actuar/0000755000176200001440000000000014173551123011533 5ustar liggesusersactuar/NAMESPACE0000644000176200001440000001133414125442656012763 0ustar liggesusers### C code useDynLib(actuar, .registration = TRUE, .fixes = "C_") ### Imports import(expint) # for C code import(stats, graphics) importFrom(utils, head, tail) ### Exports export( ## Credibility theory cm, ## Simulation of insurance data rcompound, rcomppois, rmixture, simul, simpf, rcomphierarc, severity, unroll, ## Risk theory aggregateDist, CTE, TVaR, discretize, discretise, VaR, adjCoef, ruin, ## One parameter distributions dinvexp, pinvexp, qinvexp, rinvexp, minvexp, levinvexp, mexp, levexp, mgfexp, dlogarithmic, plogarithmic, qlogarithmic, rlogarithmic, dztpois, pztpois, qztpois, rztpois, dztgeom, pztgeom, qztgeom, rztgeom, ## Two parameter distributions munif, levunif, mgfunif, mnorm, mgfnorm, mbeta, levbeta, mgamma, levgamma, mgfgamma, mchisq, levchisq, mgfchisq, dinvgamma, pinvgamma, qinvgamma, rinvgamma, minvgamma, levinvgamma, mgfinvgamma, dinvparalogis, pinvparalogis, qinvparalogis, rinvparalogis, minvparalogis, levinvparalogis, dinvpareto, pinvpareto, qinvpareto, rinvpareto, minvpareto, levinvpareto, dinvweibull, pinvweibull, qinvweibull, rinvweibull, minvweibull, levinvweibull, dlgompertz, plgompertz, qlgompertz, rlgompertz, mlgompertz, levlgompertz, # aliases dlgamma, plgamma, qlgamma, rlgamma, mlgamma, levlgamma, dllogis, pllogis, qllogis, rllogis, mllogis, levllogis, mlnorm, levlnorm, dparalogis, pparalogis, qparalogis, rparalogis, mparalogis, levparalogis, dpareto, ppareto, qpareto, rpareto, mpareto, levpareto, dpareto1, ppareto1, qpareto1, rpareto1, mpareto1, levpareto1, mweibull, levweibull, ## minvGauss, levinvGauss, mgfinvGauss, [defunct v3.0-0] dgumbel, pgumbel, qgumbel, rgumbel, mgumbel, mgfgumbel, dinvgauss, pinvgauss, qinvgauss, rinvgauss, minvgauss, levinvgauss, mgfinvgauss, dztnbinom, pztnbinom, qztnbinom, rztnbinom, dztbinom, pztbinom, qztbinom, rztbinom, dzmlogarithmic, pzmlogarithmic, qzmlogarithmic, rzmlogarithmic, dzmpois, pzmpois, qzmpois, rzmpois, dzmgeom, pzmgeom, qzmgeom, rzmgeom, dpoisinvgauss, ppoisinvgauss, qpoisinvgauss, rpoisinvgauss, dpig, ppig, qpig, rpig, # aliases ## Three parameter distributions dburr, pburr, qburr, rburr, mburr, levburr, dgenpareto, pgenpareto, qgenpareto, rgenpareto, mgenpareto, levgenpareto, dinvburr, pinvburr, qinvburr, rinvburr, minvburr, levinvburr, dinvtrgamma, pinvtrgamma, qinvtrgamma, rinvtrgamma, minvtrgamma, levinvtrgamma, dtrgamma, ptrgamma, qtrgamma, rtrgamma, mtrgamma, levtrgamma, dpareto2, ppareto2, qpareto2, rpareto2, mpareto2, levpareto2, dpareto3, ppareto3, qpareto3, rpareto3, mpareto3, levpareto3, dzmnbinom, pzmnbinom, qzmnbinom, rzmnbinom, dzmbinom, pzmbinom, qzmbinom, rzmbinom, ## Four parameter distributions dgenbeta, pgenbeta, qgenbeta, rgenbeta, mgenbeta, levgenbeta, dtrbeta, ptrbeta, qtrbeta, rtrbeta, mtrbeta, levtrbeta, dpearson6, ppearson6, qpearson6, rpearson6, mpearson6, levpearson6, #aliases dpareto4, ppareto4, qpareto4, rpareto4, mpareto4, levpareto4, ## Five parameter distributions dfpareto, pfpareto, qfpareto, rfpareto, mfpareto, levfpareto, ## Phase-type distributions dphtype, pphtype, rphtype, mphtype, mgfphtype, ## Loss distributions grouped.data, ogive, emm, mde, elev, coverage, var, sd ) ### Methods S3method("[", grouped.data) S3method("[<-", grouped.data) S3method(aggregate, portfolio) S3method(CTE, aggregateDist) S3method(diff, aggregateDist) S3method(elev, default) S3method(elev, grouped.data) S3method(emm, default) S3method(emm, grouped.data) S3method(frequency, portfolio) S3method(hist, grouped.data) S3method(knots, ogive) S3method(knots, elev) S3method(mean, aggregateDist) S3method(mean, grouped.data) S3method(sd, default) S3method(sd, grouped.data) S3method(var, default) S3method(var, grouped.data) S3method(ogive, default) S3method(ogive, grouped.data) S3method(plot, adjCoef) S3method(plot, aggregateDist) S3method(plot, elev) S3method(plot, ogive) S3method(plot, ruin) S3method(predict, bstraub) S3method(predict, cm) S3method(predict, hache) S3method(predict, hierarc) S3method(predict, bayes) S3method(print, aggregateDist) S3method(print, elev) S3method(print, cm) S3method(print, mde) S3method(print, ogive) S3method(print, summary.ogive) S3method(print, portfolio) S3method(print, summary.aggregateDist) S3method(print, summary.cm) S3method(quantile, aggregateDist) S3method(quantile, grouped.data) S3method(severity, default) S3method(severity, portfolio) S3method(summary, aggregateDist) S3method(summary, cm) S3method(summary, grouped.data) S3method(summary, elev) S3method(summary, ogive) S3method(VaR, aggregateDist) S3method(weights, portfolio) actuar/demo/0000755000176200001440000000000014125442656012466 5ustar liggesusersactuar/demo/simulation.R0000644000176200001440000000560514030725703014773 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Demo of the portfolio simulation facilities provided by actuar ### ### AUTHOR: Vincent Goulet require(actuar) ## A simple Compound Poisson model: S_t = C_1 + ... + C_{N_t}, with ## N_t ~ Poisson(10), C ~ Lognormal(log(1500) - 1, 1). The names of ## the components serve no purpose here but are required. pf <- simul(list(y = 10), model.freq = expression(y = rpois(10)), model.sev = expression(y = rlnorm(log(1500) - 1, 1))) pf # print method aggregate(pf) # aggregate claim amounts frequency(pf) # frequencies severity(pf) # individual claim amounts severity(pf, splitcol = 10) # last period separate ## Simple (continuous) mixture of models: S_t|Theta ~ Poisson(Theta), ## Theta ~ Gamma(2, 1). Any names can be used in the model. pf <- simul(list(Theta = 1, S = 10), model.freq = expression(Theta = rgamma(2, 1), S = rpois(Theta))) aggregate(pf) # actual data frequency(pf) # same, here ## Model with with mixtures for both frequency and severity. pf <- simul(list(entity = 10, year = 5), model.freq = expression(entity = rgamma(2, 1), year = rpois(entity)), model.sev = expression(entity = rnorm(5, 1), year = rlnorm(entity, 1))) pf aggregate(pf) frequency(pf) ## Same model as above, but with weights incorporated into the model. ## The string "weights" should appear in the model specification ## wherever weights are to be used. wit <- runif(10, 2, 10) (wit <- runif(50, rep(0.5 * wit, each = 5), rep(1.5 * wit, each = 5))) (pf <- simul(list(entity = 10, year = 5), model.freq = expression(entity = rgamma(2, 1), year = rpois(weights * entity)), model.sev = expression(entity = rnorm(5, 1), year = rlnorm(entity, 1)), weights = wit)) weights(pf) # extraction of weights ## Three level hierarchical model (sector, unit, contract). Claim ## severity varies only by sector and unit. The number of "nodes" at ## each level is different. nodes <- list(sector = 2, unit = c(3, 4), contract = c(10, 5, 8, 5, 7, 11, 4), year = 6) mf <- expression(sector = rexp(2), unit = rgamma(sector, 0.1), contract = rgamma(unit, 1), year = rpois(weights * contract)) ms <- expression(sector = rnorm(2, sqrt(0.1)), unit = rnorm(sector, 1), contract = NULL, year = rlnorm(unit, 1)) wijkt <- runif(50, 2, 10) wijkt <- runif(300, rep(0.5 * wijkt, each = 6), rep(1.5 * wijkt, each = 6)) pf <- simul(nodes, model.freq = mf, model.sev = ms, weights = wijkt) frequency(pf) weights(pf) actuar/demo/risk.R0000644000176200001440000003024614030725703013556 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Demo of the risk theory facilities provided by actuar ### ### AUTHORS: Christophe Dutang, Vincent Goulet require(actuar) require(graphics) ### DISCRETIZATION OF CONTINUOUS DISTRIBUTIONS ## Upper and lower discretization of a Gamma(2, 1) distribution with a ## step (or span, or lag) of 0.5. The value of 'to' is chosen so as to ## cover most of the distribution. x <- seq(0, qgamma(1 - 1E-6, 2, 1), by = 0.5) xu <- tail(x, 1) fu <- discretize(pgamma(x, 2, 1), method = "upper", from = 0, to = xu, step = 0.5) fl <- discretize(pgamma(x, 2, 1), method = "lower", from = 0, to = xu, step = 0.5) curve(pgamma(x, 2, 1), xlim = range(x), lwd = 2) par(col = "blue") plot(stepfun(head(x, -1), diffinv(fu)), pch = 19, add = TRUE) par(col = "green") plot(stepfun(x, diffinv(fl)), pch = 19, add = TRUE) par(col = "black") ## Discretization with the rounding method, which has the true cdf ## pass through the midpoints of the intervals [x - step/2, x + ## step/2). fr <- discretize(pgamma(x, 2, 1), method = "rounding", from = 0, to = xu, step = 0.5) curve(pgamma(x, 2, 1), xlim = range(x), lwd = 2) par(col = "blue") plot(stepfun(head(x, -1), diffinv(fr)), pch = 19, add = TRUE) par(col = "black") ## Local matching of the first moment. This requires a function to ## compute the limited expected value of the true distribution in any ## point. fb <- discretize(pgamma(x, 2, 1), method = "unbiased", lev = levgamma(x, 2, 1), from = 0, to = xu, step = 0.5) curve(pgamma(x, 2, 1), xlim = range(x), lwd = 2) par(col = "blue") plot(stepfun(x, diffinv(fb)), pch = 19, add = TRUE) par(col = "black") all.equal(diff(pgamma(range(x), 2, 1)), sum(fb)) # same total probability all.equal(levgamma(xu, 2, 1) - xu * pgamma(xu, 2, 1, lower.tail = FALSE), drop(crossprod(x, fb))) # same expected value ## Comparison of all four methods fu <- discretize(plnorm(x), method = "upper", from = 0, to = 5) fl <- discretize(plnorm(x), method = "lower", from = 0, to = 5) fr <- discretize(plnorm(x), method = "rounding", from = 0, to = 5) fb <- discretize(plnorm(x), method = "unbiased", from = 0, to = 5, lev = levlnorm(x)) curve(plnorm(x), from = 0, to = 5, lwd = 2) par(col = "blue") plot(stepfun(0:4, diffinv(fu)), pch = 19, add = TRUE) par(col = "red") plot(stepfun(0:5, diffinv(fl)), pch = 19, add = TRUE) par(col = "green") plot(stepfun(0:4, diffinv(fr)), pch = 19, add = TRUE) par(col = "magenta") plot(stepfun(0:5, diffinv(fb)), pch = 19, add = TRUE) legend("bottomright", legend = c("upper", "lower", "rounding", "unbiased"), col = c("blue", "red", "green", "magenta"), lty = 1, pch = 19, text.col = "black") par(col = "black") ### CALCULATION OF THE AGGREGATE CLAIM AMOUNT DISTRIBUTION ## Calculation of the aggregate claim amount distribution using the ## recursive method (Panjer). Argument 'x.scale' is used to specify ## how much a value of 1 is really worth. fx.b <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5, method = "unbiased", lev = levgamma(x, 2, 1)) Fs.b <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx.b, lambda = 10, x.scale = 0.5) summary(Fs.b) # summary method knots(Fs.b) # support of Fs.b (knots) Fs.b(knots(Fs.b)) # evaluation at knots plot(Fs.b, do.points = FALSE, verticals = TRUE, xlim = c(0, 60)) # graphic mean(Fs.b) # empirical mean quantile(Fs.b) # quantiles ## Convolutions (exact calculation). Requires a vector of ## probabilities for the frequency model. This method can quickly ## become impractical for a large expected number of claims. pn <- dpois(0:qpois(1-1E-6, 10), 10) Fs <- aggregateDist("convolution", model.freq = pn, model.sev = fx.b, x.scale = 0.5) summary(Fs) # summary method knots(Fs) # support of Fs (knots) Fs(knots(Fs)) # evaluation at knots plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 60)) # graphic mean(Fs) # empirical mean quantile(Fs) # quantiles ## Normal approximation. Not hugely useful, but simple to implement... Fs.n <- aggregateDist("normal", moments = c(20, 60)) summary(Fs.n) # summary method plot(Fs.n, xlim = c(0, 60)) # graphic mean(Fs.n) # true mean quantile(Fs.n) # normal quantiles ## Normal Power II approximation. The approximation is valid for ## values above the expected value only. Fs.np <- aggregateDist("npower", moments = c(20, 60, 0.516398)) summary(Fs.np) # summary method plot(Fs.np, xlim = c(0, 60)) # truncated graphic ## Simulation method. Function 'simul' is used to simulate the data ## (see the 'simulation' demo for examples). Fs.s <- aggregateDist("simulation", model.freq = expression(y = rpois(10)), model.sev = expression(y = rgamma(2, 1)), nb.simul = 10000) summary(Fs.s) # summary method plot(Fs.s, do.points = FALSE, verticals = TRUE, xlim = c(0, 60)) # graphic mean(Fs.s) # empirical mean quantile(Fs.s) # quantiles ## Graphic comparing the cdfs obtained by a few methods. fx.u <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5, method = "upper") Fs.u <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx.u, lambda = 10, x.scale = 0.5) fx.l <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5, method = "lower") Fs.l <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx.l, lambda = 10, x.scale = 0.5) par(col = "black") plot(Fs.b, do.points = FALSE, verticals = TRUE, xlim = c(0, 60), sub = "") par(col = "blue") plot(Fs.u, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "") par(col = "red") plot(Fs.l, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "") par(col = "green") plot(Fs.s, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "") par(col = "magenta") plot(Fs.n, add = TRUE, sub = "") legend("bottomright", legend = c("recursive + unbiased", "recursive + upper", "recursive + lower", "simulation", "normal approximation"), col = c("black", "blue", "red", "green", "magenta"), lty = 1, text.col = "black", cex = 1.2) par(col = "black") ## Table of quantiles for the same methods as graphic above. x <- knots(Fs.l) m <- which.min(x[round(Fs.l(x), 6) > 0]) M <- which.max(x[round(Fs.u(x), 6) < 1]) x <- x[round(seq.int(from = m, to = M, length = 30))] round(cbind(x = x, Lower = Fs.l(x), Unbiased = Fs.b(x), Upper = Fs.u(x), Simulation = Fs.s(x), Normal = Fs.n(x)), 6) ### CALCULATION OF THE ADJUSTMENT COEFFICIENT ## No reinsurance, generalized Erlang claim amounts, inverse gamma ## interarrival times and independence. The adjustment coefficient is ## increasing with the safety loading. mgf <- function(x) 1/(1 - x) * 2/(2 - x) * 3/(3 - x) adjCoef(mgf, mgfinvgamma(x, 2, 6/11), 1.1, 1) adjCoef(mgf, mgfinvgamma(x, 2, 6/11), 1.2, 1) adjCoef(mgf, mgfinvgamma(x, 2, 6/11), 1.3, 1) ## More sophisticated example: comparison of the effect of dependence ## on the adjustment coefficient in the case of proportional ## reinsurance. Use a Clayton copula with exponential marginals. rclayton <- function(alpha, n) { val <- cbind(runif(n), runif(n)) val[, 2] <- (val[, 1]^(-alpha) * (val[, 2]^(-alpha/(alpha + 1)) - 1) + 1)^(-1/alpha) val } u <- rclayton(2, 1000) # variates with positive dependence x <- qexp(u[, 1]) # claim amounts w <- qexp(u[, 2]) # interarrival times ## Premium rate and Lundberg's functions of the retention rate. We ## assume a safety loading of 20% for the insurer and 30% for the ## reinsurer and premium calculated with the expected value principle. p <- function(a) mean(x)/mean(w) * (1.2 - 1.3 + 1.3 * a) h <- function(r, a) mean(exp(r * (a * x - p(a) * w))) R1 <- adjCoef(h = h, upper = 1, reinsurance = "prop", from = 1/3, to = 1) plot(R1) ## Repeat the above with independent claim amounts and interarrival ## times. u <- rclayton(1, 1000) # independent variates x <- qexp(u[,1]) # claim amounts w <- qexp(u[,2]) # interarrival times R2 <- adjCoef(h = h, upper = 1, reinsurance = "prop", from = 1/3, to = 1) plot(R2, add = TRUE, col = "green") legend("bottomright", legend = c("dependence", "independence"), col = c("black", "green"), lty = 1) ## Similar example with excess-of-loss reinsurance. ## positive dependence u <- rclayton(2, 1000) # variates with positive dependence x <- qexp(u[,1]) # claim amounts w <- qexp(u[,2]) # interarrival times p <- function(L) mean(x)/mean(w) * (1.2 - 1.3) + 1.3 * mean(pmin(L, x))/mean(w) h <- function(r, L) mean(exp(r * (pmin(L, x) - p(L) * w))) R3 <- adjCoef(h = h, upper = 1, reinsurance = "prop", from = 0, to = 10) plot(R3) u <- rclayton(1, 1000) # independent variates x <- qexp(u[,1]) # claim amounts w <- qexp(u[,2]) # interarrival times R4 <- adjCoef(h = h, upper = 1, reinsurance = "prop", from = 0, to = 10) plot(R4, add = TRUE, col = "green") legend("bottomright", legend = c("dependence", "independence"), col = c("black", "green"), lty = 1) ### CALCULATION OF RUIN PROBABILITIES ## Case with an explicit formula: exponential claims and interarrival ## times. Safety loading is always 20% and premiums are always ## calculated according to the expected value principle. psi <- ruin(claims = "exponential", par.claims = list(rate = 1), wait = "exponential", par.wait = list(rate = 1), premium = 1.2) psi(0:10) plot(psi, from = 0, to = 10) ## Exponential claims and hyper-exponential interarrival times. psi <- ruin(claims = "exponential", par.claims = list(rate = 2), wait = "exponential", par.wait = list(rate = c(2, 3, 1)/2, w = c(2, 3, 1)/6), premium = 1.2) psi(0:10) ## Hyper-exponential claims and interarrival times. psi <- ruin(claims = "exponential", par.claims = list(rate = c(2, 3, 1)/2, w = c(2, 3, 1)/6), wait = "exponential", par.wait = list(rate = c(2, 3, 1)/4, w = c(2, 3, 1)/6), premium = 0.6) psi(0:10) ## Exponential claims and Erlang interarrival times psi <- ruin(claims = "exponential", par.claims = list(rate = 2), wait = "Erlang", par.wait = list(shape = 2, rate = 1), premium = 1.2) psi(0:10) ## Erlang claims and interarrival times psi <- ruin(claims = "Erlang", par.claims = list(shape = 2, rate = 2), wait = "Erlang", par.wait = list(shape = 2, rate = 1), premium = 0.6) psi(0:10) ## Mixture of Erlang for claims and Erlang interarrival times psi <- ruin(claims = "Erlang", par.claims = list(shape = c(2, 4), rate = c(1, 3), w = c(1, 2)/3), wait = "Erlang", par.wait = list(shape = 2, rate = 1), premium = 1.2) psi(0:10) ## Generalized Erlang claims and mixture of two generalized Erlang ## interarrival times. These must be given as phase-type distributions ## to 'ruin'. prob.c <- c(1, 0, 2, 0)/3 rate.c <- cbind(c(-1, 0, 0, 0), c(1, -3, 0, 0), c(0, 0, -2, 0), c(0, 0, 2, -3)) mean.c <- mphtype(1, prob.c, rate.c) prob.w <- c(1, 0, 0) rate.w <- cbind(c(-1, 0, 0), c(1, -2, 0), c(0, 2, -3)) mean.w <- mphtype(1, prob.w, rate.w) psi <- ruin(claims = "phase-type", par.claims = list(prob = prob.c, rate = rate.c), wait = "phase-type", par.wait = list(prob = prob.w, rate = rate.w), premium = 1.2 * mean.c/mean.w) psi(0:10) par(op) actuar/demo/credibility.R0000644000176200001440000000612414030725703015107 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Demo of the credibility theory facilities provided by actuar ### ### AUTHOR: Vincent Goulet require(actuar) ## The package provides the famous data set of Hachemeister (1975) as ## a matrix of 5 lines (one for each state) and 25 columns (the state ## number, 12 periods of ratios, 12 periods of corresponding weights). data(hachemeister) hachemeister ## Fitting of a Buhlmann model to the Hachemeister data set using ## function 'cm'. The interface of the function is similar to 'lm'. fit <- cm(~state, hachemeister, ratios = ratio.1:ratio.12) fit # print method summary(fit) # more information fit$means # (weighted) averages fit$weights # total weights fit$unbiased # unbiased variance estimators predict(fit) # credibility premiums ## Fitting of a Buhlmann-Straub model require weights. Here, iterative ## estimators of the variance components are used. fit <- cm(~state, hachemeister, ratios = ratio.1:ratio.12, weights = weight.1:weight.12, method = "iterative") summary(fit) predict(fit) ## Simulation of a three level hierarchical portfolio. nodes <- list(sector = 2, unit = c(3, 4), contract = c(10, 5, 8, 5, 7, 11, 4), year = 6) mf <- expression(sector = rexp(2), unit = rgamma(sector, 0.1), contract = rgamma(unit, 1), year = rpois(weights * contract)) ms <- expression(sector = rnorm(2, sqrt(0.1)), unit = rnorm(sector, 1), contract = NULL, year = rlnorm(unit, 1)) wijkt <- runif(50, 2, 10) wijkt <- runif(300, rep(0.5 * wijkt, each = 6), rep(1.5 * wijkt, each = 6)) pf <- simul(nodes, model.freq = mf, model.sev = ms, weights = wijkt) ## Fitting of a hierarchical model to the portfolio simulated above. DB <- cbind(weights(pf, prefix = "weight."), aggregate(pf, classif = FALSE) / weights(pf, classif = FALSE)) fit <- cm(~sector + sector:unit + sector:unit:contract, data = DB, ratios = year.1:year.6, weights = weight.year.1:weight.year.6) fit predict(fit) # credibility premiums predict(fit, levels = "unit") # unit credibility premiums only summary(fit) # portfolio summary summary(fit, levels = "unit") # unit portfolio summary only ## Fitting of Hachemeister regression model with intercept at time origin. fit <- cm(~state, hachemeister, ratios = ratio.1:ratio.12, weights = weight.1:weight.12, regformula = ~time, regdata = data.frame(time = 1:12)) summary(fit, newdata = data.frame(time = 13)) # 'newdata' is the future value of regressor predict(fit, newdata = data.frame(time = 13)) ## Position the intercept at the barycenter of time. fit <- cm(~state, hachemeister, ratios = ratio.1:ratio.12, weights = weight.1:weight.12, regformula = ~time, regdata = data.frame(time = 1:12), adj.intercept = TRUE) summary(fit, newdata = data.frame(time = 13)) actuar/demo/lossdist.R0000644000176200001440000002447714125442656014473 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Demo of the loss distributions facilities provided by actuar ### ### AUTHOR: Vincent Goulet require(actuar) require(graphics) ### A utility function to create graphs for probability laws showgraphs <- function(fun, par, what = c("d", "p", "m", "lev"), xlim) { dist <- switch(fun, trbeta = "TRANSFORMED BETA DISTRIBUTION", genpareto = "GENERALIZED PARETO DISTRIBUTION", burr = "BURR DISTRIBUTION", invburr = "INVERSE BURR DISTRIBUTION", pareto = "PARETO DISTRIBUTION", invpareto = "INVERSE PARETO DISTRIBUTION", llogis = "LOGLOGISTIC DISTRIBUTION", paralogis = "PARALOGISTIC DISTRIBUTION", invparalogis = "INVERSE PARALOGISTIC DISTRIBUTION", trgamma = "TRANSFORMED GAMMA DISTRIBUTION", invtrgamma = "INVERSE TRANSFORMED GAMMA DISTRIBUTION", invgamma = "INVERSE GAMMA DISTRIBUTION", weibull = "WEIBULL DISTRIBUTION", invweibull = "INVERSE WEIBULL DISTRIBUTION", invexp = "INVERSE EXPONENTIAL DISTRIBUTION", pareto1 = "SINGLE PARAMETER PARETO DISTRIBUTION", lgamma = "LOGGAMMA DISTRIBUTION", genbeta = "GENERALIZED BETA DISTRIBUTION", phtype = "PHASE-TYPE DISTRIBUTION", gamma = "GAMMA DISTRIBUTION", exp = "EXPONENTIAL DISTRIBUTION", chisq = "CHI-SQUARE DISTRIBUTION", lnorm = "LOGNORMAL DISTRIBUTION", invgauss = "INVERSE GAUSSIAN DISTRIBUTION", norm = "NORMAL DISTRIBUTION", beta = "BETA DISTRIBUTION", unif = "UNIFORM DISTRIBUTION") if (missing(xlim)) { qf <- match.fun(paste("q", fun, sep = "")) formals(qf)[names(par)] <- par xlim <- c(0, qf(0.999)) } k <- seq.int(4) limit <- seq(0, xlim[2], len = 10) mfrow = c(ceiling(length(what) / 2), 2) op <- par(mfrow = mfrow, oma = c(0, 0, 2, 0)) for (t in what) { f <- match.fun(paste(t, fun, sep = "")) formals(f)[names(par)] <- par main <- switch(t, "d" = "Probability Density Function", "p" = "Cumulative Distribution Function", "m" = "Raw Moments", "lev" = "Limited Expected Value Function", "mgf" = "Moment Generating Function") if (t == "m") plot(k, f(k), type = "l", col = 4, lwd = 2, main = main) else if (t == "lev") plot(limit, f(limit), type = "l", col = 4, lwd = 2, main = main) else if (t == "mgf") curve(f(x), xlim = c(0, 2), col = 4, lwd = 2, main = main) else curve(f(x), xlim = xlim, col = 4, lwd = 2, main = main) title(main = dist, outer = TRUE) } par(op) } ### ### DATA SETS ### ## The package includes the individual dental claims and grouped ## dental claims data sets often referred to in Klugman, Panjer & ## Willmot (1998, 2004) data(dental); dental data(gdental); gdental ### ### PROBABILITY LAWS ### ## Illustration of the new probability laws functions provided by the ## package. ## TRANSFORMED BETA FAMILY ## Transformed beta distribution showgraphs("trbeta", list(shape1 = 3, shape2 = 4, shape3 = 5, scale = 10)) ## Generalized Pareto distribution showgraphs("genpareto", list(shape1 = 10, shape2 = 4, scale = 10)) ## Burr distribution showgraphs("burr", list(shape1 = 3, shape2 = 4, scale = 10)) ## Inverse Burr distribution showgraphs("invburr", list(shape1 = 3, shape2 = 6, scale = 10)) ## Pareto distribution showgraphs("pareto", list(shape = 10, scale = 10)) ## Inverse Pareto distribution showgraphs("invpareto", list(shape = 4, scale = 1), what = c("d", "p")) ## Loglogistic distribution showgraphs("llogis", list(shape = 6, scale = 10)) ## Paralogistic distribution showgraphs("paralogis", list(shape = 3, scale = 10)) ## Inverse paralogistic distribution showgraphs("invparalogis", list(shape = 6, scale = 10)) ## TRANSFORMED GAMMA FAMILY ## Transformed gamma distribution showgraphs("trgamma", list(shape1 = 3, shape2 = 1, scale = 10)) ## Inverse transformed gamma distribution showgraphs("invtrgamma", list(shape1 = 3, shape2 = 2, scale = 10)) ## Inverse gamma distribution showgraphs("invgamma", list(shape = 6, scale = 10)) ## Weibull distribution ('mweibull' and 'levweibull') showgraphs("weibull", list(shape = 1.5, scale = 10)) ## Inverse Weibull distribution showgraphs("invweibull", list(shape = 6, scale = 10)) ## Inverse exponential distribution showgraphs("invexp", list(rate = 1), what = c("d", "p")) ## OTHER DISTRIBUTIONS ## Single parameter Pareto distribution showgraphs("pareto1", list(shape = 5, min = 10), xlim = c(0, 50)) ## Loggamma distribution showgraphs("lgamma", list(shapelog = 2, ratelog = 5)) ## Generalized beta distribution showgraphs("genbeta", list(shape1 = 1, shape2 = 2, shape3 = 3, scale = 2)) ## Phase-type distribution showgraphs("phtype", list(prob = c(0.5614, 0.4386), rates = matrix(c(-8.64, 0.101, 1.997, -1.095), 2, 2)), what = c("d", "p", "m", "mgf"), xlim = c(0.001, 5)) ## DISTRIBUTIONS ALREADY IN R ## Gamma distribution showgraphs("gamma", list(shape = 3, rate = 5), what = c("m", "lev", "mgf")) ## Chi-square distribution showgraphs("chisq", list(df = 3), what = c("m", "lev", "mgf")) ## Exponential distribution showgraphs("exp", list(rate = 5), what = c("m", "lev", "mgf")) ## Lognormal distribution showgraphs("lnorm", list(meanlog = 1, sdlog = 1), what = c("m", "lev")) ## Inverse gaussian distribution (from package SuppDists) showgraphs("invgauss", list(nu = 1, lambda = 10), what = c("m", "lev", "mgf"), xlim = c(0, 10)) ## Normal distribution showgraphs("norm", list(mean = 0, sd = 1), what = c("m", "mgf")) ## Beta distribution showgraphs("beta", list(shape1 = 1, shape2 = 2), what = c("m", "lev")) ## Uniform distribution showgraphs("unif", list(min = 0, max = 1), what = c("m", "lev", "mgf")) ### ### GROUPED DATA MANIPULATION ### ## Creation of grouped data objects x <- grouped.data(groups = c(0, 25, 50, 100, 150, 250, 500), line1 = c(30, 31, 57, 42, 65, 84), line2 = c(26, 33, 31, 19, 16, 11)) x ## Extraction and replacement: only "[" and "[<-" are officially ## supported. x[, 1] # group boundaries x[1] # notice the difference x[, -1] # group frequencies x[1:3,] # first 3 groups x[1, 2] <- 22; x # frequency replacement x[1, 1] <- c(0, 20); x # boundary replacement ## Mean, variance and standard deviation for grouped data objects. mean(x) var(x) sd(x) ## In the sequel, only the first frequencies column is considered. x <- x[, -3] ## Function 'hist' handles individual data only. We provide a method ## for grouped data. hist(x) ## Function 'ogive' returns a function to compute the ogive of grouped ## data in any point, much like 'ecdf' does for individual data. ## Methods also exist to extract the group boundaries ('knots') and ## to plot the ogive. Fnt <- ogive(x) summary(Fnt) knots(Fnt) # group boundaries Fnt(knots(Fnt)) # ogive at group boundaries plot(Fnt) # plot of the ogive ## The method of 'quantile' for grouped data objects computes linearly ## smoothed quantiles, that is the inverse of the ogive in various ## points. quantile(x) Fnt(quantile(x)) ## The method of 'summary' for grouped data objects returns the ## quantiles and the mean in a single object. summary(x) ### ### EMPIRICAL MOMENTS CALCULATION ### ## Function 'emm' computes the k-th empirical moment of a sample, ## whether it is individual or grouped data. emm(dental) # == mean(dental) emm(gdental) # == mean(gdental) emm(dental, order = 1:3) # first three moments emm(gdental, order = 1:3) # idem ## Function 'elev' is similar to 'ecdf' and 'ogive' in that it returns ## a function to compute the empirical limited expected value (first ## limited moment) for any limit. There are methods for individual and ## grouped data. lev <- elev(dental) lev(knots(lev)) # ELEV at data points plot(lev, type = "o", pch = 19) # plot of the ELEV function lev <- elev(gdental) lev(knots(lev)) # ELEV at data points plot(lev, type = "o", pch = 19) # plot of the ELEV function ### ### MINIMUM DISTANCE ESTIMATION ### ## Maximum likelihood estimation (for individual data) is well covered ## by 'fitdistr' in package MASS. We provide function 'mde' to fit ## models using three distance minimization techniques: Cramer-von ## Mises (for individual and grouped data), chi-square and layer ## average severity (both grouped data only). Usage (and inner ## working) is very similar to 'fitdistr'. mde(dental, pexp, start = list(rate = 1/200), measure = "CvM") mde(gdental, pexp, start = list(rate = 1/200), measure = "CvM") mde(gdental, pexp, start = list(rate = 1/200), measure = "chi-square") mde(gdental, levexp, start = list(rate = 1/200), measure = "LAS") ### ### COVERAGE MODIFICATIONS ### ## Function 'coverage' is useful to obtain the probability density ## function (pdf) or cumulative distribution function (cdf) of a loss ## random variable under coverage modifications. f <- coverage(dgamma, pgamma, deductible = 1, limit = 7) curve(dgamma(x, 3), xlim = c(0, 10), ylim = c(0, 0.3)) # original curve(f(x, 3), xlim = c(0.01, 5.99), col = 4, add = TRUE) # modified x <- rgamma(1000, 3, 1) # sample of claim amounts x <- pmin(x, 7)[x > 1] - 1 # deductible and limit library(MASS) # for ML estimation m <- mean(x) # empirical mean v <- var(x) # empirical variance (p <- fitdistr(x, f, start = list(shape = m^2/v, rate = m/v))$estimate ) # MLE hist(x + 1, breaks = 0:10, prob = TRUE) # histogram of observed data curve(dgamma(x, p[1], p[2]), add = TRUE) # fit of underlying distribution par(op) actuar/demo/00Index0000644000176200001440000000023114030725703013604 0ustar liggesuserscredibility credibility theory lossdist loss distributions modeling risk risk and ruin theory simulation simulation of compound hierarchical models actuar/data/0000755000176200001440000000000014030725703012443 5ustar liggesusersactuar/data/hachemeister.rda0000644000176200001440000000111214030725703015567 0ustar liggesusers‹]”=hSQ†OÒVÓ k7D’4măąE2ôbŠjrȘ*t(ĆĄ¶I“ÔTM±š¶8žè „(8ˆ8ˆ888:(tppâ©ßs…s7OȚïŸçû9śä^<—އÓa„TP;*Űa~vÍW@©H·ážlæJÖË{čąö ƶÏÄîÙRÿ>)C0{aóžpæzDX9"Ź­ gŃŹ{pI8ő]Xż.œ“B©Æ/âä)O’瘰”‹|ěÔ]@'đVS—~kçɏžŚÜ?Áș!îoŃu3O|ő’đŃęÂś_‹xšyéłÉ\­q|ߘŸ:Ő?ŹĂ7ÿœûsŹûÌŒì[يïëąèőîg_ž,S—:­ƒÔÍČpő„ÓÿáʛÂgô”čTê$EÏP§Ä~-ŸnŰ7ö§úF8ŒŻM|}MòŐÉ?ęçŹÍțŻțŽû+3wń…đi˜|G%ß,çkò“P2Ç sűϓőÎám%\’œZ;«Źț*äŐ~ĘáÊ[|_…äčĆčZűÀ a“ùÊÌSÂߞƷČ_„Sűu„țű_mŒ–yöâă|_.oJbû]Đq5—7Ű«v^Ju™ë°c ËP&ïÍïű¶ÍŻÚńtuF{ˆĘ…ŒÎĘ8łeܖ}¶LŰČߖ¶ŽeҖ§!ڈ::æhż±Đ/w-«ÿśíkś~ŸŁŽîwô€ŁtŽß·ßOÔ ÄÜ@œGČęÔźéÉęactuar/data/gdental.rda0000644000176200001440000000130114030725703014544 0ustar liggesusers‹ćVÍnÓ@^ۉóWHˆ X‡„–mj xÄĄêÁr쐐ŰÈqŠû"œyƒàȁˆšYïNíĘ8â§ @Xšxòyfwæ›/?ytàtș„•ššnC……Aî­É8ˆRoNˆv±#Ú9žwYisŸæ5i8X‡Ć‘˜.-§ÏƒŁ`ŸoÀ3)ÚZ#ĂpÜCț}kh[@¶kYˆu)V@•(—BŽć2šŒrŠš=«ćĐ(!r †2Ż7,Òl!Ípt(”ŐôçȚ»Rxžz~'à€!kWÁźíƒĘ{öl—?ï16Ćć#oàò*U†dG3)Ą“ÄŻÌj2­Űè8èÜDg[èÜFç:ûž·m±œ”ŒŹ?IâŐË`lŽœÔC©o† T&UŒe>ŽŽŠI-@n\<€rÿ"Ćk íí,šT±à]…§Ìÿ2á5*łÜ€”ŠLßß&-ČZ9#AN# é7fż> ö ZXŸûúŒk&Z'Ž:YI"šRŁc>k…”%=Í*O{ÒSć˜ÿ’”3ÊűGE‚E‚XžmBì{èÿÔò–ț›MLùłï)_àČś[čäž]ĂY+Z-Â8Y{ò?”ŸŒW‰H=Űá*òÓi łƒfzéĂa62ÆÓÉ4]w gÄađ·ĂÉöÛ”łćûŽćÏ ŁÇvY _ŒźŸËŐ° À;OŃû/1Š-"O$œÔŽź™Š Ѕ ÄÎÄæ( aÊ3(9ŁüȚ‡SÎe*‹_VńÇüƒG Ęćr.í&”Č»č„/ŐPà`Ś‘ÈŠˆ.ÜőŸț ^Ș–< ß5ˆè Y=–…çL5M‘ü“Ò(W—ròSjȘźĂì+qĂf^á actuar/data/dental.rda0000644000176200001440000000014514030725703014402 0ustar liggesusers‹ r‰0âŠàb```b`bfb “… H020pi¶”ÔŒ’Ä ‹ˆč0€€ƒ„v‡Ò.Pșô„.€(p(ŸĄ§ÏĐQ tă(ű?B@…actuar/man/0000755000176200001440000000000014125442656012315 5ustar liggesusersactuar/man/emm.Rd0000644000176200001440000000361214125442656013364 0ustar liggesusers\name{emm} \alias{emm} \alias{emm.default} \alias{emm.grouped.data} \title{Empirical Moments} \description{ Raw empirical moments for individual and grouped data. } \usage{ emm(x, order = 1, \dots) \method{emm}{default}(x, order = 1, \dots) \method{emm}{grouped.data}(x, order = 1, \dots) } \arguments{ \item{x}{a vector or matrix of individual data, or an object of class \code{"grouped data"}.} \item{order}{order of the moment. Must be positive.} \item{\dots}{further arguments passed to or from other methods.} } \details{ Arguments \code{\dots} are passed to \code{\link{colMeans}}; \code{na.rm = TRUE} may be useful for individual data with missing values. For individual data, the \eqn{k}th empirical moment is \eqn{\sum_{j = 1}^n x_j^k}{sum(j; x[j]^k)}. For grouped data with group boundaries \eqn{c_0, c_1, \dots, c_r}{c[0], c[1], \dots, c[r]} and group frequencies \eqn{n_1, \dots, n_r}{n[1], \dots, n[r]}, the \eqn{k}th empirical moment is \deqn{\frac{1}{n} \sum_{j = 1}^r \frac{n_j (c_j^{k + 1} - c_{j - 1}^{k + 1})}{% (k + 1) (c_j - c_{j - 1})},}{% (1/n) * sum(j; (n[j] * {c[j]^(k+1) - c[j-1]^(k+1)})/% ((k+1) * {c[j] - c[j-1]})),} where \eqn{n = \sum_{j = 1}^r n_j}{n = sum(j; n[j])}. } \value{ A named vector or matrix of moments. } \seealso{ \code{\link{mean}} and \code{\link{mean.grouped.data}} for simpler access to the first moment. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), \emph{Loss Models, From Data to Decisions}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ ## Individual data data(dental) emm(dental, order = 1:3) ## Grouped data data(gdental) emm(gdental) x <- grouped.data(cj = gdental[, 1], nj1 = sample(1:100, nrow(gdental)), nj2 = sample(1:100, nrow(gdental))) emm(x) # same as mean(x) } \keyword{univar} actuar/man/rcompound.Rd0000644000176200001440000000654314125442656014622 0ustar liggesusers\name{rcompound} \alias{rcompound} \alias{rcomppois} \title{Simulation from Compound Models} \description{ \code{rcompound} generates random variates from a compound model. \code{rcomppois} is a simplified version for a common case. } \usage{ rcompound(n, model.freq, model.sev, SIMPLIFY = TRUE) rcomppois(n, lambda, model.sev, SIMPLIFY = TRUE)} \arguments{ \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{model.freq, model.sev}{expressions specifying the frequency and severity simulation models with the number of variates omitted; see Details.} \item{lambda}{Poisson parameter.} \item{SIMPLIFY}{boolean; if \code{FALSE} the frequency and severity variates are returned along with the aggregate variates.} } \details{ \code{rcompound} generates variates from a random variable of the form \deqn{S = X_1 + ... X_N,} where \eqn{N} is the frequency random variable and \eqn{X_1, X_2, \dots} are the severity random variables. The latter are mutually independent, identically distributed and independent from \eqn{N}. \code{model.freq} and \code{model.sev} specify the simulation models for the frequency and the severity random variables, respectively. A model is a complete call to a random number generation function, with the number of variates omitted. This is similar to \code{\link{rcomphierarc}}, but the calls need not be wrapped into \code{\link{expression}}. Either argument may also be the name of an object containing an expression, in which case the object will be evaluated in the evaluation frame to retrieve the expression. The argument of the random number generation functions for the number of variates to simulate \strong{must} be named \code{n}. \code{rcomppois} generates variates from the common Compound Poisson model, that is when random variable \eqn{N} is Poisson distributed with mean \code{lambda}. } \value{ When \code{SIMPLIFY = TRUE}, a vector of aggregate amounts \eqn{S_1, \dots, S_n}. When \code{SIMPLIFY = FALSE}, a list of three elements: \item{\code{aggregate}}{vector of aggregate amounts \eqn{S_1, \dots, S_n};} \item{\code{frequency}}{vector of frequencies \eqn{N_1, \dots, N_n};} \item{\code{severity}}{vector of severities \eqn{X_1, X_2, \dots}.} } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \seealso{ \code{\link{rcomphierarc}} to simulate from compound hierarchical models. } \examples{ ## Compound Poisson model with gamma severity. rcompound(10, rpois(2), rgamma(2, 3)) rcomppois(10, 2, rgamma(2, 3)) # same ## Frequencies and individual claim amounts along with aggregate ## values. rcomppois(10, 2, rgamma(2, 3), SIMPLIFY = FALSE) ## Wrapping the simulation models into expression() is allowed, but ## not needed. rcompound(10, expression(rpois(2)), expression(rgamma(2, 3))) \dontrun{## Speed comparison between rcompound() and rcomphierarc(). ## [Also note the simpler syntax for rcompound().] system.time(rcompound(1e6, rpois(2), rgamma(2, 3))) system.time(rcomphierarc(1e6, expression(rpois(2)), expression(rgamma(2, 3))))} ## The severity can itself be a compound model. It makes sense ## in such a case to use a zero-truncated frequency distribution ## for the second level model. rcomppois(10, 2, rcompound(rztnbinom(1.5, 0.7), rlnorm(1.2, 1))) } \keyword{datagen} actuar/man/Loglogistic.Rd0000644000176200001440000000705714030725703015064 0ustar liggesusers\name{Loglogistic} \alias{Loglogistic} \alias{dllogis} \alias{pllogis} \alias{qllogis} \alias{rllogis} \alias{mllogis} \alias{levllogis} \title{The Loglogistic Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Loglogistic distribution with parameters \code{shape} and \code{scale}. } \usage{ dllogis(x, shape, rate = 1, scale = 1/rate, log = FALSE) pllogis(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qllogis(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rllogis(n, shape, rate = 1, scale = 1/rate) mllogis(order, shape, rate = 1, scale = 1/rate) levllogis(limit, shape, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The loglogistic distribution with parameters \code{shape} \eqn{= \gamma}{= a} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\gamma (x/\theta)^\gamma}{% x [1 + (x/\theta)^\gamma]^2}}{% f(x) = a (x/s)^a / (x [1 + (x/s)^a]^2)} for \eqn{x > 0}, \eqn{\gamma > 0}{a > 0} and \eqn{\theta > 0}{b > 0}. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}, \eqn{-\gamma < k < \gamma}{-shape < k < shape}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k > -\gamma}{k > -shape} and \eqn{1 - k/\gamma}{1 - k/shape} not a negative integer. } \value{ \code{dllogis} gives the density, \code{pllogis} gives the distribution function, \code{qllogis} gives the quantile function, \code{rllogis} generates random deviates, \code{mllogis} gives the \eqn{k}th raw moment, and \code{levllogis} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levllogis} computes the limited expected value using \code{\link{betaint}}. Also known as the Fisk distribution. See also Kleiber and Kotz (2003) for alternative names and parametrizations. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dpareto3}} for an equivalent distribution with a location parameter. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dllogis(2, 3, 4, log = TRUE)) p <- (1:10)/10 pllogis(qllogis(p, 2, 3), 2, 3) ## mean mllogis(1, 2, 3) ## case with 1 - order/shape > 0 levllogis(10, 2, 3, order = 1) ## case with 1 - order/shape < 0 levllogis(10, 2/3, 3, order = 1) } \keyword{distribution} actuar/man/severity.Rd0000644000176200001440000000244414030725704014453 0ustar liggesusers\name{severity} \alias{severity} \alias{severity.default} \title{Manipulation of Individual Claim Amounts} \description{ \code{severity} is a generic function created to manipulate individual claim amounts. The function invokes particular \emph{methods} which depend on the \code{\link[base]{class}} of the first argument. } \usage{ severity(x, ...) \method{severity}{default}(x, bycol = FALSE, drop = TRUE, \dots) } \arguments{ \item{x}{an \R object.} \item{bycol}{logical; whether to \dQuote{unroll} horizontally (\code{FALSE}) or vertically (\code{TRUE})} \item{\dots}{further arguments to be passed to or from other methods.} \item{drop}{logical; if \code{TRUE}, the result is coerced to the lowest possible dimension.} } \details{ Currently, the default method is equivalent to \code{\link{unroll}}. This is liable to change since the link between the name and the use of the function is rather weak. } \value{ A vector or matrix. } \seealso{ \code{\link{severity.portfolio}} for the original motivation of these functions. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Louis-Philippe Pouliot } \examples{ x <- list(c(1:3), c(1:8), c(1:4), c(1:3)) (mat <- matrix(x, 2, 2)) severity(mat) severity(mat, bycol = TRUE) } \keyword{datagen} \keyword{manip} actuar/man/elev.Rd0000644000176200001440000000473014030725704013534 0ustar liggesusers\name{elev} \alias{elev} \alias{elev.default} \alias{elev.grouped.data} \alias{print.elev} \alias{summary.elev} \alias{knots.elev} \alias{plot.elev} \title{Empirical Limited Expected Value} \description{ Compute the empirical limited expected value for individual or grouped data. } \usage{ elev(x, ...) \method{elev}{default}(x, \dots) \method{elev}{grouped.data}(x, \dots) \method{print}{elev}(x, digits = getOption("digits") - 2, \dots) \method{summary}{elev}(object, \dots) \method{knots}{elev}(Fn, \dots) \method{plot}{elev}(x, \dots, main = NULL, xlab = "x", ylab = "Empirical LEV") } \arguments{ \item{x}{a vector or an object of class \code{"grouped.data"} (in which case only the first column of frequencies is used); for the methods, an object of class \code{"elev"}, typically.} \item{digits}{number of significant digits to use, see \code{\link{print}}.} \item{Fn, object}{an \R object inheriting from \code{"ogive"}.} \item{main}{main title.} \item{xlab, ylab}{labels of x and y axis.} \item{\dots}{arguments to be passed to subsequent methods.} } \details{ The limited expected value (LEV) at \eqn{u} of a random variable \eqn{X} is \eqn{E[X \wedge u] = E[\min(X, u)]}{E[X ^ u] = E[min(X, u)]}. For individual data \eqn{x_1, \dots, x_n}{x[1], \dots, x[n]}, the empirical LEV \eqn{E_n[X \wedge u]}{En[X ^ u]} is thus \deqn{E_n[X \wedge u] = \frac{1}{n} \left( \sum_{x_j < u} x_j + \sum_{x_j \geq u} u \right).}{% En[X ^ u] = (sum(x[j] < u; 1) + sum(x[j] >= u; u))/n.} Methods of \code{elev} exist for individual data or for grouped data created with \code{\link{grouped.data}}. The formula in this case is too long to show here. See the reference for details. } \value{ For \code{elev}, a function of class \code{"elev"}, inheriting from the \code{"\link{function}"} class. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), \emph{Loss Models, From Data to Decisions}, Wiley. } \seealso{ \code{\link{grouped.data}} to create grouped data objects; \code{\link{stepfun}} for related documentation (even though the empirical LEV is not a step function). } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ data(gdental) lev <- elev(gdental) lev summary(lev) knots(lev) # the group boundaries lev(knots(lev)) # empirical lev at boundaries lev(c(80, 200, 2000)) # and at other limits plot(lev, type = "o", pch = 16) } \keyword{dplot} \keyword{hplot} actuar/man/ogive.Rd0000644000176200001440000000635114030725704013713 0ustar liggesusers\name{ogive} \alias{ogive} \alias{ogive.default} \alias{ogive.grouped.data} \alias{print.ogive} \alias{summary.ogive} \alias{knots.ogive} \alias{plot.ogive} \title{Ogive for Grouped Data} \description{ Compute a smoothed empirical distribution function for grouped data. } \usage{ ogive(x, \dots) \method{ogive}{default}(x, y = NULL, breaks = "Sturges", nclass = NULL, \dots) \method{ogive}{grouped.data}(x, \dots) \method{print}{ogive}(x, digits = getOption("digits") - 2, \dots) \method{summary}{ogive}(object, \dots) \method{knots}{ogive}(Fn, \dots) \method{plot}{ogive}(x, main = NULL, xlab = "x", ylab = "F(x)", \dots) } \arguments{ \item{x}{for the generic and all but the default method, an object of class \code{"grouped.data"}; for the default method, a vector of individual data if \code{y} is \code{NULL}, a vector of group boundaries otherwise.} \item{y}{a vector of group frequencies.} \item{breaks, nclass}{arguments passed to \code{\link{grouped.data}}; used only for individual data (when \code{y} is \code{NULL}).} \item{digits}{number of significant digits to use, see \code{\link{print}}.} \item{Fn, object}{an \R object inheriting from \code{"ogive"}.} \item{main}{main title.} \item{xlab, ylab}{labels of x and y axis.} \item{\dots}{arguments to be passed to subsequent methods.} } \details{ The ogive is a linear interpolation of the empirical cumulative distribution function. The equation of the ogive is \deqn{G_n(x) = \frac{(c_j - x) F_n(c_{j - 1}) + (x - c_{j - 1}) F_n(c_j)}{c_j - c_{j - 1}}}{% Gn(x) = 1/(c[j] - c[j-1]) * [(c[j] - x) Fn(c[j-1]) + (x - c[j-1]) Fn(c[j])]} for \eqn{c_{j-1} < x \leq c_j}{c[j-1] < x <= c[j]} and where \eqn{c_0, \dots, c_r}{c[0], \dots, c[r]} are the \eqn{r + 1} group boundaries and \eqn{F_n}{Fn} is the empirical distribution function of the sample. } \value{ For \code{ogive}, a function of class \code{"ogive"}, inheriting from the \code{"\link{function}"} class. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), \emph{Loss Models, From Data to Decisions}, Wiley. } \seealso{ \code{\link{grouped.data}} to create grouped data objects; \code{\link{quantile.grouped.data}} for the inverse function; \code{\link{approxfun}}, which is used to compute the ogive; \code{\link{stepfun}} for related documentation (even though the ogive is not a step function). } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ ## Most common usage: create ogive from grouped data object. Fn <- ogive(gdental) Fn summary(Fn) knots(Fn) # the group boundaries Fn(knots(Fn)) # true values of the empirical cdf Fn(c(80, 200, 2000)) # linear interpolations plot(Fn) # graphical representation ## Alternative 1: create ogive directly from individual data ## without first creating a grouped data object. ogive(dental) # automatic class boundaries ogive(dental, breaks = c(0, 50, 200, 500, 1500, 2000)) ## Alternative 2: create ogive from set of group boundaries and ## group frequencies. cj <- c(0, 25, 50, 100, 250, 500, 1000) nj <- c(30, 31, 57, 42, 45, 10) ogive(cj, nj) } \keyword{dplot} \keyword{hplot} actuar/man/BetaMoments.Rd0000644000176200001440000000265214030725703015017 0ustar liggesusers\name{BetaMoments} \alias{BetaMoments} \alias{mbeta} \alias{levbeta} \title{Raw and Limited Moments of the Beta Distribution} \description{ Raw moments and limited moments for the (central) Beta distribution with parameters \code{shape1} and \code{shape2}. } \usage{ mbeta(order, shape1, shape2) levbeta(limit, shape1, shape2, order = 1) } \arguments{ \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} \item{shape1, shape2}{positive parameters of the Beta distribution.} } \details{ The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]} and the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k > -\alpha}{k > -shape1}. The noncentral beta distribution is not supported. } \value{ \code{mbeta} gives the \eqn{k}th raw moment and \code{levbeta} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \seealso{ \code{\link[stats]{Beta}} for details on the beta distribution and functions \code{[dpqr]beta}. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ mbeta(2, 3, 4) - mbeta(1, 3, 4)^2 levbeta(10, 3, 4, order = 2) } \keyword{distribution} actuar/man/simul.Rd0000644000176200001440000001451014125442656013736 0ustar liggesusers\name{simul} \alias{simul} \alias{simpf} \alias{rcomphierarc} \alias{print.portfolio} \title{Simulation from Compound Hierarchical Models} \description{ Simulate data for insurance applications allowing hierarchical structures and separate models for the frequency and severity of claims distributions. \code{rcomphierarc} is an alias for \code{simul}. } \usage{ simul(nodes, model.freq = NULL, model.sev = NULL, weights = NULL) rcomphierarc(nodes, model.freq = NULL, model.sev = NULL, weights = NULL) \method{print}{portfolio}(x, \dots) } \arguments{ \item{nodes}{a vector or a named list giving the number of "nodes" at each level in the hierarchy of the portfolio. The nodes are listed from top (portfolio) to bottom (usually the years of experience).} \item{model.freq}{a named vector of expressions specifying the frequency of claims model (see Details); if \code{NULL}, only claim amounts are simulated.} \item{model.sev}{a named vector of expressions specifying the severity of claims model (see Details); if \code{NULL}, only claim numbers are simulated.} \item{weights}{a vector of weights.} \item{x}{a \code{portfolio} object.} \item{\dots}{potential further arguments required by generic.} } \details{ The order and the names of the elements in \code{nodes}, \code{model.freq} and \code{model.sev} must match. At least one of \code{model.freq} and \code{model.sev} must be non \code{NULL}. \code{nodes} may be a basic vector, named or not, for non hierarchical models. The rule above still applies, so \code{model.freq} and \code{model.sev} should not be named if \code{nodes} is not. However, for non hierarchical models, \code{\link{rcompound}} is faster and has a simpler interface. \code{nodes} specifies the hierarchical layout of the portfolio. Each element of the list is a vector of the number of nodes at a given level. Vectors are recycled as necessary. \code{model.freq} and \code{model.sev} specify the simulation models for claim numbers and claim amounts, respectively. A model is expressed in a semi-symbolic fashion using an object of mode \code{\link[base]{expression}}. Each element of the object must be named and should be a complete call to a random number generation function, with the number of variates omitted. Hierarchical (or mixtures of) models are achieved by replacing one or more parameters of a distribution at a given level by any combination of the names of the levels above. If no mixing is to take place at a level, the model for this level can be \code{NULL}. The argument of the random number generation functions for the number of variates to simulate \strong{must} be named \code{n}. Weights will be used wherever the name \code{"weights"} appears in a model. It is the user's responsibility to ensure that the length of \code{weights} will match the number of nodes when weights are to be used. Normally, there should be one weight per node at the lowest level of the model. Data is generated in lexicographic order, that is by row in the output matrix. } \value{ An object of \code{\link[base]{class}} \code{"portfolio"}. A \code{print} method for this class displays the models used in the simulation as well as the frequency of claims for each year and entity in the portfolio. An object of class \code{"portfolio"} is a list containing the following components: \item{data}{a two dimension list where each element is a vector of claim amounts;} \item{weights}{the vector of weights given in argument reshaped as a matrix matching element \code{data}, or \code{NULL};} \item{classification}{a matrix of integers where each row is a unique set of subscripts identifying an entity in the portfolio (e.g. integers \eqn{i}, \eqn{j} and \eqn{k} for data \eqn{X_{ijkt}}{X[ijkt]});} \item{nodes}{the \code{nodes} argument, appropriately recycled;} \item{model.freq}{the frequency model as given in argument;} \item{model.sev}{the severity model as given in argument.} It is recommended to manipulate objects of class \code{"portfolio"} by means of the corresponding methods of functions \code{aggregate}, \code{frequency} and \code{severity}. } \references{ Goulet, V. and Pouliot, L.-P. (2008), Simulation of compound hierarchical models in R, \emph{North American Actuarial Journal} \bold{12}, 401--412. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca}, SĂ©bastien Auclair and Louis-Philippe Pouliot } \seealso{ \code{\link{simul.summaries}} for the functions to create the matrices of aggregate claim amounts, frequencies and individual claim amounts. \code{\link{rcompound}} for a simpler and much faster way to generate variates from standard, non hierarchical, compound models. } \examples{ ## Two level (contracts and years) portfolio with frequency model ## Nit|Theta_i ~ Poisson(Theta_i), Theta_i ~ Gamma(2, 3) and severity ## model X ~ Lognormal(5, 1) simul(nodes = list(contract = 10, year = 5), model.freq = expression(contract = rgamma(2, 3), year = rpois(contract)), model.sev = expression(contract = NULL, year = rlnorm(5, 1))) ## Model with weights and mixtures for both frequency and severity ## models nodes <- list(entity = 8, year = c(5, 4, 4, 5, 3, 5, 4, 5)) mf <- expression(entity = rgamma(2, 3), year = rpois(weights * entity)) ms <- expression(entity = rnorm(5, 1), year = rlnorm(entity, 1)) wit <- sample(2:10, 35, replace = TRUE) pf <- simul(nodes, mf, ms, wit) pf # print method weights(pf) # extraction of weights aggregate(pf)[, -1]/weights(pf)[, -1] # ratios ## Four level hierarchical model for frequency only nodes <- list(sector = 3, unit = c(3, 4), employer = c(3, 4, 3, 4, 2, 3, 4), year = 5) mf <- expression(sector = rexp(1), unit = rexp(sector), employer = rgamma(unit, 1), year = rpois(employer)) pf <- simul(nodes, mf, NULL) pf # print method aggregate(pf) # aggregate claim amounts frequency(pf) # frequencies severity(pf) # individual claim amounts ## Standard, non hierarchical, compound model with simplified ## syntax (function rcompound() is much faster for such cases) simul(10, model.freq = expression(rpois(2)), model.sev = expression(rgamma(2, 3))) } \keyword{datagen} actuar/man/ZeroModifiedBinomial.Rd0000644000176200001440000001074714030725704016641 0ustar liggesusers\name{ZeroModifiedBinomial} \alias{ZeroModifiedBinomial} \alias{ZMBinomial} \alias{dzmbinom} \alias{pzmbinom} \alias{qzmbinom} \alias{rzmbinom} \title{The Zero-Modified Binomial Distribution} \description{ Density function, distribution function, quantile function and random generation for the Zero-Modified Binomial distribution with parameters \code{size} and \code{prob}, and probability at zero \code{p0}. } \usage{ dzmbinom(x, size, prob, p0, log = FALSE) pzmbinom(q, size, prob, p0, lower.tail = TRUE, log.p = FALSE) qzmbinom(p, size, prob, p0, lower.tail = TRUE, log.p = FALSE) rzmbinom(n, size, prob, p0) } \arguments{ \item{x}{vector of (strictly positive integer) quantiles.} \item{q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{size}{number of trials (strictly positive integer).} \item{prob}{probability of success on each trial. \code{0 <= prob <= 1}.} \item{p0}{probability mass at zero. \code{0 <= p0 <= 1}.} \item{log, log.p}{logical; if \code{TRUE}, probabilities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.} } \details{ The zero-modified binomial distribution with \code{size} \eqn{= n}, \code{prob} \eqn{= p} and \code{p0} \eqn{= p_0}{= p0} is a discrete mixture between a degenerate distribution at zero and a (standard) binomial. The probability mass function is \eqn{p(0) = p_0}{p(0) = p0} and \deqn{% p(x) = \frac{(1-p_0)}{(1 - (1-p)^n)} f(x)}{% p(x) = (1-p0)/[1 - (1-p)^n] f(x)} for \eqn{x = 1, \ldots, n}, \eqn{0 < p \le 1} and \eqn{0 \le p_0 \le 1}{0 \le p0 \le 1}, where \eqn{f(x)} is the probability mass function of the binomial. The cumulative distribution function is \deqn{P(x) = p_0 + (1 - p_0) \left(\frac{F(x) - F(0)}{1 - F(0)}\right)}{% P(x) = p0 + (1 - p0) [F(x) - F(0)]/[1 - F(0)].} The mean is \eqn{(1-p_0) \mu}{(1-p0)m} and the variance is \eqn{(1-p_0) \sigma^2 + p_0(1-p_0) \mu^2}{(1-p0)v + p0(1-p0)m^2}, where \eqn{\mu}{m} and \eqn{\sigma^2}{v} are the mean and variance of the zero-truncated binomial. In the terminology of Klugman et al. (2012), the zero-modified binomial is a member of the \eqn{(a, b, 1)} class of distributions with \eqn{a = -p/(1-p)} and \eqn{b = (n+1)p/(1-p)}. The special case \code{p0 == 0} is the zero-truncated binomial. If an element of \code{x} is not integer, the result of \code{dzmbinom} is zero, with a warning. The quantile is defined as the smallest value \eqn{x} such that \eqn{P(x) \ge p}, where \eqn{P} is the distribution function. } \value{ \code{dzmbinom} gives the probability mass function, \code{pzmbinom} gives the distribution function, \code{qzmbinom} gives the quantile function, and \code{rzmbinom} generates random deviates. Invalid \code{size}, \code{prob} or \code{p0} will result in return value \code{NaN}, with a warning. The length of the result is determined by \code{n} for \code{rzmbinom}, and is the maximum of the lengths of the numerical arguments for the other functions. } \note{ Functions \code{\{d,p,q\}zmbinom} use \code{\{d,p,q\}binom} for all but the trivial input values and \eqn{p(0)}. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dbinom}} for the binomial distribution. \code{\link{dztbinom}} for the zero-truncated binomial distribution. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ dzmbinom(1:5, size = 5, prob = 0.4, p0 = 0.2) (1-0.2) * dbinom(1:5, 5, 0.4)/pbinom(0, 5, 0.4, lower = FALSE) # same ## simple relation between survival functions pzmbinom(0:5, 5, 0.4, p0 = 0.2, lower = FALSE) (1-0.2) * pbinom(0:5, 5, 0.4, lower = FALSE) / pbinom(0, 5, 0.4, lower = FALSE) # same qzmbinom(pzmbinom(1:10, 10, 0.6, p0 = 0.1), 10, 0.6, p0 = 0.1) n <- 8; p <- 0.3; p0 <- 0.025 x <- 0:n title <- paste("ZM Binomial(", n, ", ", p, ", p0 = ", p0, ") and Binomial(", n, ", ", p,") PDF", sep = "") plot(x, dzmbinom(x, n, p, p0), type = "h", lwd = 2, ylab = "p(x)", main = title) points(x, dbinom(x, n, p), pch = 19, col = "red") legend("topright", c("ZT binomial probabilities", "Binomial probabilities"), col = c("black", "red"), lty = c(1, 0), lwd = 2, pch = c(NA, 19)) } \keyword{distribution} actuar/man/InverseGamma.Rd0000644000176200001440000000750714030725703015163 0ustar liggesusers\name{InverseGamma} \alias{InverseGamma} \alias{dinvgamma} \alias{pinvgamma} \alias{qinvgamma} \alias{rinvgamma} \alias{minvgamma} \alias{levinvgamma} \alias{mgfinvgamma} \title{The Inverse Gamma Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments, and limited moments for the Inverse Gamma distribution with parameters \code{shape} and \code{scale}. } \usage{ dinvgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE) pinvgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qinvgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rinvgamma(n, shape, rate = 1, scale = 1/rate) minvgamma(order, shape, rate = 1, scale = 1/rate) levinvgamma(limit, shape, rate = 1, scale = 1/rate, order = 1) mgfinvgamma(t, shape, rate =1, scale = 1/rate, log =FALSE) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} \item{t}{numeric vector.} } \details{ The inverse gamma distribution with parameters \code{shape} \eqn{= \alpha}{= a} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{u^\alpha e^{-u}}{x \Gamma(\alpha)}, % \quad u = \theta/x}{% f(x) = u^a exp(-u)/(x Gamma(a)), u = s/x} for \eqn{x > 0}, \eqn{\alpha > 0}{a > 0} and \eqn{\theta > 0}{s > 0}. (Here \eqn{\Gamma(\alpha)}{Gamma(a)} is the function implemented by \R's \code{\link{gamma}()} and defined in its help.) The special case \code{shape == 1} is an \link[=dinvexp]{Inverse Exponential} distribution. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, \eqn{k < \alpha}{k < shape}, and the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, all \eqn{k}. The moment generating function is given by \eqn{E[e^{tX}]}. } \value{ \code{dinvgamma} gives the density, \code{pinvgamma} gives the distribution function, \code{qinvgamma} gives the quantile function, \code{rinvgamma} generates random deviates, \code{minvgamma} gives the \eqn{k}th raw moment, \code{levinvgamma} gives the \eqn{k}th moment of the limited loss variable, and \code{mgfinvgamma} gives the moment generating function in \code{t}. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levinvgamma} computes the limited expected value using \code{gammainc} from package \pkg{expint}. Also known as the Vinci distribution. See also Kleiber and Kotz (2003) for alternative names and parametrizations. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dinvgamma(2, 3, 4, log = TRUE)) p <- (1:10)/10 pinvgamma(qinvgamma(p, 2, 3), 2, 3) minvgamma(-1, 2, 2) ^ 2 levinvgamma(10, 2, 2, order = 1) mgfinvgamma(-1, 3, 2) } \keyword{distribution} actuar/man/Pareto3.Rd0000644000176200001440000001063114030725703014112 0ustar liggesusers\name{Pareto3} \alias{Pareto3} \alias{dpareto3} \alias{ppareto3} \alias{qpareto3} \alias{rpareto3} \alias{mpareto3} \alias{levpareto3} \title{The Pareto III Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Pareto III distribution with parameters \code{min}, \code{shape} and \code{scale}. } \usage{ dpareto3(x, min, shape, rate = 1, scale = 1/rate, log = FALSE) ppareto3(q, min, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qpareto3(p, min, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rpareto3(n, min, shape, rate = 1, scale = 1/rate) mpareto3(order, min, shape, rate = 1, scale = 1/rate) levpareto3(limit, min, shape, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{min}{lower bound of the support of the distribution.} \item{shape, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The Pareto III (or \dQuote{type III}) distribution with parameters \code{min} \eqn{= \mu}{= m}, \code{shape} \eqn{= \gamma}{= b} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\gamma ((x - \mu)/\theta)^{\gamma - 1}}{% \theta [1 + ((x - \mu)/\theta)^\gamma]^2}}{% f(x) = (b ((x - m)/s)^(b - 1))/(s [1 + ((x - m)/s)^b]^2)} for \eqn{x > \mu}{x > m}, \eqn{-\infty < \mu < \infty}{-Inf < m < Inf}, \eqn{\gamma > 0}{b > 0} and \eqn{\theta > 0}{s > 0}. The Pareto III is the distribution of the random variable \deqn{\mu + \theta \left(\frac{X}{1 - X}\right)^{1/\gamma},}{% m + s (X/(1 - X))^(1/b),} where \eqn{X} has a uniform distribution on \eqn{(0, 1)}. It derives from the \link[=dfpareto]{Feller-Pareto} distribution with \eqn{\alpha = \tau = 1}{shape1 = shape3 = 1}. Setting \eqn{\mu = 0}{min = 0} yields the \link[=dllogis]{loglogistic} distribution. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]} for nonnegative integer values of \eqn{k < \gamma}{k < shape}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]} for nonnegative integer values of \eqn{k} and \eqn{1 - j/\gamma}{1 - j/shape}, \eqn{j = 1, \dots, k} not a negative integer. } \value{ \code{dpareto3} gives the density, \code{ppareto3} gives the distribution function, \code{qpareto3} gives the quantile function, \code{rpareto3} generates random deviates, \code{mpareto3} gives the \eqn{k}th raw moment, and \code{levpareto3} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levpareto3} computes the limited expected value using \code{\link{betaint}}. For Pareto distributions, we use the classification of Arnold (2015) with the parametrization of Klugman et al. (2012). The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Arnold, B.C. (2015), \emph{Pareto Distributions}, Second Edition, CRC Press. Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dllogis}} for the loglogistic distribution. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ exp(dpareto3(1, min = 10, 3, 4, log = TRUE)) p <- (1:10)/10 ppareto3(qpareto3(p, min = 10, 2, 3), min = 10, 2, 3) ## mean mpareto3(1, min = 10, 2, 3) ## case with 1 - order/shape > 0 levpareto3(20, min = 10, 2, 3, order = 1) ## case with 1 - order/shape < 0 levpareto3(20, min = 10, 2/3, 3, order = 1) } \keyword{distribution} actuar/man/Burr.Rd0000644000176200001440000001047314030725703013513 0ustar liggesusers\name{Burr} \alias{Burr} \alias{dburr} \alias{pburr} \alias{qburr} \alias{rburr} \alias{mburr} \alias{levburr} \title{The Burr Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Burr distribution with parameters \code{shape1}, \code{shape2} and \code{scale}. } \usage{ dburr(x, shape1, shape2, rate = 1, scale = 1/rate, log = FALSE) pburr(q, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qburr(p, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rburr(n, shape1, shape2, rate = 1, scale = 1/rate) mburr(order, shape1, shape2, rate = 1, scale = 1/rate) levburr(limit, shape1, shape2, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape1, shape2, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The Burr distribution with parameters \code{shape1} \eqn{= \alpha}{= a}, \code{shape2} \eqn{= \gamma}{= b} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\alpha \gamma (x/\theta)^\gamma}{% x [1 + (x/\theta)^\gamma]^{\alpha + 1}}}{% f(x) = (a b (x/s)^b)/(x [1 + (x/s)^b]^(a + 1))} for \eqn{x > 0}, \eqn{\alpha > 0}{a > 0}, \eqn{\gamma > 0}{b > 0} and \eqn{\theta > 0}{s > 0}. The Burr is the distribution of the random variable \deqn{\theta \left(\frac{X}{1 - X}\right)^{1/\gamma},}{% s (X/(1 - X))^(1/b),} where \eqn{X} has a beta distribution with parameters \eqn{1} and \eqn{\alpha}{a}. The Burr distribution has the following special cases: \itemize{ \item A \link[=dllogis]{Loglogistic} distribution when \code{shape1 == 1}; \item A \link[=dparalogis]{Paralogistic} distribution when \code{shape2 == shape1}; \item A \link[=dpareto]{Pareto} distribution when \code{shape2 == 1}. } The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, \eqn{-\gamma < k < \alpha\gamma}{-shape2 < k < shape1 * shape2}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k > -\gamma}{k > -shape2} and \eqn{\alpha - k/\gamma}{shape1 - k/shape2} not a negative integer. } \value{ \code{dburr} gives the density, \code{pburr} gives the distribution function, \code{qburr} gives the quantile function, \code{rburr} generates random deviates, \code{mburr} gives the \eqn{k}th raw moment, and \code{levburr} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levburr} computes the limited expected value using \code{\link{betaint}}. Distribution also known as the Burr Type XII or Singh-Maddala distribution. See also Kleiber and Kotz (2003) for alternative names and parametrizations. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dpareto4}} for an equivalent distribution with a location parameter. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dburr(1, 2, 3, log = TRUE)) p <- (1:10)/10 pburr(qburr(p, 2, 3, 2), 2, 3, 2) ## variance mburr(2, 2, 3, 1) - mburr(1, 2, 3, 1) ^ 2 ## case with shape1 - order/shape2 > 0 levburr(10, 2, 3, 1, order = 2) ## case with shape1 - order/shape2 < 0 levburr(10, 1.5, 0.5, 1, order = 2) } \keyword{distribution} actuar/man/ZeroModifiedGeometric.Rd0000644000176200001440000000766014030725704017025 0ustar liggesusers\name{ZeroModifiedGeometric} \alias{ZeroModifiedGeometric} \alias{Zmgeometric} \alias{dzmgeom} \alias{pzmgeom} \alias{qzmgeom} \alias{rzmgeom} \title{The Zero-Modified Geometric Distribution} \description{ Density function, distribution function, quantile function and random generation for the Zero-Modified Geometric distribution with parameter \code{prob} and arbitrary probability at zero \code{p0}. } \usage{ dzmgeom(x, prob, p0, log = FALSE) pzmgeom(q, prob, p0, lower.tail = TRUE, log.p = FALSE) qzmgeom(p, prob, p0, lower.tail = TRUE, log.p = FALSE) rzmgeom(n, prob, p0) } \arguments{ \item{x}{vector of (strictly positive integer) quantiles.} \item{q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{prob}{parameter. \code{0 < prob <= 1}.} \item{p0}{probability mass at zero. \code{0 <= p0 <= 1}.} \item{log, log.p}{logical; if \code{TRUE}, probabilities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.} } \details{ The zero-modified geometric distribution with \code{prob} \eqn{= p} and \code{p0} \eqn{= p_0}{= p0} is a discrete mixture between a degenerate distribution at zero and a (standard) geometric. The probability mass function is \eqn{p(0) = p_0}{p(0) = p0} and \deqn{% p(x) = \frac{(1-p_0)}{(1-p)} f(x)}{% p(x) = (1-p0)/(1-p) f(x)} for \eqn{x = 1, 2, \ldots}, \eqn{0 < p < 1} and \eqn{0 \le p_0 \le 1}{0 \le p0 \le 1}, where \eqn{f(x)} is the probability mass function of the geometric. The cumulative distribution function is \deqn{P(x) = p_0 + (1 - p_0) \left(\frac{F(x) - F(0)}{1 - F(0)}\right)}{% P(x) = p0 + (1 - p0) [F(x) - F(0)]/[1 - F(0)].} The mean is \eqn{(1-p_0) \mu}{(1-p0)m} and the variance is \eqn{(1-p_0) \sigma^2 + p_0(1-p_0) \mu^2}{(1-p0)v + p0(1-p0)m^2}, where \eqn{\mu}{m} and \eqn{\sigma^2}{v} are the mean and variance of the zero-truncated geometric. In the terminology of Klugman et al. (2012), the zero-modified geometric is a member of the \eqn{(a, b, 1)} class of distributions with \eqn{a = 1-p} and \eqn{b = 0}. The special case \code{p0 == 0} is the zero-truncated geometric. If an element of \code{x} is not integer, the result of \code{dzmgeom} is zero, with a warning. The quantile is defined as the smallest value \eqn{x} such that \eqn{P(x) \ge p}, where \eqn{P} is the distribution function. } \value{ \code{dzmgeom} gives the (log) probability mass function, \code{pzmgeom} gives the (log) distribution function, \code{qzmgeom} gives the quantile function, and \code{rzmgeom} generates random deviates. Invalid \code{prob} or \code{p0} will result in return value \code{NaN}, with a warning. The length of the result is determined by \code{n} for \code{rzmgeom}, and is the maximum of the lengths of the numerical arguments for the other functions. } \note{ Functions \code{\{d,p,q\}zmgeom} use \code{\{d,p,q\}geom} for all but the trivial input values and \eqn{p(0)}. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dgeom}} for the geometric distribution. \code{\link{dztgeom}} for the zero-truncated geometric distribution. \code{\link{dzmnbinom}} for the zero-modified negative binomial, of which the zero-modified geometric is a special case. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ p <- 1/(1 + 0.5) dzmgeom(1:5, prob = p, p0 = 0.6) (1-0.6) * dgeom(1:5, p)/pgeom(0, p, lower = FALSE) # same ## simple relation between survival functions pzmgeom(0:5, p, p0 = 0.2, lower = FALSE) (1-0.2) * pgeom(0:5, p, lower = FALSE)/pgeom(0, p, lower = FALSE) # same qzmgeom(pzmgeom(0:10, 0.3, p0 = 0.6), 0.3, p0 = 0.6) } \keyword{distribution} actuar/man/PoissonInverseGaussian.Rd0000644000176200001440000001317414030725703017263 0ustar liggesusers\name{PoissonInverseGaussian} \alias{PoissonInverseGaussian} \alias{PIG} \alias{dpoisinvgauss} \alias{ppoisinvgauss} \alias{qpoisinvgauss} \alias{rpoisinvgauss} \alias{dpig} \alias{ppig} \alias{qpig} \alias{rpig} \title{The Poisson-Inverse Gaussian Distribution} \description{ Density function, distribution function, quantile function and random generation for the Poisson-inverse Gaussian discrete distribution with parameters \code{mean} and \code{shape}. } \usage{ dpoisinvgauss(x, mean, shape = 1, dispersion = 1/shape, log = FALSE) ppoisinvgauss(q, mean, shape = 1, dispersion = 1/shape, lower.tail = TRUE, log.p = FALSE) qpoisinvgauss(p, mean, shape = 1, dispersion = 1/shape, lower.tail = TRUE, log.p = FALSE) rpoisinvgauss(n, mean, shape = 1, dispersion = 1/shape) } \arguments{ \item{x}{vector of (positive integer) quantiles.} \item{q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{mean, shape}{parameters. Must be strictly positive. Infinite values are supported.} \item{dispersion}{an alternative way to specify the shape.} \item{log, log.p}{logical; if \code{TRUE}, probabilities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.} } \details{ The Poisson-inverse Gaussian distribution is the result of the continuous mixture between a Poisson distribution and an inverse Gaussian, that is, the distribution with probability mass function \deqn{% p(x) = \int_0^\infty \frac{\lambda^x e^{-\lambda}}{x!}\, g(\lambda; \mu, \phi)\, d\lambda,}{% p(x) = int_0^Inf (y^x exp(-y))/x! g(y; \mu, \phi) dy,} where \eqn{g(\lambda; \mu, \phi)}{g(y; \mu, \phi)} is the density function of the inverse Gaussian distribution with parameters \code{mean} \eqn{= \mu} and \code{dispersion} \eqn{= \phi} (see \code{\link{dinvgauss}}). The resulting probability mass function is \deqn{% p(x) = \sqrt{\frac{2}{\pi \phi}} \frac{e^{(\phi\mu)^{-1}}}{x!} \left( \sqrt{2\phi\left(1 + \frac{1}{2\phi\mu^2}\right)} \right)^{-(x - \frac{1}{2})} K_{x - \frac{1}{2}} \left( \sqrt{\frac{2}{\phi}\left(1 + \frac{1}{2\phi\mu^2}\right)} \right),}{% p(x) = sqrt(2/(\pi \phi)) exp(1/(\phi \mu))/x! * [\sqrt(2 \phi (1 + 1/(2 \phi \mu^2)))]^(-(x-1/2)) * K(\sqrt((2/\phi) (1 + 1/(2 \phi \mu^2))); x-1/2),} for \eqn{x = 0, 1, \dots}, \eqn{\mu > 0}, \eqn{\phi > 0} and where \eqn{K_\nu(x)}{K(x; \nu)} is the modified Bessel function of the third kind implemented by \R's \code{\link{besselK}()} and defined in its help. The limiting case \eqn{\mu = \infty}{\mu = Inf} has well defined probability mass and distribution functions, but has no finite strictly positive, integer moments. The pmf in this case reduces to \deqn{% p(x) = \sqrt{\frac{2}{\pi \phi}} \frac{1}{x!} (\sqrt{2\phi})^{-(x - \frac{1}{2})} K_{x - \frac{1}{2}}(\sqrt{2/\phi}).}{% p(x) = sqrt(2/(\pi \phi)) 1/x! [\sqrt(2 \phi)]^(-(x-1/2)) * K(\sqrt(2/\phi); x-1/2).} The limiting case \eqn{\phi = 0} is a degenerate distribution in \eqn{x = 0}. If an element of \code{x} is not integer, the result of \code{dpoisinvgauss} is zero, with a warning. The quantile is defined as the smallest value \eqn{x} such that \eqn{F(x) \ge p}, where \eqn{F} is the distribution function. } \value{ \code{dpoisinvgauss} gives the probability mass function, \code{ppoisinvgauss} gives the distribution function, \code{qpoisinvgauss} gives the quantile function, and \code{rpoisinvgauss} generates random deviates. Invalid arguments will result in return value \code{NaN}, with a warning. The length of the result is determined by \code{n} for \code{rpoisinvgauss}, and is the maximum of the lengths of the numerical arguments for the other functions. } \note{ \code{[dpqr]pig} are aliases for \code{[dpqr]poisinvgauss}. \code{qpoisinvgauss} is based on \code{qbinom} et al.; it uses the Cornish--Fisher Expansion to include a skewness correction to a normal approximation, followed by a search. } \references{ Holla, M. S. (1966), \dQuote{On a Poisson-Inverse Gaussian Distribution}, \emph{Metrika}, vol. 15, p. 377-384. Johnson, N. L., Kemp, A. W. and Kotz, S. (2005), \emph{Univariate Discrete Distributions, Third Edition}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. Shaban, S. A., (1981) \dQuote{Computation of the poisson-inverse gaussian distribution}, \emph{Communications in Statistics - Theory and Methods}, vol. 10, no. 14, p. 1389-1399. } \seealso{ \code{\link{dpois}} for the Poisson distribution, \code{\link{dinvgauss}} for the inverse Gaussian distribution. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ ## Tables I and II of Shaban (1981) x <- 0:2 sapply(c(0.4, 0.8, 1), dpoisinvgauss, x = x, mean = 0.1) sapply(c(40, 80, 100, 130), dpoisinvgauss, x = x, mean = 1) qpoisinvgauss(ppoisinvgauss(0:10, 1, dis = 2.5), 1, dis = 2.5) x <- rpoisinvgauss(1000, 1, dis = 2.5) y <- sort(unique(x)) plot(y, table(x)/length(x), type = "h", lwd = 2, pch = 19, col = "black", xlab = "x", ylab = "p(x)", main = "Empirical vs theoretical probabilities") points(y, dpoisinvgauss(y, 1, dis = 2.5), pch = 19, col = "red") legend("topright", c("empirical", "theoretical"), lty = c(1, NA), pch = c(NA, 19), col = c("black", "red")) } \keyword{distribution} actuar/man/ZeroTruncatedBinomial.Rd0000644000176200001440000000770214030725704017047 0ustar liggesusers\name{ZeroTruncatedBinomial} \alias{ZeroTruncatedBinomial} \alias{ZTBinomial} \alias{dztbinom} \alias{pztbinom} \alias{qztbinom} \alias{rztbinom} \title{The Zero-Truncated Binomial Distribution} \description{ Density function, distribution function, quantile function and random generation for the Zero-Truncated Binomial distribution with parameters \code{size} and \code{prob}. } \usage{ dztbinom(x, size, prob, log = FALSE) pztbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE) qztbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE) rztbinom(n, size, prob) } \arguments{ \item{x}{vector of (strictly positive integer) quantiles.} \item{q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{size}{number of trials (strictly positive integer).} \item{prob}{probability of success on each trial. \code{0 <= prob <= 1}.} \item{log, log.p}{logical; if \code{TRUE}, probabilities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.} } \details{ The zero-truncated binomial distribution with \code{size} \eqn{= n} and \code{prob} \eqn{= p} has probability mass function \deqn{% p(x) = {n \choose x} \frac{p^x (1 - p)^{n-x}}{1 - (1 - p)^n}}{% p(x) = choose(n, x) [p^x (1-p)^(n-x)]/[1 - (1-p)^n]} for \eqn{x = 1, \ldots, n} and \eqn{0 < p \le 1}, and \eqn{p(1) = 1} when \eqn{p = 0}. The cumulative distribution function is \deqn{P(x) = \frac{F(x) - F(0)}{1 - F(0)},}{% P(x) = [F(x) - F(0)]/[1 - F(0)],} where \eqn{F(x)} is the distribution function of the standard binomial. The mean is \eqn{np/(1 - (1-p)^n)} and the variance is \eqn{np[(1-p) - (1-p+np)(1-p)^n]/[1 - (1-p)^n]^2}. In the terminology of Klugman et al. (2012), the zero-truncated binomial is a member of the \eqn{(a, b, 1)} class of distributions with \eqn{a = -p/(1-p)} and \eqn{b = (n+1)p/(1-p)}. If an element of \code{x} is not integer, the result of \code{dztbinom} is zero, with a warning. The quantile is defined as the smallest value \eqn{x} such that \eqn{P(x) \ge p}, where \eqn{P} is the distribution function. } \value{ \code{dztbinom} gives the probability mass function, \code{pztbinom} gives the distribution function, \code{qztbinom} gives the quantile function, and \code{rztbinom} generates random deviates. Invalid \code{size} or \code{prob} will result in return value \code{NaN}, with a warning. The length of the result is determined by \code{n} for \code{rztbinom}, and is the maximum of the lengths of the numerical arguments for the other functions. } \note{ Functions \code{\{d,p,q\}ztbinom} use \code{\{d,p,q\}binom} for all but the trivial input values and \eqn{p(0)}. \code{rztbinom} uses the simple inversion algorithm suggested by Peter Dalgaard on the r-help mailing list on 1 May 2005 % (\url{https://stat.ethz.ch/pipermail/r-help/2005-May/070680.html}). } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dbinom}} for the binomial distribution. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ dztbinom(1:5, size = 5, prob = 0.4) dbinom(1:5, 5, 0.4)/pbinom(0, 5, 0.4, lower = FALSE) # same pztbinom(1, 2, prob = 0) # point mass at 1 qztbinom(pztbinom(1:10, 10, 0.6), 10, 0.6) n <- 8; p <- 0.3 x <- 0:n title <- paste("ZT Binomial(", n, ", ", p, ") and Binomial(", n, ", ", p,") PDF", sep = "") plot(x, dztbinom(x, n, p), type = "h", lwd = 2, ylab = "p(x)", main = title) points(x, dbinom(x, n, p), pch = 19, col = "red") legend("topright", c("ZT binomial probabilities", "Binomial probabilities"), col = c("black", "red"), lty = c(1, 0), lwd = 2, pch = c(NA, 19)) } \keyword{distribution} actuar/man/UniformSupp.Rd0000644000176200001440000000305314030725704015065 0ustar liggesusers\name{UniformSupp} \alias{UniformSupp} \alias{munif} \alias{levunif} \alias{mgfunif} \title{Moments and Moment Generating Function of the Uniform Distribution} \description{ Raw moments, limited moments and moment generating function for the Uniform distribution from \code{min} to \code{max}. } \usage{ munif(order, min = 0, max = 1) levunif(limit, min = 0, max =1, order = 1) mgfunif(t, min = 0, max = 1, log = FALSE) } \arguments{ \item{order}{order of the moment.} \item{min, max}{lower and upper limits of the distribution. Must be finite.} \item{limit}{limit of the random variable.} \item{t}{numeric vector.} \item{log}{logical; if \code{TRUE}, the cumulant generating function is returned.} } \details{ The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]} and the moment generating function is \eqn{E[e^{tX}]}. } \value{ \code{munif} gives the \eqn{k}th raw moment, \code{levunif} gives the \eqn{k}th moment of the limited random variable, and \code{mgfunif} gives the moment generating function in \code{t}. Invalid arguments will result in return value \code{NaN}, with a warning. } \seealso{ \code{\link{Uniform}}. } \references{ \url{https://en.wikipedia.org/wiki/Uniform_distribution_\%28continuous\%29} } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca}, Christophe Dutang } \examples{ munif(-1) munif(1:5) levunif(3, order=1:5) levunif(3, 2, 4) mgfunif(1, 1, 2) } \keyword{distribution} actuar/man/dental.Rd0000644000176200001440000000055014030725704014044 0ustar liggesusers\name{dental} \docType{data} \alias{dental} \title{Individual Dental Claims Data Set} \description{ Basic dental claims on a policy with a deductible of 50. } \usage{dental} \format{A vector containing 10 observations} \source{Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), \emph{Loss Models, From Data to Decisions}, Wiley. } \keyword{datasets} actuar/man/rmixture.Rd0000644000176200001440000000533014125442656014464 0ustar liggesusers\name{rmixture} \alias{rmixture} \title{Simulation from Discrete Mixtures} \description{ Generate random variates from a discrete mixture of distributions. } \usage{ rmixture(n, probs, models, shuffle = TRUE) } \arguments{ \item{n}{number of random variates to generate. If \code{length(n) > 1}, the length is taken to be the number required.} \item{probs}{numeric non-negative vector specifying the probability for each model; is internally normalized to sum 1. Infinite and missing values are not allowed. Values are recycled as necessary to match the length of \code{models}.} \item{models}{vector of expressions specifying the simulation models with the number of variates omitted; see Details. Models are recycled as necessary to match the length of \code{probs}.} \item{shuffle}{logical; should the random variates from the distributions be shuffled?} } \details{ \code{rmixture} generates variates from a discrete mixture, that is random variable with a probability density function of the form \deqn{f(x) = p_1 f_1(x) + ... + p_n f_n(x),} where \eqn{f_1, \dots, f_n} are densities and \eqn{\sum_{i = 1}^n p_i = 1}{p_1 + \dots + p_n = 1}. The values in \code{probs} will be internally normalized to be used as probabilities \eqn{p_1 + \dots + p_n}. The specification of simulation models uses the syntax of \code{\link{rcomphierarc}}. Models \eqn{f_1, \dots, f_n} are expressed in a semi-symbolic fashion using an object of mode \code{\link[base]{expression}} where each element is a complete call to a random number generation function, with the number of variates omitted. The argument of the random number generation functions for the number of variates to simulate \strong{must} be named \code{n}. If \code{shuffle} is \code{FALSE}, the output vector contains all the random variates from the first model, then all the random variates from the second model, and so on. If the order of the variates is irrelevant, this cuts the time to generate the variates roughly in half. } \value{ A vector of random variates from the mixture with density \eqn{f(x)}. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \seealso{ \code{\link{rcompound}} to simulate from compound models. \code{\link{rcomphierarc}} to simulate from compound hierarchical models. } \examples{ ## Mixture of two exponentials (with means 1/3 and 1/7) with equal ## probabilities. rmixture(10, 0.5, expression(rexp(3), rexp(7))) rmixture(10, 42, expression(rexp(3), rexp(7))) # same ## Mixture of two lognormals with different probabilities. rmixture(10, probs = c(0.55, 0.45), models = expression(rlnorm(3.6, 0.6), rlnorm(4.6, 0.3))) } \keyword{datagen} actuar/man/InverseTransformedGamma.Rd0000644000176200001440000001116514030725703017363 0ustar liggesusers\name{InverseTransformedGamma} \alias{InverseTransformedGamma} \alias{dinvtrgamma} \alias{pinvtrgamma} \alias{qinvtrgamma} \alias{rinvtrgamma} \alias{minvtrgamma} \alias{levinvtrgamma} \title{The Inverse Transformed Gamma Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments, and limited moments for the Inverse Transformed Gamma distribution with parameters \code{shape1}, \code{shape2} and \code{scale}. } \usage{ dinvtrgamma(x, shape1, shape2, rate = 1, scale = 1/rate, log = FALSE) pinvtrgamma(q, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qinvtrgamma(p, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rinvtrgamma(n, shape1, shape2, rate = 1, scale = 1/rate) minvtrgamma(order, shape1, shape2, rate = 1, scale = 1/rate) levinvtrgamma(limit, shape1, shape2, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape1, shape2, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The inverse transformed gamma distribution with parameters \code{shape1} \eqn{= \alpha}{= a}, \code{shape2} \eqn{= \tau}{= b} and \code{scale} \eqn{= \theta}{= s}, has density: \deqn{f(x) = \frac{\tau u^\alpha e^{-u}}{x \Gamma(\alpha)}, % \quad u = (\theta/x)^\tau}{% f(x) = b u^a exp(-u) / (x Gamma(a)), u = (s/x)^b} for \eqn{x > 0}, \eqn{\alpha > 0}{a > 0}, \eqn{\tau > 0}{b > 0} and \eqn{\theta > 0}{s > 0}. (Here \eqn{\Gamma(\alpha)}{Gamma(a)} is the function implemented by \R's \code{\link{gamma}()} and defined in its help.) The inverse transformed gamma is the distribution of the random variable \eqn{\theta X^{-1/\tau},}{s X^(-1/b),} where \eqn{X} has a gamma distribution with shape parameter \eqn{\alpha}{a} and scale parameter \eqn{1} or, equivalently, of the random variable \eqn{Y^{-1/\tau}}{Y^(-1/b)} with \eqn{Y} a gamma distribution with shape parameter \eqn{\alpha}{a} and scale parameter \eqn{\theta^{-\tau}}{s^(-b)}. The inverse transformed gamma distribution defines a family of distributions with the following special cases: \itemize{ \item An \link[=dinvgamma]{Inverse Gamma} distribution when \code{shape2 == 1}; \item An \link[=dinvweibull]{Inverse Weibull} distribution when \code{shape1 == 1}; \item An \link[=dinvexp]{Inverse Exponential} distribution when \code{shape1 == shape2 == 1}; } The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, \eqn{k < \alpha\tau}{k < shape1 * shape2}, and the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]} for all \eqn{k}. } \value{ \code{dinvtrgamma} gives the density, \code{pinvtrgamma} gives the distribution function, \code{qinvtrgamma} gives the quantile function, \code{rinvtrgamma} generates random deviates, \code{minvtrgamma} gives the \eqn{k}th raw moment, and \code{levinvtrgamma} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levinvtrgamma} computes the limited expected value using \code{gammainc} from package \pkg{expint}. Distribution also known as the Inverse Generalized Gamma. See also Kleiber and Kotz (2003) for alternative names and parametrizations. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dinvtrgamma(2, 3, 4, 5, log = TRUE)) p <- (1:10)/10 pinvtrgamma(qinvtrgamma(p, 2, 3, 4), 2, 3, 4) minvtrgamma(2, 3, 4, 5) levinvtrgamma(200, 3, 4, 5, order = 2) } \keyword{distribution} actuar/man/betaint.Rd0000644000176200001440000000635514030725704014234 0ustar liggesusers\name{betaint} \alias{betaint} \title{The \dQuote{Beta Integral}} \description{ The \dQuote{beta integral} which is just a multiple of the non regularized incomplete beta function. This function merely provides an R interface to the C level routine. It is not exported by the package. } \usage{ betaint(x, a, b) } \arguments{ \item{x}{vector of quantiles.} \item{a, b}{parameters. See Details for admissible values.} } \details{ Function \code{betaint} computes the \dQuote{beta integral} \deqn{ B(a, b; x) = \Gamma(a + b) \int_0^x t^{a-1} (1-t)^{b-1} dt}{% B(a, b; x) = Gamma(a + b) int_0^x t^(a-1) (1-t)^(b-1) dt} for \eqn{a > 0}, \eqn{b \neq -1, -2, \ldots}{b != -1, -2, \ldots} and \eqn{0 < x < 1}. (Here \eqn{\Gamma(\alpha)}{Gamma(a)} is the function implemented by \R's \code{\link{gamma}()} and defined in its help.) When \eqn{b > 0}, \deqn{ B(a, b; x) = \Gamma(a) \Gamma(b) I_x(a, b),} where \eqn{I_x(a, b)} is \code{pbeta(x, a, b)}. When \eqn{b < 0}, \eqn{b \neq -1, -2, \ldots}{b != -1, -2, \ldots}, and \eqn{a > 1 + [-b]}{a > 1 + floor(-b)}, \deqn{% \begin{array}{rcl} B(a, b; x) &=& \displaystyle -\Gamma(a + b) \left[ \frac{x^{a-1} (1-x)^b}{b} + \frac{(a-1) x^{a-2} (1-x)^{b+1}}{b (b+1)} \right. \\ & & \displaystyle\left. + \cdots + \frac{(a-1) \cdots (a-r) x^{a-r-1} (1-x)^{b+r}}{b (b+1) \cdots (b+r)} \right] \\ & & \displaystyle + \frac{(a-1) \cdots (a-r-1)}{b (b+1) \cdots (b+r)} \Gamma(a-r-1) \\ & & \times \Gamma(b+r+1) I_x(a-r-1, b+r+1), \end{array}}{% B(a, b; x) = -Gamma(a+b) \{(x^(a-1) (1-x)^b)/b + [(a-1) x^(a-2) (1-x)^(b+1)]/[b(b+1)] + \dots + [(a-1)\dots(a-r) x^(a-r-1) (1-x)^(b+r)]/[b(b+1)\dots(b+r)]\} + [(a-1)\dots(a-r-1)]/[b(b+1)\dots(b+r)] Gamma(a-r-1) * Gamma(b+r+1) I_x(a-r-1, b+r+1),} where \eqn{r = [-b]}{r = floor(-b)}. This function is used (at the C level) to compute the limited expected value for distributions of the transformed beta family; see, for example, \code{\link{levtrbeta}}. } \value{ The value of the integral. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ The need for this function in the package is well explained in the introduction of Appendix A of Klugman et al. (2012). See also chapter 6 and 15 of Abramowitz and Stegun (1972) for definitions and relations to the hypergeometric series. } \references{ Abramowitz, M. and Stegun, I. A. (1972), \emph{Handbook of Mathematical Functions}, Dover. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ x <- 0.3 a <- 7 ## case with b > 0 b <- 2 actuar:::betaint(x, a, b) gamma(a) * gamma(b) * pbeta(x, a, b) # same ## case with b < 0 b <- -2.2 r <- floor(-b) # r = 2 actuar:::betaint(x, a, b) ## "manual" calculation s <- (x^(a-1) * (1-x)^b)/b + ((a-1) * x^(a-2) * (1-x)^(b+1))/(b * (b+1)) + ((a-1) * (a-2) * x^(a-3) * (1-x)^(b+2))/(b * (b+1) * (b+2)) -gamma(a+b) * s + (a-1)*(a-2)*(a-3) * gamma(a-r-1)/(b*(b+1)*(b+2)) * gamma(b+r+1)*pbeta(x, a-r-1, b+r+1) } \keyword{math} \keyword{distribution} actuar/man/quantile.grouped.data.Rd0000644000176200001440000000410414125442656017001 0ustar liggesusers\name{quantile.grouped.data} \alias{quantile.grouped.data} \alias{summary.grouped.data} \title{Quantiles of Grouped Data} \description{ Sample quantiles corresponding to the given probabilities for objects of class \code{"grouped.data"}. } \usage{ \method{quantile}{grouped.data}(x, probs = seq(0, 1, 0.25), names = TRUE, \dots) \method{summary}{grouped.data}(object, \dots) } \arguments{ \item{x, object}{an object of class \code{"grouped.data"}.} \item{probs}{numeric vector of probabilities with values in \eqn{[0, 1]}.} \item{names}{logical; if true, the result has a \code{names} attribute. Set to \code{FALSE} for speedup with many \code{probs}.} \item{\dots}{further arguments passed to or from other methods.} } \details{ The quantile function is the inverse of the ogive, that is a linear interpolation of the empirical quantile function. The equation of the quantile function is \deqn{x = \frac{c_j (F_n(c_{j - 1}) - q) + c_{j - 1} (q - F_n(c_j)}{F_n(c_j) - F_n(c_{j - 1})}}{% x = (c[j] (Fn(c[j-1]) - q) + c[j-1] (q - Fn(c[j])))/(Fn(c[j]) - Fn(c[j-1]))} for \eqn{0 \leq q \leq c_j}{0 <= q <= 1} and where \eqn{c_0, \dots, c_r}{c[0], \dots, c[r]} are the \eqn{r + 1} group boundaries and \eqn{F_n}{Fn} is the empirical distribution function of the sample. } \value{ For \code{quantile}, a numeric vector, named if \code{names} is \code{TRUE}. For the \code{summary} method, an object of class \code{c("summaryDefault", "\link{table}")} which has specialized \code{\link{format}} and \code{\link{print}} methods. } \seealso{ \code{\link{ogive}} for the smoothed empirical distribution of which \code{quantile.grouped.data} is an inverse; \code{\link{mean.grouped.data}} and \code{\link{var.grouped.data}} to compute the mean and variance of grouped data. \code{\link{grouped.data}} to create grouped data objects. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ data(gdental) quantile(gdental) summary(gdental) Fn <- ogive(gdental) Fn(quantile(gdental)) # inverse function } \keyword{univar} actuar/man/WeibullMoments.Rd0000644000176200001440000000263214030725704015546 0ustar liggesusers\name{WeibullMoments} \alias{WeibullMoments} \alias{mweibull} \alias{levweibull} \title{Raw and Limited Moments of the Weibull Distribution} \description{ Raw moments and limited moments for the Weibull distribution with parameters \code{shape} and \code{scale}. } \usage{ mweibull(order, shape, scale = 1) levweibull(limit, shape, scale = 1, order = 1) } \arguments{ \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} \item{shape, scale}{shape and scale parameters, the latter defaulting to 1.} } \details{ The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]} and the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k > -\tau}{k > -shape}. } \value{ \code{mweibull} gives the \eqn{k}th raw moment and \code{levweibull} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \seealso{ \code{\link{Weibull}} for details on the Weibull distribution and functions \code{[dpqr]weibull}. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ mweibull(2, 3, 4) - mweibull(1, 3, 4)^2 levweibull(10, 3, 4, order = 2) } \keyword{distribution} actuar/man/Pareto.Rd0000644000176200001440000000732314030725703014033 0ustar liggesusers\name{Pareto} \alias{Pareto} \alias{dpareto} \alias{ppareto} \alias{qpareto} \alias{rpareto} \alias{mpareto} \alias{levpareto} \title{The Pareto Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Pareto distribution with parameters \code{shape} and \code{scale}. } \usage{ dpareto(x, shape, scale, log = FALSE) ppareto(q, shape, scale, lower.tail = TRUE, log.p = FALSE) qpareto(p, shape, scale, lower.tail = TRUE, log.p = FALSE) rpareto(n, shape, scale) mpareto(order, shape, scale) levpareto(limit, shape, scale, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape, scale}{parameters. Must be strictly positive.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The Pareto distribution with parameters \code{shape} \eqn{= \alpha}{= a} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\alpha \theta^\alpha}{(x + \theta)^{\alpha + 1}}}{% f(x) = a s^a / (x + s)^(a + 1)} for \eqn{x > 0}, \eqn{\alpha > 0}{a > 0} and \eqn{\theta}{s > 0}. There are many different definitions of the Pareto distribution in the literature; see Arnold (2015) or Kleiber and Kotz (2003). In the nomenclature of \pkg{actuar}, The \dQuote{Pareto distribution} does not have a location parameter. The version with a location parameter is the \link[=dpareto2]{Pareto II}. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}, \eqn{-1 < k < \alpha}{-1 < k < shape}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k > -1} and \eqn{\alpha - k}{shape - k} not a negative integer. } \value{ \code{dpareto} gives the density, \code{ppareto} gives the distribution function, \code{qpareto} gives the quantile function, \code{rpareto} generates random deviates, \code{mpareto} gives the \eqn{k}th raw moment, and \code{levpareto} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levpareto} computes the limited expected value using \code{\link{betaint}}. The version of the Pareto defined for \eqn{x > \theta}{x > s} is named Single Parameter Pareto, or Pareto I, in \pkg{actuar}. } \seealso{ \code{\link{dpareto2}} for an equivalent distribution with location parameter. \code{\link{dpareto1}} for the Single Parameter Pareto distribution. \code{"distributions"} package vignette for details on the interrelations between the continuous size distributions in \pkg{actuar} and complete formulas underlying the above functions. } \references{ Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dpareto(2, 3, 4, log = TRUE)) p <- (1:10)/10 ppareto(qpareto(p, 2, 3), 2, 3) ## variance mpareto(2, 4, 1) - mpareto(1, 4, 1)^2 ## case with shape - order > 0 levpareto(10, 3, scale = 1, order = 2) ## case with shape - order < 0 levpareto(10, 1.5, scale = 1, order = 2) } \keyword{distribution} actuar/man/simul.summaries.Rd0000644000176200001440000001224114030725704015732 0ustar liggesusers\name{simul.summaries} \alias{simul.summaries} \alias{rcomphierarc.summaries} \alias{aggregate.portfolio} \alias{frequency.portfolio} \alias{severity.portfolio} \alias{weights.portfolio} \title{Summary Statistics of a Portfolio} \description{ Methods for \link[base]{class} \code{"portfolio"} objects. \code{aggregate} splits portfolio data into subsets and computes summary statistics for each. \code{frequency} computes the frequency of claims for subsets of portfolio data. \code{severity} extracts the individual claim amounts. \code{weights} extracts the matrix of weights. } \usage{ \method{aggregate}{portfolio}(x, by = names(x$nodes), FUN = sum, classification = TRUE, prefix = NULL, \dots) \method{frequency}{portfolio}(x, by = names(x$nodes), classification = TRUE, prefix = NULL, \dots) \method{severity}{portfolio}(x, by = head(names(x$node), -1), splitcol = NULL, classification = TRUE, prefix = NULL, \dots) \method{weights}{portfolio}(object, classification = TRUE, prefix = NULL, \dots) } \arguments{ \item{x, object}{an object of class \code{"portfolio"}, typically created with \code{\link{simul}}.} \item{by}{character vector of grouping elements using the level names of the portfolio in \code{x}. The names can be abbreviated.} \item{FUN}{the function to be applied to data subsets.} \item{classification}{boolean; if \code{TRUE}, the node identifier columns are included in the output.} \item{prefix}{characters to prefix column names with; if \code{NULL}, sensible defaults are used when appropriate.} \item{splitcol}{columns of the data matrix to extract separately; usual matrix indexing methods are supported.} \item{\dots}{optional arguments to \code{FUN}, or passed to or from other methods.} } \details{ By default, \code{aggregate.portfolio} computes the aggregate claim amounts for the grouping specified in \code{by}. Any other statistic based on the individual claim amounts can be used through argument \code{FUN}. \code{frequency.portfolio} is equivalent to using \code{aggregate.portfolio} with argument \code{FUN} equal to \code{if (identical(x, NA)) NA else length(x)}. \code{severity.portfolio} extracts individual claim amounts of a portfolio by groupings using the default method of \code{\link{severity}}. Argument \code{splitcol} allows to get the individual claim amounts of specific columns separately. \code{weights.portfolio} extracts the weight matrix of a portfolio. } \value{ A matrix or vector depending on the groupings specified in \code{by}. For the \code{aggregate} and \code{frequency} methods: if at least one level other than the last one is used for grouping, the result is a matrix obtained by binding the appropriate node identifiers extracted from \code{x$classification} if \code{classification = TRUE}, and the summaries per grouping. If the last level is used for grouping, the column names of \code{x$data} are retained; if the last level is not used for grouping, the column name is replaced by the deparsed name of \code{FUN}. If only the last level is used (column summaries), a named vector is returned. For the \code{severity} method: a list of two elements: \item{main}{\code{NULL} or a matrix of claim amounts for the columns not specified in \code{splitcol}, with the appropriate node identifiers extracted from \code{x$classification} if \code{classification = TRUE};} \item{split}{same as above, but for the columns specified in \code{splitcol}.} For the \code{weights} method: the weight matrix of the portfolio with node identifiers if \code{classification = TRUE}. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca}, Louis-Philippe Pouliot. } \seealso{ \code{\link{simul}} } \examples{ nodes <- list(sector = 3, unit = c(3, 4), employer = c(3, 4, 3, 4, 2, 3, 4), year = 5) model.freq <- expression(sector = rexp(1), unit = rexp(sector), employer = rgamma(unit, 1), year = rpois(employer)) model.sev <- expression(sector = rnorm(6, 0.1), unit = rnorm(sector, 1), employer = rnorm(unit, 1), year = rlnorm(employer, 1)) pf <- simul(nodes, model.freq, model.sev) aggregate(pf) # aggregate claim amount by employer and year aggregate(pf, classification = FALSE) # same, without node identifiers aggregate(pf, by = "sector") # by sector aggregate(pf, by = "y") # by year aggregate(pf, by = c("s", "u"), mean) # average claim amount frequency(pf) # number of claims frequency(pf, prefix = "freq.") # more explicit column names severity(pf) # claim amounts by row severity(pf, by = "year") # by column severity(pf, by = c("s", "u")) # by unit severity(pf, splitcol = "year.5") # last year separate severity(pf, splitcol = 5) # same severity(pf, splitcol = c(FALSE, FALSE, FALSE, FALSE, TRUE)) # same weights(pf) ## For portfolios with weights, the following computes loss ratios. \dontrun{aggregate(pf, classif = FALSE) / weights(pf, classif = FALSE)} } \keyword{models} \keyword{methods} actuar/man/ZeroTruncatedGeometric.Rd0000644000176200001440000000662214030725704017233 0ustar liggesusers\name{ZeroTruncatedGeometric} \alias{ZeroTruncatedGeometric} \alias{ZTGeometric} \alias{dztgeom} \alias{pztgeom} \alias{qztgeom} \alias{rztgeom} \title{The Zero-Truncated Geometric Distribution} \description{ Density function, distribution function, quantile function and random generation for the Zero-Truncated Geometric distribution with parameter \code{prob}. } \usage{ dztgeom(x, prob, log = FALSE) pztgeom(q, prob, lower.tail = TRUE, log.p = FALSE) qztgeom(p, prob, lower.tail = TRUE, log.p = FALSE) rztgeom(n, prob) } \arguments{ \item{x}{vector of (strictly positive integer) quantiles.} \item{q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{prob}{parameter. \code{0 < prob <= 1}.} \item{log, log.p}{logical; if \code{TRUE}, probabilities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.} } \details{ The zero-truncated geometric distribution with \code{prob} \eqn{= p} has probability mass function \deqn{% p(x) = p (1-p)^{x - 1}}{% p(x) = p (1-p)^(x-1)} for \eqn{x = 1, 2, \ldots} and \eqn{0 < p < 1}, and \eqn{p(1) = 1} when \eqn{p = 1}. The cumulative distribution function is \deqn{P(x) = \frac{F(x) - F(0)}{1 - F(0)},}{% P(x) = [F(x) - F(0)]/[1 - F(0)],} where \eqn{F(x)} is the distribution function of the standard geometric. The mean is \eqn{1/p} and the variance is \eqn{(1-p)/p^2}. In the terminology of Klugman et al. (2012), the zero-truncated geometric is a member of the \eqn{(a, b, 1)} class of distributions with \eqn{a = 1-p} and \eqn{b = 0}. If an element of \code{x} is not integer, the result of \code{dztgeom} is zero, with a warning. The quantile is defined as the smallest value \eqn{x} such that \eqn{P(x) \ge p}, where \eqn{P} is the distribution function. } \value{ \code{dztgeom} gives the (log) probability mass function, \code{pztgeom} gives the (log) distribution function, \code{qztgeom} gives the quantile function, and \code{rztgeom} generates random deviates. Invalid \code{prob} will result in return value \code{NaN}, with a warning. The length of the result is determined by \code{n} for \code{rztgeom}, and is the maximum of the lengths of the numerical arguments for the other functions. } \note{ Functions \code{\{d,p,q\}ztgeom} use \code{\{d,p,q\}geom} for all but the trivial input values and \eqn{p(0)}. \code{rztgeom} uses the simple inversion algorithm suggested by Peter Dalgaard on the r-help mailing list on 1 May 2005 % (\url{https://stat.ethz.ch/pipermail/r-help/2005-May/070680.html}). } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dgeom}} for the geometric distribution. \code{\link{dztnbinom}} for the zero-truncated negative binomial, of which the zero-truncated geometric is a special case. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ p <- 1/(1 + 0.5) dztgeom(c(1, 2, 3), prob = p) dgeom(c(1, 2, 3), p)/pgeom(0, p, lower = FALSE) # same dgeom(c(1, 2, 3) - 1, p) # same pztgeom(1, prob = 1) # point mass at 1 qztgeom(pztgeom(1:10, 0.3), 0.3) } \keyword{distribution} actuar/man/coverage.Rd0000644000176200001440000000747714030725704014407 0ustar liggesusers\name{coverage} \alias{coverage} \alias{Coverage} \title{Density and Cumulative Distribution Function for Modified Data} \description{ Compute probability density function or cumulative distribution function of the payment per payment or payment per loss random variable under any combination of the following coverage modifications: deductible, limit, coinsurance, inflation. } \usage{ coverage(pdf, cdf, deductible = 0, franchise = FALSE, limit = Inf, coinsurance = 1, inflation = 0, per.loss = FALSE) } \arguments{ \item{pdf, cdf}{function object or character string naming a function to compute, respectively, the probability density function and cumulative distribution function of a probability law.} \item{deductible}{a unique positive numeric value.} \item{franchise}{logical; \code{TRUE} for a franchise deductible, \code{FALSE} (default) for an ordinary deductible.} \item{limit}{a unique positive numeric value larger than \code{deductible}.} \item{coinsurance}{a unique value between 0 and 1; the proportion of coinsurance.} \item{inflation}{a unique value between 0 and 1; the rate of inflation.} \item{per.loss}{logical; \code{TRUE} for the per loss distribution, \code{FALSE} (default) for the per payment distribution.} } \details{ \code{coverage} returns a function to compute the probability density function (pdf) or the cumulative distribution function (cdf) of the distribution of losses under coverage modifications. The pdf and cdf of unmodified losses are \code{pdf} and \code{cdf}, respectively. If \code{pdf} is specified, the pdf is returned; if \code{pdf} is missing or \code{NULL}, the cdf is returned. Note that \code{cdf} is needed if there is a deductible or a limit. } \value{ An object of mode \code{"function"} with the same arguments as \code{pdf} or \code{cdf}, except \code{"lower.tail"}, \code{"log.p"} and \code{"log"}, which are not supported. } \note{ Setting arguments of the function returned by \code{coverage} using \code{\link{formals}} may very well not work as expected. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \seealso{ \code{vignette("coverage")} for the exact definitions of the per payment and per loss random variables under an ordinary or franchise deductible. } \examples{ ## Default case: pdf of the per payment random variable with ## an ordinary deductible coverage(dgamma, pgamma, deductible = 1) ## Add a limit f <- coverage(dgamma, pgamma, deductible = 1, limit = 7) f <- coverage("dgamma", "pgamma", deductible = 1, limit = 7) # same f(0, shape = 3, rate = 1) f(2, shape = 3, rate = 1) f(6, shape = 3, rate = 1) f(8, shape = 3, rate = 1) curve(dgamma(x, 3, 1), xlim = c(0, 10), ylim = c(0, 0.3)) # original curve(f(x, 3, 1), xlim = c(0.01, 5.99), col = 4, add = TRUE) # modified points(6, f(6, 3, 1), pch = 21, bg = 4) ## Cumulative distribution function F <- coverage(cdf = pgamma, deductible = 1, limit = 7) F(0, shape = 3, rate = 1) F(2, shape = 3, rate = 1) F(6, shape = 3, rate = 1) F(8, shape = 3, rate = 1) curve(pgamma(x, 3, 1), xlim = c(0, 10), ylim = c(0, 1)) # original curve(F(x, 3, 1), xlim = c(0, 5.99), col = 4, add = TRUE) # modified curve(F(x, 3, 1), xlim = c(6, 10), col = 4, add = TRUE) # modified ## With no deductible, all distributions below are identical coverage(dweibull, pweibull, limit = 5) coverage(dweibull, pweibull, per.loss = TRUE, limit = 5) coverage(dweibull, pweibull, franchise = TRUE, limit = 5) coverage(dweibull, pweibull, per.loss = TRUE, franchise = TRUE, limit = 5) ## Coinsurance alone; only case that does not require the cdf coverage(dgamma, coinsurance = 0.8) } \keyword{models} actuar/man/mean.grouped.data.Rd0000644000176200001440000000217614125442656016106 0ustar liggesusers\name{mean.grouped.data} \alias{mean.grouped.data} \title{Arithmetic Mean} \description{ Mean of grouped data objects. } \usage{ \method{mean}{grouped.data}(x, \dots) } \arguments{ \item{x}{an object of class \code{"grouped.data"}.} \item{\dots}{further arguments passed to or from other methods.} } \details{ The mean of grouped data with group boundaries \eqn{c_0, c_1, \dots, c_r}{c[0], c[1], \dots, c[r]} and group frequencies \eqn{n_1, \dots, n_r}{n[1], \dots, n[r]} is \deqn{\frac{1}{n} \sum_{j = 1}^r a_j n_j,}{% (1/n) * sum(j; a[j] * n[j]),} where \eqn{a_j = (c_{j - 1} + c_j)/2}{a[j] = (c[j - 1] + c[j])/2} is the midpoint of the \eqn{j}th interval, and \eqn{n = \sum_{j = 1}^r n_j}{n = sum(j; n[j])}. } \value{ A named vector of means. } \seealso{ \code{\link{grouped.data}} to create grouped data objects; \code{\link{emm}} to compute higher moments. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), \emph{Loss Models, From Data to Decisions}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ data(gdental) mean(gdental) } \keyword{univar} actuar/man/ZeroTruncatedPoisson.Rd0000644000176200001440000000736114030725704016750 0ustar liggesusers\name{ZeroTruncatedPoisson} \alias{ZeroTruncatedPoisson} \alias{ZTPoisson} \alias{dztpois} \alias{pztpois} \alias{qztpois} \alias{rztpois} \title{The Zero-Truncated Poisson Distribution} \description{ Density function, distribution function, quantile function, random generation for the Zero-Truncated Poisson distribution with parameter \code{lambda}. } \usage{ dztpois(x, lambda, log = FALSE) pztpois(q, lambda, lower.tail = TRUE, log.p = FALSE) qztpois(p, lambda, lower.tail = TRUE, log.p = FALSE) rztpois(n, lambda) } \arguments{ \item{x}{vector of (strictly positive integer) quantiles.} \item{q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of values to return.} \item{lambda}{vector of (non negative) means.} \item{log, log.p}{logical; if \code{TRUE}, probabilities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} } \details{ The zero-truncated Poisson distribution has probability mass function \deqn{% p(x) = \frac{e^{-/lambda} \lambda^x}{x! (1 - e^{-\lambda})} = \frac{\lambda^x}{x! (e^{\lambda} - 1)}}{% p(x) = lambda^x exp(-lambda)/[x! (1 - exp(-lambda))] = lambda^x/[x! (e^lambda - 1)]} for \eqn{x = 1, 2, ...}, and \eqn{p(1) = 1} when \eqn{\lambda = 0}. The cumulative distribution function is \deqn{P(x) = \frac{F(x) - F(0)}{1 - F(0)},}{% P(x) = [F(x) - F(0)]/[1 - F(0)],} where \eqn{F(x)} is the distribution function of the standard Poisson. The mean is \eqn{\lambda/(1 - e^{-\lambda})^2}{\lambda/(1 - exp(-\lambda))} and the variance is \eqn{\lambda[1 - (\lambda+1)e^{-\lambda}]/(1 - e^{-\lambda})^2}{% \lambda[1 - (\lambda+1)exp(-\lambda)]/(1 - exp(-\lambda))^2}. In the terminology of Klugman et al. (2012), the zero-truncated Poisson is a member of the \eqn{(a, b, 1)} class of distributions with \eqn{a = 0} and \eqn{b = \lambda}. If an element of \code{x} is not integer, the result of \code{dztpois} is zero, with a warning. The quantile is defined as the smallest value \eqn{x} such that \eqn{P(x) \ge p}, where \eqn{P} is the distribution function. } \value{ \code{dztpois} gives the (log) probability mass function, \code{pztpois} gives the (log) distribution function, \code{qztpois} gives the quantile function, and \code{rztpois} generates random deviates. Invalid \code{lambda} will result in return value \code{NaN}, with a warning. The length of the result is determined by \code{n} for \code{rztpois}, and is the maximum of the lengths of the numerical arguments for the other functions. } \note{ Functions \code{\{d,p,q\}ztpois} use \code{\{d,p,q\}pois} for all but the trivial input values and \eqn{p(0)}. \code{rztpois} uses the simple inversion algorithm suggested by Peter Dalgaard on the r-help mailing list on 1 May 2005 % (\url{https://stat.ethz.ch/pipermail/r-help/2005-May/070680.html}). } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dpois}} for the standard Poisson distribution. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ dztpois(1:5, lambda = 1) dpois(1:5, lambda = 1)/ppois(0, 1, lower = FALSE) # same pztpois(1, lambda = 0) # point mass at 1 qztpois(pztpois(1:10, 1), 1) x <- seq(0, 8) plot(x, dztpois(x, 2), type = "h", lwd = 2, ylab = "p(x)", main = "Zero-Truncated Poisson(2) and Poisson(2) PDF") points(x, dpois(x, 2), pch = 19, col = "red") legend("topright", c("ZT Poisson probabilities", "Poisson probabilities"), col = c("black", "red"), lty = c(1, 0), lwd = 2, pch = c(NA, 19)) } \keyword{distribution} actuar/man/ZeroTruncatedNegativeBinomial.Rd0000644000176200001440000001155214030725704020530 0ustar liggesusers\name{ZeroTruncatedNegativeBinomial} \alias{ZeroTruncatedNegativeBinomial} \alias{ZTNegativeBinomial} \alias{ZTNegBinomial} \alias{dztnbinom} \alias{pztnbinom} \alias{qztnbinom} \alias{rztnbinom} \title{The Zero-Truncated Negative Binomial Distribution} \description{ Density function, distribution function, quantile function and random generation for the Zero-Truncated Negative Binomial distribution with parameters \code{size} and \code{prob}. } \usage{ dztnbinom(x, size, prob, log = FALSE) pztnbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE) qztnbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE) rztnbinom(n, size, prob) } \arguments{ \item{x}{vector of (strictly positive integer) quantiles.} \item{q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{size}{target for number of successful trials, or dispersion parameter. Must be positive, need not be integer.} \item{prob}{parameter. \code{0 < prob <= 1}.} \item{log, log.p}{logical; if \code{TRUE}, probabilities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.} } \details{ The zero-truncated negative binomial distribution with \code{size} \eqn{= r} and \code{prob} \eqn{= p} has probability mass function \deqn{% p(x) = \frac{\Gamma(x + r) p^r (1 - p)^x}{\Gamma(r) x! (1 - p^r)}}{% p(x) = [\Gamma(x+r) p^r (1-p)^x]/[\Gamma(n) x! (1-p^r)]} for \eqn{x = 1, 2, \ldots}, \eqn{r \ge 0} and \eqn{0 < p < 1}, and \eqn{p(1) = 1} when \eqn{p = 1}. The cumulative distribution function is \deqn{P(x) = \frac{F(x) - F(0)}{1 - F(0)},}{% P(x) = [F(x) - F(0)]/[1 - F(0)],} where \eqn{F(x)} is the distribution function of the standard negative binomial. The mean is \eqn{r(1-p)/(p(1-p^r))} and the variance is \eqn{[r(1-p)(1 - (1 + r(1-p))p^r)]/[p(1-p^r)]^2}. In the terminology of Klugman et al. (2012), the zero-truncated negative binomial is a member of the \eqn{(a, b, 1)} class of distributions with \eqn{a = 1-p} and \eqn{b = (r-1)(1-p)}. The limiting case \code{size == 0} is the \link[=Logarithmic]{logarithmic} distribution with parameter \code{1 - prob}. Unlike the standard negative binomial functions, parametrization through the mean \code{mu} is not supported to avoid ambiguity as to whether \code{mu} is the mean of the underlying negative binomial or the mean of the zero-truncated distribution. If an element of \code{x} is not integer, the result of \code{dztnbinom} is zero, with a warning. The quantile is defined as the smallest value \eqn{x} such that \eqn{P(x) \ge p}, where \eqn{P} is the distribution function. } \value{ \code{dztnbinom} gives the (log) probability mass function, \code{pztnbinom} gives the (log) distribution function, \code{qztnbinom} gives the quantile function, and \code{rztnbinom} generates random deviates. Invalid \code{size} or \code{prob} will result in return value \code{NaN}, with a warning. The length of the result is determined by \code{n} for \code{rztnbinom}, and is the maximum of the lengths of the numerical arguments for the other functions. } \note{ Functions \code{\{d,p,q\}ztnbinom} use \code{\{d,p,q\}nbinom} for all but the trivial input values and \eqn{p(0)}. \code{rztnbinom} uses the simple inversion algorithm suggested by Peter Dalgaard on the r-help mailing list on 1 May 2005 % (\url{https://stat.ethz.ch/pipermail/r-help/2005-May/070680.html}). } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dnbinom}} for the negative binomial distribution. \code{\link{dztgeom}} for the zero-truncated geometric and \code{\link{dlogarithmic}} for the logarithmic, which are special cases of the zero-truncated negative binomial. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ ## Example 6.3 of Klugman et al. (2012) p <- 1/(1 + 0.5) dztnbinom(c(1, 2, 3), size = 2.5, prob = p) dnbinom(c(1, 2, 3), 2.5, p)/pnbinom(0, 2.5, p, lower = FALSE) # same pztnbinom(1, 2, prob = 1) # point mass at 1 dztnbinom(2, size = 1, 0.25) # == dztgeom(2, 0.25) dztnbinom(2, size = 0, 0.25) # == dlogarithmic(2, 0.75) qztnbinom(pztnbinom(1:10, 2.5, 0.3), 2.5, 0.3) x <- rztnbinom(1000, size = 2.5, prob = 0.4) y <- sort(unique(x)) plot(y, table(x)/length(x), type = "h", lwd = 2, pch = 19, col = "black", xlab = "x", ylab = "p(x)", main = "Empirical vs theoretical probabilities") points(y, dztnbinom(y, size = 2.5, prob = 0.4), pch = 19, col = "red") legend("topright", c("empirical", "theoretical"), lty = c(1, NA), lwd = 2, pch = c(NA, 19), col = c("black", "red")) } \keyword{distribution} actuar/man/cm.Rd0000644000176200001440000004241014125442656013204 0ustar liggesusers\name{cm} \alias{cm} \alias{print.cm} \alias{predict.cm} \alias{summary.cm} \alias{print.summary.cm} \title{Credibility Models} \description{ Fit the following credibility models: \enc{BĂŒhlmann}{Buhlmann}, \enc{BĂŒhlmann}{Buhlmann}-Straub, hierarchical, regression (Hachemeister) or linear Bayes. } \usage{ cm(formula, data, ratios, weights, subset, regformula = NULL, regdata, adj.intercept = FALSE, method = c("Buhlmann-Gisler", "Ohlsson", "iterative"), likelihood, ..., tol = sqrt(.Machine$double.eps), maxit = 100, echo = FALSE) \method{print}{cm}(x, \dots) \method{predict}{cm}(object, levels = NULL, newdata, \dots) \method{summary}{cm}(object, levels = NULL, newdata, \dots) \method{print}{summary.cm}(x, \dots) } \arguments{ \item{formula}{character string \code{"bayes"} or an object of class \code{"\link[stats]{formula}"}: a symbolic description of the model to be fit. The details of model specification are given below.} \item{data}{a matrix or a data frame containing the portfolio structure, the ratios or claim amounts and their associated weights, if any.} \item{ratios}{expression indicating the columns of \code{data} containing the ratios or claim amounts.} \item{weights}{expression indicating the columns of \code{data} containing the weights associated with \code{ratios}.} \item{subset}{an optional logical expression indicating a subset of observations to be used in the modeling process. All observations are included by default.} \item{regformula}{an object of class \code{"\link[stats]{formula}"}: symbolic description of the regression component (see \code{\link[stats]{lm}} for details). No left hand side is needed in the formula; if present it is ignored. If \code{NULL}, no regression is done on the data.} \item{regdata}{an optional data frame, list or environment (or object coercible by \code{\link[base]{as.data.frame}} to a data frame) containing the variables in the regression model.} \item{adj.intercept}{if \code{TRUE}, the intercept of the regression model is located at the barycenter of the regressor instead of the origin.} \item{method}{estimation method for the variance components of the model; see Details.} \item{likelihood}{a character string giving the name of the likelihood function in one of the supported linear Bayes cases; see Details.} \item{tol}{tolerance level for the stopping criteria for iterative estimation method.} \item{maxit}{maximum number of iterations in iterative estimation method.} \item{echo}{logical; whether to echo the iterative procedure or not.} \item{x, object}{an object of class \code{"cm"}.} \item{levels}{character vector indicating the levels to predict or to include in the summary; if \code{NULL} all levels are included.} \item{newdata}{data frame containing the variables used to predict credibility regression models.} \item{\dots}{parameters of the prior distribution for \code{cm}; additional attributes to attach to the result for the \code{predict} and \code{summary} methods; further arguments to \code{\link[base]{format}} for the \code{print.summary} method; unused for the \code{print} method.} } \details{ \code{cm} is the unified front end for credibility models fitting. The function supports hierarchical models with any number of levels (with \enc{BĂŒhlmann}{Buhlmann} and \enc{BĂŒhlmann}{Buhlmann}-Straub models as special cases) and the regression model of Hachemeister. Usage of \code{cm} is similar to \code{\link[stats]{lm}} for these cases. \code{cm} can also fit linear Bayes models, in which case usage is much simplified; see the section on linear Bayes below. When not \code{"bayes"}, the \code{formula} argument symbolically describes the structure of the portfolio in the form \eqn{~ terms}. Each term is an interaction between risk factors contributing to the total variance of the portfolio data. Terms are separated by \code{+} operators and interactions within each term by \code{:}. For a portfolio divided first into sectors, then units and finally contracts, \code{formula} would be \code{~ sector + sector:unit + sector:unit:contract}, where \code{sector}, \code{unit} and \code{contract} are column names in \code{data}. In general, the formula should be of the form \code{~ a + a:b + a:b:c + a:b:c:d + ...}. If argument \code{regformula} is not \code{NULL}, the regression model of Hachemeister is fit to the data. The response is usually time. By default, the intercept of the model is located at time origin. If argument \code{adj.intercept} is \code{TRUE}, the intercept is moved to the (collective) barycenter of time, by orthogonalization of the design matrix. Note that the regression coefficients may be difficult to interpret in this case. Arguments \code{ratios}, \code{weights} and \code{subset} are used like arguments \code{select}, \code{select} and \code{subset}, respectively, of function \code{\link[base]{subset}}. Data does not have to be sorted by level. Nodes with no data (complete lines of \code{NA} except for the portfolio structure) are allowed, with the restriction mentioned above. } \section{Hierarchical models}{ The credibility premium at one level is a convex combination between the linearly sufficient statistic of a node and the credibility premium of the level above. (For the first level, the complement of credibility is given to the collective premium.) The linearly sufficient statistic of a node is the credibility weighted average of the data of the node, except at the last level, where natural weights are used. The credibility factor of node \eqn{i} is equal to \deqn{\frac{w_i}{w_i + a/b},}{w[i]/(w[i] + a/b),} where \eqn{w_i}{w[i]} is the weight of the node used in the linearly sufficient statistic, \eqn{a} is the average within node variance and \eqn{b} is the average between node variance. } \section{Regression models}{ The credibility premium of node \eqn{i} is equal to \deqn{y^\prime b_i^a,}{y' ba[i],} where \eqn{y} is a matrix created from \code{newdata} and \eqn{b_i^a}{ba[i]} is the vector of credibility adjusted regression coefficients of node \eqn{i}. The latter is given by \deqn{b_i^a = Z_i b_i + (I - Z_I) m,}{ ba[i] = Z[i] b[i] + (I - Z[i]) m,} where \eqn{b_i}{b[i]} is the vector of regression coefficients based on data of node \eqn{i} only, \eqn{m} is the vector of collective regression coefficients, \eqn{Z_i}{Z[i]} is the credibility matrix and \eqn{I} is the identity matrix. The credibility matrix of node \eqn{i} is equal to \deqn{A^{-1} (A + s^2 S_i),}{A^(-1) (A + s2 S[i]),} where \eqn{S_i}{S[i]} is the unscaled regression covariance matrix of the node, \eqn{s^2}{s2} is the average within node variance and \eqn{A} is the within node covariance matrix. If the intercept is positioned at the barycenter of time, matrices \eqn{S_i}{S[i]} and \eqn{A} (and hence \eqn{Z_i}{Z[i]}) are diagonal. This amounts to use \enc{BĂŒhlmann}{Buhlmann}-Straub models for each regression coefficient. Argument \code{newdata} provides the \dQuote{future} value of the regressors for prediction purposes. It should be given as specified in \code{\link[stats]{predict.lm}}. } \section{Variance components estimation}{ For hierarchical models, two sets of estimators of the variance components (other than the within node variance) are available: unbiased estimators and iterative estimators. Unbiased estimators are based on sums of squares of the form \deqn{B_i = \sum_j w_{ij} (X_{ij} - \bar{X}_i)^2 - (J - 1) a}{% B[i] = sum(j; w[ij] (X[ij] - Xb[i])^2 - (J - 1) a)}% and constants of the form \deqn{c_i = w_i - \sum_j \frac{w_{ij}^2}{w_i},}{% c[i] = w[i] - sum(j; w[ij]^2)/w[i],}% where \eqn{X_{ij}}{X[ij]} is the linearly sufficient statistic of level \eqn{(ij)}; \eqn{\bar{X_{i}}}{Xb[i]} is the weighted average of the latter using weights \eqn{w_{ij}}{w[ij]}; \eqn{w_i = \sum_j w_{ij}}{w[i] = sum(j; w[ij])}; \eqn{J} is the effective number of nodes at level \eqn{(ij)}; \eqn{a} is the within variance of this level. Weights \eqn{w_{ij}}{w[ij]} are the natural weights at the lowest level, the sum of the natural weights the next level and the sum of the credibility factors for all upper levels. The \enc{BĂŒhlmann}{Buhlmann}-Gisler estimators (\code{method = "Buhlmann-Gisler"}) are given by% \deqn{b = \frac{1}{I} \sum_i \max \left( \frac{B_i}{c_i}, 0 \right),}{% b = mean(max(B[i]/c[i], 0)),}% that is the average of the per node variance estimators truncated at 0. The Ohlsson estimators (\code{method = "Ohlsson"}) are given by \deqn{b = \frac{\sum_i B_i}{\sum_i c_i},}{% b = sum(i; B[i]) / sum(i; c[i]),}% that is the weighted average of the per node variance estimators without any truncation. Note that negative estimates will be truncated to zero for credibility factor calculations. In the \enc{BĂŒhlmann}{Buhlmann}-Straub model, these estimators are equivalent. Iterative estimators \code{method = "iterative"} are pseudo-estimators of the form \deqn{b = \frac{1}{d} \sum_i w_i (X_i - \bar{X})^2,}{% b = sum(i; w[i] * (X[i] - Xb)^2)/d,} where \eqn{X_i}{X[i]} is the linearly sufficient statistic of one level, \eqn{\bar{X}}{Xb} is the linearly sufficient statistic of the level above and \eqn{d} is the effective number of nodes at one level minus the effective number of nodes of the level above. The Ohlsson estimators are used as starting values. For regression models, with the intercept at time origin, only iterative estimators are available. If \code{method} is different from \code{"iterative"}, a warning is issued. With the intercept at the barycenter of time, the choice of estimators is the same as in the \enc{BĂŒhlmann}{Buhlmann}-Straub model. } \section{Linear Bayes}{ When \code{formula} is \code{"bayes"}, the function computes pure Bayesian premiums for the following combinations of distributions where they are linear credibility premiums: \itemize{ \item{\eqn{X|\Theta = \theta \sim \mathrm{Poisson}(\theta)}{X|\Theta ~ Poisson(\Theta)} and \eqn{\Theta \sim \mathrm{Gamma}(\alpha, \lambda)}{\Theta ~ Gamma(\alpha, \lambda)};} \item{\eqn{X|\Theta = \theta \sim \mathrm{Exponential}(\theta)}{X|\Theta ~ Exponential(\Theta)} and \eqn{\Theta \sim \mathrm{Gamma}(\alpha, \lambda)}{\Theta ~ Gamma(\alpha, \lambda)};} \item{\eqn{X|\Theta = \theta \sim \mathrm{Gamma}(\tau, \theta)}{X|\Theta ~ Gamma(\tau, \Theta)} and \eqn{\Theta \sim \mathrm{Gamma}(\alpha, \lambda)}{\Theta ~ Gamma(\alpha, \lambda)};} \item{\eqn{X|\Theta = \theta \sim \mathrm{Normal}(\theta, \sigma_2^2)}{X|\Theta ~ Normal(\Theta, \sigma_2^2)} and \eqn{\Theta \sim \mathrm{Normal}(\mu, \sigma_1^2)}{\Theta ~ Normal(\mu, \sigma_1^2)};} \item{\eqn{X|\Theta = \theta \sim \mathrm{Bernoulli}(\theta)}{X|\Theta ~ Bernoulli(\Theta)} and \eqn{\Theta \sim \mathrm{Beta}(a, b)}{\Theta ~ Beta(a, b)};} \item{\eqn{X|\Theta = \theta \sim \mathrm{Binomial}(\nu, \theta)}{X|\Theta ~ Binomial(\nu, \Theta)} and \eqn{\Theta \sim \mathrm{Beta}(a, b)}{\Theta ~ Beta(a, b)};} \item{\eqn{X|\Theta = \theta \sim \mathrm{Geometric}(\theta)}{X|\Theta = \theta ~ Geometric(\theta)} and \eqn{\Theta \sim \mathrm{Beta}(a, b)}{\Theta ~ Beta(a, b)}.} \item{\eqn{X|\Theta = \theta \sim \mathrm{Negative~Binomial}(r, \theta)}{X|\Theta ~ Negative Binomial(r, \Theta)} and \eqn{\Theta \sim \mathrm{Beta}(a, b)}{\Theta ~ Beta(a, b)}.}} The following combination is also supported: \eqn{X|\Theta = \theta \sim \mathrm{Single~Parameter~Pareto}(\theta)}{X|\Theta ~ Single Parameter Pareto(\Theta)} and \eqn{\Theta \sim \mathrm{Gamma}(\alpha, \lambda)}{\Theta ~ Gamma(\alpha, \lambda)}. In this case, the Bayesian estimator not of the risk premium, but rather of parameter \eqn{\theta} is linear with a \dQuote{credibility} factor that is not restricted to \eqn{(0, 1)}. Argument \code{likelihood} identifies the distribution of \eqn{X|\Theta = \theta} as one of \code{"poisson"}, \code{"exponential"}, \code{"gamma"}, \code{"normal"}, \code{"bernoulli"}, \code{"binomial"}, \code{"geometric"}, \code{"negative binomial"} or \code{"pareto"}. The parameters of the distributions of \eqn{X|\Theta = \theta} (when needed) and \eqn{\Theta} are set in \code{\dots} using the argument names (and default values) of \code{\link[stats]{dgamma}}, \code{\link[stats]{dnorm}}, \code{\link[stats]{dbeta}}, \code{\link[stats]{dbinom}}, \code{\link[stats]{dnbinom}} or \code{dpareto1}, as appropriate. For the Gamma/Gamma case, use \code{shape.lik} for the shape parameter \eqn{\tau} of the Gamma likelihood. For the Normal/Normal case, use \code{sd.lik} for the standard error \eqn{\sigma_2} of the Normal likelihood. Data for the linear Bayes case may be a matrix or data frame as usual; an atomic vector to fit the model to a single contract; missing or \code{NULL} to fit the prior model. Arguments \code{ratios}, \code{weights} and \code{subset} are ignored. } \value{ Function \code{cm} computes the structure parameters estimators of the model specified in \code{formula}. The value returned is an object of class \code{cm}. An object of class \code{"cm"} is a list with at least the following components: \item{means}{a list containing, for each level, the vector of linearly sufficient statistics.} \item{weights}{a list containing, for each level, the vector of total weights.} \item{unbiased}{a vector containing the unbiased variance components estimators, or \code{NULL}.} \item{iterative}{a vector containing the iterative variance components estimators, or \code{NULL}.} \item{cred}{for multi-level hierarchical models: a list containing, the vector of credibility factors for each level. For one-level models: an array or vector of credibility factors.} \item{nodes}{a list containing, for each level, the vector of the number of nodes in the level.} \item{classification}{the columns of \code{data} containing the portfolio classification structure.} \item{ordering}{a list containing, for each level, the affiliation of a node to the node of the level above.} Regression fits have in addition the following components: \item{adj.models}{a list containing, for each node, the credibility adjusted regression model as obtained with \code{\link[stats]{lm.fit}} or \code{\link[stats]{lm.wfit}}.} \item{transition}{if \code{adj.intercept} is \code{TRUE}, a transition matrix from the basis of the orthogonal design matrix to the basis of the original design matrix.} \item{terms}{the \code{\link[stats]{terms}} object used.} The method of \code{predict} for objects of class \code{"cm"} computes the credibility premiums for the nodes of every level included in argument \code{levels} (all by default). Result is a list the same length as \code{levels} or the number of levels in \code{formula}, or an atomic vector for one-level models. } \references{ \enc{BĂŒhlmann}{Buhlmann}, H. and Gisler, A. (2005), \emph{A Course in Credibility Theory and its Applications}, Springer. Belhadj, H., Goulet, V. and Ouellet, T. (2009), On parameter estimation in hierarchical credibility, \emph{Astin Bulletin} \bold{39}. Goulet, V. (1998), Principles and application of credibility theory, \emph{Journal of Actuarial Practice} \bold{6}, ISSN 1064-6647. Goovaerts, M. J. and Hoogstad, W. J. (1987), \emph{Credibility Theory}, Surveys of Actuarial Studies, No. 4, Nationale-Nederlanden N.V. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca}, Xavier Milhaud, Tommy Ouellet, Louis-Philippe Pouliot } \seealso{ \code{\link[base]{subset}}, \code{\link[stats]{formula}}, \code{\link[stats]{lm}}, \code{\link[stats]{predict.lm}}. } \examples{ data(hachemeister) ## Buhlmann-Straub model fit <- cm(~state, hachemeister, ratios = ratio.1:ratio.12, weights = weight.1:weight.12) fit # print method predict(fit) # credibility premiums summary(fit) # more details ## Two-level hierarchical model. Notice that data does not have ## to be sorted by level X <- data.frame(unit = c("A", "B", "A", "B", "B"), hachemeister) fit <- cm(~unit + unit:state, X, ratio.1:ratio.12, weight.1:weight.12) predict(fit) predict(fit, levels = "unit") # unit credibility premiums only summary(fit) summary(fit, levels = "unit") # unit summaries only ## Regression model with intercept at time origin fit <- cm(~state, hachemeister, regformula = ~time, regdata = data.frame(time = 12:1), ratios = ratio.1:ratio.12, weights = weight.1:weight.12) fit predict(fit, newdata = data.frame(time = 0)) summary(fit, newdata = data.frame(time = 0)) ## Same regression model, with intercept at barycenter of time fit <- cm(~state, hachemeister, adj.intercept = TRUE, regformula = ~time, regdata = data.frame(time = 12:1), ratios = ratio.1:ratio.12, weights = weight.1:weight.12) fit predict(fit, newdata = data.frame(time = 0)) summary(fit, newdata = data.frame(time = 0)) ## Poisson/Gamma pure Bayesian model fit <- cm("bayes", data = c(5, 3, 0, 1, 1), likelihood = "poisson", shape = 3, rate = 3) fit predict(fit) summary(fit) ## Normal/Normal pure Bayesian model cm("bayes", data = c(5, 3, 0, 1, 1), likelihood = "normal", sd.lik = 2, mean = 2, sd = 1) } \keyword{models} actuar/man/VaR.Rd0000644000176200001440000000105314030725704013264 0ustar liggesusers\name{VaR} \alias{VaR} \title{Value at Risk} \description{ Value at Risk. } \usage{ VaR(x, \dots) } \arguments{ \item{x}{an \R object.} \item{\dots}{further arguments passed to or from other methods.} } \details{ This is a generic function with, currently, only a method for objects of class \code{"aggregateDist"}. } \value{ An object of class \code{numeric}. } \seealso{ \code{\link{VaR.aggregateDist}}, \code{\link{aggregateDist}} } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Tommy Ouellet } \keyword{univar} actuar/man/mde.Rd0000644000176200001440000000713214125442656013354 0ustar liggesusers\name{mde} \alias{Mde} \alias{mde} \title{Minimum Distance Estimation} \description{ Minimum distance fitting of univariate distributions, allowing parameters to be held fixed if desired. } \usage{ mde(x, fun, start, measure = c("CvM", "chi-square", "LAS"), weights = NULL, ...) } \arguments{ \item{x}{a vector or an object of class \code{"grouped data"} (in which case only the first column of frequencies is used).} \item{fun}{function returning a cumulative distribution (for \code{measure = "CvM"} and \code{measure = "chi-square"}) or a limited expected value (for \code{measure = "LAS"}) evaluated at its first argument.} \item{start}{a named list giving the parameters to be optimized with initial values} \item{measure}{either \code{"CvM"} for the Cramer-von Mises method, \code{"chi-square"} for the modified chi-square method, or \code{"LAS"} for the layer average severity method.} \item{weights}{weights; see Details.} \item{\dots}{Additional parameters, either for \code{fun} or for \code{optim}. In particular, it can be used to specify bounds via \code{lower} or \code{upper} or both. If arguments of \code{fun} are included they will be held fixed.} } \details{ The Cramer-von Mises method (\code{"CvM"}) minimizes the squared difference between the theoretical cdf and the empirical cdf at the data points (for individual data) or the ogive at the knots (for grouped data). The modified chi-square method (\code{"chi-square"}) minimizes the modified chi-square statistic for grouped data, that is the squared difference between the expected and observed frequency within each group. The layer average severity method (\code{"LAS"}) minimizes the squared difference between the theoretical and empirical limited expected value within each group for grouped data. All sum of squares can be weighted. If arguments \code{weights} is missing, weights default to 1 for \code{measure = "CvM"} and \code{measure = "LAS"}; for \code{measure = "chi-square"}, weights default to \eqn{1/n_j}{1/n[j]}, where \eqn{n_j}{n[j]} is the frequency in group \eqn{j = 1, \dots, r}. Optimization is performed using \code{\link{optim}}. For one-dimensional problems the Nelder-Mead method is used and for multi-dimensional problems the BFGS method, unless arguments named \code{lower} or \code{upper} are supplied when \code{L-BFGS-B} is used or \code{method} is supplied explicitly. } \value{ An object of class \code{"mde"}, a list with two components: \item{estimate}{the parameter estimates, and} \item{distance}{the distance.} } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), \emph{Loss Models, From Data to Decisions}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ ## Individual data example data(dental) mde(dental, pexp, start = list(rate = 1/200), measure = "CvM") ## Example 2.21 of Klugman et al. (1998) data(gdental) mde(gdental, pexp, start = list(rate = 1/200), measure = "CvM") mde(gdental, pexp, start = list(rate = 1/200), measure = "chi-square") mde(gdental, levexp, start = list(rate = 1/200), measure = "LAS") ## Two-parameter distribution example try(mde(gdental, ppareto, start = list(shape = 3, scale = 600), measure = "CvM")) # no convergence ## Working in log scale often solves the problem pparetolog <- function(x, shape, scale) ppareto(x, exp(shape), exp(scale)) ( p <- mde(gdental, pparetolog, start = list(shape = log(3), scale = log(600)), measure = "CvM") ) exp(p$estimate) } \keyword{distribution} \keyword{htest} actuar/man/GeneralizedPareto.Rd0000644000176200001440000001210114030725703016173 0ustar liggesusers\name{GeneralizedPareto} \alias{GeneralizedPareto} \alias{dgenpareto} \alias{pgenpareto} \alias{qgenpareto} \alias{rgenpareto} \alias{mgenpareto} \alias{levgenpareto} \title{The Generalized Pareto Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Generalized Pareto distribution with parameters \code{shape1}, \code{shape2} and \code{scale}. } \usage{ dgenpareto(x, shape1, shape2, rate = 1, scale = 1/rate, log = FALSE) pgenpareto(q, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qgenpareto(p, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rgenpareto(n, shape1, shape2, rate = 1, scale = 1/rate) mgenpareto(order, shape1, shape2, rate = 1, scale = 1/rate) levgenpareto(limit, shape1, shape2, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape1, shape2, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The Generalized Pareto distribution with parameters \code{shape1} \eqn{= \alpha}{= a}, \code{shape2} \eqn{= \tau}{= b} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\Gamma(\alpha + \tau)}{\Gamma(\alpha)\Gamma(\tau)} \frac{\theta^\alpha x^{\tau - 1}}{% (x + \theta)^{\alpha + \tau}}}{% f(x) = Gamma(a + b)/(Gamma(a) * Gamma(b)) * (s^a x^(b - 1))/(x + s)^(a + b)} for \eqn{x > 0}, \eqn{\alpha > 0}{a > 0}, \eqn{\tau > 0}{b > 0} and \eqn{\theta > 0}{s > 0}. (Here \eqn{\Gamma(\alpha)} is the function implemented by \R's \code{\link{gamma}()} and defined in its help.) The Generalized Pareto is the distribution of the random variable \deqn{\theta \left(\frac{X}{1 - X}\right),}{\theta (X/(1 - X)),} where \eqn{X} has a beta distribution with parameters \eqn{\alpha} and \eqn{\tau}. The Generalized Pareto distribution has the following special cases: \itemize{ \item A \link[=dpareto]{Pareto} distribution when \code{shape2 == 1}; \item An \link[=dinvpareto]{Inverse Pareto} distribution when \code{shape1 == 1}. } The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}, \eqn{-\tau < k < \alpha}{-shape2 < k < shape1}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k > -\tau}{k > -shape2} and \eqn{\alpha - k}{shape1 - k} not a negative integer. } \value{ \code{dgenpareto} gives the density, \code{pgenpareto} gives the distribution function, \code{qgenpareto} gives the quantile function, \code{rgenpareto} generates random deviates, \code{mgenpareto} gives the \eqn{k}th raw moment, and \code{levgenpareto} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levgenpareto} computes the limited expected value using \code{\link{betaint}}. Distribution also known as the Beta of the Second Kind. See also Kleiber and Kotz (2003) for alternative names and parametrizations. The Generalized Pareto distribution defined here is different from the one in Embrechts et al. (1997) and in \href{https://en.wikipedia.org/wiki/Generalized_Pareto_distribution}{Wikipedia}; see also Kleiber and Kotz (2003, section 3.12). One may most likely compute quantities for the latter using functions for the \link[=dpareto]{Pareto} distribution with the appropriate change of parametrization. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Embrechts, P., KlĂŒppelberg, C. and Mikisch, T. (1997), \emph{Modelling Extremal Events for Insurance and Finance}, Springer. Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dgenpareto(3, 3, 4, 4, log = TRUE)) p <- (1:10)/10 pgenpareto(qgenpareto(p, 3, 3, 1), 3, 3, 1) qgenpareto(.3, 3, 4, 4, lower.tail = FALSE) ## variance mgenpareto(2, 3, 2, 1) - mgenpareto(1, 3, 2, 1)^2 ## case with shape1 - order > 0 levgenpareto(10, 3, 3, scale = 1, order = 2) ## case with shape1 - order < 0 levgenpareto(10, 1.5, 3, scale = 1, order = 2) } \keyword{distribution} actuar/man/gdental.Rd0000644000176200001440000000123214030725704014211 0ustar liggesusers\name{gdental} \docType{data} \alias{gdental} \title{Grouped Dental Claims Data Set} \description{ Grouped dental claims, that is presented in a number of claims per claim amount group form. } \usage{gdental} \format{ An object of class \code{"grouped.data"} (inheriting from class \code{"data.frame"}) consisting of 10 rows and 2 columns. The environment of the object contains the plain vector of \code{cj} of group boundaries } \source{Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), \emph{Loss Models, From Data to Decisions}, Wiley. } \seealso{ \code{\link{grouped.data}} for a description of grouped data objects. } \keyword{datasets} actuar/man/Pareto4.Rd0000644000176200001440000001162514030725703014117 0ustar liggesusers\name{Pareto4} \alias{Pareto4} \alias{dpareto4} \alias{ppareto4} \alias{qpareto4} \alias{rpareto4} \alias{mpareto4} \alias{levpareto4} \title{The Pareto IV Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Pareto IV distribution with parameters \code{min}, \code{shape1}, \code{shape2} and \code{scale}. } \usage{ dpareto4(x, min, shape1, shape2, rate = 1, scale = 1/rate, log = FALSE) ppareto4(q, min, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qpareto4(p, min, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rpareto4(n, min, shape1, shape2, rate = 1, scale = 1/rate) mpareto4(order, min, shape1, shape2, rate = 1, scale = 1/rate) levpareto4(limit, min, shape1, shape2, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{min}{lower bound of the support of the distribution.} \item{shape1, shape2, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The Pareto IV (or \dQuote{type IV}) distribution with parameters \code{min} \eqn{= \mu}{= m}, \code{shape1} \eqn{= \alpha}{= a}, \code{shape2} \eqn{= \gamma}{= b} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\alpha \gamma ((x - \mu)/\theta)^{\gamma - 1}}{% \theta [1 + ((x - \mu)/\theta)^\gamma]^{\alpha + 1}}}{% f(x) = (a b ((x - m)/s)^(b - 1))/(s [1 + ((x - m)/s)^b]^(a + 1))} for \eqn{x > \mu}{x > m}, \eqn{-\infty < \mu < \infty}{-Inf < m < Inf}, \eqn{\alpha > 0}{a > 0}, \eqn{\gamma > 0}{b > 0} and \eqn{\theta > 0}{s > 0}. The Pareto IV is the distribution of the random variable \deqn{\mu + \theta \left(\frac{X}{1 - X}\right)^{1/\gamma},}{% m + s (X/(1 - X))^(1/b),} where \eqn{X} has a beta distribution with parameters \eqn{1} and \eqn{\alpha}{a}. It derives from the \link[=dfpareto]{Feller-Pareto} distribution with \eqn{\tau = 1}{shape3 = 1}. Setting \eqn{\mu = 0}{min = 0} yields the \link[=dburr]{Burr} distribution. The Pareto IV distribution also has the following direct special cases: \itemize{ \item A \link[=dpareto3]{Pareto III} distribution when \code{shape1 == 1}; \item A \link[=dpareto2]{Pareto II} distribution when \code{shape1 == 1}. } The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]} for nonnegative integer values of \eqn{k < \alpha\gamma}{k < shape1 * shape2}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]} for nonnegative integer values of \eqn{k} and \eqn{\alpha - j/\gamma}{shape1 - j/shape2}, \eqn{j = 1, \dots, k} not a negative integer. } \value{ \code{dpareto4} gives the density, \code{ppareto4} gives the distribution function, \code{qpareto4} gives the quantile function, \code{rpareto4} generates random deviates, \code{mpareto4} gives the \eqn{k}th raw moment, and \code{levpareto4} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levpareto4} computes the limited expected value using \code{\link{betaint}}. For Pareto distributions, we use the classification of Arnold (2015) with the parametrization of Klugman et al. (2012). The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Arnold, B.C. (2015), \emph{Pareto Distributions}, Second Edition, CRC Press. Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dburr}} for the Burr distribution. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ exp(dpareto4(1, min = 10, 2, 3, log = TRUE)) p <- (1:10)/10 ppareto4(qpareto4(p, min = 10, 2, 3, 2), min = 10, 2, 3, 2) ## variance mpareto4(2, min = 10, 2, 3, 1) - mpareto4(1, min = 10, 2, 3, 1) ^ 2 ## case with shape1 - order/shape2 > 0 levpareto4(10, min = 10, 2, 3, 1, order = 2) ## case with shape1 - order/shape2 < 0 levpareto4(10, min = 10, 1.5, 0.5, 1, order = 2) } \keyword{distribution} actuar/man/discretize.Rd0000644000176200001440000001076014030725704014746 0ustar liggesusers\name{discretize} \alias{discretize} \alias{discretise} \title{Discretization of a Continuous Distribution} \description{ Compute a discrete probability mass function from a continuous cumulative distribution function (cdf) with various methods. \code{discretise} is an alias for \code{discretize}. } \usage{ discretize(cdf, from, to, step = 1, method = c("upper", "lower", "rounding", "unbiased"), lev, by = step, xlim = NULL) discretise(cdf, from, to, step = 1, method = c("upper", "lower", "rounding", "unbiased"), lev, by = step, xlim = NULL) } \arguments{ \item{cdf}{an expression written as a function of \code{x}, or alternatively the name of a function, giving the cdf to discretize.} \item{from, to}{the range over which the function will be discretized.} \item{step}{numeric; the discretization step (or span, or lag).} \item{method}{discretization method to use.} \item{lev}{an expression written as a function of \code{x}, or alternatively the name of a function, to compute the limited expected value of the distribution corresponding to \code{cdf}. Used only with the \code{"unbiased"} method.} \item{by}{an alias for \code{step}.} \item{xlim}{numeric of length 2; if specified, it serves as default for \code{c(from, to)}.} } \details{ Usage is similar to \code{\link{curve}}. \code{discretize} returns the probability mass function (pmf) of the random variable obtained by discretization of the cdf specified in \code{cdf}. Let \eqn{F(x)} denote the cdf, \eqn{E[\min(X, x)]}{E[min(X, x)]]} the limited expected value at \eqn{x}, \eqn{h} the step, \eqn{p_x}{p[x]} the probability mass at \eqn{x} in the discretized distribution and set \eqn{a =} \code{from} and \eqn{b =} \code{to}. Method \code{"upper"} is the forward difference of the cdf \eqn{F}: \deqn{p_x = F(x + h) - F(x)}{p[x] = F(x + h) - F(x)} for \eqn{x = a, a + h, \dots, b - step}. Method \code{"lower"} is the backward difference of the cdf \eqn{F}: \deqn{p_x = F(x) - F(x - h)}{p[x] = F(x) - F(x - h)} for \eqn{x = a + h, \dots, b} and \eqn{p_a = F(a)}{p[a] = F(a)}. Method \code{"rounding"} has the true cdf pass through the midpoints of the intervals \eqn{[x - h/2, x + h/2)}: \deqn{p_x = F(x + h/2) - F(x - h/2)}{p[x] = F(x + h/2) - F(x - h/2)} for \eqn{x = a + h, \dots, b - step} and \eqn{p_a = F(a + h/2)}{p[a] = F(a + h/2)}. The function assumes the cdf is continuous. Any adjusment necessary for discrete distributions can be done via \code{cdf}. Method \code{"unbiased"} matches the first moment of the discretized and the true distributions. The probabilities are as follows: \deqn{p_a = \frac{E[\min(X, a)] - E[\min(X, a + h)]}{h} + 1 - F(a)}{% p[a] = (E[min(X, a)] - E[min(X, a + h)])/h + 1 - F(a)} \deqn{p_x = \frac{2 E[\min(X, x)] - E[\min(X, x - h)] - E[\min(X, x + h)]}{h}, \quad a < x < b}{% p[x] = (2 E[min(X, x)] - E[min(X, x - h)] - E[min(X, x + h)])/h, a < x < b} \deqn{p_b = \frac{E[\min(X, b)] - E[\min(X, b - h)]}{h} - 1 + F(b),}{% p[b] = (E[min(X, b)] - E[min(X, b - h)])/h - 1 + F(b).} } \value{ A numeric vector of probabilities suitable for use in \code{\link{aggregateDist}}. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \seealso{ \code{\link{aggregateDist}} } \examples{ x <- seq(0, 5, 0.5) op <- par(mfrow = c(1, 1), col = "black") ## Upper and lower discretization fu <- discretize(pgamma(x, 1), method = "upper", from = 0, to = 5, step = 0.5) fl <- discretize(pgamma(x, 1), method = "lower", from = 0, to = 5, step = 0.5) curve(pgamma(x, 1), xlim = c(0, 5)) par(col = "blue") plot(stepfun(head(x, -1), diffinv(fu)), pch = 19, add = TRUE) par(col = "green") plot(stepfun(x, diffinv(fl)), pch = 19, add = TRUE) par(col = "black") ## Rounding (or midpoint) discretization fr <- discretize(pgamma(x, 1), method = "rounding", from = 0, to = 5, step = 0.5) curve(pgamma(x, 1), xlim = c(0, 5)) par(col = "blue") plot(stepfun(head(x, -1), diffinv(fr)), pch = 19, add = TRUE) par(col = "black") ## First moment matching fb <- discretize(pgamma(x, 1), method = "unbiased", lev = levgamma(x, 1), from = 0, to = 5, step = 0.5) curve(pgamma(x, 1), xlim = c(0, 5)) par(col = "blue") plot(stepfun(x, diffinv(fb)), pch = 19, add = TRUE) par(op) } \keyword{distribution} \keyword{models} actuar/man/InverseParalogistic.Rd0000644000176200001440000000725114030725703016556 0ustar liggesusers\name{InverseParalogistic} \alias{InverseParalogistic} \alias{dinvparalogis} \alias{pinvparalogis} \alias{qinvparalogis} \alias{rinvparalogis} \alias{minvparalogis} \alias{levinvparalogis} \title{The Inverse Paralogistic Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Inverse Paralogistic distribution with parameters \code{shape} and \code{scale}. } \usage{ dinvparalogis(x, shape, rate = 1, scale = 1/rate, log = FALSE) pinvparalogis(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qinvparalogis(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rinvparalogis(n, shape, rate = 1, scale = 1/rate) minvparalogis(order, shape, rate = 1, scale = 1/rate) levinvparalogis(limit, shape, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The inverse paralogistic distribution with parameters \code{shape} \eqn{= \tau}{= a} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\tau^2 (x/\theta)^{\tau^2}}{% x [1 + (x/\theta)^\tau]^{\tau + 1}}}{% f(x) = a^2 (x/s)^(a^2)/(x [1 + (x/s)^a]^(a + 1))} for \eqn{x > 0}, \eqn{\tau > 0}{a > 0} and \eqn{\theta > 0}{b > 0}. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, \eqn{-\tau^2 < k < \tau}{-shape^2 < k < shape}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k > -\tau^2}{k > -shape^2} and \eqn{1 - k/\tau}{1 - k/shape} not a negative integer. } \value{ \code{dinvparalogis} gives the density, \code{pinvparalogis} gives the distribution function, \code{qinvparalogis} gives the quantile function, \code{rinvparalogis} generates random deviates, \code{minvparalogis} gives the \eqn{k}th raw moment, and \code{levinvparalogis} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levinvparalogis} computes computes the limited expected value using \code{\link{betaint}}. See Kleiber and Kotz (2003) for alternative names and parametrizations. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dinvparalogis(2, 3, 4, log = TRUE)) p <- (1:10)/10 pinvparalogis(qinvparalogis(p, 2, 3), 2, 3) ## first negative moment minvparalogis(-1, 2, 2) ## case with 1 - order/shape > 0 levinvparalogis(10, 2, 2, order = 1) ## case with 1 - order/shape < 0 levinvparalogis(10, 2/3, 2, order = 1) } \keyword{distribution} actuar/man/TransformedGamma.Rd0000644000176200001440000001053514030725704016030 0ustar liggesusers\name{TransformedGamma} \alias{TransformedGamma} \alias{dtrgamma} \alias{ptrgamma} \alias{qtrgamma} \alias{rtrgamma} \alias{mtrgamma} \alias{levtrgamma} \title{The Transformed Gamma Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Transformed Gamma distribution with parameters \code{shape1}, \code{shape2} and \code{scale}. } \usage{ dtrgamma(x, shape1, shape2, rate = 1, scale = 1/rate, log = FALSE) ptrgamma(q, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qtrgamma(p, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rtrgamma(n, shape1, shape2, rate = 1, scale = 1/rate) mtrgamma(order, shape1, shape2, rate = 1, scale = 1/rate) levtrgamma(limit, shape1, shape2, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape1, shape2, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The transformed gamma distribution with parameters \code{shape1} \eqn{= \alpha}{= a}, \code{shape2} \eqn{= \tau}{= b} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\tau u^\alpha e^{-u}}{x \Gamma(\alpha)}, % \quad u = (x/\theta)^\tau}{% f(x) = b u^a exp(-u) / (x Gamma(a)), u = (x/s)^b} for \eqn{x > 0}, \eqn{\alpha > 0}{a > 0}, \eqn{\tau > 0}{b > 0} and \eqn{\theta > 0}{s > 0}. (Here \eqn{\Gamma(\alpha)}{Gamma(a)} is the function implemented by \R's \code{\link{gamma}()} and defined in its help.) The transformed gamma is the distribution of the random variable \eqn{\theta X^{1/\tau},}{s X^(1/b),} where \eqn{X} has a gamma distribution with shape parameter \eqn{\alpha}{a} and scale parameter \eqn{1} or, equivalently, of the random variable \eqn{Y^{1/\tau}}{Y^(1/b)} with \eqn{Y} a gamma distribution with shape parameter \eqn{\alpha}{a} and scale parameter \eqn{\theta^\tau}{s^b}. The transformed gamma probability distribution defines a family of distributions with the following special cases: \itemize{ \item A \link[=dgamma]{Gamma} distribution when \code{shape2 == 1}; \item A \link[=dweibull]{Weibull} distribution when \code{shape1 == 1}; \item An \link[=dexp]{Exponential} distribution when \code{shape2 == shape1 == 1}. } The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]} and the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k > -\alpha\tau}{k > -shape1 * shape2}. } \value{ \code{dtrgamma} gives the density, \code{ptrgamma} gives the distribution function, \code{qtrgamma} gives the quantile function, \code{rtrgamma} generates random deviates, \code{mtrgamma} gives the \eqn{k}th raw moment, and \code{levtrgamma} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ Distribution also known as the Generalized Gamma. See also Kleiber and Kotz (2003) for alternative names and parametrizations. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dtrgamma(2, 3, 4, 5, log = TRUE)) p <- (1:10)/10 ptrgamma(qtrgamma(p, 2, 3, 4), 2, 3, 4) mtrgamma(2, 3, 4, 5) - mtrgamma(1, 3, 4, 5) ^ 2 levtrgamma(10, 3, 4, 5, order = 2) } \keyword{distribution} actuar/man/InversePareto.Rd0000644000176200001440000000555514030725703015374 0ustar liggesusers\name{InversePareto} \alias{InversePareto} \alias{dinvpareto} \alias{pinvpareto} \alias{qinvpareto} \alias{rinvpareto} \alias{minvpareto} \alias{levinvpareto} \title{The Inverse Pareto Distribution} \description{ Density function, distribution function, quantile function, random generation raw moments and limited moments for the Inverse Pareto distribution with parameters \code{shape} and \code{scale}. } \usage{ dinvpareto(x, shape, scale, log = FALSE) pinvpareto(q, shape, scale, lower.tail = TRUE, log.p = FALSE) qinvpareto(p, shape, scale, lower.tail = TRUE, log.p = FALSE) rinvpareto(n, shape, scale) minvpareto(order, shape, scale) levinvpareto(limit, shape, scale, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape, scale}{parameters. Must be strictly positive.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The inverse Pareto distribution with parameters \code{shape} \eqn{= \tau}{= a} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\tau \theta x^{\tau - 1}}{% (x + \theta)^{\tau + 1}}}{% f(x) = a s x^(a - 1)/(x + s)^(a + 1)} for \eqn{x > 0}, \eqn{\tau > 0}{a > 0} and \eqn{\theta > 0}{s > 0}. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}, \eqn{-\tau < k < 1}{-shape < k < 1}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k > -\tau}{k > -shape}. } \value{ \code{dinvpareto} gives the density, \code{pinvpareto} gives the distribution function, \code{qinvpareto} gives the quantile function, \code{rinvpareto} generates random deviates, \code{minvpareto} gives the \eqn{k}th raw moment, and \code{levinvpareto} calculates the \eqn{k}th limited moment. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ Evaluation of \code{levinvpareto} is done using numerical integration. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dinvpareto(2, 3, 4, log = TRUE)) p <- (1:10)/10 pinvpareto(qinvpareto(p, 2, 3), 2, 3) minvpareto(0.5, 1, 2) } \keyword{distribution} actuar/man/hachemeister.Rd0000644000176200001440000000154614030725704015244 0ustar liggesusers\name{hachemeister} \docType{data} \alias{hachemeister} \title{Hachemeister Data Set} \description{ Hachemeister (1975) data set giving average claim amounts in private passenger bodily injury insurance in five U.S. states over 12 quarters between July 1970 and June 1973 and the corresponding number of claims. } \usage{hachemeister} \format{ A matrix with 5 rows and the following 25 columns: \describe{ \item{\code{state}}{the state number;} \item{\code{ratio.1}, \dots, \code{ratio.12}}{the average claim amounts;} \item{\code{weight.1}, \dots, \code{weight.12}}{the corresponding number of claims.} } } \source{ Hachemeister, C. A. (1975), \emph{Credibility for regression models with application to trend}, Proceedings of the Berkeley Actuarial Research Conference on Credibility, Academic Press. } \keyword{datasets} actuar/man/ZeroModifiedPoisson.Rd0000644000176200001440000000730714030725704016537 0ustar liggesusers\name{ZeroModifiedPoisson} \alias{ZeroModifiedPoisson} \alias{ZMpoisson} \alias{dzmpois} \alias{pzmpois} \alias{qzmpois} \alias{rzmpois} \title{The Zero-Modified Poisson Distribution} \description{ Density function, distribution function, quantile function, random generation for the Zero-Modified Poisson distribution with parameter \code{lambda} and arbitrary probability at zero \code{p0}. } \usage{ dzmpois(x, lambda, p0, log = FALSE) pzmpois(q, lambda, p0, lower.tail = TRUE, log.p = FALSE) qzmpois(p, lambda, p0, lower.tail = TRUE, log.p = FALSE) rzmpois(n, lambda, p0) } \arguments{ \item{x}{vector of (strictly positive integer) quantiles.} \item{q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of values to return.} \item{lambda}{vector of (non negative) means.} \item{p0}{probability mass at zero. \code{0 <= p0 <= 1}.} \item{log, log.p}{logical; if \code{TRUE}, probabilities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} } \details{ The zero-modified Poisson distribution is a discrete mixture between a degenerate distribution at zero and a (standard) Poisson. The probability mass function is \eqn{p(0) = p_0}{p(0) = p0} and \deqn{% p(x) = \frac{(1-p_0)}{(1-e^{-\lambda})} f(x)}{% p(x) = (1-p0)/(1-exp(-lambda)) f(x)} for \eqn{x = 1, 2, ...}, \eqn{\lambda > 0} and \eqn{0 \le p_0 \le 1}{0 \le p0 \le 1}, where \eqn{f(x)} is the probability mass function of the Poisson. The cumulative distribution function is \deqn{P(x) = p_0 + (1 - p_0) \left(\frac{F(x) - F(0)}{1 - F(0)}\right).}{% P(x) = p0 + (1 - p0) [F(x) - F(0)]/[1 - F(0)].} The mean is \eqn{(1-p_0) \mu}{(1-p0)m} and the variance is \eqn{(1-p_0) \sigma^2 + p_0(1-p_0) \mu^2}{(1-p0)v + p0(1-p0)m^2}, where \eqn{\mu}{m} and \eqn{\sigma^2}{v} are the mean and variance of the zero-truncated Poisson. In the terminology of Klugman et al. (2012), the zero-modified Poisson is a member of the \eqn{(a, b, 1)} class of distributions with \eqn{a = 0} and \eqn{b = \lambda}. The special case \code{p0 == 0} is the zero-truncated Poisson. If an element of \code{x} is not integer, the result of \code{dzmpois} is zero, with a warning. The quantile is defined as the smallest value \eqn{x} such that \eqn{P(x) \ge p}, where \eqn{P} is the distribution function. } \value{ \code{dzmpois} gives the (log) probability mass function, \code{pzmpois} gives the (log) distribution function, \code{qzmpois} gives the quantile function, and \code{rzmpois} generates random deviates. Invalid \code{lambda} or \code{p0} will result in return value \code{NaN}, with a warning. The length of the result is determined by \code{n} for \code{rzmpois}, and is the maximum of the lengths of the numerical arguments for the other functions. } \note{ Functions \code{\{d,p,q\}zmpois} use \code{\{d,p,q\}pois} for all but the trivial input values and \eqn{p(0)}. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dpois}} for the standard Poisson distribution. \code{\link{dztpois}} for the zero-truncated Poisson distribution. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ dzmpois(0:5, lambda = 1, p0 = 0.2) (1-0.2) * dpois(0:5, lambda = 1)/ppois(0, 1, lower = FALSE) # same ## simple relation between survival functions pzmpois(0:5, 1, p0 = 0.2, lower = FALSE) (1-0.2) * ppois(0:5, 1, lower = FALSE) / ppois(0, 1, lower = FALSE) # same qzmpois(pzmpois(0:10, 1, p0 = 0.7), 1, p0 = 0.7) } \keyword{distribution} actuar/man/GeneralizedBeta.Rd0000644000176200001440000001002114030725703015613 0ustar liggesusers\name{GeneralizedBeta} \alias{GeneralizedBeta} \alias{dgenbeta} \alias{pgenbeta} \alias{qgenbeta} \alias{rgenbeta} \alias{mgenbeta} \alias{levgenbeta} \title{The Generalized Beta Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Generalized Beta distribution with parameters \code{shape1}, \code{shape2}, \code{shape3} and \code{scale}. } \usage{ dgenbeta(x, shape1, shape2, shape3, rate = 1, scale = 1/rate, log = FALSE) pgenbeta(q, shape1, shape2, shape3, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qgenbeta(p, shape1, shape2, shape3, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rgenbeta(n, shape1, shape2, shape3, rate = 1, scale = 1/rate) mgenbeta(order, shape1, shape2, shape3, rate = 1, scale = 1/rate) levgenbeta(limit, shape1, shape2, shape3, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape1, shape2, shape3, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The generalized beta distribution with parameters \code{shape1} \eqn{= \alpha}{= a}, \code{shape2} \eqn{= \beta}{= b}, \code{shape3} \eqn{= \tau}{= c} and \code{scale} \eqn{= \theta}{= s}, has density: \deqn{f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} (x/\theta)^{\alpha \tau} (1 - (x/\theta)^\tau)^{\beta - 1} \frac{\tau}{x}}{% f(x) = Gamma(a + b)/(Gamma(a) * Gamma(b)) (c (x/s)^(ac) [1 - (x/s)^c]^(b - 1))/x} for \eqn{0 < x < \theta}{0 < x < s}, \eqn{\alpha > 0}{a > 0}, \eqn{\beta > 0}{b > 0}, \eqn{\tau > 0}{c > 0} and \eqn{\theta > 0}{s > 0}. (Here \eqn{\Gamma(\alpha)}{Gamma(a)} is the function implemented by \R's \code{\link{gamma}()} and defined in its help.) The generalized beta is the distribution of the random variable \deqn{\theta X^{1/\tau},}{s X^(1/c),} where \eqn{X} has a beta distribution with parameters \eqn{\alpha}{a} and \eqn{\beta}{b}. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]} and the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)]}{E[min(X, d)]}, \eqn{k > -\alpha\tau}{k > -shape1 * shape3}. } \value{ \code{dgenbeta} gives the density, \code{pgenbeta} gives the distribution function, \code{qgenbeta} gives the quantile function, \code{rgenbeta} generates random deviates, \code{mgenbeta} gives the \eqn{k}th raw moment, and \code{levgenbeta} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ This is \emph{not} the generalized three-parameter beta distribution defined on page 251 of Johnson et al, 1995. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) \emph{Continuous Univariate Distributions, Volume 2}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ exp(dgenbeta(2, 2, 3, 4, 0.2, log = TRUE)) p <- (1:10)/10 pgenbeta(qgenbeta(p, 2, 3, 4, 0.2), 2, 3, 4, 0.2) mgenbeta(2, 1, 2, 3, 0.25) - mgenbeta(1, 1, 2, 3, 0.25) ^ 2 levgenbeta(10, 1, 2, 3, 0.25, order = 2) } \keyword{distribution} actuar/man/TransformedBeta.Rd0000644000176200001440000001313714030725704015662 0ustar liggesusers\name{TransformedBeta} \alias{TransformedBeta} \alias{dtrbeta} \alias{ptrbeta} \alias{qtrbeta} \alias{rtrbeta} \alias{mtrbeta} \alias{levtrbeta} \alias{Pearson6} \alias{dpearson6} \alias{ppearson6} \alias{qpearson6} \alias{rpearson6} \alias{mpearson6} \alias{levpearson6} \title{The Transformed Beta Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Transformed Beta distribution with parameters \code{shape1}, \code{shape2}, \code{shape3} and \code{scale}. } \usage{ dtrbeta(x, shape1, shape2, shape3, rate = 1, scale = 1/rate, log = FALSE) ptrbeta(q, shape1, shape2, shape3, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qtrbeta(p, shape1, shape2, shape3, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rtrbeta(n, shape1, shape2, shape3, rate = 1, scale = 1/rate) mtrbeta(order, shape1, shape2, shape3, rate = 1, scale = 1/rate) levtrbeta(limit, shape1, shape2, shape3, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape1, shape2, shape3, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The transformed beta distribution with parameters \code{shape1} \eqn{= \alpha}{= a}, \code{shape2} \eqn{= \gamma}{= b}, \code{shape3} \eqn{= \tau}{= c} and \code{scale} \eqn{= \theta}{= s}, has density: \deqn{f(x) = \frac{\Gamma(\alpha + \tau)}{\Gamma(\alpha)\Gamma(\tau)} \frac{\gamma (x/\theta)^{\gamma \tau}}{% x [1 + (x/\theta)^\gamma]^{\alpha + \tau}}}{% f(x) = Gamma(a + c)/(Gamma(a) * Gamma(c)) (b (x/s)^(bc))/% (x [1 + (x/s)^b]^(a + c))} for \eqn{x > 0}, \eqn{\alpha > 0}{a > 0}, \eqn{\gamma > 0}{b > 0}, \eqn{\tau > 0}{c > 0} and \eqn{\theta > 0}{s > 0}. (Here \eqn{\Gamma(\alpha)}{Gamma(a)} is the function implemented by \R's \code{\link{gamma}()} and defined in its help.) The transformed beta is the distribution of the random variable \deqn{\theta \left(\frac{X}{1 - X}\right)^{1/\gamma},}{% s (X/(1 - X))^(1/b),} where \eqn{X} has a beta distribution with parameters \eqn{\tau}{c} and \eqn{\alpha}{a}. The transformed beta distribution defines a family of distributions with the following special cases: \itemize{ \item A \link[=dburr]{Burr} distribution when \code{shape3 == 1}; \item A \link[=dllogis]{loglogistic} distribution when \code{shape1 == shape3 == 1}; \item A \link[=dparalogis]{paralogistic} distribution when \code{shape3 == 1} and \code{shape2 == shape1}; \item A \link[=dgenpareto]{generalized Pareto} distribution when \code{shape2 == 1}; \item A \link[=dpareto]{Pareto} distribution when \code{shape2 == shape3 == 1}; \item An \link[=dinvburr]{inverse Burr} distribution when \code{shape1 == 1}; \item An \link[=dinvpareto]{inverse Pareto} distribution when \code{shape2 == shape1 == 1}; \item An \link[=dinvparalogis]{inverse paralogistic} distribution when \code{shape1 == 1} and \code{shape3 == shape2}. } The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}, \eqn{-\tau\gamma < k < \alpha\gamma}{-shape3 * shape2 < k < shape1 * shape2}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k > -\tau\gamma}{k > -shape3 * shape2} and \eqn{\alpha - k/\gamma}{shape1 - k/shape2} not a negative integer. } \value{ \code{dtrbeta} gives the density, \code{ptrbeta} gives the distribution function, \code{qtrbeta} gives the quantile function, \code{rtrbeta} generates random deviates, \code{mtrbeta} gives the \eqn{k}th raw moment, and \code{levtrbeta} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levtrbeta} computes the limited expected value using \code{\link{betaint}}. Distribution also known as the Generalized Beta of the Second Kind and Pearson Type VI. See also Kleiber and Kotz (2003) for alternative names and parametrizations. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dfpareto}} for an equivalent distribution with a location parameter. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dtrbeta(2, 2, 3, 4, 5, log = TRUE)) p <- (1:10)/10 ptrbeta(qtrbeta(p, 2, 3, 4, 5), 2, 3, 4, 5) qpearson6(0.3, 2, 3, 4, 5, lower.tail = FALSE) ## variance mtrbeta(2, 2, 3, 4, 5) - mtrbeta(1, 2, 3, 4, 5)^2 ## case with shape1 - order/shape2 > 0 levtrbeta(10, 2, 3, 4, scale = 1, order = 2) ## case with shape1 - order/shape2 < 0 levtrbeta(10, 1/3, 0.75, 4, scale = 0.5, order = 2) } \keyword{distribution} actuar/man/GammaSupp.Rd0000644000176200001440000000357414030725703014477 0ustar liggesusers\name{GammaSupp} \alias{GammaSupp} \alias{mgamma} \alias{levgamma} \alias{mgfgamma} \title{Moments and Moment Generating Function of the Gamma Distribution} \description{ Raw moments, limited moments and moment generating function for the Gamma distribution with parameters \code{shape} and \code{scale}. } \usage{ mgamma(order, shape, rate = 1, scale = 1/rate) levgamma(limit, shape, rate = 1, scale = 1/rate, order = 1) mgfgamma(t, shape, rate = 1, scale = 1/rate, log = FALSE) } \arguments{ \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} \item{rate}{an alternative way to specify the scale.} \item{shape, scale}{shape and scale parameters. Must be strictly positive.} \item{t}{numeric vector.} \item{log}{logical; if \code{TRUE}, the cumulant generating function is returned.} } \details{ The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]} and the moment generating function is \eqn{E[e^{tX}]}, \eqn{k > -\alpha}{k > -shape}. } \value{ \code{mgamma} gives the \eqn{k}th raw moment, \code{levgamma} gives the \eqn{k}th moment of the limited loss variable, and \code{mgfgamma} gives the moment generating function in \code{t}. Invalid arguments will result in return value \code{NaN}, with a warning. } \seealso{ \code{\link[stats]{GammaDist}} } \references{ Johnson, N. L. and Kotz, S. (1970), \emph{Continuous Univariate Distributions, Volume 1}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca}, Christophe Dutang and Mathieu Pigeon } \examples{ mgamma(2, 3, 4) - mgamma(1, 3, 4)^2 levgamma(10, 3, 4, order = 2) mgfgamma(1,3,2) } \keyword{distribution} actuar/man/aggregateDist.Rd0000644000176200001440000003061414030725704015353 0ustar liggesusers\name{aggregateDist} \alias{aggregateDist} \alias{print.aggregateDist} \alias{plot.aggregateDist} \alias{summary.aggregateDist} \alias{mean.aggregateDist} \alias{diff.aggregateDist} \title{Aggregate Claim Amount Distribution} \description{ Compute the aggregate claim amount cumulative distribution function of a portfolio over a period using one of five methods. } \usage{ aggregateDist(method = c("recursive", "convolution", "normal", "npower", "simulation"), model.freq = NULL, model.sev = NULL, p0 = NULL, x.scale = 1, convolve = 0, moments, nb.simul, \dots, tol = 1e-06, maxit = 500, echo = FALSE) \method{print}{aggregateDist}(x, \dots) \method{plot}{aggregateDist}(x, xlim, ylab = expression(F[S](x)), main = "Aggregate Claim Amount Distribution", sub = comment(x), \dots) \method{summary}{aggregateDist}(object, \dots) \method{mean}{aggregateDist}(x, \dots) \method{diff}{aggregateDist}(x, \dots) } \arguments{ \item{method}{method to be used} \item{model.freq}{for \code{"recursive"} method: a character string giving the name of a distribution in the \eqn{(a, b, 0)} or \eqn{(a, b, 1)} families of distributions. For \code{"convolution"} method: a vector of claim number probabilities. For \code{"simulation"} method: a frequency simulation model (see \code{\link{rcomphierarc}} for details) or \code{NULL}. Ignored with \code{normal} and \code{npower} methods.} \item{model.sev}{for \code{"recursive"} and \code{"convolution"} methods: a vector of claim amount probabilities. For \code{"simulation"} method: a severity simulation model (see \code{\link{rcomphierarc}} for details) or \code{NULL}. Ignored with \code{normal} and \code{npower} methods.} \item{p0}{arbitrary probability at zero for the frequency distribution. Creates a zero-modified or zero-truncated distribution if not \code{NULL}. Used only with \code{"recursive"} method.} \item{x.scale}{value of an amount of 1 in the severity model (monetary unit). Used only with \code{"recursive"} and \code{"convolution"} methods.} \item{convolve}{number of times to convolve the resulting distribution with itself. Used only with \code{"recursive"} method.} \item{moments}{vector of the true moments of the aggregate claim amount distribution; required only by the \code{"normal"} or \code{"npower"} methods.} \item{nb.simul}{number of simulations for the \code{"simulation"} method.} \item{\dots}{parameters of the frequency distribution for the \code{"recursive"} method; further arguments to be passed to or from other methods otherwise.} \item{tol}{the resulting cumulative distribution in the \code{"recursive"} method will get less than \code{tol} away from 1.} \item{maxit}{maximum number of recursions in the \code{"recursive"} method.} \item{echo}{logical; echo the recursions to screen in the \code{"recursive"} method.} \item{x, object}{an object of class \code{"aggregateDist"}.} \item{xlim}{numeric of length 2; the \eqn{x} limits of the plot.} \item{ylab}{label of the y axis.} \item{main}{main title.} \item{sub}{subtitle, defaulting to the calculation method.} } \details{ \code{aggregateDist} returns a function to compute the cumulative distribution function (cdf) of the aggregate claim amount distribution in any point. The \code{"recursive"} method computes the cdf using the Panjer algorithm; the \code{"convolution"} method using convolutions; the \code{"normal"} method using a normal approximation; the \code{"npower"} method using the Normal Power 2 approximation; the \code{"simulation"} method using simulations. More details follow. } \section{Recursive method}{ The frequency distribution must be a member of the \eqn{(a, b, 0)} or \eqn{(a, b, 1)} families of discrete distributions. To use a distribution from the \eqn{(a, b, 0)} family, \code{model.freq} must be one of \code{"binomial"}, \code{"geometric"}, \code{"negative binomial"} or \code{"poisson"}, and \code{p0} must be \code{NULL}. To use a zero-truncated distribution from the \eqn{(a, b, 1)} family, \code{model.freq} may be one of the strings above together with \code{p0 = 0}. As a shortcut, \code{model.freq} may also be one of \code{"zero-truncated binomial"}, \code{"zero-truncated geometric"}, \code{"zero-truncated negative binomial"}, \code{"zero-truncated poisson"} or \code{"logarithmic"}, and \code{p0} is then ignored (with a warning if non \code{NULL}). (Note: since the logarithmic distribution is always zero-truncated. \code{model.freq = "logarithmic"} may be used with either \code{p0 = NULL} or \code{p0 = 0}.) To use a zero-modified distribution from the \eqn{(a, b, 1)} family, \code{model.freq} may be one of standard frequency distributions mentioned above with \code{p0} set to some probability that the distribution takes the value \eqn{0}. It is equivalent, but more explicit, to set \code{model.freq} to one of \code{"zero-modified binomial"}, \code{"zero-modified geometric"}, \code{"zero-modified negative binomial"}, \code{"zero-modified poisson"} or \code{"zero-modified logarithmic"}. The parameters of the frequency distribution must be specified using names identical to the arguments of the appropriate function \code{\link{dbinom}}, \code{\link{dgeom}}, \code{\link{dnbinom}}, \code{\link{dpois}} or \code{\link{dlogarithmic}}. In the latter case, do take note that the parametrization of \code{dlogarithmic} is different from Appendix B of Klugman et al. (2012). If the length of \code{p0} is greater than one, only the first element is used, with a warning. \code{model.sev} is a vector of the (discretized) claim amount distribution \eqn{X}; the first element \strong{must} be \eqn{f_X(0) = \Pr[X = 0]}{fx(0) = Pr[X = 0]}. The recursion will fail to start if the expected number of claims is too large. One may divide the appropriate parameter of the frequency distribution by \eqn{2^n} and convolve the resulting distribution \eqn{n =} \code{convolve} times. Failure to obtain a cumulative distribution function less than \code{tol} away from 1 within \code{maxit} iterations is often due to too coarse a discretization of the severity distribution. } \section{Convolution method}{ The cumulative distribution function (cdf) \eqn{F_S(x)}{Fs(x)} of the aggregate claim amount of a portfolio in the collective risk model is \deqn{F_S(x) = \sum_{n = 0}^{\infty} F_X^{*n}(x) p_n,}{% Fs(x) = sum(n; Fx^\{*n\}(x) * pn)} for \eqn{x = 0, 1, \dots}; \eqn{p_n = \Pr[N = n]}{pn = Pr[N = n]} is the frequency probability mass function and \eqn{F_X^{*n}(x)}{Fx^\{*n\}(x)} is the cdf of the \eqn{n}th convolution of the (discrete) claim amount random variable. \code{model.freq} is vector \eqn{p_n}{pn} of the number of claims probabilities; the first element \strong{must} be \eqn{\Pr[N = 0]}{Pr[N = 0]}. \code{model.sev} is vector \eqn{f_X(x)}{fx(x)} of the (discretized) claim amount distribution; the first element \strong{must} be \eqn{f_X(0)}{fx(0)}. } \section{Normal and Normal Power 2 methods}{ The Normal approximation of a cumulative distribution function (cdf) \eqn{F(x)} with mean \eqn{\mu}{m} and standard deviation \eqn{\sigma}{s} is \deqn{F(x) \approx \Phi\left( \frac{x - \mu}{\sigma} \right).}{% F(x) ~= pnorm((x - m)/s).} The Normal Power 2 approximation of a cumulative distribution function (cdf) \eqn{F(x)} with mean \eqn{\mu}{m}, standard deviation \eqn{\sigma}{s} and skewness \eqn{\gamma}{g} is \deqn{F(x) \approx \Phi \left(% -\frac{3}{\gamma} + \sqrt{\frac{9}{\gamma^2} + 1 % + \frac{6}{\gamma} \frac{x - \mu}{\sigma}} \right).}{% F(x) ~= pnorm(-3/g + sqrt(9/g^2 + 1 + (6/g) * (x - m)/s)).} This formula is valid only for the right-hand tail of the distribution and skewness should not exceed unity. } \section{Simulation method}{ This methods returns the empirical distribution function of a sample of size \code{nb.simul} of the aggregate claim amount distribution specified by \code{model.freq} and \code{model.sev}. \code{\link{rcomphierarc}} is used for the simulation of claim amounts, hence both the frequency and severity models can be mixtures of distributions. } \value{ A function of class \code{"aggregateDist"}, inheriting from the \code{"function"} class when using normal and Normal Power approximations and additionally inheriting from the \code{"ecdf"} and \code{"stepfun"} classes when other methods are used. There are methods available to summarize (\code{summary}), represent (\code{print}), plot (\code{plot}), compute quantiles (\code{quantile}) and compute the mean (\code{mean}) of \code{"aggregateDist"} objects. For the \code{diff} method: a numeric vector of probabilities corresponding to the probability mass function evaluated at the knots of the distribution. } \seealso{ \code{\link{discretize}} to discretize a severity distribution; \code{\link{mean.aggregateDist}} to compute the mean of the distribution; \code{\link{quantile.aggregateDist}} to compute the quantiles or the Value-at-Risk; \code{\link{CTE.aggregateDist}} to compute the Conditional Tail Expectation (or Tail Value-at-Risk); \code{\link{rcomphierarc}}. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. Daykin, C.D., \enc{PentikĂ€inen}{Pentikainen}, T. and Pesonen, M. (1994), \emph{Practical Risk Theory for Actuaries}, Chapman & Hall. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Louis-Philippe Pouliot } \examples{ ## Convolution method (example 9.5 of Klugman et al. (2012)) fx <- c(0, 0.15, 0.2, 0.25, 0.125, 0.075, 0.05, 0.05, 0.05, 0.025, 0.025) pn <- c(0.05, 0.1, 0.15, 0.2, 0.25, 0.15, 0.06, 0.03, 0.01) Fs <- aggregateDist("convolution", model.freq = pn, model.sev = fx, x.scale = 25) summary(Fs) c(Fs(0), diff(Fs(25 * 0:21))) # probability mass function plot(Fs) ## Recursive method (example 9.10 of Klugman et al. (2012)) fx <- c(0, crossprod(c(2, 1)/3, matrix(c(0.6, 0.7, 0.4, 0, 0, 0.3), 2, 3))) Fs <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx, lambda = 3) plot(Fs) Fs(knots(Fs)) # cdf evaluated at its knots diff(Fs) # probability mass function ## Recursive method (high frequency) fx <- c(0, 0.15, 0.2, 0.25, 0.125, 0.075, 0.05, 0.05, 0.05, 0.025, 0.025) \dontrun{Fs <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx, lambda = 1000)} Fs <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx, lambda = 250, convolve = 2, maxit = 1500) plot(Fs) ## Recursive method (zero-modified distribution; example 9.11 of ## Klugman et al. (2012)) Fn <- aggregateDist("recursive", model.freq = "binomial", model.sev = c(0.3, 0.5, 0.2), x.scale = 50, p0 = 0.4, size = 3, prob = 0.3) diff(Fn) ## Equivalent but more explicit call aggregateDist("recursive", model.freq = "zero-modified binomial", model.sev = c(0.3, 0.5, 0.2), x.scale = 50, p0 = 0.4, size = 3, prob = 0.3) ## Recursive method (zero-truncated distribution). Using 'fx' above ## would mean that both Pr[N = 0] = 0 and Pr[X = 0] = 0, therefore ## Pr[S = 0] = 0 and recursions would not start. fx <- discretize(pexp(x, 1), from = 0, to = 100, method = "upper") fx[1L] # non zero aggregateDist("recursive", model.freq = "zero-truncated poisson", model.sev = fx, lambda = 3, x.scale = 25, echo=TRUE) ## Normal Power approximation Fs <- aggregateDist("npower", moments = c(200, 200, 0.5)) Fs(210) ## Simulation method model.freq <- expression(data = rpois(3)) model.sev <- expression(data = rgamma(100, 2)) Fs <- aggregateDist("simulation", nb.simul = 1000, model.freq, model.sev) mean(Fs) plot(Fs) ## Evaluation of ruin probabilities using Beekman's formula with ## Exponential(1) claim severity, Poisson(1) frequency and premium rate ## c = 1.2. fx <- discretize(pexp(x, 1), from = 0, to = 100, method = "lower") phi0 <- 0.2/1.2 Fs <- aggregateDist(method = "recursive", model.freq = "geometric", model.sev = fx, prob = phi0) 1 - Fs(400) # approximate ruin probability u <- 0:100 plot(u, 1 - Fs(u), type = "l", main = "Ruin probability") } \keyword{distribution} \keyword{models} actuar/man/ruin.Rd0000644000176200001440000001232514125442656013564 0ustar liggesusers\name{ruin} \alias{ruin} \alias{plot.ruin} \title{Probability of Ruin} \description{ Calulation of infinite time probability of ruin in the models of \enc{CramĂ©r}{Cramer}-Lundberg and Sparre Andersen, that is with exponential or phase-type (including mixtures of exponentials, Erlang and mixture of Erlang) claims interarrival time. } \usage{ ruin(claims = c("exponential", "Erlang", "phase-type"), par.claims, wait = c("exponential", "Erlang", "phase-type"), par.wait, premium.rate = 1, tol = sqrt(.Machine$double.eps), maxit = 200L, echo = FALSE) \method{plot}{ruin}(x, from = NULL, to = NULL, add = FALSE, xlab = "u", ylab = expression(psi(u)), main = "Probability of Ruin", xlim = NULL, \dots) } \arguments{ \item{claims}{character; the type of claim severity distribution.} \item{wait}{character; the type of claim interarrival (wait) time distribution.} \item{par.claims, par.wait}{named list containing the parameters of the distribution; see Details.} \item{premium.rate}{numeric vector of length 1; the premium rate.} \item{tol, maxit, echo}{respectively the tolerance level of the stopping criteria, the maximum number of iterations and whether or not to echo the procedure when the transition rates matrix is determined iteratively. Ignored if \code{wait = "exponential"}.} \item{x}{an object of class \code{"ruin"}.} \item{from, to}{the range over which the function will be plotted.} \item{add}{logical; if \code{TRUE} add to already existing plot.} \item{xlim}{numeric of length 2; if specified, it serves as default for \code{c(from, to)}.} \item{xlab, ylab}{label of the x and y axes, respectively.} \item{main}{main title.} \item{\dots}{further graphical parameters accepted by \code{\link[graphics]{curve}}.} } \details{ The names of the parameters in \code{par.claims} and \code{par.wait} must the same as in \code{\link[stats]{dexp}}, \code{\link[stats]{dgamma}} or \code{\link{dphtype}}, as appropriate. A model will be a mixture of exponential or Erlang distributions (but not phase-type) when the parameters are vectors of length \eqn{> 1} and the parameter list contains a vector \code{weights} of the coefficients of the mixture. Parameters are recycled when needed. Their names can be abbreviated. Combinations of exponentials as defined in Dufresne and Gerber (1988) are \emph{not} supported. Ruin probabilities are evaluated using \code{\link{pphtype}} except when both distributions are exponential, in which case an explicit formula is used. When \code{wait != "exponential"} (Sparre Andersen model), the transition rate matrix \eqn{\boldsymbol{Q}}{Q} of the distribution of the probability of ruin is determined iteratively using a fixed point-like algorithm. The stopping criteria used is% \deqn{\max \left\{ \sum_{j = 1}^n |\boldsymbol{Q}_{ij} - \boldsymbol{Q}_{ij}^\prime| \right\} < \code{tol},}{% max(rowSum(|Q - Q'|)) < tol,}% where \eqn{\boldsymbol{Q}}{Q} and \eqn{\boldsymbol{Q}^\prime}{Q'} are two successive values of the matrix. } \value{ A function of class \code{"ruin"} inheriting from the \code{"function"} class to compute the probability of ruin given initial surplus levels. The function has arguments: \item{u}{numeric vector of initial surplus levels;} \item{survival}{logical; if \code{FALSE} (default), probabilities are \eqn{\psi(u)}{psi(u)}, otherwise, \eqn{\phi(u) = 1 - \psi(u)}{phi(u) = 1 - psi(u)};} \item{lower.tail}{an alias for \code{!survival}.} } \references{ Asmussen, S. and Rolski, T. (1991), Computational methods in risk theory: A matrix algorithmic approach, \emph{Insurance: Mathematics and Economics} \bold{10}, 259--274. Dufresne, F. and Gerber, H. U. (1988), Three methods to calculate the probability of ruin, \emph{Astin Bulletin} \bold{19}, 71--90. Gerber, H. U. (1979), \emph{An Introduction to Mathematical Risk Theory}, Huebner Foundation. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca}, and Christophe Dutang } \examples{ ## Case with an explicit formula: exponential claims and exponential ## interarrival times. psi <- ruin(claims = "e", par.claims = list(rate = 5), wait = "e", par.wait = list(rate = 3)) psi psi(0:10) plot(psi, from = 0, to = 10) ## Mixture of two exponentials for claims, exponential interarrival ## times (Gerber 1979) psi <- ruin(claims = "e", par.claims = list(rate = c(3, 7), w = 0.5), wait = "e", par.wait = list(rate = 3), pre = 1) u <- 0:10 psi(u) (24 * exp(-u) + exp(-6 * u))/35 # same ## Phase-type claims, exponential interarrival times (Asmussen and ## Rolski 1991) p <- c(0.5614, 0.4386) r <- matrix(c(-8.64, 0.101, 1.997, -1.095), 2, 2) lambda <- 1/(1.1 * mphtype(1, p, r)) psi <- ruin(claims = "p", par.claims = list(prob = p, rates = r), wait = "e", par.wait = list(rate = lambda)) psi plot(psi, xlim = c(0, 50)) ## Phase-type claims, mixture of two exponentials for interarrival times ## (Asmussen and Rolski 1991) a <- (0.4/5 + 0.6) * lambda ruin(claims = "p", par.claims = list(prob = p, rates = r), wait = "e", par.wait = list(rate = c(5 * a, a), weights = c(0.4, 0.6)), maxit = 225L) } \keyword{models} actuar/man/CTE.Rd0000644000176200001440000000522614030725703013214 0ustar liggesusers\name{CTE} \alias{CTE} \alias{TVaR} \alias{CTE.aggregateDist} \title{Conditional Tail Expectation} \description{ Conditional Tail Expectation, also called Tail Value-at-Risk. \code{TVaR} is an alias for \code{CTE}. } \usage{ CTE(x, \dots) \method{CTE}{aggregateDist}(x, conf.level = c(0.9, 0.95, 0.99), names = TRUE, \dots) TVaR(x, \dots) } \arguments{ \item{x}{an \R object.} \item{conf.level}{numeric vector of probabilities with values in \eqn{[0, 1)}}. \item{names}{logical; if true, the result has a \code{names} attribute. Set to \code{FALSE} for speedup with many \code{probs}.} \item{\dots}{further arguments passed to or from other methods.} } \details{ The Conditional Tail Expectation (or Tail Value-at-Risk) measures the average of losses above the Value at Risk for some given confidence level, that is \eqn{E[X|X > \mathrm{VaR}(X)]} where \eqn{X} is the loss random variable. \code{CTE} is a generic function with, currently, only a method for objects of class \code{"aggregateDist"}. For the recursive, convolution and simulation methods of \code{\link{aggregateDist}}, the CTE is computed from the definition using the empirical cdf. For the normal approximation method, an explicit formula exists: \deqn{\mu + \frac{\sigma}{(1 - \alpha) \sqrt{2 \pi}} e^{-\mathrm{VaR}(X)^2/2},}{% m + s exp(-VaR(X)^2/2)/((1 - a) * sqrt(2 pi)),} where \eqn{\mu}{m} is the mean, \eqn{\sigma}{s} the standard deviation and \eqn{\alpha}{a} the confidence level. For the Normal Power approximation, the explicit formula given in Castañer et al. (2013) is \deqn{\mu + \frac{\sigma}{(1 - \alpha) \sqrt{2 \pi}} e^{-\mathrm{VaR}(X)^2/2} \left( 1 + \frac{\gamma}{6} \mathrm{VaR}(X) \right),}{% m + s exp(-VaR(X)^2/2)/((1 - a) * sqrt(2 pi)) (1 + g * VaR(X)/6),} where, as above, \eqn{\mu}{m} is the mean, \eqn{\sigma}{s} the standard deviation, \eqn{\alpha}{a} the confidence level and \eqn{\gamma}{g} is the skewness. } \value{ A numeric vector, named if \code{names} is \code{TRUE}. } \seealso{ \code{\link{aggregateDist}}; \code{\link{VaR}} } \references{ Castañer, A. and Claramunt, M.M. and MĂĄrmol, M. (2013), Tail value at risk. An analysis with the Normal-Power approximation. In \emph{Statistical and Soft Computing Approaches in Insurance Problems}, pp. 87-112. Nova Science Publishers, 2013. ISBN 978-1-62618-506-7. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Tommy Ouellet } \examples{ model.freq <- expression(data = rpois(7)) model.sev <- expression(data = rnorm(9, 2)) Fs <- aggregateDist("simulation", model.freq, model.sev, nb.simul = 1000) CTE(Fs) } \keyword{univar} actuar/man/Gumbel.Rd0000644000176200001440000000641214030725703014012 0ustar liggesusers\name{Gumbel} \alias{Gumbel} \alias{dgumbel} \alias{pgumbel} \alias{qgumbel} \alias{rgumbel} \alias{mgumbel} \alias{mgfgumbel} \title{The Gumbel Distribution} \description{ Density function, distribution function, quantile function, random generation and raw moments for the Gumbel extreme value distribution with parameters \code{alpha} and \code{scale}. } \usage{ dgumbel(x, alpha, scale, log = FALSE) pgumbel(q, alpha, scale, lower.tail = TRUE, log.p = FALSE) qgumbel(p, alpha, scale, lower.tail = TRUE, log.p = FALSE) rgumbel(n, alpha, scale) mgumbel(order, alpha, scale) mgfgumbel(t, alpha, scale, log = FALSE) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{alpha}{location parameter.} \item{scale}{parameter. Must be strictly positive.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment. Only values \eqn{1} and \eqn{2} are supported.} \item{t}{numeric vector.} } \details{ The Gumbel distribution with parameters \code{alpha} \eqn{= \alpha}{= a} and \code{scale} \eqn{= \theta}{= s} has distribution function: \deqn{F(x) = \exp[-\exp(-(x - \alpha)/\theta)]}{% F(x) = exp[-exp(-(x - a)/s)],} for \eqn{-\infty < x < \infty}{-Inf < x < Inf}, \eqn{-\infty < a < \infty}{-Inf < a < Inf} and \eqn{\theta > 0}{s > 0}. The mode of the distribution is in \eqn{\alpha}{a}, the mean is \eqn{\alpha + \gamma\theta}{a + g * s}, where \eqn{\gamma}{g} \eqn{= 0.57721566} is the Euler-Mascheroni constant, and the variance is \eqn{\pi^2 \theta^2/6}{(pi * s)^2/6}. } \value{ \code{dgumbel} gives the density, \code{pgumbel} gives the distribution function, \code{qgumbel} gives the quantile function, \code{rgumbel} generates random deviates, \code{mgumbel} gives the \eqn{k}th raw moment, \eqn{k = 1, 2}, and \code{mgfgamma} gives the moment generating function in \code{t}. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ Distribution also knonw as the generalized extreme value distribution Type-I. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ dgumbel(c(-5, 0, 10, 20), 0.5, 2) p <- (1:10)/10 pgumbel(qgumbel(p, 2, 3), 2, 3) curve(pgumbel(x, 0.5, 2), from = -5, to = 20, col = "red") curve(pgumbel(x, 1.0, 2), add = TRUE, col = "green") curve(pgumbel(x, 1.5, 3), add = TRUE, col = "blue") curve(pgumbel(x, 3.0, 4), add = TRUE, col = "cyan") a <- 3; s <- 4 mgumbel(1, a, s) # mean a - s * digamma(1) # same mgumbel(2, a, s) - mgumbel(1, a, s)^2 # variance (pi * s)^2/6 # same } \keyword{distribution} actuar/man/SingleParameterPareto.Rd0000644000176200001440000000643014030725703017034 0ustar liggesusers\name{SingleParameterPareto} \alias{SingleParameterPareto} \alias{dpareto1} \alias{ppareto1} \alias{qpareto1} \alias{rpareto1} \alias{mpareto1} \alias{levpareto1} \title{The Single-parameter Pareto Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments, and limited moments for the Single-parameter Pareto distribution with parameter \code{shape}. } \usage{ dpareto1(x, shape, min, log = FALSE) ppareto1(q, shape, min, lower.tail = TRUE, log.p = FALSE) qpareto1(p, shape, min, lower.tail = TRUE, log.p = FALSE) rpareto1(n, shape, min) mpareto1(order, shape, min) levpareto1(limit, shape, min, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape}{parameter. Must be strictly positive.} \item{min}{lower bound of the support of the distribution.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The single-parameter Pareto, or Pareto I, distribution with parameter \code{shape} \eqn{= \alpha}{= a} has density: \deqn{f(x) = \frac{\alpha \theta^\alpha}{x^{\alpha + 1}}}{% f(x) = a b^a/x^(a + 1)} for \eqn{x > \theta}{x > b}, \eqn{\alpha > 0}{a > 0} and \eqn{\theta > 0}{b > 0}. Although there appears to be two parameters, only \code{shape} is a true parameter. The value of \code{min} \eqn{= \theta}{= b} must be set in advance. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, \eqn{k < \alpha}{k < shape} and the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{x \ge \theta}{x \ge min}. } \value{ \code{dpareto1} gives the density, \code{ppareto1} gives the distribution function, \code{qpareto1} gives the quantile function, \code{rpareto1} generates random deviates, \code{mpareto1} gives the \eqn{k}th raw moment, and \code{levpareto1} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ For Pareto distributions, we use the classification of Arnold (2015) with the parametrization of Klugman et al. (2012). The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Arnold, B.C. (2015), \emph{Pareto Distributions}, Second Edition, CRC Press. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dpareto}} for the two-parameter Pareto distribution. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dpareto1(5, 3, 4, log = TRUE)) p <- (1:10)/10 ppareto1(qpareto1(p, 2, 3), 2, 3) mpareto1(2, 3, 4) - mpareto(1, 3, 4) ^ 2 levpareto(10, 3, 4, order = 2) } \keyword{distribution} actuar/man/Loggamma.Rd0000644000176200001440000000614314030725703014324 0ustar liggesusers\name{Loggamma} \alias{Loggamma} \alias{dlgamma} \alias{plgamma} \alias{qlgamma} \alias{rlgamma} \alias{mlgamma} \alias{levlgamma} \title{The Loggamma Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Loggamma distribution with parameters \code{shapelog} and \code{ratelog}. } \usage{ dlgamma(x, shapelog, ratelog, log = FALSE) plgamma(q, shapelog, ratelog, lower.tail = TRUE, log.p = FALSE) qlgamma(p, shapelog, ratelog, lower.tail = TRUE, log.p = FALSE) rlgamma(n, shapelog, ratelog) mlgamma(order, shapelog, ratelog) levlgamma(limit, shapelog, ratelog, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shapelog, ratelog}{parameters. Must be strictly positive.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The loggamma distribution with parameters \code{shapelog} \eqn{= \alpha}{= a} and \code{ratelog} \eqn{= \lambda}{= b} has density: \deqn{f(x) = \frac{\lambda^\alpha}{\Gamma(\alpha)}% \frac{(\log x)^{\alpha - 1}}{x^{\lambda + 1}}}{% f(x) = (b^a (log(x))^(a - 1))/(Gamma(a) * x^(b + 1))} for \eqn{x > 1}, \eqn{\alpha > 0}{a > 0} and \eqn{\lambda > 0}{b > 0}. (Here \eqn{\Gamma(\alpha)}{Gamma(a)} is the function implemented by \R's \code{\link{gamma}()} and defined in its help.) The loggamma is the distribution of the random variable \eqn{e^X}{exp(X)}, where \eqn{X} has a gamma distribution with shape parameter \eqn{alpha}{a} and scale parameter \eqn{1/\lambda}{1/b}. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]} and the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k < \lambda}{k < ratelog}. } \value{ \code{dlgamma} gives the density, \code{plgamma} gives the distribution function, \code{qlgamma} gives the quantile function, \code{rlgamma} generates random deviates, \code{mlgamma} gives the \eqn{k}th raw moment, and \code{levlgamma} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Hogg, R. V. and Klugman, S. A. (1984), \emph{Loss Distributions}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dlgamma(2, 3, 4, log = TRUE)) p <- (1:10)/10 plgamma(qlgamma(p, 2, 3), 2, 3) mlgamma(2, 3, 4) - mlgamma(1, 3, 4)^2 levlgamma(10, 3, 4, order = 2) } \keyword{distribution} actuar/man/PhaseType.Rd0000644000176200001440000000744214030725703014505 0ustar liggesusers\name{PhaseType} \alias{dphtype} \alias{pphtype} \alias{rphtype} \alias{mphtype} \alias{mgfphtype} \title{The Phase-type Distribution} \description{ Density, distribution function, random generation, raw moments and moment generating function for the (continuous) Phase-type distribution with parameters \code{prob} and \code{rates}. } \usage{ dphtype(x, prob, rates, log = FALSE) pphtype(q, prob, rates, lower.tail = TRUE, log.p = FALSE) rphtype(n, prob, rates) mphtype(order, prob, rates) mgfphtype(t, prob, rates, log = FALSE) } \arguments{ \item{x, q}{vector of quantiles.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{prob}{vector of initial probabilities for each of the transient states of the underlying Markov chain. The initial probability of the absorbing state is \code{1 - sum(prob)}.} \item{rates}{square matrix of the rates of transition among the states of the underlying Markov chain.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{t}{numeric vector.} } \details{ The phase-type distribution with parameters \code{prob} \eqn{= \pi}{= pi} and \code{rates} \eqn{= \boldsymbol{T}}{= T} has density:% \deqn{f(x) = \pi e^{\boldsymbol{T} x} \boldsymbol{t}}{% f(x) = pi \%*\% exp(T * x) \%*\% t}% for \eqn{x \ge 0} and \eqn{f(0) = 1 - \pi \boldsymbol{e}}{f(0) = 1 - pi \%*\% e}, where % \eqn{\boldsymbol{e}}{e} % is a column vector with all components equal to one, % \eqn{\boldsymbol{t} = -\boldsymbol{T} \boldsymbol{e}}{% t = -T \%*\% e} % is the exit rates vector and % \eqn{e^{\boldsymbol{T}x}}{exp(T * x)} % denotes the matrix exponential of \eqn{\boldsymbol{T}x}{T * x}. The matrix exponential of a matrix \eqn{\boldsymbol{M}}{M} is defined as the Taylor series% \deqn{e^{\boldsymbol{M}} = \sum_{n = 0}^{\infty} \frac{\boldsymbol{M}^n}{n!}.}{% exp(M) = sum(n = 0:Inf; (M^n)/(n!)).} The parameters of the distribution must satisfy \eqn{\pi \boldsymbol{e} \leq 1}{pi \%*\% e <= 1}, \eqn{\boldsymbol{T}_{ii} < 0}{T[i, i] < 0}, \eqn{\boldsymbol{T}_{ij} \geq 0}{T[i, j] >= 0} and \eqn{\boldsymbol{T} \boldsymbol{e} \leq 0}{T \%*\% e <= 0}. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]} and the moment generating function is \eqn{E[e^{tX}]}. } \value{ \code{dphasetype} gives the density, \code{pphasetype} gives the distribution function, \code{rphasetype} generates random deviates, \code{mphasetype} gives the \eqn{k}th raw moment, and \code{mgfphasetype} gives the moment generating function in \code{x}. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ \url{https://en.wikipedia.org/wiki/Phase-type_distribution} Neuts, M. F. (1981), \emph{Generating random variates from a distribution of phase type}, WSC '81: Proceedings of the 13th conference on Winter simulation, IEEE Press. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Christophe Dutang } \examples{ ## Erlang(3, 2) distribution T <- cbind(c(-2, 0, 0), c(2, -2, 0), c(0, 2, -2)) pi <- c(1,0,0) x <- 0:10 dphtype(x, pi, T) # density dgamma(x, 3, 2) # same pphtype(x, pi, T) # cdf pgamma(x, 3, 2) # same rphtype(10, pi, T) # random values mphtype(1, pi, T) # expected value curve(mgfphtype(x, pi, T), from = -10, to = 1) } \keyword{distribution} actuar/man/grouped.data.Rd0000644000176200001440000001131614125442656015163 0ustar liggesusers\name{grouped.data} \alias{grouped.data} \title{Grouped data} \description{ Creation of grouped data objects, from either a provided set of group boundaries and group frequencies, or from individual data using automatic or specified breakpoints. } \usage{ grouped.data(\dots, breaks = "Sturges", include.lowest = TRUE, right = TRUE, nclass = NULL, group = FALSE, row.names = NULL, check.rows = FALSE, check.names = TRUE) } \arguments{ \item{\dots}{arguments of the form \code{value} or \code{tag = value}; see Details.} \item{breaks}{same as for \code{\link{hist}}, namely one of: \itemize{ \item{a vector giving the breakpoints between groups;} \item{a function to compute the vector of breakpoints;} \item{a single number giving the number of groups;} \item{a character string naming an algorithm to compute the number of groups (see \code{\link{hist}});} \item{a function to compute the number of groups.} } In the last three cases the number is a suggestion only; the breakpoints will be set to \code{\link{pretty}} values. If \code{breaks} is a function, the first element in \code{\dots} is supplied to it as the only argument. } \item{include.lowest}{logical; if \code{TRUE}, a data point equal to the \code{breaks} value will be included in the first (or last, for \code{right = FALSE}) group. Used only for individual data; see Details.} \item{right}{logical; indicating if the intervals should be closed on the right (and open on the left) or vice versa.} \item{nclass}{numeric (integer); equivalent to \code{breaks} for a scalar or character argument.} \item{group}{logical; an alternative way to force grouping of individual data.} \item{row.names, check.rows, check.names}{arguments identical to those of \code{\link{data.frame}}.} } \details{ A grouped data object is a special form of data frame consisting of one column of contiguous group boundaries and one or more columns of frequencies within each group. The function can create a grouped data object from two types of arguments. \enumerate{ \item{Group boundaries and frequencies. This is the default mode of operation if the call has at least two elements in \code{\dots}. The first argument will then be taken as the vector of group boundaries. This vector must be exactly one element longer than the other arguments, which will be taken as vectors of group frequencies. All arguments are coerced to data frames.} \item{Individual data. This mode of operation is active if there is a single argument in \code{\dots}, or if either \code{breaks} or \code{nclass} is specified or \code{group} is \code{TRUE}. Arguments of \code{\dots} are first grouped using \code{\link{hist}}. If needed, breakpoints are set using the first argument.} } Missing (\code{NA}) frequencies are replaced by zeros, with a warning. Extraction and replacement methods exist for \code{grouped.data} objects, but working on non adjacent groups will most likely yield useless results. } \value{ An object of \code{class} \code{c("grouped.data", "data.frame")} with an environment containing the vector \code{cj} of group boundaries. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), \emph{Loss Models, From Data to Decisions}, Wiley. } \seealso{ \code{\link{[.grouped.data}} for extraction and replacement methods. \code{\link{data.frame}} for usual data frame creation and manipulation. \code{\link{hist}} for details on the calculation of breakpoints. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca}, Mathieu Pigeon and Louis-Philippe Pouliot } \examples{ ## Most common usage using a predetermined set of group ## boundaries and group frequencies. cj <- c(0, 25, 50, 100, 250, 500, 1000) nj <- c(30, 31, 57, 42, 45, 10) (x <- grouped.data(Group = cj, Frequency = nj)) class(x) x[, 1] # group boundaries x[, 2] # group frequencies ## Multiple frequency columns are supported x <- sample(1:100, 9) y <- sample(1:100, 9) grouped.data(cj = 1:10, nj.1 = x, nj.2 = y) ## Alternative usage with grouping of individual data. grouped.data(x) # automatic breakpoints grouped.data(x, breaks = 7) # forced number of groups grouped.data(x, breaks = c(0,25,75,100)) # specified groups grouped.data(x, y, breaks = c(0,25,75,100)) # multiple data sets \dontrun{## Providing two or more data sets and automatic breakpoints is ## very error-prone since the range of the first data set has to ## include the ranges of all the other data sets. range(x) range(y) grouped.data(x, y, group = TRUE)} } \keyword{classes} \keyword{methods} actuar/man/FellerPareto.Rd0000644000176200001440000001346514030725703015171 0ustar liggesusers\name{FellerPareto} \alias{FellerPareto} \alias{dfpareto} \alias{pfpareto} \alias{qfpareto} \alias{rfpareto} \alias{mfpareto} \alias{levfpareto} \title{The Feller Pareto Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Feller Pareto distribution with parameters \code{min}, \code{shape1}, \code{shape2}, \code{shape3} and \code{scale}. } \usage{ dfpareto(x, min, shape1, shape2, shape3, rate = 1, scale = 1/rate, log = FALSE) pfpareto(q, min, shape1, shape2, shape3, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qfpareto(p, min, shape1, shape2, shape3, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rfpareto(n, min, shape1, shape2, shape3, rate = 1, scale = 1/rate) mfpareto(order, min, shape1, shape2, shape3, rate = 1, scale = 1/rate) levfpareto(limit, min, shape1, shape2, shape3, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{min}{lower bound of the support of the distribution.} \item{shape1, shape2, shape3, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The Feller-Pareto distribution with parameters \code{min} \eqn{= \mu}{= m}, \code{shape1} \eqn{= \alpha}{= a}, \code{shape2} \eqn{= \gamma}{= b}, \code{shape3} \eqn{= \tau}{= c} and \code{scale} \eqn{= \theta}{= s}, has density: \deqn{f(x) = \frac{\Gamma(\alpha + \tau)}{\Gamma(\alpha)\Gamma(\tau)} \frac{\gamma ((x - \mu)/\theta)^{\gamma \tau - 1}}{% \theta [1 + ((x - \mu)/\theta)^\gamma]^{\alpha + \tau}}}{% f(x) = Gamma(a + c)/(Gamma(a) * Gamma(c)) (b ((x - m)/s)^(bc - 1))/% (s [1 + ((x - m)/s)^b]^(a + c))} for \eqn{x > \mu}{x > m}, \eqn{-\infty < \mu < \infty}{-Inf < m < Inf}, \eqn{\alpha > 0}{a > 0}, \eqn{\gamma > 0}{b > 0}, \eqn{\tau > 0}{c > 0} and \eqn{\theta > 0}{s > 0}. (Here \eqn{\Gamma(\alpha)}{Gamma(a)} is the function implemented by \R's \code{\link{gamma}()} and defined in its help.) The Feller-Pareto is the distribution of the random variable \deqn{\mu + \theta \left(\frac{1 - X}{X}\right)^{1/\gamma},}{% m + s ((1 - X)/X)^(1/b),} where \eqn{X} has a beta distribution with parameters \eqn{\alpha}{a} and \eqn{\tau}{c}. The Feller-Pareto defines a large family of distributions encompassing the transformed beta family and many variants of the Pareto distribution. Setting \eqn{\mu = 0}{min = 0} yields the \link[=dtrbeta]{transformed beta} distribution. The Feller-Pareto distribution also has the following direct special cases: \itemize{ \item A \link[=dpareto4]{Pareto IV} distribution when \code{shape3 == 1}; \item A \link[=dpareto3]{Pareto III} distribution when \code{shape1 shape3 == 1}; \item A \link[=dpareto2]{Pareto II} distribution when \code{shape1 shape2 == 1}; \item A \link[=dpareto1]{Pareto I} distribution when \code{shape1 shape2 == 1} and \code{min = scale}. } The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]} for nonnegative integer values of \eqn{k < \alpha\gamma}{k < shape1 * shape2}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]} for nonnegative integer values of \eqn{k} and \eqn{\alpha - j/\gamma}{shape1 - j/shape2}, \eqn{j = 1, \dots, k} not a negative integer. Note that the range of admissible values for \eqn{k} in raw and limited moments is larger when \eqn{\mu = 0}{min == 0}. } \value{ \code{dfpareto} gives the density, \code{pfpareto} gives the distribution function, \code{qfpareto} gives the quantile function, \code{rfpareto} generates random deviates, \code{mfpareto} gives the \eqn{k}th raw moment, and \code{levfpareto} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levfpareto} computes the limited expected value using \code{\link{betaint}}. For the Feller-Pareto and other Pareto distributions, we use the classification of Arnold (2015) with the parametrization of Klugman et al. (2012). The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Arnold, B.C. (2015), \emph{Pareto Distributions}, Second Edition, CRC Press. Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. Abramowitz, M. and Stegun, I. A. (1972), \emph{Handbook of Mathematical Functions}, Dover. } \seealso{ \code{\link{dtrbeta}} for the transformed beta distribution. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Nicholas Langevin } \examples{ exp(dfpareto(2, 1, 2, 3, 4, 5, log = TRUE)) p <- (1:10)/10 pfpareto(qfpareto(p, 1, 2, 3, 4, 5), 1, 2, 3, 4, 5) ## variance mfpareto(2, 1, 2, 3, 4, 5) - mfpareto(1, 1, 2, 3, 4, 5)^2 ## case with shape1 - order/shape2 > 0 levfpareto(10, 1, 2, 3, 4, scale = 1, order = 2) ## case with shape1 - order/shape2 < 0 levfpareto(20, 10, 0.1, 14, 2, scale = 1.5, order = 2) } \keyword{distribution} actuar/man/ZeroModifiedNegativeBinomial.Rd0000644000176200001440000001156114030725704020317 0ustar liggesusers\name{ZeroModifiedNegativeBinomial} \alias{ZeroModifiedNegativeBinomial} \alias{ZMNegativeBinomial} \alias{ZMNegBinomial} \alias{dzmnbinom} \alias{pzmnbinom} \alias{qzmnbinom} \alias{rzmnbinom} \title{The Zero-Modified Negative Binomial Distribution} \description{ Density function, distribution function, quantile function and random generation for the Zero-Modified Negative Binomial distribution with parameters \code{size} and \code{prob}, and arbitrary probability at zero \code{p0}. } \usage{ dzmnbinom(x, size, prob, p0, log = FALSE) pzmnbinom(q, size, prob, p0, lower.tail = TRUE, log.p = FALSE) qzmnbinom(p, size, prob, p0, lower.tail = TRUE, log.p = FALSE) rzmnbinom(n, size, prob, p0) } \arguments{ \item{x}{vector of (strictly positive integer) quantiles.} \item{q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{size}{target for number of successful trials, or dispersion parameter. Must be positive, need not be integer.} \item{prob}{parameter. \code{0 < prob <= 1}.} \item{p0}{probability mass at zero. \code{0 <= p0 <= 1}.} \item{log, log.p}{logical; if \code{TRUE}, probabilities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.} } \details{ The zero-modified negative binomial distribution with \code{size} \eqn{= r}, \code{prob} \eqn{= p} and \code{p0} \eqn{= p_0}{= p0} is a discrete mixture between a degenerate distribution at zero and a (standard) negative binomial. The probability mass function is \eqn{p(0) = p_0}{p(0) = p0} and \deqn{% p(x) = \frac{(1-p_0)}{(1-p^r)} f(x)}{% p(x) = (1-p0)/(1-p^r) f(x)} for \eqn{x = 1, 2, \ldots}, \eqn{r \ge 0}, \eqn{0 < p < 1} and \eqn{0 \le p_0 \le 1}{0 \le p0 \le 1}, where \eqn{f(x)} is the probability mass function of the negative binomial. The cumulative distribution function is \deqn{P(x) = p_0 + (1 - p_0) \left(\frac{F(x) - F(0)}{1 - F(0)}\right)}{% P(x) = p0 + (1 - p0) [F(x) - F(0)]/[1 - F(0)].} The mean is \eqn{(1-p_0) \mu}{(1-p0)m} and the variance is \eqn{(1-p_0) \sigma^2 + p_0(1-p_0) \mu^2}{(1-p0)v + p0(1-p0)m^2}, where \eqn{\mu}{m} and \eqn{\sigma^2}{v} are the mean and variance of the zero-truncated negative binomial. In the terminology of Klugman et al. (2012), the zero-modified negative binomial is a member of the \eqn{(a, b, 1)} class of distributions with \eqn{a = 1-p} and \eqn{b = (r-1)(1-p)}. The special case \code{p0 == 0} is the zero-truncated negative binomial. The limiting case \code{size == 0} is the zero-modified logarithmic distribution with parameters \code{1 - prob} and \code{p0}. Unlike the standard negative binomial functions, parametrization through the mean \code{mu} is not supported to avoid ambiguity as to whether \code{mu} is the mean of the underlying negative binomial or the mean of the zero-modified distribution. If an element of \code{x} is not integer, the result of \code{dzmnbinom} is zero, with a warning. The quantile is defined as the smallest value \eqn{x} such that \eqn{P(x) \ge p}, where \eqn{P} is the distribution function. } \value{ \code{dzmnbinom} gives the (log) probability mass function, \code{pzmnbinom} gives the (log) distribution function, \code{qzmnbinom} gives the quantile function, and \code{rzmnbinom} generates random deviates. Invalid \code{size}, \code{prob} or \code{p0} will result in return value \code{NaN}, with a warning. The length of the result is determined by \code{n} for \code{rzmnbinom}, and is the maximum of the lengths of the numerical arguments for the other functions. } \note{ Functions \code{\{d,p,q\}zmnbinom} use \code{\{d,p,q\}nbinom} for all but the trivial input values and \eqn{p(0)}. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dnbinom}} for the negative binomial distribution. \code{\link{dztnbinom}} for the zero-truncated negative binomial distribution. \code{\link{dzmgeom}} for the zero-modified geometric and \code{\link{dzmlogarithmic}} for the zero-modified logarithmic, which are special cases of the zero-modified negative binomial. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ ## Example 6.3 of Klugman et al. (2012) p <- 1/(1 + 0.5) dzmnbinom(1:5, size = 2.5, prob = p, p0 = 0.6) (1-0.6) * dnbinom(1:5, 2.5, p)/pnbinom(0, 2.5, p, lower = FALSE) # same ## simple relation between survival functions pzmnbinom(0:5, 2.5, p, p0 = 0.2, lower = FALSE) (1-0.2) * pnbinom(0:5, 2.5, p, lower = FALSE) / pnbinom(0, 2.5, p, lower = FALSE) # same qzmnbinom(pzmnbinom(0:10, 2.5, 0.3, p0 = 0.1), 2.5, 0.3, p0 = 0.1) } \keyword{distribution} actuar/man/Extract.grouped.data.Rd0000644000176200001440000000511014030725703016557 0ustar liggesusers\name{Extract.grouped.data} \alias{Extract.grouped.data} \alias{[.grouped.data} \alias{[<-.grouped.data} \title{Extract or Replace Parts of a Grouped Data Object} \description{ Extract or replace subsets of grouped data objects. } \usage{ \method{[}{grouped.data}(x, i, j) \method{[}{grouped.data}(x, i, j) <- value } \arguments{ \item{x}{an object of class \code{grouped.data}.} \item{i, j}{elements to extract or replace. \code{i, j} are \code{numeric} or \code{character} or, for \code{[} only, empty. Numeric values are coerced to integer as if by \code{\link[base]{as.integer}}. For replacement by \code{[}, a logical matrix is allowed, but not replacement in the group boundaries and group frequencies simultaneously.} \item{value}{a suitable replacement value.} } \details{ Objects of class \code{"grouped.data"} can mostly be indexed like data frames, with the following restrictions: \enumerate{ \item For \code{[}, the extracted object must keep a group boundaries column and at least one group frequencies column to remain of class \code{"grouped.data"}; \item For \code{[<-}, it is not possible to replace group boundaries and group frequencies simultaneously; \item When replacing group boundaries, \code{length(value) == length(i) + 1}. } \code{x[, 1]} will return the plain vector of group boundaries. Replacement of non adjacent group boundaries is not possible for obvious reasons. Otherwise, extraction and replacement should work just like for data frames. } \value{ For \code{[} an object of class \code{"grouped.data"}, a data frame or a vector. For \code{[<-} an object of class \code{"grouped.data"}. } \note{ Currently \code{[[}, \code{[[<-}, \code{$} and \code{$<-} are not specifically supported, but should work as usual on group frequency columns. } \seealso{ \code{\link[base]{[.data.frame}} for extraction and replacement methods of data frames, \code{\link{grouped.data}} to create grouped data objects. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ data(gdental) (x <- gdental[1]) # select column 1 class(x) # no longer a grouped.data object class(gdental[2]) # same gdental[, 1] # group boundaries gdental[, 2] # group frequencies gdental[1:4,] # a subset gdental[c(1, 3, 5),] # avoid this gdental[1:2, 1] <- c(0, 30, 60) # modified boundaries gdental[, 2] <- 10 # modified frequencies \dontrun{gdental[1, ] <- 2} # not allowed } \keyword{manip} \keyword{array} actuar/man/Logarithmic.Rd0000644000176200001440000001044414030725703015041 0ustar liggesusers\name{Logarithmic} \alias{Logarithmic} \alias{dlogarithmic} \alias{plogarithmic} \alias{qlogarithmic} \alias{rlogarithmic} \alias{log-series} \title{The Logarithmic Distribution} \description{ Density function, distribution function, quantile function and random generation for the Logarithmic (or log-series) distribution with parameter \code{prob}. } \usage{ dlogarithmic(x, prob, log = FALSE) plogarithmic(q, prob, lower.tail = TRUE, log.p = FALSE) qlogarithmic(p, prob, lower.tail = TRUE, log.p = FALSE) rlogarithmic(n, prob) } \arguments{ \item{x}{vector of (strictly positive integer) quantiles.} \item{q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{prob}{parameter. \code{0 <= prob < 1}.} \item{log, log.p}{logical; if \code{TRUE}, probabilities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.} } \details{ The logarithmic (or log-series) distribution with parameter \code{prob} \eqn{= \theta}{= p} has probability mass function \deqn{% p(x) = \frac{a \theta^x}{x},}{% p(x) = a p^x / x,} with \eqn{a = -1/\log(1 - \theta)}{a = -1/log(1-p)} and for \eqn{x = 1, 2, \ldots}, \eqn{0 \le \theta < 1}{0 \le p < 1}. The logarithmic distribution is the limiting case of the zero-truncated negative binomial distribution with \code{size} parameter equal to \eqn{0}. Note that in this context, parameter \code{prob} generally corresponds to the probability of \emph{failure} of the zero-truncated negative binomial. If an element of \code{x} is not integer, the result of \code{dlogarithmic} is zero, with a warning. The quantile is defined as the smallest value \eqn{x} such that \eqn{F(x) \ge p}, where \eqn{F} is the distribution function. } \value{ \code{dlogarithmic} gives the probability mass function, \code{plogarithmic} gives the distribution function, \code{qlogarithmic} gives the quantile function, and \code{rlogarithmic} generates random deviates. Invalid \code{prob} will result in return value \code{NaN}, with a warning. The length of the result is determined by \code{n} for \code{rlogarithmic}, and is the maximum of the lengths of the numerical arguments for the other functions. } \note{ \code{qlogarithmic} is based on \code{qbinom} et al.; it uses the Cornish--Fisher Expansion to include a skewness correction to a normal approximation, followed by a search. \code{rlogarithmic} is an implementation of the LS and LK algorithms of Kemp (1981) with automatic selection. As suggested by Devroye (1986), the LS algorithm is used when \code{prob < 0.95}, and the LK algorithm otherwise. } \references{ Johnson, N. L., Kemp, A. W. and Kotz, S. (2005), \emph{Univariate Discrete Distributions, Third Edition}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. Kemp, A. W. (1981), \dQuote{Efficient Generation of Logarithmically Distributed Pseudo-Random Variables}, \emph{Journal of the Royal Statistical Society, Series C}, vol. 30, p. 249-253. Devroye, L. (1986), \emph{Non-Uniform Random Variate Generation}, Springer-Verlag. \url{http://luc.devroye.org/rnbookindex.html} } \seealso{ \code{\link{dztnbinom}} for the zero-truncated negative binomial distribution. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ ## Table 1 of Kemp (1981) [also found in Johnson et al. (2005), chapter 7] p <- c(0.1, 0.3, 0.5, 0.7, 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999, 0.9999) round(rbind(dlogarithmic(1, p), dlogarithmic(2, p), plogarithmic(9, p, lower.tail = FALSE), -p/((1 - p) * log(1 - p))), 2) qlogarithmic(plogarithmic(1:10, 0.9), 0.9) x <- rlogarithmic(1000, 0.8) y <- sort(unique(x)) plot(y, table(x)/length(x), type = "h", lwd = 2, pch = 19, col = "black", xlab = "x", ylab = "p(x)", main = "Empirical vs theoretical probabilities") points(y, dlogarithmic(y, prob = 0.8), pch = 19, col = "red") legend("topright", c("empirical", "theoretical"), lty = c(1, NA), pch = c(NA, 19), col = c("black", "red")) } \keyword{distribution} actuar/man/ExponentialSupp.Rd0000644000176200001440000000326514030725703015740 0ustar liggesusers\name{ExponentialSupp} \alias{ExponentialSupp} \alias{mexp} \alias{levexp} \alias{mgfexp} \title{Moments and Moment Generating Function of the Exponential Distribution} \description{ Raw moments, limited moments and moment generating function for the exponential distribution with rate \code{rate} (i.e., mean \code{1/rate}). } \usage{ mexp(order, rate = 1) levexp(limit, rate = 1, order = 1) mgfexp(t, rate = 1, log = FALSE) } \arguments{ \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} \item{rate}{vector of rates.} \item{t}{numeric vector.} \item{log}{logical; if \code{TRUE}, the cumulant generating function is returned.} } \details{ The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]} and the moment generating function is \eqn{E[e^{tX}]}, \eqn{k > -1}. } \value{ \code{mexp} gives the \eqn{k}th raw moment, \code{levexp} gives the \eqn{k}th moment of the limited loss variable, and \code{mgfexp} gives the moment generating function in \code{t}. Invalid arguments will result in return value \code{NaN}, with a warning. } \seealso{ \code{\link[stats]{Exponential}} } \references{ Johnson, N. L. and Kotz, S. (1970), \emph{Continuous Univariate Distributions, Volume 1}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca}, Christophe Dutang and Mathieu Pigeon. } \examples{ mexp(2, 3) - mexp(1, 3)^2 levexp(10, 3, order = 2) mgfexp(1,2) } \keyword{distribution} actuar/man/InverseBurr.Rd0000644000176200001440000001052014030725703015040 0ustar liggesusers\name{InverseBurr} \alias{InverseBurr} \alias{dinvburr} \alias{pinvburr} \alias{qinvburr} \alias{rinvburr} \alias{minvburr} \alias{levinvburr} \title{The Inverse Burr Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Inverse Burr distribution with parameters \code{shape1}, \code{shape2} and \code{scale}. } \usage{ dinvburr(x, shape1, shape2, rate = 1, scale = 1/rate, log = FALSE) pinvburr(q, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qinvburr(p, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rinvburr(n, shape1, shape2, rate = 1, scale = 1/rate) minvburr(order, shape1, shape2, rate = 1, scale = 1/rate) levinvburr(limit, shape1, shape2, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape1, shape2, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The inverse Burr distribution with parameters \code{shape1} \eqn{= \tau}{= a}, \code{shape2} \eqn{= \gamma}{= b} and \code{scale} \eqn{= \theta}{= s}, has density: \deqn{f(x) = \frac{\tau \gamma (x/\theta)^{\gamma \tau}}{% x [1 + (x/\theta)^\gamma]^{\tau + 1}}}{% f(x) = a b (x/s)^(ba)/(x [1 + (x/s)^b]^(a + 1))} for \eqn{x > 0}, \eqn{\tau > 0}{a > 0}, \eqn{\gamma > 0}{b > 0} and \eqn{\theta > 0}{s > 0}. The inverse Burr is the distribution of the random variable \deqn{\theta \left(\frac{X}{1 - X}\right)^{1/\gamma},}{% s (X/(1 - X))^(1/b),} where \eqn{X} has a beta distribution with parameters \eqn{\tau}{a} and \eqn{1}. The inverse Burr distribution has the following special cases: \itemize{ \item A \link[=dllogis]{Loglogistic} distribution when \code{shape1 == 1}; \item An \link[=dinvpareto]{Inverse Pareto} distribution when \code{shape2 == 1}; \item An \link[=dinvparalogis]{Inverse Paralogistic} distribution when \code{shape1 == shape2}. } The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, \eqn{-\tau\gamma < k < \gamma}{-shape1 * shape2 < k < shape2}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k > -\tau\gamma}{k > -shape1 * shape2} and \eqn{1 - k/\gamma}{1 - k/shape2} not a negative integer. } \value{ \code{dinvburr} gives the density, \code{invburr} gives the distribution function, \code{qinvburr} gives the quantile function, \code{rinvburr} generates random deviates, \code{minvburr} gives the \eqn{k}th raw moment, and \code{levinvburr} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levinvburr} computes the limited expected value using \code{\link{betaint}}. Also known as the Dagum distribution. See also Kleiber and Kotz (2003) for alternative names and parametrizations. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dinvburr(2, 2, 3, 1, log = TRUE)) p <- (1:10)/10 pinvburr(qinvburr(p, 2, 3, 1), 2, 3, 1) ## variance minvburr(2, 2, 3, 1) - minvburr(1, 2, 3, 1) ^ 2 ## case with 1 - order/shape2 > 0 levinvburr(10, 2, 3, 1, order = 2) ## case with 1 - order/shape2 < 0 levinvburr(10, 2, 1.5, 1, order = 2) } \keyword{distribution} actuar/man/adjCoef.Rd0000644000176200001440000001411314030725704014130 0ustar liggesusers\name{adjCoef} \alias{adjCoef} \alias{plot.adjCoef} \title{Adjustment Coefficient} \description{ Compute the adjustment coefficient in ruin theory, or return a function to compute the adjustment coefficient for various reinsurance retentions. } \usage{ adjCoef(mgf.claim, mgf.wait = mgfexp, premium.rate, upper.bound, h, reinsurance = c("none", "proportional", "excess-of-loss"), from, to, n = 101) \method{plot}{adjCoef}(x, xlab = "x", ylab = "R(x)", main = "Adjustment Coefficient", sub = comment(x), type = "l", add = FALSE, \dots) } \arguments{ \item{mgf.claim}{an expression written as a function of \code{x} or of \code{x} and \code{y}, or alternatively the name of a function, giving the moment generating function (mgf) of the claim severity distribution.} \item{mgf.wait}{an expression written as a function of \code{x}, or alternatively the name of a function, giving the mgf of the claims interarrival time distribution. Defaults to an exponential distribution with mean 1.} \item{premium.rate}{if \code{reinsurance = "none"}, a numeric value of the premium rate; otherwise, an expression written as a function of \code{y}, or alternatively the name of a function, giving the premium rate function.} \item{upper.bound}{numeric; an upper bound for the coefficient, usually the upper bound of the support of the claim severity mgf.} \item{h}{an expression written as a function of \code{x} or of \code{x} and \code{y}, or alternatively the name of a function, giving function \eqn{h} in the Lundberg equation (see below); ignored if \code{mgf.claim} is provided.} \item{reinsurance}{the type of reinsurance for the portfolio; can be abbreviated.} \item{from, to}{the range over which the adjustment coefficient will be calculated.} \item{n}{integer; the number of values at which to evaluate the adjustment coefficient.} \item{x}{an object of class \code{"adjCoef"}.} \item{xlab, ylab}{label of the x and y axes, respectively.} \item{main}{main title.} \item{sub}{subtitle, defaulting to the type of reinsurance.} \item{type}{1-character string giving the type of plot desired; see \code{\link[graphics]{plot}} for details.} \item{add}{logical; if \code{TRUE} add to already existing plot.} \item{\dots}{further graphical parameters accepted by \code{\link[graphics]{plot}} or \code{\link[graphics]{lines}}.} } \details{ In the typical case \code{reinsurance = "none"}, the coefficient of determination is the smallest (strictly) positive root of the Lundberg equation% \deqn{h(x) = E[e^{x B - x c W}] = 1}{h(x) = E[exp(x B - x c W)] = 1}% on \eqn{[0, m)}, where \eqn{m =} \code{upper.bound}, \eqn{B} is the claim severity random variable, \eqn{W} is the claim interarrival (or wait) time random variable and \eqn{c =} \code{premium.rate}. The premium rate must satisfy the positive safety loading constraint \eqn{E[B - c W] < 0}. With \code{reinsurance = "proportional"}, the equation becomes \deqn{h(x, y) = E[e^{x y B - x c(y) W}] = 1,}{% h(x, y) = E[exp(x y B - x c(y) W)] = 1,} where \eqn{y} is the retention rate and \eqn{c(y)} is the premium rate function. With \code{reinsurance = "excess-of-loss"}, the equation becomes \deqn{h(x, y) = E[e^{x \min(B, y) - x c(y) W}] = 1,}{% h(x, y) = E[exp(x min(B, y) - x c(y) W)] = 1,} where \eqn{y} is the retention limit and \eqn{c(y)} is the premium rate function. One can use argument \code{h} as an alternative way to provide function \eqn{h(x)} or \eqn{h(x, y)}. This is necessary in cases where random variables \eqn{B} and \eqn{W} are not independent. The root of \eqn{h(x) = 1} is found by minimizing \eqn{(h(x) - 1)^2}. } \value{ If \code{reinsurance = "none"}, a numeric vector of length one. Otherwise, a function of class \code{"adjCoef"} inheriting from the \code{"function"} class. } \references{ Bowers, N. J. J., Gerber, H. U., Hickman, J., Jones, D. and Nesbitt, C. (1986), \emph{Actuarial Mathematics}, Society of Actuaries. Centeno, M. d. L. (2002), Measuring the effects of reinsurance by the adjustment coefficient in the Sparre-Anderson model, \emph{Insurance: Mathematics and Economics} \bold{30}, 37--49. Gerber, H. U. (1979), \emph{An Introduction to Mathematical Risk Theory}, Huebner Foundation. