zqWr08 a'4*5;=5AeZ])}ov+Ԯer.y悋x<8Maww=szq4e';Ƨy4Vؓfy0eLoGt |ݛ l`gnסU2 mamݷ GDEԀ"udSi'(?*>bģ/ov)>FW?lWrT~ޭ`Pd%>'ZYt+d*S@zYIk7qjYli!RƦ&lPTVjeCDPK@#rGwZAԧp4A4/ʨf hO @^aZHh;s8h'_Pǃ.ve J h5i/;A{{Gr ڴ ?RFPctW fmàpTN=_Bb@>ЫM2m.#7C{\SZSٱwP1Zx=Ɖ&mXu,y`l>Y\ FTƖQV0%l,s*ɂ`撌k傃6`L^p83fXB5T@FzR@'Lu%UbYX36*!pXUNVI|-N6+/_v =KJwGWħ&#TF?_Fe~q .7u[î8sR7_$tl̔Kh_(L/j/_ao:;W{u`JYr\# L]EiF@v՟ʪ2d<ri]`n{B1|9`3c7`&=#q_v󜃶13x74%;O̻IlrYvAx5/Fon\c?to 9zlX|gy%BXBkȚL] ;݄#XLɹ5`h4u., "cڦsa(Xߊ<+:iJr#`Ьa>+gb% Nږ:?s@OTn)XOJm~E_F%mklͤpʧ7ǀ5˔6Vc`ܭC/Jֈr l#elz v/f\Ն^I!ls}4&j"p ӝL8?)i6죍v`;yM8]:M8~r+cn %G=q')}?!G9g rʈp:MAfUqc8I{ F*Opz-ɘ_' ӿ¢?㯸%RƼS_?oR wi9 );qZ1g9; $Ylemrv#u,MbMC,PEX_hǺc`8]Ҿ\?#[A%Ba[ 4IU3+z 8zB~^T:~8XV"~{8R!xrT__bcFBs4XEC@J?6P{ n>H$h8$}5;I5Brx:$>WZ@G_GcBː`HUYȒ̑tH#ܵe͐ !Pz~9 ֞oBqg^(}h6HA1ݩ%ŷOmCԠdҦvJO6wғSSck,*^lȑ|? *R/BeESB׭P9`q o/TSM?A5v/+V CM] ݵ/̡P3<φ:뀘P7yתguW%݇z` m G;dڷP$\؂Р ?FP_CH[;O@cyhr\KQMJChav8݆rOBoN\뻾ȟйںFC t?~:3qtU[CױhK(?!tO=LcڊT7s,%#3k5M\wCЃ9>C뛬p=ml3ޏF] Wh(]% }4s<Yj@?^x)~Wd u `]=老|3ka;\eà014q9CrWqO: S`rgqչ|V܉8O2a_X-.TQas#vy[ "}0ʽelT^gSxX$:wHt%ߚ\c=/pݔEһѾ9Rbc[>e wl_Ʒ ;Ǔg ?zaM'xٳ8i!- H~~&lO=QzLÒծ3?vDIw 7-1\ lz"Pdgwo@'|^-!빯 7YIqfl ?C?nEifui3/&߯_DS%6}e]J;/Λ?umEi: S%]? ӄo#caqq|яg'v'ONUFwz'ssCFBa{ۄmf웅mbkplQm!oݧuIߪ2[C [> Lb?wڔA>s:-7^5 ~KSIwAY9O"2 JرDºm /ly-JJvIF!(VirwmP5ݙe8KeVzlPLiUM WzJAuU?quETz( "/6zZGHP {GXQh?7Z. y4::4YL.m+A^ ZF[k2/%lQHb׷v7Rի16?lAAai~jpnrq}L5Tн.t>}jӒG_p< ;*Arެ:i;o?o,}*S<~Ecd0]+a3܉ӎ<`Trs#ϛt0(6]#-7J/T|Ev0n͕cRQ0֞1㛂(ѾKfLsS%/ Jc ʲbBQ'ӵYtǬ>$H'BWmC/"é3@k5{^ym, Tg@3 A3A'ջ瓀g)}.{d[ 6|~b|/SNm ,8䳚}`JS)T:N_b7Lr{Kj`-}3~+)`=NqfpR[`/]JI0sH|k\,;; }FN:̻X\`>,H`%y֪xB3~k+v=|p7&> H^wx7Xgڌ֥Ҷr`ܷ㵦XML׷ƥV7k &^s9և&`M.Zylܜ5aB~llL%L-Q/64pa!GiG7R^ 1_=9 "1k#G`Kҟ?@M@؆B>v Yl./,g? vIC'*+oGo-6?C{ &Gzp@ksX> ]B}c O=w誜8SO{A?#͞z+E^b(/?PfSX\Ű/õA1SI7lޡ:px$~ o"u,?w1h,} Uh2rij~kRa7YPhI CBzH4CӋ~,hj C"g 51D-d5 /u 1&XjO WWN=c['$1zlaHȄaHͣ<ɐiƐГ? ɲ2$c+'0txķ0Ғf G2w6k1 leȌ ~]Ðny|2sU_CBoVCegC=Rӧ:/}V3tnz?d4&ahҽg u`DPnї~@kA\2k y_SZ j/1s-<@MeR. YkJ=7fX=rŰ^TTÆaeǾ] ' { .=A=~+dSܵAubPey0꿞!3(N|r ʋ-~`POlzAm4͠=q``ho25y՟< ?u`,aC"++e3*Y^9XzIgZ|Sa6!e; cUc%[T|1ZƔ2Vx}a'r|n3Vx,c^U62Vm9T]X\O~8H.b :cUʀ6cOSg^|*RN3V+`~!5QcmU:k,dxo6=XGq^i cVUNalx˯=tohcx!ҝ};1;RnMf>wi>~֌@֕YS\QtQY=M7 D@BD" ` -iQDL0kܙ|ybiQk0:SA`OMd`ph5d>RhxV:f?tQ5}$0j6X`єb X`LN>3qS`tقPWY }: Ari)ago/(I(ո=}bsz{ crax V05hhnioވywa?m*ޅKs\ѰjWՆթac#l]Cפaٶ^i$ 2޽dwB'^z>v^_m҈$,#w˃&4pQ {gvڇpNeWg aN8}7{ oprC'=-ccpzsNw@tmn~DϬc sĘܪrWFLNgRKFĞa4Xیc;y@xR8ўVF9 ,Y>>:Wg waqq;dN !R‹bT7;P"xuuL!{jUu5GaI$8VJ}CBK?HH!|Cjz{yZg4Sr tioi_]Bq6Qhj9od+[_Lʥɣb(&t%`w8!A֙y_f_qU!Tgr*93*Qp- s lw jHo)BMBӦ1Բ:1{.n\˹QO@})E UBhhUWȎ&&+hO1-ѲB߾r[>LߊaӜx)9',fxWugI> f!e^C/WD35 >RL~:]m2{O :d]h7SWA]އo~{B1p?+I"م~tg}vv0`;#O1,@q_.;6b`|J= M+P wNG nٜQJ<. Śgp!%AШӚ%~e ɲv>uLPˢص偝 0|Djq/5D)e3^R;|=BCU`ۿ#x]onVx!XܦBOnz]׿ے5f:2HP"3&;{%m{yX'x}a ;9=&Ph'{5*Aq,_x}%?Eïs4{p؋ &\<|onфAkG;2WլFRGG lpdlCa)nϜ Fv ĕoaDT,f CK qx4cIjG:0>y͓j0[ yG* ^dFGa<;T>|A_m`}!T$ri,ᘽKpMp:Dr nOFm5`=_}'nZnupr"$dǵ8(z$?bc,Xֈ`;5qk6:ћnaH)ս*H5Ra~mVq}%n Ngِ[7jz ;A#aQ;X\46<^z N9|g)/y.K!TA*&t%~y߹}]x}31qRp?֣:u\V.xa3|ض{9˜J֏pe&]7{ ѷk)d_:4 [}BlI0]9 ["5o#mG{|gD' vsF[}'?Ұ{9 6:prn=E=; bpK(r< GA‘}m)E\L޸ H[8؝(?a?E`>\o-`֯'qyfO=WN,m`>lw>T Q6ڛڽ<vja2p 6WvX᭲K-V5Faݝ@&XˬTS1)/Tick.ZM { ;#`!Gj) 1ĸ^qSM_=wN&!_vl1ZkɄ- 'i)lG/勉?쫮˻nj1,uOa?ߨU zŸszw5._gsplъޓ[8UYNicg:9Nj n6]io);Rr?c'3{5 G1#u>j-;^G9pܷ!j=,G2\#B"|Tr9YG-֟Xzvӿ KtpG2ZڦBA8{sߺϹ ݷKX q"|\*Ӏa=>da7Q?a?pmVD[SYunBhwm|Ǎp!zn=ìqphQn Ot!F|3"wan9te:{í9կE.( ^lM=)x;?l9(^lG+CO& bϕR8= Y9Z{%+\vWVK<os RIxr-~wdB=x' ۷Jr2NZ0樂OR>ώo>=t8K6^Gj459zyO];x?T^L>Os͏>U oSʱư5x?>{_2;|_v>+ۦ1O˾\ \Lδ|6OEr#zUv朂oUy ߟwkG.V{~ry \~y.zqŞqzo5+N iwI&I?>K(Ii3Z{*Qu/[Wvfqkj#^/$8UO+<|~3rn7Sm_ \yX-]̑-&IT-Om@#)!@>I dgxŚ.Vc&xȝWko?;~6l׮&B]@ЙQLĐ!zdf'0/"ă=χ9:բ #%>mِ]Cп&(?W\rϰ 'Jpg/a.k΀] m}s8`Q>clg3P jDR<ۋɐI付31!ǡHhO B=|.R% iFU涮V }^t/"\UE!g!ٜI+xPY:@2i|ѐ˥@q+|{ ҉o";wȟX"dHXG/b[oW\Gܡ'qsAG7I~ISGya;q]E|*wg)iYؓY7?A|.n*A喉 k[%BbI%⯴Yr3G<7x#^Ig Z$GN!u7Gq^4'A|˷0UY$Pᆔd{ -rD6J!<8m@|K|Ƚ8y;Ed{ܭր U3xqQygk:+vᵧ BRbe4 o]Bb8uQz̲Z2??Q,8A}e?JdZ@)k"({Q5b25IK(gЩR1PCN:*5+5I҅X&ʛ-QaT:-V-Zu!TiK!riϢ:1ZSDYɨ{q6@ u;u0:ՖJh$yT)D;u;5Uxk{{{#Z:+ۧciVȅ%Y>JeArW kړs ~+=E6D̘GEoW\S ƟG}$S1ŐyǰZ9Ic@u mYޏ!/LaЊǽ]y%/4^7REM~>B&)Kh}2)긵;ߠb9U5f@:^y3<5;O2$4D35b W(&}hkć],9ڱTA%)8yj͖`rW;l࿕8z6&f|Aьժ`[j䊮/>i\8u#*D5n<H $~;pS3_pECw:ۆ(Hf$?oASL BVK$!|3_|\ yGڊ$Ir=߈jQ0t_ٜ,46/J&"QY8j>g(Y^3W 6N0 |؋+<L1g_ԧR?+| MRooE 3˦~_|^bV)fU9< GqU\b0X H?I;)*E/\N[gm k]FR!r4~~8(.e`N>5.B"%eHxe%v O,>3?2MҒ-AԺHo`&Qڗgr &$eYOۼ' Pc<ː?tȿ< ۶UP0_x uWj(Lyg:0r'n0oh+C[75܃ ly9< ҿy mӿh܎AoSV_㙃_-:rgJNlÀ `ֵ8; N Sƪ+(yV ߴ8nKpgUasU ؤRĄL u{u۬!)gŌo'T?S#a+?PẌ́Ml?lc3waUNoo4ÁH/~tN!A©U8_|ۙ20!{foq^B@)Bi_<>#M/i^G/GL6% Y*tEWS2P$[q냡p}w[Nߘ'ΫYU %8?+. '%qFgRٽf.kPb^5x5kdD)ut2?t@&<4m“x}{x_(L/"}+떍mPtɂ Ku79fȻ.9A[LlZ9ezOoZA |$stax/?#яE2@he%'?[slݘb쨗Y+ >^3UU?\~>RfYMd߳ %kTB|'NݫL@N@6H:HV[Y'_: ~ꂕ k ߧ,=7."QTZ=5=âZ"qOc tl2e1؀Я]gTW>D>_{>vr7;N fkhMhKq7Ӣ7~qTxÿ:x#td9:qWYsqݛn*Do |6]P6nwnj-OsFU=AO@> ϤCdGZ$ N(.)DЕ?rDPj~ -+q Z!WAq 4^eaDyq si=AXd a<d21! HG.'7ޟCw;S|MEpn+KAV2BȈ9"X> y(T/o%B_jbU'"ԇ i*kfƻuw(f,AXfUNY#l8:.*a3wC21VۺK1‚?{s 5AI{ l'A8D8I_Ң)~kpᅫY"\޵;aݩ܎? CxCݪ>!H3T7b.]59D$tm/h^4#E="eg:#O,!"u)1 F!Q2L ݓqRh[>=d .\A4;)_-Eh *ۓS }˧h[D޽,yUuj`(+.ד&!L0^/:25qEZb:5+qŏc#7}"1FtsQİN]>GtḒRFkiX34@<{by(da-ĶO]y֊ܜՙ=dt҇eK͈,ꪗ\m?wO'^<_2M!.CRq- iTPB σ'"F`>xf_~H-Ƿ +Bw7'd &G|~7(,mIbcH >x+jkH> 7x:X adnXI˨u>@y9˿H9" ]a$֙ĸmGlvHg2i\E_H2d[K@Ryٗa $5P1 ."iJW O~֪B24HVAꃣ#9P-$9CEJH9{cW) B8:K jq0a'wA5zH EߒH=4n,UUDƪHzd&tOfQ/dq5_NFTRdyGFle9d*w.1#@wd]/Y7S~"k4kv @BvhH)dwl"wGBbr B Ml@i&ErCv,} X{<1IղsS0F^{Cŭk!/gZAFLv f9I}A䅯(liW@:3O6Y)UP̴QJHF?*n(騦zR-Ӑw(|ȍ eїQ.DZAI9^]=4yd=mup~%Ɗɼ5P#^UamZ?~շ)+uQ)#5|_yuäwۨ%K e(GmS>a:(D9햪 A}P"CuZ4%EC^x [he=&&."vM4PȞ՛BscQhMJ"E+B-f^suO }%C;ů>oeFɾf@wY;|?2Nc7 8]έdKI2VŃ覤Ar/ˠcEit<47 Mljgs8M}$=QWlhR=qד(J>yV=/ -63e z(b#ut{:+Eb؁O}); ЦmXsM"tQ_`T_GZ(?V|52wnt!QvU]:"甘Z'}-чic0pÚZ|-ɡ_?RY⏩<0kP9ͷa]*/IRF3]y" N_qUzPR{k3 ue-[7s|ܶԚ0 &K$ E ^8Z߼5h[ߺRg~Lj?0BjQ&\{ȕ57ݓwdgS%T&A_ὌE'[X{xpVD,O^Y,+OOS>w'qםI B0q]0 É`xT0 i|]ѝ3#},0W#+Hv*XɄ^ $:c0ر\<s08Nߩ^cI$3(`vF퉫=,d<-\wEBz;-]T8[Eq:-* }>>ӏN3?6xwJ7_w3x9g/$Û׻މ~O]߰/, O=u>v%I:4$|FKK]`ɓo Z (ߗ5KGve2&T\z}V$EiZ/?~֓;Gt?a(86n"imY/Uodu>a+g>G[;r?N_6n?-=?f)w5ȇ @C~(njXtܳjq{|rB"kd=ɝ@M9vd/l!ژa;~*@ ȡ >TQ;eqAP3ɋWzAӅAz 6]}tND DY6/@8Ң?HIs9/ pZ774'yp6i^,wiޒad/Uqd+ vAйQoC\A [#d/ۃLݝ-$ߏ`s s?f3 5{?2LYA3~q ! ovAdZ:ClFE(HK By)![>PcBφ ^ϧFhd.;^=| 3\׫*B}[5 ͍al_ #OVOj#L QEte$#%īogN@ɺ7~'2RR!Lcp GT<9ֽmS+U Uk蹑0ʛ-DkfH9Et$g=|&5e_r/V[9ʬH"5U@%[.H_ܨFR#X$Dj VMf$=e7ˆ,hl>IUCrn>HWcC]IH!1<Ƒ*$\'dpVbo.jQ ͨڡf"j>#}7HW~z9Fi 1u#dpep\E~da䔮5BXܗ&d[.f@.Y+r'Z.G,R&X"Ï|tCŷ2-nY~Ņ}P`;+L)i릯(ɚĬ$;($:lF~B1_#nx0ڢD$s J:{QLݎO_\Ȯq&ʙؗiPGv*l7ѵTNݺS\MD}S0~UCrPmzi5TOl YF[pr!TPEFۛQ,gy?qCI:%$FeID#jߍ<VGM,Ҥ`=ǛE%`5<%|1GN6=׋!H/s>_J v@y\Zr JgƇb) Ĩ|UG{O}ʃSw7~.&aJklQ"BU6m{>qBDJ{>6 gaWampJbׄyEPuSs˲hY<,x,`56w6doW1æQ*r^=iۤk`B:~vj`"v|q:;]ع)05Y6YpN.&WN6ȹv"_ :ÎM v7bGUة`R>QU}=6N*dgJMz1S5/h2a}-Fy8w ˥4Ew NKM)Dg?p?vSD .L WŔip 7Ǘf[p{p%%>qvڷ=1~rE -?dI{' #BX>qdU??wI*Jim+꼸;ܚrROe-Y;5no;'`Dz$ܴ:׷݈n4C^V~ͫ - 8 u#[=dX#9vN# ҷ?tK*$.*]Y_ 2LXP§cloߣ{|gN`4ui9Hh~w5=+}g~a[.l*‚E%~ τ:)ϟK>%Fxbo>AۊY6{ -fWOKVw?x6]%AE7|2'9Q$\g]ׂ_`  ]%QZq">NNͧwڢ]c<rP/͠>߻| BT0*5 _VJbi{H?У)XF۴0ycxﺵ]G4>.O"|Bgw?!c}%ʙ~~osPX=kMւM3B>*y 0"b:8n~CyKtwRYM2wAU}7tB>ao $Lу1󌔣 g_ϨX\@{)O}9`G!X> Eؘ4:k3ï; Xe.~{*;shBIN5'`B?_F 5OM"EBUY$!4>YB[Nq%!tA6e+hu[&0k%ktLAX=_͵;'‰ >o|v7¥w#lRu_G8Ht(“Z⪛kdp" vx |B 3¿"BOqtƬ"؉ z"+C""TDt(FϿ-Cuz#7H=z1afDf.iG G暈b~(& |-|QJ!Q᫉3e4Ռn#T0e#B|?#J!f[E%X^n1LI͔96]>v)hf7V刱=w<1nU C .i܈41u'AlrbkYnEtKwV=EȨ+#a(o {e tΫ^E xѿeÉ eJԐ̥T$x`R NFBƅSHHzmVJ%f$RҸ:D#HԳ^xXt3]1$VOzM q,An-/"G?C8t>̝0UERC ${6-"@)$բJb^ D۹$HQCtv)WBkF6)JH=j=urKU w7H@LWVE^}déuzS}+ܒdDG!B (wGCVk! D._^ { (Qx#CE}2ybޭ٣(^#"DI!&\lv QC~ LTFPNqp,ʻ֍~U/SʋJrkhUQ;OyċJ_՘2j{~%j^ !9k oq5B-EC~&2WP4M}U(VPV~ 9o9Nb-4e~SMQ5|jЬp-đٮA.Z3T>A}DYx@va)+:ߠ#$ Mi/3#L:lV s\A(o*ܳy[[RcF/9bb^qM}\wZ0 }MI$-|+ %1s 1D%f ٗɮZ::>v(a}OQ.^܉_wa3S>SM:D|F˼N>4bk@5y"J{-d"md6 I*:6H5ݧ<ߏt:p\FeZz~_r7+mq`.]`[ OTIS8Z0CmeY.=JOB{X¸k#4uvܯpvKlI0nϧe-vJkjӹD.#Z mv :6wT9 R"{niW I{}hsFx4py[0813iy`T yx s ~Le/aT8 i1I78" @u6Z\;jC"p_'lgsɱ8\'&Bѵkv }yģpgp( +w̴Zf| NDO+sa "rG ~v݃|tμCKbcpX=܉pjTMp8{l/\75f$.xX)'Y3(QkxTn0%[K=fc^SZ(Cb=ޝjҭ>wl^xD gKx([H'sET8+[\S )8$)H{8*ˋ|+pINsUIv~pᲤzt.BmVpesXs5kFDso'k$lֹFttoY=?Xg wApL{_r?Pm6Z5_;\/ZZc=Hy~K O$>D͑.˥S*mLӵ{&tc;0zX9-8_p!1Ch*ž=͇]?p4#)Gm{v!4F2I=o_ ~~8ɯKF`#5)vG%9.g.{inp?{h\_p癖Mb$p[3`*i*)kpvT . 7<܇YG!~y>x̗s]h/ϳ\yKa=xpӸZ{%5>gƹ^*Ex[V.ԵpO?=6q~x4ܙټö~]U4z1]p9wsoc\?wu0x0UZ#t*s[Sb 晳FQeG >nxsᓵߐ"|g #|~W_/tk}j2i_/ʜ/_,1aaqݮʇ/݋l/{Bs54}/^7%|s݁.q׿ݎ=?V~ˑ5nMy16fc\V 瑗eǩ餺H tEiV~#ڌLﺪ63=mtI_UJZx4z6%h@F0Gc/_Ab Dxf#2SbK? PdSE-G`En} h6xA}Eekl_U7Yp$`*=LmأP8N)*~Q2a ̕;׮\YoʽT">9_A?(T{~x鴱8 rS * (dlaz;ƽ8]h}3 , %aEW-s>Z9`=_G'F2:R9ysSC/Z~ľO=R=|2Y^}FPD ] M6\z6}u퉖AX!jЬ,;ϩ[~0?\-=FUp9I׉GxEXemCĉȵ;!BD炗9XdUA 3$)W+H#݈ "#/΂|mD rDE |^`ET3d3~ GT\2dv\_A"ll7}DW?ރh/bO!:|)Dn/;!At˓Kn7/U/"z6e?Dż\$C Qj@q%bΉ&W#F^U1J7 #c'a b1EK1?ۊ@,F<b:X+YM`$ClúlÈ{*_'Dܕwg,w qa] Wq3{6zq 6K 1Tg\dLWЖtnGYQ⣂|ohG|OI^W@1ɏ79 (TW"!$Z ]/_$_?DjZJ)$* ]Có*X+gKgwtu@le+i6PvV9ޚ Yq&S7]y2CF\KndZ-!ӿ+MnA}dxcll4*7d;^Ev띩f `ґEMfGy,ɐ{YCn]oO\Ou yN' :țzr'7ŝJ$!;K(ZeR {Q)_ou1 XQt!ij EgrP,GG7~FMGu{`j#?N9.(P[Zݪyϛ(zgIq&CO!Y\Ht?nRţqT=z;GcL+PCKBꁚdwP{oG.׊)zfU6;~fKa4=`F;ryѸobME:NIϠYqZkK>=Zkni?E_ѳyxrVۗ+ y9xz,>u9~O}Scs߄D1N\wJt?&Cg}N-7@WwR`tSͽl{p8(%g'+7z܃opwv1X}'m7>߈2iNNXH<9Vc=EUdk}sgרz"Lѵ(FQG%K]Ǔ_oI \ۨ7zTJj T_OL'g5T:w t>j Ҫ4桘=x<,|fg܂=>У:ޫW!^m'(nK%ln,[SqRʵ vB ֪tl}b0Z검oچbY+tP' *emw@[P}jWWxWl<{~k@^k2vX4oW_S }'惷F+or8jS>XK U8#zKb0hɋoifz"Ur:*A')L^o";Tz,etgc-a|Nщ;O19݈WR '%f'!WBάh3Dj/Rȓm \ ,z i ]\ 6|K) uPѯ'5:]*3~, g$' hL1a?h|/} $׮6nCxgc.8F"#wWpKS1\& &ⓠ $$yCjy׫4qWCn]Qy Js:Ox2'*F!\HA*dOKQyBo]7rK $@d&QLec+1Eg\%d gV55f!+xX K.BC#zȏ/E"oOǡdю AYW'@HPT\?5" `:'s %4X]SInn~ҧġ5X=Yٯ]ǝsqVCT-wrlqȾ8wb =+?UNGjN#Цpis#k|7t&uým?z֝W} z{.MkT|(vzE w[ee=|.&6޵ͅ!q=U=NpF0ʋn~oƦS??EUI&GUldt*ô-w&5L30%4oJ֨:LJ9 SgT0zF/V41F#Rl`F~flʿ`&;@{w`IU>Vm!? O07dpH /K]o`PVz)S=TYet/e`X&e9Uzhylmxa3Z54Ʈae ٱ6`؊cE8o~Ȝ:j/kߩѲ0Uop8JZx8\>r;t(vg$?a+Z[\~lp8(W~2V.ރ}bw=/cZʳþ uw`?q_hʿy5,3C8`R>T?z~hXJm7N"龏h_$Jނoϧ|%/p&|~" bpAbZm4r'&^4++To nߖDMEtwnXJf-7\ 6+).v%ree\~PrQeZ-^ "&Rp:oZ+u~:}Z3{|MeDuxnI:]CkAߧPw/#SI7<|(3F3Oi[8$g/ZY 2?;$2t,X8U[}?2=\;k,v`}۾m݂{@x{J+7}:ҤHtCQx]9eݩVCr hy>IS3""={ij|-yok75|e΃+׌3;1%l~\c >烧w*ْr5X_rs%n]#~Nn?'R-_vy(>/roӓIcAs ?>h~朠Y>_%D՞۱x +W"9FƭU7~*{}GFY$O J*m"`X:?/R4!PIyDD` )p [4 AY2F#(X.~z,xyY#|7E[G'>'Qz A00?s7 K .!Ԡc: \=AO5BJ!3S }" ##֟$kDz1WJf!=b:B 2*B3Bŗ:KftmvRLķaeoD^L#;vsn5|Op>q{z5‡=^yg[I;-<"ݺ؉1"|ܞߒi"jw;F$Y zO5{}RƅYDwsgڎ#妈Nx6߈YKg M1V~t!F b3V9(* i Di;G̤݋`7Cټn눕|Pl7bQV^BK0bsH?O#7d g"bY] qW7gu%^8)OFrWȭfo!uT<,}, RٷFk} *o"5@_ їHhS`ه-+ӑ(ֆD; $V3*@+(ti16y!iq[t 9XE |q-nSGCHVUHذRW pUQ{ޭ Ĩ!][OLD2=3鈌A=dZW4 S=5ܠg֑ufI YA|~,%ژen!kZ,U>uẆVr"Fy<69^EאlDsr=+,R;%qm"$XA^vYuo!dCE!?̤_B62P0{>h\ə%cO=Pb YQcaj"c_QzR-@HQ;B.5xǦִP2׭ qPIW*_gO? yFh3)Z,GKEOF* tDoWQη uOwFP`%y!#( EPod񇟬J(gl˷h9sd5^jh]w&{ֹkhH-0C<:?sڼrDXOtԱ-Z+Lt_HhE=LREP*RRњGﰇ2Z\d?oF83.&'AhIF .h 6a7xFgw[{b@uGuR~+s.e"u=eI4vlfKxzc d>ůV{zVbyH]B1/\*Ck^ o:UAS(*;Vc+P_nPdS}rA ~}8/w*gB (y'l %`CMKiM'5a>?1"0M#Bn1 k"A;^Df߹ȇ}.Rp35uY‚fo}jb|p6{ =waـy !gr=7[q/T[nWz%o~!̈;L#??X(NTIG2y:te|#zW*a- (,ȱTadS3Ƣ4V0:JF,66H`98kꯔ7Ny( Bo@ӉUGo:6 } HiT~ %^O[$/8f̽ r=`Cw^uSKaT'qF v/y=^8 8f}iG)7_dyo1S ;׌ЛEH}֕;93Plf#ZzBh׵]2`bOV Oeذ M|-ߢo Ew`u8f'^Sυ>MywoTEnzkzO쟉m~ZߨXzkNݞYƵGpg8 6=8{>q~.Yp8>7"á閴K%^czCB}w BFi aS?( JaõZNu6'eϞ.ۓ37ÆrC)lW,_&>0ZScO~14ނeǯ خG&Ї.~Yح|8WspcT:;y+?qiyH1'lQ`kN=$z쏈ZeIbULMh㜤0$Þ~텹۰ڨ!+ [3`K+FS q]b !ށbQ5\=!l袻.0zE#A.K.qRAt$EXfa}=v i9 KVq=Xg1zsm[v>lzcac?1w 6[i'H`0l5ӯ¶ޝn6iSl.®;_+NsoMaSmb9))/Á[QFd¡값kb(~ 6ˬaptp>*hǗ\ dpj(ȷ.M iS\~ѤÑp~bNq $!Zna8؂׼ܓ\4>s:nシ歷{:AmxNK7Y*Q~3+ק|"z!.!lGb^D^9Sk.}xRї6{?q)Oݒ7W 3B5­nX&~ήctO#|#|r/g(X>i#̏jj9_*ku#E Du:H#Dɂl!C3.GB ?O:4p/N(n5_塶QWΖ}_2w*T瘥J[_] &1ҞlSJM{~/G/vußR`4%e Bomp|K&I%E6bp-5AmB2 '50Ť4 ,(};#W2~q^.d%H"Q b>q.^zxA$@ڿNZ,d|iA.'  YGPƆZ倂z%vr^p*d'ޔ_@&?m #_Lvc{oP&Pċ_^ |1޳T[d!'ZF8WUc0B(GG*ɣ!lO'/_AȊFKN2'PUgiz'S^4Bh5}f8GQ;Х"R};%!0a¡!LA?y#RzSH¦%|>;W!\T*IiR%Nb^Fxq{(OVEreqDBs P;KG\5]~Rdo Xqp|H8M|Ed|xD.fē4%q{/=Y"]{̯TEֿn~D[W'o>AtEf|?4"zz;bˤ8#y|7[z`hffE'^dALyI96 -+˓-*)b Evzbw\N;s=g!N'jąy0KESG#n tw!PDST"_ZJ$8j||  AHX?O.J>JvH>o}I*W$<$}GRTG,_$g%g!d+hyF)MJF$]H!&3#uټviQH ]tb;"]Nw>c0g{wiNߓ_ϨuL_IFudG'o-9,tO"{Q4rnmIz:*ȥq~&Z>ߦ!R9gz}y#$"1W$f۴GQp+]LgNP~6;7fa@~p̈*QmtW%“ά}@ip,l 2*7SÉ3ʎOO'RaRT>˨2jׅPZ4&A5֍(sP^c~q-j/PGwPM5beEvaV4컧l< $OQh:{/@MDYc>w9vx0Bh0$G7q~`Ӎ1}9ouOoC5C7Fia8cvWϢmsx>1GE:O+xͺZ^ZlPE2:x2mjMn=9." * Cert~ם|vb\^dK[w.ǀSc /jW"-OlXǽ!jd^'wi3omwxT9tԧ"aߡP7gt1\Rj wjLW8o3 .UtE%9\N>B7g I;< [0W| 5%_V+K&^^aE|֡\= O#_swO蔴Ȳ17u[_XP'/t2+o87oY@Z]r6Utd]=ّ 8 &W'j,4߂@EBZ#CAC hԙ}7ŅZ^5O(nL,N&oCYSV7ٴA`fsÅ[Y`گ89WI!, N]#~&>Z%+qcqBo|2:.H\a m6.$vA岻p19Mt_gf DB/V]vlMRպ{z!HYBK.' /4AXy}3  )ć9+ *|@ . ſɌ'zHgV T۸rdG0tg|UL4!}(ܥe;`& qCa#tm1샒j% ^x"@t7#jiy ݃*W\7B5y l0eX݁!P`c#LS<9iO8Lt`FymG&3/-0 gΚm 򿑧c㱎?4(3;BVUx{7Ɉ̬HjK%D9||]{]kܺ Sspb4sL 6{gSoVk8/z'; {3& hGKt֬tuizކƅt O\ /4e):env xh( zMمq\OujVq/%6Ht+xu?}3ec ]_z▂.|x9>F3zNgX/oo=r&C. |~xǖq5|v 徰.w2H?! :Ɲ;>'~*ob MG\|J{wQTe͊+k)|g?5SM@ $%;D"ѰPMC$% D_>$7&$4B$e \%A҂f${:QXuaH>;) fHgd~渐x۴AKH}h*6 i };Ǒv׾ue~YCTHgO<} v: ]z5S~Bs‡e8&]Mkw;#sknQOg@ɭBaV̞ \{qlBH(qCd]/زx9T _#mcQWkA j՞:9)=tmAk陽zt9ꝡJZ빺\W}ە= v"u HJ{>A~@}r>5 gN8d(zN}p:ϞlE!JM; C $͗ QdoG}|>躗mpvc&s8N*%68xmV ٹEFi,(c'_'):tɘ1iV!y1m[/H-zRdh )L:jT: h}nz7 #&ORԗ0A4}CyiŞ=dzUC`j@~ l^g~cݡt[^}SZ.1p\܏}p\^rh'[b;=Nt)mp,{ghY#ķٝU?ZӖp168o1%pU~15\DTHu>Rnw'Љjt~tg_;NˏSp^2KQso wlKpuSH=\j(SygvżsΞ,SոBEy#^p6cv sۢV\d6|}GB1p~kpnW:d{iGOxu=m'C_k$<-ɶݝM8 ׬ޅ\ o{3 uře*vT+^^:)no«oҎ~^i+?J ^MM;5En./&d#/OJ[g ?KCI{<<{gt# Nv0ZWv}SAuί=Z}J"Ҟ2{[#V> tls.2W>fW+a][.f7L }Ǭ iP0^Bl\÷g{|ds]tޘ= ??ow49$}B#Wqiv1~|.ÏT: ~d:b{NvL2Ӿr"h%ӓw/ck@69N/%\ W٠~MEv[aAk>Tv6Rm 3MBf𤕰(ۉ{;g+\at!F#⥅ey/ۑPKK$7!4kPHXU55\ԎxNBNs. /J6sBə/>#CDhW;wD2d;6B_.Ej嗗n7 {cܨ}.d >xg#oEsĚP̞كXo^،m8s蟳]=q !"oOĉRJ껌8H&5 N+6 L[o !U5d8o=ؾݮ*ПicFTN)Y mHW: NKdܛ(%o?| yLE+"[$?8,HAxJ#4 떆3F  Y#E(QYL;|@ "WF]2;Qnx)rgCJU`"[QI*E*OR>+,$!nvR>,Dv#0,0|$m!=#%s5{!47+2DzC)qwS=52-A 茭Ȍ ks@fXJdmouxY?E"+5<l]!ȶimBv CV4îȩ>L)yR9_<-{tgd"r}bYEjwXC#oO$4gYa*HAԧߩ{ /{"Œ1S ׽7Q>;nu[ Ra <>Í svcưl~ )nMƈl1(}ۂImKqo>9}1'ѯL0~l-L,Yq_=20~ף6: - ~gr%t$oG^?=4'GC;+@Ϭ .6^ݙh ɓU έQ y+K +bz 8"wW2G6`إC z<دx ^q]r]SN>Փ~UQ˕Tz{츿qxjUF>9dz QH `{O-f jm­Y |s0i7)WQͶco]Su> ڲߔR@9;3_?A#AO6gn8vڒ:YM4"'{qKuw_pJ5s0 xJ4 S(ر+R-g娂s ͼÁ=?{Gu]U ,'ߙx*|e=sLL=@#IMƛ41ʅ<؈^mt * =i1;d8L'*/#u̐~yEYђW!_d,gAl2ZjiŌݾP2`K/&xq@9hx_ՠѷ\@'NJQ:"Gkh}mVh>m5} ?c A+HZF_̗5ɃЊe2h'j@Kϵ9sZ{Jx# qrE }ۼo̪qAGEa燳]MlI7fȇS1Ӡ:et#9=0w4f{4fW`{ėIo.a eḽ fHOmS[U狦e靷"S`y~-2>7_JaMrj wz~[X=yfK"|Z4V;I9= 띇I6 Z-1!{k*t)?-am dinªGAvp\"a-Y0P 瀵N O3c;zarxV]?śv2ְyst%(#@fi~=b|pryot ~FI;]vnJi_r^ýڬT|n8y[`fiFصڠ Z6O&ZP~'/q}_Duhuj ߛgi}מ'bxf޻rMOO}TgxR-CJE;8W+;*ot79a&"kN߷Na >W_݅3P5KX &h#W!p?\^^AמG Rs}8< Y<AƝ%G}g>AM\g w5qA&EPM֜H}FƧ,˜ڃZ3DSBZ"-?'Bl?'fEGߟZ9|BsOE.$n恐 ?I]'D! ^YL[P廓* ;КA9?1w- ŝ4hFX+yJsÎzC=7!a»DRάF!E/DDmCMOKY|C{-f,Q(hx.~QBwO JޚI\Q5>;bZgr/]myaD P꟫"j޵ud b ۨE-YJ o!Zi,YW?kFgY"f|-e=b\-U5s{Ѕg&q.C}5>e5Cl]mlWbdrm"Ч&q1JC Uzf#x♾qKlFnhħ\Yڐ!Ú<6i5#NlX!{&Bпٖ[?wЯ&~dlykwK!>C~oUHP%I^f>-H ŀM]zHVZ&EcNCmMms$WP#y];R4i~AJ$4zJNvGjմ H}>]xU`kq i;煐<ڢ/:v*c5oZ^ܣ@zYn9;MȚ#C D6-2 IO !n>Or@.2ߞno,z8dNA{d<2DMId9o dُlJLVD»(, {`7339T"$$r>r@~۵X.5<=ښ+ȫqFEy+ Ogȏ$O!OD=Q8s0r1.,GO5 ; 3(>{q+S6PoSve>.C1OeW1OYi8;)%%^Jnc8=(ΕZmEx1狥j|L2y'Nƫ PNڔ+~|@3! "BE Ź]qnu9z<4jP61UZ.ogCի{{p!P$TSsXI(Q#JoSeM-9 uJ?EZGV=dECB\1mF?U$7p9͔N"[u -b[dђ]_˄rV\iK:n효3쳗Sbz L}Cu :7ZJh\ ┉}akAЕ-Gݕ"q}p>&nrlK[O­7"4b%k)[Քvx̐"B0Ő[LX>ji_x杩Q9go8aۊ ,uDű^gQL^5RJ0?Yy V~'5xTmCzr|ךdjGؾ[ĤO|e3~"C~2$"Ud6qVhý =DCr7\a(nXl9?Nbƒ?bJ83#^"@1q0ꕵSe/Au ]w)e2Cmn_[r4m7@[8-.hOׂ6zBr&)HPDĕ+0rP,L},LAljI?LdhH6 -C.\Ԏ _0t$m8YNJ7mb-3xvYWoq7~y5Cg`ƺYi;,j]/Š" Gsuo~YmV,ԃ[=W<NOS2Lիpp$dV!^o>;+Q&1vԳp뉒 spde;k"oQL6XE8@'`(<,O?=' F2+;a%k۲F)~QusMÁؔz5׍F`]=!BV8N1mpeXyV73LܛIs]3f~?*n*=", [+x1mn{c~8<~T *u؟ma?{*R7U*/;uNSC& .b) vk;uaO3we;ShI~x=YZށëQv1s8+ NgCrҭy]W[l](Ϋ=*y@.B2 g 8_u8qvg3ÆpSTӅ3ɌL:x8OݏM2pOY+҃*~Ap=K9`/ϼPH觳.]] q Tb\y:n煮; {C?cg[oghJuea)U19dy;{1T~^'04S]^i =Ԛ/Ix 4wL=:¿Uo[NE=ufg*|.2-𩓸߲tЁ&f$FP07[4>~ౄ;5e)-gAD|+egpf*ͳ'$ìaCeP?h>܈%݃RL:X-T  /{e}R7A^݌ߟZ@+;)r<ָ)EY^F5=r\`X^fF@iܗ:6i.D x59"s>=}:dW\,G Geo&h1?yo>~8op^BHIQL+mVEAz6KkB 92a 1x adD8H0c/u8>B-~!}TelŒ&;jX[XÄH`_J|?ىH'9]LZyD u܊Oώ2D@َGzDK38;,E"x2'D-?G(ړ%a"q>"fOJpi- "=#*MNpQ)ӝEn""O~V3b:fʩQ1n͕OsI0E]l\A,K+DǴX]+5>Gu;bW=c[۪5- {/r)M#/-/qfw8Ci3ۦ,޿YWLqCWm.#nM` ,7NN@07[n|^XR#37G $8{LJ֐1HX6z]nHt{B磃 #?;{tz+^\,3H$sE2OCH*ff_H޾GɏĞ7%O"w3"jkASR!e:<G*-HukF0 ܡ鵼 cM$p#YOHmyW_!C, ѡ*1-t@JT_c`!w2"´dq#Kd=ێCb ZPWZWBK |R67 ¶@6[ὖ%9u7ANV[R:? %@aţȭ~NQ?+G\O#4َwl"g mS)i$#{ CT$53i}AˇQt[Q(pq 3Qt{o]tюb?eq0O}Z]{%#/o}cA8jpeٕ1( YGYLB=pJkrш뜔(Tʿ~v0*Fm^}PChy8Ip{]@ _=YUF)6l&HG+|6 ڡ&pSeujDQb}o@y#W8WOM]x.>g&E黋Fh75 /i;W"sh鸘;>V h}t\Jt:\р6,ӧ h{+G1}gLDi X̋͜JTW.LYjY~)`CC-Ҏ!خW^;Zw[R${hx~$A߇W5e|П$Haޥn^"SS- $41p8:_;d_0xxp:,W.[Ȕ'0F` y3Y$};QS>;Ƈ3ĤIWx"C(Q$2xtbGg4<ڿ/]T}za10z`yu{$݅S㙽Itvx յmޖ\Єc.5\rW .D,66W-D~_{@X+{ wRh?`|@' ++v~{⏖zv@sPIRR۔/z.j2]7e@4~9Y 9߾|1Uuj$v])zz@_@}˚/1o_4},eC) 0⢠8Q3 :kMg_k)]L BN*a J#i7@e7⺕nV:fйdd/Α[LpXQUoc lID%_?tLRڧ~_{``.vfr"3z92Y(mq^o'Ofx98.{m5rp}'kLi;np7ܕI ^]KZz3E`?t۹8.p1!,[o* R`]bONA^Wig/$v4"|>,y3~d8Eges 1g[2 n[*LUxfc0R' #C|7Ɩ*ey Oj!rIi6 A>xV1(n9Ecex{*ttG3ݠtnX?]TcY6'_9k@-,O50~yќx%1 嚛@|W=fhȨ͏YE:o2Iq|~Ch^pQ+^r:I9Oɑ0W4f1EXJ}jUz)x֣M ٤dҫ0+K:ؒ/]bZ0[bUO؎3U̿_O- x J~gX ۧ 3m;ga3dX>#>+:`D^m})`}^*l%&F'w>=l'ۉ6א vo~}nyu;8p:ܣ xmp9*"1N7۴8mQI GvGp/x z]&<tMm-x|^__,\0HJǖ9J+Ӽz! /~£}x r*2+ΉYxkq΅WxVxou:$s4 _#i-Huԧ;q qo)}aN;[/LA7ݿ)8wީz I0|u䄫mF&\ Bi yCy YZ$]7:,,t=^g5d_Tpm?(?"S*'XeDW?Bi=v}64eQ8/>[pi1xpYp۫|&K dʀ;6m'Կ]'^mAnmq볔^Q~ i Z8|YU`Mm >q;xg.7}-FP* T\.߱{/N[?EpGh@;7RSrW<7Sڴ 4:6^_}pcp3Br~ aT#L+g q9 ~nRߏpP>UTLJEBY"ٸ>m=;tMed |ϡGh8h5yb1~D S=DyU}Dڧ[oGdb^ "T2 2܈L&TdO.#kP."cZCe H()r#*1-k%w_BԼN& {{h GRJDQD=3#F-ebzSX:xv/JXņ^AB~$lه6P#Lf$eO@3KhD;4!#IK-v@3vFRmHz8(-Fԏ|=/$x,"M0s&H]yocoCiNAjծyQHxV_!4BHCL2H);Gnn ν{`>m? IjZkL]F.44>{a r ړoF~ȼi2__yx'a#&4NrY:f`R=l;Z:d23R$ u眔3r7 A1ӗw$K:1ֈ_‘M6˄\BȽy|Tc ȳL}/y.?A>+gT7e˔C~ң_?$ʛgԮ3ɴ=3*Uf%SA( uCa݊\kGq~MEE5(D3Gߒ *8;ǘM %Qq)upU*i]x zAܯQFJ2*2KIKY(\y|iK>By'CM$ey!r`zH *yh% kHUB7좃P5YC4.2H PP5}ԨVh\ ԖpΑdb^eaOll6.n)9Gߠqd- n4Ҋ%Evwi4975}_ۦLNR=K tcK> D-2Dx)\rGh"]RvoIt𞕻 W(:Mߦ+cMk+,5ŴwۻK>.Zw=މ&%ϛ>!zQt@F aҼ{5p }؁jܜ=$[-7u`Σ/o whb(<Hsv=bpgaNJ\K ָqD+JǦˑa̯R,' &Oă$nw x:/-;i3[%_cf"Qk ~xUWULv-qvOŽ37qSJmtj &@>溇PD(,4텢;?Tlcg1ރ㥩.84?*U<ԏP{ {KT EhJ F'"sāՐ9uBM["|FRJ:020 q_Za:4) SYX`*L-mqa(~]| J!SģH>|Hܩ4*D=:|6Qvx?Rl\8x!U8%AeDSG8|;6 .g2b:~:,GLЦ^\Sb,R/T9a儵 *`Tl~&} %avB'e:aE ,GKS }QX㑭,nm? gv ޟ?B;kOydl ]Z“gau~;Mrz7b9`Jf]{ fIo,S߉bN~Q~?88 ðhbHt=,e{:\RaHJmW+`X4lcg\3iQt:8R1޽Gz npwl|.%$? 4pZ *ǁ FproF6ֹ݄Ua+\}6[2q X{JuM~w`=*lD/D/V#گ l*($L);_:zvO_ cV=\މ+_plRܯҏ̅^m{} v> 24;ry>lo Qg!|a3oj!)\aF?S6LLL G`}@E]5}tÚGkfl& V?ܒwuB/a1w 뇫1Sou\ľr"<kt>rVt֊Zp#X6|P} mUyh?a^/qu]mzͩ._ c"W`r;%;Fß[auxvTr߅[F9[d oK-3x  ^O@sLRP0Bo)dWUM+8 8ePn%sXy%8 Yy~hB'W1+8)%|;U&cS+$In?805s^TF of-Q`Ni8ң{f{:,qrU{<Yi1K*#w?