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), \emph{Loss Models, From Data to Decisions, Third Edition}, Wiley. } \author{ Christophe Dutang, Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ ## Basic example: no reinsurance, exponential claim severity and wait ## times, premium rate computed with expected value principle and ## safety loading of 20\%. adjCoef(mgfexp, premium = 1.2, upper = 1) ## Same thing, giving function h. h <- function(x) 1/((1 - x) * (1 + 1.2 * x)) adjCoef(h = h, upper = 1) ## Example 11.4 of Klugman et al. (2008) mgfx <- function(x) 0.6 * exp(x) + 0.4 * exp(2 * x) adjCoef(mgfx(x), mgfexp(x, 4), prem = 7, upper = 0.3182) ## Proportional reinsurance, same assumptions as above, reinsurer's ## safety loading of 30\%. mgfx <- function(x, y) mgfexp(x * y) p <- function(x) 1.3 * x - 0.1 h <- function(x, a) 1/((1 - a * x) * (1 + x * p(a))) R1 <- adjCoef(mgfx, premium = p, upper = 1, reins = "proportional", from = 0, to = 1, n = 11) R2 <- adjCoef(h = h, upper = 1, reins = "p", from = 0, to = 1, n = 101) R1(seq(0, 1, length = 10)) # evaluation for various retention rates R2(seq(0, 1, length = 10)) # same plot(R1) # graphical representation plot(R2, col = "green", add = TRUE) # smoother function ## Excess-of-loss reinsurance p <- function(x) 1.3 * levgamma(x, 2, 2) - 0.1 mgfx <- function(x, l) mgfgamma(x, 2, 2) * pgamma(l, 2, 2 - x) + exp(x * l) * pgamma(l, 2, 2, lower = FALSE) h <- function(x, l) mgfx(x, l) * mgfexp(-x * p(l)) R1 <- adjCoef(mgfx, upper = 1, premium = p, reins = "excess-of-loss", from = 0, to = 10, n = 11) R2 <- adjCoef(h = h, upper = 1, reins = "e", from = 0, to = 10, n = 101) plot(R1) plot(R2, col = "green", add = TRUE) } \keyword{optimize} \keyword{univar} actuar/man/unroll.Rd0000644000176200001440000000242514030725704014113 0ustar liggesusers\name{unroll} \alias{unroll} \title{Display a Two-Dimension Version of a Matrix of Vectors} \description{ Displays all values of a matrix of vectors by \dQuote{unrolling} the object vertically or horizontally. } \usage{ unroll(x, bycol = FALSE, drop = TRUE) } \arguments{ \item{x}{a list of vectors with a \code{\link[base]{dim}} attribute of length 0, 1 or 2.} \item{bycol}{logical; whether to unroll horizontally (\code{FALSE}) or vertically (\code{TRUE}).} \item{drop}{logical; if \code{TRUE}, the result is coerced to the lowest possible dimension.} } \details{ \code{unroll} returns a matrix where elements of \code{x} are concatenated (\dQuote{unrolled}) by row (\code{bycol = FALSE}) or by column (\code{bycol = TRUE}). \code{NA} is used to make rows/columns of equal length. Vectors and one dimensional arrays are coerced to \strong{row} matrices. } \value{ A vector or matrix. } \seealso{ This function was originally written for use in \code{\link{severity.portfolio}}. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Louis-Philippe Pouliot } \examples{ x <- list(c(1:3), c(1:8), c(1:4), c(1:3)) (mat <- matrix(x, 2, 2)) unroll(mat) unroll(mat, bycol = TRUE) unroll(mat[1, ]) unroll(mat[1, ], drop = FALSE) } \keyword{manip} actuar/man/hist.grouped.data.Rd0000644000176200001440000000740514125442656016135 0ustar liggesusers\name{hist.grouped.data} \alias{hist.grouped.data} \title{Histogram for Grouped Data} \description{ This method for the generic function \code{\link{hist}} is mainly useful to plot the histogram of grouped data. If \code{plot = FALSE}, the resulting object of class \code{"histogram"} is returned for compatibility with \code{\link{hist.default}}, but does not contain much information not already in \code{x}. } \usage{ \method{hist}{grouped.data}(x, freq = NULL, probability = !freq, density = NULL, angle = 45, col = NULL, border = NULL, main = paste("Histogram of" , xname), xlim = range(x), ylim = NULL, xlab = xname, ylab, axes = TRUE, plot = TRUE, labels = FALSE, \dots) } \arguments{ \item{x}{an object of class \code{"grouped.data"}; only the first column of frequencies is used.} \item{freq}{logical; if \code{TRUE}, the histogram graphic is a representation of frequencies, the \code{counts} component of the result; if \code{FALSE}, probability densities, component \code{density}, are plotted (so that the histogram has a total area of one). Defaults to \code{TRUE} \emph{iff} group boundaries are equidistant (and \code{probability} is not specified).} \item{probability}{an \emph{alias} for \code{!freq}, for S compatibility.} \item{density}{the density of shading lines, in lines per inch. The default value of \code{NULL} means that no shading lines are drawn. Non-positive values of \code{density} also inhibit the drawing of shading lines.} \item{angle}{the slope of shading lines, given as an angle in degrees (counter-clockwise).} \item{col}{a colour to be used to fill the bars. The default of \code{NULL} yields unfilled bars.} \item{border}{the color of the border around the bars. The default is to use the standard foreground color.} \item{main, xlab, ylab}{these arguments to \code{title} have useful defaults here.} \item{xlim, ylim}{the range of x and y values with sensible defaults. Note that \code{xlim} is \emph{not} used to define the histogram (breaks), but only for plotting (when \code{plot = TRUE}).} \item{axes}{logical. If \code{TRUE} (default), axes are draw if the plot is drawn.} \item{plot}{logical. If \code{TRUE} (default), a histogram is plotted, otherwise a list of breaks and counts is returned.} \item{labels}{logical or character. Additionally draw labels on top of bars, if not \code{FALSE}; see \code{\link{plot.histogram}}.} \item{\dots}{further graphical parameters passed to \code{\link{plot.histogram}} and their to \code{\link{title}} and \code{\link{axis}} (if \code{plot=TRUE}).} } \value{ An object of class \code{"histogram"} which is a list with components: \item{breaks}{the \eqn{r + 1} group boundaries.} \item{counts}{\eqn{r} integers; the frequency within each group.} \item{density}{the relative frequencies within each group \eqn{n_j/n}{n[j]/n}, where \eqn{n_j}{n[j]} = \code{counts[j]}.} \item{intensities}{same as \code{density}. Deprecated, but retained for compatibility.} \item{mids}{the \eqn{r} group midpoints.} \item{xname}{a character string with the actual \code{x} argument name.} \item{equidist}{logical, indicating if the distances between \code{breaks} are all the same.} } \note{ The resulting value does \emph{not} depend on the values of the arguments \code{freq} (or \code{probability}) or \code{plot}. This is intentionally different from S. } \seealso{ \code{\link{hist}} and \code{\link{hist.default}} for histograms of individual data and fancy examples. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), \emph{Loss Models, From Data to Decisions}, Wiley. } \examples{ data(gdental) hist(gdental) } \keyword{dplot} \keyword{hplot} \keyword{distribution} actuar/man/ZeroModifiedLogarithmic.Rd0000644000176200001440000000752214030725704017346 0ustar liggesusers\name{ZeroModifiedLogarithmic} \alias{ZeroModifiedLogarithmic} \alias{ZMLogarithmic} \alias{dzmlogarithmic} \alias{pzmlogarithmic} \alias{qzmlogarithmic} \alias{rzmlogarithmic} \title{The Zero-Modified Logarithmic Distribution} \description{ Density function, distribution function, quantile function and random generation for the Zero-Modified Logarithmic (or log-series) distribution with parameter \code{prob} and arbitrary probability at zero \code{p0}. } \usage{ dzmlogarithmic(x, prob, p0, log = FALSE) pzmlogarithmic(q, prob, p0, lower.tail = TRUE, log.p = FALSE) qzmlogarithmic(p, prob, p0, lower.tail = TRUE, log.p = FALSE) rzmlogarithmic(n, prob, p0) } \arguments{ \item{x}{vector of (strictly positive integer) quantiles.} \item{q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{prob}{parameter. \code{0 <= prob < 1}.} \item{p0}{probability mass at zero. \code{0 <= p0 <= 1}.} \item{log, log.p}{logical; if \code{TRUE}, probabilities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.} } \details{ The zero-modified logarithmic distribution with \code{prob} \eqn{= p} and \code{p0} \eqn{= p_0}{= p0} is a discrete mixture between a degenerate distribution at zero and a (standard) logarithmic. The probability mass function is \eqn{p(0) = p_0}{p(0) = p0} and \deqn{% p(x) = (1-p_0) f(x)}{p(x) = (1-p0) f(x)} for \eqn{x = 1, 2, \ldots}, \eqn{0 < p < 1} and \eqn{0 \le p_0 \le 1}{0 \le p0 \le 1}, where \eqn{f(x)} is the probability mass function of the logarithmic. The cumulative distribution function is \deqn{P(x) = p_0 + (1 - p_0) F(x)}{P(x) = p0 + (1 - p0) F(x).} The special case \code{p0 == 0} is the standard logarithmic. The zero-modified logarithmic distribution is the limiting case of the zero-modified negative binomial distribution with \code{size} parameter equal to \eqn{0}. Note that in this context, parameter \code{prob} generally corresponds to the probability of \emph{failure} of the zero-truncated negative binomial. If an element of \code{x} is not integer, the result of \code{dzmlogarithmic} is zero, with a warning. The quantile is defined as the smallest value \eqn{x} such that \eqn{F(x) \ge p}, where \eqn{F} is the distribution function. } \value{ \code{dzmlogarithmic} gives the probability mass function, \code{pzmlogarithmic} gives the distribution function, \code{qzmlogarithmic} gives the quantile function, and \code{rzmlogarithmic} generates random deviates. Invalid \code{prob} or \code{p0} will result in return value \code{NaN}, with a warning. The length of the result is determined by \code{n} for \code{rzmlogarithmic}, and is the maximum of the lengths of the numerical arguments for the other functions. } \note{ Functions \code{\{d,p,q\}zmlogarithmic} use \code{\{d,p,q\}logarithmic} for all but the trivial input values and \eqn{p(0)}. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dlogarithmic}} for the logarithmic distribution. \code{\link{dztnbinom}} for the zero modified negative binomial distribution. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ p <- 1/(1 + 0.5) dzmlogarithmic(1:5, prob = p, p0 = 0.6) (1-0.6) * dlogarithmic(1:5, p)/plogarithmic(0, p, lower = FALSE) # same ## simple relation between survival functions pzmlogarithmic(0:5, p, p0 = 0.2, lower = FALSE) (1-0.2) * plogarithmic(0:5, p, lower = FALSE)/plogarithmic(0, p, lower = FALSE) # same qzmlogarithmic(pzmlogarithmic(0:10, 0.3, p0 = 0.6), 0.3, p0 = 0.6) } \keyword{distribution} actuar/man/Pareto2.Rd0000644000176200001440000001107514030725703014114 0ustar liggesusers\name{Pareto2} \alias{Pareto2} \alias{dpareto2} \alias{ppareto2} \alias{qpareto2} \alias{rpareto2} \alias{mpareto2} \alias{levpareto2} \title{The Pareto II Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Pareto II distribution with parameters \code{min}, \code{shape} and \code{scale}. } \usage{ dpareto2(x, min, shape, rate = 1, scale = 1/rate, log = FALSE) ppareto2(q, min, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qpareto2(p, min, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rpareto2(n, min, shape, rate = 1, scale = 1/rate) mpareto2(order, min, shape, rate = 1, scale = 1/rate) levpareto2(limit, min, shape, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{min}{lower bound of the support of the distribution.} \item{shape, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The Pareto II (or \dQuote{type II}) distribution with parameters \code{min} \eqn{= \mu}{= m}, \code{shape} \eqn{= \alpha}{= a} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\alpha}{% \theta [1 + (x - \mu)/\theta]^{\alpha + 1}}}{% f(x) = a/(s [1 + (x - m)/s]^(a + 1))} for \eqn{x > \mu}{x > m}, \eqn{-\infty < \mu < \infty}{-Inf < m < Inf}, \eqn{\alpha > 0}{a > 0} and \eqn{\theta > 0}{s > 0}. The Pareto II is the distribution of the random variable \deqn{\mu + \theta \left(\frac{X}{1 - X}\right),}{% m + s X/(1 - X),} where \eqn{X} has a beta distribution with parameters \eqn{1} and \eqn{\alpha}{a}. It derives from the \link[=dfpareto]{Feller-Pareto} distribution with \eqn{\tau = \gamma = 1}{shape2 = shape3 = 1}. Setting \eqn{\mu = 0}{min = 0} yields the familiar \link[=dpareto]{Pareto} distribution. The \link[=dpareto1]{Pareto I} (or Single parameter Pareto) distribution is a special case of the Pareto II with \code{min == scale}. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]} for nonnegative integer values of \eqn{k < \alpha}{k < shape}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]} for nonnegative integer values of \eqn{k} and \eqn{\alpha - j}{shape1 - j}, \eqn{j = 1, \dots, k} not a negative integer. } \value{ \code{dpareto2} gives the density, \code{ppareto2} gives the distribution function, \code{qpareto2} gives the quantile function, \code{rpareto2} generates random deviates, \code{mpareto2} gives the \eqn{k}th raw moment, and \code{levpareto2} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levpareto2} computes the limited expected value using \code{\link{betaint}}. For Pareto distributions, we use the classification of Arnold (2015) with the parametrization of Klugman et al. (2012). The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Arnold, B.C. (2015), \emph{Pareto Distributions}, Second Edition, CRC Press. Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \seealso{ \code{\link{dpareto}} for the Pareto distribution without a location parameter. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ exp(dpareto2(1, min = 10, 3, 4, log = TRUE)) p <- (1:10)/10 ppareto2(qpareto2(p, min = 10, 2, 3), min = 10, 2, 3) ## variance mpareto2(2, min = 10, 4, 1) - mpareto2(1, min = 10, 4, 1)^2 ## case with shape - order > 0 levpareto2(10, min = 10, 3, scale = 1, order = 2) ## case with shape - order < 0 levpareto2(10, min = 10, 1.5, scale = 1, order = 2) } \keyword{distribution} actuar/man/LognormalMoments.Rd0000644000176200001440000000247014030725703016074 0ustar liggesusers\name{LognormalMoments} \alias{LognormalMoments} \alias{mlnorm} \alias{levlnorm} \title{Raw and Limited Moments of the Lognormal Distribution} \description{ Raw moments and limited moments for the Lognormal distribution whose logarithm has mean equal to \code{meanlog} and standard deviation equal to \code{sdlog}. } \usage{ mlnorm(order, meanlog = 0, sdlog = 1) levlnorm(limit, meanlog = 0, sdlog = 1, order = 1) } \arguments{ \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} \item{meanlog, sdlog}{mean and standard deviation of the distribution on the log scale with default values of \code{0} and \code{1} respectively.} } \value{ \code{mlnorm} gives the \eqn{k}th raw moment and \code{levlnorm} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \seealso{ \code{\link{Lognormal}} for details on the lognormal distribution and functions \code{[dpqr]lnorm}. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ mlnorm(2, 3, 4) - mlnorm(1, 3, 4)^2 levlnorm(10, 3, 4, order = 2) } \keyword{distribution} actuar/man/NormalSupp.Rd0000644000176200001440000000250614030725703014677 0ustar liggesusers\name{NormalSupp} \alias{NormalSupp} \alias{mnorm} \alias{mgfnorm} \title{Moments and Moment generating function of the Normal Distribution} \description{ Raw moments and moment generating function for the normal distribution with mean equal to \code{mean} and standard deviation equal to \code{sd}. } \usage{ mnorm(order, mean = 0, sd = 1) mgfnorm(t, mean = 0, sd = 1, log = FALSE) } \arguments{ \item{order}{vector of integers; order of the moment.} \item{mean}{vector of means.} \item{sd}{vector of standard deviations.} \item{t}{numeric vector.} \item{log}{logical; if \code{TRUE}, the cumulant generating function is returned.} } \details{ The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]} and the moment generating function is \eqn{E[e^{tX}]}. Only integer moments are supported. } \value{ \code{mnorm} gives the \eqn{k}th raw moment and \code{mgfnorm} gives the moment generating function in \code{t}. Invalid arguments will result in return value \code{NaN}, with a warning. } \seealso{ \code{\link{Normal}} } \references{ Johnson, N. L. and Kotz, S. (1970), \emph{Continuous Univariate Distributions, Volume 1}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca}, Christophe Dutang } \examples{ mgfnorm(0:4,1,2) mnorm(3) } \keyword{distribution} actuar/man/InverseGaussian.Rd0000644000176200001440000001340414030725703015704 0ustar liggesusers\name{InverseGaussian} \alias{InverseGaussian} \alias{dinvgauss} \alias{pinvgauss} \alias{qinvgauss} \alias{rinvgauss} \alias{minvgauss} \alias{levinvgauss} \alias{mgfinvgauss} \title{The Inverse Gaussian Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments, limited moments and moment generating function for the Inverse Gaussian distribution with parameters \code{mean} and \code{shape}. } \usage{ dinvgauss(x, mean, shape = 1, dispersion = 1/shape, log = FALSE) pinvgauss(q, mean, shape = 1, dispersion = 1/shape, lower.tail = TRUE, log.p = FALSE) qinvgauss(p, mean, shape = 1, dispersion = 1/shape, lower.tail = TRUE, log.p = FALSE, tol = 1e-14, maxit = 100, echo = FALSE, trace = echo) rinvgauss(n, mean, shape = 1, dispersion = 1/shape) minvgauss(order, mean, shape = 1, dispersion = 1/shape) levinvgauss(limit, mean, shape = 1, dispersion = 1/shape, order = 1) mgfinvgauss(t, mean, shape = 1, dispersion = 1/shape, log = FALSE) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{mean, shape}{parameters. Must be strictly positive. Infinite values are supported.} \item{dispersion}{an alternative way to specify the shape.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment. Only \code{order = 1} is supported by \code{levinvgauss}.} \item{limit}{limit of the loss variable.} \item{tol}{small positive value. Tolerance to assess convergence in the Newton computation of quantiles.} \item{maxit}{positive integer; maximum number of recursions in the Newton computation of quantiles.} \item{echo, trace}{logical; echo the recursions to screen in the Newton computation of quantiles.} \item{t}{numeric vector.} } \details{ The inverse Gaussian distribution with parameters \code{mean} \eqn{= \mu} and \code{dispersion} \eqn{= \phi} has density: \deqn{f(x) = \left( \frac{1}{2 \pi \phi x^3} \right)^{1/2} \exp\left( -\frac{(x - \mu)^2}{2 \mu^2 \phi x} \right),}{% f(x) = sqrt(1/(2 \pi \phi x^3)) * exp(-((x - \mu)^2)/(2 \mu^2 \phi x)),} for \eqn{x \ge 0}, \eqn{\mu > 0} and \eqn{\phi > 0}. The limiting case \eqn{\mu = \infty}{\mu = Inf} is an inverse chi-squared distribution (or inverse gamma with \code{shape} \eqn{= 1/2} and \code{rate} \eqn{= 2}\code{phi}). This distribution has no finite strictly positive, integer moments. The limiting case \eqn{\phi = 0} is an infinite spike in \eqn{x = 0}. If the random variable \eqn{X} is IG\eqn{(\mu, \phi)}, then \eqn{X/\mu} is IG\eqn{(1, \phi \mu)}{(1, \phi * \mu)}. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, \eqn{k = 1, 2, \dots}, the limited expected value at some limit \eqn{d} is \eqn{E[\min(X, d)]}{E[min(X, d)]} and the moment generating function is \eqn{E[e^{tX}]}. The moment generating function of the inverse guassian is defined for \code{t <= 1/(2 * mean^2 * phi)}. } \value{ \code{dinvgauss} gives the density, \code{pinvgauss} gives the distribution function, \code{qinvgauss} gives the quantile function, \code{rinvgauss} generates random deviates, \code{minvgauss} gives the \eqn{k}th raw moment, \code{levinvgauss} gives the limited expected value, and \code{mgfinvgauss} gives the moment generating function in \code{t}. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ Functions \code{dinvgauss}, \code{pinvgauss} and \code{qinvgauss} are C implementations of functions of the same name in package \pkg{statmod}; see Giner and Smyth (2016). Devroye (1986, chapter 4) provides a nice presentation of the algorithm to generate random variates from an inverse Gaussian distribution. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Giner, G. and Smyth, G. K. (2016), \dQuote{\pkg{statmod}: Probability Calculations for the Inverse Gaussian Distribution}, \emph{R Journal}, vol. 8, no 1, p. 339-351. \url{https://journal.r-project.org/archive/2016-1/giner-smyth.pdf} Chhikara, R. S. and Folk, T. L. (1989), \emph{The Inverse Gaussian Distribution: Theory, Methodology and Applications}, Decker. Devroye, L. (1986), \emph{Non-Uniform Random Variate Generation}, Springer-Verlag. \url{http://luc.devroye.org/rnbookindex.html} } \seealso{ \code{\link{dinvgamma}} for the inverse gamma distribution. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ dinvgauss(c(-1, 0, 1, 2, Inf), mean = 1.5, dis = 0.7) dinvgauss(c(-1, 0, 1, 2, Inf), mean = Inf, dis = 0.7) dinvgauss(c(-1, 0, 1, 2, Inf), mean = 1.5, dis = Inf) # spike at zero ## Typical graphical representations of the inverse Gaussian ## distribution. First fixed mean and varying shape; second ## varying mean and fixed shape. col = c("red", "blue", "green", "cyan", "yellow", "black") par = c(0.125, 0.5, 1, 2, 8, 32) curve(dinvgauss(x, 1, par[1]), from = 0, to = 2, col = col[1]) for (i in 2:6) curve(dinvgauss(x, 1, par[i]), add = TRUE, col = col[i]) curve(dinvgauss(x, par[1], 1), from = 0, to = 2, col = col[1]) for (i in 2:6) curve(dinvgauss(x, par[i], 1), add = TRUE, col = col[i]) pinvgauss(qinvgauss((1:10)/10, 1.5, shape = 2), 1.5, 2) minvgauss(1:4, 1.5, 2) levinvgauss(c(0, 0.5, 1, 1.2, 10, Inf), 1.5, 2) } \keyword{distribution} actuar/man/Paralogistic.Rd0000644000176200001440000000711614030725703015222 0ustar liggesusers\name{Paralogistic} \alias{Paralogistic} \alias{dparalogis} \alias{pparalogis} \alias{qparalogis} \alias{rparalogis} \alias{mparalogis} \alias{levparalogis} \title{The Paralogistic Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Paralogistic distribution with parameters \code{shape} and \code{scale}. } \usage{ dparalogis(x, shape, rate = 1, scale = 1/rate, log = FALSE) pparalogis(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qparalogis(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rparalogis(n, shape, rate = 1, scale = 1/rate) mparalogis(order, shape, rate = 1, scale = 1/rate) levparalogis(limit, shape, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The paralogistic distribution with parameters \code{shape} \eqn{= \alpha}{= a} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\alpha^2 (x/\theta)^\alpha}{% x [1 + (x/\theta)^\alpha)^{\alpha + 1}}}{% f(x) = a^2 (x/s)^a / (x [1 + (x/s)^a]^(a + 1))} for \eqn{x > 0}, \eqn{\alpha > 0}{a > 0} and \eqn{\theta > 0}{b > 0}. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, \eqn{-\alpha < k < \alpha^2}{-shape < k < shape^2}. The \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, \eqn{k > -\alpha}{k > -shape} and \eqn{\alpha - k/\alpha}{shape - k/shape} not a negative integer. } \value{ \code{dparalogis} gives the density, \code{pparalogis} gives the distribution function, \code{qparalogis} gives the quantile function, \code{rparalogis} generates random deviates, \code{mparalogis} gives the \eqn{k}th raw moment, and \code{levparalogis} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levparalogis} computes the limited expected value using \code{\link{betaint}}. See Kleiber and Kotz (2003) for alternative names and parametrizations. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dparalogis(2, 3, 4, log = TRUE)) p <- (1:10)/10 pparalogis(qparalogis(p, 2, 3), 2, 3) ## variance mparalogis(2, 2, 3) - mparalogis(1, 2, 3)^2 ## case with shape - order/shape > 0 levparalogis(10, 2, 3, order = 2) ## case with shape - order/shape < 0 levparalogis(10, 1.25, 3, order = 2) } \keyword{distribution} actuar/man/InverseExponential.Rd0000644000176200001440000000545314030725703016425 0ustar liggesusers\name{InverseExponential} \alias{InverseExponential} \alias{dinvexp} \alias{pinvexp} \alias{qinvexp} \alias{rinvexp} \alias{minvexp} \alias{levinvexp} \title{The Inverse Exponential Distribution} \description{ Density function, distribution function, quantile function, random generation raw moments and limited moments for the Inverse Exponential distribution with parameter \code{scale}. } \usage{ dinvexp(x, rate = 1, scale = 1/rate, log = FALSE) pinvexp(q, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qinvexp(p, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rinvexp(n, rate = 1, scale = 1/rate) minvexp(order, rate = 1, scale = 1/rate) levinvexp(limit, rate = 1, scale = 1/rate, order) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{scale}{parameter. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The inverse exponential distribution with parameter \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\theta e^{-\theta/x}}{x^2}}{f(x) = s exp(-s/x)/x^2} for \eqn{x > 0} and \eqn{\theta > 0}{s > 0}. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, \eqn{k < 1}, and the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, all \eqn{k}. } \value{ \code{dinvexp} gives the density, \code{pinvexp} gives the distribution function, \code{qinvexp} gives the quantile function, \code{rinvexp} generates random deviates, \code{minvexp} gives the \eqn{k}th raw moment, and \code{levinvexp} calculates the \eqn{k}th limited moment. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levinvexp} computes the limited expected value using \code{gammainc} from package \pkg{expint}. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dinvexp(2, 2, log = TRUE)) p <- (1:10)/10 pinvexp(qinvexp(p, 2), 2) minvexp(0.5, 2) } \keyword{distribution} actuar/man/ChisqSupp.Rd0000644000176200001440000000401514030725703014513 0ustar liggesusers\name{ChisqSupp} \alias{ChisqSupp} \alias{mchisq} \alias{levchisq} \alias{mgfchisq} \title{Moments and Moment Generating Function of the (non-central) Chi-Squared Distribution} \description{ Raw moments, limited moments and moment generating function for the chi-squared (\eqn{\chi^2}{chi^2}) distribution with \code{df} degrees of freedom and optional non-centrality parameter \code{ncp}. } \usage{ mchisq(order, df, ncp = 0) levchisq(limit, df, ncp = 0, order = 1) mgfchisq(t, df, ncp = 0, log= FALSE) } \arguments{ \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} \item{df}{degrees of freedom (non-negative, but can be non-integer).} \item{ncp}{non-centrality parameter (non-negative).} \item{t}{numeric vector.} \item{log}{logical; if \code{TRUE}, the cumulant generating function is returned.} } \details{ The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)]}{E[min(X, d)]} and the moment generating function is \eqn{E[e^{tX}]}. Only integer moments are supported for the non central Chi-square distribution (\code{ncp > 0}). The limited expected value is supported for the centered Chi-square distribution (\code{ncp = 0}). } \value{ \code{mchisq} gives the \eqn{k}th raw moment, \code{levchisq} gives the \eqn{k}th moment of the limited loss variable, and \code{mgfchisq} gives the moment generating function in \code{t}. Invalid arguments will result in return value \code{NaN}, with a warning. } \seealso{ \code{\link[stats]{Chisquare}} } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. Johnson, N. L. and Kotz, S. (1970), \emph{Continuous Univariate Distributions, Volume 1}, Wiley. } \author{ Christophe Dutang, Vincent Goulet \email{vincent.goulet@act.ulaval.ca} } \examples{ mchisq(2, 3, 4) levchisq(10, 3, order = 2) mgfchisq(0.25, 3, 2) } \keyword{distribution} actuar/man/InverseWeibull.Rd0000644000176200001440000000713314030725703015537 0ustar liggesusers\name{InverseWeibull} \alias{InverseWeibull} \alias{dinvweibull} \alias{pinvweibull} \alias{qinvweibull} \alias{rinvweibull} \alias{minvweibull} \alias{levinvweibull} \alias{dlgompertz} \alias{plgompertz} \alias{qlgompertz} \alias{rlgompertz} \alias{mlgompertz} \alias{levlgompertz} \title{The Inverse Weibull Distribution} \description{ Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Inverse Weibull distribution with parameters \code{shape} and \code{scale}. } \usage{ dinvweibull(x, shape, rate = 1, scale = 1/rate, log = FALSE) pinvweibull(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) qinvweibull(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) rinvweibull(n, shape, rate = 1, scale = 1/rate) minvweibull(order, shape, rate = 1, scale = 1/rate) levinvweibull(limit, shape, rate = 1, scale = 1/rate, order = 1) } \arguments{ \item{x, q}{vector of quantiles.} \item{p}{vector of probabilities.} \item{n}{number of observations. If \code{length(n) > 1}, the length is taken to be the number required.} \item{shape, scale}{parameters. Must be strictly positive.} \item{rate}{an alternative way to specify the scale.} \item{log, log.p}{logical; if \code{TRUE}, probabilities/densities \eqn{p} are returned as \eqn{\log(p)}{log(p)}.} \item{lower.tail}{logical; if \code{TRUE} (default), probabilities are \eqn{P[X \le x]}{P[X <= x]}, otherwise, \eqn{P[X > x]}.} \item{order}{order of the moment.} \item{limit}{limit of the loss variable.} } \details{ The inverse Weibull distribution with parameters \code{shape} \eqn{= \tau}{= a} and \code{scale} \eqn{= \theta}{= s} has density: \deqn{f(x) = \frac{\tau (\theta/x)^\tau e^{-(\theta/x)^\tau}}{x}}{% f(x) = a (s/x)^a exp(-(s/x)^a)/x} for \eqn{x > 0}, \eqn{\tau > 0}{a > 0} and \eqn{\theta > 0}{s > 0}. The special case \code{shape == 1} is an \link[=dinvexp]{Inverse Exponential} distribution. The \eqn{k}th raw moment of the random variable \eqn{X} is \eqn{E[X^k]}{E[X^k]}, \eqn{k < \tau}{k < shape}, and the \eqn{k}th limited moment at some limit \eqn{d} is \eqn{E[\min(X, d)^k]}{E[min(X, d)^k]}, all \eqn{k}. } \value{ \code{dinvweibull} gives the density, \code{pinvweibull} gives the distribution function, \code{qinvweibull} gives the quantile function, \code{rinvweibull} generates random deviates, \code{minvweibull} gives the \eqn{k}th raw moment, and \code{levinvweibull} gives the \eqn{k}th moment of the limited loss variable. Invalid arguments will result in return value \code{NaN}, with a warning. } \note{ \code{levinvweibull} computes the limited expected value using \code{gammainc} from package \pkg{expint}. Distribution also knonw as the log-Gompertz. See also Kleiber and Kotz (2003) for alternative names and parametrizations. The \code{"distributions"} package vignette provides the interrelations between the continuous size distributions in \pkg{actuar} and the complete formulas underlying the above functions. } \references{ Kleiber, C. and Kotz, S. (2003), \emph{Statistical Size Distributions in Economics and Actuarial Sciences}, Wiley. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), \emph{Loss Models, From Data to Decisions, Fourth Edition}, Wiley. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Mathieu Pigeon } \examples{ exp(dinvweibull(2, 3, 4, log = TRUE)) p <- (1:10)/10 pinvweibull(qinvweibull(p, 2, 3), 2, 3) mlgompertz(-1, 3, 3) levinvweibull(10, 2, 3, order = 1) } \keyword{distribution} actuar/man/quantile.aggregateDist.Rd0000644000176200001440000000313614030725704017173 0ustar liggesusers\name{quantile.aggregateDist} \alias{quantile.aggregateDist} \alias{VaR.aggregateDist} \title{Quantiles of Aggregate Claim Amount Distribution} \description{ Quantile and Value-at-Risk methods for objects of class \code{"aggregateDist"}. } \usage{ \method{quantile}{aggregateDist}(x, probs = c(0.25, 0.5, 0.75, 0.9, 0.95, 0.975, 0.99, 0.995), smooth = FALSE, names = TRUE, \dots) \method{VaR}{aggregateDist}(x, conf.level = c(0.9, 0.95, 0.99), smooth = FALSE, names = TRUE, \dots) } \arguments{ \item{x}{an object of class \code{"aggregateDist"}.} \item{probs, conf.level}{numeric vector of probabilities with values in \eqn{[0, 1)}.} \item{smooth}{logical; when \code{TRUE} and \code{x} is a step function, quantiles are linearly interpolated between knots.} \item{names}{logical; if true, the result has a \code{names} attribute. Set to \code{FALSE} for speedup with many \code{probs}.} \item{\dots}{further arguments passed to or from other methods.} } \details{ The quantiles are taken directly from the cumulative distribution function defined in \code{x}. Linear interpolation is available for step functions. } \value{ A numeric vector, named if \code{names} is \code{TRUE}. } \seealso{ \code{\link{aggregateDist}} } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and Louis-Philippe Pouliot } \examples{ model.freq <- expression(data = rpois(3)) model.sev <- expression(data = rlnorm(10, 1.5)) Fs <- aggregateDist("simulation", model.freq, model.sev, nb.simul = 1000) quantile(Fs, probs = c(0.25, 0.5, 0.75)) VaR(Fs) } \keyword{univar} actuar/man/var-methods.Rd0000644000176200001440000000611414125442656015037 0ustar liggesusers\name{var} \alias{var} \alias{var.default} \alias{var.grouped.data} \alias{sd} \alias{sd.default} \alias{sd.grouped.data} \title{Variance and Standard Deviation} \description{ Generic functions for the variance and standard deviation, and methods for individual and grouped data. The default methods for individual data are the functions from the \pkg{stats} package. } \usage{ var(x, \dots) \method{var}{default}(x, y = NULL, na.rm = FALSE, use, \dots) \method{var}{grouped.data}(x, \dots) sd(x, \dots) \method{sd}{default}(x, na.rm = FALSE, \dots) \method{sd}{grouped.data}(x, \dots) } \arguments{ \item{x}{a vector or matrix of individual data, or an object of class \code{"grouped data"}.} \item{y}{see \code{\link[stats:var]{stats::var}}.} \item{na.rm}{see \code{\link[stats:var]{stats::var}}.} \item{use}{see \code{\link[stats:var]{stats::var}}.} \item{\dots}{further arguments passed to or from other methods.} } \details{ This page documents variance and standard deviation computations for grouped data. For individual data, see \code{\link[stats]{var}} and \code{\link[stats]{sd}} from the \pkg{stats} package. For grouped data with group boundaries \eqn{c_0, c_1, \dots, c_r}{c[0], c[1], \dots, c[r]} and group frequencies \eqn{n_1, \dots, n_r}{n[1], \dots, n[r]}, \code{var} computes the sample variance \deqn{\frac{1}{n - 1} \sum_{j = 1}^r n_j (a_j - m_1)^2,}{% (1/(n - 1)) * sum(j; n[j] * (a[j] - m)^2,} where \eqn{a_j = (c_{j - 1} + c_j)/2}{a[j] = (c[j - 1] + c[j])/2} is the midpoint of the \eqn{j}th interval, \eqn{m_1}{m} is the sample mean (or sample first moment) of the data, and \eqn{n = \sum_{j = 1}^r n_j}{n = sum(j; n[j])}. The sample sample standard deviation is the square root of the sample variance. The sample variance for grouped data differs from the variance computed from the empirical raw moments with \code{\link{emm}} in two aspects. First, it takes into account the degrees of freedom. Second, it applies Sheppard's correction factor to compensate for the overestimation of the true variation in the data. For groups of equal width \eqn{k}, Sheppard's correction factor is equal to \eqn{-k^2/12}. } \value{ A named vector of variances or standard deviations. } \seealso{ \code{\link{grouped.data}} to create grouped data objects; \code{\link{mean.grouped.data}} for the mean and \code{\link{emm}} for higher moments. } \references{ Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), \emph{Loss Models, From Data to Decisions}, Wiley. Heumann, C., Schomaker, M., Shalabh (2016), \emph{Introduction to Statistics and Data Analysis}, Springer. } \author{ Vincent Goulet \email{vincent.goulet@act.ulaval.ca}. Variance and standard deviation methods for grouped data contributed by Walter Garcia-Fontes \email{walter.garcia@upf.edu}. } \examples{ data(gdental) var(gdental) sd(gdental) ## Illustration of Sheppard's correction factor cj <- c(0, 2, 4, 6, 8) nj <- c(1, 5, 3, 2) gd <- grouped.data(Group = cj, Frequency = nj) (sum(nj) - 1)/sum(nj) * var(gd) (emm(gd, 2) - emm(gd)^2) - 4/12 } \keyword{univar} actuar/DESCRIPTION0000644000176200001440000000566614173551122013255 0ustar liggesusersPackage: actuar Type: Package Title: Actuarial Functions and Heavy Tailed Distributions Version: 3.2-1 Date: 2022-01-23 Authors@R: c(person("Vincent", "Goulet", role = c("cre", "aut"), email = "vincent.goulet@act.ulaval.ca"), person("SĂ©bastien", "Auclair", role = "ctb"), person("Christophe", "Dutang", role = "aut", email = "dutang@ceremade.dauphine.fr"), person("Walter", "Garcia-Fontes", role = "ctb", email = "walter.garcia@upf.edu"), person("Nicholas", "Langevin", role = "ctb"), person("Xavier", "Milhaud", role = "ctb"), person("Tommy", "Ouellet", role = "ctb"), person("Alexandre", "Parent", role = "ctb"), person("Mathieu", "Pigeon", role = "aut", email = "pigeon.mathieu.2@uqam.ca"), person("Louis-Philippe", "Pouliot", role = "ctb"), person("Jeffrey A.", "Ryan", role = "aut", email = "jeff.a.ryan@gmail.com", comment = "Package API"), person("Robert", "Gentleman", role = "aut", comment = "Parts of the R to C interface"), person("Ross", "Ihaka", role = "aut", comment = "Parts of the R to C interface"), person(family = "R Core Team", role = "aut", comment = "Parts of the R to C interface"), person(family = "R Foundation", role = "aut", comment = "Parts of the R to C interface")) Description: Functions and data sets for actuarial science: modeling of loss distributions; risk theory and ruin theory; simulation of compound models, discrete mixtures and compound hierarchical models; credibility theory. Support for many additional probability distributions to model insurance loss size and frequency: 23 continuous heavy tailed distributions; the Poisson-inverse Gaussian discrete distribution; zero-truncated and zero-modified extensions of the standard discrete distributions. Support for phase-type distributions commonly used to compute ruin probabilities. Depends: R (>= 4.1.0) Imports: stats, graphics, expint LinkingTo: expint Suggests: MASS License: GPL (>= 2) URL: https://gitlab.com/vigou3/actuar BugReports: https://gitlab.com/vigou3/actuar/-/issues Encoding: UTF-8 LazyData: yes Classification/MSC-2010: 62P05, 91B30, 62G32 NeedsCompilation: yes Packaged: 2022-01-23 23:19:16 UTC; vincent Author: Vincent Goulet [cre, aut], SĂ©bastien Auclair [ctb], Christophe Dutang [aut], Walter Garcia-Fontes [ctb], Nicholas Langevin [ctb], Xavier Milhaud [ctb], Tommy Ouellet [ctb], Alexandre Parent [ctb], Mathieu Pigeon [aut], Louis-Philippe Pouliot [ctb], Jeffrey A. Ryan [aut] (Package API), Robert Gentleman [aut] (Parts of the R to C interface), Ross Ihaka [aut] (Parts of the R to C interface), R Core Team [aut] (Parts of the R to C interface), R Foundation [aut] (Parts of the R to C interface) Maintainer: Vincent Goulet Repository: CRAN Date/Publication: 2022-01-24 16:22:42 UTC actuar/build/0000755000176200001440000000000014173361163012635 5ustar liggesusersactuar/build/vignette.rds0000644000176200001440000000063314173361163015176 0ustar liggesusers‹„SčN1uîC„+ˆ ‹ˆű” A­łö‹];òAŽżMC˜ÍÚY;ˆ óÆ3óFóü2D5Q» { ź­1l]XǰzšpIb,Q“čX;ä ‘ïL‘% °ŁD1Ê<ăŠàÊ”Q|a —B‡9rIYÆĆ2ÀúŠë·À>Ô<·)C·hÌëüN%©MJ?6W<śj*óUÆ Ă©Te­f/ ìÙ»—§Óš96ŻLȘÂyźo(ćev’A0\Xi5&‚bh †ìQ.îâAj{°oŚ=9›C«ÛLÊr—œ|Ú”eŠčĐV‘@-bÈ/ĂYŃôÇpj,N ï 'ȱNUĂ©íp8%óê{Ńxž”d2Šă@䟦êpH·Ò†'*ìń¶tEęáüg|ùPĂqë’3íœ]¶oyæŚyæfgŽg·îÚđĘőflĆőrêßłb-ŰqĄ’ë‰/6‚Őü€młÙ|î3J@țž‘‡„š&©‚x°ŸŸ–Ç m actuar/tests/0000755000176200001440000000000014173361163012700 5ustar liggesusersactuar/tests/dpqr-tests.R0000644000176200001440000026660514173361070015145 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Tests of functions for continuous and discrete probability ### distributions. ### ### Despite the name of the file, the tests are for [dpqrm,lev] ### functions (for continuous distributions): ### ### d: density or probability mass ### p: cumulative distribution ### q: quantile ### r: random number generation ### m: moment ### lev: limited moment ### ### Distributions are classified and sorted as in appendix A and ### appendix B of the 'distributions' package vignette. ### ### Inspired by (and some parts taken from) `tests/d-p-q-r-tests.R` in ### R sources. ### ### AUTHOR: Vincent Goulet with ### indirect help from the R Core Team ## Load the package library(actuar) library(expint) # for gammainc ## Define a "local" version of the otherwise non-exported function ## 'betaint'. betaint <- actuar:::betaint ## No warnings, unless explicitly asserted via tools::assertWarning. options(warn = 2) assertWarning <- tools::assertWarning ## Special values and utilities. Taken from `tests/d-p-q-r-tests.R`. Meps <- .Machine$double.eps xMax <- .Machine$double.xmax xMin <- .Machine$double.xmin All.eq <- function(x, y) { all.equal.numeric(x, y, tolerance = 64 * .Machine$double.eps, scale = max(0, mean(abs(x), na.rm = TRUE))) } if(!interactive()) set.seed(123) ### ### CONTINUOUS DISTRIBUTIONS ### ## ## FELLER-PARETO AND PARETO II, III, IV DISTRIBUTIONS ## ## When reasonable, we also test consistency with the special cases ## min = 0: ## ## Feller-Pareto -> Transformated beta ## Pareto IV -> Burr ## Pareto III -> Loglogistic ## Pareto II -> Pareto ## Density: first check that functions return 0 when scale = Inf, and ## when x = scale = Inf. stopifnot(exprs = { dfpareto(c(42, Inf), min = 1, shape1 = 2, shape2 = 3, shape3 = 4, scale = Inf) == c(0, 0) dpareto4(c(42, Inf), min = 1, shape1 = 2, shape2 = 3, scale = Inf) == c(0, 0) dpareto3(c(42, Inf), min = 1, shape = 3, scale = Inf) == c(0, 0) dpareto2(c(42, Inf), min = 1, shape = 2, scale = Inf) == c(0, 0) }) ## Next test density functions for an array of standard values. nshpar <- 3 # (maximum) number of shape parameters min <- round(rnorm(30, 2), 2) shpar <- replicate(30, rlnorm(nshpar, 2), simplify = FALSE) scpar <- rlnorm(30, 2) # scale parameters for (i in seq_along(min)) { m <- min[i] a <- shpar[[c(i, 1)]]; g <- shpar[[c(i, 2)]]; t <- shpar[[c(i, 3)]] Be <- beta(a, t) for (s in scpar) { x <- rfpareto(100, min = m, shape1 = a, shape2 = g, shape3 = t, scale = s) y <- (x - m)/s u <- 1/(1 + y^(-g)) stopifnot(exprs = { all.equal(d1 <- dfpareto(x, min = m, shape1 = a, shape2 = g, shape3 = t, scale = s), d2 <- dfpareto(y, min = 0, shape1 = a, shape2 = g, shape3 = t, scale = 1)/s, tolerance = 1e-10) all.equal(d2, dtrbeta(y, shape1 = a, shape2 = g, shape3 = t, scale = 1)/s, tolerance = 1e-10) all.equal(d1, g * y^(g*t - 1)/(s * Be * (1 + y^g)^(a + t)), tolerance = 1e-10) all.equal(d1, g * u^t * (1 - u)^a/((x - m) * Be), tolerance = 1e-10) }) x <- rpareto4(100, min = m, shape1 = a, shape2 = g, scale = s) y <- (x - m)/s u <- 1/(1 + y^g) stopifnot(exprs = { all.equal(d1 <- dpareto4(x, min = m, shape1 = a, shape2 = g, scale = s), d2 <- dpareto4(y, min = 0, shape1 = a, shape2 = g, scale = 1)/s, tolerance = 1e-10) all.equal(d2, dburr(y, shape1 = a, shape2 = g, scale = 1)/s, tolerance = 1e-10) all.equal(d1, a * g * y^(g - 1)/(s * (1 + y^g)^(a + 1)), tolerance = 1e-10) all.equal(d1, a * g * u^a * (1 - u)/(x - m), tolerance = 1e-10) }) x <- rpareto3(100, min = m, shape = g, scale = s) y <- (x - m)/s u <- 1/(1 + y^(-g)) stopifnot(exprs = { all.equal(d1 <- dpareto3(x, min = m, shape = g, scale = s), d2 <- dpareto3(y, min = 0, shape = g, scale = 1)/s, tolerance = 1e-10) all.equal(d2, dllogis(y, shape = g, scale = 1)/s, tolerance = 1e-10) all.equal(d1, g * y^(g - 1)/(s * (1 + y^g)^2), tolerance = 1e-10) all.equal(d1, g * u * (1 - u)/(x - m), tolerance = 1e-10) }) x <- rpareto2(100, min = m, shape = a, scale = s) y <- (x - m)/s u <- 1/(1 + y) stopifnot(exprs = { all.equal(d1 <- dpareto2(x, min = m, shape = a, scale = s), d2 <- dpareto2(y, min = 0, shape = a, scale = 1)/s, tolerance = 1e-10) all.equal(d2, dpareto(y, shape = a, scale = 1)/s, tolerance = 1e-10) all.equal(d1, a/(s * (1 + y)^(a + 1)), tolerance = 1e-10) all.equal(d1, a * u^a * (1 - u)/(x - m), tolerance = 1e-10) }) } } ## Tests on the cumulative distribution function. ## ## Note: when shape1 = shape3 = 1, the underlying beta distribution is ## a uniform. Therefore, pfpareto(x, min, 1, shape2, 1, scale) should ## return the value of u = v/(1 + v), v = ((x - min)/scale)^shape2. ## ## x = 2/Meps = 2^53 (with min = 0, shape2 = scale = 1) is the value ## where the cdf would jump to 1 if we weren't using the trick to ## compute the cdf with pbeta(1 - u, ..., lower = FALSE). scLrg <- 1e300 * c(0.5, 1, 2) m <- rnorm(1) stopifnot(exprs = { pfpareto(Inf, min = 10, 1, 2, 3, scale = xMax) == 1 pfpareto(2^53, min = 0, 1, 1, 1, scale = 1) != 1 pfpareto(2^53 + xMax, min = xMax, 1, 1, 1, scale = 1) != 1 all.equal(pfpareto(xMin + m, min = m, 1, 1, 1, scale = 1), xMin) all.equal(y <- pfpareto(1e300 + m, min = m, shape1 = 3, shape2 = rep(c(1, 2), each = length(scLrg)), shape3 = 1, scale = scLrg, log = TRUE), ptrbeta(1e300, shape1 = 3, shape2 = rep(c(1, 2), each = length(scLrg)), shape3 = 1, scale = scLrg, log = TRUE)) all.equal(y, c(pbeta(c(2/3, 1/2), 1, 3, lower.tail = TRUE, log = TRUE), pbeta(2/3, 3, 1, lower.tail = FALSE, log = TRUE), pbeta(c(4/5, 1/2), 1, 3, lower.tail = TRUE, log = TRUE), pbeta(4/5, 3, 1, lower.tail = FALSE, log = TRUE))) }) stopifnot(exprs = { ppareto4(Inf, min = 10, 1, 3, scale = xMax) == 1 ppareto4(2^53, min = 0, 1, 1, scale = 1) != 1 ppareto4(2^53 + xMax, min = xMax, 1, 1, scale = 1) != 1 all.equal(ppareto4(xMin + m, min = m, 1, 1, scale = 1), xMin) all.equal(y <- ppareto4(1e300 + m, min = m, shape1 = 3, shape2 = rep(c(1, 2), each = length(scLrg)), scale = scLrg, log = TRUE), pburr(1e300, shape1 = 3, shape2 = rep(c(1, 2), each = length(scLrg)), scale = scLrg, log = TRUE)) all.equal(y, c(log(1 - c(1/3, 1/2, 2/3)^3), log(1 - c(1/5, 1/2, 4/5)^3))) }) stopifnot(exprs = { ppareto3(Inf, min = 10, 3, scale = xMax) == 1 ppareto3(2^53, min = 0, 1, scale = 1) != 1 ppareto3(2^53 + xMax, min = xMax, 1, scale = 1) != 1 all.equal(ppareto3(xMin + m, min = m, 1, scale = 1), xMin) all.equal(y <- ppareto3(1e300 + m, min = m, shape = rep(c(1, 2), each = length(scLrg)), scale = scLrg, log = TRUE), pllogis (1e300, shape = rep(c(1, 2), each = length(scLrg)), scale = scLrg, log = TRUE)) all.equal(y, c(log(c(2/3, 1/2, 1/3)), log(c(4/5, 1/2, 1/5)))) }) stopifnot(exprs = { ppareto2(Inf, min = 10, 3, scale = xMax) == 1 ppareto2(2^53, min = 0, 1, scale = 1) != 1 ppareto2(2^53 + xMax, min = xMax, 1, scale = 1) != 1 all.equal(ppareto2(xMin + m, min = m, 1, scale = 1), xMin) all.equal(y <- ppareto2(1e300 + m, min = m, shape = 3, scale = scLrg, log = TRUE), ppareto (1e300, shape = 3, scale = scLrg, log = TRUE)) all.equal(y, c(log(1 - c(1/3, 1/2, 2/3)^3))) }) ## Also check that distribution functions return 0 when scale = Inf. stopifnot(exprs = { pfpareto(x, min = m, shape1 = a, shape2 = g, shape3 = t, scale = Inf) == 0 ppareto4(x, min = m, shape1 = a, shape2 = g, scale = Inf) == 0 ppareto3(x, min = m, shape = g, scale = Inf) == 0 ppareto2(x, min = m, shape = a, scale = Inf) == 0 }) ## Tests for first three (positive) moments ## ## Simulation of new parameters ensuring that the first three moments ## exist. set.seed(123) # reset the seed nshpar <- 3 # (maximum) number of shape parameters min <- round(rnorm(30, 2), 2) shpar <- replicate(30, c(3, 3, 0) + rlnorm(nshpar, 2), simplify = FALSE) scpar <- rlnorm(30, 2) # scale parameters for (i in seq_along(min)) { m <- min[i] a <- shpar[[c(i, 1)]]; g <- shpar[[c(i, 2)]]; t <- shpar[[c(i, 3)]] Be <- beta(a, t) Ga <- gamma(a) for (s in scpar) { stopifnot(exprs = { All.eq(mfpareto(1, min = m, shape1 = a, shape2 = g, shape3 = t, scale = s), m * (Be + (s/m) * beta(t + 1/g, a - 1/g))/Be) All.eq(mfpareto(2, min = m, shape1 = a, shape2 = g, shape3 = t, scale = s), m^2 * (Be + 2 * (s/m) * beta(t + 1/g, a - 1/g) + (s/m)^2 * beta(t + 2/g, a - 2/g))/Be) All.eq(mfpareto(3, min = m, shape1 = a, shape2 = g, shape3 = t, scale = s), m^3 * (Be + 3 * (s/m) * beta(t + 1/g, a - 1/g) + 3 * (s/m)^2 * beta(t + 2/g, a - 2/g) + (s/m)^3 * beta(t + 3/g, a - 3/g))/Be) }) stopifnot(exprs = { All.eq(mpareto4(1, min = m, shape1 = a, shape2 = g, scale = s), m * (Ga + (s/m) * gamma(1 + 1/g) * gamma(a - 1/g))/Ga) All.eq(mpareto4(2, min = m, shape1 = a, shape2 = g, scale = s), m^2 * (Ga + 2 * (s/m) * gamma(1 + 1/g) * gamma(a - 1/g) + (s/m)^2 * gamma(1 + 2/g) * gamma(a - 2/g))/Ga) All.eq(mpareto4(3, min = m, shape1 = a, shape2 = g, scale = s), m^3 * (Ga + 3 * (s/m) * gamma(1 + 1/g) * gamma(a - 1/g) + 3 * (s/m)^2 * gamma(1 + 2/g) * gamma(a - 2/g) + (s/m)^3 * gamma(1 + 3/g) * gamma(a - 3/g))/Ga) }) stopifnot(exprs = { All.eq(mpareto3(1, min = m, shape = g, scale = s), m * (1 + (s/m) * gamma(1 + 1/g) * gamma(1 - 1/g))) All.eq(mpareto3(2, min = m, shape = g, scale = s), m^2 * (1 + 2 * (s/m) * gamma(1 + 1/g) * gamma(1 - 1/g) + (s/m)^2 * gamma(1 + 2/g) * gamma(1 - 2/g))) All.eq(mpareto3(3, min = m, shape = g, scale = s), m^3 * (1 + 3 * (s/m) * gamma(1 + 1/g) * gamma(1 - 1/g) + 3 * (s/m)^2 * gamma(1 + 2/g) * gamma(1 - 2/g) + (s/m)^3 * gamma(1 + 3/g) * gamma(1 - 3/g))) }) stopifnot(exprs = { All.eq(mpareto2(1, min = m, shape = a, scale = s), m * (Ga + (s/m) * gamma(1 + 1) * gamma(a - 1))/Ga) All.eq(mpareto2(2, min = m, shape = a, scale = s), m^2 * (Ga + 2 * (s/m) * gamma(1 + 1) * gamma(a - 1) + (s/m)^2 * gamma(1 + 2) * gamma(a - 2))/Ga) All.eq(mpareto2(3, min = m, shape = a, scale = s), m^3 * (Ga + 3 * (s/m) * gamma(1 + 1) * gamma(a - 1) + 3 * (s/m)^2 * gamma(1 + 2) * gamma(a - 2) + (s/m)^3 * gamma(1 + 3) * gamma(a - 3))/Ga) }) } } ## Tests for first three limited moments ## ## Limits are taken from quantiles of each distribution. q <- c(0.25, 0.50, 0.75, 0.9, 0.95) for (i in seq_along(min)) { m <- min[i] a <- shpar[[c(i, 1)]]; g <- shpar[[c(i, 2)]]; t <- shpar[[c(i, 3)]] Ga <- gamma(a) Gt <- gamma(t) for (s in scpar) { limit <- qfpareto(q, min = m, shape1 = a, shape2 = g, shape3 = t, scale = s) y <- (limit - m)/s u <- 1/(1 + y^(-g)) stopifnot(exprs = { All.eq(levfpareto(limit, order = 1, min = m, shape1 = a, shape2 = g, shape3 = t, scale = s), m * (betaint(u, t, a) + (s/m) * betaint(u, t + 1/g, a - 1/g))/(Ga * Gt) + limit * pbeta(u, t, a, lower = FALSE)) All.eq(levfpareto(limit, order = 2, min = m, shape1 = a, shape2 = g, shape3 = t, scale = s), m^2 * (betaint(u, t, a) + 2 * (s/m) * betaint(u, t + 1/g, a - 1/g) + (s/m)^2 * betaint(u, t + 2/g, a - 2/g))/(Ga * Gt) + limit^2 * pbeta(u, t, a, lower = FALSE)) All.eq(levfpareto(limit, order = 3, min = m, shape1 = a, shape2 = g, shape3 = t, scale = s), m^3 * (betaint(u, t, a) + 3 * (s/m) * betaint(u, t + 1/g, a - 1/g) + 3 * (s/m)^2 * betaint(u, t + 2/g, a - 2/g) + (s/m)^3 * betaint(u, t + 3/g, a - 3/g))/(Ga * Gt) + limit^3 * pbeta(u, t, a, lower = FALSE)) }) limit <- qpareto4(q, min = m, shape1 = a, shape2 = g, scale = s) y <- (limit - m)/s u <- 1/(1 + y^g) u1m <- 1/(1 + y^(-g)) stopifnot(exprs = { All.eq(levpareto4(limit, order = 1, min = m, shape1 = a, shape2 = g, scale = s), m * (betaint(u1m, 1, a) + (s/m) * betaint(u1m, 1 + 1/g, a - 1/g))/Ga + limit * u^a) All.eq(levpareto4(limit, order = 2, min = m, shape1 = a, shape2 = g, scale = s), m^2 * (betaint(u1m, 1, a) + 2 * (s/m) * betaint(u1m, 1 + 1/g, a - 1/g) + (s/m)^2 * betaint(u1m, 1 + 2/g, a - 2/g))/Ga + limit^2 * u^a) All.eq(levpareto4(limit, order = 3, min = m, shape1 = a, shape2 = g, scale = s), m^3 * (betaint(u1m, 1, a) + 3 * (s/m) * betaint(u1m, 1 + 1/g, a - 1/g) + 3 * (s/m)^2 * betaint(u1m, 1 + 2/g, a - 2/g) + (s/m)^3 * betaint(u1m, 1 + 3/g, a - 3/g))/Ga + limit^3 * u^a) }) limit <- qpareto3(q, min = m, shape = g, scale = s) y <- (limit - m)/s u <- 1/(1 + y^(-g)) u1m <- 1/(1 + y^g) stopifnot(exprs = { All.eq(levpareto3(limit, order = 1, min = m, shape = g, scale = s), m * (u + (s/m) * betaint(u, 1 + 1/g, 1 - 1/g)) + limit * u1m) All.eq(levpareto3(limit, order = 2, min = m, shape = g, scale = s), m^2 * (u + 2 * (s/m) * betaint(u, 1 + 1/g, 1 - 1/g) + (s/m)^2 * betaint(u, 1 + 2/g, 1 - 2/g)) + limit^2 * u1m) All.eq(levpareto3(limit, order = 3, min = m, shape = g, scale = s), m^3 * (u + 3 * (s/m) * betaint(u, 1 + 1/g, 1 - 1/g) + 3 * (s/m)^2 * betaint(u, 1 + 2/g, 1 - 2/g) + (s/m)^3 * betaint(u, 1 + 3/g, 1 - 3/g)) + limit^3 * u1m) }) limit <- qpareto2(q, min = m, shape = a, scale = s) y <- (limit - m)/s u <- 1/(1 + y) u1m <- 1/(1 + y^(-1)) stopifnot(exprs = { All.eq(levpareto2(limit, order = 1, min = m, shape = a, scale = s), m * (betaint(u1m, 1, a) + (s/m) * betaint(u1m, 1 + 1, a - 1))/Ga + limit * u^a) All.eq(levpareto2(limit, order = 2, min = m, shape = a, scale = s), m^2 * (betaint(u1m, 1, a) + 2 * (s/m) * betaint(u1m, 1 + 1, a - 1) + (s/m)^2 * betaint(u1m, 1 + 2, a - 2))/Ga + limit^2 * u^a) All.eq(levpareto2(limit, order = 3, min = m, shape = a, scale = s), m^3 * (betaint(u1m, 1, a) + 3 * (s/m) * betaint(u1m, 1 + 1, a - 1) + 3 * (s/m)^2 * betaint(u1m, 1 + 2, a - 2) + (s/m)^3 * betaint(u1m, 1 + 3, a - 3))/Ga + limit^3 * u^a) }) } } ## ## TRANSFORMED BETA FAMILY ## ## Density: first check that functions return 0 when scale = Inf, and ## when x = scale = Inf. stopifnot(exprs = { dtrbeta (c(42, Inf), shape1 = 2, shape2 = 3, shape3 = 4, scale = Inf) == c(0, 0) dburr (c(42, Inf), shape1 = 2, shape2 = 3, scale = Inf) == c(0, 0) dllogis (c(42, Inf), shape = 3, scale = Inf) == c(0, 0) dparalogis (c(42, Inf), shape = 2, scale = Inf) == c(0, 0) dgenpareto (c(42, Inf), shape1 = 2, shape2 = 4, scale = Inf) == c(0, 0) dpareto (c(42, Inf), shape = 2, scale = Inf) == c(0, 0) dinvburr (c(42, Inf), shape1 = 4, shape2 = 3, scale = Inf) == c(0, 0) dinvpareto (c(42, Inf), shape = 4, scale = Inf) == c(0, 0) dinvparalogis(c(42, Inf), shape = 4, scale = Inf) == c(0, 0) }) ## Next test density functions for an array of standard values. set.seed(123) # reset the seed nshpar <- 3 # (maximum) number of shape parameters shpar <- replicate(30, rlnorm(nshpar, 2), simplify = FALSE) scpar <- rlnorm(30, 2) # scale parameters for (i in seq_along(shpar)) { a <- shpar[[c(i, 1)]]; g <- shpar[[c(i, 2)]]; t <- shpar[[c(i, 3)]] Be <- beta(a, t) for (s in scpar) { x <- rtrbeta(100, shape1 = a, shape2 = g, shape3 = t, scale = s) y <- x/s u <- 1/(1 + y^(-g)) stopifnot(exprs = { all.equal(d1 <- dtrbeta(x, shape1 = a, shape2 = g, shape3 = t, scale = s), d2 <- dtrbeta(y, shape1 = a, shape2 = g, shape3 = t, scale = 1)/s, tolerance = 1e-10) all.equal(d1, g * y^(g*t - 1)/(s * Be * (1 + y^g)^(a + t)), tolerance = 1e-10) all.equal(d1, g * u^t * (1 - u)^a/(x * Be), tolerance = 1e-10) }) x <- rburr(100, shape1 = a, shape2 = g, scale = s) y <- x/s u <- 1/(1 + y^g) stopifnot(exprs = { all.equal(d1 <- dburr(x, shape1 = a, shape2 = g, scale = s), d2 <- dburr(y, shape1 = a, shape2 = g, scale = 1)/s, tolerance = 1e-10) all.equal(d1, a * g * y^(g - 1)/(s * (1 + y^g)^(a + 1)), tolerance = 1e-10) all.equal(d1, a * g * u^a * (1 - u)/x, tolerance = 1e-10) }) x <- rllogis(100, shape = g, scale = s) y <- x/s u <- 1/(1 + y^(-g)) stopifnot(exprs = { all.equal(d1 <- dllogis(x, shape = g, scale = s), d2 <- dllogis(y, shape = g, scale = 1)/s, tolerance = 1e-10) all.equal(d1, g * y^(g - 1)/(s * (1 + y^g)^2), tolerance = 1e-10) all.equal(d1, g * u * (1 - u)/x, tolerance = 1e-10) }) x <- rparalogis(100, shape = a, scale = s) y <- x/s u <- 1/(1 + y^a) stopifnot(exprs = { all.equal(d1 <- dparalogis(x, shape = a, scale = s), d2 <- dparalogis(y, shape = a, scale = 1)/s, tolerance = 1e-10) all.equal(d1, a^2 * y^(a - 1)/(s * (1 + y^a)^(a + 1)), tolerance = 1e-10) all.equal(d1, a^2 * u^a * (1 - u)/x, tolerance = 1e-10) }) x <- rgenpareto(100, shape1 = a, shape2 = t, scale = s) y <- x/s u <- 1/(1 + y^(-1)) stopifnot(exprs = { all.equal(d1 <- dgenpareto(x, shape1 = a, shape2 = t, scale = s), d2 <- dgenpareto(y, shape1 = a, shape2 = t, scale = 1)/s, tolerance = 1e-10) all.equal(d1, y^(t - 1)/(s * Be * (1 + y)^(a + t)), tolerance = 1e-10) all.equal(d1, u^t * (1 - u)^a/(x * Be), tolerance = 1e-10) }) x <- rpareto(100, shape = a, scale = s) y <- x/s u <- 1/(1 + y) stopifnot(exprs = { all.equal(d1 <- dpareto(x, shape = a, scale = s), d2 <- dpareto(y, shape = a, scale = 1)/s, tolerance = 1e-10) all.equal(d1, a/(s * (1 + y)^(a + 1)), tolerance = 1e-10) all.equal(d1, a * u^a * (1 - u)/x, tolerance = 1e-10) }) x <- rpareto1(100, min = s, shape = a) stopifnot(exprs = { all.equal(d1 <- dpareto1(x, min = s, shape = a), a * s^a/(x^(a + 1)), tolerance = 1e-10) }) x <- rinvburr(100, shape1 = t, shape2 = g, scale = s) y <- x/s u <- 1/(1 + y^(-g)) stopifnot(exprs = { all.equal(d1 <- dinvburr(x, shape1 = t, shape2 = g, scale = s), d2 <- dinvburr(y, shape1 = t, shape2 = g, scale = 1)/s, tolerance = 1e-10) all.equal(d1, t * g * y^(g*t - 1)/(s * (1 + y^g)^(t + 1)), tolerance = 1e-10) all.equal(d1, t * g * u^t * (1 - u)/x, tolerance = 1e-10) }) x <- rinvpareto(100, shape = t, scale = s) y <- x/s u <- 1/(1 + y^(-1)) stopifnot(exprs = { all.equal(d1 <- dinvpareto(x, shape = t, scale = s), d2 <- dinvpareto(y, shape = t, scale = 1)/s, tolerance = 1e-10) all.equal(d1, t * y^(t - 1)/(s * (1 + y)^(t + 1)), tolerance = 1e-10) all.equal(d1, t * u^t * (1 - u)/x, tolerance = 1e-10) }) x <- rinvparalogis(100, shape = t, scale = s) y <- x/s u <- 1/(1 + y^(-t)) stopifnot(exprs = { all.equal(d1 <- dinvparalogis(x, shape = t, scale = s), d2 <- dinvparalogis(y, shape = t, scale = 1)/s, tolerance = 1e-10) all.equal(d1, t^2 * y^(t^2 - 1)/(s * (1 + y^t)^(t + 1)), tolerance = 1e-10) all.equal(d1, t^2 * u^t * (1 - u)/x, tolerance = 1e-10) }) } } ## Tests on the cumulative distribution function. ## ## Note: when shape1 = shape3 = 1, the underlying beta distribution is ## a uniform. Therefore, ptrbeta(x, 1, shape2, 1, scale) should return ## the value of u = v/(1 + v), v = (x/scale)^shape2. ## ## x = 2/Meps = 2^53 (with, shape2 = scale = 1) is the value where the ## cdf would jump to 1 if we weren't using the trick to compute the ## cdf with pbeta(1 - u, ..., lower = FALSE). scLrg <- 1e300 * c(0.5, 1, 2) stopifnot(exprs = { ptrbeta(Inf, 1, 2, 3, scale = xMax) == 1 ptrbeta(2^53, 1, 1, 1, scale = 1) != 1 all.equal(ptrbeta(xMin, 1, 1, 1, scale = 1), xMin) all.equal(ptrbeta(1e300, shape1 = 3, shape2 = rep(c(1, 2), each = length(scLrg)), shape3 = 1, scale = scLrg, log = TRUE), c(pbeta(c(2/3, 1/2), 1, 3, lower.tail = TRUE, log = TRUE), pbeta(2/3, 3, 1, lower.tail = FALSE, log = TRUE), pbeta(c(4/5, 1/2), 1, 3, lower.tail = TRUE, log = TRUE), pbeta(4/5, 3, 1, lower.tail = FALSE, log = TRUE))) }) stopifnot(exprs = { pburr(Inf, 1, 3, scale = xMax) == 1 pburr(2^53, 1, 1, scale = 1) != 1 all.equal(pburr(xMin, 1, 1, scale = 1), xMin) all.equal(pburr(1e300, shape1 = 3, shape2 = rep(c(1, 2), each = length(scLrg)), scale = scLrg, log = TRUE), c(log(1 - c(1/3, 1/2, 2/3)^3), log(1 - c(1/5, 1/2, 4/5)^3))) }) stopifnot(exprs = { pllogis(Inf, 3, scale = xMax) == 1 pllogis(2^53, 1, scale = 1) != 1 all.equal(pllogis(xMin, 1, scale = 1), xMin) all.equal(pllogis(1e300, shape = rep(c(1, 2), each = length(scLrg)), scale = scLrg, log = TRUE), c(log(c(2/3, 1/2, 1/3)), log(c(4/5, 1/2, 1/5)))) }) stopifnot(exprs = { pparalogis(Inf, 3, scale = xMax) == 1 pparalogis(2^53, 1, scale = 1) != 1 all.equal(pparalogis(xMin, 1, scale = 1), xMin) all.equal(pparalogis(1e300, shape = rep(c(2, 3), each = length(scLrg)), scale = scLrg, log = TRUE), c(log(1 - c(1/5, 1/2, 4/5)^2), log(1 - c(1/9, 1/2, 8/9)^3))) }) stopifnot(exprs = { pgenpareto(Inf, 1, 3, scale = xMax) == 1 pgenpareto(2^53, 1, 1, scale = 1) != 1 all.equal(pgenpareto(xMin, 1, 1, scale = 1), xMin) all.equal(pgenpareto(1e300, shape1 = 3, shape2 = 1, scale = scLrg, log = TRUE), c(pbeta(c(2/3, 1/2), 1, 3, lower.tail = TRUE, log = TRUE), pbeta(2/3, 3, 1, lower.tail = FALSE, log = TRUE))) }) stopifnot(exprs = { ppareto(Inf, 3, scale = xMax) == 1 ppareto(2^53, 1, scale = 1) != 1 all.equal(ppareto(xMin, 1, scale = 1), xMin) all.equal(ppareto(1e300, shape = 3, scale = scLrg, log = TRUE), c(log(1 - c(1/3, 1/2, 2/3)^3))) }) stopifnot(exprs = { ppareto1(Inf, 3, min = xMax) == 1 ppareto1(2^53, 1, min = 1) != 1 all.equal(ppareto1(xMin, 1, min = 1), xMin) all.equal(ppareto1(1e300, shape = 3, min = 1e300 * c(0.001, 0.1, 0.5), log = TRUE), c(log(1 - c(0.001, 0.1, 0.5)^3))) }) stopifnot(exprs = { pinvburr(Inf, 1, 3, scale = xMax) == 1 pinvburr(2^53, 1, 1, scale = 1) != 1 all.equal(pinvburr(xMin, 1, 1, scale = 1), xMin) all.equal(pinvburr(1e300, shape1 = 3, shape2 = rep(c(1, 2), each = length(scLrg)), scale = scLrg, log = TRUE), c(log(c(2/3, 1/2, 1/3)^3), log(c(4/5, 1/2, 1/5)^3))) }) stopifnot(exprs = { pinvpareto(Inf, 3, scale = xMax) == 1 pinvpareto(2^53, 1, scale = 1) != 1 all.equal(pinvpareto(xMin, 1, scale = 1), xMin) all.equal(pinvpareto(1e300, shape = 3, scale = scLrg, log = TRUE), c(log(c(2/3, 1/2, 1/3)^3))) }) stopifnot(exprs = { pinvparalogis(Inf, 3, scale = xMax) == 1 pinvparalogis(2^53, 1, scale = 1) != 1 all.equal(pinvparalogis(xMin, 1, scale = 1), xMin) all.equal(pinvparalogis(1e300, shape = rep(c(2, 3), each = length(scLrg)), scale = scLrg, log = TRUE), c(log(c(4/5, 1/2, 1/5)^2), log(c(8/9, 1/2, 1/9)^3))) }) ## Also check that distribution functions return 0 when scale = Inf. stopifnot(exprs = { ptrbeta (x, shape1 = a, shape2 = g, shape3 = t, scale = Inf) == 0 pburr (x, shape1 = a, shape2 = g, scale = Inf) == 0 pllogis (x, shape = g, scale = Inf) == 0 pparalogis (x, shape = a, scale = Inf) == 0 pgenpareto (x, shape1 = a, shape2 = t, scale = Inf) == 0 ppareto (x, shape = a, scale = Inf) == 0 pinvburr (x, shape1 = t, shape2 = g, scale = Inf) == 0 pinvpareto (x, shape = t, scale = Inf) == 0 pinvparalogis(x, shape = t, scale = Inf) == 0 }) ## Tests for first three positive moments and first two negative ## moments. ## ## Simulation of new parameters ensuring that said moments exist. set.seed(123) # reset the seed nshpar <- 3 # (maximum) number of shape parameters shpar <- replicate(30, c(3, 3, 3) + rlnorm(nshpar, 2), simplify = FALSE) scpar <- rlnorm(30, 2) # scale parameters k <- c(-2, -1, 1, 2, 3) # orders for (i in seq_along(shpar)) { a <- shpar[[c(i, 1)]]; g <- shpar[[c(i, 2)]]; t <- shpar[[c(i, 3)]] Be <- beta(a, t) Ga <- gamma(a) for (s in scpar) { stopifnot(exprs = { All.eq(mtrbeta(k, shape1 = a, shape2 = g, shape3 = t, scale = s), s^k * beta(t + k/g, a - k/g)/Be) All.eq(mburr(k, shape1 = a, shape2 = g, scale = s), s^k * gamma(1 + k/g) * gamma(a - k/g)/Ga) All.eq(mllogis(k, shape = g, scale = s), s^k * gamma(1 + k/g) * gamma(1 - k/g)) All.eq(mparalogis(k, shape = a, scale = s), s^k * gamma(1 + k/a) * gamma(a - k/a)/Ga) All.eq(mgenpareto(k, shape1 = a, shape2 = t, scale = s), s^k * beta(t + k, a - k)/Be) All.eq(mpareto(k[k > -1], shape = a, scale = s), s^k[k > -1] * gamma(1 + k[k > -1]) * gamma(a - k[k > -1])/Ga) All.eq(mpareto1(k, shape = a, min = s), s^k * a/(a - k)) All.eq(minvburr(k, shape1 = a, shape2 = g, scale = s), s^k * gamma(a + k/g) * gamma(1 - k/g)/Ga) All.eq(minvpareto(k[k < 1], shape = a, scale = s), s^k[k < 1] * gamma(a + k[k < 1]) * gamma(1 - k[k < 1])/Ga) All.eq(minvparalogis(k, shape = a, scale = s), s^k * gamma(a + k/a) * gamma(1 - k/a)/Ga) }) } } ## Tests for first three positive limited moments and first two ## negative limited moments. ## ## Limits are taken from quantiles of each distribution. order <- c(-2, -1, 1, 2, 3) # orders q <- c(0.25, 0.50, 0.75, 0.9, 0.95) # quantiles for (i in seq_along(shpar)) { a <- shpar[[c(i, 1)]]; g <- shpar[[c(i, 2)]]; t <- shpar[[c(i, 3)]] Ga <- gamma(a) Gt <- gamma(t) for (s in scpar) { limit <- qtrbeta(q, shape1 = a, shape2 = g, shape3 = t, scale = s) y <- limit/s u <- 1/(1 + y^(-g)) for (k in order) stopifnot(exprs = { All.eq(levtrbeta(limit, order = k, shape1 = a, shape2 = g, shape3 = t, scale = s), s^k * betaint(u, t + k/g, a - k/g)/(Ga * Gt) + limit^k * pbeta(u, t, a, lower = FALSE)) }) limit <- qburr(q, shape1 = a, shape2 = g, scale = s) y <- limit/s u <- 1/(1 + y^g) for (k in order) stopifnot(exprs = { All.eq(levburr(limit, order = k, shape1 = a, shape2 = g, scale = s), s^k * betaint(1 - u, 1 + k/g, a - k/g)/Ga + limit^k * u^a) }) limit <- qllogis(q, shape = g, scale = s) y <- limit/s u <- 1/(1 + y^(-g)) for (k in order) stopifnot(exprs = { All.eq(levllogis(limit, order = k, shape = g, scale = s), s^k * betaint(u, 1 + k/g, 1 - k/g) + limit^k * (1 - u)) }) limit <- qparalogis(q, shape = a, scale = s) y <- limit/s u <- 1/(1 + y^a) for (k in order) stopifnot(exprs = { All.eq(levparalogis(limit, order = k, shape = a, scale = s), s^k * betaint(1 - u, 1 + k/a, a - k/a)/Ga + limit^k * u^a) }) limit <- qgenpareto(q, shape1 = a, shape2 = t, scale = s) y <- limit/s u <- 1/(1 + y^(-1)) for (k in order) stopifnot(exprs = { All.eq(levgenpareto(limit, order = k, shape1 = a, shape2 = t, scale = s), s^k * betaint(u, t + k, a - k)/(Ga * Gt) + limit^k * pbeta(u, t, a, lower = FALSE)) }) limit <- qpareto(q, shape = a, scale = s) y <- limit/s u <- 1/(1 + y) for (k in order[order > -1]) stopifnot(exprs = { All.eq(levpareto(limit, order = k, shape = a, scale = s), s^k * betaint(1 - u, 1 + k, a - k)/Ga + limit^k * u^a) }) limit <- qpareto1(q, shape = a, min = s) for (k in order) stopifnot(exprs = { All.eq(levpareto1(limit, order = k, shape = a, min = s), s^k * a/(a - k) - k * s^a/((a - k) * limit^(a - k))) }) limit <- qinvburr(q, shape1 = a, shape2 = g, scale = s) y <- limit/s u <- 1/(1 + y^(-g)) for (k in order) stopifnot(exprs = { All.eq(levinvburr(limit, order = k, shape1 = a, shape2 = g, scale = s), s^k * betaint(u, a + k/g, 1 - k/g)/Ga + limit^k * (1 - u^a)) }) limit <- qinvpareto(q, shape = a, scale = s) y <- limit/s u <- 1/(1 + y^(-1)) for (k in order[order < 1]) stopifnot(exprs = { All.eq(levinvpareto(limit, order = k, shape = a, scale = s), s^k * a * sapply(u, function(upper) integrate(function(x) x^(a+k-1) * (1-x)^(-k), lower = 0, upper = upper)$value) + limit^k * (1 - u^a)) }) limit <- qinvparalogis(q, shape = a, scale = s) y <- limit/s u <- 1/(1 + y^(-a)) for (k in order) stopifnot(exprs = { All.eq(levinvparalogis(limit, order = k, shape = a, scale = s), s^k * betaint(u, a + k/a, 1 - k/a)/Ga + limit^k * (1 - u^a)) }) } } ## ## TRANSFORMED GAMMA AND INVERSE TRANSFORMED GAMMA FAMILIES ## ## Density: first check that functions return 0 when scale = Inf, and ## when x = scale = Inf (transformed gamma), or when scale = 0 and ## when x = scale = 0 (inverse distributions). stopifnot(exprs = { dtrgamma (c(42, Inf), shape1 = 2, shape2 = 3, scale = Inf) == c(0, 0) dinvtrgamma(c(42, 0), shape1 = 2, shape2 = 3, scale = 0) == c(0, 0) dinvgamma (c(42, 0), shape = 2, scale = 0) == c(0, 0) dinvweibull(c(42, 0), shape = 3, scale = 0) == c(0, 0) dinvexp (c(42, 0), scale = 0) == c(0, 0) }) ## Tests on the density set.seed(123) # reset the seed nshpar <- 2 # (maximum) number of shape parameters shpar <- replicate(30, rgamma(nshpar, 5), simplify = FALSE) scpar <- rlnorm(30, 2) # scale parameters for (i in seq_along(shpar)) { a <- shpar[[c(i, 1)]]; t <- shpar[[c(i, 2)]] Ga <- gamma(a) for (s in scpar) { x <- rtrgamma(100, shape1 = a, shape2 = t, scale = s) y <- x/s u <- y^t stopifnot(exprs = { all.equal(d1 <- dtrgamma(x, shape1 = a, shape2 = t, scale = s), d2 <- dtrgamma(y, shape1 = a, shape2 = t, scale = 1)/s, tolerance = 1e-10) all.equal(d2, t/(Ga * s^(a * t)) * x^(a * t - 1) * exp(-u), tolerance = 1e-10) all.equal(d1, t/(Ga * x) * u^a * exp(-u), tolerance = 1e-10) }) x <- rinvtrgamma(100, shape1 = a, shape2 = t, scale = s) y <- x/s u <- y^(-t) stopifnot(exprs = { all.equal(d1 <- dinvtrgamma(x, shape1 = a, shape2 = t, scale = s), d2 <- dinvtrgamma(y, shape1 = a, shape2 = t, scale = 1)/s, tolerance = 1e-10) all.equal(d2, t * s^(a * t)/(Ga * x^(a * t + 1)) * exp(-u), tolerance = 1e-10) all.equal(d1, t/(Ga * x) * u^a * exp(-u), tolerance = 1e-10) }) x <- rinvgamma(100, shape = a, scale = s) y <- x/s u <- y^(-1) stopifnot(exprs = { all.equal(d1 <- dinvgamma(x, shape = a, scale = s), d2 <- dinvgamma(y, shape = a, scale = 1)/s, tolerance = 1e-10) all.equal(d2, s^a/(Ga * x^(a + 1)) * exp(-u), tolerance = 1e-10) all.equal(d1, 1/(Ga * x) * u^a * exp(-u), tolerance = 1e-10) }) x <- rinvweibull(100, shape = t, scale = s) y <- x/s u <- y^(-t) stopifnot(exprs = { all.equal(d1 <- dinvweibull(x, shape = t, scale = s), d2 <- dinvweibull(y, shape = t, scale = 1)/s, tolerance = 1e-10) all.equal(d2, t * s^t/x^(t + 1) * exp(-u), tolerance = 1e-10) all.equal(d1, t/x * u * exp(-u), tolerance = 1e-10) }) x <- rinvexp(100, scale = s) y <- x/s u <- y^(-1) stopifnot(exprs = { all.equal(d1 <- dinvexp(x, scale = s), d2 <- dinvexp(y, scale = 1)/s, tolerance = 1e-10) all.equal(d2, s/x^2 * exp(-u), tolerance = 1e-10) all.equal(d1, 1/x * u * exp(-u), tolerance = 1e-10) }) } } ## Tests on the cumulative distribution function. scLrg <- c(2, 100, 1e300 * c(0.1, 1, 10, 100), 1e307, xMax, Inf) stopifnot(exprs = { ptrgamma(Inf, 2, 3, scale = xMax) == 1 ptrgamma(xMax, 2, 3, scale = xMax) == pgamma(1, 2, 1) ptrgamma(xMin, 2, 1, scale = 1) == pgamma(xMin, 2, 1) all.equal(ptrgamma(1e300, shape1 = 2, shape2 = 1, scale = scLrg, log = TRUE), pgamma(c(5e299, 1e+298, 10, 1, 0.1, 0.01, 1e-7, 1e+300/xMax, 0), 2, 1, log = TRUE)) }) scLrg <- c(2, 100, 1e300 * c(0.1, 1, 10, 100), 1e307, xMax, 0) stopifnot(exprs = { pinvtrgamma(Inf, 2, 3, scale = xMax) == 1 pinvtrgamma(xMax, 2, 3, scale = xMax) == pgamma(1, 2, 1, lower = FALSE) pinvtrgamma(xMin, 2, 1, scale = 1) == pgamma(1/xMin, 2, 1, lower = FALSE) all.equal(pinvtrgamma(1e300, shape1 = 2, shape2 = 1, scale = scLrg, log = TRUE), pgamma(c(2e-300, 1e-298, 0.1, 1, 10, 100, 1e+7, xMax/1e+300, 0), 2, 1, lower = FALSE, log = TRUE)) }) stopifnot(exprs = { pinvgamma(Inf, 2, scale = xMax) == 1 pinvgamma(xMax, 2, scale = xMax) == pgamma(1, 2, 1, lower = FALSE) pinvgamma(xMin, 2, scale = 1) == pgamma(1/xMin, 2, 1, lower = FALSE) all.equal(pinvgamma(1e300, shape = 2, scale = scLrg, log = TRUE), pgamma(c(2e-300, 1e-298, 0.1, 1, 10, 100, 1e+7, xMax/1e+300, 0), 2, 1, lower = FALSE, log = TRUE)) }) stopifnot(exprs = { pinvweibull(Inf, 3, scale = xMax) == 1 pinvweibull(xMax, 3, scale = xMax) == exp(-1) pinvweibull(xMin, 1, scale = 1) == exp(-1/xMin) all.equal(pinvweibull(1e300, shape = 1, scale = scLrg, log = TRUE), -c(2e-300, 1e-298, 0.1, 1, 10, 100, 1e+7, xMax/1e+300, 0)) }) stopifnot(exprs = { pinvexp(Inf, 3, scale = xMax) == 1 pinvexp(xMax, 3, scale = xMax) == exp(-1) pinvexp(xMin, 1, scale = 1) == exp(-1/xMin) all.equal(pinvexp(1e300, scale = scLrg, log = TRUE), -c(2e-300, 1e-298, 0.1, 1, 10, 100, 1e+7, xMax/1e+300, 0)) }) ## Tests for first three positive moments and first two negative ## moments. (Including for the Gamma, Weibull and Exponential ## distributions of base R.) ## ## Simulation of new parameters ensuring that said moments exist. set.seed(123) # reset the seed nshpar <- 2 # (maximum) number of shape parameters shpar <- replicate(30, c(3, 3) + rlnorm(nshpar, 2), simplify = FALSE) scpar <- rlnorm(30, 2) # scale parameters k <- c(-2, -1, 1, 2, 3) # orders for (i in seq_along(shpar)) { a <- shpar[[c(i, 1)]]; t <- shpar[[c(i, 2)]] Ga <- gamma(a) for (s in scpar) { stopifnot(exprs = { All.eq(mtrgamma(k, shape1 = a, shape2 = t, scale = s), s^k * gamma(a + k/t)/Ga) All.eq(mgamma(k, shape = a, scale = s), s^k * gamma(a + k)/Ga) All.eq(mweibull(k, shape = t, scale = s), s^k * gamma(1 + k/t)) All.eq(mexp(k[k > -1], rate = 1/s), s^k[k > -1] * gamma(1 + k[k > -1])) All.eq(minvtrgamma(k, shape1 = a, shape2 = t, scale = s), s^k * gamma(a - k/t)/Ga) All.eq(minvgamma(k, shape = a, scale = s), s^k * gamma(a - k)/Ga) All.eq(minvweibull(k, shape = t, scale = s), s^k * gamma(1 - k/t)) All.eq(minvexp(k[k < 1], scale = s), s^k[k < 1] * gamma(1 - k[k < 1])) }) } } ## Tests for first three positive limited moments and first two ## negative limited moments. (Including for the Gamma, Weibull and ## Exponential distributions of base R.) ## ## Limits are taken from quantiles of each distribution. order <- c(-2, -1, 1, 2, 3) # orders q <- c(0.25, 0.50, 0.75, 0.9, 0.95) # quantiles for (i in seq_along(shpar)) { a <- shpar[[c(i, 1)]]; t <- shpar[[c(i, 2)]] Ga <- gamma(a) for (s in scpar) { limit <- qtrgamma(q, shape1 = a, shape2 = t, scale = s) y <- limit/s u <- y^t for (k in order) stopifnot(exprs = { All.eq(levtrgamma(limit, order = k, shape1 = a, shape2 = t, scale = s), s^k * gamma(a + k/t)/Ga * pgamma(u, a + k/t, scale = 1) + limit^k * pgamma(u, a, scale = 1, lower = FALSE)) }) limit <- qgamma(q, shape = a, scale = s) y <- limit/s for (k in order) stopifnot(exprs = { All.eq(levgamma(limit, order = k, shape = a, scale = s), s^k * gamma(a + k)/Ga * pgamma(y, a + k, scale = 1) + limit^k * pgamma(y, a, scale = 1, lower = FALSE)) }) limit <- qweibull(q, shape = t, scale = s) y <- limit/s u <- y^t for (k in order) stopifnot(exprs = { All.eq(levweibull(limit, order = k, shape = t, scale = s), s^k * gamma(1 + k/t) * pgamma(u, 1 + k/t, scale = 1) + limit^k * pgamma(u, 1, scale = 1, lower = FALSE)) }) limit <- qexp(q, rate = 1/s) y <- limit/s for (k in order[order > -1]) stopifnot(exprs = { All.eq(levexp(limit, order = k, rate = 1/s), s^k * gamma(1 + k) * pgamma(y, 1 + k, scale = 1) + limit^k * pgamma(y, 1, scale = 1, lower = FALSE)) }) limit <- qinvtrgamma(q, shape1 = a, shape2 = t, scale = s) y <- limit/s u <- y^(-t) for (k in order) stopifnot(exprs = { All.eq(levinvtrgamma(limit, order = k, shape1 = a, shape2 = t, scale = s), s^k * (gammainc(a - k/t, u)/Ga) + limit^k * pgamma(u, a, scale = 1)) }) limit <- qinvgamma(q, shape = a, scale = s) y <- limit/s u <- y^(-1) for (k in order) stopifnot(exprs = { All.eq(levinvgamma(limit, order = k, shape = a, scale = s), s^k * (gammainc(a - k, u)/Ga) + limit^k * pgamma(u, a, scale = 1)) }) limit <- qinvweibull(q, shape = t, scale = s) y <- limit/s u <- y^(-t) for (k in order) stopifnot(exprs = { All.eq(levinvweibull(limit, order = k, shape = t, scale = s), s^k * gammainc(1 - k/t, u) + limit^k * (-expm1(-u))) }) limit <- qinvexp(q, scale = s) y <- limit/s u <- y^(-1) for (k in order) stopifnot(exprs = { All.eq(levinvexp(limit, order = k, scale = s), s^k * gammainc(1 - k, u) + limit^k * (-expm1(-u))) }) } } ## ## OTHER DISTRIBUTIONS ## ## Distributions in this category are quite different, so let's treat ## them separately. ## LOGGAMMA ## Tests on the density. stopifnot(exprs = { dlgamma(c(42, Inf), shapelog = 2, ratelog = 0) == c(0, 0) }) assertWarning(stopifnot(exprs = { is.nan(dlgamma(c(0, 42, Inf), shapelog = 2, ratelog = Inf)) })) x <- rlgamma(100, shapelog = 2, ratelog = 1) for(a in round(rlnorm(30), 2)) { Ga <- gamma(a) for(r in round(rlnorm(30), 2)) stopifnot(exprs = { All.eq(dlgamma(x, shapelog = a, ratelog = r), r^a * (log(x))^(a - 1)/(Ga * x^(r + 1))) }) } ## Tests on the cumulative distribution function. assertWarning(stopifnot(exprs = { is.nan(plgamma(Inf, 1, ratelog = Inf)) is.nan(plgamma(Inf, Inf, ratelog = Inf)) })) scLrg <- log(c(2, 100, 1e300 * c(0.1, 1, 10, 100), 1e307, xMax, Inf)) stopifnot(exprs = { plgamma(Inf, 2, ratelog = xMax) == 1 plgamma(xMax, 2, ratelog = 0) == 0 all.equal(plgamma(1e300, 2, ratelog = 1/scLrg, log = TRUE), pgamma(log(1e300), 2, scale = scLrg, log = TRUE)) }) ## Tests for first three positive moments and first two negative ## moments. k <- c(-2, -1, 1, 2, 3) # orders for(a in round(rlnorm(30), 2)) { Ga <- gamma(a) for(r in 3 + round(rlnorm(30), 2)) stopifnot(exprs = { All.eq(mlgamma(k, shapelog = a, ratelog = r), (1 - k/r)^(-a)) }) } ## Tests for first three positive limited moments and first two ## negative limited moments. order <- c(-2, -1, 1, 2, 3) # orders q <- c(0.25, 0.50, 0.75, 0.9, 0.95) # quantiles for(a in round(rlnorm(30), 2)) { Ga <- gamma(a) for(r in 3 + round(rlnorm(30), 2)) { limit <- qlgamma(q, shapelog = a, ratelog = r) for (k in order) { u <- log(limit) stopifnot(exprs = { All.eq(levlgamma(limit, order = k, shapelog = a, ratelog = r), (1 - k/r)^(-a) * pgamma((r - k) * u, a, scale = 1) + limit^k * pgamma(r * u, a, scale = 1,lower = FALSE)) }) } } } ## GUMBEL ## Tests on the density. stopifnot(exprs = { dgumbel(c(1, 3, Inf), alpha = 2, scale = Inf) == c(0, 0, 0) dgumbel(c(1, 2, 3), alpha = 2, scale = 0) == c(0, Inf, 0) dgumbel(c(-Inf, Inf), alpha = 1, scale = 1) == c(0, 0) dgumbel(1, alpha = Inf, scale = 1) == 0 }) assertWarning(stopifnot(exprs = { is.nan(dgumbel(Inf, alpha = Inf, scale = 1)) is.nan(dgumbel(-Inf, alpha = -Inf, scale = 1)) is.nan(dgumbel(Inf, alpha = 1, scale = -1)) is.nan(dgumbel(1, alpha = 1, scale = -1)) is.nan(dgumbel(1, alpha = Inf, scale = -1)) })) x <- rgumbel(100, alpha = 2, scale = 5) for(a in round(rlnorm(30), 2)) { Ga <- gamma(a) for(s in round(rlnorm(30), 2)) { u <- (x - a)/s stopifnot(exprs = { All.eq(dgumbel(x, alpha = a, scale = s), exp(-(u + exp(-u)))/s) }) } } ## Tests on the cumulative distribution function. assertWarning(stopifnot(exprs = { is.nan(pgumbel(Inf, alpha = Inf, scale = 1)) is.nan(pgumbel(-Inf, alpha = -Inf, scale = 1)) is.nan(pgumbel(Inf, alpha = 1, scale = -1)) is.nan(pgumbel(1, alpha = 1, scale = -1)) is.nan(pgumbel(1, alpha = Inf, scale = -1)) })) scLrg <- c(2, 100, 1e300 * c(0.1, 1, 10, 100), 1e307, xMax, Inf) stopifnot(exprs = { pgumbel(c(-Inf, Inf), 2, scale = xMax) == c(0, 1) pgumbel(c(xMin, xMax), 2, scale = 0) == c(0, 1) all.equal(pgumbel(1e300, 0, scale = scLrg, log = TRUE), -exp(-c(5e299, 1e+298, 10, 1, 0.1, 0.01, 1e-7, 1e+300/xMax, 0))) }) ## Test the first two moments, the only ones implemented. assertWarning(stopifnot(exprs = { is.nan(mgumbel(c(-2, -1, 3, 4), alpha = 2, scale = 5)) })) stopifnot(exprs = { All.eq(mgumbel(1, alpha = 2, scale = 5), 2 + 5 * 0.577215664901532860606512090082) All.eq(mgumbel(2, alpha = 2, scale = 5), pi^2 * 25/6 + (2 + 5 * 0.577215664901532860606512090082)^2) }) ## INVERSE GAUSSIAN ## Tests on the density. stopifnot(exprs = { dinvgauss(c(1, 3, Inf), mean = 2, dispersion = Inf) == c(0, 0, 0) dinvgauss(c(0, 42, Inf), mean = 2, dispersion = 0) == c(Inf, 0, 0) dinvgauss(c(0, Inf), mean = 1, dispersion = 1) == c(0, 0) dinvgauss(1, mean = Inf, dispersion = 2) == dinvgamma(1, 0.5, scale = 0.25) }) assertWarning(stopifnot(exprs = { is.nan(dinvgauss(-Inf, mean = -1, dispersion = 1)) is.nan(dinvgauss(Inf, mean = 1, dispersion = -1)) is.nan(dinvgauss(1, mean = 1, dispersion = -1)) is.nan(dinvgauss(1, mean = Inf, dispersion = -1)) })) x <- rinvgauss(100, mean = 2, dispersion = 5) for(mu in round(rlnorm(30), 2)) { for(phi in round(rlnorm(30), 2)) stopifnot(exprs = { All.eq(dinvgauss(x, mean = mu, dispersion = phi), 1/sqrt(2*pi*phi*x^3) * exp(-((x/mu - 1)^2)/(2*phi*x))) }) } ## Tests on the cumulative distribution function. assertWarning(stopifnot(exprs = { is.nan(pinvgauss(-Inf, mean = -Inf, dispersion = 1)) is.nan(pinvgauss(Inf, mean = 1, dispersion = -1)) is.nan(pinvgauss(1, mean = Inf, dispersion = -1)) })) x <- c(1:50, 10^c(3:10, 20, 50, 150, 250)) sqx <- sqrt(x) stopifnot(exprs = { pinvgauss(c(0, Inf), mean = 2, dispersion = xMax) == c(0, 1) pinvgauss(c(0, xMax), mean = xMax, dispersion = 0) == c(0, 1) all.equal(pinvgauss(x, 1, dispersion = 1, log = TRUE), log(pnorm(sqx - 1/sqx) + exp(2) * pnorm(-sqx - 1/sqx))) }) ## Tests for small value of 'shape'. Added for the patch in 4294e9c. q <- runif(100) stopifnot(exprs = { all.equal(q, pinvgauss(qinvgauss(q, 0.1, 1e-2), 0.1, 1e-2)) all.equal(q, pinvgauss(qinvgauss(q, 0.1, 1e-6), 0.1, 1e-6)) }) ## Tests for first three positive, integer moments. k <- 1:3 for(mu in round(rlnorm(30), 2)) { for(phi in round(rlnorm(30), 2)) stopifnot(exprs = { All.eq(minvgauss(k, mean = mu, dispersion = phi), c(mu, mu^2 * (1 + phi * mu), mu^3 * (1 + 3 * phi * mu + 3 * (phi * mu)^2))) }) } ## Tests for limited expected value. q <- c(0.25, 0.50, 0.75, 0.9, 0.95) # quantiles for(mu in round(rlnorm(30), 2)) { for(phi in round(rlnorm(30), 2)) { limit <- qinvgauss(q, mean = mu, dispersion = phi) stopifnot(exprs = { All.eq(levinvgauss(limit, mean = mu, dispersion = phi), mu * (pnorm((limit/mu - 1)/sqrt(phi * limit)) - exp(2/phi/mu) * pnorm(-(limit/mu + 1)/sqrt(phi * limit))) + limit * pinvgauss(limit, mean = mu, dispersion = phi, lower = FALSE)) }) } } ## GENERALIZED BETA stopifnot(exprs = { dgenbeta(c(0, 2.5, 5), shape1 = 0, shape2 = 0, shape3 = 3, scale = 5) == c(Inf, 0, Inf) dgenbeta(c(0, 2.5, 5), shape1 = 0, shape2 = 0, shape3 = 0, scale = 5) == c(Inf, 0, Inf) dgenbeta(c(0, 2.5, 5), shape1 = 0, shape2 = 2, shape3 = 0, scale = 5) == c(Inf, 0, 0) dgenbeta(c(0, 2.5, 5), shape1 = 0, shape2 = Inf, shape3 = 3, scale = 5) == c(Inf, 0, 0) dgenbeta(c(0, 2.5, 5), shape1 = 1, shape2 = Inf, shape3 = 3, scale = 5) == c(Inf, 0, 0) dgenbeta(c(0, 2.5, 5), shape1 = Inf, shape2 = Inf, shape3 = 3, scale = 5) == c(0, Inf, 0) dgenbeta(c(0, 2.5, 5), shape1 = Inf, shape2 = Inf, shape3 = Inf, scale = 5) == c(0, 0, Inf) }) nshpar <- 3 # number of shape parameters shpar <- replicate(30, rlnorm(nshpar, 2), simplify = FALSE) scpar <- rlnorm(30, 2) # scale parameters for (i in seq_along(shpar)) { a <- shpar[[c(i, 1)]]; b <- shpar[[c(i, 2)]]; t <- shpar[[c(i, 3)]] Be <- beta(a, b) for (s in scpar) { u <- rbeta(100, a, b) y <- u^(1/t) x <- s * y stopifnot(exprs = { all.equal(d1 <- dgenbeta(x, shape1 = a, shape2 = b, shape3 = t, scale = s), d2 <- dgenbeta(y, shape1 = a, shape2 = b, shape3 = t, scale = 1)/s, tolerance = 1e-10) all.equal(d1, t * y^(a*t - 1) * (1 - y^t)^(b - 1)/(s * Be), tolerance = 1e-10) all.equal(d1, t * u^a * (1 - u)^(b - 1)/(x * Be), tolerance = 1e-10) }) } } ## Tests on the cumulative distribution function. scLrg <- 1e300 * c(0.5, 1, 2, 4) stopifnot(exprs = { all.equal(pgenbeta(1e300, shape1 = 3, shape2 = 1, shape3 = rep(c(1, 2), each = length(scLrg)), scale = scLrg, log = TRUE), c(0, pbeta(c(1, 1/2, 1/4), 3, 1, log = TRUE), 0, pbeta(c(1, 1/4, 1/16), 3, 1, log = TRUE))) }) ## Tests for first three positive moments and first two negative ## moments. ## ## Simulation of new parameters ensuring that said moments exist. set.seed(123) # reset the seed nshpar <- 3 # number of shape parameters shpar <- replicate(30, sqrt(c(3, 0, 3)) + rlnorm(nshpar, 2), simplify = FALSE) scpar <- rlnorm(30, 2) # scale parameters k <- c(-2, -1, 1, 2, 3) # orders for (i in seq_along(shpar)) { a <- shpar[[c(i, 1)]]; b <- shpar[[c(i, 2)]]; t <- shpar[[c(i, 3)]] Be <- beta(a, b) for (s in scpar) stopifnot(exprs = { All.eq(mgenbeta(k, shape1 = a, shape2 = b, shape3 = t, scale = s), s^k * beta(a + k/t, b)/Be) }) } ## Tests for first three positive limited moments and first two ## negative limited moments. ## ## Simulation of new parameters ensuring that said moments exist. order <- c(-2, -1, 1, 2, 3) # orders q <- c(0.25, 0.50, 0.75, 0.9, 0.95) # quantiles for (i in seq_along(shpar)) { a <- shpar[[c(i, 1)]]; g <- shpar[[c(i, 2)]]; t <- shpar[[c(i, 3)]] Be <- beta(a, b) for (s in scpar) { limit <- qgenbeta(q, shape1 = a, shape2 = b, shape3 = t, scale = s) u <- (limit/s)^t for (k in order) stopifnot(exprs = { All.eq(levgenbeta(limit, order = k, shape1 = a, shape2 = b, shape3 = t, scale = s), s^k * beta(a + k/t, b)/Be * pbeta(u, a + k/t, b) + limit^k * pbeta(u, a, b, lower = FALSE)) }) } } ## ## RANDOM NUMBERS (all continuous distributions) ## set.seed(123) n <- 20 m <- rnorm(1) ## Generate variates Rfpareto <- rfpareto(n, min = m, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2) Rpareto4 <- rpareto4(n, min = m, shape1 = 0.8, shape2 = 1.5, scale = 2) Rpareto3 <- rpareto3(n, min = m, shape = 1.5, scale = 2) Rpareto2 <- rpareto2(n, min = m, shape = 0.8, scale = 2) Rtrbeta <- rtrbeta (n, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2) Rburr <- rburr (n, shape1 = 0.8, shape2 = 1.5, scale = 2) Rllogis <- rllogis (n, shape = 1.5, scale = 2) Rparalogis <- rparalogis (n, shape = 0.8, scale = 2) Rgenpareto <- rgenpareto (n, shape1 = 0.8, shape2 = 2, scale = 2) Rpareto <- rpareto (n, shape = 0.8, scale = 2) Rpareto1 <- rpareto1 (n, shape = 0.8, min = 2) Rinvburr <- rinvburr (n, shape1 = 1.5, shape2 = 2, scale = 2) Rinvpareto <- rinvpareto (n, shape = 2, scale = 2) Rinvparalogis <- rinvparalogis(n, shape = 2, scale = 2) Rtrgamma <- rtrgamma (n, shape1 = 2, shape2 = 3, scale = 5) Rinvtrgamma <- rinvtrgamma (n, shape1 = 2, shape2 = 3, scale = 5) Rinvgamma <- rinvgamma (n, shape = 2, scale = 5) Rinvweibull <- rinvweibull (n, shape = 3, scale = 5) Rinvexp <- rinvexp (n, scale = 5) Rlgamma <- rlgamma(n, shapelog = 1.5, ratelog = 5) Rgumbel <- rgumbel(n, alpha = 2, scale = 5) Rinvgauss <- rinvgauss(n, mean = 2, dispersion = 5) Rgenbeta <- rgenbeta(n, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2) ## Compute quantiles Pfpareto <- pfpareto(Rfpareto, min = m, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2) Ppareto4 <- ppareto4(Rpareto4, min = m, shape1 = 0.8, shape2 = 1.5, scale = 2) Ppareto3 <- ppareto3(Rpareto3, min = m, shape = 1.5, scale = 2) Ppareto2 <- ppareto2(Rpareto2, min = m, shape = 0.8, scale = 2) Ptrbeta <- ptrbeta (Rtrbeta, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2) Pburr <- pburr (Rburr, shape1 = 0.8, shape2 = 1.5, scale = 2) Pllogis <- pllogis (Rllogis, shape = 1.5, scale = 2) Pparalogis <- pparalogis (Rparalogis, shape = 0.8, scale = 2) Pgenpareto <- pgenpareto (Rgenpareto, shape1 = 0.8, shape2 = 2, scale = 2) Ppareto <- ppareto (Rpareto, shape = 0.8, scale = 2) Ppareto1 <- ppareto1 (Rpareto1, shape = 0.8, min = 2) Pinvburr <- pinvburr (Rinvburr, shape1 = 1.5, shape2 = 2, scale = 2) Pinvpareto <- pinvpareto (Rinvpareto, shape = 2, scale = 2) Pinvparalogis <- pinvparalogis(Rinvparalogis, shape = 2, scale = 2) Ptrgamma <- ptrgamma (Rtrgamma, shape1 = 2, shape2 = 3, scale = 5) Pinvtrgamma <- pinvtrgamma (Rinvtrgamma, shape1 = 2, shape2 = 3, scale = 5) Pinvgamma <- pinvgamma (Rinvgamma, shape = 2, scale = 5) Pinvweibull <- pinvweibull (Rinvweibull, shape = 3, scale = 5) Pinvexp <- pinvexp (Rinvexp, scale = 5) Plgamma <- plgamma(Rlgamma, shapelog = 1.5, ratelog = 5) Pgumbel <- pgumbel(Rgumbel, alpha = 2, scale = 5) Pinvgauss <- pinvgauss(Rinvgauss, mean = 2, dispersion = 5) Pgenbeta <- pgenbeta(Rgenbeta, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2) ## Just compute pdf Dfpareto <- dfpareto(Rfpareto, min = m, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2) Dpareto4 <- dpareto4(Rpareto4, min = m, shape1 = 0.8, shape2 = 1.5, scale = 2) Dpareto3 <- dpareto3(Rpareto3, min = m, shape = 1.5, scale = 2) Dpareto2 <- dpareto2(Rpareto2, min = m, shape = 0.8, scale = 2) Dtrbeta <- dtrbeta (Rtrbeta, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2) Dburr <- dburr (Rburr, shape1 = 0.8, shape2 = 1.5, scale = 2) Dllogis <- dllogis (Rllogis, shape = 1.5, scale = 2) Dparalogis <- dparalogis (Rparalogis, shape = 0.8, scale = 2) Dgenpareto <- dgenpareto (Rgenpareto, shape1 = 0.8, shape2 = 2, scale = 2) Dpareto <- dpareto (Rpareto, shape = 0.8, scale = 2) Dpareto1 <- dpareto1 (Rpareto1, shape = 0.8, min = 2) Dinvburr <- dinvburr (Rinvburr, shape1 = 1.5, shape2 = 2, scale = 2) Dinvpareto <- dinvpareto (Rinvpareto, shape = 2, scale = 2) Dinvparalogis <- dinvparalogis(Rinvparalogis, shape = 2, scale = 2) Dtrgamma <- dtrgamma (Rtrgamma, shape1 = 2, shape2 = 3, scale = 5) Dinvtrgamma <- dinvtrgamma (Rinvtrgamma, shape1 = 2, shape2 = 3, scale = 5) Dinvgamma <- dinvgamma (Rinvtrgamma, shape = 2, scale = 5) Dinvweibull <- dinvweibull (Rinvweibull, shape = 3, scale = 5) Dinvexp <- dinvexp (Rinvexp, scale = 5) Dlgamma <- dlgamma(Rlgamma, shapelog = 1.5, ratelog = 5) Dgumbel <- dgumbel(Rgumbel, alpha = 2, scale = 5) Dinvgauss <- dinvgauss(Rinvgauss, mean = 2, dispersion = 5) Dgenbeta <- dgenbeta(Rgenbeta, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2) ## Check q(p(.)) identity stopifnot(exprs = { All.eq(Rfpareto, qfpareto(Pfpareto, min = m, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2)) All.eq(Rpareto4, qpareto4(Ppareto4, min = m, shape1 = 0.8, shape2 = 1.5, scale = 2)) All.eq(Rpareto3, qpareto3(Ppareto3, min = m, shape = 1.5, scale = 2)) All.eq(Rpareto2, qpareto2(Ppareto2, min = m, shape = 0.8, scale = 2)) All.eq(Rtrbeta, qtrbeta (Ptrbeta, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2)) All.eq(Rburr, qburr (Pburr, shape1 = 0.8, shape2 = 1.5, scale = 2)) All.eq(Rllogis, qllogis (Pllogis, shape = 1.5, scale = 2)) All.eq(Rparalogis, qparalogis (Pparalogis, shape = 0.8, scale = 2)) All.eq(Rgenpareto, qgenpareto (Pgenpareto, shape1 = 0.8, shape2 = 2, scale = 2)) All.eq(Rpareto, qpareto (Ppareto, shape = 0.8, scale = 2)) All.eq(Rpareto1, qpareto1 (Ppareto1, shape = 0.8, min = 2)) All.eq(Rinvburr, qinvburr (Pinvburr, shape1 = 1.5, shape2 = 2, scale = 2)) All.eq(Rinvpareto, qinvpareto (Pinvpareto, shape = 2, scale = 2)) All.eq(Rinvparalogis, qinvparalogis(Pinvparalogis, shape = 2, scale = 2)) All.eq(Rtrgamma, qtrgamma (Ptrgamma, shape1 = 2, shape2 = 3, scale = 5)) All.eq(Rinvtrgamma, qinvtrgamma (Pinvtrgamma, shape1 = 2, shape2 = 3, scale = 5)) All.eq(Rinvgamma, qinvgamma (Pinvgamma, shape = 2, scale = 5)) All.eq(Rinvweibull, qinvweibull (Pinvweibull, shape = 3, scale = 5)) All.eq(Rinvexp, qinvexp (Pinvexp, scale = 5)) All.eq(Rlgamma, qlgamma(Plgamma, shapelog = 1.5, ratelog = 5)) All.eq(Rgumbel, qgumbel(Pgumbel, alpha = 2, scale = 5)) All.eq(Rinvgauss, qinvgauss(Pinvgauss, mean = 2, dispersion = 5)) All.eq(Rgenbeta, qgenbeta(Pgenbeta, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2)) }) ## Check q(p(.)) identity for special cases stopifnot(exprs = { All.eq(Rfpareto - m, qtrbeta(Pfpareto, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2)) All.eq(Rpareto4 - m, qburr (Ppareto4, shape1 = 0.8, shape2 = 1.5, scale = 2)) All.eq(Rpareto3 - m, qllogis(Ppareto3, shape = 1.5, scale = 2)) All.eq(Rpareto2 - m, qpareto(Ppareto2, shape = 0.8, scale = 2)) }) ## Check q(p(.)) identity with upper tail stopifnot(exprs = { All.eq(Rfpareto, qfpareto(1 - Pfpareto, min = m, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2, lower = FALSE)) All.eq(Rpareto4, qpareto4(1 - Ppareto4, min = m, shape1 = 0.8, shape2 = 1.5, scale = 2, lower = FALSE)) All.eq(Rpareto3, qpareto3(1 - Ppareto3, min = m, shape = 1.5, scale = 2, lower = FALSE)) All.eq(Rpareto2, qpareto2(1 - Ppareto2, min = m, shape = 0.8, scale = 2, lower = FALSE)) All.eq(Rtrbeta, qtrbeta (1 - Ptrbeta, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2, lower = FALSE)) All.eq(Rburr, qburr (1 - Pburr, shape1 = 0.8, shape2 = 1.5, scale = 2, lower = FALSE)) All.eq(Rllogis, qllogis (1 - Pllogis, shape = 1.5, scale = 2, lower = FALSE)) All.eq(Rparalogis, qparalogis (1 - Pparalogis, shape = 0.8, scale = 2, lower = FALSE)) All.eq(Rgenpareto, qgenpareto (1 - Pgenpareto, shape1 = 0.8, shape2 = 2, scale = 2, lower = FALSE)) All.eq(Rpareto, qpareto (1 - Ppareto, shape = 0.8, scale = 2, lower = FALSE)) All.eq(Rpareto1, qpareto1 (1 - Ppareto1, shape = 0.8, min = 2, lower = FALSE)) All.eq(Rinvburr, qinvburr (1 - Pinvburr, shape1 = 1.5, shape2 = 2, scale = 2, lower = FALSE)) All.eq(Rinvpareto, qinvpareto (1 - Pinvpareto, shape = 2, scale = 2, lower = FALSE)) All.eq(Rinvparalogis, qinvparalogis(1 - Pinvparalogis, shape = 2, scale = 2, lower = FALSE)) All.eq(Rtrgamma, qtrgamma (1 - Ptrgamma, shape1 = 2, shape2 = 3, scale = 5, lower = FALSE)) All.eq(Rinvtrgamma, qinvtrgamma (1 - Pinvtrgamma, shape1 = 2, shape2 = 3, scale = 5, lower = FALSE)) All.eq(Rinvgamma, qinvgamma (1 - Pinvgamma, shape = 2, scale = 5, lower = FALSE)) All.eq(Rinvweibull, qinvweibull (1 - Pinvweibull, shape = 3, scale = 5, lower = FALSE)) All.eq(Rinvexp, qinvexp (1 - Pinvexp, scale = 5, lower = FALSE)) All.eq(Rlgamma, qlgamma(1 - Plgamma, shapelog = 1.5, ratelog = 5, lower = FALSE)) All.eq(Rgumbel, qgumbel(1 - Pgumbel, alpha = 2, scale = 5, lower = FALSE)) All.eq(Rinvgauss, qinvgauss(1 - Pinvgauss, mean = 2, dispersion = 5, lower = FALSE)) All.eq(Rgenbeta, qgenbeta(1 - Pgenbeta, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2, lower = FALSE)) }) ## Check q(p(., log), log) identity stopifnot(exprs = { All.eq(Rfpareto, qfpareto(log(Pfpareto), min = m, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2, log = TRUE)) All.eq(Rpareto4, qpareto4(log(Ppareto4), min = m, shape1 = 0.8, shape2 = 1.5, scale = 2, log = TRUE)) All.eq(Rpareto3, qpareto3(log(Ppareto3), min = m, shape = 1.5, scale = 2, log = TRUE)) All.eq(Rpareto2, qpareto2(log(Ppareto2), min = m, shape = 0.8, scale = 2, log = TRUE)) All.eq(Rtrbeta, qtrbeta (log(Ptrbeta), shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2, log = TRUE)) All.eq(Rburr, qburr (log(Pburr), shape1 = 0.8, shape2 = 1.5, scale = 2, log = TRUE)) All.eq(Rllogis, qllogis (log(Pllogis), shape = 1.5, scale = 2, log = TRUE)) All.eq(Rparalogis, qparalogis (log(Pparalogis), shape = 0.8, scale = 2, log = TRUE)) All.eq(Rgenpareto, qgenpareto (log(Pgenpareto), shape1 = 0.8, shape2 = 2, scale = 2, log = TRUE)) All.eq(Rpareto, qpareto (log(Ppareto), shape = 0.8, scale = 2, log = TRUE)) All.eq(Rpareto1, qpareto1 (log(Ppareto1), shape = 0.8, min = 2, log = TRUE)) All.eq(Rinvburr, qinvburr (log(Pinvburr), shape1 = 1.5, shape2 = 2, scale = 2, log = TRUE)) All.eq(Rinvpareto, qinvpareto (log(Pinvpareto), shape = 2, scale = 2, log = TRUE)) All.eq(Rinvparalogis, qinvparalogis(log(Pinvparalogis), shape = 2, scale = 2, log = TRUE)) All.eq(Rtrgamma, qtrgamma (log(Ptrgamma), shape1 = 2, shape2 = 3, scale = 5, log = TRUE)) All.eq(Rinvtrgamma, qinvtrgamma (log(Pinvtrgamma), shape1 = 2, shape2 = 3, scale = 5, log = TRUE)) All.eq(Rinvgamma, qinvgamma (log(Pinvgamma), shape = 2, scale = 5, log = TRUE)) All.eq(Rinvweibull, qinvweibull (log(Pinvweibull), shape = 3, scale = 5, log = TRUE)) All.eq(Rinvexp, qinvexp (log(Pinvexp), scale = 5, log = TRUE)) All.eq(Rlgamma, qlgamma(log(Plgamma), shapelog = 1.5, ratelog = 5, log = TRUE)) All.eq(Rgumbel, qgumbel(log(Pgumbel), alpha = 2, scale = 5, log = TRUE)) All.eq(Rinvgauss, qinvgauss(log(Pinvgauss), mean = 2, dispersion = 5, log = TRUE)) All.eq(Rgenbeta, qgenbeta(log(Pgenbeta), shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2, log = TRUE)) }) ## Check q(p(., log), log) identity with upper tail stopifnot(exprs = { All.eq(Rfpareto, qfpareto(log1p(-Pfpareto), min = m, shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rpareto4, qpareto4(log1p(-Ppareto4), min = m, shape1 = 0.8, shape2 = 1.5, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rpareto3, qpareto3(log1p(-Ppareto3), min = m, shape = 1.5, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rpareto2, qpareto2(log1p(-Ppareto2), min = m, shape = 0.8, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rtrbeta, qtrbeta (log1p(-Ptrbeta), shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rburr, qburr (log1p(-Pburr), shape1 = 0.8, shape2 = 1.5, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rllogis, qllogis (log1p(-Pllogis), shape = 1.5, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rparalogis, qparalogis (log1p(-Pparalogis), shape = 0.8, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rgenpareto, qgenpareto (log1p(-Pgenpareto), shape1 = 0.8, shape2 = 2, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rpareto, qpareto (log1p(-Ppareto), shape = 0.8, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rpareto1, qpareto1 (log1p(-Ppareto1), shape = 0.8, min = 2, lower = FALSE, log = TRUE)) All.eq(Rinvburr, qinvburr (log1p(-Pinvburr), shape1 = 1.5, shape2 = 2, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rinvpareto, qinvpareto (log1p(-Pinvpareto), shape = 2, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rinvparalogis, qinvparalogis(log1p(-Pinvparalogis), shape = 2, scale = 2, lower = FALSE, log = TRUE)) All.eq(Rtrgamma, qtrgamma (log1p(-Ptrgamma), shape1 = 2, shape2 = 3, scale = 5, lower = FALSE, log = TRUE)) All.eq(Rinvtrgamma, qinvtrgamma (log1p(-Pinvtrgamma), shape1 = 2, shape2 = 3, scale = 5, lower = FALSE, log = TRUE)) All.eq(Rinvgamma, qinvgamma (log1p(-Pinvgamma), shape = 2, scale = 5, lower = FALSE, log = TRUE)) All.eq(Rinvweibull, qinvweibull (log1p(-Pinvweibull), shape = 3, scale = 5, lower = FALSE, log = TRUE)) All.eq(Rinvexp, qinvexp (log1p(-Pinvexp), scale = 5, lower = FALSE, log = TRUE)) All.eq(Rlgamma, qlgamma(log1p(-Plgamma), shapelog = 1.5, ratelog = 5, lower = FALSE, log = TRUE)) All.eq(Rgumbel, qgumbel(log1p(-Pgumbel), alpha = 2, scale = 5, lower = FALSE, log = TRUE)) All.eq(Rinvgauss, qinvgauss(log1p(-Pinvgauss), mean = 2, dispersion = 5, lower = FALSE, log = TRUE)) All.eq(Rgenbeta, qgenbeta(log1p(-Pgenbeta), shape1 = 0.8, shape2 = 1.5, shape3 = 2, scale = 2, lower = FALSE, log = TRUE)) }) ### ### DISCRETE DISTRIBUTIONS ### ## Reset seed set.seed(123) ## Define a small function to compute probabilities for the (a, b, 1) ## family of discrete distributions using the recursive relation ## ## p[k] = (a + b/k)p[k - 1], k = 2, 3, ... ## ## for a, b and p[1] given. dab1 <- function(x, a, b, p1) { x <- floor(x) if (x < 1) stop("recursive computations possible for x >= 2 only") for (k in seq(2, length.out = x - 1)) { p2 <- (a + b/k) * p1 p1 <- p2 } p1 } ## ZERO-TRUNCATED (a, b, 1) CLASS ## Tests on the probability mass function: ## ## 1. probability is 0 at x = 0; ## 2. pmf satisfies the recursive relation lambda <- rlnorm(30, 2) # Poisson parameters r <- lambda # size for negative binomial prob <- runif(30) # probs size <- round(lambda) # size for binomial stopifnot(exprs = { dztpois(0, lambda) == 0 dztnbinom(0, r, prob) == 0 dztgeom(0, prob) == 0 dztbinom(0, size, prob) == 0 dlogarithmic(0, prob) == 0 }) x <- sapply(size, sample, size = 1) stopifnot(exprs = { All.eq(dztpois(x, lambda), mapply(dab1, x, a = 0, b = lambda, p1 = lambda/(exp(lambda) - 1))) All.eq(dztnbinom(x, r, prob), mapply(dab1, x, a = 1 - prob, b = (r - 1) * (1 - prob), p1 = r * prob^r * (1 - prob)/(1 - prob^r))) All.eq(dztgeom(x, prob), mapply(dab1, x, a = 1 - prob, b = 0, p1 = prob)) All.eq(dztbinom(x, size, prob), mapply(dab1, x, a = -prob/(1 - prob), b = (size + 1) * prob/(1 - prob), p1 = size * prob * (1 - prob)^(size - 1)/(1 - (1 - prob)^size))) All.eq(dlogarithmic(x, prob), mapply(dab1, x, a = prob, b = -prob, p1 = -prob/log1p(-prob))) }) ## Tests on cumulative distribution function. for (l in lambda) stopifnot(exprs = { all.equal(cumsum(dztpois(0:20, l)), pztpois(0:20, l), tolerance = 1e-8) }) for (i in seq_along(r)) stopifnot(exprs = { all.equal(cumsum(dztnbinom(0:20, r[i], prob[i])), pztnbinom(0:20, r[i], prob[i]), tolerance = 1e-8) }) for (i in seq_along(r)) stopifnot(exprs = { all.equal(cumsum(dztgeom(0:20, prob[i])), pztgeom(0:20, prob[i]), tolerance = 1e-8) }) for (i in seq_along(size)) stopifnot(exprs = { all.equal(cumsum(dztbinom(0:20, size[i], prob[i])), pztbinom(0:20, size[i], prob[i]), tolerance = 1e-8) }) for (p in prob) stopifnot(exprs = { all.equal(cumsum(dlogarithmic(0:20, p)), plogarithmic(0:20, p), tolerance = 1e-8) }) ## ZERO-MODIFIED (a, b, 1) CLASS ## Tests on the probability mass function: ## ## 1. probability is p0 at x = 0 (trivial, but...); ## 2. pmf satisfies the recursive relation lambda <- rlnorm(30, 2) # Poisson parameters r <- lambda # size for negative binomial prob <- runif(30) # probs size <- round(lambda) # size for binomial p0 <- runif(30) # probs at 0 stopifnot(exprs = { dzmpois(0, lambda, p0) == p0 dzmnbinom(0, r, prob, p0) == p0 dzmgeom(0, prob, p0) == p0 dzmbinom(0, size, prob, p0) == p0 dzmlogarithmic(0, prob, p0) == p0 }) x <- sapply(size, sample, size = 1) stopifnot(exprs = { All.eq(dzmpois(x, lambda, p0), mapply(dab1, x, a = 0, b = lambda, p1 = (1 - p0) *lambda/(exp(lambda) - 1))) All.eq(dzmnbinom(x, r, prob, p0), mapply(dab1, x, a = 1 - prob, b = (r - 1) * (1 - prob), p1 = (1 - p0) * r * prob^r * (1 - prob)/(1 - prob^r))) All.eq(dzmgeom(x, prob, p0), mapply(dab1, x, a = 1 - prob, b = 0, p1 = (1 - p0) * prob)) All.eq(dzmbinom(x, size, prob, p0), mapply(dab1, x, a = -prob/(1 - prob), b = (size + 1) * prob/(1 - prob), p1 = (1 - p0) * size * prob * (1 - prob)^(size - 1)/(1 - (1 - prob)^size))) All.eq(dzmlogarithmic(x, prob, p0), mapply(dab1, x, a = prob, b = -prob, p1 = -(1 - p0) * prob/log1p(-prob))) }) ## Tests on cumulative distribution function. for (i in seq_along(lambda)) stopifnot(exprs = { all.equal(cumsum(dzmpois(0:20, lambda[i], p0 = p0[i])), pzmpois(0:20, lambda[i], p0 = p0[i]), tolerance = 1e-8) }) for (i in seq_along(r)) stopifnot(exprs = { all.equal(cumsum(dzmnbinom(0:20, r[i], prob[i], p0[i])), pzmnbinom(0:20, r[i], prob[i], p0[i]), tolerance = 1e-8) }) for (i in seq_along(r)) stopifnot(exprs = { all.equal(cumsum(dzmgeom(0:20, prob[i], p0[i])), pzmgeom(0:20, prob[i], p0[i]), tolerance = 1e-8) }) for (i in seq_along(size)) stopifnot(exprs = { all.equal(cumsum(dzmbinom(0:20, size[i], prob[i], p0[i])), pzmbinom(0:20, size[i], prob[i], p0[i]), tolerance = 1e-8) }) for (i in seq_along(prob)) stopifnot(exprs = { all.equal(cumsum(dzmlogarithmic(0:20, prob[i], p0[i])), pzmlogarithmic(0:20, prob[i], p0[i]), tolerance = 1e-8) }) ## POISSON-INVERSE GAUSSIAN ## Reset seed set.seed(123) ## Define a small function to compute probabilities for the PIG ## directly using the Bessel function. dpigBK <- function(x, mu, phi) { M_LN2 <- 0.693147180559945309417232121458 M_SQRT_2dPI <- 0.225791352644727432363097614947 phimu <- phi * mu lphi <- log(phi) y <- x - 0.5 logA = -lphi/2 - M_SQRT_2dPI logB = (M_LN2 + lphi + log1p(1/(2 * phimu * mu)))/2; exp(logA + 1/phimu - lfactorial(x) - y * logB) * besselK(exp(logB - lphi), y) } ## Tests on the probability mass function. mu <- rlnorm(30, 2) phi <- rlnorm(30, 2) x <- 0:100 for (i in seq_along(phi)) { stopifnot(exprs = { all.equal(dpoisinvgauss(x, mean = mu[i], dispersion = phi[i]), dpigBK(x, mu[i], phi[i])) all.equal(dpoisinvgauss(x, mean = Inf, dispersion = phi[i]), dpigBK(x, Inf, phi[i])) }) } ## Tests on cumulative distribution function. for (i in seq_along(phi)) stopifnot(exprs = { all.equal(cumsum(dpoisinvgauss(0:20, mu[i], phi[i])), ppoisinvgauss(0:20, mu[i], phi[i]), tolerance = 1e-8) all.equal(cumsum(dpoisinvgauss(0:20, Inf, phi[i])), ppoisinvgauss(0:20, Inf, phi[i]), tolerance = 1e-8) }) ## ## RANDOM NUMBERS (all discrete distributions) ## set.seed(123) n <- 20 ## Generate variates. ## ## For zero-modified distributions, we simulate two sets of values: ## one with p0m < p0 (suffix 'p0lt') and one with p0m > p0 (suffix ## 'p0gt'). Rztpois <- rztpois (n, lambda = 12) Rztnbinom <- rztnbinom (n, size = 7, prob = 0.01) Rztgeom <- rztgeom (n, prob = pi/16) Rztbinom <- rztbinom (n, size = 55, prob = pi/16) Rlogarithmic <- rlogarithmic(n, prob = 0.99) Rzmpoisp0lt <- rzmpois (n, lambda = 6, p0 = 0.001) Rzmpoisp0gt <- rzmpois (n, lambda = 6, p0 = 0.010) Rzmnbinomp0lt <- rzmnbinom (n, size = 7, prob = 0.8, p0 = 0.01) Rzmnbinomp0gt <- rzmnbinom (n, size = 7, prob = 0.8, p0 = 0.40) Rzmgeomp0lt <- rzmgeom (n, prob = pi/16, p0 = 0.01) Rzmgeomp0gt <- rzmgeom (n, prob = pi/16, p0 = 0.40) Rzmbinomp0lt <- rzmbinom (n, size = 12, prob = pi/16, p0 = 0.01) Rzmbinomp0gt <- rzmbinom (n, size = 12, prob = pi/16, p0 = 0.12) Rzmlogarithmicp0lt <- rzmlogarithmic(n, prob = 0.99, p0 = 0.05) Rzmlogarithmicp0gt <- rzmlogarithmic(n, prob = 0.99, p0 = 0.55) Rpoisinvgauss <- rpoisinvgauss(n, mean = 12, dispersion = 0.1) RpoisinvgaussInf <- rpoisinvgauss(n, mean = Inf, dispersion = 1.1) ## Compute quantiles Pztpois <- pztpois (Rztpois, lambda = 12) Pztnbinom <- pztnbinom (Rztnbinom, size = 7, prob = 0.01) Pztgeom <- pztgeom (Rztgeom, prob = pi/16) Pztbinom <- pztbinom (Rztbinom, size = 55, prob = pi/16) Plogarithmic <- plogarithmic(Rlogarithmic, prob = 0.99) Pzmpoisp0lt <- pzmpois (Rzmpoisp0lt, lambda = 6, p0 = 0.001) Pzmpoisp0gt <- pzmpois (Rzmpoisp0gt, lambda = 6, p0 = 0.010) Pzmnbinomp0lt <- pzmnbinom (Rzmnbinomp0lt, size = 7, prob = 0.8, p0 = 0.01) Pzmnbinomp0gt <- pzmnbinom (Rzmnbinomp0gt, size = 7, prob = 0.8, p0 = 0.40) Pzmgeomp0lt <- pzmgeom (Rzmgeomp0lt, prob = pi/16, p0 = 0.01) Pzmgeomp0gt <- pzmgeom (Rzmgeomp0gt, prob = pi/16, p0 = 0.40) Pzmbinomp0lt <- pzmbinom (Rzmbinomp0lt, size = 12, prob = pi/16, p0 = 0.01) Pzmbinomp0gt <- pzmbinom (Rzmbinomp0gt, size = 12, prob = pi/16, p0 = 0.12) Pzmlogarithmicp0lt <- pzmlogarithmic(Rzmlogarithmicp0lt, prob = 0.99, p0 = 0.05) Pzmlogarithmicp0gt <- pzmlogarithmic(Rzmlogarithmicp0gt, prob = 0.99, p0 = 0.55) Ppoisinvgauss <- ppoisinvgauss(Rpoisinvgauss, mean = 12, dispersion = 0.1) PpoisinvgaussInf <- ppoisinvgauss(RpoisinvgaussInf, mean = Inf, dispersion = 1.1) ## Just compute pmf Dztpois <- dztpois (Rztpois, lambda = 12) Dztnbinom <- dztnbinom (Rztnbinom, size = 7, prob = 0.01) Dztgeom <- dztgeom (Rztgeom, prob = pi/16) Dztbinom <- dztbinom (Rztbinom, size = 55, prob = pi/16) Dlogarithmic <- dlogarithmic(Rlogarithmic, prob = pi/16) Dzmpoisp0lt <- dzmpois (Rzmpoisp0lt, lambda = 6, p0 = 0.001) Dzmpoisp0gt <- dzmpois (Rzmpoisp0gt, lambda = 6, p0 = 0.010) Dzmnbinomp0lt <- dzmnbinom (Rzmnbinomp0lt, size = 7, prob = 0.8, p0 = 0.01) Dzmnbinomp0gt <- dzmnbinom (Rzmnbinomp0gt, size = 7, prob = 0.8, p0 = 0.40) Dzmgeomp0lt <- dzmgeom (Rzmgeomp0lt, prob = pi/16, p0 = 0.01) Dzmgeomp0gt <- dzmgeom (Rzmgeomp0gt, prob = pi/16, p0 = 0.40) Dzmbinomp0lt <- dzmbinom (Rzmbinomp0lt, size = 12, prob = pi/16, p0 = 0.01) Dzmbinomp0gt <- dzmbinom (Rzmbinomp0gt, size = 12, prob = pi/16, p0 = 0.12) Dzmlogarithmicp0lt <- dzmlogarithmic(Rzmlogarithmicp0lt, prob = 0.99, p0 = 0.05) Dzmlogarithmicp0gt <- dzmlogarithmic(Rzmlogarithmicp0gt, prob = 0.99, p0 = 0.55) Dpoisinvgauss <- dpoisinvgauss(Rpoisinvgauss, mean = 12, dispersion = 0.1) DpoisinvgaussInf <- dpoisinvgauss(RpoisinvgaussInf, mean = Inf, dispersion = 1.1) ## Check q(p(.)) identity stopifnot(exprs = { Rztpois == qztpois (Pztpois, lambda = 12) Rztnbinom == qztnbinom (Pztnbinom, size = 7, prob = 0.01) Rztgeom == qztgeom (Pztgeom, prob = pi/16) Rztbinom == qztbinom (Pztbinom, size = 55, prob = pi/16) Rlogarithmic == qlogarithmic(Plogarithmic, prob = 0.99) Rzmpoisp0lt == qzmpois (Pzmpoisp0lt, lambda = 6, p0 = 0.001) Rzmpoisp0gt == qzmpois (Pzmpoisp0gt, lambda = 6, p0 = 0.010) Rzmnbinomp0lt == qzmnbinom (Pzmnbinomp0lt, size = 7, prob = 0.8, p0 = 0.01) Rzmnbinomp0gt == qzmnbinom (Pzmnbinomp0gt, size = 7, prob = 0.8, p0 = 0.40) Rzmgeomp0lt == qzmgeom (Pzmgeomp0lt, prob = pi/16, p0 = 0.01) Rzmgeomp0gt == qzmgeom (Pzmgeomp0gt, prob = pi/16, p0 = 0.40) Rzmbinomp0lt == qzmbinom (Pzmbinomp0lt, size = 12, prob = pi/16, p0 = 0.01) Rzmbinomp0gt == qzmbinom (Pzmbinomp0gt, size = 12, prob = pi/16, p0 = 0.12) Rzmlogarithmicp0lt == qzmlogarithmic(Pzmlogarithmicp0lt, prob = 0.99, p0 = 0.05) Rzmlogarithmicp0gt == qzmlogarithmic(Pzmlogarithmicp0gt, prob = 0.99, p0 = 0.55) Rpoisinvgauss == qpoisinvgauss(Ppoisinvgauss, mean = 12, dispersion = 0.1) RpoisinvgaussInf == qpoisinvgauss(PpoisinvgaussInf, mean = Inf, dispersion = 1.1) }) ## Check q(p(.)) identity with upper tail stopifnot(exprs = { Rztpois == qztpois (1 - Pztpois, lambda = 12, lower = FALSE) Rztnbinom == qztnbinom (1 - Pztnbinom, size = 7, prob = 0.01, lower = FALSE) Rztgeom == qztgeom (1 - Pztgeom, prob = pi/16, lower = FALSE) Rztbinom == qztbinom (1 - Pztbinom, size = 55, prob = pi/16, lower = FALSE) Rlogarithmic == qlogarithmic(1 - Plogarithmic, prob = 0.99, lower = FALSE) Rzmpoisp0lt == qzmpois (1 - Pzmpoisp0lt, lambda = 6, p0 = 0.001, lower = FALSE) Rzmpoisp0gt == qzmpois (1 - Pzmpoisp0gt, lambda = 6, p0 = 0.010, lower = FALSE) Rzmnbinomp0lt == qzmnbinom (1 - Pzmnbinomp0lt, size = 7, prob = 0.8, p0 = 0.01, lower = FALSE) Rzmnbinomp0gt == qzmnbinom (1 - Pzmnbinomp0gt, size = 7, prob = 0.8, p0 = 0.40, lower = FALSE) Rzmgeomp0lt == qzmgeom (1 - Pzmgeomp0lt, prob = pi/16, p0 = 0.01, lower = FALSE) Rzmgeomp0gt == qzmgeom (1 - Pzmgeomp0gt, prob = pi/16, p0 = 0.40, lower = FALSE) Rzmbinomp0lt == qzmbinom (1 - Pzmbinomp0lt, size = 12, prob = pi/16, p0 = 0.01, lower = FALSE) Rzmbinomp0gt == qzmbinom (1 - Pzmbinomp0gt, size = 12, prob = pi/16, p0 = 0.12, lower = FALSE) Rzmlogarithmicp0lt == qzmlogarithmic(1 - Pzmlogarithmicp0lt, prob = 0.99, p0 = 0.05, lower = FALSE) Rzmlogarithmicp0gt == qzmlogarithmic(1 - Pzmlogarithmicp0gt, prob = 0.99, p0 = 0.55, lower = FALSE) Rpoisinvgauss == qpoisinvgauss(1 - Ppoisinvgauss, mean = 12, dispersion = 0.1, lower = FALSE) RpoisinvgaussInf == qpoisinvgauss(1 - PpoisinvgaussInf, mean = Inf, dispersion = 1.1, lower = FALSE) }) ## Check q(p(., log), log) identity stopifnot(exprs = { Rztpois == qztpois (log(Pztpois), lambda = 12, log = TRUE) Rztnbinom == qztnbinom (log(Pztnbinom), size = 7, prob = 0.01, log = TRUE) Rztgeom == qztgeom (log(Pztgeom), prob = pi/16, log = TRUE) Rztbinom == qztbinom (log(Pztbinom), size = 55, prob = pi/16, log = TRUE) Rlogarithmic == qlogarithmic(log(Plogarithmic), prob = 0.99, log = TRUE) Rzmpoisp0lt == qzmpois (log(Pzmpoisp0lt), lambda = 6, p0 = 0.001, log = TRUE) Rzmpoisp0gt == qzmpois (log(Pzmpoisp0gt), lambda = 6, p0 = 0.010, log = TRUE) Rzmnbinomp0lt == qzmnbinom (log(Pzmnbinomp0lt), size = 7, prob = 0.8, p0 = 0.01, log = TRUE) Rzmnbinomp0gt == qzmnbinom (log(Pzmnbinomp0gt), size = 7, prob = 0.8, p0 = 0.40, log = TRUE) Rzmgeomp0lt == qzmgeom (log(Pzmgeomp0lt), prob = pi/16, p0 = 0.01, log = TRUE) Rzmgeomp0gt == qzmgeom (log(Pzmgeomp0gt), prob = pi/16, p0 = 0.40, log = TRUE) Rzmbinomp0lt == qzmbinom (log(Pzmbinomp0lt), size = 12, prob = pi/16, p0 = 0.01, log = TRUE) Rzmbinomp0gt == qzmbinom (log(Pzmbinomp0gt), size = 12, prob = pi/16, p0 = 0.12, log = TRUE) Rzmlogarithmicp0lt == qzmlogarithmic(log(Pzmlogarithmicp0lt), prob = 0.99, p0 = 0.05, log = TRUE) Rzmlogarithmicp0gt == qzmlogarithmic(log(Pzmlogarithmicp0gt), prob = 0.99, p0 = 0.55, log = TRUE) Rpoisinvgauss == qpoisinvgauss(log(Ppoisinvgauss), mean = 12, dispersion = 0.1, log = TRUE) RpoisinvgaussInf == qpoisinvgauss(log(PpoisinvgaussInf), mean = Inf, dispersion = 1.1, log = TRUE) }) ## Check q(p(., log), log) identity with upper tail stopifnot(exprs = { Rztpois == qztpois (log1p(-Pztpois), lambda = 12, lower = FALSE, log = TRUE) Rztnbinom == qztnbinom (log1p(-Pztnbinom), size = 7, prob = 0.01, lower = FALSE, log = TRUE) Rztgeom == qztgeom (log1p(-Pztgeom), prob = pi/16, lower = FALSE, log = TRUE) Rztbinom == qztbinom (log1p(-Pztbinom), size = 55, prob = pi/16, lower = FALSE, log = TRUE) Rlogarithmic == qlogarithmic(log1p(-Plogarithmic), prob = 0.99, lower = FALSE, log = TRUE) Rzmpoisp0lt == qzmpois (log1p(-Pzmpoisp0lt), lambda = 6, p0 = 0.001, lower = FALSE, log = TRUE) Rzmpoisp0gt == qzmpois (log1p(-Pzmpoisp0gt), lambda = 6, p0 = 0.010, lower = FALSE, log = TRUE) Rzmnbinomp0lt == qzmnbinom (log1p(-Pzmnbinomp0lt), size = 7, prob = 0.8, p0 = 0.01, lower = FALSE, log = TRUE) Rzmnbinomp0gt == qzmnbinom (log1p(-Pzmnbinomp0gt), size = 7, prob = 0.8, p0 = 0.40, lower = FALSE, log = TRUE) Rzmgeomp0lt == qzmgeom (log1p(-Pzmgeomp0lt), prob = pi/16, p0 = 0.01, lower = FALSE, log = TRUE) Rzmgeomp0gt == qzmgeom (log1p(-Pzmgeomp0gt), prob = pi/16, p0 = 0.40, lower = FALSE, log = TRUE) Rzmbinomp0lt == qzmbinom (log1p(-Pzmbinomp0lt), size = 12, prob = pi/16, p0 = 0.01, lower = FALSE, log = TRUE) Rzmbinomp0gt == qzmbinom (log1p(-Pzmbinomp0gt), size = 12, prob = pi/16, p0 = 0.12, lower = FALSE, log = TRUE) Rzmlogarithmicp0lt == qzmlogarithmic(log1p(-Pzmlogarithmicp0lt), prob = 0.99, p0 = 0.05, lower = FALSE, log = TRUE) Rzmlogarithmicp0gt == qzmlogarithmic(log1p(-Pzmlogarithmicp0gt), prob = 0.99, p0 = 0.55, lower = FALSE, log = TRUE) Rpoisinvgauss == qpoisinvgauss(log1p(-Ppoisinvgauss), mean = 12, dispersion = 0.1, lower = FALSE, log = TRUE) RpoisinvgaussInf == qpoisinvgauss(log1p(-PpoisinvgaussInf), mean = Inf, dispersion = 1.1, lower = FALSE, log = TRUE) }) actuar/tests/rmixture-tests.R0000644000176200001440000000356614030725704016051 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Tests for the simulation of discrete mixtures with 'rmixture'. ### ### AUTHOR: Vincent Goulet ## Load the package library(actuar) ## Copy of tools::assertError. assertError <- tools::assertError ## Set common values for the tests n <- 20 models <- expression(rexp(1/20), rlnorm(3.6, 0.6), rpareto(shape = 4, scale = 240)) ## Function to inject the number of variates in an expression and ## evaluate it. f <- function(n, expr) { expr$n <- n eval(expr) } ## Test a "normal" case (with data that is not reshuffled). set.seed(123) probs <- c(2, 3, 5)/10 nj <- rmultinom(1, n, prob = probs) x <- c(f(nj[1], models[[1]]), f(nj[2], models[[2]]), f(nj[3], models[[3]])) set.seed(123) stopifnot(exprs = { identical(x, rmixture(n, probs, models, shuffle = FALSE)) }) ## Test recycling of the probabilty vector. set.seed(123) probs <- 1 nj <- rmultinom(1, n, prob = rep_len(probs, 3)) x <- c(f(nj[1], models[[1]]), f(nj[2], models[[2]]), f(nj[3], models[[3]])) set.seed(123) stopifnot(exprs = { identical(x, rmixture(n, probs, models, shuffle = FALSE)) }) ## Test recycling of the models vector. set.seed(123) probs <- c(2, 3, 5) nj <- rmultinom(1, n, prob = probs) x <- f(n, models[[1]]) set.seed(123) stopifnot(exprs = { identical(x, rmixture(n, probs, models[1], shuffle = FALSE)) }) ## Test special cases. stopifnot(exprs = { identical(numeric(0), rmixture(0, probs, models)) identical(2L, length(rmixture(c(n, n), probs, models))) }) ## Finally, test invalid arguments. assertError(rmixture(-1, probs, models)) assertError(rmixture(c(3, -1), probs, models)) assertError(rmixture(n, numeric(0), models)) assertError(rmixture(n, 0, models)) assertError(rmixture(n, c(0, 0), models)) assertError(rmixture(n, probs, c(rexp(2), rexp(7)))) actuar/tests/betaint-tests.R0000644000176200001440000000346314030725704015614 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Tests for the "beta integral" ### ### B(a, b; x) = Gamma(a + b) int_0^x t^(a-1) (1 - t)^(b-1) dt ### ### Inspired by (and some parts taken from) `tests/d-p-q-r-tests.R` in ### R sources. ### ### AUTHOR: Vincent Goulet with ### indirect help from the R Core Team ## Load the package library(actuar) ## Define a "local" version of the otherwise non-exported function ## 'betaint'. betaint <- actuar:::betaint ## Special values and utilities. Taken from `tests/d-p-q-r-tests.R`. xMax <- 1 - .Machine$double.eps xMin <- .Machine$double.xmin All.eq <- function(x, y) { all.equal.numeric(x, y, tolerance = 64 * .Machine$double.eps, scale = max(0, mean(abs(x), na.rm = TRUE))) } if(!interactive()) set.seed(123) ## Limiting cases stopifnot(exprs = { !is.finite(betaint(0.3, Inf, 2)) !is.finite(betaint(0.3, Inf, -2.2)) is.nan (betaint(0.3, 0, 2)) !is.finite(betaint(0.3, 2, Inf)) is.nan (betaint(0.3, 2, -2.2)) # a <= 1 + floor(-b) is.nan (betaint(0.3, 2, 0)) }) ## Tests for cases with b > 0 x <- c(xMin, runif(10), xMax) b <- 2 for (a in rlnorm(5, 2)) stopifnot(exprs = { All.eq(betaint(x, a, b), gamma(a) * gamma(b) * pbeta(x, a, b)) }) ## Tests for cases with b < 0 b <- -2.2 r <- floor(-b) # r = 2 for (a in 1 + r + rlnorm(5, 2)) { s <- (x^(a-1) * (1-x)^b)/b + ((a-1) * x^(a-2) * (1-x)^(b+1))/(b * (b+1)) + ((a-1) * (a-2) * x^(a-3) * (1-x)^(b+2))/(b * (b+1) * (b+2)) stopifnot(exprs = { all.equal(betaint(x, a, b), -gamma(a+b) * s + (a-1)*(a-2)*(a-3) * gamma(a-r-1)/(b*(b+1)*(b+2)) * gamma(b+r+1)*pbeta(x, a-r-1, b+r+1)) }) } actuar/src/0000755000176200001440000000000014173361163012325 5ustar liggesusersactuar/src/exp.c0000644000176200001440000000307014030725704013262 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to calculate raw and limited moments for the Exponential * distribution. See ../R/ExponentialSupp.R for details. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double mexp(double order, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(scale)) return order + scale; #endif if (!R_FINITE(scale) || !R_FINITE(order) || scale <= 0.0) return R_NaN; if (order <= -1.0) return R_PosInf; return R_pow(scale, order) * gammafn(1.0 + order); } double levexp(double limit, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(scale) || ISNAN(order)) return limit + scale + order; #endif if (!R_FINITE(scale) || !R_FINITE(order) || scale <= 0.0) return R_NaN; if (order <= -1.0) return R_PosInf; if (limit <= 0.0) return 0.0; double u, tmp; tmp = 1.0 + order; u = exp(log(limit) - log(scale)); return R_pow(scale, order) * gammafn(tmp) * pgamma(u, tmp, 1.0, 1, 0) + ACT_DLIM__0(limit, order) * exp(-u); } double mgfexp(double t, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(t) || ISNAN(scale)) return t + scale; #endif if (!R_FINITE(scale) || scale <= 0.0 || scale * t > 1.0) return R_NaN; if (t == 0.0) return ACT_D__1; return ACT_D_exp(-log1p(-scale * t)); } actuar/src/ztgeom.c0000644000176200001440000000502214030725704013772 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute probability function, cumulative distribution * and quantile functions, and to simulate random variates for the * zero-truncated geometric distribution. See * ../R/ZeroTruncatedGeometric.R for details. * * Zero-truncated distributions have density * * Pr[Z = x] = Pr[X = x]/(1 - Pr[X = 0]), * * and distribution function * * Pr[Z <= x] = (Pr[X <= x] - Pr[X = 0])/(1 - Pr[X = 0]) * * or, alternatively, survival function * * Pr[Z > x] = Pr[X > x]/(1 - Pr[X = 0]). * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" /* The geometric distribution has * * F(0) = Pr[X = 0] = prob. * * Limiting case: prob == 1 is point mass at x = 1. */ double dztgeom(double x, double prob, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(prob)) return x + prob; #endif if (prob <= 0 || prob > 1) return R_NaN; if (x < 1 || !R_FINITE(x)) return ACT_D__0; /* limiting case as prob approaches one is point mass at one */ if (prob == 1) return (x == 1) ? ACT_D__1 : ACT_D__0; return ACT_D_val(dgeom(x - 1, prob, /*give_log*/0)); } double pztgeom(double x, double prob, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(prob)) return x + prob; #endif if (prob <= 0 || prob > 1) return R_NaN; if (x < 1) return ACT_DT_0; if (!R_FINITE(x)) return ACT_DT_1; /* limiting case as prob approaches one is point mass at one */ if (prob == 1) return (x >= 1) ? ACT_DT_1 : ACT_DT_0; return ACT_DT_Cval(pgeom(x - 1, prob, /*l._t.*/0, /*log_p*/0)); } double qztgeom(double x, double prob, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(prob)) return x + prob; #endif if (prob <= 0 || prob > 1) return R_NaN; /* limiting case as prob approaches one is point mass at one */ if (prob == 1) { /* simplified ACT_Q_P01_boundaries macro */ if (log_p) { if (x > 0) return R_NaN; return 1.0; } else /* !log_p */ { if (x < 0 || x > 1) return R_NaN; return 1.0; } } ACT_Q_P01_boundaries(x, 1, R_PosInf); x = ACT_DT_qIv(x); return 1 + qgeom(x, prob, /*l._t.*/1, /*log_p*/0); } double rztgeom(double prob) { if (!R_FINITE(prob) || prob <= 0 || prob > 1) return R_NaN; /* limiting case as p approaches one is point mass at one */ if (prob == 1) return 1.0; return 1 + rpois(exp_rand() * ((1 - prob) / prob)); } actuar/src/poisinvgauss.c0000644000176200001440000001226314054204377015230 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, and to simulate random variates for the Poisson-inverse * gaussian distribution. See ../R/PoissonInverseGaussian.R for * details. * * We work with the density expressed as * * p(x) = sqrt(1/phi) sqrt(1/(pi/2)) exp(1/(phi mu))/x! * * [sqrt(2 phi (1 + (2 phi mu^2)^(-1)))]^(-(x - 0.5)) * * bessel_k(sqrt(2/phi (1 + (2 phi mu^2)^(-1))), x - 0.5) * * or, is essence, * * p(x) = A exp(1/(phi mu))/x! B^(-y) bessel_k(B/phi, y) * * The limiting case mu = Inf is handled "automatically" with terms * going to zero when mu is Inf. Specific code not worth it since the * function should rarely be evaluated with mu = Inf in practice. * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dpoisinvgauss_raw(double x, double mu, double phi, int give_log) { /* Here assume that x is integer, 0 < x < Inf, mu > 0, 0 < phi < Inf */ int i; double p, pi1m, pi2m; double twophi = phi + phi; /* limiting case mu = Inf with simpler recursive formulas */ if (!R_FINITE(mu)) { p = -sqrt(2/phi); /* log p[0] */ if (x == 0.0) return ACT_D_exp(p); pi2m = exp(p); /* p[i - 2] = p[0]*/ p = p - (M_LN2 + log(phi))/2; /* log p[1] */ if (x == 1.0) return ACT_D_exp(p); pi1m = exp(p); /* p[i - 1] = p[1] */ for (i = 2; i <= x; i++) { p = (1 - 1.5/i) * pi1m + pi2m/twophi/(i * (i - 1)); pi2m = pi1m; pi1m = p; } return ACT_D_val(p); } /* else: "standard" case with mu < Inf */ double A, B; double mu2 = mu * mu; double twophimu2 = twophi * mu2; p = (1.0 - sqrt(1.0 + twophimu2))/phi/mu; /* log p[0] */ if (x == 0.0) return ACT_D_exp(p); pi2m = exp(p); /* p[i - 2] = p[0]*/ p = log(mu) + p - log1p(twophimu2)/2.0; /* log p[1] */ if (x == 1.0) return ACT_D_exp(p); pi1m = exp(p); /* p[i - 1] = p[1] */ A = 1.0/(1.0 + 1.0/twophimu2); /* constant in first term */ B = mu2/(1.0 + twophimu2); /* constant in second term */ for (i = 2; i <= x; i++) { p = A * (1 - 1.5/i) * pi1m + (B * pi2m)/(i * (i - 1)); pi2m = pi1m; pi1m = p; } return ACT_D_val(p); } double dpoisinvgauss(double x, double mu, double phi, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(mu) || ISNAN(phi)) return x + mu + phi; #endif if (mu <= 0.0 || phi <= 0.0) return R_NaN; ACT_D_nonint_check(x); if (!R_FINITE(x) || x < 0.0) return ACT_D__0; /* limiting case phi = Inf */ if (!R_FINITE(phi)) return (x == 0) ? ACT_D__1 : ACT_D__0; return dpoisinvgauss_raw(x, mu, phi, give_log); } /* For ppoisinvgauss(), there does not seem to be algorithms much * more elaborate than successive computations of the probabilities. */ double ppoisinvgauss(double q, double mu, double phi, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(mu) || ISNAN(phi)) return q + mu + phi; #endif if (mu <= 0.0 || phi <= 0.0) return R_NaN; if (q < 0) return ACT_DT_0; /* limiting case phi = Inf */ if (!R_FINITE(phi)) return ACT_DT_1; if (!R_FINITE(q)) return ACT_DT_1; int x; double s = 0; for (x = 0; x <= q; x++) s += dpoisinvgauss_raw(x, mu, phi, /*give_log*/ 0); return ACT_DT_val(s); } /* For qpoisinvgauss() we mostly reuse the code from qnbinom() et al. * of R sources. From src/nmath/qnbinom.c: * * METHOD * * Uses the Cornish-Fisher Expansion to include a skewness * correction to a normal approximation. This gives an * initial value which never seems to be off by more than * 1 or 2. A search is then conducted of values close to * this initial start point. * * For the limiting case mu = Inf (that has no finite moments), we * use instead the quantile of an inverse chi-square distribution as * starting point. */ #define _thisDIST_ poisinvgauss #define _dist_PARS_DECL_ double mu, double phi #define _dist_PARS_ mu, phi #include "qDiscrete_search.h" /* do_search() et al. */ double qpoisinvgauss(double p, double mu, double phi, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(mu) || ISNAN(phi)) return p + mu + phi; #endif if (mu <= 0.0 || phi <= 0.0) return R_NaN; /* limiting case phi = Inf */ if (!R_FINITE(phi)) return 0.0; ACT_Q_P01_boundaries(p, 0, R_PosInf); double phim2 = phi * mu * mu, sigma2 = phim2 * mu + mu, sigma = sqrt(sigma2), gamma = (3 * phim2 * sigma2 + mu)/sigma2/sigma; /* q_DISCRETE_01_CHECKS(); */ /* limiting case mu = Inf -> inverse chi-square as starting point*/ /* other cases -> Cornish-Fisher as usual */ double z, y; if (!R_FINITE(mu)) y = ACT_forceint(1/phi/qchisq(p, 1, lower_tail, log_p)); else { z = qnorm(p, 0., 1., lower_tail, log_p); y = ACT_forceint(mu + sigma * (z + gamma * (z*z - 1) / 6)); } q_DISCRETE_BODY(); } double rpoisinvgauss(double mu, double phi) { if (mu <= 0.0 || phi <= 0.0) return R_NaN; return rpois(rinvgauss(mu, phi)); } actuar/src/actuar.h0000644000176200001440000004533514054204377013770 0ustar liggesusers#include /*Error messages */ #define R_MSG_NA _("NaNs produced") /* Interfaces to routines from package expint */ extern double(*actuar_gamma_inc)(double,double); /* Functions accessed from .External() */ SEXP actuar_do_dpq(SEXP args); SEXP actuar_do_dpq0(int code, SEXP args); SEXP actuar_do_dpq1(int code, SEXP args); SEXP actuar_do_dpq2(int code, SEXP args); SEXP actuar_do_dpq3(int code, SEXP args); SEXP actuar_do_dpq4(int code, SEXP args); SEXP actuar_do_dpq5(int code, SEXP args); SEXP actuar_do_dpq6(int code, SEXP args); SEXP actuar_do_random(SEXP args); SEXP actuar_do_random1(int code, SEXP args, SEXPTYPE type); SEXP actuar_do_random2(int code, SEXP args, SEXPTYPE type); SEXP actuar_do_random3(int code, SEXP args, SEXPTYPE type); SEXP actuar_do_random4(int code, SEXP args, SEXPTYPE type); SEXP actuar_do_random5(int code, SEXP args, SEXPTYPE type); SEXP actuar_do_dpqphtype(SEXP args); SEXP actuar_do_dpqphtype2(int code, SEXP args); SEXP actuar_do_randomphtype(SEXP args); SEXP actuar_do_randomphtype2(int code, SEXP args, SEXPTYPE type); SEXP actuar_do_betaint(SEXP args); SEXP actuar_do_hierarc(SEXP args); SEXP actuar_do_panjer(SEXP args); /* Utility functions */ /* Matrix algebra */ void actuar_expm(double *x, int n, double *z); double actuar_expmprod(double *x, double *M, double *y, int n); void actuar_matpow(double *x, int n, int k, double *z); void actuar_solve(double *A, double *B, int n, int p, double *z); /* Special integrals */ double betaint(double x, double a, double b); double betaint_raw(double x, double a, double b, double x1m); /* Sampling */ int SampleSingleValue(int n, double *p); /* One parameter distributions */ double mexp(double order, double scale, int give_log); double levexp(double limit, double scale, double order, int give_log); double mgfexp(double t, double scale, int give_log); double dinvexp(double x, double scale, int give_log); double pinvexp(double q, double scale, int lower_tail, int log_p); double qinvexp(double p, double scale, int lower_tail, int log_p); double rinvexp(double scale); double minvexp(double order, double scale, int give_log); double levinvexp(double limit, double scale, double order, int give_log); double dlogarithmic(double x, double prob, int give_log); double plogarithmic(double q, double prob, int lower_tail, int log_p); double qlogarithmic(double p, double prob, int lower_tail, int log_p); double rlogarithmic(double prob); double dztpois(double x, double lambda, int give_log); double pztpois(double q, double lambda, int lower_tail, int log_p); double qztpois(double p, double lambda, int lower_tail, int log_p); double rztpois(double lambda); double dztgeom(double x, double prob, int give_log); double pztgeom(double q, double prob, int lower_tail, int log_p); double qztgeom(double p, double prob, int lower_tail, int log_p); double rztgeom(double prob); /* Two parameter distributions */ double munif(double order, double min, double max, int give_log); double levunif(double limit, double min, double max, double order, int give_log); double mgfunif(double t, double min, double max, int give_log); double mnorm(double order, double mean, double sd, int give_log); double mgfnorm(double t, double mean, double sd, int give_log); double mbeta(double order, double shape1, double shape2, int give_log); double levbeta(double limit, double shape1, double shape2, double order, int give_log); double mgamma(double order, double shape, double scale, int give_log); double levgamma(double limit, double shape, double scale, double order, int give_log); double mgfgamma(double t, double shape, double scale, int give_log); double mchisq(double order, double df, double ncp, int give_log); double levchisq(double limit, double df, double ncp, double order, int give_log); double mgfchisq(double t, double df, double ncp, int give_log); double dinvgamma(double x, double scale, double shape, int give_log); double pinvgamma(double q, double scale, double shape, int lower_tail, int log_p); double qinvgamma(double p, double scale, double shape, int lower_tail, int log_p); double rinvgamma(double scale, double shape); double minvgamma(double order, double scale, double shape, int give_log); double levinvgamma(double limit, double scale, double shape, double order, int give_log); double mgfinvgamma(double t, double shape, double scale, int give_log); double dinvparalogis(double x, double shape, double scale, int give_log); double pinvparalogis(double q, double shape, double scale, int lower_tail, int log_p); double qinvparalogis(double p, double shape, double scale, int lower_tail, int log_p); double rinvparalogis(double shape, double scale); double minvparalogis(double order, double shape, double scale, int give_log); double levinvparalogis(double limit, double shape, double scale, double order, int give_log); double dinvpareto(double x, double shape, double scale, int give_log); double pinvpareto(double q, double shape, double scale, int lower_tail, int log_p); double qinvpareto(double p, double shape, double scale, int lower_tail, int log_p); double rinvpareto(double shape, double scale); double minvpareto(double order, double shape, double scale, int give_log); double levinvpareto(double limit, double shape, double scale, double order, int log_p); double dinvweibull(double x, double scale, double shape, int give_log); double pinvweibull(double q, double scale, double shape, int lower_tail, int log_p); double qinvweibull(double p, double scale, double shape, int lower_tail, int log_p); double rinvweibull(double scale, double shape); double minvweibull(double order, double scale, double shape, int give_log); double levinvweibull(double limit, double scale, double shape, double order, int give_log); double dlgamma(double x, double shapelog, double ratelog, int give_log); double plgamma(double q, double shapelog, double ratelog, int lower_tail, int log_p); double qlgamma(double p, double shapelog, double ratelog, int lower_tail, int log_p); double rlgamma(double ratelog, double shapelog); double mlgamma(double order, double shapelog, double ratelog, int give_log); double levlgamma(double limit, double shapelog, double ratelog, double order, int give_log); double dllogis(double x, double shape, double scale, int give_log); double pllogis(double q, double shape, double scale, int lower_tail, int log_p); double qllogis(double p, double shape, double scale, int lower_tail, int log_p); double rllogis(double shape, double scale); double mllogis(double order, double shape, double scale, int give_log); double levllogis(double limit, double shape, double scale, double order, int give_log); double mlnorm(double order, double logmean, double logsd, int give_log); double levlnorm(double limit, double logmean, double logsd, double order, int give_log); double dparalogis(double x, double shape, double scale, int give_log); double pparalogis(double q, double shape, double scale, int lower_tail, int log_p); double qparalogis(double p, double shape, double scale, int lower_tail, int log_p); double rparalogis(double shape, double scale); double mparalogis(double order, double shape, double scale, int give_log); double levparalogis(double limit, double shape, double scale, double order, int give_log); double dpareto(double x, double shape, double scale, int give_log); double ppareto(double q, double shape, double scale, int lower_tail, int log_p); double qpareto(double p, double shape, double scale, int lower_tail, int log_p); double rpareto(double shape, double scale); double mpareto(double order, double shape, double scale, int give_log); double levpareto(double limit, double shape, double scale, double order, int give_log); double dpareto1(double x, double shape, double scale, int give_log); double ppareto1(double q, double shape, double scale, int lower_tail, int log_p); double qpareto1(double p, double shape, double scale, int lower_tail, int log_p); double rpareto1(double shape, double scale); double mpareto1(double order, double shape, double scale, int give_log); double levpareto1(double limit, double shape, double scale, double order, int give_log); double mweibull(double order, double scale, double shape, int give_log); double levweibull(double limit, double scale, double shape, double order, int give_log); /* double minvGauss(double order, double nu, double lambda, int give_log); [defunct v3.0-0] */ /* double levinvGauss(double limit, double nu, double lambda, double order, int give_log); [idem] */ /* double mgfinvGauss(double t, double nu, double lambda, int give_log); [idem] */ double dgumbel(double x, double alpha, double beta, int give_log); double pgumbel(double q, double alpha, double beta, int lower_tail, int log_p); double qgumbel(double p, double alpha, double beta, int lower_tail, int log_p); double rgumbel(double alpha, double beta); double mgumbel(double order, double alpha, double beta, int give_log); double mgfgumbel(double t, double alpha, double beta, int give_log); double dinvgauss(double x, double mu, double phi, int give_log); double pinvgauss(double q, double mu, double phi, int lower_tail, int log_p); double qinvgauss(double q, double mu, double phi, int lower_tail, int log_p, double tol, int maxit, int echo); double rinvgauss(double mu, double phi); double minvgauss(double order, double mean, double phi, int give_log); double levinvgauss(double limit, double mean, double phi, double order, int give_log); double mgfinvgauss(double t, double mean, double phi, int give_log); double dztnbinom(double x, double size, double prob, int give_log); double pztnbinom(double q, double size, double prob, int lower_tail, int log_p); double qztnbinom(double p, double size, double prob, int lower_tail, int log_p); double rztnbinom(double size, double prob); double dztbinom(double x, double size, double prob, int give_log); double pztbinom(double q, double size, double prob, int lower_tail, int log_p); double qztbinom(double p, double size, double prob, int lower_tail, int log_p); double rztbinom(double size, double prob); double dzmlogarithmic(double x, double p, double p0m, int give_log); double pzmlogarithmic(double x, double p, double p0m, int lower_tail, int log_p); double qzmlogarithmic(double x, double p, double p0m, int lower_tail, int log_p); double rzmlogarithmic(double p, double p0m); double dzmpois(double x, double lambda, double p0m, int give_log); double pzmpois(double q, double lambda, double p0m, int lower_tail, int log_p); double qzmpois(double p, double lambda, double p0m, int lower_tail, int log_p); double rzmpois(double lambda, double p0m); double dzmgeom(double x, double prob, double p0m, int give_log); double pzmgeom(double q, double prob, double p0m, int lower_tail, int log_p); double qzmgeom(double p, double prob, double p0m, int lower_tail, int log_p); double rzmgeom(double prob, double p0m); double dpoisinvgauss(double x, double mu, double phi, int give_log); double ppoisinvgauss(double q, double mu, double phi, int lower_tail, int log_p); double qpoisinvgauss(double p, double mu, double phi, int lower_tail, int log_p); double rpoisinvgauss(double mu, double phi); /* Three parameter distributions */ double dburr(double x, double shape1, double shape2, double scale, int give_log); double pburr(double q, double shape1, double shape2, double scale, int lower_tail, int log_p); double qburr(double p, double shape1, double shape2, double scale, int lower_tail, int log_p); double rburr(double shape1, double shape2, double scale); double mburr(double order, double shape1, double shape2, double scale, int give_log); double levburr(double limit, double shape1, double shape2, double scale, double order, int give_log); double dgenpareto(double x, double shape1, double shape2, double scale, int give_log); double pgenpareto(double q, double shape1, double shape2, double scale, int lower_tail, int log_p); double qgenpareto(double p, double shape1, double shape2, double scale, int lower_tail, int log_p); double rgenpareto(double shape1, double shape2, double scale); double mgenpareto(double order, double shape1, double shape2, double scale, int give_log); double levgenpareto(double limit, double shape1, double shape2, double scale, double order, int give_log); double dinvburr(double x, double shape1, double shape2, double scale, int give_log); double pinvburr(double q, double shape1, double shape2, double scale, int lower_tail, int log_p); double qinvburr(double p, double shape1, double shape2, double scale, int lower_tail, int log_p); double rinvburr(double shape1, double shape2, double scale); double minvburr(double order, double shape1, double shape2, double scale, int give_log); double levinvburr(double limit, double shape1, double shape2, double scale, double order, int give_log); double dinvtrgamma(double x, double shape1, double shape2, double scale, int give_log); double pinvtrgamma(double q, double shape1, double shape2, double scale, int lower_tail, int log_p); double qinvtrgamma(double p, double shape1, double shape2, double scale, int lower_tail, int log_p); double rinvtrgamma(double shape1, double shape2, double scale); double minvtrgamma(double order, double shape1, double shape2, double scale, int give_log); double levinvtrgamma(double limit, double shape1, double shape2, double scale, double order, int give_log); double dtrgamma(double x, double shape1, double shape2, double scale, int give_log); double ptrgamma(double q, double shape1, double shape2, double scale, int lower_tail, int log_p); double qtrgamma(double p, double shape1, double shape2, double scale, int lower_tail, int log_p); double rtrgamma(double shape1, double shape2, double scale); double mtrgamma(double order, double shape1, double shape2, double scale, int give_log); double levtrgamma(double limit, double shape1, double shape2, double scale, double order, int give_log); double dpareto2(double x, double min, double shape, double scale, int give_log); double ppareto2(double q, double min, double shape, double scale, int lower_tail, int log_p); double qpareto2(double p, double min, double shape, double scale, int lower_tail, int log_p); double rpareto2(double min, double shape, double scale); double mpareto2(double order, double min, double shape, double scale, int give_log); double levpareto2(double limit, double min, double shape, double scale, double order, int give_log); double dpareto3(double x, double min, double shape, double scale, int give_log); double ppareto3(double q, double min, double shape, double scale, int lower_tail, int log_p); double qpareto3(double p, double min, double shape, double scale, int lower_tail, int log_p); double rpareto3(double min, double shape, double scale); double mpareto3(double order, double min, double shape, double scale, int give_log); double levpareto3(double limit, double min, double shape, double scale, double order, int give_log); double dzmnbinom(double x, double size, double prob, double p0m, int give_log); double pzmnbinom(double q, double size, double prob, double p0m, int lower_tail, int log_p); double qzmnbinom(double p, double size, double prob, double p0m, int lower_tail, int log_p); double rzmnbinom(double size, double prob, double p0m); double dzmbinom(double x, double size, double prob, double p0m, int give_log); double pzmbinom(double q, double size, double prob, double p0m, int lower_tail, int log_p); double qzmbinom(double p, double size, double prob, double p0m, int lower_tail, int log_p); double rzmbinom(double size, double prob, double p0m); /* Four parameter distributions */ double dgenbeta(double x, double shape1, double shape2, double shape3, double scale, int give_log); double pgenbeta(double q, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p); double qgenbeta(double p, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p); double rgenbeta(double shape1, double shape2, double shape3, double scale); double mgenbeta(double order, double shape1, double shape2, double shape3, double scale, int give_log); double levgenbeta(double limit, double shape1, double shape2, double shape3, double scale, double order, int give_log); double dtrbeta(double x, double shape1, double shape2, double shape3, double scale, int give_log); double ptrbeta(double q, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p); double qtrbeta(double p, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p); double rtrbeta(double shape1, double shape2, double shape3, double scale); double mtrbeta(double order, double shape1, double shape2, double shape3, double scale, int give_log); double levtrbeta(double limit, double shape1, double shape2, double shape3, double scale, double order, int give_log); double dpareto4(double x, double min, double shape1, double shape2, double scale, int give_log); double ppareto4(double q, double min, double shape1, double shape2, double scale, int lower_tail, int log_p); double qpareto4(double p, double min, double shape1, double shape2, double scale, int lower_tail, int log_p); double rpareto4(double min, double shape1, double shape2, double scale); double mpareto4(double order, double min, double shape1, double shape2, double scale, int give_log); double levpareto4(double limit, double min, double shape1, double shape2, double scale, double order, int give_log); /* Five parameter distributions */ double dfpareto(double x, double min, double shape1, double shape2, double shape3, double scale, int give_log); double pfpareto(double q, double min, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p); double qfpareto(double p, double min, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p); double rfpareto(double min, double shape1, double shape2, double shape3, double scale); double mfpareto(double order, double min, double shape1, double shape2, double shape3, double scale, int give_log); double levfpareto(double limit, double mu, double shape1, double shape2, double shape3, double scale, double order, int give_log); /* Phase-type distributions */ double dphtype(double x, double *pi, double *T, int m, int give_log); double pphtype(double x, double *pi, double *T, int m, int lower_tail, int log_p); double rphtype(double *pi, double **Q, double *rates, int m); double mphtype(double order, double *pi, double *T, int m, int give_log); double mgfphtype(double x, double *pi, double *T, int m, int give_log); /* Definitions for the tables linking the first group of functions to * the second one. Tables found in names.c. One table for * {d,p,q,m,lev} functions and one for the {r} functions since we * need one more argument: the type of the result. */ typedef struct { char *name; SEXP (*cfun)(int, SEXP); int code; } dpq_tab_struct; extern dpq_tab_struct dpq_tab[]; typedef struct { char *name; SEXP (*cfun)(int, SEXP, SEXPTYPE); int code; SEXPTYPE type; } random_tab_struct; extern random_tab_struct random_tab[]; actuar/src/gamma.c0000644000176200001440000000362514030725704013556 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to calculate raw and limited moments for the Gamma * distribution. See ../R/GammaSupp.R for details. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double mgamma(double order, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape) || ISNAN(scale)) return order + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape) return R_PosInf; return R_pow(scale, order) * gammafn(order + shape) / gammafn(shape); } double levgamma(double limit, double shape, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape) || ISNAN(scale) || ISNAN(order)) return limit + shape + scale + order; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape) return R_PosInf; if (limit <= 0.0) return 0.0; double u, tmp; tmp = order + shape; u = exp(log(limit) - log(scale)); return R_pow(scale, order) * gammafn(tmp) * pgamma(u, tmp, 1.0, 1, 0) / gammafn(shape) + ACT_DLIM__0(limit, order) * pgamma(u, shape, 1.0, 0, 0); } double mgfgamma(double t, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(t) || ISNAN(shape) || ISNAN(scale)) return t + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0 || scale * t > 1.) return R_NaN; if (t == 0.0) return ACT_D__1; return ACT_D_exp(-shape * log1p(-scale * t)); } actuar/src/pareto1.c0000644000176200001440000000567014030725704014051 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the single-parameter Pareto distribution. See * ../R/SingleParameterPareto.R for details. * * The density function is * * shape * min^shape / x^(shape + 1). * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double dpareto1(double x, double shape, double min, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape) || ISNAN(min)) return x + shape + min; #endif if (!R_FINITE(shape) || !R_FINITE(min) || shape <= 0.0 || min <= 0.0) return R_NaN; if (!R_FINITE(x) || x < min) return ACT_D__0; return ACT_D_exp(log(shape) + shape * log(min) - (shape + 1.0) * log(x)); } double ppareto1(double q, double shape, double min, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape) || ISNAN(min)) return q + shape + min; #endif if (!R_FINITE(shape) || !R_FINITE(min) || shape <= 0.0 || min <= 0.0) return R_NaN; if (q <= min) return ACT_DT_0; return ACT_DT_Cval(R_pow(min / q, shape)); } double qpareto1(double p, double shape, double min, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape) || ISNAN(min)) return p + shape + min; #endif if (!R_FINITE(shape) || !R_FINITE(min) || shape <= 0.0 || min <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, min, R_PosInf); p = ACT_D_qIv(p); return min / R_pow(ACT_D_Cval(p), 1.0/shape); } double rpareto1(double shape, double min) { if (!R_FINITE(shape) || !R_FINITE(min) || shape <= 0.0 || min <= 0.0) return R_NaN; return min / R_pow(unif_rand(), 1.0/shape); } double mpareto1(double order, double shape, double min, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape) || ISNAN(min)) return order + shape + min; #endif if (!R_FINITE(shape) || !R_FINITE(min) || !R_FINITE(order) || shape <= 0.0 || min <= 0.0) return R_NaN; if (order >= shape) return R_PosInf; return shape * R_pow(min, order) / (shape - order); } double levpareto1(double limit, double shape, double min, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape) || ISNAN(min) || ISNAN(order)) return limit + shape + min + order; #endif if (!R_FINITE(shape) || !R_FINITE(min) || !R_FINITE(order) || shape <= 0.0 || min <= 0.0) return R_NaN; if (limit <= min) return 0.0; double tmp = shape - order; return shape * R_pow(min, order) / tmp - order * R_pow(min, shape) / (tmp * R_pow(limit, tmp)); } actuar/src/util.c0000644000176200001440000003013614125442656013455 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Various utility functions for matrix algebra and sampling from * discrete distributions. * * The functions therein use LAPACK and BLAS routines. Nicely * formatted man pages for these can be found at * * * * AUTHORS: Vincent Goulet , Christophe * Dutang */ #define USE_FC_LEN_T #include #include #include #include #ifndef FCONE # define FCONE #endif #include "locale.h" /* For matrix exponential calculations. Pade constants * * n_{pqj} = [(p + q - j)! p!]/[(p + q)! j! (p - j)!] * * and * * d_{pqj} = [(p + q - j)! q!]/[(p + q)! j! (q - j)!] * * for p = q = 8 and j = 1, ..., 8. */ const static double padec88 [] = { 5.0000000000000000e-1, 1.1666666666666667e-1, 1.6666666666666667e-2, 1.6025641025641026e-3, 1.0683760683760684e-4, 4.8562548562548563e-6, 1.3875013875013875e-7, 1.9270852604185938e-9, }; /* Matrix exponential exp(x), where x is an (n x n) matrix. Result z * is an (n x n) matrix. Mostly lifted from the core of function * expm() of package Matrix, which is itself based on the function of * the same name in Octave. */ void actuar_expm(double *x, int n, double *z) { if (n == 1) z[0] = exp(x[0]); /* scalar exponential */ else { /* Constants */ int i, j; int nsqr = n * n, np1 = n + 1, is_uppertri = TRUE; int iloperm, ihiperm, iloscal, ihiscal, info, sqrpowscal; double infnorm, trshift, one = 1.0, zero = 0.0, m1pj = -1; /* Arrays */ int *pivot = (int *) R_alloc(n, sizeof(int)); /* pivot vector */ int *invperm = (int *) R_alloc(n, sizeof(int)); /* inverse permutation vector */ double *perm = (double *) R_alloc(n, sizeof(double)); /* permutation array */ double *scale = (double *) R_alloc(n, sizeof(double)); /* scale array */ double *work = (double *) R_alloc(nsqr, sizeof(double)); /* workspace array */ double *npp = (double *) R_alloc(nsqr, sizeof(double)); /* num. power Pade */ double *dpp = (double *) R_alloc(nsqr, sizeof(double)); /* denom. power Pade */ R_CheckStack(); Memcpy(z, x, nsqr); /* Check if matrix x is upper triangular; stop checking as * soon as a non-zero value is found below the diagonal. */ for (i = 0; i < n - 1 && is_uppertri; i++) for (j = i + 1; j < n; j++) if (!(is_uppertri = x[i * n + j] == 0.0)) break; /* Step 1 of preconditioning: shift diagonal by average * diagonal if positive. */ trshift = 0.0; for (i = 0; i < n; i++) trshift += x[i * np1]; trshift /= n; /* average diagonal element */ if (trshift > 0.0) for (i = 0; i < n; i++) z[i * np1] -= trshift; /* Step 2 of preconditioning: balancing with dgebal. */ if (is_uppertri) { /* no need to permute if x is upper triangular */ iloperm = 1; ihiperm = n; } else { F77_CALL(dgebal)("P", &n, z, &n, &iloperm, &ihiperm, perm, &info FCONE); if (info) error(_("LAPACK routine dgebal returned info code %d when permuting"), info); } F77_CALL(dgebal)("S", &n, z, &n, &iloscal, &ihiscal, scale, &info FCONE); if (info) error(_("LAPACK routine dgebal returned info code %d when scaling"), info); /* Step 3 of preconditioning: Scaling according to infinity * norm (a priori always needed). */ infnorm = F77_CALL(dlange)("I", &n, &n, z, &n, work FCONE); sqrpowscal = (infnorm > 0) ? imax2((int) 1 + log(infnorm)/M_LN2, 0) : 0; if (sqrpowscal > 0) { double scalefactor = R_pow_di(2, sqrpowscal); for (i = 0; i < nsqr; i++) z[i] /= scalefactor; } /* Pade approximation (p = q = 8): compute x^8, x^7, x^6, * ..., x^1 */ for (i = 0; i < nsqr; i++) { npp[i] = 0.0; dpp[i] = 0.0; } for (j = 7; j >= 0; j--) { /* npp = z * npp + padec88[j] * z */ F77_CALL(dgemm) ("N", "N", &n, &n, &n, &one, z, &n, npp, &n, &zero, work, &n FCONE FCONE); /* npp <- work + padec88[j] * z */ for (i = 0; i < nsqr; i++) npp[i] = work[i] + padec88[j] * z[i]; /* dpp = z * dpp + (-1)^j * padec88[j] * z */ F77_CALL(dgemm) ("N", "N", &n, &n, &n, &one, z, &n, dpp, &n, &zero, work, &n FCONE FCONE); for (i = 0; i < nsqr; i++) dpp[i] = work[i] + m1pj * padec88[j] * z[i]; m1pj *= -1; /* (-1)^j */ } /* power 0 */ for (i = 0; i < nsqr; i++) dpp[i] *= -1.0; for (j = 0; j < n; j++) { npp[j * np1] += 1.0; dpp[j * np1] += 1.0; } /* Pade approximation is (dpp)^-1 * npp. */ F77_CALL(dgetrf) (&n, &n, dpp, &n, pivot, &info); if (info) error(_("LAPACK routine dgetrf returned info code %d"), info); F77_CALL(dgetrs) ("N", &n, &n, dpp, &n, pivot, npp, &n, &info FCONE); if (info) error(_("LAPACK routine dgetrs returned info code %d"), info); Memcpy(z, npp, nsqr); /* Now undo all of the preconditioning */ /* Preconditioning 3: square the result for every power of 2 */ while (sqrpowscal--) { F77_CALL(dgemm)("N", "N", &n, &n, &n, &one, z, &n, z, &n, &zero, work, &n FCONE FCONE); Memcpy(z, work, nsqr); } /* Preconditioning 2: apply inverse scaling */ for (j = 0; j < n; j++) for (i = 0; i < n; i++) z[i + j * n] *= scale[i]/scale[j]; /* Inverse permuation if x is not upper triangular and 'perm' * is not the identity permutation */ if ((iloperm != 1 || ihiperm != n) && !is_uppertri) { /* balancing permutation vector */ for (i = 0; i < n; i++) invperm[i] = i; /* identity permutation */ /* leading permutations applied in forward order */ for (i = 0; i < (iloperm - 1); i++) { int permutedindex = (int) (perm[i]) - 1; int tmp = invperm[i]; invperm[i] = invperm[permutedindex]; invperm[permutedindex] = tmp; } /* trailing permutations applied in reverse order */ for (i = n - 1; i >= ihiperm; i--) { int permutedindex = (int) (perm[i]) - 1; int tmp = invperm[i]; invperm[i] = invperm[permutedindex]; invperm[permutedindex] = tmp; } /* construct inverse balancing permutation vector */ Memcpy(pivot, invperm, n); for (i = 0; i < n; i++) invperm[pivot[i]] = i; /* apply inverse permutation */ Memcpy(work, z, nsqr); for (j = 0; j < n; j++) for (i = 0; i < n; i++) z[i + j * n] = work[invperm[i] + invperm[j] * n]; } /* Preconditioning 1: Trace normalization */ if (trshift > 0) { double mult = exp(trshift); for (i = 0; i < nsqr; i++) z[i] *= mult; } } } /* Product x * exp(M) * y, where x is an (1 x n) vector, M is an (n x * n) matrix and y is an (n x 1) vector. Result z is a scalar. */ double actuar_expmprod(double *x, double *M, double *y, int n) { char *transa = "N"; int p = 1; double one = 1.0, zero = 0.0, *tmp, *expM; tmp = (double *) R_alloc(n, sizeof(double)); /* intermediate vector */ expM = (double *) R_alloc(n * n, sizeof(double)); /* matrix exponential */ /* Compute exp(M) */ actuar_expm(M, n, expM); /* Product tmp := x * exp(M) * (Dimensions: 1 x n 1 x n n x n) */ F77_CALL(dgemm)(transa, transa, &p, &n, &n, &one, x, &p, expM, &n, &zero, tmp, &p FCONE FCONE); /* Product z := tmp * y * (Dimensions: 1 x 1 1 x n n x 1) */ return F77_CALL(ddot)(&n, tmp, &p, y, &p); } /* Solution of a real system of linear equations AX = B, where A is an * (n x n) matrix and B is an (n x p) matrix. Essentially a simple * interface to the LAPACK routine DGESV based on modLa_dgesv() in * modules/lapack/laphack.c of R sources. Very little error checking * (e.g. no check that A is square) since it is currently used in a * very narrow and already controlled context. */ void actuar_solve(double *A, double *B, int n, int p, double *z) { int info, *ipiv; double *Avals; if (n == 0) error(_("'A' is 0-diml")); if (p == 0) error(_("no right-hand side in 'B'")); ipiv = (int *) R_alloc(n, sizeof(int)); /* Work on copies of A and B since they are overwritten by dgesv. */ Avals = (double *) R_alloc(n * n, sizeof(double)); Memcpy(Avals, A, (size_t) (n * n)); Memcpy(z, B, (size_t) (n * p)); F77_CALL(dgesv)(&n, &p, Avals, &n, ipiv, z, &n, &info); if (info < 0) error(_("argument %d of Lapack routine dgesv had invalid value"), -info); if (info > 0) error(_("Lapack routine dgesv: system is exactly singular")); } /* Power of a matrix x^k := x x ... x, where x in an (n x n) matrix * and k is an *integer* (including -1). This function is fairly naive * with little error checking since it is currently used in a very * narrow and already controlled context. */ void actuar_matpow(double *x, int n, int k, double *z) { if (k == 0) { /* Return identity matrix */ int i, j; for (i = 0; i < n; i++) for (j = 0; j < n; j++) z[i * n + j] = (i == j) ? 1.0 : 0.0; } else { char *transa = "N"; double one = 1.0, zero = 0.0, *tmp, *xtmp; xtmp = (double *) R_alloc(n * n, sizeof(double)); /* If k is negative, invert matrix first. */ if (k < 0) { k = -k; /* Create identity matrix for use in actuar_solve() */ int i, j; double *y = (double *) R_alloc(n * n, sizeof(double)); for (i = 0; i < n; i++) for (j = 0; j < n; j++) y[i * n + j] = (i == j) ? 1.0 : 0.0; /* Inverse */ actuar_solve(x, y, n, n, xtmp); } else Memcpy(xtmp, x, (size_t) (n * n)); /* Take powers in multiples of 2 until there is only one * product left to make. That is, if k = 5, compute (x * x), * then ((x * x) * (x * x)) and finally ((x * x) * (x * x)) * * x. Idea taken from Octave in file .../src/xpow.cc. */ Memcpy(z, xtmp, (size_t) (n * n)); k--; tmp = (double *) R_alloc(n * n, sizeof(double)); while (k > 0) { if (k & 1) /* z = z * xtmp */ { F77_CALL(dgemm)(transa, transa, &n, &n, &n, &one, z, &n, xtmp, &n, &zero, tmp, &n FCONE FCONE); Memcpy(z, tmp, (size_t) (n * n)); } k >>= 1; /* efficient division by 2 */ if (k > 0) /* xtmp = xtmp * xtmp */ { F77_CALL(dgemm)(transa, transa, &n, &n, &n, &one, xtmp, &n, xtmp, &n, &zero, tmp, &n FCONE FCONE); Memcpy(xtmp, tmp, (size_t) (n * n)); } } } } /* Simple function to sample one value from a discrete distribution on * 0, 1, ..., n - 1, n using probabilities p[0], ..., p[n - 1], 1 - * (p[0] + ... + p[n - 1]). */ int SampleSingleValue(int n, double *p) { int i; double pcum = p[0], u = unif_rand(); for (i = 0; u > pcum && i < n; i++) if (i < n - 1) pcum += p[i + 1]; return i; } actuar/src/beta.c0000644000176200001440000000267314030725704013411 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to calculate raw and limited moments for the Beta * distribution. See ../R/BetaMoments.R for details. * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double mbeta(double order, double shape1, double shape2, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape1) || ISNAN(shape2)) return order + shape1 + shape2; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0) return R_NaN; if (order <= -shape1) return R_PosInf; return beta(shape1 + order, shape2) / beta(shape1, shape2); } double levbeta(double limit, double shape1, double shape2, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(order)) return limit + shape1 + shape2 + order; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0) return R_NaN; if (order <= -shape1) return R_PosInf; if (limit <= 0.0) return 0.0; double tmp = order + shape1; return beta(tmp, shape2) / beta(shape1, shape2) * pbeta(limit, tmp, shape2, 1, 0) + ACT_DLIM__0(limit, order) * pbeta(limit, shape1, shape2, 0, 0); } actuar/src/trgamma.c0000644000176200001440000001045214030725704014120 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the transformed gamma distribution. See ../R/TransformedGamma.R * for details. * * We work with the density expressed as * * shape2 * u^shape1 * e^(-u) / (x * gamma(shape1)) * * with u = (x/scale)^shape2. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double dtrgamma(double x, double shape1, double shape2, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return x + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < 0.0) return ACT_D__0; /* handle x == 0 separately */ if (x == 0.0) { if (shape1 * shape2 < 1) return R_PosInf; if (shape1 * shape2 > 1) return ACT_D__0; /* else */ return give_log ? log(shape2) - log(scale) - lgammafn(shape1) : shape2 / (scale * gammafn(shape1)); } double logu = shape2 * (log(x) - log(scale)); return ACT_D_exp(log(shape2) + shape1 * logu - exp(logu) - log(x) - lgammafn(shape1)); } double ptrgamma(double q, double shape1, double shape2, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return q + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (q <= 0) return ACT_DT_0; double u = exp(shape2 * (log(q) - log(scale))); return pgamma(u, shape1, 1.0, lower_tail, log_p); } double qtrgamma(double p, double shape1, double shape2, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return p + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return scale * R_pow(qgamma(p, shape1, 1.0, lower_tail, 0), 1.0/shape2); } double rtrgamma(double shape1, double shape2, double scale) { if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; return scale * R_pow(rgamma(shape1, 1.0), 1.0/shape2); } double mtrgamma(double order, double shape1, double shape2, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return order + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape1 * shape2) return R_PosInf; return R_pow(scale, order) * gammafn(shape1 + order/shape2) / gammafn(shape1); } double levtrgamma(double limit, double shape1, double shape2, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale) || ISNAN(order)) return limit + shape1 + shape2 + scale + order; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape1 * shape2) return R_PosInf; if (limit <= 0.0) return 0.0; double u, tmp; tmp = shape1 + order / shape2; u = exp(shape2 * (log(limit) - log(scale))); return R_pow(scale, order) * gammafn(tmp) * pgamma(u, tmp, 1.0, 1, 0) / gammafn(shape1) + ACT_DLIM__0(limit, order) * pgamma(u, shape1, 1.0, 0, 0); } actuar/src/ztbinom.c0000644000176200001440000000663614030725704014163 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute probability function, cumulative distribution * and quantile functions, and to simulate random variates for the * zero-truncated binomial distribution. See * ../R/ZeroTruncatedBinomial.R for details. * * Zero-truncated distributions have density * * Pr[Z = x] = Pr[X = x]/(1 - Pr[X = 0]), * * and distribution function * * Pr[Z <= x] = (Pr[X <= x] - Pr[X = 0])/(1 - Pr[X = 0]) * * or, alternatively, survival function * * Pr[Z > x] = Pr[X > x]/(1 - Pr[X = 0]). * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" /* The binomial distribution has * * F(0) = Pr[X = 0] = (1 - prob)^size. * * Support is x = 1, ..., size. * * Limiting cases: * * 1. size == 1 is point mass at x = 1; * 2. prob == 0 is point mass at x = 1. */ double dztbinom(double x, double size, double prob, int give_log) { /* We compute Pr[X = 0] with dbinom_raw() [as would eventually * dbinom()] to take advantage of all the optimizations for * small/large values of 'prob' and 'size' (and also to skip some * validity tests). */ #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(prob)) return x + size + prob; #endif if (prob < 0 || prob > 1 || size < 1) return R_NaN; if (x < 1 || !R_FINITE(x)) return ACT_D__0; /* limiting cases as size -> 1 or prob -> 0 are point mass at one */ if (size == 1 || prob == 0) return (x == 1) ? ACT_D__1 : ACT_D__0; double lp0 = dbinom_raw(0, size, prob, 1 - prob, /*give_log*/1); return ACT_D_val(dbinom(x, size, prob, /*give_log*/0)/(-expm1(lp0))); } double pztbinom(double x, double size, double prob, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(prob)) return x + size + prob; #endif if (prob < 0 || prob > 1 || size < 1) return R_NaN; if (x < 1) return ACT_DT_0; if (!R_FINITE(x)) return ACT_DT_1; /* limiting cases as size -> 1 or prob -> 0 are point mass at one */ if (size == 1 || prob == 0) return (x >= 1) ? ACT_DT_1 : ACT_DT_0; double lp0 = dbinom_raw(0, size, prob, 1 - prob, /*give_log*/1); return ACT_DT_Cval(pbinom(x, size, prob, /*l._t.*/0, /*log_p*/0)/(-expm1(lp0))); } double qztbinom(double x, double size, double prob, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(prob)) return x + size + prob; #endif if (prob < 0 || prob > 1 || size < 1) return R_NaN; /* limiting cases as size -> 1 or prob -> 0 are point mass at one */ if (size == 1 || prob == 0) { /* simplified ACT_Q_P01_boundaries macro */ if (log_p) { if (x > 0) return R_NaN; return 1.0; } else /* !log_p */ { if (x < 0 || x > 1) return R_NaN; return 1.0; } } ACT_Q_P01_boundaries(x, 1, size); x = ACT_DT_qIv(x); double p0 = dbinom_raw(0, size, prob, 1 - prob, /*give_log*/0); return qbinom(p0 + (1 - p0) * x, size, prob, /*l._t.*/1, /*log_p*/0); } double rztbinom(double size, double prob) { if (!R_FINITE(prob) || prob < 0 || prob > 1 || size < 0) return R_NaN; /* limiting cases as size -> 1 or prob -> 0 are point mass at one */ if (size == 1 || prob == 0) return 1.0; double p0 = dbinom_raw(0, size, prob, 1 - prob, /*give_log*/0); return qbinom(runif(p0, 1), size, prob, /*l._t.*/1, /*log_p*/0); } actuar/src/fpareto.c0000644000176200001440000001664614030725704014143 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the Feller-Pareto distribution. See ../R/FellerPareto.R for * details. * * We work with the density expressed as * * shape2 * u^shape3 * (1 - u)^shape1 / ((x - min) * beta(shape1, shape3)) * * with u = v/(1 + v) = 1/(1 + 1/v), v = ((x - min)/scale)^shape2. * * AUTHORS: Nicholas Langevin and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dfpareto(double x, double min, double shape1, double shape2, double shape3, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(min) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale)) return x + min + shape1 + shape2 + shape3 + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < min) return ACT_D__0; /* handle (x - min) == 0 separately */ if (x == min) { if (shape2 * shape3 < 1) return R_PosInf; if (shape2 * shape3 > 1) return ACT_D__0; /* else */ return give_log ? log(shape2) - log(scale) - lbeta(shape3, shape1) : shape2 / (scale * beta(shape3, shape1)); } double logv, logu, log1mu; logv = shape2 * (log(x - min) - log(scale)); logu = - log1pexp(-logv); log1mu = - log1pexp(logv); return ACT_D_exp(log(shape2) + shape3 * logu + shape1 * log1mu - log(x - min) - lbeta(shape3, shape1)); } double pfpareto(double q, double min, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(min) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale)) return q + min + shape1 + shape2 + shape3 + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; if (q <= min) return ACT_DT_0; double logvm, u; logvm = shape2 * (log(scale) - log(q - min)); /* -log v */ u = exp(-log1pexp(logvm)); if (u > 0.5) { /* Compute (1 - u) accurately */ double u1m = exp(-log1pexp(-logvm)); return pbeta(u1m, shape1, shape3, 1 - lower_tail, log_p); } /* else u <= 0.5 */ return pbeta(u, shape3, shape1, lower_tail, log_p); } double qfpareto(double p, double min, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(min) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale)) return p + min + shape1 + shape2 + shape3 + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, min, R_PosInf); p = ACT_D_qIv(p); return min + scale * R_pow(1.0 / qbeta(p, shape3, shape1, lower_tail, 0) - 1.0, -1.0/shape2); } double rfpareto(double min, double shape1, double shape2, double shape3, double scale) { if (!R_FINITE(min) || !R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; return min + scale * R_pow(1.0/rbeta(shape1, shape3) - 1.0, 1.0/shape2); } double mfpareto(double order, double min, double shape1, double shape2, double shape3, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(min) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale)) return order + min + shape1 + shape2 + shape3 + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; /* The case min = 0 is a Transformed Beta with a larger range of * admissible values for order: - shape3 * shape2 < order < * shape1 * shape2. */ if (min == 0.0) return mtrbeta(order, shape1, shape2, shape3, scale, give_log); /* From now on min != 0 and order must be a stricly non negative * integer < shape1 * shape2. */ if (order < 0.0) return R_NaN; if (order >= shape1 * shape2) return R_PosInf; int i; double order0 = order; double tmp, sum, r = scale/min; double Be = beta(shape1, shape3); if (ACT_nonint(order)) { order = ACT_forceint(order); warning(_("'order' (%.2f) must be integer, rounded to %.0f"), order0, order); } sum = Be; /* first term in the sum */ for (i = 1; i <= order; i++) { tmp = i/shape2; sum += choose(order, i) * R_pow(r, i) * beta(shape3 + tmp, shape1 - tmp); } return R_pow(min, order) * sum / Be; } double levfpareto(double limit, double min, double shape1, double shape2, double shape3, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(min) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale) || ISNAN(order)) return limit + min + shape1 + shape2 + shape3 + scale + order; #endif if (!R_FINITE(min) || !R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; if (limit <= min) return 0.0; /* The case min = 0 is a Transformed Beta with a larger range of * admissible values for order: order > - shape3 * shape2. */ if (min == 0.0) return levtrbeta(limit, shape1, shape2, shape3, scale, order, give_log); /* From now on min != 0 and order must be a stricly non negative * integer. */ if (order < 0.0) return R_NaN; int i; double order0 = order; double logv, u, u1m, Ix; double tmp, sum, r = scale / min; logv = shape2 * (log(limit - min) - log(scale)); u = exp(-log1pexp(-logv)); u1m = exp(-log1pexp(logv)); if (ACT_nonint(order)) { order = ACT_forceint(order); warning(_("'order' (%.2f) must be integer, rounded to %.0f"), order0, order); } sum = betaint_raw(u, shape3, shape1, u1m); /* first term in the sum */ for (i = 1; i <= order; i++) { tmp = i / shape2; sum += choose(order, i) * R_pow(r, i) * betaint_raw(u, shape3 + tmp, shape1 - tmp, u1m); } Ix = (u > 0.5) ? pbeta(u1m, shape1, shape3, /*l._t.*/1, /*give_log*/0) : pbeta(u, shape3, shape1, /*l._t.*/0, /*give_log*/0); return R_pow(min, order) * sum / (gammafn(shape1) * gammafn(shape3)) + ACT_DLIM__0(limit, order) * Ix; } actuar/src/locale.h0000644000176200001440000000023714030725704013734 0ustar liggesusers/* Localization */ #include #ifdef ENABLE_NLS #include #define _(String) dgettext ("actuar", String) #else #define _(String) (String) #endif actuar/src/pareto3.c0000644000176200001440000001243014030725704014043 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the Pareto (type) III distribution. See ../R/Pareto3.R for * details. * * We work with the density expressed as * * shape * u * (1 - u) / (x - min) * * with u = v/(1 + v), v = ((x - min)/scale)^shape. * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dpareto3(double x, double min, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(min) || ISNAN(shape) || ISNAN(scale)) return x + min + shape + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < min) return ACT_D__0; /* handle x == min separately */ if (x == min) { if (shape < 1) return R_PosInf; if (shape > 1) return ACT_D__0; /* else */ return ACT_D_val(1.0/scale); } double logv, logu, log1mu; logv = shape * (log(x - min) - log(scale)); logu = - log1pexp(-logv); log1mu = - log1pexp(logv); return ACT_D_exp(log(shape) + logu + log1mu - log(x - min)); } double ppareto3(double q, double min, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(min) || ISNAN(shape) || ISNAN(scale)) return q + min + shape + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (q <= min) return ACT_DT_0; double u = exp(-log1pexp(shape * (log(scale) - log(q - min)))); return ACT_DT_val(u); } double qpareto3(double p, double min, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(min) || ISNAN(shape) || ISNAN(scale)) return p + min + shape + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return min + scale * R_pow(1.0/ACT_D_Cval(p) - 1.0, 1.0/shape); } double rpareto3(double min, double shape, double scale) { if (!R_FINITE(min) || !R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN; return min + scale * R_pow(1.0/unif_rand() - 1.0, 1.0/shape); } double mpareto3(double order, double min, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(min) || ISNAN(shape) || ISNAN(scale)) return order + shape + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; /* The case min = 0 is a loglogistic with a larger range of * admissible values for order: -shape < order < shape. */ if (min == 0.0) return mllogis(order, shape, scale, give_log); /* From now on min != 0 and order must be a stricly non negative * integer < shape. */ if (order < 0.0) return R_NaN; if (order >= shape) return R_PosInf; int i; double order0 = order; double tmp, sum, r = scale/min; if (ACT_nonint(order)) { order = ACT_forceint(order); warning(_("'order' (%.2f) must be integer, rounded to %.0f"), order0, order); } sum = 1.0; /* first term in the sum */ for (i = 1; i <= order; i++) { tmp = i / shape; sum += choose(order, i) * R_pow(r, i) * gammafn(1.0 + tmp) * gammafn(1.0 - tmp); } return R_pow(min, order) * sum; } double levpareto3(double limit, double min, double shape, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(min) || ISNAN(shape) || ISNAN(scale) || ISNAN(order)) return limit + min + shape + scale + order; #endif if (!R_FINITE(min) || !R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (limit <= min) return 0.0; /* The case min = 0 is a loglogistic with a larger range of * admissible values for order: order > -shape. */ if (min == 0.0) return levllogis(limit, shape, scale, order, give_log); /* From now on min != 0 and order must be a stricly non negative * integer. */ if (order < 0.0) return R_NaN; int i; double order0 = order; double logv, u, u1m; double tmp, sum, r = scale / min; logv = shape * (log(limit - min) - log(scale)); u = exp(-log1pexp(-logv)); u1m = exp(-log1pexp(logv)); if (ACT_nonint(order)) { order = ACT_forceint(order); warning(_("'order' (%.2f) must be integer, rounded to %.0f"), order0, order); } sum = betaint_raw(u, 1.0, 1.0, u1m); /* first term in the sum */ for (i = 1; i <= order; i++) { tmp = i / shape; sum += choose(order, i) * R_pow(r, i) * betaint_raw(u, 1.0 + tmp, 1.0 - tmp, u1m); } return R_pow(min, order) * sum + ACT_DLIM__0(limit, order) * (0.5 - u + 0.5); } actuar/src/pareto.c0000644000176200001440000000672214030725704013767 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the Pareto distribution. See ../R/Pareto.R for details. * * We work with the density expressed as * * shape * u^shape * (1 - u) / x * * with u = 1/(1 + v), v = x/scale. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dpareto(double x, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape) || ISNAN(scale)) return x + shape + scale; #endif if (!R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < 0.0) return ACT_D__0; /* handle x == 0 separately */ if (x == 0.0) return ACT_D_val(shape / scale); double logv, logu, log1mu; logv = log(x) - log(scale); logu = - log1pexp(logv); log1mu = - log1pexp(-logv); return ACT_D_exp(log(shape) + shape * logu + log1mu - log(x)); } double ppareto(double q, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape) || ISNAN(scale)) return q + shape + scale; #endif if (!R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (q <= 0) return ACT_DT_0; double u = exp(-log1pexp(log(q) - log(scale))); return ACT_DT_Cval(R_pow(u, shape)); } double qpareto(double p, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape) || ISNAN(scale)) return p + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return scale * (R_pow(ACT_D_Cval(p), -1.0/shape) - 1.0); } double rpareto(double shape, double scale) { if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN; return scale * (R_pow(unif_rand(), -1.0/shape) - 1.0); } double mpareto(double order, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape) || ISNAN(scale)) return order + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -1.0 || order >= shape) return R_PosInf; return R_pow(scale, order) * gammafn(1.0 + order) * gammafn(shape - order) / gammafn(shape); } double levpareto(double limit, double shape, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape) || ISNAN(scale) || ISNAN(order)) return limit + shape + scale + order; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -1.0) return R_PosInf; if (limit <= 0.0) return 0.0; double logv, u, u1m; logv = log(limit) - log(scale); u = exp(-log1pexp(logv)); u1m = exp(-log1pexp(-logv)); return R_pow(scale, order) * betaint_raw(u1m, 1.0 + order, shape - order, u) / gammafn(shape) + ACT_DLIM__0(limit, order) * R_pow(u, shape); } actuar/src/phtype.c0000644000176200001440000001305514030725704014003 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and moment * generating functions, raw moments and to simulate random variates * for Phase-type distributions. See ../R/PhaseType.R for details. * * The density function is * * pi * exp(x * T) * t * (1 x m) (m x m) (m x 1) * * for x > 0, with t = -T * e and e a 1-vector, and 1 - pi * e * for x = 0. * * AUTHOR: Vincent Goulet */ #include #include #include #include #include "actuar.h" #include "locale.h" #include "dpq.h" double dphtype(double x, double *pi, double *T, int m, int give_log) { if (!R_FINITE(x) || x < 0.0) return ACT_D__0; if (x == 0.0) { int i; double z = 0.0; for (i = 0; i < m; i++) z += pi[i]; return ACT_D_Clog(z); } int i, j, ij; double *t, *tmp; /* Build vector t (equal to minus the row sums of matrix T) and * matrix tmp = x * T. */ t = (double *) S_alloc(m, sizeof(double)); /* initialized to 0 */ tmp = (double *) R_alloc(m * m, sizeof(double)); for (i = 0; i < m; i++) for (j = 0; j < m; j++) { ij = i + j * m; t[i] -= T[ij]; tmp[ij] = x * T[ij]; } return ACT_D_val(actuar_expmprod(pi, tmp, t, m)); } double pphtype(double q, double *pi, double *T, int m, int lower_tail, int log_p) { /* Cumulative distribution function is * * 1 - pi * exp(q * T) * e * (1 x m) (m x m) (m x 1) * * for x > 0, where e a 1-vector, and 1 - pi * e for x = 0. */ if (q < 0.0) return ACT_DT_0; if (q == 0.0) { int i; double z = 0.0; for (i = 0; i < m; i++) z += pi[i]; return ACT_DT_Cval(z); } int i; double *e, *tmp; /* Create the 1-vector and multiply each element of T by q. */ e = (double *) R_alloc(m, sizeof(double)); for (i = 0; i < m; i++) e[i] = 1; tmp = (double *) R_alloc(m * m, sizeof(double)); for (i = 0; i < m * m; i++) tmp[i] = q * T[i]; return ACT_DT_Cval(actuar_expmprod(pi, tmp, e, m)); } double rphtype(double *pi, double **Q, double *rates, int m) { /* Algorithm based on Neuts, M. F. (1981), "Generating random * variates from a distribution of phase type", WSC '81: * Proceedings of the 13th conference on Winter simulation, IEEE * Press, */ int i, j, state, *nvisits; double z = 0.0; nvisits = (int *) S_alloc(m, sizeof(int)); /* Simulate initial state according to vector pi (transient states * are numbered 0, ..., m - 1 and absorbing state is numbered * m). See the definition of SampleSingleValue() to see why this * works fine here and below. */ state = SampleSingleValue(m, pi); /* Simulate the underlying Markov chain using transition matrix Q * while counting the number of visits in each transient state. */ while (state != m) { nvisits[state]++; state = SampleSingleValue(m, Q[state]); } /* Variate is the sum of as many exponential variates as there are * visits in each state, with the rate parameter varying per * state. */ for (i = 0; i < m; i++) for (j = 0; j < nvisits[i]; j++) z += exp_rand() / rates[i]; return z; } double mphtype(double order, double *pi, double *T, int m, int give_log) { /* Raw moment is * * order! * pi * (-T)^(-order) * e * (1 x 1) (1 x m) (m x m) (m x 1) * * where e is a 1-vector. Below, the moment is computed as * (-1)^order * order! * sum(pi * T^(-order)) */ if (order < 0.0 || ACT_nonint(order)) return R_NaN; int i, j; double tmp = 0.0, *Tpow; /* Compute the power of T */ Tpow = (double *) R_alloc(m * m, sizeof(double)); actuar_matpow(T, m, (int) -order, Tpow); /* Compute vector tmp = sum(pi * Tpow) */ for (i = 0; i < m; i++) for (j = 0; j < m; j++) tmp += pi[j] * Tpow[i * m + j]; /* Multiply by -1 if order is odd */ return ACT_D_val((int) order % 2 ? -gammafn(order + 1.0) * tmp : gammafn(order + 1.0) * tmp); } double mgfphtype(double x, double *pi, double *T, int m, int give_log) { /* Moment generating function is * * pi * (-x * I - T)^(-1) * t + (1 - pi * e) * (1 x m) (m x m) (m x 1) (1 x m) (m x 1) * * with t = -T * e, e a 1-vector and I the identity matrix. * Below, the mgf is computed as 1 - pi * (e + (x * I + T)^(-1) * t. */ if (x == 0.0) return ACT_D_exp(0.0); int i, j, ij; double z = 0.0, *t, *tmp1, *tmp2; /* Build vector t (equal to minux the row sums of matrix T) and * matrix tmp1 = x * I + T. */ t = (double *) S_alloc(m, sizeof(double)); /* initialized to 0 */ tmp1 = (double *) R_alloc(m * m, sizeof(double)); for (i = 0; i < m; i++) for (j = 0; j < m; j++) { ij = i + j * m; t[i] -= T[ij]; tmp1[ij] = (i == j) ? x + T[ij] : T[ij]; } /* Compute tmp2 = tmp1^(-1) * t */ tmp2 = (double *) R_alloc(m, sizeof(double)); actuar_solve(tmp1, t, m, 1, tmp2); /* Compute z = pi * (e + tmp2) */ for (i = 0; i < m; i++) z += pi[i] * (1 + tmp2[i]); return ACT_D_Clog(z); } actuar/src/invweibull.c0000644000176200001440000000643114030725704014652 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the inverse Weibull distribution. See ../R/InverseWeibull.R for * details. * * We work with the density expressed as * * shape * u * e^(-u) / x * * with u = (scale/x)^shape. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dinvweibull(double x, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape) || ISNAN(scale)) return x + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale < 0.0) return R_NaN;; /* handle also x == 0 here */ if (!R_FINITE(x) || x <= 0.0) return ACT_D__0; double logu = shape * (log(scale) - log(x)); return ACT_D_exp(log(shape) + logu - exp(logu) - log(x)); } double pinvweibull(double q, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape) || ISNAN(scale)) return q + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale < 0.0) return R_NaN;; if (q <= 0) return ACT_DT_0; double u = exp(shape * (log(scale) - log(q))); return ACT_DT_Eval(-u); } double qinvweibull(double p, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape) || ISNAN(scale)) return p + shape + scale; #endif if (!R_FINITE(scale) || !R_FINITE(shape) || scale <= 0.0 || shape <= 0.0) return R_NaN;; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return scale * R_pow(-log(ACT_D_Lval(p)), -1.0/shape); } double rinvweibull(double shape, double scale) { if (!R_FINITE(scale) || !R_FINITE(shape) || scale <= 0.0 || shape <= 0.0) return R_NaN;; return scale * R_pow(rexp(1.0), -1.0/shape); } double minvweibull(double order, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape) || ISNAN(scale)) return order + shape + scale; #endif if (!R_FINITE(scale) || !R_FINITE(shape) || !R_FINITE(order) || scale <= 0.0 || shape <= 0.0) return R_NaN; if (order >= shape) return R_PosInf; return R_pow(scale, order) * gammafn(1.0 - order / shape); } double levinvweibull(double limit, double shape, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape) || ISNAN(scale) || ISNAN(order)) return limit + shape + scale + order; #endif if (!R_FINITE(scale) || !R_FINITE(shape) || !R_FINITE(order) || scale <= 0.0 || shape <= 0.0) return R_NaN; if (order >= shape) return R_PosInf; if (limit <= 0.0) return 0.0; double u = exp(shape * (log(scale) - log(limit))); return R_pow(scale, order) * actuar_gamma_inc(1.0 - order/shape, u) + ACT_DLIM__0(limit, order) * (0.5 - exp(-u) + 0.5); } actuar/src/llogis.c0000644000176200001440000000713014030725704013760 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the loglogistic distribution. See ../R/Loglogistic.R for details. * * We work with the density expressed as * * shape * u * (1 - u) / x * * with u = v/(1 + v) = 1/(1 + 1/v), v = (x/scale)^shape. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dllogis(double x, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape) || ISNAN(scale)) return x + shape + scale; #endif if (!R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < 0.0) return ACT_D__0; /* handle x == 0 separately */ if (x == 0.0) { if (shape < 1) return R_PosInf; if (shape > 1) return ACT_D__0; /* else */ return ACT_D_val(1.0/scale); } double logv, logu, log1mu; logv = shape * (log(x) - log(scale)); logu = - log1pexp(-logv); log1mu = - log1pexp(logv); return ACT_D_exp(log(shape) + logu + log1mu - log(x)); } double pllogis(double q, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape) || ISNAN(scale)) return q + shape + scale; #endif if (!R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (q <= 0) return ACT_DT_0; double u = exp(-log1pexp(shape * (log(scale) - log(q)))); return ACT_DT_val(u); } double qllogis(double p, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape) || ISNAN(scale)) return p + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return scale * R_pow(1.0/ACT_D_Cval(p) - 1.0, 1.0/shape); } double rllogis(double shape, double scale) { if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN; return scale * R_pow(1.0/unif_rand() - 1.0, 1.0/shape); } double mllogis(double order, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape) || ISNAN(scale)) return order + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape || order >= shape) return R_PosInf; double tmp = order / shape; return R_pow(scale, order) * gammafn(1.0 + tmp) * gammafn(1.0 - tmp); } double levllogis(double limit, double shape, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape) || ISNAN(scale) || ISNAN(order)) return limit + shape + scale + order; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN;; if (order <= -shape) return R_PosInf; if (limit <= 0.0) return 0; double logv, u, u1m; double tmp = order / shape; logv = shape * (log(limit) - log(scale)); u = exp(-log1pexp(-logv)); u1m = exp(-log1pexp(logv)); return R_pow(scale, order) * betaint_raw(u, 1.0 + tmp, 1.0 - tmp, u1m) + ACT_DLIM__0(limit, order) * (0.5 - u + 0.5); } actuar/src/lgamma.c0000644000176200001440000000633114030725704013727 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, and to simulate random variates for the loggamma * distribution. See ../R/Loggamma.R for details. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double dlgamma(double x, double shapelog, double ratelog, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shapelog) || ISNAN(ratelog)) return x + shapelog + ratelog; #endif if (!R_FINITE(shapelog) || !R_FINITE(ratelog) || shapelog <= 0.0 || ratelog < 0.0) return R_NaN;; if (!R_FINITE(x) || x < 1.0) return ACT_D__0; return ACT_D_exp(dgamma(log(x), shapelog, 1.0/ratelog, 1) - log(x)); } double plgamma(double q, double shapelog, double ratelog, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shapelog) || ISNAN(ratelog)) return q + shapelog + ratelog; #endif if (!R_FINITE(shapelog) || !R_FINITE(ratelog) || shapelog <= 0.0 || ratelog < 0.0) return R_NaN;; if (q <= 1.0) return ACT_DT_0; return pgamma(log(q), shapelog, 1.0/ratelog, lower_tail, log_p); } double qlgamma(double p, double shapelog, double ratelog, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shapelog) || ISNAN(ratelog)) return p + shapelog + ratelog; #endif if (!R_FINITE(shapelog) || !R_FINITE(ratelog) || shapelog <= 0.0 || ratelog <= 0.0) return R_NaN;; ACT_Q_P01_boundaries(p, 1, R_PosInf); p = ACT_D_qIv(p); return exp(qgamma(p, shapelog, 1.0/ratelog, lower_tail, 0)); } double rlgamma(double shapelog, double ratelog) { if (!R_FINITE(shapelog) || !R_FINITE(ratelog) || shapelog <= 0.0 || ratelog <= 0.0) return R_NaN;; return exp(rgamma(shapelog, 1.0/ratelog)); } double mlgamma(double order, double shapelog, double ratelog, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shapelog) || ISNAN(ratelog)) return order + shapelog + ratelog; #endif if (!R_FINITE(shapelog) || !R_FINITE(ratelog) || !R_FINITE(order) || shapelog <= 0.0 || ratelog <= 0.0) return R_NaN; if (order >= ratelog) return R_PosInf; return R_pow(1.0 - order / ratelog, -shapelog); } double levlgamma(double limit, double shapelog, double ratelog, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shapelog) || ISNAN(ratelog) || ISNAN(order)) return limit + shapelog + ratelog + order; #endif if (!R_FINITE(shapelog) || !R_FINITE(ratelog) || !R_FINITE(limit) || !R_FINITE(order) || shapelog <= 0.0 || ratelog <= 0.0 || limit <= 0.0) return R_NaN; if (order >= ratelog) return R_PosInf; if (limit <= 1.0) return 0.0; double u = log(limit); return R_pow(1.0 - order / ratelog, -shapelog) * pgamma(u * (ratelog - order), shapelog, 1.0, 1, 0) + ACT_DLIM__0(limit, order) * pgamma(u * ratelog, shapelog, 1.0, 0, 0); } actuar/src/pareto2.c0000644000176200001440000001225014030725704014042 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the Pareto (type) II distribution. See ../R/Pareto2.R for * details. * * We work with the density expressed as * * shape * u^shape * (1 - u) / (x - min) * * with u = 1/(1 + v), v = (x - min)/scale. * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dpareto2(double x, double min, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(min) || ISNAN(shape) || ISNAN(scale)) return x + min + shape + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < min) return ACT_D__0; /* handle x == min separately */ if (x == min) return ACT_D_val(shape / scale); double logv, logu, log1mu; logv = log(x - min) - log(scale); logu = - log1pexp(logv); log1mu = - log1pexp(-logv); return ACT_D_exp(log(shape) + shape * logu + log1mu - log(x - min)); } double ppareto2(double q, double min, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(min) || ISNAN(shape) || ISNAN(scale)) return q + min + shape + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (q <= min) return ACT_DT_0; double u = exp(-log1pexp(log(q - min) - log(scale))); return ACT_DT_Cval(R_pow(u, shape)); } double qpareto2(double p, double min, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(min) || ISNAN(shape) || ISNAN(scale)) return p + min + shape + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return min + scale * (R_pow(ACT_D_Cval(p), -1.0/shape) - 1.0); } double rpareto2(double min, double shape, double scale) { if (!R_FINITE(min) || !R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN; return min + scale * (R_pow(unif_rand(), -1.0/shape) - 1.0); } double mpareto2(double order, double min, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(min) || ISNAN(shape) || ISNAN(scale)) return order + shape + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; /* The case min = 0 is a Pareto with a larger range of admissible * values for order: -1 < order < shape. */ if (min == 0.0) return mpareto(order, shape, scale, give_log); /* From now on min != 0 and order must be a stricly non negative * integer < shape. */ if (order < 0.0) return R_NaN; if (order >= shape) return R_PosInf; int i; double order0 = order; double sum, r = scale/min; double Ga = gammafn(shape); if (ACT_nonint(order)) { order = ACT_forceint(order); warning(_("'order' (%.2f) must be integer, rounded to %.0f"), order0, order); } sum = Ga; /* first term in the sum */ for (i = 1; i <= order; i++) { sum += choose(order, i) * R_pow(r, i) * gammafn(1.0 + i) * gammafn(shape - i); } return R_pow(min, order) * sum / Ga; } double levpareto2(double limit, double min, double shape, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(min) || ISNAN(shape) || ISNAN(scale) || ISNAN(order)) return limit + min + shape + scale + order; #endif if (!R_FINITE(min) || !R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (limit <= min) return 0.0; /* The case min = 0 is a Pareto with a larger range of admissible * values for order: order > -1. */ if (min == 0.0) return levpareto(limit, shape, scale, order, give_log); /* From now on min != 0 and order must be a stricly non negative * integer. */ if (order < 0.0) return R_NaN; int i; double order0 = order; double logv, u, u1m; double sum, r = scale / min; logv = log(limit - min) - log(scale); u = exp(-log1pexp(logv)); u1m = exp(-log1pexp(-logv)); if (ACT_nonint(order)) { order = ACT_forceint(order); warning(_("'order' (%.2f) must be integer, rounded to %.0f"), order0, order); } sum = betaint_raw(u1m, 1.0, shape, u); /* first term in the sum */ for (i = 1; i <= order; i++) { sum += choose(order, i) * R_pow(r, i) * betaint_raw(u1m, 1.0 + i, shape - i, u); } return R_pow(min, order) * sum / gammafn(shape) + ACT_DLIM__0(limit, order) * R_pow(u, shape); } actuar/src/zmbinom.c0000644000176200001440000001257214054204377014154 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute probability function, cumulative distribution * and quantile functions, and to simulate random variates for the * zero-modified binomial distribution. See * ../R/ZeroModifiedBinomial.R for details. * * Zero-modified distributions are discrete mixtures between a * degenerate distribution at zero and the corresponding, * non-modified, distribution. As a mixture, they have density * * Pr[Z = x] = [1 - (1 - p0m)/(1 - p0)] 1(x) * + [(1 - p0m)/(1 - p0)] Pr[X = 0], * * where p0 = Pr[X = 0]. The density can also be expressed as * Pr[Z = 0] = p0m and * * Pr[Z = x] = (1 - p0m) * Pr[X = x]/(1 - Pr[X = 0]), * * for x = 1, 2, ... The distribution function is, for all x, * * Pr[Z <= x] = 1 - (1 - p0m) * (1 - Pr[X <= x])/(1 - p0). * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" /* The binomial distribution has p0 = (1 - prob)^size. * * Limiting cases: * * 1. size == 0 is mass (1-p0m) at x = 1; * 2. prob == 0 is mass (1-p0m) at x = 1. */ double dzmbinom(double x, double size, double prob, double p0m, int give_log) { /* We compute Pr[X = 0] with dbinom_raw() [as would eventually * dbinom()] to take advantage of all the optimizations for * small/large values of 'prob' and 'size' (and also to skip some * validity tests). */ #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(prob) || ISNAN(p0m)) return x + size + prob + p0m; #endif if (prob < 0 || prob > 1 || size < 0 || p0m < 0 || p0m > 1) return R_NaN; if (x < 0 || !R_FINITE(x)) return ACT_D__0; if (x == 0) return ACT_D_val(p0m); /* NOTE: from now on x > 0 */ /* limiting cases as size -> 1 or prob -> 0 are mass (1-p0m) at one */ if (size == 1 || prob == 0) return (x == 1) ? ACT_D_Clog(p0m) : ACT_D__0; double lp0 = dbinom_raw(0, size, prob, 1 - prob, /*give_log*/1); return ACT_D_val((1 - p0m) * dbinom(x, size, prob, /*give_log*/0)/(-expm1(lp0))); } double pzmbinom(double x, double size, double prob, double p0m, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(prob) || ISNAN(p0m)) return x + size + prob + p0m; #endif if (prob < 0 || prob > 1 || size < 0 || p0m < 0 || p0m > 1) return R_NaN; if (x < 0) return ACT_DT_0; if (!R_FINITE(x)) return ACT_DT_1; if (x < 1) return ACT_DT_val(p0m); /* NOTE: from now on x >= 1 */ /* limiting cases as size -> 1 or prob -> 0 are mass (1-p0m) at one */ if (size == 1 || prob == 0) return ACT_DT_1; double lp0 = dbinom_raw(0, size, prob, 1 - prob, /*give_log*/1); /* working in log scale improves accuracy */ return ACT_DT_CEval(log1p(-p0m) + pbinom(x, size, prob, /*l._t.*/0, /*log_p*/1) - log1mexp(-lp0)); } double qzmbinom(double x, double size, double prob, double p0m, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(prob) || ISNAN(p0m)) return x + size + prob + p0m; #endif if (prob < 0 || prob > 1 || size < 0 || p0m < 0 || p0m > 1) return R_NaN; /* limiting cases as size -> 1 or prob -> 0 are mass (1-p0m) at one */ if (size == 1 || prob == 0) { /* simplified ACT_Q_P01_boundaries macro */ if (log_p) { if (x > 0) return R_NaN; return (x <= log(p0m)) ? 0.0 : 1.0; } else /* !log_p */ { if (x < 0 || x > 1) return R_NaN; return (x <= p0m) ? 0.0 : 1.0; } } ACT_Q_P01_boundaries(x, 1, size); x = ACT_DT_qIv(x); /* working in log scale improves accuracy */ double lp0 = dbinom_raw(0, size, prob, 1 - prob, /*give_log*/1); return qbinom(-expm1(log1mexp(-lp0) - log1p(-p0m) + log1p(-x)), size, prob, /*l._t.*/1, /*log_p*/0); } /* ALGORITHM FOR GENERATION OF RANDOM VARIATES * * 1. p0m >= p0: just simulate variates from the discrete mixture. * * 2. p0m < p0: fastest method depends on the difference p0 - p0m. * * 2.1 p0 - p0m < ACT_DIFFMAX_REJECTION: rejection method with an * envelope that differs from the target distribution at zero * only. In other words: rejection only at zero. * 2.2 p0 - p0m >= ACT_DIFFMAX_REJECTION: simulate variates from * discrete mixture with the corresponding zero truncated * distribution. * * The threshold ACT_DIFFMAX_REJECTION is distribution specific. */ #define ACT_DIFFMAX_REJECTION 0.9 double rzmbinom(double size, double prob, double p0m) { if (!R_FINITE(prob) || prob < 0 || prob > 1 || size < 0 || p0m < 0 || p0m > 1) return R_NaN; /* limiting cases as size -> 1 or prob -> 0 are mass (1-p0m) at one */ if (size == 1 || prob == 0) return (unif_rand() <= p0m) ? 0.0 : 1.0; double x, p0 = dbinom_raw(0, size, prob, 1 - prob, /*give_log*/0); /* p0m >= p0: generate from mixture */ if (p0m >= p0) return (unif_rand() * (1 - p0) < (1 - p0m)) ? rbinom(size, prob) : 0.0; /* p0m < p0: choice of algorithm depends on difference p0 - p0m */ if (p0 - p0m < ACT_DIFFMAX_REJECTION) { /* rejection method */ for (;;) { x = rbinom(size, prob); if (x != 0 || /* x == 0 and */ runif(0, p0 * (1 - p0m)) <= (1 - p0) * p0m) return x; } } else { /* generate from zero truncated mixture */ return (unif_rand() <= p0m) ? 0.0 : qbinom(runif(p0, 1), size, prob, /*l._t.*/1, /*log_p*/0); } } actuar/src/ztnbinom.c0000644000176200001440000000776114030725704014341 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute probability function, cumulative distribution * and quantile functions, and to simulate random variates for the * zero-truncated negative binomial distribution. See * ../R/ZeroTruncatedNegativeBinomial.R for details. * * Zero-truncated distributions have density * * Pr[Z = x] = Pr[X = x]/(1 - Pr[X = 0]), * * and distribution function * * Pr[Z <= x] = (Pr[X <= x] - Pr[X = 0])/(1 - Pr[X = 0]) * * or, alternatively, survival function * * Pr[Z > x] = Pr[X > x]/(1 - Pr[X = 0]). * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" /* The negative binomial distribution has * * F(0) = Pr[X = 0] = prob^size. * * Limiting cases: * * 1. size == 0 is Logarithmic(1 - prob) (according to the standard * parametrization of the logarithmic distribution used by * {d,p,q,r}logarithmic(); * 2. prob == 1 is point mass at x = 1. */ double dztnbinom(double x, double size, double prob, int give_log) { /* We compute Pr[X = 0] with dbinom_raw() [as would eventually * dnbinom()] to take advantage of all the optimizations for * small/large values of 'prob' and 'size' (and also to skip some * validity tests). */ #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(prob)) return x + size + prob; #endif if (prob <= 0 || prob > 1 || size < 0) return R_NaN; if (x < 1 || !R_FINITE(x)) return ACT_D__0; /* limiting case as size approaches zero is logarithmic */ if (size == 0) return dlogarithmic(x, 1 - prob, give_log); /* limiting case as prob approaches one is point mass at one */ if (prob == 1) return (x == 1) ? ACT_D__1 : ACT_D__0; double lp0 = dbinom_raw(size, size, prob, 1 - prob, /*give_log*/1); return ACT_D_val(dnbinom(x, size, prob, /*give_log*/0)/(-expm1(lp0))); } double pztnbinom(double x, double size, double prob, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(prob)) return x + size + prob; #endif if (prob <= 0 || prob > 1 || size < 0) return R_NaN; if (x < 1) return ACT_DT_0; if (!R_FINITE(x)) return ACT_DT_1; /* limiting case as size approaches zero is logarithmic */ if (size == 0) return plogarithmic(x, 1 - prob, lower_tail, log_p); /* limiting case as prob approaches one is point mass at one */ if (prob == 1) return (x >= 1) ? ACT_DT_1 : ACT_DT_0; double lp0 = dbinom_raw(size, size, prob, 1 - prob, /*give_log*/1); return ACT_DT_Cval(pnbinom(x, size, prob, /*l._t.*/0, /*log_p*/0)/(-expm1(lp0))); } double qztnbinom(double x, double size, double prob, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(prob)) return x + size + prob; #endif if (prob <= 0 || prob > 1 || size < 0) return R_NaN; /* limiting case as size approaches zero is logarithmic */ if (size == 0) return qlogarithmic(x, 1 - prob, lower_tail, log_p); /* limiting case as prob approaches one is point mass at one */ if (prob == 1) { /* simplified ACT_Q_P01_boundaries macro */ if (log_p) { if (x > 0) return R_NaN; return 1.0; } else /* !log_p */ { if (x < 0 || x > 1) return R_NaN; return 1.0; } } ACT_Q_P01_boundaries(x, 1, R_PosInf); x = ACT_DT_qIv(x); double p0 = dbinom_raw(size, size, prob, 1 - prob, /*give_log*/0); return qnbinom(p0 + (1 - p0) * x, size, prob, /*l._t.*/1, /*log_p*/0); } double rztnbinom(double size, double prob) { if (!R_FINITE(prob) || prob <= 0 || prob > 1 || size < 0) return R_NaN; /* limiting case as size approaches zero is logarithmic */ if (size == 0) return rlogarithmic(1 - prob); /* limiting case as prob approaches one is point mass at one */ if (prob == 1) return 1.0; double p0 = dbinom_raw(size, size, prob, 1 - prob, /*give_log*/0); return qnbinom(runif(p0, 1), size, prob, /*l._t.*/1, /*log_p*/0); } actuar/src/hierarc.c0000644000176200001440000001776014030725704014116 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Function to compute the iterative part of function cm, used * to deal with credibility models. * * AUTHORS: Tommy Ouellet, Vincent Goulet */ #include #include #include #include "locale.h" #define CAD5R(e) CAR(CDR(CDR(CDR(CDR(CDR(e)))))) #define CAD6R(e) CAR(CDR(CDR(CDR(CDR(CDR(CDR(e))))))) #define CAD7R(e) CAR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(e)))))))) #define CAD8R(e) CAR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(e))))))))) #define CAD9R(e) CAR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(e)))))))))) #define abs(x) ((x) >= 0 ? (x) : -(x)) #define weights(i, j) (cred[i][j] != 0 ? cred[i][j] : tweights[i + 1][j]) SEXP toSEXP(double *x, int size) { SEXP ans = allocVector(REALSXP, size); memcpy(REAL(ans), x, size * sizeof(double)); return ans; } SEXP actuar_do_hierarc(SEXP args) { SEXP s_cred, s_tweights, s_wmeans, s_fnodes, denoms, b, tol, maxit, echo; double **cred, **tweights, **wmeans, diff, bw; int **fnodes, nlevels, i, j, k, count = 0; /* All values received from R are protected. */ PROTECT(s_cred = coerceVector(CADR(args), VECSXP)); PROTECT(s_tweights = coerceVector(CADDR(args), VECSXP)); PROTECT(s_wmeans = coerceVector(CADDDR(args), VECSXP)); PROTECT(s_fnodes = coerceVector(CAD4R(args), VECSXP)); PROTECT(denoms = coerceVector(CAD5R(args), REALSXP)); PROTECT(b = coerceVector(CAD6R(args), REALSXP)); PROTECT(tol = coerceVector(CAD7R(args), REALSXP)); PROTECT(maxit = coerceVector(CAD8R(args), INTSXP)); PROTECT(echo = coerceVector(CAD9R(args), LGLSXP)); /* Initialization of some variables */ double bt[length(b)]; /* previous values of 'b' */ nlevels = length(b) - 1; /* number of levels in the model */ bt[nlevels] = REAL(b)[nlevels]; /* within entity variance; never * changes. */ int size[nlevels + 1]; /* total number of nodes at each * level, including the portfolio level */ size[0] = 1; for (i = 1; i <= nlevels; i++) size[i] = length(VECTOR_ELT(s_fnodes, i - 1)); /* Allocation of arrays that will be needed below. */ cred = (double **) R_alloc(nlevels, sizeof(double *)); tweights = (double **) R_alloc(nlevels + 1, sizeof(double *)); wmeans = (double **) R_alloc(nlevels + 1, sizeof(double *)); fnodes = (int **) R_alloc(nlevels, sizeof(int *)); tweights[0] = (double *) R_alloc(size[0], sizeof(double)); wmeans[0] = (double *) R_alloc(size[0], sizeof(double)); for (i = 1; i <= nlevels; i++) { cred[i - 1] = (double *) R_alloc(size[i], sizeof(double)); tweights[i] = (double *) R_alloc(size[i], sizeof(double)); wmeans[i] = (double *) R_alloc(size[i], sizeof(double)); fnodes[i - 1] = (int *) R_alloc(size[i], sizeof(int)); } /* Get values of fnodes, tweights and wmeans from R lists. For * the latter two, only the entity level values are initialized * in R or meaningful. */ for (i = 0; i < nlevels; i++) memcpy(fnodes[i], INTEGER(VECTOR_ELT(s_fnodes, i)), size[i + 1] * sizeof(int)); memcpy(tweights[nlevels], REAL(VECTOR_ELT(s_tweights, nlevels)), size[nlevels] * sizeof(double)); memcpy(wmeans[nlevels], REAL(VECTOR_ELT(s_wmeans, nlevels)), size[nlevels] * sizeof(double)); /* If printing of iterations was asked for, start by printing a * header and the starting values. */ if (LOGICAL(echo)[0]) { Rprintf("Iteration\tVariance estimates\n %d\t\t", count); for (i = 0; i < nlevels; i++) Rprintf(" %.8g ", REAL(b)[i]); Rprintf("\n"); } /* Iterative part. */ do { /* Stop after 'maxit' iterations and issue warning. */ if (++count > INTEGER(maxit)[0]) { warning(_("maximum number of iterations reached before obtaining convergence")); break; } /* Copy the previous values of 'b'. */ for (i = 0; i < nlevels; i++) bt[i] = REAL(b)[i]; /* Run through all levels from lowest to highest. */ for (i = nlevels - 1; i >= 0; i--) { /* Reset the total weights and weighted averages. */ for (j = 0; j < size[i]; j++) { tweights[i][j] = 0; wmeans[i][j] = 0; } /* Find the first non-zero within variance estimator. */ for (j = 1; REAL(b)[i + j] == 0; j++); bw = REAL(b)[i + j]; /* Calculation of the new credibility factors, total * weights and (numerators of) weighted averages. */ for (j = 0; j < size[i + 1]; j++) { cred[i][j] = 1.0/(1.0 + bw / (REAL(b)[i] * tweights[i + 1][j])); k = fnodes[i][j] - 1; /* C version of tapply(). */ tweights[i][k] += weights(i, j); wmeans[i][k] += weights(i, j) * wmeans[i + 1][j]; } /* Final calculation of weighted averages with the * division by the total weight. */ for (j = 0; j < size[i]; j++) { if (tweights[i][j] > 0) wmeans[i][j] = wmeans[i][j] / tweights[i][j]; else wmeans[i][j] = 0; } /* Calculation of the new current level variance estimator * only if the previous one is strictly positive. */ if (bt[i] > 0) { REAL(b)[i] = 0; for (j = 0; j < size[i + 1]; j++) { k = fnodes[i][j]; REAL(b)[i] += weights(i, j) * R_pow_di(wmeans[i + 1][j] - wmeans[i][k - 1], 2); } REAL(b)[i] = REAL(b)[i] / REAL(denoms)[i]; /* Set the estimator to 0 if it is close enough to 0 * and henceforth stop iterations on this * parameter. */ if (REAL(b)[i] <= R_pow_di(REAL(tol)[0], 2)) REAL(b)[i] = 0; } /* Recompute the credibility factors, total weights and * weighted means with the latest between variance * estimator. */ for (j = 0; j < size[i]; j++) { tweights[i][j] = 0; wmeans[i][j] = 0; } for (j = 0; j < size[i + 1]; j++) { cred[i][j] = 1.0/(1.0 + bw / (REAL(b)[i] * tweights[i + 1][j])); k = fnodes[i][j] - 1; tweights[i][k] += weights(i, j); wmeans[i][k] += weights(i, j) * wmeans[i + 1][j]; } for (j = 0; j < size[i]; j++) { if (tweights[i][j] > 0) wmeans[i][j] = wmeans[i][j] / tweights[i][j]; else wmeans[i][j] = 0; } } /* Trace */ if (LOGICAL(echo)[0]) { Rprintf(" %d\t\t", count); for (i = 0; i < nlevels; i++) Rprintf(" %.8g ", REAL(b)[i]); Rprintf("\n"); } /* Computation of the largest difference between two * iterations. Estimators set to 0 are not taken into * account. */ diff = 0; for (i = 0; i < nlevels; i++) if (REAL(b)[i] > 0) diff = fmax2(abs(REAL(b)[i] - bt[i])/bt[i], diff); } while (diff >= REAL(tol)[0]); /* Copy the final values to R lists. */ SET_VECTOR_ELT(s_tweights, 0, toSEXP(tweights[0], size[0])); SET_VECTOR_ELT(s_wmeans, 0, toSEXP(wmeans[0], size[0])); for (i = 1; i <= nlevels; i++) { SET_VECTOR_ELT(s_cred, i - 1, toSEXP(cred[i - 1], size[i])); SET_VECTOR_ELT(s_tweights, i, toSEXP(tweights[i], size[i])); SET_VECTOR_ELT(s_wmeans, i, toSEXP(wmeans[i], size[i])); } UNPROTECT(9); return(R_NilValue); } actuar/src/zmlogarithmic.c0000644000176200001440000000645214054204377015352 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, and to simulate random variates for the zero modified * logarithmic discrete distribution. See * ../R/ZeroModifiedLogarithmic.R for details. * * The zero modified logarithmic is a discrete mixtures between a * degenerate distribution at zero and a logarithmic distribution. * The density is * * Pr[Z = x] = p0m 1(x) + (1 - p0m) Pr[X = x] * * or, alternatively, Pr[Z = 0] = p0m and * * Pr[Z = x] = (1 - p0m) Pr[X = x], * * for x = 1, 2, ... The distribution function is, for all x, * * Pr[Z <= x] = 1 - (1 - p0m) * (1 - Pr[X <= x]). * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dzmlogarithmic(double x, double p, double p0m, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(p) || ISNAN(p0m)) return x + p + p0m; #endif if (p < 0 || p >= 1 || p0m < 0 || p0m > 1) return R_NaN; ACT_D_nonint_check(x); if (!R_FINITE(x) || x < 0) return ACT_D__0; if (x == 0) return ACT_D_val(p0m); /* NOTE: from now on x > 0 */ /* limiting case as p approaches zero is mass (1-p0m) at one */ if (p == 0) return (x == 1) ? ACT_D_Clog(p0m) : ACT_D__0; x = ACT_forceint(x); double a = -1.0/log1p(-p); return ACT_D_exp(log(a) + x * log(p) + log1p(-p0m) - log(x)); } double pzmlogarithmic(double x, double p, double p0m, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(p) || ISNAN(p0m)) return x + p + p0m; #endif if (p < 0 || p >= 1 || p0m < 0 || p0m > 1) return R_NaN; if (x < 0) return ACT_DT_0; if (!R_FINITE(x)) return ACT_DT_1; if (x < 1) return ACT_DT_val(p0m); /* NOTE: from now on x >= 1 */ /* simple case for all x >= 1 */ if (p0m == 1) return ACT_DT_1; /* limiting case as p approaches zero is mass (1-p0m) at one. */ if (p == 0) return ACT_DT_1; return ACT_DT_Cval((1 - p0m) * plogarithmic(x, p, /*l._t.*/0, /*log_p*/0)); } double qzmlogarithmic(double x, double p, double p0m, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(p) || ISNAN(p0m)) return x + p + p0m; #endif if (p < 0 || p >= 1 || p0m < 0 || p0m > 1) return R_NaN; /* limiting case as p approaches zero is mass (1-p0m) at one */ if (p == 0) { /* simplified ACT_Q_P01_boundaries macro */ if (log_p) { if (x > 0) return R_NaN; return (x <= log(p0m)) ? 0.0 : 1.0; } else /* !log_p */ { if (x < 0 || x > 1) return R_NaN; return (x <= p0m) ? 0.0 : 1.0; } } ACT_Q_P01_boundaries(x, 1.0, R_PosInf); x = ACT_DT_qIv(x); /* avoid rounding errors if x was given in log form */ if (log_p) p0m = exp(log(p0m)); /* avoid rounding errors if x was given as upper tail */ if (!lower_tail) p0m = 0.5 - (0.5 - p0m + 0.5) + 0.5; return (x <= p0m) ? 0.0 : qlogarithmic((x - p0m)/(1 - p0m), p, /*l._t.*/1, /*log_p*/0); } /* ALGORITHM FOR GENERATION OF RANDOM VARIATES * * Just simulate variates from the discrete mixture. * */ double rzmlogarithmic(double p, double p0m) { if (p < 0 || p >= 1 || p0m < 0 || p0m > 1) return R_NaN; return (unif_rand() < p0m) ? 0.0 : rlogarithmic(p); } actuar/src/init.c0000644000176200001440000003753614030725704013447 0ustar liggesusers/* * Native routines registration, as per "Writing R extensions" and * definition of native interface to one routine exported by package * expint. * */ #include #include #include #include /* optional; for expressiveness */ #include "actuar.h" static const R_ExternalMethodDef ExternalEntries[] = { {"actuar_do_random", (DL_FUNC) &actuar_do_random, -1}, {"actuar_do_randomphtype", (DL_FUNC) &actuar_do_randomphtype, -1}, {"actuar_do_dpq", (DL_FUNC) &actuar_do_dpq, -1}, {"actuar_do_dpqphtype", (DL_FUNC) &actuar_do_dpqphtype, -1}, {"actuar_do_betaint", (DL_FUNC) &actuar_do_betaint, -1}, {"actuar_do_hierarc", (DL_FUNC) &actuar_do_hierarc, -1}, {"actuar_do_panjer", (DL_FUNC) &actuar_do_panjer, -1}, {NULL, NULL, 0} }; void attribute_visible R_init_actuar(DllInfo *dll) { R_registerRoutines(dll, NULL, NULL, NULL, ExternalEntries); R_useDynamicSymbols(dll, FALSE); R_forceSymbols(dll, TRUE); /* Native interface to routine from package expint */ actuar_gamma_inc = (double(*)(double,double)) R_GetCCallable("expint", "gamma_inc"); /* Registration of actuar exported functions */ /* one parameter distributions */ R_RegisterCCallable("actuar", "mexp", (DL_FUNC) mexp); R_RegisterCCallable("actuar", "levexp", (DL_FUNC) levexp); R_RegisterCCallable("actuar", "mgfexp", (DL_FUNC) mgfexp); R_RegisterCCallable("actuar", "dinvexp", (DL_FUNC) dinvexp); R_RegisterCCallable("actuar", "pinvexp", (DL_FUNC) pinvexp); R_RegisterCCallable("actuar", "qinvexp", (DL_FUNC) qinvexp); R_RegisterCCallable("actuar", "rinvexp", (DL_FUNC) rinvexp); R_RegisterCCallable("actuar", "minvexp", (DL_FUNC) minvexp); R_RegisterCCallable("actuar", "levinvexp", (DL_FUNC) levinvexp); R_RegisterCCallable("actuar", "dlogarithmic", (DL_FUNC) dlogarithmic); R_RegisterCCallable("actuar", "plogarithmic", (DL_FUNC) plogarithmic); R_RegisterCCallable("actuar", "qlogarithmic", (DL_FUNC) qlogarithmic); R_RegisterCCallable("actuar", "rlogarithmic", (DL_FUNC) rlogarithmic); R_RegisterCCallable("actuar", "dztpois", (DL_FUNC) dztpois); R_RegisterCCallable("actuar", "pztpois", (DL_FUNC) pztpois); R_RegisterCCallable("actuar", "qztpois", (DL_FUNC) qztpois); R_RegisterCCallable("actuar", "rztpois", (DL_FUNC) rztpois); R_RegisterCCallable("actuar", "dztgeom", (DL_FUNC) dztgeom); R_RegisterCCallable("actuar", "pztgeom", (DL_FUNC) pztgeom); R_RegisterCCallable("actuar", "qztgeom", (DL_FUNC) qztgeom); R_RegisterCCallable("actuar", "rztgeom", (DL_FUNC) rztgeom); /* two parameter distributions */ R_RegisterCCallable("actuar", "munif", (DL_FUNC) munif); R_RegisterCCallable("actuar", "levunif", (DL_FUNC) levunif); R_RegisterCCallable("actuar", "mgfunif", (DL_FUNC) mgfunif); R_RegisterCCallable("actuar", "mnorm", (DL_FUNC) mnorm); R_RegisterCCallable("actuar", "mgfnorm", (DL_FUNC) mgfnorm); R_RegisterCCallable("actuar", "mbeta", (DL_FUNC) mbeta); R_RegisterCCallable("actuar", "levbeta", (DL_FUNC) levbeta); R_RegisterCCallable("actuar", "mgamma", (DL_FUNC) mgamma); R_RegisterCCallable("actuar", "levgamma", (DL_FUNC) levgamma); R_RegisterCCallable("actuar", "mgfgamma", (DL_FUNC) mgfgamma); R_RegisterCCallable("actuar", "mchisq", (DL_FUNC) mchisq); R_RegisterCCallable("actuar", "levchisq", (DL_FUNC) levchisq); R_RegisterCCallable("actuar", "mgfchisq", (DL_FUNC) mgfchisq); R_RegisterCCallable("actuar", "dinvgamma", (DL_FUNC) dinvgamma); R_RegisterCCallable("actuar", "pinvgamma", (DL_FUNC) pinvgamma); R_RegisterCCallable("actuar", "qinvgamma", (DL_FUNC) qinvgamma); R_RegisterCCallable("actuar", "rinvgamma", (DL_FUNC) rinvgamma); R_RegisterCCallable("actuar", "minvgamma", (DL_FUNC) minvgamma); R_RegisterCCallable("actuar", "levinvgamma", (DL_FUNC) levinvgamma); R_RegisterCCallable("actuar", "mgfinvgamma", (DL_FUNC) mgfinvgamma); R_RegisterCCallable("actuar", "dinvparalogis", (DL_FUNC) dinvparalogis); R_RegisterCCallable("actuar", "pinvparalogis", (DL_FUNC) pinvparalogis); R_RegisterCCallable("actuar", "qinvparalogis", (DL_FUNC) qinvparalogis); R_RegisterCCallable("actuar", "rinvparalogis", (DL_FUNC) rinvparalogis); R_RegisterCCallable("actuar", "minvparalogis", (DL_FUNC) minvparalogis); R_RegisterCCallable("actuar", "levinvparalogis", (DL_FUNC) levinvparalogis); R_RegisterCCallable("actuar", "dinvpareto", (DL_FUNC) dinvpareto); R_RegisterCCallable("actuar", "pinvpareto", (DL_FUNC) pinvpareto); R_RegisterCCallable("actuar", "qinvpareto", (DL_FUNC) qinvpareto); R_RegisterCCallable("actuar", "rinvpareto", (DL_FUNC) rinvpareto); R_RegisterCCallable("actuar", "minvpareto", (DL_FUNC) minvpareto); R_RegisterCCallable("actuar", "levinvpareto", (DL_FUNC) levinvpareto); R_RegisterCCallable("actuar", "dinvweibull", (DL_FUNC) dinvweibull); R_RegisterCCallable("actuar", "pinvweibull", (DL_FUNC) pinvweibull); R_RegisterCCallable("actuar", "qinvweibull", (DL_FUNC) qinvweibull); R_RegisterCCallable("actuar", "rinvweibull", (DL_FUNC) rinvweibull); R_RegisterCCallable("actuar", "minvweibull", (DL_FUNC) minvweibull); R_RegisterCCallable("actuar", "levinvweibull", (DL_FUNC) levinvweibull); R_RegisterCCallable("actuar", "dlgamma", (DL_FUNC) dlgamma); R_RegisterCCallable("actuar", "plgamma", (DL_FUNC) plgamma); R_RegisterCCallable("actuar", "qlgamma", (DL_FUNC) qlgamma); R_RegisterCCallable("actuar", "rlgamma", (DL_FUNC) rlgamma); R_RegisterCCallable("actuar", "mlgamma", (DL_FUNC) mlgamma); R_RegisterCCallable("actuar", "levlgamma", (DL_FUNC) levlgamma); R_RegisterCCallable("actuar", "dllogis", (DL_FUNC) dllogis); R_RegisterCCallable("actuar", "pllogis", (DL_FUNC) pllogis); R_RegisterCCallable("actuar", "qllogis", (DL_FUNC) qllogis); R_RegisterCCallable("actuar", "rllogis", (DL_FUNC) rllogis); R_RegisterCCallable("actuar", "mllogis", (DL_FUNC) mllogis); R_RegisterCCallable("actuar", "levllogis", (DL_FUNC) levllogis); R_RegisterCCallable("actuar", "mlnorm", (DL_FUNC) mlnorm); R_RegisterCCallable("actuar", "levlnorm", (DL_FUNC) levlnorm); R_RegisterCCallable("actuar", "dparalogis", (DL_FUNC) dparalogis); R_RegisterCCallable("actuar", "pparalogis", (DL_FUNC) pparalogis); R_RegisterCCallable("actuar", "qparalogis", (DL_FUNC) qparalogis); R_RegisterCCallable("actuar", "rparalogis", (DL_FUNC) rparalogis); R_RegisterCCallable("actuar", "mparalogis", (DL_FUNC) mparalogis); R_RegisterCCallable("actuar", "levparalogis", (DL_FUNC) levparalogis); R_RegisterCCallable("actuar", "dpareto", (DL_FUNC) dpareto); R_RegisterCCallable("actuar", "ppareto", (DL_FUNC) ppareto); R_RegisterCCallable("actuar", "qpareto", (DL_FUNC) qpareto); R_RegisterCCallable("actuar", "rpareto", (DL_FUNC) rpareto); R_RegisterCCallable("actuar", "mpareto", (DL_FUNC) mpareto); R_RegisterCCallable("actuar", "levpareto", (DL_FUNC) levpareto); R_RegisterCCallable("actuar", "dpareto1", (DL_FUNC) dpareto1); R_RegisterCCallable("actuar", "ppareto1", (DL_FUNC) ppareto1); R_RegisterCCallable("actuar", "qpareto1", (DL_FUNC) qpareto1); R_RegisterCCallable("actuar", "rpareto1", (DL_FUNC) rpareto1); R_RegisterCCallable("actuar", "mpareto1", (DL_FUNC) mpareto1); R_RegisterCCallable("actuar", "levpareto1", (DL_FUNC) levpareto1); R_RegisterCCallable("actuar", "mweibull", (DL_FUNC) mweibull); R_RegisterCCallable("actuar", "levweibull", (DL_FUNC) levweibull); /* R_RegisterCCallable("actuar", "minvGauss", (DL_FUNC) minvGauss); [defunct v3.0-0] */ /* R_RegisterCCallable("actuar", "levinvGauss", (DL_FUNC) levinvGauss); [idem] */ /* R_RegisterCCallable("actuar", "mgfinvGauss", (DL_FUNC) mgfinvGauss); [idem] */ R_RegisterCCallable("actuar", "dgumbel", (DL_FUNC) dgumbel); R_RegisterCCallable("actuar", "pgumbel", (DL_FUNC) pgumbel); R_RegisterCCallable("actuar", "qgumbel", (DL_FUNC) qgumbel); R_RegisterCCallable("actuar", "rgumbel", (DL_FUNC) rgumbel); R_RegisterCCallable("actuar", "mgumbel", (DL_FUNC) mgumbel); R_RegisterCCallable("actuar", "mgfgumbel", (DL_FUNC) mgfgumbel); R_RegisterCCallable("actuar", "dinvgauss", (DL_FUNC) dinvgauss); R_RegisterCCallable("actuar", "pinvgauss", (DL_FUNC) pinvgauss); R_RegisterCCallable("actuar", "qinvgauss", (DL_FUNC) qinvgauss); R_RegisterCCallable("actuar", "rinvgauss", (DL_FUNC) rinvgauss); R_RegisterCCallable("actuar", "minvgauss", (DL_FUNC) minvgauss); R_RegisterCCallable("actuar", "levinvgauss", (DL_FUNC) levinvgauss); R_RegisterCCallable("actuar", "mgfinvgauss", (DL_FUNC) mgfinvgauss); R_RegisterCCallable("actuar", "dztnbinom", (DL_FUNC) dztnbinom); R_RegisterCCallable("actuar", "pztnbinom", (DL_FUNC) pztnbinom); R_RegisterCCallable("actuar", "qztnbinom", (DL_FUNC) qztnbinom); R_RegisterCCallable("actuar", "rztnbinom", (DL_FUNC) rztnbinom); R_RegisterCCallable("actuar", "dztbinom", (DL_FUNC) dztbinom); R_RegisterCCallable("actuar", "pztbinom", (DL_FUNC) pztbinom); R_RegisterCCallable("actuar", "qztbinom", (DL_FUNC) qztbinom); R_RegisterCCallable("actuar", "rztbinom", (DL_FUNC) rztbinom); R_RegisterCCallable("actuar", "dzmlogarithmic", (DL_FUNC) dzmlogarithmic); R_RegisterCCallable("actuar", "pzmlogarithmic", (DL_FUNC) pzmlogarithmic); R_RegisterCCallable("actuar", "qzmlogarithmic", (DL_FUNC) qzmlogarithmic); R_RegisterCCallable("actuar", "rzmlogarithmic", (DL_FUNC) rzmlogarithmic); R_RegisterCCallable("actuar", "dzmpois", (DL_FUNC) dzmpois); R_RegisterCCallable("actuar", "pzmpois", (DL_FUNC) pzmpois); R_RegisterCCallable("actuar", "qzmpois", (DL_FUNC) qzmpois); R_RegisterCCallable("actuar", "rzmpois", (DL_FUNC) rzmpois); R_RegisterCCallable("actuar", "dzmgeom", (DL_FUNC) dzmgeom); R_RegisterCCallable("actuar", "pzmgeom", (DL_FUNC) pzmgeom); R_RegisterCCallable("actuar", "qzmgeom", (DL_FUNC) qzmgeom); R_RegisterCCallable("actuar", "rzmgeom", (DL_FUNC) rzmgeom); R_RegisterCCallable("actuar", "dpoisinvgauss", (DL_FUNC) dpoisinvgauss); R_RegisterCCallable("actuar", "ppoisinvgauss", (DL_FUNC) ppoisinvgauss); R_RegisterCCallable("actuar", "qpoisinvgauss", (DL_FUNC) qpoisinvgauss); R_RegisterCCallable("actuar", "rpoisinvgauss", (DL_FUNC) rpoisinvgauss); /* three parameter distributions */ R_RegisterCCallable("actuar", "dburr", (DL_FUNC) dburr); R_RegisterCCallable("actuar", "pburr", (DL_FUNC) pburr); R_RegisterCCallable("actuar", "qburr", (DL_FUNC) qburr); R_RegisterCCallable("actuar", "rburr", (DL_FUNC) rburr); R_RegisterCCallable("actuar", "mburr", (DL_FUNC) mburr); R_RegisterCCallable("actuar", "levburr", (DL_FUNC) levburr); R_RegisterCCallable("actuar", "dgenpareto", (DL_FUNC) dgenpareto); R_RegisterCCallable("actuar", "pgenpareto", (DL_FUNC) pgenpareto); R_RegisterCCallable("actuar", "qgenpareto", (DL_FUNC) qgenpareto); R_RegisterCCallable("actuar", "rgenpareto", (DL_FUNC) rgenpareto); R_RegisterCCallable("actuar", "mgenpareto", (DL_FUNC) mgenpareto); R_RegisterCCallable("actuar", "levgenpareto", (DL_FUNC) levgenpareto); R_RegisterCCallable("actuar", "dinvburr", (DL_FUNC) dinvburr); R_RegisterCCallable("actuar", "pinvburr", (DL_FUNC) pinvburr); R_RegisterCCallable("actuar", "qinvburr", (DL_FUNC) qinvburr); R_RegisterCCallable("actuar", "rinvburr", (DL_FUNC) rinvburr); R_RegisterCCallable("actuar", "minvburr", (DL_FUNC) minvburr); R_RegisterCCallable("actuar", "levinvburr", (DL_FUNC) levinvburr); R_RegisterCCallable("actuar", "dinvtrgamma", (DL_FUNC) dinvtrgamma); R_RegisterCCallable("actuar", "pinvtrgamma", (DL_FUNC) pinvtrgamma); R_RegisterCCallable("actuar", "qinvtrgamma", (DL_FUNC) qinvtrgamma); R_RegisterCCallable("actuar", "rinvtrgamma", (DL_FUNC) rinvtrgamma); R_RegisterCCallable("actuar", "minvtrgamma", (DL_FUNC) minvtrgamma); R_RegisterCCallable("actuar", "levinvtrgamma", (DL_FUNC) levinvtrgamma); R_RegisterCCallable("actuar", "dtrgamma", (DL_FUNC) dtrgamma); R_RegisterCCallable("actuar", "ptrgamma", (DL_FUNC) ptrgamma); R_RegisterCCallable("actuar", "qtrgamma", (DL_FUNC) qtrgamma); R_RegisterCCallable("actuar", "rtrgamma", (DL_FUNC) rtrgamma); R_RegisterCCallable("actuar", "mtrgamma", (DL_FUNC) mtrgamma); R_RegisterCCallable("actuar", "levtrgamma", (DL_FUNC) levtrgamma); R_RegisterCCallable("actuar", "dpareto2", (DL_FUNC) dpareto2); R_RegisterCCallable("actuar", "ppareto2", (DL_FUNC) ppareto2); R_RegisterCCallable("actuar", "qpareto2", (DL_FUNC) qpareto2); R_RegisterCCallable("actuar", "rpareto2", (DL_FUNC) rpareto2); R_RegisterCCallable("actuar", "mpareto2", (DL_FUNC) mpareto2); R_RegisterCCallable("actuar", "levpareto2", (DL_FUNC) levpareto2); R_RegisterCCallable("actuar", "dpareto3", (DL_FUNC) dpareto3); R_RegisterCCallable("actuar", "ppareto3", (DL_FUNC) ppareto3); R_RegisterCCallable("actuar", "qpareto3", (DL_FUNC) qpareto3); R_RegisterCCallable("actuar", "rpareto3", (DL_FUNC) rpareto3); R_RegisterCCallable("actuar", "mpareto3", (DL_FUNC) mpareto3); R_RegisterCCallable("actuar", "levpareto3", (DL_FUNC) levpareto3); R_RegisterCCallable("actuar", "dzmnbinom", (DL_FUNC) dzmnbinom); R_RegisterCCallable("actuar", "pzmnbinom", (DL_FUNC) pzmnbinom); R_RegisterCCallable("actuar", "qzmnbinom", (DL_FUNC) qzmnbinom); R_RegisterCCallable("actuar", "rzmnbinom", (DL_FUNC) rzmnbinom); R_RegisterCCallable("actuar", "dzmbinom", (DL_FUNC) dzmbinom); R_RegisterCCallable("actuar", "pzmbinom", (DL_FUNC) pzmbinom); R_RegisterCCallable("actuar", "qzmbinom", (DL_FUNC) qzmbinom); R_RegisterCCallable("actuar", "rzmbinom", (DL_FUNC) rzmbinom); /* four parameter distributions */ R_RegisterCCallable("actuar", "dtrbeta", (DL_FUNC) dtrbeta); R_RegisterCCallable("actuar", "ptrbeta", (DL_FUNC) ptrbeta); R_RegisterCCallable("actuar", "qtrbeta", (DL_FUNC) qtrbeta); R_RegisterCCallable("actuar", "rtrbeta", (DL_FUNC) rtrbeta); R_RegisterCCallable("actuar", "mtrbeta", (DL_FUNC) mtrbeta); R_RegisterCCallable("actuar", "levtrbeta", (DL_FUNC) levtrbeta); R_RegisterCCallable("actuar", "dgenbeta", (DL_FUNC) dgenbeta); R_RegisterCCallable("actuar", "pgenbeta", (DL_FUNC) pgenbeta); R_RegisterCCallable("actuar", "qgenbeta", (DL_FUNC) qgenbeta); R_RegisterCCallable("actuar", "rgenbeta", (DL_FUNC) rgenbeta); R_RegisterCCallable("actuar", "mgenbeta", (DL_FUNC) mgenbeta); R_RegisterCCallable("actuar", "levgenbeta", (DL_FUNC) levgenbeta); R_RegisterCCallable("actuar", "dpareto4", (DL_FUNC) dpareto4); R_RegisterCCallable("actuar", "ppareto4", (DL_FUNC) ppareto4); R_RegisterCCallable("actuar", "qpareto4", (DL_FUNC) qpareto4); R_RegisterCCallable("actuar", "rpareto4", (DL_FUNC) rpareto4); R_RegisterCCallable("actuar", "mpareto4", (DL_FUNC) mpareto4); R_RegisterCCallable("actuar", "levpareto4", (DL_FUNC) levpareto4); /* five parameter distributions */ R_RegisterCCallable("actuar", "dfpareto", (DL_FUNC) dfpareto); R_RegisterCCallable("actuar", "pfpareto", (DL_FUNC) pfpareto); R_RegisterCCallable("actuar", "qfpareto", (DL_FUNC) qfpareto); R_RegisterCCallable("actuar", "rfpareto", (DL_FUNC) rfpareto); R_RegisterCCallable("actuar", "mfpareto", (DL_FUNC) mfpareto); R_RegisterCCallable("actuar", "levfpareto", (DL_FUNC) levfpareto); /* phase-type distributions */ R_RegisterCCallable("actuar", "dphtype", (DL_FUNC) dphtype); R_RegisterCCallable("actuar", "pphtype", (DL_FUNC) pphtype); R_RegisterCCallable("actuar", "rphtype", (DL_FUNC) rphtype); R_RegisterCCallable("actuar", "mphtype", (DL_FUNC) mphtype); R_RegisterCCallable("actuar", "mgfphtype", (DL_FUNC) mgfphtype); /* special integrals */ R_RegisterCCallable("actuar", "betaint", (DL_FUNC) betaint); } /* Define imports from package expint */ double(*actuar_gamma_inc)(double,double); actuar/src/dpq.c0000644000176200001440000012625014054204377013264 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute probability density, cumulative probability * quantile functions and moment generating functions, raw moments * and limited moments for some probability laws not in base R (or * those quantities not provided in base R). Function .External() * calls actuar_do_dpq() with arguments: * * 1. the name of the distribution, with a "d", a "p" or "q" * prepended to it (e.g. "dpareto", "pburr"); * 2. the value(s) where the function is to be evaluated; * 3:x. the parameters of the distribution (including the order of * the limited moment for lev*); * x+1. whether to return the lower or upper tail probability or * quantile (p* and q* only); see note below for m* and lev* * functions; * x+2. whether to return probability in log scale or the cumulant * generating function (d*, p*, q* and mgf* only). * * Function actuar_do_dpq() will extract the name of the distribution, look * up in table dpq_tab defined in names.c which of actuar_do_dpq{1,2,3,4} * should take care of the calculation and dispatch to this function. * In turn, functions actuar_do_dpq{1,2,3,4} call function * {d,p,q,m,lev,mgf}dist() to get actual values from distribution * "dist". * * Note: the m* and lev* functions came later in the process. In * order to easily fit them into this system, I have decided to leave * an unused 'give_log' argument in the C definitions of these * functions. Otherwise, this would have required defining functions * dpq{1,2,3,4,5}_0() below. * * Functions therein are essentially identical to those found in * src/main/arithmetic.c of R sources with a different naming scheme. * * To add a new distribution: write a {d,p,q,m,lev,mgf}dist() * function, add an entry in names.c and in the definition of the * corresponding actuar_do_dpq{1,2,3,4,6} function, declare the * function in actuar.h. * * Adapted from src/main/arithmetic.c of R sources. * * AUTHOR: Vincent Goulet * with much indirect help from the R Core Team */ #include #include #include "actuar.h" #include "locale.h" /* Additional access macros */ #define CAD5R(e) CAR(CDR(CDR(CDR(CDR(CDR(e)))))) #define CAD6R(e) CAR(CDR(CDR(CDR(CDR(CDR(CDR(e))))))) #define CAD7R(e) CAR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(e)))))))) /* Functions for one parameter distributions */ #define if_NA_dpq1_set(y, x, a) \ if (ISNA (x) || ISNA (a)) y = NA_REAL; \ else if (ISNAN(x) || ISNAN(a)) y = R_NaN; #define mod_iterate1(n1, n2, i1, i2) \ for (i = i1 = i2 = 0; i < n; \ i1 = (++i1 == n1) ? 0 : i1, \ i2 = (++i2 == n2) ? 0 : i2, \ ++i) static SEXP dpq1_1(SEXP sx, SEXP sa, SEXP sI, double (*f)()) { SEXP sy; int i, ix, ia, n, nx, na, sxo = OBJECT(sx), sao = OBJECT(sa); double xi, ai, *x, *a, *y; int i_1; Rboolean naflag = FALSE; #define SETUP_DPQ1 \ if (!isNumeric(sx) || !isNumeric(sa)) \ error(_("invalid arguments")); \ \ nx = LENGTH(sx); \ na = LENGTH(sa); \ if ((nx == 0) || (na == 0)) \ return(allocVector(REALSXP, 0)); \ n = (nx < na) ? na : nx; \ PROTECT(sx = coerceVector(sx, REALSXP)); \ PROTECT(sa = coerceVector(sa, REALSXP)); \ PROTECT(sy = allocVector(REALSXP, n)); \ x = REAL(sx); \ a = REAL(sa); \ y = REAL(sy) SETUP_DPQ1; i_1 = asInteger(sI); mod_iterate1(nx, na, ix, ia) { xi = x[ix]; ai = a[ia]; if_NA_dpq1_set(y[i], xi, ai) else { y[i] = f(xi, ai, i_1); if (ISNAN(y[i])) naflag = TRUE; } } #define FINISH_DPQ1 \ if (naflag) \ warning(R_MSG_NA); \ \ if (n == nx) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sx))); \ SET_OBJECT(sy, sxo); \ } \ else if (n == na) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sa))); \ SET_OBJECT(sy, sao); \ } \ UNPROTECT(3) FINISH_DPQ1; return sy; } static SEXP dpq1_2(SEXP sx, SEXP sa, SEXP sI, SEXP sJ, double (*f)()) { SEXP sy; int i, ix, ia, n, nx, na, sxo = OBJECT(sx), sao = OBJECT(sa); double xi, ai, *x, *a, *y; int i_1, i_2; Rboolean naflag = FALSE; SETUP_DPQ1; i_1 = asInteger(sI); i_2 = asInteger(sJ); mod_iterate1(nx, na, ix, ia) { xi = x[ix]; ai = a[ia]; if_NA_dpq1_set(y[i], xi, ai) else { y[i] = f(xi, ai, i_1, i_2); if (ISNAN(y[i])) naflag = TRUE; } } FINISH_DPQ1; return sy; } #define DPQ1_1(A, FUN) dpq1_1(CAR(A), CADR(A), CADDR(A), FUN); #define DPQ1_2(A, FUN) dpq1_2(CAR(A), CADR(A), CADDR(A), CADDDR(A), FUN) SEXP actuar_do_dpq1(int code, SEXP args) { switch (code) { case 1: return DPQ1_1(args, mexp); case 2: return DPQ1_1(args, dinvexp); case 3: return DPQ1_2(args, pinvexp); case 4: return DPQ1_2(args, qinvexp); case 5: return DPQ1_1(args, minvexp); case 6: return DPQ1_1(args, mgfexp); case 101: return DPQ1_1(args, dlogarithmic); case 102: return DPQ1_2(args, plogarithmic); case 103: return DPQ1_2(args, qlogarithmic); case 104: return DPQ1_1(args, dztpois); case 105: return DPQ1_2(args, pztpois); case 106: return DPQ1_2(args, qztpois); case 107: return DPQ1_1(args, dztgeom); case 108: return DPQ1_2(args, pztgeom); case 109: return DPQ1_2(args, qztgeom); default: error(_("internal error in actuar_do_dpq1")); } return args; /* never used; to keep -Wall happy */ } /* Functions for two parameter distributions */ #define if_NA_dpq2_set(y, x, a, b) \ if (ISNA (x) || ISNA (a) || ISNA (b)) y = NA_REAL; \ else if (ISNAN(x) || ISNAN(a) || ISNAN(b)) y = R_NaN; #define mod_iterate2(n1, n2, n3, i1, i2, i3) \ for (i = i1 = i2 = i3 = 0; i < n; \ i1 = (++i1 == n1) ? 0 : i1, \ i2 = (++i2 == n2) ? 0 : i2, \ i3 = (++i3 == n3) ? 0 : i3, \ ++i) static SEXP dpq2_1(SEXP sx, SEXP sa, SEXP sb, SEXP sI, double (*f)()) { SEXP sy; int i, ix, ia, ib, n, nx, na, nb, sxo = OBJECT(sx), sao = OBJECT(sa), sbo = OBJECT(sb); double xi, ai, bi, *x, *a, *b, *y; int i_1; Rboolean naflag = FALSE; #define SETUP_DPQ2 \ if (!isNumeric(sx) || !isNumeric(sa) || !isNumeric(sb)) \ error(_("invalid arguments")); \ \ nx = LENGTH(sx); \ na = LENGTH(sa); \ nb = LENGTH(sb); \ if ((nx == 0) || (na == 0) || (nb == 0)) \ return(allocVector(REALSXP, 0)); \ n = nx; \ if (n < na) n = na; \ if (n < nb) n = nb; \ PROTECT(sx = coerceVector(sx, REALSXP)); \ PROTECT(sa = coerceVector(sa, REALSXP)); \ PROTECT(sb = coerceVector(sb, REALSXP)); \ PROTECT(sy = allocVector(REALSXP, n)); \ x = REAL(sx); \ a = REAL(sa); \ b = REAL(sb); \ y = REAL(sy) SETUP_DPQ2; i_1 = asInteger(sI); mod_iterate2(nx, na, nb, ix, ia, ib) { xi = x[ix]; ai = a[ia]; bi = b[ib]; if_NA_dpq2_set(y[i], xi, ai, bi) else { y[i] = f(xi, ai, bi, i_1); if (ISNAN(y[i])) naflag = TRUE; } } #define FINISH_DPQ2 \ if (naflag) \ warning(R_MSG_NA); \ \ if (n == nx) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sx))); \ SET_OBJECT(sy, sxo); \ } \ else if (n == na) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sa))); \ SET_OBJECT(sy, sao); \ } \ else if (n == nb) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sb))); \ SET_OBJECT(sy, sbo); \ } \ UNPROTECT(4) FINISH_DPQ2; return sy; } static SEXP dpq2_2(SEXP sx, SEXP sa, SEXP sb, SEXP sI, SEXP sJ, double (*f)()) { SEXP sy; int i, ix, ia, ib, n, nx, na, nb, sxo = OBJECT(sx), sao = OBJECT(sa), sbo = OBJECT(sb); double xi, ai, bi, *x, *a, *b, *y; int i_1, i_2; Rboolean naflag = FALSE; SETUP_DPQ2; i_1 = asInteger(sI); i_2 = asInteger(sJ); mod_iterate2(nx, na, nb, ix, ia, ib) { xi = x[ix]; ai = a[ia]; bi = b[ib]; if_NA_dpq2_set(y[i], xi, ai, bi) else { y[i] = f(xi, ai, bi, i_1, i_2); if (ISNAN(y[i])) naflag = TRUE; } } FINISH_DPQ2; return sy; } /* This is needed for qinvgauss that has three additional parameters * for the tolerance, the maximum number of iterations and echoing of * the iterations. */ static SEXP dpq2_5(SEXP sx, SEXP sa, SEXP sb, SEXP sI, SEXP sJ, SEXP sT, SEXP sM, SEXP sE, double (*f)()) { SEXP sy; int i, ix, ia, ib, n, nx, na, nb, sxo = OBJECT(sx), sao = OBJECT(sa), sbo = OBJECT(sb); double xi, ai, bi, *x, *a, *b, *y; int i_1, i_2, i_4, i_5; double d_3; Rboolean naflag = FALSE; SETUP_DPQ2; i_1 = asInteger(sI); i_2 = asInteger(sJ); d_3 = asReal(sT); i_4 = asInteger(sM); i_5 = asInteger(sE); mod_iterate2(nx, na, nb, ix, ia, ib) { xi = x[ix]; ai = a[ia]; bi = b[ib]; if_NA_dpq2_set(y[i], xi, ai, bi) else { y[i] = f(xi, ai, bi, i_1, i_2, d_3, i_4, i_5); if (ISNAN(y[i])) naflag = TRUE; } } FINISH_DPQ2; return sy; } #define DPQ2_1(A, FUN) dpq2_1(CAR(A), CADR(A), CADDR(A), CADDDR(A), FUN); #define DPQ2_2(A, FUN) dpq2_2(CAR(A), CADR(A), CADDR(A), CADDDR(A), CAD4R(A), FUN) #define DPQ2_5(A, FUN) dpq2_5(CAR(A), CADR(A), CADDR(A), CADDDR(A), CAD4R(A), CAD5R(A), CAD6R(A), CAD7R(A), FUN) SEXP actuar_do_dpq2(int code, SEXP args) { switch (code) { case 1: return DPQ2_1(args, mgamma); case 2: return DPQ2_1(args, dinvgamma); case 3: return DPQ2_2(args, pinvgamma); case 4: return DPQ2_2(args, qinvgamma); case 5: return DPQ2_1(args, minvgamma); case 6: return DPQ2_1(args, dinvparalogis); case 7: return DPQ2_2(args, pinvparalogis); case 8: return DPQ2_2(args, qinvparalogis); case 9: return DPQ2_1(args, minvparalogis); case 10: return DPQ2_1(args, dinvpareto); case 11: return DPQ2_2(args, pinvpareto); case 12: return DPQ2_2(args, qinvpareto); case 13: return DPQ2_1(args, minvpareto); case 14: return DPQ2_1(args, dinvweibull); case 15: return DPQ2_2(args, pinvweibull); case 16: return DPQ2_2(args, qinvweibull); case 17: return DPQ2_1(args, minvweibull); case 18: return DPQ2_1(args, dlgamma); case 19: return DPQ2_2(args, plgamma); case 20: return DPQ2_2(args, qlgamma); case 21: return DPQ2_2(args, mlgamma); case 22: return DPQ2_1(args, dllogis); case 23: return DPQ2_2(args, pllogis); case 24: return DPQ2_2(args, qllogis); case 25: return DPQ2_1(args, mllogis); case 26: return DPQ2_1(args, mlnorm); case 27: return DPQ2_1(args, dparalogis); case 28: return DPQ2_2(args, pparalogis); case 29: return DPQ2_2(args, qparalogis); case 30: return DPQ2_1(args, mparalogis); case 31: return DPQ2_1(args, dpareto); case 32: return DPQ2_2(args, ppareto); case 33: return DPQ2_2(args, qpareto); case 34: return DPQ2_1(args, mpareto); case 35: return DPQ2_1(args, dpareto1); case 36: return DPQ2_2(args, ppareto1); case 37: return DPQ2_2(args, qpareto1); case 38: return DPQ2_1(args, mpareto1); case 39: return DPQ2_1(args, mweibull); case 40: return DPQ2_1(args, levexp); case 41: return DPQ2_1(args, levinvexp); case 42: return DPQ2_1(args, mbeta); case 43: return DPQ2_1(args, mgfgamma); case 44: return DPQ2_1(args, mgfnorm); case 45: return DPQ2_1(args, mgfunif); case 46: return DPQ2_1(args, mgfinvgamma); case 47: return DPQ2_1(args, mnorm); case 48: return DPQ2_1(args, mchisq); case 49: return DPQ2_1(args, mgfchisq); /* case 50: return DPQ2_1(args, minvGauss); [defunct v3.0-0] */ /* case 51: return DPQ2_1(args, mgfinvGauss); [defunct v3.0-0] */ case 52: return DPQ2_1(args, munif); case 53: return DPQ2_1(args, dgumbel); case 54: return DPQ2_2(args, pgumbel); case 55: return DPQ2_2(args, qgumbel); case 56: return DPQ2_1(args, mgumbel); case 57: return DPQ2_1(args, mgfgumbel); case 58: return DPQ2_1(args, dinvgauss); case 59: return DPQ2_2(args, pinvgauss); case 60: return DPQ2_5(args, qinvgauss); case 61: return DPQ2_1(args, minvgauss); case 62: return DPQ2_1(args, mgfinvgauss); case 101: return DPQ2_1(args, dztnbinom); case 102: return DPQ2_2(args, pztnbinom); case 103: return DPQ2_2(args, qztnbinom); case 104: return DPQ2_1(args, dztbinom); case 105: return DPQ2_2(args, pztbinom); case 106: return DPQ2_2(args, qztbinom); case 107: return DPQ2_1(args, dzmlogarithmic); case 108: return DPQ2_2(args, pzmlogarithmic); case 109: return DPQ2_2(args, qzmlogarithmic); case 110: return DPQ2_1(args, dzmpois); case 111: return DPQ2_2(args, pzmpois); case 112: return DPQ2_2(args, qzmpois); case 113: return DPQ2_1(args, dzmgeom); case 114: return DPQ2_2(args, pzmgeom); case 115: return DPQ2_2(args, qzmgeom); case 116: return DPQ2_1(args, dpoisinvgauss); case 117: return DPQ2_2(args, ppoisinvgauss); case 118: return DPQ2_2(args, qpoisinvgauss); default: error(_("internal error in actuar_do_dpq2")); } return args; /* never used; to keep -Wall happy */ } /* Functions for three parameter distributions */ #define if_NA_dpq3_set(y, x, a, b, c) \ if (ISNA (x) || ISNA (a) || ISNA (b) || ISNA (c)) y = NA_REAL; \ else if (ISNAN(x) || ISNAN(a) || ISNAN(b) || ISNAN(c)) y = R_NaN; #define mod_iterate3(n1, n2, n3, n4, i1, i2, i3, i4) \ for (i = i1 = i2 = i3 = i4 = 0; i < n; \ i1 = (++i1 == n1) ? 0 : i1, \ i2 = (++i2 == n2) ? 0 : i2, \ i3 = (++i3 == n3) ? 0 : i3, \ i4 = (++i4 == n4) ? 0 : i4, \ ++i) static SEXP dpq3_1(SEXP sx, SEXP sa, SEXP sb, SEXP sc, SEXP sI, double (*f)()) { SEXP sy; int i, ix, ia, ib, ic, n, nx, na, nb, nc, sxo = OBJECT(sx), sao = OBJECT(sa), sbo = OBJECT(sb), sco = OBJECT(sc); double xi, ai, bi, ci, *x, *a, *b, *c, *y; int i_1; Rboolean naflag = FALSE; #define SETUP_DPQ3 \ if (!isNumeric(sx) || !isNumeric(sa) || \ !isNumeric(sb) || !isNumeric(sc)) \ error(_("invalid arguments")); \ \ nx = LENGTH(sx); \ na = LENGTH(sa); \ nb = LENGTH(sb); \ nc = LENGTH(sc); \ if ((nx == 0) || (na == 0) || (nb == 0) || (nc == 0)) \ return(allocVector(REALSXP, 0)); \ n = nx; \ if (n < na) n = na; \ if (n < nb) n = nb; \ if (n < nc) n = nc; \ PROTECT(sx = coerceVector(sx, REALSXP)); \ PROTECT(sa = coerceVector(sa, REALSXP)); \ PROTECT(sb = coerceVector(sb, REALSXP)); \ PROTECT(sc = coerceVector(sc, REALSXP)); \ PROTECT(sy = allocVector(REALSXP, n)); \ x = REAL(sx); \ a = REAL(sa); \ b = REAL(sb); \ c = REAL(sc); \ y = REAL(sy) SETUP_DPQ3; i_1 = asInteger(sI); mod_iterate3(nx, na, nb, nc, ix, ia, ib, ic) { xi = x[ix]; ai = a[ia]; bi = b[ib]; ci = c[ic]; if_NA_dpq3_set(y[i], xi, ai, bi, ci) else { y[i] = f(xi, ai, bi, ci, i_1); if (ISNAN(y[i])) naflag = TRUE; } } #define FINISH_DPQ3 \ if (naflag) \ warning(R_MSG_NA); \ \ if (n == nx) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sx))); \ SET_OBJECT(sy, sxo); \ } \ else if (n == na) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sa))); \ SET_OBJECT(sy, sao); \ } \ else if (n == nb) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sb))); \ SET_OBJECT(sy, sbo); \ } \ else if (n == nc) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sc))); \ SET_OBJECT(sy, sco); \ } \ UNPROTECT(5) FINISH_DPQ3; return sy; } static SEXP dpq3_2(SEXP sx, SEXP sa, SEXP sb, SEXP sc, SEXP sI, SEXP sJ, double (*f)()) { SEXP sy; int i, ix, ia, ib, ic, n, nx, na, nb, nc, sxo = OBJECT(sx), sao = OBJECT(sa), sbo = OBJECT(sb), sco = OBJECT(sc); double xi, ai, bi, ci, *x, *a, *b, *c, *y; int i_1, i_2; Rboolean naflag = FALSE; SETUP_DPQ3; i_1 = asInteger(sI); i_2 = asInteger(sJ); mod_iterate3(nx, na, nb, nc, ix, ia, ib, ic) { xi = x[ix]; ai = a[ia]; bi = b[ib]; ci = c[ic]; if_NA_dpq3_set(y[i], xi, ai, bi, ci) else { y[i] = f(xi, ai, bi, ci, i_1, i_2); if (ISNAN(y[i])) naflag = TRUE; } } FINISH_DPQ3; return sy; } #define DPQ3_1(A, FUN) dpq3_1(CAR(A), CADR(A), CADDR(A), CADDDR(A), CAD4R(A), FUN); #define DPQ3_2(A, FUN) dpq3_2(CAR(A), CADR(A), CADDR(A), CADDDR(A), CAD4R(A), CAD5R(A), FUN) SEXP actuar_do_dpq3(int code, SEXP args) { switch (code) { case 1: return DPQ3_1(args, dburr); case 2: return DPQ3_2(args, pburr); case 3: return DPQ3_2(args, qburr); case 4: return DPQ3_1(args, mburr); case 5: return DPQ3_1(args, dgenpareto); case 6: return DPQ3_2(args, pgenpareto); case 7: return DPQ3_2(args, qgenpareto); case 8: return DPQ3_1(args, mgenpareto); case 9: return DPQ3_1(args, dinvburr); case 10: return DPQ3_2(args, pinvburr); case 11: return DPQ3_2(args, qinvburr); case 12: return DPQ3_1(args, minvburr); case 13: return DPQ3_1(args, dinvtrgamma); case 14: return DPQ3_2(args, pinvtrgamma); case 15: return DPQ3_2(args, qinvtrgamma); case 16: return DPQ3_1(args, minvtrgamma); case 17: return DPQ3_1(args, dtrgamma); case 18: return DPQ3_2(args, ptrgamma); case 19: return DPQ3_2(args, qtrgamma); case 20: return DPQ3_1(args, mtrgamma); case 21: return DPQ3_1(args, levgamma); case 22: return DPQ3_1(args, levinvgamma); case 23: return DPQ3_1(args, levinvparalogis); case 24: return DPQ3_1(args, levinvpareto); case 25: return DPQ3_1(args, levinvweibull); case 26: return DPQ3_1(args, levlgamma); case 27: return DPQ3_1(args, levllogis); case 28: return DPQ3_1(args, levlnorm); case 29: return DPQ3_1(args, levparalogis); case 30: return DPQ3_1(args, levpareto); case 31: return DPQ3_1(args, levpareto1); case 32: return DPQ3_1(args, levweibull); case 33: return DPQ3_1(args, levbeta); case 34: return DPQ3_1(args, levchisq); /* case 35: return DPQ3_1(args, levinvGauss); [defunct v3.0-0] */ case 36: return DPQ3_1(args, levunif); case 37: return DPQ3_1(args, levinvgauss); case 38: return DPQ3_1(args, dpareto2); case 39: return DPQ3_2(args, ppareto2); case 40: return DPQ3_2(args, qpareto2); case 41: return DPQ3_1(args, mpareto2); case 42: return DPQ3_1(args, dpareto3); case 43: return DPQ3_2(args, ppareto3); case 44: return DPQ3_2(args, qpareto3); case 45: return DPQ3_1(args, mpareto3); case 101: return DPQ3_1(args, dzmnbinom); case 102: return DPQ3_2(args, pzmnbinom); case 103: return DPQ3_2(args, qzmnbinom); case 104: return DPQ3_1(args, dzmbinom); case 105: return DPQ3_2(args, pzmbinom); case 106: return DPQ3_2(args, qzmbinom); default: error(_("internal error in actuar_do_dpq3")); } return args; /* never used; to keep -Wall happy */ } /* Functions for four parameter distributions */ #define if_NA_dpq4_set(y, x, a, b, c, d) \ if (ISNA (x) || ISNA (a) || ISNA (b) || ISNA (c) || ISNA (d)) \ y = NA_REAL; \ else if (ISNAN(x) || ISNAN(a) || ISNAN(b) || ISNAN(c) || ISNAN(d)) \ y = R_NaN; #define mod_iterate4(n1, n2, n3, n4, n5, i1, i2, i3, i4, i5) \ for (i = i1 = i2 = i3 = i4 = i5 = 0; i < n; \ i1 = (++i1 == n1) ? 0 : i1, \ i2 = (++i2 == n2) ? 0 : i2, \ i3 = (++i3 == n3) ? 0 : i3, \ i4 = (++i4 == n4) ? 0 : i4, \ i5 = (++i5 == n5) ? 0 : i5, \ ++i) static SEXP dpq4_1(SEXP sx, SEXP sa, SEXP sb, SEXP sc, SEXP sd, SEXP sI, double (*f)()) { SEXP sy; int i, ix, ia, ib, ic, id, n, nx, na, nb, nc, nd, sxo = OBJECT(sx), sao = OBJECT(sa), sbo = OBJECT(sb), sco = OBJECT(sc), sdo = OBJECT(sd); double xi, ai, bi, ci, di, *x, *a, *b, *c, *d, *y; int i_1; Rboolean naflag = FALSE; #define SETUP_DPQ4 \ if (!isNumeric(sx) || !isNumeric(sa) || !isNumeric(sb) || \ !isNumeric(sc) || !isNumeric(sd)) \ error(_("invalid arguments")); \ \ nx = LENGTH(sx); \ na = LENGTH(sa); \ nb = LENGTH(sb); \ nc = LENGTH(sc); \ nd = LENGTH(sd); \ if ((nx == 0) || (na == 0) || (nb == 0) || \ (nc == 0) || (nd == 0)) \ return(allocVector(REALSXP, 0)); \ n = nx; \ if (n < na) n = na; \ if (n < nb) n = nb; \ if (n < nc) n = nc; \ if (n < nd) n = nd; \ PROTECT(sx = coerceVector(sx, REALSXP)); \ PROTECT(sa = coerceVector(sa, REALSXP)); \ PROTECT(sb = coerceVector(sb, REALSXP)); \ PROTECT(sc = coerceVector(sc, REALSXP)); \ PROTECT(sd = coerceVector(sd, REALSXP)); \ PROTECT(sy = allocVector(REALSXP, n)); \ x = REAL(sx); \ a = REAL(sa); \ b = REAL(sb); \ c = REAL(sc); \ d = REAL(sd); \ y = REAL(sy) SETUP_DPQ4; i_1 = asInteger(sI); mod_iterate4(nx, na, nb, nc, nd, ix, ia, ib, ic, id) { xi = x[ix]; ai = a[ia]; bi = b[ib]; ci = c[ic]; di = d[id]; if_NA_dpq4_set(y[i], xi, ai, bi, ci, di) else { y[i] = f(xi, ai, bi, ci, di, i_1); if (ISNAN(y[i])) naflag = TRUE; } } #define FINISH_DPQ4 \ if (naflag) \ warning(R_MSG_NA); \ \ if (n == nx) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sx))); \ SET_OBJECT(sy, sxo); \ } \ else if (n == na) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sa))); \ SET_OBJECT(sy, sao); \ } \ else if (n == nb) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sb))); \ SET_OBJECT(sy, sbo); \ } \ else if (n == nc) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sc))); \ SET_OBJECT(sy, sco); \ } \ else if (n == nd) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sd))); \ SET_OBJECT(sy, sdo); \ } \ UNPROTECT(6) FINISH_DPQ4; return sy; } static SEXP dpq4_2(SEXP sx, SEXP sa, SEXP sb, SEXP sc, SEXP sd, SEXP sI, SEXP sJ, double (*f)()) { SEXP sy; int i, ix, ia, ib, ic, id, n, nx, na, nb, nc, nd, sxo = OBJECT(sx), sao = OBJECT(sa), sbo = OBJECT(sb), sco = OBJECT(sc), sdo = OBJECT(sd); double xi, ai, bi, ci, di, *x, *a, *b, *c, *d, *y; int i_1, i_2; Rboolean naflag = FALSE; SETUP_DPQ4; i_1 = asInteger(sI); i_2 = asInteger(sJ); mod_iterate4(nx, na, nb, nc, nd, ix, ia, ib, ic, id) { xi = x[ix]; ai = a[ia]; bi = b[ib]; ci = c[ic]; di = d[id]; if_NA_dpq4_set(y[i], xi, ai, bi, ci, di) else { y[i] = f(xi, ai, bi, ci, di, i_1, i_2); if (ISNAN(y[i])) naflag = TRUE; } } FINISH_DPQ4; return sy; } #define DPQ4_1(A, FUN) dpq4_1(CAR(A), CADR(A), CADDR(A), CADDDR(A), CAD4R(A), CAD5R(A), FUN); #define DPQ4_2(A, FUN) dpq4_2(CAR(A), CADR(A), CADDR(A), CADDDR(A), CAD4R(A), CAD5R(A), CAD6R(A), FUN) SEXP actuar_do_dpq4(int code, SEXP args) { switch (code) { case 1: return DPQ4_1(args, dtrbeta); case 2: return DPQ4_2(args, ptrbeta); case 3: return DPQ4_2(args, qtrbeta); case 4: return DPQ4_1(args, mtrbeta); case 5: return DPQ4_1(args, levburr); case 6: return DPQ4_1(args, levgenpareto); case 7: return DPQ4_1(args, levinvburr); case 8: return DPQ4_1(args, levinvtrgamma); case 9: return DPQ4_1(args, levtrgamma); case 10: return DPQ4_1(args, dgenbeta); case 11: return DPQ4_2(args, pgenbeta); case 12: return DPQ4_2(args, qgenbeta); case 13: return DPQ4_1(args, mgenbeta); case 14: return DPQ4_1(args, levpareto2); case 15: return DPQ4_1(args, levpareto3); case 16: return DPQ4_1(args, dpareto4); case 17: return DPQ4_2(args, ppareto4); case 18: return DPQ4_2(args, qpareto4); case 19: return DPQ4_1(args, mpareto4); default: error(_("internal error in actuar_do_dpq4")); } return args; /* never used; to keep -Wall happy */ } /* Functions for five parameter distributions */ #define if_NA_dpq5_set(y, x, a, b, c, d, e) \ if (ISNA (x) || ISNA (a) || ISNA (b) || ISNA (c) || ISNA (d) || ISNA (e)) \ y = NA_REAL; \ else if (ISNAN(x) || ISNAN(a) || ISNAN(b) || ISNAN(c) || ISNAN(d) || ISNAN (e)) \ y = R_NaN; #define mod_iterate5(n1, n2, n3, n4, n5, n6, i1, i2, i3, i4, i5, i6) \ for (i = i1 = i2 = i3 = i4 = i5 = i6 = 0; i < n; \ i1 = (++i1 == n1) ? 0 : i1, \ i2 = (++i2 == n2) ? 0 : i2, \ i3 = (++i3 == n3) ? 0 : i3, \ i4 = (++i4 == n4) ? 0 : i4, \ i5 = (++i5 == n5) ? 0 : i5, \ i6 = (++i6 == n6) ? 0 : i6, \ ++i) static SEXP dpq5_1(SEXP sx, SEXP sa, SEXP sb, SEXP sc, SEXP sd, SEXP se, SEXP sI, double (*f)()) { SEXP sy; int i, ix, ia, ib, ic, id, ie, n, nx, na, nb, nc, nd, ne, sxo = OBJECT(sx), sao = OBJECT(sa), sbo = OBJECT(sb), sco = OBJECT(sc), sdo = OBJECT(sd), seo = OBJECT(se); double xi, ai, bi, ci, di, ei, *x, *a, *b, *c, *d, *e, *y; int i_1; Rboolean naflag = FALSE; #define SETUP_DPQ5 \ if (!isNumeric(sx) || !isNumeric(sa) || !isNumeric(sb) || \ !isNumeric(sc) || !isNumeric(sd) || !isNumeric(se)) \ error(_("invalid arguments")); \ \ nx = LENGTH(sx); \ na = LENGTH(sa); \ nb = LENGTH(sb); \ nc = LENGTH(sc); \ nd = LENGTH(sd); \ ne = LENGTH(se); \ if ((nx == 0) || (na == 0) || (nb == 0) || \ (nc == 0) || (nd == 0) || (ne == 0)) \ return(allocVector(REALSXP, 0)); \ n = nx; \ if (n < na) n = na; \ if (n < nb) n = nb; \ if (n < nc) n = nc; \ if (n < nd) n = nd; \ if (n < ne) n = ne; \ PROTECT(sx = coerceVector(sx, REALSXP)); \ PROTECT(sa = coerceVector(sa, REALSXP)); \ PROTECT(sb = coerceVector(sb, REALSXP)); \ PROTECT(sc = coerceVector(sc, REALSXP)); \ PROTECT(sd = coerceVector(sd, REALSXP)); \ PROTECT(se = coerceVector(se, REALSXP)); \ PROTECT(sy = allocVector(REALSXP, n)); \ x = REAL(sx); \ a = REAL(sa); \ b = REAL(sb); \ c = REAL(sc); \ d = REAL(sd); \ e = REAL(se); \ y = REAL(sy) SETUP_DPQ5; i_1 = asInteger(sI); mod_iterate5(nx, na, nb, nc, nd, ne, ix, ia, ib, ic, id, ie) { xi = x[ix]; ai = a[ia]; bi = b[ib]; ci = c[ic]; di = d[id]; ei = e[ie]; if_NA_dpq5_set(y[i], xi, ai, bi, ci, di, ei) else { y[i] = f(xi, ai, bi, ci, di, ei, i_1); if (ISNAN(y[i])) naflag = TRUE; } } #define FINISH_DPQ5 \ if (naflag) \ warning(R_MSG_NA); \ \ if (n == nx) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sx))); \ SET_OBJECT(sy, sxo); \ } \ else if (n == na) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sa))); \ SET_OBJECT(sy, sao); \ } \ else if (n == nb) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sb))); \ SET_OBJECT(sy, sbo); \ } \ else if (n == nc) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sc))); \ SET_OBJECT(sy, sco); \ } \ else if (n == nd) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sd))); \ SET_OBJECT(sy, sdo); \ } \ else if (n == ne) { \ SET_ATTRIB(sy, duplicate(ATTRIB(se))); \ SET_OBJECT(sy, seo); \ } \ UNPROTECT(7) FINISH_DPQ5; return sy; } static SEXP dpq5_2(SEXP sx, SEXP sa, SEXP sb, SEXP sc, SEXP sd, SEXP se, SEXP sI, SEXP sJ, double (*f)()) { SEXP sy; int i, ix, ia, ib, ic, id, ie, n, nx, na, nb, nc, nd, ne, sxo = OBJECT(sx), sao = OBJECT(sa), sbo = OBJECT(sb), sco = OBJECT(sc), sdo = OBJECT(sd), seo = OBJECT(sd); double xi, ai, bi, ci, di, ei, *x, *a, *b, *c, *d, *e, *y; int i_1, i_2; Rboolean naflag = FALSE; SETUP_DPQ5; i_1 = asInteger(sI); i_2 = asInteger(sJ); mod_iterate5(nx, na, nb, nc, nd, ne, ix, ia, ib, ic, id, ie) { xi = x[ix]; ai = a[ia]; bi = b[ib]; ci = c[ic]; di = d[id]; ei = e[ie]; if_NA_dpq5_set(y[i], xi, ai, bi, ci, di, ei) else { y[i] = f(xi, ai, bi, ci, di, ei, i_1, i_2); if (ISNAN(y[i])) naflag = TRUE; } } FINISH_DPQ5; return sy; } #define DPQ5_1(A, FUN) dpq5_1(CAR(A), CADR(A), CADDR(A), CADDDR(A), CAD4R(A), CAD5R(A), CAD6R(A), FUN); #define DPQ5_2(A, FUN) dpq5_2(CAR(A), CADR(A), CADDR(A), CADDDR(A), CAD4R(A), CAD5R(A), CAD6R(A), CAD7R(A), FUN) SEXP actuar_do_dpq5(int code, SEXP args) { switch (code) { case 1: return DPQ5_1(args, levtrbeta); case 2: return DPQ5_1(args, levgenbeta); case 3: return DPQ5_1(args, dfpareto); case 4: return DPQ5_2(args, pfpareto); case 5: return DPQ5_2(args, qfpareto); case 6: return DPQ5_1(args, mfpareto); case 7: return DPQ5_2(args, levpareto4); default: error(_("internal error in actuar_do_dpq5")); } return args; /* never used; to keep -Wall happy */ } /* Functions for six parameter distributions */ #define if_NA_dpq6_set(y, x, a, b, c, d, e, g) \ if (ISNA (x) || ISNA (a) || ISNA (b) || ISNA (c) || ISNA (d) || ISNA (e) || ISNA (g)) \ y = NA_REAL; \ else if (ISNAN(x) || ISNAN(a) || ISNAN(b) || ISNAN(c) || ISNAN(d) || ISNAN(e) || ISNAN(g)) \ y = R_NaN; #define mod_iterate6(n1, n2, n3, n4, n5, n6, n7, i1, i2, i3, i4, i5, i6, i7) \ for (i = i1 = i2 = i3 = i4 = i5 = i6 = i7 = 0; i < n; \ i1 = (++i1 == n1) ? 0 : i1, \ i2 = (++i2 == n2) ? 0 : i2, \ i3 = (++i3 == n3) ? 0 : i3, \ i4 = (++i4 == n4) ? 0 : i4, \ i5 = (++i5 == n5) ? 0 : i5, \ i6 = (++i6 == n6) ? 0 : i6, \ i7 = (++i7 == n7) ? 0 : i7, \ ++i) static SEXP dpq6_1(SEXP sx, SEXP sa, SEXP sb, SEXP sc, SEXP sd, SEXP se, SEXP sg, SEXP sI, double (*f)()) { SEXP sy; /* skip argument "sf" because "if" is a C keyword. */ int i, ix, ia, ib, ic, id, ie, ig, n, nx, na, nb, nc, nd, ne, ng, sxo = OBJECT(sx), sao = OBJECT(sa), sbo = OBJECT(sb), sco = OBJECT(sc), sdo = OBJECT(sd), seo = OBJECT(se), sgo = OBJECT(sg); double xi, ai, bi, ci, di, ei, gi, *x, *a, *b, *c, *d, *e, *g, *y; int i_1; Rboolean naflag = FALSE; #define SETUP_DPQ6 \ if (!isNumeric(sx) || !isNumeric(sa) || !isNumeric(sb) || \ !isNumeric(sc) || !isNumeric(sd) || !isNumeric(se) || \ !isNumeric(sg)) \ error(_("invalid arguments")); \ \ nx = LENGTH(sx); \ na = LENGTH(sa); \ nb = LENGTH(sb); \ nc = LENGTH(sc); \ nd = LENGTH(sd); \ ne = LENGTH(se); \ ng = LENGTH(sg); \ if ((nx == 0) || (na == 0) || (nb == 0) || \ (nc == 0) || (nd == 0) || (ne == 0) || \ (ng == 0)) \ return(allocVector(REALSXP, 0)); \ n = nx; \ if (n < na) n = na; \ if (n < nb) n = nb; \ if (n < nc) n = nc; \ if (n < nd) n = nd; \ if (n < ne) n = ne; \ if (n < ng) n = ng; \ PROTECT(sx = coerceVector(sx, REALSXP)); \ PROTECT(sa = coerceVector(sa, REALSXP)); \ PROTECT(sb = coerceVector(sb, REALSXP)); \ PROTECT(sc = coerceVector(sc, REALSXP)); \ PROTECT(sd = coerceVector(sd, REALSXP)); \ PROTECT(se = coerceVector(se, REALSXP)); \ PROTECT(sg = coerceVector(sg, REALSXP)); \ PROTECT(sy = allocVector(REALSXP, n)); \ x = REAL(sx); \ a = REAL(sa); \ b = REAL(sb); \ c = REAL(sc); \ d = REAL(sd); \ e = REAL(se); \ g = REAL(sg); \ y = REAL(sy) SETUP_DPQ6; i_1 = asInteger(sI); mod_iterate6(nx, na, nb, nc, nd, ne, ng, ix, ia, ib, ic, id, ie, ig) { xi = x[ix]; ai = a[ia]; bi = b[ib]; ci = c[ic]; di = d[id]; ei = e[ie]; gi = g[ig]; if_NA_dpq6_set(y[i], xi, ai, bi, ci, di, ei, gi) else { y[i] = f(xi, ai, bi, ci, di, ei, gi, i_1); if (ISNAN(y[i])) naflag = TRUE; } } #define FINISH_DPQ6 \ if (naflag) \ warning(R_MSG_NA); \ \ if (n == nx) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sx))); \ SET_OBJECT(sy, sxo); \ } \ else if (n == na) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sa))); \ SET_OBJECT(sy, sao); \ } \ else if (n == nb) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sb))); \ SET_OBJECT(sy, sbo); \ } \ else if (n == nc) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sc))); \ SET_OBJECT(sy, sco); \ } \ else if (n == nd) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sd))); \ SET_OBJECT(sy, sdo); \ } \ else if (n == ne) { \ SET_ATTRIB(sy, duplicate(ATTRIB(se))); \ SET_OBJECT(sy, seo); \ } \ else if (n == ng) { \ SET_ATTRIB(sy, duplicate(ATTRIB(sg))); \ SET_OBJECT(sy, sgo); \ } \ UNPROTECT(8) FINISH_DPQ6; return sy; } #define DPQ6_1(A, FUN) dpq6_1(CAR(A), CADR(A), CADDR(A), CADDDR(A), CAD4R(A), CAD5R(A), CAD6R(A), CAD7R(A), FUN); SEXP actuar_do_dpq6(int code, SEXP args) { switch (code) { case 1: return DPQ6_1(args, levfpareto); default: error(_("internal error in actuar_do_dpq6")); } return args; /* never used; to keep -Wall happy */ } /* Main function, the only one used by .External(). */ SEXP actuar_do_dpq(SEXP args) { int i; const char *name; /* Extract distribution name */ args = CDR(args); name = CHAR(STRING_ELT(CAR(args), 0)); /* Dispatch to actuar_do_dpq{1,2,3,4,5,6} */ for (i = 0; dpq_tab[i].name; i++) { if (!strcmp(dpq_tab[i].name, name)) { return dpq_tab[i].cfun(dpq_tab[i].code, CDR(args)); } } /* No dispatch is an error */ error("internal error in actuar_do_dpq"); return args; /* never used; to keep -Wall happy */ } actuar/src/ztpois.c0000644000176200001440000000520514030725704014020 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute probability function, cumulative distribution * and quantile functions, and to simulate random variates for the * zero-truncated Poisson distribution. See * ../R/ZeroTruncatedPoisson.R for details. * * Zero-truncated distributions have density * * Pr[Z = x] = Pr[X = x]/(1 - Pr[X = 0]), * * and distribution function * * Pr[Z <= x] = (Pr[X <= x] - Pr[X = 0])/(1 - Pr[X = 0]) * * or, alternatively, survival function * * Pr[Z > x] = Pr[X > x]/(1 - Pr[X = 0]). * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" /* The Poisson distribution has * * F(0) = Pr[X = 0] = exp(-lambda). * * Limiting case: lambda == 0 is point mass at x = 1. */ double dztpois(double x, double lambda, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(lambda)) return x + lambda; #endif if (lambda < 0) return R_NaN; if (x < 1 || !R_FINITE(x)) return ACT_D__0; /* limiting case as lambda approaches zero is point mass at one */ if (lambda == 0) return (x == 1) ? ACT_D__1 : ACT_D__0; return ACT_D_exp(dpois(x, lambda, /*give_log*/1) - ACT_Log1_Exp(-lambda)); } double pztpois(double x, double lambda, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(lambda)) return x + lambda; #endif if (lambda < 0) return R_NaN; if (x < 1) return ACT_DT_0; if (!R_FINITE(x)) return ACT_DT_1; /* limiting case as lambda approaches zero is point mass at one */ if (lambda == 0) return (x >= 1) ? ACT_DT_1 : ACT_DT_0; return ACT_DT_Cval(ppois(x, lambda, /*l._t.*/0, /*log_p*/0)/(-expm1(-lambda))); } double qztpois(double x, double lambda, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(lambda)) return x + lambda; #endif if (lambda < 0 || !R_FINITE(lambda)) return R_NaN; /* limiting case as lambda approaches zero is point mass at one */ if (lambda == 0) { /* simplified ACT_Q_P01_boundaries macro */ if (log_p) { if (x > 0) return R_NaN; return 1.0; } else /* !log_p */ { if (x < 0 || x > 1) return R_NaN; return 1.0; } } ACT_Q_P01_boundaries(x, 1, R_PosInf); x = ACT_DT_qIv(x); double p0c = -expm1(-lambda); return qpois(p0c * x + (1 - p0c), lambda, /*l._t.*/1, /*log_p*/0); } double rztpois(double lambda) { if (lambda < 0 || !R_FINITE(lambda)) return R_NaN; /* limiting case as lambda approaches zero is point mass at one */ if (lambda == 0) return 1.0; return qpois(runif(exp(-lambda), 1), lambda, 1, 0); } actuar/src/genpareto.c0000644000176200001440000001147314030725704014460 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the Generalized Pareto distribution.. See ../R/GeneralizedPareto.R * for details. * * We work with the density expressed as * * u^shape2 * (1 - u)^shape1 / (x * beta(shape1, shape2)) * * with u = v/(1 + v) = 1/(1 + 1/v), v = x/scale. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dgenpareto(double x, double shape1, double shape2, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return x + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < 0.0) return ACT_D__0; /* handle x == 0 separately */ if (x == 0.0) { if (shape2 < 1) return R_PosInf; if (shape2 > 1) return ACT_D__0; /* else */ return give_log ? - log(scale) - lbeta(shape2, shape1) : 1.0/(scale * beta(shape2, shape1)); } double logv, logu, log1mu; logv = log(x) - log(scale); logu = - log1pexp(-logv); log1mu = - log1pexp(logv); return ACT_D_exp(shape2 * logu + shape1 * log1mu - log(x) - lbeta(shape2, shape1)); } double pgenpareto(double q, double shape1, double shape2, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return q + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (q <= 0) return ACT_DT_0; double logvm, u; logvm = log(scale) - log(q); /* -log v */ u = exp(-log1pexp(logvm)); if (u > 0.5) { /* Compute (1 - u) accurately */ double u1m = exp(-log1pexp(-logvm)); return pbeta(u1m, shape1, shape2, 1 - lower_tail, log_p); } /* else u <= 0.5 */ return pbeta(u, shape2, shape1, lower_tail, log_p); } double qgenpareto(double p, double shape1, double shape2, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return p + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return scale / (1.0 / qbeta(p, shape2, shape1, lower_tail, 0) - 1.0); } double rgenpareto(double shape1, double shape2, double scale) { if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; return scale / (1.0 / rbeta(shape2, shape1) - 1.0); } double mgenpareto(double order, double shape1, double shape2, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return order + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape2 || order >= shape1) return R_PosInf; return R_pow(scale, order) * beta(shape1 - order, shape2 + order) / beta(shape1, shape2); } double levgenpareto(double limit, double shape1, double shape2, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale) || ISNAN(order)) return limit + shape1 + shape2 + scale + order; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape2) return R_PosInf; if (limit <= 0.0) return 0.0; double logv, u, u1m, Ix; logv = log(limit) - log(scale); u = exp(-log1pexp(-logv)); u1m = exp(-log1pexp(logv)); Ix = (u > 0.5) ? pbeta(u1m, shape1, shape2, /*l._t.*/1, /*give_log*/0) : pbeta(u, shape2, shape1, /*l._t.*/0, /*give_log*/0); return R_pow(scale, order) * betaint_raw(u, shape2 + order, shape1 - order, u1m) / (gammafn(shape1) * gammafn(shape2)) + ACT_DLIM__0(limit, order) * Ix; } actuar/src/lnorm.c0000644000176200001440000000256314030725704013623 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Fonctions to calculate raw and limited moments for the lognormal * distribution. See ../R/LognormalMoments.R for details. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double mlnorm(double order, double logmean, double logsd, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(logmean) || ISNAN(logsd)) return order + logmean + logsd; #endif if (!R_FINITE(logmean) || !R_FINITE(logsd) || !R_FINITE(order) || logsd <= 0.0) return R_NaN; return exp(order * (logmean + 0.5 * order * R_pow_di(logsd, 2))); } double levlnorm(double limit, double logmean, double logsd, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(logmean) || ISNAN(logsd) || ISNAN(order)) return limit + logmean + logsd + order; #endif if (!R_FINITE(logmean) || !R_FINITE(logsd) || !R_FINITE(order) || logsd <= 0.0) return R_NaN; if (limit <= 0.0) return 0.0; double u = (log(limit) - logmean)/logsd; return exp(order * (logmean + 0.5 * order * R_pow(logsd, 2.0))) * pnorm(u - order * logsd, 0., 1.0, 1, 0) + ACT_DLIM__0(limit, order) * pnorm(u, 0., 1.0, 0, 0); } actuar/src/betaint.c0000644000176200001440000001247314030725704014123 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Function to compute the integral * * B(a, b; x) = gammafn(a + b) int_0^x t^(a-1) (1-t)^(b-1) dt * * for a > 0, b != -1, -2, ... and 0 < x < 1. When b > 0, * * B(a, b; x) = gammafn(a) gammafn(b) pbeta(x, a, b). * * When b < 0 and b != -1, -2, ... and a > 1 + floor(-b), * * B(a, b; x) * = -gammafn(a + b) {(x^(a-1) (1-x)^b)/b * + [(a-1) x^(a-2) (1-x)^(b+1)]/[b(b+1)] * + ... * + [(a-1)...(a-r) x^(a-r-1) (1-x)^(b+r)]/[b(b+1)...(b+r)]} * + [(a-1)...(a-r-1)]/[b(b+1)...(b+r)] gammafn(a-r-1) * * gammafn(b+r+1) pbeta(x, a-r-1, b+r+1) * * See Appendix A of Klugman, Panjer & Willmot, Loss Models, * Fourth Edition, Wiley, 2012 for the formula. * * AUTHOR: Vincent Goulet */ #include #include #include #include "actuar.h" #include "dpq.h" #include "locale.h" double betaint_raw(double x, double a, double b, double x1m) { /* Here, assume that (x, a, b) are not NA, 0 < x < 1 and 0 < a < Inf. */ if (b > 0) { /* I(x, a, b) = 1 - I(1 - x, b, a) */ double Ix = (x > 0.5) ? pbeta(x1m, b, a, /*l._t.*/0, /*give_log*/0) : pbeta(x, a, b, /*l._t.*/1, /*give_log*/0); return gammafn(a) * gammafn(b) * Ix; } double r = floor(-b); if (! (ACT_nonint(b) && a - r - 1 > 0)) return R_NaN; /* There are two quantities to accumulate in order to compute the * final result: the alternating sum (to be stored in 'sum') and * the ratio [(a - 1) ... (a - r)]/[b(b + 1) ... (b + r)] (to be * stored in 'ratio'). Some calculations are done in the log * scale. */ int i; double ap = a, bp = b; /* copies of a and b */ double lx = log(x); /* log(x) */ double lx1m = log(x1m); /* log(1 - x) */ double x1 = exp(lx1m - lx); /* (1 - x)/x */ double c, tmp, sum, ratio; /* Computation of the first term in the alternating sum. */ ap--; /* a - 1 */ c = exp(ap * lx + bp * lx1m)/bp; /* (x^(a - 1) (1 - x)^b) / b */ sum = c; /* first term */ ratio = 1/bp; /* 1 / b */ bp++; /* b + 1 */ /* Other terms in the alternating sum iff r > 0. * Relies on the fact that each new term in the sum is * * [previous term] * (a - i - 1)(1 - x)/[(b + i + 1) x] * * for i = 0, ..., r - 1. We need to compute this value as * * {[previous term] * [(1 - x)/x]} * [(a - i - 1)/(b + i + 1)] * * to preserve accuracy for very small values of x (near * DOUBLE_XMIN). */ for (i = 0; i < r; i++) { tmp = ap/bp; /* (a - i - 1)/(b + i + 1) */ c = tmp * (c * x1); /* new term in the sum */ sum += c; ratio *= tmp; ap--; bp++; } /* I(x, a, b) = 1 - I(1 - x, b, a) */ double lIx = (x > 0.5) ? pbeta(x1m, bp, ap, /*l._t.*/0, /*give_log*/1) : pbeta(x, ap, bp, /*l._t.*/1, /*give_log*/1); return(-gammafn(a + b) * sum + (ratio * ap) * exp(lgammafn(ap) + lgammafn(bp) + lIx)); } /* The frontend called by actuar_do_betaint() */ double betaint(double x, double a, double b) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(a) || ISNAN(b)) return x + a + b; #endif if (!R_FINITE(a)) return(R_PosInf); if (a <= 0 || x <= 0 || x >= 1) return R_NaN; return betaint_raw(x, a, b, 0.5 - x + 0.5); } /* * R TO C INTERFACE * * This is a streamlined version of the scheme in dpq.c * */ #define mod_iterate2(n1, n2, n3, i1, i2, i3) \ for (i = i1 = i2 = i3 = 0; i < n; \ i1 = (++i1 == n1) ? 0 : i1, \ i2 = (++i2 == n2) ? 0 : i2, \ i3 = (++i3 == n3) ? 0 : i3, \ ++i) /* Function called by .External() */ SEXP actuar_do_betaint(SEXP args) { SEXP sx, sa, sb, sy; int i, ix, ia, ib, n, nx, na, nb; double xi, ai, bi, *x, *a, *b, *y; Rboolean naflag = FALSE; args = CDR(args); /* drop function name from arguments */ if (!isNumeric(CAR(args))|| !isNumeric(CADR(args)) || !isNumeric(CADDR(args))) error(_("invalid arguments")); nx = LENGTH(CAR(args)); na = LENGTH(CADR(args)); nb = LENGTH(CADDR(args)); if ((nx == 0) || (na == 0) || (nb == 0)) return(allocVector(REALSXP, 0)); n = nx; if (n < na) n = na; if (n < nb) n = nb; PROTECT(sx = coerceVector(CAR(args), REALSXP)); PROTECT(sa = coerceVector(CADR(args), REALSXP)); PROTECT(sb = coerceVector(CADDR(args), REALSXP)); PROTECT(sy = allocVector(REALSXP, n)); x = REAL(sx); a = REAL(sa); b = REAL(sb); y = REAL(sy); mod_iterate2(nx, na, nb, ix, ia, ib) { xi = x[ix]; ai = a[ia]; bi = b[ib]; if (ISNA(xi) || ISNA(ai) || ISNA(bi)) y[i] = NA_REAL; else if (ISNAN(xi) || ISNAN(ai) || ISNAN(bi)) y[i] = R_NaN; else { y[i] = betaint(xi, ai, bi); if (ISNAN(y[i])) naflag = TRUE; } } if (naflag) warning(R_MSG_NA); if (n == nx) { SET_ATTRIB(sy, duplicate(ATTRIB(sx))); SET_OBJECT(sy, OBJECT(sx)); } else if (n == na) { SET_ATTRIB(sy, duplicate(ATTRIB(sa))); SET_OBJECT(sy, OBJECT(sa)); } else if (n == nb) { SET_ATTRIB(sy, duplicate(ATTRIB(sb))); SET_OBJECT(sy, OBJECT(sb)); } UNPROTECT(4); return sy; } actuar/src/names.c0000644000176200001440000003043114054204377013576 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Table of functions internal to the package. First element is an * argument to one of actuar_do_dpq or actuar_do_random, functions * callable from .External(); second element is the C function * actually called; third element is a code used in the latter. * * Idea taken from R sources (see src/main/names.c). * * AUTHOR: Vincent Goulet */ #include #include "actuar.h" /* DENSITY, CUMULATIVE PROBABILITY AND QUANTILE FUNCTIONS, * RAW AND LIMITED MOMENTS */ dpq_tab_struct dpq_tab[] = { /* One parameter distributions */ {"mexp", actuar_do_dpq1, 1}, {"dinvexp", actuar_do_dpq1, 2}, {"pinvexp", actuar_do_dpq1, 3}, {"qinvexp", actuar_do_dpq1, 4}, {"minvexp", actuar_do_dpq1, 5}, {"mgfexp", actuar_do_dpq1, 6}, {"dlogarithmic", actuar_do_dpq1, 101}, {"plogarithmic", actuar_do_dpq1, 102}, {"qlogarithmic", actuar_do_dpq1, 103}, {"dztpois", actuar_do_dpq1, 104}, {"pztpois", actuar_do_dpq1, 105}, {"qztpois", actuar_do_dpq1, 106}, {"dztgeom", actuar_do_dpq1, 107}, {"pztgeom", actuar_do_dpq1, 108}, {"qztgeom", actuar_do_dpq1, 109}, /* Two parameter distributions */ {"mgamma", actuar_do_dpq2, 1}, {"dinvgamma", actuar_do_dpq2, 2}, {"pinvgamma", actuar_do_dpq2, 3}, {"qinvgamma", actuar_do_dpq2, 4}, {"minvgamma", actuar_do_dpq2, 5}, {"dinvparalogis", actuar_do_dpq2, 6}, {"pinvparalogis", actuar_do_dpq2, 7}, {"qinvparalogis", actuar_do_dpq2, 8}, {"minvparalogis", actuar_do_dpq2, 9}, {"dinvpareto", actuar_do_dpq2, 10}, {"pinvpareto", actuar_do_dpq2, 11}, {"qinvpareto", actuar_do_dpq2, 12}, {"minvpareto", actuar_do_dpq2, 13}, {"dinvweibull", actuar_do_dpq2, 14}, {"pinvweibull", actuar_do_dpq2, 15}, {"qinvweibull", actuar_do_dpq2, 16}, {"minvweibull", actuar_do_dpq2, 17}, {"dlgamma", actuar_do_dpq2, 18}, {"plgamma", actuar_do_dpq2, 19}, {"qlgamma", actuar_do_dpq2, 20}, {"mlgamma", actuar_do_dpq2, 21}, {"dllogis", actuar_do_dpq2, 22}, {"pllogis", actuar_do_dpq2, 23}, {"qllogis", actuar_do_dpq2, 24}, {"mllogis", actuar_do_dpq2, 25}, {"mlnorm", actuar_do_dpq2, 26}, {"dparalogis", actuar_do_dpq2, 27}, {"pparalogis", actuar_do_dpq2, 28}, {"qparalogis", actuar_do_dpq2, 29}, {"mparalogis", actuar_do_dpq2, 30}, {"dpareto", actuar_do_dpq2, 31}, {"ppareto", actuar_do_dpq2, 32}, {"qpareto", actuar_do_dpq2, 33}, {"mpareto", actuar_do_dpq2, 34}, {"dpareto1", actuar_do_dpq2, 35}, {"ppareto1", actuar_do_dpq2, 36}, {"qpareto1", actuar_do_dpq2, 37}, {"mpareto1", actuar_do_dpq2, 38}, {"mweibull", actuar_do_dpq2, 39}, {"levexp", actuar_do_dpq2, 40}, {"levinvexp", actuar_do_dpq2, 41}, {"mbeta", actuar_do_dpq2, 42}, {"mgfgamma", actuar_do_dpq2, 43}, {"mgfnorm", actuar_do_dpq2, 44}, {"mgfunif", actuar_do_dpq2, 45}, {"mgfinvgamma", actuar_do_dpq2, 46}, {"mnorm", actuar_do_dpq2, 47}, {"mchisq", actuar_do_dpq2, 48}, {"mgfchisq", actuar_do_dpq2, 49}, /* {"minvGauss", actuar_do_dpq2, 50}, [defunct v3.0-0] */ /* {"mgfinvGauss", actuar_do_dpq2, 51}, [defunct v3.0-0] */ {"munif", actuar_do_dpq2, 52}, {"dgumbel", actuar_do_dpq2, 53}, {"pgumbel", actuar_do_dpq2, 54}, {"qgumbel", actuar_do_dpq2, 55}, {"mgumbel", actuar_do_dpq2, 56}, {"mgfgumbel", actuar_do_dpq2, 57}, {"dinvgauss", actuar_do_dpq2, 58}, {"pinvgauss", actuar_do_dpq2, 59}, {"qinvgauss", actuar_do_dpq2, 60}, {"minvgauss", actuar_do_dpq2, 61}, {"mgfinvgauss", actuar_do_dpq2, 62}, {"dztnbinom", actuar_do_dpq2, 101}, {"pztnbinom", actuar_do_dpq2, 102}, {"qztnbinom", actuar_do_dpq2, 103}, {"dztbinom", actuar_do_dpq2, 104}, {"pztbinom", actuar_do_dpq2, 105}, {"qztbinom", actuar_do_dpq2, 106}, {"dzmlogarithmic", actuar_do_dpq2, 107}, {"pzmlogarithmic", actuar_do_dpq2, 108}, {"qzmlogarithmic", actuar_do_dpq2, 109}, {"dzmpois", actuar_do_dpq2, 110}, {"pzmpois", actuar_do_dpq2, 111}, {"qzmpois", actuar_do_dpq2, 112}, {"dzmgeom", actuar_do_dpq2, 113}, {"pzmgeom", actuar_do_dpq2, 114}, {"qzmgeom", actuar_do_dpq2, 115}, {"dpoisinvgauss", actuar_do_dpq2, 116}, {"ppoisinvgauss", actuar_do_dpq2, 117}, {"qpoisinvgauss", actuar_do_dpq2, 118}, /* Three parameter distributions */ {"dburr", actuar_do_dpq3, 1}, {"pburr", actuar_do_dpq3, 2}, {"qburr", actuar_do_dpq3, 3}, {"mburr", actuar_do_dpq3, 4}, {"dgenpareto", actuar_do_dpq3, 5}, {"pgenpareto", actuar_do_dpq3, 6}, {"qgenpareto", actuar_do_dpq3, 7}, {"mgenpareto", actuar_do_dpq3, 8}, {"dinvburr", actuar_do_dpq3, 9}, {"pinvburr", actuar_do_dpq3, 10}, {"qinvburr", actuar_do_dpq3, 11}, {"minvburr", actuar_do_dpq3, 12}, {"dinvtrgamma", actuar_do_dpq3, 13}, {"pinvtrgamma", actuar_do_dpq3, 14}, {"qinvtrgamma", actuar_do_dpq3, 15}, {"minvtrgamma", actuar_do_dpq3, 16}, {"dtrgamma", actuar_do_dpq3, 17}, {"ptrgamma", actuar_do_dpq3, 18}, {"qtrgamma", actuar_do_dpq3, 19}, {"mtrgamma", actuar_do_dpq3, 20}, {"levgamma", actuar_do_dpq3, 21}, {"levinvgamma", actuar_do_dpq3, 22}, {"levinvparalogis", actuar_do_dpq3, 23}, {"levinvpareto", actuar_do_dpq3, 24}, {"levinvweibull", actuar_do_dpq3, 25}, {"levlgamma", actuar_do_dpq3, 26}, {"levllogis", actuar_do_dpq3, 27}, {"levlnorm", actuar_do_dpq3, 28}, {"levparalogis", actuar_do_dpq3, 29}, {"levpareto", actuar_do_dpq3, 30}, {"levpareto1", actuar_do_dpq3, 31}, {"levweibull", actuar_do_dpq3, 32}, {"levbeta", actuar_do_dpq3, 33}, {"levchisq", actuar_do_dpq3, 34}, /* {"levinvGauss", actuar_do_dpq3, 35}, [defunct v3.0-0] */ {"levunif", actuar_do_dpq3, 36}, {"levinvgauss", actuar_do_dpq3, 37}, {"dpareto2", actuar_do_dpq3, 38}, {"ppareto2", actuar_do_dpq3, 39}, {"qpareto2", actuar_do_dpq3, 40}, {"mpareto2", actuar_do_dpq3, 41}, {"dpareto3", actuar_do_dpq3, 42}, {"ppareto3", actuar_do_dpq3, 43}, {"qpareto3", actuar_do_dpq3, 44}, {"mpareto3", actuar_do_dpq3, 45}, {"dzmnbinom", actuar_do_dpq3, 101}, {"pzmnbinom", actuar_do_dpq3, 102}, {"qzmnbinom", actuar_do_dpq3, 103}, {"dzmbinom", actuar_do_dpq3, 104}, {"pzmbinom", actuar_do_dpq3, 105}, {"qzmbinom", actuar_do_dpq3, 106}, /* Four parameter distributions */ {"dtrbeta", actuar_do_dpq4, 1}, {"ptrbeta", actuar_do_dpq4, 2}, {"qtrbeta", actuar_do_dpq4, 3}, {"mtrbeta", actuar_do_dpq4, 4}, {"levburr", actuar_do_dpq4, 5}, {"levgenpareto", actuar_do_dpq4, 6}, {"levinvburr", actuar_do_dpq4, 7}, {"levinvtrgamma", actuar_do_dpq4, 8}, {"levtrgamma", actuar_do_dpq4, 9}, {"dgenbeta", actuar_do_dpq4, 10}, {"pgenbeta", actuar_do_dpq4, 11}, {"qgenbeta", actuar_do_dpq4, 12}, {"mgenbeta", actuar_do_dpq4, 13}, {"levpareto2", actuar_do_dpq4, 14}, {"levpareto3", actuar_do_dpq4, 15}, {"dpareto4", actuar_do_dpq4, 16}, {"ppareto4", actuar_do_dpq4, 17}, {"qpareto4", actuar_do_dpq4, 18}, {"mpareto4", actuar_do_dpq4, 19}, /* Five parameter distributions */ {"levtrbeta", actuar_do_dpq5, 1}, {"levgenbeta", actuar_do_dpq5, 2}, {"dfpareto", actuar_do_dpq5, 3}, {"pfpareto", actuar_do_dpq5, 4}, {"qfpareto", actuar_do_dpq5, 5}, {"mfpareto", actuar_do_dpq5, 6}, {"levpareto4", actuar_do_dpq5, 7}, /* Six parameter distributions */ {"levfpareto", actuar_do_dpq6, 1}, /* Phase-type distributions */ {"dphtype", actuar_do_dpqphtype2, 1}, {"pphtype", actuar_do_dpqphtype2, 2}, {"mphtype", actuar_do_dpqphtype2, 3}, {"mgfphtype", actuar_do_dpqphtype2, 4}, {0, 0, 0} }; /* RANDOM NUMBERS FUNCTIONS */ random_tab_struct random_tab[] = { /* One parameter distributions */ {"rinvexp", actuar_do_random1, 1, REALSXP}, {"rlogarithmic", actuar_do_random1, 101, INTSXP}, {"rztpois", actuar_do_random1, 102, INTSXP}, {"rztgeom", actuar_do_random1, 103, INTSXP}, /* Two parameter distributions */ {"rinvgamma", actuar_do_random2, 1, REALSXP}, {"rinvparalogis", actuar_do_random2, 2, REALSXP}, {"rinvpareto", actuar_do_random2, 3, REALSXP}, {"rinvweibull", actuar_do_random2, 4, REALSXP}, {"rlgamma", actuar_do_random2, 5, REALSXP}, {"rllogis", actuar_do_random2, 6, REALSXP}, {"rparalogis", actuar_do_random2, 7, REALSXP}, {"rpareto", actuar_do_random2, 8, REALSXP}, {"rpareto1", actuar_do_random2, 9, REALSXP}, {"rgumbel", actuar_do_random2, 10, REALSXP}, {"rinvgauss", actuar_do_random2, 11, REALSXP}, {"rztnbinom", actuar_do_random2, 101, INTSXP}, {"rztbinom", actuar_do_random2, 102, INTSXP}, {"rzmlogarithmic", actuar_do_random2, 103, INTSXP}, {"rzmpois", actuar_do_random2, 104, INTSXP}, {"rzmgeom", actuar_do_random2, 105, INTSXP}, {"rpoisinvgauss", actuar_do_random2, 106, INTSXP}, /* Three parameter distributions */ {"rburr", actuar_do_random3, 1, REALSXP}, {"rgenpareto", actuar_do_random3, 2, REALSXP}, {"rinvburr", actuar_do_random3, 3, REALSXP}, {"rinvtrgamma", actuar_do_random3, 4, REALSXP}, {"rtrgamma", actuar_do_random3, 5, REALSXP}, {"rpareto2", actuar_do_random3, 6, REALSXP}, {"rpareto3", actuar_do_random3, 7, REALSXP}, {"rzmnbinom", actuar_do_random3, 101, INTSXP}, {"rzmbinom", actuar_do_random3, 102, INTSXP}, /* Four parameter distributions */ {"rtrbeta", actuar_do_random4, 1, REALSXP}, {"rgenbeta", actuar_do_random4, 2, REALSXP}, {"rpareto4", actuar_do_random4, 3, REALSXP}, /* Five parameter distributions */ {"rfpareto", actuar_do_random5, 1, REALSXP}, /* Phase-type distributions */ {"rphtype", actuar_do_randomphtype2, 1, REALSXP}, {0, 0, 0} }; actuar/src/logarithmic.c0000644000176200001440000001077414054204377015005 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, and to simulate random variates for the logarithmic * discrete distribution. See ../R/Logarithmic.R for details. * * We work with the probability mass function expressed as * * a * p^x / x, x = 1, 2, ... * * with a = -1/log(1 - p). * * AUTHOR: Vincent Goulet */ #include #include #include /* for R_CheckUserInterrupt() */ #include "locale.h" #include "dpq.h" double dlogarithmic(double x, double prob, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(prob)) return x + prob; #endif if (prob < 0 || prob >= 1) return R_NaN; ACT_D_nonint_check(x); if (!R_FINITE(x) || x < 1) return ACT_D__0; /* limiting case as prob approaches zero is point mass at one */ if (prob == 0) return (x == 1) ? ACT_D__1 : ACT_D__0; x = ACT_forceint(x); double a = -1.0/log1p(-prob); return ACT_D_exp(log(a) + x * log(prob) - log(x)); } /* For plogarithmic(), there does not seem to be algorithms much more * elaborate that successive computations of the probabilities using * the recurrence relationship * * P[X = x + 1] = p * x * Pr[X = x] / (x + 1), x = 2, 3, ... * * with Pr[X = 1] = -p/log(1 - p). This is what is done here. */ double plogarithmic(double q, double prob, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(prob)) return q + prob; #endif if (prob < 0 || prob >= 1) return R_NaN; if (q < 1) return ACT_DT_0; if (!R_FINITE(q)) return ACT_DT_1; /* limiting case as prob approaches zero is point mass at one. */ if (prob == 0) return (q >= 1) ? ACT_DT_1 : ACT_DT_0; int k; double s, pk; pk = -prob/log1p(-prob); /* Pr[X = 1] */ s = pk; if (q == 1) return ACT_DT_val(s); /* simple case */ for (k = 1; k < q; k++) { pk *= prob * k/(k + 1.0); s += pk; } return ACT_DT_val(s); } /* For qlogarithmic() we mostly reuse the code from qnbinom() et al. * of R sources. From src/nmath/qnbinom.c: * * METHOD * * Uses the Cornish-Fisher Expansion to include a skewness * correction to a normal approximation. This gives an * initial value which never seems to be off by more than * 1 or 2. A search is then conducted of values close to * this initial start point. */ #define _thisDIST_ logarithmic #define _dist_PARS_DECL_ double prob #define _dist_PARS_ prob #include "qDiscrete_search.h" /* do_search() et al. */ double qlogarithmic(double p, double prob, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(prob)) return p + prob; #endif if (prob < 0 || prob >= 1) return R_NaN; /* limiting case as prob approaches zero is point mass at one */ if (prob == 0) { /* simplified ACT_Q_P01_boundaries macro */ if (log_p) { if (p > 0) return R_NaN; return 1.0; } else /* !log_p */ { if (p < 0 || p > 1) return R_NaN; return 1.0; } } ACT_Q_P01_boundaries(p, 1.0, R_PosInf); double a = -1.0/log1p(-prob), P = a * prob, Q = 1.0/(0.5 - prob + 0.5), mu = P * Q, sigma = sqrt(mu * (Q - mu)), gamma = (P * (1 + prob - P*(3 + 2*P)) * R_pow_di(Q, 3))/R_pow_di(sigma, 3); /* q_DISCRETE_01_CHECKS(); */ q_DISCRETE_DECL; q_DISCRETE_BODY(); } /* rlogarithmic() is an implementation with automatic selection of * the LS and LK algorithms of: * * Kemp, A. W. (1981), Efficient Generation of Logarithmically * Distributed Pseudo-Random Variables, Journal of the Royal * Statistical Society, Series C. Vol. 30, p. 249-253. * URL http://www.jstor.org/stable/2346348 * * The algorithms are also discussed in chapter 10 of Devroye (1986). */ double rlogarithmic(double prob) { if (prob < 0 || prob > 1) return R_NaN; /* limiting case as prob approaches zero is point mass at one. */ if (prob == 0) return 1.0; /* Automatic selection between the LS and LK algorithms */ if (prob < 0.95) { double s = -prob/log1p(-prob); double x = 1.0; double u = unif_rand(); while (u > s) { u -= s; x += 1.0; s *= prob * (x - 1.0)/x; } return x; } /* else (prob >= 0.95) */ { double r = log1p(-prob); double v = unif_rand(); if (v >= prob) return 1.0; double u = unif_rand(); double q = -expm1(r * u); if (v <= (q * q)) return floor(1.0 + log(v)/log(q)); if (v <= q) return 2.0; /* case q^2 < v <= q */ return 1.0; /* case v > q */ } } actuar/src/burr.c0000644000176200001440000001053714030725704013446 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the Burr distribution. See ../R/Burr.R for details. * * We work with the density expressed as * * shape1 * shape2 * u^shape1 * (1 - u) / x * * with u = 1/(1 + v), v = (x/scale)^shape2. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dburr(double x, double shape1, double shape2, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return x + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < 0.0) return ACT_D__0; /* handle x == 0 separately */ if (x == 0.0) { if (shape2 < 1) return R_PosInf; if (shape2 > 1) return ACT_D__0; /* else */ return ACT_D_val(shape1 / scale); } double logv, logu, log1mu; logv = shape2 * (log(x) - log(scale)); logu = - log1pexp(logv); log1mu = - log1pexp(-logv); return ACT_D_exp(log(shape1) + log(shape2) + shape1 * logu + log1mu - log(x)); } double pburr(double q, double shape1, double shape2, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return q + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (q <= 0) return ACT_DT_0; double u = exp(-log1pexp(shape2 * (log(q) - log(scale)))); return ACT_DT_Cval(R_pow(u, shape1)); } double qburr(double p, double shape1, double shape2, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return p + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return scale * R_pow(R_pow(ACT_D_Cval(p), -1.0/shape1) - 1.0, 1.0/shape2); } double rburr(double shape1, double shape2, double scale) { if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; return scale * R_pow(R_pow(unif_rand(), -1.0/shape1) - 1.0, 1.0/shape2); } double mburr(double order, double shape1, double shape2, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return order + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape2 || order >= shape1 * shape2) return R_PosInf; double tmp = order / shape2; return R_pow(scale, order) * gammafn(1.0 + tmp) * gammafn(shape1 - tmp) / gammafn(shape1); } double levburr(double limit, double shape1, double shape2, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale) || ISNAN(order)) return limit + shape1 + shape2 + scale + order; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape2) return R_PosInf; if (limit <= 0.0) return 0.0; double logv, u, u1m; double tmp = order / shape2; logv = shape2 * (log(limit) - log(scale)); u = exp(-log1pexp(logv)); u1m = exp(-log1pexp(-logv)); return R_pow(scale, order) * betaint_raw(u1m, 1.0 + tmp, shape1 - tmp, u) / gammafn(shape1) + ACT_DLIM__0(limit, order) * R_pow(u, shape1); } actuar/src/Makevars0000644000176200001440000000026214030725704014016 0ustar liggesusers## We use the BLAS and the LAPACK libraries PKG_LIBS = $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS) ## Hide entry points (but for R_init_actuar in init.c) PKG_CFLAGS = $(C_VISIBILITY) actuar/src/zmpois.c0000644000176200001440000001134314054204377014015 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute probability function, cumulative distribution * and quantile functions, and to simulate random variates for the * zero-modified Poisson distribution. See ../R/ZeroModifiedPoisson.R * for details. * * Zero-modified distributions are discrete mixtures between a * degenerate distribution at zero and the corresponding, * non-modified, distribution. As a mixture, they have density * * Pr[Z = x] = [1 - (1 - p0m)/(1 - p0)] 1(x) * + [(1 - p0m)/(1 - p0)] Pr[X = 0], * * where p0 = Pr[X = 0]. The density can also be expressed as * Pr[Z = 0] = p0m and * * Pr[Z = x] = (1 - p0m) * Pr[X = x]/(1 - Pr[X = 0]), * * for x = 1, 2, ... The distribution function is, for all x, * * Pr[Z <= x] = 1 - (1 - p0m) * (1 - Pr[X <= x])/(1 - p0). * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" /* The Poisson distribution has p0 = exp(-lambda). * * Limiting case: lambda == 0 has mass (1 - p0m) at x = 1. */ double dzmpois(double x, double lambda, double p0m, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(lambda) || ISNAN(p0m)) return x + lambda + p0m; #endif if (lambda < 0 || p0m < 0 || p0m > 1) return R_NaN; if (x < 0 || !R_FINITE(x)) return ACT_D__0; if (x == 0) return ACT_D_val(p0m); /* NOTE: from now on x > 0 */ /* simple case for all x > 0 */ if (p0m == 1) return ACT_D__0; /* for all x > 0 */ /* limiting case as lambda approaches zero is mass (1-p0m) at one */ if (lambda == 0) return (x == 1) ? ACT_D_Clog(p0m) : ACT_D__0; return ACT_D_exp(dpois(x, lambda, /*give_log*/1) + log1p(-p0m) - ACT_Log1_Exp(-lambda)); } double pzmpois(double x, double lambda, double p0m, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(lambda) || ISNAN(p0m)) return x + lambda + p0m; #endif if (lambda < 0 || p0m < 0 || p0m > 1) return R_NaN; if (x < 0) return ACT_DT_0; if (!R_FINITE(x)) return ACT_DT_1; if (x < 1) return ACT_DT_val(p0m); /* NOTE: from now on x >= 1 */ /* simple case for all x >= 1 */ if (p0m == 1) return ACT_DT_1; /* limiting case as lambda approaches zero is mass (1-p0m) at one */ if (lambda == 0) return ACT_DT_1; /* working in log scale improves accuracy */ return ACT_DT_CEval(log1p(-p0m) + ppois(x, lambda, /*l._t.*/0, /*log_p*/1) - log1mexp(lambda)); } double qzmpois(double x, double lambda, double p0m, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(lambda) || ISNAN(p0m)) return x + lambda + p0m; #endif if (lambda < 0 || !R_FINITE(lambda) || p0m < 0 || p0m > 1) return R_NaN; /* limiting case as lambda approaches zero is mass (1-p0m) at one */ if (lambda == 0) { /* simplified ACT_Q_P01_boundaries macro */ if (log_p) { if (x > 0) return R_NaN; return (x <= log(p0m)) ? 0.0 : 1.0; } else /* !log_p */ { if (x < 0 || x > 1) return R_NaN; return (x <= p0m) ? 0.0 : 1.0; } } ACT_Q_P01_boundaries(x, 0, R_PosInf); x = ACT_DT_qIv(x); /* working in log scale improves accuracy */ return qpois(-expm1(log1mexp(lambda) - log1p(-p0m) + log1p(-x)), lambda, /*l._t.*/1, /*log_p*/0); } /* ALGORITHM FOR GENERATION OF RANDOM VARIATES * * 1. p0m >= p0: just simulate variates from the discrete mixture. * * 2. p0m < p0: fastest method depends on the difference p0 - p0m. * * 2.1 p0 - p0m < ACT_DIFFMAX_REJECTION: rejection method with an * envelope that differs from the target distribution at zero * only. In other words: rejection only at zero. * 2.2 p0 - p0m >= ACT_DIFFMAX_REJECTION: inverse method on a * restricted range --- same method as the corresponding zero * truncated distribution. * * The threshold ACT_DIFFMAX_REJECTION is distribution specific. */ #define ACT_DIFFMAX_REJECTION 0.95 double rzmpois(double lambda, double p0m) { if (lambda < 0 || !R_FINITE(lambda) || p0m < 0 || p0m > 1) return R_NaN; /* limiting case as lambda approaches zero is mass (1-p0m) at one */ if (lambda == 0) return (unif_rand() <= p0m) ? 0.0 : 1.0; double x, p0 = exp(-lambda); /* p0m >= p0: generate from mixture */ if (p0m >= p0) return (unif_rand() * (1 - p0) < (1 - p0m)) ? rpois(lambda) : 0.0; /* p0m < p0: choice of algorithm depends on difference p0 - p0m */ if (p0 - p0m < ACT_DIFFMAX_REJECTION) { /* rejection method */ for (;;) { x = rpois(lambda); if (x != 0 || /* x == 0 and */ runif(0, p0 * (1 - p0m)) <= (1 - p0) * p0m) return x; } } else { /* inversion method */ return qpois(runif((p0 - p0m)/(1 - p0m), 1), lambda, 1, 0); } } actuar/src/chisq.c0000644000176200001440000000533614030725704013604 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to calculate raw and limited moments for the Chi-square * distribution. See ../R/ChisqSupp.R for details. * * AUTHORS: Christophe Dutang and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double mchisq(double order, double df, double ncp, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(df) || ISNAN(ncp)) return order + df + ncp; #endif if (!R_FINITE(df) || !R_FINITE(ncp) || !R_FINITE(order) || df <= 0.0 || ncp < 0.0) return R_NaN; if (order <= -df/2.0) return R_PosInf; /* Trivial case */ if (order == 0.0) return 1.0; /* Centered chi-square distribution */ if (ncp == 0.0) return R_pow(2.0, order) * gammafn(order + df/2.0) / gammafn(df/2.0); /* Non centered chi-square distribution */ if (order >= 1.0 && (int) order == order) { int i, j = 0, n = order; double *res; /* Array with 1, E[X], E[X^2], ..., E[X^n] */ res = (double *) R_alloc(n + 1, sizeof(double)); res[0] = 1.0; res[1] = df + ncp; /* E[X] */ for (i = 2; i <= n; i++) { res[i] = R_pow_di(2.0, i - 1) * (df + i * ncp); for (j = 1; j < i; j++) res[i] += R_pow_di(2.0, j - 1) * (df + j * ncp) * res[i - j] / gammafn(i - j + 1); res[i] *= gammafn(i); } return res[n]; } else return R_NaN; } double levchisq(double limit, double df, double ncp, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(df) || ISNAN(ncp) || ISNAN(order)) return limit + df + ncp + order; #endif if (!R_FINITE(df) || !R_FINITE(ncp) || !R_FINITE(order) || df <= 0.0 || ncp < 0.0) return R_NaN; if (order <= -df/2.0) return R_PosInf; if (limit <= 0.0) return 0.0; if (ncp == 0.0) { double u, tmp; tmp = order + df/2.0; u = exp(log(limit) - M_LN2); return R_pow(2.0, order) * gammafn(tmp) * pgamma(u, tmp, 1.0, 1, 0) / gammafn(df/2.0) + ACT_DLIM__0(limit, order) * pgamma(u, df/2.0, 1.0, 0, 0); } else return R_NaN; } double mgfchisq(double t, double df, double ncp, int give_log) { #ifdef IEEE_754 if (ISNAN(t) || ISNAN(df) || ISNAN(ncp)) return t + df + ncp; #endif if (!R_FINITE(df) || !R_FINITE(ncp) || df <= 0.0 || ncp < 0.0 || 2.0 * t > 1.0) return R_NaN; if (t == 0.0) return ACT_D__1; return ACT_D_exp(ncp * t / (1.0 - 2.0 * t) - df/2.0 * log1p(-2.0 * t)); } actuar/src/actuar-win.def0000644000176200001440000000005214030725704015051 0ustar liggesusersLIBRARY actuar.dll EXPORTS R_init_actuar actuar/src/weibull.c0000644000176200001440000000273114030725704014134 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Fonctions to calculate raw and limited moments for the Weibull * distribution. See ../R/WeibullMoments.R for details. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double mweibull(double order, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape) || ISNAN(scale)) return order + shape + scale; #endif if (!R_FINITE(scale) || !R_FINITE(shape) || !R_FINITE(order) || scale <= 0.0 || shape <= 0.0) return R_NaN; if (order <= -shape) return R_PosInf; return R_pow(scale, order) * gammafn(1.0 + order / shape); } double levweibull(double limit, double shape, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape) || ISNAN(scale) || ISNAN(order)) return limit + shape + scale + order; #endif if (!R_FINITE(scale) || !R_FINITE(shape) || !R_FINITE(order) || scale <= 0.0 || shape <= 0.0) return R_NaN; if (order <= -shape) return R_PosInf; if (limit <= 0.0) return 0.0; double u, tmp; tmp = 1.0 + order / shape; u = exp(shape * (log(limit) - log(scale))); return R_pow(scale, order) * gammafn(tmp) * pgamma(u, tmp, 1.0, 1, 0) + ACT_DLIM__0(limit, order) * exp(-u); } actuar/src/qDiscrete_search.h0000644000176200001440000001077514054204377015761 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Find quantiles for discrete distributions using the Cornish-Fisher * Expansion. * * This file is a copy of src/nmath/qDiscrete_search.h of R sources, * but with the following minor changes: * * 1. all debugging material is deleted; * 2. the macro function q_DISCRETE_01_CHECKS(), which does not serve * any purpose without the debugging material is deleted; * 3. the declaration of variables in q_DISCRETE_BODY() is moved into * a separate macro; see comments marked 'VG' below. * * AUTHOR: Vincent Goulet * based on code from the R Core Team */ /* This is #included from ./logarithmic.c and ./poisinvgauss.c */ #define PST_0(a, b) a ## b #define PASTE(a, b) PST_0(a, b) #define _pDIST_ PASTE(p, _thisDIST_) #define _qDIST_ PASTE(q, _thisDIST_) #ifdef MATHLIB_STANDALONE # define MAYBE_R_CheckUserInterrupt() #else # define MAYBE_R_CheckUserInterrupt() R_CheckUserInterrupt() #endif #define DO_SEARCH_FUN(...) \ do_search(double y, double *z, double p, __VA_ARGS__, \ double incr, int lower_tail, int log_p) #define DO_SEARCH_(Y_, incr_, ...) \ do_search(Y_, &z, p, __VA_ARGS__, incr_, lower_tail, log_p) #define P_DIST(Y_, ...) _pDIST_(Y_, __VA_ARGS__, lower_tail, log_p) static double DO_SEARCH_FUN(_dist_PARS_DECL_) { Rboolean left = (lower_tail ? (*z >= p) : (*z < p)); if(left) { // (lower_tail, *z >= p) or (upper tail, *z < p): search to the __left__ for(int iter = 0; ; iter++) { double newz = -1.; // -Wall if(y > 0) newz = P_DIST(y - incr, _dist_PARS_); else if(y < 0) y = 0; // note that newz may be NaN because of remaining border line bugs in _pDIST_() {bug from pbeta()} if(y == 0 || ISNAN(newz) || (lower_tail ? (newz < p) : (newz >= p))) { return y; // and previous *z } y = fmax2(0, y - incr); *z = newz; } } else { // (lower_tail, *z < p) or (upper tail, *z >= p): search to the __right__ for(int iter = 0; ; iter++) { y += incr; *z = P_DIST(y, _dist_PARS_); if(ISNAN(*z) || (lower_tail ? (*z >= p) : (*z < p))) { return y; } } } } // do_search() #define q_DISCR_CHECK_BOUNDARY(Y_) if(Y_ < 0) Y_ = 0. /* VG: the Poisson-inverse gaussian requires different declarations * for a limiting case. Therefore, the standard declaration is taken * out of the q_DISCRETE_BODY() macro found in R sources. */ #define q_DISCRETE_DECL \ double \ z = qnorm(p, 0., 1., lower_tail, log_p), \ y = ACT_forceint(mu + sigma * (z + gamma * (z*z - 1) / 6)) #define q_DISCRETE_BODY() do { \ q_DISCR_CHECK_BOUNDARY(y); \ \ z = P_DIST(y, _dist_PARS_); \ \ /* Algorithmic "tuning parameters", used to be hardwired; changed for speed &| precision */ \ const double \ _pf_n_ = 8, /* was hardwired to 64 */ \ _pf_L_ = 2, /* was hardwired to 64 */ \ _yLarge_ = 4096, /* was hardwired to 1e5 */ \ _incF_ = (1./64),/* was hardwired to 0.001 (= 1./1000 ) */ \ _iShrink_ = 8, /* was hardwired to 100 */ \ _relTol_ = 1e-15,/* was hardwired to 1e-15 */ \ _xf_ = 4; /* extra factor, *must* be >= 1 (new anyway) */ \ \ /* fuzz to ensure left continuity: do not loose too much (=> error in upper tail) */ \ if(log_p) { /* <==> p \in [-Inf, 0] different adjustment: "other sign" */ \ double e = _pf_L_ * DBL_EPSILON; \ if(lower_tail && p > - DBL_MAX) /* prevent underflow to -Inf */ \ p *= 1 + e; \ else /* if(p < - DBL_MIN) // not too close to -0 */ \ p *= 1 - e; \ \ } else { /* not log scale */ \ double e = _pf_n_ * DBL_EPSILON; \ if(lower_tail) \ p *= 1 - e; \ else if(1 - p > _xf_*e) /* otherwise get p > 1 */ \ p *= 1 + e; \ } \ \ /* If the C-F value y is not too large a simple search is OK */ \ if(y < _yLarge_) return DO_SEARCH_(y, 1, _dist_PARS_); \ /* Otherwise be a bit cleverer in the search: use larger increments, notably initially: */ \ { /* y >= _yLarge_ */ \ double oldincr, incr = floor(y * _incF_); \ int qIt = 0; \ \ do { \ oldincr = incr; \ y = DO_SEARCH_(y, incr, _dist_PARS_); /* also updating *z */ \ if(++qIt % 10000 == 0) MAYBE_R_CheckUserInterrupt(); \ incr = fmax2(1, floor(incr / _iShrink_)); \ } while(oldincr > 1 && incr > y * _relTol_); \ return y; \ } \ } while(0) actuar/src/gumbel.c0000644000176200001440000000626614030725704013753 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the Gumbel distribution. See ../R/Gumbel.R for * details. * * We work with the density expressed as * * e^(-u) * e^(-e^(-u)) / scale * * with u = (x - alpha)/scale. * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double dgumbel(double x, double alpha, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(alpha) || ISNAN(scale)) return x + alpha + scale; #endif if (!R_FINITE(scale)) return ACT_D__0; if (!R_FINITE(x) && alpha == x) return R_NaN; /* x - alpha is NaN */ if (scale <= 0) { if (scale < 0) return R_NaN; /* scale == 0 */ return (x == alpha) ? R_PosInf : ACT_D__0; } x = (x - alpha) / scale; if (!R_FINITE(x)) return ACT_D__0; return ACT_D_exp(-(x + exp(-x) + log(scale))); } double pgumbel(double q, double alpha, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(alpha) || ISNAN(scale)) return q + alpha + scale; #endif if (!R_FINITE(q) && alpha == q) return R_NaN; /* q - alpha is NaN */ if (scale <= 0) { if (scale < 0) return R_NaN; /* scale == 0 : */ return (q < alpha) ? ACT_DT_0 : ACT_DT_1; } double p = (q - alpha) / scale; if (!R_FINITE(p)) return (q < alpha) ? ACT_DT_0 : ACT_DT_1; q = p; return ACT_DT_val(exp(-exp(-q))); } double qgumbel(double p, double alpha, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(alpha) || ISNAN(scale)) return p + alpha + scale; #endif if (!R_FINITE(alpha) || !R_FINITE(scale) || scale <= 0.0) return R_NaN;; ACT_Q_P01_boundaries(p, R_NegInf, R_PosInf); p = ACT_DT_qIv(p); return alpha - scale * log(-log(p)); } double rgumbel(double alpha, double scale) { if (!R_FINITE(alpha) || !R_FINITE(scale) || scale <= 0.0) return R_NaN;; return alpha - scale * log(exp_rand()); } #define EULER_CNST 0.577215664901532860606512090082 double mgumbel(double order, double alpha, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(alpha) || ISNAN(scale)) return order + alpha + scale; #endif if (!R_FINITE(alpha) || !R_FINITE(scale) || !R_FINITE(order) || scale <= 0.0 || order <= 0.0 || order > 2.0) return R_NaN; if (order == 1.0) return alpha + EULER_CNST * scale; if (order == 2.0) return R_pow_di(M_PI * scale, 2)/6 + R_pow_di(alpha + EULER_CNST * scale, 2); return R_NaN; /* order != 1 or 2 */ } double mgfgumbel(double t, double alpha, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(t) || ISNAN(alpha) || ISNAN(scale)) return t + alpha + scale; #endif if (!R_FINITE(alpha) || !R_FINITE(scale) || scale <= 0.0 || scale * t < 1.0) return R_NaN; if (t == 0.0) return ACT_D__1; return ACT_D_exp(alpha * t + lgamma(1 - scale * t)); } actuar/src/invtrgamma.c0000644000176200001440000001012714030725704014634 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the inverse transformed gamma distribution. See * ../R/InverseTransformedGamma.R for details. * * We work with the density expressed as * * shape2 * u^shape1 * e^(-u) / (x * gamma(shape1)) * * with u = (scale/x)^shape2. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dinvtrgamma(double x, double shape1, double shape2, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return x + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale < 0.0) return R_NaN; /* handle also x == 0 here */ if (!R_FINITE(x) || x <= 0.0) return ACT_D__0; double logu = shape2 * (log(scale) - log(x)); return ACT_D_exp(log(shape2) + shape1 * logu - exp(logu) - log(x) - lgammafn(shape1)); } double pinvtrgamma(double q, double shape1, double shape2, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return q + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale < 0.0) return R_NaN;; if (q <= 0) return ACT_DT_0; double u = exp(shape2 * (log(scale) - log(q))); return pgamma(u, shape1, 1.0, !lower_tail, log_p); } double qinvtrgamma(double p, double shape1, double shape2, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return p + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN;; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return scale * R_pow(qgamma(p, shape1, 1.0, !lower_tail, 0), -1.0/shape2); } double rinvtrgamma(double shape1, double shape2, double scale) { if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN;; return scale * R_pow(rgamma(shape1, 1.0), -1.0/shape2); } double minvtrgamma(double order, double shape1, double shape2, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return order + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (order >= shape1 * shape2) return R_PosInf; return R_pow(scale, order) * gammafn(shape1 - order / shape2) / gammafn(shape1); } double levinvtrgamma(double limit, double shape1, double shape2, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale) || ISNAN(order)) return limit + shape1 + shape2 + scale + order; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (limit <= 0.0) return 0.0; double u = exp(shape2 * (log(scale) - log(limit))); return R_pow(scale, order) * actuar_gamma_inc(shape1 - order/shape2, u) / gammafn(shape1) + ACT_DLIM__0(limit, order) * pgamma(u, shape1, 1.0, 1, 0); } actuar/src/invpareto.c0000644000176200001440000001110014030725704014466 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Fonctions to compute density, cumulative distribution and quantile * fonctions, raw and limited moments and to simulate random variates * for the inverse Pareto distribution. See ../R/InversePareto.R for * details. * * We work with the density expressed as * * shape * u^shape * (1 - u) / x * * with u = v/(1 + v) = 1/(1 + 1/v), v = x/scale. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dinvpareto(double x, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape) || ISNAN(scale)) return x + shape + scale; #endif if (!R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < 0.0) return ACT_D__0; /* handle x == 0 separately */ if (x == 0.0) { if (shape < 1) return R_PosInf; if (shape > 1) return ACT_D__0; /* else */ return ACT_D_val(1.0/scale); } double tmp, logu, log1mu; tmp = log(x) - log(scale); logu = - log1pexp(-tmp); log1mu = - log1pexp(tmp); return ACT_D_exp(log(shape) + shape * logu + log1mu - log(x)); } double pinvpareto(double q, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape) || ISNAN(scale)) return q + shape + scale; #endif if (!R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN;; if (q <= 0) return ACT_DT_0; double u = exp(-log1pexp(log(scale) - log(q))); return ACT_DT_val(R_pow(u, shape)); } double qinvpareto(double p, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape) || ISNAN(scale)) return p + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN;; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return scale / (R_pow(ACT_D_Lval(p), -1.0/shape) - 1.0); } double rinvpareto(double shape, double scale) { if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN;; return scale / (R_pow(unif_rand(), -1.0/shape) - 1.0); } double minvpareto(double order, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape) || ISNAN(scale)) return order + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape || order >= 1.0) return R_PosInf; return R_pow(scale, order) * gammafn(shape + order) * gammafn(1.0 - order) / gammafn(shape); } /* The function to integrate in the limited moment */ static void fn(double *x, int n, void *ex) { int i; double *pars = (double *) ex, shape, order; shape = pars[0]; order = pars[1]; for(i = 0; i < n; i++) x[i] = R_pow(x[i], shape + order - 1) * R_pow(1 - x[i], -order); } double levinvpareto(double limit, double shape, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape) || ISNAN(scale) || ISNAN(order)) return limit + shape + scale + order; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape) return R_PosInf; if (limit <= 0.0) return 0.0; double u; double ex[2], lower, upper, epsabs, epsrel, result, abserr, *work; int neval, ier, subdiv, lenw, last, *iwork; /* Parameters for the integral are pretty much fixed here */ ex[0] = shape; ex[1] = order; lower = 0.0; upper = limit / (limit + scale); subdiv = 100; epsabs = R_pow(DOUBLE_EPS, 0.25); epsrel = epsabs; lenw = 4 * subdiv; /* as instructed in WRE */ iwork = (int *) R_alloc(subdiv, sizeof(int)); /* idem */ work = (double *) R_alloc(lenw, sizeof(double)); /* idem */ Rdqags(fn, (void *) &ex, &lower, &upper, &epsabs, &epsrel, &result, &abserr, &neval, &ier, &subdiv, &lenw, &last, iwork, work); if (ier == 0) { u = exp(-log1pexp(log(scale) - log(limit))); return R_pow(scale, order) * shape * result + ACT_DLIM__0(limit, order) * (0.5 - R_pow(u, shape) + 0.5); } else error(_("integration failed")); } actuar/src/invparalogis.c0000644000176200001440000000754214030725704015174 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the inverse paralogistic distribution. See ../R/InverseParalogistic.R * for details. * * We work with the density expressed as * * shape^2 * u^shape * (1 - u) / x * * with u = v/(1 + v) = 1/(1 + 1/v), v = (x/scale)^shape. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dinvparalogis(double x, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape) || ISNAN(scale)) return x + shape + scale; #endif if (!R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN;; if (!R_FINITE(x) || x < 0.0) return ACT_D__0; /* handle x == 0 separately */ if (x == 0.0) { if (shape < 1.0) return R_PosInf; if (shape > 1.0) return ACT_D__0; /* else */ return ACT_D_val(1.0/scale); } double logv, logu, log1mu; logv = shape * (log(x) - log(scale)); logu = - log1pexp(-logv); log1mu = - log1pexp(logv); return ACT_D_exp(2.0 * log(shape) + shape * logu + log1mu - log(x)); } double pinvparalogis(double q, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape) || ISNAN(scale)) return q + shape + scale; #endif if (!R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN;; if (q <= 0) return ACT_DT_0; double u = exp(-log1pexp(shape * (log(scale) - log(q)))); return ACT_DT_val(R_pow(u, shape)); } double qinvparalogis(double p, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape) || ISNAN(scale)) return p + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN;; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); double tmp = -1.0/shape; return scale * R_pow(R_pow(ACT_D_Lval(p), tmp) - 1.0, tmp); } double rinvparalogis(double shape, double scale) { double tmp; if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN;; tmp = -1.0/shape; return scale * R_pow(R_pow(unif_rand(), tmp) - 1.0, tmp); } double minvparalogis(double order, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape) || ISNAN(scale)) return order + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order <= - shape * shape || order >= shape) return R_PosInf; double tmp = order / shape; return R_pow(scale, order) * gammafn(shape + tmp) * gammafn(1.0 - tmp) / gammafn(shape); } double levinvparalogis(double limit, double shape, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape) || ISNAN(scale) || ISNAN(order)) return limit + shape + scale + order; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape * shape) return R_PosInf; double logv, u, u1m; double tmp = order / shape; logv = shape * (log(limit) - log(scale)); u = exp(-log1pexp(-logv)); u1m = exp(-log1pexp(logv)); return R_pow(scale, order) * betaint_raw(u, shape + tmp, 1.0 - tmp, u1m) / gammafn(shape) + ACT_DLIM__0(limit, order) * (0.5 - R_pow(u, shape) + 0.5); } actuar/src/random.c0000644000176200001440000003613214054204377013757 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to generate variates of some probability laws not in * base R. Function .External() calls actuar_do_random() with * arguments: * * 1. the name of the distribution from which to simulate, with * an "r" prepended to it (e.g. "rpareto"); * 2. the number of variates; * 3:x. the parameters of the distribution. * * Function actuar_do_random() will extract the name of the * distribution, look up in table random_tab defined in names.c which of * actuar_do_random{1,2,3,4} should take care of the simulation and * dispatch to this function. In turn, functions * actuar_do_random{1,2,3,4} call function rdist() to get actual * variates from distribution "dist". * * This scheme is essentially what is used in base R (see files * src/main/random.c, src/main/names.c) with add-ons taken from * src/library/stats/src/random.c to support return values that can * be either real or integer. * * To add a new distribution: write an rdist() function, add an entry * in names.c and in the definition of the corresponding * actuar_do_random{1,2,3,4} function, declare the function in * actuar.h. * * AUTHOR: Vincent Goulet * with much indirect help from the R Core Team */ #include #include #include "actuar.h" #include "locale.h" /* Additional access macros */ #define CAD5R(e) CAR(CDR(CDR(CDR(CDR(CDR(e)))))) /* Utility function used in actuar_do_random{1,2,3,4}. */ static void fill_with_NAs(SEXP x, int n, SEXPTYPE type) { int i; if (type == INTSXP) { for (i = 0; i < n; i++) { INTEGER(x)[i] = NA_INTEGER; } } else { /* REALSXP */ for (i = 0; i < n; i++) { REAL(x)[i] = NA_REAL; } } warning(_("NAs produced")); } /* Functions for one parameter distributions */ static Rboolean random1(double (*f)(), double *a, int na, SEXP x, int n, SEXPTYPE type) { int i; Rboolean naflag = FALSE; if (type == INTSXP) { double rx; int *ix = INTEGER(x); for (i = 0; i < n; i++) { rx = f(a[i % na]); if (ISNAN(rx) || rx > INT_MAX || rx <= INT_MIN) { naflag = TRUE; ix[i] = NA_INTEGER; } else ix[i] = (int) rx; } } else /* REALSXP */ { double *rx = REAL(x); for (i = 0; i < n; i++) { rx[i] = f(a[i % na]); if (ISNAN(rx[i])) naflag = TRUE; } } return(naflag); } #define RAND1(num, fun) \ case num: \ naflag = random1(fun, REAL(a), na, x, n, type); \ break SEXP actuar_do_random1(int code, SEXP args, SEXPTYPE type) { SEXP x, a; int n, na; /* Check validity of arguments */ if (!isVector(CAR(args)) || !isNumeric(CADR(args))) error(_("invalid arguments")); /* Number of variates to generate */ if (LENGTH(CAR(args)) == 1) { n = asInteger(CAR(args)); if (n == NA_INTEGER || n < 0) error(_("invalid arguments")); } else n = LENGTH(CAR(args)); /* If n == 0, return numeric(0) */ PROTECT(x = allocVector(type, n)); if (n == 0) { UNPROTECT(1); return(x); } /* If length of parameters < 1, return NaN */ na = LENGTH(CADR(args)); if (na < 1) fill_with_NAs(x, n, type); /* Otherwise, dispatch to appropriate r* function */ else { Rboolean naflag = FALSE; PROTECT(a = coerceVector(CADR(args), REALSXP)); GetRNGstate(); switch (code) { RAND1(1, rinvexp); RAND1(101, rlogarithmic); RAND1(102, rztpois); RAND1(103, rztgeom); default: error(_("internal error in actuar_do_random1")); } if (naflag) warning(R_MSG_NA); PutRNGstate(); UNPROTECT(1); } UNPROTECT(1); return x; } /* Functions for two parameter distributions */ static Rboolean random2(double (*f)(), double *a, int na, double *b, int nb, SEXP x, int n, SEXPTYPE type) { int i; Rboolean naflag = FALSE; if (type == INTSXP) { double rx; int *ix = INTEGER(x); for (i = 0; i < n; i++) { rx = f(a[i % na], b[i % nb]); if (ISNAN(rx) || rx > INT_MAX || rx <= INT_MIN) { naflag = TRUE; ix[i] = NA_INTEGER; } else ix[i] = (int) rx; } } else /* REALSXP */ { double *rx = REAL(x); for (i = 0; i < n; i++) { rx[i] = f(a[i % na], b[i % nb]); if (ISNAN(rx[i])) naflag = TRUE; } } return(naflag); } #define RAND2(num, fun) \ case num: \ naflag = random2(fun, REAL(a), na, REAL(b), nb, x, n, type); \ break SEXP actuar_do_random2(int code, SEXP args, SEXPTYPE type) { SEXP x, a, b; int n, na, nb; /* Check validity of arguments */ if (!isVector(CAR(args)) || !isNumeric(CADR(args)) || !isNumeric(CADDR(args))) error(_("invalid arguments")); /* Number of variates to generate */ if (LENGTH(CAR(args)) == 1) { n = asInteger(CAR(args)); if (n == NA_INTEGER || n < 0) error(_("invalid arguments")); } else n = LENGTH(CAR(args)); /* If n == 0, return numeric(0) */ PROTECT(x = allocVector(type, n)); if (n == 0) { UNPROTECT(1); return(x); } /* If length of parameters < 1, return NA */ na = LENGTH(CADR(args)); nb = LENGTH(CADDR(args)); if (na < 1 || nb < 1) fill_with_NAs(x, n, type); /* Otherwise, dispatch to appropriate r* function */ else { Rboolean naflag = FALSE; PROTECT(a = coerceVector(CADR(args), REALSXP)); PROTECT(b = coerceVector(CADDR(args), REALSXP)); GetRNGstate(); switch (code) { RAND2( 1, rinvgamma); RAND2( 2, rinvparalogis); RAND2( 3, rinvpareto); RAND2( 4, rinvweibull); RAND2( 5, rlgamma); RAND2( 6, rllogis); RAND2( 7, rparalogis); RAND2( 8, rpareto); RAND2( 9, rpareto1); RAND2( 10, rgumbel); RAND2( 11, rinvgauss); RAND2(101, rztnbinom); RAND2(102, rztbinom); RAND2(103, rzmlogarithmic); RAND2(104, rzmpois); RAND2(105, rzmgeom); RAND2(106, rpoisinvgauss); default: error(_("internal error in actuar_do_random2")); } if (naflag) warning(R_MSG_NA); PutRNGstate(); UNPROTECT(2); } UNPROTECT(1); return x; } /* Functions for three parameter distributions */ static Rboolean random3(double (*f) (), double *a, int na, double *b, int nb, double *c, int nc, SEXP x, int n, SEXPTYPE type) { int i; Rboolean naflag = FALSE; if (type == INTSXP) { double rx; int *ix = INTEGER(x); for (i = 0; i < n; i++) { rx = f(a[i % na], b[i % nb], c[i % nc]); if (ISNAN(rx) || rx > INT_MAX || rx <= INT_MIN) { naflag = TRUE; ix[i] = NA_INTEGER; } else ix[i] = (int) rx; } } else /* REALSXP */ { double *rx = REAL(x); for (i = 0; i < n; i++) { rx[i] = f(a[i % na], b[i % nb], c[i % nc]); if (ISNAN(rx[i])) naflag = TRUE; } } return(naflag); } #define RAND3(num, fun) \ case num: \ naflag = random3(fun, REAL(a), na, REAL(b), nb, REAL(c), nc, x, n, type); \ break SEXP actuar_do_random3(int code, SEXP args, SEXPTYPE type) { SEXP x, a, b, c; int n, na, nb, nc; /* Check validity of arguments */ if (!isVector(CAR(args)) || !isNumeric(CADR(args)) || !isNumeric(CADDR(args)) || !isNumeric(CADDDR(args))) error(_("invalid arguments")); /* Number of variates to generate */ if (LENGTH(CAR(args)) == 1) { n = asInteger(CAR(args)); if (n == NA_INTEGER || n < 0) error(_("invalid arguments")); } else n = LENGTH(CAR(args)); /* If n == 0, return numeric(0) */ PROTECT(x = allocVector(type, n)); if (n == 0) { UNPROTECT(1); return(x); } /* If length of parameters < 1, return NaN */ na = LENGTH(CADR(args)); nb = LENGTH(CADDR(args)); nc = LENGTH(CADDDR(args)); if (na < 1 || nb < 1 || nc < 1) fill_with_NAs(x, n, type); /* Otherwise, dispatch to appropriate r* function */ else { Rboolean naflag = FALSE; PROTECT(a = coerceVector(CADR(args), REALSXP)); PROTECT(b = coerceVector(CADDR(args), REALSXP)); PROTECT(c = coerceVector(CADDDR(args), REALSXP)); GetRNGstate(); switch (code) { RAND3( 1, rburr); RAND3( 2, rgenpareto); RAND3( 3, rinvburr); RAND3( 4, rinvtrgamma); RAND3( 5, rtrgamma); RAND3( 6, rpareto2); RAND3( 7, rpareto3); RAND3(101, rzmnbinom); RAND3(102, rzmbinom); default: error(_("internal error in actuar_do_random3")); } if (naflag) warning(R_MSG_NA); PutRNGstate(); UNPROTECT(3); } UNPROTECT(1); return x; } /* Functions for four parameter distributions */ static Rboolean random4(double (*f) (), double *a, int na, double *b, int nb, double *c, int nc, double *d, int nd, SEXP x, int n, SEXPTYPE type) { int i; Rboolean naflag = FALSE; if (type == INTSXP) { double rx; int *ix = INTEGER(x); for (i = 0; i < n; i++) { rx = f(a[i % na], b[i % nb], c[i % nc], d[i % nd]); if (ISNAN(rx) || rx > INT_MAX || rx <= INT_MIN) { naflag = TRUE; ix[i] = NA_INTEGER; } else ix[i] = (int) rx; } } else /* REALSXP */ { double *rx = REAL(x); for (i = 0; i < n; i++) { rx[i] = f(a[i % na], b[i % nb], c[i % nc], d[i % nd]); if (ISNAN(rx[i])) naflag = TRUE; } } return(naflag); } #define RAND4(num, fun) \ case num: \ naflag = random4(fun, REAL(a), na, REAL(b), nb, REAL(c), nc, REAL(d), nd, x, n, type); \ break SEXP actuar_do_random4(int code, SEXP args, SEXPTYPE type) { SEXP x, a, b, c, d; int n, na, nb, nc, nd; /* Check validity of arguments */ if (!isVector(CAR(args)) || !isNumeric(CADR(args)) || !isNumeric(CADDR(args)) || !isNumeric(CADDDR(args)) || !isNumeric(CAD4R(args))) error(_("invalid arguments")); /* Number of variates to generate */ if (LENGTH(CAR(args)) == 1) { n = asInteger(CAR(args)); if (n == NA_INTEGER || n < 0) error(_("invalid arguments")); } else n = LENGTH(CAR(args)); /* If n == 0, return numeric(0) */ PROTECT(x = allocVector(type, n)); if (n == 0) { UNPROTECT(1); return(x); } /* If length of parameters < 1, return NaN */ na = LENGTH(CADR(args)); nb = LENGTH(CADDR(args)); nc = LENGTH(CADDDR(args)); nd = LENGTH(CAD4R(args)); if (na < 1 || nb < 1 || nc < 1 || nd < 1) fill_with_NAs(x, n, type); /* Otherwise, dispatch to appropriate r* function */ else { Rboolean naflag = FALSE; PROTECT(a = coerceVector(CADR(args), REALSXP)); PROTECT(b = coerceVector(CADDR(args), REALSXP)); PROTECT(c = coerceVector(CADDDR(args), REALSXP)); PROTECT(d = coerceVector(CAD4R(args), REALSXP)); GetRNGstate(); switch (code) { RAND4(1, rtrbeta); RAND4(2, rgenbeta); RAND4(3, rpareto4); default: error(_("internal error in actuar_do_random4")); } if (naflag) warning(R_MSG_NA); PutRNGstate(); UNPROTECT(4); } UNPROTECT(1); return x; } /* Functions for Five parameter distributions */ static Rboolean random5(double (*f) (), double *a, int na, double *b, int nb, double *c, int nc, double *d, int nd, double *e, int ne, SEXP x, int n, SEXPTYPE type) { int i; Rboolean naflag = FALSE; if (type == INTSXP) { double rx; int *ix = INTEGER(x); for (i = 0; i < n; i++) { rx = f(a[i % na], b[i % nb], c[i % nc], d[i % nd], e[i % ne]); if (ISNAN(rx) || rx > INT_MAX || rx <= INT_MIN) { naflag = TRUE; ix[i] = NA_INTEGER; } else ix[i] = (int) rx; } } else /* REALSXP */ { double *rx = REAL(x); for (i = 0; i < n; i++) { rx[i] = f(a[i % na], b[i % nb], c[i % nc], d[i % nd], e[i % nd]); if (ISNAN(rx[i])) naflag = TRUE; } } return(naflag); } #define RAND5(num, fun) \ case num: \ naflag = random5(fun, REAL(a), na, REAL(b), nb, REAL(c), nc, REAL(d), nd, REAL(e), ne, x, n, type); \ break SEXP actuar_do_random5(int code, SEXP args, SEXPTYPE type) { SEXP x, a, b, c, d, e; int n, na, nb, nc, nd, ne; /* Check validity of arguments */ if (!isVector(CAR(args)) || !isNumeric(CADR(args)) || !isNumeric(CADDR(args)) || !isNumeric(CADDDR(args)) || !isNumeric(CAD4R(args)) || !isNumeric(CAD5R(args))) error(_("invalid arguments")); /* Number of variates to generate */ if (LENGTH(CAR(args)) == 1) { n = asInteger(CAR(args)); if (n == NA_INTEGER || n < 0) error(_("invalid arguments")); } else n = LENGTH(CAR(args)); /* If n == 0, return numeric(0) */ PROTECT(x = allocVector(type, n)); if (n == 0) { UNPROTECT(1); return(x); } /* If length of parameters < 1, return NaN */ na = LENGTH(CADR(args)); nb = LENGTH(CADDR(args)); nc = LENGTH(CADDDR(args)); nd = LENGTH(CAD4R(args)); ne = LENGTH(CAD5R(args)); if (na < 1 || nb < 1 || nc < 1 || nd < 1 || ne < 1) fill_with_NAs(x, n, type); /* Otherwise, dispatch to appropriate r* function */ else { Rboolean naflag = FALSE; PROTECT(a = coerceVector(CADR(args), REALSXP)); PROTECT(b = coerceVector(CADDR(args), REALSXP)); PROTECT(c = coerceVector(CADDDR(args), REALSXP)); PROTECT(d = coerceVector(CAD4R(args), REALSXP)); PROTECT(e = coerceVector(CAD5R(args), REALSXP)); GetRNGstate(); switch (code) { RAND5(1, rfpareto); default: error(_("internal error in actuar_do_random5")); } if (naflag) warning(R_MSG_NA); PutRNGstate(); UNPROTECT(5); } UNPROTECT(1); return x; } /* Main function, the only one used by .External(). */ SEXP actuar_do_random(SEXP args) { int i; const char *name; /* Extract distribution name */ args = CDR(args); name = CHAR(STRING_ELT(CAR(args), 0)); /* Dispatch to actuar_do_random{1,2,3,4} */ for (i = 0; random_tab[i].name; i++) { if (!strcmp(random_tab[i].name, name)) return random_tab[i].cfun(random_tab[i].code, CDR(args), random_tab[i].type); } /* No dispatch is an error */ error(_("internal error in actuar_do_random")); return args; /* never used; to keep -Wall happy */ } actuar/src/zmgeom.c0000644000176200001440000001023514054204377013771 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute probability function, cumulative distribution * and quantile functions, and to simulate random variates for the * zero-modified geometric distribution. See * ../R/ZeroModifiedGeometric.R for details. * * Zero-modified distributions are discrete mixtures between a * degenerate distribution at zero and the corresponding, * non-modified, distribution. As a mixture, they have density * * Pr[Z = x] = [1 - (1 - p0m)/(1 - p0)] 1(x) * + [(1 - p0m)/(1 - p0)] Pr[X = 0], * * where p0 = Pr[X = 0]. The density can also be expressed as * Pr[Z = 0] = p0m and * * Pr[Z = x] = (1 - p0m) * Pr[X = x]/(1 - Pr[X = 0]), * * for x = 1, 2, ... The distribution function is, for all x, * * Pr[Z <= x] = 1 - (1 - p0m) * (1 - Pr[X <= x])/(1 - p0). * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" /* The geometric distribution has p0 = prob. * * Limiting case: prob == 1 is mass (1-p0m) at x = 1. */ double dzmgeom(double x, double prob, double p0m, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(prob) || ISNAN(p0m)) return x + prob + p0m; #endif if (prob <= 0 || prob > 1 || p0m < 0 || p0m > 1) return R_NaN; if (x < 0 || !R_FINITE(x)) return ACT_D__0; if (x == 0) return ACT_D_val(p0m); /* NOTE: from now on x > 0 */ /* limiting case as prob approaches one is point mass (1-p0m) at one */ if (prob == 1) return (x == 1) ? ACT_D_Clog(p0m) : ACT_D__0; return ACT_D_val((1 - p0m) * dgeom(x - 1, prob, /*give_log*/0)); } double pzmgeom(double x, double prob, double p0m, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(prob) || ISNAN(p0m)) return x + prob + p0m; #endif if (prob <= 0 || prob > 1 || p0m < 0 || p0m > 1) return R_NaN; if (x < 0) return ACT_DT_0; if (!R_FINITE(x)) return ACT_DT_1; if (x < 1) return ACT_DT_val(p0m); /* NOTE: from now on x >= 1 */ /* limiting case as prob approaches one is mass (1-p0m) at one */ if (prob == 1) return ACT_DT_1; /* working in log scale improves accuracy */ return ACT_DT_CEval(log1p(-p0m) + pgeom(x - 1, prob, /*l._t.*/0, /*log_p*/1)); } double qzmgeom(double x, double prob, double p0m, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(prob) || ISNAN(p0m)) return x + prob + p0m; #endif if (prob <= 0 || prob > 1 || p0m < 0 || p0m > 1) return R_NaN; /* limiting case as prob approaches one is mass (1-p0m) at one */ if (prob == 1) { /* simplified ACT_Q_P01_boundaries macro */ if (log_p) { if (x > 0) return R_NaN; return (x <= log(p0m)) ? 0.0 : 1.0; } else /* !log_p */ { if (x < 0 || x > 1) return R_NaN; return (x <= p0m) ? 0.0 : 1.0; } } ACT_Q_P01_boundaries(x, 1, R_PosInf); x = ACT_DT_qIv(x); /* working in log scale improves accuracy */ return qgeom(-expm1(log1p(-prob) - log1p(-p0m) + log1p(-x)), prob, /*l._t.*/1, /*log_p*/0); } /* ALGORITHM FOR GENERATION OF RANDOM VARIATES * * 1. p0m >= p0: just simulate variates from the discrete mixture. * * 2. p0m < p0: fastest method depends p0m. * * 2.1 p0m < ACT_INVERSION: inversion method on a restricted range. * * 2.2 p0m >= ACT_INVERSION: simulate variates from discrete mixture * with the corresponding zero truncated distribution. * * The threshold ACT_INVERSION is distribution specific. */ #define ACT_INVERSION 0.4 double rzmgeom(double prob, double p0m) { if (!R_FINITE(prob) || prob <= 0 || prob > 1 || p0m < 0 || p0m > 1) return R_NaN; /* limiting case as p approaches one is mass (1-p0m) at one */ if (prob == 1) return (unif_rand() <= p0m) ? 0.0 : 1.0; /* p0m >= prob: generate from mixture */ if (p0m >= prob) return (unif_rand() * (1 - prob) < (1 - p0m)) ? rgeom(prob) : 0.0; /* inversion method */ if (p0m < ACT_INVERSION) return qgeom(runif((prob - p0m)/(1 - p0m), 1), prob, 1, 0); /* generate from zero truncated mixture */ return (unif_rand() <= p0m) ? 0.0 : 1 + rpois(exp_rand() * ((1 - prob) / prob)); } actuar/src/randomphtype.c0000644000176200001440000001021614030725704015200 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to generate variates of phase-type distributions. This * file is based on random.c with the following modifications: * * 1. support for a matrix argument; * 2. no iteration over the parameters; * 3. support for two parameter distributions only; * 4. no support for integer random variates. * * For details, see random.c. * * AUTHOR: Vincent Goulet */ #include #include #include #include "actuar.h" #include "locale.h" static Rboolean randomphtype2(double (*f)(), double *a, double *b, int na, double *x, int n) { int i, j; double *rates, **Q; Rboolean naflag = FALSE; /* The sub-intensity matrix and initial probability vector never * change, so compute the transition matrix of the underlying * Markov chain and the vector of rate parameters before * looping. */ rates = (double *) R_alloc(na, sizeof(double)); Q = (double **) R_alloc(na, sizeof(double)); for (i = 0; i < na; i++) { Q[i] = (double *) S_alloc(na, sizeof(double)); rates[i] = -b[i * (na + 1)]; for (j = 0; j < na; j++) if (i != j) Q[i][j] = b[i + j * na] / rates[i]; } for (i = 0; i < n; i++) { x[i] = f(a, Q, rates, na); if (!R_FINITE(x[i])) naflag = TRUE; } return(naflag); } #define RANDPHTYPE2(num, fun) \ case num: \ randomphtype2(fun, REAL(a), REAL(b), na, REAL(x), n); \ break /* The function below retains a 'type' argument that is not actually * used. This is to fit within the scheme of the other random * generation functions of random.c and names.c. */ SEXP actuar_do_randomphtype2(int code, SEXP args, SEXPTYPE type /* unused */) { SEXP x, a, b, bdims; int i, n, na, nrow, ncol; Rboolean naflag = FALSE; /* Check validity of arguments */ if (!isVector(CAR(args)) || !isNumeric(CADR(args)) || !isMatrix(CADDR(args))) error(_("invalid arguments")); /* Number of variates to generate */ if (LENGTH(CAR(args)) == 1) { n = asInteger(CAR(args)); if (n == NA_INTEGER || n < 0) error(_("invalid arguments")); } else n = LENGTH(CAR(args)); /* If n == 0, return numeric(0) */ PROTECT(x = allocVector(REALSXP, n)); if (n == 0) { UNPROTECT(1); return(x); } /* Sanity checks of arguments. */ PROTECT(a = coerceVector(CADR(args), REALSXP)); PROTECT(b = coerceVector(CADDR(args), REALSXP)); bdims = getAttrib(b, R_DimSymbol); nrow = INTEGER(bdims)[0]; ncol = INTEGER(bdims)[1]; if (nrow != ncol) error(_("non-square sub-intensity matrix")); na = LENGTH(a); if (na != nrow) error(_("non-conformable arguments")); /* If length of parameters < 1, or either of the two parameters * is NA return NA. */ if (na < 1 || (na == 1 && !(R_FINITE(REAL(a)[0]) && R_FINITE(REAL(b)[0])))) { for (i = 0; i < n; i++) REAL(x)[i] = NA_REAL; } /* Otherwise, dispatch to appropriate r* function */ else { naflag = FALSE; GetRNGstate(); switch (code) { RANDPHTYPE2(1, rphtype); default: error(_("internal error in actuar_do_randomphtype2")); } if (naflag) warning(R_MSG_NA); PutRNGstate(); } UNPROTECT(3); return x; } /* Main function, the only one used by .External(). */ SEXP actuar_do_randomphtype(SEXP args) { int i; const char *name; /* Extract distribution name */ args = CDR(args); name = CHAR(STRING_ELT(CAR(args), 0)); /* Dispatch to actuar_do_random{1,2,3,4} */ for (i = 0; random_tab[i].name; i++) if (!strcmp(random_tab[i].name, name)) return random_tab[i].cfun(random_tab[i].code, CDR(args), random_tab[i].type); /* No dispatch is an error */ error(_("internal error in actuar_do_randomphtype")); return args; /* never used; to keep -Wall happy */ } actuar/src/invgauss.c0000644000176200001440000002145714030725704014336 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the inverse gaussian distribution. See ../R/InverseGaussian.R * for details. * * We work with the density expressed as * * (2 pi phi x^3)^(-1/2) exp(- u^2/(2 phi x)) * * with u = (x - mu)/mu. * * The code for functions [dpqr]invgauss() is a C implementation of * functions of the same functions in package statmod; see: * * Giner, G. and Smyth, G. K. (2016), "statmod: Probability * Calculations for the Inverse Gaussian Distribution", R * Journal, vol. 8, no 1, p. 339-351. * https://journal.r-project.org/archive/2016-1/giner-smyth.pdf * * AUTHOR (original R implementation): Gordon Smyth * AUTHOR (C implementation): Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double dinvgauss(double x, double mu, double phi, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(mu) || ISNAN(phi)) return x + mu + phi; #endif if (mu <= 0.0) return R_NaN; if (phi <= 0) { if (phi < 0) return R_NaN; /* phi == 0 */ return (x == 0.0) ? R_PosInf : ACT_D__0; } if (!R_FINITE(x) || x < 0.0) return ACT_D__0; /* limiting case phi = Inf: spike at zero */ if (x == 0) return R_FINITE(phi) ? ACT_D__0 : R_PosInf; /* limiting case mu = Inf: inverse chi-square distribution [a.k.a * inverse gamma with shape = 1/2, scale = 1/(2 * phi)] */ if (!R_FINITE(mu)) return ACT_D_exp(-(log(phi) + 3 * log(x) + 1/phi/x)/2 - M_LN_SQRT_2PI); /* standard cases */ x = x/mu; phi = phi * mu; return ACT_D_exp(-(log(phi) + 3 * log(x) + R_pow_di(x - 1, 2)/phi/x)/2 - M_LN_SQRT_2PI - log(mu)); } double pinvgauss(double q, double mu, double phi, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(mu) || ISNAN(phi)) return q + mu + phi; #endif if (mu <= 0.0) return R_NaN; if (phi <= 0) { if (phi < 0) return R_NaN; /* phi == 0 : */ return (q == 0) ? ACT_DT_0 : ACT_DT_1; } if (q < 0) return ACT_DT_0; /* limiting case phi = Inf */ if (q == 0) return R_FINITE(phi) ? ACT_DT_0 : ACT_DT_1; if (!R_FINITE(q)) return ACT_DT_1; /* limiting case mu = Inf */ if (!R_FINITE(mu)) return pchisq(1/q/phi, 1, !lower_tail, log_p); /* standard cases */ double qm = q/mu; double phim = phi * mu; /* approximation for (survival) probabilities in the far right tail */ if (!lower_tail && qm > 1e6) { double r = qm/2/phim; if (r > 5e5) return ACT_D_exp(1/phim - M_LN_SQRT_PI - log(2*phim) - 1.5 * log1p(r) - r); } /* all other probabilities */ double r = sqrt(q * phi); double a = pnorm((qm - 1)/r, 0, 1, lower_tail, /* log_p */1); double b = 2/phim + pnorm(-(qm + 1)/r, 0, 1, /* l._t. */1, /* log_p */1); return ACT_D_exp(a + (lower_tail ? log1p(exp(b - a)) : ACT_Log1_Exp(b - a))); } /* This is used in nrstep() to return either dx or -dx. */ #define ACT_S_val(x) (lower_tail ? x : -x) /* Needed by qinvgauss() for Newton-Raphson iterations. */ double nrstep(double x, double p, double logp, double phi, int lower_tail) { double logF = pinvgauss(x, 1, phi, lower_tail, /*log.p*/1); double dlogp = logp - logF; return ACT_S_val(((fabs(dlogp) < 1e-5) ? dlogp * exp(logp + log1p(-dlogp/2)) : p - exp(logF)) / dinvgauss(x, 1, phi, 0)); } double qinvgauss(double p, double mu, double phi, int lower_tail, int log_p, double tol, int maxit, int echo) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(mu) || ISNAN(phi)) return p + mu + phi; #endif if (mu <= 0.0 || phi <= 0.0) return R_NaN; /* limiting case phi = Inf */ if (!R_FINITE(phi)) return 1.0; /* limiting case mu = Inf */ if (!R_FINITE(mu)) return 1/phi/qchisq(p, 1, !lower_tail, log_p); ACT_Q_P01_boundaries(p, 0, R_PosInf); /* must be able to do at least one iteration */ if (maxit < 1) error(_("maximum number of iterations must be at least 1")); int i = 1; double logp, kappa, mode, x, dx, s; /* make sure we have both p and log(p) for the sequel */ if (log_p) { logp = p; p = exp(p); } else logp = log(p); /* convert to mean = 1 */ phi *= mu; /* mode */ kappa = 1.5 * phi; if (kappa <= 1e3) mode = sqrt(1 + kappa * kappa) - kappa; else /* Taylor series correction */ { double k = 1.0/2.0/kappa; mode = k * (1 - k * k); } /* starting value: inverse chi squared for small left tail prob; * qgamma for small right tail prob; mode otherwise */ if (logp < -11.51) x = lower_tail ? 1/phi/R_pow_di(qnorm(logp, 0, 1, lower_tail, 1), 2) : qgamma(logp, 1/phi, phi, lower_tail, 1); else if (logp > -1e-5) x = lower_tail ? qgamma(logp, 1/phi, phi, lower_tail, 1) : 1/phi/R_pow_di(qnorm(logp, 0, 1, lower_tail, 1), 2); else x = mode; /* if echoing iterations, start by printing the header and the * first value */ if (echo) Rprintf("iter\tadjustment\tquantile\n%d\t ---- \t%.8g\n", 0, x); /* first Newton-Raphson outside the loop to retain the sign of * the adjustment */ dx = nrstep(x, p, logp, phi, lower_tail); s = sign(dx); x += dx; if (echo) Rprintf("%d\t%-14.8g\t%.8g\n", i, dx, x); /* now do the iterations */ do { i++; if (i > maxit) { warning(_("maximum number of iterations reached before obtaining convergence")); break; } dx = nrstep(x, p, logp, phi, lower_tail); /* change of sign indicates that machine precision has been overstepped */ if (dx * s < 0) dx = 0; else x += dx; if (echo) Rprintf("%d\t%-14.8g\t%.8g\n", i, dx, x); } while (fabs(dx) > tol); return x * mu; } double rinvgauss(double mu, double phi) { if (mu <= 0.0 || phi <= 0.0) return R_NaN; /* limiting case phi = Inf */ if (!R_FINITE(phi)) return 0.0; /* limiting case mu = Inf */ if (!R_FINITE(mu)) return 1/phi/rchisq(1); /* convert to mean = 1 */ phi *= mu; double y = R_pow_di(rnorm(0, 1), 2); double x = 1 + phi/2 * (y - sqrt(4 * y/phi + R_pow_di(y, 2))); return mu * ((unif_rand() <= 1/(1 + x)) ? x : 1/x); } double minvgauss(double order, double mu, double phi, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(mu) || ISNAN(phi)) return order + mu + phi; #endif if (mu <= 0.0 || phi <= 0.0 || order < 0 || ACT_nonint(order)) return R_NaN; /* trivial case */ if (order == 0.0) return 0.0; /* limiting case phi = Inf */ if (!R_FINITE(phi)) return 0.0; /* limiting case mu = Inf */ /* [no finite strictly positive, integer moments] */ if (!R_FINITE(mu)) return R_PosInf; int i, k = order; double term, s, phir = phi * mu/2; s = term = 1.0; /* first term (i = 0) */ for (i = 1; i < k; i++) { term *= ((k + i - 1) * (k - i)/i) * phir; s += term; } return R_pow_di(mu, k) * s; } /* The lev function is very similar to the pdf. It can be written as * * levinvgauss(x; mu, phi) = mu [pnorm((xm - 1)/r) * - exp(2/phim) pnorm(-(xm + 1)/r)] * + x (1 - pinvgauss(x; mu, phi) * * where xm = x/mu, phim = phi * mu, r = sqrt(x * phi). */ double levinvgauss(double limit, double mu, double phi, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(mu) || ISNAN(phi) || ISNAN(order)) return limit + mu + phi + order; #endif if (mu <= 0.0 || phi < 0.0 || order != 1.0) return R_NaN; if (limit <= 0.0 || !R_FINITE(phi)) return 0.0; if (!R_FINITE(limit) || !R_FINITE(mu)) return mu; /* calculations very similar to those in pinvgauss(); we do * everything here and avoid calling the latter */ double xm = limit/mu, phim = phi * mu, r = sqrt(limit * phi); double x = (xm - 1)/r; double a = pnorm(x, 0, 1, /*l._t.*/1, /* log_p */1); double ap = pnorm(x, 0, 1, /*l._t.*/0, /* log_p */1); double b = 2/phim + pnorm(-(xm + 1)/r, 0, 1, /* l._t. */1, /* log_p */1); return mu * exp(a + ACT_Log1_Exp(b - a)) + limit * exp(ap + ACT_Log1_Exp(b - ap)); } double mgfinvgauss(double t, double mu, double phi, int give_log) { #ifdef IEEE_754 if (ISNAN(t) || ISNAN(mu) || ISNAN(phi)) return t + mu + phi; #endif if (mu <= 0.0 || phi < 0.0 || t > 1/phi/(2.0 * mu * mu)) return R_NaN; /* trivial case */ if (t == 0.0) return ACT_D__1; /* limiting case phi = Inf */ if (!R_FINITE(phi)) return ACT_D__0; /* limiting case mu = Inf */ if (!R_FINITE(mu)) return R_PosInf; /* convert to mean = 1 */ phi *= mu; t *= mu; return ACT_D_exp((1 - sqrt(1 - 2 * phi * t))/phi); } actuar/src/unif.c0000644000176200001440000000366714030725704013443 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to calculate raw and limited moments for the Uniform * distribution. See ../R/UniformSupp.R for details. * * AUTHORS: Christophe Dutang and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double munif(double order, double min, double max, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(min) || ISNAN(max)) return order + min + max; #endif if (!R_FINITE(min) || !R_FINITE(max) || min >= max) return R_NaN; if (order == -1.0) return (log(fabs(max)) - log(fabs(min))) / (max - min); double tmp = order + 1; return (R_pow(max, tmp) - R_pow(min, tmp)) / ((max - min) * tmp); } double levunif(double limit, double min, double max, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(min) || ISNAN(max) || ISNAN(order)) return limit + min + max + order; #endif if (!R_FINITE(min) || !R_FINITE(max) || min >= max) return R_NaN; if (limit <= min) return R_pow(limit, order); if (limit >= max) return munif(order, min, max, give_log); if (order == -1.0) return (log(fabs(limit)) - log(fabs(min))) / (max - min) + (max - limit) / (limit * (max - min)); double tmp = order + 1; return (R_pow(limit, tmp) - R_pow(min, tmp)) / ((max - min) * tmp) + R_pow(limit, order) * (max - limit) / (max - min); } double mgfunif(double t, double min, double max, int give_log) { #ifdef IEEE_754 if (ISNAN(t) || ISNAN(min) || ISNAN(max)) return t + min + max; #endif if (!R_FINITE(min) || !R_FINITE(max) || min >= max) return R_NaN; if (t == 0.0) return ACT_D__1; double tmp1, tmp2; tmp1 = exp(t * max) - exp(t * min); tmp2 = t * (max - min); return ACT_D_exp(log(tmp1) - log(tmp2)); } actuar/src/invburr.c0000644000176200001440000001070314030725704014156 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the inverse Burr distribution. See ../R/InverseBurr.R for details. * * We work with the density expressed as * * shape1 * shape2 * u^shape1 * (1 - u) / x * * with u = v/(1 + v) = 1/(1 + 1/v), v = (x/scale)^shape2. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dinvburr(double x, double shape1, double shape2, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return x + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < 0.0) return ACT_D__0; /* handle x == 0 separately */ if (x == 0.0) { if (shape1 * shape2 < 1) return R_PosInf; if (shape1 * shape2 > 1) return ACT_D__0; /* else */ return ACT_D_val(1.0/scale); } double logv, logu, log1mu; logv = shape2 * (log(x) - log(scale)); logu = - log1pexp(-logv); log1mu = - log1pexp(logv); return ACT_D_exp(log(shape1) + log(shape2) + shape1 * logu + log1mu - log(x)); } double pinvburr(double q, double shape1, double shape2, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return q + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (q <= 0) return ACT_DT_0; double u = exp(-log1pexp(shape2 * (log(scale) - log(q)))); return ACT_DT_val(R_pow(u, shape1)); } double qinvburr(double p, double shape1, double shape2, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return p + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return scale * R_pow(R_pow(ACT_D_Lval(p), -1.0/shape1) - 1.0, -1.0/shape2); } double rinvburr(double shape1, double shape2, double scale) { if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; return scale * R_pow(R_pow(unif_rand(), -1.0/shape1) - 1.0, -1.0/shape2); } double minvburr(double order, double shape1, double shape2, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return order + shape1 + shape2 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (order <= - shape1 * shape2 || order >= shape2) return R_PosInf; double tmp = order / shape2; return R_pow(scale, order) * gammafn(shape1 + tmp) * gammafn(1.0 - tmp) / gammafn(shape1); } double levinvburr(double limit, double shape1, double shape2, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale) || ISNAN(order)) return limit + shape1 + shape2 + scale + order; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape1 * shape2) return R_PosInf; if (limit <= 0.0) return 0.0; double logv, u, u1m; double tmp = order / shape2; logv = shape2 * (log(limit) - log(scale)); u = exp(-log1pexp(-logv)); u1m = exp(-log1pexp(logv)); return R_pow(scale, order) * betaint_raw(u, shape1 + tmp, 1.0 - tmp, u1m) / gammafn(shape1) + ACT_DLIM__0(limit, order) * (0.5 - R_pow(u, shape1) + 0.5); } actuar/src/genbeta.c0000644000176200001440000001364114030725704014100 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the generalized beta distribution. See ../R/GeneralizedBeta.R * for details. * * We work with the density expressed as * * shape3 * u^shape1 * (1 - u)^(shape2 - 1) / (x * beta(shape1, shape2)) * * with u = (x/scale)^shape3. * * Code for limiting cases derived from .../src/nmath/dbeta.c from R * sources. * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double dgenbeta(double x, double shape1, double shape2, double shape3, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale)) return x + shape1 + shape2 + shape3 + scale; #endif if (shape1 < 0.0 || shape2 < 0.0 || shape3 < 0.0 || scale <= 0.0) return R_NaN; if (x < 0.0 || x > scale) return ACT_D__0; /* limiting cases for (shape1 * shape3, shape2), leading to point masses */ double psh = shape1 * shape3; if (psh == 0.0 || shape2 == 0.0 || !R_FINITE(psh) || !R_FINITE(shape2)) { /* shape1 or shape3 = 0, shape2 = 0: point mass 1/2 at endpoints */ if (psh == 0.0 && shape2 == 0.0) return (x == 0 || x == scale) ? R_PosInf : ACT_D__0; /* shape1 or shape3 = 0, shape2 != 0: point mass 1 at 0 */ if (psh == 0.0 || psh/shape2 == 0.0) return (x == 0.0) ? R_PosInf : ACT_D__0; /* shape2 = 0, shape1 and shape3 != 0: point mass 1 at scale */ if (shape2 == 0.0 || shape2/psh == 0.0) return (x == scale) ? R_PosInf : ACT_D__0; /* remaining cases: shape1 or shape3 = Inf, shape2 = Inf */ if (R_FINITE(shape3)) /* shape3 < Inf: point mass 1 at midpoint */ return (x == scale/2.0) ? R_PosInf : ACT_D__0; else /* shape3 = Inf: point mass at scale */ return (x == scale) ? R_PosInf : ACT_D__0; } if (x == 0.0) { if (psh > 1) return(ACT_D__0); if (psh < 1) return(R_PosInf); /* psh == 1 : */ return(ACT_D_val(shape3/beta(shape1, shape2))); } if (x == scale) { if (shape2 > 1) return(ACT_D__0); if (shape2 < 1) return(R_PosInf); /* shape2 == 1 : */ return(ACT_D_val(shape1 * shape3)); } double logu, log1mu; logu = shape3 * (log(x) - log(scale)); log1mu = log1p(-exp(logu)); return ACT_D_exp(log(shape3) + shape1 * logu + (shape2 - 1.0) * log1mu - log(x) - lbeta(shape1, shape2)); } double pgenbeta(double q, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale)) return q + shape1 + shape2 + shape3 + scale; #endif if (shape1 < 0.0 || shape2 < 0.0 || shape3 < 0.0 || scale <= 0.0) return R_NaN; if (q <= 0) return ACT_DT_0; if (q >= scale) return ACT_DT_1; double u = exp(shape3 * (log(q) - log(scale))); return pbeta(u, shape1, shape2, lower_tail, log_p); } double qgenbeta(double p, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale)) return p + shape1 + shape2 + shape3 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, 0, scale); p = ACT_D_qIv(p); return scale * R_pow(qbeta(p, shape1, shape2, lower_tail, 0), 1.0/shape3); } double rgenbeta(double shape1, double shape2, double shape3, double scale) { if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; return scale * R_pow(rbeta(shape1, shape2), 1.0/shape3); } double mgenbeta(double order, double shape1, double shape2, double shape3, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale)) return order + shape1 + shape2 + shape3 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; if (order <= - shape1 * shape3) return R_PosInf; double tmp = order / shape3; return R_pow(scale, order) * beta(shape1 + tmp, shape2) / beta(shape1, shape2); } double levgenbeta(double limit, double shape1, double shape2, double shape3, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale) || ISNAN(order)) return limit + shape1 + shape2 + shape3 + scale + order; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; if (order <= - shape1 * shape3) return R_PosInf; if (limit <= 0.0) return 0.0; double u, tmp; tmp = order / shape3; u = exp(shape3 * (log(limit) - log(scale))); return R_pow(scale, order) * beta(shape1 + tmp, shape2) / beta(shape1, shape2) * pbeta(u, shape1 + tmp, shape2, 1, 0) + ACT_DLIM__0(limit, order) * pbeta(u, shape1, shape2, 0, 0); } actuar/src/zmnbinom.c0000644000176200001440000001421114054204377014322 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute probability function, cumulative distribution * and quantile functions, and to simulate random variates for the * zero-modified negative binomial distribution. See * ../R/ZeroModifiedNegativeBinomial.R for details. * * Zero-modified distributions are discrete mixtures between a * degenerate distribution at zero and the corresponding, * non-modified, distribution. As a mixture, they have density * * Pr[Z = x] = [1 - (1 - p0m)/(1 - p0)] 1(x) * + [(1 - p0m)/(1 - p0)] Pr[X = 0], * * where p0 = Pr[X = 0]. The density can also be expressed as * Pr[Z = 0] = p0m and * * Pr[Z = x] = (1 - p0m) * Pr[X = x]/(1 - Pr[X = 0]), * * for x = 1, 2, ... The distribution function is, for all x, * * Pr[Z <= x] = 1 - (1 - p0m) * (1 - Pr[X <= x])/(1 - p0). * * AUTHOR: Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" /* The negative binomial distribution has p0 = prob^size. * * Limiting cases: * * 1. size == 0 is Zero Modified Logarithmic(1 - prob) (according to * the standard parametrization of the logarithmic distribution * used by {d,p,q,r}logarithmic(); * 2. prob == 1 is mass (1-p0) at x = 1. */ double dzmnbinom(double x, double size, double prob, double p0m, int give_log) { /* We compute Pr[X = 0] with dbinom_raw() [as would eventually * dnbinom()] to take advantage of all the optimizations for * small/large values of 'prob' and 'size' (and also to skip some * validity tests). */ #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(prob) || ISNAN(p0m)) return x + size + prob + p0m; #endif if (prob <= 0 || prob > 1 || size < 0 || p0m < 0 || p0m > 1) return R_NaN; if (x < 0 || !R_FINITE(x)) return ACT_D__0; if (x == 0) return ACT_D_val(p0m); /* NOTE: from now on x > 0 */ /* limiting case as size approaches zero is zero modified logarithmic */ if (size == 0) return dzmlogarithmic(x, 1 - prob, p0m, give_log); /* limiting case as prob approaches one is mass (1-p0m) at one */ if (prob == 1) return (x == 1) ? ACT_D_Clog(p0m) : ACT_D__0; double lp0 = dbinom_raw(size, size, prob, 1 - prob, /*give_log*/1); return ACT_D_val((1 - p0m) * dnbinom(x, size, prob, /*give_log*/0) / (-expm1(lp0))); } double pzmnbinom(double x, double size, double prob, double p0m, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(prob) || ISNAN(p0m)) return x + size + prob + p0m; #endif if (prob <= 0 || prob > 1 || size < 0 || p0m < 0 || p0m > 1) return R_NaN; if (x < 0) return ACT_DT_0; if (!R_FINITE(x)) return ACT_DT_1; if (x < 1) return ACT_DT_val(p0m); /* NOTE: from now on x >= 1 */ /* simple case for all x >= 1 */ if (p0m == 1) return ACT_DT_1; /* limiting case as size approaches zero is zero modified logarithmic */ if (size == 0) return pzmlogarithmic(x, 1 - prob, p0m, lower_tail, log_p); /* limiting case as prob approaches one is mass (1-p0m) at one */ if (prob == 1) return ACT_DT_1; double lp0 = dbinom_raw(size, size, prob, 1 - prob, /*give_log*/1); /* working in log scale improves accuracy */ return ACT_DT_CEval(log1p(-p0m) + pnbinom(x, size, prob, /*l._t.*/0, /*log_p*/1) - log1mexp(-lp0)); } double qzmnbinom(double x, double size, double prob, double p0m, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(prob) || ISNAN(p0m)) return x + size + prob + p0m; #endif if (prob <= 0 || prob > 1 || size < 0 || p0m < 0 || p0m > 1) return R_NaN; /* limiting case as size approaches zero is zero modified logarithmic */ if (size == 0) return qzmlogarithmic(x, 1 - prob, p0m, lower_tail, log_p); /* limiting case as prob approaches one is mass (1-p0m) at one */ if (prob == 1) { /* simplified ACT_Q_P01_boundaries macro */ if (log_p) { if (x > 0) return R_NaN; return (x <= log(p0m)) ? 0.0 : 1.0; } else /* !log_p */ { if (x < 0 || x > 1) return R_NaN; return (x <= p0m) ? 0.0 : 1.0; } } ACT_Q_P01_boundaries(x, 0, R_PosInf); x = ACT_DT_qIv(x); /* working in log scale improves accuracy */ double lp0 = dbinom_raw(size, size, prob, 1 - prob, /*give_log*/1); return qnbinom(-expm1(log1mexp(-lp0) - log1p(-p0m) + log1p(-x)), size, prob, /*l._t.*/1, /*log_p*/0); } /* ALGORITHM FOR GENERATION OF RANDOM VARIATES * * 1. p0m >= p0: just simulate variates from the discrete mixture. * * 2. p0m < p0: fastest method depends on the difference p0 - p0m. * * 2.1 p0 - p0m < ACT_DIFFMAX_REJECTION: rejection method with an * envelope that differs from the target distribution at zero * only. In other words: rejection only at zero. * 2.2 p0 - p0m >= ACT_DIFFMAX_REJECTION: simulate variates from * discrete mixture with the corresponding zero truncated * distribution. * * The threshold ACT_DIFFMAX_REJECTION is distribution specific. */ #define ACT_DIFFMAX_REJECTION 0.6 double rzmnbinom(double size, double prob, double p0m) { if (!R_FINITE(prob) || prob <= 0 || prob > 1 || size < 0 || p0m < 0 || p0m > 1) return R_NaN; /* limiting case as size approaches zero is zero modified logarithmic */ if (size == 0) return rzmlogarithmic(1 - prob, p0m); /* limiting case as prob approaches one is mass (1-p0m) at one */ if (prob == 1) return (unif_rand() <= p0m) ? 0.0 : 1.0; double x, p0 = dbinom_raw(size, size, prob, 1 - prob, /*give_log*/0); /* p0m >= p0: generate from mixture */ if (p0m >= p0) return (unif_rand() * (1 - p0) < (1 - p0m)) ? rnbinom(size, prob) : 0.0; /* p0m < p0: choice of algorithm depends on difference p0 - p0m */ if (p0 - p0m < ACT_DIFFMAX_REJECTION) { /* rejection method */ for (;;) { x = rnbinom(size, prob); if (x != 0 || /* x == 0 and */ runif(0, p0 * (1 - p0m)) <= (1 - p0) * p0m) return x; } } else { /* generate from zero truncated mixture */ return (unif_rand() <= p0m) ? 0.0 : qnbinom(runif(p0, 1), size, prob, /*l._t.*/1, /*log_p*/0); } } actuar/src/panjer.c0000644000176200001440000001472414030725704013755 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Function to compute the recursive part of the Panjer formula * to approximate the aggregate claim amount distribution of * a portfolio over a period. * * AUTHORS: Tommy Ouellet, Vincent Goulet */ #include #include #include #include "locale.h" #define CAD5R(e) CAR(CDR(CDR(CDR(CDR(CDR(e)))))) #define CAD6R(e) CAR(CDR(CDR(CDR(CDR(CDR(CDR(e))))))) #define CAD7R(e) CAR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(e)))))))) #define CAD8R(e) CAR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(e))))))))) #define CAD9R(e) CAR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(e)))))))))) #define CAD10R(e) CAR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(CDR(e))))))))))) #define INITSIZE 100 /* default size for prob. vector */ SEXP actuar_do_panjer(SEXP args) { SEXP p0, p1, fs0, sfx, a, b, conv, tol, maxit, echo, sfs; double *fs, *fx, cumul; int upper, m, k, n, x = 1; double norm; /* normalizing constant */ double term; /* constant in the (a, b, 1) case */ /* The length of vector fs is not known in advance. We opt for a * simple scheme: allocate memory for a vector of size 'size', * double the size when the vector is full. */ int size = INITSIZE; fs = (double *) S_alloc(size, sizeof(double)); /* All values received from R are then protected. */ PROTECT(p0 = coerceVector(CADR(args), REALSXP)); PROTECT(p1 = coerceVector(CADDR(args), REALSXP)); PROTECT(fs0 = coerceVector(CADDDR(args), REALSXP)); PROTECT(sfx = coerceVector(CAD4R(args), REALSXP)); PROTECT(a = coerceVector(CAD5R(args), REALSXP)); PROTECT(b = coerceVector(CAD6R(args), REALSXP)); PROTECT(conv = coerceVector(CAD7R(args), INTSXP)); PROTECT(tol = coerceVector(CAD8R(args), REALSXP)); PROTECT(maxit = coerceVector(CAD9R(args), INTSXP)); PROTECT(echo = coerceVector(CAD10R(args), LGLSXP)); /* Initialization of some variables */ fx = REAL(sfx); /* severity distribution */ upper = length(sfx) - 1; /* severity distribution support upper bound */ fs[0] = REAL(fs0)[0]; /* value of Pr[S = 0] (computed in R) */ cumul = REAL(fs0)[0]; /* cumulative probability computed */ norm = 1 - REAL(a)[0] * fx[0]; /* normalizing constant */ n = INTEGER(conv)[0]; /* number of convolutions to do */ /* If printing of recursions was asked for, start by printing a * header and the probability at 0. */ if (LOGICAL(echo)[0]) Rprintf("x\tPr[S = x]\tCumulative probability\n%d\t%.8g\t%.8g\n", 0, fs[0], fs[0]); /* (a, b, 0) case (if p0 is NULL) */ if (isNull(CADR(args))) do { /* Stop after 'maxit' recursions and issue warning. */ if (x > INTEGER(maxit)[0]) { warning(_("maximum number of recursions reached before the probability distribution was complete")); break; } /* If fs is too small, double its size */ if (x >= size) { fs = (double *) S_realloc((char *) fs, size << 1, size, sizeof(double)); size = size << 1; } m = x; if (x > upper) m = upper; /* upper bound of the sum */ /* Compute probability up to the scaling constant */ for (k = 1; k <= m; k++) fs[x] += (REAL(a)[0] + REAL(b)[0] * k / x) * fx[k] * fs[x - k]; fs[x] = fs[x]/norm; /* normalization */ cumul += fs[x]; /* cumulative sum */ if (LOGICAL(echo)[0]) Rprintf("%d\t%.8g\t%.8g\n", x, fs[x], cumul); x++; } while (cumul < REAL(tol)[0]); /* (a, b, 1) case (if p0 is non-NULL) */ else { /* In the (a, b, 1) case, the recursion formula has an * additional term involving f_X(x). The mathematical notation * assumes that f_X(x) = 0 for x > m (the maximal value of the * distribution). We need to treat this specifically in * programming, though. */ double fxm; /* Constant term in the (a, b, 1) case. */ term = (REAL(p1)[0] - (REAL(a)[0] + REAL(b)[0]) * REAL(p0)[0]); do { /* Stop after 'maxit' recursions and issue warning. */ if (x > INTEGER(maxit)[0]) { warning(_("maximum number of recursions reached before the probability distribution was complete")); break; } if (x >= size) { fs = (double *) S_realloc((char *) fs, size << 1, size, sizeof(double)); size = size << 1; } m = x; if (x > upper) { m = upper; /* upper bound of the sum */ fxm = 0.0; /* i.e. no additional term */ } else fxm = fx[m]; /* i.e. additional term */ for (k = 1; k <= m; k++) fs[x] += (REAL(a)[0] + REAL(b)[0] * k / x) * fx[k] * fs[x - k]; fs[x] = (fs[x] + fxm * term) / norm; cumul += fs[x]; if (LOGICAL(echo)[0]) Rprintf("%d\t%.8g\t%.8g\n", x, fs[x], cumul); x++; } while (cumul < REAL(tol)[0]); } /* If needed, convolve the distribution obtained above with itself * using a very simple direct technique. Since we want to * continue storing the distribution in array 'fs', we need to * copy the vector in an auxiliary array at each convolution. */ if (n) { int i, j, ox; double *ofs; /* auxiliary array */ /* Resize 'fs' to its final size after 'n' convolutions. Each * convolution increases the length from 'x' to '2 * x - 1'. */ fs = (double *) S_realloc((char *) fs, (1 << n) * (x - 1) + 1, size, sizeof(double)); /* Allocate enough memory in the auxiliary array for the 'n' * convolutions. This is just slightly over half the final * size of 'fs'. */ ofs = (double *) S_alloc((1 << (n - 1)) * (x - 1) + 1, sizeof(double)); for (k = 0; k < n; k++) { memcpy(ofs, fs, x * sizeof(double)); /* keep previous array */ ox = x; /* previous array length */ x = (x << 1) - 1; /* new array length */ for(i = 0; i < x; i++) fs[i] = 0.0; for(i = 0; i < ox; i++) for(j = 0; j < ox; j++) fs[i + j] += ofs[i] * ofs[j]; } } /* Copy the values of fs to a SEXP which will be returned to R. */ PROTECT(sfs = allocVector(REALSXP, x)); memcpy(REAL(sfs), fs, x * sizeof(double)); UNPROTECT(11); return(sfs); } actuar/src/pareto4.c0000644000176200001440000001433314030725704014050 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the Pareto (type) IV distribution. See ../R/Pareto4.R for * details. * * We work with the density expressed as * * shape1 * shape2 * u^shape1 * (1 - u) / (x - min) * * with u = 1/(1 + v), v = ((x - min)/scale)^shape2. * * AUTHORS: Nicholas Langevin and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dpareto4(double x, double min, double shape1, double shape2, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(min) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return x + min + shape1 + shape2 + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape1) || !R_FINITE(shape2) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < min) return ACT_D__0; /* handle (x - min) == 0 separately */ if (x == min) { if (shape2 < 1) return R_PosInf; if (shape2 > 1) return ACT_D__0; /* else */ return ACT_D_val(shape1 / scale); } double logv, logu, log1mu; logv = shape2 * (log(x - min) - log(scale)); logu = - log1pexp(logv); log1mu = - log1pexp(-logv); return ACT_D_exp(log(shape1) + log(shape2) + shape1 * logu + log1mu - log(x - min)); } double ppareto4(double q, double min, double shape1, double shape2, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(min) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return q + min + shape1 + shape2 + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape1) || !R_FINITE(shape2) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (q <= min) return ACT_DT_0; double u = exp(-log1pexp(shape2 * (log(q - min) - log(scale)))); return ACT_DT_Cval(R_pow(u, shape1)); } double qpareto4(double p, double min, double shape1, double shape2, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(min) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return p + min + shape1 + shape2 + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, min, R_PosInf); p = ACT_D_qIv(p); return min + scale * R_pow(R_pow(ACT_D_Cval(p), -1.0/shape1) - 1.0, 1.0/shape2); } double rpareto4(double min, double shape1, double shape2, double scale) { if (!R_FINITE(min) || !R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; return min + scale * R_pow(R_pow(unif_rand(), -1.0/shape1) - 1.0, 1.0/shape2); } double mpareto4(double order, double min, double shape1, double shape2, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(min) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale)) return order + min + shape1 + shape2 + scale; #endif if (!R_FINITE(min) || !R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; /* The case min = 0 is a Burr with a larger range of admissible * values for order: - shape2 < order < shape1 * shape2. */ if (min == 0.0) return mburr(order, shape1, shape2, scale, give_log); /* From now on min != 0 and order must be a stricly non negative * integer < shape1 * shape2. */ if (order < 0.0) return R_NaN; if (order >= shape1 * shape2) return R_PosInf; int i; double order0 = order; double tmp, sum, r = scale/min; double Ga = gammafn(shape1); if (ACT_nonint(order)) { order = ACT_forceint(order); warning(_("'order' (%.2f) must be integer, rounded to %.0f"), order0, order); } sum = Ga; /* first term in the sum */ for (i = 1; i <= order; i++) { tmp = i/shape2; sum += choose(order, i) * R_pow(r, i) * gammafn(1.0 + tmp) * gammafn(shape1 - tmp); } /* The first term of the sum is always min^order. */ return R_pow(min, order) * sum / Ga; } double levpareto4(double limit, double min, double shape1, double shape2, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(min) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(scale) || ISNAN(order)) return limit + min + shape1 + shape2 + scale + order; #endif if (!R_FINITE(min) || !R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || scale <= 0.0) return R_NaN; if (limit <= min) return 0.0; /* The case min = 0 is a Burr with a larger range of admissible * values for order: order > - shape2. */ if (min == 0.0) return levburr(limit, shape1, shape2, scale, order, give_log); /* From now on min != 0 and order must be a stricly non negative * integer. */ if (order < 0.0) return R_NaN; int i; double order0 = order; double logv, u, u1m; double tmp, sum, r = scale / min; logv = shape2 * (log(limit - min) - log(scale)); u = exp(-log1pexp(logv)); u1m = exp(-log1pexp(-logv)); if (ACT_nonint(order)) { order = ACT_forceint(order); warning(_("'order' (%.2f) must be integer, rounded to %.0f"), order0, order); } sum = betaint_raw(u1m, 1.0, shape1, u); /* first term in the sum */ for (i = 1; i <= order; i++) { tmp = i / shape2; sum += choose(order, i) * R_pow(r, i) * betaint_raw(u1m, 1.0 + tmp, shape1 - tmp, u); } return R_pow(min, order) * sum / gammafn(shape1) + ACT_DLIM__0(limit, order) * R_pow(u, shape1); } actuar/src/paralogis.c0000644000176200001440000000746014030725704014456 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the paralogistic distribution. See ../R/Paralogistic.R for * details. * * We work with the density expressed as * * shape^2 * u^shape * (1 - u) / x * * with u = 1/(1 + v), v = (x/scale)^shape. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dparalogis(double x, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape) || ISNAN(scale)) return x + shape + scale; #endif if (!R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < 0.0) return ACT_D__0; /* handle x == 0 separately */ if (x == 0.0) { if (shape < 1) return R_PosInf; if (shape > 1) return ACT_D__0; /* else */ return ACT_D_val(1.0/scale); } double logv, logu, log1mu; logv = shape * (log(x) - log(scale)); logu = - log1pexp(logv); log1mu = - log1pexp(-logv); return ACT_D_exp(2.0 * log(shape) + shape * logu + log1mu - log(x)); } double pparalogis(double q, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape) || ISNAN(scale)) return q + shape + scale; #endif if (!R_FINITE(shape) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (q <= 0) return ACT_DT_0; double u = exp(-log1pexp(shape * (log(q) - log(scale)))); return ACT_DT_Cval(R_pow(u, shape)); } double qparalogis(double p, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape) || ISNAN(scale)) return p + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); double tmp = 1.0/shape; return scale * R_pow(R_pow(ACT_D_Cval(p), -tmp) - 1.0, tmp); } double rparalogis(double shape, double scale) { double tmp; if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN; tmp = 1.0/shape; return scale * R_pow(R_pow(unif_rand(), -tmp) - 1.0, tmp); } double mparalogis(double order, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape) || ISNAN(scale)) return order + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape || order >= shape * shape) return R_PosInf; double tmp = order / shape; return R_pow(scale, order) * gammafn(1.0 + tmp) * gammafn(shape - tmp) / gammafn(shape); } double levparalogis(double limit, double shape, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape) || ISNAN(scale) || ISNAN(order)) return limit + shape + scale + order; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order <= -shape) return R_PosInf; if (limit <= 0.0) return 0.0; double logv, u, u1m; double tmp = order / shape; logv = shape * (log(limit) - log(scale)); u = exp(-log1pexp(logv)); u1m = exp(-log1pexp(-logv)); return R_pow(scale, order) * betaint_raw(u1m, 1.0 + tmp, shape - tmp, u) / gammafn(shape) + ACT_DLIM__0(limit, order) * R_pow(u, shape); } actuar/src/dpq.h0000644000176200001440000000643114054204377013267 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Utilities for `dpq' handling (density/probability/quantile) * * These (except ACT_DLIM__0) are copied from src/nmath/dpq.h of R * sources with the names changed from "R_" to "ACT_". * * AUTHOR: Vincent Goulet * with much indirect help from the R Core Team */ /* give_log in "d" & "mgf"; log_p in "p" & "q" : */ #define give_log log_p #define ACT_D__0 (log_p ? R_NegInf : 0.) #define ACT_D__1 (log_p ? 0. : 1.) #define ACT_DT_0 (lower_tail ? ACT_D__0 : ACT_D__1) #define ACT_DT_1 (lower_tail ? ACT_D__1 : ACT_D__0) /* Use 0.5 - p + 0.5 to perhaps gain 1 bit of accuracy */ #define ACT_D_Lval(p) (lower_tail ? (p) : (0.5 - (p) + 0.5)) /* p */ #define ACT_D_Cval(p) (lower_tail ? (0.5 - (p) + 0.5) : (p)) /* 1 - p */ #define ACT_D_val(x) (log_p ? log(x) : (x)) /* x in pF(x,..) */ #define ACT_D_qIv(p) (log_p ? exp(p) : (p)) /* p in qF(p,..) */ #define ACT_DT_qIv(p) (log_p ? (lower_tail ? exp(p) : - expm1(p)) \ : ACT_D_Lval(p)) /* 1 - p in qF(p,..) */ #define ACT_DT_1mqIv(p) (log_p ? (lower_tail ? - expm1(p) : exp(p)) \ : ACT_D_Cval(p)) /* 1 - p in qF(p,..) */ #define ACT_D_exp(x) (log_p ? (x) : exp(x)) /* exp(x) */ #define ACT_D_Cexp(x) (log_p ? log(-expm1(x)) : (-expm1(x))) /* [log](1-exp(x)) */ #define ACT_D_Clog(p) (log_p ? log1p(-(p)) : (0.5 - (p) + 0.5)) /* [log](1-p) */ #define ACT_DT_val(x) (lower_tail ? ACT_D_val(x) : ACT_D_Clog(x)) #define ACT_DT_Eval(x) (lower_tail ? ACT_D_exp(x) : ACT_D_Cexp(x)) #define ACT_DT_Cval(x) (lower_tail ? ACT_D_Clog(x) : ACT_D_val(x)) #define ACT_DT_CEval(x) (lower_tail ? ACT_D_Cexp(x) : ACT_D_exp(x)) // log(1 - exp(x)) in more stable form than log1p(- R_D_qIv(x)) : #define ACT_Log1_Exp(x) ((x) > -M_LN2 ? log(-expm1(x)) : log1p(-exp(x))) /*Boundaries*/ #define ACT_Q_P01_boundaries(p, _LEFT_, _RIGHT_) \ if (log_p) { \ if(p > 0) \ return R_NaN; \ if(p == 0) /* upper bound*/ \ return lower_tail ? _RIGHT_ : _LEFT_; \ if(p == R_NegInf) \ return lower_tail ? _LEFT_ : _RIGHT_; \ } \ else { /* !log_p */ \ if(p < 0 || p > 1) \ return R_NaN; \ if(p == 0) \ return lower_tail ? _LEFT_ : _RIGHT_; \ if(p == 1) \ return lower_tail ? _RIGHT_ : _LEFT_; \ } /* Infinite limit in "lev" */ #define ACT_DLIM__0(x, y) (R_FINITE(x) ? R_pow(x, y) : 0.) /* This is taken from src/nmath/nmath.h of R sources */ #ifdef HAVE_NEARYINT # define ACT_forceint(x) nearbyint() #else # define ACT_forceint(x) round(x) #endif # define ACT_nonint(x) (fabs((x) - ACT_forceint(x)) > 1e-7*fmax2(1., fabs(x))) // for discrete d(x, ...) : #define ACT_D_nonint_check(x) \ if (ACT_nonint(x)) { \ warning(_("non-integer x = %f"), x); \ return ACT_D__0; \ } actuar/src/invgamma.c0000644000176200001440000000750414030725704014273 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the Inverse Gamma distribution. See ../R/InverseGamma.R for * details. * * We work with the density expressed as * * u^shape * e^(-u) / (x * gamma(shape)) * * with u = scale/x. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dinvgamma(double x, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape) || ISNAN(scale)) return x + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale < 0.0) return R_NaN; /* handle also x == 0 here */ if (!R_FINITE(x) || x <= 0.0) return ACT_D__0; double logu = log(scale) - log(x); return ACT_D_exp(shape * logu - exp(logu) - log(x) - lgammafn(shape)); } double pinvgamma(double q, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape) || ISNAN(scale)) return q + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale < 0.0) return R_NaN;; if (q <= 0) return ACT_DT_0; double u = exp(log(scale) - log(q)); return pgamma(u, shape, 1.0, !lower_tail, log_p); } double qinvgamma(double p, double shape, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape) || ISNAN(scale)) return p + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN;; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return scale / qgamma(p, shape, 1.0, !lower_tail, 0); } double rinvgamma(double shape, double scale) { if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0) return R_NaN;; return scale / rgamma(shape, 1.0); } double minvgamma(double order, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape) || ISNAN(scale)) return order + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order >= shape) return R_PosInf; return R_pow(scale, order) * gammafn(shape - order) / gammafn(shape); } double levinvgamma(double limit, double shape, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape) || ISNAN(scale) || ISNAN(order)) return limit + shape + scale + order; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || !R_FINITE(order) || shape <= 0.0 || scale <= 0.0) return R_NaN; if (order >= shape) return R_PosInf; if (limit <= 0.0) return 0.0; double u = exp(log(scale) - log(limit)); return R_pow(scale, order) * actuar_gamma_inc(shape - order, u) / gammafn(shape) + ACT_DLIM__0(limit, order) * pgamma(u, shape, 1.0, 1, 0); } double mgfinvgamma(double t, double shape, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(t) || ISNAN(shape) || ISNAN(scale)) return t + shape + scale; #endif if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0.0 || scale <= 0.0 || t > 0.0 ) return R_NaN; if (t == 0.0) return ACT_D__1; /* rescale and change sign */ t = -scale * t; return ACT_D_exp(M_LN2 + 0.5 * shape * log(t) + log(bessel_k(sqrt(4 * t), shape, 1)) - lgammafn(shape)); } actuar/src/trbeta.c0000644000176200001440000001304214030725704013747 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the transformed beta distribution. See ../R/TransformedBeta.R for * details. * * We work with the density expressed as * * shape2 * u^shape3 * (1 - u)^shape1 / (x * beta(shape1, shape3)) * * with u = v/(1 + v) = 1/(1 + 1/v), v = (x/scale)^shape2. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dtrbeta(double x, double shape1, double shape2, double shape3, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale)) return x + shape1 + shape2 + shape3 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; if (!R_FINITE(x) || x < 0.0) return ACT_D__0; /* handle x == 0 separately */ if (x == 0.0) { if (shape2 * shape3 < 1) return R_PosInf; if (shape2 * shape3 > 1) return ACT_D__0; /* else */ return give_log ? log(shape2) - log(scale) - lbeta(shape3, shape1) : shape2 / (scale * beta(shape3, shape1)); } double logv, logu, log1mu; logv = shape2 * (log(x) - log(scale)); logu = - log1pexp(-logv); log1mu = - log1pexp(logv); return ACT_D_exp(log(shape2) + shape3 * logu + shape1 * log1mu - log(x) - lbeta(shape3, shape1)); } double ptrbeta(double q, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale)) return q + shape1 + shape2 + shape3 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; if (q <= 0) return ACT_DT_0; double logvm, u; logvm = shape2 * (log(scale) - log(q)); /* -log v */ u = exp(-log1pexp(logvm)); if (u > 0.5) { /* Compute (1 - x) accurately */ double u1m = exp(-log1pexp(-logvm)); return pbeta(u1m, shape1, shape3, 1 - lower_tail, log_p); } /* else u <= 0.5 */ return pbeta(u, shape3, shape1, lower_tail, log_p); } double qtrbeta(double p, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale)) return p + shape1 + shape2 + shape3 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return scale * R_pow(1.0/qbeta(p, shape3, shape1, lower_tail, 0) - 1.0, -1.0/shape2); } double rtrbeta(double shape1, double shape2, double shape3, double scale) { if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || !R_FINITE(scale) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; return scale * R_pow(1.0/rbeta(shape3, shape1) - 1.0, -1.0/shape2); } double mtrbeta(double order, double shape1, double shape2, double shape3, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale)) return order + shape1 + shape2 + shape3 + scale; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; if (order <= - shape3 * shape2 || order >= shape1 * shape2) return R_PosInf; double tmp = order / shape2; return R_pow(scale, order) * beta(shape3 + tmp, shape1 - tmp) / beta(shape1, shape3); } double levtrbeta(double limit, double shape1, double shape2, double shape3, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale) || ISNAN(order)) return limit + shape1 + shape2 + shape3 + scale + order; #endif if (!R_FINITE(shape1) || !R_FINITE(shape2) || !R_FINITE(shape3) || !R_FINITE(scale) || !R_FINITE(order) || shape1 <= 0.0 || shape2 <= 0.0 || shape3 <= 0.0 || scale <= 0.0) return R_NaN; if (order <= - shape3 * shape2) return R_PosInf; if (limit <= 0.0) return 0.0; double logv, u, u1m, Ix; double tmp = order / shape2; logv = shape2 * (log(limit) - log(scale)); u = exp(-log1pexp(-logv)); u1m = exp(-log1pexp(logv)); Ix = (u > 0.5) ? pbeta(u1m, shape1, shape3, /*l._t.*/1, /*give_log*/0) : pbeta(u, shape3, shape1, /*l._t.*/0, /*give_log*/0); return R_pow(scale, order) * betaint_raw(u, shape3 + tmp, shape1 - tmp, u1m) / (gammafn(shape1) * gammafn(shape3)) + ACT_DLIM__0(limit, order) * Ix; } actuar/src/invexp.c0000644000176200001440000000501014030725704013773 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute density, cumulative distribution and quantile * functions, raw and limited moments and to simulate random variates * for the inverse exponential distribution. See ../R/InverseExponential.R * for details. * * We work with the density expressed as * * u * e^(-u) / x * * with u = scale/x. * * AUTHORS: Mathieu Pigeon and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" #include "actuar.h" double dinvexp(double x, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(scale)) return x + scale; #endif if (!R_FINITE(scale) || scale < 0.0) return R_NaN; /* handle also x == 0 here */ if (!R_FINITE(x) || x <= 0.0) return ACT_D__0; double logu = log(scale) - log(x); return ACT_D_exp(logu - exp(logu) - log(x)); } double pinvexp(double q, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(q) || ISNAN(scale)) return q + scale; #endif if (!R_FINITE(scale) || scale < 0.0) return R_NaN; if (q <= 0) return ACT_DT_0; double u = exp(log(scale) - log(q)); return ACT_DT_Eval(-u); } double qinvexp(double p, double scale, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(p) || ISNAN(scale)) return p + scale; #endif if (!R_FINITE(scale) || scale <= 0.0) return R_NaN; ACT_Q_P01_boundaries(p, 0, R_PosInf); p = ACT_D_qIv(p); return -scale / log(ACT_D_Lval(p)); } double rinvexp(double scale) { if (!R_FINITE(scale) || scale <= 0.0) return R_NaN; return scale / rexp(1.0); } double minvexp(double order, double scale, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(scale)) return order + scale; #endif if (!R_FINITE(scale) || !R_FINITE(order) || scale <= 0.0) return R_NaN; if (order >= 1.0) return R_PosInf; return R_pow(scale, order) * gammafn(1.0 - order); } double levinvexp(double limit, double scale, double order, int give_log) { #ifdef IEEE_754 if (ISNAN(limit) || ISNAN(scale) || ISNAN(order)) return limit + scale + order; #endif if (!R_FINITE(scale) || !R_FINITE(order) || scale <= 0.0) return R_NaN; if (limit <= 0.0) return 0.0; double u = exp(log(scale) - log(limit)); return R_pow(scale, order) * actuar_gamma_inc(1.0 - order, u) + ACT_DLIM__0(limit, order) * (0.5 - exp(-u) + 0.5); } actuar/src/dpqphtype.c0000644000176200001440000001634614030725704014516 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to compute probability density, cumulative probability * and moment generating functions, and raw moments for phase-type * distributions. This file is based on dpq.c with the following * modifications: * * 1. support for a matrix argument; * 2. no iteration over the parameters; * 3. support for two parameter distributions only; * 4. many sanity checks on the arguments that are done in the * {d,p,r,m,mgf} functions for other probability laws are done * here because of item 2 above. * * Note that the "q" in the functions and file names was retained for * symmetry reasons only, since the quantile function is not * otherwise supported. * * For details, see dpq.c. * * AUTHOR: Vincent Goulet */ #include #include #include "actuar.h" #include "locale.h" #define if_NA_dpqphtype2_set(y, x) \ if (ISNA (x) || naargs) y = NA_REAL; \ else if (ISNAN(x) || nanargs) y = R_NaN; \ else if (naflag) y = R_NaN; static SEXP dpqphtype2_1(SEXP sx, SEXP sa, SEXP sb, SEXP sI, double (*f)()) { SEXP sy, bdims; int i, j, ij, n, m, sxo = OBJECT(sx); double tmp1, tmp2, *x, *a, *b, *y; int i_1; /* Flags used in sanity check of arguments. Listed from highest to * lowest priority. */ Rboolean naargs = FALSE, nanargs = FALSE, naflag = FALSE; #define SETUP_DPQPHTYPE2 \ if (!isNumeric(sx) || !isNumeric(sa) || !isMatrix(sb)) \ error(_("invalid arguments")); \ \ n = LENGTH(sx); \ if (n == 0) \ return(allocVector(REALSXP, 0)); \ \ m = LENGTH(sa); \ bdims = getAttrib(sb, R_DimSymbol); \ if (INTEGER(bdims)[0] != INTEGER(bdims)[1] || \ INTEGER(bdims)[0] != m) \ naflag = TRUE; \ \ PROTECT(sx = coerceVector(sx, REALSXP)); \ PROTECT(sa = coerceVector(sa, REALSXP)); \ PROTECT(sb = coerceVector(sb, REALSXP)); \ PROTECT(sy = allocVector(REALSXP, n)); \ x = REAL(sx); \ a = REAL(sa); \ b = REAL(sb); \ y = REAL(sy); \ \ tmp1 = 0.0; \ for (i = 0; i < m && !naargs && !nanargs && !naflag; i++) \ { \ if ((naargs = ISNA(a[i]))) \ break; \ if ((nanargs = ISNAN(a[i]))) \ break; \ tmp1 += a[i]; \ tmp2 = 0.0; \ for (j = 0; j < m; j++) \ { \ ij = i + j * m; \ if ((naargs = ISNA(b[ij]))) \ break; \ if ((nanargs = ISNAN(b[ij]))) \ break; \ if (i == j && (naflag = b[ij] >= 0)) \ break; \ if (i != j && (naflag = b[ij] < 0)) \ break; \ tmp2 += b[ij]; \ } \ if (!(naargs || nanargs)) \ naflag = tmp2 > 0; \ } \ if (!(naargs || nanargs)) \ naflag = tmp1 > 1 SETUP_DPQPHTYPE2; i_1 = asInteger(sI); for (i = 0; i < n; i++) { if_NA_dpqphtype2_set(y[i], x[i]) else { y[i] = f(x[i], a, b, m, i_1); if (ISNAN(y[i])) naflag = TRUE; } } #define FINISH_DPQPHTYPE2 \ if (naflag) \ warning(R_MSG_NA); \ \ SET_ATTRIB(sy, duplicate(ATTRIB(sx))); \ SET_OBJECT(sy, sxo); \ \ UNPROTECT(4) FINISH_DPQPHTYPE2; return sy; } static SEXP dpqphtype2_2(SEXP sx, SEXP sa, SEXP sb, SEXP sI, SEXP sJ, double (*f)()) { SEXP sy, bdims; int i, j, ij, n, m, sxo = OBJECT(sx); double tmp1, tmp2, *x, *a, *b, *y; int i_1, i_2; /* Flags used in sanity check of arguments. Listed from highest to * lowest priority. */ Rboolean naargs = FALSE, nanargs = FALSE, naflag = FALSE; SETUP_DPQPHTYPE2; i_1 = asInteger(sI); i_2 = asInteger(sJ); for (i = 0; i < n; i++) { if_NA_dpqphtype2_set(y[i], x[i]) else { y[i] = f(x[i], a, b, m, i_1, i_2); if (ISNAN(y[i])) naflag = TRUE; } } FINISH_DPQPHTYPE2; return sy; } #define DPQPHTYPE2_1(A, FUN) dpqphtype2_1(CAR(A), CADR(A), CADDR(A), CADDDR(A), FUN); #define DPQPHTYPE2_2(A, FUN) dpqphtype2_2(CAR(A), CADR(A), CADDR(A), CADDDR(A), CAD4R(A), FUN) SEXP actuar_do_dpqphtype2(int code, SEXP args) { switch (code) { case 1: return DPQPHTYPE2_1(args, dphtype); case 2: return DPQPHTYPE2_2(args, pphtype); case 3: return DPQPHTYPE2_1(args, mphtype); case 4: return DPQPHTYPE2_1(args, mgfphtype); default: error(_("internal error in actuar_do_dpqphtype2")); } return args; /* never used; to keep -Wall happy */ } /* Main function, the only one used by .External(). */ SEXP actuar_do_dpqphtype(SEXP args) { int i; const char *name; /* Extract distribution name */ args = CDR(args); name = CHAR(STRING_ELT(CAR(args), 0)); /* Dispatch to actuar_do_dpqphtype{1,2,3,4,5} */ for (i = 0; dpq_tab[i].name; i++) if (!strcmp(dpq_tab[i].name, name)) return dpq_tab[i].cfun(dpq_tab[i].code, CDR(args)); /* No dispatch is an error */ error("internal error in actuar_do_dpqphtype"); return args; /* never used; to keep -Wall happy */ } actuar/src/norm.c0000644000176200001440000000272614030725704013450 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Functions to calculate raw moments and the moment generating * function for the normal distribution. See ../R/NormalSupp.R for * details. * * AUTHORS: Christophe Dutang and Vincent Goulet */ #include #include #include "locale.h" #include "dpq.h" double mnorm(double order, double mean, double sd, int give_log) { #ifdef IEEE_754 if (ISNAN(order) || ISNAN(mean) || ISNAN(sd)) return order + mean + sd; #endif if (!R_FINITE(mean) || !R_FINITE(sd) || !R_FINITE(order) || sd <= 0.0 || ACT_nonint(order)) return R_NaN; /* Trivial case */ if (order == 0.0) return 1.0; /* Odd moments about 0 are equal to 0 */ if ((int) order % 2 == 1 && mean == 0.0) return 0.0; int i, n = order; double res = 0.0; for (i = 0; i <= n/2; i++) res += R_pow_di(sd, 2 * i) * R_pow_di(mean, n - 2 * i) / (R_pow_di(2.0, i) * gammafn(i + 1) * gammafn(order - 2.0 * i + 1.0)); return gammafn(order + 1.0) * res; } double mgfnorm(double t, double mean, double sd, int give_log) { #ifdef IEEE_754 if (ISNAN(t) || ISNAN(mean) || ISNAN(sd)) return t + mean + sd; #endif if (!R_FINITE(mean) || !R_FINITE(sd) || sd <= 0.0) return R_NaN; if (t == 0.0) return ACT_D__1; return ACT_D_exp(t * mean + 0.5 * t * t * sd * sd) ; } actuar/vignettes/0000755000176200001440000000000014173361163013546 5ustar liggesusersactuar/vignettes/coverage.Rnw0000644000176200001440000002556714055040227016042 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage[round]{natbib} \usepackage{babel} \usepackage[scaled=0.9]{helvet} \usepackage[sc]{mathpazo} \usepackage[shortlabels]{enumitem} \usepackage[noae]{Sweave} %\VignetteIndexEntry{Complete formulas used by coverage} %\VignettePackage{actuar} %\SweaveUTF8 \title{Complete formulas used by \code{coverage}} \author{Vincent Goulet \\ UniversitĂ© Laval} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Flush left enumerate environment. \setlist[enumerate]{leftmargin=*,align=left} %% Some new commands \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\D}{\displaystyle} \bibliographystyle{plainnat} <>= library(actuar) @ \begin{document} \maketitle Function \code{coverage} of \pkg{actuar} defines a new function to compute the probability density function (pdf) of cumulative distribution function (cdf) of any probability law under the following insurance coverage modifications: ordinary or franchise deductible, limit, coinsurance, inflation. In addition, the function can return the distribution of either the payment per loss or the payment per payment random variable. This terminology refers to whether or not the insurer knows that a loss occurred. For the exact definitions of the terms as used by \code{coverage}, see Chapter~5 of \cite{LossModels2e}. In the presence of a deductible, four random variables can be defined: \begin{enumerate} \item $Y^P$, the payment per payment with an ordinary deductible; \item $Y^L$, the payment per loss with an ordinary deductible; \item $\tilde{Y}^P$, the payment per payment with a franchise deductible; \item $\tilde{Y}^L$, the payment per loss with a franchise deductible. \end{enumerate} The most common case in insurance applications is the distribution of the amount paid per payment with an ordinary deductible, $Y^P$. Hence, it is the default in \code{coverage}. When there is no deductible, all four random variables are equivalent. This document presents the definitions of the above four random variables and their corresponding cdf and pdf for a deductible $d$, a limit $u$, a coinsurance level $\alpha$ and an inflation rate $r$. An illustrative plot of each cdf and pdf is also included. In these plots, a dot indicates a probability mass at the given point. In definitions below, $X$ is the nonnegative random variable of the losses with cdf $F_X(\cdot)$ and pdf $f_X(\cdot)$. \bibliography{actuar} <>= deductible <- 5 limit <- 13 @ \section{Payment per payment, ordinary deductible} <>= pgammaL <- coverage(cdf = pgamma, deductible = deductible, limit = limit, per.loss = TRUE) dgammaL <- coverage(dgamma, pgamma, deductible = deductible, limit = limit, per.loss = TRUE) pgammaP <- coverage(cdf = pgamma, deductible = deductible, limit = limit) dgammaP <- coverage(dgamma, pgamma, deductible = deductible, limit = limit) d <- deductible u <- limit - d e <- 0.001 ylim <- c(0, dgammaL(0, 5, 0.6)) @ \begin{align*} Y^P &= \begin{cases} \alpha ((1 + r) X - d), & \D\frac{d}{1 + r} \leq X < \frac{u}{1 + r} \\ \alpha (u - d), & \D X \geq \frac{u}{1 + r} \end{cases} & \\ F_{Y^P}(y) &= \begin{cases} 0, & y = 0 \\ \D\frac{F_X \left( \frac{y + \alpha d}{\alpha (1 + r)} \right) - F_X \left( \frac{d}{1 + r} \right)}{% 1 - F_X \left( \frac{d}{1 + r} \right)}, & 0 < y < \alpha (u - d) \\ 1, & y \geq \alpha(u - d) \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(pgammaP(x, 5, 0.6), from = 0, to = u - e, xlim = c(0, limit), ylim = c(0, 1), xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(pgammaP(x, 5, 0.6), from = u, add = TRUE, lwd = 2) axis(1, at = c(0, u), labels = c("0", "u - d")) @ \end{minipage} \\ f_{Y^P}(y) &= \begin{cases} 0, & y = 0 \\ \left( \D\frac{1}{\alpha (1 + r)} \right) \D\frac{f_X \left( \frac{y + \alpha d}{\alpha(1 + r)} \right)}{% 1 - F_X \left( \frac{d}{1 + r} \right)}, & 0 < y < \alpha (u - d) \\ \D\frac{1 - F_X \Big( \frac{u}{1 + r} \Big)}{% 1 - F_X \left( \frac{d}{1 + r} \right)}, & y = \alpha(u - d) \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(dgammaP(x, 5, 0.6), from = 0 + e, to = u - e, xlim = c(0, limit), ylim = ylim, xlab = "", ylab = "", xaxt = "n", lwd = 2) points(u, dgammaP(u, 5, 0.6), pch = 16) axis(1, at = c(0, u), labels = c("0", "u - d")) @ \end{minipage} \end{align*} \section{Payment per loss, ordinary deductible} \begin{align*} Y^L &= \begin{cases} 0, & X < \D \frac{d}{1 + r} \\ \alpha ((1 + r) X - d), & \D\frac{d}{1 + r} \leq X < \frac{u}{1 + r} \\ \alpha (u - d), & \D X \geq \frac{u}{1 + r} \end{cases} & \\ F_{Y^L}(y) &= \begin{cases} F_X \left( \D\frac{d}{1 + r} \right), & y = 0 \\ F_X \left( \D\frac{y + \alpha d}{\alpha(1 + r)} \right), & 0 < y < \alpha (u - d) \\ 1, & y \geq \alpha(u - d) \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(pgammaL(x, 5, 0.6), from = 0, to = u - e, xlim = c(0, limit), ylim = c(0, 1), xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(pgammaL(x, 5, 0.6), from = u, add = TRUE, lwd = 2) axis(1, at = c(0, u), labels = c("0", "u - d")) @ \end{minipage} \\ f_{Y^L}(y) &= \begin{cases} F_X \left( \D\frac{d}{1 + r} \right), & y = 0 \\ \D\frac{1}{\alpha (1 + r)} f_X \left( \D\frac{y + \alpha d}{\alpha(1 + r)} \right), & 0 < y < \alpha (u - d) \\ 1 - F_X \left( \D\frac{u}{1 + r} \right), & y = \alpha(u - d) \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(dgammaL(x, 5, 0.6), from = 0 + e, to = u - e, xlim = c(0, limit), ylim = ylim, xlab = "", ylab = "", xaxt = "n", lwd = 2) points(c(0, u), dgammaL(c(0, u), 5, 0.6), pch = 16) axis(1, at = c(0, u), labels = c("0", "u - d")) @ \end{minipage} \end{align*} \section{Payment per payment, franchise deductible} <>= pgammaL <- coverage(cdf = pgamma, deductible = deductible, limit = limit, per.loss = TRUE, franchise = TRUE) dgammaL <- coverage(dgamma, pgamma, deductible = deductible, limit = limit, per.loss = TRUE, franchise = TRUE) pgammaP <- coverage(cdf = pgamma, deductible = deductible, limit = limit, franchise = TRUE) dgammaP <- coverage(dgamma, pgamma, deductible = deductible, limit = limit, franchise = TRUE) d <- deductible u <- limit e <- 0.001 ylim <- c(0, dgammaL(0, 5, 0.6)) @ \begin{align*} \tilde{Y}^P &= \begin{cases} \alpha (1 + r) X, & \D\frac{d}{1 + r} \leq X < \frac{u}{1 + r} \\ \alpha u, & \D X \geq \frac{u}{1 + r} \end{cases} & \\ F_{\tilde{Y}^P}(y) &= \begin{cases} 0, & 0 \leq y \leq \alpha d \\ \D\frac{F_X \left( \frac{y}{\alpha (1 + r)} \right) - F_X \left( \frac{d}{1 + r} \right)}{% 1 - F_X \left( \frac{d}{1 + r} \right)}, & \alpha d < y < \alpha u \\ 1, & y \geq \alpha u \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(pgammaP(x, 5, 0.6), from = 0, to = u - e, xlim = c(0, limit + d), ylim = c(0, 1), xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(pgammaP(x, 5, 0.6), from = u, add = TRUE, lwd = 2) axis(1, at = c(0, d, u), labels = c("0", "d", "u")) @ \end{minipage} \\ f_{\tilde{Y}^P}(y) &= \begin{cases} 0, & 0 \leq y \leq \alpha d \\ \left( \D\frac{1}{\alpha (1 + r)} \right) \D\frac{f_X \left( \frac{y}{\alpha(1 + r)} \right)}{% 1 - F_X \left( \frac{d}{1 + r} \right)}, & \alpha d < y < \alpha u \\ \D\frac{1 - F_X \Big( \frac{u}{1 + r} \Big)}{% 1 - F_X \left( \frac{d}{1 + r} \right)}, & y = \alpha u \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(dgammaP(x, 5, 0.6), from = d + e, to = u - e, xlim = c(0, limit + d), ylim = ylim, xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(dgammaL(x, 5, 0.6), from = 0 + e, to = d, add = TRUE, lwd = 2) points(u, dgammaP(u, 5, 0.6), pch = 16) axis(1, at = c(0, d, u), labels = c("0", "d", "u")) @ \end{minipage} \end{align*} \section{Payment per loss, franchise deductible} \begin{align*} \tilde{Y}^L &= \begin{cases} 0, & X < \D \frac{d}{1 + r} \\ \alpha (1 + r) X, & \D\frac{d}{1 + r} \leq X < \frac{u}{1 + r} \\ \alpha u, & \D X \geq \frac{u}{1 + r} \end{cases} & \\ F_{\tilde{Y}^L}(y) &= \begin{cases} F_X \left( \D\frac{d}{1 + r} \right), & 0 \leq y \leq \alpha d \\ F_X \left( \D\frac{y}{\alpha(1 + r)} \right), & \alpha d < y < \alpha u \\ 1, & y \geq \alpha u \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(pgammaL(x, 5, 0.6), from = 0, to = u - e, xlim = c(0, limit + d), ylim = c(0, 1), xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(pgammaL(x, 5, 0.6), from = u, add = TRUE, lwd = 2) axis(1, at = c(0, d, u), labels = c("0", "d", "u")) @ \end{minipage} \\ f_{\tilde{Y}^L}(y) &= \begin{cases} F_X \left( \D\frac{d}{1 + r} \right), & y = 0 \\ \D\frac{1}{\alpha (1 + r)} f_X \left( \D\frac{y}{\alpha(1 + r)} \right), & \alpha d < y < \alpha u \\ 1 - F_X \left( \D\frac{u}{1 + r} \right), & y = \alpha u \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(dgammaL(x, 5, 0.6), from = d + e, to = u - e, xlim = c(0, limit + d), ylim = ylim, xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(dgammaL(x, 5, 0.6), from = 0 + e, to = d, add = TRUE, lwd = 2) points(c(0, u), dgammaL(c(0, u), 5, 0.6), pch = 16) axis(1, at = c(0, d, u), labels = c("0", "d", "u")) @ \end{minipage} \end{align*} \end{document} %%% Local Variables: %%% mode: noweb %%% TeX-master: t %%% coding: utf-8 %%% End: actuar/vignettes/simulation.Rnw0000644000176200001440000005424414055040227016425 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath,amsthm} \usepackage[round]{natbib} \usepackage{babel} \usepackage[scaled=0.9]{helvet} \usepackage[sc]{mathpazo} \usepackage[shortlabels]{enumitem} \usepackage[noae,inconsolata]{Sweave} \usepackage{framed} %\VignetteIndexEntry{Simulation of insurance data} %\VignettePackage{actuar} %\SweaveUTF8 \title{Simulation of insurance data with \pkg{actuar}} \author{Christophe Dutang \\ UniversitĂ© Paris Dauphine \\[3ex] Vincent Goulet \\ UniversitĂ© Laval \\[3ex] Mathieu Pigeon \\ UniversitĂ© du QuĂ©bec Ă  MontrĂ©al \\[3ex] Louis-Philippe Pouliot \\ UniversitĂ© Laval} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Help for \autoref \def\exampleautorefname{example} %% Sweave Sinput and Soutput environments reinitialized to remove %% default configuration. Space between input and output blocks also %% reduced. \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{} \fvset{listparameters={\setlength{\topsep}{0pt}}} %% Environment Schunk redefined as an hybrid of environments %% snugshade* and leftbar of framed.sty. \makeatletter \renewenvironment{Schunk}{% \setlength{\topsep}{1pt} \def\FrameCommand##1{\hskip\@totalleftmargin \vrule width 2pt\colorbox{codebg}{\hspace{3pt}##1}% % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \advance\labelsep\fboxsep \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \makeatother %% Flush left enumerate environment. \setlist[enumerate]{leftmargin=*,align=left} %% Example environment \theoremstyle{definition} \newtheorem{example}{Example} %% Some new commands \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\code}[1]{\texttt{#1}} \bibliographystyle{plainnat} <>= library(actuar) options(width = 52, digits = 4) @ \begin{document} \maketitle \section{Introduction} \label{sec:introduction} Package \pkg{actuar} provides functions to facilitate the generation of random variates from various probability models commonly used in actuarial applications. From the simplest to the most sophisticated, these functions are: \begin{enumerate} \item \code{rmixture} to simulate from discrete mixtures; \item \code{rcompound} to simulate from compound models (and a simplified version, \code{rcompois} to simulate from the very common compound Poisson model); \item \code{rcomphierarc}\footnote{% An alias for \code{simul} introduced in \pkg{actuar} 2.0-0.} % to simulate from compound models where both the frequency and the severity components can have a hierarchical structure. \end{enumerate} \section{Simulation from discrete mixtures} \label{sec:rmixture} A random variable is said to be a discrete mixture of the random variables with probability density functions $f_1, \dots, f_n$ if its density can be written as \begin{equation} \label{eq:mixture} f(x) = p_1 f_1(x) + \dots + p_n f_n(x) = \sum_{i = 1}^n p_i f_i(x), \end{equation} where $p_1, \dots, p_n$ are probabilities (or weights) such that $p_i \geq 0$ and $\sum_{i = 1}^n p_i = 1$. Function \code{rmixture} makes it easy to generate random variates from such mixtures. The arguments of the function are: \begin{enumerate} \item \code{n} the number of variates to generate; \item \code{probs} a vector of values that will be normalized internally to create the probabilities $p_1, \dots, p_n$; \item \code{models} a vector of expressions specifying the simulation models corresponding to the densities $f_1, \dots, f_n$. \end{enumerate} The specification of simulation models follows the syntax of \code{rcomphierarc} (explained in greater detail in \autoref{sec:rcomphierarc}). In a nutshell, the models are expressed in a semi-symbolic fashion using an object of mode \code{"expression"} where each element is a complete call to a random number generation function, with the number of variates omitted. The following example should clarify this concept. \begin{example} Let $X$ be a mixture between two exponentials: one with mean $1/3$ and one with mean $1/7$. The first exponential has twice as much weight as the second one in the mixture. Therefore, the density of $X$ is \begin{equation*} f(x) = \frac{2}{3} (3 e^{-3x}) + \frac{1}{3} (7 e^{-7x}) \\ = 2 e^{-3x} + \frac{7}{3} e^{-7x}. \end{equation*} The following expression generates $10$ random variates from this density using \code{rmixture}. <>= rmixture(10, probs = c(2, 1), models = expression(rexp(3), rexp(7))) @ \qed \end{example} See also \autoref{ex:comppois} for a more involved application combining simulation from a mixture and simulation from a compound Poisson model. \section{Simulation from compound models} \label{sec:rcompound} Actuaries often need to simulate separately the frequency and the severity of claims for compound models of the form \begin{equation} \label{eq:definition-S} S = C_1 + \dots + C_N, \end{equation} where $C_1, C_2, \dots$ are the mutually independent and identically distributed random variables of the claim amounts, each independent of the frequency random variable $N$. Function \code{rcompound} generates variates from the random variable $S$ when the distribution of both random variables $N$ and $C$ is non hierarchical; for the more general hierarchical case, see \autoref{sec:rcomphierarc}. The function has three arguments: \begin{enumerate} \item \code{n} the number of variates to generate; \item \code{model.freq} the frequency model (random variable $N$); \item \code{model.sev} the severity model (random variable $C$). \end{enumerate} Arguments \code{model.freq} and \code{model.sev} are simple R expressions consisting of calls to a random number generation function with the number of variates omitted. This is of course similar to argument \code{models} of \code{rmixture}, only with a slightly simpler syntax since one does not need to wrap the calls in \code{expression}. Function \code{rcomppois} is a simplified interface for the common case where $N$ has a Poisson distribution and, therefore, $S$ is compound Poisson. In this function, argument \code{model.freq} is replaced by \code{lambda} that takes the value of the Poisson parameter. \begin{example} Let $S \sim \text{Compound Poisson}(1.5, F)$, where $1.5$ is the value of the Poisson parameter and $F$ is the cumulative distribution function of a gamma distribution with shape parameter $\alpha = 3$ and rate parameter $\lambda = 2$. We obtain variates from the random variable $S$ using \code{rcompound} or \code{rcompois} as follows: <>= rcompound(10, rpois(1.5), rgamma(3, 2)) rcomppois(10, 1.5, rgamma(3, 2)) @ Specifying argument \code{SIMPLIFY = FALSE} to either function will return not only the variates from $S$, but also the underlying variates from the random variables $N$ and $C_1, \dots, C_N$: <>= rcomppois(10, 1.5, rgamma(3, 2), SIMPLIFY = FALSE) @ \qed \end{example} \begin{example} \label{ex:comppois} Theorem~9.7 of \cite{LossModels4e} states that the sum of compound Poisson random variables is itself compound Poisson with Poisson parameter equal to the sum of the Poisson parameters and severity distribution equal to the mixture of the severity models. Let $S = S_1 + S_2 + S_3$, where $S_1$ is compound Poisson with mean frequency $\lambda = 2$ and severity Gamma$(3, 1)$; $S_2$ is compound Poisson with $\lambda = 1$ and severity Gamma$(5, 4)$; $S_3$ is compound Poisson with $\lambda = 1/2$ and severity Lognormal$(2, 1)$. By the aforementioned theorem, $S$ is compound Poisson with $\lambda = 2 + 1 + 1/2 = 7/2$ and severity density \begin{equation*} f(x) = \frac{4}{7} \left( \frac{1}{\Gamma(3)} x^2 e^{-x} \right) + \frac{2}{7} \left( \frac{4^5}{\Gamma(5)} x^4 e^{-4x} \right) + \frac{1}{7} \phi(\ln x - 2). \end{equation*} Combining \code{rcomppois} and \code{rmixture} we can generate variates of $S$ using the following elegant expression. <>= x <- rcomppois(1e5, 3.5, rmixture(probs = c(2, 1, 0.5), expression(rgamma(3), rgamma(5, 4), rlnorm(2, 1)))) @ One can verify that the theoretical mean of $S$ is $6 + 5/4 + (e^{5/2})/2 = 13.34$. Now, the empirical mean based on the above sample of size $10^5$ is: <>= mean(x) @ \qed \end{example} \section{Simulation from compound hierarchical models} \label{sec:rcomphierarc} Hierarchical probability models are widely used for data classified in a tree-like structure and in Bayesian inference. The main characteristic of such models is to have the probability law at some level in the classification structure be conditional on the outcome in previous levels. For example, adopting a bottom to top description of the model, a simple hierarchical model could be written as \begin{equation} \label{eq:basic_model} \begin{split} X_t|\Lambda, \Theta &\sim \text{Poisson}(\Lambda) \\ \Lambda|\Theta &\sim \text{Gamma}(3, \Theta) \\ \Theta &\sim \text{Gamma}(2, 2), \end{split} \end{equation} where $X_t$ represents actual data. The random variables $\Theta$ and $\Lambda$ are generally seen as uncertainty, or risk, parameters in the actuarial literature; in the sequel, we refer to them as mixing parameters. The example above is merely a multi-level mixture of models, something that is simple to simulate ``by hand''. The following R expression will yield $n$ variates of the random variable $X_t$: <>= rpois(n, rgamma(n, 3, rgamma(n, 2, 2))) @ However, for categorical data common in actuarial applications there will usually be many categories --- or \emph{nodes} --- at each level. Simulation is then complicated by the need to always use the correct parameters for each variate. Furthermore, one may need to simulate both the frequency and the severity of claims for compound models of the form \eqref{eq:definition-S}. This section briefly describes function \code{rcomphierarc} and its usage. \cite{Goulet:simpf:2008} discuss in more details the models supported by the function and give more thorough examples. \subsection{Description of hierarchical models} \label{sec:rcomphierarc:description} We consider simulation of data from hierarchical models. We want a method to describe these models in R that meets the following criteria: \begin{enumerate} \item simple and intuitive to go from the mathematical formulation of the model to the R formulation and back; \item allows for any number of levels and nodes; \item at any level, allows for any use of parameters higher in the hierarchical structure. \end{enumerate} A hierarchical model is completely specified by the number of nodes at each level and by the probability laws at each level. The number of nodes is passed to \code{rcomphierarc} by means of a named list where each element is a vector of the number of nodes at a given level. Vectors are recycled when the number of nodes is the same throughout a level. Probability models are expressed in a semi-symbolic fashion using an object of mode \code{"expression"}. Each element of the object must be named --- with names matching those of the number of nodes list --- and should be a complete call to an existing random number generation function, but with the number of variates omitted. Hierarchical models are achieved by replacing one or more parameters of a distribution at a given level by any combination of the names of the levels above. If no mixing is to take place at a level, the model for this level can be \code{NULL}. \begin{example} Consider the following expanded version of model \eqref{eq:basic_model}: \begin{align*} X_{ijt}|\Lambda_{ij}, \Theta_i &\sim \text{Poisson}(\Lambda_{ij}), & t &= 1, \dots, n_{ij} \\ \Lambda_{ij}|\Theta_i &\sim \text{Gamma}(3, \Theta_i), & j &= 1, \dots, J_i \\ \Theta_i &\sim \text{Gamma}(2, 2), & i &= 1, \dots, I, \end{align*} with $I = 3$, $J_1 = 4$, $J_2 = 5$, $J_3 = 6$ and $n_{ij} \equiv n = 10$. Then the number of nodes and the probability model are respectively specified by the following expressions. \begin{Schunk} \begin{Verbatim} list(Theta = 3, Lambda = c(4, 5, 6), Data = 10) \end{Verbatim} \end{Schunk} \begin{Schunk} \begin{Verbatim} expression(Theta = rgamma(2, 2), Lambda = rgamma(3, Theta), Data = rpois(Lambda)) \end{Verbatim} \end{Schunk} \qed \end{example} Storing the probability model requires an expression object in order to avoid evaluation of the incomplete calls to the random number generation functions. Function \code{rcomphierarc} builds and executes the calls to the random generation functions from the top of the hierarchical model to the bottom. At each level, the function \begin{enumerate} \item infers the number of variates to generate from the number of nodes list, and \item appropriately recycles the mixing parameters simulated previously. \end{enumerate} The actual names in the list and the expression object can be anything; they merely serve to identify the mixing parameters. Furthermore, any random generation function can be used. The only constraint is that the name of the number of variates argument is \code{n}. In addition, \code{rcomphierarc} supports usage of weights in models. These usually modify the frequency parameters to take into account the ``size'' of an entity. Weights are used in simulation wherever the name \code{weights} appears in a model. \subsection[Usage of rcomphierarc]{Usage of \code{rcomphierarc}} \label{sec:rcomphierarc:usage} Function \code{rcomphierarc} can simulate data for structures where both the frequency model and the severity model are hierarchical. It has four main arguments: \begin{enumerate} \item \code{nodes} for the number of nodes list; \item \code{model.freq} for the frequency model; \item \code{model.sev} for the severity model; \item \code{weights} for the vector of weights in lexicographic order, that is all weights of entity 1, then all weights of entity 2, and so on. \end{enumerate} The function returns the variates in a list of class \code{"portfolio"} with a \code{dim} attribute of length two. The list contains all the individual claim amounts for each entity. Since every element can be a vector, the object can be seen as a three-dimension array with a third dimension of potentially varying length. The function also returns a matrix of integers giving the classification indexes of each entity in the portfolio. The package also defines methods for four generic functions to easily access key quantities for each entity of the simulated portfolio: \begin{enumerate} \item a method of \code{aggregate} to compute the aggregate claim amounts $S$; \item a method of \code{frequency} to compute the number of claims $N$; \item a method of \code{severity} (a generic function introduced by the package) to return the individual claim amounts $C_j$; \item a method of \code{weights} to extract the weights matrix. \end{enumerate} In addition, all methods have a \code{classification} and a \code{prefix} argument. When the first is \code{FALSE}, the classification index columns are omitted from the result. The second argument overrides the default column name prefix; see the \code{rcomphierarc.summaries} help page for details. The following example illustrates these concepts in detail. \begin{example} Consider the following compound hierarchical model: \begin{equation*} S_{ijt} = C_{ijt1} + \dots + C_{ijt N_{ijt}}, \end{equation*} for $i = 1, \dots, I$, $j = 1, \dots, J_i$, $t = 1, \dots, n_{ij}$ and with \begin{align*} N_{ijt}|\Lambda_{ij}, \Phi_i &\sim \text{Poisson}(w_{ijt} \Lambda_{ij}) & C_{ijtu}|\Theta_{ij}, \Psi_i &\sim \text{Lognormal}(\Theta_{ij}, 1) \notag \\ \Lambda_{ij}|\Phi_i &\sim \text{Gamma}(\Phi_i, 1) & \Theta_{ij}|\Psi_i &\sim N(\Psi_i, 1) \\ \Phi_i &\sim \text{Exponential}(2) & \Psi_i &\sim N(2, 0.1). \notag \end{align*} (Note how weights modify the Poisson parameter.) Using as convention to number the data level 0, the above is a two-level compound hierarchical model. Assuming that $I = 2$, $J_1 = 4$, $J_2 = 3$, $n_{11} = \dots = n_{14} = 4$ and $n_{21} = n_{22} = n_{23} = 5$ and that weights are simply simulated from a uniform distribution on $(0.5, 2.5)$, then simulation of a data set with \code{rcomphierarc} is achieved with the following expressions. <>= set.seed(3) @ <>= nodes <- list(cohort = 2, contract = c(4, 3), year = c(4, 4, 4, 4, 5, 5, 5)) mf <- expression(cohort = rexp(2), contract = rgamma(cohort, 1), year = rpois(weights * contract)) ms <- expression(cohort = rnorm(2, sqrt(0.1)), contract = rnorm(cohort, 1), year = rlnorm(contract, 1)) wijt <- runif(31, 0.5, 2.5) pf <- rcomphierarc(nodes = nodes, model.freq = mf, model.sev = ms, weights = wijt) @ Object \code{pf} is a list of class \code{"portfolio"} containing, among other things, the aforementioned two-dimension list as element \code{data} and the classification matrix (subscripts $i$ and $j$) as element \code{classification}: <>= class(pf) pf$data pf$classification @ The output of \code{pf\$data} is not much readable. If we were to print the results of \code{rcomphierarc} this way, many users would wonder what \code{Numeric,\emph{n}} means. (It is actually R's way to specify that a given element in the list is a numeric vector of length $n$ --- the third dimension mentioned above.) To ease reading, the \code{print} method for objects of class \code{"portfolio"} only prints the simulation model and the number of claims in each node: <>= pf @ By default, the method of \code{aggregate} returns the values of $S_{ijt}$ in a regular matrix (subscripts $i$ and $j$ in the rows, subscript $t$ in the columns). The method has a \code{by} argument to get statistics for other groupings and a \code{FUN} argument to get statistics other than the sum: <>= aggregate(pf) aggregate(pf, by = c("cohort", "year"), FUN = mean) @ The method of \code{frequency} returns the values of $N_{ijt}$. It is mostly a wrapper for the \code{aggregate} method with the default \code{sum} statistic replaced by \code{length}. Hence, arguments \code{by} and \code{FUN} remain available: <>= frequency(pf) frequency(pf, by = "cohort") @ The method of \code{severity} returns the individual variates $C_{ijtu}$ in a matrix similar to those above, but with a number of columns equal to the maximum number of observations per entity, \begin{displaymath} \max_{i, j} \sum_{t = 1}^{n_{ij}} N_{ijt}. \end{displaymath} Thus, the original period of observation (subscript $t$) and the identifier of the severity within the period (subscript $u$) are lost and each variate now constitute a ``period'' of observation. For this reason, the method provides an argument \code{splitcol} in case one would like to extract separately the individual severities of one or more periods: <>= severity(pf) severity(pf, splitcol = 1) @ Finally, the weights matrix corresponding to the data in object \code{pf} is <>= weights(pf) @ Combined with the argument \code{classification = FALSE}, the above methods can be used to easily compute loss ratios: <>= aggregate(pf, classif = FALSE) / weights(pf, classif = FALSE) @ \qed \end{example} \begin{example} \cite{Scollnik:2001:MCMC} considers the following model for the simulation of claims frequency data in a Markov Chain Monte Carlo (MCMC) context: \begin{align*} S_{it}|\Lambda_i, \alpha, \beta &\sim \text{Poisson}(w_{ij} \Lambda_i) \\ \Lambda_i|\alpha, \beta &\sim \text{Gamma}(\alpha, \beta) \\ \alpha &\sim \text{Gamma}(5, 5) \\ \beta &\sim \text{Gamma}(25, 1) \end{align*} for $i = 1, 2, 3$, $j = 1, \dots, 5$ and with weights $w_{it}$ simulated from \begin{align*} w_{it}|a_i, b_i &\sim \text{Gamma}(a_i, b_i) \\ a_i &\sim U(0, 100) \\ b_i &\sim U(0, 100). \end{align*} Strictly speaking, this is not a hierarchical model since the random variables $\alpha$ and $\beta$ are parallel rather than nested. Nevertheless, with some minor manual intervention, function \code{rcomphierarc} can simulate data from this model. First, one simulates the weights (in lexicographic order) with <>= set.seed(123) @ <>= wit <- rgamma(15, rep(runif(3, 0, 100), each = 5), rep(runif(3, 0, 100), each = 5)) @ Second, one calls \code{rcomphierarc} to simulate the frequency data. The key here consists in manually inserting the simulation of the shape and rate parameters of the gamma distribution in the model for $\Lambda_i$. Finally, wrapping the call to \code{rcomphierarc} in \code{frequency} will immediately yield the matrix of observations: <>= frequency(rcomphierarc(list(entity = 3, year = 5), expression(entity = rgamma(rgamma(1, 5, 5), rgamma(1, 25, 1)), year = rpois(weights * entity)), weights = wit)) @ \qed \end{example} One will find more examples of \code{rcomphierarc} usage in the \code{simulation} demo file. The function was used to simulate the data in \cite{Goulet_cfs}. %% References \bibliography{actuar} \end{document} %%% Local Variables: %%% mode: noweb %%% coding: utf-8 %%% TeX-master: t %%% End: actuar/vignettes/credibility.Rnw0000644000176200001440000007033614055040227016544 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage[round]{natbib} \usepackage{babel} \usepackage[scaled=0.9]{helvet} \usepackage[sc]{mathpazo} \usepackage[noae,inconsolata]{Sweave} \usepackage[shortlabels]{enumitem} \usepackage{framed} %\VignetteIndexEntry{Credibility theory} %\VignettePackage{actuar} %\SweaveUTF8 \title{Credibility theory features of \pkg{actuar}} \author{Christophe Dutang \\ UniversitĂ© Paris Dauphine \\[3ex] Vincent Goulet \\ UniversitĂ© Laval \\[3ex] Xavier Milhaud \\ UniversitĂ© Claude Bernard Lyon 1 \\[3ex] Mathieu Pigeon \\ UniversitĂ© du QuĂ©bec Ă  MontrĂ©al} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Sweave Sinput and Soutput environments reinitialized to remove %% default configuration. Space between input and output blocks also %% reduced. \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{} \fvset{listparameters={\setlength{\topsep}{0pt}}} %% Environment Schunk redefined as an hybrid of environments %% snugshade* and leftbar of framed.sty. \makeatletter \renewenvironment{Schunk}{% \setlength{\topsep}{1pt} \def\FrameCommand##1{\hskip\@totalleftmargin \vrule width 2pt\colorbox{codebg}{\hspace{3pt}##1}% % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \advance\labelsep\fboxsep \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \makeatother %% Some new commands. Commands \E and \VAR redefined to fit within %% the author's writing habits... \newcommand{\E}[1]{\mathrm{E}[ #1 ]} \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\pt}{{\scriptscriptstyle \Sigma}} \bibliographystyle{plainnat} <>= library(actuar) options(width = 57, digits = 4) @ \begin{document} \maketitle \section{Introduction} \label{sec:introduction} Credibility models are actuarial tools to distribute premiums fairly among a heterogeneous group of policyholders (henceforth called \emph{entities}). More generally, they can be seen as prediction methods applicable in any setting where repeated measures are made for subjects with different risk levels. The credibility theory features of \pkg{actuar} consist of matrix \code{hachemeister} containing the famous data set of \cite{Hachemeister_75} and function \code{cm} to fit hierarchical (including BĂŒhlmann, BĂŒhlmann-Straub), regression and linear Bayes credibility models. Furthermore, function \code{rcomphierarc} can simulate portfolios of data satisfying the assumptions of the aforementioned credibility models; see the \code{"simulation"} vignette for details. \section{Hachemeister data set} \label{sec:hachemeister} The data set of \cite{Hachemeister_75} consists of private passenger bodily injury insurance average claim amounts, and the corresponding number of claims, for five U.S.\ states over 12 quarters between July 1970 and June 1973. The data set is included in the package in the form of a matrix with 5 rows and 25 columns. The first column contains a state index, columns 2--13 contain the claim averages and columns 14--25 contain the claim numbers: <>= data(hachemeister) hachemeister @ \section{Hierarchical credibility model} \label{sec:hierarchical} The linear model fitting function of R is \code{lm}. Since credibility models are very close in many respects to linear models, and since the credibility model fitting function of \pkg{actuar} borrows much of its interface from \code{lm}, we named the credibility function \code{cm}. Function \code{cm} acts as a unified interface for all credibility models supported by the package. Currently, these are: the unidimensional models of \cite{Buhlmann_69} and \cite{BS_70}; the hierarchical model of \cite{Jewell_75} (of which the first two are special cases); the regression model of \cite{Hachemeister_75}, optionally with the intercept at the barycenter of time \citep[Section~8.4]{Buhlmann_Gisler}; linear Bayes models. The modular design of \code{cm} makes it easy to add new models if desired. This section concentrates on usage of \code{cm} for hierarchical models. There are some variations in the formulas of the hierarchical model in the literature. We compute the credibility premiums as given in \cite{BJ_87} or \cite{Buhlmann_Gisler}, supporting three types of estimators of the between variance structure parameters: the unbiased estimators of \cite{Buhlmann_Gisler} (the default), the slightly different version of \cite{Ohlsson} and the iterative pseudo-estimators as found in \cite{LivreVert} or \cite{Goulet_JAP}. Consider an insurance portfolio where \emph{entities} are classified into \emph{cohorts}. In our terminology, this is a two-level hierarchical classification structure. The observations are claim amounts $S_{ijt}$, where index $i = 1, \dots, I$ identifies the cohort, index $j = 1, \dots, J_i$ identifies the entity within the cohort and index $t = 1, \dots, n_{ij}$ identifies the period (usually a year). To each data point corresponds a weight --- or volume --- $w_{ijt}$. Then, the best linear prediction for the next period outcome of a entity based on ratios $X_{ijt} = S_{ijt}/w_{ijt}$ is \begin{equation} \label{eq:hierarchical:premiums} \begin{split} \hat{\pi}_{ij} &= z_{ij} X_{ijw} + (1 - z_{ij}) \hat{\pi}_i \\ \hat{\pi}_i &= z_i X_{izw} + (1 - z_i) m, \end{split} \end{equation} with the credibility factors \begin{align*} z_{ij} &= \frac{w_{ij\pt}}{w_{ij\pt} + s^2/a}, & w_{ij\pt} &= \sum_{t = 1}^{n_{ij}} w_{ijt} \\ z_{i} &= \frac{z_{i\pt}}{z_{i\pt} + a/b}, & z_{i\pt} &= \sum_{j = 1}^{J_i} z_{ij} \end{align*} and the weighted averages \begin{align*} X_{ijw} &= \sum_{t = 1}^{n_{ij}} \frac{w_{ijt}}{w_{ij\pt}}\, X_{ijt} \\ X_{izw} &= \sum_{j = 1}^{J_i} \frac{z_{ij}}{z_{i\pt}}\, X_{ijw}. \end{align*} The estimator of $s^2$ is \begin{equation} \label{eq:s2} \hat{s}^2 = \frac{1}{\sum_{i = 1}^I \sum_{j = 1}^{J_i} (n_{ij} - 1)} \sum_{i = 1}^I \sum_{j = 1}^{J_i} \sum_{t = 1}^{n_{ij}} w_{ijt} (X_{ijt} - X_{ijw})^2. \end{equation} The three types of estimators for the variance components $a$ and $b$ are the following. First, let \begin{align*} A_i &= \sum_{j = 1}^{J_i} w_{ij\pt} (X_{ijw} - X_{iww})^2 - (J_i - 1) s^2 & c_i &= w_{i\pt\pt} - \sum_{j = 1}^{J_i} \frac{w_{ij\pt}^2}{w_{i\pt\pt}} \\ B &= \sum_{i = 1}^I z_{i\pt} (X_{izw} - \bar{X}_{zzw})^2 - (I - 1) a & d &= z_{\pt\pt} - \sum_{i = 1}^I \frac{z_{i\pt}^2}{z_{\pt\pt}}, \end{align*} with \begin{equation} \label{eq:Xbzzw} \bar{X}_{zzw} = \sum_{i = 1}^I \frac{z_{i\pt}}{z_{\pt\pt}}\, X_{izw}. \end{equation} (Hence, $\E{A_i} = c_i a$ and $\E{B} = d b$.) Then, the BĂŒhlmann--Gisler estimators are \begin{align} \label{eq:ac-BG} \hat{a} &= \frac{1}{I} \sum_{i = 1}^I \max \left( \frac{A_i}{c_i}, 0 \right) \\ \label{eq:bc-BG} \hat{b} &= \max \left( \frac{B}{d}, 0 \right), \end{align} the Ohlsson estimators are \begin{align} \label{eq:ac-Ohl} \hat{a}^\prime &= \frac{\sum_{i = 1}^I A_i}{\sum_{i = 1}^I c_i} \\ \label{eq:bc-Ohl} \hat{b}^\prime &= \frac{B}{d} \end{align} and the iterative (pseudo-)estimators are \begin{align} \label{eq:at} \tilde{a} &= \frac{1}{\sum_{i = 1}^I (J_i - 1)} \sum_{i = 1}^I \sum_{j = 1}^{J_i} z_{ij} (X_{ijw} - X_{izw})^2 \\ \label{eq:bt} \tilde{b} &= \frac{1}{I - 1} \sum_{i = 1}^I z_i (X_{izw} - X_{zzw})^2, \end{align} where \begin{equation} \label{eq:Xzzw} X_{zzw} = \sum_{i = 1}^I \frac{z_i}{z_\pt}\, X_{izw}. \end{equation} Note the difference between the two weighted averages \eqref{eq:Xbzzw} and \eqref{eq:Xzzw}. See \cite{cm} for further discussion on this topic. Finally, the estimator of the collective mean $m$ is $\hat{m} = X_{zzw}$. The credibility modeling function \code{cm} assumes that data is available in the format most practical applications would use, namely a rectangular array (matrix or data frame) with entity observations in the rows and with one or more classification index columns (numeric or character). One will recognize the output format of \code{rcomphierarc} and its summary methods. Then, function \code{cm} works much the same as \code{lm}. It takes in argument: a formula of the form \code{\~{} terms} describing the hierarchical interactions in a data set; the data set containing the variables referenced in the formula; the names of the columns where the ratios and the weights are to be found in the data set. The latter should contain at least two nodes in each level and more than one period of experience for at least one entity. Missing values are represented by \code{NA}s. There can be entities with no experience (complete lines of \code{NA}s). In order to give an easily reproducible example, we group states 1 and 3 of the Hachemeister data set into one cohort and states 2, 4 and 5 into another. This shows that data does not have to be sorted by level. The fitted model below uses the iterative estimators of the variance components. <>= X <- cbind(cohort = c(1, 2, 1, 2, 2), hachemeister) fit <- cm(~cohort + cohort:state, data = X, ratios = ratio.1:ratio.12, weights = weight.1:weight.12, method = "iterative") fit @ The function returns a fitted model object of class \code{"cm"} containing the estimators of the structure parameters. To compute the credibility premiums, one calls a method of \code{predict} for this class. <>= predict(fit) @ One can also obtain a nicely formatted view of the most important results with a call to \code{summary}. <>= summary(fit) @ The methods of \code{predict} and \code{summary} can both report for a subset of the levels by means of an argument \code{levels}. <>= summary(fit, levels = "cohort") predict(fit, levels = "cohort") @ \section{BĂŒhlmann and BĂŒhlmann--Straub models} \label{sec:buhlmann} As mentioned above, the BĂŒhlmann and BĂŒhlmann--Straub models are simply one-level hierarchical models. In this case, the BĂŒhlmann--Gisler and Ohlsson estimators of the between variance parameters are both identical to the usual \cite{BS_70} estimator \begin{equation} \label{eq:a-hat} \hat{a} = \frac{w_{\pt\pt}}{w_{\pt\pt}^2 - \sum_{i=1}^I w_{i\pt}^2} \left( \sum_{i=1}^I w_{i\pt} (X_{iw} - X_{ww})^2 - (I - 1) \hat{s}^2 \right), \end{equation} and the iterative estimator \begin{equation} \label{eq:a-tilde} \tilde{a} = \frac{1}{I - 1} \sum_{i = 1}^I z_i (X_{iw} - X_{zw})^2 \end{equation} is better known as the Bichsel--Straub estimator. To fit the BĂŒhlmann model using \code{cm}, one simply does not specify any weights. <>= cm(~state, hachemeister, ratios = ratio.1:ratio.12) @ When weights are specified together with a one-level model, \code{cm} automatically fits the BĂŒhlmann--Straub model to the data. In the example below, we use the Bichsel--Straub estimator for the between variance. <>= cm(~state, hachemeister, ratios = ratio.1:ratio.12, weights = weight.1:weight.12) @ \section{Regression model of Hachemeister} \label{sec:regression} The credibility regression model of \cite{Hachemeister_75} is a generalization of the BĂŒhlmann--Straub model. If data shows a systematic trend, the latter model will typically under- or over-estimate the true premium of an entity. The idea of \citeauthor{Hachemeister_75} was to fit to the data a regression model where the parameters are a credibility weighted average of an entity's regression parameters and the group's parameters. In order to use \code{cm} to fit a credibility regression model to a data set, one simply has to supply as additional arguments \code{regformula} and \code{regdata}. The first one is a formula of the form \code{\~{} terms} describing the regression model, and the second is a data frame of regressors. That is, arguments \code{regformula} and \code{regdata} are in every respect equivalent to arguments \code{formula} and \code{data} of \code{lm}, with the minor difference that \code{regformula} does not need to have a left hand side (and is ignored if present). Below, we fit the model \begin{displaymath} X_{it} = \beta_0 + \beta_1 t + \varepsilon_t, \quad t = 1, \dots, 12 \end{displaymath} to the original data set of \cite{Hachemeister_75}. <>= fit <- cm(~state, hachemeister, regformula = ~ time, regdata = data.frame(time = 1:12), ratios = ratio.1:ratio.12, weights = weight.1:weight.12) fit @ To compute the credibility premiums, one has to provide the ``future'' values of the regressors as in \code{predict.lm}. <>= predict(fit, newdata = data.frame(time = 13)) @ It is well known that the basic regression model has a major drawback: there is no guarantee that the credibility regression line will lie between the collective and individual ones. This may lead to grossly inadequate premiums, as Figure~\ref{fig:state4} shows. \begin{figure}[t] \centering <>= plot(NA, xlim = c(1, 13), ylim = c(1000, 2000), xlab = "", ylab = "") x <- cbind(1, 1:12) lines(1:12, x %*% fit$means$portfolio, col = "blue", lwd = 2) lines(1:12, x %*% fit$means$state[, 4], col = "red", lwd = 2, lty = 2) lines(1:12, x %*% coefficients(fit$adj.models[[4]]), col = "darkgreen", lwd = 2, lty = 3) points(13, predict(fit, newdata = data.frame(time = 13))[4], pch = 8, col = "darkgreen") legend("bottomright", legend = c("collective", "individual", "credibility"), col = c("blue", "red", "darkgreen"), lty = 1:3) @ \caption{Collective, individual and credibility regression lines for State 4 of the Hachemeister data set. The point indicates the credibility premium.} \label{fig:state4} \end{figure} The solution proposed by \cite{Buhlmann:regression:1997} is simply to position the intercept not at time origin, but instead at the barycenter of time \citep[see also][Section~8.4]{Buhlmann_Gisler}. In mathematical terms, this essentially amounts to using an orthogonal design matrix. By setting the argument \code{adj.intercept} to \code{TRUE} in the call, \code{cm} will automatically fit the credibility regression model with the intercept at the barycenter of time. The resulting regression coefficients have little meaning, but the predictions are sensible. <>= fit2 <- cm(~state, hachemeister, regformula = ~ time, regdata = data.frame(time = 1:12), adj.intercept = TRUE, ratios = ratio.1:ratio.12, weights = weight.1:weight.12) summary(fit2, newdata = data.frame(time = 13)) @ % Figure~\ref{fig:state4:2} shows the beneficient effect of the intercept adjustment on the premium of State~4. \begin{figure}[t] \centering <>= plot(NA, xlim = c(1, 13), ylim = c(1000, 2000), xlab = "", ylab = "") x <- cbind(1, 1:12) R <- fit2$transition lines(1:12, x %*% solve(R, fit2$means$portfolio), col = "blue", lwd = 2) lines(1:12, x %*% solve(R, fit2$means$state[, 4]), col = "red", lwd = 2, lty = 2) lines(1:12, x %*% solve(R, coefficients(fit2$adj.models[[4]])), col = "darkgreen", lwd = 2, lty = 3) points(13, predict(fit2, newdata = data.frame(time = 13))[4], pch = 8, col = "darkgreen") legend("bottomright", legend = c("collective", "individual", "credibility"), col = c("blue", "red", "darkgreen"), lty = 1:3) @ \caption{Collective, individual and credibility regression lines for State 4 of the Hachemeister data set when the intercept is positioned at the barycenter of time. The point indicates the credibility premium.} \label{fig:state4:2} \end{figure} \section{Linear Bayes model} \label{sec:bayes} In the pure bayesian approach to the ratemaking problem, we assume that the observations $X_t$, $t = 1, \dots, n$, of an entity depend on its risk level $\theta$, and that this risk level is a realization of an unobservable random variable $\Theta$. The best (in the mean square sense) approximation to the unknown risk premium $\mu(\theta) = \E{X_t|\Theta = \theta}$ based on observations $X_1, \dots, X_n$ is the Bayesian premium \begin{equation*} B_{n + 1} = \E{\mu(\Theta)|X_1, \dots, X_n}. \end{equation*} It is then well known \citep{Buhlmann_Gisler,LossModels4e} that for some combinaisons of distributions, the Bayesian premium is linear and can written as a credibility premium \begin{equation*} B_{n + 1} = z \bar{X} + (1 - z) m, \end{equation*} where $m = \E{\mu(\Theta)}$ and $z = n/(n + K)$ for some constant $K$. The combinations of distributions yielding a linear Bayes premium involve members of the univariate exponential family for the distribution of $X|\Theta = \theta$ and their natural conjugate for the distribution of $\Theta$: \begin{itemize} \item $X|\Theta = \theta \sim \text{Poisson}(\theta)$, $\Theta \sim \text{Gamma}(\alpha, \lambda)$; \item $X|\Theta = \theta \sim \text{Exponential}(\theta)$, $\Theta \sim \text{Gamma}(\alpha, \lambda)$; \item $X|\Theta = \theta \sim \text{Normal}(\theta, \sigma^2_2)$, $\Theta \sim \text{Normal}(\mu, \sigma^2_1)$; \item $X|\Theta = \theta \sim \text{Bernoulli}(\theta)$, $\Theta \sim \text{Beta}(a, b)$; \item $X|\Theta = \theta \sim \text{Geometric}(\theta)$, $\Theta \sim \text{Beta}(a, b)$; \end{itemize} and the convolutions \begin{itemize} \item $X|\Theta = \theta \sim \text{Gamma}(\tau, \theta)$, $\Theta \sim \text{Gamma}(\alpha, \lambda)$; \item $X|\Theta = \theta \sim \text{Binomial}(\nu, \theta)$, $\Theta \sim \text{Beta}(a, b)$; \item $X|\Theta = \theta \sim \text{Negative Binomial}(r, \theta)$ and $\Theta \sim \text{Beta}(a, b)$. \end{itemize} \autoref{sec:formulas} provides the complete formulas for the above combinations of distributions. In addition, \citet[section~2.6]{Buhlmann_Gisler} show that if $X|\Theta = \theta \sim \text{Single Parameter Pareto}(\theta, x_0)$ and $\Theta \sim \text{Gamma}(\alpha, \lambda)$, then the Bayesian estimator of parameter $\theta$ --- not of the risk premium! --- is \begin{equation*} \hat{\Theta} = \eta \hat{\theta}^{\text{MLE}} + (1 - \eta) \frac{\alpha}{\lambda}, \end{equation*} where \begin{equation*} \hat{\theta}^{\text{MLE}} = \frac{n}{\sum_{i = 1}^n \ln (X_i/x_0)} \end{equation*} is the maximum likelihood estimator of $\theta$ and \begin{equation*} \eta = \frac{\sum_{i = 1}^n \ln (X_i/x_0)}{% \lambda + \sum_{i = 1}^n \ln (X_i/x_0)} \end{equation*} is a weight not restricted to $(0, 1)$. (See the \code{"distributions"} package vignette for details on the Single Parameter Pareto distribution.) When argument \code{formula} is \code{"bayes"}, function \code{cm} computes pure Bayesian premiums --- or estimator in the Pareto/Gamma case --- for the combinations of distributions above. We identify which by means of argument \code{likelihood} that must be one of % \code{"poisson"}, % \code{"exponential"}, % \code{"gamma"}, % \code{"normal"}, % \code{"bernoulli"}, % \code{"binomial"}, % \code{"geometric"}, % \code{"negative binomial"} or % \code{"pareto"}. % The parameters of the distribution of $X|\Theta = \theta$, if any, and those of the distribution of $\Theta$ are specified using the argument names (and default values) of \code{dgamma}, \code{dnorm}, \code{dbeta}, \code{dbinom}, \code{dnbinom} or \code{dpareto1}, as appropriate. Consider the case where \begin{align*} X|\Theta = \theta &\sim \text{Poisson}(\theta) \\ \Theta &\sim \text{Gamma}(\alpha, \lambda). \end{align*} The posterior distribution of $\Theta$ is \begin{equation*} \Theta|X_1, \dots, X_n \sim \text{Gamma} \left( \alpha + \sum_{t = 1}^n X_t, \lambda + n \right). \end{equation*} Therefore, the Bayesian premium is \begin{align*} B_{n + 1} &= \E{\mu(\Theta)|X_1, \dots, X_n} \\ &= \E{\Theta|X_1, \dots, X_n} \\ &= \frac{\alpha + \sum_{t = 1}^n X_t}{\lambda + n} \\ &= \frac{n}{n + \lambda}\, \bar{X} + \frac{\lambda}{n + \lambda} \frac{\alpha}{\lambda} \\ &= z \bar{X} + (1 - z) m, \end{align*} with $m = \E{\mu(\Theta)} = \E{\Theta} = \alpha/\lambda$ and \begin{equation*} z = \frac{n}{n + K}, \quad K = \lambda. \end{equation*} One may easily check that if $\alpha = \lambda = 3$ and $X_1 = 5, X_2 = 3, X_3 = 0, X_4 = 1, X_5 = 1$, then $B_6 = 1.625$. We obtain the same result using \code{cm}. <>= x <- c(5, 3, 0, 1, 1) fit <- cm("bayes", x, likelihood = "poisson", shape = 3, rate = 3) fit predict(fit) summary(fit) @ \appendix \section{Linear Bayes formulas} \label{sec:formulas} This appendix provides the main linear Bayes credibility results for combinations of a likelihood function member of the univariate exponential family with its natural conjugate. For each combination, we provide, other than the names of the distributions of $X|\Theta = \theta$ and $\Theta$: \begin{itemize} \item the posterior distribution $\Theta|X_1 = x_1, \dots, X_n = x_n$, always of the same type as the prior, only with updated parameters; \item the risk premium $\mu(\theta) = \E{X|\Theta = \theta}$; \item the collective premium $m = \E{\mu(\Theta)}$; \item the Bayesian premium $B_{n+1} = \E{\mu(\Theta)|X_1, \dots, X_n}$, always equal to the collective premium evaluated at the parameters of the posterior distribution; \item the credibility factor when the Bayesian premium is expressed as a credibility premium. \end{itemize} %% Compact Listes Ă  puce compactes et sans puce, justement. \begingroup \setlist[itemize]{label={},leftmargin=0pt,align=left,nosep} \subsection{Bernoulli/beta case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Bernoulli}(\theta)$ \item $\Theta \sim \text{Beta}(a, b)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Beta}(\tilde{a}, \tilde{b})$ \begin{align*} \tilde{a} &= a + \sum_{t = 1}^n x_t \\ \tilde{b} &= b + n - \sum_{t = 1}^n x_t \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \theta \end{equation*} \item Collective premium \begin{equation*} m = \frac{a}{a + b} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{a + \sum_{t = 1}^n X_t}{a + b + n} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + a + b} \end{equation*} \end{itemize} \subsection{Binomial/beta case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Binomial}(\nu, \theta)$ \item $\Theta \sim \text{Beta}(a, b)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Beta}(\tilde{a}, \tilde{b})$ \begin{align*} \tilde{a} &= a + \sum_{t = 1}^n x_t \\ \tilde{b} &= b + n \nu - \sum_{t = 1}^n x_t \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \nu \theta \end{equation*} \item Collective premium \begin{equation*} m = \frac{\nu a}{a + b} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{\nu (a + \sum_{t = 1}^n X_t)}{a + b + n \nu} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + (a + b)/\nu} \end{equation*} \end{itemize} \subsection{Geometric/Beta case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Geometric}(\theta)$ \item $\Theta \sim \text{Beta}(a, b)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Beta}(\tilde{a}, \tilde{b})$ \begin{align*} \tilde{a} &= a + n \\ \tilde{b} &= b + \sum_{t = 1}^n x_t \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \frac{1 - \theta}{\theta} \end{equation*} \item Collective premium \begin{equation*} m = \frac{b}{a - 1} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{b + \sum_{t = 1}^n X_t}{a + n - 1} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + a - 1} \end{equation*} \end{itemize} \subsection{Negative binomial/Beta case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Negative binomial}(r, \theta)$ \item $\Theta \sim \text{Beta}(a, b)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Beta}(\tilde{a}, \tilde{b})$ \begin{align*} \tilde{a} &= a + n r \\ \tilde{b} &= b + \sum_{t = 1}^n x_t \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \frac{r (1 - \theta)}{\theta} \end{equation*} \item Collective premium \begin{equation*} m = \frac{r b}{a - 1} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{r (b + \sum_{t = 1}^n X_t)}{a + n r - 1} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + (a - 1)/r} \end{equation*} \end{itemize} \subsection{Poisson/Gamma case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Poisson}(\theta)$ \item $\Theta \sim \text{Gamma}(\alpha, \lambda)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Gamma}(\tilde{\alpha}, \tilde{\lambda})$ \begin{align*} \tilde{\alpha} &= \alpha + \sum_{t = 1}^n x_t \\ \tilde{\lambda} &= \lambda + n \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \theta \end{equation*} \item Collective premium \begin{equation*} m = \frac{\alpha}{\lambda} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{\alpha + \sum_{t = 1}^n X_t}{\lambda + n} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + \lambda} \end{equation*} \end{itemize} \subsection{Exponential/Gamma case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Exponential}(\theta)$ \item $\Theta \sim \text{Gamma}(\alpha, \lambda)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Gamma}(\tilde{\alpha}, \tilde{\lambda})$ \begin{align*} \tilde{\alpha} &= \alpha + n \\ \tilde{\lambda} &= \lambda + \sum_{t = 1}^n x_t \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \frac{1}{\theta} \end{equation*} \item Collective premium \begin{equation*} m = \frac{\lambda}{\alpha - 1} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{\lambda + \sum_{t = 1}^n X_t}{\alpha + n - 1} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + \alpha - 1} \end{equation*} \end{itemize} \subsection{Gamma/Gamma case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Gamma}(\tau, \theta)$ \item $\Theta \sim \text{Gamma}(\alpha, \lambda)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Gamma}(\tilde{\alpha}, \tilde{\lambda})$ \begin{align*} \tilde{\alpha} &= \alpha + n \tau \\ \tilde{\lambda} &= \lambda + \sum_{t = 1}^n x_t \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \frac{\tau}{\theta} \end{equation*} \item Collective premium \begin{equation*} m = \frac{\tau \lambda}{\alpha - 1} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{\tau (\lambda + \sum_{t = 1}^n X_t)}{\alpha + n \tau - 1} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + (\alpha - 1)/\tau} \end{equation*} \end{itemize} \subsection{Normal/Normal case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Normal}(\theta, \sigma_2^2)$ \item $\Theta \sim \text{Normal}(\mu, \sigma_1^2)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Normal}(\tilde{\mu}, \tilde{\sigma}_1^2)$ \begin{align*} \tilde{\mu} &= \frac{\sigma_1^2 \sum_{t = 1}^n x_t + \sigma_2^2 \mu}{n \sigma_1^2 + \sigma_2^2} \\ \tilde{\sigma}_1^2 &= \frac{\sigma_1^2 \sigma_2^2}{n \sigma_1^2 + \sigma_2^2} \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \theta \end{equation*} \item Collective premium \begin{equation*} m = \mu \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{\sigma_1^2 \sum_{t = 1}^n X_t + \sigma_2^2 \mu}{n \sigma_1^2 + \sigma_2^2} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + \sigma_2^2/\sigma_1^2} \end{equation*} \end{itemize} \endgroup \bibliography{actuar} \end{document} %%% Local Variables: %%% mode: noweb %%% TeX-master: t %%% coding: utf-8 %%% End: actuar/vignettes/actuar.Rnw0000644000176200001440000001062514055040227015513 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage[round]{natbib} \usepackage{babel} \usepackage[scaled=0.9]{helvet} \usepackage[sc]{mathpazo} \usepackage[noae,inconsolata]{Sweave} \usepackage{framed} %\VignetteIndexEntry{Introduction to actuar} %\VignettePackage{actuar} %\SweaveUTF8 \title{Introduction to \pkg{actuar}} \author{Christophe Dutang \\ UniversitĂ© Paris Dauphine \\[3ex] Vincent Goulet \\ UniversitĂ© Laval \\[3ex] Mathieu Pigeon \\ UniversitĂ© du QuĂ©bec Ă  MontrĂ©al} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Sweave Sinput and Soutput environments reinitialized to remove %% default configuration. Space between input and output blocks also %% reduced. \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{} \fvset{listparameters={\setlength{\topsep}{0pt}}} %% Environment Schunk redefined as an hybrid of environments %% snugshade* and leftbar of framed.sty. \makeatletter \renewenvironment{Schunk}{% \setlength{\topsep}{1pt} \def\FrameCommand##1{\hskip\@totalleftmargin \vrule width 2pt\colorbox{codebg}{\hspace{3pt}##1}% % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \advance\labelsep\fboxsep \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \makeatother \newcommand{\pkg}[1]{\textbf{#1}} \bibliographystyle{plainnat} \begin{document} \maketitle \section{Introduction} \label{sec:introduction} \pkg{actuar} \citep{actuar} provides additional actuarial science functionality and support for heavy tailed distributions to the R statistical system. The project was officially launched in 2005 and is under active development. The current feature set of the package can be split into five main categories: additional probability distributions; loss distributions modeling; risk and ruin theory; simulation of compound hierarchical models; credibility theory. Furthermore, starting with version 3.0-0, \pkg{actuar} gives easy access to many of its underlying C workhorses through an API. As much as possible, the developers have tried to keep the ``user interface'' of the various functions of the package consistent. Moreover, the package follows the general R philosophy of working with model objects. This means that instead of merely returning, say, a vector of probabilities, many functions will return an object containing, among other things, the said probabilities. The object can then be manipulated at one's will using various extraction, summary or plotting functions. \section{Documentation} In addition to the help pages, \pkg{actuar} ships with extensive vignettes and demonstration scripts; run the following commands at the R prompt to obtain the list of each. <>= vignette(package = "actuar") demo(package = "actuar") @ \section{Collaboration and citation} If you use R or \pkg{actuar} for actuarial analysis, please cite the software in publications. For information on how to cite the software, use: <>= citation() citation("actuar") @ \section*{Acknowledgments} The package would not be at this stage of development without the stimulating contribution of SĂ©bastien Auclair, Christophe Dutang, Nicholas Langevin, Xavier Milhaud, Tommy Ouellet and Louis-Philippe Pouliot. This research benefited from financial support from the Natural Sciences and Engineering Research Council of Canada and from the \emph{Chaire d'actuariat} (Actuarial Science Foundation) of UniversitĂ© Laval. \bibliography{actuar} \end{document} %%% Local Variables: %%% mode: noweb %%% TeX-master: t %%% coding: utf-8 %%% End: actuar/vignettes/distributions.Rnw0000644000176200001440000020140714055040227017136 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage[round]{natbib} \usepackage{babel} \usepackage{microtype} \usepackage[scaled=0.92]{helvet} \usepackage[sc]{mathpazo} \usepackage[noae,inconsolata]{Sweave} \usepackage{booktabs} \usepackage[shortlabels]{enumitem} \usepackage{framed} %\VignetteIndexEntry{Additional continuous and discrete distributions} %\VignettePackage{actuar} %\SweaveUTF8 \title{Inventory of continuous and discrete distributions in \pkg{actuar}} \author{Christophe Dutang \\ UniversitĂ© Paris Dauphine \\[3ex] Vincent Goulet \\ UniversitĂ© Laval \\[3ex] Nicholas Langevin \\ UniversitĂ© Laval \\[3ex] Mathieu Pigeon \\ UniversitĂ© du QuĂ©bec Ă  MontrĂ©al} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Compact, sans label itemize environment for the appendices. \setlist[itemize]{label={},leftmargin=0pt,align=left,nosep,midpenalty=10000} %% Flush left enumerate environment. \setlist[enumerate]{leftmargin=*,align=left} %% Sweave Sinput and Soutput environments reinitialized to remove %% default configuration. Space between input and output blocks also %% reduced. \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{} \fvset{listparameters={\setlength{\topsep}{0pt}}} %% Environment Schunk redefined as an hybrid of environments %% snugshade* and leftbar of framed.sty. \makeatletter \renewenvironment{Schunk}{% \setlength{\topsep}{1pt} \def\FrameCommand##1{\hskip\@totalleftmargin \vrule width 2pt\colorbox{codebg}{\hspace{3pt}##1}% % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \advance\labelsep\fboxsep \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \makeatother %% Additional commands similar to those of RJournal.sty. \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\samp}[1]{{`\normalfont\texttt{#1}'}} \newcommand{\file}[1]{{`\normalfont\textsf{#1}'}} %% Additional math commands. \newcommand{\E}[1]{E[ #1 ]} \newcommand{\VAR}[1]{\mathrm{Var} [ #1 ]} \newcommand{\LAS}{\mathrm{LAS}} \newcommand{\mat}[1]{\mathbold{#1}} % with mathpazo \bibliographystyle{plainnat} \begin{document} \maketitle \section{Introduction} \label{sec:introduction} R includes functions to compute the probability density function (pdf) or the probability mass function (pmf), the cumulative distribution function (cdf) and the quantile function, as well as functions to generate variates from a fair number of continuous and discrete distributions. For some root \code{foo}, the support functions are named \code{dfoo}, \code{pfoo}, \code{qfoo} and \code{rfoo}, respectively. Package \pkg{actuar} provides \code{d}, \code{p}, \code{q} and \code{r} functions for a large number of continuous size distributions useful for loss severity modeling; for phase-type distributions used in computation of ruin probabilities; for zero-truncated and zero-modified extensions of the discrete distributions commonly used in loss frequency modeling; for the heavy tailed Poisson-inverse Gaussian discrete distribution. The package also introduces support functions to compute raw moments, limited moments and the moment generating function (when it exists) of continuous distributions. \section{Additional continuous size distributions} \label{sec:continuous} The package provides support functions for all the probability distributions found in Appendix~A of \citet{LossModels4e} and not already present in base R, excluding the log-$t$, but including the loggamma distribution \citep{HoggKlugman}, as well as for the Feller--Pareto distribution and related Pareto distributions with a location parameter \citep{Arnold:pareto:2ed}. These distributions mostly fall under the umbrella of extreme value or heavy tailed distributions. \autoref{tab:continuous} lists the distributions supported by \pkg{actuar} along with the root names of the R functions. \autoref{sec:app:continuous} details the formulas implemented and the name of the argument corresponding to each parameter. By default, all functions (except those for the Pareto distribution) use a rate parameter equal to the inverse of the scale parameter. This differs from \citet{LossModels4e} but is better in line with the functions for the gamma, exponential and Weibull distributions in base R. \begin{table} \centering \begin{tabular}{lll} \toprule Family & Distribution & Root \\ \midrule Feller--Pareto & Feller--Pareto & \code{fpareto} \\ & Pareto IV & \code{pareto4} \\ & Pareto III & \code{pareto3} \\ & Pareto II & \code{pareto2} \\ & Transformed beta & \code{trbeta} \\ & Burr & \code{burr} \\ & Loglogistic & \code{llogis} \\ & Paralogistic & \code{paralogis} \\ & Generalized Pareto & \code{genpareto} \\ & Pareto & \code{pareto} \\ & Single-parameter Pareto & \code{pareto1} \\ & Inverse Burr & \code{invburr} \\ & Inverse Pareto & \code{invpareto} \\ & Inverse paralogistic & \code{invparalogis} \\ \midrule Transformed gamma & Transformed gamma & \code{trgamma} \\ & Inverse transformed gamma & \code{invtrgamma} \\ & Inverse gamma & \code{invgamma} \\ & Inverse Weibull & \code{invweibull} \\ & Inverse exponential & \code{invexp} \\ \midrule Other & Loggamma & \code{lgamma} \\ & Gumbel & \code{gumbel} \\ & Inverse Gaussian & \code{invgauss} \\ & Generalized beta & \code{genbeta} \\ \bottomrule \end{tabular} \caption{Probability distributions supported by \pkg{actuar} classified by family and root names of the R functions.} \label{tab:continuous} \end{table} We mostly use the nomenclature of \citet{LossModels4e} to classify the continuous distributions supported by \pkg{actuar}. However, following \citet{Arnold:pareto:2ed}, we regroup distributions of the transformed beta family and variants of the Pareto distribution inside the larger Feller--Pareto family of distributions. \autoref{fig:diagram:fp-family} shows the relationships between the distributions of the Feller--Pareto and transformed beta families. \autoref{fig:diagram:trgamma-family} does the same for the distributions of the transformed gamma and inverse transformed gamma families. \begin{figure} \centering \setlength{\unitlength}{0.7cm} \begin{picture}(16.9,10.75)(-0.7,-0.4) \small % FlĂšches \put(8,6){\vector(2,-1){3.7}} % trbeta -> invburr \put(13,4.2){\vector(0,1){0.95}} % invburr -> invparalogis \put(11.7,3.1){\line(-1,-1){1}} \put(10.7,2.1){\line(-1,0){7.7}} \put(3,2.1){\vector(-1,-1){1.1}} % invburr -> llogis \put(13,3){\vector(0,-1){2}} % invburr -> invpareto \put(2.05,3.1){\vector(2,-1){4.2}} % burr -> pareto \put(1,3){\vector(0,-1){2}} % burr -> llogis \put(6,6){\vector(-2,-1){3.85}} % trbeta -> burr \put(1,4.2){\vector(0,1){0.95}} % burr -> paralogis \put(7,6){\vector(0,-1){1.8}} % trbeta -> genpareto \put(7,9){\vector(0,-1){1.8}} % fpareto -> trbeta \put(7,3){\vector(0,-1){2}} % genpareto -> pareto \put(8,3){\vector(2,-1){4}} % genpareto -> invpareto % \put(6,9){\vector(-2,-1){3.3}} % fpareto -> pareto3 % \put(8,9){\vector(2,-1){3.3}} % fpareto -> pareto1 \put(1,9){\vector(0,-1){1.1}} % pareto4 -> pareto3 \put(13,9){\vector(0,-1){1.1}} % pareto2 -> pareto1 \put(4.5,9.6){\vector(-1,0){1.75}} % fpareto -> pareto4 \put(9.5,9.6){\vector(1,0){1.75}} % fpareto -> pareto2 \put(14.7,9.6){\line(1,0){1.5}} % pareto2 -> pareto \put(16.2,9.6){\line(0,-1){10}} \put(16.2,-0.4){\line(-1,0){7.5}} \put(8.7,-0.4){\vector(-2,1){0.72}} \put(14.8,9.62){\makebox(0,0.5)[l]{$\mu = 0$}} \put(7,9.65){\makebox(0,0.5)[c]{Feller-Pareto}} \put(7,9.1){\makebox(0,0.5)[c]{$\mu, \alpha, \gamma, \tau, \theta$}} \put(7,9.6){\oval(5,1.2)} \put(3.2,9.65){\makebox(0,0.5)[l]{$\tau = 1$}} \put(1,9.65){\makebox(0,0.5)[c]{Pareto IV}} \put(1,9.1){\makebox(0,0.5)[c]{$\mu, \alpha, \gamma, \theta$}} \put(1,9.6){\oval(3.4,1.2)} \put(9.8,9.05){\makebox(0,0.5)[l]{$\gamma = 1$}} \put(9.8,9.65){\makebox(0,0.5)[l]{$\tau = 1$}} \put(13,9.65){\makebox(0,0.5)[c]{Pareto II}} \put(13,9.1){\makebox(0,0.5)[c]{$\mu,\alpha, \theta$}} \put(13,9.6){\oval(3.4,1.2)} \put(0.8,8.3){\makebox(0,0.5)[r]{$\alpha = 1$}} \put(1,7.35){\makebox(0,0.5)[c]{Pareto III}} \put(1,6.8){\makebox(0,0.5)[c]{$\mu, \gamma, \theta$}} \put(1,7.3){\oval(3.4,1.2)} \put(13.2,8.3){\makebox(0,0.5)[l]{$\mu = \theta$}} \put(13,7.35){\makebox(0,0.5)[c]{Pareto I}} \put(13,6.8){\makebox(0,0.5)[c]{$\alpha, \theta$}} \put(13,7.3){\oval(3.4,1.2)} \put(7.2,7.9){\makebox(0,0.5)[l]{$\mu = 0$}} \put(7,6.65){\makebox(0,0.5)[c]{Transformed Beta}} \put(7,6.1){\makebox(0,0.5)[c]{$\alpha, \gamma, \tau, \theta$}} \put(7,6.6){\oval(5,1.2)} \put(9.2,5.4){\rotatebox{-26.6}{\makebox(0,0.5)[l]{$\alpha = 1$}}} \put(13.20,3.65){\makebox(0,0.5)[c]{Inverse Burr}} \put(13.20,3.1){\makebox(0,0.5)[c]{$\gamma, \tau, \theta$}} \put(13.20,3.6){\oval(3.4,1.2)} \put(13.2,4.3){\makebox(0,0.5)[l]{$\gamma = \tau$}} \put(13.20,5.80){\makebox(0,0.5)[c]{Inverse Paralogistic}} \put(13.20,5.25){\makebox(0,0.5)[c]{$\tau, \theta$}} \put(13.20,5.75){\oval(5.4,1.2)} \put(13.2,1.9){\makebox(0,0.5)[l]{$\gamma = 1$}} \put(13.20,0.45){\makebox(0,0.5)[c]{Inverse Pareto}} \put(13.20,-0.1){\makebox(0,0.5)[c]{$\tau, \theta$}} \put(13.20,0.4){\oval(3.9,1.2)} \put(7.2,4.9){\makebox(0,0.5)[l]{$\gamma = 1$}} \put(7,3.65){\makebox(0,0.5)[c]{Generalized Pareto}} \put(7,3.1){\makebox(0,0.5)[c]{$\alpha, \tau, \theta$}} \put(7,3.6){\oval(4.9,1.2)} \put(7.2,1.25){\makebox(0,0.5)[l]{$\tau = 1$}} \put(7,0.45){\makebox(0,0.5)[c]{Pareto}} \put(7,-0.1){\makebox(0,0.5)[c]{$\alpha, \theta$}} \put(7,0.4){\oval(2.2,1.2)} \put(4.5,5.4){\rotatebox{26.6}{\makebox(0,0.5)[r]{$\tau = 1$}}} \put(1,3.65){\makebox(0,0.5)[c]{Burr}} \put(1,3.1){\makebox(0,0.5)[c]{$\alpha, \gamma, \theta$}} \put(1,3.6){\oval(2.5,1.2)} \put(0.8,4.3){\makebox(0,0.5)[r]{$\gamma = \alpha$}} \put(1,5.80){\makebox(0,0.5)[c]{Paralogistic}} \put(1,5.25){\makebox(0,0.5)[c]{$\alpha, \theta$}} \put(1,5.75){\oval(3.4,1.2)} \put(0.8,1.9){\makebox(0,0.5)[r]{$\alpha = 1$}} \put(1,0.45){\makebox(0,0.5)[c]{Loglogistic}} \put(1,-0.1){\makebox(0,0.5)[c]{$\gamma, \theta$}} \put(1,0.4){\oval(3.4,1.2)} \put(9.8,2.1){\rotatebox{-26.6}{\makebox(0,0.5)[r]{$\alpha = 1$}}} \put(4.0,2.1){\rotatebox{-26.6}{\makebox(0,0.5)[r]{$\gamma = 1$}}} \put(11.25,3.0){\rotatebox{45}{\makebox(0,0.5)[r]{$\tau = 1$}}} \end{picture} \caption{Interrelations between distributions of the Feller--Pareto family. This diagram is an extension of Figure~5.2 of \citet{LossModels4e}.} \label{fig:diagram:fp-family} \end{figure} \begin{figure} \setlength{\unitlength}{0.7cm} \begin{picture}(7.5,5.2)(-0.25,0) \small % FlĂšches \put(4,4){\vector(2,-1){1.55}} % trgamma -> weibull \put(5.55,2){\vector(-2,-1){1.55}} % weibull -> exp \put(1.55,2){\vector(2,-1){1.55}} % gamma -> exp \put(3,4){\vector(-2,-1){1.55}} % trgamma -> gamma \put(3.5,4.65){\makebox(0,0.5)[c]{Transformed gamma}} \put(3.5,4.1){\makebox(0,0.5)[c]{$\alpha, \tau, \lambda$}} \put(3.5,4.6){\oval(5,1.2)} \put(5.4,3.45){\makebox(0,0.5)[l]{$\alpha = 1$}} \put(6,2.65){\makebox(0,0.5)[c]{Weibull}} \put(6,2.1){\makebox(0,0.5)[c]{$\tau, \lambda$}} \put(6,2.6){\oval(2.5,1.2)} \put(5.4,1.35){\makebox(0,0.5)[l]{$\tau = 1$}} \put(3.5,0.65){\makebox(0,0.5)[c]{Exponential}} \put(3.5,0.1){\makebox(0,0.5)[c]{$\lambda$}} \put(3.5,0.6){\oval(3,1.2)} \put(1.6,1.35){\makebox(0,0.5)[r]{$\alpha = 1$}} \put(1,2.65){\makebox(0,0.5)[c]{Gamma}} \put(1,2.1){\makebox(0,0.5)[c]{$\alpha, \lambda$}} \put(1,2.6){\oval(2.5,1.2)} \put(1.6,3.45){\makebox(0,0.5)[r]{$\tau = 1$}} \end{picture} \hfill \begin{picture}(8.75,5.2)(-0.875,0) \small % FlĂšches \put(4,4){\vector(2,-1){1.55}} % trgamma -> weibull \put(5.55,2){\vector(-2,-1){1.55}} % weibull -> exp \put(1.55,2){\vector(2,-1){1.55}} % gamma -> exp \put(3,4){\vector(-2,-1){1.55}} % trgamma -> gamma \put(3.5,4.65){\makebox(0,0.5)[c]{Inverse transformed gamma}} \put(3.5,4.1){\makebox(0,0.5)[c]{$\alpha, \tau, \lambda$}} \put(3.5,4.6){\oval(6.5,1.2)} \put(5.4,3.45){\makebox(0,0.5)[l]{$\alpha = 1$}} \put(6,2.65){\makebox(0,0.5)[c]{Inverse Weibull}} \put(6,2.1){\makebox(0,0.5)[c]{$\tau, \lambda$}} \put(6,2.6){\oval(3.75,1.2)} \put(5.4,1.35){\makebox(0,0.5)[l]{$\tau = 1$}} \put(3.5,0.65){\makebox(0,0.5)[c]{Inverse exponential}} \put(3.5,0.1){\makebox(0,0.5)[c]{$\lambda$}} \put(3.5,0.6){\oval(4.75,1.2)} \put(1.6,1.35){\makebox(0,0.5)[r]{$\alpha = 1$}} \put(1,2.65){\makebox(0,0.5)[c]{Inverse gamma}} \put(1,2.1){\makebox(0,0.5)[c]{$\alpha, \lambda$}} \put(1,2.6){\oval(3.75,1.2)} \put(1.6,3.45){\makebox(0,0.5)[r]{$\tau = 1$}} \end{picture} \caption{Interrelations between distributions of the transformed gamma and inverse transformed gamma families. Diagrams derived from Figure~5.3 of \citet{LossModels4e}.} \label{fig:diagram:trgamma-family} \end{figure} In addition to the \code{d}, \code{p}, \code{q} and \code{r} functions, \pkg{actuar} introduces \code{m}, \code{lev} and \code{mgf} functions to compute, respectively, the theoretical raw moments \begin{equation*} m_k = \E{X^k}, \end{equation*} the theoretical limited moments \begin{equation*} \E{(X \wedge x)^k} = \E{\min(X, x)^k} \end{equation*} and the moment generating function \begin{equation*} M_X(t) = \E{e^{tX}}, \end{equation*} when it exists. Every distribution of \autoref{tab:continuous} is supported, along with the following distributions of base R: beta, exponential, chi-square, gamma, lognormal, normal (no \code{lev}), uniform and Weibull. The \code{m} and \code{lev} functions are especially useful for estimation methods based on the matching of raw or limited moments; see the \samp{lossdist} vignette for their empirical counterparts. The \code{mgf} functions come in handy to compute the adjustment coefficient in ruin theory; see the \samp{risk} vignette. \section{Phase-type distributions} \label{sec:phase-type} In addition to the 19 distributions of \autoref{tab:continuous}, the package provides support for a family of distributions deserving a separate presentation. Phase-type distributions \citep{Neuts_81} are defined as the distribution of the time until absorption of continuous time, finite state Markov processes with $m$ transient states and one absorbing state. Let \begin{equation} \label{eq:Markov-transition-matrix} \mat{Q} = \begin{bmatrix} \mat{T} & \mat{t} \\ \mat{0} & 0 \end{bmatrix} \end{equation} be the transition rates matrix (or intensity matrix) of such a process and let $(\mat{\pi}, \pi_{m + 1})$ be the initial probability vector. Here, $\mat{T}$ is an $m \times m$ non-singular matrix with $t_{ii} < 0$ for $i = 1, \dots, m$ and $t_{ij} \geq 0$ for $i \neq j$, $\mat{t} = - \mat{T} \mat{e}$ and $\mat{e}$ is a column vector with all components equal to 1. Then the cdf of the time until absorption random variable with parameters $\mat{\pi}$ and $\mat{T}$ is \begin{equation} \label{eq:cdf-phtype} F(x) = \begin{cases} \pi_{m + 1}, & x = 0, \\ 1 - \mat{\pi} e^{\mat{T} x} \mat{e}, & x > 0, \end{cases} \end{equation} where \begin{equation} \label{eq:matrix-exponential} e^{\mat{M}} = \sum_{n = 0}^\infty \frac{\mat{M}^n}{n!} \end{equation} is the matrix exponential of matrix $\mat{M}$. The exponential distribution, the Erlang (gamma with integer shape parameter) and discrete mixtures thereof are common special cases of phase-type distributions. The package provides \code{d}, \code{p}, \code{r}, \code{m} and \code{mgf} functions for phase-type distributions. The root is \code{phtype} and parameters $\mat{\pi}$ and $\mat{T}$ are named \code{prob} and \code{rates}, respectively; see also \autoref{sec:app:phase-type}. For the package, function \code{pphtype} is central to the evaluation of the ruin probabilities; see \samp{?ruin} and the \samp{risk} vignette. \section{Extensions to standard discrete distributions} \label{sec:discrete} The package introduces support functions for counting distributions commonly used in loss frequency modeling. A counting distribution is a discrete distribution defined on the non-negative integers $0, 1, 2, \dots$. Let $N$ be the counting random variable. We denote $p_k$ the probability that the random variable $N$ takes the value $k$, that is: \begin{equation*} p_k = \Pr[N = k]. \end{equation*} \citet{LossModels4e} classify counting distributions in two main classes. First, a discrete random variable is a member of the $(a, b, 0)$ class of distributions if there exists constants $a$ and $b$ such that \begin{equation*} \frac{p_k}{p_{k - 1}} = a + \frac{b}{k}, \quad k = 1, 2, \dots. \end{equation*} The probability at zero, $p_0$, is set such that $\sum_{k = 0}^\infty p_k = 1$. The members of this class are the Poisson, the binomial, the negative binomial and its special case, the geometric. These distributions are all well supported in base R with \code{d}, \code{p}, \code{q} and \code{r} functions. The second class of distributions is the $(a, b, 1)$ class. A discrete random variable is a member of the $(a, b, 1)$ class of distributions if there exists constants $a$ and $b$ such that \begin{equation*} \frac{p_k}{p_{k - 1}} = a + \frac{b}{k}, \quad k = 2, 3, \dots. \end{equation*} One will note that recursion starts at $k = 2$ for the $(a, b, 1)$ class. Therefore, the probability at zero can be any arbitrary number $0 \leq p_0 \leq 1$. Setting $p_0 = 0$ defines a subclass of so-called \emph{zero-truncated} distributions. The members of this subclass are the zero-truncated Poisson, the zero-truncated binomial, the zero-truncated negative binomial and the zero-truncated geometric. Let $p_k^T$ denote the probability mass in $k$ for a zero-truncated distribution. As above, $p_k$ denotes the probability mass for the corresponding member of the $(a, b, 0)$ class. We have \begin{equation*} p_k^T = \begin{cases} 0, & k = 0 \\ \displaystyle\frac{p_k}{1 - p_0}, & k = 1, 2, \dots. \end{cases} \end{equation*} Moreover, let $P(k)$ denotes the cumulative distribution function of a member of the $(a, b, 0)$ class. Then the cdf $P^T(k)$ of the corresponding zero-truncated distribution is \begin{equation*} P^T(k) = \frac{P(k) - P(0)}{1 - P(0)} = \frac{P(k) - p_0}{1 - p_0} \end{equation*} for all $k = 0, 1, 2, \dots$. Alternatively, the survival function $\bar{P}^T(k) = 1 - P^T(k)$ is \begin{equation*} \bar{P}^T(k) = \frac{\bar{P}(k)}{\bar{P}(0)} = \frac{\bar{P}(k)}{1 - p_0}. \end{equation*} Package \pkg{actuar} provides \code{d}, \code{p}, \code{q} and \code{r} functions for the all the zero-truncated distributions mentioned above. \autoref{tab:discrete} lists the root names of the functions; see \autoref{sec:app:discrete} for additional details. \begin{table} \centering \begin{tabular}{ll} \toprule Distribution & Root \\ \midrule Zero-truncated Poisson & \code{ztpois} \\ Zero-truncated binomial & \code{ztbinom} \\ Zero-truncated negative binomial & \code{ztnbinom} \\ Zero-truncated geometric & \code{ztgeom} \\ Logarithmic & \code{logarithmic} \\ \addlinespace[6pt] Zero-modified Poisson & \code{zmpois} \\ Zero-modified binomial & \code{zmbinom} \\ Zero-modified negative binomial & \code{zmnbinom} \\ Zero-modified geometric & \code{zmgeom} \\ Zero-modified logarithmic & \code{zmlogarithmic} \\ \bottomrule \end{tabular} \caption{Members of the $(a, b, 1)$ class of discrete distributions supported by \pkg{actuar} and root names of the R functions.} \label{tab:discrete} \end{table} An entry of \autoref*{tab:discrete} deserves a few additional words. The logarithmic (or log-series) distribution with parameter $\theta$ has pmf \begin{equation*} p_k = \frac{a \theta^x}{k}, \quad k = 1, 2, \dots, \end{equation*} with $a = -1/\log(1 - \theta)$ and for $0 \leq \theta < 1$. This is the standard parametrization in the literature \citep{Johnson:discrete:2005}. The logarithmic distribution is always defined on the strictly positive integers. As such, it is not qualified as ``zero-truncated'', but it nevertheless belongs to the $(a, b, 1)$ class of distributions, more specifically to the subclass with $p_0 = 0$. Actually, the logarithmic distribution is the limiting case of the zero-truncated negative binomial distribution with size parameter equal to zero and $\theta = 1 - p$, where $p$ is the probability of success for the zero-truncated negative binomial. Note that this differs from the presentation in \citet{LossModels4e}. Another subclass of the $(a, b, 1)$ class of distributions is obtained by setting $p_0$ to some arbitrary number $p_0^M$ subject to $0 < p_0^M \leq 1$. The members of this subclass are called \emph{zero-modified} distributions. Zero-modified distributions are discrete mixtures between a degenerate distribution at zero and the corresponding distribution from the $(a, b, 0)$ class. Let $p_k^M$ and $P^M(k)$ denote the pmf and cdf of a zero-modified distribution. Written as a mixture, the pmf is \begin{equation} \label{eq:mixture} p_k^M = \left(1 - \frac{1 - p_0^M}{1 - p_0} \right) \mathbb{1}_{\{k = 0\}} + \frac{1 - p_0^M}{1 - p_0}\, p_k. \end{equation} Alternatively, we have \begin{equation*} p_k^M = \begin{cases} p_0^M, & k = 0 \\ \displaystyle\frac{1 - p_0^M}{1 - p_0}\, p_k, & k = 1, 2, \dots \end{cases} \end{equation*} and \begin{align*} P^M(k) &= p_0^M + (1 - p_0^M) \frac{P(k) - P(0)}{1 - P(0)} \\ &= p_0^M + \frac{1 - p_0^M}{1 - p_0}\, (P(k) - p_0) \\ &= p_0^M + (1 - p_0^M)\, P^T(k) \end{align*} for all $k = 0, 1, 2, \dots$. The survival function is \begin{equation*} \bar{P}^M(k) = (1 - p_0^M)\, \frac{\bar{P}(k)}{\bar{P}(0)} = \frac{1 - p_0^M}{1 - p_0}\, \bar{P}(k) = (1 - p_0^M)\, \bar{P}^T(k). \end{equation*} Therefore, we can also write the pmf of a zero-modified distribution as a mixture of a degenerate distribution at zero and the corresponding zero-truncated distribution: \begin{equation} \label{eq:mixture:alt} p_k^M = p_0^M \mathbb{1}_{\{k = 0\}} + (1 - p_0^M)\, p_k^T. \end{equation} The members of the subclass are the zero-modified Poisson, zero-modified binomial, zero-modified negative binomial and zero-modified geometric, together with the zero-modified logarithmic as a limiting case of the zero-modified negative binomial. \autoref{tab:discrete} lists the root names of the support functions provided in \pkg{actuar}; see also \autoref{sec:app:discrete}. Quite obviously, zero-truncated distributions are zero-modified distributions with $p_0^M = 0$. However, using the dedicated functions in R will be more efficient. \section{Poisson-inverse Gaussian distribution} \label{sec:pig} The Poisson-inverse Gaussian (PIG) distribution results from the continuous mixture between a Poisson distribution and an inverse Gaussian. That is, the Poisson-inverse Gaussian is the (marginal) distribution of the random variable $X$ when the conditional random variable $X|\Lambda = \lambda$ is Poisson with parameter $\lambda$ and the random variable $\Lambda$ is inverse Gaussian distribution with parameters $\mu$ and $\phi$. The literature proposes many different expressions for the pmf of the PIG \citep{Holla:PIG:1966,Shaban:PIG:1981,Johnson:discrete:2005,LossModels4e}. Using the parametrization for the inverse Gaussian found in \autoref{sec:app:continuous}, we have: \begin{equation} \label{eq:pig:px} \begin{split} p_x &= \sqrt{\frac{2}{\pi \phi}} \frac{e^{(\phi\mu)^{-1}}}{x!