=M8KK,jpѻj NNoEӕi7jApP\jgp2t~ᗇ+ӶoGzU. ~(@6 שp3ˁ[ {pgi}{Ksp~x9U.μnT2j1_hN_Z1 ix}彶Von}R>Afa27;JJ?wf}!Ò( 3,uf Z g]\` (}Ü神n1/  U1.0x>t ^} 7!5i xu MKyg,ݰKxo2ZhFtd)'}o8>oVWrڑNBʩ>xp٧T ~&o|p}> GSk筱f2(P4[o["p!e^v!N/+Sܻ[@U{>g4f~N<ۇ sY3LVp#C`EQ-7i BϓF:|ol ;jCPkgG4en'+2&x/;C^;l0iv/F<.#ږQm`~oÏ#Ǹm] Է".˸%ȀI6ƶa"볇 *?:auoEdl,"WXBxGMd51ϲ%:c`%"E"iED+VgHu3:E{)+A:^x QqGo>k&2{Bۃ;K^7 Z- C`~n߬A{A xr)1VUK%nXq'uEUy8 ҿ?])-AG\%s, 1?_Ke"{cOb52"64d,bD=PAW"YsS mA\X{ums߯/_8"2{k Y?y}$?T3HH{YKRĭK*rH<_4Hݴ΀>~H ynP$FHR`u72#iHɦUD';b,Ƙ)2[2/{yFn?TCxn"5KnYvdd"u]ݽ6YHz:oj) tE%m+<?]O>XEص&(RJ.d>[ 9펬}VI 1 Ba~=dӬ il'zBϐ}֐! ~1_6@N =qȹ 9?g^_\+!&M-mܹԕZ$ d^+{c37qx/N?Ny0AuyI_(x}! %SBPx PŠ4zEٵ8 r{r%9d7.ɨM{cwJSXLQ_.lt(V6cs_Jz{ؤ㨐:Vw *tX'Fἒ{ӓ8?yWA!TȯjNJ!"'P"ӵ~LPM]R ս?PeI!)l&huuQxRu'tuNE=xt^l| w6u==' gxهy9U5ZYLDK&?*tq2LZybmQҥڸc#KG mզӏWp|v1(dG…W1*.-m}j7p~y\mp3zg :uJ>kmt/>.N DfOݯuw P4t-T<^fGTIN(N7ÛqPUgn91 {m{ Uߋ$i1rsw<5[T#qyRHQM5Zmk}׉ᾒTQ]?q߿t0mfI_|%G^ki>_sVxR]D'W]IJemxȝ3Ћ*)q%еqlFG5rNѽCA ˞[҈&N7FХ2:DgnlmmE)׉7徃,;qOVVYAy"bW< O$1G8nQ%?VRr@9 g P;HX8@DݺWl: /倯,wW+x^rjﶊQW ˜ꍳR+ x1֗‰[&# aސ]ؿԥ{[g1fOu, _YQjkwZS0}+.0#G0Thn.0]nNj)8>\p_jfb=~{ FfNa7KiprP׎(VCp>\/%c έ[ F,G:y 8ҍ_s<5:Wg4?O:ŁKWgMZnqadnp3p$U'u|6QVqs7:C J/(k :@hp) "q/R!$Ŷ \đ>Tɐd+qɂcGnB2}"$+KٓCib鯭2- 7 Mq$= SKA\d<$6/k V8<k"9@~[S'g(lsOE۴Q8Nx?+Jv ރrJWqNe)8vKyj^3(K8>^;кus'|5'P㝔8bS:C^6c]Rvd~S !͡8NU4)_uܵqWL 89Z7Z.6Ϫ[G,'x-.YxdZLv>hY~yskb SÖKZf\}B#NNP_0Xb*H9V]`tC: w?qb30"fL2ex¸L=WƵ7 /8o·06ak ᣆs cE t0.:qe&4L+{42 d6g 0%U.LFpCLj\)E~OwLvYO 0/a)'\Y?YK KꅖVN1[/B4R~re@X |Y+ˡ_X`Ҧ^Z_`#kXM˰6llS8Ovm:a30rll dBE&X;Hv'V2) ]no {?>bf$,9?>i /Nkrj/ 3~ѿ`gP2 _GwUhS# =${ziLt'~.6 ޴O`#F%3>Ց;pֽ?9Nùȸ<= Q8fN2qUq)dZS-mw|tei8?<\ޝ .Rj\[|g:fK% ’PA4\Dtݨypy.:c4\\6$,NhXWdPnz'6W]wej6+~itlpUap}G k Rqڅ0Ϋ)Rf.M:zAe|)?wʝߛɹV*xmӁ;y~dMC^4bLYwfno~Vx+aͺ-x{fY"5Gfx}wg 6ޮ]/?a^}̅~*m#[|+|Zv:Ͳ{>_zMo\"DxN伫cAJz?>#GwH_-d?i1H[)N_* 2'#R9§[i=9 U0Ob?/cDZgc~}q$H=-Ht2z]CmK:P;/t# Fڋ'.2+}x q`v7>_&,|dO:Uld3F|>9dݍ{UVR6ݺ=^9{&W}#i23؃\? Њ{)?GǼ50C^`BTt*b C? ?O_xAݜ>8362'DyAtq/PX4;>"mڴfb(~yV"GUd{ Z5J*lӊ@ M<=R5/kl(2{veN)J(+=]skK(/}[i. ٮ|+TgyR(c0,jQ/FU;Pu!-6:eu{ Tqj(F!cjRGjQ;ĺ3ć'KϠ^~24Й*4aM.>H/ռٌƞSqhTDkf#h^ܶT-QJkJT=-ZGʊUN7AЖ3 2=U_}W7õҎ%MtL!j3>З9kjnϸݟ_hpEE{3g9e] WSF x?>}`YP:~!5vu=>i7ݟ~`[ 9Prvby<8$~cNtqDU抜V%Zt2F,rcr?|BHpƢg,zyxBb* tojAϥyВ>Z)lO[kσǷCӹ}zR)⋶#U RBo7ߡF\$o6Bzd~wSV!8Ə_n uB|ZS&roY "A:iqܯvUKUP˰Qya %Tlӕr-ᄾީ(wjL} C;> mL}pz{o;jzEM$xt;߫0r˔d {/Mi AObwO)5۽0Hyf _9c⡰LeX軟a&X=nu;~; i.BF%|a6}ٮoa]VKoXq{)Ev 0!~z WIsa|}*G^~?G|`@7B\<'W9&`FLt76S0=qd*LM)a&Z^{Fm'_rnX־u\ X=^R= kէ0u}QMY:k{5 ?_X]|,,YqŷC`y8%v.N>\Xy ka~#BG"̽܂c| uIŵwRE2_5 KBlXZ4蚅e{nnXLʋ=:ZNHi#a>=IFal HcetYFuyX?M^.~ Uy? R=°0e:B9?l3֜&Swi?%؊*.t>WGR6 3OMkkIT|z; s#;g;@ةSŽUBBvuǰWmm9̠fw`D v.ke^'3Sbf {rXm?%Hю'?9!") a$38Q*oc3{8tR~4qksYipi/iZ]9_j\j i0uz}3C8~o* ҕQS{ q;3m}W x: Oc𴮨2%Qκ빧oѹU<^[^ [E_hչRg;DaAVǃWJٴ >vgw\!|3^Јϡ&WR,ߐG8UnJVd4;s'Z:v>ōb૨z|/TQ|WvgoϭvW=zq5FtOJcz+OsrOLq%OߐxUײ)z4DgSyAWF 9ka3olKHʇZ_#6˳w\DinSHt ExC ~r F`[{mJo\}G.rI_I8 N2!~4 7BfVK}7Bzie :K| ?ce ̰\?k>"\KsB=c$ k؃NqJPk-=zUGT21F_Ȁg97S9(ILR!ʰ L WyD=R׬4ETZ+Dd5.>⍨yI=uD*#ڦJT1-˫e1KʄS,8 YSs%b+_E;}'sS1C qyܪϒY%YWήoB7!^v" YTK" 3:{jZu a"/MV"q+~6$:R@b $> SE/rx"h3缍DRN=ӲH8mdÀ/cH~$RNQ"pH]|ʤvx\.=CꐰU(DZeH0[19OIOnGN^ȰshN#S6B"26LEf]ۥ?ȼG3!?؂,3sB%5Zn "{Kr.Ed[({U C\9v$?"D@5rwe]@c:Q6n!",5ӛfIW2ȗس$l řy:c8xdr{Sɣ!۵51<\ anA>RvLA)̌WufMc-6guG3AY]7(gm'G>l[CӨH_mȣyz!%S/DM"R):ި*i[6*^םpwʨ֛mtA&UښlkjoEiFg5QAASn*4< 9Ė#nWce44ݟ/C '2'%?%N֢+5$|KۡEkd-CyJ\r<-K ϿF[yh\v*죦AsQΖWm^ѳVŵW*2mGK}-Oe6{_^*L<-E>ό OyqL! ~SYF n`zՓƠWY 1 mv1|bg/nW\8'Շq'NT5wǚTqoǪ&FNwjpb̰w?[,} ]L=xƜ=Mey౿5e<"e'iI]x|.}|? g,bKǽoeP9dou!>/ۉ/ۉ/ۉ/I/I/I/I/I/I/I/I//nn?,[zx$$dT$$\$$;DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD'y ?vcl޷V6ބ5gohknvrWy셊`S$.7nkku9ȶ `]0gk9c87@`/>3[ vp$ 8D L J N I Mp@@@(2*& m]=CcSsjF]=VB"bR2G@HDBp@8IS L$#;qމNw8y';qމNw8y';qމNwF~jOW+G{WWWp+++LfEؿB_q_!0W+x| H+dr E迂_!W+ B_!WX+ ҿ_KRB_8pW+ ƿ_q_W+ B_Wx+t>S ޿_W+ ſ_+N?(X*R!`tcCC!uF>NS"o~xwsFLoø6r_Ä7Kpvŭ75ooэT$uHNOeF4HFsfF_Hs |#E6ſS=RI$ÍRܬE\G7rۛLHF{Tܽgyv͍nkHՁe{5n6y7..c㑞攸wQ4O*X+}-֣9Y7g6uF.P?>Gn;]F͵ na_W7rsFlGqSdFnNwzDqwF2F]KHn )O"z8n#5sbcm㓏&6RQV19˾荱TY%.g]m# Pؼ1VhWU(UFN5(lK|gw Vl#g?;޾?=7%F`{}Aqڍ*n~uL}8OsGl'6R^m#Ml)8\6R"Ko#OdM<`E1I1E?X7K\O(۸Q|1VMjȧҶl#?͹79ߦ6rt㸛o֘̍$iMԼ9?FngHzЍdKugF HIa;*g{ tӋ }t , b X]DSl&/^M74cLIL1͝{wYu!|wfߛ9͙3g=マ}5KS7]:?}mK;C qP>6~sqt.kq~C=O կ~_$}}Ccׇ~vwmH_vҎg!޿~~;i}(+K~_6#bmǿC?O{$ߎO_#A;U on[Z^],K_?8}]8&}]O)ڶFg1,lk\,NSޗ>x.j1{KtMY38W;k~nf$}QY~_uE:n2}o{v4u.}t|>}/ԟ?XtE=-<'-//662SY`͗rY|g׏e~Iz/?mO_L:CG?fh.qЪiGOvw?<~TQkeg}s:dKIQүoJИ4SCgMi̽3I:y ϬO~up(_tc[_㰿{̾_&~N}ׯWK_:FbG_X>:GOݟ!s?tm3#;gRѯu;t|}o7,x&}h*Hᷥ1}w'/IOo}O_ %hc)׍Q-Y?f+|vk,XƣۏnO7eq]_?aՏ|=}c?_w?oL_ud[ڿȘ?fJ_|﷥]OMo|M/w[c~Z[~ߟRcʣ|;e3>;tI 򛴼J<:ui?~g4=S~yzm[ϥfNI]v| ]U#C/֞>~o>~F勞O?Ok.I'Vo֩|Ki?gLX@}.s}^V}nGG5-/ii++%}=:o܃>qkVk?5~}iF]~'ׯ_%돮ԯ=}[?KCӆߝ>CƯJ#y]'CZGoI}K_YkGݟ2VLp.\}pru:f~=] 8 ;ypZ^5G}_c=>sCZn\޽}y?q_]~GL/_>ȹcקu_#oN7=5?7 N_ƴ}?VǦ?uȧ?;t~i:_fʃ:> FS߸*}?$5FەLu}Z>H_8ڴ~^5koܼuJ?5W~%iDz/ߤ_=I_}w~Pv_A;.I_:Rڛקu-'Ϻ;;nΪu:dJLLo4&=}Gɏ.]jL۸GZ^[ޕ]~lDž*=¾w'?uqjnjkTAWC߭UΧxIzhxsSѹR珵=2}]xYJƢ_-/ի=r`s@5ͣI);?}^Y[ vح⾯\q״֦sUgTy*e\_c~\u_4ZiWI2Ug">F LD#3Vlg)g9g-s#ՊQRT##[)*_}_ol5퓭SU\[q 䟒ez&L2Yf}XmٸMx8 L33ۅ~ㄌ'Ł鏄~CO0fLi<<S39Gfcɵc&o%ØL=h̓3f1Tc]3i~qa5[#?-C5٘rӘ1옍cz6\2&frgX6C2w89-Q_60\7<σ3ƣƺ0l#2g|kcLxjóq쑍uXu>|F S2837ҌC3eq/Ԝq(L|̕2erƲC6ݲq/6*˸lv=+aٙͅ| q%_1+N \V?cJ&sKL2vϸ8R=-nH&U_gLF˱Ge2^q<׍lhmL4)̇dc垘cl 3vƪƲXSd{h&CWƱl.NgH6.ŁE'dym&こ2OƳ[&砌/atmU6f2{I-KqqxLveKgT5 ōUj)qG6G'g;-Xj2'd2_?"i`63ygkߘ<&}ԕͩt`Cƛ[Dq9%Wν3" *Y311=sS&wdcݙ5oq&>;$ m8==\|>d|@6yɰ&NYx* hf 亿"-􌳡'yU|,Ɯ|>v5"w`6'c3[q',䝑l2u>6#sƼ!2:88|"̺10Ռlۚ۬Clxzd6c[yR#Z_L٘l.>zl|?Ff4ީZM3.u]fiio]iwhR1RiDMtOδN=mљTEURu$;UJ δЙvR* jCuvv궺wP{ ZӠH/NEzW:!t5bEYhVեt*\T3a?#BUw{F:]Y)WJIHHu,-RfHәMǐΝFfKW6;LGLGЙ<}IQ\2\wi%}֌wh-בV7o~Ṳִ͸MuJiE:)tA(J+^_gzH8t{Uҥ+ ]voSW `7u62GO KLtQjҧR5nmP5EyΪwHmlg62PZe3=[Ԟ"3}醚8n:ѕ͸nwlj﹝tcۙ0Jhho̟~GWf+s4{sWq4\eSVQ[経Ao 鸨m${+khSmej1YԞ>*թW_WG.J]fH)5AW sb0u걥6 ; |סߥdIe6WTWgfrKv*J#_X4]zֵunIңX#fzGtOWV#_=6_|>ﻗսsn|nXt ש~w.>fF]-VP(ȗnVi` WG!ul ;nkG+ tJ#8zkӧwOߗXmSS=,Gzy)R{ئЕ#0z*в2c<ޏRz~Qw{/`z=Qtd2iבDŽ)Ϯjo4>y>hJ_j,:С5ݓ7)+.3 umj '=L7ZԿtfn6AXZ[(^D!0nM ұَ\|]?kov05RcmW)/񩡍IM/lsH\/m T.ٱ_/IR]צK-.m4wHUzvfg=RCm;r):8,ogR;2'. xb󹑗'3['9htuϫiKk )[p0хeI|I]<^;uvSgK_^"0qC6>HtFX*li/ęW[N֡GN6)M,Nu[ckamUdz٫^>4]YFG,ozh3suGw` ɦsm~;o{-lsӳISezBzշ]wSIMdCAFx6:[9~}uwhn^}<]wg"k˗љ/]Z|7چo(-G xu+: WWf8?96T& ' Uv\aЙ *NecGk,i2xnp#p}k2/.iv\wN&TܩNpb&Vgrd^ɝcP#5Z.|`$P{X>ܼ9-4TF39OpR=sܽɜ}Del =ʐj6/ƣt{ B땚五'ף{)Ǒ#z@dx+p5pޜ̌SїysGh>SNPK]8ؠEe>|#ZJ$:VcgϬwu=8_.[xlK3cdzAeqec"I^aօG^!ק˳1mҭHXGcvoc<6#K?$˧ mܝ͍OJd2k93Ul9:!COYޞvdk#τ^'>˻C9R'j|jJ-_?j\YwoZZ+{`/[вC6g6JMB3/ŵ Na{`XVzQ62P K֯OzoWvlLfE$_;j~._l8YsX{ +oCh[vU볹\rR{ m\>@O=9ٸE}o_>,goC;9eWvo$yyisysFA5z mU'*~l'=G̹$̚9){Nzs^%&g^w ߯ƠԵ¬|-l1lEfGX{'=N߁DŽ֭q(Shy}6ba|v=SzSE_2mR?7;&MVݖ)) e̋[K[)/^y)B&K퇗+ /^ <3_n(9/&opO~E?ͺc8kkz6íq[O0;̹;Ɣ|!Ꭺ]<<@=ҠԧRNCԃaÐ:}ȞzXz^G@@<s?Ч&T D致/Ìg @u_=ܱ]s~s=HT&ҤRTJZ"̃SUzJQHUz]n6J[vuU~U*Qխvu]U|m`u;XVUJQUJEP) *5AHUJu߆9>yZU\:WJuk]ͻoޡn˫u^ͻsu;_W/z|TRԜT9KUjJ}"-ts8_j-ͭSQ|^5RPY购[TC*C?_613M/V)9~A3EnUk7<6;kUZZ^)kVK-4^_izPvүv<|p~s|R6(tJSkWeRT)]::w(t+u^y{%_{Cin7gsWds_œe%:_Pτʿ/kgm=`I@s[RJ?&a_T7_|_qlx3k>_wَmڻ\%Bw_-By՜Z*v^l &үFHJ9=/^Szmݳ>1-օ|ͫ]ŵԺ哫b\ʯS:Rl:E253ʼnlϱ:h= s%B낲Pg3eTDV[~UO}eчmw.Mؚ-(Bx(e T[Ż,J:|B}BGB:=m¶\z>|/sEwf}ᘌ2~f7>lGeFUOõ!Y1{ a~_V멪!*WIfSu-{ZD1ѻ&I| Ju-Jfo6};Xc~a>ck؆Wg2]W)?"GJͭZW{ Z1Bi r1^fsS;esV֬_+o>؟9S=9u֣g;=Zzi?*ؑ_=kk| s^-7uK@RN/PoRvKBegel\lLTZƫu;Dl4:qdcYsP=o>VFuz_u MKa Y}[Ss yo`U1{)P5Ah?rllE}^84+fs_m> o;2/<9{hxNs92 {믰`U Z1UQ |*WA@/R]ͱۧeDh{$qAle;yG/¬T_0@;-Os۾˟kQ-sӆ7&kz:kr0Z >bW}nKTs:{+]_OghF\5쭲j#=SC2 eY|]>Oxݞk4LK/ߚM쭾}v[쳬Gg}΀ܻ@lc\W|Y-} P|Aԛ>)ۺD3Zs R*ZcHjHm0'S;(g[|nrǯEVϾ/g7ߨylf?mn]c?bpÇ0 `Z?1_l~#!UU'̚UuluX6?j:P[ssi>OogӞ~QϿ.0b[/ƒo;J1Ђ9V*-0-j]7VqscQ1uUb2(]yW|+ / rx01>c~jat>=sO=}g!][;t<~g`qVk泊_Y$tgю@9cJTʆDsUyBUulYwl9~_cSyJY'G^W=l7fk^=yx_3PO=}}W{/a=z?8 3FQeXU>:Zj+;&^ǵ_Gd^~>/ s׫P}o_\ۙ|qVݩX>_~7`Б ~c |/j:F7 +(]QwuCuoqwabCr??LG8V= |_FgĞ:Egh~-zA i0oMi| 4QP,ZjWW6_9籵܎9}|ciy,4߫7^ξvOwEۺiy{=t=c{[}~Ӈu/+w'P/=zf;lhux٢[ pn+}caNZ;;8 W4vqخ1a{sSxxk֜i3Otyi\5lW)Ⱥض;rwn[lk"!ubz., `D/ Fѽ`ح {z޽`L/ `B/ &ɽ`J/ z^0m ^ q/Hz`V/ ^szAG/ ,ۚ/}(FpOlmvgg}|b粽/쭳:{a;쳳6 oKx[m:{a;쳳ϯl-/6?;:cw_bg}vپ\"^|2bg{u^;gg}>//~=n쯳:>;sOlRSqc;vW^g{o|cg}vc_Hl] ^~;}`#;gg}~QY*[줲O;RBV~Brclչ:W\su^llWW\suչ:Wje_\>\suչ:W^~u}yOYy!bc<:W\sumu6bbrPf_չ:W\suů+f6}puչ:W\{%*G_|rsuչ:W\{alm˖qԟ?W\suչa]"DY-}F~1'/łbQ~8X__tGGGkA[sA[?;a6>6~d]|u׉үQD×׋q Q}7Dϊڧ~,v@Q}F˿ʱψ9kDnQBQB}h #'9Q)ZITOTItPU}MTOʗ-j^EQ;/qDDgC./*W}\T|*QۏD'?QbQxtBvY'j-W%P%j;\$^ ,:׈%Em,hnY 7EF,ju*cѢ+j]rZqQ6zS5^/Q q/Nq,U=@w s7_ɼOԆwU(QWv^%u |BL@@ag|Qw0qM~>F^=]6$guc^$jh[=jo'j7,J5 Q u!`߸8v}>{?x2~bkww^XTσ~r ]\\ANrי_|a=Ͻ[TO$ oBGcpЂ8~a<'N>$jE!'BCu#Ѵ}Aַ MEm߻DmDunZK_ݎjk:ڀ/kF;M.Qh-dM|Em=]a LW n+nQ.@ts[LQ %;}b~NCef-B~΃Bk%|QAƏXcK8ͳ{J ?YXzoX N?cÏGݱ?,x?QKE_@I@ݕx1kaۖu}qE FcDˍˎ-~Qm/?{ }?DԮB{WC+O՟T~Qtz'k|fѺDe} Fn+/Aψ։yZA?Qm7C罢[ˢ8,|蒨TBQѰ1XLXgc<|S^uEEPw<]<=3Q؃B}8u?&`h:، !GVRO}y=lWP[2/x>k ]wާ~1[`s0W'j3&k'-mZ 89c:\C96pjԝ9XSBKcQ{}v#Ew=g 뉨&>=a~ ߃I=v'!l1_nl,A;3p9V`yW6Q]Uat3y"o^U7cW]/ Fnr18c/78{/Ȩ1W ss$Խ{Ɓ+񾿣Pw:Eb|#k<v1?~ }lY΂-h\{ /٘@>)W^7cVax_힂5(?9 U݈}ڃ=:q4ڑXOn?ҵ>; s^ Ö>Ȍc8O(&cߛuyͨ/19}0Cb?6v:|ŐKcAϧb u͘_Ӿ\ v| Uam> ƾqzzӡ:ë7μIlP1VWCSGc?Pk>J؈gr^>:lpG߇1ݓA5Y?.CԾp6a~e.{bV=0uc1G+~a;Du騃v4|Xzᩭ/yogbN;2 BO;Eg_ee >)NEṡXWc['Z4QuY}Ǟ^/ ^"*R0{,*՞;>**}L"*?7a_Ez {ZTt#Ћ]}`ozk=~\QmǚQ|qob;UTnʟ\KT< {?(^8v7?HT;t;>X(]ET6}-?Q} w?y=q(ﳰ z5_G]߂Ow m Qw;o7+hc=[? ~ /!w6Lz#3F#нo7uI#;^ {p#DP@;KoxG /{;lp;XO_zַsg&A/o?=ybypożDZo}ket/kh` lk~:qw/~˫Fw<6|]iᠹ#бPV-|a8J^{;`=; `G~ ^'/wo: ;sl f:R q;!50)?{5FN/оհ Jq| w^o_,؞=q'3>uYm$3W W] 쏗gQצz_` ЃLmسo r=GyGc.Et_} g GOOт Ss5 \1>QT>Ɯ,`]:տO5s񝨻 {Xk,eϰnyjKCu, c _ᴙÞrqЃ;Dlk/J#J*.6C`;֞3WM~BB݊_zpy_Η—1asDm s['+qf<y[.qۄ~L6yΟw޴c\!Zn?H h/Zs&dmc>1bο3Ȍ3=CQ{sFÇpyE]qFû|R7iK؟GA~FQ1NJ+6}EwBE)n?5ˢ`6&*_k_z݀N~ͯiu{O4Syv.ǰ'~{ 0a?W?[7kb8؛Z0wvZ"%0MF*p1]MMo:Rp[Q 7bW`_S/C;YE1& v-z5|ɻ} ʿY> 3xƅE͏@_Z4 U6)J|z?xig<b} g߂w iOBw1)KNԽ Ժ&pny*ԁ0)q&56pwݵ[=)< ?hhw_HKҸho#ވ^?0աXCб8u*?|Xr\;CطZ>`?=K-O[!=7aWz|~/a{p~jwYԷ}:h4lpڕ~؃?-_ 6b:]yFۿao&IЉ3?m)-9f_s lũ=:~} x`58~4fufz%O9糖:{` ?(D >) l9 [{[G, zFjco8QX><갶Nę} ƻӢnQ=~mubCxWWգO֟=q"x! {&C~\t'/1+`_P~2Qۀh~Gjy+dIvH'-JgC1-< NPx7އ77j=Ù]De|TOW_DwwbeYa^r0X߿JTBT?I9PQ8Qz_^ a^ya?>?)aJ:fyޮзo ȭkp9qm:GuRT3+W_ vg?v Jxؓcܥcl.^uܕ d75?8S^1FO7l? sGϽ s=g}{5ah{[z;3}^w6α{9e~9p&4^_= :6ebSҾ8/.;u8#]>*a8NJX{}vg9Ͻ } >|Ҽ{}gnlgO%:CL_9_.rWxθU#sbI Y {6ִl-y=on(_ Z2SxZoCݫuʿk~܉}Xuk"=ppYs`[Om Clq ؟C^.{cw"jC4VV Tv68NtO2n~0b|wՓVB묷`8? pp`GtYOv'fcYǂWWslwRMGc΢'ap>^t'1׫`*1o˙N\V0IEVbZ(lcӣWwwϸvQ>{"lj@cNplױuc=p4l!l9lK# 8kC]\Vo|FG'?T`ۗwkǜoڤck0.&p\[̴{z<|:سp u sPֶurhyMb`}ާϻ;EJw''LzgͿ?~>Xl}~/)_c?%Zg//|P [<2رW_XY)wf&zKӣEk{S|QS#_Ώ4srhfբ?gDkc\Qp#7[NoYVsU낟5S ?ô~\eLcz![-dEz'~ܹ:v:6V5s&wؿ'kp(Qփ/z6w@bT:,\Pdg}}^\>}Yz\o1 ~$.װco=n\TU5m;1%Us:g=>.CEm̵j΄kS]U/ߠ3'l^p;k's.G ۵\/%|Swzсg_:O8}og{^ogc*ʩDl-8O& k3}2{2cQ<[mx5 ViX˰НM6ӱ3|v- lo3˯9}61%I`'ce갧:Xv-͙!oE8G}un_㄃!hxFT+ރ:UGpZw8u0 gٛߩ:z;v|68v e989}X aC}u {ᰳ 2 )^T+qj-IЫo@/T;)@l?;&>V@#u {r\oA|y[ ݵX?<.t*|h?G;:1yBػc7 uoW<]>^Pl*t{rmUsv<=wlaxq>7o߷q8U^  KozS[]QS\;NEiwᩩS0T]AߩcTLd68>i{~~*=~9ӺW0< fҏ+*}FǑ8rƈʷ7j.T<Q;Oާ: :{QLn,?ǩ_Z=d&ΛןـȬA齃mXgطęY}jmvxV@Gg OqF׾a7aMMW98l={鵰{%ȒLO݁6Q>ooq_5s}ߧZ5Wum{P??Qw6|Okd,lƥ*h/>n?ı<_lɤg0jD'Zq^x֫S>\S_wc+guXg+m:A;~ |9s; exwCX8WPXO'Rz@'cx>{E5 uWQyo`NV>0ZƬפ_ʯ9m.S>/L =eJ˵k$އ}f9Uے6@I<2o0͏Ugk7O]l:{GpO?u?I+``, T"n^ %'u/?]4\c~ u8}={ߣ_O5VNq6<am>;Ű3Kiv$ko1ÆęQq*4#*X_GbvL}4a}-^D83Xr.[Gov/sy$o p1v`wwAWA*' )a_0ꠛyz~˴StXg)_V13'OCW|y#뵰q~)k'8V*hiu58znQNQtczh 4\3-8 [re)qϜ)Daa/?IT}7| ܺQ}'Ɖʽ{]+ Q'De7Qw2t}8Mڌd`z.xCjߪ\T _2Nz=:p6<~ao|Rz*ñc:ԁ8[Z8 DˠGîzRpN ;>G+W}P &Uy&}/uUHW@'멯KUUݫV†bo> `o]ݝvlοkP_e $j@Qwڃ_2/y ql:kP4W{w܌nkGާr0sIػ4T'{XS ?OP \æ"LyWO}9A ]w/~!؇u|wR }%C̀uXk)`Xjѷ3;ukVclp]o >,.wg9~_{YjؑC֥S?s48*ڂ5>'7Ew<#oA{X++y;VQ a?z8d:þTgչ!ot𵐯v4Λ7Wߠm ئ9I֩t#e1VGaZYv'Q8]? ggAGNvKHեarr$.:0OgӰ.+؏NƇ;8Wp9rƼ uOkhOy8NuXGରl:\7^oo'uf@XXss"A6t>Agþz<|醊r(vN,*[ [SOx4}_k ̾~*oIz_i~M [DE3RvWGНCoI#Eki|4օXZo~Wτ.{wo<(Zbt~ߠǯ}lse|QėEkgwiOcGA?Ľd64:>RQ}J_ rok/|UKo,O=-vs:3w՟[ b*'  9y|uQ=4ҫ+/zC9/OuQ9؟VouGAV>_8?J˃3)X# >7!c8 KuLq1l;=:f|*l)5N9?.^q\Jq8hfah܉~?}(#{φs_>zrkMblG{OLqb^dky5bͰꌮt|Io=\X+aY:O rr҅5{o }ubZs|Vݻ;8tb+J$e&y\5WmXȌcNq*dsPCp.[=1|}3+sy[Bv\yS.mJ=G=saN Sԁ&HlQ}9:#=WXV7㌒8{udQ/-m} :ؒ0{07ѹ Kaۖ%* :~?gh\Vp\6E*{x߲! \|! ` | {,g0ʟZ(͎|B`y}+|Y-e֕cTYe pPq.@1~"Qp `rD˵kĀn-W_7s8K֘<(Z`WVq9iB3uo=Uڿgjߙho4|…i6+Zߦa=[^cw$Z`N߂Ũk]sEOc*h=ZQ!>sOa?6|qιGš WCΤceTz_:|ð֎:guxٗ1g¿ż N[wB _{z[3aקs-c>q_8ߜgxlm?U*rؠSսX=C}:؃;'?{^·nay鹦_0gg dغ6 =:_eϵc`;|TA3*Y#PTتYX_\:7_gsg8G`O{$+K1W{CŹ|7:iW@؋pkG᳋&WIǂa~a__w |G&t 1Tk(?]ac-_s"ka_50%DػŞtrCcw%s5ncr@7c-u8]܂'\yk`Zx2o>b>Vy|DJ 8'3Nܴ ?bئUX:wc_y-3Z#8[{`qV8ʇ17Cmq^[*|Q<u-r%wu.pֻػ~Oyu38|i=0BT~:vߏ!X'|:xاDgi3X% *館-v 9tO1\/j_]7~_]}/u tuO­G&Z>r/ Ap#cԎ߀ 3ʿ=׻"jCUn>+٫ 5{߰0Vpn8FSG:.z,t@.Qj['964wE{9=q^8;i^fmO-?CH1?XؐNo" Ygsl2YClWVߓ>_LDŽON0\_m sszO~s^ } giλFL\}}G ЭӰgq\a8 :}!$؆-ʣ?lƻAsҸd"{WX|~>T}c1^>k~^kXs1dOpP< 6u:lX{#t^o>fh+TI;xW+te= X/3nYE,l &n/YD{8ru>;~`~ix~$^pƃ*ڄa>CT~خP}kޠǀػ 7ÏZM_L+&Z)*gI@O+iIc[+֏ת;X> Ax߅4t Nͮw6_+Śڌ XGuX}?Tzw=ͿMϱXg|4#pz!֛=OG zO1(Ya-asp kžWIz=tec z ̙N3o>CǗtgWp,B}Q3|%$އ"&Gltz)_6Fð\qT/lž3 ?KQyz2͟ǁ͹ 6 }1iÎy_} d N퇺Y߬8{zjiS|~:|Szu0kzQ{t"| wb/{rﺛQ8yd^p;Gڿk{5=._z/,d};`{Nݝ eN7{\aga~G ߿?tmL,XL?51x7dy]U#^pr>_?E|-``?nTT, oֿQ,ޯc*ocد~wqP DžAuЯ۴=N{c~'co ;/m™|(w]Yzu0*zs*ʓgG`3KEu5Ήc.F{* kk7ضK#1O#0O[Pw~ݏE˻{3cnya13U?>@5z g>31{ t~Ug. Y'cO>>UwX~C '@Ǡߓ]oĚdvOOg}%5O͗ݞ~hwAbإC폞4ǚ]BSy_uO]:;`%sЎa>>f =_OvgMǙ,SG·~?h} l u^c_u;6yWzߠ;ҳ13TXska}VYI aw6fy0>*y9j 0`a ،oa/y-8;/ r4Qm?gvkOվq%ʧT>~1cg\;d%tU.O>+~}}#cNùd-]?ifC/fch]?~ՙ"cyp$0X+=l [vtzެ 9mP>؟V<)ovs\]*]ʦ.`ޯ~`PK> Ğ{-Aݝ^:ػ'sqr3 CB{lGÎyj|yve2ξ݀0>k. b3af]sOVyD[|ޥc^ !W3Q_MyE|6Oup0|cB%83qR&WWDgϣN۰Ƨ×;UϺ_s1̃EX*ɝ_Ś:IԾ=.LsBNzCQ*=V{h]"Zƾ\|*Quic`vI|&My8%L:6qQyjsz <މ=P#gOr7<"Z} 6ԝ$*mzQ *syxK i,X쭇1nY~ 5uHVNh@5.}S1؃1*i!V:3VGX t]{/9WDް81I0G//4;k6bļ@?7$c:~wBQ]I{>:l=cPg3u pa6`bu>~&Q~狃9 w)l2lT7L5k[s;u<ڗUȵHcx&}VW÷8> ֙ث3@PwT'8[C?ЍN;ᄷsQ gΧK;%Y8;Ě>F}c%ll:؈怯kފ98gI8Kϼ1x^'p}5/^gyQY.ƾcgӝWCpo ~MęJhks {.1[0^o?:i0p?}?\sl l=*o'=u p.iyFOVߘgju;+;ka']9d7ɿ=a_zThi ~wʗPgHp2-?H}_;>urE|Gl} XDgyӋq蜮+n3}nF[}syG߅cq m.~"|IOמnw$Q䚽R w_F<^jEu>{8wѻqċu,4.oG?,*|)[YLCO\pn>⃢Zwo| %/~kQ>o_<@= z/Q|FgQyӹ?GԮOTu~ߦ/ꓨ2.eu =Oc^vnQ%L4Wm'eП>XSc]o{VǞs3YA?VaoQ't^ߟ^r] =u>y'$j;c/k-7}3[++nnm sy S {v/}Ǐs!QYCo-ת\E]gg~ _w j%`Fßs-?2nuzN"o }^zLzs|굣g[xڇ{N]a^ŤOOy {ĴCl7ggɽVi.'v‡ݨtϡS?aO8oOK~dqꠃר{8_xx,g0X=qƼZ=*ȶotpwnW1cn\Oi^eoG|}@=!% ݜn{v=5Q94g{k7YYֽuX'w{..}+U8MusU宄&¾bO]5g0`k&b-\q\Z-T܆#zΥD?Qg6_c(>g̷~C]]iұ` Fu3`+λ4_)M@|"nAonث9W&/bϻ⳰_Riyq9sN[qέ.pn;5gUN-Z ߰P:0Nwo``[6?v)H]*_8\.*W`N9vEXTޥΐ`/ vGz2<΍+f;~*y\~ 2y{t~+߄_H=+E!n ˢ6ԭ 3m*riQ{=-_r=''0/P7~lwY๎[o{3~⛘ \ e7/W=fKX2M.OQ : 痋y {5Vo|u[ߣ~`㔏 xg1o{ 7~_ {^:ka#F8سu {.5V|v>% lq 3~TΝwqƽ |u\]v)ȹ8A(}C\еVfK]|ӆ`Q}]&-wz:#Oϸ^iux8J|Qצ[ Q 8_aMo޳70԰./=B]iޛhxZ T|dWަEZv?x) Lފ50]a.!>lDnW_j] Fa {uv] WCt? `=lQ|˰>F`N[a %ObuhKj5һ}}m_yy.x=Rߡ>c\~{3jw.;Av7abzz>yc* ]k~ yRgFN^uQyalgcȇ_pQ} 5*^U^ߎ>0ع0ѓ ʞɁp?r/|P-*|~@WT#*hG۰QߏToOOy ک R\TP*VP jVsppppJ+CJ`t rpppp88888d`#j!\Ks[~>gn>c߼g[\[\υ[\E[\[\%[$.|>[;a6jZ֎֜.+>s]6~SZէ-ԲFֳt_x_Ev_%W2ں*~'*n%n%n Oݭ$ݭ$$$$y{z[e`.Csu_Kϴ.=siMi\nh>qB#Nh !62ĦtLHӱn3q&dQ`8 gAn. Q!*si3CTqӮQȈvFĴkT.0DD4vCr!*4Du\v g,̥iר\h8 ga`$ LFBYh8 ##Yd5*BYӮQpgH&ۍEpun72"Y{Ҵk/2E(0]},2E,2 g,Jdih_d8 g7vc},6fߌ݊jl/6ņ웱o5bYBӮѾpHvņp'FĴk/1%3&FYb8K}jb̧$9i#Omtm7JwmuԊ0ͦZ1嶺|cd|nSOhcB1Sn_m?Z6 cÑdM-+}-*^Txd:Փ}'3 hMuḦ́\ObtŤJ1I1Nb45!!LI$H3M#.=q6Suo|5Jqmj1&q]kL^XI/$!#k:{wo5b2&b^FXIO8y 6$|oɦĥouD>OdL\O~HrF$gDD1S>3䔦T6 >4еQl55O:$f@Dg@tG>im@tDg Oj)IN3BRې ڴچgH|~]S!a@r>mH|gOj!B>mH|̧$9i?"ψh6">#32C\SQ@r>mD|FgOz%$gBFgD|tmL|g!Oz1G$gDgL| əP  ۄLτ\􄼶6!>31!g\S IHrۖ&gB|&1I~[Bz $$'9n $>%)ɭI[I|JS[!uħ$B&Io%)OIn$MJS Iޛ$ħ$>%Ҹo*d !".T0۪\s[3䶪 Y[Y꘥IגT!B̅ T[c^~:s]X \C:~b3a%K-5c=ګqC`]+ݱϊS7̺ Χ=zKM87t+Ǵlh煦DS"7d{0FĄ BQPͧz tQtP=|'~|/kjt'|H'7x#3+c-6I|g$&Mo=ڴP, -I- ނd }Àx 7}À8 &9jt2 P֔8k3$>úOצ3$>C3' ϐ 3I?C3$>È䌨}Ր O8tM퓮g|JS#ۈܥPsMz][E5mD|Fg!OzE$gDFgD|F əP1ݿi7פ11ݿg"ϘاIoc3&> }ۘ8"9#j6&>c3NH΄'MτL&qBSBz Ѝ|6!>31wT\&gB|&!I~TBz $'T mB|&g_%ħn|-Iz+OI|J$]V?H$$>%)I[I|JS*ħ$_B,8p!Bȅ 1.x\܏ϭrӈ Y[Y꘥Iג҈b.$\~蜕Fp!s?u,us]g!Kq?1\יzRO0גԏ1s۸@xf]Net'U̹dT(n>I2oR}MҤot}n@dх&q34F&El$M&_lML$#1-$FĤv%YSTPeE=3c(PL.}>1 *`jB )H!OzLA$1Sʯ'$')INi(Q0#>=Ò0(} {ħG|zI= {ħG|z!RzħG|z1SO$IT>k#Ou>|'>}/kj'>}*O>O|ħOO|ħ1Oz>)IN2.m@|g Oz)IN ϰӵi?$ ϐ 6IoC3$>À }ې 0"9#j6$>C3LH΄' ϐ$4Gc 6">#32N kۈ( 9Cj6">#3HΈ'ψ3Io#3">ccۘϘnjQSsM|gL~ES1qHr>mL|gOz1'$gB&gB|&&gB|&&gB|&憛 kۄL$$9KHo3!>$-!MτLVt3N&Io%)OI~$MJS I$ħ$>%7Iz+OI|J%oVWH㿥.\q!4 >5Cnr?!!Kr?sk1K1p? VZԒc^B̅ .\~|3au=d#'~:s]YI^ZԒX=cz: VەTU1a5j݄꒾on G_6}|a۴ׅ+O5o0F&w>'McO41} |wFi>{"};C=*;L)0R&(LHfL"/1S HA6=yĉGu.kx$< HڤпGxĉOělOěl1Io>&I6W}͵i' ނzMo5Izo$[@[@QqALr&>d@̡$9i?$ Ð8 sgT\~gH|'*`I?C3$>À }ϐ 0"9#jt5$>C3LH΄'] ϐ$4G}w6#ۈ<FE5mD|Fg!OzE$gDFgD|F əP1}cq0פ1qHr>mL|gOz1'$gB&gB|&|6!>3X';% "6!>3 INۄL$&9ɿJHo3!>$_+!ħ$>%݁wI[I|JS8I>$ħ$>%1Iz+OI|J$cVJ$$>%)ɗ7K#\r!BLiā |.p?>sk4'~Bn-dC:~"'b:fc'~nd%CG4 :g.\s]gKp?!\יzRGO0u1p?ud%{̵\{6.P?tt?B3OcthU7OK6sNy &ix)}C#\h;#wEϥ2[2OYsGO@2!<$IXKjںij0ϡRKOc~= ƫ5=ţg[Y*cE=c>%)M>,>~7CUħO|^D>O|ħOz>G$gD]O?&9cj'>}SA_*kN@|:] π <OzKIo3 >䌨}ۀ &9j6 >SҴކgH|uM!mH|g5Oz!$g@ކgH|qkj6$>C3LH΄' ϐ$4GyRkۈ<WB5mD|Fg!OzE$gDFgD|F əP1=w/n3Ǥ11=[-KŤ18O5Oz1$gHgL|Q1 Io3!>6M mB|&gbnX&MτL̽7 1פ IHr&gB|&1I[Bz $$'o $>%)龜$MJSI$$>%)ɯI[I|JS_!ħ$X&Io%)OI~4[zB b*Mc!\s[\r?!!Kr?sk1K1p?\kRKYBs!CϦLc!\r\:~B3au=.wa%K-5c=ګq`qzξy F`yn] T{0ϒ!fzXqh \Cz(~h,yrd8D<81eM@G-ym5O!+mt== ׫ӵGo]dȺoV-!O/=98ڤƂa=&bj?!yG#3 Hΐ']ψ"3IW#3">L}ՈϘ~ >&]Ϙ)ﱹ'ϘC3Ioc3&>䌨}ۘ8!9j6!>3i#+%  ݘKRBz ͹6!>3s T mB|&gBۄLϤp'ħ$>OVK$$>%)OwI[I|JS*ħ$U&Io%)OI4X{_i(M\`7Jp~|nIROZR,uDO̭,uRONU%K-F%s!CwӨ.\~|3au=d#'&M3uO0גԏ1s۸@Щj* )kN XDϨ҉%z,| /?!?OHэOHߍ̯ <(3?0sMіX$Y`DaWN6ǽ#4<mu~&SkB!O9O5O 6TIΘڧ`3!9%IG 0yQ kJ(5O_O3)!#>= Iΐڧ^Lr>%Dzħ|Jޘ sK|ħfG:k Oz>O|ħOO|ħO >F%9cj'>}SҴP- >3SnKS@MQA@r>m@|gOz$gB_S'9%)M!mH|gH?d]\ކgH|yU("n >C3 H΀' ϐ #3IoC3$>ÄL}ې OIrJ~DzEu~Dz+VasMz$gHFgcArF>mD|Fg Ozӏ!4"tuD1]cۘ'ϘC3Ioc3&>䌨}ۘ8!9j6!>3i#Wn0%  ݣK\J; m6!>3;u o mB|&gBwۄLϤpÎ'ħ$>a"VWH$$>%)ɯI[I|JS?,ħ$X&Io%)OI~4[zT[4,… F{Ӱ<.\~||>,uOȭ,uROZR,u$O4C!Sh$[Lm&$OBH"`gRa6mzQ#)kH|̧$9i?"ōψ#%7">#32R sM$gHFgD|FQQBr&Ծdo!>cz\xlX]tuLצ6&>c3Ioc3&> }ۘO-]S1qBr&>mB|&gFZi?!MτL]~I`%DhB&t.!+!MЄM]BVB 7!B"4)Iq%*Piߩ`&ŕD4`]Sħ$A&Iq%)OI$/LJSWI$ŕħ$>%yxdҟR5+V$Tq!4Z >5/HT[ YꐥYI‘KԒOz[N֢^gu s]gKp?!\יzRGUdיz\8rG wd dK[R?d{LWo'9"X|EJ5P'\5, 0?||Jc)§ ;cO!I$0 Ȝ"$bz ]fdNz2FBOKdJkA-Dgrߩ1o<0a:mu)'tmBMXM:Py euD>}B{*A$gLc ə䤻=ʣGzm]tmi1O ڧvzħG|zPD [H>%QzħG|z1SD)INiO|ħfE`Pߣ(GDO Pt'B}"ԏڧDs䌩}R\PIrJ~@HBUM}* >{$]SA@r>)n@|gO$gbKJo*IPi:IsC"4$B:7$BC"4ڧ^HDhO!F$gDDh əP!2䔦7">#32OWsM'zX&ōψ34} j"4Hs#"4"BM}R܈И2*XB!]Gtӵi?&ōИ}RܘC\8Iqc3&>R5O1'$gB&gB|&m]R܄Lτ%ib%DhB&tC/!.!MЄM^B>\B  |7!B"4)Iq%*Pi`&ŕD4` ]Sħ$B'Iq%)OI>$NJS|bI>$ŕħ$>%p:XB'MSi,BLi |.p?>sk4X'~Bn-dC:~"'b:fc'~nMԒOBą :Yz3u/s?u,us]g!K*cV:]g1sG wd dK[R?d{LGuQ*:pF|sJAzhu:e`x'3(8?a<2 )# CzED?$4  ~eL⒘'D,8Ͽ&pHO D xO^s@<_IOa($\NF9tB9!7]R  tLšŭ= 1(晜VJ(\@6|c݊[#:n[?f9c3Y}&ח,d>$Z@7&7`r OɹMg@|ra5Ѐ "4~Xf7`vqĥBH $K-YjI!2ز@!s2ס:䭄LuT p7!S2aBGxTL5VV TKZR?xTGLuDOFGX#:"QGu\GKr?(b#>b#:JXa눹(P?1+|\uLQGYc:fc?31s 5>fc:Xa똹:~X:a6 O0 s-~|2 s0 ݧDaO넹NB=DŽ5>a:Yjv#N$a٧LX%s-k7.%;5^2ג|R)Y%s-kΎdSKZ2גt>d̵d%N/k\Kv}$y:pQ)(-,B)}?)B/ BD|?) Baa aa a_\h3.!.!.K mA ?~6*ER\(%ǏhPBy{aT/WzaAa A_ay1DbzayDž1ąByA ?VG ',s!&Yf]ga)D\@Gda#.Y@AG|6 w1T gXӰyW" $}|6 !w,r}d!$."KfF|C3>LNd@%Bg}9 !Q4Ч4>,tBG'̳1s7>KY27T030ъ* ۀygZwÚ0񜆖Lt'mZú03BKp?~;>`RKZR?!k{TDuZu\u\Vk[2!s \KZR?+|\G̵-QX#:bUl k|\G̵-BDd#:bUl k|\G̵-Qa눹V%*P?1k|\̵-QYc:fUl k|\̵2T~Xc:fUl k|\̵-QaO넹V%*P? k|\'̵-d:aUl k|\'̵-QaO넹V%*p? s0*D5^2גV%*P?5^2ג|#M*Y%s-k^d?TKZ2ג}Ɏd̵d%=Q/k\K$:S)(-,B)齎-q+BП_/I Baa aa a_\h3.!.!.K mA ?~؅-q).Bg^B), P/C=(!(+C00_̺[/C00_R0<$֊W0^P\55Uzxb6ZXSh:%y[V?=vʧ~u$xOH )Q)xUDŘșo &1ř1yԡ6qSN7 L5P/ͼ:ynmN'NIT(XmN(NIT(XP(6!Qe+D$=8Q!(=Ɗ̻C+wôyLlTঙ)R1!*з=4&dŬIMcB]%)4d ujڧŞƁ/!".p?>3*DC4bA#xc|ӏYΘ匹VV JSR?0jr|̧Pa πT*p?W{nx)$܏4Dx,~Bꐩ4C'd됹V*p? 됹V*p?!s2*Cub#Z{@Ĭ1s3*C'f똹V*p?1s3ۦ31s=T~Xc:fU k|\'̵PIX:aU*\xNk0 s=T~X:aU kd%s=T~$kd%s-dWRKZ2ג~d̵d%㒝L/k\K%{5^2גHr3u'RP[X(ER%{W(R?П_h. 6BQf\C\C\/),΃,ArTR\(%Ǐ.RX( ^zPCP/,Wzaaa Qu^zaqa q_ay1H+0^az[Qjh`=jϑ5:% =d{s$a?8=˧\@φL!fBziHJœ"5ܘ~v'GRƔ߄~i2)&DL$g ϭ1pQϷ:^;h xe_\-NO`Nc?TU_\-NbNc?TUӗ #zx5M8X蘟%,s!&YfrWi| 1s=yL Qy^,2bU |̷yW2,sHߚ7yW"LMp<{`"GT~|NhVa$SS?>ِ4D qa]iNHT~8IgX#pdCZ‡uXZԒX#:bU O1sLT~X#:bUB'"1sLT~X#:bU k|\G̵ 0QYc:fU O31sLT~Xc:fU k|\̵ 0Qa똹V&*p? s0*D'aO넹V&SSh sLT~X:aU k|\'̵ 0QaO넹V&*p?񒹖̵ 0Q񒹖̵i]Q/k\K$5^2גKvF%kd%s-Jx\KZ#$JAoaJ1HuK^JB~M"^T/, c c EBqa qa q_Rh80SUtKqJ?ZEJaT/WzaAa A_ay1DbzayDž1ąByA ?V3BDT8=gB}&TݰL_ T Ѐ UQ!*Ps0*Dn5`PELhb 03"Ap?2I#AZԒ YC7dzU$ OȚ2!s"AT~82!s"AT~XC:dU$ u\̵Qad%Gu\H5>b#ZEGu\H)OD.b#ZEGu\Hk u\H5>fcZEu\Hk 31s"AT~X:aU$ O0 s"AO7P5ZE'u\HNk 0 s"AT~X%s-k #Y%s-kw$;5^2גH&%kd%s-kZJx\KZ.ٵ񒹖̵dGk#AB)*b.HB/ BDq_X/, Ņ6BIfqda GHB))?~q)(BП_0<ԃBa< P c Ŭ< P c % P/΃,Ar^axy %US}"AQzh$uJ3=7_\S ROг))CÐ6a@ϮT"Mlsl2ԏat6T72' &(>'! #O(*q:= < QcY:=< QcY!=sѳ)B~.a 72SJE 8BDTndCZEp4dCZEƇu\(ke2akRK'b눹VQ&*P?k|\G̵2Qa눹VQ&Slb\G̵2Qa눹VQ&*p?s1*D'f똹VQ&*P?1k|\̵2Qa똹VQ&*p?1s3*D5>fcZE'u\(5>aZELyL)pk̵2QaO넹VQ&*p? s0*D5>aZEKZ2*DGKZ2גIG%kd%s-Jx\KZ/񒹖̵d_?*Y%s-kɞ$TGb*RT(\"Q&.y_( 6xeR_Xh3,!,!, mƅ1ą1ąBI<$\Q&.ŅRR(qeRP(R?_ay1ByYwyK ^YZ Jܟ>/Z? dqͫiiPzF0;ABT-EBZ~`)v;Z,@Kd)v-K1B - 1R-Ůb7Kbi1{[1cg1[ cd)&[)cbk),t1bY,o1KZb#bo1fZYc8bh1-Fḇcg1[NKDXZh,F1b4Z&k- 浖fZF3ye2L~kl)Xcn1FXcm1Ʌ-ĖfsbD3e|زlNlh&lc-81bL-$1bLƖfcD3eزL~lh6GL4[6,Fbx÷-Fd1bXfrdFyeٲLlh&Gl4'[&ɑ-a1X1R̳-EXP"Z,BRT-EBZ~`){-佖fr^F39eײLkYh&ϵL C,PK1B #,H 1R殖fVB3e|ղїղЗղljc1ZqcŘ`1&ZIcŘb1ZZW-䫖䭖䬖fUDŨ[ R#ň,Fl1ї\ղЗ\ղLjh&Gl5_ %W,4Z&-FḇbŘg)[NKDXZh,F1b4Z&_-䮖frWFye\ֲL>kl1Xbn)FXcm1{-侖fr_F3e2Lkh&lc-81bL-$1bL侖fr_F3eײLkh&l4Z6,Fbx÷-Fd1bXf`F3ye<زLlh&l4[6Ƀ-a1XK1b̳-FXP"Z,BRT-EBZ~`1}- 伖fr]D3ye2LnkYh&L C,PK1B #,HK1R}[}ї|ղljKjh6OL%W,4Z&Xco1&XcŘl1X瓳b/e<ղ\2ljKjYh6G,Y,o1Zb#'WD_SB_SB_sT@e/e/eb4,a)Zyc JDXYVb,F_V_l4Z&Y- 歖fVD3eղ0b C-01b#-(1b%׵,4Z&Zs-準fs]D_]1b-1bL-ї|ײlkh6ߵL4Z6w-滖fs^DŨ[ b#ň,Fl1lkh6L4Z&y-潖f^Dyeb4,a1Zyc JDEXYVKb,E39e2Lkh&ߵL4Z&w-他bj!Ybi)FY\ֲlkh6L4Z&c-汖fX1R-1bL-Kїղljh6wL4Z[-歖fsVDŨ[ b#ň,Fl)ї2ljh6WL%_,4Z&ZU-a1X1R̳-EXP"Z,@RT-EbZ~`1ZS-䩖fsUB3ye\ղLjl)Xcn1FXcm1Zg-泖䴖fYD_rZBebk1YbŘh1&YcKnkYh6L4Z&m-涖f[Deb-g1|XbD#h6ϵL4Z&s-湖f\Dye<2n)bs-jKNjYKNjYc)Zqc`)&ZIbŘb)ZZZZ;- };- };- mn)<[b#H,F_sN@_sN@_MB_sN@_MB_MB_MBhX9b̵,|Ki) QUQo1XfsSD9e2ljYh6W,4Z&W--1b -1b-F39e/eټ2їֲЗֲl^kh6Lc-81bL-$1bL世fs]De|2lkh6L4Z&,Fbx÷-Fd)bXfr^Fyeټײlkh6L4Z&y- a)XK1R̳-EXP"Z,BRT-ERZ~`)c-䱖fY@3ye2Lkh6, C,PK1R #,HK1R橖fSF_sU@_T@e2їԲ0b,xK1RL,d1b%' 4Z&ZZZC-}E-mn)<[b"H,F_sP@e/9eye/9e2ї<Բn1cs-<1RtZ%T,Eb,Fg1[/e<2Ljh6W,4ZS-櫖bj1Yci1FY|2׼2l>kh6L4Z&i-浖1cg)[ cŘd1&[)ֲї\ײlkh6ϵL4Z&q-乖6Q-F`1BYb$ײїײlkYh6L4Z&w-他vѰs,FŘk1YR,(՝BD&. s\4}[~)/uy̬ r92Cz'B˴-r(S|,k#K'yG&[&[z?N6'dsk1'5'd{9f\6sds9ٜlN6'|g6f\{YlN6'*͜9ٜ9ΜlN6'ds9ٜlN6'ds9ٜlN6'ds9ٜlN6'd>eU.#m EW|*2ʕb￶e3gdzyGeYmFlVlqVlN6'ds9ٜlN6'ǝl/7ٜ\\:ٜlN6'ds9ٜ_8s\eexm[yM9ٜlN6'd۾esrmr٬cN6'ds9ٜlN6'ds9ٜlN6'ds9ٜlN6'ݟt+r^y%͇r(\9dzy떍2U?Ke+e+[Q&[rr9^ikfflfΜlN6'dsm߲*͜9ٜ9ٜlN6' N6'd۾[y.mVˆ:er9ur5+1'1'0N6'ds9ٜlN6'ds9ٜlN6'ds9ٜlN6'dsmm6"+i>\ۇ\F:\N.'+G.er\rr5{*(\y=,kK'ӵW:gNC.ufٜ\\:ٶ?ٜ\ۇ\6똓隓ds9ٜlN6'g/1:6+'fl6d+Wj\6sfl6e3_N6'ds9ٜlNlNg.l۟le3gN6'ds9ٜlN6'ǝlN6'J\V*?VgA˘bl~1._L/&Ŕbj~O~o~_~1-_/z~~~a~q~2?_/fE#_tsy3X__,///C%a+X________,/fe~*X__/)ũiņbc~qF~)83؜_______\_\_lѫ5_]-z pHm̽?+޹M{ ߶腶 ml۸r(Sblɵ}tlͥۓ<#-rrR'dsɵ阓隓dsdU.9s9ٜlN6'dsˇ3eU.ǁr٬N6'~lfΜlNgN6'ds9ٜlN6'ds9ٜlN6'ds9ٜlN6'dsm*l6"+i>lFlz_[岙3[es2ף2٬eLre\6zse\6y'ds9ٜlN6'NlNg.lN6'ds9ٜlίt9X2a΃rټlN6'dsm߲9l1'ds9ٜlN6'ds9ٜlN6'ds9ٜlN6'O:Vl`P/VlV\ۏv2uFlfL6reLre\6d+WN.'+m-,r̙ds9ٜlN[6[岙3'5'ds2˪Gߞfa.IiQE[Pn8Vs^ubv'iӖ-O[OhtgYg+]7^^j6-O[Ftu,OW{+cڳ,iӖ-O[Ӗ-oy^jϲӖ׵uWl߽@Jȿ쾰AH r_OY>D.7 >L7+{6k_ڝ߭ ||6fg{}o~IГ>m|%v] xN1sxv3"#Ҳo$IL}m^./ ڊ/~'Wc/\1,іxO@z=㠯ufojx[7 5"G_,P\7k%>xIuyD_ϫ<w9 9q^ſK\/B gQh5 CQx4-Ɗ@dst "<`jtx&^EB*ڌp_0_g𳃐8_-}}.]Z4肿]0 TNVxGyJxpHj }H~N{-!, |] S6`OOß|"۬a]YcE,h)ޑ$ >ޗx;m ]e|/tAE =Bh7tĿeeDG3\WbлB`g/"g,ЛqJ|= Gxe<yP}㹂YƷdo_TIi㮁.d]p4eju?ݢ[/wSΐ: $9w$Yva.9Sހ&! 'j44MЙUe]B~N|AwbSbZㆫ`1υg!cPqy QÄHH&$w9hBcߪj.;`S|"37S%mD'{Y&<)_G MB%B::; ": `wV`KuhG,IfwguGX}'ջm=ƪsAE].D (ܚĮb?|{"~VUVWB۞~xm{e >vm&T?t 4 Ž|ƿѫ<;[R]GֲB~W|V!|58GYB%^g/IVDإb,ৠfm7f  #p| zl9~eOC2Gk[?PBoK@|܌7$rKW .*6h\ Ab&_1 ;yr ߆//.@bP@L Z4jo?pG}CŜ$l#$!~:}NJ^~oz`8~Sh`])>g$l.질gU3uҀz%E!8at8=T" csj6c><21x:eUFi +| UE'=nEK(V̺WֻFMNhђe8ӤH-Ƴ܍ߘRa{L=+Dת*t /}c'%-ENp@-X15Fc|\~",_ЗZI*]]COsu[{ib99} Ů_ C QI Z|a-'`Z6;:P/_f9z~ lh?+Y 6|cVl3oщx'FG@g R{|>]W󻯈/nwI›ID`V.o4'š-n@M}% N[bbMui~`AwbZbȼ;9g4?:j[WJxpHJϯїhn܅`[S-`[YБXcυm)|cMUȰ''܆-t Fp6dp6!Q;$q+t c6/``;5b טTLK~%|">J A`Mݝ'<@~u0gC̩p]$j9ϼ^ラ(>E ѣ숕6xD~)d&gqvR${ pbw|>;Ab5l> hY;ό18Bow~^@~vk ݥ )!O 䝞J--DJЇl}LJwB'OqC,.$$6Sw.CjFNWTlwpZ|H[LJX}' ѥbqa|_n6BIe't)~ *3 z &䂂/ { ч\ .7݋kcx"I-b&NԀI0=,o̲ C:C`O#x>]%l#GzQHB=cX:Oo Z34(_zJ |mȰf#ʐ{#4TK!>Ga >t iz!Dm=%L| [4Gb+Fߓ`TߚRK4xZR/MT.^ȽuSl6c^_l`WJt0I¾Oр&F,r8l*>Mt$69ixWJslp{iz %f۽%xTV-S{~/򊧫׳z&!(o&4SX/)ϥPWD9~lCC0At 0xҝ5$xwjOW 9ZOE/"pE34 $TwiHcERٍ8}Z@r<_+I|Jk^u%"[8ZE79/" 7lfՈ7`O_⽕~ĥOqsEW,'xp V[-3077S;SZх4~#p>o5=`w7a;·ϑ_$~ |lMc6u 1VZ3!< MF?XNB3c Ku5{Lß|W)|g7\Nz|E ='RK06"آn񬫿j|n%Z &v3S) Rk |.&-# vU \ Wᇇ"wAi.*k 2dMуZCѓxzHOI❤bفr!bh/Fl.FEpu~Iu;B[ZS$H^9:H1"yfō?{ 11ZKv0(f,25'W]jhƍW督ēнZ~ mKs:w~q+H3hN-7Hÿ zy7! ;Ca(l~7=X\ ngDMKe 4%v>?4XP}י~pdw 6BRМOw_Wپn4(^86\ NNa{_OX*]Ĺ=J\m!7uZG Ewk~ Ft9F3Ȧ#El56wÖ i)tV YGGBf %LEg?^'M$tD&Yo׭ϴk|MHh] L Թ4X'r,v^fU/=7r<3]nNo׈[BZ>KX]+Z<7x2`6{] l"RJNrkj7{ߎ%_κk|W?"QU'}Zz;<-L~ӫYw?C{ ޗmȺPsezC?OUůc;xs 3 ^O#W]|?;^ Z-QD> {D?_Z#^pXSL BKx" ݛrT!1Jcx_ۋ2l޷5c4c77L'oe]s/lp$=MJpTj^=Vό5wt-"62KUTmn<.{:U +Ik%]f4<&CWJp^?[Rݡ>Tl괁ŲۉHclo0z-_Ϊ%6Lo/ {I<Ś1ǡĬٳX `o_3q<_*em֑m/_/D#-?LuP;v.*M`tbk%xM븳=mIOp_ p>leZ 2lV MϚBdTV76`GS`;Sr3-H}YeB1>?=F*pSb?W'а0I11 ib4|ywGzr:ocY`u |!  _'OIO{h*B'n%`F)~73ӭW)]*+x__vO%ː/KБRm$WJx= нx U\Eo|1)bSN}g5~e-qN5{hf}:-6ⳟbsہ_#Jl$|,)~hlR%nfÔƒu7p=\KFiAf,'l w_YHARMb&Q"oZ%=)m둚_aڷ=hmv="ПW9h*`dѭ  -,EW=oו7$HRo-~% l'DoAe6Q!zX3{L)HX}~ D%ϬŞ;c #m ^mKN ۹|#yH o $Wrcɴw*N7A!"gHgq)CfrZ バg%T5#ѩ>;1<XdoK|h7pS$2LJp |JCoCWdI7qՎBϋ]LL;+_ v׈>g Y&|~w5;<Żk`tO o.yCԯjN9ôWAKSG( *sP{4 y3:Sw@_cWflofK%|@érjw/t1_醟iF2Y__(;.`zWpXc}pxkg[wW~E|I %(ttg؝k{M&CH"RCABݟb5ͷ*Dž8;ֈ/l"> Ëۛ$n^(K=U_yzj׻u^>~2:36ۏU8(9[NJf)h ˺&WmCKp`>%ɣЏ^Mg_ >1Gȯ~oPCo%Nm I*W+2R .Cuo =n{=m>o%Ir%xY<X?.OG ,(&.s=TؾJW~j=.[?B-jE@6{(p8=?] gp,:zc~c{E'{':!<غbxbx'Vt# Z^hob):Z>%^g+InB,vپ!ZSYnݧzW4Əs!Ic1ErR.ֲ&]|ca>`Pk#r$k ,ZGT)1=i 4?~٠]5!>7"Z[$= G=Lo=>/^B|ƹNv` ͣЕwζ pџw 7 'a?&<{VK\{$GuڈD|k3f3Uqȶb0!̞n@_9xZFSj'Yjd?7v5s}[ZP@3ꆏ \j$F F.$_*=GHn|v{y<t,Ʀ"x%~kK}̲3 iWQOsȯRI<].{=G,JI{gq3Z8?Ag >Ճ7"x6iDGJ8h9x0gWOk|v^~g'[eRsC-OIgf Ef-ߍ+Ak9<,L?X8EA;J|^n\ w{/{W벡B?+iNVnr9M ]+Bѥ:.35??OwVݓ-c;U _pp?v=#tjCX'CL?iv=SJIbJXz 6g^yzv9IC%|Y@KI8X_AKѽK-կb'n-q眒(It&9ob[ۮOjKOd;5nmKװx$<ҵ%~Gf8C#:ݮlB֜mr;ibR>W z"ZlrE/h@|t\ V/ w:~|pb@_},[=VkT:[I;)0{>CZ-۔ 2twv[A:;jꉡ\ܢ;I@7_"^pRԧ>m5~Now8z+m %kR VixTLSNRW3{Mw#9|.l;VK~][{5yyǞNl/R4Bz$WW. %T[VZh|І6CGB]yމC7tAlB仨t6 "= 5|Fzto^R篴mf4=)dA_k4/~ض/1Ooq0H7~֍>J>v1Ւ%om'Z㶹w.o=jڪ%۾ͥWZLWjer@V3zq`m38 _26JOK-8 /{`S۳p:yE?YB2g}z.1ILJ)d] KXK5)G]Ёփuem;cǁsQ ֗ĩZ3MiĿ>^!^W_$71/M[%޷~#_b|n=+A{AoѕkϵvV X0k%x'98'~n>NR_ / wj Ĥ3*&v~&p)}*)RU ûNo vg>>,'5GdZC?,֑~UpQ~>kO ֚Wkbp6n{+ϧvn*sr5vЗn`zЍkU-']zM=ļ!ԝ;3}|n|Zwg}_E? ^y 42+NZl uǧ W/v? ^/-%um+i}?8ǸVw=tjMwc:GjEH|I#JG>AC>A{O܌^5#OԆ ^>myw/h$TsL:z~=H<,~YWJmkIÓQ qf"F }C, ־!ȳ = >N>P_{+%긩3/ț?}O_\bwB>fx_-X4^wlkԚ*Fѣ&YEN0uS!ΜM,ELLm+C wjly$2ݚH8̽޽Hl:Xxq|%avOK%xVxϯ]-wwUn|՝]:A7~j48W ٮ mOOl^zI4̆|M9=%Fz_~:.q~&bkѓ3Hp~Etf~^cBϬ7{1;tNߔn3{ޗ7q9x[n𦖄z(d82ReZ+JB%>BN3|7fXT<|H]CQFT 4ց-cIz޵>_xFR>XHXMs <*jώ@tپg aEZ$K[㎗=B۰~Wv^FB4ts"4ކ<7@'_| mI TZUumOTeY!艛?L, z11ߟ^!C ofMc/bp F/UcԘ'BFlOuƲIt͓m$jrӳ֗bH>lސI{|[gj)j!Zlpe_ӳib3V &^UvVCL3 6@߷' ^Q:7G"t7>fhv_ߖ49Wf0s6[8 ^w"ޘo3Oy+mO`HS.Áb_/!k9IbVu ȹpL=+Clޅ}mO\]d;G /[b?(Ƣ#.K$v4C§AWh/jI֘$W=Mc) eUſ5c`SEwuߧbdlm "u cs(O N_ywjJ獶7zgViOѾr{b]ͳg3Ef=7C)_ZH QYhd1JYفҖfr`]Kv_:K=ys4?i9<Ћ{N%Zco9hmE?K>!>IB5dsrR-z)qQ%:Z# ֱ3X9wĢ{AC% G3]-}%>;Yjz9n31ÛTs/6L{ՊպBcOla[l fn|zIJ;nc^ H 7Fb :i9vX-Eܗ~2lKح!c M<{bef+3XhKsv H>xf>dkyđ`[)<{3[v?G*zhU}}=%"A\fb׳>`sK[/>\m?azyIö>V}reGȨTk-fC_o?8n| ^ n쇯lfgw׬믚M_^-?랴 0!ō%پ΁،|x >545|jBaOs&+A160~ %\=wl)GHh)5c^d4Tc=:R{OT,&a_"h/j:cw#7YۃQ{@>Ĕ0qSuw lKa=L},o)cae+Ym{ { !pnzX;e0Kn6n奆[?ZghyU h/|8Li~\gWVa )W@weʥݰ $f):[¤Jf͚?5ZV&2)c@;S;x_ߊ̔p8Y+9Yn?@mVa:,r nNfib~3suj9x91ǞĐNֹ:7 }Jk%qDO.wG.r8s1>1rtI)>m6S )D/ {ߞWY{џ}3CN%Vtq B~}ç1 c튵F@e:,/?+-֩#-?v }&R_t|5 7T޹~x0͎`E6tOLYv.+† _ٹRx_(Bix~>kyD|l,2~Y{uNí!F Y1s)gQ6[Y<;"I18 k t/JD3Hij>iC}%x1ϮCV#p20soy|/q3;7>=f2bvκz]Gdݍa^/D*x/-{g^7a~gY|j:Ng%߶~iv:,-kpt"jѱ*І? $X||osaKox;σnD<7WީzXj++~(%'&Gk?_[&$Zć{U^`EtDgj/ynAsy}~_fBoGIv:j?b*srv!Cb?ZNl + [Dk~%&FuS=w7@M'nK >)ܙ^tDoK;Jw8_?clL紨Q\ 'ǖRAozy֟M#'M=κGǴ܈n&?ž`-l,kKmߛ&vVMRpOHy #ΥiRd'Q ],sߨJyfZENmPb6/ЍaUoOL=jLy׹>'Ӛb8 ;~?MzU'1Yt޶{W=<,iA vq  =<;'F<$\lwJ<wUFPs/aW_CUҼ+rgInFt+%Wo~> rdm7A[+5?vr= QC{c9|?ڮ b){OZʂ ؞Z)DUxŞ&6^t)RCOpIXzVz;Pa 7{ hIxs;ͣ|;]،Rz5ѡ?Ad5"7mHy.H-h3} _q6uX/?}lCzFX~|g =ze{Ved5z@{pz%tp%iDՕ݋laK`qaVkE]Թ=L~fJwz,)GUb-M#ȷO>'5<_Y.W%Fvvz=t3UCb{kz53)fRַ im@:S͚7i4:\@7/cÿ?O\{p­$*X ynMWwD]izN5x .@^Qg_`jlVEW6/kXX| >j*uX7`!U@ѥs]-=|֜d 68u&[ϦA(WBϫ3i㰝 Eƣy|_"-\"Nޏ-g\!蜮"ԫ֟A]YUi (6Jlq?gtom73%x#pj=o4G=>򝀜Z6-. |=7E6+LRZT? Mi"*I_H0M]-3Xgw2r%?^eJ0f SُoQ/!Kw+%փn^gDi=,g$g_ݯx~?Xw~V: I`Ld19gFa˿O@O+$Bo֓ࡍ ,ˎL0v:v5{K, X)< 4:gu/Ma= Ö@u.aHRmF =s95^~إW5N suѭۛk#%ȁO%j ϼ[B=dzZ }7l.6:.[V2FC\gsrE1qWu$SC;V{aώTWԻ*F[x2KlEW1[}~z/+[ `t P M{Sz=F1>&t&Փ[g^,vÇ<>6`ͮhؔ5.wv %YDžIxX9[yնyV[ BplZs8וxn>>w7`5])AW}l<7J$|ؗ~ pMMz2uQt?}r{,i<'Z^i>YLAw׷%hgON~5U lʷm 8_FMRcLd!Ue2'>i#Bڛu/o;'[ν_%zII: Bw/Pns;>wٗ_NSY6\Nzm k)?5$c3"Y,}xƯHv> ˮv0ݥw.7λۏ6ֵyͥ?YM!_bC-1@d8}6V7 j ~/'7Y+v};m3 ϖ`%;L[zt=T/m{cq7^ߒ?|DNc̷rdZ.wà4.DFsQK$(gͿd$G.y9`pXc 90w w^ۣ~l(Ue\8؋.3`} {g=_+7FO!/@0.'L= !wJUD+x eJN7b>@=kR L=VʶX>G\U?Tٍ``r)v ~X*A>%RMp}$h{_6.C8͝{d}h0ms_;۟9j[A\O,'oC7`eۍv0 S%ݍX?(Š5ߔ6YfZ,y{T7)OSZ#f̅Fyz\,Ht]^g GĿCЯf0D}=Gwy!;7C%5:J rM3NS}.cgtE_yVǖAqwwrɯnD;PKJPyij6v{B ugYaV D51l.Z;u]'"|ܠ,.Z7rD/v'6{F? _s1Gu##:wqěk]F1w./YA*|$qPjCyՙ.x՜+1^!>ښnFN|yڲYtƇ/>]ö~ ,`7|J{LI.(72^AfI~7/fbbBݛ"lWraP0|OmJd4᫏4HП<(t+*]qy2q}Mzu_L 4ٺ3íC,~!m֕ GvCm|WKЂ8gu.F~x^MSH+4="rwEk|SC{$t6.ɺGG-^`3w8~lyoLr-p6ά+\lѡݦ%rX?6z^z^RC-u,.J;MKxgɅv/fƹ@"=ϴYa$/_F\CcXQHԛ5vn |1:V fnvAKh`>pzL,|{Gw_/E 4/w\^^gT3H0u[]EGЊkW{!2|hNă7 : E:= p32йHM}<ˠ{zW|1N~5a3? arړm^ ["~vtЋӺ;u/ zu|չ}Izߥޝ/ll6 f`j6شv4_3o͐wNyϴ-:oY&^WgP9nPLb5EEk[|f{hw5z i{K{?*˱W{|vɈ),hH^=@1-iyQbG56J^dwqRώ8CxLdXnCf;bCAߪ$n\(r@z 㛛qD7p{nȕU%v(MaE.g`o-z G۝a ؛6IO6QLӸXE։ݝpyſnN Z߾Nkئ{P)F9lY6c{{`S[TxeEThϮ;z|zG9ìUiW7*jx< 4 \`>tdžc]KH>gΗ6n`[o gn{(x7 I$qdgI?OPw@Յw 'm}>hg@GM^}_^~[:^"tj&qsrO:|y^kZ3It2EWGfZ_<cg|Xz9b7Px26艇%1L8WfήTZ]c9R1P;ǒ$$<+ciL >D7+ydgpzX\nw!=]qFt$RC8O[na}>c&~ =<'^fR{רϪ9F {t4ҙ6So]#%v;I]k]kQy=;|¡#p8^b=zR%/>>K܉,ٍz ZMS™ O\TTzuwiVk -HzzidV9s%_~S~+z@mFx3zoH8D[} <]jؚgz_|X[6BM մ&>,Jᝯq6B|u&.BW;dg5l 4 hFtT̽boCn[t,95: q ZdauYu@+o8-_mc#`/5H*FK|`^7Zl:0Ff]Y0#X)E=U lng^b6dl9޵Νu&wI:C[g3X|NjNd?h-}o;u@}o;O+ᝠ m߼%hq5/gg[ ti0; t`Mk 2~uGṋ`V$}q`/IxvpO+ABTi"ra<S7Ҟo;rn77]B_]F_[ tA"{]O O9@ITi\yS86Ϸl<~z <#yJi+f380ݞ3g7b߈ cm{!q%+4N  ; Kmuw>iݮ5u yʝzş Ob㫮y_[`p )ޡSn?y*%:I ޣ-/˺^g\c'Pjȷ;ho[y,wG=#M mGiΎr=/g_\18Iz_FR _hmW[_Zo\`=&<zXG>3tFBU=Ow\ OJxj}:?U7[LBr`ao}Mo^//xifm ` D#zKxh$?K.lǶjo踻ʹ0wVYoL|lg5n.vO,}]-|'1;vIڶ)$nJC pwrg -t } ֻ+YT{ZF{8\Ot9#\P=Ѝщ` tltp_%xnD{~$utDUZ ~ uQ:*-1ͤum z=WAL 9V|~(O=f|z/$XGMZGs]iOcr~V|α9k: \zڙR71SR_h~`42__4g-%S%HoKpOޟ!HwF5950Սub}ϷmFAjc;GPT[D1P5 toDu?=1EoYԕb{P* I3EYoI$> X}ACNFGu9Xvf+=zn3_7C=/*=7`bI[8n=*:vy?%UK%xc=o<ճ}W[d{(nnR7՞0,G=zK*S qp9>_SGY7 )-|u \XoHt|y@;d?mx/齮:4-rl *},~O7c+S^+Ip^'B>= =wwF^ov/WuΫɬvzZ7KO3]g[(WcGݱh0j4x5&?Wc3Xϻ3ș?xBΗke6ͪM[ 7'O͂s[/[eOW}c:' ^&`o뱆wеʣ%XHdDѻ G4Z!ޓ=i;iw~VC.+UۨßOwFb3w wg$6Kb!d hjWu`\G4%फ़\PyLP\i3c2-.9Emm:uQo yo3zJpr o$.e/ 7|^s:Tc>WX iM$i1qBweTӫx/4iu`F6DVЙM#%8^ Jހ~呇$sw}`5pkY߆=;4r~V7a͕g[-kb8 :"o ,uœ?`7F^sa;tA]nμک-$Ywa\cMt1l[XGֿ.xyl9޵kH 2YC$\+hۯcˏ 3tE`Λ{S(0/n#lZӪjЧqG|,_zgW]̏MAs/N\$YnDõĿ-Gu8$ Ӝ%TSiwvAbd6~b-ckmlGg '| C.4_Oz+|lvgDO`O^~>`e+c;fcɖ,rѽ`g 7wn;Yo& }|fbB;y |>7\sgħYߦCZW\/Y0ǽ\o罉O_iƟlD6 S%'__-cB섄n@T{{8|7CR{&]5' XwWط͜^1%@vRzbu;`{sGt3Zb'7N#$%[sCtOEC+FtfCkOS[F!Y=WܳlFR;F.w * Ip1Wx[Sm~mAk!=7%AfzozkmZ:`}Y/tb=|ll{;y1w%sTio[B IpsX}\~PK ݜ㳬_}J {t.7>4́u9B{jF~e`8eMχ`}%ȂAygH0;wO|^w7S{D\ZߓYm>[ΠgKl7l}GL\Fl4a ^of-9s 1 hBUfIx-=R#OO3'7GһD5%E!3; Fſ4b_C69>`={ r쯁6] -#HpX'P\+/VtiM{4`N(ءG]C׈/.O,bs6p)@~aq Xxb__pUN~J_ϓN!r(A/:nb#/ چ{Uw<*o>ܙ7WGjj=Bf2C_N?+Я:? A6s,,|(} `[^|R П?+e)7CJJ(D:k(zXZӿR*lo4C{ [T?vCEcl$0]K'G>6}$e<ϔ6b{v.nˬV|֙B"tt0P>{mw:z%~e#le585聖)>Cs c}Α,ZH%;Kkz/UQZt.Kس+B^mPn0_[CK9tyt#}IOݚ^{{0|y1\SnV򇘣˰qJ=v~/Gc Yipw֙u|8Zkxy|A>[$fpf>GZW,bX_Vv^-2fc^^#;]7&ыɿ%b~_w}Bd^K?Qt&x$fەֵ5wOhoF;n>:g\{r`iL6g#|E'5`VL%xBI. _ZM|*t}eu3{Xt&oΨ߾v~G)՜Y+b!3`"̂[oKkć< ɅIs13{;\[ &t:'wwWUïJJxPՁ L˱a7|{ iTҠYGP\"WLAW}fz_ɺU$c:T;B;a3`B&/ۢ?@ރZ_=11L;&{S7u;qu4?YduK͍6EOߺ^9VdzM|Ļ}'u9{ĿxNqXwxW!~RAk%{ Soa~+iP ~ _>C%f$'+w4?vKut~voQiF=<7x[ IWg^prz>]=Uޜv@>N|3{.7܏?} \%q:{׹N&r k֊]CUn`ήww=qz7us{2Kˍ.RC1jpZs2vo?ak7l#'_$f{-ReZ3F;;A u*ة{Xԝ1Y|pG08MX WS=L=zAI{kj XAҩ;m`]?~Db{7;"Ѵ q3^gAkNi%~T ~Q{]vX ާ%DMTe-]ߍ-2B|q>$r70P{f_cfpwb f1 kֻKlIT۷ʐv{fq? :[a׾wEqN)2"o.c[۩MyYE=+vj5XiFS 3ۉzoACP`M*vs6Kx2}\3F\<<0!0e~D‹u=Kks>'CO?н>{pw)i[z˟> پ>C}_ExZd#$xYm$~]j_(tQ;AS`tL48ԻPKR5Vm08<id:v2>#A[ص{[PڴJ\=^(40%DЧwsyfid A=7W;{na }mYC9h|I#zKM-qӧ|31>]ڛ3Ag N翖&Q #`lr8_|>'NY}?xD㶐xGh !fޫt<_59飬gW %5>R tFdzȯd+6`$t Fa%mLZ m?W9wz4DF$FQwdTGW҇_pwJ_eβ{*`q~p0:84Lgw; 8[K$uiGOZjjZcus[)\~΋fϳ>=SЯwt: FoG/#wcO[BIO)?o>rpZNgiY UWQ 2m7 }پh$y:Xx|5ϙKȿO9D 矑}҆YwzAfj/sݗ:*l3.S[`gat|3?u[Zg585[݄.D;Hp5!KEt:1MdmΏDRK7Z Rd][jkS|4d| "끟`_`mg$Qŧ4x/=cǝf~_S/t6p?'0qm=Nilmfo7n-}"9?3]bs#e+yƓ6p4zgmޝ:> ԥ髬O;VkקV[}S4₻\1M$Zvh{]cx:o'E}2gXk[֓9UZ".h3;)e z>{'KWMZj WZMqcK1w4Y!w1`Ѵͅ` hSOm.z3b/w T\ rᾤGH6 ߰j,}(d#oMwgW^z`VZ{^`m!~\kU+~NǠ"ǒ^ K>OZ<@M73l{"(>rcKYh=tfo(.`I!vRjH#>y628u|c}x%G\4&9 MndnF.so!G'Yx!%*3#g4{" =nkNީp~g|ًV7KPLw1  7ݣwr;-'%LD 7{x4_7͟@}' ~=^|ǾIxx oMŽ-T߰AA}-ϥ{uu-l> ~-B^mYs,:GkjHguF޳$ֳle{~ݧt/+%<3 G?iS; Y{lzF9+&Zdg^t5Wk`we}o{fPZ&Yą6om 팿x t2mg'hc wC=qֻ~Ə|KiΤJ} xß GY|C%v`5&|Gwe<o ]~5MȚF /Ņp]$<8ncI_lxs4 ~:ص<{hy{/`.4+G__MJ]HZ`G% iOMؑ녁%|9\O^:F9saE3er`GCv?Vvu8X<~.@o~ݿ7q߅lz+-a^5ft]us#udǐ>ߧxNo!6,C<d < 6mEw ~A{A?<-& OY}j qgL1RlMg9AoYF֖5N/6 & * {}0 _z>Hl=kೳ$*l}}hJbt,>r%ۃH bGYo2~Chrt }ۧyƙe>{$ITbS+轚zr<λ9^gy^jۓ} }59oCV*C_BtLYFHsٹ9+͕ܬ6mAηtw>+z^_;][e9k^:a-&x~%;JPm 3,`u= Ѥ||4c;SlVќ=2gr`olEu6dAKƬyWCY@~]#%$Ͻ3 ZǏ3j'#}"Lp4Kٯho&g(c}98?B'DW샏|EN0 :{W W?-VIl7t݃{Ӝy~ǯ5SW_ٙx ﻋ1[gt?D|6BGC'AgQ9sWSvk1``>hK>\qmWkknw%azߙ? йV c=Yqy '.qaGK0X~O= [ AP? `8°-Y:3Nf(~I݋$;ue-&T@׃VS([ə+6.}A`<6Jy@:| ĕIGaJgY)y7^3<ݽdR(-ntRߋ} 03Hс 6s~05yiZh"~;x.>>cJkݒs}B]WzgE >B`1:P/XS i!<b=.B0O`|<1GLm} y'bZS69TG_W[-H!?ؒc0>','?;|%졵2MwUg+:>Gt5kyһDck7j᧞ PG;3ncĘ%s/H{|dpѻ  }޺=1ť^_t{T_u< ~ɼYs*\Zrvdlk1Xߗu7_~}IYo=휹a:垮-utiK>>DtSLso[lޱ#Oς#}S&O.‡oN 齄\Ւ nQ7oW3H|}SzϺޙtX{R^ s7KXc63l:x큭$֟6]//OI\}?5Uڪj=3 =;Can D|G C 'Hܜ힦U ͈O{p)C]^Wz$6W߹{)V~7=n5*W 7,9= hyQ_Uqݿ]G~ћ獀/D/{%n ý%;9X>37S!Aunyav\k+mƇ-ѩlcڼ nW~\cXMq`wAagzq4vp"Fb̓A+V%4gßgпb\S(ngnqݟwk^} V̒$y<:?y WZ<]S4Ѽlܞ9>Fnz{sf;2錢RQW` _۝е-O͠Qs%y :1-`oz-*ֹqZJߏ4h^Ѧ$u֕k~ >'u`t ƶg=EÖ`kB'%|o^672$Nr3q7 [략Uk΋Q5 w`e|x7s7wM?/ǾG"$z;n 9ųg=z粋3= g^kwCWeg]m}o'ڐK7Z#1EwЮ|RKN~|j{82ŲXK`WZ\tߕ`zn@бr>^|wc?;JI#޹ׯ2_[{\w9l7s.#{x %w=OH\N{8jt }7C 'y-e7|0%MI"d ~θOb@u헸T&aR{p2 #k|9kdgāJfw/|Tr͔hhn;OIx'=,d5~tyއհ,:v9u>η~ [ZM+k| ߳onTӮpzA-?sI6ܒVxa~y]Ȣ{ig6YhVfG k@]gmCZ3vuwwȳ6޻uM?q:Ca,/C7\=fSN<;6cHiyih1EX¿+ǎ0]kEOA߭` l$1@w _w;|!Y )N^Ma>Wj 3>ILw&L"աxT+!;[o\?I RcY@tN*the\5W%QZ9{y4ć\}_fyt3FZ-MLI=!{Ȱ 9kvX>~N޻75}ۻ0,O7-jSmܽUVrwϡzoMfsZg׹ K/Pu绀ɥRfhj0tϻ  .mOK| TM6vϣ7}sgY }|wZ;U}{9Y ~/_;G=,۽}ϯHſ9ۍxǏRoW [9qx] ?G`KV+KX=H_zXlz trgM뾪czOQu$igE˰n>Vب ,gXΎKfmSG<%)Km/c$8cЦ{=jK#H^:i "X[siR?ߒؾ 虱Vq`9?FL>` N8IFgKpM?&2ݹr0DWuޙB^[|OrO-犿)F:~esՊRqOl{!q``~v4OO{j8:v? qeȩ:kt>mWҚtZҧ<ʂY";Cw]CEX0^xg^?|}ǿ{Gط{[B|qt܇9X8 ~^Zj"u.i5v3 GNFǰk9s`χ)k%8B|Qb6M{ 7oVqtR\d3)xuf#Cah,X5i{ k_0{g|OCC]b4^hTBl! gcno!/HP߸hh+G#MV(1)-B;tVG]Oɢ--̀0Wknd#9/mrY3eKE^L* L£MpE'}^{x[fu/a -|g|`}m1k vEߛW6kmt F"G%;gX#=k5@ŏ0&ѳw7&lΧ7(X=.#H{x@wLYv?k&+z ~\nOK|Q^J09 &IXx~D3|CnN75gVXar 5>]9:tX]􆝋B!wjzhǓ}덿@}K0S%L%m]$To}}<߳z=>=}z׍G5bߧs2ڷpLUlz '^o܄/6,}|_ V$$/Sli _= y|@^綒 >~O6sPlRbjW 2a=ttbQh>`ߛ;㎐j n"wIp؝݇.GMm;ypXP+G; }aqpy jp#޺ѓy,rEJP`oKII0`O?#^B:k)l5w]׻7O]-{ [ڬOij6ՍY_֑lvt~߬Z=!'%1'zwZ}IނS;w-5YLL|Ptڈa3xߕ@@$M?#|L +L=cZ]y-cگxpt Ɩ8Fx[@?\hSjzrb7;+㫐6̵䋝;??, ^F~S$!yΐO7; 9 Y-0qȒmOxeb_tJU4`{`k/^(Dt_UgnV7h?_![x>n?D^{" ^\uT.}F= Cs{ZBO4ӹg(B-ݚwUiyrgV9ǖoC{ u0|ZKjSQ+DXVil }Ц3>2{w\Hh}ټr=%f[I;_Od}I+6?4i]To#b?秄-{ݝUbӡ,8s}:RFZtY*zV}@{2XZv草l_TO&g zfux,'ҹ~y&:k?3UX,-%)?Cq .Xf38O[C L2!:EӄNn}.zbnDcth3)sS^#ms5+ l~?R}%xdD} )5ֽ<}>V7c'f3'/i+n8#2'frZuFָXs6D^ $g 3{IJsZCW/lB?Ww;^Vק@Ng(ؿ;[w:s{,C6Z+,2ћ%1lNRÃΠ{bX_Okt=ܞ'{}%aG\;VEQLm 4c˛_#gH[%y~15ӥ8cḻHxE=y:_Yusj}݃&ؾDX nК#㋱=mGk%z?ѵ6{ǀe#(m^0Og7DqBu/;%X[-2 7“xx)X HtϤXa?|1<\k4ĝN)ZL,'%C z0עߕZb:lh".㖁wUt:KDŽ_KlBqi7+H(l[kLdI cpg3OO kL\Pr|/^G1/"wgzƁmJ%n6Ο.5{uL^^J4vz-V(f~uMp!LKKu-!{%$'N)%JGx}Wzbu}kMz#6~ )~!k~)Vǀ{e_bz|{IF.}p$'çCn^_M^?>/#}r#u t)*+?($r˵^⼓s؜HQ YgWׅopؙߍw.O9+w!H>m9c_·e lzGӽtaTmyNxYI2:|и(-GZ yuZk&ZKI'qIM^T{N~pÊU;| ,pʹT_AKҤyß|cb}ўw/+4>/CZ0^H3Z(6#ûmw-dK Y7aC=]?^{7^lUe٪W>xJk\s0٤KKzACE l 9v>>owxM• %|h$6#h:N^n&W5Ֆ8|aL|k& cKE3\eJ_=޶9N~66@g7񹮬S0Vv׏%<~:<o9Bw3U׷ z>Sϗ%w1G;elp5auAж"R/$*{A`3m}km~#)s:mEu@E> |aɰK*Zc9[r2dѺ ֺOH$b{3~n||wg3UPL{WSͶ|=:_:gw)vV{3'G}  7+>u}ob}%j(`{:j=[=R?g 뽄}e:8MORu^:c薮k?9{ ? [+J+rcGoW|'3B;Gk\OR7$ՙ6Vb#}I&r.w;>[.B`޿inu0ٹ}@Sklg&XMG- IY:GZk;eB#WGZx+}-GC]I$oס1/g!}b谛e]`=")HXWRezyԂrbh)5iE>c0arѓݫ%a7$q运E^{u.?ut y>1y^Jde#4n kow.}H4fIq 2/)4C{z4<.V#KiCk4itϴ5ڏ{,1qwkK4Il^X>Ak==zѹI3bzڟ;Y|hJWbh.AGebۑ]?y4wo$?Lvvo;&QGo7˝1)pN`r}ٻYOO]Md<+Aǻ#2x<ms4; 6s~R ^_$Qc֦^N4ـsYSD#vzRɲh>@e@> emL#~Vxַ^z6>^ϔ>]P:Y\N̊\qrxo:YT5_[Tid:+[2> A߆RйY3A$Z%޿󪗧ڀ;'L\{:[j:?p-u虎Dq w;z/i`㱷y\E^K|?q'wU>]e{&S=>,Gi v#ynit:s KXK3Xx)l}:pv2|U z]&:w b=1ma-6qG8\m5г:>HM7nz Q ]%8|&"ӡļCU:x- z \Ii,1<5vD.z/~#A|Ukn0q71I^D ?/{F)ҵtMhxO_Cצ3`'&m\X 4\ӳ&ڏλ~{ݏ8zuvvKz'"='ؙ}ms_I|3'X|{79_L~r N]»O^&?8ҝS^}1]bx>e44wzF`t71fĬȁ-gKPGvY'&gHTRs3t6ol:lCr}Zz{jFF(ޥCOk[`Tu ر=}[py.