} \left( \sqrt{2\phi \left( 1 + \frac{1}{2\phi\mu^2} \right)} \right)^{-(x - \frac{1}{2})} \\ &\phantom{=} \times K_{x - \frac{1}{2}} \left( \sqrt{\frac{2}{\phi}\left(1 + \frac{1}{2\phi\mu^2}\right)} \right), \end{split} \end{equation} for $x = 0, 1, \dots$, $\mu > 0$, $\phi > 0$ and where \begin{equation} \label{eq:bessel_k} K_\nu(ax) = \frac{a^{-\nu}}{2} \int_0^\infty t^{\nu - 1} e^{- z(t + at^{-1})/2} dt, \quad a^2 z > 0 \end{equation} is the modified Bessel function of the third kind \citep{Bateman:1953:2,Abramowitz:1972}. One may compute the probabilities $p_x$, $x = 0, 1, \dots$ recursively using the following equations: \begin{equation} \label{eq:pig:px:recursive} \begin{split} p_0 &= \exp\left\{ \frac{1}{\phi\mu} \left(1 - \sqrt{1 + 2\phi\mu^2}\right) \right\} \\ p_1 &= \frac{\mu}{\sqrt{1 + 2\phi\mu^2}}\, p_0 \\ p_x &= \frac{2\phi\mu^2}{1 + 2\phi\mu^2} \left( 1 - \frac{3}{2x} \right) p_{x - 1} + \frac{\mu^2}{1 + 2\phi\mu^2} \frac{1}{x(x - 1)}\, p_{x - 2}, \quad x = 2, 3, \dots. \end{split} \end{equation} The first moment of the distribution is $\mu$. The second and third central moment are, respectively, \begin{align*} \mu_2 &= \sigma^2 = \mu + \phi\mu^3 \\ \mu_3 &= \mu + 3 \phi \mu^2 \sigma^2. \end{align*} For the limiting case $\mu = \infty$, the underlying inverse Gaussian has an inverse chi-squared distribution. The latter has no finite strictly positive, integer moments and, consequently, neither does the Poisson-inverse Gaussian. See \autoref{sec:app:discrete:pig} for the formulas in this case. \section{Special integrals} \label{sec:special-integrals} Many of the cumulative distribution functions of \autoref{sec:app:continuous} are expressed in terms of the incomplete gamma function or the incomplete beta function. From a probability theory perspective, the incomplete gamma function is usually defined as \begin{equation} \label{eq:pgamma} \Gamma(\alpha; x) = \frac{1}{\Gamma(\alpha)} \int_0^x t^{\alpha - 1} e^{-t}\, dt, \quad \alpha > 0, x > 0, \end{equation} with \begin{equation*} \Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t}\, dt, \end{equation*} whereas the (regularized) incomplete beta function is defined as \begin{equation} \label{eq:pbeta} \beta(a, b; x) = \frac{1}{\beta(a, b)} \int\limits_0^x t^{a - 1} (1 - t)^{b - 1}\, dt, \quad a > 0, b > 0, 0 < x < 1, \end{equation} with \begin{equation*} \beta(a, b) = \int_0^1 t^{a - 1} (1 - t)^{b - 1}\, dt = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)}. \end{equation*} Now, there exist alternative definitions of the these functions that are valid for negative values of the parameters. \citet{LossModels4e} introduce them to extend the range of admissible values for limited expected value functions. First, following \citet[Section~6.5]{Abramowitz:1972}, we define the ``extended'' incomplete gamma function as \begin{equation} \label{eq:gammainc} G(\alpha; x) = \int_x^\infty t^{\alpha - 1} e^{-t}\, dt \end{equation} for $\alpha$ real and $x > 0$. When $\alpha > 0$, we clearly have \begin{equation} \label{eq:gammainc:apos} G(\alpha; x) = \Gamma(a) [1 - \Gamma(\alpha; x)]. \end{equation} The integral is also defined for $\alpha \le 0$. As outlined in \citet[Appendix~A]{LossModels4e}, integration by parts of \eqref{eq:gammainc} yields the relation \begin{equation*} G(\alpha; x) = -\frac{x^\alpha e^{-x}}{\alpha} + \frac{1}{\alpha} G(\alpha + 1; x). \end{equation*} This process can be repeated until $\alpha + k$ is a positive number, in which case the right hand side can be evaluated with \eqref{eq:gammainc:apos}. If $\alpha = 0, -1, -2, \dots$, this calculation requires the value of \begin{equation*} \label{eq:expint} G(0; x) = \int_x^\infty \frac{e^{-t}}{t}\, dt = E_1(x), \end{equation*} which is known in the literature as the \emph{exponential integral} \citep[Section~5.1]{Abramowitz:1972}. Second, as seen in \citet[Section~6.6]{Abramowitz:1972}, we have the following relation for the integral on the right hand side of \eqref{eq:pbeta}: \begin{equation*} \int\limits_0^x t^{a - 1} (1 - t)^{b - 1}\, dt = \frac{x^a}{a}\, F(a, 1 - b; a + 1; x), \end{equation*} where \begin{equation*} F(a, b; c; z) = \frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \sum_{k = 0}^\infty \frac{\Gamma(a + k) \Gamma(b + k)}{\Gamma(c + k)} \frac{z^k}{k!} \end{equation*} is the Gauss hypergeometric series. With the above definition, the incomplete beta function also admits negative, non integer values for parameters $a$ and $b$. Now, let \begin{equation} \label{eq:betaint} B(a, b; x) = \Gamma(a + b) \int_0^x t^{a-1} (1-t)^{b-1} dt \end{equation} for $a > 0$, $b \neq -1, -2, \dots$ and $0 < x < 1$. Again, it is clear that when $b > 0$, \begin{equation*} B(a, b; x) = \Gamma(a) \Gamma(b) \beta(a, b; x). \end{equation*} Of more interest here is the case where $b < 0$, $b \neq -1, -2, \dots$ and $a > 1 + \lfloor -b\rfloor$. Integration by parts of \eqref{eq:betaint} yields \begin{equation} \label{eq:betaint:2} \begin{split} B(a, b; x) &= \displaystyle -\Gamma(a + b) \left[ \frac{x^{a-1} (1-x)^b}{b} + \frac{(a-1) x^{a-2} (1-x)^{b+1}}{b (b+1)} \right. \\ &\phantom{=} \displaystyle\left. + \cdots + \frac{(a-1) \cdots (a-r) x^{a-r-1} (1-x)^{b+r}}{b (b+1) \cdots (b+r)} \right] \\ &\phantom{=} \displaystyle + \frac{(a-1) \cdots (a-r-1)}{b (b+1) \cdots (b+r)} \Gamma(a-r-1) \\ &\phantom{=} \times \Gamma(b+r+1) \beta(a-r-1, b+r+1; x), \end{split} \end{equation} where $r = \lfloor -b\rfloor$. For the needs of \pkg{actuar}, we dubbed \eqref{eq:betaint} the \emph{beta integral}. Package \pkg{actuar} includes a C implementation of \eqref{eq:betaint:2} and imports functionalities of package \pkg{expint} \citep{expint} to compute the incomplete gamma function \eqref{eq:gammainc} at the C level. The routines are used to evaluate the limited expected value for distributions of the Feller--Pareto and transformed gamma families. \section{Package API: accessing the C routines} \label{sec:api} The actual workhorses behind the R functions presented in this document are C routines that the package exposes to other packages through an API. The header file \file{include/actuarAPI.h} in the package installation directory contains declarations for % the continuous distributions of \autoref{sec:app:continuous}, % the phase-type distributions of \autoref{sec:app:phase-type}, % the discrete distributions of \autoref{sec:app:discrete}, % and the beta integral of \autoref{sec:special-integrals}. The prototypes of the C routines for probability distributions all follow the same pattern modeled after those of base R \citep[Chapter~6]{R-exts}. As an example, here are the prototypes for the Pareto distribution: \begin{Schunk} \begin{Sinput} double dpareto(double x, double shape, double scale, int give_log); double ppareto(double q, double shape, double scale, int lower_tail, int log_p); double qpareto(double p, double shape, double scale, int lower_tail, int log_p); double rpareto(double shape, double scale); double mpareto(double order, double shape, double scale, int give_log); double levpareto(double limit, double shape, double scale, double order, int give_log); \end{Sinput} \end{Schunk} For the beta integral \eqref{eq:betaint:2}, the frontend is a routine \code{betaint} that returns \code{NA} or \code{NaN} for out-of-range arguments, but actual computation is done by routine \code{betaint\_raw}. Both are exposed as follows in the API: \begin{Schunk} \begin{Sinput} double betaint(double x, double a, double b); double betaint_raw(double x, double a, double b, double x1m); \end{Sinput} \end{Schunk} The developer of some package \pkg{pkg} who wants to use a routine --- say \code{dpareto} --- in her code should proceed as follows. \begin{enumerate} \item Add \pkg{actuar} to the \code{Imports} and \code{LinkingTo} directives of the \file{DESCRIPTION} file of \pkg{pkg}; \item Add an entry \samp{import(actuar)} in the \file{NAMESPACE} file of \pkg{pkg}; \item Define the routine with a call to \code{R\_GetCCallable} in the initialization routine \code{R\_init\_pkg} of \pkg{pkg} \citep[Section~5.4]{R-exts}. For the current example, the file \file{src/init.c} of \pkg{pkg} would contain the following code: \begin{Schunk} \begin{Sinput} void R_init_pkg(DllInfo *dll) { R_registerRoutines( /* native routine registration */ ); pkg_dpareto = (double(*)(double,int,int)) R_GetCCallable("actuar", "dpareto"); } \end{Sinput} \end{Schunk} \item Define a native routine interface that will call \code{dpareto}, say \code{pkg\_dpareto} to avoid any name clash, in \file{src/init.c} as follows: \begin{Schunk} \begin{Sinput} double(*pkg_dpareto)(double,double,double,int); \end{Sinput} \end{Schunk} \item Declare the routine in a header file of \pkg{pkg} with the keyword \code{extern} to expose the interface to all routines of the package. In our example, file \file{src/pkg.h} would contain: \begin{Schunk} \begin{Sinput} extern double(*pkg_dpareto)(double,double,double,int); \end{Sinput} \end{Schunk} \item Include the package header file \file{pkg.h} in any C file making use of routine \code{pkg\_dpareto}. \end{enumerate} The companion package \pkg{expint} \citep{expint} ships with a complete test package implementing the above. See the vignette of the latter package for more information. \section{Implementation details} \label{sec:implementation} The cdf of the continuous distributions of \autoref{tab:continuous} use \code{pbeta} and \code{pgamma} to compute the incomplete beta and incomplete gamma functions, respectively. Functions \code{dinvgauss}, \code{pinvgauss} and \code{qinvgauss} rely on C implementations of functions of the same name from package \pkg{statmod} \citep{statmod}. The matrix exponential C routine needed in \code{dphtype} and \code{pphtype} is based on \code{expm} from package \pkg{Matrix} \citep{Matrix}. The C code to compute the beta integral \eqref{eq:betaint:2} was written by the second author. For all but the trivial input values, the pmf, cdf and quantile functions for the zero-truncated and zero-modified distributions of \autoref{tab:discrete} use the internal R functions for the corresponding standard distribution. Generation of random variates from zero-truncated distributions uses the following simple inversion algorithm on a restricted range \citep{Dalgaard:r-help:2005,Thomopoulos:2013:simulation}. Let $u$ be a random number from a uniform distribution on $(p_0, 1)$. Then $x = P^{-1}(u)$ is distributed according to the zero-truncated version of the distribution with cdf $P(k)$. For zero-modified distributions, we generate variates from the discrete mixture \eqref{eq:mixture} when $p_0^M \geq p_0$. When $p_0^M < p_0$, we can use either of two methods: \begin{enumerate} \item the classical rejection method with an envelope that differs from the target distribution only at zero (meaning that only zeros are rejected); \item generation from the discrete mixture \eqref{eq:mixture:alt} with the corresponding zero-truncated distribution (hence using the inversion method on a restricted range explained above). \end{enumerate} Which approach is faster depends on the relative speeds of the standard random generation function and the standard quantile function, and also on the proportion of zeros that are rejected using the rejection algorithm. Based on the difference $p_0 - p_0^M$, we determined (empirically) distribution-specific cutoff points between the two methods. Finally, computation of the Poisson-inverse Gaussian pmf uses the recursive equations \eqref{eq:pig:px:recursive}. Versions of \pkg{actuar} prior to 3.0-0 used the direct expression \eqref{eq:pig:px} and the C level function \code{bessel\_k} part of the R API. However, the latter overflows for large values of $\nu$ and this caused \code{NaN} results for the value of \begin{equation*} \frac{B^{-(x - \frac{1}{2})} K_{x - \frac{1}{2}}(B/\phi)}{x!} \end{equation*} and, therefore, for the Poisson-inverse Gaussian pmf. \appendix \section{Continuous distributions} \label{sec:app:continuous} This appendix gives the root name and the parameters of the R support functions for the distributions of \autoref{tab:continuous}, as well as the formulas for the pdf, the cdf, the raw moment of order $k$ and the limited moment of order $k$ using the parametrization of \citet{LossModels4e} and \citet{HoggKlugman}. In the following, $\Gamma(\alpha; x)$ is the incomplete gamma function \eqref{eq:pgamma}, $\beta(a, b; x)$ is the incomplete beta function \eqref{eq:pbeta}, $G(\alpha; x)$ is the ``extended'' incomplete gamma function \eqref{eq:gammainc}, $B(a, b; x)$ is the beta integral \eqref{eq:betaint} and $K_\nu(x)$ is the modified Bessel function of the third kind \eqref{eq:bessel_k}. Unless otherwise stated, all parameters are finite and strictly positive, and the functions are defined for $x > 0$. \subsection{Feller--Pareto family} \label{sec:app:continuous:feller-pareto} \subsubsection{Feller--Pareto} \begin{itemize} \item Root: \code{fpareto} \item Parameters: \code{min} ($-\infty < \mu < \infty$), \code{shape1} ($\alpha$), \code{shape2} ($\gamma$), \code{shape3} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\gamma u^\tau (1 - u)^\alpha}{% (x - \mu) \beta (\alpha, \tau )}, \quad u = \frac{v}{1 + v}, \quad v = \left(\frac{x - \mu}{\theta} \right)^\gamma, \quad x > \mu \\ F(x) &= \beta(\tau, \alpha; u) \\ \displaybreak[0] \E{X^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \frac{\Gamma(\tau+j/\gamma) \Gamma(\alpha-j/\gamma)}{% \Gamma(\alpha) \Gamma(\tau)}, \quad \text{integer } 0 \leq k < \alpha\gamma \\ \E{(X \wedge x)^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \frac{B(\tau+j/\gamma, \alpha-j/\gamma; u)}{% \Gamma(\alpha) \Gamma(\tau)} \\ &\phantom{=} + x^k [1 - \beta(\tau, \alpha; u)], \quad \text{integer } k \geq 0, \quad \alpha - j/\gamma \neq -1, -2, \dots \end{align*} \subsubsection{Pareto IV} \begin{itemize} \item Root: \code{pareto4} \item Parameters: \code{min} ($-\infty < \mu < \infty$), \code{shape1} ($\alpha$), \code{shape2} ($\gamma$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\alpha \gamma u^\alpha (1 - u)}{(x - \mu)}, \quad u = \frac{1}{1 + v}, \quad v = \left(\frac{x - \mu}{\theta} \right)^\gamma, \quad x > \mu \\ F(x) &= 1 - u^\alpha \\ \displaybreak[0] \E{X^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \frac{\Gamma(1+j/\gamma) \Gamma(\alpha-j/\gamma)}{% \Gamma(\alpha)}, \quad \text{integer } 0 \leq k < \alpha\gamma \\ \E{(X \wedge x)^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \frac{B(1+j/\gamma, \alpha-j/\gamma; 1-u)}{% \Gamma(\alpha)} \\ &\phantom{=} + x^k u^\alpha, \quad \text{integer } k \geq 0 \quad \alpha - j/\gamma \neq -1, -2, \dots \end{align*} \subsubsection{Pareto III} \begin{itemize} \item Root: \code{pareto3} \item Parameters: \code{min} ($-\infty < \mu < \infty$), \code{shape} ($\gamma$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\gamma u (1 - u)}{(x - \mu)}, \quad u = \frac{v}{1 + v}, \quad v = \left(\frac{x - \mu}{\theta} \right)^\gamma, \quad x > \mu \\ F(x) &= u \\ \displaybreak[0] \E{X^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \Gamma(1+j/\gamma) \Gamma(1-j/\gamma), \quad \text{integer } 0 \leq k < \gamma \\ \E{(X \wedge x)^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, B(1+j/\gamma, 1-j/\gamma; u) \\ &\phantom{=} + x^k (1 - u), \quad \text{integer } k \geq 0 \quad 1 - j/\gamma \neq -1, -2, \dots \end{align*} \subsubsection{Pareto II} \begin{itemize} \item Root: \code{pareto4} \item Parameters: \code{min} ($-\infty < \mu < \infty$), \code{shape} ($\alpha$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\alpha u^\alpha (1 - u)}{(x - \mu)}, \quad u = \frac{1}{1 + v}, \quad v = \frac{x - \mu}{\theta}, \quad x > \mu \\ F(x) &= 1 - u^\alpha \\ \displaybreak[0] \E{X^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \frac{\Gamma(1+j) \Gamma(\alpha-j)}{% \Gamma(\alpha)}, \quad \text{integer } 0 \leq k < \alpha \\ \E{(X \wedge x)^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \frac{B(1+j, \alpha-j; 1-u)}{% \Gamma(\alpha)} \\ &\phantom{=} + x^k u^\alpha, \quad \text{integer } k \geq 0 \quad \alpha - j \neq -1, -2, \dots \end{align*} \subsubsection{Transformed beta} \begin{itemize} \item Root: \code{trbeta}, \code{pearson6} \item Parameters: \code{shape1} ($\alpha$), \code{shape2} ($\gamma$), \code{shape3} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\gamma u^\tau (1 - u)^\alpha}{% x \beta (\alpha, \tau )}, \qquad u = \frac{v}{1 + v}, \qquad v = \left(\frac{x}{\theta} \right)^\gamma \\ F(x) &= \beta(\tau, \alpha; u) \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(\tau+k/\gamma) \Gamma(\alpha-k/\gamma)}{% \Gamma(\alpha) \Gamma(\tau)}, \quad -\tau\gamma < k < \alpha\gamma \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(\tau+k/\gamma, \alpha-k/\gamma; u)}{% \Gamma(\alpha) \Gamma(\tau)} \\ &\phantom{=} + x^k [1 - \beta(\tau, \alpha; u)], \quad k > -\tau\gamma \end{align*} \subsubsection{Burr} \begin{itemize} \item Root: \code{burr} \item Parameters: \code{shape1} ($\alpha$), \code{shape2} ($\gamma$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\alpha \gamma u^\alpha (1 - u)}{x}, \qquad u = \frac{1}{1 + v}, \qquad v = \left( \frac{x}{\theta} \right)^\gamma \\ F(x) &= 1 - u^\alpha \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(1+k/\gamma) \Gamma(\alpha-k/\gamma)}{% \Gamma(\alpha)}, \quad -\gamma < k < \alpha\gamma \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(1+k/\gamma, \alpha-k/\gamma; 1-u)}{% \Gamma(\alpha)} \\ &\phantom{=} + x^k u^\alpha, \quad k > -\gamma \end{align*} \subsubsection{Loglogistic} \begin{itemize} \item Root: \code{llogis} \item Parameters: \code{shape} ($\gamma$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\gamma u (1 - u)}{x}, \qquad u = \frac{v}{1 + v}, \qquad v = \left( \frac{x}{\theta} \right)^\gamma \\ F(x) &= u \\ \displaybreak[0] \E{X^k} &= \theta^k \Gamma(1+k/\gamma) \Gamma(1-k/\gamma), \quad -\gamma < k < \gamma \\ \E{(X \wedge x)^k} &= \theta^k B(1+k/\gamma, 1-k/\gamma; u) \\ &\phantom{=} + x^k (1 - u), \quad k > -\gamma \end{align*} \subsubsection{Paralogistic} \begin{itemize} \item Root: \code{paralogis} \item Parameters: \code{shape} ($\alpha$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\alpha^2 u^\alpha (1 - u)}{x}, \qquad u = \frac{1}{1 + v}, \qquad v = \left( \frac{x}{\theta} \right)^\alpha \\ F(x) &= 1 - u^\alpha \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(1+k/\alpha) \Gamma(\alpha-k/\alpha)}{% \Gamma(\alpha)}, \quad -\alpha < k < \alpha^2 \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(1+k/\alpha, \alpha-k/\alpha; 1-u)}{% \Gamma(\alpha)} \\ &\phantom{=} + x^k u^\alpha, \quad k > -\alpha \end{align*} \subsubsection{Generalized Pareto} \begin{itemize} \item Root: \code{genpareto} \item Parameters: \code{shape1} ($\alpha$), \code{shape2} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{u^\tau (1 - u)^\alpha}{x \beta (\alpha, \tau )}, \qquad u = \frac{v}{1 + v}, \qquad v = \frac{x}{\theta} \\ F(x) &= \beta(\tau, \alpha; u) \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(\tau+k) \Gamma(\alpha-k)}{% \Gamma(\alpha) \Gamma(\tau)}, \quad -\tau < k < \alpha \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(\tau+k, \alpha-k; u)}{% \Gamma(\alpha) \Gamma(\tau)} \\ &\phantom{=} + x^k [1 - \beta(\tau, \alpha; u)], \quad k > -\tau \end{align*} \subsubsection{Pareto} \begin{itemize} \item Root: \code{pareto}, \code{pareto2} \item Parameters: \code{shape} ($\alpha$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\alpha u^\alpha (1 - u)}{x}, \qquad u = \frac{1}{1 + v}, \qquad v = \frac{x}{\theta} \\ F(x) &= 1 - u^\alpha \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(1+k) \Gamma(\alpha-k)}{% \Gamma(\alpha)}, \quad -1 < k < \alpha \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(1+k, \alpha-k; 1-u)}{% \Gamma(\alpha)} \\ &\phantom{=} + x^k u^\alpha, \quad k > -1 \end{align*} \subsubsection{Single-parameter Pareto (Pareto I)} \begin{itemize} \item Root: \code{pareto1} \item Parameters: \code{shape} ($\alpha$), \code{min} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\alpha \theta^\alpha}{x^{\alpha+1}}, \quad x > \theta \\ F(x) &= 1 - \left( \frac{\theta}{x} \right)^\alpha, \quad x > \theta \\ \displaybreak[0] \E{X^k} &= \frac{\alpha \theta^k}{\alpha - k}, \quad k < \alpha \\ \E{(X \wedge x)^k} &= \frac{\alpha \theta^k}{\alpha - k} - \frac{k \theta^\alpha}{(\alpha - k) x^{\alpha-k}}, \quad x \geq \theta \end{align*} Although there appears to be two parameters, only $\alpha$ is a true parameter. The value of $\theta$ is the minimum of the distribution and is usually set in advance. \subsubsection{Inverse Burr} \begin{itemize} \item Root: \code{invburr} \item Parameters: \code{shape1} ($\tau$), \code{shape2} ($\gamma$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau \gamma u^\tau (1 - u)}{x}, \qquad u = \frac{v}{1 + v}, \qquad v = \left( \frac{x}{\theta} \right)^\gamma \\ F(x) &= u^\tau \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(\tau+k/\gamma) \Gamma(1-k/\gamma)}{% \Gamma(\tau)}, \quad -\gamma < k < \alpha\gamma \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(\tau+k/\gamma, 1-k/\gamma; u)}{% \Gamma(\tau)} \\ &\phantom{=} + x^k (1-u^\tau), \quad k > -\tau\gamma \end{align*} \subsubsection{Inverse Pareto} \begin{itemize} \item Root: \code{invpareto} \item Parameters: \code{shape} ($\tau$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau u^\tau (1 - u)}{x}, \qquad u = \frac{v}{1 + v}, \qquad v = \frac{x}{\theta} \\ F(x) &= u^\tau \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(\tau+k) \Gamma(1-k)}{% \Gamma(\tau)}, \quad -\tau < k < 1 \\ \E{(X \wedge x)^k} &= \theta^k \tau \int_0^u y^{\tau+k-1} (1 - y)^{-k}\, dy \\ &\phantom{=} + x^k (1-u^\tau), \quad k > -\tau \end{align*} \subsubsection{Inverse paralogistic} \begin{itemize} \item Root: \code{invparalogis} \item Parameters: \code{shape} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau^2 u^\tau (1 - u)}{x}, \qquad u = \frac{v}{1 + v}, \qquad v = \left(\frac{x}{\theta} \right)^\tau \\ F(x) &= u^\tau \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(\tau+k/\tau) \Gamma(1-k/\tau)}{% \Gamma(\tau)}, \quad -\tau^2 < k < \tau \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(\tau+k/\tau, 1-k/\tau; u)}{% \Gamma(\tau)} \\ &\phantom{=} + x^k (1-u^\tau), \quad k > -\tau^2 \end{align*} \subsection{Transformed gamma family} \label{sec:app:continuous:transformed-gamma} \subsubsection{Transformed gamma} \begin{itemize} \item Root: \code{trgamma} \item Parameters: \code{shape1} ($\alpha$), \code{shape2} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau u^\alpha e^{-u}}{x \Gamma(\alpha)}, \qquad u = \left( \frac{x}{\theta} \right)^\tau \\ F(x) &= \Gamma (\alpha ; u) \\ \displaybreak[0] \E{X^k} &= \frac{\theta^k \Gamma(\alpha+k/\tau)}{\Gamma(\alpha)} \quad k > -\alpha\tau \\ \E{(X \wedge x)^k} &= \frac{\theta^k \Gamma(\alpha+k/\tau)}{\Gamma(\alpha)} \Gamma(\alpha+k/\tau; u) \\ &\phantom{=} + x^k [1 - \Gamma(\alpha; u)], \quad k > -\alpha\tau \end{align*} \subsubsection{Inverse transformed gamma} \begin{itemize} \item Root: \code{invtrgamma} \item Parameters: \code{shape1} ($\alpha$), \code{shape2} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau u^\alpha e^{-u}}{x\Gamma (\alpha)}, \qquad u = \left( \frac{\theta}{x} \right)^\tau \\ F(x) &= 1 - \Gamma (\alpha ; u) \\ \displaybreak[0] \E{X^k} &= \frac{\theta^k \Gamma(\alpha-k/\tau)}{\Gamma(\alpha)} \quad k < \alpha\tau \\ \E{(X \wedge x)^k} &= \frac{\theta^k G(\alpha-k/\tau; u)}{\Gamma(\alpha)} + x^k \Gamma(\alpha; u), \quad \text{all }k \end{align*} \subsubsection{Inverse gamma} \begin{itemize} \item Root: \code{invgamma} \item Parameters: \code{shape} ($\alpha$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{u^\alpha e^{-u}}{x\Gamma (\alpha)}, \qquad u = \frac{\theta}{x}\\ F(x) &= 1 - \Gamma (\alpha ; u) \\ \displaybreak[0] \E{X^k} &= \frac{\theta^k \Gamma(\alpha-k)}{\Gamma(\alpha)} \quad k < \alpha \\ \E{(X \wedge x)^k} &= \frac{\theta^k G(\alpha-k; u)}{\Gamma(\alpha)} + x^k \Gamma(\alpha; u), \quad \text{all }k \\ M(t) &= \frac{2}{\Gamma(\alpha)} (-\theta t)^{\alpha/2} K_\alpha(\sqrt{-4\theta t}) \end{align*} \subsubsection{Inverse Weibull} \begin{itemize} \item Root: \code{invweibull}, \code{lgompertz} \item Parameters: \code{shape} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau u e^{-u}}{x}, \qquad u = \left( \frac{\theta}{x} \right)^\tau \\ F(x) &= e^{-u} \\ \displaybreak[0] \E{X^k} &= \theta^k \Gamma(1-k/\tau) \quad k < \tau \\ \E{(X \wedge x)^k} &= \theta^k G(1-k/\tau; u) + x^k (1 - e^{-u}), \quad \text{all }k \end{align*} \subsubsection{Inverse exponential} \begin{itemize} \item Root: \code{invexp} \item Parameters: \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{u e^{-u}}{x}, \qquad u = \frac{\theta}{x} \\ F(x) &= e^{-u} \\ \displaybreak[0] \E{X^k} &= \theta^k \Gamma(1-k) \quad k < 1 \\ \E{(X \wedge x)^k} &= \theta^k G(1-k; u) + x^k (1 - e^{-u}), \quad \text{all }k \end{align*} \subsection{Other distributions} \label{sec:app:continuous:other} \subsubsection{Loggamma} \begin{itemize} \item Root: \code{lgamma} \item Parameters: \code{shapelog} ($\alpha$), \code{ratelog} ($\lambda$) \end{itemize} \begin{align*} f(x) &= \frac{\lambda^\alpha (\ln x)^{\alpha - 1}}{% x^{\lambda + 1} \Gamma(\alpha)}, \quad x > 1 \\ F(x) &= \Gamma( \alpha ; \lambda \ln x), \quad x > 1 \\ \displaybreak[0] \E{X^k} &= \left( \frac{\lambda}{\lambda - k} \right)^\alpha, \quad k < \lambda \\ \E{(X \wedge x)^k} &= \left( \frac{\lambda}{\lambda - k} \right)^\alpha \Gamma(\alpha; (\lambda - k) \ln x) \\ &\phantom{=} + x^k (1 - \Gamma(\alpha; \lambda \ln x)), \quad k < \lambda \end{align*} \subsubsection{Gumbel} \begin{itemize} \item Root: \code{gumbel} \item Parameters: \code{alpha} ($-\infty < \alpha < \infty$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{e^{-(u + e^{-u})}}{\theta}, \qquad u = \frac{x - \alpha}{\theta}, \qquad -\infty < x < \infty \\ F(x) &= \exp[-\exp(-u)] \\ \displaybreak[0] \E{X} &= \alpha + \gamma \theta, \quad \gamma \approx 0.57721566490153 \\ \VAR{X} &= \frac{\pi^2 \theta^2}{6} \\ M(t) &= e^{\alpha t} \Gamma(1 - \theta t) \end{align*} \subsubsection{Inverse Gaussian} \begin{itemize} \item Root: \code{invgauss} \item Parameters: \code{mean} ($\mu$), \code{shape} ($\lambda = 1/\phi$), \code{dispersion} ($\phi$) \end{itemize} \begin{align*} f(x) &= \left( \frac{1}{2 \pi \phi x^3} \right)^{1/2} \exp\left\{ -\frac{(x/\mu - 1)^2}{2 \phi x} \right\} \\ F(x) &= \Phi\left( \frac{x/\mu - 1}{\sqrt{\phi x}} \right) + e^{2/(\phi\mu)} \Phi\left( -\frac{x/\mu + 1}{\sqrt{\phi x}} \right) \\ \displaybreak[0] \E{X^k} &= \mu^k \sum_{i = 0}^{k - 1} \frac{(k + i - 1)!}{i! (k - i - 1)!} \left( \frac{\phi \mu}{2} \right)^{i}, \quad k = 1, 2, \dots \\ \E{X \wedge x} &= \mu \left[ \Phi\left( \frac{x/\mu - 1}{\sqrt{\phi x}} \right) - e^{2/(\phi\mu)} \Phi\left(- \frac{x/\mu + 1}{\sqrt{\phi x}} \right) \right] \\ &\phantom{=} + x (1 - F(x)) \\ M(t) &= \exp \left\{ \frac{1}{\phi \mu} \left(1 - \sqrt{1 - 2 \phi \mu^2 t}\right) \right\}, \quad t \leq \frac{1}{2 \phi \mu^2} \end{align*} \noindent% The limiting case $\mu = \infty$ is an inverse gamma distribution with $\alpha = 1/2$ and $\lambda = 2\phi$ (or inverse chi-squared). \subsubsection{Generalized beta} \begin{itemize} \item Root: \code{genbeta} \item Parameters: \code{shape1} ($a$), \code{shape2} ($b$), \code{shape3} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau u^a (1 - u)^{b - 1}}{x \beta (a, b)}, \qquad u = \left( \frac{x}{\theta} \right)^\tau, \qquad 0 < x < \theta \\ F(x) &= \beta (a, b ; u) \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \beta(a+k/\tau, b)}{\beta(a, b)}, \quad k > -a\tau \\ \E{(X \wedge x)^k} &= \frac{% \theta^k \beta(a+k/\tau, b)}{\beta(a, b)} \beta(a+k/\tau, b; u) \\ &\phantom{=} + x^k [1 - \beta(a, b; u)], \quad k > -\tau\gamma \end{align*} \section{Phase-type distributions} \label{sec:app:phase-type} Consider a continuous-time Markov process with $m$ transient states and one absorbing state. Let \begin{equation*} \mat{Q} = \begin{bmatrix} \mat{T} & \mat{t} \\ \mat{0} & 0 \end{bmatrix} \end{equation*} be the transition rates matrix (or intensity matrix) of such a process and let $(\mat{\pi}, \pi_{m + 1})$ be the initial probability vector. Here, $\mat{T}$ is an $m \times m$ non-singular matrix with $t_{ii} < 0$ for $i = 1, \dots, m$ and $t_{ij} \geq 0$ for $i \neq j$; $\mat{\pi}$ is an $1 \times m$ vector of probabilities such that $\mat{\pi} \mat{e} + \pi_{m + 1} = 1$; $\mat{t} = -\mat{T} \mat{e}$; $\mat{e} = [1]_{m \times 1}$ is a column vector of ones. % \bigskip \begin{itemize} \item Root: \code{phtype} \item Parameters: \code{prob} ($\mat{\pi}_{1 \times m}$), \code{rates} ($\mat{T}_{m \times m}$) \end{itemize} \begin{align*} f(x) &= \begin{cases} 1 - \mat{\pi} \mat{e} & x = 0, \\ \mat{\pi} e^{\mat{T} x} \mat{t}, & x > 0 \end{cases} \\ F(x) &= \begin{cases} 1 - \mat{\pi} \mat{e}, & x = 0, \\ 1 - \mat{\pi} e^{\mat{T} x} \mat{e}, & x > 0 \end{cases} \\ \E{X^k} &= k! \mat{\pi} (-\mat{T})^{-k} \mat{e} \\ M(t) &= \mat{\pi} (-t \mat{I} - \mat{T})^{-1} \mat{t} + (1 - \mat{\pi} \mat{e}) \end{align*} \section{Discrete distributions} \label{sec:app:discrete} This appendix gives the root name and the parameters of the R support functions for the members of the $(a, b, 0)$ and $(a, b, 1)$ discrete distributions as defined in \citet{LossModels4e}; the values of $a$, $b$ and $p_0$ in the representation; the pmf; the relationship with other distributions, when there is one. The appendix also provides the main characteristics of the Poisson-inverse Gaussian distribution. \subsection[The (a, b, 0) class]{The $(a, b, 0)$ class} \label{sec:app:discrete:a-b-0} The distributions in this section are all supported in base R. Their pmf can be computed recursively by fixing $p_0$ to the specified value and then using $p_k = (a + b/k) p_{k - 1}$, for $k = 1, 2, \dots$. All parameters are finite. \subsubsection{Poisson} \begin{itemize} \item Root: \code{pois} \item Parameter: \code{lambda} ($\lambda \geq 0$) \end{itemize} \begin{align*} a &= 0, \qquad b = \lambda, \qquad p_0 = e^{-\lambda} \\ p_k &= \frac{e^{-\lambda} \lambda^k}{k!} \end{align*} \subsubsection{Negative binomial} \begin{itemize} \item Root: \code{nbinom} \item Parameters: \code{size} ($r \geq 0$), \code{prob} ($0 < p \leq 1$), \code{mu} ($r(1 - p)/p$) \end{itemize} \begin{align*} a &= 1 - p, \qquad b = (r - 1)(1 - p), \qquad p_0 = p^r \\ p_k &= \binom{r+k-1}{k} p^r (1 - p)^k \end{align*} \begin{itemize} \item Special case: Geometric$(p)$ when $r = 1$. \end{itemize} \subsubsection{Geometric} \begin{itemize} \item Root: \code{geom} \item Parameter: \code{prob} ($0 < p \leq 1$) \end{itemize} \begin{align*} a &= 1 - p, \qquad b = 0, \qquad p_0 = p \\ p_k &= p (1 - p)^k \end{align*} \subsubsection{Binomial} \begin{itemize} \item Root: \code{binom} \item Parameters: \code{size} ($n = 0, 1, 2, \dots$), \code{prob} ($0 \leq p \leq 1$) \end{itemize} \begin{align*} a &= -\frac{p}{1 - p}, \qquad b = \frac{(n + 1)p}{1 - p}, \qquad p_0 = (1 - p)^n \\ p_k &= \binom{n}{k} p^k (1 - p)^{n - k}, \quad k = 1, 2, \dots, n \end{align*} \begin{itemize} \item Special case: Bernoulli$(p)$ when $n = 1$. \end{itemize} \subsection[The zero-truncated (a, b, 1) class]{The zero-truncated $(a, b, 1)$ class} \label{sec:app:discrete:zt} Package \pkg{actuar} provides support for the distributions in this section. Zero-truncated distributions have probability at zero $p_0^T = 0$. Their pmf can be computed recursively by fixing $p_1$ to the value specified below and then using $p_k = (a + b/k) p_{k - 1}$, for $k = 2, 3, \dots$. The distributions are all defined on $k = 1, 2, \dots$. The limiting case of zero-truncated distributions when $p_1$ is infinite is a point mass in $k = 1$. \subsubsection{Zero-truncated Poisson} \begin{itemize} \item Root: \code{ztpois} \item Parameter: \code{lambda} ($\lambda \geq 0$) \end{itemize} \begin{align*} a &= 0, \qquad b = \lambda, \qquad p_1 = \frac{\lambda}{e^\lambda - 1} \\ p_k &= \frac{\lambda^k}{k! (e^\lambda - 1)} \end{align*} \subsubsection{Zero-truncated negative binomial} \begin{itemize} \item Root: \code{ztnbinom} \item Parameters: \code{size} ($r \geq 0$), \code{prob} ($0 < p \leq 1$) \end{itemize} \begin{align*} a &= 1 - p, \qquad b = (r - 1)(1 - p), \qquad p_1 = \frac{r p^r (1 - p)}{1 - p^r} \\ p_k &= \binom{r+k-1}{k} \frac{p^r (1 - p)^k}{1 - p^r} \end{align*} \begin{itemize} \item Special cases: Logarithmic$(1 - p)$ when $r = 0$; Zero-truncated geometric$(p)$ when $r = 1$. \end{itemize} \subsubsection{Zero-truncated geometric} \begin{itemize} \item Root: \code{ztgeom} \item Parameter: \code{prob} ($0 < p \leq 1$) \end{itemize} \begin{align*} a &= 1 - p, \qquad b = 0, \qquad p_1 = p \\ p_k &= p (1 - p)^{k - 1} \end{align*} \subsubsection{Zero-truncated binomial} \begin{itemize} \item Root: \code{ztbinom} \item Parameters: \code{size} ($n = 0, 1, 2, \dots$), \code{prob} ($0 \leq p \leq 1$) \end{itemize} \begin{align*} a &= -\frac{p}{1 - p}, \qquad b = \frac{(n + 1)p}{1 - p}, \qquad p_1 = \frac{n p (1 - p)^{n - 1}}{1 - (1 - p)^n} \\ p_k &= \binom{n}{k} \frac{p^k (1 - p)^{n - k}}{1 - (1 - p)^n}, \quad k = 1, 2, \dots, n \end{align*} \subsubsection{Logarithmic} \begin{itemize} \item Root: \code{logarithmic} \item Parameter: \code{prob} ($0 \leq p < 1$) \end{itemize} \begin{align*} a &= p, \qquad b = -p, \qquad p_1 = - \frac{p}{\log (1 - p)} \\ p_k &= - \frac{p^k}{k \log (1 - p)} \end{align*} \subsection[The zero-modified (a, b, 1) class]{The zero-modified $(a, b, 1)$ class} \label{sec:app:discrete:zm} Package \pkg{actuar} provides support for the distributions in this section. Zero-modified distributions have an arbitrary probability at zero $p_0^M \neq p_0$, where $p_0$ is the probability at zero for the corresponding member of the $(a, b, 0)$ class. Their pmf can be computed recursively by fixing $p_1$ to the value specified below and then using $p_k = (a + b/k) p_{k - 1}$, for $k = 2, 3, \dots$. The distributions are all defined on $k = 0, 1, 2, \dots$. The limiting case of zero-modified distributions when $p_1$ is infinite is a discrete mixture between a point mass in $k = 0$ (with probability $p_0^M$) and a point mass in $k = 1$ (with probability $1 - p_0^M$). \subsubsection{Zero-modified Poisson} \begin{itemize} \item Root: \code{zmpois} \item Parameters: \code{lambda} ($\lambda > 0$), \code{p0} ($0 \leq p_0^M \leq 1$) \end{itemize} \begin{align*} a &= 0, \qquad b = \lambda, \qquad p_1 = \frac{(1 - p_0^M) \lambda}{e^\lambda - 1} \\ p_k &= \frac{(1 - p_0^M) \lambda^k}{k! (e^\lambda - 1)} \end{align*} \subsubsection{Zero-modified negative binomial} \begin{itemize} \item Root: \code{zmnbinom} \item Parameters: \code{size} ($r \geq 0$), \code{prob} ($0 < p \leq 1$), \code{p0} ($0 \leq p_0^M \leq 1$) \end{itemize} \begin{align*} a &= 1 - p, \qquad b = (r - 1)(1 - p), \qquad p_1 = \frac{(1 - p_0^M) r p^r (1 - p)}{1 - p^r} \\ p_k &= \binom{r+k-1}{k} \frac{(1 - p_0^M) p^r (1 - p)^k}{1 - p^r} \end{align*} \begin{itemize} \item Special cases: Zero-modified logarithmic$(1 - p)$ when $r = 0$; Zero-modified geometric$(p)$ when $r = 1$. \end{itemize} \subsubsection{Zero-modified geometric} \begin{itemize} \item Root: \code{zmgeom} \item Parameters: \code{prob} ($0 < p \leq 1$), \code{p0} ($0 \leq p_0^M \leq 1$) \end{itemize} \begin{align*} a &= 1 - p, \qquad b = 0, \qquad p_1 = (1 - p_0^M) p \\ p_k &= (1 - p_0^M) p (1 - p)^{k - 1} \end{align*} \subsubsection{Zero-modified binomial} \begin{itemize} \item Root: \code{zmbinom} \item Parameters: \code{size} ($n = 0, 1, 2, \dots$), \code{prob} ($0 \leq p \leq 1$), \code{p0} ($0 \leq p_0^M \leq 1$) \end{itemize} \begin{align*} a &= -\frac{p}{1 - p}, \qquad b = \frac{(n + 1)p}{1 - p}, \qquad p_1^M = \frac{n (1 - p_0^M) p (1 - p)^{n - 1}}{1 - (1 - p)^n} \\ p_k &= \binom{n}{k} \frac{(1 - p_0^M) p^k (1 - p)^{n - k}}{1 - (1 - p)^n}, \quad k = 1, 2, \dots, n \end{align*} \subsubsection{Zero-modified logarithmic} \begin{itemize} \item Root: \code{zmlogarithmic} \item Parameters: \code{prob} ($0 \leq p < 1$), \code{p0} ($0 \leq p_0^M \leq 1$) \end{itemize} \begin{align*} a &= p, \qquad b = -p, \qquad p_1 = - \frac{(1 - p_0^M) p}{\log (1 - p)} \\ p_k &= - \frac{(1 - p_0^M) p^k}{k \log (1 - p)} \end{align*} \subsection{Other distribution} \label{sec:app:discrete:pig} \subsubsection{Poisson-inverse Gaussian} \begin{itemize} \item Root: \code{poisinvgauss}, \code{pig} \item Parameters: \code{mean} ($\mu > 0$), \code{shape} ($\lambda = 1/\phi$), \code{dispersion} ($\phi > 0$) \end{itemize} \begin{align*} p_x &= \sqrt{\frac{2}{\pi \phi}} \frac{e^{(\phi\mu)^{-1}}}{x!} \left( \sqrt{2\phi \left( 1 + \frac{1}{2\phi\mu^2} \right)} \right)^{-(x - \frac{1}{2})} \\ &\phantom{=} \times K_{x - 1/2} \left( \sqrt{\frac{2}{\phi}\left(1 + \frac{1}{2\phi\mu^2}\right)} \right), \quad x = 0, 1, \dots, \end{align*} \noindent% Recursively: \begin{align*} p_0 &= \exp\left\{ \frac{1}{\phi\mu} \left(1 - \sqrt{1 + 2\phi\mu^2}\right) \right\} \\ p_1 &= \frac{\mu}{\sqrt{1 + 2\phi\mu^2}}\, p_0 \\ p_x &= \frac{2\phi\mu^2}{1 + 2\phi\mu^2} \left( 1 - \frac{3}{2x} \right) p_{x - 1} + \frac{\mu^2}{1 + 2\phi\mu^2} \frac{1}{x(x - 1)}\, p_{x - 2}, \quad x = 2, 3, \dots. \end{align*} \noindent% In the limiting case $\mu = \infty$, the pmf reduces to \begin{equation*} p_x = \sqrt{\frac{2}{\pi \phi}} \frac{1}{x!} (\sqrt{2\phi})^{-(x - \frac{1}{2})} K_{x - \frac{1}{2}} (\sqrt{2/\phi}), \quad x = 0, 1, \dots \end{equation*} and the recurrence relations become \begin{align*} p_0 &= \exp\left\{-\sqrt{2/\phi}\right\} \\ p_1 &= \frac{1}{\sqrt{2\phi}}\, p_0 \\ p_x &= \left( 1 - \frac{3}{2x} \right) p_{x - 1} + \frac{1}{2\phi} \frac{1}{x(x - 1)}\, p_{x - 2}, \quad x = 2, 3, \dots. \end{align*} %% References \bibliography{actuar} \end{document} %%% Local Variables: %%% mode: noweb %%% coding: utf-8 %%% TeX-master: t %%% End: actuar/vignettes/auto/0000755000176200001440000000000014127325224014513 5ustar liggesusersactuar/vignettes/auto/coverage.el0000644000176200001440000000266314054210153016630 0ustar liggesusers(TeX-add-style-hook "coverage" (lambda () (TeX-add-to-alist 'LaTeX-provided-class-options '(("article" "x11names" "english"))) (TeX-add-to-alist 'LaTeX-provided-package-options '(("fontenc" "T1") ("inputenc" "utf8") ("natbib" "round") ("helvet" "scaled=0.9") ("mathpazo" "sc") ("enumitem" "shortlabels") ("Sweave" "noae"))) (add-to-list 'LaTeX-verbatim-environments-local "Verbatim") (add-to-list 'LaTeX-verbatim-environments-local "lstlisting") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "href") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperref") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperimage") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperbaseurl") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "nolinkurl") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "url") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "path") (add-to-list 'LaTeX-verbatim-macros-with-delims-local "path") (TeX-run-style-hooks "latex2e" "article" "art10" "fontenc" "inputenc" "amsmath" "natbib" "babel" "helvet" "mathpazo" "enumitem" "Sweave" "xcolor" "hyperref") (TeX-add-symbols '("code" 1) '("pkg" 1) "D") (LaTeX-add-bibliographies "actuar") (LaTeX-add-xcolor-definecolors "link" "url" "citation" "codebg")) :latex) actuar/vignettes/auto/risk.el0000644000176200001440000000515514054206331016007 0ustar liggesusers(TeX-add-style-hook "risk" (lambda () (TeX-add-to-alist 'LaTeX-provided-class-options '(("article" "x11names" "english"))) (TeX-add-to-alist 'LaTeX-provided-package-options '(("fontenc" "T1") ("inputenc" "utf8") ("natbib" "round") ("babel" "english") ("helvet" "scaled=0.9") ("mathpazo" "sc") ("enumitem" "shortlabels") ("Sweave" "noae" "inconsolata"))) (add-to-list 'LaTeX-verbatim-environments-local "Verbatim") (add-to-list 'LaTeX-verbatim-environments-local "lstlisting") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "href") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperref") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperimage") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperbaseurl") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "nolinkurl") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "url") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "path") (add-to-list 'LaTeX-verbatim-macros-with-delims-local "path") (TeX-run-style-hooks "latex2e" "article" "art10" "fontenc" "inputenc" "amsmath" "natbib" "babel" "helvet" "mathpazo" "enumitem" "Sweave" "framed" "xcolor" "hyperref") (TeX-add-symbols '("code" 1) '("pkg" 1) '("mat" 1) '("VAR" 1) '("E" 1) "VaR" "CTE" "FrameCommand") (LaTeX-add-labels "sec:introduction" "sec:collective-risk-model" "eq:definition-S" "eq:cdf-S" "eq:convolution-formula" "sec:discretization" "eq:discretization:upper" "eq:discretization:lower" "eq:discretization:midpoint" "eq:discretization:unbiased" "fig:discretization-methods" "sec:aggregate" "eq:normal-approximation" "eq:np2-approximation" "fig:Fs" "eq:VaR" "eq:CTE" "fig:Fs-comparison" "sec:ruin-model" "eq:definition-surplus" "eq:definition-ruin" "eq:definition-S(t)" "eq:definition-wait" "sec:adjustment-coefficient" "eq:definition-adjcoef" "eq:definition-adjcoef-ind" "eq:definition-adjcoef-prop" "eq:definition-adjcoef-xl" "fig:adjcoef" "sec:ruin" "eq:ruin-cramer-lundberg" "eq:prob-ruin:cramer-lundberg" "eq:prob-ruin:sparre:pi+" "eq:eq:prob-ruin:sparre:Q" "eq:kronecker-sum" "fig:prob-ruin" "sec:beekman" "eq:beekman:prob-ruin" "eq:beekman:p" "eq:beekman:H" "eq:beekman:prob-ruin-long" "fig:beekman:prob-ruin") (LaTeX-add-bibliographies "actuar") (LaTeX-add-xcolor-definecolors "link" "url" "citation" "codebg")) :latex) actuar/vignettes/auto/simulation.el0000644000176200001440000000345214054211742017223 0ustar liggesusers(TeX-add-style-hook "simulation" (lambda () (TeX-add-to-alist 'LaTeX-provided-class-options '(("article" "x11names" "english"))) (TeX-add-to-alist 'LaTeX-provided-package-options '(("fontenc" "T1") ("inputenc" "utf8") ("natbib" "round") ("helvet" "scaled=0.9") ("mathpazo" "sc") ("enumitem" "shortlabels") ("Sweave" "noae" "inconsolata"))) (add-to-list 'LaTeX-verbatim-environments-local "Verbatim") (add-to-list 'LaTeX-verbatim-environments-local "lstlisting") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "href") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperref") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperimage") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperbaseurl") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "nolinkurl") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "url") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "path") (add-to-list 'LaTeX-verbatim-macros-with-delims-local "path") (TeX-run-style-hooks "latex2e" "article" "art10" "fontenc" "inputenc" "amsmath" "amsthm" "natbib" "babel" "helvet" "mathpazo" "enumitem" "Sweave" "framed" "xcolor" "hyperref") (TeX-add-symbols '("code" 1) '("pkg" 1) "exampleautorefname" "FrameCommand") (LaTeX-add-labels "sec:introduction" "sec:rmixture" "eq:mixture" "sec:rcompound" "eq:definition-S" "ex:comppois" "sec:rcomphierarc" "eq:basic_model" "sec:rcomphierarc:description" "sec:rcomphierarc:usage") (LaTeX-add-bibliographies "actuar") (LaTeX-add-amsthm-newtheorems "example") (LaTeX-add-xcolor-definecolors "link" "url" "citation" "codebg")) :latex) actuar/vignettes/auto/credibility.el0000644000176200001440000000357214054210301017333 0ustar liggesusers(TeX-add-style-hook "credibility" (lambda () (TeX-add-to-alist 'LaTeX-provided-class-options '(("article" "x11names" "english"))) (TeX-add-to-alist 'LaTeX-provided-package-options '(("fontenc" "T1") ("inputenc" "utf8") ("natbib" "round") ("helvet" "scaled=0.9") ("mathpazo" "sc") ("Sweave" "noae" "inconsolata") ("enumitem" "shortlabels"))) (add-to-list 'LaTeX-verbatim-environments-local "Verbatim") (add-to-list 'LaTeX-verbatim-environments-local "lstlisting") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "href") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperref") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperimage") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperbaseurl") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "nolinkurl") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "url") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "path") (add-to-list 'LaTeX-verbatim-macros-with-delims-local "path") (TeX-run-style-hooks "latex2e" "article" "art10" "fontenc" "inputenc" "amsmath" "natbib" "babel" "helvet" "mathpazo" "Sweave" "enumitem" "framed" "xcolor" "hyperref") (TeX-add-symbols '("code" 1) '("pkg" 1) '("E" 1) "pt" "FrameCommand") (LaTeX-add-labels "sec:introduction" "sec:hachemeister" "sec:hierarchical" "eq:hierarchical:premiums" "eq:s2" "eq:Xbzzw" "eq:ac-BG" "eq:bc-BG" "eq:ac-Ohl" "eq:bc-Ohl" "eq:at" "eq:bt" "eq:Xzzw" "sec:buhlmann" "eq:a-hat" "eq:a-tilde" "sec:regression" "fig:state4" "fig:state4:2" "sec:bayes" "sec:formulas") (LaTeX-add-bibliographies "actuar") (LaTeX-add-xcolor-definecolors "link" "url" "citation" "codebg")) :latex) actuar/vignettes/auto/actuar.el0000644000176200001440000000177114127325224016322 0ustar liggesusers(TeX-add-style-hook "actuar" (lambda () (LaTeX-add-bibitems "Abramowitz:1972" "Arnold:pareto:2ed" "AsmussenRolski_91" "BJ_87" "BS_70" "Bateman:1953:2" "BeekmanFormula_EAS" "Beekman_68" "Buhlmann:regression:1997" "Buhlmann_69" "Buhlmann_Gisler" "Centeno_02" "Dalgaard:r-help:2005" "Daykin_et_al" "DenuitCharpentier1" "GSL" "Gerber_MRT" "Goulet:lossdist:2008" "Goulet:simpf:2008" "Goulet_JAP" "Goulet_cfs" "Hachemeister_75" "HoggKlugman" "Holla:PIG:1966" "Jewell_75" "Johnson:discrete:2005" "LivreVert" "LossModels" "LossModels2e" "LossModels3e" "LossModels4e" "MART" "MART:2e" "MASS" "Matrix" "Neuts_81" "Ohlsson" "Panjer_81" "R-exts" "Scollnik:2001:MCMC" "Shaban:PIG:1981" "SuppDists" "Thomopoulos:2013:simulation" "cm" "expint" "statmod") (LaTeX-add-environments '("exercice" LaTeX-env-args ["argument"] 0))) :bibtex) actuar/vignettes/auto/distributions.el0000644000176200001440000000471114054211121017727 0ustar liggesusers(TeX-add-style-hook "distributions" (lambda () (TeX-add-to-alist 'LaTeX-provided-class-options '(("article" "x11names" "english"))) (TeX-add-to-alist 'LaTeX-provided-package-options '(("fontenc" "T1") ("inputenc" "utf8") ("natbib" "round") ("helvet" "scaled=0.92") ("mathpazo" "sc") ("Sweave" "noae" "inconsolata") ("enumitem" "shortlabels"))) (add-to-list 'LaTeX-verbatim-environments-local "Verbatim") (add-to-list 'LaTeX-verbatim-environments-local "lstlisting") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "href") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperref") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperimage") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperbaseurl") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "nolinkurl") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "url") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "path") (add-to-list 'LaTeX-verbatim-macros-with-delims-local "path") (TeX-run-style-hooks "latex2e" "article" "art10" "fontenc" "inputenc" "amsmath" "natbib" "babel" "microtype" "helvet" "mathpazo" "Sweave" "booktabs" "enumitem" "framed" "xcolor" "hyperref") (TeX-add-symbols '("mat" 1) '("VAR" 1) '("E" 1) '("file" 1) '("samp" 1) '("code" 1) '("pkg" 1) "LAS" "FrameCommand") (LaTeX-add-labels "sec:introduction" "sec:continuous" "tab:continuous" "fig:diagram:fp-family" "fig:diagram:trgamma-family" "sec:phase-type" "eq:Markov-transition-matrix" "eq:cdf-phtype" "eq:matrix-exponential" "sec:discrete" "tab:discrete" "eq:mixture" "eq:mixture:alt" "sec:pig" "eq:pig:px" "eq:bessel_k" "eq:pig:px:recursive" "sec:special-integrals" "eq:pgamma" "eq:pbeta" "eq:gammainc" "eq:gammainc:apos" "eq:expint" "eq:betaint" "eq:betaint:2" "sec:api" "sec:implementation" "sec:app:continuous" "sec:app:continuous:feller-pareto" "sec:app:continuous:transformed-gamma" "sec:app:continuous:other" "sec:app:phase-type" "sec:app:discrete" "sec:app:discrete:a-b-0" "sec:app:discrete:zt" "sec:app:discrete:zm" "sec:app:discrete:pig") (LaTeX-add-bibliographies "actuar") (LaTeX-add-xcolor-definecolors "link" "url" "citation" "codebg")) :latex) actuar/vignettes/auto/modeling.el0000644000176200001440000000401414055737142016640 0ustar liggesusers(TeX-add-style-hook "modeling" (lambda () (TeX-add-to-alist 'LaTeX-provided-class-options '(("article" "x11names" "english"))) (TeX-add-to-alist 'LaTeX-provided-package-options '(("fontenc" "T1") ("inputenc" "utf8") ("natbib" "round") ("numprint" "autolanguage") ("helvet" "scaled=0.9") ("mathpazo" "sc") ("enumitem" "shortlabels") ("Sweave" "noae" "inconsolata"))) (add-to-list 'LaTeX-verbatim-environments-local "Verbatim") (add-to-list 'LaTeX-verbatim-environments-local "lstlisting") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "href") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperref") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperimage") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperbaseurl") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "nolinkurl") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "url") (add-to-list 'LaTeX-verbatim-macros-with-braces-local "path") (add-to-list 'LaTeX-verbatim-macros-with-delims-local "path") (TeX-run-style-hooks "latex2e" "article" "art10" "fontenc" "inputenc" "amsmath" "amsthm" "natbib" "babel" "numprint" "helvet" "mathpazo" "booktabs" "enumitem" "Sweave" "framed" "xcolor" "hyperref") (TeX-add-symbols '("code" 1) '("pkg" 1) '("mat" 1) '("VAR" 1) '("E" 1) "LAS" "exampleautorefname" "FrameCommand") (LaTeX-add-labels "sec:introduction" "sec:grouped-data" "ex:grouped.data-1" "ex:grouped.data-2" "fig:histogram" "eq:ecdf" "ex:ogive" "fig:ogive" "sec:data-sets" "sec:empirical-moments" "fig:elev" "sec:minimum-distance" "ex:mde" "sec:coverage" "tab:coverage" "ex:coverage" "eq:pdf-YP") (LaTeX-add-bibliographies "actuar") (LaTeX-add-amsthm-newtheorems "example" "rem") (LaTeX-add-xcolor-definecolors "link" "url" "citation" "codebg")) :latex) actuar/vignettes/modeling.Rnw0000644000176200001440000005761714125442656016060 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath,amsthm} \usepackage[round]{natbib} \usepackage{babel} \usepackage[autolanguage]{numprint} \usepackage[scaled=0.9]{helvet} \usepackage[sc]{mathpazo} \usepackage{booktabs} \usepackage[shortlabels]{enumitem} \usepackage[noae,inconsolata]{Sweave} \usepackage{framed} %\VignetteIndexEntry{Loss distributions modeling} %\VignettePackage{actuar} %\SweaveUTF8 \title{Loss modeling features of \pkg{actuar}} \author{Christophe Dutang \\ UniversitĂ© Paris Dauphine \\[3ex] Vincent Goulet \\ UniversitĂ© Laval \\[3ex] Mathieu Pigeon \\ UniversitĂ© du QuĂ©bec Ă  MontrĂ©al} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Help for \autoref \def\exampleautorefname{example} %% Sweave Sinput and Soutput environments reinitialized to remove %% default configuration. Space between input and output blocks also %% reduced. \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{} \fvset{listparameters={\setlength{\topsep}{0pt}}} %% Environment Schunk redefined as an hybrid of environments %% snugshade* and leftbar of framed.sty. \makeatletter \renewenvironment{Schunk}{% \setlength{\topsep}{1pt} \def\FrameCommand##1{\hskip\@totalleftmargin \vrule width 2pt\colorbox{codebg}{\hspace{3pt}##1}% % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \advance\labelsep\fboxsep \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \makeatother %% Flush left enumerate environment. \setlist[enumerate]{leftmargin=*,align=left} %% Example environment \theoremstyle{definition} \newtheorem{example}{Example} \theoremstyle{remark} \newtheorem{rem}{Remark} %% Some new commands \newcommand{\E}[1]{E[ #1 ]} \newcommand{\VAR}[1]{\mathrm{Var} [ #1 ]} \newcommand{\LAS}{\mathrm{LAS}} \newcommand{\mat}[1]{\mathbold{#1}} % with mathpazo \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\code}[1]{\texttt{#1}} \bibliographystyle{plainnat} <>= library(actuar) options(width = 52, digits = 4) @ \begin{document} \maketitle \section{Introduction} \label{sec:introduction} One important task of actuaries is the modeling of claim amount and claim count distributions for ratemaking, loss reserving or other risk evaluation purposes. Package \pkg{actuar} features many support functions for loss distributions modeling: \begin{enumerate} \item support for heavy tail continuous distributions useful in loss severity modeling; \item support for phase-type distributions for ruin theory; \item functions to compute raw moments, limited moments and the moment generating function (when it exists) of continuous distributions; \item support for zero-truncated and zero-modified extensions of the discrete distributions commonly used in loss frequency modeling; \item extensive support of grouped data; \item functions to compute empirical raw and limited moments; \item support for minimum distance estimation using three different measures; \item treatment of coverage modifications (deductibles, limits, inflation, coinsurance). \end{enumerate} Vignette \code{"distributions"} covers the points 1--4 above in great detail. This document concentrates on points 5--8. \section{Grouped data} \label{sec:grouped-data} Grouped data is data represented in an interval-frequency manner. Typically, a grouped data set will report that there were $n_j$ claims in the interval $(c_{j - 1}, c_j]$, $j = 1, \dots, r$ (with the possibility that $c_r = \infty$). This representation is much more compact than an individual data set --- where the value of each claim is known --- but it also carries far less information. Now that storage space in computers has essentially become a non issue, grouped data has somewhat fallen out of fashion. Still, grouped data remains useful as a means to represent data, if only graphically --- for example, a histogram is nothing but a density approximation for grouped data. Moreover, various parameter estimation techniques rely on grouped data. For these reasons, \pkg{actuar} provides facilities to store, manipulate and summarize grouped data. A standard storage method is needed since there are many ways to represent grouped data in the computer: using a list or a matrix, aligning $n_j$ with $c_{j - 1}$ or with $c_j$, omitting $c_0$ or not, etc. With appropriate extraction, replacement and summary methods, manipulation of grouped data becomes similar to that of individual data. Function \code{grouped.data} creates a grouped data object similar to --- and inheriting from --- a data frame. The function accepts two types of input: \begin{enumerate} \item a vector of group boundaries $c_0, c_1, \dots, c_r$ and one or more vectors of group frequencies $n_1, \dots, n_r$ (note that there should be one more group boundary than group frequencies); \item individual data $x_1, \dots, x_n$ and either a vector of breakpoints $c_1, \dots, c_r$, a number $r$ of breakpoints or an algorithm to determine the latter. \end{enumerate} In the second case, \code{grouped.data} will group the individual data using function \code{hist}. The function always assumes that the intervals are contiguous. \begin{example} \label{ex:grouped.data-1} Consider the following already grouped data set: \begin{center} \begin{tabular}{lcc} \toprule Group & Frequency (Line 1) & Frequency (Line 2) \\ \midrule $(0, 25]$ & 30 & 26 \\ $(25, 50]$ & 31 & 33 \\ $(50, 100]$ & 57 & 31 \\ $(100, 150]$ & 42 & 19 \\ $(150, 250]$ & 65 & 16 \\ $(250, 500]$ & 84 & 11 \\ \bottomrule \end{tabular} \end{center} We can conveniently and unambiguously store this data set in R as follows: <>= x <- grouped.data(Group = c(0, 25, 50, 100, 150, 250, 500), Line.1 = c(30, 31, 57, 42, 65, 84), Line.2 = c(26, 33, 31, 19, 16, 11)) @ Internally, object \code{x} is a list with class <>= class(x) @ The package provides a suitable \code{print} method to display grouped data objects in an intuitive manner: <>= x @ \qed \end{example} \begin{example} \label{ex:grouped.data-2} Consider Data Set~B of \citet[Table~11.2]{LossModels4e}: \begin{center} \begin{tabular}{*{10}{r}} 27 & 82 & 115 & 126 & 155 & 161 & 243 & 294 & 340 & 384 \\ 457 & 680 & 855 & 877 & 974 & \numprint{1193} & \numprint{1340} & \numprint{1884} & \numprint{2558} & \numprint{15743} \end{tabular} \end{center} We can represent this data set as grouped data using either an automatic or a suggested number of groups (see \code{?hist} for details): <>= y <- c( 27, 82, 115, 126, 155, 161, 243, 294, 340, 384, 457, 680, 855, 877, 974, 1193, 1340, 1884, 2558, 15743) grouped.data(y) # automatic grouped.data(y, breaks = 5) # suggested @ The above grouping methods use equi-spaced breaks. This is rarely appropriate for heavily skewed insurance data. For this reason, \code{grouped.data} also supports specified breakpoints (or group boundaries): <>= grouped.data(y, breaks = c(0, 100, 200, 350, 750, 1200, 2500, 5000, 16000)) @ \qed \end{example} The package supports the most common extraction and replacement methods for \code{"grouped.data"} objects using the usual \code{[} and \code{[<-} operators. In particular, the following extraction operations are supported. (In the following, object \code{x} is the grouped data object of \autoref{ex:grouped.data-1}.) <>= x <- grouped.data(Group = c(0, 25, 50, 100, 150, 250, 500), Line.1 = c(30, 31, 57, 42, 65, 84), Line.2 = c(26, 33, 31, 19, 16, 11)) @ \begin{enumerate}[i)] \item Extraction of the vector of group boundaries (the first column): <>= x[, 1] # group boundaries @ \item Extraction of the vector or matrix of group frequencies (the second and third columns): <>= x[, -1] # group frequencies @ \item Extraction of a subset of the whole object (first three lines): <>= x[1:3, ] # first 3 groups @ \end{enumerate} Notice how extraction results in a simple vector or matrix if either of the group boundaries or the group frequencies are dropped. As for replacement operations, the package implements the following. \begin{enumerate}[i)] \item Replacement of one or more group frequencies: <>= x[1, 2] <- 22; x # frequency replacement x[1, c(2, 3)] <- c(22, 19); x # frequency replacement @ \item Replacement of the boundaries of one or more groups: <>= x[1, 1] <- c(0, 20); x # boundary replacement x[c(3, 4), 1] <- c(55, 110, 160); x @ \end{enumerate} It is not possible to replace the boundaries and the frequencies simultaneously. The mean of grouped data is \begin{equation} \hat{\mu} = \frac{1}{n} \sum_{j = 1}^r a_j n_j, \end{equation} where $a_j = (c_{j - 1} + c_j)/2$ is the midpoint of the $j$th interval, and $n = \sum_{j = 1}^r n_j$, whereas the variance is \begin{equation} \frac{1}{n} \sum_{j = 1}^r n_j (a_j - \hat{\mu})^2. \end{equation} The standard deviation is the square root of the variance. The package defines methods to easily compute the above descriptive statistics: <>= mean(x) var(x) sd(x) @ Higher empirical moments can be computed with \code{emm}; see \autoref{sec:empirical-moments}. The R function \code{hist} splits individual data into groups and draws an histogram of the frequency distribution. The package introduces a method for already grouped data. Only the first frequencies column is considered (see \autoref{fig:histogram} for the resulting graph): <>= hist(x[, -3]) @ \begin{figure}[t] \centering <>= hist(x[, -3]) @ \caption{Histogram of a grouped data object} \label{fig:histogram} \end{figure} \begin{rem} One will note that for an individual data set like \code{y} of \autoref{ex:grouped.data-2}, the following two expressions yield the same result: <>= hist(y) # histogram method for individual data hist(grouped.data(y)) # histogram method for grouped data @ \end{rem} R has a function \code{ecdf} to compute the empirical cdf $F_n(x)$ of an individual data set: \begin{equation} \label{eq:ecdf} F_n(x) = \frac{1}{n} \sum_{j = 1}^n I\{x_j \leq x\}, \end{equation} where $I\{\mathcal{A}\} = 1$ if $\mathcal{A}$ is true and $I\{\mathcal{A}\} = 0$ otherwise. The function returns a \code{"function"} object to compute the value of $F_n(x)$ in any $x$. The approximation of the empirical cdf for grouped data is called an ogive \citep{LossModels4e,HoggKlugman}. It is obtained by joining the known values of $F_n(x)$ at group boundaries with straight line segments: \begin{equation} \tilde{F}_n(x) = \begin{cases} 0, & x \leq c_0 \\ \dfrac{(c_j - x) F_n(c_{j-1}) + (x - c_{j-1}) F_n(c_j)}{% c_j - c_{j - 1}}, & c_{j-1} < x \leq c_j \\ 1, & x > c_r. \end{cases} \end{equation} The package includes a generic function \code{ogive} with methods for individual and for grouped data. The function behaves exactly like \code{ecdf}. \begin{example} \label{ex:ogive} Consider first the grouped data set of \autoref{ex:grouped.data-1}. Function \code{ogive} returns a function to compute the ogive $\tilde{F}_n(x)$ in any point: <>= (Fnt <- ogive(x)) @ Methods for functions \code{knots} and \code{plot} allow, respectively, to obtain the knots $c_0, c_1, \dots, c_r$ of the ogive and to draw a graph (see \autoref{fig:ogive}): <>= knots(Fnt) # group boundaries Fnt(knots(Fnt)) # ogive at group boundaries plot(Fnt) # plot of the ogive @ \begin{figure}[t] \centering <>= plot(Fnt) @ \caption{Ogive of a grouped data object} \label{fig:ogive} \end{figure} To add further symmetry between functions \code{hist} and \code{ogive}, the latter also accepts in argument a vector individual data. It will call \code{grouped.data} and then computes the ogive. (Below, \code{y} is the individual data set of \autoref{ex:grouped.data-2}.) <>= (Fnt <- ogive(y)) knots(Fnt) @ \qed \end{example} A method of function \code{quantile} for grouped data objects returns linearly smoothed quantiles, that is, the inverse of the ogive evaluated at various points: <>= Fnt <- ogive(x) @ <>= quantile(x) Fnt(quantile(x)) @ Finally, a \code{summary} method for grouped data objects returns the quantiles and the mean, as is usual for individual data: <>= summary(x) @ \section{Data sets} \label{sec:data-sets} This is certainly not the most spectacular feature of \pkg{actuar}, but it remains useful for illustrations and examples: the package includes the individual dental claims and grouped dental claims data of \cite{LossModels4e}: <>= data("dental"); dental data("gdental"); gdental @ \section{Calculation of empirical moments} \label{sec:empirical-moments} The package provides two functions useful for estimation based on moments. First, function \code{emm} computes the $k$th empirical moment of a sample, whether in individual or grouped data form: <>= emm(dental, order = 1:3) # first three moments emm(gdental, order = 1:3) # idem @ Second, in the same spirit as \code{ecdf} and \code{ogive}, function \code{elev} returns a function to compute the empirical limited expected value --- or first limited moment --- of a sample for any limit. Again, there are methods for individual and grouped data (see \autoref{fig:elev} for the graphs): <>= lev <- elev(dental) lev(knots(lev)) # ELEV at data points plot(lev, type = "o", pch = 19) # plot of the ELEV function lev <- elev(gdental) lev(knots(lev)) # ELEV at data points plot(lev, type = "o", pch = 19) # plot of the ELEV function @ \begin{figure}[t] \centering <>= par(mfrow = c(1, 2)) plot(elev(dental), type = "o", pch = 19) plot(elev(gdental), type = "o", pch = 19) @ \caption{Empirical limited expected value function of an individual data object (left) and a grouped data object (right)} \label{fig:elev} \end{figure} \section{Minimum distance estimation} \label{sec:minimum-distance} Two methods are widely used by actuaries to fit models to data: maximum likelihood and minimum distance. The first technique applied to individual data is well covered by function \code{fitdistr} of the package \pkg{MASS} \citep{MASS}. The second technique minimizes a chosen distance function between theoretical and empirical distributions. Package \pkg{actuar} provides function \code{mde}, very similar in usage and inner working to \code{fitdistr}, to fit models according to any of the following three distance minimization methods. \begin{enumerate} \item The CramĂ©r-von~Mises method (\code{CvM}) minimizes the squared difference between the theoretical cdf and the empirical cdf or ogive at their knots: \begin{equation} d(\theta) = \sum_{j = 1}^n w_j [F(x_j; \theta) - F_n(x_j; \theta)]^2 \end{equation} for individual data and \begin{equation} d(\theta) = \sum_{j = 1}^r w_j [F(c_j; \theta) - \tilde{F}_n(c_j; \theta)]^2 \end{equation} for grouped data. Here, $F(x)$ is the theoretical cdf of a parametric family, $F_n(x)$ is the empirical cdf, $\tilde{F}_n(x)$ is the ogive and $w_1 \geq 0, w_2 \geq 0, \dots$ are arbitrary weights (defaulting to $1$). \item The modified chi-square method (\code{chi-square}) applies to grouped data only and minimizes the squared difference between the expected and observed frequency within each group: \begin{equation} d(\theta) = \sum_{j = 1}^r w_j [n (F(c_j; \theta) - F(c_{j - 1}; \theta)) - n_j]^2, \end{equation} where $n = \sum_{j = 1}^r n_j$. By default, $w_j = n_j^{-1}$. \item The layer average severity method (\code{LAS}) applies to grouped data only and minimizes the squared difference between the theoretical and empirical limited expected value within each group: \begin{equation} d(\theta) = \sum_{j = 1}^r w_j [\LAS(c_{j - 1}, c_j; \theta) - \tilde{\LAS}_n(c_{j - 1}, c_j; \theta)]^2, \end{equation} where $\LAS(x, y) = \E{X \wedge y} - \E{X \wedge x}$, % $\tilde{\LAS}_n(x, y) = \tilde{E}_n[X \wedge y] - \tilde{E}_n[X \wedge x]$ and $\tilde{E}_n[X \wedge x]$ is the empirical limited expected value for grouped data. \end{enumerate} The arguments of \code{mde} are a data set, a function to compute $F(x)$ or $\E{X \wedge x}$, starting values for the optimization procedure and the name of the method to use. The empirical functions are computed with \code{ecdf}, \code{ogive} or \code{elev}. \begin{example} \label{ex:mde} The expressions below fit an exponential distribution to the grouped dental data set, as per example~2.21 of \cite{LossModels}: <>= op <- options(warn = -1) # hide warnings from mde() @ <>= mde(gdental, pexp, start = list(rate = 1/200), measure = "CvM") mde(gdental, pexp, start = list(rate = 1/200), measure = "chi-square") mde(gdental, levexp, start = list(rate = 1/200), measure = "LAS") @ <>= options(op) # restore warnings @ \qed \end{example} It should be noted that optimization is not always as simple to achieve as in \autoref{ex:mde}. For example, consider the problem of fitting a Pareto distribution to the same data set using the CramĂ©r--von~Mises method: <>= mde(gdental, ppareto, start = list(shape = 3, scale = 600), measure = "CvM") # no convergence @ <>= out <- try(mde(gdental, ppareto, start = list(shape = 3, scale = 600), measure = "CvM"), silent = TRUE) cat(sub(", measure", ",\n measure", out)) @ Working in the log of the parameters often solves the problem since the optimization routine can then flawlessly work with negative parameter values: <>= pparetolog <- function(x, logshape, logscale) ppareto(x, exp(logshape), exp(logscale)) (p <- mde(gdental, pparetolog, start = list(logshape = log(3), logscale = log(600)), measure = "CvM")) @ The actual estimators of the parameters are obtained with <>= exp(p$estimate) @ %$ This procedure may introduce additional bias in the estimators, though. \section{Coverage modifications} \label{sec:coverage} Let $X$ be the random variable of the actual claim amount for an insurance policy, $Y^L$ be the random variable of the amount paid per loss and $Y^P$ be the random variable of the amount paid per payment. The terminology for the last two random variables refers to whether or not the insurer knows that a loss occurred. Now, the random variables $X$, $Y^L$ and $Y^P$ will differ if any of the following coverage modifications are present for the policy: an ordinary or a franchise deductible, a limit, coinsurance or inflation adjustment \cite[see][chapter~8 for precise definitions of these terms]{LossModels4e}. \autoref{tab:coverage} summarizes the definitions of $Y^L$ and $Y^P$. \begin{table} \centering \begin{tabular}{lll} \toprule Coverage modification & Per-loss variable ($Y^L$) & Per-payment variable ($Y^P$)\\ \midrule Ordinary deductible ($d$) & $\begin{cases} 0, & X \leq d \\ X - d, & X > d \end{cases}$ & $\begin{cases} X - d, & X > d \end{cases}$ \medskip \\ Franchise deductible ($d$) & $\begin{cases} 0, & X \leq d \\ X, & X > d \end{cases}$ & $\begin{cases} X, & X > d \end{cases} $ \medskip \\ Limit ($u$) & $\begin{cases} X, & X \leq u \\ u, & X > u \end{cases}$ & $\begin{cases} X, & X \leq u \\ u, & X > u \end{cases}$ \bigskip \\ Coinsurance ($\alpha$) & $\alpha X$ & $\alpha X$ \medskip \\ Inflation ($r$) & $(1 + r)X$ & $(1 + r)X$ \\ \bottomrule \end{tabular} \caption{Coverage modifications for per-loss variable ($Y^L$) and per-payment variable ($Y^P$) as defined in \cite{LossModels4e}.} \label{tab:coverage} \end{table} Often, one will want to use data $Y^P_1, \dots, Y^P_n$ (or $Y^L_1, \dots, Y^L_n$) from the random variable $Y^P$ ($Y^L$) to fit a model on the unobservable random variable $X$. This requires expressing the pdf or cdf of $Y^P$ ($Y^L$) in terms of the pdf or cdf of $X$. Function \code{coverage} of \pkg{actuar} does just that: given a pdf or cdf and any combination of the coverage modifications mentioned above, \code{coverage} returns a function object to compute the pdf or cdf of the modified random variable. The function can then be used in modeling like any other \code{dfoo} or \code{pfoo} function. \begin{example} \label{ex:coverage} Let $Y^P$ represent the amount paid by an insurer for a policy with an ordinary deductible $d$ and a limit $u - d$ (or maximum covered loss of $u$). Then the definition of $Y^P$ is \begin{equation} Y^P = \begin{cases} X - d, & d \leq X \leq u \\ u - d, & X \geq u \end{cases} \end{equation} and its pdf is \begin{equation} \label{eq:pdf-YP} f_{Y^P}(y) = \begin{cases} 0, & y = 0 \\ \dfrac{f_X(y + d)}{1 - F_X(d)}, & 0 < y < u - d \\ \dfrac{1 - F_X(u)}{1 - F_X(d)}, & y = u - d \\ 0, & y > u - d. \end{cases} \end{equation} Assume $X$ has a gamma distribution. Then an R function to compute the pdf \eqref{eq:pdf-YP} in any $y$ for a deductible $d = 1$ and a limit $u = 10$ is obtained with \code{coverage} as follows: <>= f <- coverage(pdf = dgamma, cdf = pgamma, deductible = 1, limit = 10) f f(0, shape = 5, rate = 1) f(5, shape = 5, rate = 1) f(9, shape = 5, rate = 1) f(12, shape = 5, rate = 1) @ \qed \end{example} Note how function \code{f} in the previous example is built specifically for the coverage modifications submitted and contains as little useless code as possible. The function returned by \code{coverage} may be used for various purposes, most notably parameter estimation, as the following example illustrates. \begin{example} Let object \code{y} contain a sample of claims amounts from policies with the deductible and limit of \autoref{ex:coverage}. One can fit a gamma distribution by maximum likelihood to the claim severity distribution as follows: <>= x <- rgamma(100, 2, 0.5) y <- pmin(x[x > 1], 9) op <- options(warn = -1) # hide warnings from fitdistr() @ <>= library(MASS) fitdistr(y, f, start = list(shape = 2, rate = 0.5)) @ <>= options(op) # restore warnings @ \qed \end{example} Vignette \code{"coverage"} contains more detailed formulas for the pdf and the cdf under various combinations of coverage modifications. \bibliography{actuar} \end{document} %%% Local Variables: %%% mode: noweb %%% TeX-master: t %%% coding: utf-8 %%% End: actuar/vignettes/framed.sty0000644000176200001440000005366114030725704015555 0ustar liggesusers% framed.sty v 0.96 2011/10/22 % Copyright (C) 1992-2011 by Donald Arseneau (asnd@triumf.ca) % These macros may be freely transmitted, reproduced, or modified % for any purpose provided that this notice is left intact. % %====================== Begin Instructions ======================= % % framed.sty % ~~~~~~~~~~ % Create framed, shaded, or differently highlighted regions that can % break across pages. The environments defined are % framed - ordinary frame box (\fbox) with edge at margin % oframed - framed with open top/bottom at page breaks % shaded - shaded background (\colorbox) bleeding into margin % shaded* - shaded background (\colorbox) with edge at margin % snugshade - shaded with tight fit around text (esp. in lists) % snugshade* - like snugshade with shading edge at margin % leftbar - thick vertical line in left margin % % to be used like % \begin{framed} % copious text % \end{framed} % % But the more general purpose of this package is to facilitate the % definition of new environments that take multi-line material, % wrap it with some non-breakable formatting (some kind of box or % decoration) and allow page breaks in the material. Such environments % are defined to declare (or use) \FrameCommand for applying the boxy % decoration, and \MakeFramed{settings} ... \endMakeFramed wrapped % around the main text argument (environment body). % % The "framed" environment uses "\fbox", by default, as its "\FrameCommand" % with the additional settings "\fboxrule=\FrameRule" and "\fboxsep=\FrameSep". % You can change these lengths (using "\setlength") and you can change % the definition of "\FrameCommand" to use much fancier boxes. % % In fact, the "shaded" environment just redefines \FrameCommand to be % "\colorbox{shadecolor}" (and you have to define the color `"shadecolor"': % "\definecolor{shadecolor}..."). % % Although the intention is for other packages to define the varieties % of decoration, a command "\OpenFbox" is defined for frames with open % tops or bottoms, and used for the "oframed" environment. This facility % is based on a more complex and capable command "\CustomFBox" which can % be used for a wider range of frame styles. One such style of a title-bar % frame with continuation marks is provided as an example. It is used by % the "titled-frame" environment. To make use of "titled-frame" in your % document, or the "\TitleBarFrame" command in your own environment % definitions, you must define the colors TFFrameColor (for the frame) % and a contrasting TFTitleColor (for the title text). % % A page break is allowed, and even encouraged, before the framed % environment. If you want to attach some text (a box title) to the % frame, then the text should be inserted by \FrameCommand so it cannot % be separated from the body. % % The contents of the framed regions are restricted: % Floats, footnotes, marginpars and head-line entries will be lost. % (Some of these may be handled in a later version.) % This package will not work with the page breaking of multicol.sty, % or other systems that perform column-balancing. % % The MakeFramed environment does the work. Its `settings' argument % should contain any adjustments to the text width (via a setting of % "\hsize"). Here, the parameter "\width" gives the measured extra width % added by the frame, so a common setting is "\advance\hsize-\width" % which reduces the width of the text just enough that the outer edge % of the frame aligns with the margins. The `settings' should also % include a `restore' command -- "\@parboxrestore" or "\FrameRestore" % or something similar; for instance, the snugshade environment uses % settings to eliminate list indents and vertical space, but uses % "\hspace" in "\FrameCommand" to reproduce the list margin ouside the % shading. % % There are actually four variants of "\FrameCommand" to allow different % formatting for each part of an environment broken over pages. Unbroken % text is adorned by "\FrameCommand", whereas split text first uses % "\FirstFrameCommand", possibly followed by "\MidFrameCommand", and % finishing with "\LastFrameCommand". The default definitions for % these three just invokes "\FrameCommand", so that all portions are % framed the same way. See the oframe environment for use of distinct % First/Mid/Last frames. % % Expert commands: % \MakeFramed, \endMakeFramed: the "MakeFramed" environment % \FrameCommand: command to draw the frame around its argument % \FirstFrameCommand: the frame for the first part of a split environment % \LastFrameCommand: for the last portion % \MidFrameCommand: for any intermediate segments % \FrameRestore: restore some text settings, but fewer than \@parboxrestore % \FrameRule: length register; \fboxrule for default "framed". % \FrameSep: length register; \fboxsep for default "framed". % \FrameHeightAdjust: macro; height of frame above baseline at top of page % \OuterFrameSep: vertical space before and after the framed env. Defaults to "\topsep" % % This is still a `pre-production' version because I can think of many % features/improvements that should be made. Also, a detailed manual needs % to be written. Nevertheless, starting with version 0.5 it should be bug-free. % % ToDo: % Test more varieties of list % Improve and correct documentation % Propagation of \marks % Handle footnotes (how??) floats (?) and marginpars. % Stretchability modification. % Make inner contents height/depth influence placement. %======================== End Instructions ======================== \ProvidesPackage{framed}[2011/10/22 v 0.96: framed or shaded text with page breaks] \newenvironment{framed}% using default \FrameCommand {\MakeFramed {\advance\hsize-\width \FrameRestore}}% {\endMakeFramed} \newenvironment{shaded}{% \def\FrameCommand{\fboxsep=\FrameSep \colorbox{shadecolor}}% \MakeFramed {\FrameRestore}}% {\endMakeFramed} \newenvironment{shaded*}{% \def\FrameCommand{\fboxsep=\FrameSep \colorbox{shadecolor}}% \MakeFramed {\advance\hsize-\width \FrameRestore}}% {\endMakeFramed} \newenvironment{leftbar}{% \def\FrameCommand{\vrule width 3pt \hspace{10pt}}% \MakeFramed {\advance\hsize-\width \FrameRestore}}% {\endMakeFramed} % snugshde: Shaded environment that % -- uses the default \fboxsep instead of \FrameSep % -- leaves the text indent unchanged (shading bleeds out) % -- eliminates possible internal \topsep glue (\@setminipage) % -- shrinks inside the margins for lists % An \item label will tend to hang outside the shading, thanks to % the small \fboxsep. \newenvironment{snugshade}{% \def\FrameCommand##1{\hskip\@totalleftmargin \hskip-\fboxsep \colorbox{shadecolor}{##1}\hskip-\fboxsep % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \newenvironment{snugshade*}{% \def\FrameCommand##1{\hskip\@totalleftmargin \colorbox{shadecolor}{##1}% % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \advance\labelsep\fboxsep \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \newenvironment{oframed}{% open (top or bottom) framed \def\FrameCommand{\OpenFBox\FrameRule\FrameRule}% \def\FirstFrameCommand{\OpenFBox\FrameRule\z@}% \def\MidFrameCommand{\OpenFBox\z@\z@}% \def\LastFrameCommand{\OpenFBox\z@\FrameRule}% \MakeFramed {\advance\hsize-\width \FrameRestore}% }{\endMakeFramed} % A simplified entry to \CustomFBox with two customized parameters: % the thicknesses of the top and bottom rules. Perhaps we want to % use less \fboxsep on the open edges? \def\OpenFBox#1#2{\fboxsep\FrameSep \CustomFBox{}{}{#1}{#2}\FrameRule\FrameRule} % \CustomFBox is like an amalgamation of \fbox and \@frameb@x, % so it can be used by an alternate to \fbox or \fcolorbox, but % it has more parameters for various customizations. % Parameter #1 is inserted (in vmode) right after the top rule % (useful for a title or assignments), and #2 is similar, but % inserted right above the bottom rule. % The thicknesses of the top, bottom, left, and right rules are % given as parameters #3,#4,#5,#6 respectively. They should be % \fboxrule or \z@ (or some other thickness). % The text argument is #7. % An instance of this can be used for the frame of \fcolorbox by % locally defining \fbox before \fcolorbox; e.g., % \def\fbox{\CustomFBox{}{}\z@\z@\fboxrule\fboxrule}\fcolorbox % % Do we need to use different \fboxsep on different sides too? % \long\def\CustomFBox#1#2#3#4#5#6#7{% \leavevmode\begingroup \setbox\@tempboxa\hbox{% \color@begingroup \kern\fboxsep{#7}\kern\fboxsep \color@endgroup}% \hbox{% % Here we calculate and shift for the depth. Done in % a group because one of the arguments might be \@tempdima % (we could use \dimexpr instead without grouping). \begingroup \@tempdima#4\relax \advance\@tempdima\fboxsep \advance\@tempdima\dp\@tempboxa \expandafter\endgroup\expandafter \lower\the\@tempdima\hbox{% \vbox{% \hrule\@height#3\relax #1% \hbox{% \vrule\@width#5\relax \vbox{% \vskip\fboxsep % maybe these should be parameters too \copy\@tempboxa \vskip\fboxsep}% \vrule\@width#6\relax}% #2% \hrule\@height#4\relax}% }% }% \endgroup } % A particular type of titled frame with continuation marks. % Parameter #1 is the title, repeated on each page. \newenvironment{titled-frame}[1]{% \def\FrameCommand{\fboxsep8pt\fboxrule2pt \TitleBarFrame{\textbf{#1}}}% \def\FirstFrameCommand{\fboxsep8pt\fboxrule2pt \TitleBarFrame[$\blacktriangleright$]{\textbf{#1}}}% \def\MidFrameCommand{\fboxsep8pt\fboxrule2pt \TitleBarFrame[$\blacktriangleright$]{\textbf{#1\ (cont)}}}% \def\LastFrameCommand{\fboxsep8pt\fboxrule2pt \TitleBarFrame{\textbf{#1\ (cont)}}}% \MakeFramed{\advance\hsize-20pt \FrameRestore}}% % note: 8 + 2 + 8 + 2 = 20. Don't use \width because the frame title % could interfere with the width measurement. {\endMakeFramed} % \TitleBarFrame[marker]{title}{contents} % Frame with a label at top, optional continuation marker at bottom right. % Frame color is TFFrameColor and title color is a contrasting TFTitleColor; % both need to be defined before use. The frame itself use \fboxrule and % \fboxsep. If the title is omitted entirely, the title bar is omitted % (use a blank space to force a blank title bar). % \newcommand\TitleBarFrame[3][]{\begingroup \ifx\delimiter#1\delimiter \let\TF@conlab\@empty \else \def\TF@conlab{% continuation label \nointerlineskip \smash{\rlap{\kern\wd\@tempboxa\kern\fboxrule\kern\fboxsep #1}}}% \fi \let\TF@savecolor\current@color \textcolor{TFFrameColor}{% \CustomFBox {\TF@Title{#2}}{\TF@conlab}% \fboxrule\fboxrule\fboxrule\fboxrule {\let\current@color\TF@savecolor\set@color #3}% }\endgroup } % The title bar for \TitleBarFrame \newcommand\TF@Title[1]{% \ifx\delimiter#1\delimiter\else \kern-0.04pt\relax \begingroup \setbox\@tempboxa\vbox{% \kern0.8ex \hbox{\kern\fboxsep\textcolor{TFTitleColor}{#1}\vphantom{Tj)}}% \kern0.8ex}% \hrule\@height\ht\@tempboxa \kern-\ht\@tempboxa \box\@tempboxa \endgroup \nointerlineskip \kern-0.04pt\relax \fi } \chardef\FrameRestore=\catcode`\| % for debug \catcode`\|=\catcode`\% % (debug: insert space after backslash) \newlength\OuterFrameSep \OuterFrameSep=\maxdimen \relax \def\MakeFramed#1{\par % apply default \OuterFrameSep = \topsep \ifdim\OuterFrameSep=\maxdimen \OuterFrameSep\topsep \fi % measure added width and height; call result \width and \height \fb@sizeofframe\FrameCommand \let\width\fb@frw \let\height\fb@frh % insert pre-penalties and skips \begingroup \skip@\lastskip \if@nobreak\else \penalty9999 % updates \page parameters \ifdim\pagefilstretch=\z@ \ifdim\pagefillstretch=\z@ % not infinitely stretchable, so encourage a page break here \edef\@tempa{\the\skip@}% \ifx\@tempa\zero@glue \penalty-30 \else \vskip-\skip@ \penalty-30 \vskip\skip@ \fi\fi\fi \penalty\z@ % Give a stretchy breakpoint that will always be taken in preference % to the \penalty 9999 used to update page parameters. The cube root % of 10000/100 indicates a multiplier of 0.21545, but the maximum % calculated badness is really 8192, not 10000, so the multiplier % is 0.2301. \advance\skip@ \z@ plus-.5\baselineskip \advance\skip@ \z@ plus-.231\height \advance\skip@ \z@ plus-.231\skip@ \advance\skip@ \z@ plus-.231\OuterFrameSep \vskip-\skip@ \penalty 1800 \vskip\skip@ \fi \addvspace{\OuterFrameSep}% \endgroup % clear out pending page break \penalty\@M \vskip 2\baselineskip \vskip\height \penalty9999 \vskip -2\baselineskip \vskip-\height \penalty9999 % updates \pagetotal |\message{After clearout, \pagetotal=\the\pagetotal, \pagegoal=\the\pagegoal. }% \fb@adjheight \setbox\@tempboxa\vbox\bgroup #1% Modifications to \hsize (can use \width and \height) \textwidth\hsize \columnwidth\hsize } \def\endMakeFramed{\par \kern\z@ \hrule\@width\hsize\@height\z@ % possibly bad \penalty-100 % (\hrule moves depth into height) \egroup %%% {\showoutput\showbox\@tempboxa}% \begingroup \fb@put@frame\FrameCommand\FirstFrameCommand \endgroup \@minipagefalse % In case it was set and not cleared } % \fb@put@frame takes the contents of \@tempboxa and puts all, or a piece, % of it on the page with a frame (\FrameCommand, \FirstFrameCommand, % \MidFrameCommand, or \LastFrameCommand). It recurses until all of % \@tempboxa has been used up. (\@tempboxa must have zero depth.) % #1 = attempted framing command, if no split % #2 = framing command if split % First iteration: Try to fit with \FrameCommand. If it does not fit, % split for \FirstFrameCommand. % Later iteration: Try to fit with \LastFrameCommand. If it does not % fit, split for \MidFrameCommand. \def\fb@put@frame#1#2{\relax \ifdim\pagegoal=\maxdimen \pagegoal\vsize \fi | \message{=============== Entering putframe ====================^^J | \pagegoal=\the\pagegoal, \pagetotal=\the\pagetotal. }% \ifinner \fb@putboxa#1% \fb@afterframe \else \dimen@\pagegoal \advance\dimen@-\pagetotal % natural space left on page \ifdim\dimen@<2\baselineskip % Too little room on page | \message{Page has only \the\dimen@\space room left; eject. }% \eject \fb@adjheight \fb@put@frame#1#2% \else % there's appreciable room left on the page \fb@sizeofframe#1% | \message{\string\pagetotal=\the\pagetotal, | \string\pagegoal=\the\pagegoal, | \string\pagestretch=\the\pagestretch, | \string\pageshrink=\the\pageshrink, | \string\fb@frh=\the\fb@frh. \space} | \message{^^JBox of size \the\ht\@tempboxa\space}% \begingroup % temporarily set \dimen@ to be... \advance\dimen@.8\pageshrink % maximum space available on page \advance\dimen@-\fb@frh\relax % max space available for frame's contents %%% LOOKS SUBTRACTED AND ADDED, SO DOUBLE ACCOUNTING! \expandafter\endgroup % expand \ifdim, then restore \dimen@ to real room left on page \ifdim\dimen@>\ht\@tempboxa % whole box does fit | \message{fits in \the\dimen@. }% % ToDo: Change this to use vsplit anyway to capture the marks % MERGE THIS WITH THE else CLAUSE!!! \fb@putboxa#1% \fb@afterframe \else % box must be split | \message{must be split to fit in \the\dimen@. }% % update frame measurement to use \FirstFrameCommand or \MidFrameCommand \fb@sizeofframe#2% \setbox\@tempboxa\vbox{% simulate frame and flexiblity of the page: \vskip \fb@frh \@plus\pagestretch \@minus.8\pageshrink \kern137sp\kern-137sp\penalty-30 \unvbox\@tempboxa}% \edef\fb@resto@set{\boxmaxdepth\the\boxmaxdepth \splittopskip\the\splittopskip}% \boxmaxdepth\z@ \splittopskip\z@ | \message{^^JPadded box of size \the\ht\@tempboxa\space split to \the\dimen@}% % Split box here \setbox\tw@\vsplit\@tempboxa to\dimen@ | \toks99\expandafter{\splitfirstmark}% | \toks98\expandafter{\splitbotmark}% | \message{Marks are: \the\toks99, \the\toks98. }% \setbox\tw@\vbox{\unvbox\tw@}% natural-sized | \message{Natural height of split box is \the\ht\tw@, leaving | \the\ht\@tempboxa\space remainder. }% % If the split-to size > (\vsize-\topskip), then set box to full size. \begingroup \advance\dimen@\topskip \expandafter\endgroup \ifdim\dimen@>\pagegoal | \message{Frame is big -- Use up the full column. }% \dimen@ii\pagegoal \advance\dimen@ii -\topskip \advance\dimen@ii \FrameHeightAdjust\relax \else % suspect this is implemented incorrectly: % If the split-to size > feasible room_on_page, rebox it smaller. \advance\dimen@.8\pageshrink \ifdim\ht\tw@>\dimen@ | \message{Box too tall; rebox it to \the\dimen@. }% \dimen@ii\dimen@ \else % use natural size \dimen@ii\ht\tw@ \fi \fi % Re-box contents to desired size \dimen@ii \advance\dimen@ii -\fb@frh \setbox\tw@\vbox to\dimen@ii \bgroup % remove simulated frame and page flexibility: \vskip -\fb@frh \@plus-\pagestretch \@minus-.8\pageshrink \unvbox\tw@ \unpenalty\unpenalty \ifdim\lastkern=-137sp % whole box went to next page | \message{box split at beginning! }% % need work here??? \egroup \fb@resto@set \eject % (\vskip for frame size was discarded) \fb@adjheight \fb@put@frame#1#2% INSERTED ??? \else % Got material split off at the head \egroup \fb@resto@set \ifvoid\@tempboxa % it all fit after all | \message{box split at end! }% \setbox\@tempboxa\box\tw@ \fb@putboxa#1% \fb@afterframe \else % it really did split | \message{box split as expected. Its reboxed height is \the\ht\tw@. }% \ifdim\wd\tw@>\z@ \wd\tw@\wd\@tempboxa \centerline{#2{\box\tw@}}% ??? \centerline bad idea \else | \message{Zero width means likely blank. Don't frame it (guess)}% \box\tw@ \fi \hrule \@height\z@ \@width\hsize \eject \fb@adjheight \fb@put@frame\LastFrameCommand\MidFrameCommand \fi\fi\fi\fi\fi } \def\fb@putboxa#1{% \ifvoid\@tempboxa \PackageWarning{framed}{Boxa is void -- discard it. }% \else | \message{Frame and place boxa. }% | %{\showoutput\showbox\@tempboxa}% \centerline{#1{\box\@tempboxa}}% \fi } \def\fb@afterframe{% \nointerlineskip \null %{\showoutput \showlists} \penalty-30 \vskip\OuterFrameSep \relax } % measure width and height added by frame (#1 = frame command) % call results \fb@frw and \fb@frh % todo: a mechanism to handle wide frame titles \newdimen\fb@frw \newdimen\fb@frh \def\fb@sizeofframe#1{\begingroup \setbox\z@\vbox{\vskip-5in \hbox{\hskip-5in #1{\hbox{\vrule \@height 4.7in \@depth.3in \@width 5in}}}% \vskip\z@skip}% | \message{Measuring frame addition for \string#1 in \@currenvir\space | gives ht \the\ht\z@\space and wd \the\wd\z@. }% | %{\showoutput\showbox\z@}% \global\fb@frw\wd\z@ \global\fb@frh\ht\z@ \endgroup } \def\fb@adjheight{% \vbox to\FrameHeightAdjust{}% get proper baseline skip from above. \penalty\@M \nointerlineskip \vskip-\FrameHeightAdjust \penalty\@M} % useful for tops of pages \edef\zero@glue{\the\z@skip} \catcode`\|=\FrameRestore % Provide configuration commands: \providecommand\FrameCommand{% \setlength\fboxrule{\FrameRule}\setlength\fboxsep{\FrameSep}% \fbox} \@ifundefined{FrameRule}{\newdimen\FrameRule \FrameRule=\fboxrule}{} \@ifundefined{FrameSep} {\newdimen\FrameSep \FrameSep =3\fboxsep}{} \providecommand\FirstFrameCommand{\FrameCommand} \providecommand\MidFrameCommand{\FrameCommand} \providecommand\LastFrameCommand{\FrameCommand} % Height of frame above first baseline when frame starts a page: \providecommand\FrameHeightAdjust{6pt} % \FrameRestore has parts of \@parboxrestore, performing a similar but % less complete restoration of the default layout. See how it is used in % the "settings" argument of \MakeFrame. Though not a parameter, \hsize % should be set to the desired total line width available inside the % frame before invoking \FrameRestore. \def\FrameRestore{% \let\if@nobreak\iffalse \let\if@noskipsec\iffalse \let\-\@dischyph \let\'\@acci\let\`\@accii\let\=\@acciii % \message{FrameRestore: % \@totalleftmargin=\the \@totalleftmargin, % \rightmargin=\the\rightmargin, % \@listdepth=\the\@listdepth. }% % Test if we are in a list (or list-like paragraph) \ifnum \ifdim\@totalleftmargin>\z@ 1\fi \ifdim\rightmargin>\z@ 1\fi \ifnum\@listdepth>\z@ 1\fi 0>\z@ % \message{In a list: \linewidth=\the\linewidth, \@totalleftmargin=\the\@totalleftmargin, % \parshape=\the\parshape, \columnwidth=\the\columnwidth, \hsize=\the\hsize, % \labelwidth=\the\labelwidth. }% \@setminipage % snug fit around the item. I would like this to be non-global. % Now try to propageate changes of width from \hsize to list parameters. % This is deficient, but a more advanced way to indicate modification to text % dimensions is not (yet) provided; in particular, no separate left/right % adjustment. \advance\linewidth-\columnwidth \advance\linewidth\hsize \parshape\@ne \@totalleftmargin \linewidth \else % Not in list \linewidth=\hsize %\message{No list, set \string\linewidth=\the\hsize. }% \fi \sloppy } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% actuar/vignettes/risk.Rnw0000644000176200001440000010247214055040227015206 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage[round]{natbib} \usepackage[english]{babel} \usepackage[scaled=0.9]{helvet} \usepackage[sc]{mathpazo} \usepackage[shortlabels]{enumitem} \usepackage[noae,inconsolata]{Sweave} \usepackage{framed} %\VignetteIndexEntry{Risk and ruin theory} %\VignettePackage{actuar} %\SweaveUTF8 \title{Risk and ruin theory features of \pkg{actuar}} \author{Christophe Dutang \\ UniversitĂ© Paris Dauphine \\[3ex] Vincent Goulet \\ UniversitĂ© Laval \\[3ex] Mathieu Pigeon \\ UniversitĂ© du QuĂ©bec Ă  MontrĂ©al} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Sweave Sinput and Soutput environments reinitialized to remove %% default configuration. Space between input and output blocks also %% reduced. \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{} \fvset{listparameters={\setlength{\topsep}{0pt}}} %% Environment Schunk redefined as an hybrid of environments %% snugshade* and leftbar of framed.sty. \makeatletter \renewenvironment{Schunk}{% \setlength{\topsep}{1pt} \def\FrameCommand##1{\hskip\@totalleftmargin \vrule width 2pt\colorbox{codebg}{\hspace{3pt}##1}% % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \advance\labelsep\fboxsep \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \makeatother %% Flush left enumerate environment. \setlist[enumerate]{leftmargin=*,align=left} %% Some new commands \newcommand{\E}[1]{E[ #1 ]} \newcommand{\VAR}[1]{\mathrm{Var} [ #1 ]} \newcommand{\VaR}{\mathrm{VaR}} \newcommand{\CTE}{\mathrm{CTE}} \newcommand{\mat}[1]{\mathbold{#1}} % with mathpazo \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\code}[1]{\texttt{#1}} \bibliographystyle{plainnat} <>= library(actuar) options(width = 52, digits = 4) @ \begin{document} \maketitle \section{Introduction} \label{sec:introduction} Risk theory refers to a body of techniques to model and measure the risk associated with a portfolio of insurance contracts. A first approach consists in modeling the distribution of total claims over a fixed period of time using the classical collective model of risk theory. A second input of interest to the actuary is the evolution of the surplus of the insurance company over many periods of time. In \emph{ruin theory}, the main quantity of interest is the probability that the surplus becomes negative, in which case technical ruin of the insurance company occurs. The interested reader can read more on these subjects in \cite{LossModels4e,Gerber_MRT,DenuitCharpentier1,MART:2e}, among others. The current version of \pkg{actuar} \citep{actuar} contains four visible functions related to the above problems: two for the calculation of the aggregate claim amount distribution and two for ruin probability calculations. \section{The collective risk model} \label{sec:collective-risk-model} Let random variable $S$ represent the aggregate claim amount (or total amount of claims) of a portfolio of independent risks over a fixed period of time, random variable $N$ represent the number of claims (or frequency) in the portfolio over that period, and random variable $C_j$ represent the amount of claim $j$ (or severity). Then, we have the random sum \begin{equation} \label{eq:definition-S} S = C_1 + \dots + C_N, \end{equation} where we assume that $C_1, C_2, \dots$ are mutually independent and identically distributed random variables each independent of $N$. The task at hand consists in evaluating numerically the cdf of $S$, given by \begin{align} \label{eq:cdf-S} F_S(x) &= \Pr[S \leq x] \notag \\ &= \sum_{n = 0}^\infty \Pr[S \leq x|N = n] p_n \notag \\ &= \sum_{n = 0}^\infty F_C^{*n}(x) p_n, \end{align} where $F_C(x) = \Pr[C \leq x]$ is the common cdf of $C_1, \dots, C_n$, $p_n = \Pr[N = n]$ and $F_C^{*n}(x) = \Pr[C_1 + \dots + C_n \leq x]$ is the $n$-fold convolution of $F_C(\cdot)$. If $C$ is discrete on $0, 1, 2, \dots$, one has \begin{equation} \label{eq:convolution-formula} F_C^{*k}(x) = \begin{cases} I\{x \geq 0\}, & k = 0 \\ F_C(x), & k = 1 \\ \sum_{y = 0}^x F_C^{*(k - 1)}(x - y) f_C(y), & k = 2, 3, \dots, \end{cases} \end{equation} where $I\{\mathcal{A}\} = 1$ if $\mathcal{A}$ is true and $I\{\mathcal{A}\} = 0$ otherwise. \section{Discretization of claim amount distributions} \label{sec:discretization} Some numerical techniques to compute the aggregate claim amount distribution (see \autoref{sec:aggregate}) require a discrete arithmetic claim amount distribution; that is, a distribution defined on $0, h, 2h, \dots$ for some step (or span, or lag) $h$. The package provides function \code{discretize} to discretize a continuous distribution. (The function can also be used to modify the support of an already discrete distribution, but this requires additional care.) Let $F(x)$ denote the cdf of the distribution to discretize on some interval $(a, b)$ and $f_x$ denote the probability mass at $x$ in the discretized distribution. Currently, \code{discretize} supports the following four discretization methods. \begin{enumerate} \item Upper discretization, or forward difference of $F(x)$: \begin{equation} \label{eq:discretization:upper} f_x = F(x + h) - F(x) \end{equation} for $x = a, a + h, \dots, b - h$. The discretized cdf is always above the true cdf. \item Lower discretization, or backward difference of $F(x)$: \begin{equation} \label{eq:discretization:lower} f_x = \begin{cases} F(a), & x = a \\ F(x) - F(x - h), & x = a + h, \dots, b. \end{cases} \end{equation} The discretized cdf is always under the true cdf. \item Rounding of the random variable, or the midpoint method: \begin{equation} \label{eq:discretization:midpoint} f_x = \begin{cases} F(a + h/2), & x = a \\ F(x + h/2) - F(x - h/2), & x = a + h, \dots, b - h. \end{cases} \end{equation} The true cdf passes exactly midway through the steps of the discretized cdf. \item Unbiased, or local matching of the first moment method: \begin{equation} \label{eq:discretization:unbiased} f_x = \begin{cases} \dfrac{\E{X \wedge a} - \E{X \wedge a + h}}{h} + 1 - F(a), & x = a \\ \dfrac{2 \E{X \wedge x} - \E{X \wedge x - h} - \E{X \wedge x + h}}{h}, & a < x < b \\ \dfrac{\E{X \wedge b} - \E{X \wedge b - h}}{h} - 1 + F(b), & x = b. \end{cases} \end{equation} The discretized and the true distributions have the same total probability and expected value on $(a, b)$. \end{enumerate} \autoref{fig:discretization-methods} illustrates the four methods. It should be noted that although very close in this example, the rounding and unbiased methods are not identical. \begin{figure}[t] \centering <>= fu <- discretize(plnorm(x), method = "upper", from = 0, to = 5) fl <- discretize(plnorm(x), method = "lower", from = 0, to = 5) fr <- discretize(plnorm(x), method = "rounding", from = 0, to = 5) fb <- discretize(plnorm(x), method = "unbiased", from = 0, to = 5, lev = levlnorm(x)) par(mfrow = c(2, 2), c(5, 2, 4, 2)) curve(plnorm(x), from = 0, to = 5, lwd = 2, main = "Upper", ylab = "F(x)") plot(stepfun(0:4, diffinv(fu)), pch = 20, add = TRUE) curve(plnorm(x), from = 0, to = 5, lwd = 2, main = "Lower", ylab = "F(x)") plot(stepfun(0:5, diffinv(fl)), pch = 20, add = TRUE) curve(plnorm(x), from = 0, to = 5, lwd = 2, main = "Rounding", ylab = "F(x)") plot(stepfun(0:4, diffinv(fr)), pch = 20, add = TRUE) curve(plnorm(x), from = 0, to = 5, lwd = 2, main = "Unbiased", ylab = "F(x)") plot(stepfun(0:5, diffinv(fb)), pch = 20, add = TRUE) ## curve(plnorm(x), from = 0, to = 5, lwd = 2, ylab = "F(x)") ## par(col = "blue") ## plot(stepfun(0:4, diffinv(fu)), pch = 19, add = TRUE) ## par(col = "red") ## plot(stepfun(0:5, diffinv(fl)), pch = 19, add = TRUE) ## par(col = "green") ## plot(stepfun(0:4, diffinv(fr)), pch = 19, add = TRUE) ## par(col = "magenta") ## plot(stepfun(0:5, diffinv(fb)), pch = 19, add = TRUE) ## legend(3, 0.3, legend = c("upper", "lower", "rounding", "unbiased"), ## col = c("blue", "red", "green", "magenta"), lty = 1, pch = 19, ## text.col = "black") @ \caption{Comparison of four discretization methods} \label{fig:discretization-methods} \end{figure} Usage of \code{discretize} is similar to R's plotting function \code{curve}. The cdf to discretize and, for the unbiased method only, the limited expected value function are passed to \code{discretize} as expressions in \code{x}. The other arguments are the upper and lower bounds of the discretization interval, the step $h$ and the discretization method. For example, upper and unbiased discretizations of a Gamma$(2, 1)$ distribution on $(0, 17)$ with a step of $0.5$ are achieved with, respectively, <>= fx <- discretize(pgamma(x, 2, 1), method = "upper", from = 0, to = 17, step = 0.5) fx <- discretize(pgamma(x, 2, 1), method = "unbiased", lev = levgamma(x, 2, 1), from = 0, to = 17, step = 0.5) @ Function \code{discretize} is written in a modular fashion making it simple to add other discretization methods if needed. \section{Calculation of the aggregate claim amount distribution} \label{sec:aggregate} Function \code{aggregateDist} serves as a unique front end for various methods to compute or approximate the cdf of the aggregate claim amount random variable $S$. Currently, five methods are supported. \begin{enumerate} \item Recursive calculation using the algorithm of \cite{Panjer_81}. This requires the severity distribution to be discrete arithmetic on $0, 1, 2, \dots, m$ for some monetary unit and the frequency distribution to be a member of either the $(a, b, 0)$ or $(a, b, 1)$ class of distributions \citep{LossModels4e}. (These classes contain the Poisson, binomial, negative binomial and logarithmic distributions and their zero-truncated and zero-modified extensions allowing for a zero or arbitrary mass at $x = 0$.) The general recursive formula is: \begin{displaymath} f_S(x) = \frac{(p_1 - (a + b)p_0)f_C(x) + \sum_{y=1}^{\min(x, m)}(a + by/x)f_C(y)f_S(x - y)}{1 - a f_C(0)}, \end{displaymath} with starting value $f_S(0) = P_N(f_C(0))$, where $P_N(\cdot)$ is the probability generating function of $N$. Probabilities are computed until their sum is arbitrarily close to 1. The recursions are done in C to dramatically increase speed. One difficulty the programmer is facing is the unknown length of the output. This was solved using a common, simple and fast technique: first allocate an arbitrary amount of memory and double this amount each time the allocated space gets full. \item Exact calculation by numerical convolutions using \eqref{eq:cdf-S} and \eqref{eq:convolution-formula}. This also requires a discrete severity distribution. However, there is no restriction on the shape of the frequency distribution. The package merely implements the sum \eqref{eq:cdf-S}, the convolutions being computed with R's function \code{convolve}, which in turn uses the Fast Fourier Transform. This approach is practical for small problems only, even on today's fast computers. \item Normal approximation of the cdf, that is \begin{equation} \label{eq:normal-approximation} F_S(x) \approx \Phi \left( \frac{x - \mu_S}{\sigma_S} \right), \end{equation} where $\mu_S = \E{S}$ and $\sigma_S^2 = \VAR{S}$. For most realistic models, this approximation is rather crude in the tails of the distribution. \item Normal Power II approximation of the cdf, that is \begin{equation} \label{eq:np2-approximation} F_S(x) \approx \Phi \left( -\frac{3}{\gamma_S} + \sqrt{\frac{9}{\gamma_S^2} + 1 + \frac{6}{\gamma_S} \frac{x - \mu_S}{\sigma_S}} \right), \end{equation} where $\gamma_S = \E{(S - \mu_S)^3}/\sigma_S^{3/2}$. The approximation is valid for $x > \mu_S$ only and performs reasonably well when $\gamma_S < 1$. See \cite{Daykin_et_al} for details. \item Simulation of a random sample from $S$ and approximation of $F_S(x)$ by the empirical cdf \begin{equation} F_n(x) = \frac{1}{n} \sum_{j = 1}^n I\{x_j \leq x\}. \end{equation} The simulation itself is done with function \code{simul} (see the \code{"simulation"} vignette). This function admits very general hierarchical models for both the frequency and the severity components. \end{enumerate} Here also, adding other methods to \code{aggregateDist} is simple due to its modular conception. The arguments of \code{aggregateDist} differ according to the chosen calculation method; see the help page for details. One interesting argument to note is \code{x.scale} to specify the monetary unit of the severity distribution. This way, one does not have to mentally do the conversion between the support of $0, 1, 2, \dots$ assumed by the recursive and convolution methods, and the true support of $S$. The recursive method fails when the expected number of claims is so large that $f_S(0)$ is numerically equal to zero. One solution proposed by \citet{LossModels4e} consists in dividing the appropriate parameter of the frequency distribution by $2^n$, with $n$ such that $f_S(0) > 0$ and the recursions can start. One then computes the aggregate claim amount distribution using the recursive method and then convolves the resulting distribution $n$ times with itself to obtain the final distribution. Function \code{aggregateDist} supports this procedure through its argument \code{convolve}. A common problem with the recursive method is failure to obtain a cumulative distribution function that reaching (close to) $1$. This is usually due to too coarse a discretization of the severity distribution. One should make sure to use a small enough discretization step and to discretize the severity distribution far in the right tail. The function \code{aggregateDist} returns an object of class \code{"aggregateDist"} inheriting from the \code{"function"} class. Thus, one can use the object as a function to compute the value of $F_S(x)$ in any $x$. For illustration purposes, consider the following model: the distribution of $S$ is a compound Poisson with parameter $\lambda = 10$ and severity distribution Gamma$(2, 1)$. To obtain an approximation of the cdf of $S$ we first discretize the gamma distribution on $(0, 22)$ with the unbiased method and a step of $0.5$, and then use the recursive method in \code{aggregateDist}: <>= fx <- discretize(pgamma(x, 2, 1), method = "unbiased", from = 0, to = 22, step = 0.5, lev = levgamma(x, 2, 1)) Fs <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx, lambda = 10, x.scale = 0.5) summary(Fs) # summary method @ Although useless here, the following is essentially equivalent, except in the far right tail for numerical reasons: <>= Fsc <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx, lambda = 5, convolve = 1, x.scale = 0.5) summary(Fsc) # summary method @ We return to object \code{Fs}. It contains an empirical cdf with support <>= knots(Fs) # support of Fs.b (knots) @ A nice graph of this function is obtained with a method of \code{plot} (see \autoref{fig:Fs}): <>= plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 60)) @ \begin{figure}[t] \centering <>= plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 60)) @ \caption{Graphic of the empirical cdf of $S$ obtained with the recursive method} \label{fig:Fs} \end{figure} The package defines a few summary methods to extract information from \code{"aggregateDist"} objects. First, there are methods of \code{mean} and \code{quantile} to easily compute the mean and obtain the quantiles of the approximate distribution: <>= mean(Fs) # empirical mean quantile(Fs) # quantiles quantile(Fs, 0.999) # quantiles @ Second, a method of \texttt{diff} gives easy access to the underlying probability mass function: <>= diff(Fs) @ Of course, this is defined (and makes sense) for the recursive, direct convolution and simulation methods only. Third, the package introduces the generic functions \code{VaR} and \code{CTE} (with alias \code{TVaR}) with methods for objects of class \code{"aggregateDist"}. The former computes the value-at-risk $\VaR_\alpha$ such that \begin{equation} \label{eq:VaR} \Pr[S \leq \VaR_\alpha] = \alpha, \end{equation} where $\alpha$ is the confidence level. Thus, the value-at-risk is nothing else than a quantile. As for the method of \code{CTE}, it computes the conditional tail expectation (also called Tail Value-at-Risk) \begin{equation} \label{eq:CTE} \CTE_\alpha = \E{S|S > \VaR_\alpha}. \end{equation} Here are examples using object \code{Fs} obtained above: <>= VaR(Fs) CTE(Fs) @ To conclude on the subject, \autoref{fig:Fs-comparison} shows the cdf of $S$ using five of the many combinations of discretization and calculation method supported by \pkg{actuar}. \begin{figure}[t] \centering <>= fx.u <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5, method = "upper") Fs.u <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx.u, lambda = 10, x.scale = 0.5) fx.l <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5, method = "lower") Fs.l <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx.l, lambda = 10, x.scale = 0.5) Fs.n <- aggregateDist("normal", moments = c(20, 60)) Fs.s <- aggregateDist("simulation", model.freq = expression(y = rpois(10)), model.sev = expression(y = rgamma(2, 1)), nb.simul = 10000) par(col = "black") plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 60), sub = "") par(col = "blue") plot(Fs.u, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "") par(col = "red") plot(Fs.l, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "") par(col = "green") plot(Fs.s, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "") par(col = "magenta") plot(Fs.n, add = TRUE, sub = "") legend(30, 0.4, c("recursive + unbiased", "recursive + upper", "recursive + lower", "simulation", "normal approximation"), col = c("black", "blue", "red", "green", "magenta"), lty = 1, text.col = "black") @ \caption{Comparison between the empirical or approximate cdf of $S$ obtained with five different methods} \label{fig:Fs-comparison} \end{figure} \section{The continuous time ruin model} \label{sec:ruin-model} We now turn to the multi-period ruin problem. Let $U(t)$ denote the surplus of an insurance company at time $t$, $c(t)$ denote premiums collected through time $t$, and $S(t)$ denote aggregate claims paid through time $t$. If $u$ is the initial surplus at time $t = 0$, then a mathematically convenient definition of $U(t)$ is \begin{equation} \label{eq:definition-surplus} U(t) = u + c(t) - S(t). \end{equation} As mentioned previously, technical ruin of the insurance company occurs when the surplus becomes negative. Therefore, the definition of the infinite time probability of ruin is \begin{equation} \label{eq:definition-ruin} \psi(u) = \Pr[U(t) < 0 \text{ for some } t \geq 0]. \end{equation} We define some other quantities needed in the sequel. Let $N(t)$ denote the number of claims up to time $t \geq 0$ and $C_j$ denote the amount of claim $j$. Then the definition of $S(t)$ is analogous to \eqref{eq:definition-S}: \begin{equation} \label{eq:definition-S(t)} S(t) = C_1 + \dots + C_{N(t)}, \end{equation} assuming $N(0) = 0$ and $S(t) = 0$ as long as $N(t) = 0$. Furthermore, let $T_j$ denote the time when claim $j$ occurs, such that $T_1 < T_2 < T_3 < \dots$ Then the random variable of the interarrival (or wait) time between claim $j - 1$ and claim $j$ is defined as $W_1 = T_1$ and \begin{equation} \label{eq:definition-wait} W_j = T_j - T_{j - 1}, \quad j \geq 2. \end{equation} For the rest of this discussion, we make the following assumptions: \begin{enumerate} \item premiums are collected at a constant rate $c$, hence $c(t) = ct$; \item the sequence $\{T_j\}_{j \geq 1}$ forms an ordinary renewal process, with the consequence that random variables $W_1, W_2, \dots$ are independent and identically distributed; \item claim amounts $C_1, C_2, \dots$ are independent and identically distributed. \end{enumerate} \section{Adjustment coefficient} \label{sec:adjustment-coefficient} The quantity known as the adjustment coefficient $\rho$ hardly has any physical interpretation, but it is useful as an approximation to the probability of ruin since we have the inequality \begin{displaymath} \psi(u) \leq e^{-\rho u}, \quad u \geq 0. \end{displaymath} The adjustment coefficient is defined as the smallest strictly positive solution (if it exists) of the Lundberg equation \begin{equation} \label{eq:definition-adjcoef} h(t) = \E{e^{t C - t c W}} = 1, \end{equation} where the premium rate $c$ satisfies the positive safety loading constraint $\E{C - cW} < 0$. If $C$ and $W$ are independent, as in the most common models, then the equation can be rewritten as \begin{equation} \label{eq:definition-adjcoef-ind} h(t) = M_C(t) M_W(-tc) = 1. \end{equation} Function \code{adjCoef} of \pkg{actuar} computes the adjustment coefficient $\rho$ from the following arguments: either the two moment generating functions $M_C(t)$ and $M_W(t)$ (thereby assuming independence) or else function $h(t)$; the premium rate $c$; the upper bound of the support of $M_C(t)$ or any other upper bound for $\rho$. For example, if $W$ and $C$ are independent, $W \sim \text{Exponential}(2)$, $C \sim \text{Exponential}(1)$ and the premium rate is $c = 2.4$ (for a safety loading of 20\% using the expected value premium principle), then the adjustment coefficient is <>= adjCoef(mgf.claim = mgfexp(x), mgf.wait = mgfexp(x, 2), premium.rate = 2.4, upper = 1) @ The function also supports models with proportional or excess-of-loss reinsurance \citep{Centeno_02}. Under the first type of treaty, an insurer pays a proportion $\alpha$ of every loss and the rest is paid by the reinsurer. Then, for fixed $\alpha$ the adjustment coefficient is the solution of \begin{equation} \label{eq:definition-adjcoef-prop} h(t) = \E{e^{t \alpha C - t c(\alpha) W}} = 1. \end{equation} Under an excess-of-loss treaty, the primary insurer pays each claim up to a limit $L$. Again, for fixed $L$, the adjustment coefficient is the solution of \begin{equation} \label{eq:definition-adjcoef-xl} h(t) = \E{e^{t \min(C, L) - t c(L) W}} = 1. \end{equation} For models with reinsurance, \code{adjCoef} returns an object of class \code{"adjCoef"} inheriting from the \code{"function"} class. One can then use the object to compute the adjustment coefficient for any retention rate $\alpha$ or retention limit $L$. The package also defines a method of \code{plot} for these objects. For example, using the same assumptions as above with proportional reinsurance and a 30\% safety loading for the reinsurer, the adjustment coefficient as a function of $\alpha \in [0, 1]$ is (see \autoref{fig:adjcoef} for the graph): <>= mgfx <- function(x, y) mgfexp(x * y) p <- function(x) 2.6 * x - 0.2 rho <- adjCoef(mgfx, mgfexp(x, 2), premium = p, upper = 1, reins = "prop", from = 0, to = 1) rho(c(0.75, 0.8, 0.9, 1)) plot(rho) @ \begin{figure}[t] \centering <>= plot(rho) @ \caption{Adjustment coefficient as a function of the retention rate} \label{fig:adjcoef} \end{figure} \section{Probability of ruin} \label{sec:ruin} In this subsection, we always assume that interarrival times and claim amounts are independent. The main difficulty with the calculation of the infinite time probability of ruin lies in the lack of explicit formulas except for the most simple models. If interarrival times are Exponential$(\lambda)$ distributed (Poisson claim number process) and claim amounts are Exponential$(\beta)$ distributed, then \begin{equation} \label{eq:ruin-cramer-lundberg} \psi(u) = \frac{\lambda}{c \beta}\, e^{-(\beta - \lambda/c) u}. \end{equation} If the frequency assumption of this model is defensible, the severity assumption can hardly be used beyond illustration purposes. Fortunately, phase-type distributions have come to the rescue since the early 1990s. \cite{AsmussenRolski_91} first show that in the classical CramĂ©r--Lundberg model where interarrival times are Exponential$(\lambda)$ distributed, if claim amounts are Phase-type$(\mat{\pi}, \mat{T})$ distributed, then $\psi(u) = 1 - F(u)$, where $F$ is Phase-type$(\mat{\pi}_+, \mat{Q})$ with \begin{equation} \label{eq:prob-ruin:cramer-lundberg} \begin{split} \mat{\pi}_+ &= - \frac{\lambda}{c}\, \mat{\pi} \mat{T}^{-1} \\ \mat{Q} &= \mat{T} + \mat{t} \mat{\pi}_+, \end{split} \end{equation} and $\mat{t} = -\mat{T} \mat{e}$, $\mat{e}$ is a column vector with all components equal to 1; see the \code{"lossdist"} vignette for details. In the more general Sparre~Andersen model where interarrival times can have any Phase-type$(\mat{\nu}, \mat{S})$ distribution, \cite{AsmussenRolski_91} also show that using the same claim severity assumption as above, one still has $\psi(u) = 1 - F(u)$ where $F$ is Phase-type$(\mat{\pi}_+, \mat{Q})$, but with parameters \begin{equation} \label{eq:prob-ruin:sparre:pi+} \mat{\pi}_+ = \frac{\mat{e}^\prime (\mat{Q} - \mat{T})}{% c \mat{e}^\prime \mat{t}} \end{equation} and $\mat{Q}$ solution of \begin{equation} \label{eq:eq:prob-ruin:sparre:Q} \begin{split} \mat{Q} &= \Psi(\mat{Q}) \\ &= \mat{T} - \mat{t} \mat{\pi} \left[ (\mat{I}_n \otimes \mat{\nu}) (\mat{Q} \oplus \mat{S})^{-1} (\mat{I}_n \otimes \mat{s}) \right]. \end{split} \end{equation} In the above, $\mat{s} = -\mat{S} \mat{e}$, $\mat{I}_n$ is the $n \times n$ identity matrix, $\otimes$ denotes the usual Kronecker product between two matrices and $\oplus$ is the Kronecker sum defined as \begin{equation} \label{eq:kronecker-sum} \mat{A}_{m \times m} \oplus \mat{B}_{n \times n} = \mat{A} \otimes \mat{I}_n + \mat{B} \otimes \mat{I}_m. \end{equation} Function \code{ruin} of \pkg{actuar} returns a function object of class \code{"ruin"} to compute the probability of ruin for any initial surplus $u$. In all cases except the exponential/exponential model where \eqref{eq:ruin-cramer-lundberg} is used, the output object calls function \code{pphtype} to compute the ruin probabilities. Some thought went into the interface of \code{ruin}. Obviously, all models can be specified using phase-type distributions, but the authors wanted users to have easy access to the most common models involving exponential and Erlang distributions. Hence, one first states the claim amount and interarrival times models with any combination of \code{"exponential"}, \code{"Erlang"} and \code{"phase-type"}. Then, one passes the parameters of each model using lists with components named after the corresponding parameters of \code{dexp}, \code{dgamma} and \code{dphtype}. If a component \code{"weights"} is found in a list, the model is a mixture of exponential or Erlang (mixtures of phase-type are not supported). Every component of the parameter lists is recycled as needed. The following examples should make the matter clearer. (All examples use $c = 1$, the default value in \code{ruin}.) First, for the exponential/exponential model, one has <>= psi <- ruin(claims = "e", par.claims = list(rate = 5), wait = "e", par.wait = list(rate = 3)) psi psi(0:10) @ Second, for a mixture of two exponentials claim amount model and exponential interarrival times, the simplest call to \code{ruin} is <>= op <- options(width=50) @ <>= ruin(claims = "e", par.claims = list(rate = c(3, 7), weights = 0.5), wait = "e", par.wait = list(rate = 3)) @ Finally, one will obtain a function to compute ruin probabilities in a model with phase-type claim amounts and mixture of exponentials interarrival times with <>= prob <- c(0.5614, 0.4386) rates <- matrix(c(-8.64, 0.101, 1.997, -1.095), 2, 2) ruin(claims = "p", par.claims = list(prob = prob, rates = rates), wait = "e", par.wait = list(rate = c(5, 1), weights = c(0.4, 0.6))) @ To ease plotting of the probability of ruin function, the package provides a method of \code{plot} for objects returned by \code{ruin} that is a simple wrapper for \code{curve} (see \autoref{fig:prob-ruin}): <>= psi <- ruin(claims = "p", par.claims = list(prob = prob, rates = rates), wait = "e", par.wait = list(rate = c(5, 1), weights = c(0.4, 0.6))) plot(psi, from = 0, to = 50) @ <>= options(op) @ \begin{figure}[t] \centering <>= plot(psi, from = 0, to = 50) @ \caption{Graphic of the probability of ruin as a function of the initial surplus $u$} \label{fig:prob-ruin} \end{figure} \section{Approximation to the probability of ruin} \label{sec:beekman} When the model for the aggregate claim process \eqref{eq:definition-S(t)} does not fit nicely into the framework of the previous section, one can compute ruin probabilities using the so-called Beekman's convolution formula \citep{Beekman_68,BeekmanFormula_EAS}. Let the surplus process and the aggregate claim amount process be defined as in \eqref{eq:definition-surplus} and \eqref{eq:definition-S(t)}, respectively, and let $\{N(t)\}$ be a Poisson process with mean $\lambda$. As before, claim amounts $C_1, C_2, \dots$ are independent and identically distributed with cdf $P(\cdot)$ and mean $\mu = \E{C_1}$. Then the infinite time probability of ruin is given by \begin{equation} \label{eq:beekman:prob-ruin} \psi(u) = 1 - F(u), \end{equation} where $F(\cdot)$ is Compound~Geometric$(p, H)$ with \begin{equation} \label{eq:beekman:p} p = 1 - \frac{\lambda \mu}{c} \end{equation} and \begin{equation} \label{eq:beekman:H} H(x) = \int_0^x \frac{1 - P(y)}{\mu}\, dy. \end{equation} In other words, we have (compare with \eqref{eq:cdf-S}): \begin{equation} \label{eq:beekman:prob-ruin-long} \psi(u) = 1 - \sum_{n = 0}^\infty H^{*n}(u) p (1 - p)^n. \end{equation} In most practical situations, numerical evaluation of \eqref{eq:beekman:prob-ruin-long} is done using Panjer's recursive formula. This usually requires discretization of $H(\cdot)$. In such circumstances, Beekman's formula yields approximate ruin probabilities. For example, let claim amounts have a Pareto$(5, 4)$ distribution, that is \begin{displaymath} P(x) = 1 - \left( \frac{4}{4 + x} \right)^5 \end{displaymath} and $\mu = 1$. Then \begin{align*} H(x) &= \int_0^x \left( \frac{4}{4 + y} \right)^5 dy \\ &= 1 - \left( \frac{4}{4 + x} \right)^4, \end{align*} or else $H$ is Pareto$(4, 4)$. Furthermore, we determine the premium rate $c$ with the expected value premium principle and a safety loading of 20\%, that is $c = 1.2 \lambda \mu$. Thus, $p = 0.2/1.2 = 1/6$. One can get functions to compute lower bounds and upper bounds for $F(u)$ with functions \code{discretize} and \code{aggregateDist} as follows: <>= f.L <- discretize(ppareto(x, 4, 4), from = 0, to = 200, step = 1, method = "lower") f.U <- discretize(ppareto(x, 4, 4), from = 0, to = 200, step = 1, method = "upper") F.L <- aggregateDist(method = "recursive", model.freq = "geometric", model.sev = f.L, prob = 1/6) F.U <- aggregateDist(method = "recursive", model.freq = "geometric", model.sev = f.U, prob = 1/6) @ Corresponding functions for the probability of ruin $\psi(u)$ lower and upper bounds are (see \autoref{fig:beekman:prob-ruin} for the graphic): <>= psi.L <- function(u) 1 - F.U(u) psi.U <- function(u) 1 - F.L(u) u <- seq(0, 50, by = 5) cbind(lower = psi.L(u), upper = psi.U(u)) curve(psi.L, from = 0, to = 100, col = "blue") curve(psi.U, add = TRUE, col = "green") @ \begin{figure}[t] \centering <>= curve(psi.L, from = 0, to = 100, col = "blue") curve(psi.U, add = TRUE, col = "green") @ \caption{Lower and upper bounds for the probability of ruin as determined using Beekman's convolution formula.} \label{fig:beekman:prob-ruin} \end{figure} One can make the bounds as close as one wishes by reducing the discretization step. \bibliography{actuar} \end{document} %%% Local Variables: %%% mode: noweb %%% TeX-master: t %%% coding: utf-8 %%% End: actuar/vignettes/actuar.bib0000644000176200001440000003054314173361070015505 0ustar liggesusers@string{AB = {ASTIN Bulletin}} @string{IME = {Insurance: Mathematics and Economics}} @string{MVSVM = {Bulletin of the Swiss Association of Actuaries}} @string{NAAJ = {North American Actuarial Journal}} @Book{Abramowitz:1972, author = {Abramowitz, M. and Stegun, I. A.}, title = {Handbook of Mathematical Functions}, publisher = {Dover}, year = 1972, url = {http://people.math.sfu.ca/~cbm/aands/}, language = {english} } @Book{Arnold:pareto:2ed, author = {Arnold, B. C.}, title = {{P}areto Distributions}, publisher = {{CRC} {P}ress}, year = 2015, edition = 2, isbn = {978-1-46658485-3} } @Article{AsmussenRolski_91, author = {Asmussen, S. and Rolski, T.}, title = {Computational methods in risk theory: a matrix-algorithmic approach}, journal = IME, year = 1991, volume = 10, pages = {259-274}, language = {english} } @Article{BJ_87, author = {BĂŒhlmann, H. and Jewell, W. S.}, title = {Hierarchical credibility revisited}, year = 1987, journal = MVSVM, volume = 87, pages = {35-54}, language = {english} } @Article{BS_70, author = {BĂŒhlmann, H. and Straub, E.}, title = {GlaubgwĂŒrdigkeit fĂŒr {S}chadensĂ€tze}, year = 1970, journal = MVSVM, volume = 70, pages = {111-133} } @Book{Bateman:1953:2, author = {Bateman, H.}, title = {Higher transcendental functions}, volume = 2, publisher = {McGraw-Hill}, year = 1953, } @InCollection{BeekmanFormula_EAS, author = {Kass, R.}, title = {Beekman's convolution formula}, booktitle = {Encyclopedia of actuarial science}, publisher = {Wiley}, year = 2004, editor = {J. L. Teugels and B. Sundt}, volume = 1, ISBN = {0-4708467-6-3}, language = {english} } @Article{Beekman_68, author = {Beekman, J. A.}, title = {Collective risk results}, journal = {Transactions of the Society of Actuaries}, year = 1968, volume = 20, pages = {182-199}, language = {english} } @Article{Buhlmann:regression:1997, author = {BĂŒhlmann, H. and Gisler, A.}, title = {Credibility in the regression case revisited}, journal = AB, year = 1997, volume = 27, pages = {83-98}, language = {english} } @Article{Buhlmann_69, author = {BĂŒhlmann, H.}, title = {Experience rating and credibility}, year = 1969, journal = AB, volume = 5, pages = {157-165}, language = {english} } @Book{Buhlmann_Gisler, author = {BĂŒhlmann, H. and Gisler, A.}, title = {A course in credibility theory and its applications}, publisher = {Springer}, year = 2005, isbn = {3-5402575-3-5}, language = {english} } @Article{Centeno_02, author = {Centeno, M. {d.} L.}, title = {Measuring the effects of reinsurance by the adjustment coefficient in the Sparre-Anderson model}, journal = IME, year = 2002, volume = 30, pages = {37-49} } @Misc{Dalgaard:r-help:2005, author = {Dalgaard, P.}, title = {simulate zero-truncated {P}oisson distribution}, howpublished = {\texttt{r-help} mailing list}, month = {May 1}, year = 2005, url = {https://stat.ethz.ch/pipermail/r-help/2005-May/070680.html}, language = {english} } @Book{Daykin_et_al, author = {Daykin, C.D. and PentikĂ€inen, T. and Pesonen, M.}, title = {Practical Risk Theory for Actuaries}, publisher = {Chapman \& Hall}, year = 1994, address = {London}, isbn = {0-4124285-0-4}, language = {english} } @Book{DenuitCharpentier1, author = {Denuit, M. and Charpentier, A.}, title = {Math\'ematiques de l'assurance non-vie}, publisher = {Economica}, year = 2004, volume = {1, Principes fondamentaux de th\'eorie du risque}, address = {Paris}, isbn = {2-7178485-4-1}, language = {francais} } @Manual{GSL, title = {{GNU} Scientific Library Reference Manual}, author = {Galassi, M. and Davies, J. and Theiler, J. and Gough, B. and Jungman, G. and Alken P. and Booth, M. and Rossi, F. and Ulerich, R.}, edition = {Third}, isbn = {0-95461207-8}, url = {https://www.gnu.org/software/gsl/}, language = {english} } @Book{Gerber_MRT, author = {Gerber, H. U.}, title = {An Introduction to Mathematical Risk Theory}, publisher = {Huebner Foundation}, year = 1979, address = {Philadelphia}, language = {english} } @Article{Goulet:lossdist:2008, author = {Goulet, V. and Pigeon, M.}, title = {Statistical Modeling of Loss Distributions Using \pkg{actuar}}, journal = {R News}, year = 2008, volume = 8, number = 1, pages = {34-40}, month = {May}, url = {http://cran.r-project.org/doc/Rnews/Rnews_2008-1.pdf}, language = {english} } @Article{Goulet:simpf:2008, author = {Goulet, V. and Pouliot, L.-P.}, title = {Simulation of Compound Hierarchical Models in {R}}, journal = NAAJ, year = 2008, volume = 12, pages = {401-412}, language = {english} } @Article{Goulet_JAP, author = {Goulet, V.}, title = {Principles and application of credibility theory}, year = 1998, journal = {Journal of Actuarial Practice}, volume = 6, pages = {5-62}, language = {english} } @Article{Goulet_cfs, author = {Forgues, A. and Goulet, V. and Lu, J.}, title = {Credibility for severity revisited}, journal = NAAJ, year = 2006, volume = 10, number = 1, pages = {49-62}, language = {english} } @InProceedings{Hachemeister_75, author = {Hachemeister, C. A.}, title = {Credibility for Regression Models with Application to Trend}, year = 1975, booktitle = {Credibility, theory and applications}, series = {Proceedings of the berkeley Actuarial Research Conference on Credibility}, pages = {129-163}, publisher = {Academic Press}, address = {New York}, language = {english} } @Book{HoggKlugman, author = {Hogg, R. V. and Klugman, S. A.}, title = {Loss Distributions}, publisher = {Wiley}, year = 1984, address = {New York}, isbn = {0-4718792-9-0}, language = {english} } @Article{Holla:PIG:1966, author = {Holla, M. S.}, title = {On a {P}oisson-Inverse {G}aussian Distribution}, journal = {Metrika}, year = 1966, volume = 15, pages = {377-384}, language = {english} } @Article{Jewell_75, author = {Jewell, W. S.}, title = {The use of collateral data in credibility theory: a hierarchical model}, year = 1975, journal = {Giornale dell'Istituto Italiano degli Attuari}, volume = 38, pages = {1-16}, language = {english} } @Book{Johnson:discrete:2005, author = {Johnson, N. L. and Kemp, A. W. and Kotz, S.}, title = {Univariate Discrete Distributions}, publisher = {Wiley}, year = 2005, edition = 3, isbn = {978-047127246-5}, language = {english} } @Book{LivreVert, author = {Goovaerts, M. J. and Hoogstad, W. J.}, title = {Credibility theory}, series = {Surveys of actuarial studies}, number = 4, year = 1987, publisher = {Nationale-Nederlanden N.V.}, address = {Netherlands}, language = {english} } @Book{LossModels, author = {Klugman, S. A. and Panjer, H. H. and Willmot, G.}, title = {Loss Models: From Data to Decisions}, publisher = {Wiley}, year = 1998, address = {New York}, isbn = {0-4712388-4-8}, language = {english} } @Book{LossModels2e, author = {Klugman, S. A. and Panjer, H. H. and Willmot, G.}, title = {Loss Models: From Data to Decisions}, edition = 2, publisher = {Wiley}, year = 2004, address = {New York}, isbn = {0-4712157-7-5}, language = {english} } @Book{LossModels3e, author = {Klugman, S. A. and Panjer, H. H. and Willmot, G.}, title = {Loss Models: From Data to Decisions}, edition = 3, publisher = {Wiley}, year = 2008, address = {New York}, isbn = {978-0-4701878-1-4}, language = {english} } @Book{LossModels4e, author = {Klugman, S. A. and Panjer, H. H. and Willmot, G.}, title = {Loss Models: From Data to Decisions}, edition = 4, publisher = {Wiley}, year = 2012, address = {New York}, isbn = {978-1-118-31532-3}, language = {english} } @Book{MART, author = {Kaas, R. and Goovaerts, M. and Dhaene, J. and Denuit, M.}, title = {Modern actuarial risk theory}, publisher = {Kluwer {A}cademic {P}ublishers}, year = 2001, address = {Dordrecht}, isbn = {0-7923763-6-6}, language = {english} } @Book{MART:2e, author = {Kaas, R. and Goovaerts, M. and Dhaene, J. and Denuit, M.}, title = {Modern Actuarial Risk Theory. Using {R}}, edition = 2, publisher = {Springer}, year = 2008, isbn = {978-3-54070992-3}, language = {english} } @Book{MASS, author = {Venables, W. N. and Ripley, B. D.}, title = {Modern applied statistics with {S}}, publisher = {Springer}, year = 2002, edition = 4, address = {New York}, isbn = {0-3879545-7-0}, language = {english} } @Manual{Matrix, title = {Matrix: A Matrix package for R}, author = {Bates, D. and Maechler, M.}, year = 2016, url = {http://cran.r-project.org/package=Matrix}, } @Book{Neuts_81, author = {Neuts, M. F.}, title = {Matrix-geometric solutions in stochastic models: an algorithmic approach}, publisher = {Dover Publications}, year = 1981, isbn = {978-0-4866834-2-3}, language = {english} } @Unpublished{Ohlsson, author = {Ohlsson, E.}, title = {Simplified estimation of structure parameters in hierarchical credibility}, year = 2005, note = {Presented at the Zurich ASTIN Colloquium}, url = {http://www.actuaries.org/ASTIN/Colloquia/Zurich/Ohlsson.pdf}, language = {english} } @Article{Panjer_81, author = {Panjer, H. H.}, title = {Recursive evaluation of a family of compound distributions}, journal = AB, year = 1981, volume = 12, pages = {22-26}, language = {english} } @Manual{R-exts, title = {Writing {R} Extensions}, author = {{R Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = 2020, url = {https://cran.r-project.org/doc/manuals/R-exts.html}, language = {english} } @Article{Scollnik:2001:MCMC, author = {Scollnik, D. P. M.}, title = {Actuarial Modeling with {MCMC} and {BUGS}}, journal = {North American Actuarial Journal}, year = 2001, volume = 5, number = 2, pages = {96-124}, language = {english} } @Article{Shaban:PIG:1981, author = {Shaban, S. A.}, title = {Computation of the {P}oisson-inverse {G}aussian distribution}, journal = {Communications in Statistics -- Theory and Methods}, year = 1981, volume = 10, number = 14, pages = {1389-1399}, language = {english} } @Manual{SuppDists, title = {SuppDists: Supplementary distributions}, author = {Wheeler, B.}, year = 2016, url = {http://cran.r-project.org/package=SuppDists} } @Book{Thomopoulos:2013:simulation, author = {Thomopoulos, N. T.}, title = {Essentials of Monte Carlo simulation: Statistical methods for building simulation models}, publisher = {Springer}, year = 2013, isbn = {978-146146022-0}, language = {english} } @Article{actuar, author = {Dutang, C and Goulet, V. and Pigeon, M.}, title = {\pkg{actuar}: An {R} Package for Actuarial Science}, journal = {Journal of Statistical Software}, year = 2008, volume = 25, number = 7, doi = {10.18637/jss.v025.i07}, url = {https://doi.org/10.18637/jss.v025.i07}, language = {english} } @Article{cm, author = {Belhadj, H. and Goulet, V. and Ouellet, T.}, title = {On Parameter Estimation in Hierarchical Credibility}, journal = AB, year = 2009, volume = 39, number = 2, language = {english} } @Manual{expint, title = {expint: Exponential Integral and Incomplete Gamma Function}, author = {Goulet, V.}, year = {2019}, note = {R package version 0.1-6}, url = {https://cran.r-project.org/package=expint}, } @Article{statmod, author = {Giner, G. and Smyth, G. K.}, title = {\pkg{statmod}: {P}robability calculations for the inverse gaussian distribution}, journal = {{R Journal}}, year = 2016, volume = 8, number = 1, pages = {339-351}, doi = {10.32614/RJ-2016-024}, url = {https://doi.org/10.32614/RJ-2016-024}, language = {english} } actuar/R/0000755000176200001440000000000014173361163011737 5ustar liggesusersactuar/R/quantile.aggregateDist.R0000644000176200001440000000423214030725703016452 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Quantiles for objects of class 'aggregateDist' ### ### AUTHORS: Louis-Philippe Pouliot, ### Vincent Goulet quantile.aggregateDist <- function(x, probs = c(0.25, 0.5, 0.75, 0.9, 0.95, 0.975, 0.99, 0.995), smooth = FALSE, names = TRUE, ...) { chkDots(...) # method does not use '...' label <- comment(x) ## The Normal and Normal Power approximations are the only ## continuous distributions of class 'aggregateDist'. They are ## therefore treated differently, using the 'base' quantile ## function qnorm(). if (label == "Normal approximation") res <- qnorm(probs, get("mean", environment(x)), sqrt(get("variance", environment(x)))) else if (label == "Normal Power approximation") { m <- get("mean", envir = environment(x)) sd <- sqrt(get("variance", envir = environment(x))) sk <- get("skewness", envir = environment(x)) ## Calling qnorm() and inverting the Normal Power 'standardization' q <- qnorm(probs) res <- ifelse(probs <= 0.5, NA, m + sd * (q + sk * (q^2 - 1)/6)) } else { ## An empirical and discrete approach is used for ## 'aggregateDist' objects obtained from methods other than ## Normal and Normal Power. y <- get("y", environment(x)) x <- get("x", environment(x)) ## Create the inverse function of either the cdf or the ogive. fun <- if (smooth) # ogive approxfun(y, x, yleft = 0, yright = max(x), method = "linear", ties = "ordered") else # cdf approxfun(y, x, yleft = 0, yright = max(x), method = "constant", f = 1, ties = "ordered") ## Quantiles res <- fun(probs) } if (names) { dig <- max(2, getOption("digits")) names(res) <- formatC(paste(100 * probs, "%", sep = ""), format = "fg", width = 1, digits = dig) } res } actuar/R/TransformedBeta.R0000644000176200001440000000356214030725703015144 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}trbeta functions to compute ### characteristics of the Transformed Beta distribution. The version ### used in these functions has cumulative distribution function ### ### Pr[X <= x] = Pr[Y <= (x/scale)^shape2 / (1 + (x/scale)^shape2)], ### ### where Y has a Beta distribution with parameters shape3 and shape1. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dtrbeta <- function (x, shape1, shape2, shape3, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dtrbeta", x, shape1, shape2, shape3, scale, log) ptrbeta <- function (q, shape1, shape2, shape3, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "ptrbeta", q, shape1, shape2, shape3, scale, lower.tail, log.p) qtrbeta <- function (p, shape1, shape2, shape3, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qtrbeta", p, shape1, shape2, shape3, scale, lower.tail, log.p) rtrbeta <- function (n, shape1, shape2, shape3, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rtrbeta", n, shape1, shape2, shape3, scale) mtrbeta <- function (order, shape1, shape2, shape3, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "mtrbeta", order, shape1, shape2, shape3, scale, FALSE) levtrbeta <- function (limit, shape1, shape2, shape3, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levtrbeta", limit, shape1, shape2, shape3, scale, order, FALSE) ## Aliases dpearson6 <- dtrbeta ppearson6 <- ptrbeta qpearson6 <- qtrbeta rpearson6 <- rtrbeta mpearson6 <- mtrbeta levpearson6 <- levtrbeta actuar/R/CTE.R0000644000176200001440000000345414125442656012507 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Conditional Tail Expectation for objects of class 'aggregateDist'. ### ### AUTHORS: Tommy Ouellet, Vincent Goulet CTE <- function(x, ...) UseMethod("CTE") CTE.aggregateDist <- function(x, conf.level = c(0.9, 0.95, 0.99), names = TRUE, ...) { chkDots(...) # method does not use '...' label <- comment(x) ## Normal approximation; an exact formula is available if (label == "Normal approximation") { m <- get("mean", environment(x)) sd <- sqrt(get("variance", environment(x))) res <- m + sd * dnorm(qnorm(conf.level)) / (1 - conf.level) } ## Normal Power approximation; explicit formula in Castaner, ## Claramunt and Marmol (2013) else if (label == "Normal Power approximation") { m <- get("mean", envir = environment(x)) sd <- sqrt(get("variance", envir = environment(x))) sk <- get("skewness", envir = environment(x)) q <- qnorm(conf.level) res <- m + sd * dnorm(q) * (1 + sk * q/6) / (1 - conf.level) } ## Recursive method, simulation and convolutions; each yield a ## step function that can be used to make calculations. else { val <- get("x", envir = environment(x)) prob <- get("fs", envir = environment(x)) f2 <- function(a) { pos <- val > VaR(x, a) drop(crossprod(val[pos], prob[pos])) / sum(prob[pos]) } res <- sapply(conf.level, f2) } if (names) { dig <- max(2, getOption("digits")) names(res) <- formatC(paste(100 * conf.level, "%", sep = ""), format = "fg", width = 1, digits = dig) } res } TVaR <- CTE actuar/R/BetaMoments.R0000644000176200001440000000117114030725703014274 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {m,lev}beta functions to compute raw and limited ### moments for the Beta distribution (as defined in R). The ### noncentral beta distribution is _not_ supported. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHOR: Vincent Goulet mbeta <- function(order, shape1, shape2) .External(C_actuar_do_dpq, "mbeta", order, shape1, shape2, FALSE) levbeta <- function(limit, shape1, shape2, order = 1) .External(C_actuar_do_dpq, "levbeta", limit, shape1, shape2, order, FALSE) actuar/R/ChisqSupp.R0000644000176200001440000000140514030725703013775 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {m,lev,mgf}chisq functions to compute raw and ### limited moments, and the moment generating function for ### the Chi-square distribution (as defined in R) ### ### See Chapter 17 of Johnson & Kotz, Continuous univariate ### distributions, volume 1, Wiley, 1970 ### ### AUTHORS: Christophe Dutang, Vincent Goulet mchisq <- function(order, df, ncp = 0) .External(C_actuar_do_dpq, "mchisq", order, df, ncp, FALSE) levchisq <- function(limit, df, ncp = 0, order = 1) .External(C_actuar_do_dpq, "levchisq", limit, df, ncp, order, FALSE) mgfchisq <- function(t, df, ncp = 0, log = FALSE) .External(C_actuar_do_dpq, "mgfchisq", t, df, ncp, log) actuar/R/ZeroModifiedPoisson.R0000644000176200001440000000147014030725703016013 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r}zmpois functions to compute ### characteristics of the Zero Modified Poisson distribution. ### ### See Appendix B of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHOR: Vincent Goulet dzmpois <- function (x, lambda, p0, log = FALSE) .External(C_actuar_do_dpq, "dzmpois", x, lambda, p0, log) pzmpois <- function(q, lambda, p0, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pzmpois", q, lambda, p0, lower.tail, log.p) qzmpois <- function(p, lambda, p0, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qzmpois", p, lambda, p0, lower.tail, log.p) rzmpois <- function(n, lambda, p0) .External(C_actuar_do_random, "rzmpois", n, lambda, p0) actuar/R/Burr.R0000644000176200001440000000300214030725703012763 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}burr functions to compute ### characteristics of the Burr distribution. The version used in ### these functions has cumulative distribution function ### ### Pr[X <= x] = 1 - (1/(1 + (x/scale)^shape2))^shape1, x > 0. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dburr <- function (x, shape1, shape2, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dburr", x, shape1, shape2, scale, log) pburr <- function(q, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pburr", q, shape1, shape2, scale, lower.tail, log.p) qburr <- function(p, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qburr", p, shape1, shape2, scale, lower.tail, log.p) rburr <- function(n, shape1, shape2, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rburr", n, shape1, shape2, scale) mburr <- function(order, shape1, shape2, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "mburr", order, shape1, shape2, scale, FALSE) levburr <- function(limit, shape1, shape2, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levburr", limit, shape1, shape2, scale, order, FALSE) actuar/R/Gumbel.R0000644000176200001440000000227114030725703013273 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}gumbel functions to compute ### characteristics of the Gumbel distribution. The version used in ### these functions has cumulative distribution function ### ### Pr[X <= x] = exp(-exp(-(x - alpha)/scale)), -Inf < x < Inf. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHOR: Vincent Goulet dgumbel <- function (x, alpha, scale, log = FALSE) .External(C_actuar_do_dpq, "dgumbel", x, alpha, scale, log) pgumbel <- function(q, alpha, scale, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pgumbel", q, alpha, scale, lower.tail, log.p) qgumbel <- function(p, alpha, scale, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qgumbel", p, alpha, scale, lower.tail, log.p) rgumbel <- function(n, alpha, scale) .External(C_actuar_do_random, "rgumbel", n, alpha, scale) mgumbel <- function(order, alpha, scale) .External(C_actuar_do_dpq, "mgumbel", order, alpha, scale, FALSE) mgfgumbel <- function(t, alpha, scale, log = FALSE) .External(C_actuar_do_dpq, "mgfgumbel", t, alpha, scale, log) actuar/R/NormalSupp.R0000644000176200001440000000116214030725703014156 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {m,mgf}norm functions to compute raw and the ### moment generating function for the Normal distribution (as defined ### in R). ### ### See Chapter 13 of Johnson & Kotz, Continuous univariate ### distributions, volume 1, Wiley, 1970 ### ### AUTHORS: Christophe Dutang, Vincent Goulet mnorm <- function(order, mean = 0, sd = 1) .External(C_actuar_do_dpq, "mnorm", order, mean, sd, FALSE) mgfnorm <- function(t, mean = 0, sd = 1, log = FALSE) .External(C_actuar_do_dpq, "mgfnorm", t, mean, sd, log) actuar/R/Loggamma.R0000644000176200001440000000231314030725703013601 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r}lgamma functions to compute ### characteristics of the Loggamma distribution. The version used in ### these functions has cumulative distribution function ### ### Pr[X <= x] = pgamma(log(x), shape = shapelog, rate = ratelog). ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dlgamma <- function(x, shapelog, ratelog, log = FALSE) .External(C_actuar_do_dpq, "dlgamma", x, shapelog, ratelog, log) plgamma <- function(q, shapelog, ratelog, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "plgamma", q, shapelog, ratelog, lower.tail, log.p) qlgamma <- function(p, shapelog, ratelog, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qlgamma", p, shapelog, ratelog, lower.tail, log.p) rlgamma <- function(n, shapelog, ratelog) .External(C_actuar_do_random, "rlgamma", n, shapelog, ratelog) mlgamma <- function(order, shapelog, ratelog) .External(C_actuar_do_dpq, "mlgamma", order, shapelog, ratelog, FALSE) levlgamma <- function(limit, shapelog, ratelog, order = 1) .External(C_actuar_do_dpq, "levlgamma", limit, shapelog, ratelog, order, FALSE) actuar/R/SingleParameterPareto.R0000644000176200001440000000226314030725703016316 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}single-parameter pareto ### functions. The single-parameter Pareto distribution used in these ### functions has cumulative distribution function ### ### Pr[X <= x] = 1 - (min/x)^shape, x > 0. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dpareto1 <- function (x, shape, min, log = FALSE) .External(C_actuar_do_dpq, "dpareto1", x, shape, min, log) ppareto1 <- function(q, shape, min, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "ppareto1", q, shape, min, lower.tail, log.p) qpareto1 <- function(p, shape, min, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qpareto1", p, shape, min, lower.tail, log.p) rpareto1 <- function(n, shape, min) .External(C_actuar_do_random, "rpareto1", n, shape, min) mpareto1 <- function(order, shape, min) .External(C_actuar_do_dpq, "mpareto1", order, shape, min, FALSE) levpareto1 <- function(limit, shape, min, order = 1) .External(C_actuar_do_dpq, "levpareto1", limit, shape, min, order, FALSE) actuar/R/Pareto2.R0000644000176200001440000000266314030725703013401 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}pareto2 functions to compute ### characteristics of the Pareto (type) II distribution. The version ### used in these functions has cumulative distribution function ### ### Pr[X <= x] = 1 - (1/(1 + v))^shape, x > min, ### ### where v = (x - min)/scale. ### ### See Arnold, B. C. (2015), Pareto Distributions, Second Edition, ### CRC Press. ### ### AUTHOR: Vincent Goulet dpareto2 <- function (x, min, shape, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dpareto2", x, min, shape, scale, log) ppareto2 <- function (q, min, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "ppareto2", q, min, shape, scale, lower.tail, log.p) qpareto2 <- function (p, min, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qpareto2", p, min, shape, scale, lower.tail, log.p) rpareto2 <- function(n, min, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rpareto2", n, min, shape, scale) mpareto2 <- function(order, min, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "mpareto2", order, min, shape, scale, FALSE) levpareto2 <- function(limit, min, shape, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levpareto2", limit, min, shape, scale, order, FALSE) actuar/R/Paralogistic.R0000644000176200001440000000267514030725703014511 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}paralogis functions to compute ### characteristics of the paralogistic distribution. The version used ### in these functions has cumulative distribution function ### ### Pr[X <= x] = 1 - (1/(1 + (x/scale)^shape))^shape, x > 0. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dparalogis <- function (x, shape, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dparalogis", x, shape, scale, log) pparalogis <- function(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pparalogis", q, shape, scale, lower.tail, log.p) qparalogis <- function(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qparalogis", p, shape, scale, lower.tail, log.p) rparalogis <- function(n, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rparalogis", n, shape, scale) mparalogis <- function(order, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "mparalogis", order, shape, scale, FALSE) levparalogis <- function(limit, shape, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levparalogis", limit, shape, scale, order, FALSE) actuar/R/hache.barycenter.R0000644000176200001440000001370114125442656015275 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Auxiliary function to fit regression credibility model by ### positioning the intercept at the barycenter of time. ### ### AUTHORS: Xavier Milhaud, Vincent Goulet hache.barycenter <- function(ratios, weights, xreg, method, tol, maxit, echo) { ## Frequently used values weights.s <- rowSums(weights, na.rm = TRUE) # contract total weights has.data <- which(weights.s > 0) # contracts with data ncontracts <- nrow(ratios) # number of contracts eff.ncontracts <- length(has.data) # effective number of contracts p <- ncol(xreg) # rank (>= 2) of design matrix n <- nrow(xreg) # number of observations ## Putting the intercept at the barycenter of time amounts to use ## a "weighted orthogonal" design matrix in the regression (that ## is, X'WX = I for some diagonal weight matrix W). In theory, ## there would be one orthogonal design matrix per contract. In ## practice, we orthogonalize with a "collective" barycenter. We ## use average weights per period across contracts since these ## will be closest to the their individual analogues. ## ## We orthogonalize the original design matrix using QR ## decomposition. We also keep matrix R as a transition matrix ## between the original base and the orthogonal base. w <- colSums(weights, na.rm = TRUE)/sum(weights.s) Xqr <- qr(xreg * sqrt(w)) # QR decomposition R <- qr.R(Xqr) # transition matrix x <- qr.Q(Xqr) / sqrt(w) # weighted orthogonal matrix ## Fit linear model to each contract. For contracts without data, ## fit some sort of empty model to ease use in predict.hache(). f <- function(i) { z <- if (i %in% has.data) # contract with data { y <- ratios[i, ] not.na <- !is.na(y) lm.wfit(x[not.na, , drop = FALSE], y[not.na], weights[i, not.na]) } else # contract without data lm.fit(x, rep.int(0, n)) z[c("coefficients", "residuals", "weights", "rank", "qr")] } fits <- lapply(seq_len(ncontracts), f) ## Individual regression coefficients ind <- sapply(fits, coef) ind[is.na(ind)] <- 0 ## Individual variance estimators. The contribution of contracts ## without data is 0. S <- function(z) # from stats::summary.lm { nQr <- NROW(z$qr$qr) rank <- z$rank r <- z$residuals w <- z$weights sum(w * r^2) / (nQr - rank) } sigma2 <- sapply(fits[has.data], S) sigma2[is.nan(sigma2)] <- 0 ## Initialization of a few containers: p x p x ncontracts arrays ## for the weight and credibility matrices; p x p matrices for the ## between variance-covariance matrix and total weight matrix; a ## vector of length p for the collective regression coefficients. cred <- W <- array(0, c(p, p, ncontracts)) A <- W.s <- matrix(0, p, p) coll <- numeric(p) ## Weight matrices: we need here only the diagonal elements of ## X'WX, where W = diag(w_{ij}) (and not w_{ij}/w_{i.} as in the ## orthogonalization to keep a w_{i.} lying around). The first ## element is w_{i.} and the off-diagonal elements are zero by ## construction. Note that array W is quite different from the one ## in hache.origin(). W[1, 1, ] <- weights.s for (i in 2:p) W[i, i, has.data] <- colSums(t(weights[has.data, ]) * x[, i]^2, na.rm = TRUE) ## === ESTIMATION OF THE WITHIN VARIANCE === s2 <- mean(sigma2) ## === ESTIMATION OF THE BETWEEN VARIANCE-COVARIANCE MATRIX === ## ## By construction, we only estimate the diagonal of the matrix. ## Variance components are estimated just like in the ## Buhlmann-Straub model (see bstraub.R for details). ## ## Should we compute the iterative estimators? do.iter <- method == "iterative" && diff(range(weights, na.rm = TRUE)) > .Machine$double.eps^0.5 ## Do the computations one regression parameter at a time. for (i in seq_len(p)) { ## Unbiased estimator a <- A[i, i] <- bvar.unbiased(ind[i, has.data], W[i, i, has.data], s2, eff.ncontracts) ## Iterative estimator if (do.iter) { a <- A[i, i] <- if (a > 0) bvar.iterative(ind[i, has.data], W[i, i, has.data], s2, eff.ncontracts, start = a, tol = tol, maxit = maxit, echo = echo) else 0 } ## Credibility factors and estimator of the collective ## regression coefficients. if (a > 0) { z <- cred[i, i, has.data] <- 1/(1 + s2/(W[i, i, has.data] * a)) z. <- W.s[i, i] <- sum(z) coll[i] <- drop(crossprod(z, ind[i, has.data])) / z. } else { ## (credibility factors were already initialized to 0) w <- W[i, i, has.data] w. <- W.s[i, i] <- sum(w) coll[i] <- drop(crossprod(w, ind[i, ])) / w. } } ## Credibility adjusted coefficients. The coefficients of the ## models are replaced with these values. That way, prediction ## will be trivial using predict.lm(). for (i in seq_len(ncontracts)) fits[[i]]$coefficients <- coll + drop(cred[, , i] %*% (ind[, i] - coll)) ## Add names to the collective coefficients vector. names(coll) <- rownames(ind) ## Results list(means = list(coll, ind), weights = list(W.s, W), unbiased = if (method == "unbiased") list(A, s2), iterative = if (method == "iterative") list(A, s2), cred = cred, nodes = list(ncontracts), adj.models = fits, transition = R) } actuar/R/bstraub.R0000644000176200001440000001164514030725703013527 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Buhlmann-Straub credibility model calculations. ### ### Computation of the between variance estimators has been moved to ### external functions bvar.unbiased() and bvar.iterative() to share ### with hache(). ### ### AUTHORS: Vincent Goulet , ### Sebastien Auclair, Louis-Philippe Pouliot bstraub <- function(ratios, weights, method = c("unbiased", "iterative"), tol = sqrt(.Machine$double.eps), maxit = 100, echo = FALSE) { ## If weights are not specified, use equal weights as in ## Buhlmann's model. if (missing(weights)) { if (any(is.na(ratios))) stop("missing ratios not allowed when weights are not supplied") weights <- array(1, dim(ratios)) } ## Check other bad arguments. if (ncol(ratios) < 2L) stop("there must be at least one node with more than one period of experience") if (nrow(ratios) < 2L) stop("there must be more than one node") if (!identical(which(is.na(ratios)), which(is.na(weights)))) stop("missing values are not in the same positions in 'weights' and in 'ratios'") if (all(!weights, na.rm = TRUE)) stop("no available data to fit model") ## Individual weighted averages. It could happen that a contract ## has no observations, for example when applying the model on ## claim amounts. In such a situation, we will put the total ## weight of the contract and the weighted average both equal to ## zero. That way, the premium will be equal to the credibility ## weighted average, as it should, but the contract will have no ## contribution in the calculations. weights.s <- rowSums(weights, na.rm = TRUE) ratios.w <- ifelse(weights.s > 0, rowSums(weights * ratios, na.rm = TRUE)/weights.s, 0) ## Size of the portfolio. ncontracts <- sum(weights.s > 0) ntotal <- sum(!is.na(weights)) ## Collective weighted average. weights.ss <- sum(weights.s) ## Estimation of s^2 s2 <- sum(weights * (ratios - ratios.w)^2, na.rm = TRUE)/(ntotal - ncontracts) ## First estimation of a. Always compute the unbiased estimator. a <- bvar.unbiased(ratios.w, weights.s, s2, ncontracts) ## Iterative estimation of a. Compute only if ## 1. asked to in argument; ## 2. weights are not all equal (Buhlmann model). ## 3. the unbiased estimator is > 0; method <- match.arg(method) if (method == "iterative" && diff(range(weights, na.rm = TRUE)) > .Machine$double.eps^0.5) { a <- if (a > 0) bvar.iterative(ratios.w, weights.s, s2, ncontracts, start = a, tol = tol, maxit = maxit, echo = echo) else 0 } ## Final credibility factors and estimator of the collective mean. if (a > 0) { cred <- 1/(1 + s2/(weights.s * a)) ratios.zw <- drop(crossprod(cred, ratios.w))/sum(cred) } else { cred <- numeric(length(weights.s)) ratios.zw <- drop(crossprod(weights.s, ratios.w))/sum(weights.s) } structure(list(means = list(ratios.zw, ratios.w), weights = list(if (a > 0) sum(cred) else weights.ss, weights.s), unbiased = if (method == "unbiased") c(a, s2), iterative = if (method == "iterative") c(a, s2), cred = cred, nodes = list(nrow(weights))), class = "bstraub", model = "Buhlmann-Straub") } predict.bstraub <- function(object, levels = NULL, newdata, ...) structure(object$means[[1L]] + object$cred * (object$means[[2L]] - object$means[[1L]]), ...) ## Alias for the linear Bayes case predict.bayes <- predict.bstraub bvar.unbiased <- function(x, w, within, n) { w.s <- sum(w) x.w <- drop(crossprod(w, x))/w.s w.s * (drop(crossprod(w, (x - x.w)^2)) - (n - 1) * within)/(w.s^2 - sum(w^2)) } ### codetools does not like the way 'a1' is defined in function ### 'bvar.iterative' below. Avoid false positive in R CMD check. if (getRversion() >= "2.15.1") utils::globalVariables(c("a1")) bvar.iterative <- function(x, w, within, n, start, tol = sqrt(.Machine$double.eps), maxit = 100, echo = FALSE) { if (echo) { cat("Iteration\tBetween variance estimator\n") exp <- expression(cat(" ", count, "\t\t ", a1 <- a, fill = TRUE)) } else exp <- expression(a1 <- a) a <- start count <- 0L repeat { eval(exp) if (maxit < (count <- count + 1L)) { warning("maximum number of iterations reached before obtaining convergence") break } cred <- 1/(1 + within/(w * a)) x.z <- drop(crossprod(cred, x))/sum(cred) a <- drop(crossprod(cred, (x - x.z)^2))/(n - 1) if (abs((a - a1)/a1) < tol) break } a } actuar/R/quantile.grouped.data.R0000644000176200001440000000240214125442656016262 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Quantiles (inverse of the ogive) for grouped data ### ### AUTHOR: Vincent Goulet ### Walter Garcia-Fontes quantile.grouped.data <- function(x, probs = seq(0, 1, 0.25), names = TRUE, ...) { ## We keep the first frequencies column only; group boundaries are ## in the environment of 'x' y <- x[, 2L] x <- eval(expression(cj), envir = environment(x)) ## Inverse of the ogive fun <- approxfun(c(0, cumsum(y))/sum(y), x, yleft = min(x), yright = max(x), method = "linear", ties = "ordered") ## Quantiles res <- fun(probs) if (names) { dig <- max(2, getOption("digits")) names(res) <- formatC(paste(100 * probs, "%", sep = ""), format = "fg", width = 1, digits = dig) } res } summary.grouped.data <- function(object, ...) { ## Keep only the first frequencies column object <- object[1L:2L] res <- quantile(object) res <- c(res[1L:3L], mean(object), res[4L:5L]) names(res) <- c("Min.", "1st Qu.", "Median", "Mean", "3rd Qu.", "Max.") class(res) <- c("summaryDefault", "table") res } actuar/R/InverseExponential.R0000644000176200001440000000242414030725703015702 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}invexp functions to compute ### characteristics of the Inverse Exponential distribution. The ### version used in these functions has cumulative distribution ### function ### ### Pr[X <= x] = exp(-scale/x), x > 0. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dinvexp <- function (x, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dinvexp", x, scale, log) pinvexp <- function(q, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pinvexp", q, scale, lower.tail, log.p) qinvexp <- function(p, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qinvexp", p, scale, lower.tail, log.p) rinvexp <- function(n, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rinvexp", n, scale) minvexp <- function(order, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "minvexp", order, scale, FALSE) levinvexp <- function(limit, rate = 1, scale = 1/rate, order) .External(C_actuar_do_dpq, "levinvexp", limit, scale, order, FALSE) actuar/R/Pareto4.R0000644000176200001440000000324414030725703013377 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}pareto4 functions to compute ### characteristics of the Pareto (type) IV distribution. The version ### used in these functions has cumulative distribution function ### ### Pr[X <= x] = 1 - (1/(1 + v))^shape1, x > min, ### ### where v = ((x - min)/scale)^shape2. ### ### See Arnold, B. C. (2015), Pareto Distributions, Second Edition, ### CRC Press. ### ### AUTHOR: Vincent Goulet dpareto4 <- function(x, min, shape1, shape2, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dpareto4", x, min, shape1, shape2, scale, log) ppareto4 <- function(q, min, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "ppareto4", q, min, shape1, shape2, scale, lower.tail, log.p) qpareto4 <- function(p, min, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qpareto4", p, min, shape1, shape2, scale, lower.tail, log.p) rpareto4 <- function(n, min, shape1, shape2, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rpareto4", n, min, shape1, shape2, scale) mpareto4 <- function(order, min, shape1, shape2, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "mpareto4", order, min, shape1, shape2, scale, FALSE) levpareto4 <- function(limit, min, shape1, shape2, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levpareto4", limit, min, shape1, shape2, scale, order, FALSE) actuar/R/InverseTransformedGamma.R0000644000176200001440000000336614030725703016651 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}invtrgamma functions to compute ### characteristics of the Inverse Transformed Gamma distribution. The ### version used in these functions has cumulative distribution ### function ### ### Pr[X <= x] = 1 - pgamma((x/scale)^shape2, shape1, scale = 1) ### ### or, equivalently, ### ### Pr[X <= x] = 1 - pgamma(x^shape2, shape1, scale = scale^shape2). ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dinvtrgamma <- function (x, shape1, shape2, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dinvtrgamma", x, shape1, shape2, scale, log) pinvtrgamma <- function(q, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pinvtrgamma", q, shape1, shape2, scale, lower.tail, log.p) qinvtrgamma <- function(p, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qinvtrgamma", p, shape1, shape2, scale, lower.tail, log.p) rinvtrgamma <- function(n, shape1, shape2, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rinvtrgamma", n, shape1, shape2, scale) minvtrgamma <- function(order, shape1, shape2, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "minvtrgamma", order, shape1, shape2, scale, FALSE) levinvtrgamma <- function(limit, shape1, shape2, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levinvtrgamma", limit, shape1, shape2, scale, order, FALSE) actuar/R/ZeroTruncatedGeometric.R0000644000176200001440000000141214030725703016504 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r}ztgeom functions to compute ### characteristics of the Zero Truncated Geometric distribution. ### ### See Appendix B of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHOR: Vincent Goulet dztgeom <- function(x, prob, log = FALSE) .External(C_actuar_do_dpq, "dztgeom", x, prob, log) pztgeom <- function(q, prob, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pztgeom", q, prob, lower.tail, log.p) qztgeom <- function(p, prob, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qztgeom", p, prob, lower.tail, log.p) rztgeom <- function(n, prob) .External(C_actuar_do_random, "rztgeom", n, prob) actuar/R/Extract.grouped.data.R0000644000176200001440000001033514125442656016056 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Extraction and replacement methods for grouped data ### objects ### ### AUTHORS: Vincent Goulet , ### Mathieu Pigeon, Louis-Philippe Pouliot "[.grouped.data" <- function(x, i, j) { ## Only columns to extract are specified. if (nargs() < 3L) { if (missing(i)) return(x) if (is.matrix(i)) return(as.matrix(x)[i]) res <- as.data.frame(NextMethod()) if (length(i) > 1 && 1 %in% seq(ncol(x))[i]) { environment(res) <- environment(x) class(res) <- c("grouped.data", class(res)) } return(res) } ## Convert row and column indexes to strictly positive integers. ii <- if (missing(i)) seq.int(nrow(x)) else seq.int(nrow(x))[i] ij <- if (missing(j)) integer(0) else seq.int(ncol(x))[j] ## Extraction of at least the group boundaries (the complicated case). if (!length(ij) || 1L %in% ij) { ## Extraction of group boundaries in increasing order only ## (untractable otherwise). if (is.unsorted(ii)) { warning("rows extracted in increasing order") ii <- sort(ii) } ## Fetch the appropriate group boundaries. cj <- eval(expression(cj), envir = environment(x)) cj <- cj[sort(unique(c(ii, ii + 1L)))] ## Extraction of the first column only: return the vector of group ## boundaries. if (identical(ij, 1L)) return(cj) ## Return a modified 'grouped.data' object. res <- NextMethod() environment(res) <- new.env() assign("cj", cj, environment(res)) return(res) } ## All other cases handled like a regular data frame. NextMethod() } "[<-.grouped.data" <- function(x, i, j, value) { nA <- nargs() if (nA == 4L) { ii <- if (missing(i)) NULL else i ij <- if (missing(j)) NULL else j } else if (nA == 3L) { ## No arguments inside [ ]: only replacing by NULL is supported. if (missing(i) && missing(j)) { if (is.null(value)) return(x[logical(0)]) stop("impossible to replace boundaries and frequencies simultaneously") } ## Indexing by a logical matrix is supported, but only two ## types of replacement are allowed: replacing in the ## first column only, or replacing in any column but the ## first. if (is.logical(i) && is.matrix(i) && all(dim(i) == dim(x))) { ij <- apply(i, 2, any) # columns with replacements if (match(TRUE, ij) == 1) # boundaries to replace { if (length(ij) > 1) # boundaries and frequencies stop("impossible to replace boundaries and frequencies simultaneously") ii <- i[, ij] # boundaries only } return(NextMethod()) # frequencies only } ## Indexing by a non logical matrix is not supported. if (is.matrix(i)) stop("only logical matrix subscripts are allowed in replacement") ## Indexing by a vector: the argument specifies columns to ## replace. ij <- i ii <- NULL } else stop("need 0, 1, or 2 subscripts") ## Convert row and column indexes to integers. ii <- if (is.null(ii)) seq.int(nrow(x)) else seq.int(nrow(x))[ii] ij <- if (is.null(ij)) integer(0) else seq.int(ncol(x))[ij] ## Replacement at least in the group boundaries column. if (!length(ij) || 1L %in% ij) { ## supported: replacement of group boundaries only if (identical(ij, 1L)) { cj <- eval(expression(cj), envir = environment(x)) cj[sort(unique(c(ii, ii + 1L)))] <- value res <- grouped.data(cj, x[, -1L]) names(res) <- names(x) return(res) } ## not supported (untractable): replacement in the column of ## boundaries and any other column stop("impossible to replace boundaries and frequencies simultaneously") } ## All other cases handled like a regular data frame. NextMethod() } actuar/R/unroll.R0000644000176200001440000000236414030725703013376 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Display all values of a matrix of vectors by 'unrolling' the ### object vertically or horizontally. ### ### AUTHORS: Louis-Philippe Pouliot, ### Vincent Goulet unroll <- function(x, bycol = FALSE, drop = TRUE) { dx <- dim(x) if (length(dx) > 2L) stop("'x' must be a vector or a matrix") if (length(dx) < 2L) x <- rbind(x, deparse.level = 0L) fun <- function(x) if (identical(x, NA)) NA else length(x) frequencies <- array(sapply(x, fun), dim = dim(x)) if (bycol) { lengths <- colSums(frequencies, na.rm = TRUE) mat <- matrix(NA, max(lengths), ncol(x), dimnames = dimnames(x)) for (i in seq_len(ncol(x))) if (0L < (lengthi <- lengths[i])) mat[seq_len(lengthi), i] <- unlist(x[!is.na(x[, i]), i]) } else { lengths <- rowSums(frequencies, na.rm = TRUE) mat <- matrix(NA, nrow(x), max(lengths), dimnames = list(rownames(x), NULL)) for (i in seq_len(nrow(x))) if (0L < (lengthi <- lengths[i])) mat[i, seq_len(lengthi)] <- unlist(x[i, !is.na(x[i, ])]) } mat[, , drop = drop] } actuar/R/simS.R0000644000176200001440000000224114125442656013000 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Simulation of a aggregate claim amounts ### ### AUTHORS: Vincent Goulet ### and Louis-Philippe Pouliot simS <- function(n, model.freq, model.sev) { ## Prepare the call to simul() by building up 'nodes' level.names <- names(if (is.null(model.freq)) model.sev else model.freq) nlevels <- length(level.names) nodes <- as.list(c(rep(1, nlevels - 1), n)) names(nodes) <- level.names ## Get sample x <- aggregate(simul(nodes = nodes, model.freq = model.freq, model.sev = model.sev))[-1] ## Compute the empirical cdf of the sample. Done manually instead ## of calling stats::ecdf to keep a copy of the empirical pmf in ## the environment without computing it twice. x <- sort(x) vals <- unique(x) fs <- tabulate(match(x, vals))/length(x) FUN <- approxfun(vals, pmin(cumsum(fs), 1), method = "constant", yleft = 0, yright = 1, f = 0, ties = "ordered") class(FUN) <- c("ecdf", "stepfun", class(FUN)) assign("fs", fs, envir = environment(FUN)) FUN } actuar/R/GeneralizedPareto.R0000644000176200001440000000326214030725703015465 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}genpareto functions to compute ### characteristics of the Generalized Pareto distribution. The version ### used in these functions has cumulative distribution function ### ### Pr[X <= x] = Pr[Y <= x / (x + scale)], ### ### where Y has a Beta distribution with parameters shape2 and shape1. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dgenpareto <- function(x, shape1, shape2, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dgenpareto", x, shape1, shape2, scale, log) pgenpareto <- function(q, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pgenpareto", q, shape1, shape2, scale, lower.tail, log.p) qgenpareto <- function(p, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qgenpareto", p, shape1, shape2, scale, lower.tail, log.p) rgenpareto <- function(n, shape1, shape2, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rgenpareto", n, shape1, shape2, scale) mgenpareto <- function(order, shape1, shape2, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "mgenpareto", order, shape1, shape2, scale, FALSE) levgenpareto <- function(limit, shape1, shape2, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levgenpareto", limit, shape1, shape2, scale, order, FALSE) actuar/R/discretize.R0000644000176200001440000001006114030725703014221 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Function to discretize a continuous distribution using various ### methods. ### ### AUTHOR: Vincent Goulet discretize <- function (cdf, from, to, step = 1, method = c("upper", "lower", "rounding", "unbiased"), lev, by = step, xlim = NULL) { method <- match.arg(method) ## If 'cdf' is only the name of a function (say f), build a call ## 'f(x)'. Otherwise, check that the expression is a function call ## containing an 'x'. Taken from 'curve'. scdf <- substitute(cdf) if (is.name(scdf)) { fcall <- paste(scdf, "(x)") cdf <- parse(text = fcall) } else { if (!(is.call(scdf) && match("x", all.vars(scdf), nomatch = 0))) stop("'cdf' must be a function or an expression containing 'x'") cdf <- scdf } ## If 'from' and/or 'to' are not specified, take their values in 'xlim'. if (missing(from)) from <- xlim[1] if (missing(to)) to <- xlim[2] if (method %in% c("upper", "lower")) { ## The "upper" discretization method assigns to point x = ## from, from + step, ..., to - step the probability mass F(x ## + step) - F(x). ## ## The "lower" discretization method assigns to point x = from ## the probability mass 0 and to x = from + step, ..., to the ## probability mass F(x) - F(x - step). ## ## Hence, the latter method simply has one more element than the ## former. x <- seq.int(from, to, by) Fx <- eval(cdf, envir = list(x = x), enclos = parent.frame()) return(c(if(method == "lower") 0, diff(Fx))) } if (method == "rounding") { ## Rounding method assigns to point x = from the probability ## mass F(from + step/2) - F(from) and to point x = from + ## step, ..., to - step the probability mass F(x - step/2) - ## F(x + step/2). ## ## It is possible to make adjustments for the limits of the ## intervals (closed or open) for discrete distributions via ## 'cdf'. x <- c(from, seq.int(from + by/2, to - by/2, by)) Fx <- eval(cdf, envir = list(x = x), enclos = parent.frame()) return(diff(Fx)) } if (method == "unbiased") { ## This is the matching of the first moment method. It ## requires a function to compute the first limited moment ## which should be provided in argument 'lev'. The latter is ## specified just like 'cdf'. if (missing(lev)) stop("'lev' required with method \"unbiased\"") slev <- substitute(lev) if (is.name(slev)) { fcall <- paste(slev, "(x)") lev <- parse(text = fcall) } else { if (!(is.call(slev) && match("x", all.vars(slev), nomatch = 0))) stop("'lev' must be a function or an expression containing 'x'") lev <- slev } ## The first limited moment must be evaluated in x = from, ## from + step, ..., to and the cdf in x = from and x = to ## only (see below). x <- seq.int(from, to, by) Ex <- eval(lev, envir = list(x = x), enclos = parent.frame()) Fx <- eval(cdf, envir = list(x = c(from, to)), enclos = parent.frame()) ## The probability mass in x = from is ## ## (E[X ^ x] - E[X ^ x + step])/step + 1 - F(x). ## ## The probability mass in x = from + step, ..., to - step is ## ## (2 * E[X ^ x] - E[X ^ x - step] - E[X ^ x + step])/step. ## ## The probability mass in x = to is ## ## (E[X ^ x] - E[X ^ x - step])/step - 1 + F(x). ## ## See exercise 6.36 in Loss Models, 2nd edition. return(c(-diff(head(Ex, 2))/by + 1 - Fx[1], (2 * head(Ex[-1], -1) - head(Ex, -2) - tail(Ex, -2))/by, diff(tail(Ex, 2))/by - 1 + Fx[2])) } } discretise <- discretize actuar/R/mean.grouped.data.R0000644000176200001440000000130314125442656015357 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Mean of grouped data objects ### ### See Klugman, Panjer & Willmot, Loss Models, Wiley, 1998. ### ### AUTHOR: Vincent Goulet ## New method of base::mean generic for grouped data mean.grouped.data <- function(x, ...) { ## Get group boundaries cj <- eval(expression(cj), envir = environment(x)) ## Compute group midpoints midpoints <- cj[-length(cj)] + diff(cj)/2 ## Extract frequencies columns by dropping the boundaries column; ## convert to matrix for use in crossprod() x <- as.matrix(x[-1L]) ## Compute mean per column drop(crossprod(x, midpoints))/colSums(x) } actuar/R/VaR.R0000644000176200001440000000106314125442656012556 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of a generic function for the Value at Risk. Currently, ### there is no default method for this function. The only method is ### for objects of class 'aggregateDist'. ### ### AUTHORS: Tommy Ouellet, Vincent Goulet VaR <- function(x, ...) UseMethod("VaR") VaR.aggregateDist <- function(x, conf.level = c(0.9, 0.95, 0.99), smooth = FALSE, names = TRUE, ...) quantile.aggregateDist(x, conf.level, smooth, names, ...) actuar/R/ZeroTruncatedNegativeBinomial.R0000644000176200001440000000201314030725703020001 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r}ztnbinom functions to compute ### characteristics of the Zero Truncated Negative Binomial ### distribution. ### ### See Appendix B of Klugman, Panjer & Willmot, Loss Models, Second ### Edition, Wiley, 2004. ### ### AUTHOR: Vincent Goulet dztnbinom <- function (x, size, prob, log = FALSE) .External(C_actuar_do_dpq, "dztnbinom", x, size, prob, log) pztnbinom <- function(q, size, prob, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pztnbinom", q, size, prob, lower.tail, log.p) qztnbinom <- function(p, size, prob, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qztnbinom", p, size, prob, lower.tail, log.p) rztnbinom <- function(n, size, prob) .External(C_actuar_do_random, "rztnbinom", n, size, prob) ## not exported; for internal use in panjer() pgfztnbinom <- function(x, size, prob) expm1(-size * log1p(x * (prob - 1)))/expm1(-size * log(prob)) actuar/R/betaint.R0000644000176200001440000000123014030725703013500 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### The "beta integral" ### ### B(a, b; x) = Gamma(a + b) int_0^x t^(a-1) (1 - t)^(b-1) dt ### ### a > 0, b != -1, -2, ..., 0 < x < 1. This mathematical function is ### only used at the C level in the package. The R function therein ### provides an R interface just in case it could be useful. ### ### The function is *not* exported. ### ### See Appendix A of Klugman, Panjer and Willmot (2012), Loss Models, ### Fourth Edition, Wiley. ### ### AUTHOR: Vincent Goulet ## see src/betaint.c betaint <- function(x, a, b) .External(C_actuar_do_betaint, x, a, b) actuar/R/LognormalMoments.R0000644000176200001440000000102414030725703015350 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {m,lev}lnorm functions. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet mlnorm <- function(order, meanlog = 0, sdlog = 1) .External(C_actuar_do_dpq, "mlnorm", order, meanlog, sdlog, FALSE) levlnorm <- function(limit, meanlog = 0, sdlog = 1, order = 1) .External(C_actuar_do_dpq, "levlnorm", limit, meanlog, sdlog, order, FALSE) actuar/R/InverseGamma.R0000644000176200001440000000341714030725703014441 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev,mgf}invgamma functions to compute ### characteristics of the Inverse Gamma distribution. The version ### used in these functions has cumulative distribution function ### ### Pr[X <= x] = 1 - pgamma(scale/x, shape, scale = 1) ### ### or, equivalently, ### ### Pr[X <= x] = 1 - pgamma(1/x, shape1, scale = 1/scale). ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Second ### Edition, Wiley, 2004 and ### ### ### AUTHORS: Mathieu Pigeon, Christophe Dutang and ### Vincent Goulet dinvgamma <- function (x, shape, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dinvgamma", x, shape, scale, log) pinvgamma <- function(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pinvgamma", q, shape, scale, lower.tail, log.p) qinvgamma <- function(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qinvgamma", p, shape, scale, lower.tail, log.p) rinvgamma <- function(n, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rinvgamma", n, shape, scale) minvgamma <- function(order, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "minvgamma", order, shape, scale, FALSE) levinvgamma <- function(limit, shape, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levinvgamma", limit, shape, scale, order, FALSE) mgfinvgamma <- function(t, shape, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "mgfinvgamma", t, shape, scale, log) actuar/R/InversePareto.R0000644000176200001440000000237014030725703014646 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m}invpareto functions to compute ### characteristics of the Inverse Pareto distribution. The version ### used in these functions has cumulative distribution function ### ### Pr[X <= x] = (x/(x + scale))^shape, x > 0. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dinvpareto <- function(x, shape, scale, log = FALSE) .External(C_actuar_do_dpq, "dinvpareto", x, shape, scale, log) pinvpareto <- function(q, shape, scale, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pinvpareto", q, shape, scale, lower.tail, log.p) qinvpareto <- function(p, shape, scale, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qinvpareto", p, shape, scale, lower.tail, log.p) rinvpareto <- function(n, shape, scale) .External(C_actuar_do_random, "rinvpareto", n, shape, scale) minvpareto <- function(order, shape, scale) .External(C_actuar_do_dpq, "minvpareto", order, shape, scale, FALSE) levinvpareto <- function(limit, shape, scale, order = 1) .External(C_actuar_do_dpq, "levinvpareto", limit, shape, scale, order, FALSE) actuar/R/var-methods.R0000644000176200001440000000240314125442656014316 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Variance and standard deviation ### ### See Klugman, Panjer & Willmot, Loss Models, Wiley, 1998. ### ### AUTHOR: Vincent Goulet ### Walter Garcia-Fontes ## New generics for functions of the stats package var <- function(x, ...) UseMethod("var") sd <- function(x, ...) UseMethod("sd") ## Default methods are stats::var and stats:sd var.default <- function(x, y = NULL, na.rm = FALSE, use, ...) stats::var(x, y = NULL, na.rm = FALSE, use) sd.default <- function(x, na.rm = FALSE, ...) stats::sd(x, na.rm = FALSE) ## Methods for grouped data var.grouped.data <- function(x, ...) { ## Get group boundaries cj <- eval(expression(cj), envir = environment(x)) ## Compute group midpoints midpoints <- cj[-length(cj)] + diff(cj)/2 ## Compute midpoints minus mean and square it midsquare <- (midpoints - mean(x))^2 ## Extract frequencies columns by dropping the boundaries column; ## convert to matrix for use in crossprod() x <- as.matrix(x[-1L]) ## Compute mean per column drop(crossprod(x, midsquare))/(colSums(x) - 1) } sd.grouped.data <- function(x, ...) { ## Square root of variance drop(sqrt(var.grouped.data(x))) } actuar/R/PhaseType.R0000644000176200001440000000230214030725703013755 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,r,m,mgf}ph functions to compute ### characteristics of Phase-type distributions with cumulative ### distribution function ### ### Pr[X <= x] = 1 - pi %*% exp(Tx) %*% e, ### ### where 'pi' is the initial probability vector, 'T' is the ### subintensity matrix and 'e' is 1-vector of R^m. ### ### See Bladt, M. (2005), "A review on phase-type distributions and ### their use in risk theory", Astin Bulletin 35, p. 145-161. ### ### AUTHORS: Christophe Dutang, Vincent Goulet dphtype <- function(x, prob, rates, log = FALSE) .External(C_actuar_do_dpqphtype, "dphtype", x, prob, rates, log) pphtype <- function(q, prob, rates, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpqphtype, "pphtype", q, prob, rates, lower.tail, log.p) rphtype <- function(n, prob, rates) .External(C_actuar_do_randomphtype, "rphtype", n, prob, rates) mphtype <- function(order, prob, rates) .External(C_actuar_do_dpqphtype, "mphtype", order, prob, rates, FALSE) mgfphtype <- function(t, prob, rates, log = FALSE) .External(C_actuar_do_dpqphtype, "mgfphtype", t, prob, rates, log) actuar/R/grouped.data.R0000644000176200001440000001226414125442656014450 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Creation of grouped data objects. ### ### The function can create a grouped data object from two types of ### arguments. ### ### 1. Individual data. The call has at least two elements in '...'. ### The first is then the vector of group boundaries and the others ### are vectors (or a matrix) of group frequencies. ### ### 2. Group boundaries and frequencies. The call has one or more ### elements in '...' and either 'breaks' or 'nclass' is provided ### or 'group' is TRUE. In this case, elements of '...' are grouped ### using graphics::hist automatically based on the first element ### of '...', or with group boundaries 'breaks' if the latter is a ### vector. ### ### For details on grouped data, see Klugman, Panjer & Willmot, Loss ### Models, Wiley, 1998. ### ### AUTHORS: Vincent Goulet , ### Mathieu Pigeon, Louis-Philippe Pouliot ### ### CREDITS: Manipulation and creation of names taken in part from R ### function data.frame(). Arguments, 'breaks', 'nclass' and their ### treatment taken from R function 'hist'. grouped.data <- function(..., breaks = "Sturges", include.lowest = TRUE, right = TRUE, nclass = NULL, group = FALSE, row.names = NULL, check.rows = FALSE, check.names = TRUE) { ## Utility function to format numbers. numform <- function(x, w) formatC(x, digits = 2, width = w, format = "fg") ## Keep the calls in '...' in object 'ox', and the evaluated ## elements in '...' in object 'x'. ox <- as.list(substitute(list(...)))[-1L] x <- list(...) xlen <- length(x) # number of arguments in '...' use.br <- !missing(breaks) # 'breaks' specified ## If any elements of '...' are unnamed, set names based on the ## variable name provided in the function call (e.g. f(x) -> "x") ## or from the deparsed expression (e.g. f(1:3) -> "1:3"). xnames <- names(x) if(length(xnames) != xlen) xnames <- character(xlen) no.xn <- !nzchar(xnames) if (any(no.xn)) { for (i in which(no.xn)) xnames[i] <- deparse(ox[[i]], nlines = 1L)[1L] names(x) <- xnames } ## Single argument implies individual data. if (xlen == 1L) group <- TRUE ## Avoid using calling 'hist' with 'nclass' specified. if (use.br) { if (!missing(nclass)) warning("'nclass' not used when 'breaks' is specified") if (!(missing(group) || group)) warning("'group' ignored when 'breaks' is specified") group <- TRUE } else if (!is.null(nclass) && length(nclass) == 1L) { breaks <- nclass if (!(missing(group) || group)) warning("'group' ignored when 'nclass' is specified") group <- TRUE } if (group) # individual data in argument; group with 'hist' { ## Set group boudaries (and the first set of group ## frequencies) using the first argument in '...'. y <- hist(x[[1]], plot = FALSE, breaks = breaks, include.lowest = include.lowest, right = right) br <- y$breaks y <- y$counts ## If there are other vectors in '...', compute group ## frequencies using 'hist' with the group boundaries ## determined above. If 'breaks' were set automatically, there ## is a great risk of error, but we can't do much better. if (xlen > 1) { f <- function(x, br) hist(x, plot = FALSE, breaks = br, include.lowest = include.lowest, right = right)$counts y <- cbind(y, sapply(x[-1], f, br = br)) } y <- as.data.frame(y) x <- as.data.frame(br) names(y) <- xnames xnames <- "" nx <- nrow(x) } else # group boundaries and frequencies in argument { y <- as.data.frame(x[-1L]) # group frequencies x <- as.data.frame(x[[1L]]) # group boundaries nx <- nrow(x) ## There must be exactly one more group boundary than frequencies. if (nx - nrow(y) != 1L) stop("invalid number of group boundaries and frequencies") ## Replace missing frequencies by zeros. nax <- is.na(x) if (any(nax)) { x[nax] <- 0 warning("missing frequencies replaced by zeros") } } ## Return a data frame with formatted group boundaries in the ## first column. w <- max(nchar(x[-1L, ])) # longest upper boundary xfmt <- paste(if (right) "(" else "[", numform(x[-nx, ], -1), ", ", numform(x[-1L, ], w), if (right) "]" else ")", sep = "") res <- data.frame(xfmt, y, row.names = row.names, check.rows = check.rows, check.names = check.names) names(res) <- c(xnames[1L], names(y)) class(res) <- c("grouped.data", "data.frame") environment(res) <- new.env() assign("cj", unlist(x, use.names = FALSE), environment(res)) attr(res, "right") <- right res } actuar/R/Logarithmic.R0000644000176200001440000000260714054204377014332 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,r}logarithmic functions to compute ### characteristics of the logarithmic distribution. The version used ### in these functions has probability mass function ### ### Pr[X = x] = -p^x/(x log(1 - p)), x = 1, 2, ... ### ### This is the standard parametrization in the literature; see for ### example https://en.wikipedia.org/wiki/Logarithmic_distribution. ### ### NOTE: Klugman, Panjer & Willmot (Loss Models) introduce the ### logarithmic distribution as a limiting case of the zero truncated ### negative binomial. In this setting, parameter 'p' above would be ### the probability of *failure* (a.k.a. q) of the zero truncated ### negative binomial. ### ### AUTHOR: Vincent Goulet dlogarithmic <- function(x, prob, log = FALSE) .External(C_actuar_do_dpq, "dlogarithmic", x, prob, log) plogarithmic <- function(q, prob, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "plogarithmic", q, prob, lower.tail, log.p) qlogarithmic <- function(p, prob, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qlogarithmic", p, prob, lower.tail, log.p) rlogarithmic <- function(n, prob) .External(C_actuar_do_random, "rlogarithmic", n, prob) ## not exported; for internal use in panjer() pgflogarithmic <- function(x, prob) log1p(-prob * x)/log1p(-prob) actuar/R/emm.R0000644000176200001440000000216014125442656012643 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Empirical moments for individual and grouped data. ### ### See Klugman, Panjer & Willmot, Loss Models, Wiley, 1998. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet emm <- function(x, order = 1, ...) UseMethod("emm") emm.default <- function(x, order = 1, ...) { if (any(order < 0)) stop("'order' must be positive") colMeans(outer(x, order, "^"), ...) } emm.grouped.data <- function(x, order = 1, ...) { ## Function does not work for negative moments if (any(order < 0)) stop("'order' must be positive") ## Extract group boundaries cj <- eval(expression(cj), envir = environment(x)) ## Compute the factor ## ## f_j = (c_j^{k + 1} - c_{j-1}^{k+1})/((k+1) * (c_j - c_{j-1})) ## ## for all values of 'j' and 'k' == 'order'. y <- diff(outer(cj, order + 1, "^")) / outer(diff(cj), order + 1) ## Drop the group boundaries column x <- as.matrix(x[-1L]) ## Compute sum(n_j * f_j)/sum(nj) for all values of 'order'. drop(crossprod(x, y)) / colSums(x, ...) } actuar/R/FellerPareto.R0000644000176200001440000000357714030725703014456 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}fpareto functions to compute ### characteristics of the Feller-Pareto distribution. The version ### used in these functions has cumulative distribution function ### ### Pr[X <= x] = Pr[Y <= v/(1 + v)], x > min, ### ### where v = ((x - min)/scale)^shape2 and Y has a Beta distribution ### with parameters shape3 and shape1. ### ### See Arnold, B. C. (2015), Pareto Distributions, Second Edition, ### CRC Press. ### ### AUTHORS: Nicholas Langevin, Vincent Goulet dfpareto <- function (x, min, shape1, shape2, shape3, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dfpareto", x, min, shape1, shape2, shape3, scale, log) pfpareto <- function (q, min, shape1, shape2, shape3, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pfpareto", q, min, shape1, shape2, shape3, scale, lower.tail, log.p) qfpareto <- function (p, min, shape1, shape2, shape3, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qfpareto", p, min, shape1, shape2, shape3, scale, lower.tail, log.p) rfpareto <- function (n, min, shape1, shape2, shape3, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rfpareto", n, min, shape1, shape2, shape3, scale) mfpareto <- function (order, min, shape1, shape2, shape3, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "mfpareto", order, min, shape1, shape2, shape3, scale, FALSE) levfpareto <- function (limit, min, shape1, shape2, shape3, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levfpareto", limit, min, shape1, shape2, shape3, scale, order, FALSE) actuar/R/InverseWeibull.R0000644000176200001440000000315614030725703015022 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}invweibull functions to compute ### characteristics of the Inverse Weibull distribution. The version ### used in these functions has cumulative distribution function ### ### Pr[X <= x] = exp(-(x/scale)^shape), x > 0. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dinvweibull <- function (x, shape, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dinvweibull", x, shape, scale, log) pinvweibull <- function(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pinvweibull", q, shape, scale, lower.tail, log.p) qinvweibull <- function(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qinvweibull", p, shape, scale, lower.tail, log.p) rinvweibull <- function(n, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rinvweibull", n, shape, scale) minvweibull <- function(order, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "minvweibull", order, shape, scale, FALSE) levinvweibull <- function(limit, shape, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levinvweibull", limit, shape, scale, order, FALSE) ## Aliases dlgompertz <- dinvweibull plgompertz <- pinvweibull qlgompertz <- qinvweibull rlgompertz <- rinvweibull mlgompertz <- minvweibull levlgompertz <- levinvweibull actuar/R/InverseParalogistic.R0000644000176200001440000000277614030725703016047 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}invparalogis functions to compute ### characteristics of the Inverse Paralogistic distribution. The ### version used in these functions has cumulative distribution ### function ### ### Pr[X <= x] = (u/(1 + u))^shape, u = (x/scale)^shape, x > 0. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dinvparalogis <- function (x, shape, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dinvparalogis", x, shape, scale, log) pinvparalogis <- function(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pinvparalogis", q, shape, scale, lower.tail, log.p) qinvparalogis <- function(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qinvparalogis", p, shape, scale, lower.tail, log.p) rinvparalogis <- function(n, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rinvparalogis", n, shape, scale) minvparalogis <- function(order, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "minvparalogis", order, shape, scale, FALSE) levinvparalogis <- function(limit, shape, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levinvparalogis", limit, shape, scale, order, FALSE) actuar/R/InverseGaussian.R0000644000176200001440000000374714030725703015177 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev,mgf}invgauss functions to compute ### characteristics of the Inverse Gaussian distribution. ### ### Functions [dpq]invgauss rely on C implementations of functions of ### the same name in package statmod. See: ### ### Giner, G. and Smyth, G. K. (2016), "statmod: Probability ### Calculations for the Inverse Gaussian Distribution", R Journal, ### vol. 8, no 1, p. 339-351. ### https://journal.r-project.org/archive/2016-1/giner-smyth.pdf ### ### Chhikara, R. S. and Folk, T. L. (1989), The Inverse Gaussian ### Distribution: Theory, Methodology and Applications}, Decker. ### ### AUTHOR: Vincent Goulet dinvgauss <- function(x, mean, shape = 1, dispersion = 1/shape, log = FALSE) .External(C_actuar_do_dpq, "dinvgauss", x, mean, dispersion, log) pinvgauss <- function(q, mean, shape = 1, dispersion = 1/shape, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pinvgauss", q, mean, dispersion, lower.tail, log.p) qinvgauss <- function(p, mean, shape = 1, dispersion = 1/shape, lower.tail = TRUE, log.p = FALSE, tol = 1e-14, maxit = 100, echo = FALSE, trace = echo) .External(C_actuar_do_dpq, "qinvgauss", p, mean, dispersion, lower.tail, log.p, tol, maxit, trace) rinvgauss <- function(n, mean, shape = 1, dispersion = 1/shape) .External(C_actuar_do_random, "rinvgauss", n, mean, dispersion) minvgauss <- function(order, mean, shape = 1, dispersion = 1/shape) .External(C_actuar_do_dpq, "minvgauss", order, mean, dispersion, FALSE) levinvgauss <- function(limit, mean, shape = 1, dispersion = 1/shape, order = 1) .External(C_actuar_do_dpq, "levinvgauss", limit, mean, dispersion, order, FALSE) mgfinvgauss <- function(t, mean, shape = 1, dispersion = 1/shape, log = FALSE) .External(C_actuar_do_dpq, "mgfinvgauss", t, mean, dispersion, log) actuar/R/PoissonInverseGaussian.R0000644000176200001440000000215414030725703016541 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r}poisinvgauss functions to compute ### characteristics of the Poisson-Inverse Gaussian discrete ### distribution. ### ### AUTHOR: Vincent Goulet dpoisinvgauss <- function(x, mean, shape = 1, dispersion = 1/shape, log = FALSE) .External(C_actuar_do_dpq, "dpoisinvgauss", x, mean, dispersion, log) ppoisinvgauss <- function(q, mean, shape = 1, dispersion = 1/shape, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "ppoisinvgauss", q, mean, dispersion, lower.tail, log.p) qpoisinvgauss <- function(p, mean, shape = 1, dispersion = 1/shape, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qpoisinvgauss", p, mean, dispersion, lower.tail, log.p) rpoisinvgauss <- function(n, mean, shape = 1, dispersion = 1/shape) .External(C_actuar_do_random, "rpoisinvgauss", n, mean, dispersion) ## Aliases dpig <- dpoisinvgauss ppig <- ppoisinvgauss qpig <- qpoisinvgauss rpig <- rpoisinvgauss actuar/R/TransformedGamma.R0000644000176200001440000000325714030725703015314 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}trgamma functions to compute ### characteristics of the Transformed Gamma distribution. The version ### used in these functions has cumulative distribution function ### ### Pr[X <= x] = pgamma((x/scale)^shape2, shape1, scale = 1), x > 0 ### ### or, equivalently, ### ### Pr[X <= x] = pgamma(x^shape2, shape1, scale = scale^shape2), x > 0. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dtrgamma <- function (x, shape1, shape2, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dtrgamma", x, shape1, shape2, scale, log) ptrgamma <- function(q, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "ptrgamma", q, shape1, shape2, scale, lower.tail, log.p) qtrgamma <- function(p, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qtrgamma", p, shape1, shape2, scale, lower.tail, log.p) rtrgamma <- function(n, shape1, shape2, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rtrgamma", n, shape1, shape2, scale) mtrgamma <- function(order, shape1, shape2, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "mtrgamma", order, shape1, shape2, scale, FALSE) levtrgamma <- function(limit, shape1, shape2, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levtrgamma", limit, shape1, shape2, scale, order, FALSE) actuar/R/ogive.R0000644000176200001440000001062114125442656013177 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Ogive for grouped data. ### ### A default method exists for either a vector of individual data or ### two vectors of group boundaries and group frequencies. It first ### creates a grouped data object using 'grouped.data' and then ### dispatches to the main method to get the ogive. ### ### For the definition of the ogive, see Klugman, Panjer & Willmot, ### Loss Models, Wiley, 1998. ### ### More details on the admissible arguments for the default method ### are to be found in ./grouped.data.R. ### ### AUTHORS: Vincent Goulet , ### Mathieu Pigeon ### ### CREDITS: Arguments, 'breaks', 'nclass' and their treatment taken ### from R function hist(). ogive <- function(x, ...) { Call <- match.call() UseMethod("ogive") } ogive.default <- function(x, y = NULL, breaks = "Sturges", nclass = NULL, ...) { if (!exists("Call", inherits = FALSE)) Call <- match.call() chkDots(...) # method does not use '...' ## Avoid using calling 'hist' with 'nclass' specified. if (!missing(breaks)) { if (!missing(nclass)) warning("'nclass' not used when 'breaks' is specified") } else if (!is.null(nclass) && length(nclass) == 1L) breaks <- nclass ## Create the "grouped.data" object. x <- if (is.null(y)) # one argument: individual data grouped.data(x, breaks = breaks) else # two arguments: boundaries and frequencies grouped.data(x, y) ## Group frequencies in the second column of the data frame; group ## boundaries in the environment of 'x'. y <- x[, 2L] x <- eval(expression(cj), envir = environment(x)) ## Create an object of class 'ogive'. res <- .ogiveFUN(x, y) attr(res, "call") <- Call res } ogive.grouped.data <- function(x, ...) { if (!exists("Call", inherits = FALSE)) Call <- match.call() chkDots(...) # method does not use '...' ## We keep the first frequencies column only; group boundaries are ## in the environment of 'x' y <- x[, 2L] x <- eval(expression(cj), envir = environment(x)) ## Create an object of class 'ogive'. res <- .ogiveFUN(x, y) attr(res, "call") <- Call res } .ogiveFUN <- function(x, y) { FUN <- approxfun(x, cumsum(c(0, y)) / sum(y), yleft = 0, yright = 1, method = "linear", ties = "ordered") class(FUN) <- c("ogive", class(FUN)) FUN } ### Essentially identical to stats:::print.ecdf. print.ogive <- function(x, digits = getOption("digits") - 2, ...) { ## Utility function numform <- function(x) paste(formatC(x, digits = digits), collapse = ", ") ## The rest is adapted from stats::ecdf cat("Ogive for grouped data \nCall: ") print(attr(x, "call"), ...) nc <- length(xxc <- get("x", envir = environment(x))) nn <- length(xxn <- get("y", envir = environment(x))) i1 <- 1L:min(3L, nc) i2 <- if (nc >= 4L) max(4L, nc - 1L):nc else integer(0) i3 <- 1L:min(3L, nn) i4 <- if (nn >= 4L) max(4L, nn - 1L):nn else integer(0) cat(" x = ", numform(xxc[i1]), if (nc > 3L) ", ", if (nc > 5L) " ..., ", numform(xxc[i2]), "\n", sep = "") cat(" F(x) = ", numform(xxn[i3]), if (nn > 3L) ", ", if (nn > 5L) " ..., ", numform(xxn[i4]), "\n", sep = "") invisible(x) } ### Essentially identical to stats:::summary.ecdf. summary.ogive <- function (object, ...) { n <- length(eval(expression(x), envir = environment(object))) header <- paste("Ogive: ", n, "unique values with summary\n") structure(summary(knots(object), ...), header = header, class = "summary.ogive") } ### Identical to stats:::print.summary.ecdf. print.summary.ogive <- function(x, ...) { cat(attr(x, "header")) y <- x; attr(y, "header") <- NULL; class(y) <- "summaryDefault" print(y, ...) invisible(x) } ### Identical to stats:::knots.stepfun. knots.ogive <- function(Fn, ...) eval(expression(x), envir = environment(Fn)) plot.ogive <- function(x, main = NULL, xlab = "x", ylab = "F(x)", ...) { if (missing(main)) main <- { cl <- attr(x, "call") deparse(if (!is.null(cl)) cl else sys.call()) } kn <- knots(x) Fn <- x(kn) plot(kn, Fn, ..., type = "o", pch = 16, main = main, xlab = xlab, ylab = ylab) } actuar/R/simul.R0000644000176200001440000003041014055726556013223 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Simulation of hierarchical portfolios of data. Claim number and ### claim amounts in any given node are simulated independently. Both ### frequency and severity models can be mixtures of distributions. ### ### In the code here, numbering of levels starts at 1 at the data ### level, whereas in common discussion of hierarchical models the ### data level is numbered 0. ### ### AUTHORS: Vincent Goulet , ### Sebastien Auclair and Louis-Philippe Pouliot simul <- function(nodes, model.freq = NULL, model.sev = NULL, weights = NULL) { ## Get level names. Each could be NULL. level.names <- names(nodes) freq.names <- names(model.freq) sev.names <- names(model.sev) ## 'nodes' must be a named list. One exception is allowed: there ## is only one level. In this case, add a predetermined name if ## there isn't one already and make sure 'nodes' is a list. if (length(nodes) == 1L) { if (is.null(level.names)) names(nodes) <- "X" nodes <- as.list(nodes) } else { if (!is.list(nodes) || is.null(level.names)) stop("'nodes' must be a named list") } ## Determine if frequency and severity models are present. Keep ## for future use. has.freq <- !all(sapply(model.freq, is.null)) has.sev <- !all(sapply(model.sev, is.null)) ## Check that at least one of 'model.freq' or 'model.sev' is ## present and that the level names match with those of 'nodes'. ## Perhaps is there a fancier way to do all these tests, but the ## version below is at least easy to follow. if (has.freq) { if (has.sev) { if (! (identical(level.names, freq.names) && identical(level.names, sev.names))) stop("level names different in 'nodes', 'model.freq' and 'model.sev'") } else { if (!identical(level.names, freq.names)) stop("level names different in 'nodes', 'model.freq' and 'model.sev'") } } else { if (has.sev) { if (!identical(level.names, sev.names)) stop("level names different in 'nodes', 'model.freq' and 'model.sev'") } else stop("one of 'model.freq' or 'model.sev' must be non-NULL") } ## The function is written for models with at least two levels ## (entity and year). If there is only one, add a dummy level to ## avoid scattering the code with conditions. if (length(nodes) < 2L) { nodes <- c(node = 1, nodes) model.freq <- if (has.freq) c(expression(node = NULL), model.freq) else NULL model.sev <- if (has.sev) c(expression(node = NULL), model.sev) else NULL } ## Frequently used quantities level.names <- names(nodes) # need to reset! nlevels <- length(nodes) # number of levels ## Recycling of the number of nodes (if needed) must be done ## "manually". We do it here once and for all since in any case ## below we will need to know the total number of nodes in the ## portfolio. Furthermore, the recycled list 'nodes' will be ## returned by the function. for (i in 2L:nlevels) # first node doesn't need recycling nodes[[i]] <- rep(nodes[[i]], length = sum(nodes[[i - 1L]])) ## Simulation of the frequency mixing parameters for each level ## (e.g. class, contract) and, at the last level, the actual ## frequencies. If 'model.freq' is NULL, this is equivalent to ## having one claim per node. if (has.freq) { ## Normally, only the immediately above mixing parameter will ## be used in the model for a level, but the code here allows ## for more general schemes. For this to work, all mixing ## parameters have to be correctly recycled at each level ## where they *could* be used. Since the model at any level ## could be NULL, 'params' will keep track of the mixing ## parameters that were simulated in previous iteration of the ## forthcoming loop. params <- character(0) for (i in seq_len(nlevels)) { ## Number of nodes at the current level n.current <- nodes[[i]] ## Extract simulation model for the level. Call <- model.freq[[i]] ## Repeat the mixing parameters of all levels above the ## current one that were simulated in the past. for (j in seq_along(params)) eval(substitute(x <- rep.int(x, n.current), list(x = as.name(params[[j]])))) ## Simulate data only if there is a model at the current ## level. if (!is.null(Call)) { ## Add the number of variates to the call. Call$n <- sum(n.current) ## Simulation of the mixing parameters or the data. In ## the latter case, store the results in a fixed ## variable name. if (i < nlevels) { assign(level.names[[i]], eval(Call)) params[i] <- level.names[[i]] # remember the parameter } else frequencies <- eval(Call) } } } else frequencies <- rep.int(1, sum(nodes[[nlevels]])) ## Simulation of the claim amounts. If 'model.sev' is NULL, this ## is equivalent to simulating frequencies only. if (has.sev) { ## Repeat the same procedure as for the frequency model, with ## one difference: when reaching the last level (claim ## amounts), the number of variates to simulate is not given ## by the number of nodes but rather by the number of claims ## as found in 'frequencies'. params <- character(0) for (i in seq_len(nlevels)) { n.current <- nodes[[i]] Call <- model.sev[[i]] for (j in seq_along(params)) eval(substitute(x <- rep.int(x, n.current), list(x = as.name(params[[j]])))) if (!is.null(Call)) { ## The rest of the procedure differs depending if we ## are still simulating mixing parameters or claim ## amounts. if (i < nlevels) { ## Simulation of mixing parameters is identical to the ## simulation of frequencies. Call$n <- sum(n.current) assign(level.names[[i]], eval(Call)) params[i] <- level.names[[i]] } else { ## For the simulation of claim amounts, the number ## of variates is rather given by the ## 'frequencies' object. Furthermore, the mixing ## parameters must be recycled once more to match ## the vector of frequencies. for (p in intersect(all.vars(Call), params)) eval(substitute(x <- rep.int(x, frequencies), list(x = as.name(p)))) Call$n <- sum(frequencies) severities <-eval(Call) } } } } else severities <- rep.int(1, sum(frequencies)) ## We must now distribute the claim amounts in vector 'severities' ## to the appropriate nodes. This is complicated by the ## possibility to have different number of nodes (years of ## observation) for each entity. The result must be a matrix ## with the number of columns equal to the maximum number of last ## level nodes. ## ## The number of nodes (years of observation) per entity is ## given by 'n.current' since we reached the last level in (either ## one of) the above loops. ## ## Assign a unique ID to each node, leaving gaps for nodes without ## observations. ind <- unlist(mapply(seq, from = seq(by = max(n.current), along = n.current), length = n.current)) ## Repeating the vector of IDs according to the frequencies ## effectively assigns a node ID to each claim amount. The vector ## of claim amounts is then split by node, yielding a list where ## each element corresponds to a node with claims. f <- rep.int(ind, frequencies) severities <- split(severities, f) ## Identify nodes with frequency equal to 0, which is different ## from having no observation (NA). freq0 <- ind[which(frequencies == 0)] ## Rearrange the list of claim amounts in a matrix; ## ## number of rows: number of nodes at the penultimate level ## (number of entities) ## number of columns: maximum number of nodes at the last level ## (number of years of observation). ## ## Moreover, assign a value of 'numeric(0)' to nodes with a ## frequency of 0. nrow <- length(n.current) # number of entities ncol <- max(n.current) # number of years res <- as.list(rep.int(NA, nrow * ncol)) res[unique(f)] <- severities res[freq0] <- lapply(rep.int(0, length(freq0)), numeric) res <- matrix(res, nrow, ncol, byrow = TRUE, dimnames = list(NULL, paste(level.names[nlevels], seq_len(ncol), sep = "."))) ## Reshape weights as a matrix, if necessary. weights <- if (is.null(weights)) NULL else { ## Integrate NAs into the weights matrix as appropriate. w <- rep.int(NA, nrow * ncol) w[ind] <- weights matrix(w, nrow = nrow, byrow = TRUE, dimnames = dimnames(res)) } ## Finally, create a matrix where each row contains the series of ## identifiers for an entity in the portfolio, e.g. if the data ## is denoted X_{ijkt}, one line of the matrix will contain ## subscripts i, j and k. As we move from right to left in the ## columns of 'm', the subcripts are increasingly repeated. ncol <- nlevels - 1L m <- matrix(1, nrow, ncol, dimnames = list(NULL, head(level.names, ncol))) for (i in seq_len(ncol - 1L)) # all but the last column { ## Vector 'x' will originally contain all subscripts for one ## level. These subscripts are then repeated as needed to give ## the desired result. To avoid another explicit loop, I use a ## 'lapply' with a direct assignment in the current ## frame. Somewhat unusual, but this is the simplest procedure ## I managed to come up with. x <- unlist(lapply(nodes[[i]], seq)) lapply(nodes[(i + 1L):(nlevels - 1L)], function(v) assign("x", rep.int(x, v), envir = parent.frame(2))) m[, i] <- x } m[, ncol] <- unlist(lapply(nodes[[ncol]], seq)) # last column ## Return object of class 'portfolio' structure(list(data = res, weights = weights, classification = m, nodes = nodes, model.freq = model.freq, model.sev = model.sev), class = "portfolio") } ### Alias for backward compatibility (with actuar <= 0.9-4) simpf <- simul ### Alias to fit within the usual naming scheme of random generation ### functions (introduced in actuar 2.0-0) rcomphierarc <- simul ### 'print' method for 'portfolio' objects print.portfolio <- function(x, ...) { cat("\nPortfolio of claim amounts \n\n") nn <- names(x$nodes) nc <- max(nchar(nn)) if (!is.null(x$model.freq)) { cat(" Frequency model\n") cat(paste(" ", format(nn, width = nc), " ~ ", x$model.freq, "\n", sep = ""), sep = "") } if (!is.null(x$model.sev)) { cat(" Severity model\n") cat(paste(" ", format(nn, width = nc), " ~ ", x$model.sev, "\n", sep = ""), sep = "") } cat("\n Number of claims per node: \n\n") print(frequency(x), ...) invisible(x) } actuar/R/ZeroModifiedLogarithmic.R0000644000176200001440000000167114030725703016626 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,r}zmlogarithmic functions to compute ### characteristics of the zero modified logarithmic distribution. See ### ./Logarithmic.R for details on the parametrization. ### ### See p. 93 of Klugman, Panjer & Willmot, Loss Models, Fourth ### Edition, Wiley, 2012. ### ### AUTHOR: Vincent Goulet dzmlogarithmic <- function(x, prob, p0, log = FALSE) .External(C_actuar_do_dpq, "dzmlogarithmic", x, prob, p0, log) pzmlogarithmic <- function(q, prob, p0, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pzmlogarithmic", q, prob, p0, lower.tail, log.p) qzmlogarithmic <- function(p, prob, p0, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qzmlogarithmic", p, prob, p0, lower.tail, log.p) rzmlogarithmic <- function(n, prob, p0) .External(C_actuar_do_random, "rzmlogarithmic", n, prob, p0) actuar/R/ruin.R0000644000176200001440000002452214030725703013040 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Calulation of infinite time ruin probabilities in the models of ### Cramer-Lundberg and Sparre Andersen. In general, one has ### ### psi(u) = pphtype(u, pi, Q, lower.tail = FALSE) ### ### for definitions of pi and Q that depend on the severity and waiting ### times models. An explicit solution exists when both severity and ### waiting times are exponential (no mixture). ### ### _Combinations_ of exponentials as defined in Dufresne & Gerber ### (1988) are NOT supported. ### ### References: ### ### Dufresne, F. and Gerber, H. U. (1988), "Three methods to calculate ### the probability of ruin", Astin Bulletin 19, p. 71-90. ### ### Asmussen, S. and Rolski, T. (1991), "Computational methods in risk ### theory: A matrix-algorithmic approach", Insurance: Mathematics and ### Economics 10, p. 259-274. ### ### AUTHORS: Christophe Dutang, Vincent Goulet ruin <- function(claims = c("exponential", "Erlang", "phase-type"), par.claims, wait = c("exponential", "Erlang", "phase-type"), par.wait, premium.rate = 1, tol = sqrt(.Machine$double.eps), maxit = 200L, echo = FALSE) { ## Sanity checks if (missing(par.claims) || !is.list(par.claims)) stop("'par.claims' must be a named list") if (missing(par.wait) || !is.list(par.wait)) stop("'par.wait' must be a named list") claims <- match.arg(claims) wait <- match.arg(wait) ## ============================================== ## Extraction of the claims severity parameters choices <- switch(claims, exponential = c("rate", "weights"), Erlang = c("shape", "rate", "scale", "weights"), "phase-type" = c("prob", "rates")) i <- pmatch(names(par.claims), choices, nomatch = 0L, duplicates.ok = TRUE) if (all(i == 0L)) stop(gettextf("parameters %s missing in 'par.claims'", paste(dQuote(choices), collapse = ", "))) par.claims <- par.claims[i > 0L] # keep relevant components p <- choices[i[i > 0L]] # keep relevant names names(par.claims) <- p # use full names if (claims == "exponential") { if ("rate" %in% p) rate <- par.claims$rate else stop("parameter \"rate\" missing in 'par.claims'") n <- length(rate) if ("weights" %in% p && n > 1L) prob <- rep(par.claims$weights, length.out = n) else if (n == 1L) prob <- 1 else stop("parameter \"weights\" missing in 'par.claims'") rates <- diag(-rate, n) } else if (claims == "Erlang") { if ("shape" %in% p) shape <- par.claims$shape else stop("parameter \"shape\" missing in 'par.claims'") if ("rate" %in% p) rate <- par.claims$rate else if ("scale" %in% p) rate <- 1 / par.claims$scale else stop("parameter \"rate\" or \"scale\" missing in 'par.claims'") if (length(shape) < length(rate)) shape <- rep(shape, length.out = length(rate)) else rate <- rep(rate, length.out = length(shape)) n <- sum(shape) if ("weights" %in% p && length(shape) > 1L) { prob <- numeric(n) prob[cumsum(c(1, head(shape, -1)))] <- par.claims$weights } else if (length(shape) == 1L) prob <- c(1, rep(0, n - 1)) else stop("parameter \"weights\" missing in 'par.claims'") rates <- diag(rep(-rate, shape), n) if (n > 1 && shape > 1) { tmp <- -head(diag(rates), -1L) tmp[cumsum(head(shape, -1L))] <- 0 # insert 0s in "ll corners" rates[cbind(seq_len(n - 1), seq(2, len = n - 1))] <- tmp } } else # claims == "phase-type" { if ("prob" %in% p) prob <- par.claims$prob else stop("parameter \"prob\" missing in 'par.claims'") if ("rates" %in% p) rates <- par.claims$rates else stop("parameter \"rates\" missing in 'par.claims'") n <- length(prob) if (!(is.matrix(rates) && nrow(rates) == n)) stop("invalid parameters in 'par.claims'") } ## ============================================== ## ================================================= ## Extraction of the interarrival times parameters choices <- switch(wait, exponential = c("rate", "weights"), Erlang = c("shape", "rate", "scale", "weights"), "phase-type" = c("prob", "rates")) i <- pmatch(names(par.wait), choices, nomatch = 0L, duplicates.ok = TRUE) if (all(i == 0L)) stop(gettextf("parameters %s missing in 'par.wait'", paste(dQuote(choices), collapse = ", "))) par.wait <- par.wait[i > 0L] # keep relevant components p <- choices[i[i > 0L]] # keep relevant names names(par.wait) <- p # use full names if (wait == "exponential") { if ("rate" %in% p) rate <- par.wait$rate else stop("parameter \"rate\" missing in 'par.wait'") m <- length(rate) if ("weights" %in% p && m > 1L) prob.w <- rep(par.wait$weights, length.out = m) else if (m == 1L) prob.w <- 1 else stop("parameter \"weights\" missing in 'par.wait'") rates.w <- diag(-rate, m) } else if (wait == "Erlang") { if ("shape" %in% p) shape <- par.wait$shape else stop("parameter \"shape\" missing in 'par.wait'") if ("rate" %in% p) rate <- par.wait$rate else if ("scale" %in% p) rate <- 1 / par.wait$scale else stop("parameter \"rate\" or \"scale\" missing in 'par.wait'") if (length(shape) < length(rate)) shape <- rep(shape, length.out = length(rate)) else rate <- rep(rate, length.out = length(shape)) m <- sum(shape) if ("weights" %in% p && length(shape) > 1L) { prob.w <- numeric(sum(shape)) prob.w[cumsum(c(1, head(shape, -1L)))] <- par.wait$weights } else if (length(shape) == 1L) prob.w <- c(1, rep(0, m - 1)) else stop("parameter \"weights\" missing in 'par.wait'") rates.w <- diag(rep(-rate, shape), m) if (m > 1 && shape > 1) { tmp <- -head(diag(rates.w), -1L) tmp[cumsum(head(shape, -1L))] <- 0 # insert 0s in "ll corners" rates.w[cbind(seq_len(m - 1), seq(2, len = m - 1))] <- tmp } } else # wait == "phase-type" { if ("prob" %in% p) prob.w <- par.wait$prob else stop("parameter \"prob\" missing in 'par.wait'") if ("rates" %in% p) rates.w <- par.wait$rates else stop("parameter \"rates\" missing in 'par.wait'") m <- length(prob.w) if (!(is.matrix(rates.w) && nrow(rates.w) == m)) stop("invalid parameters in 'par.wait'") } ## ================================================= ## Empty definition of the output function. The body is set later. FUN <- function(u, survival = FALSE, lower.tail = !survival) {} ## Cramer-Lundberg model if (wait == "exponential" && m == 1L) { ## Special case with an explicit solution if (claims == "exponential" && n == 1L) { lambda <- -drop(rates.w) / premium.rate body(FUN) <- substitute({res <- a * exp(-(b) * u); if (lower.tail) res else 0.5 - res + 0.5}, list(a = -lambda/drop(rates), b = -drop(rates) - lambda)) environment(FUN) <- new.env() # new, empty environment class(FUN) <- c("ruin", class(FUN)) return(FUN) } ## Use phase-type representation for all other claim severity models. pi <- drop(rates.w) * prob %*% solve(rates) / premium.rate Q <- rates - rowSums(rates) %*% pi } ## Sparre Andersen model (interarrival times other than single exponential) else { ## Matrix Q is a "fixed point" of some function (Asmussen & ## Rolski, 1992, p. 265-266). Many elements of this function ## never change, hence they are computed once and for all ## here. In <- diag(n) # n x n identity matrix Im <- diag(m) # m x m identity matrix t0pi <- -rowSums(rates) %o% prob # "multiple" of A(Q) A <- In %x% rbind(prob.w) # first term of A(Q) B <- In %x% rates.w # rhs of the Kronecker sum C <- In %x% -rowSums(rates.w) # third term of A(Q) if (echo) { cat("Iteration\tMatrix Q (column major order)\n") exp <- expression(cat(" ", count, "\t\t ", Q1 <- Q, fill = TRUE)) } else exp <- expression(Q1 <- Q) Q <- rates count <- 0L repeat { eval(exp) if (maxit < (count <- count + 1L)) { warning("maximum number of iterations reached before obtaining convergence") break } Q1 <- Q Q <- rates - t0pi %*% A %*% solve(Q %x% Im + B, C) if (max(rowSums(abs(Q - Q1))) < tol) break } pi <- colSums(Q - rates) / (-sum(rates) * premium.rate) } ## Compute the probability of ruin using the cdf of a phase-type ## distribution with parameters pi and Q. body(FUN) <- substitute(pphtype(u, a, b, lower.tail = !lower.tail), list(a = pi, b = Q)) environment(FUN) <- new.env() # new, empty environment class(FUN) <- c("ruin", class(FUN)) FUN } plot.ruin <- function(x, from = NULL, to = NULL, add = FALSE, xlab = "u", ylab = expression(psi(u)), main = "Probability of Ruin", xlim = NULL, ...) curve(x, from = from, to = to, add = add, xlab = xlab, ylab = ylab, main = main, xlim = xlim, ...) actuar/R/normal.R0000644000176200001440000000301214030725703013342 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Normal and Normal Power Approximation of the total amount of ### claims distribution ### ### See Dayken, Pentikanen and Pesonen, Practical Risk Theory for ### Actuaries, Chapman & Hall, 1994. ### ### AUTHORS: Vincent Goulet ### and Louis-Philippe Pouliot normal <- function(mean, variance) { ## Approximate the total amount of claims distribution using the first ## two moments. FUN <- function(x) pnorm(x, mean = mean, sd = sqrt(variance)) environment(FUN) <- new.env() assign("mean", mean, envir = environment(FUN)) assign("variance", variance, envir = environment(FUN)) attr(FUN, "source") <- "function(x) pnorm(x, mean = mean, sd = sqrt(variance))" FUN } npower <- function(mean, variance, skewness) { ## Approximate the total amount of claims distribution using the first ## three moments. FUN <- function(x) ifelse(x <= mean, NA, pnorm(sqrt(1 + 9/skewness^2 + 6 * (x - mean)/(sqrt(variance) * skewness)) - 3/skewness)) environment(FUN) <- new.env() assign("mean", mean, envir = environment(FUN)) assign("variance", variance, envir = environment(FUN)) assign("skewness", skewness, envir = environment(FUN)) attr(FUN, "source") <- "function(x) ifelse(x <= mean, NA, pnorm(sqrt(1 + 9/skewness^2 + 6 * (x - mean)/(sqrt(variance) * skewness)) - 3/skewness))" FUN } actuar/R/ZeroTruncatedPoisson.R0000644000176200001440000000161514030725703016225 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r}ztpois functions to compute ### characteristics of the Zero Truncated Poisson distribution. ### ### See Appendix B of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHOR: Vincent Goulet dztpois <- function (x, lambda, log = FALSE) .External(C_actuar_do_dpq, "dztpois", x, lambda, log) pztpois <- function(q, lambda, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pztpois", q, lambda, lower.tail, log.p) qztpois <- function(p, lambda, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qztpois", p, lambda, lower.tail, log.p) rztpois <- function(n, lambda) .External(C_actuar_do_random, "rztpois", n, lambda) ## not exported; for internal use in panjer() pgfztpois <- function(x, lambda) expm1(lambda * x)/expm1(lambda) actuar/R/ZeroTruncatedBinomial.R0000644000176200001440000000200614030725703016320 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r}ztbinom functions to compute ### characteristics of the Zero Truncated Binomial distribution. ### ### See Appendix B of Klugman, Panjer & Willmot, Loss Models, Second ### Edition, Wiley, 2004. ### ### AUTHOR: Vincent Goulet dztbinom <- function (x, size, prob, log = FALSE) .External(C_actuar_do_dpq, "dztbinom", x, size, prob, log) pztbinom <- function(q, size, prob, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pztbinom", q, size, prob, lower.tail, log.p) qztbinom <- function(p, size, prob, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qztbinom", p, size, prob, lower.tail, log.p) rztbinom <- function(n, size, prob) .External(C_actuar_do_random, "rztbinom", n, size, prob) ## not exported; for internal use in panjer() pgfztbinom <- function(x, size, prob) { qn <- (1 - prob)^size (exp(size * log1p(prob * (x - 1))) - qn)/(1 - qn) } actuar/R/hierarc.R0000644000176200001440000003213514030725703013477 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Hierarchical credibility model calculations ### ### AUTHORS: Vincent Goulet , ### Louis-Philippe Pouliot, Tommy Ouellet. hierarc <- function(ratios, weights, classification, method = c("Buhlmann-Gisler", "Ohlsson", "iterative"), tol = sqrt(.Machine$double.eps), maxit = 100, echo = FALSE) { ## === HANDS ON THE DATA === ## ## Arguments 'ratios' and 'weights' must be matrices of real ## numbers, whereas 'classification' must be a matrix of integers ## giving the affiliation of each entity in the portfolio. nlevels <- ncol(classification) # number of levels nlevels1p <- nlevels + 1L # frequently used ## To symmetrize further calculations, bind a column of ones ## representing the affiliation to the global portfolio. classification <- cbind(pf = 1L, classification) ## If weights are not specified, use equal weights. if (missing(weights)) { if (any(is.na(ratios))) stop("missing ratios not allowed when weights are not supplied") array(1, dim(ratios)) # matrix of ones } ## Sanity check if weights and ratios correspond. if (!identical(which(is.na(ratios)), which(is.na(weights)))) stop("missing values are not in the same positions in 'weights' and in 'ratios'") ## === NUMBER OF NODES AND SPLITTING FACTORS === ## ## Future computation of per level summaries will require a set of ## factors based on the number of nodes in each level. An example ## will best explain what is achieved here: suppose there are two ## sectors; sector 1 has 3 units; sector 2 has 2 units. To make ## per sector summaries, the following factors can be used to ## split the unit data: 1 1 1 2 2. ## ## Generating such factors first requires to know the number of ## nodes at each level in a format identical to the 'nodes' ## argument of simul(). [In the previous example, the number of ## nodes would be 'list(2, c(3, 2))'.] Then, the factors are ## obtained by repeating a sequence the same length as the number ## of nodes at one level [2] according to the number of nodes at ## the level below [c(3, 2)]. ## ## 0. Initialization fnodes <- nnodes <- vector("list", nlevels) ## 1. Calculation of the number of nodes: the main idea is to ## create a unique factor for each node using interaction() ## recursively on the columns of 'classification'. We can do ## something simpler for the lowest level (the entities), since we ## know the combinations of indexes to all be different at this ## level. fx <- vector("list", nlevels1p) fx[[nlevels1p]] <- factor(classification[, nlevels1p]) # entity level for (i in nlevels:1L) { ## Function 'interaction' expects its arguments separately or ## as a list, hence the lapply() below. fx[[i]] <- as.integer(interaction(lapply(seq.int(i), function(j) classification[, j]), drop = TRUE)) ## 'as.vector' below is used to get rid of names nnodes[[i]] <- as.vector(sapply(split(fx[[i + 1]], fx[[i]]), function(x) length(unique(x)))) } ## 2. Generation of the factors. Following the rule described ## above, this could simply be ## ## fnodes <- lapply(nnodes, function(x) rep(seq_along(x), x)) ## ## However, this will not work if rows of data are not sorted per ## level. (In the example above, if the data of unit 3 of sector 1 ## is at the bottom of the matrix of data, then the factors need ## to be 1 1 2 2 1.) ## ## The solution is actually simple: converting the entity level ## factors ('fx[[nlevels]]') to integers will assure that any ## summary made using these factors will be sorted. This done, it ## is possible to use the command above for the upper levels. fnodes[[nlevels]] <- as.integer(fx[[nlevels]]) fnodes[-nlevels] <- lapply(nnodes[-nlevels], function(x) rep(seq_along(x), x)) ## === PER ENTITY SUMMARIES === ## ## Individual weighted averages. It could happen that an entity ## has no observations, for example when applying the model on ## claim amounts. In such a situation, put the total weight of the ## entity and the weighted average both equal to zero. That way, ## the premium will be equal to the credibility weighted average, ## as it should, but the entity will otherwise have no ## contribution in the calculations. weights.s <- rowSums(weights, na.rm = TRUE) ratios.w <- ifelse(weights.s > 0, rowSums(weights * ratios, na.rm = TRUE) / weights.s, 0) ## === EFFECTIVE NUMBER OF NODES === ## ## Given the possibility to have whole levels with no data, as ## explained above, it is necessary to count the *effective* ## number of nodes in each level, that is the number of nodes with ## data. This comes this late since it relies on 'weights.s'. ## ## Object 'eff.nnodes' is in every respect equivalent to 'nnodes' ## except that each element of the list is a vector of the number of ## non "empty" nodes for each classification of the level ## above. eff.nnodes <- vector("list", nlevels) w <- weights.s for (i in nlevels:1L) { eff.nnodes[[i]] <- tapply(w, fnodes[[i]], function(x) sum(x > 0)) w <- tapply(w, fnodes[[i]], sum) # running totals } ## === DENOMINATORS OF VARIANCE ESTIMATORS === ## ## The denominators for all the variance estimators never ## change. The denominator at one level is equal to the total ## number of nodes at that level minus the total number of nodes ## at the level above. At the lowest level (the denominator of ## s^2), this is ## ## number of (non NA) ratios - (effective) number of entities. ## ## The number of (non missing) ratios is not included in ## 'eff.nnodes'. For the portfolio level, the denominator is ## ## (effective) number of "sectors" - 1 ## ## The 1 neither is included in 'eff.nnodes'. denoms <- diff(c(1L, sapply(eff.nnodes, sum), sum(!is.na(ratios)))) ## Final sanity checks if (any(!denoms)) stop("there must be at least two nodes at every level") if (ncol(ratios) < 2L) stop("there must be at least one node with more than one period of experience") ## === ESTIMATION OF s^2 === s2 <- sum(weights * (ratios - ratios.w)^2, na.rm = TRUE) / denoms[nlevels1p] ## === ESTIMATION OF THE OTHER VARIANCE COMPONENTS === ## ## Create vectors to hold values to be computed at each level ## (from portfolio to entity), namely: the total node weights, the ## node weighted averages, the between variances and the node ## credibility factors. ## ## Only credibility factors are not computed for the portfolio ## level, hence this list is one shorter than the others. tweights <- vector("list", nlevels1p) # total level weights wmeans <- vector("list", nlevels1p) # weighted averages b <- c(numeric(nlevels), s2) # variance estimators cred <- vector("list", nlevels) # credibility factors ## Values already computed at the entity level. tweights[[nlevels1p]] <- as.vector(weights.s); wmeans[[nlevels1p]] <- as.vector(ratios.w); ## The unbiased variance estimators are evaluated first as they will ## be used as starting values for the iterative part below. ## ## At the entity level: node weight is given by the natural ## weight, weighted averages use the natural weights. ## ## Level above the entity: node weight is the sum of the natural ## weights at the level below, weighted averages use the natural ## weights. ## ## All upper levels: node weight is the sum of the credibility ## factors at the level below, weighted averages use credibility ## factors from previous level. ## ## Buhlmann-Gisler estimators truncate the per node variance ## estimates to 0 before taking the mean, whereas the Ohlsson ## estimators do not make any truncation. method <- match.arg(method) if (method == "Buhlmann-Gisler") bexp <- expression(b[i] <- mean(pmax(ifelse(ci != 0, bi/ci, 0), 0), na.rm = TRUE)) else # Ohlsson bexp <- expression(b[i] <- sum(bi, na.rm = TRUE) / sum(ci, na.rm = TRUE)) for (i in nlevels:1L) { ## Total weight of the level as per the rule above. tweights[[i]] <- as.vector(tapply(tweights[[i + 1L]], fnodes[[i]], sum)) ## Calculation of the weighted averages of the level. Before ## the between variance is estimated, these use the total ## weights calculated above. wmeans[[i]] <- ifelse(tweights[[i]] > 0, as.vector(tapply(tweights[[i + 1L]] * wmeans[[i + 1L]], fnodes[[i]], sum) / tweights[[i]]), 0) ## Latest non-zero between variance estimate -- the one used ## in the estimator and in the credibility factors. between <- b[b != 0][1L] ## Calculation of the per node variance estimate. bi <- as.vector(tapply(tweights[[i + 1L]] * (wmeans[[i + 1L]] - wmeans[[i]][fnodes[[i]]])^2, fnodes[[i]], sum)) - (eff.nnodes[[i]] - 1) * between ci <- tweights[[i]] - as.vector(tapply(tweights[[i + 1L]]^2, fnodes[[i]], sum)) / tweights[[i]] ## The final estimate is the average of all the per node estimates. eval(bexp) ## Calculation of the credibility factors. If these are ## non-zero, the total weights for the current level are ## replaced by the sum of the credibility factors and the ## weighted averages are recomputed with these new weights. #if (max(bu[i], 0)) # don't compute negative factors! if (b[i]) { cred[[i]] <- 1/(1 + between/(b[i] * tweights[[i + 1L]])) tweights[[i]] <- as.vector(tapply(cred[[i]], fnodes[[i]], sum)) wmeans[[i]] <- ifelse(tweights[[i]] > 0, as.vector(tapply(cred[[i]] * wmeans[[i + 1L]], fnodes[[i]], sum) / tweights[[i]]), 0) } else cred[[i]] <- numeric(sum(nnodes[[i]])) } ## Iterative estimation of the structure parameters. ## ## At the entity level: total weight is the sum of the natural ## weights, weighted averages use the natural weights and between ## variance is s^2. ## ## All upper levels: total weight is the sum of the credibility ## factors of the level below, weighted averages use credibility ## factors, between variance estimated recursively and credibility ## factor use total weight of the level, between variance of the ## level below (hence the within variance) and between variance of ## the current level. if (method == "iterative") { b <- pmax(b, 0) # truncation for starting values if (any(head(b, -1L) > 0)) # at least one non-zero starting value .External(C_actuar_do_hierarc, cred, tweights, wmeans, fnodes, denoms, b, tol, maxit, echo) } ## Results structure(list(means = wmeans, weights = tweights, unbiased = if (method != "iterative") b, iterative = if (method == "iterative") b, cred = cred, nodes = nnodes, classification = classification[, -1L], ordering = fnodes), class = "hierarc", model = "hierarchical") } predict.hierarc <- function(object, levels = NULL, newdata, ...) { ## The credibility premium of a node at one level is equal to ## ## p + z * (m - p) ## ## where 'p' is the credibility premium of the level above (or the ## collective premium for the portfolio), 'z' is the credibility ## factor of the node, and 'm' is the weighted average of the ## node. fnodes <- object$ordering cred <- object$cred means <- object$means nlevels <- length(object$nodes) level.names <- names(object$nodes) if (is.null(levels)) levels <- seq_len(nlevels) if (any(is.na(levels)) || !is.numeric(levels)) stop("invalid level number") n <- max(levels) res <- vector("list", n) ## First level credibility premiums res[[1L]] <- means[[1L]] + cred[[1L]] * (means[[2L]] - means[[1L]]) for (i in seq(2, length.out = n - 1)) { p <- res[[i - 1]][fnodes[[i]]] res[[i]] <- p + cred[[i]] * (means[[i + 1]] - p) } structure(res[levels], names = level.names[levels], ...) } actuar/R/aggregateDist.R0000644000176200001440000002020614030725703014630 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Use one of five methods to compute the aggregate claim amount ### distribution of a portfolio over a period given a frequency and a ### severity model or the true moments of the distribution. ### ### AUTHORS: Vincent Goulet , ### Louis-Philippe Pouliot aggregateDist <- function(method = c("recursive", "convolution", "normal", "npower", "simulation"), model.freq = NULL, model.sev = NULL, p0 = NULL, x.scale = 1, convolve = 0, moments, nb.simul, ..., tol = 1e-06, maxit = 500, echo = FALSE) { Call <- match.call() ## The method used essentially tells which function should be ## called for the calculation of the aggregate claims ## distribution. method <- match.arg(method) if (method == "normal") { ## An error message is issued if the number of moments listed ## is not appropriate for the method. However it is the user's ## responsability to list the moments in the correct order ## since the vector is not required to be named. if (missing(moments) || length(moments) < 2) stop("'moments' must supply the mean and variance of the distribution") FUN <- normal(moments[1], moments[2]) comment(FUN) <- "Normal approximation" } else if (method == "npower") { if (missing(moments) || length(moments) < 3) stop("'moments' must supply the mean, variance and skewness of the distribution") FUN <- npower(moments[1], moments[2], moments[3]) comment(FUN) <- "Normal Power approximation" } else if (method == "simulation") { if (missing(nb.simul)) stop("'nb.simul' must supply the number of simulations") if (is.null(names(model.freq)) && is.null(names(model.sev))) stop("expressions in 'model.freq' and 'model.sev' must be named") FUN <- simS(nb.simul, model.freq = model.freq, model.sev = model.sev) comment(FUN) <- "Approximation by simulation" } else { ## "recursive" and "convolution" cases. Both require a ## discrete distribution of claim amounts, that is a vector of ## probabilities in argument 'model.sev'. if (!is.numeric(model.sev)) stop("'model.sev' must be a vector of probabilities") ## Recursive method uses a model for the frequency distribution. if (method == "recursive") { if (is.null(model.freq) || !is.character(model.freq)) stop("frequency distribution must be supplied as a character string") dist <- match.arg(tolower(model.freq), c("poisson", "geometric", "negative binomial", "binomial", "logarithmic", "zero-truncated poisson", "zero-truncated geometric", "zero-truncated negative binomial", "zero-truncated binomial", "zero-modified logarithmic", "zero-modified poisson", "zero-modified geometric", "zero-modified negative binomial", "zero-modified binomial")) FUN <- panjer(fx = model.sev, dist = dist, p0 = p0, x.scale = x.scale, ..., convolve = convolve, tol = tol, maxit = maxit, echo = echo) comment(FUN) <- "Recursive method approximation" } ## Convolution method requires a vector of probabilites in ## argument 'model.freq'. else if (method == "convolution") { if (!is.numeric(model.freq)) stop("'model.freq' must be a vector of probabilities") FUN <- exact(fx = model.sev, pn = model.freq, x.scale = x.scale) comment(FUN) <- "Exact calculation (convolutions)" } else stop("internal error") } ## Return cumulative distribution function class(FUN) <- c("aggregateDist", class(FUN)) attr(FUN, "call") <- Call FUN } print.aggregateDist <- function(x, ...) { cat("\nAggregate Claim Amount Distribution\n") cat(" ", label <- comment(x), "\n\n", sep = "") cat("Call:\n") print(attr(x, "call"), ...) cat("\n") if (label %in% c("Exact calculation (convolutions)", "Recursive method approximation", "Approximation by simulation")) { n <- length(get("x", envir = environment(x))) cat("Data: (", n, "obs. )\n") numform <- function(x) paste(formatC(x, digits = 4, width = 5), collapse = ", ") i1 <- 1L:min(3L, n) i2 <- if (n >= 4L) max(4L, n - 1L):n else integer() xx <- eval(expression(x), envir = environment(x)) cat(" x[1:", n, "] = ", numform(xx[i1]), if (n > 3L) ", ", if (n > 5L) " ..., ", numform(xx[i2]), "\n", sep = "") cat("\n") } if (label %in% c("Normal approximation", "Normal Power approximation")) cat(attr(x, "source"), "\n") invisible(x) } plot.aggregateDist <- function(x, xlim, ylab = expression(F[S](x)), main = "Aggregate Claim Amount Distribution", sub = comment(x), ...) { ## Function plot() is used for the step cdfs and function curve() ## in the continuous cases. if ("stepfun" %in% class(x)) { ## Method for class 'ecdf' will most probably be used. NextMethod(main = main, ylab = ylab, ...) } else { ## Limits for the x-axis are supplied if none are given ## in argument. if (missing(xlim)) { mean <- get("mean", envir = environment(x)) sd <- sqrt(get("variance", envir = environment(x))) xlim <- c(mean - 3 * sd, mean + 3 * sd) } curve(x, main = main, ylab = ylab, xlim = xlim, ylim = c(0, 1), ...) } mtext(sub, line = 0.5) } summary.aggregateDist <- function(object, ...) structure(object, class = c("summary.aggregateDist", class(object)), ...) print.summary.aggregateDist <- function(x, ...) { cat(ifelse(comment(x) %in% c("Normal approximation", "Normal Power approximation"), "Aggregate Claim Amount CDF:\n", "Aggregate Claim Amount Empirical CDF:\n")) q <- quantile(x, p = c(0.25, 0.5, 0.75)) expectation <- mean(x) if (comment(x) %in% c("Normal approximation", "Normal Power approximation")) { min <- 0 max <- NA } else { max <- tail(eval(expression(x), environment(x)), 1) min <- head(eval(expression(x), environment(x)), 1) } res <- c(min, q[c(1, 2)], expectation, q[3], max) names(res) <- c("Min.", "1st Qu.", "Median", "Mean", "3rd Qu.", "Max.") print(res, ...) invisible(x) } mean.aggregateDist <- function(x, ...) { label <- comment(x) ## Simply return the value of the true mean given in argument in ## the case of the Normal and Normal Power approximations. if (label %in% c("Normal approximation", "Normal Power approximation")) return(get("mean", envir = environment(x))) ## For the recursive, exact and simulation methods, compute the ## mean from the stepwise cdf using the pmf saved in the ## environment of the object. drop(crossprod(get("x", envir = environment(x)), get("fs", envir = environment(x)))) } diff.aggregateDist <- function(x, ...) { label <- comment(x) ## The 'diff' method is defined for the recursive, exact and ## simulation methods only. if (label == "Normal approximation" || label == "Normal Power approximation") stop("function not defined for approximating distributions") ## The probability vector is already stored in the environment of ## the "aggregateDist" object. get("fs", environment(x)) } actuar/R/hache.origin.R0000644000176200001440000001334314125442656014430 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Auxiliary function to fit regression credibility model using the ### original Hachemeister model. ### ### AUTHORS: Tommy Ouellet, Vincent Goulet ### codetools does not like the way 'coll1' is defined in ### 'hache.origin' below. Avoid false positive in R CMD check. if (getRversion() >= "2.15.1") utils::globalVariables(c("coll1")) hache.origin <- function(ratios, weights, xreg, tol, maxit, echo) { ## Frequently used values weights.s <- rowSums(weights, na.rm = TRUE) # contract total weights has.data <- which(weights.s > 0) # contracts with data ncontracts <- nrow(ratios) # number of contracts eff.ncontracts <- length(has.data) # effective number of contracts p <- ncol(xreg) # rank (>= 2) of design matrix n <- nrow(xreg) # number of observations ## Fit linear model to each contract. For contracts without data, ## fit some sort of empty model to ease use in predict.hache(). f <- function(i) { z <- if (i %in% has.data) # contract with data { y <- ratios[i, ] not.na <- !is.na(y) lm.wfit(xreg[not.na, , drop = FALSE], y[not.na], weights[i, not.na]) } else # contract without data lm.fit(xreg, rep.int(0, n)) z[c("coefficients", "residuals", "weights", "rank", "qr")] } fits <- lapply(seq_len(ncontracts), f) ## Individual regression coefficients ind <- sapply(fits, coef) ind[is.na(ind)] <- 0 ## Individual variance estimators. The contribution of contracts ## without data is 0. S <- function(z) # from stats::summary.lm { nQr <- NROW(z$qr$qr) r1 <- z$rank r <- z$residuals w <- z$weights sum(w * r^2) / (nQr - r1) } sigma2 <- sapply(fits[has.data], S) sigma2[is.nan(sigma2)] <- 0 ## Initialization of a few containers: p x p x ncontracts arrays ## for the weight and credibility matrices; p x p matrices for the ## between variance-covariance matrix and total credibility ## matrix. cred <- W <- array(0, c(p, p, ncontracts)) A <- cred.s <- matrix(0, p, p) ## Weight matrices: we use directly (X'WX)^{-1}. This is quite ## different from hache.barycenter(). V <- function(z) # from stats::summary.lm { r1 <- z$rank if (r1 == 1L) diag(as.double(chol2inv(z$qr$qr[1L, 1L, drop = FALSE])), p) else chol2inv(z$qr$qr[1L:r1, 1L:r1, drop = FALSE]) } W[, , has.data] <- sapply(fits[has.data], V) ## Starting credibility matrices and collective regression ## coefficients. cred[, , has.data] <- diag(p) # identity matrices coll <- rowSums(ind) / eff.ncontracts # coherent with above ## === ESTIMATION OF WITHIN VARIANCE === s2 <- mean(sigma2) ## === ESTIMATION OF THE BETWEEN VARIANCE-COVARIANCE MATRIX === ## ## This is an iterative procedure similar to the Bischel-Straub ## estimator. Following Goovaerts & Hoogstad, stopping criterion ## is based in the collective regression coefficients estimates. ## ## If printing of iterations was asked for, start by printing a ## header and the starting values. if (echo) { cat("Iteration\tCollective regression coefficients\n") exp <- expression(cat(" ", count, "\t\t ", coll1 <- coll, fill = TRUE)) } else exp <- expression(coll1 <- coll) ## Iterative procedure count <- 0 repeat { eval(exp) ## Stop after 'maxit' iterations if (maxit < (count <- count + 1)) { warning("maximum number of iterations reached before obtaining convergence") break } ## Calculation of the between variance-covariance matrix. A[] <- rowSums(sapply(has.data, function(i) cred[, , i] %*% tcrossprod(ind[, i] - coll))) / (eff.ncontracts - 1) ## Symmetrize A A <- (A + t(A))/2 ## New credibility matrices cred[, , has.data] <- sapply(has.data, function(i) A %*% solve(A + s2 * W[, , i])) ## New collective regression coefficients cred.s <- apply(cred[, , has.data], c(1L, 2L), sum) coll <- solve(cred.s, rowSums(sapply(has.data, function(i) cred[, , i] %*% ind[, i]))) ## Test for convergence if (max(abs((coll - coll1)/coll1)) < tol) break } ## Final calculation of the between variance-covariance matrix and ## credibility matrices. A[] <- rowSums(sapply(has.data, function(i) cred[, , i] %*% tcrossprod(ind[, i] - coll))) / (eff.ncontracts - 1) A <- (A + t(A))/2 cred[, , has.data] <- sapply(has.data, function(i) A %*% solve(A + s2 * W[, , i])) ## Credibility adjusted coefficients. The coefficients of the ## models are replaced with these values. That way, prediction ## will be trivial using predict.lm(). for (i in seq_len(ncontracts)) fits[[i]]$coefficients <- coll + drop(cred[, , i] %*% (ind[, i] - coll)) ## Add names to the collective coefficients vector. names(coll) <- rownames(ind) ## Results list(means = list(coll, ind), weights = list(cred.s, W), unbiased = NULL, iterative = list(A, s2), cred = cred, nodes = list(ncontracts), adj.models = fits) } actuar/R/ExponentialSupp.R0000644000176200001440000000140114030725703015210 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {m,lev,mgf}exp functions to compute raw and ### limited moments, and the moment generating function for the ### Exponential distribution (as defined in R). ### ### See Chapter 18 of Johnson & Kotz, Continuous univariate ### distributions, volume 1, Wiley, 1970 ### ### AUTHORS: Mathieu Pigeon, Christophe Dutang, ### Vincent Goulet mexp <- function(order, rate = 1) .External(C_actuar_do_dpq, "mexp", order, 1/rate, FALSE) levexp <- function(limit, rate = 1, order = 1) .External(C_actuar_do_dpq, "levexp", limit, 1/rate, order, FALSE) mgfexp <- function(t, rate = 1, log = FALSE) .External(C_actuar_do_dpq, "mgfexp", t, 1/rate, log) actuar/R/panjer.R0000644000176200001440000001277214030725703013346 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Panjer recursion formula to compute the approximate aggregate ### claim amount distribution of a portfolio over a period. ### ### AUTHORS: Vincent Goulet , ### Sebastien Auclair, Louis-Philippe Pouliot and Tommy Ouellet panjer <- function(fx, dist, p0 = NULL, x.scale = 1, ..., convolve = 0, tol = sqrt(.Machine$double.eps), maxit = 500, echo = FALSE) { ## Express 'tol' as a value close to 1. If needed, modify the ## accuracy level so that the user specified level is attained ## *after* the additional convolutions (without getting too high). tol <- if (convolve > 0) min((0.5 - tol + 0.5)^(0.5 ^ convolve), 0.5 - sqrt(.Machine$double.eps) + 0.5) else 0.5 - tol + 0.5 ## Check if p0 is a valid probability. if (!is.null(p0)) { if (length(p0) > 1L) { p0 <- p0[1L] warning("'p0' has many elements: only the first used") } if ((p0 < 0) || (p0 > 1)) stop("'p0' must be a valid probability (between 0 and 1)") } ## Treat trivial case where 'p0 == 1' and hence F_S(0) = 1. if (identical(p0, 1)) { FUN <- approxfun(0, 1, method = "constant", yleft = 0, yright = 1, f = 0) class(FUN) <- c("ecdf", "stepfun", class(FUN)) assign("fs", 1, envir = environment(FUN)) assign("x.scale", x.scale, envir = environment(FUN)) return(FUN) } ## The call to .External below requires 'p1' to be initialized. p1 <- 0 ## Argument '...' should contain the values of the parameters of ## 'dist'. par <- list(...) ## Distributions are expressed as a member of the (a, b, 0) or (a, ## b, 1) families of distributions. Assign parameters 'a' and 'b' ## depending of the chosen distribution and compute f_S(0) in ## every case, and p1 if p0 is specified in argument. ## ## At this point, either p0 is NULL or 0 <= p0 < 1. if (startsWith(dist, "zero-truncated")) { if (!(is.null(p0) || identical(p0, 0))) warning("value of 'p0' ignored with a zero-truncated distribution") dist <- sub("zero-truncated ", "", dist) # drop "zero truncated" prefix p0 <- 0 } if (startsWith(dist, "zero-modified")) dist <- sub("zero-modified ", "", dist) # drop "zero modified" prefix if (dist == "geometric") { dist <- "negative binomial" par$size <- 1 } if (dist == "poisson") { if (!"lambda" %in% names(par)) stop("value of 'lambda' missing") lambda <- par$lambda a <- 0 b <- lambda if (is.null(p0)) # standard Poisson fs0 <- exp(lambda * (fx[1L] - 1)) else # 0 <= p0 < 1; zero-truncated/modified Poisson { fs0 <- p0 + (1 - p0) * pgfztpois(fx[1L], lambda) p1 <- (1 - p0) * dztpois(1, lambda) } } else if (dist == "negative binomial") { if (!all(c("prob", "size") %in% names(par))) stop("value of 'prob' or 'size' missing") r <- par$size p <- par$prob a <- 1 - p b <- (r - 1) * a if (is.null(p0)) # standard negative binomial fs0 <- exp(-r * log1p(-a/p * (fx[1L] - 1))) else # 0 <= p0 < 1; zero-truncated/modified neg. binomial { fs0 <- p0 + (1 - p0) * pgfztnbinom(fx[1L], r, p) p1 <- (1 - p0) * dztnbinom(1, r, p) } } else if (dist == "binomial") { if (!all(c("prob", "size") %in% names(par))) stop("value of 'prob' or 'size' missing") n <- par$size p <- par$prob a <- p/(p - 1) # equivalent to -p/(1 - p) b <- -(n + 1) * a if (is.null(p0)) # standard binomial fs0 <- exp(n * log1p(p * (fx[1L] - 1))) else # 0 <= p0 < 1; zero-truncated/modified binomial { fs0 <- p0 + (1 - p0) * pgfztbinom(fx[1L], n, p) p1 <- (1 - p0) * dztbinom(1, n, p) } } else if (dist == "logarithmic") { if (!"prob" %in% names(par)) stop("value of 'prob' missing") a <- par$prob b <- -a if (is.null(p0) || identical(p0, 0)) # standard logarithmic fs0 <- pgflogarithmic(fx[1L], a) else # 0 < p0 < 1; zero-modified logarithmic { fs0 <- p0 + (1 - p0) * pgflogarithmic(fx[1L], a) p1 <- (1 - p0) * dlogarithmic(1, a) } } else stop("frequency distribution not in the (a, b, 0) or (a, b, 1) families") ## If fs0 is equal to zero, the recursion will not start. There is ## no provision to automatically cope with this situation in the ## current version of this function. Just issue an error message ## and let the user do the work by hand. if (identical(fs0, 0)) stop("Pr[S = 0] is numerically equal to 0; impossible to start the recursion") ## Recursive calculations in C. fs <- .External(C_actuar_do_panjer, p0, p1, fs0, fx, a, b, convolve, tol, maxit, echo) FUN <- approxfun((0:(length(fs) - 1)) * x.scale, pmin(cumsum(fs), 1), method = "constant", yleft = 0, yright = 1, f = 0, ties = "ordered") class(FUN) <- c("ecdf", "stepfun", class(FUN)) assign("fs", fs, envir = environment(FUN)) assign("x.scale", x.scale, envir = environment(FUN)) FUN } actuar/R/Loglogistic.R0000644000176200001440000000260714030725703014342 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r}llogis functions to compute ### characteristics of the loglogistic distribution. The version used ### in these functions has cumulative distribution function ### ### Pr[X <= x] = v/(1 + v), v = (x/scale)^shape, x > 0. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dllogis <- function (x, shape, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dllogis", x, shape, scale, log) pllogis <- function(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pllogis", q, shape, scale, lower.tail, log.p) qllogis <- function(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qllogis", p, shape, scale, lower.tail, log.p) rllogis <- function(n, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rllogis", n, shape, scale) mllogis <- function(order, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "mllogis", order, shape, scale, FALSE) levllogis <- function(limit, shape, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levllogis", limit, shape, scale, order, FALSE) actuar/R/bayes.R0000644000176200001440000001404514030725703013165 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Pure bayesian credibility calculations. ### ### AUTHORS: Alexandre Parent , ### Vincent Goulet bayes <- function(x, likelihood = c("poisson", "bernoulli", "geometric", "exponential", "normal", "binomial", "negative binomial", "gamma", "pareto"), shape, rate = 1, scale = 1/rate, shape1, shape2, mean = 0, sd = 1, size, shape.lik, sd.lik, min) { likelihood <- match.arg(likelihood) ## We need to treat separately the (Single Parameter, or ## Translated) Pareto/Gamma case given the different form of the ## individual mean and the "credibility factor" (which isn't one, ## really). if (likelihood == "pareto") { if (missing(min)) stop("lower bound of the likelihood missing") if (missing(shape) || (missing(rate) && missing(scale))) stop("one of the Gamma prior parameter \"shape\", \"rate\" or \"scale\" missing") coll <- shape * scale vars <- c(NA, NA) # not pertinent here ## Computation of individual means and credibility factors ## differs depending on the type of data provided in argument. if (is.null(x)) # no data cred <- ind.means <- n <- 0 else if (is.vector(x, mode = "numeric")) # atomic vector { n <- length(x) sumlog <- sum(log(x)) - n * log(min) ind.means <- n/sumlog cred <- 1/(1 + 1/(scale * sumlog)) } else # matrix or data frame { n <- ncol(x) sumlog <- rowSums(log(x)) - n * log(min) ind.means <- n/sumlog cred <- 1/(1 + 1/(scale * sumlog)) } } ## Now the usual linear Bayes cases. else { if (likelihood == "poisson") { if (missing(shape) || (missing(rate) && missing(scale))) stop("one of the Gamma prior parameter \"shape\", \"rate\" or \"scale\" missing") coll <- shape * scale vars <- c(coll * scale, coll) K <- 1/scale } else if (likelihood == "bernoulli") { if (missing(shape1) || missing(shape2)) stop("one of the Beta prior parameter \"shape1\" or \"scale2\" missing") K <- shape1 + shape2 coll <- shape1/K vars <- (shape1 * shape2) * c(1, K)/(K^2 * (K + 1)) } else if (likelihood == "binomial") { if (missing(shape1) || missing(shape2)) stop("one of the Beta prior parameter \"shape1\" or \"scale2\" missing") if (missing(size)) stop("parameter \"size\" of the likelihood missing") K <- (shape1 + shape2)/size coll <- shape1/K vars <- (shape1 * shape2) * c(1, K)/(K^2 * (shape1 + shape2 + 1)) } else if (likelihood == "geometric") { if (missing(shape1) || missing(shape2)) stop("one of the Beta prior parameter \"shape1\" or \"scale2\" missing") K <- shape1 - 1 coll <- shape2/K vars <- shape2 * (shape1 + shape2 - 1)/(K * (K - 1)) vars <- c(vars/K, vars) } else if (likelihood == "negative binomial") { if (missing(shape1) || missing(shape2)) stop("one of the Beta prior parameter \"shape1\" or \"scale2\" missing") if (missing(size)) stop("parameter \"size\" of the likelihood missing") K <- (shape1 - 1)/size coll <- shape2/K vars <- shape2 * (shape1 + shape2 - 1)/(K * (shape1 - 2)) vars <- c(vars/K, vars) } else if (likelihood == "exponential") { if (missing(shape) || (missing(rate) && missing(scale))) stop("one of the Gamma prior parameter \"shape\", \"rate\" or \"scale\" missing") K <- shape - 1 coll <- 1/(K * scale) vars <- c(coll^2, coll/scale)/(shape - 2) } else if (likelihood == "gamma") { if (missing(shape) || (missing(rate) && missing(scale))) stop("one of the Gamma prior parameter \"shape\", \"rate\" or \"scale\" missing") if (missing(shape.lik)) stop("parameter \"shape.lik\" of the likelihood missing") K <- (shape - 1)/shape.lik coll <- 1/(K * scale) vars <- c(coll^2, coll/scale)/(shape - 2) } else if (likelihood == "normal") { if (missing(sd.lik)) stop("parameter \"sd.lik\" of the likelihood missing") coll <- mean vars <- c(sd, sd.lik)^2 K <- vars[2L]/vars[1L] } else stop("unsupported likelihood") ## Computation of individual means and credibility factors ## differs depending on the type of data provided in argument. if (is.null(x)) # no data cred <- ind.means <- n <- 0 else if (is.vector(x, mode = "numeric")) # atomic vector { n <- length(x) ind.means <- mean(x) cred <- n/(n + K) } else # matrix or data frame { n <- ncol(x) ind.means <- rowMeans(x) cred <- n/(n + K) } } structure(list(means = list(coll, ind.means), weights = list(NULL, n), unbiased = vars, iterative = NULL, cred = cred, nodes = 1L), class = "bayes", model = "Linear Bayes") } ## Premium calculation is identical to the Buhlmann-Straub case; no ## need for another method. See bstraub.R for the definition. # predict.bayes <- predict.bstraub actuar/R/Pareto3.R0000644000176200001440000000265714030725703013405 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}pareto3 functions to compute ### characteristics of the Pareto (type) II distribution. The version ### used in these functions has cumulative distribution function ### ### Pr[X <= x] = v/(1 + v), x > min, ### ### where v = ((x - min)/scale)^shape. ### ### See Arnold, B. C. (2015), Pareto Distributions, Second Edition, ### CRC Press. ### ### AUTHOR: Vincent Goulet dpareto3 <- function (x, min, shape, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dpareto3", x, min, shape, scale, log) ppareto3 <- function (q, min, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "ppareto3", q, min, shape, scale, lower.tail, log.p) qpareto3 <- function (p, min, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qpareto3", p, min, shape, scale, lower.tail, log.p) rpareto3 <- function(n, min, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rpareto3", n, min, shape, scale) mpareto3 <- function(order, min, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "mpareto3", order, min, shape, scale, FALSE) levpareto3 <- function(limit, min, shape, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levpareto3", limit, min, shape, scale, order, FALSE) actuar/R/InverseBurr.R0000644000176200001440000000311314030725703014322 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}burr functions to compute ### characteristics of the Inverse Burr distribution. The version used ### in these functions has cumulative distribution function ### ### Pr[X <= x] = (u/(1 + u))^shape1, u = (x/scale)^shape2, x > 0. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dinvburr <- function (x, shape1, shape2, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dinvburr", x, shape1, shape2, scale, log) pinvburr <- function(q, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pinvburr", q, shape1, shape2, scale, lower.tail, log.p) qinvburr <- function(p, shape1, shape2, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qinvburr", p, shape1, shape2, scale, lower.tail, log.p) rinvburr <- function(n, shape1, shape2, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rinvburr", n, shape1, shape2, scale) minvburr <- function(order, shape1, shape2, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "minvburr", order, shape1, shape2, scale, FALSE) levinvburr <- function(limit, shape1, shape2, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levinvburr", limit, shape1, shape2, scale, order, FALSE) actuar/R/Pareto.R0000644000176200001440000000232414030725703013311 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}pareto functions to compute ### characteristics of the Pareto distribution. The version used in ### these functions has cumulative distribution function ### ### Pr[X <= x] = 1 - (scale/(x + scale))^shape, x > 0. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet dpareto <- function (x, shape, scale, log = FALSE) .External(C_actuar_do_dpq, "dpareto", x, shape, scale, log) ppareto <- function (q, shape, scale, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "ppareto", q, shape, scale, lower.tail, log.p) qpareto <- function (p, shape, scale, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qpareto", p, shape, scale, lower.tail, log.p) rpareto <- function(n, shape, scale) .External(C_actuar_do_random, "rpareto", n, shape, scale) mpareto <- function(order, shape, scale) .External(C_actuar_do_dpq, "mpareto", order, shape, scale, FALSE) levpareto <- function(limit, shape, scale, order = 1) .External(C_actuar_do_dpq, "levpareto", limit, shape, scale, order, FALSE) actuar/R/simul.summaries.R0000644000176200001440000001524614030725703015223 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Computing summary statistics and accessing components of a ### portfolio. ### ### AUTHORS: Louis-Philippe Pouliot, Tommy Ouellet, ### Vincent Goulet aggregate.portfolio <- function(x, by = names(x$nodes), FUN = sum, classification = TRUE, prefix = NULL, ...) { level.names <- names(x$nodes) # level names nlevels <- length(level.names) # number of levels years <- level.names[nlevels] # name of last level ## Match level names in 'by' to those in the model by <- match.arg(by, level.names, several.ok = TRUE) ## Version of FUN able to work on lists fun <- function(x, ...) FUN(unlist(x), ...) ## The most common case should be to aggregate claim amounts by ## node. This case being very simple, it is treated separately. if (identical(by, level.names)) return(cbind(if (classification) x$classification, array(sapply(x$data, FUN, ...), dim(x$data), dimnames = list(NULL, paste(prefix, colnames(x$data), sep = ""))))) ## Summaries only by last level (years) are also simple to handle. if (identical(by, years)) { res <- apply(x$data, 2, fun, ...) names(res) <- paste(prefix, colnames(x$data), sep = "") return(res) } ## The other possibilities require to split the data in groups as ## specified in argument 'by'. If the last level (years) is in ## 'by', then the matrix structure must be retained to make the ## summaries. Otherwise, it can just be dropped since summaries ## will span the years of observation. ## ## Convert the sequence of subscripts into factors by pasting the ## digits together. It is important *not* to sort the levels in ## case the levels in 'by' are not in the same order as in ## 'level.names'. rows <- setdiff(by, years) # groups other than years s <- x$classification[, rows, drop = FALSE] # subscripts f <- apply(s, 1, paste, collapse = "") # grouping IDs f <- factor(f, levels = unique(f)) # factors s <- s[match(levels(f), f), , drop = FALSE] # unique subscripts xx <- split(x$data, f) # split data ## Make summaries if (years %in% by) { xx <- lapply(xx, matrix, ncol = ncol(x$data)) res <- t(sapply(xx, function(x, ...) apply(x, 2, fun, ...), ...)) cols <- colnames(x$data) } else { res <- sapply(xx, fun, ...) cols <- deparse(substitute(FUN)) } ## Return results as a matrix structure(cbind(if (classification) s, res), dimnames = list(NULL, c(if (classification) rows, paste(prefix, cols, sep = "")))) } frequency.portfolio <- function(x, by = names(x$nodes), classification = TRUE, prefix = NULL, ...) { chkDots(...) # method does not use '...' freq <- function(x) if (identical(x, NA)) NA else length(x[!is.na(x)]) aggregate(x, by, freq, classification, prefix) } severity.portfolio <- function(x, by = head(names(x$node), -1), splitcol = NULL, classification = TRUE, prefix = NULL, ...) { chkDots(...) # method does not use '...' level.names <- names(x$nodes) # level names ci <- seq_len(ncol(x$data)) # column indexes ## Match level names in 'by' to those in the model by <- match.arg(by, level.names, several.ok = TRUE) ## Sanity checks if (identical(by, level.names)) { warning("nothing to do") return(x) } ## Convert character 'splitcol' to numeric and then from numeric ## or NULL to boolean. if (is.character(splitcol)) splitcol <- pmatch(splitcol, colnames(x$data), duplicates.ok = TRUE) if (is.numeric(splitcol) || is.null(splitcol)) splitcol <- ci %in% splitcol ## Unroll claim amounts by column; simplest case if (tail(level.names, 1L) %in% by) { if (length(by) > 1L) stop("invalid 'by' specification") #x <- x$data res <- unroll(x$data, bycol = TRUE, drop = FALSE) colnames(res) <- paste(prefix, colnames(res), sep = "") return(list(main = res[, !splitcol], split = if (all(!splitcol)) NULL else res[, splitcol])) } ## Unrolling per row (or group of rows) is more work. It requires ## to split the columns of the matrix first, and then to apply the ## unrolling procedure twice (if 'splitcol' != NULL). ## ## Utility function fun <- function(x) unlist(x[!is.na(x)]) ## Split rows according to the 'by' argument. s <- x$classification[, by, drop = FALSE] # subscripts f <- apply(s, 1, paste, collapse = "") # grouping IDs f <- factor(f, levels = unique(f)) # factors s <- s[match(levels(f), f), , drop = FALSE] # unique subscripts ## Keep the 'splitcol' columns for later use. x.split <- x$data[, splitcol] ## If a prefix is not specified, use "claim." as a sensible ## choice. if (is.null(prefix)) prefix <- "claim." ## Unroll the "main" block of columns. if (all(splitcol)) res.main <- NULL else { x <- cbind(lapply(split(x$data[, !splitcol], f), fun)) res.main <- unroll(x, bycol = FALSE, drop = FALSE) res.main <- if (0L < (nc <- ncol(res.main))) { dimnames(res.main) <- list(NULL, paste(prefix, seq_len(nc), sep = "")) cbind(if (classification) s, res.main) } else NULL } ## Unroll the 'splitcol' block of columns. if (all(!splitcol)) res.split <- NULL else { x <- cbind(lapply(split(x.split, f), fun)) # split data res.split <- unroll(x, bycol = FALSE, drop = FALSE) res.split <- if (0L < (nc <- ncol(res.split))) { dimnames(res.split) <- list(NULL, paste(prefix, seq_len(nc), sep = "")) cbind(if (classification) s, res.split) } else NULL } ## Return the result as a list. list(main = res.main, split = res.split) } weights.portfolio <- function(object, classification = TRUE, prefix = NULL, ...) { chkDots(...) # method does not use '...' if (is.null(object$weights)) NULL else { w <- object$weights colnames(w) <- paste(prefix, colnames(w), sep = "") cbind(if (classification) object$classification, w) } } actuar/R/WeibullMoments.R0000644000176200001440000000114414030725703015024 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {m,lev}weibull functions to compute raw and ### limited moments for the Weibull distribution (as defined in R). ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet mweibull <- function(order, shape, scale = 1) .External(C_actuar_do_dpq, "mweibull", order, shape, scale, FALSE) levweibull <- function(limit, shape, scale = 1, order = 1) .External(C_actuar_do_dpq, "levweibull", limit, shape, scale, order, FALSE) actuar/R/rmixture.R0000644000176200001440000000346714030725703013747 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Simulation of discrete mixtures ### ### f(x) = p_1 f_1(x) + ... + p_n f_n(x). ### ### Uses the syntax of rcomphierarc() for model specfification. ### ### AUTHOR: Vincent Goulet rmixture <- function(n, probs, models, shuffle = TRUE) { ## Validity checks (similar to other r functions and to ## rmultinom). if (any(is.na(n)) || any(n < 0)) stop("invalid first argument 'n'") if (all(probs <= 0)) stop("no positive probabilities") if ((!is.expression(models)) || (length(models) == 0L)) stop("invalid third argument 'models'") ## Number of models in the mixture. m <- max(length(probs), length(models)) ## Number of variates to generate: 'length(n)' if length of 'n' is ## > 1, like other 'r' functions. if (length(n) > 1L) n <- length(n) ## Number of variates from each model. By definition of the ## multinomial distribution, sum(nj) == n. ## ## Note that 'rmultinom' will normalize probabilities to sum 1. nj <- rmultinom(1, size = n, prob = rep_len(probs, m)) ## Auxiliary function to generate 'n' variates from the model ## given in 'expr'. f <- function(n, expr) { expr$n <- n eval.parent(expr) } ## Simulate from each model the appropriate number of times and ## return result as an atomic vector. Variates are ordered by ## model: all random variates from model 1, then all random ## variates from model 2, and so on. x <- unlist(mapply(f, n = nj, expr = rep_len(models, m), SIMPLIFY = FALSE)) ## Return variates reshuffled or in the order above as per ## argument 'shuffle'. if (shuffle) x[sample.int(n)] else x } actuar/R/severity.R0000644000176200001440000000120014030725703013721 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Display all values of a matrix of vectors by 'unrolling' the ### object vertically or horizontally. ### ### AUTHORS: Louis-Philippe Pouliot, ### Vincent Goulet ### New generic severity <- function(x, ...) UseMethod("severity") ### Default method. Currently identical to 'unroll' by lack of a ### better alternative. This default method is never called in the ### package. severity.default <- function(x, bycol = FALSE, drop = TRUE, ...) { chkDots(...) # method does not use '...' unroll(x, bycol, drop) } actuar/R/hist.grouped.data.R0000644000176200001440000000422414125442656015413 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Histogram for grouped data ### ### See Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHORS: Vincent Goulet , Mathieu Pigeon hist.grouped.data <- function(x, freq = NULL, probability = !freq, density = NULL, angle = 45, col = NULL, border = NULL, main = paste("Histogram of", xname), xlim = range(x), ylim = NULL, xlab = xname, ylab, axes = TRUE, plot = TRUE, labels = FALSE, ...) { ## We keep the first frequencies column only; group boundaries are ## in the environment of 'x' y <- x[, 2L] x <- eval(expression(cj), envir = environment(x)) ## If any frequency is non finite, omit the group keep <- which(is.finite(y)) y <- y[keep] x <- x[c(1L, keep + 1L)] ## Some useful values n <- sum(y) # total number of observations h <- diff(x) # group widths dens <- y/(n * h) # group "densities" ## Cannot plot histogram with infinite group if (any(is.infinite(x))) stop("infinite group boundaries") ## The rest is taken from hist.default() xname <- paste(deparse(substitute(x), 500), collapse = "\n") equidist <- diff(range(h)) < 1e-07 * mean(h) if (is.null(freq)) { freq <- if (!missing(probability)) !as.logical(probability) else equidist } else if (!missing(probability) && any(probability == freq)) stop("'probability' is an alias for '!freq', however they differ.") mids <- 0.5 * (x[-1L] + x[-length(x)]) r <- structure(list(breaks = x, counts = y, intensities = dens, density = dens, mids = mids, xname = xname, equidist = equidist), class = "histogram") if (plot) { plot(r, freq = freq, col = col, border = border, angle = angle, density = density, main = main, xlim = xlim, ylim = ylim, xlab = xlab, ylab = ylab, axes = axes, labels = labels, ...) invisible(r) } else r } actuar/R/rcompound.R0000644000176200001440000000671714030725703014077 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Simulation of standard, non hierarchical, compound models. Uses a ### simplified version of the syntax of simul() for model ### specfification. ### ### Where simul() was developed for flexibility, these ones are aimed ### at execution speed. Various algorithms where tested. No argument ### validity checks. ### ### AUTHOR: Vincent Goulet rcompound <- function(n, model.freq, model.sev, SIMPLIFY = TRUE) { ## Convert model expressions into language objects. cl.freq <- substitute(model.freq) cl.sev <- substitute(model.sev) ## If a model expression was actually an object containing the ## model, we need to evaluate the object to retrieve the model. if (is.name(cl.freq)) cl.freq <- eval(cl.freq) if (is.name(cl.sev)) cl.sev <- eval(cl.sev) ## If a model expression is wrapped into 'expression' (as in ## 'simul'), get rid of the call. if (cl.freq[[1L]] == "expression") cl.freq <- cl.freq[[-1L]] if (cl.sev[[1L]] == "expression") cl.sev <- cl.sev[[-1L]] ## Initialize the output vector. We will use the fact that 'res' ## is filled with zeros later. res <- numeric(n) ## Add the number of variates to the 'model.freq' call. cl.freq$n <- n ## Generate frequencies. N <- eval.parent(cl.freq) ## Add the number of variates to the 'model.sev' call. cl.sev$n <- sum(N) ## Generate all severities. x <- eval.parent(cl.sev) ## Create a vector that will be used as a factor to regroup ## severities for the computation of aggregate values. Idea: ## assign one integer to each frequency and repeat that integer a ## number of times equal to the frequency. For example, if the ## frequencies are (2, 0, 1, 3), then the vector will be (1, 1, 3, ## 4, 4, 4). f <- rep.int(seq_len(n), N) ## Compute aggregate values and put them in the appropriate ## positions in the output vector. The positions corresponding to ## zero frequencies are already initialized with zeros. res[which(N != 0)] <- tapply(x, f, sum) if (SIMPLIFY) res else list(aggregate = res, frequency = N, severity = x) } rcomppois <- function(n, lambda, model.sev, SIMPLIFY = TRUE) { ## Convert model expression into language object. cl.sev <- substitute(model.sev) ## If model expression was actually an object containing the ## model, we need to evaluate the object to retrieve the model. if (is.name(cl.sev)) cl.sev <- eval(cl.sev) ## Get rid of the eventual 'expression' call. if (cl.sev[[1L]] == "expression") cl.sev <- cl.sev[[-1L]] ## Initialize the output vector. res <- numeric(n) ## Generate frequencies from Poisson distribution. N <- rpois(n, lambda) ## Add the number of variates to the 'model.sev' call. cl.sev$n <- sum(N) ## Generate all severities. x <- eval.parent(cl.sev) ## Create a vector that will be used as a factor to regroup ## severities for the computation of aggregate values. (See ## comments in 'rcompound' for details.) f <- rep.int(seq_len(n), N) ## Compute aggregate values and put them in the appropriate ## positions in the output vector. res[which(N != 0)] <- tapply(x, f, sum) if (SIMPLIFY) res else list(aggregate = res, frequency = N, severity = x) } actuar/R/cm.R0000644000176200001440000003271714030725703012467 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Main interface to credibility model fitting functions. ### ### AUTHORS: Louis-Philippe Pouliot, Tommy Ouellet, ### Vincent Goulet . cm <- function(formula, data, ratios, weights, subset, regformula = NULL, regdata, adj.intercept = FALSE, method = c("Buhlmann-Gisler", "Ohlsson", "iterative"), likelihood, ..., tol = sqrt(.Machine$double.eps), maxit = 100, echo = FALSE) { Call <- match.call(expand.dots = TRUE) ## Catch the pure bayesian special case. if (formula == "bayes") { if (missing(data) || length(data) == 0L) data <- NULL res <- bayes(data, likelihood, ...) class(res) <- c("cm", class(res)) attr(res, "call") <- Call return(res) } ## === MODEL ANALYSIS === ## ## Decompose the formula giving the portfolio structure. Attribute ## "order" gives the interaction level of each term in the ## formula. In hierarchical structures, each term should represent ## a different level, hence there should not be any duplicates in ## this attribute. The column names in 'data' containing the ## portfolio structure can be obtained from the rownames of the ## matrix in attribute "factors". ## ## Note that the very last level, the data, is not taken into ## account here. tf <- terms(formula) level.numbers <- attr(tf, "order") # level IDs level.names <- rownames(attr(tf, "factors")) # level names nlevels <- length(level.names) # number of levels ## Sanity checks ## ## 1. only hierarchical interactions are allowed in 'formula'; ## 2. hierarchical regression models are not supported. ## 3. if 'ratios' is missing, all columns of 'data' are taken to ## be ratios, so 'weights' should also be missing; ## if (any(duplicated(level.numbers))) stop("unsupported interactions in 'formula'") if (nlevels > 1 && !is.null(regformula)) stop("hierarchical regression models not supported") if (missing(ratios) & !missing(weights)) stop("ratios have to be supplied if weights are") ## === DATA EXTRACTION === ## ## 'data' is split into three matrices: one for the portfolio ## structure, one for the ratios and one for the weights. They are ## obtained via calls to subset() built from this function's ## call. That way, arguments 'ratios', 'weights' and 'subset' are ## not evaluated before being passed to subset(). Argument ## matching is as follows: ## ## Argument of cm() Argument of subset() ## ================ ==================== ## data x ## ratios select ## weights select ## subset subset ## ## Positions of the arguments that will be needed. m <- match(c("data", "ratios", "weights", "subset"), names(Call), 0) ## Extraction of the portfolio structure. Arguments 'data' and ## 'subset' are passed to subset(). cl <- Call[c(1, m[c(1, 4)])] # use data and subset only cl[[1]] <- as.name("subset") # change function name names(cl)[2] <- "x" # argument matching cl$select <- level.names # add argument 'select' levs <- eval(cl, parent.frame()) # extraction ## Object 'levs' is a data frame or matrix with as many colums as ## there are levels in the model (still notwithstanding the data ## level). Rows contain nodes identifiers which can be ## anything. For calculations, these identifiers are converted ## into simple subscripts (i, j, k, ...) as used in mathematical ## notation. ## ## Note that 'apply' will coerce to a matrix. ilevs <- apply(levs, 2, function(x) as.integer(factor(x))) ## Extraction of the ratios. If argument 'ratios' is missing, then ## use all columns of 'data' except those of the portfolio ## structure. cl$select <- if (missing(ratios)) setdiff(colnames(data), level.names) else Call[[m[2]]] ratios <- as.matrix(eval(cl, parent.frame())) # ratios as matrix ## Creation of a weight matrix. Extract from data if argument ## 'weights' is specified, otherwise create a matrix of ones. For ## extraction, the only change from ratio extraction is the ## content of element "select" of the call. weights <- if (missing(weights)) { if (any(is.na(ratios))) stop("missing ratios not allowed when weights are not supplied") array(1, dim(ratios)) # matrix of ones } else { cl$select <- Call[[m[3]]] as.matrix(eval(cl, parent.frame())) # weights as matrix } ## == DISPATCH TO APPROPRIATE CALCULATION FUNCTION == ## ## Buhlmann-Straub models are handled by bstraub(), regression ## models by hache() and hierarchical models by hierarc(). if (nlevels < 2) # one-dimensional model { ## One-dimensional models accept only "unbiased" and ## "iterative" for argument 'method'. method <- match.arg(method) if (method == "Buhlmann-Gisler" || method == "Ohlsson") method <- "unbiased" if (is.null(regformula)) # Buhlmann-Straub { res <- bstraub(ratios, weights, method = method, tol = tol, maxit = maxit, echo = echo) } else # Hachemeister { ## If regression model is actually empty or has only an ## intercept, call bstraub(). trf <- terms(regformula) res <- if (length(attr(trf, "factors")) == 0) { warning("empty regression model; fitting with Buhlmann-Straub's model") bstraub(ratios, weights, method = method, tol = tol, maxit = maxit, echo = echo) } else hache(ratios, weights, regformula, regdata, adj.intercept = adj.intercept, method = method, tol = tol, maxit = maxit, echo = echo) } ## Add missing quantities to results. res$classification <- levs res$ordering <- list(seq_along(levs)) } else # hierarchical model { ## Computations with auxiliary function. res <- hierarc(ratios, weights, classification = ilevs, method = method, tol = tol, maxit = maxit, echo = echo) ## Put back original level names into the object res$classification <- levs } ## Transfer level names to lists names(res$means) <- names(res$weights) <- c("portfolio", level.names) names(res$unbiased) <- if (!is.null(res$unbiased)) names(res$means) names(res$iterative) <- if (!is.null(res$iterative)) names(res$means) names(res$nodes) <- names(res$ordering) <- level.names if (is.list(res$cred)) names(res$cred) <- level.names ## Results class(res) <- c("cm", class(res)) attr(res, "call") <- Call res } predict.cm <- function(object, levels = NULL, newdata, ...) { ## Convert the character 'levels' argument into numeric and pass ## to next method. level.names <- names(object$nodes) levels <- if (is.null(levels)) seq_along(level.names) else pmatch(levels, level.names) if (any(is.na(levels))) stop("invalid level name") NextMethod() } print.cm <- function(x, ...) { chkDots(...) # method does not use '...' nlevels <- length(x$nodes) level.names <- names(x$nodes) b <- if (is.null(x$iterative)) x$unbiased else x$iterative cat("Call:\n", paste(deparse(attr(x, "call")), sep = "\n", collapse = "\n"), "\n\n", sep = "") cat("Structure Parameters Estimators\n\n") cat(" Collective premium:", x$means[[1]], "\n") for (i in seq.int(nlevels)) { if (i == 1L) { ## Treat the Hachemeister model separately since in this ## case the variance components vector is a list, with the ## first element a matrix. (Note that since a matrix with ## empty column names is printed to the screen, there will ## be a blank line in the display. Hence the inserted ## newline in the 'else' case.) if (attr(x, "model") == "regression") { m <- b[[1]] dimnames(m) <- list(c(paste(" Between", level.names[i], "variance: "), rep("", nrow(m) - 1)), rep("", ncol(m))) print(m) } else cat("\n Between", level.names[i], "variance:", b[i], "\n") } else cat(" Within ", level.names[i - 1], "/Between ", level.names[i], " variance: ", b[i], "\n", sep = "") } cat(" Within", level.names[nlevels], "variance:", b[[nlevels + 1]], "\n", fill = TRUE) invisible(x) } summary.cm <- function(object, levels = NULL, newdata, ...) { nlevels <- length(object$nodes) if (nlevels == 1L) { ## Single level cases (Buhlmann-Straub and Hachemeister): ## return the object with the following modifications: put ## credibility factors into a list and add a list of the ## credibility premiums. object$premiums <- list(predict(object, newdata = newdata)) object$cred <- list(object$cred) class(object) = c("summary.cm", class(object)) } else { ## Multi-level case (hierarchical): select result of the ## appropriate level(s). plevs <- if (is.null(levels)) seq_along(names(object$nodes)) else pmatch(levels, names(object$nodes)) if (any(is.na(plevs))) stop("invalid level name") object$premiums <- predict(object, levels) # new element object$means <- object$means[c(1, plevs + 1)] object$weights <- object$weights[c(1, plevs + 1)] object$unbiased <- object$unbiased[sort(unique(c(plevs, plevs + 1)))] object$iterative <- object$iterative[sort(unique(c(plevs, plevs + 1)))] object$cred <- object$cred[plevs] object$classification <- object$classification[, seq.int(max(plevs)), drop = FALSE] object$nodes <- object$nodes[plevs] class(object) <- c("summary.cm", class(object)) } structure(object, ...) # attach additional attributes in '...' } print.summary.cm <- function(x, ...) { nlevels <- length(x$nodes) level.names <- names(x$nodes) NextMethod() # print.cm() cat("Detailed premiums\n\n") for (i in seq.int(nlevels)) { ## Print a "section title" only if there is more than one ## level. (Provision introduced in v2.3.0; before the title ## was always printed.) if (nlevels > 1L) cat(" Level:", level.names[i], "\n") ## There are no level names in the linear Bayes case, so we ## skip this column in the results. if (is.null(level.names)) levs <- NULL else { level.id <- match(level.names[i], colnames(x$classification)) levs <- x$classification[, seq.int(level.id), drop = FALSE] m <- duplicated(levs) } if (attr(x, "model") == "regression") { ## Hachemeister model: results contain matrices y <- cbind(" ", as.vector(format(x$means[[i + 1L]], ...)), as.vector(apply(format(x$cred[[i]], ...), c(1L, 3L), paste, collapse = " ")), as.vector(format(sapply(x$adj.models, coef), ...)), " ") y[seq(1, nrow(y), dim(x$cred[[i]])[1]), c(1L, 5L)] <- c(levs[!m, , drop = FALSE], format(x$premiums[[i]], ...)) colnames(y) <- c(colnames(levs), "Indiv. coef.", "Cred. matrix", "Adj. coef.", "Cred. premium") } else if (is.null(levs)) { ## Linear Bayes model: simplified results with no level ## column y <- cbind(format(x$means[[i + 1L]], ...), format(x$weights[[i + 1L]], ...), format(x$cred[[i]], ...), format(x$premiums[[i]], ...)) colnames(y) <- c("Indiv. mean", "Weight", "Cred. factor", "Bayes premium") } else { ## All other models y <- cbind(as.matrix(levs[!m, , drop = FALSE]), format(x$means[[i + 1L]], ...), format(x$weights[[i + 1L]], ...), format(x$cred[[i]], ...), format(x$premiums[[i]], ...)) colnames(y) <- c(colnames(levs), "Indiv. mean", "Weight", "Cred. factor", "Cred. premium") } rownames(y) <- rep(" ", nrow(y)) print(y, quote = FALSE, right = FALSE, ...) cat("\n") } invisible(x) } actuar/R/hache.R0000644000176200001440000000605214030725703013131 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Credibility in the regression case using the Hachemeister (1975) ### model with possibly an adjustment to put the intercept at the ### barycenter of time (see Buhlmann & Gisler, 2005). ### ### AUTHORS: Xavier Milhaud, Tommy Ouellet, Vincent Goulet ### hache <- function(ratios, weights, formula, data, adj.intercept = FALSE, method = c("unbiased", "iterative"), tol = sqrt(.Machine$double.eps), maxit = 100, echo = FALSE) { Call <- match.call() ## If weights are not specified, use equal weights as in ## Buhlmann's model. if (missing(weights)) { if (any(is.na(ratios))) stop("missing ratios not allowed when weights are not supplied") weights <- array(1, dim(ratios)) } ## Check other bad arguments. if (NCOL(ratios) < 2) stop("there must be at least one node with more than one period of experience") if (NROW(ratios) < 2) stop("there must be more than one node") if (!identical(which(is.na(ratios)), which(is.na(weights)))) stop("missing values are not in the same positions in 'weights' and in 'ratios'") if (all(!weights, na.rm = TRUE)) stop("no available data to fit model") ## Build the design matrix mf <- model.frame(formula, data, drop.unused.levels = TRUE) mt <- attr(mf, "terms") xreg <- model.matrix(mt, mf) ## Do computations in auxiliary functions. res <- if (adj.intercept) hache.barycenter(ratios, weights, xreg, method = match.arg(method), tol = tol, maxit = maxit, echo = echo) else hache.origin(ratios, weights, xreg, tol = tol, maxit = maxit, echo = echo) ## Add the terms object to the result for use in predict.hache() ## [and thus predict.lm()]. res$terms <- mt ## Results attr(res, "class") <- "hache" attr(res, "model") <- "regression" res } predict.hache <- function(object, levels = NULL, newdata, ...) { ## If model was fitted at the barycenter of time (there is a ## transition matrix in the object), then also convert the ## regression coefficients in the base of the (original) design ## matrix. if (!is.null(R <- object$transition)) { for (i in seq_along(object$adj.models)) { b <- coefficients(object$adj.models[[i]]) object$adj.models[[i]]$coefficients <- solve(R, b) } } ## Prediction (credibility premiums) using predict.lm() on each of ## the adjusted individual models. This first requires to add a ## 'terms' component to each adjusted model. f <- function(z, ...) { z$terms <- object$terms class(z) <- "lm" # to keep predict.lm() quiet unname(predict.lm(z, ...)) } structure(sapply(object$adj.models, f, newdata = newdata), ...) } print.hache <- function(x, ...) print.default(x) actuar/R/GeneralizedBeta.R0000644000176200001440000000334214030725703015105 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r,m,lev}genbeta functions to compute ### characteristics of the Generalized Beta distribution. The version ### used in these functions has cumulative distribution function ### ### Pr[X <= x] = Pr[Y <= (x/scale)^shape3], 0 < x < scale, ### ### where Y has a Beta distribution with parameters shape1 and shape2. ### ### See Appendix A of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHOR: Vincent Goulet dgenbeta <- function (x, shape1, shape2, shape3, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "dgenbeta", x, shape1, shape2, shape3, scale, log) pgenbeta <- function (q, shape1, shape2, shape3, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pgenbeta", q, shape1, shape2, shape3, scale, lower.tail, log.p) qgenbeta <- function (p, shape1, shape2, shape3, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qgenbeta", p, shape1, shape2, shape3, scale, lower.tail, log.p) rgenbeta <- function (n, shape1, shape2, shape3, rate = 1, scale = 1/rate) .External(C_actuar_do_random, "rgenbeta", n, shape1, shape2, shape3, scale) mgenbeta <- function (order, shape1, shape2, shape3, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "mgenbeta", order, shape1, shape2, shape3, scale, FALSE) levgenbeta <- function (limit, shape1, shape2, shape3, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levgenbeta", limit, shape1, shape2, shape3, scale, order, FALSE) actuar/R/ZeroModifiedBinomial.R0000644000176200001440000000154214030725703016113 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r}zmbinom functions to compute ### characteristics of the Zero Modified Binomial distribution. ### ### See Appendix B of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHOR: Vincent Goulet dzmbinom <- function (x, size, prob, p0, log = FALSE) .External(C_actuar_do_dpq, "dzmbinom", x, size, prob, p0, log) pzmbinom <- function(q, size, prob, p0, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pzmbinom", q, size, prob, p0, lower.tail, log.p) qzmbinom <- function(p, size, prob, p0, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qzmbinom", p, size, prob, p0, lower.tail, log.p) rzmbinom <- function(n, size, prob, p0) .External(C_actuar_do_random, "rzmbinom", n, size, prob, p0) actuar/R/mde.R0000644000176200001440000001055214030725703012626 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Minimum distance estimation. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet mde <- function(x, fun, start, measure = c("CvM", "chi-square", "LAS"), weights = NULL, ...) { ## General form of the function to minimize. myfn <- function(parm, x, weights, ...) { y <- G(parm, x, ...) - Gn(x) drop(crossprod(weights * y, y)) } ## Extract call; used to build the call to optim(). Call <- match.call(expand.dots = TRUE) ## Argument checking if (missing(start) || !is.list(start)) stop("'start' must be a named list") if (missing(fun) || !(is.function(fun))) stop("'fun' must be supplied as a function") grouped <- inherits(x, "grouped.data") if (!(is.numeric(x) || grouped)) stop("'x' must be a numeric vector or an object of class \"grouped.data\"") ## Make sure that any argument of 'fun' specified in '...' is held ## fixed. dots <- names(list(...)) dots <- dots[!is.element(dots, c("upper", "lower"))] start <- start[!is.element(names(start), dots)] ## Adapt 'fun' to our needs; taken from MASS::fitdistr. nm <- names(start) f <- formals(fun) args <- names(f) m <- match(nm, args) if (any(is.na(m))) stop("'start' specifies names which are not arguments to 'fun'") formals(fun) <- c(f[c(1, m)], f[-c(1, m)]) # reorder arguments fn <- function(parm, x, ...) fun(x, parm, ...) if ((l <- length(nm)) > 1) body(fn) <- parse(text = paste("fun(x,", paste("parm[", 1:l, "]", collapse = ", "), ")")) measure <- match.arg(measure) ## Cramer-von Mises. Use the true and empirical cdf for individual ## data, or the true cdf and the ogive for grouped data. if (measure == "CvM") { G <- fn Gn <- if (grouped) ogive(x) else ecdf(x) if (is.null(weights)) weights <- 1 Call$x <- knots(Gn) Call$par <- start } ## Modified Chi-square. if (measure == "chi-square") { if (!grouped) stop("\"chi-square\" measure requires an object of class \"grouped.data\"") if (any((nj <- x[, 2]) == 0)) stop("frequency must be larger than 0 in all groups") og <- ogive(x) x <- knots(og) n <- sum(nj) G <- function(...) n * diff(fn(...)) Gn <- function(...) n * diff(og(...)) if (is.null(weights)) weights <- 1/nj Call$x <- x Call$par <- start } ## Layer average severity. if (measure == "LAS") { if (!grouped) stop("\"LAS\" measure requires an object of class \"grouped.data\"") e <- elev(x) x <- knots(e) G <- function(...) diff(fn(...)) Gn <- function(...) diff(e(...)) if (is.null(weights)) weights <- 1 Call$x <- x Call$par <- start } ## optim() call Call[[1]] <- as.name("optim") Call$fun <- Call$start <- Call$measure <- NULL Call$fn <- myfn Call$weights <- weights Call$hessian <- FALSE if (is.null(Call$method)) { if (any(c("lower", "upper") %in% names(Call))) Call$method <- "L-BFGS-B" else if (length(start) > 1) Call$method <- "BFGS" else Call$method <- "Nelder-Mead" } res <- eval(Call) ## Return result if (res$convergence > 0) stop("optimization failed") structure(list(estimate = res$par, distance = res$value), class = c("mde","list")) } print.mde <- function(x, digits = getOption("digits"), ...) { ans1 <- format(x$estimate, digits = digits) ans1 <- sapply(ans1, function(x) paste("", x)) nm1 <- names(ans1) nm1 <- paste(substring(" ", 1L, (nchar(ans1) - nchar(nm1)) %/% 2), nm1) nm1 <- paste(nm1, substring(" ", 1L, (nchar(ans1) - nchar(nm1)) %/% 2 + 1)) names(ans1) <- nm1 ans2 <- format(x$distance, digits = digits) ans2 <- sapply(ans2, function(x) paste("", x)) nm2 <- "distance" nm2 <- paste(substring(" ", 1L, (nchar(ans2) - nchar(nm2)) %/% 2), nm2) nm2 <- paste(nm2, substring(" ", 1L, (nchar(ans2) - nchar(nm2)) %/% 2)) names(ans2) <- nm2 print(ans1, quote = FALSE) cat("\n") print(ans2, quote = FALSE) invisible(x) } actuar/R/coverage.R0000644000176200001440000003056114030725703013656 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Create modified density and modified cumulative distribution ### function for data with deductible, limit, coinsurance and ### inflation. ### ### See Chapter 8 of Klugman, Panjer & Willmot, Loss Models, Fourth ### Edition, Wiley, 2012. ### ### AUTHORS: Mathieu Pigeon, Vincent Goulet coverage <- function(pdf, cdf, deductible = 0, franchise = FALSE, limit = Inf, coinsurance = 1, inflation = 0, per.loss = FALSE) { Call <- match.call() ## First determine if the cdf is needed or not. It is needed when ## there is a deductible or a limit and, of course, if the output ## function should compute the cdf. is.cdf <- missing(pdf) || is.null(pdf) # return cdf? has.limit <- limit < Inf # used often needs.cdf <- any(deductible > 0, has.limit, is.cdf) # cdf needed? ## Sanity check of arguments if (any(deductible < 0, limit < 0, coinsurance < 0, inflation < 0)) stop("coverage modifications must be positive") if (limit <= deductible) stop("deductible must be smaller than the limit") if (coinsurance > 1) stop("coinsurance must be between 0 and 1") if (missing(cdf) & needs.cdf) stop("'cdf' must be supplied") ## Quantites often used. Leave as expressions for the output ## function to preserve accuracy. r <- 1 + inflation d <- if (inflation) substitute(d/r, list(d = deductible, r = r)) else deductible u <- if (inflation) substitute(u/r, list(u = limit, r = r)) else limit ## The modified cdf or pdf are usually defined in branches. To ## avoid using nested ifelse(), we will rather rely on sets of ## expressions to make the required calculations for each branch ## separately. This is actually much faster. ## ## The output function will have varying number of said ## expressions depending on the case that is dealt with. We will ## build the body of the output function piece by piece as we go ## along. e <- expression(Call <- match.call()) ## One main discriminating factor is whether the cdf is needed for ## the output function of not. if (needs.cdf) { ## Get argument list of 'cdf' to transfert them to the output ## function. argv <- formals(cdf) # arguments as list argn <- names(argv) # arguments names as strings ## Remember if argument 'lower.tail' is available, so we can ## use it later. Then, drop unsupported arguments 'lower.tail' ## and 'log.p'. has.lower <- "lower.tail" %in% argn argn <- setdiff(argn, c("lower.tail", "log.p")) ## Calculations in the output function are done by evaluating ## function calls built upon the call to the output function ## itself. This is convenient as we do not need to fiddle with ## the values of the formal arguments. if (is.cdf) # output function computes F(y) { ## The output function will have the same formal arguments ## as the cdf. Object 'x' holds the symbol of the first ## argument. argsFUN <- argv[argn] # arguments of output function x <- as.name(argn[1]) # symbol ## Calls needed in this case: ## 1. one to compute F(y); ## 2. one to compute F(d) if there is a deductible; ## 3. one to compute 1 - F(d) for the per payment cases. ## Never need to compute F(u). ## ## If 'lower.tail' is available in 'cdf', then set it to ## FALSE to compute S(d) = 1 - F(d) more accurately. e <- c(e, quote(F <- Call), # 1. substitute(F[[1L]] <- as.name(fun), list(fun = as.character(Call$cdf)))) if (deductible) { e <- c(e, quote(Fd <- F), # 2. substitute(Fd[[2L]] <- a, list(a = d))) if (!per.loss & has.lower) e <- c(e, quote(Sd <- Fd), # 3. quote(Sd$lower.tail <- FALSE)) } } else # output function computes f(y) { ## When there is a limit, we will need to compute 1 - F(u) ## as is or using 'lower.tail = FALSE' to improve ## accuracy. For clarity in the output function, we will ## use Fu as object name in the first case and Su in the ## second. if (has.limit) { if (has.lower) { Fu.name <- as.name("Su") Su.quote <- quote(eval.parent(Su)) } else { Fu.name <- as.name("Fu") Su.quote <- quote((1 - eval.parent(Fu))) } } ## Calls needed in this case: ## 1. one to compute F(d) if there is a deductible for the ## per loss cases; ## 2. one to compute 1 - F(d) if there is a deductible for the ## per payment cases; ## 3. one to compute 1 - F(u) when there is a limit. ## No function to compute F(y) needed. ## ## If 'lower.tail' is available in 'cdf', then set it to ## FALSE to compute S(d) = 1 - F(d) and S(u) = 1 - F(u) ## more accurately. if (deductible) # f(y) with deductible { Fd.name <- as.name(if (!per.loss & has.lower) "Sd" else "Fd") e <- c(e, substitute(G <- Call, list(G = Fd.name)), # 1. or 2. if (!per.loss & has.lower) quote(Sd$lower.tail <- FALSE), substitute(G[[1L]] <- as.name(fun), list(G = Fd.name, fun = as.character(Call$cdf))), substitute(names(G)[2L] <- q, list(G = Fd.name, q = argn[1])), substitute(G[[2L]] <- a, list(G = Fd.name, a = d))) if (has.limit) e <- c(e, substitute(H <- G, list(H = Fu.name, G = Fd.name)), # 3. if (per.loss & has.lower) quote(Su$lower.tail <- FALSE), substitute(H[[2L]] <- a, list(H = Fu.name, a = u))) } else # f(y) with limit only { ## Since 'needs.cdf == TRUE', then this case ## necessarily has 'limit < Inf'. Only call needed is ## one to compute 1 - F(u). e <- c(e, substitute(G <- Call, list(G = Fu.name)), if (has.lower) quote(Su$lower.tail <- FALSE), substitute(G[[1L]] <- as.name(fun), list(G = Fu.name, fun = as.character(Call$cdf))), substitute(names(G)[2L] <- q, list(G = Fu.name, q = argn[1])), substitute(G[[2L]] <- a, list(G = Fu.name, a = u))) } } } ## Repeat same steps as above for case needing the pdf. The output ## function is a pdf and in this case the arguments of the output ## function are those of 'pdf'. if (!is.cdf) { argv <- formals(pdf) # arguments as list argn <- setdiff(names(argv), "log") # drop argument 'log' argsFUN <- argv[argn] # arguments of output function x <- as.name(argn[1]) # symbol e <- c(e, quote(f <- Call), substitute(f[[1L]] <- as.name(fun), list(fun = as.character(Call$pdf)))) } ## Build the value at which the underlying pdf/cdf will be called ## for non special case values of 'x'. We need to index 'x' to ## only compute for the correct values of a given branch. x.mod <- as.call(c(as.name("["), x, as.name("w"))) if (coinsurance < 1) x.mod <- substitute(x/alpha, list(x = x.mod, alpha = coinsurance)) if (deductible & !franchise) x.mod <- substitute(x + d, list(x = x.mod, d = deductible)) if (inflation) x.mod <- substitute((x)/r, list(x = x.mod, r = r)) ## Each pdf/cdf is defined in three branches. Define the ## boundaries and conditions for the first two branches. Those for ## the third branch are defined further down. if (franchise) { bound1 <- coinsurance * deductible bound2 <- coinsurance * limit cond1 <- if (is.cdf) substitute(0 <= x & x <= b1, list(x = x, b1 = bound1)) else quote(x == 0) cond2 <- substitute(b1 < x & x < b2, list(x = x, b1 = bound1, b2 = bound2)) } else { bound1 <- 0 bound2 <- coinsurance * (limit - deductible) cond1 <- substitute(x == 0, list(x = x)) cond2 <- substitute(0 < x & x < b, list(x = x, b = bound2)) } ## Initialization of the results vector in the output function ## with 0s. e <- c(e, substitute(res <- numeric(length(x)), list(x = x))) ## Definition of the output function for the first branch. There ## is a computation to make only if there is a deductible with the ## payment per loss random variable. For all other cases, the ## value in the first branch is 0 and we rely on the ## initialization with numeric() done at the previous step. if (per.loss & deductible) e <- c(e, substitute(res[which(cond1)] <- eval.parent(Fd), list(cond1 = cond1))) ## Definition of the output function for the second and third ## branches. The 'is.cdf = TRUE' and 'is.cdf = FALSE' cases must ## be treated separately. if (is.cdf) { cond3 <- substitute(x >= b, list(x = x, b = bound2)) f2 <- quote(eval.parent(F)) if (!per.loss & deductible) f2 <- if (has.lower) substitute((f - F)/S, list(f = f2, F = quote(eval.parent(Fd)), S = quote(eval.parent(Sd)))) else substitute((f - F)/S, list(f = f2, F = quote((p <- eval.parent(Fd))), S = quote((1 - p)))) e <- c(e, substitute(w <- which(cond), list(cond = cond2)), substitute(F[[2L]] <- x, list(x = x.mod)), substitute(res[w] <- f, list(f = f2)), if (has.limit) substitute(res[cond] <- 1, list(cond = cond3))) } else { cond3 <- substitute(x == b, list(x = x, b = bound2)) f2 <- quote(eval.parent(f)) if (has.limit) f3 <- Su.quote if (!per.loss & deductible) { if (has.limit) { f2 <- if (has.lower) substitute(f/(p <- S), list(f = f2, S = quote(eval.parent(Sd)))) else substitute(f/(p <- S), list(f = f2, S = quote(1 - eval.parent(Fd)))) f3 <- substitute(f/p, list(f = f3)) } else f2 <- if (has.lower) substitute(f/S, list(f = f2, S = quote(eval.parent(Sd)))) else substitute(f/S, list(f = f2, S = quote((1 - eval.parent(Fd))))) } if (inflation | coinsurance < 1) f2 <- substitute(f/k, list(f = f2, k = coinsurance * r)) e <- c(e, substitute(w <- which(cond), list(cond = cond2)), substitute(f[[2L]] <- x, list(x = x.mod)), substitute(res[w] <- f, list(f = f2)), if (has.limit) substitute(res[cond] <- f, list(cond = cond3, f = f3))) } ## Last expression of the output function. e <- c(e, quote(res)) ## Wrap up the output function. FUN <- function() {} body(FUN) <- as.call(c(as.name("{"), e)) # taken from help(body) formals(FUN) <- argsFUN # set arguments environment(FUN) <- new.env() # new, empty environment FUN } actuar/R/GammaSupp.R0000644000176200001440000000153714030725703013756 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {m,lev,mgf}gamma functions to compute raw and ### limited moments, and the moment generating function for ### the Gamma distribution (as defined in R) ### ### See Chapter 17 of Johnson & Kotz, Continuous univariate ### distributions, volume 1, Wiley, 1970 ### ### AUTHORS: Mathieu Pigeon, Christophe Dutang, ### Vincent Goulet mgamma <- function(order, shape, rate = 1, scale = 1/rate) .External(C_actuar_do_dpq, "mgamma", order, shape, scale, FALSE) levgamma <- function(limit, shape, rate = 1, scale = 1/rate, order = 1) .External(C_actuar_do_dpq, "levgamma", limit, shape, scale, order, FALSE) mgfgamma <- function(t, shape, rate = 1, scale = 1/rate, log = FALSE) .External(C_actuar_do_dpq, "mgfgamma", t, shape, scale, log) actuar/R/adjCoef.R0000644000176200001440000001745714030725703013427 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Compute the adjustment coefficient in ruin theory, that is the ### smallest (strictly) positive root of the Lundberg equation ### ### h(r) = E[e^(r X - r c W)] = 1, ### ### where X is the claim size random variable, W the inter-occurence ### time and c the premium rate. ### ### AUTHORS: Christophe Dutang, Vincent Goulet adjCoef <- function(mgf.claim, mgf.wait = mgfexp, premium.rate, upper.bound, h, reinsurance = c("none", "proportional", "excess-of-loss"), from, to, n = 101) { reinsurance <- match.arg(reinsurance) ## Sanity check if (missing(mgf.claim) && missing(h)) stop("one of 'mgf.claim' or 'h' is needed") ## === NO REINSURANCE CASE === ## ## Moment generating functions are unidimensional, premium rate ## and adjustment coefficient are both single numeric values. if (reinsurance == "none") { ## For each of 'mgf.claim', 'mgf.wait' and 'h' (if needed): if ## the expression is only the name of a function (say f), ## build a call 'f(x)'. Otherwise, check that the expression ## is a function call containing an 'x'. Taken from 'curve' ## and 'discretize'. ## ## NOTE: argument 'h' will be used iff 'mgf.claim' is missing, ## thereby giving priority to 'mgf.claim'. if (missing(mgf.claim)) { sh <- substitute(h) if (is.name(sh)) { fcall <- paste(sh, "(x)") h1 <- function(x) eval(parse(text = fcall), envir = list(x = x), enclos = parent.frame(2)) } else { if (!(is.call(sh) && match("x", all.vars(sh), nomatch = 0L))) stop("'h' must be a function or an expression containing 'x'") h1 <- function(x) eval(sh, envir = list(x = x), enclos = parent.frame(2)) } } else { smgfx <- substitute(mgf.claim) if (is.name(smgfx)) { fcall <- paste(smgfx, "(x)") mgfx <- parse(text = fcall) } else { if (!(is.call(smgfx) && match("x", all.vars(smgfx), nomatch = 0L))) stop("'mgf.claim' must be a function or an expression containing 'x'") mgfx <- smgfx } smgfw <- substitute(mgf.wait) if (is.name(smgfw)) { fcall <- paste(smgfw, "(x)") mgfw <- parse(text = fcall) } else { if (!(is.call(smgfw) && match("x", all.vars(smgfw), nomatch = 0L))) stop("'mgf.wait' must be a function or an expression containing 'x'") mgfw <- smgfw } h1 <- function(x) eval(mgfx) * eval(mgfw, list(x = -x * premium.rate)) } f1 <- function(r) (h1(r) - 1)^2 return(optimize(f1, c(0, upper.bound - .Machine$double.eps), tol = sqrt(.Machine$double.eps))$minimum) } ## === WITH REINSURANCE CASES === ## ## Claim amount moment generating function is a function of 'x' ## and the retention level 'y', inter-occurence time moment ## generating function is a function of 'x', premium rate and ## adjustment coefficient are both functions of the retention ## level 'y'. ## ## Do same as in the no reinsurance case for each of 'mgf.claim', ## 'mgf.wait' and 'h' (if needed) and also 'premium'. The first ## must be functions of 'x' and 'y', whereas the last one is a ## function of 'y' only. if (missing(mgf.claim)) { sh <- substitute(h) if (is.name(sh)) { fcall <- paste(sh, "(x, y)") h2 <- function(x, y) eval(parse(text = fcall), envir = list(x = x, y = y), enclos = parent.frame(2)) } else { if (!(is.call(sh) && all(match(c("x", "y"), all.vars(sh), nomatch = 0L)))) stop("'h' must be a function or an expression containing 'x' and 'y'") h2 <- function(x, y) eval(sh, envir = list(x = x, y = y), enclos = parent.frame(2)) } } else { if (!is.function(premium.rate)) stop("'premium.rate' must be a function when using reinsurance") smgfx <- substitute(mgf.claim) if (is.name(smgfx)) { fcall <- paste(smgfx, "(x, y)") mgfx <- parse(text = fcall) } else { if (!(is.call(smgfx) && all(match(c("x", "y"), all.vars(smgfx), nomatch = 0L)))) stop("'mgf.claim' must be a function or an expression containing 'x' and 'y'") mgfx <- smgfx } smgfw <- substitute(mgf.wait) if (is.name(smgfw)) { fcall <- paste(smgfw, "(x)") mgfw <- parse(text = fcall) } else { if (!(is.call(smgfw) && match("x", all.vars(smgfw), nomatch = 0L))) stop("'mgf.wait' must be a function or an expression containing 'x'") mgfw <- smgfw } spremium <- substitute(premium.rate) if (is.name(spremium)) { fcall <- paste(spremium, "(y)") premium.rate <- parse(text = fcall) } else { if (!(is.call(spremium) && match("y", all.vars(spremium), nomatch = 0L))) stop("'premium.rate' must be a function or an expression containing 'y'") premium.rate <- spremium } h2 <- function(x, y) eval(mgfx) * eval(mgfw, list(x = -x * eval(premium.rate))) } f2 <- function(x, y) (h2(x, y) - 1)^2 retention <- seq(from, to, length.out = n) ## Compute the adjustment coefficient for each retention level. ## The output of 'sapply' is a matrix with minima in the first ## line. ## ## The sapply() below passes the retention levels (argument 'y' of ## function 'f') to optimize(). Since the first two arguments ('f' ## and 'interval') of the latter function are specified, the ## retention levels end up in '...' and hence are considered as ## second argument of 'f'. *This requires R >= 2.6.0 to work since ## argument '...' comes much earlier in the definition of ## optimize(). coef <- sapply(retention, optimize, f = f2, interval = c(0, upper.bound-.Machine$double.eps), tol = sqrt(.Machine$double.eps))[1L, ] ## Make a function from the (retention, coefficient) pairs ## computed above, joining the points by straight line segments. FUN <- approxfun(retention, coef, rule = 2, method = "linear") comment(FUN) <- paste(toupper(substring(reinsurance, 1L, 1L)), substring(reinsurance, 2L), " reinsurance", sep = "", collapse = "") class(FUN) <- c("adjCoef", class(FUN)) attr(FUN, "call") <- sys.call() FUN } plot.adjCoef <- function(x, xlab = "x", ylab = "R(x)", main = "Adjustment Coefficient", sub = comment(x), type = "l", add = FALSE, ...) { xx <- eval(expression(x), envir = environment(x)) yy <- eval(expression(y), envir = environment(x)) if (add) lines(xx, yy, ..., main = main, xlab = xlab, ylab = ylab, type = type) else plot(xx, yy, ..., main = main, xlab = xlab, ylab = ylab, type = type) mtext(sub, line = 0.5) } actuar/R/ZeroModifiedGeometric.R0000644000176200001440000000145214030725703016277 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r}zmgeom functions to compute ### characteristics of the Zero Modified Geometric distribution. ### ### See Appendix B of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHOR: Vincent Goulet dzmgeom <- function (x, prob, p0, log = FALSE) .External(C_actuar_do_dpq, "dzmgeom", x, prob, p0, log) pzmgeom <- function(q, prob, p0, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pzmgeom", q, prob, p0, lower.tail, log.p) qzmgeom <- function(p, prob, p0, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qzmgeom", p, prob, p0, lower.tail, log.p) rzmgeom <- function(n, prob, p0) .External(C_actuar_do_random, "rzmgeom", n, prob, p0) actuar/R/UniformSupp.R0000644000176200001440000000136114030725703014346 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {m,lev,mgf}unif functions to compute raw and ### limited moments, and the moment generating function for the ### Uniform distribution (as defined in R). ### ### ### ### AUTHORS: Christophe Dutang, Vincent Goulet munif <- function(order, min = 0, max = 1) .External(C_actuar_do_dpq, "munif", order, min, max, FALSE) levunif <- function(limit, min = 0, max =1, order = 1) .External(C_actuar_do_dpq, "levunif", limit, min, max, order, FALSE) mgfunif <- function(t, min = 0, max = 1, log = FALSE) .External(C_actuar_do_dpq, "mgfunif", t, min, max, log) actuar/R/ZeroModifiedNegativeBinomial.R0000644000176200001440000000157014030725703017577 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Definition of the {d,p,q,r}zmnbinom functions to compute ### characteristics of the Zero Modified Negative Binomial ### distribution. ### ### See Appendix B of Klugman, Panjer & Willmot, Loss Models, Wiley. ### ### AUTHOR: Vincent Goulet dzmnbinom <- function (x, size, prob, p0, log = FALSE) .External(C_actuar_do_dpq, "dzmnbinom", x, size, prob, p0, log) pzmnbinom <- function(q, size, prob, p0, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "pzmnbinom", q, size, prob, p0, lower.tail, log.p) qzmnbinom <- function(p, size, prob, p0, lower.tail = TRUE, log.p = FALSE) .External(C_actuar_do_dpq, "qzmnbinom", p, size, prob, p0, lower.tail, log.p) rzmnbinom <- function(n, size, prob, p0) .External(C_actuar_do_random, "rzmnbinom", n, size, prob, p0) actuar/R/exact.R0000644000176200001440000000234014030725703013161 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Exact calculation of the aggregate claim amount distribution ### function by convolution. Requires a discrete distribution for ### claim amounts. ### ### AUTHORS: Vincent Goulet ### and Louis-Philippe Pouliot exact <- function(fx, pn, x.scale = 1) { ## Some useful lengths m <- length(fx) # 1 + maximum claim amount n <- length(pn) - 1 # maximum number of claims r <- n * m - n + 1 # maximum total amount of claims ## Initialization of the output vector fs <- rep(0, r) fs[1] <- pn[1] # Pr[N = 0] ## Convolutions fxc <- 1 for (i in 1:n) { pos <- seq_len(i * m - i + 1) fxc <- convolve(fx, rev(fxc), type = "open") fs[pos] <- fs[pos] + fxc * pn[i + 1] } FUN <- approxfun((0:(length(fs) - 1)) * x.scale, pmin(cumsum(fs), 1), method = "constant", yleft = 0, yright = 1, f = 0, ties = "ordered") class(FUN) <- c("ecdf", "stepfun", class(FUN)) assign("fs", fs, envir = environment(FUN)) assign("x.scale", x.scale, envir = environment(FUN)) FUN } actuar/R/elev.R0000644000176200001440000001052614125442656013025 0ustar liggesusers### actuar: Actuarial Functions and Heavy Tailed Distributions ### ### Sample empirical limited value functions for individual and ### grouped data. ### ### AUTHORS: Vincent Goulet and ### Mathieu Pigeon elev <- function(x, ...) { Call <- match.call() UseMethod("elev") } elev.default <- function(x, ...) { if (!exists("Call", inherits = FALSE)) Call <- match.call() chkDots(...) # method does not use '...' FUN <- function(limit) sapply(limit, function(x, y) mean(pmin(x, y)), x = x) environment(FUN) <- new.env() assign("x", sort(x), envir = environment(FUN)) assign("n", length(unique(x)), envir = environment(FUN)) class(FUN) <- c("elev", class(FUN)) attr(FUN, "call") <- Call attr(FUN, "grouped") <- FALSE FUN } ### Function 'elev.grouped.data' below returns a function that uses ### data stored in its environment. Avoid false positive in R CMD ### check. if (getRversion() >= "2.15.1") utils::globalVariables(c("cj", "nj")) ### This function assumes right-closed intervals, but the numerical ### values are identical for left-closed intervals. elev.grouped.data <- function(x, ...) { if (!exists("Call", inherits = FALSE)) Call <- match.call() chkDots(...) # method does not use '...' FUN <- function(limit) { ## Explicitely get the data from the function environment. ## cj <- eval(expression(cj)) ## nj <- eval(expression(nj)) ## Number of classes. r <- length(nj) ## This is to avoid numerical problems. limit <- pmin(limit, cj[r + 1L]) ## Class in which the limit is located. cl <- findInterval(limit, cj, all.inside = TRUE) ## Means for all classes below each limit. cjt <- head(cj, max(cl)) # upper bounds res1 <- sapply(cl - 1L, function(n, x) drop(crossprod(head(x, n), head(nj, n))), (head(cjt, -1) + tail(cjt, -1))/2) ## Means for classes with each limit. cjt <- cj[cl] # lower bounds njt <- nj[cl] # frequencies p <- (limit - cjt) / (cj[cl + 1L] - cjt) # prop. to take res2 <- njt * p * (cjt + limit)/2 + njt * (1 - p) * limit ## Means for classes above each limit. res3 <- limit * sapply(r - cl, function(n, x) sum(tail(x, n)), tail(nj, -min(cl))) ## Total (res1 + res2 + res3)/sum(nj) } environment(FUN) <- new.env() assign("cj", eval(expression(cj), envir = environment(x)), envir = environment(FUN)) assign("nj", x[, 2L], envir = environment(FUN)) assign("n", nrow(x), envir = environment(FUN)) class(FUN) <- c("elev", class(FUN)) attr(FUN, "call") <- Call attr(FUN, "grouped") <- TRUE FUN } ### Essentially identical to stats::print.ecdf(). print.elev <- function(x, digits = getOption("digits") - 2, ...) { ## Utility function numform <- function(x) paste(formatC(x, digits = digits), collapse = ", ") ## The rest is adapted from ecdf() varname <- if (attr(x, "grouped")) "cj" else "x" cat("Empirical LEV \nCall: ") print(attr(x, "call"), ...) n <- length(xx <- eval(parse(text = varname), envir = environment(x))) i1 <- 1L:min(3L, n) i2 <- if (n >= 4L) max(4L, n - 1L):n else integer(0) cat(" ", varname, "[1:", n, "] = ", numform(xx[i1]), if (n > 3L) ", ", if (n > 5L) " ..., ", numform(xx[i2]), "\n", sep = "") invisible(x) } ### Essentially identical to stats::summary.ecdf(). summary.elev <- function (object, ...) { cat("Empirical LEV:\t ", eval(expression(n), envir = environment(object)), "unique values with summary\n") summary(knots(object), ...) } ### Essentially identical to stats::knots.stepfun(). knots.elev <- function(Fn, ...) { if (attr(Fn, "grouped")) eval(expression(cj), envir = environment(Fn)) else eval(expression(x), envir = environment(Fn)) } plot.elev <- function(x, ..., main = NULL, xlab = "x", ylab = "Empirical LEV") { if (missing(main)) main <- { cl <- attr(x, "call") deparse(if (!is.null(cl)) cl else sys.call()) } kn <- knots(x) Fn <- x(kn) plot(kn, Fn, ..., main = main, xlab = xlab, ylab = ylab) } actuar/MD50000644000176200001440000003376414173551123012060 0ustar liggesusers041b4fbc7a3f00deae6a262a2c957977 *DESCRIPTION c3fa0423fa1e6570f64e7a187122e31a *NAMESPACE 897ed422ca2c1beb724be294ffa9e9ac *R/BetaMoments.R 4eb3807e52e187a67327d326e5cec116 *R/Burr.R 3965f43c4eb19c7a7dd3f0b0d9ce82ed *R/CTE.R d71c766092688d8ace86e9390d9494fc *R/ChisqSupp.R e1449bca14a1d2067b5ca96d81465394 *R/ExponentialSupp.R b478732d335382c1fd29ae2ffcb594b8 *R/Extract.grouped.data.R ddfc518f5632c092117bd3683ab71b6a *R/FellerPareto.R 6536049b3a817c22298cfbc7d708b9de *R/GammaSupp.R 1d798ad9fb619c57b6234ce538c7843f *R/GeneralizedBeta.R b60c8cf61518d3fcb6c46e1cc8d0b4fe *R/GeneralizedPareto.R bc8505634d74b7bd8201400bfb0411cf *R/Gumbel.R 1f7797c8d96468caec51272ca6112b0e *R/InverseBurr.R b67bfde359869dca1d51d5a6270f5d40 *R/InverseExponential.R b559da828d4e3e283fb93b0691049d03 *R/InverseGamma.R c9152b7948c9154da4df196d7d0615c0 *R/InverseGaussian.R 0210a7e85bb7071ba9be657c71e7de40 *R/InverseParalogistic.R 9e70aca6c90b9233fab986fef20b5786 *R/InversePareto.R 49bab767297187138d857c408e633f46 *R/InverseTransformedGamma.R 535173040b228938cee28e2bc565d66c *R/InverseWeibull.R d53ffa132009c951d906001622f90168 *R/Logarithmic.R 779255efbe27b5127d5a4c018de58eec *R/Loggamma.R 7b310e8e8c1c2f21ca4d5a6c2d45687d *R/Loglogistic.R 51fa5c8ec5ac728cc9a206c9b3a685df *R/LognormalMoments.R ba49f5d675f03254c59efaf17eb09ab4 *R/NormalSupp.R 7e118f3973ead42d8c27175834d14b3e *R/Paralogistic.R a6639ef45829476468f3569f6a72e0db *R/Pareto.R 366fa3267df223b0138ad727d7017cfc *R/Pareto2.R ea1af518ab2a801760f9096e25a7fcf9 *R/Pareto3.R 6b60deaa3fc14350121d6e0eb1053a86 *R/Pareto4.R 54701777966346cc4113acf73cc54d0f *R/PhaseType.R 4d5ae06ab8158d0460b1141454cfe292 *R/PoissonInverseGaussian.R 15162616a66854c75a163b54c55bf1a7 *R/SingleParameterPareto.R 5d890d751ef3f233e565bf337934928b *R/TransformedBeta.R 97f04c8a4d99357e1dc7dc157e99777c *R/TransformedGamma.R 42309c4a3f95e3c0f2a3d85de52c8ae8 *R/UniformSupp.R f7825e63fc68307bc8d8fb7e3e4dc993 *R/VaR.R 3a6a050a94d357f2722c5bd679188c41 *R/WeibullMoments.R 28cff186b532b3f2f11de659ec8117f0 *R/ZeroModifiedBinomial.R 23ddfd9674a66c845f109175b200273b *R/ZeroModifiedGeometric.R 30c2ee36ccd94a418a7fe8d831053e81 *R/ZeroModifiedLogarithmic.R 7ef383933d9f3e57ca467eb2f48126bb *R/ZeroModifiedNegativeBinomial.R 86951dbd48d9072ae2c39587b6ce479a *R/ZeroModifiedPoisson.R a7404543a59fdf1098ff194b4a5b07d7 *R/ZeroTruncatedBinomial.R cdef9997fe9a5aad4fd59a783b5b5641 *R/ZeroTruncatedGeometric.R 8a15f7c97fbc80d384a7b1ab65e58222 *R/ZeroTruncatedNegativeBinomial.R 9a8b00de6d10f69f370de9b34b70638c *R/ZeroTruncatedPoisson.R 163cff98989c2733c5e6f2bcc06f7c5d *R/adjCoef.R b55863b41db21cdad04fcc62358c156f *R/aggregateDist.R ae955e77425764a96cf962767851c366 *R/bayes.R cad82d69924eea24d9331043aa8d932f *R/betaint.R c1983cfd8c0070c4ee4dd114348b37c0 *R/bstraub.R 05947ac5c08fc6099689f3b6d0aad189 *R/cm.R 9b894bb4fac3dc267d939996dd1c35e2 *R/coverage.R 04feba9eda6d23d81363ecd52abb65fa *R/discretize.R 80e9bb08652bd848cdde2b11834ba3a2 *R/elev.R 670163efd4a7cc1fdc9805825f58d33a *R/emm.R 6c108ca22200bb02cffe0c0a615f818f *R/exact.R f97c2111f8f178de01e7354a9402c006 *R/grouped.data.R cee57eb2dbbbce79ba41398e6ed4ee99 *R/hache.R 4ee527efa52117e2afadb4e3f9dcbc54 *R/hache.barycenter.R dfbc96214f68bd8ba5753cad4a214fbe *R/hache.origin.R 08e0a5941190b2ac7c6760a1814cf3fc *R/hierarc.R 97e8c1b714d3eae3c059173205669d45 *R/hist.grouped.data.R 9327609e367d95ce8ce9c86edebf2d27 *R/mde.R b5ba4fcb93636b9109a612b59ead39a1 *R/mean.grouped.data.R 51ae31191cbe874bb0776ad9ac1f4329 *R/normal.R 5a8627fa76914c77ec461ea70455649e *R/ogive.R 9ebc6b8b06ff1a89a84bb73c7f8edfec *R/panjer.R 25e2fd00a7ec8be892f3046f9dbc2d45 *R/quantile.aggregateDist.R 189c7d99b3ac103a4bc89a054cce6b07 *R/quantile.grouped.data.R 63f395f54ea177000e38c213432ff93f *R/rcompound.R f7cf6065fbf9077f7ce007ca272548d3 *R/rmixture.R d17d1faf53333d00a6769b96fc854d33 *R/ruin.R d8496850dc700280270491250a63ff56 *R/severity.R 8100464532661fe82f6fb460bc9713a2 *R/simS.R 77dd35b157707bea79351a838a0be85d *R/simul.R e9b48529fdc97448697b4919316d9121 *R/simul.summaries.R 12f042a9b4f00f4b6dba994edc135fcb *R/unroll.R 8b98adb2e60847215a378dac68626d07 *R/var-methods.R cdc1b95c1a22a336706fe4a4bc887e4c *build/vignette.rds da6fbdff847094e9912fa30c9face3a3 *data/dental.rda e886a1fe6ab8ec18a541f6b8ea5c6683 *data/gdental.rda 6380487493d31ef00477ec198b042f95 *data/hachemeister.rda 206fe0a149ac938f90adeec103672e39 *demo/00Index 70cdea149ce67c7ea8dfdb6d3d2d0204 *demo/credibility.R b255336d6294311b8e51c4e63c385b3b *demo/lossdist.R 3a93e5a0fe9eefddb6f977e9f7d02147 *demo/risk.R 836d62d0ca497221895840b6518d6425 *demo/simulation.R bd31b4af030f19704d6cee88e6f99749 *inst/CITATION 2a7a3a4bfc457254fb8d8fd273674465 *inst/NEWS.0.Rd 93822768a8a7bc79173a88839d75679d *inst/NEWS.1.Rd 46233fd433b7a57d4ac93562a459f61c *inst/NEWS.2.Rd a8270ac462e7457fe9f0f6d6f37659f8 *inst/NEWS.Rd 03286401ad6e96cd7bc7f38fe225be00 *inst/doc/actuar.R 2fadac5126ad008c1c0e7e7db4bdf2e2 *inst/doc/actuar.Rnw 39c391f8505579a24da3fed8684746a3 *inst/doc/actuar.pdf c8b9f52aee156812aa8f98ba9e8b3968 *inst/doc/coverage.R dc69173fb05dcaa0cbb4192e22599021 *inst/doc/coverage.Rnw b7e9bdec0e3e3c0c540886af152e21e4 *inst/doc/coverage.pdf 6417200db0f942d4dd37b8f0b483a3a5 *inst/doc/credibility.R 85f7291573c4595d6de9d286a762364c *inst/doc/credibility.Rnw 10b1200f79949d5fbaa43dde5f23c2b0 *inst/doc/credibility.pdf 07bfa1550cde3ba7bb04c25624ff4d5e *inst/doc/distributions.Rnw b9769443376ce41710295c9fcda442eb *inst/doc/distributions.pdf 4d0c2b8515d9ffbcd456f411b343dc14 *inst/doc/modeling.R 5b530c2d6c873c6237193bc1c35f3bda *inst/doc/modeling.Rnw ea086ff6f5c3e5d9e5926aff19162da6 *inst/doc/modeling.pdf 7067e86a6433ad69fb86b33fc81f46ca *inst/doc/risk.R 987d97c8778677c8a2ab363ae9c32c74 *inst/doc/risk.Rnw 2efdfd691859ff3d0dec2f97712a1f3b *inst/doc/risk.pdf e5e3029cdf66b338491a1b032416fb31 *inst/doc/simulation.R af7ce1645a558fc6fa64e231d799539d *inst/doc/simulation.Rnw 00172ff6fd1b1d3e0a84d2e458261ada *inst/doc/simulation.pdf bebc84cdf387870641034e7de14570b2 *inst/include/actuarAPI.h 21284f0de8819b0e59c6c087e0b937c3 *inst/po/en@quot/LC_MESSAGES/R-actuar.mo 2b6c9ab99d658972f0be8e02278b8782 *inst/po/en@quot/LC_MESSAGES/actuar.mo 5a5390074dd52003631b4a18893a2036 *inst/po/fr/LC_MESSAGES/R-actuar.mo f8cd3795d32963c6fc32b064f8ba9bfc *inst/po/fr/LC_MESSAGES/actuar.mo a755dd2fbf5c32b50ebc32b75b905812 *man/BetaMoments.Rd a5b36249c0e0e080efe0d433085e291a *man/Burr.Rd 3d08b2ed535f983f79c14f39b5be88a9 *man/CTE.Rd f90e3267c218e2bbec36827befbd5681 *man/ChisqSupp.Rd a36da40ba94b948d645c0c7291884f6a *man/ExponentialSupp.Rd e64e51f65b83ef97abfebd0f0f0c38da *man/Extract.grouped.data.Rd d8840a2dd5ed76926d7ed92749bf8438 *man/FellerPareto.Rd f99fdaf70013ee8d9b93862edaa1ce4d *man/GammaSupp.Rd c07b818c28d902ba89d2e4bd6f91996c *man/GeneralizedBeta.Rd 3dd31f6e5df7ab4a85b3d0e4c9cf017d *man/GeneralizedPareto.Rd 8fbf644555828cdb77b5ca846961e322 *man/Gumbel.Rd 8dcb5ce64fc21451b6b5bdb8d8120e83 *man/InverseBurr.Rd 8cbeea0bec948b962a48920ff3a1aeb7 *man/InverseExponential.Rd 1a388b76d074be8c7327ed4e70612236 *man/InverseGamma.Rd e8c30457b4ba503944779545e11ffd8f *man/InverseGaussian.Rd 4828f4076903a9b35ad0b7c37734e393 *man/InverseParalogistic.Rd bbf0d27f10ffb11afcd9f7369f1b3dbd *man/InversePareto.Rd 5f7b9c1c63fe38a8eca486eeb2ff199f *man/InverseTransformedGamma.Rd 23ffafbba3401b859954b533247a90b8 *man/InverseWeibull.Rd b7ead1a4c209a7eb1e25898113637b44 *man/Logarithmic.Rd cccb4d2ddcd349c5a207f33ab3077dd1 *man/Loggamma.Rd 0dbde815295726f32cf5f563ec102225 *man/Loglogistic.Rd d6c1fe8d8b341ded225bc193d3fa4588 *man/LognormalMoments.Rd ab9f79c93ad324f4799a1fbbed2141d1 *man/NormalSupp.Rd fc8d0fdedfef3ee1d53a79a1b702cf1b *man/Paralogistic.Rd ad5cfa789efa6493aefe1acb91a5a6bc *man/Pareto.Rd 8e4341f214ca4c0f37479f6a315f0d6a *man/Pareto2.Rd bc68a38c54a1da299fa938a8862cbe3d *man/Pareto3.Rd c6c2e08dd5218b3f0bf984b9c635b301 *man/Pareto4.Rd 885e1e8fd8a2c20b9a592004cb12b0e0 *man/PhaseType.Rd f66617fa4003eec4a7e466f5e15f9c46 *man/PoissonInverseGaussian.Rd de268358595d4c258b70eafe1d3ccc20 *man/SingleParameterPareto.Rd 879a15c9e184fd89663a3b2722fdb9d6 *man/TransformedBeta.Rd ae97789b1f01240d83101889836cdac4 *man/TransformedGamma.Rd ed2257d1b871c738b3568946e9060854 *man/UniformSupp.Rd 17e4ad925959dd184c1e311661937a4d *man/VaR.Rd 30ccb130026f702bd6880cdebd5e0cdc *man/WeibullMoments.Rd 84a695bd7218b7d86adf69558261bad8 *man/ZeroModifiedBinomial.Rd a32fd5e382630aeb2cea6a364b5a8480 *man/ZeroModifiedGeometric.Rd cef1debcf683144a1391aa04bcfb27cc *man/ZeroModifiedLogarithmic.Rd 4f715f784f55d6f1c35c5b0e76f3148c *man/ZeroModifiedNegativeBinomial.Rd fe31b64dd377996a320d7f0ec536b39a *man/ZeroModifiedPoisson.Rd f4667c1a70dfb2c9ceb8f6d1f3476324 *man/ZeroTruncatedBinomial.Rd 6b3e1b6c4afd2bdcb3edf322a4f72dfc *man/ZeroTruncatedGeometric.Rd 9c13ff5ed2532cce33a4b33ac53ceaa0 *man/ZeroTruncatedNegativeBinomial.Rd 1566726255c8498c2aaaaf56700b4061 *man/ZeroTruncatedPoisson.Rd 536b3b28791e306bcaf157ec480aa6a3 *man/adjCoef.Rd 2e390d1f0143bed5093fd67edd421621 *man/aggregateDist.Rd 890c44a3c34c9ed4627bda5772008676 *man/betaint.Rd 77b8f556301117b9c31919842a0027ce *man/cm.Rd 6e32ade77f871805b5650f784f806abe *man/coverage.Rd 6044e3f1b95f253a80c0d578edbbd7a6 *man/dental.Rd d7e21ad16f1eb6c4fbd8122c13d16c30 *man/discretize.Rd db5fd4f06810d8020f1cd70d4d2e8453 *man/elev.Rd c15d6cd098d1bf0e524c205ef85e1a59 *man/emm.Rd 39643c4bc3d0cb51764f6e64aa2dd354 *man/gdental.Rd 35b3f616d3637b5b32966681f3cdcea6 *man/grouped.data.Rd daaaa29d395f33c225e96f69fa9d74a6 *man/hachemeister.Rd 2c4852e710c1ffcc693ae6be10213465 *man/hist.grouped.data.Rd 2090db683b954338399a99539b34e7ad *man/mde.Rd f48a9ca0f857ada94234a4b37f41e8c2 *man/mean.grouped.data.Rd 45e87a1fca0cc9f9d9aabeb1f8deb79d *man/ogive.Rd baa2b018d4db06e55bf4cb9e7c118a4b *man/quantile.aggregateDist.Rd c1d373c5dab78d5ba1e8ce5288ac4259 *man/quantile.grouped.data.Rd c44330d4a430fa33438eb14efe9b5bb6 *man/rcompound.Rd 4594f01c6cb02920c81fddf442c15f9b *man/rmixture.Rd 13e8544e89fce8bc0cd928e8894a5fab *man/ruin.Rd 62fe79bec4453860df38c4add86c7091 *man/severity.Rd e9563c86bcc3825d7d6dabb729b5c155 *man/simul.Rd d2bb0de1ca09287cd743479e8abd62f7 *man/simul.summaries.Rd 52c4034e29078164436cbce1e4444952 *man/unroll.Rd 2f799ad801d4c4172aaf761e6b0937ef *man/var-methods.Rd a585d1a0c58d04accef1991592c6615a *po/R-actuar.pot 67124233c7b67b7fcfce501502bc5c83 *po/R-fr.po e85aece67dbb0e3203c5e6d2b1123ffe *po/actuar.pot 17146148a6196b40950cf17471cfa587 *po/fr.po 7fbcbeb771d645b3019868c753dc7dac *src/Makevars bece94f05eade2c2b72b692454215695 *src/actuar-win.def 15034afd4bf2e593098944e4578d8ea5 *src/actuar.h c8b2ead45feff5557b4426059f358fc8 *src/beta.c 56438b5076da0fc35b82a34e0b12cbcb *src/betaint.c 9c30d6493c7c88062061bc212a2f94ac *src/burr.c 48c24c75e7e5e6985c079645e33fd154 *src/chisq.c 97e37cf0aeb4d47981e200e417c09af1 *src/dpq.c e2bd462f6346394bd27213627fb129de *src/dpq.h 4401aa69aa3a26d8c176f9ce96f7261e *src/dpqphtype.c 20fde04e013227cc195a5d7f4c6dd76d *src/exp.c 8523c8415c74846418f7668e804962e2 *src/fpareto.c 312fe85f8307c7e45d53f118789b92e9 *src/gamma.c b30606d5ef612b7e36ad521a6fa4f15c *src/genbeta.c 07617c7f9bd3850dbf5c125205ee4a50 *src/genpareto.c 5881f88789e12197629dabb82f37bfe2 *src/gumbel.c 66e3624e2411e885fa5de545c2588926 *src/hierarc.c 09d1cf8e8af5b90664cc144bbcf0c7f9 *src/init.c add45c5792404f0e50488101561cda98 *src/invburr.c d24f3ec76f1a390865236e761507eca9 *src/invexp.c 773bf6dfd624e013153dc6fad0b41ef0 *src/invgamma.c f9e244ea444ad4405110157180ad2dcb *src/invgauss.c bf661856dd4cd75b261ed8da58075631 *src/invparalogis.c dc912e26cca0b67188e320eb223175d2 *src/invpareto.c d468b0b2f832b71e1f2d718a3ce05d07 *src/invtrgamma.c 94698806446eb8b6a9399020fde2117a *src/invweibull.c 1dfe640aeab42b10962917c55488789e *src/lgamma.c 3c1665ee7820b06bf9b4cd19f0b5bab8 *src/llogis.c f75ec671f0aae41a9096ccfa759ebdba *src/lnorm.c bbb5f2e900fe0cc5bc568d702d3ec3ab *src/locale.h c956040194d6b1768478e219e629dd0c *src/logarithmic.c 9c713a0375e6f60f9da951502bea6317 *src/names.c 9093d8b368d18412c108c79c0f06ae8f *src/norm.c faee18c808ccb6d6bc99e5967d430831 *src/panjer.c 8d8c6e88112590c5ba1b37a45e32fe36 *src/paralogis.c 082700f0e53fa1245858c85fc3db73bc *src/pareto.c a46729c17991f37c65ae2228275fbf2a *src/pareto1.c 2c63b5b1f9e4ac3b92db32142146e1d9 *src/pareto2.c eed5c0fcf81b02a01d4f650fffe09e61 *src/pareto3.c 8b5ee13ac8d7ebcfe884bcb9ed43f409 *src/pareto4.c 08c56928909e1a32dafd3464db6517b5 *src/phtype.c 6de5b082750d2278e4bdba9563812c75 *src/poisinvgauss.c 6204e871d7308aa3332ef53ed5d4104d *src/qDiscrete_search.h ad9286b84e307bcd52f71a3562f19b8e *src/random.c 202d46a36cc51a861c814b7b574bd334 *src/randomphtype.c 61079014ae71296852fcbf372276be60 *src/trbeta.c 57d10d46317c060649b4389db9074797 *src/trgamma.c 7a82ca42fbdae512854bdf4794c0a558 *src/unif.c 1ac736574129de7ec9da305997d4bc9c *src/util.c 42214b9442bcede3be64125ec8e46e6d *src/weibull.c 45f3029e575824db6fe0feede36a4ae6 *src/zmbinom.c 5f5fdb76d5d4407135142d766f8f50cc *src/zmgeom.c 40a80c5356a9c330aced6c19e78cfb2e *src/zmlogarithmic.c 6cf539c2d33a53554cc2625590b26467 *src/zmnbinom.c 391ea0f45aae3e34a36666ab18d3983f *src/zmpois.c 4bbe38f08cc7ad43aef6db373d44bdc4 *src/ztbinom.c 4a69d3aec3f73d49c25b7857ff94d676 *src/ztgeom.c 0529064ab267e2c86289b84a0f1f4845 *src/ztnbinom.c db270accfbd63b183828f9ba9715b238 *src/ztpois.c b2dc8c5900c8e9933c38165a381d8176 *tests/betaint-tests.R ded044b5296e59754ae2b6a07b5abfac *tests/dpqr-tests.R e391dcfecd5f8969e15f28ab9d743e4d *tests/rmixture-tests.R 2fadac5126ad008c1c0e7e7db4bdf2e2 *vignettes/actuar.Rnw a0c2d4077778b55dd70f98e6bc705e4f *vignettes/actuar.bib 07eea50391716b4f3ff31bf2321f3dfc *vignettes/auto/actuar.el adab4280b16ad72f8a74468eee2239af *vignettes/auto/coverage.el 218627c801d3fcd11ddb6d719bed639d *vignettes/auto/credibility.el 9505676d70422d575f46e20189246c2a *vignettes/auto/distributions.el a464f89700241fda273a99fcd3a0943a *vignettes/auto/modeling.el d81c1585ed88820615e0d050e6aa6440 *vignettes/auto/risk.el 471d786927b83243cb6b6a96623be045 *vignettes/auto/simulation.el dc69173fb05dcaa0cbb4192e22599021 *vignettes/coverage.Rnw 85f7291573c4595d6de9d286a762364c *vignettes/credibility.Rnw 07bfa1550cde3ba7bb04c25624ff4d5e *vignettes/distributions.Rnw 7ec15c16d0d66790f28e90343c5434a3 *vignettes/framed.sty 5b530c2d6c873c6237193bc1c35f3bda *vignettes/modeling.Rnw 987d97c8778677c8a2ab363ae9c32c74 *vignettes/risk.Rnw af7ce1645a558fc6fa64e231d799539d *vignettes/simulation.Rnw actuar/inst/0000755000176200001440000000000014173361163012513 5ustar liggesusersactuar/inst/NEWS.2.Rd0000644000176200001440000003063514030725703013721 0ustar liggesusers\name{NEWS} \title{\pkg{actuar} News} \encoding{UTF-8} \section{LATER NEWS}{ This file covers NEWS for the 2.x series. News for \pkg{actuar} 3.0-0 and later can be found in file \file{NEWS.Rd}. } \section{CHANGES IN \pkg{actuar} VERSION 2.3-3}{ \subsection{BUG FIXES}{ \itemize{ \item{Fixed declaration of the interface to a function imported from \pkg{expint} to comply with option \code{-fno-common} that will be the default in gcc starting with version 10.0.x. Thanks to Joshua Ulrich \email{josh.m.ulrich@gmail.com}, maintainer of \pkg{xts} and \pkg{TTR} for proposing the fix.} \item{Correction of the formula for the moment of order \eqn{k} for grouped data in \code{?emm}. Thanks to Walter Garcia-Fontes for the heads up.} } } } \section{CHANGES IN \pkg{actuar} VERSION 2.3-2}{ \subsection{BUG FIXES}{ \itemize{ \item{Fixed generation of random variates for the logarithmic distribution with \code{rlogarithmic} when \eqn{p > 0.95}. Thanks to Sam Thompson \email{samuel.thompson14@imperial.ac.uk} for the report and patch.} \item{Fixed generation of random variates for the zero modified geometric distribution with \code{rzmgeom} when \eqn{p_0^M > p}{p0m > p}. Thanks to Christophe Dutang \email{dutang@ceremade.dauphine.fr} for the report.} \item{Fixed the formula for the variance of the zero truncated negative binomial distribution in the man page. Thanks to Daan Gerard Uitenbroek \email{Daanuitenbroek@ggd.amsterdam.nl} for the report.} \item{Fixed a typo in vignette \dQuote{distributions} in the formula of the survival function for zero-modified discrete distributions.} } } \subsection{USER VISIBLE CHANGES}{ \itemize{ \item{Add circular references between Pareto and Single Parameter Pareto man pages. There was no reference to the Single Parameter Pareto distribution in the man page for the Pareto and this generated questions from time to time on how to compute the former. The new note and 'see also' should solve this.} } } } \section{CHANGES IN \pkg{actuar} VERSION 2.3-1}{ \subsection{NEW FEATURES}{ \itemize{ \item{Vignette \dQuote{credibility} now contains an appendix summarizing the formulas in the linear Bayes cases.} } } \subsection{BUG FIXES}{ \itemize{ \item{\code{cm} with \code{formula = "bayes"} stopped in the Gamma/Gamma case even though the parameter \code{shape.lik} was provided. Thanks to Vincent Masse \email{vincent.masse.4@ulaval.ca} for the report.} \item{Component \code{weights} of the return value of \code{cm} in the \code{formula = "bayes"} case was wrong. This had no impact on premium calculation and was visible in the output of \code{summary} only. Also, it caused an error when \code{data} was \code{NULL} or missing.} } } } \section{CHANGES IN \pkg{actuar} VERSION 2.3-0}{ \subsection{NEW FEATURES}{ \itemize{ \item{\code{cm} can now fit linear Bayes models for the following combinations of likelihood and prior distributions: Poisson/Gamma, Exponential/Gamma, Bernoulli/Beta, Geometric/Beta, Normal/Normal, Gamma/Gamma, Binomial/Beta, Negative Binomial/Beta and the less common case Single Parameter Pareto/Gamma (where the Bayes estimator is linear, but not a credibility premium). Thanks to Christophe Dutang \email{dutang@ceremade.dauphine.fr} for the idea.} \item{\code{rcomphierarc.summaries} is now an alias for the man page of \code{simul.summaries}.} } } \subsection{USER VISIBLE CHANGES}{ \itemize{ \item{In \code{summary} results for credibility models, a level \dQuote{section title} is no longer printed for one-level models.} \item{All instances of function \code{simul} in vignette \code{\dQuote{simulation}} replaced by \code{rcomphierarc}.} } } } \section{CHANGES IN \pkg{actuar} VERSION 2.2-0}{ \subsection{NEW FEATURES}{ \itemize{ \item{Functions \code{rcompound} and \code{rcomppois} gain an argument \code{SIMPLIFY} that is \code{TRUE} by default. When \code{FALSE}, the functions return not only variates from the aggregate claim amount random variable, but also the variates from the underlying frequency and severity distributions.} \item{Functions \code{rcompound} and \code{rcomppois} now admit an object name in argument for \code{model.sev} and \code{model.freq}.} } } \subsection{BUG FIX}{ \itemize{ \item{Display of verbatim blocks in vignettes.} } } \subsection{USER VISIBLE CHANGES}{ \itemize{ \item{In the man page for \code{dgenpareto}, additional note on the link between the Generalized Pareto distribution in the package and the version used in Embrechts et al. (1997) and Wikipedia. Thanks to Marcel Trevissen \email{kamath1602@gmail.com} for the pointer.} } } } \section{CHANGES IN \pkg{actuar} VERSION 2.1-1}{ \subsection{BUG FIX}{ \itemize{ \item{Usage of \code{R_useDynamicSymbols} to preclude compilation \code{NOTE}s, better registration of native routines and reduced symbol visibility.} \item{Vignettes no longer use LaTeX package framed as it was not found on OS X in CRAN builds.} } } } \section{CHANGES IN \pkg{actuar} VERSION 2.1-0}{ \subsection{BUG FIX}{ \itemize{ \item{\code{qinvgauss} was not computing quantiles as far in the right tail as \code{statmod:::qinvgauss}. This is now fixed. Thanks to Gordon Smyth \email{smyth@wehi.edu.au} for pointing it out.} } } \subsection{USER VISIBLE CHANGES}{ \itemize{ \item{Support for the incomplete gamma function and the exponential integral has been moved to package \pkg{expint}. Therefore, \pkg{actuar} now imports these functionalities through the \pkg{expint} API.} \item{Consequence of the above, the non exported functions \code{gammaint} and \code{expint} are deleted from the package.} \item{Section 6 on special integrals of the \code{\dQuote{distributions}} package vignette was revised to better introduce the incomplete gamma function, the incomplete beta function and the related integrals.} } } } \section{CHANGES IN \pkg{actuar} VERSION 2.0-0}{ \subsection{NEW FEATURES}{ \itemize{ \item{New support functions \code{[dpqrm,lev,mgf]invgauss} for the inverse Gaussian distribution. The first three functions are C (read: faster) implementations of functions of the same name in package \pkg{statmod}.} \item{New support functions \code{[dpqrm,mgf]gumbel} for the Gumbel extreme value distribution.} \item{Extended range of admissible values for many limited expected value functions thanks to new C-level functions \code{expint}, \code{betaint} and \code{gammaint}. These provide special integrals presented in the introduction of Appendix A of Klugman et al. (2012); see also \code{vignette("distributions")}. Affected functions are: \code{levtrbeta}, \code{levgenpareto}, \code{levburr}, \code{levinvburr}, \code{levpareto}, \code{levinvpareto}, \code{levllogis}, \code{levparalogis}, \code{levinvparalogis} in the Transformed Beta family, and \code{levinvtrgamma}, \code{levinvgamma}, \code{levinvweibull} in the Transformed Gamma family.} \item{New functions \code{expint}, \code{betaint} and \code{gammaint} to compute the special integrals mentioned above. These are merely convenience R interfaces to the C level functions. They are \emph{not} exported by the package.} \item{New support functions \code{[dpqr]poisinvgauss} for the Poisson-inverse Gaussian discrete distribution.} \item{New support functions \code{[dpqr]logarithmic} and \code{[dpqr]zmlogarithmic} for the logarithmic (or log-series) and zero-modified logarithmic distributions.} \item{New support functions \code{[dpqr]ztpois} and \code{[dpqr]zmpois} for the zero-truncated and zero-modified Poisson distributions.} \item{New support functions \code{[dpqr]ztnbinom} and \code{[dpqr]zmnbinom} for the zero-truncated and zero-modified negative binomial distributions.} \item{New support functions \code{[dpqr]ztgeom} and \code{[dpqr]zmgeom} for the zero-truncated and zero-modified geometric distributions.} \item{New support functions \code{[dpqr]ztbinom} and \code{[dpqr]zmbinom} for the zero-truncated and zero-modified binomial distributions.} \item{New vignette \code{"distributions"} that reviews in great detail the continuous and discrete distributions provided in the package, along with implementation details.} \item{\code{aggregateDist} now accepts \code{"zero-truncated binomial"}, \code{"zero-truncated geometric"}, \code{"zero-truncated negative binomial"}, \code{"zero-truncated poisson"}, \code{"zero-modified binomial"}, \code{"zero-modified geometric"}, \code{"zero-modified negative binomial"}, \code{"zero-modified poisson"} and \code{"zero-modified logarithmic"} for argument \code{model.freq} with the \code{"recursive"} method.} \item{New function \code{rmixture} to generate random variates from discrete mixtures, that is from random variables with densities of the form \eqn{f(x) = p_1 f_1(x) + ... + p_n f_n(x)}.} \item{New function \code{rcompound} to generate random variates from (non hierarchical) compound models of the form \eqn{S = X_1 + \dots + X_N}. Function \code{simul} could already do that, but \code{rcompound} is substantially faster for non hierarchical models.} \item{New function \code{rcomppois} that is a simplified version of \code{rcompound} for the very common compound Poisson case.} \item{\code{simul} now accepts an atomic (named or not) vector for argument \code{nodes} when simulating from a non hierarchical compound model. But really, one should use \code{rcompound} for such cases.} \item{New alias \code{rcomphierarc} for \code{simul} that better fits within the usual naming scheme of random generation functions.} \item{Functions \code{grouped.data} and \code{ogive} now accept individual data in argument. The former will group the data using \code{hist} (therefore, all the algorithms to compute the number of breakpoints available in \code{hist} are also available in \code{grouped.data}). \code{ogive} will first create a grouped data object and then compute the ogive. While there is no guarantee that the two functions are backward compatible (the number and position of the arguments have changed), standard calls should not be affected.} } } \subsection{USER VISIBLE CHANGES}{ \itemize{ \item{The material on probability laws in vignette \code{"lossdist"} has been moved to the new vignette \code{"distributions"} (see the previous section).} \item{The first argument of the \code{mgffoo} functions has changed from \code{x} to \code{t}. This is a more common notation for moment generating functions.} \item{In \code{aggregateDist} with the \code{"recursive"} method, if the length of \code{p0} is greater than one, only the first element is used, with a warning.} \item{\code{aggregateDist} with the \code{"recursive"} method and \code{model.freq = "logarithmic"} now uses the new \code{dlogarithmic} family of functions. Therefore, parametrization has changed from the one of Klugman et al. (2012) to the standard parametrization for the logarithmic distribution. Basically, any value of \code{prob} for the logarithmic parameter in previous versions of \pkg{actuar} should now be \code{1 - prob}.} \item{The aim of vignette \code{"simulation"} is changed from \dQuote{simulation of compound hierarchical models} to \dQuote{simulation of insurance data with \pkg{actuar}} as it also covers the new functions \code{rmixture} and \code{rcompound}.} \item{Vignette \code{"lossdist"} is renamed to \code{"modeling"} and it is revised to cover the new functionalities of \code{grouped.data} and \code{ogive}.} } } \subsection{BUG FIX}{ \itemize{ \item{An old and nasty out-of-bounds bug could crash R when using the \code{"recursive"} method of \code{aggregateDist} with a frequency distribution from the \eqn{(a, b, 1)} family. The bug went unnoticed before because there was no example for the \eqn{(a, b, 1)} case in the man page.} } } \subsection{DEPRECATED}{ \itemize{ \item{Functions \code{[m,lev,mgf]invGauss} that complemented functions \code{[dpqr]invGauss} of package \pkg{SuppDists} are deprecated in favor of the new complete set of functions \code{[dpqrm,lev,mgf]invgauss}.} } } } \section{OLDER NEWS}{ News for \pkg{actuar} 1.2-2 and earlier can be found in file \file{NEWS.1.Rd}. } actuar/inst/doc/0000755000176200001440000000000014173361163013260 5ustar liggesusersactuar/inst/doc/coverage.pdf0000644000176200001440000054253514173361126015563 0ustar liggesusers%PDF-1.5 %ĐÔĆŰ 25 0 obj << /Length 1919 /Filter /FlateDecode >> stream xÚ”˒ܶńźŻ˜#Šj&Ț€}ȝŹìDqč썗•–äì2æ>€èïÓ 49äˆÒź*ʉ`ŁŃèśÉîa—ì^ŸHžű~sśâ‹[›î„ăRœ»;<1ng…á*“»»bś;û¶=ër(ś™ vl»ęA8vkßGĐۗE\Ęï•`ïöÿŒûË·J,)K‘òD)ž8ĐÌÛ7eçʈŠLž#ő „æJčĘAn€›pâ—œ1ŹjòČâ]/ÛžB€ÈĐpPńLțߛêÍ^KVv}5ŒVFÄSŻü^YöfŻ$óő|{Æ3+-]Ä$^Ìg&»›|šÚ&ĐËZ‚ŒÙćZ jžf3b{Œ(N/P@ ©œuäóaôĘ%•p§ä„V”Ż“D6%C%)óűqŹ)śBČ·vœŰCż9ŰuDł"țđXFèčÛgŹœ?DĆ àÚ ‡jûXbìŸȘ«áàƒeÓӏ]^[Ż“œ‹#|DÜĄĂF>ąś d ąSőCWʏÓń-bù…˜#b–ù&8š#2I .ŒZĂê`|TŠŐllŠČ‹đ(<,Žm]·{éŰÛȘyˆhUӏż‹yŰ&ÏBCè©-*ŽBî‘áțËęÁ€*!R„Á[ü5ăÈ@ŽżÄš á…w=V=E[Q#(áŸ.o" źNŐ@댝™#HŐ*0ÁĂ„I™Ö뛿~ț_bȚàŻ<@źŒEČ܇…bĘȚ°rcôÓ&QŚÖƒ­`ű– ukŸâ †ÈŰ»3ùÙû|žń˜¶–ŐmßăÊ-!$BÀ’PŰĄC; §ą=ĆÍÿ]ćA±|HSĂî@éqs()ĂUM[·›Ț”q„Ü‚ò )ÍȚ>–“Ž‘Y6í@XQ|ò)€@˜4Ńéúž=YćűU&Ær‘=+Bž»Ô‚›H·/Éçż}ôçÀB …GH—Pșnà\‡,.zùbś{@ęk=>œĐ[ń§€*ákN'cэdX‰äڞ˜]>z“IąŚ”Â)ńń8[èV`JĂőeH&$UdòÁ~lGJ “óâzéŒdÜÓ]śsȚˆEĄűòZú‰Q°†$FĆZEP”Vf•\čÙȘżQÙJwŽ'†ł›‚BAŽöă†ÍM(“‡ÖÍ”z–eś·THu͜?CźœJ«•~u„©čË)‚8’ÿł"€AԄŒÚr~ž&2*Â}Ș"b"ű|ĐFź]A]E ž‹S;\“Š^K•Ì’/Ú&@1"|&̏{Š{–§žÏé)Oۏ:©GÿżŐ3ù}–ÿŰÏâ?Oè%&žMoč eÊÁ©í‡ž‚Šò„-@Xû>ì'Pđ"dŃLáŻ?ŸëŠz&B ï0Q^7H “æ„ČQäü©Qne°š Z…RkźÚDEà*4:Æl‚—Ùù} Kƒíœ|^šü$ç‡:oŒbߕ±ÍSŽDŒŁ¶đ;©â ­ăĐË­ëPQęXS‡ž5Ăđ©ô“ 7y†“Üfn}篏ć„ú…ČGŚ“ûAĂł]ò|]bíó òćżÇŠf;00ßêÜbŸ'MƊæ#&œ灶c8!ȚUÛ PžáЌăïsA‘€5 Đ”ì}áàËpC…ddv‰_n›"Ì'ˆ3Q\ÌGÎ’ĆQ=lĆÏEÙ[Ź$8›§ÊMßà[‹źM‹‰tK6šÂ/әèžIÔZœMt1ߐ{»”§öJUu˜tŁæiąwv%wÉ\¶ę )7j–+š1ΕqÎ\ÌTqŁóÖ3|ޘ@·™čĆ%t ‡9ö5‘Źêz„<·‰a–©Ă䰘uKŸ?ÆU0;nÍüž B Yšû–OÌÏ*eö„”á:[•Çđ‡ï™ÚÒăŠWŽŰÀÁ­)ĆâOű–€Ÿ_ő——Adu T4đ—ĐûìÏÁB±ŻéKs0ö "eßtúțè›AEvš„lJ ’œ$Œ_ĂKk]ŸÚoŠí0›ç””û[[”5Ÿ}©Ô±[hąRËvÆțäWCK2ŻŠ7ÆÌ-Ț)úÜïkX&\§z™F1q …»5!ÄÔÿ0œ‚âÏo˜ÚîړÔ2̏`S>ęțço~ˆÀ䠝Âžƒ;˜ë @„ĐCko ŚvšW8Ÿ{ń_ÿó# endstream endobj 49 0 obj << /Length 2144 /Filter /FlateDecode >> stream xÚí\M·œïŻèă qÓŹ"Y,vA⠁6ȇŽkݐŹX¶èßç±{zŠ{†ę1êžÙ•ŹÓzšj~TŐ{ŻX#[ę§ČŐ_oìîïŸîn>ę2úŠŒq^žșû±"çL­$ˆQçȘ»‡êÛ[zV“”ööëûgÌ·o_>ÿù·g5'șęï󌻇o>iŸŒzęđÓÏśűÚùÛ·íŁ‡ço~űí§ï_<öĘĘßńf­’IÂÒŒXLđZŐ^MLíkÿ”MˆÔ ‹†RšŒ!òí ŻÛAê*ČÆ)Q„űž`ë0ì‹vqÿ•dŹJĆÎxLæĄŒ=‡æ"ĂčPè†|Rx “Q+1чȚ›nțrwóËMȚ{[QƂÍ©„’ń)V?ŒŒùö;[=àK¶qXËÿšĄ/ł=N _TÿžùŠ ŻÁ„¶°Ù‘·?.šW§ÎwÛÄŸd ÓváèÌbì›ÂGÏ©òyi/­±Nú{ùæt/G#Ńmȗ[—ÙËAÈÖ”’đ‘-Î ÛRŒpÜÇțÒŃE9<‰ńá*“=t8Y˜ö?êœp8R‹„aŰȘPkMüI”6öŽœś]]”‡_tiüË`y#ŠŰhòǰLŠQڃò1T “:kȚ( Қhečœ]ä5k*ƒ$ČÖç‚qą A2ç잉gó »ÁK&@üqS€Êă Ę.śŰRűçìD“‡Őń‹Â»06ÉȚFéÄkr˜ Æ Q™dÊ.WgäÓALN]ĆܐëŽËŹk[0‡©e2SŁÊÇkŒx˜ÚdĘ’ă “ž1Žčp_œw7;Ó6oč Á›èt2w`6,ĂÜ1˜Lc đBjžKś…e &5 fcÈÁŸRłțȚšžæŸțÖ°§ŒŹo€é4ËÎŹ,óü€Ă:œ'„Vč±ű9ü vŚđ5B À4€ÓqGˆdŒ_䄝krÿDzŽĐق#(m{„Çç, Ïgž8RĐ9œd,;ÜÔâ,’Œć)ˆÌÇț!‹…áòü(Fnái‘;žĆîÆĘGgńŸà<€ZÖčCg‹ń7éŽ?МCȜCHŃ!Ži0è@UgN ‰kĆș-ńx xóß‰â!^ dŒ:±!Ł6>–\SÊkò @éűäˆïGżG˜ÏßD›žÒ.žÀPŽĆœűKÉdș, Ń5âüÏS3àđ©ùąûW»Ÿțí%U~…°üfÿUĘYŹ{&[4ÌÜU ș}€N‘]Nù±”[Ș¶ŁêńÚTœ4s©SȘ.+˜đ…˜őÒw,ź·=ő…ŒK‰ÈÀ§i)Ę^J Œš&‘ž5+0ű 4™ ÖÀ€sN„ĂÙ>q–0Còđ‚ĐŃIB–Uf8eæœéĂV€‹1ԅòűr\ùđé±jЃ-Ï)%Cłê>Y°+œ耐Ąœ‘$SyÌ:‡g-xÒJ<š–xáČO<Ț‘à0•™òЏă3Zd^/ ӒőÏÍIŒłùà‰Æ["ò\+ò&EûŹj’€ jœ‹Sąłۈç«hˆ°Ąo/”” č"b‘ăx„€ÜÙò òÌ_XS.’Ѱì4DŒŠ†Đőâ‰ÓßSh•Ź"Ôt•ÓëËDęEžX,±…û}°”jűÈœÉ Îg2Ł_,{[ÇD#žË!h#ŻJž{[y#:zJ˜M’'cOü>WŠieŠłe!üT„ WHžz”Ž(QŠˆuÛŽ­mQjl!§źE).hQò…-öroëB{ù±EéZ”șLlqúä6Éêàà«z&%`&”M”™6ŻnRÊ·Äœ›ŻÊ8dÚö(MJ™ë€ë5)]„!éłÂȚ%PÙP斟àŚÊÿÜ 'ûIl>˜~”€Çáܚb-Żd=­Œlž=KđđÚr ^†[O9ą@lpž ÆŹ‹”}%mnŁë\ïȚšhșÀr˜íź}âäIâéÀ<Ü^5ŽSȚæĄvŠœmön©éúÊ1Úń|‘= YOäjIfĘ:îܚ—ćƒ*˕:I5»&š ˝$ŠȘŸm$‰›4’> /ExtGState << >>/ColorSpace << /sRGB 55 0 R >>>> /Length 1430 /Filter /FlateDecode >> stream xœ”WMo%5ŒÏŻđkÜíïëźi%–Dâ€8í‚P” -âïS՞dÜhD‚C^^Ęm—§Ü]OÂÛ á.|<Ț…Ąäš)舟9ƒ‚t%úí§đ}űőűâń»Ż_‡77GŠ)„°ȚŒùöXSűăűáǐ‡CÂ[üĘ ᛣJì9äÊ5ŽšcȘ!7fż?j‰č…íÍA~sFᘀD‚üg§-IHQ’Æ: +ÉJ*Q.€)©ÆÙ W•ÔŚZ’IÂ;™†É TggÆĐQ†c„EJ[ąÀ8Ő5žIZ€/֜Ú"Ё­/ÄEÓz{6±Ëč&‚ŒhŠ6ˆ'é‹âŒyœHțj'Fʱa}íë&0ü|,^«ńÇul–äŸĄ[ŸX?gnƒxÿŒmÛ8ï1ÖÇMKŸ%œwƶÎÆwŻ­ùĆűçyòƅ%ÿ"ëŽ1ŚRŠÆlç@òÇŹ Oă_ÊR”à“?îš)Ʊ~Aš5ž?îéÒÉżLÒ&nÆÿéæ2°b}T“ŒòًÜćuȚ˜HțžÍĆȚg”Ș$š0'Văû]Œ?ÈUÆÔzn|^ó…!š;KűBțšbzĂòGí±*À/äÏZdń((ÒìۉłńÇă¶Æ‹ńÇăbçĘȘńÇc]žł0đ±UCAÙ `«rÒìE k‹íE cŰzż(%䏰d류?đÒ;Ê ù#Í:'”a„łóD!ànüPbȟ”ÏòŁD‘?+–íE§MĂÍöÏČĂ>’ŚùʰÓüS#I\òoÉjSg#9›–Lƒś!ÜüeœÂBÛ0ő^hFčچچy‹¶ńîZvÜ'L·ż}ÿŻoÏóyÿű‰óy|>üȚXžęÙĄVđóŐúgOP3Đ(Ô*ăíCű ?·wǗ·–ü_ECçÏŃúâè™źèòâhĆçđöòđZźđńòđń|prÜnŽ…žÛŒ†lfÄçä'űKXČÿÿM–]7}V—áQžć\èk6Œr7vÜŹ=]ž[yŰńtùPG\ŸÉ>~áč^XŰŚ6ŒÓ/=FsùŠ•ł Wö… 7ö‡§ËŚYÇ6l}oĂÓÊÿÖdŸlÐDśxÌ+ûî†Ń]ŸÂŸČáJïéđtùš•ë wú€ Öí ›7œ0…1=ž{>1WŸaóI6_±ábíćÂuÓÛ»ȚviŚ›Â.ízSNo »$êńź7…ïÚőаS»Ț•cŚ›ÂNízSű°T<._uzSÚ-—Ż;œ©§7âéòM§7Țű]ošĆë ŸÎé öÌé ŰémùŒ WŻ7ާ7Ű7§·ÜœȚ`çœȚhçö|°sNoEŒȚŠzœőzCùsz+Ćë >Ńé öÏémùF‡Ț`Țà#Țjòzƒ=tzvzƒ]tzƒŻtzŁŻtùȘŚìŁÓ[m^o”{œĄí:œŃ^îùà+Țè3ś|đ™Noô™ûù·ìőFŸčŸ?}ævțÿ][żûÏÆÎu6NÚ?~ąŐ89ìźűk ìÒÖê7Éà*Ÿ˜eű”aűt$]sĘBŻÂ‡§đwǟ2šb" endstream endobj 57 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 23 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/coverage-005.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 58 0 R /BBox [0 0 288 216] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 59 0 R>> /ExtGState << >>/ColorSpace << /sRGB 60 0 R >>>> /Length 1044 /Filter /FlateDecode >> stream xœ„–K5…śę+Œ„EŒËooR$ÂŒÄ±šĄQ)DˆżÏ9§Ü“JŁ,æȚ9Śź*źG·…—ÁÂ}xwŒ ïB-1§gœű,)ÖldȘ? ?‡?ŽoȚÿôęóđâæH1„źŸ7/~<,¶ț>~ù5€đú°đś‡qCűáhG Vs,%<­ÄÔ!+Wß­Æ2 [l“ČĆŸ GL‹rp—Ő›QÎX rĆY)Wì9$ÚöW…Ì1s”ăqŻdÊâ2]ő'â"^–ìŃ·ő˜ ć ć蔞ÄĆi*7-KźAi±2›qs䅜’UŒ8«‘h4ńBVrtń’Dž§x!/g,ńRòT39/6“wšó.‚A煍V«ó"źl›óŠr8/ÎŹŐéŒÓ“2ŚÉÛ(—9o«Qfçí±açm~Ș՜·Æ%ٝ·ÆÌ,ŹáŒ%VÉćŒ96Ț€„äÀæŸ,™'σ„,dÀXÒUÌš­› Q>ŁIwQŚ~ú›Â>«ÍÒ7ŠQ©3Ô,ÁŃ%Ig‘Łvu‰fEè•–„«ŰËΗY|™§ż!ú2Ű`ÔSű„mûʱRc—ÿlâ/»f-gń—“IńŁG'7ńçć©°Üßw-ńăçźûÈȘB™éŸàˆüt«űĆğÏ|à äDZÔ%<(ùm7 AÈŹȘó”üÀ6ß?ĆomçE~\[ŐùȘ‰ښäCńÍö}"äGZŠî‰"?Җt?H,ù“ȘŠzˆ?©èš§ű“j…DțTv=5.–UŐ~"ùQvjV–-űQ„ž.Ô8đ’è֝X(é꫓QV?m±Ș ĂtÂŚÓ äh„æČŠȚ5L'pŻäMcœ]™ÜŐ 5Zۓ†é'ł{g[_dFżû±`hÀpźƒłąÉvZ͓Ó Œ,ŐW;ygÚÙj+%âđbdčÄ6đŽ=# NÀë( yáżró Ÿ;ÿőXIŒöÙNJ?ŽP€ű|ۏ0^ /„›­—N+W—ćĄčw.»ș,łđq=çú–Ś đqĂ%țóÛÍwśț|ïïđTę„nß*ˆgț„_ČŠzłćpûŸâ_‡ÛûăÛ[yÿ_æx°Írš·'›łő쎷§‡Ś€Ż§ęcüëÇÑQ…ę”o%‡?őȚ|Ê߃WÏȚ\>›‚T¶~ÎÉŚ“Ë/M_šcŽ {_,ă|Ș;íźç«‚ÖŃvÛ­äÛwï_0çÚ[ă?ú–òĘ;ö^ßçÚ¶ŚsßoŸŒŁűąV΀œÇÙIaEŒŸ•'…Ë|°ÿ°á q©ŁKyaš#ÁHïô‚úT5~ڒC±]Lÿ ÏÂëÓüŐńáQ)9 endstream endobj 62 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 43 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/coverage-006.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 63 0 R /BBox [0 0 288 216] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 64 0 R>> /ExtGState << >>/ColorSpace << /sRGB 65 0 R >>>> /Length 1437 /Filter /FlateDecode >> stream xœ”XM\5Œż_á#bÜíïk"@ŠRە8 N ­v‘ ńś©jż™qŁ X ™Ę?wwù•»k#ámđ>ïÂÇPrÔtāϜbIAșęöSű>üz|ńüĘŚŻĂ›»#ƔRŰ?ïȚ|{HŹ)üqüđcHáĂ!á-ț=ÂÂ7G•Űsh%öžŽšcȘĄ”˜Zx†pś—u\ÄtAÛ2ő¶ŒĐ¶Œ»-/Ž-ómë'ÜhÙ=°àțÀtőíőżŸ?Ïçęó'Îçù=fòWxcáțgû œŒŸŻÖûFír©uÆû§đŸü<Ü?_Ț[đ”:żîÖïÆŰ»î./ȚÍŠxĘȚ^Ÿœ–Ûöńòíăzpr;žĘ(=ÊûsWÈaF|>|ż„%ûÿßpÙuÓ«ș ă^ä\Űw6\Ù'6Ül<Ęp·ö°ăéâ ˆ ÏXśxs1Œaܔ=œF*=ȚŽ9·ábíì†áČ\<űșâńtń:ûț†mźlxZûż`M6—7,œ“cźoXé6ŒčââzĆ WúP‡§‹ŚŹ]ßpçŰđ /Ú0ZŐOlŽ;<śxb}Ăæ36œ­œßp±ńrĂuÓÛ»ȚviŚ›Â.ízSNo »$êńź7ŐäôаS»Ț”>q;”ëM”8œŻ:œéò‘îNoŠ‹,ĆăéâM§7Țű]ošĆë >Óé öÌé Űé vÍé ƒÎé ăĆé öÍé-wŻ7Ű9§7Úč=ìœÓ|ȘÓìÓ°ÓڟÓ[)^ođ­No°No°NoÀNoexœ•éőV“Ś}­zìô»èôŸëô†QăôûèôûèôV›Ś[í^o»NoŽ—{<ŰK§7țę»ÇƒÏuzƒętzkÙë öÓé ösŚÛ`ŚÖÿœƒ3œêœŽ;~ęDkprÙmžíż=đ»ŽúÍ@2x…Êż—Ì2|Ê0|z'Íwʶț^…—íïŽ?°âdű endstream endobj 67 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 44 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/coverage-007.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 68 0 R /BBox [0 0 288 216] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 69 0 R>> /ExtGState << >>/ColorSpace << /sRGB 70 0 R >>>> /Length 1117 /Filter /FlateDecode >> stream xœ„–Mo^5…śśWx ‹żœmH•@*‰Ä±J©PÔ •ńś9çŒoò„‚š‹Ÿéčöxæ™;3ŸȚ ·áÓń.| ”ĜBžqâ·€XS°‘©țü-üț8ŸčÿéûŚáÍՑbJ)\ț^œùń°ŰRűûű挐ÂûĂÂ[ü»=ŒÂGł8Z°œc«áîh%ŠYâJáăŃj,ČE[”-öÙc͔ƒgX± Ê‹AÎŰ;ćŠ=Câτì)ź ¶=Ç żEŃA–Űà·äX$kœđ[M„ìôO9Ž:hd„îÍHIÎ9R4ű--fÆ<,Ö*Ù%łxK‰aŒ*^ÈÌ G/dŐæ.^Èź“§x!ÆXâ„äQSdÚÌŁŠ9oGÍ⌝Ń@Vç…_ž<›ó¶žd;œ13±s:oŁ?Èuò.ÊeÎ[ceÚWv^ŒAÉâŒ%V:ZÍyQ?Č;oö0Öp^Œ†±–óŠ8‰`)90Ü„í|ĂŐ€łYYșŠő1“t4Êgč}5tòó§°ÏjłŽÄq Ó`šY‚Ł8K‘Î"Gí_/BÏ‹ì­zm«gš»à ïmJŃêVńà?ÄçcńdőÍČÖy0ü[cCRgń͉—]ÿ¶«– ä7TB“îâ'†Ÿ7ÄÌáëKüHC—FąÉŸ{“ÚďŽé]ò„’i-òÏ€Š]ńĄ`ȟÊÎoâÇkS•Y™âÇkÊ_YäÇ[’Őˆżv;[Í€_»Ù c đ( êȒćć©­èkwšŐArÔąÊÌê€GTȘŚQKäfksÓLXig±eROŐ"„ȍYò‹‘æÙéČ펔Œ$ŁÙ¶\F+șÄHïÌÛ# .Ű·:# ŒIƀ‘^4yÒ»éVțê1’À;æź\Œ$đŽáSĆú"ïè»N1’° łŠj# Œ˜D]ŽF!/~‡ąÂ6žàÀŚÉCÒÀ đâÀŹ0x1œ!-<»Ÿ đr\j3ò^HuĆËæżî’DoŸœKüŠ*j»}o1Qï!\ęk#űTËCĂî\vu±Ì&DzÎő-/7žĂ‡ ț__oŸ›ûgűîop•~‡~ Ś‚wŸ â•ÿѓŹÂBŸ·źïÂW|űužŸ=ŸœÖéÿË·.ȘmȚ^lÎùa§œœÜœ5Émÿàÿò3ăîÈšż~ʏ’Ÿzo>ćïÁ«çŸ+Ÿ}!Tq ¶ŒN.è6ưàPĆ ż^Ê)n°lè„s”rPžv[èTmĘ ŻïÓN­xž*Ą­Û§œŃÈîIŹ7ÇlVŚeĘąÈöĘ擱l  [хÍۃ]˜OuŁĘőüŒŃzٟÛ­t¶ïȚO’h¶-n’üx¶+ßíŸÏőڶœŒ›,_<<‘»ŠÎpvM±!Ÿźoć5Ćć'ö^ĐĐmpŃžˆUTçô~xź™ž·äLoŠ…Wáęițîű„òJ endstream endobj 72 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 77 0 obj << /Length 2140 /Filter /FlateDecode >> stream xÚí[Mł”Ęß_1Ë€È(R«őE Š ê-BqPÀ"äȚU <RÿțiŹńhŹ™±3cߛ ›Ű±u{€ț8}șՖÍ/lŸŒ’»ŚÏŻŻ?qÜ(š-5Ś/„”pÖ7ÖXá”nźoš臭’R>xúì!у^ĘțțŚĂ–‚zđżÛŚ»7ûouŸŒxęìśçżțöæ¶ûïÍíÍÛçęöóËۇ?]ęű D°dÓCœđ!4-ł0Š»gțHZvKĘpiKB•^Űu+żï—9aœJ˜PÁ4,”2Ęą§Ę"Ż%…öJĆUßCÖ`Ù§Ę2EĂĘ)!œmH V;…űž *l=Ví¶ńYțŒDđĄûì“ü™r"hš^űńî vđÜ $ÎĘ0ùnŐłÚ! tiÒ€‘ęâ€òUâ„dW|TŃ;Ö*cóŠŚ5,ˆx°UĂ8Lżæ»ÊVaBíò‚G €„—ź±ÂńÎf7qŐŐźŻțŒŠŠjˆIpàÆb5“kžżșúá'ÙÜàKh^èà›żÓÒWQ…šœ—Í·Wßt!Qìš—„H(I«•èÆJä‘KÂŚbìć8Ä5Q۶¶#M:7…·ŃsäÀÇș”BêB—ou©„NȘMtÙË:“.‹űi#–IlŻĆÓX•1TȆĐۊSa-Ï9eź0¶FiŰÒ°Ș™7O„,âÙą%”ô^ćÜ;Y&đ664ÏN če Y†±'œŠś€mÓŸ[ž˜t•°_ˆ%λîE€ÁčÉۙ ò~&0íà{öĆ=€Ž`‹\ïÿÔQ˜t}-ùPO'qhBĄsê(҉Î‹ŸùÓț¶LOú<™Iw…+âìN5ÀÎTB) â!«EŰ5 "j'cò™ŽKÏÁUÄŰI1Krłs~KgŒáŒ-|żpix!ÖÆÄ )üÆ ‰ęÊŒÓę^kcjX2Â{œ{„"Ò!Öš1 z†˜C =ÛE°áę“,èĐ™˜ÆˆŹ8l$d"â]•Źì…iÀ’•œw‡@4„bwÈT†Hò”BÙà)‘äHM$lm ±}ʖȐFšüàGđG9Í;‚‚gCȰÓ\Étù(GPĐ\Je:8B/K"…mk±}މu‹›(ìSd jâÆ0 $ÌNĂ%Í%Ëhv€'^Á֔ÇăÉdč…;„ĘÁÏPgÄó Tj­r‡^–Ügÿ)PKa—Â&‡‡ëˆ€ pü“YÆŁŰžëÀ^†íÇä;&•Yî]MLGÈ89+í7ZٶHR5”Bˆ›`ä*°SćÔb.­‘Ü”»Ž>Ú$.cuƒè抂äÏ«žƒìß„/ò_í>xüŐ+Ó|ńÜő›ț«6Kl"»,Wœ_Ç:À6la°ËÁ/*Œä$.ëï‚ËêKsY6MŽ1—=ő<öïÆïáAŠč¶=„!ŚÓ\;ú>™mȶ߂làoᘰšBŒ€Ò_ÚțiTŃŰ-¶ˆŹšć0CxD@‚A6dëR+a&+ÆÂÎČćÁń %7$Ç #ïegŻĐx©ŰżđȚőêÖ”Ç]0O lĄźŹR›w3î3š‰ÔtMd€gNž…ÎÊbMd‘J ƒáˆ”«ż55‘^Ș‰N&PEŃ1U‘îȘąYÖMËsLŽ tjűN·_wČ ÇĂ\„t›óÔ`3€D!~Űà–VÖ`YPŸ»łŐ"ì ©Oö_Ú]Òn‡(‚ö@­Dnźój^ßY° tójŚ%ÍŸłPkT$P‡”ÇkXçŐœ,ìŽÔeJÉăz L>5Ś \/ àȘÌE[ D9ŠdB6¶ŒČ”Đ˂+*'­Š Êù*Ê W!%*öłőW@Ÿž±‚fšÙêprm§+èÈ™é<±ó)^œ.xùǛ7ï6V˜Ì!T+ńŃXucvnŹ€â…PyJáżuûÙ`ș±^+žiç/wŽ]]ëßć~©€rʐ”ű0 èŚ_lke—†lĆĐèŰv+‡Č, |6çŸŰoI*`<'‹gCN˜ !2<ÖûŐł!I–Š·čúƒœ #ÛD—œŹ3éò™ Ùá4‰¶liŹPê Ł!VPŻ–}brێ†đ\;Ęèźf’xE w4ȖÜÇ1+ș `[OXĐđF°‡ƒvoé‹ÀÏ8ôéÒUîd’ńJC#șfÊȘ8ÊČL@éJ›gÚqn›ú°v܇”„îUêóžŻDŠzȘ~ Á✟GÓ6€QS8aŁKőèMj֝·nvÖ&y›Tmźč=Hł6±Őïçs#dŠüíkÀiögîûőÁÛș±Û~èœD Q{­B ȚŐÖšˆ—‚<ßęŸíjA’^8wzûÁ¶vہÈé |eqășÀßh53O‡Ošs§Ăš«~?q‰‹ùi«e8ŠÁl‘s†Æ/Rćc›PćążđĆ(Œ;ÂT:źà’;źnÔq”Ł]ăm^!3ăÀY($ïT9|&. Ź4°›fȚËЕî`»€úțfÿÒDÂY3ìl,Œűm™›Ÿfn©zW›˜.ʊGyÿm7W{ržêśƒșčŐÔM- _Æh.j–û2O|TŠ?ŐÖ>oë—~ń·JaŚŠĄ^țđiˆŽ-€Ęrâ„Û§&Ą”WŁĘŠă“i·ÏŽ;ÿ|ű~DŚŒ:ęVƒ4ćéù€Đ^ 6ûٰ[ó endstream endobj 45 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/coverage-009.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 79 0 R /BBox [0 0 288 216] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 80 0 R>> /ExtGState << >>/ColorSpace << /sRGB 81 0 R >>>> /Length 1326 /Filter /FlateDecode >> stream xœ”—ÍŽ\5…śś)Œ„ÆćoR$ÂŽÄ±J@h”A #ÄësNùvÛ5DF"‹tæk_Ś-Ś9¶«ĆœqâîĘÇă­ûèrò1žŰ}Çg >'-’țüŐęäț8Ÿ~üń»WîőĘ|ÁíŸwŻ8ėàț>~țĆśțśÿîáîûوoÉ„Âw<ïj'}8Jö]UŸêąæGX4|Î7ȘÁŸ(úeV”Z|]QjóČEéŸź(-űžą4dœąŽäӊҐőŠÒőYoQőŠÒƇ”ڎŹË"d=!ëŽYݚőîۊ2őŠ2őŠ2őŠ2őŠ2ȘÏ[dœEAÖ+Š€6DȚmĂìE6DæuĂÆ?"śU9EbßP|GíȘ/C1©e!fú! ëKŹ4DΟ6ĆFGäæóÄAK”à“ŁĐđžhäi ŰMôœ1Óp–I,ŽEƋæĂ ÀUŁ*vF™˜ôđÎĐč K(v™I&,a88dh)ó1˜ąkdŹÙÂ]#§N{@ú>ôGڊ±pŚąéhZæhŠE cÒÈčĐ#P_…șÀ%·$čÓ'«i4*9ʓ5ìYx…‚ˆ. •ƒ[šH›ăZ jôő(%Ž‘Îid,%;–=Í籖N|-ƕ†]9Ò5ŹmŃ|QmX‚Ćíš/v1ȘÀrN‰P~GnÎÁN†s$5. =đb–0ë8v3ŒĂfŐÁ<’ÓY/ìhž‡eKóùJû°ląù·Nÿ°lӐbٚÆĂÎÔ·Ä3>4­š/ÊŽŰĘő-ê,2փú∋š/v8\ÄČ”É6sÓ°ŰćH”e«šl#±l3ìt8IËŠï…Vbيê‹Ę^Żò”äN3±ŒçüA7IsGDlyۉeŒ“Łú eÔű›ž~Â%‡rĄP,käúîx­üŚ­èœœ5ætȚç Će1çc'…Û1ł†kۇ'mĂXő6ïpé~ șËoúö?żšÿé78ŠpÈ` áôž<ž/đć—îr|sŃàŸ4†»ÍŽ/ž WȚfçÏæ)|›^_>œĂuzùô~+œŹÂíĐĂáçzĆ7 ç.<ŸâïnÚțówTșĘäæ.pŐ7œöRÆĘ”qă•șqçčk˜ÇŃâĄÇçÎcg$Âăd±đ5Œsl㚌ËΔ`qâčżqæ9dž.Ïè…>Ïè6z±ń–^è ^è wœț‡vmțÈ?/Nw^PçĆÉvǎŸ4/Nó— șŽ_q=`"źŹ^ĐOmœÀÖ"dĘ㑅ӞâčŽâù™ü‘ »ßŠŸÿô©lŹĄÌmê_Ś©oSnč endstream endobj 83 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 46 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/coverage-010.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 84 0 R /BBox [0 0 288 216] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 85 0 R>> /ExtGState << >>/ColorSpace << /sRGB 86 0 R >>>> /Length 1443 /Filter /FlateDecode >> stream xœ”—ÍŽ5…śę^Âăòż·‰)HaźÄ±šĄQ)ŒŻÏ9eww5”Œ‹ÜÌŚŐ¶Ë§ÊUnqoœžśq{ë>șœ| .vßń›‚ÏÁI‹€?~u?č߷ݟ~üî•{}·Bpöśîő›űÜ_ÛÏżžàȚmâȚàßĂ&|Á}ż‰ÿ}JîQypæăàèíƗźœ|§œù0”3]‘Ü}ćâ[ßłrőu8)XfŽoŸÂ^ąÓށŽ'Ÿąòđ…öì“αă.>NŸžú”áxWnU9q#RšÏóęìcWMEpśyŸ_œ4ć>čyĄ}xŃęAűДłú‡ą\eńšÊMőB„ÆŽ7ő/ 'Öśuÿ Ą›öąë„ä[QNӞ9‘ź?Ç_ËôOŚKĐ3Lÿ§œù2í3^ †Ąû-“Őqꃰ‚sđi('ĘOțA}§H„8Tÿ1闔ٯ‰!]ă•':ÊxŐ7Wšń^ó5JJXńÉæGS}‘8#jț,Fâ4ÍŻŠțb`§œźù01&:ó 7Ń|ń„c•v€îŽWŃüžzbŁ…öÀeɕBQŠ?&ôL{~PhÚO!ąœŹń5p!†­êüU˜Ű ëÌç™H {ĐűŐä…ö°öS3ÓhÆŁ`{<ÁÓŽȘ„žLcŐ«6ßiO|LFąĐŸÇŁbcĐÇfžŸ†@@OÙÏgC `Ç1ÌêJK„Ç`ŸŸ8‘k]żetûŹț”BĄXœŻòౌL=[ó‰öÀÿȝ[Ž‘êӆĐ34– pZòSęïâ…vÈąă;ô€=­|êX˜öès[< gu~;9»1Vžzń}žŃ™$ÄJF[ÉÜłpÔ}lç!y•Žźgxì+Àžòf$~ç9æóèđÎ<6ÿ0CĐ©0'VÄr3hŁp·tF5‡Hž:%„{±șžWƁó%öYæXT XŚțc \—Y"t€n=ÌhEÈ„Ž‚æi,DU`H&&Öú¶Jg ™„ž͊…•žńæËwlNŸê=IóŻœgv6œ$ü>ź>Ç|gâ9wś; _Űɘá|9͓Œ™‰QwûBûÂ\đxÁŹÿê¶öwÿôÌțžîŃzżĆQq·śú“óś«ùŸ>‰Z%p6‘ ·Gś~énÛ77ęł†ăÄăDŻáćĆĂyôd//_^K}ȚÇëÛkÉăQ&êŽDöUòzyÇßÜ̞ÿÿzĂnQöÚĐ+PdW ‘púÒ ”y 0„sPaĆ7„‚rPe=š±B„=šóPêć€ÁŽ:LȖêé5»MŽÔ Ežăƒ’9>€rz$j§ŚUK“ĄqzÌ,†+”ĄfŒîŒ•2ÊŁCć›Ö/Cíôœ*]È(œ1Ê#ÿBłd”G3Ê·l•gu;œFé 2ÊŁJćAĘxĘ­òš¶FyQ…Yș%Ł> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 73 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/coverage-011.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 89 0 R /BBox [0 0 288 216] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 90 0 R>> /ExtGState << >>/ColorSpace << /sRGB 91 0 R >>>> /Length 1314 /Filter /FlateDecode >> stream xœ”—ÍŽ\5…śś)Œ„ÆćoR$ÂŒÄ±J@h4ƒFˆŚçœòí¶«DF"‹ôäk_ûVŐ9¶«Ćœqâ܇ă­ûàrò1žŰ}Çg >'-’țüŐęäț8Ÿ~țń»WîőĘ|ÁíŸwŻ8ėàț>~țĆśțśÿáîûوoÉŐì[uOGÁ»ÚIGÉŸËąêS]Ôü‹†ÏùJ5űŃE_âąìĂZ„_Ś*”yÙVéŸźUZđq­Ò„Ż”|Z«4DœViˆz[Qo« ê”JV¶Q—Eˆz,BÔią^5ëĘ·”Ê@Ôk•šŚ*QŻUą^«Œêó¶ ąȚVAÔk ;mˆžÛ†Ù‹lˆÈ농ÖZˆŰWć‰}Cń”+ŸĆ€vè>dĆL?P„‰•†€MsWltD».5h ˆt4 =A5ąb€)ș‹˜é (  mŃ+Ÿ!6úąæÜÎW Đč±]’8TzƜBq(. OD Í~F•Br,è|SB œ|ćNƒHšç»Ò EX”ŹăYh–­iZ9Ò&,”èërŠQD ]G.Ž k3ߟÍ"1PPrgXŽšë•ÀžYŹńaëÂ2+5%'"ó€ #ŸêXƒĄńaă$ęhÊȘ€Â“€Œ|șcÚCßWQˆè˜öĐx°‘ń"ÉÁśÉ™îŃ45XöašE߇íŒÀ%Wçx§˜ÖŹ̒žȚ`ÈB 1­€ù`[ĂCR"Ó gÆŽÊœ_ùŠ5ëŐ:m$8™æûašÊőżzŽÔ§SÒù]gšUë‹EÔiÎü±ÍêË4çüF31Í<Ÿït“ÔKę±ÙŚkgęáBú iÏúÆôS~h=FQ?!íYű’~Š9諟ÀçóCę„Č ŽGëńŒ›ŐO­L="ö>ę4ËD. L°íÔțwŒ]țëò€—Ëż_ój‚đùt^TL »»‡±Â…¶áÚöáIÛ0ČȚ†'mĂÜÓÛű‰û5™&î ßÿ«ûł>ïž?RŸçwž{ż…Ęęoúö?żšôœV [ŽWwÿäŸÀ—_șû‡ă›{]ü“fĂÀŚÙńĆłáÊëìüâÙ<}źÓë˧ł…žLï/ŸȚŻ…“Užœ!z:"öCœàă±9ô‚8ŸàïnÚțó7VșĘäê.pŐ7œöRÆŸȚç–áî„[æqŽxèńčóہđ8Y,ŒG ŁóÛ8êőČ3%XœxźnŒë,Xn† Ï}Ă}ÏGæőșíÀ W“OŚălçnòŃtńŒG Ś=tQ,wĂŃêŁŐ+&«û”nÙèKœhqĂŐê›Ő lô‚qÓ œâ°zÁáF/°Ń‹'ç°lôBß`ôBśnŰè•ČŐ+e«.ŁWȘV/°Ń+5«Űè…>ĆèĆŸĆä3Ź^ècŒ^`ŁW«Űè•ŁŐ Ç‰Ń lôB_”nŰè…vĐè…ŸÉè6z±]–^èłŒ^èłÂ œJ°z^èˌ^èˌ^`ŁKŠeŁźŁÛŐ=ŸRŹ^èóŒ^`Łú>ŁĄîV/Ž»F/°Ń««ŐîùĄo4zĄo4z^l<†eŁúLŁúÌ]ŻÿĄ]›żőϋӝÔyqČʱă'͋“Ăüe….ă\˜Ś Ö/è§¶^`kČîńÈÂiOń±Žâă3ù[vżN}ÿéSÙXC™ëÔż.Sßÿkr> endstream endobj 93 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 74 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/coverage-012.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 94 0 R /BBox [0 0 288 216] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 95 0 R>> /ExtGState << >>/ColorSpace << /sRGB 96 0 R >>>> /Length 1496 /Filter /FlateDecode >> stream xœ”—ËŽ5…śę^ÂăòĘÛD€ €0#±@Ź&D(Ê …âő9§lwŚ%b‘?óuÙîòq]Üâ^9qï܇ă”ûàrò1žŰ}Ço >'-’țűŐęä~?Ÿ~úń»îćĘ|ÁÙß»—?âKp?ÿâ‚{sˆ{…ïáśę!"üCbô%»GćQÀɏàȚƒ#ÿXŒ ćä;íŐ繜éŠÄæKS.Ÿepś”*W_xűڕ›Ż°c#uÎïŸÀžÔMò #’ąOÊ;îàäCVŸ“r›v €=ïńɧ€Ü“rö‘öâŁúÄš\'W/ \}P°‰ÊQęĆFÂŽç9~ű Ê5-Uyúƒioș6Ö§}îëÓ^t=n€Ìőup éûu}:ZÔß1çcĄ0ęWœ„Ÿö$ʝŽr™1yparÖóÈÁ§ĄúÉâSVÎúŸ)”șY”!OröÒçy©?‘ô<»î'CÈź,sęæCÒóÏČxŽȘOî~DŸźúćá{Óűšț,•ƒź_Ä·jâ±Dß 'Yő(‰·Â€œ}ï4íĆڅ2+OĂLß_šÏĐa˜t„kÆ!LÓôÚÛÒ»Ă<ȘœŠĐiuœé(ÓDtż5yĄ}ÇsÍÜŰJ;rĄAŸœ.ÆÁK 2„žĄ3,ÈŽöÆŽ!wŸ„șÎłb"ô ˆ} L yùŚ„$!-}QZ*íČâ­%&¶„Àc!g_Ä ]•XWcg{«<汋AkTmàáÄNŃFYÒ¶ácqcgnti€h]ŒÀWuü«đ—a KEàźÖ2"ą?»źĄF, Î^ùX}‡”0đˆÍ7XóÆî[r\pą.Œ}ÎĆ‘śđmź<4 €AƒȚ–è°‘ gƒœ`ăŰæÂâüęjț§Oą BáțŃ}Á‡_șûwÇ7śșú'MGš#ŚôòÙÓY?dϗÏ=Ë(ÚÆšŸßȚEˆű«ߟˆè«ä5xăonFÏÿ§a‹(;„44žB$”Ï“ôNÒmć€Â*e™vRe’žÔŰ ĄŒžÔ™Ô†zčh°ńlȘZÙ ŐËëȘ™lšŠL듒IRčŒFă‘j—ŚUK“ĄqyÈ,†«ŽĄfŒîìÁ†Œòš7FùŠőËP»ŒFĘJ7d”GÌćĄY2ÊŁrć[¶ÊłÈ^^ه2ÊłXGKĘxĘ­òmXćAFyô閌òh%Fyö™Ëk4Ąry%7d”G33ÊÏÖvR±ÊŁć{”ÊŁ1ÆaÉ(.i”găm–êć5:fŒ!Ł<Ú§QĘ3$KFy^ ą%Ł<ûêć5Újž!Ł> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 111 0 obj << /Length1 1555 /Length2 6877 /Length3 0 /Length 7893 /Filter /FlateDecode >> stream xڍŽTZ6L—€tH ÒĘĘÒ-% ĂCÌÀ0twƒ(!Ę! J—€  ©€„Ž -ő^ßûȚûțÿZß·f­™9Ïóì}ÎȚçه•QϐGÁf V…A<Œü’%m•Çü~~!^~~Aÿù àq$$Äž‡\ÁphŽ`WäŽ   À‚€ŸÿJÁ!íˆ@žIòńy{{ó]=xapYNn€7á0{€á^`;ÀŻ’:@WđŸÒxńXFŽżC˜=€ †z C<Ąv`8č;ÀPC  ë†ț%ÖúKÀ űÓ€ŻÀßéțDÿJț‚@0W7 ÔuŰC\À]U-^„‚„Úę]<`Èx âŽE ~PUĐ‘ț©Ï‡ž!DÍlèo։jȚ»źœäI4N° -Ÿb-ŽÍŠbÂBđĐá<$9ôč?uzö‰$ÿăĂŁ.ŒÀœDĄRóÁ€ËiżĆj#Ajjs*:ôS’lțŠ[é(gę+J—Ч“ìĘîÔä,ΌBΞ9ì"șűzŁŒ”ŠĂŠi{Š0țÔQ‚&0œC5©ĐâȚù»4§ŐJÚvšŰŽèQl–fFțÌ^՟À,±6” ćB|ź0!‹ÒÈ,±Ą\ I6OB+ĆuÜG`â{%c·^W}$_cĐÄĄhȘêòa:›s*Ą•9‡>ś«Ê|(VúŰÓË;ë-ABù|ԅÛL|”ńő—r©BéÀÊòÔ+ú}șőĄiœ\©bV+x.±|É *ö]R>qĄvZíJÈțFęÏG»âs—ț^©ȘÚ'EÁ__3eUĂ|¶ăćUęuh*ú–\ yśöíź ŸëŁÇÎp1’ÈŠ·Dȕóc–š-Ț›ÂÜ\֞pì—"Ÿô[•6œŃ}Œ@„[Aáb–ˆÀúBá]84»*ÿ”ń’]ƒ|b?őg7I‘ïëІÎ%Obb…Ž lŰ+ö)4}#™™őšŠSKŻźV"æmčő•UԄ{êç9)mx§“ĆčzăÔ+“HígN¶â„ŁșÁsAˆSsƍ,Ž‹-Èj©}OGhł…źZ goȅ †5ȚśÄ?ƒ‰źMö'YBKUŹ™“ś~çê‘/ë}Y2ŠXà˜űM4óŒ| >NŁâBÙDۧ_VeĂędlvȚ—8Ś™ÈńâùüĂ«x…óÚÈšXù!]»†V`~‹;mꦊ/¶>łČçgtž„OkÙ¶%Çve\ŹŠéś2'`’Ż_7E<Ż|)ß·HVx’țńæŒ fÈ"ƒïț†ŠÁšÔ»#ƒíD©TBŠAQށ—Ż4iä”Ge„9»ŠńՀ­ßq% ú/{€Ăä)7Łr9H€?ŁÆ$fÓpEqNë Ÿ&d{Ù`GŸîî ș^f^Ó tllÙêßP=k\ńğ ˛Ǐ`€źûà_ bˆ±śőJæŻœêÛ”òҍ–;ZŒ7'ù;ąĂŹqPˎj)±à=|Ő©W‹î–||‹ÙfłÓ ©ÙĂàX|݃Iêg_ZôŁ.AĄc$ĆB.%űrä.0#ű“˜ÎÎÄ)gɓ* Ž' ÏŽ-î/&;ßìÙWXtívÓŒś[Üö/Xž'RšŹí6;}U(Â,šŠŻA»ŽßžĄŒôz­1:p0Rt˜bߥKVbZ}/’šKHsŃáÛ+ˆçáÖÜs°,ÍÙ„NkäÓÙŽ ’ê2†sś 9CȚś3E\Éüïbƒ„WÏË­Z>xćŐΞb›Ÿ” ăgŚ1\Étšš8šĘg3žőŻa țČĐ±ĆŸ«„nH¶M,p.±§úürb g»ț–"ŸČçćƒŃŐ]öùjAòUĄfÂCmÍƧ!ÖgWÖóoՀ‹FĘ è¶š#qŁüæŠțë%…v3X‚ÎÒkŚeŻbŸpbÇ4«ĆV1^Ì&?ƙ˜Łì5"’zWż”WĂe!üTńű! mZ7Ž»p”XÁ+e€z€©šáy;ÛŹPZĆÄґ…ÖÆțeŐÙávÿ„k=N“MA…ŠÜÙüæVtFW‰ÓJ‚d`)ùObKПuąxÔù§Óô Ü*ÄĄÍ?ĂžFÚY뎭  ÆÚÄ88ïE]EúkŠfŠ^»śőëß’ș,JRÖâ– ÛžïOù~‡ä[ëwaˆm“}ŐÖdì©çđۡȗQáÇiWś^2ߕuh*;ȘŽUJĄ/À /Áž!%~OțórŠdÈÇj¶ždćp~țڇ‡öÎJtŰdĄù”é >Ô ‹ì2>QœŠÁê?^Țƒáy–Ç‘ßT{G_&&żÒ-é 1Ù©‰„dO=ŠÒZĄúô“őY”ÿŽïâ 4Uêk&IŒÚ9‹…Ûțïčś- 3‘àŒU+ć Țô/r@6ët„–Œ”\ +ćčƒU•ìEÉ)cßÏ”Őą ±ȚêłL†žĄÒTNGtc‹Jß}»šÂ>dRȚîv˜Î [Ą€Mađq‰چźÊ.˜ćv†Ą=xœĂUûq|§Ÿæl2Č+¶«WҞČê1±vïÂaaIy+È'áíÖ š‚«ÒF”ČîEƔĂ5ŽÎžé°–„NçBD%ĆêŒ5ÖJÀ–ć”DŽö†ő‹öË> …gą3Q:țÁ‘ïXÛÒŹ©”Żm€6e5v;^mn8Ž0æ*B¶æú_ÀìLJ(ă\š<%aBŸétƇ‹Eł‡–À|LŠ^)Ì=öç+±öUò«Ù™^s_«ănÍoêœîé(6Z…—’òúŸœš ő_áŠűÇ$ŒcaB!•ąÙž5»¶ȘJČ)`„ù_76˜GÔCïŁTG˜r{Չ. |ćșČʱ’ÍËNL~Ęç4 Vêț–>ćÌTœ"Ä@¶k”h`<˝4#ł.MĂ,Ü'Œc“àŁăf0˜¶șŚr«Òg™]{WA­gòziœń^Jră»…ț‘Á§ ‰9Zg»źšK«ooÒêŻbŽz7 Ìv/tì>7żï‘« +źW ÈžȚIÿ>5æĘĄàéùNÖßh@ÙJŹínwűĐnuÏÿùe Î$őš)‚üGž¶iTäs(iá9—%7%›č•űëîțąÖo‹”ʃœčëž7c!jhÌ4—łSŸzûZHvjČdŹÌÄHæ$ÍÀĂőoŒŠú Ÿ"à§•gš+vÚô=Ÿ ¶ë5šșh“ĐrVâl—…"Ș¶Û|0đÏä u0/")p"/-Ï_Œ*ú‚Œ _űQäŽ8ˆÀÍ͟>©ÏÊ=Ű&iÂM3NĂ "sÛț F{kœŒœ·Ú9xHăyí HŰAzf»rę‹âNÛ„ùźe7š"9}U€ˆcX.Œ%ê>”JqAčĘÒïÊŸ8ŽyHókW@‘ö© >“ÜÀž•uĆKs¶ž=Șćöۉś‹ÎPÚp V‰bÊăl»CŃà)êljrQ \kyZĂf>>ń•žÙ"dìr8ú7>ž7R»Vís«òÙ­ż ‹›ącR{ Śç„Ÿcv–.ˆ·é‚§ÛäbËĄj&>ȘFüsča_žžw€lHˆƒÒhU!ĘĐűŒÌVȚÿĂp‰*Ża Á°œlŹçL«x°P4ƒoń[wjÿ©źz-Xa”$cèdŒ™HÒé`ŻIì^ihó}Złőžń'^tđŠm9Ì&J‹“I‰y?æ2Ÿ'čz ÛcÓwËA՛yšč ˜žˆg†w)6æá+j6ôFiB{êœÂ«čłì`M›Ê…Pç\źŚUKÔ«KDÄN«­b °•vu=,w’ۧďƱ„'ƒś·WŠę/™ŸĄéàa/>úțyŽwûèędeœA fqæKêՐ«‘kŰÁőtH‚ˆÜiÌžIˎ+ŠùčœgjÇûÒ·Aźú… öôęjGÚc¶ăœ;f‚«oek}íbe0Ț„Q·ßO;Â(ïïÎ]ÿhE’(ęPźy}“ń4ù)ïžoŸ•žc„ÎÌxՄ霐țï›p3R‡ƒÆzí€&ƒĄŻ|ń„$;œx'֏‡çÆÖÛ»vážì Ënž`Rźśl̰eĘŁŠ?«uˆÚ}9ï2'zFĐ}DQE&ÈÙ ŸĂ K==ú™cÔzQ4ŒÿĘ::ČÏéI<Ïæ»ŽêKźk^,©»~;%gœ”Z\țŽKÈOJ\­$Â(|ÊgMÍł2źœÏkd€Ő]ŚgiĐ;“ÿrŽ—ŃŰgüGĐ}°“Œ±ÌX©ČûfƒfÙò3¶Oe—50à!–d~ŹĆÚm–G^ôtX9ÖźȘ†Ûb ëșș¶6Z”Èh§ $4ÆáęcPŰxCw§d 5Lb(:ÍÒÿ ąæđźĂ‘ŐKâ”AœhLŻHVÚTȘ?ÆțSőÎm`ȘôË·žiüÆnFËÙźjëGŐüĐÏ{xôKTL;ƕUę&D<ò˜y°”ˆ ű#ăȘ$ŻXčÂá·kLSƒóČÏ0C–jm»s,­T*Œ<°ú殜a%Iș”%S·!ŐÄŰ8ŸŽQńX?ŐKr»đțŸâȚŰžŒčmC˜rêY5qž@D"û%z•έè}[GŁ.tC8 Äő§(„Ÿx?Šś¶æÁ”x+vƒ @Êüƒ wYžHźÍeûC„ÿšŠ7mÛXźÎ°jkVò©s7ú\#ŒÄu$㔗dÈÆ‡úŚiŰsAwsI §”†Čm„©6Ugœf„Ô xĘ`™BŸÇ›û”%Ìœą-ÉÄ SÀ ©r}†Â==>„b'ë—IPa~ۏgjb‚ßY ±ą§/ŸKrČvƒ.;” ÁŸŠČuĆí#.q…\odtMđêÙ4šòN° GńoÎ, Œy]y»đZă]2ÇÂśé.ékÍ22üČg˜Ț߄«.;Œf¶LmpŚdÙ8ŻČÆżĐđŽ^C-o >G{RÙQ/aŒJ"ä^Śï™•&ęŒ*ä3}ìBĄ»LXkŐë_áôݧÁ>#-Æ:Ö- ucGÆ\7{ˆă;WćÍź:.^›APVÎ}ޘ#Î;Žî™*+“/MÓS{9‚EÄăÊcŠę|d5u!lotA‹Úź”Z«Ç—†Ï>Á ÌÄx‰·0ä¶yő-ö-ń‹(‰Ëœ–ŸJÒÍìSh­ń2^Ácö.đÎ\ș=íjčC=ûÈśümß A:ˆ5€Ò‘Rï^żȘJŒŚPàXó 08%áà”è° ÉŰÎ.ĆV“X )ąjă¶ÀX9n)3Žl2äQurМ+ŽZł z-éÌr˜Ęîûރ mFÔB§Xq„ò”$Š7Ő-””ŒŸil%9G„óútíĆÁŹšXu ùJ3źìZìߎ8ĘăÙQ6Đ;ż-€ˆóˆè·ÏcąPR5;ùWúȘđí2ËO-æĂHąź4)ĐÀ 4+ÇT­™ŃMńù1màčËû{(Aw<rœ jgÂU=Ń̎`q†»Â`}ÖŒwo. ŚmæÆÛ‡Läx őśŽ[ąIQ*6SëUAYÒQ;ŠżÖ˜PÁ/’'&­Ï?Ż.#–=ô„Îa6ć7śE‹—„’Qy6*; .^1đw΍D/‰ whĘjÏXĄx(û0TY­Y$Dèń$۠Ǜ*ïw.2 Ÿőœ_—ąÙYśàšIdÖSœï8ÂtŹq’Ûûqû©<'PΗx%ŻNÒcŸ„‡ܱŚ6<è=êTJ7„€ÒfȚêíd{„>,u¶Â9CQŸĘL”«öÙZńÿÂúzŒNćžąbrŚSpç4ű©ąź”—!ŻQŻÔđł8ż2l )°fgšÒí7^ÉFKî6?N\ ű†náŰx—L|@eL”¶vì¶iÓ+o;ƒXÊŚ Üÿ° ÏęÊFG}L5|6x{*tÒaèÄ!ŚÈĄ‡"żÀ1<ń űőúGïą/»ä›ź';ŻÖ\œ*â3–žŹy)ìș'‰Ù”*bŠ•EŠ}ù‘çK}%f»•ąauùxOê‡ăËŹóČUQaàÔU@ïëDč”Ä*‹„Cmž©œÖöLŠîVáŚÿ[È endstream endobj 113 0 obj << /Length1 1396 /Length2 5940 /Length3 0 /Length 6893 /Filter /FlateDecode >> stream xڍwXÓ}Ś?RÂP i†7ÍFIw§À‘ÜƀÛŰF‡ ]Jw)©Ò RJ ˆą )!Ą tŒ3îçyîçÿżźśœv]Ûśœó9ő=Ÿó»~ăæŒm"€l†!4Đ(ŒX$TŐŚŚƒ€ ˜0$ àæ† ńźˆżőn3‡DŁdțĄŠE@ńOêŁQ@W X –”ߒ€ą ôß@4VšőDÚő…:hàVEc|°HG'A ï4FàXO„=đgË@šâOkÂn Ä ‰ûm0A;àœ X pEÂ(ÁĆeÀ ف&Úz@C őŹś üs9@°0ű_áțxÿ „Dęr†Âáh7 ćƒD9ź Ą†ž0Ț/„ąìĄź84Áê EșBaÀŻÒĄ@ e# ”ĐáŸțpp,ƒÇ 㐟?{ù†pÍê({UŽ›…Ç~Ö§†Ä"à„{śù3\Ú ćś·ä€DÙ;ülĂȚ#bŠBș{ ŽŐț`*ÀżuŽQ I ‹…úĂ'H@?0aMíȚżŰ FĄń Ąç  ű9hIPÄőgB‚đÈp,–ú%iÿ–-9ፀ&'ĐpÙPçšĐÖĂ*e/Ąća9Č­ôĂ;ąBÅ6űőQۅD“œì)ʧ“Ę` çśĂÜÙś;~K”u>âûB«Ž°ű‰óę ăI~Ź7&š›ˆ™§Ș°Ë”`{ˆnłĆĐtR*Ú;ö˜pSûÿUÓő!ɋ‡ŸTă–NX«A{gUi¶«ŽÙ—OÆűfX?dYb—ńŻŒOnCc­ąÒ 2oèÊ”œ*iæûú§i»Ù^ÄëxȚ_țÆާU—ígUżXi6ęűʏŒύL:?˜æU„ ûžgs|©‡5ÛNKÛ֜ŒÉ·œì’bÁ_|Űh1Óô*éŰü‚•hûč$} I8łź €ÖËÙòOl.:aș>Să]#ó?oŰžčš„TșS+DĄxZ:Ž%è­˜ŰeOdz…é‘úÏ}‹,öę|ĆÏ«đLčWÆ âèb}çk§ę3 oE^ŐÁ3ȘcU}œÜöę+œŹőúÜĐEćŸ­n_çßÓ>ˆEË9rŸŹwD‡Æ1 ·DĘ(ÿžŰčÇ^FoOTjÿìx7˜áu/ș•H àY{Œá{șAœ 4`ê|ɞȚŸ&k6Úá(Ùśž‡ŠXaRđü»BKšaŽž›2hèÔXŹaą™ŸŸßŻ]à1C˝4íBÒcù~ò’Ą”S€ĐՏŒ.ß§7êYK|ÛȘ<żÛœĂ7VÍ2țőRk©|0…°ô“ÏÙ»bŽ,Ì;ÙòW8,Ûm9ÎaçhÛkßTXÍ çŽ{ï^lŰ6żÁń•‰x©!'ëćrĘĄčAîc\.MźûłÜ¶»n\Ö4ҋBĘ!ùËŚ] zƒś˜§Ò!onƒęȚ_eŠGćG=x—«1ćƒŽ ”:‡úš_î„7șÁÙÙ ž“#œ8P<|°Y?§ |uj©’ÿĄœiì•9¶ ˆ`ÏB4oD¶)ŁZVÙX_02űœ|mșš_™șó8€ćÆ­ mw|èŒĂq@'ĘÊH2_Už©‰ń۝ŸëtrÙž:QçC›Ö…îÎKMsZÂæęÆăDòË*ŸšșĄç–AĂÜe0ŻÛösbWˆŠ‹Ÿhă„VüM aŽk„›dŠŽ·±™WêšW€À\BŠÉČÖ«ô4+ł!NNŰûvś.‘ŒÜ(Ś…Ż­Ű» ?^ꀠGä ùYŻ6œ<ö) šŒ‰čJΕa:Ì -Ș ʑ0œ+&ØÓÈÒ/gĄ9â><‡›i3U‘HòÚbőoFáĂ샂Bfžl„‹ZÑЅ}ńsù-¶ŚŰŒçž>+lű_héNVû[í~°ˆòșZÏŹżQ &È_ßí) üŽHșűzUȚ Ihkí„ĆZf@<‰äŃĘĐŠ­YĂđóۋ‡DJ$;Ł@Û.*‰‘œgź› ^‰łwÖć>iYÄUő’z{Ò”] ZÒâÊș‘Łçä­śuQ32†áekûźŹ96uçžP-0틗‘‹eìÎŐNŸ;+ógÙ9ŽF=­źĄä-ț,;\etٔ#T[}­${Ű„J$XăѰä<țvTŹ8̇%ŠțšȚÚb»[v‘vÔÁÂ|ö-ńbi^©Çhæ !ÎE$±‚§RbïÒ«ŃÒŁúw(ƒ«…æô,Ìî>…}ż“k9òrfPPw© ȘáŒÓÓ©ßȚpűš/Á4­j?kšáz ŃbíGžùdu#L{{Ïà”I§łŁŃabĂțÖÀJ댄ßæàƒ žædÍwŠ`„úpaibÙŸí ëo4|“čŠÛƒL?ˆè“žŸwôvŸÏgŁôÔxTߌÒ©ćç>țKqIȘüaQíƒö~Ûà\±™æ]PcҖNbćSχșźŰ’k¶z_§‰ęˆ\€ŁŸĆ–oÉà;=ä^D—öȚA›ÆÒIžXŸŽAlŒ»őû“ š$ś§ †ŒdVBw9c™Űs7tșZ|ŹXŁęűz6#‰ę‚{F˜^€ˆÂ°„ ĘÆy#ŻÇ†g·$~DȚd‘Iy/űŰԖAï¶bB}ßÀuՊęęwÈ­w—§RźĐöŸ9ˆ\ŸŽü]ŒÿœóMóź”u©Őźí1ÿí\ÎFè聥èŠ3æ”)œ$YÛ{{ŁTmꆖÔ.‹~ȚŒ nÆî«W t,&hH€SŸIÖ~șn >. ôR=ßxÂj"HŠ~šBA”3Ą<Ț3çăÊ{QïBóüó|’-ÓxșÍ/«”LÏܔFùNâ!ôÒń՛‰‹Ì …ŠR'^ÄRWi­aVŻ@”ÈÙoPXùžŸ€cUw6#óËG퀇B Ő)fz§Ł>æșțŸAŁ;‹ißü§đ UìŚÂÌä+|'ĆŠ:!:­+–5íőgïÄìN=óÏ0(lˆé%}3ó§YûŸŻZáW3ÒŚȘÊkD}sȚ}O-"ŠÈ™HâÁőźĘ3vÏa™+ŃDy-DÚ #l¶|9w3vÆm4êWLđ—‹Lá_^«.(ĆÜGśHĐôy멜îPNnžwÚcPÌö֘šó5ÛĄŚ{ET7őț*żfj"û#r:î雑'±žË]“­q!ŸŽ…±łU$ì;ê–O„HÊNżì]Y ) ömK]~ˆ­ Ł^Ÿć*RyJ„G,ÿYŠI…a81ûž'H“%wtì! ČÆÙwSü3[’x«ÄóæJxŚŸ©Ôœ ŃșŽ>oÎíMu)ZŰ=yźË^á3Ł4k[šüŚÊûλ-ct‚\ÆJ·q5K’òžÎ8Là්oQTäwŠ“”O„ܔ}'ś>g“Ú·ÈȚXÊd$I,mÇÌ”î§]kbRŐ,Ÿ”dđ6ŻêAśœż,PśâŠ$M§òÜÁxŸĘR»łŒńuą»”ƒÎÏL‹čù%YŹ>ì4šŹ,$M%È Ź/ߎć8—uöźyuáЄłÈŠB§ăč?ƁmŠE=ƒßp«-9ÎaV/ńZȘë·ŽŰ3Dj ËÀç”~HDśâ„ ’2čG•,íëoNę_ û„Á«"\A "yKŠî©R€ lŸfmbŒÛt†áò|§–PŚq©?MÔЊs#⛻>[(FV†Ÿ3^Ffčržœ]8OU3d‚€Ś>Û =p ÔQúü”ìććAMùn›gNÖù\*łš‘”R°±„C%œÍőCoÍsá„p ê FÃđÌ»1›Î•‹ôéÖ·—č [!ÌÆ«ŽqÉu…ŹÜ‚à.`t”ÀÊ=ŠˆĄ•9Ò êë°­AŐ ś.žđÓ;W7Ž ČzÇÓI±mV^Țuțéā¶óL\hÁÚ_Ç(~y3^Q™íđNuűyő“‰fsČ}LűűŽ ùăá~ć|ȚIkę%ŠśŽÔ”4ôûÓń6Áć#ï SȘ]gȚŒő‘gĘ-”ń•P fòć:»?ÿ: t1‰ÆÂŒ–„~}šéXȘlìűŃ&šÜźđì‹ź·»XWŃü+[| [yÖZü[ÿóśÜ‘ ‚!ùő„ʖdá-Q›ylm‘L/›–BbuêöĐLížlćÁ‡ŸśBÜÌłŚ„ŸŚë/(ûâìp°€űÜŰÉÓ.\“œmźU„8-wQ#Č#”Ú0Qęćł4ŚÍ˜Y'+M;ۅ}(»Taf#ïìvż©ŰŐJśÌșńœ­ĆUČÏÎ=;bšöœÏh‰âÓóާ•ÙÆW$„Kq2íÖ},ČZąam5Šźu5pzș„3ąÛE»œŠ‚ëBxđƒ"Ì"} 0čđ”€éS—‘eż9ò”‘dtÖpțŐЇŻ{IżIirÓFa†[_mô6ê—K9FŸä‚›m°Hp>MÌm„DšR ăLm\RŁ»)%{éȚŁíșó)[žÍz•ŒŁê·Ç uÁ3ŠG«ï}/ÊÆÙZ'”b ÿöŽ’*ŁDđ?šșvV%UŸÜÒt|М~ôŠE†úHE^škïâśŸ Fź,țFɄœă~',őg%ąLvuđJĐšyp©}àæH=}a˜’špV ŒÔP獬Š6{ê~)aš©òYr9ÍæłcĄÁ/ëč «ìiœš»Ûæ™bźđ‡"ʆă}Yżœ=Hłű}šđÎŒ—K oÓ̓·»lÌwÛÏ{żĐvR—ï )‰,ČNŽÆ!‰—[6”ïŸ|͝aȘžyč(‚4ălœÇ’Č* đ.îqêÓljì2OOx#©ˆbyö:ž#<ÔżőÎíń|ł¶Ț5ßّu7?϶]xțŒĄï™p"”Œê!æD*[YŒËűŹPVÎș8wII™FéŃVÓ„Ă™Ż5ÌH” óx+ÂqŻȘčy§O0Ăj”nˆò„ aą©t·«ą`‹»bœòê;FkÉiŒjrČ”ÎUʍÇs“ÚËGą8z¶Ç s'ÊuŽášIŻ Lúąáœąă?ZȚcé„ĂgoœS}`ŁȘ’żłZE/?ƒ±KĘŠÏvu/甞éÈ0@°äèź&ƒjÙŸ(–ŒbÀ©ß©lâÒ·ŻĐ_Ł”»hrÎ!Ż;sźš~ŽąË’•ĆS+°U€”â„äČ|+â=k'ÚűdaúšÌ=„ŹžŸŰ. |r LUžd*ŐÛŚƒŽçÇà.±]V/Úwu))ĄŒv†dbQč‰Qą>oÂ+B'۟Żêź}Đ5ƒ„Ü|&ĆŒ››‚Q—iśÈÉaP‡ÓQ%ću•uÉkï­E•èôÙ}{•|‡ÏŰ{k6q-ž€Û›RbDxÊ©ô&E‹šÓzȚ$šŸ^űą™A§èÒbxÓVp‘Œ;)Coż“îLʙ†ŹœĆyȚÛ°]țÛÏç(ÇiŻîBD°§Ć•[ÊʰőÖŸ‚ș“%Ś2nWß]P&4ś9Ií¶ȘžźUĂÌöŠąúÍïÆšŃƒ”ë .7gòv•LòęušűÎw”ŹHYÈé“G=MŐäű‚S·Ź łN 7SžK,û4»Šù¶öEQc&„kU[Á'†(SŠA\DŸÍżȘ±ăfžŒ$s/1YțòŐa)—väăUr9ŰQJv^óÀbc€»Źüć,R͏śîùJŃÜ2ÁbxÂkžą\ö–^+-RÔ§Ç@őƒ"_Š^§ż9Pƒđ?I߅U~bÏ ș„Ś‹©„ Dúż[o7dç›s»LŁ‘‚§L5Ì#.śź)jé!‹™șüĄŰv„Gț<‰æT ­rÔPz9\9`ˆń‘Ղ ” Œ·mì‹gŠdÏvÎ=’4€ˆpV™Z”R S ęŒŹFö<Ž(ŐòÁźZòdÇE7óbۛ‰°èyȘż­¶ĘJm_>Ę!'#îLE‹ì?ď0SyS„ìì 1đßjŰÒzc{h$·ËöÄ5‡@.Ô~ty'‘fwœȘő :ÄȚĆskÙĘÇxTź}Á›J~W(Û3’ô‡æú€*‹æM_xÆűnć!>$ńw7ł‰9Ț2œÌÔEsǘ'ΰĂò"ŐÔ<` H€șőśV±Gs%&ÜŹ<úM>qȘ…É”°ŁĆŠâ8JeŻkș€ƒ6 kyB6eș䛫96BŽ\üìPÀ–Ù™űWșg%ۉą‘Ày>ìmnáBòœTéțBUp=ÒĐĘ:)mȚŠo`?--qö9‹Ț1sű­ńąrM»ƒy*±ŐsŃëòMüëc^çžsŰ2?ƒŒ?>–E>šąëč6nUŐœÆÉ™”x•őG“qđs<Ô` ÙN*íúX{D{Ï-Ò_4ęŹÖŸŒ„Fę^ÒÉOęęäœ%…‡śôš…Au3Bï§LìT/ʿ掀d2”ÈÁŠš0|MăìhbnhÎ:úM\ŰЛË;Ńû3휇wš˜òË„t5ém7A”œÁè]ßbóoCƒH™>róVmÒ4ĘÚ֎RŻÏOpîČv§û’Ű©őmœ$s‹èî֌àąăÓÂz={…ŰšbʋY—•NÄȚYmšÈH=*`űˑt­xŽÂTq–oiÜÆ=r2…Žm J_Uˆ–ŒŒŰĘȗNi˜xö€ïŽ—Äk‘ƒ ț.„Œ&.ÆYgíšTMóIì}{/rYAú{è›N˜Èwśöò!ă|^…"țácÊŃÒ/ęą‘N­«[-țÚÂ/ìŒnLÜçłûț$ÍÈšŻaśÇĆń$ ƔZ›’ÙĐûôús•èH6 M~;ĆŚÆú„—绂ÎȚ 9.>XÇt:LÍŁHΈÚ%zÁÔöe…Í _u»7è,ő>Mî”u* \]J1EHźqšŏăŐŻ5ôj7oI žhC^pEĝ ûdMFl&]ĐJĆ ›WÎÍàNč֌ź<çitÍÈ4ż€1,\ășÙMÁ©&SJCKÆÍG|‘Êž˜„ïtÚßwĂV/íX‘ő„=ÿ±LÄhKÔú–7ï—q UĆm©V~VaRO ¶\Ü LnïA­”žQ8h‹ÿ°AśkÊ{F%„°ĐúéŰĂŐ3UŠ &jÒÔGœAź4[œ#VLÆŚž<»Đ©jESŽásg>ÁGëù«PŽÈKŸŐ PŰUț­Ąę ßü §ĂÉCË`žâžˆÎó•ńîÂ1‡l3o‹"źwmôč&›y‹íArž^Úçփù2“ĂL|ÇêäĐ2ńïLÚPĄŚ‘^ț·…őߝÄ\Se†–gńŒFÖż­‰đŒhàç·Á=%d»˜+”.ŚL'ŒVbÊÔ{P9šÉ:†ùŠçSÎKĘŸèŃPŸ—=ȘD,>†Țc)ë.]§\xLE,żbæsàÿ*Ù„ÂY €ÒYŸZG.­ŚoÚÁžäÿĆd} v0@“UU’ûeŁ*0ÜŽĘo±‚žŒl7Șîu\’áé>d#e=üâ4€Â˜#|ßaòÓhMlqÆó™ó|Úû•\@äĘEȘ–‡zß˒pŽĂĂŒÚ…vĘӁÔZj\$GŁÜNŠÙ% ŻV e}șqPt#$ŐFzóîàCž˜ÚyČX”v ‚«û3†źŰ`lÄ*)§»°`žÿ ś|ȚvWŐêßh: endstream endobj 115 0 obj << /Length1 1429 /Length2 6269 /Length3 0 /Length 7237 /Filter /FlateDecode >> stream xڍtTÔßÖ6!HˆH‡Ä€t)!ÍĐĘÍŒ3034H‡ ‚€()©0”"R’’ҍ4’‚€Ä;Æœśęßï[ëûÖŹő›sžęì}ö>ûه“ÍÀXPÉá!àhA ˆ @EŚ(%áä4ąaż0 §‰‚"à2ÿ‹ ‚„€ŃXLŒÆòtp€– %e€R2""QéH€*Űê Đh!à § ÂĂ uuCcùŚÀăÄ JKK üv(čCP'0  F»Aܱ':ac„‚öûG974ÚCFXŰÇÇGìŽB ]ćy>PŽÀ‚‚ œ!΀_ôÀî?• ‘pLÜ š?ž1ÂíFBXu‚ÀQX/ž3 À0ÖÔè{@àÈ:€żw ÿŻ@Pűog°“ÂĘ śƒÂ].P ÒBûą`žó/"†B`ęÁȚ`( ìˆ%üÎ )ÀŰÿ–‡rBB=Đ(!ö«Dá_a°·ŹwVAž»CàhÉŻüTĄHˆöÚę„ÿtöáű»qÂ]~áìć!l ‡zzA4UÿR°É0W !"""%-€x ŸNn¿›űy@~ż`lA€ ¶HÔ‚ę# @œ!4Ò đż ÿܑgšàq…ÂIț C\țì±ÍGB}Ö"Xí"ż~ÿ^Ùbć挀ĂüțCÿĘ_auMu•ÿŸŠÿmSVFűĆE‚ą"à/‘IaAÿ c†țMăùjÂ]é?ÙbŻé_{ÿÏßáàü3–«Z€ç?"·‘qÂ~€ÿßRÿíòSűŻ(ÿ/‘ÿwB /췙ç·ęÿ0ƒĘĄ0żżŹhœĐŰĐE`ÇțßTsȟĄŐ…8CœÜÿÛȘ‰cA î ûś5BQ š/ÄيvrûŁ–?žéŻ)ƒAá úëYb[ó_6ìh9=À>(Ź$› ŰÉùç‘jp'„󯕐€‘H° ¶É۝ ˆEgˆïo„…à4Ö€-/à‚@’üêš$ ńôÂȚ;ț`…"ì}à0ˆ ú?(đ/ú§Ÿÿ†Ć°0Ì őűGbN^H,ę[:ŰŹÿ”ÿę@ Ÿ'’É1„“lÄęʈ†“7J·}Wúï sź˜żà ˜D6zĘŒțŒ·"3ly€ôŹ»őÖ̒ÏĄâëEÀæ‡ȘëŃuɆő?ÏíŸ ­Ô“L Ò~(ŰTzŚÁLÌ$hąžxáhúÿîG-ÎOŻ»7 òšN|ÚŐ}ßu`Š{ŁÆV W+$”IÏ1_ăMۄŸáÌuÌ„g'D 2ńQîù’ SŸžbŐzÊOŽ/V`” úätÔ¶ÔDŐÌÀÁ`EόHÙ;Ä ŒžȘE7PT8óiÂśƒ\!ëK2ç3‚·„ÖE3* Fqđš¶·Țœ“MÀćœg€î۟š–“ߌPÛ#Ùői*êíăšĐoĆ@˜Ś›\”gŽÌZ\î?gš’țòî 0Bfé¶RÛđłÊs¶»ç“àqÔóș“îšž„– óŚ  Lź>@>57ëۙi™ æçt^ł9D“ú–À”śł»çàH耰ïÊgŒÀĆ«»mžœL;9ßŸ•Uïé5-ŒPŒĂ|(mĂŻÂ%őź?>ßÛ+`pSsȌâÉÍPky”;—Àm([ © Çï-”Ń ©û±ê$-JL|ïä(ŚTo[/ ó»*/ŽcVfZŸ(‘oȶŒ'Ű·^Ú„Ù.}䌟xTRąlGł0;Ę+ó‰Qî~òŐD*"śQ“QÈËf”~šșRȚ«ă„Ń6bÇ;Û&ÊȚlî5 äæ&śÎ–úš_û`4U9č 'u;Ž7äą'm'T ÛȚ„(Ò>:Ź ­lÔ?áÁč‘ykö gæê4țûÆîłï—ŒÊ·MNòîű/àŽé[bû<ŽÄ+ły-Ț^ •xœ†{ÊĆ6Ÿ’~0çqì„Kl휩RŐÓی‘Où­źȚkÊwź7ЉPËśoi Šč3çt ù©ŻÆ’łï/úg)ž±&ÔȚ+GÙTÎQÊE–Üłi¶Äć˜WUˆ1ęF<žz.ùìć_ő\CxgÉíôX†ehçXJ6Ûű‰Ž(Ę[ëìtŠK…ÁŒl]"-ˆœÖ)âˆp–äFč©»*RżQˆ©ćČEÊŒ„àŠXžTș©E^!D0Ù^©ąŐŁ…Æàp”H&JŸ%čj6Ű6ŰŒ9:Š1z;ù Nžžç&hÜՇ$‘’àóĘ8†#°â*a(ŚżÖÿœ”tÈáá{č, Hq Qڕ\ę†ûnUÍéDæ\·ÛȚ\NÄ|ÙFQuő›7 Ę  R©›Ž€öœ9ÖϚîúȉG™îĄN4pŠÈÉd%Ó>Ô!”œ€b?ÓMUp éŽUèČÊĄá #?z–±Ë‡N,œ6óž»!6uu«âúâȚlÖöǚuyovßUœÓ|ZuŠc™g.ÙŚŐ:Ő}i)Rڛà 9OŸ2fsÒÀCŸôìNgcžwŒŸ’eòĆR[hF›ț[7o‹zv8FĆJY=»‘„…ÙošçfŹ6wT›šŸÈ°ÙórIMŰύłÒZÁdșëfúÍH_wÜI'#ƒvï8—(§kŠc…ô±V/Cš€âĄn©h;œÿœWRZNôˆ$_z=ß+ȎVȒĄ+éęEó íùÚ)ŽNŒôŸŽżÚìčŸD—q)/=hÿńNhČéӘŒÚÀ‘ăŹgŁR›QĐ?„46 Xh.êËș~Ś“MÇùKùÒmÄæĂe ™đă.ć{Šoœmł‰$”Xæ"üO9¶O;C8ÛË>uÓű|û*j‹ÀŽÍÊí/4Ę>“{­ç*»ï€édȘ7‰&R‰Š»ü$Ăš§æÌ Čązž„ńŸW±àæđ›Šluÿ“"éoôśșž“–yz/4ÏĘôÎȘÆ–ő)7_ńuŒFĘi ŐݚčșŰu·Ÿč·+֘F•Ń”čÏ8rŠLŸ à;sHߌȚž›<Ÿ,ìrۖkä4P͕a1Sâ5VÖ^•ĂĐîHPaTȕò珳`ČćŸ›IyîÔMXÀA„IìDq8/p"îM ’(ZÚMèx–íÍśđ•.ƒ”ș€öTcĂÏÍ)æ/™ž6’ù-ëź_I†”䌔k<ŁłY‰ő›čÂY8 ïŹ)ïĆüXî€-9‘ëêŽȘwX]ÌZă»—^Őù<SÂ0§%ì­ZòćkfÊ æÊLAkfŒ‰ŚfŒ»ŠĄ 軥sŻw(iki ëAńű˜Fƒ,ĄőFkC!Ÿ'Ś^ŃÛ[ś[˜ĆPĐuü0Ì© 31ž:ôÏ9%ô$y\N1†#ƒĘ’Ïj“œhż'FÏŚ+śéUîł„Ș* >Șù•Ž\”z™ŠšC€ÙFžÛBcw;'ar?šaĐŰŸ8D́Ildk86—ȚȊGIGăr;,•±m!§ÌOeôR ·șPǝ)5ʊ„.á72í˜Íg#čDĆ}(‹aț€«#ąæ»T•>ł‘Ÿ¶ô„ŻòWŰő_œ€êé3oăQÚÎ żrđĂ<6|KӝbcűŹő6ˆ35Ąężn§8r¶ÏŚu/ˆ2æ4y§W§-•PAÄo”6¶e,Ì8ïČ<ì Ú¶ô„5Œ`șQwgÜ2KŠRBśuĆ”ù՝iêĘŰëTOêËÈ«oęŸ_čĐ1™Ë4çČł©ÊeÎ҅Y3ŽűÀAš1ÿzŒ­YPÖ@Ü5*4iÉô]qNS‚Lœeÿc >ÚJDÖ€Ÿ„VÒ#Ô!ƒ§Æ=W °ŸŁ”łœv„NȘ~˜Mû)A6ȚćÍàv‘¶rôܞ$€ę}Ë kĆÓZù”uŰGC§QŒ%yÁĂŒÍQïłN« ś…ăeŻ3pß°ûp(łŒŸŠőöŸâ7jߒwáj<"ê=Čęu4ӆžxOŠ;S˜pŰËŸ%›-—èy>±ìŠ†éš“-Ú}ŒÏI<ŸŽ·{~) UXŽôȘó73ćÛČ@șńŒEûHĆJŽRu§z"žÁxŸWs±ÔAș W„Ę=ô$Ž„pÍ/ ±ŒmÓsàXÔČ«Ăâ^ńŠA;ÚŚÚ~R›†Ű>§Z>Ûú†sÊ6‚«I4bčR4ü’A›sĘ©P­ąv‹ćgÆ=ćÉ^MÛÛ!ƄÀcÀƒá: ·›œÖ†Q:nKÁ•°‡ÆÈK?°@ŚÀRœxtP–EúZ<“í”â!:KÚžHE‰€Ùù!F’“̧ò€Ymá5ĘȘśŁón-Ąh4aŸ3©$«B­òSƒcčž—OÁÚečR+îÈ­M„żÙ‡$òș -ƒü3j:kò–4p5žRćź’vźAŒá8w©Bł@aL6Kfo1bà2%6?ż†%™ïĂüÔÙNlùŸ{©aŽș—cŸ »‰Í§fl~~ŐčÄź^œJQ¶Æíą‹ș>Âjanzt~T]SkÙ^oG22ÎyżŻ“MŁi7N_㊹»ï «ęéû8ÙőèÊțęোZ”Țč7+CmgîpL^ǐOs«ž)„J€ÉEÓ_0Śo~Óò]1čŒ>‹8\Z"HŠì”C˜ăVéòì'"qj^ߙv„[ܟv „áy3—;ÔqkÂr.‚ȚČ­TçŽöl€äȘUŒŰœŚï^·# pÛÔ€ïUł“±äqrvŁìź—ß r?uöà™‰K“gżD‹ßC¶‹YÛŃŹłÛ'Í[7MÊp›Đ9Œ«Pęœ&ęÈöižr{ˆ~è3ÈŹéÒsVŸÔk}Ą]P]&æëśvÿđìÈ +ÎÓmï‰fČAÿ%;ú…ÏÊń~œ!z&‹”ïĆîї[l.(4žSk%Đ ‹E3C—Æ5gC]Â/Ô mf^xs‡tș Qrś/”ȘÖśNÂüÎYé„’iónXŽ©Œ+ëpßš¶{_Ąî%aŻžqę€zűê'9ZűńéćB|ïâɂűŁ·À2xŒęOUù BțUŒ«ŽóYQź­âźî©Ă„Ę—êÚGČ%„>›őŚ–5‘ž»JEb.Jaó–PŻÒÖÙć¶ęÆĄĘ­/”–È[ÌȘ‡G2 ńSÎ,Ś ńgÉJhŠ›‚˜DjȚĆ:0Š »Îmq@Úz䔌‘ńœŽvCE»‰v1ۂcÙÇ”;ùœ~žő"žoÜmÏÎđ|żkš<©W śoIèŒÆh6;Uș±4s<őW]€2hMô©·ŒçoŒ(”’éß]k(èÈ~ÜŻ†OBšowâ:x(â1^+Ęb„›‰YŻJÿd7%y{G8Ûoè§x/—òUYŹuEì-‡/MœjÙù­>Œ-[`–Û7ręWĄû:à:Ê û=oÖșæÇźuû’Żîšż'žž¶F=y!ç»płŠ`UìśŹ‡2NŸvíî6«‡ ÎWWțOü]my€CUg«CjȚÎìÇnFĄÎûsę';›óG|I4c†=_‹ô]"ù§šæ"ČìÄń“ŻM‰ü‡\żčö—Ÿ$zUr†ÒäÚš,Îüfk1„ƒxg| x]źGWâ ą¶­‰âEé}yăûév-ƒž:Deæ Ó탇7Ž “’„ä·x?€iÀłńêŠÊ”€Ű7Tٌä„EŃș?NQ+ŻB~>ÖŽű‘ä’_œ9„żx5pń“Ÿjò•…ÚÖëÔ[]BߟČ5¶±óiMKĘlžČd© bZ'Űœ?MÆÌőeRi]ëÉjÌÇőD”S”śSőrW8$œ+M,)ʙŠ/Śy~%ȚÿzgM!g€ûhëží4DçlŠź3&ÀżF‹ą)Uż,X°ź-öŹj»Ö}„ëöžƒŒôôԊ„Ô?B”­xCìB™žńr]wBQț>ݜč›ĂČnCŒüŐx^śŐĂŻ…m3U­ŃÀçuuäACŻU±]tŸLș”șÖI]è/đ^ä'„ÉÄČ7h ßéj’Sst|fłÆxql7’ŒÏ̈O*›FÜűÍ jÓFŠá5"yeŰq1ű‚;ËPŹËQÖśNíV±Vă^Ì}GŠíiÎZŽÖÓëÂò=čúW;™ÌHłčĐV_Û7äyw_¶TۆÀČNń%M·ŹŚrAČ·ôžŠž© Ć±6oő [4ś5Fú~ Č6+˜Èl+N€véÖôźHŻ[ŽÌŠŒ•+ć­w[0# mwùR­qK˜šxg‚ÇkgL0$È ś ș ±Ò«UŁTÁęQqLjIoD©öo9ÚkűbCò~œ}yiùUÂ!ôĐ>Ă·%>ß4;0ŽÛ"©ș3:B]‘Ütì–€&© kZÄÚ̑üčL·™ęOŒnùŃWÒ|š"AŽĂŐ6ì4D»bŠSțŸŸw{-ƒ2]đ{' " æ‹zxŐc›fžùđ–ïčRĆ~Šń‘YpŸ§đCĆ MŒÛuÏNÒÂÌ‚Lđƒb‰6ŸșTÂ{Y á`4Ț*æl`”ï Œ ÊoŚ­2Њ-” qÁŒș7ŒnUÛMÛ3&mżÇđtÌúsÍDòčVŠÍÌ;Z–2Š}Z§­)úóSò@ÂÏèŠûÀĄOJkÈËXšòæĄòK†^-ïVmÖ@\âęȘȁgfs‰‰™$/Î3 #ȘŹgæäL[,d˜ź…MM+8ńq.Œ%ȚÖ«ŸQ6–Ž: oy‡ÉfokÏ|çșnČŃ0»lçXlȚAD8ÍSÉÇxìCXzČÎKû8y)ҎZ YÖfé_(WĆE‡|.«äŹ©rÛA8&4ˆDđ>WÒßæ3lŸŒś"6S[œ‘Ż/T[a|ÖŒĐxĆ źŻ\ ŁÎȚNÛ>sFśnđKŻÚźèÄ †T ]˶ćČy·`%š·Ìź>ZčAÒgÁœ#ŽÜUl3ŽxEŐ]łŻ9gZšz_Ć ·i} nuëŠÖß9êr{*Àjp•èëoƒA[$·Š„SÚŹnŹïU@Ž}€1a a?*ŽȚpjˆż8œ~üȧ93.ùL^nN4G!‚€ˆŽ3)où"=àîx‡ÁôK ΔéćűWËlé%1u‹ęF™ŽŒÖŸoÇÈè»ÆJuòæ)g(êÿtŠwńߙTÉæì§&§(œę5Š•Ù‹é•JŒr7R%Ï:˜?z,+§Ì‰êޱÔcè©ś” Ô4«‡#]}2ÀPÊźïјűÌ“mm‘9TDpV5U–ÁčpC†è‹œlQĆă„&kbY>oÓś—w«T(7ßAÊmArŠ*űïùąMšK$ąúmč6ÜméUŒół°–žËŚ|mń­QiËΚ ©x…ŁŽšìȚC”D1eŐÇAŚ–ô’W\Ê )šŠf]WtZŸÉ| ăŽîŠôæâ=-‹›=Čá&Â,c”"'›ç=‡„‚,Re/spC5$5íőyçŽYFș]žŻ9S3)pÒkbü()œ.ùF›èÌĆë”Ns<»_î‹Ő%Âl~3Ù$zRdh© ëtԅ͗ß0*¶[û†Ùł°.&œm€Ę5‘șWÿĄü@șŚAÊa,xœ„'?Š êŒžäҝĂê‘ÙQ<.ëö:ĘÀÀ9óJk7»žç@h”æ“zü5›ö’ Äq uT}S‡&5šÀĄ_dEDQ*͕ Ś’ìà•y‹‹F, óv+3ÜÎőfwckĐĆő§æ™áʐrX^ùætbđ^Ow$…\:ś°ynăëÿë, 8 endstream endobj 117 0 obj << /Length1 1452 /Length2 6391 /Length3 0 /Length 7379 /Filter /FlateDecode >> stream xڍxTÔĘÖ>RÒ)é€t-ĘĘ "9 00ÌCƒtJw ‚tH·’Ò% !  Ô7êûȚ{ßûÿŻő}k֚ùę<{ŸœÏ~ö™YĂDŻ­Ç%c·+Âa.^n (@NCτùč@>&&} țێĂdvuƒÀaąÿÁs[!6y+’š‡TĘĄ^~ݐ(ݰ(àEț&Â]EòV€7@»á0ÉÁœ]!vöä>?XAl^aÎßî'°+dhX!ìÁNÈAVP€#Œÿ‚U܁pćáńôôä¶rrㆻÚIČq—ˆÀËË+űÿ3޶äŻ<țĂWf ˆüIyN§ìń—Xÿ6À?ci‘ÊXÿ-ôg@A ùÆû–ûo—ÿŸÊEù_…țß)șCĄżqÖ?„ÿ·r‚@œÿb •ëŽ@N9 °ÿЁÿŒźŰâîôßš  9 20;€ąčxžì7EˆŰF‚ÙÿQÍ»ÁŻyƒB``mžäŚ ƒôÿ CÈy‹ž!„ù#gèŸû*À@p›_ĂÆ'(°ru”òÆAöčűò"§Òìő[Ìnt kôŰÂ]q~5–Àcśë껂]ܑ]@ą €ŠÜùŸV€Ń swû—éîŒl&ÜyüŠaóùGŠ wWW$ű[KÈüÿ^ÿŸÀ`/0ga uxÚ~Y#CíÉőecu­3*Á€/RÁ<śÊŚ^3KiÊEÖÒŠêápșö|YűäŹ5ûŚË1Żgïs‚VҔó( }ČÇ\ùƒ?NßہélàTvăÂéQDG‰:Ž–ŠèŠ,ÉFłŚaÂĘüÛo¶ o:ʶŸŠìœĆç„ôiԈX™ÜÎ}Ô&ôŒkˆ!“g„qÄźŠîú*ă7š/ qČí1”?Œ7Lă2‡>}úÓߗÎR ÖS-TNBIêŁJŸ;œ4@I–˜ŁÚä†Â,+x.W–šÀ@YäÎŒ‚f)Œr5]Đߖ8ÀïȚ`§)ô@ëùHŁ{\pV"·{ㄯb3[ÿȚĂæ€({ΚtFYŠj”óĄŒŁj~h^:9ŁźséNc^RzaąŽșŰƒù<„ß|kâá„elV"/ŸYȘôÉÀçŚČBÚP:ça[ŁĆkńT ‰¶ š&œĂšûđcNîïŻû Ə’ag;Íڇș#ŽáŒ_iÉŠ‚Œ;Čö{ś›TÏ?Č+!jŐæà]lńčńÓșyčèÚmJbO„Eæ'â ù òő‰æôŐ·Q24±MDĂd§ ńIż–ŃŸYŹy%Ü,‘ú$ű|iâűžŒÎAk8Ê3–©‹| Jéš Ű°x=BÛńŽ?Ž&ăĘÄAOK궗rĂÏsôcë!%цĐ"hEcŒ`«Ü§~Č(Ó~+őöłf,ŚîÛÆłžŒŠb›AÎæ; šGÎWć.Čòb–ù0ț*@f_tÜHĂyŒïOˆńŹ&‚ùfaÜ(ö¶8›P)”Eò‚}SÆÍŃDu?•œÏ{h>‘ŽÖÒđšű€.Њ‚Ÿ\yhó/æ1Öúà-ïȘęú|ÛÌȅZ>XŁ#ÒD`”ä4Œ™šÀ$~f€ÀX[áXę†oÂŻćAUK\9Ő‡—ÂkŠ’tp„«ĘÒŻ ŽwyțÓHó­n–BÊIńafKü4êÙsÊFô‘âùłu"T]{Ț7tŠčÖߊ«Æę9" xr—f€âą„nVŹPÛx‡íűÍęĂGuțP)ûJ$ĂŚ*óĘÊ-łr§đM’P”r­Á©8z•1o§ß^m?üźKtk˜6Ëìù–1à.ÍúžÁ>RB2ęÀàUŽŻßÆśï:țVü_KĄh©§OŒĐ+©1 §IÊF2„ĘUëbuô‹†+·xr­C€!†đșô%Ö܃$©îș”Gb)9”Ă˒œĄę%Ï*~4ŠfQLêȚśĐ•K/BÏё·ÇĄÄŸ–¶àÌ Î!èp$&”¶…nËš\j›Ł–Śez.d‘Ûš *û8Ȃ.űCŒźèąƒô† ŽUêl}ŐÆÊFĘšÂpżŽšT·çòxŒ7Ío蚧kVgÒʗȚÏT O&_Ńf‰S}=Œà‘8ĂÙÏXÏ`oPą!uV·/”–ìÌ>*ì?G!±€ÍëæżĄD,]š™$h~̟„ÿ„î‰mk8€Ê[§8"€E‹-ŽŻ(<œ5Ƅ†Ș„[ű3IŚç5Éé©íźoĄ9‘Œęò™űfofæșlêđȚŹÿÏwę čn|¶,r§Ț+ë5oŠßH›èž$ŚÂš„]XB(·î©E^ 8jIPȚVHÏ’J—ĄœŸŽá /V(¶Q?fČă c蠙.Òc\ül›ß™~o 6ŸclbŽùrzbFôšżÙäÖÂúž'a}Ɯ-‹^ÿKo Ț)êZ榅‰ș5ò =†|±űÔkwsœ(Á“L!Y ą„ŰRŠțVUf|íx;CŰäE‰Æ(W€żoädÿ tȚtÇ š,țœ›2Ő˜3lpiŁ~úóŒo9žfY0ʑ=“ۏòĘă\JËܚf!yđæ—JĂĆͱ.«Č,łł©N\ÔĂkD>49ÞP(ńN+ÒŁÛąCww€N$A`ŽŠ}HŻă|ę>úąĆUèąęœXQĘÓŽźțMy:G\oą8òć$og1*ùÁč @Čć!o΄è±nšYć§lk%9)Š`?đ§"OúÚŽQĄŰá"]íÆ­ŠŃ»Žlƒq çwŠlX*{ŸtQs”4â~àCáĄî0}‹óXèąŽ™_ŠÀu«~zMŐ[ ŽÿdüĘÙB,hűŽaNș€Z­ź\ô±UmùìŽ1—-ă;ŠK.ÇÜÈÄ;”oŽ­(/û‰…ÆH̍%—t&Ű㆚ć,gŒv⌠ĄW:XH`#ő©Ö˜ „5Ä$$ŹśÂQÓšÁäĘĄâŒűŽŹ]ÚźcĘRæȘî!ëâÌž9ß<!UæúæÀ)Ž %fŒ`êçŸțpP&@©ó„•Ź*4ßû%‰_rüąÇ#â#Žç …ytœ)  žoВ4úśçxȘÎiÉśóahŚÊàŹđmčú]ÍŻÛ JBțžĆx_1órÍxóe(ȚĆ€pűmڰn¶Î|[V*­„ «ÙR‘úŹžæYJ\)1űȔ ‡kŠY»ö€Ö†Qúđ,Ś5.űL©ś< ők‰’żGŚ/ÀEđc špèÜMőTïgó©ÌÀZD%Vdʇ5Êùf™Í”–śhgí˜òMŸ)Š~—Û˜Fm˜v{ę+0ž,ŸŰ¶žĆÓq1â!Ę„2/›0Vi<„!vąç(˜H;T_Ńc(é"&Žò9Ę~ÒßçŚU$isçୟÔÓ`è4°•ŸFéR2b'7D™xšx4ÿź5랈Ïę¶/ú‘r+<œˆç­‰}áśKàŽì‡é"1ęźă3*/òáŐ‡jç$^ù­ÜۜŁ—ÖŒ5łożáöšdCćՏtžąń]4jsÁàgí',â&«`ź^žKü˜<á vÁÇé6ß áqiŸfr撌·hŠŰ>vô‘ìŻá­(Óśą?ri^ŽVÁOžÄś©yêŰ}ŠuÎaç5'Á枍Ž|9Öœ_‹«nőüìĂĘő„)Ôj ό‰ô€›ĄŰ2Ą­ÌâN„&€jÓùĘy_Ę&Š[Ș 7·qH<ÍÔè¶o[4úù‡(Ćç6ŒjyŽ#ŃŸ* °ša@Šr„7Žk\ąšâś­ÊŒtv™|B§ȘŸm™7.€*èæGšx{;_sŁO?Žê3M~\H"ÿXácp’łs”"{EéśÚ• #W­i›1˜0ìA!Ńš­H{5ő±èśÎmɁö,QöŃuZ[ÔŃXČ‘$f«$1Z_Č6`6ÛÄąL’]Oû^±Z7ê’a#‹ÏÂÓÓÚE6lŰŚóńu3úí)D=™ Kêc«űȘûG'»æòÒÓâcQ7ń—ËÍ|ĘôßHW "~úeŁ€=Æű!hșo;iœçąäq=ć'q“…ü=Ó-šć§Ęƒ±ă–%ò­„.ÎóK2;-‡łL g ç{ ?‡ >A"čÁ`áìï3žIGiŐ éó4„Ü»<Š„Ôԃ-ĂÀ‚4„nÎZk4*7'ŚžŠČ _;đxsÖÉùä«jŒ^șŠv=-èÎâxOf*€żd]‡l·K–Îđì9㱈BA+y‚ƒÎ 3)@ĆÎK_ÏûŐ‚üEŠ_튻ê^ÊfîlfȔVŻužŒ?&xŽúneR 3š.ą0aâ+ïmۇ±+O9gőúò„Î6ÚïÓŒr-,1MüôȚĂò3n{CíU,ĆYW€Ś…ă]uhŃȚ8·~Ëۃ‘”ŠRŠćńNĆŃÌPMmVb°ÄĂȘś¶ôś±w”scđl{bôFé>ie•^Xx‘ćƒjîîŃdVqJÏęôZҘțƒS*űېô”ßèŽaÊPNyçò擏Ž3‰śĆœ/s4ĘńŹR0śŠJ;úž‹ûPšőEœ‘PŸ·„ÍŽ2*fl—z[w&i °ȘàX ŒÌűæRvó8ځD–k4 ÁúĂkæŠA?ńŐ±ŸÂô‹NșIȘĂ⻜…rŽ~U`Łxțso§7ńLƒĘ gz‹NԝöĆï›,ÚÙJőGkś3$ńQûJGß9˜ŐĂNù%Uó}€ä%4/ĂîuXĂđhc}](ŹMX%ž°ïŒèu,őæż„ŻG_ą,OŁ”7șńâć=Ś[.Í q;šÈöm^ù*$‘ őŒđ Z \Ë$âf$3\Û¶§Bäœû82::2š ìW“Ąƒl›óV¶ÉĄ„IŸ Ÿ^ńż‰ÎGÌ»'”8_f1ń™ź\Œ §“ SˆđÈ8yę~Îëo,ìä7.Ɓúś`'qê™Ç,©2>'J¶ÜáqÛł–êĂÔ”ő‚KïÇŹՖL‹ŸćԄ%ôí:t9<@f·UŻ–3ÛmÙ ŽÊŚG «GЈÉE;-5šXŚŒ?ßJR}žË‘Úł‘汚ń—S„áïÍĐÌ 0±kű+ÓôPeîćŠÉÙŒ^Ëž?èêÜAYĂKêp“§HDEŰ sŁE€*±\ŹË=KkufCŻb;Ǟͱx”ETÀV;ĂÚò3»šá†F+NC](žKżscőЅÜê~M”Fő§nužúÚäní­ă5—Úč/8ž^V•ćŒHŻUünp©ÍĐŠ6ÎQŃ>eÒ &‘V°ŠžcAlš©łÔëĆì1EȚłššp%Ä@-ß|ÿ*f9C¶œ%3„,ZÿæŐš‰2­5orĂz›ò€ołgȀźčÉd%>'Î+FĆҏiÊò '†TRÎ'˜Ț“é-€Ú+LŠmÁĘęČç çùJjóÚöuÏ5ëM›ŃU†,ö"氎őÉ}VŠl±·±Ć§ÓRbźƒîY ż•xgUYÚoÖ>1Zúëbcc.<+ $ZŚäsŽ-°:…»« óż Ü«?ńXÛë: P[2òÍј^ᗚ‹-Ó81û!jD)FJäń(!Œ0ăŸńșŰęPÙGIŰQ%Æ$ńÜÚk*bRyôú…‘îMnähçf›oB’$&ŁoÜ$ Öż‹t Ô@HzKT‡łoYËĄu>7Çë@ôQËžÖæCY/ûŠSŻOï=;»˜Ï€QBĘÉŚNfF PÏʕ|ÄÔìO'céĚÜÙvëÄ~.넊u{t _—{^'Ő„ÒÆ“€È dÀ]”ÜÆ@=ăXVәR2 MWLJì}sÛ]9 ń‚«š­Í•ӏx^ i}âö‘ˆŰ$:.0\.«ăš$*jȘŹzwM+]gàœőf¶Źß{ûËPo2Š~^Œœà”’«ĘșF/Ąàc|Dz ł_M|CW4ÖóÔOJć›óOrÓśđò«14<ŸŹČ:P JB6Vx߯ `ßłÍÆÌútPGŒ†iÍ'RE:ásÇŒŽ«:ÆÖ5퀘ȀkŠ;<ȚÂșe Țîmç­"™Ç'æÿˆà8ì™FÀKĐ,«è<8ŸVê<,|ƒäiŠZ€]zYßNawÙ6‰tLŽ~e `†Ć꜁©_ÍÏRGÍÿsÁ‡wùđœä(|ÿSæÀ›Ț'"Ü7ł%mÛÖTČ Ž….)ÜAÁâHfšÈ™q‹¶äÌî [Eq[TȘ‘2Ÿ€Ąg 5êÇwà“s2-ú\Ą%,ähôÓ±š ŹuŰžš%äíWÚbòČnqƒ’·sšKOÔá6Knsűü„’ž™©©Ÿ„M"XŒSmÈD8„k571°2mbžűö™Ä8”Œä‰ |Đÿ0·m.ŽŹÈ†Êƒò… j8†IÚùí#Ož3ÉÙn&}ŠBŻöKaE)űĂń^m‘ő“*†ìśvÉČŃ/cÆúŽżÆ‰ÉšëÄk•%óÿèb—}À_âkCclZUéÇ߻˳ĐÂßZ~Äy”ÁűnŐ2۟K„L‡§·è‹F80WjțęÀàȚTMĂ=:ÂûM4łèbëă.ì›Ę¶œ ‹=>ńÉËŃŽ~tÂMwyéxNm$„jțm™–t!“FąJđÊ.ąžaȚ#$|æU őÆdω†Ą"ÙPđnŒĂQ㠟‘ˆ€mšY€pâČ·ńŒŃXqښïP^ÜăÇPRżuö5a'o`ДlZ=Ú>5΄˜ŹŽm.(ìH¶z›ü˜)S9é g„Ś˜ß™[”›Śa‘rźžąŃÆfÄüęŃCû’-O…&†Ą8qźLÚëq=%ŽÇGS}ÈÒTs1$Qșčì©ùćeŽ\4ŠńRKpU{3ÔłÇb"JMݶÂ51Ì`țeò‡Ë­°ÖVĄŸU̙AâvÈ4ǝíšäv8#7ŒŽ­őăÛŸ%ńV‰sR†oój©Š…\šÚgÍK'R̊ć!œŒotźè&ćÔÏ N›Éœ2<±?wӆ)6ŻdßgÆ{Îș©,9îŚ(f‰NЇëqĆtùh±Zßô4‹av FfPJ7 rˆ]­ÀőŽ>Fxx͈șÛè$’»?ő¶ }«oÐ\țښcûœVžÙ<ŽÚë3‹çɆń[9Â.y5:-LÊś¶ÙŹvҞf¶Ć†™ĂĘŠ{ÏścxìҙÈđ{TbŹke{LUÓ4òĘóÀĆńùùEżyćç0pá©őăóì{ŠÙ>ȚăI3Œè`ȚÊ%ÇÁt]™KÖŸ0i߉ûȚF’]Ǒ›’?«·œ„·úîZ Ö~bęțKĄGYlä›v,î-k-\„göŠo=Ÿ/]ńń(‹Ë&}©Ă}sïJś(êCFÀ‹ûŚ!?2zÉ%ț+`},EOûkó™7)Ùf2č|›Žâ[jŽfòê–vŚx}ŰÙÇz©Ó‡uæ)k7‘žȚ~ŁwӖ›Í0WͶ>>śk©ÍPńžyŠ0wÿęđ^”łk©Łn“4†t7˜ùĘ+țÔ hÏPBïb«—‰6èm‡ÇYwàreá]9ĂCŸwœ p’à%GïB[ÉÓ*,Òږ’­#uȚRŚèA‰óúÎ ”T>˜”(„+ëϙžIÔ|ži’æG‡n_o\+ìarn€ ùЈ$4(à$l€\AȘ ĂυąST |“Í’ƒŒ‘s’ștŒZ_…hĘ|ŸL`Śòčjć5Ÿ:€R*L˜ŻW—ççÇIâö$ö…‰SLf֟_~8Ț㔄 ©Ź*F§òäH]Dgźá™YčqŚkòÜÊÍŽĄâ#(–o”Ă”^ț`ZkŹt=Jæ9•X»AÀ/źŸ+TKè”ïĄjV=ë’2`ùšłc]6Ű6ț苚ڔ„§3h\Ÿ$-ž~yÉâś\9ƒșæ2ș%öStxâé-­oZùąÿ­r—ÓS<ćsÂʞđPEçjbžNî@Sç‚5Dr9ç©Va Ę«Đèd›Vƙ.‡‘Ą"ăß1‰=ȘŽ–, Őł—huŁ€L#BʛoùwȘUÙ0e‚í(ȚrèwŸD•żûZr‰Ò>ë [%ŰP?HÖÊ|Ż™"Ę àł­ìÊXfĂêŚzńŸĂ'rQìDĂ܉Ìneź˜œ­ˆńtŐ7­aŁ•»À“@„‹À‚Ź^ÔąńIŻłź tÂö™7xæ52Žœč„\­¶›ê™œÌfu•è-•šu%}i€ęŰÙ-%>H”-FùΠĘßaëh{óÀż#záNìof-\ ":€GțáJ ałô"ÌÏNž3çńÀț…y:°^Öh!Űvf_Ÿ¶ŰʉpE4sčH&ZśÇԇ á°©·ëÚ«+ȚqțŹ ïĆÒŐzŹű»ŒûDÙÉ Ž€ v)f uáPëćÉt!œ‡4™čÄw.Ęș­€Ftj/æGÆtćp\>ĘĐùš([R`` łfŠ)œ ä1c˜Ÿ} L _›ŸŰ șń!ȚąÒëŸ1Őïœx>öƒĘć†loÜ)«‡'MRèšv“3•x0ŹȘTŸpUčęMíÍAÊP‡|zí×őrQ|ęÎwRSÆ»·đóTóâ˜ăLŃ4TÊ“iûÚžÊ­Š &ˆ:îĐeŃôrű€ {cÒŒJÜœûúù9•AïŽü8ô6u~ĐaŸ À'ćÓ*ÖÍđéÈŠS:s«ÆeyĘ\NŐTȈÆ dH°ÂźšĐ„ÌT%óÛ>]—œJ4·—űđÒë%Š»àyTź:žđ„ês­}á…ș2±%˜đ§Æ[}E3¶j»Ś#ȘŸ^Œá›fGÉ#’šÜ†= b4ž}Oó?Ś6GB endstream endobj 119 0 obj << /Length1 1171 /Length2 1380 /Length3 0 /Length 2180 /Filter /FlateDecode >> stream xÚuS Ti`p%°^ŁŁŒđö‡rpdˆˆ\•+"Ź€4I'ihșcwŽőDPyă8ˆŠâ ‚ą"àÍp* ș€š(Ź Ł\ŽۉășĂ쟌—äŻúȘŸȘŻȘLŒ~–Î"<æăeɶbń€ŠĆœ Jj蚂PDX,ÚÌČf˜˜ž0D!8æQ0đ xAJÀæ6›Çæò8?‹ĆĄ^r’Đ6m`±ÛVőĂ`łR – ƒ©ą\‰qÀ¶ùdÉeŸ}Ń0AÒLÀìwvs@s‹p U,f0]q™’@$R ˜™ ́Kp K „ȘXêoŽŐÔ(oœB„00ûŻèÿLÛIŠ@Âć,rL€’ÂÀĘ{p‡1˜€P:&\„'#éŒRŠ’ń˜Ì˜˜+ &·Â SHSĄ°˜bJdš„ Ì­€3 @Ê`!B§€BXŠu)ÁDBȘÛFH ! LĆLáÁ„š\ÓôŽ]L«dNûŁhJ€“”Ÿ@dÀ pă1‚ȘĐ„8FÒmÓH.”GÁtüg! (XA©xÂaz€ …”4/JF êä$‚IŸ°/„U•@„…Iu^•*t.ąjƒTąż ÉdšR‹«QÿáG(FĆš_ŽąȚP­€j j Á§-üŠBPćŹ :ó)Ò“ĐbXÚ[ÙČ>™’(`‘Ą„R †PșN”}jÄ(‚ÁŽžêV€%›Ćšâó—"ÂHLŐűçtëáO‹ä Kä(DL)ÆDS+§TŚÍ\íăéŒȚßbꜩQ+1!.R)DZ”A@J}FôËı鱋`…ju€€i…ádr*ÁP]‘=0!T&…TfÆ Đ3§ü•2°ŸT€~łżŒé‚D6°èăS© ț|ùò?šrqÁ ΒË–.Űł8€kmđG€PNôšÏÖæó[œ°0Ź€…Œö6\žlGÄÁŹCTńüœőn㏭çs8OÇŻÙŻ6ŹŚŠ'Śh=6żž*ìU\ùæłúđé‹ÒÞ€æweY”ĂŚû/]șüÆ4ŁȚ«ÿdKzYMŻ+Őgq7QĂ%+íìšèêąđŃÆĂ Ą]Uč}AțA—”/tș¶„ű}\Țœ©ĄìMŽúőkfżíśšgÏș’ČśèbÂNč–űúçNjŃsE}`wæwvÍi9çj—żŽ.d‡PÖûOc§fęY6ŒJÌÍ6ŸŠźțucpâŃE ~;â=dĆś\}jn±ŁùĄ·Íz\”-NÉ»ŽĂ$Éüߐ±©m §ïKú°‡[ÒPĂæoÖbőăízV]śZêü—;:&śƒœ—Æ”ŽĘΜœöÍö\âÿ™Q'ÙUѕĂz°evWȘíń»Ç†ȘzmDfęŰLÏü‡%ź»Oœ:żìăîŻ,6u?âĄpž§uE”>ó§9'LŚX›ś]wđpš·q‰żÈÎęyœö‰î›ŐćWŒś±ÒcäEÉń©”Ż +~;À{)féźź.ő)Í;đô țKșęÏ:ç­!»„˶F[*+Œôlšbž j?jŒŠL.+ ›ô5'ˆî±‰­fš©ŠìŰá]kÎ4†ŽQ9~Ґà4ïŸ śžŽ—;Œ¶cÒUț9+”Gì6§èœ6ûÇja7őɱ7ź;ëë’_%Ć44żŒőŁžfvÒŐwé‹r›;6y;.u$Êi > stream xÚlșcpźĘÒ-Œb[+ŸcÛ¶mÛ¶mÛ¶mÛvČb;Y±užœśÙï©ś«Żź?=Gź9ztW]& š­łČ‡œ  -='@ITY™žž@OËMB"ähbàlag+làl P31(™ŰŒôô Đ$!;{G 3sgčĆżA€Ș”±……#@ŐÎÚÎŐÂÈÀíêêÊïêäBëèÂKûO‘’‰ ÀÙÜ`jam’“ڐ‹ÉȘÄLlM Źò.†ÖFi #[' €©#Àú?€‘­±Ćż49Ńț[€­«‰Łó?ÂLíl2"ÊąrČÊ!:e!€­1@ZüŸr[g'ÎŰ&FÎÎÿêŽàü?‘”ÁÿD†ÿęOÖŃę?-4ÀŰÂÈ`hbfa Mś/ß$lMíŹÿ]ìÿ›úGÓ?úäÿxH061ę‡íbm-k`c Čł±wq6qÈŰ›8Úțćœ›ŁĆ?È©6Öÿżäÿːp6űÇ [łìŁÿdá$jánb,oáüßΎ.&ÿŐLț3c ›ÿ”›üăÉ?S5¶ł”öűż7țÓÊżïŁSWW“€úŸ%űwZÄÖÈÎŰÂÖ  äüŸŽÆÿü;-o`ńŸ úŻ–ÿn€áÿe œ-ÜZôŽÿZú}ÿtțKPĐÎʋ†‘ž@ĂÄJ``bc°3±ûü/čF.ŽŽ&¶Îÿ6ęŸ^ț{țś2™˜ž›AŻŻÚq[Š”†VűŠÍW‚QÍÏê«P­2­ÍôȚh!Y ›ë]cĘ+cć»ÁâÎòì]íJÜ·ęÀžLMG„ëŹbœ–UšùÖnż+Œ5„ëțUĆŽ1’œ‰žsÎŰX”§œfÎÊœš•t(ăAcˆÖ/ïC܉ÿłôh+FĄC†œ©ù kr@Uƒ8oRűڐïu8,?hö†SÏŒ°"Àț(Lł áÚRHKC~Ą[#OëSx;”tÇ”ò+vx+Pàțši<}ËM`őHû)Ÿnt<Čì†[nkǟOWî–"{ùSȘŠ[%2nû‰‡čČË'âhoÎőĆwVMM›Ì!Òßy–LgGrQ„:•æÈkÌfŸ3wCjĆYÚa“ßk’csâ2%n…ĆÉ|‚Ț:aUT{dÒâ_ÇóÂw'Lë]AĆtpçMcÙKÖB[ĐMăŒÛSXiĄłPšńłövÉDŰ Šś_űtCăfșô0¶qæ| đK7&łnŃx]-N,)dbăBL™Í±C^,|IkŹÊŠ $t—>4Ä/ćàš*R#ÜÏ+F«“žźȘi›%ꘀeù•ĂI\”ńoóšžŐŠKĄâ{“‡Ô ŠÎàNtÍß9b:OîŸ{^Š ű@ûWç/Œ­è-łƒGïŒO+*‹€9çA9ĐÏu0í^nÜ,ë2Í<ë8í6črÛȘ–Ăڄ‘”–ĐYó™ € 2Ț`ïÁ̑F‹ŸûeFI±ùőČéFxêže _p’§0łŸ‹ń%ŠÌĆ[ƒuIúŽêtæ}&% àUÆqSƈ”N,ʰ‘{J%œ“^ܝHèXŚ4Œû%ObüÁĐ^T‹Âхp™iPtĐĂT?ł…?˜)‹% \ÈA©‹[֘"sÌh#e^ü(Y.|<3P _]1ÛÇ‹ŠƒèY(Ÿóû“Dƒ‚މZłg[­'žT}ϒsą…§Ś ” –Žűš„‰ÛgĐ,ÿŸŒ—ŻęLÔ4ŐÎDÀèŽ]ĂžD‘š~kŃÚNaˆ -T|ęÌ:~o¶`Ûo †Ë>ùžú0gvŃź[{A„h#FÍČ|3//‰PHqMïŠî“ÛžĘ4Đu€gmŒ ™ÿ."Û}BĄiżłMŠÜÛ­"QèPśNȔ ٞă0fđ‡Ú··”tùtbûâÄ ,û,#àz·í°S“èyŰkĂĂ­ =# üq‰9‰5Û'9ƒêz‚ÙÍ^Î6ÚÛì°1è1ì4NlNÛ,NÙ$\Őüč«ŒsZ$3ž '‹Uœÿ'Űș¶SŻś4ąA-4îŃoF€[Őž,”YŽÙ‡ôšRż­_@ÎÚ»Ś42‚+ôÄíW0ęwÈ­1N9DŁF4ŚZűË=ąlâw{և}Ï ùWOtk}q•+TȚq‰Ž[L1hxĘ*S=‚†l““Ś%$<š(ûVą‘5ÈQP9œXq }ˆíțĂîț€Qé‡+°7‚ŻŚ˜oÑ·ƒsA58à!țIüŚ&”±Í†Ò>©ŸŽ7ČăzÜ-"„’6òcì~Ć2ìÀ‹X 9eƒRfD–xé.&”:òj%ç…w_%sąKż QÁïJčȚ…SU€ő$Żh|Pÿ>śÖq"Í8žç!]u^ka‚đC1š:‚ŐYhșîŽXŸ7ê€kNôòÈŸn—Ę_VÓB„d„wŁč‘țM[…LĘ髜}ąÙ=€–­§Æ7\·‘™px”1q/fYyúÔĘÆ!«FŹÀ‹ai–öV4ł?‰ì 4êĘČ 1ÛQN’’ùŃŹšđ‘ÆlyôŹŠ0)6BwÖŹH±/ĆÜ­°Èk\.­ĘâŸâ»HۛÚ2KȚT`ŒŹ` 9Że­XÒÌźŃăvƒ±†ˆ^ŽĄśÔËnĐe!:‰”G2Włv|‹ű᝜ ü`‡†łî* ś˜á”áûÇç]CrÿKITŠȚJĜÊĐ à›Ó):ĘbËO;ÓeŻ9•wŽ‘ô3”η6Ê©7 ăëś@§ˆEę9;]ÇĂ» Ô9{{Ž+|»{Ô[čÎ0ŠeŰËąśű"X™iÛÖ-}‰ÄÆ'~ćzڈLù)öäVëș^0B V~XčžÓȚLtWđÄFL#p^]±Ô˔Ӎœyƒ|?]žș샋șÿ6)ŹőË>2Kę˜ò8oí'ò*d QzőĘąt$qà_éÖxô=Sqvö•PŐy˜l™ié$+ŒB#OdD«É^ӗŹÉƒń˜Jb„Ö`ž0rSY§ÀŠƀb(1ÙÉær:áz©'BnŠŃhiRĐ C%ȘĆ!”.GVŸœïš|&$ù'„M”aÜțhQ𦔬 ÿÖ20â$ŠĐÆ8l:YYű2› Ûۖš’E€|Bú_'ÀàƂg^ÙȘ sòuu„’%ĂŚŒ5Sę{Æ"ÇÜ‘Đ슧ș1ŽńÉ΅wóŸąÈá")fkBqčD/2ŃÚ枳ê^ˆB= ‰Á§ï©ÜrîÔ_^mćÊÆ]ʈčŸű$_\›ÎhÄX…ß Œ›‚t­Œ™zŠ:ꚅDN\S6, ÆQRrâŐ]ë[]Èæa‰ë|Öæî&AïaU…~3Ł3ÇúâNq.óìP>AbMœ?g…íâû'#ł Űç‹:Q!iËú“.2ę=OÍBßÏwÏöqiœ0Ł…ÊéíłÒÚËAŹ»—ź”êsê† - Ü5%wÔßkqÙŁ>N…~Ï]š—]KĆú§ƒÛćŐŽëšSdDą‡ą™Ëș0~žXTÂnZ o€Ÿ|jû°áŁlT–ŽÏ'S;\7°$ꏅ`ÓT٩荜-’ê†[ÔǁK6=ÖWâ7°‚!}œÍó}7$±łGN槎ąüŠłÁöÔ|SUœ‹âń=Š“VWېțáÚ_[qC€RIÎvAś![!óЙE”RTw°»àńê@%B@É0™btȘž:œ+[}€Ç ĘŹąúđ>uàˆ 1b.$őZ…ìbWŠ3nG—Á{‡îI xäûFŠÀ^Ôč†:»xó–G™ùșž©Žˆ•ï™ĐG” —Ï4Ü~qA[˜&ʏ™;‘F8â^Ą5c`”Û`"Őaï>Ț§${?žƒœ°N”ˆœéŸ«>]ƒŠC…QUŻk‘ż˜ 0žĆčqê‹7 (hjû;7IŒ$‘°i0c•źÀŠ;&ülzIä©â"È)IvÏëP˜Űo0Ű }ó€Ő„6ZopńÒĄ€ï'“H>ÔŹIjʋš'Ó·e†ßÍJŁíœŸwŰSeȚ ÏĄÌĂ۝»RÛNŚ™wÈì ȚžëÒ@ò€ä*Á·N°ÄY†Ù6Ÿ‚O? X€ôùk{e’śł·đBàYü늻”ÿACÂïł=òùWąwńZ‚$T?Nšäšfê€\ŠŸò5đpùÙ|Y"ż>­ß\a\Đ ·  öDBƔhá’㯓Ò9G%,&ŽY]ŹiYŒ ƒvg< „t ]ŠúŽêxZpILFÖ§ègw`èÄÎ-śŠÙłW<ămWC/7ÓÀ·đ-qśWSM E [ăè „őŃIĆâÓ^Ś3j!ƒF % ¶ŰzËsŒÈ#I8žżŒ—ˆčFŹ 'Ê”FżŻȚś}FŠÁÆ&y}ŸæxhÙCÆŁ«ßÂŚ"[ZwŻȘOŃeíęŠZr"ĐŠÊ|Âäœ6U3™ŠȚlô©Tê.ĆZna_푓)”!ÖÂdòŽKZ@*!WßíôN^Ȋó†ȘQŒÓo_­Ž~•Ôr’‹WJmj‚TÒű·uȚßGŒ>q–„ öȘ.ÖšgMÚĄÌ\°őȘżȘËÍȚÚìífŽ"JșęiZPcÆÉ˜ Æ+ĐȚ7rӇs„č=freȘ걋žÇÜËȘ"WŁY+JǧiÎìł»(;-RČlŃ<ĂÂQeȘ§Čcx™ï†`a+4…“§Ń-§zÒŠŹ“€Ă}Š8èÆùyń6>BbȘ$Ż„ÎÜł§‘ÀEœŁKÂm꟩nŁò}ŰÀ>1-ç±G|äpo^ŒžRҔϫ|ÌxJ+xŽ~öí‘‚°˜|‡?Ą€Óü~ż-ŚL} šc KŹȚUcúnŐ"'—hźkÙHč.žÌŽŒ–țˆÏâŹçđKfÓq„`B4í<Ź“ÍŒl  ]r"xj‘^žj‡&Ä;7íäb+™Ä>ąƒUWI“‚șŽgꊜ‰„:\9b«iț‚ę4*ĂÈĂș|ăètê0#㏄ÉL…făĄłÏ»Ąƒ§+ë—ë2aç Űl}ă†ú,ű-Ńpì=‹êv »8ßX3­ïö1ÌspŸd”5&$Ù%'Vùî€T–J$š€Q(iȚŠyÁŚź,č›RGúȚŸ©ËLv .2SŁ”ÎZHź$ăaí"ŃŠßVŃ [€Kwj pŠ‚ŚŽă:sV o‘Ò•Hÿ¶Í x'‚hŒl€șš0šošêIä˜hŐWˆ–ž'ˆ ëH‹`óą›"Ș1àF,UamœcŃlv¶ƒodžŃ ąÉÛfcsłÁ‹?>:…"܊Q„Lâc{ Š 4Ê7yĘŠ4~úzš8XN 4x—êGéăWTÇ[Ö»éùÿYšSìŹá„5[m•u ÍŚs“\I92%_Űh”ÒvÊ @Ü! Œ~bú#N\KÇz@Äò‰zÊp ’ rk¶ŚöĄóv©›1‰HAŹ€ôJ*ŸEŐĂßZSç„EF0ŰĀ'CPkilc4”ićFÔÀÈâȃ[YĆ·|öêAÁț.yÄn°Ü1 lÂTś–^Ž_,Ûî ŒPƒGúTÊ –ä%ÈŻ{w?ùŹìr§ȘzȘŚ'9s™ç«c„\}ǍFGÈ!ęÛm7x&CR IB‘]ÊyòÍđˆ CèŸțŰÁûôÄŚê›ì«qȘ˒B»PƒBŽÜOńа;—èâA5‰ŠÜïÀ0{ÍÔŰ”ë-Î.š™mòią>ČźąHZN*2=–N–đi±ƒ»dń6{ËY9Mû°FFÍT©QŰ țfœn5 É'vÑʑ‘Łd„[î|gŰ@xŽ‘[€P@dÿyéMÁ“P¶„‘” ‡ö x^łp‰ș' joè ‚ÉÎŚE8UŚ+oĘLšFś­§c&ó|Q°à—u ;À’& ÈÈÜP­ûÉ&E„‰úł2ŚÉvV €gæÎÇÚyEșą‡¶kW۔™çœ3LmÏI;”]JJ¶áŃœ yŃ Nç8,zq'6­œKÆÄgaȚc˜N”áV9wg ˜‰±Q(V•aW·«€Ù°ì&, uÛăIbŠ‚„©Ed1à*5©’§ÏŐš VšŹF*gX€2>U u"Ż^+wsĄX“„±LSDŒđ:Qń8}ńVăčdàgùł™àŐ|dźUđŻő†›«ĘŐëi°†( ‹ŠCÆ<ó8+Â~ê@fH”Éè8€GqË@cÁN”ŒčDàćđU™\4ö·ÙŃ(WéïB ?‹ à:zRßu»†’ŸÚ»„«}ęüˆ„éËĘAf]Io*ŸŽ-ŰáF!˜ítDłIÁőOŒ›!$D±8˜”É0r{ÄÁZŃ8›Q]°hJšźlăĂ%„ê+öíòz;ŐĂrçÁđÄ;iömœ\Ÿ§ŠÆ6É>ŸÚgO pśs“Ôjô #!&RȘ™MO‚„+ĘHévŽÛ9ăWˆmŽVŐ§ÀźàÏ3Ę90ę/©óĂ!ËœéȚźÛ •›ŐW.%OY+ĂA.gtQM| œŠ}}C9oï5{zrꈜ"MoÇ1”Z–R"ŽŽ6:±^ÖôPZW2N Țhä:€<}+ïaìÄÆÒŚ‘aÙì«.EŻìćgŒ”r-0éJ“đ DkX”€ e‹eêțŻ:…ß’IäąÔô‰™1ąÈ–ő0À–_ŃPUp|hxnóCœË’4ÇSa ÀZƒR-|ĆĘ«ÍIÍyćcł*0i>rÙ;OÍŒGü_#ÍwźëT »Ę H…Ăal™+êÂKIĄÆ9tB$«‘Kă·& -àLkÇÌ”žĂĐźy±RjśÚ (Žâ<Č MFś.…‚K©Č™’Ö3ž3_òČ»"őMăŐçä ™‹[ŹŚb;ÔÓŃ>aöŻ|~‰\•ąƒnúeÿ1»À::4ÏGșMü}‡b‘ÚŠ Ž?uęΔ–‰PŚ*-ž'/sÚcÌ+ÉȚyĐۛJq%y@ȚKxrôĆ€° €UzÇìÈw Äđś…y-LíGÒÓd(Źž4'‹ÙwŠŽă‘;wMw`łżĆ`>%zç§§1:!WçÜEÛ¶ȚóŽ‚Gî4ă1û…MDŽsńÜőEŽmÁ ͟†9ôŃ<€†ęÂ#JgŰmÖ~>Ł™äĘáR’Aw}EÆœ˜HŹÎBŽ"|á슜ìF–ŠŽ“DB4¶ÿ; [*ڝ)ęVWԅ@%Ö.źƒ3+~lȘ‚$ïĄĐ㈠ÿéRčaŹőć#z'`8’€âÂ*ćôAlv§n.5@·?pN;’{+P-çÆùŹÌǧláo}<ąŚ°łH”0Z–<ï/‘ÉO8°ÔÛÊAAâ0UeK»/ §R±JR”%IƒqNș‰ĄAQ€ÿ)©âčő”%©źæ?OàvŸVYƒ]ĘŠê9†źœźIéËûrhrőôyöBæÌÚ­æv ă/[8ÇuDbŹ­ăš7XY_Çαż]Êb€mŻc0L‰&iúŽÂ~?ăCœc·Mڜ‚źK'JŰEbRÁE2L‘oöK,dd %)ïSŃš”ž‡ đWÿ­ &Ű+A>Š*Ż(WRYńLébśœí”Í Çs#Û€Ìe ”_)ó76ÍU_$—zŽ*JÓéFlŸȚHÊÚ&ămșжŚ%„–wČŽƒȘ€ù«gwMM6OJšÄXÇ‹· ÏhhlûCwoïbž›$ȚŸ‚y7„űÎ1dl‡ü`ÄOhšș”țÊ{ÈŐoÿ fjTž%M ˆ ß&RżȘ}.á©Û„Ą‹í@$”"±}Æ2Ÿÿ9…”Ô֍j„mJęy‰@æ <äĐ3±\OAÆ!AÈČÆ#É©ȚٞŸ‹Č·”‚ȚÄś…Íđd@àțȘfwá”.«ÇœŠs2ËÛÓÊ ff!ƒh莀‘TQĐ'ćź&)„ßČ:Ąk‹?:ôńf­á˜Đ€ŃțK's}=žçI;ï?ÓiűÚłdÜjŸ«g‹-Ź— ÌƒÜȚšÏáŐ ážÚ ë‰ Cs"€žű,)^JN bgš~XîՒ)ŽnqŰŁ0–MŒr»g€ÊÿáÊSŸs_ïŐkMĆ~Łń©Dœ¶<Œ;‘Òmgêܱ‚xngŚ5Êé⠙Óʙ8æ”șZ‘ő—hŁBwüÛZUÙęYöçÔë›òńqŠ›(Ë sï-*2ÿçˆ9MvÎĘXD]”»ÄžÓÌ_h:ú˜ŒĐeĄ-à Śÿ»dąÈqąôŸżłF脎Ô$l–8ÆlôęEôĐđ6°ZńNç 'Öȱ±ĘpZ™_*ő©œl!ŽÁ6tűL!&Ž·ä'żrIû†’Vp?ŻçZc‚FBBOßôžÉ=ì |Ù2G}?Ő뜟&šb¶sCHł™#ÛhòŹN\ŸŹÆłL·ü&òÏĐvNoC>çŻđNQTP ț§ÂÒ±M/"őË~–hvêĐƔd.…KŽę±cÙÎąÁ(H4Ź\;éęP§ÒnAșV|„9‰©œæx˧ž!Ut]0dˆ/[?mˆ°%ê†ZêŐm< npwރIIę#ry @7)źi/ybCô–ă.̟v*u;d‰AÒ4ï…EîłFǕ~ëȚî.Ą`U:ÙŐŐ;JAŚĆŠŚÏXż~ÍÔOm°:ˆ!nY9Țüèë=@ŚÚNôBŽGFâRlùY.\iO(°ȘÓß$ćŒžçŠț OIĆ„5!Țk‰Ăą3Őw…Éš9öÎ`(”CK§łĘ{QęWêDźÚXÏHUŽ@X°ŠT­Ÿ·š2 á«űïĄî/Ƀ–É<[bÆÜÉ”ŸˆŒ!]zß.žaCö-X$!Ńo†ì,Xk5 ź>VdțșÚŻrzNš‚éWŚUKÌ5•‰,HYÁŚSc<­~KžÌí‚ Ž‰Áß{FM)„ŽĐ]\7R±€‰*Ș%uęh±€}”`’DnvbAççÒç>g–C_R$Șt‚kÓM˜çZÓ«U ù)›Âò2UižÎĄ”iER6Ž{àÿR™ĐęŹRŸŠËZ X·ȘżÔVᔩ ëÄűÓ XFś7š’FöĆAą4ïÂițæ5êdôÜŽK˜©2"§fë/Ęc–őÚP9 ­ ·+ÎPm9Ç!ùN~…]‰–Ó3È#«UtUqš}Sđ“uüâ0íŃțq„IŸÓ\`+Ą?Śń> žQù`P\L6 ÀïšBZŠ1^’­~có:ëŃ! Hłp€ŠÏ*‘AíÖïżW–ńu@C7d,(ŐàÖPX[U.ïć­ț6XûAæ;ž}Ò¶: ™‘ Ùoȶ{.ˆ,­-êù 1, Ëm îù>EŒ&ÄĂ5”ÆŹÎE(,>:Aőé«8DTł’qiGJűE'üBBW_<ô†8ÄcTÌĘ:łHZŸP?€z)w5œæĆè’æ„y§X—KúœÎúKŠùà•ÔŐéeű€AuÀ‰RYô5¶|sg!Ż$Ž”9 C>üißÌÛòƒ‚6Ž™âű%LâèÇɐă2ß”{O¶»ÎPŠ·)äô:@í”jÚ(ˆúbo„ÂríHĂ,ś&󝝑ęșÛWÓ9őșÙ9áæàÈzÔß}ŁGíZÎcAUè„wӄò“ՍT»|ÖëWĆ–Łæ†ĄœTüGó{uF‰ ŰrÓCÚLW—È'WnóB;±ÜĐÆ» €I 0tNĄ`gĂP!—Đ"«dšÆ# äÀX¶ćcł œ"zzE–Ì1ŃCPM[Ćé2è—L~Ԏœp[ ûOB}šNŻ€ŰK±8ˆïÊ)͆ÎȘ3+ł&żő °ŁŽÜ†ÉŠMœ˜;/ÈyŽ „,érúMg OËvN9Çh O†“`j­”SđêÒ](`UÁ“[Šô|Ї0/Œ˜/à8/9âSÉ?úu".AąÒDӟăę ę'u &aûzńu°ì•=œ'Șđ¶ȘË6ÇŹu”)ôÁĄJżaĆŽ[ævșę3y‰~{Ć+|Ÿ j-,ÙŽ -vȚYÌúŹŁo·ĘËrŽ(Šè<éZEÙzkűq#-ÁŽÿȘ’uđHžÙ6[bżPFŠŹ\©{XĆô.„Ș©őM,%ÈÄł™LčÊńdĐÉĐîAàőÎÿqóꐋ+ŚŹò'LÇè>œxsă Ào‰i2á6“^źFïÙÇ7“}Æ=‹șŃśmÚ8ŃÁ#ú/™äi0Őżx'Ül`›\*Âő‡ íSIüîN`”"Ö¶*§FnûújžŽMÈ@úÌNętY„]\©RŹ„6VyŻqǟ­4—qźz&‰”ù=5pőfvÇÍKtZ(RőŁË€±HGPˆ0Á}ŃɈęï&ŐòʟÄ` Œmʞg0MŐŚ+"Ăł9 Zï耫ź,‰œȚČœV=•Ś^i?T4dĄőÔ)èAV±VdŻ•Ú„żăN꜔ÇšèÁ…Ă»Șzö} Ö ƒÔłV”„T]]ÿTQ5ÔMV` Pi{Ôklí­ż/Ùy*rCmçgŸ‡g-ÊžæȘ…˜˜7»aYi&ïá &ÓR-r”ą$XΠ\{yŹę —%ä*Yìi Ę©—&—ÄƐˆÌFŽ"Æ?§¶mPț)ś; tšœ«–…ćó@8lZ"e#ćWž-Čܓ(ÓÖÎÇl]ìĘęí«‘5}r ŸïŃšŽ3F<=ĆÈdĄ=·ˆ§ćKEyčźr‰ĐВî82v^”çe&c–‹ł¶$~›ËÔŹ)ŸÁúxv“4~3†«ˆ őćofSŸoFbŽ<±‡űž»æ àĘÁ-ÓŻŸÊ˜'JE°€őÿđëőQ(Ÿ‡B-"Ű€„yŁî/j?ÒV™œd-!î82·ąM»($ËÛńÒ±Š·=„iqĂ¶ÿ*L™& /NžĆ- ÇkÓaš)œ=ƒNȘ,/ńŒžL]ˆÍNąÔζȘÿ*«<;áŚêvÚȝ‘âî%‘3òru°.„ÊĆq>1»[ëҕŽ&„?œpÔ~ۇDÌPÒż äkIߌb3 „lvÀEgFžgżČžűe懧ÈËX>ÁąSę,{“6ńăèyß7DŸ ZšN9}*Âx‚- N|șÀÌá8ïĐȘïŒÍŸ|żŚÿDùrûUÈsâffÏ.NŐ6Êń瑀?źś Ú :‘«Șč Z©$†c–]e‹y¶tæuaÆĄ—x1äŒ$O“ïlW‹ĐMä™"ú SžnQ*cFËjŚ1îĐÉ 6ŒžpÆ»TÖ1wMKĆ\,‰êÌ»?±Ąè^o^#ź GûÓż°Y†‚Ą):â{iòhO/ą¶4Žúęhóڌ=.Ż1hĐćVwz2°/fßwù <0œ*8ćŒș”„.08TöC0.‹Qß4ą»YV*TÙä eßÔòçÜZ™ț—‰_kd%ÔB5&UïűB’êŸâžœÌ—SZçf•˜ŒzĐqY?ùÛ ȚNjŒŐƘÆj‘«5vŚ‘%ch‚è`lt—N–f †xìvˆÈ/ŰU‹€çS“{Tő_:öQU~ćŽn7©Mf]'é ó©1æ ‘OZ”6€ûq+ì„hB:Óûęڊ‚3űÍúûß¶[&‚zČQșoo'”ŹđnòŒž±l4ȇo‰B‹pKićŸÓ/ŒO"ÉĘkČ}‡ÈôÊ9[Ÿ 2ù©B€>îŁí­–„6Šœj3«òˆ—ŰčȘĐۉ :^ČtGßüW‚Đ Ùè AM“.D= ùFƒžĐùK Ł-Đk»òêᾟÖ^9ńgÇÎÆ?B0Śh= šhĄłúMkÇˆLK‚ê•Ęœîó늹b#șĄ2čü1-ćț‡Ę+cŚCüȘîˆ:äcj‡ú54ź Be?üÀœ9‰ÚđeçęŸ7‘ ă$hÏﱂßH‹ÌÈ۟Ąä»‚›ȚVœú„‹–—țlö%čƒ/-”—ćLüŒqgđȚăŠșžćrWEĘșLžŸäŒsĐńąïł… Ÿ*Šç9‡š”ìT&^á^ŸíëžĘùÙl^§­œĆN§€ĘOy‚ŁR‚9ČșíʎEżEd:wT|BÂHÒzYJÌ")B0U_aèł™M‡ïŒ¶.’(ŒË6hQÓì,·4À”ś0šč (łŠcho •’]u%Ç;ŰòűŚŽ‹$§J'?»Â˜ÌÙ?#çßčžut*˜=ó8ÄrÉ[ÇȚlĂŻ‰Sœò±Ț”\Űu1źîȚƗŻȚ'Œ­łBĐBIș!+°‹DDYăłŃYI™G.1O{ńîä=@Œ93»í1œËòFêYÌČ”Œ>ŽSY]á'Y^ *C6ï”æ’͞ÌlLçáŰÿđ„dƒWqkÚjˆ§„żśéDß/bìaJ*Xl*EŻő&·m’k]‘-G(6čZäȚŸÂߟ,yNuțú[Æ:™.ąƒWŁțŚĂŽ‹7ƃi‘L‘6~_lŹ 4aûK>FmŁ€ÿ\îÆ‰ó l æ;\7PŚ“ÙȘAž`ÎèÓ|ăà<Æg+öÛäI%§rĄ±9!tfĐù.ž2“ŚŰ7TïđGi –­–§Æs(ÍáüD%Á`„TL›w  ßőühŻ[ÔÀlĄÊ^qôv†>C˜{NtJfXám0čùșš{K4+ćłÏć+jD'pIòŠČÆŃÊê7Q+B„W)ę=0bÖU…‰&zÿ čÊÀM5C–ă}ĂÚ%„9œÊéAôÜH™ŠülPœVDvl` žö=î™JK%Œ3š —F'Ń7æ0žœU*oś •ČHC ÏđâșĘȚè,őßÍóLŸețČy€pEÜ4Ü{©ßőȚ:ŁdĐêeŁz&VșS+€ÒŠ]rû‚-È>€IłU»ă}r kŃ2Ÿ:ĄÇæČe?dèœȚ{CęÏòî°K?XEĄűòfAĆ» ËÒÈ2:úGè7ÆIu°dFtIÒ„šcûÀ,őĄQGšFê¶AÀ,YrĆcódc}2űńF€ÛȍC’ŹzO@ŚJ«ąo±ą]·@!N‚lȚ]âœ!îÍèŃÂÄàUężÖƒ}łrűí)8bd„ ZPkÁÇ0’ogméX‰Ÿ<“îa›!rŹ»E ĄŚ61X!ÀœŒ’N(ÀjăüBÿ°…y ›™Ž.ÛmLxÊŻw, “Ì‚”ŁúùCƒjQP‚Ń”êű%xÌń%ąQțâđæĄ{ÇÄGZÈóÊâ2Üo힊ȘŸęg§ŽvîÔQtoę`*yŽÀóĆœ„Á` ‰BZä‘’Ąٟ‡ ŽN©sôvkÍ šUWáÛöF‘ÿŽa°˜S—ăŠùŁp±[5>Șic‘Wè{‘dFA! -ÿț/ ò7&Eh oêûŠ{†Țfę·đ‹ùæ_ÆšŹç”óę2Fÿ‰êÈ H{JìÌ{{#>BÔùû*<8xpM–gé œ\îsőg=/°žˆÙ-Ł3Ś"Ó?T4j c€q•é^tz<­ .#…?;ńăEœ}Êeén{` Š{Ò NÊhżkšRœuۃë?ÎSźçàxV'“őn%…]ăq†[üS&ęéŒÉ`暶‚Ș•”©č ‰ńDöê,»ê•)”ż,~m-IéçÄÿNâž<Œ„ ż™­>réh>łî»SÍĐśàúÔlŠf†AÙ>2ô™“ J5DÔ7žE«;꧊äRyOb0áÙž@ï̐+25 //ȘŚ;Ù«€Çís,\űĂčkKȘe€{śű€«^qcƒIMìB)èK„ž˜žù 4r™O™scúuž„DdZûÓ‹TŻWĐüńšÔæ}‹"&@‡ìˆI[QÖFă|š˜fÆ6|#-üŠ1"zRòtôxă/6Țv:RQ…4ÆVĂŽHÇÏž_ÈË^(WŐsÏè0ËÍ€Ő UÎȘû»2ÛOkôoŸ Q±őoŽ%©©ÒZÔ9Ł"ى0ęćO ęV܏țő î A~È .ż~s—ïđ|lNyZ;“éASăSÂŽxûöÌÍÁ˜Kƞ Dôiî>ÇȄïžٜâ XČ/‘æíĂž0“+\ĂÎa_ €€ù“ČžfT;}č€[3žÒ+ȚčŒ')űvö<źß”lăÈ<âˆîągFòŹPI«];±ë›Vińë*tŚ· „Î@ŚÉŰӏle[©L‡ń;”[  ‹ì­J­í™aŸ-iŁúhIGąR#ućìe]Cq„ëÔòœ Ź&';ëW ’$1wás+ëI|ˆ j]ôhÀö+”5șĄ‰!?Țäó±ÿEš2Ûc#ŹóŻ«^IZ€Œ•ÿ™¶ ŠÓ«ÇâÍüĂąNöH›DÁđYôŠș üGZźsžەcôÎł©áD€ŠÆŸ„‘’ś“-…Ką›ëőEȘBœȘ#ƒuÒò·Æ" Fæę<'33AžíAxPń˜‹Q2FéÜU]aÿy#șnó[èŸżY?ÁŠ]èŹ›t„KŸ[ËóĂqPž„‘$ÌżȚ\Xƒ3†§ÌÏć‚g?Ѱ&Ú@mJpQíí@çObìù96>”áđ ?>aYCŸ§óćŐ7OŐŚƒȚÉ«ÚxżxÈŸĄ„IÜo­à+Ł:łŃÙÎ -Ûó#t^Ž{# üTè’ÀĂ$2Hˆ”3b©«ëÌŽ“„aŻï0Ž> ä;Tb€í‘»Žu[9”ӛű»ś6RB]ł;g9ïej.\íІöqŠÌïVKLGěcæĄ"đ‡R glEFq^8yNŒÊÉĆ=oć*'W ĐËFx‚ú-*bêŽS-ÁÛlô“ńšĄ„ULK‡ț⏊Çź˜Zè/Đ6e§g›ÏüæșŽÎ±„šO1Èxk·­ŠjÔ8ĘdłZeûì=’ùæRŸț,'«YâÓ~a‹W_;ęynŐ[if*ÿƒ€A—bû"Ï”˜ČŹąubEqÖ_ ‚M‘Íúç—Ÿuč =•<† ÀٙČæfCžH Bă†pŰQkŒ'ęDs„>N]‡)ՇÁY…œŃüE(ÒE՞ۇˆŰŚdRëĐ֚ű\r='T[.>&ăŸ‚JZ%î°Ïp|’m"N8E ˆiăxN”†óśÀ‹‹©‡ìX»‹}5óp5eł«L˜:“€yxÍ 9èw“Aű‘Űh#9mu„.*ù|̶ ŚÈ—țí_y{òmżôrbąXpŸE§=pwĊ+?:Ó·ŒË‡\#Nïž&‘ő¶ßŽődÊXZČYGJĆ5_ŠH xŠżˆÍËż·I1+7 iönžÈ(śç˜“ șĘO~Iˆç…ŠAšùÒ,ț"Žœ5qëûÚŹĄ œè@ŽÈl~nxŸíăp}ĂhmÖcëȘkù3Ü Ő¶2Ęۉv_ FăF°ąę,ò‘ŽDüȘôè›Đ‚üûŁ6\+§)›îŸïáw_‡Ó“„b۱} Żžn5‘Kîx'ŠŠË,źdԀ4C‰Š3ł–1äۜPD_wŰŁêÛ{m›»ą>ËçÄał Wț „äŰŻ‹ŁòQ=xPꜶPäČɈX VŸ/čŒâ}ò^/%^”Ńc¶§«wÙëH)…żë\ś'‡Ù.ĂÉĆđjÚ…a†ŹțąȘYRÊ_ŹŰfœ3 p,&vÊJV"҃mșÒŰ»ńë9)^źŰ:rƒ'S»6Äÿ;ŠL¶ZîČUőê04‹„Ę8vp’źçùwȚȚromÀæ8”đΏfŁuźÒR.ć.àxÛX&W˜ȘFƒ-Ć|Ïù-èW5ęŃwź˜âčwĘĄÙđ& š–Óê fJĆÊ'ë7A±Ž‹(č„r%‡iè¶Ț»~zÙ4„1Óh 8ä$+U|äUÏ:Î5lŁßăìź…·ÙˆL„đal.”dÎUšyĐi”C ^áïńO§o Çb;Ü^șíŠXÇW7gće"Ös¶•1Ő-¶ê#·ë$›s^đ}䩞(ÓĐsænhžz ÓŻčR»"`66 /JWÍ X/DÎŚ g9VƒûùçQ!3RwNg§ÁpŁ ó–™Žăc›0nń^d<13EGXŰëțʃ38Áò’4ÛàĂèÀšŠ":ŸÓnۛÌxljÔNŐjæž™ÊÇB–3}Ï%šß ŒșÛ8Ò”`Wtłœ±ëI§‹ŚÛĂzŐ Ï0d!>Ț ű豟ąu; dÒŒją`h ö§g°‚œ@òúF‹‹DoĂœü‚z–íłÎ9ž+ę&Űăzf”?ìÇXg’űŹÂr3 É|/*È%L‰ƃ.ÎĆbǎ{)JRŠV ÎuèćŸőű!'dÒkśêHÌ @ Ęïìœ }W ûx„œ˜‡źÂœțÜpęÖ5K!vNÛÂóź\ßrżŽC=d”'à-Ë#ŚșđcčÇĆ])ŰÖțß5 _ riüB»>ÙŁ!òQ · ”úń…ŽŹÛŚ ” Wmțüńe;Ž8»îwÙ»c‹ńž7nĄG0|œŹá•yț!°.}€ù‚[ÊjS(‹Û ÚŒw@*CĂȘđ}Š=ß1áU”ęEŃÉɎ§ÂhÁȘ†mf0ΜˉHWqcżö*ŚÌgj¶ SEWâț»¶Í…_[áá©Ș~í ӞäæT“ÜÎ !)ŚX^ „)#U䙫»M€ÙđăăœraŒp'™ąĂMüîő•°âő.V€œȘáaà0{‡oŃŰÀïn%-œIÒqȚÆ{Á#ƒ/bڰgnIMË &ÁŒ|ß !ǑyżGi)€‡Ű[t™Öt1rż5hïu)~?wÒ»VN€ć™jfsž©ȚƒlkHOS"™oëxùW§żNtž)çïærìmqy]~=•mŚqHvAf3ÙßÁÔȚĂțÈŐ€œ–@Ä@˜î[†Hí`Ć†ÛŚąy€äőŒ±p‚țÊĆ3,4,.Ž’ŠçțA‰‡a\RžEÈ—06Ű#i]êÖ°„4„%„èdƒŠúȘyšö‘èêì5käÛ5íȘö% čçaíŸIă>±Aæ(Ń.–Á!äU  ‹ä:bZčEäæhÏN>^‘v•©*Wك±<öÀwĘxàᯀ.© Ÿ›WbcÇ’L©Ł-˜KxÓæ˜žóŒvŸ(ٖ|1||}ČRêÖ  r©•·GE&jÆŽŽŒX$­^#Œłcœbې«äû€3țDÈĆșwßËh–zPțșS“;Š0ĂБi3Ś+„^ˆG%ÛŁĐè°óO6i‚Ś I›Q8Ï­F-ȘŹä+‰òGö$ @Ź…ăűxíp1à|îg˕SÜű…œMû›Űì°­íxÏN{†IIˆO pŃ^ČìčY Ú1­æ‡#HüüôDQHS p7ìmëłGfùç i Ë„/?›’ 3„+-ó€·(Ęšy 6î:]š;jŻ‘'j•ˆĆ#­‘±=z敿3oí·€a_Ązgàą}_ĂÚvo!YR—‚vìy =QÀ3Ö^*-%Nîç_|«ăJÜ]hȘ·Ÿ |O† Ÿą?»›ĆòhQ°Ìł°à5ĐĂ7 ßF˜ –@€Šä1É2 Ú8)vńàœË/đ;G “Xv ÖwÔó}àcéÎŒž’ČhqȚćòĄQNóńž/ítË IĘÿ­0D»±n*ÌìąÇ*dAŒŠäëă{]žÜÀɅ‘#Çź1Ę˜ò'­tĞ  é$À߇ëuß¶rŰöG#öW©‡à VáN­;yű%ôšw—Ê–Y#Š(.”`Ą3™țEúŠ!ž\%ĘÆlęSʘ9VJÏÂĄć›ű§Ž”“û…Ú°ČéúČÍÄŸah—æò¶ÛŸ‚†Ëxáë…h~ʖeÒśqÍ`°ĐłȚńœFș P&ìOó̑ ’hEEČV”‘$oá“z@G·Ž”›.#3Uń㈌îI‘ë-ŁÛ%ùwYÄÆ-ÖăΞöbë±ÿDĐŹčșfËO<š ÈÇ{ïÛ8nvöN}“”Èšò›űí-ÊČC èu -n”ĂzïÏ698$.=ű—ÚÜ%:· ïi6š‡tÇăő62+§ő~ÎJnĆB9UąPÌïłŠț k*ș{^QÙ ĆÎ iȘÿę$BÄgè` ç«*)šŃæâsŻÖĐE« š0O_STZ æïŁ}æ‘Ź /•k7ĆòVÆ0ŹÂ~Èl^OÄźi•ű2Lœ ò~>GąN /óÜŽ•„CˆæsȚŒt•_üíu”…0bÚ†źŚŹÚ+_?.ú<ƒ%›Šß/Â#Cś5æVÒsê—űÁąóƒx3^]§”Y!’/ŹËó­ê”ŃŽ™WZ9„q%Ąaț©Č°‚J!ƒłöyŐÜńăÈ ”Êj‡G4Ž*.Ú jkŃ/đ 4Ú-Aâê”{Ùeę)ƒYZÊ BôŁÖ9Fœ6cèWț#ˆdŃpz“ÔĂÿéâ›#d͍̍3±mcckbÛ66¶”ŃÆ¶msbÛv6Éœ«ûôî7t5Ș««O_æŁȚ ăB°Àȏ-s Ż1τ’BĄ†ÌăâWnÌő@ùƒO°Csà­c‹ȚűÜ/…Çòü°E€ÈÚiûȜŚïŰč›ÌœïÂkônz› ÄìĂ5zœ rŃ‚ìÊÊ Ą„ă2&}:·Œ‡ßYśÎ?+śP5_Š ©”Ç‘€Żè—)àÒZGfêź,4;Sùsÿ>ùŒń.HÏ]|u«B6bèEm迍òöžw·u2'v–€Ëű[4Čìeá#Ÿ"p©B‰k0VvńëÀ3DS> ò^5D6aȚ±9t ]ŁX›Ÿ«îUk…é·őÁ ĘZÜćŒŚ*:J*œĂ„ÿ[Fż?AATt± 'kêm‡ąÒlìœ- ż@%țÜCŽ›Ûf­Ț~œ#/U2 DòiZe*ÖŃ Ž­ęĐÂ賆§ńjŻT*Ęáo Șr†§ÿæ©[Îù=ŒšZÄ<=5lÎ㯥_‰'e±ûC’śbżg‚ŒŁväJŽT€ ó"™7 .śfnÏҌíπ-lQš”wG­Áă.Dőℎì±ńź( ê”ČÉËR(…S§Uu[.:ÛGÔÛu„ùpҟk8©6D=udÎlŹę±>ÁI3dZdJ–^ĘŽIÒ*ˆą@žÄ3©Ù-„jĐGŃ&gr{Öa,ꍗ“aÓCÒæ4wjöR<‰cA§&ŽšĐ0<üYZăÄB;}ôìŒX~Vò]+đĄÌđ”œí±pź@E…;`p;J'‡ÖlĆšŠ>*ćCĄÖł§?•śđäYe Nà:Ÿ‰9óĆmč8uÌûۀ+Ô((VĄæˆžàGŒjsœżĐßŠÉ (ì mà°Y:ƒçlmokŸżW`x.IÊh^č »Čö5ŠPo\xˆYk#•ÎŻśș#sjGZśŒP+@v`fäÆ-<À#˜çŠś–IŚĂűeŽ‘–k}r ąò—Íç ś!őM^1%Ö$w·†Ú±§\ÒÔș'Ïy›˜i”ăÍZ_Q\ægŽ^ʶ€a‹/ƞN)ÛÒÇÓ„ŻIć… €â9"™Â5@É~3%{T]JgïźXI ƒìÉòG5Nüƒ>kÆ(\;bțč3Q~­KwDLaŹa7»o‹žHBű„8ûżŹîś!ÜfF%őÇFí ›©TĄÛž`ÎP!ÛŽù’|ȘčŠä!]¶•`Ëżî•ÿecٚ?ió<šÿde9±Ò–@B‘:]G œCáÜȘo•¶“űÇéAffÍÛbì^Äÿ(7/}ìæŰ‘,Xę,YŸy‡ÈVL" ë=1ŠĂÇ[Ó:W&=úّ€ú^b,ûȘ(ńÙÙ`Cvb–'ŽFPÔNZó›€ĘO­Ö©—àž„îélÏcZ'˜HRGBŻŁ””W_ęûÉÒ%k"=~Ę m"nn|„M6ŸB2ÖpaÔŽȘjá}­6ôąŠ|Ț ,+}yÙ^Ëć?h -ôÔ;”™pZoy.ÓsC&[ 9ˆàÓέ„ÊèôÄ_ꝯkÂá?Ć(reí őf~ A€đÀ)p0€kUő`ù7śR§Àzq3(¶éYž@öŠŽŐTezU‹`,·9ĆŹ’öwÎ[ǛkĂpó!Qù4žš ßĂ~žA•lkz"À°{†!;ÄxD=ž]ČțWQD‡äßgÆ_kżÌ6[!bÜ@ʈ7E論  ŹĐ\Ż]û˜”Ń,™;|à©|koȰ†?ę ć«È`ŐĂÔȚ–ĆȘŽ>í0F­`șSšNjlęj.,ÂÆí, ű§±sé5<!$—qz§UÌ<îá=W s…]ă<ò7@· )0Ò¶·k1^;ßàŠaæM}°‰gȋ›xńšƒÚ@ŰV”‚'ÎH;'U`čz3»Ÿ˶k}wgq!œ%Kű>gŽ™Ûet?#rę”èńđčƒĄz-œÀëŸg<’ÖUèÏ ś}cæžč`d›éȘšÊÄO€…Ÿ)ÄCìńYv«89MŹ­­ž ±»Ú.ä°yꖿڅækźÍONvO9Ôű™ò:¶ Ăh@șÔ*M O—šˆ%$v·Ô3°–~Iżë€—Ä|ŐdŻŠdŐÁj{…ć›cÀ6v~Ëű±ÏG—zÜ5U—žCZ,V†óYcȘEăßE6s.•€yć~AoZțó$ÚÏ5b—ú$1‘'ú`đšül„Ͷ#„ƝU€žP˜ŽdŻŻÚoæ ÇJ«ßEšvüèÛèyÁU…N"EèïqŸłp’ÿÍGAîEúl4Ù0“¶čïVƒÔĘq…ćG Ûàž€ÓĆœt{ĐU§d— ü’ŒčNP*X)M kłc.<ÿÎdąCùĄąJQí©e†§#1)»đĂŃ óÒVžÏE‹•ƒZ–[ž w)„ìœ€Ì W3tźĆ:0»yaPŃ#·Čüąï}€(ՃßęQ7ò ûB2Nˆ. LŰ?@!ŸG]L©êóŻàGû8a™9Û:N”5‘ĆqŠQžČœŹ)‹Ÿ“œKá ‰”Ì›^ÀVzŐ2ú[h TÖA« UïȘă ë}1U&?)áőț(„_(óYÎé äE9cïvtqeÄćÿш„{p]%đ,é!ëăș\Ü$‹qé95èÉÒqpÇúZĂ;b|G`“ȚsÄÆûé —Sè(ù›Jΐ‰˜`Ìۇ #ïĄ‰ œ)#ÏâÇčő7sœòpOŁęžæƒ*Æk„çn·’E-6ÒՁ‰ûȚ%ÙÌ«X”ă7«›ê1±ŰF ‡ÄŸG «Ia\zìĆ?áÔÆ‰ż5Cu:\‘PŚS/<#ه,ì*e”Nv•ćÉűŐ4p/nm{Áò>z`Æôœ ÂĂëî»Â‰žaQçŰä(©Z‘Š]™«Jîí”gȚßÖ磏<YÉËP^$ïL X~ƒU“|4ÛWȚÚ†?(ž+ÍżÂțÉłœČY~ÂHÈL êœČO Îț„6™lV’ C$šöxˆĆŸÎ€š9S‡,šd)Ûïԋ–U°VŐż.ą‹J“ËœŃ϶91CÿwĘOeú ęĘűIú}“ăž(*ÿ51òÀfćÀ ƒ~œŠZIùlEYë]ź*bŽê&‹‚Š@&KÏă„ÈÊcé Vçt ˆÇrĄ5èź‘tSaìŻx“$äâΔĂBô>ÙÇw„ˆČíŸ#“â'‡pzsœH. Ń~˜-ü;źŸC”öŽ0»LH4>Dłš+ë$vȘ"•íälÊő5„“neąŸ/=™Sf Ș‡òŹ0xŰI»yS_OȘBIH ߊʜnšòÈĘ„ÏLžRòûF"“(c-zyí2oTˆŽ3ś$Ź=`‡Àæ[>żEšdH…ŸfûY=çÚÏT"9ŁCkÉÿ?/æá·XŽ LöwĘxÍ7O•ÄAE›>–W;‘5yąPĂïnˆČĐíłÄr„»{ûö;ÄÉű–fżŰ;s-rpž˜ƒZ #)Ó1ŽDÍÈÔŽƒ,V“Ö%dùś,ep«‹cŒˆ~:G¶Ű_ÍAˆÁ“çÿWäH6ąČ1Ös‹)ÁD~HDÖ'†źȚ,€l9lDސŚ,Ćt BxMï›Üûq1ĂćKŻbò $”{° žćSŸ€žÓëÎ8–8cŠóhFœB„ gҀđ6p±;3Ę! — †ä`ß8NyRÿĄvFȚMŚ 6ü'8ÈÖ8‹àC6ˆ™—G é­û<,*æÀąp†N1 u‰‘ í5amÚ<úÈ àüëc_^1`5xh˜öB5[ ­š3pđ>à«Űș?ƒaĂïi…p#]€śîÒp„0hön‰óŃ&żkUűúŠś«ìúóú6eé4țy0ÖvÒheœœe ̂xP?ĂąMőt|ëčCM•ÎȘNÔ ­u­QÍȚ0Ô#3نٱę3>źȘß)5FHmŃœă}^JĘ`zÁućL"RŚqšwLBzî_đÊ.U‹•ùŰh…PÁç–aÿï„)§Ù«éŐ/…B†›A§JeŒüWR¶±TO!?Ç(’–_ué»vU»CéČÿ¶ž–Äi$1b‡CL˜żśL€NÀ”«ŻÜfïżL—ŃŒUăÿŰ«5§1Šâ>€ÈgΖ‰6c·‡>ú-uŸ& ôß”ÀnЕĘĄŸ™ˇ2Á\Ü­s‘~\-oj䝫_țŹBOYőŒ šęqŃŽ32uYt ~ŃŸÌ‘Xęê»>ëžČœJ:Aêq¶àC™€i»Î(5Ź&¶é• Uű§æuëcô îŸÙ(đí%Ł»§•ΫÂWgù“ÈőÂož 2[úńTŽëx$ĆZ\ńœ±]iÿiZB2/{諃‡{;0-ô>Ü.vʱijnòó…)ìŹg4Ëż9B‚\æUúĂ*teٟO芰3ä§MŹâšĐrFŽ‹=Ąp”SŒŽnĆÔg›æ‚Gć.žVH9dĘKpʕ=RŽÙÎė&­‡Œ.Q] Ç9BU« 6`À8ș›J;֓%Ń`aŠìÜn6RSMäËeöò±„‚ó'Qj WŒ>ëÿôŻùê4ßfŒ± Î.EÄʌf˜ÊÔÀYŚpx{ÜŹ+‚YZá |śŚVŹuWöQ?3öÂ=_…Ò—’ÉŁź›šæbŽÀuŐ5}7Í:ȘtÊp-çw„㠚ƒxŁfÎ@ö B€äŻżŸG“uМœ‰șł«›d-ÆNŃŚČÓËš,'Xù` üŠĐńìTj†ôQRϛęçm81ö*†4©“ŠC‡QkÜÜ4Źą_#Î9+Ń SńâŃ=‡`ŠȚcŻ<ìÀnȘ{ć?•Ą‰Ț±V_Ô†!zŐwY‡|+':DZjC±DìT!3YżÈtîuä퉣/Bÿ"ĐmŠæn‰0 OűœϚ” •:V‘ ôë_úŽIÒő~SÎ@Ű9Äbߐ!ZÜʐېĄò:šô[îW2é*3‚Tp”v(‰ßúĘ gOɀJÈGš„GÍ% ./\1Ț 7Ń@ cfJç›Vy { ôÆő$ŒÊÓé@æH{äu`(„zŃȚšoh=Á>&â Ł–ŠĄ~ș™”)€ĆXŸvń‚5™Ê€ä-„œž rGaÀ ű„nł?ż8p©©”"ČD șhŠ,Ą€P8č錞Çïš äö_Ž6Ÿò§ źčŠ+“–y.mReš—ŃXȚPÖÆÔàÁČ«wdŒÙÓ*Ÿž@š’FĆ2G•˜Ő1à;ś }”|Œ$CœpXR#7‹ÁpJŃĂÖŻÙ©ŹgsJGŒŐĘL‡“ ĘfÂIô ęRÚW0íUPĐA~ûhƒ6Üô/‚ސq@•2țhŒ:ïjă%6w5ŸżApPáŚùӓ5ăÀÊÏ»­g k„·’młO*őš “<*ìEC±ńÈ8+YpȘ8h>Ś7î,vz0űΝżûUašŸôZšU+Ä Ž=ÖèÍDÌûɱœ5'öȘ 7‰öăKÒ0Š|猘~tòzl2 zALĘśčÔòÇ»™Śćïk2TSƒđ~»…›7AűB<;żÎĐ&‘eŸž€pĘqZ;ü8«`«_:rW=kkàzóŰÙńĂ"­¶î‹2v•6ű‹ĘŒUŃËq;„ŠûŠT©d8ÖôŠęĂCŁÁ™ȚćŽț%§Đê`šx–Ó+æ#=~k€ßF)Źqs@T-ƒi˜8 jdší±°s|@Ê0ȚG$5G/WŐ]xæ.ä Ô?‡/€od†c„m›np_F-ćÂŃă0p^=k_©ìź4•èIú>łű:äŻ{œùœ„6hŽ…„ę:ź1VƒJEč5$NjN$ƒžš*}cç|tę8Ł Ü”‚ŰoÉcđcn ]„ï46ŻpêôŐŠŠÍ5 Ôv‰hoü‘à’WC` ÚxŻïèą7ĆRòűäyŠą;l±éżĘ;‚?ĆŽk(;qĂdq àh„D§ƒiVفM‹ ïB\¶ÒÖĆČ~Ș%9@Śß}C܉^.9Ÿ 3pĂÖgČ·Ì/ü.e»‚˜ăÓ«fAă):Æ3htšc“ž ű+:ôüŐ"˜zMŒmŰê>,’Ôálę ìpŒXZ$JÍrû›Úsč9K'dÿ°ęÎBwśÈá=źęüPî—ÉÏ0ȚYT™V5sa•w·B=$~ń[ą$”JÛ„Ë:Sžż–nHŁ$Ńżă€œËIz‰N whíXG M· đ‚S<w©+‹łŽÖ·!Ćț}‰œ„„ëÆ!Ș•Ï4K)H0r§u•4Ș|”a%1Œ`ü”ÌCŸxȗO§_Óű`*đăăÏF?Àc§úlúV wNî„Ć‚ż{eo6i™§*­iÊß’í\FS­Njy| Bά˅ÒÎú ò€Rü~·ˆ+:ś• €L‚Â-–4±($oUž!Áœ'èc‘Ș …ȚłpŠł ĐÔȘÚ”t©~Ù Ăž5Ê*žA5›’à t^ ÏX|Ì⎉r|źŻdæțê-7L˅ĄglB€†­iȚŒś Ó„=äî]ËÏW'{qŐ ‰uÿű Żâ¶t62äv–n°ÿ‚~koáŃ%ÓéȘĐR,1„pèÀ+I~ȅ’§~OăóìĐӛͰ’òĄcÊß :%v"#§ą(<* |J‡m„@2Žèàbș·ì_Ê3ôűt‡«ü”ŁW}„Ă€ÉÖܒv> tŸ2Fźu7+‹M™_iXÉ;âăèÇú 8|1ŽA àéfœÖê1“ë–Ÿă=‘da$¶ê"t,†ßp.ôČÁ;ÜÄ~ž :ö4wŒPŒ*sŹŃ5“˜Ué(OźF t_Ățœ>˜‹eÜŃ7țrëuÎÿ8>šTć”AóÏú}ąșč™ËőVHӌ̒#š>ù^"lId`nöL9Š.TŁ&Ű-fšűĘLö)š$Ÿ ó'-Ś€šÚXf ”—Ă‡äp(+ZB«ïtì1ă}\lv~ŸŽÜ@Ę·(ßvŰë ç«pô3‹öu"2+űáȘêkAŽçĄçÛ±àfX-u‘”WŃè‘Ăq"ńȘD78ëęà; ĄŠțž<ŒÒxÚìÖ±ä LŹ‚<s!J0ƒÛëà!ùe#…țVŸ·H} (cëæSmżJû`&%àaœŁôÂqÊnșśę-ąuD§Ù0żŒdƊĆÙŒI)|ée;$b7ŚÂÉr”^ą\Łî0Ç4č gŽIŹÍâïe/†ó±,ËÏÎmŚ+Ű=źÿšĆdô?ooM Ìóż†SŽČ\}¶P:ôć·dXțözżA`"ĄŰæ}őès™ë«ZÇWH…ŸžQŁoâù1!ˆÛBêăá±/“ÉYWD91•#8XPú+æ1 ƒ«5dČÙOJ-ĂÁ4òrżËż [D™/•>qȚț…ÖEŁX"9 Wé Éü!2X89ú /ò4źÀŻKQ đ `BGAƌ'-`ŚúОэö+6[y›đßƒńïAŰϞȘs„žmt c~Ż9ÓŐ'śÒbĘĆî-zЛ.S]o›ÉwÏ”ƒÂçźÌ ?»~,Ę·ÇfC2G(·.ÔŸÇšísî% „$…É’‹QÏÒłęŁGÜ+Ó„èȘQƒuÛcîæÿžŽ#m—1:3<ÿFtÛjAđáRжšfM >Èí%Ű%EŸu„©Z©Oî ž16©·ìÀÎíőu CR7ò\†mśß%Ҁ«œ N}îèiœț8}\[u_lBz Cčú.ÒX†ÿAêöËçțf:C+Ș(knIûòC˔Kdi .:m„Ăn,žÓÊ-öÆ!Y€ĂÇ­.đ€*Oè”Y+čÁ‰L)zììČ­(óĘŁš+r‚Alސ›ąbŐ[î$?:z_áŸä, ˜șȚŹ)\ńń~qbèSś0d}Ç`€ zíAÂđôŽÖĆÚ?UEbi‡$Îfń¶0__-ü{húҍœ àgpčX…‘ž'IDdŹŻđAŻš©~·1ÜwkÁs;W‡Ż‚Œ=ODc#ń,|è‡żèÒi‚ùIĆáù}hH‹łČ†͟ĐòÊ~„ÿ!}^iŠqțła(‚ŸUšŽ°Ęo}• 5ÿK‚]K:ŽÔcùQź`t.ŐË"8NüČš–ńĂĘB§V°F2€“Ù üątą‡_ŚnÿL‡Î7 j{±6‹à;Ä»,á(òęfó\už€“ĆÚaN«fŒŃR>žE(fŽö…OPłÔt©łŒ.Š–€\‡·}NËK5˜ŁP\tŽö;·Ú·RƒnŒ%à+Ț"d©:@Hcóp‹ÓÔQúƧ!_–ó–æò»Šœ'Țô{MŐ "1ɱM’ŹÏfg”ą%źŃČj"ËĆćçă©v\šŚÜƒ}DHoúđșwŽU-3TvÒΔ„e„’íáæ–Ő°>ÊKŚnxm],5E\łGFŸSË —퐍wKŐ9‹’Uò|eLK.Üèż”v‡Ò êV/bYY’Ô~ąxïł-òQA6âç7(=ê ‡{Ÿ6>Bf0…jÓđzÚ1s}7(ÒN˜çà@MȘńïŚŻł’ü’wȚÊìÂ,>Ҁ˜z§‡9ùQâ”ĘÙt/­– ˜œŹ†úÿp™‡n endstream endobj 123 0 obj << /Length1 725 /Length2 24595 /Length3 0 /Length 25081 /Filter /FlateDecode >> stream xÚl»cpnʶ-ŹŰvòĶmÛ¶mÛvVl'+֊mÛ¶mȚwï}Ï蔿újțéŹŃzëœf՘s RB1{;OSFZF:.€Č˜Š #;€Žš”TŰÉÔĐĆÒȚNÄĐƔ  njP6u02˜ĄIÂöžN–æ. cÊj6†&–¶–N5{{7Kc ›››€›ł+“+Ę?IÊŠŠ S€™„)@X^ASRN@!.§ 7”3u2Ž(žÙXd,MíœM)föN›ÿ(c{;ËarŠû7;7S'—€™9ÙÛdEUĆäćTąÂô*ÂC;€ŒÄ?év.Î\ÿD›»žü«:€ËÿJ6†ÿ+ęŻôż^'ÿHtЌŒKc€‘©č„4ężx“Ž3ł°ęÇlâêđ?ź9ÿƒ@ń‡”Słą]mlä mMÂö¶ź.ŠNY{S';ÀżžwwČüÇò?Ą†¶–6žÿżÁÿ7BÒĆđ2íÌÿĄá?&Kg1KSK—űvqr5ęYĘô?œ‘55±t”ęOșé?œüÓU{;Ïÿ»â?„ü{=zYQMqiêÿ‚»EíŒíM,íÌÊ.ÿđièdòż†» -ÿ3Aÿƒć& ÀűÿtYC'K€6ĘżF„á_ÏÿHșÿ/JHÈȚۖ‘“@ËÌÆ`df`p03űț\cW''S;—“țO-ÿŁÿ{˜LM=LĄŚ–íčCŹÒZÂ*üD‹f+Ášg§ T©—WŠșoŽ‘,-LôݰïU°óĘańfxw/w$ ăMa'&c#t—±_Kˆ+Íęj¶Ț Țê#ôź©aÙËęș‰ŒsÉX_ R šdÉÊ=Ż‘r,ăEgŒ1(oïCÜNX]xާÔ%GÎÔú†5ʧźFœ”-Œ6âĘ[ ÏȚ…œ!ĆÒ·(Źt8 ŚÊß4lG:©B»ĆëŻ6żÈfČßʋțK ŸIȚçšRÂZ ”vȚÈŰR§]ÔƚŒśÇÉœțÖĘÜ[§”ĄĄÍtÄA>(±ÁfŃ;ƒ§ocÂŚȘłžŽÉ“QsłlŰșc9B„“TOű~b€„ôčĐűU3<è(ŹÇŹJév˜o[ÀœALjń=ìűœÖ”ˆÒTVŁ?â~4ó ŐtŰD ’H?ê ágôÜo”˜-—ÇG@—š—zä|űȘè| Uę=ó čdNŠF.*ÇsFËí-éï`mÆ ĂŹ€€üM!íč`npWŽ »?ă(°ŸłûÏ€ìŸ™Ń»YśÜ#}ïéuéŽ;1Gó0‹ù(ÈșΒČĆhș-žp2—ž É,J‡,Łk'y2ôÏÙă3n7Œ‡dš­–"H©ÙÈș%? êĐò;–hr Cü”ÂeáĐBDČqŠÒâ©E ‡zŃꠏzvaGĆçm·K!=źExx~hźNC/ßÜO\ YA7„Ny)ɧpȚ„ï]‡xlÍF [H&ĆÂ1ŹÂʘ+Ś$œ.‘©Ę,P»§‹-Șƒ^Ii!Œ‹ËÛN,挳úcż"ŽóÎY-ÂÍŃÖsȍ!D„fźÇĂLM~áö—æ-mąGÁL3ĂòŻ-p‡l‘[€y»"UÁ”@·8ä.ĄhóÖžá<%8ßĘĂŠŽ? © Ÿ“çR P›™Gčdźy§IT@–dșŰQăÜìńßËAęëâAÒ‚»mηÍ/§‹ä&#$3sŸâeï—Ż©}1‘.ŚîOÛUżìY?ŠŽŐ§Œ+Óxy­°ĆäÔvÿ€šVŒ[€ŸÊftTX@وߕkKcžLęáÙ^hé‚g ŁmÇN·œwaő4< —SÙæËÀ&Ű -Ib2-Ï Ć•Ö'Û·”ÊùNö6Ak‘ŁsoÖÍZWožđČoôEäk ŚÁmr\kkyxBdˆ[^,=ùCQé֔ąv6ĆÖÈźKâńæTŐŒä70v·>ΒïŁ~%ӟj‹oûâ+%Că:] À„[f"„zź üq(•H#đÎM\šiŻó(Ü: Ș« 3XɓæąK Áƒ5<ÓŃśK­@“Q…4ûŒ@ć8M˜ò„Y€±#±|sÎ Ç (ŹŐ†Ăojy™NŸD[·ŚÊփȚÊĆüąž]JKUwÌĄ6}žöA‘áߏ:‰N€E^šëŒ ˝œ „««ő,č°R—ÆÊCKˌĂÌàˆYĂQ*kR–îv3!uۖĄ_zæ•GŻ!EB%Šj)«}țŁ ‘oëèìÇŚhT@ô0śàíünEŚá1űrAFZk/? ID¶AqĘȚoÙ4GúÉíńÖĂnŽ^ő7Ńś ~fëíí„bązŠą^ui„Á{î·i©k«0ŸÚšpî>ŽšŠ)úłÜωś7Ő-†bô;ÌŐŸé7ˆąú‡~-ˆŻ›Dj ”Ÿ'ty<ł6'0\Û‹GÙZŒ„-GĐč™àí«Z ö–ÎS»ŰÆ\ÜĐőžŽÇPűŽŃA7~DžŁ&çrT’8őN5łTMțo7~\84űGłE»=*{^Ęł»ĘÄ$ ˆöˆr][‚j¶Ú%󅄞Lś?Ɣ3B9Ę?zrѰSĘ3ÌšŃŠ«š€Gí:öÀg ńnÌäj”'èò(Æű,ÉôÓț]_âÌígYL‹âiŸăż­šêU$ śzĂ¶_BÍ`íç‘ŐÚYđ@{q 2c› '‘Ő™(s‹.[ŠÓűòű {"đù™ÈĂ`Èg”g…uò˜)Ö·§PòŒ~ čá!:|—ûf\Ć”óx`źš‘Ć 0„čç7IC]b4͚0čœ‰]ŁeêëœüŒZu‘2Ă\a†Köi…ËŚynd•[ɜù“ƒÔPÉŸ=ٝè’Kš7œńčeNû [šô]vÊä—[).€›Ń«r_Mk[Űj·ê‚«ÜúÈCÿât2ăŐìÖ9 ƒđ@ęÆßçìÀI§F1‹Đ­ZnĄŽîO.ëŸÚˆág‰ói„T”hÏó(K&=ĘĂDf̍”ViŸËy/‘êö6đ Ù6Є,Ćșî˜îi@9G­<€n|ž€<Á~èëÖïčČż Oçș™KSèÖÀ?ä(ŐXrMÀ?Őś=WŽEZd‡ùzSl>śșŽłĄț6vœdó d-đòzŹ|@LÂȚ.śA`b'ow+é**»*Œ‰ł±m5Û!UČiëS˜9öíd<ŹŃÎâ\Ž~n„b!üÜùȐÜT±UĆ,Jv‰¶ȘÓe_`ûYü~G>ŹăÉßfżAA–}ŐbŐĂÉ€1‹ëœwDqÁƒBaÎù"•Oń 7V+ú}HŠIžțh ć@ d0•„í˕VUœwšCBçÂČO7ÆF°CŽ|ê9èvțdÖpmÊłƒ#z=„á­ĘÀôȚeš§L'óKw'0Łùó)ÁK㍧ûŽ3›Ö[„ Ä«TéAĄŰÏ?;ŽWˇčûuS[ i Ä«Òg©–Œ¶ïâđ9d'Hž9˜Ëšć­^Lć‹…¶YŸś~S;â?șĐQÈuč,-ùeFÈ8Gö7c“đsŃpúČü§ú3š$ÊÛÀDu&…û>ŒÎ·ˆJ~ìNú+TŠmîŰvèúî*·ĆłòÎʓÇS!ąž­ö‘Xž‡ìP»ONpĂÒÄś”‘‡ÛLđFY+ŁXCąL™¶01â˜Ąą†_DpŰZĆ:Ž­š‚|F›S0=Ž‘Ővh!Žkă ȘهJHaœw0_|Û,č ĂŚPZÛ*ł­@)6ël|Z&/ȘęÊï|”ÁVmCŠőĐXŐè!rÏò›ÌŻ~€ûC.TÀȘ„ ‚‡ '·ïßžđŠOŹÂ”E~MùjŹ] ‘Yê‰7T[if“çFYđzär]ß`ËžžJ#ò!ț{Ù”L}(#”ÁOĆ *@u„šÒăŁcăđY°ËIȘPŠR‰¶(SŽv¶q>Ą±iˆ ÏÚai‡ ”êËwŐ,L2OŁŰ’”?„ËŸ g™łù),0Gûó;Iwnq’©•L›ôæ 3ŹÖȋvŽ/PVf„Ô.6æńÜ·X^n_›ŒĘÇ?_ó,…«ž…;«Á›ÒęzȚYč»sÓ̓Ÿg“ą–žèSYBbèî§WÜŒœ7Ő°ÏÍѝ&&4B¶‡H„R;1ù†ßž5ƒșür_)Ç{oúχ—œ%êÇNŽ2ŠőòL-ùgÏ)îŁXûÁ ]ӛWq&Ișr–kL òdO·ÆÏ]șÉą”Ò§tEź'vŰ?pŒX»ÌrîÓ9» ›ő]–Ț~dđŽ€&„đă•IPib.ĘjÚ }R@R” Úgő–ŃҜàg!FÂ%2X“èË Ź],Lț‚žŽő‰á^ĆFĄśRA,¶PTbgÉœ–Śê5HM`ÿŁêƒläY`ʞ6Rî)è‘č „ż‡‰xÒ!Ó@»qêśÎÊá[zü@0@{|źĄ[í>éŽúęŒ áŁ”†śŚ€čGb8„Ű~F†B8`û€ F©Âđ—‘xžx|łÆwȘćƒVù‚öíû§%ûEź)ö)K§Șę‘ú;”Ś@›©*r –2d­qđó šW%’ž(ßzš”ș^cÄ2ś»^߉/SQ€ș^ą"avۄhÚŁUÏ§Ú44 Ł G:śuw””ûÚčNUâŐ°Ï[›9łgî»űœ7VHîCY­·âőmCíSò‰„±”;8ŻeœU—ŸôśńJ,·°™·]‹±!Š$žÁ0G’T„Óęńúˆ·IIcÄĂâ·d4{Ń@ޱń0aɞŒŐŻ Ęg·rXc/K]ۘĘv3Ö)‡Œt"È$ Ê·ĄFAŐt6’Šb#șMáżȘŹ%Mn}UŸÆÛöóA4 g^-Ț‡3!ą·:Ô+«ûIl—ƧEÍM@‚­~°MîY>sĐsäșSÌÌÁ0Â^‘f€R›BiĐ9jGWĘî|gS;ê$€ÎôËìËí;–žšŸlĆ2ô5mK·-Ùí"•šzŐÔFÌ ŐË 9/ęÁšŁ °~[ùG_ÁĄëË€œ­žŚbCíÙáŽDîˆYn-íąiż ŃFšs­wvd2­8ZH2o(Ł„ŃIfĄ»žȘ·€ÏńțŒĘûjo%(Î7DÛŹ08čęE»•*=ő ‰X‡rûD€űkłțÜTàUŒl•ĆŰvà'Ș°ĄűŽ\>):ZY°“ŁŻŹȘè Ę WÁŠùn띊ĆĐĂÄUüò éțù{@Âz\œŸJMäíjJ‹Œ;č„ăUorIègLl_cè=†éI„‰ÙÌĘż”Őœ­™ASÇfĆŁL@àn‰tˆ]QżW$gWŐ=NśSûz9OZl[rć^ ćŽhÂ{͑ÒÀ·ŠƒsÂ‹ŚšŻwÿÂû5IŠŁ Ÿ§°•5°HwFÒ,g„2§1H¶škőäčžf]_q♭+FÜY"|ŽŃ>Û š"ÁJž ŐĐÍu‘{őN°”~›œe%Ę€R¶üNxŰI•Æąșđ*ЄjȘJw͒:B8l܅u3Ê ęÒz· żÛgx[żș0}ïązAœfZòźĂŰíșëŸÓÁż‚.RÙœf­€‡ò4șç˜IŠ$űĘú'OWÏ ;í5¶° sf¶,‘ö! ë/sÉšf{ÎD‚ÈšÁ śG$ëhòEĂà„Ői܇Š2”ŐóW…­ìZgUcž”†t2ûę!ïTĐ”ÿ@őÓ˚Àt©˜k‘-#J‰á… 䯿6DÒu"!G{Täïûw°ç6©–‘`É7;ę­ênjlă0xš.lÎúÔ..Æfô}ü)$­ŻïgÁŠdOœź=°CÍłŃÂeÿ†hĄ6ÌŁ?šąd0kHh)Ś0Œ -xaFÌ$I2©`ŚSȘęŽțŠ·ÖžÒűYì™?0ŁäÒ(Ù l>jöČڎ‚€Ę‡jĐöŠb_lŽàCJđ)'ˆŠcbĄÛF糞2îZ?·œ†‹‡š™À„žČۋ KÉ'èÓÖÏÔ`ájÿ-‹ąkšZàbȘjęđAȚ&GüuYœŰőaîž]èÉfOê=ìąŽ°'@“$Ókášk+ZYQŐÓ;úč™ b)aŒŽŐ©çȚę ĄÓY”…4Šôš]PĆŽ 8żäpL>l ł™2­dóŐOsŸB( őqçÛsûÍę2= ƒ˜}ϊÔәę's"ŒI‘ÂÉ3Ščìű,ï»~áèâ¶ŸŽąč‚ÿ-I źëźÊytIŠĘ†3”ŠéŠò#fQHáÊŁ­Ï+żë6ćx‰Ÿˆ”Éz"`lÇgP°8Źúoù( ]S>FÉ/kżHNV¶ő•šbK—éČŚ©ŁđX–<+J;…A•bu%č ôç Nćےš‘ńÀiGt §“€<ÀfâăłÔ‰ÉlX~ùpaA\^lŠś^Šșźü »ˆwätű űŽ˜Ń$UŹ•flJÜ{țSćÊ>čQ{áïΩ7ì L7›  żŒü+AMJûoÜC—û}ő锞ŠÇđ0Ÿ3âr MÛÂuŒßgæ%æ›>RèsÉÚšJÎFi‘‚Ïb‰6Âűđ ĄóˆB„™ùź@•șÇK»Îsđ3 ~Œ w!«ùáïó́b3ĆY(b±ĂA äČČï! ‡\…N˜j\|çBaš‰nïRÀLÚ%Țo.Hz”`ę°o§=9ƒ<ˆćʍ]3ƒÆîŒÎ&U`Ç%zŚŃ­ÄòÌWàąțnŻ!ę5D€ú2B-mÏ;y€Ś 1—Z9áƒmM7„-źŸSÉ+źȘ±™^˜žwî m™*_ò±í KÊÜĄpČÆïęŽ0°bD&±ßm{æôQ¶"ÙeśšZ{ŰŠ°U!±[y*ȘUéœÄŸŐ]Ż—Ćé5vê–śO*ÚWcęB§„­ŻxŹßąÎ)î?UßDúaèV Ć‰pâóÆ31żn°{óÍC\XwrŽĘŻDˆê©ŹxDb7_Bă„[S~œź\Ńusƒœ'ȇf#QûFzL–ۿߏ}«s;ÎItÏ(n/äȘÏqœȘLć€H.äő’šŰÈ-)‘•țHéOûĐ3_Îd·òńˆÖ*šüc}‚T Hș{@;Źq„"ÍSß°èÂHŒâ̆š%ńÁśÈ”šgđÀG7ž#­ęÚŒM áŒâęz3ï±€‰đ1ńÉšˆĆŰ j`‚ë™żÌ’pBŽł#;f­yżöŒqȆŽRê2Ńߌ$ëINĂêáiç韃’â‰ÿpàùrMZȈš± đêl…bÈêt˜VäÒŐjˆxőQÓé2ĘD¶?ÿ ììŃ1Sćö*è]Žž*wç Ć+’»1Ęi5Ąžg–ˆáŒÙ5ƕ—vœ5ˆœf„NßÿíÛ* opҍĐVF_ŁG!9żàv*ńP#+Ì"ÚfsŸŽëŐËG˜šoŸ“S!X§ŚÒ!ËSË:x_t)Ù8 @„%MxŽ]>q·ÈaŽće?YłÏąm‚șśú•{Vw3>e”` hlvÂȧaZ„ZLŒÓȧ* XĆ3Ám{šż‚żôl7Є!¶œW ȚžűpȘó íJÏŰŸz„Í60KŸ+Ù {ą.Šó†=ÌpN§ ű7„B?Ę@©:čÀșp-ŰƄÀëkŹÿ;ŠKeŸă„OĘ;l±’BđíF°Û\iÇk˜pJï$‰≂{Dx.Z6ƒéaz°{ÉIT뫕Íœ Ąye?\SOń»Yêꘫ©‡Rl郗œ,îIŒGƃ“uÏ šł=È­”€úșÎŚ±‹DÀ€}héĄêŁÏç(śž9Šz±††[É·&ÖÀ űጞ ĂeI,–ț{3@@ŁE1&•;Ïòô§N~ÔłôŸi‰À€›œˆçŐO-FęIe«ÿy\ ‘- Ś‰Y˜}€Ââ*‰ŐUł 5uĂk„Ż{ŒżD}ÊÁî…Çߚ$‘8Ź\yČđ­š?æ1ŁĐ˜&fÚ‹ë-RcC+Psß" ęeiyUJˆáÆÂęDŚáĐۋ*òjwÀ& ŸÊŻægÚjŒ €:^:áškÁ~—ad@|úÎśn8ù˜±KTéő6mRÎÈߞmêĘì%â˜!NZčK·ŁínńX~5ćâ0ĂvÚń–N»:ĐôÀ› źvN3bj!·œCRrĄüž…ČŒŚ")RY{PÇáˆ|ûżu_ í)Ë:ű@ŒäßĐ2€·{ŁR—˜Z{©‹yïŐ©<‘0A$ĄÏïö„ŽŠ‚“ùcŻü΋Žì)Ö K…mÒ^9O3V\śŸé§)Śź!HŃÓFùy‰IsŐ;^GŒ{=˜’9ŻŁÈς–Úń M‘>'bŰKíukސtkUj‹șÏĆïĐ:ź; U„<ÈăüàŸZô^Z\9Cf%š^:WmÆòM! AšÌDœnéO‚ș|‰Ɠź*Ê2đ1ú|oàÒ­űŠÓŠL9Ïż@Â&fćàšzu€‡¶j)볃ŰÎr/# MâƐąŰSȘŐËĐ`UóìZgèŒ\w aŒ y«Ja^ †ÍjÈ/Q•üZw»áb˜Äč%ÖìÛR}–èŒâL0Î'.ĘțlŒÜŻèö̇\’ŒÍͿۍő28'é"Ï ke·kLVÓ§5bŽzèǰ'Y€‘Ž0 [ąò*öB^ș2Ž[@&”ŚÍč9őkòVXË2ž./ŸŒàÄș3ùFÀŠ­Œï·dőЇ gq$ü0ÍRđPgĄ€…svéźÛAlÊÌeĆÂ'Œă<îv^è©gg朗7}kÂEMĂfƒUĄn…m°^ ·zUŹ5©ń5iÿbü 6nCڎ!i§ëyźóŸ-m^#Ęo9iű[žèŹç•őłœ2Š€ ž˜ï)ÊHÏ> Äč%yûÈóö·ĂŰŸ Ÿæ *"8:Ű5ažȘ_†™ÖÎ%c1ٶ–G+ad?uqÈWm›>Ÿ“6\! ó>= Żt‚•ȘÉAEy‰sÊčžRëDœćlZÛMdV|ăá)ˆuƒíŸžà7ՅŽfèŸ7yą5ÉÖ/ë܁UśÒú±€Ÿ mƒáÉąŐ›”mXČ„śŽÊŁ.k'sś_LœNȚ*œÈéAŻ„ŰŸ(ïšÊą-#†Í@#PlÇößä>x•ł( „-łxò–xȆCòÖKmE€0QÖA?ꐔŻ+À.Ő@ÓÒë&Čá|™_,뷞żŽ)·ÌôrÔ9a…ŽêúM»GÄ©Ÿ)R-P/ș1Ȓȅ­ —}|Ą&EŽ–/ŸIW”žÖy"ĄùŹÇˆhÁ§čà‰  cóŠÖ Ś}Ț`›‹†ńł:$ję[Šß”çdÁ°\làt=^„zUé‚p *ś,ĘQąűÍFš8ŐEŠȚyÈÄÜK'ÂŚ‰KôiÁTd`©żšgő ó„ʂ[üvŻUr"u‘ș~W ‹+^ődżÊ 8ônžlc„Á<Üž:ŠŽZV‚À‘‡ŒWn-őïÊIž˜avG9Ô5ǗŁŽ /c, œzûŁŁgiFïÒ73JU7/fą+ăÂ6w„2©-È7IyȚSŠŒAÖvăéžȘ{"P§V ,,æ—&4ë!Ę%ß VŰ9­á”;ÄyxćFžèr&@ÔPŽX‰m[YvĆӑ2›Óï­©lĄUŽ2…ĆŸ¶}ąué€łÊŒ)©„î7ßü ŻđÏæđc`éúQÀ”6YĘO*œ[Űź«»„ :ZoŸŒ|…ĆŐËÎȘĄ«ìq”OÈćź+)ŽűÉ%Š›ăŠâ­¶†NÙĆvżÖ[đÄ[éő&Śj8Äo­ę©Ó3Ś_±;U«‘…ŸŐîȚțœÎœkŐȊL»ŸiŽŸbœ $S›éìjÓpêUû˱xoq󂆯4—` òâ0ڈągŒŃčÚÙúèț…ŸJé~”ŚÖű>1‡užŒI9+.Òì„¶_nwŁzÖąÆy0b”oCęwAšˆ2(KP,‚蚊ő_P•ÍXFR*[^ËI”Ł ]31­LF™æfU9jșÆœ ™Đ8á8\418+Ü]ÚgóZpRÊxłÈ_‡dj ù6ÍŁŽË?°@ÔFÛEJ"ôčHÈŁĄ.Æ$žßž)««ïčá^dĆöo“Æfó4_Ń~3Ò"°Ă—Șæ\@Ô]À;7;!AâwB0l4–BőÛUmo–ž™ë›‡ż~„HˆŚű#ì~bŃ/ÉRA#€nA3a!ˆGÏ.™Éź«/}K ÏĐł? Cś•,ä{6Dí! bâC5UTˆ›wÇĘK„·UUYNTÙÿûłŽéÆx#țăI’ŐxÎ@m[/Q–Š0žÍûț4U'5&Šk\Œ:yńÈ9‘».jTö7ș~ÌŁœƒ3’:*8Œ–č9zżG Gžo*\ç‰sèI(Px»î·ÉLÎ>ÂŻ­ZœŸlŻU/”ÙhuN ó+ĐIæż›Éń m `<jyœŸE7Bv{êS՘Àˆ™ƒŰW8J”ž•Èÿțuh#v€Èlâ5ć HŒ€ôŸȚĘïtö‰gdc=èŹy1ű-jčEąă`~O녈”+…ćˆ|§*ßg üçč”uW‡ú;/ę|̈Êi\Zm€+0ĆżÒŸžó‡fLC5dă(%OVkńeÿĂU0Ź}W„È»Ę:E0ž8 LïĐJ ٘o~~gąkFæXŃjúăŒ6‹Èe„Ä\lQŁżïïöÆCQ,ù/Đ)°æśÆ+ĆÂÜ„Y›_Čj‰9ü$Ú6DçlCș~BŃub3ôŰc”ëő„„4e>’0ŁÈ › ckÁìę>BÄ…mȘŒ,™WŹp-OĄą‚4ޟÂmù΀\DȚœs±N­[SČ[Ê$èžï+ÂobńżxaŠÆ?}Zą©żbŚQč—tU‹4?†ú Ž knÎÚXY§> ©«·śżê™—ęÍŽd­úščÀÙç8™Ä•·Ë~4t‰X›ŰH+)S ƒwù3Ší5Ț2r`#ĄDÄKç?QĆżJ]}ć ËS›YaäY‚Ćő•â3ű{ÌJ \JlžÔ]ÿ0âŸl5ŁEwrZßšV,]0jĝćâïN9’¶ČIïXܶŒ3·m‡Ï…”PG«ß1ÒŹ }ѐʕwKOPv\źŒúžWk~2ӍȘżVĆ1ˆÉș‹ TMÒšËF Ûne\ßÍMZ&Ôa~Ì^7âTȚŐ¶n”Ï7ÀÿÄ.’òœîĂ-[$šĐĘǕêJDœÎ[ŠCóĂV€kB†iuQ È,-śp“U Œ«ÿ;j)UŹi8O/„łvï ĘjËÌ4A m»Ä>m={ÍHûP0‹Á¶y‘1œuŹYNfśÊłïdEnE~Ę*Ö'Ž2eæ5I+«ÀçđöÀȘï"dó›Z€šx„ô˜M>ֆUˆüi€’MžKÄWŽöŰg§–ÏÊ”Ă€,6ucÖ€Qvö„#K;xYìÓžÆ Öá󙜾öœmÆ8șU€úKÂțńò|5B@=ÖçšŰ'ù2Đô/qF1JÈVŃ|%?)ő|ŽJÉ-imŸÔ"5çĆŠw—ru Ç}x­›•KIŒ’—%VŽÚS”ßűäöÈ$ÆNń8žMȘŠșD‹ÄŒy—»Ü€l¶‚Ć|Ïđϧ’H_8”W€tZą^čÀĐČá^Ž&ÆÁ‡ôđE~c+§dęd\a€–»ŚsA‘[Uʎ«> c[ÎhûȘ`—3„Ï`KŰȚMșźM&Ș„­`țx€%1=Ç"śÉ‘#žŒTfΛ*žÚ|àÖé‡ÌPrM1Èő ârúaE~ÈÀő2eՏ…`s9çSé‹{œDĂU_œè>łXûȘ#†pÿ^©‡úB–DźŠÀ3ɉèê˜I§9©3J9HÏ BăűÇAz"?Ńc#ś&€ráä.‡`]È Ë‡š<Á색œQĆșPšșWÆ+\Ö~*ü„…Ž}AÏJ\ç”ń Ą7Û5hŠRä=ąArŃQ3Ê€\‹ÁùÚb\a?Äz­šZlƛÎöP–lĘÜ^Nt§-gÖ;*m89"ć…źî—ąîœr$)őéPÛÎ{>ÉŻç€ÒCđ–Đ”6væ6rë*Yż`f >éÆRO7™~­™JœhŸŃ-)ÊŰțVŁ·êTŽźș3ÏĄ€žcY$èŠxk]Ëč;N‹dÖóF:íwïŻ<œÇjĐfÇ*aż "žËà§á?WœŽrûźJ*փž„ń#Ûf:*œ€çűàžw“:ŐĆš?œ‚đ˜jűuÜ§ä ‹ ËČÇDÜۖöÍNœ.à 4\MŸ;(9hŃمŸD|©tž3V›nôVN@8$^Ćrßì_3r{ÀQáÛúóŸÉMÙ­odŠ– œU–Ša*€ćœ:”USOŚń>ŒnłŸ ȚLsüÔlŸ€ćŒš[Ê4VjźțHàRòùö{Ą±Ä+;[$Sm… żȘˆ §ŁŠŽ ;4 #goŽ€xbŃ%Îź=ËRQAdcۂB–Ú]UÏEԏŐâ<„ 0ŒčßĘm7QŐś.füöLa݌‰:ûVšűpÖŁ ÀÂâ>oœ§ö•e›FÛèGQRŃ9a: ț‚„dj‡Ă9KśŹxoĂ,Œl›ßÄ[țí?äŐ1}·Hÿă˘ex”[ è&7 6EЉ•í<@Îw…=·œääŽĘ{ò)§=A]œÍ3«›ËÓÓ?łć,ŠòHSc…ż\•Ź9<ĘČkșJÓœŃÒȚÉaT3xë& ç ^n<'ȘKÖĆìŁ)M>V‹żȚúcwźQœÄ%ŹÁ·8ֆä ˜)ÔŻb=ÉGȘĆè@ąaÊÜmC«(LüÌ]Őh,°ëA—\Pś…Ł“ș?"-ٶëĆś»‘.0ÛŐ7bŒÆ|úĄhËÏ>MiOăŸFärT`ȘÙyŒEèVÓp0j–ôô¶óšđe>Íßšn„P[Ț’Ń‘đšąÆ’ŠC…KŃE…á”èFŠ7Œ*{ځ˜Êûûƒr'Č~RA€.ö5*>WödSYaŹ…ÿ dçÇ8ȘΔ”X}ȘYxÔ°ă]Š4ąkÒÎ Œ<ÓFz {ŽŻ’ä°čžÎû·ŸłȘRȚMPŽź|ʘ(šÀźêÒçőyę–`!ʞ€đ)_m„ÉA2©‹' ÂC :'ÍđɜàŻ4ŹY'ÇŚțŒOŠĘш)ŸY™ŸțóÔùŽ.šlȘWX­.šŃù„Äô›0CT:DręIèç7:7—ûŽbüĆlóóNż'ń.âSfÍÊk;ßo/|z‚'S@¶úž,_ë'EŁ]9Ì|ë?Y*TȚŃj+B’ű(x…ÖHg ž»æÄ i5üÛȚƒÏłDžK„@j2WáŐ8âȚgûTmîì…ìŽH'ĄŹƒü·Żàšśeó€%H-3 È ó›ÆÌWNt§JßxLÚăéÍՖÄĆÏ,ČȚ€ aćúöŠżÿê'ÉG§ć^ńŃêÿĂÚśVxL”(jąö$•¶čj?ęGäêŁv2Q őVgF°Û:)Çf±„šŰkîŸŚ+ĆL`pòŁ’…ŠbdąÉ[6nZQ.ÁĄÀ0ÆGr‘źk‘éY”lʶWcÿùFŹ .wü°¶È›‚` ăw€u^·{,Ȋ©Ű ¶kÔăˆX"1zVʚZÎ Æfk‚ONȘȚÍöĘm_śżëČ(X|陙ŰȚH±Àzžäçiń֙ŹOźÍï„Ì;©Žìdőwt#Pí?hÒń<{Y5FüelkœŁ*‹ú|1Šă»HźDíÁы–, %fźŁƒL±Û RŚżWX+ÆŰz2Ÿ6ÆĘäw»\áĆ» ‡4^‡ ò$›NLœíÓYumÔüŐæŃwà™e-ž†ĂÆÜˆ˜l^ ÿZcš—r4œâ ]8æ3‚».*‚jÀ€‘h.łULyŽj-ې)2‰óN„O…4hBlAQHÉ ·|R‚Ôù6źY,Șò G6#k±ù`AȚŁëR~CëÜI%SČȚœčÇÔQŽwáń)»žJúÌô!IƒVÚ”@«üÈ|ąŠ™PbxÿûVv‚‡âÈ žSU:źOô0°ČœÌŃ5ű 2âznż2mÚЇ¶ÂÎ=Œ)q8yÀßoÂ/k0Òąò©»ŹÊZłučˆÒŻ_ƒs•™‹.ûzŒćiÂìFä -#(時-űK52߯żßùU>à”JÁ1Y‡ ăâ.(>Ćqk"-‰ą9’Ήlëőa7lÂKR€ŽĄ‘ö4ËÍc “6 ë-Î X‡L{N$A'ëùĂűőÖÆr("'$/ČńéB‡üX”;䚟„Éw,èքwș:…ÖĄ(Ńzż] >Ä-î»â9€eú†\™kŠ[ ŽÔÖIÜ·œ*œžŽæ> a€ô„eÌđùȘóÍÆ;Ś‘‡/«+·!a{=?Ęïz[ș,>˃] 8ʍoèńsˆ‰ŹÎ7‚ëÔë•Éßç Ț‹Ûek òʒó<òÏ!DæCb[ŒűßÈÛ)6đ‘ÈÀ{Á™P€ŐŐ2ƒțÎdÎCȘ"Ș:Ž–[œò>:Ș±“»Wâęe\Cç2a‚0Ć'Ž„ ÓwÊéát…ÿkóÌȚÀN>ÙÒ9~çBћ~Ż»w͗ƒçőEœ;©R©„éÀ–™>(êÈäŠx.ČVŽìWæ@x7šuMyïl˜wEYĘŹźĂL€ĘêęcčÎúUŹż3ț éò&î• È/0?˜2Đi5Śû⥹41îj™ż,6?U ™#„ ʜÚ~iăûd±îÛŻ}ț\Z`gÏŚ8ń߃žĄœyÛsÈm|/—…džóĐ+Ž­–=žkÙóÊDRi[šwŚ=iÚŒqÖ3siđp‹ÔáÁrąB2ÆFśÜ™"jÄë‹ôáęŸú„yžąŹ˜ì^rGŒ~Æl?;ÀÇÒZéæÄ—Œ€É€œ±U6Șć•Ûđó"1 AŐXS/ï›ÉUŒ}Űž7h†@©BìeÏ?›#1€Á#^ș—É9¶0ą5:9țZ“/œ§=«ófáču%ő±úóŽÉ„$ÂČ ńŹ-:64ĂûF=WęăA4«eáùÙő2çtïáӈŒ¶|3ž‚č­°”)4”Pa>Wc ŸOÎ8ˆm€s}‚}4ÁăBkhæÒ·Š7fòđĘ”„옩+ۗSLù-ŻäÆê~bżćčMțá[ŒŒu=…KÂÏű€MNäËpVtŃŚ‹ÁđśŽʓÈ^^\BƇŠęìÊŐ~<öÆëż/€5ÎÛ&W<„„ö-RŰÆű5iAęA6€]’ÏđoùhkĂmą;Ÿ LÚ¶B-"pP¶ô•cőo–îû„ŽXc:rïd›ę€~vÍg€ęZĄŸÛÄŠÁȘĐûÏϊ0z%^.-áđk+ÄrŸwČlź~žĘŸ:ӇÇ3}~ŚŒÊŽHQö.ÓhŸEìI€ž„ÓÔܗÇ0НƒöG„8§ Á|•s€Ęę5âˆ;ù|5H©¶aZGfÚsÎ^ĂÛÈÊTš„#Ç<ă‰!°Ć Č=ÎőHą8’î;”HSM"ŚăˆÆMú^yY'țÂŚU!›œbùÀnČFT†Vÿ$`™–vœKwlêsĂÏd›A0Æ%ÚćÔXrö|ĆȚăśV_ȚŽi`ńȘ_Š-•~~ĄOƒț­Ć8-°őr_RpÒcžYi$çĄDĄ€ŰûĄˆ.JbŐésșĂ?‰Ż Né%.!æC«“È„ŰYÄuvÉŁȚŒ8E”!ŠŸ©T{ę*hś>,œVo‡N?€mU‹\”ÿx?úśô'Đn€ ïu™û­óBrCŃdŹŃs)ùn&wŐŒJÄęśę MßúùiQóo »”%*B(łÊ'6°€ží'/ÂïĆ5ł†mc ß&AhŚ€ś8XÒăOi‚ùbP‰|Ì0*ž]o%ĄÄ·_čšCő—ąb1=-5f ~ÌsSEeść‹ŒMƒŐ>@—”ĐÙÔvłöàxF™o€»ŹÌQÂŹlBTŠG…xïÙéOŒÍŽÒa»°qŃšÚ#~4Íújo‰5M»!oúIô\§^Łò.>8„wĖĘ ț:”CçŒQĐ“K%#šț“©ń”)ü‚[Fî“PO??Ź^á*[Hi"«·śá'­DĘ wò[RG)—w,űeŽŚ{x2ȘYIƒ[môŚ€!îĆ  2„î?ls{ú€ÊL ĂÖæ4<żáŚ~_Ä0Z%o>Ű%ÆŠc}șHGŻ û9‘œ ûeM›8'FŽÖ·öêB›ŚRÏžŽ@€ŻĆƒ—ÚŁ“zkNáÇrđ…Lrü:lńDęáâż|ŽźÖlçäÖ ÌHÎíê©aathL ŸH Țű gŠVęŸ.źù«€QV›6[[›m۶͛7ÛŰͶmÛ¶mÜ\·ÚŹ›±ï{?œóœ?bæÌ̙™î<;/[ž=D]©3n?w‡P=“Ž"Łá):”L/”Füô»F€A·ŒĆcŁ/JÌĄń•ŃK3òÜ=Ź…łÄ7ˆÛné#§iX€ûĆ^O SŁŁïŠÎ­„6=Îű8œ%ČɗąŽqőś*Ë_Ï|Kžy“\wCÒì§ cq•čZÉ+Šç-``{„ESÿ·zŐű'PÒsGąČ,ę ę=<ß*č(‡¶ĂÊĘ ȚÔ$ySêî@#ŠV)‰*td©>lśÇ -A5 tKæç]‡+m{Hđžù2L흔ÇéžœÀMtÄyđœäo.čÄ^Ő=Xęüiœ˜Çš5œțŹŽR ÛÀäQg mnh=ՓRX«€ú·S T‰˜3ïśGĆ)°œ”ê-¶ÍŽìŽćRȘL|˜z±{ùšE¶€ÛŽÏ˟ĘÆaąä6ßoó:ž$Z5#tdÀu‰Ić­Ï@6ßí&ț*ÆśgÉU„vc͑B+4*™] ăǘ†çKšőłRK‹Ż‡șˆŁ’/L{@ekUŻ -uđJ[‹ì>Ń/ź$ëęo.œ+ÔÆŰˆÚźæŸÿœl<=ÍHă Ś3Òç֕Zg« ĘgrŹĘŠț :ž@"❜fSâQ‚ï‚5ûđ‚Ž]?/ éh1œ čùÚĆÎÍŒ[$#!©s'sˆŹ"T( „9’"Äę!žùÍê}+tÏâxMΩçê>jL mۂQ'íÏ )6ÑLhw“8{`·Ą Ò"-è©zkŁHæ9KțI GÉ%ől$#Čû9KJŽŽÿ-ńO2–öh%8͛Shî‡ÂÁÉ·k'rÄ1Ÿ]ș^ÂÖńßŐ(ßżȘO»ySgŠŽM°'bĂ&+Ź”đq€?ú«‘Ș!ÓB~,2ó\CÄÖłű]ń#á9ŻêÓGœ Śo‡}“ș/1ždk˜šÔà”7„»‡+uf4 7HÜìč°Ș”ˆ;)*k+ʈȚ0ç,ŽÀ+uIu$’żî GHgʝ5ôÛă-çŃjĐĘ|oìß±ÚjöÖ/ćmqi]î=šˆ*2Ž‹ˆíˆôG$•‰ś.#. śl” *ŠÙËî1†ŒÏÔ ,„ƒ mś„ÊIń—dDO§ą™a17ńÀX òâÓÇț€|:/\Ÿűژ“Ș|k#†’ę_ĆŽaˆ>ßMáÈț__xöꓯĄ—ŃÊ,‰•iÍč)gèg§ÁGïAŒÈr†4pš­;#ÆœË2t`KŽ'™O1ȘÒȈ^ÌsƉùgÍ&ú đ@€`C š=cCș“u3ԏŸP›ń™M/%ăœß”œlDûҁHčE Mì>jWŁȚTL’î9œè|Ăš’ï §>Yƒù„1fÍô”Ę3<ł”}§†^łrHTFR _ Ÿ…ő"É5š„«ZÏ[Š>Lρ$i .]_^§ä9Áę~/~qF”–‘d7.čû°-Ț›‰莆HŸ œUæŻąrö2?4ž[V'uú„MBÄ{éfF:žæŸíńîŹíŹIĄÈHI°s†PYCiŃź‚*ÍšŽ," dŽȘ‰v$1Î"“$=ÛêúgEÈÂâMÂïę&}W. Ž^ĂZ•Üϑ©BKrő^šĐma4ÓcńËÎű|ÉĄ+żîŰ<äh.“#qÄÆŁ”jƎêËŰžl.źê eÉ€s+xw*Q.TGđÈöUŠ1üčÄD5:ëđ}ź[ńJ›ß:, “X—û y”PžàHÂäàlʄ&“C«NŠž+˜$%ês{GÈA?*èH:lž‰Üšj'0ÀK§ę”‚9:Üpïč0aᥚs7ž Șæ :%€GE'aZŒo-Ćn±uÊóóövù·‰æ*Ćú2-Ÿ»Ró„H„h—fÒûÉźYpÿęæ"/Ł\Üîoúv Hž<óőÿû“‹4ìuzŹú۱ț2ÜœźGH©ækP;À‰ ¶í†~üœ źxntÏ€ŹYM‰œ‹ÿœœ3ęțŁ žl5őÚođáD–«^}ÜđŠoUOüëzH{ŃH^áțC“˜Œßˆőèö7ă%ă2ĂŽ"Ź#€ÂXpȘ|Ü+ +Ÿ’© I«}a_„bv0 +hS'ű*éöŐŠ=IaÏÜŹùÚ\‹Ć1”‡€žąÒOl͂ć(ŃćNŸßÀtn›fIśÓ>ÀûÙș~Xoź” Żpm•«kùÎ3Ž;PŁȘÊîdä'…0<ïsŐ ĐYŒ‡HÒQÿÚŒâ›ŃÔϔ”ÂĐ=ĆÇHĂüÉ•ëœłź»Ręôdș™¶N*č z]©—.IĄÆ?7€Æ ƒ Œé"f›‘á™xl†\\ge€OÒŚ•™+•ßJÇ7©KP•ąć©gp_Âbi{ÏnÏjçéșËÜ”œ?ąÜ RwʃÙ\żgèńč5GEž·_ÿ5ʃ=”™è8țdč<°cB6vqüöxNÇ/Ć­wÒsgNUIąëDùD·*Ÿ»îH)·Č™/Ć{ ‚& ș+{kĆÒæ&ńҎű>â$vœț@‚‚M,śä’ŐLŽ-ȚÏ_.ąE\Ž%Âùïá0`'ÆW"‘ŽâÈ{Űïv€†ś™Y &„4*öÒđI±Ï6èś#°;NÒČśŒßllüÏ],ȘżYg%f Żu5Ą©t”-č[ «HÂN—%Eą“üźí,-Yëp·œ‰ƒțĂùĄŁșśȚÌ`ă-œÓ ÿ6·}Y*ˆ·ž‰OažŚűDaŽœœšj~Ö:ÊCV`őH5oÖ#l§ĂȚ+ÔĆmĘòÆ{żżő¶^X˙ŽPWßĆn©ł1Dé[áéq”iʑƋŠËXNlš·Ń9Űꟕ–XĘȚšŸE€;ù|-Ks1JMèÜZŰ2ș)±t+?‹/Nę… gșÁ+Tò,`-^€R ŹM(Iï€ù­ëŽrŸĄżb#Űì\«o©»”æŻLsÌæÄț„€Ú^ tȚmĐ.)uWż-űëOHW qxƒ>t‰'ÀÂjPжIűɐf)•{ò99„tï ¶%Ż» ÂÍæj)f‰ra ±­íە¶җkÈÓ,Æ%ŚÌ4±\-^ŚĆLj«:Ò0éżÛ†OpTÊĐ5Žó• ÖKRPZ•F»w‚xËg ݘf©pŰÀ(EÉt<í%ߊp掐ž{˒ƒ~%{őž=ši”tńšŒóÖŸ7‡Łš2‰ÖU,ŸMm©a»uÚ«„ćŒ+Éu%•M(:‚ƒ­%êҖGPW±Đ“•1âbYcW‘É‘ąČČęą2ÊŠSŰ Ï˜DoîЇD_ńș7Ó]‡žü”ȚáÌöčD›$ű뎷è9Ű㘊”°é»głŁžë0Ȗ›Ș…ÿ…,ZXûăOŒ€YU„ä Y‚y ûô‡À—r3űkˆł>ż–{gÁ…3ɓòČçÆe-{“~~Vƒ$…^w’Ò فb•D>Žm02=kUÌË|ìÇ ƒŸoÔ ûš_‹ű•^;ηÓnÜÇÏ>DÌtčd$ç4’^țźîBíăN)PàáÙÇIÍĐ_o(U–KšŽWD^ٛœXBÀ#&ïȘżwáȚx{šż2}Äț>_{è~Őż? ȶ" ±“bčʉqß)dJGpnÈM#Ży{ČcĐąęæÆÜsÌȘ!±àŸț‡l]č ?Lqn—Ă&NáŁ#9!5ü‹@œé.ąWěèŒ`%Źÿ:ä†mÀž/4k„Z·Ž ùâœP;ąŹŸßź,ìCN3y«ò‹8ßG_y¶›FJg4ąæk5ü?Z7=z Èu­“¶P°‘á(:\52S·ՊżwŃÚÇqC뭎ńĐ ÇŚy]ŽÍ~tyz;›5§1‘Â]RáXaĐM†ŸŹÏÈä ĘÊŃ"…màìeŽjĄ *Y‹“nÎDpGGB+ŚŐȚ},őŸÿČOâRț7çï™y[±ŠŽž?|Äđ©ï ôȚĆȚÙLEđâLkŐ!ű}ÛŒĂïÀ<0,/Ì­™aîÎĐXjű€Wđ”àkő㊚5chżc2‡Ùtș8ń~Š›Sșe»{/–úʏ”óȀ%ŰŁ;Ł!€„ł ö•K.R9ScȚ2Êç&:cÏcû¶”‚țkLŚf‘\§ZĂí©–łYČK8x êÔnPś©@țŠh€Û-à!1ßçETh·Æú«Ë̈́A/yĄ |-EFSEʐjąŸ@L)=VY}”ê9€æƟü‹†UÍràŃEÒòáÔôߎĶFrł+Źu ÒÀfë šLiĂ2‡cJ»ü*ï!0Iź(LäÀĐ.+蘄 yZ‡vZòBh*«ûzÓft±ČʶìšpçȚ°*ÔK&{_ÔcÙHŁgćE%ÒèZąÉúQV,ȘÿÎ@&P0„«ćOcțçy#úëÆ6KÇC:šȘÇösčßç»ĘàÄ(Z„ą!,Ûî–’»Đ šŒ[Ń _=A‹‡NŻ·hû>%ąjZ ężąGŻTAqm6 9Čz VÈNüSĘXńȚXóxvŐÍbW„~™Bdprj.VàÒÔł@ôČńjêŸŐ«ÔĘ1â§DC ĄdțC)g€~’Ț~{ZĠ𻑫Â-382ZŽßY¶úŁOÎb.ôĆVA mY"qąÈ’4èßțjPznOGDœź«ł–pŻqӉȚôń„č9Üâ§Ç” MWÙ©ćÇ菀±łN˜ÔEnœé;9čúBoN‘€§o©»À:Q ò†*ë"ꚿH!2Jö9Yz3Ž0“@dPПžß“H<ú€­…šœożwïƒțúÉw€ŒÓv’ˆr™șÉ#‰g“;HÛ­Š?`sCË(Çg7éOIÒ¶« œé軜Sÿ›Œ«2xźS\”*ž6ŠlmXË"3XÀă‡mdÎC.·|YsąśŃ`üïôuÚsd„ŹŐ@ LăÜęČa—eƒG»ÈźäĐYxú‘zV"Uqjđ ‚¶U?5{ș g5Sæœ“ÚŁŃĄèäąù‰> zš  0ïQVÍf$œnŐ4Ȏ߅ô žíÂ$G§=UA€„žK{XQ}/+8B‘zAw/A>¶ie N2Üó„¶™Òä/uI“Źw$Ó) ©/b±ć NŽnÔT^°‰žVi‹ïűœŁ_ÿû€ű2ĄVò À«F|SÊR’FkoÎò f*XÌrhțhĘTĆȘÉrwĐ,Ê Ńü%żF][&™ž™œ4Őđł2ęq‚C]9üŰĂńčțqwțħŒžÎèÒą_ZI SXçbÙHđƖ-öpp)1Űf‘űčź}rˆ°«ë‰YŃê\D±ÔÖ8Ü:•űIôÚ"IĄ}”Ő`ž‰öZ,۞Ő„ąîßyB»Y9łef°,S­“”iŸăTIB€†gìÌ‹+èX ú"Ă­Ü.Š·ș]€ĐÁé͖ă0ż…Šă$À‚v ê;ùêvOˆf‰Ü JčPç9T”v— æŻVPs,ç]ĐwÍ[Œü‰Ő3oĄ™v‰m$z2`݁Œ—ì'č Ç!‘B Œ<ô€uń“1EÄcö->ŸyŽĆÁZ8=‘ą+F‰ÚiăŒàúüoùÁɆoÿŠc-ƗG.'ë|üžqű10z€ș$ɛć€? Yęlę»ï#ì•Æ'čkꌯK-|ÂAÁŁŚŻšÀœ œL2ä8ÚȘbÌ †€ c‰l­YűóO+…3U’œÛà9ëvv‘ÂJŒ.áèÛŸĆ©ÛŽ…Am`=ù!=źŚóf€•Ûb#©©ĄA€Ç ì Ë=‰6|Ɯ&J>4\8Y[_c’‚4żÇŸûxœ(AŐvÛn&Ö,jdűŹp …Eæ<ƒärF|Hbț:ŃBÀ_wwöoŸt?$čŹGđôÜÉ۟ăȚ}ÖvĐ@ĆQ±ęű€7·bNzÇ€țmš`Vbčíƒ|wč3<ï…d âcgéÛŒfÀÇMŚz„T‡ŐżŃćô OFú;kȘÈ$ù./ ĘR5„Qó »›'èoĘÙ0/DÓˋƾb±êßi|^”ÔÜ[U‘ôAçgÂI<őcúŃÌËu*1ìbÎF?ŐÆ7XÊ?lé·țÍΒ(Űhúdž §Wä5±ź3^iÖą_x—[č šŹ…E/Ç4Eä’_Ò·ž!»ó&Ÿûē%çJ™Á •ÖčĆrJ‰;ÚÎ3‡ZŚR[±S0›"ș^șžš/Hźû șń:ycÔ‡č† zèçNČ5É)Í|Öž:șÌo«” Ô©9ĆH±țwč Ü*…w‚ąÊ­›C{ÏÊG7žUDĘt,Kśò;O;úű}æv˜ Ę-šjÄGÓNćQŐÚ']PòèugČ31č/íBëٗGVhÖPÇ3ê”Íd —•jjU‰„ä–c~hyș$ŃŒŸŠæââÎuIńto ^>uƒ(°ÖßqY­¶•¶q—á7‹X ;1I}ì ś¶”5ÆÄœ—żÏ#ùÉm9îŃÔ š1țȘ…aśäRŒ€ĐčÓ:ű°;° $čę(A†eXžŠÔ3ż ”ôŸȚSÄ^+țżCœżò»Mžü/zŠ)-F@ŰÆè4ö ß6NVL‹ù<Ç «­2 ΞE„:(EˆËòà—éD$=ô7aęҊ”LŹ7-ŐóÛ]˜RŹđ“’œjˆL@JÛhę4Őì$ÚÌN“èbÙÂ8{2 ˈbŽI:ižÖԒ˜%šÒâ†vW{éű.ÛŒ”Rôa'Ȑ8Ÿ3Ää2S”™5ś„Œêˆ°Đ`~–äčFlúƒPuț!WąŒÂ6Xâ5Eòˆùmü/CG&d”¶ „ EaWÇ„$^C;„=Jž}ž*n΃$†‰€ âÖH .łNæćêoő@‘@`F“55á~uœÖkĄ^<ˆÔ~śÒj-4xmêvÒڒi]&š·5ڎIŽzk~S–Ò?2ú0„‡‚òŹ9HÉÙ8đ2=‘ˆ-Ÿ€ÜgL?BÌŽĆ‘=»„>§ĘiïM|ćô±.Ôé9{k5@Bëm˜x^c€*:xU4U™ámrÌ3<\|ČŁ9(Č4 Đjm[K!Jün"Q3Ž?n/șźMa'ȚŠ›g} s83ÇŒv'“ŽŽË[æ hŽ\ ńž:éô披k_Âw€Š,|,n«GM!di)ƒÒ‹WÔ Ź©}SŰvŒŒđű䰐ŹÍ !B(Z>±€’;}`Di8čțGź! s€x§ëuȘ»z8©d…6ËPÿéŸĄî„™ĂTÇ(Tæ$*.đK„ÜìŠ!ŻÏ•ÜHzÁ*ńŸ—)0äĄŰZïvëŃ6ősŹÄrʐûaŰ7E?ÏŐÎʝ߭°ęMXÇĆ Ÿá3Ba;€ùĂęßÎ8 g‰ŁBĆ]ÆdOîȚ€Ł­Ń.w<íüń«k›ÊčžH)Ű0%& M’‰ïăB=Ę3æ8ĐműZEYÔăíGűő|/†_đ;–É\ez'Ô“ï5†],Æăś GNU52ò_Kíč}Ÿ\7 „’S}ÆÍ@y|žÊȘͰíßÀöv±Ąë™'źqä~Ęț2pÔÁ$±Q=3Cä;füÚÁÀf§`E¶‚ùőìäs߇ńg ip3Du$Ać|™,»‹?ÓČč’(łb ZI©êŒ†uűŰ,FàW“Ân{yVBőžsqlöùć…s…`N·ÿÔąƒ„Ć0·41ă?ĄO[Rù u+}T˗F,kÉźú›~Đ<Śß«Źm©+ȘĐ}„ĂˆÀüw™Dșj˜DŃ€ŸG¶à–ŁÀ,˜ïÜ|){îN‡ł–Ž– ÒËF X‡áŰź)0vó'„-ńæéD„oÜ«o2™žÜ Ž‘bŰŁ_†^Čë=nùÏÌJ=â‘ámÎ7ï@Ç1d]2@៚żúÍčqŐu˜ŽÇ”1kÖČÂ3ÈB3 k6ƒț§ÊŠÛc )»?B‡Ë5%ą<źśGQ5+CÈ”' 3’–ïN"'FÍ:Țê‰Ž w~—JŸ™zűîȚy5ZÉđ‘Úw¶Ž «˜+MK &êÛ8)…9Žûo‡9ßKé4$XjPßڟŻe™ŻhçöŚÙ·_0FÓîCû‡žv{|SìE»xšP(?q[ü;——/˜ò©aȘcÙHs’‹Œ5Ù%M ol@ʋ¶èșH0-ą·±FŃYĆĆn€PxzŹ€ŠàNü^łÆOr ŸŚ†E3&ÀȚsÏïIșiQÇŒš1„#-_ń-QČÚŰ3a$›cӃœš”„>Ú čéämô¶[PŃXÂ]ŚăEM]ĆĄ’Čò`[‘ Ád07$”œÜłÍăەâæÓČź––țP=ł„Yçzƒž,PdÄč©I4@·ÇpűŚ'-;xUŻœdŒKȚ9Ô\hüSæ€ò0Òp‡wąő§ÂÈžÔ Eu9Y“đìHg˜ű+LtÔăŠięŒRČźËgezj;ŹĄËeÛíËùŠJ*+áĘŰûU_Îo.Gÿòç‹_FBl3Ț|ÖÖÍa˜{Ìk\¶nxżv»ܖ4 ‡°ôśhțÎCŸÿĆ1‘œsEçüU€˜’‹ŐÂe‹?œLÿČÿ2TϱI2aluz猘Đ)ŽÂzżß Ś3#-ôÆë9;6s{-Qöfęœ5fTgÆTÒSö&G›1`ę·ŸÓś?żßO‚1¶röül°—SôErÉX5;$䝉ÿàpL\‹ƒs3ŁNŸź3TąúeÁ“öA­;^cjAs,îŠÁ­564* X±O‰ŸFöŠôïž <ŰÈĂ fRd]EˆÔŠ1‰/Î%“Û û'K«O?#1ӟ1(2ÁòƝQTzÈUbj·>·9=ł2Â>]ú( ~ő†/k?ÚșÁĘ-!ą€pçz%„”ÛŐCçz7•'ĄÓtžˆ±)ț€‚Ra#ć.+śèȚŚKšĄÆîߞk:lĄ›g’ ‚ŒƒŐr .”Ćn„Ëà úWJöô>ĄxQŸœOe'm9cëĄÜȘßÿ1’†ĘŚ”-xłç8ÇôceH!7+%E~•Șh™{_Ői€w}čóÇK4΀Vï“„1ú‰•â+­oBˉ֡–:á…xVR Np Țùł5úŒAGVAÀ™!-ï{0fd_Aă˜čŹđŠC'Oö |Ò{D:‰Ûîüßû(éš8äoà{|Éä}ЅÚűüjsïœq±™DNÊąŽQê=íOˆ·ùc_›ę(–Ś( îFtĄÖđæ™ËăL\-aÙŁ/jŰ«4‡t†ä/s†—p8˜ńa± EÏrʧőf oЁčosDÎp"țÄ^€Ë|CŁHĆè'}š” Uù2œ?œ4/„ŰÉßY;(úÉUăłÔXš;ôKï đ #“7jGàłęjæ&5až)9Hb üȚáÜlè-dțâ*èčvœ·ù+«âśÁ䈟ie¶Z őlČă^ÚŒr§I=șȘpÙ~ żÈ™M?ïŒ`Ą(Ÿł±&cš]©ńŻ"—°èŸ0îÎîĂTwÚa S‹c|ˆ>œÎ2 Ż™ß™_Ăêö‚ì*Š’[$q P)gҀ ^5|†ÜÙd€[r@Ïdœ‡r 3ÆážÓÉ±: _ś QF_HeS%_7| €ì}8|jbÀNæà¶8BTiŒR…F·±„ĂŰ«<&N™Jă«PF5ÖӁÇӦŐôúń’Ú3ö\(‹ê4ˆöÂ,±ąĐ …4aíäBę7uûÚ@SpēpćâăŃ»ÈßSL‚MÍw±QíWÏîmJx[A:WùĂČśyŻwŸ… ǃ~…‹„|etžS§J]š> ä„Ęțʶéĉ5ì`)ć endstream endobj 125 0 obj << /Length1 1614 /Length2 13033 /Length3 0 /Length 13856 /Filter /FlateDecode >> stream xÚ­xUTœÛ–5nÁĘSž»ÜĘ5h…»ww·àÜ-wwî.Á~Îč}ûöžĘOęśCńí%sÍ”æÚûĄ(H”T„MìŒ@v¶Î ,ŒÌŒuM% ”5ĐÄÂNŽAÄÎÚđaæ@  u-ìlƀΠ^€&È 2°ČXxxx(ąvöîŽfæÎê ::úYț čÿÓó‘édaf  üűpYÛÙۀl? țډȘ ÀÙ0”°D•Ž„$Ԓ êI-Èh Pr1ȶ0ÈYƒl@4S;G€ő?c;[‹żZsbüÀvNö c‹4›1Èț/=Àähcáäôń °p˜9m?fàl°°5¶v1ù‹À‡ĘÔîoBöŽv6Ÿ0%;'g'cG {gÀGU%1‰đt6:ÿUÛÉâĂ °3ęˆ4±3vù«„ż}0^g …­ÀäæüW-#ÀÄÂÉȚèțQûÌȚŃâo.N¶fÿb@p™MŹANN0ŰMç_}țKś@{{kśżłíțŽúOÎN kSF֏šÆÎ”Í,l˜țZi[S; ó?ì&.öÿôč‚ÿő_;CóAhbgkí0™"0)Ű9”PÿïTfüżùÿ@âÿÿOäęÿśß5ú/—űÿś>ÿ;Ž„‹””ĐôwàŸo @đŚ#ó߂6ÖîÿSűżGj‚țÁńB‘v~ BŰÖìC fFæ-œ$,Ü@&JÎÆæS őǔț¶«Ûš€­-lAjț=H 3óżùÔÌ-Œ­lÿ;Ç?\ [“§ț!Đßęd””„”èțû‹úwœÒ‡òÎjîöÔțŁy;“ÿ<ü…""bçđd`á`0°1ł|\ž>ÚțÈü«ùÿűę뀜o0â¶Æv&íŠȘ3ĐÖäcœțÓđ—ÛŰĆŃńCŐżoüGÓÿ<ÿœè Èᶂń— ËŽïéÎ589cb:=],ÁöĆőj…ù~UvŸia›<ć†/ŐÁŒ ŒożÜçí_wehś†ș°­©:S@çy„Țd4Ęùhk”­\t{LúĆHé'šQžsrP_9™5ö¶Æ”Uô‹^`ˆ&ZÙá.îiüÈ\óę0Éïì‘}ŒSëb±ÚPÀĐk ŽO(ïïšú†ú;/Ą»w èČcá)Ÿq|’I’œĘ oêß Ÿ\9âKáʈžÇèÖUƒö"äŽ s”ęü!€Ùšü‚$U‡„ĆŸMĘä;ÜS{NÔV݊ï,ùW ł;ŽĄÈ"wRB ”ŒZ㓁Ɛč[^L#ÿZiĐțR*ŰÒ$ç_+$xòq) “tÓI#̱^‘ŽăSÚp|+ˆț~łâÛr’7éçn}ëƒô:?5À‹H7Í[[8änÌ{)ŁSˆ_ùž\·ș3Bpă lč_o-9ÜaŃ.’›<ôŻkĂiæÛ  ę—ٝTőŁéfĘŐóșt€sțÛR"â VL(PłćŒŸđűˋ^ĂÀ§•œ1ŒĐ:e1§ï曏ŽېJ~&űA„JŠšâH$çĆȘ€"kŒê—ÓTVfäšWbÒê:ÿ(ăĂu&aÇśźß_źdč‘éMő멉xàșÄcÌí%TœÍąèé=ŠMŃęܘk39Š<à‡­Gò§šÂb9uKÄé”nE1-ÿ„qòÓçgČÁ3^ƒ™WĆòr”5™aȚ‚àˆ2†săC‚á¶[P$_b7‰?«žhVòç=?€5Y”ÛFŻ0C•p}\ƒùŽędxż”à+VzuJ\ž%æ=Sà7KJ‚’„a‡DKđȘQŃHV&uó…ú.íĐMU2W`ÙëÌ1NúiÂ-ˆWGE±ä?Œ,À©íü|6±Ć2ŹË°őmʊÚú7#ÄŰ6„Żż*çf™vÇp2±đ„ÍžśJ}#V„C(q»kŰ<ČJXQĄT©c"ł\Ą| F:ĄM C»Ê‚œXïȘ„VżaĄ1-úóĘm•$ì–)ÒRwnk+‚•˜ŒKs<fd‘^æń&+MÚ©r¶ü+ŐŻŁ`üۉ[LɄjKZöèE>"2B脈:|\ë…đOțšzđ +=Čš :Ę9ú’đ^;ærܱ™…œČD:«cȘùÁ/ń?Žg/2ș€VĐPŸéœ;œƒ-ß xę…ê…IgĆH±sŸ2W†ìš-'ì·Tćč¶9îűkX-(țÊ㠜±öă“uáëpńÜeűŽœï‘À0*)ê‹Küđł,‘N Ղà qÛL9wĄ]ûŽ”D¶T‡À.ùÛ'NčKÜÌ2ș]–·Ó2q‘òHgù„rćmÒ3łædÿ—…Áá—-—M‚ôXŽVe"́ی·Q. éïOßB-4[cyżyGŠÜ«– ˁn:ÛUăvò ÉŠfó žŸŒQŽJ;ŠŒf<ë!ŃŐc+9<Űńűf’žTÚáíkżdÜSïPXžŒxž]kƈ0ƒ~Ă ĄjŚáÓq9LÉcSh5ŠTFœæmCÌœßA”żCŽ #¶ĐRgTœŸ?ó’Zîn+_Ÿ«;ô\Z™& O$™Ń/ ΎDŽ…òą4ß2eĂj`žBbàyˆ S—^Eő‰ŒNČ„@Ń Ö瑱­€Ž†Ëji6gè‘ôyvZÁhЙ ßÈë…űÒNOăMŃĐÁ±ś5ä±}…Bj€e›KûænÈi‚,蚏”Q¶żèhźG|Ò5ČrŐ\+Q0L“H=ìdđ҉ƒĘˆ„‹ΎÿíöR€>9ËZbG1òŽíNăőò]œ•ŐˆŃűbŰèd*#żŠ9ÛuŽT1(–»Ï±DY.7Ìô6Őüä‚v”ß'Ąù€1&4™r!ÍÇ{J*S‹r+ƒ(WLé,Łˆ ŸSšÊ+Ôi:CÙ«ÛjŸŒê qśŠÍZóy ŸÙ—lű­Ü|aËÿî)暉~ĘÊn)_ôTÇV: §V)û•Ÿ…ŐjȘÄs Č}Ș:èvśÍ©16uÿ%”|[}d_·ń:í™ő!Őš†Ò­+–©Ò63 €}°eűSކJŁW?ś«&Éś>ČŻÚmxAżšò—<ƒŻ>ó\Ș« „n(ùŚÖƕ»žLăsnP— ™ ș”ô&†Țz.‹[ëăI@łÈŃł‘Hnù*xăókÓ»«S/ÙÏfŽö4F§vŸ.…rƒĂ“€€ęŒÎwč ç€ȘR«Ü·dâ­UŻÎ‚„û-Œ­X‚zŹ€ŚEń†=Ÿđ%v*álKsŽNWțÉĐôm„݃ŚÀdș8‹aâ?ăWÁN…¶AzŽˆ+XYS¶ĘжbJ‹k;}ÄdŠ0Fy™–èՋŸ –ùęĆͧłŻ„:`*îq9ƒÜÊÒ}Źz§|’cöM ë·Dó}_G#ŒÆ}čÇD{՞ȞGnç)GßJ ßS' ŽÁűŽiË ™ E—z"Éż]ŽŃ!ciÉìÊ~”)|2ïË”b MHև9MŐŁ;ń”¶”8JŠŁ•Ń)u=î€CûŠMSKc1.űșó­äŹžoPVÆ«{#cąvBU“”Qbc°ë°UäìsnáEÿpOyY,l bIĘmćˆÄJ8ßß$Uy„ßüĘI!”n?ô`ȘÄȌ42Srç êéŒ!’îüWG~©{I–ÿˆ·`…’Ś­ŸA‡,x>đĄ·gçŁXóSȚô8ŽÉțYâ?D5ÌsB;™æŽ^c|Oœž8ś>\˜_”Hő‚……sGÂ-ĄÒqńêłĆ§Aüƒș©ÇŁ“~4ȓ˜g Bt\” ààPÙ°„Ś^AÓąë«ÏT•ź|ζž˜Ë7©Qy`0Öë8gäz' Kčû›j,òp=êÖOe—űzÇĐ$}…úËç}eżœ&mòÈ<ۆßqĄͶRÉùbĘ °«6âäŒE“;I°$ĆMSž‘úó&ŐłĘ|‡uœš1ƒ„O ”C”g?û:_Ü:cę[sVÀw‹·%Șź^°€yDz>» ±TV+± ŸÎƒ?ŐОÂFMœÊȚ^§ QZ Œ\âìĘRąú“Ÿ3j#Ì9ĄÂXšIThBŠÿŠÌ݇ (vóq•»-T6ą—Tù:b"C 'Âÿ}9>€Tÿ9~UÁŒ:oÄł°ąÙüqL”0Ął—±Û@LČÌY Ü«fŰááJa/S*SțösÖ·e6WÔŹŚî4jք |0SG@3żłŁ|dvyŽuŒû“Œ,E+‹Hö–U@=CœÍKƓ ;›ĂąČîMmA‚{ŽzđÔlČI­ÓPùÛȘtWú&Êń[§bêȘdđĆ&(ȚĐ2Ó§ŻŹŐ“!–<зäÚĄEÎ}ő7Cńä1A•Ö$ÖqcÓ_lhĂł†=X"Ć#ÊÈc–Xș›KÒ;Ő ;yÉՙx/Њ'ÆdîŁćÇ0ćˆš›”™ ;ó, Rƒ<â őô H;Áƒ„|QeŁîgCŃxË\f©śŽoæőJ.8ó_DVŒô«D#ïgĘȚÜ~c‹ĐKf #Gőéà€ Ą{0jąńUĆ™ ù•©8=xà]ükŰ~PąCPÔ:=è~cˆ/SʀfĂK#Dì«} 2±QłFû–Ü-(ÍŽŹ0}<öÚùAƒ[Țc.rq—’aWóÛÂMișÉZBvmFʙ]W‡ŸŰÊcŸŽ éë5AF°\#šKMŰŰóĘyƒgo} 7SHÄ^L§”B0'o3€”Jm«śŃۆA>”ÚE]@—f ĆQb愳d˜…EC‡űÔç‰ÇOKTÎ7†Ä)ÒNĘߟ˜0 7|œáJÿWêT«y3èz·Őëzl9Fšˆ{7­€mIn 7ž§úsžŚüȘ5śÊčŒùSIÁ”Fêą“Â.űè‰:†anï\#IŒ”śßFȚ91JŸÀqip$ ,Δ(ŁĄÈ+ü‡€Zò6đđ,U gCgćd蕟‡ )H#Ő=ÍXC‰ dˆ<6čłœÚ˜€™žóaž ÇČOûmż5ä]KÍ|…<č_žđȚŰăsÔ`áäéÉù–>[rŃ/¶ő«ÒZŻpxx<2:nŚcÈÂòÌ3lÖßÙŸś9‚HÁÉDŠ.ˆžÜâv˜3}vP‹3“”)ƒŸY,Ìżw2»ÜŽtaxŸćđæÌ„ÚčYÏ·š”ÊæäG¶ęDïțȘsJb°Ö6œ8^Ó5w]hű Cb. éÎe7źÄlać>'·y19ÂȊșBÉ ‚Êng|sô殏·‘+Hę KŃÄV.OJćŒŽá+!P„ŒșO‚}:.I•ź.Ÿ§ù§țŠòpjŐ* ëĆÚă(ìÀʎĆN,ČÏi áoĐa·Y#"]„đcu«ą%Ż|/CêÆ4°*Á>ŹVŁ»œaQ•%ąțúȧÍó%,G2ƒ‹Źet€Òà"|ϑóçúâQÙĄÊÚ8džHž)ȚȘ/Dń.4Lp)WTxZg9|bç"”Ïoxï Oó;AąźárfĐ™œü”MÓâű’‹<ęSœ°V ;­8DúkÙ0Đț‚ÇșPŰșźÖ‘ŸËR’J}xæÏž"/Qäđ­ PŃ]ŰăË«Ìi&y5Ś#ĆČ*,"]«XŒß&0Ż#äÏęl5X‹kŒ€Śń%Óa] ö#źÊÖÓ Ú±Jš©ö"äžÆć™ćtŰjPŒW "KŸÁęêšœ#U"ń‰œ% jĄœń‚oč—î}0™à”\k#ú ;_Ü—șyÉlyćE^.çéôœ“ÇŽ^\„ÔÀÚŻl{ÀWvWi+ŚšÍ+†šTl+jêóŠű~źbÿÀ™Ț—vœt:ĂBì Ÿ_-ëg\J‹†|)Ÿ'/ZćtaÈÓŚ mŃśÓșò„™ÊúMŰì2¶©Šˆ§Iż±șŰŽé—ŸûIá ·ÖŰn4ąÄ%„%„Vù™‡hwîs·\«Pœ’t VFX!·ôÄ՝cŻȘìtȘ·ő•ČF4M™JŽź|Ež#&2z•ő‡–aś0_@*83û#,m dRë€Vő(„bNP”,ÍtëłÉ]?Œ‘ÁÉ:!ù"Š ŽóD±dž”Ș >HÖ} żŽIŠÙN€±Àô-ă䋂9E‘ŚSG«ńŻHsüĄ.ž%ĆS`.‹ÿzEL m9ÏhŒCuèÿ˜TÛŐWD©;¶(śfń­ÿ^[©ŠŸÆòPČŐ23ÆB`lB§]Qö7’Â'ÿ­ŽÎMho€æi©ę Š{76ïu­ąŽÙBĂÓ©b”GF _ÜWĂț ŐgW[…ÎÇ%ÙHíŁ;̔Æ\č^Ą•pÇôĄY *H·%œ–öԜÜÌFv-üö „ù$Bă ę(Âá1űJÂŻ:šöß~Òh/IԐJ:>`:€ùúUëG%ÂdđRUY^€}oMČĂ€ĄÿBŁŐćŁ)đ‡¶Ö 68”n]âöG]ìÆACŁTîéŚ_­“”]Š&·èß·wÎ_b6  \b`NcrlLíTXŠ^$çłü?îolgČ%°”hę<í…YŚăűÙ〟»˜éTŠJČŚÚTŚłŐp"Źí`.O HfŽ%Eűyq’'%VœÀš+s…RƒéQïˆđΐŸ ìCrá–zJĄÆ˜ @[ŸVàÍ©ŸÜöžGÄRÔK€q…wÍÛoÌą,ŁúOa3Û9śŐŹcÜ77û)FTęČŐlÒèlX"FőžÓ–—èg}‘wˆïÁ'R‹ë­Ch"à›<@pő”ÎŐ©ŰVĄZ,X7ć|„Zû !à·lWčé±Âßè·'ü{ˆńÉđ%€2ÓoșÔő ż\Ț”jO=ì3~ÿ|ÇÏf«TqŚàís+S ț- ż+eä[Ź/V1áąùË/böça»/-5òpMGx.PŒ ESümá.#xB‹_=úźÙ‘htőBíǕFmUÔI·žæ"oÁjt@û^9§Ú,aĂ4y•ńêÙ^ô,xYQœŰĄĄ«YđÔ±MŁÚŒkfu ŽQč úśș‰q34ÁŽt#â_büœ6ÁțgD”€ŠÚSĂ>äčv0+aÒb4[č>ëqdÖ*êÙ „đgŰNÆ*RLâQßĂ`kzŒïóÁ諘Öü› ©nŹr-ašÄDêm“_ʎZ\ó—d©hJwJÔC明„]_Ê;^ȚŰ$si2ąaÄ:Ù~߀<$ +ŻóŽ{/$™Ë Ž€,€$Ă]p™0ÙêŠR^Gu LűĆ+àwȚ,ÇzČw¶żBžLm°”ŚÏM_˜‘ÙُàŰŹZ&\Òę Őűl*ƒê9zęîوŃO,æxŠ)ÎMś,%ę†ÌOőW$ö]I ^$@ïLțA7·êÿr.e’ìːz: Áć_šŐF Û§ȑ%BEhNƓ*•čHpcüF<€· ‡ŸcÁÁ‡êőÍÛûűYőŽĘè•BOŹ…toF±=š0ąq!qA:VzŁRnVëÍż™"†’•°ŒűüjfôœŰ;,À‘Ó°;ł€ćh„© )âHoE‰šq ‡vÈöÇúRɁ}ŒI.ëăÙ$„§I;{çăÖCŹîÄ_ŽìšR…v CșxÊàGÄ.šxĄe”w,†y‹1ÍűFku_™Lòápb àȚżAèžúŻŚ†xŐŒ$Q]7șžŒeö6­d~™Û Ű3©<4ëčù}ĆöéûAÚL±BŒ±É:ÁRûáșû«u6ű›Jd,ő”f{D‰x€@;Äę&’Á,ِć”TŠŰńÜ* "6œjrvŃśl&DŠôĘH Í”ÈÿŐĐŠG–}‰2„b„ Q·‘ŹȘațù,qÁUT`GÓ'IÌXœ:ڊ3ńókČ"6›ödžă7?űüAûWQ‹șŸ8ĂÊxGŽL!ż-™ dͶÄgüˆßNdt=îȚòÄÒVÀIC5ïxȔvëí\È»iKŸ°9Ÿ“Èj9b=îđž\ôÆç«țCÙ{#łQ&“ÂŁÖr Œ”ŐêËȚË?h< Sï™xí$”wt©ä,…șŹ%G=igŁ|—$ml3Óźp@'JòÏÿŸž{ę?łYÿTÜÖK R+› ŽŠ–@u˜sî íË„’+*A Ö€b)ZĐT œxXpI8żìœžœ_Û6ÙTèmk#†•ű ÙSç&)D_Űà쎃°yĆZ<ÙŽ0ZęÓÔE9œę±Ü)œùÄć‡čšÒ'ëM<ÿ9sàæmŹŻ—iÆoÀ’0ĂÖçHŸŽXJ€hêé[ЊLҍd©ƒË–Ż(șÂ!â•æ”èF8ź }ÛâŠh‡( Àß;–š·Ì ™JŻé=oÒ‰œœÏ<Úo™ąêą¶’ŻKÇáíóë’ìpÊąfÇs<Înƒ6Să-LpÁufȚž3Y-ŚŸç–Ś–W?JoyżóMQS=öSŰx2L@)űbŰ vŃœç0âăz(žvšÄP:đŽŸ·ME‡#9ăISùŚê§&í:íšç”Æuș`j›„“V3/š?œDdˆtlqsM2–Tš*œ©rá&òŃȚȘ:˜^íDˀB~ÂĂ/9«ŃÀ—• źÚŚ€CččÊł@ÔșY\č;o œDäéFHOYT8BôŻúꓶĆÙ ätŁ6§ÚuśHšgĄáŰń’ő܆kf<ż`jy:ރőű$o1Êë;Áz‰:ćhrˆü‘Á›IßÁêkwpÖ*xŸ±]“0xY„4‰aŸOô±VæžzĄ.óÌńĆ©è{qŃë.FQ–‰Ü–(Ο9±”DŃ[ÆxÙkz…$XŻ đĄ]|ÂČ9ߘÍPo^d7Pg€3eìsÔ+±š%€4gŃŚŐ8șQû†ĆźÚ BșóȚ6[~&jxIŐŒˆö„fâçk©+ے5éXæËVGF)vÔ­ß xr‰ś_”|Á^UĆźV«,6cż·ț‘W<țXź{šm e§3č\lʍíò/·OčlR'›œï/ț&žóreʘAe«z_:»—E nœ±` ŹGgäÊpx;ZÎĂ–ŽŒwą^\ƒ’Ęï, ;I4”ŒĄÉ%• ìUúìƎ]#vP†8‘Ń7ć[j9ÓȘ;ČqőÉș}(–Űi˜ńrÖі °ÊzEî­[Qp:  oa ú ĆHR郃ò'żw‘ÏÊčŸŹ€»‚Ù8Î(‰VQŻ|úLéSŹl1šÆ‘Ć}ü'€ ap<+Íł°€Ït‡Ëêź,Rű„MûÎXyxńđÜ/u&”á•2öȚ4Ë,Iä{'ű»=W$~<ö”Wsx«*ž˜N€~űùv„áŠQgööĄAÍśiWĂ4áy¶eâˆ1ްŸźű&tr”ÜŰá˜7›ŽYżX7ï4 ˜’Śń;!e”/§th?y[ê ŒŒ§ąșXÍy?źe4ƒZçn(;՟tAțLIUüá„ÆIÛłîòԂ„§|jB(”Êh”đ+`HĆ<*–lvđú”Dw™>uc+xS°ÓŒȘ*qŠ-Ë74YŚÔ2©ÇFʃՇէŒÉ-y©ìϝĄŒ8­› /#èpŒ›6œ“@¶C€qqÊjOˋîłófČàšÁáZțéz8|ôZő}ź„I4ìp—Ź›JkFÀę36ÿ ©Bÿșߏ`ł¶{ąZ“žQKûś_’N‰Qę ï|Μ§sš*ŹŹJÙ*I°Öœ Š­s[AȉȚÙJDTËÓ 4ʰW7ù Ő9(ôźàáA…PO6`y±8țÎjz,25é“tĐìÀúPV«źĐęžm+zDòkŸWÈ– ĐwŸBt"ˇŰêh„3șÇíœÛńPčT!ïCœÓBč€X ȚŹß|—]ŽŒ»:Ëy »üJPć:pțâȚÍ,*ßs›gvZúF4ŠA˜;{ofÔw}/­g8ÓyțĐ9QĂ ŸŰń@”úIƒCzû ɱÍí„#5[CÁ^qŻ.”‘e9zjcƒ,Ä|‰Âwù^ű©Ć=DZ+ˆ3ԐVêvfw+I16—lr kO3ˆ3{ű)`g0^“àwż“i€æŚw_ąćńDŒ—[îÔ2HgÉíxMę/+Đ?R*Báïèì,y-ÈÙçf;l–[ Q»,Ÿ)ûa߇ŒŸžògą6ČÙiçKû—+9À»8[ÈzŽHÈFiÛHĂș–ănúèhƒ&ž/ì5ŸĂâúw‡Ò—hźY[ŐÚ;]XŹeńyúčY˜€#kqûŻ–°ŁČ·)šȘŽŽˆô}9ÇG m\R'?a1˜nImő‡ńfç©<ęôƒpxûœQÖx$Ç{ ŽwFl> ?ïìjèÒE‘Q V^Nú$Ą>êăŽEŠd—e…Ü›"ŽAAżĐđ‡LÀäwìțâì ÄĐíd(î6€ö.›^ß¶ȘÜ,Rü™ùg“Tż|E\v,áimȘß͐œżȚl«î1č  ~sšŻ8`ùș+ÜșEäŒGL`ásă%ù%SßnašÇ5œg}Ÿ„üŃÈŠő öLò$“ÙÜbKCăĐ c‰a““ˆî OÏŒ ÌÄÂRürA^.»™ń?Űú”ŽTnÉKBWî 4ò[úé­œă:8ŠfJÈZnyÉ+û«áJŃĄ·œ«š3UĘÔ§}QR.Čúü2TqŒ~êЇ ƔŒš‹&â‚탅q"Šć5·Őœ*ŸBë LBçź)HXïńL„6&Šy=ä(‰©¶0uź˜sńíäÏ·;ăĆ-So ?čWgŽÊæÓEôBr\Jăù ĘŽô&0ŽÚù°TLš=évŚÔ— ”_Ìûáé6Ýő"·al•`ÜQÉź2.Éˆź…Ž/ ÄË!èŸ_d73ZMa‡ŠŐćÓNęQ?šƒ˜ê:ƒęUÏń]B»=ŽZg”đ{‹‹b8€ú`‰š[Xaș8žŃO.Ÿ±ĂŹś(LÜHZER ,Ń­șƒRü€‘ koțșÍúń‘ęÜWŻh&—@q©tt+ŐÚ\ő“Œ‹yĂŽ·Ú™qąŹ:4\—†ì-/3ù‡œIDL}Žx'dúKî‰Ùš©nDÿ&äyÉSŽ‰ï‰Eâóòmœ'H5%Iąż9ŁæșÀ^)Ù Í|ő˜ĂšÙé‰Ò=H- 2ŚNѕnH?b⡒g”Îoæ±shłóûŹźż…ÓY”ÛĘM<Ïęçù ˆÖhlŠČ Y„ì j‹E+yÛŚ‹ŚAŽ’Ł€đńő‚tAéú·K”ÊßJD‘łsìtĐ]?ŃŐđàFÌSôčDnŁûŽŹiy{)ÎՁ<ŰZQ‚”xÎe“JȘ ?ü3…Аé„Ä4‹tcÇèJIÓz7jÓ> sȚRY€n?••!|딀T$ìOàҚP/ۙdù=tĄnw›«Êݐd€Ïkœ{ŹđĆ}‰Jbs<ûźŠŠ€hô*ßwl$R]"æù«Özf‘+†“h,BŽòűßźÌ!5]y2òŚKș’’~r;Œ{Y]Ÿ\8q œĄ‰nàâZ‡°zWR:„ 0Ć!N­‘S{€žD”‡29hV>~…†›rđČșDÛ·»YĆiE-K~ŃƔÍ­șŸżxțĄ‚•să:žèŽm”M„’k ŒêŹ 2~7ÛŃč-z6öÀLNÚŐá ú]û˝’æÔXăAjC6ŠíQ™m±D`7±ĐUoÙ±śv‚í»V!Àû".eƛßö1 Ú{CZ’úT©ôÂĄTBÿq»5†Ÿübź?Žżyń"OĂKÈgW ÖÇ|y4˜@ŒĂX^:‚ÀźóG0%Č >ÛȚ°6Šì։í[‹ú~čd}’ôT}Ï8asàkhŽ=šÊä#äëAȚQ]€<ăQŸq‘K‘U+CZŠu]ș«pȘ”Žò!߆m’Üąź¶aNœœ#„„ŁŽöżx~ϜI!ƒèâ@áă+ò{ź‘Ý;›{>QRò)^`q SJ`LeÓ0 wQDș%O*­hWàócˆCçl™RPž ?żQž“ïôÒˆüúĄżś ü܀)Šç@Œœ”Néˆ;ás‚o~쇎ȘÒ6gÆ –>œ°#šN ?ęT—5ż_ÆùŸČĆ lWŐ$†V7Ab!%‹ŠvìEG9ĘÇæÜ›)œ.éđă|CŹÓv©ÿĄd|ÁCD„ áneŽÁȘ^ÉsD+{ËÏP)șÈ`őEÇûc^ô$â|śqŒ*'+ôì'BƓć,Y—CŽpęú  Œ:8ˆTs`ù7jü0iŻ>‘>éžÚ5FÍŸń(Ż„è‹ˆ3żOì$E҄d°NXX󶒑Ê=…Ż ŚnîUȘà@Łm•ŽòŹHĆŻpúBéDÉöÔk Žœ Ž8·[]y›ŁÆb§œ„aüÎXE,„»I6ŐąlŽ‹ä9 ͝Ä܀hčxY-nߘne «„Ęà ;[$ d&ŰjfgöÖXźülŻȚW€ ŒzôÁ¶Q‹včàö·[$5jnT?ÒČYÙőI␒O)"CźG8vL1'T~šĆ»đr·„f3sûDÓæ1‚mŰæÈVÈÙTț'9uŒNŸĄ-D7òhő‡„Îq.Đ>éĐ˜êŒűțù9û‘Èő 3¶z쓓ûdŒóš )«*›Ąśé•Šj QÍpŻzŃÓÒè,ŐEăPr­›Ç@±9uH+†ż6ž.“qîÀ»Ń[·‹aW„èàщZK ÎҞ﫜‹xC$nxËcÀ+6s©cꅝ^W7Ű âw~‘ž»8·ț:Ofșß9DRCç̃É6—S ­rËfŽ?à8Š«öx Č8DVUÿđ휭zgBŒ`áȘ;TŰŠÈșO*0ˆŒ(Júò˜ż&6VXûœçćD#B>ĘÚCI(6ó@FÔőUŐ}(m€Ő€\Š„Eą=Ą‹Ž§KÂ^Œ”ÍęĂœÀœ0œV†èsÛ€ ·Ű]SŒUE’ù„–;‘Ú Q<ÁëÌőú9bjӃLúńdź‚‹žŚ€˜ț|/›GlŁđ’’€ÜӀ^Ę7‚źžń„͘#oÍ xGȘșÌ!êÊßuZÉąőŃÚ}Dè.~ȘN'Pq‡5êëTȚÙćțvĂŚăT,{F'č†Fh)šžËŃç…d<žŸR?\ŸHn0šŰ·r ƒ{}ó!Í9‡ž#öíÄČ ‡IBăwùl›Ž:M^Ž)Šă8i§ȘS·=/ùđ›Ô~èĄù:úŸ”ŒdʌÆäöńű9hÉ;uŽ—_H/C>OMë‹&†9*ÌxžÌŒŽĐf&7Èt„OóZxiș»©Y~ËĆWL^°îZĆG1æ~‡·žÖ\đæiy «žjp҂ł\4ńȚęĐűĚ“ËđU"߯AȚô«É„œ‡·ŽűéTćaîs̑uw5„±á˧˜'Æ#,”„ł_—sžxF“3úá•Țžq0$•gXÄÛW‡ÖÊőoČxœČÿ¶íVèĂ!eÀ$B±.:Ă _€í‰»ž'}#ïÛäĆaWê âŸH<Òź/ OŹÍ!ÛgÔ`»‘e –UTG y†òtkłž>|(_^VŽ;?2G' ›‰ĘÚÊáÎŁéĂÜV;ÀQ­Ûń ú>5(°í†"ęô)šő)ą;ŽŻVśS‚±û NgOȚ1ìŻ–H‡ÙĚòF^ÂO‡çèQÒż.,ő)Ímë•ì0.ï}@†±}6Y[ĆP e“Ź8ćKÙ_™îȐd-ÊQą`Ć&äŐŽ·DțČW†oĄnm3{]Êä©KXŽÂÏ#ŠW€ĘxjB*bߓ,ÿ‚üŁ· sÌÙÀÄxÖqfHËđzŃÁ7šą„țGrx°éŹȘŚŁßîśJëDŠeNq‚—Wß}ÒŻĘȘ æqGąŐŁbƒ?2ŃR€ ççImFšÂ§±ŚÿÁjû€!pFÔ?‹{‚!™ös}YÇۗæ+i*‘@uÚ%:‚)ËŃ—&síœô͔Ż[nx°lAêś멀lž»?́țDž'šäœuuț=oûáä Š2” ‚—p)™ĄŻ–vu|…Ę Łl…Čôrű„a]wamË"È &gCfŽ6[*QMWăßžÒĄ.ĄhÉÄhżÁŸ{]4…Żź.çŚúšéțô[Ôč’ą2%ËYțœ·–ĄÜ«—Ï*QN‚ˆÊ;;i̇ÇŁ”Ô‰Żï•8GJˆlœîZXNÊ\č:ÔgAy&ș#P=§è2ŒßpăëG‘^ĄeiyDeB+Ź]k šűÏpȘHpż·X«,sÉWȘ«#“n„©ŽȚČŚÿi—Læ endstream endobj 127 0 obj << /Length1 1616 /Length2 19694 /Length3 0 /Length 20522 /Filter /FlateDecode >> stream xÚŹșct„]Ž%ÛvN\±mÛ¶œŰźŰ¶Q±Q±QQƶŠ|őŸ·oß·ûWęăŒńì”֞kź5ŚȚÏg<$JȘôÂf&æ@Wzf&€șŠŠ’±±™”ƒœŠƒœ1àŻ™Ž‚BÔÙÜŰŐÚ(fìjÎĐ47ˆ™›XXÌÜÜÜpQG/gkK+WÀ·żÔŽŽtÿeù'`âőŸžż;]Ź-ÊżîævŽöæ@ŚżÿŚUÍÍźVæ k;s€šą’¶Ž‚$à›€‚:@ÒhîllPr3±ł6ÈY›š]Ì©λÿXL€fÖÿ”æÂđKŰ` pq47”ț»ÍÜÓÔÜńÀŃÜÙȚÚĆćï3ÀÚ`él tęÛW€5ĐÔÎÍìíÿrtvűaÿŚśLÉÁĆŐĆÔÙÚŃđ7«’˜Äđt”2vę'·‹ő_7ÀÁâo€™ƒ©Û?%ęëû óŚëjl tžš{șț“ËÄ`fíâhgìő7ś_0GgëižčX-ÿ‹ÀÙÜÒŰÙÌÎÜĆć/Ì_ìșó_uț—êíŒțĘíđoÔÿä`íêbngÁÇÌò7§©ëßܖÖ@8ÆFEhá`fú»™›ăúÜ͝ÿmĐ·f†ú/ c3 ÀÌÜŽQÁÁőoJÀ·ÿ;•ț߉üÿ@âÿ'ÿ?‘śÿŸžÿ]Łÿćÿÿ=ÏÿZÂÍÎNÁŰȚüßM€ÿŒcr€.àÿmlomçőŠÿæÿAòÿ#íjü·Â@Ëżr010ę‡ŃÚEÂÚÓÜLÉÚŐÔ `alś·OÿÚՁfæÎvÖ@óżzțÛJ=3Óó©YY›Úÿi<ûžÌfÿû_‰țeΚŁ&"'&Eûżß©ÿÆ)ęŐȚUÍËń/”ÿQŠŒƒÙÿ\üƒ""âà đĄgæàĐłp±ț=r,Ìn6VżÿCƁ˜ÿk-oìêlí Đę[6óżĆÿß­ôÿŒ8ĐÔÁìŸiQu5šę°ÿiűÇmêæìüWŚÏüßąÿsęïš››{š›Â­.9˜ò†ŰddgșÖcçLŠéô1ƒ„:–5©•Ö:ôdDìpWœŚ…24Oń|¶{-ž9~ÈĐŽöaÙQőŠ™_ű‘QśĄnRvrÒ~g4(CÌ<ڌńč^Û†Đá`Ò8ܝTV1(}‡"œêdu†č~ą$s/ Ä tDò7MoŒÇìBiA«/>;§L>yz€û52Ü{Ù€O›KÁkŒíŸzF’âêeä|ßdú ùêΞđl’ÈŰ„Yўé}ÛHfčíkŸ7»„ȘZ/ŚĆȘ"­ì§"š)ű6ś·g“ŒM=©"šs…đžEł@Y—š9đBô ÒëúłmX.)Ögq5ï?sZ‰Rèډ~S;Gsw ⎯ kĂ.–É=ŠžńRȘÂł" Sú”ˆ 4J—ܛY ‘Sj:(1ĘE 0NäëÄYSăȘÓ°`=ű­Ê–cZu nYt3I€•† {ˆŒ$„©_˜6ÛjYÁoÆ/5]›H2ÇBE#{!JNșœ|64"·î=4ȚöHŸ—Ćsú2BŃtdPÎ%dk6@”Kś‡Öyÿ„Šëˆ–é3 @+LÆŃÚÉ ó”ä‡Ï˜đ#i8Ô/ˆÀûž’ÛŸA«ÜW$źűû•ìêąÆ.Ԍ™tԁŁ:Ol»6ă‹ZzqŚ G5҄/ö›”foțńɶs†úŁT€c{§F“íi‡Ht {}vß„;>Żłfjɔ5Qce ÔUníÔŻ•9Î[±>}-;ŠÊyhbÍŒ©b@žv#}…i©©bŸÒwÚöć)ČíÜÓÀŒo"ècÒśŸ4Á°óY{}žNAm›|Ż˜W˜«„ŸŸőœ gB¶a”Fì'L§í ćC„êžÂg†wwX§^ăÌSő4ȚÂېŠ‘§N¶†âÍdpɖÖ[ŽšŹ]ٜû 2™ËíšÛčÉ(ŃÁî[OŹZŒìP­WZćqdĂ7ՒsìítEńXDjvó­#q ÒSP;êíLŸ˜ÚŒ_o§o둌Ćq“äXFțB’Œłpaê†4”ú&R’«ö‡æ·ŸÎêÛŸ@U~}𭄃ő»Őê|đwëÚăÚh!&íùY·–ëO*uź·E Aé‡îPŸÈAüX|óëžÖš\à”‚xș‰{0ĘŻE¶„ÇG (/Ä~ûà`g`[Y`ę}/NÜ€œebŠŽˆjQžÙ}gęRÛÉÜŻ«a…—źŽ” ŒÏ>«_„„o\}E?utł”’„Ï:…7©”}úÀ»ê ¶ ŚÚÔ»?:'ó2ÒÌPêäÊhz{äń(&Ÿùžîńô\œHéSo”ÇôĆÜ;6áÜšWŠăŒtE&E&G_(ĆÖčŁn„ünkšghŐ’$ŻdŸÊʎ QčÁöGšœU‡Ó ű\'Žy݇ыêKbXî·ę}Ł©@ڎăUÉŐP-yŰ@–àÁ,•Nêr1+ÚÔÁJ&\Y4šŚù0”%P”Ò”ȚŠŠ„»ĐXA#s©›ÍđČśyłŰN­söáß8šČò€șŸ]Fí[)æMGvăuWbn #3#;LŻ*%›ŰwŃ]#”Wü‹Ăâ:Ëóę8-âęńŚlƚ·j»X3$ „D­ż$063˜~.{šÊăSȘ)`ŒnWŰč+è‡íŽà…cț(ŒșąXöȘ—|pJŐHšŽ/ÂŒeAí?Æ<ąwÙò„Ś}ZhääwS0fIÂö â[.ÄÎLd‰ ś èș™©śł49ą@Ÿ6Úêèâ8îfŒ{n~Ć%Œ)RÖ:ƒ™iÁ‡•dâ‡ÛU]•ckƒ3œ Y'žŚŹL5Jz·Jb…ŽÎăŸjBRĆç„;wäxk!iS/-' …ű-+O+ß:ÖuüšÌ+ ~ŃędâA ~7ćæâŽ!°AămŐ+|̊’"Xö]Cˆ·Ż-¶)sâFjôț‰šż`zZ++>Iq|ZÀÜrrčšOșpWŻćH†”[šŐèÏèŐ ą­żŰ{䜓YžŒš<öOáQ3[à›Áy\Ć)áÀĐkJ@n­ Í ž$ïâêäy·ß]æ<ì·œEވÉ˃đ ă‡ú¶‹†,ŻăÒ4±Ź •-±ÈfÿăA홹i’YłŒŸ”›ìȚARűáÂĂ[GM?šBŸx‡”>Śá+ŸÖ]țŠhQȘĆÊć&Űç$śoCZićüđ+`5lĘśțÁO霝țV”RÇHôÓÀF„=…U ÿ1 Ïb”č,u˜†*n?š3\dtÿŚ‘ Ɨ‘č3Ćç ôȚ„v7è+‘›1ÿbôŃś,—ö… ŚăŹ:łŒ”dÒíűĄ_yMŚșüŚ»?ŒÇ+gv"€ôűp#€rïđI‡ÁÉUżÜĆm­7§Üšùtł –OAÓ kkŠUęHÉĘ`Ôö•…ßËk§:Ć&&ì(\=ŐŚaʀŸjÖX Ó]…ym}"NÿűCüź ·ê+fەMû8,z¶.;žÆ— +[&8~ĝŻh$Ț«êŠ Jï‡.cƒÊoȚ^#fPÓłÙ";Ï9öĐî\ 1Pnž)Rˆ LÛ= -€Ÿ^Î{e7ß(#FŹéÌŐ?ü”uSű, ûƒz8]ÔŸÏ”cŻ+˜`”Ę]]{űÇĂY;YÄűQáè 䅃$OQûƃ(ú 2„.xȚ;XŠĂꋏ 1¶Lƒû"L»O6ă.QЉxŻòčÖz Ćë€@4ȚçöFÔ”<ŸI”&2œzùÒšuZ»žvÆŒ9ă G©Ù”Pÿ‹A8$Öő˜8@k*OŒU~…da^WòD€Ș ŒáÒśi%‹ƒ©&R[ĄȚśÓcÍ`.ŸsÆ,Iì%•™e!źÉ,Zòc{LŻšŒ]›”ș€/źËrŸƒY TËë&1EaÓčŠÄó»èűÏùSÊ0/ó6ő{ŁG_€ NJCĄlĐž˜jÜ>SăǓčšű:xèÛü9Ę]N$șQÈ'—eœo»sœZGčŃ6F…`œAŰŠŠÖ%ò?ٱM„ ­Kœ]8PGrq?ŐÀȘGć«A‡˜Ń'Û=.őă9ÛI•”Ž–ÒK€Änç”ê (łˆçŁ«R+™·eOĆŽv;e9^ŽŠ U«)ȚK;ÐÓBÎ,uX¶űa|Šłžő„d<„bŽȚ:Cslńô­›*šÒR«ćRçÚ yĄAîŠ5-:ŠűT ÉÖÁuR-óUjúŒî˜úÓÄœg t’ĆŸ’n)š‚˜êÒ„rD(‰ÌIMO{ńHì«&aûÇüqßÏlc Ò€ĆîÜÏÙ2-ŚÌé#Ă@֟A\ąÜ-ˆhòh˜Ć$4äëgïíçY”AČ îhĘ˜zŠ]Ù'lŠPÀ7Ëîw3Š‚2<Áy&·ó–ïìԇ‰ž:ĘG0hòyÄ1ጘÜeą’ڐèxAđ(O­ź1QœCțqìʙŽÛŁčă©ƒĘŠ‰ÈÓö€˜™»ëE–•5Ìź èw €ÔŁúÇéĘE: [Š'îÓú`ʄśKcˆÔ=ê§ìҐâŒT‘Óô -?Áa3-ś\ϙ@Œ»nÆÉÆ5Ăœ0ےàS%§Q]ź x·?’€K€Çț ±śé†œí“e›Jčd‚o’dÛÈ&Fs{ƒ8’mí zĐcu±AŻëiđSšÒÙj©À+@Έƒ;{?äQ†ÜÎ.ɏF€Ńąs7§çŠé„?üNyƒ%„őlD!ŒA żžzłÙ#Č祃‘Ÿă‚iÎęl Żđ©Đ‘Ń’ƒ–Ùêž­À@lh§êD269J»~Ă„űŽőpű« %Rÿy·Ëƍž~—€Iź)|û”Yž>$ȚÄìűP\‘8Ú] …ț@œ‡ȚȚ5-à°óŃ ©G<Ÿ©—cÀ=˜|€DËŚÖ 'Œ°Ûû,Íd`?ÓÂȧž0·Ï`ŒqݰäKš‡o@Z”%Țä»c`SšÌxÂJ8 !ń auE¶sîws5êÂ]yŐ€lÈ}W\™‘q›?șú.èŸ/ŽçÄÂDéőŽ “±ß·çšąhfĆi}šÒ˅ ‹śäÖÛ/],+9Òș Q7g…C ëRöĘæY…ÎòxvŒf’=/ä*úN{ûcČ%{ëŒÂ;€è+ƚnTʊíšă2hRŒ1š[mé@0îS–„æš™AS—IŒ)Ô4uÊön‰ó¶Ü8s~tù‚ zéÏ 2›4è皞âéhT—ùŸ:ì5Đ0m{ČraH͖‹č›Ś§Ż«ŐčÈR=èdfÚ՘‚vęáÙáÍXłĆWè6ÿ—YÄŠăĄÁÇè.òͅȚj­6#·D—ȚoăF„œ»°9˜Üń:kR:f2­+PŁŒ{YöVö—ÊƓԱś”%P/ʱƓČź_űș5Nó6ą‰.C7§EúóÂÍÒU5ƒ“ÆfS[|aŸjĘuű'Ÿ’Ó±Š«KçK(˜Á{©ùè7Ę0`PŃٟĆqéN„źùì@ÇßÛHÀ.'źŸyđUWđÎqx-0ŰCÚìæ"XC3k4Üp‰†.ò_oAœŰ ”Îc ±ÄŰ”šŠWîa6Ü7CdeMžpCA‡B›àà€s8„űû”"CÚšŒS-<ôŒWË$AzĂ vg<»-!öw;ô€ż7‚3=wkŒ[ÖÚćkčăśÉ gPÊ[”™ś‘;ŽŠ›(óäž WBŰ»ÙÌwƒ1¶ ŰÆŽs!ő=íÔÉêű6–€5§ŒÁÉ"ąÉvöŻ<Űë C1/öZ1žpŠË–”«”ÿŸSț°öO)"A.=š8čiłž,™3ȑő[P#mÓăÆŻâwȚÀ~”/•*=U‹Ű!%Ćü&ÇIJ…Źì3«ÄÓćó-`óLÛRXś$e(°vWĘ.NL°<€ĘÖ=Đą•Ëhć`j·<ÀâXÍڂ€àđ)ójòàIĆïHž‰`ŁFĄ:Ż,ÆŹs%˄R‰q^ aîF<”úIŹ…2-iła”ò©ŚȚô杝2#NyĄj‰ŸX”œiœ:&#;dù2ÙTiæ-źæÌš6°û *“ˆ­œźóëGư«HZÔ="}pÒD™DËĆźZ>»ăŠÓRa…ê§"À/íÙî.żmQwŒÔæš& Đܝ~‹ŁpžŸ_à©èÄéP,IG±kè8ńôD‹ä"Ú=C šTÔÈÚâL&/Sì.gśež]êțŸ'\‹­P7ÏĄ«“Łč!ÓNkêáțd([Ó€Š{铔Ôh·Ož©JÓšA/|š!­`șX!łÁęÉÙښ›ëѐæ‘}Gaú#·R]Č/2ücóòžÍ§*Q…áȚtYEuv<œÎÏ•úHÉGÊÁ‘“ æ‘.ŐXĂr6—ŸłȚȚś/“ÍâȚz;ihjw‰ĐjŁ"¶2D Œ"ù°­œ@â+EÏ`€šśț*„ÔF-ôż™€·Ć%Ìűƒ%Ä”2a)۝Bù±ŸœûLÖ>Ÿ Oûu2Ž ȚÏèÙæaÚEășÐgŁšjXœ±Ÿ|„Żjg„©$ćÉZEòæ·3qHŁyÀŃŒ Ą°ŹĂù.}pBŽ ?ŸúŒ.A|a“{íČœ6dĂPśftD ۊ4ƔZì)‡Î}„I6>fčŹûÔ,{\ŰêȚs¶ò»œ $Ś›ăb ڐT~Ž›ś UæS4Éq2ŠäÊW”ŻțLxZÜêelŃJ„=J[Žß»Éb:ârԘûìéźšù)Pé Š˜Äjò)ÆĐ^©NŒÛšßvœ)šy[_!‹Ă8ižIÂŚżdM*͐^ą†-Ieó#D†§œ‚ŐœškQš]8ê‰$_QŒdÊ3á?ż?ù úńOśźZúèüV慏AÔûʇÛîđ[GŒêŸ‚ȘRZr3rŰHžh‡Û›óĆvÈٟ^[rżÙÓВl“g ÙâG „ŐȘ§vq'ì^ïŒïĘ­ ŐvAËô|‚u5ùéû,±Ê•Ëm˚œ‚f9oń0Ž·*2œI“ĄȘé‘6Ë1üźČCϟl!·amłżŒj–țÓLGâÇVTìÇTò”ÌÉ IEû]űÍÚxăœ ßśӜ(¶L$˜ ;<3ùÜjI’șPČLađù@ÍČ,.NńwŸ_žMîú"‰ú6i[”ojóđ±Kdü?ȄJ›#țHùŸűŐ1ÔĄ{rlŸŹĐĘqTLĂZ"žUƘ/șÎ2F7ŸàtąÚùӝP9(u ÌRy­n Pș^oŽžÉÙÏc™Š4:QhŠéwۋŰîRαű{ ô1# źÍ-薔P·?VŽNluÁ7@qâ—pńčC}>ÖWg<ß <¶Söz)ńìÔ$f}š?ò­JĄZQÁ†N–S­«DԖ «2fiœ9‰Łő"b‡;4 EuŒÓBÀŠMTws,éC1[W §^]Hžš•[”1ÁŃ5H•^‹8^΄„šNˆŠëâ™¶Ìź`5ÒÔ9áàżÌçș{â›5Dšúč&ÚQ:”SૅŽ(w•žvàȚՍwŹ Ț€ë›± WÊy5Š2èșdflăŰWŽŻ=€”Aśƒ.4ӃȘ\ŐÂčs^òr_Ül«ąW-<2Ïí˜Țæ2Ž=,{rqSɎČ/áŸđÉ <t*Œ]žźźșćÁŐüș,•ÈĂTpKò9Á„ČF$±C>%<›i“ŒłÀÔÈF›Ëőúç#FĐ„Ęăζ“,lăDûæ>ȘOô̕8śdăÒŽŚEJEžáv )ÁB_\G&aÆrčTOEŠX§pëÓfn‡˜UŒɅŰOŐÿƒ8ŰUÈ­+@‡QÏÒŽąČžR,òź”(xß0b_B†k9đ’RŒúwVšŚȚè}[KÛi9#śÊŸ„†ы@€|OH‡˜ZùÇȚa$Ƃ&•ę$êȚ·[pŻl+ĘÈĐ\š0H=L·ÚÙĄČg†æîšáČm} 3żWgíqϜdH+[hŒnRx~vÍ͝=D7‚Ő€ȚÒ,ü‹·à „?±TBČ=żrsvĄÍí°‚ń5íTŠ}Ê~$#:8qŸ»Oᎎ ž©öAùéßĆ`Ô`%żäŒÈŸtn&C&FOrŃàVf¶ DÁÁžj6 ËjŚ01Û5ž?æxVŹf{„Ń ŰśZ'»Ìw%…  č Ó,G†`u^&ŠŻK011g ­°đË*ó|,ômčN4UȘäčlšę…đăĘu28)¶Wl6òhʍé’íîĘPf–äw|€ą˜ˆù=—‘–2Ɣ)­:š0fć4ÛÜ &Bò Ì"¶›ăá·úköÆ@]Ćۃł#ßwŽkTà[ú܊,îc\ŻĆX„E­Â°ÊtőˆiBź!ˆeÒŒ…O«9kmMœšK‘L$·Š°Ë]?ŒÚíëÌ@8Ńs F\ő+1èÄĆӈ¶ÎŰŒ[”ĂÂï•QÖ@TßŐĄ ˆÛ-íL1!YÿŠźŠń447^N~€ÚáȚWăOŸńyÚ?˜ț7pí=ÀčہtBVl„Â_%FŐ‘ÔË 1ŻMwÆ[”ń5ą3€ V!iž%ăA± ËR \YsjÚTáBÊ ÏŻĂ=”ęU«|-ś“<|ó_–Űöșčjf^—ț*@ŚȘb”ênFƒ™SœűræF”ËÖFìąő­…MFștżÓÀ  łmÆČ”oî^°‰«ą…Ź»w,K·7߀­ûïzríœÂö;ôšDű•ÙP/-íšwéòÓ5JŽéĄæ)üŰNap V ĄÈÔ`—g"X—DŠs¶oÓCž^ÆOÍrș͖qśe.YKߣ‘èTÉ)á2†}ÂzĘp+NNNű(ż„:ÓOË»>°jڏŸhÖvš$E›…g°1ÚÚÊżĘ-E! ßvźázùĐđT»EbI™ĘY+†Œ•îPKșż|=1čȘæČŽ/ȧ†Ú(±†Z„ŹŹțZUłőDë€ZĄ_K>Ëá'˅!œčÖ`géžö;2ûRrëȘÂ}aúÊ)‹ùUńrW3ú‚Z»ćĆ#șŃV I°Œ;ÈAkĄÒËÀQ~Æú Lő[<<™usÎzŸțŒ­üÙ°>‰áAPßëüCi•|R Ûo"MVkߖ9U»w».ú֓ĄŹ™U7eS–·€Âș"—ÿ9$I)IŰx«ă>„«ŐeL)'€RśVîCȘ—39ž= *Mêùn„‘^R‚Őć.—ïéwû<È݌I–Ô;'ÔÆ‚v Ę# êJ–l'ÖVöĐüĘv+<ï:nsËn«·l“a­Ï˜‰5Ÿî‡ëæ3înëAxë—*ž» ćšvÍ·H 3^q ŚÀ±âï:б0LŠd©˜ÊÇ>·?7Ś2dő˖^:ÛäÌlEZPéPÛ{çƒęg‰++Յ?‘`ˆ]Ă­Ă 8ÇeÒíšŰˆŸäSOë‡zŽIêû]Ü[ӃWœe“à#ŽUx~ > ~Ą«È}çŰ&ą@Î!Z]ŽpŸM ûàÈòę*ܓW±!œïĐ„\Æ@†!”Œű‰wZÀźàĄ X„Tüê¶é;`Ș1#“|ö«ŃsgĄźÊÓ7ûvŁEÚ©ŻVú“ÊÖ\Ê&Æ*4­‘„Lˆ'șt)o@ô Żé0mŃŒàiƒÔoZ#QÊŹ9Ɨé6*éB2ÇÔv9NȘ.œŠ íUŃ֒Bÿ臊\kùMšË©°Bdz†ŒUŐ=y†€Ì»ŽȘ~襫æ[ƒ|6cEÉK,‡‚Br'i„N- I©-Ö"łgìv:‹–uO…“íŠőĐòŠÄ(z'ƒ “çÈ2ûWq)êŸźYŽ€w§R,d0“őb=“_æŽÛj\9čp^\9üPßłˆ!•öôă7żQbÍ^ŒÛ5”#ò†űśŽÄb鼙wÈ^9!§e”#íb3›Û6ö„) ˆvĐŚïYĂ.ÓA}jwè§ $ő9\fÆ$,`¶ÒąŹIŁÉ&‹ÍN~ĘlȘ{Ú„L›ČDóŒóš“·Ù”*ücIűè“N ŃÈæ\hLȚčV•¶mjÉۊ›ń[aŒï"nűˆá/*Î-)H[Ț„+țŠÆČśÖûŽŒVI? ù:ˆ”ŸÊòWŒKAg>*âóŚxčh‹ÓLÚ“ôX_ŽÚX–d6rŚV€S‰]”–Ç7ìbČé•ÓwĐ\’zĘ őœ&•„ms6›mZVšƒ‹l—ÇÎużČ€€dDU>Vf8aßči)œr”+łL–čĆwjôBĄM›ąæôüvË7€±6Áś K‰œäĂ 7937qçń%dވÓid[ÊTŰ3°š@ȚxÎBó [›§ÔÛ H ¶©àkkËv |%„C9ă'…뜊Òt’‡&=~.X‰XT2±ü\›ïÆG Ίł*Q¶;Ž©O–ȉ|7áčéf9î6Ta…ĂHŽûíäÎÇyš©Žcß6í+űi“Ńț^6„É%AD–iHœșxçÖe`ŠŠœ' çŒȘÔ-Ț„Á§°ƒç'KôšÜùsŸ­żàÇ4¶”èVkÁ&Ù2ČíHŠ‚,ulâ§_ńËÜòä›UŃæûńÜç{x+Š „*…ÈD V žÛ,‘î}žžjqÈgĂÁ€Jf,§ź9üJ=«Ôq±Xs€qv"Ÿ‹ŒxšGzće$I4Yś‡°EZ F|…7;Ùęh!ùŰ»-[ùó–%ĂÄvKS¶"‘f+'·Ìϰ™ö›Ț ?=œöëŰÎ>Mâۃ îRç]ĘL|Ù«?pßć{fłfLÁ’ć·ˆűžżkԑ”Ĕ’ÉÊò¶Ž1ùŐTW€©Ùƒ ›„NÖáCèhôXȘžŃÿŽŠÀë8}ÛwoÔj2aJŃ&‚|‘˜˜Y»'QíUo€|)†67!+(ÁÂ:4‡%DŁé$âJûFČçŻ1zÍ=śç.`Ł•8ÀŰ,rïBȘŰ<΅àIŒ8û©’*Nsá1g>:Ö°ŸÀŁàyèăK;OăŁžŐŸ=Ÿ9ošœ™u‚[5ÉűÈàÀ›^Já+oëÙcșJù1œ±3 Ïô*Peû*Ś*,fQšäç&ŃÊ©Ț°bȚȘĂ /°&wÍÛH Lj˜VÓêț‡ÄÒÁœùTűeüڞŸžAÖ őÖ 0Ï Û,EVv–„è”m°ä4s “Æț‰‘ÄżÌăk‰6>|XEâ'xââtGSàíŠmĆÍ7„r™òiÌÉdj6RßőÜŰá+9ȚÂáiĆ2bSőČFJvź‚á‡p~àęfőŸF~­=źČ|F‰éÓˉˆN€¶kĂ6ŹÛą(Ąxޚ)Ä‹Ì1â·=0ïŒȚD©ûÔ /Ś(çmü,‚íȚ螐„Ő_qéÊțOoŐ uáț$ƒŽŽÜ»¶Îí”°ő©K7äâPàqîè#?‚I1›Ç·yçàˆ:8/ŐĄä8ŁÂ§•l ;ü9Æc*·R««:"žjÉüÁ7”űŐĄéauïżłőîà UrLșî}§'ĐQ ün_6n|š]Ïyć–—‰­șëAœŁÛN ÙìÉÇdCêLÔȘ>Ô`œ ê1‹!.)‘:|~…9Čtw–ÖGc2SÜ9Z"H‚û8Z(•d%Ę„UÜ»O휭ók“ștJ„›_ĆĂź[g­$‰?kæ}VœÄ?Jˆ&’túúŁ2&|¶čƒEŠûöš– T¶ž vńÌÖÍçD!îŐ`âƝHͅ„ó"ûTO9ÜPmmÀ_‡É­č=–’Ő ŠIšóïä»ÊÔ*gèà`+) -ćâŰđy6Ûx‡ŹÆhšníêú|ö[Äć<%/bȚ6=‡żŐ5 șoÆ%4ÂĄ,ò˜A[ †țW[4 «rüY†ÔbeÒő)HąÆąì+Qf; ÇUzéłVlŒĘ˜ïÙ5śta œJ궓 ßłDćNÁ?ć†wn6biOžÓ;†<ż|WÛ`T±ĂÖešè:•Áëˆ=$IæXnŰІuxžuȚ$’źD/ĆIY֚‡Ä?5Á§”<úÎZv›^/éȚ•ŹG•`ăAŒ‘„GûA xïhÖ^ÂT]΄2bì,çÄČN)ú‚ ąNšíTá.“źuÆbä”Aœé8êRq-š“cä'ìŽ]•ńș}$”Ńß-ńIbh€€žĆjì*7%$DâɞoßȘoőË˒Míâ‚HÜÆÆOYŒŽ"?ČÎP›CD%\F•|ŒńY”[Ž”Ž5EÈńˆkeÙ_üĂWOęĐR;B/îö!wt 3Őš„ӆ€Ö(æ,]í1öÊܱˆ¶"3Țï#sôuûLh9Šö¶H pRÜߟƩ Nwś c…|žÂÈwQm=ʘG…KŰs òł /!őf„íôΠű}0#ČČčÒ8@"ۖ‡/ÛRIR|@i#ÎńÓÔú~#AœÚvźžĐęfĄn Ț‘šLáQ<'RQt%fÏ6'”ÒBČÌJZËÙs‘j—€„<é+m°qÙsu¶v eqśfUæčû8Ź{JmçvԜŻŃ"— >èáX~7H0”E%úęń[gjT.ɏ„,x*:8朜G̰ PçÔhÆ.Üïèƒn'ćÄÌÌ)“­™.ìÒ§ČÔVÜGŽă=ú©Ê{lBš‰ 9źepeź¶ï·UŐ`c$ Nž¶ŐéìÆ[±ąpCąK çk9űYÂĐąHzZÆT«j€&”\‘§ő8 %‘ß2Ëc‰‚ ë;Ń+^d~íń­7ϰ9Ô#œ§!iŽ3„IpÀJ<Üđ°›hp#~ÛźnÛ%&ì_sē瓙#đ>źŚÏż”€JȰé~`lIˆ]ï–M8O ę~, À˜%–»zŁÈdçš j<0ž'ńŽôÏÁ°ą~ńĄŚú(BĄcôĄâPx‰yCšQíŹYäFz”œ6ș–‡g0EńuęyWû].cFęG‹%FY•Dńް=b= ÄžWd5AűƎ0‡ÿnt‹ę.°<ęÏùÓSę°`xàJW·ĐhŽŃæ2n!P­Oúˆp™Đ!:Šô$ŹÂŰ/˜ÊhL=ŽïŸZZƗ|•„ŁËĆĘw\ÜaCè·ÁÔßő<·ęàÜ.Xd‘œ°0“ü[;ĆÿùȚ± ÆtK‘r¶3Eô%jĐQ….ä)5èűÆ©Y„xìmú=Š—Îa6D3¶ùÛŰ'l‰KVÔù9ő^‰üÇ óŒíš":O‰letŸ—xfŻ9nŽȚIä`Ć4jź­:ăeꍓJ\5\;ÙŹ úÒčÆÚÍïo˜LȚSá”hkˆy6ä!è©ÒeÄÈj™- Çős„ŽqmK!QqPCȘçű{ł˜ŐPȘPżcèöŠ’ąÌȘĘJ’:~)j*èx`ŐĆR{íÙ}WçvŐۂ—„,qÖŒÊékĘæÜCïZ(z§†c=Ț-ûäB&ĂÁ€ÓûœT~vMÔ{y"U)0Š‹ €W:ŻÀIÖösX?gpêœ"—Z„&"ƒ§Ę'Ü %|\"‰|…đșɆ]öń2ŹÌ±=­íSJÈk4ŚZçìśÍŠÄrŰhûŰ]iSÂÉl±ą-9oŒN"ì„KÇkKÊ>A»Ü?ȟ~UŹ·dŸą€·’ Ò»2#Ä{š= ŽĐŒ©J1À.Â8bœ·gŽfĄ–h§&Aæ»_kéÆ~ŻDPMÓ(è Kù’eĂí*ăéœAr›EKnŒ,ŸȚíNk$ŒLqÔqšï[|x4çŽ,ńìĘ-ń4T’ Wv8èTĘCr7đÖaÇ00€}—Zl͈\Eç.ucTwą°­€çBw?æÛŽX^ŠûGëŹ~ûYhÈUÍV˜Æ!„hΚÔčÎsÍ]EțNą«ËÎMÈew NR‰ ~ÿ‹ì_KšČÿÍ»„șăÒQ€KŻŰűRUHۑ”•ćÿÆFDBpé,ąsÂ4ara·îËìt4»ŁWúȘŒ$»í0bzë+%cègŸÒŁI|Ț…•Hkžh€F­‡Ą±$ùê$í€5Ókѱ ša–~ù óÈùc‹œ‡ŠeĐ»™m\~HÇ1&ț­äȘúđÒè€5{"Æé2KùšΠwă§htè=ˆĘÏ%ÿra„&T©ù/ŁŸ9˜r20é€8k“čB6ŚgŃ4(yĆÙ=ábș…cg©çš*©•y?Čšd}M‘ž`č¶Û†i} šTŻJ$Ă#ÈÄM­é0š|§ĆošŒ!+. ÀĄ}sâòV€Ąńg舑)ҁ}y.­‹ȘáW€ ąłü%ŒûûŁmlOèÁżû"ŚMȚ’Ô*”2CްQz $5m  Ú[Ùp/BŒő‚D{§èVĘ„ÖaFČ —)ï7đ…. ‚,B3ƒYą«.Ș}Á͇%ȝ;‡Ńí”đœóôšàjąŸÙú6Ä^3fȎkÖmÁ!-ôÍîòÀ0K82ö°C]ûĂĘ,h$2ÍiLx·ô ûVbž8Ęő;ë5%.ÿ•l8»QătF)•Œ™*ßY‹y±­éęq`ül™Ű,Z“ŁiòÖ}Ö€ŚžÜ›($?֜ƒ”E)ÈJIAŠńis;Š\‚NÛ'žHeg·|Ś`OFáwń']ÂóL'çčæìŽZÄòWëŽ-æȚ“X]úòÄÀbż*ܒÌàő1ő=Œé.ӊÊrŰzș9Ó_‡ś °+BÊÌD¶Őœ¶˜cđ©Yƒ…ù3LüŐș;ŃȚCÀwL5€QÌń ÀïŻèiـ { »ÙG„'ősA€L}‚&6ŃžÜËŁŰ-EzӟæăÚ22SìŰÀ‰> œŻl—ćÌâ8AÈ„=€ï˜]cź]qPՐ{lN§ÚeòŐEœÄQ9D™Œc<Ógaˆ6ű…UkzöKoĆæ#_§˜q*HȚë`7 çîŸôe ÎŐ_ ŽS!mÚUŽąÏ•ï.SÚarMì•vƒo ·s‡ żôȧ*f7тíòęÀ1}ÄTö\«dùŻńx!ÎêŒo$!”oĘœmŸ‰ÌÖWqXšužy äa“ŠÊŁò”€;˜Òù_~(Yâùśš Üß|L?dUșŠbâöšIßś±șuÓOuíeú\ŒOŁfQ©TÒ,ŃRŸR*ÌB Bńàl·MÇ|{e*rr:‡)ȚoìáîJçÇÎ\xWìCșҍ<[ YîèUÇŽĂŒKČŃČĂșqXˆFâŻëó±z”ö]0ź9ă(Yîr iYĘWPíwXƒ7)ÓŁČPb€˜ÇLČNÙ9…ćr•«ƒè(kO oŽmš>üÖÎ|EŽPŸCŠ+Eß -|g‰F1tGƒŸ ùÏŻÆŒ3˜Ï%o1š[(aûŽßʜ5m¶ìœ»«$Ÿ­;mn“ÙDèUxÒFŸŸŸÍ;ó3fŹ–„‚žO}ㅰ’d"¶…l§–A·Čșdûęç·üYűÄ@ÈÖ/wd3»[Ûą‚ł<8[ÔÇéöêYĄôÀïű6G5(˜©%Ë-Zą\“"ĆăÓéDądᙙ-?M=$‘ƒd8dKƒ9œGaëś+uŹČlzë:ïŠa(>WhæŒîQ”Čź$ŽWđC[L*Šé-žƒÌ…ă·àíX-țìæ …Û>źšłűz2`ïíkłlű›2”+ŒńN~ƌă–ń]x1Ś«JțvûíŁ¶ÉĐlšŻá·҅RÒț…2éÈ+ű@WA\ź0Ż\Ì2* ÖT:ńúÛÉISSțÉYIEÜMù@v “EŹÖÄYYMWé_Ć˜đEÈòLzĐ'‘/\zs§Fę9 iQ”4K+ߍzțôD@Ńò —AÔ` žg(&čÛBwJœö[tÁjTę^…ă;™ù’æÒâĂžN}ż*cْÚâäù±WOÎpőKN6üπ—_Œ°;Ę-Ë›È:Ȝ/đ ›_W_;€ŻúUϧâûÍ[ËÊö!,ž&™RO™Ó—3ž;/ҝ›A„MMčČLLNîç˜É!œI'ŹpČ òĄ,Eà 5cțû=“V*F7Œ~’ŠwŻ Qș@Žbș5ĘíŐjȅsgfÚfžOÀl— g?űylż/Ä3ĆBúVń7#·€@œĆ]€îí-ùCŽĘčäÛw1­nSNy{uỀžŚËźĘ`ȏęV3ș§1ą cÜH\æƒ6.éiƒMM^Y%2iù0è)[ YˆRʞ0x—<·+LăŠsîű–ŠuĄ\$°ô!Éu[]öȘnŁn¶È€Ą‰9 §g%é cŠłśO’lt&2t5”(€ȘK;ŠÛ1GçŸ#7¶à^R8Y>jq:»rrïIăbĄȘ(rĐ7P?šôjíX·iîçžčČ,iMô6ŁCÁ]šŸ9öà˂ÖÈ)i/ °&Ő»ű›©Č4čŠŸŒĂo©6Z+…Î͛őœ6yp©JĘ_g’•áx愑œęź($(œK§éêk!Ù",…íŽS;ÌJyd :DŽLaòt}ŸŠžUśźyčæ%‡)ÇIKjΚæî‰XTŚusL‡ìÄ-ȘôÆBCA ÀNźÖëőQŽOČ1“GlŽ>˜Ț]JlÚoŠč°ŚÚ6vx)eű[[dâÂfàȚżjÆ!ß đ4xë$nŁ|ߙŒyžC2\yӋšˆ/1­f!ș~żÒMmmǀś„y‡V»›śśßYü«wjk/q©Í1XéĐő,ˆœáž…S6%惷źYÎlűY "Ćę*5±Œ­ü0wÌ3źŠȘK–n$ÛêŠáC•È/ń±LŐž^«O1*ßȘ1ù6ŐFß|Ł$1ÍvÂK{œ2DÏàüö ŸșïLœ`ńnĐ O@™AÀ`ąÖĘ,r†ŰÖ`łŁ§,-›òćÒúÍ«č†Y ÍG\đf”ŃJ°:b@'RÜNȘ3-äÏFËÌd=ò˜ÏÀËc ĂöîFæ_š)©I>țGń«z‡œżđ„è…Vűš“ò«[ "CYȚ\-Ӛ™›ĐO‰€ÏĄ晞êńE{ò‰9wÖϒ Őzv%ùÁì6r†ŁŁ_Lç2#!ˆźŒšìì!Îă”ʇhŽÿdËăƒ(ÀąÊłqJŐì+yAĂɗ…FäfßJEC Š…ÉœL†± {ł^wśäGÍ»5Żïb± 6u©Œv+”IÛkM‘~ŰșóĐÏW’-ôźš{ÙÔ°„G• +ëB©$Ӌ֌,ŸXTśKÄŁĐoN|8YÓzTXږfÇ!±+ÒgžËž –OŒżži€œ„łhgzÇ,Œs Ż‘ȘĂH ~ŸN©ŸÄKs•†1hÜłÊU۶}ƒwś`lłÄ2‹c~žŒÀSńPçdÚ' Ák&Öq”9…ÜőżČńY-5rS;Ű;œ6]Ő\œŃ«%Ś/°M ćæ9•‘ÔțÂȘ!ÓbSőŒ ÄöŽžÍ<ăïÎÜMMŠíʂśM;°`Ü5Š+‘J Q€<ÎÆ€jŒ­őô~JóYdŽéî"Úäw%Oû™Žt§ ”Ț1©Æ*;œMÁù­ű ÆBïÖ¶nZÿł•^„öÛĘ$^fêÆą=€üÎósŐ(0À5`Ț—­” g‡«Țž7ap˜ŻÈI3JÈ […”Lá>~{ÔìfᅈÜÄEeN„ÿìcłă‚6*_t·żÜ<—ç/üȘ]ű‰źâΑ?qÆKß„ebüçŸ*”ŽáùËč%ÛJ’y]“ÒnäÔê ±Ù§Š„50Ÿ/Mˀü”*Už1ȘŚ †ĂkŃȚJ|T""1±_äiÔ8°/°žQnLÂ),&»š­\¶bŰD5+ńét`w›ìŹaVŠrëž”»ÍX8Î_Á·ćcšlCçÒȚŸĐzÛOž{æ(| ÚŠC¶ő-čęë˶‘§y±”BV§ú"mR履Bö”BžȘŚäLÛŁ©)žZÂ{ íĆŻ:“ïČi%!R€)ă5Œő·ćȚű!œDò.Ađ ƒT<Ą…Ąÿ_àđôȘȘ Ś5ćÙlȚÔąÊmôżą’dđq' žÎÁ ©7>ZûÏÙ±˜Ì|T~€\Iè…­ŁœQÛ·y=ÙŹsiKęÄăT_ā©ŻÆŽÍ ·igź*čj°bő|ê†Îj‰CUŃFȘ­.śÏaćE~ĄĆ,ïÎ5“MύČ_ÁáäWČZș”ÉȚóAÛ@rĘBEqRŠT›i„@”ĂђOâÎ?ÙËȞQFYÔĂ!4eâæpF@ßÏJ…$@Â={ҏș˜gÁ–MS”«YpngD_ ©  ąl«dĂśnš ]ۃ9ÀxŒ‚óž$&ŽÂÚt”cđbl ìźt;ęIk'lJ-»g]ÿórU:c.m;˔¶ _ÖŠĐö9R‰F•#ékc«v‹%6äR;€+7„/Û•áÆæŃzčòdŒhú…Œ[t7uö‡Òaó?ż7C_0]Û `Û@,rT#Tˆ‹ °yąÉœpö@Ÿž!­IFüì©ÚĄŰç—*Š`%•H„ÒńžŰ!‹ap+Ő&_a™-ÚwUä=íî ű| N٧ńa%vûœPБ‚Òâ;Ç]Âl"„CayÓk­ÛàóxćnMŻșÛtdJX`Н °xßù,Yć N©ûHN˜Ű2Țęő©QjæÀŒ9ßs7~  ĐŹ€_ƒÓn)†q~Aꐐ~Țț\žŹh4WŸçç豝òÀŁ]Εòq¶Đł„WY»ëÓ­8C°sŹ"-eƒ|”w˶2[v””~€ŐG:aŒbgˆđüp~Œ•vŠšiŠőœ6Ș˜$Z·XuŐ`…Ì7"ƒcâX]ŚàŸźv_æ}…OmF]xZw»Łœ”F]+Ü"ZżőÆgæDm=95Ž&ŻB+UhQÏæNÀÏg0AtèJRo5œĐp‹Ę;ű:•ŐQqKÏ2ÈÔĄˆ6zžV)žjZ(ÇüüúțôoąmM†‘™łÔ„Ր:ŻhÉFE€îoA±:.Ùô/†ÏŒśÎéƘ-&ƄKŽóČ B1:;§èQ˜žŸgĄdN ŽČĘ oéYŽòÛé …êA]D;“‚vMÂAŁ!wp §l€UuÁÇő,Üè\ĄŠÓiÿ^j|łO±æ„û;”…—'dIޟ,M7‰uJŰ©6%çžłÊóœ<Ă8Փ…Ár2۟ŽmÒôRó$)I•măÌ&GŚ]i›Ä[=ĂÜÁMČatKNU[ĄiÈz ą‘™2œ°sĄžńÁĆ,ŚÇ yìmĘb‡`Űű>=œ•Jž"PÙ±Ê.*ÆJ”–N Œï†é.|èyŠn áÂćZăr?ÿÉ 4;Ž€.›ńQ"|4%LŹćéo`ć!nČY*ՒvÏHk,ț•;çőmF|5łk†‰À32žŚ,FûžżĐ†xÂpśŒb|đ[ ŹpFdĘ&üŸmdÉ ÏÁăŚc`*9¶x*ʚS9dôȘ#Žl;ț7ïkÔc@Ó0ăȚ! ŸXç 5ßâą tO\çB–5 ìÏò˜Ìg4 ,ő·H7N¶t ŒòśžDłšÏ±?șX4ž™Ąæę3©@‘Ò5 Íć#2ęöô уppQ#ĄœêPkűLŰÎò‹Ó 1yAś‚›pŁÎÓÀ'’ËDą Œeù.+Š ÛtŽž ,æŸa?ٍI…j]OštÁÁĐSnq9Č]}ÊŸrȅQ!3”`€czÁ’tš+˜€ Áž€ÊÄ)”đU>O—b#)Jyœ&ž. =xö*  ”Üÿ„ŒÉ"Ë»»wŒèĄ4Êb E’ʰèÇbÂö ‘^9&:©đ;ˆ6:ełÁÔŁséJ#`@S‹•DžN6y[bGԌvăX’èȘT{&[‰0 åÜűŚ*Ïą–ڰôSđ:ÒGŐą±č~:ÿF ,.’»k<ìƒw .ôG 6«‚—tły0–D‡Ł,Öyzj&"b6eç@ĂŚ+Áv‹–F7Àl[ű—$éĂoXÙáÜÄDŸ›&ÎNW”m­śn…QT#€psÄyŐŒ9*۔ÂXçkVL(kÔÏÛæ”Ÿk„XA.`ő:[Ąă¶7ȘTJè‰ Vf/țŠi‘đ\™4őa7S'°€ò”>-2JĘșž9'ä^G3źUîő, DjJšÛ§ÆgÆĄÏ<Ș5‹Ü±Ź{Èjò§ÏÄčk‰”ÈÏLčźć¶ƒgÛÇ3@f·Ž Œ[‰H€Üx šƒÊÖehÊú’ÇÀ‚ìśĆêÛSE<­ĆbČöÏę<"Œ(7_à€ЌÖ̟±§5~ÜÍô ÛłżហÊŽÚpŒ) óȚVZAő„'…ź  d3Ÿúc–jïđ( ĂDÔ2’‚ê $ó,ü”ósŐPálŒ1 ái{ˆœŹ„B˜Đ òÒv흋3aŽŐć8§ÙÿÚûÁžÂûnÈŹÓ.‚˜Ìx;źWŽÄŸ°ăćy\ ûƒ©”ƒ1kæÔh)Lm™l «É2m“=seŽ e&Ä}Úëe6ÔuYáUâđ/kÂŰ€“ČÀ_+৔2-ph'j۰?ÿÿqŸ,Âêž“ÀDAFÁŰ8Áűe„ƒ©IÜæòg{—‹†{ “Ee±Ò#źde^s»Ç~\žBJ0|óśĄ* 2Phvq”łčH §ƒdR1™  ŻôȚŠęŸșZÍ%ŁìR7_Li©ĐC5h|e%Ëú ©śée=;æ:|t*7čsò1ŃcÁëDXŒû@ó`ëGp„™q·'ʌșż*jS›YƒAęBS9ąÛ™a ŁÔČO6ÎÙêŹLĆìćČvZ䗠zé=’W?vb9Ušùč"Ùí:Bÿ]yž)”LnHf€#šĘKfgêÜbW#¶æ9ò!šÂYWÚܖhI#ÛĆgtBU•y™?N!òč‚\cL6áq^.EűŰ}í9ÜC‡0ŻykŚUúĆ.ÈȚ] o2ơ̈PNÿÌeè$Â`Ö JÛdűÿ]țK(Íušÿž9yËhŃŻș/•Fm}PÊê* “v&# íÀ‘ßÒ4b śĆ(„ ¶Zêy;Æ ą‡vźńĐyŸ3nv8­c„ŻÒáźA“–™!VĄ*o鎮šöéêÆČâąÙDć©đ1rцœŸÖ»ŁÜ„Ń dŸ·SÇ ,ayv%țùćÖN$ÖA‡"șaÚ`!@„©~,dSö­ǑȚXmX‡oóàšæąPŹS†ő.ȚŻŚ]€óNŽŸé”O'Ù ˆ!4oœP€{č»i ?]xS{2…Őä2¶§fG‚dÁßr>‰šżà_|žBœš$Č]ő*‰D° èw;ç8šìÎç3ąß)Đ9ű: ÙŸ ^ëȚ-°žŠ† EŐÁòź=đPà(om€»ĆeٌzADtÈƚV€ˆSê$P.LÌ €6ûO)ȘĆúœ ÿŸ‹fwG@o·‹„qîű덊7Ï5ôŸ‘•Ź›‚U\bUŹù<-”çL‰`D?j ÂÊ]?ŠJI‰è“0™żjüDnZoǝn1+㛋}ł܏+Ś%)“AÇ)!ée GCTvÌ4Ez…n]îȘ°‹ÜæähsIúF*[†)s•ï·dòæВyÌXtû5ŁŒ„€° {è€4"ń5ŸW%a6—›Z°źkDOêșwӝJżh,Dp…€\éÿÀüłśï[ ±ÙP hȘü;ÎŽPˆÚ^ăbžęï·±œ:‹ćèèăO»ȘĘÌ0X=ÊÉx2­‹%ŽŐ:Źi ]5–‡ê\ endstream endobj 129 0 obj << /Length1 1620 /Length2 9705 /Length3 0 /Length 10531 /Filter /FlateDecode >> stream xÚ­xUX][–5‡.w'hp îîr€ƒäàN‚ îî<ž»kpw'XПÜûWUŐęÔ]{{MsÌ9ÖZ›ŠLI•IÄ l”ÛA˜Ű˜Yùê*šJÆ66Æf °“4ÄŰđjț€LE%æ4†€ÀvâÆ @hšŰÙlŒŒŒÈT1°œ»#È }Ć c``ü—ćOÀÄꞌL'…€úőĂh¶·ÚA^!țډȘ@ b ˜ƒl€1E%mi)­”‚:@ ht|mBÉÙÄd ™휀ts°#ÀæïÀlgúӚó+–ˆÀàd4œŠĘLö\Œ{ Ł-ÈÉéőrX8ÛA^g@vŠ6ÎfŒÚÍÁČwżFŰŸú^Á”ÀN'SG=đZUI\òožKcȟÚN W7lți6uțÓÒ_ŸW˜W/Ädç€Ę j™f '{cśŚÚŻ`öŽ żh8;ì,țƀàŽ0v4ł:9œÂŒbÿ™Îżúü—îíímÜÿÊÿőO ˆĐÆœ™ę”Š)ä”¶È™ćÏV‘¶3ŰXÿ¶›9ÛÿĂçtük@Žö Ę+ c3°;À hŽÌą†Œ–ĐțïTfțωüű?"đDȚÿ›žÿźŃ9ÄÿŚóüïВÎ66 ƶÀż’ÿžcr€?— Èôż…ۂlÜÿ§„ÔțÍRhálcìűïîżáEì,^aâețđ·ä$ rš) Š–sc›ŚYęeW·3:Ú€ì€Żšț5N+ëżùÔ,AŠÖv†ÿáoĐÎìßéżÊôyM)őOŠ* ÿę^ę+NéUˆš»=đÿ‹hʃÍțčűƒ"* vx2±qł˜8X?Œ»ŚƒÇËÉæę?Tü ˆí_kycˆ#È  ËÊÌÊÊx}ÿăùŚJÿß`$ìLÁfvŒ*ÄŰÎìu“ęÓđÇmêìèűȘí_çț”éŹÿÚî@ ĐyalÊÿĆ*)5R…›Ù7"źÛŐÁÓh_XŁ–—ăWnśM Yç-5zŹ dźă{țá>{hÿŽ-Cż3ЁcCӞ<Í&òŠ ëÌÁXĄnæfŰ `1(|—|€îy6#·«ĂĆȘ±ł1ąŹbPđO<ÖÌáˆxvKçGá’ă‡MycêcšXőŸœ ł*śđˆ:vÿö†Šg°żŻ·ęźs›!# ‰ŠßŚ'ț,ânäxUcú wïÂí0†r߆ŸdòV&{šëpĄș&Đ(ÁpÓ-„|.YĐú”ń(FSCțńű‡©6ęą,* š,{kğ I,“èÓlĄ \čșú…‚ćđēÓèˆwP2`ÖErb!șZžÛÜĄőφŸŐwéĆ(ÙZŚ­đʱï`°ŻŽŻ\DÛÂù)œ. ĐüĂJăhƒ>‘^O3­[矞ćń;ż}łȚo»)†síȘ©ŸÓGÀČŽÇe}QČÏöLđl 9żÀńÓWȚ‰3B2gőŐ9ű!ˆÎv’[Ÿžn„äjÜ7K8NGęFÿy©çaŐYŚm­’ú›Pž†O”†xôvŸR-TM33–;źń©jŁÍ{/§I\!ƒ+Bd!ž• SK&áJŁhR‘+űUÎujA;Ÿ ćóĄXoèKǗ€-ć7é5ÆòÂìÒA;F­łÉ!`‘KÖ2őw^íèptJúœ†äf+] FŒ]ŸÙ!”ż‘Ő……ʧ|»}îŚ)Ü:òÜûÈŃ» k$ßЅ©ÓDBUƒ]ž!hț2ŁzˆžżqQR)œß±OÿÜ&‘Ę€BŒĄm,úW—·Œ`!˜ČW©ËB„rêè/gWnX‰EĄÄ„>ÁíQݟJ8Ғi"Šő%"` †À"Œśš<Óź>hŃäŒ Ą6_«o>mVŸ?ŰЙJź”ìč\]Źś54Z@gßwl#_Èdùf$땉ÏÇšé T0š…çÉînwLŽP7đVtÄw;—4©Œg2Ù€á#15Ú>Ò`c-2ˆßÍ2ńä°ÿr/)+Z,ČásX4”‘șo“'&vÛŒàú–¶=©˜ČûîìÀb0쩞SÓi4‰Ìòap,'-ú†ą*«Ô}–­ô»òë;ç Ő=rNÂGÉüńȝŒĆži~ÇÛhÚÇó~Š©+)łEŠû8”Ÿj~ŒžÎ"ûJŒôȘAȚ# *~aòRí©Ł±¶\ Ô+çëÀêĘśÉ6­Č ‡T”‰(v%˜vđt9_ \¶çŹìzŽI·]»ŽsÛÀ͊Ą„X‚œDœwv„ښáü01]HZ tÙș™ëIÿB6ĄózBšæÂ§1ъhR3–ce ŽĆtÈI Ő‗(]Śn±{ÜdœYĐ‘NĂê[†-šÒxŸb˜íœR4 Š;T-Ղ©žÀš0e~·š"·.G”ë…5 ȘŸëqĂQÓsÉ»Àù·™úÀ«ÔšÛž†z›RdőՋ–Æ@ú™kkŽl`1ÎŃ(†…|êò1†TIóšƒÙąÛ( Â'ҍđәAŸ”kovŒ\áy;ÌŹ‚è¶¶#ÁŸ·ËLá}ÙOëN]6ôP„Ląéї…hßĂ+ipŽző—Z žG&,‹,œr Țđł‰,%!«Ą {O©ŽŸ+ŃcÖ_šąń:QwL”IÜĘdüp e«x)ì“Đö{bÈ«VZgFYTžrˆL“§á%čŸ/ˆœéńĄÓz5Ÿ]gŐÒăgąÏP#ćžïòąb `|6Ț"žŹÍItąv‰5­cÛŰŽÁ«>È éïXxżő0ű^,!ŸÏ ăÚśvRÀT€bZ@|u”ÊŹ™ŐŁ>ęE}‰ÆR SJŠHՌöbæGàlksąŃˆ!eï;§?­#WĐr(żôôNŠêf&šMŸ*źëp««[+Šà±UŽÇ·łÀ?#öŽżŒiŰhÍ+n)5Öśl5&CE~4YÉ/wÂk+Cż"ČÖQRù,u„,W٘GíW攕¶“œöœŽ6óe͐ŻčH}ƒékhùúciò>Àś©ŽăKËZWΛ ]mÔőę3ę—4öźx9ËÔ*ÌÂàv慘Ëă‡ăM(§·’W5Z]ĄpÉ9űâ…Ôæ<àq::Voȋä0Æò :ö>Ÿrś©äś‘ˆff_êĆ'șÔÍLڇ̀òż„˜@k8áZ’ ›Ë“ßŰȚÔSšv{Š˜·J"ÚËY/{“›{ü"êt™$>â‚.Ž­7#ĆäŰK.–Ż‚Wé 7UuÏr°:‘ńÂûČiu}s'bŸÈĐ­Ô֘ЌÛ`S>ÙząHĆT–©.î>¶đőćö+BĄ6ç”¶9Te!ÈáAu6,j „™Y%țÍgöT’uÄžŒĄ3ÊìnO”^9ő_ìüú źȚ,/%ŸșàeŸEȘ6ș5śÖ†ŽćĂ?>bm„–dÇvob2fÒßÇO–gk06[ÒJr7ÊlÖiŠùßä; Șœß ’*«Ăé.ELê©ÁȚx oń0‰XS틬°.ț»^á„U”Ü„}ÛD}ËlŽüö-ÀȘ?ƒàŽŚ7èë(U=ò ?ôâ”HxșA±xąań‡Q Ž·I=¶@Cö8NzêWŽ“đęcŸ…à±ś*_WłûC©sŒ,d‡ˆłèêË9‚–ÔԒ5‹sŠę;>Ùhî0Í`>˜_ÁŁwŃeÚœőż.­€úÁTgoD˞d4źO…Ï8ß01đ #ĘîŒ2ęđęĄ­›ŽK™Ś/űMÍșęt|Nż©ęPjŃagb܇[’sïDá–œÛxÂÇȘ5>wàHVæńuż/Ź Œ9TdęnĆçʈ ŒÊŹ&9ÎOŠÒ’Qs•ÆŒ9Cc(æ!Ł­pŠ>óĆÙ+Æè­mźEoȒ' '»‚š Ș Ą­žžÔo,”Šï§xĐyÜh Ók˜äęœč{ö[čœip%:y—'ܗ,‡",C^Ÿß'‹dúœ-7|Č=Y/Ą‘QwŠŁgázđPŒ—’·*ő$˜ W1Wüil]Őòˆ§óÊtł"Źûôcp7›[ЇŸúwđ~]śÎșۆN-ąÔęĐŽïq‡]MQŽVyK2sDd±·as(ږ{SLłŐ‚©Qț\„Z§J”Ze’ïĂjcáZ†łÿțTë%‰€*čĘO!%»ŸP ï㠌öËúȘÖmÄ_ê3l’gö•@˜B#4&țŠÆzq€Z—Ąü©^û›îŠÓΌÇlA2Áț4Ÿ˜»–­pâcĆÏcĘś5îw§ńè?úBà?@èûrE3;Żß§ŻöúÁú°蒱ZÓšp d7ú™mTqâÛ&sŰJ%ŒR~âËÇŹœÚæPűńŒ`;‘'q—LˑR|·Š.|Ő=áĂŒI{źÙĘ5™P+ hÒÀŐÒÖH@q>“~š/űÌ]cJ«ełL ‡’s‹»@ì‰3ĘžŸ ’Æ]ížăEˆșàèAŽEՆ>‰}|ŰjŽ:Ÿ«(†F—”ÚÍÜčÖA"Š’ČÖ3đ%ŒOP§Ò„ŠÖ@Űx€q*ëƋȘ,éô5Æ94OœłĄ,΍«7AJN»xŁ=ÍkÂŐ€]ÆPvĄŠcŹ·Ć2ÜYĆ\`] ŰËهb|Q‹ă„ŚŸŽÌI1î”Ò[óŠ{f ßF’Îê‘G‚l$æxáȘéa Í*‚‰è(‹çčû¶șÇ!iȚ8Z/ŸÎ(©ŽX«ÉQÊ>K‰g„ET#ŒH]učőșb6Èï mÓÖî ,2~Èɱæ:ĆpN“—ű€ö„ÒAő4Ț;Éń}|ŒIІ>w ·ȘoáŽR=ïđąXć$ŃïœFΕYV(‡čÚ•d4ńŒM>ˆ§·YűEŃÊ«AY’hă[(çA«}KÆßÛÈR=<ÿ&ÌRË-Éučł~‡Ü~ß:#+Æx†žFŽztąIŻëæä?ČvE_œùȚdrò`pž0ÈʕùCűjńCȚîŒs]ISPïŠüdnr?nàpH̓a śqVxŰcJČÆÓă7Ùlì$tqКáĄüńöaÈSźr!ÉŒśËtSőGŽ(j&~}țŰòćóšs;_ÛTè ÒoĂÓŚj% ÚWj[34 Lœ6”MČg!Ï;eöŰû@fČPRßf}Ç·“,á2XB>ۉő‡cžÊ¶C+Ń*†Jò)n» VŰ7;KÎß-Ù`XőtÄNsąĘPË•ô5]?K;Ű)Áò äwżn)-»Ę9%òÆBü#Zś ČOç·áŽŒȚŸ?…š™ú˜,CÛ{æ„ŁêF3Èu y™òàê(ö§úș“§hm![ŐȘÂò‰læhT°êČ4ŐÎĘ{7ęĆŁ3ú©?OĆRȚ{ż%#ŹUzÿvbű™1”cš˜ËžïÈ?RŰőʑˆS`>„z6” 7êŁa:ú~ü ·J·ĄZś»›éÓÜs \Ókšn°L„q!ûÛ6€űVÜY©7ïü© âUCi$ŒdĆeH\ÖHxهĐrÒŻ I/ubć7=ÇëŸ>ÄìjàĄ4zŻȘsoä«Gq=§Ž•e™è %IÔÖvwïëï„‘ÜO'(”˜w87ă‹ęš-e&o‘š‰ûr"~%Łą_D S6HwS^qfàYn „ÁòV߁Q’&&Đüź”_t{<‚șż…ŸËՖ—oĆÏŽÏ*üĘú„ùÈ)•,čqzTč%âT?ršâÄl>ZÙlëÇÇœŹ.s1Áțm)|Șè,ÒF„€Äk#NĘʀîLŸŐÄ%áòá1[ €7.óœwö;œłi8 Ï)Ț>ń€’N;û)—ât€kù)c6rH}ßùéB±!-Wˆ>W,’âTŒ€ŚOÄrü€3 -Śł«ž#ÊJŠšłźÌęu—蛍·Ń—?TêJPûÙÍ$ÉÍiąŠÊ#ï%XË­û\ë(őÀó䄄Ÿč”źœ CP%–gˆ—>I2k=H8èEe-ïž5VϝÒϞrÚB~úÀÄÄ`šÂȚi]«nšköÚ}ÎÔœ ƒńŠ?NmT?h”ìéXr €AGwÜe֛ÆAËcœŽŠ;°̂¶Śß•(:ź€ĄČ°Ą Ćœ'Xv-űŒcW?qtòùp€Âšm­àS‚$†X`ˆÌŽ%8čÄÉš.%›^‘Ń€IZ€Y«SŸm0Üsâ@š(ôîÀZ‚ăú !†­2 o¶Ä…4M/‰ő4Û;R#ޱ*·óç$«đozIÛ-”DëDÚ3|Ő$Ź5KđŠŐƒœœą=Bző5Ú%G@őÌ#ÜÈc>É䷍úèę‰Ìuéą7}”đȚ ß.RÙ捈ÂÎÊ/+Ayl M{]Œn„œu„€‡ÙțÔXĂ›Ÿ’IăĘ€¶7Ś;Ł”„ „§Đ>N~L@’@›;E.˜eûœ]‘ÂŰ{Tüæ ÎÙșŽ&»Sń BPKÊTê)ۋS#+DÀšż(ۊchuA#Áż‘d0ra©V4Ì}œYېŻÈûćï?šÚ5Mæâ>%u4wc=o̊ud3üÛáy•jëÁb|\r[đĂÒ”ćîû±žśÈ8dqDȚ ža?öŒqꑄâíšïÄ|RûŠ{X~r„b:{«tąčÉ»d°7–Ö1óùöf¶Ș<òiíȘŽyöj«žôÀD ÖĆœ‰'†ìè†XW_鉑<ÊzĂU;û*ƒaᓘ"gżż Ή>Œ ‡iÆœlĄÇĐR1ô­ÏUÔô+GÌ€ÓŚ61čU!4ÁT»“?†Bûéźó IóëTYœ©>˜R{ÍV„ă¶čiŠ.ćX6U|îAy_€!ŃśoĐöŸHcWv Š+Š-D”€Î^§FAmœ7„Cß@iJŒEêĂà‰s¶VŻ;f§ÜËÂW¶Ê—»n…%=_s„ĆGXFÖ7Vux“mŒé5QcŒ IÁ*•àÏË_eű̗ÓTÖVC{›$JHbӟĐ&Bi› ŰÔĆ&nò%Yw91 ʛk”PÏ€PT$Æú‰ÜȘRǝ'§ĄßĶúN8h ‘ąçÏë…œyp ”kÜTTțŐđš̟ÈéÀYÊSWÓ:XÛP5(3łx'śŹDÎȘ}V€|cé3ï}ÛæÜaù"Ÿié!úìÇ2jç§7žÖ%șSŸùŁU ùEó#¶xBzYC>’Gä{ű \Oß5hńüőśkCWŒZ|ŐRŻŃü‹VÊ ,ö`”uÚ°¶â„•ÂO$«ú©bđf­‹?©7ZXMԆ)•îUăë‚úMU‘j-šŰiűŻŽÊ`Ç`Š4èöŐ8æcœ[ç  /Û"_.îśÎ#>a]à‰h[–±§Ă<€úÒNŒÆ»=ŐlăÖ7 „cÉśčÆ7Ęà”<1ÓòőrOÙTȘò QWŸŻËÉ`‚ÇșšđŠÓŒJ0ᒏܒ‰<…Gy+$—eGĂ~ÌùÁ܊Œ2B,BŐn1ȘŐˆUšgI'ä¶èĂ}düSR„çęt}\Ò~ÿ1'Ă4ŁŁ»ÿsV'I€ș€ÀU>gđš*ƒž6§ÿŠș8żŰț€àH}őđÎÏ«xßÄ=V4p3ŒŸÄó‰bPZhߐÌêìÆc&¶d`|Û?Ÿń,k&bæüJ4Yk‚†BXćęn ÊLât”äŻötšO“2‡Ó>ŚŐĂëúü §«»·#èv0ölôqê7¶§Ÿ`óŻOł›ËdZ-xIÍ.#4É[©–ć°[Œ­śŐže:.ă’GÖSüL$Qöż5QJégș%}ő`%Jjœú}Šì ìÄ°ńŻ sË>‚«ÚœęS;ÄäÀ€ô'^Ș6Ï0ăXÒ܋ ˜""\ê…2æÄò™–žÖâ ƒ2Ì|cúUŸÄôgO’­à>-Ș–ĄűÄ*ƅzgHFłJQ( %à˜“·âGUëë€HDFY‹œ{>Yjq ZCUŻÏBćžœŐ[ixȚçQR–’·\ŸzHj~žÌÉyÜ”nÖK5Ąčșo 1ö[:s”ŠÎӁóç 8ʐä†Z=*|6œ8pëܖ*ź7 €$›–ö=Ó#ƒ3%›[` ő†àÓo›•í 1qdKp=ÁiyáѝÛV„<[„VYûž;_Fì$ÁêhȘ=€3í7rç'3HlÈŐÊ8”›RÏ8JQđ+©Œ8 ’ëèőlbОd/nŚŁîń?`±Òæ1ć~^Ì«đ#ÎșvŃâ`!㭘ŃÿóW±š?‚0ò)2ç“5n |(/1]œłÆę‘èœ;·ŰÿŽn‡æ`;Ѓ+ŒŰă'lo#«r‹$zs0Ç·2„!·™CąÓÊ$9ĆÖ@4ŹٜpÆ~ꊎFčUT~Ő&"'€<ɰbț”<8])«?ì/űYo§; û‹l6á`ŚB_™ž_ŠŠ8šŒőç+Öúç)11“«ńőÓ êȚő{™Üƒ§ž”àšÍh‘à_ÂśCó”á·pˆiš$8Š6 1„ž[ÀŐ±Łșûq+[ßHwxPš€ÀFÎPÇâCąúă2ôَ‰Ű šÈ-ùEŒ6댱m sú#zI”]x™?é[…A•A™é›ÖÒŻšçă5kŒbÁòæRZŒAûûDZŁ<5#ßZ’.č‚dƒ+…ńéBj“໫€`“o”XeZęOüÂM>ü”p3Gq±ït™•u‘ò“àgŐ^Ä ž‰)S3ûšv» 9_„.J>áR‡JEĄ9Q:>Äż°"ă„9őÖ©ù@ŰO±íy|ö†óü=”Iyôío8ö $ùΜR·èł1)užˆçT‘Pòó„‡KYKzä‰Ő‚łŐ‰ŽżHO!Ż‘7ő–ôŸĄíJđ”`4â6áêÂüÆlûŸ=nĘ2‰ˆȚ&Q«tń%·śc.Béô•öÉiúÚæn F‰;n&’]ŚăKĄ3{&źQ©@±‡t,ú°OáH;__áS—žăùe&‚Űčà2š}Qd·:Û^R <@‹rtœJŠÊ­1 âŽ{1>ż ŚjĘVŹ'$9ÚâùŒ­æ‹WTï„eîÖçʒąućžđŸUăš<ڐ˜Jæ~‹vÀ3ÖĘïă‚ܜŠê-êeŒ:ÇMîü88GÌi#Ç6»ß2t8 چ^4Wš]ób•đŠ¶·Àcƒèćy9-Ü9ț|»àÒӖ©üN,ÔHÿ}~ïC”EI{fțJkÍȱàÖò„Ę\‰w‚Ë{úìČ*ĘrĄĂ„wŒbż’ÆÜ'ÁZŽdŐ+3—ß֛ ÒĘśé6êćˆX­Q†Ë0ŐG΍Džș)”śyKŸu•vàIžBï0'4 eû…+.ížĆ}fWíœß ·ńèoW‹ŸX(žŸKaś0ĄšâÈEíń:iu•\ŠÂ„äÏû~Őèá€Ëűœ‡ŸBpQkÆĂL Îq+Ęá_*xƒ•ûXÏ\ŰÌLú<ž|‹&Tж=©ŽŠKœù«~/{m•S™}ÚȘ#|œsLßà4ÙșTöŚUł~Ą0î=œÖ.Ő 9ăÙgBZ~]ÿ[æÍ ÁHśă„6Uâïß+¶łyè裝R(Ÿn&ĘíwĐ_űšű/ĘŹ&êŁđë[ùtkšg6ăżÇcČÊUGbć)ȘŃïŠ§Ż“Gê_òÁÎ^1À[šÊ©p>œ!ĆŃ|ĐĂ;H€Êű!wBțĆÒs–/f,Ńț曋€żŸęT“0ËĂ,…TöcÄü[b»B©œ¶°;z«Äéz”óËEÂw2~î‰P@‡ÊÆ C1맋đkuÄ! Ë_űóȘ\„”còVív̉ĄúcĆ1—‹0ÆĄrŐe­h>†îű* ü…Aw!źȘ…ˈÜ@óșenèÛ'HȚüqŻć˜JÍÓ •RaÜŚÄK„»»wX«VígëLĘ͛, urZg“cEûIäRùŃU­śc–qfÏuÈ18+^ŰęŻDÆ·ŻÄ»5ŸÄM°À@À’…Y[æ^äőșۆyąę8űŸo„‚« úMîæ[:š(č—±ŸËœ^§R†aEŁ€»\sÈWŒ•†ęÜNSo!ŽŹłrÚòc—ČïăęˆzIŠ“ÌïŹì=Ó"ÔkM$Y†ÇŠ x0,Źh†Â–“†vŰwWôIÂ֓ÁŰ /PÓA“ČDŠ d Óÿ*Ú'öLfZ|żéûq/H^vĐ[ù‡‚Ò >>f~ÁDüF±ô-3€Š[°6tò…œòl!Ć Î*QˆôĐ=Ôș| Uæz—ś[MŸ§čœ†ë…tœ2ÇÊÎ郯3– kŸàæŃóáp‰EŽ œöèoŻÁe”ÏYІÈ꒻dŐüką»GÜ”%ìüê-ew‡ [qßÈ'łLîƊͼí ç_|\\n͙š¶Ć7ŽOÙ5Ol$œo-łtCèU“‘+#…qüȘçp!•‚яżČÜ/7ŸnzĘŰ.ĆTE?-ĐfêĂzUź À(\e”mæ{F§5 p:,‡¶č©őÿ,Ûșكƒ7Ze<ʒEiEmÉyG8^ȘDт”9‰ŃÂ|Éł5țéŠî u<Íć­%·żˆ^ą‹‡Ą~5Yï)œĐï ;CÁ”tGAns"'Gî FžžÇ~čĄîE‹ë€o˜Ù• W sçč Žő‚l“èY|č#X˜?Ś-Ü[ â 0đ*ŒŁìï9h?tcôàF{ź1óËoŹÚíl>N0ì€vïòKg}‚ÄÂ)U•źÇĆ€ZvtbWŃČŐśđžđ‘Ćç­8gÆČST„ąKoœšÜX˜Ăï!7ÆU 9Ÿ_„ ĆçlăŸɀJŸČ;I”8†ŒU‡ëŠsT:”hž3艄-Ќ˜&Í H4Č6­Ć’@”ïìhìć&ô 'iÓöјY:§ÍŠłáÀ'Ő| ő_S±<1ÇM*ŹITYáxYÖaĆlzüą`ƒv§‰OÏrŻ4ŃXà«sò;J#­ïWlkLćšgÙ@ÿûò|RÜ„y]HìHŸ‚ŸRíć»öđƒçŻxș*ç}4hϔbąV䷝Šjęê "xìÔŁpÊXŰî/ËÊX»KȌĂVûoÈ6‘땄]fê"žf·W‘?łźȘij l”E·GëYX,AçaGzĘÇO++„°i–ÇWB­ÀÉ>Š6æÓš©–Wkà'„±7wmx:íb§ÌIJ»^2eŐPô`§ÛüÎÆw‘dÉX-đŠ”4ŠÂđđ`üïÓźQcà†ž~zČ„ÚRĐôÎ_mq»#b,ÜUđoLZAȚ˜üòÔK°Bo ^&/6l”n:}Țc“Țk ŸP#5 ęžw]ÀĄ–Â3h!HæÔs@żbô&_çF›{ĐËìŰâıžOü Ásù+ÔTÉiÎÍOèn":ß'/ÊśąBMź ڐ {م•3šßß<#ÿÒeoògMZ=Ž˜5X—gç‡Șń1± OŰ2y" Ä„eĐNźŠ©TÄđ›b‚Y€Í č\.uꊟËșnȘ3Nt˜ŠŻűĘȚ#'tÄ?źpê+ÀpȈó}ÊđöÖUŰb)łÔiï¶A}h˜]tŹ#qT7ßOßžf—ú4§tça?ώÿF Čì» ćì»űÉ„}‚ nÉ(Ű~žèR™Ș ,ęOHtsöŰdÇ&őCÉćÍRs;kÍqÇÌ, “PŸ°eFĄ.;> ‹7öÈێOœ-?OĄy„žë C‹»c"8ęă7aüžùB})ăÍ+w{,VŻ OpÜl~†š…ążl«ŠiàŠH>MLëłkĂïúBt’,Êž,?(œ‡–KHŸĄ Ps«Ł„‹ő(/8`Hžš¶­JÂłïHț 4/Žś†ÎXŃ` S/Œ8Hè†pûć47ŽëNêêäŸżșΈëžJˆ0°ș5뾗$ëq^X?[Ò\  w%QÍ%ħùêÀïs ș&ŽîQ‹ł§8„áwĐȚô@éé čPÀćUœ§2KÚrÎS|ê<›(îŒ<”ęyeùédÏù«ŒVwšGĘQ̍Wˆk†¶%á|ƒ† T„EĐÏâÈwDDŸ}ߙèÈ5Gúʑ* •ÏđMHDČéŃĂù !y—č,ë‚{|>ÙÒZĐ)XÈ°í š­ÓQ Łí˜”„?Ćû/M@2ú­?ȚȚn(ÂNA—ÊË{ÖŐi¶ęb xÌzŚÁEb Qɉƒ€ĐžÈÒ ęăù‡ùÍĐAvŐûŚâ]mă@H€…ùH„=żY)“Ræ'ß|/žk±=*t•pÙćȘ;džĐtù*šE}Ÿ§ùXéźE :JĄI1d“†ŸÙ›éò“›•ŸIô=S2,wkÿ’Ő(-蝊ź}CądŒ+ąÆTçѱ9z†T‚ŒxAE_Ó5Ž(뎇 *RłTćwžMÔr5GtŐ€E$büț1 ąđÈú4üœé  öűPÙ­fšà†âZÂÄs֏|7üëM†Z!$ ŸŃД36E2 8àF]û–1}oœ đDxM‘‰&ŒôŒ,ĘIá-JK7-—#͂9\ÿÛ»tȚ ćIBâÁkq„趜§ gïCÙûȚ¶­Àv7AźŚZìž„ÓŚ —â†nQÜT”6)H}v՚ș=~wőł'ÎÒȘiЗL2\ źłúút˜â/œßÖ źÂÁ…țdJc;ʅ˜Ł€ìn‘ȘŰ2œÚ}qRcڝÛGƒCțï'Ő endstream endobj 131 0 obj << /Length 494 /Filter /FlateDecode >> stream xÚm“MoŁ0†ïü ï!Rz ˜|U‰ÄAÊaÛȘ‰Vœ&ö$E 6ÿ~=HŐUAgȚż“ÉŻśœŸ«ú~üÌÙŽuo$ű›ßÇÆ›LD-û tś  @Ùö…œ›ZîĄcÓÍNìtÙ=YńNËkŻ`T=­áRêo ȚĂŠűôeCîŸúòڕÚç(>”ĘՊæ™ ČŸAæŠț€iËZż°đ™sn[­6u…cŽ^0XaÁhî\je?ì„îŒ0bȘ”ĘprOYÙśĆû[ÛA”ÓçÚKS|Űdۙ›óűäoF)ő…MZł©}ß4W@Œ{YÆœmG;ÿë±<œńź9Ü`‘;‡äKÖ Úæ(ÁőŒ”óŒ„E‘y ŐčĄât€ba„bi<ÎgźbÌĆw­ü:/]ŚćvYsäˆâ[ä˜â+䄘#ψ]íœôò‚â9ò’8D^osâyMìîÚGȂX o‰ä‚îBŸÉà5Éà‰<űÇ»’ÁÿÂò kŁ(Do9Örá,ÂqŒB?"tŽęEDqì)bbœW$ÄèYÌèM»>sbŚgEìjqȚ(ŒæĂŚpoż$îĘ}IdoŒĘ·œn-p!J śęmê«ÜÏ-țűOĂÓ[áęL‡ endstream endobj 132 0 obj << /Length 696 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆ$ !Ù ‘8l[•j”WHL7IP‡țûőŹV=MžßÌŒń sśëu;ŃU··őÈٛ=w—ŸŽ“ìśîĘĘć]yil;<[[Ùj<=?±ŚŸ+·v`śÙ&ߎőđàț¶<^*;Č~&ûQ·‚>ìțĘț”MS >Ù_êăP·ò{=éÇsæ@öd”ôÇöçșkŸ˜xäœ;`ĘVYŚ`Œs4œJaÓQÜĄn«țȘ‡íĄ.’Uu9\ßèY6î>Œę<¶Ùއ.Z.ÙôÍž‡ț“4>DӗŸČ}Ę~°ûŻÒÜŃör:-d0­VŹČWŃÍÿŒk,›ț8ăóțyČLÒ»đșÊźČçÓźŽęźę°Ń’ó[Ć*ČmőíLrŸČ?ŒÜÔqù„ă• â5F8@ šˆ=@Šđ)&°  È8Ôč€ÂĆRx u€Dș\j2H—†ȘĄĐVÁč0CzL]ű Âb°ct‘I ©g$`htы0œÆ\F„áŒ0Ă€†sꐇá jd< —Iê6œ»őńzgóńșË»țê W €qȐ’Ł+—Ÿ#ö•ńÌÇkÄȚ .‰bȘsré…€šáæÄç†bïmŽXúŸ„Kß7Ç”Hß7Géû„ûŸnb§>&jÊې”äuœŻŒú•ń1ÜV™ś•âÜăâ”ljOu$՟qWèS/%1{\űxB!€§ÔK(hH©—TĐ–æžƒ»J©ÏÏŻvŚÜëÁ=küÒ2ű„UđKς_:~é$ű„Óà—ÖÁ/żŒ ~™Eđ+7żèËą/ ÿlìĄÛÒ(/}ïö -+ZXukoûìԝE?Z„ăæĆÛKęqíƒÄ endstream endobj 133 0 obj << /Length 739 /Filter /FlateDecode >> stream xÚmUMoâ0ŒçWx•ÚĆvHU„dçCâ°mUȘŐ^!1ĘH ęśëń#xÙö?ŸgìÁÜęx]OTĘmÍ$|äì͜șs_™Iöss îîòź:L;<S›zœ==±ŚŸ«Öf`śÙ*_”Íđ`É«¶ÚŸk3ČŸ'ióŃŽž‚}Űę»ù=©œà“íčÙM;áàŸ7ĂȚrŸ›f¶ÆnjÌ-ùeúSÓ”OLg~ŒÀ8śă ăâțÈ)okà çA„8 ö$`I\èÎŚ3`çAfŽă<ÈZ]ƒÂ!‹„ê xNkÇyăčăĐđ"œ7Áż _„㓧Ìq âH`òáö•‚nú„€ḱÂđRONH=CpB:# =Ń%8“ˆ88QA~Ą!*ÉzƜűАäT?!~Ž> étw©8éÄy*ásŁ€Ï }nÔÌçFE>7*öčQ‰ÏR>7ŠČą G]Œ;~îó€ŠÛ<©ò6OšßæI‹ŻyÒòkžtèó€g>O:òyұϓN|žôÜçI/|žŽòyÒÚçIg>O:śy҅ϓ.}ž2îó” Ÿ§Lú> stream xÚmUMoÛ:ŒëW°‡éÁ5?$R. €d9ôMđđźŽÄä ˆeC¶ùśłk›m‘CŒŐpč;;†wŸ~>Î|żŽ3óEŠ_ńž?O]œ5ß¶‡âîźĘwç]Oßcìc]=~?§}śOâŸyhÆáô9%?ŒĘÛčŚŹ“B|Ɯ‚>âț)ț;ëvÇw%gÏçáí4Œ3‰ä§áô–’>\ ‚‚6ę§ă°ż őEJ™€őŰ7ûÆ8ó 1ż’{Æ~șđÏ`W(-úĄ;]Ÿè·Û%=°ùńęxŠ»‡ńe_,—bț+-OÓ;qü\ÌL}œ†ńUÜÿI--=ž‡·B«•èăKȘ˜æÿŸĘE1ÿpÆ[ÎÓû! Mߊyuû>Û.NÛń5K)WbčÙŹŠ8ö­iÇ[ž_źčuʕMúŃzQ­Š„Ò)V†€Ú(TŰ€àxżàȚą žjy‹°°!ÀĐԕ”ZÔÀ2àP="ŠZdÔ0\ÃG©R\Ą·”).–2*ÎĐša!„UŒÄ,†łÔÛHđ° `+jĐĂ.ž5Nα@èâ°èĐVK-àxŸ%ô˜Ü3š% A°YӀzĄÎšÔ>kP#ŹłŠő™5m0WŁošŠĂŸžj­ź§Üę·.†ĐZĄŽT$X/©)n)æ#W—„o(æ“oÀRZȚ $Kąp4’ŽZ¶-bâ\­1ŠÜ°Jä æP"Gń‘XÔQŹ‚i/8șkÉ^€ÂZqŒ:ZsŒœš9”d š­Bù Ž)ßsLù-ï7œæx˜ÏJ›ĄŸÒ`ŻažÉœ)f„É$†”’1™ž dъcȘCZCù<Ł7Ă3JÊgózÌnűțHȰíáÌYɚäTœŻa…ŠïŻÆ,_»œ-Ÿ—Oë87Ë}êÛKԮܗLlčoKńšò+Êg­JÌâ.ŸGZyóș‹Vđc­48ž’ïŒäŰWtù]Í:P~`áŒń±–rZŽq.nÍ1]Ç ÇàSÿæ/©ßP•ęïuöż7ÙÿŸÌțśUöż·ÙÿȚeÿû:û?Èìÿ ČÿƒÎț&û?”Ùÿ!dÿ‡&ûż1y–ŠŒÍH·œn5țčă)șœĘyšÒ“Bïœx#†1ȚžŽĂț€]ôGoáőńĆŚMń?źXê endstream endobj 135 0 obj << /Length 851 /Filter /FlateDecode >> stream xÚ}UËnÛ0Œë+ŰC€äà˜”ŹW` $ đĄMEŻŽD§bɐćCțŸœĘUÒA6†ËÙĘّD^}{ŰÎlÛ?»Yt«ŐŁ;ś—Ąqłòûî\]U}s9șnüá\ëÚiś|§†ŸÙșQ]—›jÓÆOȚtÍë„uësRá^Ę}Ôő“û5sÍ8­őŹ9ÎΗ“fŁ™i€<ÆWOę‚„ü–úlKQŸn8úîN™[żïëź-û#;s§æ“ÜęĄkQšžĄ70ĄjÍ(+úoŽȚ!$oßÎŁ;nș},—jțè7ÏăđFzo‚ùęĐșáĐœšëÏzÂör:œ:ˆQ:X­TëöŸźśćÇîèÔü‹©ß™Oo'§BZÖŰô­;Ÿvvʋ –ZŻÔČźWëÚÿöŒ€<ï'îÚsuíÿBć«`ilB ˜„‘„­=öÌăžæ@æ )UÖ 9yŽ€IÁ(Ń„âË ŒŠS*0Ö43Ö`Ô`ÔÌđĂMSä‹iȘæśn|k€iCžXc,– pDžÂˆzA‹Ÿ:æxœ0¶À)çŠÀljŸsn l9uÁ}‰SrŒźŰIÔ4ç"nXCA8%Ž&ûÙ”6źAƒáúI‚Öćǚžcő±Š:ëżű§ț7^ïÂEHOšupÍó€òŹáQF^o­Ç†1ŒÎBÆĐ–EŒQ?[0^“چŒÈÆšŸ„Œ‰“ńüА‰ԗŒ0 ű’ŒĄ9+ĂŁŹbLői~ăÈjÆĐ™łț}sÖƒŸł~z‡rÖCOÎúÊeę fÏYJ|֟ŸuŠĐœłÎÏ8gćČΈrY§ĄÏ†}¶˜ĆŠÏ˜ŃŠÏ1°űLńœŹűŒśÒŠÏèkĆgűiĆgâˆÏ˜ĘŠÏĐoĆgèŽâ3f·â3|łâ3ŐŸĄßŠÏĐYˆÏè[ˆÏàâ3ű…ű =…űLčâ3f/Ägâ‹ÏÄÏűd ,' f)ÄÌRˆÿx ńŸjò·b©&'ŐÿÁ©žW *ŽÇ~8šd0ïU”œPt"á Æò~Ò7—ađ—Ę3tȘă> stream xÚ}UÁnŁ0œóȚC„öÆ†ŠŠ"R»­Új”Śœn€"Bęûő›™Ž»«Ș‡DÏă73o`_|»œčnxöłäZ«NcëgŐśÍ!șžš‡öŽśęôĂûÎwçĘăș‡öŃOêČș­oûĘtÈ·}ûzêü™ő9©ô/»țƒ‚>êòÉÿšùvšLÛY»ŸO?Î&3ÓHyÚM݁úK…-őٖą?ęxÜ ę2ŚZëXś]5ì1Ű1š‹85?ËĘîún…êz#«nŚNČąÿvBòăÛqòûÛ~;DË„š?„Íă4Ÿ‘Ț«h~7v~Üő/êò3đx:^=Ä(­VȘóÛP7űòcłśjțĆÔï̧·ƒW1­ kl‡Î›Ö›țĆGK­WjÙ4«ÈśĘ{FRž·gî:puțb«hilb ˜ ŒIÄ­pÚpÀ†@FN•uFFQ `r0*t©čFÀŃČŁæ”Œ5 ÁŒ5  3Æpç)ŠĆyȘöśfBk€iCž\c,WpBžÆˆzA‡Ÿ:ćx œ1vÀ9çæÀ–ăÄ/8·v‡șäŸÄ©8^Śì$jš„s7ŹĄ$œG“ęìZ ŚO Ápę,ĂëêcMϱțXSő_ü3§ù7^ ïâELOšup3ÍóäòŹá‘%ŻM°6`Ă^ۘ1ŽÙ„1êÛă50ymÈ ›1F}›3&ŽćùĄÁŠԗŒ0 űbKÆĐl+ÆđÈ֌©>ÍoRŒ¶a ëOŃ·`ę)űë§wš`ę)ôŹ?Ł\֟aö‚őçÄgęńYgÍëÌńŒ ֙P.ëL(—uúlŰg‡YœűŒűœ‹ÏÄŸŃˉÏx/űŒŸN|†ŸN|&ŽűŒÙű ęN|†N'>cv'>Ă7'>S}ńúű „űŒŸ„ű ~)>ƒ_ŠÏĐSŠÏ”+>cöR|&ŸűL|Ë'a9i0K)țc–RüÇ{XŠÿT“żG5ù;)©ŽűNÍœRűPs> stream xÚmSÁnŁ0œóȚC€ô@c àŠŠ"I€¶­šh”Ś&Y€`Cț~=3ĐUW9„<ßŒy3¶g?>~Z6gđŁg)>Ąk[€ŻžZo6˛bšÁôo%”Ónś*>lS sœÏśŠêŸyoŠÛPÂÄzLÊàZ™Ź#æGűí_Ú[m+ÿ> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[•j”WHL7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐÜ$Ÿ—âƝÛK_șIțsßE77E[^Nź«\5źžÄsߖ;7ˆÛ|[l›zžŁàmSŸ_*7Fę?hćȚêæ3<âöŐęžtĘûÁôúIÄœÖĂ;­_d‹«-8ô—ëÏuÛ<u/„$Çș©òöĘçhžĆtTsŹ›ȘÄr"„EU—C°ű[žhHȚ}œwÚ6Ç6Z,Äô…ÏCÿÁÊîąéS_čŸnȚÄíUywČ-—ąrG*Fœ>îONLż7u]~ęèœĐl+ŻŠl+wîö„ëśÍ›‹R.ĆbłYFź©Ÿ­©r8ޱ)ĆÊ9>*QKrʁ7ì˜äP†°ČôŃ:MÈĄQ^sž$LDÌ6Țaȑ*Âs.$S5ˆ6`Ń>ĆÆ„m•Áë#TLŽ 5Ȝkdš‘­}WìXssc‰»*ÿì{êčRęh/#„?Ûń§ béE$èLÎ|ږÆă°ő8^yŒ>eÎSQc’ìÏçÀÌŻbÈVÌŻcöáNa'_ì OÍțőAŁJęô195śœkàŒ±dț•ś3§ŚE»Hž@œ8çܰ%ŒĂ~A—s*=FÆă Œâšó0ÚÇ`†{RLŰPh33żÛèÓűYæŒù$ÉLÆčŹÇŹŒ o»šqMè§sîÚśÈŒÆ tÚÀ…xö•őčì\˜ \šcΜ-üÜÀe™k–sLžàÊ ?·"œ@>qžhx źŚ·Œô=Ęl~1űÖâŸÖ»>*]Û!‹ÿüïʧMôŚa@ endstream endobj 139 0 obj << /Length 663 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[ŽÚ+ML7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐŸșI|/Ƌ;·—Ÿt“ü硋nnжŒœ\3<:Wčj\=?ˆçŸ-wn·ù¶Ű6őpGÁÛŠ|żTnŒúĐÊœŐÍgxÄíȚęžtĘ{oú ę$âöőđNëߗÙâj ęćúsĘ6BĘK)ɱnȘŒ=Aś9šn1ŐëŠêƒń 9‘ÒąȘË!Xü-O4$ï>΃;m›c-búB‹çĄÿ`ewŃô©Ż\_7oâöȘŠŒ» Y „Œ–KQč#Ł^''Šß›ș.ï?:'4ÛÊ«)Ûʝ»CéúCóæą…”K±Űl–‘kȘok*€ŒÇ۔b敚%9ÖÀvÌ r(CXYúh&äĐ(Ż9O&"fï0äHá9’)ŠD°hŸbcÂ6a‡Êá@„ő*&G†YÎ52ÔÈÖŸ+vŹč豋Ď]•=ő€\© ‹~Ž—‘ÒŸíűÓ±ô"t&g>mKăń ŰzœŻ> stream xÚmTÁnŁ0œóȚC„öÆ6„ŰU‰@"ć°mŐT«œŠàt‘@úś;olšv»R‚ž3óȚŒmź~<î&YŐŸžI|+ƓÚs_șIțsßEWWE[žź9Ę;Wčj|;܉ǟ-wî$źóm±mêÓ o›òí\č1êÿA+śZ7—èˆëgś{Òuo}mú ę$ŸëÓ|{'ˆBpđ/ŚuÛÜ u+„$bĘTy{„ő!šy1 êŠêƒńG‘ÒąȘËSXńł<Ò Œ{NîžmmŽXˆéœNę;{»‰Š}ćúșyŚ[DïÎŽt° dŽ\ŠÊšő{ż?:1ęÖŚÇûçśÎ Íkćę”mć†n_ș~ߌșh!ćR,6›eäšêŸw*€ŒÆŰ”b敚%kà ó‚e+K­Ó„òšó$a"1Ûx‘*Âs.$S5ˆ6PŃ>ĆÆ„m„ÊA Âú‘ĄF–s 5Č”ïŠ‰577v‘۱«òÏŸ§+uaяö6Rúó:ŸŹ!,œ‰É™ÏCÛÒxŒ¶gÀ+Ń§Ìy*JcL’ù|Ìú*†mĆú:fț“vŠuòiü©ÙWUꧏɩčŚ\gŒ%ëŻ<ϚȚí"áőâœsÖ0û_:Ìú©ôę3x0ŠkjÌĂhƒyîIYx0aCáÍÌünŁOăg™3æ“$cx0çČłò<<Țv5ăšđO#æÜ”ï‘u7ŒűŽA ń6ì*ës™Z˜ ZšcƒΜ-üÜ eYk–sLžĐÊ ?·"œ@>qžhű|ÜßòÜśt”ù›Á·ś”nÜÇg„k;dńŸżGăG«‡Môóc endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 825 /Length 3336 /Filter /FlateDecode >> stream xÚí[ksÛ6ęź_Íd-< €;™Îű;iìÄë8uÒÔ‰¶ÙÊą+QnÒ_żç‚Q”äJĘÌfłÍ$Aà8śÜ àR„%,bZ0˔”,f*¶LąL:&5‹ n†9ï ŒÄ ÿ…1LÆž;ÛS‚IŠ$ä”C/hàĐFJ1­pGÏM,:Öî‘ar6öÌ œ3ŠŽw>ê)Èy…rŒŁ]€™‘ á#EL)ëXÀÊŁȚ3IĆ" iuÌŹÀĐc%îFôŹ&•,łRĚYh+]Äá¶Đ „ Ú:@Ž*fNâžœCcŠcéz7t A#DĜehl6 ÚxÁŒQ˜b&` ŠE Ä4‰ƒÆCÀ úéyôŁ‘YDęÄ`^kÍb …eÄb(f@€‚DÁbàĐ(&Ć9Æq Kӓ€xDÔ3«„d€š2èÄC–…Š\JTZ»KĄÀX•äĖ2hCIŠ)/{R`„cIbœF,é< ƒzЃ*žI,Bj(êźC[&AoìÈàqL0T@`˜üEhđ$y–”äGäS’‡ANjòzVpIĘAЉ! œö䂠æ— ^HțŒ±œë)*1%Ă>WŽŒ­TŒ¶—šô€J­° ÎL^tžÚP@+iÙ{ò„ńڌćç9ăì»i:(Č|ܗŰśßśŸûY;‹Ëę,„”ü,Œ û)% %Ÿ(č„$„dLIŃœkê&KĆśđ¶|Țô0€$kD“ŠâS[~Űtr3JMŚĄùJFAîŃZ&Ô2êó21jԛ6Éÿ„êzYuęeàȘé!i€‚f7fÓŠÏM‡YŠĂü—=áKèÿ{€`gŒfĆ%1đäIŸșK?MźÓßÏÇE:.ŠŰÁH°ÇÏÒi>› R”˜Čä$fÉ^ț‘œ(°X†\Ź.{è`‚–Žd±Ęń8G?ï±W†!±ÒíČ·0jêńŚłEx>ÎÆżöű^>Š“ĐżžäÏűsŸtpI€{o€ì ,·ÆàÓîçû†¶ŸHś„”Ûe]ÛČ"íçÓéI>LGS•ű,p€¶€AnßŃâùŸÀö@èdmŠe©·ï~ą= ï8ő±ŽgŁŃćZQD­u}ì@Éiú ûô&Č:†ŹĘ ƒvŠŻÍ†ęFŠoäfęÊŰőáfŠ ßś;€ő}„J ą‡đń`ŽCô…=·œۅU=9diQć)Вu>lÍUȚÒ^朊żÊÚô)áűé$ŒNá!˜`‡ŒŸ§‹îèÌ<wgžqÛÌŒȘïęIšĐRw)ûîàŸJ(„_JK„ÌF=BoùpmĘyVŒPsƎ&ÉĘM6˜ČWłânV<  gƒtB”p…ŸxT•SŃŁEՈêÖtąBÙă/“[ȘS˜YÉ4 æàÏÒŃ}Zdƒ€ÇŸŽù0_S@])ôž?ßß'á!‚M*Œl R˗Ę5­ùE6ȚOłyőAvu•‚*âô=– ~›gSDźü·Y^€ŁôȘ@ eű0‡öÓiÆŻ'É}ʓÁŹHù › f·WŁô#/ČŃ0ć·É`’ù‡I 4IX3 1ÍŠŒ„d˜^ń Ææ˜n4JšÂ›Ùű:™ÌnGÉŹàùu>N惄ú›Ț%ƒôòÿȊVź°ąUߏűuYqŐ\ŽßæâŚeE·j.șżŐ\D `üÆĄŐąèĂĄŐ*Y‹>œŹŻ @Ö퀂~I’+‚Žvđ2: ăèwˆ:yûêĂ/ąÒpÏoă”UÈ+ŠtŚÌ4yƒ°ő?‰_œëÆ/.ú{Æ/^­˜m^[3ż.+șUVôߏűUY1^5ăosń+łâȘčûżYüâìÆńËąèĂńË*Y«ŸĆ4Ù ~iÇ#ÛÆ2›Æ/lTÇ)–[çsMü.6‰_Ț;çúțČś>Š]Ÿ>ÖQêŽíË*êëÔëŸ^‘șH,\ôČoꛋeßUi»•ŐŸŻH=lhW€RÔúæ„ș*EhćçC‹1NœcüyzYqĂÊńÊ|$ÄRn“T ú.V]4Àà:@)Óy«ŒÖD j€lz©VjaŽH…1áź €oÍś•—ĆŒ«Ż€—ŸÙ"ζôéŻÈźüÊąÈ†rf‡ŐSyŒ˜›ÊkÙpŻêêgjäšoëÂúÀžőœÔŐ#„GoÖ ÊŽCùœßÈ©j\‹ž©žÚR›pĄoȘ șaìȘ°FÚ.æhäÀ\„9äI«Š9ÊÓUŁȘ™ VWRĘ»ôÓkȚâŽîԘ…Ń+țj[4¶«òu5Ê0(•ŁŒÚ뎁Èż3äß_2%",N_2 KßśLDVń%û*‹ČdZ46*-,B~bóŐÿBœđ„ŻŃŒsČń?oDp ՚‰d1ĄíÓ”W|ŸŠY+˜ùj`ÉmŁS*:žméAt Áccužú1ćĘÒfžÀIœlćÒQ€—Šă0ÍŽÆk*‘­Ž ϔś^‡òÈ€” %Æî«àÒR ȚbïĄ6Ò6ËCwüÒí…ga? 1)iɁb Ç!–›ÿ«k]Bëp%o1Ą‘W„Űđsd{°nóÀ±)iȘËÛeŠ.#ÙF\Ê7~Q—‡Ő°”ő›Ö ȚœÂȘ-âfuhV‰`śùEŸQÛœ{ź°ŽuúŠŠ1ÁȘËEՎ@Źčűȏ€ÓÁ$»CŒ^Æve4țæÇȚ<}țxÿäé[)P1Jź§Ì”{áWœ`ë>ìBxœŁsv§ƒđcšì'wÏÒìúŠ`x AšbÇ <=/’Q6Ű_ă„Ż‹ôöG@CŒW”0Żû7Ʉą·ïS#F î–(æùÛl8(îűęžDùœìzțđ!»źž&4BSžšòQ©ÛaLRÊöQÆŐÙń»ół può|W˜æ;Ș é蒘SecÓæÊzĘbKRe›­ijŸœZËœ­,êŁ·ŃçèùŃáOOĄÏÙ:u°‚VêКöŚŐiŒoă”Ê€żÍ’Ńܐ-łń»ŃŹŁgŽžçoŸí]@ÏŚïÖúxÌv‚‹Ó)2çąčąĐúŻÙæÆUŻéœŻ‹Ac2b™ Ż„ü.dùú‡ÄpQm·ÚÏ_ï^œ?>MțÈO’âf§ÄčZG†Æ;Y,èőH·fžW늞r¶Ł|ܘ9šë.ښ'Ł»›dQ§xȚŸ}łôĂ㦇ççŽKŹ1&‚MÖÔa©ő-·•rÁšô8WH©5n-ŰrQ#>à)żæ9ŸđûÍÔV‹ËÉÓwG/ÎK͜ò«5ŁƒŁ•f‚‚ ń…4Ûj™yńò_>~svqšŒFÉ0ˏwöòŃpŠ–P-Ș?Öí©(ü‚ŠŽ2ÎUŽvŠ€ÛÒŃ-ÌÄS~=?@ÓA~{›đ!4ŸâWùlÂoxÆ1'ùäă”߁†)/xq3IS^üžóÿŽHËV«ÒOç{ÇÏi9Ëo“5ŽX °IĄ(tlMQ'ŁĆja’úu–śŠĆ ­ËsVvùßç‡ü(ƒzÁùK0őšŸó7üG~Áß5œòq‹čŽüÉ fűÜšäòlȚ|ș»IÇ őțk‡ŰՋ~Xùoöiz›•ŁMÓ{ôҘ!ü$WăžÿÎ?òOüt’/Úe«eóâèÍłWg‹v!ŚŰ…VN-èôȄ»ÙȋZX:mŹÜUź[<o&,ża`”c~cŒ FšMPșmĂpÍné°KnșbĆ]óc© –a/[i#„›•ő«ĄK›u0B°.ÙŠŽUđr D±„ńöÁk«VöĆÖQčßæ{íƒŰ…ƒžđ—Ì ~Š·LÜčC‚ Œ,T^Y’q&pÛŚî*_*æŸB*Pú^Œt濗QCĂáM†Èò<„ĂäüšâžÓÛŸĐ!q~čÉăóŸĂ»áű‚—†Cïáëa6™äx™îńă€z°p–‹lXÜLÁû zžżƒZh(őš é!@ʘ· ÈtYŃ$@qŒŒGm§łváŰ.łG¶űQËxôöxș±eïjăQmOÒ{&—ïČ©nšŠšVV~Ißé€]î&ź{±tbڝ4Xț öŠÀ endstream endobj 149 0 obj << /Producer (pdfTeX-1.40.23) /Author(\376\377\000V\000i\000n\000c\000e\000n\000t\000\040\000G\000o\000u\000l\000e\000t)/Title()/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20220123181845-05'00') /ModDate (D:20220123181845-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.23 (TeX Live 2022/dev) kpathsea version 6.3.4/dev) >> endobj 142 0 obj << /Type /ObjStm /N 7 /First 51 /Length 318 /Filter /FlateDecode >> stream xÚ}RËjĂ0Œû+ö[ČdûĄč”ŠiiÓSÉÁ8‹űE€Bûś]ù‘ÊNèi5ÒììH!0Œ©à<ą*!JlAÄö8qȘ)Hy«•”)$5żyÁXżxÍÎX"xßÒnœ^w}ûŹB Ÿ‹m“ßż›ìl|à‰%ÀâŃ`”d>Đ€?Ì G„„ƒážÇč2žÜ5Z?7',5GzG/Ű©J™ÙÜ ÇčÍ6+ĐzâÌ“':˜<%i5æF5őíádŻ»Út‡„’čÁqąCșr5Ń`ÆŠ’ôLÎ5ŸCŒÈ>©±lŹ”MA_ćwCg‹šh65·~Z„à!3YÙ6!]Ađ>/_ŠT5j'1Ęmâ†@h'űĐ8’©­ĆzӍvIŚ/Ő»„ endstream endobj 150 0 obj << /Type /XRef /Index [0 151] /Size 151 /W [1 3 1] /Root 148 0 R /Info 149 0 R /ID [<7A37F8B624CEBF66061CB13E067ABEBC> <7A37F8B624CEBF66061CB13E067ABEBC>] /Length 414 /Filter /FlateDecode >> stream xÚÒ9LŐAĆá{F\•§š,.