>PI_^D%xgX'z[Vtοzީg5].~탵oݐF,&ï 7$vx8d xms݇~)%qAK)t~bG5ξlwǟ^DG'^^zF2}?d#fKNm GƟ"gIЏ+ PkE{#vyGs@R; d;RyfR5gֽqf_1՝,(y{XO/#Htk:0#ʻhJKĩ/svW?Kau56NT픱TbcH}a-k߰ݑ ?8w~E5KC.چw]S[yaMGyaF ^de-=`r/f,e%Μ`'4^E{u8W9y^^nՐٔ;Uߙc l 3C.P/q.U,} |VSvc6lm5{y>'a3Ռi]fNɻupo5qYO~@39I#4(qf銱̫b3#A`\}w96<\:qB/y1y_bxl_`M9 m~&apf`)/^l =v_|HMM /_Sr;NQ̥].a%#mT 7n vZy9.,ņ*hwQ2[{Z`mѝNtK^̹굚}[߽Y3)`U.^v /?EMҧ=ڥܝr*s;/t@wПkpA ԿH=0+Fm }AgTnWy,|:yk:3R̦q/_/C tU=Xm_ٙ49_t]k.ȭ}W㖝2^O>i2紥?Cm+jUmCEĶ!??CT-KXԅu;C`Tzq.^7eb{_uS!G*\|Yf )}F}R67 ΰuWj]/9g:3iU]\|.3,lJFǨA{"ߚ=-0L8PG'^6-Г Y;Y錳7.? B78VpR/+CL#( Hjp&ݱikq 2_;>L8N=Ν\gG{kWsަマil⧲KpR WHՓs2%IY/lo3Uzy%}[L)gmm`,[.Y:f.cA{ZYXSg^Iap: >\G Szí@?+S:a.?ؽYo)>Lb?)pi׸(?Q?I ;6DK W&1gO3\kAcg p5\a}X{GoqS3RC~Q{pJ)ҽ-?Ysiw\; _n̷s`Sy)tvw"uGU^Vuf-|Kݺ:,+?*Xz:ny\_b2.x|F{35jz |Rt6 |`?rY7V'p'U+Y=Ú4WtC/@{È+1?k~0&i?svsx/[o2Wzڟx?t>Rb]||Kpǰ)63ܚMy/tc-މ/Ճ'wD{or>oE"ֹ|fi뭎5ZpߺD X1k;)F>>-Ȍ;ԹQVkć |K(:ΌwB;y#ٵe ] =]/6%*a2ba/Ը#Hkd8߇zfzJׄ?+U? Vk:R<{MM0t: W8 [sTv7=u<:jLB3$BP1PSOԝ)j/kkZB{uol5VtgO~|G|} Ԕ]bf%e]=>TU{U}\=-sYfEwf^S{@,L2ngQa̍9|:W5gw]x1][PV<_Q1,vӵ;WW?]VGvb|b cidgu#g]sg]W/C.urIilo|OT{g&Fӊgѻ 3:C%̥G~ [֟wYk-?R <sXc[wCP8|fl}Pˈ3Vٙȴ9 Y`3vg5pUx-Ģ.q]ҥv<hUqC_Bu[]c~pmߑrּ|f]ooj34Xl?tl*I{,#>ծo{%ڙF>W|zNȵyg{A3=a~_p#+T|=~Ϗ6Y$ܴaKUS 7vGݞpCz2pT]A *pSf^g%kE Й2EVk!(ݷ[b=X~s?g~b[C\tP7qg8HEY╏0$~u~PT/6VYޡK!i_8WXq"jk}O:Aa'Ew+WO6wͽ\\}xiʹn^}{CI䣳G2R`_;ʋO g0מ dq;kr2rkqqQ.r'hQ2C-?.UڗNOн`^ƪ?}IuvIȇ6[;Q]<ȿ*]R 'la௄W}-`2J4Z~RR0 }]PŷU6Y_ֿ̺c{gg?j?俤Ŧ@Gmq;vI.gP3GiAe?Y<[Koɗfws|3쮻UJd=OᆽeÈk3?w׸*\pK :3QYWgY%O;/LGa?zlsxA=X+_/{,籜lƻSGK렳ϸ5!CWmR:# Ì!zdYִ7^Y~15mƺ`+YpGGḯ'..%颭;vR]'}ފL(;2Y(az?*luˈ/h}@G2Rs4Q |ƙ׸k]\Kv??L}Y2ol}/2F2ߙCJ dt}iE{_Oc\\Kxf}, V -Ǒ@wգBy[قQ=hy֙ ˥{+l;rbm#`p~5HyPHtrss\.a {}S.ty϶= 7VIcӺj2AF2v=K8NIs/@^kXm= `uY .ܭ7ExT.OY/J_g3S(/R6ocFpĜNn^%%8CO}d>e\FHtP960.{[K-XZ;+'T1/ Od7Fw)goU9 r#,`x"Y~pȠ;9zdj>hl| =ie5FP&cBn9d;v>.ZK|?߷h/%޿nѸЏh? pVy5$o ?|?jkiǿ epJ0WoS[/K?(^$rK:=S/rIb RYo1C p5%N'Q;2)ʰJ7kXlΦiƢGOw?n#kh.l}}/~=ćto?M&\u=*gˁi#gT"L\dO˼́ᄆ^35%;U@5!~!.ϝlר~"Kuiδ1,|۱Fg,ܙ o=C+ƃ;\=1zCw T-x?qKrsgQo0b[S~٧NkX.Tc w;٘g΂ l_NF{pv2Sׯ BsO;UNbV/1d3ϳpLV) nWƼ v6.jes[\tDwb <)7}OלaGIK=PN^E-vL3:ߜCF]o W`6`=U{@+kvyxYg{r 0UXƝ@'3zr`G\i=h+mMmcwm>cCAvc}?dM67cSAcRf}q.3,~@,;y=v3a>㝊=]4 j o.qu.k?Bύ)~O7 p dgo.g5oׅ2*[wkJ,ӎ8#~s0q6C/ļ33%tZc׺Nv)H*uĊ[]ȫ?/Ta{ ki]9COuw=Ͼp1p iٯj*ā &@oq|>_׫Cc+A_3˱lvA*OAGS? ,Vߟ*vwq.>%n 2ugĞ,3?_J}ż3sVp_.EUI3hXu*qOѥ5.{=.]܆qJo1xlGcb WQȁ9t;;4~Tÿcϕ'[CG .#XE;}#T~&ˆ]^za/fO[Gu.bu_j;4V"o'-: ^ w obKWhF%*/!T~al[Pl} 9i73]o9"|V >hϵ403wY/'%c碩k]4}Hyvq0SĖoY!au MڵCw宴8ho@1| و b Y.ώp4d}U]<5yk?tVw|@Zd!ݝoZrV Pט|&EsXpvlpzI.}ztߟ8<.380R{Y.+Y$(ysլւK^7|1E 7p6H[-WSPwх0Sٶվm/ ]8E9E+hXw/k.9J8k*o$Oc{fz{ko?yd_e]*:.vem'.ew'6ELz 2^킟S O;UM:m爴ǘ (]iߝyM'1z$W?5CZP0r(qw8 _nMgû  .uE& * ]}۵??/;Yi ܱ??7c`CsYIup3q\}}j, X+e>^1[|(qg%ŻV׋qN?9 [W3.:?9t3pmYbjCzauzpR~W߃Ws `w5!a-NM#_ᙿN6~CF0r[{CvQK(S>8ZC,u~ WWåu>ܪ8&E6aٌ?ݷY/)T5nzn9eh<= =NM06Kګп[ʽ6},AJs5x\RO⻝ ۻxc.{؋c*~E.alXgK]-xN=&UBլfXRTS#_o/B:qƅ˸rY /wvKTylp kt2_rĻ7N!b`sJ.غCBy!td̏Ip\kpmvs%.{81አA/7b}5sZ x?o} ~P<+a] <:or:sϽðx=O'\r,kN*؞ν(jJ;>Y.LȠöv\En{M k>/߇?pPXK;}i{;>Z 99|"Ys-Kh^`[cgbLe}>碣fvm#od_kS1w!gQHl . Ͱ6qP.e 9Wg &g,8La^.:F yC3S~7ifվwkcVa꣤=Lrֹl_w< <̣^ۺh,dNj.NE+NcBw}/Sn? k޲dXV(;G-.*zl.l)Bc|0.a@?tE;آt\8?ϗ[Bο|y}~h 6_)s`=+mY7_1N4q]0aXڐ['D\gsEXy V6a\}'KOlx'?"2s~a!ðsB-5I>ݏivܻvvB}tgE3Q7DgC2tƵ9NUoe`姸?Ko F{w˜Z/z3[w13Q̪<;l)T+m"s ĿtqreGl0.lOkV-hNbaD/{.=:-^"Z[o~Txf.1Nxh~zhЭ? 13KOn>~pu'{?'wk,F=X"UǛβ;kREC84AP-|VOx]X%ǥnu򜢀c% O5o+> >זLf.O JF3휡 nSw n}~ڇ)ߔ.Q{KegM:=Pǡa<]tb5ulkAگI`PA:S 7+2nq3hD|9ʻ'~osq@+)"ź?XH9All=ta5[gnvl"%(`iۧEۯj^+.woLwwa=?BG_t yhׅ'Y|֡?ϥ,k2O~xuA%@ܣ>kMJ{&~{6pv 'pSX|%21p{ [q?ׁN,}eҙ#jqxu)‡ |Nwڌu* >5ѣYvFخuyqXlo6KtNw{ptoc[c٨){/@_Twыdu(̇ qggD5ڬguɟkl55U]vIץ>%;Zy`@+>`N.nťWbS8-!f~O˙h/c,8>'qu έ5)S:WnvWs}wb\"+֗^\=5;Lw;;3*4)xvBO[x|Gwt/jx]?.ӓIݟ`:;?#-9.5M 3Lݓ ,Iˏ7X`/YhGN"^p XqϻħC\Gtdotjt2^wW\ˋ]tuqo R^>gXcA0Aw6kCw];;KV݀0# /c%Vkgk+L&ɜ__~fOoҏ+{uk)GN\~Ju @w+\$̎jGJF${RCU`=~C_oBNݽoWĪ.K_P[ҀgދβFB~@B}mKRÅ3=O&Vz=E-W: ˏBMre|waKYCQ_޻y5Mt~wZJZWk!̵9/@Wc_k׵像blǻGKPl7*o.n<(}OQ!iIKhoRXWgչkv\#s-3do?y z<[9\N.~0/.===ceح)[ 3l/yQy'5O1vs)a.FF忙iu!~)Ep̳1v! #vk>7]p3j¥7fI%ǀ9 ݩϧ`;tW&6Sٙ݉Qlvi@ƥq~aǃ5^ l?ݍJ/x3dqINۛog,z{-55v7U(b%69 O#X[qo9`pKf=>k.\juԟUF~&FpM~%;we_?dׅ~{7a'>.\RO#vYc\Cb0D=4twjt=p:m mY]|Ww6b3lnpSӺ3{]j \>+&v3r0Zljx30"q4훪_q&d:SyF/?c ~m|^O\grlR쇦\ӚG9_ 9蜚ϩ#g_?\g^鬡xx#NeZ3V(C̓&cYeMO֥}?^naMM4N(=h>^v3saJZSpUu*mJlq: X>x'G[yM6mK A/^ۊ{(lcw^QSKIct; gwB9p%3M2%:vblΘ*^}QUÙXǙEŵ.OÚjl;; >O"ztQ﷏ 5k:!s#r$rƼ 'r䶑kNqɿ~ִ&ȕGcՅ6|(W= ˄s/SgR8r9vZƷAOFb/k۳. _%!]+\=RHk(<|^H9!d5<팏h_"hgr75YM`Jٖ ށ֢Gع}@缀O ^/ %w)VzbEÑ調fkd˙*wY;O{1zXMpmНQ^paz?ioጭ%~IK&)Nm)n0O5 ŖR/ y wuPSrW<qtym Dbz0v7|Q 5CO\%.:3Ճ)w(>$gYgu?UGev'Nn`FƬaz?= ,uo5`~Gf7ķ]4A{ʿO r+azշR{۪yʉNdwYlY=eȪ =@(x#y}5@G]ƽ} G\hᣉyƗ;ީr̫MyXH FL^~!YOE_K<5ŧE p+=|_(%$`I>{}X [oG(`}{7X~ĦO@/{>s_rMvvx"WT2ȍuQ@ [Sąҝ3;*uϛzˏADl^V^fP]1Vo]d7Y=`97C9o.=MyI7bOTnuL(Q=,=:{33xOZxF9S^un-gi.2 | ?ETy_O\t]dcn>7 (+ρL {6k',;۫OV01k7Mώb_h%G&y7CKκgȯEt1X'cM c2_06bb >_<0V(xpn259~y3RpCʑz3_jkK`@8no 7XpXGզ,B?,cn&%κ%֟Gmxz\eBr;ظzY>|¯E+\ILP.cpq`x_,o|`myE w#o%zsY%kc7܏-`o竰b=p0#XlRYE_1CXY]N8wh7buq^ۺB]M9,.V]<&AאU-('dSWձcc+u|_ֽ': l؎DfQ.>Esi6.?ct*=6MS˄HՇzĩXb\M!Õ!+znϜ_?yt?.n\t.1;2-M5&s_z;Y6&[?ޣjȬ>vJC%v^x{;LcOb_Y^cCeO'\lM/R[g2`J9;~3n"߮=T֒5=B2;91Ȋ5SdrqoެB3W`:ű&;Zn@ >1fK~J\g:;>j ߮.q˞9vKޒ| s1E{bg|]T>ؕ&A0?~gy1G}ԝ%GюvFu:O#8Rh{TDŽ |?hxH㪠cmtv&u/e՛|P?2_Z?'vϙ)eUOmozױ9[!\4cQ벻#]ʥj4rvlǁ9>(}:9bN1 G<(OT>t'r>YN9?C^w\v_׳Yg&}ïOC>^ut5ubt;r+qp ?S|nA-q:W^CNsd&ѰW{fYņK FV`yd<A{q\vsx&K | F,{Pd19DӐ `Cqe w\-pt{;] w:qȼoic]edA^8_ E9v?x<EIf>Vݏ,.>$*g%wǧԠOSD^`1|n&x9 -m:7oG7 {ظ W Aq8={KD|>wXRrT-Fݰ‹B}=A3y+,NKKvI<];|mC [E#=emuP}0՟B5uQR2xh3sg]̯r0~Y\NdnӆDxiK > -~Zn)ifgwmŖ^1fNM}(G1X/k#AkεZj:|)]a;c]yz037`/R|vcc2\XXeϹDӃ.q.}*6D9"oU-Vg??>3C.XݪvՋ}m?{Z:2kV?ڥ?$S R)ks;ߟcWo0ߋݱ򲃭WJ-^o-{ZOf|~P=VEow'fK}>+8*v .9C˸tzahMuIɿ[*ZV(λKZo_]G3_ȼ"Wv{%cMtaLe gSo4Y|ׄ~>j/ݶkI&ylUwLcGW\cU l]9:SV}i$OWޤ2|zF_ U^!tMWrKsjlR$iwpS 6z| }Md<##$<)a2X4Mq7csYۥn.:fz@F-_QwWrS&>W|jgSؘuVƨ:KW^zR[y5&p;|9y͹ ʳj;|8e` ിc{?ϷY_l,?ꍑ!i8rS^Qwc>ݙ#697҉ d_CNrё5/̔b>4r:C{ҥNuLr7-}Q>Es;x8]3ذqvl޷W_TpY.R2~. {Թ5wҘ_Y&\_}+埚榀OeXO>-xgo|!sklw;¥ע{,}M|1:m>oP{ >k}Lw~a@;}у>'XK޷@#ҧK܆$??!ߗwxv SFݓzZ_wsmh)Oӌ]mez1|AYr|j}]z/o5U|| >n]f6:of1tVX fUq e}1b>߉}s(>i n58ءw0]]z4qӛ5Ulĵs{_ؙ3(׆Utwz1uy߄5r;S+si9~/b|d:'&R-|t63K'm])vۉ{441e>#wsqk]pzj@qelFbd_#d^=}@##˚l ^{wZ"ß%Gbl/cK#>N\ =9MM|}b>罇7Rllc,Hail*~&o☾̡uNF2֛O+E'o]ϸ;P>^9OC|aj1>4UzPILyþl,{<e؈eq zlN _ƥf_3An#,.M綧ZaܥTjX96>5 ]m?%A/6풛gxG[ q>EIoUBUAy\rc2Z2  / WzbcƆ]=%5%&hz6|Yw>)X.\{ydryp?L3z;_Q`%EuȠ?4q!O'xگ.է.D ?/s} 8w'wb 뱣Ej}`|p`36pm3p?1: yzE\tg?ΝSMynC?_$ΚD?,$a]D}\tY (JE/;MFbOL:ϼF/~ ?m<E. M\\9v`۾k]{מj_Q5JttOUN*yUl kЀ6ECTpvܝuz.ƚ_#xwG/xEמb {Wr׈N}$ֹksGv;!-B}-~C;_?E`o_x \t3u ʅƵp_y=uNz'鎢 H-{ΐiG Pޱ;41 n  ߽i_c10Ev 8α~{<!}h~6[۬go< |b]xޖPpĢ`{0]%n[bxNG36k_OyIﲃKC|g KK&iK^&~3oEgĩIJoKv r[شJg)b'B霮W!oX/ݞCݟ*|"nlx7ps:]ܸ{^K̺%&ZTw~A?L~?ƅ3tgzm<6@SfU硓vhOs.P t6dvGȆo|mg clLU뛁19ӫ~ 7)؟=K\}dAK>%о)ړ?+Hdؘ|;"^',7~뽩ȾgU ns; %[Poc*dp5~i_\b>PE.qa='IYSSC'ܝ;w&|k}+qo}Vmz{c'[򎓑4\;N.:9mpRr?ugq)&^-xx*H꟪} 0/o6|)Wŏe|SYpϝr xR'2|C֓Ӭ[ ɪx8pC|CwWEI8allXjl{C쌮m7XgQ`)۷uqυ]z?5,e![!C>_mn"}Eڇ$nbgY~Wn<գ}}4Xp!>.ڒ58g|4<;%ro%w/3VSuTMh{&>#_k|6aw|j)[STtA9r1>VA|>#(,&1Gq)f3ԺL Lԝ羆G}Ew|-_+V48c!:trc/Zw/=$9*]竷?IxyOi!֟-hnM: _C"ViOo4پKة}냼U3˭fU?b#pϪ`pxQzcl,4|Oxeuﯖ cK&}G.~I5wxC [Mk5U9ztWŬ]5z_;Yċkv._=^ 8$;|ϱP;_|ѽݪ'T}4ҏ2.8h _NxA2g\._=qɯ- 8Ր;@~ʠ3QnM -Q.VCLzeg`UGXT`'cs>^uubՐU2SAN Ge~.b${=k;S+竱ߦ-;A4ĄIj~ r3{U3/wTyݵ!7;@7bWβt]*ѵ,[`>-o]|'.M#w:<#UF5?rU͆d1؞[fy_%[0ݶ5s.<v.>rd<~|mS*jYk}vT P kY?3lNuZ;r;$x_[ҹXݹ9Ek]6(Ը߄ʫ. l=WVRׅWOWO<+FȶS D w] OssY݉5;q:,kSUb0-5O}T{)b![Ӄn苑A̘W\A=e\lLp fa7~on`aJ9CYJR?Z뮚2SǼKYb2ppg͗\ԆZkHr$t}kN)?C~ S!3y.y1jp ww #Lensh1)hioLV!+0w<֩fFuJbd|Q1W<o#j@{cOȪ>~l ڮ%wEn]euVðlb3Fy"I{ ')}:KUG5ZFk~prT¯w%:ֺ8ĥՋoqšm~Ə=Ģ猻#l=R+QyoD?r){'r8 :\&>ۥ_ A^8 |m1Y^DNi %GYJaϬ CP\ 5a-ȷq 𶋿qnoK|0ҥ׿e~\qV8y<|ӞqIkڌPOϧ[Z_-2.2Cdt9?¸.R% ӥ~ kYƵVv66Nl=|/-әn(WfS oCNWq?wK%n tu ?-n_#4:WmIh^MҾO5NyJRV:]Õ3:\ /wѷBؿ%ƥa~%VhlFW TuVwVAt([`}JYδ1E7,8k/clɌi,xW.Ӄkn/j( c`]} Уw|]}쑖Ia?iֹj: Q):\:V&Flru8k>뱱3g[uy.Nm{=OkE 2~W]ť4"\网$wlo/>>n}vް%\t72m\Z.Qĥo/ltp5⹽|? )Wŧ?%C[gv/%tL/n{&tx==oa.n^Ӷ8v_uyW=1 Mi=hT;OgU0vpڑږz1?1]).;'%8-p{*Zp9wzuBYuO;2j+KnD%cB:X>c $}xnÙzwĺM|bY.>xb0ݣkr_w< O}O!.yeS 9R0 }z pȯMn.Ghʥ/&_?t }s%Y}|7V3 sK{?.BRfudOo6w'}%^kϳ27 F:s {uv֟G_տ-nєlU Uci_VL.gn]bt2腼ׁ]N.z>;Q،׸1D;#T t]k2`q9vFo~ч2W?Yi{z=م}s_.{.rqǑ.} r4.<Sy@ c]*g[ք0i5^Je<QϺc;{ #yF/|+kݫ:3ť``~]S\ _Mß9cEح?{i꣙f-3-)b 2nܬ ^1gOp/sz]}rLoҥ'6 c.]!Mr?㨼Dt٦RBIRg"|)8ߌm> >=O`\Mlp5ccL<ޠkealg; =nC W-z_ ?ԟnQ=ZjO=YӁp$y xs:r]cեXe_xckeg?WzJ%coYgGfy["]DyK\?T']gkQVVY5s2h Ɩ#~_ࡧÙC<ΞHjESC'R~7tRGH,[`>>3j)mMs6<Ǽ\nqRuJf܆"*`d{E;k-> )\j#;m-W7۹ϬS9x? ΘЋGDN;ƶEO z܆+^SY,9r} 9 x}Ps簳4T3qzT O.u'a| |yo}]B0?gX.a-_U-kqqkQ2FidF3Txs))v606tp3 Gnuns⩗X˳otѵ)8.U?Q s[L9N!nHx_fղzXMt,k3=b}_oˣptjd3,2{}/.?1:sgZYA-בm^K[6/5g0e#w$ 1<~5z2nw7SP}-v}3C¸`끡itI}3YγeZ7bFãHz-:{z < ,:%:w%Y]|7gsJNX>?)>It_{P_,xӺβ߬7FC_7a48u+=;~)xKK¿;L]9 dW[BV3n" ‚pˀ5ƒmȫL|/p9Yc%z)wa; Z?G/?Eou.c\y :/"'\P]4Uٕ~d q;oZO-I2VˡG+|zge5ݑOUV\͘{ion9)>.zwcOE+FCw -|G(R'tg/(@A3?zw~9">/y6gYgv!NW]a_\\| &퍯 yȃ{CGrnD#q7r|]1;r)GV}hw"4[qY0'[=]Egg>x9|>{T;}Pz,`g |'v+ ?iֹ"[ vow'gы.⏫vm߹xb+ iI<1;`:W>:;Ofs|֦ k&;ڑmsDkmo° slz`7|jG. .GT[#W ˯'-ݗ"8v"kyhomŧO?B_އz7U8g&.sݻ.AGrUg× }쬬bsVGn:w%_-g_Cr#_/zŁ.nE']Jz)3>^t7WZ^* P{IY}pJ;_3|X1sDk~̿ 51q3'+!ӿ:E%k艳]RP;%G4?UM}Ib,[3̳Ƒ6*֡w`O޵<˷\4t؍\fB 3'[>&䯘sicc䔸|QD-Zgd ce_-s%ޜ jkmAss7%ܽK4| ʳK>޶ܶ?`y׃}`{"4d= W=D׶O`!Jvn*6%@nT=mug6ޛdy%V..J`˾mYìF<-2PqF5zkg3 <,ٵ}=66@Ƈ3`Y] kh hu ;c&,Έu]+`s9֭{POоBy՘Ġ-gNtes+Wx'd)ޭ2Luv$}#i?bX)uTXR+]̳ (kg;m3Km(0`2'-kuW̯Iw|61'UA;U5rώ6I?K&`g@t'z7B o~6;[hG;}֣e#]+hܺ^4.Fq^⥓x9wY(j_%$z#SAR3mVyjwևc:߇.>e_u(]S^{ʩ8ZUϳ|CCN[&꽳_ڹ,d~Ō=hQNN{ N^e޻5i >G1YGw>C lK-6/mg pKXT~l+RZ]ՃA꣉-w{_iS~a^KXnJ/|^,QXjMgeꛓşa>ey٢윑Itb tQ~LGf;\<D]2|`?{/hPO-)`}ճR(T/*gP߷sm5X@ ٙ[]q.OUꀔWmdن||r}`5ի,d>gr_zf}vNvStѥxΓ.somJk}Ln>`o& Ktfyw^u~k??U;79zXkd>h?o؊u;]vr흖́3Ż2B3;:FNC Ch:OeG~%Q__{ϼ4بQa|e T<;;OuIL5920Yž5O|'H9śչɇjƖ r|Co"oN*oO$zƟ6BdR\fOO7s U+_ZhуC#s3% >$~{M[ m&Xn$ EpvՊ b}m?vlXpzs;ٶSqõf9iKs{z#h/'!.Zk4狘g Uk\7.;B*%"tfu.zMkv<{ʈ6d/[K)G{^g;>>9U;dy~V姾Af`aؓ-0U2΋E}˽Îsq:fO;#؀NCK}_B_uBunR5TMR?LvKIj5 .t%!>j8V% 9\E9.Sz6L(W17Tߋwn{AgQ]73pIޟJT cm*&ּ}u% oKӭ.o.#77l.xEu{c/M>9GoL6/M]gTT lڂ uC_b;G*~w `D>[.>N37 멽,_%{ߙ?Mǫg"4fTlb-Ƚ Z>m Kalk x G +}PEw&Z_=KL#r4=z2_dj_{{G5-ltrmC'qڡA紦?㲕ـϳWueA;o:b,i8}%W}W1\d;n3zdz2T@FG;C>sa?o&؅u7 ܔ| s5/wT%ujuO1)6*/fpgVwYyk\Q.=.s?'eYzf?1Y.\ \o q\;OjԇLw%{M?X^B3k; ^\;?_gĖ/D:%6%{uFN|e.F|5Oq =o4|9]U)ѝ*Uؾ@bb̮F;х6p?Ĝnj3 Kbm\;f{KaO3ws5︸K.R^߾S|O7dkl1{=: {ib+Տy^ ḶsWqW`s+:"t\d-k]t+(lU|3džuʊV?.-XkXecژagm>i>'!5C.5 '0FͤY )gHoiwJnJ7tm~ȡ;s87vs 2/ꢛq߯Cxz٥j' N2~ڇ GW~cj7}q zqp}v BtUu{EXgyHoqր70\JMw^cӅ]:0 =]DK}x 1zŽ1Ƈ=<d_fW?*Gf`m Zy=; En11d-EEn?wsǸ?;^ʫOgA*z\uFꕝGb,g NUO>E|/x$c>.^F<ߥ&cM#>dž<]}ʓNs'7L$z4mgzΧ6̵;Eԧ =ot=b1ge=.S.I?sGY6~}[:HlS}w&Ʃ`gdp$3Rֻ;r|g.FUnK>\trvHjE|R|8%}|gAWt-=pWn.}չJ{޵rZ|5??Wρ M=]]]Cr.^tk<l܂t>8'n:gk.rGm< gm_cY5V7lstۡ.ym..6ہϨ=}zеJr2)8ˏ몛@KNwMc3u_3Untkի0uDG֧A5 :G\+Z;g`s\}\r;.u'}UӞ(/g}reoKSVښDȰ@cG[;`;"zj!zsBCb t3zf93fX-βV[ZG^u&|fv ;M̎5z5ay.RxF`HKwK63y+w+6l_۞b˷wzۦp#TNUQȫx`0~78E`a ._\Ry-}S?:&tHgQO jz P>RbTm_kEȭ9Uad:;/="3/ŏ^)p +}"?v,*gUNlM@dž{𜭐g.vbן}K=0~06+~_dk{QCca3¸Wϵbbr*֣'fjp0p/gkt{}E0Nu{\+~alؗKwYW*OS/ix2fЫ,EwVY+6~oŇ(7N2k?v.,\E'_Hؙ.~lA <~%C梾KERywfX_FK [o 'l&56÷ ?!+\L8aK\tK00˖ofmx+5N9l!-:5}3K=OJ3gj:'&SEɧH}}v` 97.Ѹ>i06٩?Α7o?~)6/=JXJpCu`$? L9 ްÕ.*G}*c믟c?UBk.End5!}dk>o94]Y*:vdlۚbO}ѫvlyd$<ܪѧXoZ]v ؕ5yKGXXC y#{)L ,>,d,398C2(~)ڍgz2лpÑ,*bу/zh>Z~v).1echr~4y>7CxJp1 eoYMu7? ?yB!%YM9y|YFHE\b\]b7w9G11nUjq<ʀYj1wCcol~:ݞ:Dq"O. n|q;#:nb>= lAw 扑l4K̚ tot7}3q3NGh | /1n,m\[E:}U~KP^}nde3ݘ>qK{i6c'?'oHmr.]K|rp_74ڑ.GenB^'[OVYDR4zPW`u<;1Ms_Yķ1{>hT?Y |jSq'ʃk0,Uo7"rxKV]bTk_.cvɆگ=Dߓ k:[&SIw0[1˃y5*bl5h#abp6zwݴC5Tγ_a\زzN=rL ]uv. `OnZW+fMj>_y:ep'#,&\=TlWO K:ξE&;Cy ua?b59ʥ6l=߬}5N|1_]|{nW}/ [|9icxֱ9K2 m*{!C0qÎ)7./ϭDCLedo (-wa<׾9PnL>Xy+\wCI`SIQ.`\dc/ ]wh/.>Y-W^8_TlQ)^&/_m9uF͟n@uֹv *gi"f/BOavs5C\` u§'cs}?Ы̟_ZL1NU֨v|:c)M/SQLbt5^u\#Y1V{y—rXa뻩އylzW,grW{XkC}jYMW c$㩗b1U>\;qR12]({.vWxl8{ܥv \~)pX{ ~y:eLgTOkFY,^ %>B{!BF/u ǰtW9ˇek/Zg{v5بo盳βG*TX--갻:K}7qc>R8}.ެ˜^|׊+}^_WnXgclB䪾8ͻ|t$=bn1[ފ j\D/7AwOz6}W}өG"W;_+N-lj }M=T>݈;wFMU`b8ϸu.Q҅JsIkfuS˜`;!fkl<ӞBlՖ'/ bUAXE t"~fbocga7؟wcdoj>k:mu]ȤduTD]bd`G с'Ȫ߸-ئ}* >$ca&N)|oGl9>qE|¯"F`?N$`N]ӖDG]Z?/ANg? 8d.$\;mW9 S:^k@t۬U›.s}%Vs,WH|]|jIcDz8zy5f:{W8b줚uaږ!3l?^˳Ncw/DfNp.qOteq9%a\؊S޴ <_vϒJqx<-eYb[`a~|_0s18;M7{KV1K{S;;6 O؅qh{S;*'s)ڨXDp_/jсYU{xQ%V>W=v 'e55 שZUIj&TB[gs߂t'I79y5aOg·m-W2co?cB?fqj]~例T䓌,U VpUw/3L<|ѻ.ӊRAw9DCŸ|VtQ#MLT\x5) J;x9k[;!O򼳐oD+?'~Q]YY_KUuj;TS|Y`%Zpwƻ6=wr?V\jԧ\"w#n%r}Ms F=a\kdl6V ݥ&nmވww.z1sb@vХ3ŭʃb<3h9 s3><9i5)lowL3\ʖ̡;r苯hD&ǂ-ƍwez=YO 8:f'{خ;)N)/>_=wݩX~R0˔KVlc2k[>6nG. v.t )6ӾvպQ0'ɴW19묆Cm|:3ڸYjDs۪yU_)Va{ú=N:u!e*3%޻ȥ;m)'|`+N&VbJIaZ%rˀEp7gw92^{kYv[6:/A^!7"B}6T߱=v 3ҽvBZU_Ww* l؎6/l=eϡo?u?-wH& >,KdgnԻU]̹'rg? ޭCE"K{(/ \`Ł'bl|(Zf)ꧩ +S-ۊ2)#&ɘ;_&@z[+ Ƴ]@wldxR9ZL]8u_oOY4XQ Y5`fKoMp2vyc16_l;:.6uZtF0Ѿ  V'hy_6I_׹&"02GWv ' ]Ztgař.)v{g76&1?`U݉[o='YrM]pgG2=MqY崋uNޥ11bZ'u:f=yz=CjЩ ~X~hGt/yw=dznC+\\K~>|aܞy Hi.ͧO|m7R>ӂU̵{2_Z_P~Nt cũ.t;__YfC!?=ׇo3ŒU^u,'a{~}XYp~0z|7:~!*ma\Kk=}`{?=0":R^:JO>~n8zU;=xy=.npqF~sgnSyV%<;|a!2b$m`++οku`{%}CMy`Sы\t^.u:kt{`Z~cU'{iqP=Oܥr,>^ .rPY>ð! li$yB5DsԮ_~ hq37P%.?`9#k^rRWtjd>t؄z]^aO1.i.R>,?Y9-l-~72N |agӻ[a6ao.'>x0g }Sx0b|0O 3_q 7={bX 3z>cfc7K{UĶY]NoE`49T<p*|0w v>>?u%e _~񟳱֍rp)i>>KWlCPXlsUgp> )_u;Z [Wb7M~ l8s${1:0yz\tg.r~1|p ߫C]Ӷ k"_so;sa_vi-9_<lo~5M|]}56po8{8_Ķ|t*4qf=yd\ΚWi]Jݱd=gn}_/ڈXW?E3N+~r9jv}O>u]sWY,ժ6:PW^zllZ ]`xݬ&2u.Z}Ks,t/L 6~̬&5'xʣ{&ѡ,v?3jwfUۨL[ns3t,${]0EWvw.I=J O:|q'sQ緶=e fN7}kj`tf@& z8u|6_^E9sP\]\2vۅ5xrB;kcwݡ{)d9t0 Y-LNX^Fz,'2+x0gOU\tq3*]p񗓡o~DUt_RMpL-3N$=\:5泽񣍬X0`Sv w<)dg`v?]rK<|=E;U}Ӛ>.Pg|M C V:]wkMՓeX/i`Ϲuq mrT}_OatW%s}.:qiXSblO>g,ܙ3M%ҹY*huej{Û+Z^>5Nb3rQj|.q.ޯEg vv~>?^g1-W|i;^VEW;q I`ƻ||.,oEt;]M݋Ú*\<6{ '*rɹ_xGRlo`݋hMgѱXipQ?|ʺn׸x {㳴uLBR!f>R[VEYꃥsHŲS_ a3vbKEC]7-fl۵.?S^5Bt߹20a8A{I3',k.:mC1{+z׿Xכ:߻u0K7Ta}K5 +6g[no*'?WV&?уنc {:Glp;b thkxj8lK<[mC~{V} _ArU[_JC~Yxg;KYxCvIwpQ }<&2vё@.q.}|&k7CAg]3T3{N.xaɷ龾 29/EEf+\Bu)c`mAKu>ge=j_ˣ{nrskChghF–wЏ#OE53uPR;} Y ⯲`o6ޏՠu[;?6> NE}䢞6|\.Bc` >yӮJZc7!n/x;SfśyB_^*Sc7vGv`4ֻ2š\<˶m}G=^P5c/V bd\y÷۪<>Wκ`m{m{Yʳ c>x(|$|_(UZ[X ;d>/C\dVvc=奔ꛥk+A^7ݝ]Y2 E[=O;8`||l]-H|OA6&i|ZRf+nz|tO 9/W"EV;B=qwy+Fa;G^ߝrC=ljQwꓖG/ rϨT2 ⧕pC.xeƃ';L c#КVJ;"eYsէ`SJ~En%Z]\OW1==B&**y+)e'nwcTɌ5S-?t~R{b[ؒ7ǿOe`X%0zt5`"p 9yo=%JM:endc 70ucq!x*c2湺; SsiϹ&-=JƟFEy^ yiK&޾{K?0MR`pC_1]o5Mp3Нß l뻓a$Y PF\ wUɁ{-:;ovƧzK%nO 輢谦Z%]n7wIY*fn컈uoW.l 2^#K{%nۥŷ6܄0X7^ >g~);|Q&3QVVV.X R:w X? _ wfM|-ң;wF*IQZr[G_?Rbɤ0,|߻B]cNk/^W!.P֏X=>Bc Cw@К*OƆ> LP Kﰚ4qZw h{CW5zm`OvhfCA `  O?WpEo~DYY NVǘR> 8\ج@,QxOm>ȯh]}]gV jXå+MO_0zǶ'cSEwcXiKgAS}gfxLйM;~tG]c#|o./.qhpꔔOP<8ƥ\yg'׽{#PeR`K(9cl Z&mp7;RlL]K/lO.awgw&|?K1"?O}d`iH3r:Vi |ct`ۗ{g"/Fv1>*}ꁁ(;r.n{cmŪ>z iy j_;3w+:-cl.!>.0806)RCq3U;A?d=c;"8tHwǦU~lz&ZC|X$^^.GOE7 [X3FP)~s|ɓKZ_̩l])>FF#NhEƇ3^`5JYvW)|vq^>9樓fG{ #VRoJy~VvǖkpAȶ76gF|Esq\z?~a+Y3S1wy|mJ/[E/W2`R3Y绚lmUHv.= |S9i,-;C%5V[ZWӳ<*~r_WJwv tpѵ.v+s!a=`?[j{|P {g[-իA9';?:++OoM[ pAFluĭGLlSn0}etl[M'댌^eQ{L˰W?ܥhftG$Pp&ft.:f܏<0_sD\"B9L5y%׻#4sTX]2p"W/Ŗ>kP6/B\zK}ڀ} <|!&U.M؆;g?Ujjja7>*`s9 obC~_~0ޝ"'}> qpۧdS/U,#{ޜ"[W^jks]ȵT~>fyr|Y? Y~S⨻տb[KOgMqq.uyA|h%kׄjT\Y"6?|S*ba .|o;j[g?u[՟9;bt؄I^:|_`d]tMgQ `bY|sA/eȴ >u+#L|%{/3/fK|5 !Ndcq^t[}tTj>3sQ}/GFP?荌KCћ|g !8?:K]c0!.\;-똃?JZynBy-~O?V]=2aȺ ]k&NBgYs\s'uA?bKCOn{5Av_Z[B}$zbnR_aG#N(F˰6jo䵹߷pc3 ]ZN{^G.Uvxh?= b3"f M'[|Oj ۸(U'7ےNLx#k-q߰.yC< <şbCQ]Ǣ9tAw#B 0vsf1+?D#;Yazv};:kt].NNq6 ʁt:~i猴/|/>L$zn.^Q,REw尩RmdjC`hлIi;-w18u~?<\g&*O|aƩu״?C| ~l|^wY6h=JS% ւk#|wܿ=pIW)/%~KN>E. Hq%Xk C+? >z> 2r~)Ϛn$1#d}'vm)DZ˦|"?;_Eypv%/sɦV80Iz[ ݇w#ڋR-J4d֫=;9#ݓ`N+9]~>o ~pzWzr$BCh_;75-0ҔvF"`ގpݿv#_GF+qw7~ c{sR?πL}kdݩ=١^n@&Rgb̵ڄe::l;k3\ÀSլ+p5E{ 3I ~+}o|gyW~T듑ZGyo9r{ta b(x3g/yË.+.>t3؁bi_GG})#pmG5+}_h}EpΝu r(_9ν:ǶY䢁ͻ`]e.s־qcO9վ'Ṿh[Xӏ?Y\ֹPx^9T52-ѷx8Gppx-B\y.Eʉ,$@_-->{/Z;̍[&UNw.cw^/5з!y[}*p >PxS8]3VZOV|r [P*9|eu_̱1U0Z;g7gke-f gLZ.%:lEwƦ5S~Ϧ`#HX}OB- L~`g. 4n5|9;VȰrFm+|0e[_ЍgFp[rъ]\]~)&@u&VC\t͟(;tr<2Xla\kpv6}۟";|o[\]]Af[bq4(R n7%}l|7e^~G_JYZl;؄9&vQyoE ߎvWB 2wZL}jKzjZli)*ApOΜ'3LJv8[.ڍq'ZvO.* V{fO }=bt[I;|x䝁CfV>F >xc=XNd 6GS߀+D_/w~ggGkπ*SnM9zb`_w|G|3bWl^[zlKȡ_r*lϏE^3֫&滹.Z-m6DuJ}QlXwG ޕ?˟g UljbVv溒ج˚dvDO⏗w?-/h.1ek ɻ}}d*p |S>%. d9,2<=*bn_~}v7<ćdK~E%oeP]U7& W{!=\W5`_oW,6ſͶ}z? 8 Oy6^G1=]b|)晊=gLsE;5ePҏ>T*iYQ+ofp'k1>9}X4.: YSD]FO˱v٫xVk9s1魉J:vcSQ:СcזpT|НC=hrb.:V{B1.pAo ?^)̻yjx!nuV+70zOg灗%}86? }=J}NTl*`wex} h*ٜ?Q= :}W1vjNԓΡUP߭?е`i~~7EwkR08ontH| ǟ1a>}՝1P?{,ؒ/Wwjϳ?ys/Wo {N0S&l vzX?&s`cSQn}C,R_'^L{XMPQgE YQ1k$_R=]\d_e$qWS5KC.Ɵ|V<r=o//O,ǟT0[0޾hݿ\- ڃ@Ӄ~;!_XR=]e&3بWu|nK}hf.^|GZM_ zT'߫L꭭)3u. 9:+yz5 b"d;\j .;p$`] 2G/1Ė˴auWL18t 2L/gm2M XZlsaC336 ݸz^Ƀ 7S/ޖ|y3sB.{˽)w:v1F s%Hkwtc^| "{5xqorKdsqZY3GqWmt{㚾"93W߻u_4bE^R~H pd|ݬ 8eܦ.Q3yf7 M3 ?ŅwSP^SZ4Z\jߪ/=Z?\yt 3Y\f󩀥9؟p8 8S._7aWEEaEĝUȾt˳++k-a)ߝKt_?2_P;#Tq+8s}BS>7Ŕ?WukjFlI+#7j=S~y.IY P]@QsAUgeDAdPiEPAED@DAhm㈊C+ڊ8y"::}:kGoDf2"?Osp.柳1vyEk/oy+5L7ySW?^c$gD_G_}vVsZ=?ƓwuX}}N _1q1\SPĎݬ[|M>Cc=4-~ޕsԺ_q=:sus☾! w cC~q~gMoi]qc7|[ziC:c+.8Uӏ-{>/񫽣y=yey/֠g~n6^tN>;V/s_%oic,96|{Vyfl'}mEc4 qnWv9_\m.b9wWMl{.4pa\^G-Q~o\ c'W8L/0zgѐŽNĘgi[|oW1hQձ.!Kyz`1^(~.~_9xikSbX\5u߽a ۞ݶsrN87kզ+:;x;q]16],O5%q-6oW-]ѺgҶ7j{Yon;/m%h'ڻ;~.㷚W={9ͽZǍmݳyڸf/`|8'xѴ}LӱS5_3<:{Xg{7ݗzs{-6sY oޙ7D\kgĸ7,~q|֯E^iǘt}S/5 cJg_;w-\^q^es]>m['c}zVWwc,gFbȌ}I\G}Ӵ}ǦziCQbN>[?uӶ7sr~cY۞ K}>qM>amTQ .. ύ{k㺹*ٍ+q1񲘣iˣm1Bv|';OǷ{kn_Z3v:~771Kqo%u6_<\{u̥WĹzz35 n-uu:O_]oޫcs{19yݪ>ƶc޸&ƉrǏF]-7L[E M/9d37狷=w^ј;b'_P'dŸw^U{va9=Ŗc1>q?i+Z,fmZﶷvtk^v{&ڞ-$ke빛d.8;xr}7ű^U[ZmĹyѮo\=KiDy6wx&tma,sa{DWa|ggǘ} n]=Źz^ͱ^x[\?Txi8g6k[.>wO{dۗڛ/9xo>̽Ζ=cWө;zz?y㛢k/Ϗs0XϽ9搧iY0)_OZ0a_[;"|71A;WqΔ?}WZ{^5m9ߏ{3cLf0soƸ>ok榘'?o=OiϞk|Ɔy{>ոoދlgeV16G0cg8oۧc|%֘Og-{//izyWo8;3kqok0{rhz]g{ѿ{-竮?^>ls)x:1_֩ -ƐW%iKߊ6|՛6m;gs}>r۳hw o~dZ4Om9#Wk˖}nKb=3|+ܞ~sMqwEч%`y/|c;bL~nvb37]-ZIm?e϶wdXN#V %qp<3ώ5ȕ1~誕)]޸n`ΩN{ _q|ᶦm>q3C~M;P8vcN]oq<6}uyF{h=kK^zUsvmtk~1O~M;˴s5sj{/6n͘˾`Nwxjy=\ru_Wj~os\kRgꗂ߈oiݟރ|k6kv߫Zl٧2ڷ#Ɗ=1={~^3jB}.u87ƷcN??~C~i}]4+cs]XM[?qs1Ĝ=wk1~oXt&oZY1.ƺi&=y-6ܼ@swߏ{k- 8'DZjF7uZ27]Gm?e_̥Q߉8gŹ?7~`-wbGn5Žxm_migzƍOV޼ nokOY5t1Xw{_O_:g߻=|7`ujqh<|_?C1v+X_ݴ֞ٴ5Zq{unh$ƹwGv;=^qc̾:Eqk{5 ׯf0qiY6O\׳>7݉[ޛcy{ǿk~?~c"ƫ9^`g߸?D qmO?h7q.:hqX4?ҶXlj1֎~1>?911?E{-Ɖ|`wqѶNom֘k/֧޻'y2?zm{s3.>X/{xvtq_yq .8s=b=g5X?io~nķO[g\F}zqSdc\9:xnemn/~:}8OsvX;mQ7(OiOO㞥=yfn1\Yӏ.zͿܧ5ovkgɪ]8vum/{jbXԹu뾻w &?#ϷoRCkO^˜`5^i^<|li[Nڳ%.{;чV>vã}툵GdlM'b,*SZhĺ16\=Xj~%x|dq ?x]ܲ´ԴuS7}hIm*zyѦ?[c}Fx,pi8S_S1RQc`1&FGŜu]i ?iwq1 [h۽fܓwl~m_>}ͪah{7=DMWj"wv·ǜp~/~quutu,>v[\]V㻷lbq?HZb-7ϬNl)]Mx<oݗ|.ޫb}91cf97_5.:o{6ɘ ϊhEq]>5q>>$dں5>n%bi漵Qn <勎3_{N\yrVc<uQ>+Ə7/1gT3 kCֽ_{m֞E5}RwoqX,{\Ńcw{fhݻ1ؿ6__읊c/6`1+?4m}N~_3mL?z:Fs8WJ.hVޖONG;6}tΏ8n/<X{<-zѴ8oyô{NL/iv7-5ooި{=bM\|qm=)uz" 1Ɲ W~/q>nb5ƴgļ+c1]֣--e~O[ߋ޴rѕ~}mo/W}ܱ֩;]nAǵsv1.]}+75[2񲸏{v\vٴm~}ھ?O[K-'X1Vlz ~^Ymm:Sq:ona?sgk}GvcKδ}Ms6aۣ56m٧3mlߪ[<#Ʊh`rܸ.swypzCwK\Su?fϊcb诊5czzoG,[uھ[:o{!}QXOcs8c 08wzbqkgŚĥwKb=9mn/c{~9_|_G-6,N[]b~mKc.