š†š…:ÙëO>h€łĐMpźA3Ž@7œ‡ pQöĄÒ/ž$ûńÔS«l~ŃÓeÙżwžÚ€ÔOW€Č%OW„±eOíÒïAO ©O §> stream xÚÍZÛn7}ŚWđ1š˜śK°•Ö(P4Ž@áYRĄșAȃ$_ßĂ5Li–«”^ŚrW˝9gg–d"g†)Î,BłÀ„ÖLpМcB1ÍŃif ~tÌxtžym˜Ì;3ƒgÒàu‰f€’LŽ2Ú[ŠF ‡kÌŁ‡5ćaP ŠzkŻrnYôÀ5z OÆ3ĐÏ \Hűƒ ©`ž€–@æĐۈPL`V aÒ”…=gŃޏlaÏ;ÎđGÜ8@â= đ{%àÄyŠą?/@A‰%đxÄLĔ,n|%űÁPćA*ÀžwrÁ‚Cr  Eˆg0.™Vx]pĂŽŽq«èƒ ț(àP;‚"^ÜK„ƒDđ Š6^ÄàÀœ€2F(>ĐÆ€<~1ˆWVQš€ À1„ÆBd,PÛVâÇšŠxáŁđÀ ‘Œśz @ž 2ÙHK@'+" e%&‚€RVA–E«Æ@+H1ű՚èjY‹F€­”ÁôČQL\žxËŠ šdCÀE%›Tˆæ"o՜Òń‡‹ê‘gÎhŒáœńˆ”s.ÆjčÊŽsÂDܞÇY ]@>/#THćUœ€çÆIè žKŐWjđæ ;ûÀÎ.WWìì{±Žog«ćkń’œ};xq„œĆ_wĆ1bsĆ5ęo±YÆæ66›ŰŹb3‰Í]lÆéé,=]Ÿ<èQæćŸÇód}’lÖ­Çf›ùț›c:`śÒ2a]„«íț›Û4ô{lŠûÏv(¶4 ŐoŚÉ`Æíá0š< jßퟱùœˆnźWÉÙ·ŰŹÿ/À:ŹśĘț›ŻÉđtgłÉÏț›·éŃă6‘_&ZŁDfÒByœFM)ž'‘ÉCd2MWÔś–ZE'í—}CgÁƒÉË•;jrFŁśXæ‡IۜŽĘśűÎÒ1GxFs·“îÆ·Hàr4.“`”€ü›noČО§ńUüyÿÙÎÂ8œW‹ę2Y%óüsægžłĄUȘVĂŠGŰûœœÏȘù" 2O64ew©Ś”d.MéűY›HŁőzșœÌŸŸ>Ïqžg!éTÉûÎì»ë‡Űž7}++ÔŻłŻæŻ)2sçÍę©è\ŹŐ*R ?„Q àoÍp âÌęŁ/Á%ËpÉæÜm‹W5Çÿ*Á Ê0šŽî› ș ˆî €ƒ)Ă@ŸgimȚ}Ù?% Z]ÈWûșV?J`Ú2˜ä t‘ČŸBł)ńăÊüoËï‰őMʛĘm­(U·ă(Ÿ Šo™Ł>ń„2> stream xÚ­XYsÛ6~śŻà#8c!8yLŸÒ#î•Nšqûś!‰S2ÇÎŻï Ê"-ÙÉLŸpp/ì.v?EۈEWì•ńûë‹7ïò<â)\«èzńDÒ,QÂ5•čˆź‹èù„菕 ¶Ú.^qMă•È9i78źÛf(›±{\›ŠÀIQöë.ÖÄ6țçúŚH'4U"Z NsžĄp șòvʶ üeăšßŒăLÏl‚j™ƒéžŃʇŃtHé2”Žp•e4•Èh–s$ÿaځŠvżłšäÇq0Í֛”â9ćŰĆ%ÍU°ëŻŠÄSw}9ÜH͑íƒ1A‚ś»ČÁŁIF”àŃ Æ4 "țŽ”†ĂŹÁqÈqՎ•P§€š«ŻRù»‰eBîc)ˆ©9Ąîšš,Gæ?Êőź­L?ń4[sAîљQàđêÒoTÇ)ËČč¶śfەv >)·¶E5+•Pÿ5Ç*śŸŁÛ»”k\ȚHĆpöÒÊeûŒ–„”PTȘ$DZ‚miĆi–„tùœ1i;tm1ź]fÒ$§y"ŸN”±’‰E<âRú°&š SƒœÎ æX…uŽÍrČ›ő!UZŚmœ‹4æ#û.ÎI{knËȘqݰM‹#iűé†i¶/60pÜpŚm!Ž,V )ʉRŽx©OŠ9©MßăìI™[ye”WvŻh¶ûŽë±2ƒ‹'aïűšž·¶Ÿ0Ő;ź#ăÁčŸFÈ4›Žfän4PFȘ°š€{Û1=nö&UźŠĘŁ x‘­SČ”íÌ$BFCiêJŰ˜ŰŒ»ê ëŹÙ<ĄLoLécąH3Ö·6Ì}!„qVa…&DžpÚxȘz,ВŒkƒžŸ­™7°0{Á–Łì V*7€Ë…•m{:á§ł)B”Lç\—šólK?0E9 áëÇęŸíBY›Ę çcwRœ7жĆ)ó%§‰N§Z^œ±ŠBOD—'äž.5}ßÿBîN Ö“ uh=ÍÉ3ćà§dąéŸÎï%ï°~oŚCš”ŐcÌ9'ôYN*èlp…D.(W!nÌú_ł”OòdÈy–CgO笋z’QÀÙE&çŒXibąt”ń|‚ŠDCi^°ŻšL͔žó\Ÿ€$MĄÓ/m|EI1MŐ7(Érßf wŻ(Ésß æ^?>E -tÁòJŒ€Èią’9ÏŃ”T€6źŒž‰ÁĄ‚ÀÉă—S=ssšg.ńÍÁ§ó* 2FčĂTNĂűAá*żű{/ŸŁ:EÆȚnÆ ?{[ÜfŐö/•XI Ą[*R·…­Êfû.Ÿ$ûéíjxÜÛÉÒlÙËE’Q!“p'í)pV6(t }ƒŚÈÍԔečPŠG$Só.[Ú~n›"_Ź'X șMĐąîqGČŽ±È‚W'~8{yØđۇÁa<@–…ź3Á ŰXt™üÙ©€JĘ6Ő#ź‚€Ôv|@ÎtBĄy‰àэŚt7Úf퐆Ȏc%5C@b†; ĐR“û@?èöÎ?Žeß·ÍȘltt}àč2cߗŠAQËɟĆ] *Sț<îŸÍjrîÒdê&,€ș}‹Û„Cà@Žú’Łnߏ»,=š#šIçúùŹ#ĘçÁ‘5tûfèЁ’_•uéSF‚ÌđÉ-t@L°‹ț<|ÆyÀ:à~€>BgđŐĄłÏ;VćpČÁ –€DŁì8Ꟑèù§ȚǜÂè ^ Č;Á–':[„ă2ŐiÉS- :` Ă)•_,†#X^„Żű ‚y șdúYó‡`;ŠcdÉÂwă!( Á]œÍ°7[ ŒCĄÒ żs€đš ÛˆŻgMŠzóvż·MQ>àî[°DĂSȚ ­s/zœ~Œșˆ>yÆßȘq[›ìÊPE'țđŽÚgȋ‰ìŸà$S‚èéÍžžÂNćoȘ)eÓĄœđžŽ§É-Tòs…‹”êdz]ș"èèÁ=È0ÓĆôlIŐnW!”<ŐżĄIr¶:ŒÒżĄ˜h=gqfÀSŠzńxҞ­©kƒ«Ć v^wùÏ iCóxòę-0IÁ[`™h4ż ő§ë‹ÿŒ»«8 endstream endobj 263 0 obj << /Length 1829 /Filter /FlateDecode >> stream xÚ­YIs›HŸëWp„ȘšCŻÀܒšŰăÌTMÆQMNm IT!PXìx~ęŒ^@€…”\L/Żûíß{-ûŽžă;Ćț˜áęíÌwÔT}_Ûę>ĂjÙÁf!4t„(t–»ÙĂ7ßYÁÖG8DóŹ wĆE…qê|žę3{ż˜œœ‰"'B‘ ÂYŹÌ˜;‚sDw+çÁœ‘»$}ńæ#Ìę=)«"yŹ«$ÏŒyÈ0qïóŒòŸ->Î>,Æ€bÊĆąđčhˆHYčâ4 ‡îWBÄ'Yx܍«Ü›3ғ» èÛv.'Œ€ČŰëkŚ{YŽ„=)æ˜HŒ"nÍÓaL"ìȚę;Âą9hYìjwwSyĐëyLeAÎł†~áEŸ[ÈŹ\ç…7ǁ»‹W†Ûc\ÉóüȘâ@7AŁśuQœżô±„špć_ù&Í7ÉòüÍ©&œÄrúćû†zòę·qĂ™äżÆèŻćĀÛ&μΊ‰a49Š>'Ù&çÊ»ž‚żTĂOVć.{òq㱌 Żi•dOĆÖ› T^úçˆÛțąđ3 8Žę,%űŚ`?Eű,”län'a‰űțYȘł” *:„ŚX”șˆû±‘Z€éŹ&2'}ń"˜BgŠ“Ű=wiŻŃ,ț±Ïł8«9!Đż©˜ Î~Q—Â|Œ0”]ÊßŐVaTQȘÊÇÄÀK/sûmœ{Œ'˜aÓĄ»Ææ·Č.ËDf ˆŻ/OÓzšL ážg)ŰÏőĆ>Š"Ú\L)bÂĄ #ߝĆÎÀućcȘÍD\ü›7§‚șŸ /róGù˜€IőbÔZuèҐ—ő~ŸU«žG±ûbTÇ>?!…€áîË!—U-ÇJNïd@PD‚țÉe*Áł_}Ÿ1ˆƒž/fŒ¶O%žÌVЁƒ;öÀE”DÈçÔ\§‡g>‘AĄ.Í0_[\Üڈș7Ÿu-”EöäűÓGiž’(„†ëŸiœÙ™èlßI°üæ”;4…lxì«ÏńŁżÔâûîłÇš  k «”Æw”ĘjuòiąšVœ'TcR=Đt©ŽĄàś[ÜE†ê‡<+ŒúƒĐ‚qŸ“jkFÒ|Ò|) c5ë4Qj ûŻÚÊ}g*Y–§« ­Źî'>æcVFȚœĂÛr±Đ(ÊŸ*cáFŽ|fżËËȘ‰Ï”lüSg«Š=l=hŒœÊ~DÆ?*œ±ł„O*üeZÛin/ÚÆÒŁÂ}ČÌ*™€MȚöd>Ä1@=ÌDY€ëL€Ș‡Šü·â[Ha˜čx`7Xän KO”‚Špj݃/ŠÛǗŽLjú"D—î9HáÓÁÁ4Ï6FJ +1o±ByYáT0ô4WćÔÜÔB ±Ž#k©2%'\đ AúĘ~g«ä‡9ęnhg”žŠ•ŸËż¶­«Siś’Ę>…ÊȘD[°I]…­…ô„r@)šFTë§Ÿí˜UÂá~łČÌ ł%tB«D™XÈÍn,—[łrHó€žHÿ@âŸ1T«x-뎠ŁĐĄHӑi?đĄÀ$@„y[#+5™ŽűÇ2ȚWf^msÓ2°ic7Öÿ„Ą° ÌjƜ—æS(šQïáZ~ŻM8jc̍ĂPXA`šö7í ,è:Pn蔩Ęëې*R`%„Ù]%k…ökžË,ŹuTïÎT lj–žÄ•á+St‡°}ŸaÉÂ6N=*Ÿ>EԂ(ž@™ìRš/4VÖÌÊVæ›&YlF&“ŐÈz6èG…h\ßóycÆĘț]/Ű*(ÔS‚užGЏ#ŒŸF‹žâĖŐGÙô­śè(B,æâ BÀLßőEaźÍ¶Š€š±Æ^.f9d!ôLU­cÙ,BűŒ^Šu·ÎP›Ç#îVË?áî˜Țnm•Q:œH,Ę5ì2ßdu^«V"P%ĐÎíwAŻyUÓiĆ3DÂżIŐE5œțà $#ŒșÜ?rŐĄAF+ Žč­ÒU›†ą45D +_wšrČŚäȁ9G,ŽQ4Émüd·Ém—iqO…ŚFƒIœ?L‹żŠČÆv~w›ß˜yRTnzÖäł-Oï»êpŻ ̆±Â(â”uÊxއí0Žș°’deČČÄí©Ô–6 60?Ę>Ăf+:Œ `‡¶^ÊGêP Ï)ëÁ›dÓ䔂5|Ü·ÜB(îsihZˆkZx%É6ÙÛm°Œńjœ 菌XovhÀ*śŽMąăÿgŒVkŒ#x'Û¶Éș˜ŒțEÛž°œ$žÚ;ő ę걥š»Êă~ç˜!wĘȘ·wdzÀU{oS(/PŚ ›"ßáĂbö?BˆÜB endstream endobj 281 0 obj << /Length 3985 /Filter /FlateDecode >> stream xÚŐ\ioëÆęî_Ąo•h:ûÒą(P M_ i.HRT±i[?IÎËëŻïč3$EÒ#’Š˜._,‰œčsçÎ]Ι!ÍgO3>ûì†w>uwóÓ_ 5 ,Xigw3%83Ț̌3,p9»{˜}9ÿÍíŚwżMf ͂Ęë*]żŽęUrł.Ì‚yć«ë‚s>ÿ'ĘŸùôîæęÀ4ùLÌ4Ì73Ú0aĘì~sóćŚ|ö€›żqŠ‚Ÿ}ˆM7ÔÜ3X`=ûÓÍ ŐąŒfÜè4ȍ-”aÎxèÊĄ›M·Ÿ‚Jén`ȚÇżN”o”u•B0ćäÌpĆ4ëŃUɜwű~N[ÉӘPÌ(óVŁhòdáÎ=őŃŒĄ©nŽđW\ˆóFÖ^`úąßÈ*0;ÂÊ•ŹšÀ/“fR8&™) ~ŹkÉ3ź„.tŃ)äÀu•‹¶ƒź+œˆÓœÂȘ]Y «úÀ€ł ™TąZoŃö“Æ<ÚśÚ6ßoj™pc†LIŐžWúŹç­;AbšEœI űœ9-Ç IEŰóáʑuZĐü˜–kfƒždÌJÖИS8nWVĂqȘV3„™ăúÚ`œŽŸ]&ÇȘxĘ 96è-\Îűő’È#Ò úe%ëÜzU)wŠ1»ČÎú·(Ođ%2Ÿë“XêȚRŚ–UÆżRo‡U(ĐJûI†UĄ'ÚŁ.2ÖŐšÀ2ŒRÂvö4dC†SLDQšÊr YÏ44ï QR3íô!BûXĄz&/43â€QĂĘáèj&‘—Úîț7ș 9pIA˜)9)’ŽFM!9Nì°)[R!ÈŃб€<ÀSƒ_€!4$!X[5š° lÁ%*ČHY~]ŹŚĆțVűùâóćțÖ̋ă.§—GÔæȘĆĘd5L©P úINìŁ}Őb™Œ íxOY-LăEł"žÒƒ"꩟/[˜†O,©Ąo…«ÂPfÂPjÁ„Čˆ űŠżB=·‹RsP‰ˆđ‹O)jĐ eJœ!^”QcÉûòÂŐ ‘(CuÊ`iă!5Őą·P:L€ś32,œ”ÈHȘ·–X ŁQ0Œż*zÇl0ŽŒ"ŁçŒœÓß2ąNžAÌßę9ïw0^€OFőąț‹ĂlĐișá  )šwŸ%QÎŰ3Ad4ÒĂA$9T—“5$Á—G„Đ0*ՈBKsu7„jĂ!ԑ‘ !„ Œ „4„iŚò•VyF?/ ĄîX 8 7a&(šiŁUô…껜B–qŹăˆPęÏÔÌțj„‰YűŠæe' 4ć Lmź Ž€ŒZ!„ԘHSVîȘH«eLi™2 2XžȘ Šć,śŚ'W[ŹUńaÎé3!DŽQ—«s”æÚR&Â%„Ìß);E©1ąČl6F՚ë*kMWŸžZCM]Ű Śšaź=š3Ì;„ˆŁ©6ïÆr§¶(ŰĂu„ćn Ź›Ą­KŽùxÈËćÁĆhÒŐĄÂč|îźôfeyš¶…„”ŁòùőÎSćó+œčNèŚkT&ôî\%ăkÜčNèSžł„"^ąIÁœ”Wn˜ÎV€q`?HÌn"ËÍś»ÛÀçûćöđžÛß.„›oЇäÌż*ŽËìvmŃÈž­§óçëóû9Joź *‹á#HąœÖ”Ț±Ù”Ț€0ZŻ{(ę(N?F§ïjÔĂé©©śê:N?ŒiߑQÏ]鈉Œő1±CÂûæƒ&x8D˜ŠúHW©ZU•„ECDŽî ™áX+‡é9)#ĂöLè‹ʶFPŐHC*…ŹŽ Țmż»Őr^ìEùŻû}~Ł’i„•2îÿŚĂ–"(m"x­{k!mÊPœP‚)`Á«j!–šÖ } ă~x-DK:fż^#%ŃŸ«Q¶ą[°±©2öĂRÆđùȚxlgÀń‚P—í#ô`»œÇQm€. RĄ:W@{Ëőîiu8źîłN)#­_8ńŚn4ś»·êcžEȚ\5N±ț*ÛĐÚB’U§łûÚčw±>ŒđnÄĆÈŐ ‘ Ôź>9ŚFj&Jj@șčèuKx‘čšZZxé/ŃçÚ.Saԉ¶Èú,ł„ĐÀ‰lć9g>òƒ€i“–˓š$ÊÉ҂ᜌëN ùȘD­ăŁHao­èűȃƒąóW6’iă§ĐˆDIÔÍźFÙDê#5őœyÚPĆÉŠéRÂđă m=”ĆŰôÔÔuźl:źŒì%Q kŒőY±-ˆWÿȘ˜Jż+S0ŠèÊҚÉÎ>~ŹDc0éˆhZF7H âÀœó°%ę¶ĄBS)ˆ"MFÀ‰ÀáT–†a Ć5WY¶Qʆ-=Ąœ/°WžIt‚`>°ĆBæ‚ïîBe$"çłędŻÌä’Î{ÆdrI}'ț$ŠOÈgr­˜EÍá»B2cĂ$”ą”•É„;0Î䘁“>çș•ˆáTȚ‘qJ$ l#Ê%A^ôćJÂQ–PÀÙ&ÊÖ5‰rfB_ŒP¶5‚°’9ź"QČ\ÄsŒxÒÍ]Ü«ßù>]Gv`ÄĂÄXGzݧÈç$ŠžqÌW œÊÇà-,ˆ±˜D#ˆ’eÙš0\‹ö2GTBÜ^ä=*ĂŠ##{ìG|ÊDŒ›Œçœv!PpŒ‰ÄXŸN{y°ÀbÇ#țŻyTxŚóÎúü.K„/=ż»^Ÿêűn˜ŚÇwĂÀ.ś+A,šUŒőûĘSŻëĂcQÈuEőĐ㏖ˆ-3ű:"—ź;8©|7—.őĘ)đ[rȚ`©rŒa°4è»#ÀRGÆéDĆÿ‹æ J—ž*” čSI§ °œőŁ*ŒP, ŠoÓ.œšD‘–Ôșą’{ŹMŠTŠm…”Pa©Nvą•”öƒ\ËT«êžăaV~,Ú?ߏȘƒ€WÜ !·ȘŽK•!VœŠ35l-j©MC™/FèŠN ht€@,↰#mWnè)òŐÓk䝎 ŁĄÄBÌv‹Źfçï¶ÇbﭗÇŐn{ &fțMqüp«ŐŒ(¶éÂòđ~őÍkĘFÏwéÖńč”{zXę+)më 3\nV돷BÈ9ŁĄęüîyuHÒ]Ę%GÍ Iś‡ŐòiżÜ€íŁŐ!}.·éłűțXlP)ęL‰ö|Ći«ŸOæÇhŒVdOŻ—ŠŻüìföeló»őëÓŠ–,Ç[łČgz#”lû7ŒWâ\r!;=©—èˆăqXűČò•ócöžÿičÙ,+C”ŚVĘMăÁźqAVƁ„5`ŒŒ_špBÎT$Ź&­Ă;2‰óćĂĂê˜,Ž_quœGŚÇò5JXĐXP”Ű–À‡:VZH…„&C»Ó'}ŁĐł~@©­/CŁĐÌÒ_0 ćmÚȚb<œÒŃêCKŚ3 šZÓYƒęĐ08EÙv§ÇŚí}ŒÚ ûpsŠ»BüuWiy|]«è ÉĐéčÚś·aŸ{xœ/=3ŐD[l§óf`D-(_àEÚَiÖĆwCăhÉŹĐ—Źœ¶2ŸÄܞÏÓcf€…Ws6ń/‚1úë+č|bí~·yy=Ÿ€_1œ^ ŽLs«˜—·OäčŰ„<Œș_źËŸË[eçҏÍnSl‡ ő¶^ÉŁŰĐ&>FÇ«Ç6§–ôŒ°ć3NŽöVxőžÉ·§J)€Ö"F„ NÚ€h4ûEvXTUكOÏHR§&_怠jŸèò_óJ[…ć{0}JSGï‰ŐíŸÎ,„‚…Ú d6SŸŽAƛܞY™őjł:Včșoeè_g’dyĄRŚU«+ąŒìXLòДÀ„jŁț='$ÀìUƒïł$ËS-Ì­ mO›hz=rmt”6°?ăXŽ %.wŹ7 ]cÛÍj›•‚‘ŹhN2kpß|lŒ5–‹ÙŒC]»"ŽŽ·cnęĂ̝ÉjTî=íČ6Œł*”ÿ'ś.aI<'<ź¶O%6)S`văÿ$ zZrĐ?äfO%Ü, Hhç€7ëm€xNÍÎ/–tșs€Ű‘„˜9±šhꈑòŸè!Ï]ŸäÄ)–ŠüÊò ›IŚüŒ1BJ*—§:ÎbZš@<ȘŸ4!Ò§Xę>Òa/č €0°Đ:­èPČCGddâ„mïz ‡ )6›çđdk z4>tÆèÇyTĘ˜}«KȚ$͑€PŽ‹ÖêŐB|đš»ú„ń°țëéȚëĄx|]§{њt±8W›e*ž±)ŽÏ»‡RyŰCćŻČë¶èę-Rƒș+U:<}L8y1ę"—„Ï>ƋûôY#—Ű/!—ŸSxËùĄ(:rÿŃcV‚ÍI­„Ùzw8PćŃșŹI=Śßîù“4âw«§mq<–ă“á*/ł‹Đ«ęŠDoX[EÛy±yYí+€æ€Æ_iç$ŠŹ—ć>ć2üj1çÚcä©AS5‰æVšv·–ÏXbEÒl”MWžáŸÓŚD!lE!R»’ČżI Â;yiŸćĂ?_ÇSĄŸßqƒ‡syżȘ/ŻÊę’ękő-ĄÛ˜ĐžźD7h!€œH-B]őö«Ă·čEńĄ·ČŃO’žjÙ‰ç”Ôô•ÄCőűü5ÓŐț”‚Šôß>F”,Ž_JŐbÆÆWL­JÛœźWO„Gäê-%ycËDÉÄçèjŠ\!]èT ș5ŠæQŚűjHȘyôł[óˆž ^–śß.ŸÊń_"Mż•|(ʑËÊx.oŹ€€WŁ+Æ$`PuÓGčՇï*% \ëNŽ.‡@ăÆSIPđÄÔ2†+.Ÿ$Č o‹9‘flkÉZł­ < êÒżŒą45U­ŠŸȚĘüśșq9 endstream endobj 291 0 obj << /Length 3531 /Filter /FlateDecode >> stream xÚŐ[[să¶~śŻPŸ*O-w€œN;Í&œlg’zŠ»™)mÓ6Ę"É»›ßï$EP„•‡>l,‚À9ž|çò0|ò4ᓯźűàï_nŻŸx#Ô€`…•vrû8‘Â3^«<ÓM“wÓŻŻż»ę{ì4™iVx1lW±]öÛ9óÖOfœi„ÚvÁ9Ÿ~_OfČ`ÒńĘ{.xhŸőä‰Ü;™èÚż;ÔȚ•ïč±—öÌ =œ©â—\ȚL`€žÎx~cKTŻXâop|BŹŠĆ<ž%˜l–{{]đéŠ\nW›ë™pÓEőpłÓ§r±(Ł á}OˆâLP,4»(ŠÌ(ÓÌk‹“ nȒĐĂ·=v†qeÎ1oz˜†gÆ0ÍÖ¶û$uœúòöêÇ+á|"&Âxfœ˜XŁŽȚ/źȚ}Ç'xGç«°äĄçÿ ÖÛÉ|òï«o»éë$IÊɉՊŃt[„2b@r"!Ct.ùá„€qÌ6ݟI2$i0!‘Ù‹]P±«ònL«#‹uűŐfdX rŸŒ8őä„„6,ű ͔ö ÜDAȚJiEęÓșh‘đ‡ ˜ ŰKŠÆH¶v& Ă«ÿ\rZŐw/óyq8ÁaCfșú•Đ•–9%΀źT2x+łöuP(Gąžb†«vuÁ,ÁŰőˆs™D‡3ʀWjìà@]—cZnŹđv2$láđ|ÇÁk ÉŹ+Ž Àk•;^;/lG bΝX㈿üŽ^-«ćź.łà•ąAŻdŒ…TzŽICÈóœÏ9M‡Ô!Ô8ĆÆ-ę€Ó„$‰c \C§i f€;xÊáűÄ&D’œ–Ê9MOßą«f\ŒjUdA2ç4[Ț1/?GFw‚27ȚÏöšCàá€Öˆ*Ì»æ0Ÿ:–-xæ(“‚»Ô\^,Y8æ.ɊΈô îčÓœ‰2¶x­»ŃÖé‹Ìą„3çžKOæ5îȓq wI°Ő…Hƒę…üćÛ@…AÒƒ5țHŠ/ŽP‚‹1ù „ę'˜Í—ś*f#/ÉlÈé>”ùÛòĂ”F&·ÙV‘Ńì>ç tsóCs‡KSg8?7)ü%hŽB ÓËÓ!1}űĄÓÎOƒą ă.0#m€'’tšç(…mĐgńÁ !çü:!§‰ÎPHÆûiì˜öâBTgŽ1UădJuL䜥ł,Üyä甀F’ƒàz 5ążÓ@†2š|0w)LqžIŚ%fQÈψćÊž:‹úÀHŽŚ8w2NÇòŒ4ŸĆ}üçś&ądÊ}Đ\“!X„âú 2€5‚©<ƒ aEÌ`UŻ'$IÁłäÙV/8ŠÄa s ‘$S˜sې2„ÖłŰl ń(çY[§ÙĐ@FŠ YpâBlhEćƒc‡Íp­Ž ńh’!#} ,Ă }Í2Üë=*WĆ9)|ˆ7áG$ʚâ”.UQqÀ^Äɓ(nÏò© ÚŒŻò©ŒKűT„xÌžÎáGŸéSC‡dœë_6Z2ÓCȚÔO/›k3%|{?•żœž)Sű»jÚçćź^-·ńő]”û ąZRC1}š·» ÒŒ^ŸŐcü»{ndfÒuŽFK BÊćCÌ4Y(†$3„K žÏ0ښŹQ4ÖšT‘‘L­dúùX.êy]mÙőÌ;ęk]>mÊĆ6Ÿ|š6uH5Ÿ>nź‹éjßö6† S±–GűÂ4íû†îÜâÏożșš +FűPÛ óÿÇüćiQ.›˜¶‹Ë9kÆÛ»É»Đüž>ŠèĘTr!#i”ˆËlȘö•qRƒT–ŸĄû_ŐËn;T~3:&HFn-rsŽ +ÛęFχê=çrŽe3”ȘđŸ7í8šp—tÙŐ‹æŚ R‡y„Űp+O©¶ąŒÛ,™é:Š•pÆßû„,_V/ÛűLÒoâÏ0ÓzWƧíźlŸ-7?Źź„›~ˆÏë°ûj»­¶úëĘsëâ“Ș2ź»{‡Eΰ#Qlé(™B©‰e†» ÓdűafÛvˆ6#±jZhőwőò)>†ÎŒöOLÿY5ŸIÊ€B…|J!ŸÂJœ JŸÙ{1*Z„x€ź=ÍÀ‘ahO€ o/šŽłwæ:§Ś0+j] „Íí'*EçByż;ÇNÈt'xn?;ąĆ3ÓłEƒ[ì'grRExM•ùd!†‹€ó#nNsĂ&`xGš•șČTÍÙ6HNjMX.VJĐ-?˜+„]#듊Ș†*SgmĂ2íÄaŽ›Ÿ°qôH7Ih—ғ>Àœ(dü#Šì`…ź‡Èœ]ŸWÏŠ81yuŒK†4čïQ«&áς‰u±ș`AˆQ”ï{,˜ő,€“rÆq€( Ż©‹ÏB ù Ą\)ƒi'H±Y0Áê˜ÿ@ŻDfŐuùțÄȑ*û,,Ž8ÍBn@>rș`ÿéLëEÊâžèy:žÓí™Ț nŻá|ȘȚ΋n“ò@Ì/Œ*ò é˜SzŹw*éɶ™E‹1Ìɕ©5Ÿ_Í_ ٌ”˜ÊöÉs “ć|›îW‹X*lÈhőăKٌڭb“`‘Ü>GÛ1UŒ~xìsŰąÇa— Šă\BÁ7yD°c\BĐśyÄ/鶇k%ÁxêònȚ$àÍrđk]‚„V`àÛ\ö$čĉÛŃü©e걕?ZÉăQ5ž9”R0·/>Ôۜ1Í]żrÆ!ö75oȀ§ïśüÌmj˜ Dț ;Ró鈄zbD<—,§ù†TŃz“ä‘ÊREŒŃ6ÙŰÔQę2)cČśH‘áÎ{jČш YÚńíąOĘhxćá ·%?7ÍGIX‚3ÇšvGDÖKĆziÆI Ó13Älș"‘_źöˆĘïÖŠ˜6AmzDá_ ö$E> ëpŰ=AUöÌȚŻȚ %n_Íęt$#ëmÿÏĘ~MМ§U™reG"gŠ>XᎠŽe4ŒöăsLìł“„ąeërٻʕĄœMûmžùQ “.ț»~mSą'MЗ6T+Lûí„ÔfßU(Vhçâ—?°ŚűU›WíŚȘ휞2™ -߇S ]—9KÄjÁŸąÿ,.|ÍąÚ›Ò·čùúrBpșȚt†…è‚Á,èKH>~CŽŒO?š!§¶Čr€źĄH6 —anïuÁ…Ü\ŃŚ9á›Ù\*G} EâçÏMÀjùÎđŠ.֕“NčÔńRóŽąœÍF Âw§ĂšïX ߕ@é l-˜”M‘ő6†l;˜‘7IÉđ&‰üfúćf^†ÊÒ^tŐiÓe6UžȘMlȚ>—ëFSŚłcN łlJŰԛ2ŒjŠp yŠv wWĆ7‹úÓ.–Ÿ·±Çź±ìP襥]mZPÒł”!ôÛź«û°âđąÜÆńń8èęúmłĘOë*›ĂHà<ŰéAižăL ·Ÿ#Čs=ŰțuyÿCùÔlo,+…JhęP5™„Ío€áHòM*ô!Ÿgv3‘†ŹĆЃnÆŽXĄÓëSZŹ ŸcœŻĆ ΗŰœÒ‚À‹ŸĄĆKhYœÒâAx}:ŠKłj/˜•ƒ!‹§ÇŠ”„‘[—{|YȚw7F6Ä“=8Ë€moŃÇ+|}à[‘gEœ†Û€Û6§%±Ő.>ÔŁĐCۑj sęÜÚJæ^ÍtŸš›°äddʰCéx6ż dy늕„ RŸ1T> stream xÚí[Én$7œë+ê˜Âšhî‹1}èlłxzlshûPKJ]èZäZÜnę<.č0++łÔV60e“ #‚/‚›ŻÖ«ăÇjœłcŻÁ(«I”çj3šĆ€wˆWbè[­Ż@3pȚ«°neŐă8{_:fçXŸz'ЎSOĐ' a˜ȘĂ]E ŽÖ{űȏìTRą!Ű.QÚÄÁÏŃsb‚Ę&,cMb±ÈV·W}ą ț”bőÍŸ—^©©Śó¶yűËŠÇ·ęT uŁ«>Żz Ő+Fw$Û!#‰á5Ă?ö,IÀ.kć†íŽ`C‰WŰȚǜűúĘ77™Çݜ€tgęÇúôž™—dáàüÓÁ**š1€MȚ†Ï?PE‡æz[pÊxg€Ć"ÙĆzv8Ź>ÆÉÚNÀvÃïŸJ\?Ü ì­űc3‹Í‰ZyˆÎ*¶ĘM&L㕿^íGo„p°Ț«s“yu4Űfâ›CÔ0Ž„˜Àm5zSnæć>6íâÓo­^«š<ˆRDR—sV ”k'’H.*Ïzl ”dĄ,:+Ÿô’ڍ›˜Lbàt€è΂ˆC :ŒnˉTgËf#óYK,ïÌ”žK=·œ^wËáMފV” ڏżÊ_@%yÈèhœ€kŃCŠ1DÊÚOÀŠzÉ8b]ŐgȚKD‹šÈáŽxŚò°}Ž•#X3ÇȘàÔsëÍWś7?ĘTrăRźäDQEœĐ“ĆææítČÄGżÓTô!tĘűu8ăÍt=ùțæ? éfœybŽ›‰tšhoÏuù;ÆÀÏ»äùT#8à*ZËź!Qp[őaœŠiȚț:æ†}5ȘŁëł€YŐă/ˆHĆĐÏHŐÒwGäŽŽæ‘KbC4»,q/iËr‰ś…pJÂÇP!«0ȚÇż„ìpÀ‚É»NÔ;Á”˜XłÄŒZŁŚ„eÛ –Éԓ^ID‰čw Öɖd l2fKȕ-Éä(„U3Wœ(Êȉ^"YB”G"Ï3șĂĐ@+DZ› ɕžĄD9æs„TiXÇܗŻ$ï.z$UâV#jËlT^Zï:eݧF•{ÆŻ:Âûp6T‚Șg›ÆŠLàà7ćFl,9ÒŚ'GÆżłYÀGń2©‘p’ŸLj$, €śÿÔh(5șBäW§F™ÄÿH©O©‘OüțWœ&|Ę֟&ùęśïmńӇUXșŐóĄȘR­.Ÿ_œö‡t`Ąę1Ó>‚D]ÌÏžóZćó^–ƒD{=‚! Š&§Ëϖ-8–Í:ĘÂù“gęšrœQ.ęÉ8"ăKź –S-È9Ęáe>6Áò‘ŹuЁč1(a9±Š-ÍhŃˆ”«°DJ‚=y%èąŒË4‘æ€_­2p6)w=?AaEuœ2űTŸ›„ŽyY„6Uśę|uÜ#ј2U€¶í)AŠÖžÍ–P8‡0ži<'—œ•” \* èŸÒ@gBÊï­n͔CU“‹IÀ?AŒßc©ąÒúPȆ dˆÙàg<Î6ž†ómu{5ŒK9E<hÉ Ę5ræË,ïUšú„šžùÜÖi^%h ‰†oĘMH7Ë~šŃ‚É@Ś+Ê&òvÇl±›śHƒfÇr9Œ&‰ ÏMrnÛ°«śžBbDxŰvUKêV…?"ŒÓ±ÂȚš{€6 [źŚĄKXÍV:ŽȘ JçĘ]wœĘnQQ0Ÿè©ÚE WU\čĐ\Ś*D‘:¶k¶ȘUŒŠˆioŐ_P@ie"ƒĄHqaûű Š)żúPÜ#ƒlÌ%È‹Pê Ûá>Ì?„°2Êl’ <ŚlZJŽbù”é |*šŒBò/]êÛ6qCàm” @p‚X>Ëg>wê٘~ę|łűèќonoŠsÍ@…ÀUÜ"ń’IƒŻ«2Ò|wË RNɊònŰĂÁnÌÉü–«5{NÀuòœpÔÈĄBW f5•TâßT‘MÿĆnâçái·]ŠĂQŐ€Ï.ű”>kçÀÚńŠBŚțu@œu ûDš#‘ąÚæèż—onÌ{IŃŸ=à1oXqÈ·Z±čą$Ÿ5ÈnàówGê 5ïf·B©@ÚĂ3üż°í&F’1_…!ŒÉłíâÎJ_ùxsÒy~ĆÏo pÈïfŁ+öiŹÓiè_«6fˆ«n‘}Ù#!Œ1Üë_›Ô‹ö+ŽNŐKf4œ&6UšBLŠ—|äLČŃ€Üèpí‚ ‡d˜eˆÜ cÓyŠ˜1ßĐą1zŽć3G„8Ï·»çĆÄÒkQŁș| 2€ÿ/hDŸ¶ÄsŽî|g>Űß&V6«œópÁc°Œ"B±-|źZ7rnĐ0eBČÌéæÿ; l;˜ű:€s…tÏ]Ÿ­'ò5cjäÙ Ąyńz}ôÉ:3ƶŸ‘łțxË‹śäysiçpò]ńó*ĄŻăśù”ùôśa±#Y0ވRśß%܆ĉWÿbŒ“ŚÁęù`D;Æ]Ô­ä2ÜKÉDȚż)êë3ÀÓjyž§œșô• Kÿ^YH#&3!:k^ćŁčòśĆчûš·yISș .闄KWšgĄBbĂÿ‚€K æœ țÍî!8ž> stream xÚÍZIăÆŸÏŻPn2*ŚŸ$öaČŽ8N2ö’Űƌ”ÄöxæŚç«…‹ąÄîÈA UzUo©·|ŻJtö0ŁłżŸąƒç»W O:c3f5qÔÍŽÖÄÎVÛWo€ł5~úzF‰qfö>ng\"^7łŸúÇ«?Üœúâ/ÎÍqšëÙĘęŒ9NŹ53­áRÍîÖł·ĆŸêSsŹ—OMœßÍŒA‹ïśûfțăĘŚŻț|7&ˆtD;9E:û ąKžuQ”WÇč+ö‹æűŽ[•M”ž/žcĆwûút‚pè‹żhÛ_EẰO˜ÿ±9€4ÒeÜ-á‚1â”șÉnYïöÛșÜ<‡_ ę\†»êĄlêŸç’ŐËEŰę*2çő-&ZÆ&&˜0ŃîL ĐËéßMđ°’64ún}ƒ‹ ‚3`3±EagÍ@ęΝà]ÊśûٱÉí0Rn6ń%ŰâăÒÛa’ q!‚SŠÍÌŽ;[l«ÿÓżE …«˜eUëʀŸűèÙŃ»yûć{űûۅpŒŸ{ę<‰·apΉc &SÙ6ꌏ:€š"FžI‘ŚÛł~5Ș‰§uɞ§Șš–ÜÇń›ĂĄÚ­ë_bTÿńRp–6/ćz]{ÊMüŸźšČȚÄ à ú6ˆ|Žr+“ćßțsk Xë1…€†ï6ê‰qې”6ŽȚ†ańZyr›6ä‡ËHt_͑Dß§±Ÿxűńę\ÒČ3YŹ!äBÀiîÓòęȘfûê¶?Ž[–‘mČ,&. R]BYˆ†Èz?òKÇ·CyD6mȘÌfq„ră˜kłńX€$—.]?–)-¶ścEsĄ!±tłś±Ćâ€Ă™ÒeX D‡*BmC?–Eä+g=ČŻFK5pa 6mÓWŽ)+‰6b êP(jf‚h–€é/—€Êç5ÇŐLXżœ*Ńk€‰a9 ÊśeÛq9Fá3DÏy©GĐÀ`‘šÆ1‹$\ŰVĆq“äÙnĂż煦–‚Űb îŸÆđc†ę|ĘE éč.@=S —ŒŽò1ëÏ)Ż© ù@ŽLȚÇSæŹ&Đ5Pg-ȗŽw–GŁ„.Łű"ꏘéÇb{;)ԔœÁ™ž”âRÁvç„0ögœŐD;%ĂÈEF>0Œ'1›’XÂËYn•êŹ™{èÜB Ëł ô¶ŠÖ.ù@E.GUÌöœ rž»‘Ź%ùrB?Á,v]ùEŸŠ ô+čˆ!ă+dü:ՌűÔ© âćÔÀR@”LÉ`)YëćbŽ˜[ùÒs8§ûz7@ɛżlžۏC­û…šì+eȘÈț5ÔăâëęăîÔ.Y%,^n;枫˄YœR5œæœ‰\€€TȘ…àD”è!TIłdUrŰŻD’:”–ćæœïTÊč°Ć‡4¶ź|_œ‹­Œ(â­äüZ«fó!ö§:7°"ę^ïŚ@àHÉ-ŽhȘŽžŰp-hńÆ37}Ôêń”ïiQ7~ÈFYńÓnßėwOćŠëęę@yŠ”?p..&eZˆÚ„w‰DáPpSN—žšžZą[@±Ź6ûĘCë›ûłȚìS)%Œ±|„[ șœhĐ;‘Â"_ùv‡ÎPkœh5Ćq s Ù ÖÉ©ŰFùXšÎŠ8 ßÚ«|^êŃœÉ#Őy‡đ:ŠŽíŸ dŸ6Ő*8Í MɇË}‹DOËžöˆÿą0sŽ$äó+łÖ2ŸtnûűÉwÔ ß&˜BŻpaÖ#ûêöńNBźÍűÓ ÍĐłs$ߌŠÄèxă[wo,F­ßeîT›+ćŠ;q§eLĘűć<§Ț"WìâđȘšžíh%ü­I¶À»+ÛoÄMڗËùà,;‰›žVù”&Ê}œB˜đŠOw|™ÏV!êŠśĄy>ÎuQĘÌV(‚V €›â«be°9NŽę96(3-Ëeê?hnQŒVŐ)͈ 5F›¶}öY†? ”x :/“ÛÎKvҊâïû&ęĐ<–ŸPq~Ș ÆÖőęœùú˜îƒۖ.M=„ÔwBÛ^&wÇ`œ»Aü Û<=lËĘ(Žâ€@;èqê<8qÊűuރtŽĂșHeۃ‰=”=ÆŹÔćíFb:QÓćXĄD„ÉÖęärܘkŽ”Öä Oœ—[ąÄ`Ær‚‹„9ä‚bl§Š±EïŻÌ…âl‚!z95܇ÎîȘKă§u*•,›ČN‡vČ=%[X5Ą4ÜȘšÀRz,~ŠÛUUÔ«„Ršp~‘­ìс0À»sâ+Æ«h>.ëæXvça~lśä/lnn±aÈÉfTú၊żÌ蝚|;ąă‚‰„žˆ7UÏQÒw„‚e rțS­ššD*pœ9[M•ËçĐѱ;]– ’ Š|9jAèč§üLSè1S kț‹°A\€^œíˆŻYMÀjR\ƒ]Ű WÉÁæúֆéԗÁŒÛîRÏÌs­Z»€đЉß_ žsœÿV&h+©,<ą­ÖŁîíŸ?r@ÍÎVś Ć$»Mœm *ˆ€ƒUČx‡ÒÈŐŁŚŽ^k©ȘO1êÄčYOő·ìÀŒÍoäüÀ¶ț%”íéŰ`Y5ïC‰­viz{2ęPí|“^©Z=a“Uś4gÌą€öç\LŽwˆûc”ć°ß­Ț;oîJw{ 1šŽ5°œ—ça/ŒÏő}TwÊùz| nșƒźćèF˜óáˆsŒWqh*Ì☠”h‚kŸ+ż”~f a–Gó~S57˄ÖD es&ȋéeŸOÆJ\?]ÎÄDAő៱a­‹źÒRùL<`^wRÚxhˀpÀâÆ”ßàđߋkńáڅÿ'1;Pőż±Ă5€«ò##ž%X„ĂŃéOqżI2YÚŁrDëëț`ˆ”.ńpÔ:—@őęŰÁÏĆXn9/€4v—ÖÏwœw…ŽÉ"đÖ<\čőçâ=a{Í{ÍÿŁśê)ïè“9Ò_Á}…BnÁŽüȘî+>Í}ł…1Æ _)ăn߉S6v+ž+‰Xçę;qΝâĄFʶÀ"ŽgȚ„ż±N>€3ìǐ,Æ3 endstream endobj 336 0 obj << /Length 2610 /Filter /FlateDecode >> stream xÚćZY“ă¶~Ÿ_ÁGȘ2‚qvœ*'eoìŰUk{R•Ș]?p$JÄą‘šY猻qđèđźŒGć‰$ŰșĘ_‰“u‚“78\ÿzwóÙ7Æ$Ier·JcˆéD …(ÉĘ2y•~U6ù~6'*­ČŠxœqšæćŻ3BHz;›SCÒ'ŚæïČ“©—šęrśĘgßÁ†3`ŒŽIæL!bü»^N!Ąˆ“Hp’pDśR?X©dŽƒö9èÔûOèmŒ ÊâŠ!ĂC„I/śeŁCe@J˄2ġʉi7 Næ€BŚżŽm”țsÛF2Œü<æƒ$ç %ÈuÖ I"NpkÖ K8ŹŐ\"ƒĂœžë§ÔˆcQ”œ)Æa2iÀ„ŸUˆw_FfQ#I+ęș)Ž è;'°$"XC|g j†Çœ”œ_cŒăa„4æ­ÔőwóőĘÍoŹ8! U)ÆI8ô€Ébsóêœ,á%,7bF'ONt“0‚Ä NÊäç›#)Fš- Dčúc<1ČQ ‚ÁD0óQ|LcR)a"”>éUЉ pŹÇ 82’!ch2ŠĄnČ+D"R„Ô^•I\ őŠæŐšÂF’—dŐ2ê@©@ą‰ї1żHÈhő Ż"æ̒ù@î5Ńćàˆ*~Ú7)Jûű X›éÆŸ[•ž až›p!ÚLƒb@™ő<^HŽ8î|Đp-K5bP3†ș„ˆh&¶JÈC1Ž€ńxƓƒeœ^xÄ|*Ą. |ÊE·8ÇŐVÏŐ-2žŒOçž7-ZÉ©Öc8fÀR8‡ ,á 8€A’€cÆÂRsà»ÈQòŒŁÄ[ű P] ˆÉԘûŒU%ę>,"Dp€ FŒOùžh‚kÂëÉtВ5ŸCP04VKă킦‹í~?ăi^ï¶ŐČšÖŁNsŻêTOÌQÁÁÍűš±ô)8ÔăóxqH5=fȘżûÓЅ_†b†ȚóáŐxòu†z€F im”Ìqy(aÎUL3>ÜŻ ŒĐĐĐú>ÌsJŐ€ÊuțĄ;~ż>îhû đ©éĆ,ó™ŹUC;DwÛûìVÁș`*[ œü-:3Óe. EhÂlùÀ±-4ڜeé&ßÜçûÚ?Xœ±ŚŠ}[îeV»Ś<Íö3éżó^$†¶ęć¶šëmu{Tê2ÜJkŻæ}Qm7EVșQšE?› §UŸöŸ­Iû‰șíöÀU@šžČ$]çÛMŰ”5-úEôc"&žq7¶ÆÌč€éSŃ<ű;Ż’Æëƒdič]gPf6Ć șò`ŻțR›ąńx O‹Źăč:›àšČöł7Đ_U†Z=ńšmiœæȘë … ÐLöö_‚öá§7É«čV°{Ÿïłû2ôŠĄ—ÿńdlc 5ĄöïœÖpătȚ6A‹l“gȚP°>ìvÛ}-D à[gpŠ”ç”_ΝŻzT„ĆČ]ăą čű3ŰmđZ“Ùą9@”Gh€BRv$ö‹ph‘çí °‡ł.ł’_ív9”Ú7Ÿßß&‹ĐšŒv· dXÈŽą0„äȚ[č=Ôö lìÿ°ê]Ș JŽ•–èÚ7ehŰûXÀ»uæ wžTƒ‡HXŽv)€»ŹˆáwÛ_|Üÿú‡ű1Š`7°ƒ%ą[Ձ„P„‡æ‘Šű™Cš-qtâ{Ü%Lúw“€~ĄÙÏwżÙ€»”K{{ëV[ș·,Z–ĂX‡ÇąòűSëïČôwśĄûÆłßhQ%!ŹòՌh[péąÈ«őé&1€ëœÌđy¶Òb6'PĄ[ޟŐŁ5*JHÙĄź‹Ź0DKҖźF}îxț€ŐSûe[šaéÒz4§őšŸ,Ì©”«Œ/ż}ŃoÇtي8Ő‡Č >]č,Űű—Ę:,¶€òR­[t=ő'–źì9‹·Ęçÿ‹*ÓföąZ;|ÛT9Š— {UgŻ‹2 Čôßö(ê[/amŒ@ˉÎÄÀæK„‚;ò)ëÖQŽÖQړXw ,@:'oI šŚE••ÁÛFN 22°ŒAç=˜èŒmDêś…++§pƒÙ­uűa?z9íÿu$…M‡Š›š;==űő0Ł•^Vá,äR§!Ü4„àOOjÉ`†ˆkùŒőÊț,ęßA„‘Ń7„vÒ|ìÎêO;Ú]°©ńÿpŠ«dć1 8©&!M€ȚĘíČ=ÔtûCalúAôi«ŒČßQCôĆŽ±!ËșőŁÈ@šŽ:r§Úx҃xR‘x;”;ÚO”‡țțŒ>Tr€ÉÄŸ!Mi—Bj”BÏȚ»΃őE.Ú]=èDOˆ4ëv$ęOPăA êw‹«èŸĂțî5=~éy@ *„CéezŐX`cÏ+z44Łí¶u^{°ÚdŐŻ-@»JŽò§7Uă[ó7;Óu_üüWź>u”?Ș±-ÛŐ$©ĄŽZ“!nsîÀÄèP«Û«#s¶*go‘ƒ2^–Ù”șʞìȔ)§ĘŸ8ŚM€??dśYőVóiòó}·}šBZĂvÏy_€ęŠàśh@1oĄÁ?ÊĂz“]I2ʗž»«•<ę§ă[Łśvۓ.ŰèiŰ6KácCDżŸ»ù ÌJ‡) endstream endobj 350 0 obj << /Length 3233 /Filter /FlateDecode >> stream xÚŐZI7ŸûWÔÜԈĆp_x€d06Á`û4NćîČ]-m•·ęëç#k#KŹ’lÇAæĐșôê‘|Ëś>ZŒ)hńìí>|ńèÛ§ÎŽ8ÍuńâuÁ„ FÛB+CžPƋ»âćêű¶șYsÇVśćĄÜVÇCę±<Öû]ûđőțĐ~ÈêĘŻ7’ŻȘCÓ=xVžšŠ.‡N»»žòæ—?a?”Hüéâà7ÖÿóïgŠ—î‡ûûjwW?ŽoęĐœÔ|Ü>Vmżż-o„^”ûűÎÓû”)T[ąe±šHĘó~$3DÈÜkF€“-ÙCGæDÁ(–1OgˆŸˆìIGÆcé2B-š ‘Ê”dM8Ë__ê|’‰9äSóÚ`I, šeÔb„Ö0e±„|ܰ(+”ăۓœŃ Cv)Y’%ôЄ±ć V\YH ÀmŐ<”” ŽaXs5”ŠßJ^Ù+dqI{V…Ńꏄ,șM 4Ù”#>Œf^œ†<o3šÀ8ćuÆGUTśà·òPÇZŽ ¶|ŸÏÍŹŐŒšÔŁúĂOr*„țkOA‘Ź3mVÌ·"ű@Ÿ>xűÀĂÇ9 -vÆő|ú”Ą;ٌćČ'ùó5›É,éÎrŒł…ìć…x€mURö…Ïû·ŐáF ‰n"ô”’DÂáÖH3)P'™źyW(N:ËĘeU$‰‚ą#Č4€ŽK˦ʞ˛5Ș§ŒÒń•ž$ÏŰźȘžÔŠ‘>]}șÌÇ lH|Jóǎȃ]*%àŹGŠ/ńź§`™Â3" b‹ÂUS@jÙŸp&pePńȚoÿӝ·îƒ?­áȚŒONčTYJmđpŃ'xYnȚ€UçîÇ|M€P”ID™JȘ”Fe#z,|ÎÓB'cDàșŽ«fÒÔsU€îI:©ûc.UÂéÔébTslPć±IlšîD čBÀ1W4â›äWz*ËéÉ țuÂȘÏ”$§û(*VÙôÏAêg26ÙŐÇ,ê"Ïű4ĐU†ò`f€ qźCŠŸĘ„šÏœ±ôŻŐÍ€Ÿ”ĘßŐ>ź:đț±jšjÓ5łN»Û±¶=yőű¶>Ü0„Œđößșœ•†Ț—śčźó濆ŸŚêÇòXmËĘyŻké­À›9%ŠŻ}ù”^Êíț†›Őûúű±M'&r’Hž €ä4łçÇêÍéó6jűô5Ż'Ò.N(ïŚ—Xx+ Bžìôô„, ßmy#ìêCûÏí~{:vż=ű/ś‡·Úż*_՛úXWM֘ŁìRĄČLûŽæ`j”ă9d( SΏś‚@ĐÉ^æò0_š.ćaŃ>€A8›l€Í̄ÏÌbĘ ”0Ê#uL„k!y›è 1 ˆ•ŸòÛÓĄ©œ‘lUm:…šzśfTWÖìŽôˆŰòyœßl:+őïy;ȘȚBCșù.y yÏŠšN[œ R”%(Óô7)a‚dDv9ç­îsĘ7C4ȘŻŽS%rć ÒŚ”klaź*Â>‘3ˆ™~\œöpB.Ոž&KäPCW'mŠòŽP ]„š?łé6ij$•b”đI/Ćą?M—šœËeƒ^,ʐÉWŠyëÉĆvzÇ ”ˆć_Xé"…CŹșŠŚčTrJw©ælÓ2Æ y՜ž)ÌNd+æŻ á”đ‰«œÂyŹČËRig {’­ôDšoŁ‚a›1w4‰B°%fì’čK_N[êi#܄”ôą€1HLÖ4&ÿ"K8QADßüCXR¶y‘˜äé)uæsà451D î3Rà eì+ȚÄ„ŽLĂŸ" ûr±E•+Ÿ7WaE(ČÌőČńôŒŒŻŰ̗ÿę`ÈźÏZ__#R€§*Ò·Èʂ*”püù‘]Œxíy_çÚoĘXt?d{Ő _&±Uä3ăR‰-{Ò€Âłęę+š6SÀFÚѝ;k}“31źPèš3Ä?Ă'Ä?㎆ś·đłŚÿ‡Ÿ„{GYbYËÙ|']°ĐŸœFZPgKśÒž™p,”ùńòlÆ»r:–„[—"sMIÍoÚÄç]_,5ńÛȘPúä9…íĐ+Üę˜L™/ü°íêœĄ†W6ÜhšŁÿÇŹ¶ûm”ëŸûź‹'h«}<ž«›ăĄ~uj3ț§șÉ6ú/đíl—ź»œPB ÏÆÒwHè8[nȘÛœï’űM•íś„üż·8ÇĄÜd _ÏÏûŸTäp‘Șénî)|oî«ÛcĘ<ĄŽÆÖò·( gUÔß.űÎ1[[ȚČ:»Šž€ôșˆÈČ)}7úDŁ;ŐłőŒ/^Ï;…čćâVáëmgX9'§ ßéM/0ŻLŁ=‰·5r~%ˆćÎđ«D?á7'úŻ!Š_|Aêe””yG—ê›Q—P2fEúF°7HĄxënOĂ\Łîšˆ\‹ŐŠȚÖǶé„Ç·eS- ț*Û$<·3à]Z>ŻæT˜\DŃyžö€ž,í±B»ń0§Ę]uŰ|ކ6E?Ž ‚hh?ż-›öqÿ ПÂx‡^ˆÍíș_ÿömœnȚZàôI‘â4 ÓRÓB§z”)ÇêĐ҅ĆęĂĘŸęôĄ`W«ögÏäöèû‰ț·û}S»#-Ä^Ő›ê0»O„PŃÆ nš‡ìÇí7ÀxSœ;á'­Ôő#§»Ș>ú«Üpùy·Żș[)ăŃ?śuÓìwë -6ŒÄÒAș8¶Đző<žKU]‡ߐČȘqszŐTŃmÄ_ˆœtŚgvÆ zڔÍ0™Û_`tOŒœ“Î~ih["±çÁđŠ”aą$˜§/$4«çˆHučéùAsÍČáöçby–ëÎőśrśÁs±ĘęJoĆxp{ò{ê«îYę=yIÓ \ź˜:¶ÉÔ±;›:$­9·l«‡û67íE‘íƛϔƐ».šśąofnêżŃŰTÇîÿ7ćv[fïžȚ|U'/}{6ÍÀ˜ö(üŸ†Ë“mkŃeû‘\š|hŸać`HrŐ=ž‡œśiIëYû%Ù ”ĂŃŹ‹æ ›Œó]ç°ÇSs*7›íùîȘę}]Ùä0JĐHŻŚÈLïâ糙êÀŒ—œéÔqeŒ<ż M†qíżŸ+xÔrž>©›Ò©‹ŽțÓD‹ sT\ĄˆdŸŽ\֙Ɔ‡#VNæŰRyzf°jÆàč}r3/Oś9ò<㣚ËTmń\†škÇ2L2–‘mí…I<–ńŸÉàĂP[ʖH†2źšÉXžŠaÖ|Nfî‚]]˜ÉHrł«f2Žù­KžO4H“*ˆ^L ÎFČű8ü ł_“šägoÓuąZùȘuÖZČv Áőf:’”ăDàű>†ƒŃ6ĄÓț`9°] endstream endobj 203 0 obj << /Type /ObjStm /N 100 /First 893 /Length 2578 /Filter /FlateDecode >> stream xÚĆZ[o[7~ŚŻàcû°g†W#( ’v·ĘMșMŒ…c«Ž±ŽXr‘țûꆱŽ|d[VYlń^>’sù†$;6ΰ‹Æk’ û`˜đœ5%ă=òÈŸ5 &z4›˜5-&‡h˜ÙäBf1äđ‘9â!èC2ČŠ8ăĄæCRИ8CA{2ł kTÏZXP«D}@çÊ]đ”\)ÈVl $2Ô6ްű^ÿ–Á§šœłæx#Nß0$Ą”ìł©ƒ.F<șçàŒ„Œ!ĄŠ$`ćÀFrBcA0G˜OQ ăsĘïuâ">…T‘11…1bÙŸĐ<‡‚ÉT<љàæ0M „á€h‚`-8ł ^ đ†^B`@NÈ § v”MbBÖéC ѱæ$ 59aÄiçY-lbš…‰‘5GđxÀeiNÁCTÀCvbtŠ’C_iI„`M‡ÉÂT'ﱂ)dFá' 3Œœ˜i  —œN>rJÒÉw&ab1ŹŹ“&xɘT<šHi$&'§e’É“+ŹŹ'ŒêEü@ —č`FQÒ%˜r|AaöŠxí òT"ÌLI”L2„è°T&Ó”WĄtT‚ŠžÄǁšX⣊æßE RT0ƒ'­›”­š±ù"W€RĐ$!S‹A€IEŒ.ądęȘyAdđ䉟1ĂW“·3|aŸ›^ĐżŃéìb2¶Ï­XțȚüđĂà»ś’"țÓ{çÜsę±ú#ĘëÏ{睊èÏHźôgą?ÿПOĘë™ț\èϟĘÓšû°hhÜeŸëωțÌșòu_ć?t߯]OŸșŒZęòû -› ZeĐç]öÿšùUWót“‘űÍFâe$»ZŽ°Ù ÂŁ âČ+ż”Áć"Ô5ùŰŰ= Ó híšôVâŚ~Ëá, ,‡0œCBêü_ś•ŠŽdüđŹ{KÂŹOtÏ뼋%šéČÛn–BńW`Ó[:ęȘ›őë~“K!ș=œwêíùÍ _^̎uOž †oÿț<2ĂŚ'çŁÁđùd<gS8ćš%ĂßFÓÉőŐéhZœ{ÍúetvqòlòĆŒsȈp©đńM\Ą.œ¶Ÿ—{:OĐÔ»Ê-Ž[„ó”æ),źŠÇƒ”Zo0|sęaVߟÿo0|6č:]Ő.ĘńđÇáOĂçxACÇ òt†Ńy¶̃$Űäà\¶đÀ†|ȉ 枚Ő>œ˜ìϓéô—ÉÙèrêGuywŸÓ&x˜Žx+à‚ăĆșg±Éƒ„l=ˆM…ăęp~œœŸÿëòúüÓÉxwhH09 K9[‘ҁ)ɂ2~5–›ąęûț0”u»ä$ŒŻ//ï/+”,Ȗ%°Š K¶ä [Š\lë~ M«c|Y‰siz vn”8ÏߔŸzZ| J‘čŸĄ‘áë«É雿Êû℟}™­ȘÒȘVGč„Ց¶ŐêæZ j?Śjn©ŽÔ7-oß}niłĄYƒĐŹAhőC«ZęĐú q—Öb!±'ìD0Á;Hž 4”*ïuÊöFç"S‡†kDq$.l©aH7B@±Á“ââû‘<œO.ώ>Crg“#íOH՘7<ÙYWCłęáĄúÒ­”:ÒžžXé3[ĘHdčÜ hvòárÔXÌN@!#€jn5ȚC iîȚïqòùóh|vńĆ>ĘáÊ`-ê&‘ő01ű‡>ĂdÂßùXöîn!ȘUĄpŠ%çCÁQ2‹Żv%h AAÄ I6:Ù;œmÊ„ƒă„źï@pŒWOî#ì /}Â‹>ÄÒ(/‹đ6O‚‘Ÿc,rkÓŒ1Źž%pʐuăËy7Š?/ÎŻŻvkq`ʒòz 6Ăs 9X _QeÎëPđ*kŒŒ9kì•ĆȃZ»ÀđOČ·ëłčDo[6—é›Ke[6+‹•„ÆșÒNY—ÀŠBșQkYśúü–jg€°C°Æà 8K/ihV»€NĘ·@t!̊Û«îǝ‹SGQuI ŽD›CȘî‰7Ć ê’ĘæȘŐ+ OɄ”€Q.\(Œˆ±b±ŽïŐCÒłYšžșáìoEêĄÊü­ŒAEs|H{û‘Ùđ%ë)GN߀Ùć¶fç­5;”x*”x*”x,”x,çLj«Í·;;X’Àćś­áìŒőˆH;8 çàP^Փ&¶zÀąp WÆ#êŒyÍ.ÌżGŚłé3ípfÄÙˆĐĄƒąźLöeĆđÁÚ„à].ÍŁ==ÜąjóúâÙȘá)_axʊáńEÏńŒu!Ź/ -Ččž/Âc8y °ÛÖł)ăCEA9EOM Ù°‘9뛬Ÿm»iÀú†nĆfiàTșjuâNS§GÉ\âŠN›Ôz‹7ĘäՓÈ[ÖsK›šç„+6QÏ4·ł‰âæ#Ś•Û„íkŃxPĄ@PVĄ`š»äœ[>&ë@Q`àNÁV·óBčAÚXłVÊźÙcœ!Ö=Q[qĆ7Ć”/Ê})ŒWîzrœ­Ò­c=ìȚV}Â9&=~Ÿ§ÔÒ&€TZúÂșF!ÖæRy–ȚQj"Èo5y Őă]î_W"ț‡/"Wo“ŰLÔ`ȚłĐțç»Ô~œ‡âÉêeeâșŸ­á] kvkț9ù8žNÆGgÓSÄÛŁ#Н°C\ê‹čtž!oĐk2ÆćŹJŚ ÆÄ霶aÂJĂÓȚĂžnśÜ/öLbőà (íN„ô ïàèf›^­ÚŽÚS ›ÛȚ^Ùz甏“ÍÌë #îČŃGC@^ÀŸ~[c ÉX šzLe“èэț„żIÜ>ÛÙ̈‹”U#ÎsŁŹ›æi3æ[šZš[ڌy; —v.íôlgÆœnÀu€rr=Œ)j߄Àíy?¶]Őłí<±­lĆŚ»dúŸ7ăź;©"C<ÁÁQTíačXÊiʉÖććÉŃëŸ^Q‰q—öAw›nÊj=ó!Ű(”:@•Öíù‡œùxòádÜí:8­wSˆàđ‚Fˆ‡C`őŠ`CTO&éa@ì‰ëĄȚk\ÀòŒ!—G(}‡KwXCÜ@€鄇un)OJ0Őûl G=§|…KŸY–<@/ȚeȚ^ÄNzžêrÙìɚh©ïMûĄÓ ßz+đï…U7ś¶^x~ęŁç…}ȚÖ ·;'Ò-~ńȚŒr»KąWçióÎínʎŒź$o3șŠAæQ Ì*#ê xÛßAžêÎTI6((uœÊî`°ÖĆ ÏNfŁO°T‚ńĐ`ŐčÈÒž5 ÿr N endstream endobj 375 0 obj << /Length 2725 /Filter /FlateDecode >> stream xÚíZYoăF~śŻà#…Œ:}›fÌ``Ę1°ÀNæA¶h›ˆG’3N~ę~ĘÍæŃą{<ł©I6»ëêȘŻȘH‹Û‚ï.hóÿśË‹oß:W8â4ŚĆćMÁ„ BZÂń9/>”ŸêĘĘäăćߟć‚őçrIš2ƔI„“ßĆ™Ì‰‚Q",c~Ș"ÆZlŠüDmfáf·ž$ÜÈ4iv`E]o6™rëÊŚÍd^XŹŠe ÎÆ ˆ$R‰űÂ;. Q†…]aVSNçÍș\Ș8ąé&NÁ­łÆSg&6°A_,Äá Cl#ż]Çl·š J°Ì˜0Ì©ßÓZڈ„YÓńKé]špȚʖQ$‰ô”ś6«Æ7ŁNőIê6ôëőwr—íhAcÇ94„ÒäÉYąM»Ú+?ÚÚSp’ú>ĘU›‰*«Ùk9VîîȘ8đžÜ>,f›úśjȚ˜žŐ«ëőò~QíščWŐnG7«ë]œ^5óšEçžæ«j/±Śˆ„ F$D5ÂkŹæê€ÁjéF ?ŚÏ  "I”Ží/ÁJ3źF—0ą”€ïP!Û%p#ÄÁÓ7ŰNPbAČ&FȘže^|yńËĂŽ`ÇY’ŠÊQą@ËőòâĂGZÌńđ‡»:[| S—·$ùąxńŻè·†*ńkYXŒČ,œ‡—Љű|èL')8'š $:r܃Á Il=Žž;œ5Ź4eÄ9>đv_9CšSœèŁ>Œ‚v[À± jöÎyߋiu҉ÁŐ)ö'–Ë*śbî2Í0•-ć ê-e•bŸą}(»č!M`MëSúƒHٗÒŐž”ŽSŸíê5ĄúùŽwOĐ·SHV|(K)ÚÓô·‘m0Ă4ƒŽnä j“•|ÍOïĂzûL™6yƒł ŽUÜ_GyÇyS{țpžŒEÄŽÙ*Ghbž&Ćt0\F“œ ŽPEœ’À ËaŚĐÓG8ê .–ÿaĘqàf#p“‡]™ƒìYÄmąw C‌ÎÀièUŽàŽ/çáÌiçÎôpbż‚‹3_ŚĆ™Ïqqù8ÆJ·àêőxƒÈÊûXćiIÌÉ㎧fmÄŸD‡D ’ĄÏą§·ÎáłÉsz†HM(H R’ápjÂ"ÔC€6äL ·tXDEwRâî$źIç|Ÿ9xÔ3ĔLM$3ű”ąń\$ű$DŚH’I I‚{žo 7~čÄŹź'ܔŸ&NÀÁ"ï>· żÂßcœĘĆłĆOàĘÊŐlWÿ:‘űę*eńXNćŚ<ÿ”ìOR^Ÿx= ǃŸ”Úæšešq•WÍ1–ă…ÛÙr9ZQhKYuˆĂuÈÁàێ8?ÄDÉÏ©™EoHÙ­úąyÿ‹WʆĐxÎ" D<Ç34žŐĘ4Tçń;«đ&żfáMžUx“/Xx“§ò?‰Q3@Œő’]Č`š4YȘśA#VˆXæ)­ÒpŹ2šè@xç@8wÈœűĐv/ŹȘn7É €òûl±]âyű ¶3UÙ~}â'ŠH~†«H€Éf€I( Kk ›m4íőĂnQGZqUŻNă„Áâ" Xü!XkŸ‰`_Ć5ßÜßÁԏÍU‚GÌ =]M+‹cÀń]bîfä"ÙɎn€ă€BŰ)щÆxŃ@9vecÛșZÌóÆN‹HáXŐP‡Čˆ$Fè?Žoä‡[˜™ć6”°eGŽęúĆăđÁÆŸĂt߆ôæûZĘŽ#€„7ë0`‘]aìq€dTp6P1çG ô‡Țïᐃ)+h9 W%Y?Qÿf …jìń&–đ]píÎa!uŻràŚbNŽsÁ,•}ú_ŰîśÖ‘Rg”Ü}"‡j#æwăf*č~b:QûlË+¶ïœ4LCuŃ7]Ț…àbMyòűëjÛ\_GÿkÊ«*țs_Íb>«]œ;=–Ù†‡DŰő_Ő ˜i9ûy„őŸ8 0-5Ű7±9kž]oëPƒeĂȚêayUm&F•mˆ>ĘŐŚwI&Ûfvʑ3éúú·pêțóżíŠŸœóńKS ÙńcŽ­çUE!cpŐÜš&Œ·ć FÔžÚhï čáfgšńrNƍđe†űAéò7ÇŽ.€ÊÉHWû{Œ>ĄTÂ2‚RĂ, í;0ßLJ”žŰJĂ5°Œvb+ى_é©[ሠqŒĆ_ T-œ ŽÛ=M0ÇăÛ?é’úžŸăíZ{Ó g!XßâúĄC{•:ź-‚gcÈțôÿòP‡ÿŠd•”őÍűMÜ#G(cÏđ̇]=èS͗(ȚÈóŠ7âŒâ6ăÆ‹7˜hĂÊ©—Ay©$ ÛT†@!9Á G‚6ó@•Eía©ŸŰśŠčÿHô›‰AxŒÜ‹ÓOîUíw„E‹0ż©J)ÌőĘá ű“ŸSôŠIŹ„|*Š=țUÆ«”]ńȚq[ÂNœ„“œi’CSțŒŠæUs»ùoΚ)őźB>óĐ60L9ÛvsÆÄّ Zí=B†êń~œȘ€Bšje—ŽŽ  ȚRÎTÛ_êt—*èș­ ëTÛw[ÄòÆéVŚŁŒä pbKë,/­ăŽ"Ą6ŰùጓÀ,ŽA“ŠŚŚ«ù«ŰIš5-©mU­âèd–Œ9û]Ùt08ĐUÀ“Ïè*È@»î±.K„œ¶« {”<ÊwŠü”wgżł5ƌ čUÓ'ëśVöRĘa»g7^1IóșdčÁaĄȘ˜N ë”™ÎDPt AęeÌÓÄ á?ž°űŚÇżPóŸ7üù‰Ú蟹ń?żß8+&òPe© xTD2čWÉQnŹÊT}ÀمzáXÛ7đ‹ÂÀâ]oϐê9ۇoÄUûŒ/NŽ}À>‹7:ۗžduÏțۘ«'ޱ_r`_©ä0„._œúPx8U0/ĘÔžĘ` ìi­D· endstream endobj 395 0 obj << /Length 3259 /Filter /FlateDecode >> stream xÚí[ëoÛÈÿm?”BŹÍŸ—{Ś+—àîC{M èć€Òm‘DWą.IÿúÎ>űXj)ɎœäĐ~0űđrvvż™Ùáä.ÁÉë ìŻ/Ż/žżÒ:ŃHK*“ëۄ0†˜H€PˆÂőzžüœŸ_›‰H‹É/Ś?>EëWa%’)Qg̍ćj–ŒXFˆ)P–e0«ò #ǧŒ”» ȚR茓 Àq%Ą˜j|;FB6#fQDéÓIü'*Ž€ą=É”f:ęÎ ŠŒôÈQHF‰ç#BV§™*>XȚo ó€7uńęőĆż/ŒÆ Išä(©HNü%łŐĆÏżàdÿü1J:KȚÛĄ«„e`SFËäïsV7XŸS–Hc~Da‰ûvtTüčąçGŸ"r60Ê=~29BBçžI*đ6Ąœ!Œ„\tC Cš+eÆN)"”€kR”1êłf°áŻŁ;%ˆƒÂ§8©vCßu\*ó֎cHt‹ęźőŒŽD”¶ÚÁ1‘‚ KiV °üz–Hâ–ćg1"0˜ŠÖYߍhGŃŻÉZ@Šú‰Vș9ŁàȚ’âæ .;èæŒDÀÎÎçæG‘ ’“§RHˆrÒJ‡ÀűgàIČÀ»ˆÔ”Č|Ÿ ő ©ÌCź © "b ówńžŰ­ńwf@ˆD đAƒ§y-·.RՋn4N_ç»­·űxÉĄé]Q­ŠzSÎܐm±)‹-šL™Äé?&B€eœÉoȘ UéŻNÓÂęo^ŒĆ˜źËșŹÖ—n”ÿ+Śłjuż,j›˜ăSB>ič)êÜ|@ÒÛĘzfŸwOùr[ù»ùȘŹ·î~]ÜćuéfŸôݚ/Êu]ÜÁąìĂŻFÆźđȚVțśù&‡›mÌ4ŰRmb‰Bœ·YIŸžG-UŁ<ÆR›ÖiS!Ł AŒtŒ ÿb%ę~ąiê— rŒM)5ąđ)$oö_ŽžcòŽfŸžĘÉOÍî8oÄ#àĂۉ™É ÊȘă ÿ%Bك BJŽ”ÜqŹO sàÂ'őÿŒA™Dá&ŃДò r‚)( g¶F‚Ô`{úwöj‡Ő±Y:…IÁ „E±3AșUb<’ŹŽȘ##Ââ@vڛ­Óß°$àz@ËpÔŁ%gû,Ò`e Ö&U<őĂ …ZĄÇűM\LR‹Çˆih»)ÍÁeDĂ~t…aÍ X;VAÒAŽąbc‚L’rè0‚†ç­Kę9 ŐČ”|9f”zèR{š•Ž]“Œê Ôʇ™ó€ 4ÎdT; Ęź‰\F f ő:‚TŽ2 ĐÓȚ…+lƒ‘ 8*cć…jeű§š 0Žč!™ a šĐ±©I_Üććڇ°ČöW›gË"śŃč^äțŸïĆ:Ê#‡Éè:‡öÔÓóc jJ!fd` pƒt“‘}bXę6MÎVł3…Uv|'€©¶{XÉò° ĝÒ#5ą€ÒAМLœœ–~‚ńPœ/•aaú‹‘ESS™­M%łD`c[Éő ęől“tUčNxÀ6᷏ÛÚę·ÙÿŽ]xS‡À‹YŸőw‡6JÛÊCEGC.N›"öÖÆJ(ŃU<ŁȘo ș<È+ƒr^Exęr°ż ‘f󀿑Ű.IBȘiđÉ )D ‚Ú‰:ÂÀŹž?€NÉŸArŒÍĐțc…_óT€fk(űäQ™OŸ Ú€UaËGËB6žd"ę N2žś2 y8Ë pqvdQfȘŒÔŃWXÜ!…òƒ©ő7y·]p3a$ęۖűÍ~Auëź Ș^MG2Ù˜Ł•æáÍë #MæÇžS—.ú…e±œÇś x ”Mà„Š|:’%šÿ‘â{àÖAőĘÙV»3(SőçÉ% D'g©ĐIŽBïè˜ Ę`îkćßGÏç€ełłj5ÈżûŐą@œ›’ŁE5=[Qʛíé‹jNjvŁ5uï›Èč˜G:áÒméŰș0OÚŒ„† cèôŃœ0,šź›sÛgïâ"8:|ˆy€Ę7 Ł #‡ ֍ć±ítlŻh-?ÉhOÙ jƟŽmvąŃŠŻȚfśözû@ÏNrëÁ‰ä Fœ`öZ€ȘƒgÊ’d§˜ę+[tĆÔÎcŚ€Ÿ™Đ7?hžfÁ{ “Vœ*Cô#o‹&gî\ ?ȚśùQßÇúç§Ç…$"ćv8›‹oA°ĄHFÁäŁÎ"N»=/%]8ߌ˜(„ü Ł]HÊŠȘÓC2”ü?Đ?4 z,H`œ™Î ~5‰Àû]4ƒl!ƒòČDpe‹7żiŰüˆpÒjłcé=êqxĐOï9sÏÊPŠüÁëąÄ`ćn<™ò aȇțÔążűÊ3żˆȘùcŁà‰àÿžhwúï"’>•ähBÍ .€MfèPÆ·zLÌț,…ÁPȘÉC6Ź#`òŽöšŐž-čœŠ»}ijC~†îŽ§Ëœ"ŸóùPgJ s!ìÁœÙjŠ„Q™9O{"tS èÌîőù§ŸS‹î‘gïO­MrT›]-ömœ[ÓŐśˆty<{wÇ"JB^ ™š‚äƒôz=xŰë! ž*ÈuTvü· ’ûnÉcRњ<ä”ééO%‚Mqß¶đȘjŠŠ±˜w‡ Ž(“{›Űe]œ•Ïê]Ÿ‰ÌF’]xòJžŸïnnŠùčŽ/ ÿ1»âwGŸŸSeź—r“/#ŒCy#‡· (û+{\魂Ùì3aîk~Êgïò»"&źà[§à»Qéőż2mRŠđËr=[îæ…ïv5«ÊČôÊ7€šnÔU±ź›ó#xçtÙ;~$`.nNԏja('0K(ù`œ¶…DZXčC,xhc§ :8cŒ"0vGbYÖ„Y7îűË\ïʟ¶‚4ˆP+>܃)ÄĐ~Æ5R°źțwšŒ”xA™['ŠŚŐηČöEuyđ#»ЉŽÛčùo]č«i9ȚՅčđ7œVdû|—ŻVùšT©fŻ™¶998šTș:xą‘CFÒrą!ęć!}ÓÚnlsse.Yș,&ÄŽ=s’K@/)yzƌÙLÀÂwu趆aÂ7J˜ûĘÖÀŒ„YčkaĂ5'Șùr—ŚE0#LUź śNËș˜GOj™9ËÍZ*f”Ă1Üte›ŻwŸ™Ü7făt^nëMył3RNoqŸŻŠćČŰŒ„TțäVPWŸ%œé}«7ùzki•źšy;=șÏoóUčŽ ï­k˜șC€0çÔüL·™ß[R@âO‹fvÂ?ęđïSŸÍŠí¶\ß "ƕ»lDÏĂíțT#D.ĄȘƒ…I'ÄkGŠ;<\șûśFŐŐæĘąÚl]—;_”NŒ™Ÿ§oÜ„±`;”„śźsP°đ”ëæĂғ›WłÁI?yđcȚB! QÓ5l66‰ŐÀìà…kïûđÆŻhČ`-Ő¶\čkU›\Ł?ž„æ&ž[žç|íhƒJ{sœ痘F%/àE‘Ïí/\iI—ö§ "ę—ScŽE€BŸ90`!)xž»ĐeXYO™AĄ: òGNjU đáKÁ;i™·ćz[çËeĆ@a„ŐŃŹ¶ lC œUë`t# {È3ĔWȚŒ˜-sŚ[±uß;íóa(–ë]”ó#†Î Ż\D=ƒ–Ô‹ûûb=/?žŻ^ìG„țÌ"œ_äÛbZŒ/Ú69X Ńqâ%č+ò4Î`\3xză Ț{?SfŠÙf"S]ü‹óL}52”G=Ùdw{HL”¶©žëkiÓfwœ4öO$ĘœŸçÈ!K]Ś”d‚D*š1DeÂàűn]MnĘ+śźáæÊ]±PæbFCä&żŻ?șw{Rq–îæ¶Z.ę/jڙFđaò\Ëô6_ZîóÚôN‰L=ŰŹȘy±ŽòÛÚA•žjëQÍfađê&ßz2oÜ?ŽgIoÜű«ŠíŃ<\O ąùêĄčLH1Ć[b„§W‹üŸnpVšldż *ÂÚË慏Óč7ŠâCnČ+_ÌtʘfHŒ{6ĐûV;(ˆô$Pï7áZŒĄQ@Ò©€ íçBÂő~}ń_ć~ß endstream endobj 407 0 obj << /Length 2072 /Filter /FlateDecode >> stream xÚÍYKsÛFŸëW | èG˜śŒ]{PÛ„TąxeȚ’--L‚$Ê Aƒ €$•ÿžžH >ÖŃa*€3ÓôăëîQÍą$úp‘űçŚ Ï$ŠIĄ"N4ąšGăƅĘ@ZS»©°ŠȘ,š^üh€ )ű=‹¶ïśź·„p‚»R(ĂHb}źœFûïGWïAgŽ "M#lQ N‘:Mą_ăIčù\dƒ!O’xČJ«Ź.KxÒ^~ŸôÛ­”ő<]e}ë㮀őÿŒ~Œ$C’DC VâÜ Ë—”;6Ëł‡ąœ(ü֞¶‹}ĘVęș}}yƊò)«ê4/<ÖÎìau@eŸŻòŚ~•WÿÇ*Wę*UoÇ=9ÌxŃÏžŹ&YőÏí!ț·đêŃŻÈû5,òE^›†Š!Ąèa™í?ŹúÉDżzŻu;ËQ’Q˜è Ç1FŁŃTx_Vƒ!Ń8źç™{ùœŐ©{5ČY•Vÿ—à†Â!c&«A ț„QośôƒS˜ù3NSG‡󖚄+ÄJžì(9­:.AżćÄëșvOŻșĘȚÔù23ü»Đç%Qą#É|Ÿ±ż%;hK† âŹcËzžÖxgőL‹eŒ\с :ˆŃĘő ńÛ”0Ä ,xò°ÌJxHp—Ț’# Ê@ÔdS2ÊxXN‡UșœY·$qZ 0‰g›E¶ŹŚ—îÔçMí7Çő‚É.ŽËĆjS§u^.ʂóŸÉžeæéÇż»ŐłÜÙ…iđ ĘùP„O=ßÊ! ¶&.Ń`HŽż/ëč&ëGśž=ŻÊuæŁ-őŃ6-‹ą?­›”éêőÇÛ76ìߍzZÆĄžCZ"!äć:ˆŽŠƒ8OÌé‚Iˆ,܃hȚôç4iÏÚçłJIËżß,šgí/ț æv!—AöQ%\HŽLlPNâIfČćqÀ șŠr•UfÇćÔmŻËEæVVéűK:ó±!{…-‘Jh(lőe֟ă ĆÚO@ő4/OJâ’ÙęŹK§Đfí?!uż[ùi—#Dșu:  ÒűŒŽ„€1;|óÙŁ:5x©›”u‚Ú™7Ï|A—Ÿƒëyč)|æźŹȘăìH&ٰL œÄ!J‚žs(đ9G à‡a†xâ z=™œđ%‡d2«ă$I‚c!Ąq”QƒC‡MO`¶HŒéÛ€·‹UYŐëB…@Jv”]NŽ S*‹I~ʗ_òćlTžRˆ )yH;É-<ëÜ„ĐÚW„©y*Á°đ_ǛÒ˜cÁ»ÌM-—‰ ™ÿđîÓÍęíÇŃí/wÇU3đÇu‡ú» e2”Ś@-K 0ńŠeJHáă4î‰ ąᏠôy Ą‰isæm'pM#Epž€žż”<ž.|Aę6Í w76 +%r›‰č ƒÁ.h›ȚźŁ1Dč€[ąïTÍ^—Q$' éĘőÏï>}MâëMâ›w}ő] ,yGÚiÓ"iBÏ0=;dzàŽ"ĄíiÇö é„‹>3Łší†ŽhL#š5żŸrŚ­pŚúŠFŽÂӔ'ÒQƒü–Äû‡Y}sô©)„ûßÜR˜ hìa”EîŒŰR5_æužùMŸȘŒY”Öà ’Œ7Ú~ęȚh›RCۛkśûčEE = ©NÊ2JĄ{š‚iÈŸŸ…Ì«›„îÁP%oÊŠż„فŠq–.ș3ÒćQV–”$$Ù'HìOæa1Ò:sÄLjš^—S?țÁ‹sì7•Őʌ æwöœ.VÍ»ç ęnПl?ż%rą¶©łźÆWÆłhÜWí)ž“żęŸ„|€„ÏY1»ƒË§ƒ±{ÛŒaœLśhŚ@™Ú5}=œ· ú/ {zŸŹ_ে†’ìt„PˆC"ű™bŽôô0a`@  'Ë|âșâ] šÿĄ(n—ÓÒmœžĆvœïôëșŰqHìÜ?TÙ,_ŚYuï@am“ÇrŒzížK@ÇæFȘA>ûÒV\ŹWîLÀoŁâĄé,íÁmÏûÉÁŒœ6仄K/.Ęƒ·_èËXçcÚđiŒr„đ•0^yÙŻZ7QJ#!XxsőŚYSǁécAÎ 2†„YŽÙ~»Še7n „”V{ĆG [Y”tž°­–[Jì›ûąjšŽę¶żQ&wlIRŸ8č‘áÁ<êrxhUÊ^\€—NŸBôŃ!„a@u&Cêvž΄Bzđ€ÜQía&Á©æŠf Ê·-˜ïč–éƒОHŚó˰Wêïj±q6Ž&ĘNŹg:uÀƒvțŠÄËA]GHuç‰9 uX»ÂŃșY° Đr~‡G†·/•ł‚yŰćÇFLo Š‘Û”…0ń mæ óO0œĂ†‰ óLĘö> stream xÚ­ZK“ă¶ŸïŻĐ-TjO’qrˆìÆ©žÊ±§âƒr8FĂŹDrIjg6ż>Ęh€"8Ԍ6ń‰ ˆîŻ`șÚŻÒŐ»7©~xĂᙼűŠ+Ä+ŁrV(łÚßžŹ($|d˜UgWśoț$@Äò|ŐíWcûûwû§‹äLp5_DŠæŚW.xÿêöÍoMŸ*Xa„YĘȚŻžVŒ°-™1Ćêv·ú)±OƒíêőF§iČkNwûsȘÓß¶ïśżìÚČłCïûèëMüšêżčțçí__e)<żx[Ÿ6"eJ(x*['Ÿ sStʟ&|u{‚oêíᎳëÈłdxđ¶ÜŸ/śțćÁ–;ÛQûç4ßÿ/\ꋷRŠÀ7š€5YP‚ÉTÇ ‚ˆŰQFۙJ8ł"‹é~C‹V5=Ëú5Ÿ~Î۱|_Ő{jŸzŚi’æž:șu‘4§ĄȘ-1Ÿő\T)Ó0źC-ą&è#ŒxڜvˆUì§äæE"·!‘òbN†@ÛíȘ¶§æc5 èÀ'™%ŸDzŸàYóՆCžȘ5qH»ˆÌ]őDmđžMȚ„”vIlˆ7 ă.šcctÓŸ$TJ1ͧ!Ą”•Ûfç:úßă}Ÿ a8a>¶ úłûtq Ž™ë<^+Í%ڜp”čÍ6#5, g <ź!B*{âÿ±« BȘ=»kˆŒ>E{Io!šŰ-C—Lkܕ§á"€LM|’œ Ò#“z>Ț6Ąey8PjxŒƒ8Ż«>’#ȘÖmđq œ•‡“%ÿ( ŃïoˆÖ…Gn~ò·EòáT üÈ)Öâ녈P„ć792öëld3t0 šêŽșÇ„Âw@Ű Ó 0`‰aŚ5‘ŽƒHLűH _Ć<ĂNŸYM$ˆŠGqkí”/Ńó{ïEbÏă‚ĘÈől›Î! ”ÊĄC`Ëe·æ*ńF:ĘáYæ—Ì!5ƒHÍIőBcôŠțà:˜ÛÁ8hmWyXÀQj"ïéy@ś\ÜĐ"êÏ2ZH[đĐe&à/ùäæppùÈŁÏTdÒ;,›ČźwücWyŰ7`WGz»éAR¶¶ŽM)ntï§{ÿӗA䟇„ž€HS='ûò%2<>ç#Ò€Î_xplŽM IhÓvš#0Ëe`ȚH'ł>kæZ.…u*c*+b†NÂč° Ą!œYLtg)J+éqVœ<©OÇ»Pk™(Ę8öTWcnH=S”»šb` !ƒŽ›cÂÁ±zZù( IГčdlitÉí(‰ŒéŒSMÄÇ ,wìF„Żä àæDÛÓŐbyÈ/ł FdäœkțÊj™A˛*è,G'\żš \žșДôi‘Á‚ŃígLćcôő )J1Ï }˜)JHMˆhÒtAÚXČgZ—b ŠȚDs]:[‘œŸ'Ó Œbeœ"myŻŃ‘Ì*W!˜ž*‡RĐQnÁ8Ű! „.ț˜P1K~qîSđ'„aś–đ)Fű\Ìz"sr=Ÿ"…niwżx„6€gG8“œĄ4óˆtIæcŰúțÂfg“» sÂőł:ä<æ”B±ÂLą#YšĆHû#Śöš ò~tą€ï{rȘț-vŸČg$ĂÏt~4ëÖ9š|cʊÜ̑ ’°4UŸHV= 'Ș“E'%l={]h{9ȍ˜É5SrÆÌă«!áÌgDí™bŠ’ZqgߙÏnŒ{ŒC łeN‹K,ЈÈfN€Ł…j"ô"§ Sęÿű=•Đàt8ą]Ł5&ùń5‰ć4W])1q•ÄÌ’ÄžÏ$fŠûęÿ..ęYâ’”Ajșe—Sh40Ial˚tCĂ*Q%DyÓÉđˆŃaC/G 9ÒźÿĘì>hf_xBPăæÏ/&žA7"ÁȘ!ÛCÙśŐ–êœÂÎÛmQáč‰2 ÿŐÖÌ‡Š”ËŸíȘû5ϓ{@íg5(qæ`À(U 16¶s8dĄB„qŽńMíȘkXè饐^L޶ŹÇT$°7„ôĄ0©çâ°»ó­ß(ć † ö:"|Š$žĆł“0°„ŸÄ~’Ö(`F!AÄJBÂȚ)âșŽ ˆ*…† PÇK\‡šúȘZâL<žŸÔčùuy šæŰŒÔsŚæ!ŹPțbe’€I©gG=ž-Š­Ë‰ ˜ÏŒt(Kèçi—őIB_I8çZTF™1Ę}m—ò1ÔûÔÊȘ¶ȚNÜŐTæc–ćX1$‚gLżáȘ-ÊQAŐ¶NReèÀp Ÿśeï2ulïlkëÿàÔGù Ty.ĂMuö­”#ĆęŒbÌÒeČï4ÔvRđšéYcțłÒó|,„KßuûL>Ż @ÏŽđ’ô7>‹ ”‡Ÿń„ò1kârÆ%Ä^`™rŠu@@2m›îÌò)žÛtžZwÿ<‚OéúńČz\c žőç»d5KŸëł ùÏŃŸÎ ßFŠ!nNùQqÔüW˜L4šòłb…Y|‘pĄV“açlfÆdÌzž^țȘqÀĆLšă=ß đTòèí%șłĄȚu$«ĆNÄ{l«Ęáá]r“ŰÏĐłÁë5bo Ünktçw:1_%oȘzđnæÎˆÛz–È`˜ŰÚÎČźA^!){[ŐÈùšƒ ŁĘdܗœƒ]r„k`atò]Ső=lÌa„DŹŽ4â^zUÎÓðöè }il:E·6‰Ęže ò.j·Ò‰yáX°śń¶qrżÁZÎ㥌9°ü†È @3ąùÁ23ž&ÿp—„ä,$ÓpŸđ'ÇšqŻ E<_čNeśŠȘÀč11aÛU˜Ńáʘ4ă‚¶MJÍ}t˜b&æ `;Đ+ű!rbęXSš&ŐÊ=L–}ŽXÍUbUxÙÊăùfOțŽàt3ÂÀxΜ{țűĘ7Œź7țâüčGV}T±ÎœI%ÏŽțg’ĆŰP†ˆoòŒŸ/lđžDÿçÛ7ÿlhŁ endstream endobj 454 0 obj << /Length 3387 /Filter /FlateDecode >> stream xÚĘ[ێÇ}߯˜Œ‘ÈČĘśK°‚H± Žł H0Zr)JŒŹHźŹäëszîĘì™!w%ÇÉgÈŸTWŸź:U]€Ù2ŁÙ‹+Z}>»čúâčs™#NsĘÜeLbŽÍŽ2„ •ĘÌł—“Ę”›É‡©ä“Ćț„ąxÿù0qÇ&w»}ù°ÎśSÆ'ËEùúa*ű$_?,Șv»»éO7ß~ńœY۝;Â8ƒ4ĆLÛČM ’%”ȘșAŸ—ĂߏȘoó‡Ăb^vÔʱ 'œ»șçśùś‰Á™!VŠșÍ~Ș&‹ĂĂúŻíű&^UŽ(%:ƒÎœ%\ȘlÆ%ŃV–c?+[rê2Ìi]ŃRAu•Wš†vi5ąa;Îk)_QEÛi Q†ÆÔ>ŠŠ“„*ÖSύ(âŒ)”F$'źœùFWșčzćûҌeÜQÂ3-,aNf·›«—?ŃlŽŸŸÍ(V$ȟ‹†›bżëìŻWiàÖNV$WNÇS뗄‡ŃŽ”XJőP„ŐÙŹŐèw)Miâ°éŸđń©Ô%zŐ%˜ü:)1L=EaÍP\fì‰Ê†łŒ•Ò[j]đőtÆÂÉwÛăjû°{šŹÔ|u8ú©ÙdőúážÚm)CG(ŻÔìmŒÔ™’66ûŠ0§RšI~żŰÎWË·ćȘœú±XšŰOĘd·;–/Û|S}]˜ç á}ŸÇŻGŹœ|‡ĆħnüX~îïwûcĄÿHVïÇN0[ {ś°œ-Ś9ăVVŠ·ȘR<Ÿ)4Ò(ŁűȘŽÔđ|”6Dg{ïë—_\e/‹v7SG'ùëu5«z•țs_—SćŐ°?O%›,Öëò­ü¶#H!ӓÍĂșț­’V¶îçwŚőș™ŒŽÏ=ü«.zrë»àÉŽ_íó©P§xÙì6‹í±|öś-1/ƒjʄ hŽ ?XđûÁŽïÒxjdćNÇŁN„§¶ș–ĐLÖ«ÍꞘ?QB)Uaù.’P*űíÂN‡ŐvY*>V:Ć!„ńì(ƟÓÊûŐżsŹ.(pćIJ…*ÿXa mŸ[?,7ői_ËÏ|M"l_ŚFșwÄ §ŒÇš,ìi9ìv>.ПwËeÛ<ńQ"1…”H€†u{ž„… ä™t0őȘڈo¶á€8#ëuI2±CŚ•k,…WëŽmÆ{‘t@ ÔÀ%8TàÈ<ѐ ÙLŁȘY ‡”pÁä_/€W°šÇÇq[·Ôȝ~Y@Ű”‹[SäF±«íínsż†=.Xæ›M^čŻÊšB2N€UášúŒéÄ%1ăAÂŐ3‰}ŒšŽXž­ ÇëjéÒŹ9`?\œ»ăRąčiq{ÌodRÜți” Š],‰íwúsKt•§Àò;IÁV#Ó)--8\ÇtâïŻÇŒ|JŽk`ÉŁą;Űy°cŽwi9„`đëa§ˆ„ƒ…=ÒF1†dO62]I#*ž{ 'Н…= …Ž(>ö`"R\abŒl·úçbńńč˜ăYŠPž> iK€ä!Ù 5b{…X-hy&@Ű9aÖÁ.ép‚A †©ŒDzÖ uâ©GÛ„.Hš#Æ]"-G˜A=^Ì‚hÈšh…ĂîŽ ÂŠ=>č ôï\@QŚȚ••ÁÓj{\,śù:‘`>x—‘8DŰeąt€°Š őž^ćyJŽČïZ+ÒMbXŸƒCRAöì$ (Ÿh› źM…}ƒaáÆâó|ČK›Ę|ő țЈ đțlq8,ÖI^.ąk"ĂPóđ0ű>ŸY•áDùúnU3ĘóvŰôóYʰ”5Ÿ1P`š…dÛź±†Jź"Y0c\¶ÿ–pŠhÀ?Ôy…Œˆ#ÛHŁš‹ŠćÛUIàxËß}À{{\ÿ«`wX«Đę: Nu*`J}r)ˆuș!v$À|Qˆ°˜·ižAÓŽp1œ@ :pȄș&'ô‡Ąț±nA»iFœREšdæ7AcKf>™,ȘlŚŚ„Uù’çˆÏ±Űű#ęCŸ_w•ìùf•5ƒvP\ä~œ–Í`ĂĂuÁRÆ#òÇĘîű»D֚ă\·©Žûł‡O$M„§‘ŐÎțĐ@*5iëÄDávș=7«íp>‰#HĐŰÇn§ÖÆű”jgË[„H*;Ő)Ö0Űłˆ™Z* &æsżÍEÁï“1„…m<ï&= VæâaąàÓcNêUőùÌX?ìz`#žƒ©U,èsx“ß/ŰđTGÀ»œô^€#*žPî_>2€EÇÁŒdIB:L#O—ÄGæ‚ÁaœlIVƒ…jXŽLèSÆ.Z’ŐÖŃq)–$†ç’Â_;]Ž")°pEǑYdyÏqъG*жÏámNg𠻀°ĆĂ1(@udÖIrxŽüă«Qoàí1O_G@ ᚆïCIè?žH)ź6·ù:„Ž­€z,ä ––@ɋE‰@”8:˜D=tÛ"ń»<#Äž˜đajWoNžDp} ìáàÉ ËÔ€Ađó"¶ À ΋hV-ńŰwże”żÄkÚ”ëŒTËÚ4Kz%Ӆ^ç6€4”pu"úi’Ń&¶1X â)» Ìwa\ˆ CBawašVÜwïÂB±|€HÏ €@3v9,NôĆ”Mè+<…^_*ö¶q(LUŸș©6îOőÙ'ç]€ö–A\ś Ń@àŰfG‚$L„CŠ'd8Y8Ì&ì0à,Ì”ŽŒf8 śIjŚ=—WÔ[ÊÔ9păœÈą #ŒŁîȚŒVcuÁÆzÒesśÛńCś!};MمșüĐ#MŰșäĄ_ĄVû±šj.Ő9OÍçOŻÎfÂÙ±“dÎ:I!o¶Ïpđłv,YF‘«òÙN*Âí{ŸÒ†*°çńeMŁ ‘ČxžTpž-ÄÈ2đ ŃNZ,ÂÓ ĆÜđ^JjÆCK…–'$Áof ț–œ‚âpPY<ï9öÖÚ_Öă"œìTü\vrbŐDdŐ"{„œ<ß0ŽÚÖ/ÓÊáF»W7ʒŒ(Œ/żȘ‹˜ț4žˆ}™ź'âŠÙŐ€j‰ Ń=źŹë»¶âË_fv?•Wr_„ć>]Ç|كQ} ŠđÌÀ”œhp àVTè|%Úűž;äŒ"TR@ju%ÁÛT©G°%OYx7ïÈy:š° Ê7ÍŒò­6’ÔòÒHšÎ2‹ Æ UƅČò`sŽ«ìNٟp"_Îă 7?9đĘ”Qn›օAŹ. )M„Ú<ÎÛ$a&Ž­ ‰ś©áț"ąmő6•“À9P9ÀX6úTwàÇO©[fŚç·u[¶ù6a|žmÏŻ*[žu•ÂRș ôâ,Ț~6‘WwŸË«{óĆ0ąLXq*‡ÏŠäê$]ńó2 Ôɗe»ăœ“jOű“ òéÉőôäÂĆčûđă§Ó™nV Šo©É-a”EŒìÔNuŃÊŐx9DșNŒ§”TżB›xBäX;‹Nn sg‰Ë șüW«›“e-Đêżqž2—ŒĂęț7!űpŒęH•€*{î3S†°Ni ŻJKș”)ßüęs•”5%òÌą’ž^ˆIœz{aU …Ć {öV•Ž`ž‘±°Śe%Ź(ńˆz=©źÄ§ŁćÁÒŠ'!mùHYIˆáȚȒÖσS{ąĄáƒÈÉđ°ÓPeI[-ɋȘ—žęè©Ă` źȂNùÈDˆŽ83—-ËŚœž-CŐ%MGÍk}áČ4 ›Œ”ž™Èp"•žpY6Ą‹žzŒÎ\’Ê“7Z`‚óИ ;őjÈÁBŽ(0u*Ò ÿc"`MŽăȚäęȌҗ#žËÔíÿ&ŠLŽG}…°æečaYÿą?GH[€ÊÌŒ/¶‘ŸŽŁâQ2ą€ÿJ±`± endstream endobj 358 0 obj << /Type /ObjStm /N 100 /First 894 /Length 2597 /Filter /FlateDecode >> stream xÚĆZ]o[č}ŚŻàcû°93ü ‚òt‹îA’‡¶‹<(‰5êX©%ŁięžCQ^[‰m%蕁8ŒŒâć=w8g†T3œ&sŃČSKNš ÍÎŽą-.Ž)ș#Zq%%ŽêjàsÉU>ƒn 3MÙ5ĆÏV]«űč`Ú>o.jÆ/9ș˜fÌâbÆŽšŐĆÒ .0ž^Žq*g'"uŠčà™cȘ“đf—íăÍIixEÁțxÁĘPńŠ‚Žšá?kQ\` ‹űßdYfZ>"đŽòkđhăœÊNÀŁUœÈI«:‹èi5ˆGđ;Pš%LV!°ÔŹ8+j3«„”č‚q2—"„ÚąKÂBÔÉ àRą  ˆ”0P[u)C–‚™ČlŠ„43@ÂŒ8ˆËAńb Í±đŽčŹ‘p«ËfÍqòlžƒË /7,cNęKđxȚÁăč(fN.—Xùm.ڈÄ_ Ÿ ńNvE5:бXæêJŒÓ\)Š—Jp„BèŐ1łˆ«Ò5jŠđíbĐćT(Q ’]-X@Ă'C›. F˜„čÖ?P x ËÚ,ƙADÍ(űèd‰_ ƒ‰ëąĆ”ŹŒƒŸ2Ÿ†Ö¶ŠÙ o‰!đ ڇ Țƒúè± ž‚ f†‰ű|Ž+ž*‘Ë]qUa”o ‹i ê#Pźjj0 è>ő§_$.!/Ąá`gÎæŻțûqéæÎÎV›ÙüćƛMïÿ|röŻÙüńêüĘòüŚ Żç?Íÿ:‚NDg6±|»qżBÖŸëŹŸ”șWœAô°1ÜośÈ=|èæ/Ęü/«W+7êțôödłôȚœ/>ŹțsČù߃ۊüÙęűă ÿŸQTńŠgŐ|Ășƚ<$Ò îQ­>Ańvˆ$oŠ(öόÄÄg*^«ŸĐ&ńá†U[_ŒYăá“Ő™âm:,p֞F«zž ű_é“–í‹@?.ÏȚ|òź‚xʙf~áæÿÇ?]ÿDŰ܇‡œ]œžŸŸyŹö±9fOŸqë` ŃGșI­>ØšŸÉ üÆAƒEŠŚ˜ï‚Qœ ÔDM>ç=ÌÏVg›.·g áIÇcÏ"–|ڃ[8Șу6ŽË‚‡T=ĕĘ$čë‰2څĘođàbÛ ÌŸŸŻȚŸ\b‘ĘüùÓgnțjùiă^_Ś›ç‹śËÙü /Ï6kÄŸ‚Ú±^]œż]ź{lì·~YŸ;Y<^}r]Ÿ2 —&Бç‹s<‹Û¶ăș*źńVÆ}baŰß¶2Z­66¶Œ¶nÛș›g+Jûm;æ-Ûy_Oă0*F=Ž­éŒ€űF§Ł—,7;ŒŸWëő/«wËÓ”-§ó_ű:„wpôôțàH„;e€-É+˜‚jđ=¶W˜M’{pđȘæÉ†.%ű‘|€$š/=ô›Ïh„Âσń@żŃæŁŻXÍŸ’û8ÚÉÁáìGż? że })ČâKÒ*_:Ë_,zìË>Æ ƒ,=èK)Ÿ'QAŁž`Šv'’)uƝàáì}»Ę9‘èK”{$r˜ŐW„ €kžą!@čf™Á’à/”àÉëï‘ÀőiÜrÜJƒÒæ ‚ްÜǹъąè%",=Ï1]71 X%d&±ÀI7Š’âš¶Ű°Ï2‹Î2ŻÍP˜3ŽȚ:˜Lœ1ÖĐ tîöÁ‡Š=ÿÆàƒšào»NݱżëÄđƒŒ™~+ùkŸ“żöÍäŻrV髃ôOÓńÁŹlÛAúêŽô ČŚÙkcŸödïș~ òˆÄê@ߐæK H  ȚînőÔ ƒQQŻ,nQś*+P üŽ$ÙKHGE‚WFˆ_-ôÜP ægŒÖ`w Ć&t±L‰±ò*Ì·Œ†á{áĐ€ĘâЖŸ>žœmŠ$Qˆ>,a öêQ€ìѧBș„#[n‘‰{CZ:0XáQ铑€0ș€Œ$:ÀÜ+-ÙÀŠŸą|đ6ŃqŒ)&v‡CX7äG—(O( šŠ”¶Ca ÄP<™XdGH†2kJ`Ȅ¶šò—ŚdWXÊSæd„GYd† mŹ~“€ +»7[ˋŠÖÓá02|Vtő”o>|5†ęöäăêX‰PI¶TIiÚíƒ/«V sÒzŰ`hcùîBÔ3čÊ>n+D푖+…šù3UżÛś0 eŸ™p»âۘ kč“mk“2 CôTáfaU7#R—ĄËêQ٧Fű)Ä ăê5žÏ”*ûÇ3Ci±ïSì€0Ѷ^’űj OiÔù`3Ü;,Kà íÀÁÚ°~18n·~Ą†ęĆÁbpJÚÌmŒŒŸ·üaàÛé†Ć]·öɍQő3cÔű­Æ·ÆÇ-Æm›G[F[G»ĆÌĘĆmG;ŒY†1˘OÆ|2æ“1ŸŒùḑaÊÚ±@Y„›· d^¶t‘ÛÛÚ©–ŽÇWU„W‹/$ó Č<=Z$ n0ww˜"«éˆÀĐ șCł/W7‹7§K'”“(î2#“I9r ­3n Öxł0֛ÿĂêʄ|ÄaùH&/Jś€D ë „—8zFEWÌ-ț|s¶#ùe±9?ù4ćÚˆŚŸ>€€G+šÆ€ìi*»!8À+KăyèyŸ€žJLÿßžęy)@ wcË+kBçˆDç“‘)™sÁ7qÎ7žóHÁ7rĂž‹~óȘ<]œŸ_,Îß=8ÿá·ćéÇBšUâțôXȆcœwX$!–©3H{„”i,ęäÆțͰ^ę¶ú°úžș8]­)êƒőɇ‹ÓźSąC Zƒ\ąăŠBE$Ÿ/tû î:…æKeí: `°ä; w4lÒłÜùçäÔšT O@LÈî’& \`À‚E„)$nup‰.ߎtúÍșšÁ[jkĘNČÖx’ŒÏÜUgîŚÇŽ3"HźZއ NÈŒrÖĂ+P€6X 5Ł}=żJżś©ù­iùÔ”~8ÒÏH|’ƒHŒ„ŒOâjž§Û¶ƒ„Û á6Hž nƒ„#5<·m〙xeä¶-ŐDžÀ’)hšKʃFrê)p"Mú!ĐĂ5€îdòa!>úiÖhŻ A~Â超Üʘ. 8Æ3ń8?­ȚżÿÛéĆû‹ł)É9èsŠ8~ÍGł·qÁtűym>òD@? бÁŻĘĆFۄeđó"ƒj•Ö}_F˔%‡űu;žßK Ćș$0î»gˆ$őd*[>êÖGYá!ŁE«ĂSĐB™p·Núź:l‡çáSë6Ôó§vgˆ.û!:éá!úúŰuKy©‡ fFÓȘ6˜'ßžó~9űw9ąèê endstream endobj 460 0 obj << /Length 2301 /Filter /FlateDecode >> stream xÚí\Ks·ŸóW̑źpa Æ#¶RUÙ.ù”©’•*–M3–E˒(%??fvgł˜Śrvž掀ˆm4úĘę’Ć]!‹ï.äöóùőƗß*ÖEÁ’-ź.”ł‚Ž.,“*Ś?//țâŐőśXtĄ€Đ^©žÔm è”K~,·«zFŁw‹ț“„ĂBëőƆ|ž|¶]ë}›» 49á W_žÁjŸŒËm­”đÆî(lè9ÁNÙjkÇŸĐÂÆ_+rù“:ĆĆŠ”ź9nÉi±n»ĄȘțN2ŽI9!MëŽ2+4Ź'æ.ç]©9±aŐĆ7Śï.țYȘÀւm€.`Uüxńò•,~Âߟ/@(űâßćÊû‚”đ©œ)ț~ńŚ­]€ûIaÄ ćy\늣ő=AuA€úNqŸ„:ìąŁe…Âj+Œ6Ő«ŹÜ lßËĘ n8z–Ù ròQ荍æT ˆh\5DÂHNU“î·#ŐVŒÊòžßz-Żö™O™ăYĄ%͔ä§nBđI*JXziIŠ~‰rûyàêæÜ2Vg«K”§-D­Š8i˜Aڱ’ÍŽ3ÂÆ€ÛVß»œ4žŽŒh^ŸŽB€sa ?A`ŒSÒ]V“Ț…b)łòĂș4Òwc86HŒB†ZźÊ ”RfǕ“6d”`©đƒ‚>u”ô۞đçœ?vòIcÎ(őRŃ}J^B6Qœæ„T^V r0{‚ùóVÓßôI­ë-_æˆiȘúfEÛȘŹV%SÛ­~íI–JčbÓZś B Čvń„(4m‚ŠßwȄ͔†8WÙ9X"Ï.hĂ9š),™bㅳ[^7Ź:XNšöÌ~(oĄąÚȘeÆ'9.-ÈD’Ă D=UÊ·ŽYÀ+°`ƒƒČ )Ż”hǂçÒś]ζӍàAí yŸÒ&ùŒ6ŁE7"[í*ŁmĐmRìk1œÎ1„%6ń.GˆIÛæéuc mĄ[X*Á«EßMȘzÊ5:}HÊŽ’;ÇO¶Ńš€kŚú2'Z#Á»qnʜT4Èșź¶è~čägÂOBçŠ'Ôc'„ș Č ŁČ±ÈŠSp9ÔQ°i+ppꁜàŐĘb8łÆȚÆRÁÁ#5ÒQÄœG‡ŐH‘k4 [–fŒKçÈîÖ]țòÛĂíĘíû†Ő.ŽuÔÉHšÜl@ЧŁjćđ_ł•ìąÖçŚă…À@ÿ¶Ńè_,Œ|Łci4#œmÈôÖUm”æčŽ,PO7…é?sD‚hòÂÄș"î vÔí­,?šPyVB”Gȧ|zùÔ=.ŸÚ„ó)ݚOyR>íš-%U ŐA Àöp†‘<ÊróȘ"đgĄ„Æ·°Ść_nȚß>Œ­ŠÌ/^”á@v‡3ȚäńÛÖÿööíĂ«Ím’îâšjÇóïć6z ùMőĆ8â ŒMàòæțöáöę‡ÜNš6őû_~ËÙ1Òy{ÊĂùŠZĂNi_iLóB7Vű5őu „•™QUßś é|ŸÎ±Ó±ÄšŸŽYJjÛ«Œ Q+ÊZețuóûmnTIJ;©AŽ&ó!†êÈòțæ!ËOŹ«Ì,~Țd> Ê1C A US*Ą`Í!hD‡ZÚïČĘ;ëô~Œył:&1”Ÿő2œ-/}Đc@Łž2ë5Ł=…ƒ‘ÆlšTĆD-7ZźŽruŠ1çQ˜°GŚ38,1è€4#‡%Ł–6š#\ĘkÎÙ/„ád‘C7†"""ô.…Ú.Ț•Pه?ć C4‘Ș”3;ÜÒj«æžŰĄZ;ÔăŰĄKFóË"ÖìQ4ê0I}ăàĄE2F’OôŚ Ăi€‡ŹËaPÒ"àĄyÌ͕Tš»›ÙŚÇȘ“Ô(ÿLŹšcÊ\ŸûŒŠ~lÚxzĂFš8lt'8lt™acĄ2>%6k†3vÛê°iŁy„ê@ônĆbò Íț#ȘՇgĆÊÎTxÖ.`ô|7ĐRă€VŽlXŃúœźˆ,ždŽCd^’9­".sC€[șÙˆÙ”–=śČŁcZfMèjhe 2[@܌‘,œB†.'ÖŹĂ2@ÍÌây…‹â‡gN~íC„hòs!Ą HÈ $¶uȚM2Zł đcÖ~̓?áąlŹ#đÓà>&‹ûö1ŸìËÀ>æÌaŸ”ˆÜ.î'0ôhŰGĂ>zöĄ6ìC°Ï(Êâæ©ăű°‡}tlFt ûÄűxČïËÌÀĆûäbÈÀ]Œű`ÌM|XæÎ "$‹iűb‰­łˆ4r2Zbô™DT>U9@4ÿiÚGÂ$ƌâC5­¶fÎJ©àìŹÚČ<î‹1 Žh’R&<C?ˆh%’ Ł' t-ŒFsyMvIŒæÌx™5xčQ„ˆž!RËCDŒâ…tՃčc=đÒ§„éĂ/€úÀëÉą•dŠp"ł•L9X§ôŸœ—PÌ6Ö„6‡ÀèGîxÇûDđÛÜ1}ò‡UZ–—d’4: ‚JźFŻśČ*›=rf ßÓ0šs~T”4uÎÔìöêqT|Tć–zT”Â-Ÿ1ł'~•đČÔkІÛD§Œ,?GÿÉĂOˆcïm}Ą\uü Ÿ3)ű»ńË>gâiϙű€ÿcï9“Jh­üžIżg Çršn„;±ÿ›˜Tô›€˜ŠÈș±H3awc9……à”ÿĄ endstream endobj 464 0 obj << /Length 2061 /Filter /FlateDecode >> stream xÚí[Ęo7 Ï_q +%êcë,@S ŰĂ>ò0 í·ułąIÓ:n·?ŒóÙ'u'Ù9_œĄON`†’(òGòG…W/žńúóüòèìBp,stqùźR2ŁmĄŃ0X\Ÿ-^ÿÌӉàœ_ž!Žçӏwïnç'ĐÇ7ł·ôéÄńëÙbzòêòùZÿêóìÂ9o ^L„„ßÔRûï··‹ïËż;» …1ĐÌź„ó•ö–2pÌ6b§=È€[}ÿi6ßĘ~Ô9ۜh`BÚŹ`kSü:Oof‹Ùü.¶eDfPŹ»û{úi&"{–ÀLłç—ùRHX_™dJÁJ(vt:˜EO‹ˆȚ2Ăm°#fGW5šÛïHłŁEÔFèTΎÖKͧ‹YÌπYP9û‘+ĄëZÂÉBpș+2 ‰8Æ‘#+‘,꾒wp|[ŒüRș”àçˆ*ĆŹ2[țîÍô:z|Ă,Ś[]Gֆj-(ęÀIż((Ͷ”~”ŠbRÇn%Pšü[ù7Ș‡bIûš€u«ëi™Ę1 ’|Ę(„Bžš&kƒ}i†FÔŸiВͮ0oŃUL<远-ă lÜŠúžóUßś^œÇ6Nò€;o›ËXčÇà|ŠYÈÛś2;<œ<ú|Tą/DŠ@ÖaĄ92XŒč9zńŠoéËç­çlńO%zS dąșëë⏣ßêäìP0E'F§™oۆÍ:%Œî8 V.ćît@ŁČúŽK¶lÓÖÂmÚ:Ä ÒŁÉŠÌźröiìjÄžèżZ˱…O--œYíüűșy±RŃ]”…Dúb ZÇđbĂ\PëòîUDśűświçțÍa’C–%[Z6öâœmÛBűæVWZźną!I1EaB`GžĐűuhq%ÈiAd…SΔ")tKĄ#ésäš)) A联ŻNĆRŁ©”ą›†>МŠApÇZXŠ^tą 0h è·L=4r$ë–4r$Á燾qÀìôá­IáąȘ|­T6OŁú‚Źű"ŠLÒŠÖ+țÙH4Ÿd˜&ŻŁl'ê„>täMA‰gâÉœ*ûȚy”‚Ö-A C‡ÖVÌ)Qć4Ź ŽŁ —K{bÏČŹ›í+XŁPËÀœŃêÁÀÒąő&UśV·ÊÿŸëmÜ„mï@ʆÙ)ęnßŚŹæuŠîÉòŻŸÍWö8_čś4ÒÓ •œfš!{Š25<ĐÛĘÇț§:IŽë˜1ȘžfÀáN30Ù!Đy'N 5t_槌J””_çv5ìaȘáR™@S 'â”fúç\ïŒB/ŃY Sᚣ!|P†Ö:Òąv“ÒĘäŸî WÛGÏæ›ÜŸć"ÇYÜ~„Ë·Á~Ù}‘eÈfN2żŻÒüŸÈáśæč^ż/UËócű1Ćđ»ČšËŽUÎđ‡ÙÊRM-ś7€ôH†iÔ^ZTőìJ'yŒÔzAțžž“ZŚÁ4|«5™[î‰9ăČÇŁŽÊĘd‹ÉŠLÙFîeêÏÛÒJ†Vś3%Ôô9Ó˔XŹuiÊč»x@f=4&UăFì…ÉŽsێ‰-ïCaÆ`Ë2‡ȘšÁ†ÿ3ƒœ%” Đ*‹Á6 Û}žŽ šÀȚS7Ž Ë6ĄÒźŁąŰț ˜DpïîKąȘT}(N5Œ3ČƝąÀ.ÛŐöÁPŒ˜`ì°3öÆh»~ëŹP]€BmyÉűȘ‹%óŁą€ôq“55=úËíŐőíŐû»Ćû7ûbIŻ«FăI‡aÁ’Xńí‰őăxb-š@’ù€€ÌéÂŐ°€$űcțëaÚÀQN·“œ&• gšÂĄ'Ç)*ČÚ#ĘĂžLœà\7ĂÈTĆû ó€X§ÛÔbIßs•c‡4ÉžÒć›a ’ Ížˆén0Ëû2HFČ6p`ő.’qŰWÄŽČQ0(ǘF7pĘđző[`ƒ(ą†‰ÊZ„J*šĘă$úžl;9ĆzÈÍuŁïg=±­ÊòÔĆé%{I/‘&œ\ŠôÒîPßmîŽVŃ7›žŰVo6—ńʧˆNąˆïĂLŠ>ź«çmAŽüLđ`ÿ34 ÔșÈmž{拀SYl#ïélM•|̞Ł@?­ÉfÊÇü@Ęëu]m„œeûFÄÄÊ·dCXțkHÙ0--€5’ÿ‡ÄJ! endstream endobj 468 0 obj << /Length 2069 /Filter /FlateDecode >> stream xÚŐ[Ko7ŸûWđè Y†Ï!Ù6 ÚSÛűPÀM5QÒ ¶;JZôŚwžZI$EîrŚzć$É ‡Ăá73ߎyKy~ÆșŚ'gžq-‰Ł‹7D0G-XšSM.^“Ëó7^^üŒ’NÎšŽœ{QE%HÔӊüÁ4ë€"}Š*„VBÿfőh*… ôđ°îüq'lm Ž;–šQmł„˜sÄPm8t­&’7K!Q09ÒbŸ7K†ÊŒ¶ĄČYÁ†ëHÛÆ%h\ž,Êu»ćËïŃéĄ*C™ ËȎEyĄŚŠ>ƒFÇ>ˆ\ë ]ÀłÆGÇüMńŒŚûû’ÙPÉx•#OôlYăpŸ±+čńƒöÔ*€D66ńò' wAÄ^W\SĄDUäQć\x,x]ˆE‘Óo3{ȘđknšEí«-đÜ­ÊÁ[Ä@HÁ!‹‚•KŃg…Ûh­Ę;^FáÁ-eLî m œŒœÄłäȘÏaÀ©0€țÂ_ê.:žfś‰±-ŚK^æ”!t™”GßHlŒ2<4ê}Œ9ąvÈœD§:VHB–rB**Ž”hmE†wș”Z„żt öŒˆć™èIS‹rÉißtȚg—1b ̏r*ŹYIÌ ûŃl+7m;G˜őmć—B=łÂ5Pʌ»Ó}ƒŸá•iĐ žœ!6¶gÀgìf4ˆ | ŒSL`Cîv5î–ă·˜șÒb~XV :JnÉÉq\NÚÌŃE6Ù6%6iW™:‘ïłçżÌńù'Z0\Ș$†HIč~ ĐHäs4ó‚‡ÄȘÄ a©Ù`i#T1y\æ š&ÇêÍ­śűgN‰ŁÜ`“ېBš€ęÁ·ź‚oHŽ;ÎŚżo±'ĂÉŹŸ3˜†ȚzĄäh„ŠT,ă“ĆçèÜòvŸ{Đ`ćWš•đêr§ŠKęi«ă”ETÆôՇńBvđVÆx§ÛÂ]Aäö’R+0ž4ž>g‚ —ŒD(ûâ;‘èŽâÉćĐ!čĄ)8ËW—)_“`C™PU¶Ęj’Ì›<úC)ۂ<1*Ża‹ä n€zŠKnŸÊî?RN†:j=>ż™ßÍźȚę7ía“Ÿÿ2»›/>ŽÉÊ(qCí?uîűíÇƷKÀFÄĘԃoç7«h–?mĐNwpæÍźç‹ùʧÜZڟä:î>ę=û8ÏUR`”›Ą(ÇÄȘD5vű ˜1ÉRĂLd‘(YdGYŽÈZ€CˆȘ°èn¶˜çžA­PŁìčÊâ€CÀQ}, ÊâÛMêkžÈC9FtkÁÛì ”aV©9Wł«ìö ” FmżÊ l)篚őšˆ«šU%qOÚUŽŹż"Ö5Ž-Ö”BƒRhQۀĆÌ–L#ÚÙʑù8ĘàČ ŸeȶF)L8 óœFÌïÉÚ Ï\Ű~BMÇÓV Û-:Î(ń֛”Żț*lÔ€Ž>ĄöƒĄ¶œÍí@ûçӟ3™öŻÛŹ§‰ÓÇ)Oü%ÇcŐȘæh+xâNWxȇà‰ő>xâŰÜ»æĄ/ ì/*Źpeù«đ‘+oó0ë -ż:ł;akïłic*ŸÄnÔ%.ŐČțW4MYç=àˆT[§fdû|Ł>ÙêĂQÆș’sĐ{犔1춏[ź&J›:fŰL`†'Ą4ܛ֛âźș.۰–mÙi‘ÇféN ïĆfŹ (ĂӔ[{Ic'óu4“D{wÊúŽŒù—9΍2ŠŠQ 1r0<}šÒ]~ö2ĄtM˜`}Žèșœœ Kî2anA˜/Ȅ9ÖÔ œÍ˜sÖQæăr9‚!ßĐăÛssAWšŁ6ęÙșXšâÙęU+ą&í»ĄQwÄłŸŻ«YËUÒșêÀ|Ci˜6^4Ê0#Č04" _ń›VŻ"èÈöŃi„ëËwÙKébśÆŸ…qŰ7ȘžYÓj7ÛYæ?őÆdMÛáTžĄŠțlu…^Ű/ę)FÍïüôđRáÉ*öÓÏŒFž,łŸúŽu,?:ùčÇIU=WźrRŐrRUqR•zRUïeP”†›û*ŠLő6”¶”nžŸtd-”Ó3"êŸŚ dIlàV(zÒ1Î#€uÓgD#e6îâ….ÄnžÉcs|ŸŠTÇáűìÇgNűs "N§űÌ©ÌîŚ0|z_(ÖÇđÌÜć 7=WŐ?[ï|ÍeûÇ.%öÓX`CQǂMŹfP‚í—€+]êȘÿÒęc—<Òui"‹4œ*’©K ”éH€€Câ‡ôâĘÍÛ«yóqEČDł—í{áçŸÖ»‡±Ì%YÄ6”yJ\Ńő»›\O‚æ(čŠhíZ"ŒŃFÉö‚.# "„§ÿȘSÁ endstream endobj 472 0 obj << /Length 2356 /Filter /FlateDecode >> stream xÚí[Ùr[7}ŚWÜGČ,"ۗ™IȘâȘ$5yÊą‡ÔxLߞęC' F‰°ŒyKI„–Š4ù7U޶І“DJŃę7;Ž"BðéŒ[7ùș¶”6tŽkuĄ‰‘ȘúÂÖjr·36DVc ©X!ˆfș1†ÙÉwg'w' 3҂ÜH†TŠhmŠśŚ'oȚÒâțXÀGg‹ßKÓë‚SśôȘűőäçlìŒ_ź+ŽÔ„Q/:ò k.8±ÆŽU1XĄ«CçżSæUeá\0ˆ&œ›Æ€”;‘¶Šžæ4·C >S“n‘âáYB]kòMng#;S›Üć&šYŒ¶˜qM/-żï€„Ę-ę© …Ša‰T$ÁäԅŁBe0mŒâá8 à„ R„°¶ä<2‡áX13DP„-Á§łÄazÍČžŰlŹšÎN†ą„2Ç-\ƒ& /`ćÏZł‘ƒ1^á„Í8Qđ-Dr[àÔ["ŠÙ!$Úç@"Ăv +à9ąÚűô]BÀȘhG{“MnZŻÛY„a҂ùƒŰDęcĄ2fŠY`ś€uރ 98Ї #J. ©đcRàƒó^*äDr•€-öƒq[(G‰v&ÂÆȚ©’ÒdNU ŹTcő1ËuÆIDĂ6Hì‚6'rĆ?†6Ï# ÇÇÁ•Ç&HwÂf\vRž?o<ZNG”kűŸÜ `s mf…@JYBVŽÄŽ<ÓòL›AL+Ě#aZŁ4’O„霁,L<ȘUÿ` 2ăąÈ}ÌXĂEʍ„Kâ$ ٚ)šNCí7"Ș gEÛ$Ș1DühHˈ+'z—qڐ,»œLđőšàë”RìÎóç źBdzœr”žĘó9.ő:đ–{bçNžęÄpš!ùńő^BŸeƒú‹«Ń‰6rX&k&†/”ˆ*bqï|{”č\m/.=#đÉær±žȘÉąúo~{»˜ŻïëVŐßwő‡›ß§’Nê7oçëùőbłXߟVoŹnź>enà«}ʱ/óÿ…Aùą’,kÿæ”[ëí"ńijä„LgBóÉÙćÂÏŃșá#"=î#î”#>L†»ȘÆa“Ő‡ÜB„%ZőȚ€ڝ©œd>ŸŐ‹ëćÍòz{ĘÎzŸŒßŹ—ï¶›ćêŠzg~s^œhFÚȚoçWˆqùÏębSژŸW‹žyż ”śš:ƒÜè»#ŸĐXZÉßP ŸÎÀ?ùçÍԛ vŽöéővœ.iˆ& lșaHŒš—uMżŹV›żU.èˆÈ1q{–7ïF?«Ÿè+Y§jBț©E_n&t•F±fȘûËùí"Śš NLHyî\dK›,(väì4ă’%fWd—ńăxt‘/ę;ÈŁő|łÈ „ìlč<ȟ«,©ûź«'Û âÔk¶ëgLLŸêà?áDß1”Ć™hÌ~ŒŸ_e—\AőAËćPŸvEŃÎŽ? ȘlŰ_–ÄĐČĄ† úđą ü’dÇч·TčͧgZ žMÇJ- Y`·[nc¶ëz*”mGیué~&°dDŁ?• xžŻVƒëeŸë–tU„HéK¶hCcö ê`3ÆQÌőŻÏ"ćêä°&cPb” Ńđ©WáźłjL |@“. ^Z3V–u>ÚćWĂ[üćOAÙš@R–ŒłçÛ•t_甫Șœóšü‰ÊŻ« Cą©Ì ˆƒŽ*”0aF/#]ĆU?«4©0èwYćJ V KgÛ%°Ü©Ś5Õ=_˜Ÿ.䄀śà#4'⋋– €,Š&;‚Ț‚ț{“]§„j±RźPîù±#Š>ƄTp—.’d*…ŁáQÄâű|˜ę0Ё‡›ÖMÇńÔ»<őjtǚdž _͖,(ÇvEĘĆđöîJ„4:Á‚ș“9 iȘTÇʔj(2b02ú‘éH¶Ô”űéá<U–tëĆQæ=w…pèçÜ#‚}0 1łû›ÇŽaĄ&ušĘșXj öÎÆŐŻÏ!IÜc=ց™D*ÈÆˆ”ˆ#©ș^wìÈ Bb_Ș§ț‰àŸXÛ=âóŠè™eè9MŁÂO˜œufÿxôÜĘNŸą5ŐŠƒ8œBëԗbÎ=§Ûuÿ=ż›ÜšáNǎ#_aPÿÁé^òő{Íù°źĐÌaŸŁÈČo1Ó` ŹŠc/«ńăS‘Hяšșž3}w±.WÄf{ôŰs6ÔŁćAá7]§0È)Łr`,fÄÂ)§Ž|°ŽŻœŠ.ćô§ùz±Y=Ąvz;z‚Łš§ÇŃÆ>K<5Ï(֙A±Ę”q¶Òêš{$/Q«ëë>#â{.‘N=ŁF7”č” °ÁA–¶/oI «ÔŠ{ź )”Y ǔ•I°SąóŸżç·WÆśIKĘ*«ÒÉ•UÖš0ŒéȘĄÂ <­H7.’èR9Û_i â˜Țńö#9JxówĆąHvÜ©B—Êüéc…ÊKÊÌăjŒŒP&žS(ăăJ6}˜Pfʉí ef€PfÔ‰éĂ;±qW;țp*WfYbTźá>Žź,'<Í5i‹ˆp[p›Čy@ńô•š„uŰÌC“Ïš6wR„UO!Pí?—æ Re }­éűR[3öÿ[‡ăűPgYæÆpúĐ 3oàtÚMûÊ·VŸ·òá`ß2•Ś ő_č)aÖï$Ž˜ˆÒVôLFQę3ăŚ^™u±‡ÿyƒżOX›}Ê'A_íćíđșš9îż«_y(?ĘțáÛûƒMŸîŽż2ț„ĊO@ö<čŸ\’+ ’čö·Ś>™vç„zśnæĆ/WÊŚ { Ł((‘»ÏEŐHII IJêE)J6MZ‰–ä HÛZKb–$»Ž$©ńju±Œß,ß?­ąTMó—•úîż©—wÿí0ëóîż©§‘ÔZhá˜3bÊ_ščČE­"`"#ÓÿI<Ô( endstream endobj 476 0 obj << /Length 1908 /Filter /FlateDecode >> stream xÚí[]oSG}ÏŻž‰à.;łß-T* òԏáX’q›űKÓőYŃ<€€šÊł’2%Ű͌ú}.17Ê «85êCđ·Nä^ÁAö8ëF,Đy†dkk4„ ßźÍÈ« ÊăÒ‰Ű‹^… çé ‡ÌȘéuÏńŽs$x°ș(|(–Ç<xT2Ä önč!Ű-ԕEï$z1š>őÔKłőrččgìjτfíRÌ#‰%湗{!Łÿ’€€Ž·ŚNĂâ»ÎôBŐ%“„Nìë)_^f”oŠˆ\Țń©+fç™BÎfXńž˜+“*—çʂȘyśžˆ4™’žÂĄŹm#ú!j D­Yś–ˆÎ܁֎Ûü5óúŸ%%0È­Y‚Š8ÊÀÙ»Ăp3Ăm'y­US oƞźöÿW‰á™ŠÉˆ$§GłFŁÓƒź4éeśŻęF_Ž&»íÍDÆSĐíŻBhĄŐ8FĄ »Bè…=V”UŰú7‚§Ń/MÁŰòvŽvșpú79Ś{ЇőșĆy>7V™^œŒò·șœüĐw“zr«J©K•-–±t4„IșfŹŹ:uĘJ? T`éăÓ":Ÿ}ŒzûéXm/Æo"fÓń»ŃĆĆhòőíèâęùóævJdĄÇOjŠXĐPŐńŒÊ“Ő ÊT}»Ç_?}șțnb†ő_!˜ŒŹŸžüaĘ8Ź-?.GăëńćUi%Ón6}_ę5ú{\J&Ć@· æĂ”ŽŠ@©ŒIÏÿÂI^8é3‹x;­„îe͖ș]KÌ Ïzˆ=3°8/đâɓÂJĆŚ9(ŐÄćș…,Pa&űčˆ^»”vőzt^ÜŸ^Ú”Â1È b{ЧĄá5H诅 ÎÍjá †ŚfGȘkŒĂ š6Šă9N#*>ŽbČćžm©T„äRŽ>”«Ó„8'ĐËhƒțkyąH˜Š7íçeŃÈÀx­ qś™ÿó^%uÿ¶Z”Q#W ‘˜!ŃÁ/ΐ›‘Äf(±©›Ÿ—ŰT–„EùŸ•ÄfÔ‰,z}Œ&­Kl.%ü©ecĄS±!t{'6ód͉Í[Rojp=Ęêà±àrôè©ZsÄpłŠpŽuËž„F|^Üs&±-ÒÀ•K!Æ”MSÿl3đ(|Z2;ȘŽê8( g%àîÇ'?7»fӇŒV sàívÉÛőâ‚=àB”ĂYFð`° +ï:fŒOa[Woęá·śƒ¶Uw҈D2ĂăÔ«ŠőÚî…<+1BJœ7Űił‡[N— ÚEłn”àëârÊüęd óš1€ű…5Ż hzqyÀ)ĆűÓǛvÇăË«ń„ę»Ț='űțăÍŠŽ 9ЂZđÛ€đżč”öB+ûíӂn-èт`<ŹÁ'`SÚ[ò‚ńFHĆ蝧ćÄ ‡;Ș·bW=yÜàńh‰Dü̜äÒÖ"rPUÇkł”€ë>3…›€ ÂWâ;ñ…qćèuˆAƒ/ńʟe«RÎÇ”"1hÔ b0öß¶čTŠśN æíŃ1ȘCÇXFoŒæ°{‚Ń œÌ {%2O§5öȚżVœÖžÜ>܎LpAX*& «=Ț3hÆì }ïŒäŚyő·”AŒÿÂSË!òCÜĆĘŠ:úĐ«ék?úûyIŚąnn`— ‡ •»ô!ÌF$șŁöĆDÆŃ7žŚ„zÜ.IV,O‰Ű–·Œł‹ÎeŻæjŠPGççĆ6Ț‰@źË^uÈ$‡Ž] ‚cBB&©>2éźiŁĘ’FÛĄnĆ bhÌZöša Í,”€˜ùcwŻ0^¶OÉg2ÀçÿYÚk€ endstream endobj 480 0 obj << /Length 2174 /Filter /FlateDecode >> stream xÚć[Yo7~śŻŰGÍ2äđîŽ@ôB/-€€’šźQÙNl%-úëûqWÒ.čÜCÊÚNĐ'ą‡Ă™ùfæÒŒ8+xńűˆoŸ~yzôđ+Ąeá™7dŠÓ? ’’‘€Âhb€DqúČxrüÇÉłÓo°ÒËBp&a©bÒ(È©–<ćšoVEòSJnę“•Ł™”-1â€$ç?ËIžI’…aVéúȚl–9WXŠ­0”D«]!™ ?†U‹ŒjayÙZ¶Ź—śæœß,ă^”…=ćŒuÔfWĘh{JŻŁG§GŻ~Ç Q1LÓbg˜űĆĆѓgŒx‰ż)`ïŠż«„iæ„Ć·«â—ŁŸČ~2zA˜ÒLqٗ€h­l›śq,ÌŚu$~Ù¶ٝ·=r4,Śöd”ÊûHí]ÌIUŻ{s a·È’œÓÚl—|–SXÓÊŽcćuŚ'R:ŠàȚ >œrI ÙuIQ w9|UÌëÍÉżê1ąË:cVTE.ŽqŸ[+ Ž€A{Ő·@iXOSfŽ”$Š€ÓÛŸä-DV‡PP%ź±œÒ ÆÉ%IŰ|HČò€č;ꓜ0€V»;üočb™Ib$ő€^ôP¶Ö=ƒ=ïA‚cÂÚÒœšŠÚ‰îݜ“ĂžqÖ|<Éș“ʉ<„L7ò’șE^ŸÍl“ž·îîÉĐÜìn(šĄ“tŠŹgÆză0żŒÇœäVd/Eƒ,ÈŽ.ZËFŒê`țMŒÊĐ2Ía3„Š2\‡–)ȚąÊ’\wńŽRŁS™ŚjU‡ĆG°@ćő;—«œż5 gFęMû”^Ću»{" /™PŒ©â_Őê/1żBÿăŻ/ߞ=^^ß,C;!Ž=±êxyțüM§v“žíŚäŽžuűiăłŸŻźÖښçŠ&ŠÎ/ßțĘìæLd!›ŹÙ•…ôœCËêìêâŐòzęï]K# F"‡ȚÄ쏋ëĆĆr äôÖaŽCȚ͟‹WË\&ŽÌq3–męKšN6|;‡‹ÜéęÎ’Ś‹uVbź©Ê“ôYőTźT2#‰™?PfDĂüK!‘2ò­Ÿô”}R,Č{țæĆb5“;&)”ç'aąˆD¶Á$™±q§œ2˜Qï2îŒÍȚwźs›"ʅkú’t~’ l:9Ë$S›Ș SFƒ‚űÁI&RGÁÁIŠÔĄ†Tdș8Z-đo&Íč8`zH]n+ăš¶Æ"Ê9)  …‡ŰÎüČsFô€ő‹M˜3ZP:Ÿ5XtônےÙ9œdźÊŚ„ș$Š·Š]çáoŃ˔QŽiôÏ1í­Ă%Š3(Ț §ïæë6Ą™Ž1ҙ í=’ă¶ęĐ&ƒˆJG™f&2ˆÛŠ€)ïj&O{ŁśŸ1ŽF‚ÙÂxŽnćąìÛWhHâ#7·ÏÄ­ąhÁÈP ŸheęŒ71>qóc7ăçčé‰HĐ3#AŒÛâmś·}PHèïße`ç’tÏ}Ïô*L0ì€é՞r§î©Sú€:•žÏSç|bì|ûOŒșôŐ xŒ€IÛ°WĘÇ^—ÿŒșș\^źÏ{±Wč{Ć.“űfęw5Ę4ûÓÍ»`wr”ĘQ›ĘŃÿŒĘYX'*rÇÉ}oY&P7ûźPʚB’ †˜›`BÒ sł\Ć(ŽÛ‰L–čŐEń֘[śĘ‡{ś"căf§cćaóźÂłXۇù)1ëïęÙÇęÓ„ùےeKt+lIŒöˆ4+[ră=ąž«'Ńă/(ä$ŠcF™NJtç’Yž#Áo€ŒžóȚœ,˜›æL a=țȘ`.šsk!|À›33E1wKQôĘ15#CqwÆPêû#Ș{|««ĄȘ$:@Úrča(?Źÿ\^ŚÜäćùÍ:|+ŽÏŸżYŸ_]Țä8OrĄILld}wuv¶žžXÜÖœÜjČôˆÙz‘¶ș:Ë9}Î~äfôyç䫎ŒF(ÖűCűV$Æ0Ąi”phÜšŠpŰm§ț~Ę&Q»1^ćoü Ô*óx>wá_F·IăS“ŐeOș1uś*™™]ŐÓÌ%Ú7­g‘ÈE‰4ĄQVUf6<-|Ł9f˜F…Á(j…`JšŰÉż5Ȃ€\ß ŽŚtÆM:X·9 Ï+ÊÖFwÿF§ÛräB4zv€>ŠZóŽŰRLƒ·6K>?Žő’L5W 0šy^óĂœ|/ΓgűŚč{{†ßĄ‡òȘmżÈâì0đœŻ/~ìxüž9âGU\˜ȘČzg7‡ïF$š{]2ć~üŒ€Š.ÈW™„êsˆZžźÒđ?GĄ§òé`*Ú2ó°ÚC挍ą/i‡xÌaś'‘=4zMwàUû"Ûn#thZžá˜%éæœWŒgïiIXŹ”ĄƒÙœUűèOàŰÿÓ»šš endstream endobj 485 0 obj << /Length 2958 /Filter /FlateDecode >> stream xÚí[ÙnÉ}ŚWpȚ(Ű,ŚŸ$ńCŒ 0@!àqÚąeÂą,K”ÇÈŚçTŻUŐ·›ìˆòä!/Šl_ŐrŚsn]òĆՂ/^ŸńæóOg/^ ف+íââĂBòÀœv k$ă",..o–?žżœű ’A-gÊ E-SÊaJäÍùJêć/ÜđF6[Ő1cD+úÏZ;„«fBhEțE-˜ŽÄ7òHGj%pŃ/ƒ8Q-Ł™Ô ajÁOäRQÀ-V‰Ü[\1đćËF\&G–/B3nd»œ”€ś©šcRéĆÊ1Ć]-zćÎ~Œ8ûr•Äb!œ`^z˜A3hîęîìÍ[ŸžÄÿęŽÀƒ_üZIîR1$~Œ^üęìŻIłăZ*°Ú0áMČçÀžI‘(“Æ„Œ4¶•úDšĂ° <\‰yo;mš^œ1ącÈĆJ2T’ëæ`J$ Â՜YŹ„€2|-śzÄÖï=€S&€8Ę 5ûÁśÒó+è©űęˆ{Hggmtr—rR}żž—ïąđúfd'Dțü ‹¶ Ì">WpHîDęßÏFöĐҔ{d1Š-ȘÔGFš.í]Ęv‚Ž‚c\Vȝ0·ÂwśżÁŠđŹl S«#l-fÚæó.łvŚzNîˆc+_ú1ü-3…ö]–ÿ™AăȚ—Ü$"+i‘? ÒŹtLèÆÿÈ“ç+û._?ìȚmêÄˋȘX\‹Ă·=țÖűŰß>ȚÿźȚÓfYÖ2ßUĂ«ŁW_ŐżS[0MnțËúnœÛì7wśÔF>֛m}}û‘r!ÜÛs"AŽŻ˜Öòă{ŠDg’_€6€áȘäŹgXnM.ƒ„è\±J‡Ù*ęy gŽy:|NšÒ3Ç;wŒżŸȚÌĐd~”L‘_È$䔄±Iâ î,ŒÿÖąŻ#ÙOYMœ*[OăTjv„ûЁœ<|S8±ńÔMïTВÍŠ”ń„>‹+æ Êłțž(•KJÇ0ƒ‰X íùśZæ/*֛ÂnJŽ Ź à&Čiw"‘:Ć5S^š‡șÌúč’Qo™ì™Önää!èüâBÉąTâ!–*ê «ïæŸR20 šp„wk8mUÀÇŒ[i(fQlMroS€ĄÜQ“źÌ2/B•ȘzœêúSJŃé —‹k„ńKȚÿæÔ¶àçœ{EÜ5>ćÖqĄ’ ”&ùì̍‹Ìj€/%ü&Tœ ßSćrß+{3Œ+€Oh°Ì¶ewKljJR€ ì‰K»+r–Ó;,Šay„2Ź;àĐvÊĄ‘ʝó…CwŻ­Ă”šô§ŠŸèȘŒĄRDJd•Ć_PĘPÏŹ 4șÈ{ŒŸëHÌwÔb0·!Ț8Kê[”)ő˜5^æ:kÇ %zE4<çG‘+ąh@Γ(z6Bb"„źbOûD1€œźÓcòÈYö41“HćOCEż“kæĄÛȘ`Æă»dźlÄd\à›<~\eŰP„o&˜źÜ7ö8ĬΏ“?]zșYšn „/i=ô [ čJŚžiĄâ«4ȚÂ5•öĄûćV°΀_qíSí–Ê!pÔŸOűrä\ ă‚XÄÔ fŽp>xI’"ÇÒ±èxKŠ)“w•…í9’ìR?P„R1,ą€P€TSčĆè†}ŠQžżEÙúmÈÜÇg*ÈQ$ă=ûa€wĂE˜ŐtûDêłGÌìœÎfâ)l6àrȚ™2’(!ærޘÔì!MЀìGž‚\ž)Źì‡R•y‚$k»žOæ- !Ł„[RuZˆ†‰†Ùă-ƒgŠp°Qԛûùyì™,eütaÉđdę!đAڧűȘ«‹ò§Ä!æ6ęĄčMw<é™_¶d6öä„/qŠ`ą©MŸŠ~ Őż"țž„CY‹"†0ń‘ž«Ç’(§Ș3éMUúGI”GŹySÉč Ią|ì]boß·ˆžÿ ^űăű@țâđX握Qáÿ4jąAĐ(ó8߯ÓD‘ŠŃ=ú@© bŐią(.Š­?Y•7z"~0€VÂÇ·2Xe«œ5wrxȁvâĆò8ŠoG~śŸ gńŠzĄ]Éű%uèZŸèÚ>n&gʧŻÊž~Ÿ?ücăPGőŽâŠżOAÁĐČw'°j˜ÒŐ`‘ne>#†ÛÒžșÙźȚHÒ;ÏsN9,=ń6éüZ93'ȘٍŰO9„Z Śź‰;àSàŒ]J ÖêdÖé'òîᗼLûY…8‚=yǒ#È+"Đ‰í „ÖN^”»6œ)E]$Ž0óî°ĄJ%±ÚâÚòiRUž]ń$ąAƒ"D> R$NœĘŽK!·OhŻ\­ŹàŒwȘšś”š=Q;;üÊĆÇMÍ"ź·»í~{sUÿíęú~CҊ6I` 䑭”™~ ę<çˑéIŃżűL©'ś€@5Ś™mŸœŻOŸŸ©?·7_Ï”èŠFűòjœÛ­ë/·śû»í»‡}|çŻțćŚíțăÔ}uŽnÈw\\W™éù†ț"ZÇT—ŻZGšÛWÛjČ4yQ‹$ë <ër)9ČŒú*L~‰›Ë©{G—ń!æd$òèf»ÉÁ}<_?Æó©ï*ű Òüùźž ȘÌ-“!Ąś·«û/ë»słÜ\Æ2ËÈńŁ8·,ĘpúH·ß~ÙÜlîÖŚÛo.ë…ßmö맚<șÚÜ»ücȘAȘû„Àœ;„sßƒœúb–fFûcfo\v"ùˆ%s7ïÈ9ćæC©9'ŸړÄÌ€Ę‰#tt·ȚoN3.ö}§łÆŸæăæyÈÓïh0ŻŰĆ_D&ń„1 LÓ•<“xűȚŚ endstream endobj 491 0 obj << /Length 3159 /Filter /FlateDecode >> stream xÚí[[să¶~śŻPß䩅à~é&yHš€M›™$őCg¶ÛږŚÊZ—Hônòïû HIÛÙMšN_,‰Îć;ÀtözFg_ŃæółËłŸdJÌqšëÙćíŒSI€Ö3­\Í.of/ç·çŻ.żÆH'fŒaóC%Z‚Nò/Șh3*ĄjRęT€Łˆ=2ì|Á­›Ҍ”¶G90%fš)ă„șŽš"†č#ɇn„!ʰf„5|&ˆf&ŽȘ¶H›-zăș}:—l“ÉvEpêúŽ ĄČ·OZÆs„sÖsy„/°Â%áQń«Ž)CŹuaȚ;uʓs=Jšpn“­}qyöăĂ3:c3.@rXŒ –©Ùőúìć+:»ÁËŻgàÚÙÙ»0t=ӌHëçĘÏțqö]Ńü`vNÂü$ Ç„V“X‚­ÀŻä€;ŒŰ'o”R5«d»ę‹2 nô8+’XÍOU–,ÛfP†&Vš‘Ő8–ŁlÜB,Q‰śŚb„Z>Ž8rƋ‚!h6[ÀÙY_© šMA?°œșÌÍzZΘÄ~,ìA)یÁű@ęžÖÙJ߂™6ł‡ȘSÔHäzđ…%ZžŁü3ç­\x_Èl¶ŸóqљœYćà—R±„:›SI1/ꊊ’HZpAƒ4À/ܧŃè—^aôű5PÛ…N:ëcŰâò—;«ÊXÉHђx1IâÉĘӚá2óڃžŸÿąHOCŰ­ Œ,`Ș]ńŸ„ˆ``ŰÌ*Ö,őfȘBÆą7îTëè j™śUdub ęhäd ·:];!æ Ł­ț ¶r"UMÛńÇépüŠl.ŒEöJ»BüŽ­ń—€ĄÌÉ'íc"Ì@ ŠȱفL«Q”æÊUćL9„-*ȚKțźęŒ8Œ+„ qXŽŹÆ°\oŠànH·ńO‹Ia îCY!ô„mn˙ëhĂ3#ËĐ~J”€ž1O€›—ƒzƒ+žáN¶Gûnčÿw‰ˆƒæžmS^\ò‘'ÿpÿ‹§Œ%uÆû8íˆVúś pÙÖ SAá~f(&ÍPż3ü•’CàłP€$ÒA_áJKòÓș"íoˆç€z/ {„RùŒÖFŠ€”(Șț{KöE›śĄh—ŐHŃæt9bf”ănžÉtĂ>7ßHTeC±ßșÒBŃùëf4V„ʄ§ 1Mś 3>;_0Pž{W–‹úçĘÒX6żYêœŻ©ç««‡z”ĘJmB™n A 2鐑x—Xƒú瘷șYzBÖ@ÿáăz»©W›‡íĂaQŻÖ~=«çßTû7Ûsźçoă ĘțÜÍ·ŚËĂ!ț~·ȘïŠČn»xfXșüz‚ga(r—NȘś˜^nêžđĄźêeĂD”č‰Ün7Ë,ߌ òŽ„Ș«Ăv”ÚŒŽ „ÈùBh6ÿûČ=lèŽoĘpà‹%ÜkÍkè»ąœÂ8SéIBUŚ7’„uáÊ”-rNӀË%̂AùugJĘp"7w ¶„>+km—Ű€RíiN°–;UVÏĆ,9‘ś æ+X@Ö[߅/ąQ ·Ùűbè_­«zżú)>ö”ĘÇç«Mœôs~ŽŻâ°ˆțśö6;<\ßĆ'U|+”G+őżƒűśśGçjëíD"c‘ŸdEÜIąœçđŐąúnBDR €O_1ț8CQ$O6±+* ûĐ;±Șéâ­»Mvj »Ë2ˆ‰&u!ÚIĐè-4ԇímÜRâÀ@ȍ«€fmű/« Łș?"Æ\UW«û zÿìíčdóću Ë0|îĘŐÒù_€`jŸŒ(úl @šëà&Éú—ă< ŠLY«Cä€ÚŒâ”Äžlčő@Mçtÿà€eu¶”ç[z·„™Él¶›Ćhśp_í8B6w\›âăŃêŒ3kˆÁ›„@]2R8‚‘șšVXAáo9 ;€Ęۏ ûîmƒc*Rż” šo–û>7céšÛí~ląX6™łj Ÿ 2,ńycB–]$± ”4+Ó10|æxü`űÈ·h8É6x1ș=ƒ‹G©ț'x·::tŽŰ1Ż :ŽgŸg&ÚÌ(zą1lż;©zÌ Ą:6a)BèS·˜°Ą8ș.ZJÆvb)șhLđú.‰ÿdà`DŠ~˜Ű6ìBfVüąÒÚĘ72…í&ńĐg3ƒ š ‰šÙ.}žÂ2ŠÊ”k§`“MANfÄrö™čV†cˆ9ą‰91»Œmśæ àź oäԏ_«€:Ó$)ÜiDœȘŸáÍ/!Z rpȚšÉršqÀòŸA^SöúS †ù… †O0LèöÒVVÎƉTVìDO‚ąąÈőôb4oÀHŽ ”Ìš˜ö’:k©f4§5cźNÙʗçH\—ÛR "yÒŸ$|HètÆr`_RööŒ/§B鯔)èc0çF…ƒ·dÊ«rpđ±ž`‡éŒŸvè0iŠĂ{r ûăȘqë*úôőöțaœ‰zžQ*F…“ńJ‰'ăK_…ąr=„pȚ^,:~âogčŠû~»­ÿÖICR“ÎÀvwĄcP"—ísçĆą±)2ż­öŐzY/ś‡ÒBJ!ăkÍb·ß–z?œËŐi*<fËO šțy«T&©lXù Ž”ćDșŻqŃőàŚć» ^YmsQü‡¶’ŽElAŸźKP‰TwätYnB*L^:őd“†àĄĘRçîŒűû,đćăČßòzÏΚàÙÌ·SÙèu3 ”>šùTK?Ł3›ĆîR}D°Î”–ȘqQűË.fŹÌÀXŚ_Ћ· Ô„Źé‹eĄœiż­ț±ç°w7`ǒłlg©xdžÖ?۫˗ïòÂ©Ź™Ÿ1dČ.ï˜ˇÁÔ_ï”B}wđ7ż0ô|?Pőțüà‰gxw 5ì'vÒOXê'@6 ©Q©cŒoXűpÆ'=Ì&ö<é3NŒ4Ož“śéŽűˆ4BiúîŠșßËíźTX0UË};àć<‰vgI»sïYQ/ĘHm6éX?Č )KÛ%qœ˜•uwITéjÎ@bòŠlččȋńsaáœHLŒÌMƒzß7àĂ‰i@îI«\ú!Öh3ˆÈDHțpjÌq%9€,J•vZükq%MúgÉe{ ĂőŽÁˆÇŒê_>čMŸoùÎÂ=ä©z€-ź»ŽĆ‚3:%™'©Ÿu„_ˆêé‰bŽAڔ.sćGË2öw“ŁćϛŁć?ŻŚ{”yO;XæIç FxÁ›“ŐË;_K‰Șx·[nnü)‚ÿőz…’˜Ï—ÍËpê㿄>Ù¶Ž?6ŐșyN뒁»¶"ż}Ő,„î|?»Ęv_ÇČ»čsŃ/œ™A@i*ïۇÍuÜgpÙÛŰćłÍ™žŹ—ë«°ąÿêôæíX3ƒ[n,ôWzö%Œț #l!Ą;ȚÚwÀB™NžšX#tÉ| ˜,8Őm€háà5ùŠÙÔrÈNĂasoZw0°’€—ùTă‘ò••/|&·°7#ČW«(À8ËæLœî`&sJœ¶xńcÁșÿ €Sç=Ÿ(ŁÊ«F·­ìƒ­íÂßĂrSWȚÌ^:ż@€%ș &ńȚˆ‘óĘú •Ìvčû@ëp·ÚƇáŹ:|Ûbà>~MŹź&œ™ż»[nâÛ0€â/ŒÂôż€9E@[z‚?#€GŽá ,í°ßâIĐ9·ó·«›`}xEƒ/ë*H ßźïàźßÀíê:Œ‹·[’ńßnW‡ĂvłXmb‡yh^|U=«æˆ-o73UU”ÎßJ#ó9`±Ÿò èÓdÙńÁÚA_\žęëPU„ endstream endobj 495 0 obj << /Length 1866 /Filter /FlateDecode >> stream xÚĘZKsÛ6ŸûW°7ib!ŰĆ;ÓšN›™:iâ[’ƒ,3'zU”’¶żŸ ’"A eWvĘ^LÉ\ûüöĂR<čMxòú‚WŚWWÏźæ”ÂäêSB0Łmą•a(Tru“ŒęÈ`<Îùèês:țxő =æDÈ€2Â?Š$“ÂÒȘ…üźx%ŠDžșb‚ŚRÓRÄč¶„T”ÄeÏ" `/r_D[Ù,2mF<Ș7=<Ô*±¶W,=àöRłù4Ïëmsu±ăH2<Â‹R'ZX††VXĐcȚu!qt“ćÛMvœÛf«eîÿŁlYȚÚ~ÎòòSžÎüęòöt3VŁêéé|^IìÖëŐf›Ț”_łJözšW’oYy„łMysœűTțo6]z ș:‘GÍèRéëŽ|p¶ZŹwŐ^|Tš3Ûmòìë˜nŠó?«œÇFŐçœăÙò¶ aà©jKt’”·\Śź5LĐUÈčN&ÀŒ”eűńnšÎÊÛU©Ú¶Œćët–yEKĂ`ôu,Œ‡w•ŐÓee0=Qčw—Ű‚JABąlÓĐČÉ?…É·U•} 2”3aŒ”f–r9{9ž ă ôPLA§Ä–ԔijèœĄR‡%ÖHHf5îžÇÖĐ ­ȚKÄM“Ì ˆÔ^kÚ ëîâGä>ƒŹu…`Êșf/Î#YF*c”­cqécŁO«MLu„"múÀ0Y«ő2–Óœ>Öт ÌĐ_Q…ƒĂòĆ„ű§ŻlÂkÇ aò€Ä±rĆešx­9†zùóEŁŰś= ą…ì€XÇ<°Mődߋî†Î3š‡ŠÂtć<î#ŰńŃAztGXʗ·–É&·ŸBȚeôTÈÒ!źui `‹,EQä‚9úì› yH„‡lÎ;ÜO*èƘŠTĄÄˆ'ŠoÄVŠöœ»gƃ|ŚÊĘ+ß;DÄL Ï3ɁmrÓr!”€‚”©¶Šz(bkZÚ”8"Ö.Œ<æ.AXążÜ“m"mûeËŸ/'‘,°ŠY"M:d Ź}ç‡TÓêŰ>›æé‹ńDhœNWÄŸ6Ù,Ș%pɔCM<:]č3űxßÖîÿæge1ü!ÔoC_}8‡whu= mÈÿ¶Q4D[TD»òyF„û‚\ߊg ÖÊcUHPÏÂOí)üZüŽçÔËžvgăEx.XÎ‹î=ž1Íû‘Ÿ>ŻČÏû€L O&hgot%G­§Ÿš'ßNqOYf„oPÌïkà“đœzàyÂeœÌf—Ń XКśĂĐ«±|9žŚŃń<îÇó}séˆ=ȘûÎ:éٞ;4ˆü/C»ò8?š¶”ŃnÛE m бœ5h‰-łL˜Ù™R:B+°’Î ‘2VŽg†Uk?Ô4p&'ÏĄKœ»ÿDfÁęT2˜œ,{Ö7ÍYțYß©†Oéúîo ;w$aà”ˆ "“ĆÀŹ/â‚SWąd}Œˆƒÿu;%äg<ń«6è mÚúùŠŠŸr]Æ FëâüèîțÎùÁÇ j?f0”°JœpŽW+(ŽńúLÇxŒ±’îÀü/ńËű[0á\\„ž—}±śGą8ű†NŠV4E›ŸY=Ú/ ąșbdZ€?LûèpÂč+ wÇŻÒß~Ž\íæó,j«sL>­!‡ápVrY9j—œ?żš)Ș…B€D‹Z„:Ęßcű endstream endobj 499 0 obj << /Length 2209 /Filter /FlateDecode >> stream xÚŐZÉ’ÜÆœÏWÀ7tˆ(ŐŸŰâEÛhkNZèpˆ`/ŁnŒhńëę …ÆÖ`6>Ą)dećòòebhrŸĐä7Žč~{óíßU cÄ)Ć“Ûś ‚m­ áB%·wÉOé_ _eŒRšȚ~(Vw,ę\YučNś›Œ*îVżÜțòœH'RäADÓ égȘhłN‰țŸŠjÏ«ò°Äčá È<Żx3!„ v^Ȏ ŃVuB2ŠMÊâŠ3Â: śyÙĐ^/Ž«6Ûütj·uÄiźkY„z Єuö–p;Œś.ß|Ìï‹nƒű«F.ĆđŐ|S=æÇù=9UĐŚ _|8ź\zXÁ}ż•wĆi• )ÓÓăĂĂáX…›ś‡cűQy§ûwć©:–ëÇȘ<ì›7Êœż Ź)Ï2Šÿ;YeJĐôÇąȚ'óFíÀ5LȘă9”2aÄĆv†§ò•Péo+ÉÒ"<Á9lzXçër[Vż‡gy|›w±Ò3OهPšHÁ‡z]‚nUÀ2$ÀJˆ4ß>6·§‡bSzĆÏ][$ŠI?…Û|Ś Ű‡WO gdB)á@ „Ą a–dœPÛ`ïÇhÁŃB'œeoW™4v„Ż== ‘zŻ#‘-¶~@‰î$Ź#v—Äê翍ÉĐț8݈ŸKĂEtr°owzŽ9őád­« ąŹëöą4rP™·†a 0Ë!ŃèĄQc€05–΄€4Ä   ^ę8>Žè“`ƒÀÊÉ@,ŻËžHƛ€mȘXb°Ő`-Àƒ9. —1àPäąvïfSÀĂ1ŠûG(X2mțœo·ÍșÂçÜȚ'ż=ìçóIÔȘEfsCäwnŽŒúŸ­“VP›Éžîì­%ê‡ăr&a=Æe@\c‰ÚBŰt[îÊÊ#D}·ÉOős“Ț‡'MÊúőÇő>yș±‹„'4bp Ç˱ŽwBÉ@ÀđǁäČQ«ÜŚŸ+«æÀáč H3pšDž(­‰’n‡r_Jčóä©țUFÏšQ/™›Çç:›Ä8Wfx‚ÂdK kHđî[ëęîPžN!p[’}ŸŽ«loqڈÿÏáPę9è‚ąÛ-C%·-ț|ź`­ÓS€gáœ,Őđö»ü˜ïŠȘ8ÆöQŒšè¶ùn}—GŹ'81>œbcûÂàeٚxÛAïĆš”źŠ\ŐBȘ™!NšÚYôì­|*8äÓcƒŸ‰íÆHŐÁ‹}4áĐBđ íJá6ą xKŚ5Ć5A­”nT/r\ĆrüB_Èè-‹ếń]UOï›żĘȚüzÓŃi”^žHđUi›ĘÍOżĐäóôR8›|ȘWî|d+íCi›üpóïŠĐËŰKúŸÇ5€»èTë* ulÈ7tŸŁŐžŽëUœF2u %Û"‡2Nüêùddä$Ź•CFs‚EžÚÚ rpÔᖠ-H‰^ŻòńÒU\Oa‰ˆą+œń•„É”žó•&šL€D;ćÔ;èˆ%šŽ»ę)j ë˜Ê+Ȍ~ ™ŒŚ4źGf·ptŽ€ûiź«©xúąn”é­›đÎÀ€wF”Írą(Űú+ƒ¶lŽ(Bƈ ûÇ`ê&îJ'±+€UżÌG-Èßá°șæJ”YșFÙkż$ú dDńšyLEßșrßÍű!3a6”©YWăAÛ,ić^KŁJĄ W?ûrC{ő ÁZ›€,[kZCˆ˜LGê}ß“ŽW}Ž;•6d„YÊJő„’R,'%‹O9ûü•ŁČ.pxMëïBHXKÏæź?°3č뇅Ôă°ŰYö”rWùÜíü͌|DTiL˜(ęàÇś`ę}öł6PÏL •țëpŸËêĂźÜDœÒ5F;’:4ęa+XœŁŚâöëܧà^6ȚiҞNšWŚâŸÆÖaœnż4aÌÔÍçà„ă“’ê‰Łj!Th“b/żpI^ăé`Ő_üwGĘ~iìQśĆ ÈqÁçRĂçBMùü ßží( نiÊüÆì˜ëTeè58o»›‰á§ô_Ńu3üd]w*–șÓÆÒžai0śu:RżÏW‚Îuuê‰]ĘiêìSš:ö„ŠNȘ}O{0û5zș—Ëëśt‹}ÿÔèŚteû*Ś„űđcGN€OOÀ0söšúê;5 ”èXšzé4pÌ ÓÀòżjíhœ:‹4xì‚7t ômí"Ž$ÿši,— endstream endobj 503 0 obj << /Length 2833 /Filter /FlateDecode >> stream xÚí[K“ă¶ŸÏŻ`nœÊÆûáČsH*I•+©râ9Ù냀ŃîČVŻHšïțú|)  @JšÇŽ·’ː"A Ńèțúk4†ï ZüęŠ6Ś?ß^}ó7ŠDáˆÓ\·o f51ÖZ1ą/nïŠ_ÊńőŻ·? „ŁDXÆ|SC€D7ĄĆśu N]܂1B­Ț·yC)m:ê IŽtƕȘnčöÍźțz{őŸ+†ŻiÁ Î$1T@.IšĆtqőËŻŽžĂË Œèlńš. Ήî˜?]꫞€sрm_Wfë1Yv& vj”XÚȘb]7IFÔDP†żVÈșŃMź. §lßÏ€G隻Dëă„[ëï UYAŃżić\öôožÚ7ùcf*hËD+$ËvąŁŃČ+–Ærž(­łâ–C_öœpC+î(ĄéË­8DjwΒéŽ;2DŠș1b•Òč!Ìè"jö}Vpo+,¶•ćőÈÒęȝ>áżJ›h!ifŠ’°Ă ž[§G†ĆEȚź ƒ‘—Ńțgdè^&CŹuM+áܱH‰ê5áÜ&3K-TJ;Ç@•%Ôđ†ó$ûìŹ%\éŻrćàőÆ„•Œ6âÂĄ[űWD:žŽštˆAŃ 1š±őYŃàŁh5Û{çX‡2DșŠo(ç91>\ld€ù6šLB OÏ„Ć#Ahq SkځDn šXÔ§DïfH °4EíŸ:‡7—;|Úâô!&}ÈÄ$e ű)p[95èò€,‡bïŠĐ “4ÿwùdíĄĘń[€ŐéP Ś2$‹—ŁŹÖu8k—Ęà¶UĐÍőˆiSr5ź$ž8V_xžàaVĄÈ1Óą*1ÿŐȚă8ŹÁ”żNú…ÚËŹȚ7ŚhWV»ś‹j̑v(|G~ |±űŐpŽŻV»oëŃ”m˜ŚÆőčçü!FőÇ# b» ?Ž7ăĆl7Ûäó™oG[oV“ŒâAÚíxzë„})‹Ü˜ËŹ)0x֑u·Spź îßő™ÂèöŃۑ€O9馓#O$Ląk}gžH•PëgÌ"™»Yb±O^uJȚŠÀšw˜?‘• P?nEĄ@Ie HE„±C°í @Ÿw`űfìÁC(ÿ*À>rf%‘ŰoŚÚ< s“æöšhUgFòb2Őa ïčđ!ëT±€F™È*șî!‚є'êèì1pe#L’ĘšŚ5@F/žj{»Q€NĔ藆‹4ĄR4òöę aùólł-VwDâł»hDN€2ąNÌe 4·U Ș«Š žăł€úÌ@[Ò$Ú+™ä;Ń6ÂÇ@7X^pDŸƒDœÊČű m5·Û\l#ÁŒ±2û‚n„ò ühâùôĂűĘ,Ç[âO§o"ęt<Ęʃ¶ ŽÉ©‚Œ&ępœčvćêšëòcu7Û^#°Êr{ż^Ż6»úÇÛŐŠŸÙùś7wŐv·©&ś»j”lŸš–ț*ĐŠÚś1›úś k€ÖòçYgÔ€d$zœxWś"EŠ4âÖv‡ă֔ïǦ”Ż%/gő“ńČn<ȚLȘĘÆ38ŠÊOő»zŽ“ń€šW»OM»]ęîs-X֓öáÆIP/•ÈۃRJČx䟙°:ąà#ˆ«š8Ú°ï~΅,à7ïéŹ3#nÉÇń›LŹoa8‡PŃșIOŸ•Ktră5êʇśP©*gC*Źêr}„X9·òќ6&,’í헉#{đ/œ=űw{{kÓgbÿ©,§«M˜ÜvœZȚUËwőëĆl1™mê«·‡Oȱ`ŻN}ȒHÚżƒ,€=V…2Œ„ß .°™"%NŸ˜œEŰÀ»;ŁHEI‡ç--aöhȚìÄx ÎÌJ> 8KêĘűÔ€.$22Ț4DšȘüò[ź~}Œ)§1ü“ÉŹŸNW‹őę΃ŽVyzżÙV@VÎæŸšÖŚ‚•Íœ©ßŒ ‡FHS,ç"¶Ę§vŽâŽw«Z°Ú\GHH;žß7SÜźgÓ(Jg=‡‚Ń ±Ș`6ĄáÁzŒœ«oĐÿČŸ»ßž˜?GNîă€ß'Oô”OžëuЈéșΟŐJvŠ/GœJ󉀚rŰŸű&Ś&àÂ};æ4™?.ߜ©Æt[N„Œéô>ŒéÒ^c˜9€É*ćD‡1@–~Ú·ö† n#Ei_Dé˜oJÜÔÖżokęOÛF»Maï©ă. "ž=úF8”'ÆźC\â!śȚ橅źápuŰ œz<ŸŚ7w3ïŻËÀ…đs•ĘœÇ\gő©›ptϊĂU§›qŒłwŒÁyĂ8T š`e‹ÂPŠćŒZT»:x* Ț6ÏCèăm™äáy—wⓏDC±‚<žTŽ>űU—ÀŻDNg…H{ź©ȘeXŽj7«ß?śĄźŻi!pŚœ`šÓ` ásjËEőÛîŸ1A `yś‚’Gaÿ`\·[ŻȘćź~ČđHxX êGpäඉ}d„>Śę>ƒq&œÒ#ò[”Č3¶Çń‡jśŸžÆ:BËÔI YQÒÙYșʱô^ƒèțӝ k–ÈÇNżă# đk\nֈ]ŻŁśśzę]~”@*śÌÛïőx‡…đżŽR(<ËoR©zÜ&EÏ2™'/!“â‡đJČőæÊKöÛ„•íŠaͶÇÏĘŽ ŠWŐv[cóč”qA­àó&±}r™`›­€ ©6ŹÎNjÉ].À{›9”ÀlÜŒY¶†4ÏVĄ‡L:‡üRĘdäf0 Ûn菳ȚÉc^vąșÁYȚxœÍ^žÀ»ą=ȘfâM[„í<ôs᳁éMÏN>łüò‚HjPé&ò<»ë ìÙJæT©CQłä(˜!â Ïă:Ó¶àš6ȚˆŠ,,Y­ä€Û^słO™'Őr”šÆó—#aË0ė aÛêóìŹăْ*€±5ȘMv™á| áQOäaîœs&2ĂÄ:ä0ebߝMÎŹŰ9sÌ熒ž3§ŚK3Ùï’fȘsiŠ:—fòÓ4“s@W6DS<Ń|ŃŁă/rÄÀD‡¶Šč>ć§,¶Ź~$æ—"ńˆ‹>Â`ăjÓ«œDè§ÍŻr–éÀŽü†W;Ăńœ”æ žV‡hű š”ّŁyńń•†HŒMč1ÂŐ§ŸőïúPU'Ńœh$‚JĄó ÓTCÇσ „ÇJûe,‡ń„ nò(źX8:ç© •æäᏐÆÈó΍ÉóNü‹S'ț%Čîű țŠgÜDûê{Ń!î=PŹ•{wRCی>ă:†t$ÿ ]ś5HHàæF‰ÿu|:]e\‡LöLdzčôú˜ŰĆÿˆ•Íu}čV"źép8ေĄÿĄâÆÿ“ŸăzÓ_ ÁÔ‚őćb ddT€”6žSłÛ¶=Tó_»ŹkŠ endstream endobj 507 0 obj << /Length 2416 /Filter /FlateDecode >> stream xÚí[Ys·~篘Œ-+h܎懀bW9ćŠcóÉÇĂJ\R[Òr.«üëęłs`s슫Łâ'J"hôńőŚĘ/n ^|}Á~țęêâÙWȚžyCŠžș)ă„_ńBBJf+Œ¶Œ€.ź6ĆO‹îW/ŚË7—„ŽxčÜ­vŸ_–Š»Ć«‡K·Ű–›íőúgÎiu]­yłœ]>Ź_mÖ//čúæÙWÂËBp&ńÀęiRx&„LOû™k^}5$€$ÉÈPú™šŸ!îł'IΔ§țI|’ĐČ{g·/Żź±ê>{mêXLHŹ%óÒŠÇÿöju—=ŸțÈ“ŒśŃCVËčZœçăČ(.̜nőź2Œ„JWę æ%ÍîSłÇŻû>€ $W}y»ÚnVț  ĘŃfÖ*Š9ąiو «XÆUŁȘ!e†7‡ćun˜o$«sțXŻlż Ś5„€ž 7E‰#ĄîžôL2y‰_qtÆyQk‹J„QȚ“…ă$‡żíOű~»}üŒ’†êÜÛ0gk‰߄sæì^VߕBÀŽŠúú»ćĂBźv胎fV·!ö°}‘Q LžűEă”9ÚŚËŸÈ†”`FȘžóô Âžź=ŒÔI±Ep±Ï2·’ŚHtŸ…3Ü­uŽÎĘúî&Úqż°Ä2mE„qŠ0…a«Uß6R”‹J €„3·!F\6,Œ8Œ 8Rcč Àu ô_Û-íĘt9vꈞ06WüÎ\öޚ„Łö >Ë"‰běûżž!?yŁfž?È3+ĆĄ°]ŰS æŽKts ްŠè,{P‡&æ€șæ\êÎ9±iĐNŹsNÜ»šcRș‚˜őȘŸ2ŠRO€Sb"šêònTæà%1îöBżÈ'ΩąłìÓU»˜§u}ŹÖ§XXNO*X鉮€Nᄩ*@ŻŽ*_·2Yx€«$ÓmțhEJô ~F¶wł>čpŽi° rFubìB±‹ë»í&đęłńŠxÂŃÄBO,vëßWłˆEÎäP“jüïnÀ—”Öós»Æ.Düi~Zż`űá©ûÿ8D.”GU çP'uVzńáé“ű(éSsìIÏeO4͞Èpà)ŰÊ\mć‘ìéP:îÌ$ :f” Y„:z»űçŐĆ/šRĐĂN©ò ĐËÍĆOżđâżüŠÀ‰ù·žt<ÖëŸoŠ.ț“ëRÔ{i@±çAôäDƒ@!/Kęä /x09êêožđ%«ÆqȂ37đŚŒ#‰–ЁôŐ!łó“rjq2đDĂ ‹K ű‹“qL€œ?‹y”ńsLn•ŸI™Ô4^@z’cŠÙ”Œöyö‚•OAŻȚč r€sï‘7MłKŠĐjN©Lłô2Öwą—bZO­+|4łŁÍ»ÁTˆÄ9Ó%7KC]jÂ)nNš{TL)CĄ.­ŠöĄȚ‹Æ«?ĆÚYÎöෟì%*tÉ1WfŒôœYxêŽđŹ–QJ‘)ŠqM gĄœ€8i &čëÜ.Ą%€Æêú‚Ż3'éh8‚Nm’±n­ ˜`”üp†à‰Of~.˜‰ ÁKé–w†± ÒÎșÿÜK·ïkÏ{á8\ÇČZÉ|jű4ŽvcAl,*8<ù'>óI&­CäKUeĄm[ÈvƐ%g€(’.1_źrțˆòŸnOêuŃ«ŚłÂHP-%úä=íÒP Â@ zg|Û€ŃcMš8b­@͜ő<͚Ț0śÜ-›cgAč‚ÿÄzŸû_̫͛îc™s€cA»€ìfÌĐÆÁ GŸe†sR_ĆÁì;Ϝl;ă™jd獂ìI7Kwó1k‚țYxŽ”P€†ża©ŒÉƒÆè…ÒńUËH]örȐ@eU·.èyêrÏ铠ɐC1Â䘈ÎVæóűŁŒtZ2DŻ'Âż>{ĂćÀ@ę „GœxđQ‚‚h$6Ž`6f›Nlôq2Œ9 ‚<ZőúÀ€8}ŚàùÀ űbĆÌš  *D|~dš!Ÿő|đߏŻVáŒ^ïêG/~}\oł\¶f˜Čو‰ęVßmŚ»Ęöź\ßęï’ì\pUmüőòŚĘnœŒ;ƒœÇÁ8ô6“K§žYÛÏÿ)?…[5›­og‘`üŃs* ȚŹ–wÇ .\nČìÖuǃ_N.ç±ÛĘ«ćę*_č9nŽû̓à3Țțt愐‹gčĂ`é›čÉò,ï»ńœœżc–7ž†č‡u›ŰH·#f…‚Ÿ)]«¶ÔŒ”©LßòšĘiŒźZw›WÜëî :őąÖ`HÆ-ÿżÌê’ =&‰’bóżȚ Ö§XRŽ %Öî„óŒŒ H©Ű ™Ö/ìàôhâց)$Ú}›`ÙÜ_rźúçL"[4ÍNU=…vL„z.æÙA'őž  qÈ/ü˜“ž @êœÂł2ríûVRțĘdn…À±n Qß{ ­thÔtVUN’.ûűŠ3Ë΍‹†ÊÛ9ö„ȱÁpł• Đ€çk« ÙHŚșÛ€ì`Âđ€"đ —&ö#|űÄĘÒæ3Ÿ (*抆v]è?SțuR7Æ„m2ÏÛ|Ż›k‘ń”Aț「‚Î?…ˆXììa=Š*»±\Ô@ßpíqíV!6{†ëaـ:F©ŃÍDtÓĂA‚u”RÓđÖìŒŐ? Œ©MÎ͂7›7ÊÀ["”gÆTïĄCRÏ(îzÈuĐSàȚő"Ÿ}WÙ{O)’ùLS°%PC‚f”š€]ÍDI'‹`á?,æS endstream endobj 517 0 obj << /Length 2890 /Filter /FlateDecode >> stream xÚíZKsÛFŸëW`o`ĆÎûáȘì8~%ȚÊÊȚœ$9@$qÇÂG,ç°ż}żžA€AZrRÙȘ=‡=3Ę_ęő€<»ÎxöêŒWŚçÎF/CÈ VÚìĂU&”bÎúÌÇ€2هËìÇüŒo–«Éo-órúééàçoG/…QÍjæŽÈ†Ò3)BúĘmˆ 3NÄq† nČĄÀhFńÊ\P™àLy!hœcÂÙŹ1ìëÚXcRN·ŰJQȚU Ùă˜ő†ÖǍLâJvY“˜ĘgCÇwi€ agß~8ûőL`ž‰LìP†Ì*Á ƍgg?țÌłK|ù6ĂúƒÏ>ÆĄ32(œÆí4{öämS˜‚­ÄP_-ïj0”&ŸuíĆ0ź2əśn»Ù”ÇŽqđ2mZ5¶2z)yh»™k”uàOœóźY9“ÆÆĘT€űőŸ[€&·ŰÌjÁ”œçjŻ(ÏŹŰóJkń”)'Ô4–%ćՍĄj„TźjÇ !’wűŸ\lĂ$ó.Ž5]„™&ÿŠśm€TŽ Đ©źÄ 8DĂżC­ìxêxăû’R§öuڶ‘èÖÂÉ» ›u€ĘIŽË,·L9ŃvÍKłöv"*Ɲ„-ÍDhRÄȚœ^h!ŽSA? J[[&f€~<”ÄQ(ÙG@© Ç<üg˜vG0aš6¶Aæ%“A‚ž)„DˍlT 7ÔĄrŚĘw)M «‡uń3˜ŠĐew«{ŒÛÛ-'ÈÀ5ÎÄq=€=ž­-k‘Q5ìűĂ,„Òm5°Ï„<œLÈ”‰öaĆčf°UW™€Qè‹âƒé”œuąČ…űÈ zRÉ0éjŠżëđ˜;ŰTXmƒ·;Læ|h»Ź?jŸÛy©íCU0žŽĘ™Âî€ßŽé ŰNoLöUÄ$HšuRJPêHšIđ©Tț‹€Ymë ÍÚ —ÌŚyP.*…đaŐ§x ‘{€oƒŒćڈïægàŻ‘°Šł*@­ìüyw ń„uÇżćuq`9 ·c=ą»âYGđôJŸ’Y”pyTfč=žŽ¶Š™ôșم<9Đûhîśù„íÏxš§:ȚËÈ'ƒĄ°.Wtu!gž‘.2^âC˜ĄšnśTܱ{W%í›9°_ŹoÊt3Ì&ëÉü:}«Č+=<ÖčŁÊف­$ĄŚÜŠ{XĐ.ÜR›Ž ƒdœß'{«œ]„›ćÀäććf\źȘ‹N}cIߥ”)äí¶KùCôM[ÒŠ}ąĆԕÛW\‰Bl{ŁšŒű>=‹țÎÙȚ’'kô~FàYK=îϘ‡Ț3dÁê+ł ÊŸŻG•(‹ÄlĐÔy94ìفbž‚k2j¶Ëë E©@†Ë ËóÌßljd+ȘŽĘòî:ÖäĂżuFč.t“}ŽÙîń$š;ŹKùƒ=Œ4đ?ô‘żëm‡ CÁśĆ|k N•Û”RÛș…‚î>ïS§ߥKÛfRă` šÆ@Ȏ] ·«Ì.ă_źŁÊœBŐ­s[©* rđê0Ź@„:ą>`òžŚčȘœN†Â=§ïŠÛ™ÒÌńœæ„ć‚C€=«uuSPŽhŐnęźË]hV 2$†ÿ|†bŒÆFò.<Æg”)dą·òžÏZčæ9” ÊɓrÍYs0Ś”–LhÊ5\1M_źŐœéÉ”ÚV;چB棟Œ‹N“Jč=!Ìź’îžÄđG%F ^I q@b$maòĆK„JóËœr«ôxłŒŚùžùtZŹ'‹yUœ/ÊńbVvjQœąócŠ8íÀăèù±ù’çÇ i[™šwJe€ZqŰxà@Ő3%ÂTKrpŁȘŻóBumË &äAĘn— Òq§łt«2O,FȘ ȚIA=ádÓtœlî:QUjtč]„‚#[ {Ž ńđ”G‘Jôœk’)ićb·p0ąĐˆD§Dôš&ŰڒštJ~ź&Ű;рJkRymӎžAčD5 V$È?[†7ȚvüAïEpà…ŽÄaOš\ćăŒj[iĘ:đr§x©țˆȘ”Âîˆlù’Ç]źç0HcŒ=ÆônO ÏŃ€Źmu„çhRî16“đî‘6Jqđč9iń'œ-Á˜Fź”Vÿžł%ęÿł„żĐْè=[’Mę·=[ÂL<Ÿ: ËÈïÒÂT€NSô–\oÿpU.Iö„ÓŸś/ƒęĆ0;úűșŠú»Òùvsï°äRțìbYÌéò“őïéY’žžyÙüY5űęșŒȚÌY§ JïcKњđ5Ź^,żÀ’Óùâ*]ߐ·3šŚq1MO^næă$f;\ܘDk+CkŹS›żÀ†lțÛ@‹Œ\œJQÏêśWšLA1P釐Ę?Ö\äÿ<ÿ>y˜Ù8~ W·çägëś5ŻSđfœŸ}:ʖ‹Ûiɰ­¶șÚ°q1úÏűb6*à‚ŐšŸ{ŻR¶öXgšÉ r?¶Â0M-/mæ9čÁ˜ü›êúlIXÌç‹éćĄŰÉZČńš˜[ö~(–áórœ€=ò“Őz9čŰô„©¶çmŠRÓ–e‚Îż9ÿ†Ö§óbłZ!U‚%ÓÓòrBlrX ß©üÍûçO ÎĆđ^lè=uŸ+>B`jŒ…#îžőœĘŹgÓ>šP+ôç#E@F{œžüWÄ+–çŻ&s"0șéŸŃw&äßUcȚÏ>ĄȘítKwț;hfj›łsf‹Ë#ùŒ>_ëöAŽ+ȘèEq,Ź?„Ő@5Œ7őá=‰ÄA7ńیV>™·À‘ àPoăè5ŒOłTjaEù`l~]lV«I1OŸ:P˜ü`ő«męv@{o›ćŒ˜ń ščg –A{jéï§ žŸ$žÉˆê»-ߟ_.&DސB€`„zÔY%š-\Ç5ŸMÀ$;鎣Ez€(òMQDɁ5EŹWÔ9_ż:ąŸC;ŽóŸòšš‰Ê“ÿ…žt2”ŰLËugH›v붙òîv2_?Mqęöîv1G­ŸÄbôœ™C*/ă'@0 êűxŒ˜AëÒŻŠÙŹH_muo6+ŃÒ1jđš+!¶sŽÜąà c¶JąŚSmf;VԒ7ú‚'9šjś/Ń Wç՛èmíŻd€L$gÄhO‡¶ílšéŻ{ M” ·}I(mkúűÿê4+ endstream endobj 457 0 obj << /Type /ObjStm /N 100 /First 869 /Length 1821 /Filter /FlateDecode >> stream xÚĘZMo7œïŻà19˜K‡_…ÀIà6E v Ž5|PämŹÆ–I’úÛûf-;^IVšŃŠ,ìəyožĂ]sTF±'üđ—+V9›•Ç!8ćŃbZćçĐêTp茊:Ćh+ÜM6šUBśhU6RÙcܶ–2NČČ2Gô8†€"źE_‡ŁÌ‚Čl\ĆÂú„y"šBÄž#FC,cˆd-'b%%ăàĐ$Óe8d„żqđÌŠÊŽl”èHN܊Œń АÇš‰Ć/ˆExg ăDűgŃLI<Œ 'ȚTœX9#.Š€èÁEű…űǔ#+fœˆ—pŚ9ĆÙ(Çâ%ŒsÁÀ‰””‹Œ‘3)—Rš,œœd`r Š1„žf8+#sFqǂ4vàÓJ@€Æ ÀÌž·YæA4…IȘ8ăŽG°8· ćă$ÒVL‘P{1Ÿ#>œ%0Ț‰ÆòŃÀmˆŃđC R•7ŹŒ.Á–g ăA—geAŠ—yH0ž%ƒá$Iwü"<đđÄ'Ú tBiÎW„‰}Nžÿƒ!ßJ6ˆÀ#|AHó"DĐ#F©ÀˆŸĘm°w"î1`ÈàĘ“È•©òˆc+h‚>Yì”hâ\+rđÙȘʋ.Дà…ó'Ìlœ€=fY;„Ö‰ŸcȘöś«ú„:•ì1êXŐżüúŽàtq$Ö__^žUϞ”àĂÉxĄöśU}( ÆÀm·C›DlŒŒBgb{ۄ± Ț\‘A·oÛ@34z{…(L\"E€ÆÜBŠò]?čžé»ê7łÉđ€YšSUżyyšê·ÍDžș3ùí§iƒ†ÁûŠȘ_ÀüfŒ˜#›Û‘«úž™OźgĂfȚ.#í­Łæ|4x>ùšN0YÌt†i3ô.ŽžćđműòęđQŸhŒ†j:Ń[ÇȚ„ÚŽÈĄ"°Łš éő/ĘxŻDžCS‡Áb>x5ö+Œt8»G|o^x—@}y źœ—°!aÚb*cÓäč ìŹŃÉž20ž6Ú?Lx‡‚©ĘDìż"ŒmIz_ geoÂÓ:áĄ7áqÂă†DtX.ăÙŹ=ÄYÆcKgÿčŹĘș~>vÖFZ#1šŸ$F[Nb»$ŃȖrȘìpLȚ•żˆę8\Y^·ŹĂ±Ö%»7‡aCîͥ߁CżC"nÛ ƒ+;Xă\*Ûà5JÔÿiÖŠő(Ö@‰ÖߥŠk  SŽe`l?tF8ŠÀԼӅ#“ k&ś!ŒËq—Ö-éż%ÇĄèœ±”Cxr} żu”„đ.vY\ĄÂvč Œ$Ô)Qû@íúUÈۖß.ż_Íh_ł]'1ïDb}0O0Ôi»č[do/Ǖ©[\UŸ\ż[ŽŚŻGăUę|2;ofíæŹț±~UżÀŹ:نđ;rdGí‘ÓpŰkŸd1M:ê %âDŐ?LȚNx|2-ęz2ŸMΛË97O%>b qÖŰG-mAfÁqo[Dsٔ+ż‹œ}žAŸœËÀDVûűŻmśV6ćòV#ßć€ŒtÊᄜŸ>ćȚëSȚa}ÊŒĂæoŰ'ÖL¶ ŒR âËe`ÇĆMáÈąőRÙVqÛp‹X¶m*û-MÎ낈œ‘vDÚEÀž±UđŸ ̔t B0A=–š lŁßșzüÇá[„ŒŁí'y'\*ˆì’ăuN± ŒJ +—ËšJÁòŸù«KnSží\Ąśőœùëüú"~œÉkü†ű ^ȚŽF_öăWfC(gs˜bÒ.šAćBòeoí·•Ÿ]ćkàĄŠčŻ ìș ìn‚ű\íÊG±EŸčŽGșœŠćőòŸuË#o©ŠȘ<íç28“6.¶Żtä„HùÒÆN#€gwĆl[ËÖûûí őÁp1šŒë“úçăWò{r±XLż«ëi3™^6új°žĐó߯őpPÿ5|wUăóyęô‚ùËvČgäDÄF9Ł.‘ŽIËë )–“ćíÎc=ۛÎ&`|=™œŻ§ƒá0ûęŃ`1}ìoȘe€±ƒÈđxÍX ÍÚDۚN&|KŠ"{¶0ÍzćÓêmT±Pä˜v3u[ç‹ÁB7‹‹?ő𱞎ŠÍìj0șŹg{ÍćŽ&cüȚŃàSmą Éè‹ĆŐć#Äٝ|Őò­QœqńÛ¶›mäł=–BƒÚ‡MÔÜŸ€OÉínúùdÔêÂí°șr}üÓö ńŚŰąô“UûAÍ>ÊżhgzDx‹’›ÓŃxńŽł‰•/ŃĆG6œ‚ƒŒĘ°FvÙ$§5y[F~žX†ĆłFoŰHoÆJ)Œé1șŒ%:$.Kr$Ÿ·1űž  endstream endobj 526 0 obj << /Length 1299 /Filter /FlateDecode >> stream xڕVےÓ8}ç+ò(WĘ/ó 3ł,°ÔLXjkÙObƒm„|aaż~[–LâàÔ@U*Ö”Ő:§ûšÉb» ‹›'äÌśÙêÉòÚڅĆV1”X}\l L‘]PαVfĄ€ÆŒËĆȘZüîp’2mП ć ĆέÛnC+«7Ąq§žÆïïeż­Č'ÿŹ^.Ż©äóg2Í0•vzæ+ڶ`EItUŽ]S<ô]ᒔąș æÎʀ ‰…ÔSkàŚœO€BE™'Tąo „]À†ą70ÄĐżÁíż+k>s QkDÜÿÛęł7țt8&Â%.źĂĄÌ„łH*45ÚČÔŠdžû,(&äșÄ\F‡_{- ÂśÖ•emA(úŁöŽY”…©·źh[W§Eę%ćM›‡ù›ŹoÛ"«ĂČÍÆyFŽ}â–`-ű‰O9űœÍÀŒU0މîŒ.PyÉ”țÀ˜âF\ü$ƒó(Ç"ìĄV©3èÍīްQÇ­o†űÓèŐđUè„ÛՀPäúiœ}ïiŽ+~Ï«}œŽŃŹc4Üëț{,„9eXZ6uă]]|ɚ"ë<Jű@^7 5(?ùÎÉ#a-„ÂÂêé >,•őa­OĂz.J„ĄXRörÏ „ËŠđ§_„#DÆ(b}ŽÚ€bòTšTț) γьNAü܎âà–ĘÆÙÛ8û6«?ćMą%Š -°â&źˆč\Vź{”f±`'țDaœv›Œl/K&ĐőÀ«ÂÔUÖeĄŐ9ÿ5è*_íOĐ„ֆMÄs!/…ĆŠGRàRò˜IŠ"1‚ șbžIÉ9&iJ©I9€ĆRț \†šŠ#u ])$Œ‡}Ś>Æ5ą—ŸXË ŸŠÛÜU^a֞_ŠZWÆŒ€.AE‡;·Țem7.«ä)4h,ÎÊ­kŠnW«Čę>đš­w?Iܱ‡x>šÆZFŐżr Ó˜Žßöe±Î†KDVà-Ąóù• Ł”á"=Ï š,;aÎă3í ôÜ5‰DyèŹĐĘ<«Î)țhčUSƒïFàXÔđÒsx ïÂçĆŚ.ŻÏ%Á±Q0Æšœ…냎 ŠŹEŚźŻ7DÁߏàüĐžï`ÔӜ•ă”Ș}ß„ÇÉFbŁ#àđĆXČx•Èë:‹OźPïewa„‘AHzwś*@Ő`ŸäcóîȘ&@üèąă- x@Ôԃ]ŚíÛËćrĘ@ęÓ€I* Ú7îSŸî°k¶Ë[/AęúŹl—Ă•RÊÁŽÖĐ Űú‡să) ;óݐZ»ź*'qŒ„Äz臝żC’ckÍA„… *-@vïwكŻàRïL `d VčaU·ËĂÀl-â'”ˆï=^‹±+àíc˜<'ȘŸó*P8ˆƒ/@Ç ‰ăŸÔ­Ő.wÍ·“z šÛÌ1ŁȘG0Çì%ˆ$TÀ?œ€ÜXoxł“ì>‡;ˆÉ đ ê^8äPł «9Û;WčœëKŚžËßïFÓ ¶‰Ím›Ś]1æï+șüś”«‡ šÏłŠô/<ŽmQőć€ȘWSq’‚~qń:>SçTQP‚©Šd=ôEčäĂă}8!ôƒvÏiŰàRbyPÌû}Š|U Đá•ăóݜPđ#Œ–à šŁ$ˆ6ŒPâBA5œÀôdыՓÿ°Ț( endstream endobj 547 0 obj << /Length1 2617 /Length2 17043 /Length3 0 /Length 18360 /Filter /FlateDecode >> stream xڜwtfʶe̊͊mÛ¶­/¶mUœŠíŠ*źTlÛȘ۶­Îï»ŐœĘïu#9sí5Śž{aŸRBeZAc;C1;[gZF:.I[#;[';k€3Àӂ…VÉÄÌĆàHđ±ÆÈ CJȘbálmòßyÁȘ™8:YŰÙręí/ìhpț°ˆœ?h*.&ČFFv.&6ź&FÎ9Ú9rÈZ™LŹ ”ÍŽö&0€ÂvöŽfæÎ\?PQ~Űh?ŰL4J{sW Û#P˜Z8:9ÛlLèŹÿ|0łXXÓÙÙPÒüoÿđßwőűfęáńżtvŽfÿ'&3í_T¶Éÿ·ÿ< …Ó?\ŒœŒéLŒ](éțÍMÆÂÈÄÖÉĘÀĆÖŰđ@YR†ÀôŁ.ÖÿŽ8ˆ›Űš8~€Ò˜ÀĐƒàŻą‰}È1ùkvvf sgg{.zúżxŠ-Ń9™Òٚ8ÓS~€XÔÖXŰÎÆÆÄÖÙ †‘ÀŰÂșÀĐÄ̆țŻP* ŒMLÿ‰eΎîÚ t Œ ęüę€û‘ c;[kßîrÉ% —QST“Łțoșèog!!;w/ZFvvVNfVŸȘ°ű/Q ż‰’¶ŠvÿoìbÿŻžțłń(țŃx”ÿJÎÎù#‡ż«ŠĂÀÊ`ôń‹ńżiŁ8üOĘóśÏ6ű3àżÚè_­ó”ż»çdțGę«uțòùÏîù‹B§ó±Ïÿ­oțòùŒț?ÍÒÿśüüÿÍÌÿ8'ÿśé s±¶țGRüŃ~ęçHđ_ űŸ}!°±°öűß8”ÿôT7ù§đÿ.òŸ*é űP%hkfę·ÉÂIÌÂĘÄXÁÂÙȜÀ`ídòO»ê_‡±¶°5Q°sČűëąü V†ÿXS1·0ČČ5qr"űŻ%[ăÿ úĄȚŰÂ֌€‰•àèđ€aűf&VV/F‹Hî&î{ÓÓÙÚ9Pì]œ}>2è󌱱Рțeú'b' ț8èEțFìŒôâż3œäoÄB@/ő±}\żŃGLÙßè#ŠÜ߈ƒ‰€^é7úˆąò7âüàțFŒLANFčČ66ùÛÎÂô—ÙÙÄŃÂÉê7őcĂ?šZ F&Ö&ŠÎ˜YÿËüÏÖü›ÌI@oô7bęedgęQžżwdùËbcó‡6ză?àGŠ~+ü( œÉżíÀöŚșƒËǘüŠ|Ăô7ćC°©…ë1țZ¶sqüƒđáböüeț[âÇÉÌ=ìÍMlÿđű°Yü?TYț?’mőü8őŸê>Rbó~ÜÂôDfü8ŽĘïœ?|ílMțXțĐnÿ{ùƒkp4±ę·Z°0ț—őßKÁò!ÒțŁŸ8èÿH ăG>œ~'űC”“‰Ćż—šő/Ś?ÒÈúÄéăĘű·ÂŒ9}ܐæțęû—;œłčŁÉ”üȀł›Ę„.żÛïcÏ\tNFvŽŠńŁ$źÀÁnôòGPś?àÇźÀxțÖüÉÓÄńŸ țí21rqüšó?^±7Íż°©ĆÇufbânbłűËΈ;ŰògpëĂA7ÚĘq6Ûk âkŚŐ_™Ž„Ż ‡űÁ3V……?ìžÄjŐâO‘_\;Ô ùY€șo.$!l‚ œș2d•àŸècŸŠ~AÂFí­$ăè4ÀöiŠŽ’Ï(*ŐQ֍,! ŒçÀöl1hŚŽ©1M»6Q.úH°=ÚłÚEÆŠMÁr§ű%ĆA¶#ăoÂ^m±†Dđ€ iFYă™`%DÍw!`ûdé—x$›ÍŸ”q0—œš`±°—dg€–hco‹Œo:ö]37t(˜8Ć1ö{“xïš_ÁŻȚ¶ŠRĂIàvd‚ô2RĐayP'”zI H㭅…ÛC•°’†Žó ˆŠšLp"äw»=4…z±†"žÈ2ˆ6­3^'Žuœ0%łŒł3ĐńYySĆ.fÄ €B$“Ì‹1Ž„ËZZG}Ô ”y{« J•~<«;æŻjTnĐa Ï7°r–”9‡ 3Àćę`Ț•Ë«bÓčì x+žOÛ_ÄK‰Ăb%żIa󍾅ÛzgSӉŠÌŻ@_.péŹ'Bç+k††@„˜izüb„”ä|b(ߌÓ·cN‹šˆ}ŸźQWl€(üČä;Iÿ“.ą»!t’5{!z9MrÍìÔ(”šŐĘ+H}š»+(5déÓ.š†­G%Ż‘˜ÁL”,ŁćÀV™”0v#`ó(§«zv”*oN·SșcRž‰qì'‰äĄ g”VvÀÜ.»7äÆ%ę,ô‚ŁûIT>śg’JÊô>CòçxDNĂĘ;ÖLŁ_loB”"zâW:¶ :èŒĆ,‹ŽńŸ;RòàÄB:»ŽaśE5œv$…ȘÛá|?ŠN.қT$w ٟÜLT„Ă-•d±Í€­Ÿ.hźušęÖP"|D}ŽŒőÒO}Ó€ó-]ąD“”$aëđ7ۈËMĘ3âÈJ‰M_ŽÚíűź‚KDdòŠ‹ąÊ¶șYŸPûÜì!„É!ùÌ% *,óŃű•;ŻĆ|ŠsYłXźNđK4?‘ €9!Ő“đ» Ÿ"ȚUm–D–I&N3ŽHÁDŒÀžTûŹp”ïȘÇ |po,jB+úČŃÊ<+RV`mčFÔ8’îÎÌW"ŠŁsȚ©]—rtgM3--»{–û…a{­‘k±”ăÌRł©&€=“[ČgHöóșr¶ŠÏe ęû–ë2òzÀ%èR϶ƒÖç0„ePÂđPŸtŹ*ĄŚÀNß8'«›Œ”x>kÈx-aă^`=Ú6éë8:©Év{Ócl·!Ôź1ĂQëP€„4P[eÛ^’#g'PȚ’™UhxŰàł±óT7WÉÓÔ&„8oò§,<æÆ8Äڕ>=sJîÈŠđńŠ+Â…€#Ž(œÖΰ$œUț~=[üłŽÓÂuÇÁđ0mRŰ…J9„$5(y›î).™áÈ7˜š=4LßʶĘ$æUșčëp€Ú æ\٘oúXöy‚ÌŃŽ·"$!ę”=Ԃg9Ș)'ÛĐĘŰh€€<…ÈûËÔÔĆC%Äâö€•íÍć`‘Ćk&–#Bۋљă)JO–Óc@ UwÉ^0ÚÄŽÈ3O­ y.ó6)țéwàȘ‘Dû\á"Úę Z nè`ł–sp`əęĆÇF§Ë`uÌŚ ˘ĆÎ'đxZ§ją+ÂWP+{/ÈÈ}P „„À=‹šÛ89 /‡,òqŰÀÀ™ ašÛGčRô­ęÓôqÉ”O¶?ćHz ]șônćYÌ~ŒŠÛêmÏđuœ¶3)ŽNS—šĂ]pnI¶Oźü)6QŽüV›4qb¶Ă„ <ÙßRc:îÏ«ÈÇüjè‡-ŠțifRBĐ*· Ž•1LŻû»°Ïí•ĆÛö’02;îmxÔęMƒÏț,?ÔÁ›M»Žp”ń93Ÿšä2”ځMƒź!wëđ'ĂŻCȧŠiđÒuĂ`ÙśŒç+”Äü!ûž?ÍiïŰL„™"­»rótÇҕâŸzŠk`kW^ilÎ1ű`UI5 <_3ËÄÚ!ÇúUês}ˆJ”Ze&x}ôíeŐ0·;k~țˆȚ™ú ë:țT›© š€dhś–êúDšuK: îGîÖ­ù¶š 1—ʶÔdi$łV2ȚśĆ ûжv”Uš90ĐőŠLžQuvPÿ-E’± 4­[Š„</DÇŐ^4”ۅ\1ÙæÜ$9Âÿû„W‹ț‘i8üĂ5đL΃·K*q$Ț|UȌïŠêg„ŻĘ©é^Ž·>œ)ŰúoôûeO냭ęyŸ»ÚçÜüI=á5iłbŸińž Č€Šà†‚ŁŸ 0ŽRG7%Ș$}/{ÜèQ ”€fúȚ(ĆI_ÎûLÚr ŃsàÜA'—|Ê0œÛX|D„†"őC&dà95à‘źNf™‰Gc‘ŹȘż™|†t*ìą(c7Ü”#î‡Â†$Őô–X}ŸŒ|ĄœíIÊɞ2ưëó{ŻbT‘q—súđą 9žùŠoĘÙ>ì0E#§Ă6Y8éŽsâ9·àn€è›Ÿő[c{îŠH!Ț°ŽŃ`ÿőÊ^Kjž*BÄšôž©.öĄ§]­3FÌ7ÔąG”auđńŽÏA=!mĘșțƐ&IăT>„%ÒNÍæcäü{5EMԏi’6ÙeS%Ő1wB3śB‚ČUąÌ·‡ ńŒU…`ûŸŃΊ#ni K)ßûWWɶ ʕÛĘau‰ÒC•ÇË{@ž„°șŽaäm܌+˜%Ÿ9:Œá͐û˜}kyÌšûÓ^póèkfśkÈB#$Țq¶p°MÖR6ŽyCÂÄLÍ)łÂl"ëz$°CÖ0ôŸzRÙ=#ùëô±OîÌg Œ(ŒȚšPÂAgÙ`Iłz»]/é`YG—użąf h†B9ùˆkCž±X&6Ž3Žžûâk±üÊ`‡ËŸțőőjâBÂșœ#ü…ÚFDí{ŒàvÌčÆn`‘é΄Oou_IæŐŽ;ś…Š:^°{ô‚<"\Ć7ÆȘÂ}›Ë~QȘ&Ăș…3Kżä"EÔÖŁšÄ“4Âe1]făčHn™LPCBs™”O/™œ!ˆRg'ŰVˆÊ(‚țĆû€țE'€ŐQĂ]fš&  ÂъêđmśŚd?=LkHûKőÖÍž3¶C Úł)žp!Xـ«š•ĆêhÊgä°>o.“Č 3öæ”R–@æXžț`Ń)5$ÆĂ„âÙâ‘:Xç ű-Ż1gœ{Čq&’-86omœ·nË-qmŃdDá¶(š [m I7yŰe~xąyćŚ~VöÈ|uì1cïțŽ%ńpSYF2’čl–›*n€n~Âꊷ;E\7„6!Ł}*ă›H3[KÏ””`&(ÔȚ§Žüi›ëŸ*Pò@nąa9œA„žÆÁ±\: ŸHtŒ„1g`ìĆŸyæBÎÉS!o0m*™ăÛæ(ĐÀ‚{kń=˜ähâB” V%“UŻC|~5ž;tô]@kçÏSN3ëM„|ڃSa*ìqäÀ·söôìőÌą—B|č&ĆŽ#Sš~|]ƒœÇNÏ`KsŚŁ^œ’Üœïe[6z9ê} ŁkòćŽ8ÏyËŻQE"Ș€BŁȚj8]og­O!Q bĆCĐQœ;Ç8“ ƊÈFÜDÄś'$hRȘyÒȘśú•BdîșböîCĄÌżu)khՂÄ⧁¶ń~_—…æŻő@9’Ccÿƒ˜ŐâîE_‰ëaOŸïźŒ 2‹X=ÖüČœ‰rŸ1±­dÂÚș‚]Ÿ-șîëćn~uk·ț© . „É+.wéæl»ŠÜó7ĂcA9á…òĄ,]äëŸ…Ž V?“z[‡ćăÌYoÍùA'Œ=eŸËDbq-qŒƒ~}JW ÜDĘÔEțoúOòL‚o85t&­K Î{ô§_ڧ“ąÈđëĄ~·Ű”Z·Céó攞ąLÚzyrŰ2߂t 6à*ï='ÔS͉žOdŻèæŸÚâ#À*œt…4öËILùt鉫§ŹĂàô€Ç)škKjU)/țÖe<…"-Œzd'ôu<وiUŽ5X[D9"ă}ÀËbŽăĐ /bâxQ i*a­€iNINò››îû/lĂgwLˆŸZŒùČà[Ÿ/ZŽÊæ€ŰŸęOiUo("êˆúÜŃÜŸÌ7EÅ<Ł-ÖO\%\Â^sęa +ßŃÌ!‚")_/ HČé*@服$9üÄȘ (I‘ÀĂqІ żzŸOš%Š~" ž~&@ Š 3]w„ZșÂÈjùhX(Ü ™«"8b;æ‘d=w‚Őź”[ÍśC­„œí…&KšČ@ŠUêÀXçđ žlæfĐš.CűG„,"șï&>`ńÌèË,·!-žTQ)8GSđŸùmçúđíÍil/DȘí=ŽWțő!ǝnŐ;Çw,È†O§ÖĄ\cÇrâF4}èS‚/­ȚĐ%ie$û”nț~ÓąMșOÂłOtZȘ¶óŒŰC2œ~ĄÁŒf-~B[4꓇AŽęô3áçîȘ/#Ɠ/oaŁ~Żç#sNŽêˆĄßŽȘ#șđËæËîs0GŒ&e›ł›âëEӒ…ćqŐ§ÉWęĄČÖtxŰn]™Ë"dW{»ôƈmź;b#@0b­m.źLŸÆŸüp[bƶŚÙpR ę?ę·0t„ëÈĉĆòÄ:HÚùČx5:#ënßáp*։äPÌI€čńłAt[#Àe.ù4Nxâ»Îž'ë+:-m (=cęHțâț‘›v3ʐś^Œő€í ˆyź=űIâ €‘ôÚD\%[GæCźi•_lä™ÂrË$?‚`w§ü)ƒ+N Q»z‚ęIôë<zèÆ‘‚èÇk .–yF8Źh…€jŁHj“jĂÄ „O*ï…0eßkg2œȘjäf“·€öU–šßCAŁäçąfćáùúΜB` í7­+vráÙF;˜gœ-ƒĂš3+ŻÛöâĆWKÇvÂa6$ŸĘŚ+K߀ˆÉ œ«Ù”ań·ëè_QÄSȘëóșŠf'ÇH{áN+"«ő$t­Ń‡7ő;«Ÿ­†§»Čźò§ÍȘ2šÙ­~ŹæŠíÊXĄŚ|òæí(!§RV 5ks[Fæû4ĐÄkđE ČșčŸtâü̖<șè$Ù^È]ÄkZ_FHQbËC»ŹïVËt&jfSSĂŐ0HÖŻŠN‡ŠՎÊsòIìŠę ‰ă4X­ł=wÄÄśëc [h!I*$Š—1ÿÈńŽËŃÿ+±_cO0Żö‰źŒśìćą>šÛùá:f  |hŽÈ-î™T1Ôk:#zË·„NJö;ʌ«hÒ–:ÓÏ w]ŹŃ ìÏ4TŁą”ÔÄڌ1‡“ûIăé‚ÙU-˜ë!ížO5›Oż\[@‘fžˆ6ŚbÏVnąÖȊ™@ń SÙ 4 DB@\Dł•€˜a :BŒÒ­Ÿ\ÓiÔŸ>Ă*…5…&°Ú’Í€ÿB‡w»dËY++cæ,‡hŽ7NȚqÁJŒXŐ•ÊobïŹ·Ÿ Ł1§°ZțŽ [ì`ŸăK–”1ŠȘej<éK3ȚĄ€ $ÿêŃoK&Î{üäBNŃN#Íì Z_< #8De6;Čûë>–t9/šz0P3‰œìQƒ7p¶țÖxŒÛÀ-œïČŒyÜ\ÆxÜŃęorr»ë:śÌpöuh\±,ïŒșòű{ŰAüiQՏÈS HêźiÏËTV•ą1?DđÛZq–7ùo› ꂳ«Üšê!‚1ÇśĄ‡EŠș.iu+n,\œ äP(Â}œŽJ ©ÏnOź““ÜÇšùSst#ärŁüŁù»Hٚ Xe2Nƒ{!ކ 芃úđ‘2Ÿz&,æË›Ó8ú†M"I‚,&Ê“d!’©-_ˆ2ú/ ŠšŠœÒą-N„EŸÎfźŹa4içVtxúäF„ˆ_x8ŸKùÄËg!ńèíœșžË+ŠkßąÂ‘Ź”ĂŐןȘ«ÜÈFłTcë Ńt“èœa„CP!72í Ë”C[ӛÇ'éW‰3ïߛÀvçHX=eKÄicőU#ę uÔ1\e%Ü8TîxŻqpŒ\ąQ›)ò-lŒ|żłëŒ=íŃLH<Ș P9Ȏ«»ëFLÒxȘ‰rźú†­TÌ픂HóӭІyM’ö§5 *ûÁ™Œ*Éțòű Bź‰5ż.CŽ[OŠőrúț™<éhŽ9ÛhæĄŽ w‰=áUçV đš$oŽȘ\_ŸOpc·Dg±pÜmÂĂŸań-æ7(ÓÔöò/ăÛâÍ dÏŚà„šÈÎ[ RȚó r#ŃUÚQ.ŒŹâŰrCAtʱlIŚBč?ę…”»ŹżœĄ€9c[XGì‡|śšSGŚQD”o!…Ó6ïłÖÌ>¶‹Fœ Ôź‰êęԁêùK{Ő”]ćn6“nˆD/í”/rž#oW°ìê–ÂčęHéMv•‹ÎŸŒ„šZ­ČòiÎčY0țiĂöfîÇČ@Ż/‹}ZmOȘq+ùH Ù:…w$±À<㎀ŠX]é őe4'xT8šÿűó†Átt‹c@ĂA”Ό|G.틠ÀnÖ»ˆHu+ÉM&șŸdJŠ·­*A^Ûöçß¶G°aùš -D€ûJ1 d|Š ąëžČ Ć7Ht:ÓêÉż:‘†Uìzś‘œ§2§èÎńl ș}„`—»D·« ŒÒoD§ŠgMü›ûš&őS"ŒeÏ­ʉ”çp›F?7FŃېfăiĐ13qqÁŒđ·EWs›…r,Y•\żîkYm&%ŻšmžyźČűŽÎÁöv”ó0TFóÿ©UEpÓs2? ĆkOJDdäđ,ż"jŸr#ț=6oć±EŸK=[VőûČhʓUœ8YŒ^èűRÏŐ]¶Ózž0:Yʉűꊔ©…P5<ڃòhÈRżz$?ę4\IÌBxšƒ ČwĐ«ùĐȚđvÎ-Ę'ąJ1FË„}»lĘKs56˜táż,}]JR[ÍC—@Žq€čçïőŠŽ„Éo_(€™ˆuőCžź?{ßC{˜Öj*Ú¶êféó˞ ‡&rčû?&4ÖŁŁ—&śʕÉ2‰@ÁŠčï·%ŰËČ56ٟ Ź“J;Ś€š‹ê’żš1úë-8ĆK’ÄʐúÇËŸj~ ś+z‰'Ÿ‘‚ń•·íƔÌÄÔXDCϝś5ńóŠÉ€iœą\‚GÛs—Fšő‚àIœő«ôèö Äd0iKŠ·wÌäëśL¶}Sy”IŽq‚jÒ¶ XŽ©»VSE=úà`±Ž@NÂÄ\6 qšfSÔiś°yđánȚ…Iy)Ę8­ÿűŐ|Ł’žŽÚÛąĂ đ,8š?>”jQkltÜo[ŐïPofà  *l7HTKN]ÄöfąÍeó)_ÔDæŠĄ}ŚÆsöŠwìXH'#ŹhÁçáMƒ=Đp8{Śöb4 2ąÙÆ 6ÓuÍœ„…†Œá©ŽÉL˜ű†)‰ "ŸăŒZțÜÄ<€%;┞, Ğl‡<Ž€ŒŻ$*Śc†|òiŻ‚ńÔșŐ{zĐTÿúú"s&tlĐŠ>6l={9|’ÍŚ?Àæh9-,źSw±›òȘżiZ(~æ5OZ ßù ;VJZë—U»@jaű=FÛj_Ÿ,æÌ‰d}wi btŸeW s©żWÉțà‹€Yą%ƒÒ„âÓń€‚• K çĂs*zœ?łë!U ëÌš=N–ÆM&*·†O1,+¶·ł™ïœÜ9ŸG4ïĂ­k“n+`ΐAwŠűcč=–MŚ0{ÍP9ÓŠ°&C›âe.\XE°Ì "Àč IÖÔŐ5 ‚č c6Őàp/ÙÇ;…Ő š‹3D&šFP–Ά>xuűé0ćBŹ[%Žì‘~óĆʚEAƒ©7UóîÁ©êÂe©;{ábÇíäkŒcÉ@ï˃ÁŐăæsä8wŽ bš[ÿ€—ăqßÖ}ÿËÀSç»~Ÿu’w-1Zo–áeąŠĄz»Ę—ȘÈVûu°][Ă_Ą(BÔt9r“™Ąúc"âô‰ ŚžZŠži'ÉP&–Ă8 łnČKòŸu_çӂ#œł±ĐʘҖ*Ÿ ”æ}ž†} ć€ìDz`I.ȚÖśęQoh XJ†!Ż’ŽđŒE„{ž€‡›}jú.z {ÓEăŸžOÁką˜àùkA§Èź:–bÌțćN± 3œÿ: âœDőuŽŠ8éĐê;ôLòٟú8ß#>ˆpkƒs Ącđ˜č{DŚ”œąęęÔÍ5Ìô!b†TÄ>qÜșÀ»„SbAŒCa}ß0€‰ ȚQĂ#Ź#ăDą?۰[»Gæ;O<”ȘYkĐw~ôC«-vO܌0Ž3Ż##>úáEaDŒČ3Țđźá"#„5ŐŻàÒđńƒ*ŠőG:‚QßôeÜ)W\(śzô9f^;'‰]w‚\‘ńÌ8wbŹI6ł0O‚|iëčkK|ž<˜žP9~öÍŽŽŒÿ©Yኘ§œ¶ô`v9g“äíT™Źèi)± 1j3]Ž©YŚËiÁG?}Őmí'ÄF­ țt^Æ?;âL†Ôßű>xű•TíXd+YGĂČÉ8śæG‚˜…Źâ^E}ĄĂpTÈá4Eb"Ws ’Őlr«ô4‰§ÆNŸáP8o©8üDjȚđ…fˆéI#;ą5»ßŻY…§Ž0i—IÖìyÂm*қŠw o<فíȚ€ ç+8Æ3’MVŁóïŃ(*ï žeQæ3[ő)"Fí­ÀTiB4ŽD§ßz«íƒ°„’2oD(RÖöÁ{ ZQ ·%ŸQƒžćóšŻąïœ©ńEÓÿȘ©W&áâ€ûÊŻâq±6”é@ òƒ_”RêՒu_ë«"żŠf$LŠšŃâ^LČS_mŐ,k‚¶{ŠC?6Ű}?(•aK±!_df šÍ–Ő6:tÒX›@ŃŃŸH{ŃG_ò¶!-#rĂIől?:ìÂÈčK>s%ŸÂœ”óÔ%l.fŒŐUü€—g·z@cYŽ5ç&E7ü=1/Óéêüë|N ‘ÎrU’n—;җ·ÖŚJ*|2Ű(0Ìűđ8ŃŹë5Û/?e†Ęä™čgÍê6Iâ{ìß±œBWÖ·L„· \Wb5ö\u-ș’(Sjv:șűúZrÌvőí ȅĚiłCU=„Ą«'o\źT E€©7{’©mô™aÁȘ˜‘ż Ós}{ż’ŽL”ƒàŸÓÍ»zșpòxm”+·^ÿù 9i_â5n2kXaę‰D·…V”I™™ü2Ù`ʘvÓ­G†Úž0çV.ĘÉ>N°űBűK›;Ed$FDoŻŠÔۅĐë‚~[üĆs”Ó$ç`±—ŒQ\NÉńTÔUŽt`ÎRkážûȘ7è„o·fv»%ńöàxƒ­JŠïv\màŠ:ŽÎńɎÏ]›ęw(qżótx(Œ’R‹ złĆ\$öjInywŽ“Çž·çÜD%€ˆȘ1n‰ăvìÜNÏ&êÊłx-ß2r"FÊêJ…sj»ôg"ïE™âg˜ŽÙęÓć9{Ò™€Ù #+h'?çć ș·ŽŒ9cFsŠœĂ«ä^šżŽ2Ț'Ozđ\Ú9ۙoÉEá]Dâóu­Aș’LÁ_Ÿè_›Š…I"ĘYú–€—K»àŒŒŠț`ąU6UĄ>BƱžż =Ś|c-ŐÆ9âM‚…ê7ó‹>ôû ­mBż%âûÂűósËKÖêV53rȘ@pôšYe¶c}‹ä19ż}«(T“cĄ 5Iá/0‚QbšAT»Ê%™ĄÛ]ń‹%u[:œÙ©MőmAča:!Ä+~ó”oĐ·7"ÊsśÊ­œwœ†ÏQyyŠi±éśșš‹TăàÓ֖«+(žw"ż*b’CT(^Ù6 PÖÌÆłąç!HZö ûpqԘ°łÖk«đ”‘:nöŃG“ęÈqć+œá§i)Ô)^mÛI4”~`ŚÛ˂ć4ŹČ]ŚŁ<ăCâ1”OÂìLaó‚7ŹÉW’çă żÎˆ‚Ź„32BŒ<ìâś{ńÄ%ŽűKŰiü”_Û1đ(ÒcŁuś@­€!ŒoŒ9°ŠĂ™áx„ŽJ/Ç-ÆIn „E…è1CÍĐfkÖ Èź1WùžHè“_DxțŁĂÔWá2N0PŃÇOÂąžO<ÜĐű%_"}CäD«EO ăț@<`·8-»ŚűšprDąZ°ßŸéä "髃ŹăÔƒ_í 2,#Ÿ)I9Y5`˜éH˜źW©ăWgdX/Žæ7Xˆ‘'f©+á…tuF° ’čdÚÆ%’fššæ .ÚĄ}ž>Ź"$đÁM1éḩ‰ÏáSŠëźÍ~”{ÌzÊßc.;RlTâ6ÇűŹ`…茆Š0MĄę}ä@_`t*~5ÿ5‡,žÄ>hĝàĘąY êeőWȘŽńkaÇk'GîÆ#“Ą7đSœ|ŒŒWÿńc†Ž8PÀgCÇ:I2nąïf.A«lùìk1ź˜tyhc5+‹őŒćC«„šŽ«7ŻțÊ1V»ì…ôćSăë AVćÏÀŃDŒečŻĐα?Źwś‡Œ<“:V+‚LÇâÓ„òqż{»OòkÛêù PkŽKlö ü€ű.«UńÜĘÉ<ÍæyŹÒ›ÌłGf  42ÌąŚŐêôńŽNifăꕚŃÙ(æ)uTĘ ĘüŒE·ZP.»d _,đ+FLăaÇÛ»‚>‰ƒÒuőƗ1rêÊ·Î0?ۆb…ö'Ž+ŐxĂ"Ę<Ÿ:è•ŚdxŽ&[Jw+CiŠŻÛŠöRŸčFv‚Ő\›â5†=óĘŻ†rŐĄÎHé-8bÜòÚüDhH-ì–ûÁŹ6íTÏĘ*`wő»|ŸeJËűEšË›$Ź”êŚÇN]+„ÂÙŁą”} ufšûqE žp'¶łwaȘpúüœ€ŽŐ8c5èđ ¶5țíŽ]€ÎÜšóuÍáۜïôˆ é…çNY Ń“ëÄșwrSș~Úâ•N3z*ĐÁ‰őËä5ŃL@D/żXw<Ś@v*O]K,™ȘLg°Č ÆÏ{8‘3Ÿ±ß›^<ĐŠ7âń֟ŸŁș û’áÒ Ïckí_‘pA!‚ö•ćëé„!8ÚŸł Ș+·ŽH*ÙDn†Óöębœ@˜’M<ï­}ă€LđZ‹ìÙŰÆ ’Œ]›‡I…ő »Î_ŐzEĆß{Há|ŃèœÉAB&r4őKCŒ/”ëî“û<Żô¶‚„–ąŒ,ž—ÄÇÍĆŠčęœëÖTźÎǜ~Q Q+Łpœ‡UÖiJsæèłŒÊ­Á‡˜âî+ëèÍç"Ž ùŠçőĆhìHa}È:”6ùígiÚouÙ@„>á7L.đÚçđsQh„C Š AĐÁȘT„áûúK"dGÍLîc4XĄlT2Ȗ^J~”‰țȚ–ȘçN€đ)1šÉ!ŒĘ.€RŽŸ/:°âŃïIÏ`ĐÆÏ§ïŽX”#QȘcn}ŹÛLùTæÚX|ÇȘ»m‹+T+ÜÁEùæqg\zó(ńĆ<Ÿœő-3Â`Â+ۙ±0'ùïŸF†{rĐíżęlŸ’èÓk0Ân‹kjžŽcâ«°’F/!Ó°čF~<äCLŠ^rPńkÇ”u•bőOۜežł”ÂŃ~ÉqÄqŰê ÉjÙę1<’1”$"Ol 7PςőÄ+^ê©9ž¶ƒæÜ  ș8œèòƒ; ułś'źœ  ƒNŐȘ†3ÎĆ[9v§ÄĘK-·êț–A¶ijë[Z«oEŚ7%Ąïsì5m.c„á©­j„Ê$œÇŽU4țĘÏÄígoŸœÚžb!À[šč †R4öäsiRcÖ4Á“^Ə?~˜Ôof„rA\@tp€°XqšpŽ(ʝcYŃÉaźÙ5őč·yPí6éđő{* ŸżąCäQ0#™<Æ" aćQyJdÌńÀȚ> ™Fł‹ê\ʉćó5è)‡-$«BĄ­“mJRŰM;ćÏęNàđ„Í䫗±Ă›‡›+ÈIm@o7œu‡Țˆ{iFv ÀLÂT†GVȘqü§­2ÿćĘçșæ^Ii›úe-ÿt’tf,đ枼Ż!-SòŚ0Ąïő/Ó:˜xÜæșW%čžú,GŃ;őŐg\„À„Ëx[ÎDäćÊJ! –E(RÍ0VƒYd-K#ŸÁ:ˆ•bäÔvc;Ÿ*í+cÙ~òï™]•НŽ{·˜•;g!iw^V’S.Dńۃ9V-ưš}^”œzp[ÚžÓ,ŒDÎB*ođš*“Ç7{†ÊÜKŚCŒGĘ5łÓ“‚QđÙÉÓI讋ÄkÊŁœ3~ ¶ń‰4€ż$’!ńè%&gOX?(Äj§w >Úji™­ŃèA±*”|ɖœS©čähÌ}€ûŠuȘD™GEbÊășŰCìéŹiâ›h«›čvk ȚthèTÌBÛ6$Čp€żțjq[U͎#ŰŠRŚ wć>^Ú*AđÖ~©V`u0ŻášL–©KÌc”üőށÔńș‚žŰhkžÌÔ8„I9«âĄïś”m jŚô…Łé0‹UMÌšs^ÙfääL1Bk'8żá‚à§Üï7ÛOe" o €ÏÛòY­ĐìÉr qÒĄ/tÂÏPƒXîÌN7 BfûŻ7ÒuÏŃż(-ś·˜€čż–o!UŒEčÒpI }ŠMblÎÄ5sń2 @yéUŚ+ÿ™ÏŐÖrZń,πb!ƒK3N¶–Đž—vÈQ`»my„úë“kéűžÚŒź•K@|w14”ÔBLèłÔ«F•Âć«ÖȘGirń s€śÈ3bpÚŃńt0Ž1aĂ3¶<©GPÙśeEŸîdA‚ę ő~|äšêixc{Ż·Ÿ.ȘOQő‘ă”sE„ł\Œë’Ń~ú ąvŐw*ĘúIGcŽÁTi)sàE’›™7‡"ŸˆÄK…é'țđ8Ö}ČeFfA‰ä•Šu,ăËĂjH4éfńŸC`čż­âQÉę8caJž~XZ‹ƒÙ:@Tçú9Yđă{;[Ô"Iç”.źp0‘ÎčIŐÌ ­tV5ÔëŸÜ »ˆsRîś&đ™:Ń|Ê&cß]"ÚŐ äŒácęŒG)žTăÏn„ü1wኟ”łN1źR­™nG~ìíЏëŠ>ÙÜPäÏ;jŁÌžű~ĆŁxŃő/Ș}ßrg…ÚŒìŒÎ„}|'ąO(vą)íç©·ű\a S§[6ąDuwš{š„ÔwŃ kœaêDRÊéÏC+3†S`ŽĘoÚŸU’«BlțȓnÔ”HH2+ÇNXg_RBŁ7žwĆj ~ö· /Ԟ¶5`őE9m[…Ÿf•œmfg»)zÆgÙۋ”Í‹*ÜV[‡$úâüelŃŹ °*‘ 7k6MőónÀŰä &’ĂŠLJŒœ‡8ȚMƒXúedź„Jeëș­Ž:Ęw•źœr"Ș&ÍG ĘÖHÂ-à?ƒhš’Ë$Żkè€_ŠmâSÍšFžÂć25­òӉÂU‚Œys˜…üÍÆ  ÂâUm –Čp„î}Š^A1jk7ĘÉąÀ}Y„ÖŁű ž˜pÉçsêož*ȚƒÀŽG™ˆKyôÍï`YŽO”'cśÜÛÎŁƒvś”ÈòOiiTZđŒG>g1Đ4=ÔïÓâwßGXwŸK•È Ü1„„û0-ŒL>ƒÍ\5‘ŒtŚhV2€Ô·ÎçmȚĂźŒuÍe&mWđóĘ#Exʜ§E|,ÂÌZ”cöè`™9 9.5 ćŰ» ŸJ!ÄĘÁÛ 7ÂóÊ@óź‘Èű8łĐÄKF/êxČvŚEŒÖÿ·–’5œ),-Ò+iÁż:ȘTôRí"%Ÿ­ĆaÌ#Xđp> ÈJv˜°ÆfßȚ?©›âRƒm»Š ÄêDłŃiSâ2v’»œ§q€őŒN/î‹ëÆOžÙXĄđ‘6ŠŒ~—“•`6ŻáT_ĆOá“kŐçœOæƒW ™O+Ž>X5úrRì~ŚpÙ11‰lRĘ=ëUùXăuM–șíd»Ț=ü«Ën!“9cŚ ;$żlsč°Ak*'ĂăèłńŒ€%v%Gù%óšÇÒæœU:a±Ž·aïIߟˆ€‚…m‹p .<îYœúéZëS§ŠžŽȘi“ Y ˜ŒąIƒ·j(üÏ›bhŽŃț 7JĘ·$0Ÿb4MäŃQêC—kž€›NŻ„[……7âÎ'śÏôTjÈ"vÒ̇™ËQšsY!%ÍÉȚIBéçQ±Î“{Yhu­,Cőô?x=U°}Žmśaƒô»RMíÈî?#íJSŐĂ>­W DŹ[«mÒßûÙ_^hhi(›àÍ2'ő» XöybÓś 9) 9­±aŠzÓ©ŒÒđۧ…ŒÖ9ÚTiß·› èöHûfÜečŻzÊjčù‹û=SïûR‡!Óś°ŃOŃu9ă=ee&Št2ępóŠ"h)Շ„1Èy „ő+ažÁœâD)ÌŁ€èűéj8'Ö:› í–RÚȚ(€WJ`żRVoöc,œ8űĂ|ČÌÎŽ2†é7uÍ%dmìkêÊz5ęč0>“Œ/;t6Ìdlx ’ àŚû~1kò]ŚFO0ʁ„$6íșŽV‘ IËٍêËĄè’;1ۉÁßĘ”"U» EŃۊzÉkÏöç ÎíK@+M5ȚÙȚc¶Ï>7Qߚ ÚíWźîM››}ț}“Ö5•i1ˆvE ÄVÿđFc™ÙvÊrc]h)ϔ u//QÔÊ]\€Šž›]Mc9%o~ •ƒì”$ㄠHÌs§^Nè&‹$`•3 .ƒù͗9ù“Œ0ę°hóÎȚAC&UtP6C żęòëÙwÒ Ç†ÁÙÇ@șƒÏ6”…°”ç_gbĆĂՅÈúVêúŠ+Ąê _{î–öŠŃ’Œ˜C@“î1HeŚĄcđĘCƒn/•»ńž3ÍźCe zÀąmxeś”(ÀˆŒłÇNóyîȘ)iöƒŻ%Δű4g•ú#Ă»ÜJ&ęKĄĆ űÈsźf‡lź‘éJRȚ&h æ#ś­°ˆ»ŒFGL_æęNćĐê.đ3'çÆ’Ì‘qúÈ,«Ë· űșëą"Òg°„„Ia\†™Đ/Ä)=m3Yś±WÛeÚæoo2f G(vŒ·QrÜ Ägê ò‚Ô݇© T¶Ńv”IŽÆ—üvMç«ßnÔ8?o1±'‡;ê@Ê&&†ÍVŸ.z‰ÆQu HM]ÊbéĂ}“|#áucę 'd¶8Ș’(RĄY™uŃđ‰duՖ ùûO҄„ëeÄ+n›IăăÜxLA(Ű LߋxJU(%ŒŸ Çî%ménaèłh”*B6Ćì źŹtśLvŽe2,írŸÉ-T±^cßéNĂ<Íw“'LŽ[Æ,’솄‚­őĆŒV”‹G“ŚńïMqóûÁôșû•SvI,sl§Ë—(mûôʀ6fÒ Ü-Ăш<ń‚%АÚć;ÀùC€K””ώÜXčôê:â92È1,ŻőÍ=_™\ʝúő™Öż­5$]?!„Ę Ț)Ìí‰4Ą{S ~'œŸiĄ(„òY­łÓóti9Ï€»/¶^h돦ԅčț†T±–âŽĘxè^™ u»Ž6ȚA7ŁÙ)ÁöËì Ÿ!du»jlđù Ë\óĆù+,§@ĐžƒÓ §2RI/MÚaŸŒl( =ú>zљ…L;»šÿ tš…c?”"8ÛælŚ€=;đÆŻ·éEĆáŹ]lŃ©s„_óÍmÌYw.f/ϊ™’DdH Áó ą€ĄĐu=š8XłȘætsjôÖűŸ5òȚ™Ni0œìAŁ-7uٍm—ùŁ=œvwUĘ&8ș!”ĄÓSnWë${ÄÛgYúáK|KaĘ +ƒó ë\ÈF#V)ß!QhE…apȘѰ}jWZlšìS‰ó>wv±-xg9ă•Z Ô Ł :?ْàÜÄè]‰őëw>Œˆö–Wcć~\Țą@ź0žÆi}óɛ7â»Wő+/œ“NĘȟҞZ ć‰M3ÔT*ïiŒæ*7 ș€Jw*Cs„ÎNÔ­źô <ÏMòćȚȚVšțäì-[ícű>`BBKąŃÊțŰo<őóÓÆ(è$oPÛ­Ü"Źkœ¶Ą‰JuŻ2NÿűpŚÙXżŒï‹…ni6MNż‡Ë\T"͌x`„JA‹[è°&N{lÈyGÛÍÂtTá;Ÿłù’șëOŃ”iA{ïUDÚuŸŒ\w—ÙζĂz(Ÿ„‚‘Țá·Ź‡pÜUà:Gž҅œGB˜BĄÖ pòÒ)ś±ûÁçœO=07+€• ÄŸÁ„AVQAԝ4ÖcB}Dß6«žo|xŚôû}püśuŹ gă”Ęy,“S¶À{=c1öée{{=„ŐélEGó~ùd8ĆÔpr« °ț+1ìûÒ­›|êŠCŒÿö ú–gЀՐbÖûfï!:Ą2j\QßđûäàńŁ™§ŐbgUí9TvwńçÙi‹'jđ:ŸMxo(ieoáYBș&u€kŠ9§Û 4yȚŸÚC‹Ć'k·š”T†C ÇìIωțŚlźû.)©$8۰ƒÍ˜bml=tdÔuŸIŰϙŒ'w!èmìp'ÒíćBőXl†VNKqZyò7ü"HȘČEútÛöæÙČ=Ą"”đ|î·]‰È uâ„ëX„ńMx~Ușű ț6hŒ›ûŻP»8Dúlî#ƒ–DcLúNê ¶MZ Č-vá/ț)+”0žŰtŒĄQč[SÉh¶sáÀ*úS]Â.ńŠ[őnx?ÚKQšŽ6Í!ûâŃH(¶d #Ô ECϞćè«ĂÄF'Őê@&úu€qj$SźUȚŸ%ț©íÁ#F6nÀŻOxÎÿč Üçő oÙ»Ł˜T”»î#5H© B–é4DŠŒ>äæ|=°|4ȘȘ§XVż5uÒČ_Ł,X±E{”‰ä±=Ő/v dșà‰‚łŐ?âK)EÁÏ !L’€aŚWó;“ŚÔ(èISűâì3óS+*{ Đ*:”&‡ț‹€śÖZ,îôĄh^ÊÈÔҜN„L4mí#=Ђù’h°ƒȘŽà=’8—eÉYMM)˜†żT5Ű»bÛÎڌRÈ=§‚Äôi`Œ»őYÊh‚ùlŻj5Ú1fʆ|dsŁÖdùŚw]|~ßöŰ­-]·”îq…ŠF@Ï©ÊZgÉ}œ‡S’œ8ˆŚű†fî’YĘzHÊÉ™ șń ÊDŹYŠáƒ3d;šZÏ*Äy™&aæ{Ț»^ )|ț›eÖ!V|ŸđžU?F/üčȘĐ9Žó§I/­:k*ÙWJéÒÉ\„˜ŸçńP:đ2šĐ-süŃÌőû"Żp7ÒÌ$ë6“’%=àû ł%ò e2őRÆ»*Ć`șÁ%AüŠŠ4„  Š1kxü+źșlËhr)Ś}°Śz)tŻ ó jûéŒ&ÆÜè0ńű(ÂCíOuș^™b˜őŸkq˜yČ;b0Ÿ€á|oWĘ€NÊș©ôkZa„ÊÍáĘ)¶ŹBšKseÎђAsűș8r‘4À᜔üCöy›"mŸŠTílĄă[܎4|acéìl(ŽXBaˆŽ(G]»ä|ű‡oî··kŒ+Ș"/aœșč8ûPiÿș߯N?ka2ÍP«x’ÉäyÁŸęŒ śi/OÿaûȚ«D<ŁšÈ,€2ț€ŚșÓjZ‡ęî'ƒ‰nbJzgç3Ćțžf<Čr{ę»·Łk8±ô5……Ad}ŠCè—BÓÜyčqKć\ź”}*à oæN4ăö'W”SŠĆ隒§ß“ê%%nP•qÏ„ŠP9v11C/bèÔĘžŠŠŽ;,GË|ÛfpižȚńCtȘ~Ől,Jq ò‘4ߖ·w5ta_tÎó=û™2Ś~ä—őĘK­Wdî›>y!ŸE`ž·V7,oaÒđÊĄ,¶€ŽȚ*>Ê"ô€M“™]hÜ@‹ßŃ>ifwźĆJâ ‘Z­˜ŰdżŃ?>ƒÜSjœçăąÉq ",ÇĘĐWăT§ŸW š%ïłJ„^P”C6pb ~ëęSČĘŐà0j/đă ìVH„6™5ű{€#Fșì'ÒJ@ČèT’xHMï%Ô,Á™â 2Êœ.R„çCÙw *\ù™?aû ”‘Œ1“ÍùpQ{Ś*ïĆ˜˜]ÙcâĂæŚ'›ČÜŰ(–á¶I\úőÜőìŐ =ÒíX@’Ú}c~Ő„pJĐsš—üÂC èy„öqcić7cŒ C-2~Û{x“Șá4(‰rćôĂgƒp¶52%HÔșYۂeèï”Ó“A©8íOt!3âÚdąVćÆDx˜ą¶.{çŒ :J0ZJ!žèj endstream endobj 549 0 obj << /Length1 1955 /Length2 9219 /Length3 0 /Length 10363 /Filter /FlateDecode >> stream xڍvT”]. -Ę 1€HĘĘĘH3  1C 9RÒĘ-Ęš4ˆ‚’JJ§4Òżúęțÿźuïš”fȚłŸęì8çÙçF}.Y[ž D CpčyĆòšŠO€Œ^^~n^^>\(Âò·—Ćâî…ĂÄ~ów‡€w6âÎQšy:€ü PXŒ—ÀÇË+ú·#Ü]  ò‚Ú4čjpÄ—Eîêë”w@ÜćùûÀfEE…9ÿ d] îP0Đ! .wÁ g€> … |ÿ‚MpăáńööæčxpĂĘí„Ű9ȚP„@âqś‚Ű~” Đč@țj—`àőűЇÛ!ŒAîÀÁ †À<î(ž0[ˆ;à.;@_U í ęéŹń§'àŻÍčÿ„û‹ę+öĂ]\A0_(Ì`u†Ž•4ž>NfûËäìżăƒŒ@PgÍĂ„ƒJČșĐ]‡őçv‡ș"<ž= Îżzäùæn›a¶òp áû«>š;|·ïŸ<ź î CțœČƒÂlí~”aëéÊcƒșyBTțòč3áțÇfAyEù„…„7ÄìÀó+Ż+äűË|ڃ?Òî °»k┃Üęà"=@^ÂĘâüűś ŰBÁ€ Ä ĂęOô;3ÄîÏőĘù»C}fŒwòx}țyČžS˜-æìûś?Ž˜GQNßXNăŻ–ÿćäà>$Ÿ€‹OTˆ óüÿH꫐ßÈȘ0;8@ôÏzï6êïšœțÛ_Âűw,-űt!¶ÿ(ƜW|śüÿÖû”ÿ›ÌEù*ęż+RòtvțgûÓáp ÔÙś/;éz"îÆ@~7 °ÿv5†ü9»š[š§ËŁȘĐĘ8ÈÂìÿÙHš‡Ôb«E€țT̟vĂ_łæ …AtàĐ_· € ÈËû_Űʀîn;YțAîæçß)a`žíŻAă€ÜĘAŸžwÇ|· wi ńùCÈnqGܔ簃»ăț:S!>; čs»ț°ïô§Ńb‡ƒÚÿƒüđ„Oè7ÄæwDPäwń]èśX.wŚć?„ßC!\+ űđ‡Ș~Ż‹Oűwä_éùț„œ ˆÿ-šś_Űży‚ÿ`§ûü7ű/Šè]Ô»i‚Ű»ƒœmĄźÎ ßÿôpŚ›ëĘ” ûïćçû7đ(òòŻD@ῐÿÙ~țÿB~#‰țę;ȚĘ+Çdûk țnÿàû°ù‹đ/u‚=Ęï2!țžAî€ûśúwâ `ܙI8X<Ô±>Žíg­ìoźŐÉ/,«Æiì\ÈśvÏ ŹdöšŹàśSÙ䁹ÙeE¶™Ż ŚÈí7Xáou[/Ÿ^YĆ덭¶âNRŒÿTŽ-ÛĐG‡CËe łöôÚí©QÓœ7šj,ynž":€?œß)û4ô•û6čȘ»V#€~ÿȘü3WŒaŽyPé8KŸMö&‚‹û1ÉŸáűÉé’ÜO· jńžț;1üĆHÓEŸŰó żčJ>.ê‡ÔŠTtśNH>Ž=BÊm€šQN!ˊç Çcí\o•„ÍN ‚NžYŹ‚Úx:àá°w”܀\òŽœ7iÿŁ{_Y<šđĐ;wûÁI„ŒŠ­:휰Gæ&HfŻJ|—@Šą đ[怅|<Ž`~łŸâçÂŃü}Ùb<”ò-äVpÔ Äś‹FnŒ.{ŰHŸG  «Ąš(ió`8™ČËŁ•8%úU€?.~âéćń?șt&ì§ęŁÉ•†W{d UÆČĆ}‹ ă ô»t+ę:Ù>â…,îÙÄ2E‹šX·±čÄùÊXÉՋÏvWì.ÔB·EŠÏ‘^IJšÇ?~oaÊ š\ÇHŰòÎđȘüȚ?~ClÚŸy·­Š‚‚çąöĉÇ =–lbłOHź1OőȚlÈîêŒlɶûCœüłwđ’„ń”ö“Y"œ2 Śg&€PÌoȚùęSK2‰śÀ©ŻXUÉÇv“.:I |[‚êúŰç­=U ‰e“ǰìá;,X'°”Ő—Ì,WTì:5Ő|ŻmJ­vš,RaFœăg€Ž!íŽfăä*őă FÏ5mDЇ”§'Šr«l?7 KĆvY\mAMf:8ÊEìĘÏ~Ją[áțˆYôÓëXcdp”•"0Wœ<Rő;SyțȘÖśajÁCw ŒÆ3܎Ă"ü™DX'ßö–€Bü€hÖÚ EÏŽÆČŒžŸz.Č_*<ŠkUŐđÏmvŁ­ę^öÍÆgJêì”ΓÀż=źúŃŠŰȶ€łĆęNú\Ź„„1|«H1ńEô[éźÙKY˔Oڧűęf©<„«ŠzĂâô6cē˜Ț ±őœjP -Ï8,%nïÀȚ1§ zóGŠûŠaźK"X†rm?,›”Aâ+jDL惧aìț:ï‡ÂÉűœȘł„Oqs_-0/«8Ô7oôź*BT/č"ôĐérfđB`+ëŸ"‹Á vŸ^1ŒŐ—=Û^ÚáÒs/LI>Ej1«îUłąš‹Îz\ö>Ś©Ÿçúòèă­őV;Žjm…oH ƒŐÏźžà°&Z¶m0ȚL:>đ|đÖ?5đ‹°Ö7ö>.Ä {‘e…ą*›ćl‚Šáàsûëm»2łŽíÎC~s›ÈŒÙûîDò“|՝&Gàïò}EęĆ}•ôUhçv«Ś”ç^C°*ƒ={9ûK»·ĄÚdEƕśŸuđ«ÏÙŻ7@=ś7Š!RNÏ”Ț<›JțIRYÂpæVœÖçš,àxÙÆû!2PbéŹÔąùŁWNő€ –éÙ^qȚ^f Ă„d»±‘ƒ á#œd#_à·Ù¶ Öm-w!șș—61yNEV!T__-coÖȚPäRvœą^Úf풉 Ÿ'_âoBìkȘÏĆ=ł:œŽšy§ š3蔜gƒ:5ÌkZ&‡\)ÊÇ·\mÇäS;M©^‘șë}ÁŽQŻŽ^BO›z‡=6MÙm@$țĄvc§ŠĂL Nîè1 mr'¶›@€žp^ƒ@đȚsci4ęłÖGSüÉecóf«»ç§û–ŹÈè+vŁùrœ™@^S :ƒË˜ y>2ˆž€ÌáyŰEîSêܓ úYNEâ ŒŠ‹`ŽÁV–š#+9ü‘·ÂlìśĂ.Ÿû« „']čőôê^ï“:ωQV㔠X»íŽûț€æYiv  o’}ŚTgìŹeó۱ȓTäĆnUńž7ʖČo,}7Ź‚YLĄ dĐz!Êž*.r_æëBșŰłO•¶ž^Č)„đò¶ì—íÛ9ÉÓa‘™ćV§ÌúPGϱJú„uȘŸș Àő ("!żźô?‰)lĐ.jfŽUńš9źбHőć‚%!™9á;—†Š„B}Ć$†[= 4›œéę‘Mh†›ôxÉYČàRXćN9LË#Y„Èś=ÌYÎV”P˜N{_QÎZđ24~äÇ©‚rž>æ;ʇŸŸčą>(ŸíÄ’ž]ÿY€”Ï€°Ùi?‘$[€€ŁópˆU-I͚d·ŁŃ<Éâšț4șU[uúùyGdG·˜eĆbÍîÙ‚ü`6’Òf€Oô»cpGč” 8~ƋŒ)‹côăšęrì=:g"*q§‘7űÌÁŃ^;L8ÁŻYŸiŸêA—Mš ÓB>ÿÀò6Ù"†JáČȚZ|MJu»­a­đęȘ}3cVŸŒ>tcș7 n7ÚoOćLć)çÏóMĄ3ܟ+˜Ú7ćbPt‹cì°&.FÚUÈ,eŠ{M݌ș1œźqŒŻ%WoRL¶ÏíûzbÌß{‰#ˆŒˆț𐠅TüÁæ”É•EEŹu#x€ŒȘŻ3 ­…>=B© 5ÒçôȘšíûÎĘryűt™…lFjìóś]vƒ@ùÎő”q'ŠÂx~ČexœÌc=Ă)ÎŰIĄˆ‰Ì=ŰÖŃ> ïśßĄÂĆ'ß葚ĄBÌbá©aŐȚëó9'™òČć9ÉŹŽù’——êÇt{ŠČœ’Eu#bCšÚă śŸ9Œž ˜-—ŰpÎŃč€fż‰ąJM5Ș”,jm‹yZcM?űIšŒâÂë@iŁÀ{zĝęę(C$ę$Ï Śò=mŻ:Á{}ÄĘ2ŸŻ^‹,Ț2ȚąN}8?Bő Cąü`Ä*ô0E9Çr#lúćìȚÒìë6/ä öÔČ|źÔ‹xjŽ'UŹĆȰMGPŽúüÈf&ÇÎ]‚vĆ-űᐝ^\bÿ»‹úŻžQ˜ù9ąÜûÌ ±Żß»:o?Łh{kÌKq-țŹö2§AZ%F‹ČčŰż»vÏáAî{ŐÔYfgh㏠߆DÊì‡·î€ êÌ(èTPoȚî'2LŸ\‰ë†”Hÿ·ŒàgÑ/UWžáżZœ"Ž^”À€ûJUÛÍyOéèLŹV%:aÒÙ_)EE?pJû!ž&Ș‹Z,Y™Ìdùű:ôíĄrȘß.J$ÒŰEh¶òźç SqšÁŚAòŠ 1ÛÎŚuŒ7š9ÁS»5ƒ5^èśKšI’;͉WžĆQûò lÎmčMęLÁßę7Ò (ȚŸiĐjÂÁVL(žoäš·=ârtÌ”‚ł4”—ó`…R1Œq<șJ4n‚ąN—w9–žÄŸ“§€)©ÎxvÔÙŠ Ż(—ÄNZ${P„Ú(ZšÜ@Ó\ÜĐȘ{U#5°oçŸŁ|æč=]Á;wÌœOŸ=ęÙÙæˆ“aŸ„$ž ć`ó”[$Ęs0U@ÁCÙ· z“ò–wŸiw­Ïł0ۖ3ȚCçk™»ęžLx0šČ¶șßI2”ź78ú–ûI'Ÿ8ô&ìâvšo{Ì3«oóĄš”L^Ż S‡ÄĆV˜éè}YŠuB±í;śîJŽX‡z“NRŠêŽ_Ś1ÛŠiÙ~mê’ź.Ź•{šz”•òc| Ű»MÖÓóƒÒ OÁBűííöÀŸíÒ2ńŒ û3őČ1‚ü0Dӕ4,ú5ˆ4ÿŒĂœ“ßŐÔB€„ł·àM•7ŰÙJ‘fgúȘëőÈ3e4æçSă_êș{šI¶Ș2$-L„IgĆNș‡èȚugż„șś”ŸÚŁ.ÚjŠÒw}Ń§À~~n~–6,ç ö&HóŁÈ&x?è ‚45}ùą2%Ś·I҈“l˜Œ@æșùQ1˜–pc„„œ»Ò)°_5±z,`/1čÙJčòMnëíčé¶y'š9}ĆsA‡àlśæ0BjĆÂŒPr[KÒ>ïòž(ŽhS‹  @넏ŠIșo ŚÂÚȘŽâ•)€ KD‡Ő|säŰ;-‹=ˆ6D”E4˜ò(Ó6T_(pœúIŒŽX4ÇrŽÆ€I™Ú'K_àùà`›ÍiXOs5 ©§v©ŰćTâ±]IŁ‹§cRŠ‘îqÄË2ò>MáĂ]sÆŐnt¶aS2V&ŸXšÛšćîÇè`ŁÔ[”IÔŐ'ÙÈ ?É2 rëGàŰIEĂ»N5 ßç „òÌ­w&őö‘j«TCd—ŠÂŃûG˜‰ÄśVq…ïw 5ҚŹtZêyŃč7nJc4Rjęœ4úŹ:6ăl*ń±Ì֑Ę™ž]š\û™ŁžÍ€á‰HĐż·6 YTÖłŠ7H¶çßQéXʞbƒšëá[—Ï9esŽTÌS/Í;>]z#< _lUŃÒÁt#‰Œ#VłĆűž»čXˆÀšSûńuš{óàăȚńâ(ƒ2Üìԗԫ.ž[5[ż#ź_”ˆÜqİQÖ#ą)ŃÎ3©mšű]€‹n~}݇òæˆÍ(û–ž ßÒ;©j_>ÛHIôŚ!#Ô­†„ÉèùĘíé«Ă7("a2%K7­Ź1žŒŒăȚńÍ”Đqˆ„Ԛ­’~t{ÖûcÍʄÔ~ŻŸV3¶QŻÿ;Ï ’­nÜc«'Ó#+­ÛîžŹČ źžRŽ!k,)·0€ńáć6!ÛgŠD űüŹUÒđ[ìà€“ƒ‹,ƒ7? vX…?ïqŽ|Á”6Æj+‚ù’k›ŠiŻÜŒKÆ&•–Æuđû‰+čƒ–Ê‰ĐKęăxŹđ3čGrYáőŒŽÚ+șŹ/ë4FNeÒđ^Ms3úŒBô% %GŠÜÖêÔKćxŠn^ą»eŽ(Hˆ-šj^/iŰŽsó·Ü†‚Wn0XŸúXTLEŠŁWWuż»‡·OÙŸ ÚmNÓó ËĆÿfúUl"ŠŚ9>¶ăÔ2è6ćGDÀ8Äă~e]‚6QČ'ÀȚç Ę’ ‰„iûn˜èÍZBàÍ$Ț6Pà€‘çÉed‹š–Š—i]¶b»Č©ÿ➟Ԝà{ON‹0*Ï=W${lźÖd=ÀĘWô…Ă‹>é-°ĂLN ăE(—Ì}=účv4Qû· pÉÉŹża‡ FnjŠyóE Û[ß FŠ—Ś%–ßg¶ï±i”6ß òÏ8z…û;D}ŠŰĘlIȘŽZK} ԇÓ€Á‰|nŠbèŽËu%›cMȘöZőrńś"5ïKdłđЌažęŸjÌ'č—\hȏlb‘r]ܛłóÆáœ=H•ìy_Ÿą¶‰œÒȘOʳܓçźqÍ·š§Ÿxßő€ńŃA­ž€òòĘ;œJŠ/ŒúęGšȚƒ㣜Z„ŒHF¶Nq(6…ę«7„1Â.ǧ3O ąæÓƒJ>@<*Žśš2#E@ËÖ-bNśłĂ[}ăÚ8áæÁ -lœGlKmâ{••ûϗcŸ-Ο.- –z€ Ü$űL…èÉçGï=^ÇSyx|đ35?ĄghEüÁ֊[U łŽÜLÀź`‰R{ÙڋÓKć9†rJ0Ï-vupœń-$ÿödyՃȚŁF±èę*?ècòăô­LŻ€ÇĆNۂ§( —Bk1ҕ>kü‹Èo,-Ł5ŠGeMPŁÛźŒ[Çś_ÊjȚ”&é†Đkù˜eœȚÿ1ú vHŹ3őHÇlŒ5êUœ)+2ß)”oë—ű:[cśĄŒg#šs•íÍɝĘț’ÙŸłâyôÍš’ŰLŚȚœ}k1OR9Ł3­öj2_±_Œ±ûŸ”k«œ7(TyVű&iNßfÓoËc|Žšœ(ĆDŠ"ŠÙÿoRôJnOèá`êx©cTìnóòbżd’űb•~8{D[veîÉBŐ„ČvŚÁpšżzé[Ib'/©ŃRƒ0I æ§eŚçóɇz˜V’5ŸW?âPkw3§€ìGÓ!ôEŻÓń^™EôŰ&pŚ •J#òž»"ÈZ”ö|Œíoˆ » ‹ž/ÏK*ŃsC\ąŸégąöМ‹k~4Í͟àrììJlJ.ŒžÔ<МK§Sś:e镳=Ï >ŻȘ–űrÄL/ŠL œŽ!Ìe0J~ev͆iF9§őzeŰ7ÄŒÎKÔW.ɕŻóąëÛ¶Nyò—ă·â&hëœ5xhŽ›ŻÖf_kT?ő~ÔF5ÍVù!žŸ:]=șoÛ!ŃŻwóˆ«ÈüZcÌûRÔB«ŽK Ÿ4z ŠU1ž-%|„=ò2)AŁ#'eČež»™Xź%üÁ:›Á[áG‹”NŸ‡\«Èr4^ßőgŽ|˜ąüæžĆS 3Éź‰2~\€0îÁâH0P˜,ŸÌÔgș xkŹž8tšGéŻ~,ÿŸh,~:šȘ1^ÜÌ~ú©ŠcÁ^ŻđIܔąZZbÈ-ŸčvÈö€Z„*ŃȘʉU9^x°ŸêX7gä!Í.ÜlÁYŒU‘6„ “€Ž$Ûnš8žąr4_WcqìœSńšlŚÚ }ˆoÜâTYìń©‰eQhŒw*˜=’‡ÍŰJÆ{ÓȘEĄćôIߏûŰMh°AŽZïêÁˆs{Ę3 OËîáp o5śąŚćIŒÛțÚćzZ ś$ì’ó›u7F}ç]iPäŐ Nö«ÂÒ~6ìf‘[wœ›ńœÙ¶ŒE,W›lĘocČŻI2ÙÖ·/?ôÀÖI'ph$U#źșÙRf‰òwIÏEÔ©ęąúżĆïof%”Ò"ă+†kŒÀ„=ÖÄŰŁEàŃ6ÚźȘ‘ä Țmä @ÀŸÁŁfóȚuŻńMÇ7k“24_ákEV7=G° cP5YÒÍ;ÇSRO%î[™jWŒbĆü+:»mËGè⻞%!*Vő'­† -oH$ˆ˜ŠźÈ›$íy"żš<ŸÊȚN àÿQÉ9țRŐżò»È. ŻJÒ8ƒOšhÄÇP&:›óK«â^PböÍŁ3JërGȚœÇ­ĄšzŒĆYĆŠŽáHfÂèZȚű©Ùăˆ±#ŁĘu—Î°ŠŠŠÇ…n<=†ÒYnÖˆ fŸžčÒMŁćRFR7Qܓ˜ț„#žtTf#‡ï„ń•SMöŃeùry9đÂNw»ńA·ö™šßHϊ„àcëÉ4€ž^Ánj"3äM€Ô‚-çńz;»P*%Œ!‘-Œ ”O@…A€39]Í7p?ê^ËwĄ3&„cmlæŃa•șő€IglÖE}śŐt3-ݜ!Ö„$>jń«Ú8ß퍯 v)‡”±Ś8úŽ"șìâŠęȚÜšȚ.óMX)až_UíńE‰ïÏÖcžÈHhț*mʇțbsišP?ń»ę­|v}țAŁÌM[ÓBsőțĐÏLeD@šÙPŚńIäë2ëeĂLJŁdź6ĆŸÆèx•[2đŠĄJNKВŃBŃíę@SeöÜ€Žę%œ<°9èmŠ;ù„ÿF†WÀÇĘWLćB žÊW–ÜN`BeC–·äM”7:ŸíšˆșI?śĆ/Ÿ&ÊdPńjŒ|’0ćͶ)8~ Ö€v{™„Są.Ț©”™›w0ëÚAzŚh‘'š˜Ìnt_Ȅž`xUkô(bTŃû_b3Ł=‰jzș6œ í[+„ášx8 áđžH§[ź…ĂŃʜ‡„X{5œz†ęj[ŒéśČźs€Pä”`:Ç c@}ŐÚü€vĐ;ÉŻ`7–GKmŒ‰>Aš<ÎÁę$șÄFŸ:lËäûĂÊë 2STÌ>§ÙŹ™ŒČ˜[m 7M­Ę§(ČČÿX ÿ`€;p} uê3Q–Ì©””PæhYòg+Tg㎈ąüt]°í‡Œœ™ÆŹęŐ(–đ›\„Û7Ăh}ęXŽȘVâ*ŻcȚ‰s™]ărÊËMq©N™« Îϙ. u­s]ùű:@zï]<ŻnóìQc±Í°+˜Çâ3Ïæ™À'–0-5ǘèÈ/Ą Âi„’—ò2iŸvqq D yX˜:„<ÛŹÌmnšÀd{ÇŁiüŽnĂ;ÒEbQÇD·è ÉŁê$ș$?Ë`„\|ăÜł-Öë,ÔpŸEú‰(ù⟞ űiĄU«š­Íc•^òsOÎ~î?áÇółyì/ă™$_ÿłYĄîï[E ë}·ï8s+N’€-±v \łÙ˜ôŃ`ĐU5‰^ŻŠ™:Ș5"ûYV^“’rŽ­II j‡™­Er‹ű0ŐUiȚ‚Ûł1GIE}Ò­>8Šő)UqQrĂ0Yvœ?ìgŹŸĆBȚą Ï íQ`cęS0ín`ž’iŹëɰL•4›«ŽûrÛ5ęf†Šö9Śú”NóR0¶!NIöűÖòj~ś<6ö§Ś”XK¶Fwû€LÙĘż/ŃÖ P ÁŒd‡5Žk«H2›2đ}țR©êé€îìçs; |óÍÂíïźH<€"|ÈË·ŒkPžüKLš›«ą%^ÄŸò‹S,`€Œ}IMÔŒĘ!ۀőȘőÀꓜâyoąÛršw/uĄ4lč?›‡5[D­gŸ‘Ą^52Ÿâzšjߏy••.݈Ć9FFé•êż()ÂX*â0ÈdP©o<°ö“ŻźÌUMÈcL§o‡ąÜ’é;qàčMŸ†Óí9dŸ.)Ń>ȘÓߝˆ«7ŚȚˆM1+Ϙ|I}[BO]~kÀ%ÜâÇǚycwą$ŸŻ@žtƒłZU_§MX—ÛŒőŁoęàőĄ !}O9†Çö9gćƒá!NùdŚ@ ›ô†;|QÜtwÚìŠÉ­UòüéŠ^rCjêśÏ«qŰĆêBßślQŻ §ËŸn)çÚsSX0“ś~êZȘăŸd\©.aÛŁčn€Æ›„€MË‚xX1o­Eêe{ăw±;< -Aű~Š 2kTß:7‰č&ș‡gvKi9BžŽz1ő1Ł„G3{WőÉu‹N*=2éőH"ëáža6­Ÿ Ûž4­‡sŒr 8Šw`ŒĄN K%ÜHU‹,€ÔÂ=ßòd„žăVq&›[đÆß —K)ÒV5šU·1lö+€^čS…ą»*ç[ꈿpźăäÓÊ›Ć ,NĘ[Äuyù”ŸÓéőŒÎkĘé„íIïé‡ŃtYèißqw-Źq%*w—âÌ-„`š“’cÄâÊ8oÄŚÎJ”Ü' M”P ŸxđöL @€Ő°…qŻâìM‘9Ę.=•ïń’ÉS󌚐Kƒ•æ w\Ú#At»‚ê?Ÿ€`|ŻȘőҝŰ`\ àUšŸöŐÜRȘđâ—Ÿk#uÉÎč1h;0†æ<›öÚ1”&«Ö“,óíÍ'·ÈNƑzüÈ>lœN†Čßąê_U(z+ERMÖ^í蝶}iëƒúȘ©Îßч€p,a->aß2žĆÓżÍ`7· ›ˆ#@Oû"QDćxàőaI4Geœ4#<Ž—„śY €9YL•SnhQ™áČí;Űöęő»Ó ł‡ăúűăKńA»óĆZ&öÔź8‹`4QănY»ï–h:‡Ó˜śf'’‡ćO‹Ä&Ég$ °;˜ÒçÔ͒–§öÇŽô Ú6()•ż3͒śćö.;ȚDŒÁbȚ2D8âŐoûòìXe¶‚‹œű8šżŸ–TRTčń»ÇÉÌTòÿŒŹ»żŻ‹«h|tŃŁXÓftàʑ{mÇćłÄžź<œ±KڔáĄ-r»Ę'ì§źxìÔáU+ŻŒșö'ŁÀlÙ6s 0á4ôÍòłž3ÙXAÎĆŸĆK«•ĐïąTŚ e=˜ŚŐZ‘çŽäìÂ[TĘrśśœLlZ‚=†jаóŰu0{ê{¶ȘŽ–uRŽ5éÙ-2IÙR șmĐă'’,,‚«•…8ZPEdhPŽÊô ô[ӅŒ›[ML Ü èjșÊ'ő/çÂe€ÁUćÙęŠMÌ`Šü’QcźYʓ‹%Šu…Ôučí”ÖČ!bP&ŸM”pöÎĐX7S—‹‰íÈzÊ`=Ń$Q#(‘òQąë€MN$oÒëÂČŽCÀ`X_ąÏۍ—0)}”ú&Ö䡛ŸéÀŁ/ȘVï\Í ‡`ąć@"șˆśb™â6y$éBrssÔŻLyQu‰esdŹûŸH2j_óÌQˆkĆ4:ż<5Ÿ8nÌŰïWÌÒyńŰ?öĘ}ÀnƒŻŸ"OÆ»g웇T#PC:_òîűڏĘçń}ÍŸ”„lû >Ż‘ĄU~ńD/_ʐ"x›Ž栅ò·Cip,ś'ł±ŠÈ•ȰèCN6u1țZ3ÓƱœïè JćțTécxKÌȚŐŻšl$óéĐžôÌśzi3 XŹ;ߎșڧ—k—ÈPR+ÏϗsÉjŁ1űŠùï\Ą3ű8$%ń$’uWíAچÊ5&ÀŹùh‚”Ä}p˜­pÜêâ«À4Ë9|!±›Ó$˜{ÜĐżĄš‘…dgNûb+ä»4ÜPŁ«»jÉJùWH |ŽœP_̍\.Lä?QYàžHK%UčÆ:qæ,ăƒMY[–.¶k›hó”?-Kś(aÚ·ź°ŒgŽæƒòćÿÖpc endstream endobj 551 0 obj << /Length1 1416 /Length2 6052 /Length3 0 /Length 7019 /Filter /FlateDecode >> stream xڍwT“ÛÒ6҄ RE:QCHèœś*„† ”$$‘Š œIïU©*œƒH‘* H„ƒ)*J/_PÏœśÜÿ_ëûVÖJȚ™yföÌȚÏłŚΛwűí‘v05$ËI•uu5Á $, 89áXWŰß~§) #RÿPFĂ XŒO‚Ću‘ ÖW X“‹K@@!Hòo -TxÀíș@-$†p*#QȚhžŁżÎߏ@n(,))~çW:PŃ ††C! .ësĂŻ…žP8 ëęÜ2NX,JJPĐÓÓSâ†@ąćxî=áX' ! C{Àì#ő n°?Ł 8ÆNpÌï€Òë AÀx‡+ C`đ)ö04ż:ĐHSš‚!~ƒu~îÿl,țWč?Ù…àˆ_É(醂 ŒáG ÜÔWÓÀzaï!û ăÄçC< pWˆđ«uPMŃÁOűg>  Ga1žë̂eđÛŹŠ°WFșčÁX àą?8Ćï»·àŸĂuA =>[p„œĂĆöP‚&žû˜ŠÊ Țű·Ï†Š‚$ą%D0w Ì ê$x±€±7 ö+ŸpăgđóA!Q@ü0?ž ÿđÁ@<`@,úÌÏç?ÿŽ`0ĐĆí`ŽpàßŐńn˜ĂoțhžĐ„§șűüëÉ Ï0{$ÂŐûßđ_G,htOíź’)ߟ‘ÿTRBz}ű……€üBą $"Ç?űęłÎ]üOÿ‘«‰p@/Š]ô‹ßšż{öűCî? áțł˜O]ûßL·‰‚ ű/đÿ™ïżRț4żšòż2ęż;R{àêú+ÎęđÿÄ!npWï??»Úš#»]ÜÄùț„ńDŸ–[”OÌR”Ű€ŠŃĘwYŁšÚÉćí»8)}ÿȘîü˜èÉEWą&źÒąŚÚ^Y’„CÏ"iúć“!¶ÉźÏxEt—áŻÜOn±AKі©z·ŽeZ žT œę}3Ô]ŹQZVŸs„b©U„ûXTD.W˜Î<œö3·Űc3ƒÆÇNVaÓŸûĆ8‘ł§;­­J\SîQˆšhÜB͌oFÁ“ă-°à›ZhzUŽ2ÎÓmqß·ÂkŃJ§Ś YèW†kqęșđúq4R ȞólŁ-28†A 9âVÙôRWű[)aœ=A‰^Ț‹ăĘ@ú·=Èa€GI`ôń&ît“0š@ŐâHžßœ.m:Úæ(ÖûŽ›‚PnòÎùčæTę-7EĐà©ĄpęD/]ŸO+ßSúæeIêĆűƒ•aĘ€e}J'?~ÚiîÇWŃô­'ÄF·(.ì6ćFńŒU1œÒR"H& ùìsÖæź°#3ÓN–ì5v‹Vös»s€ÍőïJ,ŠóÇ=.Śo›ĘbÿÊHž\ŸùzČœŽŒŻ†Ńç N*àÜČÚnòŒÖ{Y6Š!·§â·śl:;Ÿû^ò”–Ż”U`çûćAŽ%ŚHÛÀv­MYZÏ!Ÿ¶­N1Ćvy:<ïmA-ž@ÎIß«Í ÄœŽiNŒF !OčHúŃ ÎűG7&ʁ“ @7ł«Ît}g ažłĐÆjSššá%ÄùŠÄ'›Á$yśŠg*…=žÇÇÆșäʱ޶KÈűŽh"ƒP „ˆŰ(‘.mВĐ̜ô ƒ·űFŠšÇ.Q~1««êG!łTNČ^D”zÉő;|Đš9¶`·2VĘïpÎ0ì‹ôä;ĄX^Šßf€QÍșJ,ăÌgPŐ»č™Ù7MfíëoÖHۋ<Í7.€œ•șłtìAwȘË;3!͇Ÿ~Ù<ș‚wŐxŁÀ`lȚł[âȚc'¶ŽŃïi™èyßçšMùŰżlq ęô5ŻÌ'Bgt“+ŒœĐož-čÔ_Žp|đ­n^N>vjčÖ8ïcò›ĄgÆŰą Œ-ÖŽÜ&h^ceé` ś>ùÚxÍ/8/ »:eț4šù–xÀ¶;6xÁáŰŻfu$‰§2T‚ŰÈpÌ<ÙûLŠVÈ9Yßșe1š™ŠłęJŹIvsȂÜxŒ`^iĆ3e7äü hˆłÔï jú†ęg'zčHšÈË֞*Eß`»öŚșˆ6 pû{#Ö muòdš+pai–ê@„î&EVŰÉ [ïîȚą‘[eÚĐőU`Wî盟ÆÈÙ^ÚÆ7ÇȚ“·QŽ€é&C,ą€ê€lQĄûÂR Ù Ì}2śÔG|À‡çPSMÆJ"1nŽî­Ălˆ}@@ĐìsœÍP!+(Čž/Čs.»ĆúțÒĂ{șÂɚ·CC{ČÊŚrśăœOÚ:&ĘÍ|á;Œu]‘ą~Ï %‹nTæȚƒŽÔR_ƒĘ[Ïđ‹#{&ä§úfcZI?ô2úòô `±X»ÿ@hÛE)!ŒçÌő›œgœù†Ì'{1•=Ä^4Żhę–Őű92oeÚŃĘäźĂčšÚa„kzŻ­;4ve»P,ë1‘Š„ïÎŚÌœ;+òfÚ:ކ<ŻȘ&ç.ú,=XipՄ=Xe·öVAú°S™@¶Î„fÁxú3ä(îšH~ˆ!Mù5­„Ùf·<ä2őšƒ>™ÙÜ;„’Ü’G ÙƒűÁ„rź Ńœ+oFKŽêȚ$ŹâŸŚčgzÿčĘó‹AЃAgz9Őq—ê€ê›æĘí:q­ő‡OzăMR+ś3—€șaźÇÆ,}ˆŃ3ïÌ.˜IOÏùOLˆ"ńLV$2D˜}ÈŚŠXa•ŸŒÊŒk œŐ+çJfJRoVš ”$”îŃŒŽ1ʆKâ(j 0ù(šMHäúÁAÌË}!•ÜPíéWőHCC°†—óxÚ.Ù%±âçœ*o€Ś»zçòo©^ùŐFŻÒˆ,œëx7ä›sLŚiŐ3Č‘ò±ś1»@Bò,èq3ƒiU4©4yg-e uiè…Çx8[~<+§Jt^^ŻÏMÒfÉÿf4#[ΊV'@ƒ‡m°WÇj șŸÿИÁNÇOPnHԅæ ĂŹçSę3qzŃŸá·™„’?ÜyjbCŻsW>Ÿź·ÿ†žrùȘ‘îț{űÖû«SrÉŚš{†ÂWźŹüæęà|ÛŹ3[eCb-Šc{Ìw;çfƒZä|ÿ`dăÓú”NąŽÍC€œAŠ–&G}sJçœ>î ôn†îkŽùZ țTD’wR^ˆŐ|șa>ÎóśRŒÜ|Æbt‡D+DF±3Ą8Ț=ïíÊęhIçRÓ0öe;іIÍ·/käíŒ/ÜFyéOâŒé$ăŠU› Íôù§R&:ą)+5ÖQ« Ś €l·È,q§Ż©GÇۂUMI|ČÁ;àÁ ăȘdSÓQQo3m_\ÀèÎRêwß©zìćg%ûőSÙrÜ€đT»ń„–ËȘEukĘÙ{aÛSŒ3drEŚÔìyæŸÀgÚ{üŰ”ôŽőÊČj!\öûńÁ…a#1,žÎ”kÖö„]Æj$An3æ&ę« Oöęôq•ê5#ìŐBšè—·Ê‹ QĘąTœ^:*oÛÓ"ëžv뱟3$êD}ÍrèńZRáNy4ˆÈ«žšÈš†ÏÄ<yčÚ9ÙôéX=GVIĶŁjńŒŸšôŽáËȚ”” ’@Ü«”•Xt9 ćÆÂ(GĄÒs BÁÈžÏRJô{À‰č\êÌ9ŁCàb +Œm a7Ù7Ł9‘»Š^$wŸ˜{ę»Rő)?”KËËŠœž—ÂĆʓ—ÚlćnQł s6Š­~hżß<ÖNCv‡ĂFî6źbATÓƒòű^ț=‚‚Ô|&QńTÂM7čś9‹ŰŸUOúÖrș?éHBI+jŸe?őz#ŁČzŃ”€Dœw蕏»æ}„Ú—ż‰Q”+ÎŒśÚÚ.·:K RȚ ž_p~fRÄÉ{,Ælùq§^iu1q*^Šcćn4ŠÈč, œgĘłÂ/™ƒ—h=Ïiű9|eRŰ=đłvŻ9Û9Äï)Àò5VCyăòVÿ[ș @eqűȟÜëZș’NT*ó€‚čucűÔś”€O*Ž2Ìőô8?œ»˜~êĄ2Yß··,,“śÏP@źTbÊZŐç j1n<ó7æ „IJ±ó†+đLW§—ËÍSćt©ÉőÏ6Cü/ę\üuF>-}}u@]¶Ëú…ÓÇ —ŠÌ&8č„ĘXüĄÆúÆĄ—úč@|(ć&ƒțAhÆęšoÎKjtÆ3-ïźȚá€l1NWc’jó >Zș@]ÀÈ*ŸŐ‡daƒ«óÄȘav[Qw”ËĘw:čBOÍi75ó3{ÆÓˆŃŻ,§ë_?zsțéĆŽőHXlFÛß@É/ŻÈrxŻ*t|DžôiĐPŸb;ś€•î2ăjJr*șę™8ëÀȑśúÉUźłĂïŒeYvKŹqąȘсŒ8ŽłGĐŻs ŁHTì+Ćï„NĆh EÈ«p[­·‰g.Q-MƒêȘNă\kòڃB€ùŽ ć̶ÉÙK ’Q7Ӑ– :‰ăT+C,ĆJ\[Ć_LŒ&ÒĄüȘ#L+!‰È—ÆvŸfÛD—+Ú~ŸJj•{ńEÛË]žłp፠¶˜”,s=îïˆÙÎpPț ìȘjŒBEs’À–őșŠP*—›UCź¶6uwp¶f\șâàcï‡'Á~nfYëü?êt‡p[Œ_\Nôäi'ŠQÎ&Ó"H˜šł€ȚL©Ÿ úúEȘë·š9'Ku[»Kû6‰‚Œîčí>kaÚ śŒÚńœ­„e’[/Î=ÚąśœÏš bäÓrgYÇVEJ0R­VœÌÒBć!ŻȘć]Ûj«Ąt4Ëgw voÂÈò§7ű±àÇ™{ăídB“gN]NW|æIŚG’™CyŽÁ±o{ˆ–ŸJšsRG †ZȚlö4èțK>FœŸæ€l2‹Ț|žÓ JŽü4„r3„ȚY…|춄ô•‡O¶kÏw0ÄŹčÖ•ČŽÊßŸÆŚÎÊ­m~À]–ޱ±JlAûăÿj$VDbRt)?Ww|ܔvô†YŠòHIV’cïòȚMŽLȚ±űœă>'4ćȚÍ rvX©ôÚÀ”€Qłn{ÿő3jÚâ9AÁœxčŸ0Æ ^iúÜęJü`cƋ€2Ș ÔgÇœKžȚVó–Y3!w·ogò9 ”돶„}ööŒ›DQ…¶çŸŽ-Ö{ș5N”@ÚêČčĐeżàŐĄé€*ÛT^h•`…'Žû]mțŠùèäkŠĐ,cùí«…aÄégĘ䕩€ś ЧȚM&†. Dqű7’șțæoÛBƒ}[ÌïŽç™Ÿêæ^Ç͍lžùxŒzÜ©‡ćÍü‘„"PIŻdJ °‘ÆșŒÏńgfoˆ°rŚ“š•m„3^9œęZÍt‰HQ?—»<óÆĄŠ“{æ5€2­qKˆ‹$IĄœć_a·Ž+|SöêŽÁzR*śŠŠŒtseWĂńü€æÊ‘†Žőięü‰b­cšzâ[=ŁȚHhĐűÏæhĐÙ%ńśÊ­••òŁÖ*édgŃq#¶)ÛtYźîeÜBVłméz0ælí”$P ëùâQ8ćà…uLÚö5șëÔ¶węÎÙe”gÏćUV”™33čjűv"òіBäąœ&P­›Ÿî™<)u"©ă%ŽÍCŸ(R”%šHôôv#ăxQ˜+,GWU ś]]Ší|;ƒÒ†ńшœ„!ïáĐ úàÉz?¶—kÚë”Mƒnż`ZŒÎIF©J”zögçŒĐ«Bi(s;K;e5śÖ#Š”zmżżI2ç1ôښKX#êò"˜r*čMÖŹąÁž‘; ê#„Öùw4Ńk^Y mÜ ,”r'Šïésò֞­=S“–čwžû.ä§§ïö‹†yòqjÚ]cAtÛi{Ɩb—ĘFKo~íÉČk)§+n”ńÇ|NT諏'ąmY?»œ*Żzû‡!bô ùÖÆąËíÙÜĘŁŒc_- žó] KbfR:ż;IŁ&ò*2<)[V™§ߒ_~O(ę4·źțź—ș#‘„ !ØcMSwŃ;Š C‚^DP—Ő·ČĄívźŹ­S !I<ö*퐄K?ü驌ĘQrVnÓ%ÀR.C8›ŽìŐLbőé‡qTâFhWh5G„ËȚò[…%ČșąŽ(ˆn@űë”t·û«aŸ'i»vŸŰÒ)ź`uÂ$FȘ@©ęáŸĂc­úl<óîïVšÔ’±ä)úč„ùČ^ՅÍĘ$QSW?ÙŹv˞'Rò„VŒêKź„*ú 2<±€Xô¶ŠŒ#ëeĘń„äelûü1}Č0g„©% ùùàÏ+*$/câY,ïz«$M¶]v3+Čč`9OńőäĄÖŽ] ,ë„C ŸÌ+~­lcÔ-á>EźUo…W_é?=$% !lOA îÇbG˜(Œ(’wöűéyĆë·4†m dvÀꀩ ăK5Ó.ïESíÍ1Ç)«‚ì]ÌPâ+îȚ†Ł2œl‹^Č»üYáÄ?Շéü*ï5}ĂAÓÇw+†ùyà„?ÜL'æčKu2R–ÌŁž]:CÉ VQ¶qŐŒęT­~Ž?™/6âdáÒmôŽÉż§\DnwŽÔXĂGźèy];pđ ÈRŸEžŻ*¶Ìêj†“!9;Ôí·aČ2Ośÿ+ÍŁ‚őDȚÀàŒò.§`1éaEš/%T‡Š8x·Ö˜˜:śÎżšš0ëœYç˜)T|Œ°Lï~û@źRtŐ|dۆl#/Ś` ±ű ÿ‡aq·ÓFzÚ\“_K°_ŻgŻî~Őè€uÒPԑÇò”Û9æÜn…—^ÖÍ|:šąéč6lUÖŸĆȘ6{”ö‚G“ž°óČÇȘ1m§ò—tNŚQ?Ä!Eƒú g^ÔۗQ©>L<éçê€{ô‘ާžàđĄN“€<šv–ÿęҔ‘­ò‚Gâî0ăŒúb»B  [Ę07Z‰56Ó· eę." ïĆá•àő™úÇăCóFÆŒÒG mu:›o š›È]\‘YĐśÁžT/©Y ß6qȘvMKÛÏ cbÏÏÏ0îaÆ„­NÄĐSÛ:‰\Rfś"»ZÒăKŽÏ êtìćą#”/g^U8~oùÍHOJâI>ę_ŽÄëEód&òs<Ëă†vœ#'SÈ膀Ž5čH±«K]œț»vŠÌXÎHIœò€'À”Ÿj«gÄÒŸŃï:‡G'2E„0}Ê1tžìÌ;đh#o Â~泊œÆ»5ž_ŽË+w: š<Žä*êæ k?_ÿé.PŐÈÚ6ûź0ìFŚPáfŻk’©—đžqöó+ûœ:v8&R;#ÜX­ R*îœŃ+„đ ž§ï]Ęś'QŚ•™ e™\oáuF«Ă<.ëùűlrNń[D/ćđ§ńć6Ń XŠKœ”aȘQčź_]ȚȒpëq@@äuنU†Ź€ČkˆŰ#Œ$™Ő„`§XśŒű©cKptzy錔–ćű AIBûζt36â ž|ČEé[ęłđîϝ>Ąvî㜱ę5GD-?\TÊu¶Œ Z$™É"ŸĘqr›Úç,ú8jLÄË­„òźĆ…K;JŽ2pœrĘ·»‡©ž\s~­„ŰË© a~ĆŃČ$:©cNLJ”‘–Ă jłux™L>Š” ͋łâŸyíÍÏ->”‘j©èƁynț€À€c>áyR†ìX PHiűd”{ëäG‹ %ŸĆșűŹÍíQxz őqKÊœűźę„w‡–ûǟÖ;V>|łF‘‘àúÙz`G€źÿažŻ…žž\łèxźšæ•Âm‰èźńËI6.đrûÂű‘vèő …kzĂ7ٌăĘ(IÉùțÚ(›^ endstream endobj 553 0 obj << /Length1 1478 /Length2 6403 /Length3 0 /Length 7390 /Filter /FlateDecode >> stream xڍtTÔĘÖ>H—( ’R3tww‡äŒ30 ’/!ŠÒ­0‚4ÒĄ€t—ŽÒ t|cŒśȚśțÿk}ߚ”~sÎłăìçìgVc~E'„D Gńƒ€Re]# BÄ&P ò&æ0ƒ =ĄžÔ8(#!`SŁ0~ș8@Ë  @bR q)  Jțíˆ@JTÀȚP'€ź@ ‡xs(#ÜęPWæ˜ż—nGHRRœïW8@Ń ‚„:‚á]0Êâ†9Ń #Ą”ß?RpËžąPîR‚‚>>>`7OÒEއàEčŒ ž€7Ä đ“0@ìùÍL€˜`â őü#œQ>`$€`PGÜáw‚ ˜Ăƚ:}wü·łÎo>ÀŸ»€@ÿJś'úg"(üW0ŰŃáæ†ûAá.g( ĐWÓ@ùąű`žÓOG0́‰{ƒĄ0°ÆáWć`€šą!Œ!ű‡ž§#êŽòđ„Â~Rü™sËȘp'e„›Žò$țYŸ  qÄ\»ŸàïÎ>„#|à6ÎPž“óON^pš‡DSć "ț7æAD@ ž€0â€ű:ș țLoâçùeę„1 ‚Üîg HÔ‚ù#đ{C(€$(à? ÿ܃@'š# àqÂ‰ÿCœï1ÍGB}V@Œö@àÏßżV6y9!à0ż»ÿêŻ ±Ÿ±‰‘!ïoÆÿČ))!|ü"@ż(ú)2qÌ"èŸi ÀĐ?eüGŹ&ܐü]-æšțźŰûžÿ àŸčôŐBÜÿč5Pèˆù€țÏRÿòÿSűÏ,ÿ›Èÿ» 5/엙û—ęÿ1ƒĘ 0ż?ŃzĄ0 ‹ÀŒüż]Í!ż‡Vâőrûo«& ŒEž ì_ŚőTƒúBœ  (GŚßjù›țœ21@xB>+~Lkțˆ-LJ˜§Ă#É_&frțy€*ÜáôsĄDĆ`$ìGŒi2f' afŃ âûKÄA8… `èœH⟕`LJÌëçŒúiü ÿ ÿĘÁż b˜ˆ‡ŠQ#e șcű?ˆ€ț ÿ Áäu‡yyțțÁÄŃ ‰ńFęÒ†æßû_/â q$žG8J‡?š oŽŠ Wá”n§öW™šÀ)›I•Âvú·! 4ęš ȘlÒ?áÆ"Íž5ś„#cmçź]SoÙțƒÒc““Œ»ț‹XíĂęËŹŸ†–Ù`„ÖŻE:jÒąq©8°DN։搮ĂY+ç˜ÚySĆȘiƊôŃ.ÈÂVOźÒ]‚&a •ÜÀ–  ˜+c^§—êz<9ëÁ’ŠÂKB­l™§uć<Ő™ˆYëKlöùhÓoDƒkbÏł‡}Ős áĘ%wÒbèW ćăÏČX'†ˆu„°h+ŹČÒn_. æasްxLèžq;–kYfŒ‹Ș§2!e߈Ò@X5—5œ_Șâ6ŚíĆ«AƛZäćxS•ÊZXZ(4g{€8țS± ⻥fƒíƒ-›căcw’c‹?ȚT›pńaS}–àłoÍX~Š0”XxAB2dÿèœL&3XH˜z-ÓđŐm·Șæt2cŸŚuo>'|ĄôkauőÛ·éòœôöò‡â)›4$v}9xVϛ%| dD@cL‡ČšÏ'XÓädÒb©u”AHm/ĐWáó4Se, }ZÂÖŠ%WÁ4SJ0Wb Z7ăyŠ;kÜ3„çËĘ œkDASKSŰÔ ߍƒn2ÈŰhÒÁ ń=Á}Egg5`a}›¶ûđ»aN9™‰ÁőﰜSbÈGŸ$ś«i†0d°kòYmČÍțÓđ8{^Xá1Äđxü©‚3­˜0ƒÆ‚Ű{ȟȚޟÚîmv?UŚęó=ôJwÏxšâ‚=+ŁJ_ćI'[*+óŁ•i^qwë_z Ë%ubÛ9QŐČțٍdj Æl»Ùșőêă/{_Cž™Ia5”C; ûY /C/Țć)¶łC9é=Ÿ`ÿȚȘ!bDCùBŽ/Nđ„çăÛă=ôæ 5ßÏ;Ł/.Wn‰ńŐŸf~?Ș§oeČÙÜőDśâ”»śA+Y&SdbêŃdg‘RIò/vjx­„r©2èŹ…vRž{\$5űP/j4Vû-vΈt~Ë·ŃdXšÚ7>ÉdœȚaÌ+léĆ/…NWoÚ籓Jo],ÜkŒ‘éz•û|č“2œăÙòJRŠZ=LYŐ>ÂìkžëbSo”aò€Z! ©cièvX0;úiې°p㱁ä„äÖęxOÉ(l.ûćRfČ-äŽù©”ȚłÂ­ϑĘÏjXđĂH3l™Ìç"8…D|(Šaț$kìŁB滔•>s][ú’Śù«lúŻČ)?ö›·ßSٰ™|e3Ź Šî}fműŒíŽÚ=ô,Ԅf?~ĂVpäd—ŻkViÌaòNŻ^[<ĄœŚ(u|Ë Y˜~ŃcùŁ“rÛÒÔX1ÉHZ{SŹĄ'â«jD– ~Æ6ö#Čo€–žÂJă_ß$±€dzłO7jbԞ=&[8Û)V][E?v>1đ ŃˆÈĄüF`~Q%=ŁÎT4U&ܘaûÓÛÖ}…äRșLą4đ›Ș~ȘTĆ`Ç˜ÈŻ0„9v•.śA>«æőĘû‰AžeÀƒ{á@Ű oŠ2ûz.MXÎeđbëjŐE¶[ÏòđUË_îÊžƒ7lIB']7őâŰgÖì€/»Ÿœ‘–JxùÍČ#RæŸ{;9zŽóжú=bœœłË<»sÒČuӔŻ»•Ăł•Ò8Èi֏è˜á.łƒè‡~eR3kŸòħ‘{ă”±ŰÁŻ.ęeżĂ?,+"]ăŸ5G‚é¶śd 3Ù ÿČ-Ęâ'„x?Ž=“„ÚśÂČte›‹ònTZI'4ü#ÂáÇLĐć …Ù§ĄÎŸĂ.Ö lŠÿžôæ év àê7^nSi蛂ù]°Đ‰'Óä‘ZțW~WÚéö”Úö}čș—šz:ÁIőèŐ99J0n”äj1ŸoixQäŻ P)<Úî\E.ÈŸwÍí"éÊÎtVԉmٰ«{j?i;\§ź}$-Z‚_àӜـ»ą‰ôŰU,vV|Œ`yêő&€mn„ę ihwk˜Âyë+“ʏ#©„űi'fŁBœ9@Č"ê6é&?ú)ÏR=]Đ[ïșôYÒjô”Ś5Ąń:€v}űííb°ûŠKoò{ę0«„Ÿ±w<șĂòęp5čSźÜŐyÖlqŹ tenaOôWYą4ęÜöÔ§Á2ž·éòÍ}©ĘőŽÏ Ő°à)H˝nl{Ż… žo¶XšÇgŁ7ȘÒșl§Ćîìfù Ûƒśr)^őĆX•ÄÜČnîSÍÊoóahĆÛ3ß!Íő_ƒè€Ăi)‚||»Ț«pžłÔìKŸ¶kț ućùä%~ïfÀÍr˜üębÿĂŰç)bćjŚ%¶YÜùu†8{òÏqv”íćöUEmö)y;sz=ŃòőȚŸșl­/țș—D=~iűńK‘žƒsïLcó|x‚(~ê”)QŁÿĐĄË7—~đʓ§^Uj9C©2í”g~s”è7ƒ7Îî5Țèq9ș‘·Či{*R€‘ÖŸ—>qfÛ:èĄATfŒ4Ę>|Dz\˜”4(.·ĆÓUp˜ȘšuŁŸšTQœík€J€‘Œ êR·łûû©ç꫐󇒚ߓœó‹3†p–ź?_žóRNœČPĘzr«GàÛ֖Áv¶{Z3Æâ7[Š-™Ë 7đv̐1qO)nh‘ò–ŹEšk €˜Šę‘ą—»Ê.æ]iÌ`byûŻ»3te:/źE^ïŹË§c}æ:Ú:n? VŁu2SŚçă]§ń€~Ł~U°h+X[ìQՎÛ{„íŚIțæôô>óÿp•b”©đ1„"-={CwRAč«ęŠncŽÜőD^ïőŁ/Ćm3­±ÀőőäACŻ•‘1=Ž]&=Š=$Ît—7^æ'=3’Æ‹aiÔ>č;h’SsSíűÌzáòŰv4‡‰‡D:•š%đ›@Ćșă1™†ŚšŰ”açćàKźLCáiß»”OX„YŒû€ĐnoÏpÔąŽ ć>æê_ïd0!ÍæCÛè}mȚÖá7Êń,íf·VۄÀ2OqDÍ·ŹÖsŐ€ońéqqQB‹cŹ+ô [54FûżČŽÈ›Hm+LȘíÒźë]“[ŽÎ+dȚđ4ž.šă‡6‰8Ś©©Ôž&ÌLŸ3čÁckŒ7ÄÏś șä#‰ŸŻW«J=šŒęœü˜Ä’$ȚRíß6zŽ'Ü8lMü~”}ueùEÔ>Ví‘]șok|ŽiV`,—ERuwTžșčéű-1Mk–ÔđőÙ#č ©^3»óœrcŻ$ïiƒhFȘ­Ù&© w…M§ę»ö{œVÔ2œqúŠ "~,}äQ}-AțűÂŽ0ă̇§lυ2æ”ǚԹӃ»…ućłÔŃźĘ$…ž2ț:…$bmuń„e¶Ò@ĂÁškèłUÀęÏÀˆÇAù:cUƔ1…R!Îè1·ÆŚmŠÂ» ă{Æ$BČô‰ăVïœj&“/Ž2ŹgßŃ0—2Đ8nMӅ\œ’âB5? u„+ź#ŻbšËZ†ÊźèûŽŒÛűŽY±‰Ș">?7›ú4ƒűćEșax•Ő쌌i«…#îăéyGȚ#ŽĆ ąmœ†Y%cQÉȓ°ÖwŰńè,¶öńŽŒw.&_çVlŠÍ; ńgž+ï±â|đߜlđPÇÄ%/GŰRé±"KÛ-ę e #9i‘/€4•ïŰ F‡ó?`‹ù[‚ś]Ædh‹0ÜëŐæ§Ÿ˜3/4^5ˆí/SD«s…uĐtÌžŃŸîSĘšÔ0o„-gȚ¶\1ïćŻTë+”mˆRjóYtëÌ;&ÏUćiŠ9]ßW ŻßÀ'+Ž›wbà;#é{Ÿ|U€qPì”vâ_h6ŒŸ‚”–.‰Ö~/Ʊ­V °IŚâRwÉÂu:Î4ŽPńŸ4ŠlŚȘŁjsí‰ÒÙ^őž&ò±\?őu‡?Š·FŁ,’ÛRÓnѕPŃKJő “HħĘóŽüè>§Ă‘ÌG„ŽjęÂúۀ§ŃÏŁùÄ}_O*Fƒ!ÎÂÏś|=ž]/Čb‡Ôń–Öù•ś:t9Ż—Mùó9•hN64c'¶˅Èi^ŸqKÄêGcJnhTÍäś Ć[ęüóà“Qő5“đêfŠB·<đ·Äb]Żi•žIÔM3A9‚]ì±Ă‚î»5cąŸ{Ô,măà_ń^úò»s[łD’Â.7[*É\xcܒPûŠŒ€ł¶rĄ±DCË3ä_óU”éăąę/źq™_źj;vëÏó‰4?‡ŽÄȘ7|<čl䜷XŒ„=Àpé7Đm0©žeă_š}2Ăő)wšb\;ÇŠžZ+-iCÜ—hšśƒ°Źg·@¶fi/șŽs°Œn«NÊéȚ䐿‹N„0›ù«cîąćl'ÿ2Â*œ_ ÚčšęwúćtGërc š°Mć.F‰‡áR‚çFÉ8›Ț3ńTÜ7.‰NÄeÈyÖ,Ay RpJ—R9Ìä«êlŃ0€‹GràŐÔ„“ +ŁűVÄëÆv­4IŹ@ž”šopw:-Šeș.‚­ÒgăêȚăρ©Ê„Xäęê{օÙX6Œč&­ÇđśCÉZUFêŠeè> stream xڍxT›[Ó.„ž;âîZ܋[q !hH w—Bq§PhqZÜĘ /++. T ÚÓóŸï|śźuïÊZÉ»Ÿyfö̞gvČÂÊ€gÈ«`ł«Â ^A>)€’¶Ą™ @@@˜O@@—•ŐÈÿăČ>Ă=aP©ÿ`(ÁÁ@S"DmđÈ ŠI ŠK „$ÿ&ÂàRe ·ł=@›đ{âČ*ÁÜęàΎNä>?8@œAIIqžßî70Ü„ށ'°rG0„œÁż…àxè„@žKńóûűűđĘ<ù`pGYN€3 `öĂœÁö€_%t€nà?„ńáČŒœœ=ÿ2Â>@8€ Î 0Ôéâ”ĂÈʆZ]w0ô/ČÖ_ÀŸĂò țož?Țż9C;A ˜›;êç u88CÀ]U->„/‚„Úÿ"!ž0€?Đè Ú! żSTô@d…êóÁĘž|žÎ_5òÿ ƒ‘żpgOUg_°œž3äô—jțÍÄ փy:ÿșa^ÿeCÈy‹x"„ùÛFÎĐżśU‚`öż†MHT „Á~žÈ^#Wą€AäTڃ}‹ÀÏ…!.dAśWc…Dü@ww8Ììá…lÒűđÛáÿ!8†€ÿ ÿÿêśßž€€ßƒÁÿƖ”üƒț›,$àwüu‚áÿÎBHÀA–ÿoTR‰Â‰æŚò7Œäș9Cœ<ÿńF^„ł;òŹțÆD‘ŸP°ăï;Ęôtú§ż;Č˜=òJû•È?‘‘à@ûß*ęț« /8éń{Tíù{ęûîƒ}Á Ü„H:Ò„>ČóŠVÖ‡wgk}Ł;.Ùl(VÁöțy€“vźÚʇą­ę+Șń,œĆŠè™…@Zź“›I_ËŸü°”LőBŠÊЖâoŃèŚ‹>G0ƒ=ŒÆqJ<+n‹ű4EŸžĐÖÂ=ÍdáG”xżđîëO/o»=wÍ%n€Ò+"ŠLZDąBAś!Ú3&– ʙ%ŃSžE¶—‘†ńÔ-Úç§ŚŠ Ô_ę¶,žæŒ}űđ&x(KűŒXs FìU4)5™ÿ#Š‚ńÔjò”üG-ž(lŠąWJÉÌÔ%nŃlkè¶âkß犇;RF„œšu”Âîëżmöj€‰.ÈôŻÓÙlç}ćǧjMsâ©ÍbQd­±GčË>­†`P0°șW~jÏÁÊÊŻÍŽĐ–›°ƒ#„­?MSĘŰ&æŠ YeÈ@$F>ŸPӃ0ž;˜,ÿx˜ „a%ŐÓ@ŚarÙđÀĂśćƐs•)côrŻőMçXÌŒć„ž|6,ÙŽ+śpđ „ECôêńc.1Dæ{X gRAÒ\ˆAa†^G·šŽčŒäâ4sÒcaÂ"#âśFZ»(Ù:śÌ€ąBçˆH]O*è_/W‹œ}.Ț*“!*Œ2}†ȘŹ”DT·u_żÿ+ŠuČüŒ_ÇZł°ÛÜɶL‡ęB$Ùčù0ùǞąÙlۙűÂZĄâqˆ iy°eĄCâś§_v/›N MbÍ!qé=ł![6/ȚÒw™?„Ëî>èbÏŰőUoúv…qFj7Š&5ÂY©jNmWú0Lgl1 ÔêŒlƁśżuhŸüŠ'hq--ČænœŚ€sêțœÒCQ@BÈŸ%)ŒőJ;”M2/öqˆ2ț |àtSžĐ”ĆÉĄw"§čLQ|hÁò€5žžá›šûÙŐĘÒö::țG#ț kô’pU‰ïȚz«ùMuĆȚű)ÀzêN‚w­Lz1Ÿâ2Ï3ÌÒÈìd\Š-wÙp(·‘æÎ”)îMđžRfEOĐ3hK0Mț„NȘšő™pFœŃNƒ„C{4€ÆOż4&ąM—3ČżZ@|îÓ,+AÔœH5Œ—ßR ü_^\8ìÄL[+;­^>Ü.ÈÉÙTÌ?XúÖ;ŒTà)äÀźtá·¶Yk3òzˆA"­J#îÁAę U3ö‡ˆ«ź ćń]•ü‚1 ”|ÂóAŠòdò“+Ú».qt‹e&ŹŁëo-“‹{s–°Žpëś,-l ;çVĐŒ€íÏ6¶ÈÈ>țäÍMkÎ\&ŁÁP țÚFőÉÒtĂEX—!s‘tÒ^Æ/kĂ8\Ńó1Eâ•boèJŽŃۜ€ș©Næš™ë R+~Ź Ț €Ű™áQùÂčLî'tčΚ· à€;tte«qîă|@%ŸNE8Ê©«çŚÊęłJÛû —áÛ;Տ—·'G"z€čV—{róé’óÌœžámïEIW”ŽIęìzÇ9ÚőTćÁâ^‰={őÀN-o[3Ț!~Ú!ëç§A1K=Ž ‹«”xnăQ5æ?h‹”$Šz/—AăMS0Č%Žêű<-ő’w횫—ÍœÙ_°= žßŻ€Ìü2†&:J óPqImŽß&ÜÚòÊ7` <Æș„eżÌŸȘ›ŸȘ@–Ÿ$Ž—ûPgJŽAÊa5xíȘcÒdÖ{ŹșűpO1š!sß”ae{Ęà˜cy~ÊZh‘•HMáÇí‘[dJÂ$á>$Đ-6śæšB„Z§üUd‘ß3ÒÀŽ€eoF’Sîà䗅 ƒé*M §ïê—ĐS”‡ßóżșą§8D,FĄÿPçF/é)5î{ëœì2«‰á•áŸ`X5 )P&ś&€sîÖrl·=žÿŒŻV^ Śt 5!ó_ƒÚË|Wc`Ż6Ő”rôP dÔEŸRûóŻ64/ùÏj ˜G¶Ć)Ł2 ‹đ~ĘP9voާ17üÖzĄ0ČSÛđfƒz±Ua;œ­Ż 鼛Tż-Č@1 óőœÔ.ŠÒ‹ăj|W$•:”vŁűž.ÇP1Üš rŠă”'93'Nœ†łĐ/Ț…5V <–sî!!‰óżŰ• ì)‘”ÿéâg”›6ĐôŰmäSÖ”GÙ[G„1ꔋ”ÓĆȚö\TI̎ŁX„”țADp{ÊPv4fŒžë8K2a>5Żń€æRc|ŹyEêëRÔÎwkâ†ÛN°vĄț3Ț€FDYëTß]8ìșY »ì<ïb8m֔޿=äż!H(KàR}eóù%ìif€•R„,Ëșê=GŠéXź°v”9L—űwŒ:ßÎ'J&^ÁÎ%’†4}ô?$șçs Z“„ó-ÄÇ>›ì?ŹĂÓz|ùæç7|2pߊ•숏čÔ6čŁÂæ”~‹3]Ͷ{ïŐĐS†1llÏT4Q?>ӈ$tșÙ‰ŚœŸ?ŃŁ”^Ù j»VUœwùRUŒC đ§ŹT{MżÁèŚ’tŹ0ŃßgőœŁzTß¶hú’Šž_Ąá'0Űę‚cîAܐEڃ—ôÊTȚ…§ș»ŚšrU•©[Ëö>…ëÎÙOBĆĄś_Ïą;HFpŐĐ™J}éȚ•é̕âšXÓąw@›H$LeŠșHsӐwÄÜăœ^VHušŐä:3ŐìG[yÜÌîżd~ńV~™óôäjê~ĂŒQg:ń@NòŠÖä:ÁŁĂÓó}keçò[‹Ò3)χÏV[…ú™>“­Ç| ÌCÉ|€őUôqäĄĂŒqü‡^XĐőÙ@™Ÿ čÈß3ęąșzX{žč’ŸËžmï€qáÒs;ș+„òÔòôÉșT ‰+†‹ç}™ÇK=ÍŹiÊZ€# áÛçW-§„m(ÎDäoŽÇŁń1Óù€ńœhš{ôBŸƒ·ÜÜÏOĆÀćkë63Ă~ڜ(̆—mê“ïś(2<Ÿ f9“T)n§Hv‘Á}b%šÚ{àƒYcC(*|]ązâ8ŚÓ òL1go;ïHĄŒŠdŁËŁ~êlœqœwmF€ ;ž!æeòô‰àk=ȘwśȘ/x ‡ Ć.·:1éžĂ_–Y€|èó¶ęˆŚÙTś=‘òČ'ÄśZćg!mdÉÁ_PQÛäę·é-攫SĘȘ9é ÚșܔpȘW}L”šŒ\ă]•|Xü»>XƒqíòKKOręńA­]ò:lnY^Ț2œqË“Ÿ„P˜üdž}Ź€ŸwóLâ+ć| æCż›|/|`:öAIyŚ_éđ)B§±d0"TOÔêȘ aĂI©}CÒlXüé§Yæމ&< +'iž­œËú)ęH û< á&Ő¶–ŃÀ‡ë“C/łź»fhŽkI~,Ur§ƒ^…6?, öcw;ò|˜cŒ&éÎdӍVŠßčüe›œT'O­ńt3[–mš|ąŚĆȘ‘z!l*ûšÈ_nIù8TFç& ”ËŠOŸàAigÆ!ËŒ$Á”ś€{t”ÜOű¶ƒČ œˆSßêÇORöÙl»±zŠŚE›L~hÿ<@%•|Źdà‰OŰőF1 ùă]'Dț•ż+‹«+‹•Èa 9ÆÈĄ”è[ Q‡†IŠüùűĆwágWYîŒęšçiúŸrâ0ì6ÊÉùĘ/P›.žÓ„yt«ÎH`ŰÜÍ+§ö@Iőßaÿ,vÓ|Àæ/ępŸ§+Ìí|ËÂYüíEăaț‹Ïì\·ŠĄFšĐsÄCÚùŚs~č !7j΂ń)‡Ë¶šăŒÍâż[5¶ŹË•ŽDeLú ùülžëŸm—»ŠUÜŐóđ'§*마™eG]MșDę,ßXêeÈh>†żÏ—;°—qY WÒdÌÓÍŁ°ri©Ó Đäì—H+ÙżŰÈÆ…»wQŚ ’čÜȘÓőĂą<éÇjìŚ›J–™íîœŻ8ݰîòms‰‹9ëæ9ÚŸć•4ĘŚÖnÇmjˆÄśöfkź»VZßÖAiÖ2ślđ1Òó HĄđìlŸȘœŃ+xÂÍûìUE‘ń“Ź:Ő/Æ7zÌš“ŃŃÜUłfĘ`qR9*ŽŒ+g{ZÚ\­FiGWlÉ>3 Țäˆíë/'Ò¶ó仟ŠqÔ„_?ß0S§·LkÚìP hő‰1°6›É„&àÁ}ÎąZț.S]yéü1œû9¶ßLV™Ț«ȘLGxÿȰb ÖŐÒU‘šæąžSC°NŁE+†Æ˜ÍAlšΙ…ÿÚŹĂœĘ{ç2Ó~„ĄÚŠ ż•U±wȚn|`± 2ž‡EŽœbYJŒ©#äêP Œ€y=~BtĐxîœqĐsąčbŻ=·&,ś>)±BûÜ꫔ ”4±7crQ6ŠéŠ4f€"cꜞ2SÒ$>œ ičB&Ł—±Ÿû-žGèWÆVÛŻ#RefLăïîߊŠ6öƇÂC”Č~25Ń\[avJèĘÁÖű]ˆ!Zx]„œùfš4ăÇȘććőbá(VÚaD‘^›8Aˆvㄿ/­é(Č|1“È ĘâĆÉŒß ęmŐ0#łß»küìÇ„àčžGü©ȘÌbÆ|”Č»Xh—Ü«šús‘ÔÌcsU32‡aŸ=śŚŽ#|aŹ6ȚW2œőù!Šû/èIA(âpJ”u-“ ?˜9r[%Mv":°YÚƒpÏû;ë ăr‘Ć1hËê4ŒÏŹ–eL㒾^…é†đö—òČŚOĄđ2śł!«7ČgN«|aǜۧm”©ńęÈ.æsŸ%fZŻDÔŁŹÉ ‹MĘăÇá(ïcćPú8gŒßâ $ű0APőë>ƒ5Ą‚°wőœ‘MĘ<ïÙșf!To<\ÿo;F­k߯–>Ù=žÊC”Èóś›JgÁ VŻžÎ‹fÙ(Ùr EÉ$Ë`ú™ÈöœĆnË~K©Ùő“ÿ4ôłÍxăÎïżÔ„G@™gęíÄ+ LlŸIíg˜ò1ïN3pxí‹0VșŒ¶,Qú'Đ>1g‡\ł{Œ’3ÉźhL€è|a=ÿ:Šs>‡7 E7©­VwᛑAy#Ąï›œCÆXę!œKEÇé”ÍÎ[Ăێ‚<æś•<»ł+é¶șl żyK•ś˜}ăqîđrWmŒy,ù~0[ïsáŒlÈÀXÂđúÓ +}Ű1çż»ÁÈÍÚRo%3•P“n¶ 8Uô†{p©ÖłÌüœ‡Źź­ìKöÇ]»XęzšËłZCIĄËĐ ™šÆۛ…h-t3˜•TÓßR‡Ź(>rśÇÖ5…Ê6Ïű±Đ,±Œ6%Œ”“Œ7ìhäńǗRł4ÆKB3­ČŁ‚±ï߀1ö蛎?Đœę2“"„ëÿœÔzáJŻ2cû±Ÿșž8Eštt s(N’nF•Óxuóæì€GA:бźŸÁŸ/śăm|ÎŸГŻQ‡ÿNiŸAčz«„&*àŠ·“ÄÉ2€fûš_ł&°ïțXőšŒA=43ìMç•eœ”ûIțž]ĆhÇc/»”æŹ­;hʈ43‰iuĆæ'Ț•z6míM|[â‡ű蔋;ú€Ì!Šć ;ő7s,ęcòځűXUśzJĄ~ÁHKś’łìjŸčîË2†ç‘ńiöíöȘó= . sUöęÀ3R'†GúȚ8Šì4–ÏĐ&ÈXߊőoŚ ïŐ<âÄVw€Źç6ê?«ì=)»AéŒK„CŚ ·ŽŽÒtsút’Óć›TüwŐá,öíŚ}M\Xț±«gŐnt<ìùŰŒv¶Ș…»Ș„€9Qž‘E-'œÒ5Ÿ "úa14 ű„Ž1ăTx'«ÁźŠÚí^0¶U±|]|ł/¶+EÒmž§\íŁJ—ÍÇçÊ4”kjYÍS~~3 j‰Hśô°KŹ|óaXÊsH‘a„đ*„ĄŸŹëU>Čæìśí Öæ'swzđÌ—ĘŰ挏w+%‹Ù‚ǧädőAPæëvy/Æè%)jæÉê@^ €–`úÍĄž#êAĘCŰesßbwȚ.ÿž1OÒć‰űu{69ś­Ài$-ë±Ț=?pÁè łTW{bŻT•ÔtłavëúÂei&Ń•óëUŽĂbÊè\­@ŹŰĘČqX˜H3Mtۜ~-bˆúĆ­#< Ł-w„  j1dĄ©ò$ŃѰÒêm'ȚgÒ/IÄż°ŚXțŽÁ±œLW óŒęÌtÿ4ÌgYÇûüèiń)ÂŹü%6ț}'Eí ‘˜…jÀdÛ¶ŒjÚш±> X s6XćJĄ"+˜Kæț^=ÖÁÚ@>N ïSò0lm{%‹&&ąIn}14Ś™.T«&Ő|-ú>Ëú+yUtIçšÉĂú)/ŸBhYùÎèŰJJ_39;>[rVûć Ùëzz©…QîÛNăš|Ï2ŸÄ†šÌd…ÏböȘ«ęEꉾô[2.jŒÚù{%ȘßG RĐ9}șôÈRŸ·Ł Q|ëĆ”N“ȚqMa9Ö{y540ád,_Qâ)êq1Mk€àzIqˀڣ­Ćy”Ăąv6›G„?§}[2–Sè'•dÌ5|#ĂjȚé“śs D$"Û«/žö_ôì"Êú„Ïé<»$‰˜‰–œ1 O‘Aœü ż›Ùó é‡gQńŽ>û\rĂÊ\ÄíQcâäŁ<êĆNwÒMŐx–{{‘±h$c˜T'I…$!ŠčhZ#§¶8‡7’”!„ô]ZaR1ś?D}RXŸ°&t4…œxÛ4°–.śăv“ęŠăXnz– m¶Üœn7œŹß©œGàSŸekAùè“lŐÔȘÍ· sù{ąćSșŽŰè ÒFÄ~Ò@GđW'•ËŠ„șÐD„ #éśű·šĆ.țƒ†§"ì)»hê矜4ƒ­ŸçâŠŃőŸf—ÀhÈ`Óűh§ș„Ö9eA*ÓۍÄÌ©áŚžÇŐú= Ö!"„¶Ÿ©Ë BžŒ3öŽƒŻëÉPCif),4ć*OĐO{ Žùł—ZŚ:‘Ńîć8ˆ8niçÍź)Ÿ)mŒh3m}ÁČwćUŸĄ_@:ŸXöĆL€„Û/U.Ż5Ő°“€łű†Ä4ï¶ 1‹ł_ô}RžéȘb„egÈ$țĄ°0öŸz€Ù„8•aƒĘŒ=źáWNM%œíjiLśV S⬎ƒČîÁóTh‰cVÊ;„ę—iŻzOĆmòŠž‹AFćȘҞKŽYĘj+»Ò,P™»ć,OĐ4R‡s{òq(:čRđȘ ĆŃwEWăűTŠï\šO›2tR,+Às)4 ănXPł”Lś`ešęâ<ž”ˇùww8âČ_ àWTŻ,pĄ0WԎ·2ŹsKÚ9Ž€nŸoá^C:À ‰‹©†$ cGáèQ-Í\D3Ńąá‰.ŃŻ3ĂÈ; â=ko"«2lnyÂëĄD™» ÂÏÓĄû5/æúh[AôŠ­|Šźß2?\z”’Ôșƒą”úž­<:€MuĘgW̎h4Șp†ÏÍ\€ęIù;XJŻU6#­áê"dé),źČJ:äĆŠ%Șłűé žÍ Áu›HŸàî_W?“BŃPŰä§žÙۍôőútlH·4"Ç‹ęŸ›é†çtÛ<J.Ÿšűq€tÍ·qŸŹĘ0€žë[ÎȚ™œ)7ŹąÇ]+í »€ż–öÖlył`RU|IĂ[1xż ÎÛ|Ve yòRŒîâ-ŰkżÇü +éwśÄùÖá5ŰłuŠvńÒw4“Ÿ5jËZä>«ĄÏŠPГëÎȚC™Ϗ™wu}őźèô,©oçȘșĄ2yî –ˆ«(«m·ęŽÀȝïaKŽŚAqƒFqołÁʧû7êÌś[x)­ą…«fpf…^$-0 NNéU–ïí2LgceRüÔĄy „Z{xV„­°jWV”™h3֘Ê8%bs_#ÿíܐcf$ćóŠÍŻ-ČNNvw2äŠTRŚ#”‘I9[òœî̒KŽ1näCY,Ʊžû‰ć éûœ$LÀƅÁęjĘęÿ+Ô)q endstream endobj 557 0 obj << /Length1 1210 /Length2 1406 /Length3 0 /Length 2207 /Filter /FlateDecode >> stream xÚ}T Xç±jㆠ>ę]ŰdË#;>vA6Y*‹“d’LÌÄÉCő{đŽT<ĄšàÊò(Č ‚(V±žPÁ­T6ÙÁ ÛIŽőU_ߗïKòß{Ï=śž9ÿè­đ 0uäčÀ)SȌiüàŻ o˜:a0w‡€Ižń“Ig™ ==g)”À]` ±n$ ŒáhYȁ,mXV€ĆdČèÂÍȚR , k :Àdˆ­űa@àĄ\ pŠ3ÌÌ8ŸĐÚwqžTü{. !%40|Ïnhncр‡đæÎ„8šDB r€ Šà'À&Š˜Êo–ÙÇ(‚Bč0ü/ô_ƒéž„"QŽ”Bx@ŠóPBžûwGHŁ1 ć/ș).Ąû )JlcnŸcÇ3.5#H9—ŠÂ>e.cf”Œ22މáąt DÆEÄ QM€!EšDč6*ÆÌPœ‹IyMOÇùŽj@Lt^DgèV~„„ à’š˜ ü\ÜĆŐ0ž.ĄŚ‚OWòźT„ĐűßsŒâ@!2JÁĂAèç cp4ÍK·“šr©ĆŰMhUŽ;0Dąì«P…îĆCkH@ìœ °XŒE+±„Čê~”’ ÿ“çă&Ć0XD+©đ"P˜|p#PŰń,B±è O ü1ƒ‚éùq­ó]•žĄ2„ç‡R\!àĂ=ș2€xêŠ#ŽÄÊí€)Äd~” ąÜmžB öûT0òÎ[ÿwç}Œ ­­róÀ`WWśăżžÊbWœKđÒČŰëL’p4ƒŸgô‰ b Úüÿ›992c ±i ­Ùô+Č–LëŰ?—r„$IDù: úęŹ44‚È.Łă.Á”ÿ*=3ƒú^ëhcłË–֝vZ,֓é‹ăÖ?ÏoHúæ’ZçÊé«!!¶ĔïŸgŰ̙ł:iëŁCù,à]Vg73„șúZ۰ŸŒÙ»ïL[_RÙ„gȘŚűúżT2ęÇ3Șź±BDL”‰èŸpŹ74pihÍg]Îmáoìïá×(kÙ©›:̓ž‹Fû66Cê” Č Èu:hœ±ò±íž‹šíaÌl_fÛÜÖîFÿ‹NMhI‘Oé`łwĂtÇdŻ”ÿú°WiȘźŠ6‘T0ČŹŸžÿŰáçdś„XőČÈțAš|•Ęppj˜üàg•Êeűq͌žűÈüQ·tNęȚę»ÒAȘś”ŸÄ?îyÊę+I»7ȝvæ;IĘżœ•h5‰†Ę›o|‘Ï,W uk6Νœ0 EÈ#í›z›6ó"æùa™ÌD±¶ë”À€û5ûźfŠő‡7êÉëÛ¶L€Î~hő (딞î蠞]ę5,vÜ@îŸČSƶEnyv„n«gÜy}Nǚ·lGèS©ț>MtuȚèCßR~ïëS Ÿ UȘÔȚȘdHl‹RZ“Ÿ9…ç,%_Äçf­™wÀbagjƱ†žHę/Œç暧;’ŐČöÀŸń«ÖÇ[#‚=ÁšæMŹŃìÊȚ§ŐĄ•»"–ÔžI Ù^iéș-,˜óx~źł@mš”áòü9‘zß6ŠŚjxöș.wHŸzĂanű)a±<çQ ȚÓ^LÜWćš\>—™°”]gÖ·Ü-ŃŐ^™Qpnlž8ù»ôîíw ӎ”­[-ËFcOßȘ:ÜL©Fré•97Ǘ“B7EïôÉÖ|0öjșzLŚżìű*­bŸŠ©ö‹‚xœlç^rW»†Ő„Œ>ž<ÎQd©Me?Éûq…űlśúąínmŚțY«šęԗȘ6·œùV"yj(ûÁ7ĐșăÇL–tȞŹYß«~›ž0eèkš:3ŹSrÍŸĘ9•Ó"ę±zû/» C JSb2 ÇYxJĂcf‘8Őu€öb ĂžƒŽß9­LqÓńj #Ęçm?P-ï2%±Äh*§ąŰ CgÆAùžàlJïiZĂʚp©ê=öŠÒ{|ŻLqę$gțC\ŠërÌsÛk„őnêŃ ›äÿdŹ+Ț–*ÊI/ä±/_'šĆëw6™ßš{˜#JZPʑœ0$<ÂG·ćä!ÄÙ`:]ŽjÁD,7,Ę5sVm1æuŻ ÄkÍ#ŽméæúÁÓó”3ĂKjšb™E˜G[îöț7«»<ĄșÁ5û—;œ,+ìÒao°OŃ@ítŠź <"„MœÆŁĂ–2Đ„·á™­MŐŹ”ÀČźąŁ­‹śžőš••X!/±8 yËô71-Ÿ)ŸáQœ/táOăeŸŁç[fŸÏÏ 3šÍƒȘ2^>çÜæ”‰ç”›Žš,Lnù ZYš endstream endobj 559 0 obj << /Length1 1179 /Length2 2849 /Length3 0 /Length 3657 /Filter /FlateDecode >> stream xÚuS 8”ęŚY*RÈúŒ%;3cßłkĄ±+KÆÌŁ13fžÁPY^ĄŒ-eWHd)ąBÉJY^‘Œ©$•-YJ’­ïœïŚśïÿ~Ś\ŚÌüÎ9śčÏčÏ9 pŽłș9Žâ‡·ĄAu€Â@cÂ)ö0@ʂBÂ1$"@ B Š `IĂc@"…l…ń†€ Űc˜R@" ‘z†(}…@  @7{C€b:ì àˆXđĂˆd˜&›öٟ ”Úq ê?Ÿ<1Jł+7ŽB&1ȚŠiIĄ2iDB()a•+"ž@Đ F]bó„ń;ʁ±x@éÿ ÿ0d§ƒ4ąÄ㇧`°uplńd< C‚0~l…CIÉt(oR 55CCC5d†…FĐÄBT$Œ?šI ’4À0PY0§€NĆc‰P |Oe‹ȘPńŽ "}łm" Đ0d63Hˆd,‰ĂCôĘR  Ò(?ò@©Đ:茄© @Ąh+ÀŸHbGc@K!ÓĄ6èĆŠÄQ°Œ <„ÿÇbˆd:âĂ@6šJÂ0!^(•FÜ,A'’ żŰŐ U Ž„§oæe«ćÂÙmĐÙ@Ò߂`šTsKٌú_~"HǓüÿk>6 É)É^D€œ‰{Ÿ«ű_ᘠ"‰ù ÀŽÿ=æ'ҜL€Q7Đ0@ü4é6Ä0<M±€?†»iweϙD$ă!Q7ûԑÄo>—"ö™ĘœÎß.wüÏmbû[x2îśČ! 7‹Ö<èájîäŠúoW·iMÆRplęP:ș†FĂ0aĐ1A/  ‡c/P ©AŠ€ 2ÀSАh0ö-!‘(@“JdaÿYš;è€âÄŻš6ßÈ_oš$1 đD@ÈaóóëżśżŽeaA "Ôu”u” ĐŚŐôާț3Ë Ń %Űwʈeż·óšÉ0yțhVÒgș·ûÓAĄÏӇș‘‚M‰I—iș{‰­ç=æȘ^)’n^ŸÎ]Ś}šrùf›É\H9Òû%w莞Äéź9΋.Úă·5·æśûT]’­ĘÎ:rŐ;ÿ@eWÙ„Û➘ąșœ»æ‡– źxqpw}ÏŃÜ}Ô,€żœ»i6ćœ—ÀčŸß‹K»9 ¶':꯻űÎ$&Ł€EP0á‘ôžë…Ź‹Z&ĄŐŻcMŻe°ZXč›ć•6y^ HÛ7 ÛSżŁ’łb°+òÂĂrW^ËÿÁé3s ĂoŁ4+ÔPܕłŰ ë|ô^WÎ2—8ÖòćT PNl\3Ú-Öd»CIÁĄÁ1`šzÛÙmŽ”ž>‡XK:+‰Œ{ąžśt·čNѝFÎęîÙ_@=‹mdìlÿŒăąæĂ ś0“éLéNűeĆʑ„ +JŒčZșLZ,qć*{^^iŻÂԉ$œÙ„~žsŸ”ÙہÇÜ{‘™ÙsŽąbPó€pűŃŐŽăïçDHjá=dáùȘ8±@EŽÀÜ)wśŠőFÇoZé ípőpòńćôóejł“û.t§„șI h诏ïo4vûœȚHü"żÀR!¶ï„ž{˃ökăÖÈ<;?é\76wGQ+#|ÏŐ)^źÆÒZ˜'ÉÉ̛ë„ÁKÓÏ &ÿ2ìÀĆÓŒÄ/_ó1ÏëÌG]qídĆűÀć2ÏțÙ]і‡rÊ=Nhóö¶…5b)ŠQț&!˜óƒ€­<‰ć_Ìó.8Ć·ÀC?Ű͝öűVmô61fŒŹpż§S)Ž[±ŃŸíséĂŠ2wéË–ÊŚ W‘–EĆϋlđĆmžùBÔłsłźx—‰A_>‰ów3 RudŠ žSœ!óÄlÀŸnȚ7Oœ-U6Đ̘kÏrÍœÉ=Mśč[‡Ńî·Ÿr`HGxkFł%nŽó HIN˜ò"{kęYâsź^vËʎ—]qâ^TŚČáŻ.À,ŒÆžÌŰ>çÂ_Æ*šiș-§’-ž·†sÌRŃÏ·Őłçé||ĐìB㌰ÙKŹÊ*ƒOIòÜsÂÄ©Ç][xæ}—9tGŹFMÎśćéÍ,„ńîșd’‚ˆiő„¶?2‡Üö5…ìOœŸî|çȘb ŹĆÍÔ}\xZțÖćdߌšżžćEqÓùS3ćïjÚÊ)J>)=ÒbőÂBSbȚV>fΩ—”Ds&À­ĄÙ5‚w˗wÀŠÎŽŻDtžĂ}WŹ‚kÀtćĘwœš;>š={gM–*»‹Ύ+Zê°+ ­@žûIQT.rQÓ4%T$ï.u}<íB9ÂՌЉ{Ąî‘]ÆŒsê+ŃjÛ€ăVșôÂA…Öê!;ż”Ï}e]oĘč„—‹H~ˆqŸ‹^]Û)ŚV'3šuxfÔ·&àlnl”_ĆzÄu+7òń~ühŃÈÀ=ŻőĆÁÁ\ÜUûȍĂï?^_Ëÿ|ÌęŸ‘˜«oüP…#ËòU~[áy©wûôĐ˔+Jș&GÆt_żöF1SĐYßkw'Țęm‚“苞îŹô4Ń^‘Lfì[=Îz)–śä±zœȚv/Ű”ÚÖÂHÙ]c3O:ś\ Ór_Ò㞏Ÿî,ő[›œCž«ś* kžKx3·*‰)v‘…áZJês7ž…\GUȚF„p…ș ™|ïúP—Œöv©]đŹ­Ă/oÊ7±n"Ò‰ŁłÀFlïÛĘî[Č!đ0ÿGÌÙdÙ”üˍ«Q̀LĂ·›R2†"ÈoŒđ=†_ˆ‰7OȚJ^_ńS…§Á §•Jç·5G-U©š0ÏNâ‹r[X@™jûUʅwÛÜCńNdœÓdr›ű§€Wtkk­«t•a™FĂ șśÙ;ČÀÁčаòhnÏĆșÉvŚƒ$&Wu9SĐAĐBÀŒđ>mZù\À6îšÁl"gˆŻéšbšțƘaäșWÍT>“ Ęă}wĘùFŸ5]N1;p­Ł!ł8mč4 Ną”•škEöìbÍ?È>ę#ž„šÿą8ƒzĆüćgï w ©J‚ČgŁxŻÆ){ÉNuä’ƒŚŒ…Tö*,žÀúcÆg_ŐóĂű«\ÔzæI‰č}eÚ čvÉzßâąț€gò.ĆŐŸÊuÚæłGÒY_ïp‰=Üz4TN*źł©Ț±4ԜđœÀz!IAéȚ5OÈs#¶Á)áO0[Ń=V /c­p<Ùw„ăcûzO§ZêłŻ€<ô0Päš)sÉ^É75üÈ5ldÆÚyŒ¶xŃéžt­-ȚńŐlgI±ÜŁŚÌ?d>=ślçȘê++”JŽß^ôiț΃篯Š)ÚCÛż¶ÉÜÆć”ȚŻ„ÉINHÚÍß6Ű3vWŁ…b¶óà]'_Éà1 VU?G8ïÄKÜÎŃțž¶'sÎRèšÇT‚’lcÔUŸûęÿ:ŃhęM<'oÄŚCä™x,RéöôB orȚGC%©»ÉEÇLwqÜúˆeĄÿŰ­…ô€ŚûSj:ł»üŃmûÓ¶]H-ò–'—șŒäF–?ńYꎌ‹+žE'_chꄱŹ/o–aÓóčNŸyőćp7ȘL"%-ő4Hčò»g>l”ź›ŹȚçł($ŰĆ9‘TŃUșĂb@~òIÆLgWžĐÖ¶CżàxvńțHŠíőÙòÖÚ”ï–Dí”Ïđ‰(yTܑߌzăiű€…‚[kœPq?òD“2§`Cl2„A2ú@dkyÆó[Ń!,Æ ßő™yeĐʧ”BQùY™žNZnŁŸPé‹qŚ::©ÚæȚ1żÙ Ÿ)Vë‹/LŻ»ËărȘś’ÀqànÉé옔]#H⌹m8 NK­Qúç€eR,…Iaφ Ïű✛îÖ­ŒÓx1ÆäkFęźŃ endstream endobj 561 0 obj << /Length1 1226 /Length2 3611 /Length3 0 /Length 4487 /Filter /FlateDecode >> stream xÚuT 8”{û¶YČT–lo‰ȞLve_Čeß3c ł™“(IDY!TJ–ŽÈVÈŸ–} ‰ìÇŸNÈ8ç;çûΜꯜșæç~–ûyîßó{%OYXÉi!đH}<Ž,‘«°kxSÙ ƒé6ű»€€ #Łń8]© èр)Œ @”Dą€Ș  (€Á ô@[S †ąÇ@è @ û/v@ ádÀ‰BăŰAû\F8O<QüGPÿòù!‰$: ę'» @çFàq*€@zȃtđ*ò"ÒÒp@Dá v~żđÁŻ‚ü?łÌđd4 Hÿ[öÿŸLÇId"ڃBF" $d/$``f qH" CÏńÀ á€ œ(ŽDŻëE&TA yŽ"'ą@p:éIĄyrYFĐ"0€D@ÂŃôÈ8’°/êy€€$bŃ€ƒ±Ń$E„áö™Éxƒc($žŽ{ÒUD<ʏ„{è„,đ$Čœˆ&<°ĐŐ<јęh€ăq$ú$ïIDàá,’žÿ/†Æ‘22€ŒÏ぀Ÿ‰€QéŒôR"ú  CęÍ~žź* FD`€ƒșûȘĐk!Đûcö1 #0ԃ\üAÔ_üh2 ‰ńüŻóѧ`0f0,]ÉęíöŚïżB`X4†úwĐÿŠ1"ĂèháPtÀ@h’>:‰°@“á^€' Coî·Ù?W ‡€‹xĐ? ƒÿáłöBĂ}pûÓBÿtÙ!ÿŰK$Š‚ÿчűgŚtÙz™˜š^”•ęëvžőpp“łZ&m^è釾–uċĄô~Ew ;I-—Ö7­íò\„žu;=őçę ܃ńÒj'Ę€űd8śr„WąR[ï‡Ż7ȘN/Ž.N`iëx#8ł:‡%ÁMĘ·:Ę:Eńl°čηŹ[žLQ~.è­Æêvż3JƒÚa,0ï ȚȘÉoŻež‚z…ž:]êËÆ!¶òƅN”wűwČB–ëcûšŸê)ƆÚÌ órÄÔĘ937™Őq8Xá«§ŒŰ‘Wń+Io?ßő“ai©=JđuăE…ŒÚ)Śś5[x”p±Ž"ÙÏǘü[üțxšDÁ7 dS]Ö &DČHśF2Á°Ä·épjœ<$Tö“‹óÊăÜŸÀΓÙƒèрuőÜ>ł PÓtȚNÎ4ś,ÔnGfæȚrzvs6fÉ6a|–cc4œŁc+„ácúÔpMqÌZłILoȗCŽwœN[ƒg+KUă“ÌJ‡Æ)^Ê«€ÓR0ĄzA†©ÚŸ,“ ȘŽŽgĄć’Š•9€ˆöó„ —Ê„yÏčÏ7jŸü͞ę–AșŽÍó•}ïkeiŰZó=%Ł+92kíùȚ&Čw€Šqß lzńŸ_rœÙ­ŒđYl?0P—Wcx?Ł’{m» uúŚ­ȘïÆÇeÚëÆ psGùGYÍm&ocIŽŐSڅĂTuŠ/‹™OÔXbÀ?Őëž ê4ó“éČò)?Ûäæ›ïzcz$-—2 ›Y‘Gœ]€FĄä•vwqĄwș€“źč‰'ÇŸæ^ ËÓîČéoÇ­đùțJ_9cĆȚSÁÀćq*ÒW5NÛctÚ7"Ću8{Oî±Q–;eT†‹ƒùHßÜŸŃ‡Î#D>?ű@Qэ›ž\&țE–Û1  ći^IìqžŒÄśEłGÏ ~6Ÿ$"ïżpș»Â A·ydÏźçVⓟSŃ©^Ÿ«}CYę¶¶\QÜ=œEn|Û“†ą(Cž.SžđdÈQ–êEŠMfIžÓź’ÖœtME4›_æÛ΁ĘÆV/”xZčæ2`)ț.ű;uŠÓƒ*&šòXÖ@k'܍E”::„śôx[ëűČĂ$CxꟂc2.=ïQÍWŸxíűò‚Űk© Ęś!‹ Ćv.ßîbbmLìtjĘ}-•.Fc_“sń—HŒĐk9n5»ôXs*lț[ÊÏűgG˜°WŚX‡˜s”ÇÖŒ9'ŸÜ^ȜwÍëĐA=یe‹I<óőyFŠf=­!ò†À‘ŽÚ‹ ©OìT­§«ătÏÏ|QgÆÌi}XeÏ\ œq»7ń͌­p]/GqÔ+·2Słœ"aÄ”“JŻ”ż« !Ûž3©œ»ÍÉ|Ê”ˆÔà¶"ú>Đżm$§XśÉźäœû9ȘȚv YÍì̅kŃË&jHÏCń# q‘\Ÿ¶}Ƙ}Ő-]|ű>•iU"NB;1]š! ŃM§đ%ïc†Šžń›L,ú㐠û”r{.ʏpUŒûVôædƒ^ŻÄ„6ÿéY§ńúąd)ÚQ°èښUÚiÔoN"Üé5R—~ÿ•țűƈs‘2ۃžȘŰŸeš‘Ù•/rœVŒRO“žßJ+mä`±°ż«3dcŁ8Qÿ\ܑëXń,­éÓxnN`1Ž]Žá>Ž.Nń€‹.·7‡9k”Ò\|”[dÿŽŚËșzș/R%^łhHTyMoóX‡Ń]:o)d'ëOpiĘ9!ΘćpA±îtù›»óÍá=ùă·­ŒóW ËBšžóûÖ%5źXpŠ›'?›Ú"2t>ÍȚ<ïäÖdZŚ/<|úé‘^ʂæYĂRăDFkçR|lńLÆ(߆ż›mțwęÖÖ;?ᄠ=œăŒü/M„n-ĂŻ$黗NőnŻ|/śö'úzUS4Æ6ŐĄĂî3Wêú3â—A©(H”+òÒX6Î,òąüIćÈK™Gă^śù†b^ò4…2dkg…ńá~žèòă|%Y̧èâÀoÖËÒĘnșQ·!҅2zsó6ÿ3‚9GA—xvÇŽȘőŠ€æ[șșe2bçì@Êd]gVÛنÉțąÒ9¶|ÜGĂqŰDCZaêősZfÜń}fz™Đ 퍎IőF^‹Íąa,GŒ33)ćÔ^ł},ê|["Ä;ŹÚJ™ű±Ù±EűápežN`TKÔȉy/(ĂdĄìê‡#Û¶§ÍÊWŻStčxzïșÊȚ»2ašŁdè5e F™ č_…‡­W;ê$±—É-^ߜńgăűu9ôpÿMمŁÙúś~”)[ٙœ KÙæëŸÂ_Q!u˜ŚêțžŹŹ›șŒ yÆ›Š‹—âÔá'y> žBđ€Š$òżk2ńĘ ;oăä¶b·ĆŁÔgk ÍĘŽUÎÇš”«džń˜‹ńPßûqSsÒó—CȚwnőgf•é7önƝŠ Žś–Ï•zÍdŠ ś‹k§“7Y6ÎŻfśÜrő|ËNȚ±»“›!\ȚÉź‹ô9œĘ5#èTŽ‘ ŹTneÚŽ»ȘśčqÚ6ï„wKŻČZÛęŁŸg c§a1ČGSGĐÇćÚČ~њ"9JïXyú)pÆűˆÊ »áV‡vçŹÍï}ùulÒ}8p”G.ŐOì&JŽk§”YŸż)w":bXžąѰ¶«cüî;đÓЌÿ+uËæČČFE‰.ώżŻË)učšűŐeÊÂĘĐóeêC4†·»,m[+6œJ9cE>f`e5•š’ăJÌ~~đR?°ŒUČ^ȚąFìœüuœ4Dzâ[€pL–ƒr‡.VÊúBZoĆÆŻmžiÆżłVK2ČFi|›ú^~Æê{ôlÊđ1”rĐ0ï‹x‹,»á•Ò†đ+ Ä\őr…%Œ„ęžȘÍGŠ­VŠnzt'|s}Ű%Žű„Ce3±Łç…Txê°c1s~ҖsvÉ;ëő2îȘ‹Đ$æ­Ê3©D5¶ˆÛȘž%ŹuôÖÈŹ„ńˆš‘ËY7Áxÿ]ĆîYÒČò%íÿB9Żö endstream endobj 563 0 obj << /Length1 1347 /Length2 4769 /Length3 0 /Length 5697 /Filter /FlateDecode >> stream xÚuWTSÛ¶A©Ò€c9"ș éM”B€@HB €*œ) œ "œȘ (HU©JWzQș”Œïęë»ïÿ‘1’Źčçjs­}Æ8ŒW M„UìQv0 ',&– !Ț(=ÎIX AÀĄL„ÁÔŒŒjG!Ő!8˜ z/@L““‘żˆƒÁâDą™ž;âHäˆ0“:ęĄìáP`s„#©EOSj!P€˜ä_žœ;úßg0 –˜ àÿWv€˜Û…Dxö0jQ5Ú wtÂüüP@sD†îŽĄÓÀżżĆEț鄏ÂÁĄ0€ÿïÿߙˆcqž;fž#íaç4őMM† ˆ>v§ éƒ"±ÄžN8ZNTÔÓÓSÄé.‚Â8ŠB‰©0œš#!‚ĂăD,°hN ĂCaèSQ…4 ă ÇțnŽ1äif €#Ąw{1=w Ș 1(âč+ń„Ê…Ć™@1p4@aCu ÀŽ8eCp…ÄÛÀ("Óuw…ęÿ}†ƒÀ‘XĂăNóŰÁˆsÀą/b^b(4ț»w,éűwv!ąȘŽŒ=†ęśTb,{űiŰSGÄż ŃŻßŸšßŹÿÍÇaa‡ÿš†;Ąq%*yș„Àémá1!źp„ŚßÜSê?9yȘ ‰bˊHÿ‚áX 8foÇA‚XçoÜôtÄ8FÔów+€°üł;Npš òŽń‡» ûk‘ŒaŽîæEÀöÿʜšàïșE-tôuïš țóŸęfĘBBQö§Ê‰KI âEMŒFDK đ#ŽĘ†?]'@T‰Â]Ž;îq<êÓ[$+ˆBh'È)ür”ƒáțÄÀ€š#ÄŐőOˆHB@\íìÿÄdQWśżm10 ŠüĂ‹ąh'ű„SàO[ ĆÂÿÌ#& ˆâ %ÖB\•śŸ‚wwÇ À+űÛûÛ& ˆăû`âĂâtjż?ÿ·ú?† ȘŠÂ>Â2`@X\F%6"#!ńà?™Pw †ž°żOÄYțÛț}Á`0< J=úœäœô<WƖŃŃŁ~żÏW^B‚M\|öšeKVëRĂ똰vČ îŁNsóÛ¶+>5~cü=v”<1¶ÓŃ/ĆMŻêVyòűÆÆw– žœ„ƒK1ŐíßÔp‹‚ĘÁ€ȘÏŁKŽ=Z;j]Q»})Ź' ™‹w.Z4­ęȘ6herš0†ÜhÇÉâóû9zV”,éôˆ14‡GŠóa€9àmqæë„|ˆòW‹À“NéèŒòŚ ëEbVăÔ~Áob矰ł+ŻhôÈ€MĄĘ~ tźn“ń Dï9;81ńšŽżßÁș%_ŹUÚxâ3; bEvŻÀ@f n-v‘ęÖ§ ßńą*śrUO]æŚ‘À€-_Qšï X­&Ę1DÀ<œŠĄ„l· < zŁSŻ©V6D‡Ž @œÉštŽŹÂ‰ź?”s.\z ï…Ű Ż*’­Ëßé=ë€MŁ„Őû䝆[f_ì”íË{îK•%fčę>˜Ž{·`ü-Ś€)„€’Rjyôü8Âe|—ĘižȚ șO˜œûqk-3„‚-‡ž„úËÍX&ËìLkŒ.ï k”ŸX%Á.‰­s&L[†ClÔŻÄÄTâ„T!­Ț1Ë bN‘Éźîöčm— ŁÎŁÜnš\ ÓêŃ0Y„Jž©F›ÈWüĘ$ț˜ƒč“éCĘëÔ!}1ȘČe›FӞzEÊ#äčĆoiÈúővÔŸCe”Œ°i p‹iïìäÈ(ą“ìZĄ`öŚ) —Ż„”fËś1čĘăcB‘űKźăÜh‰ÂžœŐ8Ú4M‘Ç'î3±cEŠŽfCż(S+iśVí8rƒE ĆÇÉ»ń žŒŐêo_ž•8$©ë‘êRč8ÖMËàtž^“ _tÙG5ƒö.1 ëwü3Ș^ƒÊaÏÚ:†i<Ăz›E}æąŒ ęA[èVŻß#dÏŃ(­ÈäÇÁ7wC1€Ÿ,T„|†öȚeŸ3ÚÌÄ|ژ»ú;Y7™ögœŒ’ÊëÎ6Û"È“Žç_]BÒëæŽTȚ7T{RžRqóđ ‰ ÛŚŒTł 9ČfûúА඄Àâ[ye›ëNš}iÍùžłS­5uÍòú±àOśWaŸQŻŚ/Ő<“[p§ÎܖЛdìÛÈzbȘŸ"źĐś.żrUÜđšG;}ߊ›í0ò  ŹđČ[<Í`‹ĆŒRƒh[ViĄxùí{,Ąò… •JÖő”QÉš|'-OŒZÙۆĐŃÓÜ°ŻśÉÁśšŹú·ÓÏđ#ČȝȚ·`&㜶5t«yZńőOó„’,ÎT3 bêY4#4\Ÿ„Ąź‘zpšU3ɖű%(ÏۊijêÈŐìWc,qÁyŹS'|Đb·žeÆ­čóŁç‹“ŁÀńBYžsöó[Ę UŸzl%ĂjhŻÒŒ{ę¶ Ő)ăn‚ç'»>•-ș5‡·Â”qPNŽPÛÊKÒLqækć^ü"‡šèBĘ+ƒĂŚÖ‡Šő±/Û©‚bù¶’5‚rêę=)~Y)•àóŸ$žÔ° >Ż[ œìǛèń’úl0à2ć“àß"Î>È€%iuF‡jÜzà[BXq䦋»ç:& „)ȘòêŻYË 2ƒsŸ|)ŒúâQ©…ę cÛyŻ…wĄÖ”vÊTćSPvŒ”‡3Î5^ßíšôI­í3ÖäȚÎàîIӃt.ÖKlKä™r8OÏL‚ȚÜ:țÚŠ|ȱÈESš‚~pʍ S…lŸćWčńQ$,Gfœ$NlçÆ0Űrš+^ŃïŐŽáPńłCńœZò”pÉ w”twmf;ś+sЃ’‚èæß}fhç‹yû’9ê{F€_úòè>+î.V—żçŽ’ć»6—NòÜ\ƒò%&?­ÏrÙ:oßëÂ/K˜hÄĘśigđœ'?ńóaĆ­çUЁów3näX}|ŁĆi4€»ŒëŻŽÒŁ5šgÌwQy3ÀBÈ]—DȘęÉ „K{1śŸÁŒWg/Ęfcč)ęĆ{] ·Y…Œč숕ńU Ź\Ąç°\[?a.:>źȚ!AŹ”|§ÚÖîÙ?zŠÿüőÌʝÚÎąqM͈zŹix?C±6'ĐŽö"œĘ:Rń…VȚŐ_”Œ ïżWÿrVțQEJ„­2ámő.ô n»;=Ÿ§Č&ïgìŸ'áYFôí›ü‚ć—EŚjZ.t6GîĄÈ[k%ü.€wvâO2Ê _HÉżS1,#ǂXGKÆ@żXòùĘtYFœ—T…W5rï ]ŚĬÏĐÖ7EËûsĆÁš„ÎÏEáÂȓnëĘ0^à%ŚDퟝśȘ‹lËaçčkabŸòÓÀ”AŸ›żùìËI,Ï>Ę ;wŁŐálEtyJ~›7e”HÊ8èĄÍ”śUžxûsJÚĄŁČ˜í’àÒÍÀôOv–€0é}ÿEțùÁ,òÍ9ŽłÇ4ù±„•ä‰ć‰ÛȘ±F+¶w}WąȚȘXÛNnš>…čnæòíœ3n-Œ©ò|œ­‹„e±Ë‹LWSŐ0/¶Œ?ŸagŠ#±rć}hű­aŃ_…”•=J©Ö»?)'ăĂû*œòÇà7»uBŻò©|Ś(ËΜlÀL;/Z•„PV˜đ{ĐXáS,”† Yë›ÖŰ„·`çœĆéćöu/re 0v–5«tńxÀ}jö5<€{QF©ńÂ5šŹÚ߯Ú2ú”P¶ú~FAv’ÊI[›ź-ȚÓÌ<ș„ŒQé_  FyL%ú@ęaÊĘB·{ú°Î~ŚÏ “™’Ś7nŒšòhXÌrÜMßùźoĘxœ5ÏȘËkÛ[Š‚Ï{sX4 #çFÿ: jÚ)?ëm]x&șuó{ż'/•‡rAS żŸ))eìȚà«hÔ]‘!Ű}wRFż'źgŒl9`=Ü7Èđ'22"g}Ê©É;zÂfè›2 PÏóa>źŽÖS[Uș\ŚOWAÉJÁû|/š«aŰ]Šœ‡ƒßb^gvŃë- ŃŠ0ś9€j«–\Sb8>΅ˆÌmȘJćo°TˆÛô~eU|°ń|?ï±ó¶ÆŠ6»8ęá›ÛêX-‹yéG~.î™b?ká֜jžÔ•čțpéxȘą\Š–[ž%țìAă—HaìÓn„•΋/ŚOŃê‚e?–|-7èäćr”L>ÔęȚ§Š†à'oÛömÚÙú›"uĘJ\Ąô—C;YbéÌśä &d+èßVăźW’°$ò uŠç§MP~9O§g"ÓÍ)đĄńgYèϊ—–p‘xeŽĆ[}Ól‰Ę†Ç܉KQˆceÍČjŰ!g}ܧê:̗`d<’?ð–$d$—ìÄÓrWŽ”sŚì‚č]çç“û>€P…ÒXôÉ —!#íJ·4[ąj>ùú^[„ńž[’ùéôÍ镐§’?ŸöYösˆÆžçÈWžżAșì„<­.#ìÙ)ÎÊÆg‰Ț… )żŽ˜8C­:ʓXVwtÙa@jêćBùûò›w&–ï^Ž*}­ îZkC8Ê*J9€ŹÇŻ)gÈáVž?<ŽŽÚ Ì' Ê\6žŻ[QoÉÈY…șÏwQ‡„|"H|’Œ‰ń7 OŽQțxšÒÁhkúÄâéȚBÓ*§śì8·Ž‚í{Âà1 “ńÀĂn›éEб&gÛ—œAY4ùëͱgkűŽYrŒwčd%îeáŐZفá’F†ÖæHțJEúÂO­ŃüT?ÚŒŽĄ\—;™ł^@‡¶ïöì Ž-q1=#ç“úʰ9Ą‹  /r~œò=cÌgGÚâo!ÈÇÚęœïíÁkËìAëă֙ÿ`âH endstream endobj 565 0 obj << /Length1 1384 /Length2 1236 /Length3 0 /Length 2088 /Filter /FlateDecode >> stream xڍSyTç—.a±ž PÏö Y&HA* „}_E)Ê0™‘d&&C)Ȉb%"‚ €”úĐ'E–bŸ-"ÏĂ}Z\@Ćș€VA­Z(⛱9ç›ùĘû»wîœßïÚ/Žˆfđ…D2êGà$ƒÍ„<@ˆO`”Oˆ/ތ A.4{ûŒ” ïčhöqš\žÇ{$9 “”M“7”ÀAPš°—6ڃíæAÀ‚xÜ`%&ĄLDàš‚fïCÈ4r,ELz€‰Oàˆ86çFڇŸ•cŒƒP˜ŁRê,Ń‚Ą€fJ GO1IÊÀfČ'ҍGëaž>FB*ƒq †§&AAž_“T“tăB–(*V˜NŠúêaàǏ0Őäx‹ DŽÉHSItmČtišIûâBB*EqRAÓŐ'Àä(B^ÚŒćTœPáéïD.隊ÉX±8¶> ŒÓ(mҖ‚’€±ÙŁšEh=— dyîșr›_Öó?Q1úÏqńgŸ=SȚšŰrl~oAńo¶čż€VUŐ~G⊆,Ό([ëçgb%êÛCWw[tȚ2~èęF •Č}t­őĐ߁0gł…”ea[­ƒ{k’uFóvżC^~ú@ő—‘‰ù‡6-,r·éŰ߆Çč\TțìԓÀ–čÂ-=‚ˆź‹"#èÛ ^ęć ŚßÉ/zŸő nŐ.ȶ ȘąŸć}ìbà+îŸnr2”Ő{Ú3°É@üà/Gń*ȚAÔÎxVr0žt\›š4\ ŚÏË|Â{”y]DČ©cóÚÀ»MÚűZÏĄ=ž}Ę»˜<źÛĐŃg%tZŻžÖua4ąòPIšŐ ›,îÂûv͋ČBWä5lűŠ«Sp}Őy'‚ś‡ő趎ÜkÇ.ó4țeß, {k6;g‡›ûf¶ßï~~Ó#/žz»őÆț™ęVÂd§3¶\^RuÌ4°À8ȚzìŽwĂ­Ž:lgyiätőZêÚŐj›ăV±ÊntčȘÎô%Ž)œł7òRhەțÇąf—Ô"FF…>-/ÔMáțŽö+=І9w^ç”x=m”Űę~ÄÿÉ„„ÁêŻó»Ò~f찝sJ‘șï(vïb’qá.wț6gYčꀏÉÚAKępX|t<śÛűĂŰń­ĆȚ;Őo›"țab$ÜšäÿÏę ĘڊkËŸś—`]xö“–^íçUK§ÛnZźœUÖ .ÍșUڝоbæșiÖŁÏ^Ÿ(zöž2,żïÆż–Á6§žZ~źÿžęƒpÔbŸëV“QgŐìvíÜvÛ=ó›v„ˆ~âșÉOTÄXe7~Ńì|w~{ëÜÍ ÔT«êżœzQč"5óùù„%ŁyûaÉÜđƒR?Ë[’•3‚ŸÌ“îâsŹń–śĘëč¶oééY[Nr ç 8țú·ÀÁ"û#wݜ‡OY;„ć™ŐaF‹ŒjÙ”köH rO„ȘÛ7ɇ§KÎHÏaŻßŒÜ=pŚöMçêÊG6őwjXf͍Fż› “ ű»gï.wŒœàɏ ˆ‡BQçöŃà§mÀ}oنŻČ™7kF j$ù”5'1sŠȘeüw鏰3XŸ”™9èìèƒxN;Ż^^<Òrł†ÿĆźŠÓĂŃa*§çn„s{WfČŒœ=6%#oz©‹CÔŸș7Ï<6«șÇą::Ż|z‹ƒ›Í]%G{Í;Öœœ_p8ìJó/{öΚ?ú»)ï”g™ëoŸhixA>R€æ Ô ùÌ ö–­łë/.8ûIDÇĄ§5†ŒœuûŚF/Ž›oj„wŠ„`æ^;.YÆó#™QĆ}™ÿ.ŒÚïąa€\‡ÿì+4ëȚŽ ]ŽÁY‘ŽY<»Ż%#ƱeÆ[^Šç„ú-‘œÂ*7“k•°Í9R¶ˆÀȘŁë“–ä_4WŽb„'»8} búہÖŐŚÒöEÖć• żjÔ> stream xڍT 8TyÏ&ć҅r]ÆÙQ̜Á`d«‘;ƒh*Ž™3œÌœ3Ícđ ·R.•e+%Žd+č$_čUŸäšĘVJQKWč€Ëžq«öûžçûžyžwÎï}ï{ȚśÿÿœGśwO# €í07ą’AKÀĆŃՖ  hBAc9]ĘÍ΅gęrș^°@ˆ`šćWŒ Ÿ „D&†N!\€jPÍ,©æ– ƒ }–ˆ ,H„°&pÂPX(§»㇠À ܘ{ôY•N77œJ!K€đq!Yˆp%3R$eˆc¶EÙ1FqĄœ€?DłˆsŁÌ\n0Š…ąłˆƒ lŽd vŸò3Šì mf8„Kî‹/ÆH„ÒMAȚÀbVEò‚Ía|x*H•ž‰"#űàcÀ‘&țä"„pAńuà[$G„l„…p ‚Ê}©NžaÎ4&î_€ˆ_%żč§í„ÂŰÊ ûBŸșbÊV{[ŠÛš™‘ç‚Ö֘ˆ0ąÒ@`ÊPAăùm%w™éä«lG”ƒæÓ '5ÛŽhFú3+b|[Ë#Ž ú_€Ÿ €,ÂPÿoÁO„ü7KȘüO©ÿł#».w*ź?Mű8ÄCža3 h3ŒőŸ„-đôÊ2a6ÂûgÔ‡ˆ-` ÜčăC„vˆf»#8+hZ(S~˜Đÿ·č¶( cKƘf@&G܁h@•Ű(6,ž"@!ŁN€ü<à`9ɕ€%ź)DÍ,±łcá Ì6—`ó9l*‰›~‰ÓL L˜YlfB`ÂÌbscf[Đâ ąK }Kà4úfhVˆ@@lï”źˆ™ĆSŸ Ă,čλkmüÎóńŐă%ŒïCúošĄo#tȚŠfGčT)ßOęć)țVp~~ fiwÁ+mX±ńƒèjI™r4rDÜ;üg†bKςżŹ?ŠÀŹÓ€ƒ~ĂGvl‚ą†ÊÁș"=‹«ț‘Ő)FŒæd·Ź†Sg¶m’ÚžtZ/N-ÍB«9 ê}ËjŒŒ;D‘f|Sèr§{kGÌi_ïű—œàŻù»ž$„$~D՛lbޜò oĐҖË;ŰőËÈ_gRî7X9VJ=·^?ț^k/ pFęk’·‹æoJVDżążOŰé  ß_íçŰW™Œ”ÈjžÜÊÆȘû¶ĆƒêVUù—Ćáu ĄŹo‹†ÏŒ:ö<śÜÓG˜êŁZ»ÍÔ”«5w3Śí- ?ŃÚbóÀûŒțNăÓțæűźȘ»ô0ûce'T1Çû… kNjłŰŐʋšo<’GđŽúω[ÔŻÎ@QCŁ=wWćW)8Š.`B‰UO ÌÂ{š‹‘CY™N ÁÊ$ÏŽő*)Ö<Û[ûÓÚĐb…qЏ•ùäđŠ;LŚ{”îÍöU Ù«ŠXÒÒ7^Wș=”—kș'Ő©0ż€ödrïćőoê&lČ€Ž__°uÇwèÌŸ€Ö Ł$„zađń‹È@‡ÿ‚ƒé–ŒęF4“ŹĐSćę†Tl ÏčnőÜj–łőR“ű‹ő!ńçJśÒźÒšë‹šE;~ㄯŚ‹›â2ÜFȚMdòă‡ŸF‡>ÒÇŸÜZ%O )‹«Ë€_+°ę„K3Čô{U_•«b±zé̶báXdqù ©ž6ÓÀ=éë䶍,ùHJŹ&A'êç:?ș~ΧvÔč9~\őĘź?Û”KŚˆ{ê ©[3&urc±_m.{û”vż/öŸĄöȘcĂ­ßV†ŸŠŹ‚öE9óeę »ŐeŁ'S[|ăOŸÊažD9>źȚ^ŹúžQ„èä»âóŹÂÂòfWΞçcš9o”ȔڀCq'–*ć)uGlJÛ7!LúÁÄb°¶ÂߌÏĂáćâ”ÔŁyǞ†Æ“nHńšĘŸ±'ßnà@XűږłۃS\ŒMF’+ՌȚö2a“œ’yÌ Țź%±ïŽŹš—”èCÓŽC»uHém#?Čß6Ää’LK*&œ±I‹k‰)‹_űMœTD9ÔywŃˋ+”E.KLêčì}7cìAŻtń·zÿ­:7őșöed(äê–yLŽxŐ.É:xĆżtàƒ?f_ŐÓ3©A«ú<|çqèńèśùRf+Ćí·ÔîńzgœŸ›ëuâąl‹’öàÄ|1'ó§źي=êę. èrđÂÆŸXÖëxFd-WۊÀ;ÚŁžÙÇpïòeҗ7$‚­æYËìMKČn±Í&żlFUq­ŃèÌ’gÚD>"•~Í:íȘ…+êòž@á„m鼄+ç„b«MRÛëŸùö-mjïú^űŸĄ·!…Ś;:ȘôÁçÆM †'„«,_™rìzv&éąöGűÌżÓ.iÖhÊ.8ÙÀ떝R܊§EÙê©©ÜIm8ŸÌœŒšĂ9Żé' Ò~qʒ“~%đü’ö֘ŚEÏ«›Țœç/蜃é™0B»[Ï-Ż_“ÿ}e{Çšî¶łÇăăîï›4ôžrŽȘ'ŽÍ{Çp·n‰%È/ŻšńŒ»u8æšGŒBĘΟX~úŒò‹jlUŒ>{Ek~ö&eòßʏ8«Ó•‹’_{KÌÙÖ5ž-­ äŹêí,ć= )ë-ßäűúß°ZŒ€ŸFGjӁ€î ֜ۍ-Cź‘űíCŸê€žÖ]–mw<’Ž#ŃóșŻF9X—Œ iP™^ì§ûsÉű©ïčÜ1)Ł‚NôvŸwțáŐŰQ>/6P-LęY·E(_ăæ“f±Ks•焿—Š endstream endobj 569 0 obj << /Length1 1144 /Length2 5008 /Length3 0 /Length 5769 /Filter /FlateDecode >> stream xÚuSu\”ÛșŠ€Cɑnș•nș‘`d˜†n€éA:€$%€”’’.ŒžśĘgßłÏčżïo­çyŚóÆzÛCŸŒƒ›XĆ æÁä”è@\íPH[˜Ÿ>Ű žEmńÙŰ !PđĐw„"lëqƒ)ÙzÜń†Î(€¶- $ J JH‰ïւÂș!€ ÄŐÍ{€PìŽRrłGč‚a(ww(ì FșĄö`€ÀńźČÿÌ PtsśA@œœ=œFú&\<<Œ#@III€Ï_ @ Œ„8Áìw O0ÔÍęwŠ; U0 Œž+Úáw,ÈŃVÙâń»]§ł‡‡»”€€»Ł-űăG:òĂÀ\w…*ĂĘ\ ńÏL ‚Ûß5ć#đÏččÀÜŒ`~ÿ;B`Žä€r0‚Aà(°șÒÿßAűcN`€š  €  €œí~§4ôqÿAö0‡?w7w€Ł- €8‚ï~ű~H[O0Àűę_âßwű@ Àbï°;Ę]Ăßêw0ŰńÏœ¶­â °äÿZYĘ]šƒ êówžŽ­+  Ą©a€oÀóÏȚÿ„ àv'Éđ IˆȚ9ćNQRTűŸŠ [ÈÿV$űśau˜Ł@òÏÂï&öWńž`ò΅Î? Ëűw%7ˆ=Àù·I,EïüqśțWóüÿ_-ôÏ*((ôț9ÿlpŚ9 űĘ;Ôńá¶źšÏ9đÏ@đŸ>ÿtÔ=lĄ{y˜ô_c‚ U Ț`ÄĂȚùOcü‰Áțxq`òûÍű€ąÀp†Î{‰Œsßæđ”Ê0{7Ì `àqç?[„Ăż€ßŽ= žÏtwöŻœ#äź@0Űl??ăf/ęìięł¶«Zy:/ŸÍQá1Ł‹_(&üPôu~Œn—2:‘‚s‰Ô%аł\”Š6&zDò q/I…v~2òp2 ”hÚ}ț72:R„Gžœăǂ=މ±4éy;Š>ęj‡+.ÌŰä?’DžQ1\™o…ëbÓ1VŒȘÂÓę:Ă%Iő=ô›ź4PO {j°CIđihd:FgÓ§k s‚ŠęKòȘv2›é™^"Ń ©U|ú#;:ł2q©ŽBߝÛ5w wń?ÏçŰ>!ž]äž"ÄŠINdX&$ŠĄ Őr•ž·Ç„˜.ìmÿÄ9H(1Ç'łÙł«ńb~Ÿâ[–›ÏBƒÒÂQ]ûČxŐ<"4<Û>çæxêdûl€ą­čś:ÓxƕzyÂjxËS±»CóóúZ%#š}[Mrš§Ź[ÓźżșÁ“śŻ2ÄTă[EžJÊÉ6ېC‚:Șr’p™vs¶Ç ­OŹÙïń‚*.zęfiŚV‰Iși”­püRSŐÍ4TjAąșű˜Žc}Z v#č(à¶Áőa»GHęEx7>삞ŐSÊțíÀQ.c1x­_úŒĘ‡yú#ę ź‚,ăŻ6Áp}’L(#‡‰Cô‹"ÌĆ|5՝é/1W?ą Vąƒ KŠ—Áù±Q˜„…:hE5É4"Û·ŐrĘAbĐ “¶űš^‚°`:Ùî蘁Gu™”šçžd”Â6gŸ„v/euFt09ê’nV;Po.]ć"Ęy— { B`Kž.pëßă08—‹A±_Đh ?i ™À^K Ï HlĄ¶ v’%~>»GöA š˜8ÇÇÜ:ä~M€<íÓüè†ÒńÿźZBüŚèÛòăžŃ_ąćζ…>ÊŁșÌ€œÄkfôÉy[™śNšg(€o3†›Iâ˜'yń·ÒŠæPŸi©[Áôńmđò•ü–ôTïÚòVv;†?7Č1}ûÙŚ[„ZŃ6ʐɧj)ą–‡żȚđ8ĆST­•ù\°_«Ź?–I§‡žË۝ž^”~ÚàȘŒäźfov?üôe,ŸËÄX*Zš”]¶;ÛqÔ62nQÒaöÌŹŽÀșa„‚ćIܘ©Ąï^ŐŒîczŚÔcœČ€°Űmô©iNČ8+laö~íÏûgü€ß”9Bž|”D«^Í)MžÔƒIeƒŸÏ˜ ïà_áӔȚü˜A‹#đLoi=Ž[ĐĆ;eÜEËĄvűjŸlÓX€Œę&f›,ű“łdP+îúڶäjž©#Wڞr*Éûz҇„ą7ÔÁÁ˜Ž$—•ŒìÔ>„} n#‹˜Jù‰Çìީކ‰|ȚHč„Cč-–.Ùśš/XpÙéÚ%ŹćÓádƒóĄÎĐ uĄBÁVceÌ_oìźÔLÓĐí > ŐuN†îĆís… ‹pâ2᝱··}ÔđĘ’ö Kœ`k›'Śęb’‹ß†«â:S“úš4MéhæŚuț'a+„ëi†áÌW–­üÌ^ÙäKê)–6úÒ]’<śR·—l<őłV›˜w0șUŽŒĆŽkŐŒ&ńœ(Ó„â©GŠW}r‚™žš„¶†.ž“‘ê+8€s"Ÿáé3àȚăœoÿD‘Čp «Ä,$xÀ,oÉW挩†};çȁ–D_ńČnÓrn.knô‹ăyД†ë…Ć:ĂÇœK-Ę' ÒyŰÎśwӗ$úȚ۱ű`rónț,ŃĆĐ Ÿ·­pÚÆĐXÇŃ;UGZ@Ïn‡˜tŸaÛîpȘżŹxyŒŹƒĆă$MęòÛúWąœb:&ë À ¶u:ÖiˆQÖTƒ‰»ôÙFFˀâ[•ń]+8œÚŠÿ@)#)·žKs›Ű"f€[ÀĆNĄG6鬖.ŸŠ}“ŽšŠ^[y `Ÿ*„ݐF‘F„úò–țdpă’Üx±QíS{œ@ƒÎaˆ›5•yĆżŒó°SŃK20Ú$Źh(țZš‰žÇä hʱa‚űłĐ-Ũ‘ڐîŐk -=ÉÇ»śê§tűÎJ_ˆ»bőĐ)àî$֋T‡ÛÍÜ+vœQ—îáőć Òïe/s‰ăŽe„40TëÆ_TV‚8ë\h@Cś»ȘÄ|y1 Ț™ę5pîm…Öq4”7œïÍr:îtőú˜Ÿc8‘'2{ÈŒîW†œ37aÄ Ž©YEdXŁńUő—0hë·Źùć=ΖPÂЌć•Ț@u^…câŸ3y”IŠŽÄ,—ź@‰;Ë?Ï6žű jT76ćóé^NŰ_Ńbbßì±ĆotfZ”Œ„2.ˆžČHèÌăXkwźq”>œ«%QŒŁ“SÙæ,Kjêɖ·æ, &eï:_őőHxr{źRŚșr>êÀD‡b?i¶ö xÇÛÏĐSÎńꄃïëÜëÎ8Í ;È_UŁ—šš űz’œÈAZÊhò­öKŹê‘Ç–·ú‡ÇÀÆkŃ„KČ]æàÍ^Òf߯ÚÂŚìô‘küâÙ;`I“EÚ}Áđ`ŠhBÜhOĆìÚe ádl?㟼ŰÊ ÂpőLăđÇŐN‚žìÙV ìjt6XÙÊĐH'áĘ'‡EC9d æčăÔôÉï™cjŸƒ Úß@á”r¶Ê”™†$ˆ’Ńű/tTïęMƒ™vTŰtŠ–ĂìÈ;˂—§ó‘"+BŐàȚo«mïÔ§Ïűfçg#Šæ§P DŒyyß±­é=r «ŸHì°ŻîęÈŽ‚îÄLÒ5isàl4qpúÊ+Ù 1·Ç(í…kć-ț°CŠą™eŸ&Ùè˜_ÒçL•H#èTxï@X0Ÿ]àæęčUz„›Xæê§ȚlŁŠEˆ//ʍ6ՄáĄa`Č+QŸ±”ĆxĐŁ©Đü­wóόŸc`oOśąîKô„LȘˆòÄ"3û$+{ÔÛù‰0ȘféĐStžÆïdUy.qšoĂQT‚§†șglîő)R±ą>ü ŐÍöńÚ%Ù+Čè=[œ‰™ÇÛ[$Ț$Š”8łÔ¶x‰„>ÇòT%ź–uÂîzșúrL'Ą{a g©ˆÀĂœ¶S„JżFÎoŸÓÓEWȘ±śÒ„Źé­x <+xë»v*]4ÜwËÙő‘‹A~CŠêLrXR8›$ǧÉż$”~8qIÌb*AX™™*pTüœÄŒxűj…v… 6٘ŚAÁŁÚGŽ!ŻŽvèg|ł^òâ•L’3‹?Ê[œ7‹6ŽŹ^ș°+¶ÎìôŽÇ?~źçO öÆÂ„ż_•äxÿùCzxPÀŽ*čEy…vZÆeI ›š:Œ Í Šy±üFŠgúńąA„a§æ#…„šûŠMö=wLő…U$«źqÿÚûvé{ĆÊ8žÈïłĘč‚ß_È0 ’Ì{ì]dÉI§D˜˜ä°¶sŒ[Ë(›Ü«JÒm‚Àęxé ÛBž}y€üùËR3Șôl"66 “öÌävőÀ€æRfŒxuú.*ÂtCő<æsț“L2ƒ¶I¶Ćö`ʚƒ= Äi“‰Ë°ŸgŠÒ ’;ÈTž˜ŹN[î|ĂčQ”Ô­BIìü!{ăĘŒŰë`:Tz _ŃëÁ;Ü\zÊɎڣ3ąj<‹„C…ÍRAÛĂÒ–Äʞvqæ_/ùJe[ˆD©ŐȚ“œśÏ€—xț€9­,lgrĆŸË“òęșÓá:wi`V…țȘżŽ•‘gdśôf€Ü={ŹßŃiHFDDŒTĂKMńˆź<ÚĆ«Ú çû±»țäïžzĆŰ--)ÓQS3Y6j©"Äœœn€à†CÚz‹gŚv]_ËÎÓHĄ ?„ÿ4”ș)sßž„ÒĆ`Đ»oún‚GšïÁÒÀ«ș“H<ć*kĐčçŠŃ€âlÍ©«k҂$*E€&$Ö4Ę·ÇŒ?-Gé‘âY~”V†ä$+FčȘÆx Ÿ,KőHŒ”żSæK)a—Ő5ڑ8cĂŁ5…ó٧VĆÊŐŁèŽEï â¶»Á±Šed3îgđ*æŁ6Ń=ƒŒ~C<ÿê1î5ŐçŚn?˜™|æMĄČëŻőžûj‰.bQ•ˆ2Ô}/Cçę<跛Đó¶‡Ă簄RÍ»łÙă%z©Îm>‹ŒXŚeÿ{:Š7ƒ•źÄæĐ/;Eș8Uz‘–d*,ÏęœéÇÍ©°ă?îæo©‚ϰÏF̞ŠEĆzœV*$‹ŰĂä0œWĘȘżÿę8ń6ßȘô]ÚBq7MŽrU; 㐠1qî+KîÙ ’SúT»ë§Ô8[ŹHÜ`ĆU}u™FHÏAŽąÀńfn±ÆóÉ`…ĄšQț‚Dl§ŽR.œÏ6âeâ'†‘Û0ŹT†7„† ›ÉH#‰ëa$űti Ž#·_nÂoi~čƒőIÇú§žJ,c ä4·p017úÛlnâKLÍđšKڜb9MĘ+Íìۋû.àÒ„őPL1í©<‘tI-4©¶êȅțËÌ\ÜÚŃÔ̓ü!œ\x3ÉĄNĐ[<;ÚăbÙŃŃw±·•ź©Ń»·—hS>ÆĐśnŸŰKkÜyȚ™„Z%˜žő\Ęöć¶EÎ;Pß9Ú±Ÿ%”8D;#‡U6VÂüšŃćVyuoÒQăôځźŹÿDű+e[}œï%ü‹Æ§àg/Ô{śUœRZĆm(¶L?€Ą…R ÊæsŒ7ž5æĂű–Ôžòš.}Ć»ä擋Wwt ]}=‚ŃOٶsŚăÚąČșû°T"ߧ扈NŽƒÌ%čæ„©œč5ûȘŠ^ăšbBçòăĘ/Û_ĄÛ”Đ ¶ĐYr·4)Ț^-|ç-tûBáaxRúȘšÉXș azyOż0su*ŁÁm/…ÁőJ~Ę,«xے± V-ëŽc˜BȚH«ą+àŹF”⍶ u»~ÈräîŐš«unœ6–żÂžÈčń<ŰÛ@x„æ>Dæpœ™óÚw&đgI\ˆÄ|ù+F¶Fđ<Ż2Ê~.3Ó_ÎżN vlčÉwn{^#L‘ÉÍVۗhr‡F©û`ś2 •M^Ąœ„NQ"ûäąV_‚ż$°Í•_J$Í`ȱś,Ë*žEł‘šuQœŐöÆæĂ3†Pög›Ć:}Ă€éÌŻ+|Mó9Æê‚Ń˜T (ëÊ1æÄËèJȘRèĘòź_üh}Vw6“țÎ!œVi‘ȧ꟰Ÿds˜[Ë> stream xÚŹzStćʗmlŁâäĶQ±+¶mWrbÛ¶TlÛ¶]±]±n}ÿŸĘ}Gß~ș·Îżœ0Ś\kźœŸ9±‚2œ‰œ‘©žœž™‰ Ș€ź`hcchbi/C/locűkf‡#'q45ZÚۉMyêŠ&QSc €™››Ž bïàîhinPęĆ Š„„ûOË?!#śśüÍtČ4·Püęp1”±w°5”ț…űNT65-Lf–6ŠyM)9 •„œ*@ÂÔÎÔŃĐ àldci ±46”s2„˜Ù;lțí0¶·3±ü§5'†żXBNC€“ƒ©±ćß4S7cS‡\tSG[K'§żßK'€čŁĄđï €öK;cg“ü”›Ùÿ‹ƒŁęßÛżŸż` öN@'cGK àoUQńă Ž0țSÛÉòŻ`oö7ÒÄȚŰùŸ–țćû óŚ 4ŽŽsMʀÿÔ22˜X:9Űșÿ­ęÌÁŃò_4œ,íÌÿ“ÀŃÔÜĐŃÄÆÔÉé/Ì_ìŠóŸ}țî lÜÿ•mÿŻšÿà` t2”1c€cfù[Óű·¶č„ă?«"egf`fú7»‰łĂżû\Lÿ5 Șv†ú/ C{;w€‰©ٜ=đoIŐÿ›Ê ÿs"ÿHü?"đÿˆŒÿâțWțKüÿ{Ÿÿ+ŽžłœĄ­éż’ÿțÆdÿ<2ÿW°Ą­„ûț_#ŐMÿă‡"4ü;!;óżb010ę›ŃÒIÜÒÍÔDÁhl03Žù;„ÙUíLLm,íLÿȘùŻA虙˜ț‹OĆÂÒŰÚłÿ›ËÔÎäżRÿ+Đżˆ3J‰ÊIJKÓțß/êżâț*TqwűKíw"koò‡P„…íʞôÌì,zV&æżî/nVvïÿŠâż€˜ÿó,ktŽthÿmûoæ?Íÿïßžtÿ Œ˜±œÉ?»ą 4Ž3ù»^ÿaűÇmììèűWŐĘűżMÿûù_‹njêfj ·¶loÌd•–™ŹĆÊžŐîïev(mP)*đ«¶ïńM ûÍ]ađ^ÌĐ8ÍóÙæŸtæđq Ms8Úû͆Č'Ćô*ߛ”șŻu‹ąƒ“ö0€QŻ1ę\=ÊózQfB‹ƒIípwRQIŻäŠ`șƒŐæú‰ÚÔ„ÀƒìŃÉÇ8”>ł„­¶đìœ"ńäé‘rpldxšçČï6'–œŚË'ùŒ8 ènàű§ÁűòՅ=Ÿ Vߍ€k’v[I>è0Bæ<śDÓÏÌ0Gę»q5ÿI^©ołGÙô>Śì!œ•”LJü3Aû]ęŸc(’đŁ€`Ł©J~ńùđč|È↑”éŃj*/Ip§mƒG6.%a†v.iœ)Ö+ÒqjV†oÁßnĄGlOFBü~:úŐŽÛ ćveÀ;€ÏOđ.ÜGęÙ~óUÆàâW1%Ó§ „ nڃźđš#Ł–9)9@t“…l»7˜czÚŃ{_hŚNUmÔ>kEÖÙŒȘO(0|ź&"œcƄȘ·_5ńŸë6ĂoäNąÿ2ĘŠ(ćđ„űôq‚eU*Èú~Ą”"b0Éqœ‹Â/ÏŻÌ{‘êÁÂ΄őAHRSOíe|ČíoÂ(äűŐ»Æ{śƒ ‰6ŃLŻ~Ž€ŠW,ÆÂA\ hEGç1g†æçÆT—•È^â{6f“8^0ÛËĄóKŒVáA^ä Ă*ń&Œă;]A+,Ă=ˆEU°Ąh~žŠ:Ôg AÆX^|H°#Ì^;ČÄûpìÎ!‘òEĄzŐśü·çŽfëźc»è©m<&ˆ_œđ[P™ß^ žvą–}Eˎ!.+ČEœç ęÈB‰‘“ĐÍaiđ>Ô*›HË%ÿđR=Šž)KäńŻ{]:ÆIœN»ńhk#Ëšú­ósEê}Ÿ]Nïr!/ĄëĐïșÎZSÙŹ1p‹OîQűú+s3Iw9†“І'üîÿȘÒ3báÇS8łż‡Î'­‚L•<#0Ï,0DCĂ·­e&§ïòTZ€ŰŚRÀ/2ŠA{{|šö‘€ƒȚ5C\íËë蠇ł•un‡Àˆ,ŃÀÉ:ûÍBk›vĄ˜#ûAÙvŒû0ę€!‘PcEƒÌœÂG@Š/,“R‹mÓ(ïą ÛžŃÿ%A»/WOÖkßBF+6«ˆăvàæ€rA0ÿ{|ńÙÂuFŻä*Č«ö%šÓ‡a°Ő—>ż`ƒɂ(É·\-ŠȘł ő„ŁŽăê|—NÇ}5ëeù¶lvŠy?>Î|ĘΞô™H ôâ(ŸŰ„Ï-扮 (–xg»˜Ç"·?Ç,qșcjč-@’…”V7-ű·š1‹8;K7ædÇàžö{;†àeQŃY{+œ™ŐA@őő˜BÚœ•xç5œš*äw3)+̐WÀœ§wä"œHF¶à±~Sí|t°űăl€íPGę]%č%}èb†ŃŻÄ‚Éż(Ÿâ\ŠčwE„Jă텱,[ Űűö€1\çŒ DÏŐËÎöKˆçż%–âgxaŹœő…I>àśßM äú«čŽ@f fGë*Ûp+ńkB8G±ëf,#CȘqtĘò—¶5҈}UiSô©ąÛFŠU0? lőP^iZšˆă»j83çșË"WÓæòĐۗö—7źç]żœ xt.çŰY‹zșęˆ~…tìxÁ șE[Cçjo)ȘÍuł už"2?}`ÒG1‰AEì#‡2V‡QČșƒqĄȘ}vpĘòい1üŽ–šÀâŐRžG{/K 2ËČC@ÈB¶\–çëÂUȚps­Ł» ŚĂń‘+?D©?Ô\©%“ëœÄ.›ńŐPŁ„f‘çünșÖő >q«űÖŚîU36áqƒ•WÄáÇGłÍ4*©üÖ:~ۓè~3æăŸ„ç…rŽ–œ„˜PŃïöż-Ăž"ÀÛÚ79ĐÔ Ń*Ùî‹îìÚŽüï"ÀB~ÿj8`ôê0;BÀČŁˆdÚĄxç"ˆ%@LQłG’B™ûIYŽä>çȘ%üsƒ„pò•Ü8ëŁȘąȚĆNրÎE Ä™p§ƒ?Ò1՜·XRfžt'ôær$-`ùfȘßáÄaKÊÖ Ž„ÙțfܑdŻćŰMÀ¶>đTȘTâźö|â[+™©üŒêĂ,ÜŰ(ƒń:‘%W<€ ÍÚ#ő„ŒB‰:`:}ë’pś0ó(T6â}ó}á$ĘÀ,VÀ±ŹŰ–Ì””ĔGŁmA:łĂ–5Îł˜ŹńòJk@}^0©äz°>Ź*aÀ­ș„lÖÜá-Siû9™”aT·$‰*”à/|DNÌŹÌFVMÙš]{—2~ę5ž'.xśR…=Ú%ușêßc.fsŚjHÙ'7hćŒfß·x·UćiDÖÈôł~Ÿ~XA•ùöè…Ü^ąl‹ëúDOC€˜­t0]cJ˜+œíQ‰˜ —ßŐ'xœRł”éú˜ȘÀűy'p%țìgÊ/]aü 6{b\'=ăńPxüőUhÌMJá*˜è©ußBĘ䃅jlOfĄf`”Ž(˜±9ÇŐŸčcIž©5ĐiV˜Ps:7Œ-QüìÙ@ž,NÔęÀ|èóWë[‚e ,–áö|ô$A+'oś[Ă ő.“cĆ6śÊ,ŠuB ‰ąè=íă&ڋŸ5dfgș| € CûÖ4Q3Š“üšQdŻg„dČ[ż"gïۇ;‡JS sŰxW]ń§táúD1cYBș5·łîG$šáÏ%+6ƒŻT#;ÈŐ°3ÎÁœßÌ §“M˜‰Eą^Ԍ՘ÂȘÍCfbH‹Ôôí+ï'ŠéBY‡Đ8—ŽŽÙŹ!gá)őù9۱Œ{†Łő †Ż¶'WS«žÛÛEU° mOä#=Æ̌4<¶„Mæ+;?—ĆÖĆđ*#ĆțŒ/”+noŒíhƒç­=°g Ï+`”ŸąÂò–i‹x!ʶCŽ’(§ĂÓ–Ç Äê­"ć‰DyŐ(Ç⌂œKŰ67«mÛŁ‘EÔ”kÀ PÎíXŐÙ#|I=dșïöçÉ!_ք\‰XšgoTƒ"1‚Mév`iȚЎ™;DVŚđòS©:šKÙÎ1ìŚ$*ëŹw…Z'ûę1Z}‘"%"űuá F›R«! ÿ[Èć›ùËDŒ0/=›Ç…Č‹"9{ń>ò4‚§ŹO™Âq?©„ÉOî zšˆšôčêHIŰÏĂ–h93NÇX— ÆúűEPìšȚ»č”±śƒ†Ì‚űLę"7țÂțȚRQ%3–ÀżĘ.ŚŹ‰aœšàŚrȚJJŚyebČÄń,{|ê›X5Zâö‘ ‡•;Á#ź= &ÿ)M!Šűű‹¶™ §S"dx?„.žÿZm]€/zžGՌÇRt{­Wßń•Ü sæțnüÀu ÚšmTœѧ6gw%ÿ: ÀÍpZÿŻ78w—7ĄŁênk¶&1;I zČ€ßćP”k6țêUŸÔ‹N0?\»”3DNĐ}\uȘhGšh"KF•șdZ‘ŠAŻQ…m<°z«A±€Ùł2JKtIÚâńűÉCŚŃół ”šúka€”DŃʜîÔrHo Șnâ^±ntàcX‹8ö·i—Ššv§ú¶Ûeâ~8țž:––k‘ˆüèŁ«êyÁ-=ż”}a'Ż™ÜB=čküXöübè,«í3Í`ùˆœP\Ș˜PŻŽhvôțQ0·$nNì0Ù—èŒ :')wAó0jÁ”ÀŝŒSc°éW9œŐĄk$MšBdțËÒźÒŠmŽʅą/žț˜Ÿrúe ­Š1|Qy››:zWS3ǞŻ|;Ô!™ÏBčZ’ZEîmœ8_ôÌ=$%ŚÖ}ó*œ\Ô©ÓŒ8ăEűČHb䩁«§1NdDr揋Ù;(œšŁÍĐ~0QËǕFŽ+I¶€…Êčs:„‚°ïæ û."ž”t Ìê2Ți{˜O”§áPß33žđ)”]œ<.ߋSsnĄŠr]§9­jÒL‹’ęO&=„ëÊZٍi…ś Ő[ăȘRáɰùĆčÌ\ôáÎÏűM…@sX>3ś d\ŁÇ±ÊȝȘŰÛM†-;†ߑ[çé,SÒ śŃĐÖRâʁoJ”‚CÏj™ÖFtsɗâég™Ú6¶=ęétwq‡ćEž§à±XhÀpBáR^ńSô¶l28æĂZáLÜ7ÖćHź=ÿ_6’ b}đDȚ«Šajú°Q:` bĂPżwTXа˜Ó­5’~]›æ•Iučœ«Cp¶ć=òî?&ˆÄ«ìUĐÙˆ{DžŒŠ\’HȚF1’™…/·zđ™_8H“éæDŁç.ČvÆ %‡Ê|źô*țäsšÜŻ ƒ‚ô—/€x9LíŠ Łh‰2DB,QĂÿ–i@T‘Y?š‹Ç S mOùćȍè蘭t›žc…ż(U,Ïc=wû«2斱z&KVMfš4óÁ•Ń!vchÚ6h}NEÔٝ#Ł)r77” ÄűÌeJÀBeKő¶Iá/xêÊÖ5+8j—w…głëhMż}ŒȘϔ/îÊő6xM@J™ˆ¶u7"Ç*N5§bî©|·a„”ü]‚Xsá‹Ë_ផۙên‹=ôIS&Yíy»«MąùŠ ń'm8úNæ"Ёüé2 »îú7HŰ?(­Ó¶%oĆ[ȇî.·_ZÎăöÌt"iíz˛0A0l9AͰ©iđ~ŐWȚæ‹șƒĘÖh-3Q‘ő&܏żĄ#nBEÚœìG‚ĄŠj9fÙșérU1?ë9 «UűžœhîÎÎ^XÒ1đí$š^ŽŠąûóC„Í«ő[J±„Ż €6·æNù–”ֳЭ*ÚôKŒž%‡íZh~”u'rőŸöbì9ő©EOdiÁÛ<ûsòčeˆB€U:%Î艿6ާČ9vÎ6_șž§|"‚öŽOW7őûу}â€éő`Ƒ–ÈŸæ 8RŸȘJź 1gŠś6i&ʧ߫ÜÀϔüÈÄűŃ­Ïb Uœš”sˆeȚzúêe1a™ói3riőNöǃ(ÈëÉŻœ0è„eUyZÿȘ¶èàǰ°_!Ș°IlFb?~&M(T|Ë ?Ëk3kî:­!9>êŽçd6„¶ìŻ ]—Đ]đörșæÌ±qOQ«xÙ^/ÖèËä-Qb›ÄlÄR6YÜ,,Ž„Í „ÙûĄšđe •”ÄÖÆ[#„ źÄŸg“œë ©î*ŠžźFœo} őšÀŚ‚ψ îí6“¶ÂœÆ}ç_ŸŁIŃ}Śß˜Î%Wś‚T<íő°“4'ìe6“.ÚűZdW|L‹ ­dĆ=ZbÛyLR{ë]„ć ôêk,_•œïA§Ć_ą‚gWe‘àÓ[ÂohÉ̘ìq>ÖWÒłEšÿHï»]"‹8 đèČńqZx:ò7Ò> œć˜VHX/ŽȘŁ {<=Đ(ŽzăFÄłę"œŃ"ÉŠM脎1j`Šá›ƒeyw%$Éìw6•‰šœsWÄMC/”“B\Čàżwp9\œxˆ§îHë͖Í•ÁŽŽ±çu°{`ÈHŁ0©‰€őü¶9^Űßtg æĄLJe!rh«ić/ői‚„VQĐ>§cCՃ‰„e†€”ˆyY›»?WŹû©EójÆ­‰XŚ…žçíbïiÓÌE;š#š«TĐƒí~GÆF̀«Pçs ‘!9â{> uH“âôÀ*Ky?M5ˆ†°Îè_’"á:c욠č}Yü„üÓȚ;eMžŠÈ„ß}• /æM[wÄVȚžohĐŻçg‹°*œ§ ó JG\‘?Ÿ™9Ć[MŃúŒ%.Ê+¶ïWîÿ€ÇNpĂ۔Èä霙(ˆûŠÜ‚àźP ûś€œÖìŻĐŠn8âëŁ`JU^Ą=‹Xq ÊnüÜÒ,#ÖXŸÖHíŃ ü >Ő- G"{üPüÚT„Ăí”Ê u›úJÆ3WtYź™ș”üÈ€Mú‰ (ž=>QŃN@ˆÿHymŸz]w9¶uæ“dF À$A_œš›đJ‡H»žșș,ËrfT-†€”‰GÎrëTŠ8ælé{ąŒÈ[gÁžöWu7ZîęłßPőíY©Î ̓ĄuUĘł^{CBŸš{c(Öí|ă`qŽșƒ‚à)4ĐJˇïbŚï@Ę9ăÉù…?ƧôűŒcjh™ÂkÌœf˜2ì-z7œÀ ÓÀè;‚…‚*JŠ”°X‘ăÇ6Á wR6A„!y…žyđKȚW _ÉhÊŐäÍ“‚;?Y$Îf1$Ž8‡$ÜmțŻë0”>Čű?”àŐőÇ恆»ß~Ó*}»§ÜsśŸyÉG%~áâźqQoĘ?nv’裛CĘÒJ_€łnEĆrutöĐ#cÈ"űŽîË ÊH©ȚA)CwÍòźŹ%ŒÁ ]ëâ¶_ao„5I˜€›A_ŚjrWiĂž(ጔÆ>ۅ!„BƓ}88…ôí(6R [;ćû#òòNd`úÊy'Y­”ÿV n—€š•ˆ‹SpíiÊÒŻ?‰&ćÏ„óҏSą\'ŹŚŻL&iŒKŁ»géPéêqf¶ùË=ÄĆÌž,u2h¶òđâ~Qă?zŻ&ÀÜű ]|˜Ą$ńŽá&hGwXÌGb—›vœłŠÉáB„őŃĘfŒćbjfń§Šê&;vZŒ`á(cGo,1Ș7Œì“|íhÊč+‹ŃÆűÜ€‹šÛȚ° öOĘ}ĐÂl~đÈœ?t§âûxÍ+5țkćÊŁÉŠća%8W»śĘŠ Ü»\ż^ë¶äƒ8†gĂT––öa€f/ Wđûw,sBLÏx·Ôœ–`žF0Ä·|'ŽP„ ČÉńœuŹ)+#û*c§a9AșĂŐ±ƒ@ń·ĘNôYœ Č/èŒčK^…üśùl:ŹșBôșqúÉü܈+ìr4ZVJńÙűJeaʶ}ń…oZô»†ú>T!ȚéÓc ~Éwáđ„ĘŠÜ€Ö+x†ÄÁš+M“ŒăĆGuăò8ŽM‰IžđûșWN‘ ,à|WäŹ@X{ʇź_3Œ^A˜j?ȘnˆțR’vÁ)ƒèrá„ä[1–«ő‡zß&òŠpÜŠĂ”źûëRžű˜R?kŐFVh ű•Óv”ż–Ž*¶7Ê~ŻčY(żgA°łąőJË„Á,›ĂËț–Ő”łÙ—T=ÙáŚ5aAÆÍ8ąš†žj͚șŸIBQÁüa«Á·g‰ œ/ÙóI\șWűÉäęÏ_:[™À|àpæźxÍR˜3ČëU$âšűŻŒ;mن-ŐY5 ŠđÊĘKšuĄéßxàf/úț ƒ*ȑ§Oá8NĘgËËŸËȘŰT`Gő]ȘAí;.êòfÔô Æ$,1ù–ÂYü2‰fy,Č6\Ą 0Aƕ~G©çyĄ0…Ëő9ől?ጶwUwTv‚Ž©$A_î8Đ-ödNSUęžéîÂÎčßQ’ô€ *êwGŽˆÍ-:SőK,'›úaS€iIșVŚ|[ł|0b)T+RrĆÎi鬂» Ă$ŰÜíˆ}6”lÜCqP‡sæíëÍj“#đ­$”8iŒÉ4RmÛ Oé”ÀX«|k5 âó^љŒĐtI“N4Ht‡V “FŸFçŃŽP܆%:ä>čțpî/™O-ÆY<Ê{s.žæˆ$ǿڗç~Ô§yńŐDŰ IÚ%ÔĄžiûÊM^+ʕÆȚúôaÆv©” ő9oč©çUìÂb ŃŻûC.’őW[Çx1°ĘÔžÒìĐ7„“ĂêKŃÁ†¶1E‘kȘčŸĆÀ» [Yhïăé]˜Gšbż]\Ű\Ł‚;óałûǜ}!xŒćïÎĆD ż’4ÿ~Ó&䯳]ȚˆÁ'Ü0­b€ç©ìœŠBМđbŁÊ#Ç=ÁžóAœ Ő|p»—[úĐcĘő`b@Żńb ÚфűmqdÚêT­Ä—č\VęȞ†€Z»°:BęCÿFÇ>dĐŒd“»ÖÀ5Cf$fà°ő2ÚĘș«Ąâ‹ßKȚ{ÉêèÓPâédàJn}łÙÖïœúCĘ[ÉQXńđ y„äÙúPÿU}FŽ+۟¶t‘oŚĐz@—“Eꄎ[8tZ/ż°äô î!Ąaä@8Ši‹”ÄWˆ[]Â| Ž#"Q g~§|ÏŃï” ŠÚԗ3pbșŁđ*„QŒśîá"˜s8ÚDWèMtG;Ő/ÁŚ] ő 2vqK`˜ RŠ”ÚÍ20šÚ=è©$Zj‹vÈu ĄsO”§êȘ€Ö‹ÉńAÎ෈òŸ^=k”dżc{ˆ°Š€ę(Ú«"Œ€ȚǟhÚa ÌÓ;uÄ, Źù3}|•i[ŃCHÈRˆ¶«ÜP|)–“s9ŠvZx5P5D5†;:…æôhń–sdB’ŒNÁ! #k›*âI{úä™àÉëìÙöùÈvƧù·ââĐ9ÀŃĄćÏcqZĄŰeY‡ScŠ”ifMÎEô?ȚÍc@} B̶:ŸMœ‚ÔЏČïŽùu±č!Ç»òíxD‹mŸ4{ê*Ú 2VùNpdÎX‰Æòœ}ŰŐÁS8eŃĂ&ćț–”}ĄŒŐæ<Ї’Nyœą‰óZk?ßÊž˜|©ô0ßß äŸ4ža›&E«9ûّ b·§†Ï”I™lèűʟJiѐRlč©—őò бer7]Đ”`ï:]Ò>e»ź˜ì€șEFè ÎژV㻞Âș;î?9îŃ©ŽT+oI9"ńv6fd~šóaČg±­6Œ?Á‹‹›!|>4VʀzÛ„!ò (ϝł“űÀ" ‰ČĂœ.ò9Ÿ$Ü5XKw»Ì,\œˆÇÀVèfávÜ<Ę#ÊÊæ&/Üa*9ăÉD䗱f}3Q.èPMÏA™ °”šŒ”<΅6[YZț\«(…ƒeòŸ2kĆ2 '@Hdăńą>攃ä š!Éx¶QčD7ò)ómć„ű[Č“źŸ’ŽĐYgœY1ČęEä1XËíuM[TÒaăădțę<ƒfAϋk7=tšxœôŒ™€S“™6ÆçTLò5ńZŁùhè^ò'̃9 ‹’äćÚò”bœș(zS}qČÌkïÒżșÔi'[2—ő„Źö_ö\Ÿą›†OęŸ©SĐqłEŒÛđc ù=QAoœ·<Ûș~ĘWC‹‹(hííüŠЁ;â™ă«_‹č]`“yÈ]jrql&Iî‰âȚS‘‡uBü9Ż(„?Ț±hÄÛ<‰©$/±œEa”ś ~ipĄć›ĆܞĆc/kčóÉUœQ yȚ'Ń_ŠùæF–ÌÛŒțM6<Î‚e§žf•„qĄL3ĄíÖ Ńő›zhK‡©.5šŽd}c­­èâëô”tĄć6ˆș%lÚč[Vî…Șu·ÇȘźWę |‡Eć± xò6ŚQą°d…uĂ©h«H‡CŸÌúüä;Č=c=ˆÆIùl€dâÎv€BÛ)čtyŽnEț8ù;F\ŚéĂ’:[՚”E\—ś`Šäą=„PCA˝ÜêS0ŽÏA‰ă%…Ą·n):ځíŸj“?OâVË©È_ŽŁf4–R·Ąž ΂mSžŰŁ18Ì/ó†ëjm7ăőșÔ+њiu|‚O2¶;ÏŒ~€h-O Š‘ŸÀn%N󔹘(žŒâ>#šË^R1Z‰W Í@fɉE‚U >5îf#ù ș>iaéu.Œ–UŽŸÎba[[ ‘ćŸs&ÒZ„aáÇÚŻęYŐöH!ćBXG. _ś%ĄőuŠČ »ÄO’Y’wjÿ hV¶wăïșKx äZˆ­1JÖžśÓÒ燩TŠ”b˜ß_ 3>ő(Jyt°SÁe‹+„à‘áaK°»%€ÙçŒJ “ƒȘĆÄŚëuènŻêăMjĆß՟%Hbđ’À’}Ï+Ą/‰»_—ëśeÏp//ŠôŚ%Z˜1ÿ͟ ò=\Ö˜“ô;Lüßï4Â'§‚ö™ö•/±Açw‡#áڍșŰP…|ϗ?Ïa•—èW Ž:éùD5c\:n OÚ͕,íŚo_AțîpȚWœ•Ń'?DÒ‡éƒ9áZ,O3œ8äVÖvm™9;Sę`*ò¶;Î}Í\ÌĄÙĄè;ȘÙŒ±'恖ö#ș?@ž1Lűg‰dŽ0—ÇÓ@œŒPŁz ĘFæ—€mtM]ó `žĆobqKD†”–†| {ŃŃB%ĆÓáNŹzÓkÉ'Ț)mv™YŹcńŻOCíMŃ+©Èč±”Œè”ä„”0|~`ĄQö¶ Ł~ŠKxl XR|ÛnÂŽ|DXNÓö•ÿ9x̀û‡g"őr);–Ś_ôG$aŻcłăËinuIƒgz)Œ‚(»$«N€î#QśÈâÖfîwÒqìèÊX}ű%âTOÉń1ŁU?»18ĄÈÍ Ń» äô˜‹Ùšƒ…ËQȘŐÓo(€çÉd].+ìłˆ&mx†Æ20ˆ:€ęE„Vùû“ÂOĐáêłû/ńi­|ä=użc4—a€ ò>Č 7j[ši§Æ˜ß7ŁF@Æ ę°\ő©ŸÎZ;Ÿžșçqˆ„qźÏ"ëôY­ĂËHvêÔeQȘCƒêŠ<’Jêg dI"@đŻB~ÙŸßś€VšPSűlî€ߍșőCÆG­Ûőô•kS›GvČf%ŒÄûĆ^žÊŸŁêąŸ€ïáŐđ,;ł=qNôz8P‰đ"rbyĂdäzŒŽƒądNźAĂ>ŸŃG˜°§°ć6Žòz™è«őr Ł?Ęù˜‰ÖÛw*9ЃB“û;©›ĂŻ>ÈÍŸƒ‘7Ÿcć‚éç<łŐ5ȘAiő\Łp\UÄ@ÜSźęâ6ÁCšŸéŸ…ÀŠ”ò6œé1'€˜}Ägî·ËÿÀX.uuqæîû G’„ß(Z<Š ż;ï‹i’6VJŐ(&ńÜĘÚêÚț0R掕“n;=v· $.¶MAŽPZ„Œ€hV\,úRÍ4™(WëŐőgÿŽM>|IŚ<Òïôß zQKŒO©/°ÉLêTĆM,s+ń‡3ćĂ{Ž˜·očÊ`Euì~Ę_ (,Ùś‘ćïłžàŁSÿŽ’E›–žéŚńæWC_Ÿ/ ÚȚĆű(f2¶«úł-'ÔęłÒFX°y_ßOošŚœïęȘ}ÔĘ~ëÔ«ś%hÔ±ź3áÊOȘé YäÏAsù|AëUI­Ò’ى‚Ê Ű$ö‘nëærsÄ?˜â‰y§„ AΝłVx٘DÎ ŁȚÉê—Ÿûm0=N•§!jńČÓÔR‘„*dùGÙtJÒșŐäfŒđ2ïóüΌőŐÁTÍŚŚ6SČŽËWźł Zđ°Œžàí7_źb Ź<Čr†f°‘É›E›Č°'˜È…Â{Íu=ꐒĂ-’É%ÌËëńZtëZ i9@ú&Ź=…śńÔD~ƐWsÛô { …=ÿáĐ©w]”JŠÎpĆPLòҁ«-"N«„ ŁÎłž]Ê0A’žŻ?L”]ș\ąê3›EϑE b{@țVXDŸ™© {8=bęlœÛ ©dĄ)̒©ăۍ Ìì‡}‚ÉŹÇï!t éO( é#ÉžŐž‡°š§OÍäҋ z’—„ –~N$œśź ÒŁMźbxč$ʧÍoŚ“ËaŐКÎ*ò{¶§*0ČűÊŹđSȚ1AۇŸąÏăcîS¶Q!qj. ]ˆŠζHKBc<>ŐąÙ3–„ŹXòÖuՅîÊy †CgČéĘ;ۉŃÂ0ò[t—~>`FYÚSgÀĐ„N* .śUŹç‰­!ƒŠ–ÓòêA0—fÖi%~Áì»1æĘDŁĂNÊ<‡f˜ÂD9ù·ešOÇQĂòlîˆ}ăŰÍ›.Mź!ŸfŃ8$Æüìì璦&KŰkÂöĄHèÄ?ȘYĄĆ0§C8ÙłUęłv«_ü3»\…ú’{êÀcâ+'Ś+żŁàŐAG·ÈvqLÛÚî QÙšŃÒÎČ= qŻl&ÚJ—iêçĆÍË5â»ï‡PÛ*ąĐn13«ÒCé2*ĄœĐ=itżń`’/Ă1…jĐÜnÌPhŠUl%{bàs22ŠELÉONf„e„T|vä6ېÇWś%B2``‰ôŐ„;}Ù)Sß%tˆœŁàcDƒ­ą10­( Ö\ iÇçìç5 A­ŸÚű„BWAŸÈÀïˆóhÁwż·e[ÎÌȘ™ó›e/bQ°È ÿÒJç6AzáLíS–Ôœ/r”l/§±a‚ęŃ{/™7Șœt„±âن,"ӛŠ ÌĂù"ÀĂł”ËSlér;ÜwśĄCRÄ2iɉęŹçNr-èiX9ҁž‚T€G“’=–—§&éüT9[Śă}ęŸÌ 9DHž·€ÙùăśJü8'Éü~24hXWk'>})Bńhș—–ŚŁŻQœ#nÎzXpcÎ9Ô[‡Aq˜€ÇŻ4đ Űiƒ©ZÔCŁ„Ÿ”ž`lCÉ*Mn~!ĆĐ}ȘMf„ș>ț ÊŹÒo7.«|Ç\/@"Éwšèžśź0DB‰Lșmß}ieû6…(}Ÿ_ŠÁmȘà`â•n4,+BŸßƒïÉiQ5'í^‘ŐsĂșÏjˆ©Éïž±UČè†RŽJz±F|zŠ.Îêś2ŽoöR y` ĘT(ÆoJKŹDéÏ^Ț™ôJ7 äđí©6§ŐÚÙăq»hˆê3‹«$șżùûÌHù6&…hĐV3źR§EûKݱ!Á?ÀP»qœœÛ”Ò4‘"úVżȚĐ·éÈ-Ž·ôîŹË?u ęšŸKK`JÀ:({3œ`77rKȚŸh`ĐȚŒ>ÈęRùĄA¶G ©Ź“îŚt"hčßŃI”Ü;íéNäЛrcWń”˜æMžÎt+âL_IG~CłŠpdÏf"YśÌaȘ§eEŽ-ÏŒŠ·ë}ü‰(Œ*Â%‰xæGűđ«ÛÉÄèR^̙‚˜4›;ĐhÌÀJăÙ9yŸ«îEűȚǀ-€Î€ćVŹ'&ś«W„Ö]èšôO‡FđÇ­y=c…yÌnÍAŠkg:Çœ§]jJź™~Àމàc6»Ž2J€lë'”ƒ“ôÆŒ „țÏ`Ń_óÜ.„P”h}v~Lź Raö Mhüâ]}êŠü5ŻæČbižź †L-p*|}òŒčőŽŽ7Öâ !„š#Ă đ©ć_&\($!⇘ôŚŽžh…pƒÚšÖ|Óźș\‡°8‡Dî™ÜšíŁïæx܃Ż,A‹O{ÁÎü* F3ÆK… ‚ÄŸčAózŒ›jKkŠ_ȚìjŽ[¶Dcetމč8h‡3éeeb6ѧ^ 0“ yźû2D3b0 ì?6(-%Úáf#ĄyĘ @ś{SćxPˆÿœT`TaË)Fž&•\\Ć[°{h[”ŠŸXv 8“ Ńt1:îń‹Wl Œ¶ł;ÇđÈONńÂÇëóșà3҅~›ĐSSžĐ_iąXácŒcăÂĐKȘW)oàO­ùÆÉp /tì0>Úa$CŒ;-äLÈEïŰ AÌË$żśbpŻ\ÎúJ«ÖŐÊæ§ÉäÚáP3NùÌ[ᎠŒÜqMˆàt”ËÜŸ0”IĆőmLuIźAžLFł%Œ.JéŰ(w gĘû`vÊ5</œ‘™? –Íá1?„ćC'€ä‘+ÍŸČ7 ‹'“Tò= &\6Ăôč”ÍŹQŚ’ÍŸüJ…qŻï—âûö–óŸ0“ UOčšéìD-soßVNŻCUBȞȘhS•prŠŸ'Ÿ${s\èüXü^ÁÀÍì€ÿò6Țżû.ŃGƒƒČÎ.^¶Úagiű{ ŒĐ yxÒd!żÎĂnēțìÙđ%‚šÜ€ iRű€û-Š,N…Âû€WÜŽÊîSjő[Z0Ń6æN€OMÁóËöóÈ]Ö7Í(óĆÁS“>r0$¶ȘÚô“Ńšü~ Q~0Œï“‹Â©çò[Đ‹ȚX“@¶Èf|PÇ“H‘żŃvąbăïő—©ÇàtdŸuô$?ŠQÔê“â^\Ÿq‹ȘŒŐ­ëĘ<Š•ń»Î`îÎë+{3%ô)BxÚK¶•ÌőQ*«WZ•S‘>‡Ż8êfăšnŒńoȚ>ź †Ò”MŠŃOe±xHrP;8@kdæ°w†&ț(ÀdvŽž8ădB’r˜öè*ùwzÛÜ4¶'=ëWCPČÉŠìlűtZi5šC+Ÿß%BšèÉv(À/íGąJÍèÇ ‘ȘPIËdíkŁȘ ŹÆžCQ]UŃX1ĐÇ{]•€ő‰ûˆśz~fPÌjOăđćBÌL™z§0ÌiĘ”Șg6Ч`é Îî†,U}Đzé‡nöÜz =8ˆž±9ŐarțYżx‰z– áąNt W6țŒPdè6żÚ›Űb»/«Źëc_Śi9cđƒéŒ›· ‡ÂŹ5E; 8|”Ôw ă ÖIZ}üæȚ`°R}“ëtާÛȚę0ÙbM,Tí}iŽLpŹfwŚ8g°>.#N)=@’lꁈš\՗, 1҅…¶Ő‘cí [Užî#7"+żÊÇ(2‘€M™ $ô©ÄÿàȘë·ćOè+Ï€ê<ϛÄLn™°oéA 0ÌBŸŒ$›3ž Čï­ËâœöęŐ}[v=k őZ©ù»ŃEbhÜČNuOšϙ}?ù/_IЖw‰‰ë*U'„;jźč… đ'ŽÊXË*ÔĘšŠČź"ă¶gwvÁŽ”l'“cűæȚŽń8!Č<ĂŚf|a„VŒqrjutÓ‹Ż»èBȚEęŒșÚÒæq…ĄOáB›g-ćKÌwÓQć Žę¶jÖUN–ÏZ;EíjìőxcÜ„FČöÈ|Re(ŰśmdaĄ/`ê`RÌȘOdÚç”[-ZöÔ'Qɇmï –Y„‹Ü{O'‚àôÉZgœrM#`Ÿ ”iŸd)œ;ȚžNï"…»_6›8/9șÔ„ț;QÀM{$±àÆgò$a% Kßzűz‰É˛kF‹l«ìàäC\â Lg~™Ÿ—*5}aöW0‘űț‹0WE0Ś"ŻĄËÚÙæš?—{É‹ČöâüÁRXśiޜy ìxV~Û)ś›N˜I\8ÄÍé ZEŠ_fń«CŃ–Ć LLlBÆYÂo›E‹čY ŃÁ|Dž™ú4ž{Ź<¶kæAHŽPdl0ŹmR=ŸŸ«t-Rِá±.‡Ő8 »êۃkˆĄPűK˜űÊțAă0ۃü 7ÌŹmŠ?»șdŒæWœ'őúœ’ą5†Ÿƒ2ó Żì9Cü;lüŚÉ íŠq\ŹŽÚÁ!šqš NBÓUêÄ2Û/ȘD2äÀ^źÚ;°qđD’ú­È žŃJ{Y[ÛàLŠg¶$ ~ÁłÂkJĆ”±viÙ¶ì)ł“8Šœ2P7ÀćĆWSÇn‰`âžűŰŸZö7”èæ"ĄžŹœ “Đa|R?A» %“JÙÓ«ÿh3dïęyŠFqUGo‚ú\NlYu~ûŚ ™Ö©m©ôŽ•Î9i\píyÊ/2H@±ìńœéœt†:6–K ű­t–Ăç:W9!žôAÓæȘÔDQbé'%16Ò: †yÚńÁë9yoä5Âńőq[ˆȚdö Yśș†~Dræ…ːű†ęï  *?A Aț&čÁ„Óșo˜Pž"w€"xhĂŚ‰ÖKˆD~ÎŽ UΏ8Š’=.…țŠŠńwAëp&ùù>ì†HnŚwÉ©żÀâò|ć" ű„5q‡·ö°rO3N%ë}?Š|)­ûK‡pçN經lј‰Î™3%œö—ÇłŹ5:UÓsz–hćÏDčІÉ^"Č!á˜MĄ”éՌžN[_.`)H8țgĄĆ‡ÛÜȘŒ6$ÂŰ낞Ő)5»šțù§îas±gßqĂ2ź FhHùW"#BdoۊŸ›(FŚ—fÙś|čyçÁÆÆŠ'Ž4VÁŁ"+Ê5^ÇeÙUʉüòcćŸ~(n€Ië–Ça†Ûd9ćœ=th۔±y"œd 9©Ż4Pž}á[Æăc€s€·“ÙółŒâß±ÖÓц·tÓZb>üÊz;^ §ŸŚzO %DPEj…t[ÀżNHß§‹wő‹Aq”ȏw¶ä5á„ig%L'öæù3ŰB†a(ÙÒSđqŸ(±ëœuĂĐÉgcKą)öü“#w1ŃÙ»óęz;ë¶t~ÍsİgŒwÛóœöe• \ŸČ2O^Û=żč– Š:ŠoìŰ6€Z-—Œßąšg”LžUÓàY9[«`U3dn·À•ÍÇ)ć(lqéAÇčTÛ™tV雒Csà2IvÒ=j›rÂŚÎʯ䏳Ą†5}ÈșÎ*„ŠœŠEoçm4­]Ńu€2CïFŒ'ˆćZŐ1·hŽp’»-‹†WŒĄĄPEoÄńH]” žÂęšsBÙïϔF7rȘQöžË«ˆŹÉÀo:ÿĐŒ9l,í»¶ŐÇË[ÖșĆç:ă&ŚMOvD+„/©#ê•UèZá 'Wßę‘ű'ŻȚșd‰èZđiè€ w ‡áuç8ŒĐžł°ăYöv*Lû†Ë͔°˜-1?°: ˆÁű XYÄÔț)#ăÒùłĆ%ŒùĐ?sF‰Ž Ű„Ÿ`>?FŸâ"}Ž*4ÖČ4Áőiv‚/\R\Š=ȘÔÔëušgȚ> stream xÚ­TeX”í¶ŠS–f(ééBRźaf€g†. iD@BRș»K€‘D@ „„‘úœśčŸłłÌ\ïłî”îuŻxnvCc!U Džc„Ä„E揹‚àp†Đș€CŽ1 8à’"áæVCAAÂ]„ÊÌ €: ˆÉÊʒpÔHÌÉàœááü—ć· ÀÁçÈM$æäž{óá …#nPwÌ Ćÿ9Đ `œĄG P30ŽĐÖŚđjê?hBĘĄš›" =à00@†șŁĄ|G ÿë#Ü!°ß„Ą…ožTэ„‚a7aPo0ù Ą(7}ó €ĄN(;æŠæ†{@~ ž±;"țBą7n7Ű ™!AƒQ0$p“ŐPű—NŒ3ó;7vŽ7žŰăwI°š‚裚7æw.(C#á Ÿ›Ü7dHì 4ÌĘé_ (šCŃèšîßĘùW€ÿQ=‰„ûü‰Füńú§ …; “ˆ‰ßäcnr;ÁÜID~Ż‹¶»# &ú—âüæ Eęiïïá»‚ Üá>ԑDDčI àężMYű?7äÿÀˆÿ#țŒśÿ7ÜżÏè\âÿï}ț;5ĐŚčAÿțńÎtżÀï—ț_1 7ÜçßEęĘÓ ú—ÔßdÇțâVuwș™‰Ź°ì_Vó†B a°3ÀżéÖû#w‡čCoŠú§Ą!1QŃża&Î0°«ûïöKęAĘ!Ś~3š?ÊE t ÚZÿțuęăkxł$đ߉Ìô~3Ężđű ‰I‹„$n䈉JKd%€țMÖ?Dbÿ:ë0(˜7ÀJTXTT póÿßżN6ŁŃp# żśÆr‡ÜŹÚ? ża° u3á?·ÿŠđœÿ,=ê “ÌÍ Àòa.i/15wrFŐ­zȚˆáQl/GWőł†à1Ë2qeK‹mÏÂ!^_^ ;ŃjŽD„Š‘5,Ń}í ”ƒČœáù:yÜHŹšÏ‰/?@†U>aSls*óț rĄŠŰ çwÚ4éʜÒŐ¶lž[\űjĘO” %źùèșû–Ëʒ|‚ŰąžĆőäKńŃ/vôiĄœi†§òR^@_—UőÆ;ć’oAzš»™[I+áAvÆș8č_pw-~È”f˜P†’>6“ƒí*ić ^uI›îpŚÉî8oډ3(=†;ošQÜXç_ [čú€^[íU8* ‘{«2•Æ'©äżćZ„Uöăš&èG°ˆ"I8ć6Îç·sùëën©ˇę“:ßbAŸƒ .»0ąŐ‘ùçF▏€7 x†š¶aTÏŹ%¶ÔŸžá<v–Ê}á’ș+žv IŰ 7eĆÏsü•ÿcb_źUtjüuë±.ûĐNjÉÊÚà&_#íGjeosŽłwó:wŁyʜóűŚ#ț:x€­ŁíSPâȘÍáśš,°›Q$áßApeX€…çE€úÔùĐàĂĄáȏEžÚ/NòeZŹuHxK.=­uny;°őŃÖkĘȚ\ì’ŐŁOd¶§Ęl‰~gKƒ Î f*n ]–țČőuӜzDÈWóŚJ”—żä-é[-o㉠=xß?©âś i9w~·H Náï:Ę_a-Ńß<ž›{\ÍSM™ ßobÿ ŽŠQj9ʋú†TàrTüۃ+“,ł5é’Șț…„íőE>{ÀŽÌ}H«>'s 0đVĆÏś45š>DÚș†Aæ3ÉśÉTì=ŻX°ő.Żd° ëf€@ #^qęäȘuiÒ4Ÿꗭšő==Nü /ß`_àǶ-§âÄâ.á,‰ DłAŒ“ߍ„ ëˆÔ„n,笚2öE úí~€«—!-V3ä zÔ5pĐ+]Ź«țÍæƒà:œœ”móšŐN1qFuż¶ü‹ĄăÉœáNCŃŐh>?vfÙ\`ș섇ˆçu=żĆuúbÓ=‰ĂVŐ! ·ęrę€ê<ÓŻIŻÍ űÒH2=ß?Ç@ïÙàÇr,ò7°Sv„Ś_‹;ŒŻn ‘©|œG\;€Áu\©).ț‚—†jYą‰ŒÉÁŒŹrÛË^Č rêńÊŁFÀ„í-}uÄ4Ż™_Ϛ‹”}šœűÊïgÙÜŁOûZÛö}_*rśHnQ!f«Șđ+FŚ[^}éžôj…Ó‘@–Ł Îjęű4čœ/Ÿxîn8;Œ«°ŻżŚă ‡x;DÚ6’yq·ä9œ)°S’écŐÈšG 2q>2šÔ}Ÿ>úćC<á†oWù0T»nydL)›IÇϗLÒ~ Ă±4Š_c5æhőÆ] M w"1V&ot 2æß\a"élŽ#čÏȘh,qž oOŹžÍ ÊpKGŠœ‰?z‹=VŒ•\ 'ó Í)œŒ5ŸM\ux‘[`òé;%(ˆÚź„Óż*JLÿŠúÄxșZLÿ\Ä«^1s¶ńÄcNÀœšĐČăDZʻàt#ŃÉÛï„bÛA|ȘŰąúČóúX c/%:ܘ%iIŸVß­vČsé!%ßsÆVŽ%îćšÔ™æ3©:YT_ 0)”Üÿ,;·^?h<úœBçN†păŸŠóäĄB ăÆt\« Z€Șç5ĐÁWçY{"ùrbƂëÚÀTېöxgÄÏúű„±.P-ą–”3Ń)_Ôç}8…šï©Mž*jČÀ»YwíJæ© ?á‘”Š’c6æ;ÚżÀ’\–ŒdÂó^&HÚ§‰f:’â™[v 8“x>š~țôû đՔđ‘mGsȚ9L‚ëAhN1cÎxÚńC–qŰÏ„ODtB©ô“1?¶æ,š‘h1YïŁé-ăaî Y†·¶—ú F)Ê?ą;Űì€SŸł;·±Ö_†í[ÔŹé‰ȌAužą„Wö`M„i}}Rz§E9Ùë5žPÏl  ùŹsŰAæŃÒq¶\:·¶“Ì7rč`AÚóŒĂË5gjO$ي©ÛĆE?I0ą•ń'ĘŹĐÎGŐœőĆł©.} ‰•țíÀT;Wb-Á\Ź)79™KĘ ŽEàáÜú†<ӌC}ÿKțۗTb:ÁˋpÒĘN€XDPőâ[ ™Ź_p#5űï€?f•Öń%ÁYʶg—ÚēĆ3@żŐˆxž›ÉÁÛÄ„ą*|kÇ)€€č­?‘Eż¶™è\VX<ÂĂü! IÎ9&nímL Ô<ŠDŸ^ą…ßQáo­+œcă~.Á9bĄížê0ȘC)àŠOY~q”€[~Ì0yŽ©žh€D6s:uüSș*ù"m-|‚Ü›?ȘŒy°/Z5LVìXm6c˜wwÙù€ò(“* ÿ4‡ą  ) ŁĂvńwŃ:Éśv»Kő.Ôà•eźì4„iÍ~8Ié`–Æl”k3‰W†ÜQg”öhŁTÙ7Ç9°3Èëzš1SU“8„l[ŽÏUÒăŒAžœÆY§5lœÍùÒ°ˆŚBc'ËŐŰČ=0!IÆZșnĆočùÌBÁŸf&ś$OèȚDüóRè ғh‚§áRFÚ8’aÂDÒæPÍ2)!p;È6ŹÏćÔ路·€Îÿ~ÿ†3„5…ÖĘQŠÖʂ%đòL#jÖ"–€óڍR1hô^łC:k…„œĘŻŽÁ ÊO§»ŒË;ërŸŒęÿNϜA2â=vïț<ŻàW–¶ŒûÆțRœ»é$ô\-|cž+6ٙ» žcÓł’I1r3Ê:ç-ŐȘŰÏßîüšŃZńNÉÖŃMqŻwêÜőòŃÊnÔXIșwDÄ>żyż^tł9ùÊźyU‹3űźV|žy[#CwƒGŠEȚˆ©Æ"~’scő¶“éś§§ő»ŰKÓÁ[ßOăŽő 8e’[‡Ź›Yëv7Ÿô’Żƒ(ŸOôŁé̂qȘoŐÆ9Ń ‰d„lÊxmčٝőêÏn0Ù>í„N8ŚV±Kä‹Lônw(ŹčƊLRȘ)„xò)Wuxg°čsQ6­z–ĆŸ[űńdÄżo„ŒjŚEÛ:,”ÓčgŁXmvü#„ŻJ7+XÓȚêÆč}çäŐ!ő`_{Wń«CźÓżz­Û€ŒŁȘÒúœ“ŻÉ0È8.ćGfÒ(€PŠ˜CN•„ˆ°lx”Ë©$Æą“Żû°Ì5 ^š5ŃöÍąŒCćœd†ąÔ.è k"ŸŐ+d¶áĄQ»ì8q!*°@›Ž«ì imik‘D–•ÎƗæÙ ”ûźi* žYtXìJGÎŻíW_ęa^˜ń€TW­ńdłW·â~yFŚÏúëT•č_ńY­°î^8ȘÌ~Ò#C1?ŚûVAqÊlŒ]?Ă»*W‚LoáźÁ‡wœÓč&/] čöprꈓ“ĄNBfętO·ś:ˆx.’~E‰|ńæȚ˜"Æneë‚LëÚĂ&ł…ĂM,êh‹}nĂŽû0v%•/>Š;c6 *òÏïxäÔ۟vˆ%żČńZ©ôٖ‡ŸĘÙÈÿEdžJ6ż]śű©N›ky^P Ej”ăgÌéëzđÜĆí—ÌFÀđ˜\ż/¶ t]ÂS–TEąčlȘFÂțĘÄ ĘČ͟ÓF+Űì’ËՁU„ …Č„€XiƒB„ęJzqć)éw­ ÇŃfàőƒŃèœÊè\,ËĐXŸű‡ž”ŸÁÇ0‰fƒčï«ßŽßkʐÎUßəi·ßæû$©¶Ăûá%€ô'ÖΜŁmìrüsoL8UâË|V@èêą„*¶X‹cŁĘIš+ĄzțĂË7*ŃęÇ»_üÎĘQ.ŁŚoșĂòrCL•KÎO_ćQšXgX/Č(ïŰTxœm, ĄfÏ]űì*+a5”ăWwțÍŒü6ú‰ÇSę‰<ł)ófßỗ*ŠŒ ˜oÁgoűâ^oے}ćÓÙôŸ ŽsKÉUPž…x}c©âu ä…z@đŐ7Ù^ÿ[Cl_ÛFzMÖ0†Î"%ÉąÓU0CcMjQYz À„DJΌșZ„±ìŻÛLÓ8WöőU蟕îe)–Léìú9ĐôĘȘeëi@-ł9re‡„FôâVeűÚḭâL”‡TżöQDFż>đ?ù„*őxaŚ Ÿì;2 [‘ ȘnQeR§h|ƒŚ—#<óz˜òôÉęć&%Ÿ™BšĂgë䟁ÂSÏèEd:âK~ Y1v%»1Xăł„ò56ƒœȚҔ±PO5„,nÓĄ+ÚZŠU©ąámŠùÆ$Q?Œ$5ÆÇÜÎ,Û$ù2 ˆ§ș=ѶLĘș/œÆ[Ù u S ސ@\căIż™qH;ÌÌȚ‹ÔđÀijŁNçf—ŒçgŰĘn&&ˆ]vL¶<|ăŐ%äàÆŽ5í­û%!ÍKđă`%ë4CșŒMĐ[­˜2ˆŠŃ,ћŠè'ZŁÁq: =aŹòÌŰ8ΘyèšęȘŰEź"(ąö*PX”üTDäŒù="_ï„‘­P\ó'cc%.œ•yfz8˞ Č!„?ŃJ>/û4˜©P݃6œŸ ŻŚcÏż`Aeń©•&oŠz†ËìôáŽÀp·’ˆ.uٰ{ŠGéW),ĆĆ;'ï{€‡Àűžț“ę(śôçG8Ž‹#TqŐś[‹ńșżŽTöZ9[xI á{NbșQǓRZ;Ú@Læç4 œ>UUÓ„ćĄ*îÜ{vČ"„)żìîà— Îđ~1',J”âÄö\Ì|ą< Đ ac' 6ŸŠqY Ë57PÊ+WL—KŐŒ ÎÙłÓ ææêeZ'šÿœBI«œE„€łžh.̶óÈHă­ÓĂi5XšÄ »‡Rűy~Ÿ8\—€ámž(›~ÉfH ő”JȘE(ÓzR_ÿŒț$P![ÒżšŐ~Đ$<ążàĄ~„| ęQöđDŁ=ìIȘàÁąȘ[žžȘG™m)v4Fč*>ž%)"/á1đcéUj«J’Â#óÓÇ8eTŁT`Ìç—ĐÖ0í‡OS1ÚL‘|čŽŃ–YfH:8ûÒoß[ôŰÿÎlaÛÌjüłÁáX™ÌőŰ.Z3ŃìB”fʉIvpaœ\CâĐ*€ûî`áÖŻ>ٶdú˱â 3țBă±)¶>îäŹŰg;æ!óșCÊćܚßÇ•lži$6]Jśäd f*śD=戟ï…ĂĄH㘯ă*賀§%Ûíaß0éìÒcòuVCŽŁy9ńtpńőíƒqGbĄ‹tNjŠ]Żjph4ć,ûXVœHîŰșLP]š 1őçlMaŽY?Óâ'OŸŐ5~=‹g— ÓZÇŁ!»Ș—mŽ»l·Ű}±+BWlŐî”#Ùóžx‹Đ*§k§'%+»ŁIy—jćh :„MJ«j@KáąéRŸ©5vƍëČp¶Ž`Ÿž$Ą^N.iôő=ômnNW^i]mɚçȘ!dŽëzd%BEv^ {ìÙǘ?@čOŹQ—ìE•ö•úűŽ“ïe“ÉG9ă}ê΄ëʋ„”8śmeĘóićï}ÛȆŸ&ìE»­ž°YaÂDž˜šbRlÏł«0§ÙEL—$<őź.„JžÏ2śö'Ž}%[ïđ"ÓÁF4IBٚȚGw“úG Žč;Ÿ=ËÍ1šŹÄ±òSiš­·Ő1]—,U„…vș˜śD*8‚^xźżą'&[‚¶+Së$K^äóÜzi|PĆ­š«™Û ŁQ ¶úrî96’Ę[&Śævg‹ Èˆì‘đNl` ó|Š<Œ%©ß+°·ŚÂÄôò’d6^“5Œhđ‡»ŹŽ+ČżI5±…ș”äoMç°ŐX„Ä& FÙ$Zšè~Cï·\ƒ’i1“W)ÏYjbé-OAV6ž”ËóŒJÉ0æÌ#úè… ćE鐀Š*zèÔ҇Țp‘”l2"w—W-]*țîÄd+;ù<à@ŻiB'‰űÚîÜ”$ʒæÎ‹$2'àbì‘ZȘƒpÓĂ,r=üì=dć­zíX_š”ç/h!BÀyz >rìEÙi•ÒŻpŸ1ȘrŒ¶t"ÛśŽ”ÚŻ?_Ó&Ÿ+se˜P±æ‡ŻKé 1sĐŹ Ź_ŒűŚ4ZrŠ??`zÓDî}„Èńd7ćîRé.ŐALÂæ6±]19‚eŸUî0Č8†śÄCc8qsÚ5 üźăOžû”·oî˜NG/h”§JűŃÇÎ2šOÿššÊN{œ\țáUÄćg-í$=`9qÄô8 ·+‚AĆÁ+’;¶ÊË»”];!æȚQi”ûäÁ”z endstream endobj 575 0 obj << /Length1 1616 /Length2 22913 /Length3 0 /Length 23740 /Filter /FlateDecode >> stream xÚŹčct„]Ž%\±mŸŠmÛvR±“Ul;Û¶mÛFƚ۶“ŻȚśöíÛăvÿêŻ Ăż ąügfšț’04±”±r˜MaämțŠPțß©LÿÿNäÿÿ?űÿ‰ŒÿÿÄęïę/‡űÿïyțïĐâÎVVò†ÖÀ7țóŽÈțčdlț·hCk +śÿSüTțÉÿ#Œ”“áßVÙ˜ę•ƒ‘žń?ŒŽân@E 'cs€©ĄŐß>ękÿact°Č°țŐóßVè˜ÿ›OŐÜÂű§Í?gûĐÆäżsÿ+ŃżÌ45”ŽÔițś;őß8ĆżÚ;©șÛę„ö?J‘ł5ùŸ‹P„…mʞtLìì:fN–żGŽ™ ÀĆÊâęÈű/Ó­ć ,ÜÚËfdú·űÿńüŚJśżÁˆÙۚü3-*N†6&ìțq;;8üŐőß3ÿ·èÿ\ÿ;ê@ ĐvuÉ֘'È25#Í©+gxRT»ż— l8Űź€A”0߯ڶÇ75t›«Âàœ&˜ŸqšûłÍ}ńÔîc_šú`Žӊą'x™‡ïMB՗ČIȚÁAsÀ W‚vŠéy” »źĆΚv°3©€ŹWüI0ĘÁâ}őDćGâ’ï‡Núh‡ècœRƒŃ‰Üű ”¶àôŒ<áűé‘bpldxšçąo&;†ŒÇË'éô{ą“»Ă}ƒń'Ä« [ìłQC§zY[šÇeT=‰Ù–—)ŰvìΕZ‘èNeț y›> ÂÙ\Êùż=›dhèNF™ÏƒĂɟł‘qʚËCó/ŸȘ=ʂqć”dySőžžŚˆ“D+PóžȚ>œż«ł{]Xr4Kè7v‹‘Tšź›Ö%Gˆ„VŒàçÚL§›VŐBvìÊŚ«ƒ¶']'JŸW©ŸíÆkPê7ÓšùæœźF;O\NŠ»‹Ààúœ8é ĂrK5=đÍđ„ȘsQúH0x7HŃ^»‡Ś’ZŰôÖ„Ÿ›ÚĂыìą`^WZ0–ÒĄdÍÒFő™ßeăĄeVÎ'¶á*Ž©JKêÔĐę ę’píű˜é Ržœb˜ĘsLè‘8rÜï>șđ6–wÀ<ë‘3æ~%c…*żŸ%u6„ÿ°Æ ËȘŐđŒšNÌÉÿ^•8ö‹íf­IÉƒo|ČőH_»o„X4¶{b0ٖ|€H‹^·Ûk Őÿù`we—Ÿ?[Mąt䠎%M śCùÖêǕûY ŠÀł·i›]A)UŽ‘'IÔ¶Í@WțXJrșÀłűŠm{yšd+ëÄ/›Rűï=eˆhŠ„ùm›ŸÛëfïßșyíIpeËŽÂTá'ùEÙ·Œ”ъÙș;“ŒŸ™€œżïr—ÒՅo‘t…꛹»țڒX̀4iČ%op6•SŠžÖ‚`ÔhíÒòÌsßw€(»ÓÿĂÊYZ‘fÏbbŐtx›bœÜғđË^aš”kéP¶úȚm)iҍyÒjÂjYó‰‚ }?_ŽMôSGw:ÜBvŻ˜ Č›^ßK+RÓc°ÆáCp+xo 0vëÜtÆŠ±Jđâۻߚo|ąNlâ1@ßpźû‰`ćœ Ęî[=©hoCs„ÆÇúĆ9“—ÀĂŒQ~)=Ăă3gi·„ę3fƒè`™ÖHæ·Â­U˜ăȘYŒŽ¶ßE.žűčJfçvÆÁFIÍłÜîŐM$m·CŸrăÓŠÍgȚÄś%ÀȚ=–ąÚs3îśąŠĂ"ĆNänĂà“d 2æSƒÚŹƒÌ ÍUÖĂR_&¶%LđMa]Æš~ŠÚ`æ\őŹ€ÄHy‚ê6žSᒍ«Y‰,ș*`çU!—a{1ŻHEąF—$ąžXđ¶Ó#Č+oúG铅 ;ôÄíF6ÉpuÓvŽ#0ł†ÏŚőZÙÔÒ^'ú# \ˆ‚»]tSà/Êsn ąLRÄÀH‰q™ç€żôșKA±„…©ăű—ó!ć\°LSUPŰz†ïT‡ƒ„5cÄKžb‘ÊrăxÆĂlÚĄúŚhiǐKBŠÊ•Z2k6AúŠ&á oˆ°ÖmPÉ$ZKLo”§€Ő*AÁ+#_é»vbőÁŠcÆ zČŸ›Oő{ÙŽ°š€;—3!ç[ò„©*ż—œE&É%śÂ0_¶zZ9șK5DŽ–Ąa†Ú>=ê Áí<Š‘{őŚ#ârUáŽq «Ó€Łđ&&‚5Đ4a}XăZę,Ö˶ŻŃÂZ\{K+il*^O©`Eîlôšș’Ü‚+j.8íQźž„Ïìž!5Âè‚.C>ŒŰiäœLÀ%á”1~NțæHÇö*‰u1ώțyRžŠڐ5i‰±8_pœ:Î0SZț†O‚6p+L§›mç/o €ˆÊÌ»ojænÊʧ §ÜB)OHœëˆF2Ž·˜J6Ą 1#ŚjŠĆ‘m@'t NŰæ3‰†ÌĄ:rú;óì,ț°ZäĐzđ:–썜-‘ìÆZæžxßĆÏŻšȘjx…HŃÚe [!Șzšœżę–ŹÜ€ÿÇä E©ƒ~­ƒšÇ‘ïr·uÍÎĘüä{pșĄ!ó,`/qĆŚ ìśbÔ ©GÀóæÛÈ ìo˜łŁ±™Ÿï96ù%Ë@)Eœ+»)$.òE:E(ϓrÌcO2çÚ]5í po‘ÉĂúŚœÇA4$:űÚźô>ț‘8Đf™*ûÙk3T ĐïCń QZ]dcë ]sDȚ-h·ïƙȚÂG’,w«ű™ˆgćhJ+—îvÈ?ă~łŠÙŒ-XîïèM|h,pˆłFĘÜäN2ŸQZƒ§ò˜ŐIˆ›¶Ț‚Áb-/9è{‚[öo·áxłăšŁ/Ê{wÁ"ÍYFYQM‡jŸ)H”4æ€mD"PĐł;–RZ6č”KH#”ÄĘÙwűęÍÉöŒżùÖŁ›Y&J V|°ÒX@q„’‡ÊŸ—ŁZCöùN"[(ûțò“Ëw^~>%yű…2ÿIBć(ÉÏD»Ög•kü-%qT{ő:K&LÜ}RèŠż9‰…CÄ„^)‰š­Ź!ȁ­ƒÌNHÇQŻâĄ3FCŚ~àș 'ÿŁŚ7s…Uhé~śéà‡ mƒCŒ™ÍÛÏ„BË ·Őźęq$țš$cèÆîfŽ»0ڄÇ>ƎìPĘAvïú!‰nĂ+ë|\;Ś|pˆæcEKÈă_kE„o­«§?7Ÿ/Jšą†Ț'îć±íü¶äÿ=3WžÖmú藕ˆünN u©œ.íxÀŽ€Ɩà”éę„"Ÿąu2gȘĂĘ)Z|ș§ šžĘyđŒ€ÆÎ§|“€‡ìM89ÛeàÉYŹoM »èń»KóŒ“Ò0 Ÿa @V“œé§«•Î&~`őȚČMÌe q*ÒaŸJ“î1ÀÄœ1ÏeU”)‰Š«ÉžK‰;en€"ûă ÁÒqhĆĂöČ dyˆháoèBЍj)BCɃ>3Ű Žqú#)‹]ĆjÄɎAčsšțc‰ʉW–wbâNJ™Ă’_c‡óƱ•‰ÀÍr_\Q<żsoÛFCŽ5APć`Ž»#dSőz\%łûP†ŃËï!o„†~ ęò€‡F<{úPéMIéȘăæČU’pJż8xH>.œg {ÓHû Őc‡ Ś çĄÖdûĄŰƱËÄ$XvąÒl89n ò=@~ôPșô0^n:zW8WD+œNDú>Š{&'w9œdün6!ș=œopÆG4I¶ȚLiĐæiă"ŠÛ:Oą—XłkđrđP;dÓÁ›ĄŰ^ś;`șßÖ]bŹƒ€_ÒHÜ”)  NٙÊMàHŃńS=KĂÎČîŒ)`$ńœPHNOH¶9kÍš(/޿п€š~nÛ|óCą›€yù3Ä.kSáu}è  Ÿj€štÏISe?áÁ7룁‹ë—źùFțł|ŒCs°Î@X‰kö©ęȋîąï•WAEqćâhżdbŠđșf·UsÚ_‹˜Ê~ÆÚÌáàÈg9`ńƒz§őB ȇ,VoÁüpȘ‘1·üOwÙ\á’ÒIƒóŒtö•¶?…ÉÒ|橎ŽúÎĆLŠgTM›Ua!Țőć™èâ„)ÍvóÆG|•űÈ'™”8Fó/­}Ê$TÂȘĄi†Ó3”fÛRŐ2V(”‚ăˇ!œ|ŒóMóí|·ȚŸƒăÛJŁ źD­-çDĘ.€?’ë>źx2łăÂ}û—$·k”țûžf5ÀÛIĆŰëöJFQ©4%>RĆ”?U\rĐï~:革„-ÉÌä’›Ÿ Ÿ«‡‘vcïw§;a-i|VҐ(ș Ș—4|œ.%]ńtueaηèśAă·šÚ¶dńxŸ{ÀߖJCțoHĒBÜôŁ ܇#…RT“ƒæˆ”Yč5»–ŚÀÓđDžàEE0qŒÏÌŁĂŹ'™Æöه;`f>g~YĂ^'kĆÌKțžĐOîX€iJ•łOšŚ?_»`ă‡0i&ÖĐIïækÂȘÇÉțƒ/Їł›ŸȘ~{Ž>}ÓI™bśz[}o*ÉĄ™…ŠTz1Š_rïÚ ƒL“đÉcĂ©F2 é,p)Tì3ŻÁsXZIâÖ yȘ4NË%óž?œAyô8,†]ęOČńsÁsQŠŐ0ą§Íâ‰U MQ€R»'őPMž~(V—Š#Xč=}ą2Np§F,€Ï…ČœÓ'QٌšI ËNræîÌ|ĆN¶&pÏę7€ɂ±»żs2è1”h’Łžò&<=ŚúÂHȚń‹AŠŠx*UšȘàcœdÓ/äŃ.«—ÀjÖ]Î6yŹ9©ęq·Ú–ŁÌX=Eïb©E ÿì0#uűżë!waŠ4W=țbBD!†dԈ~$Œÿ„BŸèJȘ(ìŃçőÍEYțva}qíDA9ń ïéć1ƒùr‡ÍïÏyŽ<àe«Ž]­HçыfIÆí•j°2ÍŒńĂæ…>ę ,ëtțÌeûïŻąÌąîL©Ÿ§ˆ5ÂQșìü$ą ÖۜĂH‹cșáÀ_§H—ì]ÜżêΓWJ›ì™Ăk ßśŃ芠ËUŹw??8b㱏ÆȘnjÇ)^üAŃ(ŸÍobXłĄkǛúED'YcoŠK Ę/?'#­Ÿą=dë©|y ^ÆÚ~Ăœ{žLO–XČq’Ń­ˆ&~e*™­Ń5r»żńƒŒę=(/Қ”kśW›8“vÙòĐRHŠ“ Ź †À”éc«ÍȚȚ ȚcńLÒj…Ż-}*ą ‡Žqž`Êpš—ËL;’ìŚČhWXíîÏ#+œÖ„©_±Ő9ž.Ξ”}ÁČæ5ź#Ÿ òqŸŹONțŒ”<…ŹÔ_2ö°^Â6Œ‹a,Ą}§«Ć„e΅FÍSżmvEčPóJÂiőĐŽŃ*‘SՊ4Í!°1ÛeĆÆȘ òő§Ë„ńbá%šWń‰‡ÈÄw*Á=ÀáŰ(/âs;(Yžô}±YÎș±)^Ô‰’„ß!;ööKwœŸ,„GÔl{>æă\É3 ­«•4łaŁ#L87§\ÜšVĂő]|­”\=uC+scÀȇ|§€1üž96næ)Ń-Ì&NqPÆ3>ÌϧàGwXZalÊiò‘Çʖ#aȚ?ærDȚ bˆäCZÜjŽà{Ž&I-ZŽògòô2ŸÜ[û§]™í‚dțĐńw„^ —bsn–Ń^H6!ü˜PĐy+|™(Ùæ]ˆȘ2/—Ehź\u˜íšhű‹Ü 2čŽÙ˜ŠŐńI„·ąš|RʱźȘ§N$Źö bXm:‰Đź çÒ/Ú7uƆƒ±šˆ•L‡ë„¶œòœ5™b‚Ô“q›hŒźĘfo™ZÛŁFĆyˆ‹Ź»Ìț=h™áOF6(Žcőš«%ƒœŹÏƒșÖ­‰Qˆđ;|aáš„:î„‚Ę0’/€ìM«ä)‚]ƛs'Ïń1œ ŻùU•]­áÓ^4łkê°êą°8‘ă§.ßTZò ÿ]ŠŁZ™OČânFEżăśôċę“ćÜ?‰Ò|żš"›_bçǐˆł~Ăô=h\p6ä‡ĐKŠ~?‹Çp+`ÆÆ‰~ŁëśÊP–|‘‘ ûáÊnM]EFGČÏè:–RY§î"Ű|Œ$îCŠöŒĄŽÄ*\Ë«çĂ֙ÈSŸțiü+4Šw‚Ć@ux@—f†MćMÄÒxuaHSÙłÇîÕÚwÛÒò2ț”E€ ŃÜščvČÊÛÊçÿń˜Æ•\ ÈśŽP^()êút)âÜXæXĘvkÆTÁ‡ojN€îk:m»°ŠËŁźŚ&É'ʔȀ(EĆ'\Őžéϗ|źÖ¶:ŁĄæ„f‹vÙÎ~yÈ„Śś •«xĆH*&“„7ŸĆS°ŹśÿŒU6‚ŸÈ€5ۈ /áÁU”föFÙ="žQ5—]fÈLŒăć2%3„gȚ”§óhŹł¶ÎÂYóQĆ)ʐÆÙőáĐ$ŐAź óqŻĘCÏńöyŠQœïŽÉć„…–ő“Ÿ a=œ“æ–žšŚhٶ<Ș˜Ęă=Č0Óg?ș„DźÂHyüΜ»…ą·”U»Œ·oŹ„3W6_ ™ƒÚù).O$ÓÊ;‹ŰPôG–”·ÁžĘ (i©w[čÓČg^[Ú°nAËw4Ź=5ÍY}šśsȚ…€ŽăÈ©Z{Ü+„iˆÖö·ò4 Ż™””±}ȚcÛLĆîȚèŻ7$áZ‰k‰QR/ÎmV2żqŸűźóNêŒÔ’ì"”&¶ŁW„Ż€šùdRËÏ)—„VIžŒ ‡rDȚYśƒ`°€5&›ÊĆP#‘ûû4óĘœšń`w”?E“Š-öpțü‹ŽQôb=~w&ÔŻlźnĐ}ätó2‹©!sûô™ÜÿEŽŁźĐűîvC|SöM?©ŸEž_ÄúnUl†wZÙA EęŠĂûfˆö¶êÈ”ŸÉ‰â‹ü4Ú{Ž{*œçæœè˜Z.ôs€śŒŽüĄ"‹őą.pß^wżz#„„„ŁÇoisŒ‹AjęȘȖ6š_ąÒĂÉBEq ^țœäűœ:û·ÇŒŚ<”‚4¶]„ŽyßĐĂ5[~™0ą'ĂôFPur«] ­Ż7őQÚśYęôH6Ïó\;›4êÿ€eŁ ·É@>pöCe€Ë€D‹Éy,ôÛ/nÚ C qßAê"K«ëò6œíąÁVÂUw—’FĂOs q”bU`¶‰PÆy«|›tÏćÍÍ‘CRv!ż!óKĂő!™Ä€ÿ«F,‰`5ä—bÉò ϒSÈFž!љ2ń-Óæk©Â4ŹÓź=źĂÊSpmX@6O/‚ž’˜Æ`{ŠßZې€§È€$Éș:)ȱ­ƒP=&UŒĄ…ką“Vœˆ(ÖâkZ2ČWÌŁ'L©…uuÆűțótîĘŻ9Ą€î«Úß@ž4t­ 3z LÈŒ*$TuŒÄȅaàÄxčőŃ8+iˆgîŒ[Մîč<œ«ÍOČpGő,9I4žìŸ@ŒÆ›Sü"§ć.wíP?ÔXȄ&ŐD€ Šuîíąì±7$âógLęï ł-vûšâȚì6mlnÒÙŒÈƒÜŸÇ Ä€ș/Ëb|FžČAÛ#ŠÀy8Ł«ĘVLÉ(Ułólžz«ÚW„ÜŁU.< Rżę€*9Ÿ z¶#Ï}e„düÆq Êțéj[Ł-Q8ŸêƈHeQ–Q%LÿUÛÉqőÊ#mï™»>xòMZ4uboOŒg9(52[äćČĐ”Açô[âÜÓ Ł/TŻ›=éoDq/h¶4”Œ‹Míceùü…&Ÿ9nfNzĂqXЊ’0/)ê1’ÜŒțÉFaë_3ąŸ5†<û§2ŠŐËŸK_EŹ–.ˆòìuŰó’xđÂt2è)űæ±\vĐ«fśŃgi9Ó&]C«Ï`‡}ęĂŹÇ<@»łĄz-M_̉ӫâÒo¶ŹWŒˆ_;ș0XÀŃ?F^č§ÍZ.oïÛńGĘé˜.ßv±«Z›ž?GŻ *ž:°ąYß±mN«Ò bĂB{ÂêQCrúèöR ^qù˜6•zéQyfÙęçD5­Œ [_œì >0 7:r˜afr/¶,AˆĘ2 uâ~m@Û†gÂÌ4XŹuÄ-jhyțzŒ>g»ŻŽ•ęiè$ŽĂç&Mž2J‹ÂÌ]X::0-\ąßyżPęđ‚!ƒŠN]1àź%~ûÆź­L•ú7[^ińíˆ.È4#ùu~‘ŁmßÒűB§u?fsYač}.ZÄò‘R@ûjX·)°°#ăm‘çÁ6… śššŻ›œ•Íœ8i±?ÈąâK—›ç[áa̔–jJlŃû·X 4Ä@QʈGž/€ȚŸqîPźG+ug5”'ötcUæÏ=GșÛĘ4ìo'§Gćč€Oč’\zÖ4ä¶-ŹÚ%ù?»ÊCÛ?Ï|xę™ăH–§ 2òrf Mô&őe«#ș搔f䌛kEf èćÛźtȚÿ(Ûv_úv‘D?ž8‘}ÓeȚւdĂí ș¶ö$3)í;ę137G[ïÿęBƒŁŒÈn0uYUUg\ÿą&Ö Łq˜ˆÈäVŒĆ„çnhe˜œRD Ő4Lp'QÄù“dGŁŒÏŚZ„ŃPKđH„Ęt!űR êŽ2%6ÛOŠrXqŒßê4€ășŐÛXuÏ$DSŐBq‰yƓtÁfôû·Š‹L@vÎđÈŽ9N Dí‘-{ˀŠ6Ö:Ö5,… @š§:ŃyŸc…@GKC%Ç~3’ tš‚ÛrBćÒ¶=GČYRgêÿ=v%óœZZŃHg|Y†+&–ŃĘŽ€ ÈÔšú”–r&~4z™üțŠGĂÁę—ĆŃòŐąÊòŚB—;»zțvĘùgc2|“œÏêŸłD™ƒń5ì“ÚśVÓßżŹ˜kh”Kiq‡kV xìË5[2Ù·ùUTIDy˜­©y)ĘgiČOôçW ƒI."â#ÚČȘV+ ą$9fiŽ—§áSK;±öJt íŚTú€/€ŐŰ ÁžYoÜXÍà ·1ÍŁÎD”"Hńż Ìx`îBÉă¶remhWNÊg2wwec“r<ÏdćĘc߃ăf0ìŻ jN_șûŒS PęÔŹ›?—îo!ĂhłńWȘÍ9çâŁŒÍzÇ}N(i5žù’ ›ąûÀ?Zżwș(w@őŸg[æND§Â>é,5E¶«1 ç„퐫:‹_kæÀžÎ0,Šőê—Ÿù7B)–ę꒏Ętűm.D# "KôJvڝ0W Û~`–aT—x±sßF%1tăè? ,JƖÊY՛çXB¶PW-çÜÖ„ z'Nôʞ=-[W”Sđ/ž„5ú„ê :ęđyùÊ/óËLœëA”#íËòuĘÀ23ćND3ZâS%ú… L źŠ6ÇN]Œțš°ŚF*5ž`Ă€O뒟I™ÊFvH$kĂ_i$ĂéÂhŻÇž4“Rk1·8}őnDp#ÔPŁL·úÙÿ§JȘLv{sÓz›!ęüÜZÂ#‘âK64MLÒ)AD t°1F-ˆ*0˜hŒÌëÀ—1CYĘ2“èuÌ”ÿÇșÄ^pćŻÆ}b}RüóÁăaȚąÇI6û9<Űë4jWƒ>nȅ‡˜Ț~ž œšŃHê“Æ<è/WPmÿő0CăÙ3Uf) »Ím†ŽûăedđêqV2üŽE~ŽÂ‡»aʂšŠĄÙxș8ŻuŰMT}Î<ƒ;ŠĆŠ|Ąt󎌟RÒò~_˜‚šąìśÜȚƒ9űș­TYƧ7°+Œ^ű!Êńî…N\ŒÚìÀ˜è3ÆXWKźüüćŃŠÁ#°Èü"…›ÓKQß6ŠœÁd;Sꙋw^tűSŠ , «*yŒ2"›ÙàÌ_ʚWô§~Ą'áśèś›šSZ°/ŒÙa(ƒè©ŹGdŸń—…1ɚ°Ì[ z]iYh„5›đ‚ž|àq(ŠkșëöÌŚő·I}x.—P{3]xŸŸAm‡ĂŸvĄyÉJgH§„!Y±v†Ëożƒ (űàî Fâ‰$j‡ű`mí”'’ßË·|JÀ˜pżȘ.œ„ɶöXżNˆÜ§ę4YŽVWżI‹Í>XŒ3$/Qš«aĄŽoU*ô­ÙźœăéĐizx"čŠç/yò°i©M4+9âĄw,žÚQČË|<ŻgÆ OO‡%ŁpÆąĐșoŒE>§žłQ­UòÈGœgđÉà Á_–fޘА}5‰ŹƒpÊ{ʧÇȚ€y?J ‹Fœ‹ÙnšLÀ”‘ĐÍËę0*ùĄîĂśs꜐dȘéY~/\'ìÇü:e‹ÆČœUlA «Sìʇr˜üƒ)撼<Ìo;—Àuű$w šÒłșn=œăą`ÿJq‚‚\Ê”Ś~MËś‡"ì#(_œXفšJñʐ[وșqT_CŹDPHÍ$H6{3ü è5,yÓ°g1€è,I 5*W[“J Fq9WÙÄŸwžXq›ĘtšÉÇÔŰ7Ś& Üa4KSÁwfĆęÆ,̧;Žć9ćÌ@©î D~|ŸF#HžüœÉ/Ą%ùHí Ań»wâŠŰKőN,Â{Pú±VŁÈ*.ûHhO•ƒK;]Lőà OhM”]Æ©`ÛćȚ’>É+RÂ:qă=(țą-€"đUˆčçLm)O1Á‡ÉK‡Çíc&™üˆÓyN â”dÎùA­‘Ša‚‰VPüXp>kl””€:2_F%ïđo ˜·aûut»șošËĆ`&MÁ0š0_%s^‡(úÆfUŃŹÔjÂJőăàQ™BăPw S ĐŒőæŃh—Č\č»4šËśvĐxż­©ˆOš]; J‡›ÚgB2”ĐU«2ô@á( |FÍ6\iż”ő¶„ñÖWù·x&ńkl+Ä !ŽčĄâńj;P_ŸŠqQßóAÆnČ>żźB„u š/†Ìû=]ŚśVŒßRò„dsMÏORÆO v„üÂèiò5ìęy|\ÂČÏ% )WŰ –8‡ÛžK^QŒbnfÜê?f‡lÌ(6ŒÎŽ I;VłkS%’ąŐóČűYĄçŽ1ĆĐ~ĘŻÀ^€ŹçzkÜSeKVæ(~B8`JÆÈ-6±ő«·«q©ŽywÆuÁ “,qĆ-ȕ_'8ëJ4)ʘżÈæŁĘ%nRXæÊ üdż9^KŽÛTŒ ÿć~…űČNZŸ}ŚNíazèa­_qû‰äPžïÇ@nA4Ź{ăäÎčçÈʝčÂăuȘĄŻBQ=”VÇ«vrÀŹ2ÄeżűÓŚÀ–”ÿŹXCeSZò™ 2e(ZzXÀûœkÉ}ò‡ížûG ïíŸăîwĘcۣꦏÊ%oâÆ'éÓ nFš_”|']©F)LÁ ëfMÇć}$Ê".@i 1]]ĘlˆćȘ/‰Ì3EŰЂ5-x“Á„?ôœ˜ËdÄÜé䝞_ρÄÔÁÉMì!đ„C€5˜°–‡ûsńÌ+Í«Ź’QôĘ{oÉVÔrèźĘߓŸŒswgSLdŸWPhČĐś5û†ùW/žę@ć"UvAâL6-ls©ń9žĆ˜Ęlńc]joŒ3ŸùfęŽŒđ`,RF-žè8îéƒyi!w«žâˆăŸ0đi šˆù–s*…éŒÀl2>—pޕݯĐÛÁÌŸÊńŸ–û[Æîqv ©l}ș’Z_p€OôDĂÓ3 $ą:ë[AËč:¶‹ÉOÏŽ%m'DQŹÔyćč úôœô :łÂá!h1Tâor= ȘQpy•żÔlćżæ©ÿž52BźŁ2ÚÓĂeĘú”W“öŚgF‡ș çy\Ț’œ¶,j^%Îăč-Bčœ{‹šȘʖ5őÁ·/ô8K cÎk•†đïö[ ÿ2»’a<@ë: Ö_ÓCĆÈÈ&Lւhęę,OÁß(èŸnü&Č_Áu‚[ìu'0Θ—}}ڧ„ îČϕ§‘C&UńÛoßÀÛP+­|G=€#VyGźûÁ”äÚŁ4…B°ÊƒÙ”“eœĂ?—ïlű>‹’j*Kß=ĐŃZgïÔWî†&ŃOûgtî oé„”w”ÓËsĄ\|†"@űÙòĆX„ńą™žĘòԒ 5”Œ%_l ?ÔŰË«śyXœí-Î/”ń6ŸšȘìùă/Nö0îßzTùïß«wÂo9û`fí$LâÄ:Đ'Joè>4”evșžaőS}›}¶sL#w ßz‘$țÌEgĆNŠ~¶á.\7J1Q#Ćt0ùVŒ;LŻ…ŰÜ1Ù.Hîjh+ĘÁyô«OË+G° ÙÀśœù;&š†·s*;§`€nš;¶})ÄSÇ,@ʋÖÄJß,l+ ””Ìž+ŠïK‹æäúŚ.§Č](W–đĘÛśò·MQ"{źêŃcŽÙ&èM±òêÌśôË _ÚÍpf€ćŐh ;nVÙqț:T—5őŽ(…2‰WƒčŚR–Ł–œ‹[P™y/^‘RCúŽPŹ3|TwGhATšnJg[ŁÈ‘”ŸŽ~êŰ;čÿ„—z«Û€>q‡>šbHP<ČțŠÉ'ŐrvnZ^B*ɱ2ŽÀĐŻPôxł¶óRË̉~ÖéĜ 3œ‘]Śl`p]ń€=ßtĆ~ύ u€lž^4țq1€]•†B•¶6źît*ÛFuÀ Č@ˈoÒÆŰÍm’Rq…Ž rc6Z¶VÖ©țÛeÈ*­ƒ{«Z;*ÂA‚ "]}Tyóí˜țÖÆrl—TêÂ7ŸëțRĘáŒ~á<…ùSÿO‚"żÉ&†?^=%'±%>żö#±9à=Ï»ńm:z u(yŒ磛ŽrïÒ|țŒ3h‹+>ïV?ŠónŸ©AA-yÚxęî źR“'‰ŸI‚9ô‰€'p`h ‹oóÖFÒ»uĂқ—" ô*&Ś™|ùŃ·śv`ÉeĆuȊ†ƒïđ(‡żZ”s8zK@òîVjŽƒEŻÔÚ©[ŽT­;zÉ\Ïšsò3a“It]N ÔaŸúa-}FÓ ’GƒńĂ,'Ó'ŹÈ“/—sÔ^­#ćŁ$‚ÆY i€s-Ìî  (ÒÍM;–ź_ú‹;°‘±8OÚìT“^ȚB)’łŁY>ZźȘÀÍąĐ'ŹżÜŹű{ăáß'ò’]p;fżWX-æ,łRœ‘u8űŽÂÓÔé.»œXíőÒæ:cDƒŠ>FŽObÜŃșE<Ê©•Aö`ą,ËÇ>V’ëhś4•ź|ę3ÇpwÛ3żł.dœuŹïn »„J™6`æn–|`1hdšJöœÈr"Û4:‰'§œžeSžrßÔŰț9TÙp%€˜]ùČgQI°ä<ę ĆC@ąqÿv1±ËdJûQV‰]ÀLŸ›D……}î҈ú3«Üpà€”–芔œú8„Q3CŚ(aMN]äü+’A:ÒIHAS$cƒÂCG·p&ąśśdÊ·Ï?ó­Ï5üné:.s©”ŠüŃĄŸš v$‰rsoRžźxùżïĂӔ>Žƒˆ1'[tĄŸÏnîțo;ńhł™9{©0wFsъàńżUș#üŠ€ón‡.ɘ8’JŠ.­všæ G°ûńE§Ź‘ń‚űą|»Ov¶U”"0æVopnj‹‚Í莋yšsO˜ŐŠš6<›pp§ĄPáV"–éwš}:Ôïb€mA–9˜Žz<[đ+GĘMLJőIìÚYŽ‚ęLŸÇT“Àí^z$sxëś?°'Ïö}°|ąo5„eÎë &ÒëÈFˆŽ„ő6nçŒÔ:Ɲâ8àű±üjzß±žtu(Ł7ÿĂ,ÁCÉœoEì»b5= 8~Uô‡Mț8ŚŐ°–ä+NW€ÇFC폔è.VD«ÛvŽ~É/‚ú#V ”cÏ^`ϒ6ÊÄ©GKÖï7ÇȚêŐŻ€MùÀMŽ ꔞíƒsçóэgƒoN“€$ÙKɈ'έ?n WbšYśălMh‘ÉaʙŒ-‚‹ÂúG•zÊč]|/ù†PÍáŐM•†”'‚Œ€œ·ź[vhȘ<,Ô%ŒcŸb€<éˆJÆœóèŽ#kșrxnJȘGȚÁâ~kòą¶Y ïNíêĆy Êęń5ë­ăÎPžĐ€âfű|-ŰûÊN‰ üùSš(‚x04ÜçÙp5ż_©ț +ț‚Èö ü€5PM›šÉ.qfŚ;ŸSĂáÎ荇”F<”—9ęőÊ2 Ś9%ÓŚ›tŁsčàa ôęKE{>íf ȘsÎțșêÀ8'żę6ÖJÙ*jWŸ7…öÏáNí/…|zƒ^±€p»Ïœ§i „1™–Œ—ÔæÊÛwŚÛëĐ„ŚÚpćÒ<ŒÙ̍ŸFôZŸx3§~ŃN,$43Ô!ÎÄüÖ ËÈ Ú㰊m;ŐĘ„ŒœÒt(œ±¶F-ú”Kčj?€Í“†Ź?ĄÊ€ûbńŻ#pŹ80ëŒș“'T•Üž_܎k áiê&Žfž‰+‹ÏW ‚A”Đa‰±&ŐVRGč=)j+ćôʈ᠂•éȚXÙŒ"zi›ż-:R+łd˜æßšŐFg qEp z~뮙—Ű·5ʚÿùg8ŒłâEŃ[œìhłATNöI2ĐŃL‘łŐæńś2=[ă^užŽŸžôކă>™ żndŃùńçHÒS:,ăÀÍ±żzźšÂS†ú:ąĄ'*|ËSMx}†BQW6ˆ·Á;H\:ŐÛŹn›űŃąy=u –+oÔšĄÄ™!‘­˜Y”yE-#v(V˒2Z˜ƒŒŚ/ÙG󙆗Éï Œ°Ïú*Vïj$êJ†Đ?…Ƨ$T!Û€‰óCƒăöt<é‹{«.Ó+9QƒüżĆ" VЧ&“ábœx6›Śò/­'Ÿ5”íłävBîőcÒ ·ú P&K#i—šê |ŒXŒRÜàŽŹՑK—x,7] ź.‹cóŸÖöÔvĄgšjŃŁâ"p0Қ ąyځîńÔÆ.Nà1’œĄ·#&űÈ‚Œâ€»s7 æń/`Ș—L6m7Cá=TÁĘ\]«”ÁőԊŻ1Cíُ? šhW“F"dĂcAæ•Ć+GÛÌû’FőqƒÙ«gŸ~ŃËV=/ZšQaká€2fkĆvđŹȘfæ@ƒ±Äê'éÈ8Ü(sNŸ˜û'Ő±KàžűeŠ“ùB‘·é!h"‡+Ž“"›ŠHEÏi„r«ź†Źp#ëé)é~N"ۀcŒ…Ç‹>+Œò$ż—d~xV˜ÌÎòČ |FÀœRÈi•:8žȘžac{%ä7ÙaüqÚ锝tÄτGnï9{qd3.’z:EzŒĐÒKzá fƒÌ’W0#ÌW#+ŽÙĂĐÊgû‘“ž b”‹sÔ#«òÁZƒőŚń&˜úž6–ÂŐ/܅‹…·3EAĆDĆ»òVЇ^B‡çgneÎENŒíWĄŰÍn00TfÌč”Ńi ÁDkțÜéJ‡UsŒï3qŐ |•!š>XÏàçđűâőąhÍ _Ű6đ/ì]’9MC=ó€f{--Wkr†7"ځ”0;ì5Z }Fl^:ž-áô”ZÓÆï”uæj(kőÇoôźdfMuióŸĐ Xžm"[ˆE•ƒ9ĂÒsMÎaSÍÌ>.„+ŁbČ>靿ćËҎ/,Q˜ŽÜÉUąˆśƒ„)dÜ–o„±‡vN5æ¶5wvTRSìÈXŒäșŠjjÍX·–w"^OÂńIŰĂ9VŒŠœ–­óH<:ÇŸ°!šÌvRŸS–}‡˜«E2Őí(ì~*¶Üoń+ÜŠ‡ö„w@0ځÌ.Q™–N^=YÍcD㡇ú2/őCŐ/è” Qf!FSxH i.šìŸSJűD;öw4j šëÂ0"Ow?§‘Gú‰nÖJ—””Ź0§X,ÏÏ]ú”?śâSŻj °Ąûjy^* ›sY|+Mż^ćë%Ü3"–ç&œ-șł'”kŒpȚx&,ï+ϒ©hÆp–ÒȘBîCMœćKä9„`D—o3‚l&N»pćiúźŽ ăšGă=)Ț€Ő6<Ƅ}ù"·Çwž 5őNćíŽÂż€ąčź7OULúZČhL6‘©r4òÆűêBDB0›"€Ź*Ź2'nÄMzŰjŸŸIčíëĆúÓôXŽhÔg‚ țȘŽ#ÚbUf4‹$v]¶„%”"uW‰wĄÊlœ!·Ž,őèȚ ?Ÿ{“=V~Í*M;·á­ èżùv «”™5KčŚ5șFćx_ż78˜ĆÀe:ŒÍ‰‘äùł!Ű\EeĄwŸÓœß<“>aŚ8œ†;^ÇÚSK]©œvL‰UÔ£ȑzi;?š0ÀæßŽ"ń (ÉÊfżüÊČS ŸKK„±˜…ełœêÌE§ÈpńèÊϞ(c36ʱ”]żœ3ąęŒh§”‰,bˆUÒ€FçÒ ű]ś58 C {đÚhÁùŽÏXAŒfěóŠŚÌœí9ŚÍrgU ?ÛŰJț5± ž9 {” éçŻț֗yìeF™Öm89€Xij[Ż8#2ÒxÿFÓC/aÔà9gyن·«d°ü3ŸÖšyKuș±P8#‡&3X…‰R%œ<ͱ ”ÖFYœ‰ôRÔv :n4(ëpŚ1ìÚĆzÎ8i•ŐœĄ ŐÄjŠ/…QҟEš†­ì+“^5‰çvfÆCŠbEˆMÄżbAșí.êsŽv­ëÛ/€ .~ôł$!'ę¶IäíMêçË[v°P©ćŒ‰ßjŽ:°-l4ƒ–<í8ÈRÓ0â­ăXx|©âČm`Ÿ{ș9oêo@Z;©ăœg-—úv°ÄJ‹!/ ń";ęoÆjĐ­Û~âÊxxƒ§L†ùđcÛĐÎÂ:Ț)ű«ž˜ÍÌï]_3‹„ÿ ÚÇ[ćÇW·:Âźą ùčÔCŸüÂQešniÉ8,Șőæ˜]žș‹ sŸÀ *vȘÛÛWCVs=±\Âé*CŽ© .hBúń,›cŠš+çś+éⰘ_ž “Y}ń»/ÿâvLKŁđ,û–ćàƒÛòuu+!ü Ș=áûˆŒÄÛhsƒœ*Ąž:v\5Ą& CdÏŠŽčŚì€‡”Ôû'C”<ŰfcS86ڌS) ö›GY/KÍšv8«Ëß+Š#ÈCŸˆ#3ÈN΋€{ì{§ËÇÙÁŰűâ+|™ńZĂq5v+í1T+6ĐUÆùj‚–ÀOŒpÁïÉúÈ0Ű5YSźȚ†—€d€Ș)˜èfzCO‹k ź„ž[EŚ8éž k Ș”ÀŚsżÔȘvw6%Ú{SIÿTBĆÉgf͞șÏïČZ\nx*Ł*ăHÛ/Ú©qżÓúł”%<Œ‹ï2€K±)’–ĆŠ\gđ Oł‘ŰÈ\܄M!S.čz  ȘÚ xűÉòƒ”5nâÖi(ĂÆă@«Ćn„ôĘ rtłwŚ.°ÈІëó)ßóò6eq#0Ÿón7OcÔáۗóâxúŸ= >êÌämr`‚8ÈŒœEdMĂoÛu8eFtÇ2â%LXnû°[ő>ƒeęŠ%3ÏśőAœ˜źźČù‹˜=ęˆËȘ“k&YŸgï{Ś~: ˆék™ïžís7DĐwÌ7Èüó}Óÿ6њ”i­ ÁćÁàöf «âá\:œxöŚś0ÎHŰ.H–·'{Smț+À˰f‹–ööPŸ+Ìfc©ă«=Ÿń"SÈy\e7”­9\kQEÉʛÏțțìöńŸśù2šô܂Į/z͗mžĂł8D*ÙƚHËNƒà›­PÀ Ł[Ej$_˜"žwì.íÚËkŠڰüȘ)żžÏ‘ź·íY~SèùiŰ|IgÈF‘0Ä^yÎČșvđ7ęž9ÖęțWńj›¶ÌOšIĄŠâ”j‘toŐÆț˜[Xž$æ’l  őÏĐÂqÄ“Ì IÄ}‘‚9;(=™%œìM šm„mĄûÞžmź8ÄÆ°†ù…' đă0-±Wă°Îëâ‚MTvŸ}źĆÁBgșĄ%VDLÍŒ…ŸIök”ĘÚŒĐP)D…ońk`ț·Žç{X_OŻpšśMȚŽäÉ/ëÔêbÙ< ,öoșCùăc2œŒćęۗÈŃN'“ țłlI¶Íè”_ ?”9ÒV„ő úÙn{ü«:\3Ö”™JÂ}Ž^‡ï~‰ErdxR}\àȘŰűđ^*?PkJ‹ÙcS/)ÂÏò“y«”ê<Ä()Žϐ ŽLú€mÖĄMé jÌȘȚîï3FĐšrV(WÓ %zoÄNQvîșÙ^ł±AxžK7ÚA`1ûű„‡Őn c»>7>±ćĆȘÏȚÚ+ôjŠŸÁűäȚ„ՋG†LÄ”Fjûwț_tèBaÔ ŁËŚó/—†ööŠ| čl+{X/9kąŽ/Côđt‰=ˆ5žÓ¶Ńš4ˆê{óYó:–î{&&ü&SûÎÂ!ÔÌ)  !@9pFò¶k„ŐĘY±č>‚ŁLgŽÛ'@@š»|„1Ą%6ŽdĄŸŹ"n–co#ôä„[ùÂZP-^[ùÌx ż!gûŽB`Ö·Rï„ë:ÖÓàëUâäLŻč9žżŰŽÎ!›Šț"„+P ŒtĂț"Šê‚JÆEČȚF:$î15g°GÆł\GÓd–J;Š{â 8ÍÁrPp±m™ŽlŁă蔼6»zHŚÈÓ ńÔgêℐg 2Ł“Ă.èCbńz‚y"PKe‡źg*‰*š˜ŹÏ25ś€żŸ|ÁË ümDà+xÜr˜ÉY'<Ïńr ^Áb"3•e]ŸĄ:č|`Ù&ûtŹ(” ì/?w»êuőűqQš›ŸYxÔŚ‘™i“:QI†»Û.ÖÖPŚŽ”Y»‘^f3ÊÈÉSW!žŽ†BDH.úed”·ű*WdȘM”â/ç!îqŃL€, IŁźE,?O$_- „ÆȘèțśæż}ü0ßImÀ0ÓÔ??ùgÛæpŽÜńFhò§ƒ_XùćŽj}!?_:)BOötûxę Sæ9sÌ»òÜ2<(‚†‰QÆĐxGI1*Ÿ–Rq%éî7ù“Đ”䙝ö’*0zFÈ8ĄŒ”]‡)©žč"H­‚ù a5&#’ „(ÌzkśÜ8ä&èjęžz&?o,éÓh1Íć¶„Ú†öŸî+vúüH‡Ô:"N—rJ"z‡ô%xZĘAΐ[[[čÜ=’a»áad‡€#€$7~kˆcÔçêÉiÏoȘÒ;kƒ·Ÿ)©xń*H#b±q‡ygNÀ‚ŽȚ}Úz1ś‘ŽÀ1ŻŻÖ@ò=žpêûz>4Vő$“°Ëêü›Çw’€Š €5û]eá6đ†)Ü1Úă&8Ž8Ő~ęÖ nĄ%Ö5>ĆȘŠC”iKzU-/U*S}ÿ!ț\Œ4aXŒcőGŰÇ š ZŠúŒ ÂŁ|qQR8Küš቙P+›1*(…eœo5w#ôg-šz”œłyóÄ“öĆܚ*O,°LtČ«ô{àđˆÎ—ĂȚš Ęžz,{äjč&žę=d™[«[ÈŰ/”ïöxČÉÉeôì%ÀŽ· œ·r—öžgęZșZRŒš†Js“;ą\¶C@ćșĘZP?üú–Ł>őÓ0SŒ©1QêuÁ”ÿŒ}ŒÙ j«çÎ*ŻÉÓöe0EUyÈw5ínf/GÆYăxˆćűèYÄç芟‹fp”€v=ê”yĘ>!ń5IWÛ Ë;ȚëaÒaă%­Ę P;M„Û‚šČjJŸ ÈCéšÍ{äêkuM›Hÿ«*H„&‡j­ÊŽl—…©ÊóiTëÆĘ h€œÍ«Žéă< „Kg{ŐoxŽqK7éٛßW{čżîfÇÔÊLj4;š€Œbć>mOv2ßZluhJŸ`ၹIKŽȘ±]ˆ™ä4Œvă鰁DŸ©Lj–?Ûáß,ż!É„ˆ6…–ÛR–Ț ț1Łmnż2kè1Áąæé01GŚïübśŻĆ${˜–bț„2kś ęE,{ò°/5lh‡Ìæ§Üb@ XClŸÏÏèÂčüțkŹ_Ë7t°żekpûtA4˜^X >mźëĆg[ĆÙ?ÍäÇP|U‚„”— ˆ/üŽŽ(Œ—ęÉhOÌÚY9GÈZFn‰•»H†æ«ôÉŃLŠUU9‡!“œ;§ș ‘‹bŽa*2IĄj‘äĂçítEŽIDî1(P^”ńŚ5;.xBd.Ź5€ŽŒàŒ^w,€ĂˆAÙ_)ùRÉÖÙ-cŒP}\%ö©C!ÈΊ@ç;mĐÿŸ’éİĘ_’DZ*6+.•7ŁMÚ[ۈNbžłźtŁT–Öžœß3čïyŸęțĆGVAiȚÄß<Î#"ŃŸrꗁ"tÁKžčđdÇčjŻ:™uÄKüŸÈ„æï+‚m ź?.Éő>ĐƒÊąÆßż0^à^$ùÔq‹źźćț\ÙőáŻ"œ~ ÛŽb0“Æ1­rÛ1±ïĂ„œWî/ >“ß2L]"^ Łæ:Æ(„0<€Ć߄R”‹țțôÀżoĆdș3a ©ŻÌ–Ś"ßMïÔ,*§Űbéyœkô7‰#A;Gca‘Ž`c]č( }ŠöŐ]v”2—žIŸł.™Ìzہ[ž3łń’zșeLź•á3œšœŸl5ö<ò<ŁÏs/D=0œâT&tièÀƍX~HL#ÁiÁ­ @ű_ŸXë^u!i<rt/€@ŻÓ ;bZÇp\Ș\11ŹÄRÚ4Č€ôăËêȚ#ÓJÒЂï`ó]»©Æw››#or‹O=2’fÒK3uLŁłȘŠJąĚN-ČE;p$ŽÏ˜#‡ëŸKÖòțȚÒWikKòS‰v<p.S«ÚàtAîĆŚÊ<žž<ìüôFŒ“&ŽÍæär1èÈbÌ :˜mÏmzłA2rëČô ÏŸLŸRoBԖê=ÍÁ„bą{—§fôôČ©”W2műn‰ŒldÚ93î qŸżź=țž„Á ­Eš8œ€  tŽ0ęÏnˍúĄ”V ĐÄkxv™žpÆ„z'MÙúŐ«Ł_"c"óÁ{uęëæòGły\z8äH^Š ăÌ2ÊÌŁüôp;îÜ#,Š N’€úKl– -ćA掰ŻcÆÓÒ Čš5Źn śä‹Ia‘žűÛÔ#€ă—Š8O.Ú?nîčj±ôˆ>ÉLÀt·°4đF+OC$É7Ÿçś©@ü,a,O èŹŐï" ‚ÿ "ËHÂŐWNn}2^LÌeÏa;ÿgŚÊ7uüł$ŽW“§$ôȘșÉiÂę>ûxHăßùE°R[+AŽê#䍟Rf™őÉmĄ"2߅]ê%–e_:žĂ)ś9#ˆXńü-—žPˆtŸ<Ż8ăGEș™żąȘôD°)ő©śËž@…N^ő9Ç)۞"d“ăíò-ò‰]†#ߊ)ś+$üOܱeœ|DbGÙšEuÊœpXDï]\ŃNbô3H©§™šLy~š\ۗšMÜk-K@šb6ÈyZŽșŠ„Œ)›EY„«Ü6Œz·ÁÆÍJk‰˜ąŰ±v7VŠ4NŹ‘M10Œč§Æîűj_Œ–KęŒ±Íb™fućKIE@ftÂFmD=Ț‘†äT©zÁÌ̙ÈčÛj $ˆ Ô"ÏàeÿŁ<šŚÌ‘LHčüePm†™Ói‹ž“€Ž6ąĄGك”ˆ‚ćżą†`Q2s+hlÒ0žy zê26cQeNT œŐĐ3‡!Úæ„\©i± S’YN/€ÊœÚżòVâ5w‰]Æă·sûV<çۖbÌ'ϊÈÿłƒ(W±’”Ò©ŸeҀ‹ÎmíKŽ‹»ìyńČyœđˆí%ČòE}uX-ń€d~ł©——ëtˑƒàé}(AȘk„ŽûB›5Bìšxmm”oš@ÉżÙŻÀśCĂÀłLŠéš]F:žLnÖeÉ{=€ŸhÌĘ ìîHă™ƒĘR2O&mOi„ĂfĂÊÆ‰Ÿ­N,SŹ]OJƓ`^m±ńàhĂonzêRT=4‹©†#)ğ»™ö]Ē6NÖƘpőKńżś”ôy­Ÿœ}șd›”qüŰșjYrLša`­°Eńn:Šù)fĂZ4hƒé…`ƒYNńÛy'g“ćč4< źz =öu”bÁ­ę±cëSZ&4>8š(k”űx‚àgKk^)ș8'ˆ2ÏÖÄŸŒ~8ôyzțžÜRĐ˜Öü!Œą§"Ôă5ÀPš„űT”ZŠoîuŁœœ§”(†9îЅôŰf‡Ą<}?@9ĆŸ‡‚Đс—á9ôŽ3fÿE©tà4é&žœ°ç=ÎÊćÔ4n[E_Țò]šOR_k©k=‡Źxq6M-Ê ÄatśŒ\«&ń@űšoqÇȘÔG(nòCâ,cwcPǍɋ~Èđ/ˆˆ{âGˆ8čˆ$%Cđ•Ëoæ x„"X‘1—śÖ:Ż«ÀTkśđbž~Ëù|‘Í;#œášJRæTśšò|ŠĐ”0<ŒsŒń4ń6IąÍÍdżÂŠU>}óΒ2oŽ–ï4ۛ,]„„Ă,MuPŠq_*Ę0Ÿ^y-őT’DŐ«-ćòWŒ`ìŃÈaáŃèŽ)yvò`ętŻßEC lù;IBPáĂä@€<›o„f­Çe[Nêž„eæ(o& Ì`SčžèćöŰ&7(r>cV@k±3„ 0Ą;ЍNő€§żáčaY‹ >JźMv+Ó[aęŰæżê`–łÂdÉ.aÌ$«œzŽa­ pšV—§ßWŠGCûA*1Ț€äŰîŸ%k,”Ù%Ÿ“" ›=B·ÀŒCźçŹê,Žâ“j/oYsÔ>5Mü{"S‰¶ÜaÚąH(iÄHÀzŽÇ«?EËϝ2zm=vF@ 3ƒ*áŸÔ6úĆŐ+żÜ0BLŰŐgű)đ&JúÇŚCŹü%ò·P?€<Ö7Æ$„JŠ|Yđ7’O4DčwÚkÚÆ9C—;ő8ą  Ű}úŃps€ÆÇjaà ‚Űù‡Óă9ÔÀ^|ËꑅńB,ĄX8RČ*ęè;$ÆzŚf0fpЃ“č©Ç„Mxá’Np@ÆcaŒE\‡Ž>ącAȘZÂÜâFÁ•jûh^”ź>Ëőźš©-ç]ÛFÀàw2Ł,W·é8çÛ‘ß&Š’˜Š”&MÍÚk˜}`Ú/™űëjçY$ÄeœČČÿZ3$˜zzŻ=žTè«/æ™9Ôrÿ€Íw IÔ4â›ÆŁĆ¶i€B‡Y ,f\5@r0m°ŽÁŃ'Té)KA0x‹îΞD&MŰ!ëȘÁ!}†ôYču‘ItÌžöù±e—1.ê[Lˆ‚%âÿ3YÇnŽŽ}Ę ŃBY„‹ż@!üfŠ/țőđŐú7fhę€őP€)0aą#dŚ#–ÏÿÔ dAO}I­ÉŹ€5Żü Ԝ>E{‡YP‡ÔF}­ûqI}+ ÇŒZ›Șxł?á‘a_~ĐÄ 9ZčXĂđe‘Ă”Ÿé#Bąhozr^@ü Xü.đț9Uf%I`h ńäŹCW’ö­XŒ=ŸZÜdbȘ˜őbŹ‚Fš6™ƒJÓ~!*Č"neKűĆ Æ}怔ŸW€‘n•ÈsńpÚ …’Ÿ1uŁ#ž·'z«ïöËq+” ‰ĂÈńDč;hÚ2»F+mŠőŽ•ù5PŃëü±űZűę T€Ô—ì¶œŒU„Ș`°z6ŻUăŐ„8Ż$iVYgłWMÙ/Lœ~šsVƒšCĘÚÿÜäà"ĄgV|Kr”†ăŰ@lđc…(KźS_Đecé±)1țQ5”Ž–5>ÜUŽO-•ÖM `0ë·ÆÉ-o<虎ûĄ—é,eàÈEüÍ[փŸDÀ"n.œ±,öüŽŚ©~îfŒ(čȚ™ăëf{>ù8YÚ‰Đ<}NÌÁ ȚWŽ-WăJNÿAž,0eź†I#@ZgÍòćW„ƒ €)ŸC–ńąúäçб«æÇ§ÍLÁûôV3ÙÔćFę”ŸȘĐÜžVÿ§ÔW‘y’‚v›Mï4N‹æ”ôɃłŃ‡íêˆîBUŠü±*bX]ƒdłŠ ˌŸüK\Ó]ƒUŠWŽ>ïvÔBèž`.–í)ЊŠXJ”ìƒBG$ j': Æ,ìæí“] »#•WùK$8Ő@ș’ęšđBú‡XÉ0ô0Ҝ^ÀCډ†Z’AN§2W"2ëB,ę«\éV7ÄźźoÛžƒÛY@y2șœÄś+}çȘ0ț‡v39IĄïłQœnšêą]Z€9Ndí“w[țôT ú|ŁD&nC@ęS–­`Gbdùܚ‰j`ÈM!1"ÁBč#}șIćÜsà LȚ«^ÙWCq}cÚ©zȘ#Ő+raűŠg‰Ć‰RșŃ4û]–˜żKăÚïôăv ‹œä‰Š˜}©Ą·„ÓȚíű“Ö1\ie/€‰›!CÓr­ÿ?<Ȃl©ŁÔòD­§P2°ŸÙűI—‘.ŠÄÎ/‘öę0žČ҉æËŃq&û HśRšÈ‰O 5d‹@"lÏ6śŸ”ÄÛ1Ś;߄BÍ˜ŠˆcéÙ&đڈBˆC*â!Á–ę3Cdăß}Ă êGƒl0șʃà*°°Bsż¶ÒszŰèźh˜1­†00T€ c ôM€I…äÇ暊Ędę”ÊŠSCZ?͕nî4z^XŁ\/6Պ6ÎHŒă]EĄĘ[–ÓïoÈ՞& ŽFû°0ś’CJfś*íóBÁ ™ì&L7ïőÓ1„ŐMĐÌëčFëŸ~‰ßaÌȘïÙya=Ć:E^ЄÍyìąÙ\%ŰKAMô)Î6+2`‹í3„?š4vKè6!]T~cY#æÌ2mUküĄ†JÌ,e—ö6 ĘgÖ”FÉÆ[ëgłĆ^ë?™ Eôüuˆ^w°њ¶3œçêœA-ę—AZiáÓă 6#ÄțÁ–QnúÉö€rÏ°ăŒŠôÛk5cf›Ś(j–€Â-« ÌB Cžê?:zÒyevĐUŚȘž2n*3ĘæăVĂiFG%ù1Öyû~ÈZWpąjs  “šwȚHïȚŽ”8æàŁacŸÈo4V CÿEQeżžńÓ€#0žG.Yoč5îUÄòČ»IäÇìèQŽâäCы"jWąĐç4rK‚„ÚSaŸG‰Űxç=CŽÓ = QaŽ“ć2&ʁZj«F~ŻDT‰¶dáMkÜC€?'°wˆeć0.y‚Pž\r©ąO‘ †eo[x‰ÁˆK”<ńçQZ¶lűuîür >ˆńXɚotúšíbŚCŠŃg­l9Șœà•\‘REôߕdo‹ÊXÔÊÆĄAńą6q%Ül‘5G§·FúöĂ趁2K‰n*SGŒĄ?Ík†±>HDh·ŚùæŸź ÎÚ qcöŻ—<߉ @]{—Í·č<ÍmO$ü\‹\M͕˜†ÚżGBÓ„VęŸ Ć}ä|“K â%€ĘëÎ ëWĂŐHșqRŽ­Tbd(”ČàöŰâÒ(fÙ{K ‰Đđȧ›·u–Ê­…NFû·áÀìR}ʄ°PÇFÓ3•ĂŸż/ endstream endobj 577 0 obj << /Length1 1620 /Length2 15850 /Length3 0 /Length 16688 /Filter /FlateDecode >> stream xÚŹyct€m·flÛ©ŰVÇÛ6+¶í€cÛN:¶mÛfÇéžăLżß7gÎŹ3ókæüšZÏœqíkïëȚÏZ”Š‚DQ…AÈÔȚ(noçÂÀÂÈÌPSÖP4ȱ12”Ž—er1Čü5sÀQPˆ8\,ííD\€<  )@h`e°pssĂQDì<,Í-\Ô1hèèèÿÓòOÀŰó?<3-Íí”܀6ö¶@;—żÿω*@ ÀĆ0łŽD”€ä%Ôòj  ĐéoŠźÆ6–&YK 3`fï°ùś`bogjùOkΌ±„œFg ‰ćß4 ‡ Đá=Àèdkéìüś`é 0w2Čsù;{€„‰«é?țÚÍìÿEÈÁÉțo„í_ß_0E{gg'KÀßȘŠąâÿæébaäòOmgËżn€œÙßHS{ŚZú—ï/Ì_Ż‹‘„3ÀèáòO-c ÀÔÒÙÁÆÈóoíż`N–ÿąáêligțŸ èN@s#'S łó_˜żŰÿLç?ûüoĘ98Űxț+Ûț_Qÿ‹ƒ„‹3ĐÆŒŽ…őoM—ż”Í-íà˜țč*RvföæÛM]țĂçtúŚ€šÿč34I™ÚÛÙxLfpLòö.KšÿßTfüïùżAâÿÿ[äęÿśżjôż-ńÿï>ÿWhqWy#[àż’ÿńŽÈțyÉXšüáF¶–6žÿ·„ÿ©ü7Ke č«‘Óuÿ^ÈÎüŻ" ܌ÿ¶Z:‹[zM-]L,fF6gő/»š)ĐÉÆÒűWӍÀÀÂÌü_|Ș–&Övÿ Ÿăß. é„ÿWŠ‘gRQ”ÓV§û?ß«ÿŠSü«ż‹Ș§đ?‹hÈٛțŻĂ?(ÂÂöo.f3Çß”û»xÜì,Ÿÿ—ŠÿbùÏłœ‘‹“„@‡™‘™™đśû?>ÿyÒû/0bv&öŠÿÜ#;Óż—ìțq›ž:9ęŐö_{ÿ·éÿ8ÿëș@žő{Ț«ôŹ —:쌑)Q>đ‘P‡ČFŐâ€û^ÿôđ=îJĂśÚPÆŠžÏvÏćs‡#iÚă±>,ȘȚTàu/M!ê6e'Ęq“~bƅFŽśï%Ù]mNfőăę)%eęÒw(™N6'˜ßhÈÜ 0ȟüLÒâ0»Pš@ĐêŠÎ/(“NÿÇ ‚Ő~ъà 4»Ą”’Á1ޜ܄ząyÒÈ\ńîJ‘àą[+“©Ă$‰öŹ‹Ÿ<Šy]ÀöFmD°Ę5ԎGđ˜6OŰ@Źo+NYíœSœ;Âon±ô”Ž“ QÂôżÏ2ûkŸ”  °\ŐAćäÂș,ăÏÒP‚é}nœížêxìÖR&ËŁúćS Ș‹Æ€5(¶Rƒ4v2ą{2`]«ŽÙ`Ș‡\§sB‡o ’„cŚŠ.lăE)N#KÄnăÖč6«†ûËWŻæF #8ÒVÎnß»ȘŸűhŐgŠŁìr, »Q—3Âí…Ô}zQ iő† HM·ä éÍü ›^àÔŸ V/űúŸœî‘·ÿqúöê'K놱žńD„F Ò`ïÆć‚(=­ Ó·ïę‚ ŸEî‹pÁșžvD$łóDĘV’Ü\Œm.yR«ĂD€~fÙ7ZÍȘÔș;EŽz…-<:„ÖČ*˜zĄ)Ę*AHíO€Çòj ?nÖgbț·VĂ€_«œȘpF©óń‡ÚƒƒZÌł}í…lànډÛĂíȚHk›9hÁë@éÜÀ‘D†gIŒE‰ íf†R€ŠTy”Łíû*ÉsëŸcă €}œmmŃ_ę›FKy,RP±hê=|TètąÏË ß Yï]E+ȘÊ7Êmxœ,ńÌ;zˆ=HӒԎ—đËvcàKÁ<ÈŸzù#팙đÉ6Œ;Á„xÆO6ęțŒPžoŠ,$·ó?đ4[%eŸĂ0ęQÍę”cȚ°Lÿ(ç±2$cŁVă,LcŒ„€Á«ŽŠ!©ƒæ ”#Kôș"ß(.í`©1WhLbw"\öà˜ż‘ș[*ÓžZ˜ûž«·6lc7‚vŹË~š/%w›/Èÿ 12ŐȚáÏòÏ&-]*ŹŰhqïÂ;êœÏeČ~"D‰•'śéȚ€ÓČ„ż nrĂîpČ„S§ȘČ3)v«äMF@r9ùî|Ôțæ œŸ8SßàîϖôèÓ!ÎH&̊ö%¶™ûu»ìŸę‚4yđčq~șĐzìærY⥹…j͈U79‚ï)&ÊÚűHfˆSíȘő}Y1B?ZșnśûJ%4ăȚËóôWy^„Üwé,Uíwœ[„ĆČR·2ŒÈ:ü°śu>“5šN}­ĄmÁn&šu,«*ïIu4|ú­?Nʰ?ƒ¶ÜÖă\ÿÀșM`aŁsÎ{ž±ïvĂëƗ°Fș†S\™ŒFűźmêăo”HĐłçđ9źÉ§ Ą ŚÖ(͕OŻșGXRŠærĂę‚Ÿś„8Äeʒa"|Ì1úqIăœXÀvÔÖ±»ŰYá=EčőŒMÞC"džç*č87àš}ëÓ`,PMÛmLƆÏia‰Ô”ąĘăÉŃÔÒgžźJ旉šêbă‰ÈÛŚ“˜ZòvŽÔ€[:6çÿWH„öhT:'ź2Żßᑃč2î9yȘ‘D- ûéÉÀ*>Șß.A±ÿL ~€öĂ Ï9ŒœPO},}ÿ9n/™>èpO—ÛuĄäć ŸàE2ë‰zæȘÀ/pĄÎuwÔ1€¶ùă]kR TVLÇ~†™ąńś&Ü㌠Ż)usĂÏV€!țĆûÊ1M}âPfć4˜čpżÄfŰ©Aö$WÄ/Ź< ˆCȚwíjê Ż‚}kn=](0ĘáW’Û“”æÂL.>/B;œD‚“óLc62ïAZĂÒÇì"œxcëjÍpÿïŐ\éŃE·ą=tA ò™MbD2:篣Ę|$žš#íÆSÆKàłw.Ęș”kŽ*ŽIˆ‚ÙlĘO<&Š{&êőù-/žÜ:Ó&ő2Uœnòx”)/,őÒÄßH”DŒŽ äN˜nÎF'I<‡šÁôS"ÿŒ ǕÆOŚZŒđ‹ł¶•Żă6ïóĐ#ł.~‡úWWÛäHŠwՒZŐǕkX!Ą(- #–!Ęì/ț€ }1‹Đ]žfmeiK c±Ÿlç䜓?0§8áŚZ‹)5ˆŠ:ŸŠp„Äž‡”E»Œ‹äԓČöńò┇äËäŹÊZf.ȚÒcȘƒEÈ/öêę“Őéêjÿ§ëYàĆußąXöN.›—dšĘ§7Ăiè1Qæáç&'ú˜Om€gžíÇMßSű>XĂ:ĆÎj'zcep±C._M^‰ €ÛždÎʖÔá Ê$ÈzJśž­OÉÔ S† kđžy‰ŰżŐvf„AœÒùlá VЧܧSŠèŚì‚‡û–ìÓ GN0CS[*ÂSĐŁë~Óć6 y#6prBE…ÿÀàoóČŰRŠ„\}7u—Žg:>égu 9{l Ê]è!(>;ëń3~ +‡ì‰R|Š—Ź'ĆÆ‚CÎÂhLфžŠż·~Śûç•ÁźÁ(ÊČIhŹ@éê Í5kO}{Yb*.prîäÉjć;(Ê{ü ő4ĐÜjĂÚV.ÿšò*ßău‰€(lèàÚ©ŽÛ[=ÈAű}žœzRäI_ü&mxŐ8ÓŽ“œî<$Ę»9îôő™eTüOžĂòbčˆ ŒČ\…=ì Ln'Gćï"x!\Æ#ŸžżlRLUË@ç%@8p˜Ș·-–Uqm‹ŽgFçyÉ­éMęȉFśVßd^cZŐ żçä‡&JżυO‚l‡ÜaÁœÌÌj_ș&â5ÆÍ_kÙ„Çs/M^zúK„ć‚"óQ~Ńœàê‰`ĘàYÇż©)“Ț/œUŚD5ŠF·CP&ÂŁąXšüńA*3 őŒR]ï„\źę)êë»ÒŸ Fœąwqëà„öœŻìÂę€m>85Ń«Ș«imœTKŸđĄ±é+_êž[2°î4«:Z§,híNl7žU¶ń€æŠùĆÂí”ÏljEŰ5•óGł]a0ŸČH±r'yóÔ5© ÇœßÈ{nÍ«]ڌvț‹`m5pŠĄ .>ȘcXĂ/Č'žp.!„Ìž›ÎüŸŸ”€K›>%™Úäł^&hI*%ÿȚ3FAŠG—›~ą‰bÔtÓ#]đVËɁăï_vK9l'ŚÙ]LąĄš:I)Y(Àï龙B%ŸŸ)ïĂìqM5rJ)ëDÒ©Ćš™ŃÄ­\šæü#štĐ}ߏ«Ê–ÇÜJP’%±;íȚ6ȚJÁŒx›Č ZÙ¶o51ŽâyÈC5ÀȘĂ/‚sÓOänAA:XGjM9̔bJ±IŠČÔS`ĆąGȘ±‚ʚŠ~ČánĄ–Ą@5‚Č3â¶ÚyU±Š‹A±§SĄ‰Ê8 ‰SZqÌ.ą€R™YžtŠ/Ńì8^ÍțFÌîđ+(ɻʊž™ Ó}dVÏ`{{­łšĘ(YTĘû(á:âsöƒiŚéFäűü_e*–û ȇ̂đà*}ƒËšĘÙèëőĘD?ČNC%싕:ŚWé„ZZKh6pì5k>źÄ·5 ’ŹUÇÖOì=ËC|Ϋ9ă‡WXÙœ„ż)?P— *sĆOä @ îȘBő±˜‰UŰ$ÌŚ’hÆ«ú5Đ7PȘȘD—ă„€|=š”V?#ŠàĄÏ?;œdńÁ…ƒ‚ŰßTV$:Ž……ÛÓÌr7é ±FçźeŒVÙ·|Ÿž.â€ÈʟĂ$œdšÚhțŽœÂfìœ e ©œí¶m)+‡^ìêÂȚ\–ęM?ÊÛwć|”>íßUeŰáD”\0T_:J.dÒ&V”_Ú©  *„=\źúBf„Š-CZXžjŻÍ@ïìăéâ#-RĂșîžsÁóÈzc  ú€…Ë`6efŁ€ F#„Oő{Û,éS1Çj?<^òœÄ«ËjI"éżÙòž8čK‘U‰Ž1 «Șt«›‡Ež* >ËŻÖéÊ5ÆU\Wká‰ĐiŒŁôòEÊP $N‘Ż‘&˜  ‰"rÍmqđhó€ÓęQٖÎs9șÓù –ß’9ïÀ»X3¶ž–“·ùbÁH"šïî},gÍł çhŹEYŒ;!Â_èʱÒ0†SĄ>…“ÜŐŒ[AąJæ8-îÈęu‘‘ó’f'ĘžyKè!\ œf/ąÌü&­ăQKŐuÆźïÌ(…ĐÚžfe»Ùö:çÉ}†ö_ú˜Q%űƒ ߶玚«„ }ŸÀV|Œ7Ž˜e’wț8ásßVjąôÁâê?æš]LT6țš‚ńO…›dpv;»ș;7ęęC;Ÿžș;͊ƒÂ’vfY~5™}À3RÎÊòꄞ„pŹb‰o‰G:QîxfÉêśæ%Ǐ5M>ő…©ß”.䘚îÙtÛ.LŻU/ą”ÂĐ7ìA?‰Trì*ì€6öRJô›5Mż:ÀgfŚ•zm°rŽ ę\ÂĘ=Ż”ÍŹŽ:[đG8°­ƒÆÁjńÂFΎÒ9±\šœÊÁ0Ò.‘–2‹ˆ‹^ˆYÜ]6A.Ś'Ÿ~Ę%sŒ 받& Ùrážd¶íojőÏ­šMȘÌœYYËï4Kè귃Gčî!k^<ïŻ“Gï›jPUDs°caÂæéWçńÆóŸAPúnș‘D± «:“}«äŸR©Uaš™j5ËĂXô-u!ś!‘ŐÌ@?‚?dRcàsć–9dČuJT—4K5ä'†è4nGÜPœ`OșčĐA—+-àu8nˆ§dsË{”ë ż;qHćŠPkJ8 “l äC™±[„‚Ê w`r<ł/óvö'”ƒïwEPĘ€¶Č—ŽvŒk¶MìiL_śQŒoș<î;(AŃŽ1@tYIFÖ­§Đ˜C Xu‰f&AÇj­ÌEęŐVvȘ@Çßä4ăEÈ~N°)ÈŽFߝÛ-—|>ûCo»W1ÚpžÄEòFßCӂ_Țj a;0€$Ï4NúrŸ&jÌá."Ž\^úśZ…ì Ǖąk3҇rÈZí UÉ?Őy'’s-Ga^Šőšê1)șéąíĘ‚Ä ȘóĂ ÒśfăŸ%òșBÏÙ$Ąlhn­~ ÂA@R6 7ôbì}Ć߅Žq]S° ==ïąÏŒVŠûÄ^ƒšŹtźÌBW™laŠŁőlùččêš~`+=[Łí䏭ۅÂ9ăTŐ Êdz'ęźă€teFÙ`’§­šÍvŠEÁŽ”V(€9€áˆíĐĐŠVöę)Œß€ÉD2ÒŠŒś̓z–ž«Ż¶‘ŐúöÚĐùií§‹_Önj„4…dÀŁœ—T8čÒHՊùőÌ3ӆ11 ÓmË5ƒâšˆGüÒśMs¶:’,òÈdâc㝘±Ă#boą“Úœ䌈2fQÇ\RÆ`JâšvUâŸä»•œËۄȘŰrÓćzW–ʆ©ÄĐ3űâ*ÀĐ~22$HcÜyô†¶ŒÒ€Ć­'pƏ—ș‰„ "ÁîqŒÄŚL`*œî3͘ܜ! *čC‡ŻAd­ùZȚĘ~ëò"!Ԛǻ>ő"ű1„ƒÇ_àÓU5e‡¶ ÇŃ]@û8Uü·kÙž’v'=„Źó^ZÔźšaPìȚâŻęò!…ïétĄ zź@§ŐÀA·1ȖæśdÿGŻÇÌ/^öłzï:Š$Mó€m Láòń\1:_Ô2úĂæVŃ!»f,zGZ'ź‘Ê(/z=’»5TÖ30üs~q8MmO™Žćgη\$&í•ÓŻ)Y`ÒŃŐDŽfg«»~óS)Š”ôè{~ò=yóœŰçł”Łæb=ê2…­öÙŃĐ•Ś N$ӊ;ÿçr’8ę ÁŐR°ĘdDŒs_ĘŽŰŻqEeaBE“°Ș”aBą6mï‚9 äû•`ĐË l1N-Oüțl`ŹƌjJœò-òbš!ÍԚ“y*ÒŚÄ뻏șÏÇi2hęoŹÄt«c(p„Zç.Î-ïÖûÎÓNö_”íFŚî_Ïèœ ۅÄȚ«òŚY,ĐŚț8ÇW-=Dș@=“ íÍûćäąkç@ÔËôç±đc’Ù`2n ‹?æQÙ ·Țîăsßfrk˅Í ËüŠ{ÓúĐ»Ąóàl†ìe”.Ș[à-áț¶ÆÄDűdƘ€{€ŰWLJ"ÙN†cHŰÏSËP &gRĆښ?aßôŠç ùܧńkÈ [ž“Lž%=1ÿdèœi1Ă.šÚcYőˆöŁÊ†æH8=‚dâífk+ŸdÔ'xźB_û o5%› Üńœń†— …q0Ż– ZÏÓóш)xpÈćȚ:ĄH$yzȚ;J\|Žçc{Hۅ/QlOH}êdc»ăü61"#eóőŻț„‚êCËìö« ­Ì)ꎻáŹ#p’’0Ž>„+±ç©•Ł,KÖ±_û!Š5Fń€GSHì̈́»Ä 8ȘJIîiÖGÆ^§ƒ4Xpßeă(ŃoXțòČ]9$ùȘÚTS’óƒšÆCȚ~C-˜üQżmr=„ xXșŹ .pX#ć’vK„ÙšËź)L4ÙPŒćoI§pÄłžŸ d:;OšmîË7ŃúÙ»)GdEçn<ʆrCŃŠvù†KŸyI’Đ ßè(ÒёòśŁčŸê=§ÍÇ4șÀŁeN©‡ L`Ȋ _|Ž›.̋ÌYɜ(Žp"m$ÒĆŚęłï [`źüŒ<ÿtò™+vńĆpÍr85aźâMžŠËJ†| / BN;•êÁ wäÛ9•Û{/ÒŚ–ÎČŒŚ2í˜e6y!†FÇÆűÏ %…ìæ} Ê»]”‹9”Aô%#<…ŃBZ‡M—=jÎKOčÜțÍ»žjŽN4Č\§Vči'Ž«fé‚ă(…ëPŻÉkÜÂÔ]%Ö{3ÿpdCÇșŽM Îđęá·ÁöuìŽÄ7èóyY,’˜ę›¶œ8r@]`jÓŒÉźőïo-ïì Fvć [öłË4yŻuÙ8¶­rA=;sÂâ R”Êۋ‹‡"=Òéölä2Áyexyâ,žêI©~rŰb7ÌŻcĄO3n»dŃn^ƒ0”ś1ŐlHh~JàÄí“â^Á°čröőòˆzÓ Ő;[q,‚ ©ž ć*Ö,ž>„Êú.4M0șšĘšZaf>ù?"„˜óä˜Í!Ł úև\zîÄ;­…ĂśêȖ{Łw—ÿâqÈKšgŠșȚƒínT/OڋRÎx=F=ÀäŒâç ˆj­ r𩃚’i}ÀÌzŸúâ; M„g!˜z7Ń rž :<[k­íŐ*+S;†ĆY㐗ÖjúăȚT\*›W¶;#AĘ˞ŹOČ:|âÆXöîŹÉK~ó&„O§\ZƓE„ȚZ-Ɯ!‹ÌrîęŒst•Ž’{.cŸțžŐĘ6Vê2ű+rsąRôxÎëąÁ§’aWșȘÓ< ńšŒŠžćź.ËȘNüeeçlmcŽŒ€Ë"ǎ)ˆh’›]Ț=(šèË+É#œüUŃÿƒ•Őû…VÊwŃxQۘŃGĐfTàĆdŁ#ÁUĆ6zÎ+őšśE§Ń]ÆòzÏ[10kȚż=˜Ź;„:qțkĂ$-yWœù~ *ȃÍ0p1éÇžŸă,‡Äï•És\ÇUŰ{áŸȘÄEw˜IĆńÁ>=j§‘Š‚‚‚ᝀ~ńȘű˜óˆČŒ;ìe}ڟS?Ç†—dŹÖóÉ^… ÏŒ!c2 %^U]j–ò%bTö—ÏùČ9„SˆX^nB<2 „1èFĂŃְț;æD°mRúĘRű&-¶BIW]iŽŽÉ{aœ‚›…űćHE€5âf“‚‰ƒ i6• [4èŠ3™ §5P™TvŸ1‹Bó#u¶•úòbS{ńŐp~ûœŠ»č/acŐÒœuœČ2HLE=Ő1(I ă7\2Êë·GőŐʞgxÔc‰„–Α€PJŹ3Č^çÈûn(”B2JÎ#’Ït;ìRTwòX†žśufŐçàÛœÖą˜Y„<}ĄÉôaȚçăfșăRM7Ɠű-ŃŚpđ¶zgp~- SlPƒèŒ«ŽVt"%wâćw îńßę'Ív4ÌÌeȚ ‘Źžì•Vžo ”…új€VÓE‚TŁÙZgDîŻđ·SÈJíńr*@CźÍázŽ\ ŸűšÒĐ_ÛË=żÎÁ4ÿ”?±nœüÁÿÚ[A9fKœ†˜ G™ä1ݱŃű°Ć7kËń$<'ÜM~rĘÛŽ^~R»ÁɔÁ\ ż&ây{·zcžą-Õ~€ź 71™°ŒëęaúćClQž$&vż‰ĄÍpdV€Č°˜űu3t‘íođœ?ÓÍà–ôè}ŚtÊAYeÇÀŒŻS˜ÎnŚËrț‘ï#Œ”5ê{vC&··g±oëȈxQq±˜Aó„” qÆÓZ%1m—B4ł–ŽŒÂLLȘłËKŠ{Źć=pq}NSĂ Žÿ‰4G€Ž,5|R-Z^à{šwKűöù`E­MŸPźŹèÙî òĐ)ߟ¶čH_ț|ćGƒssg±,:ŸNy,łzc{èl(‚ăÚț]„üœ‚+l©=88Äÿà‡œÄ©ßź1:B ÿƒg^G3šĘ›gĂE©m;–{ôŒȘĂÌ`ŹđJö ŠCcÂ(•Û©ÿmá ü, ŽĂ\ Le4ńƛš?Üë}WgRćĆá3`"IÍ&śőPòĆОڭzÄŸŽîę†Éi0‚HŽŽ1ÙC2L“ÒAÓښLČŹbJkĐ8L6Çß8Ç'òm­Î‡…„RRFŁibŃJí‡Đń #ˆ2șdnaF/MÄZÆ#™ YFGyٜ*ł”*ÔOș{\ä/Vá¶őęMÊcŃł‘imâĂN•¶1#Ș ƁqŠi•$CÔ՟’5)àG}Â<Œè‡Ž€wfœUF tŠńÏȚzś_§êčțûz;xĄŻ;évt8reÆoâśL‘ű[žëÔÒÈāÈÚ,1fłłĆv—,ïû+œĄúMò„Đ>8û…:Œ5Ž*ŸfŠ@íSpé`њŚ%­uăl–ÉąÛ„üe~ƀ‡Ó\ÓköÂ."~Ög‚ÍG‹GŻ&« oÏđyNQč+"đÌwäÙ}D Ï‘È“ŠąˆNŸ śT––žń_ČÙ(CŸżŽ.§/žèʃ"żȚńŒpBsw0òîoŒ”źJ8éwŠșÀ‹I )ńûDńmÛ@ÜG+üEDD#èűőC6|쎁€‹Tă§°Î~b¶ÉP»‚.í¶Îőv°ęx;î6rä§» ©«#ŹÚk¶ß2—éH»‡Z’bWČ€ü‰i‰”ŒŽțçßžŠ ,ețŠŒçîî蜠Zkx(°a=”\( aqE”&ò”Šöđ%ÓČ Ń.}àÚ:‚Ć…üȚ§ °ägÊۏűÈ#úŒŹx']˜bkÒ}tæ±ùXLæÉő6űƒŒăRĂȘăŃ7h H…ÇüƒÇug(èoî4˜±Z4žH•팙Vçc û\FêJ{Ę òYĆÁKX~Ęq…ćʘ3<ßZ2îNXûïŻtä2èAăQńIj„oáëí‘ÈdMȘóKÁÂàóHßmìIÊMUŁr†ĂÄۍ`Ꚑ8§„č5ąß Gÿ”3ŹDiyyæÓi댂?€ąæÊ©­q(/ZâÙa[čFéĄMć™S'mÇúùRüV·aV%”Ïx€„ZÇûV§—ÜUoŹYrrÎU‰,č”,{͆Ïk_ăuČJŰOE%„ÀI‡&‘Hé3žÄÏ=mÉ߃†ű# nëŸ+~Č'gxÄăšì†ž†4ÚV0—wŽ” ŃŒŃeŸì%Éb—Èv!Æ<1œŠ­sÇï>Ű_~‡±žŁ3ö[™ękƜ?JŹȘÊmsì hK«:Ą0ü›ß1_v‡ÏHÍxƒT„í‰î(ąKŠĆ‹ĘM9b|­Š'):JYƒÔDæž(èR&…kł‹}M_YlHæÙûa‘Ł{{‚Œ$ûӕ0·±9ăôv†F~ÖWB \— _ÉńŚ"“Țk†+ß„CxŽWžXËzá‹q4ùÂz\gÄ”~$„ɀڂ0_!B[~$ ;žőŸ(ŠÄ :?}Óo[ÊŸÌK(”›Ó=‡ŚęAd țܒ“(6n©Nà `xŸžEűÙs€]àŃÉűNŒXŃJŽ+8ĂßóìŻéX07jŒ…DNțŃ„av~ËEžŻnÔÆ›?#±Â&â4Ѕs¶@ąž{ˆˆê˜†áˆÛĂ\”+%Vs€•LÊÿG5Ț&„Cæ:†ŃőŚûÊ|š ȘMÆ 4–ślÚ΁DÇô”{qwŁĘC3Źöc‡ŒW™‘}ŹG¶1ț"t‹„$›Ź)ƒIŚ ZÓčC©—uÏ,țŠ eł˜D5š˜[h$ćnj2X%óȚ˰­ÆĆÙ&Œ3;– û śÏ¶À_bҒšƒÛ„âDW}jžźȚț!łÌQ>KÜ Tžl{]čL2IʆGGÉúN`Źqnƒn\lűTx ŰTŻmŠ„EbL g ŠS*ç ѧAoM†ùPę^!(ÙÏA¶źmXȚJю°ÏȚ©ȚC1Ò+2Ł[,’= %èÓ§†Ńžè,ömm‘źŠûHŃțˆȚNʎ0äìq‹ČÓ<ÿŸă±îń»óï,Ë?üüĆč”1,ó”ô‡‹űUÍßé:4_|: tĐJȚ*/™:Ò+SőJ ZÇŐ7€ČZHPí$Œ| 9AÜHÀúA0ČH_F"8 «ÇÏ ÔK!ń;کȰÙ@‰ȘÌäœśp.ˆb)oçÖ!­QÀ:ٞá3ŒiÌ_ȘșêπQ&űšË/ń'oàă}üH»Ÿ  ±¶m“û=7zś©VÇ€›TȚ\;‘ƒqÁüôĐߩ룊ΕCÀ¶ŒÙŰ&'FÜO71íۆĆé3 š:k+ \æZč}ÉÖg Bȏœ–„ŁÏł‘zűËÙüÓMéśæÙâ*Ö;Îî[æ\CIĄ¶ûì1 T±áŻS&­KpVBÛ]±3ue›Ö'ÏSÚç±ăYö›' Èž§R»zŠGąïäăpŸ«x7‘^HĂc[œ=íțù‚cs—ÌÁٝKT±lBùNțï@ cèĂŁȰQZ0Łß݃7áé˜ï"‹++ڋʆæăđ}Šx)hq{•HŚ!/ÔĆő8ÊáŽÎwEŠ KÚĄ<Ÿ›áè>•n–ŚZń3=!é"€<ŁțrÙ#&mŻoŻÇꯊšu8hÉxœdÜű5·èDV>úwHIłăÇ/Ì-żœVÆh\aC&ąœ«:`čšâäÒ37—ÚHbŒžw @C`Äh ™v2ăśó,°8UYÒśš›Ăû„ébÙeŒńčÊWž;ăŠ5›ŹĘÔ>ń?2ś]Ìù }%U[r w9QĆdąŽzż1òÚö#„ʘùÚ>ʃ­ü"Oé±Ęőq„2•ÏwŸ[ÓçóȚÿ3ÁPÏ §„•Ì9„ìĘòá†q©ÄMŽ)J/KŰK/Ą­«à$1Ś“ÎÖùx[МŁàÏöRW;R*łûń™q!)™N,ûŰÆeśiŻ Ș #ă+àĆäÏg2†ë+‘ ŒgNö‹Üš‡UÛÚdfŻŹ3Çę`Tg5ÈâqąhÄ5v!a)w““Ž˜Ïû~á$ŁŽîźK‹„Đêè֖>ê3ÙŃuAæí8 Ûjș#öXwŒ6]ŽŒ”” :K8†Ž đgš-ńêQĆĐ 'Ķ:<ìț ßËœęŽAT- bUÔúûŁ­âŚ7 Eș‡ˆ.°àœ^ˆćl+ńű/ŠópwŚ™kôÁJÒ7A§Qæ€-ą`üł Š„WZ=($ä!pæ)«ÎțîÌ~%„_wá-„ßż“"ܜ#Śee֍ A‹™8J\ÿă2\ÀgˆĆŸ3û"Ńk !JÔÿź]P㟃G#%ÖČJ@ǚR°CŚÔÖ^ŐjŠ\A*毩w-n#ùûÚ2oÁŽ67«Ôqr|ąsČPjžLBČîžŐ–­ŐŃL‡“ƒ 9í©_ëže4ŁYëĐŚzfžZAŸXÚ§ÂçęȘdùíÁś‘üœÆ…{D© Ä¶xD‹Yܶ~ Ö m5ô’ÏAI}Òąx§_'JÙbbŻč”ÈLSyQ=Ëö@žA5ș Ûș2Ì-ôüyœ HƊżßčą Qp8KâlûSęÜșŰkż@Žu‘Lș2!ZugŐTS…Œ_Â⭃š;À»ÌƒȘ7„ƒÙëò Zêw9Ä-˜hÌș4D8©ä`â1,Ą@wüąq\+šTûÈ4Èt8ÓÚ7ÖçźƀïÖę+‹ëìčÚ{Ó!è„ ÍIf6IU©Ô)UpŻčŒĄ\őtۘ1ˆ^ÖŽr|Ț"ŸwwUUââŒčqtőä%Ž~JVóâT‡ÆțU ïŠôČ[ż;ï@,Łś-ÏÄ3=Ä%9ŒlŃh œZśÇ†=ă<œq"{zÈăpn©_œ”òÏbcʉ"#ć©ńjȘ©Ź&/&ó Zűă˜ê>hÙ„œ*Űđ{Ë{ÔŸśrÙ/3:„Š č`Œo<6hN߁Ù%Ӂ«QdéOőĘŠ‹$„•ĂÂmëașűuQ ȚȘÆÆ)rń*R§âo+ÛÂæê – T,ń;©ŽŰÈ °˜?Ę&Ëíłœź>ű‰<’Z3ȁz–48‹ŸÌTR͚Ù'ŻE—óÊt™K^ű…~áĄö ŚB©Á»uD>”KË2Â‡ăGäÓ5~é‹c ś;ßBŻ ÆèsŽ“U=-`±ˆù~n@·ÿI~YH –­NŒ·ßXŽžn€è”șŻÒőgK7ƒK6?GنGF„~9p5ÈœÓź«Ș‹Òż ‚ <‹€Bă=Sń„73îș”LŃ=; î;Șcț€y}ÿŃRÂĐ8úaiIœ}RïŒJńęÒj̧ošJw•ĄyćÀ܏PÖ­á<A(Pá™qŽÁ%ZȚàdPU“aN)arÀŰ!rRm7ŸȚl,́" PŁ”>sôœś“vȘÒŠ‘ł¶R&p ‚f€1­9àÍzš?hç§±~6ĂăöŁȘ“éí,ï-ĆÄÀ[öbò­¶}èRőtßL#*‡â†ˆőíS_ÇćpĂ 0Ê@ô9ŽëÌžo`:ƒŰCQiȘr?ÆÇć‚T§·ócíčo-Š$Đùߟ­I3,œx­B#Ć9WśË<'`Eî”ń‚±{k9-x菚`—‚7Fß”E%|á9żrŸŒò>(HÚÈ€dmžî˜¶-ŁôTÎMò«uáÊôéBó-ô1˜W­ÄőǖïwæCRUÛł?žIőû“­q6úéöÙ6…{à$‡ßsàûâ°)jڶžŠóà±3o·4 À¶Ź:ę ÒôĐžÒM}_ĄöyÒÖśƒòúJź«ó‹Ł”❦ŸȚVkQkŒă‰xÙ{”ûÈ„”Òțöą;©\È ŚUŽđtÿrÁËiïi1,L) @zT%"cŽși á«KCsJ»Ûg„č"ŸaÓË5TMÿŻźŹ”?ÒηclUNŻv4™“ŒZdKòO@à’‹ÀÏææĂ«aÈÒ^AŽbít„æpBŒAŸUĄÛߟ‚tŻY|«ú~»J]‘ćaJș8ÌîӁ_©mÌQòÛmHżRČÛYR·€”:LÌm+wY– wìBmdńyWf»TÔ 7ă\-üafgà7šűœseAƔŽé­+9Cˆa]eԏ|C&~—°MńqŹWńD"‘Œ`6Ž©‡&l—!ô9sÂâĆkúÄ鄋ÔyàNĄ—Ă™Nc†ìŻI:čN|Ęx3la1UۆƒfX/[ŠœÍn>ÿO :ïˑ@àiśŁŠndÆțz)ÂÜn,ń‘UșŽ• JâŁóÛú*A#OŚ—@ŁX(ʈ.îœŐ;ą§'҄ÈQڏےm=B•BÁïW€7šű°[œš—êJÀ;%ö™ž ĆĄ­ÆbM‚gpÈgčÏ€HmlŒíPVłÄšŃÀZó2—·œ4±Ą8Eț={ Ńrp n΀MRŽR8ÈȘtUç /Ćù ț<ő%ćè}Ń :KČHìJ€|œvñăeŽŸv™ ـíÖçČA rö .#șńŹçÙÈpæï«àŁș ĄÉR )Kìă%i5OÁ¶Œ(d9§w:#Jz)I‚çđf^Ÿ1zđ§?IÇJo€jĆ€țYV“ÁB†5ȚŠ#ŹőĂÍnŽ1ÒjËjûôœYùêű ĄÓłŰüăe8d3«ûƒż2 Ę^fPŐ/dŽGêbô FnŹKČàÆAűŻ‹­k4őÎű79H{ÉÓMIх€ŹC€#ŒßËÈlęJ+.5Żń՛‘q°ƒȘﱀu Ą‡Ú„^äțt'°úȄ#đYu†WŠ@„O–`&ńÂjź—ïAnĘßM›hĂϗśŒ +æ›ßshˆ‘ÊÒaŐÎŐCđ¶îžS«ž—˜š„ű?ÜRÊ·DCčiY.đ±îȚ9˜ ζÄö)ÆőĆh;Bc=}бË`”Ț?9àWs!c<·ž DG#Ty…{KÄZ§qä”`;ż!TĘ4摕t’`ù3€äˆ/fđ,Hșk a.H&–z°ŰQWšïç$Êa…žhÛîMÀK„,@<ôzÛ”z⎭/ÂV‘Źï‰gśăQy9}țJ+hdÒMŠS}J ¶€%ûđŐŻ^ЇHźwê0œê[áómëX%Č«ž9úöó’§ŸŁÏlA’ü±<QÂ\UČn¶żbńˆÈg©Ï’đŸÊűÊ,őČ] p;%'R NÜqŽBvChQevä;N+ʟ#C5ńbőAăr?@…îéŠLbz"U5MĐêAê"đF±s8žÏ1âVć\^j#˜KęfæŠsĂ1O"0ƒ—vŠÖ­Ž ͐)Ąh°1m룀 ŽXÌYł]Žțvìÿ€ę”'ç`æoÀe=L…qNŠHźÖûxŒ©úy±[»5ۑ1ߥˆKU ą[Ÿ€ęś †0ÙôkIșÜVwy?öșS71°‹KušZfĘË%7ÇíæÏÂëos8™•yŻ”ÖŒlLÖ;5N?3±śUèemYi™F›±h°TOˆW‹Ë±e  ûî;?Pv&bEăŸv‡Y)ś›†Ö’f?uvtȚ­‚ –c‘ZÍÆx>CŽ–2Qù)ęßÈŰd¶ś'ÿŰX‰±9ÈŃžZÒÌ<Çwú8 Î3,ê04±NóulÓȚĄÔä‰$ȚșæŠÌą™›0ù ˆń`DÓ )l§"‹[ ĄŻ„ïjžN@ÜŰÄ'ËGĘjh<(łs)QZädŒü,p«ç3uòvț‰Úă]xïæ(Ró 7w]c•_>‹źż3À'Ÿ„K;ÜŰU}7 ?śBPžżˆÜ©Ż%Y­65ąßìN„7ô ęŹ9[€w„MÇ~őD+p‘–äȘN}!Ï2ᄏ=_AžÁbœ°Ą 3ŠVé’SŠË6đBh—ŸMV\{qaÉw©óús€JÄ$ÿÄ 03ghz}Ϟ{.(S1àòž3'è3ê]Yòđ$_ʘćW6“@‡(ÂŃŠòpț%œÛFßPŽë†bCâëI{ű“8l§#Ę6vĂ'əŃ!Ł)}‹‚šÿp%ô=b~śϙŸ«T3ŒȘïâ;F„ă(‡æŸe.ź3[A; $QĘ…żwÇ ^ˆŽ9’î"ÎÉAȘŠSČÆƒÂâ=À?JpPJœé]%}bß ś0\ëdĄęQoëÍžȚZ-ž ^ÁI12§1â ?ČĂéëÒOcdúéLJHÔóp(Ń&͖2}»ž°á朰âœËÚșä ÖăuM±ÉT‘–uÜ ˜5š&:ÀcÇYWĆN§)°oŸ5űăW~!’ËQ# ’mUìr|;üUÚ ©FÙșôń.¶+m"/wQûÇoÌ âFWŠú}ZIÎß!;4-6ŻÁÈÊ{œ–(ßSŠȘô -lEűx|VɊöߌäXً%™mÎCüžHžèžÆB!…Á"žXmäÛ2[˜ápæ(ŠÄ SÆŠŹ˜ĐőpȘĂĆG*ŽvŃW5nڣ֝ÊAkKN‹èűč7:ś;8ö€Ï°ÍžÖ…ĐȚBŚźpt4­+‘v;CÉ\{ÙEką’'ń"ĐÌŻ|'=ÊÎ3cdŹhvàŻ;<§că8ŁSàt%%áù…óíJwXà0.ać›)Ś.…Kv™n%:DïŹŃáç:tĂęV]›‘ŃSûE0kEç \$FЕ‹îڏ©c+3mŽ«ˆ”€nOîbôæČȚÚ/9ÙuYG8KŽTÚŸdŸœÉ<Ѓ 4ÍŒFvŽčuĆ<Ëă7"űWkęđ|tŒ“ŸìE°“MeVôçÓ{TČì<&];“aɛuû-5bòÊŐ,ÙuéaŠ-ź8D-Đlæ,Őڔۇ'‚TĘ @:ő/a3jÄRżĄ Ÿ“7é» íïù”ă€ÜÇvłÜù‰Ź}·ÜÂęà–ëS^wŁĆʂ|őp–ËŹ…ä—„ȘëÇ@țО=.ï­àúNV–òđj…«gÒ­ !a5Ê ÿ­-ï'žcV«Úą€Ú5ùąŐMìeŠMőQ *àęY ”łx‚æç,SšĐŸ”>Ú1Ûș?Jí"ÆÂ“QŠ«}vöJîߟà3Ș©șŚ•dcôÚż)xîôtćÉ!#ši’ž qóyÁNoÄdX›!Sá§”ŠĐȘŰ íÆ~öх}O†’Č­5í<#aò”û }ïś«û‘¶.û•Ăeæ2 Z$(„eÓmVŒ„àŻőoj ƒC%ސŁIÛbPł>$6tPü<˜E‘v1› Ç-qü(\hLŽ&Á&>€Âțj‹’óÀj}3Ú2È@a$Ôé܈+r;ù ʚ‹túeîqŚńĘ7Đ^ŚI)“ą5Ò”Xf܋RuÔ(ïőđpLém‹ś%IłÍqŽ%Š TÒ55̍C-«xU~Ł/‰ÒŃ­ű›0ĂhCt+q_9MN‘]—üæŃ„'€lŒvąXÏüzëà~Ö' SŽ2Ÿƒ‡–ôgđ•D¶ĐK.Ü%\bŁĂ¶›O6tK%ȘG#Ô Ûa ¶žèàđȚa°žlü±QJ)ö ±àЧ‚tsN#b?ƒwű’ä†cäÊuHÔä(?›lQ%9Ą{X옜wacÀ,8òńá u©‘ÜbŒkZJȈ‡ŹæŰÀ0QZ•ÊÎ◌œ#Œjt±;èŹÖËIߟKkYƝ±š ë”ÿ/ĐÿäȘž{AțQ5ፅEüihÿ_șźü«ûćYGU9úĄDÌXDțuìPô.ÚÖÉ«ŻĐ€ endstream endobj 579 0 obj << /Length 494 /Filter /FlateDecode >> stream xÚm“MoŁ0†ïü ï!Rz ˜|U‰ÄAÊaÛȘ‰Vœ&ö$E 6ÿ~=HŐUAgȚż“ÉŻśœŸ«ú~üÌÙŽuo$ű›ßÇÆ›LD-û tś  @Ùö…œ›ZîĄcÓÍNìtÙ=YńNËkŻ`T=­áRêo ȚĂŠűôeCîŸúòڕÚç(>”ĘՊæ™ ČŸAæŠț€iËZż°đ™sn[­6u…cŽ^0XaÁhî\je?ì„îŒ0bȘ”ĘprOYÙśĆû[ÛA”ÓçÚKS|Űdۙ›óűäoF)ő…MZł©}ß4W@Œ{YÆœmG;ÿë±<œńź9Ü`‘;‡äKÖ Úæ(ÁőŒ”óŒ„E‘y ŐčĄât€ba„bi<ÎgźbÌĆw­ü:/]ŚćvYsäˆâ[ä˜â+䄘#ψ]íœôò‚â9ò’8D^osâyMìîÚGȂX o‰ä‚îBŸÉà5Éà‰<űÇ»’ÁÿÂò kŁ(Do9Örá,ÂqŒB?"tŽęEDqì)bbœW$ÄèYÌèM»>sbŚgEìjqȚ(ŒæĂŚpoż$îĘ}IdoŒĘ·œn-p!J śęmê«ÜÏ-țűOĂÓ[áęL‡ endstream endobj 580 0 obj << /Length 696 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆ$ !Ù ‘8l[•j”WHL7IP‡țûőŹV=MžßÌŒń sśëu;ŃU··őÈٛ=w—ŸŽ“ìśîĘĘć]yil;<[[Ùj<=?±ŚŸ+·v`śÙ&ߎőđàț¶<^*;Č~&ûQ·‚>ìțĘț”MS >Ù_êăP·ò{=éÇsæ@öd”ôÇöçșkŸ˜xäœ;`ĘVYŚ`Œs4œJaÓQÜĄn«țȘ‡íĄ.’Uu9\ßèY6î>Œę<¶Ùއ.Z.ÙôÍž‡ț“4>DӗŸČ}Ę~°ûŻÒÜŃör:-d0­VŹČWŃÍÿŒk,›ț8ăóțyČLÒ»đșÊźČçÓźŽęźę°Ń’ó[Ć*ČmőíLrŸČ?ŒÜÔqù„ă• â5F8@ šˆ=@Šđ)&°  È8Ôč€ÂĆRx u€Dș\j2H—†ȘĄĐVÁč0CzL]ű Âb°ct‘I ©g$`htы0œÆ\F„áŒ0Ă€†sꐇá jd< —Iê6œ»őńzgóńșË»țê W €qȐ’Ł+—Ÿ#ö•ńÌÇkÄȚ .‰bȘsré…€šáæÄç†bïmŽXúŸ„Kß7Ç”Hß7Géû„ûŸnb§>&jÊې”äuœŻŒú•ń1ÜV™ś•âÜăâ”ljOu$՟qWèS/%1{\űxB!€§ÔK(hH©—TĐ–æžƒ»J©ÏÏŻvŚÜëÁ=küÒ2ű„UđKς_:~é$ű„Óà—ÖÁ/żŒ ~™Eđ+7żèËą/ ÿlìĄÛÒ(/}ïö -+ZXukoûìԝE?Z„ăæĆÛKęqíƒÄ endstream endobj 581 0 obj << /Length 739 /Filter /FlateDecode >> stream xÚmUMoâ0ŒçWx•ÚĆvHU„dçCâ°mUȘŐ^!1ĘH ęśëń#xÙö?ŸgìÁÜęx]OTĘmÍ$|äì͜șs_™Iöss îîòź:L;<S›zœ==±ŚŸ«Öf`śÙ*_”Íđ`É«¶ÚŸk3ČŸ'ióŃŽž‚}Űę»ù=©œà“íčÙM;áàŸ7ĂȚrŸ›f¶ÆnjÌ-ùeúSÓ”OLg~ŒÀ8śă ăâțÈ)okà çA„8 ö$`I\èÎŚ3`çAfŽă<ÈZ]ƒÂ!‹„ê xNkÇyăčăĐđ"œ7Áż _„㓧Ìq âH`òáö•‚nú„€ḱÂđRONH=CpB:# =Ń%8“ˆ88QA~Ą!*ÉzƜűАäT?!~Ž> étw©8éÄy*ásŁ€Ï }nÔÌçFE>7*öčQ‰ÏR>7ŠČą G]Œ;~îó€ŠÛ<©ò6OšßæI‹ŻyÒòkžtèó€g>O:òyұϓN|žôÜçI/|žŽòyÒÚçIg>O:śy҅ϓ.}ž2îó” Ÿ§Lú> stream xÚmUMoÛ:ŒëW°‡éÁ5?$R. €d9ôMđđźŽÄä ˆeC¶ùśłk›m‘CŒŐpč;;†wŸ~>Î|żŽ3óEŠ_ńž?O]œ5ß¶‡âîźĘwç]Oßcìc]=~?§}śOâŸyhÆáô9%?ŒĘÛčŚŹ“B|Ɯ‚>âț)ț;ëvÇw%gÏçáí4Œ3‰ä§áô–’>\ ‚‚6ę§ă°ż őEJ™€őŰ7ûÆ8ó 1ż’{Æ~șđÏ`W(-úĄ;]Ÿè·Û%=°ùńęxŠ»‡ńe_,—bț+-OÓ;qü\ÌL}œ†ńUÜÿI--=ž‡·B«•èăKȘ˜æÿŸĘE1ÿpÆ[ÎÓû! Mߊyuû>Û.NÛń5K)WbčÙŹŠ8ö­iÇ[ž_źčuʕMúŃzQ­Š„Ò)V†€Ú(TŰ€àxżàȚą žjy‹°°!ÀĐԕ”ZÔÀ2àP="ŠZdÔ0\ÃG©R\Ą·”).–2*ÎĐša!„UŒÄ,†łÔÛHđ° `+jĐĂ.ž5Nα@èâ°èĐVK-àxŸ%ô˜Ü3š% A°YӀzĄÎšÔ>kP#ŹłŠő™5m0WŁošŠĂŸžj­ź§Üę·.†ĐZĄŽT$X/©)n)æ#W—„o(æ“oÀRZȚ $Kąp4’ŽZ¶-bâ\­1ŠÜ°Jä æP"Gń‘XÔQŹ‚i/8șkÉ^€ÂZqŒ:ZsŒœš9”d š­Bù Ž)ßsLù-ï7œæx˜ÏJ›ĄŸÒ`ŻažÉœ)f„É$†”’1™ž dъcȘCZCù<Ł7Ă3JÊgózÌnűțHȰíáÌYɚäTœŻa…ŠïŻÆ,_»œ-Ÿ—Oë87Ë}êÛKԮܗLlčoKńšò+Êg­JÌâ.ŸGZyóș‹Vđc­48ž’ïŒäŰWtù]Í:P~`áŒń±–rZŽq.nÍ1]Ç ÇàSÿæ/©ßP•ęïuöż7ÙÿŸÌțśUöż·ÙÿȚeÿû:û?Èìÿ ČÿƒÎț&û?”Ùÿ!dÿ‡&ûż1y–ŠŒÍH·œn5țčă)șœĘyšÒ“Bïœx#†1ȚžŽĂț€]ôGoáőńĆŚMń?źXê endstream endobj 583 0 obj << /Length 352 /Filter /FlateDecode >> stream xÚm’±nƒ0†w?Ćuˆ” CÚ%BHiÒH MąU]Á>RK`[Æ yûÚ.€j•ă»ÿ;üßáÙÓ©Œ6\Ő­–ÎŰ«Á0Œ¶ï•&łÙN±ĄCiˆù€ök8ĆJŽ0ß»B »pp!Y;pœšÇĐ+^…üEü90żàgÔè¶«ëšDk…Œš‡/¶zšƒKÂß$„ą4œPr ɒRêo’oUçÛèI'(ù?mŹš›}NúČq „nï+&-PöU’„4@îEČUö«© ț0?š{l0Æ”æœ{ÏBâ}ÄZi_žđoŠËàŁăž|ÇgŐI endstream endobj 584 0 obj << /Length 552 /Filter /FlateDecode >> stream xÚmSÁnŁ0œóȚC€ô@c àŠŠ"I€¶­šh”Ś&Y€`Cț~=3ĐUW9„<ßŒy3¶g?>~Z6gđŁg)>Ąk[€ŻžZo6˛bšÁôo%”Ónś*>lS sœÏśŠêŸyoŠÛPÂÄzLÊàZ™Ź#æGűí_Ú[}źüóPĘúÊűÉÇȘż9ÒĂ}á‚â{PPÒ/°]՘W> stream xÚmRËn«0Ęû+ÜE€tA1Š€!$B)‹>ÔDWwKì!Śd`‘żżR”Ê83sf8óXÜ}‚\¶'âFż oG# (Țʎ,›VŒ èá@‚œŁę+ę4­8À@—Ć~łŚjž·äœő(afĘ&­áŹô7ÿC—GűT]ʘà4ȘzP:`È=ȘĄ¶œ[aj}ô‡ș”?`zŐêW=0ÆŹc«eŃ6ŰCOÂI ge•ÒÒLbè „‘ˆS©Ä0Yî-; L>\úšœźZ’Š4üČÁ~0§đž„F‚QúL—?”ÙÈaìșPe$Ëš„ÊŽœż— ĐđVƒWÊńÒćΎŒ*ŃJè»R€)őHÊXFÓĘ.# ćŻó§Ê›–0C~ ‰„!)Ç"ŒÙI-札ŻĐç?9ü#.<^[œ0ÏÁÜ$òțgıś#?I> stream xÚmSÁnŁ0œóȚC€ô@c àŠŠ"I€¶­šh”Ś&Y€`Cț~=3ĐUW9„<ßŒy3¶g?>~Z6gđŁg)>Ąk[€ŻžZo6˛bšÁôo%”Ónś*>lS sœÏśŠêŸyoŠÛPÂÄzLÊàZ™Ź#æGűí_Ú[m+ÿ> stream xÚu‘ÁnÂ0 †ïy ҔĘPU‰Áz ŠŠ]ÛÄí"”I”ŠȚ~IJ™4Æ!Ulÿv?ÿ™œœŠhĂU…Ńë’Â{5†ŃöŁÔd6Û)6t(í‘#ŸȘęNF±-Ì·ù.—Â.œ8—Ź8NȘÿEoŰù+ńÿùżą– ĂZLhT ą”BFÔë/¶NśL.y­ŸhzĄä’%„Ô%Ț%ßȘÎïӓűÆńDY ÉÍ *I’pÁì- _Ö9c|sqí-včŹISˆÏźŰ[s €  G#dó:W-­[ô$@I–ÇÚ u^Ê!~¶ì]včj„Uˆ“‘Ž)Žœ.šR6HRJ3HśûŒ äjtìšê1t‚éšLö]’nü JW4E!ëçyîŽl0Æ-Œ pKHŒ{©•ö]á„G˜žßGÇ=ù ‚ÓŽ endstream endobj 588 0 obj << /Length 336 /Filter /FlateDecode >> stream xÚm‘ÁnÂ0 †ïy ҔĘPU‰Áz ŠŠ]ÛÄe‘Ú$JÒoż$„L›84Șęÿv>;ł—S•lžj0y]R8ŁUƒa˜l?jMfłbCÒ9òI”k8Ć*t0ߖ»R ·đæRČnà8螛Țđ*äŻ%Üó ~%˜Ń€Dç„Lh0_„ëŒé©> “‹>ŃXĄäČ%„Ô'Ț%ßȘ>ŒaIzGt‚k…äæÎM #Ù ž`îƓő~ĄžșY‡})[EòÒł­3·Èž éŃp4B^ațÍKŐ u‡() àŰúŽ~țCĘ#€Og|x.7°Šq6r1ĆŃêšĄ©ćINiù~_”üŸFNJŠCo˜~łIaß”!ù&ô tE‹ŃłĄ_˜țÊcüqE.`yòÇ”ÒĄ*~qęÓ{‡èž'?¶„ÍŠ endstream endobj 589 0 obj << /Length 665 /Filter /FlateDecode >> stream xÚmTMkă0œûWh…öF’G*!àŰ ä°miÊČŚÔVZCcÛYèżßy#9í–…ÄŒÍÌ{3úžúńžŸ€eóâ&ń­OźoÎ]á&ÙÏC]]ćMq>čzžwźtćžÚ߉Ǽ)önŚÙ.ßŐŐpCÁ»șx?—nŒúĐÚœVőgxÄőłû=ißțtŠ›ĐO"îčȚięû’ [\lÁĄż\ŚWM}'Ô­”’›ș̚tśŃ4p‹éšæXŐeˆȉ”eU Áâoqą yÿŃMŽ\Šé-öCśÁÊnąéCWșźȘ_ĆőEyśç¶}wP dŽZ‰Ò©őz891ęȚÔeùùŁuBł­Œšą)]ß ŚêW-„\‰ćv»Š\]~[S!ćć8Æ&+űš™Z‘cŒeÇ"'‡2„•„ÖɌć5çIÂä@Ä|놉"ŒàB2AQƒhíSlLŰÎŰĄ28a}„ŠÉ‘ąFšq5ҍïŠnnìbfÇźŠ·CG= WêÜąíe$ôg;țŽA,œˆ:“sŸ‡¶„ńx l=NŚŁO™ńT”Ƙ$ûł0ó«Čóë˜ę_žŰł/vЧæÿú Q%~ú˜œZxÎ pÊX2ÿÚû™Óëą]$œŁ^œqnŰÆaż K‡čƒ?‘Ł?ăq FqMyíc0Ă=) &l(Ž™čßmôiü,3Æ|’d &ć\ÖcÖȚ †·]Íč&ôӈ9wă{dȚ-ătÚÀ…xö•őčì\˜ \šcΜÍęÜÀe™kžqLžàJs?·<œ@>qžhx .Ś·8wĘl~1űÖâŸV”»<*mÓ"‹ÿüïʇmômDaš endstream endobj 590 0 obj << /Length 663 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[•j”WHL7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐÜ$Ÿ—âƝÛK_șIțsßE77E[^Nź«\5źžÄsߖ;7ˆÛ|[l›zžŁàmSŸ_*7Fę?hćȚêæ3<âöŐęžtĘûÁôúIÄœÖĂ;­_d‹«-8ô—ëÏuÛ<u/„$Çș©òöĘçhžĆtTsŹ›ȘÄr"„EU—C°ű[žhHȚ}œwÚ6Ç6Z,Äô…ÏCÿÁÊîąéS_čŸnȚÄíUywČ-—ąrG*Fœ>îONLż7u]~ęèœĐl+ŻŠl+wîö„ëśÍ›‹R.ĆbłYFź©Ÿ­©r8ޱ)ĆÊ9>*QKrʁ7ì˜äP†°ČôŃ:MÈĄQ^sž$LDÌ6Țaȑ*Âs.$S5ˆ6`Ń>ĆÆ„m•Áë#TLŽ 5Ȝkdš‘­}WìXssc‰»*ÿì{êčRęh/#„?Ûń§ béE$èLÎ|ږÆă°ő8^yŒ>eÎSQc’ìÏçÀÌŻbÈVÌŻcöáNa'_ì OÍțőAŁJęô195śœkàŒ±dț•ś3§ŚE»Hž@œ8çܰ%ŒĂ~A—s*=FÆă Œâšó0ÚÇ`†{RLŰPh33żÛèÓűYæŒù$ÉLÆčŹÇŹŒ o»šqMè§sîÚśÈŒÆ tÚÀ…xö•őčì\˜ \šcΜ-üÜÀe™k–sLžàÊ ?·"œ@>qžhx źŚ·Œô=Ęl~1űÖâŸÖ»>*]Û!‹ÿüïʧMôŚa@ endstream endobj 591 0 obj << /Length 664 /Filter /FlateDecode >> stream xÚmTÁnâ0œç+Œ‡Jíb;!ŰB Hv[•j”WHL7RIąęû7vJw»DÏ/3óȚŒíÜ|{ÚMČȘ=žI|/ĆłÚK_șIț}ßE77E[^Nź9ÿpźrŐűvxO}[îÜYÜæÛbÛÔç; Ț6ćÛ„rcÔÿƒVî”nź!Đ·/ëȚ”é'ô“|©Ïođć B\ ÁÁ?]?Ômó Ôœ”’ˆuSćí ևhäĆt4tŹ›ȘÄŽ"„EU—ç°âgyą yś>œĘiÛÛh±Ógz9œûwövMûÊőuó*nݶˆȚ]hé`AÈhč•;R5êśÇțäÄôK_ï_Ț;'4Ż•śS¶•ș}éú}óêą…”K±Űl–‘kȘȚ©r8ޱ)ĆÊ9*QK"ÖÀ&æÊV–Z§ ć5çIÂD b¶ń„!"U„ç\HŠ(jm ą}Š ۄ •ƒ@„ő*&"C,çjdkßknnì"±cWćï}O= WêÂąím€ôçu|]CXz :“3Ÿ‡¶„ńxl=΀WŁO™óT”Ƙ$óù˜őU ۊőuÌü'íëäÓ:űSłż9xT©Ÿ>&§æ^s œ1–ŹżòŸeΘO’ŒáÁdœË~ÌÊóđ`xÛՌkÂ?˜sŚŸGÖĘ0NàÓ-ÄÛ°o|šŹÏe>ha>6hĄŽ Z8s¶đsƒ–e­YÎ1á:@++ü܊pùÄáąásđqËKßÓŐæoßZÜŚșqŸ•źíĆț=Ź7Ń€ŐcM endstream endobj 592 0 obj << /Length 663 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[ŽÚ+ML7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐŸșI|/Ƌ;·—Ÿt“ü硋nnжŒœ\3<:Wčj\=?ˆçŸ-wn·ù¶Ű6őpGÁÛŠ|żTnŒúĐÊœŐÍgxÄíȚęžtĘ{oú ę$âöőđNëߗÙâj ęćúsĘ6BĘK)ɱnȘŒ=Aś9šn1ŐëŠêƒń 9‘ÒąȘË!Xü-O4$ï>΃;m›c-búB‹çĄÿ`ewŃô©Ż\_7oâöȘŠŒ» Y „Œ–KQč#Ł^''Šß›ș.ï?:'4ÛÊ«)Ûʝ»CéúCóæą…”K±Űl–‘kȘok*€ŒÇ۔b敚%9ÖÀvÌ r(CXYúh&äĐ(Ż9O&"fï0äHá9’)ŠD°hŸbcÂ6a‡Êá@„ő*&G†YÎ52ÔÈÖŸ+vŹč豋Ď]•=ő€\© ‹~Ž—‘ÒŸíűÓ±ô"t&g>mKăń ŰzœŻ> stream xÚmTÁnŁ0œóȚC„öÆ6„ŰU‰@"ć°mŐT«œŠàt‘@úś;olšv»R‚ž3óȚŒmź~<î&YŐŸžI|+ƓÚs_șIțsßEWWE[žź9Ę;Wčj|;܉ǟ-wî$źóm±mêÓ o›òí\č1êÿA+śZ7—èˆëgś{Òuo}mú ę$ŸëÓ|{'ˆBpđ/ŚuÛÜ u+„$bĘTy{„ő!šy1 êŠêƒńG‘ÒąȘËSXńł<Ò Œ{NîžmmŽXˆéœNę;{»‰Š}ćúșyŚ[DïÎŽt° dŽ\ŠÊšő{ż?:1ęÖŚÇûçśÎ Íkćę”mć†n_ș~ߌșh!ćR,6›eäšêŸw*€ŒÆŰ”b敚%kà ó‚e+K­Ó„òšó$a"1Ûx‘*Âs.$S5ˆ6PŃ>ĆÆ„m„ÊA Âú‘ĄF–s 5Č”ïŠ‰577v‘۱«òÏŸ§+uaяö6Rúó:ŸŹ!,œ‰É™ÏCÛÒxŒ¶gÀ+Ń§Ìy*JcL’ù|Ìú*†mĆú:fț“vŠuòiü©ÙWUꧏɩčŚ\gŒ%ëŻ<ϚȚí"áőâœsÖ0û_:Ìú©ôę3x0ŠkjÌĂhƒyîIYx0aCáÍÌünŁOăg™3æ“$cx0çČłò<<Țv5ăšđO#æÜ”ï‘u7ŒűŽA ń6ì*ës™Z˜ ZšcƒΜ-üÜ eYk–sLžĐÊ ?·"œ@>qžhű|ÜßòÜśt”ù›Á·ś”nÜÇg„k;dńŸżGăG«‡Môóc endstream endobj 594 0 obj << /Length 799 /Filter /FlateDecode >> stream xÚuUÁnÚ@œû+¶‡HɁ°kc{!€5Ƈ&QˆȘ^‰œ€–‚ ÒŻïŸ™!•šæzż™yïa/Wß7Ś/~’ÜjőäĂylüdù}{ˆźźȘĄ9ï}șśŸőíćîńN=ŽCłń'uœ\WëŸ;ĘòșoȚέż°țO*ękŚÿ„`ș~ö?''3ùĘÍÆ‰žt3\è‰ÿč;œȚWêêS]Që?»ĄżSæVk «Ÿ]{ű9FSрЕ»źoGŠ^ 32±j»æ$WôĘìC0hȚŒO~żîwC4Ÿ«éSžy<ï€ô&š>Œ­»țU]Rîn·ۇ„ŁĆB”~††,î·{ŻŠ_™ę =żŒŠéÚ°șfhęń°müží_}4ŚzĄæuœˆ|ßțsÏHËËîÂ]źźĂWŹ“bÍ šMLłD!E!ăB ±FAë€CÁœÖ\°Ą‘ÓdQ€Q(˜Œ%¶T<#àh^QqKƊL0cF F͌€aîâÂÎ.źš_ÛQĐńČ mÚPG9Žčž'„+XÔ3â8ìŐ)Ś+àŒ±Îč7¶\'~Áœ5°ă:rÔ%ï%Β뀧â$1Ó$܋șa %aN*At†g&ŰĂW<‹éWÈyveš1vYòn‚Ő€ cx·1cx· cx·3Æ+`ònH›ÍÓ̜1q,kĂ^+:‘•%fͶd vÉúmƘæÓ/iRü޶f ëO±·`ę)űëÏÀ/X =ëÏš—őgđ^°țœűŹ?#>ëÌĄč`92/X[B|ÖfèŃćçÚAż“láËI¶)°dKÉód‹gĂI¶Űć$[dè$[âH¶đë$[hv’-|9É~d‹ŹœdKó%[èw’-t–’-ö–’-ű„d ~)ÙBO)ÙRŻd ï„dK|ɖű–ßNÂò¶ĂK)™ĂK)™ăÙ++Ζæđ›]RŻdŽ]ÏOᜌz͜Ș–“€Ț|x8€?ŽÓæ<Žá€„“œNOœ›]ï?ûĂp@}è_âòÿ„«‡:úh‘ž? endstream endobj 522 0 obj << /Type /ObjStm /N 100 /First 941 /Length 4826 /Filter /FlateDecode >> stream xÚí\[sÛ8Č~ŚŻàăn„,Ü/<•ÚȘ8'NœÄ±sq&•ZblíȒąK6™_ș(Š–ŒS»çáT @Ÿ|Ę €f$„ÍS™T™â*㠚\dBű”đMŠs™q©3#l&$͌…>œgžqk ÊȜéLâŻfЏeŒRžá*Š% •\gJЌ1ô<’:‡ ‡Š.`ffqz­b%V ÜŃ8öY5ș,ŚÙ—Œœÿv’‘śćÏuV3ùțŚą„ĆM9 Oár¶^űŒrQźæ›ćš\čŰánœ.Ǔâxț3û‚óiàŰäü+LS,aŹĂ–ëśd6›©/.ž!/Ïđ·5”ë7 Çóćž\:šô+yANÉSh€țż"#`Ÿ[>cŒ‡T.J€ŒÌĆĐ Ę.7Śk IÎ&ł?ȓǏĘäÉh=™ÏÈ%ùpqŠćo·ëőbő?„Œ–Ćlž„îŃ„.L),E ŒșĐŚf,'sm7BȚÇAžXp}áŸúŐăB=‡x\ŃÆûX|ŠÆ8oƅAÄp]G°f\áb„% [?ás?îëmWcęsț!ŻŸfÁ;ń©—«șZ@1$˜Ì(QùżđOŃŠnïćMk}/E#MïskÙÎg\ÈĐĂhƒZ6fè1âjxG3ŽAn†`7w5BYžÂ ûû«CŃq5Š&…Q)‡Čú19špGia‡yÇŐBĐŃWX”!áÇ2܅«Qź€.‡æž«”nŽ=źĄ ]ÏáfôW@śڟź! G*ÇȘż«7śÓŚąnűßPžêź+ʜ°kĐB:]ÏOȚ1ŠRZ‘ÛŸăy BĆˆź±^ęŰäš°Àââ sl8żÆž€^\Ć'ôû*Žá}GŁ„70hÀšŽțˆÛòÓźŽżU€©‚A·ŒEĘ8›ŚâŐr–š¶ÏŐ ĄBÙŰDœz:ïVó”ìŃîĂžł+Źûž;œÇ…:ő=”·ÛWڈI?›É-ÀKĂąa€Ąnp ;E€’KœÇCÓ]”§Ł:ŠÍpž^ƒNœ"‰cìN1Z0ÇȘ48ÌE$ rć˜àpÍ­ŸÌĆ!m1†qyo숕&]lÛŸVúNIțÊkđšZőÀ.’Ą_đ8uÛ”űâ<šĄŁ"ëàUžˆRß§đˆF ôŰçƒá0ąSŻwW gŠúTšIcQoŰOh'ĂÁà°æÊ5ύ Ô}†qđ ôë ÂëéU„ČFPR—;†‘žNĆÍ4.UÀŰàÍ5nΔpmi1j(LšűŃ8*30_ĆŃúà(žŹ=ÜéXšŒ«Ő=YĘĂŸ”8Pž­qQĘW4=‘Qn—ui^»]í~ÎîMAlTvoäËÌmgz*›ƒ»ŽbTÈèš5ûàæ@ÏC+WŁćd±ž/ęùè›âžœ}|śńìäŃél4Ÿ­æÓb]ü9‘GćÍfZ`ÇiqłÊ€q^K1c܋+ÔŚyČᛠ­ì€<-/ÊÉÍ-4œŸÁ qș.ГѓÙÍŽÌàáćșŒû«0F*$n‹%žĂț_ș›źæoHűĄˆ‹P›ß ț‹Ù˜ÜMf›čÛLŚ“Ćô™•7FZG}FȚÆžr›T”êŐŸÿôìÙó«GçßóŚĆúöx œžËńń|:îV5Sš7…ȘÆWŸyŁêTŃ9oœ+†æ*Ò1‚źŃ1€ĄTźƒÒÁË«O.>ÖrĄ8žƒnĄ4æ›|-#ò\uŠnX śoÉ9ì3.ĘNcä¶ ž5˜žÁ w~Ńïűa1żI”rP;ęí͋—/}žűt^L§ÀægG}ÉVlű—šnœÇû/CÓę—Iôąőœ0ÔEs KsTsâ¶ag-}$ŸÈï ŠëzŸí°fcTn±víČȘ=Öl[Ź}6Z~SUm„ÒMԏ]û&sPž}ûòüäôƶ9Pw» JŃ$èžFŽLÂS“`îlLąv^†«źëé;Đ=ȝŠyPHœ:żzśû§T̋ù]±CD­}…„çV‰7Șt9™äL;ĘȚž[Àt/ÜîÿUœw|ü>;°Qˆ]wíś‹Ńf]ƒò΁2`łü9‚ÄCtÚspWŒ–@ùž~Ż\‡ȘáûžVsßß<äÔ çšÀ”‡.Ï_†}b‚…{᎑™A’,†;OWŒ"‰@»W‡6ƒ[©ì†óŸÈŐvŠâÏÎł…Óűș ©;ÒÛłÙh>žÌn@ČÉ·o°ë˜á_ï~áCÓLˆ€ȘLä±a»`’Ipx °ńÆFŁ:ŒĄ”œĘ6P&:<ź$+ĐűÀòí@_șBoÊraÓkőù-€ÁT}ß#8âŸÈśÿFŸv@çŽ3*xWÆč ΜqÔ„sȚŻ{™@Èz"Xçt;fu\űŚ©>Sv[ńÌoț3XŒ9=ęș!ê?˜ÎÜMpÙăbUș?§Ę:RLŠûŽÄęaúÉdčZŁĂ uÛąȘ‰âÓdŒŸ]eűɋëû~țaJŁłíX5őqÔ>ájsÄÛiq€yĐŰbÈÒ0”M”ù‘m~d̆˚Ÿ|›v8?퓱6CșÍM,+Èl3ÄgèŸó•6ƒvKcyÄ!6jÙ6ƒâp{JZÜémÄŁÊv(Pnó'çoûÌŁÍÔèMlTÎcńmžÔá<í<ąhł¶…ÿÜ$êÒ k’nłŠg­ăè Í”î[±șì6OæpžÚûț6C¶Ś)iŹ€ÌÛ`~ŚÆŒĆ™Ù»L#Œ‰túVÉÚ}đ·Ćìb~Ï~čÍî–'$Ήçà”"ŐÜæHśl'Ûo9ˆ»Dè}X~@ÎèÙ¶ÙŐ} †ő[€àœž}@BéÙŒŽč”ûÁïĂíČË}oÛ[,Ë-–…Œyæq,mžćöš&ïÈ8űmâ ?NÜàû±æCĂ<űÄ«É78áëBîóKÆęò(ăȚ+2A꧓‚ča_2‡đËBÒ°%Œ?dÂł «%ÿišôyëAsHÿȘ-“țUƒûFÿëù—țž(“æárHh‡KeБŹäÈœ.œW±ktQ}.ŸëŁĆMmLŸŒ“*(Ö/éȘL[ÄȚnÖSŰgźł8„Łû,Ű”üTJŚC'kŰJóêƒŚ'P ° ráGĐ1&C^śgyÒżžé|YțpŸA7.⟭n˜Ș[ž)֚ƒÙf•ÎQQusà'ÙÛ2ٌf}Ł«vßàś„űĄw-ZÓąŠ—–JhuńEMSȚK‹ÆŽhȚE‹UŽXn»i…Ńj{4ËM3ZöÙ°JԞVÀCeъMoŃ Ÿ fíE3#MgŹæđ3¶VI~ŽÍëŃVśŽ–żŹ•”-ŐĐ✎b+ì૱‚±}ތNhÉZб‰‘ĘŽÂhÚ5șŃŻĄ}U ­ÔGk6}àêÛaQĘŰD·ląÙu—Žș±‚æœŁ+è.+èÆ ÊöŃR‰:ùR”ìŠFwYA5VP;ŹàG' à†1ŻwlٚC6z—©ȚUE˜”é<‰ż,‰ży{’Æ<’śL"Ê.ëÈÆ:ąeê?Vđü Ę1Z4öČwtbÙeŃXGĐ>Z<±U'_Œ±ŚĘŽÂèźÄőòTœ"1!„‰ +ŸB^§}0áÚYKíU?ë5jgČwtąv^«ęmśë endstream endobj 626 0 obj << /Producer (pdfTeX-1.40.23) /Author(\376\377\000V\000i\000n\000c\000e\000n\000t\000\040\000G\000o\000u\000l\000e\000t)/Title()/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20220123181858-05'00') /ModDate (D:20220123181858-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.23 (TeX Live 2022/dev) kpathsea version 6.3.4/dev) >> endobj 597 0 obj << /Type /ObjStm /N 56 /First 461 /Length 1870 /Filter /FlateDecode >> stream xڍYÛnÛF}śWìc] 6ś6»+mÓ\$éSŽÍÊdQ•šÖíŚw†\RCq—.`@Ò\Ϝ™­h)•(„,Œp€/FH«đ”J@heEPB{-ŒÆ፰(ô…°šG/wá”pÚ đ(Đ őPˆ`„°X)ŃZ/€DƒÉ”¶Â`~…rvڇ v– ĆÀ íÚ9‰Fűç "—sà» „ ƒ‚@y|ƒ9mB©Â]ĆÒà 0ՃĆ7˜¶€2X* …ÚxzƒĆb‚ í›e3Œê(3 ì‡"ïé9ő!ÁŒˆś0†łžBă̚ ĂYó öę@Ÿóù0x3 ăVĘ «Nń0E"Ì@±›Ą8Ć.A1 Ă ĆÀ)v Ša f(N1$(†b;C±ćC‚b;Plg(¶œbHPlŠí ƆSl›b3C±áÛĆf Ű€)n=M‚U3°ȘÓ[#nœ‚/ ĂśD<œqMH3ŽŻșő˜nűZҜoiFk©Ż!n%ĂÓ)8K7ŽE3éï‹NôE }Q0‡7F'نÆ(5‡·I%Ú€†6I?GòŠ©ÄôËĄrź’·C%Ɵ}…Îń<úțLĐ|Z03AF_œ ŽOߚé ƚä~ËÇê ~ûîM}śâKSî›KŒ”â»·Mőx%/qê(t•F&dCĆ–-MßpvŚëæ,eoöíV+tŚ–Ćs$&đ$p ÜíȘíęúéêæRô^ƒìő%v[Ÿ —$tçđúÔÜn‚ïnĘTW7·ûò±ț{Ęü»Á)J ëÔûmœč_ì°MœPŐ=R žŒ.1UčEg«­»cÚ7ćfU–ûûĆțĆC”Ù-đúJ|š‚ÙüTŻVï6ÇFÁàFȘÍŠ\|zû#†,GwŽŒÒtIś4?ŚÛCœ]ÜŻwXd1j„śőáđĄŸŻ6SHËtÊfż~ą&râ>VÇæđ»Ç ԅdòÏ/pŒ4—\úćĄŒE;š­S·Đ'•fĐŠŁ€ țúP?Ö»úž©è-őâ°~ï‹őùiwÎ §“•žYĄsÙäX4'cŹ„=árJZÙžŽ=Čai9„TÁSäIïÿQ5È2ŽÇČeá<člYž\Š,ŐpĄsZšâÂ=_5\ŠœŸ-Zu+CæĐöYđŽHdf‚ÛKšT.§„ÒŽÌi •¶Ïź’CžŒŹMš4żìNźLățqiłŸ>=HËnÊez’–qÜł…·è“ȚÏŸŒCćBś:§%đ> Ÿęb‘im7!äŽt)™^’è“ȚÏȚęèïS-mòț7ùTkI i­ioœ*Țššòvï¶À%tîî2s¶(Ąšwë{޶ń^m#o_æAśŸ€öż132? șĐ5ĄęÿMś ńŐĆW_Ÿœč'ź01G|:qń@äșG íżzșW;{™;ű}Ј>Țáàčôg+Óˆëâw>šXAśC>Çű$ڛê€FĐĘi†'Tÿì*qœ,›rSŻèŃÔ نűÈê—cłYo[IÿŹȘtPĂĂčUEź=Tœ1șíȘíM[ŽšëÓę%o( endstream endobj 627 0 obj << /Type /XRef /Index [0 628] /Size 628 /W [1 3 1] /Root 625 0 R /Info 626 0 R /ID [<9FDD4C83534076A789991328FE5AF53D> <9FDD4C83534076A789991328FE5AF53D>] /Length 1510 /Filter /FlateDecode >> stream xÚ%–IlWU‡ïčÚÂkiKé„tž'hK)méL[†2ó˜‡È]ș4q+J41Qc‰&„…,t‰QLŒyÜž4,ŐÄD]č QWâû~lŸŸóœțï{ïȚsΜΙ=śÎygÎUä\ŹöΧÛp<źWOXëpCž­„E ·€ÛBXÖă.ăê7€$Tۀ«%,ežž wWMX*qkžÍ„›@î*źŠP7ȘqŚpú š?Í2‡«$Ô mÁ­Ăix}L=źWNš‰hÀéőjÛA#.Á•6f\)NŸŐZqež„° Žă*qš’Đ‰Û„cÖ|èÆUá4= W‹cÆ}èÇŐáŽ`·Çjù`'ź§eĂží8Vڏ€]žFœR`ìÆ5áÈ?öàò/òÉ5Âq0kÇ]%œ{qž5Â)0ëÄ­΀Y\/î á˜Çőá..€}ž~Ü%ÂE°„Æ]$\ûq#ž „ÀAÜî<á!°‚Ûƒ;GxÁăÎÇpž3„ÇÁ Ü$î4áIp 7ƒK …ÓžYÜ)B p7‡ÓÏôđóžyÜ BœűE”•è‘úèËžeÜ1BMŰ*n?NŻ«ÉŸŠ;€;BÈBĆŒŰŻ·SóÙAnđœ‘•Žw·BH–ÄužŁ8æ*’a±w wìŒëqlÂGÍÜE9íÄjÊŹä9íŠÌx¶hVù§œvDÍéŠYĂ!čĂŒë–„@›’v!m;žËÔe§Ì:Ëô í=ÌnÆdçŹđ…)Ă  xłńQ9ÎM ȘDéX8ç$jҜdőqΘ ‡Ê„“LÂŃ%ᬒlő`àL˜p`I8Ą$fÓèAMf7ŸèȘÙìáŚșj1‹ŸêȘŐìżuŐfŸô™źÚÍŚŒ(ómQWæG_ŒÒe~憼șͧmșê1掼zÍż|WW}æ˜ÓUżùß~ŐՀæku5h…ß8+Œț_Ž7KrŒ5™ăÊ·çxw"Ç{K9Țçÿ>Œžăăą·ÿÊńÙÓwŸÍqïóniĐ%°l…ï~ŃéUÇ7Śt@ӉŹŽÒ,ćD–rK9s„ČÒ.Đ z‡Ź”SUÊ1*ƒ€uKuŚùžUÊ~”îtù”}&łÂă•ü%ŸÜvÿW]Î endstream endobj startxref 248478 %%EOF actuar/inst/doc/coverage.Rnw0000644000176200001440000002556714055040227015554 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage[round]{natbib} \usepackage{babel} \usepackage[scaled=0.9]{helvet} \usepackage[sc]{mathpazo} \usepackage[shortlabels]{enumitem} \usepackage[noae]{Sweave} %\VignetteIndexEntry{Complete formulas used by coverage} %\VignettePackage{actuar} %\SweaveUTF8 \title{Complete formulas used by \code{coverage}} \author{Vincent Goulet \\ UniversitĂ© Laval} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Flush left enumerate environment. \setlist[enumerate]{leftmargin=*,align=left} %% Some new commands \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\D}{\displaystyle} \bibliographystyle{plainnat} <>= library(actuar) @ \begin{document} \maketitle Function \code{coverage} of \pkg{actuar} defines a new function to compute the probability density function (pdf) of cumulative distribution function (cdf) of any probability law under the following insurance coverage modifications: ordinary or franchise deductible, limit, coinsurance, inflation. In addition, the function can return the distribution of either the payment per loss or the payment per payment random variable. This terminology refers to whether or not the insurer knows that a loss occurred. For the exact definitions of the terms as used by \code{coverage}, see Chapter~5 of \cite{LossModels2e}. In the presence of a deductible, four random variables can be defined: \begin{enumerate} \item $Y^P$, the payment per payment with an ordinary deductible; \item $Y^L$, the payment per loss with an ordinary deductible; \item $\tilde{Y}^P$, the payment per payment with a franchise deductible; \item $\tilde{Y}^L$, the payment per loss with a franchise deductible. \end{enumerate} The most common case in insurance applications is the distribution of the amount paid per payment with an ordinary deductible, $Y^P$. Hence, it is the default in \code{coverage}. When there is no deductible, all four random variables are equivalent. This document presents the definitions of the above four random variables and their corresponding cdf and pdf for a deductible $d$, a limit $u$, a coinsurance level $\alpha$ and an inflation rate $r$. An illustrative plot of each cdf and pdf is also included. In these plots, a dot indicates a probability mass at the given point. In definitions below, $X$ is the nonnegative random variable of the losses with cdf $F_X(\cdot)$ and pdf $f_X(\cdot)$. \bibliography{actuar} <>= deductible <- 5 limit <- 13 @ \section{Payment per payment, ordinary deductible} <>= pgammaL <- coverage(cdf = pgamma, deductible = deductible, limit = limit, per.loss = TRUE) dgammaL <- coverage(dgamma, pgamma, deductible = deductible, limit = limit, per.loss = TRUE) pgammaP <- coverage(cdf = pgamma, deductible = deductible, limit = limit) dgammaP <- coverage(dgamma, pgamma, deductible = deductible, limit = limit) d <- deductible u <- limit - d e <- 0.001 ylim <- c(0, dgammaL(0, 5, 0.6)) @ \begin{align*} Y^P &= \begin{cases} \alpha ((1 + r) X - d), & \D\frac{d}{1 + r} \leq X < \frac{u}{1 + r} \\ \alpha (u - d), & \D X \geq \frac{u}{1 + r} \end{cases} & \\ F_{Y^P}(y) &= \begin{cases} 0, & y = 0 \\ \D\frac{F_X \left( \frac{y + \alpha d}{\alpha (1 + r)} \right) - F_X \left( \frac{d}{1 + r} \right)}{% 1 - F_X \left( \frac{d}{1 + r} \right)}, & 0 < y < \alpha (u - d) \\ 1, & y \geq \alpha(u - d) \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(pgammaP(x, 5, 0.6), from = 0, to = u - e, xlim = c(0, limit), ylim = c(0, 1), xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(pgammaP(x, 5, 0.6), from = u, add = TRUE, lwd = 2) axis(1, at = c(0, u), labels = c("0", "u - d")) @ \end{minipage} \\ f_{Y^P}(y) &= \begin{cases} 0, & y = 0 \\ \left( \D\frac{1}{\alpha (1 + r)} \right) \D\frac{f_X \left( \frac{y + \alpha d}{\alpha(1 + r)} \right)}{% 1 - F_X \left( \frac{d}{1 + r} \right)}, & 0 < y < \alpha (u - d) \\ \D\frac{1 - F_X \Big( \frac{u}{1 + r} \Big)}{% 1 - F_X \left( \frac{d}{1 + r} \right)}, & y = \alpha(u - d) \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(dgammaP(x, 5, 0.6), from = 0 + e, to = u - e, xlim = c(0, limit), ylim = ylim, xlab = "", ylab = "", xaxt = "n", lwd = 2) points(u, dgammaP(u, 5, 0.6), pch = 16) axis(1, at = c(0, u), labels = c("0", "u - d")) @ \end{minipage} \end{align*} \section{Payment per loss, ordinary deductible} \begin{align*} Y^L &= \begin{cases} 0, & X < \D \frac{d}{1 + r} \\ \alpha ((1 + r) X - d), & \D\frac{d}{1 + r} \leq X < \frac{u}{1 + r} \\ \alpha (u - d), & \D X \geq \frac{u}{1 + r} \end{cases} & \\ F_{Y^L}(y) &= \begin{cases} F_X \left( \D\frac{d}{1 + r} \right), & y = 0 \\ F_X \left( \D\frac{y + \alpha d}{\alpha(1 + r)} \right), & 0 < y < \alpha (u - d) \\ 1, & y \geq \alpha(u - d) \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(pgammaL(x, 5, 0.6), from = 0, to = u - e, xlim = c(0, limit), ylim = c(0, 1), xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(pgammaL(x, 5, 0.6), from = u, add = TRUE, lwd = 2) axis(1, at = c(0, u), labels = c("0", "u - d")) @ \end{minipage} \\ f_{Y^L}(y) &= \begin{cases} F_X \left( \D\frac{d}{1 + r} \right), & y = 0 \\ \D\frac{1}{\alpha (1 + r)} f_X \left( \D\frac{y + \alpha d}{\alpha(1 + r)} \right), & 0 < y < \alpha (u - d) \\ 1 - F_X \left( \D\frac{u}{1 + r} \right), & y = \alpha(u - d) \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(dgammaL(x, 5, 0.6), from = 0 + e, to = u - e, xlim = c(0, limit), ylim = ylim, xlab = "", ylab = "", xaxt = "n", lwd = 2) points(c(0, u), dgammaL(c(0, u), 5, 0.6), pch = 16) axis(1, at = c(0, u), labels = c("0", "u - d")) @ \end{minipage} \end{align*} \section{Payment per payment, franchise deductible} <>= pgammaL <- coverage(cdf = pgamma, deductible = deductible, limit = limit, per.loss = TRUE, franchise = TRUE) dgammaL <- coverage(dgamma, pgamma, deductible = deductible, limit = limit, per.loss = TRUE, franchise = TRUE) pgammaP <- coverage(cdf = pgamma, deductible = deductible, limit = limit, franchise = TRUE) dgammaP <- coverage(dgamma, pgamma, deductible = deductible, limit = limit, franchise = TRUE) d <- deductible u <- limit e <- 0.001 ylim <- c(0, dgammaL(0, 5, 0.6)) @ \begin{align*} \tilde{Y}^P &= \begin{cases} \alpha (1 + r) X, & \D\frac{d}{1 + r} \leq X < \frac{u}{1 + r} \\ \alpha u, & \D X \geq \frac{u}{1 + r} \end{cases} & \\ F_{\tilde{Y}^P}(y) &= \begin{cases} 0, & 0 \leq y \leq \alpha d \\ \D\frac{F_X \left( \frac{y}{\alpha (1 + r)} \right) - F_X \left( \frac{d}{1 + r} \right)}{% 1 - F_X \left( \frac{d}{1 + r} \right)}, & \alpha d < y < \alpha u \\ 1, & y \geq \alpha u \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(pgammaP(x, 5, 0.6), from = 0, to = u - e, xlim = c(0, limit + d), ylim = c(0, 1), xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(pgammaP(x, 5, 0.6), from = u, add = TRUE, lwd = 2) axis(1, at = c(0, d, u), labels = c("0", "d", "u")) @ \end{minipage} \\ f_{\tilde{Y}^P}(y) &= \begin{cases} 0, & 0 \leq y \leq \alpha d \\ \left( \D\frac{1}{\alpha (1 + r)} \right) \D\frac{f_X \left( \frac{y}{\alpha(1 + r)} \right)}{% 1 - F_X \left( \frac{d}{1 + r} \right)}, & \alpha d < y < \alpha u \\ \D\frac{1 - F_X \Big( \frac{u}{1 + r} \Big)}{% 1 - F_X \left( \frac{d}{1 + r} \right)}, & y = \alpha u \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(dgammaP(x, 5, 0.6), from = d + e, to = u - e, xlim = c(0, limit + d), ylim = ylim, xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(dgammaL(x, 5, 0.6), from = 0 + e, to = d, add = TRUE, lwd = 2) points(u, dgammaP(u, 5, 0.6), pch = 16) axis(1, at = c(0, d, u), labels = c("0", "d", "u")) @ \end{minipage} \end{align*} \section{Payment per loss, franchise deductible} \begin{align*} \tilde{Y}^L &= \begin{cases} 0, & X < \D \frac{d}{1 + r} \\ \alpha (1 + r) X, & \D\frac{d}{1 + r} \leq X < \frac{u}{1 + r} \\ \alpha u, & \D X \geq \frac{u}{1 + r} \end{cases} & \\ F_{\tilde{Y}^L}(y) &= \begin{cases} F_X \left( \D\frac{d}{1 + r} \right), & 0 \leq y \leq \alpha d \\ F_X \left( \D\frac{y}{\alpha(1 + r)} \right), & \alpha d < y < \alpha u \\ 1, & y \geq \alpha u \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(pgammaL(x, 5, 0.6), from = 0, to = u - e, xlim = c(0, limit + d), ylim = c(0, 1), xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(pgammaL(x, 5, 0.6), from = u, add = TRUE, lwd = 2) axis(1, at = c(0, d, u), labels = c("0", "d", "u")) @ \end{minipage} \\ f_{\tilde{Y}^L}(y) &= \begin{cases} F_X \left( \D\frac{d}{1 + r} \right), & y = 0 \\ \D\frac{1}{\alpha (1 + r)} f_X \left( \D\frac{y}{\alpha(1 + r)} \right), & \alpha d < y < \alpha u \\ 1 - F_X \left( \D\frac{u}{1 + r} \right), & y = \alpha u \end{cases} & \begin{minipage}{0.4\linewidth} <>= par(mar = c(2, 3, 1, 1)) curve(dgammaL(x, 5, 0.6), from = d + e, to = u - e, xlim = c(0, limit + d), ylim = ylim, xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(dgammaL(x, 5, 0.6), from = 0 + e, to = d, add = TRUE, lwd = 2) points(c(0, u), dgammaL(c(0, u), 5, 0.6), pch = 16) axis(1, at = c(0, d, u), labels = c("0", "d", "u")) @ \end{minipage} \end{align*} \end{document} %%% Local Variables: %%% mode: noweb %%% TeX-master: t %%% coding: utf-8 %%% End: actuar/inst/doc/simulation.pdf0000644000176200001440000046251514173361163016154 0ustar liggesusers%PDF-1.5 %ĐÔĆŰ 30 0 obj << /Length 1753 /Filter /FlateDecode >> stream xÚ”XIsÔFŸûWèš)˜Šś%)dJ ȘLprÁڒìQeFŽ`űśyœhË'ä$©ûő믿·¶pr“àäŐțÊ󧋳g/5MˆB”ž\\'„k€Ib†&yò>}WúœíÊșÚl©!i}žeŐö­Č"|æ¶łáí¶ìv›żƒn>ŚM„@šŰÚë”YŚÛ& ‚ŒÔ n‰ÄˆR•l) 1$ÈÿŒkʶ«»žá/}g«·D@ǖ0džòVć§ §iŃŽewÉ ËÎ-š‰lܕUáu0Œ%ÉžJš âŻpÎŹšș°âUĘï‹.ìɐ óȚ7xŠAFRéc𩮾znłżíM1n3 2ƒ°QśxȚL |ëAìŰlLZošJ?•yá|F‹ôșŻ<ÿ)ÓźŽĂ6¶:Ûá»ó^ 7EU4CôÀ„xBääő!Èzšr . ’X3>""äÎà‚ŠŚŐÁ}°qeĘÇـùÊ^94_Âۡ΋}dőáPWû8Ó·EȚÊ*ÌjJ°•¶ÇăŸÌl†—< hłe’€/PÎæĘĄmy8î‹6Ǝ§j>}š‡©ąbvêŠüé(ÖFÁ9çđi ?8Lc*óà4"<‚#h1ęì„ 3;Š8ä€hçæP~îúŠXqȚĆÍ 8œ  q@7?{^¶™‡7ÌĘn€ęq‰x+ą˜ùä…YÄMƒŒyŹû*_ź‘Đbœ)5îŸFàLÉtÔć§—qï—X`;LŰQ8Æ%ÆŽÈĂú1űëêiÀł@Ÿ€Ùű;?zU D€_ÂPpúń=ž3d”Čm‡)h8-ùC±Ç ’{c›,źÂf‘L·|űűăUšÇ —“A0H)™0$‰2ărÛkc\eĆs\±s\ńYQlƈû“ˆĘî ïčaæȘ†Čîß<ŚQLi *‰:±đÇŸšČh;>ć‡bCè`0ŸźF UPrcžg6Úgk‰*ㄧvCpší ‡ìŁöźÂbĘSzŒ•¶Œ!=Ô>+ÏiŚsĘ,Bü$Ÿ‹öëŐéŠVcâgZéÛ^í‹0ëZ7ÓÚ2#>vaä*JŰđčH4n|J4AÀż~ŠŐbăv-čûÎđŽąx ŠȘ?Šìì)0z:JŒ-ßőÈÒä⠒¶‹-€…žčűi>@Ôo‚*A”IĄțCç|ș‚,a(=s ”i„›HÂZËĄŒAgBćĐțș gtȚ«è/·àè]ígà–údˆc*aĐ,·9FLharL3.QŻèăĐV±AæóȘèöÙL‹ëĘŽIŸŻT#©Æșr\±§@Ë5{.ô€[@F Ęç|MŐ8tm3±ïÊ6é“A–ÍeĄ æRMÒŰu­šo,Œ­mYHNPžŹ‘Æü„è…żBQZóօ Śš…·>ÊńïĐlàN6{€fțßn±€ĄŠÁZ%Ì :™„Ë—òaÇàÂ'uÍâ•n>bEçž… Ô+9ń„R!­MŰ*ĆhȚç+țéŰo d•~BŽ7%Snʎ·í Í ©Äq?ˆŹÛ‘űëTÏ śÀDđ$őƒe-o“1[@ʖ„iż!ä]–ƒ  đwęĄč»°ÒùżJ@.(Ä?4ŸŻ ;™p=@ùCćD“SQÈ%łeé-ʐaê髛 q뛡òfŚ”!Œœ@Ûg»0Ęíl·–[”@’’‡±ÿÓáź/±„hP9ś%*VN ™RàìpqqæšńȘdMŁJȘĂž“ ©‰žìVb…òÿ7Œ%qÍ9ZŒÇDśXÒt•ÏWh„FU AÔČU;čêțzqöńÌÙ'ò#óżu…«‹ÒIv8{ÿ'9LBˇ œőąUˆkŚ!í“wgoǟƒwńE ȘuÊÀőč<-‚˜„DÄ”ûy‡Ž‰x14<ûÒÆ6éșnÆ{⮔CBgăœÏßZV6tò§ÒęԂ@ÉûŹÈ‡“cĂ?­pÏÒ잟@3ćùÄŰ)Bù‡Z0|ÏćËŐ"8ŽÓkw50Ì?.E“ endstream endobj 51 0 obj << /Length 2499 /Filter /FlateDecode >> stream xÚœYYÛÈ~Ÿ_Aì“ŃìƒŚ. vƒ,‚ ‰ç!€Ś”DYL(R+R;3ùőùȘ«Ù<Ô3;F$öQŹȘîș‹Qđ)ˆ‚?ĘDöù‡û›·?e2ÈĂ<‘Ipż„ÎÂTÈ ‰ÓPȘ8žßV?]šm_”ÍíÇûŸßț‹ Œ–a§@fÏÇê±żœKœ!Ö*Lâx<ÿ.»Û”ÊäȘêùYʍÄȘoyćSٔçą/yv.š]{äńo·JźŠs…M‹eŸÍWŒ-VĘe{ ‚”ˆDÇ |Úă0“·ńȘìBŒˆŐęDd.€óV€đćX6}ÇK힟ęłncxˆŸ'rîZń·9álkq}B†:ÖĂ­4ž{KĂ,ö Íćž)Ïsțæwb8nù9Üăs&Ś2 •ÒÄjšÉ$ä°{:·›ÎĂČÌC!ÓĆíZKö4dŒíÛ3ωm-QÖbšÖûCŃóèĄȘkmJ†mèe‘B{êê?ćŽ7«Š/yč)êúÉbiùč5Ò1:Dè^Xgjq2*Ž)6U]őUiO–g““ĆY˜dN‰Oîìi§‚!BĆÀfqfÀg ĄÌt0șŁä+šŁÈćôĆ;#R†"]2ˆ)#2ĈÎăç”K‡Y$ƒ ĐRGDžF‰UĆ@ê ”äŰîÊÚ§% Ž“|ą%qÍŽ„æ€%ô,Ol° Żă”îTn«ęSŐ|â豳Q/uÁ&Js˂oÛłAŽf=°LÌô ;”ÍÎ`‘łœ]ÙtÏé‡I(…;ÔȚŁ *Z}æ‘EÏ)H.悑™‚(űśìË$ŽŽ5–Ö‚ŹŸc OlÄòKÉ­ÌŹ“ąÍ‰hh>ˆ†`öm]··2]=tŒÙ;”OM_<:LŚQH&Y˜çîžçm{<*8œóÖs&àQaźQá—(Ž fuQ5Æ”r-ôD<ŒÈ™Śwe_T”ƒa[ˆBè|˜g2ŠaòŰĐƒŁ+mĐ —ôÜÊ qŠu*“ŐŸ-LÁŽ›KßÊș†h­űNh{ž9jűcűò‘U;șrnÆ|ÌŃ☏kCÓź/ž„_z8”ö”ˆY"<ê’‚5OȘŽŸ?H êČ·ïl Š'42 †R˜Ë,0"+mÜ4—@s üȚË%;öUX8ŒŚëöXő}čcó:Ì”žq9Êh'ÎI•”'ĘĄœÔ;okÙ? U–۶m¶ć©_șqžœ‰ÖÂtDâü:­™‰0Va–ŠAȚ){ŸŻL0t0ÿô(‚ˆàb\nč±” ~ŒIÏ7eÿ`‚GÙđM@xkšIUÔĘśŠ†ț6öM+2ÂYöeÏ*WońŻVŠ=^á:ĄŠC €EFFŠm‘Ńš0hȚ”)Ź<†K3Ò€Mò”çźçɄMFr(:ȚéȘ­}cX:^¶–Œútè„OK‚+j« | TÍBmÇ “d3Ę·æq獋ONÏ=1)†Kł–gDźGGQùb,B^í‚$d*9 p‚bČÚL^žùw:­0^41Òä A(_œó±Žۓ0…áp>mÌäÇû›_oHŚŁ@»@Z€psÁöxóácì°‘… ï?È#xË3z«ȚßüĘSŹ9LòÒÈRTȚ3àȘ°„™Š—ڱˆśB»üEùR`$žN@ć@K™:%·("$ @$ô@*Š<™R%™^“€(Ê_04aFÌ(ÊWo|vĆŠ'ÙŚB@9èo!‹èu⯏łŸô«„Ł_)ìšÔ·‘Îsæ“§35ùÿ;ßWj_ƀžÏ«sn*ê\z­s áäțwytnv“Wśílù”ÚČĐl$ł»Ž•†LQ}Däî ‡ž$CžŐe2€@ÏjE†: Cˆˆ—]â‡ńą„𱄄mΝhäâÁ\:oBHŒ\§Á­ƒÛ œ2…»Ô(ŒÖĄT˜&Y €0j }1(‚T€JBŠYp.ƒ=4ÀĐ ,ŁșčQ–<·>%ƒˆXQZ„)rÂŚ‘™uç·Axà‹U"iÏú;źÒ‡»!/(ą;^äv“ŸłĆ<íK»-È·Üù€ńÆÌûïÆŸ+ Ą:cJOĆš˜»–ÒÚđ3TÈ%(ĄXѶJÿ >ò[Šë<ɆI$eą† ò-ʎŠeâ&yȘ„Kb©}Çù:"°•TMȚÎíDPw(sxÄg|ÀgĆ4Ó2"CźàKdšŸä•"ro2¶^iŽ"P‚ / ˆĂ<͜có :MŸžƒe|ńAžï#„TF"ï©h@ćŸ š™Ù”Ÿï (”źlŁŚÔą'` (Śf€ü8¶ClZż™§æźÙÎBžNšá‡Č`š‚7UĂîQÌZ0ÜÉńԚÎő™śČ°ËC 1ëéP}êy™*ńö2Œń·¶êșÜXehœ ŠÒW™nôžô^Áç'ùĆւÌűęœŰœÊłGà•ÔŐŽ>çśÛțÇoÜ~”Ąt驄€aSšKE.i:X±g-íŹ<VšëLsS Ń`oîéŚKÙlŸWŠS˜ź€O ,ș3CĘgò(ă«c7”ÿçNûÌ'‹Ąqî«Ă\92wo5ڗïdæ[Š KïŒęÏ0ÒâȚD!–ÂŚțŒNˆ‘-MÀȚŒéÉ C9Ȅä„jíL葿‘-+ż7ŸÓčXžf–Ő$ä>é0‘ŐŃżzÔ EdÁˆzčŹIò„‹'k‰ëCœ˜KÂőœźùSqY}î¶żŠŚì+“„z`]–+_ ć€žëk'ZŒmÍÄö‚ipŒÀZù;fUł+O%țšH ÆÎÌ­UÛtWuęčÚ\zŰŽčîŐF’Í»ŒăGÆlÌ75e̍aŃ1ŒaòZq„1öĘ·dmƒë3i‘ä’…·đXÿÀÔŹqŠ> stream xÚ­YYÛF~Ÿ_Á‡} O§ïc žÀ ï"›`±˜ű#”$"”(“”Çóï·úà%”æHb`Àfu©źźúȘšÆÙ&ĂÙÏW8>ș»úîFÓÌ #©ÌîÖa )©3)ąLdw«ì>ßŐÍBävqÍ Ï7vo›ąr/,ߖ°^\“ŒYœ/·ćČßY­}K.òÖÚĆ绂VŒ8üÉŹqêû—_ŸÊîęoZ»ìÊzôđű›`)Xڊšün YśömŃĆĘÖ™ 0Œæ›ă”“’ź AFô~Ù}Śț}źÇ±@8hd!h¶ęʍ ÓhQÄxxśŽő$ž iĘïwÎrjHŸ?îlÖő:<ż.kËąłm tux†€wösCŻ)FŒńččô æîꕭĐș±_v ŠĄg–Ż}lżí~ù(^JXț†nŠęȘȚžôPÙ Âè©5Š#1šűwˆ=H'g!à_Eb d`doŽAkż&ރlĆÈYZë2êë‚ÓÜ6eśçĂ ! dH’ś K$ÒÒLăà=ś‰D’êy ü3Ț'w6 œŹäæ”I †€G i YHúÊp :è-"ąP-w‡ÊŻqțk ÙoÏжPàmŰZÂȘlŰtć~"@ŽBÄđyY»’âDU•ékɑŠđڏ#őĆèè±Ô"ššÄÈü±ì¶Ț ’“«šV睄œPȚŒłŒȚ•]gW€j~|·-=æeżżÏe}l çü"UV:ÿâ|rÏbrà‰ą \͏šMœ?ĂCa€öÄaSDëYš]ù­;66%Ë =fŽ&d^ï«§pjŒèyTBdKá4o«rłí€ßC‚4ńćißß"[č_Ú@źśq±Ș}„ÌÖ]`Û[» $3x>6Ć!ìùŁt€˜-nYîÎśQÆehHÏTźƒÿdˆeŹVÆ«æ~ßôùuźŽ3„Ùëeœ;ê2up\TÁöéŁM$Ą+ØúÀFčïlł.BÜpŸź›@€šÚč”w»ź‹êăֆ’=G°k‚%ąä€ S€ûÒ qń-› êm,ÿükœf ­Ê¶kʇc(?Ï”_čL’Ú™êmY‡čä] U”œï5Ę&l1Ó\.Ł%.ÌőqżšäJƘŃŽnŽÁá/Fʐčß=f8[Ő8€ìp„+L•JŸ‘ĄH•š[­s…Cgș „‡#ùSB•”ˆÉáȘbś°*ÒXÀĆ€û]ÛżÛš3€‹PîȘŁ ôź5Sß”f±šèpÔîćP4ĆÎBV. ^§Í[ó“œtúߊĐ9 èÙè3œ@ẋO¶K$ˆéӜ!˜epÌLC‰ù‘Äȱ3œNr&1šúEәh…€ž)ᑱy$’č/‘QĂ@q“T&`.Őӑ"­KL1œČ äÒ鱜‰ŰśE6ôÀ±5:Čۏ•H€ć<;Æú§x’đJÆécî©yêêÉ éäO „;Aìòž;VĐđĂ86O(Ą€]śï<‹ fSìvEœHˆ@”Ččgs‘TŠŰńšäy»-6GŸƒ«rêȘàˆšĄ&‹t !:ąĂś©Üİz j Ÿ`Š»eŒl‰>6æw•4Ä@”ńŚ”ëĄőż ăÁ™P?tEhĐ.ZŁ“ör~_‚»‰ÉûĄ{@š·LâÂMâò芥aښƱsèéÄ8"ŐŹu{xéŠQ7陋*>–àÆ6œJŃÇ€źȘzAUțïčîźŸ\98#ĂeŸÁbč»òDd ËThŽÍÖWÿvű»Ç”}XĂ­ę}Ș@€2UÀ8qĆŒRĆìCĆ<.NÛ À&Ü+ŒÛ?@§Æx čQ‚ßEȘ œ§ áŻ'ûâut)Ôíö˜(h ÎŚ„!ĂuPsO>N ă ĆęšKÊÂĐ+ÖÎ̑GpJŁpƈÔá^ â1ü;_€œEX°ô:aê4"ƒÿ}D|ÿxsÔIàˆč K†Ho#ƒ x0©_:Ÿ#ƒÀƒ©ăYPbŻż7ŸæȚwŒ(Ó>­_ʟSô,wîÀĆșŸ%nvYźŸ\EĂ€ź_șUh> stream xÚÍZIsčŸëWđH–Mû2“ÉÁ©±S‰+ÉŰ:€ÊöĄE6ĆÎ4I »9Čòëó€^ .r)©$ą±<,oûȚèä~B'ïoèèśíí͛wVNqšëÉíj„ FۉV†pĄ&·ËÉçéÏßČÍC™Ïæ‚Ê© łŻ·iIÀxȚŻ$±RC‹x»Îwû™šæ›0Ö »U$B‰‚Î{€ŠßßL>û>-ś›l‹Ä4ŻĂÀŹNû~ĄŠž„8ć”ńŃHĆÙȘÎêŒ ćzŐaÒzś\6íșęïb·™#”É|ší‹ìźÄ‰±ȘđżnZÔU^źBLtŠÚcQŻŐYXźiŸmò:ßăòí4ÿ퐕X4ÓzȘâ^MłWśjš–Ț4XûEŠUhÌpXšòă°=ɧùŸšŸBśeQŐûâîP@ ±Œž"î˜_‘ÿĆy±°)ŸŐ/Fá6èp<„¶[æećĆeÂ$qR§ü2moȚ9ÛWMŹæ =ćF‰°ŒaK”jeü§FšŐ#" '†(ž„q=Ä*z±äTš0]·W©é(Ą’_šNátFÆĘółÓ”ĘŸ:9˜NŽœ::’p°=œN݃ü?źóÀíă©…"RßÁŠÖÄ1Ő?Ö {r oČŻXČŐ79ĘäYŹ[ù…țvÈ·‹§ž\ʛfÎ'ʉĄà•ÉهąŠf$UƒE3 ĆÛÍsP,GŁȚA!ĄwPû>ÛlČó [hÈ5ôˆGL5]đ‡isBRAĆž°=rìčüŸžgJOLc Öë„ìĆăèۋ_AƒÏȚc2źí ÂȚًŒk·Î:Țy'"˜!Ξ(&:t:fšdú C Ž^ÁOéš>*2Tžfš»ÌЎ^ŠŁ†ŁŻäškuÄHÏsź ±B|Òî~ ˆiÎÌt“„W&áPz›ùËê-™Í­`Ó·(2Â)Ź"ÖË·èćóešź[ ű:énoŠdànoYáù.ûÀŃđ=œŹTDK3<ÙÂÀÁ{^ž;yV(Yg˜“Ú DÚMŒ:±ÍŸ<}?–Ê$ó »~oÆÓzăéòłŒ˜ŸFaË|[E™±~ź„śÂs°°šČ0Á*-óDhq,òr’ÈŽKߒdb èsn]zŚp.@]wöÆÛțŸoo~»ÁÓ 6áp>QŹ““ĆææóW:YB#à["€ÀŁïșĆ9‹ĂÊɧ›_bŰ՟Ż%Ćaⓘž >0§P‚îÄZÓl„§\ SŸç`~ivŠP }ÍàDłĂ-0:P% ŠAT{x‚ÆÚç˜0q‚ źàÈr Äd œ˜öж/#ĩ™èđXÀ(žè^ŻŒY•ZÖșۍ:Ù§ő…ÒN^»95‘Šćux | ÛrZœ0PŠ!x€©?cÜô…š'D_ƒ^/!Ô ©k„š]%Ԃh„I=©– v†…A_É©ă} Đ8ŠïED‰i°ź}ś,ö?}ù_ęÁœšpȚȘżLèąîćtĂ~n$Ì„0Žö"șђJèÆ huÖgâêTàÎÌ3bčr›ìő±M Śn"J/Bț>­$‚;+‰Ä6äæęțÓnsWl‹í} {èi ȘËĆì7>ZLMgÁșŽ'ƒł50RŠÍ}HMć)b`~\‹6=*‚šÏBÄâsšVMïómŸÏêXĘ&C"jv«8·â^‰ïNöPĆSÁ "9ÊEŽ9ŽŐź,w3n(Ă_•—ù}¶­ăÇ·â« °=9֍&q,DNUĂŚCšÛ^P?!A»zŚœ‚C`@>ghć?›C™ù »€öțîJœKűZ€bö‹uOÉüÍ[BÔŁœ€Š@üÏ~äŒï‹Ł…pSÀ`„ïČ»ą ŚP)úrݱüX@=ö‘ ê3Öb"Ò–Y…ÒąÌÀA^ćM§bɅŸÚS͓w§eń+êčáÓȘȚĘe$Ԅô7lú6›觙@°Txkă[WáRk»È Ìš^އ¶MVÄ^‹u¶Ï5ž· |W ç N}XŹcÿĘ2čÌpBàìüm:Â]ű^ÒtkÍDp‘Ąéè°Ą±ôĘC•Őn‡”œ<_'܎ÈvÇœˆäiôO/±;íÈŚvYà0/Pîhš yŹ8ԋ° ű(bkš~qĆîP…ÊÁj+8z­ÍôhÍĂË†Ś˜š·Ólč{š=üƶ,čÄ]]ïüčŠWç~BĆ2Żûâ!n˜êx…źš+täű5–ƒàA[U4o+tT„B@?(tXìć2ÔȚć)Lűž/ê:›UÉ»i¶q–‚ 2jâ?A8Űz†Ń‘.ą±: MÔëöŻŠÛ EBXK>$ʠ킯Ś)ˆ/ÚÀæ—äZ he/<ôbJ»wupTu0«Ś%G[ż8Žt‡4æÆaŒOTž&ń!čǖÖćs~±C:}뀁[ńŹ\n’č›*sŽîŃł zĆ9æŸăÿć14·rü…._CÈÆšő Ÿ%©n5ąEUàí Pv€ áŚÚźÎœčۀڃ?e)x°j`)†OĂ<ČìuòÆŹBŸ­ę =ÿžićę·ś–"zKhïQ©Ń#Ș„8pŠűx,WckʏČ>C: ńêYódïÈ4ÒFQVy€#1xđKi `ke]ÌÇxz/ÊđÛûiŹś0ęłâńÔë6}–ZgL>8 čńæXÎĂaéXû…sq7lúFŹAä N’ô rîÜqBÎM?†ŸA*.y,Ê24>yčLi±ó)[Ț&DxȚôìq˜—LŸżkUÊ}•Lf'Àűt·ùßoM„żeèuúaűș“á/ êæ:#'] 8üêÄ0Ž endstream endobj 83 0 obj << /Length 2587 /Filter /FlateDecode >> stream xÚŐZ[Ü¶~ß_1ȓŰ„ERŚ-Ћí$0ÇĘ€ê>hf”3r4Òd€Ézÿ}żĂCê¶Ż›4(ú°Eò\ű›Æáj· WŻŻBûüùJâźäJj-Ò$[%Q&ò(YmWfAäč^ÉHš$YÊŐęնۂM"ËV§Ęjż{}q~Ê$čdą#)R™&'ûŸoŻ^ŒŠć*yą’Őí=öă b-’$_ĘȚ­țüq}‡ap:¶Uś>ŒĂæÚNìŠĂĄ˜Îè‹+Ê=1)Ęßú_·ß>+ä‹W™šH˜ˆ<V72 žFŸŻÛ”Jƒ‡u€‚r-Uđ‹Öi€«Vqpߞ0i°-úrŚžȘmQÓDÜ}ÁŁm{8Ž +û,¶ęč8UŽž8klí«¶éűŒ~>1ۚő‡ȘźI'ˆávHLÜ~ł˜çî\Ôő#HslJ~ŠÆÎ8Ńʎßß+•ÒH‡Ÿx•gӛŠÁ"&X˜Ă›ö ÙÌ\*qž;*wŠ ŠžŸe±ĘóšžŰźë›$ŃÁßȘĂč6ú2MeeƒÚU4“ Î…%ÙNćĘúFĆy°Yk<ò[1H )ĘrßòłšÖą­u ¶íɘ|Ûó9ÇâTÊŸ<ÙæźiÀȘŃès,î±/…;œ üê|2 T‡ÖœNÀIĂ mèžâśd€âF$:=;6”!ŽƒMÛïíúȚîż7§ț|.›­=€hî4ĘœUÿ85aQÛ{šLlëą:tóòŃwU·=wä}8ÌD'LZšòä]ÙUĘń Cʐ0ˆą;íÉ8%-9§€„žŹăsw}ÒYR»ŠĄêĐf…a˜á-ÚónÏćÇ1Ąì„œšhƇ+ș)°Rč@údV‘€Ò2DČű+AÈ :Ž8,Û«ßs0Ÿ ț)HäËÄ&ŒżŻsćì¶E,ŻîÈùIÿnđ°JŒŒu9M„Æ‘ĄŰ§Y„” 'Æht„Đ(T3^Țšžß쁈]ûöÎkó–Őr2žpW>őđÊZ督ąoˆÊČïžx]sÒŹšˆ8ˆ:Ɨs’H°ŁČáGŠ%ș)©Ăjž\œƒˆÉđHI ț\ő#F°fÂsgŸƒ-‰ž…ĂìĄÀÿŰ{%:ʆ»Ą t갑ÌÁŃH‰(ŽüÖŒđn Çç(ß۟Ÿš+}3O–±Ç+Że gçeš6iŸÍù°)OsdÏRq·ÈdúŻü·deŃ~YˆH&Ì:’ńœ ^„3‰™ÄŒŰ geš!‰ibš„i~_íLB„5B&=áyqá5OźÌą­ëOgT`&°pšQ>ŚőOT‘d>OÄ,#ĂԖ.'” ±,èŽć¶B:R&.bbˆ‹s\ÄÀʝdb͙’Ë ‹țrÙÇeH.ìMS¶ 5Ç5rћ&Æ?6ĆŠȘ©àCPˆ$|=ŽżçÙ LƒÒP"۝‘ mtÄP9.ϱ˜ÖžÛź3ÆÁNô4/ljÇLû\ZÖ"̇Ču06Î>”EcY›RĐŒ6À– źșžGcé7[ÇjÒș<”%r:ö~€©ć*Ûjۛ›cŸrIQ—?Yt—ÚR:daAíÒbĂłËûĐyüž–R2ˎ7C&WW·k°Öœ­iیby C_±Bšô°LlêŠ\źnÏ6gž8tčÎ{»€©–áXx`<*‡ąüăŃŒYHa•{­Đ˜źïKƒö”Â_z>ƒĘ ‡–ˆ‰ˆ9žFü t©ˆSièRĄbȘ±ŃV7pè4ű@ˆ‚ž7ÈPŻd(t&%mɄ„IÆU2áŻQOdÎnoŒŒs™ú{’ŠĐrÂïÚÇ/jÌ;ßûùá€?Ÿr1î[O˜œuèĂ`ˆáP­œm«źsŸfdšŠjŽíÉiwË>ńŁ_oźÏXDš;§Jđ7慐l€ö”C €ÒƒQ{/«Dè±ÄęĂł–’ŚÔSæTHôÿ“&}2šD$áđi«ńX&iÂ2S3ĂB‘%©)‰ĐÖęz{ëOÙûąGäÿ+„ŸŠßüűŒ…ÊôS|.‘ ČkŻæ$ésê„^őfò(‘„ńoÇnœŠp€žä&i–üžŰEp ßzląá`±Ś&3Ԃąy4Gíÿ3„èW/DEțpțä<ú±Nç“óäsçyِ4FŻêČűwF€ ŻűÆĂ@C‚™ˆQBEźæčÛTíšOâ|Á`Ą$ćkęI%•@‰·tïùŻj "„ (ă)”eź zYlE–€‰‘š'dÏKęF‰ÒÈ~ßV%JWČç%Š/J”ügéÿ–D ÊôŒ›PJrźp)‰&Ÿ›îr€d5 Júíeé‚ëBÓÜŽsŸMì„\šŽoùłOjÿ$Շ¶53-;»ꌃ|ńi`èă3Śł»ž ƒć§Ešs_Kiƒë01æï5Gú ϶8–~țé4|:ršw žȚjü$Dż«/>]Ë$‡a;|”û…(žŃŒŒœú7ÁL# endstream endobj 93 0 obj << /Length 2137 /Filter /FlateDecode >> stream xÚ­XKăžŸśŻö$cE$őÌ"‡Ù]lK2ä0ł¶DÛÌèáŃcș;ż>ő dK–;=A©b±XϏE‡ȚŃ œ_B7~}0†žđ„RAšd^eA%^Q?ĐBçÊQ “ÄëŒwxűlMA–yĘћçÿć.ęúëCT$‚TäïÙHŽv±6ÛÈŸŽE€riΕ±{™Ë‹yÆá€æœ3OĐÿ‹¶o'ÁOcȘK%ȚșÚńÔC[Ł3ćÿqŰrčŃƉwU."È»êĂB’˜U'đ˜@‚dA=KÁČD°\țD0d›ƒéÀd•Ç,OćќHDCqäìŹŠ0 „+Α†żfżËÉQo%Â)àw2Ț” ›p<^—€ÁBőę̕‰TÌ%7íÓgźđ3i^œČĂšn‹ŚÖIEiuíÎÚŸPàüŹ;]CQuŽ©·őX€Ò-“$ mÇä !ü€M™*ƒÀ:>Ò*őu1Œ”#0oà€ž§ˆ0`˜űĐ1nՂJ/k+üA҄?8/Žö4ÙŒ'0ìGűŒ9Ú"ö_ïĂQmH>:- cżÇŠÌ%!ÓZÂÈ·„i{pœ 40™<‰ó‹'!ćÓP~tÀˆ2Sš: ;R 5ć=WEȚŻ^FÎ%_1ÛźœíH{S±äĆimƒ–!WU?tÚ6ŻŰžéĂIÓÌmÂ`1‰ÒX±± NY2ĆȆ‚ˆ!ęăX<)pö-žŠ02L&Œl6P◉‰!pAU­j©ŰŻxƒ`:”„E}Ű8/†¶ìĘđÖÏđʏçsÛ =Ÿ1öúˆ©à܅€gÊ{€ț§ˆ+Ú)đAvٚfJ’wfăȚqăՐ'źő{ŁS‰T&Ù{SwùÄËŸŸźț*©ŃÇÙĄíĂЍ€śS‰€9đEÀ‰éîÂT.}śźBèwăléò9”óäÒf$îžÈ§{(ęușP“»Ț2ç`zÓÆ`ȚЉÿëÀŹ'Ę3ߥ;'Hs¶&3˜í·jźÿęśt(k ”ŚÌÍĂmˆddá ]‚ĆĘŸËźĄ6 îÛWÍFP>źÙ›ÍƛȘrQ:óuCßXÒKćźŸ+›jl­cÂeęÜ©ïÖ±7ß¶n€%•_śÔ ‘ĆK5ŁïPóMÜÊW~TS'ąÂÄ©W ÓĘȚ@_\Gž€ÉŒ •y±E{ì4àAáöÌ/č4ò? -ŸZŰ`ž—nES;e1ć »*h..ę}ăڄȘâÉBĘëŸȚ/Ę~!śôhn À§ùm_șnŁn“ž°EkúE+”Ź_@±nŸæ›ŚKŻV„û­țîUž9Ç~ÀâĐV¶ęa«d 9‰æP?[ÂN:őV°W«‰”Žő֍ĄàbJ“tuĄ CgŸFBuèo9]dEs€ó€6<ÓK2Ϝ ìŹfh+Ǟé./&ŒÇŠč)í7[ÒC€ű+mkÇ\cûŃ3łùîăP%rŐgНmS·žhšăgzežëÄŸÌ`òäviźÊÆć|š;`uznlJèqŒ3Xæ”ź“N”efŃ1 ?evT]§w*'máӅpÀp,—#SW»)^Űó”:‡{E$ž€eGĐÛ©Ö`ËËüdKӫҐp!ꊊ è7EBËŒVkÈą&q«ˆęî`Žź Mü#dœ5Ó鯆 •‰ę†ČЗ#!]Ì _zk%g˜ÿ/žÆÛŹ{.ŻŐCum6VŐY_šCSűf «‘\TŻáÊCÍpjKŒŸ4;^§çáèÈL€Ò2Ńœ^dșŰß—đäeCŸž',}|5m§»|Ÿ©¶œČúçöi?9iŐŽˆ$‡3ÆF8È2ś—sČàùéńá?6&dT endstream endobj 104 0 obj << /Length 2675 /Filter /FlateDecode >> stream xÚŐے۶ő}żB“'Ș¶ÜA$ugҌí‰Ç“6Ív:€\‰’芀LRȚĘżÏÁ…W«]{ʙŸH$œÎÀ‹Ę/Ț^áÉÿ_ŻŻŸ}ӅFZRčžȚ.cHÉx!…B”‰Ćőfń[DĐò?ŚïșU‹ßVă(Yźš&Qž6ûrăžË­™űíA „F˜Xia%»]•î’&u3GÈčBȘŸÙ”èș̏'˜o_šœ0p–"r ÜŒC’ćțc^žŠŠv(t<ä/æˆ Țâű5@…@RČvÂścÎW K+œX‘ĆBșIôćł­Ò§ŽXߥ|ŠS~“VÚ^BA© ÜŽ€ ŽHnN(T €Ž …Í …ăŰ ečÊ6î=(E‘àŽEZ§ŸÒ*k‚raHwó~Ç{,»Ž€%kóąŁí©X7YYžOYŃTK űOëtă&Ü,‰îĘg+F3xLÖÿMv)%țKiV1GÇđ@ȚPŹF6';QQ1ّŹŰdŸČÍ)9ĆzÀsÒúÄÛ ’ösä+"ŽKŒŒ~ĂÒa1"B!NôEï7rPwŒ\L§Lr€„vÜż"ÖD=Ž{ i=Ûđ1>ˆ™ȘS­7a|ZTkœ°Ț­Ÿő;fűąrüœÌêșM4'zÆ8"R +ĄÀ~ê;eŒ RÏđćm’ăêpŽKO߃3ïÀÁ`†’$Źśü‹œ?üžÂAËԞüIŠśËŒ"<łâuźæßA|RÆ_IńȚ—»ąt„m QhÛ8€?„œëß9üù€6rVÆsÂÔp:ԉĄuu+ jaŁ5 ]X}ŸFł‡4úČ>œyœdžmß&Pa„ĘŠ@4fOÚÖ§xĆł€KžuC„L?_ߟx#żŠĄNÓΊ껉Źb°”űI{űșżòź(dƄȘ±QțŻ-äőʱ,ÒąÉfܟ€mWò\Æăf%ÄÊźĆCgąß Ÿ‰‚’O“ÿ ›òßAĄ^30 ë%H‘sAÌÂkÛ_1F¶5kȘqŃSósiÚäËhïŠś2ê*š(ółíœ{¶-óĐæ]öć˜TIž6i”TQ…+jńƒm±đ9~ű˜>ÏÔźwšÊȚ›:P»ÄśM’ÇŃFÉÓh;†~Â^Ęèç 7n 0H™žt—ÔȘ1 #ŠàŃ㋚îfyN…kÍ'măßș!;4rüvŽ?{0Óê,?îęčA–Ÿ‰=‰0ŻĘI„=Gpc§"Û¶Ő‘ÙduSe7§Îëƒ2@=q‘3•pÿíæCșn±QÄûk?Çm(ÀƒŚŠő0 pfŁTšÖYčžÌżœ€ŸÜ HŚ{űæȘ!!+ż 5!zöçĄF›’Ź€°a 0…Í B,Vˆ/•#„ÙĂ /jšF$`<‹ -‹“=@àÉMŹ…&gÓ űÔVl› >Ö6űšaÇ'ŁŰVšf$=€ö6Càb UPwɂ ԁŸ ÔxrS…űë"ÏÙEcöeʀ/w1ÇĆTŁÛőéŠ^WÙ1xÉ)ŠĂ#Í,Űæ(ÎäӐ\1=9tœŽ„âŸțq5»œ|ćï(ÌK‚0íËą‹~  Uꅟï&W­dŒÀ˜;:`2>]WŁ9oü*>ì& endstream endobj 114 0 obj << /Length 1175 /Filter /FlateDecode >> stream xÚ­WKÛ6ŸûWAÊ…Íđ!RTZ €‡ M}Û䠕i[…$z%9é^òÛ;|H+i%{ äbńńÍǙáÌpŒƒc€ƒw+ìż+_€0†b!F„YčČ(IXÀą‘D” «ż@€„ù1èÇß-źOáp ™žÂ"‚b’ŒöœNûßv«·wœ JÁîCÄd 8CćÁn܇żŹ·ă0+ÒŠù„9>à—Ź?ïț–-a(‰€CȚ“ÏûæŹëö ‹\ż™ĂyÆóá‡}ÚŠA#”àŰĂb{RiÈzK1€í„'l8‰,˶§ÇsŃi”ńjU—RŐy¶ĄłSa8‡[žWßz‡ÜÓ)!țÓ9Nvƒ“]Ę„łœŃg"aȚRŽ‘ Ęąk–ˆ/(NŒ0E”ł~̒y&ń]ŚĘo<ćœű*șqûŁű(k‹ÏŸև_ŻÇÉÂ>[ŰÓû[ç/û•>ŸƒĆ˰ÙÜ”!?äYÚæșZÌâLŸ űą«¶NłöVČ2“ڐù‘û.úv„ŁË>áŰrźŒpŃČϙ;ïš~âŽ.ïgő»YŒßȚI:šÜ%qÔ18qÔ»“‚t8ԗö|i͘„ú`Ű'e_0D@qìäeyr‹Q$ą—7ŽŸÒž»Œd'·TŻyšÒ}úP(ÖqŸ?žŻëˆ†ÊáĘŰbĘf«ĘÆčΫÖ/uFXXs)ÚÆ!qÁÆ^Ÿ”’öZŚ™.ϧ\ŐiÍ˜((’íÀíÉɰ] Ó5K§5!$ÜÀ2Ąa™VOpiTm±±±Ë8œŰwąfZíÁR7?„휚 FXöz~đIXÍ( ÏŒ„gȚ#K•V r^€TyĆ<ÚïÁŸ Ž·öÀ’đ’…QžÉđă~yhŠ]0WbŸÍYeùĄ[48'ÌżŰ»ŹÜȘ*T©ȘîÄȘRnPäÍHéX’źîÌ„“ŁÏZm}hĂŰ~ UۓsxäÙE1ážsќ%ążèO”ÆŽŃ©iyœ&QžwÓ}&5ŠĐ™l }0Q~7}Đk{5‘폶,!ánĐP;ŒJOíÓ#ŻŽwm’ ęÛÈdŁÈL”˜ő©jć„mT"*És€Ž'œw>>XÂ@?üțô`Ę ‹¶€ÏJĄBˆŸBLÚ»Éáș ‘tX]>jŹČțÀ>šŒŒÏȖR$žp©śȘ€2M«œžÂˆš“Zflì0_°#/76ńgŸ*”ŐÉHĘ϶ÈțŸ›iá ŒKƀQ O ±H}ż~rJŚÂżòœÛ-Œq$§bòhÏœèv—é@ƇŸßÏK7LK}©|á5'AՅ€Hˆ“ż«ŐăEUٓ»Ë@‡Ï]Ś ƒüæjőïٔ(:ú[1žțŸkŰ„ŽiYŠFÎqn|GșDbš9ߝv gÛ?4_U~<™È4«?;•žn;ŽÆsț­Ÿ@ÁjŻÎŻ^éșŽ–{ć›ÇÚˆ1Čftgߌ‚…žÀ„B!•BÁ·cÒ2vÿÙsąÿ endstream endobj 118 0 obj << /Length 1059 /Filter /FlateDecode >> stream xÚĆWKoă6ŸûW9IÀšËśŁ@ tfŽëžÒ=(ŽŹxaI©$·Í„żœC‘’e=b ĐK8ŠfŸ™ù8NÊAŸW$ŹŹ(ŹQD9ÇZ$ˆĆ–ŽÍWíl-GLr̉DUŠv«_Àʰ1šÊP/ÿúyqèE‚:öÂÚÚkętŃÚŹ>ȚJŠK1…6;DĆJ €H)‹6è>ږES%Û&^KBąüRe•ÿN$ٖOeŐ|đ»vhüuó3àŻ)$/„ÇxI“*^ł!Àá„àń'kGkƱ„ÔĘó‡ŽòšćÎŻÛCČÏk/?w‹ò1꼅Ą[!L—’ :XŸ„çĆt łÌČđ!2'ú<Ù{úákŒæÄ%ŻEXÛßlŽvûdŽŽ{6ÁaœțÒ:ÄQ‡OpűÈnü›ÍÆ#&8bdG'ëŽìqۈŸ·áš ÎÛűépô‡x“ós8s‡ß‡œ)5,Žö&Üęž|êŻ)đK â’Âđæ æDì%ÂÚï;ÍÇ[ĂmFa«áBR MæÓ‹”ŃcșKŽŚ 81Qó”úí> stream xÚ”XKÛ6ŸïŻ‚$`ÍđMȘ@ ŽE7mZlOÙd[ö*”-Gìîżïđ%Ë2œv‹ôbRäpf8/~cœŹœŒżÁ~ürC`Ä IcHIHŠ2YloìÊs–P‰ˆPIS&«›?àBZ'Í:æŸ?»>"@™ aœ Eò+ĆĘșży{'H’Ł\R™ÜŻbű0žƒ`HÊ<č_&ӏäöS6că”d3bGdîç4‡#~ÎÂ8› ł,‘4›QóńáÇìÓęï tFÀBxÆt`LcŽrcD Łđs-é0§LȚ/ûöNÓŃM%Êu’Űßóț±u•H·eśX/͜§őÊpŸ˜I*€Ž¶öÜȘ)żôćnńâ(ÄpVЁČÉDZv}Ê«tŚ:iËÓŻŁi±éKżDçzÄ0çˆÒ<0ü0P€E,…B"av–ŽšÊfR„Ÿ+Ò.ąŁF˜&r.2ę­sZU^›mĘv›7/ÜÖSSìśec];ŁÌpTȚÞŚȘ†»Č\ÛKžÚ‘qÄ—)ÖëŠ\]łŁF ÒÈSÎOUśhfÊÒ,-ËUŃoșˆ@ËÔÀ§í·YDŁˁŠ+șȘíȘ…ăm]žß‹ré€Î3FҗˆŹœ!M‡ ٔ»5(z* ÒGë!B3ŠÉgJÉqșü 1VȚ‚és’MFhșî·ćźk#Â5Câ | MB‘–t0țnłä¶LqśŚ‡…4gG!Ÿ-ȘŚ3cÒv”)æ›ò{›ŹżÜG 'ƒQæ|R8EnoòÍ*çDÊP9Ż“sčt 0=gÔYăW ‡ ń€ȚŻà—X?SšvŰ€ ƒȘ§Ę‘EęX7;·šw]S,üŚKY4ˆŒæt4gŁ9śžKîQ-ç~ %űh ëűBé|è@nŒńa'|ŰäÜô›Fùđ>|rŽœŒ1>bü$ńc;\ĂÇŸò„Ïł:áĂ&vá'ț; ­3âRp\|°_#`çäŰOŻq; ¶0ì%ƒöGéÏÈ[· uҎïÜđÆć⛫óŐpœ6śˆ9@ŰžÈÊo r˜’‡7æQŁ€99<•ćŚČ©ș(Ɓ·&g1ŽĐ©ŐnY}­–}±qßîih*xőÛÚ1E•©Ÿ#pÇÂÌópÇüö±W Č#Űc^,ŁQáÍStMőì Očà“Śž­¶đąxƒyÚŐf4XźnK·TÌëŒ*ž §©y”ÖéŒïÜŠ-†Ì »~;/ÇŒaŚőŠßZ „«”™R{Ą^Ô¶xź¶ÊLC)đ5o±ákÇyk–ˆöÖïȘÚbQŰÚZ€ÆÙ„ôÖò%\ B@Œ°f‡ÏQȘ“™B`ŒG‚ęDQ1Śm„‹!ÿÙé@AŽL /`šûû 'Äșrńˆ3©‡dÈŃ––¶ł Ź”Ąž ÀË.§Eîé•fąL ĄńèOs7­sŻș"$šț.ry àng$śp€ä…ű?Ÿn’K„amF5✅2Ń·¶(f\äiĘTëjgąĐ|AšTŠ~۝•#‘ćvL™mûy»hȘ}č0tqĐR“Ä”TƇx°Ù26žŐN5«„ ȚŒ©ŃĆ«ç‹2„ÇâÎI Î@j—ݶÒÙł&SMi0ƒˆáî°xéf$'¶ByÍc”È4Ž|r5à\ŰRê$n ûò«áÂe±xtKŁ"êv¶ô<ÿB&‚ Ł[ȄžŠëÍ ]Œéèr™>PÊÜć`ÆĘ–+2ê\Ó+*ȚՍŁ[”ŽÚê^ŽőÎ6,Úwč@24Ś0ß7xǖIđš?Yìb…lÜđD+šN’z¶ęŠê |Æ+ŠͶ) €vaÊ6• ÍźtKOÇiĘo–îsSęí7Lù5”ćłÇæf±-śEöw2M=?xÖZ#ąù1(šD^U¶“‚mu2_·” _łÁ_í+6ÎTÛŁÆJrXËż]_5úȘëÄ\n«ˆ‚»P~â&™tUÄśíFÏaâóíÖbSTÛĐoč:ț`€'_ëČ,S’…?ž Šá°Áì_¶ZĄO'ŚàÄ3x‘óڇyä9/ŸX=û@7íĂ endstream endobj 126 0 obj << /Length 626 /Filter /FlateDecode >> stream xÚíVMo1œïŻđĄ‡FjÜÛăH ŃJšȘJOĄ‡(€%RҔ4Bâß3»ëuœfÛìBA qČÇ»óü<~ûfAÜ çÄńk<‚@ZKgœ@ R‘ÓeQ=!hAFË`Ćz&nŠœÂIÒ{±ŸițńüÉő|âMđń&Ú t:nÓp;*NÏEàeĆèF`‰Łœ°€„”AŒ>‹ńńXŸ\†Žq04ćšC€r”ÏË5N .Ä@YŚŁśŒÓùQD3{h&&/QC €UȘ űÔ@;p6ÂQ‚ScżæBĂT•ćJs\+7»Šb|ùŠeÒáö tĂÇHNÄ9Ž <߀­à”‘Ü.æt1™/%W©$_”6\ű sŰ:ƒhUæeꖗöșïĄU:tkÊó 6—Y$ U-HpŸ/!ó+„(—VE(HăTœŁ0}ĄìKđ©€U…­!]I҉Ś.4:'‰Ű”$ÒŸÂl감K‡żȚ<ÂCJڞ€M:ŠKŠîŸbú§PśÛ~·]vqIYè€a5©Ê„Q6ΑïË6čŠ]ëÔŁ‡ûĆ|Ózyuq‘֍$öújęu}łołő|óęÜߜÄĆlșZÔŃ«z@~ېŽ–“ùĘÓ.”úČZoąhVw›ődșّPš<ĐŽ…™œŚœ“Ł·8ŰóȘĂŸönÿæ^Hÿ\/l70h țP/ŽíösöŹ^ä<đn›`ÙȚ }qeƒ]SeŹL”^?lȘżÁÙț‡7ăé™WùÏ8$!x1ä0R­qJy7*~p7Ž endstream endobj 132 0 obj << /Length 1184 /Filter /FlateDecode >> stream xÚ­WMoă6œçWđ(1Cż lm‘,PșÉ-ÍA±eG­m„’Òìțû?€ÈČœV{°5ą†o†œá{#kÂȧ –źÿ^pŒ2 ‚m‰2†‚%‹íE§Î buBș «‹?qΡ֒zMzûó§“ăĂ cđQ !95ÜMŒÒețËĘĆՍâÄQ§A“»áGXą• Z;r·$śÙ=ż|˜Íc,ăłčLWźđjš32Ù šdÉł‡»ß0Ȝăò•J@po!„NâBL…èȐòœȘ‡€·y„>€€śB˜Ü ȑT€ÂàŐÛ+æÁÎ6ÇՍ…Agh_iŒošf©/nÊ]ŸÙ|qÎłËÙÏÚ§"Ż3 YQźŸÚ&ló¶.żD{QŐőLeEó\í–ćnæV#ŒeȚæŃ*wńZ=ț],ZŸțšoÁXȘŒÂÄCfÏ«èł·Ôjè\Ê&ìÂőʑó+€ŁZÈę ÌPüǝàQ”îOŒsț +išÒ&.śçÙܗÿ5–ä/ŠŰó ÿyè+Ô1ƒĆÔI',Ș§ȘnăŹE”kë|‘îŸyMùÀ†-¶ àó}ŰșG)ĆÏÄő ÍSć\ĆqNA;ŚÙ\)5aâĂ$tÇo\ÏH':fL§8G+5ÀŐ}<ž“§sQšŁ-ïq5Oă@A(ÛÙ\99 Òz\‹•éqêóeÊ©éŹq•đXƒt92Ș­îm‡9ÊÒț:Ì„ë}ŽXżŒsčßÊđЌêH3êa3‚:Ł[ßrçä9‡P°ŽIJËӛŸlAmTÓùàQVü Șÿ”Ú>–»b֐œ–íSŽ"WK—ćőŒC¶~Ù»cüì™Ušž|›ŒiÊUčÈÛČÚù‚CöÁ_xvóńśÛëc썎šï.‡ńŃÈ«˜ìż ;1„mŃ>UË&Ő]ᛌc‘']yLŠó҄%Ěț%.ÉÖöù„Mź›ȘIÊVûE4?–`Šj3’Î}œšŒ‚tj2-Ìy1ÁłcjOLòőș.Öy[D9čLbko>ÄK(j›p{uDŒ&Í>%VÇ$)ÆMzłŐ9} UŽ{­T)l|‘ÒHfááÿá*9ïÏ{łÙt@1ô–ô2)G€ –šOàš F*·igš–<ń=`Û9=ÓÆK֔[Ńgè,·=čƒîß_= ć7ę=ÛűæR{b šŠ€‡ÂR©[đˆ)]žűĘbˆyödíƒ4ŒJnwàŐ۟ÙûF–űłŁÂYò\·űÓèąÈ†ÜâùʇĐ\#„Ă<í· űŒEë4 5ÂśA`vžÌȚ»=±r€ž4čAH—Ț^ŻżäÛç 2Ż(ì8ë?ĂńŐ­ÚßFóó€!û ć:ńžőm‹tŸÙìÊöÀÈ}á))G`Œff‘à„Đț…č)—EĘȃJùń† :őŸzüłm”,6ĘÓzäߔۗMÔÈœXÜÒaéæżčÄUqŰsŽûyϟ endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 808 /Length 1827 /Filter /FlateDecode >> stream xÚÍZÛnI}ŸŻèÇć„ĘŐ]}C@B„•vòœ”pă^Q`RĂBÂü€G›+xŒNá6aËt”š”W˜€2gćČ&&Őê‘ƒâšŹĂȚ*Ë!(ɕĆđĐcšÎD(áœ`ÆEš‘6FRăSÂŒ Sć€&È Đ"Wí,`€…^!)ç .ƒˆpĆO°,ă9ü]P°È%y|¶˜òrà*z˜h’Šgè™Źb y€ČƒŃb"'xžăc†©x™€Ï–•˜`09Á%džJ0‘ Ëțìæ©;©—ĘŐžwo§{gùĄsжj]€ÁőôŽK}RN:+śyŹéÜöSŰmśÙĘ ń_;“Ûé? ąohÙÍ.|ĂäÎïGzŁFg“Ć…(|rRȚțę„VŁŚ—ŸêjtÚÌől1—ŠÀjôŠž7˛q=—úĘ>yU_M.Ÿ4_Ő; J Čً n0RĄ"”°ÇłY9)/ȘȚtíëjtŸü°hï_NfŸ«Ń“ææȘŸi›‹ŃóыŃé;joD“ńŻA$”ü€ČŸ%Òž†vV—€{Ź6êùÇŠY`șú–·ŠŹčă·ßÿ@”°:©ç˜!šÙr:œŰ u-4„š u¶Ë ŁÔ•`Ń>è„ș]„”QÔÉ, §N諊°ž4‡ę¶YŽwYú<--Ù^蜮ôšŚ:ąèaÏ@»vÙÎĐEĄ|Ż8 ‰šà«ktè…VŚY:±Ûki>˜ș‡Ź»Aoč…YFŻošńy êOÏÔèmęu±IʍđŽ|` đJuŽG …èŽC;ŽîP‡(ĘźŚVșH6:dȚ ęJv5dńŃŻ#Î=CÒÌëÌÒïGțw«őŚËë/Óú¶Už#Œ7ĆńۇȚÆŁËz“Z» ”u4eXtŚÚ™\„E‹ŻĂ–p܆”^rŰ~ÓlV6fúæ’šÙ)ëŃŽ+j ”à6%ЁrÜb‘œö°;x§Y\$ŒÄmSż#>°$Áłœe“6‰Ê°”ŽśEPlÚ¶’mĄ©óf>żƒz©vNۇ†|6E»ÉŠhc“_éÌęH…Mæ:©|›Ś:RYœăö‘j>ŽÆ€ăéԆȕіVm°|pCútÊFç5,Y-_ÿS•úbŽZ9û6„ećl@!ÊmŸÈÁîçZÄT^‰Ó¶’é Òp–„Łő¶ ëYÇR,΁Ëô”èY,č]yoœTïÊ{{Êv/ŚuÙńÀü–ù-W~»sD._ăŒm…hÎa9;ˆőEX —Ê Æiò±k°ebe7àLĄXæáŠüÛÌé±E~>ˆśáȚ$…­„DŽA !o)/6°ûżŚl{dÒ-Ìۆ6òDŰšÌe`OHŃțèß1Ÿ—Èo›‹M/6.öś$à KCĂÂÁ†ĆŸÇ0;Űkɏoféű†œJ‘ C“ù`“ęqL>Ô7\?ś}ëw·« Û/őŽúÒŹę2„€Ițe éŒ Ć~ÙËÈgüĘęèùž™Ng“ÏҋÒĂW§ŻNŚ#[g°eOw*yÔul穀đÁ•ïž7°«lOiŁüƃ Ò endstream endobj 141 0 obj << /Length 2169 /Filter /FlateDecode >> stream xÚÍYĘsÛ6ś_ÁGêÎBńę‘čÜL.sÉLŠé]ś^œ<Đm1E—€jûżï.R$MUNêÎőÁXíûۅir“Đäíăż.Ο{cyâˆÓ\'Ś ‚m­ áB%ëä2­źKîXșÚfEلùuœPițË>ß­ÂÊ:kł0+vaŒŸïłúK”à&ę5|żȚdĆûjŚæq5«·U˜~€ŠŸęț5Œ,JFșûöĆâÓĆ»ïȚ8;Ԙ:ąlČäŒ8f‚Âz:C”ažNMuČ*ˆŠĆRđŽ €Œ àD„e,+«“íçŽJ$ ž?zŠïgDŻŃH€'yœŁŰ@Ôyd4”$ 7Ș“”Í0Q yO0ÏAńžàjÖfK$šI>RAgäčÓŹ#úoU4M”ëžń!7! ÓæÀNљłC»dGs7ëAAĘäĐŽ™?E$ìôkNdą<'Ö Yù@œčdTf%L4‘Ô~‹`ń{‚?Ïć(ìț:Áđ6+Ël>áV̄‚> ßl•|d_k-Ę@6Ăfi$JÀYIâ€)ôÈIܘ?ÙI#fp§ú«ó„IŐ,?О‹Ó¶ B„Ûúÿ ˆă¶òÎX6oŹ#œ?¶uÄoÉč&–FHq]Ős˜‚ÒŸlq$–Źêăńć1oôZ±hśŁNĆùŒ\îÀYś“ÏGä«OÊe#评LJ,F]T„ëĘ:LîŠvg ÉÓŒžÙŽÍœ› lޱ'8; ș#”-CÄmŠrżÍÚ|ʗ.­Ê%–Tv€ę:,ùÚ`$Y Ż6#2’{ üÏ ÿ%ő$±MähîNƒ ”ĄÚŸ“ÖÇșK.žĂGì NRßæ€GĐŻgĄu–űáHLÍłèh&”.qŒ…Ÿg Prîtní}E»ÌJéŒCÀł”ÍÉÈĐ.Ű#@òŒĄú—őÇqđ"Hù jECć8Q}hëbŐn±…Ò2mnóìK±»žĄi»)š°F•îȘ6,dá{SäuV/MW›b•mĂfY­ó8mŠĘ*Ží&k5$zH„~ńŚ€ÀŹ.Č«mȚÌ›òòÁĆs…ÙČŁY20LƞÁä1;NĄ+°“k:©zĐÌ|“‰ ÓÛŹÎ¶[o—CÀœ:ÌÛMæÛI‘îòÀM€ś~ÈŒƒˆ`5Pƒ :Ö©àÀ?U™‡ß–ĆźŠ Ël·_†Sł±cÓ èE’ÙÈ|ŚŐî<âÔ~·ÂÏ`d­ƒeŠÖăEœȘÊÛp|«7hÈÚÇä*‹ęr‡ŠÓŽ»ƒGÿĂf>bű1©ájÚ±)oŠșiŁêŐ. i:vùăb ïÓ»N~›ß«êŠÎÀšUd)Óu^úxïxPçìßgżœá-ą ë$Ü- ÙwUžù âœH j“Z'už\Ÿę?k“ú&éç?œ=ș>Śpm"DHF sO3z8.C>lĐJśțs±T”ąŐaòeëDUtĂÂÖ/ć·ű]ïwĆ5ND\§q„t„nŒ_y¶Ú„ÙË0š°‰'MÇGüśĆÒ<—€.۝ôÏ4š‰3Ű$jŃ=Ń,9ÜíU”[ƒHIcü © îy3s,#òĐžș@‚šC}ȚV˜Üàț  Ùž<~ÌÂŒZG€Yz±‰ä_ Ąšô!^'Č|珟Ž0…)É',Ą,ŸY5EƒwE(çßÄp5äLűa”Ü?l…TŻ'&ż/pc‚MvćűČŚê`,ĘfËčPšł2‡Ô…Yxڎ',ű  kkPŒ.źöQŰôú©#ÈàZßD_GžÄâÎ<û ž‹ą»vȚ‘Œ1ld$$û;H?·è͐șTšZ}àő—œû( 3ŽÇÁŠń ïé`s‡>š˜ËțŒ“Ÿ žź»X›©ĄąÛ»ąSČ(Ë|]À cèàÂC‘oŚ8e›Ê Ní>ÌáxC  ͱ{ĄșjzĂÏčyq<3ăQr5NÌ LąöùóXF——Ÿ&ćt^JòQ^îÏÁ'ÆÁăśźŽïíĂ(v©ó!‡ćÉYXûŒz[Cî>Âû ˆò:ʘŁ{1LO&țˆwżf]&?Š(ătΞú¶*äxŚŐžú·ˆȚ’Sœœjٟżìrˆ/Xd;ЉAűšĆÿ~è,TްÁœæb0—ƒčŠiĄă=Đ풝‚\†vł8Ò“ăŒ—ŒçĂÿŃózväûiÀ<șĘÒP"!ÿrÁ|“WïòMÖ° ©úΓ–đ§‰ÛčM>À5łĐ'耐ËßcĄbŽ<Îđèż‰h‡”âŚ2ó0i!ïđ„Ăq;Ùÿ`i"„íò±4PûRŽÀ‹«ea7òûŹŒĆfÊo…,<ÍIJqè!O ŸäöHŽoțš B2JÄôÿXˆfțléè9­ïL&OŁNëì8—Źóÿg‚­ÛÛ*Ë!\í[ÿuçq€ ûÆżÛÁŹ,‹1±„€Iì`Œ‰ ‰©Ÿ úŐźa ћ\zš7ŰQđôfŸG9yÆ,49}”GúźÛ?Ê5…L§'żô-=‰^’űŽĐÁŃMpGœ…țù)żÎk@Đ7śŽ”À ĄÿôŠàÙ©ĄIXĂX™țŸęs-nż­öÛŒő;"zžú.î~ż‡‰•:}íăo]\[Ÿ"q‹2?i†}pż"7ŠŠđMóÌ'sDèțùî‡ȘĘű:"é€/~UÿĐȘ›ŸZ”{|XۆÏwŐŸȚ…Šzză˜ŸĘĆn”Q^x/€ûÈčÖ> stream xڍSËNÜ0ĘóY:1Ÿ~›2-eêL[U„‹h&€KW™ŒߛŰ ©›Ü‡ŻźÏ9aÙmÆČÙ{'/śÎ,Ïušëly“Ôh›ie(*[źłŸä[ÜšB 2 Ûșêc^¶ë˜\Đâêߥ+òĄÇJGŸÙÖeïCOĂMŒ«Đü Ûʎ;_ue—#«;ż*ëŰmÂșȘ71śmțky>ą…Ź N%„_èprpæìä-$Ÿsœž ]—ÜXrÔT^ĐŠjŐoËÎś ćyŰv-ăș)5’QážîăŒüP2žæ\Kà©Çł# W„#j-št ÜÌüĆ@r”âçz{۔íțPYò1uwńȘlW]n$\’8™„‰ïčRÄŚu3HđšÎ UÆì^r6›ž#ó‘ìC\b 9C-, M<:-û2f}Hjć‹Q|‹ĄôT“ êœyƒGΚŽbw9"Fțvˆ«yÌ`Çï%¶8yˆĆÜqșût&cšÖ~đÖùÀÓÒO‹ăËŰtÆ€è,ÒŁ/Ä{ò'eRGGˆ§žŽk OŠyŠ \Ś­żè—lb)-ìÛÛX=űчʓùIÌFčfäűëlńŠbÆ śÜK3KślæQź •ÂN…űo‡ Œ‹WŚL1Ž8tzđ9pùìs˜™YE­ĂŸS:NAÉž ädèĂrï/Ą[o endstream endobj 162 0 obj << /Length1 1478 /Length2 13686 /Length3 0 /Length 14510 /Filter /FlateDecode >> stream xÚ„zst%oșnlŁădǶmÛvvlÛîŰî8uܱmÛIÇîŰ·3wæÌœ3ÿÜsW­UUÏśœïóê©Z»ÖÚäÄJȘôÂf&@ {Wzf&€Žœ©ƒœ‹ƒ­±«±·œˆƒ­àÏ3;9蚕«-đ?šÀ‘k]Źìyți,ê 4vęł"fìúÇGÍ 7ö0ł˜9yXŰx˜č,LÌÜÿ0tpæÈ[™ZmȘ–ÆÎŽ@8rQG/g+ KWÀßl€f/€Š±Ł%@ènŽžčXÙ[,­\öW[€±œàŻr$œ-€ ÿÎòÛ?Ą™8ț•‰ `eXŰz9ZțĄpÿ°8˜ÌÿÌ­lÿ= 3`lfö'ĄżgđW<óżâę-șńŸĘÿ EeJęW„ŹôôÎÿÆóï3T€¶@c—żXí̀ÎWK @ŰŃŰôυ`ke Žwù« €$ĐèüvüłÔż‚p2qČ2š,]]yÍÿ‘ƒ‹9ƒ=Е‘úO·ĆíÍDìì€öź.pÌL3+SW€ ĐÂÊŽń/*5/G €`4ÿ;–7vu¶òè21011˜ț:țy§ÿg(fö¶^ÿeź`l0ÊÉÊikjÓț')ęÓRDÄÁàCÏÌ gæf°3sž8˜~ÿΩdlősbú/Wi{sśßS7ssüGúîW €êo €ü;“‚ƒëŸšțŚJúÿQÏÿ›bô˜Ű™Lÿœ˜ÿE7ÿ+­üśHžÙÚțmBTÿ2ÀŸÙțšÍÿ°6¶łČőúöÌÿ»„&đïJÿO,ÒźÆÒ¶·°ęç ­\$Ź<fJVźŠ–sc[àߌŐÿȘÄöO'•\Źțzuü‘;ÓÛSłŽ2”±șžŰžÿ¶őWŻÿ=€űŸdÍțj2 ;ǟÖ:{Á1ęŃ4 ;;À‡`ő‡Éôü›‘ÁȚÁő ÀŃÍŐïÏŽœáț’7'€ŃűŻ„ż#nŁé?óé3ÿČ-ÿČ­țțń”û/ÈüÇŚá_ €Ńń_à*çżÁ«ÆÔÍÙùÏĂú7±ÿ)őűoȘ=Šp«KŠŒĄÖőĄO”ÂxôSÌæbčV•"ă™ê8—éÓ'//œČêÇFMæ<ü*1󞊣fȚ Ít75 Ìi2L.Ît?ż•p" źNvŁh˜ŒGö6t—ăN5ùł*‡È‹»[Œ™SŽ=ü1nMuŸ'š‚J‡b=kïQr»îÁđ]:ńž(ÚŹ=ßYgż :Ú3ë©‘QlÖZ„Ż„Tc3ÌSŽŚòqś‘9ő'„5[ąaž+"!ÁS(¶-šnòą\MTTéVŒÓæóœËÀˆ{ű 2âk‘­ÍȚœ »àæfi·ïțDÄś+۟&Äl±z.\M€è©çCW_ȍI!)'Ço9‰Ź2(膧KÌÊy·èVèȚû8\ D“șʄ8žÈs‘ hԇƒ‘¶ÍÀ=f iPOxœIȚűÛhßIŽŁŠ‘đ“mhÓqđöæ=BÎt„è$ِő«‹ăÛà€Ę„òí‹Nô$sÄiiÙM0Ą#Y òv9€y|Ü"2(Ę~z0vïƒÒêŽ9ÂŹŚÓŠźś†˜ĘŠÁ~ĐăA=“b/$HŽwđüEÏDË_S”@}OŠ…0”Œ'Ì.ôÆl@ß^ȘT bŹ;^Œ~ó Æ ôžÜ.|7·Œ7śÄ«@~ÒśGzĘXYX_UF$ăÖ'Ó2±ĂŠEmûšeé+::|ž‰Ì‹ùÄCČ ZÀ„ȘŒ7朜àˆe2Œ˜Ž2őbęüȘ#ćę€(;ő1ŃđA^c” ŒÌɔŽĐ{fˆù‹Űi䊻‰^nΝGDx­œĄŹNÇ[©őœL!)ʇÙă6e QŚqU…?ègcŒ6žT`„â; Á*”‹čąÂDDĂĂȘćRăéU%í ó§Pu™ŐŠË]—ÄÄo=űhó˜šò#Vż$ ̧$țyi)šFF~6"%5R·æâPÆê- єs!ŻSv€Őž‹RÏtșŒzV|ìÈp|/öx„<:XÚÇiÓaá°D`tśöj–)3@pĂqâ‘]‘GĆÿ=$_łąˆ’~WŁIÏË€TQ.SĐv»ÎŠăt  Đ=><=ß *ÿ=»4Ž5uù+†^ëŽ/R€òâ*\±ZïInаłHšp.Û ű䏎3‘w €±Æ§ăë—Äț)XÙ_S1^ó”?ö+Ëj FzźœŸ# rśĆsšvu‡rÁšĂśŻ‚«ulG­ Òg  ^š{TK Ć35ŠÂhcP8-“—#íuÙ·+"Œ‰Đż â«›gĐô\( ™öš ü€âB˜â ‘ČĂbó–Óê=š$棇Ț†Ć>„Äqo75ÖvŸ\G~c“<ƒțJD‚,+á ŹÄ*Śûˆ\{”7ó3ô_Sű•jađhH“î˜ù1€ë$m©Țđđ ŻxxS&Őš©ąkóńŻ)4XÙéLLȚCžę‡—ĐQÜÛÈO" ÔČn02ú`PĄžÇp!ż“'bmXß:‹hÚ*ditÿž?ÂÚ.3ôj.[ĐcÒW0`ÉKdS h6ÄźŁâæê…ȘAk/ Œ<$‚ŰùÖ^#,á‚ùCïą1S[ûFoČéâáSÎŃÏÿ…!¶`­,ˆÙš¶Üâ™őlĄJ!îŰś˜óA蘻ÙđD+=[Aš€žȚhP‡č‡{†Êz 1ÜC€ŒàÀ‹ŚČ$ˆy­àR Đj§Ät‘FàòɒÈäSŁśžłMí$č—8y~Tßž+a"“ba„eüS@[± Ä*W.· kö šĆŒ-tÆę@ĐȚ:)‚Łeâ}ŽŽHd!“s«lA5Of(3ł ÀçȚ! ûńă%ÀˆÍ1^ $fG0œ¶ŸIĂ6a6Ąj­ŠI?ő#ÿTîz35ŁÜÆ5Aš$ì§ÄÆŐOj”P¶Pąî3w†ô€ÀÖ‘•ÒŽČ V’EĐîrđ àܟ&ƒEd6#~™dÚłs}M~Vy-t¶j‚·żX”Á‡uh 9[ߚ›żźÂhâ‰zTKZŸžmOÛH_gp·ČŚĘńŒShW‘öNQë•î“·ìäè~$›KȘéśòZńœĄ–Ï›Ę=¶Èlä#] ßt—VőńéČúÉC™DFjfӃËy1:‘K Ûk\m3&±œ8êŽMƘÉnPÙźš çÇ~ÊKU'˜Ń$Íòü,Ț•yh(”("[êL¶\—œ^éœ ŁđVÔÔî!|l˜çM›“Ą3\TëoœeĆÄQҜ»^[VêÜÂB@ZÄđ°q'»1ÖP‰ŸÎ|Ê\ÁV„!Û"!#Ž{QŽ|ŰU—e:ÙOxR 6Òí"èê͜ۯ”ÇțÏsüĘbő(1»ă/x!AVÚȚÙ$: ‘èD‰ȘÄ&鱳-ìĄÈ§4QèŹČŹ”íŒnU·Ì°O?Œ·€ŐfêvéÓcƕzòⱎFۜ ÂȘ=&•MekŸ‰Ì7| kjKçŽ~`ÙÚęȚW—>éÈR‚ł:Ӷކ¶«dDĄ+ę)êlÚŠ Ô§g§|aß1‹§d96ÉÇèh2<GçOŽ”IEśèŸœîMzĐ ț؂ÌI!YòÌœźŠáxk›ßČŸœę3Ń%úÛűĂĆt-cȚz7_Q+”°,őE“ Èôԓ]ăuÿ͇h+ŒTIőDê–4ÁŰ]3ŃŚ_ÔMÚäì'šgđOł‘âQ‚Ú$(œŽč 2s`áïߏ„0O“ûÛȘ @u–Ț[î'HXę§Ö(6ŸG\Ê1Ô©ÁÜáń`聒'Ό·9Ô§ÁÊ *`*ßÁyĘ ÛĂ0ElYÆMPZFc!‘]¶ÈÍn1‰ę°Ê.eÙjÉê=â(ŐCiĘ3”æGWéB€Ì€Ê/głJÌoF‚ßöHüĐŹł Țé.ȘŒtŚ»h‘Iź·âžZ)7lŐÎo őÈćÛÔïa=cKûZ2r·8đÌü] EƒËçLE7#ßߎBƒçïçh¶F€7èWÁ F0prfž#ò9pÆp…Ž=Źn?æçW>Œ]u,U‰^5¶ő‹LÉjxsòŁYńČ 1~ „ôŸuMjČᩌVÍi9đ;‰Ńw1‰ûwÉ|Ö{XàÇ3aÆ(‰űêԏE Ë柆ąûZ’É0Ž·2Íć]+'«È)„Uäo>ôOćhśĘÄßÒĐN::˅°'ßÂÙÁv±g0Ă8…țÂ?HxčžàÌé?ü„ą4+äOÏÀęę(}#ò+°"…W#àzhù•Ą†Üöôˆâ`noȚÍŻ;ÿúužàÇN‰Í1ŒŸûŹAŁ©č= ېD”Țë€j‘UE Ł$țŹ9%™Ó |fí„AydaŠ\ÀŸjSԃ@n\èi" 6•Ìç!‚7íGp‘@§ šE·ÇŚèĂ,ŁŒ¶Ë0~镂%‹î̜|ò“w{ŁŸ Ïühz=~”Ś~0á’e< üM‡1-S琄S”Îv;'ŰÂĆZ‚nßȘˆÛĘ2yZÎîÈ<ŒŐVÜ,úŰ\–đ> Èւ„JöĂA}ötʜŹ7o1Ò†–ŐŰr„łq“ĄMAœęŒÄ~ęĆšFtxȚőĆJç…zSI *hĘá~|&˞BïFȘ$5ršÔïśOćț2/Lș5§JÊHćőá‹â€°b]Ù_”:wŁN[€tŠ\ŠLœáażöçćP-A :HÎ|= Ț‘ÜŠ€tŹÁi†Ąéc›A8Ăm•™ę"FÒûÚÊDà$l,aÚWìKŰۙí(òyl,‚!ŒS†‹ž˜»Ża'ƒ S"™bŒăćà8Í,Vú€ńVĆSVX°.RžŒ J™›€N͔aŹKÆ2ÆęŽï‰Ężq5ʚ™U·ĂT±‰ûäwÀŻȘhÎâÌæOS_HÎ`F3k.ÌG”ì)KYg)&Mß/„öPöŒ{íoòICêÜç’„Č[}ì~c$U·|eśê‡>k“‹Ç­ OQëwv@Džl޶Ÿ§íJ4nŠűRŠZŚí–sïPÈr”/ ˜€ź.Yú·eôźßЛ <űsŰŽźŸ}Q“Òm$Ó+9æZ°(Že(ь–Ż*ÇKH-7 ép7çjàŒh?`\}3ÊősX«ČZpÙÆyĄqęGźòĆđDàJ Ś6— P&ïÇ$zˆ>Tș3GûA›'ŻÄqeéŚ†Ê”ß%ˆnđ*>#ì<–ż^c„((îM±ÊĐ#ŽBéš„3ćk7‚áïé0‚7ĘÜł 6eVq” Jžrœžis§‚‡ țVqžû~«ő §pÇ}8_4ž•Ÿ#¶)aŽPÜŹÔž•êtőÌiœÏû^ôWĂżȚŁŹmž{q[†/V_Íąê5çće:Ą€~FWÀ.îÈÆžyəÀ“2œë¶Üwh—"›Ž{yZ$5iâĄÏĆiéŽLż!æ[5éE{ÎÁ!&ÌŁRű4đ‹bsHO•€Àâ»¶%Ć?.€ŠTˆ—E蟌ò^} ›Ä=Œ#€d—폄†Â„¶ŠäJ‹űÆ?NìíÿÀ€gWi :š_eă±êtń1…=àŒČh^™†-Ç.]Pn'Šö»qï]òÓîÓMŹYoFmí„EvÌyB””-čÛv០QĘ{ «/qPæˆ)Ź“CՆÀ„Ì&RRĂk óÙÜłPíiætżĄv&}ă^Eźë'”ȘnXÆæëMâ€ń\ą»s2ž?hœt@ölac}őÍ'QvŁ  9"Îț`CƒŸĄO‹2/RÔJ!Bûł™$0ÍOăߍńx©"š5p\Kc KVŸžĘÓ\wo0àĘÆîő_jŐąïIÔ2T3?Ńëś¶tń#_¶IÒMŒnZš Îă˜ÄđÿŽJ+ÿ ±ś>ą*šËŽdyăÒÚlÒ Wž3óŠ0žÜ’ °ŽĐi8/sžCE žÌ~«ŰÁéÁ»y8‘ÿȚÜđéĐÍIÌȚⶍźèÒ;…ùąa(Ź^ÌhNQz4="ęúَe‘ŐĂVżIÏáoyE'šźĂ›qÁp ‹|+Š‹Šœû”‡—Î „J^ÖdÓ±ą‘Y+ ‘)°žođŸ{5›>‰Ôń}Ê?żÈ†Rț^JYös))Ö4yEYꄚƛ~‘ÆöïŒëœî<‰ńCiAÇ Ô“Š O`NœKoO7WŚ€źŠÁ4NW5q?ŽȚ<9œž‡Wśă٧ì1òÍù^őïL ô› ÁIŠśŽK €ŻŒŃn‘äŠűĂQ~A+ëx†%’ôŰ­âÁZ\)i¶kY•é6z ‰ks*öăhòŠSXl€:&vȘܱôÙÇžrUŻJéçw…„5^Ć„ê„æđQ­)Óćę7`Șk™áj±›SšlUśíł1†çï\5 °!Žšł=;fÍËč©…‹ÎB.ü»îȚì߃3ùÌp/?€œ ž^œqŻQĆłžXÜîl°RÒĐZ’]Ë1ăb&©6NêE‡] :óZ2Ôw‹ ś`źpÒ_šʿ߇îgpžršï‡U6…î†AFĄ„Š5^"Ëńó4OÄO/ăö•K7ăY=üè:ąá/bCËÈ%ÒGĄîŠQ`TpÙźúÇ7țF!ʉ]Ž&ç5„„‹,ˆ+»ŠRłpëLŠv‰€„àuh<"«„žt綂Ż\qĐĆ ­Šę;ŻÄvê+륯8„čÈjĘàs;ې*ę ÉDìŠJb’đcBŸ$żRa2al Śïmᙎ€“AP`Đ&\ÏbT"w-wcÂSò‰ș3çTÓÒ\¶Ÿ*§>,±€MB…;"‘;PŸ©;űœò#t ˃męڅZ†țFZ`ó@Êv_N-*Ę(Ą§lœ6­˜€W€é äŚòÎęÀŸż&œÉ6ƒëDá\Žˆă‘Ü~gŃŸéœ'DÇW^ôÂ.&Ń«8îż­yì±XšŸžìe€ŽW^)Śìž)’=ŒúJ âČáȚ".Ó,č’^Đ>đÀâ­әćZž©Žâæ<*Òàüž\û2>g [ęÄï ŰBS·|ĞA!NZѝƒŸ©ž#ÊLé"OOqđ"jęE„U%€oÖ0ĆpŸș§ŚńU_XœŽÍč PDÒ0qwÛϟ†l cïÄLőۆTw“'r{}ű|ÍKPŐûçČlp­Ëê–ău~-›TŻZ0”HĄPoZVĄœWÆâf*ٶUaƁęšrïWőzY—%Ü}À4.ǝ„]àVW_?„Šh)7pGN”ÿ MæRÂN6€ú 8$Ș`›ÖêJ :dŠ Ù\hĘ;/‰ŹAÀŒžômHł<+|k‹ómm‡ŒCCÂoŐ$Œ1ïw?­*ùW›»âïfŸ,B…aÖW,c€Ż=UZ8șmTuè)oW!płŸö_w1%€jęÍ`ŠB 4źfj„I š.á;œh=$ȚBƒ&Ÿm}0í•æ]k»Éćò!Ž©Žs‰ă â"š»G„?—ĂókOśĘpùŠ ûT9îëTW[‚ážĂb&EÉ\üWSV"^…O&ƒ9zTOڋ_šLșlcYP@à/cęXu„\ÛąŹzT߉(tź(h‹«4?'Öuê±?Æf%ăȞŒ§nS& ĐÎ\EJy3“ákâƒcáÚ$Fvç!/cCĂܰJî I*_l§j±ŁŃao5§ŽgČ 8ZĘMŰÌjŽđtŰsd`©żÄ=y‰c݉èŹHp1„âu§æ»Q°±$ízfT‡ȚCôîWśëXj{°Ž@șÏčö:wéFcćc–óYöĂ-Òjr1ŠȘ‚«ęhk:°æ—TchI—iuŰ o±Ÿm«ŃŒ€n!ÍŃÁfAŃ(ČP갘Ÿnß/îÉ âï3áDŃ%ç_;œČ"­n&MPé ·€­ąWMQ”ü5§9Ž•Ą‚Lù QCIvx=ÂŐŐ :ÚYV68nj«Śì< Й"YWČ?žR4–ȘđÁûx—w©âśÍUE3cùÙ°‰őț‘ÏŻ€V'. âĂa^Ă&%'‚ŐŽXrk2Í_ÌŻì&*V,-YöÈRbź>..òĄÛòçPL©XA:ĆnB-äƒ[ś™OàDEaŃ{rŐæzL\ĂqP5äfïŁŚ•üšÁe9/‚Ò° E_ï8ąQ°-J^ʇ;łf$ 2s.Œb7̖UÌ1ÓP!#@«Š*Č.puÆ]Ű;}±ˆáź….Á”ò–æ@ÂÂ|_ș–ˆ‘ł˜°â?WąÊRžú¶ëw‚ùíNŸÉ»ô —'ÏÇ:ŽéŽ!tYžjĆŸ;]t^‰űęá»Ô§S•4ûQ.‹P¶iTĄ@ŃRçH—À„ƒőô€N ÇŠyO€É/ìû߃~•XŸ¶U dŽ/ł]őŽÊÉh!*żÊGœx9ZVÆ 'Cêám@dùßTBŒìD(±ìjW6ę‡/Ko’";Hđ ēŽC”ÖP$ Nè#ȚL̓Ę[Á„&tôeQűĘ`œ„•Ű;$ÊÛ'Øa?D°n2uŠŁÁ Lb>ÚŐƒàźÈWú lՏ=ÿ[„ÚâäHamT Ù„IҜŠl* ÛÁ/U+°Gš1›!^Čqˆ6Wƒ›ú W›Ö]AKg >T›Ôł>—kGU7”~^|”ᖧ±țžk`Œ±P+dsJU‚à6ó!…_Uń3^FȓĂ/ŹDJ#żâńłígâÆ•ÿä”RbŠhŸ%Gș‘@TÌ^ïy WČÉ”6iwÏ\~gï{ 1qfRz Ă$čǎƒ-ßmé!}Üó,OíMTÛ MűUțqN}ŸpæÍ‚/5æÛs aìł&”țÖòö“}àd€uéĄœêmÔH/Â„‹Ű„șłQ$UțŒR‹Ü>Ü:ÄȚ óä‡ìEù60=‘sÏÂ".‹Ń«gÀŽ­…æ—”ŒÌÁ 'ŃȘïÍœß)e_"ù]§QęqÀ!TÖezÆŐ±ŰŽđž”CçvÈl•—ÌżCƖŃökòC ùU-ƒy›ő@ƒáéiJóBĆĐŒÁű'yŻèÖzÚÏö—™ó‹Nßkł›țą‚ËWÉ0Żçgò<ù @Æ»~Ú> :3•9hetà§ À^ęĐ~úŸ3„˜»a`ôúŽűá”]r†›Vá°À,†ĂVpëKGyyž„àó8gČśëšșèfƗ‘" AđÍ Q‚Vړś^Ź­ùŽi/ŻĐ1О3ÿígˆuEïç$ŐÔźŽá““ŁŽé=źÌUŹÆY«ńÔpÄ­”í»ł2Ă<6ó6Ü^ž „¶8Ț\ldX.xÇčJă˜Ńâl‹ŸŠR­ûV?¶è©·Ç*ˆcÖ"l‹ż‰ĆÒtcoŻûaBsCŁ4ÏӃ ÌA[9J^Y8©(œłŸÒvË qÿ 'Áe'űâÙK)†|fáz+r‹h`Őfiô|9TbJÌ4UőjœĘC?VȁfĘ@:5€Z­û±ŠÎűud|E xŠ]šőŻSn FAÔĂò3I‹¶yòû"NždÒO)»­ƒ›łÄc–űß/§‚Ù4Íłn‹Čz1ăœo fÁÛa'í’äŠđŚMȘčMĐyŁ˜Ł„ŠȚ$<È6è0ÖŹŃv/O/_mҚÂfEžEÏőđ Pč)ęć]ZŸWÍhg@󄔟·ßuïțÓvAËô|„q5ùéoèeC&-Ì0–’ Ă)t9!™š#(UŠG_ŻR°ńÙšxXî5ŸH!Lj<ÁIțêèżȘb?Ł6àÔBSBk ‹(N[§y΀>„TÿÁœÛeĆŰ{d€­M;5aíêú¶é;"8fŚ qfdńâÚD# ~5}ÓłûMÔȘšŸTÚÉïjŠŚ@ì†É§èû@ölŚŸEš]Ąi^8~ȘÏ3Ű»1;Û3ț‡ šȚ LĘn âBRÆ ô\U‰w‰ê& Żr“6‡’ŻŸ.TŚZf‚sŽ[Sÿ;pïûąi1æ q&Ćz ŚăÄÎűź•K‡xȚtŻV»Ç9[ëŚYŰ4±}„ƒÍƒÄqb;„Đƒ‹‡1‘§,ó#ÔŚę7Ùƒ ĘÂČąÁv–Ëë±öp˜ź<ÿ^3„˜ÖÂòĄ\Gał~›Œ\ŃĆőÆ”Ąž°hGŻ*ûÊAOi¶KĄ{ÁlŽć” „ €8e†çYöϕKčp ÁĐŸc«"N‰ÏÚŁÏI!4›Ț ©ÆÁÁùÍá­lqęń€òôś«ŸhȘ#œú>UÛę7#ŹúÏàaX‹€NÈîöÙŹČ›ț%rșĄiŹ1}JÏżŽL–MÔj+vrŃŐJrRìȚ.­„Ç:”Ă))çœÛö±>’°À‹Ÿ~?š‡ŹšòÚùMœæžÜÍZNEżŹÛQȩʝä„*ŰĂęŃâ¶)mášpR|Ï߅~yč!놋jq䃋Ńù#Xś"(ł^ë€üƧv…Z~·Yg)7Š‘ÀU8áȚŰñžčhßjőđˍ;r~Q)NÛę C4\Ü—l0V8|»ÿ,RÌčûă©Cú”ƒDާַőŒ~ž§sŁ1ž‘8Çš3ö*“ëwùÂëFszq„GËÁ“ï[—ÒÊü»żÇEÇž~Ÿ°îäżNžáú™æ± Z5YȚ čۏèœpJ”ÓFŠŒhbÔ<ÜăTß%ÛŃ#àÍK4npۜ\?­Šk5s€â—sűê„Ôÿ©5ÒEčč2șuü왞DćxóŻ4u­%–"Wƒms.±ŐiÄÊ.K»] š¶ÊoșąŽ”1]~M;_IÍŃ·}üNȘÂW-"ù0y€žáà,_X XBđVÇŠ bČž\iTŒOÆÊt„łé{&Ès–k_äȚûžv. (EvàżYǔIï™àÒR’Ìgi œ$抩»hè~óìŽjÿ¶ú«lOąŠ0<ÌŒè`ű˜ĐŒDi‘ {?e§Tsćœè6à~äE«y‰zÍp ¶.( ROKĘ%‘§7Ą™„zlÔÖrŠ`éĐRk Z§8l2ÚÎ<ܐț5C”Ÿ‹¶Ś•ŒùțX!Ւ@rpÉY$nżAi~ă‹ólL¶?Ÿ§:|xcû•Hș‘ŸűgX°«ÜÁÓiJŚ !w™“k€WYnöNšžvp“űGÉXm™!ž–鐝8•ȘĘ ž‚ÈáȚ]ą`aĐA†&V\ەû…cŁYÒźKŠč„zĘFcÔ5Öü3î~œ”‘ă6~vN ÉPó.Ÿ¶ă[sòmżŽq‚Țę-ŚźsR= ÓńÇț2Hčƒß(kE𦇼SuF)Œ?>ZI»yĘfÄ#”À!°űÛȚâÆŃ•ŸY3Ûw©;ù&m~:C—-NGQ€ìAżŠd]à<žüżŸ ‡Șa2 yșš5šć3AąŻK±ëòc;źû PB€čƒa`‰Œ, ìu^jäxĄ6,1żUxFXH›*˜ Ÿ6ôI‚Í„d9ŒŻ ÌÓ€œ@•ŸnRÏ` èg2–ÀŚmm »Š°Ûû ÀÛ[3VY/üțąÓ…Ù҈ŁOÏT »bAȘȘn/ ߚ€Gë*€ȚR ÄsÄnvá‘$BžЅź'ÊîB€öTÓ„ÀĐÒN·Ś‹±c”{IȘ/C@}öŒPtÈĂÆżż?ÄÙêŸ.BĂŚŹ% ÌüœáDY„’û†%;îșçƒ6ćĄÛĄö.Óy\WŽGC•2‚ț 銶郃)‹ŒáŁđ›|(-PżSźàțąžXU«Đô"q±îôȚ‰ Ù8,qgX8•YôkPt…š–œŸGè†C‘Ȉ6ڱæȚ8]œĂ˜Á Wœh쟟…šÂű±žă0‡iŸm$0~­BaDÚ€ô€&–ZŠ”=GźdŠj—ĄĐ|=‹ÛQ”ŃӜ_ĆHoMš- yĆüD^Ʌá|Ld"í^Â:„fBO!X».ícSŁÙ:ŻQüÆș@s·ËȚŠ#2±Ì©Œ»|l S—Ö-­ś§!‘V’âŠG«‰@ó’4ż(n/hôŐÄŒMȚ óĘï$űˆœ;‰ÍPż@?O‚ŃY°X’ŹŻ2ČÛS0è:Î[”^wȚÉNÔŹ=°Ÿ#ÁđaRßÔżŽmĂń9c,IûŐ©+Ÿ>í2‚DȘMŐYû”-îdPx N„8ƒ]”Oy—ÆÁŐEçÇęLö9Đ@ŰđŰz‡uYźaüÜvțê_'B”č9ęÀWßŐ$ËŹö;šÀâȚ&=ç™JwźÂÎwÿ kÈ\ËŽ üűi lYI-"ęÄfœ™Q fˆxòÂș$čÔ€‹z*pVEkgVšŒt}ó’=O”F{+<á|;éÀT==7ovHÊ/„…ƒBŒs"–‹OFÏ­âČë ąšșLHc”]UäSÁ`ôł_L(ńktàüÂljˆ§)w=çĐìŻ>s·Đ5"yšÙwțĐ%/‡ĆYï`ړ”ŸĘm€˜’–șdˆ‡;#Hzȃbs‘ű]Ó©ńÂÂ뻝^ …ZÒ”Ż]śX‹uąé[Xm=Lz·„Ç©nxWKR|›Ș4à,MŠ…H”%íOăïĘ3Є’­ï>ÌŹÄŽÛ ˜nàśœ–gšÌ„ÿ˜Š7AÉA!-˜p3eŁXĐ ÒXA$A{‰”ęB«.YĄîx(dGXl^ ą2îšúŒ‘Ö28ŃƒRŒmÛkaùÂ_ë[”*Ï\`inÖ{è*I’eˆÜˆ9ĘKàÿ5/ëœ’ŻƒŽŒ’ÆÜCë¶äHo4YßxžöçjnŚÄùąæ,ÿù”Ú&0ż%ô(YyžIG9,(ƒ;€†gaŰ $ő‘rùęчgkéÎbĆNĂÜM”‚I™fŚç*RÈ«TáȘ‘Șûąő’SÉ<éèuÛFé·2 c%û3žîۗPčÜ[Cł .š€‚W“iê ƒŁrŸÄŻ™.„ƒź”Ë»B=›pȘYjb‡ÄfpC^Ż ”cW€ûŒŚ4ÀŒ[,wÂ=úO!Ž‰ÆŠJLŸïŸőߎC¶0ÇۛŻ‚ÈunÊÂíF1Î}è'*]+"cśœł‚ìžú[ú?aöuÉÛȘN‡2zßHbl »Ńû ”aî­űér4§/ÙńŠÊr… |§C'EstÀ„Ÿ¶ űŠZ%ڞÀä{Š_^}Òl_(Đűž^űÌ[lß v˜ĐQȘT”OßQh?L†ŽÁșŠoé‚cț&§PÆÒl6œKqóùƒXn%ٟt•v'%Êu@Ä"«Ű>ȘÁ™Ê}ˆw“œù „0Ž.~b6K)w[ê §tÎ «šHșîZcí$ù*ú°“KêĘDç=Ìț&ç·§łLŸkösÖ-C€féj}/~ ĂÎDÎțƒüü>©2LÏiO°]ĐÍäàVŒ)pt2VbÂ2bt©GÊo»GÎ8iśë’Ű{°z9YFĄ3;”šbk]ˆ ÌKxMp‘0XŒó óƹƔ§”Žd±hÀÆŽĆÔO[ÜJóGŽ'DeÍÆŚ»ś}­}< ç"ŻKEò‘ƒCBÌ)1á=Ó^~Ƃ9» WßÿfĐùšÀyÇŐoz Ôš˜[ÊÏś”P›fâ!)Šl òKžn%ÿâ”AàIÙ§3­2őÓjÀ¶h9ìzÜșŠliÁÍ~źdÈMWîlúˆ°3}c€§ˆ‚ș=ŒÄ%íüvș …ŃwS”«òewِF»ISŸd\?šG…Țy §ŐP­!F ŒL~šô‡ 8?}G9DXă eçˆÒđźż„ĂôppYRûš’ çfÖù‚ŠĂÿ’?€Â endstream endobj 164 0 obj << /Length1 2641 /Length2 16966 /Length3 0 /Length 18304 /Filter /FlateDecode >> stream xڜytĘșncٱłbÛ¶m;+¶í&iÌÆ¶Ő۶«1›MzÓœÏțûï}ï9śŽ;2ÆÊśŒšÏ‹9çúÆ"#RTĄ2”7ŠÛÛčĐ1Ń3r€ìLìíœímŒ\ŒŒ,Y锁æź6FN€w,™Ș„‹ 𿳂%S:9[ÚÛqÿe/â4ry—ˆčŒ»©șrFž&V73;śû3#Śż 흞r–&F@€Š…‘“–LÄȚÁÓÉÒÜ…đŚ#€Ò„êʑ‘îʛ™ lä`șYíț́ÒÌÒÉÙĆÎÈHocôÏAs[#Kz{[*Úÿ- Ó?țûȘžïÔlȚ-țńŸȚȚÉüÿäÉBśÛ•ę_ôÿ-Â?SPÚ:ÿăAĐŐÄٔhêJEÿofȖ&@;g )ÀŐÎèP‘’˜œś`óOù»1@htz/„)ÀŰđ»iâït€żŚç`ä`aPZžž8p30üö3û­ąw6Ł·ș0Pœ—XÌÎTÄȚÖhçâ ËÄ0”4qÍ-í`~‡Rő|çÈ0šęËč8Yzt陌żÿțzÒ{/…©œçsùśâŐ€”ÔDhț›)úËXXŰȚàÍ câà°1r8YŰŸÿTŃÈòżH1țq”Č3łü‹Œ©«Ăżpûçà(ÿ1xT€%oïò^C柼é2Č1šŒ0ę7côƒÿiz~ûț} țđ_côŻŃù‡îŻéù=ÿcŒț5:żmțsz~»ĐëŸŻó››ß6ÿQČÿ§œôÿœțÿöÌÿžOțﻃAÜŐÆæSHù·ńŒÏŸàżđ?çBÜÈÖÒÆóóywùOK à?‰ÿwTț>šR.FïŹ„ìÌmțY:‹[zM-]L,fF6ÎÀÊŐ~'cciTŽw¶ü}PŸo 6ÆÿĐ©ZXšX۝ÿ„ڙț±wöŠ–væf6v€‘““‘',ăûfffcx3,ß#y€ïk3ĐÛÙ»Œ»\]|ß+èû{±ł„~‹ț‰8 ą€Aì/ÄÁ`ÿƒX R;€Aöâ0ÈęAï1ćÿBœïQÿ ś(*+€AőzgŠöœsŃú qœŻ`ôbb~_ȚÈÙÄòœŽ6ŠÀżäŹÌżĆ.@'Kgë?źïtŒÿ Šwäddb |żĘÌ\țÈYț’ÿspÿRŒó0ù ±œ3±·yoȚ_kČț–ŰÚță{ÊŠA–wźŠö6żĆ?ï,țĐ~ï#đßeÿ­wt}ßW\Țs3ûăòNŚÌÒío1~«í]ÿŸÆ»‰ùŸˆïzóß/đï&ïÜ-țdò^ O  Ęß,Țe–ƒïL­țß«ń‡"û{Ú6żGśțœv¶àûaÎđ'6Û{KíȚGțoúśŹíÿĐyw¶ÿ7ő{ ÔïÁŒœ€vÿÖFVŠÿ’ț{Yßy;Œ…ęŸ¶°Ÿ—ÇÁÆőol™Ț%ŽÚö^GWûś Űűo]xÿĂđ·2œ—çO¶ßèö·ú±œ›;żßŹ-úžłóûùjń·ïÔț}ż\,œ€kì{ž.îösxáú7űȚ·żÁśȘčÿmŁŒ{{ü Ÿ‡śüĂæĘŐ èôÏŰÿvȘž:œŚĐćWïû ô/lfù~́@ەE{ž«úŽÇZ!\wșę)v»_I’·?Ùvô՘Ä!sÖEE”öÜâ_ŐÎ>Žütë©m@ś·LőŰ9[Nț8Ÿ q"üêÆ˜UFp~d€s–0 úô#n šœłÇÇ·#šNh,J!kžž\W D/Ȍ<+ÌÏh‡Q§ĄSù›[+ՊŻ$û“«Qڊšâä73pÆÜY© §0ÇĘȄÛđW;ìQŃ@|é"Ú ¶df8I1‹}HžA9†Őa^©6‹\ŹUçV8lœ” Úl’ŒÔ2lˆ]Ń©m§ÁŠ`ˆ¶ánE s<ш©ÏŸĆ5âÆ­PG* ‚€b"`O6X?#]iŽmF'p€Ôۄ,ÁFD€ëˆ)L;yô€ÀžžˆĄ°ß‡ì©%ÜO„=ÁMžAŒm“ń:}ąç%•ešOÄÆ—”*~9'n(*•lT‚©-RŃȚ1á«Q€Ă7PSŽ\ź\ûąáT°ĄYSŽE#ČÔÌÆUVáŠÁˆWËČ/ŸWĂź-zŐ x+|˜JĂ_Z!xKÿÍFq7—Âîq‡°ó ÁźźYP…±VèÚÓDŒÁ^†Đ+ˆF7=Śú$&ôÉZ9ÙćÔXĄ ?vpς- ç!]ł±ÄDI€”ȘŽ”tèYÙĂ&نŁŁ’öKĂüìșő$1ę+hSšź&Nvpjè*ü>˜Šg5Ÿ‰<žá\”“Őł‘ QÜVàöqNoÌütȚ‚^LśŒH+Ód=©Ô[ź:íìÀUj„}{š­+†y˜ć€ÓšxBÒjȘôAcŠ—d.ăęn{¶G,“Ć'ö7a*Q}‰k]»f] Ÿ֌§ż=ia]Ăę§đ‡â†û Ò"”ĘÏüF°žț””Ώź2ÛÔ€Pś‰Ùđî@5™Ï#VÊr8æ Ö„F—Ž7șmțßQ#|›Ćüœ}ôÓÏüÒe Ź\ŁÄŸhKÁ5l±“T™<2âÉËIÌV~ž8v”Űó_‡”‰Êæ}+ŽȘŰUìbęDă{{@Œ.ÿŃw!YHqŸÖż‚Äć{,|ŒëwË”șDÿ$‹SčÈ ÚS2qIÿûÏł$ûŠ`mR(Č_ciŠĂ)Xȗ83ꄊÇnúŹFT-Ć­èß ;XæĆA+ mŹŸ·Œ'Ax°đڀЅëê^ôè4ŠßGÓ~˖‘Û?ÏęÄžûœ…{ čŁûÜJ«”!Ž+“GȘTŽpS%MüIż‹ő‹îRaj°"űȘÆÏ4R€…ÚW}15^Çîöe§ywŚ…Éęæ…v/vÉŸą•§óąJOȘЅž‚Đ8Iß*·ą–+!JÌ9óĆ|B@)M5fŠ€”Ićfy]㓠[ą©›đ栕Ì_«jšPÛŽ9 xÎS œ@ćœ.ű E Äś}DŐ~»R;oŒÄj ©VŒšmȚłYù;{ANź˜ùŰźéŸGżVbwßé5/ś”Â&șČ3ì ?äÄÊ5/eŒł2Qû”«ŚÂš­$Fj‚đŒ””f"YŒŻ_žy€‚Ę«û5k€>Z.œŽ ‚ËŽ:ZˆÛ\%±k'NÊʁÊ.À°gĂEsYêÁX­śCäÁ‹æĄŠĐádó‡c•u“ÎșUëpž}ȘĘJfB_nŠ1ô0à„#ńő"TJÍW\@ł™ 6ŒŸąŁÊOe}C,Vm§)ÌK˜wáŒŚ˜,DrUi—–Ž—e$čóU•Ç:A«„ÈHSŹŰ0QÙÔFČaă‡ÀâĄUŹQś}…D‹źûĄÄŃB‰ä*úšuÓ úÎŽNfhÇZÎîos(+]ûŠ(M ?tńFó‘0d!ìà»<ĘS”ƒŸ:Y‹ĐnD4j±$nÙš_Dö NłBՑ۱?ëʞ çòoxéöBÜđ)ìđƒW€™ĆÂy„/}Ë& çٰô^N[i'\kÖ髯œœaÎQ‹"‘U *NzÁúUŚM{ăâ0Ÿž{KśœJʊ›Őd˜`d}Đ4ŽÓwĆŁßir‘hßö:Œêó摎ś©6ÏŻe—?nqąŰ«ébM\{uTŠ}êWìÖđϓLÒJ’û)ȘRëÆÖ8šDÏϖáÚ3éÏȰL•Xo^`uúlGąxL$ü•ŸšN5Ö±ÁÍD”5Œű:ŃíiÉI±Uđƒ­H çÂćFRŸ<Úüú“Êo|z·Ô1uÔt(™ÒEJ2”őùƒÿçÀȘZäl{&›•·ș‹7áÁ^ČóiśˆłûžÏ/žL X2ă?nž·6"@5`›œHŚ@"äP)źJu`c†N š˜|eŸ‰aÎæòaO Ł4œÚő#E9ă4ÍlùÎ{­‹­A~ńâ±,™ro œ‚üÀ»Đ»QZwˆ†ŠKÏQ§æô•ńíżJŐ€Ž±ĄE‘L‰^AàuŻ*›ÇŁ„SxeŹÙ>7–Û„9đł0ßÍDL9…đUb+Źòąo>—›1DÒWiż»ț4ìq0™?` 2 (~°uʓźCÒçä&ËȝAÇ }ŽȘÊhæC5òËu-i|člęUD‚U5Ső‡5z.ș­ÓòÓ+àńMäJ©ȘśwNń±ăR©deśqțĆ©±6ŸÒA+‘ˆŁœ3n4ŸŸ·DyɁ˜A7Żkl]ëőO’UOˆÁŰg œÇ&Ő W5~Ɛda œû1Űû-SDҜÈRțVŽŁÒǔѻ°çôE€« e€dˆ"‹1Ù`F{q}QńŠ}1ё"őŁÉ čŰęrŐ"lé]}WŃ«ìòQń0»iĆ}M96­ŸÀȚ-.VXțÄVòŹŁą$á Šu” ÌgNŽ6Jrț“…]ăŸqę š*ŸrĄHÜ\ć(uÓ?Ç͘«YÄ­)—Äg+đßX<ž^ptÉž‡úUhƒ<łœ8Ûäe|m ܟƋuőޘÇő’/ܔăąVà—”'Pű;‰ŽIaÓzJ7Ï±y­OȘ^k>ćÌĘYșTžó0{‹‘M›c Œ_&fJPvYĄDmŽ[‰–nY†eüęHŠźËHF6Ń|”ż™‹Ö0Ń·fßjMbßG­Â—'úĄîŃŹFż `("–)‘nü ÉPÌśZ­‰ŁĘX‡6fÉs‚mŰ# kwšG!ŸÇ­ȚELVJ_GAæO:íhcĄ9łk|źšał”搅¶`„$\ȘĐLÊ>{ÊșzžÒ­ÈąÂ„/8†Gáú/{@Ÿjʐuo2Šä/‹[œ&ynëIŃ5œïń“n’a‡} K]:Cæ|+ŽN›ŃȚ?‹a††à·ûČáN’.ŰŐv©›O›d,Č*IŰÿąÿ2ìűŠw0èh‘%űyšNbĆW)óq竅.ŐRĆ`Úű–Hû„—öćے2‘I}țš›”«Ă(ŽŃÍéÍrŠCO‚Aòąƒš·Č€§O\Ÿb0Łқœ @ÒM#G?Ѱ:zD*!Ûâj°Ș77ĐtW\~K3° gÖžqĐ$MĄ…hÓÇ:poęvkÔŹnț«ÚĆQÉGœ>ŸG‚`Ù§+`ËVk|±&ŁęN ă`„Íd$uÖ䁁·ŽÒ ŻÒIżÎËŃ%čžróDó‡ö±ćŹÔóg40ì•x<°·čŠÛäeŽ­ú‘6ź;ă$yäc>2ÏŃÔé…4-?ƒ’ʉĘú™‚$ł€Őë}ËtÿŰ_„rzPLj™NÈÊrÈlàùBĔŒyŹé\ wùEu#c_š3ŁA˜ž§ 1ș9ŁąöȝP ——‚‡Ü+ŸÀĄDŰst_Î⁳OŽ6b~ț^ë焉ì~ęÈùć3}SŽWJ"mÓ4óà`ŸæĂ†A{UČz’;žÍy1XkșIКž‘[UXhuî CÜ[@˜“ȘŒˆÂPȘp”ˆŸâH#:{ą§}|wȚÆ)6PȘb'Üńkz ÍŁ8ŒŠÉeU-E>ÈźÁŚŃ!ŠéOęHÂ$ŸCșÓĂßOLÌö)'jŰC·Ä*5C&-[±Äü‡žÇ òć…& 2©p›_[Ág„ÄęۜüiGƒ6ń;“aŽßzîkd ĂXOz2ŸaŠs¶Đő,hÎûḬ̈ 2R𔋀ˆG%>*™èçzâoY àäȱ ù^N+źTQ­P»-3Çę­<äËà.ù5ŠsT­W‰Gš^2)ÄQŽŽ'tr3^ۏĘÚŰđŃ/<_Ä?ž‹Ëúv~ÈűăŠYkLś™§ë#”5^űz5ől'BYŒYœÙRöûƒT`m_˜”g$˜Œ&Ńے(Š\_iÄöœiÂŁO"Ÿ æÇő1™]ÀKٔŒ;㻇9©” #‰Łîc¶Àh°-NÂ?Šsè)t<l/°ĄĂZŐKžjfh =ÖC>ÿűvŐFÇbröLűê=€ÆęÆï=tkˆŒÀĐúùił Ÿ6~^Ă KŸŐ`8Œgv–„gW€C4ÍèŽu6‘É}ÿxĘą{=ó(Ń)|màÉÌheć”Ń~ŁéCv52Ž»l–è[=šÙśŒš9}űc 1„Xixč.ƒšKŠ)Ż© ‚"Ítpî©sńSk?p!Ł Dši5 óŰNF9ۗÄ@ꔞ†SÔCŠ+:‘$w$v2W>@:é1öqvOŐÛìÚÓÖżÓ%C ÆWŒN OÚ g”őúdN*Ÿ|ÉDś.Đ4îÇU$«2Kh1ÁJűh9|…’Fžj‚….2OQăÈ`Ț»ű='`~ِ;gWaïčQT°O7Šșܕ§…Őèq @Od"îeœÌ IÉ2B Z±ȚF‘ś[R e;ŠäŠdÆÜ!aNwńí ­œÀŐëÔqœ!ŸH­üêÇÿێ—‡ükVŒu„Gi!ćțBêC?ĆšäƒvވcŒőˆž„ˆĆĄÂ˜HO.ï )—7żI^€Złllșő|&…~JœąđS-퉒GÁMßÓ7łIș+ęÌ~Œ+&‹§ƒ &šŠ°òœ‰Dò•ŒB }?í#cÄBĘ;=Xü\[0ÿćœ/?ŸŽ•ANCˆuæł&žOî.ÚXËq7ÏnPwùْӁ:vê‹É(òÔașß@êZ8&a$+JbŽQ >» Ç̇~ąç$oÏ©[ăàÄNŽdçàÜÏjCÙXÉ[ìmÀïèʖ0pn±»2S‘oîŐ#­ßű`p ŠÈk4/Ž©PŹ>żˆê`–ÖŁŚąt '‰wśJ?]ö|Ș[Îv“w‡•” † -lZQ§‘“úŸzĆCX]æéĂ'>€”I«Č6'ŸQȆhÙ}óébQ„“VöÁŒ—ăZrDùÁšÍiï’ĄçÇ &†ę*ńn„šż tgÖšK#)D‹à€h&ȑҀł ŃâæU`ŰáÚÛ#K-ć-Œcő[‚î/Ă»Òcł€§}GËÛrȘë!”žxqˆȚb š+H‡áśKäčÒz”=ú–ù\w :Č4ŹÏăFúpw 41x~yoGˆ š%L™ 7đÇEÆI+‘ETü]źH:ëLqcĂ·¶.‘„-ŽŁ^oèS+N#œȚ#?†ïIRWÂcüsrym€Ę”NèIIiĄíä ôs6=ĐÏX SúĄÌŒfșՄλnŐe„z[&펑A2R §a”âć U0ƒ.€ïDjŽèŸÔ%ï6·ĄÄyjžĆ›äw{݁ €Î„ŠŸrèƔúïą`&^+.:yäˆdY…í0DldêÂé$7Ä·Â]Ÿ=…ÀFșšêž1&6\'w„€^? *qžŽȘcmn'b«Đp.ÒÌ#ś öÔ:#ž•Û Àź<àÌWxÌîhËöpĆ$Qô #%‰"ÉbY‰Ž*”Ԉ°áú“Sö]АdÓŃTÜ­PhÖĄœŸÊbâJßć–i:ĄŸśț@ŒŻŠƒ‘â­`ŸîQĘQ#Ț 6onîAé”ń2Șű[íO\œŻŃč+í:Â}Eš0`egSßû±Ó;Pö>°ßűÓ z bażé’mP‡űŐłäöÇPm·BO%{Uˆœ‡müGmߌ€ztv[ҏ ć_î>ü”<"BÓ2”œę0…ĆÿčÄ p+ T őÍ·čèdM,……W1ç†!§Đț°ÿÎXȘt€žÇ°ÎÏśö#ä“GÓ<Ć俆č.ЅÌÄ>iłœàhJ&đÀ ę0ŠLöiro@[x판,îf\Œ°(Šż(đPcł4o%ż©kòukv`ÜWÂiąórqăû¶\š±ÿ 4éqA!yŸ™ĄÄÊśjìŻ*” THßÀčÔrȚŐCžWźżÌ% á;D9YÀŽMwù¶P>aôŽXÛđ•č­cÁ äąŒÿ ł—¶L&<Î󔔎Ńûò –Eș-Ûyäű4 #`FŸ§äÒêdmè©ĂŸ‘í7<…V6šŹČśLÔÚíâ|ü“țőÔÆUnČ/ŐáVuuț`“)è=-ŃŹ55 |Ą’JkHpŁ8vŐűÜkÙTƒ[ '\ ],}źôéá·Răl%LÁšĂńÉèjæûNa?Žib„ăüçv+­&~—Ÿd:Ęm™ˆšiU†ŽȘdŠœÈŁfA€LJEŁ>Ï9,à%y‘hł…¶ò[Óé,až BxiÉù;_lfúÙM©Ï$ ž'B©æDCk|.I8ÆMj„Ąê[ą›dđf?ç+Íâ#&}Răzu`ÔăKŽt•”-gÆȚ݉~$ç«5ëïœ~ŒÖ€Rïek3YO4­[™!PÜ!Š ŒaĘäÏuŒô‰Ą~ŹŐ‚‹¶Ʌ—2F(•öƧߣ4R€mŰ0&”х|òŁ^ÇąR…Ö'©ÔŽòÜR°…;+±Jć€BA )zÀyŹ=­úÄ ‘=Ž^(뛟Y߁M|ÙȚ śyhpáĂeü|‹ \]TYŚuÉ%ìYä‡dąÄV,ăùä܂U/òéëjüm/òÂÏĄP|üȘ|±ÂȘWŠgKąŽ_­î4?żY» ßV ‹?Ű»ȘwÿŸkH T0ŃGšÒŰű|êŸ%=ńH1]oŚûggïcûâĐČÌpZ†· Æë,Țcą Nï“î’”šË°JÆń<Uâ8txâ0ùdÆ]Šê ˜ÄëkŒé'ù܋Ÿˆ‚[‘Ț ëeôüČ|hÛ%ʐ7 r7 Jê‚#Üț{2Ná «úd™1 ܅$X ZĐ5ć9°àáőŠàp°°œ|rl|NÔuâÂ9Țđوöź%VUmšź •!“87áb)œŃUc„ąáì1 ;>!őU/€ÁŽ~ƒE„Œ`{”3LŽG]đx;t-ăÉè2s ’ó°—ĐCS1 ^'ӍL|§œä…¶U>32èu 2ß JŰï1?Ą5úó©ËùŚË¶đŚ È™OÍ$ 0ò éÒxđ1ǔjȘr»·ą°Rsœ_Ÿž°â6·é©śíj?Ÿ,Üűç„—?ÈÇq’ŚâRț@CnŽ3Č·èOÛì4uGV°ÿŹhù+ő)ÁœCx?cÿ€.~*œ`4țYfç‚G;ŠjțÂÖjžČHIRî5-‘ĂکZC݆ä8ĘđŃ3áb[Z^^™WR’í”òuOÌmô8Ă ćææȚ­íĂššqȚ€âÉNƉŸQˆŻ[ĄdêԈȚ oĄ~YÏcòmŹ<ï Ê­b­Ù»ȚH‹ô4żXaŹxüČQ"ÛTò#IGN/·Ő_(YÈxRŠ)P¶ß+ŰB†(Ï"E&gx’?Ûń+pșr,†„ç*șb~1użE–'ÄséYÊù„ŒskTs„Ź;œđè3„œAöՁûsMNm9pôYì. ©JÉæTźO·8ű)§êÖÄÓïá;3桕8”ÀŒZdNKÁM}=ȚaHfn€›Aƒ[2dČIœt°J(Xÿ–8GŹŸéyy LRzä+7aű(2†»XŃ* 4œ±aÏ“îŹłÜ Âäe>(ûęcGC‡ÿÚ'§ÄÜŚ ë'›ƒMŻÌè9&”ÊpąöP»Œ)îHĄQÌ+`j [n+_̔ü™ŸŒù&1:Wę°UÒtzÚLî!‹'V„êșĐvƒç$ƒąa_8íæäDzĄŽ&­ç0@áîx™ÌĂümŒżHçk6Čӈ;Fs €9ӄ>ü—x0)8†|+Mä ˜_üûÖæüeㆶx§jW?BgÊ<èÒeša–ÜJ)ÉYcò&ôMŚČqs;AžÍŸłÌˆŹÚ,CO¶Xß5Š”kŹsëűŁ-ű0mžSŁBźÛ‡š|šăçĐÀmwJțÔő ‚ÿąșZĘâ‡*Ÿ*ö=Șćś”šĄ ϶ș\™~Qgò>œaç.HQ8WrÙR砍ünâŸA'fWŚ3=ĆݚçܑÍöŸl-LJ ’XaĄé=. é‹*â”ă-)Ä”šu_=*翌1ÆjWjHŐ% d”2Đ úô‚5‡©ćźp4ùw[rŐdöæ?]N gcb6wÍ=МÁr;ù°Móëą7|bW…ïčvuڕS=đw6\‹‚ČŻàʛ ‚"l.‰le•OłN{Ù# Ÿ”ûqaï^♛~Üdś€aÀ„ÏąSëiŐÆBpr֗E_'©úy›żn%Äë»ÒpkȘœMv„Žędû‰M“?ÆçÒΜ­őš<ûj(«ăFźßxéxęű3í”OˆûĘ,Nü úK,œâJ'ú4˔AEôtôńAÆ:&܏­æča€]š:$zFEÁàđ.rȘŸšœHŸp* Íç?é >À?{ ^ëNT_ɓ4s>†K>„űË·n’ń©|Æ:gżxËㄟ]—Ì d|îęê”suêâ=6ê‡ú,Tț–CžËÛûæ-r‡…Ξw-ÌŻÔ%CÓͰŒA4nŸYč9ćû őeżÙ+IœŽ·OŽíß/D‚m9ńÖx"ž~Šòț9!§AçÂáă.’yÛčțܶ Óöú`5ôH;W!ß\p{ acF晫ŒŒóhÉß?gț ĆP\-=“)æNțoMFČyad‹d©|”ü!ćFŠ™S' ž =—îș ÛRoR$šűu©Sk•Wüq[=ËüÊÂÚQí9Šn(q42ȘI·ÈÎĐ (Nçá;Ąz8—â:[o\€ÜšăĆêEaČ1@/‘FOĂÀW—Š8s’R„7qÇ2QÀ]%O.Ü_;݇zź+Đ,(žRWÆÉ D'|šŒŽÎĐäїÙ `è€FđFù…|;Șișôô?GÇôè§k`Sßáš"2±°WjÀV#bâ°x–I#ÇC-±ÙžBBŒŐüĐ|]±șÓĘYyMÛȚ«Ć0DdW«-VtȚ{;sŃÂÚ+1–ŸàH@Ł)ï7[2Ù^bûàö ^Ÿïg‹9 (FĆ—”zđgœWˆŰ5è* [3d|À%8ÂCŽCȚBó <„eNÉè8©–ò_lŒeKĆÁô5d`lŽ]î!ÂżŽJÎ/r±š*Y`eî?y~őÏ"6Ö|dmM‚Ă«1ÄYìüùÌàæ/Hêë¶ë۞ËÍáF’ßA Ź8 Ìëíú°Ë`–d–Ù] œ[»êŠ€őj&UœÇ'c Ć(kČđiŽ”íCêgêÖëˆà±gn ‡0ő!á([éhCíÖłé‰âÇȚł° ĘQQcś-Ÿ°ȘÜ)ÆËNﭓ•qž©§č ăÙ^qtËĆ”hk^5zYĐ\ÓôÎXꘉ«4VśEŸ.‰%W˜VO‰nÊHÇńëvD§_œiWń<ù};ZéŁH/4ËëĂ0ș?Qe¶ŻÚôo45xGSAu‡€Ùu”«i‚…©r„šŹŒ…ùĄu|Ÿ„꠱ڞÇ@č "ÎV:8; žŃW^—üéb[ß0 xÈkâ*5ČûțvfG#; >~,dZg'·~`ё94§Ă“ŸÍÊäŽ3W4ÁŹŻĆÜ%ŹŚ4Q^HlE'±Ą›ĄNW°ZÌ/š°!—ÏZ}űÚek.żx0+U©E  ٛکvÚ]-ÈÀ …z»4ćzÍRuÂ[ü8ó0KŒ%MàŻ*Ű]ĂÌƎNE0}x#û PąÂőBíÈ0ż-‹„›ôPˆä—{óÖҕlÚ%J‹œŠéÙb™Ò ș€vțùȘżö |=ôS€·Š!lQæÆù~P6cŰ!ƃkk›ąëeĐ·§"șËę<Ž>űç5;*3eÌ9Üœs…ïŰІ|,Xmè Ÿï'zO>ÊáČLîY­čL‡y6%ùHăÜŻșÄȚAĄ`bœfô†`%/Zwui—.‡Ö‰ûź;Bï_Ö”ù­«'.Ÿ+^?őDçßu5Uë:Ś-&—ü ЌeÄüĂm„>?€%a=ŰÚŃÇC4•(/J ÀĐۂćCUȚn‡Y~±5*Ę_ےìÉÄіäq··Nû>îc€èŃô:8ÛYx€ëG_‡Gçđ€$_*ÒÉNíđǝQnÓwl[kaŃ羌,~ ù ŸlîȚ:Y›kȚ`‧ww»ĐvW3I.“>Ïu.Œ EMæžq4·UŒ;$ÏRÀìFüòDTINï3 0: ”^~–z™fZghJQpúšă(ÿSŒ°/ƒ€6zó>mœą vÇDKž«K:ńŸmöj»h8نȚȘ’À ~o;”xKқé fwÿê;Ađ“Ä1rN7Dș^šKO——Ì05Xș,hQȝÜl<]0”Y&Ÿ—ʖ-tљâ™4N›œëÆl4™ÆP/‡™™!œkÖèÂ.,Eƒ(‹Qï‚8nQę”Ÿ§srÓŸzOKE[Șoű‡Ôlđ–}«ìșŽÿźiö&Ç eâźô2qdB€”-‘Ê· Čúۇ!üGm«kóû WzbźÄù…_§ÔŒ{çHȚ-SńFÉ­QW…Û{łŒÌJóăŐ¶fš«!2ğńˆÆÛRv/uEŸOg…\„%2ŽŽ(óΟ“ ±çêŻÚŸŚąčeȘfO|È6f_¶~ ŸŽ%†œ_Ôćû|OžÎ„›âÖy”Ÿ‚/ęzŒ*— %ÒYß;ˆ:¶Ì–lü7-ï»E»(‹ˆ(„Ś'gőWsj 9—ćÉ»ÈaöéyżCŹ7·ùoȘ”á­-Œ;<ćžÒ/ś+B(J‹,gA; »Âš Θ:Á8śő*žÜNžÊŚ9ȐӞiűß”ŹI‘"=çê{l]śŰQÌ»Ö~äU$ÇÓÓÀw‚Y ÂÊô:5rš™[ë!kèrĂ §{$ŐŻ€ËR?ŃAò*È>ƘïÂêJˆË$ËAhù–30ÀáìĂł*—™ä«Ïüdúœ<æĂXÖFë’::Śwʐ‚§Ű%ÌGÍ9 ÍÁVæjæ“ôg…á…_ç]&ÓŐł1ëÉgo–P‘54{VXb›ćććâ eűò‘kbŸ3à‹D.NAcWïˆ#†3˕îŻăZg-š‘hÈ5ȁNńW«ótç𖧁Հ„pš—áprw/‡ ÁÏ{rÖ<öOŒƒ”ETzÙnìWŰ c>čcÆFm˜s>5ź/<7šŰz?Æ(5\śüV—ï” ûë–֛yŸâ|#™»·g7DÚÌkv„4&{A)㚿Ł]iڜ~MśșŸÚžżâșïäËŚöpDéuÖEh^z#ŸŽž(ëqtJgŠ•Ê+=äŰ|ź&éÄâ’ŹkZć€7ž”ç i‰'În'â90œŻ.ș/óÜù‚íCüCì§Dۏb°»ł-Ä/šĘ„žLŁX·fÛÄP,È0˜"|”=~ȘÈdYٌșOüáyšKč$qšíúÂíöŐp[6’]s”ăȘą4“ćàlZńć!ÔûȘDäÔwàF$^4…SkSƒ_ˆiÛô[°ś‰ôŻKoÔXțŽTÂČM=źŒÜç[vŐ­ëș%Śm6v*Üù”Ï_;Hz`u©3Rvl8`‘7*‰ÆúyÆx뫃fڙ3`',łô=YoB ëÀ‹¶óXÌŒ«*#1{à2F=bB\ȍ>Ö„5;ùŽS„à™!ăeNæÏ¶Ö„=°_Q:ĄȚłEP-%…îáÓu.7L h :ÙŚŒjÆć`ŽrÊĂgžŸČő<Â/Tšè—ÈÙŰő›çޱ|ÙŁA'ÌÍŻžȚ™ț€QœŠ'ۄ1¶ŒHGerXÖ"çijÖ û艆}*”N'HäÁäv[ÔŸ·.T_É&1ÔUnÚeàáJöя}2RȚ@úŁW&ö:ą˜€kȘ©KÒEčáü0'§V‹Ïf‘î!\±WpžŹn‡šÿ|±ÿiB w΄ÍóùŁCfĂLgȚl E™©ôZ-I§·錭Ȟ_ka͓ATnt{äi <Ë©ćNÆ@n•ï0ś†UÓą0ÉăČ[Qw†śŚ6pčëd+ÄHxTáëŹ6„”üDm‚=‹dI–Wݧćy“ŹżÒ”u_ŰY zâjsÁӛn@`æŠ^üșŽsf˜šŻ–![,ÔGMV›AËŰ;ÒÌâ,ÉÿÓw,y-*YqșäÖjku†v]ê҈,śáÛH“łíș«ÜW™l nZčŸù„ìNÓZ_EìsD|AâŽ*· *& ^~öƒ\`8-7ÉŐ°W „ÊÉ„ìFŸôž€ìN.°1ÈćÆ>9íhq¶ëčă_ „M‹Șž;‚P[,%~AśL˜ÁÎź_ ˆdŠÔ/"őŒRpìűu&™Ê%"B{öœ…hË·Ć•WfòŐțˆ–DČŁ}- Ń”/ŠVQž»™|_]ȚȒsȚM€F'žß°'»C„žÈùŒŸÍ 5ËŃ6ùÆ>g€6X%źe”û橙ЄÚ_ÇKvFă‹đ—†Ž$­‰ƒZôŸő}4+TššŒh&ŸˆÓŻ"ôÀ >Q2K$lwgŚWzü·i§%CeÆUWc'TíҐ„©łœäŚśÚÎ Ž u1ȚŻC°Râ۝Đ~ÍiŁ‹ł ?tq©§F|ž‚<đ›j”y äNûÊçèŃ{Ž7{z^KÒłEÔÂ~]UŁ­ŻqĀ› Sˆ`ČȘŻí9(œVG?^/ôB†p`.Ͷ2 J&±•üÀăŒŠ†"Ìz/cÈNŐh”{€Q獌ÎeÜ`ƋŽüÀTP•^ő‰ć°Š€<ƒV9W _~uËŻJkÍwÁ‡Rù9—eă“”dƒËxY·™zÆ2Jđ0|,glčj2ÍŁB™Hd„Ô æÓi”ŰjM óÔ?EĂúśő]'ś]*ĐHêoë¶}*‰–‘* Ż5è!šÉônÓű ©Včˍ)NLđrž„ÀęÄŻ*bȚ„Ux»ÔÏĂzáŽGfàA­6ì` /Ódą‰źÚDćr"u_"zB"CBűIò„0už“NŃÏ'Â'sáÚ?cN3SőŚë€Łć6›S3}6ó7ç«7l ąBDđFÁLG„“Ț€«ĂÊE;=éBèè^=öđęÏ/ ìMz&‡ȚY±ž}|»3ˆT•ùqœFŁ^m—]14ԍÓmę8üÈŽ °˜˜†%5Fc:/îB€Œ7nnóı„ÌRL(ŸvhŹ Äw­# ;§ÏțVO…HMÜÈŸĂwÓ.ȚNI…I?0“9=ЉՍ ŻŒ™E!»Ń źFȚóuKY5 '2g \ĄŚpŒëRdrÚą«5Ő[è-5{đàж‰U!nÌv‡Q ŽÂCٌæĐ-ŹÚjSÆÀ~l§}HeÚžHÔJYűFB:}üâ*1àüłúN!šXșĐ7›ŰóĄz@ÏȚs§Đu"ńÎćö’šœçE+ĐóÛśk éáČ_«X'>źBWÌäż m+ŒEZށÈA(iIwéŽ2…ÚZ„–b1l.^ xáaùß6‰ń~‚żjˆÁ‰p˜ŁÓ!ÁÉżW¶ś…ĘG&pv3RR€ä\”ëĆë„ÌVóuoòÍÁ]ֆl-5Őžæh>lê Žù(:#qśĆĄòÆqÅé‡=~œgč© ß!HO~IÚéăŚvP ŹČàŰŒJzú@đĄ¶íĆ3ŠF …ą- VŒ=”Ë5›bă7‹IËVQT€3 GźmźWûđ邝yGQł_Ú(ȘBą-vŠ€źŁŐșe™jp‰eű^IL”<ÓÁžÿÒV\Ęô»CGa˜‹™«Žß·ŐhDb„=4ùù‚[ ąÉ­đDç7ŚÏ6ôâźĂ…GĄ«Ág"„ÿdpV†.:;ëÿŒŹtŽîĆ\5*{ ŚÚAS'æ89ÔâOŐk3!ÊśíĂFšÜœ•árPg< .ìâŰ"€ë†pÚȚű„ "\{Ÿ h…súȕcú—wqs…źH_ ‚„.Áș8Æe„Ž 9šń'öÒțŹrۃò} d[Ošu%R9ȄÚ~5hù2Θ> El %‚~c\vßûó[Ó‰`\Ś—Á°Ž+rș°D ŸĂMʧĂ&t9VĆ$#€4![„ŃÚ6U¶"á}>©«x#Í/TK ĄžèțGĄÎnŃ;ƕ+Hx§_ßælJč/žxl<Âuš`х0?$nt([0乐pÓî1„kqÚööóOfŸą(Ż:NŒĐÜ ,ą>‘Hăk;fZ~źBӋ>,̒“"”){©VbKèM?É.Ÿ­œ—ÈZąłő“Ț52UæŽ6.ù4Ùő`Êíéö”‘Ÿ4|ŐÒÁüțb rL…ê|ŽË;P1涎òĂ4ŸD ·șÊIćíXùМ=òÔ U· –œ4_șÍĆ. \ì€tžÒłÊÊ€úxjĘÆWëŹYÌÿHmën|Qzń‰N?ra=[7<Qo’”ÎCW­ ìUȚőÍœ—C,RPží Tœ•ZlEÔO„œęŽț‡<§ÍŸWôàt SČ«·öhăz†”~&gCȘ"/KĄÙlĐpü$ÔρÂtÖÆ‡ë|(Ń„æpȱ`xsșáäÚȚćxÎÖIJ-ÂQ€Őôp›”ÆwțF¶•‰xZær/Ɩç¶Áđ%z&XI &*”CÄ O„hŹ[]ĐK‡ŐÆïŻ3UùòëW `ŽSæĄ3€šâ"5|ő,6WtjőńnŸ…Š·°;87juŸa}ĘÙŽ‰"y-û ™ę&mÆœF2 o…ż‹„ÔÿêGąSĂDvßÚŻ-±zŹÆÀĐúœr‘j}B‹&ąź…Gê|RljŽŚÚ§”»Ž—ƒœPÚŚŰ!VX)íĆćÊÖÈûđŒęA™©ȘԀ%AŹZà[tˆ€1–Äá òÙśàŁöcÿ&èÎ2h żElš–ŠJčë€?M“Ì“_60•âȘăZ Ë“?ïd—-DŽmȘź~”^Ióû#”6ŸșŐUj«+&éușëH‚Eça-æèęè]^WÖŒÀĂZ őłLïamęˆ`ț,ڟO•Ú„ŸXžéqÔ"Ҝ0Ź0–æYn5xÔèyê™ćÿ“¶ÈNtçPǓśÎáő'wᄷi )šJ }vmț™K QGšÄí<ÜGìNٞˆòĂÏÈbŒç‹<Μ%T":[Rč\yAôÔu‹e&«ä§7ŒY?ï§ílż;c"Ž‘v,N} ™tĆfOĘŃuU\ők-öòLčRX~őȚéFÚš'ÙBöV.ÄŃën~™”Z/ …ûeÓ(! çśTQ Œ(Ő éń—ÜZuGîû ČOl_‚ű–‚T›mdț”Ÿh, Ô;'f,wžá:Ő'ŒFÎÀ€PĆqP0 ű–Ś$]ci=”xK„żĂWšăÄ­ĘÁm wÁùˎ‚R‡VI”Ż4B9Í —±|-(Ń oäÂ39…Ą ’ISfę"łÁ"Œ:(‰Ï F72ń žbśĐ‰7€č(@òqï@ZÀ‚|Yœž|ÈæQùóÚüű«„O4<Ś@«œE.JòÔäÀűčúŸŁ€v­KțĄ"7‹*đáš2~ćá$Pg>”“,4)'icËĐ„œšŻ‡‹Z3Ż\X ŠÈ­íől8cœäu‘ŒȚGÇFŠțș#ïH•‚ą!hÁc ˆšžŁyò^ÙՙâŒČ=€5޶œ«•>œÉȚPErYF\­}–`ŒÂ7‹pAá:d†ăÏr6¶W“bÊ"Šíśàqâ?“Ÿ4.‚ÙxĘÍöđl]źrë Űšâ àń(kR‘šßDĘhu[I+wŸuړÆstĆŹŠŠ8 ì“ìˆNRćxo·șUÿêóĐs|ŹÄâ‡êűóűȚăăšiûiHź9záÒŽ\U‰DĘv" uĆż^ę§'U°ÓäŸ"v•§ć{)•§?í\OŹt.ÆŚ™~ šŰäItN\x‚ĆłüèڇtHÄ9NßÏș9ËC çęD If+%­8 y”Ô©7Ń߯\G˜SóG«xÊ ?)ąÛŽÄWЁŽ+zÄ/ìŒ-°śÀç "…S ȘíăU2§ĐÔ{AŁ•œ‚ö[êŃș4ç,à`7xeNЋFJ-šJs™ĐkńĘ&E[ÈgŐP€ÁąukÖísôŽș|ÄÌőúR7!cw™Æ{țhO­ÏHż ó€èńÓO6€(Đé[Ę  iŸ~źÎÁ^±=odPM†Ž‚œËß~,ÍÁ5ĂX<‡ć€6vő™ń˙Ï͜+êNÀC?űEʁV•q{v «Ž’Œ{Ô~m=žŁż‚ÓrWć\Li–k­ 8u(œšćuÿÄHB‘Łóô+Łê6Ož‘‡WvÅŠàúç45 IqœSÈR„ÁPh°dŸȚŐÙ]Ș̎.6ÖŰtKdžć–1óQ‹#+źőo†ĆOCk>MćQO^Á’˜é·ș\/ÚêE8ÔàŻ8ٌîÛ7t»ÒßrżźȘŐ#æa†–>pléǘ©šaĐH”ì”HÖsïčkžOÊ|șìôă·73U1 ©C“kÛônjœE9ÇeƒAű4\ŸČAiLr śKûĂ $œn_o…ßÂOč`°mxSŸ†șʚ:[~K-ŒC2 ŒEč\Đ-ŒòAÇÎ.·<Ç_Fgżv)A”ńÉۗÙN*“5 ±qś„č ìŒÂćȚ^t$źööUÀm7Dż€wf&żœÚŒQ˜șՇèdŒž€Kp•ìîĘăČ@RewĂFüEW[zŰFpeéù"ï•ÿ ›3üyęe”ńĂF”€CY͋•­Fh“ûTòȈM$l雌ŸÉêndĄj=_ ń‚c•^@”Љ‡ïŚáFŹ{^śú/O(Ü"UȘ,m{Kń]šUm§5Á‚UsÒŻ QœtĐó_W5҇†‹b“^„àHAkŃZâF»ŹÜL§Ü_|š;ș\đĐâ܉¶ÍŒ€`CÍ=‰Ń‡ÛŰ,čëč%EčjÓotÍI~|6{ËdVbE­¶@ìțą€7RòÜ Üž15#”¶™kX‡›ü‘m>æš)Ó± …˜ç2ÂÆfÁĂú‹ôD”á]ŠœÈđaĆĆŰ; &˜L#ĐțĆY)r¶ÓJÈ'êȚrxC]Wk*àä” +»(™Gegêó(Œö&ŃŐ8ȘȘÜïÇW%S…&”pL‘Ó¶D)Iç#Đ*Â`łś8í bȚjŸœ2ù!jÿWžGúÔ!%4Ç\göŒĆçی…Ùy&D}#uÒ˜ Ț$sÓôąf@Űń$Á” JÆĐ‹ę¶3ÖŃT4,€Z–xMl§‚!ŃĘW›Š]Siœì šŽŒD}: à„ńßő;L) j#w4"“*|{Ăi É+sÜ9`~­gűÚ;Ëd€ȚĘ+nfx·ć]сÚșÌD‚2űȘä™áGšÜę%DY+ c§ÛŠT+I ,yÛ|Œ"éCámùI ùA@ț“M±™=ŒJœXŒä„~˜a_3’>2ši<â{ńUóŽ:MCí©č„“ÀÌÏćî™&>Ęąśp—ÛQäžm™rúßùł6ÄÂ!ǂ2™Šl"= "Đ;eȘGęe±Ô›đ[? e·BqN–"U„€j<ÌҚfáđ˜HSœœöŽŁš7\áç!kO ŸŠNaüdŠ‚R±üÔę±e,ș«(ÍáÀŸŠmʁÛÉyàËҞ„ˆĆBJ"YȘÊtîÙ_0„É.­‚—85ƜŰÜ,ՙ}Ł*ŠQęTĂȘÀ‹4BJśÖČyÙi†óś‰n5 nÁ­ĂșQb I%ä”l8Z4í:°ùÓ€O%†3ĐwRŒș§q=߀CL$š…đՖè]“–TŐȚoöUăÏ pÔ)±IźśLc8Zë§æ/·ólˆ‘íă (­:ÍĐKàe@ŸFs~9évŸ_'2ĔDŸ§a”eˆpR)”ž Ž€'<5p„AâbcŽÚŒF‡_Ą 8^ÊMźÔìxÂČőä|Î(Ł'#”œQIhsge&ńl_3ßúźUe»Ûl1#ż=çCà9‹TĄÎ e–»Żű<>9ÜțžMFÄWmIö<&ù3·©Ăh—ÿÒaUžj…/«ZŃȚOHc•éˆôàyb†xƒĄpć ±Li‘FöG™V˜ŠŠÉčžÉ_ú'^űmöԒ»„fűßlq†?24vû»'{Blńƒ^)Žțy±œȚ§E%pû*xƉJc%,‡‚è\Ó2ŐțȘĘșâÚ}ż§FŒ±7Ń\;»Eś<x€Z5ÿ™dÁú+Œșë6Ûsw~CZĘÈ}Á+”|©:xA“ÒśÁvP©tÙAD_űž'Ț(öÊû&©H êAJ”l@ ŚÇ&ŸéęŸùŠèșgŽŐĘâțd"X‚ €:Í ©œĆú«W+ÊH„”kìĄê*âLYÏW"2ëú˜1hÆ­Y—ŹbŁB|őŻÙúVùmvJZ„żą”T9G}BJșYšŒę¶č&YŒôó“d3bïš'zȚ"† ;Ż8‡êÜ:TŸ:ś‚â|"Qš…Ôx‡1À“êhæz ăÖfcœá;ûA1S2 ‰OCˍd?îÄČcØańÀŐ8šł.ó5aZƒ+ßaÙÔ„8sp$î»wì>XćĄi]Ś9»Ă^ÖxVÛśætÔXĂÀ8ÏLçL=CÉ#„űÛțI\6@‡ƒ^üÂ;‰bÍC뿕Ò_Ä$Äđ»3ËôŠ*Eł8țçX= žć©oŽ 3Òeˆ>‹ayĂéűń%°‰œĂzÎféÜŠ/.jÖnFæŹMΫAČȚ èaĆ^Š ”±u4ÙÇv™1O˜«/ ŽûJl€#~’űË0Ą'ÙÌí^ÁScâšïáÄ> LŽč¶ș5|‘ł$A]0șZ”ČŽCŽ",Ùcsn V«yđËĂЅ–Ž…őRŸNĐç@úl/’¶Ű©fxÍęJÙőP-ȘˆÚì#|lĄuȘzŒ0F•/\őżNș짉àΜ>ŒTž«ïšÔùŁ~ŚQö‰(«úęê‘MßÚÇYŠ7ü‹“hîx ž18!î|ä^č*ĂlÊcĂ/íÂź0zˆ˜Â“Ń}@^˜n>Ąw<Š endstream endobj 166 0 obj << /Length1 1411 /Length2 6115 /Length3 0 /Length 7074 /Filter /FlateDecode >> stream xڍt4œíÖ¶.jô’ƒˆ>ŒȚ{ïœ c F™aŒ:zïDŽDtŃ{ąA‚èQŁD‚DŽOòæ=çŒçÿŚúŸ5k=óÜûșv»ś”6f=C^y{„TGń‚€üEme3?€Ÿ_ÈÏ/@ÈÆfCčBÿ¶ș@‘ž0\â?ŠH(ucSŁnˆÚ8@ĂË€D$@ąüü~~ńż‰€@ ì łh8ԓMá9:Ąnòüę à€p@ââą<żĘònP$ †ŽÁ('šÛMFŰ`ˆ€À (ż„àrBĄÜ%űű|||€`7O é(ĂÉđĄœPO(ÒjűŐ2@ìęӐ `äóü 0D8 |ÀH(àÆà ƒ@áž7.^p{(p“`šźĐu‡Âÿ"kęEàüčúWž?ȚżÁàżÁÂÍ śƒÁ0W(@WE ˆòEńÀpû_D°«'âÆì †č‚ínżKTäőà›ÿôç AÂÜQž@O˜ëŻù~…ččfežœ"ÂÍ GyțȘO †„BnîʏïÏp]à8úï“ nïđ« {/w>c8ÌĂ Șźô‡sc"ü·ÍŠó‹ ˆŠˆ š/ĉïW#?wèoôË|ÓC Úápžis€Țüą=ÁȚP é Dÿ'đÏ!°‡AP;š# Nűïè7fšĂ_ç›ù#aŸKțùüż~ÿzłŸQ˜=îêśoúïóY詚(Șqÿiù_ ‚€æ𠈋đ@BÂBQQ@à?éa ùguž țWœ7őwÍȚDÀńgC8ÿŒ„ƒž‘.Àńo„[ń óCn ÿłȚ»üÿdț+ÊÿȘôÿźHĆËŐő7ÎńáÿÁÁn0Wż?ŒézĄnÖ@qł đÿКBÿÚ]mš=ÌËíżQuűfäᎼÿșH˜§ ÌjŻCAœțRÌ_vă_»æ ƒCőž°__/ˆŸÿż°›ƒžÜ|A\3i<â& ÜM,A[, $Mú/T xvŃß§· cÀ>Ąx?ö­°™ĄA;.-Y,š`NrpżV•”<5 Ečx=cŠŃ%րކ-U  é» țŽa’ś&ˆ[Ș’ĄEG>y;wO*”í5ńïaG=°27BłzWž Úđ”…E[Tƒ– ˆčĂ-{K"ŸŠ&öæĐH<đÒ)°VX#Ѐ’\yŸżá űƒ%ȘĄNȘąË‡ëbÁ©ˆőÜ%ô±ù.Ń3/oŸ§oI^ÌFęp|0_a|±OĆ­Ti*_Ò»Œ4QϞǰÖ?©—ă+YÄfÌ!—+^ÆÄżNÊ#/PĆOŻZÙ[rű©!±#6s†öNSŃ>.üüăó+–ì Š/ž©Û>Oœ+>śOD_QƒwźȚîšc`»i˜čÜ!pÁIąšÜêQ+ć&Æ,ÒőY™"Ü]Wrì}•€ś [‘2œÔ5›'#(„q1 ˆÀûDăSĐ?œ"ś’ù’]zl/íg'EĄß«ĐÚ^ÎE[/ő"rùô1|GÄ.ț Èä,/Cj„‚7u<€îÿ]-òeßęÌÂûH\↻ł@ŸZ_ça1Ál2ü“Oû+2áț2w6Úo‹Ś{æÍ;wä]ŽÌyadT€ÄĆĐȘź˜ŚäqŻæsé';ßi™ï§ ^€í)U¶$Fv€]­'wŸŒ!$^œjˆȚ.V~_ ûôbÏ2YțaƇËS’˜~ËLŸÛëÊÒï ¶%ÓHYúD8z_ÖkȚ•Ud–‘ttâì˜$V7%‡ëżdZè’ “ŁĘ8ˆÊá d’šĂŒIÌŸÀĆ8©Ś7M%đàe­=c†‡äb‰uUÔ©źiłg]ćȘ~ÎcXĂ;KÁ_ûò>]aŠqđóNâŻ:łcí­-{žoAń!vP‡U}żŠÓJ|ȚgàŒ'RŻ Û=ùÛn‹ív;Źr‡cM`H—Óߥ€đš:AŸmđ‘„ìŁàłÁëÀÌàą:Ÿ8{yQ'œĆ˕Ő9Χj[Ț^Œ·żȚ1r(”ìŰéŒ;äż°…Ο'B’)N Tušƒ|Vì-îÇ-é­`ŹÄ:sXż€=ó‚Wí;)8Î>th‰Đ„*6­ Š$ëÔ\püRó:ۜy •č{zŠÓ™2țƒąâ9ÓwRЌ!phȘ;čÿ]l°ÔÊśÖMïœs«ŠÜđ-Ÿï—ägW3K·›š8™ß~`p…źdț4ß¶ÉŸŁƒašM¶KÌw)¶ §›{9¶zk«æŠ&¶ëćá•ö.čzPőŠ`#šô@[s!%ÄæôÜfö­*xÁšSÛs0n˜ßąTœV\@b?”ȚŽ' qšQ”&s5űx+vDłB4a'k:9ćÖŰ m·™ä»šÍĘJnKĄ…o\śÒ;oyIŠæŚ+„±#Me± ż·>˜L/[<ŽÔZß;+?=xȎNžĐă4yßT À“ â·°f0:OœT ‚JJË}]„ÿŹ!  Ï;™dœçQ&ÍoüÆ=ŰÊVę͆Td€E”ƒ“(ê<җZSäIڅǛęËJŚ Ú*‚ç¶{~_ayßlt‹:pD·š>kk2w ŚpxnÓ9H *óßjUóYŽŰ‘qlxńvX Ż„FÄ€/ÎŒ.)F$7·ôD"äCƃmȚd„p~țW„.Š űT–ĄyUóŸô ìÒŸQĘŠÁjG/‰`A„ž€/â(š/+|ąÏ‹êu‹ÛCL¶«b"aÙQZËtČ„ŠÓŁ'ęȰT0è/X$«f@–óW=_sn[’À§<#Ąč+ÖŒJëÀŒŁŹgÔ› ĆȚûč«9êÖJ3Y}ćeì…ɏFŸž*©FâœŐż?âŽy·l2ą_Dêúˏš ü„­NÇÉ\Ő2 b‡[ì[UèŠÌŒyN{ÖłgÜUF·k*OÇ#;b;ș%hËÍÈ”»çwI Â8(^Ąđ‚|ȚnCJčËlŐ ÖŒ©Xžqb3o8ź&a3ž’ŃIČčlŽ4“°†%<őȚe!{ÍöIûćùT‘©(tpä;¶–tëD:„ó:[É ő¶úąŸuÇ&ægІ°Í™ž,„Ăhż#mœ+—B0ß/ƒÁű`ĄpúÀ œ‡KÓ-‰»Ëțx9ÖĄ\n%û‰śÌ犾+‹Ëjg"…:ëđȘ ßkۉ©`Ï90:&áĘ} JÉ»[ÓæÖćI¶ùÌ0Đ!úąźÖ"ą~;àFE„‰!w”È|ïg`?Űí~À*ŐŹÌŰűç=NŁ`ĆÎ/.,E™šVur\ÆÓTÙ,ô™A pö20Ć2Nń­ńźbëzŚ cś’wËùżŒX·°Ž^cNœ;û†é…ÆűÊL0Tä? eq‚HąìúZîè7-ćŸ)ŹaŻ0ˆ °"V€iré°í0–ŁmÆŰÍæ: „î­!±Âîß;€<îûłnŽ0Ż ·S@HÄʔôșù9êjșBÓÖbÊO{)Rsž[/«–šCû œÜż·ít7ŻO=sžŐÖđuÓŻț1íì­ûŚHÊ%©}vÌ ܓżś O OêČ>#ÚÿéiXÈplČúZäÉËćiꄄuk<†9șšnl•oß%jÔ fR§\ÍIT2Ô ƒś©aśȚ=șŚE/‘źJeŸz|Ńr€Zéż‡‹6”À0Yźœm"0c)%0š€nü)aßùș–ÚŹ6œW=Xí­…cDôœž"œÓŠ|-$…ȚckțÛ¶‰ÇÂÔßò9H8yó‰MKsœN#Á-ćÔČ€I"ś');#nߎyŚV†òÓŁïźŃ*G7L$TЧLÒÔêóŻ&1RòđČ€ŐšÎșÚ”çQ8Đ‹ć ŠŃ›$ÈRi[IÛtŻkeśî9[#f# ß"ńö?