*+cN4+mOcO!o _IΝ6q+z}QC5+Ӵ˳6s).kZ9n8g=}{3?1V;NߋFcHwj֋yt˗6]E[8fVs*Wm.1xX|Z;ge9Oj0Ίׯ78/4'4}YVk:ssm=`3y_vq]Řvk[io] gzHe.uWthWO;yشigsd3سb+ma}tsܲٛiU^o6΋OZo$=8b91^i>|]G漝ImjFo)"̧֛{ݘ'>;n/'gD躏ɅqU'_U6x^;74M5qݦ_m6[6BG,{0j~ݗq^Pe4c:~^9VsbLHtokGF/_կشiw֖'=걞z&zk߉skis{wPDfόt{&qa51_}l㪽s\9朗~U\bq'Η6cG,K5Ģ5M~k+6{Osyqm/⚼>X q.NG>?ϋkW//5ӱލl g72?9\ƚcܝ׸g{wn\;ݿZ?eq^MC=n'랕ܸ}oiӱnXt5q}o܌76|`]77N|vK۞VMSy?:bp-ޣWgݛ;koylƽ;^5Kӱj^Y+ZnY˷5j{suXvVmyў5qo٣5֘{q>Nƹ=z{*Ϗ\=QG>ݓ/sy2mΕ?t58c3^s#Zny~ٗ=yڟ%kj{hNw}~'ܜT\_i}%!3^w#x{jP: <]mn{}ۭw׬kewxp/۲UG4{m=qΉkhE1\}tׯcX΍cY[Ov3Wc_zMbv\f1F.\z?S-﷎.{kŌ}9p~|ݻty6$ƅK>}as;<3{.My cm؞Ek&kG ]w-[W}HcmxV0 u|^3睹/)~XY8s`Ӟ6mt>1eڶ7}Ӷvo,Q1_ޣa/މ65ܜ+_ټ^S;>Sy~t{_;|p:3omw{WܷlY 뜴Z={5g:#Ƹ3OΉv^h/(_XGeq0c̺ ŏӱ3bnW،m=&^v7:޸{luٯ5ڽtHzxOsAq\cMі <>3Ʀ.hg}[Ly>Mu]-ss7=+z;iw˾1?G_-lb;7i@߿Gޯk`0߅q-!8O|7oMsim c~3bi[{^M5ŲZiw<ܿLYWmy1ON\1]A\Ϗ^u%%qn>q;sZknYFiþp6{gu>ߍqأkXmY̵_Ɛ8׷z\UC.:Ecm=~Qgy-kXlg3&ypsܽi쵸9ۋ=x=#Ɵbl Wk$>1=CӶ9mw*Cl/k=n'5=?oƶϷ}M~,:]q=X'\p_c|bnu.ҷŚ!Ϟ_88GuO:,~6d.5@.yk]Y|y/Y5Jgq_{W/WƜrS+b>xV+GWaܢfqs=ts-&G5?ںh/>ڋ3Z1{^ܝ+;_qcx}0q=*[5mצoYߌ%g->ƎWu.] n]hZߖUG-ic1.syϮ׫b *b*)ql78=q=,?n1C=fic|ܟo6gsW6}ࢵiXOnݯ]{-֕Yb,97X:;1_s`Uq/k顿S+;g8ǿmӟm ;^s1.{5o\[-v\׋]mlȶ~[m^q.ό]X;]v1ccҸ~yiՏzk`X4\fo|-Ɣvͺ2ڍ[ܴ~}?Ϲ3O8k⺹";oc}j O5\t#hr_-i偛k7s~ [ǺQvźtimOggv=m8>ˣmw_swr32\9+{s>5OSeakwA{砽ky=Co-w23mD:׽4 mlԞCE7jy='y/ﺷ ȵ7ψ⳯kXe?8?<*ƽøu{> ys Xh ts}ƹh?Z17?׮:e\1g?}}~2ggE.f5>i[>_h_[iqsٞ8מ/"[l(U{qAڻ8oKq}.q9.}o$iʦm6cGb=)~o[=󱼛)8iŷBO9vǗEb:?ƽ@|[\_?sѮL{ڜ̥Mq~7kѢߖwb[mqmn4|Cuq-){cǘ{?2m1Efj-6g{b-&mYb>ZQo={mmqASܧ<Vwv]9)ZƘΏL/1|ݣcyI^ڽU͢m1ҧnl]˽T\M|6~wGeO9ًd/ƘӋZ?8c̻bZNQ}W? ZGx{z+nUU=4B[^6vo_ﱚN=?=n`}?ǹqĺ8wh[|{ݸy-ѶinqO!cZq~-U|~{[{ֲo;;^oܵ=K9ߩ?qWR}1nq|ı*w~.cZ8}6}+my6y{~3V߮k`z?ޗp߬S_|lݏon:oK>>9Ɲ_M[?~ɟ7S-Ec]h}|=˳vzh~6~ohcZ5.gX}o ={k7Ʀ_ 1ֺpӎ<;ʖG0ش7m?vܼMWqfFO5{fF\1NzuuXۢo?u9ֻ8nݞ2~uoĹ[bwܴsmm,{xx=W`7}ƕiiEZo6Ęqi9389Ch[;by@Ν5ϝ~i/kϢxV[O{ӮvAcN_s؍.zx/]V _t\ۗƵ1'۟,=8̘{>}yAc1~s6ͺ-b4h@kg騂_/@ߢw<\w4}m3}N:X]99/^wt>+i_CΎu処mo Z:.ٲW/n֗mM{s7c߲;ܼX`\gtI|:W|Byy+k]yX|wb=yuAy?9[?_?i[;oq}"g-O\ _ۻo#8?c_{_ȱ`x+6`t낝cL{7ǜ諻=ʟ~hں%Ʀ7Ii+fygɟvͫ/[c;go!mƚߍ>8;Ƈ!Ɩ3|K\-߉c~TP[=9:z~3o_֟O\ͽsGXԪM>_Ve>#{N{C.y 6?%bqn쬸eumώmyK7mkq}-"mgo^;^k#-!hw}j{/nSVq]<'/)Gupk_Ĝ;֧g4Iiϣmw{ui1$?mz'q4n?w?OWnիq_vycNqŽ&zb|毯 }o?n}Ŵunֽ{7 Z [g_;wN{qNcѴCkZ/ NǸFSs;5??߽h\t{sОپgZ5ۗx힛k>gg3>_}j\rAv}J\O@\O_?m}n\{x/X3ܴ-okʯKl:[W}ĝ7zXOm|:A:8Gn9xBo-WN[_#1=t~ Sں?.ߌmoެI~vZY֮϶s4i{__{x-~O13{> L?x'M[~:ӆ>EkaѰF}ۋ9ۧ'd?z i9M_m/Ě36kgŘ'O[F}__`zVSO}qyiircX޽ubȋ_y۽qvcx^.謹i{8γ. n^sc~Ksb~+czn\+]\Ѷ[.?1ƻWa3_9o-&sW/{f.quTlx{J{7Aۏt>}:\}qv\cG8_7Ÿ{m|3;wkc|/SA_sik7ƚO[oشi뽿Ә[G|w:-9ꮛ5opc11qXxDYQ>?Kka}ggܓ|m㚌oti%ЉZx'lvΆoĵZ$~gxs/ƾQo\c p<Ƶ1]5u~/kƘkcq}c\uikbkWJqih?޴y oqNj1~,{_}^9/WoY;`\*g\t:;ŽÍ&}h3X#}NGtS/qGccMq/{8oG.Ckm/w^ޱ WykSΎ1V_/^?sk#}¿iqޚ~д m`zyyڇ[XaiPޣw3)ƛS1\w:mKOXm~}N[)u֩i1bYwLwkyQX`nZ뿭m\yA5-{/ Έqy8UNE_t̕rE\ S\}େZ[fo_X{O~Ⱥlۏǹ8x9q?#9srQ|87ω[9M?k܇pzbu^k1\T.1>oi+ƒ7iFiFiFiFiFiFiFiFiFiFi/FiFiFiFiFiFiFiFiFiFiF3H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4HݑFiFiFiFiFiFiFiFiFiFiF14H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4iFiFiFiFiFiFiFiFiFiFiFc#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#h:>H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#trFiFiFiFiFiFiFiFiFiFi7Mg4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4ҩFiFiFiFiFiFiFiFiFiFiFtH#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H# 5H#4H#4H#4H#4H#4H#4H#4H#4H#4H#4HGiFiFiFiFiFiFiFiFiFiFtH#4H#4H#4H#4H#4H#4H#4H#4H#4H#4H#t[ݞ?,N'o} }|~=YAy=O~)>Oz_|oleL-SnMf{>8͇tÜ0Ws/^:t+sa///aK9C:9C:=`Գҳڳֳ޳g0{3ͽ6^k{msm^[굥^[굥^[굥^[굥^[IMzmk^ڤ&ڿVgklg{ЛegM=+==k=={lq}zǩq}zǩq}zǩq}zǩq}zǩq*kޜޛMcS;6Mcwޱ;VzJX+cwޱ;VzJX+cwޱ;VzJX+cwҿVJZz#{J,wһ[zwKn-wڻ[{wknݭwڻ[{wknݭwڻ[{wk_k-e|7wڻ[{wknݭwڻ[{wknݭwڻzw[nmwֻzw[nmwyZ6>z[Fe>z[c}l>z[c}l>{{c}콏>v_Yu|6l޲{{c}콏>{{c}콏>{{c}콏>{{c}콏sl޳ggM=+==k=۫}{ǹq}{ǹq}{ǹq}{ǹq}{ǹq}{ǹq}{ǹq{6,f=={a#Kһ.Kһ.Kһ.Kһ.Kһ.Kһ.Kһ.Kڳ޳gÖǵq}\{ǵq}\{ǵq}\{ǵq}\{ǵq}\{ǵq}\{ǵq}\{ǵq}\{>ޝ#?D<>"o;yU{P^Cz 5kP^Gz:uQ^Gz3ͨ7ތz3ͨ7z{yEސw3l`c3ؘ 6f1l`c3ؘ 6f1l`c3ؘ 6f1l`c3ؘ 6f#-_O !C <$C <$C <$C <$C <$C <$C <$C%-/3#/ 0 `@ 0 `@ 0 `@ 0 `@9iyCޑ 4'y 6l(P`C  6l(P`C  6l(P`C  6l(P,gA^7<4` <x0` <x0` <x0`Cô!d m 8p0` 8p0` 8p0` 8p0`iy|L'yEސw3y 2x! 2x! 2x! 2x! 2x! 2x! zϠm\60@ 0P@ 0P@ 0P@ 0P@ 0P@ 0P@ 0P@=Lg6uh[E@ 0P@ T0P@ T0P@ T0P@ T0P@ T0P@ T0P@=|qZN{-hgA;C- #_=و#_mN`#6H`#6H`#6H`#6؀M؀Ms:7Ms:7Msq'AIwĝq']!`C 6l!`C 6l!`C D 7M7M7A Jwĝq'G;RYWo <(xPA <(xP͛@&м 4o͛@&м 4o͛@&м 4o͛ $5 bMXt`ˣ <(xPA  <x0`sм 4o͛@&м 4o͛@&м 4o͛ $/ Ktgaˣ <x0` <x0`s7M7M%A|I_ė%^ĖG3 6l8p` 6l8p` 6l@&6hZ8NhZ8NhZ8A|I_ė%A|I{1`# 62`# 62`# 62`# 62`# 62؀N2`9FNh9FNh9FN_ė%A|I_nrlyEސw3lQFlQFlQFlQ4rRF s@;' s@;' s $) cJ  *xࡂ *xࡂ *xࡂ *xࡂ *x^N*xvNh9vNh9vNh1%ELISRĔ1%_RT%~I_RT%~I_RT%~I_RT%~I_RT%~I_RS%::NS::NS::NSĔ1%ELISRĔ~I_RT%~I_RT%~I_RT%~I_RT%~I_RT%~INTh:NSh:NSh:NSRĔ1%ELISRx'IwRTx'IwRTx'IwRTx'IwRTx'IwRTx':wRS:NS:NS:ELISRĔ1%ELITx*JRTx*JRTx*JRTx*JRTx*JRTJNShZ;NShZ;NSh%E|I_Rė%RTx*JRTx*JRTx*JRTx*JRTx*JRShZ;NShZ;NShZ;NSĚ&EIkRĚJRT+JRT+JRT+JRT+JRT+JNShZ;NShZ;NShZ;NwRĝq'EIwR.KRT.KRT.KRT.KRT.KRT.Z;NShZ;NShZ;NShZ;EIwRĝq'EITx0LSTx0LSTx0LSTx0LSTx0LSThZ;NShZ;NShZ;NShq'EIkRĚ~LST1~LST1~LST1~LST1~LST1~LNS:NS:NS:NkRĚ&EIkR4T4>MOST4>MOST4>MOST4>MOST4>MNS:NS:NS:NwRĝq'EIwgSTx6MgSTx6Mg4x6 Mg4x6 Mg4x6 MgӠ3 :Π3 :Π3 :Π3ĝ q'Cw2ĝ M47 M47 M47 M47 M47 MΠ3 :Π3 :Π3 :w2ĝ q'Cw2x9 ^N4x9 ^N4x9 ^N4x9 ^N4x9 ^N4x9 :Π3 :Π3 :Π3 :Cw2ĝ q'C4: N4: N4: N4: N4: N4 :Π3 :Π3 :Π3 q'Cw2ĝ q'4x< O4x< O4x< O4x< O4x< OӠ3x< Z;Π3h Z;Π3h Z;Π3ĝ q'Cw2ĝ O4x< O4x< O4x< O4x< O4x< O4 ;Π3 ;Π3 ;w2ĝ q'Cw2x< O4x< O4x< O4x< O4x< O4x< ;Ӡ3h <Ϡ3h <Ϡ3h mcn$f<mWq`(R𾍗N,tNºl! ns`k.]LRqϖ;}鞲fHTfܲ6z*ʎj wgV=#/QgHa3ϸ ^{Y!#2y f&{ԇ쥙u 2RnMnnR2n5$֝ N %U]ýM?IkzB $XcShK1uǓA/ !@8/`<> &=Y P"0 x"}<aONG¾_EY_W !k^s,pV@* BE*zd(ŀP({ʙG15AJ@E1(ŀzSrQN= ųDs?ų81nǬi{ef)s)PQbme@a1(18'| 8Hnځfr(=Ռ|]Fd0 9@qrxO㉃%J8(q;18"D8q t#c$q$|䮟ځ"Cfd-2B  82Ȁ# KF!c C2@# 42@# 42@# 42@# 42@# 42@#fAȯ [7|A x(ࡀ x(ࡀ x(ࡀ x(ࡀ x(ࡀ x(ࡀ x(ࡀ;PMTa+U *"hTQFhTQFhTQFhTQFhTQFhTQFhTQFhTQ ) mP'S:`,8 BEc -0c -0c -pg -pg -p -lAf 2[ق̒X`|` *`+J+J+J+J+JԸ*5JRԸ*5JRԸ*5JRԸ*`2 *Jt+Jt+Jt+Jt+Jt+JRԸ*5JRԸ*5JRԸ*5JR㪌*h#;3H+Jk=zonFnvpdudFQjԸ5FQjԸ5FQjԸ5FQjh1hFnFnFnFnFnFQjԸ5FQjԸ5FQjԸ5F1hh1h4 Fûn4 Fûn4 Fûn4 Fûn4 Fûn45FQjԸ5FQjԸ5FQjԸ5h1hhntFǻntFǻntFǻntFǻntFǻnԸ5FQjԸ5FQjԸ5FQjԸh1hF˻n-F˻n-F˻n-F˻n-F˻n-F˻nEFQjEFQjEFQjh1h-F˻n-F˻n-F˻n-F˻n-F˻n-F˻nTUFQjTUFQjTUF1hh1h-F˻n-F˻n-F˻n-F˻n-vG-F˻neFQjڑWQjeFQjh1h-F˻n-F˻n-F˻n-F˻n-F˻n-FQjeFQjeFQjeF1hh1h-F˻n-F˻n-F˻n-F˻n-F˻neFQjeFQje QjÁp1h ÁF˻n-F˻n-F˻n-F˻n-F˻n-F˻QjeFQjeFQjeFQj Áp1h -F˻n-F˻n-F˻n-F˻n-F˻n-F˻nԹuFQjԹuFQjԹuF3 :Áp3贼;-N˻;-N˻;-N˻;-N˻;-N˻;uNSԹ:uNSԹ:uNSԹ:up3 :Áp;-N˻;-N˻;-N˻;-N˻;-N˻Թ:uNSԹ:uNSԹ:uNSԹ:Áp3 :ÁN˻;-N˻;-N˻;-N˻;-N˻;-N˻SԹ:uNSԹ:uNSԹ:uNS :#3t;]Nt;]Nt;]Nt;]Nt;]Nt;NiSꔶ:NiSꔶ:NiSꔶ:3:#;mN;mN;mN;mN;mN:NiSꔶ:NiSꔶ:NiSꔶ:#Π3 9Nk;Nk;Nk;Nk;Nk;N5ST:լN5ST:լN5ST:լN539|8;N;;N;;N;y9N;;N;;NS:NS:NS:82;-N˸2;-N˸2;-N˸2:ENS$:ENS$:ENS$nmo^ s0wʠhJȧN6fl߫60?Ϸ9fwb-zgOܳnٸ: W(BJVP jTn]sgj;H/q P0tKϣйQ:W==AA/uϬ{ȣu'ԝPwB1EG "{^P5k຺L/m2ӿjo_7P;MkP< I+rvӌr^qv;uϨ{F3nu=2ey?N:>ZXnm7 AZ .T:Ԅ_‚0wFcZZn}lcLw?F7 ACfԍ)aAup1f cƲW" ;ԇ]R_NQӼY;Q)> Ƃ}d: VP55G{ {ݮ/nbuc1*buWWa1 ]98~7{7|B"%wJ' 3j=p8p18:C 0`DDbp a1l8pP"l|Aw|iF^W y"^G/2Ƌ 2x! 2x! 2x! 2x! 2x! 2x 7|A<PC<PC<`y  x(ࡀ x(ࡀ. x(ࡀ x(ࡀa'Y(,3qL\f2e&.3qL\f2e&.3qL\f2e&.3qL\f2%%gCi G‚`,⒈K".$⒈K".$⒈K".$⒈K".$⒈K".$⒈K".$"D\$ZN¿,d h!;Bv#dGȎ!;Bv#dGȎ!;Bv>#dGȎ!;Bv,d| Un2 !.J\(qQEC%.J\(qQE1%.J\(qQE%.J\젰!"ޔ,󌂲`,8  A2d$#HF A2d$#HF A2d$#HF A2d IƿNfV;qdɎ';Nv8qdɎ';Nv8qdɎ';Nv8qdɎ';Nvk| VYH, ʂ,d lq%L\2q%L\2q%L\2q%L\2q%L\2q%L\2qA0C|&!OseN!;|Ă, Bf>jOY` N!;SN!;SN!;SN!; ]5# GVRVBv )dBv ٩dO XcYTSU6 l٩dJv*٩d*,d@ǑZ-l( -l(qH=l(q- .TRK%.`TKS c![0 8X` f`f b`-1KKEluf []x +-lua [P؂-蠲-lAe *[Pقdg&;$dg&;3ٙLvf([b,-1eh( 3J\f2e&.3qL\f2e&.3qL\f2e&.3q61e&.PqI%FkZBa&;$N";$N";$N";$N";$N";DvId'DvIdQZb`-1A$EmQnVJv#dGȎPL*dGȎ!;Bv#dG`#dGeIȎ!;BvÐ[b-1rK %E6)QDh,dI $%HJ )ARI $%HJ )ARI $j$%HJ )AR!Đ[b-1rKm2d$#HF A2d$#HF A2d$#HF A2Dd2d$#HF 1K%o>,$eX` $'HN 9Ar $'HN 9Ar $'HN QF 9Ar $F#s\bd. ƂY(,2A -X` R&H e R&H Qz֌,)L2A)L2A)L2A)LK %ta A*B A*B A*$J* TR!H Tum[@ A*B A*Tcv1Ę]sE"@7 ʂ,dT R UT R%H UT R%H Ue R%H UT R%H UT R%H UT R%Hu6YbAXP#?Y(,uMP` [؂$ -Hl[ l[ l([l([l([l@=ahOړ c- H3A LfD߱i&H3A Lf4 O LjAZPTjA;TjAAf",cY,%H %R"H ћ, %8Q R"H %B-$UB(/T UBP%*T UB0( #0(p1+I$!HB At,4 A$I$!HBXmi$JFQdT(JFQdTP2*  @a8P`unA$I$%HJ )AY )ARI $%HJ{JFE $IbRT(&IbRT(&IbRa8P0(  Á?t+  )ARI $%HJh%HF A2d$bR1D1PL* ŤB1PL* ŤB1PL* Á­@a8P[Px$#HF A2DA2d$#HF A-$'HT BePY*T BePY*T p0(  ÁpZ qJ'+}J'+}JbSV` }J'+}JR+J9RΪ*J9RΪ*-rVePTF@ePiWƕqi\iWƕqi\٪44+MJӸ44+MJӸ44+MJӸRΪ4+JmR۪Զ*JmR۪Զ*JmR۪*#2*J;N+J;N+J;N+J;N+J;N+JmR۪Զ*JmR۪Զ*JmR۪Զ*Jm2 )~ʠAt+JAt+JAt+JAt+JAt+JA*J9RΪ*J9RΪ*J9RΪ*~82Χ)JAt+JAt+JAt+JAt+JAt+JRT*JRT*JRT*J2Χ)|82Χ+Jo[+Jo[+Jo[+Jo[+Jo[+JRT*JRT*JRT*8_Xemo,($EXPg!PX!hTF Jh4+Jh4DRT*JRT*JRT*JR)|82Χ)]J׹utĿ ʂ,d lAs\:WΕs\`U*X VU`U*X VU`U*X VU`Uq>eO#q>ѕ~t]GWѕ~t]ѽ{ ~tG7э~tG#;$Go3[03[03[03[0-fTF1g4|81g4Fsќn4Fsќn4Fsќn4Fsќn4Fsќn4FQjTƗ_FQjTFQj ~Ơ1g mFۺ+FۺѶnmFۺѶnmFۺG @h[7֍umh[7֍uh[7*X Vը`5*X Vը`5*Xo21*XA?c3A?a7z؍va7z؍vtva7z؍va7z؍va7z؍ Vը`5*X Vը`5*X Vը`5*X Vc3A?chh7ڍvhh7ڍvhh7ڍvhh7ڍvhh7ڍvhh7*Xvը`5*X Vը`5*X Vը`5*XA?c3A?hh7ڍvhh7ڍvhh7ڍvhh7ڍvhh7ڍvݨ`5ڍ Vը`5*X Vը`5*X Vը`5F@c4Fvhh7ڍvhh7ڍvhh7ڍvhh7ڍvݎvݨ`5ڍ Vը`5*X{`5*X Vը`5*X@c84@hh7ڍvhh7ڍvhh7ڍvhh7ڍvhh7ڍvݨ`5*X Vը`5*X Vը`5*X Vը`5@c8JP l4 FCn4 FC{{Z@hh7ڍvhh7ڍv - H4FQjTFQjT QjTÁp1h ÁFCn4 e[@hh7ڍvhh7ڍb4 n4 FCnTFQjTFQjTFQjTÁp1h ÁFCn4 FCn4 FCn4 FCn4 FCn4 -whAݨ`5*X Vը`5*X V9 Vը`uvg8tvihwڝvihwڝvihwڝvihwڝvihwڝvթ`u*X VSթ`u*X Vթ`u*X@g8t@ihwihwڝvihwڝvihwNihwڝvihwڝvݩ`uڝrV)guYrV)guYrVlrVg8tF@awz؝vawz؝v vawz؝vawz؝vawz؝ Vթ`u*X Vթ`u*X Vթ`u*X VGp7 ?(?e,~f#iawZ؝viawZ؝viawZ؝viawZ؝viaw XV)`u XV)`u XV)`u X@gsukZw֝ukZw֝ukZw֝ukZw֝ukZw֝ufթYujVUfթYujVUfթYujVUf&S@?P]N׺ӵt;]N׺ӵt;]N׺ӵt;]N׺ӵt;]N׺ӵԬ:]NS:NS:NS:c~03 9NӨ4;NӨ4;NӨ4W}Ө4;NӨ4;NS4;NS:NS:NS  ;fpiwfpioo=",( ƂY(,,D"QH)uD"mMnw[|:Ģ0r=|s"Vߖ>?8}a>~'^c5ܳTRᶏ"0+^ W(J jEEwNLekw~[wX{Xp~=מGgԞBey̺g=9wQN;95$֝zyT "UyY'_p#[XW|yoGU!^w-vwɠyj"oһvUrkg=uϨ{Fhg\Fq{PuB UѢY`݉u:H*އr8E J߭d/{ڪ8j?X׫~+JKu4Q#cw1a0 &2nL&ˎ(N 1ɲb+kwH9]p>Jgy~6赕‘],E:-GUm.ʺv\ڤe=|[9(főG՘z+Ÿ}\iF#vuT7n(iW:PD!/ȣ^QFlTQ?<lTQFlTQ6=<lTQFlTQ:<,RX!@ſL) ƂY` :'-[`l[`l[l8[l8[l-Ng9[قd`#A9cG~ PX!i&H3A Lf4 i&H3A Lf4 i&H3A Lf4 i&H3A Lf4-ޚbN G@l  G‚`,8 [@9J(D9J(D9J(D9J(D9J(DMB[@$p$N¿cY,pB A$I$!HB A$I$!HB A$IE$!HB A`3 sǎA $%HJ )ARI $c%HJ )ARI $%HlARI $%HJ )ARc 3g !b, Bf- HF A2d$#HF A2d$#HF A2d$#HF Av~`ˑd h';Nv8qdɎ';Nv8qdɎ';NvPa:;qdɎ';Nv8q8\+`1ތ[+,$eXp2 dN&;dN&;dN&;dN&;dN&;dN&; B X!. GVL5Bl5)dNXcY,Íڶ*,dBv )dBvY˅SN!; v X3wpxdTB!B A*B AjXcY UT 7:kJ*AJ*AFgmK2 mgРI @!Zx@*AZT R%H UTRH 5aAY0(HQ(,3[m#-ق-Ta(4[?2! $ [P؂-luS-lAe *[PقT i&H3A3i&H3A Lf4$_v0_bpi<4 i&H3A Lf4 i&H3A Lf4 i&H3A i&H3AJM %|q8_b/1#Gg!PX!DAJ)DAJ)DAJ)DAJ)DAJ)DUl"H %R"H %8_2/1ΗK%A8 A$I$!HB A$I2[@ A$I$!HBo A3 A$I$lAb/1ΗK%cY,I $%HJ )ARI $%HJ )ARI $%H~&%HJ )ARI |q8_b/1Η d$#HF A2d$#HF A2d$#HF A2dd$#HF Ab/1K %#`^qĂ, lAr $'HN 9Ar $'HN 9Ar $E$'HN 9Ar`b01LFXp2 B&HmZ[@2A)L2ArY` R&H e R&H q R&H e R&H 1L &ÁQ!TR!H TR!H TR!H=[@ A*B A* Y` R!H TR!H qTÁp`s:@\9 ʂ,dT R UT R%H UT R%H Ue R%H UT R%H UT 7:K UT R%H6K^bAXP#?Y(,wP` [؂$ -Hl[ l[ l([l([l([l@@a8PT c- H3A LfDi&H3A Lf4 V L(` XVU(` X6DU(` XT5",cY,h%H %R"H - %t R"H %ݒR"H Q*T 7*X VU`*X VU@a8P䈽[Wn;q ,( ƂY(,If A$I$!HGT m1DP*T BP*"lAb8Pa8PV!$!HB ARI $E $%HJ )ARpvY` BP*T BP*T pp0(  C(<I $%HJ )A+\ A2d$#HF *XBP*T BP*T BP*  {  Áp' ihwڝvihwڝvihwڝv?tڝvihwڝvihw*Xvթ`u*X Vթ`u*X Vթ`u*Xq>vCcg44;MNӸ44;M%B_eXp2 ES%T:UNC%~[a۳}ؘ]H@v{:'cyĢ0=[5)q7vcygOܳT{bqq!;+^ W(J juFw)ԎN-uDCƍ,njǏ{sϧ^_/gV>;>g.QwB u'w,ĺF/=DQj;7 [XF y~>jA 㴼T"oһUr"ixg^{F3Qw{M[/Q=zDU'TPu.fNMc*>S ^kZeEXDZ[n~l{|z/ zdT=]o5̨²-$ 6 #1jF Ʋib+{w\H9$ wY(,ޯF3y]Qw6++6'OA׭XKc+Q5&źA1jh5L_E>!/+<~AQ/F# 2` 2` 2` 2` 2` 2(v |F V@ 0P@ 0P@ 0P@ 0P@ 0P@ 0P@ 0P@t#|FڟG>!/ȣ.PC* Q>]P>PE%.J\(qQ>PE%.J\(qQ%.J\(qQE5~ >pČ`,8 #Fv1cdȎ#;Fv1cdȎ#;Fv1cdȎ#;Fvb~`ˑd h';Nv8qdɎ';Nv8qdɎ';Nv8qdɎ';Nv8qdqVjĂ, BfL\2q%L\2q%L\2q%L\2q%L\2q%L\2q%Zk1Zwjd>WSN!;SN!;SN!;SN!;SN!;SN!;SN!;pY+tՌ Y+[M\Je+[Mv )dBv )dJv*٩dJv*٩dJv*٩dJv*٩dJv*٩dJv*APdz꣧>{UE1IXEYŲv HGS=S=S=q4ΚY8kgMi5q4ΚY8k:L'05TNOTNOTNOTNs_U렔K9K9K9纶8 rz)5a ;v0`i8kg-4 `9,'^ꥩ^ꥩ^ꥩ^ꥩ^ꥩ^ꥩ^ꥩ^ꥩ^ꥩ^ꥩ^Y8kg-eEg-eq2ZY `9,'z`\j륶^j륶^j륶^j륶^j5zzzzg-2ZY8kg-eq2v HNˡ_9+~^:^:^:^:Oa^:^:^:^:Oa^&Xk`-eL 2Z&Xk`-erXN `鰗{鰗{鰗{鰗{鰗{鰗{鰗{鰗{鰗{鰗{鰗 a/eL 2Z&Xk`-eLrXN `9,a/a/a/a/a/a/a/a/a/a/2Z:eL 2Z&Xk`-eL rXN `9,'^ ^ ^ ^ ^ ^ ^ ^ ^ uGk) 2Z&Xk]1Z&Xk`-erXN `)B{)B{)B{)B{)B{)B{)B{)B{)B{)B{) 2Z&Xk`-eL 2Z&Xk`-'ZRh/Rh/Rh/RhoE^ ^ ^ ^ ݹ@k`-eL 2Z&XkcdLrXN `9,Rh/Rh?(@KKKߛс )B{)B{) 2Z&Xk`-eL 2Z&Xk`-'rX ^ ^ ^ ^ ^ ^ ^ ^ ^ Iq2ZY8kg-u<g-eB{;l'[[[[[[[[[[8kgmm4mmq6Y8k;l'Vho",@[[eB{+B{+B{+B{+qVoadq6Y8kgQv HNۡ_;k~::::=eGu[u[u[u[)@vtk`mmM 6&Xk`mmMvڡ_zzzzzzzzzzV[omM 6&Xk`mmMC~ __;kV[oV[oV[oV[oV[oV[oV[oV[oV[oV[o6&Xk`mmM 6&Xk`mЯ/p|s Hj뭶j뭶j뭶j뭶j뭶j뭶j뭶j뭶j뭶jmk`mmM 6&Xk`mЯsvךꭩޚꭩޚꭩޚꭩޚꭩޚꭩ}5[S5[S5[S5[S zZmCmh 6چVjZmCmhw_>?6xk6xk6xk6{E1IXEYŲv`h mm0 6̟|ݞlŪgFw}wh~n4?[y8VVW|̳/n~ Ʒ`o]OO|]ŷe5y~Dj~;wek|?~۞zŇx]=Y{dɷtYX|`g_IϧeߑcdŠp lo?;YNXE ^^l{oGy⹿",%8`mN).HmP;,ŧsw?0y̞<&lu:{*~k<{:'=>g˲4 HrhOW[g܎yK Ooyb~ZǷ{'%?\mެ7 U%stsQrhI-yXSQy*zܿ=zϷ-]SQqd/Z 홨U=~ׇZ֨]jj,zym<;o\/^9GS='o*h)NDŁ9<rkCy}o\y{eg;yLsGoc1ZCK<,XKs`iHiHiHiHiA994PPPPPҜJs@i(AAAdȪfvl۬Cf]_a <,xXa <,xXa (Xעt]SSSSSSSSSSSSSSSSSSSSSSSSSS?ӂlSzβtݲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲӲ-֠A 04{a1-"-ʢ-ŶAZi %HK -AZi %HK -AZi %HK -AbcPf1[\/.2W H[ mAڂi -H[ mAڂi -H[ mAڂi -H[ mAڂ[f &soq H| mAڂi -HG A:t#HG A:t#HG A:t$&yoq?*x@ .lwA A:t#HG +$H C1IXEYwv0/ן ;v`iSĤ/p܅.l`m9vpc;!HC |00&HC Ar2Wt7y9vAri!HC A4i!HC A4i!HC A2{9 A49=Ŵ :p{7M|Pע-Ŷpi )HS MA4i )HS MA4i )HW"so4i )HS 9{gAdY\/. ``aa)))))))))RRAɡt7M~ӡLǯjQm,@RRRRRRRRRRRRRRRRRRR p$'L' t8,A*A*A*A*A*A*A*A*A*A*A*A*A*A*A*A*A*A*A*A*A*A*A*A*A2bqt8NǁqlFɳ%2( ;$qt8Nǁqˢ-Ŷ` -AZi %HK -AZi %HK -AZi %HK -AZi 8p:` mAڂi -H[ mAڂi -H[ mAڂi -H[ mAڂi -H[ 9:se ;#HG A:tv HG A:t#HM#HG A"u",Ң,X^PiL;v0 q`8 ǁ80ό<ӟEZ!HC \!HC A4i$s1i0VjZ CLVjZ ǁpz(? ʢ-Ŷr)HS MAS ˳)HS MARC1i $5k` a5L 0q`8 ǁ80̕#)))))))rc؁ ]¶ d5q0Y8kg a80A8 ǁ80p]$7Okb[؁ )rqHAJA2Y8kg a5q0Yq`xpq`tAJAJAJAJAJAJAJAR$0%Hf[lkm a5̶0f[lkm ǁ] q`8 ǁvI;JJJJJJJZlk t a5 A0]àkt 80p -܅.R R R R R R R R R R R R R R R R R AhAjA2]àkt a5 A0]q`8 ǁ80S%HK -AZi %HK -AZi %HK %H]àkt a5 A0]àk8 ǁ8ϡ+-H[ mAڂi/;-H[ mAڂi @ t}]$I A0]'5A0]qSTbbŶ` A:t#HG A:t#HG A2G t a5 A0]àkt 80tSm=Sm=Sm=Sm=Sm=Sm=Sm=Sm=Sm=Sm=߫}e,;Xvpt}aa)Lǁ80{갧{갧{갧{갧{갧{갧{갧{갧{갧{갧{tMaOi50dtMi5 A4]q`:Lǁ80B{*?ŰaaО О v H О О О i5S= A4]ӠktMi)@7Hǁ80v{jv{jv{jv{jgv{jv{jv{jv{jv{ iv{tM4]ӠktMi5 A4]Ӡk:Lǁ80nOnOnOnOnOnOnOnOnOnOnOi5 A4]ӠktMi5 A4蚎tS=US=US=US=US=US=US=US=US=US=US= {tMi5 A4]ӠktMi57;Hǁ80{꽧{꽧{꽧{꽧{꽧{꽧{꽧{꽧{꽧{꽧{tMi5 A4]ӠktMi5 Atq`:Lǁzzzzzzzzzz]ӠktMi5 A4]ӠktMi5>or>ӟEZE[,m.轿׏A{O{O{O{Ot Hzi5 A4]Ӡkt}v H]ӠktMǁ80tzz^PLiQm,${O{O{Oi5 A4]ӠktMi5 A4蚎q`:LǁyS=S=S=ܗU:({/{/{/.H^z`a ;v0`2Z]ˠk9,rXq`齗{齗{齗{齗{齗{齗{齗{齗{齗{齗{齗A2Z]ˠkt-oR]ˠkt-eе ArXq`9,ǁ^z5+{齗{齗{齗{齗{c^z^z^z^]K A2Z]ˠkt-eе >q`9,{/{/{/{ ;${/{/{/{ ;$2Z]ˠkt-eе A2Z]ˠkt-8rXKKKKKKKKKKK {t-eе A2Z]ˠkt-eеrXq`齗{齗{齗{齗{齗{齗{齗{齗{齗{齗{齗A{/eе A2Z]ˠkt-eе rXq`9,{/{/{/{/{/{/{/{/{Fz^]K A2Z]뺫A2Z]ˠkt-8rXKKKKKKKKKKK A2Z]ˠkt-eе A2Z]ˠk9,ǁ8kס+{齗{齗{齗{0:${/{/{/{OF^]ˠkt-eе AhMa-ɠkt-ǁ8rXz^zށP؁ 齗{齗{齗{齿}A{/{/{/eе A2Z]ˠkt-eе A2Zq`9,ǁ8KKKKKKKKKK{t-eе A2Z]xj3Z]ˠk;lv؎q`뽷{뽷{뽷{뽷{뽷{뽷{뽷{뽷{뽷{뽷{뽷A6]۠ktmo]۠ktmmе Av؎q`;lǁzO1,EX؁ 齷{뽷{?{뽷{뽷{뽷{tv H]۠ktmmе A6ڣ@{د`؎q`뽷{뽷{뽷{뽷S؁ 齷{뽷{뽷{뽷S؁ 齷A6]۠ktmmе A6]۠ktmǁ^Z"IY\/,zzzzzzzzzmе۠ktmmе A6]۠ktm8_`؎[[[[[[[[[[[ A6]۠ktmmе A6]۠k;l'{{{{{{{{{{{mmU6f[lkmmmͶ6f[lk;l~Яv{kv{kv{kv{kv{kv{ku[snononono㬭Y8kgmmq6Y8kgm~ AAAAPLiQm,Z㛋62FFhgex>nOXyn'wע? w6=?;n/ߒ-ߒ-ߒ_OWd6~Ҟγ=Op}w=hy|S~U1W c,>߻ZkLW>6ޓsrCpp(Tnvl/Y|L GA$| .7]Ň{G} $>\͏SdFWtyCwڿw{?~^I{oiQi9֝x|{ϟ7?D9q,X^׋pu6s, %1X|BhL.ݫ3o=z/񭰗Ŷ8_6$<-rX;WO{\:& &o䔓rߟ6=大ؾ0sI9ɱ${չ\|oyb~Ƿ{G'a&?fmެ7̳9IIN>'9$'/eO>wS|?٧8gRQ_WuqO>ŕpTj}Y~y{VXe* ?Y{wPyEw9<_ks\aSOyyTq)=AʳO==4EyA|Bvm5!֏ #1lbi"A94'@HFFFF|nۛ 6Ix'6kÁ<x8pÁ<x8pÁ<x8pÁ'6Eߧp>)RZE[,kCPW e e e e e e e e m }жжжжжжжж~,1,;Xv`37}-9r=gYl /n\ 3g!>C| >C| 3g!>C|ƅ!>C| 3g9`L>ŸǨBEZϔ)?S~ϔ)?S~L3gϔy3gϔ)?S~L3?7} ;)>pܔLjzNYŲt>!>!>!>!>!>!>!>!>!>q>!>!>!>!>!>!>!>9bY\{",\GbRbRbRbRb2 @`R`R`R`R`R`R`R`2 @^R^R^R^R^R^R^R^@\(x+7o)Ң,bY\uNNNNNNNNNNNNNNNNNNNNNNNNNNNL,0{<[ iiQm,ȎYdgΒ%;Kv,YdgΒ%;Kv,YdgΒ%;ނc z]+uZvlٲegΖ-;[vlٲegΖ-;[vlٲegΖ-;[vlٲegCB\Q[\ϱkqOaײegΖ-;[v9sdΑ#;Gv9sdΑ#;Gv9sdΑG/{qoٶ-/gm9s>s =Gz9s?= ( #G-a -;|ݼc:ߦp܇>k-la¶m -l[8p-[8pl±c 4i\0 a280 a4i&sat6=qG|!2Cd "3.d "3Df!2CdȌ !2Cd "cq"39{?itmz;m:r{:X®g^L3g)>S|L>S|L3g)>S|)>S|L3+-&EeqobZRRRRR,;Xv J!J!J!J!J!J!J!J`ہ$$$|/I I2$v HN榓dn:Nf2ȝ)H ZbY؁ )H)H)H)H)H)H)Hwcn#YTTTTTTTTTTTTTTTTTTTTTTTTdr 9o:ͼw 5ާHAjAjAjAjAjAjAjAjAjAjAjAjAjAjAjAjAjAjAjAjA2{9[ZZZZZMyit7phe-؅%HK -AZi %HK -AZi %HK -AZi %HK -AZho:ڛh)؅-HQ)EX؁ mAڂi -H[ mAڂi -H[ mAڂi -H[ mAڂ9t7} ?q8{Hhea tjA(Q:tD#J'm!dґ#KG,Y:tdpydґ#KDC_mZEY\Yu|_ܫi -L[W a a a a a a a a i y>/c8>.,Ң,lA0 atYͯlA0 a4iqdn40 a2DHi" CAy(@̐1pN-bYl RaLS0MaR|~r [yI4/0Ma¤Hc )L&JJ0Q&JDi( a4pq``E7.-:&GRRRRRRҥFǰatIKDH0\Kpi. åa4q9ӎq``M H!H!H!H!HO1,EXEYŲv H)H)HaC0sfNi9 3a4̜pN `8 鷰mײB););%;%;%;%;%;%;%;za4Jv̜0sfNi9 3a4̜0sNÛpN-܅.R R R R R R u iZhAjA2Q4jF Өa5Li0Q `8 ~/®]NNNNNNNNNNNNNNNNNˎhi1Q4jF Өa5Li0Qá_8 ~/SȎ %HK -AZi %HK -AZi %HKL%HFShjM a450FShj8 ~S©_vEZE[, [$暈u J[(mQڢEi%l暈} K[Lƾ.D$KFUèjU %6ȒQ0FUáS,b!Ŷ`,#KG,Y:tdґ#Kbґ#KG,Y2G,]0&Wj\ ar5L ^3-šO]O]O]O]O]\O]O]O]O]ZXW -,[Xla²nEXŻ,`x^x:K~/5Ss<5Ss<5Ssz꣧>z꣧>z꣧>z꣧>z꣧>z꣧>z꣧>z꣧>z꣧>z꣧ 4&Xk`Mi5M 4&Xk`M'O<&S;=S;=S;=S;=ӟՂ(zzzzzz'z¼Z%4ĚXkbMCi5 מv KXkbM'0tꩬyd\,izjzjzjzY:KꩮꩮꩮXkc+ƚXkcMci514ƚGtNSw=/w=uSw=uSw=u\*&]]/]/]/XL^uetPkj-Ce ""v0`zrXꥭ^ꥭ^ꥭ^^ꥭ^ꥭ^ꥭ^ꥭ^uꥭ^ꥭ^e12ZX늱12ZXkc-cerX`4KKKKDIKKKK̰2ZfX ka-3eȰrX`){){){)ה);:^:^:^:^)@vTjY-3ef̬2ZfVjY-3ef̬rX`9,Ra/Ra/Ra/Ra/Ra/Ra/Ra/Ra/Ra/Ra/2Z*ef̬2ZfVjY-3ef̬rX`9,^*^*^*^*^*^*^*^*^*^*^fVK 2ZXk`-e 2Z`9,TKTKTKTKTKTKTKTKTK{ {`-2ZXk`AXk`-e rX`9,Ra/Ra/Ra/Ra/Ra/Ra/Ra/Ra/Ra/Ra/2Z*eLi2ZY4kf-ӬeLirXߧCa/a/a/a/Z%%Rb/%Rb/%Rb/%BbZYb/e 2ZZ@{Ma d@kh-rXZ^Zei_,{{{{mYKz^z^z^FZHki+ZFZHki-#e2Z[rXK.KKKKKKKKӹ`2Ze̴2ZfZLkqs2ZFZ[/vZZZޗZZZZZ}YZZmۀkpm}\ۀkpmm 6ڎ `;l'ޝ)Ŵ =co=co<Qco5Vco5Vco5Vco51Z@khmm 6ַq\ `;l'JJJS 鰷{밷{밷{밷{OA*mUhkmmm6F[hkmm8vZ뭵Z뭵Z뭵Z뭵Z뭵Z뭵Z뭵Z뭵Z뭵Z뭵Zm4kfmӬmMi6ڦY4kfmӬCv׊ꭨފꭨފꭨފꭨފꭨފꭨފꭨފꭨފꭨފꭨފm 6Xk`mm 6Xۡ_;k|휯[Q[Q[Q[Q[Q[Q[Q[Q[Q[Qj+6fVjYm3mfͬ6fV9_;kG{hu[7u[7u[7u[7u[7u[7릷nz릷nz릷nz릷nzSm6TۘjSmcmL16Tۘj3mԡ[[[[>-:xmàm a6 چAo ;e 6a߻ɏ\?{]#s.4O|wf^͂)b sQOx^=Շf{V`g^'OVVmpK|/GC~+b^X|O3pg=XoۃO,P]qstz@y2wy><̯,w"-=,~8x|:{N~iQ9rL ȑ%#{_]߻~E}T(Zbט>]9|kp|c:>b{e-ns:<,d>>~\#@@?,<(?tz:JOGO+:|["r{47A1m bZ|o$̳ڛzqf$$伔R_Ry^z߉Oq^*KyxV1_=-?rLvwwdE[h y̟ڬͿrW7oޯsyfmJuX|ov<)' > wgT`;#'''''''&<_dAځdAف϶"靖a 09}(Xv H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%H%HiAq,a ,m. 1={_fo1,EXEYŲv ;Kv,YdgΒ%;Kv,YdgΒ%;Kv,YdgΒ%;xx߂-pdg3X]-H[)"-ʢ-ŶAڂkOai -H[ mAۼAڂi $roQA^]}܅.-H[ mAڂtW>EXEY#HG AKҧA:t#HGΗ\y ;X+M;/a?$>lA$I:6\-[#JG(+$JχC,_,jSOJ0KO-la¸Za ~-DY]@ho:{ a}þaköm -l[ضpl\-[8pl±c iӸ`dra4i!L.sMno:}XԱ}!LC0 a4i\0 a4i!LC0 aLC0 a4T4ir{c MLNY' t7=ŕole-YKS,MY4eiҔ)KSҔ)KS,MY4eiҔy4(,MY4eiҔ%'OQEdY\/>,M[LY Y Y Y Ye<Dž(((((((Ŷm&|CBoHRHͧAr8Nǁqt8QLAJFɯk,@RRRRRRRRRRRRRRRRRRRLt$ǁ;Lǁqt~d-؅$sqt8Nǁqlʳ+?EZR R R R R R R R R R R R R R R R R R R R قԂԂԂԂԂlp:l)ʢ-Ŷ` -A2v HK -AZi $Oai %HK -A2= -AZi $gt68 NgO.lAڂi -H[ mAڂi )Aڂi -H[ [ mAڂi -H[t~lp2;kmIiQm,lANB\--#JG(Q:tj!mA,Y:tdґ%ru-00a:D<ݻp6bYl `azmM>-L[0maBB\----------BBBBBBBBp6`KdJ4M>)-i!Lʛ LC0 a4iq4i&Ca5 0ZYo(0_%uS?Sm,̋)?S~kW}+?gϔ)?Ja5Lc5PkxA0ZPkj Ca5py`o7.;5B9d)d)d)d)d)d钸ck!J!J!J!J!J!Jm52C"0[|ko a5ȷqy``t H!H!H!H!HJO1,EXEYŲv H)H)Ha5RRLI0&]äkt a5LIp(| <0] zG R R R R R R R R wt$a5LI0&]äkt a5L<0~ wa TTTTTT%H%H%H%H%H%H%H%H-Hja5ZZLI0&]äkt a5LIp p(o.,wAZZZZZZZZZZZZZ4ɤk { ca50^k{ c<0p) -AZi %HK -AZi %HK -A2K { ca50^k{ c<0ދmIiQm,lAП²QڢEi-J[pџ¶Y2|,| a5H}/va50zy`\@|st#LG0a:t\0a:t#L_+_k~ ïa5 0_K]uS=/=S=S=S=S=S=S=S=S=S=²e -,[Xl+t~w2$f_k:KrO<0{*{*{*%{*{*{*{*{^{*{*{~M%TrOïi5kz=4_k~Mïi5;Hp0{bŰaa veS=S=S=krַI2F_k}Mi5p0}O}O}O}$Vi55k{Msi5ͽ4^k{Msp0t8S >S >S >S >S >S >S >S >S >S >S >ͽ4^k{Msi5ͽ4^k:L`:L5TO5TO5TO5TO5TO5TO5TO5TO5TO5TO54ji5ͽ4^k{Msi5ͽt8"!t8jjjjjjjjjjji5ͽ4^k{Msi5ͽ4^`:Lp0N|ħN|ħN|ħN|ħN|ħN|ħN|ħN|ħN|ħN|ħN|{Msi5ͽ4^k{Msi5ͽt8c8)ıuR|*ŧR|*ŧR|*ŧR|"?-a ZZZ0-Ȓ4F_k}MI{1of_k}Mi5t8`ŧ^|stI1>S1>S1>S1>0 #Li5M׼үi5M4_k~Mӯy<09Lp0f|^f|jƧf|jƧf|j繮.L____s]J342°a - [0l{y$W_kivƚtf|iƗf|iƗf|ieƗf|iƗf|iƗf|iƗf|iƗf|]f|iƗf|iƗf|~-ӯeL׺үMDk~-ӯeLr8X`9,_o1,YR/R/R/B ; Jz_z_z_F_Ŵ(X ;$Oq.8,pK-K-K-k $VTZ_Z_Z_Z I) !2[`l-Ce !2[`l9,pR/R/R/R/R/R/R/R/R/R/R/C_`l-Ce !2[`l-pr8XJ_J_J_J_J_J_J_J_J_J_Jel-Ce !2[`l-Cpr8XK)K)K)K)K)K)K)K)K)R|)ŗ!R/Ce !غd !2[`l9,pR/R/R/R/R/R/R/R/R/R/R/C_`l-Ce !2[`l-p} ?q,Ҋ/Ҋ/Ҋ/Ҋ/Z([%R/R/R/Zh[%se92[`j|7[%0-pr8XK1K10 -L___i_0maR/R/R/e-e–Q2 [Fa(l`9,灥 _ _ _ _ _ _u _ _ _ _ _ȏ6|~-ӯeL2ZF Mk~m灭ގ`뿷{뿷{뿷{_{뿷{뿷{뿷{뿷{忷{뿷{뿷yom޵ͻwmo]ۼkwmm޵ͻ `;l'ޙ)Ŵ ;%VoVoNv1[[[ߛ[؁4چ]۰kvmîmص 6a׷Arڡ_;k}o}o}o3e;O{{{{Oٙޚm5pknmím 6چ[pknmíЯsvm;G3zc"y@}?~~}-ߒ-ߒ-~=oK;ނzOcf5Mm??}wsCy{pP2DOV|L֘>][%Ճﻔ{oY}o&SA_ټhw7 s#η߿by2'yo>\q'Y}Է{Xvb7{Y}dٿ7e]}^>˹~5O8 5NXEqál[=~0T}7՟w>ߊϱ{6py̡[Ip Nctu^;`;gw kPl)?KhaS<%x;I0Qxӳ+SvNryOh+ZPLl,Y|>fŏsP9a;{**OEo⻏ݟ]q**NEoLT3Qq?eygU{lu2{vU}<Y|۪o]/^9awe*OCiRwUi8 G,x{jBYq]l7[֏͑Wҋ94Ӝ|cHs i!    }Xw>9~4Ǐppp9i/|=ydf^loY⨱a <,xXa <,xXa <,xvcf{z0aȳͺ0a` 6 li6 6 l0a=۬ 6 l0p2n>wވ͌<x8pÁ@pguÁ<x8UϞmօ<x8puq=&ռfHҢ,bY\gպzz談e^jxe -xǃa)ʟ\YۂGBC "4Dh!BBh\ "4Dh!BC q!4Dh!BC m}0 { V{Ie3{FZД)CSм24ehД)CS MCbhД)CS M24ehpUbcpDnc r=,bYl                    𛇐iu[,r=Sf2HJJJJJJJZɰO\)>)>)>)>)>)>)>vvv <)<)<)<)<)<){b<Ң,bY\ugϖ-?[~lAVWAu" dv5̮ j^ ëax5 sp!Ŷ#BB\:"tD#BG s!tD#BG#BW~5j_ a~5̯0W{m>9_祙祙yyyy祙祙yyyyϺzXW=,{XkbfMӬy,7YnfMì/] |1K}tJtJtJyIyItJtJtJtJyIyItJtYS<4kfMӬ.lA a4̚Yӡ_ztҡ_*'[ iv M~~oae|||I-@14ƚXkcMboaN' `:L'j詆j詆j詆!H!H!HJ詄J詄J詄J&XS=q4ΚY8kgMi5q4ΚN `:L'0S!=S!=S!=S!=S!=S!=S!=S!=S!=S!=8kgMi5q4ΚY8kgMi5N80NONONONONONONONONONONO㬩Y8kgMi5q4ΚY8kgMǁm q`:LǁꩪꩪꩪꩪꩪꩪꩪꩪꩪꩪY8kgMi5q4ΚY8kgMi5tq`ꭧzꭧzꭧzꭧz.%,Hz멷z멷z멷z멷z멷Y8kgMi5q4ΚY8kgMi5>o} ?lƞjƞjƞjƞhϪa\="{*"{*"{*'"zWd5 4ԚZPkj}Vi5M4՚Z`:Lgl0 b{*b{y:OI=US=US=US=4lm{ہ`뽷{뽷{뽷{_{_{뽷{뽷{뽷{뽷{_{_{뽷{뽷y{omöyTPPPPPpww8`7a1-I齕[齕ۛ?Ȓ{{{7IطI2a lmm ¾>v[ݽ[ݽ[ݽ[ݽLٙ0)@vtk뺷6^k{mcm쵍6^`HR ,m.({+{+{+{+{+{+{+{+{{m6^k{mcm쵍6^k;WEV|oV|oV|oV|oV|oV|oV|oV|oV|oV|oV|ocm쵍6^k{mcm쵍6 $P8 ZZZZZZZZZ^[ 6^k{mcm쵍6y`;l灭ފފފފފފ}݌\[({tm6&]ۤktmmҵMI6&]ۤk3mB_:`[[[S2! mM6Q&JDi(}V Hi)m#mcv-f&XK3ϥ,!ߊoŹ~{.w']2%[2%-/_`oo6{o@N"_mS,?M~oɊGOGX'OW>1QkLW>{R0͒,, /+[{ԏSyؼwa1L|{󇋘7yr!+>\*G}+pg')+랓'OV9|o[˺ʮ|wۿwey?_ܙw"-w:fo?_iQ_+~#,lϷs\#)\ޣL7sPgy21X~BmL.a&D;ľ/Q=^38D a2ꞓ`S: ym,Y|9IڜDU]>jdnTy*OS2Vܼ 1\nV5Socp6Y|v[b8bmNRuX|g.Q9r38E3x{jP9<ڼ2o;ŶOڽ)>r;fa#LCKCKC87NRspi.!!!!rj,́94$5O6m۷Փ`;.Yۛmp8x4X`cƂ 6l,X`cƂ 6l,X`cƂ 6v=/fsÃo7֕vZpÁ<x8pÁ<x8pÁ<x8p>{Hk)7XTP(XײYaكZׅ֞=,{X00PO,mA#{\ !CC 24dhАq14. 24dhА!CCи24dhА!CC tζJc㽇BP e24ehДy14/ M24ehД)CSм24ehД)CS Mz ̪=}-P87POE[,mA!Bq!B!B!B!B!B!B!B!B!Bq!B!B!B!B!B!B!B!B!Bq!n|=PPPPX>zv"%($ ;k ;4”””””””iiiee|qF))0Z}(Xעt]SSSSSSSSSSSSSSSSSSSSSSSSSS~)ʟ\Yۂ[vZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvZvگI^y[ iiQm,%HK -AZi %HK -AZi %HK -AZi # :-S^]u܅.$.}iiQm,-H[ mAڂi -H[ mAڂi -HL7_l0{A]8 mAڂi -HG A:t#HG A:t#HG A:t& ۸.6ũx|O~xpEx a:0a:tqՃ8q:t8q:4> oEogEYH0a\=x7ϰ~߯7X^Xr';/r=l{añsp={8pñ5.!PC@ 5t(}ӹdXN,wB@ 5jq5.@ 5j!PCԸ5j9j)PhN)t W4-Ŷp'j^@ )PS@M5j y5/@M5j )PS[x>j )Pɲ^",@BBBBbOw!L!L!L!L!L!L!L`Q2v J!J!J!J>x+> NGӑt$8 dx ;v9.)))))RͽW{v J`l Ca6 !ط x w@--܅.RRRfS iiQm,R R vx$a50_k a5{: _`zwAr ,FڂJJJJJJJ4$a6†Y0 fa,l a6\0[ ]$(A*A*A*A*A*A*A*AjA"тԂd06 Ɔ0c`l a06 Ɔ 0' wa ԂԂԂԂԂԂԂԂԂԂԂԂԂԂԂԂԂd06ZZ Ɔ0c`l a06 Ɔp@a8 vx -AZi %HK -AZi %HK %HK Ɔ0c`l LтF 0`lE@V(X K8Ϫa]=HӖ-M[4mi҄ՃYRlo+Q&dÄl /s@bŶ`'@ su#PG@:u.#PG@2#G@]ٸ2aF6Ȇ0#fdÌl 2eڂ{; L?a]=,{XaòeF6׉{nlqa^r|^t\ S9>S9>S9>S9>S9>S9>S9>S9>S9> ɦr|*ǧ!4$WH6ǺeH6 ɦ!4$daaz tX aaj'[ iv Nz'z'xoae¤%Z%Z%ZI>-@Ǧ4cxlMoaO-aa:,L////!H!H!H---+cSW> Ʀ4c`lMi06 Ʀ4 aa:,L0uSW>uSW>uSW>uSW>uSW>uSW>uSW>uSW>uSW>uSW>u`lMi06 Ʀ4c`lMi06 Ʀ 0TOTOTOTOTOTOTOTOTOTOTO8c`lMi06 Ʀ4c`lMaa:,LEZEZEZEZEZEZEZEZEZEZEc`lMi06 Ʀ4c`lMi06tX aajѧ}jѧ}jѧ}jѧ}j.,HZEZEZEZEZEc`lMi06 Ʀ4c`l.?Gp|9N sk>{S>S>S>Yu\=iROUTOUTOUDVWAǦ4c|lMϪ^7[iB6MȦ TO|0}jЧ}:CbH>uS>uS>uS> s1EZEZEb\l+W.6Ŧ4b\lMsy<&9L|0}^}^}Ч}Ч}RC_:u9u9C_:C_:s]Jtrg\= {0aða=L^9Ŗr@XڋK%܋^lb۽8pz8pñc$J..K`l)ї)2%[dJɾmn>mJLɖ)2%[d˔l9,|R/$]'R/R/B ;8v L @_ @_ @_cbXLHhe-`7|_| x R/R/R/4i |Η|Η|Η|y4IqŖ|-se.Ŗ2[b\l-se.#r$XKWtKWtKWtKWtKWtKWtKWtKWtKWtKWtKW–|-e–Q2 [Fa(l-e #r$Xˑ`ʗ|ʗ|ʗ|ʗ|ʗ|ʗ|ʗ|ʗ|ʗ|ʗ|ʗQҕ/e–Q2 [Fa(l-e–#r$Xˑ`9,]ҕ/]ҕ/]ҕ/]ҕ/]ҕ/]ҕ/]ҕ/]ҕ/]+_+_FaKW–Q2 [Fa뺍Q2 [Fa(l-HSr X__________ek~-ӯeL2Z_-8,'m<hK)K)K) )YAK-K-K-UꡯDk{-se̽"14Z&_k|-rW_9+R//r|)Ǘr|)Ǘr|)Ǘr|mPJ=K=K= z|~+ZW 2Z_k~-ï=&9|r XNK;.;.;K;K;K;K;.;.;K;K;K;K;ԹҎ/ïe 2Z_k/Ws2ڎVM*sVoVoVoVoVoVoVoVoVoӯߦ_k~+?^oM6ڦ_k~mVoo|bZJr|+Ƿr|+Ƿ> ;;VoVoVooaicҵMI6&]ۤkt} ; w;{ _;kVoVoVo4i J|ķJ|ķJ|ķJ|{[ARo3f\یkqm3mƵ͸6f\یkqmցoցoցoցoցoցoցoցoցoցoցocZXkkmcm6ZXkkmV{oV{oV{oV{oV{oV{oV{oV{oV{oV{oV{omMI6&Y$kdmmMI6MP8 jjjjjjjjj&Y[MI6&Y$kdmmMI6^;k{ޚޚޚޚޚޚ}/]ӽ5[ӽ5ah{^mM6چWj^mëmx n?~-|þqFO* P P P P)ayh6%ڦD۔hmSmJI>?.#mN͉9&'p6~s<yXv~(wX{?t|ݎu&9f{Gn}޷=H}>ocw9n?6~Wq}yW|y{(1ۇ=IY gU1=~>I ;v0/mL;x>@Q/=`lvW^+ oq&[kXGڿx|Q_zh .s3nu:O3abv0`~NF󺻃L;v :0(`ځW^6=GS mg',ҢAu ~~,\ޫHVχö/-9|/0$xԉ6_u£{AF ;vQ͞DZ^b[cűcϑ;8v&%|u|:x>_aӓ+S|'էORI*G$#MP?Ys bA1-ݖea<_9vpCMNNzJRGj͟ijTy*Ro,ʳTy*R塦R[ƅEZ؁PrdZ\T{i5ťťťťťS{i5=Դ,qY>}1ae:,xtY]<%.K\,qYe%.K\,qYe%.K\,qY",E[,mA[\Alqe-.[\lqe-.[\lqe-.[\lq9X,a4z PLpq9r#.G\q9r#.G\q9r#.G\q9r'U~odVq=2j]սޱzzzzz髗z髗z髗z髗z髗zYW/^ukxzYW/eDZiU ;9.ƅٸ0fl\ qa6.ƅٸ0fl\ qa6.ƅٸ0fl\ qa6.ƅٸ0fl2Cy[{LJI#Uy5/ּXk^` y5/ּXk^` y5/ּX Y  (OZW] 0 0 0 0 0 0 0 0 0 0 0tfqafqafqa~y0Fu=~Uͫʫ꫺z0 0˸z 0 0 0 0˼zɫ 0 0 0 0˺z){_U7UݫuqVguqVguqVguqVguqVguqVguqVguqVguqVguqVguqVguqVguqVguq?GWe}Y}Y}Y}Y}Y}Y}Y}Y}Y}Y}Y}Y}Y}Y}Y}ujo~ӜոyUqUyUuU}UU]\ ua.օٺ0[fl] ua.օٺ0[fl] ua.օٺ0[fl]]C']O;Ӯ]8.kε fl_ }a/پ0fl_ }a/پ0fl_ }a/پ0fl_ }a/̮1i.kε څ }a/پ0f\ sav.΅ٹ0;f\ sav.΅ٹ0;f\ sav.΅Q^~l}W/e_쫗}^˹z9W/\sr^ٸ8gl\qq6.ٸ8g̹dlk9A| څu…ٸ0fl\ qa6.ƅٸ0fl\ qa6.ƅٸ0fl\ qa6.ƅٸ0f1dRgqUrMA5s^sϧZWڇyq6/ټ8gl^͋yq6/ټ8gl^͋yq6/ټ8gxzgl^͋yq6/j~w(.̂oj^U\U^U]]\]\źzΚqAtqAtqAtqAt^]\]\]\]\Źzk(:輆3t>SUzˋˋˋˋˋˋˋˋˋˋˋˋˋˋ:GLQ^_d]վ*w.ꂮ.ꂮ.ꂮ.ꂮ.ꂮ.ꂮ.ꂮ.ꂮ.ꂮ.ꂮ.ꂮ.ꂮ.ꂮ.ꂮ.ꂮ.鼦kz:UUUU]\E]_E]_E]_E]_E]_E]_E]_E]_E]_E]_E]_E]_E]_E5L0u^y S5L}uUܣuQ.Eݺ[un]ԭuQ.Eݺ[un]ԭuQ.Eݺ[un]ԭuQ.Eݺ[ulu^yMS5M}/Mmuq/پ8gl_틳}q/پ8gl_틳}q/پ8gl_틳}q/پ8gl_mVr W5N)LwڿUUUWwىz8;g\sqv.ɫz8;g\sqv.u}\?5BkTU+999{y2^˼zW/%^%^%^%^%^%^%^%^%^%^E^ Ѿ\Bo U]\Ѝ qA7.ݸtn\Ѝ qA7.ݸtJRǕ+IW:$u\In+\5^k)~\ոƫ ުj]վ*h^͋yQ7/Eݼun^͋yQ7/Eݼun^͋yQ7/ꮘu\1_Y+fW:u\1똗}D]/r9CqA~-L?........b\\gԸ W/ ]+tW:u\Bo^*z޹wkεڇ8s>Y^Y^Y^Y^Y^Y^Y^Y^ٕ+uW:u\RqJ]Ǖ+uWT"z}ȵCf ?Yq؀d5z23"2D=:1#=㞞 1;>gW|l GToS g.]8pvم g.]8pvم g.]8pFx{^Ex{^Ex{5RX*KE`,"TRX*KE`,"TRX*KE`x'ȽM/^6lze˦C/gW Qk F5Ҋ@ZH+iE "VҊ@ZH+iE "VҊ@ZH+iE "VY dcl~FPG;rY dZ]U;§Qa1l(|Oi>§Q4 F(|Oi>§Q4 F(|Oi>"]4w.REʻ~uoK.REʻHy)"]ak1x-BPhդZT:(BPh Q8CQ(4 F(Bu "]事\w.rEsz/}U]k1w- A0h Q4 Faxq *z: A0h Q4 #Q a( Eu"]事\w.rEubZZQk1j-4fҌBQH3 iF!(4fҌBQH3 iF!(4fҌBQ$ iF.rEu"]事\w.rEbZLW iF!(4fҌBQH3 iF!(4fҌBQH3 iF!(4fIBQ事\w.rEu"]事\w.<“Qx2 OF(<'d“Qx2 OF(<'d“Qx2 OF(<'dQ"]D(w.ErQ"]Dj1O-[/U?}=?nGvۻ>㧇ysG՟{ӟ߿E?mϺnvCꑰz)CEd{Nzo?׋}^)zw0zcMF`f{wӊ6={wb_o^wzl?;X;x6ro^nb=ew]V^r^k~/wzq,}땵MF7_lzF]S|/htל;ѻR+zw9>|\x%>ϸ鷿wWыl=cynEx:jKd_S^D/s{S)vE{wh ?Uo+z}w)گ껣wG;;z3Jϯ>c g}^^D/oQͧ_.DV{X{ E Sޤ=,5q@Z9E)q-q-Z+(:HяkяkGAy>wTϿ9 V^t^֪;8O};;E(q-qZqڏײײwZ:~\~\~\˾C~\~\~\˾CQ+}hQ{?Ox/y^Ox9zOqzwG/Mu?E(;G9~`˾?zghز_g[ю9~`˾??~`~`~`?QU;9ꙩjOR;7mňVJ"z;U:G="UǵU:G9QAUUUU:G9ڝl?~ 9999999999999yAi}h1WjOmvFX^d/ghqH?/>wUWϫ6աj^^^^^^^^^^^^^^^^^^^6t@19~mze^cٱjwxI47U_K" @7nt @7nt @7nt @7n?UŹqOFO_HUGURզ:T}=&M07an܄ s&M07an܄ s&M07a۫>z5Q?bIc#JRզ:T}E -[PnA݂u -[PnA݂u -[PnAnA݂u ExViNj_f=܀s 07`n܀s 07`n܀s 07`n܀ soZ5oQ^Vb+V6աbEP7nB݄ u&MP7nB݄ u&MP7nB݄ ufFМP7nB݄ u_n*7n?jR-J*zt ЭM/^nt -[@zt -[@nݺ#&u2_'}?g c;d;N3&%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1c'8G|#q>8G|ϗ[/^6lze˦M/^ޏA"^^+ްsWc` 9#G`#0rF[+z:#0rF9#oC0rF dƒLx 2A&<Ȅ dƒLx0 .a9l0 #prN89'G#prN89'G#prNdƒLx 2A&<Ȅ dƒLx 2A&<  6:CG` #0t:CG` #0t:CG`2ၡ#Ȅ dƒLx 2A&<Ȅ eW&-*TEU_8:GG#pt8:GG#pt dƒLx 2A&<Ȅ dƒLx Ʋl0 Ʋ#tH&բX:KG`,#tX:KG`,#Ȅ dƒLx 2A&<Ȅ k:UrJV0ŜlU?Ch:MG4#t_ j z:4#t@h:M?^&@ h:Lx 2A&WUDLx 2A&q?~ʟʟ;ȟ߿?+'p?Wρ}K}.Jѿ .Ջ8}k߯ڊyO_柢w0zw0vt`f`(Xmӳw0{π)f uzwOgkwzwdH?ŝz7n=mk~w V^O/>eZQسmMF).oR4}ӽ;^C+F{v¯9{w0{wVf2_>}DQ?ζz7:U biV+\ͭX^gf)vE{Oh>oo+zo4);_w4i;yg|KW"z}m>8r_;}{ww;wr_uNâ?GGh軝GGG軝S_~cQQ<747Z1{[9ziVNߗaZ;E(+}0~~~>wV}j^s3f|6Ջ-;;/)N> >[;;dg'+>蝚}F~~z4mE;fg'+>>蝐[UU}TzO=KF;lV*"zKuBRQNHTKKKuBRT'n]]]]RN#?jbb"zSC}SF_;.;.;.;.;.;.;.;.;.;.;./NԊ ^^^FOǥ_t\Nt\Nt\Nt\Nt\Nt\Nt\Nt\Nt\Nt\Nt\Nt\Nt\Nt\^<5z;ot؊ًՋ:qqqqqqqqqqqqq;_<ϧW}N,^xdP%UQm*_߫l$$$$$$$$lz龽qe.+t |ަ:T} /ӫ~8p6lـg 8p6lـg 8p6lـg 8p6lـ9eͪU kBք Y&dMȚ5!kBք Y&dMȚ5!kBք Y&dMȚ^& djQȤ*Muz d-Z kAւY d-Z kAւY d-Z kA kAւY dM#{=T=bNEAV@V@V@V@V@֋^ + + + + + + + +^^ + + + + + + + +^zNz䯾*6אpppppppppppppppppppppppppppV&URMuzYYYYYYYYYYYmFAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV|15|[$ޫI*jS*z gĀƆ g6m8plن g6m8plن g6m8p֧jGye 5ف3j38;pvفg8;pvفg8;pvفg8;pjѧye 5فg8;pvم g.]8pvم g.]8pvم gn@8 Uժ~&m+5@=8Wg pv/\z g.]8pv;gWCZz:gWlꜽ զ:T2eKW$_^ zҿ?cN易9Yf 5pX<ˡC/^zr˥K/^.\zg 8p6lـg 8c9Wxy5lְY 8p6lـg 8p6lـg 8p6lـg 8pv"Ѫ}Œs2՜L5'S8*MuXM8p6lل g&M8p6lل g&M8p6lلٿv2'M8p6lل>~"⁛ʍ-0[/ʯT*^ntk t -[@nu -[@nt ֥~R0Nad:c}>g@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@]@i&ht2G3................................dl:NƦjR-J*z:!d:NsaPnC݆ u\fnPnC݆ u6mPnC݆ u6mPnC݆ u6mPd:"d:G@݁:H3;Pw@݁u;Pw@݁u;Pw@݁u;Pwt9J*zu P7n@݀u P7n@݀uEpz^lUۣ,Ӌbܺf/ꮂWզ:T} &M8p6lل g&M8p6lل gDׄ gΈQ/bkvu"FQ/bԋ"FQ/ƭb4Zlقg -8[pp\plقg Ez^Ez-0r>1a]LX5bEA݂u U:׋"p\/׋"p\/׋bº.fꂄW,,,,,,,,,,,,,,,,,ገJ8#p\/׋"p\/׋"p\/׋z3_b+rXaEPPPPPPPPPPPPPPPPWPWPGz^aE{^aE{^3u1E]LQW25lggg\>f^ggaE{^aE{^au1E]LQSuuwg*Vu6mPnC݆ u6mPnC݆ u׆ uDE4{^DE4{}ժ SṶ ^TIUTWg pv6lzg8;pv9rcgΈf/ًh"ʔ٪~FK4{^DD񛾻&T/ t.]@w t.]@w::rڋ"i/rڋ"i/rڋv0R 57&D|o"M7&D|o"M7&oe˦M/^6lzA4i9`Mi06 |o"M7&D|o"M7&D|o"M7$DrAN;ivrAN;iC15CE(~_?WjQ \"pQ.W@.E(E\AN3zE/PGj;Hm v}^^T}Tj<"TSx*O+^OE<"TSd Tux*OEbAl;m ĶvbAl;C` QkE`"V֊ZX+kE`"V֊ZX+kE`"VA vAP;jA vF5CZX+kE`"V֊ZX+kE`"V֊ZX+kE`A4;V DhvA4;f D!jp` Q!j`"0ZFh-E`"0ZFh-E`"0ZF DhvA4;f DhvH5M0R FH5[~o-E"[~o-E"[~o-EA4;f DhvA4}[Fŕ~L;:=.E`l"]v{u.E`l"]ˤ#DEA4;fo&}Fqz'f DE~I` Xk"p_&a/E"p_}2}/EA4;p_A vAP;jA  k~Y`LX +&0F`L #0a&Ą0FbHL #1a$&Ą0Fbx{/^ z2eˠI/ݸ6m'dޚ[/F2oM歉#b$^ċx1/FH#b$^ċx1/FH#b$^ċx1vHbIl;m'w~9$$ĶvNb5&dL_KFb}^M*VuX2KFbH,%#dkd$ĒX2KFbHbۿ/۫I*jS*z9eKW?kF6,Pf$ʌD(3eF}1^ СH2#Qf$ʌD(3d^ wHI;It'$ѝ$DwNI;It'|*Rlʦ:Tpf$Όę83gFH3#qf$Όę83gFH3#qf$ę$DwNI;It'$ѝ$DwNF(6&d83gFH3#qf$Όę83gFH3#qf$Όę83gFH3#It'Ό$ߝ仓|wNI;w'$ߝ仓|w2}ꋶa0 flH3#qf$Όę83gFH3#qf$Όę83gFH3#qf$Ό$ߝ83|wNI;w'$ߝ仓|wN`6`voS"3#qf$Όę83gFH3#qf$Όę83gFH3#qf$Ό$ߝ83wNI;I{'i$흤Ui'Dldmę83gFH3#qf$Ό{Iz:3#qf$Όę83g1^^wNI;I{'i$vKj JI;I{'ię fl2M3#qf$Όęv=P3#qf$Όę83gFHo'{:3#qf$ΌęgFNI;~'$dwNI;̎V[a04FbH A#1h$Ġ4FbH A#1h$Ġ4FbH TàwNI; 'ea 'b0K>b0[ f F(|Oi>§Q4 F(|Oi>§Q4 F(|Oi§QD(x/{[(x/EQb0[bQl1- AJ&բ Fa( A0hL  Q4 Fa( E%jΈQ" ^D(x//C{دz>]}[LbIl(tNi:BQ4 ƋQ С(tNi:BQ4^x^$x(EHI" ^$$x/EHbZ _k(tNi:BQ4 F(tNi:BQ4 F(tNi:"]4w.E~"]dw.bZ4 F!(@hBQ4 F!(@hBQ4 F!(@H{"]dw.E~"]dw1n-ŀBQ4 F!(@hBQ4 F!(@hBQ4 F!(ޅ@~"]dw.E~"] Xj1R-F2PfʌBQ(3 eF(2PfʌBQ(3 eF(2PfʌBQ(3w(EڻH{i"]w.o*NeH{#7m@6SbBLQ) 1E!(oz=mS)u!(REHQ)"E&}M.REzwW_[/2@?Ż2ϟ?|_ޟ>볕_zO?/.?kaFvۻ>cm+[z_\ss{gs祿?Z}kG{?|Hyoh}WO}뇠"+{QՊӷv[w>/)zw0zcMF`f{gӊ6={w)fuzwOᛙϦW`Vy~;g;SdV/v)^O.֊ыYϋ|ŧ}W+{|t>E>;xow0zo bmWw0{w.0)zw0{ys~p>!zSneE"[}ނ~^NZ1>?g`nE"??7EO}M>#e/z"?A|A!CzϦg` >+=>ZX^dZۧ>O+N/G:Hoԟw_jl?;CZ Y7)hO~d{*VlA?E?EE!E?E?E?E!E)v|~/yخ 6pۻs;LXՊc|VNiZ;{ E)- Z>E?e?e?֧hd?e?e?e#e?e?e?e#e,> g ߿^=zџۇ^T/ڇTէ8CʾCzaN);G9~d˾Czhٲޟ`[>e(-A:GT|ڟ;gzvl~vO𝀶bT+OZ^:G9QOI}U:G9QusTwGGGG9Quv%~NIKsGPT~׋Bb"z^^^hQ@}O<;VO^T/v/N/Zӧ/u::s::s::s::s::s::s::s::s::s::s::s::s::s::/Ԋu^HsZ׷JX/ٹٹٹٹٹٹٹٹٹٹٹٹٹ۾u;/Ԫ7kDUsW-TIUTWj^^^^^^^^^^^^^^^^^^^6t-@?9~mze^F- 2Ge}>oS9U? 8p6lـg 8p6lـg 8p6lـg 8p6lٜEu~W5QjȠJ*^&M8p6lل g&M8p6lل g&M8p6lل gO8^& }l%UQmCװlقg -8[plقg -8[plقg  -8[plYT>w#ZTdddddd`Q"%"饧G7g5F^ʨWld,JT/(..........................6E+%rP̑8sssssssssssssssssssL+>gyGXjPMETIUTP m#С@n t6m@n t6m@nCjǚr#,負˂. t\g;@wt;@wt;@wt;@wAwjQGr#,負˂. t;@w t.]@w t.]@w t.mҁ\r0;~[Om :,.]@w/\z t.]@w;tW>_-#*jS*z2襻%<^ z l/f#ۍ͂6 :,谠Û{XСC/^z9r˥K/^.\zr @7nt @'/Ź[c>N*i_fAt @7nt @7nt @7n toܷz/Y[)TE+ u&MP7nB݄ u&MP7nB݄ u&MP7z愺 u&MPuVm*WnA݂u -[PnA݂e -[PnA݂u zVUu -[PnA݂u饟JLd ;N3Eπ:&kL&d";`&%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1d'3Lv2}J&բ +++++++++++++++++++++++++++c(;Nd(;wKPnC݆ u\gnPnC݆ u6mPnC݆ u6mPnC݆ u6mPd*;d*;0?@݁u;Pw@݁u;Pw@݁u;Pw@݁uNue~& eiU;zclATE.E/^B݅ u.]Pw^^B݅ u.]PZr.]?>_O<0Ȧ:TWWnЭ_^&Lz2eˢE/^,zYeˢE/A/A/A/A/A/A/A/A/A/A/\vqɟ\v1]eWW;h?u P7n@݀u P7n@݀u PG{^dE{~e3]d`P. ^UTPMP7nB݄ u&MP7nB݄ u&ԑ~>*z:ݢH/"H/}k[l底u VsZPnA݂u -[^@݂u -[PGȃ/<"ȃ/<|Sa+]wye p.kg} gggggggggggggg$WYE:|_E:|_E:|8)$v1]]4*tX%%%%%%%%%%Б_E:|_E:|_$vFf+VtXaEPPPPPPPPPPPPPPPPWPWPWPWPWPG>|_E>|_E>|_Lbu1{]]U*ְYqYUpVpVpVpVpVpVpVpVpVpVpVpVpVpVpVpVpF$| _DE$| _DE$| _^u1{]^WWZ|Wp֥bEPnC݆ u6mPnC݆ u6mPnC݆:2L"Ȅ/2L"ȄA;!7{WA;:{0^TIUT^@;Pw@݁uˡ;Pw@E(| __ȣ5N-BP"/OVw]ʍlCt t.]@w t.]@w t/BP"/BP"/B5W^%[ a#0l6F` a#0l6F` a#0l˦M/^6lzeˡ3l R5`^F|o#m6F|o#m6F|o#m6Xx b16?##ƒXx b5O0{ f5o7T^F`}#oA@7F`A,< ƒXx bA,<H0{7{^k0{ \#pq.8GxJ*z:\#pq.8BP  \A,< ƒXx bA,<`o;ZܗTneS"<#tx:OG<#tx:OG<# ƒXx bA,< ƒXx07:׷(6u@:QG D#u@:QG D#u@:QG DA,< ƒXx bA,<`\(`:UGT#Pu@:UGT#Pu@:UGT# ƒXx bA,< ƒXx0 .b fl0 \#pu:WG\#pu:WG\#puƒXx bA,< ƒXx igDƒl~`0βN@:YG d#uo^@@:YG d12ꈅ@ƒXx b[QmZqz~( [ǻD'䲕V[aEP#uwB:[G`l#uAu:[G lA,< ƒXx bA,<`2bYl8E:AG #t@Б:AG"H#t$DБ:AG"H*߽A/^ z2eˤn_$$x2Mf#&Б:CGbH #1t$Б:CGbH #1t$Б:CGbH I<1t$I$ $$ؑ$$xOI§Q4 F(|Oi>§Q4 F(|Oi>§Q4 F.|Et"]dLw.2EtbZMi17-|Oi>§Q4 F(|Oi>§Q4 F(|Oi>§Q F.REHq)"]w.REsbnZM F(BPh BQ(4 F(BPh BQ(4 F(BPhBQ䶋v.rEnm"]䶋v.ŤBQH3 iF!(4fҌBQH3 iF!(4fҌBQH3 iF!(ERfI"]$v.ERHjI7mg/$Iڶ깙BMQ) 5E(PSj72n잛)EPS "]$t~v "]$'{wyWsE|뻭_~1~͟]Ov+Yrd?k'l{vۻ>lw>K#gss{gs>K,)kG{?|$y?6DzS^8i+{V|j+]}qϋz}ӽ;;޵bM<[?.?OM77o;Oo7ۋno=m{cO1?Kx_jEboׯ_w0z߼M~7;5|=G{v1¯9{w0{)zw0{y"WiU+>{į'l^D/5gٷVuZ/fՊ[?r+V/a@};o,[A;|wn;=|VzuWRb"z}km<8 z7ۏnV):Hop>EEXuF?=oG+Nl࿢;>?j^ސ{jڭh?jENഏeK,PtvN[>E?e?b~~~~~˾~~~;hɿGxܳG/svME}d :};lNwwފ-,U#[vvww߾wSo)G^z٥v}ɥvO"bV -"zNuvSVNcVNNNuvSTgnwwwwS &}d{A=՟ӮRHX^d/Ewv΋C z~ߞ՟ӳՋ݋Ӌ1:1:1:1:1:1:1:1:1:1:1:1:1:1:$jk bbNv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nRmq\Ps"Ϲȫ *M^5r^E/I/I/I/I/I/I/I/I/E/E/E/E/E/E/E/E/E/E/^o`~6lz{/ ٟ?>U_ 8p6lـg 8p6lـg 8p6lـg 8p6l΢|{U+üW5OjȠJ*^&M8p6lل g&M8p6lل g&M8p6lل g^& j6&\󒪨6աkXplقg -8[plقg -8[plقg Vfg -8[p,&Ƕ6i} XT>bNETIUTfff/+zz zHz<>w>/|բ *Muפabԯ>U_C_TW3?O!_u>}gTjQURզ:Tg$ن g6m8plن g6m8plن gΘUwW̍>|aA`/ ,qqt;@wt;@wt;@w>|<>/]_t Yd:u @օ Y.d]Ⱥu!Bօ Y.d]Ⱥu!Bօ Y.d]Ⱥ"^}mj7<'cX5gK/pvم gnl=3٧M^xdP%UQmCE/^t MHz2&s26kجak85z9rˡC/^.\zr˥K/^lـg 8p6lـgB~V6kجa8p6lـg 8p6lـg 8p6lـg 8p6DUUQd9~Ns!5}>d&M8p6lل g&M8p6lل g&M8p6lلٿ3'M8p6lل3FBG6[+Zpߡ_5@݂u -[^8n.[PnA݂u -[PnA݂uK?+LF'dt2LFg >uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu J'ht2'3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,Ad4:NFդZTAT:1( J'ɠt2(熳sC݆ u\fnPnC݆ u6mPnC݆ u6mPnC݆ u6mPIdR:|dR:@݁:._3;Pw@݁u;Pw@݁u;Pw@݁u;Pwt_:gψy?ׯ9[&Lz2eˤE/^,zYeˢE/^^^^^^^^^^^:g5b;xU_wJ*zu P7n@݀u P7n@݀uEz^gQEz^LXLu1S]]Taل g&M8p6lل g&M8p6Hp6lEz.]Ez^ńu1S]T3 \ VZ}v-8[plقg ֠ -8[plق3"/LE/pFz^Ez^_^[<.kuY-8[Wk8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8#aHX/֋"aHX/֋"aHX/bnn^xk8ΈX/"֋"bX/"֋"bX/"֋)zS*a+YVu u u u u u u u u u u u u u u uuuDWA]AEz^Ez^Ez1S]b+lŠ;^ŊҬ:׫"~_/׋"~_/׋"~.)b⻂nxk g6m8plن g6m8plن g6^$Ez^$Eڙ u17}Qv~thWWD*6lzg8;pvفs ^^E0||"_/׋zWWst97펉W u.]PwB݅ u.]PwB݅ u_ uHc/؋4"Hc/؋4"Hc/5upU@L)1E "Sb@L)1E "Sb@L)1;-lze˦M/^6z9z? LQ)j0E 5T@Sh*ME4"T@Sh*ME4"T@Sh*ME4"HjI c3:AR;HjI T 3`TiE xIVҊ@ZH+iP !"VҊ@Z$߰^vrAn;m dT&L53@ZH+iE "VҊ+8CZH+iE "VS=%体wNމ5#,v*/ʦ:T}EX3nf$֌ĚX3kFbH5{/P5#f$֌ĚX3wbHI;I'$wNI;I'|ժ}}+LfkFbH5#f$֌ĚX3kFbH5#f$֌ĚX3kFbH5}uX3wNI;I'$_#,$]Lfl(&dph¡Q84 F(Cph¡Q84 F(Cph¡Q84 F.EH"]H"]w>zF*H_ *T*^F(/BE/@BPh BQ(4 F~*z:E"]P^`sWsb.[4 F(|Oi>§CTt4 F(|Oi>^#]4w.E~"]dw.\b[4 F(|Oi>§Q4 F(|Oi>§Q4 F(|OH{>"]dw.E~"]dw-.b#}[ b F!(\krBQ5 F!(\k_Tt5 F!(\~r"^ x/EA"^ x1-FrBQ5 F!(\krBQ5 F!(\krBQ5 F!(߅\A"^ x/EA"^^ak1l-Ni:BQ4 F(tNi:BQ4 F(tNi:BQ4w(E~"]Dw.o^Nr~7m'GՃ8TBSQh* ME(4oz=Sh*Hu("ET"Rj[OT"R]=RױZ?ŻΟ?|ȟ?\Q??|g+7oFk͗.ˣ?~vnv׊ٟV??>F祿?I?Eh?MK~޳񰯗O~."{QƱmU[1>}^]SF`mzfy?y߿ިN`V)|lzV`?^qifV/v)^Oo_|Y{է}W+{}~~:;g~қ&|6=zw)vt`^] k6;; S<\j>Owϖl/sW/Aϋb\uZ/Պ٥?r+V/}wHg>[h7,86GZ}g?~9Gz3Rϯ>~$V+V/ٷvOӊӋٯNKh}~&6|V{Xf=$E'ha@{X􇵝jC{d;--Z+)---):H!)?l F^R+f/GjENOr 3]Rt[>E?e?o/b~~A~h~h~h˾K~h~h~h:gOY?/Ջ)/;G/R)N^;8CQvڲޙ}+ڧ쇶쇶7VOy9~h˾CC&~h~h~hCQ_~U?_/3>%=wيWEZ^:G9QH}U:G9QusTwGGGG9Quvš~IwvGP{?]Zz^T/v/N/z}vhwvhwvhwvhwvhwvhwvhwvhwvhwvhwvhw^̩<,{Qؽ8hK鸜鸜鸜鸜鸜鸜鸜鸜鸜鸜鸜鸜鸜鸼R+RIӺHjEԯxV3V}N^9yyATE|۫ѫ%%%%%%%%eK צM/^ve>kU+yOT/Ŋzf 0`6lf 0`6lf 0`6lf 0`6gξ˲>^3dU}A/V[xdP%UQmC4n t&M@7n t&M@7n tRzM[hLQt+IUTP-[PnA݂u -[PnA݂u -[PnA݂uǂu -[Pvk@֗`#ZTATEE/```bE0 0 0 0 0 0 0 00 0 0 0 0 0 0 0oX;s*6אpppppppppppppppppppppppppppV$wW<͍lCTՠT* :wF_qդZTATE:Pc t6m@n t6m@n t6mc9]-7Un]tYeA@wt;@wt;@wt;@wt1#rAUn]tYeA@wt]@w t.]@w t.]@w;.X7W]Po6yXaAt.]^. t.]CLl^毖|yATE zEנA/^t]K ~.5N欓9YfEVtX=ˡC/^zr˥K/^.\zu P7n@݀u cܧ>N*i_fAt @7nt @7nt @7n to[5oQ^N3NƮ}?gg/KŊnB݄ u&MP7nB݄ u&MP7nB݄ u&U9nB݄ u&1vo:[UܷJ_т6I-[PnAvA݂u -[Pg_E/PnA݂u -[^d ;N)d ;g@]a c&;Lv*/ʦ:T}E u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u e' e'CP}(T*^d*;NOsC 6m?sC݆ u6mPnC݆ u6mPnC݆ u6mPnC݆ ue'c5&cXvy@;Pw@݁u;Pw@݁u;Pw@݁u;Pwoc.;\9;jgYo.[xdP%UQm*z uwˢPwB݅ u.ݠPwB݅ u.ᙜx&煺 uzWkz_ K*U ou֯N5eˤI/^&,zYeˢE/^,zYҩ[ f(v1]]𪾆PTIūـg 8p6lـg 8p6lـ32 "Ȁ/2 }(kt"Ȁ/fkb}xUQmC0lل g&M8p6lل g&M8p6lل gľ57w^ľE{^ľVUl岕V7-[PnA݂u ԭA/E-[PnA݂uľ_^"}/bߋ"}d7r5u1}]"*VtY-[P................."H/R"H/R"7}*rq+" KKKKKKKK#Ȅ/2L"Ȅ/2L"Ȅ/2z*a+A]Vu u u u u u u u u u u u u u u uuuuuuE(| _E(| _u1o][ub 5YYYggggggggggggggggg9E|_9E|_9żuq]żu1o][WZ|WpbEPnC݆ u6mPnC݆ u6mPnC݆: "/ "A;"7o0o}v^uWb*6@݁e ;Pw@݁uΡC/Pw@݁:$" H>8$IE|_]^.ykwiP]PwB݅ u.]PwB݅ u.]PwB݅:(" /(" /(x0o7o:w{lA8Pnʍ@(7Fr#Pnʍ@(7Fr#Pnʍ@N{/^6lze˦M/^ޏA<`L_k0} #0p8G` #0p8G` #0p8G`A<Ȃ,xA<Ȃ>,6@(80jR-*z:#Pp @FATu(8G#PpY7# d,xA<Ȃ?UYlY(,6@(8G#Pp '_C(8G#Pp<@Y@d,xA<ȂY d,xffU}IV6ա+9#G`#0rF9#G`#0rF9,xA<ȂY d,xA<Ȃx٪}}+b?G#s~9?G#s~9?G#sYd,xA<ȂY d,xfEYl0 f#t@:AG #t@:AG #t@:,x A<ȂY d,xA<ȂbEd6:CG` #0t:CG` #0t:CG` A<ȂY d,xA<ȂYvFD< & 9,/?'xo[x^yO?]Woo~ۿOۿE??