Œsüèls&xê˜F*™ăæđsXŠÜwČP Æ8°mÎhá?`ÙÛh%ö*ʱçyä©7WêÀéž/†„Ș«é’NȶŃŐL`Xűđ íd<•‡É`Ò!e·éJùUvŐu ł†Ćû„q搀ÄúWKęCƒëâ3ś\0ì;ąÎ|șÒ­żÀ|(§è?‹Țé”_ÖČÚgéŰÏ5uÉVˆ†Ő(d^lg|ói“śòz'ƒ6êUČmčȚ8°_ÙE?>«Œ5NżjŠą> Śv§ŒÊ‡Í…rP|ç¶âĄ%q·°{ŐÙSŰ\éq”QŸł;sŃőz$D‹őîÙôÄÇÚî7MەO„­ÍE)žž%M!ĂőŻÌŠúó#œ'e§Ž˜ËöÚâŒ]áwžZőê ś’°ž-ÇÙ- F”o)Žűâ܆’ŸÊ œtqDÒ܊<łúž5Źàń!Íò§É!ítA?~T›–MéĘąh H7NżDćŸő^9ìȚíÍ”çÔÀ —à~őÇUË!G©©­VÚ”O Û-g;VX Ԍć‘ÂNa9ÈŠšÛôÊEùÔö){}ÊȚÄaÍÂ_č %ńOˆéXd{· ­mmji^ZèđĆô1­¶FŽ}Ȟq†Ț gÏ'§ę–ma(ą|ïÒóuiNéž_WŁÔ`Đÿ™/ž”b»›đŰÆl`fd­”céĆ.żäî„äșckŽ/ă0=2Sm±ÿóœĂ‚,•€óŠœJòl2úúVXÚÉáÏgFÍ? öŸÚDGŸq~Ï»1Æn /†ûQëZIèź]MÈ'„•żHéô—TA‚WÊÈp^Šđِdó.*ć±#ê˜ïéźéłÇÖjœÊeżœ2ûŽʆ8KK”(ylÔj>_J}ë%ŸuŽ3ì‘=ą$%±hŹŽ'_ŃČk ¶^G@ÖźpÙæ|­Ë§c%qȘ*»ßbĐ¶ŻƒśšČ üąòH>YÌIL&öž>Jê8}zŸö'#eâC^'<ǚ|Ÿ/ÄÙë€û*U_Ûțí0YóFjđŐńH老Ïì<ö•'ž†ŽŸeGŸ|§ą±ÿŠ|ČҔꚄ­ s;.™'–3¶Pcț%é'ïß+» qšÍÍ`țÁ!€2Çù’©›@Öțé'€˜âd>Đăv‡0n^f†UÓÏ ŽżIfšäËç?Ïî`shœh" Î:{Gû;ƍߛÜßz•V·‘yWtŠÒâDŃüs=±>€ùœnśr™ó«ÔKcȘHĆû\sN–ȘĄoŰ0…7uŁŽ;Xč‹ęgˆ°ŒÊđ’K°˜i±ušçRŠ (ĆڗWòX.â]TTUE«mç‡Æ8™AÂFk;Û%ŠéâęŃéVèęˆÊƒë6'6ońv ț‚1ŁUIC‰~oúƒđŸ*Śîœ%Ÿ&xÄLăŚw2›NwTš?šä…f=îâŐ/V6mURźóöÌeá)È ű#â*j%Îï/r‡#č¶*MӂsłOqC«Œí:ŸYY+—z{âôÈjč ꊓt«Š'ź`ę*‰±qŸéĂb±ț •3jûđžŸb>űÀœ;v!,ÏjŰ4o=„ Göˆw+|·fĐűȆE+TàŽrîëy€˜–ő.:-4~˜đmć U&èfì: €'”őˆŠ`IŽL­Íew€\ËXٝ5Žo,[mX±3/țŰŸę]=ŒŰm0óHŃoëKÄ=CöXÀĂBÇy”öùÊT›źœFłLČOŹșïčü3bÏĘVÒ–$g\}ŹJĐ%4ă>üäÛ ;Ut‚2+WĄ©‰ q{ŸúȞŸŰ]Èńê%¶ÌÄr0ŒxRˆÎ΍à y±ìS3WĘ­dÒ*ënt©s aW­CfzŒMŹ{@Úú¶Ž…nv?ÇWîČKÛ5Âa’ §ÏÆŁEínœĂêœ*·6ùj˜œˆŰ}&PH>ȘÄ1bjÙĂG…R%4€q4’ìúççițÀ©žJÜì&/Ž`Žg9NÒzżd: &Uy!YæSÈżžéŹßdÏšI›ÛžŚ"‡„¶*ƒ%Wkˆ„3†qHŸàŒ$œŸóŰÖ§`ĆŸ%ϊ/¶ÚmzSFč‘}g+ż9^Ú;x„śˆ}KI…ÌŃNڕțĘčîœ ŸAÉd)Íœçf GƒH??H6W;ăëżÇXÎ|wŐç„òa·lő æ·ÛuÁ–LĂœœDꉒy±äŰ%Ą<»€[žó‹ŠŃ=oĐj9‹~Adm“û/*?tϧÎÜS:šź1O?đ=~û&K€fĂ Rïžd€ŸZ“Œ»œæÉQ™ÈȘ§0ÛpBèąŰâ4’[{zèŒÆ0NI‡Ç1ŸÂĂIź@WŚ==«•‹ûÖÁïÓčž\émg{§q•žXß>ĆP:ÙH”­đĘ\Fb{5Z­ü­ŽfrʕíÜś±ŽșùEš^Q8ŁŽŻćÓSąŻŁ/áÇÁäzÓs VSüQï’ly±ĆN‘{ÿÇŻsŽöQȘûvÂz9><ÀœödVÇVŒòȄ«Q‰Ùź}ìĄK /J“ïrà{șëé%țOáÌĘD¶î­ŽF>àŐyŃ«Ži»-ÿmωŃâöâ sčòÄŠ@lț8Žű…ŸÈęÁ̉RÌqI{M«ËęÒi’Ëát†Aœ]ù”ł„ÊsUĘźĂáŹ@œ-Òä.Ț2Łń2ćƒ4p!iրR§Ë łĆtĄ#<éêńőśt‰Ìž+žy5V†śŸFëlÿÌmkÚŐ[|x€_à›ՙôèaĂyßtmIyčș‡èV‰=tní5SÓΑ‚ëĐÂôa9ąLnŒy"súUÇĂŻ™ŠSR•âŒKńjÂ]*x۟&+șrËlĘ·Ü"âzGžR}1ŸÎì Únw5«Ć î)čìäàÎGeÌÄ„@ËođIûÌ–8 Œ»oFŒ·Š2ł©áÓꫯȚEï[Ó-‡UbI7Ûśekhk~tšHŒ~úèĂûÄ—Yÿ‹©CˆÆ\ŐgĂëjBő2ŹŁü–Ż^ČÇŽŚĆ=m_ŒúÜšûTG¶™+”R O7ű•ŚÜÜÌćgÁ/klG iáŠęÂIțB[Êć”Ć\8NO;ždcŸĆűF”łunÍwJĂîź;hąöóô8êă șÍí±xlń?á…`°-żŠß¶Z:RÿœæčK°Â=?č „}4•èÄhžźZ ąçÊʘ2ßWvŠ˜ășP™e+EênŸ`bL$ËkŻÖŽo_–χŒjèvĆü?_\*4aTEt^ĐdQÁ'@•°oŸë–ÿ͌Șę endstream endobj 168 0 obj << /Length1 1429 /Length2 6269 /Length3 0 /Length 7237 /Filter /FlateDecode >> stream xڍtTÔßÖ6!HˆH‡Ä€t)!ÍĐĘÍŒ3034H‡ ‚€()©0”"R’’ҍ4’‚€Ä;Æœśęßï[ëûÖŹő›sžęì}ö>ûه“ÍÀXPÉá!àhA ˆ @EŚ(%áä4ąaż0 §‰‚"à2ÿ‹ ‚„€ŃXLŒÆòtp€– %e€R2""QéH€*Űê Đh!à § ÂĂ uuCcùŚÀăÄ JKK üv(čCP'0  F»Aܱ':ac„‚öûG974ÚCFXŰÇÇGìŽB ]ćy>PŽÀ‚‚ œ!΀_ôÀî?• ‘pLÜ š?ž1ÂíFBXu‚ÀQX/ž3 À0ÖÔè{@àÈ:€żw ÿŻ@Pűog°“ÂĘ śƒÂ].P ÒBûą`žó/"†B`ęÁȚ`( ìˆ%üÎ )ÀŰÿ–‡rBB=Đ(!ö«Dá_a°·ŹwVAž»CàhÉŻüTĄHˆöÚę„ÿtöáű»qÂ]~áìć!l ‡zzA4UÿR°É0W !"""%-€x ŸNn¿›űy@~ż`lA€ ¶HÔ‚ę# @œ!4Ò đż ÿܑgšàq…ÂIț C\țì±ÍGB}Ö"Xí"ż~ÿ^Ùbć挀ĂüțCÿĘ_auMu•ÿŸŠÿmSVFűĆE‚ą"à/‘IaAÿ c†țMăùjÂ]é?ÙbŻé_{ÿÏßáàü3–«Z€ç?"·‘qÂ~€ÿßRÿíòSűŻ(ÿ/‘ÿwB /췙ç·ęÿ0ƒĘĄ0żżŹhœĐŰĐE`ÇțßTsȟĄŐ…8CœÜÿÛȘ‰cA î ûś5BQ š/ÄيvrûŁ–?žéŻ)ƒAá úëYb[ó_6ìh9=À>(Ź$› ŰÉùç‘jp'„󯕐€‘H° ¶É۝ ˆEgˆïo„…à4Ö€-/à‚@’üêš$ ńôÂȚ;ț`…"ì}à0ˆ ú?(đ/ú§Ÿÿ†Ć°0Ì őűGbN^H,ę[:ŰŹÿ”ÿę@ Ÿ'’É1„“lÄęʈ†“7J·}Wúï sź˜żà ˜D6zĘŒțŒ·"3ly€ôŹ»őÖ̒ÏĄâëEÀæ‡ȘëŃuɆő?ÏíŸ ­Ô“L Ò~(ŰTzŚÁLÌ$hąžxáhúÿîG-ÎOŻ»7 òšN|ÚŐ}ßu`Š{ŁÆV W+$”IÏ1_ăMۄŸáÌuÌ„g'D 2ńQîù’ SŸžbŐzÊOŽ/V`” úätÔ¶ÔDŐÌÀÁ`EόHÙ;Ä ŒžȘE7PT8óiÂśƒ\!ëK2ç3‚·„ÖE3* Fqđš¶·Țœ“MÀćœg€î۟š–“ߌPÛ#Ùői*êíăšĐoĆ@˜Ś›\”gŽÌZ\î?gš’țòî 0Bfé¶RÛđłÊs¶»ç“àqÔóș“îšž„– óŚ  Lź>@>57ëۙi™ æçt^ł9D“ú–À”śł»çàH耰ïÊgŒÀĆ«»mžœL;9ßŸ•Uïé5-ŒPŒĂ|(mĂŻÂ%őź?>ßÛ+`pSsȌâÉÍPky”;—Àm([ © Çï-”Ń ©û±ê$-JL|ïä(ŚTo[/ ó»*/ŽcVfZŸ(‘oȶŒ'Ű·^Ú„Ù.}䌟xTRąlGł0;Ę+ó‰Qî~òŐD*"śQ“QÈËf”~šșRȚ«ă„Ń6bÇ;Û&ÊȚlî5 äæ&śÎ–úš_û`4U9č 'u;Ž7äą'm'T ÛȚ„(Ò>:Ź ­lÔ?áÁč‘ykö gæê4țûÆîłï—ŒÊ·MNòîű/àŽé[bû<ŽÄ+ły-Ț^ •xœ†{ÊĆ6Ÿ’~0çqì„Kl휩RŐÓی‘Où­źȚkÊwź7ЉPËśoi Šč3çt ù©ŻÆ’łï/úg)ž±&ÔȚ+GÙTÎQÊE–Üłi¶Äć˜WUˆ1ęF<žz.ùìć_ő\CxgÉíôX†ehçXJ6Ûű‰Ž(Ę[ëìtŠK…ÁŒl]"-ˆœÖ)âˆp–äFč©»*RżQˆ©ćČEÊŒ„àŠXžTș©E^!D0Ù^©ąŐŁ…Æàp”H&JŸ%čj6Ű6ŰŒ9:Š1z;ù Nžžç&hÜՇ$‘’àóĘ8†#°â*a(ŚżÖÿœ”tÈáá{č, Hq Qڕ\ę†ûnUÍéDæ\·ÛȚ\NÄ|ÙFQuő›7 Ę  R©›Ž€öœ9ÖϚîúȉG™îĄN4pŠÈÉd%Ó>Ô!”œ€b?ÓMUp éŽUèČÊĄá #?z–±Ë‡N,œ6óž»!6uu«âúâȚlÖöǚuyovßUœÓ|ZuŠc™g.ÙŚŐ:Ő}i)Rڛà 9OŸ2fsÒÀCŸôìNgcžwŒŸ’eòĆR[hF›ț[7o‹zv8FĆJY=»‘„…ÙošçfŹ6wT›šŸÈ°ÙórIMŰύłÒZÁdșëfúÍH_wÜI'#ƒvï8—(§kŠc…ô±V/Cš€âĄn©h;œÿœWRZNôˆ$_z=ß+ȎVȒĄ+éęEó íùÚ)ŽNŒôŸŽżÚìčŸD—q)/=hÿńNhČéӘŒÚÀ‘ăŹgŁR›QĐ?„46 Xh.êËș~Ś“MÇùKùÒmÄæĂe ™đă.ć{Šoœmł‰$”Xæ"üO9¶O;C8ÛË>uÓű|û*j‹ÀŽÍÊí/4Ę>“{­ç*»ï€édȘ7‰&R‰Š»ü$Ăš§æÌ Čązž„ńŸW±àæđ›Šluÿ“"éoôśșž“–yz/4ÏĘôÎȘÆ–ő)7_ńuŒFĘi ŐݚčșŰu·Ÿč·+֘F•Ń”čÏ8rŠLŸ à;sHߌȚž›<Ÿ,ìrۖkä4P͕a1Sâ5VÖ^•ĂĐîHPaTȕò珳`ČćŸ›IyîÔMXÀA„IìDq8/p"îM ’(ZÚMèx–íÍśđ•.ƒ”ș€öTcĂÏÍ)æ/™ž6’ù-ëź_I†”䌔k<ŁłY‰ő›čÂY8 ïŹ)ïĆüXî€-9‘ëêŽȘwX]ÌZă»—^Őù<SÂ0§%ì­ZòćkfÊ æÊLAkfŒ‰ŚfŒ»ŠĄ 軥sŻw(iki ëAńű˜Fƒ,ĄőFkC!Ÿ'Ś^ŃÛ[ś[˜ĆPĐuü0Ì© 31ž:ôÏ9%ô$y\N1†#ƒĘ’Ïj“œhż'FÏŚ+śéUîł„Ș* >Șù•Ž\”z™ŠšC€ÙFžÛBcw;'ar?šaĐŰŸ8D́Ildk86—ȚȊGIGăr;,•±m!§ÌOeôR ·șPǝ)5ʊ„.á72í˜Íg#čDĆ}(‹aț€«#ąæ»T•>ł‘Ÿ¶ô„ŻòWŰő_œ€êé3oăQÚÎ żrđĂ<6|KӝbcűŹő6ˆ35Ąężn§8r¶ÏŚu/ˆ2æ4y§W§-•PAÄo”6¶e,Ì8ïČ<ì Ú¶ô„5Œ`șQwgÜ2KŠRBśuĆ”ù՝iêĘŰëTOêËÈ«oęŸ_čĐ1™Ë4çČł©ÊeÎ҅Y3ŽűÀAš1ÿzŒ­YPÖ@Ü5*4iÉô]qNS‚Lœeÿc >ÚJDÖ€Ÿ„VÒ#Ô!ƒ§Æ=W °ŸŁ”łœv„NȘ~˜Mû)A6ȚćÍàv‘¶rôܞ$€ę}Ë kĆÓZù”uŰGC§QŒ%yÁĂŒÍQïłN« ś…ăeŻ3pß°ûp(łŒŸŠőöŸâ7jߒwáj<"ê=Čęu4ӆžxOŠ;S˜pŰËŸ%›-—èy>±ìŠ†éš“-Ú}ŒÏI<ŸŽ·{~) UXŽôȘó73ćÛČ@șńŒEûHĆJŽRu§z"žÁxŸWs±ÔAș W„Ę=ô$Ž„pÍ/ ±ŒmÓsàXÔČ«Ăâ^ńŠA;ÚŚÚ~R›†Ű>§Z>Ûú†sÊ6‚«I4bčR4ü’A›sĘ©P­ąv‹ćgÆ=ćÉ^MÛÛ!ƄÀcÀƒá: ·›œÖ†Q:nKÁ•°‡ÆÈK?°@ŚÀRœxtP–EúZ<“í”â!:KÚžHE‰€Ùù!F’“̧ò€Ymá5ĘȘśŁón-Ąh4aŸ3©$«B­òSƒcčž—OÁÚečR+îÈ­M„żÙ‡$òș -ƒü3j:kò–4p5žRćź’vźAŒá8w©Bł@aL6Kfo1bà2%6?ż†%™ïĂüÔÙNlùŸ{©aŽș—cŸ »‰Í§fl~~ŐčÄź^œJQ¶Æíą‹ș>Âjanzt~T]SkÙ^oG22ÎyżŻ“MŁi7N_㊹»ï «ęéû8ÙőèÊțęোZ”Țč7+CmgîpL^ǐOs«ž)„J€ÉEÓ_0Śo~Óò]1čŒ>‹8\Z"HŠì”C˜ăVéòì'"qj^ߙv„[ܟv „áy3—;ÔqkÂr.‚ȚČ­TçŽöl€äȘUŒŰœŚï^·# pÛÔ€ïUł“±äqrvŁìź—ß r?uöà™‰K“gżD‹ßC¶‹YÛŃŹłÛ'Í[7MÊp›Đ9Œ«Pęœ&ęÈöižr{ˆ~è3ÈŹéÒsVŸÔk}Ą]P]&æëśvÿđìÈ +ÎÓmï‰fČAÿ%;ú…ÏÊń~œ!z&‹”ïĆîї[l.(4žSk%Đ ‹E3C—Æ5gC]Â/Ô mf^xs‡tș Qrś/”ȘÖśNÂüÎYé„’iónXŽ©Œ+ëpßš¶{_Ąî%aŻžqę€zűê'9ZűńéćB|ïâɂűŁ·À2xŒęOUù BțUŒ«ŽóYQź­âźî©Ă„Ę—êÚGČ%„>›őŚ–5‘ž»JEb.Jaó–PŻÒÖÙć¶ęÆĄĘ­/”–È[ÌȘ‡G2 ńSÎ,Ś ńgÉJhŠ›‚˜DjȚĆ:0Š »Îmq@Úz䔌‘ńœŽvCE»‰v1ۂcÙÇ”;ùœ~žő"žoÜmÏÎđ|żkš<©W śoIèŒÆh6;Uș±4s<őW]€2hMô©·ŒçoŒ(”’éß]k(èÈ~ÜŻ†OBšowâ:x(â1^+Ęb„›‰YŻJÿd7%y{G8Ûoè§x/—òUYŹuEì-‡/MœjÙù­>Œ-[`–Û7ręWĄû:à:Ê û=oÖșæÇźuû’Żîšż'žž¶F=y!ç»płŠ`UìśŹ‡2NŸvíî6«‡ ÎWWțOü]my€CUg«CjȚÎìÇnFĄÎûsę';›óG|I4c†=_‹ô]"ù§šæ"ČìÄń“ŻM‰ü‡\żčö—Ÿ$zUr†ÒäÚš,Îüfk1„ƒxg| x]źGWâ ą¶­‰âEé}yăûév-ƒž:Deæ Ó탇7Ž “’„ä·x?€iÀłńêŠÊ”€Ű7Tٌä„EŃș?NQ+ŻB~>ÖŽű‘ä’_œ9„żx5pń“Ÿjò•…ÚÖëÔ[]BߟČ5¶±óiMKĘlžČd© bZ'Űœ?MÆÌőeRi]ëÉjÌÇőD”S”śSőrW8$œ+M,)ʙŠ/Śy~%ȚÿzgM!g€ûhëží4DçlŠź3&ÀżF‹ą)Uż,X°ź-öŹj»Ö}„ëöžƒŒôôԊ„Ô?B”­xCìB™žńr]wBQț>ݜč›ĂČnCŒüŐx^śŐĂŻ…m3U­ŃÀçuuäACŻU±]tŸLș”șÖI]è/đ^ä'„ÉÄČ7h ßéj’Sst|fłÆxql7’ŒÏ̈O*›FÜűÍ jÓFŠá5"yeŰq1ű‚;ËPŹËQÖśNíV±Vă^Ì}GŠíiÎZŽÖÓëÂò=čúW;™ÌHłčĐV_Û7äyw_¶TۆÀČNń%M·ŹŚrAČ·ôžŠž© Ć±6oő [4ś5Fú~ Č6+˜Èl+N€véÖôźHŻ[ŽÌŠŒ•+ć­w[0# mwùR­qK˜šxg‚ÇkgL0$È ś ș ±Ò«UŁTÁęQqLjIoD©öo9ÚkűbCò~œ}yiùUÂ!ôĐ>Ă·%>ß4;0ŽÛ"©ș3:B]‘Ütì–€&© kZÄÚ̑üčL·™ęOŒnùŃWÒ|š"AŽĂŐ6ì4D»bŠSțŸŸw{-ƒ2]đ{' " æ‹zxŐc›fžùđ–ïčRĆ~Šń‘YpŸ§đCĆ MŒÛuÏNÒÂÌ‚Lđƒb‰6ŸșTÂ{Y á`4Ț*æl`”ï Œ ÊoŚ­2Њ-” qÁŒș7ŒnUÛMÛ3&mżÇđtÌúsÍDòčVŠÍÌ;Z–2Š}Z§­)úóSò@ÂÏèŠûÀĄOJkÈËXšòæĄòK†^-ïVmÖ@\âęȘȁgfs‰‰™$/Î3 #ȘŹgæäL[,d˜ź…MM+8ńq.Œ%ȚÖ«ŸQ6–Ž: oy‡ÉfokÏ|çșnČŃ0»lçXlȚAD8ÍSÉÇxìCXzČÎKû8y)ҎZ YÖfé_(WĆE‡|.«äŹ©rÛA8&4ˆDđ>WÒßæ3lŸŒś"6S[œ‘Ż/T[a|ÖŒĐxĆ źŻ\ ŁÎȚNÛ>sFśnđKŻÚźèÄ †T ]˶ćČy·`%š·Ìź>ZčAÒgÁœ#ŽÜUl3ŽxEŐ]łŻ9gZšz_Ć ·i} nuëŠÖß9êr{*Àjp•èëoƒA[$·Š„SÚŹnŹïU@Ž}€1a a?*ŽȚpjˆż8œ~üȧ93.ùL^nN4G!‚€ˆŽ3)où"=àîx‡ÁôK ΔéćűWËlé%1u‹ęF™ŽŒÖŸoÇÈè»ÆJuòæ)g(êÿtŠwńߙTÉæì§&§(œę5Š•Ù‹é•JŒr7R%Ï:˜?z,+§Ì‰êޱÔcè©ś” Ô4«‡#]}2ÀPÊźïјűÌ“mm‘9TDpV5U–ÁčpC†è‹œlQĆă„&kbY>oÓś—w«T(7ßAÊmArŠ*űïùąMšK$ąúmč6ÜméUŒół°–žËŚ|mń­QiËΚ ©x…ŁŽšìȚC”D1eŐÇAŚ–ô’W\Ê )šŠf]WtZŸÉ| ăŽîŠôæâ=-‹›=Čá&Â,c”"'›ç=‡„‚,Re/spC5$5íőyçŽYFș]žŻ9S3)pÒkbü()œ.ùF›èÌĆë”Ns<»_î‹Ő%Âl~3Ù$zRdh© ëtԅ͗ß0*¶[û†Ùł°.&œm€Ę5‘șWÿĄü@șŚAÊa,xœ„'?Š êŒžäҝĂê‘ÙQ<.ëö:ĘÀÀ9óJk7»žç@h”æ“zü5›ö’ Äq uT}S‡&5šÀĄ_dEDQ*͕ Ś’ìà•y‹‹F, óv+3ÜÎőfwckĐĆő§æ™áʐrX^ùætbđ^Ow$…\:ś°ynăëÿë, 8 endstream endobj 170 0 obj << /Length1 1491 /Length2 6589 /Length3 0 /Length 7607 /Filter /FlateDecode >> stream xڍxT“[Ó.MštD€^CïœśȚk!:HŻÒ{éE@Št€7A&M”.  țŃăùΟ{Śșwe­äĘÏ<3łgÏ3;YaeÒ7âUpD8@TpŻP €cd!B|@  !+«1ƒüȚBŒP\ò1”Œ SĄĐD é D%Ä$@€ (ń7á% Pù@:|M‚$dUBxű{A]Pè<?8Àœ 1žßîwˆ ‚t@(ˆ;:#!ÀPÊÿ_!8€]P(I~~___>;’áć,ËÉđ…ą\†$ÄËâűU2@äùS!+ÀŰŠüË`„pBù‚Œ 4ƒ‚!p$ÚĆîń łŒ4Žzű_díż<€?‡àűOž?ȚżA῝A`0ÂĘś‡ÂNP §Ș͇òCń@pÇ_D ‰@ûƒ|@PÈMűœu@UÁBWű§>$Ű êBò!Ą°_5òÿ ƒ>fžŁÂĘG! íOêŁÏƟÿOsĘà_xàß+'(ÜŃéWŽȚü&pš§7DCù țƒ9CP „ššˆâ €ű]ű%0öś€ü6ț†Ń5z <Nè2 ÁP'úƒ0 òP^ȚàÀÿműśŠP@àŁg(œđŸèhâôŚĘ/šÀ ˆ–ŸűëőŸ'ŽÂp˜ÿ?ôß-æ764U2ŐâțSòŒŠŠ?@ Ż €WBˆ‰‰‚ÿG곏ÿć«wB$țÚ.úœțȚČÏ püNÀżcé"Đʅ8țș5PFż üËę·ËÿMćżąü?…țß;Rő†Á~Û9ț"üv;æÿ‡Vź7 =:ô,Àÿ›jùktu ŽPośÿ¶j @èiP€;ŁÍ+ Ìț ‡"UĄ~G}( ìò—jțÂM~Í ‡è#Đ_7 Ú ü/zÈÀnè[‰–æo=CÿΫ# › ˆ(äćò'Dśœ  §Òâś[Ì~>8…v k 8!Œ5V( àwyęBÿÄüOošŁ{ù7.(àwțuÇAŒĐft»ț6üîPž7òŸ~tŽè»áÛńŸÂ~$}àòę«°·—Úá·äĐețœț}‡@ ~0áâ<,éú<ČëČAÎ—w{wmœ'.Ćb VĆöîI ‹6^žÚŒ§ąœcĘœŃlę…Șèéù :źĂË ?ëWa«YêE( •MĆcȚâáo§Żœ!ŒŽZçI±ìžMòŁTR{++ötłù«(±>ĄgKŻ{;–{w@ù9S*QĄ°gë‘Ë:jÄš,‰ÂË*ÇÛXĂdòë4éB±+æ›ÿŠURîÈÊʛ‚ÁlĄ“­țzŃșhJš;šL…ŁiC4T©š/lŠ"çJU™)Ì4eîŃl«Űöb«?fK;S‡„Œ[œu•Ânë=kőnBˆÌËö­žĐÛmćă'ŸŚ–çÂӐ͹ÈZïˆq>’sT/+êÇčËÀmêYú©3‹ššŒ°ĐÆzߚ€ś0BÈöăÔœKûÄŒTA›L˜űЇ§Šąú0FQ'łśWҙJZVJ} l]&ŚuïŃ<|_Ÿ@kÌï§ĂÏ>”œéé‹9F°2P̈́„˜wçíœȚM}Ą!rț–Ü”KEŐšőŃkǙ\˜<bXTˆŁßÙŁ&e)/±0Ül*DZlLțÎX{#G—ÀB2J!t–Œ„Òí°ŠáÙûZѱ'2ám2™âĄÀ‡KSǘÊûÉd›· úŸĘČMqđ:æÄ·Ő*ê±t±ŻĐeŚD §@[śRź>)Z̄‹ÍŻ)Ț˜„ŰQV>Ž.rJü‘ôuçŹćšÈ\Ą)Ö—Ń;ČiśtŒĄÛr0‰>çćÔ~7{掟zËśsœcJ‡5É!æÈ2XMkČH‡ÒÊ Uœ‰Ő H»ëŹ ß«oÌ©őì‘€Ő…”đV˜‡í§Ę#՞ŠÊ Rö…( ĄÍ:P6‰@ąXÓeâŻâÄ ©–pÁy8†‹S+áLNëęʒ=+–GmńäMßŐ<ŽÏûéW(;éù5‡ÀŰeáȘâ?|ô…–?đ›ë‰ŸńW@ô6>ÜÛ±1ó€SŚiǍ”^«8n#/±Hž+1ŚW9ÖŸÜŽlż]Ś^…PÏ $ ö›Ąč3ŒËȚÛćMԉ Ÿ<ÿnŠ{ŸÁ0O%ă€ü ·=yëì[ÆfìŸêÏ»Ö!ÚäX†.ÏU Ÿ”ŚMsÇÀˆ•.mćeK}ű‘ô>Nsˆn§É{:{ś›‚/`rô`źŐXæĂ:ÛĂڏ6ŐîŃ[doĄ‘ZŐzĂ3IL·žÏ>ÿ±sï«!ùjÖL*·wìKΐ·<ǃjŚXćìm“'A›_żƒ„¶U+aۙ=§â~8”tx„3š4u3…ÊŸș ©&ŠśŠ«S7ÄJ#w"LMÙK>…ûir}Mś„2 eF—ey"7+jzŹ™kŸ”fæQOÜò1TÊ\(Ă)0Pv!€!™•·ă)ș;Z@ÚíFq7ŃÁ ¶Ł q©o‹UĘ”ë»˜GYîš1ŹàÆŸŠđû‘Â?¶o4bąŻŃäš5Q5Ž€":·šï*>àßśy•“·3Ч7ÂiĆ<Ù#h>bjĆ^ »éÉPÜÔÈϛÒ*—a<+ú•G«ÔʰȚær‘ˆá{b[œgÂĘżűțbbáÓŹ5ą3ÜöË ¶„íÓrqXfòÖ d;[dä+ț” [Î<&ă팥 âSŹőÚĂĆ©Šő»aĘFÌĆRɟ2ŻŒm1ŒâDNrEeȗJ|àK诛űučɍ“]ÌQÓU”6üžăŒ!Á±ÓƒĂòEłY܏èó $˜ŚU`Є|xiłyöĂ\`5±nU8Ƒ +ò[őçăBFû»uĘÒ»á[Û”Šï·&†"zAUy6gŸäæxˆ°NPưô2Ńԟz±>}vž†ŸÇš$RŒ¶ŰúLŻRè.ÚœD/ș^I•5Yf}êÜòY`”p#ò'OșÛąžæï!E«<ünîJs P0%yliS»’ï Š$ÇÌY)óeúԘ5.š8Zfšÿ‰ćă‹vɟĘo9‡»“T,|*sdŻíßî„ămo%z#ˆÁO7`ę’łŰK—°°LMä>UoyEûșD›D|òćÙb"xôŽeqg«6>_[œìm‡ÖòÙik!gÎW<ÏBîwK` ÿ́ńÎČą|LBJ;±„k{^ù&< …)î5ûYÁdăÔyÊšrž”ÔQn„ќ ‡’#Â""êő…›źY‹ĆËŐéOŠÁMYŸĘš–úńÖ 8ȚÏMÚ .°’±źźśĘ#;1&H?ÂÜ#łoö«„i ¶;šê"‹ęS„'żśčOqÄę0„ވńu†J 8éíóEì4Áœwüuç wśP QŰWꐌèE}„æÏ>ș‡;ÌjąÁDćûćxE…6-Ć Ô)/2žƒv8¶ÚMçŸŹĆ«UÖÂÄ”œèÌîŹzÙÈüPcdŻ6Ś”sôȚëÏlŒ>ą à_nj] ˜Ń jSÆdæ%ę¶T9đh§”4úȚvȘ0ŽS‹ÛôffĄMa+ŁęU7 ÖÓ8Ą~]l…a懜Đ)aˆÒăj~T%—;•ś`űșœčÇx©.À)†_™ eNœê? g2,܄5Śô›ÊA{)(âNwÄ‚zËdșúç%†ő·˜ș}Ì^§ńŹsVĄI=M=Zxّ‡)p«sÛ8Vi5„ÿ5êaGê@Nô­ ŚA¶D ŚäœÆŁb„kœÉÖ9„Ÿkqîű%·ƒ@Ăüó/Dęù0eí#KlĄ°‹V}^8âŹë€›]zÊą{ »/ÀI’P$–À„"ò Û1æK)")+ĐF©Z–ć[• À™i*–ë)ącö–kü[^Ęaăeăuˆńä-_ç•D.[J’pŸùűŰÇ}{DÚŠqÏȚüŒșt'ŸMÛ°ȚÙçc.·OéŹČ{fđJB»ćńò| ‰q™†%âÏg‘ŒM?3țŒóËGúăâŒòsG­ą·šš±xŚ•š|:80€șZíĂú}ÏžÉ{ *3ƒÏŹ‘łś4Ÿ·/˜—Ò–ô Ą4üŻ{žòáÌ>ˆ°JPÊĄü@ćmxš‡Gœ*WMćŚÆŐŸ#/œYÇ žüv)ù ¶“DW=ĘŸč䦞ÙĄźŠ/wVMbŸćcd=Àę&bčç4mżë©|q5$ó3!ę{ŠOD/Hżś2OâKcRđÖv:!·ł‡B(OÏ+™ ŚAr„áp±üŻsDiGYő-Ù ôd!|ŸùU+éè†ÛG%Y(ÂőŽx,>fz_‘ -M/‰~èÈÖŒ»ÇÉĄf ąYŸĄq#+ì§ĘńźÂLˆPƆŐç^EFÓł‡,Ç*%wS\eÙÈj>=ôœUoG*"tQŠzè<ÛÛ$üX1śÓVțŸBe Ćz·çóÉăQÒûk/W§…[đâcJSŠžé;Ę{KP{Ê3o4P$z¶Ùu‹ț‰Wi…UêÊ+ûD]-?©ÏzCü.ÔX~ŃE–íNò·OÜËxQIœ<ÙŁ:ž›nhÌK —čWśÊ‰‰ó>Śhw5.ÿŽ/îë8CńùĆĆGyÄà¶nù~]6 śì•§ČæLoÜ3!_Fä'`wIÌ~2Ϙ*©ș|,ț֍z.ő–Žÿeź71(o·ŹČ{€Ż|đ „Û\ö:&űœŹÍMAĂ&†“Zç’4€ŐšäăO‹ŹEx mx".nnò[%—mĂP*ûXƒtăȚۋá 锉Òì‹ÆiڃŠŸ»‹ŐÜ`’șĐVéâ‡țìîûHé\“ÏaLv=X]ïżn±—ëæ«5­ßʑ%ÁšéjÓL?2—Ő,[T>•ŃœŒÂìv€3$zR;XpÈ2/Šs}zÔ3<îVé/t‰ŰˆżÄX„žÆ©oö'+ûnŽ_ڔ†uÓ„Pí9> TIŁ)ëä¶HłžKÎÇBeșŸăB‹*8pcqsc±Ț«§Â9;”Ż'ëTÂ1˒?=ę!ôű<Ûă>Ì țIșÁÇÜ8‡őJ*~S̖Ó'ôÆéž=ȘÓâ8v7s äiœđ=Jƒ·x?KÜ”’Ù€€çz qĂÜO6­ bc“w›ś ž~açș{íijŒ ?AIÓÍ%žđăËU șÓpŽN:”Śdźo”\ú?àŰŹ·g}XMGVÁÔeÀXÀdCźù”Ÿ9í(ÖpŚÎy=:RY;ČBMżwÖÓąO4xÊòćčÌÚáï ävć…Àœd6BŐŽY$»sôsŹ\:ÁêôęŽčŸË „”ŸźçÜöòèŠižăz]€JNKÖ ŽB2 2ÔŰ/6”Źł:<8qê8Ïqo ìî瑗p6ÎqŽÏ/kč­ŁÓAŰÒIì9èĂÖZ?rĄŽ¶-€‹ŃȘm‰lò5ÖśLœ‹ìê˜lžÔ/|ÄÍûžźȘŰäQvŁêW“K}æN­‰èh‹ˆ„°†#óêHG—§Ę,ćì†'ńŠ‚ĂBƒ7%fÿì롔ęŐÎG…)|uÉægOÖ-ÔÒ[6:ՇÛ|#† m-ŠóhHxŸ°šVŸÍRW^<1„•ó8ÁóŸÎnżŁżÊȘ*ÓȚ74šƒ{Ÿx^ŹŠ” ïÒôP·ÙȘ GcÄn76T ÿŰűnÀêŒÁôlVFÂUŠœ0ú[YE`^“œëz}…Ć>ې—4ï}ˆue(ù†ź ›S èá­)&ô8„l·ùÄg}·ś,DkÉ,°@gvUHî]rb•ΉÍ7I3©;ä>śSąÈrn™oHƊTŒŸFWaN™Ì§żź!%WÄd\ à»ęywûÜÄfëYDšÌŽyüÍíë4‘æ—ńĄ^Ą:(Y™úhźÍ0%잇¶ÄĘš:ŻÆb{ëć@yæŐ)ŠőÙĆBŃ0œvÖ^D±~:› EŠuî­ „ć,üțt:‘Qê…7'óç&©ïËF™Y}>ĘŁÇW_•6ÉőjFtò§©2‹šđ5ewp±Îž—” f#4Ì#ł5Ó2{a_ŸW"üš6ëïȘ™Æ|ŻDőVű‚†ąöFCDȏKL7F«šžkÉË^ÔÖœŒb‹o2A†ç=›ŻôßÙyŽg\” $r„æćŒa‚ûšLdŒ%9&;-š!č„7ÿaæŠZőւxaö.qq=źŽÏö‡+5Ș"bs @üeČțć ßfÂfÀkÌì^”ȚB*mŹ; _ÂÓ€șcC«ê©„źŽëƒű7ìá;Ż»ê(H^Jß'=ŽČÖ y žç\€$7ʝGEoRZæ 3jĆ:ÇàT |*í«Ú!„”O(0źÍ̱ƒÎ™Y”‚ì Ž‚?”ŒÙ<ńVŽ.H# >e œ~-.Áw=_Ńčă@ëŁæQéć–#)eƒIœ™·ëËNÁÏ4Tw$ćúP )žF&zàAWA%w«Č5zbČanfßĘÊJȘș±FÍëÙ#ž2”ß- „ê“6©xțNwI\áèș„|G"D#K”û€ŽöKÖ4ŠĘ<ӑJ‚[EŹńXw ?Ś1A©ÄÆIsț+çtĆűÇ ‹ú‡IgRжÉzUéBßzčo 5ExĂ;±Y^Źi ’ìț,ČÓÅÜŰż%ŒŸĂòrÍ><˜W‚Ê€ÿuÙ¶N$ŽPnáŐĐđîLC &#ٟ˶M|čĂq/ÁőçÎĘ»]AééËńŹAnČ}}_uƒŐdAc,fńM•ž|)«NȘFűêgbTy˂nDôœ5m;żĂætÿ‰Ž©*ŐPä緛ƶ ™„ŹSVpŐ ÙÔćëÖ3!TLkÍώbŚêèòț æŠæg‡)ó„ECĂVTłÚń.EXITMœ 17Ș”›ôŹ!xêiÖ<”~AgÈz€ßA™zĄŽȘùæVÌ­ń—ŠÛ햱Sśą0ÜyV§]ŒxÍ,)’I°'4ï±żhž‘©ÜZöŐĘ~Ü‚UKƱ\ê‰ŹéoEúöÛMƩ㙎V…âŠF™m·§ż9{ȚHT9€<˜enFœÀïűòĘԐsJŁ{a›ńzߟìÙSŒàWx€ć¶­UjˆR+ei]+aóû6ì8Ä<§=;n0‚QčœRhhđ|h0ÈVC7ČòQjXëȚ)ŽÜčÚŒž«Č‹Çł 1œ!—ŃĄFPrȚá Ó™~(•œĄ5Yœn“ˆ}ś&™ŽŚÀŹăI„ȚőŚéTa.œ€|à¶SWpFÛŐÚòÂÂ$eòțźÌžE†ĆœÜæóË7Ç»< "đ5ŐűLț諱űÜub’ŻY—ÿFiź‹Eœ|­„&ô †08HàgѰ}+šĆÿÜöêùPŁYÁššz+ì K·ÎșWÎV˜ę°à“CŐpçäę—ì’Z3öŸàIcÊŹdŠć%»ŸDçê9t —ńí‰+ńŃ©§7 Ywßßšśș[ąRVwĆFjzÖR‹ ‡^ô,:@e— ,őJ+ŸDƧ;v8ȘÎő‚Á„,Ì59·ƒŽ)]5 |đÙi­c7ßaíÛz.ô©^“O!ܙú9·qßI\őËÊKŒźè‘D/űéŠö~ș^î+ʔ ù•€u/–*GŽ Ž‹W-\ž±Ë(šj6Ț\l~[ÍüMMBàŹˆ—±U'ƒÒ± *ZșzDÙŠs$ŽĘäPCăNà˜ČaYżîŸ*üîX2%)Š‚™(sFCy-żÛ§üJêaűÀ쫛íĐkD]LÙL\DA‚sŹwSC¶î‡‡ömÙÆ··“›_8äG­TZŠ[Űk—6æł­fŸÂ\Ô%g‡ćE‰<‹°Š » źőÄ]U·sg·R>(Àá± Œ°t—†|yΐGëÀ.:X· Xè$]hUżÜJ‡€ìGòźe†v=Ń{ґFÌźMleŒ[/“ŠÁ±öčê]‚ab§ąæ¶g͖!N©Ë0ÙÎyO”蓃_f`cEÏ*€YyVđÈtaË?KżâŽS|y!Łêąü!=FèÇŸvń”°­™ca|čYÿá/ŸB`ÌÖ)KĆÚçqîiÇhó ,¶ۉì\©ƒűÉjŐ(fk_2nZ);4GxLv?äĆ|łŽV”ź ìî»›QŃ“Ą,Ń8-$DmUV~MșÂy Â'ïß6­äS“ŚÌà6ĂBÏșH/Íw§Fj;xžQ.„îœyšE:3Êî­R ő˜ÿڛScą9@”O~oœ0î+”ő•G+ŸúsŁÊÏń—ŒCæW 7 áÔgőÚîŠçX ĂjöEL—źÎ§ŒŒRńÇ=E,ńJ_Ȟ·E? Ï é©ś™Ïtw RêFΗS”‡u«Ro90î~âGąIÓ<ț#Öőèϕ,áB)aæÚź JÙü ê#äłËÓÁĄæ–N<†ë—șڄ»ăäéÙ{J·ÌÆî=zÛ4ÜÛĐéú6`Űî–ËçR,òçÒMśŐÔ,vĐД—ûíڗî€b;«I h›œő\œo\ç.UôË\òŹ#œŐuüčŚ(öőeăćÙáć `ïĐ<ÁPß5ÒAĆ0‰(ڎM^H>șhžEݱ€8‰JП`41qgű”ÇPŃÒÏKîB [Šă4ÛóăÿK’ŒÄ endstream endobj 172 0 obj << /Length1 1238 /Length2 3938 /Length3 0 /Length 4816 /Filter /FlateDecode >> stream xÚuWTSéÖ„8ˆD€{AA–P€Aș %Ju’Kˆ„$€@l JR€#]:ҋ҄‘*œW”?0őÍ{ÿÊZIÎ>eŸłżóʕˆ‰ÀÍeŽPx'P#Ë@e!jqo‚ »͆(°ˆ‰éAƒÇé"È  OÄ&/Ș @ĄjPe5y@‘§Z™PH4-J ȘŽÿÁ…( ’ 8h ŽEnŸËçŒ Šżă( áOŸH$ј‰?Ű%7 Ăz(ЙENOđ"bĐ.d@B) èb@4€SĐéę ïòČÿÎ2Ɠ1HűGöÿŸLĂId"ƉBQ‡‰Ù L-XZŽƒŒiEq$Z]2™ &'çéé)‹ÆQdńDŽ’F…ÉrhV–L%KÊZ$ C+R‘ a_Ti€Ę0€ƒ±1$MDàö™ÉxƒCb)(FOÝiȘ"žæwŁyh„àxÙIÄȞÀuőg v?Ax‰6 À;Ó"Qx$Ć €ćÿé##08@©ä}'v$áEă„•"1-PHúovišȘh…IuśUĄŐBaöÇ í'bÿA `œrńQńcÈ$ëü_çŁOÁbMn4%ś·Ű_żÿ Aža°^ęŻC2‚ցMSò;„!écš Ž!#]g–ÖÜnčźX €‰xĐ? …@țćłpÁ ]qûÓ*ęáČߞ« š‚EÿՈCę»kšl=ËÙ\±1‡›Kęu»Üz8$”Ż“ŒÒyA$"ŒXh—†f)ȚPÚ!Ł@êțąžrČ8<™–(ä[ŽĂ Čìße( g€psCìĂż#ç9c„›êƒ»`țČUTi6é6­ˆ… Hț;C^žBąĐêłÿçTpÚö-Œ©Œ?æ ęÛŠMIÄP[íïK{đúû»ĘÿPJ[OŒe!€ŒŒŠ ąŹš*žżőŸ‘H ‘H[„ƒMđ?íƒŐA*ˆdìĂ#/Üż›GÎ=™ÜŰŠkÛ食 pR^~âÇ» UCĄçșЀZÆaŃM66—Œ‹ï|’hsb>ê8ö$S0đ*ȘV?Q^Ț|}E<ŒÍd.œg.ŽšvJ‡<+Őú€^;áÉ#êÆ·nűíÎű[ö#ÏfŻY^«üćíg;ó]Ož•ZČ*5” ÆŚ¶hÄč6wč ÊQòô,ń<Š&Üf9gű,6/{xÉŸûIr^ÆČGÔn`kśűV”ÛȘk”ÎîŰ&S:æă°™ń{KȚă•fç,â[Łƒnq#‚aŐ#wY'Ê ~‹±–,8?-úÇŚlú~ZBWćIé!öżëٛyœż°ĄëÖ3ê}Ű ÒĂê-§ńê;íLAŽiáb›IʏÁ­YŠóNŽqa€7/>4kUž·94ûf ˆ-v˜_„ŸV_±ŽŒțxÙšŒź1^É0uß!sM?Ö©æáŁÆÛ±@€É6œtŐo)bš!+ôÎe%mŸLmŠAà‡`•-(1bŐÁ• )Š»ŸŠß&•rű˜y„ ŠšŃ2Ûb…Čg»j‰”O€xőš-lB‡*ę›cæíĆÂkzl7#Yšü–“ž#&o9uûű|„Œ’ßBŠŃćíŒ 9úê…úægzwòùTQžŚîÊPÄęč1g2Ö*$Ì =P7SƒŽžĐ•…T}(e!]È‰è ›Ń¶{!Hüz?%ń[ˆÂ±áÈžguSâ\Rl{«A‰íŠ!țMȘÏ;í­€5î.lŁlĂĂÉòk„·íG ȘÒ#ÖlÜK5j[/ ĐÌăì):hÆćÎșzvf±ÀÆŰȘăFłșً§`aŸźuÀXC á/Æ*qSę9€ŽÁétőù A‚JŐČs§ôƒő$ąqYùël„°€Űś>ŒÌ b§ŁrŃÚ­Že/­ÛÈôHÒÀÜ”nt˜18ÆÖÚ¶Śțœ€fęł*ŁC„}CKéw•Lž‡ăÚŽÌ#Í«ôç2+ëJnA5ږŁ]Q|æw^b6'E”Z ;`ƒŐčy“Ù7bòGdìŚ9Č3€fÛéâĂo|s:ńuÉ/îóăéÏŻßGÇáŹOÚđZF§m¶ÇŚžŠăû±Í§đü„)Œw܊0©ș>’ÊÀWś y„§0Ź üˆžËyÒćĂöÚö gŐÎօŚKwíœșŸ8|ŽÈă‰qöÓtč$ș!â«2ę\ÇtŽšșömŻm8äŽB•U€`|—/ÜsnèT sBO]±uBëŰ­îä{ù\¶†č‡ê)…F›śÛ#‹Uæ'Ôó¶U'<Àù$ßÜ1ÁëĘTzêi6F6Ç_Ù_诚Yâ"łn{Ș”Ć"+J©—qUșđŽ|HŻ”őY_~Źvćz#ÆJ)WKÈŒÂì7ÆôćM€>”šđńŸ0W©ÛŒ§r§æÌÜÄUĘéÎ.nžž”‰ásyË„ÏéùՇ\ț~Ș ’Z“q(ÚAĘœ&Ć"Ańìm3OiŸÎ đ ;ÌŚŠšN;łÊĂÚ!nlqVOuĘpYá(h«ŚőzĘô™yS¶€Đ¶î!ÏnÚœ•†Đț–Ę#%n~– œŹOj ž™ŸJëbș-?à,)|$3r5öMs ‡äĄ¶șrŃîœè{™»•ú/‚ϗU€ƒ\ÌȚńn%ĆÜÏN,ĂûƛŠă°aœ©>VĄŸzm ŽŻijï%W»4D8)™±ąâWŸ^șéș!Ś4ă[Ő]]Ïę*ĆLȚe:„Ë5+8Ï9.4Á^±ań5H‘°|QțźżžN*ąÀ­ÎlOÙ°|5Crœ3ÿ†±ÔCńÜo–}űæŚìÙ?jxšćAl††jƒÂòj/…Œzwl}§ }æ§oőoᒝőă8‚ÙŻČqi­NÆo˜Ü†Ik & L^ê-ÎCŠź]JF§‡<]ȚBz~¶łß.ȘˆxXĆ·ȚÍíS|Ò+vuùtk;íŃŃŠvâcJäŐNÇS|čș$~ûœțńœ›òŽ{,;q«\î?S–Ϙł|xREÇî$òÈ]-LÛilÆ= Á~$}O&ɰ^ˑ2&ÉÎÊx€>›k,êzT€`sűEU7lòbĆ©,4YfśÒ>ìÈGëjLïő)Mź(zt„ fáèíçŁ,˂Ȟ‹ąȘ ąu[GśŹ{}c.~ïž~œè⟊Ńÿ9­iĐʊ=èŐ±€^¶ą*źĄ©KBhK=&H©{GŐ,qP,SKól(k§À1Ì©oș‡~Œ52}]‹“ÚÎ>ÿ ‘ài‡XbV5~ےwh]nꄣ‘ äN€mˍ‹Étb‘‘+č<Œ©|mYŠ#lă»y͒đò˜Ö,—Êd?ÌcŁ»]oL„%zęđfB͙ z)?Ą“«Ö©cí6ÎTčuΞšc@˜_ŁÚbƝ«^&é]Œšëï–ZSa±iç)pajȚ7ù4çq0d·Ž °æîdöXvÂ~0˜Ö s,ZÉv/˜žŒêg}ŻûâmYŐôé˜á€ 0#tgń=â}±e2ÓzNćàł­ș‰ š* ČĘëtÆùNìdq:Ä7ż7Q_Ž—‡NèĄT~v(ìÈ͝ì°oÿN‹†ŐÎ<àO!-ńűź}xźÓ·ź>Tô‰u̍țÄH„_(ŃnHMT2?»6ÿiÇ-[Ej{ri­öǛËyłÇ86>6‡ °ŰIä'7șš5žżœ`ȕëneYփp/0nÇń}UĘœ©!œxŸN[$ŃŠ]jî(.ńGĂȘ`Ț¶ì™àDśü7€ò©Ó–Îë@ßQy0[ϞêCȚ”Ӈœ;e{”æi@'gÏôN”~֝Q…JțŹ~w„Sƒ_ Ž3柋3Ih‰G‰Ì'őáo­íĐùê<)[Ā©q1śÈgnŽ’lq šûÇG} F#t'ƒÇ(1ÁYá!ÌE‰!íìŽ9Ąï7Ç Ó^Á1Çę7âʆżú„MӏJ*l«ë|ÜS™3ŒâŹž»"Â=c"@ćqŠBéYjXĘ0źwűv8žTKó‹'„ńěٟ”„öÜî'»Öč_+(ŸùùHŸ‡(.WnLuŰ&Ÿőiíë™ ȒSZMŐÖBČìgöB„u„êč‹bMŸcÁq™-Đ%çđ~^q/w €è-‹«|x)šXht9›n°_šDE†WÂöŠuAĘ3sŚU_›‰?ÀńuxɂèłȚŁłȚŁH”„läbˈ«’ óT±èћłòśôŁÚô­Ț0Ò)šŰžj‰”Ôẗ́u±zÄš…Jė‹Ą-ÔšŒ+ő …ßmy”źœcEæÛuÚíĘ/‹őŃŠW­{Ž# RÚ^ŸŚ3żì5+\©~æK”}>,V Éïń€PS@Űtöû@™áÏȚœ~}ÛwĂWGzJĐôŁeŐ·eDÏĆČŻr~Üńíà:2è>Ȉ9îGû őuw<“ăëgFO/c]~/”§${QđžiÚiő$Î„ŠĄĄf2™Eˆe.ëÒÔoęŐFÿçíôŠ9Y*övs•jKҶܙț—ŒòŻD<‚TŒŚ=2kLzXZäŻ$űæR+)Gá>I헩4?M™ș̇—s«•Ś„·'û¶» d.đ§čLžÌ4Œ"z}b‚óqY|"I=ƒk”őóęm âùóò€A4[țòŠeőÇ`țćO·Ù`§OŒ«ŸĘڙČțVuÂeòńŐüZđÀƒđŁùKuyÁ*w­g|ŚÓ&FVKۖü25VOŠ54`}€z{ߔ7°œ„Ÿ á| ž¶n6ÚG‡˜~b(šx5uïCÓë·ÊőŸ‹fœ©(Š čà!źÍ>: V-X%ÈrrĄŁö–ŠŐT'UMb‘ÿÈ„Jvăb‘èoU°Ïô1fŠ”łșÔEËÓSVˊź>–3q2yzYŚŽiæaÒâÿâ„Ü»ęKrÁEKx29h"š›S€t”ËêED'ČÁőó išì€qÖ>òą źùâčÚ^b”ă{%ŠìÁRč‚Ć?™[Țčž°żöÙ(Ê6Ë2Ç'ȉőUˆ·aäéÀjÂ2Ê/ȚÉ#z7<ŃzÎw3û•ÜfüF#ÖÀê}GÎÏÏ^ƕhŹÒs•æŽi>怣 ԀőWÊM‹G[Yʏ\`biűšštcaÉ0O¶p69™”]—æò:ŚiL-2mŽ—”7ąÿEw1DRűK”yۈŠdśTykÔSx­àühšû—‘ÓÁObż`Fmù†’9;Ț^)ÍgŽÍh’eęÀv”k©?hÈû;]ž”Ö1Áçtż™3G5ŻAĆ0†Wٌ©üÔ:ÛĆŠF˜°è”ßaó‚B”čcòŠŁĘcÓàpMkmzêfą#ö™…ÛÆń"CN1ŒÒ/Â=UÇŰ}ÉÁśg ·«èe“„Ń$y‡P"őô”Ì;AŃm—^óć5țđ"CŽȚ?âJŒÎf[t‚ÔR}Úp[ÈĆ»ĂËCJf֓qŃÂĂg>ŐÏ_úòÖOÉ68ą„ƒ™eö Vjû=‰y4ć ĘvWJúo Źî<ĄXEpŃŃ^ZUCßVèX Ćjé‡úú'èżæŐÛ Z”Og;Ûo…JüigB‘7îvÀk&z)0A¶œ/™èßXÌN*“—ąś!jw§§û–9Ę»GʆIùÊűŠ=?Š20ä/.ÎĆžgĂ ‹iÿY„Wméï=ÓGă_>>2çÈvŰWćŰCșš_USđŚŸŠĂ8ž:}vP°ÁBy™–™|5`ú+öä1lÖiR03'ąy\ș»4©DË4Ă늳·ßślQÿ€œfNîúŽŚ'”ÿŃYì endstream endobj 174 0 obj << /Length1 1225 /Length2 3188 /Length3 0 /Length 4045 /Filter /FlateDecode >> stream xÚuT <ÔmŚ.’]”„òüÉƌ%LxB(ûc+QÌòŸ1Œ™1‹%IÉČ%KÖÊźd-ČïaÊZĄ,É6d)€Čô œÏŚûö~ßo~?ăŸîëœëœëœ{€%Źl”ôĐD$hD$P•`(°B\&š#šźJg©<@ĄLȘÊ)-m@T‘pAဘ#|˜ƒÁapM@ UaíÍi–Ɂ1(€©ï|qÂ`‡ąH‹#p*ïHž%`ˆLí'ŽŠ‘țčóÉŠ ś/uy€©&đŸÄp*IŸd֕ ÈÉĄäÓ8KŹhX„âN ĐĘż*ßŁ,ˆT äț-úÿfâ*‡€QA4@# A2@uc ;À$€džƒÜqȌ™”@aæu„RIpeeooo–@ƒÉXeS bšÊXBőĄÊC= €($…cŠ}P iÇTE€’=p”ʶqKFv”©DG@áih)ÏÄ1LŚ™ÈŒś`Ț0SY)TGąD2`uÚÀàđ;l@ f€ˆa2ŃDÍdÆÿsGEà€ úPwt sáËÔeŠ"‘q»%Đ(8ö—ș"ÓU,‚ŒÆƒ”ĘŒ;ź0sĄq;mPvńÿ2A"á}wc‰»ŹÿŐÇQ) ó_ó1ąáńŠ“;Kìl!đs ÿ‹‰đÀá}qwšżs~Fê°L3”Ž êП0Žb„óŃV8*ÊÀ đÌ:wq»ăqéçn+€ ęíÎÖ‡r'ì4țOșsàÏEȱ4<‚ü[ ę{ćLwëV6u°0”0RűęœíČ ("zÇ9ő‚LFűr2Ÿó€űÁ˜cGƒ>;«ă (CD*3 ŃšțÌń9w^‘– ŒÀ“\;đODPF‚Ô_ ÊDđ$úß1@™äŠÛțłl+æŠPm}I ęŐÇîöëÌlƒŒóĄÌ'»ăĘîçŚÿÿ+ôő‰>€Ÿ’PRŃĐŽ˜hšȘúÿ'E#“™kłû#ÁtôŸó ˆâzMD rKJIŠ gŽŃO;v_ŃVUVQù°UżȘuöh%Š9&ʉőäVûùóg\>ú= –Ł#9€b\ȚGȘÆŸ ÚÜźźîpZ–‰Ł›ÏćőÍĆT4MP ]Á{őSą‹LŒڞzŚ»ïú_«Éd8Űqše{:jĐwŃfSg˜°ÜDŐòÉéŃ„/˜|ž3„Ăűë"n„˒OˆâăÎ/=~'‹/yÄÂăĆNôFg”4ë,yÀ.Ÿć n‰ĆN…‹ˆœúhDŚH/'ynô_o_Xc••țêæféz@ÚŠ©ó Ć3ùÈSțćpżœ‹\ar-5zăyc"†Ż‚źŒ-(§•è{› 5ßz]d Êeș[ OÒ±!òçoAӌț"49Ô€ÊÜìŐäéȘ"Ś\<‚ç%±˜Vśó’"śF[2ʰNćTć…í€[țœż¶/~5ąŒ@«2çËK6 >4›SeÈü•{t©>/Âxéҝreÿ=˜ÓZg0Żäzî ô țŒü˜cżú_ő)Û9ïÜßź‹žNńYVtëRöφ‹™wK…đŹCmxZkÜłgižm&ęńP”ƒ,ŹŹ™3'ÜŸÈfą!  (ȱSę±W'íöžeä€îdćöx*śswÓÀŹ.ü†ëÂÖÖ2œű^ŁFÈšÏč$č˜ï“?Țoš”]Jí·€™î/<ć\mőƒ^„˱E`gL§Ș–šˆß0eJvwĂ_ÙÆ‡đíŹÇòî~ŃS7ˆŻqŸő[ŹŁœ†ŻOX?±ź)Pt:Œ­šOÿșǝƅç*đz%É;\ ËmßżÁ‘ZÆę-~)šŹ\óp;yę¶L\öBĆôˆä©^Q~5Î*Âiő,ȘWĂ'g§àt©—6AWLIĆ–MÏa^F—:ä&ô}ûN…ĘdsÁ†}O€\¶z}˜#6t#’9¶Đ՗‚è[Cܐ±Ÿ[]ĘPòȚWzŠ~ę_;2;ț^Ÿ‘Iž1š”„ŒUŽe@ß\‹RÏîșożZŁ=­†–[˜#đ™e –9Z„ç,=čŸGÁs4;Ő”ËŸÎZ‡Žá{p WFŚDUžŃȘmzê óqWâ7©ÆSt¶Üńö†'•uÚ±ĐoÚŁ°+QÍKG+ż'Âg1ĐԶɌ§uéï2cgü’Œâ‚ìB>ôûw5췓șżŒ° anêă»Öp]8Ÿš‘ß탭ŽC r?REòșväK–ó§&! ‘~2śŹÆC\enæ kvÚqdr°ćYŐ7_W E,čXŃŁ·úKł…"0ŸŠXÊŹò„Èä–_ËöŸ„Ûäö rÖŐÇ<헅A6ŒśÚ(BXÖږ ,Ő·ÁUŃàĘۑú Ôö|@­Jđ—›yŽ!–iҐÇΗ( “U·c4ŸˆęwRŚ…Vp‰/ŠReFšNïżit適V\-y쌟ô^–á&űd”[ÁŹ'±žöđhq™țž”Țu{eßŰőíŠi–Ïî*qËwRU.ÓQ¶&Ä'òëy9!Gœ2nŠ”ràŻÙ{{łoœÎ’Ü[VÌwúŃ Żuϙ?žŻłÀ9«kÆÀ­Ąđf)祊ś/qćЎYŚùƱ ÒÖĐ3ä§° jàÓșRïŁéá‡ÛÂÇIlj±oŸTÆO^ȝ8/Wïßr@€‡Ńčń|_žLĄ„üW‰Ìƒ‚¶ŠÓgès|Wá«Íé“ÓáDn>đl,é”_&Žu:Áą}Òp(IcʄҚ!àZ<Fx6ž†ű­66š‡ŚÈ*/{±{r7Śofíß+€ ,~ÄŰű9Ëà%úxĂç„Ï<ÛmńHÊ7¶Òó2‹zĂgâ_ĐÍCìú~])óRȘWŻ>Ž‹Éźș”ń{zg֒8Ç&ŁÇóÂO¶đŰ€ĆÛÁOòCÁśŽ áUČ+ę "úÍÈ6§ïëJҌó[6à!]zt˜û!:ƒłF…çÂ_ąŒą8KÜkŒšYƒăŸ{+|ŸF&s%¶cM ёüIőžąîȚN&%'ĘêVkË%żżÍłà€·țÁ&RꉫȘ ʧzÓy+NŸû¶éuY€ÄäŰ©rŸ‰eBb|bśqUD™/H^đç­ŐÜ4èŽt([qisË]û Ÿš5>č©àqúzä딡Ù(çq#łZŸxcé#6«œÎqąŽsì7â|>ŃĘPàĘÊ&ïɓ§Î-śăY A‹šÛ ً(”Fˆ]©…ÓƒGŒ>­ćölÄÀŃ”©QŒ5ÏÆÙŻ-ĐsŁ«âÏ«Đ:)W›Ë.ę oëpڜDkZăÙ\ńÌkG>v|ӒjŸ\Èùíüm‰Èg!ï"Ò¶^Or· ț\îÙ.ŐłŸŸ#ŻÌóú«—€:NsöÄćđáÄáĂ/ÆśVśŠ_źDźÉĘx›^YîËJŽÔÄĄżĂü&ɍŽÂÁțćÈű!ûäŽKŻŰș”NÜâ3„_ô––žŒjż&~î!}ŠĐéTXžèŽ\±ÍÖ{OtŒ NŒ™=yŁvvʏ]+ˆËÖÍăz™ŠĘzÿbŐő)ÄÖlôƒí«-A•æ#ƒőŠzȉDÜtoĄŚ<Ï Ć…äűqŁ›ÖąŃIæ%xOăò„ołfoäq‘Ÿƒ_#ÄÜ»ȘÏ_łìœ4|ه]âw|3Q>Ț­vŒwŸÖ+”rŹ3kWڄŠš{.©Ń_Æ8€Ï™ĆNL óș­ JJ«EïL#ëđÀžÒfe ćńÁ|›ä–8—”ÊćM?š–Đ%X Żâ§ÊJÇț$•4·ßXńÔąÍÁÏź"é·"ÀÎęšEkI1’_ĐŸ ~É#r^Oߔ…QĐ2Z“§¶ö&ŠęMźr]ÖčÖáô8ĄÂčÀc_Đh"oÇđû.87nł‡]eiĆÓ zęêG ă]mèt§UN”TèN]€q­ÎGìkŐzÈ듻Ìz?3-OIĐ2Ÿé`É@Óúśöž/âÁf‡0cB[Ői«ÒNÒ0“ń‡Ê* ŽEŹùőÍMjŸez’fúą:ïŒ8‰è~4ˆ|*0ËÍÎàg[DÚrÏ  żJ@ÙWI뜊rBlRÒ{CYÛïŠ'ÿ} ҝûŒ±NÛüMkïę‹hÿńÀéȚ·Ïšce&F;É­·ßIç'ÈŒég’EEż[ü…’SD(ùZœś>)qD€<˜«—w­<1掟 _tĆ.ŒÏèÄŸ8UŐæ7栅I-wŠźź_čżé‘€ Ę\òĐžÏ_‹”&څČĐĄÛ2‘ÏŚæad>”Œ .LȚ?`±čæć}!{:%ćn2wU¶ÈòxÒĂWv~wa,Ώł›|Ąš,·àb‡:ÛC±<đ$”!ĐĄD“^éjxJ)/â›ëDšđêç;vH:%łì™ÜŒî»\}^c-Đ^ZÓ5Òë>mš…N [œšÙŹŸòűё†ąâžËŒț7Šdż> ôIi)șțnźÌïŠ4ë¶t&K€”Kkš^SœĄž•wńłâ9!^e‚=ßî[ÿÙGDKIq‰‹ÊrœK<]Êđđ?—Źòbœy9Éč-đ-àÜÛHĄ OjÙŽżźćČ LSäytïŸAȚ­dOššòêXrç1‰Ìă&Ë `fÀ3ՊăN‚›ßüúH8Ҝ)!çÎą‘0VĄä{tKÇԝ ‰ĄkÎêŐN›± §ÏȚYđłxjO9“.,ÔțAâj@vfÿÀ~96·ÆÖgĄ žićXJ}•# O{”߉XĆ»b}œ–|;óÀ;éêÌő+űśč[á>⟷­RUh5æđÉ”ő.őȘiTČc›=-áșæ†àçÛ!ĂùÍx—{‡ƒ·.Œ}$äïžü!i Hhęd@w„χîV”ÒqsȚ%dIÓ7,·Țžžż¶Ùj8œt‘fa –;[0;\Ÿ‘Š*3ż5qCtƒ;“_†šÚg«-śúYŒÁŸ-ÜŐy©Ž˜&œ~3: Żź:©ÇŠÊ]^űŽöùìÂYÍÁ-Ӕü€úÚJÉĆ*ŒnȚÒíJ ÎtžM-țž»(?G˜Ż XWt&äŃb=ó¶Í€“O[09ŁđóݶÒǎ€œ©*ĆÜz꘎ìźGń†Ś ûá—ńÊéo3Őó:W1)nÿ†IîŒ endstream endobj 176 0 obj << /Length1 1614 /Length2 14229 /Length3 0 /Length 15036 /Filter /FlateDecode >> stream xÚ­yceۖuČÒF„ë€mÛ¶íœÌŹȚÿCĆżÿ”–5tvŽphÿiûOæ_ÍÿóùŚJśß`DmíLțÚ+ÊΆ¶&¶Śțr»8:țQőïÿ§éÿXÿœŃ@7 1ìÚȝ1weZfșsʦܑIí>Fđ‘`ûÒF•ąż»^ߎ°]ÎJƒ·Ú`șŠiźvś„sûśC)Șٱ>LkòȚàU>ž71eÊY';őQœ^)Bú…z”çőąÌ„ƒÚŃȚ€ą’^ÉÛüéNfGèëGJ?bŚ?t’{DăԆXŒ.ä&ÔșÂó ČÄÓÇòĄńёáȚ[ÈțC\êœXRnĂŻ>Éç„IÎîŽwÆ/źŹńć0rxnű“ÔÛJòAG2gà觚~ț`†9êŒü„5|§ćž„Ÿ-ę$ÓłG°NVïòŸŒ|Źż"hC…$š€*ùőÆ#ò!‹ś\èFțő’ÀăŐTną$çö BlÙž”„êč€ ±^‘ŽSłšĐ<đț~° œąû2âbwúéhW;nCÛUŁŹ4j\?À›P?ćGW8űaÌg9Sˆ_ć”LżȘ3lpóT„ß`= „ÌiÉ!‚›,dûoƒ9†û œ·…íTŐ&íłč6$Í«†t€CÁÇj"üFLšĄzÇUcŃ9ś›nÓÜFî$Zp›Ź”ÍwŒìĂÇ R„yL© ‹7ü$B)EŰ țG$Ûő2ŸŃs{1%gł(9ST?7†úŹDÖ˜óqëÄł-a±l:eąÔ śòÂç薉7alŒ4YÌ0tżAÌ«ƒ Eòó4ŐŸ|AăgŒçƇ;Bïw ‰żÄîŒ|SŸ,TŻæÍ}Jk±ê.1¶žÚÆe€(c‡ăßú’‰ùbđž”ì+R~qIP™-â=_è·@Jˆ”„f@…ûźVŐL\!qÇMńvêŠ,žÇ·îőÓ1NòeÚ-ˆK[IŸè?ŸÎÇ©‡éüúszi -X‡vïûŹ…ő§Űä>™Żż2[1ƒT·c8±HxÂîÀg”žźÂ)„šĘoš|âj(aT‰s|ł<CŽ0T<›:FRÚn„e‘ÁM1aŒ"c*ÔŚ‡ûqXš=S„ŐțŒÎNZX+Y—¶xôÈ ìŹó]&j›ŽKĆÙwòöł`œûé{tń„ZK*$–è|b‰ €ïÚ?AȚ ƒ-?őčü‰Dˆ0s”ȘCMƒÖŽ;Ojò]»üŐŹ–ćÛł…YÉæ­ęx@€]xz\<i3 <h'ÄƐ}±žZ+©-pÂïۀ(æ-wk^–J—kăÚ%‡c“čĆÊȘ@ą>düžŹćûQčél#»Z©žŻMôÓŹ-Ù?ämytümÏe7}Š”S}ä>ÿcD˜]M2óć{š…zg,ŚwïHQęG抓qà]·r|ÓA>$ńìB>ÇËłƒ1?ÒYyO‰ŃŒg#8ȘjÌh5[‰ 6Ï|ҋR`$Œ{«]zÙ=ő‰ńƈ“Ă”n=h zŹYł‡šĘaVtŠTŁYš:ê=lńóąûŹkŸs„Šâ<ă€êòó•‹Èòp_ńöDŐaàÖÊ4áTp:ɜ[ݐ '1‹Ì|ϔىan –ó)&tQUrÙ'2>:ɖI@Sê‡m5EÜ8tvG›9퀞ϫÓZ“öbÀÔNț w7 „7iSsđVÈsś©ÄÒ>»æĘØÓ4-HĐ”5ôpÉÙâ€èŒkd%űŠ=šF"˜:ŸjŰĆ!à­ś+fW r( Îśû[ĄÆdÄlH±ùÈæ”ŠÛOQ&&#:ăëqŁOÂٌ‚†cä‰."ù XRÌ!Ç2E™Œ0ÓûTcЋkȘ ^Ÿ„¶gÚ€ÀLÊ5$Ś%°B%Ê­ŹR>„·‚&"*|Qź&żH»ć2é€aŻí6j0Äʛ*C`Ëç%fțF°ă·{ÂÍ\é)âš‹~ßËéšÜôTĆT8 §PȘh/ÈÆè4Uà<ÚżTu{űîP ›züJČŻúăX§ùwÚ ±ő)ù„šÂ•+†©Â>‹3FGłBÙîoŐ HĆ~ûP}x đ€ÒÂ{ Š)2‰|v„˜e$)*Ë›ł&2•[ń”ÚțËc°€p“ŸžőŚÆŻkAó°rW@ÿÍŁźä›iŽ~ęyfĆzEG`%Ÿș„úČćasÔÌ6œk­‚5bq‰ą[Ł)-țąùj€W_rŽzE€•ă‹ßtđ%nË^æY}JNÇGŚváŻćÄۆ*9ü HgXšÀ&(,ăZ>l Ë6o±˜€tÉXCêÊPÆä>܍•›@,s;Ò7YšBۃ<ŰŁś;§·Á9Θ†vœwšÉŰïæ,Â53ÏÙÊ7ÓzqÍasƒăú>Żźí黆ČűëB7O·{ô)*îmŚwü[źŠœßš/+ÒűûR 5"ŸžĐȘáL“Ő –,~Œï{ç™>mA<ĆË@T¶7-üùièÔ&ęûä˜ìc¶”8čÓ4&’1Ò,„=ĆlÂțíÆÖ4Ă4éQæ ĄƶuÁI”՝S–J)É$ .%"wÄï%iwSÍè=JËOUî8żÆ•čè2MœÄs0œŹ<[0ŹČèæZlȚ͒đGÔx;=T6ĆóÎ|Փ•EĄ#Ç6WZqń=–ïÔM——…ÆGv ÜĄkŻ›…BŒ>Û[s€{”zn*”Ïč1đG e}°ČÈ—ËŚŸ•wËJ†ÍËŚƒuy^dH}nÈ=Ul#ČgŸôŠĂ…Šč‘wUüa«ƒÈž/qT‹d|#JçAœôêC<ź;N9w„äùknúđ#Ž[•mšáÉx3ÇßP©Ż6śś0șƒᶛrûRG(ĆàdžGüò€ąkLVx߆aŒŽ°EQ ­)lžČę8PŽ1ńàĐ`ű{,*›ž$g7»é܈[bJ©vbqž8ÌáÂÍJÀe»6Ӗ悇žJŸ)É! “Ž0Qț‹úÁŸ–ŸŽžqÙhtüÈ*4$V7ÎÁȚjŁȚÀqC'8ú;"ëk꧜­ű(· %3Ô/ș†šx-ba.,°Ö ȚÜ#čHœêßÄn Îû7Ä3d*Žàu”nêČÛ5- wí‹&ÚśT„MN7RĐgeÖæ—&„ČvAÍëßh‘3Ÿ)­Íqeß‚Ü“êŒłC2ŐOàv íò{Äs~h»PvœZ„éÚú|!-:37šÈ聚pSV‡à KbȘAÖ°ƒȚ€ä Ș<•rˆÚ·ć•Œm3 &â‡,Ëe]»C-Âo`|ԍI}ÚpĘ ÄvEčtOzvÙŸÛïnœ?pÏÏ<ćț’(ûy qȚÊGuQ)Ö0eÉĄ{Űąa˜%ŃœÛŸvíј;ŸBÙĆ$šO°]†*·/› «ˆ F*Ì:žæj\ #XÂĆȚј „]§‘b‹(  {L€?6ŒFCd*V·sÀŁÓčŁțb„Đ îe53Ô/$çX;ŸÊčBIą€+cŐ$#‹Öy‘Rì ©@Ë]b|€<šÈ9R,ȘZïšČ™6ąëę­q̛krûm€Ő·°D>–_âŒÓægVœúW}x0)Ö]Ę!ő°Ą<”Hăúì*û Æ©!uQSŸępáeÉäŻ= ,gIÇs?æùŽä™PUHöúgúÌĐĄÜÒOÈ2Ša©‰ăłæ`KČ©§jüŚ+ЍÄÍڄ3‡0ó,„Ë˜Ž•Đ6üƒÒX»ÛȚd_-q -q¶z5?8˜ đ€€ ÿ"șuFbö*ùS›‰: pŰŸÂ€‹LßS}GÈÈSœő-nùŻÊ_#Z:żƒ?±ș, 0jB)ˆW·>'gt•…ȚXàëŃÂĄBÂ}$˝ÏÀŹ*«űŠWùH”ő’ŻŃŠ1œàôÇÒz‹•I±ä Ëü‡ž/iç%_čä›>'<Ă'ÒÖ™őa·oă >%Pޘ:ű…™‘hÁèGĆS6Mq*@đśâ\!%ÂÂY©ydäOAŒ`$ąžÛN9čYȘß„í 5yO'ĐOțԘéțëzi(}.ßٟìN–NœțˆA œ\BÎ3ÉÿŁžvo ïŃM…5 főeǀœ•É>Àï€ <ïĆĘŃ5ïËäàŒ}Ÿ°â·.<») ˜Cà‹ËZŠdwD­Ő‚rĂÈ»”€r}ęIw{źí{Ô«•ÙàҖ^ù‹YF&_‡©żžV|ÒOčÄ5čï…Cxö«śB™…țźaźüêììs—Q_‘'Ù%ÀjIłŠœê$ìŹę]AŒƒ[pŽșŒü‘ky>`ž4fvšòdhBÜkŁ€ FQ…ú˜œ\Ÿ,Ș@ŐęLjčDù+Ž`°Í™ú§JŽAN»ÄÜŽ‚Ț@hÆòNnžĆŸ5rż†)’2 šĄîïc8ŃËwÊ—ÙÉę'-·XĄjî}ŁČ*ŐŒ`…ÊpôKČ©i+KÆYôśÔm]ó#$=0CșTÎJáRŰćÖ{c± ‹šźôđq &ŒłŸ~N7Uîæ>>\šž—E·Ó|žŹÀ"Ü'Ÿțçߛ%¶rfλžÊ)v°șÁÖą]|æh8 °"ŽȘâÜäÉöŽČDááÄ\êˆËgȚÍdrščŰĂìa}ÇF‹˜ŸÉÇț§ ÙpăFŁZÉ*ìÌ `p"Z—UW°?ć}ùäbš*ŻH ț°ćHqû8C-XšêÄïíśU–‹šËy-JCK1–N/œĐ *ű5LW\"UBțLâX‹ ÎŹ*Û)LXœòAșug&GśJÎłŠč]ڀś ű͞ÛÊX0Ăà•Ű­';°4Œ?sJ‘9aĐ`êÂ{śbȘ`]…9›óĘKę]"ßA?ńô„ș94-֏LÒšÓUY»L%g,ÍIżÈÁÙț^Z̉èœȘ2šw§’‘ÛځÚä©s<ăüÇM.đŠ0™ U­©˜lPâRΔ@äőu+ț țû°lŰŻX$ œ5Ær—0òŸ–4€?Ïł6O—ùHLCÔ<‡Bƙ)Tè0 s/qĂDș6ˆÔčVzy_ÌȘ%ʖč~Ìo<–,€–ŽVÍ˰ÂïuUUYQˆ] 9ïùùĄÈن/i¶ «ŹáQ—EÚ_ÓRœQp 8z*śš‰ąÖü=É;g«aô=ä] çáPΠŚF°uŁù2·_MyÁŐü§M»Źúąą·š›đ’ ÒÖtéăÓۜ/?vÓù‡ČĄę\SŰ„€$ȘÊukG/‡>A"ü‰_f^żâ ÇŠr‚Ö$Őò$Ž R?«OêCáïĄ §DŠ›Tî€%šÌ–«Ÿ”Đ™žE&Ąž“)¶j'Ë:ę|í/?)<5%ˆôA»%p”ìÔüȘ‡5œȘUV‰ž–>Œ„Zfkᆧ_Æ;l;Ó7·i“Ąâ+Ç'I…ŠŹ‘“‰Ș.-)Š/——,F#Ő?›3ìp 6hé“?űç…^† ‚ e;'æúÊTéŽÒÓšÙÀЇży’»nF?æśąž1žČæÁ·öâțâ ëô]ïÊtCŠ`Ż9©c3Úź"èYu‰—ąĄT8IÈÉuăxąÂÉæP& Su8¶țaŸ!Ș܇6æaĆJ{$(᱆òNŒŐˇĐÂČӆz 7ÏÀÍI5A:ƒBMçS­_‡ƒÓpűșĄ BŚbï .Âp2Ę+–ÀMÏb5ƒl?7Ęx9ß:|Čú™©t9'đCÜńäèaa€‡Tž »“U‘ł‘f•+©îᘝòŠK·KĐ2^WxÎ`à‰Đÿj`qęŃę3ìőËò#îîÙd—·ĂËŰ"脓3»sH ?Ű6:Ǔ"Çț˜țŒÊi}qܙ05MâO=+eđȚ˜ŹöòéÌYąŸp W…u@R3ŰmOŰÇ…}G;oÊ5EN źV‰šà B‚Ă{DŚV7E‚e!Ś R)kÙ‰ÄŹ7üô|Ž(Dƒ€›Ő¶| ń,pžłàȘxšRÊ2§Đ"†ßÁđ ?蓃~n ç§DçŻ}]Hî! ‰ß֏Ôșü«rNżÄ#üڜm2]Rk™ê“X‘‹òûÀ‚MȘŻ&F·óÔFáŚhӀ>ĐĄśèÍè âR•ąË»čÈĐoÁÓțČ?“wżŐŽyŚżLđtȘőBN—àŽ(©…iő1ljś”M•xńă¶ął”LJșgïžś?ßjț–žŸ%mváž,]aO+€śÿìXH-íWućƋŒh‰Ç4-;Ÿ‚/ ŸŰGžÄ/6xÛmłćä 4Űč‚Æœ™Œ$úí“<àK#ĐŻJÿš3ŃSÙ^éqšDđș:óy0űúˆćöő„ŸßhÈH˜óËPéĐțòHuéšî»$vі`À·Es±…JìœX„D—cËôäm3tÒAXžàńÈëùŒŻ„E‹rÖß<ÆŸ]łK\AGÛ`ŽȘ»wîUL |‰œ mDűbŒ8qv3kxTÄ Ùä&G—Ì à%;Šy1ްĐu—†Î4Ž?(SÛRS#…žrߑ<ÃF 4^&‰}ą>Š=țȘ"㠗‹­YœăżF˜ÁۊÏôÊ­±äâ„͛F'^šxș‘˜ ț-hHä©iŠ”ærÎńœÙcČ#/CóŰŰ·qۈó)ë öĂŠ«›Đ˜y&mxÇ5§NŒ”—$oH期†aLrń“ŻJŚô@0ŻèáRû–‰}vxtá6…”o t‰•Vá)æ FšÈG{f™À À^ĘŁzFß8 ]è§€MŃ*­9t;ŁéA?ö/é\ęے˜@Y–ç›ŰßW*~Ë(—ÌźBî4gźè˜žMaü8P,ž˜„@ۜ"¶n~ÈhłˆrśO‘4à 4 ő|‹#PC„–Q˜7~è™vĄíížïܱŃxE…}ćuŽ”ČždZJ©{qŒ-j:BÊjđäŚl†‰Ûá·ĄpÈîÊ  z›4ńŐJMTqȘo(bŸsć`ZI”¶)'AÔ?·žšt"•Ę­óB-ˆŰć>jêi»¶}, 4È~ą3ȚzÜJÛŚCž• ź*XWьœsƒYCÜÚ1ܧ]f›4=X„Èa%âc«4űÖûö(ÍońÓ-grž||Ôô<‘ę0ę› gó)êLàÈ„UĄȚ‹#jŠ$žPĆŸ«ÿVŒ_Y7âèȚjX€ž5;xn±s(*űFWòl„HÙ«ŹÓ„8ąò>ëR2†€Ÿ„P ’VœȚŽ»ž0㾌koŸD.pÁ`ő@V|dՇëŻWČAŰ9È{ȘĐÊüÆÎńŻCB$6–ˆ 8QčȈ3Ɛ‘*ŒÂžđ砌ہöœĄ\O~síè^JŸüïęhÓë·æPeĞiš¶4éTŰ!uîŽæłp†ż±ŠRw=*;ÜêŽe˜Ì—cŠŃÀe~eš•'2„Ékó”2°^W`nț~QZƒF…kÁ%ænæ 2}žKŚÒiæ·ÈĘGm]–Ëçƒz畿| Ćp"èîšâ1é‹aJ•;~˜©àiŰ ÍD$ßŃ`Ț LDèpnÚíÇ\?‰_? ÈíJÒÒjÓ6*UŒ­ŃRŒĐéFÿ6»§J‡ś—ʍ‰8±-‡Ÿ3žM=}Üł)ÙHÎ2r8žiêb%ńX)”ŠÆÆąu_ùÆ'ż`ËC€ïž*Ú*‰NŽWE&/ùű濘[%_0;J‡pN+ #©hÂRÿ„aŚłï·,uoF wŻ Ç.’lIä†öÈOÔV%čpęCHrÈ1â“șRű}SÄÀê|—œ5!őŚăsÌC§ù'ȚV=ŒStZőûÓnS ĐŒLXê>m= N ?wísŹiƒö]-NêfÌ jì™đòl—yY°:%čÿw[ÖÔâtz !†Y»è‡ŻEC˜ÿiüpWÍæéï5Céč‹(ÁVÀ·^ü95‚N3ù‡`M›OMóŠȚ™7Żž|U”çóH™ Äcû'0-ŠOÛD]ž_„Éû ŃQĂTê Æ[}ŚÚh“Ù9J◰çvŸ—éfnܜqRCùyˆeÆČ ž̙+ΘYƗUwŸ›Ű_Ÿîb`9ĆúX…č„‘Ą|ę9€BdÛX~űYœDÚ@ăh2`I0”7d(‹ò .É€(đ“°dŽśü3ËNŁăűÁF#ŒÂȚÊ^iBêĆwt!iÇ[ ąÂ<Ù|CgüíYïæ†;·čûÔÒ€/EƒÒúâ6^:YŐͧŸą=„ËCš/ÉĆQé ]‘\?,áäöÇMŰì2]Kă c9~ĆĄxeÒ mÆ…­ĄĄi+}ËÆŁbžšÆágÏnœWò•[-˜h˜ŽÎőPà·㼟}$Ywèž żűBŒ€àùyÖć‹À}Uę#c@ÈżDŸĂj—,eDČóńÉ{Öl‰©-șłsv"ÜH)ôźÀŽ eT†§ìMCèšŻŠt…‚{A!9¶"ç c"étGăÛ,LDB[CJ4ŻGĘvGÁ˜lőEóìș[Ë·3YœìśÌ,Ź„GűM#í·ž©șxY|ùÒ—yłŰù#ÈIÎÁ&Ž?űźȘ|‰CTL»/·•é&X€Qüž,ÙƋIŽ&+3ș9țČ2”{ €eUŠAì`ÌȚ\H&/a4Ęæäű„ ÖKa’ȚmGŻS _c‚3­‹;|Ë%ŒuHw”ŻÉlLPJóe-évO*8űuÇÿșOÇo.ÿ·ń•ߊÜtîè[­€8ŠÌ=Ą(–Pćocƌ{$i—„–€WüGq¶Sò4$Ș2ˆgh琯Ê|5čûS)ęmûżŸ(!ŰeáՓełJàóĆxà!•~lV„âgšA?E Zš!ą$8ÔTDŹcȚK`¶łőQîe&˜ur[Ć6!ö—|+’žzŸÀnC:„SŹŚ}”[Ղlÿ:P'¶êbÚ6ZwæńcEäŃÖń“_ŠÜÀ_,6†gްŽíTQü=+…ÎÓ” ,Șÿ_ș`FęlË á[ŠpƒÛćĐ Ú-dÂeoèp4Ÿ«3Ìx);Vzx8ëŸí3C>ÌçeZRFëíbÔąÇŒ’]í)ÌÛőœ‘ćH>ú2ԐBÉÔÊĐF>¶ëYÊțê4ïĘÿ2nYČ ƒÚ$ąáŠŰ·áOŸ›œżysęzNïG›’€”èú…ŒŹ!Žo#Hő}ćÖÒ-z Hfá1EM0œíÜžŸŒ%ș/k‹Ù3§QQÿ…Ÿ1úiÊZˆ?ÓäŒĄ€Ü» Îbl€±’Övj}`Ï`Ï8râú€ÓxIłZăê:ÔsôŠ’l±ÿNŠcžœˆE@lŽæ8ŻßWž‘—n·À4"–:żˆs[‚6w:áŒè;„ƒ„wÈčÛ«RèY­-3‹‘XNčšN łôBnçŸyŐ„ĘSj——œ:Xółà%až ÈŃ(Ç€”è@Wö—ÜßîŁđ1"щa—ëxÓżôòd7š!'Ë»Ûâ†nj„fĂ»Î!(ŠlÆ‚x>°Eï_uP•lŸ5ií!}~B)șêœĄŰÊ/Êä_Ú§ck–!G}‘9wGc‘Œ;‚\uC –ăÀÄyBŸÂ˜śŒżÂÀdę±ÂÆôt•ʆc‰x;È+ &7–ìőÂjD]‡eÈ"~=p«&«űîœsFŚ8”Q+țć;ęë–Țń VÊ6!äÛ[Ç\Ż#Û̈́`ę:ŹŸ5Àäîî)tŻűm-NĐń·’_ŸMtž>·ZväÚ9±Ÿż©€*eÏr`Çü Ük“s{ç%5+`Üy"œŚI9­»Đƒ6ÔÔ âŃ3ùVhV_ù.u’ˆ4ążÇÛiÍJ$ŠÇpĄ%šŚÏRșź€Ü.țXêgÌüNïč:ŽąĘ­bŒ»…È,ìÌŸvq_ Né=ż†LLÈahïŚ8ZŃŁĆÒ€N95áâJ5m"RšŒ·lêšïWŚâH}ÌÁÄBÙ=‘„|Ò°H7ĐÙ-‡[ §%Â8[iyU±ážíMxŽ9/ŸŒP€ąÏźd”)\`QI‚câ™ÉC(o/4^‚7'–ÙźÇ  h].ÉÚk~9Ÿ—Ț €»Ù Iù…iǰŽJ« êÉ7|\Ő@üNü07Ș4*™„Òä&ûnE7AîȘGzbMȘiz0r…‘­ò•'Íc$Qą™ìZ›úcGæz‚żRˆo ‡6Ô°jö—1IæËšà ÂÜàM9·~ÎOźŰKî«ĘRì;žŽëw—SPŻąjù3țĂćÈț–PX(úÂxHa-˜~RŻŚ’=§ž{Œ"Íï6Gę–ÉûĆ}ÙÙÜaüăÈ«#̗]tŁÍúbŸš†mL3”È3¶kŸ~ûßG:Ç€ ’JÎęš4Ô۞—-ô~3usÿóŻő­aèÿi:űY&(n”ëŐĄćzˆÿüx·Î’őjBęË|‰ bg<|_[SÈÊÔËïZŠî‚–ÒÈàɉÆÓțÛŃuŸÚhöń—Y>±őó^ŚE ŽÂ…Dvi<_A  ’/–Ś4ńđLAÜìĘç„xá·©ÀóÛl?țąfӕȘ ÜæNÿ©W‹iűòQȚ›Ń;ĆëČ î!\Aƀ;$%.Œ ]{e „!'6bI|S’0Đ«ÏŽŚ(æÔ„kÖźaúoäáÈ„ą|ž»„2ĄáđÙEGœ *?šźCŹ6žÎ»ą[ezșK}$ âΩÚB4ń4č-_»1ögÈÔ &–p">mŒIÎŻőn±V­úPqíŻ‰ŁÀ‚€FY’ÈÁćȚXùêgasûïŚÏlq<Č ˆ·!‰bújëcÍcŽèfڛoŸo­Îô ™•„})rrüđCæ,LÂÎÁäĐ`@,éȚvȚèŻ&*+śĀA»âûAy– cD‚áôûŒŽV›łzQ*-ùű$Œ>3Śæ^’âp©"çń›˜Óòö„1VSü’ҁăáȘzú:•ÒÇęŽ(!ÄŁ MˆœȘ°'(–“ç u΅1“dX㋚Ÿ¶U.ï.Üź/E,Nq[ˆ?1đ§VÏúŠûę €ĄțÜò^h|€ÙJŰÙsŚÛjJ_Őđ”Db3•‹”_}DÍŹąŽ±m ƒń%vš ß1˜ Tك?ÀS.­CčNUĄîƀJڱœö -š@ ûßé›HŽęśDő?\‰MёÏT$ŸvŸ6~W?U“Ÿz]RHX1.†ńŽ}¶>-{~;EĂWWLYL-ÒóFLl8ê$IíÎA Žă_·‚žjqÜ-țN”h·Őză‹RI<ęÊFŹ/Ë}Œ( ä-Ąź•XśÎ·ÈΧj ѧI‚ÄŽÔJ‚@ʍłnè|ï9Uł!s_ۅVˆ/đŸŽK\€›Ù|ő.Gš.Â}óŸ —»Ș Ű“ÍŸç'ÊK(Q‰áÔέ€Kçì±/8Qu9ùBʑ[#êAzì ” ҆oéqìX2ö<ÈŚmŻâ|üț’Ÿn‡ŁRÍÇÙțzÍíÒrSlśŃqEš‰s㜔G„jș€Žiç¶Ïg·ȚmíŻđ*Ż`dššŚ™,]šbŐČ%v °†hŠ„æđ™\ŒŐmű*ć@KÀ\ő~ś€°.—°š!†kI‘“,}{ΰlì€5ž=‡XpčHd]™02»Fۛ™Ąƒu^ÈèhŽNí}_ ć…!sčÿfh;ùæo`Ï€Á\łžÒ·Ćž Ö2ĘżG”–­|!”Țr )Ś¶Žś-DtügđŃœ•§MČ˝ȘŃ ŐȘÂĂ<À:oêë…^ 7ǃ–ż`ÎRĐZf‘GIà§žÄ!Rä†F{uï€ÔÁ‹9ăÇjëarü%Yš‹Í€ÈŁŽ]ȘI9±ÖQ€ „™0ÈŰËZnuŐdòN €îȚU;§Œ+ȘŁ1+ Œćk6(\ąž©——dßb"Z? ÛfQ24€jŒÂĆtaæYô‹‰ĆŹÏ&ÔΒÚAĆÁÈT!ޞ boreeÁR¶¶3ŸÌp±Ig–jÈoŠ[H|Æd§zșQ©yȚh^ƒŚŽ…lhäțÌń7Š ,ë‘KÁžo$ŠŰ˜ÒÌ>m!„Ÿ…ïHțiż TŐ}șźŒöú5’àÇŹùxìaȚ%YêFFćՑèMm"QÁÓS@ŽI‰iæ°"SőŻ^Ì«?eČ»”Ùu^ščö.ïLĐxêß/îSX*y,hLĆ_æ”YKh4€–Ü fväŸK)‚ác*ÂÍb\głÖÛń›o(%ZŁ#AÛâzԍœü4ՐÆI%WÖ/z瀜Dą+EÁ튿ž10BæÜe|/md]! §À™Kî€oĄȘ}ÆŃa„!êz ?èKa^LźêÎJ[šßï»Íu·ŠÂšP^™Ă·’€đ!ŐCˆąÁŃzŒy„“PL_?>ÀđϏˀbíˆrPY~ăFK+=čtć -6rAĘ,ę\j>Hûș?…è7ÂK]ü˜Âʧűd„îÂ.T9ÇAë8 <ČŚ–]ˆöš„kpU!C’ŹTîópč煍Łêô*ç¶XÆĆ±C#ł čnÆđYą#ŚŽœ{yÉ5f)?lú™-1€Uâ6,ą<.z»Žm–B ¶(LŁKKàE,ÉkXĐŰ„ÍŃšÔmd»!ÎD~,żżÛskV01!° 8i…äĆTϏc.Únz‰`ŒwžëÉpôÎ ~Ÿ*TÚ(8•F•MU æž2ÇĆvcê)èd—*=OhnJ#]E%zÀÜ­a&œ/oKfkVF€.W3t€)t;É1źq;u`f[óâ…jŚß`¶/Žż§ÍRùTvÎc.~xTI3;#›ź&âæw¶pÏń]9t»E–p†œ!ƒ”'V» z~ĂŽìÆÉù…x%•œZù‹è§)fžakéŠűq^7Ì|Ëé8ÂzȚ6sà„KŐP±€\ł;7™UàǛ Óś°7P›y»üIB@D wKĆÆÆw‘Ł Z7EîŹLF¶M«êDx±| Æy-+ÉË␠1ił±•\è„|ŻWp"ds?ÎòS[ æZÒ1š)…lŽżù,fîs°źQŸ„ÙùXEC)eÄËòûb\BúÖîóđ<1șƒÖőDáęÊÒGÈ«ÎălèȚš)O‰áł–‡Ò7’‰Zž§ä ·B.1Î-…«bœL8ƒ„P‰UZ#Ș[ąž mց‚%Eb”hä-…3uæÇšŁDbœČ|ŠK|‹o”‡9Ș‚*É%néQh€d€ë$šJ(ŁŻ òżČjïÇkA]Ô !‰ ŒŠ3q7úŽCVÖˆśo›6"Őź=Ô#•Š”țQڃú=je­Š™ȚvČW‚;ŰRł äCÇč:‰ĆûqÎàÉパđƧâ y<śdâPźÔ™żPiÛÉn™rŹ{F=“ûć֞-ŠvsźŹ"Qö˜ăâ—WÛëî‰=âUÄJ]OéxŸž–GrW)æ>yFß+JVmùWf«ĄŠ2€Sp1‚öș\“âTŽo§ńlÁ9“­ŸD•öłQș QŽc ·æČM -j™šĐȘ/? Ç3«șęöI$m}ű*…úNF=œÉÜ$ÎC“±mœ¶yYȚÚèš9{čȘF.Ń5ȚË&ڗôX„śË5vGvOËĐr.ŸRÖ@.ê9ń‡Ot,ÿÀ>żĆxű&dR=,útÛÁȘĐÓhœ…{r±íAupŠżìrÜb}źöCV2Ć€ö,†Ë|ÂO{Ê êA"~ÒLÚDii”˜ż±„é‹ f|7Ö ÿr"ÓżËCCÌP‡Úwđ•oÚŸé#zÚő?‡.Ęw ŚÍŹ©ÂíŠÜB °ÉÊ蟁\qÏzíÚÿÄM…âŰSfű±ĄȘXć­S”=*ț±ÔÇŽĄ VUîPČ•(>âmÌK«źÔwŹ:Țïnăö$xk›'ČząősëĆCÙ/6 ìéehĆFÏ.«ćÒȘCśž„ôÂ~/[U'óČêśÒjyŁaęcŹ”s 7èù% *o+—JèÙbUŠ #ù»0 w›rë!Njb‚§ÊšńkU˜ ”!=ßó_ÿj ™Bÿ3ìśH•É’'?{sЏÁ”ƒŒwÇyŁ(ŹM S^ú©ŐYƒ·{jWáfZŠ œxȚZÌ«ŠgŽâűiöšW FƒZÄf,ê ;ƧCu5ŠȚA~šŽ“Î_-ÍÁ+€àœxăqX¶!ŃĐyp\`°êwĆk8[™ŚkЊß0^Ìźîű­È śž?c{’ńű‚ˆv„cÂŁxÛJ˜Ę= òMÄœ·è2û=æIRouőò} 6AäRTśJd‹Ú>ăó@yˆ@ĂG…Ÿ őżùń ȘŻAÚś;abwfv­N}Ę{IVï?őt ʓźćaF:Q'hțŸ0Ž%êŐûqÆ6ŹßÍxkdžšßÁș§»H̉] %Őÿ@“LÚu»7„wq‡k#úŽY«N†±ÌlÄN*,Ä ŃyùĄś@)Ô¶ĆŸ{û[‡Â‰”ŒÜ„Łçyä~OÊ{•Ž<…?b;Ô»«ú°l&(ÉC¶Ș’ę¶ëâéæ$èi*·ÚŃÔ[_]T(+â•ÀRïnwĆ4tŸ-ƒkNìxȚ lêKyß""JhhP—‰KȘHÍ;űșæÿF9äš$$Àôœ e‚ŸAíÖu;>ŃF”4ŒvBÍÏu™[©Ę}û|Ż!˜ȚŠC8FÈÀ”p"ßäÁ0ëĘ軍wÎ-L œóßJòúÒžҖŽ|çÌ'ŐȘdÈ»Ôò±’—ÂmT=?ă›űâÏaŽyț81?–źZæ4M,űn’XzÙÈæă‘k˜«ŸšC!Ž[„› %B3črˆG}o9Ž‚ćҕèy{‰|Àżœ[Ę\ĄuÊŐÉ*¶­˜˜pwj§XtN+ł‹EvÌŽÜF&fÏ{h"ĐŸIjőy1ùÙóĄ%[Űa!ȚòKÒ'ˆû€Æ»«Ü„ò™\Þ3ƒú±Ì™Áz?’ŒÇ!ÉȘ™:ĘùźÌK«€IÿX&YłŠ—@ú,K»őÔâY0î|Fț— •ŁŰŐA€˜(q«VđZ·nŃ?ł #=lnP-I̓Œî\,©Œh±AІk:ăAÂô ’Ï[[Öă‰ÍŽË±…Ëí€ÉûPÄÄtŻYFǞÀŸ{yFx‚–Ń’ĂyGç°ŹN;CéŐ{) ćĂ.W„ô#âŠ>5 ńˆźóÎWê ”[ímZ șPRŸČ°Tü@°V«æ­ăŐAș/o&Q«Ł ÎÀíà±KÜŃ}țæËv5;k WKÔ…[‹Ć”ąŐ±óšxȚśn€‰oăҏę<Ì99 ?̘LĆôŸz) Ś_ȘD‹ç‘u@‘ÜX:©Š|Śűs {ĘŸíđúšĄdč:i–Xœ@æÌۜ`ÿh”MŐ€”œtmăšń©ëÇËj•ÆŁąŻ±`°Ź?)IÌŸ|BŽËhÜàÙù‰‚9b(¶•‡ÀGàąęMT^™Ôę$§?1œ,fîđűbśw/ïL!iŁ8IöÜŚüI%Uwœ‰™”Wš)”k+lXĂÿWFÔ=i=Žßß#{;)e`vć8ZnMŸAđ{.êž…ś.}XƒÜÁ8[7ŒžŻf°đ\ïÈeBÓ@Nzx‹SâłbĆ‚żêy)Òźà\%Öò^‡©š”< €ÒlOÛê,kùùâFÜΗÜg.ÍFPˆuaü]Ț‹ÓGO=GőĄòő ]’ßošÖę8{Š3źqÜd3àAŒ«Iő ąč@Ó8HX„Ńcê6î‹b}žȚ‹S›KŰæƒ\ûÍŚ9òàƒűÛ%kßű0)Ž1b김’ŻæRNF±ț•”KŸ“eï&cdÂaâń#Ê·m-ÍöÈ»4çÎm~†\°qYv(ʚu(”â$ŸÆ‰ò̇j”u}"±Šœ@_ÎÛjńpè*O5۞9d–*Áyè㉐S„æ8suÈźD+WLöiȚMW_ïń Ű}șïël“š§©(;ż€ÚćÉn/ń…ä\„ŽK…ŒÉ{KĄ}űԔDúRUŐă}8ÌE­XÈłÖ!rnÊ[‘ ß|J_M}蛅b{W™€–e˜Śępúy›kć ÍŽ4ïç(źÀq·-șT”k‰¶}'B–MĂÍÙ/ ôw›1”p*`ű‡ŒFąË~ț뗿öujíu2aú9ĐQƒ„Àpđ• čĄßÉ`McŰäóŸÜ·8U‚šNż-}ș“{ƑŰCs6 žœ°r Ê»Ú‰B ÔVV9H?ÄA{€^°–*)é<ûsÀ”§ú«Ćez"š0%zvóÓxn+gÛ3c˜ÚuĘÁ‰!™ÎRsś|+„$ąŸ-^±â©úËąO}f~gŸHâ\ŃŒ°ű%Ôčł KĐȘPÿ†'§@hŽë#uÓÖÍVądÇÖ1”Âź^Á3ŽIüD<2ltrŒ?ŻHŽ!ŚöïŚ@ÉöCż2û(u‰©7Ç;t ˆ P>=(<”‡ü„Œ =­pzÙy8Łed Ôûnu·ÆGW­ćR[nV‰“Ræ›țÿœ±á± endstream endobj 178 0 obj << /Length1 1616 /Length2 22473 /Length3 0 /Length 23312 /Filter /FlateDecode >> stream xÚŹžeT]M°&Œ;Á]rpw‡ÁĘĘő—ƒ»[îînÁʂ»w·àüËûȚčsgʙ_ó͏œÖîȘ꧞Ș§»ŚîMEŠŹÆ$bî` ”t°3±1łò4T””MlmMÌAòLȘv&€żf.$**1g  ä`/nòŽ€æq €ÀÆÇLJDspôtYZŽ1èÿËòOÀÔó?=gș€,íÔ_܀¶Žv@{đ_ˆÿë‰j@ lX€l1%eE)­”ą@ ht6±(»šÚ‚Ìò 3 œ `áà °ęÀÌÁȚôOi.̱D\&G èï4 ‡Đń#Àèlrqùûč,MìÁ{v€ìÍl]Íÿ!đŚnáđ/!Gg‡żv}Á”\À.fÎ G0àoVeqÉÿà ¶2ÿ“ÛôŚ p°űiî`æúOIÿúțÂüő‚M@ö.0ĐüO.S Àäâhkâù7ś_0GgĐż4\]@ö–ÿƀà Ž4q6·șžü…ù‹ęOwț«NÀÿRœ‰ŁŁ­çżłțúŸ@` ­3ûߜfàżč-AöH,ÿ,{ ëŰÍ]ÿÓçtț·AŽÿŹșż$LÌìm=æ@ $EđߔÚÿ;•™ÿ߉üÿ@âÿ'ÿ?‘śÿŸžÿ]ŁÿeÿÿĘÏÿZÒŐÖVŃÄűï$Àž1yÀ?‡ŒęÿmbČőü?ĆÿśH-àü?ÂȀMț¶BÄȚòŻŹÌŹÿačH‚<€æÊ °™ÀÂÄöoŸț”kۛmAöÀżzțÛJ+ëó©[Ìlìÿi<Śž€öæÿû_‰țeÎ"Żą%Ł©ĆđżŸ©ÿÆ)ÿŐŹîéű—Úÿ(EÁÁüțAuđx3±qs˜Űy9țn9v6'‡ïÿ!ăż@lÿ5V0;ƒ<zËfeû·űÿńüŚÈàżÁHۛ9˜ÿłZÔÀ&öæŰÿ4üă6suvț«ëż{țoŃÿ9țw©@3€•_f!Öi™éà:ŒÜĄ qœț^6èĄPÇÒőą‚€‡ÿވmŸJăŚÚPæÆ)țś6ÏĆSÇ·}Yúƒ‘^\[šžàï|b_ șŸŒ ꆃ ĂRÔô3­oȚ— ò[0șÜŹš;*Ș†%Żp$SǏtn۔ŽŸüÌRÄâtą7B`ÖžžQ'?>Đüìč†íÛ'bȉE€0ÁóK>%K{;ß5˜œĂ>»qĆę1géÔ*oKśúóƒÂrËÇz;iœ`SM­Nì{'‡ȘPŠą} éLíÜߞM°4t'‹bÌć#ÌÚËčTÏAçc–\֝n!șóJsü‘PśșšÓŽ—Æ*ԊśÚ>œ»­—p|^Xt±Lì†1óˆ•V™­Ÿ2 FŁWŸâÛÈ`ŽœRŚEwÿÖU`XàDčö9cjLíÇ4"T7Q ŹJżćšv-„k†&ăLy•QÜ.*‹;YIòŽő–zFđ‹ÉSuçÆ'ÙŁŻC»!ÊNz=_ŹéE-nÜ~tÓ{Ù}òĄș(œ3ęÍHç\D±jmŻ~.ä¶~ß2ŁàŚpŃT­+sjhAĂțMșz|Ìö§H Ă ;Äí=*ò@7 pśœè&îˀUöó'ȚŰ»ćÌeș‚i3©ꇔx¶­&ç5LàÀuòžźëŐ&C6/Á±‰Ö{ sĘŸqò§âŃĘ㉶”ƒOŒŰő»œ¶A2í(ïśŽ—Žû35*GÎZ1Č$†Ș7¶—*Üg-žJïȚŠmn%•LńFdq{€6cĆcé©Bï’W†¶í„)Š­ì“€ZŃż[ô”%!š™>qȚ!c·ŚĂ)°uăʛäҁm™­2@úƒ¶oÿ-¶·%b/n:e” .Yoßí9=Œ«‹”|‰?OÓęăÁš\˜2yą%”èçLŻ\IˆdÄtő·ő™śŸÿ+P~§_ĂÖUV™q4Ÿb1ŽMłVa•;ʓ—‰ÜPCÉœ»ĘĆo©Őőeí7*ŁțöôŃ1đƚxìrĂ$uKŸ<ï%öƒ,Ë2rő«T„ŒĘsż kʑʄœO<5„Z_hnËóÌŚ}h»cžŠ·/ËáP}ź5șo‚]ùv„ÖÚš‰‡»Ÿ –2ƒ 掔ÖL8ƒĐmă€'y˜âĆßźiĄŠ+˜Çëïśæ{”#h–ÈDțeùx/Aț¶†6eá°y  ĘïŠmMă3”€4‹"nۃX:N@ßÎúebûï©Ê› "žÈ\ł•pÚ&Uż™ŠŻ7ś 2 8Š'”3§˜ń“eáÉäžXM©…XzÍN{K<Ò«^ÓoĆżsw€Ńm=€ÜQÆJ ‚IJ‚YžÆ›5;ŰÇœ»»D=c4ô„ŃQĆBțiqHĘ«A>Œą—iXvš„€ ÜęȚ‚Țéșî`”Ô5ÉJí䌈ígbœeE<śźûöGÍt-(B( Ț+VÇXöț EGSȚ‘ÓíÚËDïü§Ąä5y;ŚÁŒŒÙŸ“v`˜jùW }jwȘI žùÈ@ŸûŠ l)tc›á'–!LX`Æw64ÍT!•Ö >8«êo”K‡jË=„]_Hń»‡‹<ц‰ŒeXŒ–Ùßè>yZ‘F!atUöLńž_­eő’Êfù¶ÓO.í6ń§ŻÓ|Żpöú$Ò?Ę©·ï°ĂR˜`+~›âüGeđg ggU\Đ6”òEAB LB­ˆèźčă[uM}Ù"ÚÔ} ïۛatőZSßv}'UžăŰ­Æ«rSÆÊÖȑȚNÚF C_Š<Ž6,jÄđ|!łfûєR[bʚĄșJbț[F2qù3ҝjŠM«ÿ햊Óš7ŁR°źĘàç8ÿś§#–` SŁŽ‘đĘ«öÂ욊çŚČÊŽŒXŒ1”pÂÊ/ŚÆ8»őúŁSx„DńÜĘ/ÍŚ~1'ö 8P/Wꟑ}‚à<îZœéo"æy’D$$„’ēč P—ą ŸĐ~šœŁČf·d3g’B˜ŰÖ(ç¶ąŸÚ©±ÇŚp˜ên/ŸŠ]< ń•N“ÎîŒAPZ6f{Üi™K;l†+}ä%€OYMżHîKAżzęŠiÏˌۋ™Šü&qššpI‚’,Ÿ9—êÒfb‰`„¶™ö4Ÿ-ĆbNü`ä6Jw`“f›{Ù[žœ+ă eĐxBiFGH5Ši+¶èź„Ÿ_^ŽïĂŸB"eú ëô{iæ$èK;ó'nՍÀ#ȘÈ!çžűĘoMr<@ƒôœhÜìĄó5ĂV.Íôç‡ńțhc·ÏĄĘni`”㋊ÜëÂóT ˜DJrBöYÙĆ`ČÂ^OxźôH­ââ À AŽÜ Ž)șJș š(èôfœ)wĄA±Ù·Š°ôŽàTGVmĄU$%Ïó Æą#ZLŁڃVhŒ°ÀăÉÄ7f9üCÚí7…Ϋ>~:‚{v–rX#vhśó*Žê…š+‰êÚNîŽ|ß- pŻžșzhăłČÛ(ŸRLÍ5;qû U…±ÆÄ5M™łQłžŚ‘ÿR·]íÎíÜÄkh†‰ û `/iÙ =żó“Ò+èÏÆËđ ’îÌHœv–ÿkźœsAéĐOFÙđÒ±AÍ«‹șĆY™IȚû€śŰ›Ê”nWS_ïÆW,|"ÜäÇóȚĂO,4&”șźŒDAĄáRdšfčj§™+KL(ČÁ„ÄĘ.ȘŃ5–őÂźÙőÏŸ4 ʛڒ,ßÍšád7’ŒT¶lŐüŸBw\óÆŒ ć9»€vmŚŽ.“T96đ!ŐCloD°ę> uĆEdp˜Gd4ûšïőmV[pÀ*V?Ž©OĆÆž)đ›@$ÂÛe'À4<”û~üșŸÌ<G›xL瀏"6íW™rä0»€{É·o·h˜V,,üđ»í\!æÉ2~kütV±Ž„ČüÛÓĘ&~ž3Ę`âž»eB7ścgxx(œdBЂšaҋ,ë„$-Zo ‘đ–~9yĂXśo·űrhc/*úv!ĄÍZÇŰÒMEèŒ(Ɍ¶4æBŻC„a,):ævŠ,Ł”nr«’Ek‰żrïZQí™AűÿÀ¶ŽN’B©|ădÁó„QGÈżV`ÚÁőùO ƒTęĂ \—‡ț„žR?Ę‡aÌœáRĐčH ±1źöÙæ™A€&è­\eËEJzNˆ\ 5'sđˆÙaüPIŠÿŒUȚâÌŐAć(b4BàbXyß«mà4Á‡mÎ+ôàao„Ž‚ Ûïy/zżźg|H4œqóț«ÔzÜc„k M(&Ù Ą‡”»A˜Äë6’1ńĄ€”#'ÂÍà'·ï ó T·É„]-1ĄŁ{±Œló±œČ5ÜqŰj1©öKPëÊ©Í:Ù©ŽfÄ]Ò^>ŚÎŒ”ĐüôlEz·Ôû^vú«3üyÂoœ5Y—¶4hźDŸ ß5Éeʓad }țNEš’Ó=U€TÍÌΜś~í‹43\oâÉÙ.‹@î⏚ÖÄÏÄń=·‰Țń2ÚfÂÔÓlAèšÒÓęLuČ9䶜Ÿ{@źńÙÌA^e&üó"YÊ=ÄűöÙ욏6‰à MùsIpÖzz ‘nR/·d¶—dĄ.ńș,ӈź2Üń "ÔăĐXđŠŽ<~5§)ç7nÚÓ 54lđù/ăă·2:è<ÖBÚ;ŒO.­l$Öû’Ê’{ÛöÚ œ‰_Őfù;Â7Ä1ŻÆÔČÚùćXÍńîPó‡˜7°°Ÿô0HæLȘŒš( ]v\ßsĂ”J“N•„*fP#gôŹbâo˜ê]bzíPúl’êN„xJŹ»ÀN@ç$©ÌD1Y«ȚGeËŠòvEó u3êĆdïbű§só–2JÇngż·G țFô“…J–ÿa©òÓțqę"†ß._ȘˆœT»kütp_„4hßń%'Sčœ~>hȘß „-5ʏCŃ/m*éȚT°„‚ĄíLă'qĄé°ŃÊÖvŽź?c Nz‡!Q0‘oÎ^5-Ώšœź=űücvßjăMȘ›Čyé=Ò1{ƒWéym𠉘nȁrŹŁƒ±ŸxïŸęÖÀÇf`”^đG1Öč9T ČÖ\Ÿ3çÔiűÉ`QæË„ _2IeIŐâTżtRȘèš&a·UgʂX—œÎiÚÎÒùàȓ`)hń~§őB8Äï3tœá‚Őád#k^ĆfwùlњÊIƒëœB΄Òv ùŻčŹSYY­7šéTï˜Ú6ÛBÒ"ą«ßgâ‹ă ÛÍëo ՒĂïTv’8ÍașûŽÉÂi€ŐƒS,§ëgšÍź_ŐKx|đJ.Oo&Ȋ źŚ!šì7żPș 7ŽoȘL3ù’ìu·\“ șĐ6„Śü܉`ćfÆDûöSÜŹÒî{[Öo&”ăźJč iYĆeą±T!˔W7«ù ^ô3:ÓʄiZRŰ©œ€7ȚA ï+‡ßG_oOw #[Ò;meá0  Ô3öș•v%<0՗Gș^ÀȚ`߅ŒĘHéè9P%œïç­U_ĐÈ„Eű™G„ù‡‹dè&~Z}ąÍΫĘu>°ŸžF%!‡.*CKœgf?Ê5¶ÏÜßł °x Êö:9+§Ÿ î‰DlűăĐŠhŐÎźœž7?vĄÇÓÍí’_­VEՏS>YdÎlű«“ì1FûőM%gIÜnőœš„DdYĐ9ÆZ|(Œê-üd›@IJ3•»o„UÊà@N„Óæž~Ć ÒĆI–Ž[ÈWg/•ÎÂÙűB Čđ€X†Üęò łĄł1ÂÊ5ˆâ§Í’IŐ M1”2»Ú'?à›Œ0lE+ăćőôI‰Ë‘OM9(ÿÉś:OÄŒ°ê$C-Ź<ÙKÀæÈúŻ)ŚSŸÆíÎçf2ăê2€Ä<æ{{ŻöERŒ—@NN T©5UŁÄùÈg\(bęźù]ëŒæv¶!`ÇKHŒŐ¶cÉé-~G/† ·čÎÖ"3DïÂMmź~cû„AÇȘęęô.LzѝRYÔ«Ïçń;\Ć#ô…ĘĆ˜†v‚èńé!‡ęn…€+à‰Èu€"(Œ¶Uß±.Čsöó“NiæÍ„zš*ÜÙę*î0ó5ïtćÌmûï­(«ž;KÆæôS­hŒ·…ž’Ę…ë €àđè˜i(8ìí7wWXę9KTÊrY“{Téë>Ó$B…šĘńîûO\Â"ží(jÍšYÒÍłp  ÄÜŽ„=S;ŃdŰg&éZ'Kz„~ĆY9YŁTœ‰s$oŐßW0ćœíŚü»‡KÌTI„ë'9ŃĘÊX’—Ò9Ú]Ă7ûëv#š’óă *†“Ń „›eĂXzKu‹rIÒÔDrƎ ±q‚T A>,«4łà5ËÉçäʕ¶êJu;"IÀîF7AóŁ,i5]pŽ»J^•ŠŻÀۜ8ęÌ\á«g#ĆTîp $]0xL†Ú‹ă^BbĆÏ1Ò Ç%B5gK,#ߌ []îă¶@†Š'Tš‰tzRžF§XŽê€™lOȘ|•Ć“S Ôœőż!é]ŠŹË Yg00„ŁàęÆűąĆÚpđ&œÜƒ«}żl—‹Ú–[±·*WB’v2fÿ§k·ÙWźÎṇUyö"û6«żÖAn蝕 ëX+æò—qnöûA}ëÖűlÔ-±šh|b=ÿŻÂĘHŠޜZa۔I’]Öës°śŰšA„Ï܊ڼîĐi/–ć}ä5"}qdŒŰńc—#őxà.ÛQ\ą—7UI7«rÀńkFÒĆțÉRȚf’Ź`Ę·æ§žčQ4òìyÄŸ{í Ț†‚pFriqČłBv|‚ï/Lꁃ™ȘÒOrRTîÜvLŐTLûŹîŁ©UőZn_CIúQițÁQùĆ)ZśĆЏ«3‰?¶bíĘ,,"æË8†±úЀĂ4—Ú‹˜”ÙÊ $¶ȘgÛ/­ïŠČćiì1›„¶čQgődćK«`àÛC:_JÙ7@æ˜7HuĄŽžëĘ­˜w}‰geÛŁW„©9‰~šŻéŽíqÀ6>Ÿț‡Ei-¶ k„P’tEûșż@úišFÏöŒț =ŚwśŰ휧û’ïqȘŠ(ÓYŒÆÂÂëń „<‘Hêv쟻§ƒÔśŚêVòK,’ń1r" ą’p–ôbŠèô‹êT>C]öÖ@4{.Š$”Î,çG EMˆ{Ă\üsśàŸ§|ć˜ȚW—”ÌŠČ"ëțP‘=mî±€TŁßREÊB}ŒÙEíű±,ÚTeőÂvÓYóW{”MšÄȚ Ï+pFXĄ !Śž^1SX LóÓșÎÌżîùh† À±Î6Ú-—˜ÿuta1'äÊÚߥÇR=Ű » 'Țû¶4śÒ,ž#čS…È,|A©E6›—ÎEsđ«…WŐè2òÀ™»esé€âXmc’í`Vk\uCá,}Içźç›Țàzț ÁŽŠĄ,“î•aŒgDR-4ïǙԛčŒ(ÜŽŠśbäĐŒ#GqD©ł?Ä3ŻÙDÂù ȘšÔçÓ&še[ČêIf–ú1Œ*œÍșÎ逩`1ûLĄ [ç ÊɒBșűĄÔ#C†(sv9ńNŰZ”ôóuÒŻÉđÖŐx«Ÿ˜!„E VH|Č :šOícsÆźæĐđ:R5—»Ÿ•Lž<Úö–UHŸÙ»q|ßó_ÊäîȚ ɕPXÜBIö©Êjmò/v»?bő2TŹÇŒê žŚËR^șž°ä™źš­ˆgϰŠXx€”=êÓ­Sæù Đ/r:PƒđՔ„.”[p2 ~j™gš‡ìp–GáÚ]ga…AŠwîz>Œ,é:-xüIæâ#ĐC K@H\DoûM“PœčđžŽMhŸÇÇÙ8°7çźí&Ț81Ô>lő2RTZZy‘Š·jö/Kcß✦ÊßSăÀ«ÄDF=ë.+ÎDŸ8ő!”Ž5 çËú‚)zșȘäü5ƒ¶‹BNÊEû:] {:Tę%[鐱^ççûx©hâMȚ†u Üì„qżÔÿ’9J9é§9ŽKûoçÚĆ^d^F€p4EÌșś0™Ú‘A,zL*XyŒ‰v“Wƍg/š SŽDȘçźBúqŒH?ÄčNYXòqÜè'ĆF Ń=óßSÎ۟LPńEŐÙt©ŸDeQ6„d]O©Žk°I:ńÎđ—^™tJžàB!}րŠiĆf°ȘŚȘ»ûäÖÔĂâ$»î„Lmh40,IŁLùí„”ł ÚČ, ƒóù”‰ń1öG–V ҂źlèÛiNnWœU!™ńâkÈűù—“LűđîèÔ`zXÚó|§_›"ùëÒ1qB%“çźx^ë;Žo±mę8úzç‚ÒÙ&UŃDžß]„Ć]‚ô+)gH šÏÛbć·„Ž*ćŸÿ ìÀ!ۑœőԞ;žuBö•äÚ(›æ:ŠˆÄ­š%f->ÖC]h­ÙŰżź™™żÛÔärKfb'öNÊżß#ìŠ?GæXń"ȘĂXcćœeăÿüòmUséûĄgÀ‘q–PÌIaÌæúčߥcçRO+ű⋌žÀŻáhYIoŽŻƒ¶NIčźÊśŚèJœ>Źæ?úÙ·””ΕCæ­žŠ¶~ńĘ_ ŽL?ÿžő‡b5 p8çȘ(Bÿ4+b?ĆGüÖɎíèÈÜ|!h śîxÀöN“#àlŹL Čt±–dÜòčY%NËÛB‡NUašȘ.XM<șÜ.ȚI#àQL/ ŃĄ–çȘ_ŒĆ;8ÙGHß©{ßzkÄ)ËŒ§,uo±zFŐOàT„vÊ_ìNš)ÔÊœ3G,Š»dˆćAț„ńœ’<)í†„„8yœЧBc„·ŽìyjŸhO)9Ô‚âăîï€ŃQAï°!•ő\.Ÿ]ć,&æ(ÎSn .oő­TÁ’ájöàbF1ł/kÆ5D•(Śž—î~5V"œțòóÈĘëÔCB8鶖.œ ŽĘƒ±–jÈŚ9}Tn]NĆè"Ț EIjÆc#…Ùê` ĆpŠ/ 0őœ»t Ҋ4áół°HUŁmœ  R€ Ź[ĄÆ?%čÛæN}‰aԐòcĄŐĐ[żLÇ‹Ęæç}\‘1·nÈ}óíΌ(Č/AQVÄÿȚ2Îầ-”w+뚇Ęò [ïÍËk ŒíÂô73Ăáƒđ ïŽI•4_j8+'ë>’/ü„42<àȘŸć‚Źwëô!Š©DÂœül¶:d>EZMžd\%ŒhW”ż}‚o+čę:IÔüű[9<<Ä?TÇžąr`?"ìüęžę{ÖPêpžà¶vŹËüh¶ŚFžÒxț˜P 9ôËlDt­©M!!Ű@»7ŻŽCqtw3ŚNvȘ6^ì«Qő%9ŐZŒYyĄ`1Ș!É${_ń§X$e~œŚÏĘ©XŻÒwÍÉèç ‹5&ëśo”miH.›;ŐŸ†Éfżt”aӉ'žëŸyU»!”ęABɈë`ze°2ƒJôždüÈçgíyƧcŽ±Ú ~á|OÛȚżČ~ŽÌ0KvXGŻ­ĐTűWŒdĐò'‹IsI”VÎú„ś‹ę)ą»œï&€ńúùʒșÆśÂö0"u‹K­' ‘vĐĆŚÓFÛÿ”˜čxxÿčü­ŻîvŁI!,ÇWĄó́§¶^gęvWpêí‡êXăVfWąȘ%=ϊĄłD…ČŹŻFù&ö=IÁ;ŸöăŒÈŠĂ»–|uVÉDˆoàîLȘÁ.! ŹÏݰŁá|*Š*m)B*ÉIP6ƀ“LĄsä u{G΁ąâVȘb±Ăòț€mÎsêÿUŁĐ66”{\)qó”nó*‡b«·\ŸŁóŚG"tÍučÀ$ôàN\A^ž\-ŸHțhc„”_cš œÍjú~ÒÊÎ'ËĂÉœš<KÏ\ęèśäup·bkÆÆræăr ż€ùòńYšaùüǙ}…Î_%ۆ-Š3RŰ3ÜŻKçTŻöáă~0 V6ȚŒ•Y|ĂUâc2uvčî=Ä“ău§~9{0I žßV-©‹Ę•Żu;UT(m”—Êp[jM.„ˆ#ńœ™ÓŒ“0źYV Ț‘xęôćQ Éj è~/aOÉïŹŒ°ßÊMhĐŸ„â 03ĆÂê šÛ4CykuÄÊ!«ÓŒm)ż‹«-ŸUśćžsl8HÚßŰč SuŁ#*ÈŰSC+QčK‘Ț”}pè‡%j%Ÿ<łèțʧóŐș‡öwĐ{űx˜Cś—{GßÖ °BJi€eíúЍ ,!d-ïíoá“ê2ÏäÆ+P]—Ì]Cž—3%Wć$7úŽqܜs.ŹłsMÏü)‡œŽûźCŠț eđMËl‚F“©cA’:”~ŻĆ~Ț‚zT0e€A%kÍàz „;X€W!»»Ü‘‚łĆ[4››Œ­(#ŒVŹŸ€Ìc ‰™Ó2h”gú91Ç_Ÿ0É8ŹôxÖș©=SąŸr*kőKÛpuéĐxŽ„dk°:di›ÆŽDłwß5'„üÛ]hqe“6êűZ°yËȘ0ź\IŰóÊă‚-ÜÄĐąAFĆW•eȘEÌĄ{vWéŽ_|”ĄCƎšË­UŽș ŸžS¶V« úțÀĘń>›‰ùpWÈ-üvećËV!ŁŸäŒ‹”èk5ŁßögCțXUŸ·0M&5h8·oDvӇĆXö=­˜ûțC$ˆwČlîv<˜/ÙńÖŰnÔiŠÉ‘,Q?(Pôő|Ź»mĐÍJ„ŻX‡æ;Lù*݉ŽŸMЏ?7”.CĄŻ6&ˆe0ˆo`u­ăG»@PtwÖÄi5žJæÊ[Èű`œÆ$L’ï=Ł(uc±ś )â"qČőxâÜŚ»Lt\śv'/rk­ÈBÒÁŒSŰàŽžÄ%x7î'èńpĄŹ汌Ö$G™yă{źTVüjà•…s֑%ĂOvtVW†‡™œè üVSҔźĂšŒčšˆBhËáI<ćœtÏ;0úúöR…Ûx_!Čkà CśĘwŽSùUƒ©óp%ŠĄÜp™Êû;çÌűD8Ź*¶Î“LEàZQŹŚjit+ÉĆűìo!ì wùșŠB^“ÇQ+ĘUŃÖ+Q;sŒ ‘Àč[hïĘ"ŁkWQ ŹĘDˆŒüžìö…ç{CŻ.‘í,ì €ĂKK-GĐÊʋƒ`ƒĄöđÚŹr,ƒIŒWƒŠt5Úg.qŚ l€Š0ÍùI– „3?ÿó·QŻùőe{*_áŁr›ÏgÈá!6‡ËœÙŻ č/IZAÌ A‰Â.yÒȚșÁü^›Ó_#ÛÙ»,­ËZù9ߌ"Ż2©Ă8țÌÎą_ÈĘ9Rùö0}Î΁A‰î2k«SĆăŚp)‰8b =”seՂ:Űž_Â:—ĘGÓéVúéF~–ƒò€ìöÈ)óIs­Â‰OÔïnuŠv`‘€ŹÄ!\%òvšk•„y5Sąî3‘2bŒü{çĐąQßäŰJŽÛ‚6a»ÚêI–ęcnˆ‹á}Äšƒ?E/ÄÜ $žìĘ%Œ—Ûčy goO†2Cș à>N$é-5daJYl›ï­Œc‡đ@Še ˜ŁWEűYP\œ§iY/P• NÊ TÀ.żæŽŹŒášüȅiEż„w%í)…Ś:kŹPîNZP< È+Tÿ4Ț5-lŒ%Ž"Ջ a©8ÖËòQž©YÇ\Œ¶ gjś§#ÄȚ P\ĐLȘë5:Â+…ÂÓZ,kC~CŸŒÔČ!9 -›ZÆùÚŁÏÌU±6Êúy`JáUŃX)ë0…ÚÒŁ„Js‚ÒŸyç‰ vą— @ź—™âXvŒÛt°eČO!N#gńJ#yŠC êZęÄaŸ Hє‰Ç˜Y°`⣏Ìó32Œ@Úćꏭ/‹±|KGyVăńí(ŃI84űúKÓû±ĘBùTô«”D_{«ĐÜæ#Dhd{ńÜ-„€ˆNŠYOoÙ%6ú~Ś Ÿ|WŐh°Ç†ŽûĄnń0ĄËmȚJύŰF %æsąÎJČĂą¶2đAæ=𰁠eÂæXK ËĂ„&bCæqăȘWoï4Áœ>Ig(^äè<2.‰‚‰·wck%ÿŰç…ÿLYûjBm7‹ÎŃx>ZÿÍêŃDÇ5҈âZș6yŠÿ> Hgțkr‰‰ĄAU|Ò+:$đ S̍ßčî8’OâyĘP~ç)węgˆ%¶+«u Cé,€_Âf·F€Ű¶KŸ~jSœë.lâZę==őîOȚÍûÙè|„Ußç,*ŚMó |èWàáćö*Őő8띚;süpV‰n?Û,ósô;č!>[Չ蟬.{OZê4lŽÏŽśćÒśg»Á^!#ż2ò•GG`]ѧ(uŸàŽűè›ÔL!čy–ßh ™#uV™Ś],Ì〆@„“čDotXM NSšÓ*é§ 9HÔ_žYŸo@éwśĘr'YŃükšŸ‡]z+)ÂzŻ .͓íuó!dwæ§âhźaĆ5‰­MÄNmđSBi84\ÓDć.4‘Xv.ćź}%‰8eW-(°Ț?òÙÂ*œł(Ćëêz vÔ@*OÓ|%ùqnőœ ʶ”ŁvÖĐè„Kc{fÏ<ÁGń”™©sb;Ő(AŒvÊvAxŰ”ÜÊgŰ ·ôyç5JޱáOáù NùFŒĂ,!áçJDőá$@y”łœüÇIC‹ÈKgĐi’˜șŒíIŸ¶żÎ&Jvźïˆ}€E«à=é'SűÍ糔;6Ś{ĂY˜ę f-žfmź "[ˆŻü0vęčg&§Ï?I6À@ˆŸÆÆYÔÁŃyńٗ$Ââüì„”yĐę‚û HX<†ú"32ÙnQŚEEŹ]á™KŰêMt{€4DÍŁ^€KՊ(Ć =wžÚiŠ  Œß671Œgvăê‘Êèg 5dN-gA=7çœaŠRŽÙ œ8ù**`è4xáWl»<ŽÀͱ±]Ï"Kû7"}ĐzșÈæ.™a\UVœHĂ_æ)Ëh]û“ô Hˆ*üÀ‹›yGŽ ĂșWŰ6YêȚÈüYÿQÍ/ÛÌÙœ‰żqnûJ˜FK{”Úöărê7"ÜiRûÒêƒ@Êæ‚łÛâŸ8t3D„< țôÆțo^Ž˜mŽkoH†*äKò>%ßÁWąÈĄ‚kA.ՆžĆ<t‡Oź ™Mș·țŰ:V©EoMâÉèûžă-W˜XążȚa·őI`&!ÚGdć$&ÖÖ,Œ›œ„œșïá°°Çt—efHŹXäíq Î5VRqŒìșXk:r»őÌËXÉ1äZ†ĄOčq…ϰJŐŒÓśÁ{üŰÙ«?‘-JÛ°e]VžZS ˆò'„u<Ą‡.±wCŒ§S&ߠՀúœ+Ź4ïžùÂŰÊ’nađˆŚ&û.»; —ąóÄ5'^œÆ]ÒöUÁÒ°ćCč|C·3òŃűVFȘ( ’U)ŒÖIäăDÇHvò`bÔV?·>Ąy7 šzôv"—Š G}‡„Cdæ·OY¶‡(œ8_WÜ71ˆ·Nă‡Ù­‡?úKẗ́gh̍.çĂz«Z_V…Ń Śé< íjÎ<ž]üœż*ȘÔ!Dp5Ë6u1-À j›zșÌp‰ ŸđÓEŠURûƒ y…ÿtŰő«ŽÔđú“ÈcóŸSÂAû1„Ä ~&n5»ĘJÜ6"àÿúÚÄò0” ŸóÈčŸîwæŻQö{éł8ᕿBq±j,D··ŁĆ‰ŻÄęP=čY—æ7·Yt#;h^zfbóP'`–=iY§D5Š•ą"Œ)M*U#Ü}›\gËPzèí^XˆnÒ:Ł›ęM_§ĄșÀ§ôWąß”eöÄt&„ò Œc=ă±» žčČÿ€YBŒ€ąŽâzćTÂ9xùÛA_ÈÉŐ6æ^@Ûą†6Ș>ŠTsß6%„‹¶Ó»yëß]=*&v]wˆÚIÈú–âN€aŽUÁhó+Yìúč9Á_tú’gl9šKÚtCđ|üśfńč€a4˜…Đ"Ńòđž;țVl·„{WumĆ Y`ÍÇŃńÉVR*qę¶·$ȘߏÉÈÈrö7ÍLœoăùƒŽ•cööăeè>•§©«ÒHáq:Ś”È]œ ĐNZ5i BÛĂ9î:gp€Dtç śƒ82œ„_æX(# ÁŠmQ5ûâŻrì“7«ÒȚÆ$J0€ŒŻÇ„6TæąĆŠS&ÉŃúđÇĐOŽ.˝‚Óf&ärë -Wƒ2JíŃùßÉnv°Đ<æ~eúČ}d6Ó`ÔœSÇPlȚŽđĐHJă6›V‚ÙówX·c~„4Gró§LMùț˜àaG˜údæZx/u•Û*Ș)—žƒ›°ú­}”c(k6­úq<û ÖH!"ł3Âl†Ù§C òÙC˜9( ==–çąL#ęŐS6qŸkcJ“ïW?À›P4Ù]sèûOǍNWï]”+Va‹Ä…pmt:[woïÊ )ûŹߋgĆ€ĆflŸ›QœÏù-J€ÆäÇșœ.y“ƒçû]kbDÚ@ † ûÊÀ‹if6L‡Jéq‰Ż•Tƒ–ŰŚčđbCœĂŚUŃr1wÿ$„˜A$âÏ}cٱïï—:Ț֟x„j ӞHcëÉÖvƒčYŸeác(Đ©ÎèÂóƒÜ1è|sÒ\tqdđn Ê:ÈöóTœ«fkętRú4š”Ÿ—ÌÛêföU”Óˆ\Zîü€êSŰ5b˜šwtî`šo0’źŁ ęæYò”™Y'Ę3Ä":Y2TÜQ\.7ËÏ1â.1<-Đ2¶ÊV Ś›nô›B†ÜBh—ƒHém€ ­Û= ‘žö”j}j~ĆzÚtrŸŻöÜșzŹ/Ü#_ć/–1žđxíæńû Y{ę*š”á­ä7yùÎ&çŚçËĆÒuxFŠfˆßÍΒżƞ(ûâPśmê RșÈôû@ÊœM•ÏiÔ#§ÄMĂ,‹ÀŒNœìVùłŽƒ9ćàž&Ń֟xn^mš–4–íȘúášÙP-ŰÚńŒ"èOô_+ÁPŒaŠ_Œé}è©ŚT©ąŸ_ YBŒšg$Ułg«Ÿ"öîŸ+û›d­ÊU=Ë&-Ô^”ç¶2)QF°…î ?ä]țHDÛ[ùÓžÁïBöŒJ—àŸ<“óíw/ĐÀòÀ‰¶Ì1ő@ȚŽȚÎ~Ł\›őÒÿՁÿđ…ĄIn“ƒï·ű-żë ÄŠcțŠ+(żT èĄ«(êw§ÒiiÒżÆŚ‹ŠŃŒguUč9Élțèϒ‚o„, ćJ̆*èÈ„Šč&ŚŻ€1/ŁąÛ‘D@LpźòȚ/5șÔÒ Áú‰ë›ˆț9\ÑéI‰sžXŸŽMÀĄż U·4òŹ†Êžß|lĐ)ÙĐúđ ažśb_Ö2z@ùőć VQš*T’“cș\)Ž&˜đ]șíÁASy?5Ńè”-Áòê»Ą]Ń[@źmBÆÖ+ ńü#«·±5’UK›‰1–Á*ß4”Z)KiÓI êGïžXźxș‰‹n˜œ!î.ăQ§ú3Œd œ”è’ÏŁÉAj(Ê8É\Ái^ŠÓ‡hrs±•ŽVwꯟÁOÙ,·HCȚNr©5„MŐ0ŁLä~  $…F=úùŃ.yÇZöUx»Șôçšp™čêŐČšÓž`öÉC@û9€†Ç’víÚÍü tbhDŐ/‘Ô…syžšÍäșDdŠí”ù#ą‡}(€Fœ6ööo.©Ż•>êöFӐćĂ>đćńï7z•Ê?+ŐUêUßAÔț­k™¶s±ƒ2Û(SUíč.\oݚ^čŒ>FqȘ4«€?ôÆ «’EÉŻŸD>a1ĆE,Àú èĐCïê,Êo'š~3` ćZŚ Źâ߈~Ż:`Ț‘3:’~­lrŁ‚vYæ|2„z}^ˆTʖÔÊkò=šęTúKeƒ‰»ŻV‰9„Jăs]v8m«UÛ«nEŚé’NЧț°Ă§1šzbë:ßyÚ?˜č<`9üśíkmÊ^LF/)F”çëgP›òܙw„zÖęČuÓèg;§n É0šßkGbʁŠPŹyűŚ3ԋOu¶ÒŹĂ?’ÓÇł5ooê””ŰËTèÈg՘;ÉúÉ$Ą V4mĐ[Á‰à+41óÊŽ’űèxŰ žÓüÂ!SżRï”@&1Ÿè=A?ûvi4%Âș‰ÌŽ›ZȘRU€”˜5lŠ%© ší päûȚcÄ>OȚ-Ö ‘q WŸÚU(ö”jËY•QKö'–ŸÙ=rá±ïPß_ŐÛą\Ge[œúF"e{mͰÇËĂï™TŸÈLcŽNSêĘÛč~ä=éÏp‰-șِöÖl<ĘźDû聄ƒČûbàžń›ôè4•ń/ŸżDfÌÏĄ§syƋr©éìźÍ‰Y}]+âŃN*ΘVmïÎÆćö2Ș$±ÚhȚÿlœÜëźT„œ‹§ăèZSdÀ{ę^bD€ąÙŠŁ†À›~ŹeéFĘçžk ZdTđÓĆcJúȘNđ;/6]‡)ÌLrd›Xżm±ŽgČ»>Ú{ËȚ—yš $čHłÈFùKÊùZČ©^Jl‘ÛN€ț§a䄖év) V!ääaÖÄï—Ž'…ÖČ]ÜĆÎÉM+ŠyF4ÙĄ)YHÉčŒÎIjƒà‚úWSčÆfQ›„Ƈ ­O{aâöń–đłGS^Zәcń¶ŰȚ‹QKéˆe_P\8fTœł0îHÂ!ő iëva»î<œŽèĂè=s†ù‹I IVÚ0-1Wwó‡őž«0ÄśàÎ \úËC1ęïęĐĄ«Ș KÍ„ûÆĄSĆăGŹȚŃC&­K0xuU±9ùÜ3 úBÝMő*ž+mŽÀ^ûŸBëÜ©Eh“Œâیy¶KŃYÎ~>W©ca’anśŸwH­C6Ëß}GòL¶VX-|‡Ü`”œČPőHD”,Ùș”K”ó–ĂÎ]:à\žb œ©=ąč”~U©žÇô„Q:ŠSȚűšjČŐyTßæ_Ÿ ,ë-æq‡@ôÔŒ/PČu‘–yEh Ö _6NÄ7šcçżè5ߍ±œ8ÇŽÀ±|)leĂŸ—V-_bĆяfd{ÿcŹíôH7êï5êqżî&ŒțR>Ąpț3_·BpèĂżn`a:ż©(Tj>Œ‰čôóźP!€'äÓę„dźô"ÁnÌł«w]Yӌ!"‰ÌÄą.ŽÀó |Œ$ł—äUÒ92 MtÛáôĘiÜŽ–MòđXíż“’vfÔüÄ'’k/͚‡)Î3”Ęű‚ČYêçqőÂe·œêÌ#ŽčŠçu}{1™!ĐŹ d.ŠŃ\Rè?ČÜ! zG-Ž{cèhŒ[2èeV%șĘêzȚˆĂĘz.ÿîôŁèqÛšlzÚÆRłuć '!ˍr*„8(žÆhú‚vËFl/4ÇæûËg2}y·fâ"©ă±ddÏBBŃÈŹ’§ŃƒGĘÿ8V—'KJöxL6ȘϊŁd 2ç”ÈŁÚ)­†Œ*Œxń™6¶BTOt8ˆŐ‹hț¶êśő6Q\ź’[䏖GCÏ[üVZOł7†; ŚßęSŹjF˗—· GźĄÛŁ—3ÎÎșD–&q ț)d@œYÚOlxû„,Ű -ScŠ-àāłKŐŸ”ŠÒvsç†Ș8șÍH!@«ŰaÜÌô§Këï.áź k]Ræ–<úzÇI““żœ rŒG•«± ,Q%áŠ|3蹁ˆžšgËá:ßMȚ‡‚(±Ł«öƒà”‚q(蔞R>$Üôq›Œ Ć-ś^ž¶Ž êČŚ”rćùÓŻPŽ*Fs%iđA6.Ö^ŽëZźȚWł 4ĂăÇÊ?cZ7Ű^"Ôa©Ÿ ęD‰j‰…ČüeŹßêژ­ÏesS_Ešț$ptÉvižÂÂù3ìsB:À‹)ț śÄŚ%ȘÏȘ=Êà Čvì6Ś'e‰OX@IëšX‘ ­àÓWwWö•ú¶2–*cü_Ć áar''QÀË(Û99œÎłÈhłă«œȘ™ì0‰t ûPÍÓ6»ȚïsöY`$]‹K{Ú#w(ÈhäÎËX˱% ĘžŒ;ÊÊ+€ő#dfQ‚™¶I0eś70ő0c3ô©Sèo­ÈąÊPîÛ’„êzlm¶Ù±ÆĄ|Xiłő‘Nk-îĀÀoĐ<GŐ4N’¶f’ç|»&0ć/č–٘žIÔ»òæBȘÖÂ=ìn€ĂE`ČyCbRÔVI"}XS-ŽG ›P1p 8–ˆòpE«±WVàJjKpßOMD•ČEÚ¶\)š6šđëÜÚÙÊHâ*üÉ$žKF明ÁCƒŻ†bR"nŐȚŒŒ72Ùò;#˜óă Ą/r7Ő$š9ö+êG;‰ĆEˆ«óeqà ł^Äć(ïÈŽȘŁ ‰AyJÆŚŰ$3“>™?ßÜ"Ì'.‡‘Óœ<ŻÀ—źp–xòÈL 뻄Ë+K_ț)­5EÄ$ûȚˆF™6›ûŸù%ó”^TëTI­ŒQ(]tȚ§0ŠČ§ŃsĄ„ ÌTÓ˜ÙÉ&( 6nȘ }۔DžbMá'Ű  őÇ|ϧi™ âF'*Ïs‘Ù“š.š9WHxˆÄ.ÁŽÛrą†Ö›žăí>N—.‹Ä¶ČÊłM@a_F7Źí”QIŠ „pŠĐO<æì«Ű·>âr5Ö*>6Âe{©Æ_}„Óà) _Ńq‰ž˜š"Pæ.< óïGT)anömsąÒ“JÖ^]&eűò˗3}K}ĂqƒgĆłaĄ>/“)$âîȘ|ÍNj=ćŠńu ™u:S'ÚgŠ ™ƒÔˆȘÂH"çJ8ûĐ(Ô*‚ßż•șb[…s©æŽh°š“ć>ˆđ]oóÇS„ŽQKˆ9Ó ú›Eđ™@ž"‡Î_€à¶—;Ț•?|YŐȘ%ęžÏXĘ 3n›gÖà4Súł9SrézŠ“u°“Ö[Ӟ€šŸŻ}[±žß{֓čë0Źe‹Žp‘“ß̀ Ž4°ùՔǻŸ!Ÿïțù3î?»FcȚDÙđʱÈDYœĂiiUè‘ûÚćŽČĘ'ÌF Ę5Ô”qòš6ûr46–<Łă“;Š”x5ê{gKMÆÏ§,Ûíÿçí±8Śèç%‘%ž|ă8ᕳŒ3ŻS 7Ä,óTJbtæ{ęs9Cł äíüŸÏíCmEŻh™LˆQ— j—h'hB+#nöć(•±>Ü«èNy yŰ­g#ꊩ?mŰ'ŒȘl '‚č$%+éæéhɓt€óˆP~±_ùY˓g”b&D€,šï§ć’ŒrŰĐ%Ÿ_ԙzÊŸƒș‘čłÂșÍ>\"xlbùAóI6ą~k…5‚ü ĐÀCwïŃüeĄ¶$VȘq„Vć|Œ+‚ć‘œŽń€@4ÒÈńVS „æ.‚ Nr^ăÈE49áëœcčÏkI­,ë«bꉭxÒĄ]8óCÀJ'óʈÌ,e„bűžlⓊí> śŁS0Žw©xÄِ±ÙÏÿâÙŒ}„Kțq1'ŰçOŠ“C^Ÿ6NΗŃ\€ÙŽÛ-L MĘ ìž=D۔ŹÏÿc¶=Ç*–š™đ] ÿHaٰéA„œmwškE€b՞ŽÆ©YÌaÌnś…yać ’{FćQ"•đ~T^íè‚âߎłÀIóŚæyW샍jZ-E5îÍ6>ńkłĄ”Zń¶ȚBq'<ó‘Ü ęŸĂh5#ÓáŸx.%ČT•-)Ü$z©ûë„óC§ŠŁ/NìAœWąœ)<[wi•ÌłŃcFQg Ń՞gfĄ„4C5€Ëu+  Ź„Ęșa2t ÇżŃșŸ.#hÙŁt ü ś^E’ÓÓS5Iwć:–@CȚż!É[]_nàțÚ€éߥ:THŁń_[9Ęąd?í­))ÙGĐRsmźHžokôŰ”tŠÆežÈæNŚéÄčWèùBY·ńWVßż‹Ÿ„őîplśŸa‹ĂÆj˜X#,}Ü <ëo«waÛGàìš2OÈțËg;Ł67\ĂÚžÙjĆźèîA|LûéL§±$ç‹űčă}áÂ˖Á0Ćsž]8#žz ÄÙĂ@년-˜Ęœ“ïl^Î>ś tž#ÌÆÔ S3lÌ>⌠gVZƒx!Œ7è ÿ›ìUčMòüé—GŒrφàŠ3uÇX€‡9úżdš2yŽÖ}ósù>æsđە.L›Ì“čț™?Î1>Æțœ]Dîmë|:&?i”æŠśÆàáòÚ4pÚ5„„Ô=uó±aûc{žóՀú Wò=‚w­‹ÿvәmfD'Süˆ‚‘)őÔzƒ,]ÔKúć,DïĄ„ ^«F¶Œtb)cÀ «|8…„yń_ôŠä/ŚóxbNđ«’ËŹ%0»”Œ„eCƒncł·ŒçqyžM4ÔîÓD@€áó:Ó=ùŒÂőSJsiDgn¶Ą!/ ăZZTÙ6pŻ .Œđ]H'ț*}Ž ącMĄÁl”ĆüîRYuèˆìŠ˜ÈkäŐMË8í§Zè”I6ő'†íÔy,3p6gê:Đ[úèXŻáS+{ê)i•ŒB˜p;g5Òÿ4sSv 5ÍâÒàÖTì{Ȑ (đP”Ł-p8–]z=°Đò\-éșDł+Š:ŽjâlSŐčŠjăq­p™Èș'‘/(}É{iàÙPi|ûoú`(ă[ ŽÈ™&ĘF‰#wò eP)F‡ûVš“-k·+űÈțćîxŚ1ŰÄ«ă|GŻÎïâŸâZF7@?Iƅœć«…'ÓRH‰ÄčÊt Çss¶Œ€‘䀌‰g„·~…/~țžśâTÊ.ä-§ŰpșÛ~ő77ÇÊRŒł-Úæ]ÚÚlìiJ}Ęő{EĂk|+‰íȘ|#źèw$сŠ+c:ž.ZÍ»ŃńDR”[žȚèČș«…Ț2—ái“žMa€œrmé]ŒTv]MČhHîțÖ֌Rf]ęM<â(ì˜çŁäîś·ëȘœ Dè}B0ÜB=&ÆYK3‰ń çŽW©›Âńż·úušs"őlțôłă}ŰÄ„ˆÄhn »ĆÒt?žőJI;§+T•rkw§-•Ć †±łlà)lÄyu Yâææq~ÎO«ČżiÒÌIëŐ©œ'ö'E—±o›J3$lą…iû9^«‡7lC­}Ÿ;%u!#ïć-U$ž‹łIÛV’çÓd”ûÇńŐÏ VŒž%mƒ™"Ê„;ńKFn©IS )ԝí,C[9b[Æ$Zd$šN8s2ƒ«Œ~BÜâbÈôŸî6«L“S°‚J͖ÜS—n.2ĐŃeŃÿò Ud É3@ă°E"Æ»Nët„ÚÊ8àîùk=•†@ő§ÂG·’nÿI[ú śFÏAźăĐÇő%œŐ’±·i7rż:ú$% Ÿ[1éê-G€x—Ò-~­Ô–ošÆÌțaÿ"ăsÚeə Țrčń ó’G7áÆœêž4ăœ·ćRóŽxƒ}e7dú…“UűgÀÄ=èńŃŒßŁŽ­HáțÂÜVłŁÍŃD —2)T}—m„Ń#ò„ǘÜš­ž«/¶g!$6/šÚ5ïčt2/òŠĐÊŻ=܅ȜìŰôÀ>ń7§7IàÓ èÉŠ I°eô6eËŚcvțćè1G/FLS‘)ÄE ș ߐŚ™òÚێX@ëŒ1oł^Y—z3‰rć Đ”VĂÛúȘnęâwvȚȘšfÎȚÔSPńś5|Ą?’,—Ą{Ń9wAMvł*àiW_AšëWyzzSŃ_·8€k›%ȘĄšMàŃb_»ƒË…9Pi%íĐOźU€mžmÜV-$i2ò7(Čyń*‰ ę îΖsđSű·ćï‰öőțXrœăènŹ­čç&~Kêńț7ű܃'ú +°Ÿ Ÿ·Őš.ÌæUŸšžH߉{DpBu?_M9ƞöąûˆ©•”áÚ„ŚÂĆđčž˜ÈÌ{žÎÈ#”4)yÄ/#o ^ +`Ó»ŰlIæ\w:Ѓώߩ ŒWÏ)/ŒHü™ÄÒB+A7Ț[ąŰ­}­Ò\Ę >v9{jI¶My9ĐôÜwËӏ’Őû*>żzQڱê6ț #ȑܶ#p',Àw˜ƒĆ#‘pđÜÌZÇ hęfu2|c”Œ_*ĘUÇÜeí/|aÙ6žI» ÛÙV!Îʈ`őĆF‘†?È>këOšĐ -šöźôô^€É9+â܍±è•a.—–Š™\Kfź‘ÀHZ‚ À¶ŹP*z„믜”wČ<Á±đnûęl+Ț?™ćß„ĂB6ùJ!Š“·\œér‹LečąRp{ #đ€ìłŻî§‹‡ś2eȘí~ÖȘ«ô:dÚÆ‹Pà4KÏgßìEŸƒ9ÖKGg[JL’rŒżŒ),§5ŸwÄ'Ÿçűœń@]Ó}z5?p{ Êd.Ő±} öÂ0«P°[p*ŹPOș㫌#]«Ő+ț\Ù?0™Â>àđÌ,góvž1.TÜœŸS.ö3TĘ.ș6Ÿ9ŐÊ/^О??ïÌAó[°nżæmsùÉÿÁ‚¶żW\ŐúFìm#Àv:xŃ7ëŒbę„y{š Ą·ô|^òpš`·Ô¶űœźÔźš•ìŐ=9¶‰Ìݚ€v»Ë8ŽIöȘàĘ Đ–ÇTÖÇpŽ~ @ò°5jϐمtĆ.–0›èĂ0;n/c{îäYHo8“ă9ăÛŃßíš l[ȚŐńđĘ4ßWęvĄ”詃|…ï- M_”ć„)0č€ËÇk+PȘò–.»Źăè‡TȚàXÜèGȚK,›8älÚ!ž…jĘ{œÓoëĐű=Łżë7șAÛő7ËŽ m źX܃:InîßOcáïç=ٚlKŠNYϱ„î1:”ÌĄęuÒ0Ą?·pőŽÜ€SYLNíĆ^|«űk[oAH9UŽŒTŒÍK!Ua$Œ\Jh’ĂŸ*461ö`$'’VÄ_lft”ŚŠń°Iż.!¶€ÊćeśÂx- OûÏŁmqGR xÉĄ§ú̚ŒŸ /Š”“$Ć?JÓ”Oœ'ɓN9[bï\K^^Lä}Ê0Wú( ƒŚœPGëPÍÏŹÿŒŠ›ŠÉ“ ĂÄԍԅE€Æśœ|}ÈÈžŒÈűQŠ™›JżȚHŐrqLà:‡™-ńĘ>ë.^uêxț†j—bŻ#‡êhć»űGôžx $!?ó­CôœMXŸA”0ä%&bÆ FeÒŽ ûłêÁÀâ~€­Ź@†R”ù_ ïZÒ#„f»èLÈIašÏqÀ jł.‰śNŸï‹@ü….@/„€A[UŻèwEš“sYQA1· ÔÉÍȚE(ÜŽ…R=H{!ȘL$èá–veŚ »&+ æ}‘ÄòŰŒžâ%¶GƗ|‘Ż€•^ > stream xÚ­weTœë’5îîNăîîAƒC°ĐxCăÜIpww <žww'ž†sîwçÎș3żfæGśzŸÚU»dŚóöj:*u-6) G3KyG;§0@GSO-@Ž*lŠ đfæCĄŁ“q±B@ŽČ@ˆ„0@ÏÒ kiàæp ĄĐdŒ\@Ö6ă ëż,čÌŒț‰ŒEș‚Źôoî–`G'{KÈĆÿ8PËÒ±±XÀ–™śêŐŒ j:KK—·&ÔĘÌÀ s€ ÈÜÒÁՒ `ćèÿă0wt°ę՚+û—”+puČ4œ…Yzš[:ę±œ,]ìAźźoϐ+ÀÚèy›Är0»YüUÀ›ĘÊń\ß<ìß°72uGWˆ«č È xËȘ.+ÿ:!6@È_č]Ao0ÀŃêÍÓÂŃÜíŻ–țÆȚhȚPäà €XzBțÊef °č:^očßȜ\@—áæ r°țWŹKk ‹ŰÒŐőæûŻéü«OÀêèäöú;ÚńoŻÿšq”[±Łpqżć4‡Œć¶9 pü”*ŠVŽ.ÎŰ-ܜț‰č[șü= Æżv†é­ …ŁŰ `ai…ÂĄæyK `üŸ©Ìț'òÿÄÿ'ÿŸÈûżśß5úO—ű{ŸÿZȚ VÚ[țűç; űë%2ÿ/î@{Űëż űwO=ËT©iiíșü;üz)ë7EۄŰùțačʃ<--ÔAs€ü6«żí:–.`ƒć›ŠÀÆĆÉùo˜¶ ÈÜÎáŻáóęČt°űśòßdú»x}U})–ÿú^ęÛOęMˆ¶—“%àÿ'ŃSuŽűĂ_,ÒҎž6.N'ßÛ”{»xBŒ\Ÿț›ŒqęëŹ „ž€<†œìœœ\€·ï~țu2ț79sG‹ż6F t°x[Čÿ0ü›»čžŒiûśœkúŸçżŚĘÒÒÓÒeqÎŃ\$Ä6%=RC˜Ę?*kűł‹ ¶?Ô©ž^» / Ê±Ó?%bCšÜôč:”œa\űO‹Śì‘Óˎóî`˜Ą3Éò,—ì Swö*}«Ën‡I1zê±^ŽÏùŒÊ:œ?§îîæš†ŠIŃ3ùx+ ÒùS{^í­†ŸyrĘWü6Ź(œšüŁcúűƒ»[†ȚĄțŸÎßđĘ;€,Y_‘éD€„~‰GT /S—ëzó?đîÎ㹏Ä)6ϟ+” œ‰‚~k­‹5˱Üö(h\È%”G5ÇééȘ>ŸŽ˜ a^RÆàUän€DR!ÉręzmŒżhWŻŻ-"UˆdS3˜ÈwQł`7€òâC!†ú„;‘?ëì1ËPsőoÚ4âŃańź?ž\»K‹wD 'Óžč’\a D7•'0†œŁŒ™fÛ°Ëő,qCƒÙ°ß’!žńĐÓÙí'áXȚçČû]vÀíè“äó#ââ7A€±Æn‚)V˜‰ä§żÁa‹8Śi~ BfŠ)Ȱ–t‚‰ÆűÏrïӚ›Ąçz5}ŹD¶_œ„źl ôÎśő&FšúVv\/6Bà™V3_7ä,…1bhU‚*‚°:ijٌ$:H} SáË*qÛwí°]”ÊùŹH\4gæò‰eËç¶Ê[QfĘń‚Ï™ ]ÓvìÙÔG©KÎ tßN,x&uăŸÔ«?ŐLY­úçF4< èHJTNùśű>nжÜč>ú©0»céŠȚ2}ÖaűUçè.Á T3BêÚôy DM§ę„vÌ=œ°CĄŒ …tËŰ\’đœ`ŃZß›ìźŚÏêś.ôjšäFÚĘż‰Ÿm1èah+wÇ·™òśüi΋֍|3“@Žżi-Pš*ïÓ=ltVS5úń'eƒ8uù1T !IÓÚŸï,­4änëF7æĆÏMĆlzRT#-ˆÜ‰ČjĄkȍyïműß­u<1†ΠśF~Òš&lŃ„w2çŁ_ÂÏŃßqÚéŠȘń4;–5dŰòb«»læ:šćgÉÏ[œÌ0ă(4Ö@ą Rșe*Ô>šŹ©:šîa %PŐpšȘKûìNÔłkeÌ}k 5?‰ÛVÈ3.ˆïÊ*Ú^{‘©k`|Úę$0'êß6žÒÜő‚ĄOÇÀ-«ĐÊv€^b’`úkZ‡ùqžlć—ÌÖÄč±q;ŽòfHÄqkŰőòæźóŃÙáŻöÍWÁœŠ~œ##țUXÚ„„Ș»ZȚ*Čï@–x đܓe s hvÚÇőSVʘ‡š[y]”*tt5†>űsšoŐÓČ­Ô+?üŚ«k oș}»eŚćö†Ź$č&±°‰ná'víéȘšÉc’8ÁÒ'°ăz5zÇ™çFûJÙ9Sć» VöçćÉËçÏhăáBô ȚÏĂÓËÚeӏ°§‚EJ(sDmwùg~ ÜêÁ|\(c|™##0śqéń “Ž•©"Oű1Âê8ŚâĄ|Ó§Îń‹‚bÆț‰qȝ@ ·©ÀÏûÒžk"”áù …óà:<ăMÆ€©ATĄqÛûš'șt·}o„ŒTçűU)„\Ł/ä0ƒ0L<ß[OšÔo¶ K:ż™śˆsN‰ëžï!Eđ0óáȚ}ÁKĄ)ŚŽf9ÀŠ+/‘îßÔA;_ìú"ïÀÈ }‡€Ç0j·F`;~mȚIsÌ*>;w ]œŹíŸôń)ÄhđŽìßč,EŸ6wáË€qž ^Ą™‘‹ï:xę[„ÒŽ^/ŒZ5òsme·)ûßY„E~ÏyŒ©:í«v€—l=?30"BòŻ^A>Ì|5ÈćI«ȚQž ó»tŠș«ȘB|W~HwÂRßĄ¶Š=?šțúM—#ąWLŸÍQë »5Ǝ٩x„ÁšĆՌMÚBËőłßJšPCžš”šęç· la*ć žŃ=ÆĐ…æ‰xš(·șnŠaąȚŸ#‰•O€©—!—ùxŽŁšYđWƎ\œŠR5fÏ5ßCȚ ĄŠÚh('Ö~Ś`ćs@–ŸGȚǞU± ïđÆôRxű9Sb*Àș6/¶€(ó@}”s=}EŚn _#É ©NŠńn„ ZeŐŁƒSŸÛZPŽŸpŸfYьMŁ“{7R %inˆôk(~gĆÈŃ{ezû“æsV/ŽŻ‰YbÂæ§„ˆ j=!zf­Ć„ßhÄ6m©ßíä:Ìá` îș ‚s>rÇëèÏ!§l_Y„ȘŒDđo äe í«J Ö_[,ELíáôęă€ȘœŠN1“­cŸX§Qm è†*SÛdJníŃ~5 ÔK1‘ÒČĘ+XăȘ€ȚŹ»7Žüiu|:ŽČ(7©ĆpUDU‰9nŒÊŒقđtÓ6âŹ"Ep&/ ?Żőłoì©ËâüȚę±~ïdűûm'ę°ÓëYțhëPŚÜó‚á5«ÍÙï’źőt~Bóy1„œ`ž@ńăZÁšÂ#ę,@úȘ7c™–ÜWÂÏżłȚź[ąSEü!èD;4)Db!Cb8LcU·šĐőŸțtÁ€›ÀóʖË[wńŸg)fłáëb1Y\ŽëË=L€+Ș6C AŐ&Ԑßpò‹0Â/†”毉节^•AŐ\Ć:ÄćjAűLlA pRș„ Ü ă„â~îăŃvæ:èžÂì*œÚy űÌ(‚ÎMžĘZù4‘ŒÆ» ’~'QDȘá;Đ'#·ëÓkÆZ˜tpüÌŐœ>Ÿ,Œ°íwb€çšIÓÊsb pŃțxÒ5Ǘ„HòŒź¶T82ëŠƒÊ„ĂŚ‘Ô‘”ûó˜–λ’ŃČ:jî±2ÇP”čâČ6b꣧p8l”Żșm۔ôځwäŠŰjʅŻ8Čí#‰—ȐKnc=L ÜőçsÔ_ –ònTY EX% 4ÛßQ7ÂZi^?ÍGX(€„żžïqŠKŠŰÿą;žæc{1ž1‚"âÿâćÌlІËv8Đšđf 6AȘnœ]zƒÿ™™ź/$5•À1Ò-œ)9äwčškßžńNÈÌ ŒYä/»ŰœÄ„(ś§’%˜rbK&Hnú^t'žÌv™X^âu[fzçe!@NËrÒ@j‚ÛPŸ‹ŸZśEnÒăf]«ő«y–äțì!T ùătÍEÒygeuwaL`ż› ĂŁŻeU ŁxBŻ_}Ù@sÖYËÖĂDÛúb`7†ujłŹ@Čéz=Ę9UGŒ+áhp€íp›<” L|û„әî &ÎȘTJۗŸ–Š9 IÉò˜~ê—Ö”D ›u§ŸéŻxtòłăÖN'n$ˆûRĂ蘱ëćh:ĂǰŽN‰%^€‰Č!§nŒ°§æŒiÁćQFšĄzȚ«9ÏȚęÈŸ8*ŠtGłĐ™âłhă#3&æ >>Ż7F㻋ŹFÚJkë­M/!x<.ÙȚœĄ[±€üDo曟^XЂęŽ8“!ÆČz‘8l¶‘2.š…CőËű™ÊOÀAžuv±Î5ŰÊÁ~–˜n’ Ă=e‹Ä/›ŸZšaQ…–aśęy9¶NOê*^̓]1„4Ç8Û΀RąRŁT›m&Ì3Șú­žkXuÎY=ùÎEžWĘ #ę„A*éN\>ŃtÖh<Ò62Eè#íkÉC@œOțTôÇÏ€Ïô%\îÌDùMœ?cÉÔ±ń}T…öÛűœä«Í3{RÊùrQ6°Èô”.M$ș‘ȘÔöŰœ6 ż§JœäyŐʰ2O—*ΐ$ü $^íĆŚŽ„sÖŸ7E<ÇFŠDŸëûÄC™œ )’djm”ăúŃg©%Žwy­ VRÌô!Ț'G†}lĂârtè 0'HTûè éü#!šćčBLő1?‚0sgŠöwlĐoá*Ê@I%Ą—:ŚF”čĐVű=-–TíS"§”Œ™š>h 8":?Ż™R°ÌĐžHőŸL°·ŻüĆ T áÚPr§ˆ­ŁGĆ”a/ŠyO*Ăâ?q?ŚÓÌs;ôÎ *eŠ!§J”$Ÿ3:›Ż žbQä-¶č#Ì_7đŚk›ț±g«DűœçpéÂŒžïl"ÏÂ|{/H“4rÚÈZ"úu[›Œ ‘ î'àț›|Äyˆ“·9•O”Z~œP.tg“jË,ôúÉ^ž|<ŹÿtÌÙÍÖÀêœó)ŃŽŚ·+ƒ»nZ0€${pźÚÎôh”Ζ‚AQ…ăátŸˆôáŠÄ*œ7ú ó$ûù»Ÿ6mçUïö>*?rÚÇśäÔSóĆ~Z. kÙ@…;u:đæș…ÔòSŻfőăą oô ‰{úŹŃ Ń6ώ‘HéLâĄÁŸäžŽ›ĂęN ù†•BLČ]„‹Țű~ŁÓȚ U‚]őôŽĂ 㐏ĐJŸ>‡"-ęœ[âm  ôsœŒM5§°…NĘ»§0`ȚMž7°[™ŃÚӍ§‘ž)ś4Ă$Ćâ2Š/jËCŻ«dgÜĂt}ïzf`ŃțŠÏ(EŁÛrèùczwَ“è+çš6 ÈJû»V”őÛ&ïedÍ適@Cg‡[Îp—;«@wò^d”?‡eŃĆ5JJúœ›ë–~úćs…°§ »‹­ÎéűCS7(äfPސŚd2=ÏțÍhÂ^†Pś7ëśőèÂ*±Èë+æŸb%ńn gÂjJcVŠș'ÇuŽŸ"Œÿ”*.Í»gĆ+uŃè^ąyÆ'Șk16ÛĐżsŰ5ŽRŽ$T۟”Œ*V%)~ç¶ Đۂ}NŹ‹űzËJKÖÂj)r°¶Ê`•©çšÈĄrÁrŸr/S Űyb”ÈPóńžĂ˜°saò$§PŰŁ č‹€ ęàÛèh4a u~żQpG#öPÔź¶og*‚t„D?Oš‰SđugΠό˻čÏđç$ß#ăöŠí.Æ»țî$!ë“1ŐȘk˜ïiÜő«,Ó {€ztҝŐ5zŹ‹‚–ŠžÜŁæ]„däuN]žÛ  ŹÒ$ŽRLلŽo4rl7jze26„”h “ÇÔ8šłYNQüïé°șŁ9qÚÌJç7{m‰é/š”ùŰ DyyÒŻ–€EƒJÏ$ÖĐDSM|Ț'n*~ZŒí„‰rîŸÒ €v&Ÿv۔Uż”RaòèÄ2*XŒ ;&9%ŒúéhpK]Wæ$pó~WĄČÖQŚ* @^@üùęȘń#“yȘ-çÜJs Ž}űt-â‹(ómzN\KŻęśH2Ă l‰= áӎžÁ2ż:ÓZ&-"rțŒŽá•$‹ep~äIö–wi’Æ‘€bę^ȚA4É&ÔNÔdîëă°t!4Žé@ ~ &ś+ŽæȘóIŽ¶ßšŠîë|–űżXäo>‹żĂŚÆ(ÿÜČ2ł”>BA!EčôČŠà)v^»2Z>0Š+ź)ߙpÇwÄʀÔ4”%”‰qƒśę’ÄDËlŐ0çY@Ę~Oґ'z~^8SèE0đ۶MÁï’"ăž=ćkAÉđpï#ÓXN‘ XśćșZ’ù…ŒLÓč š# ?˜ˆœÇcȚR-©VnwÇőJőpò9˜č î`“ï”Ăí7‡țܛ ZÌ8’Ï=Ü8ä„g ôźęZۆY:ˆŁ@ű4!ć%X°WL\8À ?ŸP;b?EWŽ1‘Žuǘ É۝ö+î Ú gnp–-ŹÍ@é“éŹń̌ĘÌuÎmK%a?…łzŃ)‹û0òőlRÀ€”+Čàœ„kùĄÂW:”ßĘ=źȘ™ă `ùȘ”  Ÿgf‹Ùœç ‡‰±U`ŹxĄŰ»©Dddôed› OmcHJI1ŹKÒuRŰ­>4WpxkZ!ś/Ì4Ă7CFNuOàç]J"•”Û\O(zûneóóïyłœ 9æ“'6OÿÁƒôÙÔkÉZFíiç‘6ź"_šđTűSČLv9żá­Q“êł;KÄŒž]wh4cÆ+Pû<őTăOÚËȚ ăxQK_ő6œö›uM+Á¶3ć‡Uf"fß©cÿđŰM•`߉cpvâŒsŽšT*KWqZŠß^Ő3x+wĆ)6ÿ@S—ŒÚ Íó]țu¶nOákÙàŃóî©sŸïO\6@Dțaf!śc ©„Ź“Ô•ś*(òàă0UçS5@$ùĐÛ±vŽÓńŐê„ąÙY “ÿ»Cü;>Æ *ęÄb™#ÄʅP%\(MțovvŠ„[3ü€ì”b0ĄPæőĐ)Ć+Á±ÓM6·Êű{a2§˜Š‘„Ÿß,FșÔ% űű4Š©‡·ë6LY€ˆEˆc+‰?Š~©o„C|萖ì>ń‡9¶í*ŠČ”Ó„vböÄÜùĂùžJc”êćÀeFç&k–rä}3„ę:4ûA‹•$Ô°:7Ÿ©7*ÇPŻŐ, ܎(>++kŒ'”©û쉔lš'š‘ÏQ F€Ù…VU[ßJW€ŸŚ‹Œ©žŒÁëáFáÔŸŰEô‹5GHi"ȘŐÊbËÇ„@íű)\$}Â9âŸĆäûÛcâ5 …ôŹ5\[}ú/Z°ŚWr{ËkłVhìD q‰w<Žw˜Ž2†Őlfè —ûŁ1ŒźxòiźÇî%9ÎAż\MaÛtYaçƒa`N#%ÊoaՉQ&…±˜kÂ§ŁŠGńói€Û°€ÒșS„IÂó0h4ȘŚûŰnch8öâK‘5ą‘ăĆ'ÛĄeóă}š Ò°ęˆ!œŠÀ qß81Ń@čőXꇇîœb+íUïč8ˆćEńśe#ĘtAŸł?6śèčD,ŠK6j#űŻ‘Ÿ>­:|1"ej*»őç!H°ą$…«/fô~W’ű0B,¶XȘkÇy±ŒàCß*ƒ1æ5Lœ _DQźőą°"æąnŸăÎ4ŠŒuŸà:+!bbfżÀ±œA±\ }Š˜ÓKMéălcv ^mk2óV¶»l ĘI “G·Ăç’'ŸțąëëìF&„­/ógČ”đû„6N8“Á‘ä5A„òF ˆ-ûEùK?eT ~r[™è”ïàBĄh‚Âđ‚œOæ»fwîË)«Ÿ°Bú .æêKç㠑ÏVÔEòșQ Ÿń4Ćù,ÌùÍM6<æEŸŁ:9†>iđ4·7đ”±Î”†ŒÎô—©ÏŒÆ§€ĆèJÜíÀ„„Nì-V7¶ĐòY˜ö EAz»”ś|NÏ+‰ÂŠ'—úÏ^žp«bÛ_ËE°WSŸæ{Dxu™ !‘*‘œ%Ò_9G/âîûœŹ=kbŁ©öŠ6„šàśÂć[äűź`Idű„->#-1/(Ÿ­Đx'án—WóÀß ”!?à€cÎnùE_›TìVÓWVÇĂéȚ^őJo˜d8íkäzĘiŸd’sò„XK‘íÇż itő:Í;Ż íd `ÖwgkđöČÉćŒö?§öźƒ€Ń4íęˆúÒh ?Vr &ÖÄłŸLç(ź7r€1 Ęź=Ìöïü¶čÆ-á—˜f€ȘçożłÛÈ-Iű¶îŰž4š $aq'0ʎ†Á„ÙÏ ˆ3\|T[ߔLìÆúÄć”AÒIùk<œgrçO.z‰Ù#^sšœ1Ž •《 ϓK'KΛŸĘ„úŚ:\wƒ~iËàڞêlŹ3En''æÄ,ë"“ uôĄ±^â8FEöąĘă}ZžíO¶êÍzÒ˔¶Ïțfϰ·íÇŁWæ ©•@›Âðú^èȘ’Ăhp§qó-R—RTȚj‹É+ëwŚæŸáŰl̋ÙG-œŰ‹q) ˆS…Țß©”VčEÜ1żûÓŻ!#&ß1ŃÆ—ç3ËĐnéTÌŒ‰Íú=ö]Uc)뉄đMÂ.ČłĘĂM (őÛèÓ+ąNĐŠÓ…T SgŹ«RΞGÒ`Ÿ 8Ÿ á€JïQ hՂÏ'łoŒ1X¶à(‡;Û%Ö-|ÁäŚ;BńÓ5&œkÀ‘œ|u]mΙ‚Xœ…„KŃŹ•7?ÉM"V.ǀHæi"?šÿÌ4˧sV•8èYÎèąÍ3 Őbà‚Hn«Jë«Wgœ~ OŒáœȚmX^Éf*ùś`aĆ }Œ2Sʰ/–XN?țvÎÙN.»ȚGVúń`âĘA:'Ç|‹_©źȘlNĐIÁi[ć°űł©łjHŽúAÙT6Žú—lž?·?îH ŁÂń°ő›RA“(Đ%śNÄï”űlÛgRP€žĆŠEŠòžgOë.S,jtBVȉ·§C|ŸĄMvxȚÓ­č©č8nŸÔEëoùë‹ ț ‘zną]ëŐGà-ß:Vîn™Ä$ôŒÏ^Ńt/ńÁé͜‡57‘}X2,–mj.1I•đkFđ#Ą)…ÌÍe„ąđńkćűh…źÁwŃgÒ ] ÈQÂÄ$…=“Șî°bëQŠäCą—„ßí’DB[iĐAò8Pâs”ìč?茇ˆM ƒŸG]œŒJăÆ¶©Ą.ŸXŻž2&/àJă-á-«T=0ÿ{œnd5Żü9“ 'Xìą"泌:%=u%ÁC}4ZGőéeç“Yȑ‰ŹÁa4ĄÄ“$#:ŐÔŐą ăD3Žô§ÊÚWèAŒđŻh„ț:,+éßYw–pŽ;Æżű=ú‰”öÚïl5lÈŽrÄ·șá^©(íÈk·8’ö|œÔT˜ÏŒÎ۝WO>Uä›ÿ!/mŰśe«OîÜ[OÛYäüŽ©9†:vŹąDL78^bŠ ć›n"93S ۚŸiV–eŠƒ«9ÉȘȚ3[k±xț‡”ŁRbXž•ò…ûM?Ț{@*Ș$Ą2‚†o–#všRCÓ,»e_p1˜ 'ą—ë n”g4'ÿ° J5é ß!Ż:,Š%°"ÔŒfûƒ-ÆWÜöÍwá)=Ò|ù”VP•móÚól휩țYő ‘9Ÿ”PâW„9¶04łC.zF „ŽÒÓÙĂÎVíP4ü‹2žiCZÌNO4z@Äh·xF›Ï"ăóˆBSÔ,œź?ßÏu¶(§NÊ;#9‰mN›ĆoöWțY°v^=#Nëá O6śžțlA@îP-â–Ćö«+ŒôÍiÿ9mßVȚoECÒ=K՗~ȘŻ–­żž€Œçß5ß Ń)—ŠŽ-Ùu3…ięⱈ(ž&»ŐÉa.™­ĄUÙÏáXp:o7Țì#Sr„+cŻŁ‰uœ\9>?á\~Đ߉.GVŃgœ)KE€“ćZĂ:ŒVĄçèʁ-1êͩȀ7ÓV@żĄ]=–[4_"sçô’Áź‹Ÿ@“7ÁG¶ű)M ùCŁKtJđțäŻDŚü—»ű?mw19TŒ©0<ƉÍEČPőč]zVd> kŠ3zź,«–3Î+%Lzœ»'śN,œäó  é‰AŒ D?ŸÇ TÌŽŃ-c܈De-»ƒ?7ƉâäBő_„ì*=žXÀZżYˆùP]űšZ> ź]ƒ3IeÓN@?ö6€:[ˆüîÊțœ—ôšVJHŸpęÁàžnqË “Ő;$Ź·ĆìRNL§^·ŰCTĄ1”G}ÖÉüĄțÖ;;G…Æ/7òÍmY—ë‰9é8NOă_ìßáGÔČ„áe6Pè^ /ï‹0Š`Ń4‰čŒB/0WLJáàwÆça[ŸÆìë5 _Çq‘ Üt9 +fTŹh(v/Ÿ…sÉ~Ïjrś>ÎhŸzß!"7ĄH+öŒÖąSÍъvÿČ ÄșŽ"ș)€¶6°[RÍćÃôQÛđsÜCłç”S0œă|7ńaÖcMäçŹË/M†§h‡~}ć°7ßrídäwYŸÂ?7ŃH3;1RÄéè{ŒèB[=3>:» 2%7ŻÖ„s ćKűD„ șŰ]ź=ÿ6nŸÎ6*QY ö­ŃĘŹaăÔÇyˆB‹ćÇÍKB§Łę‡|MtUæ >‰3èeAû˜˜móI?ì\g5 ÛŒÿácA—œÓÌR+™B+ÊűyV䂅ółTÍœj!čFY(űŽ,$…äWÛÎӒ2UPrÄ8ŐËmÔÎw8=ÊśP5ŃQæĘ\W2€SațMŚA”éŚ덞żŃă~‰csmd–Ő„DšßÓT—5f%Xi…JQä߈ž]ô›wÍ[áÄĄ6„mfô„źÓ@›ĘŸ¶áŐ_L›oȘ |O|ĄșȚ™‹Üz:ł9RĘh8UĆ_6ep>Îë˜ú+6x€-ąĄiçf3…ÀëšȘËoŠćŠRÓț„ ù•u–&ęșQĂó·©Ôč:Ž—sw”4ȚCÜô”č«ó3Z­“öőS?y€?Gș4©B8\†6`{O.QíƒÇDܟb_äœĘƒKpŠ%ìbő l™ńt$ŠfćÜçmÒ-GŸbéK>ræ>BÔ*–ZFđŸÁ‹O€…Û+șn`Łż`u+"_áôgev©‚Œő [âŰLâÄćqę:Ê/FROSî'šĄćŸŸÍMËKŹQmûȿā+{—FpYӏI±UćŃgÆW>D-t”kn”GÍȚȘê Š łšwź1ŠÚ ČŒòò‹Ź­WŒ_ńoÛ Čœ–}U'Äï$G_9æ.ș™Țƒu=Ă *đhŚ(YTŰæăßăB•E,š(,»`DyǧIŚB)ÆpOYćI±éGDgItAmP”ŸÀçàŒ°zF;ƒhÍŁeĂ©^= 3Țëă^ńąśeï RÍmŃ^üp/\ͱC$PE]tVeˑ)șŽæĂcœ ˆÊąŃ?#wܘŒĄ? €ÛHsŚ'ó›é—>†Ń”ă&ôq=RQo‘ìV1Ž.G„Îă|ïŐ© Ô<0ÁČęÇkË|ț«1suŸŹčŽÂ‡ùłîmfìpì‘ÚÎđ)A‰â{g ^§Ęlœë?\ˆîaĘ€ŠO5üôƋP!Ê(·:w©”Œ"CÎŐlł ÜÛM3·hûÄ€»âêȖï\U—"țä~pÇôÄfí°žȚłÜKDqńóüæŚ"t™ŠȘĆ8n"Œ “ŻòmŸŒË&j”żš—jŠĆŽöž)2^”6ńdćûmy]/ŹDú#ƒq±unz+đ=‚­é-`6 š `8‚~ìç3\™^Ž€ÒËúž"SćŻæTWë€1 is)K[æT&°TXČî‰{ăÚéĄ«Ò d?Ș€ăcžùCÀÜț‡ïj&ÁÜżt !pÜ!Ç?ŸỏÔKpjÍŐœbo,.ű!-",ăÒÀjȚ~Zóc…EœĄÀ§ę| 1wUöÌĄJr łŒ˜Sąx}DГ7ŐąĄÈáŚ3jBšÆ+àÌÉíGł:dűÎw„Šú8g^–ł‹7퇩>‡~ț#ާl±ÜÄŰ­GżcÚŚòő…&?“Æ€Ü/Ő­[K=cÛw»UNùYČ9ŸC>ÄpêèĐ0À‚3Wùž˜ŃDÏÇôܟÖov—wÍI€ÔvLèúòĂ[Ÿ*ŚHéÓ °·kÉVël=Óăœ#DłmXșŚč%S(WÍóèȚ»0ïąÂ%I—.ZȚuRÇyÿKÉ3[ȚǝÔč7DêSΕÁì§”rÎèŃÜźU]2~b`Ąß˜Ì7üÄÏ(ć€âščfU“`“čL„°đ)6ă…·2Ù 5Żđq}|}beőWŠÏŠđôęőÜž?±Ąć«6"PmzÏLä%_%âę% ĐœČćôšŽ>» -Źlœ @ÁÄV7“ÿć‘ç‘Íòì|`wńÚëPäŸ#ìŒoȘèŸț_czÒ%ŹÖ~gšŁ'û0„éLąRręaÀOjńț~$+ÄJbôńûńđ<©ęùÒœ>źę°y˜UžQY’ jÜWçŠí=>ï(ăń/%cH'Ż-Aźős6ò—/‰éÛZ‚vAö­NQ˜;ŸżËò’Ÿ“wĆź*“bgšcÇ@Ÿ{ƒ@ażzXŁòâ?ÒąŒáńžĐê~öș·æRßGă©ŒŻ…3v·Zÿü‘;zâO\+nđêò ”ÙƒoŸúó’áQ§†u §ûJfŰi“Iń=‰YÜŰ1f˜É3žê}ËÖœn~ÒꙀA:lXïâÓÂ-ß4BëÆ‡çÖÒr 3 “JÉÏ-qŻìiû,9"h{ÌYk¶œòĄfÒÛü”wïíè=KMŰL››g€)ż·Žőìő€G«»ąȚ% ŒÍíU‘«“p‚ÏÄ{ٱ>˜‰8Wê…Ș?jű‚ôqű&)+n!\iÙè=Șê5’0€Jq"Cœ‰‹ ŸțŰĄúÒù=AîdNf8°” tŒŃxĄtu•ä(’û…AUú^NVĆŽÈ9uÄïƒČb\n3‚Ą|Š\„%uZLêERłS°Ó-Z"bŰΛSêpkG"ŻÊ.ŃŻËö„{ ŃËżwÊí†îÓőZŸłDӌ…ìÙ…r°.SäœÙvțÓÚâÓ•ÂU” €ïßà 2ž\Œè·œŐ- ÜloŒl6­0b BCÜșQ…OæŸWŹœ€Ä„öŰê§\„`ëpő(ÜŚžÜÈÂȚ­ .‰v„*ÿœî›IŁèâSœÌ3Ăwdí}%ŠL§ĆÉhÊ—ÂÀácÁŠŸžAș‹FkȚ8ę* p·„Św{+;Îț|Á™ĂL*žgƒüöïÍĐ>ÇőæăŒŃžłqÉ[~û‹QƒšpItaâZg[ –^Аß/ŻĘÜ€@:<šêV4ÄŒí i[œ`zæÌ&ß`œŻ„ás“ú>˜ü6§‘sS@Ź^žbI€„"ŐŁòÙZxgJCÂtÍԓYośhł±u@‚M 5é…Ę„űœŐ—@LFk†^ȋđŃn0ÒŻûáńçId"7J%~X]Šß:’(5y~wőÍÄö &Nô5ê™ gŚÈ”[XĆŽŒ!yĄšsI6ȟ€sÄ*EU_Ÿfź4žÂŰU™/WUČûŚłŸź)WŚ{Àx–ižR2fV˜6ÌÜ€/îłWrÊašŽèí%ÎyjRˆ€]hńœlk Ǜ17ŰZ‹'ćĆ ĄCô3z^I‡ÊĐ4łh*EÜ5™9p6y :ÛU~°‘vܛĐXö™#ĄÄJOżáҜâNԂRÍhoę•Èi>^ #ĂG™ÊI敌ăFOÙŐì+àyís©”i©#ădò 7Œ˜öńt“±ûB“LűÆa†‰qû,ÖȚ>TƍU•Ś}ĐÒôN °Š> stream xÚm“MoŁ0†ïü ï!Rz ˜|U‰ÄAÊaÛȘ‰Vœ&ö$E 6ÿ~=HŐUAgȚż“ÉŻśœŸ«ú~üÌÙŽuo$ű›ßÇÆ›LD-û tś  @Ùö…œ›ZîĄcÓÍNìtÙ=YńNËkŻ`T=­áRêo ȚĂŠűôeCîŸúòڕÚç(>”ĘՊæ™ ČŸAæŠț€iËZż°đ™sn[­6u…cŽ^0XaÁhî\je?ì„îŒ0bȘ”ĘprOYÙśĆû[ÛA”ÓçÚKS|Űdۙ›óűäoF)ő…MZł©}ß4W@Œ{YÆœmG;ÿë±<œńź9Ü`‘;‡äKÖ Úæ(ÁőŒ”óŒ„E‘y ŐčĄât€ba„bi<ÎgźbÌĆw­ü:/]ŚćvYsäˆâ[ä˜â+䄘#ψ]íœôò‚â9ò’8D^osâyMìîÚGȂX o‰ä‚îBŸÉà5Éà‰<űÇ»’ÁÿÂò kŁ(Do9Örá,ÂqŒB?"tŽęEDqì)bbœW$ÄèYÌèM»>sbŚgEìjqȚ(ŒæĂŚpoż$îĘ}IdoŒĘ·œn-p!J śęmê«ÜÏ-țűOĂÓ[áęL‡ endstream endobj 183 0 obj << /Length 739 /Filter /FlateDecode >> stream xÚmUMoâ0ŒçWx•ÚĆvHU„dçCâ°mUȘŐ^!1ĘH ęśëń#xÙö?ŸgìÁÜęx]OTĘmÍ$|äì͜șs_™Iöss îîòź:L;<S›zœ==±ŚŸ«Öf`śÙ*_”Íđ`É«¶ÚŸk3ČŸ'ióŃŽž‚}Űę»ù=©œà“íčÙM;áàŸ7ĂȚrŸ›f¶ÆnjÌ-ùeúSÓ”OLg~ŒÀ8śă ăâțÈ)okà çA„8 ö$`I\èÎŚ3`çAfŽă<ÈZ]ƒÂ!‹„ê xNkÇyăčăĐđ"œ7Áż _„㓧Ìq âH`òáö•‚nú„€ḱÂđRONH=CpB:# =Ń%8“ˆ88QA~Ą!*ÉzƜűАäT?!~Ž> étw©8éÄy*ásŁ€Ï }nÔÌçFE>7*öčQ‰ÏR>7ŠČą G]Œ;~îó€ŠÛ<©ò6OšßæI‹ŻyÒòkžtèó€g>O:òyұϓN|žôÜçI/|žŽòyÒÚçIg>O:śy҅ϓ.}ž2îó” Ÿ§Lú> stream xÚmUMoÛ:ŒëW°‡éÁ5?$R. €d9ôMđđźŽÄä ˆeC¶ùśłk›m‘CŒŐpč;;†wŸ~>Î|żŽ3óEŠ_ńž?O]œ5ß¶‡âîźĘwç]Oßcìc]=~?§}śOâŸyhÆáô9%?ŒĘÛčŚŹ“B|Ɯ‚>âț)ț;ëvÇw%gÏçáí4Œ3‰ä§áô–’>\ ‚‚6ę§ă°ż őEJ™€őŰ7ûÆ8ó 1ż’{Æ~șđÏ`W(-úĄ;]Ÿè·Û%=°ùńęxŠ»‡ńe_,—bț+-OÓ;qü\ÌL}œ†ńUÜÿI--=ž‡·B«•èăKȘ˜æÿŸĘE1ÿpÆ[ÎÓû! Mߊyuû>Û.NÛń5K)WbčÙŹŠ8ö­iÇ[ž_źčuʕMúŃzQ­Š„Ò)V†€Ú(TŰ€àxżàȚą žjy‹°°!ÀĐԕ”ZÔÀ2àP="ŠZdÔ0\ÃG©R\Ą·”).–2*ÎĐša!„UŒÄ,†łÔÛHđ° `+jĐĂ.ž5Nα@èâ°èĐVK-àxŸ%ô˜Ü3š% A°YӀzĄÎšÔ>kP#ŹłŠő™5m0WŁošŠĂŸžj­ź§Üę·.†ĐZĄŽT$X/©)n)æ#W—„o(æ“oÀRZȚ $Kąp4’ŽZ¶-bâ\­1ŠÜ°Jä æP"Gń‘XÔQŹ‚i/8șkÉ^€ÂZqŒ:ZsŒœš9”d š­Bù Ž)ßsLù-ï7œæx˜ÏJ›ĄŸÒ`ŻažÉœ)f„É$†”’1™ž dъcȘCZCù<Ł7Ă3JÊgózÌnűțHȰíáÌYɚäTœŻa…ŠïŻÆ,_»œ-Ÿ—Oë87Ë}êÛKԮܗLlčoKńšò+Êg­JÌâ.ŸGZyóș‹Vđc­48ž’ïŒäŰWtù]Í:P~`áŒń±–rZŽq.nÍ1]Ç ÇàSÿæ/©ßP•ęïuöż7ÙÿŸÌțśUöż·ÙÿȚeÿû:û?Èìÿ ČÿƒÎț&û?”Ùÿ!dÿ‡&ûż1y–ŠŒÍH·œn5țčă)șœĘyšÒ“Bïœx#†1ȚžŽĂț€]ôGoáőńĆŚMń?źXê endstream endobj 185 0 obj << /Length 443 /Filter /FlateDecode >> stream xÚmRËn«0Ęû+ÜE€tA1Š€!$B)‹>ÔDWwKì!Śd`‘żżR”Ê83sf8óXÜ}‚\¶'âFż oG# (Țʎ,›VŒ èá@‚œŁę+ę4­8À@—Ć~łŚjž·äœő(afĘ&­áŹô7ÿC—GűT]ʘà4ȘzP:`È=ȘĄ¶œ[aj}ô‡ș”?`zŐêW=0ÆŹc«eŃ6ŰCOÂI ge•ÒÒLbè „‘ˆS©Ä0Yî-; L>\úšœźZ’Š4üČÁ~0§đž„F‚QúL—?”ÙÈaìșPe$Ëš„ÊŽœż— ĐđVƒWÊńÒćΎŒ*ŃJè»R€)őHÊXFÓĘ.# ćŻó§Ê›–0C~ ‰„!)Ç"ŒÙI-札ŻĐç?9ü#.<^[œ0ÏÁÜ$òțgıś#?I> stream xÚmSÁnŁ0œóȚC€ô@c àŠŠ"I€¶­šh”Ś&Y€`Cț~=3ĐUW9„<ßŒy3¶g?>~Z6gđŁg)>Ąk[€ŻžZo6˛bšÁôo%”Ónś*>lS sœÏśŠêŸyoŠÛPÂÄzLÊàZ™Ź#æGűí_Ú[m+ÿ> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[•j”WHL7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐÜ$Ÿ—âƝÛK_șIțsßE77E[^Nź«\5źžÄsߖ;7ˆÛ|[l›zžŁàmSŸ_*7Fę?hćȚêæ3<âöŐęžtĘûÁôúIÄœÖĂ;­_d‹«-8ô—ëÏuÛ<u/„$Çș©òöĘçhžĆtTsŹ›ȘÄr"„EU—C°ű[žhHȚ}œwÚ6Ç6Z,Äô…ÏCÿÁÊîąéS_čŸnȚÄíUywČ-—ąrG*Fœ>îONLż7u]~ęèœĐl+ŻŠl+wîö„ëśÍ›‹R.ĆbłYFź©Ÿ­©r8ޱ)ĆÊ9>*QKrʁ7ì˜äP†°ČôŃ:MÈĄQ^sž$LDÌ6Țaȑ*Âs.$S5ˆ6`Ń>ĆÆ„m•Áë#TLŽ 5Ȝkdš‘­}WìXssc‰»*ÿì{êčRęh/#„?Ûń§ béE$èLÎ|ږÆă°ő8^yŒ>eÎSQc’ìÏçÀÌŻbÈVÌŻcöáNa'_ì OÍțőAŁJęô195śœkàŒ±dț•ś3§ŚE»Hž@œ8çܰ%ŒĂ~A—s*=FÆă Œâšó0ÚÇ`†{RLŰPh33żÛèÓűYæŒù$ÉLÆčŹÇŹŒ o»šqMè§sîÚśÈŒÆ tÚÀ…xö•őčì\˜ \šcΜ-üÜÀe™k–sLžàÊ ?·"œ@>qžhx źŚ·Œô=Ęl~1űÖâŸÖ»>*]Û!‹ÿüïʧMôŚa@ endstream endobj 188 0 obj << /Length 663 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[ŽÚ+ML7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐŸșI|/Ƌ;·—Ÿt“ü硋nnжŒœ\3<:Wčj\=?ˆçŸ-wn·ù¶Ű6őpGÁÛŠ|żTnŒúĐÊœŐÍgxÄíȚęžtĘ{oú ę$âöőđNëߗÙâj ęćúsĘ6BĘK)ɱnȘŒ=Aś9šn1ŐëŠêƒń 9‘ÒąȘË!Xü-O4$ï>΃;m›c-búB‹çĄÿ`ewŃô©Ż\_7oâöȘŠŒ» Y „Œ–KQč#Ł^''Šß›ș.ï?:'4ÛÊ«)Ûʝ»CéúCóæą…”K±Űl–‘kȘok*€ŒÇ۔b敚%9ÖÀvÌ r(CXYúh&äĐ(Ż9O&"fï0äHá9’)ŠD°hŸbcÂ6a‡Êá@„ő*&G†YÎ52ÔÈÖŸ+vŹč豋Ď]•=ő€\© ‹~Ž—‘ÒŸíűÓ±ô"t&g>mKăń ŰzœŻ> stream xÚmTÁnŁ0œóȚC„öÆ6„ŰU‰@"ć°mŐT«œŠàt‘@úś;olšv»R‚ž3óȚŒmź~<î&YŐŸžI|+ƓÚs_șIțsßEWWE[žź9Ę;Wčj|;܉ǟ-wî$źóm±mêÓ o›òí\č1êÿA+śZ7—èˆëgś{Òuo}mú ę$ŸëÓ|{'ˆBpđ/ŚuÛÜ u+„$bĘTy{„ő!šy1 êŠêƒńG‘ÒąȘËSXńł<Ò Œ{NîžmmŽXˆéœNę;{»‰Š}ćúșyŚ[DïÎŽt° dŽ\ŠÊšő{ż?:1ęÖŚÇûçśÎ Íkćę”mć†n_ș~ߌșh!ćR,6›eäšêŸw*€ŒÆŰ”b敚%kà ó‚e+K­Ó„òšó$a"1Ûx‘*Âs.$S5ˆ6PŃ>ĆÆ„m„ÊA Âú‘ĄF–s 5Č”ïŠ‰577v‘۱«òÏŸ§+uaяö6Rúó:ŸŹ!,œ‰É™ÏCÛÒxŒ¶gÀ+Ń§Ìy*JcL’ù|Ìú*†mĆú:fț“vŠuòiü©ÙWUꧏɩčŚ\gŒ%ëŻ<ϚȚí"áőâœsÖ0û_:Ìú©ôę3x0ŠkjÌĂhƒyîIYx0aCáÍÌünŁOăg™3æ“$cx0çČłò<<Țv5ăšđO#æÜ”ï‘u7ŒűŽA ń6ì*ës™Z˜ ZšcƒΜ-üÜ eYk–sLžĐÊ ?·"œ@>qžhű|ÜßòÜśt”ù›Á·ś”nÜÇg„k;dńŸżGăG«‡Môóc endstream endobj 190 0 obj << /Length 799 /Filter /FlateDecode >> stream xÚuUÁnÚ@œû+¶‡HɁ°kc{!€5Ƈ&QUœ‚œ€–‚ ÒŻïŸ™!•šæzż™yïa/Wߟ'ź¶~’ÜjőäĂylüdù}sˆźźȘĄ9ï}șśŸőíćîńN=ŽCóìOêzčźÖ}wș äuߌ[aęŸTúŚźÿKÁuęâNNfò»›m'zÒÍpĄ'ü—îôx_QTš«OuE­?üxì†țN™[­u(Źúv9ìáçME“š^TîșŸE˜ÚBfdbŐvÍIźè»Ù‡`Đüü~<ùęșß Ń|źŠOáæń4Ÿ“Ò›hú0¶~ìúWuęI]žû|>Ț<”(-Șő»04dqżÙ{5ęÊìíćęàULچŐ5C돇MăÇMÿêŁčÖ 5ŻëEäûöŸ{FZ¶» wžș_±NŠE47h61Ì……Œ I(Ä­pZsÁ†BFN“uFFQ `r0–ŰRńŒ€ŁyFĆ-+2ÁŒ553†č‹ ;»žj~mF @ÇË2ŽiCć 8æzœź`Qψă°W§\Ż€3Æ8çȚŰrűśÖÀŽëÈQ—Œ—8Kź“žŠ“ÄL“p/ê†5”„9©Ńž™`o _ń,Š_!ç9ەiÆŰeÉ» V6ŒáĘÆŒáĘ&ŒáĘÎ݀ɻ!m6cL3sÆÄ±Ź {­èDV–tš4ے1tÚ%cè·cšOż€IńÓښ1tŹ?ĆȚ‚ő§àŹ?ż`ę)ôŹ?Ł^֟Á{ÁúsâłțŒűŹ3‡æ‚uæÈŒ`m ńY›ĄG—ŸkęNȅ/'ÙŠÀ’-q$[Ìw’-ž 'Ùb—“l‘Ą“l‰#ÙÂŻ“lĄÙI¶đć$[űu’-Čr’-͗lĄßI¶ĐYJ¶Ű[J¶à—’-ű„d =„dKœ’-Œ—’-ń%[â[~; ËÛ/„d/„dŽgŻŹ8[šĂovIœ’9vU> stream xÚuUÁnÚ@œû+¶‡HɁ°kc{!€5Ƈ&QˆȘ^‰œ€–‚ ÒŻïŸ™!•šæzż™yïa/Wß7Ś/~’ÜjőäĂylüdù}{ˆźźȘĄ9ï}șśŸőíćîńN=ŽCłń'uœ\WëŸ;ĘòșoȚέż°țO*ękŚÿ„`ș~ö?''3ùĘÍÆ‰žt3\è‰ÿč;œȚWêêS]Që?»ĄżSæVk «Ÿ]{ű9FSрЕ»źoGŠ^ 32±j»æ$WôĘìC0hȚŒO~żîwC4Ÿ«éSžy<ï€ô&š>Œ­»țU]Rîn·ۇ„ŁĆB”~††,î·{ŻŠ_™ę =żŒŠéÚ°șfhęń°müží_}4ŚzĄæuœˆ|ßțsÏHËËîÂ]źźĂWŹ“bÍ šMLłD!E!ăB ±FAë€CÁœÖ\°Ą‘ÓdQ€Q(˜Œ%¶T<#àh^QqKƊL0cF F͌€aîâÂÎ.źš_ÛQĐńČ mÚPG9Žčž'„+XÔ3â8ìŐ)Ś+àŒ±Îč7¶\'~Áœ5°ă:rÔ%ï%Β뀧â$1Ó$܋șa %aN*At†g&ŰĂW<‹éWÈyveš1vYòn‚Ő€ cx·1cx· cx·3Æ+`ònH›ÍÓ̜1q,kĂ^+:‘•%fͶd vÉúmƘæÓ/iRü޶f ëO±·`ę)űëÏÀ/X =ëÏš—őgđ^°țœűŹ?#>ëÌĄč`92/X[B|ÖfèŃćçÚAż“láËI¶)°dKÉód‹gĂI¶Űć$[dè$[âH¶đë$[hv’-|9É~d‹ŹœdKó%[èw’-t–’-ö–’-ű„d ~)ÙBO)ÙRŻd ï„dK|ɖű–ßNÂò¶ĂK)™ĂK)™ăÙ++Ζæđ›]RŻdŽ]ÏOᜌz͜Ș–“€Ț|x8€?ŽÓæ<Žá€„“œNOœ›]ï?ûĂp@}è_âòÿ„«‡:úh‘ž? endstream endobj 209 0 obj << /Producer (pdfTeX-1.40.23) /Author(\376\377\000V\000i\000n\000c\000e\000n\000t\000\040\000G\000o\000u\000l\000e\000t)/Title()/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20220123181914-05'00') /ModDate (D:20220123181914-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.23 (TeX Live 2022/dev) kpathsea version 6.3.4/dev) >> endobj 136 0 obj << /Type /ObjStm /N 72 /First 629 /Length 3704 /Filter /FlateDecode >> stream xÚíZÛrÛF}çWà1ڔ8WÌ%•J•-GŽÖČŁXŸÈv©¶ ’°ŠH™€'_ż§gp’ČèőĂ>l±p›ëéÓ=Ę= „âτæ™u™P6“\àê2„%ŠeŠ]U–Kƒ«ÎrKő>3‚žmfs‹«Ï\.žgΛ̚Ìkj•gȚćšEK.}&rr’c C% 7§\gB*șĄj†čÉ€đz r—IĆ5gÒ 5<“ȚĄÄˆLIàFeZXȘÊ3­9†7ĐI&L“ ž+H&,€Éœ›gč#`Öf†“ ‚)ÂâDfÁD©%ùEŠŽÇ“U Z àȑšhă€ăÌçŽ$Á DƒPÎBp挒†đ‚ÛL% !4XÒS ‘ù •șńÔZšđ 7„h0Љ$ÏŒ'Ea Z€rÜèąșzœéàŰńÎ5ńèIyź0.Dæ–òÔÓij‡áÀHçx‚R\Ž (&&ÍćWrRqĐ )ˆGÉ1PS-æ@7>w–j1‡ÎÁÏ?ŰálșÌ~ț9c‡° pÁł—ž‡±Żú^‡tÿË/v2ŸNËeö!c'O3öȘüČÌΚąŃ^ęu[ąąž*ì#—ÓćD ê>`/ËĆìn>*ÁrCŃór\g_ČdÿZ/Ï1M1Gß ƒĐîŃt:ĂPÂÚ ,Ž6èڛ:ްӻ‹ex>źŠìńl>.ça ~Î~cGì@uN FFč|šAÔ34 Tk34†ŽC#Ú= ,fìéìŐ,cOČFŐČ>ĘMÊćżF—‹=â绀Ń9Ú‹•Àbż˓ìù• ÌłwïÁœZەćùæ1œ›Lη·UĄ-|Úæ_iÌĘĐZ«z>»Wv–Ú–ë1Ț U¶†VrĘÊdfŐJfўú&ûߛ©[3Smv2Ӕ»ăvDcüPÀ­=ʱČCőжfwRÎęŒ~ÈáĄŸĂq>ű`•ŸÓO9Üwź 2tGŹA  ˜‡"ą ÏîbQ8ç<'„ß”źŸspùT í۞X3c6WmŸÿ…1ÒüÜW±cŸ:ą ¶°ęçœŰZ'ĂÂąÖXbÙÚ!ąQ8Ç{ÂÛż{ÈQheïö€AĂisi3ßȘ$iŒz†•ÁăycSI>:Ž4fhëłsnèësĐd'^Ÿc‹ Ș”Cٜq6ëĘ0ÏLnˆOipo­"瓡„p4ŠŚ4ÖšÍĂÙÄqŒ@9òaˆśœINCxZZ†b „U[êÆ@ €2 $ÎȚĆÉÔ‹Ë8œ­Ô­˜[Ï icê ç†HŠç`L0­Ž,O˜ŠłR„E¶föĐC&c$FKłÁŚQR&aáP*ÔŐæZ;èïäêÿìż‡’ŽƒÖ6F:ud?”Ò=ț› ź©€șö ŽÚÚŻZik@fŻ-”±úv•Ôśź ùu}(§°țȘ'Aä > 3ș°ûT.Î&‘L)Gæ-Ј8 _à¶ÉP1·Ž–­hùŠ ›­ŚVƒžÒ ÔŸń3 ßE‡ä8éIŻüŒQ!ŃQ*ȏMkšĂÆ6€:”źăŐPpOà€ń3;©;ŚV…Ú&9$‘MY=Óœs*”çš,r.…°ÆNZHäț9öŽúÓ:žțüu>’žŽND§f"Œ` {ïÖòȘ`~”,Ą7őò €A''mVÙȚdęîcijÊÓ2ʔQÛVÒ”vє?›ŻÄ†țâśíjhWEĐûê ÛhôȚ?WXÊœ±ƒêčnU°é ś(!Ök֟'›*ÚJ<)Łyu»œÍăÖâEqC»ßgÇïȚŸûńh:šMłI±,țźôțăÙdŒV“âj‘éŰüqŰhíc“”/<&HU íŽ-FŽÛ26Ƕ­žę­Źźźńš$v;eŹÛTyŽ,&ŐèŃôjRfđeyó†ȚĄ ŰYĘI‹1ź‹9mi~`±’]łŠĘ°»eóœć°ÂÂÈtwś59O^ęńú /çËòênRÌ7ŠÊ 6y!äj*OÍ]WPȚToÔŠræ9±'ìWvȎŰ1{Î^°vÊ^±Śì(ŁȘZV“q‰Ûe9ŻÙ»˜ŁćrR^.›û9 ÂFłÉlŠóÍMÁÆl<›@>°&fć§»bÂ.Ùeőčd—ŰOł+v5/ žŻÿșœ.§ ûßlÂ&ćbȚ§lZMKĐ?Ăù–ĘÒÖ:Lî‷€5łÛÉʂ}bŸîfËr|1as¶`‹ò3F\T_ŰbR,źÙ’-ŻçeɖÎŰûÌțd_Ű_ìïr>ëêVïąÛś'OßüöăÁó_Ïßl¶p"ûˆŐô27§,WúÔžv8őź;ÿÒ%j'ÿvüÇÛŁ7o»DœœĘ[ˆ‚ó Æ/ž€D:1+șyˆë˜YËFąœNÓß ÏÙAąŸ†żțɞաúwë?‡°ß°·1h_Í °x±Ž‡‹ŃĘČ Ç7c Šć4\ˆûšțÉJIPțX+ăÁyŒCƒæ!¶ Oń6Fê›*‚}`Ì^Úv'OöüűìŃÓźÆI5[4N@Ń_h\pú5ŃžìžăUgiˆmNÀșDćÁ$*'…UGEÓ"9ƒjW:Ë„—5Ć”r]‚­?{‹Âmˆż"'WÓ+ ź./BŠô/ÇÌa‚YȘȘMêFÖ_[X„VT©)Ű é/j2W°Ž ć ïh‘ÁŽ3š ȚrÇ5pÆȚaïVłyŠÎdeĂDÒ§–ŠÖšè_ó{Œ–țhn–K\<™”ș^oŰÛȘz}?ˆa„ÛŃ3eê\čÀæ5ŐŠß!Ïęî|c{sî˜YÔiFàN,RĐǎ2k"ń™ăì{“H|æ<±.ÒœBHg{°E)ô/Ô}jA1ÉFä|}…'§R!–ÜăbQ†?°ÖČóŽC/ƒÂŸy‡Ő|±€ˆE2@ÒŃ<`čŸ­ÆËëEű0"4}5{=…iŽi=mÉ8îÔK„ûx|%‡-r'-łŽG펧ŸòöYŃ”âÜ$€òu@zw@ëég’êCČ)&)S„éuLù&‹}hyš·ș\M­C3»C»'Çëƒ[łumRp’ŻÀ™)Zß>¶Yƒkw‡{OŠŐ‡»¶dȘe„Žâ!hĘ7Űâö,Ą‡Ö­­o#7wëżÜû^§ő=șßTi{Ú^痯ö|wÀ_{/ÖÇŒ¶Œ”z#ÿÌb3}Č o@îèćĆê{_ûÿg՘òŁűE3‹ołè,łČŰáü[F§ï^ÂMąčÖ_8IQ_óú‹'ń”9äÖ9êïtê/Bîƒl!vÒőŒąÆŸ{}ż[NY,jEe”&=ŃgqáĄ! éX!eÈdóeœxŒk ŚœNæćgúÂ.UZì)šžÂmìù‚>M‘zœ§°mOĘíéU2©‰é5ąHőš-ßĘáU;<żgx— f„oF1ś ąÓAäú -»bó ĄcÇKÒ^ ZÿáÉlŽș,æËœLEățá·ËÙl9Eț:{ŰÄÂ#lmèYćé3ßËbdk Đ"ƎŠ@ąÀEKbÇŐM”ìMÚ6;ï#‹j/ó)5 :Sæ(piAO ìœűHK•ˆ>ŹvƶŐPžș§ „JƖœZtJ•€8„€’(fVn3(żŚ¶ÙŒ ŽÄŽŁnVòTu %Oy'&}#&•»‹Țk›ŹAI>LüiQĘÜ^ț$9ÇĐŸfíĂEŃŰWš9ž-ÏáŸ' ]îeÖ$U§ŰÌLŠŐGPüôüàùÁ^űÖ9Ž ­ œ4Ê`ČŒWȘH?ùš4ÛÀv;źÉŰÖjR˜m |)nn'aÉäŠ[„ɍëĄcȚ+­Îw‹ C}K »;Òxi]eˆȘšç[xÿ°ŽEúLæ*UZBæZGÂș„ÌUuÚšœđ±zßjÖ¶ĘŽXĄśÂWì«!IO2yÆ &Ž6…†\ZOK_ś”s5m6Ł ^"O#'!ÒZöą†»(G€„—ąțv”) üvK ˜Ęˆ ł&Ö5UD”èIäŐèwmiä7”BTqŠ!żßșĆR'‘ŰđI{ŒšúZ'0”ŃśnsśÌ”N»j-Ł_œÇ«șÏÂîM_ÉÇAòû@m*ÚJŸaóv€Œv2»Ätj•5R{ƒ*%·MhŸ*ÉÇ±Ś‹r•Nę~[N™lgûÁŸœ endstream endobj 210 0 obj << /Type /XRef /Index [0 211] /Size 211 /W [1 3 1] /Root 208 0 R /Info 209 0 R /ID [<4D3B668D1DFED7E2975F7B8DEA71CB77> <4D3B668D1DFED7E2975F7B8DEA71CB77>] /Length 534 /Filter /FlateDecode >> stream xÚÓ9OTaÆńsź"(â†ì‹ ŁąąÌ "›0ÈâŠžà˜žÄÄÖÄOpbMkcbŒ‰‰­…ń+˜ŰY›HgĄŸÿ§ùćčçȚûȚíčffÿ2łÌÜ6ž©1E’C‡˜H;`'t3&UÁ.8ËlˆT 5p‘YžŽjašÙyRÔĂŰ GÜŹAśÒû8űgs?éédó$é0©ŽA?ł&ÒiR އdGĄÙ­șš ”A;t@'tA ‚.©„t”^·ÆyËŐ2]-șIĘź6ő”nÍ?uđvô’Αôűzaz“zí#0y·Ÿo:íè\‚Qž cŹąw:nƒC:cŠà ‡ f łpźĂŒ[ń‡N[€k°K° +ŹÂĘg«Pv›zŁ3nÀ-Xs›}„ÙMۀu·…żšĘ†{pÇ­üIł»° X^łûnk/”*đőž•—˜u J4,Ü­òG;èdĐÄ ‰Á' *5nÏŸèú|ű fAčBćRćŐ+*|óPŻÔ{őȘÉíùžVIí|śX)Ő猊R‹{ĘK„Vś\A©Í}æ‘R»ûú„ś§ÛJîosJ]é7ûšÔíY~Ő<ȚJŒ|MŒŸNŒœOLö$Šk„߉čï‰Eő/ôÓ©M4'šJè§Ł*AU‚Ș„ȘBŻb(HPPAôKR(y¶ò9-_)ŰSeČ endstream endobj startxref 156215 %%EOF actuar/inst/doc/modeling.pdf0000644000176200001440000051275014173361150015557 0ustar liggesusers%PDF-1.5 %ĐÔĆŰ 29 0 obj << /Length 1199 /Filter /FlateDecode >> stream xڕVK“Û6 ŸïŻĐä$ÏÔ,ąĘ[_™v’i;ăö’í+Ń6g-ɕÈ$ÎŻ/HPČ”őzÓI Òd—Đäí}eü~sśíÏy‘°‚p&łdł…iEȘŒJr&‰šxČi’é»~Wk^±Ží}0ĘW[­ŹV2Őq»ßźțȚü gV—gr*ˆ€ź §©Ú:5DEžœ‘JJîڌW„Ê2Y I€,Pÿ‡ę`FÛś/ùŃY€=T„•FAȘ,êÿٙ«Œ§z}’ĄÙï Ž‰'(wܛN‡3%’3ž’’üGü”’25]­;‹o{wĐï„`XŻ,o^ùN­Dž~\ žȘC0f„–eŒ+ÚŸWvoŽ‹Nšî;Œ'Ë „ô5ś4ŃúçeșÆćƒÈ(ÎȚśőyòÛè æ(#"ËúR€kÜÊH™ÇŒĂńŒRšțÖ}ăjkĐ·7Ïž{[šŹ9'Vż°k‘€í± WÖ/óÔȘń 7€&A‚L0ž=AŒŠûxÀ™m—VőA™EȘíĘtŒê⟇CvĄc5*sQŠ 0j0ÎG4ąhÛ~R„ƒČșUOpï7 ÈÊô€ôäșEVбÀ-ËŽÏăžö„3œb|â€S ?BćÀ)ëkžûQdđŒ­ŸÔNÏI;ă^0(±ò…Č:«ÙÊjV[ÔŹàYÚȘîäg2ĘŃ' Ć[ŚŐ°ô1z%˖b9RN˗ÁLYüÎëÌoOœô>ź‘ćö‡”æÍ.ńŒŠ‚É^capi•9àŹž›ÎőÎç« ÿI3šžQo]T7Ž1Á0c¶B/€0MŒ“LfËđBlśK猳ą0*òW"ôjˆ&ÇœőڞŽńÍ{È„îàB0úy!“ééț:ŰŃqՕ‹”gPG¶śc ¶Gg5 ‡€ü'\Ž} /äe")”‰iŐ Ć-Ô „ŽÜëËí1ĘéNCžMô,ŸkTÒO{W&b§?F#ì±č…qÁ‰çPȚÌ[dfv;o™Ì1~òêȚƒ”Àc…hÈű6]îŁÌ„|RП­îƈ=Źœó~DÀ`^ŚĄj­~”+$Ü”}w8á žßDĐ"x‡čłoĂéÿ8ĘŐ§eŻÿn˫ƚ°œđĐʧí(î8yŚ(«n8ÀĄú$p I{4ƒ©Ő!ÏÄgżi °LTF•ïo>_Ćÿ(îÖtŠu홎 ~ѻњV©îÆčì>dh~¶Ÿ{luNߔV«1>î·ń+ŻșțĐBmÂ'…bÏ„Â/ŠwŃwٰ;±žVS§ĄŻÎF‡ßÂăAûÇAPˆN Ӂ•FAÂá|Ӎ— ńż=LŸŸƒï (TË đŚ¶ëŽ”±]JvÙ+R 9őÁ7‹jys„oÉĆük] Ʊ:y% _›đŰy!{à<ÏPź/Źp+OxÎŹQÚhßÄ~`6{3őSQ2aˆTkúÚ”sÊáyóßTÿi™>á‘;g§X*œSϓÎòŠÀ}đç+Îżm¶Đùisś/;KŸ endstream endobj 46 0 obj << /Length 2756 /Filter /FlateDecode >> stream xÚ”ZMsăžœûWđHU,ß 'ÙT%©©€’TeŚU{˜™-Qw)R+’3v~}șŃER”íì8@Łęú5d=D,úpĂüó/w7żoȈ«D*#ą»]Ä„LŹI#ŁM’JĘmŁ±X­9c,țpjúc±]­EÆămȚć«Ïw‡l”%™'`ŃZˆÄ2AC?œVY<ŒJi”k•íŽÇƧ•Ž‹ŁûÛu†”5=ó:ŒwĆ 4Jă/+)âŒZïܘ_ûąȚ<‘Ì!ŻkČ*NVk™òűn•±űéXnòȘzZqÎă[TŐć<ÉŽ&uQaㇱÖđîuiÜu}-«ŠZ€vsòș}>Ž śÍX)ûg¶”Ì&K˜Ì@§G=ˆŰD[îDL„ua ęŒ`~-e6U^ZÒÀ’ô Žx<±Š_ÙDœ%`9Žłf2ÉÎÊ}bš-lA%ÂȘ łYۀJ4LrčÔ‚PšfdˆDdêŒcĂ&ǖWŸh‘Ê‘nŻšk~“șӈ$bŽÔçudÂ۰§%]ÖR±Ä*;=Œ‹ëYh…©Ÿ[X‹‹DĂÁ8·àZ›ađLŒĐ耉0‰fƒ§O €°9> _ËnAóșƒ…cÓ¶ć}Y•ĘSűAqčç&áV<ïž„è•é‰RSł€ žúAÆ[<±ŒLśI(œž9#ƛă`*cd|·GžÂÌ@*ïÊŠŠ/AâĐoö[ւ©ÄÀižxőĐPHmŒiÇ|ÓŃ ©ŠVx–ő¶üRnûŒąwCiÀ!èúL­ŻgžICCÇuï_›=‹Ž$"üzíę‘ț„nV`žO-ęŠŰșï;lšžìš#ŻÚ†Z›üt*‹–^vù‰UѶ~Dœkv,@5šìŹ•ÿE+‘ !)Žk»æ”?ț,æ›eœâhÔr.eÓxŸ»lčE•.ž/śˆÔÎIŠvȚޘžÚŸžEf“t€ßÈ “č[œˆ pôčN;X”š)5Îl)sŸÀŽ]ȚîÉFČűÇR ŹŹ˜œźœò°2Œuź>äeĘҗŸ-v}Em§Èäôz(ò Ő5ŁŃÇő’ŠĂŃFӊhŁărG]Mí ­‡S~Üûœê:ÂÙ`±s/vùáX9SăT‚ŻN]Ł$ăBžuÓíËúdüé‚í,©č-ê–àĆê8?ĄËCHkŒ đyê?ăö„Ææ*ț'EŁ;v_|†Öào|ìœÊŠoiä1 Ç?pâąíÊE#5(uĆf_—ÀNZzw VOô„&ŒĂł«ÄÍ ä,Sj‘ïĘÎÇ(o jșió¶©[ë@ìFÀiÁ žÓçKà.Yb̐ÉšÎ4ćÖ3ĂĂșA`/Ă»;RđÄEĐtL!+}•w^œŒȚzčț@&[sšmłčćNć\Lò™ßÄà7&â?“DÛÁŒ°đ€—9C…Ć“ßíÿÁ1請bKÂđČvPbƈŹá‡|ài—ž­Ńu§_ĘáXÉ,~j©MÏYŽ@Č5òX-ÇËpžƒlh{ÊÀkßș˜À/~DáC-<8»ÿçîT>.SÛȘ|šqąË4,łÄòoçžHb:ąBŽ,P ™˜ójژWúąš_AísDD…©ìâJèkȘK˜Pț&Ž;YˆHf'ôüŹâæPvĘȇ”M˜šÛlČUćC h€")veż: … òz-Šn1ЌŠZi}GîÄc§’‚úŠÇÊ„23ÓŚgo Æ)**HȚ,:(Ă@ô2@á€Lëq]1ż­Ÿ`€Bxá(ÈM€úCm:Jű‡ÛòPVžžéÆ?©zCdȚŃsÂÁ^FæŸv{&Û뉥Č>“ËȘ„“+eŽq%ùàpśUWÚE»ÒédÛŰM‚­æțçi%¶‡}âÜ'vRąvsù=CÂćÔbe žXv@°û[ò@/ž{fÜÁOžđr'±ö6P{;\ĂÎ`łÙÇÎ;كòĐÌż<ƒ“Î^D|‡Š·Îč`1áUćÉôóÇ”f„˜FűÜŸé^?/ôÒÛ}Óc:ÁܶPŹ(šőÀŁß„XȘq^+Oő k9ŒLuúr!<ęÏő ‡ŠÈŸT eT ©ëU#"q4’qA&oêÂ{äDçú:ÏnkœűÜottSÈ)jVhn…–Șe"„œ„œ‰5°!ù*#«·3òRțERčTό Üe\cyÈŽÆŽĂ͔ÜL©mŽśM_méęȚ˓k qv‰”㈁71Ž32ăî Š©€JÛŃàdä#,žÿ0 b@„Dić#ʃŹXŒô1P+)G”c§fƏ‹^§Trö5^·WœÎĘê­+^·™™)2óș`|Ző‚"YÂùelĄŠÒ9Ú„ èă vcžoąšŃAŃ·> l8ĄoąhȘ‚ąÏ@ÏŹ;ű߇ț‡{`M €/D~ZŁ č&đ H:ÄëČš»pM4ú:?ÜSR ßÂŐnÈe»€ÿ!ëŃó‡$çÉ„}·`ˆ »Ô‰Č./žÀ˜d$ń’ŰF§"ÚÁÆAL“ŠŃé!Ú?|žÚ?^žáóE€âîòóuËLțsBOo`Œț4pD8™ÿO+W˜<ÒăkzŽ9Jś_ôé;zl°O"Ÿ8ĐĆ=|űÆőYŠ b 3ŐâđïVë e0«%ürM&‘<Ìf}C ß0AŸT]źcÖ—ë֑óyA†»,=dߗ\sI»-"…|*ï Ìčę7qoș7»€–jëóoű‹W«i:Ä}ˆțŸZôcč Ă 䮎”,h„”[áoÆ"6ÿ„+· endstream endobj 59 0 obj << /Length 1453 /Filter /FlateDecode >> stream xÚ­WKsÛ6ŸûWpÜ 5•Œ dú˜I›xŠí„fzp| %Zf-‘ A%öżïâEŠd93>HXûí.€}g« gW8ŒŸ/Œ8#a Re’q€”Λ ·–Q…(áYWew@H©Ź[eęÏŐÉï©JÈĄÆ *ˆ~Ąšhû»ùƛ‚diIe6żËˆ•Ă`‚!)u6_fŚù/“™À8_ŹKc>aáLn怐aHsćŻÉgœ\uín[-ŃČìËËđÍÒèź+7Ő„Ÿ”îÍY$ŠI€ ú $atúæśŐdƱηćâĄ\Ù Áù¶›èŒĐ"ÿR/+ă9Jżfvu_Țź+kÀáÖAœQPído»șé=ÛÈ 8a­däÚTę}»ô*úÖëXÖf».'LçO~ać Čçà Üń͈ˆI x‰^f{û_”èÁnȘI^7~,›8ïa ő— §yć?mÊŠ©ș·îLßϏ8€Àa5öG­fúőüqŹ#șăËŽœwGĄ9⊌ÜńŃ!„*Æ^xe}ÏóüU7" MęčGTrêÀE,›up<… † àĐÔ~f8TžŸ iX4.đ'‘`Çà, «ĘČ—Ć^N —Î=Àą à{휂ècÚEŽÓ=\Š?șwč‡Ó.öÆ+áäEq?òa^`ÄI‘qMĄÎÁźop¶„E01­ČŻŽu?‰ *Čuöœm,B " uțœ9FuZAìy+N‹ë đŸ{#Łè€”œDGˆo^D1ó·ńț±ÜlŚ!5PäNüDFI.b*û­m äËÎ#·9ÊQííćUïgïüĐȚÁY•ïIžÈìÚńüčȚ­61oE|č›x­ó<+1§˜Đd>ő2çMs—ŐĘ|“Ú ővÄ>ÀfŽ@à 0bDDš$ŒÖYm$SçŹ"Ròö›6H (g‘ÒÔHĄ†@€úâDJ8±Ž)¶§őäű!Tíâžg VŽÒЅóq{óäăyXś0ôÛ»RìM?Û»à={ żœs] O€2âęʔ Pî;•š0N:„3@9êö@zX$@šù9 J€<ÊŁ§šÜï)g n»Ș|0žț9ôZȚdâFû4ùZn$7ÒçÜH|Ïʰw#Îùšo€ńk=5áT ÏđOËűăûś/rÀă_…ÆOv&°UŸwőÌÀSŐ/aŻÒVYžM4I:ꀉcW:–ő“—PnęÛv^ôùÁĘÁł”ìA!c…/UŒÉüŸ‚çš„ç°dWÌC5!4ÿê6±ôLucv]Ù,ŰœÖ!ûi•ˆr|`WœćŠmŠGê*• ž}*VÌԓ”W`&TGærmÚđFŁ2t,ÉöÌn»m»ű86ÛjQ˜Æv žè¶…wrRÿc͎7žÛ]ł,»ș2ß¶‹PR5<ÍŰĄPt6bzÿ?܁ù endstream endobj 66 0 obj << /Length 1420 /Filter /FlateDecode >> stream xÚ­XKÛ6ŸïŻ Ò‹ŒF,‡/IA[ Ò EQ ­o޶ŒVc[Ž$w7ÿŸĂ—^+ïșĆ Éyq8ßphFî #n˜ÿ~čü2„ ‰N‰â •Œ“őáÆ.Đ,žšh @ê‚loț@”ąiJê{ÒŃ~ž8?ŽąĐ L­ 4ìZ;ÁûŸ—7ß걀d4Ó\“ć–€Q$Rą• Zgdč!·Ń‹X1ĘŚŐùTlè&oóOL±ŻoĘü]]äŸGÿà>kłÎü:tï(Ą•j”üŠŁ„”3úí"Ɍx/Ć{„űëôk€Ń ˜ŸU•d4ÁàÄ h&S§ï«]‰»„)XÄÜX Nƒśzć­ÎčǑ-È@/Ć;)9’ÒNJ €x/…ŃđRbΖHčÀÜsRj •8©ÎYœ˜vkv_ȚEæCÿ\<’^̟’3ÇäĆ`N,íĆŠ':{1“ß/ ‘ Łą@R‰é č]1ČÁEt€Š,%–ő€?MźÈžü…x«Đ gŒf‰~N…B†©‹*Đ ­țŸt«ÇȚ‡Ć”NFžN±@p"3IśÙžÜ˜ùąSŸțœßÛ‹šóéTŐmă–ڝŸ>TMëŠÖŐáPĘlńŰÖùș-ĘąüžqDœPQqÚçëâP[Żąhw±ƒ!î(“r Žjƒ6…JąmUźIiÂÒŠŽÀZæ7ĂjôƱvœÊł4°WwëÖë?7ćńȚ©Ûž›;çû«À4U=·3–RȘdÇ`đT f‘D*(ù>žQš‡ÉÎáSQçmU7a Yôńèü<ćőÒȇ‘kN3.ƘjËőyl‰ŒO"°K‘Ęï«Oą5:A3v†qŰ8‘Üž€[ó©QG§”ްęèćŒ 5¶1[ÚĘa̅)„šwGü8wȘś~œ4)š…EâŸ^d‘Í 76©á(oŃŃ[[Q7ŁM”))ęk č”|Ćc~8íœjđ2źÚ q.›~2˜*ÌúËę^˧|·1h™Dï‡Đq~·óÏBòĘF4ŒÂ6Ęèź:7y]>æL:Ÿăuă7ŸźöçĂŃűóÎ:4Ș™ 4IđÊĆÆ"·/šPüș•R‘ꩁcW›yŠyђ {àœrŹÿĂæćń6Ü-+ÓXê›A[ă;™>–!mš áakE ë.ĆîšëZO„ü]u“…ï$ńcÁ°i„Œ )Ÿ\óÙe`;Ì.!2›<æë`ŠÄ0»„H#śÍąCȚÖćăXšÏ83Úڊđć\Ś6ëÌ\—uFUSŹ+s˜_ ‰ÙÉžPíJ,f2Ú óły!AčÂdárÒ_3N•€ŚËЉ•ĄWÚy9E…Â>[ëù]ŽČÙĘÖ}èM`­îqąțV ŽĘÒźc‹ë€ő”$óŚș]ÇÖń϶œÂŻȘ€çŸé‚„_•A-dX»ȘúBĂjWÓ à”€Æđ>ö@›GÓêbśWOsŸkŠöB‰ŰUá†^QMŁÒĘî,æ<ëÏô%˜€Æ:z ÉeśŐP21Pr™—A±h1 Œ'S”lK0ś"êqăpÂ3Ž›z p§óC«K˜éÄù ƒ—ŐàŽșKęK©'­ź†Xÿ`êŰ«yäœü‹Éo–đrțœÂŽÒ€žŃÎuvnĐ”Žž‰èèælž6çœ}?àžôóčû4„梅ś7žŸáČâ[Ç[”ˆ™À·u_‡"$șëi&^Óö(4SOšF7šȚmÈŸ¶-„ć>™‡‡”6zÇx“?yčm°őä-düèÚì·‡úÇlžŒÔŽŚuÙt\˜@á{‘ƒ=M ƟCŹÿÒ4Sž endstream endobj 73 0 obj << /Length 956 /Filter /FlateDecode >> stream xÚćWKo7ŸëWèEșÎđĘ6=hŒœ$ŐÍöA±VŽ ićHÚüû—Ü—Œ~@)Ú9ń5ߐüűÍÌź·BŠ‹‰Ëêf]Ÿ«7úy>ù8AȚK h,š …Vt@qłÔ ‚„Ρۗb5yËFśb+Úț»‹Gçû»xPȚžîą0€|ù>j ö©””ŐÂj Ú©D폳ÂH9ęëżM=șNíEÓśÙdV„Ű~“†«}bìSî{Áü „ÁÛ tTȚëb_SÍ[W%`ŻO5ȘhaÌ­ÉŻÏfíXRò)QÆc>'„6[ûC4e@D“iàF6p…MGÁUndæˆgžqŸžN€ˆFÙ»Ęusx cpӃ·»S·ŠïnÜvpjáŠ;ŒŚ Œ;||/zD7”§žóï?äôț~wŹ–‹='ósŠÂS€€iÍĂ `Èęsàd—~xÁ>ÏW- €vDùhP·ê‘Ă˜¶œ’iIHÓy!mŸ iyNHËŻ€"˜Ï«§_ ”&TÆë(‰§ÄcLłŠííPHÿJÒÿL…˜sÒ»ús ±Òçë …Űÿ>éż$ÙÿčąéúÚj—'îv‡Ăúę&&hĆù}—fëœ]'—4NyŸ;ƒŒÏăE”ÌÈÆbű©ŸæëíqsżšÊĘń°ù4CÄ)ÔÌ † őžySc¶ćąV—Š~”Ë4^.î©ÇśȘę‘țżá»s>Ïțźe\|őƅ>Mü­ŻÙRêlčMf\Pr•@Œv9 ÆațÏĆpš.«”Ù>ó`ăbĐÎ%œ€—Ä|űŠj\)mF\2Y–É(<ÿ@f—ޜ9–eHG #”u~,ùÆÛșK2 Á«±‹‘Ó°v˜~Ç`‡gĐĆÏGąłcʂ$5âhđÌ–_©ł‰9‹‚t) <ü”*rű9QèP“–3G߆ò7‡ïsX endstream endobj 89 0 obj << /Length 2691 /Filter /FlateDecode >> stream xÚŐZYsÛ8~śŻPÍŸP5‚‹˜™LŐlŐfŽĘȘ©Íú-É-Ń2‰R$*Žÿę~8H‘4tŰădv_$ląŃîݐ޿#:ú悆ÿż_]Œx­ô(#™âjtu3bB­ÌH„šp‘ŽźfŁ·ÉĘm±§I1~őû‹Ś†uèĆe†ÉaȚRh’jæ($ÉšMè<ч@€FŒałTži ^'BĐäMi„#K‰Ö Ăi”a*ČC "c2GÄ Ïd3Ë;J'„;)ÂyˉEWM$7•[/ȅy҂{Œ81œwxA=Ź]ôž$\·‚œOO8ôÉtRnę}[ű‹e9[ŻÊȘöw«›ęăˆP;ą™űC„3˜„ A}˜V5lgÂLòy,x’/.1ÎE’WłÍ 5­Ê«˜ ˆUCńÊShŐ[)‘ĐфŽuP•iDïšh“Ba†ežnc‰Fà%GMh*‡ÛqÀ~^034žźŹŠP8Ž ”òŸžŹ7 ć"bĆ«Źk…—NŒ‰ k`x[`±YߕsϘ7{á·gSæŐ4ŒÀ^ìD…& È.„Eś¶!`"ÆEŰM1ș€ædŰÌGíő›_ŽwčRr±šígòé%Ei/űىĂS ÂCPùi›upbžZÌŹeæĄ±Ïș/övö\B§†ˆ†3çž¶Ftj†`{Čó#B„ú”œÛHçm}č.7ć4_űÛćjYTuđ‡i^ù‹ëąç 3wW"‘qÒ3΄‹čŠć2†€V¶Aâ‡à-…ËźŹ}<#ÊJžżˆŁ·p`72Œă…wćJdDɁFDĄ’7ö/Mnv•ŸêĄ°çN»…ÇÒ €û»^”Vy–AYÍÊÏćlg5k9Íò:ožX ±csq»uxĆæ}îb¶ÉÇű»Ûz2» vk˜xÙŹ€źrèÈVŻæ›| R•ù„U™ÏbàÆë§]QMïęŁ$ڔŚ;+>YBĐž”j_ĆzĘ:g»i±őÏsÿÄŁ§șYmb›/|J5ł\M֊lHăÔî*•ÉŐ"ùUăÂ"śf[{Ҏ„[Š«ĆnYùk—ĂƒnșȘ¶ḉrłfž”ža]ŽïűŻËùź‰G046047hĆîÇśÆv·šËjîG°-ë[‹G‚€0țÉAń ęłĆ€“6œĆætÆæ?ȇ…ÖoŸœôńŸƓŹöˆÖKÖPd°}ΈJŠŸ)–ùæcÄAĄȚT°cÉŠÇ]Ú€;Ę=Ìe˞†đÊn·Č(ž°Ű©xR­ê0Vßæ”óæ!„è‚ś°`ݶExgQ~,bžj«Ì= ĘG„EČgÚNƒ)ű_òćzQxȚ|Š—vŒ-|Ąteˆ”ƒyłZ,\BtŚÚ|}7–4iȘ/kï[`M.śe±˜ \g›/‡NtÌePÛhÊú.Ă‘Ïê2}&ËœÇæ —’mą.sïüdąíŰßöÊûüÊăŻœv–f/șfEyÀmŸqšL,yËĘŻà‘ 3őč?6kQpqiË ąTšJmÈŠ,č”ćčœ°AÈò=ÂQHŠmt.Šł›Xç$ă-žĐL;yżœńńŒ:ْ#j&췃„+Ă„ŻŁĆ€Vźs!łôH;Ȅ„șCužx•mńú%6SJöí©œ1Su°Ă«žòÿ›ò( ­·É> (sù™śÛ}2`‡ËDUS(ÒśÚ‘giGžÔŽ|œvPÔfÎEG€”…Ș<=ÜíÉ`ÛóSêÏu{0U†ˆŠđL„<ÖíáX’éu{ȘĘŽ„?¶Û“~ífŸńíž`żĆz+B·zí)j†ʕ(u˜}Ș‡Ì0ę—Qc&> stream xÚ­WKoă6ŸçWèEF#†CŠŻ íĄÛő¶Šą ߒ=(¶l«±%Ś–7éżïđ!ER”M€p( 盿QÙF>]±Ń ű—   a‰°œrdčżúçŠ*Ądæ5zą՞‹n~Ûù„Ÿú ÇŠÓÖvÚ3țóâêfź4±Ô*źÈbM8“Ž"B3Ê­&‹čKæćæ|œÉ€˜„ÜB·łT(H~-OMœ9æûđž^‡5Ëæ8łI}>«°_ćM|S?ü],›Ù—ĆïŻAR 4cœäTłˆżŰ"ČĐYrȗù&nÊjč;݊“Û ‡ênŠȘ8–˰YŸ«eS֕ƒș™KèĆ F!ŽEPPoÊŻEPŠĂ`ÊĄŐz*›m°Œ/šmœ:E˜ú|(«Uù”\ó3ERÌ2eŠš•2ŰÈ«˜ê­DѐažWn#ń»‡b›Ï„JŸÎ2žžž‡ĆsŸlvÿ†Íź|,&ąæł›é6žbčZO (rÙ*ŃAĄPŐöTSŽőšcŒá?òń9ßvȚu›ˆWúX2ŁZu}š«Sč*Žáä=cüxjÜÆ$Í6ÚŠËv}e“Suëu„d/ Uäè°ÛÍglł; èû 7}à©0Y2»‰žÊ(æœ&Jj˜6‚żP Ț«tRwgXîŠëČȚÎM숊m ‡êûÀśWaIÜWèž Œ2}çS Ú`sö4睚ŠRƒWsőN9łŃń˜ Ł0* @Pł\“žÖ=“Sšz'ڄ=OY’Tt h&ȘńVuY/c–ò*öțĄ.«æÖWóăąG’ ÆbçŽZÀńŸA­ÄUҐcAÖȝà(•ăúŠ“?zóyC"Œ1D†É{Jۂžœ‡€ćÌ`żq­)±h?ÍRÉ˜ÏśŒjÂæ‡4ŹŸ#ʛg—É6›h=AméőOß·ț€'%'lŽńŠčżbíÁ^ Èw»Û1RŰÿ–çÓóƒŠçU[ÿVÜÊźQ`(đN’Č•(„ŚASY|ÏxÜy9Đ-`f#șwŃżÆò+eZt2˜ŚpŒj‡ćOŽxŻpc:Ćs©©Ò"xőG;>2ÇG&dwëOSó çČA16ęcU7§©ye±1:êvłf‚”€‚ít»ș™2”Q.»{ˆuźg\'O3ËLFŠYàŻÓ'yäœ=^ÒrŃŐMîźš“g…JYI3)†ĘЋi@›]wź,;gûÚzBĂò{-6F„|ŚSșžä'źŐEXFÆëßÀê”\iëf ` ę~1lÒ,’âzäȈ˜Áš@ÌY;Q^;ąšAzJíWÚÄüˆ4șNŐŃk<>îòĂ6ˆî‚Šâ’‰ ă/I>žčîą~ƒșÛ23vDĘ 'üÜ=éžû"˜śÉÛMhŚc}òö­W«üX§)&żƒ/-żuTÚ1i0Àą ą€H‘J5ƒklìjt—±wë—y’7—F`zDbv?=–f¶Łi­˜i7î?"Ùn$ËŹyámfĆÔÜșÓ"È%Źț»+üF:ĆoE ù]ú[ù?;â endstream endobj 81 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/modeling-015.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 107 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 108 0 R/F3 109 0 R>> /ExtGState << >>/ColorSpace << /sRGB 110 0 R >>>> /Length 517 /Filter /FlateDecode >> stream xœ­TKk1 ŸûWè˜@ȘX’_sMÚŽZHw ‡&‡°MJ–î†f„ÿŸš±=k–2„‡yȟôI֋à6đÓ\és֛Óáóû3XÆą”Úś°Ț™Ó QęțÈaò+Ë)"HŃyè·pôáax~üțt»…Ç{X_Ù`}Œ?"ęĄ0žűńÈÚëăcè7æ]?rÁĆxâì/`H@ #OžțŒa|Ó8Òß.(™ ۉęíĘnxxț])ÆdćLŻț’©Őù'=~™Ż7`á›!žÔgchąÿh"aˆ‚ÎÁ$uhcŹđ,…€\`?FVń"¶ ]Âś Yl80ÒȚCaaïąˆ­Bô|‡Fá5ĘôbCBgÁEôčÄvA{hžÔ5¶d—X'MWhŹy‰5û)—{kYb-äŃ·‘»EÖQ«ĐFîśÖ^!ÉĄ­W–DÍŽsŠzà„©J Ź3…ŽgŒˆK@ĄYĄˆBqYÚ^1™NG!@èæž›iÁdg{rÍޘ€™PìLÀË tGjƒVi6K)M,q> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 118 0 obj << /Length 1096 /Filter /FlateDecode >> stream xÚ­VKÛ6ŸïŻ Đ‹„źŸ).ÚMÛ ÒKĐÖ7gŠ-{Őʒ#Q»ńżÏđ![’lZ‹5‡3ÔŒ8ó Ú!‚ȚܐÙJᗠŠšÊ0ćqĂ0Ł­ś7o°âJ bDzŃđ]dŒz»gèŚææű›«^ ș#毗7Żî•FĆZn°’k‚™ŃhčA«äŸÜőm*“"]0Cv—.žąÉ»]ù” 6°›mXó°ìÚÔ$M(6ażÉm”4ț.Ö6}Xț~‘ˆß–Łš(çX« qf0‘Ú9ìŰŽšÀ’RÔh ŃR—œešĘĄęç›/òÇF `EçFž XSófś}>%ć“:=bp±hòùSș„$‡Ș±ï‰$ś”[hș œû»ł4P.±n”Ed@⠟ż—šĘźÂF (•æÁ—ejXÒÀĆH“äwW2K¶} ÆÚÀíŽû}aaCer Ź…}ö7_ԁ±íë”-›șs^ÍS`4ŠŒÁÇČłáÔŽđ–ät(Ż7W5a!Äp攅č& ŃĂ©[pPɐ;çi•[;D–W]ă Ó€šƒBuIXŻ‹ƒí Ű3ž””[E’·)eÉźß” ’<B+ŹmÓlʧrÓçUŰ»úÇéBq“Œ_>—Uźs .fŠc&ÌËźőę„}+]‡„QłBż3…3!cl*H!uèÆuł?ô¶èÂ.äÉ5éĐÜ84»+ÔŚEŐ€L'ÏźfnŻ]$˜lpáxĆIí*4ÊËčŃqΊ˜Ńö„28†JÀÊUțy„Vț\ń)ßȘ±&`–±o8ÇŒŠ8Pź€•Ù qÇ$ăÿäÌŹœ çÛ쌌9LKès=Áœˆ7aóĂb„'NrtiRÚ‘°QĂ;ßoțƒ­+rGĊ ›Ą,ꇣZûŠûnféSŰÿ–ăÉ&Žž(&}x>KĘJnÞßiiêcÙ;8í”Û…ź`7BL Ę{Ï_łH°9SòÒÜÀőƂ°Đò˜MnâŸș±ĘțŻ€|ER9ŐŃƒŸHŠ3©ÎdæIï9“ìLúÏÆ·ƒ_™‡xBĆ/–Ț€wŒŐđ†1ś~źڀlan2ôìîá_Á#Cą ę>UĄšB WSö5àÚáÈU€čŚčÎànüæÖI`Ÿg©úžS‡AÓvEűŰeĂ â }žE_ž ü”rŒÏí`s°$mÙôĘ”:?4em»»éDđćą`F4›,âV69Ćț+·K endstream endobj 114 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/modeling-019.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 120 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 121 0 R/F3 122 0 R>> /ExtGState << >>/ColorSpace << /sRGB 123 0 R >>>> /Length 944 /Filter /FlateDecode >> stream xœ­Wˎ5ĘśWÔ2YPńû±`“ˆ E)̕XV—M…‘`>ŸzÙíE–XÌœśžÎqÛŐćoÀĂ-|ÚȚÂ'È]‚1%ˆ)` zÇàÏśđ#|Ü^ÜÿđíKxuł9tÎÁúyóê{­țȚ~úüČyxC·›g|·U5BK˜#ì}§Ț%lîˆT°$đ1bʌ“ÇœÁ·Œ­1&WĄA$gąĂä đ4̏ŒWˆĆcc|c^ŻśŸńzęžR~&.èT‡!C«"˜où}%; #&«0ț–ù„§8ąËCCææ|ò[xšK°yÍêïș} f„íÙŸ  ZÀN;è*fc{pÚÈîgŽą?tdVĄÚE˜ș€ț˜U€P-§F͍êVŻjŸ#}žńŸŽ‹Ûeôô ćŹAWa7ôáˆwŒ‹ÖÌ­lń\ASë°,s R¶ć¶žù2íêÛÖ›€ŐúÜŚ‘Ê,ŸšÔ ĄÆő:«YäK‘OwÆŚÀÔ’č•m#‰‹~j#úenAʶÜŸTûÈ·­…*0Ïgk_Gt§čb;ĄÊà|I>ȘôZŽ8UÌą5”æÊÇH䚙ZĘé1·Ÿ+č-nŸL»úÖ”°‰:ûŸŽPZNÔžžŚx…ÙEqŸ G>ă’hh’č•m#ôôCK–—č {äÖűđ„ÚGŸu-‘úJœ=m_Gš3ĄÊ …ÖOƒŁ â|±;źŒï’vh’č•m#c›Zșü1·"a[î7_Ș}䛦B—ËÿqwèÍŽ; ïnžÄênö1cp3np%ôÆÏę$(\ĄnŠƒ`p!б) ź„Őô\ĂBxyù·;ëĆkê`pù> ôCqi\p©ò…}Ùá™{—Û훋Ìüe©'»Ÿ/ZïΚ©‹•ČšĂuÈȗ‡:žQGŸ1ŻÎÓ)uíÜ*u>Ôú6dïön4Ț/űŒžÄ)0Đ–^ìfÜàJèY:Ő (\!;ìGƒ !Òe–ŽW‚5AXÖ°îĐČ-_-»EŚ 5èZž>€ȘđłûûE5_€T *çćúFąòtZèU6óćŒœšæÛiy̑kB*|R\Ö ¶ät“”Ą kàkçn〿ŃÁqGę/ #Ző§'Ő/ŰSË/z}ƔĆáżțțŚûwÏàkxxśüÄ3LŚż]4țŸ'z8±O^Öè+'ż&Gö·Û?cuu† endstream endobj 125 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 130 0 obj << /Length 1416 /Filter /FlateDecode >> stream xÚ­WYoÛF~śŻ Z Đhłś‘ą}èá-òÂon‰’™ˆ”ÂŁIț}gö I™¶…"6gogfwŸ™ÍöÍ^_ŃűętĆàK3–1!ˆŃ6SNçT¶©Żü DŠ áÌfm™íźȚ@ÄÂxŸò߯Ÿ*Q „+’Ă܅j’íżȚ\œŒV,sÄiźł›]Æđa3­ŃÚe7Ûì6ÿe”V”柆ąé«CùUô üc«w7f À€]3AœŽ@X­9WIRăœÁ9†2 “xÆ pܕRń B)ìóM€ 60eÁÁ s˜§2Èđ‡ûg‡M Š\7=ÿÀ‘Ń:‡ĘČwŒ WIR㜉s,ńìÍżŒÖfríš8#A·&'PśuՇÌc,±Z kó>{0)‰„ŁhuC]팰oŠAXą€JûêČż;náTíòʱ Ÿ]čü8œÊž°-ú"HÇśÊM߅A»RyÙb&oâdW!ĘmßÂÀ‹êűČŃłąܱBĄ.‹æE‹.|«űșĄ8ŃêŚšmőo”ĐĐWțÚÿžYâ#WDY7ç#ȚÜÌ·ăă\IâăejžçŁR’(3 æűÖgl”œ2FqÜÿŠjH ÏźÂہDnœ)·UŃDjŸ)QÄ ąĘNv†Ćâ ń:@…ćÈšŰ­‰JôFź&ÙZÜÂFȚFÙóöRÆ8tOHÍńfÖÜë Ž„!BG;Dôêwș]Ùw tąsN ćws‡ń&%ÍÓw'ćeÛU$ôSͱ‚[êc§ș€Ű ‡ąĆ ÖČ@ŽU†ă.Zá&Vp  ވŹ,6ęű‡Ö‚«úžäÀilț~ˆș«űőÚj08rF$?K«CWîàT2J*‘W‡ĂĐőmŃWG$4źy’ąP~)êđùŐj­­ŽŸĂü©Ű|,öqP5›Ă°-»pÜžgBԔ]'ŠlËŠOȚŠȘŽ”óĂ4!yž?ێŻnH0Ś”:A„HÊnꞿĂŸö!ƒČ:$"CŽĆœHź'OÌ9eü ‰(öD>âŠ6ÏFÌ ło˜Žf:R2șPËóÙHrK˜áłt„€Śő]x„ïđ~ŠKáĘŠčc’ž|‘őŹ…ăSșĐQŁšĄX”žriŽíK«Œš@ƒ…tuËhÒ©ŽYȘüçNíz”Ÿž„%đŰΏŰ|ûšÁŽqÏÄ0V šƒŸęŠ]‡ KŽá1ÓúŰ JPE”-AĆšB­±‹Pe– retD %ŸĄb©WSÔš‹(­–té Š(5ZhćÊÄHA”ążF•Ùxuѱ‰g ÇŸÁMqśúűǖź„Ć›Î%œ v†pțZ-ćĐAjÇGóțV°4azódHő©ÂŠ zȘMÊŹő±†ÀŸšhbûfÜ})à–æ'ŸŽWÜäù±"àŽțó k`۱šMŹ4ž–*’_ò-L–]_ŐÉ`ż/:_`OšŠv’„ÇčźÚźÇźYèQĘBóŹ±Æ„șZÖő‚Ó š*Ӟͱ> =ș%ÀC,tag§ hHDB|\8z9gӆț.æß"<ƒà6ș–đčđ[„Oç+ČwÏäŸï —/ېc˜âđ“HÎ/Łj–ÛæÔN?(łc9őÏ]~ęD5cœ„Î~íJJ4ԇoVÎΔ€‚v™šçë^ÜÚ4óC0 CCŽ=¶[žh/ț)țJűÖ{­pô}˜Üađ±żkË2ˆZ=ú3G©òGÊc.!N0ȘŽjžƒĄ}ą`EłśÛMïíșÖežG~Ä2͈p R‚îÀ„49mŽ ‚ț`*ęw endstream endobj 138 0 obj << /Length 1564 /Filter /FlateDecode >> stream xÚÍWĘoÛ6Ï_!t/2Vł")Rb± è°t۰[ô%íƒ"Ó6}ž–œ6ûëwÇŁdÙSš<ìĄ Ôyż;&Ń&Ją_/’ł‘Ăÿ$âŚ9ăÒDJ–q•őƧ &snü†#憯ăĆo”Œ~i/ț‚ßai9H\NDț|uńâ”Î"Ì:șZG\J–éHÄșŰ«nAFGlZÖ>ö ŻV\ÄuńĆßiŠç­Ü­­Ü¶m}I ].ő`œ v€ššR_Q•OŠ„JŠ-·ûD…$ív•łA5 ü‘Š _*cŚŃŻÎRh5{äy źhŚ`,€żÒ(aHùĐ­]ŚÚÏű Udc·„Aˆ’©d±+ÊÛb3ŽnfڋBšBč Ÿyőîƌt)˜O‰3–wl CqGҗöűę‚sˆœŠž©l°Jè.!âr ù©ß:lmž‹œvĐK~M“qÈCqțf(ó !…LšžȘŁ`żtŸáFZŸÄ,ù`rÿű†Ő‚žć¶ílCŹcŠáÊń=‡łÛS ›ÁĄE;PKímxG A1 >mJ‘ïĘïnš©ƒĐĈÿ|Đ·‚C˄ǟœ’r̜ćÇm;ßÛù°…<ïè_‰Ńńu|"Ô«čBžôű@đ–ÀnIˆłPReéŁa)čŒ;pDU`ƒÊSÿ,BæĄĂ;{đ\ÓŰ=‘„cû[Ślh€óÜëF1ĄČ'䗄†NńÉ GrCÊX5#Ź»(Kp,0Wx Š~hKx’Ÿ=PÚáč~^ă볎wĘV•śÈgZó1cçP?Ä.á>qÊÙižpHț<ƒçÜ.v՟†'çoțÜßPŹ endstream endobj 133 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/modeling-027.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 142 0 R /BBox [0 0 720 360] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 143 0 R/F3 144 0 R>> /ExtGState << >>/ColorSpace << /sRGB 145 0 R >>>> /Length 2169 /Filter /FlateDecode >> stream xœ”YK^5ĘżÂËôă·}l‚RČ4“,€jÂ#ê?Nœ|}ùXĐ|ÇU§Șl—Ëź›èž»è^č/ÿq?șșùP\ÏŸ—zđ=č”șŻÉęôÒ}æ^_ȚóߏŸș_\‚!žőï‹ÿŃ^Ę/—ÏżtÁ}}‰î9ț{u‰€àțui°Țʈ~t·_à%lnk>FwéĆÇà¶Í§4ŠÏÉEž.pƒìb ~ À6?ą‹}óqÜ|-.nŐÆ©ú„ x „[ô„ș”ƒOp†~Ï.mÉW2ÿB§uśæwŠőæîőĆčÖ|>BŸ8û\]Ă ‡kw:Eț}=Źa­Š{ôĘ8ú›í±žààóP&͞ü&=ń„2‰9k|w—§â9Ûòî#o-șmĐ*ê6đoŽ€•Uß'G~ł=Ö\|KÆAÚL{ü[gFŸD&1g‰O#Æ.Y ìǀ€jź'2±„[w’, 4`ÒFÛn<b”5w ^XĄšIùÍzìOe˜p– %l,z›čș/ĂoэäR©łÓŽ@^FćDViśáà)`«ŹȘŐoĆx©PÛaaÀȘâS„đÖX5üîó<[û2|nn >Y%óJé1d@޶èkœÒDî”g€­ČȘ äw]xyű8­ àđƧ h4Â;Ć*áÇĐ)ƒŽìËæŠ=Ša0kR(C€r"g1FŸĂ”Çđ)W‘ŰmLRnïTwfUbÄÚêÛä©pOqë\b㍓:¶Ż#ÈĂ4|š@8łêő]Šœ#*O‰Ș q ՝d:Ț“›šœLیdæê[ć—pOqë\`œÎŒŻ#™ȘpL™îŠP:‚››‘DŚűö1y§ô\El[Žu$ÈQ`nÄ)Ó¶"ŃfßSźq)w[çRÇ*śÇŸŽpَž6QwRN~CtvÛ0b-qt&G©9ž†Ű¶hËê•1ć&.Âf[k«o•k\Ê=Ć-sɱÓqÓ»o_G %@Æ>'p°—)»yS2"y’Ò”c”ÊÁ5ĶE[G"%qÊa[k«o“k\Â=ĆMsÁ{ć/>Gß¶üŰÙÙÁŰȚ;śâ\ț&Çh6&Wž(€\(rSPž(œ\Î…§·ö2yÿ#€Ź»ęyëU ·L. żànwś$ÜžÛW—g·lùíTȘČ).Üź`§„”_ÙžŽŻ g:öe„/Ț摥B§Qߏ /%ÜĄŒl"W'«Bî”nSAàȘĐyK§‚ÀEêQ<\(\2Ț7íPž*HŰSa™ĆșJËÒŒ·ŹX‰ôÄAčÇSE¶èś–ű­dȘœ˜”nŃőôÆYą[t=.yą§GxO(ôQ‚Ođž°Qò+?L/=”—œ6~FJY0uża#UyÂï°oÔGùœÛú?íąȚć\g=ćÁù(ò7SíÌžÚ Ïÿó'/ï_Ț č'?ńäWśûúćëÿ}uÿĆÍ͗îöù;ùM^܃nOZ•_ŻXRüÄÄČŃBqDÏöŸÿéJêû»ŻîĘ'Ï>ŃĐ*•ű¶›%ú͂k°eî8šI,žSàW7…%Wyi&Љđđ„sY,/üœŽè·0!`ìhĄB—ę–cńè:Ăp%ę Œ'i2€ńfçëÏ{­_ʄ–ô  ”n)KZúP›ûlDiöł-yiE Ì^Ôž±TžtœjőhGŐ§I—†ô«<=Hył ۗÔ/±…„ÆSŒÒ^ kh·pTMši«”§ Yû`Űź0y™^śf5Ûăß|ŠTŁȚ«…żńSTf_Fp]ŹăÊŁŠŻ€…Sź"¶-Ú:š1.ÂʇmA¶NäÛä—rŚžm.Uá|Pśu$I7:q±fY;=ÖùX;Œ ë”ăjˆŚÛfmĄ:'· șűͶ ['òmr‰ËžkÜ:tÏa™}AçŽŐ@ĘÇmMĘ*–h–$F]Ł'ʔsŸ?čŠŰ¶hË:R:HÊE·ZۂD[|›\â2î·Î„v:IZ śu€òü+è ;Œ%7Ë)#ö‡^‡}Ê35kÆ5ĶE[G]&“Ë ǎ͈”Í·È-.ážâÖč % łžïëHąž·l;—ÆęéŒ ò<Í(1Ôù˜ŒpWd\Eaf€ŽĐó$NnćîÀl mń­rKč§že.OóâĂ@­áĂ@îW~žülŻê‰ endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 807 /Length 2120 /Filter /FlateDecode >> stream xÚíY[oÛF~ŚŻ˜ÇűĄĂč_AÄȚ\°M[$¶»ŽŠVč•HŻHÙżßĄdŠ%—–Ő(ú ŽÈ9sîóĂĄd‚YŠsLJĂ"“Æ0)˜Ò’I͔Ă`˜ÖšIÏŽĂ˜”Ž)Élp„˜·’)Ë|ÀàXÄŒò,ZAL„0Š' Tdü„ŚL[&UËŁ“í!P€,`4 ƒ.:jfÀÆ`Ґ&$ó Ö;yŹs @CŹ” cPKȘB! qÁ FfE˜bĄŸOkanÈ-$s°Ù€+<łVAu:'âŠ+Żà'<XìÀ'ÄÀ\d*ÂJˆP18æà-Ó= Ń1{ÜÄ49Ő;ŒȚN<,Ś22/1‚9HŽÁCÉ͂8ĐCxŸ# ä znà 0‡C–˜w0ÍúI„‰tQ2ă OT1IôX±ÎC˜/‡ŃŃ+"‹Œ‡ˆH™ŐBL$Ájh&%Âm0ÖQf=.T…ê>§«=NęčșȚÎŐÇ„˜ĄÓçtÙńžwŽ[u·é!?ö—·OnûOZ­‡ŠÎuEÇ+î~Ńąă”èx”cÌłCólŸń»NrÙę[t6.‘+:ïn^vŠçCë]-Ž:íž nh‚Dšeò„»ìäÌz-vśCŃEh/‡Â:ôô56ż`ïYòȘhnHŃçÏ'ÉÇÿĘć,ù1ć“äČ*›Œlj 5N’śy]­–Y^SUiŸŒË§EúČúÊź8IĐ n&`°ÄJ@nK¶áĘùÓżț DQĐlČ\8Vźæó›Ł€ș%uÎs ŽC ˜ç•g ­v‘+Ű(Zíč6#i„çFŽł e’[=N_”ZîFÚŠhDGŃJÍ©ˆŒĄ•Ž~ï+€ Ł<{…ÂŻŐ&żPűŽȚüGûcÖϱ$ùqYeò†]#çź^±äcț”a·ƒÉˆąč—Œ(?'%#ȘŐŰdÜ%}8Ńežq­‚#Àăh„ć菎Ąçű~@ĐšpÿQŒÿOœÍæ?:/ÄêLAł±ț1AK^”e>ŚÔˆ’¶Í‚}©-Ő$ù°úÜŽśßć/“äe”œæË–żžIȚ$o“KÜÀ¶R(ƒ!*JźŃ’„TĂ Ú4”€‘ŁńĘ ¶òYŃäü»ȘźßUÓ|^›ŒûłšƒŽ– 4۝:ÁđˆxœŹČdžŃÉŸKșIà 9őÿGm› Çvț‰‰ă»Ę™ÓÇé§eŒlo¶á:űĆ@Ú8źÚ— ǃ3C”Mwó|ÓoęíÆă;„-Vò`ÇŃêèžQz­ČPAÇDžüÄ0{œf/OuŻF;s—ôaP?DkŽáöWű*ݱuńeÆŒ©–}ÇąŸúƒ@Ęđ-PŸèü0çp"8û”~a]CÂڊ°ȚxÁʇuŠwÎĘh€ŻŹÔó)xÛÀۂ^é­Çź< ˜»ŻQgQŁÍ7:Ɉhû,°Hź…Ôó‡Őž-f«ć&<ŃRqKç&6rM§HRtŃ’:_“ÚÁÿtrÄ6ˆa S0€Łrżw9UÂÁ!~«Ž ÜDû‡©Ł%Čd«ŽVŠ+7Â;oȘÙìóŐl‘–gì5^;LŰjc»ÎžŹ đ/Œo5ú€Ê4a …/cÎÌőŃSžń‚…uóƋ J8FĂ] càú±œtÒûPpö~­`Ń=Ò„T:`êRž=Tk“èsł/—yJz•69{vő7%”éd°ń’ȘéŃčE3ÇÌ{öz™Țę\d5ûaŐÜ­š‹ÖȚé*˗4kžââb#«ąG»†SPziOć$ù>]МÂHëŒ \ò&Ÿɛ"K'ÉßËŹšćŹ=©íő#Xêƒ,żyYͧ‡ù^'o//iɔôééMOÖęŠ5Śn}òÏą|QÖĆvúȘžœÍ ć5P=YćȘFš$ÿ]UM>Ïo:ˆMŠüZŚE2[Š_ò$ÍVMždĆ2[-nçùŚ€)æÓ!ŒĆĆZHö€RćĐÁÀăíѓsö± gÿÄà0Č"ęôĂçÿwˆŐۅdáI꧔aVҝVô!äO‡RÊü6(”ćÛG)eÿB©ńͶć/:hóčŠlkú*+7ă»mÚÄrüŃű­ČŹ ĂŻműáfVí‡í§ìf-»yäç‚»Y­Û č9>ÓyŸÆûĄ„OÂFđà1ÊÀ±ő‘° ”ÆțȚo†ȚŒÛȘc Gzș:”#*ŽÏ§]Úu±xiUŸG$n?2úń`żÚœœxĂ2ąO.#„^oiäæțOX^6ŸTÎ^^¶|ûćĆűuyù?J˗ endstream endobj 147 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 154 0 obj << /Length 2569 /Filter /FlateDecode >> stream xÚí[[sÛž~śŻàì5”⎓Ît3I;mó°­:“€3ŽDÙlu‹D9IꞀÈĐe;ń¶}1A Îć;7șÈnČ"ûăE±węńêâĆ„3KŹb*»še”są•ɔԄq™]Młw9%ŁWîȚÊȚeQäW·ŐhÌ ™żÚ”‹ś\Ò͈š||7EŸZúŸȚÖÛj뇋Șč]Męű}! \òĆI‡›ĂŠ\+ŰÄmûêS(ˆą+Ѱ~œŹőÚ횖șíÇ]čÉŒ {OëÒ9«ÜĂćÄMùu5ÆÍČ1•–„`@‰•ͧ‘`yUÁ±˜„~ń0XčušzRÎęłÉtæćrș7œZŹëMb&ŹáŻ7őÛ(,ĐtïŚaÆż—«fû[Ï3䝄Dr–™&X蚞†y*Łá†Rœ(Aźî9h;XKŠ;L-2Đ4–36Ù†TP·c°!×”Žț…eŰ–ä L­qȚ˜&$°óęÊ\ÈĒă‚(&ȱU~æż:*51Æú łĘ1^vȘÔŻŁcș@L•8I7\ûYŸäh FáÄȘ}b,ƒc1`C7é]b?êoZ‚Ț€„gŒč/ŸhA„èDü9A°$BÉÁ‘1ąŹĐû»Šą~ĄąűIz8 ä@“ŠÔĄ`ș,ä>o†§  O%ʌôìE ­ÁŹŻáą:‡‹ú ž8f<ÿPi@mĐ A( †ÁDA 0˜†L­|À©%JPDèÀšY SőrZßŐÓ]‹cÓČ){ÈK`óÂđì6Ńo Nì Á)hs›LÁ›äca“z>Ű€ObÓ@z“€Kn ›äI=aÄŠ8$i‚Á_ÜÄ{ÆS§‡ciĂÁú™'Lœ…dâńüû ™<‚d’PXo<˜†LPûHÆp@ ©HÆčÎo6#›Żvkr㐌ŒÆÂÚüO>@ŒLù" ©zGœ· çś54bpŹchœőÇòÁŻDń)žŃEűă*\KY—ÇW p~âŸÍÊE=ÿ2‚ç—I}æ «”‡`Y}C•}đpÎ#"Öé6o€Á VÇ[àšă@f#=_[•2FdÌ IÁÛŽËŚŠè~ŸOiû†<nZ«L⯁°]S7ë}Áäa )m”„I}IZÄŃSš€nÖ1’쀀1Ő6xĄ–ù Ƌ”ÀDg€±Šr’Ć hč輛M‰Æ)ó/>Űò9i}sÛlęԉi5+wóŠ^Ț„ÜqćŻeœ—Çc<#$ZŻu`ë|8Ùgœç‹ŐŽ7È1ń~r[»;L ™>ăâ`ŠŻ@ą}8Ń-R%Ű( §|ßgđŒ\Żç5Šûx㎠Ś! ă}M’Ő€ÌgűŽË̓1YçTEužőjƒšŽś©:<Ÿź”Neż@őy]MšöőnżŐő¶B±šÜ[•ł&8mDĘÌmòqûŽÂŻ›Û:”#ȘrrëGíńS ”h+úÿQűčóŒąpÚŽLKOś sĐKÈŸôáËq„ùŻš3< oR1·Ń‡ô3J>Ž'Š1~‚Ožâ4 EBf5“j_™it¶‚ńłì†˜Ê&8) ~*›đœ&àł„-˜“Čî“ & á ”—łż­:Ÿoł RŠ5Z)ä~92L9H݌"őQèÓ`ÿŽbš`i{a=GCğAdC!»ÙqčŠ_špBšÄÍ 0:©@OjÒgÇcÀv;Űÿe2tbÙíЄŽ%бE_1ăc.MÂź%šZç—â•Đ )EË·œ Ï2BâÆŒBòiń0šÏË·wrĐđOTY6捛Çòm5ąŹ}Z7_üÔźőĂèÁ€PŁêu>éŻűûč­$„ń#A$%JíY[€Ä‘‹ę‹>wžhÈĂĐö‡AŚ Òú@ĂHPH“ŠqZ F ìg枈‹ńÇ>ïLās ȅ.ìëJŒ»q–—ó]őĐűP‚ ș„őœÒśŠÛÒŻ±LûT-€ÈFyĆ=3ŠŚtZțŹ"s*‚:űËäȘg[ä|haـ45PĆaœšŰ„~À`gđ[/íáčQۊ?f_ìT/§áđˆmŒAž*șpU희„«à\Ua1^Ę V!’”‡PBX yF {ż Îą_䐀ș _Îń7śSúŰècçBßSŚï)»zJeA ȚââœVƒŹÏD­ˆŚéŹLêóže†ÜzȚFdÎhȚê\.êÇäą>‡‹ßĘ8ÁkȘJqż^ŽÆ±yaőŻ—}ÒÚăìcÊ~û m/ű°™vì‹Àóó»îcœšă>Æ!'¶©±â_@Ž'ßȁ°RXHŐov‹jéúGđh5KdæÚ螘ŠZ4TĐvȚő‚p mm«æĂŐț4Û-'MŒâëăÀuČZŹwMȘšFx=«„ù~ȅÌì‰V)űŚŽ”Ő&]!2œ=.€=Šșw+öŃ<öŃcÀˆŃc`Ű6ć&Ž”ì”vëïœÚ¶ídÈ$òŐșÁ*Kt~Z;žTÓ]«HĄÍ<|QæËrFű!.ŐęÔu qț*UHÙm«POŒ:`Š­^‹í”żÛőÊ9í+- »aT©:±UűÙEÂr`Èöăcx'Ylœ§ìADÔ­Æ66ÌÛȘyuw’šž$Smä êŹl 1·â!}ęč\ŹçÎöi.î-á"itž)À’=Çéí6đž]WóՈéü“żĆösă‡ćČ{k” «ô°ÚWo›M}œk‘%4ÂY œ,N§Ì HMаæę݆ĄVíXW›ł[À șșđaś,°ą ÈȚ rÄÿ抭8ç/óĘÍąlKváÓïr~Ż0Ûvúź˜SkÍȚ›Ă\ćïâőŐĆÇ Äƒ"ŁĘ7ÿ?<›,.ÜÄZžćŸšŰTÙìâ'x^±ă~Ę6<ô|ž‰„Mèț&ˆ šÚ3·‰țo!Vo\‡Ă,–Ƀô~?rUlđYÈŻ/ÌKÿp *†±üđ„żÌA{đ•M .hű}ÁŠÙx™•ß`>Vćv·‰ßüáŐĘÛș”> stream xÚĆW[oÛ6~ÏŻș“±˜ć]R± ۊŠè°Û`M‹±…Ê’+ÉI»_żCÊ6Űq‹{x97ê\ŸCÒdžĐäő ă§3#MX„ ™Î™„:™-Ï<…HX& eYÒÙäæì/)’çI7O6óż_Üß”ąÀ Û·"$#+N”3žț·ËłçŠ%)4ŚÉćMœ"‘'Z ąu‘\–Éûô—ÉTQš.K{E—¶L}Ž›+ûyŠę`ș§?ăPWęàD:3ۈÀžsJÂÎ'.‡łL8J)ŽśădÊœAkúuK>›-Șiÿim:ûÌ)đòL’BJP"`ÌQ‰·éˆS æ,¶@ „BˈÎA˜1€—ppÓÌPśp+K*ˆs§Y0ž=î±ÚȚ>„Ïô >ûăŚwœ•s–Ț:‹Z߶։Î҅$ÊQMÈW—;č.3J$$łÌ4ápbÈőśhR~Ÿˆ"Oî<ë>M20['ï ícši(NČì˜EŠ,‡ÙA p)Ć·©€Ă|őűòÔYTž9Ô9O€‚ò!Óß@qÁÒ~ŃźëçŚÇŠŹßâé°0±] ŐČúŚ UÛàNŐoŰqbê» È˜‰(Ò/hzTÔWËUôm AYÚ ăéíDòÔî €öÆ~‘HűŽ‹țvá‡t“r'mìgƒ†U© *0O€J&SIezŃvÈžÏĘ*OgmÓW„ Žaá”ètŐMŠŽœźí í ŽWáĂP5s\ț4Ę»tK—ç]uœön{¶Œ/ †ÖÜ€7Ë0+Í`žpČîœčHàeg–WB±nÂòôŠs Ț€©PßVœíqșŽĂą-_xŸD5łéB”*x܅8äçOۄb#c:ÍÌă=H2—ì'Ž 4ƒĄ}Qû…YĆÀ(F™™©cŠ>ȚžäAš}yûĄÖ/żĂĄiq„ŹŒ”Ęܰü:8C+”†ZÙ»`ˆœ0ö„ĄĘ32†ö43‡VäŠ(&џŻșαs Ćÿg-IŠò8Ű'ù6FÒĆ^ç«éùlo}€ ”"ĂÈ9É1đ‘±șXíÌNÌńĘxR2í”’)ăpNcF4 7œ&OÛî#"aÎ}@D ÊmÔíwÔâٔzE͍ĆőÌx‚tz €Œ€†ŠÓ»Úö}ęwï<ÄvĂȘ8kìԏíÌiÚü 2ÜúYO‚ˆ”폀3+ ïküDàœHžr=Y ïYÙ<NłsB SA>‡őIâÖ?MqŒY73+WžŸÇ{p;ś•șłtćčč§žà»šà:햣B,è}Êšûž~ęc_Ƈ?F ùPPÇQj> stream xÚĘZY“ă¶~Ÿ_ÁGȘČÂâ>R•<$”ëŠăȝd’ZûŁc‡¶DŽuììæŚ§)‚‚Ž96UɃŠ Ôș}}MÒâcA‹onèèúÛ ƒ+-XÁ„ FÛBkMl1[ß|ű™sűëۂăLńè Ś…P‚h!`Œ*țqó·›?ĘȚŒ}ŻMáˆÓ\·KXÊ#uĄ•„%yq;/>”n'ܔŸ&’—‹Mőq1™rÇÊu;Żą”ÏȘ]Ę6“)łÂ–?.6fËéȘĘnÙ§‰àe”©«»U|đ'ȘèäçÛoߟ·lž”3D ÌùMÿՓą ó$†pS€x‡4ßšDI,Ćt@û1`SÚłśPM„+żŹÍî©\2M˜sçčdN Ùü1ĂŠ"œčc6đæĘmîl„ƒ'Űűt„łÏ9]náȘŸ?€Jd9Ż›jZRć— ÿ|1ßÏvő%}8 CÖ©cž•”QĘtBŸ}Ïű1MŒâ3„JÖSÒÌj–0`|Ê(áÒJú&×0CŸț)L zÄMA}Ü8ă2{Ț„ZÈWLœćÀ…$Bê3[8ąà€úhÖą@„ŻÖ`NXƉÏ KO ûÇë$’«ĄČ`Œ6O“YQHP#Ròÿgć$| “À‚àҊHMóęŠjfśővń4ŸČD0ębŸRD@ìąOé3>Ć)QÂ^ö)ûŸ’ŒcŁO™d‹„YˆłâòyÛËçm_æ òŹń|g8’ÊŒ†ۗZ±āÇ%fü]œźwgMV€í˜>Üîł&«”Œ`Ȗke0Y>6Ùd?K$ŠÏaxEcy©Iï{“vÜŠiâąjČ\B1Š^őìś§-šKˆËâąöíuÚ†Qż4I íKśȘ dŸw=ˆŰȘ§ŠCÎșÚ»n¶{L#G9ĂžÁӚm{1ȘʜÂf0YEAVlŽJ"hKu‘,Á(…ê§ź1RÄ_ÆC(p"†‚ż4P$ˆˆ6ÎÄ")ˆćœ›,F Î«ÎgpŠXHšhv%Ö;f~eąŁű]ŸÂa‡ g“[C‚9dN. PŒm4ćDÁÿ‡ćÉă"…æÆ_ŒzĂbÒRŸWüŠ·ĐŚjÂș’ę~2UJgÀ°°v†·á‘e» ÿ>$šÿJń&Μ0f°P}5TŒ;W͘Ìkfżq”íêk<ƒf1·”/ÈnÀ őû&aűśonŠžæŻ«ęÇuÊ"9ՊÄ'C«%Òvò\±ä”ńѓžÍt9Ì!-qîÀ@-œńÌĆžŻ‹$Bsƒ#ù„6wČśČÍš‹Â©Av„1v~·Űć|ŐĆÎb8o­û€p»K&ËĘœšÒÒŒ]‡ÉÔđßv™ËȚíöŐ*ü9[Uu|ČZ·{ìĂàŽw?لë!ûyK„ŒÀŒJ ńĄ]Őł/ÆX6} Áé—:ä!LÍ*Ԇ–œxb  ü;j#!ïÄÆńCUÏăh± ƒ+Œ*æčÀ  ‹1ębżŹéËęŒ`AéL©Ö{iÍž{& ÒÂ?AZ˜è„…É(-ŽŒŽđś äÉTS^Ț†'a €aŠ\ŚM»j?~ „Űw@.id/ ±Ș¶ž›rćîq"iن›žk•Æàmü{ąÊĆr±‰·»űÔăę¶Ù„›6^›Öo`ٌ0ămWˆż6>WÆàê6Ìyă}8ŒYìà™źÂšăÙá†:ŒÂńtT}ÈÚ“?ԖđÓƒá&°(,֛žKÙ©f»_ŻÁŃÿœˆ•·A t`E‡!‰Łî’#łËykŒaúÈ{2s…ÙWšIđNŠ2I’ÀËĘąÁ€©mÙ6Ț{Dçú8òá2ű™ˆÁ^”ûm$œW»ze kțÌ t š2Àc :M âJ$ÖDI<ît”ÁŽÈ=…p.Ì_À†Č][(żM–ëÙE9< ÒźŰdôŁ‚y(Ëi»É)N°șë,î(w€zsö œń Z ˜<©5ûtf={”.h tAUȘ5Ìnč™@‘±ŽFy"î4æ!òÊa h!bŐP…‹Q%v,•|űÏöBG”c,–m ~ ú]cŒò ôCŃk„ űțˆïÂTf Ń.VaƧ$˜ H&öM{·őAÚF•Ô4=ŠčŹÍ©SÄê40_ìƒbEőè-€]˜[łíPŽ\vGĐáĘ/‹ÙnDŰï Œƒ QM{@ęŰ;Öô@Úéć ŰL?ŒXHÓH'ŒnžUM ›@p7T@ŸŚńKC(‚ÙUęk\2€$˜j=>Î(žQˆ}™9_¶mFéĘŒ7ă6·ĐT@Á*ÄÈuNŹÇ‰ć}šëäÎ4ᆯÂ3PÇăòï>Wë‡P‹R=ŸŠ’hӋpąĘ%‹Ż‰™Hk`ožC܈üFH úÖ ŽCëGwHp_"…ÇX2i`à|„AMĘ?:m~üXïîƒß[üHĘŸ·íńÇEhÀƒ!ro`ÁC—bžôöö|ÿ6«Ââźæ:«­ô \úČ›|üò)òPę_d.VÞżuőč^ïcś)‰vŸŚˆb(„nƒÂòi/Ú#BűI©Ęzç?‰ ÏH(+”äŻĐšaŁNPë\eŒ”ÛőŽOï‰UźLöL_@áŠádÈ}@^Ùæ? čò}űńOîš/žÔKżxR‡X4?aéîŠožP_é팝 •};?æÔBùWüJ,ś‰Ćùï@Ôł^ó3ÈlV ŸqqęçŸ}ËgÊ4~PL•…Ì-‰„èĘíÍ@(sŚ endstream endobj 189 0 obj << /Length 1403 /Filter /FlateDecode >> stream xÚćXÉnă6Ÿû)ˆ (l$fžŠd˜“ŠÚ±Sž9(–°ćŒ—8ƒąïȚŸ‹dËĄ—€EO”šÿŸQ= ‚>5HXê6Îo… 6 KPw€(çX%%RaÆ%êfšŚL‹ŹŐf†6G‹čxÌagȚșëțr~Łé­°€¶8!ÌÓT8…„ąÇ1Ń ”Ö&púœBIl”r(‰…’ˆaȘ”ę@ ąsM©E Ź…F+ą<ê"ID6™ ŒĂ|‹Q’ x "ŐŠy桔mKcÊ4âs™űÚÂàt[*ì]—{ mŸóžȚ»,śšÂ†óśarìȚ…·_-ŰÀF <-1UA:rq„ą‘rŻÏat‰žŠ°ŹIh‰ˆF[ 1Öb˜±/jč„àŠX“ Û—˜H‰ƒm Ț SĐ% N#$Ë "ÛÔŽŐj|ì6Ÿ6ì6A1ưúLa" êOœ;‚2űÎÄ ŒrĐ €dÖȚcÔiü)#-=Ƃ1iLՕ#b#ʉë'I7Ÿ@öCxŸdG‰—!'1Xjô?k”)‘I}d“ #XëJǢ(”Ëd;RÈvšăi,ăQ,9쐗WSŸM!i\ńaLț§#`„ő‘E Ó©Ceœcöe”â I Zț_3*ZRËšˆj tĐŻîoIùÏÓÄH R›rÔ«{ Ù©Őőż©4tR°4(M•S,[G %„«Q›ƒç(Œƒ’`BÂÄńa>_NòˆÜ@U©ŽęïűŠVș S˜\95ÍÔ/édłŃ|1Ę/Łi[0ŽÊfw˜ÖÏ~,‹ŸĆù·ĆÔŻęéäqčÈĂæ0śú$BvŒł[Ś91ÜÜ̅šÒFq‚!1p‚fv&/_>jŰü.1~\ŻRKaTű5-ŸEìŁ pŸ/[×\Oƒé,PóK–gKPô~ł= Jë‹æČȚdÇ(VëNEKMȚăŃdވđOš+ûŠł}…$ŰtîŚéę"yg5Z = Y$%OêîOŸòYúGXB‰WU<Šá"5˜ŽÇÓSÍŐüâe)ocTPì'2·‰Î!l24ËŃ:€‘!lUÏE»ö7™@+ƒÙžÎ„Ă›ąæX6”eÍL–ŹâIfÍTĘB Í ŒŚnčlû”4žM—)vóÊ/™ËŰłÜúű>–ś ‡œ¶Úʝ_GôæI(úX«}Y—Š-’•đć7Žk] ,Ä*ò8̇écžgé".ÆŒŸn xnÁ»DùÓmBś0l+NÇășu'éą?ÄÀ`lĆzA1\V;YꔣáÜÉ~OWù CŠl1șùpÛù?ÓëŃÛ»»:<ă"8§ŸxGžìRŚâæŰÉ,€Çn·h|=ÙƘœ`ŚYuČ(Áe” ‰aÇtpÈ6Ù~ÛÌòyęls6êÛłăŒxX ]4Úă»HŹêVĂQß"aß/Ï~ù±öŸ™]a5ˆÙëč· ;§1Ź«pćÉü)ăÇt– +àÀČ=wec/·Í ö‚:W!ûÌ~Ÿ„cüžËnˆeç_±—yń4šM‹ PżđüÈ3e <0©ŻcćŠ,EÎK›…ŠVCäÎČS3ĆĘ Š“C\ćśàȘ¶čbÊ?ÄÚŒ‹Â0žÄÄÛäMÙ»Yû`­&=c3ev Óûî˜źNvŒśWÌ:‰n}v ‰ŰGÂț•]ÿś‰)ì-őM$@:˜k^­ÈîŸÙœ€Tp†ËOÊ_ą6Rƒ-ÿÍcD{ endstream endobj 195 0 obj << /Length 1546 /Filter /FlateDecode >> stream xÚĘWK“Û6 ŸïŻĐäDÍŹń%‘ig’É«mČmwwšé$9È6íeą‡+É»Ù_€€lËń¶I=ôà €űà,Y'Yòò,‹ß§Śg_äEbšÉyž\Ż&5-OrUP.TrœLȚ‘‹v°éLäšÜŽ)/È]ŰŹ¶Íbpm“~žțéń ĆÔhMä`ß_‰‰!Ms™ź ‡›hgÓ„ŠŰ”qrëÚmˆösYo*/Q‰ó­«†°ì7váȚg_”Uu}l»œjđ"™1ƩԚxÅżŚm*9±]čFYFêvőá5Á 7†ôÛyí†Á.ƒLÙÄĆąm†ÒĄ”'Gé D«šnÛÛÊöę(ŸŽA€Œ”MÛśnæÌŠȚÍ+K=I€UN™ŚˆçfŰiâ¶p{VœE™y*č?0D… 9dŃȚŸ œA^Œ‚u™ ƒvlĂEŁ=?’nSÁIم`"gă]Sxk۟M2À»brCyŠŠ7mÚĄœc`čadSvemۅ­íWû0B )…‹U[U!{]łŽ‡Æ„«Șm?tć`{öî‘ÀęÍÁę16°Ă :ő|Ô!yNò/N"§rZ仜m‡pšŽ‹áDLà)Š=Òś'b qł™OÀ ŽÄOAúçÚU -ȘÒŐ}«Ûm3ô±êRCÚ:p6mćÎö㣑àËŃŁčsĂ bÇGYÚć’p@ćáu Łrđh­]E2 ùFó€CŽÆÍć˳䝗Ăè@ŠÍšLMÀ(>mE~iąőEÙI|ŽŃZXëČźË@Y:ł›oÇÒőĆk oÄ'E]~vő¶›Ê}ȕ»iÛeL­ö(Ć<Čaهâ Šąș‰éIšîłłÿÎ_óùőٟg IX„€Ôщ4’*ęą>ó jŒHrI3t6Yę'à ŐAĘ­Ӈè‡6Ű`Ç6„dĐÌŚY™ô•i}A5B'JšôéLAá«ÜŒ+»ûś™ÊȚ<čș‚/;—(œrƒ‡ĆïÏ#-~ûĄì†°ü~ÔĘ(Ùߔ;áđx_ü„‘Q….ìÜŰ]_|‰êűN% šÙÔiI™*rŹt^ł&PęÌ„BxÛȚ™@cJȘџ’9Ȁ‡Ć š%ŒȘBbTß}Ȓ%0`*ŒNîŒh ?šO\%Ur!žȘÈY*4e§@QShX=Źr ÿNűčțÍŚxx‘9ƒÄèO•"nĘŰa°§*1˜»æűh쎏N”d%üÜ4­ÉŰá„„țÆŰ`©NćÇ`ùF șȚV~0ș/LE@Ù,W† ì§šLĂ«GS ÊcuÙ6˱QN1­¶ž»f?á0ß(çx(ò%q:шÁw"dÎc’r]?.íÊv¶Y„nČKÔÚ$朏‡ĄÊˌAˆŒ qóȘ]Żqç/$]E֓űęčÚźëȉțéI1Rœfûaçuë‡2-ÈłƒúܟnĄp9žCÓä­ÏhR0ÍܧŒ1rŽ-T“ ßî‚;€ŰúșO‘ÇŒ–aŠ›qŠÁ›ŁYçÇ«§ïl&ÁJaűÌÌ2zÀd†.Č8˜D ˆ‡`ÂăßˆÇ9î4y©ăśŚČù)RHâLL1đÿe”ˆŚŹêv8…)Ï x™ĆSoßÀ [AS€ òąKÁx[Öłr(Ă*ŽR À?‹m _5&°ô†C•Óâ 0ùÉÀ €»Ààæ 0žeÆèxț(\h=“3ęP űàûÄÿ6ùçó„;˜èyÿQŽ#íbÆÀ; đÀżș™ű–èŒE«ÿ{ää ,3àŁmàŸ†í+ ±À{eŸEÙK·9ŒŰÉR#%Ő|W20Ž~B‘rł©œÿŁ$rœ\(>nŃfœ­auuiš„țĄ@Ir”éàŻÍ.8?‚ ÌpŠéé‹ú:ä3~âM@.LfĆq]‚›SĂ<Ú0TìȚ›đ0§üî”N endstream endobj 213 0 obj << /Length1 2758 /Length2 20046 /Length3 0 /Length 21445 /Filter /FlateDecode >> stream xڜvPžË¶%܂돻»;ÁĘĘț ÁĘĘĘ-ž»»Cpw NNp 0äžwOrîÌ{35E|kśȚ«·Źî†ŒHA™NÈÄÆ(ncíHÇDÏÈ Ž6¶±v°±4t4t7g„Sš:YÚȚ֘Ű`ÉÈTÌ-ÿ,™ĐȚÁÜÆšûo{ Ąă›EÔĐń-LĆ 5t0±˜8ž™Ùčß>˜™žțíhcÏ 5763Z”Í ím°d"6¶nöæŠfŽÜ€ż?”ÆToŒìtoŃÌŽ%C[3€ ĐÙhęÊæöŽÖ†V@zKĂż>M­ Í-émŹšhÿ7B&Šżÿč«Û[j–oÿúKocoúŠdĄûÊțïôÿÁđW)J+‡}:;˜ĐMœšèÿá&cn ŽvšœŹM€öeIÀÇ·č,ÿČż9>­öo­4č~ Mü-àŻę99X”fŽŽ¶Ü żâ>țZąwűHo td zk±˜”‰ˆ•ĐÚŃ–‰`bnì0šš[Ă2üąRq{ˑ `üű–5tŽ7wh3Ò322ęüę„ûÖ kK·ßîroÍ0‹*‰ȘÉÓü7*úÛYXŰÆàÁ câà°1r8YŰ^ÿ$U04ÿŻ€JZŽü;y'Ûàü—đ”ÿàŸTr6Žo=Pțžš#ŁńÛ/ŠÿFFÿrűŸÔó+öOüIűoę[:ÿZû[=ÿcäÈèßÒùćóŸêùBŻó¶ÏÿM7ż|țŁ#dÿOgéÿûüüÿ™ÿńœüßOƒž“„ćżTHù‡üoúłü—ÿSâ†Væ–nÿ[Ì[ÈzȘÿJüż#RțSš’Ž†oY Y›Zțm2w7wš(˜;›>Z:ÿČ«ț*ÆÒÜš`ă`țëą|;lŒÿ±ŠbfnüÉèàűŻ% ”É$ ö–œ‰č”)€™`hooèËűv˜™ÙŰLó7&WĐőmozkÇ·€­“ŁŚ[ía"v6ƒĐ/Ó_ˆÀ òqÄțFŒń߈ Àđá7b0ÈüFo,ȿыü߈ó-Nń7b0(ÿFo,j#ź7Ăż çČČ};ì†o-űÛçÍjô7bb~Ł3Č74Z?:țafû/ó_ü;˜é/ó' ă?üčXț¶ÿGÀ[%Æ#¶·œm,ßśo +ë/‹•ŐïŹ™ߚö;]–·Ml,]ˆż=ȚČț ™YȚ6;9ț¶œÍ•űDŰĆŰ9œłß4̆żCȚX>š;ÿÁńkÙÆéÏ}ß\L3Ÿ­›țzˆșŒŐcö»ș·.ščٚ­ÿđxł™ÿß2”űŸMđÓđ­aż3fëŒć/eÿ^kŻŐoűvŚ3üȚŠíËúíDüîćÛÖÖNVFżźÓ?RbzëÍï€ß8mțˆbbz+ÔöśòÛ¶†ö@뀕鿏ÿ?Ë[ o|»tțpeÿ—ÍÜæśYßkkéôGaLo»ß…ÿBN@‡ùżčYmȚȚwŁ?†úöOĂó`z+ù7-Û[i@+ójí—Đù!±œ‘8Œ=ççśV†ĂÛ„nöń[żkz{Í쁚ç­MŽ.6Œq8ęß&ëü|ËÌćăśíú|ŁwûÍ[š;Đț/îÜlÆNöo#püŚ{ÿvíę4»[@W 1ìÊą1O E]`Ç}ź Ę·Ivë+/ ’+çőlo™vôŐè„C‚ÀčO……56Üâ jń§(Ă?{jêŃ}ÌS]wN—“Pƶ!…Ÿ3K ÎôqNÓ&țA(8±ęUäœ=8^QtBŁ‘ò™CEe:Š ș„äXńœűŁȚ†;ŒÚőjÌłÎ­T+^ì¶Ź†]+ą ł!sf$?ŰƒÛíFÄ_‡>[cˆúáKҎłĆ#3ĂIˆ™}ƒ‚eXâ•l5{ÒÆĆZuh…ĂÆYóŻÉ"ùœZȘ č+:čm?pĆÙ6Ô­tˆc"êő$őüfv‰ž~-ԑJƒ aˆ˜Ű“ Đûœ‚źžNj6­íŚOjdLo)"ÒuÀą„4rœo@\Ô Ä —ÿևìŠ)ü…{$œ›ü3ń¶ćçç©c],ÉL“ŹÏűDl|‰©â?æÄ €‚%“Lę‹1”DÊÛ;ÆœÔ ”ùú« —Ë”jžÔíóŚ5Ș ·èqD–šÙžJËCÁ0˜ürkXŸÉćVłk‰^t^ î&Óđ—V^ÒÆałQÜÌ„°{‡ß ìˆ }RJr<1’oÏŰ3ŁCKÄčKŚh,6V)Ą*+!|ÔEv5‚IČä(„Æš M꟟§Qû4ALÿ ֔Šcˆ‰SАŒ ÿ \ĂÚ­ŠÏXÂ`.R–ÉâŃĐZ™Œ(vËoû(»· f~œ :wAŻGș{Z€•iąŽTòЊ«V+Ëo•ᇠϻ­ †y˜eߌ“È8BÒ*Șô#Чxd.ŁoĘ6lśXƋì/ÂTąz.uŹ›u0űŠY?ŻŰÇ{ïIÉC’ë| ·œ+Șï·ń'-TĘ ă7„ĆőĄŹqžw’ȚŠ&}w›ïT•¶P’Ć1ęTbűƒöJ§Ígă}ž—`ł˜·Ă‘§^ú©wštŸ…S€XȖ$\#Á;IÉősy‰áŒš€ ÎÖW€Í4Ț#9:“âp˜ŐH1¶Ž˜1wDŃiętŚÉn—ő.Ëän'uÖĆŹ‚ _ˏg„LŒbUï^bÙ}æk œì•qú0F: Ž }GɂőbăPŐ4ʓ”€s8L?Ź;€v|šÀïQùȘ Dł{çӗ1PđqXßUŃ-Áœóű±| +5Ł•±0yOż{ŸN)bîŚg(m&Ă`)æ3Ł<0Ń‰wfwL߀Ą ubK}„[Ś*ÖtîșT>nŁb Éjʀɚ«UúÁysŒÊ<ÏOW%|Ć»Âëœù@ű%€3 ʏȋ„Žx)b9j«èR•‰Ń'çËDÜNxTê€ç}A{ÒK¶ȘÎhQÎÌKK_PL §čÚčìe2qàíś4ÍS6áaöÚŚ[čÍFÖ\hv¶œ¶ %Èûç€yŠÏާÄwê%#wÇ·ÁDgîȚCU ŹËì/äĄiŻ?Bpƒ€œŠPïÂ0“#ŸĆ&àC˜]…"Hą€ŰQńەY#cĐnuXœ?œšČ_šœXôĄJ9{°}čùź­Ś|—ŻI(çó‘Đ â fŒŁ7ù'ÒŃĆ~ąmĆÖÂZ2„ĘCŒ7=·†‚Ï 'ŽÔTÊŸČúđ&I}Àn ê41\œÙfOÉWFż† $ᄾŠ™&»ć€ƒŸ“ŻjtŐjlêB"ïăv- kđtv‹†'K\ją’â-š‰#èŁ˜j©S ÆU /țj›žÙ-ELčÔúÆŒvä•Șt€Íé›Ê ęò†IìhÂÆLÜ_ć>N˜ç›Èi6v+ÁńsóÊBÉștC˜š‡Šè„ßđ]©„_Ü Đûüš‡UÖsFS2û`3ó‘œé$€ȘČŁÁZï J­aÙ ÆšŐÂs–ԝ<[éè€ëbąm =f;őDnü9'ërúó@Łæ~܄싰swc8[ŸńńœQíyÓÙRS'À^”łie†=)VZ è°œ ”Ć]$ˆ“M%j>€țÙ­€çŸSJmSx#ùő†\R~U9ŐäÈP3 Đt…wąæ:#ÿöăJ“|™ŁÉm7œV1dÊŰìì}pÁAxÏ4IC4†`+ĂÇŻ'ĘËKdäêźÜjkHŒI’9ï¶Șą3q_AœKÛ ÒH|5p­˜ûĄ)lŚûŸśžÌÚÔ»âÄ#› Ú”‘e[WógÁÁ’ &űĆ…Ń 6<ÊÎMęŸêtvF=öŸŒőÁX2+@P]ŠxdCH JbüŠêû}˜ri„ ăeŸ:nŽÍrĄ•ŻßÚHoêÙòD™Ú…ÉÚ°Ś—Ô7ûŃŒbÛÁ-GœSXw2b#Aû(ŹöĐ<r¶âsBZ°IéȚXcÖW)˜ŚÈ€!č,ìw‚àVćs8àÖû-Jy[Z>;‡ß~ŐqŸŠ 6jx}"čœ"*çm*” łÛžvM)œFž;MæçRŁŽÌPŚ°;úq9TĄćą‹œ’Ÿ”©‚œiûN’Ê0±šŰÛĘ` œ©ŒŰ|5˜ÒwŹ7æ Ăg‰9 = sÆWç㣠"áˆ4UŽ–u=qŠż†dĆ|IÍYkˇV»1ę= {ڐáœNÓvhq¶é=Ć\šärJòk€ÇÄ!Ÿšű È ő`ËX<…˜iô/Ì8„Ë`źlg=ÄKœgÓ̓=ąâ=7Ž|']‹`Ęź”%![sÀ‰ć2ęŽfűUT?æČÆÍg7·zjá˜,ŒPq#‘;zçƆ•O*x=@ PT/”[ç3 Ô€éJ'çș_è•Q«ËzÜRM~W%"4€_ú9­ą‹àQńÚ5Ìë6óq<Ö·’T*o쫝ÚeŽe™>š]E!űhpD2;uźÚš\Œyć5|™în1Ł„OȘ‰H­Kś“ÂĘöă.1:­^A|8DĐțÎĄRÍźòô‹;ֈc†æ‘Cë!Š·MŻÆȚ˜VÇ{ì %enÓçÙ팣-Ÿ§©ăNŽ‹p”>L_tû5ßj€ ±tšŒóùÜÏâËV™B*1é’X»ŹL†fTO#  î7UHXźŠeÆhgŰoțj‡’Ûû-ù:V>¶ù§ÿđȘețžOQêû9ęZoÔ5Ę/À'6 Vđp9a]‘zŹí<†șá è€ępÌ2éwÖg~ŻÏÉ»WÓș71œDÔî"ù‡~ÖĘŒ?łđdÁúî(„3äx|SâJÀԕO/“‡w­ÄĐùitȘđŠßçEïĂk81z ,ßȘ#w${.;ïiÓŚ„úw^Ś2ïèæó6}ìG=Q{·R‡)QXt3»P•ź‚w1)-âŻ5Íńƒv çű¶mNCá"¶hŚOé%`śÛž2àDM§îæÙ3WPL­Gî-˙Íë75šbRđìa3KÙ,ävTŸ“” 7ÀLVÆiż€# 8bNrüTú摒țžC„Ûf2RŽčÙŒàŠȚ‚·a°J{ŻwOă9e >ąźvæZ€É3 F…Ž‹Ț€-ïê•j)»3R~6íŽŃžVŻßϧ0HŠEŠ»è+ĐšŸtî€țÎkÆĄèç2u^vÚĄ›ș3Ž^_‰Ó5 fĐț yÈtهœMœ$@öÓnŸDŒaȚü{•Ê3|Ü›=T|WÚ+AÄ‚•w}—AÔFĘ0Ÿü>]|O^0ìȚ>hôaYÿ›Ÿí#ôČœ  ruö­üžniț‘·"ëŠoLä`–‚„?Œi2'm Xô}ű›ŐxYœț`-«Pë=ĂgtÜcˆ59æ nûțńę„vI}RS5»űă±û˜Mš[E•aѐΚPúśšç‹äf\ź*ÏS“VȘËkOŰEiŁÛXœYë‰ÄVȘ‰«„—Țï†Źő?–|\s”źyއ‹Ëè“6G4”śV.›/ĐŃÆÄŁ"ƒÿ€NüNęÙKȘ™!ÓPê:ï‡íîJyŚB‹{Q6šț,ŽÍžźDj‰;çTFè˜Ę~„-WŒțœËք™•C ÄŃ òôőšÔǝ[ű'+ˆ”èë˜ô ‘œwđâJ‰|cYŚ"=*yùäà_^ tɍ ì;@čòtŠô"v‹2GŒô‹/Fl±˜ê=ȏIbN¶p(ź-‘HC’€Œč[Üæ—ˆ$J•\ŒˆÈjńt2QŐ ń<={ŸČđCƒû±ŃŒÏ'+€Œ\{çwËÄâžIC;e%•˜ÒŽŒÀĘ0!šëˆDĐ=Ï0/ąx?űă¶h«PGAć)Č)è#̔Èí•‚Ìò[Ä».KȚl›âBYR+Ț(4©e‚°Đ&!VhĆÒ0JëBœš\ ÌÒvŚ:źx|4à;|h:$'îžYtmȘ„K,ŒÙŒ™#Kѧ„ß;ńÛŁ€xeÒDRóÂÛ=dȕڟeœz5LX0êĄ~4ŁöŁ,n‹Pê66rïĊÉZÙÀ™°KDśKž4cŸńAĂçćX§Eôq=X‘2+HŽ§w–L&b"Żp^›ŹjłÊàŽ+”Œ Q˜è `œ@pڜw“–Âj“¶RóYfdб‚úȘ s=ŸZrź‰3hœ„T›™¶ÇœŒ…ÇP°Qń°w± ëƒńJÔҔüqßɈäòU[ŃXqò qFš‘Ń­zwjŁr” ۖyq‹_üöŠȘVše›őkÀR öæ]Żčj*žÜ…©ŽT”ÙßoÏÍłLÊđœ/CЉZRȚżź%ŻO·Ćfd”Àƒ.Ç6SÍòÇŹĘčbë‚Í„6A˚ —zۙŠ))>Ê4W”ꐙȘçR{~žÎEG«™»ŐéD,öŐ /wêŚ ì`Æ `fSŚöȚ„țyHù€<%.cŻï}%ÀKâž)–Sß±ű!zŃÄE˜ì€Ü"íž©¶Á@ dQïž­œËÇń•šS@L'™L!s<{ÂÈ3AèLï{‘Áiû»lá"Î=ÇÒ‚>ù)mmš!éR—±‡č…ëïê6rÛȚénE{yc' ˆY€ȘgVTyąČ35ç«·Š„X˜(æË3Ԋ+„cÎ;čcĐ Ç9\-ˆù œ‰_Ò=†–wûÄśS5PhđŰ·Gçr-‡îÂd„0m‘d”KgÂ:ąOlăjUXżò5”3\†§’[e0Lv”­ˆG‚áłŒ7;ÀéæOD=O&LzAôč˜öÁÛ0ùúó":7:0Ÿâ}4žùĄcÂŐń„^gû>·§ÖOtÛÚÎíuÆÉș’ bïwìw˜łòČW<ïœBt;gô!ë ÉU łë©©-ZN5ĄNŠGŚíÎà<=L—‡ÊȘ4GÔ WÁ`žBš›Óâ8Î68©VI1ïKŃ5á#”ĐŒYY Đ#Ëžk›Ìî&Z…"‘ÇʓÏu§4v Í7ßÁä$‡‹Ń2gVƒŰ«;AC=O§·‘üT1 œűŸʻ٠8ăœkĆMzŚČŸćàÖ=UÔ;e3ĆaZÿą2%ôín—ykæáb/眎 šźhÏJg+QÒ©a~żë­ÜÄêŠYŠnʃ\IQjŃCÙàa86lń_كŁÌ·Âk† ƒ".ßÍ­È±Żkۋ«ì éŰvČzÓÎhêüĘËÇjò+œ©(­bțfL‰Źúu_}c/'ÄÍÍq›äœ|S{ÌÆÁr†)ÔZEG›–ÚËm†mˑÙÁÔí#AŰ(l?ĐM‰tă?N|—–)”Ù9ŽęFŠ%Kž}G±‹c€ìŁNș°-ƒ‹șŒ",K:_Ÿl/*Ńç‚q.„ŠMűá?Ș”Ę™ÏÉûoiêV™ăÆg$ L*>j{xûŸš} òŚę%1Pa äY˂ձ­ŠÀw֖ÔÇ .ÓąŸ±+ČWÜ=L§ĘZ”ähHŁ›l틫•š'|ÿ,Ł4i\țĐ"Űr_Y ÂxŠđÎü57uÄÖčûAA$ê‹'Ÿ›Š“kiŽü~žˆGT‹8ó‡‹}§Ï‘FȚP­󂚹’Ăâá«wLÌN‹mÓG<'@đ™]7QĂlP)(”űńËB% ôŻ/ƒŒæŚ|_sy4­“Í ŰĂrHjçWűrÍ(‘8pźúŻ”\TŚçȚ”é]nŸ4!<”=dÔ)qč°ëHX…ąŚ ]É(`RŐ©àD+űșqtÉÌŠgE5mÓőUß6ÉQ;ŒńÛ áŽč§đšęO:22ô-„À*Nu«ÇÌȚ)Âxêzš·TŠÜZÍBq}q«Úß_‹-Y¶éű–ćëùˆ îAIÔĂ;_”â-xĘ qg‚ÛgRKggÿƒCICƒw• âț’Ïs„űŒç›È.ͧćĘ €\ŒQÈ:ÚdÊ{!‚§€„ű‚ïN[ր»(œÁ”ș”ÁÄ8ŒG đcùÛ)ÆÍr5†'gôüé\"MC­v'Í„š™8žùłímYyóz=q=]I!/+48VÉD;x…EÍô;Ё$æÄÓiëćœ3ŻÓ @!MWKú]VˆZZ9ìƒnœ.[ŠŁăMçŸ` sč[5ÀÖrő–-kćłwe9€ęÍ0_żȚgt šä_Zq^ho„]2íùòVdâ;2©/?ÆżŰà,`YHí4í́;ÔOăƒ=7óìOdöŸ«ÄIo=ź8|Èeom ä:Eó_-ä0‹hęđ‰à‹GÓܕó TtùBaÿn6ŠdŽæ|Là›!Ö{ŠÊ*ir–ÍŽH<ĘKÔ{,ŠìÏ ôŽv€Ł‰žŰ;•ÙŒZuI{„Żő%!텝nÚ`ŠËM‡“= ócÍ©Kˆ9Ń7œ°}‡ÛŃyț±NÇòN>ÙMÍÁŁŰŹ™čŽ—oMtšdĆIق[)ú‰śqšSNVÚIžÖŒ^ÿ aT€T4›Û>ș%ű(“‚Ú”.c5Úû˜­5óaÿv@ęÖyqù‹>L ŸìÌ"ÂëP¶¶Á‡Đ¶ —Š,ôię=čśxüÆmQ@nï»mëՔ%;CD?I«ÌȚ‘Ț— kó¶±?ôă±4t&?n@fr‘EHĂs)$œ„żxĘć@F» UoæűeeßMȚ;ú-]’>őÆ ùrâüűzAÏÂu5ĆtíôèŽ|°‚ ă?r–qc—òżŸ* €«{gڍ6‡A:Gû8ƒ4 6ô„ßKÿôïȘ˜@–<ă 97ëKŚwî{€ő߁-p‘WĄuŸ—VHQ7őJšÜ WìÌ{ò4oÎXæ€"AŻ9ÿŽÒŁÀÆ#?†Ń]·ÛŹ' Et˜óyk8;_œTębjÖ™ž»Nń8{QćÜÙsâéžuĜMYq‰xéĄ*ű}0~uj°#”ęŐ:–źcä”ÿJ™aI!3•źăƒ€â9;ń»œqœĘÊ€Ąî|Èv`Œűžžę†EŠäÄ€é¶xœœôÎđA1QtmŃĐ-ï|û:ź[ŃlĄüÏȘț9š6Œ6€sĐ `ö§Ăś=Ó_8æY8ŹŚ„?0gdç4čD”ç…*ŒČ n^›zÊćš1‰è”gtÜźï‡Œ-Œ~ĂjcŠÀŻEÚčŹyÁ+7g*+€oóaŐrÚ°Ÿ3łœĐe"ûhŹźȚ¶Ù.ÁuœŻ”ż b Á<ç$ț,·ÔłBÛ"ÚrŚ94ôšÚ†Ókxą9Œź)5„ÂÒdmžőÁȚgsEőu’\~›ȚŽ$öÚÓÇäD(ÜKí€ß7; 1ÖæèÓKɳлąțŽœbêżq7ß[VbĆÖ—nàKŽ€ƒ`R· ÖsSèpšêÛ,ą±šLÙ2Hl5‚èŻó4Œ‹ŐĆÇź" Y ĐćpĐEȚí;˜™&í&„¶žGä@0wXyq0€š0ßr€á%ìT1mož‚ïiÀޜ”î<êí§”Ęèś_Š OśòżœÛ'=&±Pí[ĂŻ„dŸ2éÈ2„49 pšž2C}Ëő›‡à9ŁÂWpx9[9ŸȘb”Ç"KϐĘ}șD©˜Œz e ûÀ*"șaÛŁ’ś2~p]ŠÈ?œŹîPnb ZßP ±üĘ<zÿçÏ.ű‘އ>Ìêә9%Ś_ëͶW㚧žœŽ{YEŚÈwûș°Vû¶ĂBÉR~VȚŠčK±Ę`Öï»)Ò,nّČörÆÍŠ›”‡Ôp¶Ščú !…^ڏŒ*ł+KP„ś«5ƊR“ö±Œ64‚;QĘXßi0ûźE.íÂȘ Zrௗ pžŁïśŠY>çf¶šŸ<ßgê“cè=^–qdqu_hłăäÊ:cJ1Äk-“dĆkѕ+čhâÄ ˆ%Șçy­1ç2Ł+d¶ÒV[ĄêlBÙj=éÆr±[ær2š‰=m’>ÌC ù ù]yXŹl<\Ț+áQĄxƒnœJ‘ Đ5‘Ł€šŸ7!ą›±O%P ^> äßŃÂÿÊ]~ŠÁÇăh2ïô}iUChQ”x\„-«W7Ëújӈ8ȧŽÙ?ùă ±ì”í9éĂfÓŁIr»f"œx#ŹęT~”Ș«+RÈӘł–(ѧV”íÂêOő†ćúúH”‰SČTKü‚ÏBčpWyŒ…êXŠFîŻG!Đó;-»đ™%őÂësîìś•1?FHŽ„îù[$êéę[»`í zSQ ‰Ą;čN‡1YٕB?AÓà;;¶KËŚ6:čŽ(çt(Ê;ëìŁB!‚Éź€\lBMș†ÂäΒ[_v{땈Ï%§„&Š€€A3}Íó%”ƒ_MÎątđșȚDÏ”ŠŻSzy…‹ %áìO$cŠŒDĘčVt,FzűQÓȘŸčX"æ-PŽTSô8u0D\J$Iïì;±YȘȘ‡Yˆ„à9›0ôɕuFŽÆ»ńŠjwٞçĘW„łP™ùM™ï“ût,ŒÁŸ{ú­nœNÈô153šöœ,őu’Û.Ź"{W™6İĂŽ=ˆ„ü:tOu_ČłÓ:yyëŰȘćËïò|ïÍz%ĘiAŸÓÊ(6äíq›Ńbïßá7MKÊșÁśù‚Ež0Ł >?yš c­ï œR”#U”Œ“ OX"gY ‚ù”w”C3śÿ<ĆúțĂdÛ—æ đ1Ąśž+šÚÜ~ŸwhV ń*k|]·ŸpEŒÈJpčČÄ0IóÉìéN¶Î—WDò„5AXŸĄ0"A!Ćś5š§ËÎ7Œ@ˆT]à ÏI ŚJŸöÁéćO[©(>1îË>Y[ós‘Ž6‡ZÿÎ<'„ ęźŰM^=çH,âß­+WBńr“oùúU3™óŃ”=BBÁW“NKÉ+RÒŰyF)À_'ŸO·H|UźÌÔ}g?/!pš^w&‚<9snGÉé"ÜIS`[lov©^Á2RăÔŐÊaË\łśpߑĘTȚO6“šÀ.ì?±°#4Œ»™ÂI4㞬ßu€#.ëuùšĂÙé„q §ŒęčÊ«– êëOaÄȚ»ăhÖ…"™–êRWérnEqj+·0XǐFÛbźÉGńÛáhÜĂđN•jł}œ$0Š‰ÄˆąpsKu“wƒÍFùgƄœzHZ‰«Ÿ@?Q©AÛ)@kí qȘȘ{ł’Č&0”ÆkÚ6”~ -g† ߟT/f\cđàHŃ0ƒ%YrÓÏÚяČ.éœ)ąĄÓž»Đȱ‚­ŠÆßÜK‘Ü'N{łĆÄĘș—ŒEƒț„1<悄QĂqŸ/nČ2”HQxN-Œïi™ûæa~]včć9j8à_2Ô-iöÎzê©ć}"_»ŽÄ·j_ 煷b(ÍoŽșzv—±æbĐ3F{ïˆfρČű›ßÓ ę̔„:́ęÌà7TŚN5˜Ű1xPќ>mVæ[yέàlĐlńô$ œ8—xšÇqÌ!ËŠĂ©E4ŃrtÂŒRœn˜ż8°4çźN3~æÓ!čÍ:ȘGæm-T'tÿiXÍ™„OžR+eYtX&I',—ßŰsĆ5ÆXŚŸ$ZÄ%»/LmĆ%DĘȘߐę{Űf»*ÎN_@˜?# VÛ§ŐŸuŒ™čb…ZŽŠÆ[ËápŚ€†+„æï+€ ’)Úe'ˆ^țžÏËBÎê\UŹDŹ’!Ń\b” ÈsxŁń’ùÒßtúòlÈP»"§Đ=žíŁËh„HŹđđ-#<ĐE€æÔ OŽ©Ì.ŽèÇțŠŹŻäŸÍșąüaŽ•ć/­g™ÏĄ/XL *ïY”(í°ĂëUN—#4»Û…KűúŒtŸîVđœn(&śj‡"K0…߀ćôgü>h"BJÛî^Á·©gBJ--łW‚Ą»š’8ïÔÿÜç/ SĘ2őXrù2yÉđ}ŠČƒSJ„d:O. b'Î@zèÏ·PAMš)úĘF8»V2ș=ŁÈ·ˆŽțP«°qț1l œX]¶vÍż…”~Ă $Ń„#PiűŒ†‡™+#ŚĂN'ÜȘ&s?Q™›ń39†łÉweîł «“L]àțűłkš-o€oEŽĐ5Áds§€‘| šŠçŃđúŒÎĄkÚ§HùÊ*Ș „ˆ±@NAïźÂ“Đâ1[G‹/ŸD^*†[1îN'‡Ï|L·ńâć‹?ńVû8ŒzžgŻaá›tk±ÄžSY [֚–Á%‰Æ 0c'úhćqqmçŒđ8DčqZ‘ x~˜-Á`IuőÌpmEźĄńa>g‰#‹OÈșÍß3öIáDćzë%äą}›ŹTž<1DG śmäÜÌw^„oÈł°5üž-„(AżQ‡ńŠhV+ *Ęt°ß.^pnžùnă‹ű}ˆ•ú’?aš1ÈĐlÀ#‚Ÿ[łU€dê-"z  1Ô!ž= Ź"Ù8ĄÌdÄß *@]ę^‰FË łL#.æŒæ)'P‹‘îTa‹ĄźŠùšÄä~ïđaœáÖ)w€ií Ÿ/ @’ ©&Ł”!eÓU^*ÒôÈy#ȚóSźe?˜'ÛzÎ8_Œ”ÌŚęt‰jłL C)šĄ 9í8E—Ć”;ȟȘ <N nÖŒ|–Ąë©ŰAJžŒò27œȚ_ ¶Žá”ŽÖ Đ9ŚęAÁŠhúőž­8œŸś4&Ÿ`ËhT‡)'Ź—ę"! ŻŰíÔWÄ5À<œŰtKËÏÉÎqçșN‘Ö`%€ă¶°âxČNHèé— 6#”ęŽWf`ôË>‚sÈR! ö úSùd=/ąwȚFœĆèmĐÎ!ȘbHO~d|Iè¶HŠó ÇȚœVđT;Ț»Żú)WÄc›©Á&[ë>HÖW^~nÂąx »IöĐ#ZçŽiŠkPœȚ7äÿŻ.‚I v[™Őđl[.ÀÖ,@ęC:›Xjæ“\ïń­ŒjRäG–$ÔŰĆąšè+ínŸîŃH„ Đ܇˜è”ò Ę§æš„0(rȘáŸpXۚÁxă»YęÓőgك€$_ÉüÆ8ì&ăą¶ÓŒ#™|ŻÄÀ&-ûçÂÆüM 0ȰQn0ÖșĄ SŸJ\YkÛ ;3Ė ÉZœAƒçČ\fm7—BJKŒ Ì:Ëœ›‘Éîeâ(a€ÉFíÊțë…RĂśûôČœÏćlÙM%töÖj[dJ— h ö69Á;°Qđö*ÄűèÇȀŽO/’áA„iLÔőä¶IŽ–‘Őmg*óČxŠöûz»rCźqŽ€66C1Ń}łś k șŸî9&܊7tcS„ÓN•"_ &pęwv„ŸȘœfțpflł—ÿU‡.łtòŸŠY$ì%s8ÀMźÂ>OŹCfź@ƒ"ÀÓo­û!î=Ć=—Ëá«HńÀbĆÎD8č^>)ÜrrNì4œÉéÒ #z'hńüËêyŐ^Z”ëË5ŐfŸ)Ńq*$Ű:RĐyöQFÁÇòPőÉî,!/ąˆóŸ}"ƒĘőšVmr ›Zy§Žœs)‡F·Á‡Ë•çŐ\TƒÁđԀ:sžÛ6œ„LqŚ?JGr|î;}{èiŹ$èRšŸŠYò0’áwżÛ2ȚhČÔ©­ŐjĐX9űóžfőÎ; ¶/Ÿ\ÄSJÜK%,iyF[jŽeŃTáj%äđŃă$]“ô*g ‰N•3•êCĐŃvÛ,úUŒŚQ~D»‚”#äCżń)Bvn=G Û52ÇĂ­ĆŰ[j;u<Łô ŠĆŹÛWùá+ęȂÊű«$ęĘu;kXr‚3 (:ë©>zr“ŚBc3Ÿ/Űe~ê)˜<#7, 6•„DȜćș9ŻÍéăȋAqš3AŠÇ”+#úThŒ.ÊÔ8“R5űۓ6«šRd~ęŸw@OŃ[êŻ…ó €‚šđą“%Űh¶±lŒ*i!ćÈdźșÂóćÛДÜzšć֟ć,U;ĘË©#uFK ŚŚâqMĘkjdőÄőí äJÖÇeÇ»ćNàÇ\NłHŚ-ęČœ‘œőWéz_)6ą—JOB[LZîo)źfŒ\<6ûśŰš[ń~@EoäCćjq~ÉĐ'AœÔ Ëł^\ï&:MOŽúÒŐńJ߇X*BÉŻ€;cY-Á;»ÇêZŒ=SŻ ê5rŹ›N¶0àHzMʗń@•Oç>Ńčb\…rÔLj%˜q_äÎùù“Ò±5ŐM(„‹žÒä’ć+ÆvwAH)ïҚÄć’yA±مj=3ç­ÛÈ`ôæbxÁ8ôȘF è7so ÁwžËSˆÖačŚÒüÇž$%ÆÓe,mőﰜD~@‹6Ł Łèè—Â?-òĘ֐ú»È–»eˆ;WÚÿÀycÛŐŽyś2iVlÖËlìÌR3ßšüe}2fGs ôœÓâ§ F™,Xô·âC±!ŻĆç’ŠŁ–¶œôÄTó˜)҇íÂĄ“ŸNĐq€\<(^_tȚ)òâa ±ì‰-Đöśđ9ŸÛÀÆÚ ԝMLőę”tæ ębžżMßyȚúĂ‘‚Čż |Ïę•ÙÔ„œ ;ËÙțțX$Æ5Œrçá¶ą„Cû‚ˆ|őùŸűSČÄX·-ùòU)ƒ`8 ©üÈ=ĂżgmœÓ ­Di93œPą„N€Š‘[’­w`:UĘîFYuëŐÀèŐbäàŸ€=žïiŚîOŽÓßF3„DHƒ#»ÚáÀ#0 qß_:TŃÒ„·ƒÛxƒjËńČśv.}O©&§N è9AŠG…Żúi…’ü•űž&|â)ÉéG5ŸÿŸ·éĆ}"XK;nQ.SíÆDÁ„Öh”ÈÈśx#ŰÎÂ${ ”ƒ±{3ĘtIè” r•I«HöȘJÇ3%ÍVtkç‰h•è˓±ŐȘ# ë«–íiT.>1+’AéŠ"æ˜!Ű6m‚üNÍÖ\[ȚiĘM’uvqùśÀHü•ŰűÓj“©á6|đŠÆŽUCîŠ/Ê0ÔšH·F1JHœ43ĘëYls9hv§Ga;vúY]Đ5ŹóDWqkêŒ@YżăÔűIgÆ żc ŸŸĂhl„*ïHÈóX[­AÚW€ÎkÀC–‰BŠq4Âś@‹>JdˆłŒ'ă5€űô„h\D݃ź­Yó2ˌȘ†‡ŒCùÌĂś(« :Ü ïčïf4đê9TX8ŠŐ„Z­ ˆ]p§ąÄQ-cMPґâ­Ț8>ú­7’\©±6șÎlś aԃQzèÔš‹Aˆe܋șéí7ĄŻ.!#ìęFe ·-Öš„°Îz)L Vź:@gcèS§ì”vì-ÍM‘è'ÄÏn˜4ZăoȘBß„3É(9žh™ŹÿÓ6„uú3źQÚˆrÂAœÈŁZÖ::/k*ŒBM{Rpóü†Ò.Ö§¶è4^ywŹ„A%v"q?*‡\àÙY^—šLU<À_M‡…dHô3^ĄVUSâòe!9?Efć û{3&è]0ćú‘€ć=ÿHÈnr eź ÜŸ]ĂV \ê‚łÔ1ăæáRé&Ò*LióÚ$Pó§läBßّŚÖæb5ĘÓ«=˕ïÛJ&Y D`ÚWExùŸIyš?DxÜÂd­ œÀcæk :'ƐáMPŁZJFău#Ú"»Ńș„9WÁÈąöőh nÈ űntTÉÂ,ŽáŽêdvŚÁ‘üLž^jR™ȘäŹyŹČȚœ+_Ńă­ ©”atKŒÆ—SÇáäß'{źpŃTŒ€Šu;:6ê$ ŃÇ iÜDÄUX2Șé’żæ :ÿ„eŸ\i0OAhPgÊMrÙ ŹÛ^/ € ÎjB‰_}œüÉPʱŽŰŻwž B©KĘEłP­öòS/ÒD„SśgœȚykôÇbŒŠșŸą`Jń4ÀTăqšÀĄíY5 žzòìLGŠúä ÇĄOÓ­É*ÚDŹtĆEƒËÙŃÓ Ó#•€ĂvF»ìǂŒ’P·Ù-A…ż·€Œ$â0FÀòŠìv{9fà ŐÈg„FČJ Ì,‚àÊò¶[îúĘÀną)2Wż,ö6Ę,Șđ|$ă„BŠČŸ2 ú€î_äp…^Œ“#ÍŽ›ĂÏ”˜u+†źÜ§)‡­Ć]Ô ÉŁ›@&3pèì æ9śžŠ’Żæ‚Ï«uCMóš&—ű¶?"\Č>͍it[Gćł 'čKńgűšNs5Ÿ„" ËŐ”»š@––\ÂĆűhŠx“㆓FKV#MùéXb}Y‚ÜŁ9_gà#čșŁæ:Gr@ł 5ßSÆń6Ó_OĄŽ‹^tïŰ*ì(Û!ŚË€[ĐłÒ05à‡öíëæ)j,'æL{$ü<œÛ1€șÓAFće֚{ÚŚjĐlYû•,‹—œy”ĄŒÙ5Ÿ’șVWĘ(ŰzÀź…tEF±AŐOkĂÜöžŚ>xìțxČùʈô9exŃDÍ‘Ž"èkW°ț!ú çźjÉ=œŽÇ|§` Öì9őÄmŒçÒűûcˆ±/•ÔÔùę}ŠY kÍuHN±ĂŹŃNuĆlŒzXôJ^·'=§ho†*Éča7f•ÄIÍZ8 Y~(Č&E|Ú”Ï4hežÙ–Ć‚ìâ#­”öźŽ ­Xü qo†˜„ž&ƒźÜśžê· —ŐăcB5Ł`¶ä‡Ù`r Ù–w•€±^Ś±Ę!&ÔÍț-@ŒÀŒc ń筑&ł6みÛqÇwCcđÍQŒ5q•VŁőőÇՉûÙOĆáZe†ŸzU’•šë › B..%àMń‹§gf+ç`űäÙÛڍÂÖ,?ȚŹW$$ ҚXÍnFśL Ês“Ó(ëú:DâúkŸ|iYś«@žr'„ü|W6¶Û„Ç<șs–»„2ÿ >V$F8çiÇ]–ebôÚCJU©à'Mšo#…„O¶hϔöAM7딗ĂOIfù]gœŠöDmŽÉ5=šŰí[~ČűmùûŸW.#žW‰čö L> ‹»ĂìĐm‰+Đoc^ś+Ûè|2;ù•ïi°v·œ›{!U‹©xäȚÉhŹąŠ4Wš‚ŠM.òp0‡‹‡Ń”·èQ1!ü;óA‘ś]òa汫æ]#Śčäü”“łźÄ}ùjÇRâĂ{Ú­y%'kH„"ktLC¶L€ÉÚTòÙ=ôš•ÆÙZ©Oô›ù†h5i\ÔBbĂ·E"ûizÿ]m rŒÖ ›“±%Ú$“}…ûÜą•‘“S-mjÂ=œgałmeKN+̕ëôZ—śqÍüšíčŃ‹5Í açmžšbn›Z•,EZ±šdˆêĆńü–Ę™»^ò’ԐËÁuʆ»‹r<#MysŒ[ś©n!Ò(拌ä„Ìc7`Εќ;u…Ț3Šš9?Ż%üˆQș„ńòàł%S!°{>ÌN”«‡u­Z‘ÉlfLu™iÄ„żŸłűLłäÊq팀%ÁÜXwžê;Ȉ+ó2XșèT @DjŸVÄè„`€vâ2Ś‹#óê"xí 9“‚ CìS·Žüäàt*hì~Ž2Gj@Egą'ęÆ~@ă,oZg""&].G;łQȘDÄAŚÿ.Ąü>O"J­ Ù~ő‡Đà‘ŁŃęÜ{”„»oȘmêièqOùźR?„9H.v~qX ì1.c‘ûŸÖX>ęűC'SŰœ}™úĄ[ĂhŸȚąÍ'á‹Ăâ}K”Ÿœ 5OwÖ€Q ä°ÈNńă*oű€P@ źc|C ’9"jmyǔùiQásöh}D?ó™0æ;êĐü Ă\őČe Jé8G…_ĂŐzGplÎäßuöż-vgzyÊ”E/#“fv*“Ëà<3”î’™:„ŹNŽF‹|É`O0„<śÙ—:*ĘŁ„€„Zï46] ”êÒV—.ež€lOSŽ)nț;Ć+Ą6 荗öŒŐ”ÀxšęȘg œ=zŸț^B„ŻW.ù=KïVóÎŐ΅PT• žf}ș„’ÖIž©p lm ž8aúcpݟA•*)6]ûĘ­„ČW˜Ő(ăÆQŽô„ŐÜÖyè «Ő „tîÙăEúâ}+è«%ê]w5Š]—ˆÇGŠ ÂWnŻĘÁjÁ’pțÒŠJËÎ*A5ž˜íȉÌw_8ùŸ8ő@`|„ȚpŰ:°±,J\,[Ęÿ<ČüîÁOĂBŒ5Î >ìQ©B†Hë FăÔœÚ*Ÿtú!'3ą“Wô „ćqú0Đnè~æƒ]ì”+ő‹œ{"ś° ‹Žš‘š†ÊypM@ČŚî#œ­Ž-jÎ'#łšÔżÙ#+Ą|_"Ę1R'VŁÖĄŁkòïŽfb\û’íçÚSÛçĂÁNž§§ú9̱Ęîuæ©!‡wr …ú"žCŃŸą&STè ÿ3Äx zši Œq -pkÊĆe•3ëpf&2Xk©AJ„“‚:ËêŻ‰ʋbșBłgűÉ4kLg żű%őÂ]kʎó.Ą—Q§ȚGu§ì9#ÁŸ;ÍöóHæ4"îkœ#,aJČ6ổ'`ž“Ö’°ă= VđúX^—:’Ÿbú‡uF* &yŽà œZ9@źO\„y€,ș;XÁ!b…ÿœFß«ś'ëÿó î¶|.ŽÏ)ŹUN|ûÊĘ^/#Łú”»C^L˜ŽŃN}„‡ÜŽh4”,öűzĐ&‚ÄŃ$À»œö”ërʉbß_>%u†Ï—;ê Z­_ÉlrćĐïÙêûł‰°ò…Œ/fÁ—xn–ČRÍÎÂ뙀NÉÚțuQòߌ‡Čÿț:a34ÛEÏœ”Ÿ'ćßŃŰÉÇ Á)òxłE!.Èì7ûù " żËa*S‰yÿ­(ŠJU<=Œź-đôèł—]r„ #2„ïˆČČ2Š«+]@ RȚq!CüDÍ2n­ 7`?ylfƒŚ‚ŒcÉçéĐF©ïïăČ9C@©ú ©0&ˆrk/Gçȇ‡gÂșŁü›ÒÇâ\œèű$çśă« &ș‡K;ąwOœDŸ—yívÀ"w›KP1䊅ùî7p ùs^F ú†0s1ń)Œ%‰Sوeœb_Âcƒ?P*`œ VVi¶ŠÔ ïrłdÂÖ»nȘă+oEç‰A&]ș,d‚đ”dźÊïžČŽNXFCAjw ՖBÉdÖŹi<ŃÌZȉFOțÊ&ź±”Re”…~—łă%X€?j©ńA“ž>U†ĐPžv*ĘÙö±›ÿś‘pmĄ@WöšĄ-ȘÖ>G&2Û!`*§mB,„ L:ƒ Qé€ cöÖmö†Čߐ’Ń‹ű^să##nÂèCáÿÄZ}°‘śđVONELuÂ[ÇHćy 6!uăŽ[Ož5wcÄ(öžŠ.ˀÄ)aÁR;ĄJ;_ôwśčńڛ§BĄêšDü9…э0P…è—ŰôtzŒ ŁÜvj5I/ÿœȚÉ|Äp„­tnœE$Âßu ézUŒ} uĂ0>’șsHPÈüBßœ°ȚòÚM‘«Đ P86`W@ë˜DœâÄ=C$űZžç2șèZ֊0zj{ùïœÔ˜açùÂ>ó1Čê»yÁ‘É ’ˆàpçÊœÈĐŠ~č@fŸȚÂ4t#kQMőÔvŚóÛŻłÌ0„©OÎpeŠ„9đą…ń Ńë~đ›äò¶[lQísČ,˜ JâꌫÖ-C”+Àq‰ùŽîʰpËŠiÒ>‰TŃŁȘwą,ÒÏì°<)„ŹÎtM° ŸWßÖĂЅæűč>•''cfìĘSĄÉ›ëŰçU5b5k3Ô ‡$:Ó穿§Ç‡’u6Qź›à‰"gă)ÓĘČI)F 3 KűűÔźgû—™oĄKÖČyYÇìIĞLM Fđæ‡üÚ_Ï}') WŁ^hșM‹pÌfȚśœçI;@[Aˆ‘ÓŽčłúùóńĘźé 7k ŠäLo@ćH”œP;l/VZGÉĐ]æŃ`s9ÇùÓÚuŒw 4‘ÚÎlr©ÙÎÀ……4°ăÄJÖ ÆŠäšdÖÀü@șČôÊyüe•—`Œ­ìktŁ=«Ű¶É+C4€ĆŽĐì4Ÿ(»ZęŽùn ču·”Ê N9l`Í={-ÆsXt•UĘZlȃűĄWˆĘ€ëŐĐŁÈ)Üś1™ì`˜̚˜ HĆš_óbV6*„rÛ G—§‹œgbĂÏŒR7łź1{Ÿ«K_bÖêȘ…/8úłą5ZŠsƒžytG@òZŽő)ŰDă(Ră ^ÏŚW†`ńf$ú¶b êè;ÊÜoÓăW'č:Èăgün”ë/fꗭÚĆŁôvgTÇËӞŐĂfșeœŻ€ź&*Iê bêPWzá˜ÆČöÿÊ~Ż‹źæĂN§ÀáW“ëÙ<đCŒrȚk…áMi ćűé‡Xa\DžÎÿfĄp™źËȚ>œl›XÉQq>}›é¶2žédŒž[Qub‹|MÿœÒŒ=ô„Ąt™­WLp…ÖpîÊ  n0\šŁ"ĘQ6€țâÁK—ąŃű|OP=ș±Kìźy™IŒŁ„ó…[æùÏ?y@WôEíÆ‰È èŁ’góR‚9u^»îÿDƒąaՋLĂÚ6lÿb`"xÔöșąúČ[Ÿkc—xǜwÙUVêO0î  @œSăÄőï »Ă¶† 3JÚ­ŽsÓÀč—s‡ŠšÜ…lÏąčêÍĐ!A›ž›F`oâc‘x 1’SsĆë„OǑvëΜ;șu2ÓȘą”ürG™TČčHNÒ뀯pŠèĄ&”ZŸÖáŽí“șٚP•æVćé^Ő7G&;wń†ûȘòșkúN ązúXFóÙűx©Ű ;ĆÈ[’ Ś–Pßi„Ö“lÓ3`MțS'_ÆŐËıžûˆx€:ßÄÙ6ò&kÛŐò—zê•IvĆ4ÖŠĆł"‚6ÊЍUŠșš‚ț€tș2ăjț`ßP ä>ÓUĄœĘ „_”y?îșîȆźn«ZđČKʓˆ ęÒ{ÒÄô͙YŐÿe’IÈá5‰Ț#ÀŰQV oŠÌMNKDÚ3ça3ÏÚ;Ęë3Č}”sæJCuE? ?Ö\,ŒȘRÇëȚŠ űÜ;W·ˆ)ąË^ëBđ·Łv^ûŽÏáÁRi][ÈYiä„”:F>(WÄË ʆ  ‘™ Ż‹XŽ5-œ€ÁZ_ŻabbšÀŸíÈÎŒÉí*Șê&;ŸLœs@-5ŒÁáÊąl Ÿ'żôđ±=…‚ćȚ–eTN\VV%ŒuàșÔÛĄ“Éh„RtéÔ ˆ Ț?Ÿ~l­*@(·Lzx—ú]+·EČ6I»uú`ž„0ȘtÜvT«°Š-»„š#Đì+€qęűtí|ò7}6č`|ò'ęóŐ<.{0»ŠD>”y0‹óV6b…„?ó2hwçèÌIoÀ.Ü,Ák9ŚhjìȘvc–˜Ótb‹ÌȚ qèˆȚ&ڃĄAóseăTb>ë”{sŽ§t7RëéŸÓ‹GóQD2Ł7{żč…čUŸŒz†Ÿ30\^ÈíÎ3FêÔ’êŁ˜Ż1ŁÀÈkŒ)­ĘÂêĄśˆIíeXȚéćÛhóGdg±[—Y =c©Q.Ÿbéń›qw/5ѧŽë ¶>±™ț!ˆ_ė`“Ô+±K—„€[mșò€ČZțŹșÚa‘•dVx€Ę]s‡Cï1}€ÎžXjÚÙ©Ž_ò”'UŁLé(ö§_mÍű ±éš3$rÌKÉRę5•ŐUőŒD·Đ”ÈÇhÊf ­ŒŒŐłtêWű°ŽÓp $­îk~ąöÆÏ ŹpŠŸĐzŽőöńĘh#ÉÉ4úzŚ–6Èît‘”](Û=š‘>|Q  »ppOëi㔶N ?Ă%tqNÜąóÓł>ĆUp­Úă€e”Z?62ô•\w«^îrș¶ì&2ä%Ö›û‡·żܶm1€.ŐLObAfZđÔ~§ȚyàĄç›7:lò’‡Àëę#łeÍę·ȚAȚȚ˜ńnŚQÒßiœC{'úŁđőę.5ߍaÈŁžB„lÉ˶Æę°‰D©BKD·a”ƂČh7,˜]YE©Ï2›ßw œYłŃ”ŰçőèșjÄ é:ôÄn››ÂĐű-·Be–Ż" & jMÉ!CÓÏ"–ÍÂw‹šő%NûÂű<+ŃPr¶iòWçÂÔ̱jkîV›ąD,YÁÏțûvőš›ă!hà[eqđIeuÌ5ûa(ы#AŽä‡&yRčćęÛysuÙŃÏĆE%^3Ï{/äDGsqA Êíj™k] Y_ő€Dé? üPđđ©ÆOÚǛÊ.4›(1Ș_Jąćdké.í;™"Jp‘+c0 DÈ"ÙŽŽJòâĘìÀl›`NżđG:|?+瑥Kż7=e”uòžéG`‹Ł0ŽÇ֖‘E‚I óòmOțł: •Ô3łÂx.拀ŒäüV“ź:e2,wÍ”Íwƒ`ÂCzŰòŽä'AcMȚáB”ŸæšW6”ȘŽT,Î4EsOM •Ž`ѧÜ4ê8€#yÌßr@ákïŠŃú ț%P€Ö<ìᔓ(Aô>$Á^6ە)ŒQZ„ĐÌuSqM;bzO.zzț&‘D!~md„}rWßđ^űìź]źPà‚íÍęĆ^•U0©€«ț) ìiéxI©ÂGśZśK_±ŒItŐS]© ‰ĘTùźMmnJÇâÄŃ”í7ÿ–’ș-WulfEUz‘­#<Œł2ăz`Çv1éČœ·đ4ŰŐêőă՗æŁüËÎ]ö/đjâIéÎPü*bTˆ.)¶îło:Lă\BđH+Çíü-#Xę»IűúŐ1‰«ÉFW‰DÛÍC,çGëșh±%iۄś5îÿÏnÌkPzęI\Ômy-Í SŽ•:4&v71!é}Ą`ž—©€Íòž·€)űôtÙ蟋«|Ž$ÓĂPJ4íƉŸT!úTžČc[œÁnúŒmR,Š,ΓʷÎ`ăȝ!QrwcL1S!ŒpIvó-čS¶"Ăź2’ź«žÇő—N endstream endobj 215 0 obj << /Length1 1503 /Length2 6658 /Length3 0 /Length 7649 /Filter /FlateDecode >> stream xڍtT\Ž5)Ę­ÄÒ9tww7ÂÀ 0Ä Cwwˆ” „ Hلހ€‚ -)!-(!RoôóËÿ_ëœ5kÍÌ={ŸsÏčwïËÆl`̧†;@Ôà0$_P  Ź«j ó áł±™@‘î?ăűlf„7“úC!Q1EԅĂZ>î 0(&— JțI„#€* _( ËЂà ȚűlÊpÏÔÙ‰ÚçÏżNG.PRRœśW:@Ń‚€:‚`]ÒâÚŃä0†;B!Ȁ•à”qA"=„üüüűAȚüp„ł/ÀŠtAŒ!_đsd€Èò{4~|6€‰ ÔûÀî„ô! TÀêyŁR|``€Ú`Ź©Đś„Àț ëüAàü>űWčßÙ? Aaż’AŽŽpO, s8AĘ!}5~€?’‚AîȚpT>Èu9 żZÔ  ԄżçóvD@=‘ȚüȚPśŸ3 ü,ƒ:fUXîá!œńö§E@Qç đûrĘ`p?XП+'( ìôs °§€) êćŃTùÍA…đÿŽ9CQAI!q11Ä ńwtűčI€'äüFÍä ś8ĄÆ€„@ šü o/€Dű@B‚ț ü{…ÀPG$Àâ …áÿ]†8ę±FĘ?ê°DÉüùùëŸ-Ja`8Ì=àoúŻ+ĐÒ·°41ćù=ò_ ’ÜÄ'$à’EDEââB€2A7òdM˜ ùGżšƒúłgßß"àüí.ÀżkéÁQ҅8ÿVș š #ê űÖûŻ”ÿŸÌVù_•țߎÔ|ÜĘáœțäuűÍ@Iډȁ.eŰ©æ?Œ« C}<ț‹j"A(;(œĘÿ:Hš·Ô6€"]țPÌqӟ^s‡Â poèÏŚÀü†2˜ŁêńFÉòAùçß[ȘÂáàŸF€P>êšQ+Q@ćH0Äÿ—ü08•@p‚#đȚ©˜@Àr„ h(àW ˆRĐAwˆR êü"òàoDTâˆòŻžŰ?3%ÿN0O,WȔÁÀp„ûł0c¶—‡ăć2ëš&±Ëóæ­Ÿ ”Sˆæ_Œń ,†Â9Âh&ŰúçwÁAeŽLńNŸ)"‚”œ»¶ŸúqòG‹IVäï†ôX5j9Đm$üȚ^ôĆÔbzŠ}»Ænłßé„Öìaqź ëaÓĄ:•=țZ—ŹŰ1tßZț~ŰùĐMHNŰqœ\ę|ÈźÒ{UȘšœś2t­I–/wMœ*Ź»v»ï .n/ H•§…j»-ż9~Rî/Ä.ëŻfŹÁ8wÚžą9ś†Ő˜8›(9ÏĘsj‹Ö§,5Ż&ˆ!íÖ^tțüêsž5û"wçô\Ż5&}&ë;yőSŠ3Ż àŹ1ÿđôcžŽÁ7 a2«gć¶Íï| k§=pŹÎʊßæŚ1]Èvš›čX’°]Ő0 …}\èŰâŰŐCˆ1ŒmHsH)v+”‹ą6Ÿ†»]M]DóêÙí‘Ő]ŽW ńtÀȘUአâC]íĆôp»Ó »čŚê E“nELôĄÄA« „ őÒ"đôFç-!­ÓìÚuč €žŃ܄QíjńäUŹÜ™ŽtÜńYšRé7ő[{5<Ö"éJßžŃèłșqœDB„Ƌ_šD1cÌć1ŒÏÚÙg„ł*ƗŽŹu6öÏ«Nïq%_p™œk -QâÍ ZÙ2˜\€L) QB€e>ˆ/Á~ԉáӝL1.đȘ’E7ęˆäjg«ûfGŹD4Ú&ÎÉE{ăO„-ö0óÒ«·ÏđêÂ}QŠŠïé[{Żęɀ/ĐąovúOș°Ä·)?éj3w‹ÖszïĐ:É © â¶kű-YíÊ97–żŃžUFmdÒK’dȚ– P˜_~(țŸš}‡/S%JP°ć°âĐÉM™‡Ò:ąš6{ÁŸ.y‘CÖ?¶Ç• țìŻč‘ìvÙÊęw Ś 4mUfsȘ*9§EßęrȘąg|ë”áʉpOô;•SŃĘ8b27ŸżŚ‡âČšlw;O)Wšá“X<ßj#Vć, :#1n[<â©}?¶S_s:ӕĐŐ#ćDSeAŠÛł°G\ÉI^ŠŒêŸüzë۱‚§Ò^Ăńțș/%Ë#ž1LæMç”TLwRZi6·­ŃV"ÖÈä<ß=ŒÈ—luŸőb)fˆMÇê…ĆŒakËČMĄUčxn/œ)§čÛńbóÉÀ†s3óŁecèÖl_.ÜilЙ&ѝÖG .\Í`zžűxæĐT„MĘ#œÇń`%Á©Ja5ÿĄïì§êÄk««:W=„ç¶Qe”‡ü/Ą'æÂ}xąAńÉoîČ QHßٞ±ŒŽ­J”/f†‚.Ÿ7XEŚĂH‚żĄUG›óú։-ôâyÜ ^cٜ“ŸűŽÏeŠÜę9{ҍćÉ}a&Ê5űsn#ÓȚÔi±űu™;Ź"œ"žöÉț*‡ŻŃáRȘÓȏŒAșŃbŹRq9±”y¶~Ÿ— Oò•+ ł8\mKd/.ŽEⱏTûdKF„†uő'A’Šč3Nôle†*9yĂöĂ©W ÎčÜÉț2ù6ÒŻCŃÇç\IżŠ­xÛÍîÛCđê^ЃóÜ ș5s$ŐŚ(]OŠŰbè|'Eɏ / ‘§•­DKwßăÖ?Gw;ŐÛ{ł—Ż^ކ«c°Ț9Ÿ™üĐĐÓÛLŸS“'kk)NÎę(uex `67\űè?©ĂRUóŽ1ŐçăąȚ…Źü&·T€€F‚Ń‹‰Ő RwCxąÜÛ5æ™a…ù§ŰáK”ŠʏllU+|œq‚ûäuÜàÏKSőkK'ŻĄƒj) ‰țY#œ ÀŐs*pTß ?<ț‚Û‡á,êÙŽqïAEcú${”ƒÏlŽ>ŻcЈ”x"]ûûî+g柉ˌHÁ]s{R ȕ°!À`Ċ`ęJ‰·ŹÀ ąÒeŠuűȘÚ xTӓ1c*_gXu°,ęĐčwŠUê1”sÂO>hïOś•g–"ò—•–ëZĂÓm€č.mgœv„ô€DĘÀSĆG„Ț{ì^—6p݊¶T3WlCŽVŰ-"í.ìäÛ -eŸlČ*+wŸč™ag±æŠĄÄ.műńÚŠÜäJ”pJ„ÖÁŻ—ŹÔz¶‘7Ô5Îo`ÿÜ\pdœCè[ŹàæôÚšï…Ÿ;ż-$ÉęáXdŰ>Ăù"C?s­eNN`ț4ËđU”ÚțŃÈĂæ©Ń Țš<{·U¶€\MĐ%ÌæÚh>·L·„M4"…\o©ßł|jœúăąDÀܝZ;žÖ¶'šÂ5ÿUƒSNVŒ]‚gpæÆŽŹ•~ț çžÊ+û] <ü6QąĐŒGăŒqâ`Ü7ĘÓU¶fS“Ń{„“©pŽš[ś P"ŐńÍ™œMD{ĆEÚß±êŠS¶zÈ*…­˜“äŽSuʓ–Íg@ÄjćÒ”‘~—Ö»_l1(fŚg.Dî,è9FŽ«‚€Śê ełÆś°ˆb=Ă_˜ńÚżHÇHxM–+YjłŚÜ[I±™{Łž5IÖ7l”ï+ǶŠ©łƒŹ;ʛ }úM<żĄ@é4íę§śđÇB‰?±§Yjœ Ò3V1_'^űšœß«\ëEÿFò<̚i€Ÿ‹@3ćœR†"»Cj’ś+țmì…%óžŸȚ ‚„ĄPҎ©ƒòšś= üÓçžé]Í7è§ïŒîÍb€Úń•”{öúÔT“|CF›@aś“ZÄȚš‘îœâQo5Ї˜#«6źËSÄ=ŽOç‚MU—F<…†zW4ć'H€lŚìC[€ÜîÄ”€wđ ăl"©Az Ű$žtĄr°äÔŠ†ŽČïgÍ­T·Űƒ(~ÿźœDž-í]b=X‘òŽG0‡Çg.Ż$Ž ÌÎÏKǎd… ·E Ûç°Ńhh›\ƒ*TvYÆC‹Èàä±ÚÔĆ;À•âoŽ­ă“Šâ‘ș 3śa4 ÇŸùG:7râU±‡aöL7ïE †hl…o^ž—ŹÛώ”ö›Éóî63ĆQ UlfÖ«9æÉ8ÇîhM}Ș1ŁE|OŸ°u9›_]F.{ŸÁíËŻHĞ, §ĄómTv}Á$Ű9;·$.ÒĄs­û%g…È-ÇĄąȚ$źAj1Á>àęò>­ßîŁï9%œĂëÒwvÖœ9kRX ”æș.p}$[ąVZ{^­Ï8Ú)ńżÔćŃqvüÇš(ąvÈچ7ŁwjéÀ†0è]śĂkƒ|ßLî27[\ŃS4• ±ÍùjÿMᕠl-cuȘß*š f7݊o\>TÔ”–g<‰bÔó·Î;%ű2ö vFf03d`5Çó-ËW”Xê+>xY ł„T?p5ž,đăć/èLcunżU“|=Š&5śêóPäJʇBÉìLDŻż‘%T˜cî!°ślw6ńE«/ˆ_g.Ê9lîxOŽ•v–f[*T„4‡` &I^*ˆĘʙ,—aNLĘo^[”Í”^‰ą5u,ŐW\_ŽXźčPŚu4’b†UȚ&K†ææ+7–$W5D ‘„f źpč =_ÊùjtËN¶nbăę +ÁŃć‡óŁ•8‚ ÍœŽnŽ7žÀÆ tÊűŚ‚ÎOśHĄ6QžmvárŐfWÜ8ș–Ę±BW©âvŸ’«w'nRX…˜}ŒOÎ!±ù‹đ±ÓQéșł+ÏćÔ€U§O)”ĆÒÍè”ÄŸś ì𔩄«rZÌ%‡§ ë‘œź*‚ÄOőśčFTN—YŽ«Ÿ„u‘ZMCșRΝILńÇێ/:rÏȘ|Í~äwŠ‘?:štĘЁ%ńjvÖ?Äő’Ț”Çòś&ŐÆ!Qżâú`™ˆœ0ŸÖrk…WŽű„x$ëèĐ«úń=ÎuFŐāÈșlâ(łÊ‘"ÖÂŽùŻęgJ†npJWbÚnqNŠ…,ÄzíiДÔăŻ[G§0ŽB’‡Š ƒł‹Ó3ŠëVŹlp H“w“U=íOß}zE”œŽ”Ű7#¶òꘫâx‚È\șÙw’›žiŠ[-5šž‚dĄôœ6%ščjá@é"«­Xû”Â猃ÛĐ'âčȘ•b=VA ÙHV]™jÖ >*%­™üaô]vÆ@Û·š#_‹sł6ó9dȘÙł_č ù(»W“Ë8kÙ h dîóÛŚžÌfˆĐŒj3ț!Ś‹Œ3ßRÚ­K2ŹqŒĂŠ&5kÊŰ„8źFÒőéȚ0_7űAL^7“ì5çŠ4Włê̔D$eđZe‡beë7·ĘȘžŐ„Č˕ÀÌą?g‘5ëŽő{&fßV8áh/ÄŻ·ÆŐ=Krß"ÔÒèæ7‡Ÿk)€_$m9ÇF±5ê†hŸȚ`€”>`tmŹìĘ>àù‘"Ï8ïšéíkŠż†r@Éq‚ŐuÒAx“ë·źŸáś ’KIÈéÄEh†@‡%ńG€KĆ;í臱ŠhŁ[—Ä+yș:D^Œ3f‘ }K3­ĐAčŁÀ|ܛźáME͐;b§eÁ•Î«ŃțaĘłY­æŸghŰčé0}†ÜúęS…Ó6Î+ÚAđ=|rŠ·QVŚÌŃ©Ÿ áË3Q«/ ü>™„ŸdŒfsÖön<@ë!&qŸ?n+Ę3oü­Ź yčOBm}¶(}ÏJûÖ{ŽP±! Ë”ŐáÂĆïÍÈmï!›Œßs?Đ Y<­œ•Í)ŻOc țìZœXȚaÄYgÿ€ËÛ(%ŽŰpČ])’œyËțŽàBz íNÛű(gSv©NGY–]ßćĘĘžÎDőČŒ1űHŽM9:fÌóôć]O#%ÙcÁëÿßíÙ¶ endstream endobj 217 0 obj << /Length1 1416 /Length2 6052 /Length3 0 /Length 7019 /Filter /FlateDecode >> stream xڍwT“ÛÒ6҄ RE:QCHèœś*„† ”$$‘Š œIïU©*œƒH‘* H„ƒ)*J/_PÏœśÜÿ_ëûVÖJȚ™yföÌȚÏłŚΛwűí‘v05$ËI•uu5Á $, 89áXWŰß~§) #RÿPFĂ XŒO‚Ću‘ ÖW X“‹K@@!Hòo -TxÀíș@-$†p*#QȚhžŁżÎߏ@n(,))~çW:PŃ ††C! .ësĂŻ…žP8 ëęÜ2NX,JJPĐÓÓSâ†@ąćxî=áX' ! C{Àì#ő n°?Ł 8ÆNpÌï€Òë AÀx‡+ C`đ)ö04ż:ĐHSš‚!~ƒu~îÿl,țWč?Ù…àˆ_É(醂 ŒáG ÜÔWÓÀzaï!û ăÄçC< pWˆđ«uPMŃÁOűg>  Ga1žë̂eđÛŹŠ°WFșčÁX àą?8Ćï»·àŸĂuA =>[p„œĂĆöP‚&žû˜ŠÊ Țű·Ï†Š‚$ą%D0w Ì ê$x±€±7 ö+ŸpăgđóA!Q@ü0?ž ÿđÁ@<`@,úÌÏç?ÿŽ`0ĐĆí`ŽpàßŐńn˜ĂoțhžĐ„§șűüëÉ Ï0{$ÂŐûßđ_G,htOíź’)ߟ‘ÿTRBz}ű……€üBą $"Ç?űęłÎ]üOÿ‘«‰p@/Š]ô‹ßšż{öűCî? áțł˜O]ûßL·‰‚ ű/đÿ™ïżRț4żšòż2ęż;R{àêú+ÎęđÿÄ!npWï??»Úš#»]ÜÄùț„ńDŸ–[”OÌR”Ű€ŠŃĘwYŁšÚÉćí»8)}ÿȘîü˜èÉEWą&źÒąŚÚ^Y’„CÏ"iúć“!¶ÉźÏxEt—áŻÜOn±AKі©z·ŽeZ žT œę}3Ô]ŹQZVŸs„b©U„ûXTD.W˜Î<œö3·Űc3ƒÆÇNVaÓŸûĆ8‘ł§;­­J\SîQˆšhÜB͌oFÁ“ă-°à›ZhzUŽ2ÎÓmqß·ÂkŃJ§Ś YèW†kqęșđúq4R ȞólŁ-28†A 9âVÙôRWű[)aœ=A‰^Ț‹ăĘ@ú·=Èa€GI`ôń&ît“0š@ŐâHžßœ.m:Úæ(ÖûŽ›‚PnòÎùčæTę-7EĐà©ĄpęD/]ŸO+ßSúæeIêĆűƒ•aĘ€e}J'?~ÚiîÇWŃô­'ÄF·(.ì6ćFńŒU1œÒR"H& ùìsÖæź°#3ÓN–ì5v‹Vös»s€ÍőïJ,ŠóÇ=.Śo›ĘbÿÊHž\ŸùzČœŽŒŻ†Ńç N*àÜČÚnòŒÖ{Y6Š!·§â·śl:;Ÿû^ò”–Ż”U`çûćAŽ%ŚHÛÀv­MYZÏ!Ÿ¶­N1Ćvy:<ïmA-ž@ÎIß«Í ÄœŽiNŒF !OčHúŃ ÎűG7&ʁ“ @7ł«Ît}g ažłĐÆjSššá%ÄùŠÄ'›Á$yśŠg*…=žÇÇÆșäʱ޶KÈűŽh"ƒP „ˆŰ(‘.mВĐ̜ô ƒ·űFŠšÇ.Q~1««êG!łTNČ^D”zÉő;|Đš9¶`·2VĘïpÎ0ì‹ôä;ĄX^Šßf€QÍșJ,ăÌgPŐ»č™Ù7MfíëoÖHۋ<Í7.€œ•șłtìAwȘË;3!͇Ÿ~Ù<ș‚wŐxŁÀ`lȚł[âȚc'¶ŽŃïi™èyßçšMùŰżlq ęô5ŻÌ'Bgt“+ŒœĐož-čÔ_Žp|đ­n^N>vjčÖ8ïcò›ĄgÆŰą Œ-ÖŽÜ&h^ceé` ś>ùÚxÍ/8/ »:eț4šù–xÀ¶;6xÁáŰŻfu$‰§2T‚ŰÈpÌ<ÙûLŠVÈ9Yßșe1š™ŠłęJŹIvsȂÜxŒ`^iĆ3e7äü hˆłÔï jú†ęg'zčHšÈË֞*Eß`»öŚșˆ6 pû{#Ö muòdš+pai–ê@„î&EVŰÉ [ïîȚą‘[eÚĐőU`Wî盟ÆÈÙ^ÚÆ7ÇȚ“·QŽ€é&C,ą€ê€lQĄûÂR Ù Ì}2śÔG|À‡çPSMÆJ"1nŽî­Ălˆ}@@ĐìsœÍP!+(Čž/Čs.»ĆúțÒĂ{șÂɚ·CC{ČÊŚrśăœOÚ:&ĘÍ|á;Œu]‘ą~Ï %‹nTæȚƒŽÔR_ƒĘ[Ïđ‹#{&ä§úfcZI?ô2úòô `±X»ÿ@hÛE)!ŒçÌő›œgœù†Ì'{1•=Ä^4Żhę–Őű92oeÚŃĘäźĂčšÚa„kzŻ­;4ve»P,ë1‘Š„ïÎŚÌœ;+òfÚ:ކ<ŻȘ&ç.ú,=XipՄ=Xe·öVAú°S™@¶Î„fÁxú3ä(îšH~ˆ!Mù5­„Ùf·<ä2őšƒ>™ÙÜ;„’Ü’G ÙƒűÁ„rź Ńœ+oFKŽêȚ$ŹâŸŚčgzÿčĘó‹AЃAgz9Őq—ê€ê›æĘí:q­ő‡OzăMR+ś3—€șaźÇÆ,}ˆŃ3ïÌ.˜IOÏùOLˆ"ńLV$2D˜}ÈŚŠXa•ŸŒÊŒk œŐ+çJfJRoVš ”$”îŃŒŽ1ʆKâ(j 0ù(šMHäúÁAÌË}!•ÜPíéWőHCC°†—óxÚ.Ù%±âçœ*o€Ś»zçòo©^ùŐFŻÒˆ,œëx7ä›sLŚiŐ3Č‘ò±ś1»@Bò,èq3ƒiU4©4yg-e uiè…Çx8[~<+§Jt^^ŻÏMÒfÉÿf4#[ΊV'@ƒ‡m°WÇj șŸÿИÁNÇOPnHԅæ ĂŹçSę3qzŃŸá·™„’?ÜyjbCŻsW>Ÿź·ÿ†žrùȘ‘îț{űÖû«SrÉŚš{†ÂWźŹüæęà|ÛŹ3[eCb-Šc{Ìw;çfƒZä|ÿ`dăÓú”NąŽÍC€œAŠ–&G}sJçœ>î ôn†îkŽùZ țTD’wR^ˆŐ|șa>ÎóśRŒÜ|Æbt‡D+DF±3Ą8Ț=ïíÊęhIçRÓ0öe;іIÍ·/käíŒ/ÜFyéOâŒé$ăŠU› Íôù§R&:ą)+5ÖQ« Ś €l·È,q§Ż©GÇۂUMI|ČÁ;àÁ ăȘdSÓQQo3m_\ÀèÎRêwß©zìćg%ûőSÙrÜ€đT»ń„–ËȘEukĘÙ{aÛSŒ3drEŚÔìyæŸÀgÚ{üŰ”ôŽőÊČj!\öûńÁ…a#1,žÎ”kÖö„]Æj$An3æ&ę« Oöęôq•ê5#ìŐBšè—·Ê‹ QĘąTœ^:*oÛÓ"ëžv뱟3$êD}ÍrèńZRáNy4ˆÈ«žšÈš†ÏÄ<yčÚ9ÙôéX=GVIĶŁjńŒŸšôŽáËȚ”” ’@Ü«”•Xt9 ćÆÂ(GĄÒs BÁÈžÏRJô{À‰č\êÌ9ŁCàb +Œm a7Ù7Ł9‘»Š^$wŸ˜{ę»Rő)?”KËËŠœž—ÂĆʓ—ÚlćnQł s6Š­~hżß<ÖNCv‡ĂFî6źbATÓƒòű^ț=‚‚Ô|&QńTÂM7čś9‹ŰŸUOúÖrș?éHBI+jŸe?őz#ŁČzŃ”€Dœw蕏»æ}„Ú—ż‰Q”+ÎŒśÚÚ.·:K RȚ ž_p~fRÄÉ{,Ælùq§^iu1q*^Šcćn4ŠÈč, œgĘłÂ/™ƒ—h=Ïiű9|eRŰ=đłvŻ9Û9Äï)Àò5VCyăòVÿ[ș @eqűȟÜëZș’NT*ó€‚čucűÔś”€O*Ž2Ìőô8?œ»˜~êĄ2Yß··,,“śÏP@źTbÊZŐç j1n<ó7æ „IJ±ó†+đLW§—ËÍSćt©ÉőÏ6Cü/ę\üuF>-}}u@]¶Ëú…ÓÇ —ŠÌ&8č„ĘXüĄÆúÆĄ—úč@|(ć&ƒțAhÆęšoÎKjtÆ3-ïźȚá€l1NWc’jó >Zș@]ÀÈ*ŸŐ‡daƒ«óÄȘav[Qw”ËĘw:čBOÍi75ó3{ÆÓˆŃŻ,§ë_?zsțéĆŽőHXlFÛß@É/ŻÈrxŻ*t|DžôiĐPŸb;ś€•î2ăjJr*șę™8ëÀȑśúÉUźłĂïŒeYvKŹqąȘсŒ8ŽłGĐŻs ŁHTì+Ćï„NĆh EÈ«p[­·‰g.Q-MƒêȘNă\kòڃB€ùŽ ć̶ÉÙK ’Q7Ӑ– :‰ăT+C,ĆJ\[Ć_LŒ&ÒĄüȘ#L+!‰È—ÆvŸfÛD—+Ú~ŸJj•{ńEÛË]žłp፠¶˜”,s=îïˆÙÎpPț ìȘjŒBEs’À–őșŠP*—›UCź¶6uwp¶f\șâàcï‡'Á~nfYëü?êt‡p[Œ_\Nôäi'ŠQÎ&Ó"H˜šł€ȚL©Ÿ úúEȘë·š9'Ku[»Kû6‰‚Œîčí>kaÚ śŒÚńœ­„e’[/Î=ÚąśœÏš bäÓrgYÇVEJ0R­VœÌÒBć!ŻȘć]Ûj«Ąt4Ëgw voÂÈò§7ű±àÇ™{ăídB“gN]NW|æIŚG’™CyŽÁ±o{ˆ–ŸJšsRG †ZȚlö4èțK>FœŸæ€l2‹Ț|žÓ JŽü4„r3„ȚY…|춄ô•‡O¶kÏw0ÄŹčÖ•ČŽÊßŸÆŚÎÊ­m~À]–ޱ±JlAûăÿj$VDbRt)?Ww|ܔvô†YŠòHIV’cïòȚMŽLȚ±űœă>'4ćȚÍ rvX©ôÚÀ”€Qłn{ÿő3jÚâ9AÁœxčŸ0Æ ^iúÜęJü`cƋ€2Ș ÔgÇœKžȚVó–Y3!w·ogò9 ”돶„}ööŒ›DQ…¶çŸŽ-Ö{ș5N”@ÚêČčĐeżàŐĄé€*ÛT^h•`…'Žû]mțŠùèäkŠĐ,cùí«…aÄégĘ䕩€ś ЧȚM&†. Dqű7’șțæoÛBƒ}[ÌïŽç™Ÿêæ^Ç͍lžùxŒzÜ©‡ćÍü‘„"PIŻdJ °‘ÆșŒÏńgfoˆ°rŚ“š•m„3^9œęZÍt‰HQ?—»<óÆĄŠ“{æ5€2­qKˆ‹$IĄœć_a·Ž+|SöêŽÁzR*śŠŠŒtseWĂńü€æÊ‘†Žőięü‰b­cšzâ[=ŁȚHhĐűÏæhĐÙ%ńśÊ­••òŁÖ*édgŃq#¶)ÛtYźîeÜBVłméz0ælí”$P ëùâQ8ćà…uLÚö5șëÔ¶węÎÙe”gÏćUV”™33čjűv"òіBäąœ&P­›Ÿî™<)u"©ă%ŽÍCŸ(R”%šHôôv#ăxQ˜+,GWU ś]]Ší|;ƒÒ†ńшœ„!ïáĐ úàÉz?¶—kÚë”Mƒnż`ZŒÎIF©J”zögçŒĐ«Bi(s;K;e5śÖ#Š”zmżżI2ç1ôښKX#êò"˜r*čMÖŹąÁž‘; ê#„Öùw4Ńk^Y mÜ ,”r'Šïésò֞­=S“–čwžû.ä§§ïö‹†yòqjÚ]cAtÛi{Ɩb—ĘFKo~íÉČk)§+n”ńÇ|NT諏'ąmY?»œ*Żzû‡!bô ùÖÆąËíÙÜĘŁŒc_- žó] KbfR:ż;IŁ&ò*2<)[V™§ߒ_~O(ę4·źțź—ș#‘„ !ØcMSwŃ;Š C‚^DP—Ő·ČĄívźŹ­S !I<ö*퐄K?ü驌ĘQrVnÓ%ÀR.C8›ŽìŐLbőé‡qTâFhWh5G„ËȚò[…%ČșąŽ(ˆn@űë”t·û«aŸ'i»vŸŰÒ)ź`uÂ$FȘ@©ęáŸĂc­úl<óîïVšÔ’±ä)úč„ùČ^ՅÍĘ$QSW?ÙŹv˞'Rò„VŒêKź„*ú 2<±€Xô¶ŠŒ#ëeĘń„äelûü1}Č0g„©% ùùàÏ+*$/câY,ïz«$M¶]v3+Čč`9OńőäĄÖŽ] ,ë„C ŸÌ+~­lcÔ-á>EźUo…W_é?=$% !lOA îÇbG˜(Œ(’wöűéyĆë·4†m dvÀꀩ ăK5Ó.ïESíÍ1Ç)«‚ì]ÌPâ+îȚ†Ł2œl‹^Č»üYáÄ?Շéü*ï5}ĂAÓÇw+†ùyà„?ÜL'æčKu2R–ÌŁž]:CÉ VQ¶qŐŒęT­~Ž?™/6âdáÒmôŽÉż§\DnwŽÔXĂGźèy];pđ ÈRŸEžŻ*¶Ìêj†“!9;Ôí·aČ2Ośÿ+ÍŁ‚őDȚÀàŒò.§`1éaEš/%T‡Š8x·Ö˜˜:śÎżšš0ëœYç˜)T|Œ°Lï~û@źRtŐ|dۆl#/Ś` ±ű ÿ‡aq·ÓFzÚ\“_K°_ŻgŻî~Őè€uÒPԑÇò”Û9æÜn…—^ÖÍ|:šąéč6lUÖŸĆȘ6{”ö‚G“ž°óČÇȘ1m§ò—tNŚQ?Ä!Eƒú g^ÔۗQ©>L<éçê€{ô‘ާžàđĄN“€<šv–ÿęҔ‘­ò‚Gâî0ăŒúb»B  [Ę07Z‰56Ó· eę." ïĆá•àő™úÇăCóFÆŒÒG mu:›o š›È]\‘YĐśÁžT/©Y ß6qȘvMKÛÏ cbÏÏÏ0îaÆ„­NÄĐSÛ:‰\Rfś"»ZÒăKŽÏ êtìćą#”/g^U8~oùÍHOJâI>ę_ŽÄëEód&òs<Ëă†vœ#'SÈ膀Ž5čH±«K]œț»vŠÌXÎHIœò€'À”Ÿj«gÄÒŸŃï:‡G'2E„0}Ê1tžìÌ;đh#o Â~泊œÆ»5ž_ŽË+w: š<Žä*êæ k?_ÿé.PŐÈÚ6ûź0ìFŚPáfŻk’©—đžqöó+ûœ:v8&R;#ÜX­ R*îœŃ+„đ ž§ï]Ęś'QŚ•™ e™\oáuF«Ă<.ëùűlrNń[D/ćđ§ńć6Ń XŠKœ”aȘQčź_]ȚȒpëq@@äuنU†Ź€ČkˆŰ#Œ$™Ő„`§XśŒű©cKptzy錔–ćű AIBûζt36â ž|ČEé[ęłđîϝ>Ąvî㜱ę5GD-?\TÊu¶Œ Z$™É"ŸĘqr›Úç,ú8jLÄË­„òźĆ…K;JŽ2pœrĘ·»‡©ž\s~­„ŰË© a~ĆŃČ$:©cNLJ”‘–Ă jłux™L>Š” ͋łâŸyíÍÏ->”‘j©èƁynț€À€c>áyR†ìX PHiűd”{ëäG‹ %ŸĆșűŹÍíQxz őqKÊœűźę„w‡–ûǟÖ;V>|łF‘‘àúÙz`G€źÿažŻ…žž\łèxźšæ•Âm‰èźńËI6.đrûÂű‘vèő …kzĂ7ٌăĘ(IÉùțÚ(›^ endstream endobj 219 0 obj << /Length1 1478 /Length2 6403 /Length3 0 /Length 7390 /Filter /FlateDecode >> stream xڍtTÔĘÖ>H—( ’R3tww‡äŒ30 ’/!ŠÒ­0‚4ÒĄ€t—ŽÒ t|cŒśȚśțÿk}ߚ”~sÎłăìçìgVc~E'„D Gńƒ€Re]# BÄ&P ò&æ0ƒ =ĄžÔ8(#!`SŁ0~ș8@Ë  @bR q)  Jțíˆ@JTÀȚP'€ź@ ‡xs(#ÜęPWæ˜ż—nGHRRœïW8@Ń ‚„:‚á]0Êâ†9Ń #Ą”ß?RpËžąPîR‚‚>>>`7OÒEއàEčŒ ž€7Ä đ“0@ìùÍL€˜`â őü#œQ>`$€`PGÜáw‚ ˜Ăƚ:}wü·łÎo>ÀŸ»€@ÿJś'úg"(üW0ŰŃáæ†ûAá.g( ĐWÓ@ùąű`žÓOG0́‰{ƒĄ0°ÆáWć`€šą!Œ!ű‡ž§#êŽòđ„Â~Rü™sËȘp'e„›Žò$țYŸ  qÄ\»ŸàïÎ>„#|à6ÎPž“óON^pš‡DSć "ț7æAD@ ž€0â€ű:ș țLoâçùeę„1 ‚Üîg HÔ‚ù#đ{C(€$(à? ÿ܃@'š# àqÂ‰ÿCœï1ÍGB}V@Œö@àÏßżV6y9!à0ż»ÿêŻ ±Ÿ±‰‘!ïoÆÿČ))!|ü"@ż(ú)2qÌ"èŸi ÀĐ?eüGŹ&ܐü]-æšțźŰûžÿ àŸčôŐBÜÿč5Pèˆù€țÏRÿòÿSűÏ,ÿ›Èÿ» 5/엙û—ęÿ1ƒĘ 0ż?ŃzĄ0 ‹ÀŒüż]Í!ż‡Vâőrûo«& ŒEž ì_ŚőTƒúBœ  (GŚßjù›țœ21@xB>+~Lkțˆ-LJ˜§Ă#É_&frțy€*ÜáôsĄDĆ`$ìGŒi2f' afŃ âûKÄA8… `èœH⟕`LJÌëçŒúiü ÿ ÿĘÁż b˜ˆ‡ŠQ#e șcű?ˆ€ț ÿ Áäu‡yyțțÁÄŃ ‰ńFęÒ†æßû_/â q$žG8J‡?š oŽŠ Wá”n§öW™šÀ)›I•Âvú·! 4ęš ȘlÒ?áÆ"Íž5ś„#cmçź]SoÙțƒÒc““Œ»ț‹XíĂęËŹŸ†–Ù`„ÖŻE:jÒąq©8°DN։搮ĂY+ç˜ÚySĆȘiƊôŃ.ÈÂVOźÒ]‚&a •ÜÀ–  ˜+c^§—êz<9ëÁ’ŠÂKB­l™§uć<Ő™ˆYëKlöùhÓoDƒkbÏł‡}Ős áĘ%wÒbèW ćăÏČX'†ˆu„°h+ŹČÒn_. æasްxLèžq;–kYfŒ‹Ș§2!e߈Ò@X5—5œ_Șâ6ŚíĆ«AƛZäćxS•ÊZXZ(4g{€8țS± ⻥fƒíƒ-›căcw’c‹?ȚT›pńaS}–àłoÍX~Š0”XxAB2dÿèœL&3XH˜z-ÓđŐm·Șæt2cŸŚuo>'|ĄôkauőÛ·éòœôöò‡â)›4$v}9xVϛ%| dD@cL‡ČšÏ'XÓädÒb©u”AHm/ĐWáó4Se, }ZÂÖŠ%WÁ4SJ0Wb Z7ăyŠ;kÜ3„çËĘ œkDASKSŰÔ ߍƒn2ÈŰhÒÁ ń=Á}Egg5`a}›¶ûđ»aN9™‰ÁőﰜSbÈGŸ$ś«i†0d°kòYmČÍțÓđ8{^Xá1Äđxü©‚3­˜0ƒÆ‚Ű{ȟȚޟÚîmv?UŚęó=ôJwÏxšâ‚=+ŁJ_ćI'[*+óŁ•i^qwë_z Ë%ubÛ9QŐČțٍdj Æl»Ùșőêă/{_Cž™Ia5”C; ûY /C/Țć)¶łC9é=Ÿ`ÿȚȘ!bDCùBŽ/Nđ„çăÛă=ôæ 5ßÏ;Ł/.Wn‰ńŐŸf~?Ș§oeČÙÜőDśâ”»śA+Y&SdbêŃdg‘RIò/vjx­„r©2èŹ…vRž{\$5űP/j4Vû-vΈt~Ë·ŃdXšÚ7>ÉdœȚaÌ+léĆ/…NWoÚ籓Jo],ÜkŒ‘éz•û|č“2œăÙòJRŠZ=LYŐ>ÂìkžëbSo”aò€Z! ©cièvX0;úiې°p㱁ä„äÖęxOÉ(l.ûćRfČ-äŽù©”ȚłÂ­ϑĘÏjXđĂH3l™Ìç"8…D|(Šaț$kìŁB滔•>s][ú’Śù«lúŻČ)?ö›·ßSٰ™|e3Ź Šî}fműŒíŽÚ=ô,Ԅf?~ĂVpäd—ŻkViÌaòNŻ^[<ĄœŚ(u|Ë Y˜~ŃcùŁ“rÛÒÔX1ÉHZ{SŹĄ'â«jD– ~Æ6ö#Čo€–žÂJă_ß$±€dzłO7jbԞ=&[8Û)V][E?v>1đ ŃˆÈĄüF`~Q%=ŁÎT4U&ܘaûÓÛÖ}…äRșLą4đ›Ș~ȘTĆ`Ç˜ÈŻ0„9v•.śA>«æőĘû‰AžeÀƒ{á@Ű oŠ2ûz.MXÎeđbëjŐE¶[ÏòđUË_îÊžƒ7lIB']7őâŰgÖì€/»Ÿœ‘–JxùÍČ#RæŸ{;9zŽóжú=bœœłË<»sÒČuӔŻ»•Ăł•Ò8Èi֏è˜á.łƒè‡~eR3kŸòħ‘{ă”±ŰÁŻ.ęeżĂ?,+"]ăŸ5G‚é¶śd 3Ù ÿČ-Ęâ'„x?Ž=“„ÚśÂČte›‹ònTZI'4ü#ÂáÇLĐć …Ù§ĄÎŸĂ.Ö lŠÿžôæ év àê7^nSi蛂ù]°Đ‰'Óä‘ZțW~WÚéö”Úö}čș—šz:ÁIőèŐ99J0n”äj1ŸoixQäŻ P)<Úî\E.ÈŸwÍí"éÊÎtVԉmٰ«{j?i;\§ź}$-Z‚_àӜـ»ą‰ôŰU,vV|Œ`yêő&€mn„ę ihwk˜Âyë+“ʏ#©„űi'fŁBœ9@Č"ê6é&?ú)ÏR=]Đ[ïșôYÒjô”Ś5Ąń:€v}űííb°ûŠKoò{ę0«„Ÿ±w<șĂòęp5čSźÜŐyÖlqŹ tenaOôWYą4ęÜöÔ§Á2ž·éòÍ}©ĘőŽÏ Ő°à)H˝nl{Ż… žo¶XšÇgŁ7ȘÒșl§Ćîìfù Ûƒśr)^őĆX•ÄÜČnîSÍÊoóahĆÛ3ß!Íő_ƒè€Ăi)‚||»Ț«pžłÔìKŸ¶kț ućùä%~ïfÀÍr˜üębÿĂŰç)bćjŚ%¶YÜùu†8{òÏqv”íćöUEmö)y;sz=ŃòőȚŸșl­/țș—D=~iűńK‘žƒsïLcó|x‚(~ê”)QŁÿĐĄË7—~đʓ§^Uj9C©2í”g~s”è7ƒ7Îî5Țèq9ș‘·Či{*R€‘ÖŸ—>qfÛ:èĄATfŒ4Ę>|Dz\˜”4(.·ĆÓUp˜ȘšuŁŸšTQœík€J€‘Œ êR·łûû©ç꫐󇒚ߓœó‹3†p–ź?_žóRNœČPĘzr«GàÛ֖Áv¶{Z3Æâ7[Š-™Ë 7đv̐1qO)nh‘ò–ŹEšk €˜Šę‘ą—»Ê.æ]iÌ`byûŻ»3te:/źE^ïŹË§c}æ:Ú:n? VŁu2SŚçă]§ń€~Ł~U°h+X[ìQՎÛ{„íŚIțæôô>óÿp•b”©đ1„"-={CwRAč«ęŠncŽÜőD^ïőŁ/Ćm3­±ÀőőäACŻ•‘1=Ž]&=Š=$Ît—7^æ'=3’Æ‹aiÔ>č;h’SsSíűÌzáòŰv4‡‰‡D:•š%đ›@Ćșă1™†ŚšŰ”açćàKźLCáiß»”OX„YŒû€ĐnoÏpÔąŽ ć>æê_ïd0!ÍæCÛè}mȚÖá7Êń,íf·VۄÀ2OqDÍ·ŹÖsŐ€ońéqqQB‹cŹ+ô [54FûżČŽÈ›Hm+LȘíÒźë]“[ŽÎ+dȚđ4ž.šă‡6‰8Ś©©Ôž&ÌLŸ3čÁckŒ7ÄÏś șä#‰ŸŻW«J=šŒęœü˜Ä’$ȚRíß6zŽ'Ü8lMü~”}ueùEÔ>Ví‘]șok|ŽiV`,—ERuwTžșčéű-1Mk–ÔđőÙ#č ©^3»óœrcŻ$ïiƒhFȘ­Ù&© w…M§ę»ö{œVÔ2œqúŠ "~,}äQ}-AțűÂŽ0ă̇§lυ2æ”ǚԹӃ»…ućłÔŃźĘ$…ž2ț:…$bmuń„e¶Ò@ĂÁškèłUÀęÏÀˆÇAù:cUƔ1…R!Îè1·ÆŚmŠÂ» ă{Æ$BČô‰ăVïœj&“/Ž2ŹgßŃ0—2Đ8nMӅ\œ’âB5? u„+ź#ŻbšËZ†ÊźèûŽŒÛűŽY±‰Ș">?7›ú4ƒűćEșax•Ő쌌i«…#îăéyGȚ#ŽĆ ąmœ†Y%cQÉȓ°ÖwŰńè,¶öńŽŒw.&_çVlŠÍ; ńgž+ï±â|đߜlđPÇÄ%/GŰRé±"KÛ-ę e #9i‘/€4•ïŰ F‡ó?`‹ù[‚ś]Ædh‹0ÜëŐæ§Ÿ˜3/4^5ˆí/SD«s…uĐtÌžŃŸîSĘšÔ0o„-gȚ¶\1ïćŻTë+”mˆRjóYtëÌ;&ÏUćiŠ9]ßW ŻßÀ'+Ž›wbà;#é{Ÿ|U€qPì”vâ_h6ŒŸ‚”–.‰Ö~/Ʊ­V °IŚâRwÉÂu:Î4ŽPńŸ4ŠlŚȘŁjsí‰ÒÙ^őž&ò±\?őu‡?Š·FŁ,’ÛRÓnѕPŃKJő “HħĘóŽüè>§Ă‘ÌG„ŽjęÂúۀ§ŃÏŁùÄ}_O*Fƒ!ÎÂÏś|=ž]/Čb‡Ôń–Öù•ś:t9Ż—Mùó9•hN64c'¶˅Èi^ŸqKÄêGcJnhTÍäś Ć[ęüóà“Qő5“đêfŠB·<đ·Äb]Żi•žIÔM3A9‚]ì±Ă‚î»5cąŸ{Ô,măà_ń^úò»s[łD’Â.7[*É\xcܒPûŠŒ€ł¶rĄ±DCË3ä_óU”éăąę/źq™_źj;vëÏó‰4?‡ŽÄȘ7|<čl䜷XŒ„=Àpé7Đm0©žeă_š}2Ăő)wšb\;ÇŠžZ+-iCÜ—hšśƒ°Źg·@¶fi/șŽs°Œn«NÊéȚ䐿‹N„0›ù«cîąćl'ÿ2Â*œ_ ÚčšęwúćtGërc š°Mć.F‰‡áR‚çFÉ8›Ț3ńTÜ7.‰NÄeÈyÖ,Ay RpJ—R9Ìä«êlŃ0€‹GràŐÔ„“ +ŁűVÄëÆv­4IŹ@ž”šopw:-Šeș.‚­ÒgăêȚăρ©Ê„Xäęê{օÙX6Œč&­ÇđśCÉZUFêŠeè> stream xڍxT“ÛÒ6Ò€Š€ô€ôšĐ{•Ț{0„ „Ò«ôȚ€éœ)UzAiÒPżèńÜ{Ïęÿ”Ÿoe­äĘÏ<3{fÏ3;YaeÒ5à•·EÚ@•‘/ˆ(PÔ20@  (@ÀÊjCÁĄăŹÆPW7!ń EW(…Æ‚QhąPw‡@‚ˆHTâ‘ꀇ`˜-@‹ ŽD@ĘX‘.Țź0{zŸżNH\\”ç·;@Țê ƒ€-0ÊêŒȚ† ćęR(”‹?ż§§'Űٍéj/ĂÉđ„ĄúP7š«Ôđ«d€6Űú§4>V€ĄÌí/ƒÒć v…Ё"ÜĐ.î[š+œ;À@M ăEüEÖü‹Àűs8è_áțxÿ CüvC Hg0†°ŰÁàP€ŽČ&Ê Ć#lÁp7$Úì†ÁÁ6hÂïÔÁey=]áŸúÜ ź0”Ÿ ț«Fț_aĐÇŹ„°UD:;C(7‚_ù=„čB!èsśæÿÓ\'ÒáûśÊ†°”ûU†­» żöÄȘöđ üł‡ąÂ@qaúő‚8đÿÚÀĐÛúÛűFŚàïë‚tۡˀúĂì è_7°€ru‡úûț§áŸ+` ƒ 6P{‚àßŃŃ0ÔîŻ5șÿź0/€-?űëőŻ'KŽÂl‘žśżéż[ÌoȘkjfŠÇę§ä^_^qŻžDąąÂÿÆŃĂțäńŸj;$@üŻtŃçôwÊ4Àńg@8ÿŒ„D+ àű·Đ…ôèÿ,śß.ÿ?•ÿŠòż ęż3Rv‡ĂÛ9ț"ü?v°3 îꇁVź; =ZHô, ț›jękt” ¶0wçÿ¶ȘĄÀèiGŰŁÍ â ę…Ăܔa^P[] âđ—jț~͆€ê"Ę`żnŽű_6ôAœĐ·ˆZšżMPô ęs_%iûkŰ„E`WW°7șŚè•0À„žJ[šŚo1űùHÚ€źŃ`‡t%űŐXażü/èś đÛž‚!P8Ôő°àűŻŠț €üöżî=š+ô‰;ș…ÿ2üptÚÿDƅĐ(ÒțWłĘĂhź3 áîöűGqwWWô€ÿV!șòżŚżŻ(Ô !XœGB$CëC;/kći=y7ÇqVŚșŁÌ"…Qlïžû:hâf©Ì|x“38.xRšŃW#RNN}ÏG)o4iˆš"1GœĆ ƒMAű\±<5™șŰ9œmë±èʏÙÂÁŽÄ!Aś&{mĆ ;:OǚʐÂóÒyœ+'tÖنßű‰î·&E9đÔŠł(°ÖŰbœdÖÂóû°)8 ĘK?”f‘„efš˜ï›cpŸ†Z}žșù86+$`™* úűBADÎà2jgòțJ*@NĂJ꫆„Íäžæ>ú€‡ïë‹X„)c2âl»őMçHoÄ’怞b&(ÁŽ+kŻ7±EMűü-™1—’ȘNăČǚ3>/~6@??[·Ł[EÒ\N|aŠ9ȚX€ÀìĄæF†6Ÿ™D˜|à,)1čÓA9ęËśU"cÏ„ƒ[„SƁO—ŠŽn=ÔûOZ·~GŻśÛm«Ś#~<+üns‡Ç„Úìê(ĄXó^ÂŐ¶‚ÙLБèüJŸÂQ€5yÙÓGùv±?âŸn5æ›Ê7DšĂŁRzfÖ­_ŒŃw™ÆŃeŒšúÒŚĆžșć„ÚôęûˆÜfDEbˆ9Ž^Ù/Üźűa"ÊÈbŹÙy֊çÚ;fŚ|ödq!)Žäb”Ę€}èòŁâ‰ÂCÀ]ö…0qÁőj­@6q_lÂH〇D_Ćš‚æ|vÍpYś”…{,ÏZŁÉŸ«žśŃ} oŻŁăWò\`+‹ęđĐ\țÈoȘ#òÆ[ÙSwđtoËÒä íĂ`­6œH3ĄŐÒÓđVČBłűč±BS]„#Íkuk¶;ŐmćHŐT_•Ś őœá]öžNwjż$ŃćùwmFzę,„”“’ę̶űYÌłl)ëpF柔4É0ő@/”ólŽKȘ'ęč#àDŠ—–€’â„^ŒP:»9d·Ęäę­œ}Æÿ ž,„k%’ù Ú*@żêłe…sűé[XišF…ÎđL“ڝ˜úÙú[śżê“ĘXŁfM$3{Ǝ3†Üć8T žÆJÉgï=Ïńő[ÿúUÏ,ž©\ÇJí>óÂźąĆ-šA%©šÈ—őV’l`zoŒ2uC€Ű>r/ÄِŸäўś%I¶·!…Q2%§NztY†'tpœŽČûsć·æÔ,ȘięęÛúŠ© ĆŰ9zš‰gćŹyò†(GsHșœîRÆÚŰÁ·äŐ.u­0+2=łÈKlՆU}œ8 ‚!^?ą‡ƒŸŒéȘ5ŰùjL”»Ń„Œ›Őtìóńx?iQĐöcĄU“U§@n/S5$<ùźÔŠ.{œú‹Ń„Ä9žA–FfŁR-Ùł†=Ù”dźùPQâwTÒKș 7ÿu’dč"í$a«#ÁÔ(ĂÍ1»öp·^IDH›gh#QPtöó +q~š aŃś$}Ÿä§§v;ŸSVd–Ï€6 }33?)€ŽîÎû5ž˜ç&`Çźxêœò©ÖzèćìK9KƒXr‚Fô {őç[‘WBN:ÒTû7•róF€€Če8Ï]€ÒłȘÏN˜o3čˆEńž`YŒgÂùrńœeba{öČ#ŰêK [Ìæé‰%™<5~ŁĆ­-4ô5§OVœYL†›ę`ąSÌ”ȘƒĆ©†5Ê .æÉűíÔ+w+ ƒ(yá“LiČ„BÄRŠá:^uf|Ęd'sŰôE9č%?Î8o€żoäôà°\țlś3ș,ń­ërxÂ1ŒŽȚ8ûqη‚H»<ăЁŐí[ĆÎQŁíƚveđÆf•ńû‰Ąpy–ćÙ¶ì!æț‰ Șžœá@*’űS'ÒŁŚșGgŹA<Á`…„»Ï€çrÿ:öąÍUäąó”dqƒyÚvÏà†ÇƒžĄ7Ye“j’·‹$ÍĂáwë€dGê}PΔđ~šeՇlEYfÖ`?è‡bOŠíșŽq‘ŰŃb}Ęm–Ï-m?»ȚrwĆ)=XŰ.¶eŻêÛìĄćmk&|#€ÁO;`=ŽóXìĄYXŠ"t «1żąé/Ô$›|u¶ =mšDȚ[ÄŹŠÎÖT-~Ûź±|vڜǙńśIś»%ˆ™wêÀxGq~ö-rk­±˜ëÇŒr žÀ»Æ8ŚŽìg9“uSçć(ƒČá"[ÙuŠŰä!f!aęNÚ&MfŻö•€¶üÒvœ–úpWőś9ȚÏMZ ,°’1毟ż8‡v`ÄLìÀęœCłoŸ” Qëm¶ST‡xç’û%Çżś`Œ{Èę4Ą(ŸĄ?E© ś¶~+Ikpïő9=ćj! ëJšŸš«ŰžăĄ}°ĆŹ"âOXò…è7?ÏČ T O•đ*&…Ûo«–cŁÍxîx5Z„Ź .ŹaGkrÏgĆ5ßz_ú‡ ł/{…Đhž© „Łç~_j]ű!”ÿrCóąÏŒfŸyš_[ÔĂ[ ƒBŒ$ßրJû.ÍŃ4æß[Oć‡Ö"Șđ"ȚŹQ/ŽÊo€ŽœîBÁ»ë&TŻ ,0 ƒŒÜ&Ž éĂtŁžŸCĄćń%v%ĘžNï#î3\Ș‚8EńÊâa̱S}‡Á,@ú…› ÆÊ>cYXÏĘ»Q>§[bƒ~=Ć2¶?œ łbƒúšŒ‡>§ŻQ?)łWĄNÎű%· švŸț˜°O-țPóPÏK0èąY—<ë<éb—š2ëZƁò~ń_Çä‹Ćp) ?H·8.BÆ„ùZ*VȰÜ`)ăûŰ3MErœ@¶cÌȚvŒ~Ë«ę#hŒxŒy"? á©gÿ!Ö%‡ dENÌ7™;Ń»WGšiőôìÍÏ«Kgą{pđ‘%ëœ/|Ì%:Ê­_ê”Àèh6\^Ä1Œàâș%a {ó™†ÄcŃ͌żä<țLWhX°Qrn ÒÈ/tȘŹ‹vüPYˆG‹úPUšŒ€_c|Őż.7ŃÛaő œŻ^ß¶`ZDSŰ+ˆRóöwżàÞ}5`‘ü ˆ>äá„·ÁI..5Ê\•e_ëV2<]ufm'ąˆ;Ed3Xvâ!\5Ž_L%ŸvoÉ ufIpŻhÒÛaŽÇRô‰'±“%čé}):€űœSïć“ìûj5žvƒL5z1—Œ›Ù}ÍOÇäéßsâ#Î'ï4ÌvАőe&,iNŹ«ïžìX=„•][”IžIć.· ô2ß[1Šű‘ö盰qèžĘŽQôîĘ ÿ‹«?éŸ1Yèß3œÂ:~ș}8ÛnYâÇ„ qț›É\ôÜö.ò<”<Ż„ę+„ɇƒEłżÎ&ŠŐ4„/Бđíđ+—ŃÒ· ÓPú9kíј|ÌtžPBêbĘÀçЍyg—“ődŁ\mƧޠŸÖG»ò3‚„Ÿô(vzŒÏžČ‰+¶S&8J<ł”TnçúzȚź±&Œ(V>°ŸíiÊUÈÜȚÈț"_Vyw­ëIęäŃ( ă꫕iĄ&Üh†ˆą„©ĐK]»ûoń«Nyæ òEÎÖ;oÓ=w-*”HüđÚăńGÂΊș±Tg=^*,?óiC‹w'ùü Ú&îŒ„Ž”Q-Ov+gŠ@jëČƒ„ïWż¶cąșĆÈ5ÚUÁ‡Ăżć‰Ó„/ÖÎ!·žű,ˇÒÚ%Ś§ÍŠæœžśá…Œ)ÓçTèńˆÜœ’Űä'óŒ±ąêöeźŰ['ȘčÄÛRȚ—9ÚîDàÜĘâČźŸ’ÁCL”vcq$\ žŽŐI^Í2‚“Jë’$ Ù đóOłŽEDMp,Nfü[—UęP"ûDƒäÓę+¶–a?©Ő‰ąô‹n†išęÚ»?w+žS ÄՁÍROœÙżžIe퉻0Ywc–êuŸÿșÁ^ą­Òxžv;C†s lü•Łeă]Ä© ©ŒzìâĂę@ií˰[]6"úXß'T6f2̋b\ÛÏș‡ÇÊŒ/‘Ÿą/1–§QȘëœDń=?”]ZvŃ&PìÙ>śUJą)î{æŽHœ–IÆÇBaŒ¶ć@ƒÊ9śqbqrb±Ú«ĄÀ>‚Ű”|Ż!íPÄ6I“;=ę!˜{žîÂŚ«yžŹś93 Ûf­Œ‚ßćôVÓés:Ăä'ĘÊÓbŰÖ7sòdI=ˆ=rœ·ž? 5â|Ù|$„æzòp‚œOÖ-`ąc“”{9/ŽÙč(ݟ˜ȚBœ €hçbœNűńdËœ©9óF'íÎÚjöSŚ>^z?àXŻyÌúȚ·‚–Ž”©S!‡Èæ¶êŐvf·„PÉ]5çúìPiőĐ5ęȚ^Gƒ.VïËw–zé{4ƒßćÈîÚÊ B8I-+h҈wçèæ0XčŽüUéúh2wŠó$m_ŹeÜvuéąźĘsŒÎW&Ł!퉄„čŃŁRśUŰ/>)>JkwáÄźæ<ÇčɱfÌ"+䬛ăhûž]ÜtGK« ©!”èÉ [sÍȅâꊠ6FłŠč[ƒ§Ąź»o"„[gûdí„nȚ3nȚÜêòŁgéuÊ_.u™;4&ÂĂč+;gÌșĄąäČÀJŽÔs<˜--m–fŁ€œźűë»fjŒ 1đÇ/żH>žŁŰú,?…§*Ńűòùš™*œ (čéS‡êo«gȐŸ•Ùt51ÁsćČ·iȘOŒid]Npœ§ÓÛîéź°*Kwś *Dàœ/žšh,è:4<ŐnŽhĆV±Ț TÄ;2€ôY™±Ăß—šMK‰č șőXę­ŹšWgïŒ^ûÀòŰ_‡$ś}ÀŁČ@ČOÚNv…àS€»șš`nénă‰ÇÚnÏY€Æ’‰oŽÖ슠ì»űŰr­Ëo&ԒśÈ<ÂH3n›~’ŒȘÀ˜„UjJϧ»Š&)›ÏdX à»ÓâFùëÜÈrăeH’ôŽiô͝ë$áÆWсźZ(oéšpźő EŹî§VD]šZyŚș8{óć@IêŐé­Gg ùĂtšA˜{!șÉlą( æč»Š€†œĐûÓéXÉwNæÉïË©iœ]ŁGW_Ÿ6Èöš‡tđ')3‹ńŐe¶p0Ïž—5ôfCÔÌ#ł•ÓÒ{AÇn;+û!^HuË”wLcžW":űüŸćąöF„ÉŽ ?–7pW‘·TUżșąn0r Îz9_>蜔9ҟŒk˜Ł(|„âjÿɧŸTxŒ%>"=†ÍŻ6Ÿ©'ïiꕊ±Œô]ą‚-ÍUG*TiÈú*€èxČqŒŸm9a9 ‡9fr?Lg!‘&ҙ˜/æE\őŸŸE7ŐTR[ÊńÁgŒöà­țNP5ùń+IF’ٰGZčy‰h|ìyXű:čyŠƒF€}vùÀvQoù č\LŽaU `Ž|ÎÌ:šáśXOĂÿcá›őś‡á9ÉQÄț§lŚębâ|Śó„[64 î„nYÂaá’H6žű™i›źÌÂț _MyKB¶•Ȑ€c`€3$vPt¶(țX©#*ädòĘ©ž°Œ sÔŽ†=€ț€Ÿ„2‡„ąWÊšŽțö’˜&ÒÖqÉí± i„ aæZšăŽi»iȘ-…8·’hʑö^ŠmŒ˜ï€ćIŒs[.őÁcÒŒŽwqƶ4ÔÏÌ0ĂqÌÒÎo=‘.äg;™L™JęșčąÊČÈû“ęŽș$âŸNȘ™ł_Û'+DçÆL ,êĝI*XéĆë”' ~ëáRž#ŰâŽèÀbiYU$Țę™o­ƒœyü–€1ƒćŐêă`^q =țțâM­h`žìÂëĄáʙک[ €_6°,ŁKlŽzđŻw:v+­w€Š/ÇÓč±Iż èz+j-&sê"©Ő nÊuäŠX”ՂWvˆP%M 8!áshÚűmÖ§ûNތ•)F€Â?'žÔ6LÄeìÒüË[€S—ęÍg‚šˆæÊŸíŽá%}~Ì„ŸÏæ ò‡†-(f5Łò1ăÌîR4p. …E(Vo’°àȘ&=Âà©òšđ;s«qóÚ/V͓RÖ [߈Xž=ŸïPz§Í\dê~†3ÏÊŽƒ݉ùĘxbŹ őûì-”#Òe˞ڛč `x…DË„ŽđȘîFšgŸőT”0šIcE0jj”Ùjsú›ę“q`Ò ‡€ łô͈ä_¶“ŠÛțœâè^Đz4ŸÎ·ăœÇwGđJ]’2|[WËÔDšÓ4ź±ű=ksïáV.Œey©śƒaZQóŹđ4±•Ò+Ăÿcw }˜rëJöm6ą§ÌĄJÉ2ăá~͒±I=~°^2ŸŻ1ŽŰ‡ÌăXC1Ł™UҍhcW+qBœŁP^sî¶z‰”îæȚÖśê m™“+^ŰpoœÖ ·\€Śx}dńß7 [WŸ?Üłypž}Ë"ÛÇ{2iŽ ȘZršN·Ő—ÿò˜c LÎ7Aú¶·‰LÏQä†ÌśÄš-očÏ?ی֟ăęțKĄOUrâ›v$ć­`#ZgbóŠo?ș-Wńö0Ś¶{©Ë}cśFï8æg挀 vśƒ? &™%ÁÀÆXȘŸÎVs/SîsÎeòú¶èÄ·ŐêÌ Ő/ëm$ńzłœ‡Ç©7€wæ©`?•ű©óÚàș#/›ù]<ÛæèÜGČ­.CÍ{î‘Ò»ÛŻGwŁ\\˜Ž[äpäzĄlŻž ŠfÀûFąPŸûYéƒö9·ù]ô‡.W_U0ßhr'ÈP‚& _rś/Öș•šŸ°ÓàĘ«k+ęšńqË&RŻžæìšÖ~7ßqà@MăƒëAAșűé)+č†Ï#í{ŃĄ[Wë”J»ž<ëPc2i-*$9ç=Ț uȐńÇ"‰ŁEéV™aPä»7ÉÌ$=z&íÏCtźżN' qéűüh烎ž:BR*ÍŰźV—&ÉăżìJï‰ȚM1»ŸÙx~ùæh—G^1ą¶ȘÊŸ#{5čFd văkÔæżQœëÀ$FQ-_«†©œüĄô6âxéÔlßrȘđv‚€›źĘ+ŐKToajW?ê‘”b?ÈÙ¶)î˜d|Ć.Ą1óŰÓ2iHžÏŽŒdę“đ\5ƒ¶ö2ș-öCtxâé œoÚć{ÿŐgs2ćcÂÊźèHeśjbŸ^ȚPKśą Lf9Ç\§š”áyhtČm»­ò\BÀÂ\™qÇïˆÜA]ÏOæQ.VĂű=Ö1‘ȚzÁíuN\ù`{ȘznĂȚ“šŠW„—á#±źˆU’uÍ/É:™Ż”R䚔|¶T]YÊm9üÚ/^7qáűD.Ł`ÊĘX„žs‘Ùíl•ó7•1ŸłÂꆔœôŠDÒšp©BDűyc öĄàfzƒM%”3ŸgőŒ@ÂIqŐű­y5Žî†Íî O‹X^[à„ÚìŻÊ‘ęê)ƒ=Ërš;«_ŒëšśôxFMےUçgwáźÌæWÌ;§z·›Iô w‰N.ûËhséÌĂ'ÂÛ”Zo_“dRï,CvŒÌtY*ńz€”Q…8ïœ5ÆògfzÚ:ÂÆTgń5[jÁ0Ǒ{=b^”^“  «ĂÊ b œ<%*Dœ±ù†ï8łE\—  ï+ÈbŽ ź—Đc”Æ (tٜFE„ßÁ»{2 9•Ÿș…:pŁ$—,l^ÈÄÂÀ8qB2†ÂÇ(eÍhăwMDŐZQ8{@òÈ~‚‚ń«Ă¶ nbáûÏMÏč<ägÖdPđőmó9‡'șĆQA!Űđ€kBOî/~đQ a[ïÁÆ3›]ä±;o_*ëc`>űn킠êw‹“ÎE](Púą‹ĆMÁÇìi‡ß;·5ò,ûePqńæ’#ƒ ZGÉ({ęűŽ ’úOŹ<>ÎÓÖ9uÂo›4{,ŽîR=)9ŸF5ąÍâCß\ÚŒ0 u]àą?hS"1•ÊĂZRÈqž9B„ŽČt-óźŒÍZ$oxqË9ĘÙÙkȘ €‘r†Eź!RWt<ém‚ûÄ&b[uïՖH“ikđÒVąeVt. ŽőČKyfCGęX*ŰÂ/ę ük«ż„֓Uƒ‡í”îóà:ÈŚÎaa5ŚWívيŰé«`Um2z4'm@”±żm7x6ÂçNŒčF± =›Œș*<ăæreR&JŚš·"%5íI@ŻÂˆ Îpžń«Ś"_Ł9^ïÌBéÔ%qeè Šî‘Đ l–ŠązoÙL!˜JD_bäj=‹(ÍĆ Yw‹ČæÒÍlòä={«ƒ_aDEâ"YEÊĂĆüăÒ”œ€č7m‹›CNAöW'ûŸć2RxêęŽ#l>·*„+üśM Bۜòóԓ5łÇŹU‰Hôô­WĆ-ÄWW»]DÚ59=Ż„$§} ś±^$Üâ cßÓŒȘ dÙ€Ł©ß‹&ÀĄĂoáà «ąŽî.jo{[–Pˆ]íÒŠL5Cżn]íȚ›4č€bl©ČIÍŐyIȔ«Ć9~YŻÌ=5Tác\J,IđÍ0•ÇóŁvùL„Á2„¶}Î)LCcźöéhÏf.햁—ùäÀ†Q/Ăj/"Föęž;Æž°u‹~zŽ}2äYwa„ÁôDs$13Ț~fʝ/:žÌL;GÖ `L(-uÍš=ä\©ôsűzuŽżÒdÄT©2•$&Xæ-I¶rƱ‡ËéäòlÓû~ÓÇJwȚÒÛh™Š6Ÿ»ćśń”ÇĘ©ăW5žï endstream endobj 223 0 obj << /Length1 1173 /Length2 2916 /Length3 0 /Length 3749 /Filter /FlateDecode >> stream xÚuS 8”{ûЈ,Ÿ­,‡ê•5ëÌŰ#e_"Č;¶ÆÌ;c2fŠ™w0„$IÙŚ ‘]JBd مŹŃbßOÈśr¶ÿwŸïÍuÍÌłȚśï~žGJÜÚVQKöÉ$H©„8XŁ/’-ѐ€@À6B…CJʀ ą!™dˆ†Àă€1•XąR@"#5ŽŁ4‚,é44ÎAÂ@Șíüp ‘–€OO q(ï`™‘pd©ú»K§üó©4 ęęccÉ$"À‚8e2…A%àœ @Vs 0$€x2`MÇŁv8 vżQJÿŹ:C†ę?Őÿ1ì§AT‚'±„©ä&gìRŃDžÆ“HÀpS îëA”ăÊÊ~~~Jx]‰LĆ+c`("ˆƒ”ńąäSôh Q@ núc@ʎš €úh»Ï&Đ<MÚA†È„!Ò± ûq°j…J†ă>pneMŠA¶*d*`mh àĝl4`È$ü @ÆÁ™X2†îÂőÆ 4D ĐÚÁńá9Đ(D4ƅ[Qš„] t„ÿ]VŠb‰ m·ïŽ*p/,a玝Bâ‚ )"c·–Œ›ő>ąDÜÍǘN$žAûÀJîl°ł~ÿ•‚ö!'ęŻ3 3Đ#áaż»4c‚?ˆ”&@/‡&Âävęö;s%H ,â.@‰@ü#fçEÀx“v^«öGÈü}{l@<ˆŠțƒHÂț“5,Û.gełÓNgíMäÿșźĘ° CÆîè„RSĐT*šÁ l©—đ± ÿÎąxÊJ$2—:t•cçfêj€2„#c'ŽëEĄŽeĘÇgśfwĘÿIÊ>dÇ ü%ÒË]ù· “€ü|…;Êì~țțïö?ȘŻOö.)Ș"E”Š  ©Ą h©Ș_țÏL J…7aśîaœțŽw7ęA G/Ł}ă|Br"ôT(„ĄĆĐ„=@GEE…ßzœŹevš WqëÍȚG·Ț:9™ž›Ÿôüê€l‹'»dÄčŃ{y(À„QZ­ĂęêU“ëŒtT‹ć·ìźo„o&  Żòő“ï=1ś­nxáC^kOșì>\‘úŐÙNÌč’őĆ'ƒ.7ÛÍ€ù7–f‡źHˌ9ßâ·Ó-HȚȘ°đ‡2TuBM”Ó\áGbQÁWàvÌ/êśRŠjOÌùæ"Ę>Źn ŹÆú,XqVlž5Đ]ٗMxÿŃÊąŃ^X ÒȘXÎ.©3bŚï#›8,Y=|sŒ4“`Ï!J ÒcŸëìÔûÓŸč€bÍîûò„‹ÚCęaänĆÈ8:ŠœlèÓ5r‰Í ŃĆy u”Áæ”~3ĄžđLÉL‹eíVÿêW:n#Îą$Fô€09"áđKÒÊà˜îçH1â«ĂßgÏ%tæc\ŁîΙ—3ŐĄÇ*śLȚđÈ[4NđŹčy»áJcčfMł šŹÏžzZM? OŸnÚ}Gs€Ê;Žńç!ž3č.·È§łńŰF{a©'šż6;`Ęčlì‰îɈ;aŁ&;§ˆÁʐ·É3ńßĘ€ąjș\VbŰFí4‡ ïoH‰>łŸŒ"đœ„4Rzz­H»Đ8W§ÄŰVČaOÏÆ3-ìa?çkŠtéÉÜĆ Y«œ/öbfŰ~/ŠòđȘî—4íÂèöÈ/únÄšë7ÒïËq…«đ|ŒIL­ôæ—oàÚÎ]»ßȘČüV+­ĘĘŃX<ĐAlPȘż9ńÊùćś‘âȘìèE§ /OŒy§Æłq§àśÎ”ŚÖqł{H…6$T ˜5,˜9ą9àÜŠË|;őhŽ’4ÙW(˜Hk„5é͑D‘­5•Žƒgt…Ç(ZÛàm„ŰBQruï oT:û­%Ń­èk|B^ĘÚÜoZĂĂR«yqŽ%ź/7ʝś<Ö?F &=’˜EΕĆŐGŻ»aČćÚŠâŽêè_aʉZ#Ž7TȘn‰%uZû}<ϞÜUûÜ1ùĘèćΔëÏű]̞ČÔŃKÌWnŽÆ<ߋÓü>źSŽŠ5îg~`űŽLJlk©ÓŸÙ_‚ËWp/Śč_č{'XٓąïrźùWGźŒt0ö:óZo ÛoP©7ûΚ%Äæeh =€z­sšÓś]GÍđé Žï~NhŹÖ4©Ą4ĆDè}š:o±wpăIY"GòȆXŽ.gÏTzùFÎ)=„ßą&ٜæŸÄŒ­4”nÖ© ÆÆ{Ż>âŹê ò|pœÙï› ô8őŁÎĂλœ<糌r‰’šI çrAÁÍ9—Ù@Ś“Áœ€ ÖJmüjĐHfJK”«›Ô«œ™ÇCΩ*ă1_úDNFTpł [z%ĆZĘ ÆÊ‘jXŒ§xŰz.Ô%.ĐSłDoƒbL kW«őÂWŒRÏ^ł–—:èBëí8pĘá}·d<żÉáàTg›û—ŃÌc=M_6MGÊCŰJúÖVj­ïïgOíۇ„d·üôgÏćô^Iîăû|Pr D büüŽ6őgŐ%›ăíêžgkWÿȘ™ìÌž2ŒˆȚz™ipź;ɒ*«šĄ…5ŻȚè»'- —'Z’5©jΕò:ۍWM6+ŃqžsęFíćûh„ĘűàzqœŽ‹ŃĘ|JÁŠĘőœŒïxČì7™‹—ƈšCŚ-b9[č'âűÚ,NŠ űń ûúj§h)óx„ćČW•ŸX=òÛDq«$­‰Ń)ÆWŃțčcpJ“Ę$¶<ú¶ì†Đ†gû »źđEÖlúP~úvÁ‹ȘCrhÚ±žpńŰ]w‡–ùĂC]Ž©q9žz™Fû1‘kŐfì+±Ś1!!@BŚ„|šÚ‘Ì{uŠü cÔCë*xDŠÊ% ç§ly‹ĄFî$TïĐăW7ž~&=©y폔‘ÔyšŐÖŐ";ęcă…đ6Üò›5’\Ńœö>Đt S–§·4m,q“q.gc­TJaTę“kéA!ÎécÛăéò„KŐź«–Śjèő«ÚŽíˆ>>oĆÒ$Žœ‘|\ž‰Uź=c©ăĐEJDWîucœÂuàlĘLJÓcSírŁȚŸțò+ž§îƓ&¶39Ż3ŃúćŽ8ę:?<!Ä<žVàáb€JŹ*?ˆŚËÎČŃÊĐÜ\űšbÓî•ZčhL·+Q„CÊôŠçŐ-ł|ê›W Ÿp–#7Îê~(ĐuÁv}ÌqBäÒá3'QEcÊsK&•'Œ"Ò'óž4śVt?ÁxyžVy}aF2ę§¶Œû[}Ù …üŠlÿ€‘ČPï°ă~–ŁÁN= ĆĘAWVùmжșH§-zćkê•ÚiÊꎋ€dWÛÌáí{ĐÈJw§™uŁ\?üŹ›‹zÔŐÜÊŻÄÂÁźÛ*Êz^­Ö_ż.j —Çí]néÀí1蚔|ÀGe±«Ï~ŐÈOĆ}ytnƒĘ±kVe֗Û~+bĘiú}ô­žĐgĄ*ęVÌŸÍó8Ń1Uöì ŐlûyČ„$™DŸ&Śr'ïçok­`éꀎÌœ„UkZèÌŠ‘q‹1óòÚ·Èç,:oŒlnÆà»TÍeï-xœ8p$rj—śt»RϜ€)'ł­žńÖOÁŰyO›ÁeȚI2”ĄòžcËö78{]s1CÔȚ›˜ł_E_]ј›væ1©oš­3ä’Ï€ÿ«đ旷ŹiÏûžZđ(§é趕©ĆŒęx€«Ń-/èpq~ęNJƒôÔęÛòŽäzŹĆŠć”6·ÙK]óçÊUäŒ5`H«%DÈ瘈~>â~\ZÎsy\Pæ•n’żæŽ*_Ș/țŸ–ŚTËfìÊ4bVŐœÆh˶:ŸZ' «û0ÙčJOϏœűRúu‡„…Ćę5BÙ9Ńü‹€xÙ4kÌÇ#@.ęÈ^–ćQ*f„ËűMáSîžćĂmòëEł†Ąûû/”źWm9.ي7žD8Ą#FGÏòő™„ôWg}PĘYȚț¶‡ÈíŚÿC!¶[.mßŃ;ś-qnń­Ì #„ùecÛ„oQJkÓŽń)%R ’k€Gù—kĂBcš Ą—[ȗö·6OÍł8 &D‡…p™[ó'ŃJœI*{BGŃeZçÔÍ*> ßùm{("ԑđKŠnÀډśęęHz~}źêvFęû`§QŠzŠLA,’›Šö]ƒÍ*ĆÿÚH! endstream endobj 225 0 obj << /Length1 1206 /Length2 3002 /Length3 0 /Length 3850 /Filter /FlateDecode >> stream xÚuT <”}ŚŽÈ˜4Yê±Dʑą0‹elÙŁl‘=’13f†13fîa„eÍNIöe …lĄŽ(‰BÉ*"J!ë{Țçë{{żïwÿ~sÏ9ÿëœëœëœÿ-żÛÆNِ@ś$šÒi 2Z„ ŰàNŃ­p YùˆŁRđ čQȘpyyc&Rè4HÔL™À  ±­Æjc4 …€ŽVlŽaА…Đê܍<xIɄІ$ć~’ótiÿ>jyń8"„ŃŸ]ȚrpÚż}â-üLXk"i,ZBÂ`ÒŽ›U4Äđ[ê:Ś6őcă>ĆűoïŁdQy»æ's,ż4é»»fąƒF:UNlŽ<~ę(¶3ń%q\âĐ« Áo‹*ÙćF–ÛZbN}E•{;ZQÆwČHáŠÎ±šLS}ZłK]úÍœQš[žÖ0ëNHS ^‹3ăČ.#†'†Țš]Ar«‘S«—=œ 'Bt©ß/ViU_›{ÎïEÈ‚cúŹ^ùÄg2:”?KŒ?śè(HÌE»ęx†żȚ‹zÆĐźe–ÂŐőCÓWŻőûŒ— m=ZŐĄv›Ÿú’ső¶xȚÖí ű%żcŰ\GȚŠdKùÉżâ\öĄ+ê<ŻMˆ·}ÙiŽ•Dś)±sP]ă9˜Y»•”{4fTOÔłúđŠP葏ˆEhțSŒöyòÔJÏÆ ËÚ<ŠśU8NWGچ—-șgtYŁ-Ëz NȚłYkŻŃƒ­Đ6È€ŐL7ÓzUTa•ź‡Dű{ûšmć ü=0gšnڝRçó)pâKžęăíùśÇî«+ˆčíX͏W-l_˜JÊÜLĘ\äÿJ–7ńM‘žcŚ,ŁBègʔ§d~ČîÖjÚ|òȚ€‚©Șïd :%…Őà54ő|ĐżéëI·°Ź=Ïí.[0Êș6?Bû›ș?VxoűÒ 2Šßƒiș˜Ê:ćśz,1b)[ÄśçgÄlií+}B*ƒĘ/[íêéE0y^č*u-<Îyl;s>‡ùŃttśk°z0ŐsVd0Nœàéߎßët?šŠ&h[-ó{+\mŒŁ 'oë,Go8à7Pa±Ùń¶öÆBÂÖ<Ńë{őÌUÇèZl?čŸLÿčGĂlŹÿúP[ӝê]ëDTB»828źeZŠz1Uû“*c8UÈh^gš/àÿ~lYÉNáÉïȘĘ vçÈ_ć|֊ż–Á_’xäw :QyőșŁìCï"ÏMäʖƒ=2D©Q[äËß/_HŒß‘<öiù`uȚ6͍ąW^€ˆH9“”[Ú=KČ”§ÇQKòőe܇bE#»Š3iWDNy/yúȚžșÙ7śÜqkĆgłŒ‡“NÍÚ5.òùÜčz3’‚5áçÁ‘“wv ä·ĆùÒɃŁHÿJógŽ~U»â”=eș—ŒőwFG™áąK€9.Ï˝ü]K1ПŸO\éż# "XS[ƗĆBÒ۝qúm*ŃJ#ü;ș±ït–?Žœ[șcÏĆAç•«ûć·»»_]t0h]Żßœ)„6ùLSćë*»šOù/Rú‹a[]„ŸŐ’{őŁÒ3M‡ÓFC»vŽ$(_>_œž KÊTš‹y“DüwAm߯$ï]ș',zty4xÎ ‰ł‘0g-ۓpŸòșéÛ~ ”RŁ~oä<ÓÜ g‡”±Ç`<›ÔD)û Ç҃’Ö8B†û=|U›Xéő&B"Ÿ]iwwì·S}{c抚œì—źF€7fƒääŁ'C ł3š7"Łpbów9°EÿDWöNĄ2TšOó·G?Âû„ăĘŒçâ›,±ÒH[çEIÀÏZ(áąaAA0»“0/óò”ŻűĂö !Uá7 çJ%ób%ŸÂÌkÓfQ É[bOz%# o±6Ka†d':łÚąôaÇ~± «ź\Óš©TsĘE{éͻǗǧFSÜŻ+ŽæFuÜŁE û̞LđŰf}Nń|“ŒòłÌÈՏŸ1txŠDŰ”î5ùïc5qIÏ –Q*QȚ}kÓƛÖ_’MT·DúȚŚdïz­yÒ[Ò°uԒ‘ńȘEʆő*5rH«©žg©ÂCàÔ_»Śrÿ’]Ù€1Ą°<žŒAEő Œÿæä1«]SŃûőÉś›g$éšÒ§ÀkgUˆ­\°Ÿ›4ѱJoÉÌyÎ'pĂ>pì>ÏŚÿ~X^ÒCč$‡a^«#MȘŽkvŻÁZŒt2 cLűÜżŸU”C/î ËvÍűkÍî7•ŻÛvw2B…È KçR͎źŽ~t@ìłűPŒŃ©J.ą–æŒÆYˆÉۚșq‚–•™ó‡ÄM#ëś9^/Aśé|f„7ö”H©Áï“lŠCÆ+ȘpŒÁăđˆ[՗œÉ)C-ΘOšČè°x€Ï Ćl(‰a ś?ÖhEŸÛșóÚ&ZÀùo [„mX+żQ >oy„ęÄ-CŠżńűSoŸ[lY«û”#ąùĂeæVÊŽ6Íöcq™ăfÁ~7EÄl—,KhŸ„/p^ğšzƒfïô ĐžÚŸ­ìÛVăá:ź50ÓÏ'R»ÊsÈqnŠwö™Œ«WęUçČ”ű‘žÓv~••Šnçę@\τg Û5ș?űL¶îÉSš"đŸ7ùXnjÁ _źyâš#‰ČŠ L_ƒ±“v›^ÖòH—Ű7~Íjłâč“[.ŸÒà/ŸMmDGl„LÜ{ű-ÏŃ#łęCÂOd@1=xŽHÿeÁy_K-ęn>`6üQeȚlè–Âì lEo;œ”œc%5NLJCÙRTyĆæv•yȘTòŽő~ÄŃmS|Oœ8a}‹æ~Żtő_(7ÜWč1Ű@€ÏW*œœô(Ú€ìŸâńAč~žÈ”Rl8Pë9íJAÔ ì8o$JÖِĂÒ[Œ™ò?š„ź©ĘÛ^öôÒȘŻÏá&Ò€śv éD„b1;rčM•y{Ž3ûzłZąŒgʁ<ÍwŚrí0æc^œźòÖ;2-ƒ1Æ7hŚŻtŻúOń'‹-ûŸȚđÁ{'vűiN-źç8Í]’, Ąö-Ł8 *̏-­ę`ĄD­:‹˜Î2łJ˰űéù’űДżyè()_Ùü€J‹ĂŁçLòńÖXœ©…+‰Ù”—·€JDÔ„·ä.澜ƒ«ÿŽV€ endstream endobj 227 0 obj << /Length1 1614 /Length2 15259 /Length3 0 /Length 16074 /Filter /FlateDecode >> stream xÚ­ycteߗmlłâÛÛv*vrcȚ۶͊mÛv%WlVì ^ęțęșû~ęéœțpÆ8{aźčÖÜ{qÆĄ$UVc1s0J:Ű»0Č2±đŸ©j*ÛÚ›Y9È3Š:ۚțš9()Ć@@c+{qc /@hšŰŰŹ<<<”1GO•…„ €æ/-==ĂZț ˜xț»çoŠł•…=€êï‹ĐÖÁŃhïòâÿ9Q žXæV¶@€˜’ȶŒą€FJń@ hÛ”]Ml­LòVŠ@{g -Àܰę·ÀÔÁȚÌêŸÖœ™țb‰8ŒΎ@S«żi@S ă?.€#dgćìüś`ć °Û»ü‹ÀÊȚÔÖŐìíæÿ"ärűaśŚśLÙÁÙĆÙdćèű[UY\òßxșX»üSÛÙêŻà`ț7ÒÌÁÔőŸ–țćû óŚëbleï pzžüSË0łrvŽ5öü[û/˜#Èê_4\­ì-ț“Ž0™ÙÿÂüĆțg:ÿÙ'àÿèȚŰŃŃÖó_ÙÿŠúV.Î@[s&V¶ż5M]țÖ¶°ČG`țg«Èۛ;XYțÍnæêűï>7 è_ąùgÏĐț%alæ`oë 0š#0+:žü-  ùS™éNäÿ‰ÿGț‘śÿOÜÿȘŃÿqˆÿÏó…–t””U4¶ț+ đïw @đÏ%óÛYÙzțwáÿ5Rűoÿ;㿃±·ű+ Ëż­œ%­<€fÊV.Š–scÛżSú—ę›œdkeü«æż `deaù/>uK+SûÆÎńo. œÙ„țW gV“S•TŁÿżoÔĆ)ÿUȚEĘÓń/”ÿʉ‚ƒÙ,țAuđx3Čr°ÙYXÿžż|xŰ9|ÿ›ŠÿbęÏ”‚± ÈÊ û·íż™ÿ4ÿżŸÿ\éÿ {SłöŠš‹±œÙßíő†ÜŠź Đ_Uÿuâÿ6ęïëmt Đhа¶ì`Êb‘éR›7:-ź;ŰÏ 9êXÖ€^\PëĐ矱ĂSeôVÊÔ<ËûŃáčtæű~ Kw8ȚcKʗŒ, ô%§(D߀êâą? b6(CÎ<ڌńŸZ”߆ÒádŃ8ܝVQ5(}ƒ!šíbÁ]=ѐ»`Q<:ąű™Š7ÆcwŁ5ƒaԝS%Ÿ<=ROŒŽôĘ@ĐçÆĂSòăú„ž‘Šžxî›L? _Ę8+à =ˆž§é·T•BŁäO!óNŽ!Œs5„HkO*Êü[œ(fśčçœilŒȚ•>Y Ł8nŁöAá(ąÒÂÍ@ő‚ÓóŃs„°Ć^,“ÀàŃj:YŠËvÇ:)žBBZÒúù”I–xŸhĐ̜6ÿ:R`ÂBŸÄžŒ”äœa&æć¶Ç°ŐVuĐ€ž @đ&:@ûŃ yśYÁäP5#?đÍ!Že¶*`š‚Vț€ôÙCșăÎhžć!dÛàmĄS7ę[łîé|;ȘȚÆec&@™„đc5é;.ÜXłóČ©űŒïMżyq=ołžEUÆé?Nőáç -Î>źZ˜#y„š&fƒ4Íy”‹&šÄ–šÆw‘îĆÆÁ‚óNLVŚHczČhÆ,úì_㻕ăFĄO67hœ'âë—ˆłt”Tu±ˆa`đš7Çđ`iÈIæ(ő‚?›°Mž,œkˆçÔ+— W~P;ĂČNŸŽà`(Ìa‡gșłŹ 5/ÈŚÖdù#ʚÈO ÁíuąJœÆo“š]iÖüyÎh”é)5”Ù"`*çBÚ„ÉÆy5zڎYöŻ8†ș źú.îûł(`"œ5Ó™Žà]Łș…ŒRúžæ1ăÄCM*_đ—ÏoP‚ÌëŹGŻź.ȘR0p◠wŽŽËŸßł»ÜšK˜ĄzŒ»îs64¶kL<’Ó{Tțjœ%,Č= HrńÈ€ÁÏ6Ać( ‡;ŰòX1áté3"‹|áBcÌ B»zVJÆ?aŐeańĄ I­eÂbS:Œ?”~R°»æÈ«ù]]Œ6â źí‰PXŃ„Zx9g;lôv*č ïÔ§ĄűłXRIuÖtš_cWű‰È E擱ÂńżŰ6+F"ąéĂ7ŻÊĄ%éäHÁûì[ÊkpÇçsÊéoL«† Ÿ%–œ-\eőKŻŁŁșëțw~7”ț4ä n!['ĂÉÓa© ;0ù•tÔu\[àÖ ÚÔ°YVêű.ÆAőÓ6€LΕżŚŐû€1„Đ+‰qJJÍÿ ńs[e2œ2šÁo€=;0•üćí‹ Rč ]‡TwDNù›/9•šôŹ•‚“UÛŃ.v «U*{șdż-ÚSĂȚ–Ç&Țv]w2—a9șTˆ°F >FĆž4dČ_ĘĂ­4»âyĘ}Ł% ŸÔ*'䁜œB=j‰ÍǑRČ<š?ƒ‡đ?łIŠÈȋœtr&ßź23F„nï?Šu]Ÿ=Çüeő`ì§zÁț„2!$ę¶sœ6*©0ßZąò@č‹lçô łÙD/ŸąÖŒ=„kő~Ç#Ÿfő4îŚçôżź4ȚʞMŐŁ‰˜Q‹ŸKü^aW˜>ĆeŽïń’@Žfă(N’ë3jŸĘžńĘ?g҂uȚÒÁŸüć‹”€ó ü„ Fí¶2ÿf^șgv6ú}–Bcû=1­^Űl  ęúž”=œń”ú2zbë#lŠUȘÒ<«D™ ›sÙ úpN0âœű 晘ćŐŹ:ù–ż*ëûŒŽÉ^PćČëYA‘ažl~6‘Śbü¶ĆòĂM“ ăŐüđ°Cśa`æPËo2ÏZ<·˜(ŽéŸȘ”„Ec¶ž„„2*ee XF°ĂĄ‡hÁłG}ăfĘŐíç– ü‰ë&©éAę+#ËĄ …Hł/źă_R éŃêPp„]ŰßČHíÆêf őŒÌáçŰW‚Š„‰k+·PšÜ&‡ÍP22ŠŐ0šï°@’Xrü&#ź ŒŽVœÍ•Ò†±ćčhŠû%Óă;~Œf^oș»™7(¶#]j­y·ș”WvȚ+W}E€Öčź>ßhOźÎíĆœ' 0Ąč:ȚÚÚą·©ÌïBÏ… ^Dôę-?’cP:ÊšÖùVBNƒ{S43-Ą(6âNȘ«é'TæăwĆpöÚ/10‹łû—›§Ț*5ß$‹\Z+ü­|yêäxÄŐÂÓÌ„7æyîJì`ț Ű-bŹŃ1ëV'28“à»ŻƟâáêčÊÁï-ŸûÆœ»z[îƒÙÉÊO±ĘqÏÙK'»=?gĄ7ÔÛE7ł#~źęQÚÚV œèB~t^źăÊă\WUžȘW•Žé`»,%Àá:șuCșŠŒâș·Ì«NHżìÀZ/ą|žhè nˆŻZ Rg]‚Ê yÛ5EûˆÉĘő·†Œë]Ű$wâb%ădNŚäŸuxDhɅ­Ö5i(ÌÛf‹'űÜHKPïÛD QȚ2Fh è¶Äßí( ”Ę~šlÎęü:œÓĆhKûRinÄ Ä‹ïíQĐŻ§p đK~cR§ÊàÉÈÂ"y7ٚ-Ùuÿ¶jc6”Ő⼜˚ÚFx ŹŚcÄT—æäMX‰ąő$šĆÓÈLxQŸę{8‰ĘgóĆńÏL•üg҄+?©ÈŁ`ăÍÁÎùȘ’'+МçIbÀĘÂŽ™=u‰ÊîĂYș|/nÍÀIûmœŃL»ìő“„2ÖêƒÙrŠÎÌ—č°ŻO 3?Ò coX‹'oۈ:q(ô$Z°=é›Ä~tYŹ„'ŁĘƐŰOŻ„šg‰€ê2t›;Æg€-çÉB_`țôK=°đóÎaW±žr„č‹0Ÿ!Ń»=ˆ•Ć€Ü(wÍ@ŐÍ7]ú:Ö ù.ä>1ië4Y§ƒ»€Ęșr>Pè•nÎ*ŃN Dž<5}§F%`w.ÒŰŻč^ž“ăĐjyÌêż±ȚŰnrI‚•V?7ٌ›”>:”áCÆïŚl"+_čîq/@$8X„ÿ^ÒàŃÜą<ę,ˆL4f]™mL†œŒŒäęfPÍéĆ`—Ї7êáÛÿIœí€æ_]  ‰€9«95ُ”WA»Ś_”·àyȚ[·Ł|'łŽŸ2D [w nÒCî}.ÛzM„zśMÂL+úTj‘I­¶‰|‰vf§“,”,Č{/łHókšż{SÒ&ű@)Xn_0Țö1ÍĂ58'8ËšĂ„ ‘žŹ o ÙÔçàȘ}ȆpöWXšŒ(ÆüòGûÚûƒ·8ÂÊjȚOó̃ń„6æČšœ· Ÿ»=Źu6[ï0xQŠöĐ% í·(Ù/źŁ-79”8«ƒàÌD8}s*˜ˆ*Dj}țÉóî:’{0œśr’:HțŐ Ûc>OȘkö„k‡ÆYŐMűôs?"˜ćÈ»ä ï9ÈëŐ=a-făôšžŸ ŒO cqB|ÿnJ*zÂÔÛÀʁ” njûkđNÍN@ U=Čâ&„pÈg„źËÒäC_)üsuf|.ÜvZƒÍk„=·đŽcÊú‹Kh*ŸŰđŠèĘkŽ2ăÏʰ•ŰĐG+fű8$!ǞJ—Nú*ȘÈ+Ă Ż[m…L&Ú$Ű譈2pê/J­Œˆ ,ƒÏ<ŽyOÇlÚi6’XŸÜ>›òK·XőAL»_;+_z—ÒńÜââBQ͗áŒH#ș“b[LX{‹Ą1żĐńÈÊYuPџĆfÊ—BíčÏqê\śł^iŃńșßș—Ál áŻà©ŒvGœ·čU ÆúŻR¶Čq%_Ÿ@cSăH#Á‡tb–‹ńź/Ӓćˆ[?ËZĄjäg…œ7Ì.©èqȚzFEZfÿNłȚÈ‚™#°§Xoüńç `8A ŠúƒŰÓ"âgçȚĄfgÍhÎÈß/ʂ±ƒKȘÀțJöAnÒÆŹ”ĘŽńńSŁ3Ű yôU^ȘŒ=x”ΞŰÿțŚ…śĄS?GiâîËJÏ. öX……5Æ ÚŁ"±8- PŽż-Ÿç͙€n„=lÔ3R=ŸíƒqÿíçÎUaĆ|&œËé_Ă/û!ŸșŒ’‹șnSÒœÿÉK(j$Í^BšíZ–Ê:”UˆŃw=sżNO"$UäÔ§àG[¶Y\o$Hïcv5záçŽćÚô’Ă_uo+ńÙ  n†>)zOyKŽIÔûôg,{ŠÛ‰"6ôÄÇ©D4Eq_3=Œç)ò0*X­pŒnśr {Ž•ŒćÂU ƒ”UłŒZšÚ3-żŁ?–d}5šŸ]WRȘìâÎĄk~« $–yŰĆèeĆĄ”égFÀ1űÊ'–ŻŃÔđŚòIŒúÆFajőÙ*e!*€|1$VŽûŒ6ˆĐ’<’«†~ŃX!h „țŁŸ”Ś5%€šézïÚŃŸŹK*j3ŹȚÏÆjÒeÂŚálwMpżÛWŰéÖ~ú)]…Òsč%Ű2źs'OJjà„aòçòXiŒ<ڎŚ\pÙ0”úŹ=cžŸäs€âè&y'Đ}RžÓŸ iH ç>qü©ŒőˆĄÄ@yŠ*,6vłȘ?KTöû.BăAՒ— śt…Wß ”xû^Tn­„ęĂíFšĆș«šž›#æŐžÂ­Ș­Nő“ŠOșۙ™w’“8 €Ga7?+(ùăéÈ^:bä °Š-%™L…ùćŹ “%ą`Ź›Ÿ‹m+žƒKĂvÆđ;^őKrË€Ä7æ HoҀHwŰŸ$șàŁVŠ1ưD^6ÒڜĘăBzo„ÍOqR”~ź:V„g·|l„ls”O1ù™ŽiÊÓù\Œ5ÛŰțM‰R†hÛć9·0Z 9ę1O ʉ›šä7$ő5+!ń;'tcá$ÒÝÌC8Ű:LŸ†îüś”;Mšć2á€2ފrș§R”Kë‘Ăû„ï|• 5=\‚˜ó-UϷǛlTPù »d„ ĐEm֒öÒg:«€B.Gòÿlæ/ܱ~6Ąč†ÿźÎôęÇq%*SÒX€ËŐozL:Zì )ÀK­&ÄÆ}dKèjVg·MyB¶ÉïcłšÌ]${ à6ûIöžgÖ8íŐÌ~Q~žÜû1e1Ż4Ł‚òč6™x—ź,„)©šLșÛKđ/âŁZđfŻT %oČșÒùsŸYźÿȘÖ a2zŚ,,_M·{sÎq€ł@ ,ÌF€ü•Ÿî{š- önÁö”œćA«-ÉŽfZŒ'’§tƒìyqâ#ËđtôXół?‹Í<ÊĄ˜ Üłșù0 ș±ućŸO)Z`—Mæ Rkö—š°p)ž$—šŠvdƧ97 œÁëN˜Ú<ÿț(yAqyŒvfĆæ`lžĄ-W/'^V 1ŽĂÀSÀNȘÏôĂÎP]lŁŰ<ÿó!f˜Í|ÉûăôÆôêD1Š+}JYyąO=V9:łí_ú„ˆdp€—Œa„†n>c~· t‡?ÜC/{đ“ Uíö„żURoì= źg@ćđìőW‰źï€n{@ŠÆV‡pńŸ†d[Û€ŚaèMŽiûyô3[„ ±z[_1p\‹–óȘ8AIȘĂź†aӉêÎXT™ybD"&.œežźy – Já˜xÇțáŁńžÂûš+›ç»ây(=S?~LfÖčäô {1>›Ešą$3^€+«gEânÛŠZ»èí)!ęÙÿç…n§ł»«æ§Cu鷑=5ž–«™*TšòzNK–-m0(3Òl ¶TŰĐ-%èùkmà±ËLčü=TăűOô,+ PžÚ[t”ă{ÙśïȚ;”ŃœrÌómoŽĄ‘]ƒȚăÚ|ögŚÂ–Ò(/qSéăFiĆśj2-vKzI7 ÒŽ~ȚQțŠœïû ϒŽÚ œpăŃÂÚ)Û F)ź†ô;Ç 1±"Z‘ŒÀ.DXș•܂̕[ê śÉ(ù^VÆcsŠ!Őj\ˆèEĐ3ț–AjęÚ+8ÜÒڏtŽÉ€ /4ŒÊyŰ=87f Á€„òëëÒ' óŁôoíX?_ږ˜Țˡ˕JŸ/š“”ëqŠT €6p_íJ„KOŐ4#SĐ!”fF”"@«à–Í’óiXçšșëżMEA?“;‹y$QjęÆœ‚UИ>Jçłș1œ‡²šÁBqoĄąŁUI=B čvqì—ICC :}Œ„A©šg_ĄóBk^DĄ\*ó†g gïEeÄ+ŸŸ š2ńv†„?8PxXjjUeš–&śđ€+'<&;qžluB ۊî™]ŽB]p#Ăá"ƒÄ/T:Ű!Ą·DÍÏk<èșČ·kے»‡MödÜĄ]~ÄŃ4íĂőЁ ­ŐȘĐ(.8a:ŃĂao‡fÖl[Ӂ#&ʒÀŚő㠈zMC~֟TĄÜ|›łțÄđèóèÚóI©E*Ù=L†œRX”èòÚĄ—sÍŚ‚ €àc??Œq\šöcۇRöïKßd7ühŚ’őIîh'$‹?rD±âéi|êˆ"đùŰöާÒmÆá_ŹŸșȘÁdጜÍû,ÒĆölUĆTÉÿ”/ö»ß”CÙ#ĘÁ«]ă|ᆠ,‰nnQË*†Ž2ÚĘÛÍÇ©|©!mó§cBȘœĆí?aêF 1 ŻÎòm Śx@žyŽeTŚĆ ü/•Û^W{íWG6júsçi›òY„mê炛J:ʈ—‘LqMÌČ„ŒĐ ïŹ6±śŽuPAÊXÓ)ą%ܞH'ÔęŐe\ș0u9„ݐâ(K#X{AÌĎŸ7Ćë=.#Ûw03#ȘNքY©œVôæQHA ±LlA$Ś!x>ۖÌŽò@łq퍓kR!óa săćfőš“d cĘáŠggˆŽĐ:?šíđ™&n\ĆÖN`5\|ÇšżÇ’pc‡€§2šÔŰAïâÙpőæiŽžÓ=96,äA«Ă!Éy{žóŒxÖ+»Ôeòy”$ôÇč‡!Ӎ',Fp&ë@ăÛ Gü5Ù%ž&î—ęĄÍ<‡˜„DžGîšőŹŸ„ăÂwjê:&€#sFDKG»06ߙ\o.}Œ†ĘŁêł]*NžőC~ŒŠy6SĂÉđ-ÆšÎ…ĐƒcE]ôç]űYÛ|űŰȜPGëIČÎTśœźPg·łú|—„+<üX†ȚÛ» eăuèKšĆsHAžQœÏˆW+xeæV}4WŒ ębA§Ą8ŸôCÿ–$”˜úB< ßłPœ!ąs ZàŸÎn=Bôòó„šȘÛȚÏïIßès»]+/é ÌJ u\œÛ ϶û62h'~| ź–șLÙÓčđ6bŐżœ‚#}Uć0üՊìpB™Ô±]:yl„ź–«·œ]6'DK%ƒg …SòuŰś‰H†îve/ÆiÏì}iö hˆÎá%UN@‰ÌMz+-z<©śYÜÉ+6ÆŐûéI‡Z™·S‰Ź4Q™7§ÚFÄÛe[ùÎóOruf‘)rèłüé_`ŒÄhÎżNɖ<Ëđšòă—Ăż+żžÄÇb9iŻHŰȚšëFÊ[Ï5iFĆĂÚËđ }`ZĂ^ń’DqÿAò±xČ!F#çûèhÄŐ7âæ\%ùšƒrîĂÊÊČBâ];°­NęRúít)Ž`}È'±q’żÍXăŻ#Œˆ§ëŻj{jNș";©ZAC4ûG«ČŠűCψ|ÂîrьĆÛ43uŒÁt‡,`ë­­hŒL9čyRâŚö!uÙ"·6:.䛶YڒçÊqÉbèź?öçŸ'ìOí=z”Žck™W‰‡IqÁƒc-RÈÔŁpE[Öhń©ÓÇź{ìä’Lbe-ߘcâVđs„OÜł:ugôŒąD&öÿÔR H·—ùŸÓÏäZșÌKF6=t9Šą-Ă<r”ü†›‰@~@ŰŚFęÉ},íșï Í`?ÎNœC"êȘȚó«f6G_ŠÉ9ÒKÉ$xzóeƒ 5ÈwyŸ€ DOTA€•(ё-›ŸČ©eF‹…'r‰JąÈ3vu ę‘žÓh˜8­œui~Í FwëŁóni‹ù6V·èđư*·‚Y?±¶JtaĄœŸˆHMPu@ęgòĘțÓcktrÀJs…šžàŁÇđ:so ś+fSŠŽoGóˆmP|ŒQILreŽrWțcŽY¶Ł·6&šs›ŁËž©Ö—Ő,"ÊŁ fGNĂ?Ä őlás+hrëkÊÙú¶n8Ș|À{îOX«!ęiVŰŐ-4|,!&†•SC„‡nU0Zrâ 4oo©ÒÆÈᫎzTKkT!ŐCŠČìCêHŒya[š­ĆÄòs?a(CŽ»8xß,7€æììpr?*(MB›ŻŸ·'’UA ìz}`čđÂuÔ BIŽżć'șőó9äZÖ!Ê»©"–Ł•J6ÛŸœŚ-^ Ű7ËÓułXòÊÔófp˜ž¶ąÁĘûÏ0^ŠŒŠOđăčÈŠƒŐžŠa‘;Ș?ߐŃȘ—­ŒłŠ§QónŽ›*v#3§Š=ÊI(â‘öWŒźŰ »­*đcę('rĘ©_ęm49a-=Łx±żìïÍÙÌ-OӛźkNႀɣGkjäŠDŸŠRŠ=ŸHócűÖ|猐SlÙ 5óßn@é”êe Ú,ÌNì:Ïz}đŐ«]d©śeÏš©$r|°­Î^u%A€ŚÈçę_K\.xæ_œÀï“,8á1%Žwh ćŽy8y–]4ˆ"ÀÀzوL!•Cá`ł ùÚÍ!B.ß-Ç'>ËȘż†ŽĐ:ä/Mȋž ™Í‹Ńê!Ož«#aóHD&̉üŽB' WÌU8Ô[ÿŸ-í1ˆ»ÁȚ›A»țČ«Eùà-3WólÙRßCʍdŠÎÂU)úÈCĐą-íMû­üG;2éĆŚ­§ÀpŠäЧƐ‡XŠśUű»—ăÙeát4q}S9„Wf ‘ŸKżùnZÆSäéÀJKŁ*Ä„T:ž5fs 2U Z^pkŸVȚNߝș_ù%Ÿ@-‡Vńcëu* }ł°‰č°ßâj«à]ÙáGKTè\ÉÀ: )Ÿo™XíșËL?2!Èłv[Ô©Úą Ç耓›ٱv“«ŒnœL&włž`l_#ǶÏÛhUa‘‹đŸ‡LœEĆù™hw$ŒćMZmèńLŠI:«Ć„Ì|3”›Bœ!t$ž j z­œïűô6 ‰ó•Ìs¶2ù—Z{7ŠTNŰ šRc·„ńŒ@ä™ć“úŸ$ŒiZ©ŐđR,Û#Hò( J4QűP’őĐ3âKŒòsĄ “¶_Œd‰”GțVó‡@œäìșI #„F– KЊSxÙé Íșą)œ—&B>ômxJ¶.Gž5ÉÏȘŒ%ź„E5pđçó.ՁZLĐÿę2vì(ò±*]S5#Śź\ûEì4Pk§Œ3ăń—ȘÁ ftïČs(MU╞b ‘]Ó*i3Œ+ł_íæ7ĘŸC§žf«dšßŠ“ÚłÖêâò Ê?ì™(dîƋv:áĄÚКÔĂRŽČmüÇÓ)SŽyÁm[ȚYDîÌÔoĆ„ïôŠ‘8 y­ìčL45·„`Œ7}¶4ÌŰőK°rۚĚk I¶ŐïœEŸĘ5fÁŃś~Šć`ei ÁušäŸdȘ_PÜ>Dšlű_·Šà'üąÿ.$ê<”qL+1«“äïȘIżB•dxéŰ ż[сÍù XwHrgˆ^ĆdækŒ†7ÀzčLŒfčĂÆQ( M5ƒYŒ›©±o5ŒMC8/&ŽB~ž=cè>6)ÓśŠ?n ąșkëû]Ž«1žûÁßF CO•T:Š‘‰ŃaÏ ]^Ę»qȚ|f‹°šhVÁ?'Éô™ÆeÁ‘Vq|DÒrą…bv8YüQàu‹œÆó†»ŸźŠ!0<ï' ‘*Â$!†Œ,›ÀĆŸŠŠű-HàTțUÉœè4 *zÁë=HD“źÄÁšÍ>±,Łp3đđPid0 = ÍU êÛLń{GF’–›ŽûžûTšÍÏ*A-źèj>9,ĐU»Xr,Rżò3ü˜• üüR1"Čł~WìčˆűG§ó,HÓ–@:-zŸ[ÔnšòWWWèČɧșĐ$…qyŸX‘ü—°Šk"rÀWè,Èòœ9Œ*PqI֊ÖÜn ? 컉^|ϝŸ†‚vŁĐvÖÚìcہs[*NƒèÍp˚\ÇËœąpiX–X|gۂâKÖČh7+óèŒ`·›±8;”ž4‡a@ÔúŽÄŃŹ]r†«:náÈ7ߓMu©é».k#ź|ԛžł‘)–…ûȘžë,űiÿź~°˜Û2$0Ôț/.AőCž±%„±(Ćuá4 š6D§ĄćłkèÓłu»ŐÍéSŐí(NÛaő8ș<ąbIuâb<æȘêłotBÙ#ûúÊeŒR9ÒË8ŚČsû™c=— ŃșTŸû ô •"iƒVÓÄÖńŸB=GhżŽž6SPáÜNžhì»ÔźÆëž‘j/žN̈NÀÓ틜šŒ™ú@îÆ1C^ÛOë{5“lÆ#9oÄę"QI ÀRŁșź(?Ë$HbĆòxÆ.Čc+ő_ l ììiïêÊ`ûfÇGeÙ«1ù qŽŠ+.‘p>Ÿ8›Doirò[6ï:ßjÏ7ŚźŒ„pœUë3h xȘûŠŽÙȚw>lûÇĘêç@gm§ą“á7j†—öçŁț A0:›ÎŠ}()Ëô2W!jgĘł (2őšŰ\ÌĄÓŽŁíaxŁĘ/EyꝫEŃOüä2Œ{äoÈč1S0xEjÛšYœ!„òîS\źĐti Áô/ šÊz”mę^y‹éüɶ>çK-öąjĐZ'ìÊą]çă7ɓ‡ìÎÚÔ QBwĐ4†ĘDm?Ÿîcń±Šœš0LíT ô(éxŻÿkŠâ–gìÓŠGAtœÿÂò­oŻT„üy`5ŁąśE3*~$‚\:ąŁ-4śšŹ«G…ă~‰ĐUđJżk~XnĆËŠű9‹˜EȚ;XLʊș#Š5]ÿAö„Ÿœžl8ÉŒ”Ŀˍ Àë&7Òô?c Ÿéܞ'<ńzt„:«$.Æ«Ő+VűìœEy/òçEĄï»òŚ%ôčAëˆI)«œ)̱—Bă`VLüšË}ŁY Êêüțš??—sșŒ–ÙîŹÓà‚©Kă aÀËő8°Łj§oÍÍÀ–‰Œ”rmqrۏđ+Ê”2_1ő[żą“MČc–…ځ'ê|™qOïfBÓ0…>ÌßÜI_ĆC èxòą‹"0ÈoĘ 6Æïކ9ï)*Š‹áÚH\P7ŽęêAKîuÊŠ5ùžŐ€DîătĄ–GíЁrpwôkóŽlƒYű3”njŁ^"€œŽFЧžÓ«VinqáAOwú#wȎ‰Xm€+ôæëÌ`›Ę­ćS8ÏZfńČŒŠbSÁύûŽgćß`J ÔUŁÂt9犓–”îˆ^Ä<ÒX«Œ ه8Âôàą1+\úŠô›u_•ËIûâêéłw‰ĂŻ? œć Ë~±-`ƒă+±è4xÚ<€5‚hËŸó;ZŒp ,jFŒ§ÌWGBčykŹ ©‚‘4ù”Șìcæï>à!}3ˆsęÿt E9æ6„ĉž& Ғ¶ăR?x€wys0!čl7èČöŸÇ$ÂZ „^Ž;nŹ&î?»vŻŁmhù᾿Ü"2č’ruŸâd„+)9%%ÏŐ_jőrJD5MC€1ˆtùßNšNèŒEÂ@€ă,ȚG»LËT$\ò2CwbK„aÌmâ%pt DĐ'Ç­țbíŒìuÎ{eSWŽ ”WočHl2KŠ€șśĂÜj#‡ `>ŰÏLÜAšÒâx”­nhBő6q 6„MgĄđŸđ~š é|ä‡ÓQȘŠóĄ°ăIrqńhƒ•Ê7Ä.?mŃăźU ` [Í~üž›F„&P wÛ<Țd„èńüȚU,Ą±/›y»VÓń†/D'žĐ–‚iàńcÛ[æç€ĘCŚ;ś„ÀЛˆ#Œ.V= »Ò,ÉOnłê‚ï?ûHC=êTŹéya©šœƒo€ćt*ÿÌÆ}Ł.Q6K{#=U±$Œ"ûĆ7ZŐû üK• ž»ˆ7’sf=tűÆÍ=Ÿ!Còț–)Ç†Ž\^w•útÙ„Ô„gżŠg_.·NÿjL­!цG·cüąVÁ@xL‡NߛŸŚŸlqyČ42bŹçŁItwőń[X/MfŹjÓFÎU™æKü–ᯫVJ„Î ç?ĐÊacáیîÛm]ÇĘÊLûr‰‡űf3ö™ŐlT(©xy6x4Ö{Zčd0kŽ đĆČæ@IF’æœe«Ș’w2>[Ï(Ì8~uæà Bæ{9GIæLŚÒ}ŹÒ'†ž"ÁY ôe$HS~éÊŁ­ȘȚ|LPË Ç˜ûV3Ű3'<Óɍq țŽ;K‡pÈóÜŽt&4đ–ôé 6‹X]Š>úȘzÊÆšűÔÎß(9Ă$·$ŒKÚbú™vŸhÎ{ò .èAšÊ}’Œ +€áË#wĘ(‚›ó»áőű’A‚„mjĐ”ƒE3/ 9êT'ÇÆžKŠűÁŒu0`'=M—Ú*ښòöúătŽ/Cć-țȏÆÉÉ1-iôˆŃĄcôÌÖšÛ ÔäčWÿò”œńJŒ ß1ŰÊ©Á çÓĂű5S”úĘ{à™;cŸŽçJvËV­w~ìńÀé·ˆKÎì§D¶ĘŽ)ą\nr«Lc3ûčX&ęk1^Á&„ i”Ÿ KŽ]„æ—ß·Æ. [vw\2ŠđY’AđQ #?{6‹ ne㥠„úôŠ»TÈTÚá{Ś–ï»”‡Ù–šfü±ś‡žż"?±V„îșîXeHé"$GŐNńúa'ï,æÖXòšȚš^ÔnûĄ„” «1' —_±}Ê ;v0„ʎșœ,^)űțpՊJ€ ß(4E›“ń ƒŸ ;Z“ò “D.1›D ő=žGűU&ȚƘÉL‘P6Ć3›ŸÿÍï(Ž—Č€–~ŠiŽ.Rê§~˜]aȘ& 4}Ü ù1lß~©ÉgûˆTŽ\ęOÁô—\·pșg—­­â,Œ“:ŸÛŚïŁęž/ߌ’Ù7šhˆpì$üáȘętdȚœžàb!U››ƒSŒˆ8°i1{oMˆźFw%ùî)€•Ź'ŁL^ő6ç79-2ë|!‘wK1šânJOœĄŁY°äz™V .đMÎ?žC5Œ,É:âșëš]tÎŁ.Âż©dĆÙ;òț”5š#§@”ZĐԁăç§ÒûL~íą Ÿű)čŹZŠčW%iú˜mÌÈÌN"đą;üŽńy«łÉ€J—=ìg€ÖA°Ž‘* uh …I}țb›tËNp„ČIŒž”źƒœÚüÈƜq*ą?Üä–à˜«’§h€ÇžàCÔ2 ÜKÿâó;iŠOyĄ&œiQÁNèÁq6VÓD#wšéȘ­”>‹$ >+‚ˆ„gašìMvƒègšIŒÏÛ0@{gàCìäÍj§ôùÆȚÒÖ0;«d“č‘S-©ŒÛí=c‘•pßsáÊa áy•h59‰ĆAœh>̰ŠÙ‰êfïä€ûàÚń7LĂ-śȘqđžŸ­ôŹőŠ)'ń¶ÙțŠśÉiŹ—}VwŒÇX‰ìK,ËȘFCGF_ŚŒw¶VeæzęÀylÎOM P>­˜v6HŒłèJ…^ Ox\él7©»[ ûű=ì[sčßPÀ7ś(4îŁD>ŸžœĆhRÇ\€ ƒuílæ\mvŽŻ5Oíop4dę ;Žą&韩9Ni0Ï+—ećovĆȚą:ă?VÈÌąê-ŚRč…!ăçÊÚkPž;`„yh»ÖMdœäó1 öïvtòç0]Qc9ÓȘB [y‡àsä’1*ښžĘ üíGÊڌó(TXÍ9Ä›kR±“íŠ|‚Ćz©Džè-uÏ­–ƒâ šG‰|{șsN·&áUŽf\„/ő‚›2Ù9Ö„ob4ń9Tš€űá Z°{òÏR ‘|ö~ąƒ 7~ÙÙ·v‘Ïpđh0/$MmsҊŐÏ^Ô(cŐdàŐg•“Čł0 Fî-ûŻ5MĄĐœn1Ò\$Üv\ nmÉì*à7Ôț4ö=pÍPt¶6Û#oŽ’‚ĄŠŚâ»0Ț3›ŹüYž—âÓEL”3 (Ą]h ŒĄ ‘šČêđ|Žë°#LșX)=ŰđJHęŐœÖÊŠ>Ï:ê[ú›Űc˜KȔxFVçż*ҚìE/#­KÒ̘JŸćȘ.rÚlĆJsÔÎŐ”°žŻ”êwJż‡},ІŃà†2Ç=gșènŹ!„ć]–….ܘšó™șWó/~}ße˖ú~zDÔ,ÎÖpüń'qSß]ażśFUèI¶Ă.ĆrçWÓ›Û|Š7ąčŸ‡eÉ”Ë gï5úł ušƒé †úŽí1F‹çMéOxˆÉ œ”hêæ°i"­˜ zâ#Pa‘XÉwŐö§ȘcçÂą„™·çăÌÇW?KeT;/‚­t¶ôfEĄ_P&O­ŠžèŚ‹ِf;g“‡ú6“g9Ü&ùX ż:óŃz~1ą*‡UœBš©ëMƒ­Œż’-\ ;oĆCH#±JW+Æs‡]™áű拙ć@ÌmÓ_ČBŸI-ă‡,JŠí™9”ŠàcÌœȘÈȚŚCü%{V Sćű‚Y$[q:EFêšmž1GfVżb”ŰAFŠő*˜o”W/łœŠÂóÔìÜ€)ęÌæ#‰û†VČ«5ŠĂ!đ,ăÍßóɍœG44‹WŻaŸÀ—]%•%ôœÌ6RUBHŒŹcÖ:Z>ȈCëȚŃI6ù#Ą‡ź9eWRGőÁ…??oÈ:ôBEvăà±$‘Śđ–Ńëcï‘ü- —ùóŹ—ëű—€â^ëèál!LÇšæątTźÎÔz^3{€țčę[K$XHKćuÖÂGgáÝô.çë:LúÀ:ŁZŹęTÚx2‰7J_N”âĘàșô7bXŁë,AtOđucœ…–J+pˆ<śco’„D›'ŰZ‹jöó栌oqœpu6{M:còŒßà˜äa#‡3ÁÎȘœžâőú€aÂ%ivok†ĂžuKáïTçXĘ;ӟűŸ„·6ÔÀ­ɋ–w__îh]è^ŽÍ}§A>ÓW{­ŠŠëHJűY€ȚđŒ$›E?œ…ç-»ęVPDkÙO)Ü{)ƒăúz€ĆYź+č),èjx’VéJ\,•;qßę6VìÉČG1 ámÎÆȘsё_?Ś}EȚQnŁTùƒ$[Ś›žă©ŻšĘFèô˜ÌFVŒW‰tać~œ[Ö­Đÿ„n±]joI`~òç‹:jśŐŻÓ`}ŒîÁíű6Çžʟ#„ŚæęŁÁš˜ żâeˆ‚6ŽÖT‘:QOOź,’&ïòՎč”îL]ÿÌ&‚}ăb#~Ž”Ę Ć8ŠO`ÿ€îÂÙșšŽ R·`Ižd13G‚ÁaÏ*>ć„ÖzÿńŸ“Ëa»Đ°Wnx?IvĘ{ȘŠ§ÍŒL`ÂsšöćŠÚïG}/̕ąà‡H ”țÈńÓËÎՄËvMnC“DŠ1Ÿÿˆós댄{Ńl ’ˆű‰wÙW/É+Œq”O/ò„ÌĆžDShu â%<‘€’ÜçĘʏҕžőÏÁ OĄòžęuśà$Î[=čćR—Ź:A갑[KŽ\$„ țŚe3ZC[ІœM%ÖÆVòGLm:ä€\Éä »čcœ ©W–chÚaN„mÏ€ű10‘zé%KG挅=ùd ÍçÆCjźQjÉyÒśŸ)ł™«cærxWìčìêł­ŠšfŰôËłŻ*Ő1`1ăŚœ2s<„œ)|Ÿ—HèMép5ú|Xž\ô'lŚVš?rȚ [äv»7œÏ ÀHËĆęìÁžTœzÖó”ÀíPö‡b +'.‰àà•íłĄ1ڇqœ*‹Öw9źŽ{hW~=r‚Æ LŒh ‹uyOűé&—ÉcÚ3&A€<±°“Ä >. ac zëùڃ§œ6QŠŸ“!fĂĘ%±üՆÆ]̱ä\”ęVÙ$ ¶Wt%ę>ŐSgč^fïJGś =}A~Û3šÙȘ€nżÂ(üËp^R—IÚWȘž±7FFcOUšZ ŒŚ[Rè”ò/@Jł;/œŠŽl$aG2sę>a„LÌq™’ĂQœGć܄ +ńd31šæćâkQAV]ŠÂßo!aáv‚:)#ĘłE?Xę¶ìȘq3Ż’™Š&à6‰“䐌‡ôïQÀ=ÆI[/9čańrYg„Țwçč6ìœhEČNIÜÔÒ@rc៟Hs~7gIíeh1§ąŒ’4éZaöv TO”yFNÈÄś=ëbșá‹•Ă€4Œ)4č€Őf©‹U:ƒsÄNy|jN1K1Ùæ”LJ”_»›EYƖÛșwłC tœÈ5êŚÙP”Éž‡b1 ©Ï(ÓIF/źZ@ë‹țÂr!—ɉżm@sì lŁ)ƒžźS˜5Ö­êęò”~c‹ŁŚt~:§aùŠ5žąż8”4ČÉúgÏrȘËc=żlXZEw44¶*fÒćQüۑœ**œF$ŸüNà^”Śs¶ɧg{DÏ|ÁŐ9CiŸbR@äæ‚őzWüï‡l.äLd9”źÛ(’ŽòÈ«mŚì|ҕ·*d-âFwŁVb…Ùł[ś]+űöȘkTžMDŻÌŹ-»U&5©”Ű!#m€EÜ5 ۛĂO’@N ~J°!.x[É{pKŰ-aö‰òÁj2cÉmŽű:9P±~%Ò+jxÿcĘv” _,DțĘĐÊItœŠëčűąƒ„&‘ă:șo•ÍșĐočΟ±#c}ì‡mĘ6ßu­VœÀ‚ëáĘ•àÜwWűÊt:ż~‚úŒ9'ÚÙWëqy­Î/W á?›_"ă6Ÿ_f:8ČGj)xŽnÎŐțì\À6t©P[i"&5œ ŹVƒĐ`wÖąĂëÙ*uź°€'őžà™Z•à Ç'{°Í/ȚïŽAĂűmE-Ɗ!H[0Îwń„Χ7Ęłî‚Æ<ÂpöL̘'C“’­Żł{ff’śzrҗaj2űsXĂnÏ4«:~Â]Ő )S±dćpY\ąˆEf—îÒì{`!1źÈ^Ùșž“‹\Ž!Áó q™—%𐙓ÏđW—Œ&Š„ÎaŒc…ùÁ&o…‡öś!·†ŰŠŸő1UnzÌțĘJÔm2ȚBȚïóĂ_ŸvŒleƒkt·Š5XD•‘„JŠ™zh6čéŠȘą*ăèł‘W"™ŒWÈ»`áÂ;śMm"€'bæ 1ő;B fĆnł«űPûđf6Úž[,„ÏlÜcèPȚ…ŒúÎÜÙkùËćȚmDaË©H‚>3H»*Žz•žĄÂÛ„È"‘kV}ĆíŒ]ZúùfP§NußŐs™ICHŃđŃïQțŽtŚmxąŰ3`ç… cv§Dƒe¶ș1Ańgú_5œq endstream endobj 229 0 obj << /Length1 1616 /Length2 22269 /Length3 0 /Length 23096 /Filter /FlateDecode >> stream xÚŹșc„]°%\¶»ÌS¶Őć.ÛźêrČmÛ¶ĘeÛ¶mÛèrőŚï{çΝž3żæ›'âٙčWźÌ•{?ńDrbezAc[C ˜­=37@UI]ÁÀÊÊÀŰÜV†^ÉÖÚđŚÌGN.ì4p2·”1prԁÆ €…ÀÌĆĆG¶”sw075sPęĆ Š„„û/Ë?!CśÿôüĘéhnj űûàŽČ”łÚ8ę…űżȚš œÌ€s+ @X^ASRN@%.§ Ú Ź Î†VæFs# #`bë°úÀÈÖÆŰüŸÒțb : Žv@#óżÛ€nF@»\t; ƒ”čŁăßg€č#ÀÔÁÀÆéoœlæ6FVÎÆÿűk7±ę—ƒíßëżŸż` ¶ŽNŽFævN€żYDÄțƒ§“™Ó?čÍÿș¶&#mœÿ)é_ß_˜ż^'sG€ĐÍéŸ\†@€±čŁ•ûßÜÁìÌÿ„áìhncú_ è@Sc+ Łă_˜żŰÿtçżêü/ŐŰÙYčÿ»ÛößšÿÉÁÜÉheÂÇÌò7§‘ÓßÜŠæ6pŒÿŒŠ€‰-€™é?ìÆÎvÿés:üÛ Șf†ú/ c[+w€1ĐŽQÎÖéoJŐÿÊ ÿïDț ńÿÿŸÈûÿOÜÿźŃÿrˆÿÿžçÿ-æle%g` üwà?ï€ àŸKÆæ‹6°6·rÿ?ĆÿśHuàü?ÂH:üm… é_9˜˜țĂhî(fî4V0w22˜XęíÓżvUc ƒ•č đŻžÿ¶@ÏÌÄôß|*fæF–6ÿ4žę?\@ăÿÎęŻDÿ2gU•QąęßïÔățjï€ânś—Úÿ(EÖÖű.țAČuxÒ3spèYŸłț=r,Ì.6VïÿCƁ˜ÿk-kàä`îĐț[6óżĆÿß­tțŒš‘­ń?Óąìd`cüwÀț§á·‘łƒĂ_]ÿ=ó‹țÏőżŁșà֖mx‚,Ò2ӝj±r‡'EŽû{™Á‡ƒíJTŠ üȘm{|ÓÂvč*ô?j‚§čżÚܗÎí>„hŽF{1­({R€ŚùűȚ€Ô}š[œŽGŒș„ˆéêQž7‹2;ZLjG{“ŠJș%PÓŹ07ÏÔ~€.~èdżí|ŒRëc1:QAĐj Ï/(OŸSŽ őÜAöâѿĒó`ù$Ÿ'9čë;<6}AŸč°ÇœÆ3vȘÿjKśžŽź'5Ęń2ß …›ÀÙVVźŽédUâϔłéŁ$œÍٚÿÛłIƆîd!Ôù|xœ‚9iÇȘyđüoț%7”ç;°źß%X_DUŽwÀ,û é{ìăjæ*uA}'jÚl*jÿq–U«Áe5œš“ÿo’ž?ìwëMșÌ|㓭O@†ÚCęd€â±ę3ęɶ”#$:ôșę^«Év„Ż'»»ŒĂÙjRĆuÔh)]U„{+ŐEŽ‹Ly€goÓ.‡ŒbšH#OȈ \›ŸŽÜ©€ÄtĄgÉmÛîÊ4éNö™_•Đß#zΘĐL»`›±ßëfïßșuëIpcËŒÊ\á'ń‡Șïđ9Čł%ì n&e± *YûđĐć>=Ž« ß<ù{Č»țƂDTŸ,yČ%op6í»tI­9Ášáú”ƅçĄïPfŻ_ŐÊYJöÀ|bÍdx—rŁÜ,wŒ3/ŸĄšŒc·3‚Û$\œ‹w‰‘žœÚîçîÌÉ)đËüfË uç'IȚ{ì.â,ÓđÄâa2ÖoęŽL]zRą6^ńdÊ}Áč-oł?F‚[ŸB•ÿùä] ësźÖúäëÒÉ·ÆőłĐ@L<Țś6o)әTèŰh CƒÒ Ț„Ôś{•(^zśîšŃä/_ä1ƒxŸ‹y2=šE6…ÇCő-ËÇzđ””Ò”, …Ì3ۏ5lkš˜­!€\ltÙúv„iôîŹ[Ʊ‰IUŰ^ĄgŸÓ©€ÒĐ1šŒŠŸ>ŸÛ>ÉĐaÆTÈ<fÀN–‚&–fg2€àgìő7:ï-qKŻüH‰áèpB±rwE/ $( d|hVë`™đ\êîrV]ü)‚(2úÒb›zP A#Ù°j?G æżȚ‚Ò錋b«—Ô5ĆDaï‹îe`±c†?ÿ„őùąlžÄćQéź„+ûú-NMù«#%ș7Ò藞Æá„¶$Š‚€ęhAÆèćŹŰ#,ŒŰDRÿĄú“•ü*ÔBžżŚS+}†ș8ŠŸćÈ+ă0$0ŁȚ•Y-•_±5 ÊŹ*ȘfäXy”§Ž‹—»{€ÈyO_’Qo•ć“ÉMڌ0”«ą°gšÓQà*`#«—P*«È»fjeży˜“$}M€2ŠÜÁI°ŠSûĐv±0ÁJä!ĆáEqhП­ł‹<.`LáȘ Á"ŠFPhßŰîłȘșźl yú©úûű§ndŐFSßn]'yšĘűƒê‡BSÆÚÎȘžö^ÚV +m_Š †$bÈÈB!ƒZûÉŽ|[bÊ†źŽŠbbțgF2țŻ7žj„Zz4ËV߇EMú1O:Mž@-k^ Q”ïŚë c ‰Ą^Úè^‡[èțíÀKavDÓÛGYEZF,Ö8B(nï>Æ~ÛϱiŹRŒxŽîśæ;Ÿè3› °wœÛ~"89Ż(·ÇVOjșû°…ïƒa Á„~ń$'Ž„°ïTž Yłt»ż„ü3g“‚èá˜7Éçw"~X«œ°ÄWłjí.}_=ós•ÎÎ퍃Œ’™6f»=ȘKŰî‡ÊüÉKHŸ6›y=>ÿđXŽnÏË|<ˆž=O”œ'@H–†ÎœOu jł2…1SȚO{Űg4Æÿmç2F}d™fƒ™{Ó[žš+é ŠÓxFfDK>źf%Œä*_…ò ۋe@Ü0êÛyLiÚš9o;‡Ò–Žyű°COü~T“4'P'}O;3{űrC·•]-ęíśD€Ÿ Qp·‹NšÂéUyî]aŽqȘ(D" .˜ÔR qaŻ»$4{zžz ~q€9rîë4uu€­gÄ^uxz3F‚ž+™ 7Žgì–-ÆÒïžNG7†RZ\źŰ’UłčÚW< opGr‚”aƒF.ȚĐZjr§4à „V QőÆĐ”§^;ِMl6ŐïdÓÂf á\ΌR`Á—qąąxùQz•,›Ò ËrkĐêićè.ÙLŒ ,M1œ{~ÒA 3ƒÛy+ûæŻKÄ äȘșÀiăDQ§Í@ćMJo mÂúŽÆ5?±,ÖͱŻŃÂZZO/ml*ÙHźàxCélôŹș‘ہ/n.<ïQȘžFÈìž#3Äè‚ù…r|”Úű}2—@šÌÆè#8Ä)žęMëjžę+êŹh]'Ÿ!{ Ë. ciŸđvm&‚qæXù;>鷁{!zùž;9cFy$d0ȚCł0Sw6>x„*9B’<ŻÀo€ăxKiäڐ3ȍa&Xœ™Űúô‚ÇQ„Mà>“ßPX!UFBÏ‚0/.2Ž«…­oăÈß)ۓÈïŹ„I]üüŠ«Ș†7X‰Ź]Æ°ćŁ«§)XđÛïÉËőùU'ï(ËôjD>ĐŁûКădșčɞe‚P™S@€ń˜Ö‰‹™ŽȚƒĂa­,;èyBXôï¶áxsàšŸą/ÉywÁ!ÏYD[QO‡iŸËKŽ”4æ‚oF!Rҕr8•QY4蔋K!·Äß9öűęÍÈŒ@|ëŃM-’Ä‘G+>ÙhÍĄŠčÒÈ/Ăd>ÊŃŹĄú|'Q̕|Cüd œW‡_‚ÏÉFȚƟBPç?1I©%ű™éÖûŹòŒ@R“F”Śnł„ĂĆÜ'oű›“Y9…­Që“iˆŸęjr`ï ·ÔĆqÔ­xêŒŐбáB7țÎÿÛ ÄÆL~ FȘßęI*űiS[ÿofëțkčĐbÂm­ëp™?:ÙЇ©»A€…ÀűÛC8]âï>ŠŽœ0Aï3†!ńnƒë|\;Ś|yÈæS šÓőbBś€Ö”sËMâB Ž°Ç€ƒ|öœ ț…™čòôn{°Żƒì$”38è˄kí )Ç#æEdpöDŻ-ï?Êb«Zg#đ&?č;ćÀJΔâŐł{OžW0ŰTï Pœ‰gûŒ<čKő­‰DűńW=~‰ąžń’Fą3Ì(j3ęô”R9$OlȚ@ö‰čÌĄï ôۗERdŒ°ńï,sÙŐÚE3Ôd.%ÜČ6ÓPüńáè9”àz9Ał=Ä ”đ7u éG”` N‡äÀ^@ô·‚c¶%d°«Ű Ùą80šöÎ3T7yНxex'&$5Q8-ű5öŸż:¶2žYŠ)ˆtìÚhÈČ%țP>šăîĘA»WÎjç>–f2Æò{DÌĄeŰú†~}ÖC+–3}Źűź(‹|ÓqśÄŐ*A8„W<$—AŸŃłŽ†œeš}ƒæ±GŽë…łMš5ä~,șyêr9 ž“€8Ao†šô=–*;NÎ‡ÙÊÓŐÊš–zŒæžÉÍ[É(˜MŒiàő‘K–©7UŽyȚŒŠfĶÎ/Â'Őìëż=Á Ùtđæd*ŽŚ-Lś;À™Ł‹O€ścöKŠč6ìÁ š:Óž );,Őł5ì,ê.˜F’Ÿ euešłŚ ‹óĂjîjŽˆêç&±Í¶>Ć»™@›WŸòAíČ·p1ćß6†Žšđ©A;aÈœ45QŸ|ł?žžBtÌ6 ^äbšƒ„ŚÿdË9·yŐY’䜑äJ&š(©\șë—HJÚPÒî·jN›àk‘PÛÏX›:žăŹ,}Òì”^ ùÇé.šO52ć•owÿš+@VûôÌ*űöœàWĂA'[ĆÌkÁž %wò4•òƝ'íÛöŸ}đńcŰtck˜äłu!•ÓÿÁW“ÌăÙ-_żșHŸŸéä,ŃGʝŸw攰Ź"jĘX“?ČڋƒÌ“)cĂi†ÒOòŹđ©Ô3oÁsXZÉb֋ù*ŽN+„óžP–Ț`<șŒœæŒĂź€țg™„čàčh…jX‘óf±€Ș†Šh2É}łzè&O?T+Ąk…ŹŒž>qi'űsCVȗ"™^‡éłèQ&Íd°'Y3wŸ'[cű—ț;Č͔qû č™ ˜ZŽ)ŃÏùžžë}á€ű% SS<•ÊMUq^2Wrßź«—Ák6\.¶xŹżÓűăD›ČyŠ<ÄŃ#Bmï± wű‰uQș0S›«~‡0#Ą’@1iÄü&| QŠXr%SòèózŽá"‡*żČŸșuą€šÁ{~ꝂÁr ”†Ăîw ‡çŒpáČûś«(«ž;KÒò©F(Z‡ƒŸTDȚúÊy €se~J?rŽ|ÍŃŐÁRwÉ‘ČZÖdÏQKűqű~ Š\Ùútÿë“3.a Ëj ±zÌ(iœòMÀì%Èü†5ˆ };ȚTœDœ© LżÜœŽ”^Șöd1œ§Òő-Ä/¶ö;îęăò€ÒÍłœÈn…ob7&9]#ś‡› œäAùQÖl]û!5nbÌ‚ÚżV†–CS€áŒ1nM~·zĐ̰©|0–.$ŹVùZżeLEVáĐ3ÍL 5àr™jG‘‡Źˆt…Śî[žXáŽ&I†ÄUç>áș8{Öö˘Ő軎DVű.ÊĆûČ=;ùoiy "[©żf`œ†o•ÀZÀűNW‹II_ Žš„*€luE»PóKÀkő0Ń)RĐՊ5—–Ì °1ÛeDÇȘ ôŠË%ńâÄ©ŚđI†ÈĆöž*!< O†áÙ©źò:šXčô|±ž–X/ș±Ž)ßNԉ’…> :ËöœŸÍ„FÔl{>çă])2‹Ź«~(j4æÀĆDߚrqŁ^‹Đ čúłȚróÜ ŁD+JL‰j@œ56aê)Ț-Ä.FyTÎ;>Ì́Ê'ïG\VadòĘű3'Ÿ=W*ÒŹ+aÌć„ œ&ÔÙ‡Ź€ŐpŃ!î6y]‚F€u{òü:ĄÜ[ÛRœț—푌DÁĐ)1b/†Kh 7ëh/» ~lŰŒŸtŽLó>dŐ//—%}îòMŁŁ˜đßg>©•Nôđ$/éfRđ;ęÈHș:<[ÉÛN’â ĄŽj~›C&É^€í{ÒžúȚPJG"!B|‘€áVȂóNßï?”©$ń*-NźêÊaMSENOzÈä:–ZY§îòŁ1űtẎ\íCq™Mš–Wڇœ3‰;¶|ăË($,šw‚U_ex@‡v†]ù]ŰÂhmqH[ÙsÀáÕÖwßÚò:țœM€ ÙÜšč~¶ÆÛÊçÿù;+„, 9îiźŽXZÜőćRü}s…smŚ­SĄ©9‰fžŻéŒívÀ*>ŸŠ^›Ž€°ÖÊČìÛ(źášÆ]Äëp”¶Ő- / {ŒkìnÎëSƒžœ ^Ɔ@r č ƒÙđ=źšŒEœ—ŰWœ’!ÂÌ@Ÿ€Àf|XB)g8œŠ5‹7êțùĆӝŠ™Ì #@–`bœ('/%±”)4óź4O`œsʞ.Ií†2Ê©€Ą$­rm˜ëzI°ÏWˆîępLÉ,/+ČšŸô ï™lsœÒ‰ćl#QÔĐXN-’čŸÄˆç˜H'»EžŁł\™ÖÀ1Ûæ8ÊA¶_—;”“čJfsČm d…?âûéEH>“š(Xì„Ï"dÍęÍ€MŃ_J;d?)œGÁ€\űKśČcđü-ۜßÒč§WŰ’ÍűŒv”-óo§{ț4C ûaXdëíÿ…^>čČ›çwfêïĐfŹjÚ†éę\™oæÛÛ«„e8 #S'žËKg§Ë]zkĐ)>v† 6G€ NيNkĂ_§^3ÿˆäÒÔĂè{"”iOĄ«70"F©@uĐÚÙnZä$AtN û[Ÿ„^·š%üyž“ÛgVd »ú4qÉ{– șŐ™HIu™ożŒ-˜ż)Ç_2U~éŒ5™Áê±ÙžGőÛ֏ńSûR‡O"Û 2“4ƑV@Ä1ÀögÙ,aábóe[ìr~›nAđ˜|țĐŚ`_ńž ߜ»Æüéœ=ŒÇ˜ûVÙ ûIX8fy N SńQ 6âbkőÖá]őìÂă¶»mH2= ŸgRțÈn7Í%<ëšID-êÛ37їčw«Čc_œ¶kvxŰEB1U˜>ł3QżmÇȚ*–z 컀žSOĂÉȘŒö(JÿÊű6de§ih‡nđÂÛTæÂȚœUƒúÊàź”śèä9•_}ébŸđbœ‘pQ„M€Ú§x”„Ż|ù=LĘvęÙlH=?oˆE‹|ä성ú°žšòńłLunœč3BfÜ,œ/.˜Üăܛ07WÂ6i1Ü9„H…‹˟2B“JlńI;(U ­«”ăÖ© ă*uè»ÍͧÓ§XšqÏ)2ôQŸšÆ¶„1u{ZâÎŁKU8àTÖŒŃ<Ț~Ł„ :x΄O6Îj)hĆ~ŸąÂ‡€F jeŸû3ú܇‡•;X†pV~’ %nPĘAźqƒ}ö#ÜïŠÜ„KJË-`‡64Q/'piWž1TˆŽśĄj żêî$tû‘ÆÉ™ńŃKY†è\fÓè »śLškRiąÿVa„ Hhś “ۃfćđHž6>&Ź)d Î 2ŒÙ€Ëx’ücI4CÀ’‹@Àć„:0SšwłR§U&ĐÜæÔùg8gcŸAäɀˆnȘiAÔżyÂ5?è›sž(Ź@xƒś~KŽVÒÀzáèÛĘcu”f›†Ùp˜%97èÏ#`=ÁŠ%-œ?ŐÉbg§—yŚÌœFveyÉßł–?””LOK™Žč榛CĘžITËš=ƒ|'>s–ÌŠEg‚\ÆśÀžÌ]‡Ă#c11ŻđüĄ'<±YcŠÀĆÔ §È+{t©Ì3ˆ’΀çĄÖO §†›7 łĐf“*†gCJçœBW_„ ÇÀazá/!)”©x€’úÉŒŽŹcű™xőĐÛ§Ç2 l†Śxô ńłŠ&s))#œÙȚÏÏűND[*:”nÆq Žûèh°ŽZ è97Wˆ'(GڇǠț8’„&"ŰYɕćČZkDᣟ öȘÂĆúĘ›•°ê'Ì©ÍÒ©:©Ëă‡Ő~_a»öĂÏŠ›ćq`ê}°€g3‹“p?çÎX?7€—ČÊC«0œ;KԅMÉżúź5ùûJ9pKŠú‹žî[“źN_Ў$¶oa_*u‰"»ĘÖÀOšÄ͆ êŽhá 68Ëș9`Ű ÇcpPp òO‡Žć,Âè>ÔE!|úAǒ±ŃÂAìÇÈa ‚ü’Źræ ô4a™òϛ|ű’Rp)ÊoÔÁÏŐm}yȚózŹ‚š)dÇ”? ß°‚”łŠ]<%unâ·Ó‰ {nÄ€Źmíc$èĘY©^™,p<#1AÏH æ Ÿ[ê,,ŒĆo)PöŒdő=òš”Ó.î”$€ĂĐèƒUMQÁśq©ûŻč\ŸZ°8ź&.) ŒrŐç}ŒL‡:Ź „A( đ柛š„n:òDVÎ»í±ŸqG„ÔHn–êŠđ3pŒkò•öÁl-Ă Ž,hÜż„UŒ`ÿÒĄä‘u‰6ŠșęŁ'dŸ•<žD”iĆĄ·sƒòŽŽ3=uŠ&Lź©NZxûL€aû :ÚMuæčcÉ0p6 HăčÀ2ŽôÉŽg$Ję˜ OńšXÛt_HŠRȘE‘k „đÊÔœƒ’r‹țEöN۝ȚŚê°—·Rt­‰u”‹ÔigÄÿŽuÁŽjˆjíKäg`Č>hۃHxĂłjœîŰ Ż‹œț”Máńé;s\Ë^ íÂfDšœh\_zEnĆű Z Bôž™o= >ĘCŒ­0ąïE) ꄠÔă@ț‚<Ë5ŐłgćòpÚ”Ò*ô'ŰvÉa€w!";GʆL»iîˆFâ:űb§G %Mk·ó!ű,›gF«_Śö+˜" ÆfŁĘs~K,LÍő?2J<‹ê•È€ŸęȚ_?ՉÉóîAö:­폎&ÊmJIćŻUa“7DŐ4:ű‹KétìŸá>xeĐv„R hżpÓìmÖ~ŸșûóȘÿ]îúąŐlęƒÌ)ÒńŠG8űâË]ČUœêŒńŚźqdaGŽ &áL¶è&?|PŒțÏ_Ąś§ïȘżăBBÉŹ ;± œKms”_"Á=Żąè=Š$à% @ÛMź ÂÏ#Űš%É9ŹüÜBüèB› 5@Ùëăum›A/«`ă&źàïF4„]À^Ć Š3eŹJŸÙú|çŁûłhl>Ué‰|2a]_¶·aČ‘ę·ÆQwŸ#'+1””čUŽRžjƒ{ą:5,íĐ·nł]™hmČ ˜ÖŠxL‚’F8Ú7ăT\Č}„ušŃłPH°_Ëęd&m“|(„èÍòT čBúčDĐ.ÜtdŃÚÖ4«’ŰÛ·A1•¶BÊŹ ö«ȘG„XlgĘżÀȚ“èŹ›ì}?ÎG–ÒcÇęÎRš;C>MbS{őÂÖgőì !ŃçᝩA¶·„ öÙčfŽæ2Hœt?9ÒBzMü—”9„p™\ɓĘâp””\J›'Ź—ëlŻNí6œŻ\š’ûŽôŒ„bE}"œÆÏ4.wF­HŠL pæX˜«wæVąČÜrÏFkNvú„,îÌêÙÁl;~MŽ œ=łä2ËČrÓ(Ńč߯ăŽò-xȚĘç&ŠgÇÇ䜭ț9œCźìš±EiúámĚë)ĘT^|âń֟,” ęüj,.q Ê+ąq˜ÏE[V*P…žÛG“Ű*HÎh>&ƒòciŁ$¶O[b?§Aj?„zÛr°æ{c•ÌŒŁŸnw…ĆI¶â„ߓ sQ”tí㘖“Œűü:ƒœ™CKCÓs”òâšì›șđ-sȘ±;aj*À”Pż!Žìrűă±ú`Ÿ±\NŸ&őéWh: "Ži°Ï^€T9}_§wx nt€;GŸbʉšÚHAœŁv›JéĂSú"i#ŹÙ–4ńűŽ»%éÒ;Șƒ·ÎäúLÜ1I1ŃèQG΄‡ö˜»Ă,Aä^âáȍ>œ0lšu©ÍûeüÙÉJâ™uڐï<ń_Rq0p‹äȘ1#ÚšÇ^Ó;2U2ë^OùüŸł;鏠Á PQ/â™]Ț?eŃofőo‘Ú[€?S^ t#žIà ZOQZ_ì±Ę yGXȚGśń ò°G•Đż€yźú’Ç2Ł _Š–ČÈ uGgÎ- oÓ Ó/"òÚiùŁe–6ă⡇+€ăb'îè™O‘ Č?ùĐĄ|±RˆœœȚc0Èő©•ŸÜ47űd_|I{ß ipeBÏ2 ejÿAù±ÎíF<öm„,Ń)Â5"-žp:,f_[—ęŃŃ2<90ÍÚ2jšÀ\-ç«ÌĆ{w^u_=ż™·;Iûvđ 'UN .§©ÄŒÙÄó°ÀŻ%| ìmÄŰŽ#Œ=|HÍVŒ"úÙKtĄ3YĄbKVțÙfßŐSì‡öț%»7I‘fôÖ}7ȚXš.ž(-ŽÜŸĂœ Û2p™œÂHŹF3nÍĄ`28 tOŠŠ6~@?Ó{Ź>VqĆŐÂ#ZŐvéT€ű?Z`lë©íMž–ŃP »JÛű€âîX­TŠűc?]6č)șë)Ù„çù?ï0]Ù㖠xç“ę?źĂ­_©ƒÿ!;Öۇ ÏÀ`y·z|Ć[':Ż‹žéw:09Ț=š-­sKŃDĂî=&È8XȘQ1+EGwĆ1 D\g ąÁEȘŸĘçxżmĄ]yNˆፙûLóŠŸq@żĐG]4Ń­oQó¶šÁ9F?ą;âꂃęP> —Źlă­éíȘRìäîtlI ÌGó-$ Ž’útŚ@ü™ï-œ^àJ0履uÔ 4]eXš3mçe©Œaè=ZÄ?™S ŠäŠ™»¶ KcÈ'jÇ5TIW`Ő6›·ŰŽÛSG§–žôPșäFXț•†d)Žł€8ĂŹŚßÇioyVôšYMö­á~±G+sóqڟșWr+Æ­2ŹŒÏæ ì»ß S_ˆJäŠ CV4ȘyŸ«Z.œ€Űi­ćy˜:—ߌfúÚ?x„ÒS,ŁAÉ;Œ?`NűI:ć˜ïÍžöÏ$ŒVȚ j9(ceÂĄêÀŸàä=Oą±œĆA§ÓBOßA =”ܧq†°lêóe“SW4ȘŰj'€ÓÿűČŰHŒX"üŁòç\ôG7JO›çČ»­G2ŽŐAcÂd–E+VnȘĐĘ2E»œŰ"Œ]œËBÒçŻKłA|:è#ÎHŽbŒȚĄ2/ä' ÔĐEÁûòžœçűÚoE$sEÚŹÛPÄe4BŸWżŽęfŠčTŽRÄÙ_JĄ„ăżoŁđ1óO#ĂÖÔłgj‹șÍĆ?^ȚéöĐ6K(^ Đ}Mé'°Lz'7lȚč( Òh„”Ž«’Śˆ~u#Ź2D1с‡‘Ș*•"“Ș9Ëô2Œx’źq…2Ź›đ~oySÁÀ™ă]ÂΊŒ€/f›U€llâődŠdlÚ§młöy`à`ȘXgƒóŽÉÒ ä ô,*2ő,’±Ąčl‡»(Ó y«ˆ]‰ï9Ë7œZ­zuX xƒŒQWÖßĆgëŃĐNŸ>8”tÙà#Hč'†ę3”ȚęZj‹ wA†ÔÙ##Mæ™9Fd{…‰ćę°:äŸĘ›1Š€Űőjőƒ<”ûavéÔ88­eÏU&_ù›fWIÉxűJ6Źg\änÁĂß&H=±=ɛ·Ź[šòëw§Šç€­ònțӆ9@ëÀo©æO–,GE~6ę(ż Nă3s”ŽÊ–ágĆ1Š_Eˆ1HŰWâ['8-h谏Sk R^Œș° vŽ˜yŠÇ‘ën‚ŒšùŒS”=©=ĂKŻ_ÛœíŹt8ˆD:L ÓĆ~/ëy/ˆșÔ íLÓRdôršO[Æ6fM‰·2l'Jeí_à/‹ §ìžąŃŒkż’ˆ`èčvò{@WăTTÍć6„2ŃçĄV†PîéJ© „`łÔS†™…<éŒÔz–œZƒ™ÏK`T96P;§êÇÒEhY<̈§_1=N-őúčîbyëș H,✜űÏ c=q;í/ ŚȘÀÌfŒw@ČԁÎlJaK_<‰ü”Z4ś‰}jÊóO˜FÓl Ę~áot°ŐŠê(ńx}VȘś üTJ™Š”AUŐ©]Ÿ2Š«Ű›hŽ-Cä9FÊÊęŁ.Ÿ"KÈŸ–…Œ.dÀ…'· ?IźƒĘ čÖ 9âßBeхȚŐ6„;gâžNs ąÖoߐe‰ŒȚd9OœȚüł€~Ô© ,?FòÖčÎčqŒ'PwɊ<śÆƒÈè\1Ź“ÿ è^lG†G~)Š›Zqș°ËŒ&ÜÿŁ'Ènlt śË°>; '''b5ÏnÁGÉúƒÄÌ©ÆXWË  ­Ó'Y•óȘêW[̈ÄÖ­) \±Đś˜·ÿŃ:çŐ"œ^Ô 7ÈÁ$ŸEŸIFv5ڟëYS’ń)&f ‚…űńn‰o1šśƒßškjW$§ą:KŽjűÎÍ)ÉMâo}ă ­ŒÈS-D94Ł)Ó_V;`Ͱóił¶ä3lŸfLH«Kaxϖ1ò•šœšĆnuxOyŻ·»‹éŠ€>zĄy` đržgpÀ‹čÆi(–àiw›Ok±ŃûѝÂK›Ăp«tu/ę)@`Ua•ęÎčAMé[…%‘ßêÍXn›ȚyÏ«+JIú™žnj—‰J9ń;‹@pć#”ÏèąÊDÁ͇ÜćP !.'AiAüAŠTÛžź€ÛÄÍșÇ4Țfÿ‡ à§gč à\±O©]‡XÍÊ

f9ĘCž%đŽŽAÚrÉŻŽ#Äą5«Śçg#Uđ Ąc3x3­ȚŃ@=ûïg•ȚÎ~ïčoTK†75,ʅœÄus9­¶‹t"Țl2ȘșźÂćÒs)LÁˆQbX ©ĆÌúhíĘÇù BČe»(ÇęœHéíĐzȘ&ÒĘśY4 ”Ì WŃ7D±9p <Qփ§&;Źt‡:2Šü‘l€j§,>à%“qčŻuÛáèûS°!É]žìV8ŃkF=6Xź$~äîś*â<ÍÂŒćì–è5z&`átBŒ™đ' ^h9Ža;úùŒ[?ÆŻQ™yr›ŽkÏ&@¶rFxŠD…¶ŰŠœQĆtˆ$ÇúÌ9(x,á#JĕÜMMČRŚ.† R™8(†‰ÉˆîRo‡29ôâ€{† …íWފĂ\镳yôF!ȚVĄDv Š«A"K “B8»Âę9ĂȚ¶‰IS\/GžÁĘnWR "óőY(ÍűùȘŠ üæ1’șôúaŰ.ná•r”Ș=#ĂO]Lx"xőȘű`rwY SőĄ’§WŰú6€ Ó„^êÚWËl5gnûH\Osš=wzĐ čŹ~We(Űg§tÔ٘DtáÆłŽ»ÈȚj“éOnș]±aŒzæOí W0„“FUê8=Ur|Ș$MÜüV tșœËŽ–Ë14ÊJä· c5\0náE2”Ęc%ïC=œčÁ<ǶšŒ’Çܘ.†ÒŃ”û-)5Ș…SǰÂP$§ȘéàPé‰F)ßŃϖ°sęăÆöšB4ÈĘG2rÉĆŽLĘÔŒșÍÇ*ɛŽvˆfC™w ópQu_ëÂ)Y #H¶hÛv[L秔·F: 7tžÌH{ۧxá_o»ł)=‰pgí˜Yv‘źÿÁZÙ{KO€4KÏĐŹB7û ‘ ·sP> BÎ;Eżö@ϋśÀœSàí~—PDąÔÛĄiŠnÿ\BVbĆ|Ìê_܅tœNÊŁàț:䜕ś/Ș`_ÂH!°Ÿ”ĆEí~›o©u5ś}Td»íՃ9ŁáCČ„d–Ƨâ`Çń^ńjS1)ázî߀ 8äTâq{»|Ó}ź/ȘûčQąźDŽ“5V…ș’G…ÁȘ’àśÍZ‰*ÜЍì 1żçœšŸĆæm‚}c||/#íőüíèWz¶Š*,뇮CÜè>ŹŻDĆOđŠy¶ŹÈ…š+–éŐ蒾fB}Îô!Í °lĄ9OCŻ»ÉŻXvÿŽőôőtCÎŚ›ÿùĂâüXß%/GWó^nÈ”_T±WșcSƒä~?§S›Û:O<–,êŒ*dˆ‰ÔJQțVâû™ČML‰>6äó=€A<ïę—43êïŒoÇAȘąs:ÖêŽeĘȚC–eÚkTr{OvJa;8çuŐ0R»„nSJŁâæs‡X¶'?VĐü*ŰEńĐF €–űÇ1šź|ašŚłO„NùżȘú9œK O[è=.VšËvƒĘm’G{‘ïôđۚûúclű‘Źæì­ Ç#ČUp.ž«<ßšl\`6g`úü`6”‡šSáQă;ï5à ›ŒMYO]3•4u·ù^ küFá°äIRăÜ ‰łȘAË?ź)€ŠH‹Ï!€ÛSŸGŸfîòY, YÛXú9=ü…<‡+Óa"Ÿí„I1ŚÂbű@J@Xf=és’Kی ûXƒ1 Făű«!ăVĐdßLńæÓ7Ej=ˆĂ…\{g ÁäčôÁàU)J%fƒ7oÆS.vtžŸșêm­uŠàśëBËO—§{]`#kúk/Ț„Űúȟnî%ŹÓ%0!Ê –‰'0ĂHTžNw?óûŠiÚ­Đ']â)dr™Ő|•χFì Ić*9•8=ò‰J ÚM@eÌ33*1 xŁ‘'T/û.ńêŹßű'hÿ^ŸV@ÀŃWțtb„ĆsyG‡V”—d7ÎrFpM“]uDï|?íÔ`êéÀVłĐbšlSóúëYŁJ]ŚO9€ŒIZŽV' ł­Í Ÿ‘v’ń:\{ùțžț"UgHôÏÂćkŐb›±űsŐđô/܉M*š~dÿ…-6Ș’ÛsŒÒĂțn–]ÌŠQk2‡&}üZ<ú»òő§Łr[5ЉëŸ{”áO‚Œ-íÌÒfą`(f«ÔńęN!§Ú`F0ÎK0Ă:;©?žB»§RźÏËÂś!: {șș”źs^–ȘqÔ,űûك;”Ż!öí>CŸŻ@3ô”ćrŒáąû8Ț{ ‹/Ű «;C^vÒ/žȚŻæÒhë:ZżÇOâÏ„:À Ő)‚íłÁ›äńHQÏÆ…ÙÏĆĐ{ɐŒš$[;ŰOÂdż€b»Œ 6Ó>7çnÒÄű†GG”‹_np¶ ›Śq㛠h«ŹćŹš8žêߥłŒ7űÂh3ÄÔÎrŒI|ń¶„1%gàChą·$HT)HÒ4â Êńă:çŸ:o±odȚś_[ÚŒ©?]â[h…șì@š8çÈgË$ÒáłÓŚÆ§-čïĘobŸˆ5f€‰K…YVŁb Șș©{Y/ç#|Ÿ~+bș+ÜìőŸ‚ÄČÆžńéq@‡Ț©T ś üèÆ”U“Ë”»œń»ë<4ˆY»äD2ùńTÜAÔü1ÛŃź%^ԛÚNËêćZÁÆüi;*Аùwu$«HG+@gf+ç’çvqnĐÒÒ{ìžÿû9±Æ+ ÛÌ ^LœŠI ë‰q;#žg“ŸûNž”ÌŐ-”ĘŁś‹ÖSĐ”—ĄÁEčú°œÄ ëĂ0>6}š·éXéăxIjû?Ž46 ĂËnꝘ_„ę—ł9BN—äÉç(xżêî’Ű–úą% űÏ8g…9•oČéÂę`ŃÈì”D0( K:È*†—†ŒÒ–ŒgčžéĄČ€_ò‹™ÁòKOš‹CÉyę|Y朊 CÉÊúÏ"„ g6xŸS9-í0šÆ[1ÛÉÂ&í"{Ú_6!,6ÎA‰Ò:E‚ćaÜ~Șu „¶‚5RPg‚Ő͜4«ÛGšàĐXvë…'^]ƞÇ4Țî4żu1šÿ §ș[š^f—0ĂïEțâSŒ,d4žÆ "{\Śp¶C,‘jVPÚËN…ŁŠˆÌmŠb5gêyAHčVf1Eѱu‚di(błÚ ÖfŽ*Œ8QúX-őôip0@5žEsű>ae~čțfç"šKŚDöô­œ:œƆ[–1͗+UË^xńʗQ]ÎVx u†P$+!~i<_ßżÇOČ}=À:Û2ÌĂZ‡ž„Đźçąv€Ę­7ë„"‡Nʰ©«ìÂg°ß»3wæÊńűsJœ{ ŒmQWóÀD'ö čhĐ1–˜~0xKŹ”EšęŃ‘ÍÈӘlca3K ylY3&ʧ©ĆQÙ*Kj~f°ÌbRzőlŹ·ę92€ŸVz ï_O"dëțŐZ5\2ńnÁèZ…üä„ăȚŁlȚ )ęę[‰¶ZĂoŽêf,ȚXƀp⒟Z)?éő*<Æ„Z–J<‰ŽÍúíJ)Nkݶb›?{ŸæA>Œy«j)»c8ČȚ$=ßŐ\Ü––9{Ț?Ï8;2ŚÛ^ń !űzÏăźÏ"++^«ȚWd™ E-&ę-ÒæaŻ)ۆæAú*“}7¶&çÈ"ç:;3ȚŸcwŠcëù„DeÛTE•Ńê•)Woq™nf/,8§9„”OkÏcíȘÊJÎ^`‡˜1æ-jk)—â&ŽÂUr€f2ĄČqčÄٝÍ;Žńöž8?ŰuIÌčĆEĐmñgŒ, SUŒÍć?‚Pì!ńÿ™ÙĂ\ĂÆƒôÇț™‚݆Éâë.=”„Üʋ}ÒđC8•¶űûÿ ęÇlČ;â1Íjù/ȓü‘łO 揩ŻZpÀĐÿŽ,癗¶cäà—śČáhtB&)hčÚrp«ËŁ©EŹ;aȚO}cĂQÒ)łŸZęŃűáŐś:|vŁźAIg 7#:G|ĘuPD*ăàű]bÙyNxWč&ś`ç:‰í˜C„óR?śJčm”^ĐÇ=7cEđ;Ź`Y ҏŸoçï|ŠŒôq1č‹1§ÆÜy­ĂB'!é!p ÖźpeâÔ4Ór,M„Ä ĄŐ$br…!łm čÎBŒ‡—jŽPSú™±M]S!°(ęțȚ3QJBz(©2œ*t BŠNb5Wș[œ¶-]‹Œw—í~˜iHˆ¶?°țÖCûŰOâÔ…ېó5ÿ'–d±NȚjݶ« ;ĂPűF6]ÎgÎb,Ń3šI.ÀžKÒFÿ őą„6ńœÁZƒânąúî5tl{qœà–QÙwŃ]0ą”€‚Zd©MzĄ„•8ƒ„{Ę€ )­AŁń&¶Śă#<Ç-‰Șܗr‡3@2Š€2ĄÊáúđya\Ź5 GęÂi)%2x&]š“G⍊šŁünóë(Ęœ$tÛŒ»ŠŻ~‘yŠí“č”m·È°“&[^š>”ÜÜәæL e&čËŐ,‰|ÙæŁuŚè~ŸC™ÙŽśÔ.j2q(ÂFó‚4Ÿe§rŒÈáö2!üNk4VÂ>’áîĂٜG0€wB#Žiî›ÎüőWZ^~ÄôJę;É!=‰śEæ,YM;€<*A‡†§ënj° Hśá;çä.8Æ7}Óű5ànr–,tÖKX”oKm.í4$LÎwJ§dŽÂæKbÄä빀šRÿ>è}:*YˆÊgšŰu~±?•_› ó)yíŠÔNÚőÇtRá«6ŚmTö&€ùœŁÌÊӈù$y”<Ț<ÒYę±azá3Ć‚ÛĆȘœÎÚ5_OßMźš §žTšç5—5ƒ<ČPl㠎ŒŒü}4:ÚštBhK4žÛ„óÒÈęš”ÍȚ@ë»ÇS˜˜qÌæBăA3­Æu«Kß Cô!ŚÙ4œçmäŠèâ;+”žœT‰öm 8°°Ż—h3‚‰ÖĆęüpńÏ ŽÜ°(–AtńÙJI†7ᏇT QAv’–ä-WïQ_z·șJ'9tŠÏ€ŽDïšBa7sÓUŻË9VČMź!ŽoQR‡hț2ow#æp|Ăè„Șж)"M%u,ff ț/ÜyS„ɑL,Š+‹œlÂQ…†G. ±(đ†<^kőÌ+Œ>‡Ń'Š3»J‚g_j)#AXŸ+éÊíïÂd@ŒmÀÜZĄ]wœT9đ»kuNۓž^ńMȃß°.Ÿæ­žyÁO%9=}L&”âÁ…˜ž,ӋSûźT™oÏ&<.ŁńFœÛÇòő(Z“^Âę_ța–i?bL Â  ÂŹQš­z‡wŠ&g…P˜łûòŃőzÀÈș)°‚đÿQ FÇGÛš}¶V„«è>Ă'Ö8q$eh1†/˜:{eÌŽÉPm›Č‹…R ïË|žC9d¶B?–v—ƒ Rš=èÀcÔ(üÉô֜!ZșŽa`yFZ^h«Î­c]Yƒ0~àŽ€užČ­H$Œzg.@ëvÁ$Ûöv}Bh›E6șŻEçœ &ôż’aí«čțës >v=°5j•RYĄAœŒŽ;`Ïl­Jö'ƒÓ=/ŚÏ{‹Ež*"qŐ±7:9ș^°…û„Öö„•hŸPQš‘§ §b·NńG»ęGÍač[àŽ–{§{y~ûçÓÏôXŃbŹ ĘŽĐ $ÿKsŹ]i9ŒbN ę~H}% ŹC»©ér-*‘Y†}+o>y;"z%ÁˆŚŠ91'“žžÍpÏÄ,L ŁÚŐĄCtnmśûKM©SNlś ï­ÉB–Œ1HNQ;T‘À!ˆęEȘx:JÜHKęŃ'?Tˆ ]˜B[ôb?‚9‚a`ÇpŸÚos!;MË6ÀĘ$ ”h”F‰kßIéV:V#–źwYl:ك»ü«ŃŰń©›ÉÛŐ@Aœț[œŠK”ŐöI` Ù 7€Ü k‘úûń3‰Ä„JűÀùtŻÓŐƒŹŠ“(Ԏ?Ż5,gŸ!GÇäAŻdÚč@ó$;ÒČ#€œÚéüM„ „ì‰2ÜèŹòæN*ÜXłiFÁÊÀđ•›P› —űoíÙ@›Ü”žò'șĆíŐqöÂçE‡§.tŻĄG`îz?íú>jŐú6Bô7ȌßQmîx Gù@ ŸKqR-íÎeb]"‘Q|xBü⟰{},Żl΋AŻęùŒkÍƧÌÿ1ä›âŃż àŸ%ˆ–č:ÆĆŁÇ ‰ÓȘÛłé֝”6ß?;Ç;6ZŁ"ŰoîYkhčo’z|bőüY™dœ tÔű_4~œŻN.Sa–ùŻú/̌Zč •RĆÍ ^go;w·09ž[ͅúD€DIpëńЇ€H…žÀZÎGôù2Ì Č8GŒ*Ú aÇŁVŐčەđ€Ż?°k]}Cw5ŰSźJsÏw9rč왍ө©]ʛČ(Uâ’uÙmᘠłIŽDę#šĄèâ˜Ní9KțèT‰Ô:y57”nÊßo _ôąÿ˜+á^—jnČ1‹sȘô0†kß™(êŻŸœÂ&őő€ș‰Ž€Jaqцi-ÎïŸgE5…&æfADZ[œ#ËÏ&§©@(ˆ _`ÏɑżÌ–”\u˜tő  ™+g1à)ä*użÔ> Íl1ä~čțé'dő»5ÙnĂ{ÓÙÍ`żű@ăÇä·w(yćÌ­ąT|œ¶ŒÂŃœcA­—o#…Q64Žoï4|Ä8Á)’VáŃäíM’œ–îù5*:ËÎTRïYII AbŃĂEƟż>Đ5BÆ*¶Vžî"’Tíüàa0ÇN]‡Q:@”…À˜ž–X êxˆȚąÎïd‰4aڊwąqŻ<Țnš‘0%qLÛżć?Z0Kț A||VÖĐ[­”œŠ&q źšRÔ ALڀbR)6Ûmî»~O•Nü;‘cJrfG=éA„NČA«Ű €żńÈüKò2œí° Ç>‚†àv3žóęˆ?WN§–`IĐRMl%î°ś‘žĆĐ@ ïÛٚÌŸ€têq5bKF‹&UG™‡k”Ï‹-^ăeZ!”š.ËV„Kg“fëbŹBû?҈•KšÙȚŽŁęÈZ”9§lLX I·7MçJÍ]è›ĘpkÚt(oælĄt€:zîuNčíjpžł¶î ZKĘWÈ*Iÿâú»ÚŹ$Û29SDéwÂâƒúy™)QFŠBcú$IŃçHÿĂ,ȘÄ:§Q3ëü6·šüÍ«&°ŸšYÂ[ Ìű¶Œ ড়Áźä)*ç…lՓ ŒÊŚ7 7ÚÇg•ă. aZä6t)šMIڀì·wțđᛞ–|n˜És+h«PPeśCu4‡ȚÒ•€Ć^ÔŚ9‚&“±Î^+đ~˜•ïīVƒœM‚ …ìhüÄŚY g«Ä**ŁD„ŹÆ‘ĐĂROkžšX(Ę,ŸCV«G  ò,ßUvykIźÁÀÔBĐ©†Ï.î î-_YDò̕p! “FßFY>.+TôNŠÄ{GŁA–r‡>zČ üŁĂ…9Ćüű·Ă]h]ÙzŒ aÙÂÒâïŽ jYêȚàŻĄ+2‚ă č„û[‘Nƒ›cT{©k‰ïëÀNj†Ûšsgö>–ÒîߓGœü‘Xu(Æc”ĄH9 Ț`îĆÛ4ŻLt Ș!Ęá8<ŐŒ„ìÊ‘šâ:ű7ÕU[»ìSzMÎÍ:Ï!$‘C:ĆKŽrÆoDGőߌÂ&±Ó@àčV­”§ò»€ s„"Bđ…€y>őNINKJ( ^<ÔÖ}#ôgjë”'GæTŻ6 ᓇÈLŁKŸ_~悈żńEqČü MjûląžćC­Čą?;qđ­!˙Ú,dȚÇ‘(xÍoö ÜÊôïQapmŽÒìč8GÉ]'ÒÀ™òdŒàÒdû­Éșęő;,#á™@#=ÂCG ”`8ˆî»ˆö6Ô˜"”žùb™Ź o~SžHò| ›-Ú?Žą§â[XhĆwDżaÇRŚč~ìŹ7?,­Ű\ĂE„W’Ç/qÍh™ŹÉˆYțVœœlŒĄ‘EŽx4u·[śH0żBŸFtŹ$rĂĆW,/„ÉY‡Ÿ„Č”^Ąő쎚űaCQoɘ«gœ K„ïEšákŽK{ĂŽ¶o—/Ç1)œzN)e’ŽCŒęwCsT?vcƞ›lœ‹"Đk* Ńôl»zȘè%„üz ÇÛ'Ì}ŠFB.ű?à)†9©A¶B€ËŻÇĄ í”E'ŸEsf։żö.Ÿ/qƏ…?RŰqŸ*ƒb1Łéă*†ŒÚ€:a‡e·*(NÌŐ%«Dz@űߌLK†ŒyÙej átƒ&ČÍÏ3­—Fn±‘\jÓĄ©·xwĐ›i”¶KkĆ^i”ś?ś~8maĄZHW“Ű#łyÏÄ·‰Čáńëm ăIÔÆoђ,ì Š†R§H:SžRšä Gađ!%,ZđNjŚó=&ŠćÜFWœ’(A#«í» ±‰ ?…ÿÿWa -S^ۈÊp@ ܓ–śÈèæœP—ț†“ÇÙè?2țWôÏHț©ÄgYAÌC±°XYϛL±œY» á!✆ƒËČSêCPOŸWD‰ŁŸí;OæôhśdÂï΀c—9ƒdgRWö[ûV&—ä±@èó|uÓșź„ŚLSœ(•‰ $›™r*òĘ>Æâö4ő‚ÇÒŒĆ­Ń9#ÂŽx rȘÒĆ©-vúóŸë}9żȘò€K}âRÖ#°‘.æßòàÆ”gÌgŠŻxV«ì7č{]ˆ4Š/Aë’ü ZÇŠŻÔüjàöš€ŸœÊp”ì˜ a(ž!c0—MČ­ @‘Ïÿ›îBSô ê1OżâDŒi čŽ]nÁT ä]1 ÓDaĄû`©FZ)ôT€ì)INIłŐ/ćMv1|nÌR}+ìJ…ŽÊUšüăumáÏŠqś Û?žß‡ąq=™Š KҒœj+~â‹›tDŸZŒșoT©g'/­ƒÊn8ÆcY —‹"ëÖ©ŸȘÏQ{xÈh{”ûÔ$‚Ž~ÊÉŐ!°Ég»zé }ń0t…ùIÒZœŁ@ȕ2Êu8ô‚T\˜ EÈÛ5ń Äu‹ÀAê§ka8^ŻÂVô톅ń:WĄ>‘sk-6ț„Č* Ęw”wŒ…%âk>c#ÿ}Źߍʌíbˆ3ê¶Œ”ŁCóL:|ünÁ0§&锿‡FčE5ó*“LÊÀyÔY[eëŽi0Ć­Íô”üĄ?ڄź"€IWwÉMæÇÚŒ Tӏs0^(^h~»|žDGÉcòÉA[Œžcő°x5nIq=Š{›đgÏĆ4Ž@êûL» ˆ\ç\ іRáÔ€#Úó„Æđó~WI{’L‹ČŚHÖĂŹ` wG|„̈.Ô·pÍóaÖcŁ]HÚźÚ«Ș4guwuQÀŒXFÊ±ŃšZmó ‰>$ÛUź‰Ä”9Ț„¶œ˜ŁN#ąè*çBÎÂЙ·èŸ”YÇóŒKUO/~ŻĆÁ,C[|ä†'Źš433è¶§&>zP%WŠì!ۗ¶ćŸ†RMda$uŽ^ æW~a$üï~șf)€ș#Ą?–HÇÏ|>WșžÉNÎÖ đçÈ30”O 3 Ă itÍűĐ ëŒÊÎ"I†ôN#8žûŻa.žRĂšÛ°±ŽšSŸ™;·5iËżÄÚhÌŁgBSVߙ™“$k€ÔTzŠOX.éșKÒÇÙ`CCòv(=š†Łń:DÚöy~+-T 9§ÒA\ìną3azoT ”"ujćqZ|PłLÁ<œË­hÖâïlišűcE‘ćc=€Í‹őć ïč’ÿÖÂYŠĄ.Wíæa%­Ùg^J·r-f|ń+űĂ0ű¶Š|Đ]æuxĂ:`J-ę 'Lû`äÉ mÁŽŻ(ug˜–D,őDsŻ è€Š ; .%TSC4ZžD‹ËYùæƒb+Ičő ¶^϶/0±íŃÒźqéöy(ÍXÈ^ÜV ­éÒŠì+*ńŚŃYp/ąæ%s ł9q…ЁŒÒPLr,dOÉąŁŁŚśq—!”H†–ë#§-Ă1Öț+]šŃæŽz;”L1œgöD™€¶ÄòlçŻ\űŽM©”Š0èŠQ(Çưÿs|– šq./@}ܶçŚëŃű –ì_ŻYŐyŰÇž€Ő[xÖúw-?ă•x;Ç~}HűęŠxYÚä KCă‹ÚÄXK„ŽqŒę!ÓhÇÏ(|IĂÊÓśvĘNÏ;^?ĆaÏÉûߙ֩w3 ©ûž°Ò1VP“FŽșŻęą=Ÿ7ć±[”ôÂĂ|DÇęRĂX€E_c„zțb3bGK‰ÖĄúÜ*+¶X*{!jàE.Ò «,ˆsX§Ö—‡,…ƒ™û( ?6>ú)»>Êr§\șńVŽ ËŸGŒ œ9eśȘűæÆĄFNț“=DóaŸ.ȘÎÜ*NÇÔs}<;“U͜ô ֜xæz»vՋ „PëŃV6żŐęŸD€ścWßĘMœx öÒd=ˆüÈóžy&˜Vi‰w/•­’E­ Ž—4wç~_ߌ°š3W*Ő-èc–#«…ŠŸö‘cŚu§­2e‰yț±s8[;¶ƒE&Ëą <©#œOxÄÿ„}•Ÿz/DëęÇŸï/JćG‘œhŽŠŁčÓPć`:™ ©3 ăd°T†¶Ą.Ź Œ6‰ï…«Ì‰áwB}ńŽ* íÒÊăæ 6oęÄ”»&b3ÛL•kŃ«cp·šY“„ÖBY9!‘!rG·i„eœ1ôÌ­@Aóä'1îL'Òo*qćŒ~ș>SKxă…ă˜h endstream endobj 231 0 obj << /Length1 1620 /Length2 12714 /Length3 0 /Length 13552 /Filter /FlateDecode >> stream xÚ­xeTۖ5îîîîÜĘĘ9À îîNpśàÜ!hp—à îîđqï댯ÇëțŐ_ÿ8gÔ^s­čdî]ŁȘ(I•ŐEÌíM’öv.ŒŹL,| U-esœ<ٌ‹‰ àẲ@I)æ4qÙۉ›žùZ@s€8Đ ÀÆ`ćććE ˆÙ;x:,­\4Žôô ÿČüć0őü'òé ČŽP}\žmìlv.ÿë@5 àbX€l€1%eE)”ą@ htúhBÙŐÔd™íœŽ {'€Í?3{;sĐ_­93}p‰8LÎ@3ĐGĐĂ èđÄp:قœ?ź g€„“‰ËÇ \ì ;3Wóż ű°[Űÿ]ƒ“ꇇíöAŠlïìâlærp|dU—üG.V&.ćv}À{‹Os{3ŚżZúû ù@]L@vΠ‡Ë_čLsłƒ‰çGî2'Đßež:ƒì,ÿUÀ hiâdntvț ùàțk:ÿêđ_ș7qp°ńü;ÚțoŻÿŹäâ Ž±`B`eûÈiæò‘Ûd‡ÀüŚV‘±ł°°ČüĂnîêđOÌ èôś€hțÚ3ŽE˜˜ÛÛÙx́̊ö.)4ÿ;•™țïDț?űÿDàÿyÿÿÄęwțË!țÿ=ÏÿN-éjcŁhb ü;đÏ{ @đŚMdößÜMlA6žÿSÀż{jÿQ„*ĐÒŐÆÄéßáЋŰY~(ÂÈËÄù+ÈYä4Wč˜Y,Ll>fő·]ĂÎèdČ~húś8ŒŹ,,ÿ†©[ÌŹíț>ç?  ùż—ÿ!ÓßĆ3kŠK*HšÓÿśûêß~Êú»š{:ÿ‘DKÁȚü?±ˆŠÚ{ŒYčYŒì,œÇîăàńr°úțÿ&bęŚZÁÄĆ äĐcabaa|üÿ󶯕ÁżŃHŰ™Ù›ÿ”cÔ\LìÌ?6Ùț‚Í\œ>ŽęûÜ4ęÏőßÛôš!,/ۛń‡|IÏÊp©Ćę68.źśł‡r0ÔĄŽAœš  ÚŸÛ?=b‹ś»ńKM(Să$ß[›çü‘ĂëYșĘáêîTàY>‘/9moú:ŐnúĘ fĂRäŒc­hïó9ùM(].ÍĘíqUÒâÉìNp眎änXw(~fiőqŰh`”…GÇTIśwÔę#CƒĘ—Đœésăà)ùMpęRŽH“]<nÌȚ ŸÜž'ŸșđÓ­"^ŸVÊéyá]Șm ¶JĐßőI©\H–€vF”'ji*ŒœŽ™éĐ­ÈĄ0ƒ*óű3\Ò*%”:hŠ)Öon€‘öòxâÙŽÄ»ˆč["IĄ.zÚžž#›ß†‚5öèĈùÚ·0*IȐX7:N7nąŸ»ąùÒÈ] źJPą[Ÿ'ӄI“ÜțbÜČ.|ś(âwE‚ŰČĘĂčuŚÒŰ$`^ĘgłŸŹ8`łśNőnžžÄ 0PÙM6F 3žbńŚ=lûŒÆzZX ““c ïn28O8EKađ¶ÚÿŒáȘç±YC• T€ˆî—G%€)ț§)@č…ŹáŠ'#źÉ™Z« ¶fÈY:lÄÈșinMêìȘ)AtòȘTì:~­k“zŰźżbŐbn$&’#Ęś©UàKG՝ædŃW»Đźq'ú|F„œÈK„ČO74­ČÁ€™ùúOEc˟țùÂBUłț}ț‡O[mśNQ\"_òdîŽ:RĄÒe‘Šé|Ùa¶zŒϱVu€/>•ÂEŠîœłÈBe$”Lgˆi%Ëj@ŒÎAVĂM€u^Üęy>z–œ9ČŠĆ)ƒg˜Úeô.ÏáòJšĘłÉź>íĂFŒ~c…9Ybâ'æÿe˜žv@lÿÛKsô\ö)UlÚNLäžÓĘÂńÍڱĊ˜#Č9ébfș" nP­qŽü‘—șŸűAä˜ăްüÖüöQSlúÉúèVÔsˆæźű(ÙæçÂđł©NŽ@ù‚»FûۆzX„l;Æ#1sŒÀE{lH…âH]žOéàȘ$§AdÍŃ {—«ß/ĆqOa8œÄÏÁjĐÏç ŠŐœIjC’‡ù+§áNLÌۖJs«ŻČ7­+„'O;YqnkMœg2Ÿ4ÂBmb·dź#fXl€MàŚæTŽži»[U‘)Ź)ȚNžw·ùú<ê ÁÌš“L«ÏæHï&˜ČÜ«Šà 8­i{a”šŰÉëưru+űSQ›Ź+*Dv› 8­jv’•Xz{Ä$źCCáŚ_l^YU˜~á±n"ì„9ăCéƒĄûÁq ˙~é2‹@hš”Üγӕûł&m6‚ÔD+c,K]4Țćÿ5U—đЊőűRcF`ićXúH#sŸćzǝ}ŒN]~ž±Í lGŠV©­LïŒŃuæZ;xwÒKE_}[ùœ=ŸqčN—ĘbĆ~ę«ăöD©°Êć<Æà-›«Ž-6Ëmokőíojș”ÜȚgÙâÖü“Ńì±w†đĆD&͉ ÏÚT䏇ˆ§§mÖé=dÈ»–€Č•gÁŠB© |%g{ŽęńÉY?ÁԍĘm™iŰ[¶i“ŁÛí~ăĘùŁf‹46çüűđRQ“úUŸqmOf»źGĂ!łœ3šI.ôD`ŰqËE!ÌÀûˆd|Snf-!;ăï'IrÉźb• Gbd‚Űq5ՁXiă" &SŁŒ Qé:}€š)ùütTdïSÓk‰?Șza …w’ô„­ŸN™Ț=fb™ÙÇśgÙ{·-Ź Æ}č{B‡{úJ”AnöŒšçí=éÌą‰fšôčü^ÉɄŐq)Č CۑT§{œŁ`À <Ćêö+šêo7Lc —éÜ­2ęŽ+RokŽűîoUÁ1cnG9Ÿ»L[šRżđÉíœaC[yź…ç%ÁšT‹¶çs\ÌÌ#§śŚùŃüúsKr2ÂI(šű™ç«Ă~?ĄûÊïőńÍW” MžÌ•Æ•ÇVȘ”eoIže+~ŰĄ4ûgbDœŸN,ł©@±ŸIڏ1–LŠȘÌčO˜á:JV<YA(ÏAO"žPŹŁ8pTmˆŽÊeæŰŒƙ~SJśŹœ‚c«;ČÈŰH'[s†hÎÖfQĘ<ž84]:Pùg'ZÏšExƒśŸ8”iƒ±ń’ÊÌaóÙû+Ă}‡\%ŠHRb_{mƛ'PàëŽÇgă†êêj9 ż‰)UóòʜsÛLE;áű8ŰĄ‹ê<ÆÏ°{Àn’ő2főL +Ì’y?J”@yăœ‡?.ƚŸ±_ŁŽ±Qà\.ÏsrĘŠŒàJ%‹â{(7ه&Ęű*Ú"û­»slj*źŚ3Öfż2Ä#i·…Z*kò^ ˜čwœ2ecËŃӏР°cž…ńžˆYńDÖڃĘLԅšĐpűâŠșûóĐ€0@<â6‡üŒ€äž˜N·{|”(ç!ÛőȘìßâŚQ!P[\ äežžB`œĐFSŹTŚÖ֘©f«€ Ùč_Ś l°șŒ2ł»BŁèÄ6f‰ÓÁ”ò/QZt©Z¶qXpƒôŽR<1Â] ETJî­ ^gń쁓°őqƒmăG˜ 2y‹țuòćË1«¶čAûwh8BŁ·Ž«țOdőÆD{9É€ÖUž+„;™Qùhu<”f'쇁Ô>ŒV3ÄäSW4b[cˆ0:Âđï«WA$UBȚ§zŚš»Kź#_…aœúJï07NtšMôčę—b8 Ręò֚Qè3\ÿäí†·Š„nï>A»€ùŸúJ’3Ë+“â ëœ3ìĄVĐ(»OÍï~'Àśœ @“f ìҕE—„œIoM[ÛĐž/ásű}ő V/[ƒÿ›é07°+‰eRł{ș™>„öȚżîˆÁ‹šŹjˆ5äé± fű-f"Y°FšńwĄÙ$ȚqTjłöșYŸÒ>b·ß‘ –¶lTL$\fGż ƒ•Œ1(ąŻćË­ÓŁVYìWęčćó—+ÜÖ:=ÔRæÒÇâ4·ŹŁ›ü‹bĂŰĄńŁąÙ˜UAPƒùLIŰQćż«Áo\@;kÉXń—/绀đžùq©Śê{/7•vĄf™0Ùç|ÑEș+űWˆTœVfœ§@•)L«œĄéNAïpci‹*|…ąßŠ6šëŁ%ŒÈ jŠÜ2Œ7Ăèę-Â6nŽbMæ"Îò(xœ ăDÜ …­U 9>êăĘUĠȰÍ% Ć1|ÍłP€ęr:w„ÿtŽSźüŐĆ?BœZ"ÉtV+¶©[Ç Í'(舯©ö Č4œŰ„ęuŻJÍx,ÈÓĄ–ębÒĄ5,è@Ž;HŸ“\.?śU3Ś05”ź©atfiAȚZÈŒ­ŐE†ù«˜ȘŒČźŒ űȚç2ÿ賕ôÂùV6ł§ăî ¶œËèXăŽfÈ柀ê=Țh~Ne »¶ÉœP-ÄáÈ€N€Á8â~–ž+GđmóŐö[AèŁäG©Â!šÊ%LÁêŰZ„OòÌdn9ăc€AG‰™mÄtkÀi§XQńĂ„uÄMźQ”ogbÎpoțŸÀGJ+§ź~'!)zCÓśQ·ȘśÂ=íÏGbuËù ąŐÿ|űÚb1š™œópû…œÏôÎæNł•/òïaŚőEï’oԈ‡7ÄĐ{ Ë mĆpBš±Ÿ€/0pgÿʰ.Çè{0)r|\ż™|ćĂ-Ž•èęˆ(G ÜWœÚaœ i~·í@.;(žI›œ&ąÍÚÜ&•ČÙAЗO\]ä9x#d%ou=Îù’Șzń„‡Ž ΀śĂƒD)C7;WjIÖœ“eWĄƒŸ;ò/ąCœš51䔚’]”Ą&ôíÏ+ësš}FNêÉX piÈńÉéKiÊ Đ8iJ3Ž.B2ÛæÒ]Ž9Æ^Ú}u·/îâr% >y ișœêaL:ÚÛTRFÍ"IfŚG_6/šRsÓғ}ÚkÔń~¶rPw%p)“‰ÌWŠ#:Üa™ÛDŸaÀșoțЂŁM“ Še!(ț„gÙÜ?ĄÆŚË8ÿ C%X&t’ŸPE#ôć¶ LăŠ~Q”­…HŠ_Ÿæ”ŚȚȘH ÒÄA‹űg 'đÛ*S% ÚQĘ[uù1]àiXK Že…Œ‚Xë$=í.‡‚…j.ŹFĘ1@D›­›Œr·~Śá6Ț ÒÓšK$Œ$‘Űq*Äèúœp• żÔÇS/&…qŐ&Ăez Ć~Ą3Č($}Ÿ–}„ÙčìlżÁś‰Æùˆì4–…Êg疓[È#9Zr,.!9śö*BŒDôżÍk%3]? Ç]{F m|yFŹv ™^u€œŽï韂ćs\śiőî[X—_’æ3ŃÀÁ֑9âDÍ•‡ ÿšž#rž„T|ą9ą]XŠ W4`6«„'ó=eźï}ƒŁąnŽĐűíłXóêê-°F;…eSxcAíCžWëG€Wg^ȅ läŽQdˆ”[’ÔŠa ìL óăčWȀ8ŒÖeș‡á«z„èk ïk»śÉÎûę$șgGź)ʕ(úqșëXEšćY}"ßòÇüÌÓy°ôăąT’‹KSśF'ùłwŐśčíČY/Ę}ăÎăđAY##PsKíÛj~ŠŹŒ`üÉ:7çÆQ—P>ŽüeÚäš |ÇrN u©v9E24a‹à}„`럩ïށő&/хćŸű,êaJê0SÆkHśÀÈzœŸÛ“[ް›ś}Ž FÈĘt9űjôć=uFGÀȘ<ÄGÌÖÎ蘭MKcúÜŃh[ïęx,đւáy™\Ìò€•cžX•-z<5áȚŻț~Ë13ކT*Ó\.§7Ćn ü0ӗ§Îčƒ#»șž'Ijœžž‹ x% “!}8Î畃őDî°öì( Ż~””ôj/ö6đ3mșęÔžuČb4ûÆ`cG*:­žćcGä˜\ŠăˆmŠ uœhx/2Íæ˜fČŽ ‡ä‘1š†B1yÆćSO*eKÊ39“œp&AôíÓèČĄ%_šˆž¶,ìòö«Y©ž•ršœ©%•ŻĆ¶aŁ#mP‘!v©Ą…-Àg6VÒÒ\›4Ȍ4kb+đߏŚû€ë‡BżÂiï\-őőæpÒ&Ł.ó~x |öŁžRt=aP"ÌęčQŃÏâry„èĘ?œEқNœÚŸSW­s˃:èôu$1ś„ GÏîT‘ śźA‹Ú–š<JêIVHü‘țË*?|ŹMęIßÜQ#ś›ĂŠ6"[±˜Ÿ3%ƒaŠĄ-¶ĂĆW– gĄxŸ€+Ü•ò•~Ű=‘1Hđœf컛ć_-;‰±áâ‚ö[ ŚƞÏêŽmáćĘ­ïSŁŚÊűî‘IâŒx8㇅Ž=tَb‹dS=aîŠHżêżž:ș3D’.ä Wźo„̱ž/lD^ŃŹWà6’gx›Ișœ%'°söé>ŃNK %›XŐk‚ć’.{ìuč"…‘„à0օÖűĘ?€ „ïÈTò—&0ì5‘ӁY ćyßȚ >Đ3'śLÏ+ ·Ăoń béę*iCÇ!uĄvìuuBËi2"Ï_Qoź‹o>ì€ ĘČčź*íTŽ#2șW`Áïiźč‚łáš”Bă”ki(y<;ŐTF‘yHôÖš©TíA1 ,ÒńĂęÁëÀxéòp‚"ÀŰŐyk»hu±^QÔ\­äíB»*Żš]"~"©UŸNhxp“ś$m˜?™œ&łH=mą È9żÎŃÙĘ-sć[Ó3îë[ž "RòŁZŰŹb¶Ę=łÍOÊé„Yî7«ŰۃIQ¶-€ßIɁNÆÁ 3”śêŒ ‚z§«H'…Äz„aÊSʇ}Ž MÌ*,ÎÏc’uɝ)3t8+đi0Ùqp ÂuŸŚòń Ûræ/›yp[Śš/TN_ĐČèyÎŁ!L»áśŚû‹šcá0zDZśÁƒ·!jïȚG 'V#\ŠČœ ôńAšž›>Ó͉o>ű°Ó€ƒ`ĆÂQÇL`5ZŚSșí?Bń^%âĐ·WÍf&ëŐ €Ufgeô2ĘÎMí]65ëł?›RdӏÊĆ\C۞á9{U6J"düÓł •t„3Ëi‚±êö3zù ó\Ăç*d^§'1ésì‹źœč@¶xê«(h0~fŃš—Łtœ˜€­>©?ć”T?—ßÈ#O% ŠĐu)cśá‰:Ësœ{f†”66W,–ăÓwS:WœiĄo±wóǂÔ*ʂčÈŐ G^ąćzlżŚÌLȘuy{ćp&ż8ś2eš0zˆSŃQw 2VıŹ0/·sLÁg‰mJź¶ÊŒIÍb§nż5Á1b‰HšO3Z{„ž8«€„ó茞é4Æ NÛćÓx…C–BăŽŒ•7șÔV]š•gĐ”ÒąpÊEW(üƀ`ûć,„t§H˜É…çĄ0ë«oqŽÏBcőà眞ź€ùŐ+—ùd°ŽȘd^©?)RB1Éę$„e%Q˗hÎ?șg%ÆăeŠż@}]'EłúYç}æj –~ńuŸL/¶śÏŹ™(Y&{[­C]ă3b[?nÛâO 5Ïzíźjîšò†/ź”SóÒmż‚Ïït•%C98ùǎžšé€q.Xœq™ü œuÁjÀ­ \áMs ą™ …m=Ík™ń7Đ#t= WŚŸ/žPbĐêF& ÊŰ˱m}ÜêgńvP“ÚlŠ»ŁŚìàé»3̶=lĄÏ*ŠŁIkK Œâ…ê}oYtjaäć#3æ™RżîžŚ?wáź.##-_”Œęˆ?Đ@Քw”"űI>Àđč=Տ֮ȘŽÌ™ŹĆâgąVșSśrEfy™:YNƒŃV§Ćö[ŽYÚ'­ÏőmŠ6C$œ#œ łœĐۜę6dčŃ^Ą°rĐC|3ÙNïїHÉ#I*#>&È€Ș=!Â@êúțĘ wŻŃ|gÄW3…Ž€nÚÊr«OFz“„†P`ČÚ^QŐ-pŁŽŽ*ĘŒőûZÔ^ÛšȘ8ßÉlû„FĘC6.“vîO±(ß_O›Òà!Y–ZíIQ"fÓ`xd)\üÉđĂ„ f,ń†N?*Ą))9ô‚9‰Ń„ő5îÎqÏBđŁrѶŃp3”š+TƒCsŐ.,2~îPí…!é‚>O[lŸÌâL]Ź2·Aó#9Țóß]Ă@Ä\'>;WČS8whÉž'~„–óS[i‡‹d;T$âslĂ*đêń)ùȚăm–”ÙX}f;kȘĆőűȚ͉đí-'­f•;šÙwbÿLőD7 Ą*æđ§§_č{-Û'żüv·rBAtnWȚŰŐ`˜=e•èЕ}ˆ|”:°‚QÜ~»·‹Š—$| ŽȘœ9")z qxÓZƒ… ßùéŰüœ2˜4ź“&ÁćVu}Œ8œ î’[Œïdš@Ìâă±a3P_DÈ9lvž|/ʋ!0# $âÚ żuŒšy9Ëk}}î„́zĄY6ż6Ț́Æ{Î)ʉ ĆHȘú’aqWŻeÇŒ1ŻöÜÜć˜ÀœÆ̂žQa7FpÎ΄0~Ż…BïŰêĘčò'6?­łQÔĂgî|)qVăŃßvœ{—â?<—Á9Üo/E’U8si’šrčČ~hűW_”FiĆ«•œeK»#’ÔH˜fL”qÀ3«pY}fä@·Ìó¶. Ș0Éš •AOę±ĄìŁ·~Ïq*·«ÌAȄÛq#͔“æ–uîe°9TÉ]Čüç›ä("_uz9Gáč Á<€AòE!Žč8ż…—Ôči")t!Ź {j`—Vă„r<ߖDŒ~Í»2tčNŸì&cŽî1=VpÒŚ: „„ărúOJæÒܚ]5Ÿ©TQQ4ƒí>OFkIúĄ.»Üé€ÿűb'ś+€{RxIprŸvŠZ̕”íț”‰(Œ,JXßËEHđș'#óôæs*B>,‹R—]@* ç@»öaܜČO mć>ošC7«Âœeœ«ț:U.c[Í/Kù›wìô”žŁFlûU {:Mæà(O•ż#űú€á^6IžŚlă?đžçirbsƒŒĄìêïáŻÇ WŚÛژcŒ^Rïż#Ę}8ž‘ZGűáJš© :4›LWŃËùRŠÙ›+ÚŸVæÚ~S\ôxٔ'mÊu»)©lŠč|‹év!#BúŽĐż­zWa¶9Ä/źÒ’‹ćÁa„—prbmˆ„âŐà¶)bÙLI_X}6­ą€¶űö)€ÍÀ€>eB5ăh“¶~ûƒ$<*)èÁ°{xŚő*ćß7;-ăwSï§âË1'y›’Hżv֞đœs–źöÔŐ±`ŐiÄ{˜ô@PżŃmw./Aö’È=J Û~bó›‘Ì+…nę[hLz’—ŚíŐöś>Ê„žA Ő©ŠćaÂ(‡ĄŸ±ß€H|>l›%_4ȚLJ'Mk֘pXqÙ§+ š~O%ŁäȚ˜&⊕œ4dżYTë†t•5™‘{/ąž'höušĂ>ݧJnáŒbé~„Ú­Ű0Ïiőœêb˜  KèïçźgU^/uK§ „F,Mă€Kæb‘î/=»Ș«ČekŠd˜țš2àÎ7pŁÓ%Ę;c™ s„îx<6#3zŻiÜdaE aš~ŸȘymOŠž‡Èt€Ż©_$uYî#”ü%ČőÁÓmśq†aą?ö5C Ú-˜Àș6QœčWÙÀç„q;8ț Đ K›ÚC©+4àłKŸó|[˜Ùâsű•Ł ’©ß+lMUƒùÒЅ7nË&-óMÉR<Ța…ăw虶 S/űrSĆm2#${Ƃ2©lđïšX}pÀœ­ăaJS#í ȘbbȘŐyÒšąÄ-ç–eLP•%Œ>1šźr}› nŒsC@BČ@ŻŒbèŽMÍXÚĐOÁlŚ™ÈZ[Ÿ$ ÆÈ·Ë!E2Țæ$Ô ŁÊÍÒèŽđ„»` eź-!„\Ź­+öá‹f”€x]ƒluEu1ęn{șÿÖŻJ3fĄïKdu©QXëÒûČH˜"aß&N™#ż°Í“öŰNZ$Ö€;|èô–ű†|n}pś=ÁÙŠ5é ëù“Űvo”L# x^ÌÌČsŸG!03Ȕم•%Ulÿì>f#ä'ș”B0F^ïȘÆFȚŰ&M/š‰„Ú›Ú6è RčONŽ Žó<‹ȘތÄ(v@9 CšKt1ˆ"0—mòÆO"'Ï 60+Eă›#݌ă}lÉ€pic€hŁ‚5\\cOûŚńÀftdèȚȘƉpXt_&Œ¶Čę†Œ~ŁQ\9ÚÙWČź*ò%vącVVÆ6șYi–ˆĐ»cM›JÄ/ű’ÇܘÛG©”\PĐêZêX#ź|•–›ün%3ŹatźQö&&óSÌBg;á1~ËŐܧfH0đ ÏœŃ'\ˈșmöęʐïßÓȚæțšâł7 ù òEvf€Ź<Èßđq >Ǖğ#aŻŐiŒ<ăO,qíkg3~iòòU« Ÿt,˜©ˆÖÚ-F§oœ„° “LqIȘ· ŹÎ[:~]#ç·Ê‹yfZMÎ[¶ƒÓ›Àˆ_ùÌK>ÿN°û(ß;do<¶6Ìî_üCLXć0·‡ôž2òč üs‹X `4«©»;ą ‘…IÂ.¶Ó)Ô~Šű„1ń¶žKÇÆè}mOi|©šš :<{ˆđ«·…t  ó§șŸR/bàÂeŽ/žÖ«ìú†ŃÂłkòóVXX!ŸÁ•1­ßőÜÏ ăŹ h.ôžčő…ÔjĄŃèçżßÓ/[@łCu œÛê ôę±%šn|„Wr€èlÂ?ŹaŻHĂż– ”hmȚhŐa6,țsŒÉŁĆ` Ęș öbu)Y–W(ŸąôR/%ą­ÔïàćŽă)ÿÁû";IŹč‡yÊđùÙăȘežËêçk…ąEí†R«7 ŁŽâŠŐžč^šęŠœŰ /Ę#ËUúùd‚>އč/Ș™TÒE" €]kź[{‰ǂșăœ Ç0 9?ÿS«¶1"Éïês„eÓ=ÖŰć8ƒ|wÚêśÁ…ÿŹ`ÀMÛšŚŒNœ‹ÌÍ§W'~»#6ŒżÀOùqDmy:„ùÒòoĆzo e{ŒđeîâÜșŚHXÍßĕę“BœŁÇ]ĘEœ 湏iwŒü̶iR˜Űj iR«# ôs•«ŹL[è6*ąȚ|(Ą»nàòèÔU·;˜L‡+’(ȚšœO”TI~/ă7wWŐőÿ9¶ćÎhÊm%,óđó4žœ­r­üI‡Ič/X(oâwWgÇKÉ»ł€›>ăŰn0è`űɃ,Čc óÛ¶R~oηKâ^yò%êŽBąÏrƑ9a<‹5È/WáCĐÓr­ÂvIWݟ•ˆL G„‰°æ|2„MX„żÎԑńp€5tÚPLÎJoWșÆțń‡èâMYáéga—O2Šžgcć6çđÆ‘ƒSźĂ»Ÿ›»Úí[ïÌ!lkâkąé…±Èqśú_Ż•ŒßÎś—€Tۉ@ĆW™útcĆomt),Âl(Wí)7ă~í]ëzIŽ C>ëòUJ“gDÿ‚]XŹk€>tÈ+ßyűă”Œê›ÓmN8ß:GüçĘîËWÏ4Żș’ùȘâGfêÉíę]ö"6)ź8òYIˆ°îtÇșŸú7B[áÉŁÆëóĆቄ‚Ź%ę§`_^y~­_Œƒ ·ŸÂúF)0#Ű*‡ĆȚŚîù2(Äóù…h§u…ž›«bżŹĄŚûu$m9:~BŸ.™ŽŻă9żCĆ ê—ÂÓżpY„+€fhhȚ߈âFÚă Àă…ś,?)öŰń1:x#’Š+ŰŐ)ÓœqxȘÜ?˜Œe@)z=yp fgÄGÍw]ȚŹ|ÊÍPïS?ń/é[œáž5ąŽZÇsAškçuźÄUś#čÚÊżè' ­~Áœ'’ÉÀœećó#! ÆŽ*^ĆeózPš'îí3í:/±Î;|zęƀy5 eŽśíxÚĐ6rŻs ńLn|Ÿm.Ûș«5x Æ~”őQ]/9ÁńTpBé|XâŽÖS2ő‚„ßáHÉȘĆșšNZdUœ83‡ć‘ù:ŸÚ#Șçł°q;=-­Tq± C+śđ“Ț>ĐBfdă„BŽ©?€ś± WÁÖț‡žBj/TąiűźU·†™ÖÞÇyJsLlj–\Ł DфV‰țäìƚŐŰìl‰$Uč‰IÔdś!Ț„œ‚„-Î=šćRO|ĆBpˆÇĐ7Ő3 ŚZ|? bbÀ;sFJOòșæă2dȚü ô;:œO/UU\ïn§‚étʌ3Ș‹°“’ŒVpì"Ăp^Ëu˜ÆŹ@tR}ÁŚœ+SšK›Ą¶òŸĘćbY;Oę©xŸœÍČsbŠ~*ùÊD\dȚ9ä/B O»¶…»ƒâŠ·„X»ą’ŠÊW+„"O …eJ_Ź+ÒĊ àœßnșęŽNöˆ…ôž ă”ƒCíFÙ©©ŃȚ’Dy75'_"«ś`Œ·Őęƒ '}\$KšŠœŁú˟I”Bț¶Q}Šg#AüÄue—}…°^”JÆ MW”èKš[°É„…­ $ J$fë0țCeҟL_ÔúMéțPU}Ș}úŒS€șÆ„[@À—{üʱGŃÏ3”‰i^fLłŒžšŽ>`*~í6V­ĄŹb€=Čv —Ćđ–8*Ä9ü«ç æ òÒŹæ„֛èÛ˜†>:IÓÌæs2-ÌFż‡0&†ńX-P»)ç;Œ:­‡(ÄAìÄ|ź ț~Ä`|X9șú#;<¶ô[őIa©BX&ÆòÍ@Un`ń€…EŻßŸĄç3>x_نü‰&`Jk™«ÈćŻÉÊ01'È<ÌݟCȚá!e˜0md.y#łBdûPć? 0"6ÜűL -À€Í}ß%$:ëæíșè1Óm vŽÊyÄ]o…ű"}“%s}16±Ț±ĂźÄćZXmbź·:%Q{ž\»·QaÓÊč> stream xÚm“MoŁ0†ïü ï!Rz ˜|U‰ÄAÊaÛȘ‰Vœ&ö$E 6ÿ~=HŐUAgȚż“ÉŻśœŸ«ú~üÌÙŽuo$ű›ßÇÆ›LD-û tś  @Ùö…œ›ZîĄcÓÍNìtÙ=YńNËkŻ`T=­áRêo ȚĂŠűôeCîŸúòڕÚç(>”ĘՊæ™ ČŸAæŠț€iËZż°đ™sn[­6u…cŽ^0XaÁhî\je?ì„îŒ0bȘ”ĘprOYÙśĆû[ÛA”ÓçÚKS|Űdۙ›óűäoF)ő…MZł©}ß4W@Œ{YÆœmG;ÿë±<œńź9Ü`‘;‡äKÖ Úæ(ÁőŒ”óŒ„E‘y ŐčĄât€ba„bi<ÎgźbÌĆw­ü:/]ŚćvYsäˆâ[ä˜â+䄘#ψ]íœôò‚â9ò’8D^osâyMìîÚGȂX o‰ä‚îBŸÉà5Éà‰<űÇ»’ÁÿÂò kŁ(Do9Örá,ÂqŒB?"tŽęEDqì)bbœW$ÄèYÌèM»>sbŚgEìjqȚ(ŒæĂŚpoż$îĘ}IdoŒĘ·œn-p!J śęmê«ÜÏ-țűOĂÓ[áęL‡ endstream endobj 234 0 obj << /Length 696 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆ$ !Ù ‘8l[•j”WHL7IP‡țûőŹV=MžßÌŒń sśëu;ŃU··őÈٛ=w—ŸŽ“ìśîĘĘć]yil;<[[Ùj<=?±ŚŸ+·v`śÙ&ߎőđàț¶<^*;Č~&ûQ·‚>ìțĘț”MS >Ù_êăP·ò{=éÇsæ@öd”ôÇöçșkŸ˜xäœ;`ĘVYŚ`Œs4œJaÓQÜĄn«țȘ‡íĄ.’Uu9\ßèY6î>Œę<¶Ùއ.Z.ÙôÍž‡ț“4>DӗŸČ}Ę~°ûŻÒÜŃör:-d0­VŹČWŃÍÿŒk,›ț8ăóțyČLÒ»đșÊźČçÓźŽęźę°Ń’ó[Ć*ČmőíLrŸČ?ŒÜÔqù„ă• â5F8@ šˆ=@Šđ)&°  È8Ôč€ÂĆRx u€Dș\j2H—†ȘĄĐVÁč0CzL]ű Âb°ct‘I ©g$`htы0œÆ\F„áŒ0Ă€†sꐇá jd< —Iê6œ»őńzgóńșË»țê W €qȐ’Ł+—Ÿ#ö•ńÌÇkÄȚ .‰bȘsré…€šáæÄç†bïmŽXúŸ„Kß7Ç”Hß7Géû„ûŸnb§>&jÊې”äuœŻŒú•ń1ÜV™ś•âÜăâ”ljOu$՟qWèS/%1{\űxB!€§ÔK(hH©—TĐ–æžƒ»J©ÏÏŻvŚÜëÁ=küÒ2ű„UđKς_:~é$ű„Óà—ÖÁ/żŒ ~™Eđ+7żèËą/ ÿlìĄÛÒ(/}ïö -+ZXukoûìԝE?Z„ăæĆÛKęqíƒÄ endstream endobj 235 0 obj << /Length 739 /Filter /FlateDecode >> stream xÚmUMoâ0ŒçWx•ÚĆvHU„dçCâ°mUȘŐ^!1ĘH ęśëń#xÙö?ŸgìÁÜęx]OTĘmÍ$|äì͜șs_™Iöss îîòź:L;<S›zœ==±ŚŸ«Öf`śÙ*_”Íđ`É«¶ÚŸk3ČŸ'ióŃŽž‚}Űę»ù=©œà“íčÙM;áàŸ7ĂȚrŸ›f¶ÆnjÌ-ùeúSÓ”OLg~ŒÀ8śă ăâțÈ)okà çA„8 ö$`I\èÎŚ3`çAfŽă<ÈZ]ƒÂ!‹„ê xNkÇyăčăĐđ"œ7Áż _„㓧Ìq âH`òáö•‚nú„€ḱÂđRONH=CpB:# =Ń%8“ˆ88QA~Ą!*ÉzƜűАäT?!~Ž> étw©8éÄy*ásŁ€Ï }nÔÌçFE>7*öčQ‰ÏR>7ŠČą G]Œ;~îó€ŠÛ<©ò6OšßæI‹ŻyÒòkžtèó€g>O:òyұϓN|žôÜçI/|žŽòyÒÚçIg>O:śy҅ϓ.}ž2îó” Ÿ§Lú> stream xÚmUMoÛ:ŒëW°‡éÁ5?$R. €d9ôMđđźŽÄä ˆeC¶ùśłk›m‘CŒŐpč;;†wŸ~>Î|żŽ3óEŠ_ńž?O]œ5ß¶‡âîźĘwç]Oßcìc]=~?§}śOâŸyhÆáô9%?ŒĘÛčŚŹ“B|Ɯ‚>âț)ț;ëvÇw%gÏçáí4Œ3‰ä§áô–’>\ ‚‚6ę§ă°ż őEJ™€őŰ7ûÆ8ó 1ż’{Æ~șđÏ`W(-úĄ;]Ÿè·Û%=°ùńęxŠ»‡ńe_,—bț+-OÓ;qü\ÌL}œ†ńUÜÿI--=ž‡·B«•èăKȘ˜æÿŸĘE1ÿpÆ[ÎÓû! Mߊyuû>Û.NÛń5K)WbčÙŹŠ8ö­iÇ[ž_źčuʕMúŃzQ­Š„Ò)V†€Ú(TŰ€àxżàȚą žjy‹°°!ÀĐԕ”ZÔÀ2àP="ŠZdÔ0\ÃG©R\Ą·”).–2*ÎĐša!„UŒÄ,†łÔÛHđ° `+jĐĂ.ž5Nα@èâ°èĐVK-àxŸ%ô˜Ü3š% A°YӀzĄÎšÔ>kP#ŹłŠő™5m0WŁošŠĂŸžj­ź§Üę·.†ĐZĄŽT$X/©)n)æ#W—„o(æ“oÀRZȚ $Kąp4’ŽZ¶-bâ\­1ŠÜ°Jä æP"Gń‘XÔQŹ‚i/8șkÉ^€ÂZqŒ:ZsŒœš9”d š­Bù Ž)ßsLù-ï7œæx˜ÏJ›ĄŸÒ`ŻažÉœ)f„É$†”’1™ž dъcȘCZCù<Ł7Ă3JÊgózÌnűțHȰíáÌYɚäTœŻa…ŠïŻÆ,_»œ-Ÿ—Oë87Ë}êÛKԮܗLlčoKńšò+Êg­JÌâ.ŸGZyóș‹Vđc­48ž’ïŒäŰWtù]Í:P~`áŒń±–rZŽq.nÍ1]Ç ÇàSÿæ/©ßP•ęïuöż7ÙÿŸÌțśUöż·ÙÿȚeÿû:û?Èìÿ ČÿƒÎț&û?”Ùÿ!dÿ‡&ûż1y–ŠŒÍH·œn5țčă)șœĘyšÒ“Bïœx#†1ȚžŽĂț€]ôGoáőńĆŚMń?źXê endstream endobj 237 0 obj << /Length 443 /Filter /FlateDecode >> stream xÚmRËn«0Ęû+ÜE€tA1Š€!$B)‹>ÔDWwKì!Śd`‘żżR”Ê83sf8óXÜ}‚\¶'âFż oG# (Țʎ,›VŒ èá@‚œŁę+ę4­8À@—Ć~łŚjž·äœő(afĘ&­áŹô7ÿC—GűT]ʘà4ȘzP:`È=ȘĄ¶œ[aj}ô‡ș”?`zŐêW=0ÆŹc«eŃ6ŰCOÂI ge•ÒÒLbè „‘ˆS©Ä0Yî-; L>\úšœźZ’Š4üČÁ~0§đž„F‚QúL—?”ÙÈaìșPe$Ëš„ÊŽœż— ĐđVƒWÊńÒćΎŒ*ŃJè»R€)őHÊXFÓĘ.# ćŻó§Ê›–0C~ ‰„!)Ç"ŒÙI-札ŻĐç?9ü#.<^[œ0ÏÁÜ$òțgıś#?I> stream xÚmSÁnŁ0œóȚC€ô@c àŠŠ"I€¶­šh”Ś&Y€`Cț~=3ĐUW9„<ßŒy3¶g?>~Z6gđŁg)>Ąk[€ŻžZo6˛bšÁôo%”Ónś*>lS sœÏśŠêŸyoŠÛPÂÄzLÊàZ™Ź#æGűí_Ú[m+ÿ> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[•j”WHL7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐÜ$Ÿ—âƝÛK_șIțsßE77E[^Nź«\5źžÄsߖ;7ˆÛ|[l›zžŁàmSŸ_*7Fę?hćȚêæ3<âöŐęžtĘûÁôúIÄœÖĂ;­_d‹«-8ô—ëÏuÛ<u/„$Çș©òöĘçhžĆtTsŹ›ȘÄr"„EU—C°ű[žhHȚ}œwÚ6Ç6Z,Äô…ÏCÿÁÊîąéS_čŸnȚÄíUywČ-—ąrG*Fœ>îONLż7u]~ęèœĐl+ŻŠl+wîö„ëśÍ›‹R.ĆbłYFź©Ÿ­©r8ޱ)ĆÊ9>*QKrʁ7ì˜äP†°ČôŃ:MÈĄQ^sž$LDÌ6Țaȑ*Âs.$S5ˆ6`Ń>ĆÆ„m•Áë#TLŽ 5Ȝkdš‘­}WìXssc‰»*ÿì{êčRęh/#„?Ûń§ béE$èLÎ|ږÆă°ő8^yŒ>eÎSQc’ìÏçÀÌŻbÈVÌŻcöáNa'_ì OÍțőAŁJęô195śœkàŒ±dț•ś3§ŚE»Hž@œ8çܰ%ŒĂ~A—s*=FÆă Œâšó0ÚÇ`†{RLŰPh33żÛèÓűYæŒù$ÉLÆčŹÇŹŒ o»šqMè§sîÚśÈŒÆ tÚÀ…xö•őčì\˜ \šcΜ-üÜÀe™k–sLžàÊ ?·"œ@>qžhx źŚ·Œô=Ęl~1űÖâŸÖ»>*]Û!‹ÿüïʧMôŚa@ endstream endobj 240 0 obj << /Length 663 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[ŽÚ+ML7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐŸșI|/Ƌ;·—Ÿt“ü硋nnжŒœ\3<:Wčj\=?ˆçŸ-wn·ù¶Ű6őpGÁÛŠ|żTnŒúĐÊœŐÍgxÄíȚęžtĘ{oú ę$âöőđNëߗÙâj ęćúsĘ6BĘK)ɱnȘŒ=Aś9šn1ŐëŠêƒń 9‘ÒąȘË!Xü-O4$ï>΃;m›c-búB‹çĄÿ`ewŃô©Ż\_7oâöȘŠŒ» Y „Œ–KQč#Ł^''Šß›ș.ï?:'4ÛÊ«)Ûʝ»CéúCóæą…”K±Űl–‘kȘok*€ŒÇ۔b敚%9ÖÀvÌ r(CXYúh&äĐ(Ż9O&"fï0äHá9’)ŠD°hŸbcÂ6a‡Êá@„ő*&G†YÎ52ÔÈÖŸ+vŹč豋Ď]•=ő€\© ‹~Ž—‘ÒŸíűÓ±ô"t&g>mKăń ŰzœŻ> stream xÚmTÁnŁ0œóȚC„öÆ6„ŰU‰@"ć°mŐT«œŠàt‘@úś;olšv»R‚ž3óȚŒmź~<î&YŐŸžI|+ƓÚs_șIțsßEWWE[žź9Ę;Wčj|;܉ǟ-wî$źóm±mêÓ o›òí\č1êÿA+śZ7—èˆëgś{Òuo}mú ę$ŸëÓ|{'ˆBpđ/ŚuÛÜ u+„$bĘTy{„ő!šy1 êŠêƒńG‘ÒąȘËSXńł<Ò Œ{NîžmmŽXˆéœNę;{»‰Š}ćúșyŚ[DïÎŽt° dŽ\ŠÊšő{ż?:1ęÖŚÇûçśÎ Íkćę”mć†n_ș~ߌșh!ćR,6›eäšêŸw*€ŒÆŰ”b敚%kà ó‚e+K­Ó„òšó$a"1Ûx‘*Âs.$S5ˆ6PŃ>ĆÆ„m„ÊA Âú‘ĄF–s 5Č”ïŠ‰577v‘۱«òÏŸ§+uaяö6Rúó:ŸŹ!,œ‰É™ÏCÛÒxŒ¶gÀ+Ń§Ìy*JcL’ù|Ìú*†mĆú:fț“vŠuòiü©ÙWUꧏɩčŚ\gŒ%ëŻ<ϚȚí"áőâœsÖ0û_:Ìú©ôę3x0ŠkjÌĂhƒyîIYx0aCáÍÌünŁOăg™3æ“$cx0çČłò<<Țv5ăšđO#æÜ”ï‘u7ŒűŽA ń6ì*ës™Z˜ ZšcƒΜ-üÜ eYk–sLžĐÊ ?·"œ@>qžhű|ÜßòÜśt”ù›Á·ś”nÜÇg„k;dńŸżGăG«‡Môóc endstream endobj 242 0 obj << /Length 799 /Filter /FlateDecode >> stream xÚuUÁnÚ@œû+¶‡HɁ°kc{!€5Ƈ&QˆȘ^‰œ€–‚ ÒŻïŸ™!•šæzż™yïa/Wß7Ś/~’ÜjőäĂylüdù}{ˆźźȘĄ9ï}șśŸőíćîńN=ŽCłń'uœ\WëŸ;ĘòșoȚέż°țO*ękŚÿ„`ș~ö?''3ùĘÍÆ‰žt3\è‰ÿč;œȚWêêS]Që?»ĄżSæVk «Ÿ]{ű9FSрЕ»źoGŠ^ 32±j»æ$WôĘìC0hȚŒO~żîwC4Ÿ«éSžy<ï€ô&š>Œ­»țU]Rîn·ۇ„ŁĆB”~††,î·{ŻŠ_™ę =żŒŠéÚ°șfhęń°müží_}4ŚzĄæuœˆ|ßțsÏHËËîÂ]źźĂWŹ“bÍ šMLłD!E!ăB ±FAë€CÁœÖ\°Ą‘ÓdQ€Q(˜Œ%¶T<#àh^QqKƊL0cF F͌€aîâÂÎ.źš_ÛQĐńČ mÚPG9Žčž'„+XÔ3â8ìŐ)Ś+àŒ±Îč7¶\'~Áœ5°ă:rÔ%ï%Β뀧â$1Ó$܋șa %aN*At†g&ŰĂW<‹éWÈyveš1vYòn‚Ő€ cx·1cx· cx·3Æ+`ònH›ÍÓ̜1q,kĂ^+:‘•%fͶd vÉúmƘæÓ/iRü޶f ëO±·`ę)űëÏÀ/X =ëÏš—őgđ^°țœűŹ?#>ëÌĄč`92/X[B|ÖfèŃćçÚAż“láËI¶)°dKÉód‹gĂI¶Űć$[dè$[âH¶đë$[hv’-|9É~d‹ŹœdKó%[èw’-t–’-ö–’-ű„d ~)ÙBO)ÙRŻd ï„dK|ɖű–ßNÂò¶ĂK)™ĂK)™ăÙ++Ζæđ›]RŻdŽ]ÏOᜌz͜Ș–“€Ț|x8€?ŽÓæ<Žá€„“œNOœ›]ï?ûĂp@}è_âòÿ„«‡:úh‘ž? endstream endobj 243 0 obj << /Length 550 /Filter /FlateDecode >> stream xÚmSˎâ0Œç+Œ$æÁ1$#„”‘8ìÌh@«œBܰ‘À‰œp`ż~ĘĘ +8Ä*—«ÜćŽ=ùńčóSĘÁŸżJń]słűùÏCëM&ESĘź`úw z\íȚħmȘôbšo‹­©û'ȚšêrÓ0Șž‹28Śæżëˆé~û}űëĐúuHXąz_ś§z.ŽßXA¶_`»ș1o"x•R:bctȚ\ń$7҈٘ïTm‡H∜@ ]Wę0ٱșș– ywïzžnÍ©ńV+1ûr‹]oï”òƛ}X ¶6g1ę–Í­ínm{Ì!€·^ '·„ëÁûá böü˜ŃțȚ‚P48YŐhèÚCö`Îà­€\‹UYź=0úÛZĎăiÆĄ“Æ 7(©äÚ[„Êá4rƒ”;"A"e"qD†»gs"2ŽdK$Űâ°#В±%#KŽDÁDNčÆs5&Șțì]ȘJï[/G endstream endobj 148 0 obj << /Type /ObjStm /N 100 /First 897 /Length 4251 /Filter /FlateDecode >> stream xÚí[YoÜž–~śŻĐc ‹âN ÄqÜ7€ăŰI:™ r•lëv-N-čéțőóRRIȘĆUnOßfPDQ‡äÙƕIȄK‘apU‰Ô.áŠ'Ê ÜëÄ‹«OŹÁœÊ—Î'Nst›ÄyÜj™đ,G\c..4zđTz€iŠĐžQÔ­qŁÂ(,€őxșAÁp#Ńcè°J‹Z‘Ą و—a„°W˜ÌèDd0ÜS94łECŠŒ†&B<Č6†Ó:è±Zbfô8™KdŠč㉀ç܉D ‰+QâАF;0J*ôX ’žzĐЊ&‘Fë#Ž^iibùœ”ÎąIwąČ =`Č☞ƒ!JG€ż’Á84@_žzb)iŽ@ȘR.#.&J‡Á  /€š2š Á™”Á’"“‰æDg GtąA 1/ўË#Œ ­K4Qƒ'–°\$ÖjŒâ*q‚˜ËsÈHp—x=`Ž7†TI$Țó (wú(hW&Aœ 23$°6Ï<` #èôAȘùQ 2ÖD”xë55À*RahŁGÖÙ#Ò<áĄ;A/3È’^Ci )Á04D(zdˆąŸ‘nIÒSÈWQC:‘ą+©Í@ †)Òb2ŸÒžZhEŁaIȘ4В„Èd4–LÊCRêĂÒÿL裟~:bïțž+ö|2˜ËÉÍ;ÉçE}—°ßÊÉÓÉŒ\=>-ŻŻ‹Y1óä3ÏÆćd9OŰŚćtQŒŠëĄË†ÓĆš˜ÏKv3Ëż,,”łÁr|=*ŸłE9lœfÓ »š€Á|0(& 6,±ÄŒœłt2] ‹k6ĂÚlP ËŃ(o:o—“›|¶òć‚MoŠ“âw6ÈiŸù]>(Ÿęă- ŸN0ìˆ].ŻáțU9ùÔNgĂbö9ƒÊŸ°ČìÙgnŽŰE1X$Ÿ…Ô© 3Èdš‘ÙÊÔq0“ë4s€zšüôSÂ.öóôĘ4a§ÉŚćÍrV€òIˆÄŚÂAq—rò*•đWoȘ,yB“ÂÈ7"1(Eúúéććăa…N­ ź.Uù,™Jrk@K ù·ĄaLj^Ąá\JNæ`4N‰$‹….öńÓ%>82›i’ôd9}Ù ë8h0xŸÂ‘ß,e˜Xh,ÏÔ>›Nß3°¶FÁ‘šș€/Bm aß\ę‹ű@C^ŒƒwižÏЃËƒäív‰żšÎ篧Ăb4<ő“Ö€±ŽAÆ»ÔA ˆ 銖û+a6êĐH)rîÒŠFx€T>5ÚßìR Žk«RÁć~hè,K)9Ú=37©AF‡$"Unż‰„W©FÜ=q&R€9RÉ”ÒĄœ&éЁ‰ šWmCi@l#áłu?Üse€±Ie}c~ˆÁZŸf°Æ?Ô`áGÿ’Ąvce!)V‘!K)OWZC6›mŁűžïFEȘúVałęŹb%ŻŽÓlɎ27ûژîČ5ŠGQßÏt§ûL·&zIceûńZß»Çôžu<–Bš˜è-J’T!‘Š,Br±ĂRĆ#úO4`š :Ê€ÙíZeQbQŠ…"&•P oÉíߍ *ŽÔRÁV!ƒ‹Íü߆LژQsÀ“ú™:é܁Ì"ż‚!ó5Cöû‡·,‚O†ÈŠâiźșžré„őZŽ” …eJ•íN`[ìTüSàäû‹v€€?đzC pTŻní€Č mçö`æŚ|˜łőaÎ8 E Ié=Lô„ gïâRdXÆ jČê^Òf‹Úpźž5’IńŹ[\„ł &-•Úś­9Ú Ú6ڊáÈl) œF’kC5 NhâuD1ÁICiN• „N|àc˜'ö…±Őì’űĆ^ÍOpô'F&šću­e+BEćëÁ€Dàč@"ł7ń:»>caû@"xzf­‹HäÂ=­G=§~žĆĐ_ÆkőŹŸ§±Žæ66aŽÌ4ŚHSđeđ~2Ąż ©OÂëQÿJpźŐșĄdUQeh, ‡”áYeI-•:DUțÿxœăÿŠÿ{V&°Œ`û<üëmíÚæeHQk‹ÍągYëÙæ_đQÂFżC¶›5¶ˆè)/ ęő‚ÚtÔŸŁög!pŚ©ƒź}'IGáíœNǜ!RI«W^źö˜‡­ÚźÎ«çĄŸrA„žš‚J†leèâj‚^eńĘ2Îî–!mšd(-_ÉPem†}Ö\xRlÉHNjŁ ‰)Œ0 kZ9æqđŽæQńJ’ȘFdŁĄÖČĄČ­`C{,ÀlJ†éžÚŽÒuôkEYŠx”"$$iO†AyDcži‚Vę*Ín…ĂNąJ`œS ›@žw!ր5-a4ò ƒANŰȘZ°œĆúÏUdSĘßîSuÁ6äĐŚèEĘbŽ^Ș•WôKdŸ±†Æ*‚ÜWéF-śțAxSîÍDŸ©F›««<…žFÿùŻ^ĐP„ZÌłòn1ĆÊÿŚ|Œ''§§Țüűb2˜NæÓQŸÈÿ,ŐńEqłć8Êo扊#NȘWEÇô·„ÎÈCjzG3§IvĞćwÿ,ʛÛpCëUę/ùš<ÜŒ șœ\ăPí#ö±WÚbôm>ŁW ?°§ì{ÎÎŰÏì{ÍȚ°·ì’}`9ËÇwĆlžO†ìŠ]ÍòAŰK[3š'4/M7ÚńÁ€ ŠŁéçń8gC6œŽ@+X·4œ/±kv]~+Űőt9c7ìfVä‹bÆnÙíw·Ć„•ì_ìw6bŽw…Ù„MÊIÁ&Ëńp+o&lÊŠèžcwô- ZöŻàZN‡ìnޜłŻìëČ˜Ó‹ÊžCfx5ŠyI,K?Ó›ły1.#óâ0™—ßÙ|”Ïoق-ngEÁÿžČ%ûÆțÍŸł?۟Ćlú$ŠîŹëéoZzŸŚyw·]5~yóńÓ»ś?>{ęü#Ï6ȘÂ1ló!^.h2 ±R”MŽM¶M%”m©„äm•B.ŸŻÄ~RȚtnZwW‹U{\W7‹».;ô!ìžütv~òìxęb;àäE(’T(‘VÜ0^”Ùaœl1„ÓĂ6CŽčÚh%]–ÔšIŠŰ„ËDŚ›ËwoAŚĆ6ČG+Č(Č=œŹFÎÆï”óF ޶čÙŠ`D]űCđńüă§OĀËO[őÜ'ÇAÍi‡ą”-ŻvB‰em„ô:Bæp„Öê>JȘ§Ź±A !°…”ZGÊŽÔ֌žÛš†{ÛŃđ6żä:jî ”=Ÿí#·Šìą›hYŻ”œùd‰>âZĂÖ?€‘Ûsɶ2ۅ-œA [±¶*;ÛéQÛ5;QșĂ\ȚŒÛ]~8șśœ˜ì;ż5C’j+‹ł5œę:Îâ?łoá,ÛŠßG™>:\CyCLĄĘ€sÚž€Ś5ÍÖ>úP0 Y)#ŒÛÊU܍šă6Żj㿍›ÁâÈ/™ÇűQí^y}RUxQíçß”†ÜșF”·ȚȘYí‚Û5pq°ȘÖÏȘ]öqßcoì›ćb„œj^É+©–'q%”ŻQ,”šŚ»(“:5$TOÎgĆ·Dtm:ćőĐ:žoZç"żÒ&<ĄÖç©ȚÒIj-fŻÊqčè-ۀíúoŸő„Á endstream endobj 263 0 obj << /Producer (pdfTeX-1.40.23) /Author(\376\377\000V\000i\000n\000c\000e\000n\000t\000\040\000G\000o\000u\000l\000e\000t)/Title()/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20220123181903-05'00') /ModDate (D:20220123181903-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.23 (TeX Live 2022/dev) kpathsea version 6.3.4/dev) >> endobj 248 0 obj << /Type /ObjStm /N 15 /First 127 /Length 680 /Filter /FlateDecode >> stream xÚ}•Moœ0†ïü K„.Œż-E‘ąæĐ*I[uÛS•ĘP„Ž»l+”ÿŸ3`v †žlżfό —†ćŒKÇ@ZÆέÁ˜4GÎŽŠQ0+i” òœ P4Ń žs81èBć W–ÎIA§&WŒë'p ,úâšăÄÈäæ&É>‡Če?Ț|ìÊĂdʌB€ŻÌ  :e &Š!ƅŠEƒ]ž2Ń»}NČÇúPw“ˆŁÍsr{3 ü6Œ‡Ź‘PŰ`€"€A<™k„“°È"ҋÉ2ŠK–€w”«»róĄ©Ș‡ęč:ǔ9ì<6mûÔŒ”û–R!wd™2ș{șÛnŃ\zúòśčèêæžáÀ*˜EfDšFäÁ.–ÁAäíD€bšœ©Š’M}7—ûа‘LĄó9śhjżNŻ6}WńYœőèXš2v<ÁŸâpڗ”G5“alŐQ„@źV±{’À8fö[’€ĆÔ7%ĐÎ4ʞóIęUWçŚtŠ '€˜HÄ)ăô^Ł_ #ÆSQőQ„żÚR9^žAȘŹ 1=Z2Xc‚ŚhTz±YŠĄÎCgԆæˆMűăżÒ“†Ń|~ÚrG-ó–4/öÙ_„Q„5naVÌÔ#ŠUBM„>œS Ä}ouĆÏ᱀ćsș òĆPż  —Cáž/śŻęۆüyżovï¶]ńÚ-ß.ï_ ÿœôŁòŁ«Ìÿ.Ä”Œűđ[يŸŸ/[4âC3Žâ·ż§’eï‹źŰ7U’}Á’ąìy“ìóčÛŚÇ^Qƒ2ԕŻĐ`O?ˆì{[ŽÆűÙ©<ȚőÙGË1Ú?țèĘ endstream endobj 264 0 obj << /Type /XRef /Index [0 265] /Size 265 /W [1 3 1] /Root 262 0 R /Info 263 0 R /ID [<864141C30051C93EBCE0990F8B170536> <864141C30051C93EBCE0990F8B170536>] /Length 677 /Filter /FlateDecode >> stream xÚ%”ËoŽA‡ÏȘêÒm©ąô«–^ŽêȚûŐ„„­¶.őQ!iD(‰…4–6|œ€;a+ü.;; ±“˜Äąæ96O~óžóÎś~3όˆŒY "AT暅Tœ`ł$láÙeÒ2°\àÙ%RXfx–%惕 Iv‘aXưĐVƒ5`-(W‘"ÿŒBPDßgžŹ@ (e`#ŰDó$˜fX6«äú€΀Qp œŠ°l•€ï ÛA-šV)źń v€Œ¶—Tö€ŒJY„·ìő ì­ Q„⯷4fĐ˜ÊÆHû@»JÓ/ïÛ€ƒà8 șA›JUŸśGAè]LzŒ0>= library(actuar) options(width = 52, digits = 4) @ \begin{document} \maketitle \section{Introduction} \label{sec:introduction} Package \pkg{actuar} provides functions to facilitate the generation of random variates from various probability models commonly used in actuarial applications. From the simplest to the most sophisticated, these functions are: \begin{enumerate} \item \code{rmixture} to simulate from discrete mixtures; \item \code{rcompound} to simulate from compound models (and a simplified version, \code{rcompois} to simulate from the very common compound Poisson model); \item \code{rcomphierarc}\footnote{% An alias for \code{simul} introduced in \pkg{actuar} 2.0-0.} % to simulate from compound models where both the frequency and the severity components can have a hierarchical structure. \end{enumerate} \section{Simulation from discrete mixtures} \label{sec:rmixture} A random variable is said to be a discrete mixture of the random variables with probability density functions $f_1, \dots, f_n$ if its density can be written as \begin{equation} \label{eq:mixture} f(x) = p_1 f_1(x) + \dots + p_n f_n(x) = \sum_{i = 1}^n p_i f_i(x), \end{equation} where $p_1, \dots, p_n$ are probabilities (or weights) such that $p_i \geq 0$ and $\sum_{i = 1}^n p_i = 1$. Function \code{rmixture} makes it easy to generate random variates from such mixtures. The arguments of the function are: \begin{enumerate} \item \code{n} the number of variates to generate; \item \code{probs} a vector of values that will be normalized internally to create the probabilities $p_1, \dots, p_n$; \item \code{models} a vector of expressions specifying the simulation models corresponding to the densities $f_1, \dots, f_n$. \end{enumerate} The specification of simulation models follows the syntax of \code{rcomphierarc} (explained in greater detail in \autoref{sec:rcomphierarc}). In a nutshell, the models are expressed in a semi-symbolic fashion using an object of mode \code{"expression"} where each element is a complete call to a random number generation function, with the number of variates omitted. The following example should clarify this concept. \begin{example} Let $X$ be a mixture between two exponentials: one with mean $1/3$ and one with mean $1/7$. The first exponential has twice as much weight as the second one in the mixture. Therefore, the density of $X$ is \begin{equation*} f(x) = \frac{2}{3} (3 e^{-3x}) + \frac{1}{3} (7 e^{-7x}) \\ = 2 e^{-3x} + \frac{7}{3} e^{-7x}. \end{equation*} The following expression generates $10$ random variates from this density using \code{rmixture}. <>= rmixture(10, probs = c(2, 1), models = expression(rexp(3), rexp(7))) @ \qed \end{example} See also \autoref{ex:comppois} for a more involved application combining simulation from a mixture and simulation from a compound Poisson model. \section{Simulation from compound models} \label{sec:rcompound} Actuaries often need to simulate separately the frequency and the severity of claims for compound models of the form \begin{equation} \label{eq:definition-S} S = C_1 + \dots + C_N, \end{equation} where $C_1, C_2, \dots$ are the mutually independent and identically distributed random variables of the claim amounts, each independent of the frequency random variable $N$. Function \code{rcompound} generates variates from the random variable $S$ when the distribution of both random variables $N$ and $C$ is non hierarchical; for the more general hierarchical case, see \autoref{sec:rcomphierarc}. The function has three arguments: \begin{enumerate} \item \code{n} the number of variates to generate; \item \code{model.freq} the frequency model (random variable $N$); \item \code{model.sev} the severity model (random variable $C$). \end{enumerate} Arguments \code{model.freq} and \code{model.sev} are simple R expressions consisting of calls to a random number generation function with the number of variates omitted. This is of course similar to argument \code{models} of \code{rmixture}, only with a slightly simpler syntax since one does not need to wrap the calls in \code{expression}. Function \code{rcomppois} is a simplified interface for the common case where $N$ has a Poisson distribution and, therefore, $S$ is compound Poisson. In this function, argument \code{model.freq} is replaced by \code{lambda} that takes the value of the Poisson parameter. \begin{example} Let $S \sim \text{Compound Poisson}(1.5, F)$, where $1.5$ is the value of the Poisson parameter and $F$ is the cumulative distribution function of a gamma distribution with shape parameter $\alpha = 3$ and rate parameter $\lambda = 2$. We obtain variates from the random variable $S$ using \code{rcompound} or \code{rcompois} as follows: <>= rcompound(10, rpois(1.5), rgamma(3, 2)) rcomppois(10, 1.5, rgamma(3, 2)) @ Specifying argument \code{SIMPLIFY = FALSE} to either function will return not only the variates from $S$, but also the underlying variates from the random variables $N$ and $C_1, \dots, C_N$: <>= rcomppois(10, 1.5, rgamma(3, 2), SIMPLIFY = FALSE) @ \qed \end{example} \begin{example} \label{ex:comppois} Theorem~9.7 of \cite{LossModels4e} states that the sum of compound Poisson random variables is itself compound Poisson with Poisson parameter equal to the sum of the Poisson parameters and severity distribution equal to the mixture of the severity models. Let $S = S_1 + S_2 + S_3$, where $S_1$ is compound Poisson with mean frequency $\lambda = 2$ and severity Gamma$(3, 1)$; $S_2$ is compound Poisson with $\lambda = 1$ and severity Gamma$(5, 4)$; $S_3$ is compound Poisson with $\lambda = 1/2$ and severity Lognormal$(2, 1)$. By the aforementioned theorem, $S$ is compound Poisson with $\lambda = 2 + 1 + 1/2 = 7/2$ and severity density \begin{equation*} f(x) = \frac{4}{7} \left( \frac{1}{\Gamma(3)} x^2 e^{-x} \right) + \frac{2}{7} \left( \frac{4^5}{\Gamma(5)} x^4 e^{-4x} \right) + \frac{1}{7} \phi(\ln x - 2). \end{equation*} Combining \code{rcomppois} and \code{rmixture} we can generate variates of $S$ using the following elegant expression. <>= x <- rcomppois(1e5, 3.5, rmixture(probs = c(2, 1, 0.5), expression(rgamma(3), rgamma(5, 4), rlnorm(2, 1)))) @ One can verify that the theoretical mean of $S$ is $6 + 5/4 + (e^{5/2})/2 = 13.34$. Now, the empirical mean based on the above sample of size $10^5$ is: <>= mean(x) @ \qed \end{example} \section{Simulation from compound hierarchical models} \label{sec:rcomphierarc} Hierarchical probability models are widely used for data classified in a tree-like structure and in Bayesian inference. The main characteristic of such models is to have the probability law at some level in the classification structure be conditional on the outcome in previous levels. For example, adopting a bottom to top description of the model, a simple hierarchical model could be written as \begin{equation} \label{eq:basic_model} \begin{split} X_t|\Lambda, \Theta &\sim \text{Poisson}(\Lambda) \\ \Lambda|\Theta &\sim \text{Gamma}(3, \Theta) \\ \Theta &\sim \text{Gamma}(2, 2), \end{split} \end{equation} where $X_t$ represents actual data. The random variables $\Theta$ and $\Lambda$ are generally seen as uncertainty, or risk, parameters in the actuarial literature; in the sequel, we refer to them as mixing parameters. The example above is merely a multi-level mixture of models, something that is simple to simulate ``by hand''. The following R expression will yield $n$ variates of the random variable $X_t$: <>= rpois(n, rgamma(n, 3, rgamma(n, 2, 2))) @ However, for categorical data common in actuarial applications there will usually be many categories --- or \emph{nodes} --- at each level. Simulation is then complicated by the need to always use the correct parameters for each variate. Furthermore, one may need to simulate both the frequency and the severity of claims for compound models of the form \eqref{eq:definition-S}. This section briefly describes function \code{rcomphierarc} and its usage. \cite{Goulet:simpf:2008} discuss in more details the models supported by the function and give more thorough examples. \subsection{Description of hierarchical models} \label{sec:rcomphierarc:description} We consider simulation of data from hierarchical models. We want a method to describe these models in R that meets the following criteria: \begin{enumerate} \item simple and intuitive to go from the mathematical formulation of the model to the R formulation and back; \item allows for any number of levels and nodes; \item at any level, allows for any use of parameters higher in the hierarchical structure. \end{enumerate} A hierarchical model is completely specified by the number of nodes at each level and by the probability laws at each level. The number of nodes is passed to \code{rcomphierarc} by means of a named list where each element is a vector of the number of nodes at a given level. Vectors are recycled when the number of nodes is the same throughout a level. Probability models are expressed in a semi-symbolic fashion using an object of mode \code{"expression"}. Each element of the object must be named --- with names matching those of the number of nodes list --- and should be a complete call to an existing random number generation function, but with the number of variates omitted. Hierarchical models are achieved by replacing one or more parameters of a distribution at a given level by any combination of the names of the levels above. If no mixing is to take place at a level, the model for this level can be \code{NULL}. \begin{example} Consider the following expanded version of model \eqref{eq:basic_model}: \begin{align*} X_{ijt}|\Lambda_{ij}, \Theta_i &\sim \text{Poisson}(\Lambda_{ij}), & t &= 1, \dots, n_{ij} \\ \Lambda_{ij}|\Theta_i &\sim \text{Gamma}(3, \Theta_i), & j &= 1, \dots, J_i \\ \Theta_i &\sim \text{Gamma}(2, 2), & i &= 1, \dots, I, \end{align*} with $I = 3$, $J_1 = 4$, $J_2 = 5$, $J_3 = 6$ and $n_{ij} \equiv n = 10$. Then the number of nodes and the probability model are respectively specified by the following expressions. \begin{Schunk} \begin{Verbatim} list(Theta = 3, Lambda = c(4, 5, 6), Data = 10) \end{Verbatim} \end{Schunk} \begin{Schunk} \begin{Verbatim} expression(Theta = rgamma(2, 2), Lambda = rgamma(3, Theta), Data = rpois(Lambda)) \end{Verbatim} \end{Schunk} \qed \end{example} Storing the probability model requires an expression object in order to avoid evaluation of the incomplete calls to the random number generation functions. Function \code{rcomphierarc} builds and executes the calls to the random generation functions from the top of the hierarchical model to the bottom. At each level, the function \begin{enumerate} \item infers the number of variates to generate from the number of nodes list, and \item appropriately recycles the mixing parameters simulated previously. \end{enumerate} The actual names in the list and the expression object can be anything; they merely serve to identify the mixing parameters. Furthermore, any random generation function can be used. The only constraint is that the name of the number of variates argument is \code{n}. In addition, \code{rcomphierarc} supports usage of weights in models. These usually modify the frequency parameters to take into account the ``size'' of an entity. Weights are used in simulation wherever the name \code{weights} appears in a model. \subsection[Usage of rcomphierarc]{Usage of \code{rcomphierarc}} \label{sec:rcomphierarc:usage} Function \code{rcomphierarc} can simulate data for structures where both the frequency model and the severity model are hierarchical. It has four main arguments: \begin{enumerate} \item \code{nodes} for the number of nodes list; \item \code{model.freq} for the frequency model; \item \code{model.sev} for the severity model; \item \code{weights} for the vector of weights in lexicographic order, that is all weights of entity 1, then all weights of entity 2, and so on. \end{enumerate} The function returns the variates in a list of class \code{"portfolio"} with a \code{dim} attribute of length two. The list contains all the individual claim amounts for each entity. Since every element can be a vector, the object can be seen as a three-dimension array with a third dimension of potentially varying length. The function also returns a matrix of integers giving the classification indexes of each entity in the portfolio. The package also defines methods for four generic functions to easily access key quantities for each entity of the simulated portfolio: \begin{enumerate} \item a method of \code{aggregate} to compute the aggregate claim amounts $S$; \item a method of \code{frequency} to compute the number of claims $N$; \item a method of \code{severity} (a generic function introduced by the package) to return the individual claim amounts $C_j$; \item a method of \code{weights} to extract the weights matrix. \end{enumerate} In addition, all methods have a \code{classification} and a \code{prefix} argument. When the first is \code{FALSE}, the classification index columns are omitted from the result. The second argument overrides the default column name prefix; see the \code{rcomphierarc.summaries} help page for details. The following example illustrates these concepts in detail. \begin{example} Consider the following compound hierarchical model: \begin{equation*} S_{ijt} = C_{ijt1} + \dots + C_{ijt N_{ijt}}, \end{equation*} for $i = 1, \dots, I$, $j = 1, \dots, J_i$, $t = 1, \dots, n_{ij}$ and with \begin{align*} N_{ijt}|\Lambda_{ij}, \Phi_i &\sim \text{Poisson}(w_{ijt} \Lambda_{ij}) & C_{ijtu}|\Theta_{ij}, \Psi_i &\sim \text{Lognormal}(\Theta_{ij}, 1) \notag \\ \Lambda_{ij}|\Phi_i &\sim \text{Gamma}(\Phi_i, 1) & \Theta_{ij}|\Psi_i &\sim N(\Psi_i, 1) \\ \Phi_i &\sim \text{Exponential}(2) & \Psi_i &\sim N(2, 0.1). \notag \end{align*} (Note how weights modify the Poisson parameter.) Using as convention to number the data level 0, the above is a two-level compound hierarchical model. Assuming that $I = 2$, $J_1 = 4$, $J_2 = 3$, $n_{11} = \dots = n_{14} = 4$ and $n_{21} = n_{22} = n_{23} = 5$ and that weights are simply simulated from a uniform distribution on $(0.5, 2.5)$, then simulation of a data set with \code{rcomphierarc} is achieved with the following expressions. <>= set.seed(3) @ <>= nodes <- list(cohort = 2, contract = c(4, 3), year = c(4, 4, 4, 4, 5, 5, 5)) mf <- expression(cohort = rexp(2), contract = rgamma(cohort, 1), year = rpois(weights * contract)) ms <- expression(cohort = rnorm(2, sqrt(0.1)), contract = rnorm(cohort, 1), year = rlnorm(contract, 1)) wijt <- runif(31, 0.5, 2.5) pf <- rcomphierarc(nodes = nodes, model.freq = mf, model.sev = ms, weights = wijt) @ Object \code{pf} is a list of class \code{"portfolio"} containing, among other things, the aforementioned two-dimension list as element \code{data} and the classification matrix (subscripts $i$ and $j$) as element \code{classification}: <>= class(pf) pf$data pf$classification @ The output of \code{pf\$data} is not much readable. If we were to print the results of \code{rcomphierarc} this way, many users would wonder what \code{Numeric,\emph{n}} means. (It is actually R's way to specify that a given element in the list is a numeric vector of length $n$ --- the third dimension mentioned above.) To ease reading, the \code{print} method for objects of class \code{"portfolio"} only prints the simulation model and the number of claims in each node: <>= pf @ By default, the method of \code{aggregate} returns the values of $S_{ijt}$ in a regular matrix (subscripts $i$ and $j$ in the rows, subscript $t$ in the columns). The method has a \code{by} argument to get statistics for other groupings and a \code{FUN} argument to get statistics other than the sum: <>= aggregate(pf) aggregate(pf, by = c("cohort", "year"), FUN = mean) @ The method of \code{frequency} returns the values of $N_{ijt}$. It is mostly a wrapper for the \code{aggregate} method with the default \code{sum} statistic replaced by \code{length}. Hence, arguments \code{by} and \code{FUN} remain available: <>= frequency(pf) frequency(pf, by = "cohort") @ The method of \code{severity} returns the individual variates $C_{ijtu}$ in a matrix similar to those above, but with a number of columns equal to the maximum number of observations per entity, \begin{displaymath} \max_{i, j} \sum_{t = 1}^{n_{ij}} N_{ijt}. \end{displaymath} Thus, the original period of observation (subscript $t$) and the identifier of the severity within the period (subscript $u$) are lost and each variate now constitute a ``period'' of observation. For this reason, the method provides an argument \code{splitcol} in case one would like to extract separately the individual severities of one or more periods: <>= severity(pf) severity(pf, splitcol = 1) @ Finally, the weights matrix corresponding to the data in object \code{pf} is <>= weights(pf) @ Combined with the argument \code{classification = FALSE}, the above methods can be used to easily compute loss ratios: <>= aggregate(pf, classif = FALSE) / weights(pf, classif = FALSE) @ \qed \end{example} \begin{example} \cite{Scollnik:2001:MCMC} considers the following model for the simulation of claims frequency data in a Markov Chain Monte Carlo (MCMC) context: \begin{align*} S_{it}|\Lambda_i, \alpha, \beta &\sim \text{Poisson}(w_{ij} \Lambda_i) \\ \Lambda_i|\alpha, \beta &\sim \text{Gamma}(\alpha, \beta) \\ \alpha &\sim \text{Gamma}(5, 5) \\ \beta &\sim \text{Gamma}(25, 1) \end{align*} for $i = 1, 2, 3$, $j = 1, \dots, 5$ and with weights $w_{it}$ simulated from \begin{align*} w_{it}|a_i, b_i &\sim \text{Gamma}(a_i, b_i) \\ a_i &\sim U(0, 100) \\ b_i &\sim U(0, 100). \end{align*} Strictly speaking, this is not a hierarchical model since the random variables $\alpha$ and $\beta$ are parallel rather than nested. Nevertheless, with some minor manual intervention, function \code{rcomphierarc} can simulate data from this model. First, one simulates the weights (in lexicographic order) with <>= set.seed(123) @ <>= wit <- rgamma(15, rep(runif(3, 0, 100), each = 5), rep(runif(3, 0, 100), each = 5)) @ Second, one calls \code{rcomphierarc} to simulate the frequency data. The key here consists in manually inserting the simulation of the shape and rate parameters of the gamma distribution in the model for $\Lambda_i$. Finally, wrapping the call to \code{rcomphierarc} in \code{frequency} will immediately yield the matrix of observations: <>= frequency(rcomphierarc(list(entity = 3, year = 5), expression(entity = rgamma(rgamma(1, 5, 5), rgamma(1, 25, 1)), year = rpois(weights * entity)), weights = wit)) @ \qed \end{example} One will find more examples of \code{rcomphierarc} usage in the \code{simulation} demo file. The function was used to simulate the data in \cite{Goulet_cfs}. %% References \bibliography{actuar} \end{document} %%% Local Variables: %%% mode: noweb %%% coding: utf-8 %%% TeX-master: t %%% End: actuar/inst/doc/credibility.Rnw0000644000176200001440000007033614055040227016256 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage[round]{natbib} \usepackage{babel} \usepackage[scaled=0.9]{helvet} \usepackage[sc]{mathpazo} \usepackage[noae,inconsolata]{Sweave} \usepackage[shortlabels]{enumitem} \usepackage{framed} %\VignetteIndexEntry{Credibility theory} %\VignettePackage{actuar} %\SweaveUTF8 \title{Credibility theory features of \pkg{actuar}} \author{Christophe Dutang \\ UniversitĂ© Paris Dauphine \\[3ex] Vincent Goulet \\ UniversitĂ© Laval \\[3ex] Xavier Milhaud \\ UniversitĂ© Claude Bernard Lyon 1 \\[3ex] Mathieu Pigeon \\ UniversitĂ© du QuĂ©bec Ă  MontrĂ©al} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Sweave Sinput and Soutput environments reinitialized to remove %% default configuration. Space between input and output blocks also %% reduced. \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{} \fvset{listparameters={\setlength{\topsep}{0pt}}} %% Environment Schunk redefined as an hybrid of environments %% snugshade* and leftbar of framed.sty. \makeatletter \renewenvironment{Schunk}{% \setlength{\topsep}{1pt} \def\FrameCommand##1{\hskip\@totalleftmargin \vrule width 2pt\colorbox{codebg}{\hspace{3pt}##1}% % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \advance\labelsep\fboxsep \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \makeatother %% Some new commands. Commands \E and \VAR redefined to fit within %% the author's writing habits... \newcommand{\E}[1]{\mathrm{E}[ #1 ]} \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\pt}{{\scriptscriptstyle \Sigma}} \bibliographystyle{plainnat} <>= library(actuar) options(width = 57, digits = 4) @ \begin{document} \maketitle \section{Introduction} \label{sec:introduction} Credibility models are actuarial tools to distribute premiums fairly among a heterogeneous group of policyholders (henceforth called \emph{entities}). More generally, they can be seen as prediction methods applicable in any setting where repeated measures are made for subjects with different risk levels. The credibility theory features of \pkg{actuar} consist of matrix \code{hachemeister} containing the famous data set of \cite{Hachemeister_75} and function \code{cm} to fit hierarchical (including BĂŒhlmann, BĂŒhlmann-Straub), regression and linear Bayes credibility models. Furthermore, function \code{rcomphierarc} can simulate portfolios of data satisfying the assumptions of the aforementioned credibility models; see the \code{"simulation"} vignette for details. \section{Hachemeister data set} \label{sec:hachemeister} The data set of \cite{Hachemeister_75} consists of private passenger bodily injury insurance average claim amounts, and the corresponding number of claims, for five U.S.\ states over 12 quarters between July 1970 and June 1973. The data set is included in the package in the form of a matrix with 5 rows and 25 columns. The first column contains a state index, columns 2--13 contain the claim averages and columns 14--25 contain the claim numbers: <>= data(hachemeister) hachemeister @ \section{Hierarchical credibility model} \label{sec:hierarchical} The linear model fitting function of R is \code{lm}. Since credibility models are very close in many respects to linear models, and since the credibility model fitting function of \pkg{actuar} borrows much of its interface from \code{lm}, we named the credibility function \code{cm}. Function \code{cm} acts as a unified interface for all credibility models supported by the package. Currently, these are: the unidimensional models of \cite{Buhlmann_69} and \cite{BS_70}; the hierarchical model of \cite{Jewell_75} (of which the first two are special cases); the regression model of \cite{Hachemeister_75}, optionally with the intercept at the barycenter of time \citep[Section~8.4]{Buhlmann_Gisler}; linear Bayes models. The modular design of \code{cm} makes it easy to add new models if desired. This section concentrates on usage of \code{cm} for hierarchical models. There are some variations in the formulas of the hierarchical model in the literature. We compute the credibility premiums as given in \cite{BJ_87} or \cite{Buhlmann_Gisler}, supporting three types of estimators of the between variance structure parameters: the unbiased estimators of \cite{Buhlmann_Gisler} (the default), the slightly different version of \cite{Ohlsson} and the iterative pseudo-estimators as found in \cite{LivreVert} or \cite{Goulet_JAP}. Consider an insurance portfolio where \emph{entities} are classified into \emph{cohorts}. In our terminology, this is a two-level hierarchical classification structure. The observations are claim amounts $S_{ijt}$, where index $i = 1, \dots, I$ identifies the cohort, index $j = 1, \dots, J_i$ identifies the entity within the cohort and index $t = 1, \dots, n_{ij}$ identifies the period (usually a year). To each data point corresponds a weight --- or volume --- $w_{ijt}$. Then, the best linear prediction for the next period outcome of a entity based on ratios $X_{ijt} = S_{ijt}/w_{ijt}$ is \begin{equation} \label{eq:hierarchical:premiums} \begin{split} \hat{\pi}_{ij} &= z_{ij} X_{ijw} + (1 - z_{ij}) \hat{\pi}_i \\ \hat{\pi}_i &= z_i X_{izw} + (1 - z_i) m, \end{split} \end{equation} with the credibility factors \begin{align*} z_{ij} &= \frac{w_{ij\pt}}{w_{ij\pt} + s^2/a}, & w_{ij\pt} &= \sum_{t = 1}^{n_{ij}} w_{ijt} \\ z_{i} &= \frac{z_{i\pt}}{z_{i\pt} + a/b}, & z_{i\pt} &= \sum_{j = 1}^{J_i} z_{ij} \end{align*} and the weighted averages \begin{align*} X_{ijw} &= \sum_{t = 1}^{n_{ij}} \frac{w_{ijt}}{w_{ij\pt}}\, X_{ijt} \\ X_{izw} &= \sum_{j = 1}^{J_i} \frac{z_{ij}}{z_{i\pt}}\, X_{ijw}. \end{align*} The estimator of $s^2$ is \begin{equation} \label{eq:s2} \hat{s}^2 = \frac{1}{\sum_{i = 1}^I \sum_{j = 1}^{J_i} (n_{ij} - 1)} \sum_{i = 1}^I \sum_{j = 1}^{J_i} \sum_{t = 1}^{n_{ij}} w_{ijt} (X_{ijt} - X_{ijw})^2. \end{equation} The three types of estimators for the variance components $a$ and $b$ are the following. First, let \begin{align*} A_i &= \sum_{j = 1}^{J_i} w_{ij\pt} (X_{ijw} - X_{iww})^2 - (J_i - 1) s^2 & c_i &= w_{i\pt\pt} - \sum_{j = 1}^{J_i} \frac{w_{ij\pt}^2}{w_{i\pt\pt}} \\ B &= \sum_{i = 1}^I z_{i\pt} (X_{izw} - \bar{X}_{zzw})^2 - (I - 1) a & d &= z_{\pt\pt} - \sum_{i = 1}^I \frac{z_{i\pt}^2}{z_{\pt\pt}}, \end{align*} with \begin{equation} \label{eq:Xbzzw} \bar{X}_{zzw} = \sum_{i = 1}^I \frac{z_{i\pt}}{z_{\pt\pt}}\, X_{izw}. \end{equation} (Hence, $\E{A_i} = c_i a$ and $\E{B} = d b$.) Then, the BĂŒhlmann--Gisler estimators are \begin{align} \label{eq:ac-BG} \hat{a} &= \frac{1}{I} \sum_{i = 1}^I \max \left( \frac{A_i}{c_i}, 0 \right) \\ \label{eq:bc-BG} \hat{b} &= \max \left( \frac{B}{d}, 0 \right), \end{align} the Ohlsson estimators are \begin{align} \label{eq:ac-Ohl} \hat{a}^\prime &= \frac{\sum_{i = 1}^I A_i}{\sum_{i = 1}^I c_i} \\ \label{eq:bc-Ohl} \hat{b}^\prime &= \frac{B}{d} \end{align} and the iterative (pseudo-)estimators are \begin{align} \label{eq:at} \tilde{a} &= \frac{1}{\sum_{i = 1}^I (J_i - 1)} \sum_{i = 1}^I \sum_{j = 1}^{J_i} z_{ij} (X_{ijw} - X_{izw})^2 \\ \label{eq:bt} \tilde{b} &= \frac{1}{I - 1} \sum_{i = 1}^I z_i (X_{izw} - X_{zzw})^2, \end{align} where \begin{equation} \label{eq:Xzzw} X_{zzw} = \sum_{i = 1}^I \frac{z_i}{z_\pt}\, X_{izw}. \end{equation} Note the difference between the two weighted averages \eqref{eq:Xbzzw} and \eqref{eq:Xzzw}. See \cite{cm} for further discussion on this topic. Finally, the estimator of the collective mean $m$ is $\hat{m} = X_{zzw}$. The credibility modeling function \code{cm} assumes that data is available in the format most practical applications would use, namely a rectangular array (matrix or data frame) with entity observations in the rows and with one or more classification index columns (numeric or character). One will recognize the output format of \code{rcomphierarc} and its summary methods. Then, function \code{cm} works much the same as \code{lm}. It takes in argument: a formula of the form \code{\~{} terms} describing the hierarchical interactions in a data set; the data set containing the variables referenced in the formula; the names of the columns where the ratios and the weights are to be found in the data set. The latter should contain at least two nodes in each level and more than one period of experience for at least one entity. Missing values are represented by \code{NA}s. There can be entities with no experience (complete lines of \code{NA}s). In order to give an easily reproducible example, we group states 1 and 3 of the Hachemeister data set into one cohort and states 2, 4 and 5 into another. This shows that data does not have to be sorted by level. The fitted model below uses the iterative estimators of the variance components. <>= X <- cbind(cohort = c(1, 2, 1, 2, 2), hachemeister) fit <- cm(~cohort + cohort:state, data = X, ratios = ratio.1:ratio.12, weights = weight.1:weight.12, method = "iterative") fit @ The function returns a fitted model object of class \code{"cm"} containing the estimators of the structure parameters. To compute the credibility premiums, one calls a method of \code{predict} for this class. <>= predict(fit) @ One can also obtain a nicely formatted view of the most important results with a call to \code{summary}. <>= summary(fit) @ The methods of \code{predict} and \code{summary} can both report for a subset of the levels by means of an argument \code{levels}. <>= summary(fit, levels = "cohort") predict(fit, levels = "cohort") @ \section{BĂŒhlmann and BĂŒhlmann--Straub models} \label{sec:buhlmann} As mentioned above, the BĂŒhlmann and BĂŒhlmann--Straub models are simply one-level hierarchical models. In this case, the BĂŒhlmann--Gisler and Ohlsson estimators of the between variance parameters are both identical to the usual \cite{BS_70} estimator \begin{equation} \label{eq:a-hat} \hat{a} = \frac{w_{\pt\pt}}{w_{\pt\pt}^2 - \sum_{i=1}^I w_{i\pt}^2} \left( \sum_{i=1}^I w_{i\pt} (X_{iw} - X_{ww})^2 - (I - 1) \hat{s}^2 \right), \end{equation} and the iterative estimator \begin{equation} \label{eq:a-tilde} \tilde{a} = \frac{1}{I - 1} \sum_{i = 1}^I z_i (X_{iw} - X_{zw})^2 \end{equation} is better known as the Bichsel--Straub estimator. To fit the BĂŒhlmann model using \code{cm}, one simply does not specify any weights. <>= cm(~state, hachemeister, ratios = ratio.1:ratio.12) @ When weights are specified together with a one-level model, \code{cm} automatically fits the BĂŒhlmann--Straub model to the data. In the example below, we use the Bichsel--Straub estimator for the between variance. <>= cm(~state, hachemeister, ratios = ratio.1:ratio.12, weights = weight.1:weight.12) @ \section{Regression model of Hachemeister} \label{sec:regression} The credibility regression model of \cite{Hachemeister_75} is a generalization of the BĂŒhlmann--Straub model. If data shows a systematic trend, the latter model will typically under- or over-estimate the true premium of an entity. The idea of \citeauthor{Hachemeister_75} was to fit to the data a regression model where the parameters are a credibility weighted average of an entity's regression parameters and the group's parameters. In order to use \code{cm} to fit a credibility regression model to a data set, one simply has to supply as additional arguments \code{regformula} and \code{regdata}. The first one is a formula of the form \code{\~{} terms} describing the regression model, and the second is a data frame of regressors. That is, arguments \code{regformula} and \code{regdata} are in every respect equivalent to arguments \code{formula} and \code{data} of \code{lm}, with the minor difference that \code{regformula} does not need to have a left hand side (and is ignored if present). Below, we fit the model \begin{displaymath} X_{it} = \beta_0 + \beta_1 t + \varepsilon_t, \quad t = 1, \dots, 12 \end{displaymath} to the original data set of \cite{Hachemeister_75}. <>= fit <- cm(~state, hachemeister, regformula = ~ time, regdata = data.frame(time = 1:12), ratios = ratio.1:ratio.12, weights = weight.1:weight.12) fit @ To compute the credibility premiums, one has to provide the ``future'' values of the regressors as in \code{predict.lm}. <>= predict(fit, newdata = data.frame(time = 13)) @ It is well known that the basic regression model has a major drawback: there is no guarantee that the credibility regression line will lie between the collective and individual ones. This may lead to grossly inadequate premiums, as Figure~\ref{fig:state4} shows. \begin{figure}[t] \centering <>= plot(NA, xlim = c(1, 13), ylim = c(1000, 2000), xlab = "", ylab = "") x <- cbind(1, 1:12) lines(1:12, x %*% fit$means$portfolio, col = "blue", lwd = 2) lines(1:12, x %*% fit$means$state[, 4], col = "red", lwd = 2, lty = 2) lines(1:12, x %*% coefficients(fit$adj.models[[4]]), col = "darkgreen", lwd = 2, lty = 3) points(13, predict(fit, newdata = data.frame(time = 13))[4], pch = 8, col = "darkgreen") legend("bottomright", legend = c("collective", "individual", "credibility"), col = c("blue", "red", "darkgreen"), lty = 1:3) @ \caption{Collective, individual and credibility regression lines for State 4 of the Hachemeister data set. The point indicates the credibility premium.} \label{fig:state4} \end{figure} The solution proposed by \cite{Buhlmann:regression:1997} is simply to position the intercept not at time origin, but instead at the barycenter of time \citep[see also][Section~8.4]{Buhlmann_Gisler}. In mathematical terms, this essentially amounts to using an orthogonal design matrix. By setting the argument \code{adj.intercept} to \code{TRUE} in the call, \code{cm} will automatically fit the credibility regression model with the intercept at the barycenter of time. The resulting regression coefficients have little meaning, but the predictions are sensible. <>= fit2 <- cm(~state, hachemeister, regformula = ~ time, regdata = data.frame(time = 1:12), adj.intercept = TRUE, ratios = ratio.1:ratio.12, weights = weight.1:weight.12) summary(fit2, newdata = data.frame(time = 13)) @ % Figure~\ref{fig:state4:2} shows the beneficient effect of the intercept adjustment on the premium of State~4. \begin{figure}[t] \centering <>= plot(NA, xlim = c(1, 13), ylim = c(1000, 2000), xlab = "", ylab = "") x <- cbind(1, 1:12) R <- fit2$transition lines(1:12, x %*% solve(R, fit2$means$portfolio), col = "blue", lwd = 2) lines(1:12, x %*% solve(R, fit2$means$state[, 4]), col = "red", lwd = 2, lty = 2) lines(1:12, x %*% solve(R, coefficients(fit2$adj.models[[4]])), col = "darkgreen", lwd = 2, lty = 3) points(13, predict(fit2, newdata = data.frame(time = 13))[4], pch = 8, col = "darkgreen") legend("bottomright", legend = c("collective", "individual", "credibility"), col = c("blue", "red", "darkgreen"), lty = 1:3) @ \caption{Collective, individual and credibility regression lines for State 4 of the Hachemeister data set when the intercept is positioned at the barycenter of time. The point indicates the credibility premium.} \label{fig:state4:2} \end{figure} \section{Linear Bayes model} \label{sec:bayes} In the pure bayesian approach to the ratemaking problem, we assume that the observations $X_t$, $t = 1, \dots, n$, of an entity depend on its risk level $\theta$, and that this risk level is a realization of an unobservable random variable $\Theta$. The best (in the mean square sense) approximation to the unknown risk premium $\mu(\theta) = \E{X_t|\Theta = \theta}$ based on observations $X_1, \dots, X_n$ is the Bayesian premium \begin{equation*} B_{n + 1} = \E{\mu(\Theta)|X_1, \dots, X_n}. \end{equation*} It is then well known \citep{Buhlmann_Gisler,LossModels4e} that for some combinaisons of distributions, the Bayesian premium is linear and can written as a credibility premium \begin{equation*} B_{n + 1} = z \bar{X} + (1 - z) m, \end{equation*} where $m = \E{\mu(\Theta)}$ and $z = n/(n + K)$ for some constant $K$. The combinations of distributions yielding a linear Bayes premium involve members of the univariate exponential family for the distribution of $X|\Theta = \theta$ and their natural conjugate for the distribution of $\Theta$: \begin{itemize} \item $X|\Theta = \theta \sim \text{Poisson}(\theta)$, $\Theta \sim \text{Gamma}(\alpha, \lambda)$; \item $X|\Theta = \theta \sim \text{Exponential}(\theta)$, $\Theta \sim \text{Gamma}(\alpha, \lambda)$; \item $X|\Theta = \theta \sim \text{Normal}(\theta, \sigma^2_2)$, $\Theta \sim \text{Normal}(\mu, \sigma^2_1)$; \item $X|\Theta = \theta \sim \text{Bernoulli}(\theta)$, $\Theta \sim \text{Beta}(a, b)$; \item $X|\Theta = \theta \sim \text{Geometric}(\theta)$, $\Theta \sim \text{Beta}(a, b)$; \end{itemize} and the convolutions \begin{itemize} \item $X|\Theta = \theta \sim \text{Gamma}(\tau, \theta)$, $\Theta \sim \text{Gamma}(\alpha, \lambda)$; \item $X|\Theta = \theta \sim \text{Binomial}(\nu, \theta)$, $\Theta \sim \text{Beta}(a, b)$; \item $X|\Theta = \theta \sim \text{Negative Binomial}(r, \theta)$ and $\Theta \sim \text{Beta}(a, b)$. \end{itemize} \autoref{sec:formulas} provides the complete formulas for the above combinations of distributions. In addition, \citet[section~2.6]{Buhlmann_Gisler} show that if $X|\Theta = \theta \sim \text{Single Parameter Pareto}(\theta, x_0)$ and $\Theta \sim \text{Gamma}(\alpha, \lambda)$, then the Bayesian estimator of parameter $\theta$ --- not of the risk premium! --- is \begin{equation*} \hat{\Theta} = \eta \hat{\theta}^{\text{MLE}} + (1 - \eta) \frac{\alpha}{\lambda}, \end{equation*} where \begin{equation*} \hat{\theta}^{\text{MLE}} = \frac{n}{\sum_{i = 1}^n \ln (X_i/x_0)} \end{equation*} is the maximum likelihood estimator of $\theta$ and \begin{equation*} \eta = \frac{\sum_{i = 1}^n \ln (X_i/x_0)}{% \lambda + \sum_{i = 1}^n \ln (X_i/x_0)} \end{equation*} is a weight not restricted to $(0, 1)$. (See the \code{"distributions"} package vignette for details on the Single Parameter Pareto distribution.) When argument \code{formula} is \code{"bayes"}, function \code{cm} computes pure Bayesian premiums --- or estimator in the Pareto/Gamma case --- for the combinations of distributions above. We identify which by means of argument \code{likelihood} that must be one of % \code{"poisson"}, % \code{"exponential"}, % \code{"gamma"}, % \code{"normal"}, % \code{"bernoulli"}, % \code{"binomial"}, % \code{"geometric"}, % \code{"negative binomial"} or % \code{"pareto"}. % The parameters of the distribution of $X|\Theta = \theta$, if any, and those of the distribution of $\Theta$ are specified using the argument names (and default values) of \code{dgamma}, \code{dnorm}, \code{dbeta}, \code{dbinom}, \code{dnbinom} or \code{dpareto1}, as appropriate. Consider the case where \begin{align*} X|\Theta = \theta &\sim \text{Poisson}(\theta) \\ \Theta &\sim \text{Gamma}(\alpha, \lambda). \end{align*} The posterior distribution of $\Theta$ is \begin{equation*} \Theta|X_1, \dots, X_n \sim \text{Gamma} \left( \alpha + \sum_{t = 1}^n X_t, \lambda + n \right). \end{equation*} Therefore, the Bayesian premium is \begin{align*} B_{n + 1} &= \E{\mu(\Theta)|X_1, \dots, X_n} \\ &= \E{\Theta|X_1, \dots, X_n} \\ &= \frac{\alpha + \sum_{t = 1}^n X_t}{\lambda + n} \\ &= \frac{n}{n + \lambda}\, \bar{X} + \frac{\lambda}{n + \lambda} \frac{\alpha}{\lambda} \\ &= z \bar{X} + (1 - z) m, \end{align*} with $m = \E{\mu(\Theta)} = \E{\Theta} = \alpha/\lambda$ and \begin{equation*} z = \frac{n}{n + K}, \quad K = \lambda. \end{equation*} One may easily check that if $\alpha = \lambda = 3$ and $X_1 = 5, X_2 = 3, X_3 = 0, X_4 = 1, X_5 = 1$, then $B_6 = 1.625$. We obtain the same result using \code{cm}. <>= x <- c(5, 3, 0, 1, 1) fit <- cm("bayes", x, likelihood = "poisson", shape = 3, rate = 3) fit predict(fit) summary(fit) @ \appendix \section{Linear Bayes formulas} \label{sec:formulas} This appendix provides the main linear Bayes credibility results for combinations of a likelihood function member of the univariate exponential family with its natural conjugate. For each combination, we provide, other than the names of the distributions of $X|\Theta = \theta$ and $\Theta$: \begin{itemize} \item the posterior distribution $\Theta|X_1 = x_1, \dots, X_n = x_n$, always of the same type as the prior, only with updated parameters; \item the risk premium $\mu(\theta) = \E{X|\Theta = \theta}$; \item the collective premium $m = \E{\mu(\Theta)}$; \item the Bayesian premium $B_{n+1} = \E{\mu(\Theta)|X_1, \dots, X_n}$, always equal to the collective premium evaluated at the parameters of the posterior distribution; \item the credibility factor when the Bayesian premium is expressed as a credibility premium. \end{itemize} %% Compact Listes Ă  puce compactes et sans puce, justement. \begingroup \setlist[itemize]{label={},leftmargin=0pt,align=left,nosep} \subsection{Bernoulli/beta case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Bernoulli}(\theta)$ \item $\Theta \sim \text{Beta}(a, b)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Beta}(\tilde{a}, \tilde{b})$ \begin{align*} \tilde{a} &= a + \sum_{t = 1}^n x_t \\ \tilde{b} &= b + n - \sum_{t = 1}^n x_t \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \theta \end{equation*} \item Collective premium \begin{equation*} m = \frac{a}{a + b} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{a + \sum_{t = 1}^n X_t}{a + b + n} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + a + b} \end{equation*} \end{itemize} \subsection{Binomial/beta case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Binomial}(\nu, \theta)$ \item $\Theta \sim \text{Beta}(a, b)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Beta}(\tilde{a}, \tilde{b})$ \begin{align*} \tilde{a} &= a + \sum_{t = 1}^n x_t \\ \tilde{b} &= b + n \nu - \sum_{t = 1}^n x_t \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \nu \theta \end{equation*} \item Collective premium \begin{equation*} m = \frac{\nu a}{a + b} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{\nu (a + \sum_{t = 1}^n X_t)}{a + b + n \nu} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + (a + b)/\nu} \end{equation*} \end{itemize} \subsection{Geometric/Beta case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Geometric}(\theta)$ \item $\Theta \sim \text{Beta}(a, b)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Beta}(\tilde{a}, \tilde{b})$ \begin{align*} \tilde{a} &= a + n \\ \tilde{b} &= b + \sum_{t = 1}^n x_t \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \frac{1 - \theta}{\theta} \end{equation*} \item Collective premium \begin{equation*} m = \frac{b}{a - 1} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{b + \sum_{t = 1}^n X_t}{a + n - 1} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + a - 1} \end{equation*} \end{itemize} \subsection{Negative binomial/Beta case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Negative binomial}(r, \theta)$ \item $\Theta \sim \text{Beta}(a, b)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Beta}(\tilde{a}, \tilde{b})$ \begin{align*} \tilde{a} &= a + n r \\ \tilde{b} &= b + \sum_{t = 1}^n x_t \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \frac{r (1 - \theta)}{\theta} \end{equation*} \item Collective premium \begin{equation*} m = \frac{r b}{a - 1} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{r (b + \sum_{t = 1}^n X_t)}{a + n r - 1} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + (a - 1)/r} \end{equation*} \end{itemize} \subsection{Poisson/Gamma case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Poisson}(\theta)$ \item $\Theta \sim \text{Gamma}(\alpha, \lambda)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Gamma}(\tilde{\alpha}, \tilde{\lambda})$ \begin{align*} \tilde{\alpha} &= \alpha + \sum_{t = 1}^n x_t \\ \tilde{\lambda} &= \lambda + n \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \theta \end{equation*} \item Collective premium \begin{equation*} m = \frac{\alpha}{\lambda} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{\alpha + \sum_{t = 1}^n X_t}{\lambda + n} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + \lambda} \end{equation*} \end{itemize} \subsection{Exponential/Gamma case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Exponential}(\theta)$ \item $\Theta \sim \text{Gamma}(\alpha, \lambda)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Gamma}(\tilde{\alpha}, \tilde{\lambda})$ \begin{align*} \tilde{\alpha} &= \alpha + n \\ \tilde{\lambda} &= \lambda + \sum_{t = 1}^n x_t \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \frac{1}{\theta} \end{equation*} \item Collective premium \begin{equation*} m = \frac{\lambda}{\alpha - 1} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{\lambda + \sum_{t = 1}^n X_t}{\alpha + n - 1} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + \alpha - 1} \end{equation*} \end{itemize} \subsection{Gamma/Gamma case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Gamma}(\tau, \theta)$ \item $\Theta \sim \text{Gamma}(\alpha, \lambda)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Gamma}(\tilde{\alpha}, \tilde{\lambda})$ \begin{align*} \tilde{\alpha} &= \alpha + n \tau \\ \tilde{\lambda} &= \lambda + \sum_{t = 1}^n x_t \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \frac{\tau}{\theta} \end{equation*} \item Collective premium \begin{equation*} m = \frac{\tau \lambda}{\alpha - 1} \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{\tau (\lambda + \sum_{t = 1}^n X_t)}{\alpha + n \tau - 1} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + (\alpha - 1)/\tau} \end{equation*} \end{itemize} \subsection{Normal/Normal case} \begin{itemize} \item $X|\Theta = \theta \sim \text{Normal}(\theta, \sigma_2^2)$ \item $\Theta \sim \text{Normal}(\mu, \sigma_1^2)$ \item $\Theta|X_1 = x_1, \dots, X_n = x_n \sim \text{Normal}(\tilde{\mu}, \tilde{\sigma}_1^2)$ \begin{align*} \tilde{\mu} &= \frac{\sigma_1^2 \sum_{t = 1}^n x_t + \sigma_2^2 \mu}{n \sigma_1^2 + \sigma_2^2} \\ \tilde{\sigma}_1^2 &= \frac{\sigma_1^2 \sigma_2^2}{n \sigma_1^2 + \sigma_2^2} \end{align*} \item Risk premium \begin{equation*} \mu(\theta) = \theta \end{equation*} \item Collective premium \begin{equation*} m = \mu \end{equation*} \item Bayesian premium \begin{equation*} B_{n + 1} = \frac{\sigma_1^2 \sum_{t = 1}^n X_t + \sigma_2^2 \mu}{n \sigma_1^2 + \sigma_2^2} \end{equation*} \item Credibility factor \begin{equation*} z = \frac{n}{n + \sigma_2^2/\sigma_1^2} \end{equation*} \end{itemize} \endgroup \bibliography{actuar} \end{document} %%% Local Variables: %%% mode: noweb %%% TeX-master: t %%% coding: utf-8 %%% End: actuar/inst/doc/actuar.Rnw0000644000176200001440000001062514055040227015225 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage[round]{natbib} \usepackage{babel} \usepackage[scaled=0.9]{helvet} \usepackage[sc]{mathpazo} \usepackage[noae,inconsolata]{Sweave} \usepackage{framed} %\VignetteIndexEntry{Introduction to actuar} %\VignettePackage{actuar} %\SweaveUTF8 \title{Introduction to \pkg{actuar}} \author{Christophe Dutang \\ UniversitĂ© Paris Dauphine \\[3ex] Vincent Goulet \\ UniversitĂ© Laval \\[3ex] Mathieu Pigeon \\ UniversitĂ© du QuĂ©bec Ă  MontrĂ©al} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Sweave Sinput and Soutput environments reinitialized to remove %% default configuration. Space between input and output blocks also %% reduced. \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{} \fvset{listparameters={\setlength{\topsep}{0pt}}} %% Environment Schunk redefined as an hybrid of environments %% snugshade* and leftbar of framed.sty. \makeatletter \renewenvironment{Schunk}{% \setlength{\topsep}{1pt} \def\FrameCommand##1{\hskip\@totalleftmargin \vrule width 2pt\colorbox{codebg}{\hspace{3pt}##1}% % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \advance\labelsep\fboxsep \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \makeatother \newcommand{\pkg}[1]{\textbf{#1}} \bibliographystyle{plainnat} \begin{document} \maketitle \section{Introduction} \label{sec:introduction} \pkg{actuar} \citep{actuar} provides additional actuarial science functionality and support for heavy tailed distributions to the R statistical system. The project was officially launched in 2005 and is under active development. The current feature set of the package can be split into five main categories: additional probability distributions; loss distributions modeling; risk and ruin theory; simulation of compound hierarchical models; credibility theory. Furthermore, starting with version 3.0-0, \pkg{actuar} gives easy access to many of its underlying C workhorses through an API. As much as possible, the developers have tried to keep the ``user interface'' of the various functions of the package consistent. Moreover, the package follows the general R philosophy of working with model objects. This means that instead of merely returning, say, a vector of probabilities, many functions will return an object containing, among other things, the said probabilities. The object can then be manipulated at one's will using various extraction, summary or plotting functions. \section{Documentation} In addition to the help pages, \pkg{actuar} ships with extensive vignettes and demonstration scripts; run the following commands at the R prompt to obtain the list of each. <>= vignette(package = "actuar") demo(package = "actuar") @ \section{Collaboration and citation} If you use R or \pkg{actuar} for actuarial analysis, please cite the software in publications. For information on how to cite the software, use: <>= citation() citation("actuar") @ \section*{Acknowledgments} The package would not be at this stage of development without the stimulating contribution of SĂ©bastien Auclair, Christophe Dutang, Nicholas Langevin, Xavier Milhaud, Tommy Ouellet and Louis-Philippe Pouliot. This research benefited from financial support from the Natural Sciences and Engineering Research Council of Canada and from the \emph{Chaire d'actuariat} (Actuarial Science Foundation) of UniversitĂ© Laval. \bibliography{actuar} \end{document} %%% Local Variables: %%% mode: noweb %%% TeX-master: t %%% coding: utf-8 %%% End: actuar/inst/doc/simulation.R0000644000176200001440000001107614173361163015574 0ustar liggesusers### R code from vignette source 'simulation.Rnw' ################################################### ### code chunk number 1: simulation.Rnw:85-87 ################################################### library(actuar) options(width = 52, digits = 4) ################################################### ### code chunk number 2: simulation.Rnw:156-158 ################################################### rmixture(10, probs = c(2, 1), models = expression(rexp(3), rexp(7))) ################################################### ### code chunk number 3: simulation.Rnw:211-213 ################################################### rcompound(10, rpois(1.5), rgamma(3, 2)) rcomppois(10, 1.5, rgamma(3, 2)) ################################################### ### code chunk number 4: simulation.Rnw:219-220 ################################################### rcomppois(10, 1.5, rgamma(3, 2), SIMPLIFY = FALSE) ################################################### ### code chunk number 5: simulation.Rnw:252-257 ################################################### x <- rcomppois(1e5, 3.5, rmixture(probs = c(2, 1, 0.5), expression(rgamma(3), rgamma(5, 4), rlnorm(2, 1)))) ################################################### ### code chunk number 6: simulation.Rnw:263-264 ################################################### mean(x) ################################################### ### code chunk number 7: simulation.Rnw:297-298 (eval = FALSE) ################################################### ## rpois(n, rgamma(n, 3, rgamma(n, 2, 2))) ################################################### ### code chunk number 8: simulation.Rnw:470-471 ################################################### set.seed(3) ################################################### ### code chunk number 9: simulation.Rnw:473-486 ################################################### nodes <- list(cohort = 2, contract = c(4, 3), year = c(4, 4, 4, 4, 5, 5, 5)) mf <- expression(cohort = rexp(2), contract = rgamma(cohort, 1), year = rpois(weights * contract)) ms <- expression(cohort = rnorm(2, sqrt(0.1)), contract = rnorm(cohort, 1), year = rlnorm(contract, 1)) wijt <- runif(31, 0.5, 2.5) pf <- rcomphierarc(nodes = nodes, model.freq = mf, model.sev = ms, weights = wijt) ################################################### ### code chunk number 10: simulation.Rnw:493-496 ################################################### class(pf) pf$data pf$classification ################################################### ### code chunk number 11: simulation.Rnw:508-509 ################################################### pf ################################################### ### code chunk number 12: simulation.Rnw:517-519 ################################################### aggregate(pf) aggregate(pf, by = c("cohort", "year"), FUN = mean) ################################################### ### code chunk number 13: simulation.Rnw:526-528 ################################################### frequency(pf) frequency(pf, by = "cohort") ################################################### ### code chunk number 14: simulation.Rnw:544-546 ################################################### severity(pf) severity(pf, splitcol = 1) ################################################### ### code chunk number 15: simulation.Rnw:551-552 ################################################### weights(pf) ################################################### ### code chunk number 16: simulation.Rnw:557-558 ################################################### aggregate(pf, classif = FALSE) / weights(pf, classif = FALSE) ################################################### ### code chunk number 17: simulation.Rnw:586-587 ################################################### set.seed(123) ################################################### ### code chunk number 18: simulation.Rnw:589-591 ################################################### wit <- rgamma(15, rep(runif(3, 0, 100), each = 5), rep(runif(3, 0, 100), each = 5)) ################################################### ### code chunk number 19: simulation.Rnw:599-604 ################################################### frequency(rcomphierarc(list(entity = 3, year = 5), expression(entity = rgamma(rgamma(1, 5, 5), rgamma(1, 25, 1)), year = rpois(weights * entity)), weights = wit)) actuar/inst/doc/distributions.Rnw0000644000176200001440000020140714055040227016650 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage[round]{natbib} \usepackage{babel} \usepackage{microtype} \usepackage[scaled=0.92]{helvet} \usepackage[sc]{mathpazo} \usepackage[noae,inconsolata]{Sweave} \usepackage{booktabs} \usepackage[shortlabels]{enumitem} \usepackage{framed} %\VignetteIndexEntry{Additional continuous and discrete distributions} %\VignettePackage{actuar} %\SweaveUTF8 \title{Inventory of continuous and discrete distributions in \pkg{actuar}} \author{Christophe Dutang \\ UniversitĂ© Paris Dauphine \\[3ex] Vincent Goulet \\ UniversitĂ© Laval \\[3ex] Nicholas Langevin \\ UniversitĂ© Laval \\[3ex] Mathieu Pigeon \\ UniversitĂ© du QuĂ©bec Ă  MontrĂ©al} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Compact, sans label itemize environment for the appendices. \setlist[itemize]{label={},leftmargin=0pt,align=left,nosep,midpenalty=10000} %% Flush left enumerate environment. \setlist[enumerate]{leftmargin=*,align=left} %% Sweave Sinput and Soutput environments reinitialized to remove %% default configuration. Space between input and output blocks also %% reduced. \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{} \fvset{listparameters={\setlength{\topsep}{0pt}}} %% Environment Schunk redefined as an hybrid of environments %% snugshade* and leftbar of framed.sty. \makeatletter \renewenvironment{Schunk}{% \setlength{\topsep}{1pt} \def\FrameCommand##1{\hskip\@totalleftmargin \vrule width 2pt\colorbox{codebg}{\hspace{3pt}##1}% % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \advance\labelsep\fboxsep \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \makeatother %% Additional commands similar to those of RJournal.sty. \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\samp}[1]{{`\normalfont\texttt{#1}'}} \newcommand{\file}[1]{{`\normalfont\textsf{#1}'}} %% Additional math commands. \newcommand{\E}[1]{E[ #1 ]} \newcommand{\VAR}[1]{\mathrm{Var} [ #1 ]} \newcommand{\LAS}{\mathrm{LAS}} \newcommand{\mat}[1]{\mathbold{#1}} % with mathpazo \bibliographystyle{plainnat} \begin{document} \maketitle \section{Introduction} \label{sec:introduction} R includes functions to compute the probability density function (pdf) or the probability mass function (pmf), the cumulative distribution function (cdf) and the quantile function, as well as functions to generate variates from a fair number of continuous and discrete distributions. For some root \code{foo}, the support functions are named \code{dfoo}, \code{pfoo}, \code{qfoo} and \code{rfoo}, respectively. Package \pkg{actuar} provides \code{d}, \code{p}, \code{q} and \code{r} functions for a large number of continuous size distributions useful for loss severity modeling; for phase-type distributions used in computation of ruin probabilities; for zero-truncated and zero-modified extensions of the discrete distributions commonly used in loss frequency modeling; for the heavy tailed Poisson-inverse Gaussian discrete distribution. The package also introduces support functions to compute raw moments, limited moments and the moment generating function (when it exists) of continuous distributions. \section{Additional continuous size distributions} \label{sec:continuous} The package provides support functions for all the probability distributions found in Appendix~A of \citet{LossModels4e} and not already present in base R, excluding the log-$t$, but including the loggamma distribution \citep{HoggKlugman}, as well as for the Feller--Pareto distribution and related Pareto distributions with a location parameter \citep{Arnold:pareto:2ed}. These distributions mostly fall under the umbrella of extreme value or heavy tailed distributions. \autoref{tab:continuous} lists the distributions supported by \pkg{actuar} along with the root names of the R functions. \autoref{sec:app:continuous} details the formulas implemented and the name of the argument corresponding to each parameter. By default, all functions (except those for the Pareto distribution) use a rate parameter equal to the inverse of the scale parameter. This differs from \citet{LossModels4e} but is better in line with the functions for the gamma, exponential and Weibull distributions in base R. \begin{table} \centering \begin{tabular}{lll} \toprule Family & Distribution & Root \\ \midrule Feller--Pareto & Feller--Pareto & \code{fpareto} \\ & Pareto IV & \code{pareto4} \\ & Pareto III & \code{pareto3} \\ & Pareto II & \code{pareto2} \\ & Transformed beta & \code{trbeta} \\ & Burr & \code{burr} \\ & Loglogistic & \code{llogis} \\ & Paralogistic & \code{paralogis} \\ & Generalized Pareto & \code{genpareto} \\ & Pareto & \code{pareto} \\ & Single-parameter Pareto & \code{pareto1} \\ & Inverse Burr & \code{invburr} \\ & Inverse Pareto & \code{invpareto} \\ & Inverse paralogistic & \code{invparalogis} \\ \midrule Transformed gamma & Transformed gamma & \code{trgamma} \\ & Inverse transformed gamma & \code{invtrgamma} \\ & Inverse gamma & \code{invgamma} \\ & Inverse Weibull & \code{invweibull} \\ & Inverse exponential & \code{invexp} \\ \midrule Other & Loggamma & \code{lgamma} \\ & Gumbel & \code{gumbel} \\ & Inverse Gaussian & \code{invgauss} \\ & Generalized beta & \code{genbeta} \\ \bottomrule \end{tabular} \caption{Probability distributions supported by \pkg{actuar} classified by family and root names of the R functions.