ӿ_Vދ7ޫwoo_?_?~k8ShortRead/vignettes/simon2.bst0000644000175100017510000012260212607265053017427 0ustar00biocbuildbiocbuild%% %% This is file `simon.bst', %% generated with the docstrip utility. %% %% The original source files were: %% %% merlin.mbs (with options: `head,alph,vonx,nm-init,ed-au,yr-par,xmth,tit-it,atit-u,jttl-rm,vol-bf,volp-com,jdt-vs,jpg-1,num-xser,ser-vol,ser-ed,jnm-x,pre-edn,doi,edpar,bkedcap,in-col,pp,ed,abr,xedn,jabr,xand,revdata,eprint,url,url-blk,nfss,,{}') %% physjour.mbs (with options: `alph,vonx,nm-init,ed-au,yr-par,xmth,tit-it,atit-u,jttl-rm,vol-bf,volp-com,jdt-vs,jpg-1,num-xser,ser-vol,ser-ed,jnm-x,pre-edn,doi,edpar,bkedcap,in-col,pp,ed,abr,xedn,jabr,xand,revdata,eprint,url,url-blk,nfss,,{}') %% geojour.mbs (with options: `alph,vonx,nm-init,ed-au,yr-par,xmth,tit-it,atit-u,jttl-rm,vol-bf,volp-com,jdt-vs,jpg-1,num-xser,ser-vol,ser-ed,jnm-x,pre-edn,doi,edpar,bkedcap,in-col,pp,ed,abr,xedn,jabr,xand,revdata,eprint,url,url-blk,nfss,,{}') %% photjour.mbs (with options: `alph,vonx,nm-init,ed-au,yr-par,xmth,tit-it,atit-u,jttl-rm,vol-bf,volp-com,jdt-vs,jpg-1,num-xser,ser-vol,ser-ed,jnm-x,pre-edn,doi,edpar,bkedcap,in-col,pp,ed,abr,xedn,jabr,xand,revdata,eprint,url,url-blk,nfss,,{}') %% merlin.mbs (with options: `tail,alph,vonx,nm-init,ed-au,yr-par,xmth,tit-it,atit-u,jttl-rm,vol-bf,volp-com,jdt-vs,jpg-1,num-xser,ser-vol,ser-ed,jnm-x,pre-edn,doi,edpar,bkedcap,in-col,pp,ed,abr,xedn,jabr,xand,revdata,eprint,url,url-blk,nfss,,{}') %% ---------------------------------------- %% *** Simon's personal style *** %% %% Copyright 1994-2004 Patrick W Daly % =============================================================== % IMPORTANT NOTICE: % This bibliographic style (bst) file has been generated from one or % more master bibliographic style (mbs) files, listed above. % % This generated file can be redistributed and/or modified under the terms % of the LaTeX Project Public License Distributed from CTAN % archives in directory macros/latex/base/lppl.txt; either % version 1 of the License, or any later version. % =============================================================== % Name and version information of the main mbs file: % \ProvidesFile{merlin.mbs}[2004/02/09 4.13 (PWD, AO, DPC)] % For use with BibTeX version 0.99a or later %------------------------------------------------------------------- % This bibliography style file is intended for texts in ENGLISH % This is a labelled citation style similar to the standard alpha.bst, % where labels are of the form Dal90 or DBK89. % It requires no extra package to interface to the main text. % The form of the \bibitem entries is % \bibitem[label]{key}... % Usage of \cite is as follows: % \cite{key} ==>> [label] % \cite[chap. 2]{key} ==>> [label, chap. 2] % The order in the reference list is by label. %--------------------------------------------------------------------- ENTRY { address archive author booktitle chapter collaboration doi edition editor eid eprint howpublished institution journal key month note number numpages organization pages publisher school series title type url volume year } {} { label extra.label sort.label } INTEGERS { output.state before.all mid.sentence after.sentence after.block } FUNCTION {init.state.consts} { #0 'before.all := #1 'mid.sentence := #2 'after.sentence := #3 'after.block := } STRINGS { s t} FUNCTION {output.nonnull} { 's := output.state mid.sentence = { ", " * write$ } { output.state after.block = { add.period$ write$ newline$ "\newblock " write$ } { output.state before.all = 'write$ { add.period$ " " * write$ } if$ } if$ mid.sentence 'output.state := } if$ s } FUNCTION {output} { duplicate$ empty$ 'pop$ 'output.nonnull if$ } FUNCTION {output.check} { 't := duplicate$ empty$ { pop$ "empty " t * " in " * cite$ * warning$ } 'output.nonnull if$ } FUNCTION {fin.entry} { add.period$ write$ newline$ } FUNCTION {new.block} { output.state before.all = 'skip$ { after.block 'output.state := } if$ } FUNCTION {new.sentence} { output.state after.block = 'skip$ { output.state before.all = 'skip$ { after.sentence 'output.state := } if$ } if$ } FUNCTION {add.blank} { " " * before.all 'output.state := } FUNCTION {date.block} { new.block } FUNCTION {not} { { #0 } { #1 } if$ } FUNCTION {and} { 'skip$ { pop$ #0 } if$ } FUNCTION {or} { { pop$ #1 } 'skip$ if$ } FUNCTION {new.block.checka} { empty$ 'skip$ 'new.block if$ } FUNCTION {new.block.checkb} { empty$ swap$ empty$ and 'skip$ 'new.block if$ } FUNCTION {new.sentence.checka} { empty$ 'skip$ 'new.sentence if$ } FUNCTION {new.sentence.checkb} { empty$ swap$ empty$ and 'skip$ 'new.sentence if$ } FUNCTION {field.or.null} { duplicate$ empty$ { pop$ "" } 'skip$ if$ } FUNCTION {emphasize} { duplicate$ empty$ { pop$ "" } { "\emph{" swap$ * "}" * } if$ } FUNCTION {bolden} { duplicate$ empty$ { pop$ "" } { "\textbf{" swap$ * "}" * } if$ } FUNCTION {tie.or.space.prefix} { duplicate$ text.length$ #3 < { "~" } { " " } if$ swap$ } FUNCTION {capitalize} { "u" change.case$ "t" change.case$ } FUNCTION {space.word} { " " swap$ * " " * } % Here are the language-specific definitions for explicit words. % Each function has a name bbl.xxx where xxx is the English word. % The language selected here is ENGLISH FUNCTION {bbl.and} { "and"} FUNCTION {bbl.etal} { "et~al." } FUNCTION {bbl.editors} { "eds." } FUNCTION {bbl.editor} { "ed." } FUNCTION {bbl.edby} { "edited by" } FUNCTION {bbl.edition} { "edn." } FUNCTION {bbl.volume} { "vol." } FUNCTION {bbl.of} { "of" } FUNCTION {bbl.number} { "no." } FUNCTION {bbl.nr} { "no." } FUNCTION {bbl.in} { "in" } FUNCTION {bbl.pages} { "pp." } FUNCTION {bbl.page} { "p." } FUNCTION {bbl.eidpp} { "pages" } FUNCTION {bbl.chapter} { "chap." } FUNCTION {bbl.techrep} { "Tech. Rep." } FUNCTION {bbl.mthesis} { "Master's thesis" } FUNCTION {bbl.phdthesis} { "Ph.D. thesis" } MACRO {jan} {"Jan."} MACRO {feb} {"Feb."} MACRO {mar} {"Mar."} MACRO {apr} {"Apr."} MACRO {may} {"May"} MACRO {jun} {"Jun."} MACRO {jul} {"Jul."} MACRO {aug} {"Aug."} MACRO {sep} {"Sep."} MACRO {oct} {"Oct."} MACRO {nov} {"Nov."} MACRO {dec} {"Dec."} %------------------------------------------------------------------- % Begin module: % \ProvidesFile{physjour.mbs}[2002/01/14 2.2 (PWD)] MACRO {aa}{"Astron. \& Astrophys."} MACRO {aasup}{"Astron. \& Astrophys. Suppl. Ser."} MACRO {aj} {"Astron. J."} MACRO {aph} {"Acta Phys."} MACRO {advp} {"Adv. Phys."} MACRO {ajp} {"Amer. J. Phys."} MACRO {ajm} {"Amer. J. Math."} MACRO {amsci} {"Amer. Sci."} MACRO {anofd} {"Ann. Fluid Dyn."} MACRO {am} {"Ann. Math."} MACRO {ap} {"Ann. Phys. (NY)"} MACRO {adp} {"Ann. Phys. (Leipzig)"} MACRO {ao} {"Appl. Opt."} MACRO {apl} {"Appl. Phys. Lett."} MACRO {app} {"Astroparticle Phys."} MACRO {apj} {"Astrophys. J."} MACRO {apjsup} {"Astrophys. J. Suppl."} MACRO {apss} {"Astrophys. Space Sci."} MACRO {araa} {"Ann. Rev. Astron. Astrophys."} MACRO {baas} {"Bull. Amer. Astron. Soc."} MACRO {baps} {"Bull. Amer. Phys. Soc."} MACRO {cmp} {"Comm. Math. Phys."} MACRO {cpam} {"Commun. Pure Appl. Math."} MACRO {cppcf} {"Comm. Plasma Phys. \& Controlled Fusion"} MACRO {cpc} {"Comp. Phys. Comm."} MACRO {cqg} {"Class. Quant. Grav."} MACRO {cra} {"C. R. Acad. Sci. A"} MACRO {fed} {"Fusion Eng. \& Design"} MACRO {ft} {"Fusion Tech."} MACRO {grg} {"Gen. Relativ. Gravit."} MACRO {ieeens} {"IEEE Trans. Nucl. Sci."} MACRO {ieeeps} {"IEEE Trans. Plasma Sci."} MACRO {ijimw} {"Interntl. J. Infrared \& Millimeter Waves"} MACRO {ip} {"Infrared Phys."} MACRO {irp} {"Infrared Phys."} MACRO {jap} {"J. Appl. Phys."} MACRO {jasa} {"J. Acoust. Soc. America"} MACRO {jcp} {"J. Comp. Phys."} MACRO {jetp} {"Sov. Phys.--JETP"} MACRO {jfe} {"J. Fusion Energy"} MACRO {jfm} {"J. Fluid Mech."} MACRO {jmp} {"J. Math. Phys."} MACRO {jne} {"J. Nucl. Energy"} MACRO {jnec} {"J. Nucl. Energy, C: Plasma Phys., Accelerators, Thermonucl. Res."} MACRO {jnm} {"J. Nucl. Mat."} MACRO {jpc} {"J. Phys. Chem."} MACRO {jpp} {"J. Plasma Phys."} MACRO {jpsj} {"J. Phys. Soc. Japan"} MACRO {jsi} {"J. Sci. Instrum."} MACRO {jvst} {"J. Vac. Sci. \& Tech."} MACRO {nat} {"Nature"} MACRO {nature} {"Nature"} MACRO {nedf} {"Nucl. Eng. \& Design/Fusion"} MACRO {nf} {"Nucl. Fusion"} MACRO {nim} {"Nucl. Inst. \& Meth."} MACRO {nimpr} {"Nucl. Inst. \& Meth. in Phys. Res."} MACRO {np} {"Nucl. Phys."} MACRO {npb} {"Nucl. Phys. B"} MACRO {nt/f} {"Nucl. Tech./Fusion"} MACRO {npbpc} {"Nucl. Phys. B (Proc. Suppl.)"} MACRO {inc} {"Nuovo Cimento"} MACRO {nc} {"Nuovo Cimento"} MACRO {pf} {"Phys. Fluids"} MACRO {pfa} {"Phys. Fluids A: Fluid Dyn."} MACRO {pfb} {"Phys. Fluids B: Plasma Phys."} MACRO {pl} {"Phys. Lett."} MACRO {pla} {"Phys. Lett. A"} MACRO {plb} {"Phys. Lett. B"} MACRO {prep} {"Phys. Rep."} MACRO {pnas} {"Proc. Nat. Acad. Sci. USA"} MACRO {pp} {"Phys. Plasmas"} MACRO {ppcf} {"Plasma Phys. \& Controlled Fusion"} MACRO {phitrsl} {"Philos. Trans. Roy. Soc. London"} MACRO {prl} {"Phys. Rev. Lett."} MACRO {pr} {"Phys. Rev."} MACRO {physrev} {"Phys. Rev."} MACRO {pra} {"Phys. Rev. A"} MACRO {prb} {"Phys. Rev. B"} MACRO {prc} {"Phys. Rev. C"} MACRO {prd} {"Phys. Rev. D"} MACRO {pre} {"Phys. Rev. E"} MACRO {ps} {"Phys. Scripta"} MACRO {procrsl} {"Proc. Roy. Soc. London"} MACRO {rmp} {"Rev. Mod. Phys."} MACRO {rsi} {"Rev. Sci. Inst."} MACRO {science} {"Science"} MACRO {sciam} {"Sci. Am."} MACRO {sam} {"Stud. Appl. Math."} MACRO {sjpp} {"Sov. J. Plasma Phys."} MACRO {spd} {"Sov. Phys.--Doklady"} MACRO {sptp} {"Sov. Phys.--Tech. Phys."} MACRO {spu} {"Sov. Phys.--Uspeki"} MACRO {st} {"Sky and Telesc."} % End module: physjour.mbs %------------------------------------------------------------------- % Begin module: % \ProvidesFile{geojour.mbs}[2002/07/10 2.0h (PWD)] MACRO {aisr} {"Adv. Space Res."} MACRO {ag} {"Ann. Geophys."} MACRO {anigeo} {"Ann. Geofis."} MACRO {angl} {"Ann. Glaciol."} MACRO {andmet} {"Ann. d. Meteor."} MACRO {andgeo} {"Ann. d. Geophys."} MACRO {andphy} {"Ann. Phys.-Paris"} MACRO {afmgb} {"Arch. Meteor. Geophys. Bioklimatol."} MACRO {atph} {"Atm\'osphera"} MACRO {aao} {"Atmos. Ocean"} MACRO {ass}{"Astrophys. Space Sci."} MACRO {atenv} {"Atmos. Environ."} MACRO {aujag} {"Aust. J. Agr. Res."} MACRO {aumet} {"Aust. Meteorol. Mag."} MACRO {blmet} {"Bound.-Lay. Meteorol."} MACRO {bams} {"Bull. Amer. Meteorol. Soc."} MACRO {cch} {"Clim. Change"} MACRO {cdyn} {"Clim. Dynam."} MACRO {cbul} {"Climatol. Bull."} MACRO {cap} {"Contrib. Atmos. Phys."} MACRO {dsr} {"Deep-Sea Res."} MACRO {dhz} {"Dtsch. Hydrogr. Z."} MACRO {dao} {"Dynam. Atmos. Oceans"} MACRO {eco} {"Ecology"} MACRO {empl}{"Earth, Moon and Planets"} MACRO {envres} {"Environ. Res."} MACRO {envst} {"Environ. Sci. Technol."} MACRO {ecms} {"Estuarine Coastal Mar. Sci."} MACRO {expa}{"Exper. Astron."} MACRO {geoint} {"Geofis. Int."} MACRO {geopub} {"Geofys. Publ."} MACRO {geogeo} {"Geol. Geofiz."} MACRO {gafd} {"Geophys. Astrophys. Fluid Dyn."} MACRO {gfd} {"Geophys. Fluid Dyn."} MACRO {geomag} {"Geophys. Mag."} MACRO {georl} {"Geophys. Res. Lett."} MACRO {grl} {"Geophys. Res. Lett."} MACRO {ga} {"Geophysica"} MACRO {gs} {"Geophysics"} MACRO {ieeetap} {"IEEE Trans. Antenn. Propag."} MACRO {ijawp} {"Int. J. Air Water Pollut."} MACRO {ijc} {"Int. J. Climatol."} MACRO {ijrs} {"Int. J. Remote Sens."} MACRO {jam} {"J. Appl. Meteorol."} MACRO {jaot} {"J. Atmos. Ocean. Technol."} MACRO {jatp} {"J. Atmos. Terr. Phys."} MACRO {jastp} {"J. Atmos. Solar-Terr. Phys."} MACRO {jce} {"J. Climate"} MACRO {jcam} {"J. Climate Appl. Meteor."} MACRO {jcm} {"J. Climate Meteor."} MACRO {jcy} {"J. Climatol."} MACRO {jgr} {"J. Geophys. Res."} MACRO {jga} {"J. Glaciol."} MACRO {jh} {"J. Hydrol."} MACRO {jmr} {"J. Mar. Res."} MACRO {jmrj} {"J. Meteor. Res. Japan"} MACRO {jm} {"J. Meteor."} MACRO {jpo} {"J. Phys. Oceanogr."} MACRO {jra} {"J. Rech. Atmos."} MACRO {jaes} {"J. Aeronaut. Sci."} MACRO {japca} {"J. Air Pollut. Control Assoc."} MACRO {jas} {"J. Atmos. Sci."} MACRO {jmts} {"J. Mar. Technol. Soc."} MACRO {jmsj} {"J. Meteorol. Soc. Japan"} MACRO {josj} {"J. Oceanogr. Soc. Japan"} MACRO {jwm} {"J. Wea. Mod."} MACRO {lao} {"Limnol. Oceanogr."} MACRO {mwl} {"Mar. Wea. Log"} MACRO {mau} {"Mausam"} MACRO {meteor} {"``Meteor'' Forschungsergeb."} MACRO {map} {"Meteorol. Atmos. Phys."} MACRO {metmag} {"Meteor. Mag."} MACRO {metmon} {"Meteor. Monogr."} MACRO {metrun} {"Meteor. Rundsch."} MACRO {metzeit} {"Meteor. Z."} MACRO {metgid} {"Meteor. Gidrol."} MACRO {mwr} {"Mon. Weather Rev."} MACRO {nwd} {"Natl. Weather Dig."} MACRO {nzjmfr} {"New Zeal. J. Mar. Freshwater Res."} MACRO {npg} {"Nonlin. Proc. Geophys."} MACRO {om} {"Oceanogr. Meteorol."} MACRO {ocac} {"Oceanol. Acta"} MACRO {oceanus} {"Oceanus"} MACRO {paleoc} {"Paleoceanography"} MACRO {pce} {"Phys. Chem. Earth"} MACRO {pmg} {"Pap. Meteor. Geophys."} MACRO {ppom} {"Pap. Phys. Oceanogr. Meteor."} MACRO {physzeit} {"Phys. Z."} MACRO {pps} {"Planet. Space Sci."} MACRO {pss} {"Planet. Space Sci."} MACRO {pag} {"Pure Appl. Geophys."} MACRO {qjrms} {"Quart. J. Roy. Meteorol. Soc."} MACRO {quatres} {"Quat. Res."} MACRO {rsci} {"Radio Sci."} MACRO {rse} {"Remote Sens. Environ."} MACRO {rgeo} {"Rev. Geophys."} MACRO {rgsp} {"Rev. Geophys. Space Phys."} MACRO {rdgeo} {"Rev. Geofis."} MACRO {revmeta} {"Rev. Meteorol."} MACRO {sgp}{"Surveys in Geophys."} MACRO {sp} {"Solar Phys."} MACRO {ssr} {"Space Sci. Rev."} MACRO {tellus} {"Tellus"} MACRO {tac} {"Theor. Appl. Climatol."} MACRO {tagu} {"Trans. Am. Geophys. Union (EOS)"} MACRO {wrr} {"Water Resour. Res."} MACRO {weather} {"Weather"} MACRO {wafc} {"Weather Forecast."} MACRO {ww} {"Weatherwise"} MACRO {wmob} {"WMO Bull."} MACRO {zeitmet} {"Z. Meteorol."} % End module: geojour.mbs %------------------------------------------------------------------- % Begin module: % \ProvidesFile{photjour.mbs}[1999/02/24 2.0b (PWD)] MACRO {appopt} {"Appl. Opt."} MACRO {bell} {"Bell Syst. Tech. J."} MACRO {ell} {"Electron. Lett."} MACRO {jasp} {"J. Appl. Spectr."} MACRO {jqe} {"IEEE J. Quantum Electron."} MACRO {jlwt} {"J. Lightwave Technol."} MACRO {jmo} {"J. Mod. Opt."} MACRO {josa} {"J. Opt. Soc. America"} MACRO {josaa} {"J. Opt. Soc. Amer.~A"} MACRO {josab} {"J. Opt. Soc. Amer.~B"} MACRO {jdp} {"J. Phys. (Paris)"} MACRO {oc} {"Opt. Commun."} MACRO {ol} {"Opt. Lett."} MACRO {phtl} {"IEEE Photon. Technol. Lett."} MACRO {pspie} {"Proc. Soc. Photo-Opt. Instrum. Eng."} MACRO {sse} {"Solid-State Electron."} MACRO {sjot} {"Sov. J. Opt. Technol."} MACRO {sjqe} {"Sov. J. Quantum Electron."} MACRO {sleb} {"Sov. Phys.--Leb. Inst. Rep."} MACRO {stph} {"Sov. Phys.--Techn. Phys."} MACRO {stphl} {"Sov. Techn. Phys. Lett."} MACRO {vr} {"Vision Res."} MACRO {zph} {"Z. f. Physik"} MACRO {zphb} {"Z. f. Physik~B"} MACRO {zphd} {"Z. f. Physik~D"} MACRO {CLEO} {"CLEO"} MACRO {ASSL} {"Adv. Sol.-State Lasers"} MACRO {OSA} {"OSA"} % End module: photjour.mbs %% Copyright 1994-2004 Patrick W Daly MACRO {acmcs} {"ACM Comput. Surv."} MACRO {acta} {"Acta Inf."} MACRO {cacm} {"Commun. ACM"} MACRO {ibmjrd} {"IBM J. Res. Dev."} MACRO {ibmsj} {"IBM Syst.~J."} MACRO {ieeese} {"IEEE Trans. Software Eng."} MACRO {ieeetc} {"IEEE Trans. Comput."} MACRO {ieeetcad} {"IEEE Trans. Comput. Aid. Des."} MACRO {ipl} {"Inf. Process. Lett."} MACRO {jacm} {"J.~ACM"} MACRO {jcss} {"J.~Comput. Syst. Sci."} MACRO {scp} {"Sci. Comput. Program."} MACRO {sicomp} {"SIAM J. Comput."} MACRO {tocs} {"ACM Trans. Comput. Syst."} MACRO {tods} {"ACM Trans. Database Syst."} MACRO {tog} {"ACM Trans. Graphic."} MACRO {toms} {"ACM Trans. Math. Software"} MACRO {toois} {"ACM Trans. Office Inf. Syst."} MACRO {toplas} {"ACM Trans. Progr. Lang. Syst."} MACRO {tcs} {"Theor. Comput. Sci."} FUNCTION {bibinfo.check} { swap$ duplicate$ missing$ { pop$ pop$ "" } { duplicate$ empty$ { swap$ pop$ } { swap$ pop$ } if$ } if$ } FUNCTION {bibinfo.warn} { swap$ duplicate$ missing$ { swap$ "missing " swap$ * " in " * cite$ * warning$ pop$ "" } { duplicate$ empty$ { swap$ "empty " swap$ * " in " * cite$ * warning$ } { swap$ pop$ } if$ } if$ } FUNCTION {format.eprint} { eprint duplicate$ empty$ 'skip$ { "\eprint" archive empty$ 'skip$ { "[" * archive * "]" * } if$ "{" * swap$ * "}" * } if$ } FUNCTION {format.url} { url empty$ { "" } { "\href{" url * "}{[web link]}" *} if$ } STRINGS { bibinfo} INTEGERS { nameptr namesleft numnames } FUNCTION {format.names} { 'bibinfo := duplicate$ empty$ 'skip$ { 's := "" 't := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{f.~}{vv~}{ll}" format.name$ bibinfo bibinfo.check 't := nameptr #1 > { namesleft #1 > { ", " * t * } { "," * s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " " * bbl.etal * } { " " * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } if$ } FUNCTION {format.names.ed} { format.names } FUNCTION {format.authors} { author "author" format.names duplicate$ empty$ 'skip$ { collaboration "collaboration" bibinfo.check duplicate$ empty$ 'skip$ { " (" swap$ * ")" * } if$ * } if$ } FUNCTION {get.bbl.editor} { editor num.names$ #1 > 'bbl.editors 'bbl.editor if$ } FUNCTION {format.editors} { editor "editor" format.names duplicate$ empty$ 'skip$ { " " * get.bbl.editor capitalize "(" swap$ * ")" * * } if$ } FUNCTION {format.doi} { doi "doi" bibinfo.check duplicate$ empty$ 'skip$ { new.block "\doi{" swap$ * "}" * } if$ } FUNCTION {format.note} { note empty$ { "" } { note #1 #1 substring$ duplicate$ "{" = 'skip$ { output.state mid.sentence = { "l" } { "u" } if$ change.case$ } if$ note #2 global.max$ substring$ * "note" bibinfo.check } if$ } FUNCTION {format.title} { title "title" bibinfo.check duplicate$ empty$ 'skip$ { "t" change.case$ emphasize } if$ } FUNCTION {output.bibitem} { newline$ "\bibitem[" label * "]{" * write$ cite$ write$ "}" write$ newline$ "" before.all 'output.state := } FUNCTION {n.dashify} { 't := "" { t empty$ not } { t #1 #1 substring$ "-" = { t #1 #2 substring$ "--" = not { "--" * t #2 global.max$ substring$ 't := } { { t #1 #1 substring$ "-" = } { "-" * t #2 global.max$ substring$ 't := } while$ } if$ } { t #1 #1 substring$ * t #2 global.max$ substring$ 't := } if$ } while$ } FUNCTION {word.in} { bbl.in capitalize ":" * " " * } FUNCTION {format.date} { "" duplicate$ empty$ year "year" bibinfo.check duplicate$ empty$ { swap$ 'skip$ { "there's a month but no year in " cite$ * warning$ } if$ * } { swap$ 'skip$ { swap$ " " * swap$ } if$ * } if$ duplicate$ empty$ 'skip$ { before.all 'output.state := " (" swap$ * ")" * } if$ } FUNCTION{format.year} { year "year" bibinfo.check duplicate$ empty$ { "empty year in " cite$ * warning$ } { " (" swap$ * ")" * } if$ } FUNCTION {format.btitle} { title "title" bibinfo.check duplicate$ empty$ 'skip$ { emphasize } if$ } FUNCTION {either.or.check} { empty$ 'pop$ { "can't use both " swap$ * " fields in " * cite$ * warning$ } if$ } FUNCTION {format.bvolume} { volume empty$ { "" } { bbl.volume volume tie.or.space.prefix "volume" bibinfo.check * * series "series" bibinfo.check duplicate$ empty$ 'pop$ { emphasize ", " * swap$ * } if$ "volume and number" number either.or.check } if$ } FUNCTION {format.number.series} { volume empty$ { number empty$ { series field.or.null } { series empty$ { number "number" bibinfo.check } { output.state mid.sentence = { bbl.number } { bbl.number capitalize } if$ number tie.or.space.prefix "number" bibinfo.check * * bbl.in space.word * series "series" bibinfo.check * } if$ } if$ } { "" } if$ } FUNCTION {format.edition} { edition duplicate$ empty$ 'skip$ { output.state mid.sentence = { "l" } { "t" } if$ change.case$ "edition" bibinfo.check " " * bbl.edition * } if$ } INTEGERS { multiresult } FUNCTION {multi.page.check} { 't := #0 'multiresult := { multiresult not t empty$ not and } { t #1 #1 substring$ duplicate$ "-" = swap$ duplicate$ "," = swap$ "+" = or or { #1 'multiresult := } { t #2 global.max$ substring$ 't := } if$ } while$ multiresult } FUNCTION {format.pages} { pages duplicate$ empty$ 'skip$ { duplicate$ multi.page.check { bbl.pages swap$ n.dashify } { bbl.page swap$ } if$ tie.or.space.prefix "pages" bibinfo.check * * } if$ } FUNCTION {first.page} { 't := "" { t empty$ not t #1 #1 substring$ "-" = not and } { t #1 #1 substring$ * t #2 global.max$ substring$ 't := } while$ } FUNCTION {format.journal.pages} { pages duplicate$ empty$ 'pop$ { swap$ duplicate$ empty$ { pop$ pop$ format.pages } { ", " * swap$ first.page "pages" bibinfo.check * } if$ } if$ } FUNCTION {format.journal.eid} { eid "eid" bibinfo.check duplicate$ empty$ 'pop$ { swap$ duplicate$ empty$ 'skip$ { ", " * } if$ swap$ * numpages empty$ 'skip$ { bbl.eidpp numpages tie.or.space.prefix "numpages" bibinfo.check * * " (" swap$ * ")" * * } if$ } if$ } FUNCTION {format.vol.num.pages} { volume field.or.null duplicate$ empty$ 'skip$ { "volume" bibinfo.check } if$ bolden format.year * eid empty$ { format.journal.pages } { format.journal.eid } if$ } FUNCTION {format.chapter.pages} { chapter empty$ 'format.pages { type empty$ { bbl.chapter } { type "l" change.case$ "type" bibinfo.check } if$ chapter tie.or.space.prefix "chapter" bibinfo.check * * pages empty$ 'skip$ { ", " * format.pages * } if$ } if$ } FUNCTION {format.booktitle} { booktitle "booktitle" bibinfo.check emphasize } FUNCTION {format.in.ed.booktitle} { format.booktitle duplicate$ empty$ 'skip$ { format.bvolume duplicate$ empty$ 'pop$ { ", " swap$ * * } if$ editor "editor" format.names.ed duplicate$ empty$ 'pop$ { " " * get.bbl.editor capitalize "(" swap$ * "), " * * swap$ * } if$ word.in swap$ * } if$ } FUNCTION {empty.misc.check} { author empty$ title empty$ howpublished empty$ month empty$ year empty$ note empty$ and and and and and key empty$ not and { "all relevant fields are empty in " cite$ * warning$ } 'skip$ if$ } FUNCTION {format.thesis.type} { type duplicate$ empty$ 'pop$ { swap$ pop$ "t" change.case$ "type" bibinfo.check } if$ } FUNCTION {format.tr.number} { number "number" bibinfo.check type duplicate$ empty$ { pop$ bbl.techrep } 'skip$ if$ "type" bibinfo.check swap$ duplicate$ empty$ { pop$ "t" change.case$ } { tie.or.space.prefix * * } if$ } FUNCTION {format.article.crossref} { key duplicate$ empty$ { pop$ journal duplicate$ empty$ { "need key or journal for " cite$ * " to crossref " * crossref * warning$ } { "journal" bibinfo.check emphasize word.in swap$ * } if$ } { word.in swap$ * " " *} if$ " \cite{" * crossref * "}" * } FUNCTION {format.crossref.editor} { editor #1 "{vv~}{ll}" format.name$ "editor" bibinfo.check editor num.names$ duplicate$ #2 > { pop$ "editor" bibinfo.check " " * bbl.etal * } { #2 < 'skip$ { editor #2 "{ff }{vv }{ll}{ jj}" format.name$ "others" = { "editor" bibinfo.check " " * bbl.etal * } { bbl.and space.word * editor #2 "{vv~}{ll}" format.name$ "editor" bibinfo.check * } if$ } if$ } if$ } FUNCTION {format.book.crossref} { volume duplicate$ empty$ { "empty volume in " cite$ * "'s crossref of " * crossref * warning$ pop$ word.in } { bbl.volume capitalize swap$ tie.or.space.prefix "volume" bibinfo.check * * bbl.of space.word * } if$ editor empty$ editor field.or.null author field.or.null = or { key empty$ { series empty$ { "need editor, key, or series for " cite$ * " to crossref " * crossref * warning$ "" * } { series emphasize * } if$ } { key * } if$ } { format.crossref.editor * } if$ " \cite{" * crossref * "}" * } FUNCTION {format.incoll.inproc.crossref} { editor empty$ editor field.or.null author field.or.null = or { key empty$ { format.booktitle duplicate$ empty$ { "need editor, key, or booktitle for " cite$ * " to crossref " * crossref * warning$ } { word.in swap$ * } if$ } { word.in key * " " *} if$ } { word.in format.crossref.editor * " " *} if$ " \cite{" * crossref * "}" * } FUNCTION {format.org.or.pub} { 't := "" address empty$ t empty$ and 'skip$ { t empty$ { address "address" bibinfo.check * } { t * address empty$ 'skip$ { ", " * address "address" bibinfo.check * } if$ } if$ } if$ } FUNCTION {format.publisher.address} { publisher "publisher" bibinfo.warn format.org.or.pub } FUNCTION {format.organization.address} { organization "organization" bibinfo.check format.org.or.pub } FUNCTION {article} { output.bibitem format.authors "author" output.check new.block format.title "title" output.check new.block crossref missing$ { doi empty$ url empty$ and { "" } { "{}" output before.all 'output.state := "\href{" doi empty$ {url} {"http://dx.doi.org/" doi *} if$ * "}{" * } if$ * journal "journal" bibinfo.check "journal" output.check add.blank format.vol.num.pages output doi empty$ url empty$ and { "" } { "}" } if$ * } { format.article.crossref output.nonnull format.pages output } if$ new.block format.note output format.eprint output fin.entry } FUNCTION {book} { output.bibitem author empty$ { format.editors "author and editor" output.check } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ new.block format.btitle "title" output.check crossref missing$ { format.bvolume output new.block format.number.series output format.edition output new.sentence format.publisher.address output } { new.block format.book.crossref output.nonnull } if$ format.date "year" output.check format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {booklet} { output.bibitem format.authors output new.block format.title "title" output.check new.block howpublished "howpublished" bibinfo.check output address "address" bibinfo.check output format.date output format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {inbook} { output.bibitem author empty$ { format.editors "author and editor" output.check } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ new.block format.btitle "title" output.check crossref missing$ { format.bvolume output format.chapter.pages "chapter and pages" output.check new.block format.number.series output format.edition output new.sentence format.publisher.address output } { format.chapter.pages "chapter and pages" output.check new.block format.book.crossref output.nonnull } if$ format.date "year" output.check format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {incollection} { output.bibitem format.authors "author" output.check new.block format.title "title" output.check new.block crossref missing$ { format.in.ed.booktitle "booktitle" output.check format.number.series output format.edition output format.chapter.pages output new.sentence format.publisher.address output format.date "year" output.check } { format.incoll.inproc.crossref output.nonnull format.chapter.pages output } if$ format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {inproceedings} { output.bibitem format.authors "author" output.check new.block format.title "title" output.check new.block crossref missing$ { format.in.ed.booktitle "booktitle" output.check format.number.series output format.pages output new.sentence publisher empty$ { format.organization.address output } { organization "organization" bibinfo.check output format.publisher.address output } if$ format.date "year" output.check } { format.incoll.inproc.crossref output.nonnull format.pages output } if$ format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {conference} { inproceedings } FUNCTION {manual} { output.bibitem author empty$ { organization "organization" bibinfo.check duplicate$ empty$ 'pop$ { output address "address" bibinfo.check output } if$ } { format.authors output.nonnull } if$ new.block format.btitle "title" output.check author empty$ { organization empty$ { address new.block.checka address "address" bibinfo.check output } 'skip$ if$ } { organization address new.block.checkb organization "organization" bibinfo.check output address "address" bibinfo.check output } if$ format.edition output format.date output format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {mastersthesis} { output.bibitem format.authors "author" output.check new.block format.btitle "title" output.check new.block bbl.mthesis format.thesis.type output.nonnull school "school" bibinfo.warn output address "address" bibinfo.check output format.date "year" output.check format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {misc} { output.bibitem format.authors output title howpublished new.block.checkb format.title output howpublished new.block.checka howpublished "howpublished" bibinfo.check output format.date output format.doi output new.block format.note output format.eprint output format.url output fin.entry empty.misc.check } FUNCTION {phdthesis} { output.bibitem format.authors "author" output.check new.block format.btitle "title" output.check new.block bbl.phdthesis format.thesis.type output.nonnull school "school" bibinfo.warn output address "address" bibinfo.check output format.date "year" output.check format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {proceedings} { output.bibitem editor empty$ { organization "organization" bibinfo.check output } { format.editors output.nonnull } if$ new.block format.btitle "title" output.check format.bvolume output format.number.series output editor empty$ { publisher empty$ 'skip$ { new.sentence format.publisher.address output } if$ } { publisher empty$ { new.sentence format.organization.address output } { new.sentence organization "organization" bibinfo.check output format.publisher.address output } if$ } if$ format.date "year" output.check format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {techreport} { output.bibitem format.authors "author" output.check new.block format.title "title" output.check new.block format.tr.number output.nonnull institution "institution" bibinfo.warn output address "address" bibinfo.check output format.date "year" output.check format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {unpublished} { output.bibitem format.authors "author" output.check new.block format.title "title" output.check format.date output format.doi output new.block format.note "note" output.check format.eprint output format.url output fin.entry } FUNCTION {default.type} { misc } READ FUNCTION {sortify} { purify$ "l" change.case$ } INTEGERS { len } FUNCTION {chop.word} { 's := 'len := s #1 len substring$ = { s len #1 + global.max$ substring$ } 's if$ } INTEGERS { et.al.char.used } FUNCTION {initialize.et.al.char.used} { #0 'et.al.char.used := } EXECUTE {initialize.et.al.char.used} FUNCTION {format.lab.names} { 's := s num.names$ 'numnames := numnames #1 > { numnames #4 > { #3 'namesleft := } { numnames 'namesleft := } if$ #1 'nameptr := "" { namesleft #0 > } { nameptr numnames = { s nameptr "{ff }{vv }{ll}{ jj}" format.name$ "others" = { "{\etalchar{+}}" * #1 'et.al.char.used := } { s nameptr "{l{}}" format.name$ * } if$ } { s nameptr "{l{}}" format.name$ * } if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ numnames #4 > { "{\etalchar{+}}" * #1 'et.al.char.used := } 'skip$ if$ } { s #1 "{l{}}" format.name$ duplicate$ text.length$ #2 < { pop$ s #1 "{ll}" format.name$ #3 text.prefix$ } 'skip$ if$ } if$ } FUNCTION {author.key.label} { author empty$ { key empty$ { cite$ #1 #3 substring$ } { key #3 text.prefix$ } if$ } { author format.lab.names } if$ } FUNCTION {author.editor.key.label} { author empty$ { editor empty$ { key empty$ { cite$ #1 #3 substring$ } { key #3 text.prefix$ } if$ } { editor format.lab.names } if$ } { author format.lab.names } if$ } FUNCTION {author.key.organization.label} { author empty$ { key empty$ { organization empty$ { cite$ #1 #3 substring$ } { "The " #4 organization chop.word #3 text.prefix$ } if$ } { key #3 text.prefix$ } if$ } { author format.lab.names } if$ } FUNCTION {editor.key.organization.label} { editor empty$ { key empty$ { organization empty$ { cite$ #1 #3 substring$ } { "The " #4 organization chop.word #3 text.prefix$ } if$ } { key #3 text.prefix$ } if$ } { editor format.lab.names } if$ } FUNCTION {calc.label} { key empty$ not { key duplicate$ 'label := sortify 'sort.label := } { type$ "book" = type$ "inbook" = or 'author.editor.key.label { type$ "proceedings" = 'editor.key.organization.label { type$ "manual" = 'author.key.organization.label 'author.key.label if$ } if$ } if$ duplicate$ year field.or.null purify$ #-1 #2 substring$ * 'label := year field.or.null purify$ #-1 #4 substring$ * sortify 'sort.label := } if$ } FUNCTION {sort.format.names} { 's := #1 'nameptr := "" s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{ll{ }}{ f{ }}{ jj{ }}" format.name$ 't := nameptr #1 > { " " * namesleft #1 = t "others" = and { "zzzzz" * } { t sortify * } if$ } { t sortify * } if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {sort.format.title} { 't := "A " #2 "An " #3 "The " #4 t chop.word chop.word chop.word sortify #1 global.max$ substring$ } FUNCTION {author.sort} { author empty$ { key empty$ { "to sort, need author or key in " cite$ * warning$ "" } { key sortify } if$ } { author sort.format.names } if$ } FUNCTION {author.editor.sort} { author empty$ { editor empty$ { key empty$ { "to sort, need author, editor, or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } { author sort.format.names } if$ } FUNCTION {author.organization.sort} { author empty$ { organization empty$ { key empty$ { "to sort, need author, organization, or key in " cite$ * warning$ "" } { key sortify } if$ } { "The " #4 organization chop.word sortify } if$ } { author sort.format.names } if$ } FUNCTION {editor.organization.sort} { editor empty$ { organization empty$ { key empty$ { "to sort, need editor, organization, or key in " cite$ * warning$ "" } { key sortify } if$ } { "The " #4 organization chop.word sortify } if$ } { editor sort.format.names } if$ } FUNCTION {presort} { calc.label sort.label " " * type$ "book" = type$ "inbook" = or 'author.editor.sort { type$ "proceedings" = 'editor.organization.sort { type$ "manual" = 'author.organization.sort 'author.sort if$ } if$ } if$ * " " * year field.or.null sortify * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {presort} SORT STRINGS { longest.label last.sort.label next.extra } INTEGERS { longest.label.width last.extra.num } FUNCTION {initialize.longest.label} { "" 'longest.label := #0 int.to.chr$ 'last.sort.label := "" 'next.extra := #0 'longest.label.width := #0 'last.extra.num := } FUNCTION {forward.pass} { last.sort.label sort.label = { last.extra.num #1 + 'last.extra.num := last.extra.num int.to.chr$ 'extra.label := } { "a" chr.to.int$ 'last.extra.num := "" 'extra.label := sort.label 'last.sort.label := } if$ } FUNCTION {reverse.pass} { next.extra "b" = { "a" 'extra.label := } 'skip$ if$ label extra.label * 'label := label width$ longest.label.width > { label 'longest.label := label width$ 'longest.label.width := } 'skip$ if$ extra.label 'next.extra := } EXECUTE {initialize.longest.label} ITERATE {forward.pass} REVERSE {reverse.pass} FUNCTION {begin.bib} { et.al.char.used { "\newcommand{\etalchar}[1]{$^{#1}$}" write$ newline$ } 'skip$ if$ preamble$ empty$ 'skip$ { preamble$ write$ newline$ } if$ "\begin{thebibliography}{" longest.label * "}" * write$ newline$ "\providecommand{\url}[1]{#1}" write$ newline$ "\providecommand{\urlprefix}{URL }" write$ newline$ "\expandafter\ifx\csname urlstyle\endcsname\relax" write$ newline$ " \providecommand{\doi}[1]{doi:\discretionary{}{}{}#1}\else" write$ newline$ " \providecommand{\doi}{doi:\discretionary{}{}{}\begingroup \urlstyle{rm}\Url}\fi" write$ newline$ "\providecommand{\eprint}[2][]{#2}" write$ newline$ "\providecommand{\arxiv}[1]{\href{http://www.arxiv.org/abs/#1}{ArXiv: #1}}" write$ newline$ "\providecommand{\arxivs}[2]{\href{http://www.arxiv.org/abs/#1}{ArXiv: #1 [#2]}}" write$ newline$ } EXECUTE {begin.bib} EXECUTE {init.state.consts} ITERATE {call.type$} FUNCTION {end.bib} { newline$ "\end{thebibliography}" write$ newline$ } EXECUTE {end.bib} %% End of customized bst file %% %% End of file `simon.bst'.