} \label{tab:continuous} \end{table} We mostly use the nomenclature of \citet{LossModels4e} to classify the continuous distributions supported by \pkg{actuar}. However, following \citet{Arnold:pareto:2ed}, we regroup distributions of the transformed beta family and variants of the Pareto distribution inside the larger Feller--Pareto family of distributions. \autoref{fig:diagram:fp-family} shows the relationships between the distributions of the Feller--Pareto and transformed beta families. \autoref{fig:diagram:trgamma-family} does the same for the distributions of the transformed gamma and inverse transformed gamma families. \begin{figure} \centering \setlength{\unitlength}{0.7cm} \begin{picture}(16.9,10.75)(-0.7,-0.4) \small % FlĂšches \put(8,6){\vector(2,-1){3.7}} % trbeta -> invburr \put(13,4.2){\vector(0,1){0.95}} % invburr -> invparalogis \put(11.7,3.1){\line(-1,-1){1}} \put(10.7,2.1){\line(-1,0){7.7}} \put(3,2.1){\vector(-1,-1){1.1}} % invburr -> llogis \put(13,3){\vector(0,-1){2}} % invburr -> invpareto \put(2.05,3.1){\vector(2,-1){4.2}} % burr -> pareto \put(1,3){\vector(0,-1){2}} % burr -> llogis \put(6,6){\vector(-2,-1){3.85}} % trbeta -> burr \put(1,4.2){\vector(0,1){0.95}} % burr -> paralogis \put(7,6){\vector(0,-1){1.8}} % trbeta -> genpareto \put(7,9){\vector(0,-1){1.8}} % fpareto -> trbeta \put(7,3){\vector(0,-1){2}} % genpareto -> pareto \put(8,3){\vector(2,-1){4}} % genpareto -> invpareto % \put(6,9){\vector(-2,-1){3.3}} % fpareto -> pareto3 % \put(8,9){\vector(2,-1){3.3}} % fpareto -> pareto1 \put(1,9){\vector(0,-1){1.1}} % pareto4 -> pareto3 \put(13,9){\vector(0,-1){1.1}} % pareto2 -> pareto1 \put(4.5,9.6){\vector(-1,0){1.75}} % fpareto -> pareto4 \put(9.5,9.6){\vector(1,0){1.75}} % fpareto -> pareto2 \put(14.7,9.6){\line(1,0){1.5}} % pareto2 -> pareto \put(16.2,9.6){\line(0,-1){10}} \put(16.2,-0.4){\line(-1,0){7.5}} \put(8.7,-0.4){\vector(-2,1){0.72}} \put(14.8,9.62){\makebox(0,0.5)[l]{$\mu = 0$}} \put(7,9.65){\makebox(0,0.5)[c]{Feller-Pareto}} \put(7,9.1){\makebox(0,0.5)[c]{$\mu, \alpha, \gamma, \tau, \theta$}} \put(7,9.6){\oval(5,1.2)} \put(3.2,9.65){\makebox(0,0.5)[l]{$\tau = 1$}} \put(1,9.65){\makebox(0,0.5)[c]{Pareto IV}} \put(1,9.1){\makebox(0,0.5)[c]{$\mu, \alpha, \gamma, \theta$}} \put(1,9.6){\oval(3.4,1.2)} \put(9.8,9.05){\makebox(0,0.5)[l]{$\gamma = 1$}} \put(9.8,9.65){\makebox(0,0.5)[l]{$\tau = 1$}} \put(13,9.65){\makebox(0,0.5)[c]{Pareto II}} \put(13,9.1){\makebox(0,0.5)[c]{$\mu,\alpha, \theta$}} \put(13,9.6){\oval(3.4,1.2)} \put(0.8,8.3){\makebox(0,0.5)[r]{$\alpha = 1$}} \put(1,7.35){\makebox(0,0.5)[c]{Pareto III}} \put(1,6.8){\makebox(0,0.5)[c]{$\mu, \gamma, \theta$}} \put(1,7.3){\oval(3.4,1.2)} \put(13.2,8.3){\makebox(0,0.5)[l]{$\mu = \theta$}} \put(13,7.35){\makebox(0,0.5)[c]{Pareto I}} \put(13,6.8){\makebox(0,0.5)[c]{$\alpha, \theta$}} \put(13,7.3){\oval(3.4,1.2)} \put(7.2,7.9){\makebox(0,0.5)[l]{$\mu = 0$}} \put(7,6.65){\makebox(0,0.5)[c]{Transformed Beta}} \put(7,6.1){\makebox(0,0.5)[c]{$\alpha, \gamma, \tau, \theta$}} \put(7,6.6){\oval(5,1.2)} \put(9.2,5.4){\rotatebox{-26.6}{\makebox(0,0.5)[l]{$\alpha = 1$}}} \put(13.20,3.65){\makebox(0,0.5)[c]{Inverse Burr}} \put(13.20,3.1){\makebox(0,0.5)[c]{$\gamma, \tau, \theta$}} \put(13.20,3.6){\oval(3.4,1.2)} \put(13.2,4.3){\makebox(0,0.5)[l]{$\gamma = \tau$}} \put(13.20,5.80){\makebox(0,0.5)[c]{Inverse Paralogistic}} \put(13.20,5.25){\makebox(0,0.5)[c]{$\tau, \theta$}} \put(13.20,5.75){\oval(5.4,1.2)} \put(13.2,1.9){\makebox(0,0.5)[l]{$\gamma = 1$}} \put(13.20,0.45){\makebox(0,0.5)[c]{Inverse Pareto}} \put(13.20,-0.1){\makebox(0,0.5)[c]{$\tau, \theta$}} \put(13.20,0.4){\oval(3.9,1.2)} \put(7.2,4.9){\makebox(0,0.5)[l]{$\gamma = 1$}} \put(7,3.65){\makebox(0,0.5)[c]{Generalized Pareto}} \put(7,3.1){\makebox(0,0.5)[c]{$\alpha, \tau, \theta$}} \put(7,3.6){\oval(4.9,1.2)} \put(7.2,1.25){\makebox(0,0.5)[l]{$\tau = 1$}} \put(7,0.45){\makebox(0,0.5)[c]{Pareto}} \put(7,-0.1){\makebox(0,0.5)[c]{$\alpha, \theta$}} \put(7,0.4){\oval(2.2,1.2)} \put(4.5,5.4){\rotatebox{26.6}{\makebox(0,0.5)[r]{$\tau = 1$}}} \put(1,3.65){\makebox(0,0.5)[c]{Burr}} \put(1,3.1){\makebox(0,0.5)[c]{$\alpha, \gamma, \theta$}} \put(1,3.6){\oval(2.5,1.2)} \put(0.8,4.3){\makebox(0,0.5)[r]{$\gamma = \alpha$}} \put(1,5.80){\makebox(0,0.5)[c]{Paralogistic}} \put(1,5.25){\makebox(0,0.5)[c]{$\alpha, \theta$}} \put(1,5.75){\oval(3.4,1.2)} \put(0.8,1.9){\makebox(0,0.5)[r]{$\alpha = 1$}} \put(1,0.45){\makebox(0,0.5)[c]{Loglogistic}} \put(1,-0.1){\makebox(0,0.5)[c]{$\gamma, \theta$}} \put(1,0.4){\oval(3.4,1.2)} \put(9.8,2.1){\rotatebox{-26.6}{\makebox(0,0.5)[r]{$\alpha = 1$}}} \put(4.0,2.1){\rotatebox{-26.6}{\makebox(0,0.5)[r]{$\gamma = 1$}}} \put(11.25,3.0){\rotatebox{45}{\makebox(0,0.5)[r]{$\tau = 1$}}} \end{picture} \caption{Interrelations between distributions of the Feller--Pareto family. This diagram is an extension of Figure~5.2 of \citet{LossModels4e}.} \label{fig:diagram:fp-family} \end{figure} \begin{figure} \setlength{\unitlength}{0.7cm} \begin{picture}(7.5,5.2)(-0.25,0) \small % FlĂšches \put(4,4){\vector(2,-1){1.55}} % trgamma -> weibull \put(5.55,2){\vector(-2,-1){1.55}} % weibull -> exp \put(1.55,2){\vector(2,-1){1.55}} % gamma -> exp \put(3,4){\vector(-2,-1){1.55}} % trgamma -> gamma \put(3.5,4.65){\makebox(0,0.5)[c]{Transformed gamma}} \put(3.5,4.1){\makebox(0,0.5)[c]{$\alpha, \tau, \lambda$}} \put(3.5,4.6){\oval(5,1.2)} \put(5.4,3.45){\makebox(0,0.5)[l]{$\alpha = 1$}} \put(6,2.65){\makebox(0,0.5)[c]{Weibull}} \put(6,2.1){\makebox(0,0.5)[c]{$\tau, \lambda$}} \put(6,2.6){\oval(2.5,1.2)} \put(5.4,1.35){\makebox(0,0.5)[l]{$\tau = 1$}} \put(3.5,0.65){\makebox(0,0.5)[c]{Exponential}} \put(3.5,0.1){\makebox(0,0.5)[c]{$\lambda$}} \put(3.5,0.6){\oval(3,1.2)} \put(1.6,1.35){\makebox(0,0.5)[r]{$\alpha = 1$}} \put(1,2.65){\makebox(0,0.5)[c]{Gamma}} \put(1,2.1){\makebox(0,0.5)[c]{$\alpha, \lambda$}} \put(1,2.6){\oval(2.5,1.2)} \put(1.6,3.45){\makebox(0,0.5)[r]{$\tau = 1$}} \end{picture} \hfill \begin{picture}(8.75,5.2)(-0.875,0) \small % FlĂšches \put(4,4){\vector(2,-1){1.55}} % trgamma -> weibull \put(5.55,2){\vector(-2,-1){1.55}} % weibull -> exp \put(1.55,2){\vector(2,-1){1.55}} % gamma -> exp \put(3,4){\vector(-2,-1){1.55}} % trgamma -> gamma \put(3.5,4.65){\makebox(0,0.5)[c]{Inverse transformed gamma}} \put(3.5,4.1){\makebox(0,0.5)[c]{$\alpha, \tau, \lambda$}} \put(3.5,4.6){\oval(6.5,1.2)} \put(5.4,3.45){\makebox(0,0.5)[l]{$\alpha = 1$}} \put(6,2.65){\makebox(0,0.5)[c]{Inverse Weibull}} \put(6,2.1){\makebox(0,0.5)[c]{$\tau, \lambda$}} \put(6,2.6){\oval(3.75,1.2)} \put(5.4,1.35){\makebox(0,0.5)[l]{$\tau = 1$}} \put(3.5,0.65){\makebox(0,0.5)[c]{Inverse exponential}} \put(3.5,0.1){\makebox(0,0.5)[c]{$\lambda$}} \put(3.5,0.6){\oval(4.75,1.2)} \put(1.6,1.35){\makebox(0,0.5)[r]{$\alpha = 1$}} \put(1,2.65){\makebox(0,0.5)[c]{Inverse gamma}} \put(1,2.1){\makebox(0,0.5)[c]{$\alpha, \lambda$}} \put(1,2.6){\oval(3.75,1.2)} \put(1.6,3.45){\makebox(0,0.5)[r]{$\tau = 1$}} \end{picture} \caption{Interrelations between distributions of the transformed gamma and inverse transformed gamma families. Diagrams derived from Figure~5.3 of \citet{LossModels4e}.} \label{fig:diagram:trgamma-family} \end{figure} In addition to the \code{d}, \code{p}, \code{q} and \code{r} functions, \pkg{actuar} introduces \code{m}, \code{lev} and \code{mgf} functions to compute, respectively, the theoretical raw moments \begin{equation*} m_k = \E{X^k}, \end{equation*} the theoretical limited moments \begin{equation*} \E{(X \wedge x)^k} = \E{\min(X, x)^k} \end{equation*} and the moment generating function \begin{equation*} M_X(t) = \E{e^{tX}}, \end{equation*} when it exists. Every distribution of \autoref{tab:continuous} is supported, along with the following distributions of base R: beta, exponential, chi-square, gamma, lognormal, normal (no \code{lev}), uniform and Weibull. The \code{m} and \code{lev} functions are especially useful for estimation methods based on the matching of raw or limited moments; see the \samp{lossdist} vignette for their empirical counterparts. The \code{mgf} functions come in handy to compute the adjustment coefficient in ruin theory; see the \samp{risk} vignette. \section{Phase-type distributions} \label{sec:phase-type} In addition to the 19 distributions of \autoref{tab:continuous}, the package provides support for a family of distributions deserving a separate presentation. Phase-type distributions \citep{Neuts_81} are defined as the distribution of the time until absorption of continuous time, finite state Markov processes with $m$ transient states and one absorbing state. Let \begin{equation} \label{eq:Markov-transition-matrix} \mat{Q} = \begin{bmatrix} \mat{T} & \mat{t} \\ \mat{0} & 0 \end{bmatrix} \end{equation} be the transition rates matrix (or intensity matrix) of such a process and let $(\mat{\pi}, \pi_{m + 1})$ be the initial probability vector. Here, $\mat{T}$ is an $m \times m$ non-singular matrix with $t_{ii} < 0$ for $i = 1, \dots, m$ and $t_{ij} \geq 0$ for $i \neq j$, $\mat{t} = - \mat{T} \mat{e}$ and $\mat{e}$ is a column vector with all components equal to 1. Then the cdf of the time until absorption random variable with parameters $\mat{\pi}$ and $\mat{T}$ is \begin{equation} \label{eq:cdf-phtype} F(x) = \begin{cases} \pi_{m + 1}, & x = 0, \\ 1 - \mat{\pi} e^{\mat{T} x} \mat{e}, & x > 0, \end{cases} \end{equation} where \begin{equation} \label{eq:matrix-exponential} e^{\mat{M}} = \sum_{n = 0}^\infty \frac{\mat{M}^n}{n!} \end{equation} is the matrix exponential of matrix $\mat{M}$. The exponential distribution, the Erlang (gamma with integer shape parameter) and discrete mixtures thereof are common special cases of phase-type distributions. The package provides \code{d}, \code{p}, \code{r}, \code{m} and \code{mgf} functions for phase-type distributions. The root is \code{phtype} and parameters $\mat{\pi}$ and $\mat{T}$ are named \code{prob} and \code{rates}, respectively; see also \autoref{sec:app:phase-type}. For the package, function \code{pphtype} is central to the evaluation of the ruin probabilities; see \samp{?ruin} and the \samp{risk} vignette. \section{Extensions to standard discrete distributions} \label{sec:discrete} The package introduces support functions for counting distributions commonly used in loss frequency modeling. A counting distribution is a discrete distribution defined on the non-negative integers $0, 1, 2, \dots$. Let $N$ be the counting random variable. We denote $p_k$ the probability that the random variable $N$ takes the value $k$, that is: \begin{equation*} p_k = \Pr[N = k]. \end{equation*} \citet{LossModels4e} classify counting distributions in two main classes. First, a discrete random variable is a member of the $(a, b, 0)$ class of distributions if there exists constants $a$ and $b$ such that \begin{equation*} \frac{p_k}{p_{k - 1}} = a + \frac{b}{k}, \quad k = 1, 2, \dots. \end{equation*} The probability at zero, $p_0$, is set such that $\sum_{k = 0}^\infty p_k = 1$. The members of this class are the Poisson, the binomial, the negative binomial and its special case, the geometric. These distributions are all well supported in base R with \code{d}, \code{p}, \code{q} and \code{r} functions. The second class of distributions is the $(a, b, 1)$ class. A discrete random variable is a member of the $(a, b, 1)$ class of distributions if there exists constants $a$ and $b$ such that \begin{equation*} \frac{p_k}{p_{k - 1}} = a + \frac{b}{k}, \quad k = 2, 3, \dots. \end{equation*} One will note that recursion starts at $k = 2$ for the $(a, b, 1)$ class. Therefore, the probability at zero can be any arbitrary number $0 \leq p_0 \leq 1$. Setting $p_0 = 0$ defines a subclass of so-called \emph{zero-truncated} distributions. The members of this subclass are the zero-truncated Poisson, the zero-truncated binomial, the zero-truncated negative binomial and the zero-truncated geometric. Let $p_k^T$ denote the probability mass in $k$ for a zero-truncated distribution. As above, $p_k$ denotes the probability mass for the corresponding member of the $(a, b, 0)$ class. We have \begin{equation*} p_k^T = \begin{cases} 0, & k = 0 \\ \displaystyle\frac{p_k}{1 - p_0}, & k = 1, 2, \dots. \end{cases} \end{equation*} Moreover, let $P(k)$ denotes the cumulative distribution function of a member of the $(a, b, 0)$ class. Then the cdf $P^T(k)$ of the corresponding zero-truncated distribution is \begin{equation*} P^T(k) = \frac{P(k) - P(0)}{1 - P(0)} = \frac{P(k) - p_0}{1 - p_0} \end{equation*} for all $k = 0, 1, 2, \dots$. Alternatively, the survival function $\bar{P}^T(k) = 1 - P^T(k)$ is \begin{equation*} \bar{P}^T(k) = \frac{\bar{P}(k)}{\bar{P}(0)} = \frac{\bar{P}(k)}{1 - p_0}. \end{equation*} Package \pkg{actuar} provides \code{d}, \code{p}, \code{q} and \code{r} functions for the all the zero-truncated distributions mentioned above. \autoref{tab:discrete} lists the root names of the functions; see \autoref{sec:app:discrete} for additional details. \begin{table} \centering \begin{tabular}{ll} \toprule Distribution & Root \\ \midrule Zero-truncated Poisson & \code{ztpois} \\ Zero-truncated binomial & \code{ztbinom} \\ Zero-truncated negative binomial & \code{ztnbinom} \\ Zero-truncated geometric & \code{ztgeom} \\ Logarithmic & \code{logarithmic} \\ \addlinespace[6pt] Zero-modified Poisson & \code{zmpois} \\ Zero-modified binomial & \code{zmbinom} \\ Zero-modified negative binomial & \code{zmnbinom} \\ Zero-modified geometric & \code{zmgeom} \\ Zero-modified logarithmic & \code{zmlogarithmic} \\ \bottomrule \end{tabular} \caption{Members of the $(a, b, 1)$ class of discrete distributions supported by \pkg{actuar} and root names of the R functions.} \label{tab:discrete} \end{table} An entry of \autoref*{tab:discrete} deserves a few additional words. The logarithmic (or log-series) distribution with parameter $\theta$ has pmf \begin{equation*} p_k = \frac{a \theta^x}{k}, \quad k = 1, 2, \dots, \end{equation*} with $a = -1/\log(1 - \theta)$ and for $0 \leq \theta < 1$. This is the standard parametrization in the literature \citep{Johnson:discrete:2005}. The logarithmic distribution is always defined on the strictly positive integers. As such, it is not qualified as ``zero-truncated'', but it nevertheless belongs to the $(a, b, 1)$ class of distributions, more specifically to the subclass with $p_0 = 0$. Actually, the logarithmic distribution is the limiting case of the zero-truncated negative binomial distribution with size parameter equal to zero and $\theta = 1 - p$, where $p$ is the probability of success for the zero-truncated negative binomial. Note that this differs from the presentation in \citet{LossModels4e}. Another subclass of the $(a, b, 1)$ class of distributions is obtained by setting $p_0$ to some arbitrary number $p_0^M$ subject to $0 < p_0^M \leq 1$. The members of this subclass are called \emph{zero-modified} distributions. Zero-modified distributions are discrete mixtures between a degenerate distribution at zero and the corresponding distribution from the $(a, b, 0)$ class. Let $p_k^M$ and $P^M(k)$ denote the pmf and cdf of a zero-modified distribution. Written as a mixture, the pmf is \begin{equation} \label{eq:mixture} p_k^M = \left(1 - \frac{1 - p_0^M}{1 - p_0} \right) \mathbb{1}_{\{k = 0\}} + \frac{1 - p_0^M}{1 - p_0}\, p_k. \end{equation} Alternatively, we have \begin{equation*} p_k^M = \begin{cases} p_0^M, & k = 0 \\ \displaystyle\frac{1 - p_0^M}{1 - p_0}\, p_k, & k = 1, 2, \dots \end{cases} \end{equation*} and \begin{align*} P^M(k) &= p_0^M + (1 - p_0^M) \frac{P(k) - P(0)}{1 - P(0)} \\ &= p_0^M + \frac{1 - p_0^M}{1 - p_0}\, (P(k) - p_0) \\ &= p_0^M + (1 - p_0^M)\, P^T(k) \end{align*} for all $k = 0, 1, 2, \dots$. The survival function is \begin{equation*} \bar{P}^M(k) = (1 - p_0^M)\, \frac{\bar{P}(k)}{\bar{P}(0)} = \frac{1 - p_0^M}{1 - p_0}\, \bar{P}(k) = (1 - p_0^M)\, \bar{P}^T(k). \end{equation*} Therefore, we can also write the pmf of a zero-modified distribution as a mixture of a degenerate distribution at zero and the corresponding zero-truncated distribution: \begin{equation} \label{eq:mixture:alt} p_k^M = p_0^M \mathbb{1}_{\{k = 0\}} + (1 - p_0^M)\, p_k^T. \end{equation} The members of the subclass are the zero-modified Poisson, zero-modified binomial, zero-modified negative binomial and zero-modified geometric, together with the zero-modified logarithmic as a limiting case of the zero-modified negative binomial. \autoref{tab:discrete} lists the root names of the support functions provided in \pkg{actuar}; see also \autoref{sec:app:discrete}. Quite obviously, zero-truncated distributions are zero-modified distributions with $p_0^M = 0$. However, using the dedicated functions in R will be more efficient. \section{Poisson-inverse Gaussian distribution} \label{sec:pig} The Poisson-inverse Gaussian (PIG) distribution results from the continuous mixture between a Poisson distribution and an inverse Gaussian. That is, the Poisson-inverse Gaussian is the (marginal) distribution of the random variable $X$ when the conditional random variable $X|\Lambda = \lambda$ is Poisson with parameter $\lambda$ and the random variable $\Lambda$ is inverse Gaussian distribution with parameters $\mu$ and $\phi$. The literature proposes many different expressions for the pmf of the PIG \citep{Holla:PIG:1966,Shaban:PIG:1981,Johnson:discrete:2005,LossModels4e}. Using the parametrization for the inverse Gaussian found in \autoref{sec:app:continuous}, we have: \begin{equation} \label{eq:pig:px} \begin{split} p_x &= \sqrt{\frac{2}{\pi \phi}} \frac{e^{(\phi\mu)^{-1}}}{x!} \left( \sqrt{2\phi \left( 1 + \frac{1}{2\phi\mu^2} \right)} \right)^{-(x - \frac{1}{2})} \\ &\phantom{=} \times K_{x - \frac{1}{2}} \left( \sqrt{\frac{2}{\phi}\left(1 + \frac{1}{2\phi\mu^2}\right)} \right), \end{split} \end{equation} for $x = 0, 1, \dots$, $\mu > 0$, $\phi > 0$ and where \begin{equation} \label{eq:bessel_k} K_\nu(ax) = \frac{a^{-\nu}}{2} \int_0^\infty t^{\nu - 1} e^{- z(t + at^{-1})/2} dt, \quad a^2 z > 0 \end{equation} is the modified Bessel function of the third kind \citep{Bateman:1953:2,Abramowitz:1972}. One may compute the probabilities $p_x$, $x = 0, 1, \dots$ recursively using the following equations: \begin{equation} \label{eq:pig:px:recursive} \begin{split} p_0 &= \exp\left\{ \frac{1}{\phi\mu} \left(1 - \sqrt{1 + 2\phi\mu^2}\right) \right\} \\ p_1 &= \frac{\mu}{\sqrt{1 + 2\phi\mu^2}}\, p_0 \\ p_x &= \frac{2\phi\mu^2}{1 + 2\phi\mu^2} \left( 1 - \frac{3}{2x} \right) p_{x - 1} + \frac{\mu^2}{1 + 2\phi\mu^2} \frac{1}{x(x - 1)}\, p_{x - 2}, \quad x = 2, 3, \dots. \end{split} \end{equation} The first moment of the distribution is $\mu$. The second and third central moment are, respectively, \begin{align*} \mu_2 &= \sigma^2 = \mu + \phi\mu^3 \\ \mu_3 &= \mu + 3 \phi \mu^2 \sigma^2. \end{align*} For the limiting case $\mu = \infty$, the underlying inverse Gaussian has an inverse chi-squared distribution. The latter has no finite strictly positive, integer moments and, consequently, neither does the Poisson-inverse Gaussian. See \autoref{sec:app:discrete:pig} for the formulas in this case. \section{Special integrals} \label{sec:special-integrals} Many of the cumulative distribution functions of \autoref{sec:app:continuous} are expressed in terms of the incomplete gamma function or the incomplete beta function. From a probability theory perspective, the incomplete gamma function is usually defined as \begin{equation} \label{eq:pgamma} \Gamma(\alpha; x) = \frac{1}{\Gamma(\alpha)} \int_0^x t^{\alpha - 1} e^{-t}\, dt, \quad \alpha > 0, x > 0, \end{equation} with \begin{equation*} \Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t}\, dt, \end{equation*} whereas the (regularized) incomplete beta function is defined as \begin{equation} \label{eq:pbeta} \beta(a, b; x) = \frac{1}{\beta(a, b)} \int\limits_0^x t^{a - 1} (1 - t)^{b - 1}\, dt, \quad a > 0, b > 0, 0 < x < 1, \end{equation} with \begin{equation*} \beta(a, b) = \int_0^1 t^{a - 1} (1 - t)^{b - 1}\, dt = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)}. \end{equation*} Now, there exist alternative definitions of the these functions that are valid for negative values of the parameters. \citet{LossModels4e} introduce them to extend the range of admissible values for limited expected value functions. First, following \citet[Section~6.5]{Abramowitz:1972}, we define the ``extended'' incomplete gamma function as \begin{equation} \label{eq:gammainc} G(\alpha; x) = \int_x^\infty t^{\alpha - 1} e^{-t}\, dt \end{equation} for $\alpha$ real and $x > 0$. When $\alpha > 0$, we clearly have \begin{equation} \label{eq:gammainc:apos} G(\alpha; x) = \Gamma(a) [1 - \Gamma(\alpha; x)]. \end{equation} The integral is also defined for $\alpha \le 0$. As outlined in \citet[Appendix~A]{LossModels4e}, integration by parts of \eqref{eq:gammainc} yields the relation \begin{equation*} G(\alpha; x) = -\frac{x^\alpha e^{-x}}{\alpha} + \frac{1}{\alpha} G(\alpha + 1; x). \end{equation*} This process can be repeated until $\alpha + k$ is a positive number, in which case the right hand side can be evaluated with \eqref{eq:gammainc:apos}. If $\alpha = 0, -1, -2, \dots$, this calculation requires the value of \begin{equation*} \label{eq:expint} G(0; x) = \int_x^\infty \frac{e^{-t}}{t}\, dt = E_1(x), \end{equation*} which is known in the literature as the \emph{exponential integral} \citep[Section~5.1]{Abramowitz:1972}. Second, as seen in \citet[Section~6.6]{Abramowitz:1972}, we have the following relation for the integral on the right hand side of \eqref{eq:pbeta}: \begin{equation*} \int\limits_0^x t^{a - 1} (1 - t)^{b - 1}\, dt = \frac{x^a}{a}\, F(a, 1 - b; a + 1; x), \end{equation*} where \begin{equation*} F(a, b; c; z) = \frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \sum_{k = 0}^\infty \frac{\Gamma(a + k) \Gamma(b + k)}{\Gamma(c + k)} \frac{z^k}{k!} \end{equation*} is the Gauss hypergeometric series. With the above definition, the incomplete beta function also admits negative, non integer values for parameters $a$ and $b$. Now, let \begin{equation} \label{eq:betaint} B(a, b; x) = \Gamma(a + b) \int_0^x t^{a-1} (1-t)^{b-1} dt \end{equation} for $a > 0$, $b \neq -1, -2, \dots$ and $0 < x < 1$. Again, it is clear that when $b > 0$, \begin{equation*} B(a, b; x) = \Gamma(a) \Gamma(b) \beta(a, b; x). \end{equation*} Of more interest here is the case where $b < 0$, $b \neq -1, -2, \dots$ and $a > 1 + \lfloor -b\rfloor$. Integration by parts of \eqref{eq:betaint} yields \begin{equation} \label{eq:betaint:2} \begin{split} B(a, b; x) &= \displaystyle -\Gamma(a + b) \left[ \frac{x^{a-1} (1-x)^b}{b} + \frac{(a-1) x^{a-2} (1-x)^{b+1}}{b (b+1)} \right. \\ &\phantom{=} \displaystyle\left. + \cdots + \frac{(a-1) \cdots (a-r) x^{a-r-1} (1-x)^{b+r}}{b (b+1) \cdots (b+r)} \right] \\ &\phantom{=} \displaystyle + \frac{(a-1) \cdots (a-r-1)}{b (b+1) \cdots (b+r)} \Gamma(a-r-1) \\ &\phantom{=} \times \Gamma(b+r+1) \beta(a-r-1, b+r+1; x), \end{split} \end{equation} where $r = \lfloor -b\rfloor$. For the needs of \pkg{actuar}, we dubbed \eqref{eq:betaint} the \emph{beta integral}. Package \pkg{actuar} includes a C implementation of \eqref{eq:betaint:2} and imports functionalities of package \pkg{expint} \citep{expint} to compute the incomplete gamma function \eqref{eq:gammainc} at the C level. The routines are used to evaluate the limited expected value for distributions of the Feller--Pareto and transformed gamma families. \section{Package API: accessing the C routines} \label{sec:api} The actual workhorses behind the R functions presented in this document are C routines that the package exposes to other packages through an API. The header file \file{include/actuarAPI.h} in the package installation directory contains declarations for % the continuous distributions of \autoref{sec:app:continuous}, % the phase-type distributions of \autoref{sec:app:phase-type}, % the discrete distributions of \autoref{sec:app:discrete}, % and the beta integral of \autoref{sec:special-integrals}. The prototypes of the C routines for probability distributions all follow the same pattern modeled after those of base R \citep[Chapter~6]{R-exts}. As an example, here are the prototypes for the Pareto distribution: \begin{Schunk} \begin{Sinput} double dpareto(double x, double shape, double scale, int give_log); double ppareto(double q, double shape, double scale, int lower_tail, int log_p); double qpareto(double p, double shape, double scale, int lower_tail, int log_p); double rpareto(double shape, double scale); double mpareto(double order, double shape, double scale, int give_log); double levpareto(double limit, double shape, double scale, double order, int give_log); \end{Sinput} \end{Schunk} For the beta integral \eqref{eq:betaint:2}, the frontend is a routine \code{betaint} that returns \code{NA} or \code{NaN} for out-of-range arguments, but actual computation is done by routine \code{betaint\_raw}. Both are exposed as follows in the API: \begin{Schunk} \begin{Sinput} double betaint(double x, double a, double b); double betaint_raw(double x, double a, double b, double x1m); \end{Sinput} \end{Schunk} The developer of some package \pkg{pkg} who wants to use a routine --- say \code{dpareto} --- in her code should proceed as follows. \begin{enumerate} \item Add \pkg{actuar} to the \code{Imports} and \code{LinkingTo} directives of the \file{DESCRIPTION} file of \pkg{pkg}; \item Add an entry \samp{import(actuar)} in the \file{NAMESPACE} file of \pkg{pkg}; \item Define the routine with a call to \code{R\_GetCCallable} in the initialization routine \code{R\_init\_pkg} of \pkg{pkg} \citep[Section~5.4]{R-exts}. For the current example, the file \file{src/init.c} of \pkg{pkg} would contain the following code: \begin{Schunk} \begin{Sinput} void R_init_pkg(DllInfo *dll) { R_registerRoutines( /* native routine registration */ ); pkg_dpareto = (double(*)(double,int,int)) R_GetCCallable("actuar", "dpareto"); } \end{Sinput} \end{Schunk} \item Define a native routine interface that will call \code{dpareto}, say \code{pkg\_dpareto} to avoid any name clash, in \file{src/init.c} as follows: \begin{Schunk} \begin{Sinput} double(*pkg_dpareto)(double,double,double,int); \end{Sinput} \end{Schunk} \item Declare the routine in a header file of \pkg{pkg} with the keyword \code{extern} to expose the interface to all routines of the package. In our example, file \file{src/pkg.h} would contain: \begin{Schunk} \begin{Sinput} extern double(*pkg_dpareto)(double,double,double,int); \end{Sinput} \end{Schunk} \item Include the package header file \file{pkg.h} in any C file making use of routine \code{pkg\_dpareto}. \end{enumerate} The companion package \pkg{expint} \citep{expint} ships with a complete test package implementing the above. See the vignette of the latter package for more information. \section{Implementation details} \label{sec:implementation} The cdf of the continuous distributions of \autoref{tab:continuous} use \code{pbeta} and \code{pgamma} to compute the incomplete beta and incomplete gamma functions, respectively. Functions \code{dinvgauss}, \code{pinvgauss} and \code{qinvgauss} rely on C implementations of functions of the same name from package \pkg{statmod} \citep{statmod}. The matrix exponential C routine needed in \code{dphtype} and \code{pphtype} is based on \code{expm} from package \pkg{Matrix} \citep{Matrix}. The C code to compute the beta integral \eqref{eq:betaint:2} was written by the second author. For all but the trivial input values, the pmf, cdf and quantile functions for the zero-truncated and zero-modified distributions of \autoref{tab:discrete} use the internal R functions for the corresponding standard distribution. Generation of random variates from zero-truncated distributions uses the following simple inversion algorithm on a restricted range \citep{Dalgaard:r-help:2005,Thomopoulos:2013:simulation}. Let $u$ be a random number from a uniform distribution on $(p_0, 1)$. Then $x = P^{-1}(u)$ is distributed according to the zero-truncated version of the distribution with cdf $P(k)$. For zero-modified distributions, we generate variates from the discrete mixture \eqref{eq:mixture} when $p_0^M \geq p_0$. When $p_0^M < p_0$, we can use either of two methods: \begin{enumerate} \item the classical rejection method with an envelope that differs from the target distribution only at zero (meaning that only zeros are rejected); \item generation from the discrete mixture \eqref{eq:mixture:alt} with the corresponding zero-truncated distribution (hence using the inversion method on a restricted range explained above). \end{enumerate} Which approach is faster depends on the relative speeds of the standard random generation function and the standard quantile function, and also on the proportion of zeros that are rejected using the rejection algorithm. Based on the difference $p_0 - p_0^M$, we determined (empirically) distribution-specific cutoff points between the two methods. Finally, computation of the Poisson-inverse Gaussian pmf uses the recursive equations \eqref{eq:pig:px:recursive}. Versions of \pkg{actuar} prior to 3.0-0 used the direct expression \eqref{eq:pig:px} and the C level function \code{bessel\_k} part of the R API. However, the latter overflows for large values of $\nu$ and this caused \code{NaN} results for the value of \begin{equation*} \frac{B^{-(x - \frac{1}{2})} K_{x - \frac{1}{2}}(B/\phi)}{x!} \end{equation*} and, therefore, for the Poisson-inverse Gaussian pmf. \appendix \section{Continuous distributions} \label{sec:app:continuous} This appendix gives the root name and the parameters of the R support functions for the distributions of \autoref{tab:continuous}, as well as the formulas for the pdf, the cdf, the raw moment of order $k$ and the limited moment of order $k$ using the parametrization of \citet{LossModels4e} and \citet{HoggKlugman}. In the following, $\Gamma(\alpha; x)$ is the incomplete gamma function \eqref{eq:pgamma}, $\beta(a, b; x)$ is the incomplete beta function \eqref{eq:pbeta}, $G(\alpha; x)$ is the ``extended'' incomplete gamma function \eqref{eq:gammainc}, $B(a, b; x)$ is the beta integral \eqref{eq:betaint} and $K_\nu(x)$ is the modified Bessel function of the third kind \eqref{eq:bessel_k}. Unless otherwise stated, all parameters are finite and strictly positive, and the functions are defined for $x > 0$. \subsection{Feller--Pareto family} \label{sec:app:continuous:feller-pareto} \subsubsection{Feller--Pareto} \begin{itemize} \item Root: \code{fpareto} \item Parameters: \code{min} ($-\infty < \mu < \infty$), \code{shape1} ($\alpha$), \code{shape2} ($\gamma$), \code{shape3} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\gamma u^\tau (1 - u)^\alpha}{% (x - \mu) \beta (\alpha, \tau )}, \quad u = \frac{v}{1 + v}, \quad v = \left(\frac{x - \mu}{\theta} \right)^\gamma, \quad x > \mu \\ F(x) &= \beta(\tau, \alpha; u) \\ \displaybreak[0] \E{X^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \frac{\Gamma(\tau+j/\gamma) \Gamma(\alpha-j/\gamma)}{% \Gamma(\alpha) \Gamma(\tau)}, \quad \text{integer } 0 \leq k < \alpha\gamma \\ \E{(X \wedge x)^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \frac{B(\tau+j/\gamma, \alpha-j/\gamma; u)}{% \Gamma(\alpha) \Gamma(\tau)} \\ &\phantom{=} + x^k [1 - \beta(\tau, \alpha; u)], \quad \text{integer } k \geq 0, \quad \alpha - j/\gamma \neq -1, -2, \dots \end{align*} \subsubsection{Pareto IV} \begin{itemize} \item Root: \code{pareto4} \item Parameters: \code{min} ($-\infty < \mu < \infty$), \code{shape1} ($\alpha$), \code{shape2} ($\gamma$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\alpha \gamma u^\alpha (1 - u)}{(x - \mu)}, \quad u = \frac{1}{1 + v}, \quad v = \left(\frac{x - \mu}{\theta} \right)^\gamma, \quad x > \mu \\ F(x) &= 1 - u^\alpha \\ \displaybreak[0] \E{X^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \frac{\Gamma(1+j/\gamma) \Gamma(\alpha-j/\gamma)}{% \Gamma(\alpha)}, \quad \text{integer } 0 \leq k < \alpha\gamma \\ \E{(X \wedge x)^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \frac{B(1+j/\gamma, \alpha-j/\gamma; 1-u)}{% \Gamma(\alpha)} \\ &\phantom{=} + x^k u^\alpha, \quad \text{integer } k \geq 0 \quad \alpha - j/\gamma \neq -1, -2, \dots \end{align*} \subsubsection{Pareto III} \begin{itemize} \item Root: \code{pareto3} \item Parameters: \code{min} ($-\infty < \mu < \infty$), \code{shape} ($\gamma$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\gamma u (1 - u)}{(x - \mu)}, \quad u = \frac{v}{1 + v}, \quad v = \left(\frac{x - \mu}{\theta} \right)^\gamma, \quad x > \mu \\ F(x) &= u \\ \displaybreak[0] \E{X^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \Gamma(1+j/\gamma) \Gamma(1-j/\gamma), \quad \text{integer } 0 \leq k < \gamma \\ \E{(X \wedge x)^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, B(1+j/\gamma, 1-j/\gamma; u) \\ &\phantom{=} + x^k (1 - u), \quad \text{integer } k \geq 0 \quad 1 - j/\gamma \neq -1, -2, \dots \end{align*} \subsubsection{Pareto II} \begin{itemize} \item Root: \code{pareto4} \item Parameters: \code{min} ($-\infty < \mu < \infty$), \code{shape} ($\alpha$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\alpha u^\alpha (1 - u)}{(x - \mu)}, \quad u = \frac{1}{1 + v}, \quad v = \frac{x - \mu}{\theta}, \quad x > \mu \\ F(x) &= 1 - u^\alpha \\ \displaybreak[0] \E{X^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \frac{\Gamma(1+j) \Gamma(\alpha-j)}{% \Gamma(\alpha)}, \quad \text{integer } 0 \leq k < \alpha \\ \E{(X \wedge x)^k} &= \sum_{j = 0}^k \binom{k}{j} \mu^{k - j} \theta^j\, \frac{B(1+j, \alpha-j; 1-u)}{% \Gamma(\alpha)} \\ &\phantom{=} + x^k u^\alpha, \quad \text{integer } k \geq 0 \quad \alpha - j \neq -1, -2, \dots \end{align*} \subsubsection{Transformed beta} \begin{itemize} \item Root: \code{trbeta}, \code{pearson6} \item Parameters: \code{shape1} ($\alpha$), \code{shape2} ($\gamma$), \code{shape3} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\gamma u^\tau (1 - u)^\alpha}{% x \beta (\alpha, \tau )}, \qquad u = \frac{v}{1 + v}, \qquad v = \left(\frac{x}{\theta} \right)^\gamma \\ F(x) &= \beta(\tau, \alpha; u) \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(\tau+k/\gamma) \Gamma(\alpha-k/\gamma)}{% \Gamma(\alpha) \Gamma(\tau)}, \quad -\tau\gamma < k < \alpha\gamma \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(\tau+k/\gamma, \alpha-k/\gamma; u)}{% \Gamma(\alpha) \Gamma(\tau)} \\ &\phantom{=} + x^k [1 - \beta(\tau, \alpha; u)], \quad k > -\tau\gamma \end{align*} \subsubsection{Burr} \begin{itemize} \item Root: \code{burr} \item Parameters: \code{shape1} ($\alpha$), \code{shape2} ($\gamma$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\alpha \gamma u^\alpha (1 - u)}{x}, \qquad u = \frac{1}{1 + v}, \qquad v = \left( \frac{x}{\theta} \right)^\gamma \\ F(x) &= 1 - u^\alpha \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(1+k/\gamma) \Gamma(\alpha-k/\gamma)}{% \Gamma(\alpha)}, \quad -\gamma < k < \alpha\gamma \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(1+k/\gamma, \alpha-k/\gamma; 1-u)}{% \Gamma(\alpha)} \\ &\phantom{=} + x^k u^\alpha, \quad k > -\gamma \end{align*} \subsubsection{Loglogistic} \begin{itemize} \item Root: \code{llogis} \item Parameters: \code{shape} ($\gamma$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\gamma u (1 - u)}{x}, \qquad u = \frac{v}{1 + v}, \qquad v = \left( \frac{x}{\theta} \right)^\gamma \\ F(x) &= u \\ \displaybreak[0] \E{X^k} &= \theta^k \Gamma(1+k/\gamma) \Gamma(1-k/\gamma), \quad -\gamma < k < \gamma \\ \E{(X \wedge x)^k} &= \theta^k B(1+k/\gamma, 1-k/\gamma; u) \\ &\phantom{=} + x^k (1 - u), \quad k > -\gamma \end{align*} \subsubsection{Paralogistic} \begin{itemize} \item Root: \code{paralogis} \item Parameters: \code{shape} ($\alpha$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\alpha^2 u^\alpha (1 - u)}{x}, \qquad u = \frac{1}{1 + v}, \qquad v = \left( \frac{x}{\theta} \right)^\alpha \\ F(x) &= 1 - u^\alpha \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(1+k/\alpha) \Gamma(\alpha-k/\alpha)}{% \Gamma(\alpha)}, \quad -\alpha < k < \alpha^2 \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(1+k/\alpha, \alpha-k/\alpha; 1-u)}{% \Gamma(\alpha)} \\ &\phantom{=} + x^k u^\alpha, \quad k > -\alpha \end{align*} \subsubsection{Generalized Pareto} \begin{itemize} \item Root: \code{genpareto} \item Parameters: \code{shape1} ($\alpha$), \code{shape2} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{u^\tau (1 - u)^\alpha}{x \beta (\alpha, \tau )}, \qquad u = \frac{v}{1 + v}, \qquad v = \frac{x}{\theta} \\ F(x) &= \beta(\tau, \alpha; u) \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(\tau+k) \Gamma(\alpha-k)}{% \Gamma(\alpha) \Gamma(\tau)}, \quad -\tau < k < \alpha \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(\tau+k, \alpha-k; u)}{% \Gamma(\alpha) \Gamma(\tau)} \\ &\phantom{=} + x^k [1 - \beta(\tau, \alpha; u)], \quad k > -\tau \end{align*} \subsubsection{Pareto} \begin{itemize} \item Root: \code{pareto}, \code{pareto2} \item Parameters: \code{shape} ($\alpha$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\alpha u^\alpha (1 - u)}{x}, \qquad u = \frac{1}{1 + v}, \qquad v = \frac{x}{\theta} \\ F(x) &= 1 - u^\alpha \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(1+k) \Gamma(\alpha-k)}{% \Gamma(\alpha)}, \quad -1 < k < \alpha \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(1+k, \alpha-k; 1-u)}{% \Gamma(\alpha)} \\ &\phantom{=} + x^k u^\alpha, \quad k > -1 \end{align*} \subsubsection{Single-parameter Pareto (Pareto I)} \begin{itemize} \item Root: \code{pareto1} \item Parameters: \code{shape} ($\alpha$), \code{min} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\alpha \theta^\alpha}{x^{\alpha+1}}, \quad x > \theta \\ F(x) &= 1 - \left( \frac{\theta}{x} \right)^\alpha, \quad x > \theta \\ \displaybreak[0] \E{X^k} &= \frac{\alpha \theta^k}{\alpha - k}, \quad k < \alpha \\ \E{(X \wedge x)^k} &= \frac{\alpha \theta^k}{\alpha - k} - \frac{k \theta^\alpha}{(\alpha - k) x^{\alpha-k}}, \quad x \geq \theta \end{align*} Although there appears to be two parameters, only $\alpha$ is a true parameter. The value of $\theta$ is the minimum of the distribution and is usually set in advance. \subsubsection{Inverse Burr} \begin{itemize} \item Root: \code{invburr} \item Parameters: \code{shape1} ($\tau$), \code{shape2} ($\gamma$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau \gamma u^\tau (1 - u)}{x}, \qquad u = \frac{v}{1 + v}, \qquad v = \left( \frac{x}{\theta} \right)^\gamma \\ F(x) &= u^\tau \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(\tau+k/\gamma) \Gamma(1-k/\gamma)}{% \Gamma(\tau)}, \quad -\gamma < k < \alpha\gamma \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(\tau+k/\gamma, 1-k/\gamma; u)}{% \Gamma(\tau)} \\ &\phantom{=} + x^k (1-u^\tau), \quad k > -\tau\gamma \end{align*} \subsubsection{Inverse Pareto} \begin{itemize} \item Root: \code{invpareto} \item Parameters: \code{shape} ($\tau$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau u^\tau (1 - u)}{x}, \qquad u = \frac{v}{1 + v}, \qquad v = \frac{x}{\theta} \\ F(x) &= u^\tau \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(\tau+k) \Gamma(1-k)}{% \Gamma(\tau)}, \quad -\tau < k < 1 \\ \E{(X \wedge x)^k} &= \theta^k \tau \int_0^u y^{\tau+k-1} (1 - y)^{-k}\, dy \\ &\phantom{=} + x^k (1-u^\tau), \quad k > -\tau \end{align*} \subsubsection{Inverse paralogistic} \begin{itemize} \item Root: \code{invparalogis} \item Parameters: \code{shape} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau^2 u^\tau (1 - u)}{x}, \qquad u = \frac{v}{1 + v}, \qquad v = \left(\frac{x}{\theta} \right)^\tau \\ F(x) &= u^\tau \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \Gamma(\tau+k/\tau) \Gamma(1-k/\tau)}{% \Gamma(\tau)}, \quad -\tau^2 < k < \tau \\ \E{(X \wedge x)^k} &= \frac{% \theta^k B(\tau+k/\tau, 1-k/\tau; u)}{% \Gamma(\tau)} \\ &\phantom{=} + x^k (1-u^\tau), \quad k > -\tau^2 \end{align*} \subsection{Transformed gamma family} \label{sec:app:continuous:transformed-gamma} \subsubsection{Transformed gamma} \begin{itemize} \item Root: \code{trgamma} \item Parameters: \code{shape1} ($\alpha$), \code{shape2} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau u^\alpha e^{-u}}{x \Gamma(\alpha)}, \qquad u = \left( \frac{x}{\theta} \right)^\tau \\ F(x) &= \Gamma (\alpha ; u) \\ \displaybreak[0] \E{X^k} &= \frac{\theta^k \Gamma(\alpha+k/\tau)}{\Gamma(\alpha)} \quad k > -\alpha\tau \\ \E{(X \wedge x)^k} &= \frac{\theta^k \Gamma(\alpha+k/\tau)}{\Gamma(\alpha)} \Gamma(\alpha+k/\tau; u) \\ &\phantom{=} + x^k [1 - \Gamma(\alpha; u)], \quad k > -\alpha\tau \end{align*} \subsubsection{Inverse transformed gamma} \begin{itemize} \item Root: \code{invtrgamma} \item Parameters: \code{shape1} ($\alpha$), \code{shape2} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau u^\alpha e^{-u}}{x\Gamma (\alpha)}, \qquad u = \left( \frac{\theta}{x} \right)^\tau \\ F(x) &= 1 - \Gamma (\alpha ; u) \\ \displaybreak[0] \E{X^k} &= \frac{\theta^k \Gamma(\alpha-k/\tau)}{\Gamma(\alpha)} \quad k < \alpha\tau \\ \E{(X \wedge x)^k} &= \frac{\theta^k G(\alpha-k/\tau; u)}{\Gamma(\alpha)} + x^k \Gamma(\alpha; u), \quad \text{all }k \end{align*} \subsubsection{Inverse gamma} \begin{itemize} \item Root: \code{invgamma} \item Parameters: \code{shape} ($\alpha$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{u^\alpha e^{-u}}{x\Gamma (\alpha)}, \qquad u = \frac{\theta}{x}\\ F(x) &= 1 - \Gamma (\alpha ; u) \\ \displaybreak[0] \E{X^k} &= \frac{\theta^k \Gamma(\alpha-k)}{\Gamma(\alpha)} \quad k < \alpha \\ \E{(X \wedge x)^k} &= \frac{\theta^k G(\alpha-k; u)}{\Gamma(\alpha)} + x^k \Gamma(\alpha; u), \quad \text{all }k \\ M(t) &= \frac{2}{\Gamma(\alpha)} (-\theta t)^{\alpha/2} K_\alpha(\sqrt{-4\theta t}) \end{align*} \subsubsection{Inverse Weibull} \begin{itemize} \item Root: \code{invweibull}, \code{lgompertz} \item Parameters: \code{shape} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau u e^{-u}}{x}, \qquad u = \left( \frac{\theta}{x} \right)^\tau \\ F(x) &= e^{-u} \\ \displaybreak[0] \E{X^k} &= \theta^k \Gamma(1-k/\tau) \quad k < \tau \\ \E{(X \wedge x)^k} &= \theta^k G(1-k/\tau; u) + x^k (1 - e^{-u}), \quad \text{all }k \end{align*} \subsubsection{Inverse exponential} \begin{itemize} \item Root: \code{invexp} \item Parameters: \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{u e^{-u}}{x}, \qquad u = \frac{\theta}{x} \\ F(x) &= e^{-u} \\ \displaybreak[0] \E{X^k} &= \theta^k \Gamma(1-k) \quad k < 1 \\ \E{(X \wedge x)^k} &= \theta^k G(1-k; u) + x^k (1 - e^{-u}), \quad \text{all }k \end{align*} \subsection{Other distributions} \label{sec:app:continuous:other} \subsubsection{Loggamma} \begin{itemize} \item Root: \code{lgamma} \item Parameters: \code{shapelog} ($\alpha$), \code{ratelog} ($\lambda$) \end{itemize} \begin{align*} f(x) &= \frac{\lambda^\alpha (\ln x)^{\alpha - 1}}{% x^{\lambda + 1} \Gamma(\alpha)}, \quad x > 1 \\ F(x) &= \Gamma( \alpha ; \lambda \ln x), \quad x > 1 \\ \displaybreak[0] \E{X^k} &= \left( \frac{\lambda}{\lambda - k} \right)^\alpha, \quad k < \lambda \\ \E{(X \wedge x)^k} &= \left( \frac{\lambda}{\lambda - k} \right)^\alpha \Gamma(\alpha; (\lambda - k) \ln x) \\ &\phantom{=} + x^k (1 - \Gamma(\alpha; \lambda \ln x)), \quad k < \lambda \end{align*} \subsubsection{Gumbel} \begin{itemize} \item Root: \code{gumbel} \item Parameters: \code{alpha} ($-\infty < \alpha < \infty$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{e^{-(u + e^{-u})}}{\theta}, \qquad u = \frac{x - \alpha}{\theta}, \qquad -\infty < x < \infty \\ F(x) &= \exp[-\exp(-u)] \\ \displaybreak[0] \E{X} &= \alpha + \gamma \theta, \quad \gamma \approx 0.57721566490153 \\ \VAR{X} &= \frac{\pi^2 \theta^2}{6} \\ M(t) &= e^{\alpha t} \Gamma(1 - \theta t) \end{align*} \subsubsection{Inverse Gaussian} \begin{itemize} \item Root: \code{invgauss} \item Parameters: \code{mean} ($\mu$), \code{shape} ($\lambda = 1/\phi$), \code{dispersion} ($\phi$) \end{itemize} \begin{align*} f(x) &= \left( \frac{1}{2 \pi \phi x^3} \right)^{1/2} \exp\left\{ -\frac{(x/\mu - 1)^2}{2 \phi x} \right\} \\ F(x) &= \Phi\left( \frac{x/\mu - 1}{\sqrt{\phi x}} \right) + e^{2/(\phi\mu)} \Phi\left( -\frac{x/\mu + 1}{\sqrt{\phi x}} \right) \\ \displaybreak[0] \E{X^k} &= \mu^k \sum_{i = 0}^{k - 1} \frac{(k + i - 1)!}{i! (k - i - 1)!} \left( \frac{\phi \mu}{2} \right)^{i}, \quad k = 1, 2, \dots \\ \E{X \wedge x} &= \mu \left[ \Phi\left( \frac{x/\mu - 1}{\sqrt{\phi x}} \right) - e^{2/(\phi\mu)} \Phi\left(- \frac{x/\mu + 1}{\sqrt{\phi x}} \right) \right] \\ &\phantom{=} + x (1 - F(x)) \\ M(t) &= \exp \left\{ \frac{1}{\phi \mu} \left(1 - \sqrt{1 - 2 \phi \mu^2 t}\right) \right\}, \quad t \leq \frac{1}{2 \phi \mu^2} \end{align*} \noindent% The limiting case $\mu = \infty$ is an inverse gamma distribution with $\alpha = 1/2$ and $\lambda = 2\phi$ (or inverse chi-squared). \subsubsection{Generalized beta} \begin{itemize} \item Root: \code{genbeta} \item Parameters: \code{shape1} ($a$), \code{shape2} ($b$), \code{shape3} ($\tau$), \code{rate} ($\lambda = 1/\theta$), \code{scale} ($\theta$) \end{itemize} \begin{align*} f(x) &= \frac{\tau u^a (1 - u)^{b - 1}}{x \beta (a, b)}, \qquad u = \left( \frac{x}{\theta} \right)^\tau, \qquad 0 < x < \theta \\ F(x) &= \beta (a, b ; u) \\ \displaybreak[0] \E{X^k} &= \frac{% \theta^k \beta(a+k/\tau, b)}{\beta(a, b)}, \quad k > -a\tau \\ \E{(X \wedge x)^k} &= \frac{% \theta^k \beta(a+k/\tau, b)}{\beta(a, b)} \beta(a+k/\tau, b; u) \\ &\phantom{=} + x^k [1 - \beta(a, b; u)], \quad k > -\tau\gamma \end{align*} \section{Phase-type distributions} \label{sec:app:phase-type} Consider a continuous-time Markov process with $m$ transient states and one absorbing state. Let \begin{equation*} \mat{Q} = \begin{bmatrix} \mat{T} & \mat{t} \\ \mat{0} & 0 \end{bmatrix} \end{equation*} be the transition rates matrix (or intensity matrix) of such a process and let $(\mat{\pi}, \pi_{m + 1})$ be the initial probability vector. Here, $\mat{T}$ is an $m \times m$ non-singular matrix with $t_{ii} < 0$ for $i = 1, \dots, m$ and $t_{ij} \geq 0$ for $i \neq j$; $\mat{\pi}$ is an $1 \times m$ vector of probabilities such that $\mat{\pi} \mat{e} + \pi_{m + 1} = 1$; $\mat{t} = -\mat{T} \mat{e}$; $\mat{e} = [1]_{m \times 1}$ is a column vector of ones. % \bigskip \begin{itemize} \item Root: \code{phtype} \item Parameters: \code{prob} ($\mat{\pi}_{1 \times m}$), \code{rates} ($\mat{T}_{m \times m}$) \end{itemize} \begin{align*} f(x) &= \begin{cases} 1 - \mat{\pi} \mat{e} & x = 0, \\ \mat{\pi} e^{\mat{T} x} \mat{t}, & x > 0 \end{cases} \\ F(x) &= \begin{cases} 1 - \mat{\pi} \mat{e}, & x = 0, \\ 1 - \mat{\pi} e^{\mat{T} x} \mat{e}, & x > 0 \end{cases} \\ \E{X^k} &= k! \mat{\pi} (-\mat{T})^{-k} \mat{e} \\ M(t) &= \mat{\pi} (-t \mat{I} - \mat{T})^{-1} \mat{t} + (1 - \mat{\pi} \mat{e}) \end{align*} \section{Discrete distributions} \label{sec:app:discrete} This appendix gives the root name and the parameters of the R support functions for the members of the $(a, b, 0)$ and $(a, b, 1)$ discrete distributions as defined in \citet{LossModels4e}; the values of $a$, $b$ and $p_0$ in the representation; the pmf; the relationship with other distributions, when there is one. The appendix also provides the main characteristics of the Poisson-inverse Gaussian distribution. \subsection[The (a, b, 0) class]{The $(a, b, 0)$ class} \label{sec:app:discrete:a-b-0} The distributions in this section are all supported in base R. Their pmf can be computed recursively by fixing $p_0$ to the specified value and then using $p_k = (a + b/k) p_{k - 1}$, for $k = 1, 2, \dots$. All parameters are finite. \subsubsection{Poisson} \begin{itemize} \item Root: \code{pois} \item Parameter: \code{lambda} ($\lambda \geq 0$) \end{itemize} \begin{align*} a &= 0, \qquad b = \lambda, \qquad p_0 = e^{-\lambda} \\ p_k &= \frac{e^{-\lambda} \lambda^k}{k!} \end{align*} \subsubsection{Negative binomial} \begin{itemize} \item Root: \code{nbinom} \item Parameters: \code{size} ($r \geq 0$), \code{prob} ($0 < p \leq 1$), \code{mu} ($r(1 - p)/p$) \end{itemize} \begin{align*} a &= 1 - p, \qquad b = (r - 1)(1 - p), \qquad p_0 = p^r \\ p_k &= \binom{r+k-1}{k} p^r (1 - p)^k \end{align*} \begin{itemize} \item Special case: Geometric$(p)$ when $r = 1$. \end{itemize} \subsubsection{Geometric} \begin{itemize} \item Root: \code{geom} \item Parameter: \code{prob} ($0 < p \leq 1$) \end{itemize} \begin{align*} a &= 1 - p, \qquad b = 0, \qquad p_0 = p \\ p_k &= p (1 - p)^k \end{align*} \subsubsection{Binomial} \begin{itemize} \item Root: \code{binom} \item Parameters: \code{size} ($n = 0, 1, 2, \dots$), \code{prob} ($0 \leq p \leq 1$) \end{itemize} \begin{align*} a &= -\frac{p}{1 - p}, \qquad b = \frac{(n + 1)p}{1 - p}, \qquad p_0 = (1 - p)^n \\ p_k &= \binom{n}{k} p^k (1 - p)^{n - k}, \quad k = 1, 2, \dots, n \end{align*} \begin{itemize} \item Special case: Bernoulli$(p)$ when $n = 1$. \end{itemize} \subsection[The zero-truncated (a, b, 1) class]{The zero-truncated $(a, b, 1)$ class} \label{sec:app:discrete:zt} Package \pkg{actuar} provides support for the distributions in this section. Zero-truncated distributions have probability at zero $p_0^T = 0$. Their pmf can be computed recursively by fixing $p_1$ to the value specified below and then using $p_k = (a + b/k) p_{k - 1}$, for $k = 2, 3, \dots$. The distributions are all defined on $k = 1, 2, \dots$. The limiting case of zero-truncated distributions when $p_1$ is infinite is a point mass in $k = 1$. \subsubsection{Zero-truncated Poisson} \begin{itemize} \item Root: \code{ztpois} \item Parameter: \code{lambda} ($\lambda \geq 0$) \end{itemize} \begin{align*} a &= 0, \qquad b = \lambda, \qquad p_1 = \frac{\lambda}{e^\lambda - 1} \\ p_k &= \frac{\lambda^k}{k! (e^\lambda - 1)} \end{align*} \subsubsection{Zero-truncated negative binomial} \begin{itemize} \item Root: \code{ztnbinom} \item Parameters: \code{size} ($r \geq 0$), \code{prob} ($0 < p \leq 1$) \end{itemize} \begin{align*} a &= 1 - p, \qquad b = (r - 1)(1 - p), \qquad p_1 = \frac{r p^r (1 - p)}{1 - p^r} \\ p_k &= \binom{r+k-1}{k} \frac{p^r (1 - p)^k}{1 - p^r} \end{align*} \begin{itemize} \item Special cases: Logarithmic$(1 - p)$ when $r = 0$; Zero-truncated geometric$(p)$ when $r = 1$. \end{itemize} \subsubsection{Zero-truncated geometric} \begin{itemize} \item Root: \code{ztgeom} \item Parameter: \code{prob} ($0 < p \leq 1$) \end{itemize} \begin{align*} a &= 1 - p, \qquad b = 0, \qquad p_1 = p \\ p_k &= p (1 - p)^{k - 1} \end{align*} \subsubsection{Zero-truncated binomial} \begin{itemize} \item Root: \code{ztbinom} \item Parameters: \code{size} ($n = 0, 1, 2, \dots$), \code{prob} ($0 \leq p \leq 1$) \end{itemize} \begin{align*} a &= -\frac{p}{1 - p}, \qquad b = \frac{(n + 1)p}{1 - p}, \qquad p_1 = \frac{n p (1 - p)^{n - 1}}{1 - (1 - p)^n} \\ p_k &= \binom{n}{k} \frac{p^k (1 - p)^{n - k}}{1 - (1 - p)^n}, \quad k = 1, 2, \dots, n \end{align*} \subsubsection{Logarithmic} \begin{itemize} \item Root: \code{logarithmic} \item Parameter: \code{prob} ($0 \leq p < 1$) \end{itemize} \begin{align*} a &= p, \qquad b = -p, \qquad p_1 = - \frac{p}{\log (1 - p)} \\ p_k &= - \frac{p^k}{k \log (1 - p)} \end{align*} \subsection[The zero-modified (a, b, 1) class]{The zero-modified $(a, b, 1)$ class} \label{sec:app:discrete:zm} Package \pkg{actuar} provides support for the distributions in this section. Zero-modified distributions have an arbitrary probability at zero $p_0^M \neq p_0$, where $p_0$ is the probability at zero for the corresponding member of the $(a, b, 0)$ class. Their pmf can be computed recursively by fixing $p_1$ to the value specified below and then using $p_k = (a + b/k) p_{k - 1}$, for $k = 2, 3, \dots$. The distributions are all defined on $k = 0, 1, 2, \dots$. The limiting case of zero-modified distributions when $p_1$ is infinite is a discrete mixture between a point mass in $k = 0$ (with probability $p_0^M$) and a point mass in $k = 1$ (with probability $1 - p_0^M$). \subsubsection{Zero-modified Poisson} \begin{itemize} \item Root: \code{zmpois} \item Parameters: \code{lambda} ($\lambda > 0$), \code{p0} ($0 \leq p_0^M \leq 1$) \end{itemize} \begin{align*} a &= 0, \qquad b = \lambda, \qquad p_1 = \frac{(1 - p_0^M) \lambda}{e^\lambda - 1} \\ p_k &= \frac{(1 - p_0^M) \lambda^k}{k! (e^\lambda - 1)} \end{align*} \subsubsection{Zero-modified negative binomial} \begin{itemize} \item Root: \code{zmnbinom} \item Parameters: \code{size} ($r \geq 0$), \code{prob} ($0 < p \leq 1$), \code{p0} ($0 \leq p_0^M \leq 1$) \end{itemize} \begin{align*} a &= 1 - p, \qquad b = (r - 1)(1 - p), \qquad p_1 = \frac{(1 - p_0^M) r p^r (1 - p)}{1 - p^r} \\ p_k &= \binom{r+k-1}{k} \frac{(1 - p_0^M) p^r (1 - p)^k}{1 - p^r} \end{align*} \begin{itemize} \item Special cases: Zero-modified logarithmic$(1 - p)$ when $r = 0$; Zero-modified geometric$(p)$ when $r = 1$. \end{itemize} \subsubsection{Zero-modified geometric} \begin{itemize} \item Root: \code{zmgeom} \item Parameters: \code{prob} ($0 < p \leq 1$), \code{p0} ($0 \leq p_0^M \leq 1$) \end{itemize} \begin{align*} a &= 1 - p, \qquad b = 0, \qquad p_1 = (1 - p_0^M) p \\ p_k &= (1 - p_0^M) p (1 - p)^{k - 1} \end{align*} \subsubsection{Zero-modified binomial} \begin{itemize} \item Root: \code{zmbinom} \item Parameters: \code{size} ($n = 0, 1, 2, \dots$), \code{prob} ($0 \leq p \leq 1$), \code{p0} ($0 \leq p_0^M \leq 1$) \end{itemize} \begin{align*} a &= -\frac{p}{1 - p}, \qquad b = \frac{(n + 1)p}{1 - p}, \qquad p_1^M = \frac{n (1 - p_0^M) p (1 - p)^{n - 1}}{1 - (1 - p)^n} \\ p_k &= \binom{n}{k} \frac{(1 - p_0^M) p^k (1 - p)^{n - k}}{1 - (1 - p)^n}, \quad k = 1, 2, \dots, n \end{align*} \subsubsection{Zero-modified logarithmic} \begin{itemize} \item Root: \code{zmlogarithmic} \item Parameters: \code{prob} ($0 \leq p < 1$), \code{p0} ($0 \leq p_0^M \leq 1$) \end{itemize} \begin{align*} a &= p, \qquad b = -p, \qquad p_1 = - \frac{(1 - p_0^M) p}{\log (1 - p)} \\ p_k &= - \frac{(1 - p_0^M) p^k}{k \log (1 - p)} \end{align*} \subsection{Other distribution} \label{sec:app:discrete:pig} \subsubsection{Poisson-inverse Gaussian} \begin{itemize} \item Root: \code{poisinvgauss}, \code{pig} \item Parameters: \code{mean} ($\mu > 0$), \code{shape} ($\lambda = 1/\phi$), \code{dispersion} ($\phi > 0$) \end{itemize} \begin{align*} p_x &= \sqrt{\frac{2}{\pi \phi}} \frac{e^{(\phi\mu)^{-1}}}{x!} \left( \sqrt{2\phi \left( 1 + \frac{1}{2\phi\mu^2} \right)} \right)^{-(x - \frac{1}{2})} \\ &\phantom{=} \times K_{x - 1/2} \left( \sqrt{\frac{2}{\phi}\left(1 + \frac{1}{2\phi\mu^2}\right)} \right), \quad x = 0, 1, \dots, \end{align*} \noindent% Recursively: \begin{align*} p_0 &= \exp\left\{ \frac{1}{\phi\mu} \left(1 - \sqrt{1 + 2\phi\mu^2}\right) \right\} \\ p_1 &= \frac{\mu}{\sqrt{1 + 2\phi\mu^2}}\, p_0 \\ p_x &= \frac{2\phi\mu^2}{1 + 2\phi\mu^2} \left( 1 - \frac{3}{2x} \right) p_{x - 1} + \frac{\mu^2}{1 + 2\phi\mu^2} \frac{1}{x(x - 1)}\, p_{x - 2}, \quad x = 2, 3, \dots. \end{align*} \noindent% In the limiting case $\mu = \infty$, the pmf reduces to \begin{equation*} p_x = \sqrt{\frac{2}{\pi \phi}} \frac{1}{x!} (\sqrt{2\phi})^{-(x - \frac{1}{2})} K_{x - \frac{1}{2}} (\sqrt{2/\phi}), \quad x = 0, 1, \dots \end{equation*} and the recurrence relations become \begin{align*} p_0 &= \exp\left\{-\sqrt{2/\phi}\right\} \\ p_1 &= \frac{1}{\sqrt{2\phi}}\, p_0 \\ p_x &= \left( 1 - \frac{3}{2x} \right) p_{x - 1} + \frac{1}{2\phi} \frac{1}{x(x - 1)}\, p_{x - 2}, \quad x = 2, 3, \dots. \end{align*} %% References \bibliography{actuar} \end{document} %%% Local Variables: %%% mode: noweb %%% coding: utf-8 %%% TeX-master: t %%% End: actuar/inst/doc/modeling.R0000644000176200001440000002205214173361150015176 0ustar liggesusers### R code from vignette source 'modeling.Rnw' ################################################### ### code chunk number 1: modeling.Rnw:92-94 ################################################### library(actuar) options(width = 52, digits = 4) ################################################### ### code chunk number 2: modeling.Rnw:186-189 ################################################### x <- grouped.data(Group = c(0, 25, 50, 100, 150, 250, 500), Line.1 = c(30, 31, 57, 42, 65, 84), Line.2 = c(26, 33, 31, 19, 16, 11)) ################################################### ### code chunk number 3: modeling.Rnw:193-194 ################################################### class(x) ################################################### ### code chunk number 4: modeling.Rnw:199-200 ################################################### x ################################################### ### code chunk number 5: modeling.Rnw:220-225 ################################################### y <- c( 27, 82, 115, 126, 155, 161, 243, 294, 340, 384, 457, 680, 855, 877, 974, 1193, 1340, 1884, 2558, 15743) grouped.data(y) # automatic grouped.data(y, breaks = 5) # suggested ################################################### ### code chunk number 6: modeling.Rnw:232-234 ################################################### grouped.data(y, breaks = c(0, 100, 200, 350, 750, 1200, 2500, 5000, 16000)) ################################################### ### code chunk number 7: modeling.Rnw:244-247 ################################################### x <- grouped.data(Group = c(0, 25, 50, 100, 150, 250, 500), Line.1 = c(30, 31, 57, 42, 65, 84), Line.2 = c(26, 33, 31, 19, 16, 11)) ################################################### ### code chunk number 8: modeling.Rnw:251-252 ################################################### x[, 1] # group boundaries ################################################### ### code chunk number 9: modeling.Rnw:256-257 ################################################### x[, -1] # group frequencies ################################################### ### code chunk number 10: modeling.Rnw:260-261 ################################################### x[1:3, ] # first 3 groups ################################################### ### code chunk number 11: modeling.Rnw:270-272 ################################################### x[1, 2] <- 22; x # frequency replacement x[1, c(2, 3)] <- c(22, 19); x # frequency replacement ################################################### ### code chunk number 12: modeling.Rnw:275-277 ################################################### x[1, 1] <- c(0, 20); x # boundary replacement x[c(3, 4), 1] <- c(55, 110, 160); x ################################################### ### code chunk number 13: modeling.Rnw:294-297 ################################################### mean(x) var(x) sd(x) ################################################### ### code chunk number 14: modeling.Rnw:307-308 ################################################### hist(x[, -3]) ################################################### ### code chunk number 15: modeling.Rnw:312-313 ################################################### hist(x[, -3]) ################################################### ### code chunk number 16: modeling.Rnw:323-325 ################################################### hist(y) # histogram method for individual data hist(grouped.data(y)) # histogram method for grouped data ################################################### ### code chunk number 17: modeling.Rnw:362-363 ################################################### (Fnt <- ogive(x)) ################################################### ### code chunk number 18: modeling.Rnw:368-371 ################################################### knots(Fnt) # group boundaries Fnt(knots(Fnt)) # ogive at group boundaries plot(Fnt) # plot of the ogive ################################################### ### code chunk number 19: modeling.Rnw:375-376 ################################################### plot(Fnt) ################################################### ### code chunk number 20: modeling.Rnw:387-389 ################################################### (Fnt <- ogive(y)) knots(Fnt) ################################################### ### code chunk number 21: modeling.Rnw:397-398 ################################################### Fnt <- ogive(x) ################################################### ### code chunk number 22: modeling.Rnw:400-402 ################################################### quantile(x) Fnt(quantile(x)) ################################################### ### code chunk number 23: modeling.Rnw:407-408 ################################################### summary(x) ################################################### ### code chunk number 24: modeling.Rnw:418-420 ################################################### data("dental"); dental data("gdental"); gdental ################################################### ### code chunk number 25: modeling.Rnw:429-431 ################################################### emm(dental, order = 1:3) # first three moments emm(gdental, order = 1:3) # idem ################################################### ### code chunk number 26: modeling.Rnw:439-446 ################################################### lev <- elev(dental) lev(knots(lev)) # ELEV at data points plot(lev, type = "o", pch = 19) # plot of the ELEV function lev <- elev(gdental) lev(knots(lev)) # ELEV at data points plot(lev, type = "o", pch = 19) # plot of the ELEV function ################################################### ### code chunk number 27: modeling.Rnw:450-453 ################################################### par(mfrow = c(1, 2)) plot(elev(dental), type = "o", pch = 19) plot(elev(gdental), type = "o", pch = 19) ################################################### ### code chunk number 28: modeling.Rnw:522-523 ################################################### op <- options(warn = -1) # hide warnings from mde() ################################################### ### code chunk number 29: modeling.Rnw:525-531 ################################################### mde(gdental, pexp, start = list(rate = 1/200), measure = "CvM") mde(gdental, pexp, start = list(rate = 1/200), measure = "chi-square") mde(gdental, levexp, start = list(rate = 1/200), measure = "LAS") ################################################### ### code chunk number 30: modeling.Rnw:533-534 ################################################### options(op) # restore warnings ################################################### ### code chunk number 31: modeling.Rnw:543-545 (eval = FALSE) ################################################### ## mde(gdental, ppareto, start = list(shape = 3, scale = 600), ## measure = "CvM") # no convergence ################################################### ### code chunk number 32: modeling.Rnw:547-550 ################################################### out <- try(mde(gdental, ppareto, start = list(shape = 3, scale = 600), measure = "CvM"), silent = TRUE) cat(sub(", measure", ",\n measure", out)) ################################################### ### code chunk number 33: modeling.Rnw:556-561 ################################################### pparetolog <- function(x, logshape, logscale) ppareto(x, exp(logshape), exp(logscale)) (p <- mde(gdental, pparetolog, start = list(logshape = log(3), logscale = log(600)), measure = "CvM")) ################################################### ### code chunk number 34: modeling.Rnw:564-565 ################################################### exp(p$estimate) ################################################### ### code chunk number 35: modeling.Rnw:665-672 ################################################### f <- coverage(pdf = dgamma, cdf = pgamma, deductible = 1, limit = 10) f f(0, shape = 5, rate = 1) f(5, shape = 5, rate = 1) f(9, shape = 5, rate = 1) f(12, shape = 5, rate = 1) ################################################### ### code chunk number 36: modeling.Rnw:690-693 ################################################### x <- rgamma(100, 2, 0.5) y <- pmin(x[x > 1], 9) op <- options(warn = -1) # hide warnings from fitdistr() ################################################### ### code chunk number 37: modeling.Rnw:695-697 ################################################### library(MASS) fitdistr(y, f, start = list(shape = 2, rate = 0.5)) ################################################### ### code chunk number 38: modeling.Rnw:699-700 ################################################### options(op) # restore warnings actuar/inst/doc/risk.R0000644000176200001440000002263614173361157014367 0ustar liggesusers### R code from vignette source 'risk.Rnw' ################################################### ### code chunk number 1: risk.Rnw:82-84 ################################################### library(actuar) options(width = 52, digits = 4) ################################################### ### code chunk number 2: risk.Rnw:224-250 ################################################### fu <- discretize(plnorm(x), method = "upper", from = 0, to = 5) fl <- discretize(plnorm(x), method = "lower", from = 0, to = 5) fr <- discretize(plnorm(x), method = "rounding", from = 0, to = 5) fb <- discretize(plnorm(x), method = "unbiased", from = 0, to = 5, lev = levlnorm(x)) par(mfrow = c(2, 2), c(5, 2, 4, 2)) curve(plnorm(x), from = 0, to = 5, lwd = 2, main = "Upper", ylab = "F(x)") plot(stepfun(0:4, diffinv(fu)), pch = 20, add = TRUE) curve(plnorm(x), from = 0, to = 5, lwd = 2, main = "Lower", ylab = "F(x)") plot(stepfun(0:5, diffinv(fl)), pch = 20, add = TRUE) curve(plnorm(x), from = 0, to = 5, lwd = 2, main = "Rounding", ylab = "F(x)") plot(stepfun(0:4, diffinv(fr)), pch = 20, add = TRUE) curve(plnorm(x), from = 0, to = 5, lwd = 2, main = "Unbiased", ylab = "F(x)") plot(stepfun(0:5, diffinv(fb)), pch = 20, add = TRUE) ## curve(plnorm(x), from = 0, to = 5, lwd = 2, ylab = "F(x)") ## par(col = "blue") ## plot(stepfun(0:4, diffinv(fu)), pch = 19, add = TRUE) ## par(col = "red") ## plot(stepfun(0:5, diffinv(fl)), pch = 19, add = TRUE) ## par(col = "green") ## plot(stepfun(0:4, diffinv(fr)), pch = 19, add = TRUE) ## par(col = "magenta") ## plot(stepfun(0:5, diffinv(fb)), pch = 19, add = TRUE) ## legend(3, 0.3, legend = c("upper", "lower", "rounding", "unbiased"), ## col = c("blue", "red", "green", "magenta"), lty = 1, pch = 19, ## text.col = "black") ################################################### ### code chunk number 3: risk.Rnw:264-269 (eval = FALSE) ################################################### ## fx <- discretize(pgamma(x, 2, 1), method = "upper", ## from = 0, to = 17, step = 0.5) ## fx <- discretize(pgamma(x, 2, 1), method = "unbiased", ## lev = levgamma(x, 2, 1), ## from = 0, to = 17, step = 0.5) ################################################### ### code chunk number 4: risk.Rnw:389-395 ################################################### fx <- discretize(pgamma(x, 2, 1), method = "unbiased", from = 0, to = 22, step = 0.5, lev = levgamma(x, 2, 1)) Fs <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx, lambda = 10, x.scale = 0.5) summary(Fs) # summary method ################################################### ### code chunk number 5: risk.Rnw:399-403 ################################################### Fsc <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx, lambda = 5, convolve = 1, x.scale = 0.5) summary(Fsc) # summary method ################################################### ### code chunk number 6: risk.Rnw:407-408 ################################################### knots(Fs) # support of Fs.b (knots) ################################################### ### code chunk number 7: risk.Rnw:412-413 (eval = FALSE) ################################################### ## plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 60)) ################################################### ### code chunk number 8: risk.Rnw:417-418 ################################################### plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 60)) ################################################### ### code chunk number 9: risk.Rnw:429-432 ################################################### mean(Fs) # empirical mean quantile(Fs) # quantiles quantile(Fs, 0.999) # quantiles ################################################### ### code chunk number 10: risk.Rnw:437-438 ################################################### diff(Fs) ################################################### ### code chunk number 11: risk.Rnw:460-462 ################################################### VaR(Fs) CTE(Fs) ################################################### ### code chunk number 12: risk.Rnw:470-496 ################################################### fx.u <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5, method = "upper") Fs.u <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx.u, lambda = 10, x.scale = 0.5) fx.l <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5, method = "lower") Fs.l <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx.l, lambda = 10, x.scale = 0.5) Fs.n <- aggregateDist("normal", moments = c(20, 60)) Fs.s <- aggregateDist("simulation", model.freq = expression(y = rpois(10)), model.sev = expression(y = rgamma(2, 1)), nb.simul = 10000) par(col = "black") plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 60), sub = "") par(col = "blue") plot(Fs.u, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "") par(col = "red") plot(Fs.l, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "") par(col = "green") plot(Fs.s, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "") par(col = "magenta") plot(Fs.n, add = TRUE, sub = "") legend(30, 0.4, c("recursive + unbiased", "recursive + upper", "recursive + lower", "simulation", "normal approximation"), col = c("black", "blue", "red", "green", "magenta"), lty = 1, text.col = "black") ################################################### ### code chunk number 13: risk.Rnw:587-589 ################################################### adjCoef(mgf.claim = mgfexp(x), mgf.wait = mgfexp(x, 2), premium.rate = 2.4, upper = 1) ################################################### ### code chunk number 14: risk.Rnw:619-625 ################################################### mgfx <- function(x, y) mgfexp(x * y) p <- function(x) 2.6 * x - 0.2 rho <- adjCoef(mgfx, mgfexp(x, 2), premium = p, upper = 1, reins = "prop", from = 0, to = 1) rho(c(0.75, 0.8, 0.9, 1)) plot(rho) ################################################### ### code chunk number 15: risk.Rnw:630-631 ################################################### plot(rho) ################################################### ### code chunk number 16: risk.Rnw:731-735 ################################################### psi <- ruin(claims = "e", par.claims = list(rate = 5), wait = "e", par.wait = list(rate = 3)) psi psi(0:10) ################################################### ### code chunk number 17: risk.Rnw:740-741 ################################################### op <- options(width=50) ################################################### ### code chunk number 18: risk.Rnw:743-747 ################################################### ruin(claims = "e", par.claims = list(rate = c(3, 7), weights = 0.5), wait = "e", par.wait = list(rate = 3)) ################################################### ### code chunk number 19: risk.Rnw:753-759 ################################################### prob <- c(0.5614, 0.4386) rates <- matrix(c(-8.64, 0.101, 1.997, -1.095), 2, 2) ruin(claims = "p", par.claims = list(prob = prob, rates = rates), wait = "e", par.wait = list(rate = c(5, 1), weights = c(0.4, 0.6))) ################################################### ### code chunk number 20: risk.Rnw:765-771 ################################################### psi <- ruin(claims = "p", par.claims = list(prob = prob, rates = rates), wait = "e", par.wait = list(rate = c(5, 1), weights = c(0.4, 0.6))) plot(psi, from = 0, to = 50) ################################################### ### code chunk number 21: risk.Rnw:773-774 ################################################### options(op) ################################################### ### code chunk number 22: risk.Rnw:779-780 ################################################### plot(psi, from = 0, to = 50) ################################################### ### code chunk number 23: risk.Rnw:849-859 ################################################### f.L <- discretize(ppareto(x, 4, 4), from = 0, to = 200, step = 1, method = "lower") f.U <- discretize(ppareto(x, 4, 4), from = 0, to = 200, step = 1, method = "upper") F.L <- aggregateDist(method = "recursive", model.freq = "geometric", model.sev = f.L, prob = 1/6) F.U <- aggregateDist(method = "recursive", model.freq = "geometric", model.sev = f.U, prob = 1/6) ################################################### ### code chunk number 24: risk.Rnw:865-871 ################################################### psi.L <- function(u) 1 - F.U(u) psi.U <- function(u) 1 - F.L(u) u <- seq(0, 50, by = 5) cbind(lower = psi.L(u), upper = psi.U(u)) curve(psi.L, from = 0, to = 100, col = "blue") curve(psi.U, add = TRUE, col = "green") ################################################### ### code chunk number 25: risk.Rnw:876-878 ################################################### curve(psi.L, from = 0, to = 100, col = "blue") curve(psi.U, add = TRUE, col = "green") actuar/inst/doc/modeling.Rnw0000644000176200001440000005761714125442656015572 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath,amsthm} \usepackage[round]{natbib} \usepackage{babel} \usepackage[autolanguage]{numprint} \usepackage[scaled=0.9]{helvet} \usepackage[sc]{mathpazo} \usepackage{booktabs} \usepackage[shortlabels]{enumitem} \usepackage[noae,inconsolata]{Sweave} \usepackage{framed} %\VignetteIndexEntry{Loss distributions modeling} %\VignettePackage{actuar} %\SweaveUTF8 \title{Loss modeling features of \pkg{actuar}} \author{Christophe Dutang \\ UniversitĂ© Paris Dauphine \\[3ex] Vincent Goulet \\ UniversitĂ© Laval \\[3ex] Mathieu Pigeon \\ UniversitĂ© du QuĂ©bec Ă  MontrĂ©al} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Help for \autoref \def\exampleautorefname{example} %% Sweave Sinput and Soutput environments reinitialized to remove %% default configuration. Space between input and output blocks also %% reduced. \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{} \fvset{listparameters={\setlength{\topsep}{0pt}}} %% Environment Schunk redefined as an hybrid of environments %% snugshade* and leftbar of framed.sty. \makeatletter \renewenvironment{Schunk}{% \setlength{\topsep}{1pt} \def\FrameCommand##1{\hskip\@totalleftmargin \vrule width 2pt\colorbox{codebg}{\hspace{3pt}##1}% % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \advance\labelsep\fboxsep \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \makeatother %% Flush left enumerate environment. \setlist[enumerate]{leftmargin=*,align=left} %% Example environment \theoremstyle{definition} \newtheorem{example}{Example} \theoremstyle{remark} \newtheorem{rem}{Remark} %% Some new commands \newcommand{\E}[1]{E[ #1 ]} \newcommand{\VAR}[1]{\mathrm{Var} [ #1 ]} \newcommand{\LAS}{\mathrm{LAS}} \newcommand{\mat}[1]{\mathbold{#1}} % with mathpazo \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\code}[1]{\texttt{#1}} \bibliographystyle{plainnat} <>= library(actuar) options(width = 52, digits = 4) @ \begin{document} \maketitle \section{Introduction} \label{sec:introduction} One important task of actuaries is the modeling of claim amount and claim count distributions for ratemaking, loss reserving or other risk evaluation purposes. Package \pkg{actuar} features many support functions for loss distributions modeling: \begin{enumerate} \item support for heavy tail continuous distributions useful in loss severity modeling; \item support for phase-type distributions for ruin theory; \item functions to compute raw moments, limited moments and the moment generating function (when it exists) of continuous distributions; \item support for zero-truncated and zero-modified extensions of the discrete distributions commonly used in loss frequency modeling; \item extensive support of grouped data; \item functions to compute empirical raw and limited moments; \item support for minimum distance estimation using three different measures; \item treatment of coverage modifications (deductibles, limits, inflation, coinsurance). \end{enumerate} Vignette \code{"distributions"} covers the points 1--4 above in great detail. This document concentrates on points 5--8. \section{Grouped data} \label{sec:grouped-data} Grouped data is data represented in an interval-frequency manner. Typically, a grouped data set will report that there were $n_j$ claims in the interval $(c_{j - 1}, c_j]$, $j = 1, \dots, r$ (with the possibility that $c_r = \infty$). This representation is much more compact than an individual data set --- where the value of each claim is known --- but it also carries far less information. Now that storage space in computers has essentially become a non issue, grouped data has somewhat fallen out of fashion. Still, grouped data remains useful as a means to represent data, if only graphically --- for example, a histogram is nothing but a density approximation for grouped data. Moreover, various parameter estimation techniques rely on grouped data. For these reasons, \pkg{actuar} provides facilities to store, manipulate and summarize grouped data. A standard storage method is needed since there are many ways to represent grouped data in the computer: using a list or a matrix, aligning $n_j$ with $c_{j - 1}$ or with $c_j$, omitting $c_0$ or not, etc. With appropriate extraction, replacement and summary methods, manipulation of grouped data becomes similar to that of individual data. Function \code{grouped.data} creates a grouped data object similar to --- and inheriting from --- a data frame. The function accepts two types of input: \begin{enumerate} \item a vector of group boundaries $c_0, c_1, \dots, c_r$ and one or more vectors of group frequencies $n_1, \dots, n_r$ (note that there should be one more group boundary than group frequencies); \item individual data $x_1, \dots, x_n$ and either a vector of breakpoints $c_1, \dots, c_r$, a number $r$ of breakpoints or an algorithm to determine the latter. \end{enumerate} In the second case, \code{grouped.data} will group the individual data using function \code{hist}. The function always assumes that the intervals are contiguous. \begin{example} \label{ex:grouped.data-1} Consider the following already grouped data set: \begin{center} \begin{tabular}{lcc} \toprule Group & Frequency (Line 1) & Frequency (Line 2) \\ \midrule $(0, 25]$ & 30 & 26 \\ $(25, 50]$ & 31 & 33 \\ $(50, 100]$ & 57 & 31 \\ $(100, 150]$ & 42 & 19 \\ $(150, 250]$ & 65 & 16 \\ $(250, 500]$ & 84 & 11 \\ \bottomrule \end{tabular} \end{center} We can conveniently and unambiguously store this data set in R as follows: <>= x <- grouped.data(Group = c(0, 25, 50, 100, 150, 250, 500), Line.1 = c(30, 31, 57, 42, 65, 84), Line.2 = c(26, 33, 31, 19, 16, 11)) @ Internally, object \code{x} is a list with class <>= class(x) @ The package provides a suitable \code{print} method to display grouped data objects in an intuitive manner: <>= x @ \qed \end{example} \begin{example} \label{ex:grouped.data-2} Consider Data Set~B of \citet[Table~11.2]{LossModels4e}: \begin{center} \begin{tabular}{*{10}{r}} 27 & 82 & 115 & 126 & 155 & 161 & 243 & 294 & 340 & 384 \\ 457 & 680 & 855 & 877 & 974 & \numprint{1193} & \numprint{1340} & \numprint{1884} & \numprint{2558} & \numprint{15743} \end{tabular} \end{center} We can represent this data set as grouped data using either an automatic or a suggested number of groups (see \code{?hist} for details): <>= y <- c( 27, 82, 115, 126, 155, 161, 243, 294, 340, 384, 457, 680, 855, 877, 974, 1193, 1340, 1884, 2558, 15743) grouped.data(y) # automatic grouped.data(y, breaks = 5) # suggested @ The above grouping methods use equi-spaced breaks. This is rarely appropriate for heavily skewed insurance data. For this reason, \code{grouped.data} also supports specified breakpoints (or group boundaries): <>= grouped.data(y, breaks = c(0, 100, 200, 350, 750, 1200, 2500, 5000, 16000)) @ \qed \end{example} The package supports the most common extraction and replacement methods for \code{"grouped.data"} objects using the usual \code{[} and \code{[<-} operators. In particular, the following extraction operations are supported. (In the following, object \code{x} is the grouped data object of \autoref{ex:grouped.data-1}.) <>= x <- grouped.data(Group = c(0, 25, 50, 100, 150, 250, 500), Line.1 = c(30, 31, 57, 42, 65, 84), Line.2 = c(26, 33, 31, 19, 16, 11)) @ \begin{enumerate}[i)] \item Extraction of the vector of group boundaries (the first column): <>= x[, 1] # group boundaries @ \item Extraction of the vector or matrix of group frequencies (the second and third columns): <>= x[, -1] # group frequencies @ \item Extraction of a subset of the whole object (first three lines): <>= x[1:3, ] # first 3 groups @ \end{enumerate} Notice how extraction results in a simple vector or matrix if either of the group boundaries or the group frequencies are dropped. As for replacement operations, the package implements the following. \begin{enumerate}[i)] \item Replacement of one or more group frequencies: <>= x[1, 2] <- 22; x # frequency replacement x[1, c(2, 3)] <- c(22, 19); x # frequency replacement @ \item Replacement of the boundaries of one or more groups: <>= x[1, 1] <- c(0, 20); x # boundary replacement x[c(3, 4), 1] <- c(55, 110, 160); x @ \end{enumerate} It is not possible to replace the boundaries and the frequencies simultaneously. The mean of grouped data is \begin{equation} \hat{\mu} = \frac{1}{n} \sum_{j = 1}^r a_j n_j, \end{equation} where $a_j = (c_{j - 1} + c_j)/2$ is the midpoint of the $j$th interval, and $n = \sum_{j = 1}^r n_j$, whereas the variance is \begin{equation} \frac{1}{n} \sum_{j = 1}^r n_j (a_j - \hat{\mu})^2. \end{equation} The standard deviation is the square root of the variance. The package defines methods to easily compute the above descriptive statistics: <>= mean(x) var(x) sd(x) @ Higher empirical moments can be computed with \code{emm}; see \autoref{sec:empirical-moments}. The R function \code{hist} splits individual data into groups and draws an histogram of the frequency distribution. The package introduces a method for already grouped data. Only the first frequencies column is considered (see \autoref{fig:histogram} for the resulting graph): <>= hist(x[, -3]) @ \begin{figure}[t] \centering <>= hist(x[, -3]) @ \caption{Histogram of a grouped data object} \label{fig:histogram} \end{figure} \begin{rem} One will note that for an individual data set like \code{y} of \autoref{ex:grouped.data-2}, the following two expressions yield the same result: <>= hist(y) # histogram method for individual data hist(grouped.data(y)) # histogram method for grouped data @ \end{rem} R has a function \code{ecdf} to compute the empirical cdf $F_n(x)$ of an individual data set: \begin{equation} \label{eq:ecdf} F_n(x) = \frac{1}{n} \sum_{j = 1}^n I\{x_j \leq x\}, \end{equation} where $I\{\mathcal{A}\} = 1$ if $\mathcal{A}$ is true and $I\{\mathcal{A}\} = 0$ otherwise. The function returns a \code{"function"} object to compute the value of $F_n(x)$ in any $x$. The approximation of the empirical cdf for grouped data is called an ogive \citep{LossModels4e,HoggKlugman}. It is obtained by joining the known values of $F_n(x)$ at group boundaries with straight line segments: \begin{equation} \tilde{F}_n(x) = \begin{cases} 0, & x \leq c_0 \\ \dfrac{(c_j - x) F_n(c_{j-1}) + (x - c_{j-1}) F_n(c_j)}{% c_j - c_{j - 1}}, & c_{j-1} < x \leq c_j \\ 1, & x > c_r. \end{cases} \end{equation} The package includes a generic function \code{ogive} with methods for individual and for grouped data. The function behaves exactly like \code{ecdf}. \begin{example} \label{ex:ogive} Consider first the grouped data set of \autoref{ex:grouped.data-1}. Function \code{ogive} returns a function to compute the ogive $\tilde{F}_n(x)$ in any point: <>= (Fnt <- ogive(x)) @ Methods for functions \code{knots} and \code{plot} allow, respectively, to obtain the knots $c_0, c_1, \dots, c_r$ of the ogive and to draw a graph (see \autoref{fig:ogive}): <>= knots(Fnt) # group boundaries Fnt(knots(Fnt)) # ogive at group boundaries plot(Fnt) # plot of the ogive @ \begin{figure}[t] \centering <>= plot(Fnt) @ \caption{Ogive of a grouped data object} \label{fig:ogive} \end{figure} To add further symmetry between functions \code{hist} and \code{ogive}, the latter also accepts in argument a vector individual data. It will call \code{grouped.data} and then computes the ogive. (Below, \code{y} is the individual data set of \autoref{ex:grouped.data-2}.) <>= (Fnt <- ogive(y)) knots(Fnt) @ \qed \end{example} A method of function \code{quantile} for grouped data objects returns linearly smoothed quantiles, that is, the inverse of the ogive evaluated at various points: <>= Fnt <- ogive(x) @ <>= quantile(x) Fnt(quantile(x)) @ Finally, a \code{summary} method for grouped data objects returns the quantiles and the mean, as is usual for individual data: <>= summary(x) @ \section{Data sets} \label{sec:data-sets} This is certainly not the most spectacular feature of \pkg{actuar}, but it remains useful for illustrations and examples: the package includes the individual dental claims and grouped dental claims data of \cite{LossModels4e}: <>= data("dental"); dental data("gdental"); gdental @ \section{Calculation of empirical moments} \label{sec:empirical-moments} The package provides two functions useful for estimation based on moments. First, function \code{emm} computes the $k$th empirical moment of a sample, whether in individual or grouped data form: <>= emm(dental, order = 1:3) # first three moments emm(gdental, order = 1:3) # idem @ Second, in the same spirit as \code{ecdf} and \code{ogive}, function \code{elev} returns a function to compute the empirical limited expected value --- or first limited moment --- of a sample for any limit. Again, there are methods for individual and grouped data (see \autoref{fig:elev} for the graphs): <>= lev <- elev(dental) lev(knots(lev)) # ELEV at data points plot(lev, type = "o", pch = 19) # plot of the ELEV function lev <- elev(gdental) lev(knots(lev)) # ELEV at data points plot(lev, type = "o", pch = 19) # plot of the ELEV function @ \begin{figure}[t] \centering <>= par(mfrow = c(1, 2)) plot(elev(dental), type = "o", pch = 19) plot(elev(gdental), type = "o", pch = 19) @ \caption{Empirical limited expected value function of an individual data object (left) and a grouped data object (right)} \label{fig:elev} \end{figure} \section{Minimum distance estimation} \label{sec:minimum-distance} Two methods are widely used by actuaries to fit models to data: maximum likelihood and minimum distance. The first technique applied to individual data is well covered by function \code{fitdistr} of the package \pkg{MASS} \citep{MASS}. The second technique minimizes a chosen distance function between theoretical and empirical distributions. Package \pkg{actuar} provides function \code{mde}, very similar in usage and inner working to \code{fitdistr}, to fit models according to any of the following three distance minimization methods. \begin{enumerate} \item The CramĂ©r-von~Mises method (\code{CvM}) minimizes the squared difference between the theoretical cdf and the empirical cdf or ogive at their knots: \begin{equation} d(\theta) = \sum_{j = 1}^n w_j [F(x_j; \theta) - F_n(x_j; \theta)]^2 \end{equation} for individual data and \begin{equation} d(\theta) = \sum_{j = 1}^r w_j [F(c_j; \theta) - \tilde{F}_n(c_j; \theta)]^2 \end{equation} for grouped data. Here, $F(x)$ is the theoretical cdf of a parametric family, $F_n(x)$ is the empirical cdf, $\tilde{F}_n(x)$ is the ogive and $w_1 \geq 0, w_2 \geq 0, \dots$ are arbitrary weights (defaulting to $1$). \item The modified chi-square method (\code{chi-square}) applies to grouped data only and minimizes the squared difference between the expected and observed frequency within each group: \begin{equation} d(\theta) = \sum_{j = 1}^r w_j [n (F(c_j; \theta) - F(c_{j - 1}; \theta)) - n_j]^2, \end{equation} where $n = \sum_{j = 1}^r n_j$. By default, $w_j = n_j^{-1}$. \item The layer average severity method (\code{LAS}) applies to grouped data only and minimizes the squared difference between the theoretical and empirical limited expected value within each group: \begin{equation} d(\theta) = \sum_{j = 1}^r w_j [\LAS(c_{j - 1}, c_j; \theta) - \tilde{\LAS}_n(c_{j - 1}, c_j; \theta)]^2, \end{equation} where $\LAS(x, y) = \E{X \wedge y} - \E{X \wedge x}$, % $\tilde{\LAS}_n(x, y) = \tilde{E}_n[X \wedge y] - \tilde{E}_n[X \wedge x]$ and $\tilde{E}_n[X \wedge x]$ is the empirical limited expected value for grouped data. \end{enumerate} The arguments of \code{mde} are a data set, a function to compute $F(x)$ or $\E{X \wedge x}$, starting values for the optimization procedure and the name of the method to use. The empirical functions are computed with \code{ecdf}, \code{ogive} or \code{elev}. \begin{example} \label{ex:mde} The expressions below fit an exponential distribution to the grouped dental data set, as per example~2.21 of \cite{LossModels}: <>= op <- options(warn = -1) # hide warnings from mde() @ <>= mde(gdental, pexp, start = list(rate = 1/200), measure = "CvM") mde(gdental, pexp, start = list(rate = 1/200), measure = "chi-square") mde(gdental, levexp, start = list(rate = 1/200), measure = "LAS") @ <>= options(op) # restore warnings @ \qed \end{example} It should be noted that optimization is not always as simple to achieve as in \autoref{ex:mde}. For example, consider the problem of fitting a Pareto distribution to the same data set using the CramĂ©r--von~Mises method: <>= mde(gdental, ppareto, start = list(shape = 3, scale = 600), measure = "CvM") # no convergence @ <>= out <- try(mde(gdental, ppareto, start = list(shape = 3, scale = 600), measure = "CvM"), silent = TRUE) cat(sub(", measure", ",\n measure", out)) @ Working in the log of the parameters often solves the problem since the optimization routine can then flawlessly work with negative parameter values: <>= pparetolog <- function(x, logshape, logscale) ppareto(x, exp(logshape), exp(logscale)) (p <- mde(gdental, pparetolog, start = list(logshape = log(3), logscale = log(600)), measure = "CvM")) @ The actual estimators of the parameters are obtained with <>= exp(p$estimate) @ %$ This procedure may introduce additional bias in the estimators, though. \section{Coverage modifications} \label{sec:coverage} Let $X$ be the random variable of the actual claim amount for an insurance policy, $Y^L$ be the random variable of the amount paid per loss and $Y^P$ be the random variable of the amount paid per payment. The terminology for the last two random variables refers to whether or not the insurer knows that a loss occurred. Now, the random variables $X$, $Y^L$ and $Y^P$ will differ if any of the following coverage modifications are present for the policy: an ordinary or a franchise deductible, a limit, coinsurance or inflation adjustment \cite[see][chapter~8 for precise definitions of these terms]{LossModels4e}. \autoref{tab:coverage} summarizes the definitions of $Y^L$ and $Y^P$. \begin{table} \centering \begin{tabular}{lll} \toprule Coverage modification & Per-loss variable ($Y^L$) & Per-payment variable ($Y^P$)\\ \midrule Ordinary deductible ($d$) & $\begin{cases} 0, & X \leq d \\ X - d, & X > d \end{cases}$ & $\begin{cases} X - d, & X > d \end{cases}$ \medskip \\ Franchise deductible ($d$) & $\begin{cases} 0, & X \leq d \\ X, & X > d \end{cases}$ & $\begin{cases} X, & X > d \end{cases} $ \medskip \\ Limit ($u$) & $\begin{cases} X, & X \leq u \\ u, & X > u \end{cases}$ & $\begin{cases} X, & X \leq u \\ u, & X > u \end{cases}$ \bigskip \\ Coinsurance ($\alpha$) & $\alpha X$ & $\alpha X$ \medskip \\ Inflation ($r$) & $(1 + r)X$ & $(1 + r)X$ \\ \bottomrule \end{tabular} \caption{Coverage modifications for per-loss variable ($Y^L$) and per-payment variable ($Y^P$) as defined in \cite{LossModels4e}.} \label{tab:coverage} \end{table} Often, one will want to use data $Y^P_1, \dots, Y^P_n$ (or $Y^L_1, \dots, Y^L_n$) from the random variable $Y^P$ ($Y^L$) to fit a model on the unobservable random variable $X$. This requires expressing the pdf or cdf of $Y^P$ ($Y^L$) in terms of the pdf or cdf of $X$. Function \code{coverage} of \pkg{actuar} does just that: given a pdf or cdf and any combination of the coverage modifications mentioned above, \code{coverage} returns a function object to compute the pdf or cdf of the modified random variable. The function can then be used in modeling like any other \code{dfoo} or \code{pfoo} function. \begin{example} \label{ex:coverage} Let $Y^P$ represent the amount paid by an insurer for a policy with an ordinary deductible $d$ and a limit $u - d$ (or maximum covered loss of $u$). Then the definition of $Y^P$ is \begin{equation} Y^P = \begin{cases} X - d, & d \leq X \leq u \\ u - d, & X \geq u \end{cases} \end{equation} and its pdf is \begin{equation} \label{eq:pdf-YP} f_{Y^P}(y) = \begin{cases} 0, & y = 0 \\ \dfrac{f_X(y + d)}{1 - F_X(d)}, & 0 < y < u - d \\ \dfrac{1 - F_X(u)}{1 - F_X(d)}, & y = u - d \\ 0, & y > u - d. \end{cases} \end{equation} Assume $X$ has a gamma distribution. Then an R function to compute the pdf \eqref{eq:pdf-YP} in any $y$ for a deductible $d = 1$ and a limit $u = 10$ is obtained with \code{coverage} as follows: <>= f <- coverage(pdf = dgamma, cdf = pgamma, deductible = 1, limit = 10) f f(0, shape = 5, rate = 1) f(5, shape = 5, rate = 1) f(9, shape = 5, rate = 1) f(12, shape = 5, rate = 1) @ \qed \end{example} Note how function \code{f} in the previous example is built specifically for the coverage modifications submitted and contains as little useless code as possible. The function returned by \code{coverage} may be used for various purposes, most notably parameter estimation, as the following example illustrates. \begin{example} Let object \code{y} contain a sample of claims amounts from policies with the deductible and limit of \autoref{ex:coverage}. One can fit a gamma distribution by maximum likelihood to the claim severity distribution as follows: <>= x <- rgamma(100, 2, 0.5) y <- pmin(x[x > 1], 9) op <- options(warn = -1) # hide warnings from fitdistr() @ <>= library(MASS) fitdistr(y, f, start = list(shape = 2, rate = 0.5)) @ <>= options(op) # restore warnings @ \qed \end{example} Vignette \code{"coverage"} contains more detailed formulas for the pdf and the cdf under various combinations of coverage modifications. \bibliography{actuar} \end{document} %%% Local Variables: %%% mode: noweb %%% TeX-master: t %%% coding: utf-8 %%% End: actuar/inst/doc/credibility.pdf0000644000176200001440000051072214173361133016262 0ustar liggesusers%PDF-1.5 %ĐÔĆŰ 69 0 obj << /Length 1568 /Filter /FlateDecode >> stream xÚ„WKÛ6ŸïŻ0r’XIQö¶i“6h€ŽÙČ=Đm1‘(UąČÙßć”œÎ&@O€†óâpæ›QČÚŻ’Ő««äëőÍŐ/„X±<æLŠ«›ĘŠey,Ób•1‹’ŻnêՇèĆž–‘źÍÖŽÆĘŻ7Œd‘kt?ź7LF°ÓÊ͞q"Bż[ÿsó Ècœ±H%ŰśȘUćf5Fđ„Ć„”7,eqš—«±”yp„ÍäúĄŃdäçÙ)»Gy(cVpXE\Ёÿœ5ŸŚ)ô8w+$#±· Ô jc”Ś!’Xr&“8ÏJRńŚZÊÈŰJ[GŻúčՎlŠXČ4˜,ž4ù»Z‹,úŒoEš„‹öÖaòà1…‡'…dÉ( '€€E‘…Ìő,I’è7îëčr†|óÉTÆeÆ3”MVÎă<ùJ>‹4șŸÖíD{ćÏqŸ…5à“?r}żpčžÖr4ÛÙiúŒtgæ.0î”Ûû źë!]Ɋ"žFIOź5ÚÁs•QżŚVś3jEŽś€y /(,ż}kȘûŠokˆ6’Êè6‘IŁ!Wwęèb«TÛêšą’G…K(˔/„ùmœê}?^Â3,|`ƒĆëL8ŒÚ)tRÛ ć/ČXúJ<ș™Áû5c,zožK„uÀœ›˜‡ym5&­-íÔDëȚžÙ3wÚ5}ÎŐ0@DÔ¶ Ì"oï‰{ÒÎŒ?RïMȚ_x0ąéP.VÓ ș-9âŐRk»>î4o?êÊæ;ƒá ÁìÖŹ°ôâ ą}ąžÎxD%ÔN1áD ő•3rđ0,©Îri'ی„lFÂ6?Œ2“Yœ”ćW ùO€ف­êípĐëŚNAI| ČüH¶Hâ’R©QUŁ; âú’!H$€‘Ÿ tÊXCuä;nà–P\Ÿb€X+§hoNÇtgh~€ńàÀˆ=¶ŸșZ}đÌżž9th•áëëI-+sy&é+†|P¶&Żvł=«ă‰€ˆËâĐ!«îBdrÔr`!$BïŸô%À; | .ĐW° $QŐ@€„\ű;A{kçڇIŚ·"O›¶SÖB­Š2;ŠlȚčQÍ[ŒT8ô™”§üš|iąWÜŽĐ])‘ÎËìÚ]‰]ˆ2S”òQ>‹2 Ű ˜“ćô–ÀŰčÛąoÈáGäD„ è‚O>1RFhEÎĐśûű]L»ÉÁĘ'Úśkž/>…qZÿ…îäüäƒ_[íî< Hx=cŒ@™'žK$ùC«‡Ìæ€7ÍĆY ŽÀ9j%°ÁżzŰÄJ2śăR)^°Tő‰âìyÏN} ÄèӇVEÊBő$p'ińă æ.8‚»à:~žćđpíÜYDP!E( 㠌Űșx–œo±})Zü«ĐÖŰZyæ6ÒMü–óŒ‰-ôá΂j=dŸŸšNłs™łl˜ÀìàżJІüőüŃb(àQTSŠN?ž–"Ë`ŹÍàLŠ8MËćâ˜ç—›«ÿÛïe endstream endobj 90 0 obj << /Length 1523 /Filter /FlateDecode >> stream xÚ„XMsÛ6œûWđHÍD,°űngzH§I&·ŠŸ99Đmq*Q.IŐăß]€IY–<“€Ćâaßb‰eË>ß°ńûï Ç/Ëxƅ(Œ¶]Hfłjă çD&Ź.,“YWg7áœUX›uYÂß>żÙ?_Eá*üt!yaž{ï:‘ęÇۛ_>)È\á4èìö!ăäHŰL+QhíČÛMv—ÿŸZ+ÆòM9”ß™bÛČÚÖûșé‡șĂ6_ęžęŠîÖśȘÔbÊÜԛ,3h+ 'm°í‡ršƒ}WÍĄàóÌbȚó†òîŚÉÿŒËÿđc”ČEÏÀè‹{ŒPKHœNŽh_wn‹wÜ&BGՉP9“ze2žîÜ­ƊäV$^Ê%¶V%_&ől”‘gÙÊä61HłžÔ2šˆƒ>ëV%·/•|I7g[™t–y1ó„Ős•ÍŒaç ·H ¶hń«čáu1©/`‚qcÀ节ƒ† š é1j2Mč2DúŒńjPóK(±$Ąb) 5$hÁFą\Mô…ž$Á] wjʓ)e„‘(LĐhž'Áł™ˆ2=H5őšèN1EC\I>֊çșyܱŒŒ­ć˜XŽä»Š(y«ŁJT„ÖűíxšŒ:«ĘT40&„Re‚ ÒæWgĂ: ŹX.ZŁë…š $`ڊŽAzH’Ă#ábŸ ÜżRžv,’t,îNp“ “:AmßTyTK-ŽÓ‹–YŽìąćȚ„ČqIe : àBQóœŒĆ^#ôU•gÒêŽyRUAÁÍÛ*ûh;3g&) 3ÈŁ0Öé·5ÒŃÊA’SADTˆ<kźH ډ$1j 0j20 jqMâXÀcsy”ÇČxAIOÛX J#Hq{S31^P1\+!ùËêpŸr–| (”đ‘Č2"àÉ •4(Äx:™ “n|R^}ęáÓOჯRœęÖŠpMańi&ĂbžN>ż4uWvŐ¶©ÊÊèx^uőŠčovÍđ:ö‡MœŁuŃ­˜œ(‘>@a·[|ê Îó]ÓÖeGÆčŸû;c0 MûšǶÂÒȚ»ĂCèę>M?ź·xÁZ†On‹ëúővû3œ‰hQŹÖ ÿ»i«‘ZŐ­T>Û^ąŰ‡ńҏüßJBŽÛ5WùKHKŃČU»COSŒËڍ±ùŸl_BśŚ?ŐŐЇĄáRÈÜ3ű€lRh7Ą·iŁńàC‹}Żűă` 1ûŻÏćÖw!çqÇÆ=Q͂hDÁńđŒQ,«áXvgb-HÍî]·rùa&ę±ÚŠuü·ÆĄŠĆ„ß!±òsśçTŚ ‹żêG!Uțìć ȚÛr_o€P†cd\žhy_Jÿ°ŚÜŹ)đR‰ WïHHżŽ…Âòeúôö"ŠËKpÀbigrőD\çeüÒGćǶĄü @PïLj>ș`VîvĄçu,t:+„ûăÓÓĄПߔFBÈ{Îû•à9M•6ä0§Čú§|Ź ’Éä;żN;ì^VĘșL ™śă„p(%{6čÁílš}Ęö5_ș€è!™MżĄ …±éš2ˆ…2»ó6ż #·;<źíhêçééĄßÆœŃ”ï–.ü,ŹűÒYŠ/’!Ł9™4˃ż‡ź<ȚŸžś#ï!fŰ9bż­Ö«'yÚú{`ĆYïêk Ákń$›Żő j8y»ĘO‡4<Ž_‡T1ăçSQQÌæÏÈxșę~Â8ƒź‚Á€”–&?kžń”! ÉÇŚ,lțŒœù3| endstream endobj 109 0 obj << /Length 2857 /Filter /FlateDecode >> stream xÚćZMsë¶ĘûWh)M#ßíd“Nûšl:m<ÓÎäeAKŽÍT]‘Ê‹óë{đAŠ€`ÉÖsfÒv% ‹‹sÏ=$=ÌèìĂ Mż_ßȚ|ùg%fŽ8Íőìö~Ƅ FۙV†pĄf·ëÙśóTŃĆ·ßâ9JžÜûÇăćß?Ü ÇŚ…‘›m±Û-–Bòy±[û 6ÿP5›rŸžŽłąÿg‡ #pJŐécKĄäü»Ć’«yčj«:Mg‰„‘ìű§Í|SíÊbçÿșX7^<ĐÄÎÛz]nČX*&淏eìˆÖĂŠ–bș%cÄ©ŽțuÙT˜‰;6Żï}xŒ&±Fă±Đ}”M]FŽćÄjȚuÙÿòÖű«6ț–EóŻÚ:țëuŒŰ• ÆçŸâŸh}zö>țzś ŹpM‚ęKɈqrŒŠÛÇ*=ÖtźóVőnUîÚ}ŃvuwMńPžY5ӆXÆȚ°ìûzÇ{ŹÊ=|Íè|őX­ŠÍpii ÌRą˜źĄ ëĖQ:/Ò5wnȚÔÛÔúÓBûȘđklb[”‹œÚÇÔ)XÂÌ|‹=O}êûIŸS#}k02öôŁú&ÿDŽY''nßT-†iÁV:kæÿX8Ą5üż}:ŽéOœÛ·ÆíŹî*<ÿ۞BÛ¶:l›Ű,ȚȘŸÀuč‹Í0ë|tĄÏ8`ęXŰ!ôuŽțÛ=?üf3‰Ç0ùer`Κi$ûhÆŚûK֚©”&Ń .ČôòJ»r ăíò,cŐŒ9<=Őû¶Ú=Ä©ÚÇàÿ2ę{~*“û=püoÙŽŐ2ÇÛą­ś>žŽ‹(Ó e\Ûù]ÙFśúíówzü".cKÓî«„ ŰòTì‹m `5żś”HĂvwUєëŰϛ”fÏŰŁúŒëÁ”cŚŁ!ș/žwźwęą>FțŹËûâ°i»1i­țVł©ÛÍsê6dv~bŚÆÖû&Š 4œ_ôÄC}Ü4Mœ›.’ŸáùàGȚĆŒo‰D‘b96=5ća]/ÛŸMżśő!Žb.œŸéC]/žI+śmsŽ$ƒŽżÔőCÓë“Ćƒ©?'èC>čôŸÏ‡ú°)Ûkgw67{Ì-9šț#rE”.}~Ò .‰żŐź9ì»@ƒîëMUÇ»Ÿșlòžć=#s]Ț«¶*›L‚°Áö ČÏh}…ÌÔT)ć1šœ5§sG€5}źkż”§Sq‹ćöéšűpàóov1u ÜUJŽÙż>xereJ—ŐźȚÔÏ Æ˜Wc’ àŚë a!GšŰ»ˆ=Ż!­.7!‡DXobLjEëqĆ«"i; 3d?­č ą-ÇgwM°Ó&ˆ' ÙQ*Hêü4Ő65oAłÆ(áÙ9뻟‡!ʰĐCM5 À#±SăÌüÇ Nیÿ-Ą|vìîĘiڃ(TíÖćÏs ”ëf{`Ó%Âk0””:|ő‚=L<™2ă< ÄHűaáńEÆnŁœßd&0ĉ^ˆ%€> 7mAŻ’žU„Z=Ț»[Ć=^ò#ĐìĘ?挠ˆ±úŹšżü7đŁŸÍàB p’c\œZĄˆâC0ŒĘƍMi<žăő§ ŃæčÉžc‡èșxł .^r!śäŚÛßæ\š‰òœ —BÀ~fÆ;˜seüAc֕Ôsä.b†Ș\ˆćÀg{ÙĄș—HtțTî«zŻ}*94‡băU„o(âO,‹}LAbĘzŃ^ÇÛe±zŒWëąM<ՕțrUïCL7OőnĘ€’ŒÎ&ćŒ'J8'ê?Żeü;ÿÈč‰w|•â[~ Lș9„íĄG†Ž8v‘Û΄Ÿ2.À猳V``éxűż“c0ê2%šÛàh}J•LW­ăö}îőîʟÛTBZZM Ő‡vjœT—ÆR9ŐĐ]šàú.©àAAëŐU%{Ljt=7ț3ë7~‰ìÇQäy† =śUnb˜đ}ł ƒ¶9öÿ2ÇŁ„Ă» $ŹvMWS02ëC!ęÄ%ÎhšUy…cŰl‰HÁâÎgŒÓÄqö"+ŒwÁ‚­ß¶ żdf”DYśâŒzBìvèț·béSKAhŁț}í…đt3$‘Tő).hÇbÊ>‘‚%iÎ/Űő~™&f)Ô` Ą8”]L p+Ż‚Ê„TŒdë,ßp*^ Qő&ˆf]ą± ż8O‡ńR—a©Š» ęË\ÊqrűíÂ2c<ä°Ér40az5ŽÍ+ăÙï±À€ž< .Šòx†Îș)Œ‚â„:hîˆU‰œșKGÀ)ÁMÏ}Û}±êNtŠŒn‰ÆÂQSjvÖ=î ôÉ. …Ł'vŻțĘ%Îê ΘdŸäě?ĘȚüûÆŚtÆfĐ>’ž ŁG|ݶ7ßÿ@gkÜDIH„łłOĄëvæ‹8Ż07łïnț_wŒmÇP E‹ĐŠXiȚÍ|3IéS­9…Í%”ËùÁ6'—ó 0}žYÏX}ŻŒąŸ§È–* FSr€ńé#ì:Ęy±ÿ*ŸŐ"g2]ü5-1†“ áŐ&šŰć ĂNŰI ˄HŹl l!Ufú„/3Q""QmNŠ-P†u€Ä°ÓRk˜HűQÏłŒȚÀđòóôœ'E‡ˆÀȘ™û6y!Ó]’a( șÌú–é†â(‚ÌkDbmNž#áąčÌ tĄĘIijč}î$Ú"K úxXôR…ĐłÂ]–œđ›eĆV° h«.€ê+¶ó*>P1—1ŽŰééÍp2©#Ű©Ec"đĂ.Č8旈ł'€ÉÁՐž“—˜ÀŒŠ ŹĐW&ÿ±.æÚ%űRPdű€‹ăÓPąO/șz»XĘœx)ÊlĆ-Cg蓁 ìöôCaûčźZÿjêaâĐŽ ßG\»lŸ4šP&ÇéòƊ,«țÈí’ęË) ÙučBŰrs‰wâ,„á.Ê.`Xb^.ĄÚŸƒxű^:`:}'ąF§ŒńđÎé(”«G č툿+=țFhl-T$eçËŒÍôËeŒAe!`±Ww¶(œăĄDŹ>9¶…'ô±ł4Žž±EÆäȖ©Ò`ۧć [î‰ôE}PČré‰Ȩ[†pSç hńWOh ŸÔQńűU;8K Y”ôšÓÁ)Ì ^ćyŚHÈŰ„(ùa$ iȚ*SF¶‚'`N˜3ìđ Öu–ÎbŒj· GńÀw~e1ż›ƒĂÜpVJŽ?œÈ!ŃDŽhŒÈŠźŐo5Ii_yY&ÂìûÄ#xšł‚1żłWŸŻóïÍb d‚Wrńș7…gж“W…ÔČńÜ/}Ëcˆ^—ì”#ÔMÎrɑ lNóăä\[9Jd±”†‰àM~<ÿæÚ€ăąČ`AÄo±éèSKzüԒŠO-©~ŚțÇ7ÊÔvïšÉW”ŸĆh[ïÊüç>\—Ç7ÀEV‡hzìż™›Ž‚<~au—ÄżŸ(úo™MśuÌńƒ”%ó_•ƒBtOĄ'F} 'țKÁ'{ endstream endobj 130 0 obj << /Length 2791 /Filter /FlateDecode >> stream xÚŐ[ËrÛ8Ęû+ž”Ș"4ȚE/&ULg1]3ńą«’,h‰¶ŰEI‰žtçëç %’†()Öx*›X//€û8ś…Đì!ŁÙûÚü}{{óÓ;%2Gœæ:»œÏ˜Äh›ie*»]dŸ&ś›ȘÚLč™|-Śd:šMȚ•Û]ęf:ăŽMȘąž~čęđÓ;ĘeĆ-áÖd3Á2rú۞ÎeX 3D(—Í^ŒDe$»ŒaóTŠhÉłŃÏ NLNAÄđ‹dödŠ8câÆˆŒ jiû+:œŸ8iŒ'›)b˜'\ág!Ubá%šËlf!»Ffìaˆ”źY˜; Áw ș|4áÜŽ,!SćIœXŹ0‘êkZąt љ6û-čŽ,$6·_ńcJđ’h+;‚ÿLMìLÉEËèśäŠ@˜Űӌ«öÖv†*(€Ń]™ŠVÆ+’Ș —‹v—IÂliĆú™tț_Öh§ą‰XżCv8É`]JžÒíQŽJÚȚÒ|HWÀseÊĄl_Ż–ń€tŐ@șLđM]“ŃîŠYrÓÜìÍc—eBŒ=n]1·ÇBœœM:'g„ÚęčÎôłçƉàó6ś1iî”e™{ä$æș §_äìȁT©ŒĂžî _ „Ï l]334šȚž)”ÙÌ(č o~čœùś Ăo4c™đ°ŚˆlÊńlŸșùô…f <üA‘Îf_é*câśŒȘìăÍ?cœíûxùèš™8c9û~ë­9ƒ â°ă.ë"ę۔8<%C­:mł±_“æoEXđæeĆIóČȚ›:æU&ÍKHsćú-‰#ʞćÛöZŃSžaĂ$Éǰo#áSÊÜŐà4pÛ֑>se’æC ùY‡đś#öÊęF„“­t꿍D[,mç•ăáVmŐ5Ł­9DÛ_S Â?pyIU'ŁhÇLòéL⌓E’›és>ĘŸ%áPŚ=šćœèŐŃa:|ĆsțˆÀaàËÖC;§Ș'¶‘*D\—ôńž„°$Ù ,Äőç‰û%3ć°Ț H°)ÇW!T*‹üBËłÌB%ÌągöŽXÄI‹c4Áæ'BIH‘v ÆŁz„ Č&ú•ő2BŒJ«cÈÉÄمŰGÍ v† ÁHî’éô^$ŰÄL9;č]ëFóőȈ‡zûYčŹVùzę„ŃûrWÛűšŰŐć*Ż7Û]4)Š,Ń(@fÁ“Ê·S5)"ÄrЌ’€0çZŒe© È#€‚?Lʞ"úą1D&êŸ^ąÉ°%(ĄeÞC7(ÍE&-xÊ1šÄC n4QÔdˆˆĆź‡Î} ‡ˆ`B [šžˆłë`ű°RVęRFJĘ+eVùŸ‘)iGˆOT†’@”;§<ŐeA<†ŸÏ|gĂ^ÚČ€>ÜÍ"Ă|†ìű(êŁâ¶È!zșŒ€û3šW ”ÓÆ8ÓfB’óù‰ N$ŃȚ€Ą8=ZEeè©#"€+ Uì”ŚùÎ 2Ő(â.ítró:ê?¶/5‹űȘŁy˜J4ODôTá lTópрȚGO‘€ „dš]‹ŠÏ©sÿÚvÒp :ÔŠŻQÏVàA”ê Zæ»č 1ܶćA@n? ùmYív›uüÒÁêđœ ËÒWx,ÛÈÈĐéìTĂôH?fÖ-šȚC`Á9p 'Ujÿ|PvĄĂl;€êś*E,{˜ș2.êŸ5(mÀÇiù2ă% τCòo±d!łąoÊ=á ʀ;"űłč—ˏżŠüšv]ù}7Ö2ä钇VÛ#\Gw\ÇZTĂŃèy[ÁŸŠŹ‹}Łśú»^ÒŒȚŽnööžhK$ć/C<żÎd°MB9ŽxL+ˆKw1Ï Ö+üÈÄù*ÛO_d'Eö°ł§Č.¶y]țg*ù€ùÉ3zÜO‹ÍÌłA,+.Łą'šŠVwâBÀș(0Ł» I摠ò«Ąîă1…(;ń[ÏÉ)üŚ öÿÆ=3ÚDDű =Ç™!ČS3DőÊ3ÄtśłŸš‡ț›k‘äŠyú œŰïè”ŃȄ9€Őÿ‘‘ț1'v~€rÎDeäRÂÀ€ű_MMźxé@żxbÓo9BŁ–Ÿuë 5éčÊhˆcEm§‘–0_ë ߟ; Ę:Î~^VŒ ĐîT AnnKaò#ĐÍYŰÖHÀgX‘kwH?ź;Äé# ü.k%°l,zúźÖĄYxő+Cß=óŒűÊĐ~b .cȘ3o Éăìó*ę·SŃ2ĂAœźÛ>–šdÄ`˜Č,öIÚđđțƒ/UĂ$‹_w”ë§&òšSùê3@{jjbâԄ_è%وu,ŽčG`΅nËŰLD ùöùđ°­,OÌDTïÎÂđˆź;ł»Ú,Ä g!ą1fF»Ö̈Đ>ÖšˆțcSû8ăM3œ±ÉąŒŸ2;čfŸž7ÏïŠúk(dŠuï|ÀïtȉoGšòaY‹ű8Ÿ =‰5Đ6(vńŚčn  ‚TƒèlëŻÎ¶_țőțÛ IŒTÛ:~d&ŒÉ‰Ń+ HÙ °ŠbÏÆ#XĂÄ ,ÂȘo‹jÄI› @ŁîeŸűŁiBŐM)W‘ÁŠûpt™ §Ô„íßżßl›OÛÚCQűČ(wó§Ęźl;aíßzY6•eœy,ç€é……¶qoÿïÊu^UMúfPÆî‹Ô†śęàù|SUĆŒ_缊|Țű!ÄĄišÎŒÙçžćź™Șë{­‡Aɱ6W‹;”«#7TŒ6'źqpĄOE2~*’ z6„iȚ d€ńMߓęĄÒmđ/pšG\”weUÖĆßV›EQ•ëÿMÂ֐ÿŠ‘žê¶dȘp{ž°2_ٖۃsŸÛ=­‚›bz™ŚńÓ"ŻóžZÙŃÉă6Çiæy䏏Ÿùóí"Aě§j žv~”Ë„˜ŹóU#Dy|d7ŻóőĂS•oŽÛ-öî& „wÉUžtëz[ț "+&Áú­lÄàčßb”Æ1ń5\Č$Ćșz ŻĘ팏OŁ ÚSà‘—“ÿęïm§nÿ3@C;J=Ț›uŃʏ€Ű-ŁÁæçTY"QăQzqèYźÎ$ŹóŽûŽòÛńż{)ŹĄűm9Oę țÁ|™{…Û0”ғßÀŒy_ś„_ËȘŠ€Qۛ‡uù­yÖÁ`k›§úń©î ÚȚ"À<·cƒÀž7Ńí|łz\–ˆ'ÛyjdÁ‰6ęŃulÇ5Xû^y[`*˜@€«zčY숍ŽÏß%Âk›êLö(wü85X# endstream endobj 145 0 obj << /Length 1760 /Filter /FlateDecode >> stream xÚŐÙnÜ6đĘ_!yĐą^F$uŃ=€ŠHÓèm ’??yöm"ĆT*Òà|đ8gAšdLÈ$8_oÂómٜ.–±ÌĂÍź)Źi›Ć»óïUŒXłˆI‘\ÇSÔ~ËT:‹$¶\/â(l»ś=ˆŽò°Ț[„Th·%Ąz]{Hś39ϙàń ݚS‰v°Ć2ă2|eIšŐï˞TšÆëé\„»șlìÙb™š4Ô(5X ‘±8SÁ’sŠï™MÛ-–<Û+œX „ÂvC«;û-3Pœ„J Öœ" *9mÙŐęÌadȘŐ°]öEgVŠč8Rč5e‡‰Âbk ]Ö4 V»Ûë ­Îô<\këÏʅbi§gíKû9lÌ3Ż(‰ĂA@$ h«MCFćÉaïŐB pŻŃ« Žšn‘„ćŠtKS”kâpVuÏ9vò± Dˆó8eb-ȚƒŒœK0ŹÚŐxrÄ^oI+‘ü0HƒwzBêf}$âU„„čŰZ/EeŽ„[yQ›vG€;ĐDĐȚŃŃ-C„ÆIŒ[…+máÖæażmw՚đȚÍôŁ­ß\êȚƒ–’‹~šv.Gp`)5&1aÄ_čłU€ˆŽŽșNˆ"·ș™XzO7xR…—egZŒDš. W~@,Ț.áĘ]"mF„·Q^PÁ`œYpÈFźûÁô=…)’Ș #ćDš/Ę·1S3~^-$oæ Šd©Ü福_?TOz4/ćx]ƒ Ї…nXy„;qæÂß”±[‚šÖÓÇN‚ÿ·Qm}Y•Öc*Ó ìàÙۆ‹LČ,‘a9èàÌW6%˜Ì⩏^ážš#èƒ"\˜#úÂPÄVûÍp—Šș!Üp bœ+ dœßóAăÉNqWêsÊËt›w—Äß[mʙÂiqq‰4émÛűr3ÙOÉ&“đ;ˆôČ.MOy$‡Ș…4W”€ÚŰŃ!ąŠvÛvžL ÔÁ(DŠSŒÍ4Œ‰äś$ar,R7­ĆÉâÍ…ăùÖ H(ká ‘…Śț2ÎäMFš-=€°Ő ™†Ă}8Ɩ֕ÿïá$X^Ž‚àtšûËiŹ|遍Ў„ĘłŐPCȘÙd*+2šÂsځêÛ ö{ŒűȚšZÛ¶;ő”gß-öI —ÓŰȚ9ńäĆùɟ'8KD‡Ä…űOó@Š˜ć0Ÿő‰#0„d ą„ć*ș2ۜü<ÀĆrűżöđŻ/ïď”$ …k‘1‡™I=VÏtűš”$ó œńÔ—ŚŻ`$ˆąđ5-_,i- íŻ©NP˜"òKOCűpÆË /.”["b/ÚÙòHHáŰŚđ"«p|%1‡QŰÏÖšyĘĐXUŸjZ†LșsèStĄęDÁŸ6…5fé~Ș„ ÜőZăș‹č§«bcK`ÀštŐ,?‹OŚT” Mőqjî©"ƒžšç“úì]æŠź±“b>*ŚO}Q˜čœ7üOE+%±œ©2O)ï“!ą8dˆŰCy–x(VÙ@͓’ń)SnÈOY.2ÒęEŸž,0«V}KšvEL„5S”nŒÔțQź)ÿweÜ> stream xÚĘVMÛ6œûW9ÙèšáđKäí!iŽèĄM €@ÛƒÖŠŚ,;•ičä·wűćH»Z{[ôÔGÔŒ73äŒÜFȚNXÿšŽŒ!h„ œSɀ,ÛIüA­DHF pÒ9ȞüŠDQcHwOÎö»·OÎśŁ(ŒŁ ŽûÜ8%ûW‹ÉË'–ZÍ5YŹ "aˆ–†rmÉbE~ŸŸśĘq鏝›ÍcÓ_êźnwĘ!}ż9űŠ­ężÿ\üÉ™sA-$üëęvë–Ÿ9e‚k›c{›Ÿ ’:YeÔ+ç?9·KNËęfßùdŸêź©wK—ńÆX…Po„Á‡Æošțć€óàkïF)YĆŻQ^€ œ1žÊš?ä{çëfëV9«—œv'·œèĐóì§ŚWéÇĘȘ9Ńd·źÎIpÍę&{ŒîÜ*;Źë%źßŁéœÙ˜0› j”șšÍe4qGą Áf˜ŸŐèő°ÒŽqđÂĄž9sš+ÜÈÂĄ€x,çˆBiYž!PoęțV—4™ÍyđäLC©‹1P*„SXÉK‚đL AÒĐŰ3^—o˜.xQ‰3^r]ˆ/ ^(18…‹Tà\êax=„«ڌćđB°‚Ż„5c៷ó8“ŁhLpTT0Őh± m5V(ęŻvOląŚ:çÀ‘„ăš)‰k±Á&ŽÁ]ć7ûŐ!}ìŚÿAç­$5HaXęȘYúìŐ" UBżz·aâžÀBŸĂ±mëîóS\șű-öÙĘíę&YĘLMĘÇx`Âç:tˆ`Ôi8ïΟKŠŁß€ł7GŐ©f(ùÖ̀OO3ɧn‹bp Ó»™€éçd‡ł—§aCVqìôțŰș©€ FC)fÂa€fnqÏ:ÓžÎo#Ś86p*„^ăP1Š…ęwŚűƒ(ćfœëŚ87áŽńTíwčï„ ńSlĘű›4™‹ö·ix‘šć tüzœbӕU>­ő{îÈZ¶‘{ß”Çm= üÒïżßôoŽÛۍs2«Úqżć]í›ę0Ë8Eá6ü&f(*1Ű|Ÿb;ąÓ‹ÁoÊ-ÎëPŸ> stream xÚĘXKÛFŸÏŻ`‚=HˆŐÛïfÈë 1Œ—MâÀă-őŒˆHą#RŁ8‡ęíûőƒ›ŠfÆH ,ö"¶úQŻźúȘ«hqWĐâćMßßźŸŽ`‚]ȘTĔe±Ü^…b­(Œ!’«bïŠÛ«Ÿp‡öìïŠÓűç—ç‡L@\ł1!1Ì>‘M/û‹ë«żÿ xa‰Ő\Ś·ӌh- ­D tœ*ȚΖÍșÙwó…ątöj·ȘïIo]”‹Ł7źŸ[§ßíĘ*mž­–]łÿdúĂȚmëĂvțîú_cÁ`!„#+6_Š-Ìj3_È0$’bÌü˜‹ìQaŽ$.ïi(^žh(ʧÁKÙÓPR #À &ˆ•&RúÇIȚUœìnšą·uś,Nnܜێqümü| ő56ȓ`ž\Éę-rBæ·ì]€”Z E{ôq…Ș`’©čżĂ…!Ö aH©g™tq#Œ\o¶ŐÇ-›U»U Vn8ŚŻ»}ux—¶ÍÊk QÀI œ:pN ć‘É?a ź$ÜbŚŐÍÎyÊJÍȘśÍœ›Ùę\ò™ƒńžfłníâb.G0ž$%âțę\Í\·őöĂæă”y!ÍbăæŒ'16^31[ŚnŒÎ–ëzY„ÙHŸ*ކżÇÉn]·qŽŹÚ †•I ËÇŸŹÛÛÇíÉÂböïőŠm›Ę”xźíêm…PiœëšYsëż:Òśï]w ‚»]œžŸ Ęëj·tqï‡j_m]çzœaÂńŠ[Ç]őÊ_NPŐ/tMúź•C{Àšś:  Qtï,áscÉ/;Tș°H*:jń6Źű8zˆPÀ::9 AΟŹL)-a”ÁKRJ„șáŒFŐC] ržń&“üUÜVš‚Q"JÆü>`šÛ°áÛ :B‚‘ÄôdމŒ-bÏèHEHki“XŻœ›âŚköęőÔ9ê [Híi2êoßŃb…Eű ¶,ŽaëÀL/1Ü݁đÁ3á<-ƒ©4ĄÊfò!z Q†őò±ČÌŃăæ§JPB‘*(Ę$pŻŽŃž3șÉÌšđ`̔{>œjŰP[бœú—,i&,™i‘)-ƒÈÜä" ‘ùIäde6ÌĐ ( 8»)uocI'ű1 vаdÓv1Ǚ –„?Iž)'„àȚ…j‹Eyv†/ct…­ȚGJĄ3Łë±Ń}tYęyÆÌC]]ÊâL„ÇŠ‘DĄ$ü2) GŹeâ,€ĐÇ a"ńL2„SLę>Șæ*X1ǝÇ)UÛAŐÓȚț™2ș8„ô!ǘÊq!SBûçFđž~Û ÖÍH]ìôĂû=ŻŠâV?Séy©‘Ć˜`#ŚÊ„|ÒĄ0l‚ŒpúgÖ)K\Î'Æäù€2è„1ł†w!ź|Àòä_MHeń03ˆLgˆÀ+7•±ÓłÓ?7c1)úâ#Šș>3§W ›Őx-T]ŸDSč•1ÿXSŽë¶¶7†x,čÊÏKź*Ï_đĐaneùRl}ŽƒOsȘʗ™5ÀŃĆ|©%ĄÀR‰ŒY–_Âǰ\‚ nQőqx—Ć“q™EXV_–YÄć”Àț˜FUÚ)`ÎŒZő„»\Æ]KŒPOĂ]59`;Ą.BŸŸC ‹2„~A±raŸŠèbYÂfżîBUvìŸíí^ÔËuë6ăZđŒFÎH §•yYp=GQ„ÚBȘÒ[™w~˜Ê ?—• ~%Ô\qíĐÖ»»€{֚P°$ęœ,·“iőiĐQZëkżH8•‡ßȘqmœĘ5Ižöƒ[Ö·ăl”û˜Ú%ž,Ś.–bŸăђOÁ©oqzÔb(˜9|ç/덞ô} 'òy ä Ôžßa©ČÜzŻûOÛUKʐu”\»­«[8Xšò©„É$aаçéË/5JŸ«6›çS…rä|Û췇M•‘΀YU]ŸúçĆă„Ž‹€8,»ĂȚĆc?*oÿÿûs5ïGŸŒ’zÍfă–HŒ.ë‡=O}mrź©ÒvĘ1”ÿ~OP6ïS 6\Ä·ÊŰtoên]?z\êTM<„딄_nx$FƔoÖĄ[!è0`ü;7'°â΃„oùĆźčs@Š}:[‡Ț…?'&z9~: Èł ÜàF{Æ 8WȘßRșžHˆJіç}JßBńX‚Â/\DZ‘‚Á…ö•_JX¶7ŁcȚs HŰĐyB…~^sżW°ôçœÛDśHë߁\$3O]țĄuŸ‹ïáïm?8Ë:Q~bۉz ł0±ÈŃ0<œț:,ńè±đI\GBfDèž$|6ukßÀŸk{ìCg@ ΁B?ű_Óšá©Ë>L§Ÿ„ȚŁ7x ü5J „!ĄÎ&k2Âoÿ žž'C endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 820 /Length 2198 /Filter /FlateDecode >> stream xÚĆZ]o·}ŚŻàcûB‘Ăá°Û›€AîmíM C¶·PYJ%čMțę=ł+QZɒڶl?hčłĂ3Ăáá WVć•3*(kYee™•5Š"NÈĆ MTȚąI*ș ÈȘBHeŸy•!BąoPeFÔZŠPï  J‹zR.ąQč€l0PoŃșÜĂ#ŁUìэ ŠĄ/'\C„±AyàČì”whcRž9ôí#ÚC’"Ń,Yê$—U€|€Țùdœ Ą41Đ«(Œ] ąŽaìçèžz{!Ą…jꂇęžN-ź3 %ŁŰdV˜`z"Ć]$ƒ`M‚ĄŠ%Ż8fÛËb˜žBZŒœ`!ń>NŹ!$ȚF‚ç9Чú[˜ìq Że˜Œ7{9Át‘Ćd4W†ʁńÁ /š Qü+nH€h-Án†á”°Ç9+˜]ƒȘą~ ‘Ă&aà „2hИXN “3adÆ'0ž€Ëb yázò8… ±{Ł•@ŃNđșŒ–Ež„Äro%ьÀA+wà KŽeCÒ;Üa"ő$Ž3‰ˆąLp•DNv,0 Ă0Î" Č7r'âD"!•Ì”à%pĆÏIúÚĄ†{/^šț‰êżš|˜šțOê»Yu1NÆÚ~Ż~űĄśĘ'~ń„­>6Òț,‡±ær˜Êa"‡K9\Ëáą<–§ăïwöHÛ=ÒzŻć0(Š?ËĄ’ĂU9«û™•n«‚l©ăČ蘗łćłYyeŸ€Ûé¶@۝ÊÙ ű°\ÖOGë:.Š|U0ŚòçćlTÎj;Ÿ­ż~ŐŠZÇh·EŒmŻ«;ź/\ä‚}Tz” ŻżČș}y/M"N”[OÚ6(±u~«Ćőî6Ûo›íŚuŸ/šțhÇŹÖąșš„@ęìśC„önó¶yaœÇ·EçžšlM—ărû[Ûț;ÆÚà˗j|9üȘ¶a=Źß ŹiAy]Æa°+4źÏ—î;ș‰ÿj€z‹ Ûł}\ú^őžšźęŒŐÍ,Žâ„†nIû`ÒÌaáUč·bĄC#tû¶žóUétҎęŹhłßvęƒaò>˜-BüO›íUîïòt)~ÇĐ"żÏąŚœ+ž†m†[‘[ż Đ àżz(°a‹źț%‡ŻrűÒÆU”Ӑ›\zhÔqêžĐ7őü(žÒ>\i+‚7èqĂiûE:#üˆjĆšśȘÿr8?x/^ôúŸ}©TÿĘàȘŚÿq2žWăùL!)…`ŻÿŸšMź§î€æÎż«ËáàxòU}4ž$ĆÏtڃ‚)ȚDæȚˆÇèù(…‘t‰șšnBÓÄș9í”0Ôïôú'ŚçóúúípügŻ<™^VÓș7sÚĘÿčÿ#.,.ȚĆ\}€4Čx\NK)á8ëˆÚĆY݃q;R›cu1œWúőàâsuU gójz›zDÎłöv Q šQ†<"›ł6Ą.zuDĘLÁjÔvdŽÙ? pÊž(EíÙ=ŃZ„ÿúÛÿ€đÓq‡íj|=îu”hQQ'Y6V“ë&Kl4ŁűmÉŸÄl«m|‰Ex35œ”È‹sšŠŒŒ™ÖL"ŒȚ7\œTđ#ŠîO/UÿCőuŸ9Ÿ6æt6›s:ĘsNÇú=ٝ&™Š±MÓۑRƒ>ùCÎwvFŚ{ȚëDYqLšÒbđçĘĄs|ęyt5ÏB>àÌrAŚ[Y  ’6Č"àČ{j0 BK¶ Ą””lsʎæä,šÎî4…Xp8›Ž•]ž'ÆÁȚhă©à(ĄrŽ7Ő?ŐhtX ^ŠóÚŽ v:»ôÄPÀŒQvè ›AÆâÁ–žc}"dFÉpAD„ČuűDàâ”;/mŃm ŸĘŽ](čMÛ+:ż'UËNśWËnèœÈ:5)WjRźÜà•}ȚúČy˜^ύ'd‹·iíą„Eë:–ŚŒhșM8$Û/ŠMđN3)rŹ ț H˜;°ë«álTMšL†Á^â‘Á`?6Ő>ŻĂ`Łvßbűæ,ĆĂSŠÏNÙîF‚ićp…ÀO‡#`„ęGÍf~rd€3c‰Ă†\)‘1u "PkęéêÙY{ŒU2ÇȒ1§@»>YAúł›“FVEƒ?># 2­|DY„Źˆ2ïaȚ“5üòy4›MÆD+ó’,Uś3aKšd†/€,ïV$o‡O«ÿVÓù# K)‚D XŒmœ”Ű=-–DM°.°G>:>"كpÍ‹'ŹFîv,Ż&ŚŁj~öæèĘÁxDêșc0HKű=Á W”ïè]óÊ ÙĆȚꑈÒużp&íä+~ÆRš:íŹ%€ë{Iț P6$Ë^J%ùà–òçŠű ÄŐmm2Ègó{%źò”żÎ'i‘WRƒS>ő7ŚÜEŽőEYQ:û,Ț „vX&œ”ĐȚß%Ő_ڃæCôâĂÊA0YM™ FĐÇźHìAëçŹÙ4N±˜:KźĘ„ž:WP­ŠšmH5ÉÊ'jP)=°«“yBەWȚ„Ìqê^”¶deÏÖŚ„K~ż0Ł IàF»v4o(bGaÉ'Qvv őœïˆÙZçș SFFänóR^ąf6uąÒôčF’ôie»Âj»Éń•Č» •ź9ƒč[ÈʶŹÜۖíę Žś”%Ęٖő}šïÍűíqńĘÆĆúŒčÆùĆZæé°{& c2æ†Á Bžöòß?c5ón»€:j ‡OH ïCÆĘwˆáÿË©vs endstream endobj 168 0 obj << /Length 1898 /Filter /FlateDecode >> stream xÚ­Ënă6đžŻĐClÌò)‘‹n[l·í©-Đô ”i[€my%yƒôĐoï ‡R$‡Ùm/"EçÍyg›ŒgïŻx?^ y&2Ą+ ›k˜&[îŻÂsNeeÉJgłÖg뫟ábț7Ù8ÿćęłëS"ˆˆs"J V w!™ś··W_}gdæ˜+d‘Ęź3x”Í m™,\v»ÊțÈíÛÓČ?”țza8ÏȘÚjï{ßvôÿźëë}Ő7đÿç폙ÊR1'èü·Ínç—}ę)"8¶~_ŸöŻéOV‡ƒ<ЧȚúțȚûu}ŐÇӟȘ¶źK[ æ†ó”m ÿ­î·ő‹Ç…rBr. DńąÂ@[tĔ.$Șk!JæH«JÆy$lź‚ê_üŠő]W7À„t"ß7+żŁiłŠńûjčő{_w Mdđ«‰5P#’•\âÛ-È E‘/Ûk“ûUęĄȚŐęź™<,mÂ7ÒDÈH€&ŠȚ `nQ"š‚€ÙüœŸQđ°oò;nűg±ä•æì$žÄNĘŃXKđm”«ÿȘzä8aDT”*LȚŁè8y{§JœĘí«ĂáNÊ\ł:} ­ +łZÿÏ­ȘŸąY·mźe™ßwô;Ź>€šàŒő2Ò <ŹnàЌdwUUrÎaÔ°Č.żŻw8s<ïŽőČÚíhătXÁaaóę7m‘ŁOŚZæqÛÓUòK ppÿâìűĂÛC A?°^hô‡=B‘ł·ĆԅÏ땯höą_(ńyżśŚJæUGû†Æ;žVę|©'ò"Ú—âp_XÜIl}ŰMـĐj'ĄIk°2 { Oî€ĘԛmïW°*ËT›ˆ•°蟔ęeGO$H0:ćïuXŃ$H€@~q:~!O=!ű8­çX@ă—Á­„ÎŃŐàŚ„ăxê|Œ-ÓH_" Ë}"üÈgJ șhV$XŃÊčJqë©=rž,0 «è7^TXè|·Osˆ’Č6†SVšr.uWïá‚i—oŃśp°Â۝ŽqÓæĂ^”ZŐgȘ]üuÉ|sڃ»„†€àSí ë7ëŠĘŸvUBUF1iGmąYű8ä 9Ad~ŠKif‹4eÂĆ șPÂ1 \Ít6i;ފ-ƒÚ`bCŽĆ…Š~ŚvD™rMc 4ûÂLr5đ$ŐőąPàgŸĘw 94gb€^ùnقƒ6g~ÛÁOnąń]ÁĐĆ±pqˆșÍČĄEG‚+ò-ąoÁl—‰ŠAvuÆ@ƒŚ êúźzš;L†żì/N1ë.ó—Ć<3ăł~c€œÀo,3Ły†È§Š2Ç*H~ÿ!Ę, ÿ>Đ> „-Â}<՟BD߁š.윚nXQ\<Ż€9łÈęŒĐ 5ci‹'eC%ƒ:oÀ·KE<Ș]#š]AĆu$Ì€‹Ÿ&!ŒŐ‡ÂașȘŚ˜čŚ”œ ź€ćĘ'Á‚ÖL–îҐÂí.VïőĄéăÄc¶ Ôbp;I[ŽSѰóëžn“„đĄÌ\[Û1 uPĐ +œqčŽÉšȚ Üëă,c©*éÀ%°Ôcè)êśU\ŚNą.đ>ČFB™e?ÊAĆÌ.x‹î9”Ù±ț}„+™)%5hZ@68G05ŠŸGKŰ2ƒˆź,6ë̂Töú&ąÓSs Š”Lđa4Ò#AhÆ$fcVBRPûànv.,1ń:Žò&ŐŐ çïC3G@k€a˜6R\LT:ì*h6ÊűˆíìëqÒxRS+űŃŽkìEÔVął?ùnț`8&Łó¶%Ÿ' …Ú!U|Š’•Ć'žÍȘ^ö,YkÇŹP=è,ß@8.Ń'ÆÆplg„țfÄÇ/ endstream endobj 178 0 obj << /Length 1348 /Filter /FlateDecode >> stream xÚ­WK“Û6 ŸïŻĐQžÚŒHŠzìŽ=€MÒôÖÄ=es %ÚfąÇÆąČÍ%żœA9–WytŠ“‰  ű@lą$zq“\­~“ˆG<+—e$KÁWQŐȚ|ža™ÌTê%.Hż5 Œ'/[ęȚßüÿŠ­Í€ssĄôéöæÉs%Ł’•™Èąí>âRČ<+"™'L”yŽ­Ł7ńs{O+›ŐFŠyÌoW›4—ńo}ӘÊُ«TÄf ›mWۏ¶uCÂș«‰šŒ†ÚîlcĘ'âyÖÁÿƒí;â6¶3‘ûțDÄk§]0ŸÒÒïWo·ÂĘ6œłR)rŐAJ”<țCWGÓ;8s"N­&j0Ž‘·ÛIüŸ·#oP”>ÏŻ/ày^kǖĄ7çD>Û^dćÓ$eIÂ1đ~ƒ•„ŒDÎ2ÎŁ“‰ö>[pˆEt:DgúՋŻò/(0ÂŻÈ”łœ—?hfrŸêB\Öê‘pÁY!R öŻ«JD„rw‰JöÖ­‰Ù™ 8~üB 2Űț€[ƒČζf¶Í%°9ț?gVČ2 Eű†ż%1‘Ê<È@”xI.O%ÓnźJŸ”ïĘö +óń ¶_Bi€‰ˆí@냯űŠÁ/żïú•È㇎6ĘQ»‰2Dìô`+~\ò(Đö”iˆ<ê`DӁVżC §>é•Ì⇝źȚßúmx Ja`B«ÊœÏR18鿣>éΙ°MȚą€śYȘ‘ G©Žÿ`1H5ÖĐæÎ8Š“é&SfٌܭfmD‹,t fí€ÔCkìfiŰőWĄÂRƟèŁ1ș&YŚÜ.ă~šO“N]›#5űž@ŒYj(c;Ź ë:4„/ʐŸ0èÄ,Ăêúòćœńâ|Ös8RÉ ŸmDKYô­)ĄĄoFG•_śț2śę`jbìV’ĂĘ'_˜ ž I~ ÜÓ;™§ÇŠŐ]ĐäcŒÄ ;4P1WnŠ"‹ŠßÔóČÌŻNÆÁ^łÇ ^Á¶ś}€1+ț"ęæë%ü1Ì‹ùˆŚßW)’D=>[iü(يŠÂK1QŒÀú2p[ Á€xâűđ<&€*‡ž[À14ˆ˜Ő fZHë¶;‡šŠ…iGæ8Űî@,Ę«?čcè;oŸk3ŰCG2àÊÉțƒNBsxĂûíÎZè}FsPÚÛ"Œ[p ùWϚP îÂ^HŚï˜/2_`$={r– 5I»~A!۔~2# żúûق!˜*ÏV-^5 ęWdĐ!„ëĘiÁ„ʧcU» ™ –‰rĄŠŒșőèúUŸ°r—$ÂÍ,ŚŸàYäLáÜx΅ç KŠWLȘL»#1 \@\Ă€<Ï2ÀX Hxą$ȘAÁ¶Ó!rcl|M,äț±ł~œëÍ~Ć ‡Ê*Tàę;=FȁXž&Đ­Ń˜ O‚o+ł!ń>DĐ-hÔá5ŠŃłìź14..މ\dŒ'r>&J€«űÇÄ+#ӘűcfŸ?&r•ÂšÍÆD˜ Q?oh­Z웟œíĂŰxŒÛëdđg@;6óaò3-X넏ÿSBBÇÿó zËöÆoê7‹ËăˆúőMž_™@y]€T<],…dy»ćőÿôŽ] endstream endobj 171 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/credibility-011.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 181 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 182 0 R>> /ExtGState << >>/ColorSpace << /sRGB 183 0 R >>>> /Length 862 /Filter /FlateDecode >> stream xœ­VÏO[1 Ÿżż"G8`b;?Ż mÒ&1*í€8l-ӊ Ӏ1íżŸäœ—ą‚íĐȘ_c;ț>;NМ4WæŚp*ŸĂ»ÏŽÌńÙ`ÁZkúïłăOòoôæÏp~aŹY hNäs5 ˜CN€ÉDçÌ”á@šÁ1gÖ+ š-ŁG°qZo°3 ːĂdĐ`oà$7T۰ÍyN±ÂȚ OzâĐ-šFË»Ę-o†Ăś$‚.Ÿ$h ő«âì4'Á“Y\›=Ú7‹«áĘąD~ȚĆKҝ}ĘË}ÉZe2û†Wűzozč/K‘lè|ŃŸÂÙ{ÈŸwžÔòŹ3Ɂg©SERŹuzŽŽ*zEĘ2șČÙžȚ`o=ž8Tې·çì Űpó ö5éÉ ăĐ Ô©rЉćąœÌM]»Sßgʑ„Đ~‹"ÀV śb)pË?ŒĆ?—+țé țìÒt;ęj}Ú(œ­RŚq6BŽ€3h3s„?€|§uК>;‚H’qÖo/Ísł{èâ4tŒ}zèJíe&IxéĂ6c‰ ˜$$§Çž„(YĆušjŸÚŹ8F=Úää$žÍT ±tá@l”_)e»',%Á+N ”…O=Ză€ŐSïtæ ù°hΚžTŠ–LęÍÈÙ8ę!9ÚÊŸČE„ă'¶(ő+Ș7¶(I†8łĆà€;¶(UB;łĆ˜!áÌS8[=öÄ[K:–&¶$”afK˜€ă̖ä|ÙTێ<9Ó.¶„ŠbŒÍ6zHif+ٖZleŹŐZ6¶)”Z7¶YŽïÙfA[œz¶d%ìÛ€YtlIÍ:¶Ą©1ȕ4|cÛ?8•…ˆÀœ\łĐS,œÚő;š”ż:“âÒLŒÖžÈVI'ž™äÒä’—[|Ä”ÉŐdśóFÛ„ȚŒzbEnĄsà#+Gu0OPFVÜDˆPöc~ÂőmóìsʐRbAM©PúŒú€oŰn€)`i$ž©”ŸN]Œ ÿÏł†]P±Q:ë(=ß[țÜl.—śë‡}™/fïrÿÂ,N^xńŚh9êmȘsy}łZ?ŹWżżn^ńzšA€‹} ČŒœ\­ż­7ëûżc”ÓáĆì0Ô endstream endobj 185 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 191 0 obj << /Length 901 /Filter /FlateDecode >> stream xڕVM“ă4œçWè˜cĄÖ·Š ȘŰav N°›­=,Lą$Šâdp”žđÛiYЁĂaFî~ęú”Ô #[ÂÈ»Ëăo3À‘ 5Úp’ dŐÎúÔ9A€¶Ô''›Ùèƒ^ÔZÒmÉ0ÿîæțu…QàïQ„jÀœ6΅ę›ćìË·ŠGæš,7"°D+A”vdč&Ÿç_,*Í›wuhާE„pțUú- śyäw‹Ÿ—ß#v˜žR„ÿ‹o¶»P€=DžLűOLAąÊŚÉátnÛșû­ŰŠ °ß=ű—uê:nĐMW·>‡ŠőĆg1RMP'MŠöPïśśSÉŹÚ>ô±kÏû2ȚŸ§P7/ŸîêŐηŸ9ßĘ]‰ś= „ő)äx˜—H~;É8Š2šüoïS”&‹^Ż„Í“]ù§Pž-ß|dŻ.čq’ë‡ĐWáÜćh?ԑ"ćdOÈ€G\G„xxEáÿpÜïę*4Ïà©ómsnïÓȘmTN Șßd„7>ŒxÈ'.–5MŸëź©+POŽƊEĆăœ„RII„Č„,y[&uNzÊêSvÍżÆŒKéŹa`MșN>sÿևșÙûu‘û©8GWZ]úî°nžišŻŽ~“§_ç)ȘȚ5żçÜżÁ_Oœ@izÉ9Ӝbòiɰ'J“|EŹŹO4cTЊG­*á8hêÌ2:" ŹÄGHĆšŠ@.œĐŰQnGNFČ N °-(ŚăaŐŹàć=TŽj6ÉÉhÁòÙ0‚r‘(™“8Y &aä€ù”N`™„\ĘÒ 3»ĆI[«ČN }S'9pJÓxc2œ”ZMqŽă·ê”ń‚Ls’ÌČ 'Ì˘ÛB©±x-Ę(”U“€”ĂÌn_;î&I!žËĆSœr~›ÓŐęȗmê*p©LŃir©Žšl@œ˜2WnĆőÂÿçƒŻœžzí+àÈ0æŁ) ëmł=w 5ś= țž ÿtDI>Wìœgł„Ÿ7O»ă‚›ù 6ìž ;Ÿ&żűŸ$ŒŻiËoűƒí:­›8šŃ§C€]ŠGâ>-çShŒăaŒ“Û+6Yà©OȘ/OĆôâű!5À8•ŽLŽŠÖàœ°l'u–Áæq9û /NZö endstream endobj 200 0 obj << /Length 1628 /Filter /FlateDecode >> stream xÚœXK“Ô6ŸÏŻđŃSa„Ț€žl„ Éšžł+đc{ŰÀŻOëaíŐÀn%EmŐZ–[­îÖŚ_·gWΞŻđâIà?ÎHF€F„™ŒŠ(Ùź^}Z!É€à^b2ôŸ†uqâń‹šfż”«Wđ7|Ú :7„—«ÇÏË 2’Êìò}FCJêŒ)ŒšQÙć>{“?łWÇĂZäćzĂžÊéÏë W,ÿ”­ȘrŚÛÏkNóò|”$·ÍȚ~¶ûcQáąÙ‡ÁÎkŰÛ­­lÿ%Ìù©+ÿżëlۄÙÊ6e†ïÛCüĘ}ܞ‡Gû~ęîòđmC2BSûk/…óߋĘuY—¶ëK§‚™|_ôEű֕}˜șœ.›0ÖÁ”mÜ‚ó]yӇo¶ ŸnZ€‡=XZîĂ\Ń/Öo ێˆü˚jĐá”%ìë7ԐŒ·u‰Bä. 7wӂaèąčÏ»(=ˆ,ƒé—ùčÚkävA',2Âă’ș#Kà æÁ æbŒó?!êÎv§êąXS .0ž[ŚíŸŹœȚ`@„HaŽœ€xrʃ„np3 Çœl‹5„ôș·E”-nÀt“·pbqqëžê€ä!š‹¶čŠJœü¶*k@g*żőŒêșîX—ƒp@ça(ÚvD矦ŒÂqÂÙvÁM9uSIX,A_țz”PH($# vAÜÄÈö‰pAà Ï&B›ID±öŠZŽÊFL6Ł„Oû€ł’=JQ&€CÃű‡ÆI šDëay“Ű@ )ù às{P‡œwO™úÇTߗ7e ™‰nû.Llś1æ~č&4ŒáÛLüRa<ħ„eiź–9r0Ű0Ёßű .©vˆsÉîFÁ$7š›ä§Ą"Ê:„•ęêáæ|‚ë ś<6Kš|ăr°ź­Ă8|:Xÿ5Œ™Â‡0pÄÆ«„ûÊûPpßQË蟑sï·eçœçù[,°mÂ8P ê2žÀòîÓ±ˆÉì>teӕ°„„Ś!‹ÿ±őîSyŠîŰ|lÚ5…”Z‡@ó %#BĆÜđ:•a1žŸs(Ą‹#ȘűBs-E&ZŒ&iN„ ČOÓ6MČőM"Ę€żG.4‹˜Ó‚žnz é'RR‚Hê‚æöÂp’BORiYšćęCű.É ô$°-:WR)ĂCŠç}©Ù°V,ą'æŃŁD»èiĄ#!&y@˜M„Lš)uß!ÎS«BXÎNŃÓ EՅèâNuŸïäÏTé†P F ę˜iÜ9Í #CMŁŐŒç«Ö&F‹™±Ÿü”:€ț3’.bD‰iÀ“éć‹><œű9Ä?„5fy3cdȚèi$RtŠćĂ.P?Íá“gŃŹîIJ| ”9P5myȚ%û"Œù©jùbEFr`†Űźá&Ą»gZx2ô€UȚ&UÆœg ]1FŽ,ź9ĂżžŻ\*ŒeŠ_WuŃÄ%áæƒç¶«B?öÔCăvV,”9…RœXś‡_ŸżđeuŒȘ‹hG=.*ô`àȆ ]. -D/ʇ{—ÔčżńŽźvo»¶ȚÚŠ°cb?ă[> —+žhìöèIÚ5]:ҕșKWnÉ„źŒ”?Q˜ŻâEÄÍ }ÛÂŒ§<`ăۃíû2ŸńȘRÜ玔@<œiȚ‹!cȘÿÈê» )łÉ>ORfÏjńŚdAĄ†eîÖŐŒ„B„jEJòf"ù:e–AÂè“g/bDO]íŚ4ÍHĆîČŻdç(ŒNFJ+qș;")ÇžáÓíu:áCJòÍjCÜD}óúæȘùUOÿUO™EŻÌ’$‹È©€ÄÜ^ž4tsæ›­çËȚô|>€ïźJ~?>\șEœS“¶TQ±`€;°–Ł©/Ó:°HÀzÙ0ò1fžșŚuž¶='śEÓ',ĐÓza˜ÿašYVfűTzNÊáś+A†*úu?ă/ĂđœU‰0őƖŐȚÿ°ăȚu <–75+ajZ9Ü»màvŽó¶ —ôyč#l„Š›°ôĐ0‘™ÌÓËŐż21$I endstream endobj 188 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/credibility-013.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 202 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 203 0 R>> /ExtGState << >>/ColorSpace << /sRGB 204 0 R >>>> /Length 870 /Filter /FlateDecode >> stream xœ­VMO1 œÏŻÈ˜ŰÎçÔVBj%ÊJ= íČU-TJŐ_'ÎÌŽ Xő°Ł}Ûńłă7AsbĐ\™_Ă©üï>82Çgƒk­éŸgǟämôæÏp~aŹčМÈïjÀb`>9&œ3چA 7Ɯ=YWP[F`ăŽȚ`g@–!‡É ÁȚÀHn6P۰ÍyNQaoĐ'=qè Ž­FË»-5ș[Ț ‡ïI șűn -èCqv%'Á“Y\›=Ú7‹«áĘąF~ÙĆKҝ}Ęë}ÉÚÂdö ođő ;ßôz_–&ÙĐùą}ƒłś}ï> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 213 0 obj << /Length 2667 /Filter /FlateDecode >> stream xÚí[Y“Û6~Ÿ_Á'ȘbÁžMć!ȚrR»”»•ÄS•TÙy $Î c‰’EÊÇżßÀ tŒ=ăuœyE‚FśŚ'@œÜ$8ùń7żÏź.žț Xb‘T&WŚ a )©)ąL$W‹äeșÊWł|[MŠÔ˜t}íëÛÜ_ìÊâí„Ń4ÛYĘÜËßoÖe^ÖE¶Ž7tz­Šćÿđzœ‘XUœ-f»șX—Ę,ż_ęëérÈĂiÁuÇÖo~ˆÖ ÁˆiBì…€$íˆ?šfHȘÛ?7Ԑ\ŐŃűźa„„D%ʈ7~D Ç)ci)’)Œ5ądV.ìòˆ]y±ő—eVï¶^L$ŻË?v7I+)ÒJŠìIŠt’ I)EҌV0šẀżÛ*’)%)Ą€y—~Đ+JE0n€+Ă>ƒr4W'”ƒ”)ġbt^a†#Č(ŽôÓșš*y„#Æ‘ȧ&p„)Žšâcž2@GTH„'˜‰w|?‰ÈO AűX~ú°üÎZûÙj•EW.Őô.+Ï"“  'F‹ÚŁĐÉwcDG–]7Ë·#ŒȚŽ3{HëőțŠxï˜}>pàź0źîóäz{hȓó Ïț<ïĘĆ·Oi0/1ŸțŚF[ąÒUóàçíkwÇüH'šËłU_uŠ4àQ€@†$Q~”ƒ’)FÊ@ȖÈńÛ=Ű3]D±ŽJ€Dêˋ5çè@ÜE«šùÆNé@œÒ?ŠC›(Bé@Àë ëO1`ȆáńcĐj=Ë=xÊőnč,ąŠeäËÉŐÄiû‘wȟgy[€Jbq+d™Sv,nq$ž;äŒfqŃiI?%nmÍW<Æ­>YÉŚ«ȘÂyTȚaŸȚLí“Ï?đâîۘ‡5ű°Đu ȚN8NŚKŚšBk! i±§ń"î5±ŻŁ™…èûS'ł»O±Ž{‰-ŸąHŽÄ—pS„›íÄ€ë UéÛb‘W~€ËíĆ|œÚ,óșùwʶZvË̍TțVđJ6óÔ<ÛA@eV”™Ï6Ę ż|›]Ă­ȘÊ-9!4ÎĂaÿ,ˆÄi¶Xvè“N8łhìć/~•J§Ï^1Ćo—«Źlß”i±œű±š–ùvO2đ€ĆÇAÊ)ĆXŒȚ@ž «|î7Ü,%Š€SČûSĘ:ùŒóÿêÛŹöWElÿ’èxÏÒćGś/§ R6fhŁ yÄBB„ù){%`eQż(ʛeăû~ʶÔŠù¶û;i^Żă0Ïƃ4XG.ĄŸć}ŽčŹ€hâM‹Ç͞c“ FtœŒÓ㎓bDô‰ìƒ Fè9ŠĐ_ĘŸĘ°Ö™2êܓ5FŠGE!ÊffÒűȘŠŹlŠhaĐ&ô8yU«ŹnśÖꁒn:ŹFR(ÆEß3~Ułôê(UÍöțș§é*śmQœnfvV±*v«żYïAŻź ‡i(êdŒi§ 8„)EÔîÜS@șÇôè6șdÂtB'rÌSèn»Àöt0òMÄîžăôMEęçßÏŁŹkHWD2Œü€EđÊĄYXSí JânóA.q Ú±@ƍ}Ćô> 2iàN\ÄÀž.ž_]Œč°^'$Ę9_ŃXŚÉ|uńòwœ,à!ÄYŠNȚ襫Ά–É‹‹Ÿę‰ž`:KÊš„)êd1îč)Ôt›Æ?iLˆH‘Źö òސzw›;Ìúš# L™û‚<oZO=ù]Ìáƒ-@‚6xč/qj  |ŁĘ–QG%.À—„œ9’àògĄ¶Eăąă­_*šÂ=,˜èkv# ƒHŠÊęžę~ŒŁŸÉé,Žá@’Ž>0“űV˜…˜6ЈžqŃHSz—Tû·èZ© «F+ űĄHƒiścžF&’ˆ‹sž8+€‹Ł\‹FÂm•K„UłčZT#ŸÊȚ«ĘÊÿYŻóeq»^7ęÚę˜ń/ Ä,ÄÙAŠË%B“Ê)ËÚ«áæˆł‚Ea9BOd°|šDÄĐGÿQüQièÈż)댆íŒì˜{ÓVGŠ„ÄÀßÛjƖ"‡Ó;šúžÚ7±†švÛ\ê“s30} `üțÆOL˜ûB˜Œ'?©Ï󓐧êșșu=­ŸÌì…JÙvŠ›Ûz”»|Âv æuŸđcԉf_̇Ë u‘*~ČCKÚ¶‘MÒ©›ű0 lç}(đŻÒá«ៀż Ú"—1ݐìQŽÉæŻł›f‚·ĆM™ŚuȚdfR#©LXÄwG†yËFűíaá.XU€ï8F­tąœ_}UÆe Mov«ŒŹ#QQT§à۶ "’`jȚÎU„èQÈζ/gه<*TŸC «HaÒë]éÛ:íôv;DD˜EGÒ¶Öv”ëžÁú7;ŸĂqš2Ž”‹$ ö… Ő›æm!šYêÔ w†‰Ü.JÛ+ntÚ{êËśtžUÍ㖠o€2|5hìEz¶‚eT…={K†mB°.uúëÄűž!<(ö,éőÿïĘm1żő/Î&Œ€ÍíUžyzȘ™ê$šaH›ÎvIWÌ;5ƒƒ5ùŽÔ8éjW5WłÜÿźËöâ:2·Hâė@<†=pšŃQ§$„ÛpÀćàă‰9ÉĘÙüłÉĘXČ iÎ'T‚ĄÆYbàï9ŸÒ,ßú3Z1bÖ··‰łŸÊCÇw9köYą* ;FS \ȚŽGj>ŽÁX鷄LPG§ÇŰ4àđdgÖÛ˜ĂŁHhoČ-ŰúA B—,œòĘ2ŃśșȘ6”(€ö팙ï±q5úűÄ>Š~ŠyĄÄü3tčUŸ©h` ¶‘őŠƒšà;śn±YùaBioû-'uŐÈc$ č' ÿ:‡h›L±cŸçŰNn_œe}łeÊ$œŠ…ȘȘ6ùŒxÙ©M8Ă鼂ï/wœšĐ™șG%€ ò—6›qkŽ#9Ź R¶ĘČö7ü^Ë]^ù­ûFÔ+ReëĘââŠïA‡ù«q“ŽŰ€ÓÍÂúžHC°:á+dś#h/fĘŠâéÙ}“Ž+gË”:Û<ï锇1(ű{}È! ő ïÈ)‡đ€IÊÛä|ăw7î>żY7%’+:BÚ? æC4—Ödp5l Ž7ț1Ô{ʟ0mčú•íÿŸúPL=ÔQÌp@ d{@Mšț<Š>fCŸ=Ő"ŒóŸàkWű =żșűZÎò endstream endobj 217 0 obj << /Length 1800 /Filter /FlateDecode >> stream xÚíYKsÛ6ŸûW°>ISÁû‘©{p&ÉL{hÓx&q|`d9f#J.IĆq~} HDI­Û™vȘ Dq±ŰLJoN>&8y}‚ęxqyòì•`‰AFR™\Ț&„1€€N€Pˆ2‘\Ț$W“Ë»ù4„†LîWU=/óUÙ<ȚäU]æÖuŸZ6żŹn§Ś—?<{„M_'5 ‹ÀŠNۛF$\#-x+‘W-©THQ€ #JUZ[Lb5ÂÊŽȘ~k$d1†šÒ­ÀŻ5 EœžN`!6éFŠDlæˆjžô„Ί)Qf‚`0Žˆ4†wÛvP‚”’Cdh#Ì o€–1’ÆZÒIœÇ ÇŁ _Û_gE‘5R„öĂ#‘á,! aNZ}Ü듌'©€ÌëIz…Z…öqźÚeżűI8â6˜ńü4€H0G)Ȱ EšQoă"ą1”źò$ŐHJ/YwŠ)€”iR€T‡Ëó$ąŽƒ ‰äP&ĘŒ“Æ:’† Čx 9€N‰Ö E,ŰÀË·ƒ €ŠvËÀ) °^Zż‰Űk Ž"Ì>ČbIJ„FR”€$S‰”S1™ßźÜpÖFĘRËE6efò8eđźÊ3Ï'śN¶ÈŚEóÜ2CèàA0…BÒ}ì."i lëeĆAô¶ĄˆąŠ{«œïڊô^ÆôÀJ€ÛŹW,`6à,â*°è$Țc#ŒjĆÜ5Ê IŁHPł§Î±Łë\š#ć€[W OP"Ɲâ!‘âęF,"ăŁQ vY=C°š’˜'Cu%fÄÛËaűÎ0,bD[OŰú[Žœ‡ Dą‚Đ/Á@‰ Úd0fÌ&(ԜÓ~8ÛádĐè+Þ$žV—!êÀxŠ#ăéCȘPŠÇ„ć rˆ?°/îÚ%V•2t'șKR üÍ-mČîÔtíĄ Nt^} ô@2lêŐÁ Q{@ą7N)Áœ%(ôdX ›źÁs¶éQ0ȚK_ăĆC*¶ĘêH¶«a*ą‘Ò›ę̷݈Đ*èQòú.Æ5AIŽöu€)*xOsAÿ‰țR=E©ƒ˜§”AՆ†G}2&lăDö5Næđź7Ž&äšÒș‹c±W ;MÏ"*ÀZ­Æșá—v‰ćMtÛQ„ô– ÁžeĄt†”ÎÇÍb€Ôƒqšçp6ÆÍ¶Š­u°5LÔ§hul©npÙíŒ#Ž7ÂövlpÆĐ ćz fH^š[ŻŸÆr }Žè`ÓœĘÒÂ%QûțŽ„2S|Rű2<°É<«òĆcóbv7Ÿ}j~źïČșù1żYĆ DmÚÖl/oàŒŁAf†ŽȚAۯ܌ò”‡ ƒ±Ææ8Č)XŽÉêQG”áŽæĐŰï;˜[Ășĉ> T#u=]{CÇìQ٧Ä0P»ì‘ÇÙÞÈüŚìé2ÁÿtŸRƀ_‰íၷ„§,òDy».xÄȚ8˜lź»–±CžkÎppuX&@”–ɱ«'uűœAöŸ$“wS8ȘûûžŐ‡:˗ƒKș*+ü7w/W­uóžźòćGżVÿ&‘(†€î˜`VD‹›ő­O„a­iÿ’ Ä@ÿÆl­q/±ęšnȘk9OnĄș€4” ÎòcÒ}ÿćőÎßû«X… Wa¶*Ù3òa넏‘pćM'̇2çíśÓT`<ùÒ ß„Í8ł0{`~Ä~$íŰv§öą }Żó6ŻZ «öôCö8ŻNœ’/~\䟿‹ün”șižÏ›áô~•WŐjyz[zv ö€șËîçÁŒÖæ2«/¶Œ–[F·oĘ”óöE¶X<™Đűt»*‹ő" MüŒÉêđőᎻ皋Ö‹üŸŒx¶òĐă{[—ëYœ.期ł6Y=/«æùeUçEVŻÊʟ4ôæżX-óYö îKw_țÜĂ€ ››á§\Ìë‡9‘“űœ•y¶œÍę űĂęŽ+y|’śÎçR"ŒșÉg”ËV^(èćùŠ\{}–”‰P]”.ŠŹ|Ü„Nÿ«`#ț~Űìć«v– Ą‘“·œ'ëțq#Ęàê?=łá™ endstream endobj 222 0 obj << /Length 1830 /Filter /FlateDecode >> stream xÚŐYKsÛ6ŸûWđHM+„xéäP§I§^’ńL:“ä@KĆ„ąd‰ČăßƃAA–œ&™Ö‚àb±o_r‘ĘdEöûEž·žE†3L)’Beœ3€™Î&‹ śiM3\(DËÖ&›]Œ3p )•­oČĘúíïGśû·pžoĄ #‰őčśtÒ_^]<{ÍIŠ‘DdWł s`TàLpŠ„ĐÙŐ4{Ÿż\Ö”™ŽŐyQä«”YTÛĆsÿ†GŻțvcB‘ÆŰč4íœ1§ž+ŚUÙLL8P Ę) âܟzW”ó*}Èß2¶’Òp•?ó›iËȘ6ÓHŽŁÆ@ jő©ÿhŠŐòŽ S†»Ț™êfȚúőË”™‚Y9i—kżŸ,Ì&ș#R@xö(, iáTÖÌź±[ĂĄ“nŸđ 3D™ Ö)c"‘Ò •ˆ‚wĘUżŽÆŰČę«jL BAÈ!ùÈČÜ k·fV"òƶ.U€9í9Üú€Ë‰çz5Ż6V^™—«•c}ńo«őHçË‘ù]55ŽDćíÜűŻ‹ÒzÍźê ]ƒ4T[ixȚ˜ŹGđ2­ź«șj<™ÛÚlë6\ì$¶‹Érq]S8iʶZ6@O1H5ƒ')òÒżÖŐgSWóćrê·gÛfb©ęŚ…Y\›”ÿâžSĂ.¶Mu7ą$·Èk'2_VËÆ4mU֞hV.Șú!ćü{@Ż=ÄóÊêBÁê èvíNÂîdÙ|ÚȚg€,œ\{*SNæ šì”ûvÀś#FrăżÆNK?điçЖÒȘ”ŽÛąĂ…UȚ>òv1­6íșșȚËŃ ŠškÇòoOÆŚÊÆÿ,“;pGń)PèŠ0QÁ›@ û,`©˜ìH^AX_C‰Žâ6m‰$Û”Í4!€xđ°Ö Ï]űva ¶UqH»c—i‚‘?æ;șś.mx˜ părӚućŒ0˜ÚˆGtÆOI @S94XdsÖ˜<òEDʁŚ@S‰žÄAS‚š‚Wž §Ł -‘ŹGő"‚Ù!àKâ6Žp!R·EÖgˆ(Öż @„Î!‚°&țĘCđíPćLЁÚ"V›bja:dÖ&­6`­Gt¶Ö"֚@qM\6ĐZ€™ uEóČŸwéÉ„Ő“Kb‚wèbùbÜŚJB*:{) }X…€/7ƒ °r˜”Ì^çÂż<çV>łÙŐv5…6 Ê5\XȚü2 n>7.,»u”ùÜIbkBWdqŻÁ0`ž`ćEÊY 7ßǂ 6-ÉÙ#æ–Ä=.„Sșó|ä1 ŃWЎöUZ&‚wÜȚ PőïÓȘțiőĂ|L˜ƒ‚5v¶=À†|kÀ!ÎÇ€ëAC=LÂ$r †NYăGqK)†Öˆ[ŰćÓˎyć(^ć!^#ßFx}“NQ…ԌҀdj‡ț!ˆ3ő”ąÆYÜìUźáüއŰN„ËDșôvé‰}n†–ŰöÄÎ2Tïôț)QkÀCûnăHQĂR$ŠZŒ|È),šƒA!‘N".ß¶exrś۞2~ÓßłbÉ` Țő6ČÄАÎ)„Ś˜Cv“î˜EG^]]üą’ӏ endstream endobj 226 0 obj << /Length 1562 /Filter /FlateDecode >> stream xÚíYKo7ŸëWđ(ĄYšCrHÎ!‡žhä–Ö‡qČ­j-»vÔGúë;ÜŐcIqWkKqRÀ' ͙ùæ›?)ń«PâÍHu|žžN^Ł$Éi'Î> 0Fz„C/”Aqv%>ŒŒœŸž].çMŹÏ&•&ÿq?Áńl1ÿs1ùxööä”Kn±A’ 4è›KVç‚ € őAĆÖ<ûRyYžJ+IHÂIoWȚLă©ŃOgŁ»đ_*Â(”ŽpÖJăH\.F>*qĆÿùV°5 âïúèBhÁG‹Śâ—Ń»Ä`Œ+'œA©ŹmÙ̝wlsíú%”ÔèÖ'.j·ó dđWč`ù‹‘èCó§§Ó‰Ąń—‰aÄ?ϧ7C2 ƒ„˜À;Ɯó|7ž&Ć Ș\»Ù„êȘOYił@1œDëMĄ•—àhYyYôYZ|[Xsf(ìrŰQT ”êcçÆb!xŻČ2@;vŸ»rL:hțmYÀCKiw  Iš|€mjI͑śEç ˜˜K¶ćIJ|M^’BᘎèuńQI Š—űL9 ‰œłțžÄߜ żăfPńhŽÀQSËD Ië{û–ĄșxșÓ§‰ûNI@›sâșŚnö–I„ŽMźJuÓë˜h†Ż«4ƒ +”^I=©@)5>ßÜ.æÓ듋ÙrÚäírúyÖÁ„Ä:ś¶n~älRb!€H8§ŚNțVè%†›èАßuL°`w&˜mCœ— we?ŒÙ˜9WFmzJ‚(m]ƒSr‰©B·ŚĄ*xekˆTB“ÄJPŻ_tܰVâ“{Û'ÙèÈ]y|蘟š+)öĄû>Ü6^œF.•ÒHܑM3“Dl”ÍÊÓhCŽ™É0ĂȚÆÈÓh›ćÁ˜!ÉzXìC,03Ÿ§3€ęÛúŸ0Ù|=žÚûÂóêAœČöOÁZĂÁ‚” uÍSëĐ î žÆ’?H7PUÌ ï„~KćaĂžŁłÆńÓ:Ő¶ËÂviŰșh+ï]„m[_…ÿYKˆmEÂz+>ŚŠT&ŒyțV”Nv‹OŠ%6 .0-ډì6àžÎȘíÁᄎł3˜:ś•æ•O™ęqù&.왍ûVƒHăöWUX¶îE|Gę~JIBü†“dăòÂ.sAłŻŻÖÁèȚežŠ<ᣥž‰œ«ïȚĘŚśíŸÈ+Qíž±œ% `wûÍł‡Ì7ûß8ĂU„iOòZÓüh»m6[ŁČyùƒk­ Ju‘żÍ$ ĂH‚Ăûärà+6%ëwÎÏóÏżw<«“]Ž_QhOÚE™ńaę€làUé@ć53ŽwŐš`sḉ~ƒr50ßDóÉCáœÆ·S:3ŠlwæMÈ8+Ă| MÈpżń–ț·šP> stream xÚíYɎ7œë+ú(!nŚ"yđÁ6b>q2¶šĆ†i&žQçëóŰ-u7)ö"&‚œZȘÉÚëŐ/>Œx5ă=Ïççłł—Fžy’Tœ,„R̒+ÈX&•)ÎŻŠwó·ëőőćvőÇBËùőą”^Ì»[˜ùőfőûfńáüőÙKŠNю9*Ja™őȘ>d'çl!8SNˆJă6 ]*‘§™Ł$gNû‚˜Ő;m.‚ÔìûóÙç™À›Œ…â†# ҂y„ŠËÍìĘ^\áÇŚnóźűłĘžđq]ü<{S{ ș0œćđ‘”dÄ]}çr§Œë*OŒÄ^őśœóZ&v'gB5BąÒ< ÜäüäńA3)kÙç˅òó/ /߯–7SŒ.á4hšw§4b–+šV›1æÌÎș›&4–9ç+) Żùœâß5Šu‘ÒF–„Á”LX*:ś<Í*Í€Cä e;ńMÏBüÄXçcOKƒ”«ȘމÒ&c?lDÜ4sąk>Î.‰y#êï¶—HfE’Șq‰G"[!€;%ó”ÈÛŹrJšíMG“8Ę„J™‚ž„œJwĂI5˜îŠiÀxĆù8ʓO3‚ÔaxœT.N +é$5#čfZQU3Fîz̋Ș<źV«őjû„.™ËËíí]¶I fTp¶aÊîræï|"k=ŰŁ< ȘGéŽńiАrˆŒ!ĂŹńCAS8Úځ Io‡ŃÆœ Ó*NnF‚Šy#qÂ> StÛИ!R OL@Œ”hÖb—ĘϘ^”‡ÎžțŽ #FÚęˆčXĘÜnVËőÙóëíČțêryMˆÄ*dąŐU+ô€ąjKó‘HîŐț%ÓVPmMżéaNŒ0ĘuŽ`Ü5Yÿč§.”k}Źz|ì[eśîj'òȚ]9%â ;žI~Ęäù]FÍx;žd,ĆűȆFŠhdv'™Œè‰fT(\â҉â`žț` 9ČQąJź\\=ș”u™–:)žÄeŠőû“ì Ò6ćw‘w™kĂ>ÙeÆłjT8à1ÇžőIÄ 6ŒÍŒ=[M”.žx!;țÊÜf˜à”»-q»ê=A—±~ÎđđČ~ˆêáx6,€‰¶Mć‘I=܀ÉM©^ł)1›błeöźŽ›5t€„ąŁ ÂĆÄœż—*W'€eh±ìHN«–Đ0Pa’íÙáŐČœ^K‰% ©°a0/ôWšu€ńWCŰö á)à =3ÛĂKèŒÌÓü$NEÚI?b^göâû žl @žgê…1.„Ó- ž`“EˆĄSrp(C`š8`őˆšpOWzïŚé)őœíiòIŠzW§*B vö§ŐęŻ=ËbJ2Švëą;zŰmfЃ_9űKé|>]ĐxPó•ÿ.ąlgoO{€Ń>]R“žÉ”:D·±ŻąÚ:Ś$$„ÀœÇ•vÿŚËiŒÿ» )6W(çïeGŻń”qa Ć3đ<âÛó;H?Â;Ęén5Äò(B_BG:ËŁ€,•Rÿ:Ë#üh`Ș·M#D­Ą’"zô©h;H󈘿9ŠŠł>z˜’Eæ8ČÈ#ČÈy Ęæ‚Ąˆő2†č…Ôó…B† -† Œp€7ƒ†ëà4…áï=ČI–żƒ'"—Ÿr!—”DőéK ­č:B.9Sy[P 2‚Shš5†ł f"öRÀ61B.QșR ȚWŽp$”{æIiŠX§z?FűQ9Ë֞hńê]–ÍȘRÄŐŰKîáń3fvl֏·«ûûۛłWËÍæܕțOrW;çd;=ڜ™xŒæôÒä+hŠ:rú;uŒĆËìźÚȚŚGÍ5ë|–Öí3‹Äć4ąÉńLöžiÂ?B#<“9 Ïd&ńLæ1+ Ipź©bš)sÖʚ’ŃÇÔKő&)æ( ß êÔèHNݧ6†Ì†ˆ·ê+ Kšțî”ă-œ—ŻąQ6†ȘőÎűÒ1ŠŠcä0źÖö| ‡ÿĂŠá3„7LEŠ‘Ń'I›Àèéń[śä@ËÜNü«vs€ÔÆÌŽőDZMqł>ߎmÒ1сI1‰rÈ·1„Bž=òq?(z°ü”Wì^ endstream endobj 234 0 obj << /Length 1425 /Filter /FlateDecode >> stream xÚíYKo7ŸëWđ(ĄYšŻ!g=ÔE ·Ž>ˆsPm§P+ÙIì¶I}‡\=Èw”¶ dŰŁyÏđ›ÏJü.”x=Q=Ÿç“łW`IòƋ‹B[+ƒGá!HcA\\‹śÓŸï–Ë›«‡Ćß3gŠ7łÆž~ú2ƒéÍjńŚjöáâÍÙ+_h/ƒi!ŽJÖr„VÒąÖIP±”ÀŸ$‘ŚȘ\źÊHïA°>·öf„&//&Ÿ'šż©„V[éŽȚ9i=‰«Őäę%źùo[#ÿ$Ń+2ÁóOKńëäm›€Â^T6oA*çZ“ËdțœNêˆŁ!țU„őWÏç3KÓo3ËÙș_ÌoÇdÏB`=ȉZG}Ÿ Ź\'A/D1‰€­Ôí6ÉA"R’â”mRüC+„cp# ke R™žJä°TÈ*”ŻË9ßq)ŚŁ€/š¶5’Ű„uP‰ŸcôšăC‡Ïș/ tû»‡JJŒ șÓt3R”ˆŰŠ‘ÔŠŒ«:Ç­‹ăÈež”kˆżÀ1xüE?Ôž čsWKMF±sőm·ÈŸ»NÊț‹€ÄížȚ'H1^'œȚìÔ榋ßËĆĂ·¶ó?ÎŻîŸÔŹ:âxm»4ÂșđÿöuPwe䚌–À5ÈVÆmee(nngđÈrƒ+Ă8ÎvRŸŒș­ éŒëŽbáz0ĐÍœÛo~Uԏ‹ÁĆ%ÓæƒTÜȍáŠÙŹšŸ€Ÿ5Z)5}ùőÓĘíÍíĂbŸ<{=_­æmâŻæś7=„,‚axwĆĘCȚíX†âœÙ8úGeŽ­Ô»!zÛłęŃ o-nÓńčîG°[3—ÊȘí<Y„łY‚j^;üN#šŠc.e©ăWĄÆIÚ-Öą{’_äŹŃüvPš‚Tđ2y۟ŒĄÀ·^ŽĘPń•ß:Ăęûˆçc^«”À‹ Đéíґű:‡G'-đźUfDΐ»©ÓČć çæßU†ö~țâöŸ—Ÿö^ÚČ·ł5û”b €VŸf­H;g]nìĆ,B‘©ä2í‡Nš¶eéì˰kűo n7Oѓ­ToŰŸ¶/Ă6U[ĘőCÛú>ĐipĄ‹Ô›„{ilmR"t‰đ7“7/éWŒ Ìúa șmLrüiă4 œŃšAŹÜÄ9`QLÏö 2~4†SÉqëFŒxƒL’À#ÓÄÉŻ±ś/‹û?{ŽȘą*ŒŸ!Äă,ìvÆȘ>3 đ;<ÿAÊRščF Ü1Ç«șvâżś(cM`À3€WÙ4êÁK(m§>Üqž/Ÿtá"ۧČ@„đ†Ń84l<Ű z`YĂúÜoŠ„ő\7c±Ÿ‘ĘPòX—”– Ÿ;©sèbwe»WőŒNÚêbœöjłÎâÚăÊjó,bĄ=±"±àț'ĂE,èœX}Ś>ƒXx*Żpp{†ă 0H,è8ă|Œz҃ÑÊ2 Œrˆ3iăeîęџìœ{nw"946F9đY”D€TÆ1–) Š|è0#aÈI' ÆöƒÁ Ż)ÚÏHD]ž_;xŐ‘8æąÛç5ÈKVÔĄ5šÖHĐęDhԍ#ȚőŐ;ȍŸëI†đ[K‰P?‘!'2äD†œÈò(dUXáĂihÏ7ŽOK '¶äĖD¶Äh Żü~{*~_¶€t€56aéțÿ«FŠĂńŠ4öàőĂ%Äd‰Ž·śæű)ɒęÄKk!áX„ÖŚąĆWŰÙÿÏûŰ endstream endobj 238 0 obj << /Length 1880 /Filter /FlateDecode >> stream xÚÍYKsÛ6ŸûWđHM,‹72ÓCœIÒæĐLM'3qȘÌÄL%9–ä4éŻï (‚)ZvÚ\$Š\Űoż}’fŸ2šœ8Ąß瓓łç’g–XĆT6ù˜çD+“)© ă2›\fïó§Śóy1۔_G‚ćĆhÌ,ä_V#™‹òv1ú0yyö\E«C$šl š(fĂ*• ŃP €—€~;D~©ÖÍ”Ü*SD‹ê8›ŃXÒ|îdOžMNnNÿO3È8•„Q›)Á”:›-NȚ Ù%>|™ážÖd{ŃEÆQFàć<{{ò:mëÖâœgŠ3ą5 ;O+LSM„Đ[ .(„A(†•à°ô¶1-c Ž‚è-űçÓ·ùśGžŚćt9~F sè"đAXŠ–ÓDjđrŠP©QŒi‚Ôȶ‘&ÆX/%8»=úŁZčæ2Œ™H·¶•5­ČÆ>IC3 àjU:±–$ìnIK ÂŽŰÊÌS«€·”26¶“ˆĄăguœ .dEDJ᎚âÒcEŹ„¶&;\‘W-æïáȘ[žFvF„‚‘ÊÁȚ%ǁ9 +z@ćèì6kH!°°ï`ÌRBŃ ESČÏÁ”"œö;úÆiû—îôŻG)șSшÂŃ^ÈS3t“vb%ć'f‡œ˜Q\ Áƒ$”WŠyêĘőČüłœ—›ïÁ…?Ng›ëUJN‰îWàș"ß?]ĐŽcgs%Ž—6ÄNŃ@§eTăÜĆdR9‹^Ł2ÎŽŒÚÜĐ­%(Ï€”DÛ*ŃŃ5“;«ŽĐ.oÆh(k_í ÁêîÖÛ-@$X& -g‰ÓąSĘâR فdN)ąđ,/đàPĄô„˜ŃđìùïȊ1Sùb:?k\ÖÌŠë"ÉŒ–%š?§KV‰(>ì_Őš|NBŽ^ZûÎëŽnvš í@š© t“>‡æ°Î;LhU2=4 =4©&°nwI7Is7T;íXĄȚeˆâ.öDQčŸNˆùüà –(˜$üyëûœdÈI4‚•­ÈŒO€ÈnÈ%‹[KŒà„2Đtđÿ‘ŰRËù!đŐ!đyűv ôÏ©č#ű0–h=pӃœAÏhč_ÂQĆÚ4ï*j’}§•`ș;_ ŸČ]ü–šJíÖ’Èù†Đ©#‹Í ~YŸÀZ6Ê#€E·j©œWŰđš°éH3ʊfaÓ©¶j©­b”YrŻv(E'ŠšçI2.©KËŰ”…æÇd@íűś-Yî~ç)ÚàÇnŹ…Ÿ`ÖÀăȘÁH:. â8X,j‚ì†î8€9Œiöàq IË:>ó;Ḧ́og{HÍ áJöv‡Xža ˆ{2Z܏Ńì?gtą`Œ)|„ç:6Ÿćű›ręWÇŒ/:­Äpíj@ßcöäź0đ»{KŻ"Œ‡5Ûä136 Mł{Œˆ„›kùÙ±+CŽœ@K,Ź™€ „ ßàîu1L m‰ń6ihqÌ(&„>#ŰO2˕ƒfč!öهìΎ­~Ű|öP æAæł^uÎ"î[ĄÎ˜8„71}%G»°žlÁ©ËúÖż‰\ÉA%û™ŁÜEĘ»"Ÿő€;Ž™-ÚR=ĘKlÆŒ™-ș*6#˜]ˆąœcfzËcśú_ \S 3ßÏpìˆÚ”źĐ¶°kf|ż3Ž#„›8;bš0qëj3î'ÎZUÇ}S|,VĆrVʇ&ÐH«?ÿJ^ZćçĆüjzùùÔŐ4ÿc̏yÜŁŚ·óbăžh›O——îB瓑[‰W·æő țâšćŻ–áî—éjș(6Ć*ü,֛r1ʔŚË°@Y‰]•ĆjșÍgWć,LOüyĄÊú/f±SžÉÓ>‰%m°üÉÛÉoż»mL~~ëŽX.Sctœ»Nƒżqë +æêąêŁÔ’źWŸ MëßŐÚ]rŰrĂòó źĆŐ|1].ńŽR<öíK±*Í‚Ä qY~ Śaw1PaƔ‹«±ÆXÀśjŒÙ[ÔOP™ËÇ ő.J†irĄGëžüÂ`ӉĂÖn-–J @%ŒxRIŒ(ŚsdKĆ+Kśă •Őż7WEžđ2Ÿüçzۅwęû•Ęsäsț”\—›â’$#f1Æc=œ†ü!Ѓ,LjŠt‹KL?6Ü!kMuŹŐ1†Xk ?œ éâE…”‰„0ÿ ŸÂ«l endstream endobj 244 0 obj << /Length 1481 /Filter /FlateDecode >> stream xÚœWKsÛ6ŸçWèVpŠ€đ&è›í6ČĘDőDj3mĘCÁŠtùˆ&ęő]<šˆzL}êEv đíî·+}oOűČNߝ’DIț-őc_›śÛOșń7àțΰ\ô ‡óżžl‹ˆ@_Ûàš%Jđ±ôZih—mŚŻÀ‰_͝ŻòRÇsœÒM Hè*š’_!33”đç^â,ÚW„û† ÇÁcp žè!Đ,{q‰Ú óRêÖ+œ?°Et«‡"g%ĘÖŐłö`Ú9„ńÈ/6:m (Ž^ò”z»ČĂѝdA7ĆŐń›„ŠșùìtÌRĄŻîđđŃ%Ż `ü­)|œ=wż&MChÈ!Ín§e>e--ŽÖȘo”7ł[AQ—e‘i±ČòUȚć^cčÌJŽóŚêòś È0ƒÖĂoŽû‰ ‘èBùlă ßgäÌÔ6çCń‚ćwśmgșB܉4yUë҄"Öč8„)ާ*;JzŠź|“ßêŚĆ–Œí8ë]—E|ÖÛń§Č_Cbü.H‡ń1ŻțÚś‡Œ e 7 #ÍlYnëî,9â4éŸż«]Y‡|ï8œÂTŠȚșô­·^őƒs­9űŹDfÈą,Màőc/”[ap;(‡¶Ż 79:䍫FCnÀâ07`ÉęáeIcß,zÒ,g©Š ÜN<‚Ń˜]òƒËq>Nۚ žÄϛڞ VCč^˜-ÖÆTŻŒ†đÚ.ˆìŰvM”Æ7Á !ÀMŸŐ9­·0aÇk3 8ćۓxtŐÙ[1 ÿLlż(e CüȚ7Ær™_/–śs?œ…dźÿîMż”aŽțvŰSùđΖXvǓđ Ó3ûŽŽ:M•(Ÿox6]śrțïÍè-Óén·KòĄqLêf=uښ7ʧțÊÓÁ/«ç‘ÿŽ#LȘ$ËÆ¶;H áCG%%x™d#ł—oțb žB endstream endobj 160 0 obj << /Type /ObjStm /N 100 /First 872 /Length 2598 /Filter /FlateDecode >> stream xÚíZmoÛ8țî_Á›/9|/‚Òöúìmm··A°Pm%Ń­cge{Ûûśś %;v·Č» C$E†Ăg^8€„PB» ŹCEâ;#ŽÁ­‚B@­…%‹š„ó”Aj+ąă{Đ*eÚ'Ą”źżá…&fczą…"2ÂŁˆŃ‚æ<À ’$H%=@· Č`Ź ËŻ'ÈYŠI‚|š ­áłÇ\(âNGL$%Œ•HM7&4|è„aČ€đÈ0{e„a IY4"ś8a<îxJ&š,0 "èä…ŐĜ y&XVp6h8đát:E€lŃìŹÇÀ€ĐĂü0IÈ­•pÏI[áàqFqÎŽÂ9”ŽC#€!@Á1–‹`†§.B@ÓEŒKŸÉ2ŠNx1_xÆ sśÀv`j(máMf†kŃïđï{uvÏȘ#\Țłn žDĆ pă1oŸ, îĂoHeăńÜH"Ă€P„XŻh°ZĐ(Ú – 1z4Xż À2 ˆ<˜đ !@XGHl±àÙ a"Č:4&ù94‰ œHDc,Û&° ˜g„‰ àh…§™BŁ BE6Č ˜Yđl1°ű€YE˜u Š-“DJ˜ ±É+†śôtPŒçJŒĆÏÿűad€C9Ÿ$&,&‹ńűbđęśG‰mđ’”ÿ:1đ‘đYRÒû{œ_M'sqz*ŠW3žö­WšìÚ@—ș6;{ÇùUdT—D‘<,oàÈ0Đö†cƒiÉ0dńS3~šæâ\?œ|%ŠŐ—čXIóń_·”WŐ xÉȘÉ|†ÈùőAńŸšMͰšćX’»țZêòùô‹8Wèđ,$șÀ0eƒw]RKw6™LÁê<Ç/–…ăW[›ź¶]ĘbpO€üț ű°ű4Ïś?ԓßĆói3Șš<Žș(Țo‹žÁ,ìł€€…/8ČQ‘C˜“3^ŠȘłŒęQŒž~œ šî»a=Żä›rx]ĘTől^5żwÂĐ=Š<Æ; Î„<1HžèÓɃŰ+9VXÔșu „%bóHD6Hă0VKÇQ_+I07ăàEdŸBgÚJ‹k%”e±Z#ÇÖŁ怂€%Š'›Žw‘ đ?NàŒÈŽ a;h„ƒƒFPmpè$ŚĘlt'œś‚Æ‹Š*çőtòȜW⻗ϐP`ńÁÚ‘Űűˆ0í|ö±žńäœxʔ·Śőp&Ț-淋ùIbŽV ?”’€:鯚rŚÉ&"Ź‹5săN=(~,oűÁòÊY•őUŒ©ÆTózXŠżL†ÓQ=čÊŁ–çĆÛ/˜z„Ț<Ӌ”a–oŽ WïŻ'g“Y}śűe}yYaÖĆ9ȟ⩞,f"ùâśĆt^«K`om1šbțłY]\5ćUQóȘÖÍpqs9źŸóz<ȘŠ›rŰL'ƧŠ ^)‡C(ŻŐbVÏ ĘȘËąÁŰƏËUçőbrU6‹›qč˜Ó«é€ú­–Ìov[«ƒƒżÎ7«Pą”DFÁ©BJN$dD GȚHノ{Y_-šJêG hpÓș«»ÂĂ 'È[X*kÌîđń|q=Ÿ)'“gMuŐ°BŠ“gH‘Ă#F¶à€!'VKâ$óéEƒ‹K8&gÚX˜Xg +$gÄA·‡hżŸźgăȘyD=B"ÎV%'9ƒ?F"íae`ƒ6D©ćM$Iˆê»Ö”x·&pTÿùʧò̘ìí oăôQ?魈ÓĄ?†ăÒÀÍH€œtDŒő•ŽśÈ»ò6isök‘€îë+©~úÚ±ŻÔq Ìj[0§x(Ì©[@“ëjßŐáÿnA擃í•wo.š}C Ž`l0ì8ÖŒ‹áuó|‚˜lŒ“ž–9ű7ŸŹ<D'ŹSK‰,acćèÛę0ÍàDŐxf«ÇÇ"@Eu§1ëŹ Œâ*NŽ€©ÿŠ”Aû”k›q»Ë1d€GșÔgy[ÛæôÙÚì>6Ù^±vÄxTÜn%XÛ|œxXÜæĂJ–…Ï*s­ŐŁ.—ŹTÀj±Ă%†%!‘æłTïűțA«)oo«Éšț"Ï1ćRÎŁły$òF‘ôŰYìēŚOáȚđÇgÇK‰P;Í1Áòùz߀bŚ>~ęđoÓŸwșÁf^xq‡măvœŒ›tZ.Ë+0ü1`ì> ]‡iíXô~LX‡éxdˆ¶!u(2€{GȚ{ŽĘ‘‘‰0_Ś˜’Gä5vÀŽ·a č߆Ü čÛrśäÖJL?bò$Ûßçwț°ź˜M_8fٶaŽÜö€9=3vxÎô#&€‰Ö…ă`ȚiÎiÈ#Àl·`6t(ÌːŚæMÚ%ÌFò_qœˆÙšœ9 ćĘÙÚË>澍Č?ć°Êì› ƒČęˆù°Žâ·8«(Ł'^Ž€WĄ1§}ŒYèGìP[ÿˆÚîá`‡jÛnû”íéS6ÜÏĆm»vòŸÚ»sđ]©„ŸÛȘA.đ”CÒ‹Ę’ ^˜`„ăăĆ.YÍčjqvzš(Ά|.S|(țöț-_ß]Ïç·ÏŠâóçÏČÎeSW39mźŠłßțÆăéï‹ș,~Y4őđșxw=žÍŠy;ș<ّ&[xmaćK“đÄj'ŽÇ“Ń>ü·„g#”{„ș ÚΠœÇÎ=éžÄđXӗBXӏÖÄ[›zcČőÁNb•dˆ±1oSêKŒĂÎÚ‹Ű Æp<Ù3lôÍËσńR‹¶td\–ŃHó@œÚžŽâümY…€ehË đŽìń>ÿ7ۖ‘żÎńü&OőççÔ];~S6Ÿżîűú/ä8žûŁȚùŹMi˜"űŒc`P.Û6Ë{żŐ§ÔJ”“Ęï”LsńpïrŒ»ž5â»{Ż5l°-$„à:JïeèÊŁL]™5éœô]ÙRä©ÂćhYź َv}Â;Ÿ­ßŁ‚–¶ó„ #sI–ǁ•»Œe}ËÇkôûˆ`Áßn)™żăb‰]Ê'$ê,Ș üšÊ‚$—… ”)¶ƒ±“yÙŐÈźŠčł\ÍfÜ.—ű› R[fc‚i, ëÆŰÏçŁ?țČÍëŰȘ!›qeîË» š n”›O%ś\’8›æŐ€ĂkÌÔiŽço )ÿIïm4Œ)‡§n&ăđ§€yȚ>ÛÄ3]›œ[ł).aÔićP}/Ză±îž6°Ą”egn.U«ŐÜëM6ĆVàXÿ!ȶ™.‘ §™ą3Sì…S¶ĄÌ§íËïvÜÛđŸăż ÏŽȚ-}ìnąK3ŰgÒ}źeLĘ4­ÇćÏ«śu1ű7jìĄk endstream endobj 260 0 obj << /Length1 2691 /Length2 18123 /Length3 0 /Length 19481 /Filter /FlateDecode >> stream xڜxTœ]¶%îÜ„pîîî.AƒîînA‚[ ž»»»»<ž»țîŚÒ=óȚ̚UkQß>vś=rïW+ȘĐ ÛĆmmœè˜èčR6F¶6޶VNæŹtÊ@Sg+À»Ž‰ Žœ\ŐÜÉ űßYÁ‘«Ímmžÿ¶q8œKD œȚĘT9w+€‰ƒ›™ûꁙ‘‰ë_†¶Ü9s#3 @ĆÌÀÁG.bkçî`njæÄ űû@eDęîÈÈNśîÍL P6°3È]́6ÿæ@ebîàèdc` €·2ű烠©”čœ‘­55íÿ‰éŸÿ}UśwjVïÿűŠ·u0ę?yČĐęćÊț/úÿáŸ[PY;țăAĐÙÈјhìLMÿofČæF@G 1ÀÙÆèP‘’˜ŒŚ`őOù»1@htxO„1ÀĐđWŃÄßéÿZŸƒ‘ƒ…@eæädÇÍÀđ—ŸÉ_*zGz ő{ŠĆlŒEl­­6NŽpLŒcs#'€!ĐÔÜŽáŻPȘîï™Æ@“b9's7€6#=##€ńŻÏßOșï©0¶”±rÿm.ÿž\ƒ†ș°„ÍÓE Ûș<tL6F.' Àû߃*˜ÿ)ÆßŽR6&¶€‘7v¶ûŚ\țÙxȘ45àßCÉÛ:œç@ő»j:ŒlŒFï˜ț›6ú‡ÁÿÔ=ùțÙüWę«uțĄû»{țGÏÿhŁ”Î_6ÿÙ=čĐëŒŻó뛿lț##äÿOłôÿ=?ÿ3ó?ÎÉÿ}:ĝ­ŹțхTŽàœÿÿՀÿÙâÖæVîÿ›Ï»ËZjÿIüż €ògŁJ9ŒłČ1”ú[dî(nî4V4w22˜X9ÿ)Wûk3Væ6@E[GóżÊś‘`cüȘ™č‘„ ĐŃđ_* ń{golnc `fc88žĂ1Ÿ33À“ `țÉ t{_›ȚÆÖéĘ`çìäęžAžżŠˆ À ô—蟈À üqD~#NƒèoÄ`ûq°€~Łś(ȿѻŸüoôî§đ7âd0(țFÌćßè=ŠÊoÄ `PęȚY«ęFï<5~Łśő4ÿF\ï+hęFï–#&æwąŽFæïù·2ț¶z`ű1œ##Kàûhâô[Îò·üŸœę·â}‹F#¶ś`F¶Vïőꗄ•ő/‰”őDßYÿ YȚiÛZęunț¶xgń›á{©€ÿ¶(û_z{çśŃûíòžN“ß.ïtMÌ]țˆń—ÚÖùÏ5ȚMLG|Ś›țu7ÿ4yçnö{'ïe0s·3Úüań.3ÿŸ3”űŸÀòűžœßŒÙßł`őWłÿÖż§Òú7|?ț~/ĆöËæ}HțĐż'Áö7»wgÛSżïÈî·ú=˜ĐæßȘÊÊô_ÒŻ)ëû6ì€æ¶ż«Äúž-;+ç?Ű2œKìWń=UöζïW¶áEyïaű#ŸLïÙúí/tù#lïæŽïwńߋŸïÙńęD6û#Ä;”ßDß/'3àu~ß§“«íï1œÿ€ï5pùŸgÍőyśvûŸ‡wÿÍæĘŐèđÏŰÿv,9;ŒçĐé—őû™ő/lbț~0n@#žć[#ž ‹š ¶‡*!ăz·EŃ D*|,(ŃQՍ(ŠĎă$ń1ŰfÔźmWgžqiŠ^ö–dŽc5èXUŸ1`̚:–p8·ß‰ˆ» {±Áő'Î§c‹Cf†—3ۅ‚ï—cXä•j5{ÖÆĂ^ql†ÇÁ] šÊ MK)ÖÆÜŰrèżf „lìT:Æ2śz‘yíš]!­Ę”„Đ J Ć~Êê„%c(-ĂóąOiûś‘‘ÇY‰ˆt0…*ă$ç~&)hâ…+ìö »î%ÆçŠH#ÙČJ{™<ÖőĖúnœ‘†I@ÌÆ—"~1+țY:D*Ń4 KK€Ž”mÌ[#_›ŻŻ2©DčêYĂ!wMł2“Wd±‘«žÔ) “É1»ŠeW>»’]KôČđšw?‘J°žLűúíW,ćíl2»Oű-âö $»șNdDn9æjžsW &D1b+(,œ :Ęäló٘P°„rąÓ‰ĄB AtÿO3:ôÜûošő…FJ"Eԅ`EdOșÈn†°‰Vù0˜eŽI”sÓc4ê–ă$ô/` ©:XžĆ8)!+»àš6î|FòŸg#ć˜,ž lTȉc6ę·Ž2»`çÆž`Čç„đ»d:§Dš™ÆkÈ€­čȘ”2üW>"îrŰò@o^2ÌÁ.ù5čDÆò‘UPë7€|ŽCæ2ÜíŽe{À6ZxdŠՓžÒ±iÔÁä+dM[vˆóù)­I*Źóy7Ü!쟠¶Ï6€,_mç żž/U•ăƒłÌÖG2è»ű W šÌ—! e9\SPË"ƒ ÚkßuŽpoÁF1Ç#/œo§>©ö2čΑbIZRđő„›ì€e@&·ŽXŠR“ć_ÇöM¶üWAĆąČÙ3‘„;Š=BŹÁ4Ț7{$ÂäQŒç…Wùi}KIÖŁbŚÍW«ă}ÌNä"hOÈ”Ć%}ïŸHL“î*‚·HĄÊ&FRĂ“±‘/p§Ô‰r]ôX šܚ š1 ‚ś ÚXæÄÁJóŹ,ÖIšF ĘXű+ÁÄÂttλŽë“î Łhg2dävÏȂw֛ž‘Û:Ï,>5چt€óHőËmš€Š?êćq±&é,æ„*BʘațJ%û0_őą'ŠÆkßÙÚ·ä0çäêŠË\֌üG`70Hž`ąF>·?R–V=ÎášSțȚœG”SÉDè<éșSÏËA:‚@7\„Ètى,ƒYÍđ1*ČädAÖ;ÈlĆz’Òސ©ÖaȚp•ÉL$KćviońhIF’Û>GUy€Ź\ˆâž,ÙÂmŰłÙŹh/áÀŰŰ>•”Ž•6äÔł€ÀRÌS–ęŃI*l]Qùśk?ßk—ăGPțE”č§œv0•ź!B+•Iî ±ć WvȘE𱚎ȘűűŰ6žăŠ~'Ź@íôĂ$°4SÜ <čà„)éQ臧æöB@ {ڜnò3’ P$, A˜òœ;ę–ÿ›ț6ë44‰ZPĄóW?e€ä„$Ł“=ž.Țšƒ]Ÿ‰q0kĆ‡„ö7„~‘ó_æ}·€©çÄf.»•àÛ{±Șcűtčêș—$iĂYÛ đq’È ‹Ę- țŽő­ć Úǁä{w·—Ôm]wÊ)EÇBțŚ+QÍŒKÒÍQ?.t˜k›è«ùčN«UwuÖ3HqĘzžˆ W¶(ƒn_Ué„}+§¶&].æ_ÛѕŸ~|e’±ÌöaŒöN#ÛjA7#ÈÙ)źžûÉË:ę_ˆhțàqzwëP•ßĂÊ1™.p3_FÂb ‡1D}#;V›Č/W"¶d€ÛHd9łŠÄ·țz#Ż[VátÜX1’țMX›Č‡ TźŁćGæÖ­KÙ„ÌÊ fuϧ8zČ_Ek9™űȚ~‘ôíČQv3ÍK2m€ȚĄ–‡˜8bŚžÏŸïévöž Z”e-™>c#X|Ö:ŒÔžÈcâeŰ>̞ú۟TJæÄê_à°éä=àŽ!ĆœŸŰNMČkĆTŸ±Ž\„t›Ë|RăUqyÉ1Śf—Ó±;i*Ɲ(‘đòń æ»Œ]•Ć2Č\ykčÊ<‘|ÚèMƒzȚЛ9ßÒQ˜ŸćˆLx`©;^Đ șÇÿÔĘ"D™0iï#”ˆȘÏÄśŹpàž»zÄ\œˆÉú4”Č8t x§-&šűTń‘ï†B~)kÙĐ„!, >G„Óa iJ?&‰Yț™©;fQ9ŠŚ$TĐ5’lvîÚöìÂ;À©ŒČ€ ÒQÈŃ RĘ+ Ï&4Ÿ‡ëW·;ⷓ-îÇ-IB€œńƒŒù{íO“›xÀj)€ˆÔ{\pAN˜ùÁ„êł‡˜>șćӂà[ž}Ż U R˄+3:.  xłsˆ)Æí "ô@>w:ÏGNłúÊc/ŰȌ„ČĄŁûÀp’ìaŚ]…xłŽ»’(Ąx =ÍêÉ8=GZHôŁOŽźŻłšf˻ƚ ”ó‡:űĂ90e!m:Ü]“•’ˆíŹùèŚ" UŰ7ì{Ï"»„'ßCÔ?°ă|ё=Îâ_óĐ醌æSŰæÿIÖ Q nr ïńmq&ƒžïŁ€čçRêr+ŃjŁvOÖô5sŠZ$©ŹqAÂ3ö[u'픓+Àaìöaä›ûDBúiƒ6u=­pZ_qžm%žŻk„ŠiőÛŒ=íB! qÈOXÉéÎ"ű‘ôbP/*ż6ź}§'ŽŠ…$Úcz~m4Ź}Q„é W9ÛÚĂ*– †ÜA]—æ9«=–ÚĐÓ2{™Ûp*șf{Č1(2]Lô&'RĐÇ>hÒâxč·&ÌZüÍœU'+.ôV9ju ÿćŁûYëőć9·Êr—^„0À“çcČÓOÚQE~҆À) Qßù†ˆ‡­œ'=„•ÍiJ6dŒ-Íï—ïČá&%kŚÏe­â‘à›˜łÙy&UŸá‚‘m~ÏùFZ”SÓЇ”ĄtA?ČaÇB­Â°bÂ%tFë<ČĄ»Í4Ó€AÀhᯓEߘ Ïxò55cúéŸă€șè@”Ê<55iŠçZÍ=áÄ-#B⻈Sž1-—ŠBÜWÇÜÛfă  KíÈ,ô…ŠŽćêyížX}ÁuűŽjżŚX˜Ôg;ń%m¶Ű ĂŃ}Dèzöԕ.†ôOOR<ăs"Û,Ń”É/*\ß9 żeŃ3Đđ]ÉßxpV_ôdÎÁ»hđŠĘêgĘśS°‰ï$—ć|nRìMáđˆà•!läYšfßP4ÀKú0«8Á·ű‰Ę©ąá„ÆjčË1VdŸűӌëÀȚPâ;ÀêA {`bÔ=—ĄșüۘS‰­óźrż“!l“Żęș^(>iFP…)udæ-ÊÁ:.ÌwNžŐNJ(ËÛô§ÜĂiD‰{]È :ÿUšjjÜäłí–úŃXŠBëŁn“Â>©|©#%”끌|#uïGäákK‚^|[HłAÛ¶dK"y0č €:Ɇ=)2ŒEI…üÔŸ‰„î›ÊƎ[i/íśÖ9;É'L»cQ){Ț«sbDűۑZx7$E•J(ä,ÜuæšZßÉÙ 5áè_gČ,s—Ù:ąàéźŒÓú úłć]ĘvÏșBjŐŹőžïo=pșČĂ8e?Ćc˜ŠŒ°ĐŒźòś/g7qì•Ο§zËdٓ<°É;J?_92e4§ÚydĐÔαI}gËÏšŁ °ÓhHHŹd6O…˜#ÉtśqgWĆśv8żv“ƒV}žCöüæGű]vp­Ł„Ä^vNb‚zžę\œĘ=‡!K@„)XTL«ÈÁÁ]Čú$Ä,p?ä€Ô€.”›-ktl˜Íl€À“ÒŸy‘;[püÁ·çLąĆ&šî“ÏÜGY”žśÈű'¶ă‹„9!ùÍXÊJ<ÙŁÜɘí/.1s,á|ÉÁíJ§çkËj#yș‚âUâ3í°KÉä=_“ "XŃČőhFÆÈ˰vJWșó5ï~ŒËr”ű$çš@Ż>œ?ÜÎÖTö4vÈÍĐ/?›~.·?ÖcČśE]ČÀàŽ°ŸĂ9aàœ}èBî„_Ós‹§æ^æŻòÄ2mÁ)ą”‹'*ˆÍŠȘL„)Á8w}úWĘhčMXF{ê.q¶ÄTcŚBŁ^ŹhÎVö`tiD),zŰpÏSdx>'öü›$En~äȶĆRˆÙXÉŹ·Ìë§:™ußÉԐ§âC˜IÛ;èí1îÛa à=ÇTÀ +źÚ܁Șzœ„žő"‰sÿè›>,ÇL¶Ż­aÜŒQ’|$&㛿«kŁÚ.۟\›ž©ÛyéŃ\TPźĘ!WZÜÇ6fà™ѐàrNBÜ}ÔT‡ću01}lÓ?JH ZóŁ› 42ńȚűLBȘđÀÖGâ+pBAêæ–n—są±—š-šÀhőçÎëŹč„qúŻ!d ôČšk;Ï é ˆ›’F7ŸìĐI‹trrZ6&-[–….rQÁ3 œòdüçę$“ê§Śèžœ1 gÖ”‹g‡jŐ€>€>Qqƒë.Œ!€Đ˜`”ː ôfHԖkŽî7őËŹˆű0IÚé}Íyț‰(VÇ» +ԉȚH^UYsŸžûʀ ‘BDŻädÛJëaŠ*Ïϐ@uôûf‹RPBü*Ń(ÿärșrè2=nd}v"žĆOșçÊê­pÂO¶{­˜9n™Čû~æÎ\ÁŽ ÚŻÒ·ÂÆș û_;őjóžH’-C ăłËëąCž@Ń:ä9$áfßґ?!@#ąž(hpxÙ$–ń8…°%=±’#pƈčŽíà Šöúy€ČűæAń„B8™űÉY”ÂÌ"úDož3îŸXÙÍy3yvË™^IqՐXæ§@çí֎D*uł}Ÿ.ŐäŒwłŁ$i p«žŁèž –ȚîŠ*óÏyȘ śŚ¶çςŁ^>•čtmśÓĐ(Öś 6èË"„òźFó§EĂ”șxêD~;ȑŒń±áâ1OÆ”ë`îśÂ }Ë/‘bœă…ÈSíùZ«v©üőÀđ +W†ŚÖ!a˜Ò€ŸfńŻw*ŒPÊj0ŒöÈä"=źBCJÛI „żúhëˆëą”śŒâüs6$Ă[ßâĐ]?.Žï{χ­Ć ‰'zDZPŒ?”<X‚źÆ'}ȘŒ;ülìrÏäBƚà-=Irą1‡4iűuŰ&oRÌ“‚A‡ (”ąŽ^!*4Hiâ”2/ń”Gyœ’ÏtśË:ç[9‡9ŚXp_SE+„ §Ì :;dôpĄî7EK˜Y|d±·ÓFÊj|‹ej=öJjöLĂQ7U':)ÇaÚa—JšĆŃzÏ~G3l,]1?žĄò€E-”ŠšÓŒòÎÀăódƒ©4żć+ Č-”ŒgXț4}AԙŰÊú:#  2ŰšșFyĐÀ˜úó ‡™łÆÂ{ •™€tlËJjŸA‰JŽd§Ž]AzűŐž+ĐvÀILș=zĘŐîva]›|žmäkÉrÏrE íü‡[#îœ!–é°u:gŒúzŚlO!iźȘł<š'·§’aUv„b]ƒ`HÇÀTsBŽÜdČU©°Żș±tęȚŒW u(…$ß͝P(7žxxû|„ÖA}ßçš"næ2;ÏJè3śŠÛ(â`ŁJߘ úŠĘ„Aςx2Q1C;5&»„J›Ś>Cà•űC\MÓŠŐrÂ0ț|€9=P"•ŻV€êž9 ŒŚhćő”9ï-ú&n• FM!nDž)aŠ!Ä'3șӓÔÏÜò‹dŐJl‘ÖrëVò“}’Oś™Ń•Ÿ_mŠŽŠLL¶ÉÍdG‘y~ŽC€€Vc’ȘÁyŐQŹï„KqżŸń۾ɉ_Ÿiԍ‚Òć€R2%ĆÁČÍQV2/úò4ëö}žoô\ț,k†™żźw(ôś#îÏ>Ÿ.q§PÌ#ÉŸȚ=śŸÙ3Âțjq:Ï .ó‡mÌČ"—stŽ˜AfŸ"ÆÉŒűđȘçR#DQ©,J’EÀÒüKDćzȧvkŠCŸ-š“œBșÉ|™pœs}rĂŸd’Çk”ËŻÄ…čC6ĂąˆùÙÜbăô5eUçÙB8Ò±żÄ  %€VêN35&śë@©—Rk%Đ"psüLT„ƒ~ÍĂۛí¶ë›=Șd`–j™’vOŐĐȚ_LEËZôÔț}ÀK7œÍi ^©MÂé"jśXïrćò9”ß‚pÿnáeê¶v\Łđ›À7ŁœęFn>!BŹ•¶ê”j*ʏ'+;ĆśłYBÒgß`ŸéŐ4$č;śŸađÓjJï”KW Ż=Ò?ŒČ°†7GSn]ždâ8x–Ažo^:2ĆoF<ÀÜJ.ùV…ˁÛ·.k:ÍèJęŠ'…À%US9°ôô ˜ @æœčŸ.E~  +àÚéÄìùŽȚțuu…# vÆŒ·ËvÚ0ˆüjőÄ0ö{-]y6ŻúáB8„"^"zÛæ"lŒoûÔsŰeX§,yVrÖo,Ӎ„ú2.ÂęRë4š_Ù[’w/ûXÍsOLUmCŽf…ÁŽĄÚĄĄ ł>čÌŻà+‚~DÔ „Fx”‹^îČyxőoąûJÁŒ9ЄžE†Ž€jæYbu-k.·kA8T|_Yfj™ż§baF(šGƒ·TșYȚ¶6ț¶„·•ÙŽ+ ‘›@’mÿ’țąä|ôs)őNŽół`•kœú>dń<ĂTz7ÇiąźæüU}ÎÛŚVÇ{Íhjă…ôvzűPûƖTź)îNwËÒD¶¶Bhę„B%ŠçĐy EőZÎŐ±…—Ž„Í;ó’A­0y-)”Ű2+]Ée#TF”ï2–P%wZd>Ù âБ$ ô߀%qŁWVÇ«~Q“ȚÂ3ËŚyEXüü&#\pù\7ûâ*BüT›ûÉuțÔ^űB¶#!ûÈëcŒ°ô4Ź h)Ìčʧš.YëÀèâÌKš°ì”Ć›èWśíÚčŹL7cOś*û聁ćWÍæ6 9§KÀbńÄê¶ÙIŁ—Ł€Ć?ż7Ê&€]…‹„lzö̏Ô@âđ:ÆyrĘ2…1Ț7hBLŽ[‘’'u«9ì°™hŒÔœÉÏAà¶G>ŽàGw†€ČöæU„i+/ÌŐuÁaû– ßHZ€ù©Â\—mÚàśę”ŰM.F É»S•:śe\'xÏ«&1žńbĄ щČh_ČÒP W è30ć„ïüę“r"nùïőêw“+ÆÛ%Ÿy֙݇gŁæUƛ­Ÿ^!Ö`șgŒÀË2ûüÄÆOńałőŐ,AÍ-Y-B§S"Ÿ êCœ§UmżUŒŠfȘą`éuT3Eki/¶ț‘˜ÚŐŐÉȘŹjSúDșȚč_š'ƚcCáăŽHJBÓŹĂČeíA+y! oČ2­$Ćèš^&â܅Sœ©Ç·ÊRÊ'Æ?p›Y)¶W(Ï:R†[[6[ЇŒxűÖćäÛÆÁ 5Öí.”ÚȘżXœP‰<(•ażjX0ëêŸ •T‚W?ÌQ]RźúŰ[Ä FÔ-“œp꜓ô–%»vZŐŹ#ôêEËS$‡ wŃȚŚo 3€ŒòUkGż&ÜK5Ă}xödpQ yząk§o<«Źś[ r6ű„ÀSŠó+/*‹jŸÏđI-’KćłçtŚ.ötŰw|ÍM%ÏÛ ”D3ɁŽûÜџTț§rÌG‚l+‹ŸŒxńœÄ3lY«-íËŽćƒĘfńüt…ûàęaæçÙŁÄż3&5@TM;ÉNÓÏoçꗄ/AĘ #*—âB—ŸÜœÒ‡‚Ź _\àÜ F©Æk’S“,”0Ϟćș**ŹÁĂABsˆLŒÛb?§ŃŠ‚x™lß0ËÚjĐ8uÐćʎTčGo#”QȘ€UxŠŽšŒXZ1Ćs=Ÿ,(jW?VLôŃ·ĆZ ăz”œÄš=q©V}‰{«Ô˜3ÖlŚÇFÁęžà>0€òțxzÊô3 ÆCșRŸNDa\+•ÀR?Ž$bßRȘUâUŁA€(„ž·­FæĐÍöćÊä|1fß 7€ Eąy‘_Ê­K nŠțže2"„Um"%û Čłtj»á>uÜ^rȘè~¶čLś’ĐS€·*Żî“1șȘ(EÂČÇ û’N6ŸĆÿőȚ«)« ĄȘú#ĘJæéEKe:ˇÒó4Ł âĄíö™ ”§ŽëÍü»ĂáJOP”Ę.Ńă,]ë0‡pmΠH~œŁÁó”/ł|48}ȘđQŐ»”öƒ ćŽ>%HdöYœ-U`‚HB8Ś{)·x.íÇçadBő±ËL# œ'íƒ*Ńę¶H‰/æ-ëèWùć3Ùg]¶EkęnPښ„kăê(•ó)…ö\ËâBÄŹfćêY:jMâ3ßz„Ä2 鯷Icm,H §úgÛ\ŰÇĆ]u`wLƒŰ.u$îIÍ9S',;U}NJ⣞Hû€ ŸȚœćÒjŠxÔjł }`îGÿŚ?őUJàxrsnû§éŸôSP>ő„ʀ+ń™È#ĄÁÄč`@»Ï8íÊ'ßIpO{{“ŚlœÏÈSŃŐ@Ú\Ś4Ź_T“çŸSqĄ°šž>Α{<«ŐH‹jÛD3Uš.%ỦÙ%5FßÇW æöĂ§1á„Ä㜠Ɗ„S_·Í”’ÆgĂíkê6żźŒæ–łš`?‹€ì„ ț ëZȚÒȚÛIà(èì+û©Mrڇ&QOfy–=ˆö=öš„çFąȘ ü7ź©ßŹ9 Œt8ÊoTpâ•.Êő öa{z;…Ó \ÌćÚÛkvę̇<Ń ”x;R™ »â2žĐ ÁM)Ą€ÓGÍÒŰ~˜ŽO@tŸiÌ 53wàk>6ÖÜ$3JEq,éÏXZ#"ŠZÀÁ|Ęv±ń5ă`ë- €ś%Ԏ詗ÊđšăR‘ęG7űmê”EHŰRDȚëìśŽŰ:ąÜê Áùz őË/šJ4Y­Èš6Ć{Fê»­AmgȚJ­ŃÔÌómúÇpöü@à4#ÜPóȅ7Ęšș ˆÒ„GŰ"ùŹŽhaăŚ=%‘ b•wŒŻ7Œ]hź<YțÏfŸ™{műæxśq,Ńßąy'šÄaŽ©i—Û|€R‹pßlˆJü&śž%śáÌŹISŰđ0šœÜŰÌÌ€Ì@H‰ê–ń€ZÀƒí ˆ±ŸÏK^~śÇIj -ëȘàÙȚxܓuÿyUH䄘C îB* °ÔÛ‰T;Aæă€D±ù#€1Іw ăóGxÁšÌnaÉź\"ŚhüœȚ,”êH”« e~žĘbó(\K ,œ pđÊò΂Žcć^]Ô°Nž{@j ê…ž8"ˆ’4˜ò†żæŒüڶƁ4ŚJ”Íń|2&ȘöP–Żćđ}«ł“ Ém©ŽG>żÇ):Q) ú,árŒ œY–ä–ïŠń‰ìČ*ĄœÍÔ&_C§o >y}ŒŒűDTxžX©æÁ)g+î‡7™s·iYËFDLŁÁ˜ĘYJÌ”›ôÓCOëuȕšœE`Á¶±„R™șBZ|j3VńÉ ÂSÀ,O„”p—žcŽąëXrR9jei©…SGí·’&™äÎUÊ~4«Î™”œĄ^öÈÁë ÄÚ%cံ*…CD1qçĂ]‡Ô:ȘŽí 4œNFÿûä)˜&?žÖÀê ›Üû'Ę»áÂÂ_ŒŹ+â^"_ïéb€Ożsìۋ.9†Ő”€(Ú`N„šĂ¶4©ÏŹšjÖU})»…+|«‹Nń@Çn%&v‰äÿš”ĄfśC‰qFFĘèîÀa2 ć«|–a͆Ÿ»t…â7”~ïOÍ-ɊÙ5Ôː0ăÆćc(Â#úŸŽübÍț›E.öî QьëőKŸˆë»teêąi“)ćúc…§…SÛŹÏĂł4U*±ȘÓ)#Š -*Xßj‚cô9E6O`ç!ŽƒW©;hÒ­łiz ç<­«mƒŚeTș‚z‹ÿ œTÒ»<óTbȓT`jˆ†'À•”ă8cgž·ŒZćà—tč öŹ72˓ɏîÜż:őšÚŸÂŠVH㌠Ü/Ž'ƒ°ÂÊOmSôèC™ *xšVÏwb3Ÿ”›uFQƒüŃJe‡ä–ëcAȚFœ| \%˜ëźœ7Yy7°>PsA`â,ž€L°>^À4ÎÆwímŸ6Ăç+è«z|§„z^¶ÂÍ H?ž„=0^ùÁÚ^žŽEĐ 0šŸššŁuìóLƒX1Ïź]œœęᔷfŁ* Ìì^%ëJʱm89NdéśŰ@zĂë{3‘Y›ő‡ùça‘§âżTwáCH!›–ę‹™ž?V9šGŸxĆ#ȚDĐÖBuq`ŠrŻő䁳"(§HŸűŐĆ*cJâ–wE W/š٘BNŠàx3ùĆpIĐś2†1{Ù|u êw€5W{•Ă Ćΰ‘ǐÓ0ӑCŸCçgc( é#cŸ,0ÎŚR[ÜßÔ·ÒđꀂÁ< íR©“\Ă,ˆqSèQ`w~źi±‘„D” ŒîÿRu>ü”‡YCvÙ†a=ÍŸF-ŸÖŚ#ZŽÎ‰…źT҅ŒžłÁrÍ.Kœ–OœŒ'ăđąÙÆÿCéÙìà[OLćóÎhJ«Íw`čö“˜rŠ5äH57H^S‘%ƒ‰Çd4Vèy뼜ŰÙÏrć[śŸ4[±țg·æË^áè…AšóâșàgäöĆȘMČŐšÇf}ä`ŒŁÂXĐ>«%aŠD](ÒOšżlž?Èę€áqІ»ï­pîI„fÔDê?Ńú.ŐNź)@*Û J0ajۉĂE€‡Ć»êځ«äƎ X „7ŒnĐ a1iòÙśJ_í ĆđÀKëkZœęÒpꔗNű‡>ïŠ.cźȘ0œbńB©8_n’ CšĐVÓ*WsyÇ çŽŐș('IiQ•8pjwˆœÚˆ{èÁ©ŸàÏP.>}ç pÚcž]šiûÀÁB‹łä˛‚È󒇣‡/l?sXóĆ@™xßäŁÔôŁšjĘ8țxy*_±(g“‹Š ʝÂ(â5|”†ăÁ#2JæŃVęȚaŒÎ1†LÄb‹D-»b©ÏmŹÓ“Çw,~gÔ·“¶ûǂËbÛČÊąÁD+‹Ç'ŒƟ^bàŸÜOÂçê ó?lŠó iô%?A·z'‡âîĂ.Á8-(˜)ŻțȘŁûÜ0†}D áă7żÖüò SÌcY5žęo …&•szƒ Èp‹17oŃÙèïr©x‰óeSHk6óț(ʩ΅œeŒ\ąšń j¶‘ŁÔíÎÉlvŸ‚NĄ2u1f?±óöńą0‡D!˜ĘÎ~œêžNòLŰ{ŰÇT”‡ûˆ·€è(4íDČÊ֛ȚŒtH ›Ä”.Ɔ4@ÈJ‡Ń:ç2ùMÍæÓ‹hì~ŒGăcßŐh%çsË0ó|s4"ŽQä$éKäę¶Ś]ïÍ ĘŠ±ôÁșfìŸd‡ûÒȚŠ ĐU‰DćŹ_sĆMšÈ9…đւÄÊ`Ö2ZCÆóćM§ę•jBó Ny@ÄmŐÜŻÇű·Ô“I<Ț~Â[Löč@=2T‚ pĐዓvĄ>›cŽ.a|hÊâ[’Ăś›ž“r7€,őg'Š+|%’˜wzù‚š€ŠĐLÌçVNÔÓQ}ŒŽ;=ËkڟŰ:M'?3čʚp°ÚZŁ Ÿ·g_fonj‘]ć˜qąNyòӛ2ŒúKiŠĂ†ŒÄÔ6šŒƒx  „°ç+.„ŚAó#G„Áó ńRànƒeŃgkuą]ÔÒ8û{Ûź/:«%«Äôü€ä}WîȘDx6 .r7 *HÓXŸÎN@Îÿ ›k9s°A­óÀęƃ¶~æ?83X¶Ž°ÂXj}q­3q óìt…dđ] Íûœw5`ó”b°^lʧŹț{»PgÜčËæD“/>8ÒR t>…ęêM\źÊŒ9ǛŻ3őÔ•ÏœÆT4Á|aÌuŽv$Ęž=B” g:«}—YĄŰ‰±Ç"Cę młźy°Ż§Ë<ŹoŹńŠùü€d'oȘëĄQŽœö4ğș$䕜IÊŠúYȏ Do¶Ă›s Cè?îU’b)ìÉExUæIeiA±KsĆżmŽö„Ö}]˜™PŚ&X>rŸqæJ šžĘÄ#/ZÇw6Ú8œ­°èÇ`Á”òè ¶äÖ§Ă,™ÎV팒é¶û yćș»fDgŰÚٚzăŽiŐ6O$ŸˆłÌùœȘ•i—ovÒ.Țő  ŁčÉyäšBi~hpŒ!ٌïWł„ĄqÍeSoč‘tŚlE:xÚ—xÈRù§Ń!œ7WöđăJêȚ,˜7Lô€*ÎMŽK4ü)Ÿșۇ2|XłëPLùË™9gòzÚ±IŚÌ_Ÿ4ž‹pź!š'Ó-Ûq‰,xp!:(ƒíłć·Ő k~&)_ Ÿ„9fڌê1Ÿ…ÏŃÈÓőą6K‹Í+WÈçCU-Àéû‰ZÍ%ĘDž(/\Ì©%źÚxYÙŽ= §(ŠUŽçç·HS]Ú1ZŸîV'_j-Đ›85ç [pßk\\_š„à:)@Kzs ÙN8&v:"śœôÍśheđăč,Ł€xőO* ÿÁ1<Ù•ęĆ_ZpüŠĆk›h ŒćzĂŸžX$¶”g˜op— Ć ęČú\‘\ż·ĆűšÈÊžM.,ÚE­1ŽÛČńëˆq–2‹è €Ö/'­ËÂżz!sMȘĘnąu@ 25âż%nOΜ*śK[ŒòKëčaŒîšd&]\žÈć éóG€Ž 'ȚUêWȚïÍÙ/Yx3Œ±žy/Gș[î&0Ï Q1ÄàóGêĄăsÎ\)ßF&ȚƒŽ5Âèʔ\”ìîLÀZí Mă «NöĂțč†|ò1ÓïăŒśó i”ëçűUbœšp]1Îć?uéžÉŁqӈŽ‚źúőgłȘ<ĂŚ<‡Š`|±@0ÙÁŸŽĘ’ŸŃ‡ Q3U Ö ©RC€7ü<źUl(%$ô(ŸÂß]”šn"|uusÚÏ1ÂìÍśq;Px•őEȘúͻ!~3 Líźhr\Áäv”šx&+“ÀÂŽBxÿdÖÇј­ź™Cű[«CÚèéËVˆ‹òžŽŒŰREt„żÜ/ŸWŰĐz€qä–(żcŹŰ¶~šÚÊDÄyF·êî#Q öxà=:ûÇ5Ž—ÛʛŠÄ}ƒ_q:«ì9çÒ1ęëp„7f72*„_v(őcœŹ©»sśƒ™ššśâ&ĘëĆŐê#¶˜Ż\CèĆ"fhó“p9·\2œT“Ž É$Ä&ôs ęƒ xzSRæ’ŁÓŸóÂúhź*á?ˆ‰„sWÓäĄV§ÄWšZ«|°cr•Łàz·]ż5ûŒ^à”SăviĐЕ†e|șF±żŽ‹„QSR'ÏnÇê?ŹŠŽ“€æőOú»qlü2żä ÀÛeR Èź)éQd˜š ț†ą'Íț€" ,î8Çû‡@:\bĐ 8pĆdĆáôœôŹ+JÔR0-„ ź^êÌMššq'ÛÜśô©M ŃúÒ gƒáEûćNĆ«‘òˆm’î#/Cő©pÆ›Śc81‡Æ>Ÿn êZ€k2Ö0‰`WŚ#›‚ǐ6ČÉFąIÆF%†)ІżiÀízHrŐóz»ŒŠ…ÆùŒłÂŻô¶)EąDHÁ…2FÀ)ŽP€3(ŹxpÔä}žg‚‡ăŸ™șŒżÂ ŒáÛűq#"ŹžŽ;*œ:ƒMyFŁáTù3ÿ™r%lÍ·_NêbT..Éùr[l ¶H„&Ćü4ŸžœŻ1InˆÆłÍóê~­Zçß©C©OL’ŻžHM=ŽvXïđĆM7·àŒ]çFó†7j E€›˜4“^X^MìMx’ƒöńÓE©ÏNW”đ̓ÓGƣȧœđR]•tD/ő|kó€8xcà.k,dŚ0}ܶk9g±k~/»oÓD#ęšOGÄÆșZɑÈÏű— YŐ.áë€Ä>ó˜Ćę/CPeMś+#ZŰü±Eč‹pȘž°x“í•Ívé V™x)Úî}$ęH \š\"7uęNçżÜ9'1”Ÿ·ȘÜê2A5·@đn$Iœ—œuȚYöW1Mj‘A±|“±=™áÀ34bHëmö6ÄáXŐR gƒžgŁ9aĘaŠĘČČ2 ŹxĆăêÒö! ókđfÊ5š+ć‹ÏÛ6ă>ڈud|8Z ąhč»Òy9;áŐ #ĘÂWșa9LŚ^Yœ‡ù3„v.+vٍÏh!¶\—Žq3wÂŽ3 ,ÏĆ#űłg.ŚcòÒM/ăȚfé€5­vÒŐîŚŃ0 .~CŠü:süÚÄȚi ÄÁOÏŰjĂ2‹ŃSq€»ćxŠ,’ ŽÛčâ]SÁŃ4;Ż?-›æÚé\Œ>]ÜÚÍ5 ò達”ÈYˍÌo<9’JJșAzÊ€7S`\ŽÆ^íńh>ÏOò}Œ `“äé‡ĐÜÙ\ ï(‘€! î=͊üéÙ”=i;€ 5ćđéû.k.Äș |NjÛŐ€<ă'*êą'üs”‡DûÁ â: „;‰ŚŁïć„0 û_ő:B.X„-'ԂĐMdŐépÆH}­ HûÀyŒŸ4FÛŒ|”Èü|êPÏIҙ·ìQOÏéb”üăńi{`œlÙiXGyU㗘ßç *üŻ”]gá9(f{śh†În4±ML߆șŻI8™…›ęÉb0} ÀžłƒÈ̓gNJš§ ‡u…ˆ·Š"Ë eÖÍ y/{Żôćąu‚_êÆ %ő“b—ŠÄp+oôž>]1·„qƒęàdœŠšžBÙZEE?»vm :Ł>­}ùhÓÎ$ćK-T{y±-l0‹űPàl» 4ìűb>ŒG€CËfMśš_ÈO‚”K0žI›ÛĐä'K”TÁT+›Ë œ$WKzËÒ Ä*k€ëeù’Ąą4™śù‡©ÁââÉŻlʃíUcu*pá;àȘsڈÇĘO/ üÛŹčŠœ“Ìön'ÙŻ†ŒjÚ»ÖĂÔśśêyZ&đ{kƒÇÀùZúGčăŽPnÆ(Â3ș.Öœ%eIÀ­«Ź‹țŐᗅČ=ë`Ë@áŸ[YÖBNÿ}yÎÂà„6"_čëŁĘ;=;ᎏÇÎԇqÙ©gÔxjqBdtí-źćć$dâ”?dőXŽe·Ó§hŒžoÚv­ĄŸa¶čŒS»‚Ș"»p‰:g\.ŽZÒ6yëf”\üŒbY*“U‹ù©j€ȚÀç äXkn*sˆ§§ßçßܧß0d»0`“@àUe+pWÛ:)ù6ą\òÉW"Ș#Œv­ÁĆvQVwąïr~·#ŠänDĐ.Ë*n€ŃšńC,±6T“ïÚnY€”‡ă)h¶üđĄ\Ćë–ŐgtÌ`&Lžæ’È„áúĐÔä†Ő›!žïòsw?Äù蚌‹§Č¶“Ń›ö„[Ą>ƒŚÉŐ!‰!šÜ=OT~{ș2Ăô˜ÛŐ9XĄ’ÙÜsł†NÍö$A3”Žg:ÚČŁ„ .]È©2ăKœęHs,!ŐÆ^đ„‡›:ÒŠ?/ÖqAq_5t—ÀK DMùÔÓhŽu‡%.OÚdKŽ•/zLš@nÀ&ßőÌę¶§v»kčȚO‚VßzéÎ@Nùƒ§ósąo„0›§jđ/(·óÊL¶ZœŒvș‚"'8” «ęDYÁżĂy8söëçv‹m i;?ńč!­­ÛĘž(9ośwLšYІidDGòÁö~Tè§țRŰC-.¶: ,ŚDËúÌï2oô 3”b!Ït?‹|äÊ$dt‹?„ ŸGÈÇŻđ61ÒßECuȑ„ê9ï2b>ș Eëđő)¶{ŠžÁhц%«I.TŹÂ^DœâXËNĆ;3FŒhŸĐxșn/ŁŹĘäŻ5üS|Ía–ä”3–€ÎfÊBߑ«¶73†Xu gÈ©„g›r‹N~[Íÿł– « .ÒBYVśòöèÏì*§MĄÍ)gςćyw/0"KîefžŻ(돭S“óç=:: _–łuÓ4‰ȚœŁ)șX.ââÿWH ·őߛ/&+mF*Ÿ– Țt…%ÈŒ{ÎR—xè DiBcőÆ cć'qąń e Çkß` ÿIp}öÔŁ/~ʰ_۝ú‡_*:"j~€8 š„èXEzŒ6„~7:U jû^J±€Ä!čȘP;p}š§_ą°çÜù5Œ,ˆŐ°(jő}§dLu7hŒCł’VP«đ1·ˆ;0Ëi™Śxu„•”qI䩟ąČҌ„Ć9ìFőVQ‡˜ŽȘ/ł‚ Ő‚íȚ>FI±+*Żëp¶”jŹ™Uđç€äöîo0oĘŰwÜAkZîć©·!$x. ăœîá„T‘ĘĄÊ˜Šv«|xÌrUêIX-pžBą5IúQ=>>c«Ë_i#žšiÍä/Ò„ű3"Ô4ŻxöM•)l#ïbZđ4ŽaI —ÿ?TßëèȚ$«?oœ˜č’‡ê\8Ændiqd-wÊ·z†ŁÌêH棟 zskY…eɂOù"È|,Ÿ]æLńH€c2ł„UB–ä~IúCdfÌ&»w…ƒ\8ïßSłÎçIIúèÖ}"ö űÉJ.#Á6Mìò€8é†HŁË‹CŠ0Ë»Ÿž‘ÀQ2™w)"yï źûì+ScùB”ûO#ț”\’ uŰm$KŒ©óûI ŒÍxn„ĐŚàvé(ĐăŰQA‘€,Ț3Ęi¶UźÏ @M ”Jn‘Œ;PŁR=òç.Š0x Â(ŰyEéȚČŽ7•;”űzfKȚ˜5$šúgpȚ§E9`„çUtVìŠôêrł­Ò1O öżiù˜zcÛp€L$”Dê+ ÔxusęśŰÍȚę ±“€—‹Q/›ż»=©iÚ"ŸäàyNRrNú„ ȚiűĆb±aœúz>ę žșźˆ_ăžì"d}mör sőĘpü|_͓ű/0sú4Ù2ŐÙČÄüÇ*ź<¶Œé/)|G ޶k܃=‚>ÖÎ{VÍš$ŐÔcRżHÍ ÚÌö ”ÿž.Í@} ~Đ7†ËYżì1œRÖČŰ0;nK`ŽNCjLN«șä?eł,–6§é1œ?ÛZ”­¶Ï‡ÂSÆűÄöëtİ• rHHNÊ|eăÚO«ve€­źö­czpûuÖ5uőWDŠŒMĂ ”œ„ĆŁælDsĂ_ìxĆP łîœ"îÖ3ÔtȚ)É/:ú8DàőflÍÉĘ Cë/=îćFÆ/?ąAF±ŽEhàśdœ˜ÄXíPRÏžĂM„»ÏƒžŹH·\†őƝ‚—f»ù}TŽËlęEa†ȚJu%Ź> stream xڍŽT”k6Lw7*0€tʝÒĘÂ03À30 9„t‡H) Hƒ„tƒ€ * H()H‰Ô‡ÏûžóțÿZß·ž”žçčśuí}ï}ïkßʆ&Ê„#TG …eȘzê–@a€°°š °°‡) ćęÛNÄaEzĂp™0T‘PêÆŠBĘőpÀ=wP”JÊ D„…„ÿ&"25/ ĐÜCÀĄȚDȘÏ$ÌÙułÏßżn0(--ÉÿÛ ìEÂÀ 8@„rzÜìčL`đŻÜr.(”§ŒŸŸŸ ÈĂ[tVàáűÁP.cš7é …~• Đy@ÿ”&HÄ0uyÿ˜ œP~ $pcp‡Ąpï8ŠÜì0ŃÖxBá‘uÿ"đț(üOž?ȚżÁàżA`0ÂĂ€ÁN0w(À@CWćâ€à_D»7âÆä ‚čƒożS4” › ÿÔç FÂDho/€Bú@ƒŃÿțœ"p„:ĂàDÿ~c†:ę”Ÿé?æ°Ÿ‘ üëùÏŸĘÂ ž{Àéż[,€ŹźkĄ©Ïś§äÿ€**Z@D "-! Љ‹$%EÁÿd‚ęIäÎÚp'@úŻ|oêïœ}ÿˆ€ûτđțKq#](€ûżJ·ߌ€ÿÏzÿíòÿ'ó_QțŻJÿߌ4|ÜĘăÜț?8Èæđ‡q#]ÔÍè!n†țżT è_ł«…À|<țŐFnÆAîìțŸƒ„ykÀüĄC ìò—bțțęš5wjˆđ†ęș]@aáÿÁn ìvsƒxßÈò7œ™Ÿo©# żMD\B"AD7mŸY‰ĐÀ›‰„@ę  $G n\7ćœHą_=yȚÜpwšJæìü ț„ț8țęƒüî€ÿ ęÇë_)ƒ}7ÔoYĘÔóśúśE…úCÁDïç`ÙHŚ†ÈŽuÊ·ęÖ'äßrŹ[dó ß#;}~’ágđÔæ†Bž(gŒôQ,ŹȘs+}`čDo·6âÇŽ=2j?ș°h<”ȚN4?I7ôŠd[ùĆ áS„ KŻ ó07ìVÌî{…^>Rd†ĆÔ?ü4ę_ V||=·nŽQ+ĄC|Q1-d–hV6ĂQä˜7ËÀ†‡`"à„Úś'Ÿ9>yKUđæšćȚC>ąà$ŃRŽőČHòÙlàb•©ˆwă]Fk&ìcȘŚSœh•Ż™śèߥËK—žÎ°&;y^k*ڜ˜†ĄÜ|rčÄé H Àïă6‚5*#*;*áôqÒŚæ‚}MÙ°§ßę ¶oW©êAtđï`GsÚZ™ąÙ}«H=Fxêâ’mš!ŸŠHűÂEmKŁžH&ŠæŃÉpúèÙ©ŹȚƒR—L\ùžśqS}ŽĆ’Œ‡ĄMŠa „ëfÍŁŠőÌ-ìQ`ćc^ÉRK_ż'€‰eïŁ8sÎ%T™]ìŃđ©U[(—.šyÁŒËŽ6Ąs[Q•u\AÖم§k–DÔúPnôœe±G.\‰~c?:›šEîflRÎí ŸhžàYĂĄ±ÎçőæL/đĆ'öUm2—†æŻęë'PísX“8LùïI"Yàk_^ĄKÁ,±NŸIbÂ5ç}ÛvŸ1Š‹ ÖToâFőÙ”śjž0m„üFÎûŁ k°=SŻpÛ¶:aŐ;8Ük"cúžŒ˜N„Ćßk•;FÚ(> =œÎ }+©ÿ‘gPuÌSrżR]›ûțBšž ù'ÀtçËmS§r›źíîÛc‹›èÂb$…êœHM·Ő!űłê`É0né`s5֙Óú%ę™ïŒÚtÏÙTĆùę}§¶Hš‹*â(Š.QEç//`>û_çAnŸœé·F„ŸËűAUőŒćÔ«8o"86W̗Ò!ü*.TnćŽÌźù”o~͜Ÿőé^iáIN-Ëč|§…č‹9§ńșšU$ôăBÇWźm}€ÓH}ŠcRĄ[‰}ÇçS«›uWtô=ÏoŻlső(Ć2‡hWD›Đdûz:‹©ìOÎíßh‚M»•±1GăDž­ËUĐk%E€čőN<‘{'™5k çIă·q:U’‰+8ÙïRR Šæé{M)d_Ő}Ę©æłKU9äĆž“ŃMà%"+YűB ŽeĄˆerÚÎùN4Ł|jéÀFw}śŹòdÿ>:ńÇüucH‘ PŰڎÉôëé°v‹Śq{o18ɍȘ Žkù-Yo+87– Œká•ÒYô€YŚe„ˆ•>|z,óàMç–@ ·Z„°pË~ùŸ“›*>MXAMæ‚?câ"—ŒtŻEšÖśçİ"oČČx*ÚË*ż˜ł€€§/ J:˜oŐÄFÁrfîEë.3Œęɑ–Áˆž XÌÆÒÀ`Œ`“!Ș™Ú,\őË#·!…ÏyGAóWìÔÖ3żgç‚Qœö™ȘƒwóWóŽíÔæł‡*+žŠS"N|;Qӌ1Á0ș;ęÀóvĆld7Ÿ„Üő—u!űûlj›ĘÎłù@še:Ä ŽŸÔaMۊ‚U^g8Ö-Ë\Ÿš7“[uŐ'ÓQ]q]œ2Nô•–”zœ ;dEáÜTe!(ŒÿāŻGàrŸ -đĂ5_¶\ŸIlÖ çŐdl&w Y·Ż­€ìá‰O|wŰĂ_r|Ô{Ț‡Łœ&1­zĆіa—Ä vȚà »Ą œĘńbăéĐșs3kn‘Ș ìë|6Âirۙ>ȚÁG!ZÉd¶żXünßT€KŚ+‹»Ăőh9ΩRi%ç±ïüçȘű+ëËZWb}•»ˆRš}Á€—°c ŃțsBqtlâ«»lÔČ·7ßY]ŰU&;Č€苆zëÈ:8yĐ!FU€č żo­ÄÂàgÁaÇĘ Ušś SӟwyLCU»żdΞ±=}(ÊBłŠhPâ56{ǟ<'»&w›]ŹOŒÀ!Ń_mh!Ł>‡úȌ֋”`—‰ÉŠźybçśe)ÿ8GUč"?ƒËŐźHțü\G,śˆiO]č_Ÿ€~BfLÏ`44Ígn9błú̑‘Éôž·5ž!m\B:Ë:ŸÎnŽ€œ#6"šÖyô" ]Êś@ăk±ßüR„gh’‰%ŽyNhM`ÛÀ·^{ČW) ôyBž4Àź}òóĘÔ«łCLÿh4Æ7V±§#rÖLjdA”ă°ŠSÛ­}ŁæćüŃŸâ:Žé*ăŰ [˜Ż>Ç~È6Y%Ú~šÓń}ŸRîÎ+üîm“qêŁáŸ ˆâńŠò»„DÄì,É/[“îÛè:Ú,„q/eԝçżPÔJÒ§oA/ïn`»Ü.ÒÎZ`w‡5~ûđâę{‚»ŚHêOr(Ɯx˜%&šżpś žHÜć‹Ì4èđÇ'áÆăRŽŚąŠHŸ/żŁML\·ĂcúÀPŚË­qx*S§U4Ÿ6çnEȘ‘©eșG »óêá­űF™ M«ŐŁËȶïš/0w1âĐÖ&@›”fBK¶rÊHÓŁŽM?e Ę/ëYĄ­zùáïvkGk}uqL‰Ÿ1RetÛRź=He ÂŰ\8Ü2śšCXZƒ?‡ˆł~}lJŚÖúBż‰@=­"y–ŰÜóqêö„Çá‘ÀáÊXaFLÒí5ző˜Æ™ÄjéÔYșz#áŐdfȘ`~Ąb¶ôz‹…IwÇ’’*'cF©ŒQ)FóDEZS=[Y3ûȚuĘŹĐÁbW;Äû(gŠâ$ȚȚ›iȚ’ Ęź„OœÓIÂd `|ÜNËÔ{.Öj$û°ÖÌ6á}¶ĘvŸ§yț‡Ț†ʝxœś”b±4 t3ˆŹmôŽšßßO?žNăg1žuJĘiŸRïłÍ©č.‚aÖ±ù>7Ë“•Yÿfct`üv]zțŽ€+úÌŻ'cÔî ̏zŽńłä açe=;$[òĄiŹG±J2üiJPÖĆV淙‘pżeŸW hÓA5;ɶëí‘}ÈÊúŃY5Á4ăȘŠö{„ž'ut!ìC7uŃ)Ÿ-?=©§”TKwqk”ŰĘ^ęÖÎüEÏˉšXì·ÏȚÍŒ­ïíkŠÚȘ~"og%Iƛ›<‡Œ0ș°Z-ŒDWœ8c.Cô€™{ȚÂoń¶6»î$cć.Ç;~ŹÜTióÇ!‡Rœ(] \qDŃDÙžf«€ęÈČéòȆF]ĐŠŠ·o”Ț)ŠnR5f˜e„ĐxnŸVżCțuí­`•[è°öٚe°˜łÜÜf;ęÚG•­¶3ëmÛn,ZæÊ(q—đW’\óàđ“Lą w"ƒFwGn +©qMʟŸêwĆêIĄ&d vćrő i4ŽJèŚ#%Ê,˜‚&±€#N ‰ˆžʧCEYB‹_șÓû© Žj Ê+%18ĂGì2ź{ëD’Ä„=MäwŹÖz&ïû2!7qéő̙OkOœ6=óżŸgšŒ91{ę)€jăGŸN ź*ÍäúĄƒuÄČŠ±łi†łèŽVŻŰJȚ;ź)šŽ1©CĆB˜[_KćăÊ„kĐJ«äbč]Kßϋ*.•òžó$žŰtèîæòSô[â,}‚üĆ{ß>Ì nâb-OČh"lNš}ë jç™tđ„KSĐșN˜5êBűb›9ù€wŒ•„xŐ;1ś{kèM8Nòl[‰Ź (Ôˆ@âäq^FL0¶›‘gàAw·ç/Ÿ·bHE+ńÊń*6­m°§€ îŰș$ÓëÏMVN©_{=èÿ¶ŽąvȚkšÓKn4ț,”@F”ŐKtdo92?±ÖȚ”ôáRțä鄿»ć`…Żà °űn©Ù!ù{ÚeM‘FÚ}@WI%Í]§Žč&O?>ű™kÚúŁxdś›}LTŸëꁍ).x <€ÖÀú©ŒÁÚՌąYrzEhYj—h ŹŽRASœ*dOš#°<©VÀ…h`œc°fĕ0ZŻ;qą”Mò|^ŐÌò{9ÔŰUȚL~ąTÍkŁ^çÙ§4Î|éÍsœqݜ 59™O€ŠÚÊ]ÇNAюƒëĐHđÚ.Ç»ÊwqČ85ŐœŰ$ûôë Ęælă€èҏÖdf“úĘ&wÜ;ƒż € cB^˜%>Ú}¶'Æ3èbĐ’Š‡Ż§hĘH œš#ÙŠ7 YžÇ”xƒê„Ùöp”+·«š†ĄÈÇ+ÍiîÉŰ*úäń…È©Œ©Ć:«/!Èé—„AĆ-°ËûüL֟‘,`"+œ/‰Q‰‚KšŽ‚œÈ»Äq Č2m›fr·ÌČÒ„\>»ÿùę66·nY31P\ôœ«oLà‘KüôÙMé͖ôšűŹÛ’sÔÖÇȘV'x˜ëI/ŽŸ6è]źágmI»4ىRœËûÁĆF3ŹS,é«AôQ;_IÀŁL ¶IccJöK]Žn«|ÚâÔ”8He5żÍȚEUMMŒF±éVaIXŹó˜%8|ČŸ»SŠ„!=“a‹Ț‹ŹȚżîpáđ•>æBŃá/š1«Đ”6– fpFüÔžöœ)ę8Ă/e‘°ŸŐ|Č­ŃúFŁ ,ûQ€Q‰șEÇ€šzCà”žw>» )žÂX8r1ŸȘ^æüîb0_’włÚ"=4?çśÁR™cwź­zčŻ7~PżąźąĄ$Ù Šdæ 6Ź‘ïŸ1Î-\9Ł…Dôÿ”òĂ'Ì»”ïű€-·ŽC‡à>L<Ș_șW5èԎéȚ—5,z±"O”ë`|ÿCŐôìW1éa ăDŐ·f4Y _ăօŰÌ8aìßi?)±‚hőXąż«Ś Tśæ`Mă›)ÖÚV­JȚvnǜjG”xŒf R ;ű3~盧$âe-ƒășZÿleĄÇĐY§S!;$U;ôL9—Ä{‡ÓëÂáUȚ–lîŠkà€Őˆș…„a܅3pŃôË'ȘłóöY˜›“tj/Im3<8ZœÄV˜Y…‘ÌŠ18zöQ–xÀÎCڟŒvM :4XOq‰F oÌ-`Lűžûč ÚAÜO†‡î2-2 ČÖXeeæÌ±]Fh|r3Ü<;±Î_ęÄÁm…#![ÛÇt·œ2țăĂa\Â%—A-(¶ÔíX=3Ițy^$daéNg°™BVcŚ‹.wM%ê©wÊʈ”ó J_ߒ·6ÈæțÆWqé°­EHÔ&Nò$wŠ9FâBđ «{źÒÎü#°qv&r'W€˜rR{Š_ˆ„IdHçn"Ę ,,ĐùS;—ô”—ČBԚ5Iá(Y·,á“Ć;™F™lMž_±đÒžûĆW&ćÌșô…đń]JpX»:Hv”ŽD9or‡ì1Îsą…9żĂ‹TŹžÊìhéÛæŸ êœ[3X…­ òŸĄßč6Ő4(œćĘ_ÜÙ ô ”M‘ÓÙ}fyŸh2„ì3gЕ֙ĐđæJÖ«ű«!7;«}˜‡ä Ą6,ăƒ<ÄÚIoTR°”9“Ń*Ț=‚›ž K1ę}h­Œ„‘ŠŽÙœČê7œ ‚sgž©]ÍŚ˜'o„ ôe‹0Áì€ȘȘœ;ęê ŸĂÁMC Đ‡‰{-#æT['„t_%ƒ-P•ëWeI’G'ïƒÌÔâ—‡=›…xWí5ćÄIìVBZdÜîîçĆŽ€vđĄblĂé@ú ű ĄlŸjô솖­źȘïíŻÉnŃ{‚ț];ń;†»dúđŐ9 .]ź/ș<^ \ë۝_–ŽÀ”ù ·ÄÚßăbĐ34čą+ԅ¶Ù•ŠB (TŃç:tXPćÛÀćÂC†ÖÇ1 ±(=Đ©û1†%űZ`O±ÌèFE¶b(ńž#TʁćúÔƒ#ÿŐËłą5‡ùÉöáAsEAŁƒęf–jŒòô: đ9çè­{łŸ«Í?RŠŠí\N?Ź|B}ò6=E8”]’K<]MÁXŻè$ęń‚Ežs~4fIRŹCśJï[Ö2#W7LMłIü…ć4琶ˇ ~Żx~d„ő­ÉȚȚZóæźNb7TyßpA 8âśö3űLaœ- Ê\eÆ~Œˆ œæ„źź{3{ŚȘ— ­‹‚^gđ>Ÿ2ÜÊńMç-uł#?ÁP;—ŰHRŹòß]Fäh™ŹU?,o‚™_ś^»œ-Żm-K7|ÁŹïoóä„űÛäsűQ(„á»@&v üIßÒe©„n‰"HàŁ—yș»(Í=GqËÔ*æ§J ;ë"„OàŹœÄžíΊ~ HÍÉ«ôEyRÇÍÀ-ï™É’Î’L+„Ê€æ`láxŽô…ÊžÄĘŃŹ™29ÖűäĘæŐćaùtÙć“pȚ„òÚąć§êsMƒžƒńì`sœČ6yJ 7_…É…ÊQ:ž˜<{PčËeÈÙR†Űwc<{ùÚéőŚ„Ì%ď Ä©ŸÇÔú*Ô^ÀJs›–b”ÏśÔï»uUv„2ùăe„à0D‚Y'(ÇC‡uÛĂcŰ{űű&éŒiœÊŐ*}Ú©đąû'Ś 1[ź- mDŹ\]žbŁšâŚûĂd:™Š=;'Œù˞î ÇUВțżiŒÔFűűîd­â”„œÌ ÛJœ]Đ„–čÇŐET„Ț”€ôáAŒeœőÊŚqS?ĘNúzw;JEUŸńà'’‹’‘Áă'Z „o_šVŰbž]ÔvÚŸrČșótÒ* eܱ&ĘæÖ}Ê©çț”#Æí ĆìŽLĘ ošK‹xj$„—ÒĄć Gè o  uÚ2č8ppőM^{'ÆT­ű…Ïy+äFà€°ÉO€[ÁčM™ZĐ«œ™eK+ă)ÊČCô†ÂV^ç»)Òpy©e~±vž„ûŐéâQCHšźÄ #K…șdn~Ț©5’Í<ö *·ágŽ‹&ò ÉÖÏ8 4Ögϧ–žĘć}\}ÆíÇÇ!ÙŐÜŻnŸöíK$¶?§îŐDähŻ}Ž áŹ2> stream xڍtTÔĘÖ>H—( ’R3tww‡äŒ30 ’/!ŠÒ­0‚4ÒĄ€t—ŽÒ t|cŒśȚśțÿk}ߚ”~sÎłăìçìgVc~E'„D Gńƒ€Re]# BÄ&P ò&æ0ƒ =ĄžÔ8(#!`SŁ0~ș8@Ë  @bR q)  Jțíˆ@JTÀȚP'€ź@ ‡xs(#ÜęPWæ˜ż—nGHRRœïW8@Ń ‚„:‚á]0Êâ†9Ń #Ą”ß?RpËžąPîR‚‚>>>`7OÒEއàEčŒ ž€7Ä đ“0@ìùÍL€˜`â őü#œQ>`$€`PGÜáw‚ ˜Ăƚ:}wü·łÎo>ÀŸ»€@ÿJś'úg"(üW0ŰŃáæ†ûAá.g( ĐWÓ@ùąű`žÓOG0́‰{ƒĄ0°ÆáWć`€šą!Œ!ű‡ž§#êŽòđ„Â~Rü™sËȘp'e„›Žò$țYŸ  qÄ\»ŸàïÎ>„#|à6ÎPž“óON^pš‡DSć "ț7æAD@ ž€0â€ű:ș țLoâçùeę„1 ‚Üîg HÔ‚ù#đ{C(€$(à? ÿ܃@'š# àqÂ‰ÿCœï1ÍGB}V@Œö@àÏßżV6y9!à0ż»ÿêŻ ±Ÿ±‰‘!ïoÆÿČ))!|ü"@ż(ú)2qÌ"èŸi ÀĐ?eüGŹ&ܐü]-æšțźŰûžÿ àŸčôŐBÜÿč5Pèˆù€țÏRÿòÿSűÏ,ÿ›Èÿ» 5/엙û—ęÿ1ƒĘ 0ż?ŃzĄ0 ‹ÀŒüż]Í!ż‡Vâőrûo«& ŒEž ì_ŚőTƒúBœ  (GŚßjù›țœ21@xB>+~Lkțˆ-LJ˜§Ă#É_&frțy€*ÜáôsĄDĆ`$ìGŒi2f' afŃ âûKÄA8… `èœH⟕`LJÌëçŒúiü ÿ ÿĘÁż b˜ˆ‡ŠQ#e șcű?ˆ€ț ÿ Áäu‡yyțțÁÄŃ ‰ńFęÒ†æßû_/â q$žG8J‡?š oŽŠ Wá”n§öW™šÀ)›I•Âvú·! 4ęš ȘlÒ?áÆ"Íž5ś„#cmçź]SoÙțƒÒc““Œ»ț‹XíĂęËŹŸ†–Ù`„ÖŻE:jÒąq©8°DN։搮ĂY+ç˜ÚySĆȘiƊôŃ.ÈÂVOźÒ]‚&a •ÜÀ–  ˜+c^§—êz<9ëÁ’ŠÂKB­l™§uć<Ő™ˆYëKlöùhÓoDƒkbÏł‡}Ős áĘ%wÒbèW ćăÏČX'†ˆu„°h+ŹČÒn_. æasްxLèžq;–kYfŒ‹Ș§2!e߈Ò@X5—5œ_Șâ6ŚíĆ«AƛZäćxS•ÊZXZ(4g{€8țS± ⻥fƒíƒ-›căcw’c‹?ȚT›pńaS}–àłoÍX~Š0”XxAB2dÿèœL&3XH˜z-ÓđŐm·Șæt2cŸŚuo>'|ĄôkauőÛ·éòœôöò‡â)›4$v}9xVϛ%| dD@cL‡ČšÏ'XÓädÒb©u”AHm/ĐWáó4Se, }ZÂÖŠ%WÁ4SJ0Wb Z7ăyŠ;kÜ3„çËĘ œkDASKSŰÔ ߍƒn2ÈŰhÒÁ ń=Á}Egg5`a}›¶ûđ»aN9™‰ÁőﰜSbÈGŸ$ś«i†0d°kòYmČÍțÓđ8{^Xá1Äđxü©‚3­˜0ƒÆ‚Ű{ȟȚޟÚîmv?UŚęó=ôJwÏxšâ‚=+ŁJ_ćI'[*+óŁ•i^qwë_z Ë%ubÛ9QŐČțٍdj Æl»Ùșőêă/{_Cž™Ia5”C; ûY /C/Țć)¶łC9é=Ÿ`ÿȚȘ!bDCùBŽ/Nđ„çăÛă=ôæ 5ßÏ;Ł/.Wn‰ńŐŸf~?Ș§oeČÙÜőDśâ”»śA+Y&SdbêŃdg‘RIò/vjx­„r©2èŹ…vRž{\$5űP/j4Vû-vΈt~Ë·ŃdXšÚ7>ÉdœȚaÌ+léĆ/…NWoÚ籓Jo],ÜkŒ‘éz•û|č“2œăÙòJRŠZ=LYŐ>ÂìkžëbSo”aò€Z! ©cièvX0;úiې°p㱁ä„äÖęxOÉ(l.ûćRfČ-äŽù©”ȚłÂ­ϑĘÏjXđĂH3l™Ìç"8…D|(Šaț$kìŁB滔•>s][ú’Śù«lúŻČ)?ö›·ßSٰ™|e3Ź Šî}fműŒíŽÚ=ô,Ԅf?~ĂVpäd—ŻkViÌaòNŻ^[<ĄœŚ(u|Ë Y˜~ŃcùŁ“rÛÒÔX1ÉHZ{SŹĄ'â«jD– ~Æ6ö#Čo€–žÂJă_ß$±€dzłO7jbԞ=&[8Û)V][E?v>1đ ŃˆÈĄüF`~Q%=ŁÎT4U&ܘaûÓÛÖ}…äRșLą4đ›Ș~ȘTĆ`Ç˜ÈŻ0„9v•.śA>«æőĘû‰AžeÀƒ{á@Ű oŠ2ûz.MXÎeđbëjŐE¶[ÏòđUË_îÊžƒ7lIB']7őâŰgÖì€/»Ÿœ‘–JxùÍČ#RæŸ{;9zŽóжú=bœœłË<»sÒČuӔŻ»•Ăł•Ò8Èi֏è˜á.łƒè‡~eR3kŸòħ‘{ă”±ŰÁŻ.ęeżĂ?,+"]ăŸ5G‚é¶śd 3Ù ÿČ-Ęâ'„x?Ž=“„ÚśÂČte›‹ònTZI'4ü#ÂáÇLĐć …Ù§ĄÎŸĂ.Ö lŠÿžôæ év àê7^nSi蛂ù]°Đ‰'Óä‘ZțW~WÚéö”Úö}čș—šz:ÁIőèŐ99J0n”äj1ŸoixQäŻ P)<Úî\E.ÈŸwÍí"éÊÎtVԉmٰ«{j?i;\§ź}$-Z‚_àӜـ»ą‰ôŰU,vV|Œ`yêő&€mn„ę ihwk˜Âyë+“ʏ#©„űi'fŁBœ9@Č"ê6é&?ú)ÏR=]Đ[ïșôYÒjô”Ś5Ąń:€v}űííb°ûŠKoò{ę0«„Ÿ±w<șĂòęp5čSźÜŐyÖlqŹ tenaOôWYą4ęÜöÔ§Á2ž·éòÍ}©ĘőŽÏ Ő°à)H˝nl{Ż… žo¶XšÇgŁ7ȘÒșl§Ćîìfù Ûƒśr)^őĆX•ÄÜČnîSÍÊoóahĆÛ3ß!Íő_ƒè€Ăi)‚||»Ț«pžłÔìKŸ¶kț ućùä%~ïfÀÍr˜üębÿĂŰç)bćjŚ%¶YÜùu†8{òÏqv”íćöUEmö)y;sz=ŃòőȚŸșl­/țș—D=~iűńK‘žƒsïLcó|x‚(~ê”)QŁÿĐĄË7—~đʓ§^Uj9C©2í”g~s”è7ƒ7Îî5Țèq9ș‘·Či{*R€‘ÖŸ—>qfÛ:èĄATfŒ4Ę>|Dz\˜”4(.·ĆÓUp˜ȘšuŁŸšTQœík€J€‘Œ êR·łûû©ç꫐󇒚ߓœó‹3†p–ź?_žóRNœČPĘzr«GàÛ֖Áv¶{Z3Æâ7[Š-™Ë 7đv̐1qO)nh‘ò–ŹEšk €˜Šę‘ą—»Ê.æ]iÌ`byûŻ»3te:/źE^ïŹË§c}æ:Ú:n? VŁu2SŚçă]§ń€~Ł~U°h+X[ìQՎÛ{„íŚIțæôô>óÿp•b”©đ1„"-={CwRAč«ęŠncŽÜőD^ïőŁ/Ćm3­±ÀőőäACŻ•‘1=Ž]&=Š=$Ît—7^æ'=3’Æ‹aiÔ>č;h’SsSíűÌzáòŰv4‡‰‡D:•š%đ›@Ćșă1™†ŚšŰ”açćàKźLCáiß»”OX„YŒû€ĐnoÏpÔąŽ ć>æê_ïd0!ÍæCÛè}mȚÖá7Êń,íf·VۄÀ2OqDÍ·ŹÖsŐ€ońéqqQB‹cŹ+ô [54FûżČŽÈ›Hm+LȘíÒźë]“[ŽÎ+dȚđ4ž.šă‡6‰8Ś©©Ôž&ÌLŸ3čÁckŒ7ÄÏś șä#‰ŸŻW«J=šŒęœü˜Ä’$ȚRíß6zŽ'Ü8lMü~”}ueùEÔ>Ví‘]șok|ŽiV`,—ERuwTžșčéű-1Mk–ÔđőÙ#č ©^3»óœrcŻ$ïiƒhFȘ­Ù&© w…M§ę»ö{œVÔ2œqúŠ "~,}äQ}-AțűÂŽ0ă̇§lυ2æ”ǚԹӃ»…ućłÔŃźĘ$…ž2ț:…$bmuń„e¶Ò@ĂÁškèłUÀęÏÀˆÇAù:cUƔ1…R!Îè1·ÆŚmŠÂ» ă{Æ$BČô‰ăVïœj&“/Ž2ŹgßŃ0—2Đ8nMӅ\œ’âB5? u„+ź#ŻbšËZ†ÊźèûŽŒÛűŽY±‰Ș">?7›ú4ƒűćEșax•Ő쌌i«…#îăéyGȚ#ŽĆ ąmœ†Y%cQÉȓ°ÖwŰńè,¶öńŽŒw.&_çVlŠÍ; ńgž+ï±â|đߜlđPÇÄ%/GŰRé±"KÛ-ę e #9i‘/€4•ïŰ F‡ó?`‹ù[‚ś]Ædh‹0ÜëŐæ§Ÿ˜3/4^5ˆí/SD«s…uĐtÌžŃŸîSĘšÔ0o„-gȚ¶\1ïćŻTë+”mˆRjóYtëÌ;&ÏUćiŠ9]ßW ŻßÀ'+Ž›wbà;#é{Ÿ|U€qPì”vâ_h6ŒŸ‚”–.‰Ö~/Ʊ­V °IŚâRwÉÂu:Î4ŽPńŸ4ŠlŚȘŁjsí‰ÒÙ^őž&ò±\?őu‡?Š·FŁ,’ÛRÓnѕPŃKJő “HħĘóŽüè>§Ă‘ÌG„ŽjęÂúۀ§ŃÏŁùÄ}_O*Fƒ!ÎÂÏś|=ž]/Čb‡Ôń–Öù•ś:t9Ż—Mùó9•hN64c'¶˅Èi^ŸqKÄêGcJnhTÍäś Ć[ęüóà“Qő5“đêfŠB·<đ·Äb]Żi•žIÔM3A9‚]ì±Ă‚î»5cąŸ{Ô,măà_ń^úò»s[łD’Â.7[*É\xcܒPûŠŒ€ł¶rĄ±DCË3ä_óU”éăąę/źq™_źj;vëÏó‰4?‡ŽÄȘ7|<čl䜷XŒ„=Àpé7Đm0©žeă_š}2Ăő)wšb\;ÇŠžZ+-iCÜ—hšśƒ°Źg·@¶fi/șŽs°Œn«NÊéȚ䐿‹N„0›ù«cîąćl'ÿ2Â*œ_ ÚčšęwúćtGërc š°Mć.F‰‡áR‚çFÉ8›Ț3ńTÜ7.‰NÄeÈyÖ,Ay RpJ—R9Ìä«êlŃ0€‹GràŐÔ„“ +ŁűVÄëÆv­4IŹ@ž”šopw:-Šeș.‚­ÒgăêȚăρ©Ê„Xäęê{օÙX6Œč&­ÇđśCÉZUFêŠeè> stream xڍxT“ÛÒ6"œJHŻ Hïœś.RB ’ĐA€H“Ț› H/R€ƒTéM, MșTi~Ńă趞ûÿk}ßÊZÉ»ŸyföÌìgvČÂÁj`, è€Ž‡Ș!h P  Źkl €@A P˜ƒĂ††CÿÆ 9Ì (!ő e(ÁTÀh Q‰hy HL $.„@Éż‰H)€ Ű æĐh!P!‡2ÒĘŚæäŒÆìóś#€ÂIJŠóÿv(șA=`0  F;CĘ0;BÀp€1ƒą}ÿ‚[ƍv—òöö»Ą‘Nr<üoÚ`EA=Œ €_%ôÀnĐ?„ rLœašż ÆHGŽ7Ű ÀpŠ@a\<Pfw€±Š@ߊű‹Źóđ§9 è_áțxÿ CüvC H7w0†p8ÂàP€ŸšŽ ÚÍ#~ÁpăöĂà`{ áwê`€šą!Œ©đO}(ˆÌDÁàżjúÓfU„ƒ2ÒÍ Š@Łć§ó€B0}śúsžź€7Âÿï•# áàű« Ow!SìĄ'TSćțs‚ąą@I11Qúő8 ęÚÀÄŚúÛűÆÔèïŽt8bʀÂĄ˜BŰ @{xBęÿÓđÏ!p€AĐ{š AűïèêűŚsț0€#?űëőŻ'kŒÂžïżéżXÈTĂX]S‹ïOÉÿ2*)!}ț’I1 ‰ÄĆEÿŒc†ęÉă?|5ŽH€ä_ébúôwÊ^4Àęg@xÿŒ„‡Ä( àț·ĐEÌèÿ,śß.ÿ?•ÿŠòż ęż3Ró„ĂÛčÿ"ü?v° îû‡Qź'3șHÌ, ț›jęktuĄ0O·ÿ¶jąÁ˜iPD8a-ș'ŒśC©Á| 04Äù/Őü…›țš78 5@ą`żnŒű_6̐A\1· #Íß&(f†țčŻ*‚tű5lÂąb°‡ۗs֘•(À„™JšÏo1„H4Æ€©1àˆô üu°  @Èìń ę Bn0„'ê_À= €» Ó żá{! Ó·?nÿHâéၙÎßÊÁdûśúśU…ú@!„ółHˆt˜Ë«°¶łEo”QŒĆ„ŽšËŸHQ4çûçțÎ:űYêS•ìȘî §̕…OÎ0đ~;óyđ&'x!M#„Ú·ąŽ/?űă荔ÙIï4.ž”BŸ—hÈDjg…kƕl>{ùDŒ[dęćŚÂ«Ôú}Ém€ ű„Œ5«˜Û±ęԒ•} =dù€,ŽÂĂ*ĂÓDÓtü û),îT©-†î‡ïŠU\æĐçÏosúûÒE Ž{ȘĆȘÂ)éšüŽXs‡“èšsŽ^ٰ8•DO”ËRŰèŠÜÂ9pìÄ.Š ú[D<œô”ƒoë?iôŹCŠÎÊæv/2Úźf›ü"ŸÓ”ćÌ_“ÎźÄQí€u2”±W-ÏëÁ„aàŐu|ü©;,)=”ÔÁțĐƒÿ(TÄæëĝ3»ŰŹD°uȘ,\bàË %18łû°Łù‡K™T%=„&Ž«Ë’çđ]~Áï/ú`,Ɉ㍩·mCĘûHöoLÔSÁ íYÛœ[‰Ż5EOȚ‘›ńȘŠĄk”ß#;myâs㧃Œòrq Z;Ô„ï+HÎM°Ć›‰æ›ż7ŃYÇÊĐ»e)őDńń4 „ë·2Š—*ĆFžË†4ÉŠJ<>ú8±CĆp'žŹvć¶aś›6 öûBÂ6ÚyśíJôžŽĐś`Û —J–SÁûâł yJŚŠA¶”„ä9Æ^Ä}_?nŰËłPŹ‹ŒJéœ Z±}1ÂÔ~ż?Ž1Łkb§§+uĘGŁáüwŸÒ~H]j€-Ź^Ń/ÚąüčŸ:ÊÔȘŹÓvÜDàŃ=âŰxüƒdu*}o5ŰĘfŁAoÏęąüĄ’ €‚”kÈJ•îcNI\ąHł âïÄà‰†áY„ –łc#á*\^ûMÁ¶ûÓŠhòșsuśę“ÆÏ”-”ŒBZ~Sœą5‰ /‘O_„,ôĆȚú*";kż=Ú^·6È ąÛŒiyo±ä(Œ‰ŒÀ2~f€ÀÂ@u_çJxĆVžùvUsR#՟Dë3EG5žĆŐÙæIЊ$>;97Śca2ÊRM9,ȚÍlŽŸÆ>ŸàLYɀłšę€y€CŽmä zÉŹ–kP\5È'V>ł}ìæ&côrœA†ò9ŽßÉŃĘȚe© <…Ë3Bx"ÙŸUÙU~”.w _%{+ Ó.ŚœŠcŐŒójúŐĆúïF䌶èiséÌΑƒŒOî»ćhȚ‘ÊéÛŠÏsüVŸ7 ‹Ź©•ÂqR;Ž$|p+đ §ĐI抄ĘUËÒuŹÌ&ꉕ[†šB͐uéœZrw’ä»ëRX€Srje‡?Éń‡őŻ”Tt<`«űјšE;iŽ{ÓËH9uź7ÇPƙŽdZÁ–?w€f8‡ŽĘ•‚&ÖȚŸźšyf`ƒ]^—é=ŸEYì 9šáçÊ 9 őčH`Ž Ț125ĐŹsôŚ+EŃ?!ú6jYʖż+Žăő&~Ü*żùbŽčI‡C?_a;S#4<™BfÁ€+NëĆđÇ ŻÄț~öz6gÓ]ùășmù„dwȚÙ0q/’śŽČ @šÀuÒd…Bœ$Q›}‘Ô(“”: ǖpœŻaqDhł>OX=q%P|úëɓ[aêD…çIF~/(Ž7ę#&lÈUœ?ËŹűgf.+„oÍžwőÏ籄蔏|–kl^NżT°†0K$Ś"èĆr…Ò}œĄyyÏU_–vśșBa֐Tú ÎÿÙ©útö«+ö»L^q‚‡8VXńvNÏ_ÍmL?@¶†ŰŒgÍłvthM.O_}jæ {#”°ŒlÓĆjČÖûL|„œTùm~ąn‰&žĘ˜-_:~#őÒÓË8ŠPQô0SLI–ücâcŠÉ AUf|íxۓÉÓ2Jk!ŒQ @ÿÈÉțA…Œé4Ÿ§ŒY0’Weđ˜;bđăJęô—ÿrbœČŹ=gԏòÍę\Vóû%œBšŐ”Jł«cĄàČ,ëă ù~"ìĘC{t><9ÙL,ń§~€W·m žŃæHd‚1ÀÇ`—ŐĐęô֛†Óf±Ó¶7ÒEuśÓ6:ûWœæ˜%]‰|Éăh4’|Ę„éU߯’]èvA9RûFa֕ŸłíęԕćÙ8B Ÿ‹ŒY7jÓFĆb‡‹Œ 6ŰżŸn–úÙțŽg°=NőîÜF‘WeÏZ'ƒ@s#Ń[a,!†>ÇA\`Ä|'CÌÜ'Z"·á'Őś/é{ tH$Æ»Žçc!ĂG ăHȘyìÊèląw-ڟŽsy2Ÿă?Ìć{ÿbé›Ú7ÚZ”—}ƒÒVw$æÊN@ĄHa†wĆÀuœ3^;qR†6.,$uÿ\kAKÉjú€śÔUÏŒÁČkWmNfC)°.mÓ”îcțąŃ.ś‡™qá92 ¶âćՎ[X+VÌé&<À-9ęv§ìáZ uUXŸï3ʀäű^,{| ó˜{ST qï^Íă$éöożȘ:aąÙFÏ=ÁčԀf…Ï(Śozé}[gS $*Ț!ț†Ÿ—kĘÊW€MèŠIá XŻá^m6›9XŒV/­„‹‡h;2˜Sù-xäÙîÊ^šłùs•ß·ĐswȚéI­ ߣóúTŚ8ï7„Ós?, 9Jćsÿ=ÒK@Ő]śÆhúûÆçMGŠK•‘uo—èæšWSšßŽŁá”cWùVX&Á>š1ĘŠ'QŒőÏĄĐČűbÇâ,oŚw˜Ï4@<â„ń0¶Ű‰žœv ÓÜup}E™<Ź“‚"Êïh]ąż/ łHÎ᧋ŻIVlpOƒ™ÛÀŚô%ș‡%#NÊCt‰G‰{s]-Y7$ęn¶ź™D*/ őą”$öe„ß,A2ńîŠKÆô{ŒÏh>ÍGșT›îjŸPúžä·ȚâÇ=ăłŐÌŸ: êŃ̆«èìȚÇ >m4@ ÛÛčd&,Ûń ; Ą3’˜<ńà^UŃ»é…Èž4kćr9ök”[~NŹ‘Œ/-XÓ7]ąß è]V!%âûŽœ >Çșçđ‚l(IBgŁ#ŸuoŚé˜E=:~ûóò̍˜ #¶æ Úd+¶Kh-ł}iűÆDżêȚuÒÇ<„JÂőŽÇaœ}Ésđ•±À$«űÄ€WàZQ1íò9šą€€ôŁ-WÉŽÄò0êuü6žÌÜp“Ă/lúŽÖ«æ9‹Bú‚nŽŠ/°·ă… îôĘš>«ä»…LĄ*wU߅$č»W«ńV”~Ż]ÈđÚóПvCˆ#n’Oá8J†òV3ìXH}ïX—h˒â]Đarč„î‘Lâ'čHó1ùS·#nńL|PLrê©ŃæĘ ¶ĐîÆțhÖÈć7ÿhD‘éÏ-Ä·“ńÛu3&m)ä=™ uÆI޶ś7mT`„WVĆûR(™gŸš„»YšL#ÎȱÒîâę5 Ûvœ4Țzhxz9 û3& ó{Š[T?À o•%yPžș–ÌKÈÄçäźű˜ż†ÿl€K…°(čò`ˆxöśą€œŽê†ô9FČ ÁM!”R†Áæa`AÚ(g©%[ŃJäLOŚIbđű9tuÖÍęđ›VČ^ĄŠv9-ű§íț–âTHÉČ!őf§łÙń#ö}IՂšY§Öò€ŠgțȚ7«mIEEN‹ÔŸ9MwÖĘ{Š”č±šœŁXZA±ÔțđŐűț0)ËbŚÂäœühæˆÂ„‰o —ŽwȚĘȘ<âŸ5îË;^i»ÉűÜŁ°Ä*ńó/»/Dm ”±ŽÇA>§êì?óжÆó›Çn€Œ.„ę4ȚĄ6𙩩ÍJ ‘œSőƑ•ö ïp{č žĐș7^o”‘D ·ÂüüÓ,?bHS»B§Š[zîçrŹoĘRĄC cpóŸlSfÊgÏ$ȚčÒÎ$Ț”ń=ËŃó$§ào•¶ś śïaŁőê‹z#áÂŻÈš\5­#xhuÏHƒ ŸțŽL›G4ЇÄâáeÆÏp–òÚÄ1 $r]B°H—ï\rŸ Yë+L?í`ž€ß­Ąűč5_Η!©zÜ(“ÿȗËm%“iș,éÎjہ]bŰöáû*W±^¶zęȚÒÍ 9ìŸÒŃ.ëz đˆ…œVŸŸüŒÊîcYœł'7ÚíÄL±țií-čćŰæ%x7žv Žș–úŠœ!—ŁÏ°>EiŹtÇ«x/7ŸY>&jgH ȚvxD=TÔóÔ;xžn)“\ÚliʙsâçÊîêÊn}o»šwâ۔^MÖȘŒkžŠp8|t!òì$ʝnXę<ÙđkfźęR)”ûэ†ŁçŒ&É;Ô&%pmŻgɓ:۔†ïđžiÇùsúIËÌtæâ»źXÁÄGÆiê·s^pńÒ\=Žxlrqˆ–a˜‰q="/vŁăÉwv\WȘ૜ńxș§șžg…žüà€ŻÍkű‚ęœę•,ꗐś9ò[ "2k‘rú4’­Æ,^Ę@ ÆúÌÍą\ie‡K7=ÜÛéj@T.Wyjäôd‘'(&têź:ŚéČòƒŽwÜ*žŒë[–,òžÚîæóìą†Ûșș-„ uaÄûœ8«‡N•ŚDô°uîŁêŒM <ęiPm-ă5gčOùžU•ć›>MŻUûnzfÀÖȘ=ÎWŃ6eÙ§”Vp§žÀČtꄝ\ń%ßPp[j $ÄÀí^~ÿ&m7CœțUq‚@CȘțćó%K &{PrĂr«Æ€“w耑ćd ?ásv”Òwi*ó‡fôòî‡űŸ“éÍT jČ­!ĘęJx'ó'ùêÚsÎuôꭚp5‡l·"+ì›Đű-L9ȚZż%3–s|Ăîæ[Y4«ĆŐv”ô™Ę.Đèiț‡ „É—ő„] ÀGHO-q‘gAd[ő‡^K[ÇAÚÍęst§DäßÇǖéZÿ2§“Š"śbIxB–qÓbYúf˜KÒ­š ÊxAƒ%MiùËdÔ ÆȚÍ7HæGŁI±O<Őꀔî}8šŒe–~íÉöY'}țÉ85­Û«}xÿò»òŁ:ùN­ĐVĄ$561SÁ Ü:ö1ß'mĂé0 ÛĐtĆ€ìvđjsa7Ô©eœôŸœuÄûRLÿł`àÓÜÇèíá QòęłćáČ:ŸJòąŚ•U]—LâŃuŠšŹ—łeęŸëkCœÉű&y1Êą—êNËŠxœdą#ìńé1œ5ń ŃR?«—ŻÎIäŠoçWăéz­-r»ĐąKBWÄăˆƒĘlë1ë>Cìó;Oôçé#ĘHc^ÄUíß2ČꠝÈ@êÉžÜęJpÍČȚÛȘąœ#é’d!Ęò@7èd–[j_+ò$|…ò~æ=fíH§ÜČŸÂîČuRJ…˜“ÊÀ ű„Ł_;ÀÎP;đKÁەCO•đœä(’À#ÎÇWœ’‚Wł%­ëöô^JŸ ŐN>yąAŃâHNžä±EłÜÂéű–ŠÚș”|7:e.ÏŰT ÒOâ"ŹìfUô„B_\.ŰŐüÜ”š Ź{Űąš+ôŐ7ŠbšRênӒWïő>Jè \>ąȚ“ˆEÈeȚe ?H›DsY€:PKò©ŠŚîë­âd:ÄHűśYÆž5?Š »Ę@–Ûú>ŽșȁȚ‹î©%v8žeÚÉ5‹7ҝòx3“5S”Śà™žš<òÎxŻ‹©äòa[ö§d„èg1c}óß⎄•l ăő˒E~tò*Ę© őDŽâ°ż^Ôì'Ùú™g«œ¶{GȒÁȚ”h( Im(Ô[ŽŠ[}œ+?śf`pkȘŠá3َó*Žut±ę~ç­«ÍÖ­ Û-a™ÉłŃŽ~>\Č4cwyŐxNm$Vțu™ŸB!‡nąfÈÂ&1șžaÎ /4|æ}łęÊdÏĄź™őPôçŸ«æš°č€œcZ`ÙkÙÄYoă±:ą±âgKŸKyxqO[IęŚăo ł„yƒVÔÓ:ŃÎyŰq–Ôu żcixÁ<©Źs\p”ŰDă“á}ëKG1Ó”Š…ì›œÄŰÂVU“ćFĂ„ípIûˆŒ.8ÎX>T›XíBfńŹśB ŰŃlêéŠô.±‹xaŸŃûh/Ÿ)OĂDÏûŸ¶TŻLےË_Űó­żŃ·žƒWû|áó>\łx„LÖ©ąÍŹOś&Â1›ÛIÁÛÚ±Ű,sžÛj+èŃv HíÇ&ł ©ąˆW歁eęlŻ©jÆFá^D„~çk&M çĂÀùÏTöwOČoXeûùŽ'ͰăBA•]gDÓŒwìžûž(ű'ÈȚô5—ë܏\•;OŹ^śUűÚśłÙtéœàś_ =ÒÿŽ}_%{ń28+§O|ËțM…Čˆw{©ùžÛ=W·`ubeË:ćòü6@Í*śQäXKÛÓöÂfæeÊž™LÿŚúńÍ5úłçÂdF„Ęő€>o7¶ X" ûŽœ•œ&—ÛźŒŻZsłÙȚ—ĂłíśOü€›k34}gšŸżùfx+ÊĘŁÔU—蔞B7”łëčHjŒg( m|ú”—ƒ)x—gCÈĘhàlaŸ«œíŽpƒ'a†*4IôŒŻwŸUrÿ‹ž€Ș¶čä{ƗuûHĂWôÇû5ÆpŠ<—Ÿ@œŸÙÂăćG‚”Ú~ôšòŁĂÖ/WNiT·đùW fÂSäČșŽHJ*`-ȀٗB©)zÓyáÉ&čAPäû·Él€†æ-ÏCőŻŸO&ȚăŐś»h„4č@R*,9/?Í͍SÆïlÉn‹S€XȚÉŹ?9{»żĆŻ(ŠÒ\T‹Nʑż‰Î\"¶ŁëőxŚ_™ŽÔ&%~Ž6Ê˚0OŃaÛp[0W:ĘxîQ~èćđYÏĘ»ÊíÌŻČđ,›ȘÛ¶Ž{ËpÔś€‘r)ÎosȚ\‰ë ęžâ%c#g.ÖÛ Ćgš=vźä”gÇ_oŸlșoĄ}mąœ±ĆÓï&á”85ŸÏź3ΉΌ)nÒĘÿ±™ôك‡źVfGžű»ĄÓ”L*Ž\x:œŸȚY äŠmì©Üż’RüéÆÙWm…È’Őh EA«rq‹ùvSÍŠšŁ‹lȘdei#ž3’Ă„ÛźnAuÆ4û%Œ;äsyM·c!{86.QĂ杻7YĄÚźq]ȝÓZ–˜–Ÿ=%SvŹ;æ«?ŠűSՎV–‹è˜Žo'à%œ= ŹHuz§Ó,|5ńeÀ7Ź]awH śąÁzmœ”Nßq±żŒ Ž”Y·ż-•iłè‰.uô<òȘîdyȘ¶Ê’tp&Ș°IßșAlȘ ŠŠh ÖńwŚ;?Óú\$•ŸRˆń{nă+ʕ}󒿾Æf%vW]„žkÄèN2ç;O9‘«źŰțxÖ"YłïȚ˜4łx›ûĘì+ßÔŐ}”ûAŃÂ6ęŁF}iGŠĄ)șólćo’ӷΊ–°huéçuGJĂæŹ/c[i»ŽĂ!‡šÆ?ùökÏ/6YÙ,-ßxwsNaăR”m§6ȘF€#‹»Őd9ËJžëâąG10“Bóé&[o!ÔΕćƒŃê”$”©ä‚Ű~ÇőęyžksÆelÆțđŒîQŚ]ÓűYĄæB#€ŽśÚț“¶éi endstream endobj 268 0 obj << /Length1 1187 /Length2 3186 /Length3 0 /Length 4028 /Filter /FlateDecode >> stream xÚuT 8T}û&dÿ”-Œ8v%Ì ÊÙłKÖcæÌ˜™f±dI–[¶Č€Źo…Č+Kdo#[RY“Č'ȔĐwx·ÿś~ßÿ:Ś5g~Ïvßżûyž#'ewZÙCöMÉ$ș2Bź ۡΓ­Qt<‡Cgž—œœDŃ d’1ŠjŠT` ÇBqL© áp$èdÍ ĄpP 2ÀáBcçƅ@šxƒ8‰Ku˜„%őßíćOŸ?H„AH€âè‡C&ƒ ˆćR5"S‚šž(*ąÆGì8ԑđĘ_€Ê?łlÈtÿOöÿŸ Ùit*Á›A1ƒ„©f6Ž€H©("”ăM$ +š(‰ŐĆÓémUՀ€‰ĄBŠâTŃÄÒUqą =~H0 (€FŃšˆ);ą( Տ@Ûœ6àš(Ò2 Hh"B𐠩PšdÈïy Rvdę4šJ Đ2°36°âN4Š É$t @ÆB‘2šáBùúè(‰ĐÁ@úŽ7őF!ą‚ \š…JŰ„À HžżŃ@ȘâPT €íÖĘQȘ…!ì\ƒ¶“HüC…B ÚÍ%ïFę…O Ó@"öżúcÊ mP~’;ÓìŒß… üÄ żƒțWŒ910 á àż›4SB ˆ±#ĐŃx‹"BävíŽ;}%H $â.@‡ÿĂç€' }I;·ŐűĂć ț>=ö ŽADQÿA$ațÉ’m—łêIk3»3JmŚźÛ„„&cvtBjPT**ˆ Zè€# &cÀÀAÁȘ*$2J( z(Ô *ŚÎÎhȘȘ§ 8?Ԏùw PuÀƒôż-H€ Jcűùínđźù?)ÚAŁ@wąü%ÙçĘ3âï3D™JÜàĐNîèŽûüęÿìÿž¶Ą!9VV‡ÊHˆšæ1M@KęhèFąT*4»_Hœ?Ï»s ‚ šëĘ2Z'Ê'ęfœì@vG§±[wˆźšÚ$òă֓-óƒ5ŰÖÄ+-,ĂÒ[O]\NzÍ?Œđ^±Ó›C6ŃëĂ”b$`Tʀ˚R_ÿÜę«|r§ő윟ÙÄê–ÏFô„—Ń̆7Ż•Xű7u<ò#Żwg†zŒ=Ιquwm`{4jÔwöôæńś€Ż-t­À;=zą û—g-;ûcăo+PŠš“]K‡ˆćf€˜T±ŁœŚČË[/ú!Ο]ÛX»î·dËĘdŽyÊHouï=Âëa[«gŽ" ¶•‡2_ ÇȚù)fŒ‰'5…sŹCD.€;rÁH‘Ì ź.o¶ß!–lś§§ûšÔ Û é cżŸń`v[xw0òB‡ęĂ„ÊR›Ș…NëÖ­wk3 ìÏVU©0Arâę%‰ZÒêЄȚ§$3qbœ„çÜ⡌îWçTśä„E‹:Š6ÔDÞÏQžĆËŠéȚ͗b:ÂҁTëu;š}䗔Ąöû‰,5 CŠ fWûă4Ś@Șâ˜Ó+țbűC&śeÓN„|vŸÓ)x őű‹™N{GąÇMxEÄäčƒKâPĂć§7ÒæÎvÈ%7śč­ŠČpĐ)Íú)«pü&0Ś€ÔˆœÏż\mč^źSjZ€[ezZ¶cÏÀÏ Q-ŒD€kž2CțČ A¶hù±ąmÖsțN,'ž©.Ÿ±ż–‹ŠSšÒ4mx6Oœú=*?ë0OŒßpjFNëgOy~„ž_E°„ŰŹ.őűË+O”r»=œ-€eÁb‡Jû„ÉzŚÚ0ńÊÆ{)Ë.çj·ŒÔAá8&xóp,‹Ę­mŒžrW;Ò,fŒ,Hê%œw}„ǝŒJÎûĐ@ú‚Êćț^ËSÊ1úöÌÀțE:Q%<ŽV8ȚčxĂ#zúă…ÂꀔÆËm Ob\–ź H6ïJZƘ2ÌăÛŸEJ3]L™I +?Œ…Ÿ‰ÌM˜-|6|#ƒä,ÉúKވ»»Ú•Ù"™!ș”.Ș–+dŁ'2áD™ÔúÆš\/…‘›Ț ù'çs\ùÛJ ß߯ĂÛÒ›ÓŽë\ć^»éÔ{ÍóûpJčpfžÂû/ˆĆší)ßÏąï~5uCZŚ0,hfŚù©ÖètE<ł'$Â.`vH2ăf_ëCç›/?„öf_Źàw3/cmcTYŹFu„>dÁjÎ}Ô-_Śú`ÎĘ2‹(«‘ßúÖÈ(Ăă/ÌÂău†ś7ßt[GRJśz€öŃ4Äj­“)Țæ‰ÁæQsr’Á——î@+ázq&‹ŒìՃêáœ#œț/{šÇ,#sç\P{­yRGu¶Ù ÆHSńò›ĄŸ%5\7Wމ§èqLćŚę,œyrŒî2{Őàúj«]'GNÏ^]!(.ÿu„Ÿ_èś,”PŸ™“æÆęÊ0:_§ćÁd5\Đ«LIT¶Û!ąEVŠ_©·ÔăS2Ë9Yû)âÊHÚ&&&ƒśŻUož PrÏÊrˆs»Ń/$V֋EśȚ™Mk7”|[sžzíŒyš$äȘț;©~­Ż6*!őșĄWæ.>_>ё=фœ“Gz’ŠúYï_(ż[é‡mÔ.+p[<¶­Č±ć!OlDü*SGĘ+w€OÿÖüŒśò”QæIÏò‘€ä Țąß˜%sö|n>~CŠDyÙ3I)Á`lBû'ô§đ|őg€ŒË/cœ\ ÔĐFȚhŸÜ3Ö.Ł+UÇR]˜UÚ4ÏÛŠl~ìÔ{2"tOZ æÀ‚ÄK)±“%1/—±ÛȚ+t7 ›m96Ș†” IÚŐßrçőéźÛ°X"đ›dj"+Ÿÿ:zƒż&…^(hr1~i<ű ­oŠ)șŸLúörUA,đ‘ẃÁÖc‘Çtežçę·†sIÀe⟰Áy4^ź]BaÌ·9-«Y$ŃĂ^șéć}?á§V~»ŐțÔDțO­ìëÏȘâú—2ŸvY%Ł•/%zLŐ(Տđ&ڟ>՟SÉ.q ”Ôœöë\Sśu1%ß`hmÏ«±sƒîĄDĄX^Ÿ[–žâÈÈbc…5șŹłÖt~đŠ‘H=,qŠ7B[Kżđ1ŐO©?úźÁyjź^€ƒÈś tłÌă@Žă˜Ò†™?Yn’ź Í.ž–_țzMQłűtŒ«}·ĘUÇZÖ#Ż„±ƒ,“ì'©ćwi‚üٍpÖdłùä.ÔÛQ'ˆÓ#55sőùœ›űTŃю=!chCÿS)Œ§{.ć9/ÉZńá­3À@xÍ<ÊŐy>4ëùh8ûđÊ@WűS]ΉJJò-ă#3V#.Ây”ïùIzçÚ>­Ű’ȚÄß~܇(ŹÙ’4äâŒX>á€ploiȘgrčMș9LżÖÜÒj U%;NôŁ­_'MŸvÖP[4ŽÍUîe>—6œò]jCXƒÍjđs+XÌ1€_ ˜žÙ.T'źrúT/ Nćű9ùČČjű mÏđ`ƒ}.ÌŻ3”śg[ęșővzŒ+GÌMûÀ‘[";˜±OFńF9lbí*ùö!ëE—xščb&ìȏê¶mÿˆčû¶ökîûЙŸ–Äx©tAŠ_Oš¶ńâÛèYi]žő‡Š4Aż‘„ˆ(6æxț°vÚg}ßȘ(†ûsŚÌè‚L6>ĘV%D^GÒûJæòΉ±óvI&öz‚XzüÍqćÒ!ść˜{œ0ÿٖ#uȚśâáE1„YÈüÒœ39Ę·$ms3ČçČ{-œO5?őßüƒiŸUq7ŒÍ9ćË$XryuvkăNŸGë·/ÂRșđl^l”œeümŠhźă'ŸQïn3扼Vù&ț—›ž„ˆőó™Eà™ôęg…†|jœ Á.ƉæT±îe+œ;U5sJo3îèą8]rœm]2Lȶ谂‰œ}‡Š°ŰŐÒëö{ cű<˜zLÒÀŠ&M{š€2u<;Ó)Hz)ß–ȚâúêÜlîtÁśg”nÙhFfóXàŒà5‡ž_mû:' DÆYŐŚż.Kò^*dő] żjóžIŸrrrŽ+zŁŰÇóŽÎ„Ëùžț jŸœ”&2k(áő jù>E~&ÍeÀzŠĄœšąÈwĐX_ŒI6ŒOæé–ëFȈńĘ++:Ë*aŠ©ń5ŽìY…i‡3KŽ[Ę`qśœÛyĂ_•}«0ŹKÀȘ?ńB&Û„pžëJŒîÍÛjá•vÖȘü—ûöłóđeV‰ŸcőŻf‡„~i«ŸűŽ‘ wÁč5öÄ^Bæ=6êčŒÚ” Ÿ:šxœMź’»„;¶)æ~¶¶bź}â łÎ1Ű7/E‰šÍ“m…wż7§Čëț±ü‚%^šm&π_l-ï'fú‰œUŁ,ŸxsQ `Úî’r>I#d'ôoÍ,Îű endstream endobj 270 0 obj << /Length1 1348 /Length2 4781 /Length3 0 /Length 5713 /Filter /FlateDecode >> stream xÚuTTSkł•&œ*R9 UZBïU@@zoJ !DBS(Ò€(ˆ€4‘Ț”Ț;" ˆÒ»4)"Uș  /xÿûŒïŸśÖY+'łż™Ù3{æ;ü<&æbPŽ3LÂ‹ĆAŠ€ ä.Ú‚wÓĂC" )~~-, ‚G QŚ x˜" ƒE†,€ÁŠ`9EIy@’$:Zp8ŃL@ ,súąƒ(Â8ĂàÄ)„Ê €„ÿÂĄÌßgž0,ŽÈę‡] rCŃ(€…čÒHhĄ1>XÜ  čŚ080!À!ą§5€~ÿJŠÿ;ʍGžÀĄDÿÿÁD‡Ç"œ x   0,€wƒșF–€. ĂBÄçS…n“ąpÄŒnxĂC(€‡yăOyœaÄ9à0Hˆ‘—˜ ƒEü.€C àŰE‰ȘÂ!X(†ûśTb.(⎠Üi ò?‚@0€ÏïXôoŻÿæGàq0€ëÿš‰4‚x•<]Bàt ż¶đyB<HŸ?Ÿ§źÿöù+R'Š!Š .ú FàtȚ0š ïâžBÄ:㖧#F"P0ąžż[ÄÀ ĐżÎ,Ü.îšÓÆÿNg ûk‘Ì`p‚ęW0ôߕü]·„Ž­¶©źÈżïÛo/m” zȘœ€Œ,Áb!>4ÄkDŽd_0qìP˜śéêžâ(4ž`xâx°4§·HA€ 1nSű/Dp†áÿR2€ ƒC ‰țAÒDđN`1 ńp†țS$<l0@ęӖ$0ˆŰD&îń`Y@ùgŒpû›ú*fB\RŒ…€țHűÛÿ±‰ bȚ€=ˆű”8ÛïçÏÇÿc ššhoÀWLˆIÊÉ I@NJÊÿzș°XâÆțț>‡ù·ęû†Á`Ț0šńQŽ‹Rèí€Ôd|[æ»îkö}~ÊRRl’’óż^ï*èqŐč¶Æ„ż%›âęŐacsĘiÍ·&pBšÛ™Š/ÆiîqĄ$ ëSĘąLßŰűÁaK źÛpőćàjLőÛE-üŠHŚ}ÍÔÇ%úž-ïj=Đû})ț7gšČVl-.ÙŸąšÖt4?R™@mœĆ+xçő«rtŻë3ïŹtƒ™šEebe9oâl6K§‘ćĆ+@D§ìÀăÌòV•Mϰă$Màę¶XűB;»úšN·\FÁ,æÎÏĄ Žő=2AáÇ·o»±đ›żíüŽ»“|©Veh+Âw~@ܑ6ÜÜ@ĂFì »öHšßdAĄ\ÓëÆùÖ(`ÀI° J Ż €U“ lJŚQCœ”mJ-x8 OßUmrŒ„dÀÔëj• 1`"I"Ńm™•p‡*ŒÄúqąóíüUeäîŁȘ…șŒïœźÈ°t:ÉqĂśÇé˜ĆŻì+œN}č©~ÔÙ`‡œÎû Œû/Æ@=Ćl)”ŒÚëàÔăŒ)śÉ}v·Făê>U<`~vG{#+„‚í#kłËÏ;frÙV€-ń7űŚ.DÛ ‚+›œóVÙ:6hĂőć8Àă%æ–R'$*é ŒđlăÈ/Ș,ÎuŚÏ&àéȚ»3?ïrQ q[ÿő‘ŹRă‘"‰Îńioë$Ą˜_NæŽnŒ»™6d6 .SżŐhrÒ]ŻJő uve1Użù}èZY-'f™hłP̌#;Èźä‹äLڐŃNhr_öYĘhÆł.M(î6«1k*<çpńűùc©üîƒő8ștZ$mç/iìD*ŐĐOȘŽJșÄugŽçś%šŠŽ“śăârŚ«?ńȘp0IÓÔŁźÉ<Ç{¶lßržŸÁŚkêg€)Ö2~ûì©sóƒĐgMŸAőđ‡NđpOqw­ąG/RƆęŒ$Ž-l·7đœ)ȘûŚ8űÌđ`›…ŠȘj–dÄVCÔwèàCÖÓ­,ì’ΞiÜLĘL&èă=æ™h™Üź«Ę&ćEišĐú*ŠńÆó±J{­ˆü” „و3"wŠsÓ h­*ɚĄ1ŒÏX^šêK ŻŽ+šłȚșê†>ä“Ő]èŠx1ÛŃRSŚŹl Šń"‡ûE·nrŐęxȘžì Jû|]Êp†čo+;Âòښ€J߇ŒÊuI“_Ęú‡·úśŰŽą~Œ©vIÆ|NĄÛ`ÊȚá’|$–ÒŽĘpf•”êŐ·Yg. ăINcÓšažO( ƒç;~çR±zS–è 5 ±Žalúźì[— êaŃŻ&Ùăš}v§9€Ææ«{LAĆeXxă§tVî"IÁ)“[ˆ“ȘŒ ș'·æ^êÎqLûôŽæ"‘–]íÓ ÚŸŹê*̈́éZ€ăï™Ș§H”6ú;ûțón@OÛîÀ{ƒ čE«ï'ëŃÜE˜ƒ ș<ŰsìŒuғt“”šLÔżć)3„аL^òp2ä§ÈöïyŽn1E„gdÿČÚo—ù|š0gGoú3„ą”[xL#lêƒZ 2S…1ç.‰Æ_I>k‰7hĐ/\ŻDœ(č]Žł±—B`ۚ cŁ㋼ôÀó{Î\ș,]éł ŠĄ /i'č»T»› §C|-/˜,?ČĐ,šÏIgmt5QnÄȘï Țő {S4íĂ ]>°ZŃj)Ëèőœÿj‰J”Ł ìŽxiŽPy`(Ë#;„Š„ŽlPÀD|3ęÀœÀ9‘VČt8s`­ę’đí”ČA$ăӈŹp†”ÏŁ|Yčûśz Ç>Ű4+êÍç?ń„K+YĘ„?žÜÒ*ë,€°őő e¶ț5ċtl…disđ6ń’Ûü8xQ§3òABőùŐdmNş…‹Ÿą›cMZŒnEbĆoŸŹ2[hątZ8ă ê!Žđ30ȚȘÒĘaÔ##”Û)[ĄŁńgŠŽ<›Š&ź"ęF0 &+‹Űƒe%ö~|xF3‹Z"Óűމœ ÂôJ6êVB(ͱč?ó–ÍO5< …^C.æĐți m»o…Ö/Jp€ÛŠšš„RÒ:ˆ’nÁ€ń›6uŁ@B'œzƒă +ë⠜\-Öč5máˆĘ1ń§}éxYPJÙl/ &ç(䑌2>tEsóY‹˜ç=›‘§ëđà Őož9V żŚÁëáSC/…íŸtÉńÿÄŒ›Ąú-ÚîÔ]ÍARÓëGEi]"9;=¶á•ƒÀÒ̒ű•h‘bUz‘ ù;ńKúŒœES#œUk4 m‘Ű+zÓiŽ›ò\äVʀČtÔGe.y7jć«Æî™Ž bÆÜ‚6kŚć ž*żȚŠù*Ș2QaK}ŒEéęńŒâę…Ț€Ÿm>Œèy«‘˜1ÜÔû2vZá ÿŸo*ó@qݟ·2Ô>„–ȚćÍțêń°·ę^Ÿk©ŁŸÏH<‰ę —ùÈÍw9‘OžČòÔ­wOÈ*“•šăè~ZŠoűšwé=Ùr€ R_Ï{ž«èőäjÓÓÏoâQ22FüŠc7Rj>z„žBIĂźö“5kxÆŐXűŸN?TWÚÔăčŻr.€ÄáàÒż‡'ęhâĄqB.~xIž»as {Üî|“Ż`ŐĘș•nőśkI”Ÿ9ыĆć°- H+}ț=Sæ°Ț(”bt=-EŽyr†Tg|yłć@Űă,œ=DZe>îsŰçLŻźŻÂ&‚œÔd4 rûHag‰„ű(ÛĘ)ù/eĘ XWS–/ajđú)ƒâíæć3œ—>4ŽYQËSŹ$9˜ÚÔFSæ%r5¶]5ż”{4‡•»_$]f,`ó*ÈÿŒŠęŠÉł+-zûzF~æŸÖSxłÒ%Čönę ›âŽÍ‹’·`U@îEҕH Ú?ç)=9ŒÍĊż:[Ž•q ŽÿfČçOŰßčÆJ8Œœń±ĂćŁ(ûćK*§Âé=ĘÊmš3yßËi꣓àbòç’ŰÉȚ"jaۀÒRöÎû›™?4›˜žúšŹ+ąÚč’MíÒż[TśoyJ-!%fÁ[ïä)Z‡ ±JVćș ăŽïPq“ѧ%,ÜŽg˜"'ÍĐüĄ[č ź–/ŻÌïĂφOŚŽ–öđ‹8.ă—\êÎäxŐÍăëÍô\ÔÖäâR?ÓuŒMj2 }ŒœZŸÛŒÉ;É€)źĂ‚±êx­«Xb†{D(Ł;ź1! m»:›ó5Œ.NÖÚpÂčË^lîșÒȘÀKŸ;0”@WêĘÓÊEžx6! h’Wèž±ŒáÎź}țœOâ9Ïv*‹‘ȘprX`Ta“Úù>±:wö`'>sŐ<Ó$yT=« î6ä.;Źc(#Ô[ŻFžrD3pȜŠÙÎŰâ;©ęwÒyč‰G//<à{ːWődńł6A?'îtÙn= 8óöƒ„ê˜Uê»];gÎńH%»è|•ĄuÊȘ’ă-Ț#qö•2L51 ›>% Qf™é#éxùèyOŽ€~_޶4ÛSÚ<Ș'?•3œăäŒ,»Î9Q…YÖ8='4&}°4ïÁËq‹żç!Ó|ŹòuKÏÙšĆîsżDá,ÛÓæ<Ë덖Mt!r?,¶†NžFÄ%Û."Ò ™€ț«™_8lghăНEîțg_îˆ:ȚčnĆó©[ÖOÂń1ÏȘÇAßyÍDș:Ÿń±ëÚï\M”Śç†Óïüą=ÙÏć„șbž}]4šő‘ɧCS„ ßöقwp;àűŠ€ Ńnő"—|ÚsÊQ 4śWűŽÛGš+ă>ùúمșeOÜÙxg ‡Ö<3)Ö&ŁÛ¶|OÙÌ Cúș†iŽÒv}‘”y—pGłçŒmϞgx—•…\rî`«I”ŒŐPÚydJ&A–ÎÇ2%ŻUÁ@òŽ…ß·ç<âëYcÛș>IĄùńmڛđÇv15ŃŁƒĄ…˘ǻNÇêóí ćWg Ê_ÏÉæ mZwE6 >˜^ò—‘ ÁôűùsőŁZ2%D4%@v^|L™}TËßtK8Țńi„śő.vçÚÁHU_”…ÛŠ"8íhCŠX:èčȘÄÙNNÄ”đ‘îçŒh]HЇä!>Țó¶5ÓrăâŠ\Úܑ$=ßY^”uòră' =ĘL‚ƒŁĐ”[@1ŚS'ŸœÉčŸÀÖ<曮ŽÖC†«‡ŽhÛIM/àșżIČ]eì“űi“) 2Šf;ŸóŽ7ìôUƒù%Çčć‹œe˜ĆÛ^s çÈ*”«š˜đN6M]őŒ « 5?ĄbayTœêïXéăłLĂŚ6†OM'_Àî}ŒĐ’R]4xńŒû]ŻdóÉÚ;Š?“QÏ#8Œš[ÎÙÜꕔA“Ï”Ôuíbÿ@Z„FÈț­ÆÇ7NÔ 3É9=”Őó”Ë”žU€J-ÜZ%ź N–öŚY0ÏßxM šmó$ćÇeœ 8Ć(=k‘á:Š 4śő˜TWEcŽEšEÄ%ź$Ÿy”R_3ńìßS ëšOkÇpqș0[æŽpsÙ€Vüâ…] :Ó'č*zŽÊR5PĘJ1tJ˜=śŽMręzW‹»XNä¶q…ÿ«ąû5CŃg·źl“.„YČŁQV"œ˜ÏۊKJ‘•Ăfî€Óőm‡"w컛Ëçü©òŽâ…¶8UcçŠ:3ü%}Á•ó]/z՟,ë-sdÏ–ă›ŒcgŸe’Șl2N=Š/zČS‘}ùˆźrëۜôÎó2”9ŠpveŽȚ•é''ë|ŹŻÓA‘w †«ßčŃM— $Ś?v[œï€àÀ•ÀżÇŠ|_ûÖ5ĝśÆ±b•Ő..]ŸÇ›E=ûÜÌ4ᇮșVÜțÛŻ}špXš K§~ÈyAÔ ‘ûúóG i1„ŽuÓśÚ,9ž– ź\ 3šûƓcZ ßGŁŐŒ0~!9.‡>?ő‡űKźLÒĄ3;œQ;`Ùț%ż ju2€±!ű+…ʉÿáȚšê™E’"ù§–äV”eyáu1|Fkó»őźZû,›iCą.€|ïĂceeÆ«ć?z±i’Ÿa łrÓï‘7Ûu Î)üèpöńûg/ÊçKŰ7oWæ7)€Òžą8™kp‰/OŸ[›kÏLBęÄŒÖȐ-Œ,vVbۍ^QȘč{5ÔȘ±Ő’û‹tkeï-I…8=žȚlêÎ]‰œKtٖçL§ŸÔGŒi-à˜$šŒž~§Cà)TÜqwxWí~~ÌzŃŚŸ†'•€țÇbMŠÇ‹<=Ù‹=^5M»8E6'>Q˜ŸĄÀbÁ{]ÙIsŽ4Œùç čén;e±‰·šLÊqYšöĘŽ–ŽžŰhcÙĄ^I4űÊëŚĆ‹·Œ^IÍr|QÖäۄÙ[ùŁéçŹ^žÙçÜ/_àóZNÿFŠŽ#ßżȘÒ[8©QłŹéÜbšĘV\NuyÒLB ­ò ÊgûbƒwXWđO…W`)s!’śï3uÛt‘Gx2wĘ:ŠÿKțÓ endstream endobj 272 0 obj << /Length1 1614 /Length2 16859 /Length3 0 /Length 17693 /Filter /FlateDecode >> stream xÚŹ”ct„]Ž%ÛȘžNlÛ¶mÛ:±m;Û¶mVlWlTXùê}oߟ=nśŻțúÇăÙ sÍ”æ^û)ȘĐ ™:›‰;Űé˜èčjÊŠF¶¶FŠVČtÂ¶Š€żf6822g3# •ƒœšЌ af 5303˜žžžàÈ"ŽžÎV–@ć_ *ÚÿČü0öüOÏßL+ {ùß73[G;3{à_ˆÿëD33ĐÒ `nekQPԒ’—PJÈ«$Ìì͜lŠźÆ¶V&Y+3{3*€čƒ3Àö?{S«ZsĄÿ‹%ä0ž8š™XęM3ó01süÇE p4s¶łrqùû °rX8ÙÿÎè°Č7±u5ę‡À_»čĂż„țFŰęőęStpș˜8[9«*ŠŠÿO „đŸÚ.VĘ󿑩&źÿŽôŻï/Ì_/ĐÈÊȚ4óțSËŰ `jćâhkäù·ö_0Gg«ižșXÙ[üZ€ł™…‘ł©­™‹Ë_˜żŰÿLçżúü/Ę9:Úzț›íđoÔÿä`t1ł5§‡cbț[Óű·¶…•=Ă?WEÊȚÜÀÄűvSWÇÿôč™9ÿ; Êî Ő_FŠö¶žS3s8yàߒÊÿ;•éÿ߉üÿ@âÿ'ÿ?‘śÿŸžÿ]Łÿe‰ÿÿîó‡w””•7Č3û7 đŸo @đÏ#óżÙYÙzțŸÂÿ{€†Ùpü?ĄHțBÈȚâŻŒôŒÿaŽr·ò03UŽšX̍lÿNé_»šœ©™ł­•œÙ_5ÿ$€Ž‰‘ńżùT-­Llìÿ;ÛžÌìMÿ;őżęKœAAERVT‚æQÿSü«;"ù™€7ÆcvŁ4ƒ Ő_'Ÿț~Šž黃8£ɍ‡%ă1úæ—zN”ô4t~l2ùùæÆ–X+ïAÀ9MłŁŹr%{žwȘf”«Á'@TËZWæßê5@:{È9 çBiăő©đĆÄ_ĆvE·xèŽ$ü,)ŰlŠZĐ`r1zĄ¶ôčaŰ eök-„‡8žÛ±I„#—–4Gł2Éïí<3ŻĂ»‰·Ű'v +!țh‰~œë1l”S4ÆF  Á P|PęéŽ?ŠûȘ w šš‘P…¶l‚AW 5Rɞ–!zÈAv<.0>…ìê,vꀫ5ëœ-Ž#ën]7f ÿŹ%#\`ƅit^7Ÿó|è5ÂoæMŁ—›í—±û“ÿńseW.Ìæ‹<‰RN±A˜ŒfżÙGáW`NTáčLśbfcDŠù$$źk€ Œ19Ę 4erțê_çč—áDąI6Śo\ à‚鋳tWZÄĐÒz-˜Łx06d'ł•zÁžOŰ&OηFij떋Ń(>)ˆœcX'ßF°óŃfłÀÒ?€Xք‰äki0Bę !ȚÈO u†9èD–űß#üźrY€QĂWđț’ŃjÓSjb;łƒÇQÎ/° őëÍđśn̊żhĆ Ä%aUŽšïÏą€EÒp"ät DjŒOőê’JÉGÊçŒS‰|ț Ÿ+ç©·Ynd…"łÀ‰ ~Îh},àûŐì>'ò2zš.ĘŸûŒ „í:=—űôč  { Łts$‰hdÒȚàWŸ13?žâ)„˜ĂtI ވ`șä9EŸ`ĄzŸ]=]Ÿ òŠ ­èЖžæˆ"~± 5ÚûóS­ŸôŸ9âÚ@~Wœšœk{"Ft©&Nöù3]Æ„RźÜ'EÇY(îÓì†DR552kì*/ Ÿ°lRTX#.¶mł|$| Šlóæ  J’Î@žŸŹÏĄ„Ź:g|v1» NđÖŽJa(ÿGbÉùâMVżä&*ȻΚ˧Qšő—w `“ńą(1Vž6cMۑyÈFÒŻź“Ú·nçĂ@u›…Ž6òŸ¶Œ 2źŒœźȚGt? œ’èŠ$ÄQü± _Ú*“iQŹđÎś1ODîœ'›Źpzăêč,AR…”ښ·L,ù·[1‹9șË6ä&àžšû»FàeƒQŃYú«}™4@@ ô™šÂ:}•y~j.șP9)ô”`™–DT f)(â>Đ9s’\Š"[rÛŒ«u?;Z>șb;6Pń©Š¶eŽ\Î1xò–ZòÏ#'V]băÂŽöŻȘÖhŸż’Wä(›ßŸ0F|Cw€èyú99Ÿ`I‰üwDRülŻ ăwț0©GüûIT€Œ@uś1ÈŹáœ`Cunu3~]Ç8vÜUtX-ŽžGÁJóĐ6ƒf‘żMšelÇŰŹ*Æń»}”7ê¶ąÄž:Ž œŃk ùhlˇ+›7ż’șcœ~đê^É”·őö‰}ƒtîzĆ ŒC[Gçìl+źÏó° wùnqöÄh€b‡Š8@eŹ `ńăDUÿÓĆyÇ]‚–Aïd#5őG[ńeâŁ"‰Ò<Û!ÙjE·WegÈĂœö.dRÇOŸò„aòXk”žTŸ{»b~Ì_S†ŠYƒÏlœ§>y»ä ÖßțM+>éy“…GÄQæłŐv•Da{ƒż ˜ő·èa+æócÒËb%ZÛAR\ž(ŸĂž•kgxGç;šzZ5ëCńœ}'œvàCSô"XŰ^yÓƒOïù/l!{òhÆ]òN‚ŰpÄ4u$)”'ŠJ$Ïwma§MbÂé72“ìϚȘF{ {XC6ZWm4bWÂĘ.țhçt žIÙŃAĐĘđÛ;ȱŒ ,Ìô€ß„SÇmiÛ·ĐVæ‡[ ż$û­&n vÁgReśőSXí€fêđ?՞æá&ÆéMdƖĘńr-”êi$ćI43éڗ…{G™ÆĄrZŠŠi‡æżÈ‰mËÎŰHÌx5Ûf29nÛàŒˆÉ™ŹŹ¶5懒Hn„ÀȘńśĘiHÈe_‡;ŸcŒ"éŒ ”1ŠpÀiiĐNÁÆ«Ïá7 šC”ʐ€è‚›ùWà-ŸźxRlÄ1ChnöPhÇ^)/ÁćđŹÛ€epțy q1ÿÚ%ß ‡œRa…T­§Ąv%Đ>JK°ò C“°uêC…)-50A+­P€žŽ`ß4`qnô—»Ë¶Șnê†4?žWcx{\Hț–ŻYü1 :{‰ț Nć2O„© _LGĂŃœmÓŁF#êž©șĆ`”LäÀ"{{űáÙ6êž:š«PÏă’„ÏÁó #Ęć8)Żai€ÿSÏtús51”eæ‹%ÄźCî;ÿRYę­FœŚËʂ Žarß©A&¶łŰ™±l+ÏÙQĐ[ŒO3Ô]Wôœë5xB,ʋ~»Ą«ńŽèëŸE4K$'”gÈ-#úNĄÚ6F…Ą~Ńsâ6Û1çĐąŒôôŚEÒwățžJ”E„%sŒŁáćÁhąÂnÖܙËŒ)OóȘe)}K]t„AüèX-}=»mdÔ7źÏŐâçK «B}†1Nœó6چ[š!“cßEž‡©(‘R”wÉVé2ˆAÊp/6ęd?Ìòžș+ß©Šz$—pKœèęLłrmùóŸ}eÒźZ„kDČHŻ3dŻ+”>”Qk3)Ž("‡·QóÆf]PŚ^-I"‡»Áuˆêu0Ęđ`ŚŒŐ•ćÙÍÒ.†€`Ż_©·1h%ö/ßÙwx-±4Òź—éL€'öŠÊć„Ć­Œ‡eĆŰŃç`ÖBYùìnT4Æày~BÄïqŁy‘Œ±ËŐÄ șàžÓțàK5:űMʘ§#síßbś1LÙPŽP ŃOŒÓ”NYZV‘üPC bă1ÍbD¶$ßkÂȘÌ€Pö’źæžĄšđS^Ê>#RŁ-Ü Ÿ†]aĆE›€ A5Ÿ†~Äă \èÇèÓÖ'#uń‚ƒóSä•ayÙ±NÌ PQhtÀ~V °3ë§%ąș-żń ”ŐlíSùXÔC2ÏÉÚ?çśÊ—éöì’rG"Y4æÙ&;0ȚYejÊș”žą pZ`„ȚżŚ^ cÙænîŸ2ÔBì`ć·NźűxWTŽèŸKŠšzö§ Őœ*Ìc Gs­ìYïGq.˜Ä łąÉ@ÿ%T 'ÎOWŒ‡q€7文ìŽ&ëhPH[af,Ïüb"WÏȚÔ» a†DtŐÜ5lúáünèçF^’7V}p>ŠMț~ƒ;»h[^&nÌÉ ąM8u”»š+H̃LÄăœÎ9íêÿ;š)Ć)Œ^‰’PtžwĂđoŠGQ6{ÀŸŠgԖf†œˆŃ:/șàҝ©Ìö|č”·Ć[î3Ă1EEt+h<ô&&aVÎäæ©&ÿÀÔÀŻ•ìHżEÄ€"ú7”·Ą1ŻîŽàptí›ùŹÖ8ê€y ś™ókï•ș’]zSÜhû?T­€œCÌ-:GŒ—~Űö—7B\ Bê(đa S)‘c€ȘkŠەŠ©\LsِÎ}Y)çÉȚt[1ŻByYE# Yă)(±eY‹'™IxôQYíj'K‹ìü PÀ&[^âćÎÈ6œUÀŰÚ|ĘLąù]gt.”6ńÙRùÙŒ•ŚĘ‹°ő™ŒËłBőȚ»DÄUt&èÛ·?N7ätÚ%'âéPâŹȚÎüâű'ÍÚJ¶6¶WƒNœ" dϧ&Ą $Uîú/&ź+]…łšĄžI‰ $Kù“ç“ äòìW‚ęȚ{Aśw&ù{ßzïǒ¶ ”êŚö„È©…!à•Őži~¶VđZ¶ć&ŁP%ìكÉՃ‰•uőâù¶”ë)ïÏ«2Âxò˙0OkŚ<$jX%»>VC„ŹĄ±ĄÓêőń#_ú\Ł—ÄΉ ÍUk\Ł|Œły*šáÔŚMlŒ™’Ùˆ”Ÿ?Í>:@<ۘ–[^đùI7èìŰêÜżZ’ŻdȘ"mœÂšTĂŒë“­Çč”ŸŃƒÄz’ĄÖNqxIIùJŽĘ[šš$âAV9xY,ZĂ 0 ‡è^ŹäJxíÿĘL”Œk(n!ë©TEOĐ °&È{3y/U y|Ñ»J u%ùyíŃŽV2)œH™őČ»NÛ±úÎf‚çAŚæŰÇÏÏwûg™ÏŠhNŐ? )Ń,%öÀàiFl"”éjÄ„r«‰X—N^J¶z?·ÿ[|ń='=|u*û 5í -U°ŒÒ/4†ű˜ûáÚ|„-ܞ˧m°aLűkJvìđ~‚o2pP7ă(ž˜qNwićû̅ȘòÊőr ف".FpÔMšÿ95„27ÖnFFĄQu”wR°‰€U7öĄ%äółAéJxkébFșß`r LxV}DkS Đžăb±ș‚Oá©ÇîÚ'ùŠ–ű’ÙˆtDĄnáüš«(u‡æƒđ+YCÿlÎ_ŠéäÙ%‹°-{ź«lŽŸeE–/‹`’”Œ­é•H"bÊćšI€Š †öjĐHüźDa ”64™Ł kMpÜù€˜ÔŐÄæŒˆö;ˆ`jH-[ʃź*ófĆúĄț Žì€‡4ŰÓÓ=Űúă;xűZlÂd,È)HëA‘ęûšê‹ew2è"?ă.öŒÆd§ŃÛÔË2éÒsEOëÜ<*Ììuüò=egèȘo°ûEoČžaÆPńd }Nt Ö“JNb$’}žO°.5ûëéHIz”b$˜œ€*ÛM "/ÏQOŒŰË{o„Óćá߯‘”Ô»d![HiąąĄ«SìÀۖ}Ł.pPæç눁—‚}•tÌ|}hÁ9[X3‚h&Fj<[7»hSZŻdcöŠœ<ŒÏž:ščŁ<ËÜAkTTߜM’ ÛʖŸvYˆè‚Ô˜$Ӆ‰ž¶uëÇ»çŃ9Hh,ć( nPöÇ·Żû˜ožJ€!°ëP܍P±ĂyźŒćy ›Á:gv(ęR·–û` @đ‹^TŒŠS^(›7ă‘ôż•íN˜ Z^ČŸÏ苙m†ŠHiđŃx0@”œo€ŽȚErʑ&ƒ •ś.ížŃĂ­ĐóĂÆ*B H á›Èê·őÛŰg%tqà”‹»ê”A€ă{ă°Ij:IńRNÀőŚŐę#Tæ ^†„ę4­|aùSòdu»‡˜ŻĘb†ŒŰ—“íł`ߒșdnЖA••WÎa?YÎ_BւáŹZz5t lą—ćÓőÍ#^bIqż€c$H4[L»„u+Î?^ ŰJŸČ‚@ŒÛšP›đű$–,PőâÄăŒbȚlÆżžżÔüóŐąâf 1„»źÇ%Țÿ„ŠČ§•á=RáCęè}»”ŸNÌÉì/-+„9° îȘșż.Ä O4W:ù耠W™„{^}Â8hö+Țûuß-pĆ lz€cÀŽ[AÓà,đÖò”őĄŸŠ“«k‚+D3ŻÂä7ìíÇ,ßțo§‚őƒ‚AY±-éæŐπŰVÏĐ`ç@ÉŠF3Č0ôőśžˆŒ”†œ‘oŒ~q.‘Ć,'á;ylMe€zŹ–+• A=Ą!ű1Źlˆ–íë•QźȚŽúÍE$ț—èșöłÔ?°É&j’KŽ»žæV Òp„zKVJ°òW?#‡)žkûCłŁ~Ă Dđ”TșuŰĘ”hì3E‚Áíô©śÿŠ\ƒŃHܝG¶Đ™Ę;?ö~pł­pŽT”u«ĘŹ›7±žžż2t!¶Mc$°0żì` .g;Ÿ_·$VœfíÿÊSЇ8zCś|ą[Żfč›ńę…h„öƒ·ł  ž|R»L“őqIó›PʒŚĘĘÂÔÚ|žP@@ ŽqÀ@1J±X˜ûçlŸ]/ńD)p¶%™ÿ<’8t_ٙŒhCśn–h‘NŒŠžô›ąÙ­>»›ü¶L­SZłoûŐâ#VąîŸȚ.ś€ĂĆÒĆÔ&ÍaßÖÙć…dB~Jp›KŒÌé‹W‚ ™ۍÜ,bV=·<čőbë^s}0F‘FBĐÉÌcJA=•ëƒȚĐLOÍqÿŁúžiêűÏIúÚSƒ]ÁIœ¶ˆàì Țc†ż3űölòIŃ ní8TidőDî]˔ُaÏêcú}ƒiŰÖn0èvÇŁűż„đÔ<Š%ÚN˜ÜԌupÀś8QÌ„‹3z„“/(Iă` Ś­üÉ É‘ëÔüŠ”]yZ#$ž%±FÆĂ€&(ęnÌűêŸCv?źDӊq‹j|Ć&P©<_ŒÙ·ÚlîEzAő¶ŒŰżXftlYG#Òρ3òWBĘXòšœŻä«]ƒT°nŚ*ÒĘçnOŰ4ï[,/ÛBȘ· ~â–VžÍî«"Z ŽG4 rT€Zä›,±ÉÛ Sƒâ™B;i9_]ì!RfëŒjìśdGüSš4Ÿń(zX·ÁÁ±€°?”WXŐĘČ:Š/ÖgĐd ‡|ȘrT˜îIIÈ#·Ăœò_ҎZ$cŻ!‚ȚîÓiănüăÁčÛΚ‹ 9țg „aÇ+2·[‚ìŻ TPhQoä AU•àŐą$ĘŽ9Ï%ƒżÊ»š‚Ò)Ew„žG˜—*Ă­•ùńŽû•òŽ*ÊÈL`łÄ,ÿDéèőŚZÔˆxQgąđ‘Ąio)G€Œ*ĐCĐß3æ~Șț^77±aŒíÏÔΏf9Íbg©©ĘòŹÒŚby·ž—‚áńëŽ E€źÊÏÔtŽ‡ìę\z 0€Àöíg'Óû.Bő'iœ5nùŠâÖϓmą“M3J!ìw°üžž€)TpÜăìesâ«Æçr4W…ófÏAbüùÉM§Ê9fdÊ#ò©™łßțpQ‹ŒćRb{_ÚÜJž óEe:lc€Ž:ÏÚÊ|‡lUÇTú`ÀFœƒąŒe` “”`߄˜ÄŒM\1Â_jĐ9p]ÌüyYo«iÊ$Š’»ĄuÄĆò±7Q04û^™Őü%•@ȘœĄ.z7…”‹Ź+ù —„]Ń·[¶+%OĐÌGű;”Y ö­ń‚~ ë`ö!7‚ă•$üü'ŽXä˜-}LÏú /ŒÄÏeˆ·CŸàśĘ€çé2֎łyÜRit{ÜôW{Ăa…<Ń«öù‰Üí©šqœŁ>_żĄŹ¶<ȁdșLśˆL xĄi•„Änße˜j‰DAŃG$»kĂVhmÇ5V%—>Ł`ç“20탟§ÈÄ?iă‚iA±R*r, .;xöź_ÉGȘoŐMÜ#‰‚™jÙӃmQyÆÌŰë|~ćÚȚĘfïX=’#Çż›$CÀZ+W]æłŐĐô6ŸTŠP? šzžB*í¶vÔÎvo!–TüF j=êŽÒkâmŹĂÖîćČ«ŒOœgÁq:nAéœ<|đ2NŽćVzË )ŽőOĂX;Oö‚C·SЌ4Ÿ=Âă‰ÆĄă“3>–ˆȘ—N ç*GPœçtę8;mĄšłą|űìëłńyêj §Ïûِ˚LĐŠq(_7Zmoć )ź?ä=`s6æźÀBT œé ˆk›!Æçl¶ű =ŐcđÛÆćÔéNZmaœSwƒ@KMÆœ@ÖNd ïnŸÜ‹.ŽK`fśèÉGX­w3«Fșa/ZŸ7Q}&}aâčĘâÔé‰myŃđÇÇÀ—œaoâ?ôKÜU·0ihBàD5œÎçQ]žóŹHPٰ@D•R­˜œkő~ÊYɔ«œŸę?`YŃĄ/P ,›íșë›=.»%•Ș‰ę…ú?œ6àŽW íŸ©Ł•}@~ƒÌ?’5pÈKùÁma·jBv2x‰]œI·.ëMđđ„{);Æ4ʅè=3ńü JYU“âKÓ>čŽæŐź[œ `ž’wπϓ’„óÍRć2±uČ æëâšü#œ:zJŠYŰǝY\Ž=•ÖÖä”'«Ÿ¶‘"܍xKg›íïò·aAò{2ź‚Èä 4â#Čd„ŸMúJù™}«Ó{nxŸ,Üg“ Sș4őĘxÛ4ș¶…’'ŒuûnœŸtŁyS°ŠJ“s±Îwż«(疗ŸűČö`›XÌ.\1)đ5^IŹńŒWF6”ˆúčlîèGxYĆŹĆąŚ“çwą+ă$Ă)mŒÛčÎOE¶±&Örˆ‹ÏÍjé|l“äfK íÎ`Xh"Ѓ]«+ù©ŒW{FÈlçÛ»‰Eœpć!'Sä…"«•RȚNB·:ŃXo!ŸÚžmӂÏ…!ÚȘÍj) %Ù7ČᎋżhęÎÓ”9Êć,5Ù`GWÇüÛ ć{cHŠŒt9!„ ĐȘžbń’«I»…ŽžZBŠ@Šn!SùŁoÈ+zumČòÎźŁčJ~ŽP<ÂÆ­b„œÊ‚2ŹLkùźÒiC@YƒŸ_D——Żî ł©\ÖŰ<șd«cyäÔ*!û œsc"RuĐ^–żL%B«OÁêthyj«PΕgŒ‘5ŻwkU‰#ÊęźVV~Œ±êʗx/ÔJ5ô.uۀ' Ì䟫 aËŐÖ=|đg^•.f’Uè§GvnYYŒÚ«Á‚ïțLË;ß%-‡az@r}Ż~4ú†Ć}Èäč”ì0Kč 䙠Ąră@^T{ƒ“żÌTΔőæÌÿÈđĘÉ2=ëȘBżâ·Ź•Gç(ÿ˜jĂ beVìLeŐ8“ßi>“Uš©Êù=3=0§ăbï=Ś-§ŸòúŠ·Â(è&ßáțáù‰T[OȚÛÒÀôXž…őŹK‡Ă-“Cß^L:Ÿ'‘źxú3š5ÀgLô3 l^GN7b +H~qč°j čü‘)XV;‡››Ÿ°±^`\ŽbŐ.WȚ4ăJ™ŠȘr›©ëU1 Ú«êçΔ=ŸOă^ÈŸWÒìúÎ]ætìG:ĂÛÙeÉđ+Ăäg†IwŰà{ĘÍM2ŐÔ^5_ÏßÿÿÍ ‘Š(NYș>-$xśÖ g‹ÇQ>ÁäȚò"&ĘëdÁȘ)š˜ô©žU!ó†Œà-Ç*\,jP>Ä[v+ț,^űŁtùXx„Źą}FáI§–ìÔTˆÈϱT™­úf¶Ą.4šęyŸdÊÆ?ż ™.ă&ŚÂC?±6A5‚î\æœ3GNDęž‚ŽcRíŠâü0s6ÚC„,ŒÍжś+9ŠS€ÜAŃNŚ/đ ÉęĘÇ{ß LŒ~t8đŰ"Œ€†lèĐ5)WŽŻÓoliĐ©Ą„wc҇ŃŃ ˆIÖ'{Ąbî–qL‰DĘXn"Țߥ›Éú uđpèeЧwsÈ Ń<˜źBĘdwʉ±\żzà3ç6"n…bÉĂŃÜ:șeA0Ä7­Ç!Tˆ§qÓ+êł˜`©„<ïÄłÛŃÄű2ìICy…OçAÛÆ± Ą4ë*…Js%!/g@âxç‘Őn~ĘŐÀË©4x=MŁ ¶˜żaV̇NŁzŠáGa†›*ú~œH±œ­Kx űMp~ûőMìćyV )BÏĘŁL†ÓČ۝#úŸƒ”Öł”my0Dœ@ÿäî^@š}:b“Órä5B8ÔJe©ÖțsÒÚńłŸßd1«ŻëŸbd©›ÙDFȘÛŸ í\V?"Ÿż^ڃńD ŹíżúI„w1í-_”Œažźd‰[xgA[Źœ‘Ç”ž X1żÈÖœ«LŻXŠw †gTëh("cÙ6«;ôčá\ Qš Û§ŸŃÔêÄzηÜĂ[ Ć«5ÀĆÖÉ fšÀÈÊ<üÜäDŸÊąCä?W5íROvO{ü,òÀËŽf[Q ł%é$kŸÙKLźÈçhBBV0ŚćBÇWr]cÌLíù Od›€‰{–”Đá~č FDÙ7…ÈRä6WÂû–q€ƒČÊûIŽ… 1IrÛÓÁVč!Aꂱô„.+LŸÒŹïžSęÍní- €YKŹáÏhołęțń3‹êFYOYS9ߊȘÎKG•±íŒ«"ÛÚwMá<dΠąàwÄ~úÀ«éw€&R8:g&À=Hčă}ÛÜoûäÊžł-œ_śț”Ä5ö]źŽÉČ1AßÜp•€ č›cWêS”Ÿ^úœ'*u <%ÀbŃŸż…Á_ő82…ûŚíLˆ]âhŽ›śàŐmŃËĐKoŒx ŸÂ˗ì?žòPĐo<ù 1ö Ìà]]àŐ±û4.3äàIŒÏDP‘$y«üŽJfWY Ă»•ßZ”(«%‹»łđ?dèÂÚ=rSræîÔßÊÓÄ D:ȚwŽč=§ ü–ššîö38”>ńź”ÚP‰%΄"Š©b­ę&5*È~łÊ€ò…?_ ĂäÎÓ«{’ÔÚuMǐZĂ@/űÖőЏ”>í$Î*«ĂÔÜżŰÀśC8~'66·VÆű FdQ'Ž?ˆmŹe-13ÁńîR%>sŚÿ^X“ lüIsÈőN.mȘAƒőÊÍcHùldŹłúq`ZVőèÁâùăfőì”,èv ŽAÒ>±„*Ÿśy^™ùƒŹZĆź—NÇić7°jŹŽœƒl;hlˆŰŠȚ(Íœ­zSW” yáÏWÈÜò2f \óțÚ§Ś}ă`cș.ę‚û1nśâć°‚2ÓMc>BžuCò…tź?Đ ‚vőŒá0Θ&ƒśĄœEt'IŚWÍ€Șg&Ű ź/lÈÍF(Sf(žÖ$Kùž(œïÖM‡ûAx#HŚ*(4_íx/ž1qÁ»·'lJȘČ?äëß§œC—4¶V`jĄÄáĆÙ^©ĆdٍŐÍâő̜·~Á#RÖK=đ‘Çf"á 1ŽßKï4Ùő%Žóö3܋Dy’ÙS,!Œ%\rúÖ6Łqö••„Ń^†}t9»"yr4Cä€"J€ïhrVŒŹŽELLÔ^á\łæń>zh4éPÊ;hJT» ƒ#;.–áäæx<Šn5@꘳,ȚȚáJÛȘgŹZÌńûWN‘/ńœ™æ]#}Zöì—R§s§îpïÛö}+Ź6ujA|öĄćà›č= ۈ€ŽZžÓWÈpHX{Óp·…žßšK҄QŻiè{=EÓӒ¶ÁŹwȚ˜’‚œœ!æbÇecí—b›˜&±ßÀs_ÊËŁ”’–”%#>żs*$Ü5û6kƒą}Ÿr[ŰhæbYßeÊgUw<™ű śžz/…¶”ÀvV5èGëÙÚú_z1B>źGçț uŒúCBXO‚6Ï)Mg™Ż Í6žÍÓŁ2‘‚4†5 čŚpÆöÒ]Â}šûYYCLțu˜Zjă­-ä]ô(œ Î9vY+>F—Sgëăș4|p&v™âÁ,ȚŃrŽbÏ”™E†Ș 1ȋàbŠÁš‹@șűœ°Ù·uZے˜WŠćêù€t+†ŒœŚ‹N$čGB\±űp§ïȚô>™9nńs"™û0wfśš*ÿ™<ˆșŒrkȚR4·Ș6[žrôĘNïPÓûbœ|û3Zı‡wĐôșßX€s9ÊGYö8œŻ&qțś”Ś!Äǝ6Aț,’éȚp¶żëkaßœŒș,țșä éòxêéÌ$}È=QSšêÓÓÚ=ßŐ)é`ëGßۊúÓŸ?Î …SŃfR—ÜçĘIȀÈèùïü}n;;šEL'$†țr€ŰȘâY&”ôœž;rs‚Ăì°V‚=“č̐錻ûèkțăĄŸ©­ìŚ~]ș€t8M#ÜąùĘÖŃHÉí7¶ƒĐŰ łQÖ?ˆÊ»LA”FŸűžŚgüś‘1‘ș|šwJo€đ·Iì>‡ ÚśX5^ÇMôƒbCcűžyj·zÍŁîïF¶żÏÇoćŽAp\ő`Œű”±Ö*ÙPŽúÊZXûIbžuű3Œ3v±v̛քs<ŚBßÔ_Ÿ-ŽhL ĐúÆeʱș©+q郣 |Đ^ÁìˆGȚœWĘćU^]œžC$áÏ8 Î>_' Ö6i„Pń»ÔyŰ<€*èèÚööôšg/@~čÉ&ÊÈąÖ–5rE,„ÜgUëRÈ=„°œM4Ć=-“žćÖh”Újúc=4Ł·•Ì€Š­ž“DquWń+ż›țàSÄ&cÇœú…ŁăЊo™&aă˜@qkIaÙ c+t±»2·)}^}±Ăgv>]gŒE“ŒgQ±,~±?đ*ŰŚv ôRÊÜ8áű“Ä€c±B”_7ÁoXi«eKmûÆM[Á]ș­Mn!âÁŹq'Òà ¶üXíÏN—œÚSźö h8ȚJ°0`Iś}čbžˆÂ‰[ì–‡<ïá;ÚïĄĄ&ꔊ’ä+Ç$,âĆò?`|OLšƒȚÁBùJÓźQYĆ(Eʇ<·„è4q©2cEúčì%°.ŰÒ¶ńSp`m`J@§ĘŸ±9mŠxsWÀČ0‹Ł4ۈ~ą§íuiY¶ŹlÍ7źÚêpœ#r^ŽŹûȚ€­5QȘ,dÈzŒÌ‚lšŐ‹‚G”x$™@ĄŸ`ŻYÖH›hŸ)ëùX)ï|rwÿ$yŽyèÍ:uû,@¶EŽŹÜë§}Ž{ï;Ž+RDü—çńëÈuŠ;ç뻈&ć;PȚźœé~Ar6é{çUÏÊe1gÙòjŚ4Â|·đ~óíUkOïĐd^ËY‡E)±‚œÓ˜Í[•±°PljBƒœi9ˆŠü-‘uÌ)< NŻĄ… `^4Oèü ˆæ36$ś€ć·È ŸsOÆ?æÙˍÜ|isŽŸtê ćL[âru8§öĂæ`°żëđö#ÛM èN썏¶WÓĔŃÁsf©¶€șV܆ÿdđIGź ĐŒČˆöSúèàS=l2Ł› DČyÔ;cłțź^nm<°:F0'y ‹É‚öÍJ#€Yòfć­ìeG(-Rb€7ö· €àÄIÚźțșfUF'”‰üɘùIÁœÖÌíJ~E¶Ó G„ÖÁ3żË>”Ą–,Y5듣KçPööu OA|zd‚•cбÄö[òźŒo;V0.üŽŽû Ìržmquϟ6…Q éG üźLê$æ1a(óŰúśĘÛèYSäőê5őŠCs»—?ßż5č””gùț!x&û˜ïÔą ’kK̐ȃd)š]F}Ă©C 5Ÿ©Șxáìôœ?@1…ÓTó±%|ČsB;‡&0âUțtˆTÙŸŐœäŸA7U9«æg4æȚń+ŒĘđß2¶V›ßÎ++ŠăŽô'ą‰CĂz±Éău“°œq KRîŁvMrwì]@!bžŽÍŒ"’é<źzé!íőp;UEáebó»3áęJńŚO:†ôł Ł§Æ<ÔŸ(`ìjêŽS°§žGŒQÏ`źZtÁžć=+óŸł"Â]ąœęćSƑóm|ąÉÈqŸ+‡Șa^ÚuŒŽo-ŰäêÍŰKŃ€jéőû€áőŰ[ßb”Č&5ź(ęxyÎźű“žž‰CvQÜ&æ¶D}g čŃgUXÒ՚ƒ»čúrâéeț“>[ĐKŚö4ĐòńòBnánșXușó^qńÀÛŹzeÈó€ÒŽí—·GŠx”Ääxl§Ä4.r”Wf3©/BäîŸYĄëăyŸZŠ!ùęP„5Æp„šȚŸ4 èȘvă3_dxéȚ·’ąăA”âiùFș86ȚP/ż}=%p‡žHP5ń\…íACYß âÇâœ> Ćìÿ豇•ÂGòŸ6yEž«ÔÏ1jxöÀDcì„ Ú•Ÿ?ïsG©líDX4°5ޚió„{ÎčŸđ¶»€rSŚÉô}č„+BÿX8ü‘t;Ö+“„quD«}î¶ûböÖYœË—ł€™ÀóKËpđCΏàkž¶=Ț¶$/łÚ́–àۓ őW»•©‘`+>,ù`‡Ă˜MŸcöïąĘ{èu‹ĂHGÀp{1_ź5.kFf™Űæ~N1ƒk4VČŐúÓ Çid. RĄ6”‹nŻÆ™Ÿiœ ęÙqG#h+ ăsŒ§‡Mìb(Ra”É †źđüĄfw°M:Oüwi<„@­g˜…ŠÖÎuυ'ˆ2ÚBžŚ“°LôŠ‹öűĘ~OèR”JŸțŸ6Ą…)»đ‡u€ë ŐycuÁ‰ĆŻ‘Ú,éŸeDcYhc–„áŁ4Ît,łP<Ź9č‹îłíT{Aˆ™R,ű7Öê€[,šœ“ ń†öiC2rT.€Ü [“sË9 ŠG>ôՑ»UÂßJù4ŽÆcŹA8őÖțÔÁőĐÈŠęÂŚè"nƒD Î?ę=OĄy»Lș°,%s™ÁŒC0ńBŽR(ìJêĘ-Avdš•|n0Ú Z1Ś9ä#HQó_ c[ 5#–E˝«m‚DÄ8ù#žE—{€„ó»«Q_íyc8»“=|ò˜ŒEWUFŸÙ„ጠŻu+Ÿ[YwT{$ÚRÜjv‰@(­ÙŒèĄó)w,âÚèĐ äCpʂH4# >WŽgșęœlÙœ`”CÇĄ|ÈhŸjûÔŠűê[…Ăzä:TÛbˉçÍOUÀMyŠ5I)Sę(Ź„u”bb"Ê_Šói«‚+”{d%D<ò–€au‹.ł ÙZ`UnRvQq‘cȘžHˆœ„Íï'mŸe«ÂaS9š%©-žÊîÖ{(hgx7ÜY4«Kќ¶f’ÓÙ9ŃÜP—Úž"čq•,€çű=»;äĆ(žA˙œžkÁ ÿë;lWȘyŐnĐ,šÂXșnėž„țŐlšŽûÛ0ƟTumïšF—ÈČŰ2źô5ű -ă:ubȚ„\;OKÿXV3Îæ+ÛŚ0/ۧ"/~Úf+ †ŁˆŚs]­śÛI)7¶™ÊBûÒ8Ê#tƒ„‹QScśî7F»+ő6)HæÍ° íu…o~ąûßșÉÌ[ùÁșbrA^ˆmžâ4ș‰ĄÓUZjâìì֝a*Æë“ê@ą·ÍKLđ4Ż'ÜU4¶[nPÄ fBŠ?•:#$ÈŒLŐȚhˆB†oÙ [2gô^§wì`TÁĘ3͏d}ûąÒƒËĄM'©vŻÜeAÓ C0AZđ-BOűÉâț°ËŰßöž`wu$€HCB'b±0|ż‚ÜÈ]_C[Ž~ûU±_T|æ,őçú]C _|`9#jaęvčęéĂsy &”uqLÿć8{‡0)Eé6•Čși'öŠŐț&Êô[:ƒą»ŠàCÊÇ!aèxżËŹ٘3ù7șŚ6‹čܙ§6ÓŚˆ|LßC?û#{5H1;ț  źNp„dÀÍș ŽŠ&źžôžüŸù˜NmžžŃ§4->Áèq1CKšłYôíŁïÒòßżmĐ+Žè‡ûîEÆ"Z@2ÎáVŒæO іwáâȘđ=Ù˜F€\M)ŐűűÎ([Ä’úÆ/żíj͏_˜]F "…•K+—~ζó*yț©à”–ÏZŁAŽeÇ«fŁa•…hS5•P8܍H('Ÿ:ûqșuł1mą”„eîÒ­}ŒWČÏ ćÈšnU€ZűŒ'żœôśvÛÉŠ”A_ï}$‹‰€ њæ`êUc.–€ĄĂz5âŐ?vÀ@âDæä^çLę‰&‹ÿ»˜ÉŒ*ȚqŽ©żÏgræĘ” ĐčuÁGœÛ#ÁĐ2ŠSÆŹçțŠȘĆÈnhêTFiqëNAźáČ çr:źlą©uƗÈ11Œ BUfĆÔę‚űÍ9ÀZÁcƒi„yÔßS%śí ,ʞŃN%[^\öxà“í;—-›ôĄ€æ•æč,ȚyˆÈGÁS[çßë°Őéń,žăȚz•$Țęäd„1eËȘ©îŐMÇbÖ5»ÂɘŁ4hэ1ż&ZÒdęRż EïÎäÜŸê4çï.”YoîGCÍJŁ4fz”ïćûgĘv_O`z`ÜŸ_F„§wœ:—ŁÉXxsf(‹Ê^˜-Šć{vٞ€X8 žkà/reÜÜ߁Á2…jĄmÆ7.șæíSÖ7AĘl?~FܗHàLT/Êő«ËV5™Vk^Ăü €ò„Q%țč^(ukS© \^ćj”€ r“<}țMŒuE~¶ìvԅ]%LE '`üœKmŒÜ[ˆ+îUù”rżÓíÚk–ê•5ćo„c¶ô i\âČ„­ËÀvox߂'}âœ#uûŒ}t~˜œ?U;ćŠá$Y™œí e 3Î äȈ‘):B6 Ę· ûîńBn`ï0xKêË€Ï/!|vÀŻÍ €%ŐWR*BŒŁń–qæŠș^ó/$h]’ž_qć;$Œšò¶ÏÄoˆaÌ©Ź‰»}újŰô›í‘m87k8/ ;Ő w¶=Ô1Ž7­VÂ_Łü€ąo¶*ÚëN'ŸšŠßˆLB±ò\@çxeúÔ"ž‰Ű‚z]‚œàäÎjïĐőĄ«S Š;Łç:ĐKXőćđ@ŚiށőŒŹƒ_z$’$gőÖ1û*dTĆżn­!­ńO`‡[źȘ~ +iƒ‚Đž·Z”•Ö9XÈ ę\œgl•sńˆÊŰí&úfčÜ!öMÛܙ©[ĂŠlȘúe€ÿ*‹Dđöù…ę {|żË#üàvH'±*ŻóNրńeĆ&.ûĄzˆï«äHjw™èWĐpÒ\Îśƒ|ÔàìQÉüVƒyí*aœ•$ź#șÁ—±C›ŻT@,›Ì .Âej#öLÚ„‰9R;497uʱ‚5}M§ŒÉy–üm!Ó\_ê͎Ÿ-g€"çĐIŠłŒHÛt/ÈĘ»1°ÇBuŒhńæmlÖ8ŒMŠ”QŸŃ W$êńQ°hÊ]Źśd’‘p>#EiéՑ<-Œçȕ|ńÒjï;)#9ïü6,àœăJFęiĆśŻ3Šl(§œŠ_q]]խĞź«ûƒN B  ŸPițíăšC…ZuÚbD+À7t±òI„Ûtߌ„Ü'<œF{à[.dû_ƒ č ă tf\ÈûcŁJ!žgEdÙ|Àźfì+YÌ6'/¶ć !ˆ?‰ƒűŸkèqČr ]C§ 鑞tR…5ÏâæJhÉŹÈÉX T@vنŰp,óÿ ßû^~]ѱêä ś[UNŸ97Ț&ÉüŒ8VÀ3!9i~”ÉÆÇÏ%ŁæÒ«(Ż ëƒÍțö$%aΖì?zƄNaEÖIŽ.aæÉ„iJn6YYUx°>˜„ÛčÌÏ5Ú Ł\°Śś‰{âêĆÒhΌ vӆ–›4à›ȘUžž ‡zŰuŰgDTąü<ć70©*lÒșxŻd7ëuŃê$Ûă$NDĂòë0á‘ÓĘ*šòîû’š©OoSöÙÊà!»>yq+›3rAę »¶°Yf•+îț°'v8»ÇĆ †5@`íœ@[†%1{;œ *ő$ĘŚa\t‰]Ź|Ę|S€»M±f±ŒóśŸsn Y0ìê&ˆ$‡ŠÂŹùžó;țyóTŽGŚÇDțśtž„Ÿtèupă™·ÛíÌæ&Ȃǟ Ëuˇ‡ŠÚÛBđűșmÁhČśs•bL=—Ł„Œ!€3Č$wN™ÄÀ€șL“*Rl1Îη=ęŠÇ‹OY­çŸŰ&ùșëŸ:j;S*ÿ)vFJHe țRJȚÇ=0@4;Ąéyż'ÁĐzêG6Î9À6hŁC+ŠhG"Ś*‰+ÒżoŽęŠĆlòBę”zș…ĆjE›Ö𞠠s§{ŚŻ`íŻ À€ęE|·œLđb{šáó/y7‡)rŸ…8œFkƒj,ŠKmśÆÿźÆÒ*ŹëŸąvèѶ·/bZ >N$n2ô«Ű=ÖêđL9•<ê Œœêœź•Öԃ“Ï‚ŰźŒ!ùY`ń–˜Z›îwiđmэ{ùDf°öàiÆ»•ŸȘ· e>ÖmĐùšHVˆšf+ƒ0h ëÀÎÎȚÿĐíD @2TâÆÒë6‹|ùĄŽœUQŽo‘#­nÈî8ÿôOäfî>ćąJÇêP&Ż> …„·|âżWۛęđ/3rïöÿ;ȚÌüîè_ÔóÂ[©hJ(ź2*ï†ăŽgoÏú°ŐŽ àI’tG#»,yVŒÍł 0TžœF¶OwÈ>+~nSVÇS€ˆæ‚Ă3cvf ÇÆ6~ x:nŸ~LÄ·ĆÁ*ióŁ?Ćfh9bˆ̀QțzM§”!7“űŁOÙŠbÊă!xîçí]Șc€ä­ ­‹ž< _¶Hö‘ÆŰûXyMQŰłU{40ÛO­JkâFPŐiˆđÂ7 c w5ș蠔Ä({4ÒM„,)§êőÂÚ˖+ŒșPțۉy˜*ą™€oțŒiÌ ypĘzz–őìS‰ŒÌ° ‘Ÿ1éCIPłśúńüƒ 1šFt%gIŒË ĆyèêNäâûŰɁïáńő§śyRiXx©*Æ ŒöÛ4yżŚ ÙCŐ6„T#šH#ôˆ â endstream endobj 274 0 obj << /Length1 1616 /Length2 23169 /Length3 0 /Length 24003 /Filter /FlateDecode >> stream xÚŹžctf]Ž%œŠ*ȘŰ|bÛ¶íTŹ'¶mÛ¶mÛ¶Y±“Š“ŠżzßÛ·oÛ꫿țqÆ8{­”çškÍœś8û*(Ó ÛĆlmœhéžȘJê VVÆæ¶2ŽJ¶Ö€żfVRRa “譍ˆ  4ˆLLFNNNR€°­»ƒč©™€â/%55ÍYț șÿ§çïLGsSÙß •­5ĐÆé/ÄÿőDe àd˜˜[Âò ?%ćÄârȘq  ĐÁÀ  àlhen17Ú8)&¶«ÿŒlmŒÍÿ)͑î/– #Ààh42ÿ; èfŽûÇE°:X›;:ț}˜;L lœțöÀÉ`ncdćlüżvÛ Ù9Űț°țëû Š`ëèähä`nçű›UADì?x:™8ę“ÛŃüŻ`kò7ÒŰÖÈùŸ’țőę…ùëu20·q8ƜțÉe›;ÚYžÿÍęÌÎÁü_Ύæ6Šÿƀà45p0¶::ț…ù‹ęOwț«NÀÿRœ•ûżłmÿúŸ̝V&t0ŒLs9ęÍmjnCÿÏR‘Ž1±02ü‡ĘŰÙî?}.@‡DńϚĄüKÂÀŰÖÆÊ` 4Ą—łuú›@ń§2Ęÿ;‘ÿHüÿDàÿ'òțÿśżkôżlâÿżûùżC‹9[YÉXÿűÏ3 ű琱ùßą ŹÍ­ÜÿOńÿ=Rű$ÿ0’N[!hcúW:†ÿ0š;Š™»̝ŒÌ&VûôŻ]ŐÆè`enü«çż­Đ220ü7ŸŠ™č‘„Í?gęĐÆűżsÿ+ŃżÌé%…”•ÔÄšÿś3őß8…żÚ;©žÛę„ö?J‘”5țŸƒP„„lĘžŽŒllZ&æż[މÀÉÂìęÈű/ăe œÌĘZËf`ü·űÿńüŚHçżÁˆÚÙÿłZ” lŒÿ.°ÿiűÇmäìàđWŚśüßąÿsüïRʀF0ë+¶FÜAi™éNuč#S"Z}Œ`#Áv„*E~5¶œŸia»œ•úï”ÁtM3\ŸíîËçv‡RTGc}èVäœ)ÀßùžȚĔęHÛdìÔGôș„?Ò/ÔŁ<Ż—dvÀ5ÙԎöŠ•tKȚ!ńf:™ źŸ)ęˆ] üPIžìà}ŒRbŃș›@ë Ï/ÈOŸŸÈ‡ÆGG†{o!úqšsbĄIč 0|’Ï “œÜő>!^]XățÆÓw©—·§{üŽn 6Ęń2Û …™Äú„Ź\'ÓƬė)gÓOŽ?—G±đ·gSô=ÉBH ù°Xó6ÒŽŐ `ù(ț%Śuç;ĐźÌDUÚ]ÛeÎŐ+ž8š#EKáéȘ*ĘY©^+Č]ŽąË<ûšwÙäsEšž“El`ÚőuäN%%f =KȚ©ÛwWgˆwČÏür(„țnŃsú„€Ș@èEیę>7{ÿ¶íOŒk[Æ5ÆJ?‰/ŠțĂS„tˆ6ôÖ°ƒžÙ”ĘčÉZ‡‡.G°éĄĘĘžæÉژ‹ä= wPDąú$ÉS­Á8CsiÒ%uæxc†ż-.<}€2{ȘVÎR 4Đæ“ë&#»ä›fčăìy™°5$lû»]\&áêĘ<›đl?hI)íŽwgONŸžŚÛ©;ÚDyo±_œ„YŠáŁ?ÄĂdŹ_ș!ô€DmŒâÉH”ûƒs[_çÆŽÁŹO!+Ÿ>xÖBAûk4?x»uò­±ę,4~$ï{›·–éL)tn¶…!Cêï’ëûœÈ€/żywÏțä«Xâ6Ÿy4țvP;†` ‹ƒä[–ńàkk„kY ‘g°#jŰȚ<9W‹OŸ,ŰäČ;ŒrőÓèĘUż† b“ȘđkI–u^§RCÇ ê7íÌńíŻ æì)…ÌÓ:Ìd©ï„ÒŹ †d|ô}țFç}%néUïéś"1lNˆVnâźp% x%ô/“-jL“žË=ĘBîŃȘKÚˆ?D†Ÿęi”M=š=Ž ’l\łŸ'őßÿȚŠŰćŒ‹h«—Ô=Í@fïêi`±c†»đ©ùńGÙp3(ˆÍ­Ò'\GSöù$NI^Ț™ĘéÜGKćđ§Ÿș$ŠŒšƒőhQÆèÏY°WXűG3QĂ»Ș6™+é—äbžżŚc3m†Ș8ąŸćè ę20ŁÁ•A-•O±- ŸÒŹ:ȘväXy­·Ž›łgŽÈaG_’^oéƒȚMŚ ?©»Č°w†Ę‘ÿ*`3«_*«È»ƒjzuże„(}Ÿ<ŠÂÁ^p`¶KëĐvŸ0ÁJä>Ćáâđ?KW7i\À.šÂUA‚?xT­ ĐŸ±ĘGuM}Ù2ÂÌc Çćndőfsÿn}išĘÄœê»BsÆúʞÖ^Úv 3uŠ šďŃĆB:”Ž“ùöĔM]ĆÄüŒdÜòW˜J„:ZdË6ßûߎăž4?a5­y€AŸŸ/'ô&†zic{nĄû7ƒGL…ÙÍŻïe•i±pĄŰ•<·úhûőnÚă3„8ńl=o-·>Ńg6 h oX70r^nmž”4wa‹Cxa Áű~ńD'Žpd„pĐo_Š@ψ„Ź9šĘ')ÿÌč€ ZÆÍ%’Ä…k•ŠűfCÍĘćwá«g>ÎÒYüùœ °€1ÓŠl·uc ۝ăPù€ŻŒ„ôłÙ7ŃăCq°w•莌̇ƒè™đ(ŃóDÙ»p<ždéï™ ©ŽAíÖAŠPfʛái/“»âôÆžO&0.ă”G–i6èčŚ}…k©±’ž :Mg$F”Ű€jVÂËźò˜ùՈć˜^Lëxâ†Q(ç1„IÈßÌy:èàٔ¶ęŁőHĂGz㜣š„ف:é{Z‘èÙ#—›șmŹjéŻO“‘ú.Á=.:iNp§Wč·…ŃÆ©ąà‰$DŰLóRˁ„…}î’ßYÓĂŐKp‹ü+xrݘg(+)l=#öj"ÀÒ[ĐÄ]1Hdž°< ·mP–~çÀ šqÄÒĐâ ĆÖŹÚ­ćoęĆS°·D'›6È€âm„&·J3RjU àUQŻtĘ{qz`%±ăœلfÓžA6­,ÆàÎŒˆŒ'*Š—ï„QÉČ)}ĐL7mžVŽî’-„èPÁÒàŁLßwÏO:Édf±»Nbe_ęu ہœŐXíìˆêÔHŐŚ;`Ć-…çœJ•żáò‡:oI ŃșĄÊŻ¶ÂŸ5qL%băIłƒÚœ§€8ÒČŸJ`\-°Ą~&@žmèÄ7ffÙEĄ-/ȚŹÏFĐϖƒVŒáŁ Ț ŃÊÇ@ÙùËÓËĂ#€2ńš…™ș›°đȘÀ*”RÈáćyąOà,§‘NjAÌÊ6…™`°gbêÓ Gă7ƒùLĄ 2CšŒ†ž/Ą_\dÀŚ[ĘđŸ‘±&‘ȚZK?șűùWWl2(X»ŒcÊGŚÌ1ávܑVèó©Nʒ—9èŐ9ˆxœűźöXŚîĘ/Lœg0Í’Ö|À—هH<țlżžÁš‚ ÏĆidùŸçÚ8”ź}$tŻí%<șÉZhŸ{žU Ÿz’:Śí«ik]{ ‡N…4Œ< Ą ĐÂŐug$Òóò–‚¶HWÛÏʘ"“ƒ'$Fkv㑎oÒovÏox“›·ąÜœ—d±{ÿŠM6ś„‘ϖȘZüó„íŠnܔWÁź°`팥á|‡Đm*-ÈèÔÀ§șqŒ†ê ídsh[·\çáèÍ”=ąæ5x}gb”ƒ›û%á,ő›ęŁžĂĄ>껆Ą©”l“·]˜DNtSq‰§”öÚpÂłŸ•)g@fŁk2'·™ÀŽĘVUÊ„„Ÿûźu\ö,ę&ű‹Š-Ć”ßîvˆ–ń‹,é¶#sæ‡{ZDcjs,ąì177ÙłL s2đô"nÓzq1“¶;0ŒŐ=Op‹Ęv,o6,őSÔe9ïn„y‹h+ʙ°Ÿoò’ă­Mč`[Q?ÈiJŠNÙHÊ(,š]*Ä„Zăol{|țf€F Ÿ šŠIâc•,ÔæĆœi€—a2ïÈ֐ęŸSˆæJŸ!~ČÎk#‚ÏIF_'C>Љ)%űi6ú­òŒ@R“ÆŽÖoČ„ĂĆܧŻùZ’™Ù…­‘“©PʃX;Iíőưu+»b5tìA8Q9űžŒ@lÌ䌥€Ü„‚·Žôqf·ï>Wń-&ĘÖ»'űą“ zzù™đŒQîĂiŸú±:sÂ\t†ŰŒÏè†Ć{ ź­kq±í\{qćÁč!ZNm, OC6Šń5ȚÚÖÏ-·Wń%LĂ’òYś-űgç+Ò{ìA?ȓßÍè`Ÿ_&üÖڔrR É2 ЊC6Ï[WŃô˜ÖùâE@Ű€Ú}ꗣÇ"˜a›NžœL…Žúƀ™sTńI°4â C1Śæ‚ (8EWž#y§„z¶†EęcÀhÒ'8Ÿ Źź LKö†aq~XímíAĂüŠÙö‡xĂ·–ŐÏüovÙÛŰèòŻ›ĂGÍž”‡ßș Hœ~țD:L|ôÍțhää Ń1Û*ű#ëĐŹ=^kŹÍ’sn?úął,És-əŒWYR”|: ‘”*Ž©€Țoû9c‚«IDi?kmêpt⎔°üA”ŚvĆäC§»dv<ĘĐWń«§|ŸhAńŹŃyA*çZ~ڟÜxe!ë\JJ}ïƒ|6Ő3ș¶ĘȘżçæś…Èò€ őnËÖGB”Űè'©”ZKˆæ!E2~őđ ęùօZ €u„z#Œó»ŒăˇŹ\‚ómÓĘ \îŻŁÓ»*ĂLÎ$Íç$n„_›>ź8ÒsBꇿ‰ï6(ü=MkwS q7„l… "’‘(ŠŒßÊ6~UsÊBœûigt„•ń“·Š0‘yHlš/=}źGٍżßŸï†·ŠwńZIA"é€ȘüŠæís)íNxą­/wŸ‚žC}šžÿ©eKš€óy\ŽPöC ’äąkäç:-’€œ2ƒ§ÈΫĘw8ČžžG$Á/+€‰á|fg?K7uÌ=Țł P8 ÊșX*g_ q-čâ°f(”/n=©_}íƒMC§%ż›m©œŠűœ˜dÏmûȘàùĐDúôÏ$g‰>èîôż)§„e™P:èÆš|ÉŸk- 1NÁ„Œ€J?6AÈg0ĂŠRj°ÍŸÏchą%‹Y/ć«P;­–.`CZzƒrëÒł›ÓžžeæƒçŁùj EÎ[ĒȘ›ŁI$ś5Ο7{ú!Y ęVĆÈëí‘v‚=7d&ùS$Óç0s=Æđ3tŐIÖ̝‰·ÄÉÖöÏÀ-ÉVŠ@Üțbn&ș&uJôsț€§çF8ń;nÉ·éiî*ćæjž8/<™Œ+9”ß5+`”›.ÛÜÖTțX;í«ŃŠ,ž"śqTÂ? í1!tűu»ŃS[ȘŸBᑈ 4bžđB”É–]I„<úœžc8I!+žÁźŹŻnœÈ)&Apž_žRИ.!ڱXęNapœÇ*B(ÚŽíêüŸuÍŒü,ÍŒ»V Vą^0zÜ@%ŚŁ»…`œÀ]žìțœeśdIZžĂŚ Eë°ń‹È[_9Ż°ŽŁÌOiGCÎ~łuwr…Ô_ÒG€Ź•5Û3EÔáżąĐNCU([Ÿî~°Ç%,cXÿš7Jš ćśE!YŰFł±ĄíÀ™! •š”7ŐĄ‚›—–ÒK՚ 2†ńTú}^ÎÒqË”ŒJGšTșu–ÙŁ€"vm"‘ŁŃ=zwžÂNÊö”eÍÒœRë&Æ(šUŸ:Œšê$ cŒÆcòÔæA}p0Ë €€óA[Ÿ°ZămCɘŽŹÆąeXÀ›6nÄæ4Պ" YéŻÛ·<±ÂjK<’ ‰«É}ÄvqöŹë–1«ŐwŹô]’‹śeyvòÿe€é)ˆ`„ț’y€ńŸeTmć;S#&%})8f–ȘČĘíBq:Â{.«ÙKwĂí„“çÄžV„ŚÂșòŸæÈyŠé Uű-4UqxŒđés·o Ù€ÿ>ăItą‡'iIƒ‚ßé{FÒŐáÙjȚŻ$)ȚÊš–—ž…qąìEèțG+ŽÆ‚P" ‹4·B&Lʘ7ÚÿáL%‰iqRUW6kZšjRZâCŚńÔȘzuŠàÓ1R”?hŠ+,Bu<ș>Ź]I\±›ŸF!aŃ<“ìHú*#ƒ:ÔłŹÊoÂFëK p@ŒŰȘȚ6ÎŽț»Öo­/ÏÙxŰ-M?7ÎÖyÚxę?žÒ9SÊą™žæJK„ĆƟ.Ć[«ìë»n-èÊžpÍ-IT#ęÍçí·ĐƒVńùT ZÄűuVæe(cŰbűë·/#5ZVÔTu€uöÎ@({!ș$”Ò(§!Šœž&È”q!ț”gűO‚}ŸBtß»cJfEY‘EÔ/hxoߔ™…çÏ”1[nôž‰^è™ Őž')záëp’ĆŹù»ït2ʰżì›êh͔ÌÄVBçżï}^*Ž ÌÚä­ÁhœČô9ă—nc|!ű:öŐfmÎUÿ6zä`öj—lšŒ€—SŻçF‹+`15šș:qœ[ËŁfTfˆ€;=đxë‚!]ÀĘ2•Á—˜Ą@Kl%űsh„bőD*"x¶ŁŃ<ÀŸ V'ShäJœ…mÈùąÊ ;Úa. oȘśXčÓ°eĘX۰ì@Éu6n<7/X}šp܇~ëÀ’U±öxŚ©hănÚ0.ogęd1ĂŽ™ŽÛżŐÛlLÆÂ·Ó ą Z^m‘—4»uŸ"Ô~'qFhMqL]‰Ő­ÖSTÉz6źăă‹ÏVkˆ„$KY…E:!ëȘWĆ*d‰ÍĄt1ĐHâ:Ć<Ïz·G­a8Ú_HęI]„wŒpùEË r”™°?æW>_?ä>zŸę;›±1kśü˜‰ÌÿE–œŸÈèțnKl[æM/čĄUŽOŰúìșè,Ï0”’ƒ%’úm§śíćmʑó0‹>ÔńyŹïû8L(ßÍ{Ù1­BĐrŽï‚–ì±2›ćȘ>đĐ^ç°f+”è1/{ŻßÊöD7œäæu±-LЀx•‡“1„Č8ÎeiÓœÜ#Í·ÓßàT9'ŰœŠyB—™[§SeNț™É»™Lîč„Yr§3ûŁjNšÒ‘ŁóGeV# «Ł%E-— &*ŹO&XHB=óÜȘ'u.ćŰé\m,I#<Őłe%P`súњnÏq‹V»Ę”ÂüăHsU’.èÖywËæ0§Țđ>cźxn™l1;Ææviâò’/f…e=e ÔY”°ă2À–čۖ’.|‹7ŒȚoC—ˆV1œÌm°Ș{UÌ;YçÄ" Űz!“áJbF`:óĘŚÖJ'.Ą7ń Ÿ;łHL2ŹZn”ÉÖ°„Kió€ÖÓ&!șԏȊw•Ù™p;–xźH±yoŸ­\œV7ž’l†{¶0jœ†NM(źj‡űÁÏČ;ÒżcQ”>òč†ü*@Čt=„ŒĐ{Ȑá•$:Č=;HîžEżR.ÎOf‡~ĂÔ! p!aˆê)­ÓĆ¶;7‹Ąd ‚ǎ˜~ónç•ìQÆeȘ$‰?%ÒF–G2éhNĄ$•[x-Űè­-šk»œœôò±űt˜©Ęa©ÿ엠Ùà ^j”šhȘĄÙ8É0SÄô(č/씠*yš‚J·l "NPxVbšșxŹQŒł_.Vyi!…*Őh&ßBȚÜKAŒ"ƒ(DƒŃe]  á żš6íSŒV#ł«č›rŸ˜QtšZxÄI}őĄîÏXw NĂ'I<Ś—Ê+śæžČ™˜ă{6‘,©JÈžæż±Ìí5|Cb3šŠÒb„_B–ó{ŹkĐőj «Ìv (őšDȚsr„Ô2<»wŐźÙۀžH+eí—9c?=^_€ÈțćĂDOŽ>d-܃qZłĄ5‡{.7FŽ.†(źĄô ł„Œ·nï75GŸüŒ űžUlffïyŽź›Ô{4^źËçl©>eŠFĘ^q(šâf‘jz$HÓ.vą'Żđ€=8ț’Ÿă Ôą*€o~%nevÔșN”m șšăcȚÄ·ì·^ŽDh1ÁŸJ*”K&žêÄ]gLÍ đ\UłžhjęrÉ Ç^Hçł3 ÁËńÉJ nœÜŽpt†ÔĘs‘AŰź“&ˆúÒBÛ/+ÊŠXĂ7ÙPÄ«:)šò«v8•;‰‡ŽŁ!:úKùXӘa?D’e>ŁÍ\őO¶u‰â€æ,úÉ·AŸZ…`ʔ˜oUEŰM<ó-ŃSÎ3CżSŰżkšÒk‡óçù=Qü‰vEGÎĘH§t±©AOâŃŰe@^ÛŹQM?ŠauËé{/’tȘ…"èF@8ß.șOì%.1! EŽîP™Ëùr —*ÏȚŒˆäq­ÖȘ•Ë\Ț^NVuWGFK,˜ǂJ[H+W›ŰțČçXÿXȘEĘ(LȘ±è4a„ô7]|ŸUځ@‘8,ț@nÁ"±›Őú“á sdź†o[ž«źJâ§Ę2Ž*‡oëźÄAłÔJx!^1Ă ûIÍGZKȚ6 #È_;MlÒÆ¶SŒłæ˜ÉDN`ąŒv8w&Œ ńœw„YČÈ/űíbïÎdx”'%É@1áJKŠf~ŒśèpȚïHré N%[ł(źÜ›Ì·»*EDÇ΄ŸÙ8+NxĂó'„Ì/߁ó+Rà&ŻèlOí>Yډ„ézßL„‡ íuÜ4"Źs5‡ÄˆvdÆŃűSOfæôCŁ›«!žXtP’_{ڊČß©ò)Ać _Á‹ń=1 9”ÉŐąä]<š‹hĄ”ž?Ą”Ă7yž1ĆG€Àm©ŻĘȚ!¶+K0Ó8#Ą`‡Őp{V0œ”gĐZ2Ayÿƒ[ü“/Š(Ś#àU%ïp’hç Ç#zĆ2.&â›űƒ @šäńpŻ,]„5&ŒìÙ©{çžÛ•Û(ÈUș”;™~ÓZÛaŠ{/Ê?Šp©ÌÀa= R­íśiœ˜¶-H‘Çä¶kM7Öż» Û}M­žÉFNâ5qùÊ_8‘ÄFߥȚäP~©ÎJ€3ÉBÀ>ź‰őçą Ë“ 9Í!wĆ6“{L]ŻŽ±dgóGđœß}"f0Ź9ĄV˜Z‚5Bțœ=6ąAô1ȧŒĐ3݉ëő ČL;>ĄŻ"Ëf‚éxjÄXu“Œ1[ôęäÇ  ÖO!ăVĘÊ‹êpxŰá%ȚÖùqQì»uæșrEńîÖ+Ę <ŒW;"ń2Ìèà&ŠxŸ€~Èæ OFXĂ]š<:>ŰV‹OB ĄÆžÎ}jê2DŠÓZÚűl~m žF`=vȘ|ÈuŻÂZ€Njl[”ĘXŰç}ZßûèÊĄŻ`XÙ#†tß‹ š-*çR€ÏÀĐäVÀD2lÄC©Ä'i*=tĄWŻŒ?€Vž“ÄÙwƒzőȘo€BőëمÈ†5čÖèxe~pŽ ąæg•źW±ÁHBǃ& L{ß@“ĂbVŽÆ 3ż>Œƒ‹ìȚĄá‘[ąköTŸŃÒIÆDï-…nŽíŃææ€mVTÙ@c sàX§-}àDVh—+ćčïȘîTꁚ†7•Á“°–ßhí„\ïŃm­šžâ­9Űk&lIl *·DĐŻö‹Ś\àŐvŽś}ž-2è rƉ2))Łőv6lŃK“Ű;Zp ÇÎÆ|ŠŃ”(l•û|J«ĄŒŽ• )')’fìŽ"۟ Ö-œÌ% èš’1š(śȘöGsk‰ÖȘ20à1ȚCŐ:«ą2‰Ś'x©Á§~! 9èuûç{ź3óŹÎGŽ›‡ˆg ûNaĐeôäÁà2ű·“ŠIfÄ(ț šVőœt‹K“!–ìXÚ}E‡zæĐÛ‚7A+߄œ¶Ü™I0=äù†„֟Á4Ű7Šd\ÖȘ‘P¶á‚đc_ c S3Šž[U„>˜ĐŸÙQjîŒc™-ƒmpèű–ïń”?és™ šeGő•©ŐšŻÙÜ\ž{Ÿ^?dgÜȚ|…ęädLǑâŐĄ@ÜÆBfƒ$Đ陯śŹ\Tđ߆Í}ÿčŸNzpŰqè…=Ì©«hČ…ę<Žæ*ê\!G+C9gÈ?Ù žŰßzúò úțJRFCLÁ·‹ÓGtÉ”ùu©A=›ÈçC#ŚEž:]îÏÂžŚ–Ș-QśóԙŻ_ŁEϟĐ|ùÂäžF;RIż’ÜŹlٜo^ô¶„Hđw§ó‰žâq GKà>ú;CûΌjç#ìڙ­Áˆ_UÛYfŻm1ŸńęÏձߜ‡ąEőŽb J›„oŽ94ÀDöź}Ëőń~­ë6.źú:’ŸÏ±šásj —Ă °o=ŒŹ‹`úWçâÖćȘ]ËSĆ_ò© Ębk5æ”òæÉ(„"[ní…ډŚ87 ہPűÔuË«»ÌŒòèCUû\8“óFòԘțjèâ•;ő?Z3üużôRŐBp$Ó0ê_VkćÙ l_ő*ăÎŹDé–ѱó2îźEȚ­G+ÂŹmgsyZá5€dż—çIŠ9i–łù3ŻUej=șŃ ¶€Ś[ŒìŠ@)cÏû/w(4…gžÆÚÿŃsčĘCy~W?šÏ'̀ujDșČv™ă3ʃYˆĂò…v/w‘ÿ<*b„è!òŠÈëwŁí͚ÍŰtUźŸț)*łŸIž.Ń Ś#¶Z“œ‡Ÿ -w°ț[*69Eż§D–ą_ź8-«Ž Ć»ö~ËCôđłùç©îÌ{ŻkłSąȘôjŒ'ś0ùфUbÊšyt‚ś[PN)цšÁęwœłé’»˜èLeAëĐ'š‘ßČÚw›äT Ê+êúü‘^}É9ê~Avgáźńk‰ìÔ1š8xËnjӄˆźŒ‚ÖVâfür“UQËž/SU7ă{] ,ą±ę܌+uČA—äTÁЁèŻ{>ó ę—eAô öàʄÉ']:űùcüùՐRߟï›0O‘,ŽRy_™ó`ÖSÛߞ\ĐĂș"…K•‰eXńæ .‚ŽU/Ł­üÈó™±5P•țÄńËąSń{°âąäy‹FśŐ=†ĄŃ¶Œ>Ć+O§ÜjH,ÊKËœQć95ÊćI€DŹW!ùr+7x%œčfjŐϰæ ç#ѰòçÏœą‚‚ QŽÛÍpČs©2Ą4+‡:—ŒŠ ÖłőOšöčBàêbźŃû›y†”™ő•bá°ê¶żń±©jžšr‹€:}3ùŻz :_ÒGpƒ0Œ~żÒX»<ś>ââxáûÍž†©+i"àF‡lô=ăd“§eQϛòôăȚ:]Ślz€s ê‘ȘĘu|šXüäv‘T Ô›ßŐÎZž`hG™JBÖä=l}8ÏźÙŰsÚ„ xćG\/»:ˆi};‰3ïÀbG'vźil–7·0ÔŐĄ}ü“‰Hjÿ|§y4[ŠćȘĂéŸkVhY)ŠœÒ$KĄč8EĆìû¶°™>Że@ŐL5[fƒhfҐÆČ(àŃ^öűÚŠ­#ß[Ê­F]ÁAĂ _z…4{^Œ}™íő6lŁÓ—œđŐAžF˜ë,ZhÜ›Șs3BgÚčudpüæÄ)oÏÇ\wtY>{ÄČI„X3źŽčËSÍȘöéȔW’č~y[ÉŸâ€NÒBpČò„t›ôâpÌHÌD-ŒÈ@Ć<Ó)žŽnBŰ; xœzŽ2€ŰÁÎY{öKÀJ\yÁmô7‰…äé+*źæEœÊaęœb±É‹)7ò‹gȘ«N*el©ëđ‘o1Áăöô.œkԊŠç=ŽÊgHh$Ö[ÔXYÏqW††à\ÆŽ&„ßÇą>çTê"3æ±ćIg۔òpí˜ ęÚ.;ÖŸaxÂżȘWžw!%űôÛf]ƒêÒŃc?ȘOȘ-ԁ۩ń ,ü&§†|Žn}­ŃđÊoy`úî2¶îC͔±Ńbńâ5qî-9ÛWÒĂ·UËŰäK”Q°°ƒTÚ1igwësžß/€d5| 1}ęÈä<ó€ÊŐîyá :ă”Sű#i]à„eÜEM2â;žĘ%%Ł#ŠæÍG!?ë­g?›*6ˆŒæàăöpÄčdä{ßD;Ê.GÁ&?ĂŚN~Úvm֜ʻțŹ.šƒ=^é2„ŚÈî\@ź‡ ÌtVÄŻu{ ûa.ĄÛ— p|Ąc6P;ĐQć±òźÏXŻ+uȚł‚ïˆ8 ö*Ăă ëŁ>Pï·ß»ćWŸ5wŁ©ŒU)`zĄűCEWWn9śŸˆ&k!…˜"í]i”íD=7Ńw:–uT­íD†>Śí§VœeŽĘčŻòsBÏJcD“€Y(ălû@ß¶l8r„ S¶èąȚ‡uK%™íŸăZWJçßžŒ’«@۰ŽqPfŸÊŐáśź ì™ßdf‹%‘Ș柒‘pꗬÜőg@{Ÿ„·mŸótkŽąMő‡YnÓ܅ă„y:_ȚnúqK]2uȘ%HkĐ­d†’ *ŽÜš]fżća· šL2”0՛awC:‰ż<ÄÖVüáæŰ“ ЛęxW1_žĄtèAą–)€Ê9o[í„díœŃ’ę=ń„ŽZœŽČ$J FYgeVÉ-œB)”Û™Jčp *Š<S,pPY`‚ôEìCčÿŽ[5CÄąH$dqM«őM[­'D“Ab­±ÆÓú@ƒD†F-n-``6Œ3ÂÀꈃ%VÙŃ,8_ęV w±ßCńńƒ’é@Ąžÿ˒e¶_I#'áèlM”Úę«m/”aȚcÙpÍłùöڊ”yk°U­'čžò|­ő ù'’4ă€Ì‹™?ˆi7ïœJjTóÁïê:j‹zG -fs‡Ą.ƒ”gy“$POl&‰j{茣fą «0ˆ4Yà7Ęváß@~Ë3·ëè•y}҇áYæĄáÂ~%\”lq <‘çîoæ =ČpÁíÎÙ4g­*é“ȘEÿ”NX/.Sk*ƒ|‹úőÎûÏÎuIyæÏ[ÖĆê„{!wGÀŠąöèü8­5›wè†H­‹â-Ëéôú{|ïNMĆ |Ï={–UȚšCŹÓ~ÂˊbƔ‡Ä럄sŠ á7Ăđ‘7ëpŐÌŠE§óű «š—Ê€RțëeÆÁ*ő ç±xùÛw‘žvgH^ëß >9lü‹Ą”O§ÎŠ$êmńh›q„C ˜ŐŹšÌ qűÌŻìČT'‘!‘X‚Y늠uíûTâ"Wœ”ÙMP­uß“N;Éá+JäÏ,ÆőŸ$űĄv­èŽÚłŠ’ŠŠ[ZÓ ]Ç}êNˆ±ç5”țPŒr&ƒŠ[lÖđf§¶žUÊŠ–nÊY¶à«ęD&ÆB@)uš\žùnGÏJS*­S[ ǑYæÉÓxH’­Țúۓô#FĂFâÈŐ{!‘!Á‚züôNî`™«N­ęüŰüJőÒOâΫ +p°Às5Ę'č[g]o .ZëîdnÜÂè„ŹÇ˜E‡ùà„s;/ž\ƒżpƒ§S­bŠtIàêśÎ\cLù É•šNÎąNžŁ7“ 1ž0sĐÈ«äœźțè2+Í]ÉvT‰ÌŽWćăljłú/żKTŽnșÛò 2̒|țąMŸ1Se»  ÓDš)Ż,<[ â ŐDé A_š±—_ĐÙyS1áȚÀÇ6Y-m}8w/òłP܄ÖȄćőV ”ÏĆæŽUŰ­±ńĂ»ąÀFÉ:áœŃçż.=‚ŠÜ<ÚUë\¶–Ä”ű{‘úùcü=òjwŐĐč(»r2Gƒ°ą!țEöÇ=]œČë†VCE]óЛíTĘÖŐžÜÇf€lu»@‚š;śŽX”šăàĆÁś/»óM6űł8Mzłú_ÜŐèă§ÂxKUÀOÒő™Óé‡NéN]oŽó@ô]őuaúŸ‰òÓqȀuA˜ïƒ?àNćs’čRû›ą#. (!LŠ(©żÇúÊŸjÏ;ûËÈ$Ó]ęÈï=§€m՗߅­>Ł@ÓÊ6À”yRș•€j'+Ì.q§àőčŃòÌ-bűĐłEԘ‘ä|$)‰íw§‡ÖzNòæĂ§†ËJKNĘ5ÓFŚTć6hĘêÛÚęZ1‹A΄iŠ œć Ç&*s 3RžȚFN€V8,Ą·ńæmÚC!ÊŸK‚àłí8ÓÜèž%s|a8Aä ;D„Š'uUČ]źüčŚf©b{oŁâˆĘQÜÆÌŸŸŒ{̏ôô”V%ÌMŸ—ŁžűgÒ2a ž’ęÁóüY> ÔE"U}à9."'o7«™ŹÏ"0&öxżNn=zlÍœ1ÿX±©ș–ŻÉ8Ö:WŻ­ŒżĆE_„\)źwf„PÙ`xù€çNDïǑÇLńf‘’/6#Ż€—îțÙćpäę}ùpÏÒtÙzŠ€3ŚĄńWUAÆŠyÒcጧ– c$éeŚÛ]ąÂ!ևVz¶6} ƒŽŐ6č!;r ÙÉXó»Ìń)EăR–ó(9±4Ò{ì4@ B ŻVÓ© R»ęÀʉ/=èO:DÜÂHE䃏á}a§Vd/ˆRć„ÁŽO>·”á+uÓA€áŠ&ÌÊLϱg0_a.˜vĂGBq@t-[.S­ƒÁ^Ź[ăEpD"5ٌ꘠ńÄ=ű±ÚÓϑ€(L(Îûç<ż»šêû+9ܔHŠÎ=Oç‰;žJwŽuÂEÎŻ:€B‚·ÆJ#ŠŠ±Ic æ"Î;ßLæ7DòyAb9«’B1Čo`(Œ…a]yù5Dź ûËÆ©G_ƒô xiB—WÊ U1GjŹČŁNż-ÚƒyPòĆsȚ¶>ÚI”ű1z\­ą¶?y‡/耓;űovz^9CŚĆHčŰ'Ă6ôš]^ÊÂêdçcŸêö7ÖűĐŒô]qȚÙïèœÔ”Ă­DôńhnÄÁt!^<‹4™šY‚\c*đœR§h"ćĘz"ùŠoęôÒ ÜÆ8 ?Z^\†űHźTߌ$mAŹĐùNšn‰x!ă¶č[ÂaĂƒÈ„©+ÓÎvjkiš~T*d/ŰpÿűBæŒ&(_țŠâëłđűÊG=§\ˆÿĘ{Íêˆač9ó 'b‹nŸ»`BÒ'eÿÆàNÀ ^5ĂŁŹűÂ̍šH~ŒÜ“Č!>#PF>ĄđłÁz` ]ŠCŻ«Đ…™–Œ«ÍÙlbÎq—0T&ș˜ÏûŠ`€ú–S–qŹȌž.{HŒÌfžđ$°žJÁ§âȚBz}xQT^pçxq(ìRXì_VLj'c@B-X’zA n˜Jwcs‘9͍èR9Ć{ÒéÏz“{ô‰„‘Lž9:Ëü;§-SźŠĄîlő eń{ŸśŽöl™ÈXŁű= ăȚßcĄ‰ƒ ÉȘű§rxˆäÒçA’KĄ\l§q”ÎᜀÄîj…>38B]ôŠ— '0PÒ<]ÛŒč”Îę9 3՚+…K_öÎ)‡šglߎȚő©}ì@:zH ær_æÇu6U·ŚLPÔNoEÓŚ5@uEkfoJ4ŠtÎ0eăIŒ&cÖćäZ㾉Çù$ì–jÎŰȚâ{ŠôÉ{ő‘“j&N j«žï,ę¶ÚűÊd„„~bĂu©"4RóÊً;ìî§:Òöl[$ă€Ű*„˜`Ą>?- zđ`8^ݱîE>Ù4ă1{.`kȚsxLÔo,ó·eFr­Íë°g:*ź)šíîô)1-üŽ5šg0ŽÁ>èêVÆDĄ$bN ÉYĂŻçôaÚ_áa­ĆYždњôĄ5ßÒ"w4m$IŒEÚÉ© §uo-މĄț>m7vdCßșJ'&2Ȓ«†—ˆhû`2psŐ6–Ÿ ł`l–èmÊŠU92NzȚE%Č&ÖÍ$ĐmƋMZÀÊ>á~&ń@p›VÉâ+»âŹp[àŐ&Őâ[ƒ”<SÀɅËő`9†W0넳“ûČÜ\FŻ|e” ьŠìàÊ%ĄȘZ‰âššHˆŰĂáYÛ)S[yEGX-eИ«€eڊ˜<ÊńyĄ ’ŻÜ„»&~„SËŻŒș`sűR#Už[‚Œ‡"35ÿ€ž:Jä*]űv œàűœêČącŁ@Äm«*`OæÔt݆Țè„\ćìșò«fĐôßÚYłtŚÓȖ^„âÌ"ç”bÏêąà'źĂw۔0.;œłLœž!eXH™œÁïv† }î9p]ä8ò«ú™„«6ózö«ąälț·8ŐzkdŻčŰŁjRűYv.ăN.ÚÊç&+PCíîMÎĄț tę( ?Iàpr•ú›ïJ„jĘd—­ŐU.Űh…€‚$[2Nđ©æ·DÏÁÍù‚Ÿ~ ÈVzèüő °eÈĄDŐ^§«Ó#”šSęPź1â„čŸO‘‚uűùŒßaöłv.-Ÿ4ț°ZQŽ ! Á_nXÿȘ"qîÓÀ‘)g9ŒÿÎó}aá8;%d›$J±Êv!Mf„|fÖÿ@ÙPp\ _q6ź<Ÿnœ„žÔŸÉ}æÂ*êÈ*…YmÿË·™<éY`V“c)^ú<[> ?Ò”XtŰè» SìUGnŚ*EàÂ(k8ú$^Ôó9ć‹X‡Š­z}=e:[ŻÏê†Û͟$ًù{jmÉ5=ŽźÆȚ‘ÌäŃlÓFžșü?s1•ńĐû«Ł^H[¶)7ƒ‹†űÙŰé(œ›Ÿ«"a˜{ uęźt§Ăk|OžŽi‘špHßT5–x…21ŽYq#ÏfPm{ÂyùĐ$zH”…ą~„ڶï0ü˜û ‡€UJ“4‘ S"BÒ”Ôۧ©Ò$H~>ÒŰ9kźARžș‡&e€m֋(-ËÍBD…xÒ6} Ÿ©fw„jŽn[țùŃëČ[•&eĆÓßžr#ĆčÏ­§Vzć1Kș-Íî]f療j0ÈܓËđČúÿłLăÆÆK“s Łđ·ú‰ŽüFGm±ÊbÄìҋ:çz5ˆèU`ryß@;–èúf%ŚÎvő• 3`2€rĂÛ”çƖí…ył „jȈ-„±ű€„ÍŸz ·eXÔsn ¶Ó™aw…đ‘}^ŚD.Q(c”Ź,x"°™W‹Êțo§áîÉGcáž‚ûXƒßÒIžȚ AŸxa„žÄ&»Ë Ô vœ’€‚œš6.Ęù{fȚ­[MŠŁ HLÆÂ߇đa»;ă”L­8č?Żhó˞豰9ޜ1t…±ßhàO8NŰVQœSNw ‹Ű^9^^€Ç;dŸûdi5U‹"{ ZÇ:äˆÙÊÒÜ7\KđSN3ÀÀú ÈWŽ•6F#źçTy4Ònp\#GŚéoœp„„ï¶«cl_'„ÓSÌÖš€Ż&OÎH1'@ĄÍŒÄ7ŃÎ`»€9ă­aÙFk–­4 VÙBF;cú6ꊣ„y±h·äÁyĆíRș œQsËÒÎ]„=Fìâż«SUéïâ}·tă™kÄ^3ȚêÌȚ ڐq’…IpyÒâ5Űp2dæ.•à2ŸÏ ž{żÓ˜ÆcŹgìæŁČÀ«1KKLŚËÓŸwd ‰|çŻ0­ę1bùŽŐ­j:†;‘”QŒŁ ś§kuŒúR„9Iż"—r¶Š8ÒȚȘŃíX1ś˜ÓŽòŠ œçŚ Q'ŸĘȚ5HOÒÒąéuÉ ü ìŽÛ©H8*z ą|©‰ Ük掫­&ęï歊°}‰•#îÆ…™f™{ȚXvn}Ö'ĄnƒęÒšż}ßxÙTY,ț\h0ò{żčôű°-Ę*„kŸ Žôcû“”ú€OŒP·]Yl.Vż D;Ÿ­ Ï[/æÇÀüąÆÁa Róàm„€\Ê Äqżs•sò^Ű]ČSÒ@\±Î=•&^E0h$.3ț ä€ÀŒ.ÀżeS©vĄÛ‘­&6Óûr­ÍI»” Șw:–<–,„gœ ·|æČÇŽ8ăG Md`kž‰eüêÄ=ŽȘÇj,2Ü­ê'W‰LÛ\Hûukś¶snlÛGlƒk‡"Łû:b4UÙ{ï©/$œ5›6' AÉ)æ<ß Ù€Tl\dč*ă§Ò A~=Ó[ŁúM”vŽ@ûÀ ™¶=4ÔhÀ±Ín˜[šäÓ’ÛŁ0xïđd`lx9ž< ŻÜÇè~)‚üńșòíòú?BH­§Z3QùM ÉŹÖ ˆe‰tîóÿŒŒ=8z»“Z)ìq5ŹÄĆłmAÁN>§fq{â2ŹŰˉ6Š:Š>”­"Ăw«ŹțÛÆ îT.ędFNgOÆ;[(ôÒł6žs4á,xmêjÆmGąŁíîîÜmâ±ă„Ż#—ÏŒőL°@țA/”îmȘBaœÈć)vÈżqwç€d!1ymŠŽ¶ËĄ[k!f( Nß ț2¶«,ŻÀÿIK :„üæŽÄ!K€í»:ŒàÉKvžĆńŒ!viiĆNüÉEÒ*r Łæç#ü&ߌœäČźłÀŒ«ÓÌ{lą*Lpf|>J«ÂmÍÌțŰбHQôǕŠ[#ŚN;ŚŽEéŒògČ=I…qcW—Mb€Èƒ‘yÏÖÈÂ.(bă§čy Èęćï1g:Ńìd șڊûę"¶0«)z…a§d:Ÿ|X^ ’Û2û§őYî·FH\Ę`_Đța$lUNg-Ö©‚ŸŸâÜ«ű• |ŁŸŐaÒò¶E1P„úĐ(+ï*Ó7Íâƒ`Iš·,Óu§J9]ÆŠwLńsƂw Úé\ :Á„– żÎGÁ0ˆC@Óß VŻjԜ脋OÂO4¶{MJKEÏàY­XŹifMD 6ș5„ŽvVąŒ{4ŒŻCJ1Ò1Ę«·ÇŻ3OJžOaÀ őúUś…˜m ]Eu‚vâ€ț­ »ŃÀ$û·ś•˜ÓG=†ÚZY_ J“¶V% b©-úÍÉjb6Tہè2ƒ„Ž˜§2òAEú6û(đX!ĘòSbĆ€"Ž%ïä뀩ąò­T,>R”ï+ĆXv«†Ęb Ù#߁+p?œˆBŽSC2Đ eà+ŃɟÊlœìšÜ)t /ÉÜ­Nb>+NŸùęXŚŰY@‹Űż@rKç$Ełp,ź©2n'–Ô|㠐Â⌏Șbö€±hÎÈ0í6ÜĐÇü]˜PՕ—ț—Œó žÈłŸßĐ”«fQъdLŐfÉȚŸœ™:‹hȘ‰Ę˜„VæŃˆ/ávŠzA•îVùȚàfl$!ńÌژż‘éoˆt°źv"ŐĂ8šââmĆ\GëLcŸ ń.&š?u< D„ÌUpÀ=Ç{ÇœôŹ„Ì8€Ćˆq‚ÇöșÂvŐœČŁ1:|JLÓ€=ît1m(Đ[%v·u„„‹f„ΘC«aĐ9P»êH^„Š(ÂÜ's2–ŁÌ`Tdê“c•AÙDUÀ~ž‘ŽÚŃf`«Æ ™”5ű[©%f±Èh6jf{ŁdÎɏĄ6‹A=5,\ăF‹  2jú‚pèąF_EőÖ~.ÇDĄę獚€z­+ÉbnûúÈ$RÙ}wò ßwà ‚žž-Ј\3ÛÆŹseŠ)ŚlțfŰ琞5ö áɶ P6Nđu–ç„“ÍśÖ‘—ò„ UáZ•SnŸŰ#€Ńba,†>Œ†çŸìșW:ï&0k|Œ€ÏO”œÏ|öê'FŽ$ kÊ 8­âdn‡tšeöKX§1ä7ŒÜCÍ èúąd?ˆGSÛĄ±6{XżŐëBu7dONw3ăÇaĂߊ„ĐFč$D$&&áuG›"űœë”AűèFƒ‘ŰGúșúLëGąß64ć.tàő4Sk”žÈTźŁHrm_›{.·ßżț3Mo†Ëšd«#“»æŃܶr0ïóšLÙfÜ­ûś‘Sj€…,’©ÌŠrü*1Š+?dJKS€`+m jßNćźUĐEáÚŚB—éŰàÉ«œŻ1ŒˆÔT¶Ș”ö‡„çhùmăjœł‹];Ű7ă-KËi€Sșô “Wű¶!ŸÀN§›.…Š^ E{䌌 SSRÔČqäÜ#›sŒ”o“żÒëșҕȘ茧iič«+Áîɶwï”j-€m̰\J…5dÉl4瓝8șBx{szKCœ7ćpÖë+Îù4‡ÓwüŒy9†h_èËŚç]Û­—đÏRt}ÊpȘdž‡ŽŚŸiíD˜'Çm>ZwÔ¶Áćìi-í& žZČÇuœ5Q•ÇhŹSĘő6­üȚÄ|:í4i–Ű«" áĄÍÌMł­"+ąì°lЇƒĆ€H‚>çz¶ˆ$eh‡éłôÇęE (Úw ÛłÁœ‰\é«čźmÔI邾Ÿ3ĐöN”ÛiÀ\Àùg„'V:ŸOăŒ8,’ĐÀÚìK #ÇÓąqœŹÛ%gà87"š}î Ò„”ÍčĘP¶ŃàȘ}KÀwkĂÛivX,š—ún(–';ŰVü‚$”șü>+űx}ä"íâȘ_(„–Ù>ÜúO–ż(”Œ ^Ę3kțmÚÂ|Úçć|ÿ[Îezlû—öP=ś3YҘš»I`‹ÿ‡Đ»č7­—2ÜtŚŃœQÆŐ5օYę@š]ìžżËŸŹhŰ(ăqj+çMaŹ6kȚ-„žr3 æx˜„êêi—/OŚŸ†«I“Š űAžȘbÔÌB6#†çȚÆŃĐoòÌ]żèuÊgœoŒŒ'Ÿ­Š„srIZi‰ —È$<Đ6Žm€[]Ûìç&è3-G„¶#]FaŸ2<Śò~&üÇędì¶\'G 8Bh›ŻMŠB?‹èŽÿ_țLjč?•‘ÌÊ/v[Ss||i8œąĆd‘Eà”EŽÍKąho=vLŰÆ‡ hÖ֊@œéŽWźé"Š]ę…`j©j!@ÚPÉ[őùVUڶš)Ԍ턟ÛkD ­Ç4ƒƒšÍžœŠx8ń”}‘:Ț-#MùńDÌsVìqąèѓŒ±9ß*Ł)€ćŻ€:k3’Ö”À‡–I@—ôĂz<¶ő%ù|ΰß;Êû±„h4î1˜ŃŰçd3’í3fæÇ?€ }+ûώš]jțæV Ű*kf„ăoÊǚŸPč€)éŽęâČŒóÀ^ÇsŒšofGN2˜GŽ·ËțOąčN(ÈÏÇg:ÿ y$9FŸ„6""~©Ÿ”ùyáŰs AœűrŸ>cgÉčtz1g‰GŹ0 L«ôŚŰzčêòóX+h>ă†Á?èÙw€=Ly‡Žæ˜ÀžüÌÛ·šÜ©Fr3cÔS‚Di€n\ëJ€[Œß{G#هśt·’§ł@ő»Q-Ă3Ö|yïh›E5oŚ]œáĘRN䂱Țہ3M3ĆŠnû_ûÀÛ ›8ÇÍą”Žl˜“Țò٧Š‹%:ąŹäȘ?_Ò}†”lTÇYŻv;ëá.dšâdă7’ëÙ_ߗ^~•ŁęzJÈTÓXĄŁ?n#'ÿ:Ł`킛Çé2đŒ{üțvÖy"2žżql§wž¶u±ò Úć°ö…đÙŁúÙœ€ÿW.„êől[EB­cč)”CS‹ćÖ3瑈OvBë>g§nÉ&Žù0!ÀŒxE{—zùAÖ[škF]ꔘÇńÙ/á’çtuYŰæ†HśÿÛ.űÄgîìæŠč›ă' qhÆ]ÉȘäŽăĆ}ˆ]âńšŒ"·Üó)Čæ%čuh¶ĂEÎôÖÎ àlŒjŁČhę@0Ú„‹łÓ{ąț`…§-Ûț‡–‰‰łàŻ ]ćsĆ„ °‚\œ'ÓZ“ę§onaÿŰ8U€KÙ%‰Y:2+1SœĘû/°żk„G€†DćAnⅆs€…ß.œAv+x 6ÖȘÀçÍäč(*˜?ôF”:[{?ŐòCMŐ“Í:í$T<̊ˆ\ ŐQÚïȘɖ †ƒĘ#jżę•QbĂąQ ŁPgó‘{$m”±&«ĂeÛjĘńpțźŠoÔ8đŠ‘ÿțI‡vż o9<(žó \»âÇMè  D„x˜”‚ąÇ|, ê‘ߟ‚šò!4‚Łz$ÜĐeçÌg¶ȚU±q#Àur2ŠDÓæÌĄK: ÚHŒËÄIúÛꃏš4üăј·ę1É6ăFeR–v/ˆČÓfä"đ"”" Fœ·©éRNßü4ĆŰ^PŠ”zčëúĐűSÀ‰ uDV<€vT9{ƒső,łîÊulűű|,ŽœIźî[?@œ~ÒĐFöÁi­ĂćűÏÔÔ>›<ș0š(…ßűV xnśïčùcóaÛfl"-‹2†:˜QÉÀêăY—#ŠnY‡l™z ĆΈś€\șߥ»AلŽâTÀJU-ZŹW 8ΫóœàùÖΆCÙ5HÙĂ«dÏÀ…ŁŐ,Č@«:Êys d̕ =à\ŽÍ–1òzŒśÿE*Œ= ­&sLöSm}ê&ŒÀníćÔ«…kœŒuî8_ä„3¶_„Ì2/O*{±n?ßâ»ĘÆT5€©șŽ’§úŻrĄ›3ÉKÿßêT4 HȘGš3zWêű0ézƒ6˜äó.*žëĄeĄ[8†đ[xÿ{ś­“ 7dd`!-E}}Ős˜ȘAkÇȘ‚;0mșûŃz`DŸ–<‘ÌD«ĄtśœȚ0ï6•DfÇ,oÓIƒąőoÜQMNAلÁ=špCčÏPÀ7S‡OfUæš D’l"§ô)šd&ö PEVś0R‹ â™8 €Ńšò üöHp‡%\†QȀ+ʙÁ^€e ŰB ĐŸf)âĐ:A…oœBa…g1‹±{pû•ˆăŠ<Ó%° ëZƒp•H:.VŸĄKšU—}“vą—UaĈ N:<‡ŽiQÒ0‹j‘öâ(•Q0ț[g©HĐOŁŰüđì aOÈČȘœEá3|ŸV4wœ8ÖLƒŃ 6è=ûVŸą•h*łœv.±rûe­±¶RęVžÇTžîO‰û :ÈiČăüYmûźÄńì:6S> stream xÚ­wcx€ë–vÇèŰNĆvǶmuG[;é8Ûé۶mÛ¶Í/{Ÿï̙ëÌüš™UŚû,Ü śZÏ[EF€ L'hdcł±v€cągäš*©+è[Zê™ÙÈĐI:ê[>ĆŹ°ddÂö@}G3k}G @h˜™Lœœœ°da{3SGć' íż$™ \ÿ©ùôt03±>8-ml­€ÖŽŸÿcGe àh ›YÂò š’râJq9U€8ĐhÿY„‚“„™!@ÆÌhí€ÛŰ,ÿqÚX™ęUšę'– @à` 44ûtșmÿRŃlöVfŸÏ3€‰œŸ”ăgmfֆ–NF%đ)7¶ù;![{›O «OĘ'˜‚ƒŁƒĄœ™­#à3Ș‚ˆŰ?òt4Őwü+¶ƒÙ§`cüiidcèôWIë>a>”ŽúfÖG ‹ă_± €#3[K}ŚÏ۟`¶öf§áä`fmòŻ hö@}{#K ƒĂ'Ì'ö_ĘùW€ÿTœŸ­­„ëßȚ6[ęGfŽ@KczX&æÏ˜†ŽŸ±MÌŹațIkcă?äFN¶ÿÔ9íÿnć_3Cő™„Ÿ‘”„+Àh Ë găű@ù?c™țÿŽäÿŠÿOț?ĄśGîżsôŸ–ű»Ïÿ-ædi)§oüÛ đÏ; űë’13ü/æúVf–źÿĂż[Șÿ‘„ĐÄÉRßțßŐÿ€Ž6ùd„Ž“žőR313 ‘‚™ŁĄ)ÀXßòłWËU­€ö–fÖÀONÿn'€Ž‰‘ńßt*Šf†Ö5Ÿő* ”Ńż§ÿIÓßÉ3H« +©ËĐüŚ{őo;…OțU\m€ÿD]ÖÆè?Ą ÙžÜé˜Űt,ŒŹŸkśčxœß˜<ÿ›ˆ1ęë,«ïhoæĐf€gdd|~ÿóóŻ“îżÁˆZÚę51ʎúÖFŸCö‚żÔ†NööŸÜțœśŸEÿóüśž.@CŰ„yCîó€ÔdÇJÌÌțQíîN&°ț@ۂ•ŒŸr›ï€àMÎœŚŠ@úÚqźś&ŚčcÛ·])êœÁN KŠŽày6ž' UWòy ;͞Ăśűäőpś‹Y™ p-6F”œ­QE„ïùݐűă-,öĐT>$Î9>h€ś¶^†‰ŐQè­H”_P*sOÈcî)z‡úû:ź șvqi2ą`Èžő1œâ‰â]őìok ß!žÙíÆż>·c'™ż†•Jk»aù])ođ6ŠÒÜśˆ+^Šć'Ž…6žÄš«ÉŸž6jâP/K#0˜•fq';&–Šö«·RN’źĘȚ}Bld°D’ÓšđśŸf€m æÄ:jk`îȇԿțđWʧ|ÍÖžkƒTŒ…C»ŐŽżuâkçJ$qrÀčÎGô o(‰Ł ’ Œ›ĄÛŽÈępÉăv‚Ę°ÚÆžû©źșŚĂ°rÀòĆâȘűÙÆ=Áœ9űò ĂGWq/N)è»ÀŁ·ÖQÓYn%dzșÌOęț9Ü *rPĘś•Ț—u'm— òhț<9dŻ,r~5‘Ę:…Ê/5-ôšźt˜úçʍ–èjçIlPÁCküDÁ˜ Ó+8á~ cˆâ‘kەNu*A{Țre !špvÔ%+ÀŚÖČ{j”ńŒ0ëtł=œ6äčä`ÁkÆRUx$*ĘŸÄFkĘrzŽ&ĘȚÙÁ”O°ȘüeÓȚ=ȚGϛ€MöÏ^2ÔÎHjÉśTaȘ‘_ȘmœÙ}„Æt ;·ÜŸ0żŠ’z0Ï,îHo}Ÿ§l, ˆ«Ë[…2áK9šĐfÀC >2ë(cVlX‹…%E9ĂU­_àO8ѐjǧôÆĂaú9ˆŠ5á1~žiŰArB+űknțŽHòT™ȚÛțkæ#nŚI»xQÚŻëAŸŻżSæÂù”ú‰)rŽ"ΔfX(`ˆ(ˈ!Bndë;Ï|)WtĄÓž„”mÉê"sgÛՉ&€&żÆĆüSЧÀ9ƛ„)OWèʜŹ;G' …/ߌH éòùš’sŸxɅq YÔAL—ÂŒ&s»ô- °çÊò#Ë7+xeœ}€eM&ÌbÍT8ŽOș§Rœäzgšm^%횛™ƒ­öw§Š„-ZœșDHȚ»™műF6B… †F”;…ÖŠ+l¶Ôț[Ś!’âúć!Q_-NŽ4`úIàž„ŠóĘQߐI àî¶+FÿÄÌźáW70]RœYÂri¶ézűf~֋JìȚzù<ˆÓîä—„)aa”áq^€FĆœäÚFF™+kź°·;‘ńph‹ÓÙ58wmgÁ}–›êfŚk;qÈwƒMSm§WËxšÈ#›Čvd2čŽÜј§kӓ;’nźź#¶K’ű±ąlMæpIŒȘ€“­Zó›æ1‚Ÿ/ÉČk>À ne žą;Żśș%”ӗɛ而VÓd–'‡_łć‰ó‡€|BĆÆB?č Tš”“ăWWŒc†%ɟżkäÀûł|lBüŸô§źćó"»¶P ‘(?„Śj;Ž’F…ń©xÌé)K@…żß§Â\­ȘšrőÈú!±4Żaʒ›Œ »á=7ĆźŹĂËatžąșțK˰p}œ“{(ɧ6ő.TëA<‰ŻÛ‹1ô§ŁÛæqZS“Í4 ?ŁöCbw#°fI|ź\ÉR“șî1}X ށî“@5Šh[0ĂûHZö¶6uMqùŽRśđ•.—c dę}>ĄëhzŽÄpL˜ŒęË8’=M” Êo'\Ûû!ú8ò„:Ű.Ț߄f{q†úŒ3F8CÆxŠûíš|wÀĐŽì”}Ù2JŚ“łÈ€ŒÁüŠ>‰ƒ¶_*  ąqʈ&”ŒXXDynïü^ô}Ÿ4ËĆęÁü=±n\Ï7Òą‘źYYÓjęMçdœ2?X„ÁÔ±^@óNu¶D©z;Ch€Șh4ćç\?Ń"—ŐVÀîDbeg v<ÿŸŁ{ ~–DÏ=ˆæ°3FYçO+X3;żčŸÈĂ+Ț;@m1©W7íìƒmÆ šSIöÄvŐ]J5Òb„S=Ú|€EO”y4#tšZÿ*łû0śC€ŸÎ>FlʆJ‚‚ äoKXü+Ò$zzŹèÚK5’ÓșQĂđrΚŸŽ?RÔÔöՐ©- IÛ.“7ŽFęϓƒ:‰Öp· (cż‹ÿŹké8—pNÜmÁćs_Č ußۏšțAZ;f°|ÙÒč7(òžźGÁ§IŻĆ/Âkè­~ŃNCùjȘ8—ˆÆqL2ŸK œÁęȘ:hátÜpNJ)k•˜ĐśîühÿűżËQ„šąm„ő}˔úRUŰ!e2ț”ŸD]i8„žűźŚ üg8eï dtÈ\ >6ŸôùÌì°|Ëœq xC-$?yûš(ŠÇxb"ęőÍrÎT’G(òŸ"p==Š1[–ÊFŃő™d’&Ć"«9Łă ïË-ł*€ę>2˜żA“ŠˆÚ·Ÿ ăé”Fśr~fEčœÿ¶ĄÙ„—żNOŚ Z§ę,ˆ^ߐu!ÖÙBč)֏^ÍôŠ}ۖ#(Ú _8ŸíWșáɍzA$ă1MA=kÙ:(–­·ÄhŽäôÛzzÓcÚ?‚ o!Žpeč”a$ž2AĄdgYç·ŒòÛÊ܂Bîۧ+cEń;JśBàO;PĄ;]ÚȚETœE'èk”ÒŃ)ęœ)ź–țaZ™CŃŒˆXVO—xߊeŸpđ-pt'śìùÛœâˆ]9€4›ŽŽ(8Ç4öæBumæžéž+Aąa†~ÿ(ŒČČdöHe2fȘÔs@c™\ˆàŁȘpéEÛ:~ExfȚúÍ€9lî’0Bš- ï^ gHŒ§e9\J<'*MKPÎKöÀŸ”=ąÙæ[RȘ8‰‹>™Ż!pDOšż6|č‰Ùašò*>OâŒĂ· Z‚+~Èj‰ŚGzh1ÄOł©‹4ŠI‡_­™ŻÙż‰‰ ű} Ü@)™€“Mï2J˜ĐËnŰĄŽkŠźF_ŽÜ‚”–Ș||œ•1])b›ÄČ_f„›ŠJ“ăí-ö[o™6Ç8űnŸȘ“·YżYß©/ÙrvŃBœQ{Hš€śQk17­+ÆškMń@cÆyÓ6ìÍSOLÓęŐńÖzÌ0œÀ\Î/ŸŠőSœaÄòĄ™ÇöJ1h+ÊâŻVęÍïE*iÂx ë‹ç?ÓN­ÔæAï{îôű*Ž›)«Pă^śâôŽáéÒ”“ŚȘ=JÉöŒP JöŽ#o‡È—x'~Ô°B^śvĆí„kÀú”àhŹT.$C‚nu(~òÂJ/ÆŻŸßšIúN2Žpu'+$lßy4BЊ+ƒ4ö˜_ËVŠìFöï8HWšüŽ=6èAó^ Wm°Ę,NÙÍIb…$·2s»ĂUș՝éˆÍc|)Ę©"ÎŚA ­“H<‘ŰYšiH&Ærƒ.ź¶ÿ1Ș]ÂÖáÆął&!P¶Ąmÿ"èÄEh”oä„T (Ù@‡dÓ  -•ÁVêš›*żOŸ9öjN]“ŠȚP­»‘|„̐ȘÌÛàÖŃûSæk&Y–ƒÏ˜pę óg!ś”găÆ•șŰž AI°Ź%CÇș»/Ś™Íy›\»ÌËh{ŸÜdźđ‰`Ü —șïU¶ÂË\9wÇ„Ț|fF6A!ŠJ,šl„iŃë1ëĆâJÖ`őrيÖč3Z©ędxqFϝ̊:ÁÎÏ‹"냞>ŠBAŸÊ3çb’áJŃÁłÌ,Ed,(dăÜĐÂû[=È&çíIËÚæ4Êd€.€uü.ƒÒ§+WźkȘƒrń*š:Șb*M$@H…Ź~đD-zìččƒÚ(ŐrŒ€ëuЌ0‡ÿŠ|ë€[ÏĄ1JÙŰĘ+ ?Q=f4Æ]–X«ÇKŁőaő~ì‰Æ;êÈźæ»jŰș êžÏpYÒś:çĐ3lkSŹ8nqĆjα«äkČÛšƒD>АBœ'QÛfÙ5ÎYe»Yaë3֏ĄšŹUö†Ìs !…2ˆšqšÁ:€·šêy”~Üșp 8)Ć!È· 6=„k­‘ômïnŐî‚û–ó]7đž©ÂžôŹpœy`LččŒîû>“7ʘ€a©sĄí"ï‘ !Ől䊂Ÿ»*â"Ê+S­`5ˆŸ("oi›MqĂĂ–ŻŻćŰŚŃ”0șȘćŰè>_ĘÊDŸŸ}KȘR}ÓSÒG UxK©KKV¶‡zo¶Úőæ  őùĘ/ŸĂKź’€ÌʱŃAŸ{àù8MÁ2< ʉ‡ùŸpw.àoZO Țń›"Té@ÖKvȚȘO—śK†QÖrCJŻJŻŽê|ń{€Š vˆRy,^ïÂjƒ­+;!Â2^Hż„-z"B3xE{žv§&JësœĄuŻÀüç·­çqû/"á›ÚFĆP‹ÜĘüx“ă«6ô±"o˜čSs‰ NìË)z·ÆÈ[2­ÁÏŃû‰W߄G“–CLQÙсÆé”iԈŸÛ/3ŠVnŸČ˜/­Ûą")É JXîčŸÏpxDż2ѶÁź«Òu‰R›À«Ì0†đ%•gÚë—văô^Œe Æ©T‚–ă€ńŒç[=M„û‰Œf1p ›šőoíă™*§ł>„ Ú#êŸr9ßà*Üž—ÍÉ28™dÔYYçj2ï>âO2ŹeXî”ö!ĐŰK `ĘŽÌÿ| UZjž{Ł`”énűڅÙȚĂ3eÙèO(ˆ8žĂLÿ­UGò™± Ă ù°ÿŹ•ÓŃ\–păœBƒnàËÇ*i]xŚFíZ„†ûÛőG}œtüê](&B¶ŠtdCő Đ4ÒàŽˆ+uoŐ°źŰïœ7GÍč§]bĆÈ«őźÙŠ,È4Ï€§á *ŽćÚc$êFl#ŐĄ=ƒ#‡æ>QF1É.9oßxÈE„'T`üĆêôG†v…ż T1‹ČšÚ„Ün3ȘÍĐïYuó Wœ,ț‘]yJŒÛÊaêDi{RŻIšü!TKȚ`+ ÁE6ż:§Ő9'ú…țYԁ}°ăèL‹ßgên¶ ÆFLÔä>C›c@—- šX„Rx“&“¶çÂȚmČ.2—GOb\G@Ìœ?ą-{„MG"æźSd:NĘüŁßvÒ%ûQ·ŽHă Žš Ț{$œo%Č(•@ZŠPZ čY™0š#HŰ@­Ś~yü” Ł ±ÁÀÒ~ș*ő ? °’ä{G:zÇhÌjæ2ž„Ÿ†u:áJSś›ćŚ&,â8ó>Žöa”ż‡ńÆù„W”šL†fP/[`B«U‚3ÍĐJ˜ÇȘÉvÈ †€í6ät$ž8‚Œp†Ń»FœÌ䎞Éű«sń«S1TÛQ‰‹IĄLźäž•B„.+éÈÌ1í¶sÜqŒàU€'‡"Im’Ùfkó|@î.ĐqlńÚ­ï:­žŠ‡ Ą–5șÄÓÌHDŹŚGïç_@”ó«żîê±1„UÊ©UÒ7O_ŹËo"C€oŒ?ä@V=ïjÒâKƒ,*K[a?XêĘJőäÇS±Ș’ÍéžáÇџá1­©q€~ŸÄŠzêòÌżĘÎÇBąxFĂڃ&ˏnĂęŽ(s€ôëxuęÊ5Սă6Ź9ÇȘæÎ`çt\ÿańށÁDSÿ‹(ă „TȚgÖ­)čF)8wÉ8}êÎ`‘"‚oÆ»Ą:€©öŚąq! ‚`ïäŰTÛÿČ7LRúڍ^ {í’ ^{NĆŃòÖy|…?Ł|Ä*^cxæȘ‚4Ÿëț°ÀækN’܆Ę›.v“ășšÁ«ĄZoìQVSo…˜6FTŃŸ”a-€œ‘ăăę‚1sü"Á—ï  Ói¶>€hŸ«ćš Pˈ 9Ápx‰È"†ŚÌêbŠ 1ŠT@òș« úœ?PKÓEà*¶ˆĆšDŻKT‘ÙäyHéűó”±"Ó?^,‰“ŰzčuÌh/ßD=/B2bœKÍÂ4}CčĘ)…?șƒ<’rNo—ł@kïÓ,9];Ž|ÍÁC€č9UžˆÊ&—©r• ò`ÆJéc+Yl܏énŸcïćÉèêÎAĘZ§=—€šu›ȚÉ`ZOÇL»š„híæPOg“wFÌŰË Ăç+QÙęcœŃśB ”ÀÏË]ÊȘhI”bY”Ζ„Ńœ3Zlč]ÚŐú]qW„ÚF BÚhܘ#ƎŐíî[pß"@Ÿ¶YrieàŐ-šž<ÁˆëŽö1û8‹ccšŐ~–ĆÜŹÖ—Č Žæ»qĆĆvđäèŚ^ßáÿŃœòÈ:¶Ç|^ž”łL± . ʓPó”=ûßÂ[ßÁĆgđś4ăŰőÜx|„uÁź€â_Œäőí!èÁso·YŃ;)ȁkîì荰)#Ô')+ĘșÁG&(–O’rH€;-‘ôăè|–íÁƒ:„ËjîtžĐŃŐ<éŸcČëw ܘ«ÂŸßiüćÁM·ŸÆÿÍ­Qü,G”ÊŚÇíQúč3ÙC2"*s„näfް­yÈöÌÜcx˜L •ŚZśü”㾀űƒ2ƒ’Íîz§ò‹DńÙ]É©ƒLŽÉîŽÂ~­vz Ą$ée,ëÌ9$ÓČêBRz?€žą4­ŠŚòćàŒĂYD˜ő!_sŻL3(î5ÊžŐ™WœÎhûœoȚˆ S5zAym“o„oŚ_•aŽȚvžáąù' ‡Ż­«y!+n8ő4#Ę-|ÒÙ8Đ9tù␁ăRß~8é*ČíJŠ ‰Ú ŸN)Ùń lPŚÏyÀ\ÛXŰD ș”ĆlśŸÌƒ™(_QÒS>o€Źn)#…őpÏĘ©näôkôH7ƒk5 ”șóŒ*}ÊP’Dﻚș¶K$J 5(ÆqzŽùâ-Ć !öÏgIčAű3Ő€ÇôȘ‚ș­}J·Æ·èômÀ/dœ€!IŽ‘FË9>)SÜoА—#ïó%öÈàíT„cî>5Ëń:è&F8"!ŒòSæ’Ę<ÚEÉßÂQÒÁ\R#ÊÁâywJ­zNđ‘c’1œó{äęifgëöivËTžŻ`@Ih„žÇus4,ééwí$::Ï(=–Č8wSći^,ää.=–0æF="üčyvQ8)‡·áz‘ąźE@V—·sŃmșZâùŻœÉ$9ëƒRm1—,5|Ś-Ąâ ŐęÁI§Ž»MÙK+Jr7!UorB fš?pŚóŠ Ìaçù»ő}Ł ±?łf€űÎöâÂe8û2@OÛJ(ۈçĐ'ńAuŒ‰ŰÇU=YϖjăVž)˜’l±­’X=0`_IŸ~©^ûcÖ?Zwuču֋-„ČŰf&`ŠsŹĐ›śtQâ/ Ń} aštkÄ©€ ƶá«k°»1g€Œ:’”BMBSŸÈ  ™!PQń"SȚàŒ”&ŚÊôČ;ŽŸuy˜|ă{P#O'ς$|șÇ68Ą dšò%CQƒńPÚKjęV“.)èˆNÉÌTéëNÚ`«űă`©g‰&@Ć0…ž,‰\:?0~—Œgšb@ÈT¶y;‹MeLÌ*+±őyŸÿVmpŹç” ƔNq-l™ĂśŹ„ŚÊŽ ä›ú€2äÂ$ž)!ûD„͑p„˜y]§MOoD#7 Žÿń†ĆmÜdd?& t:O^y)ź—™^^Û@l-D4âê†|öš ČżńUÏ3f9­'šż­UÈ ÇÊ$cvŃ;€zæ'žŒßîX‰ń°žgŒÌ í‰@c]Ă#5Um‹ÉSä;^çwśú·gŽ‹Ž(uٌRžšHîGQȘBÉJM}Iƒ­˜GâNe<°žò„wĄÈÊrÈžÓĂ ź‚Ł0tèÛĂs€ŐŒż5đ“ˆžæ$x†"qîˆȘEëŸÔtÎIŐÖO#|ۀ1#mÿŸű 7°ż°Ę ÒË^Í€đ‘' 85Ș?XŽ8uČÁڣȝI[+Qù-Íc2§*À«Ÿ€æóȚnMöqÜQ.ˆPöŐŰł‰ÀžRĄ±­‰u<ab y§ÊEĂʃPęM…@kć“_îJ€Œ3ÀüzÆŃÁ.!‘ę” ßhźSBN葁E”êÔŸÏŒąû%čɛ…DÛęŁ 5ŚÉ+ąíqšTêTVqÌe!íËOś>]á2:ïRŒùöșCOlˆ}H«$œúÙg/ŸC°˜w€=šŸß5OH{ČÆË"b ô·ĄX…^úĆèDĄŹISœ»xżŐfM9ÌÒJțàQߓQdéB”ږ€éô€ Ûs”ƒ~ÀUkęe.17ƒ™ÚTdt‚œKWJKaG°m?ó+‹Ky1^ƒVÄÍDÿ˜vŻ•]æcèl=*ș=¶CIæO…'äc6ÜöTnÌéÎNî8 Ő% A"ÌgśAŒŒ:žæÁgc¶êÒÙN–Ĕô5ig]€ÛŁ)ęÖꀙ:»ńț»Jbälç_Šóôl)˜è8ê“$v’î99Đف󍎉üxö?ô…x§;‰śĐ0]ŚÔc/èđłëèJFŚ0őhҗiÊgŸ}Tʂę»"Ž>uBŐTïcŃ?ƒ_ëŻ,€UVz|0æZážăEÓHêńșKb|kcžlR”1Äûłdű·XĆRúÈhÂß'ˆúgÛvš˜őIvš Ä^bźxƒYWša ›eęŠ\ĂÈVwôʃq>çœă=€>i‡Ń[zzR”ĄÛˆ2æ0ćCSÌĘ'ZKV2đr!»šęboË`TĐ #JŁoż„ĄUĆĄù'R”r•ŃòßŰgÊÚŁb_&Â3 đ†…C/a]Ț䃌Ês?’Öç¶Ù;,:źT©2nËU}«‚œ@k©ëmș=öé>d-ŰCt‡”Ë\çß NąTê°ô-ęMrʱłç­°¶™›0^qzqs% #Žtź%aŒHޱ6f}]4 )ì5ëáMPbêpDETÍҊï.`@Ą,™„%ùU"ʍöńçÚÔ$-{ś9œŠû-‹§ûGa *gűŸiڂ6(ŁțÓ¶FĄgzڝ`‚=bŸ9ž|Ké–đ&rèł-bKYy(ĆLRűCÜa+gŻp9čśÆŹvò7:MìÁÚúńmé‰ûjʄ"ëêÁoƒß”ŻDCž/șŰ(ŸÚm|KÓæ{«8ąőlŻ1CâÛy7íĆUuŸnˆw]ùUŻÜ$șŽ ĘBűXˆ=ršÛĘÂl$ »Ż`üËN)„•™n6aíن S&€oËĒ/Œ[č4föćDA@AȚfŁG†f0đ€<%8Œ#FJò—Lď Șh~»qűq-Æ_”‚€Ç ïzŃ]ćŐ`țŚòî"owUg7ż¶T ÀÏČY‘cáûK1…òVe+Ë`BÚ ÿ"Ôœtć`Ü–6 ʕW,ŐŹV›cïWMʟ5ƒ›Y=Ìś…{Î(Z1oŒ'îa”ę3ŃR"hH9íîb2R=#]ҝ‡(VÁ*È‹_€]@čQÌç`"qùÓĆY=öú_açś\ß?ê5ËŹ ÓƒœŸ·ë>12ŽhÀ\$čČúzŚ‚%ČIՃĆr7,/`©Y5P-`x6YhJ{ûíE…1<Üb’Ź|‰CɕVïn$9v*ËĐŐś-@ź^ŐŸ-’Źăcžw«2źQ<š“żÙÉłœAżhȚVŸezʃ0ÿsÌ?Ü60€ś‚™L’©‘ÁŃż€ŃëJ4ćUż°ž@“?t=Kî)xù/WÁfć™Ìmë6úÔË[«›ŚŽ%:]ü›Ą»'f±Źï’”vÔ8Ő§pX,`IЙȿ íôĂźM·[k­äZ\;aȚÉ8°ŽÔßVe‹ żżTöșčMżv§k›Büô.]ČȘ&3|Ę6Z _m> ”?ùhŒđ- É‡p­“Đw=SŠŻ…ëæ•$Öš|}XŽÉˆkÇČeud™?жłÓmٟUmńͰÂÍtjFQJxU™K]›yżˆ„žÇv«8Äp€ĘțNäÄz±cÖp $à‡*î›átć}Yź•`rłÿw4i";ŠJF»qh9|ZóÍ·` q>ŽÇÙgĘŠösČĂ@ÜzśŻ$0-9iÖ1Â{NćP‹…§< 7k'FŻéaČ‰=Mć·;ÍöÂçĂLÎŹCw…·˜NE>à/±%ękßÈû fòíŁ€ÆșZ`ìúR†Ô:ˆÆÙ逥†§TGȘĆÍoßgÂFÔP©Ùè™æźȘčI…Ś^ꯐˆÉæDŚéÆŰ±1ŁAa.ĐĂ ™’ œ*ĄMDŰG~ śQÀ•SdÏŽ@]‹ß:ŹŰÖęń‡YL ăÙśȚËžùĘ*èv©Eöçf-ÙP|{€ç2('xŰĄ&eIë˜q\Š~1œ·B9» Wœ»ƒ]M#SXRùÏńY›ááŸAž1Œ—ÙrPĐ[8pfŚós+ˆšùU!'őšÁé­bČ3‘zEYŰ‹^ Z:3ÿbŠ3bîŒFłLÌ/# Wہ!EZq¶óùԐ8Ǐł;yDĂêâŽ$E̕oî"—S/,ŚŁ_ożŻœe;,Gَ ÇlŽ)]Ï«=ZÊaù›æml‚rń¶!]jmçŽìۖŒ^üP·(,Pș…℟y[0ÖßžŚ·. Æ>€Û'Ś@ÿ=í—<Č Žg•”}ö­˜ś’…tÁ€KVÉ)yä(i n‚Ś}8êuśćąČáî©‚Œ *›ĂyŚÈЉŸțM?§ŃzÛÔ:g|ĘÄ.#țhXÎȘœ0k(ź.¶í۟W-m=ò°ƒ#ęZ»PœE,YÖIdęJ‘"‘+“‚ŐVXNtÍÆ`=Lők`“xœęÓ†€î˜š›î\# WŽÊ¶űÖä`Ź]2°<ò Ę=ž)ż§ÙèɌèmźY—'‚ ńd&^‰EŁpțè(nOßï*năÌ_GS‡­HA±/NIȘhç°=҇$uÜŹŻ†œúí_œ‹jžáŚä;:ős@!È4ąb‡â9M†ß*áˆËż%ä)ÊÛțyÚŁ»ô ±ŒĆCv”„,”QÓ[JÜ'p┊Ș(Ű©çZë/‰ŹIżE›őÔŁńÒAn‘t1 śe@łpü"ę#bTòŐ&w„±ïÔ!^ GqÉfJ)ÌMâűțŐr{ë`€L§șŒ^r|M-î PČońYß æuĂe*yeˆsœz€Œ:·1’d™+“!­ßQÇ/,Ûg”Ćo~§uH·ên”QeŰŻ)ś#TylÖP^•&F4lxôxßVڍ”ëŃőm-Ü<è@[ŃÌ&‡€}ê;ă”{†Ÿe.ètÔgísvŁŹʔkœÜ ŹjÉ\Š”±ű^!áܶłŠ›čÖŐÊ4•ÔfÏó€qYû>zȘßČ żO ùÄ=ÌuœZ‹l9\„čțô[\W ż› ޶;`ïä O2ĐC‘€ČÓ0Žö­–’ł+ÁÁ=k•xm^Ÿ©5‚ä·‚„îƒA+TȋäDiüTAüțĂÚ&òŠŰ‘gÛÆĘ̓š4Êá•K0-mÔà]`±+ÔŻ;4‘k_ѝú‰Ïj$,{Úz;€öÍ.Jï“zîbGš{vNeNß°čyfí óÂ\֎z‹RX—üŽą]kvÀù%챈Kƒsș3ĆŐ ĘÁ’%Mûeï#FÄoŃFœ3cŸŸ”Sl’39Őn°M“ÉaXșŐŁ‹ì€/€rș6še.Ž„ŽsvŒ€ęÍŚĘc,ț(ÉùÉŠNxáie{öŐ~3Löä\x7~șŚá6öŠŒî›űSWK‡VnëŽiècby"œÎŐ"‚ăB)‚Žç8òB‹ș]*”yœúkGŁWЧDwCț‹)“ą1îëŠêæí!„—žĆ…ku»^ càÍÒxęGȚ‚\ Nò­±ŸfCžŻAĂCÀa׃Ł!ŚMŒï­ö•ƒ”LÍ·%•[ ö”d€-°ĄBŠŹŒąU±Ï2+'ț# Kƒ  óÌùü!Iƒƒomč*ÓĄx|E—yEíłŠz/1šèHđGƒĂÙÊ6}–)„b~Œ†vPù`ŰŐy`ŠU(["Z\‹œÈgŠÄï͋ ăsŁfÍ$„Î,jlÈ8ꠑe›:5R3‰òLź’Ꚁ}Ž–{Đ=ŸcÁšŁ#YÌł¶žüÎÄXŐÔĄ #wí€áękp^=-âgâEŰ]•ȘzCčéűәÉmÜq qRZ,[ƒŸ,íĂ'G›xÉő€­?]BpcŽ·Û4RÇŠ>M9çE@kC­ÄvœJ”ê/‚'08űBawÌ9űjƒÓBÖ~ŽTáˆĘJ|©ÁËXì(šŠŸ†‡SćÙàBè+c, ÿ™;+Čç'›/›¶mśáf. ·©tgÒ+ìò@*à'!/‡Ç?b™;Ęú€eÀ뻊$J6Șì€ż$:_Œx;08}ŽÛXBÜt“G€dû Qa{L†țäAžèàÎê9&ÀÌ€sź±k ŽŐúI—NÄ֒̆}mJ7bvŽLćîNO©>&Đ⇒2FÜȘșˆ1žȘ›}eűíádźŁœܚÒ\ß7­p{¶éÔœêïqBMûbYù™ÈœSșeꕏš $a˜xíŁh± p§čb ùhËiÜîÚY`Žší§)ĐuQ,=Ü!”6ҕLkèúpČkȘJÆQűp‡(”ȚĄ§ùęDáš_'·Ž–‡EŸä ’P@àbȚ㩗ÍÓ#čà]ŒÚgâć,늳ŚEśÜfŠ?@ÄÎôۍoÔűrjž>Æ€WFÁNZUV°ĂÛń0|ŠÿÀaŐ%ą~lăŹJ„UkgȘąöLâh@șęʖP‘v(j\g^ö]ü¶%u+ktx)ÀŃżźKCÎÄpG—ăŐ#g„ăÇ-Dą˜eàŃ„źÒ‰ÙQt#=č€E‚š  jé3aù© \șŸ&çŽćyQâ㣒ÓjGzƒ(ÿŻ_J%Éö,òś ”ă}_fzŠ)ț”Č X+qÇșÎmŐœȚzM-nűnțÊ€çnšÌ>é;Ú ™” >Zdź;ű^4­e†űìæˆ‚łčQKûê^§êúauőËE»‘ 8,+ùi“àrJdâ‡-ÈfC±H;âÇòIÔ.Š~f…©–gËäÒ0— "Xc óŚ?úąłòtęLpbË<żféS‰<@J‚ ĄMÇ€źêiĄP{,xæÜHüíB†-Ń(„ ĘËyKcS˜ÈÛŽČ&1èőΗMmoÇY‡EĘ[Áu\ćvtrńW„l~Ăłoq(`I?7Íł1đ53”èkM»>GÝ»íč}௭7di@ՄÛ'ÓŠűü§?é‹M+})X°hæȚ„LëŸUÍèžLÜéPąXqĂŽ?4Ç\déLEPžW”ș_ՆđÛ)YIyŒVùi|Ӎâáû Æ)”AȗúpÆ68Uüą!ƚ†Æ5 ‡–“-2:lf8ęș ’źuÓDJkśÆíŐ Ș~Ńv‹=«ü€_ˆ endstream endobj 278 0 obj << /Length 494 /Filter /FlateDecode >> stream xÚm“MoŁ0†ïü ï!Rz ˜|U‰ÄAÊaÛȘ‰Vœ&ö$E 6ÿ~=HŐUAgȚż“ÉŻśœŸ«ú~üÌÙŽuo$ű›ßÇÆ›LD-û tś  @Ùö…œ›ZîĄcÓÍNìtÙ=YńNËkŻ`T=­áRêo ȚĂŠűôeCîŸúòڕÚç(>”ĘՊæ™ ČŸAæŠț€iËZż°đ™sn[­6u…cŽ^0XaÁhî\je?ì„îŒ0bȘ”ĘprOYÙśĆû[ÛA”ÓçÚKS|Űdۙ›óűäoF)ő…MZł©}ß4W@Œ{YÆœmG;ÿë±<œńź9Ü`‘;‡äKÖ Úæ(ÁőŒ”óŒ„E‘y ŐčĄât€ba„bi<ÎgźbÌĆw­ü:/]ŚćvYsäˆâ[ä˜â+䄘#ψ]íœôò‚â9ò’8D^osâyMìîÚGȂX o‰ä‚îBŸÉà5Éà‰<űÇ»’ÁÿÂò kŁ(Do9Örá,ÂqŒB?"tŽęEDqì)bbœW$ÄèYÌèM»>sbŚgEìjqȚ(ŒæĂŚpoż$îĘ}IdoŒĘ·œn-p!J śęmê«ÜÏ-țűOĂÓ[áęL‡ endstream endobj 279 0 obj << /Length 739 /Filter /FlateDecode >> stream xÚmUMoâ0ŒçWx•ÚĆvHU„dçCâ°mUȘŐ^!1ĘH ęśëń#xÙö?ŸgìÁÜęx]OTĘmÍ$|äì͜șs_™Iöss îîòź:L;<S›zœ==±ŚŸ«Öf`śÙ*_”Íđ`É«¶ÚŸk3ČŸ'ióŃŽž‚}Űę»ù=©œà“íčÙM;áàŸ7ĂȚrŸ›f¶ÆnjÌ-ùeúSÓ”OLg~ŒÀ8śă ăâțÈ)okà çA„8 ö$`I\èÎŚ3`çAfŽă<ÈZ]ƒÂ!‹„ê xNkÇyăčăĐđ"œ7Áż _„㓧Ìq âH`òáö•‚nú„€ḱÂđRONH=CpB:# =Ń%8“ˆ88QA~Ą!*ÉzƜűАäT?!~Ž> étw©8éÄy*ásŁ€Ï }nÔÌçFE>7*öčQ‰ÏR>7ŠČą G]Œ;~îó€ŠÛ<©ò6OšßæI‹ŻyÒòkžtèó€g>O:òyұϓN|žôÜçI/|žŽòyÒÚçIg>O:śy҅ϓ.}ž2îó” Ÿ§Lú> stream xÚmUMoÛ:ŒëW°‡éÁ5?$R. €d9ôMđđźŽÄä ˆeC¶ùśłk›m‘CŒŐpč;;†wŸ~>Î|żŽ3óEŠ_ńž?O]œ5ß¶‡âîźĘwç]Oßcìc]=~?§}śOâŸyhÆáô9%?ŒĘÛčŚŹ“B|Ɯ‚>âț)ț;ëvÇw%gÏçáí4Œ3‰ä§áô–’>\ ‚‚6ę§ă°ż őEJ™€őŰ7ûÆ8ó 1ż’{Æ~șđÏ`W(-úĄ;]Ÿè·Û%=°ùńęxŠ»‡ńe_,—bț+-OÓ;qü\ÌL}œ†ńUÜÿI--=ž‡·B«•èăKȘ˜æÿŸĘE1ÿpÆ[ÎÓû! Mߊyuû>Û.NÛń5K)WbčÙŹŠ8ö­iÇ[ž_źčuʕMúŃzQ­Š„Ò)V†€Ú(TŰ€àxżàȚą žjy‹°°!ÀĐԕ”ZÔÀ2àP="ŠZdÔ0\ÃG©R\Ą·”).–2*ÎĐša!„UŒÄ,†łÔÛHđ° `+jĐĂ.ž5Nα@èâ°èĐVK-àxŸ%ô˜Ü3š% A°YӀzĄÎšÔ>kP#ŹłŠő™5m0WŁošŠĂŸžj­ź§Üę·.†ĐZĄŽT$X/©)n)æ#W—„o(æ“oÀRZȚ $Kąp4’ŽZ¶-bâ\­1ŠÜ°Jä æP"Gń‘XÔQŹ‚i/8șkÉ^€ÂZqŒ:ZsŒœš9”d š­Bù Ž)ßsLù-ï7œæx˜ÏJ›ĄŸÒ`ŻažÉœ)f„É$†”’1™ž dъcȘCZCù<Ł7Ă3JÊgózÌnűțHȰíáÌYɚäTœŻa…ŠïŻÆ,_»œ-Ÿ—Oë87Ë}êÛKԮܗLlčoKńšò+Êg­JÌâ.ŸGZyóș‹Vđc­48ž’ïŒäŰWtù]Í:P~`áŒń±–rZŽq.nÍ1]Ç ÇàSÿæ/©ßP•ęïuöż7ÙÿŸÌțśUöż·ÙÿȚeÿû:û?Èìÿ ČÿƒÎț&û?”Ùÿ!dÿ‡&ûż1y–ŠŒÍH·œn5țčă)șœĘyšÒ“Bïœx#†1ȚžŽĂț€]ôGoáőńĆŚMń?źXê endstream endobj 281 0 obj << /Length 443 /Filter /FlateDecode >> stream xÚmRËn«0Ęû+ÜE€tA1Š€!$B)‹>ÔDWwKì!Śd`‘żżR”Ê83sf8óXÜ}‚\¶'âFż oG# (Țʎ,›VŒ èá@‚œŁę+ę4­8À@—Ć~łŚjž·äœő(afĘ&­áŹô7ÿC—GűT]ʘà4ȘzP:`È=ȘĄ¶œ[aj}ô‡ș”?`zŐêW=0ÆŹc«eŃ6ŰCOÂI ge•ÒÒLbè „‘ˆS©Ä0Yî-; L>\úšœźZ’Š4üČÁ~0§đž„F‚QúL—?”ÙÈaìșPe$Ëš„ÊŽœż— ĐđVƒWÊńÒćΎŒ*ŃJè»R€)őHÊXFÓĘ.# ćŻó§Ê›–0C~ ‰„!)Ç"ŒÙI-札ŻĐç?9ü#.<^[œ0ÏÁÜ$òțgıś#?I> stream xÚmSÁnŁ0œóȚC€ô@c àŠŠ"I€¶­šh”Ś&Y€`Cț~=3ĐUW9„<ßŒy3¶g?>~Z6gđŁg)>Ąk[€ŻžZo6˛bšÁôo%”Ónś*>lS sœÏśŠêŸyoŠÛPÂÄzLÊàZ™Ź#æGűí_Ú[m+ÿ> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[•j”WHL7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐÜ$Ÿ—âƝÛK_șIțsßE77E[^Nź«\5źžÄsߖ;7ˆÛ|[l›zžŁàmSŸ_*7Fę?hćȚêæ3<âöŐęžtĘûÁôúIÄœÖĂ;­_d‹«-8ô—ëÏuÛ<u/„$Çș©òöĘçhžĆtTsŹ›ȘÄr"„EU—C°ű[žhHȚ}œwÚ6Ç6Z,Äô…ÏCÿÁÊîąéS_čŸnȚÄíUywČ-—ąrG*Fœ>îONLż7u]~ęèœĐl+ŻŠl+wîö„ëśÍ›‹R.ĆbłYFź©Ÿ­©r8ޱ)ĆÊ9>*QKrʁ7ì˜äP†°ČôŃ:MÈĄQ^sž$LDÌ6Țaȑ*Âs.$S5ˆ6`Ń>ĆÆ„m•Áë#TLŽ 5Ȝkdš‘­}WìXssc‰»*ÿì{êčRęh/#„?Ûń§ béE$èLÎ|ږÆă°ő8^yŒ>eÎSQc’ìÏçÀÌŻbÈVÌŻcöáNa'_ì OÍțőAŁJęô195śœkàŒ±dț•ś3§ŚE»Hž@œ8çܰ%ŒĂ~A—s*=FÆă Œâšó0ÚÇ`†{RLŰPh33żÛèÓűYæŒù$ÉLÆčŹÇŹŒ o»šqMè§sîÚśÈŒÆ tÚÀ…xö•őčì\˜ \šcΜ-üÜÀe™k–sLžàÊ ?·"œ@>qžhx źŚ·Œô=Ęl~1űÖâŸÖ»>*]Û!‹ÿüïʧMôŚa@ endstream endobj 284 0 obj << /Length 663 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[ŽÚ+ML7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐŸșI|/Ƌ;·—Ÿt“ü硋nnжŒœ\3<:Wčj\=?ˆçŸ-wn·ù¶Ű6őpGÁÛŠ|żTnŒúĐÊœŐÍgxÄíȚęžtĘ{oú ę$âöőđNëߗÙâj ęćúsĘ6BĘK)ɱnȘŒ=Aś9šn1ŐëŠêƒń 9‘ÒąȘË!Xü-O4$ï>΃;m›c-búB‹çĄÿ`ewŃô©Ż\_7oâöȘŠŒ» Y „Œ–KQč#Ł^''Šß›ș.ï?:'4ÛÊ«)Ûʝ»CéúCóæą…”K±Űl–‘kȘok*€ŒÇ۔b敚%9ÖÀvÌ r(CXYúh&äĐ(Ż9O&"fï0äHá9’)ŠD°hŸbcÂ6a‡Êá@„ő*&G†YÎ52ÔÈÖŸ+vŹč豋Ď]•=ő€\© ‹~Ž—‘ÒŸíűÓ±ô"t&g>mKăń ŰzœŻ> stream xÚmTÁnŁ0œóȚC„öÆ6„ŰU‰@"ć°mŐT«œŠàt‘@úś;olšv»R‚ž3óȚŒmź~<î&YŐŸžI|+ƓÚs_șIțsßEWWE[žź9Ę;Wčj|;܉ǟ-wî$źóm±mêÓ o›òí\č1êÿA+śZ7—èˆëgś{Òuo}mú ę$ŸëÓ|{'ˆBpđ/ŚuÛÜ u+„$bĘTy{„ő!šy1 êŠêƒńG‘ÒąȘËSXńł<Ò Œ{NîžmmŽXˆéœNę;{»‰Š}ćúșyŚ[DïÎŽt° dŽ\ŠÊšő{ż?:1ęÖŚÇûçśÎ Íkćę”mć†n_ș~ߌșh!ćR,6›eäšêŸw*€ŒÆŰ”b敚%kà ó‚e+K­Ó„òšó$a"1Ûx‘*Âs.$S5ˆ6PŃ>ĆÆ„m„ÊA Âú‘ĄF–s 5Č”ïŠ‰577v‘۱«òÏŸ§+uaяö6Rúó:ŸŹ!,œ‰É™ÏCÛÒxŒ¶gÀ+Ń§Ìy*JcL’ù|Ìú*†mĆú:fț“vŠuòiü©ÙWUꧏɩčŚ\gŒ%ëŻ<ϚȚí"áőâœsÖ0û_:Ìú©ôę3x0ŠkjÌĂhƒyîIYx0aCáÍÌünŁOăg™3æ“$cx0çČłò<<Țv5ăšđO#æÜ”ï‘u7ŒűŽA ń6ì*ës™Z˜ ZšcƒΜ-üÜ eYk–sLžĐÊ ?·"œ@>qžhű|ÜßòÜśt”ù›Á·ś”nÜÇg„k;dńŸżGăG«‡Môóc endstream endobj 286 0 obj << /Length 799 /Filter /FlateDecode >> stream xÚuUÁnÚ@œû+¶‡HɁ°kc{!€5Ƈ&QˆȘ^‰œ€–‚ ÒŻïŸ™!•šæzż™yïa/Wß7Ś/~’ÜjőäĂylüdù}{ˆźźȘĄ9ï}șśŸőíćîńN=ŽCłń'uœ\WëŸ;ĘòșoȚέż°țO*ękŚÿ„`ș~ö?''3ùĘÍÆ‰žt3\è‰ÿč;œȚWêêS]Që?»ĄżSæVk «Ÿ]{ű9FSрЕ»źoGŠ^ 32±j»æ$WôĘìC0hȚŒO~żîwC4Ÿ«éSžy<ï€ô&š>Œ­»țU]Rîn·ۇ„ŁĆB”~††,î·{ŻŠ_™ę =żŒŠéÚ°șfhęń°müží_}4ŚzĄæuœˆ|ßțsÏHËËîÂ]źźĂWŹ“bÍ šMLłD!E!ăB ±FAë€CÁœÖ\°Ą‘ÓdQ€Q(˜Œ%¶T<#àh^QqKƊL0cF F͌€aîâÂÎ.źš_ÛQĐńČ mÚPG9Žčž'„+XÔ3â8ìŐ)Ś+àŒ±Îč7¶\'~Áœ5°ă:rÔ%ï%Β뀧â$1Ó$܋șa %aN*At†g&ŰĂW<‹éWÈyveš1vYòn‚Ő€ cx·1cx· cx·3Æ+`ònH›ÍÓ̜1q,kĂ^+:‘•%fͶd vÉúmƘæÓ/iRü޶f ëO±·`ę)űëÏÀ/X =ëÏš—őgđ^°țœűŹ?#>ëÌĄč`92/X[B|ÖfèŃćçÚAż“láËI¶)°dKÉód‹gĂI¶Űć$[dè$[âH¶đë$[hv’-|9É~d‹ŹœdKó%[èw’-t–’-ö–’-ű„d ~)ÙBO)ÙRŻd ï„dK|ɖű–ßNÂò¶ĂK)™ĂK)™ăÙ++Ζæđ›]RŻdŽ]ÏOᜌz͜Ș–“€Ț|x8€?ŽÓæ<Žá€„“œNOœ›]ï?ûĂp@}è_âòÿ„«‡:úh‘ž? endstream endobj 305 0 obj << /Producer (pdfTeX-1.40.23) /Author(\376\377\000V\000i\000n\000c\000e\000n\000t\000\040\000G\000o\000u\000l\000e\000t)/Title()/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20220123181850-05'00') /ModDate (D:20220123181850-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.23 (TeX Live 2022/dev) kpathsea version 6.3.4/dev) >> endobj 257 0 obj << /Type /ObjStm /N 60 /First 523 /Length 3311 /Filter /FlateDecode >> stream xÚ­ZisÛ6țź_ÁÉ›qpD§Ó;qœ€ÎQ;WÛÉdh‰–ű–U‘JĘțúî RŹL'ƒ\‹gŸ=Űæ*ŽhÄU ‘ÀÓDŒ)ńŁ:„:*â‰D‰ŽŁ1t Lđ]łH( Ó”ˆDB̈́kIŠ4Ht$5“ CEŠ ˜„D€dÌ#3UÂbX:dđ3Ș ŁŁ˜+ŠXąX˜$ƱRbąykï2Š ćŹŁ)ŹĄăHs0…°xèHìHűȘ°“à0„’Àü8M4ÒZÒ ÌÓQ /ŁÀm$€ŒÊXʄÂx@Ÿ0€/x”pŽŠà rè&@p'„™€‰â`ŒSFD0,ŽeŁ4ȕèÀÜÀxc€hh†sű< Ó8Ì210ÁŒŒÖń„ĂqXIŃfn4ôžśxF…U€ f ôQMÁ5Đ  0Æh’ÄĐĐ3 e{°Äï\cŚ`ŒN/X+j—V ö>͎‡†:š†rîàÀ=đC$iXû r`Àï(7à”7cíÓkȚqź‡șá6«ÖmžŒ•0NB\KȘ­ mEy‹]'í8îŚĆ”đżă\œcF±ò¶ÁڍûęXĂU-kȚj\%A‹Ą\&nŸV»&ƒXï7 »ő`ĐÚ`ô­ńúXC`6zÊ­óœŸ}á©}RôćmŃđ­qžuhŻYƒ€đ ’ë]LÁL ÁÄčKŁ`N+mÒ9©Y ;ĘóÏ~§‰K,,-zg]"Eß*{Ûÿ“ÆrE1IćźìĆèŰ^„ Í;Fą§îI GșgŒÛđÄD[öŽÊ_ŰDÛü•:š_žá"€}Ç~’+‡íôXŰ0l#6< aQp,Hp‹wùÛ[ßč"Ìšaț2 +0L€Á˜•śK_0À‚I ŚGŠoSP`j̓Nú6óv{ąf˜œÖﻆ±Ńűœßf/•­ FłWù­Y æOŰĐʍÛû­Í^*Âöyòăòîïu‘gćȘ~šUÓMŸźËÍÄŸżN—đćă釳‹óG/VÓrU•EZ§ÿäòä*›o‹錊€›qvVȚEżÓè„iÌtŹiêó„œVÓlUĂY0™'éúy–Ïđ*è„àšű f€ŽuZäÓÓŐŒÈ"űx]gː-òÉϑJƒŠEșčÎêè9%gä yJÎÉ rI^“7ä-č"ŚäyO>’Oä7’’ŽšæyłŒÜ›M:ę#«‹ì¶núTLŠdZć ț_.S2#łČóHFìș$ûs›ä–Üæ_3r[n7dNæ›,­ł YĆßëE¶"9ù?ùƒ€ÈȘŠ,ɊŹòUFJRÂÿkČN7ÙÊ.l{nÙu¶ÉËYۊüIțܖu6»)ȆT€ÊŸ‚Î*ż#U‘V R“z±É2âL©ÿ*ɖ|%‘;ò7ù'۔ žćÀ1©ź&?ęt/Ÿž_~ŒxęèÉ«óOŒŽșôòőÎDÆx<ښïÜ gńÀ«ĄOcJśűTêÀ§‚…>my:ËçóĘÛMûf™;ëŸâŚ.üźß\ż»úžÚg?ì:'önCqP4ˆj#;Qˆ0ȘÍŸšŽÍ^ö©‹Âń@‚ê !àęóë‹/€ë_śF€‰Nlà…Oë ŻŽ#8aȍșŸHŸeŸ‚ŽXoòey°Ì!!»&ÆÇ˜űüŐĆùÛßœMÿ)_„ő‛aMlćw6î‹ń}nÔÎ4vÏĄÀŒ[duJȘ-›:/W]ł’cÌzöëoçż\Žf84ăÖiŽ*łœƒ €pÂść0‡;fŚŠ á}6ŠĆz‘’41[W9ÖUìéòf–’ć–Ź¶dƒO‘Š:ĘBeƒïôQìÍőó˧Ț_}|›BʞćććÉYYÌÆi`ŠG'î~ Ź ·(M»[î=;*âx·A$kÖߣÎÉyîś(·C=°çÌvÌj†EŸ»Ă,`K)ìNÒn"nż8ž?۝a;ËłMVćì°Ctč=Ș6Ÿ8»ŸúđŹËíUčLśp Ii3ˆQއá È4SĘ2Ń 3ŒÀQnP‹Uslûæ ~I~’_ùŁÀ/íaàƒ=üê-5é|“~”ǂmQdöoŠÛćm‘ĘőÎà§tș­[w-­»ŒŚČ»)Ķu^Ïœ“Á’,ÓéÔq6Ű ì€æĆ±oźëbb™;Üś9=„1âÏӄ>jùùÓ«—Ę`AŻî ,HtHߥÁÂ;)6ą“ˆl_MÒI-¶Ș ąc%Œ”·6F>ù”ì»ę¶ïÇ&!Ś}òk ÔÓŰepd›:‡Óô,_ÍÁšüöŒ°šfUô;‡đÛ„(ž¶…kŒ \ «àqéNVä]ù~>ËìOFËÛ!@œÛBêăÁcn‹Çxâ1ÇăéȚû€tPˆ‡Ń8D€z< áQ»Éô!%,ÀÄč œf†˜Űń˜öž“{Đ4ëC*€‹…t±!4~<ާŚ>žAŹË8äMńœöŠ€Ù_æ àŠăá8öáRïEkîƒVöÀ‰€v'„žç!Üű>pŐńpżőÓ¶~" Ł”9 V9€,†GÎ*oÓyVÁAȘÜâO;&đŸÁS˜û>Lÿ9ŸÁ†èÊp”X?âï+ʓûw)ęÓÊ?Ï Lyź ELû§ĄțéÖâŒśœĆNgț©üÓëÂ?ő·Ö`{ڐâ›sM3Űíoȝmț)ÇÖł­ 8T>"ïqŒü”·}ń švfû|ÔÄŃiԔ»Ęd_#Ս;SévŠ<0ÓïtŻł»:êępÒ©­ș_Mł[5chšÍâ ă52TĂGÔšV ? †jd2ąŠeU`UÄĄ9T#ZŠĆŠEH±ĄXŽ‹qŠíL1Â*oYć}VC\ĆšĆcŁÏ»ÜG_ÒSßČÍù!ő!Ę|„nȚÒ͒zXÈ7á›”|3yHOH8!œ”„3z@OÈ>aż%ÿśaDł‘ˆn)făJìħxĄ‡ôài9=čźÓMę0rgŁèAș^Ă­+ż{|ú0âź?˜æuöűìć—D?4^Ńô!|CÙvQ,ÓŐê‡Mw•ȘÊËŐPżqźÛ‚zăŸÄ4űșN.óe^ś° Çî[Òq‘WE¶}IuŸ/Ê-\*żŒ<}‹f„Ÿ§ÓE¶Ìò .V_Ž6BË_feEaćFòËüë&û!Bæą»ùPVŐ+Űs‹JfÀ"Ő}ÛÆŃŽL·óÍąšȘr…ËČ`Ùé$ÒÁË"țűù±x̐9SNrŽĂ“X€XđQKZ<ĘńđÁW‰Ú†˜ŠŐ@Ł8ˆ1€„ˆ 0(6}ș˜șăś 3dUő9Ò§üê·ù|»ÉŹÚáš&kÖp<À1š†ïèaVôŽcPʆáÇB”°0o‚ÁIJ’PDpȚ§PąC ž„ Ö‡ŚźÚŽÚLăt*LPbB 8ŒËp `7Ą1’,$ÍFŐPúa;hƞŒmu*TńŠÂiqˆcL{A•MŃSÿCŚr—gT°f8nÌCąŁčĐ]‰eŁ+B>TW„Vv>¶źìĂ VnošŻ§eƒ ”ÖÆŚ9 n<Ț‘l)Fä€]ê9 ^ï#ëO9l žZA+sp)ęp0„]Ê_üEŠûË śAÍ]șÛż5uOyhSd˜Śnü”ÆűëŽŃț™ű§ÙŸ ‡ ê ÊÛ§.·0ÿäup}—áąœOÜUiw«jn=ÁaÆz ÿZ֟uæî–ä}•íźHoà sjD»?űíŹùđ endstream endobj 306 0 obj << /Type /XRef /Index [0 307] /Size 307 /W [1 3 1] /Root 304 0 R /Info 305 0 R /ID [ ] /Length 751 /Filter /FlateDecode >> stream xÚ”ÛOÏqǟç«~E%ą€J:š”ÎJ:HIąœć06æ8Ìf#›™ÙŒ+6›í™™6—îÜtáopeł™ŚnűŸȚ7Ż=Ïûóù<ŸÓûó13û—˜%æÖ9bD›ÓŰ·9H@-ZѐÚĐê‰ČA&EPÇëHs@.ZZ-éR° ­m3iÈGëD«!-ËŃșĐ6‘‚hœhŐ€+AZZé*°mm#i1(ADÛ@ș”ą ­'] ÊĐvŁU’–ƒ ŽqŽu€‚Z5Lő4‘V „ŐčYĄŽS«Żaìj° ƒÀ2â8]tș:öFĐšÁVĐZA'èí Ț-s_mŁÔ>pÌ uƒí ô ì` ƒ]`ìnù_U~7èC,\ś1JTVĘÇ“‡Á,8 ŽŃșLVšìÚțž[iŸ&:Šš‡’ipP4ĄhŠ&*:Iye¶dÆ­úŠJsà€[Ă[i§Àip†aòóŒ[óu”žEĂś‘°‚R·OÚ~àńÇqvÈÙű9äĘ,·ăê'{čMŒRŠCvĄ!bł(pÍVY@N”ć9ېŃWșMœSm°Üíüg„ű/ÊÜf[”ʝ<șÀzá‚w<°ÀWQé6ŸQgb`ÛÀ¶mŁÊíÒąZ9°Àÿÿ֋-n·§Ô;Fhu{P mg„mažhw{|^ ĂEÛłïÒ°c ~·cÒpbŒ‚a·Śë€áÄÀ 1æöæŸ4<x(ŠÀIpÀíĂ{”⒘f-zÄÜtpû1žó8C+ÿKœ%ÊæÉÂCę\·/Ǖ.qÏù­(+Ꙟ+Êvú©(ă>wDQŽûŐ'ŠrĘTŽÔęÛ/EËävĐôŸêí=`;èőäȚŸtާ?ì?,g™w endstream endobj startxref 167395 %%EOF actuar/inst/doc/credibility.R0000644000176200001440000001067514173361133015714 0ustar liggesusers### R code from vignette source 'credibility.Rnw' ################################################### ### code chunk number 1: credibility.Rnw:78-80 ################################################### library(actuar) options(width = 57, digits = 4) ################################################### ### code chunk number 2: credibility.Rnw:116-118 ################################################### data(hachemeister) hachemeister ################################################### ### code chunk number 3: credibility.Rnw:272-278 ################################################### X <- cbind(cohort = c(1, 2, 1, 2, 2), hachemeister) fit <- cm(~cohort + cohort:state, data = X, ratios = ratio.1:ratio.12, weights = weight.1:weight.12, method = "iterative") fit ################################################### ### code chunk number 4: credibility.Rnw:285-286 ################################################### predict(fit) ################################################### ### code chunk number 5: credibility.Rnw:291-292 ################################################### summary(fit) ################################################### ### code chunk number 6: credibility.Rnw:297-299 ################################################### summary(fit, levels = "cohort") predict(fit, levels = "cohort") ################################################### ### code chunk number 7: credibility.Rnw:327-328 ################################################### cm(~state, hachemeister, ratios = ratio.1:ratio.12) ################################################### ### code chunk number 8: credibility.Rnw:335-337 ################################################### cm(~state, hachemeister, ratios = ratio.1:ratio.12, weights = weight.1:weight.12) ################################################### ### code chunk number 9: credibility.Rnw:366-371 ################################################### fit <- cm(~state, hachemeister, regformula = ~ time, regdata = data.frame(time = 1:12), ratios = ratio.1:ratio.12, weights = weight.1:weight.12) fit ################################################### ### code chunk number 10: credibility.Rnw:376-377 ################################################### predict(fit, newdata = data.frame(time = 13)) ################################################### ### code chunk number 11: credibility.Rnw:387-400 ################################################### plot(NA, xlim = c(1, 13), ylim = c(1000, 2000), xlab = "", ylab = "") x <- cbind(1, 1:12) lines(1:12, x %*% fit$means$portfolio, col = "blue", lwd = 2) lines(1:12, x %*% fit$means$state[, 4], col = "red", lwd = 2, lty = 2) lines(1:12, x %*% coefficients(fit$adj.models[[4]]), col = "darkgreen", lwd = 2, lty = 3) points(13, predict(fit, newdata = data.frame(time = 13))[4], pch = 8, col = "darkgreen") legend("bottomright", legend = c("collective", "individual", "credibility"), col = c("blue", "red", "darkgreen"), lty = 1:3) ################################################### ### code chunk number 12: credibility.Rnw:417-423 ################################################### fit2 <- cm(~state, hachemeister, regformula = ~ time, regdata = data.frame(time = 1:12), adj.intercept = TRUE, ratios = ratio.1:ratio.12, weights = weight.1:weight.12) summary(fit2, newdata = data.frame(time = 13)) ################################################### ### code chunk number 13: credibility.Rnw:430-444 ################################################### plot(NA, xlim = c(1, 13), ylim = c(1000, 2000), xlab = "", ylab = "") x <- cbind(1, 1:12) R <- fit2$transition lines(1:12, x %*% solve(R, fit2$means$portfolio), col = "blue", lwd = 2) lines(1:12, x %*% solve(R, fit2$means$state[, 4]), col = "red", lwd = 2, lty = 2) lines(1:12, x %*% solve(R, coefficients(fit2$adj.models[[4]])), col = "darkgreen", lwd = 2, lty = 3) points(13, predict(fit2, newdata = data.frame(time = 13))[4], pch = 8, col = "darkgreen") legend("bottomright", legend = c("collective", "individual", "credibility"), col = c("blue", "red", "darkgreen"), lty = 1:3) ################################################### ### code chunk number 14: credibility.Rnw:573-579 ################################################### x <- c(5, 3, 0, 1, 1) fit <- cm("bayes", x, likelihood = "poisson", shape = 3, rate = 3) fit predict(fit) summary(fit) actuar/inst/doc/actuar.pdf0000644000176200001440000020611114173361122015226 0ustar liggesusers%PDF-1.5 %ĐÔĆŰ 19 0 obj << /Length 1618 /Filter /FlateDecode >> stream xڍWKÛ6ŸïŻr)ŹU‘z7h4iƒ n/Ęh™¶Ű•%U€vëßć”m’ÉáÌpß É8Űqđö&țÊűóúæû_3đ"ò ˜VÁ©<*sŸbPÏă8v©>ćyźą*9ÊÆ/±XLïxæćŒ‚»8‹‘ €êˆűŁé§·7Àá `àLY%˜ÄÚÈ bőö‹šœ€ˆăòZ là€wpXEÁôVŰv«Ńg­gš–‚™Z+Àí튟&^m(äïŠîƒÓmĂUšdÌLĂЏ–»~€IŁ2GZZ©[ćr¶…"őfÂCŒßîꈄ“O^·•žu–:ÂŃXuˆÂUQ%lĘđăKË(ÿšÚCțŃÁÖWLż y áŠE î·Gą¶œnĐ@\iß Đ͜łnË«™ș­ęD‹°ì1ŹB.QÚ~8@éET2)à?œŽuízAR°zŚT§€’vrÚ770ÜhI2gƒŹïć~V#;šlüź DÒ†gèțÉd`:HĘÍòVíûQ+óƒïK F_ )+|À7rŁdí"É/–—ŹíYŰEŰĐoU«»œă­Žž{ڠۃĐ8én)ß DÏŰń%„ÀèĂÔʧfîbcʆ~šs Íj„òæ1«BRÆ+Ș]¶úäȚ ODžœs¶Üœ ûuy PëTĘąŽ q=ZíZBU°Gmœ•ìÔÉò‚A/[Ć· ­ŠC›EőÌMtŃȘrqjU{TCڕ4G:XÖ”2žêPăAvŸțȚbż ûTmÏką=z·8{=—_ł~ŒoúŃ(3ÇĐAfÚ7s}ŃűêĂ»çkć•CJÂSĘĐÌu–Č€„7­‹nûÒúU)B`Iźńڙݠ]őăŽ'á{„Oi<ŚÉd\áĂ êI;Y+ §ÏW Æ Ûžïmó5а`șŸ çźë—Ÿ Ș<Ć*>š ŚY æp-:tQÛ' …E —É*-’Ï•,Ńźo['ț$±ÂÉ^uP'-.RìËHƒG3ŒdŽŽFsqœsí0àÚ8suEJú 6g¶'łuŁę‘%ÁÿĆ —ŰĂÀ#ʁÛ3UĐ©H<(çœkæ@v lžXw˜‚°( …BÖ+_Žž$I…ʶXŚçŠ/ôD/ć Ă1>eíÜj_țșE‡«ôÊ"€%ò8b0 x[ár —„7;擇ȚEôôÔN žZĘȚxÊ0©·ŽmzŽŚuăEńàBËRșa:ÂÍÆłăzÀÎJW9ÄÏËôúÎДŒÆÙd Î ?Ă:Ïv”.t·K†™éps“„îoÛĄí­=”˜SüŁ„§ (MÒH”>Â?ßôő„·Č<{Šç_ï°7‰§7­\—Üś˜4Șh6@‰™Ćž-`'_íÙÀV>=/MŁCšęE3ˆŸ‚pja@zĐûNY«> stream xڍVĘoă6 Ï_aÜËd VőaùŁșìZìĐ»učÜaÀșŐQbí+łćęïGYršäČu%’&)òG2$ÚD$ș‘@ZÎ.oDŃó4cŃrQÎqžQ&2\p-WŃˆÇ %„ čiùh:i”iㄕÉvć•¶žęçòeQ‰ËŒeÎ&‰ÆpN˜·öË:N8è%æ™Á]24ôÊsž˜.J e%č{ŁYÙAvgüqΊIm ŠF“^_ËÆ{”­l^zĘ_žk‰v’S đ–pČ”òÚœYÛç˜3 RĘzșžH"—(Ì ŠK!| ՘šƒzFэ‹ÈćL·cp4Gۃ”NŽ61ËŃłżXłOł œ:NB»đ\H蕋hö~9û{F!$ąûòŠąÀeUÛÙÈÇeÉ#–aÆXÔ©h=û Ÿ€opQDĘ&ڟ·ÿÊ?ô!À=ńÁSŠsZțO/DŽƄ΀3Qűüț'đ9ađ?:V„—âŒê;ŒwÓ'oFuÚ4IŽËŸç9À9Ë ŠŸFòŒv Ć8GaÆ­~˜fł=Ó$ÉôőQÂ]ă^żNtW€Ă,xÎ > stream xڝxTœÛČ&îBÆ‚»»kp‚—iÜĘĘ=Ü!ÁĘ-@pw îî6œ{ȚœçÜ;óȚ̚ŐkuïȘęUíȘÚ_ŐÿŻŠ$URe1±1JڀX™y2`c°ƒ•ĄŁĄ;ˆAhædehxÛcá@ą€ü rŽțw($Ju œÈÌû/Œ˜=ĐĐńM#nèűföÙ 7t°°XžxY9yߏÌ,<ÿÚŰóäAÆæ†@+€ȘčĄœ-‰RÌÆÖÍdfîÈ űŚ@mLófÈÌÉđfÍJP1Ž5ȝA@đżP›‚ìÁ†Ö@F+Ă?Âfֆ +FckúÿÍ! ˟ÿęT··ĐŹȚÿűeޱ7û?YČ1üaÊùÏđÿÍß©š­ț±v2v0aš8Ń0țLd ;MN` =@UF`úv/«?őo`€ Ž+„ ÀÈ đÇ„IŸ…üă|.f.6f”裣-/ÓvŠl1:˜2‚ŽL4o%–›ˆÙX[ÁŽH,̐±#Àh#1ęáêłÛ[Œ, éŸČŒĄŁ=È ÍÌÈÌÌ`țăóŻ•î[)LlÀVnÁȚŠ `’”“P–üBśß°è_`QQW€3€…‹ ÀÁÌàfăxę»S%CĐĆü—Ą ŰÔđÏàMœlÿ™€óŸÄPÿƒx4€w„`ăűVCő_·ŠĂÌÁlüöĆòßĐè€ÿ‰=ŰțwűOę“:ÿŰû{țGËÿ Ń?©óæ?Ùó‡ ŁÎÛ9ÿ7ȚüùŠPț?őÒÿwÿüÿőÌÿŰ'ÿśî`’tČČú ©ÿF?ÀÿìÿEÀÿä…€Ą5ÈÊíły3ùO€đÏÀÿ;GȘ'ȘŒŁá[T"`3«©@’ W ‰ÈŃŰ`jhćüSŻöG2V 0PÉÆôÇ |k æÿŰûl2¶ÿ”›üGoћ€ÀfVN€ĄœœĄó[3łrpèą»!&Yq à–Ó'ŚLO Ó©[ސ1>CŐ§é┌H ^DنÖ»ę0V€1˜Š”g±x0«R’ÆźûmduŐ#Nó äÌÈv~êkb©ŠÙ·æ©ú’é·H‹șÍeĂż~Î48ïÛèzGÌGBńƒækŸŐc<:Ńv‡ ÇŸńì=ç‹(žžÔ…žAW ˆ=}Á>Ț{KV–\TÇ`;Ü>ô¶°ŠŚÆŸą@m3LĐéƒu„Ýӧ Z ű›„L Ú§° y3HËbĂ3úKfŸUŹp/á o‡OœŻÇȚivŸò,œ"%’żÈ ŚŻs’—Y\Óă>–’›.<Ú”7Ú^–ˆËćLF–m*u‹°Ńy]퐜 UÀđšIQZ€ś)#w\A‰sZ-U%ű$šÉGűÓQjKJû܄IMo+A7Ë`Ê%~„™„ś§àٟŒ«“(ä9ë±ÒÜč66áíÀ”ČMKB•ć[YŹ’5%ÂșČ V@I„êèœvjŚ„ÜEŃOf~’ß>ÉbȚ\mäCoí8±ĐjȘ nÏà“é”'YSÍÔò:oazę팄čæwœŰłiś…äFe š4ʁDIÇòâț*Ìń ÏxU“É~M9EÂłśśàæ ŸŽƒă˜šL—=NĂͶw”«lštä:Ô0) t–™às ÌÌš+Ăä¶Ï ~üœh™9jë+TiêcąÇ} X jVü„=[d+îìÄÓőÌ9»FNöxêääÉÉŐ«ŹŐFÈFÍŹ‹Í@hH,˜M`‰âÒû_,ŸúÇUŹ|Ü@‰ù…kłÇ/ˆƒXdÊwáLȚ<Î Ć*à ÂčöÍâàŠb]z­úD™oęŠÊjgúš~—Ś5Dß<Ț9ĂK…&^BŚ„ëźlÉòîțbHż‘ËY|G.qj+ä'Öćbԕ9[ČŸ*ÄJŹ+écŚS§š|ζíÿÛNőNCžmÛ=O Žšêé[:Utc(]2Ò˜ˆšr»*Piß ;€«éE/Nô»œŐyüxBœĂH\Eìdw‰:=ûÉ‘Ń b„VčäXn.i&˜u/‚9}@ńŐ^u.@Ön>XȚ ±{?C'~ ?VДքÂżžk„—lű·% 'ߊ%]À;ÛőbV†źmÌ%‘’Ë\;æŻF ĘĆÆŠM{hłŻ) Xó‘FÀïj z,1zž0ȟ„èomÙ`Œrj(Ù)>9Ӊbí—ŒđŒđ«č—%È@€…¶(Čkڒű„ćMMJ8·ÒfwšTÖęűÁ^ÀżÏŃ.[ûjúó"†mžâLÄŁ&(†Ő4%YËLK]ʋ„gÀ2™ ڟX)c%l=xZżZ’6ž5ŠŁCŠ·Ż–Xô‚»ErțS6iŠäœU&Ž58‚žŐßeäU-ۏʙìœxN—PcËô†ß]ŃÂȆl wúSI?·”îČùȝŠs á«óŚÈèșށHöÇ]˻߷*-Éą ±šàÍ•kʔg±8ÃäU?ûÌŃCCĘș en) śdX>—%€AŸDûűy_ă§Ôpfù ő]Sß:}cź0ÈzŐ "8ś™†èüë…ăTĘź[0I?g— „„˜Ł©wŸò îûN{ô.â·őàćdCćč–òșź.›'Ç6]`oWUæŹÒŠ őumôÛÜĐïš.„Żżż)9”Ÿn(UunŹČt§r|o\iWçìGIb!Ÿ§P—Hțm 4Èą˜&ìö°9ńŒÈùćț›„“âji«™âŐìXó’ÎmÌÁQ‚Œ]fŠüPOÖĂH©-ŸùBą}ï[/›ÏËíÜćP„:À”á:Ès‚acO>ÜRü‹ĘyÆŃ ÙŰ1-ŠV„)™BxIùZ—vûMPźś°ÔkKŸ|Ǐ*Ș°ï˃Ìś”ó3.Ńt7ë+EùÍ0Iwr?áêdnŒ!ٌ€ŠU1âT@'Òî&F$6)Ąâ±ÇńȘëu"Éș•1êȘRœèSü·Ș±PžŠäž$èRWșŹ‹Żg©Šq”żźÙ P-?UHcË}ܜƀ:ÄDcEą#,–}À>dâm/ĘęÆ@K„ŃꌀÎȘk&ùqӚͯJÉƃɱ ê>Ö‘;qțS©Š *é̈Vçźżźû{%aŒ ‰Őœ›Ż§lÉëÎŽY…ŁwăîâJ‘G8Bæ:êć@\îR•QŁž é %!4üœnËQ3Š3Ë;GšÇlYò”ÂĐÏú_@{œqóŸO'șHP|éPÍÓűć» 2J͎ŐęȘż6ŽöÈ`·iû"Æè]‰ FVlÔ)9Çʉ~A…#­ô ćÁ[~tÜÎćËPžüĐśƒ]@ÈŽ`„Žjćn††u”(Bk)|Šb*±Q[—É(>Z#Ń*…a蝚ą<œ”Ń_TZu42"<ș›‘ČʊŚÎÉXiÿtżłĆfMö~’ÏÀZ !#Y ÂL$Z”_|»8ś«ìCàödLNV`VÇàç}8eÁÄÛš-‹PÏ]ś;ÒfÇêƒêÆăÄĆv^O«t€l„3 “[”§E”•ĆőÇ2ÎXô’—&„ÏŸ’:êș=5KƘ˜á±ÛÇeČ6ič.(Ž٘ŠEš=ƒ19üoÔȘì§=ž PÈFvrïĂÌg/~Ìe*1ȚxPçŹĐL xœ,îb—ŸSyčq» yđRe±ÆĆkćp;¶ÇÔ5w$‚*óHbÿ=©ÀĆœzșQ`™ˆć±룃Œ–<ÜáŹ'qší BuxòîËN„Vł8F5ŻfÉ;˜4ńî)wìő̝4[MĄ0r’ʆ ”hčNÏĆ„Ÿb't|WÚÖűèÚÀÙ†‰ rR˜#"۝ZśÉ™Ń3Ìcs\BY5 PȘi†>{ŰșÁè”űíËĘ(ŰĘ@z­UȚ}gZËźhĂk Ț朡szÚ˜żHoî9)ÎO„"UnË}ôĆ7dÌ ÓăTžîbtj w œŠüȚ2;ÆÁŸ§CÀ‚ŁlxśàÍëˆJźÒëÆ"lȘ:_ż˜€ìmàÂ2Üæżőm03zF.ü?(Qő|jl>Öü6ЄG Ż2œ~iL“„Tș˜ÍsÆßoDł„BQđ@žŻs[4ò":Tÿúi>=îôuđŽÌE˜_wô‰úaÙ»ÀdŰ»:Ÿ Ä3E{ÌrùMÆ”3ÌQ/Y>ž"SO™¶«/gÊù‹,°Ï”Œ7dAșsÉ Ú˜9I ‘Wő©;bJ­j•ˆ[—‡B6¶äĄBw/?™Ööo*.ê€\#l3ìë9ËÚÄn)Ü]7֚çw˜Ò==Śì=ż˜™˜ËĆż %}őÆ_Šà]ĄS„ä°qȚŠ–˜—}ŠKÔQж]ąLP“Ź™E‡ß0ÙšOÚŚ8‘ŰEn$ćd3Ÿ&Ÿ$=~{íÉ ŰŚs|bóśwŸűšÈą6œbX;xfò©țÁÊC·V+ÊĘq˜ ÍóíțńâŒìw,WŸUE|0 ”́Oh^ĘÒòçž5ôÂx—üyl#DŁńđ^Ê^żû8e_ęą}`Ń+Ÿ[Ö#}­­'ï§~U­| Ś?ż\‰|Tœ Œ’.ÚwœŚ=Ҝ—ZîĄqä+ê6ŁȃuÔ·8śCäÊeAoÏšĐœ~ššŠ<„ŹEáŹì&=—,ÆŰdgčĘkRńêéR,nć#fj–ÜP\DJé”äBÁą'jżƒ ELS—©š>çcrŸŽ [ŃŃe$Țś“‚ę”NQeÛ(Ț5Û ,KΠ‘aÈ Űœˆ}Tœ…#Ìüp>1}ćëNŃŽČĂéæ0WŠ,FÀàg—xB·k§gíŻ;(k&1É.č¶ïĆ_Ö·IfÚë UÉ śÆÈ>€©Q-C •ižŻ”âíύ·ë}™áš·C©q”ˆËȘQț˜4DæXâK:kCÆ ž<ŰP•ĆJ4œœa|i~,čż±Žumnya”œÒÂ|Æá°ăquÀ~đŸ”„‘,ŽŁy1ÀR Z—üȁW‹,Ü*æÀŸFÈ,-ąŻz(€eA”M:De†§ÈÓŁÏL?5‰§}ŒeÔg°EÊWLńÊ:rȘÁËê(úŽPW Nj+Ÿòùhk)RÄr~àç"ˆćć•›ßțÀCˎ‰NÈùń*ŹŹgŒćçS‘Š(Ì8ŻRŠdMÙe ŽÖŒ8+ß­Ÿ5„Ö/çD›AHœÙÚ‰Èś\žqśëš\Ì'ÏĐńF°–ïÉ RÌ6Œ<”|/Ûóï†Py<‰~ć­¶Wú%Ë*•”ió~ mŒÀË!ÊæžiÛkŽĄč9>łMÒ_Ńpcʝò–1óț!Ę(kű‹ăè늛œè]9-”WĂY„ĆŰx ąŠlmw Ą§©ă í*ëśh)@źïŽnL]Yö(ï^űISôf»ńÙ)Š»y|ϔZ„c…öH:8^òDËË>m|ăêdâeÿqàąbњÆ„(léę•2Ś(Ž.§ÉŒKĂëï•ÆžîŹJÀü _G%Z‰žoęëûj”Ó4ȘœȘ'†HQ,Œlłj~]OìçjK,Œ^w±˜Śő-è7çæą& 6żż(sÌoćŸk:Őđ ; ŁKȘÈđĄŽHÌX{śLƒŸû9'ÉI§mźĆ”Ąb–ÛźH<ș€ČZÀȎ,‡N”‚'Îąîž|wĐ~Ÿ{›Űőłù{š«E}ëîêpXd„6Éပ9ցӚ ™ šA$ŰZ†źlÆìß{¶OȚBïżHŠĄ3<#=͛ÓmÿÂ(mțL­{ˆa tT-|“Üș2Qr&©SËç/źÄd‡î. R|O_ž|CPW-lł€ŰÂśșω‹ŽùxRz‡ÙĘ&@W(sčy”Ę>KÏ­=ˆ)‹ŰÛđNčbČ;J<È1iÙZjüPܞ”1€ÄŸ•Gïź,`‰8âsìÉ6AŸô@ §†p*ű+90U?ĄûiÛI.hùVúŁèè őiV <ß èb‚ ÉOQnsùB8èț%@„äÎÎżŠ)Œö9”ÉȚR!$šńŒYí«eÇŃǛ»€:…kž‘óO{ÏȘ-ӏ]˜ÖŚŒH.«æ_,` ž}űT—”Á&‡ò}ąmÊ"ÓÀaß·mŰÎ{Œë†(äŻeDÈ2üf4 üšeó.ÙPŠ*Ć<.A…ƒű”š*N¶tx©łč}rnęđĄŠ"~evqp$ÒisLĐŹĆ[ćčs9a#>:‹”FQ[ĐjôÇnq"ŠFÇéeŒYú¶Ź+Œ»›5 őDUùuàp&Šâ&Ś ć š*U什BL[ÇsŒ|St_ï9cDXÖ#"‰6amŒ^¶@~u!4ęàj)’^dš_ÏĄ(ÖŽöôńłÜ,UU!â:_łfŻÔ‰­?@6Ńäôžżwd<û!ƒçÜ.âYm·ȿšDæźűsź”%[–ădÄYžŽVź|›{NHlțÏô+ćhŸM!d'cù—ÖńóÛČ»_|íùÂM$v>zł©ăĐmLž?/ÁVâ:Î%ÊŹ›—/ÒźÚ”R‡Ž;WYWOㅣEkH=ÌɞINXŸÙè|0Zl5 .Vb‘ÙŠn‰7‘Ă8’ÍĄOów?2ƒîőÀˆÖłe@łÖ /À(#]űiƒÜŸÊsaŃ"j›’Iú*0lƧÎvšÂ ŁÄ›°šXFeș!nCÍȘ_©ƒŸ[Łs…l”că Z:Â윒8ëW8Îà(‰$żÁiAWMßšU•è ô©vÀÇ·K nA_Á>`z‰ŒÔ0„ü=“&ŒËÇoś04źL2i]Ž!ÊŐâŁPšKS”œœHƒș|€m±|ŠÀÙű EŠ4YŠ8 dOyŸ˜ź—›tśæÖjąÄ\±łKùçûEA5ó uĆX&…œWś H1MY+.KA…úü,ËZ)rŠ‚m'Ž~ŸÊæ¶gőăáț óąŸăn8|òÙłèE)Ût'žžűß9ęŸ-7 ź‡!©śÙ'k©‹ÈüÂęđ3&©À›  G]È7V îÚòK|„̰§'7I*zę‚ĆOärjĂlśwÙPś_æ4òź„ìf‘§šfŸKWo%ÍYȂíà ëž¶(’ę·qn1ŰêžÔ»őôŽ”·‚eJ‘Ź!Î!'œ–Š@ÔȍV!K\±#KląˆÜ§ÜŐÁ/0¶ł„l |ű€ĘÊÖgqś6ÎX4yłH‚ ĘŹ7‘e·Ź? 1ăœź?Ćù¶î¶Ù=Ș :á%)ęŒÎGT‘B(Żűè©Ç–fËMŚ>ČOHù„Æ Ü-«êőîÊĔ4+ż•Ö™Z+Çÿ<.‰.”ÛŚ™òAPMôà1V\ÒòaNЉű“IŸÈ"oßR˜š°íŰ.3†`¶ŽőkÜćVS ÖTfș‰đ„ÊÖ=]l€èȚÛ{RÿĘć»tŻrÙŻŃWžÜśöú=«j5Ȟ»ÇŚv• }ŹBÆȘ MrZ툟̚+&W‚•nÖ5–ș”ÜhăąÓqp„ä3Bnxü/Ü"ĄîŽŚY-„æ‰@ĐrűX”Ő­€6ąè™yQ^uć%™9Ż@ŰOH›șÈU——ziÖ6WPWIžŐEčpŚż3‘‘ćv,ÏìH·#qüŸĄPß §ƒeÙ&'{Û[äcˆő•‘Ș3ù0Ćœ>ș…ZƱâŐ©ÈœU…]ÜhÁĆ_†ßđ•ăÛKo9oŸGĘ6Țžöćc:FźÜÔ"|ĂlăI™_Ím~ĆÛÀëxòÇš/4D?IœĂź·v›ąy5ł:'"„ViTä\w6ŁĘA©ï^$ꎍ»Ï%!Ö[É žEmű@]ÉͿږđЋ’ČÂ-í[žŠA”íș8sŒëЌȘvŒń€fbŃq ƙiÜM9śćBè#’$š;čŸ §X'* éÖâ…ŐêźȘŰĄXÀ{œ^C^dY7éŹêŠăăïÂ%ŁH#ú­Ê6­˜”英_ö¶Ê˜ߍKŐ<‰7AÒïÌ  šwàÙcșè['śCÔ6]ú*BF—dDŒíŁ0ˆ§Ÿ0«üfÉZÜ țI' šÇïŻNznŸÈVäȁ2ȚL`Nx=Đ{@ÆĘÜ;™’ h&ĘŹ2!ĘżŽÓlÎîl*KŒŒ‹»ăÖ€CÎŐă]i‹…L=Ä0l(±v4îŚF‡È_đ(qŸTuƒDéÊÏ#¶áSŹŸćTŹSrÖùę.čÁmèò4 ·—̃ćaĘ Óèš>;†aXzŰÆ:*igyŃ=)6ó EƄ”+€3o( Ç„ M§Ÿi֘źŒaà¶)ÏÒc3éíkïĆÎs*#4ŁÓŹ}&±áțŸ„ŁŠĂ‰“Ł2?dúzÆ+ÎĘ˙yż1ŽÈ†Bïœ)«(FÖ6„ó tt’Éyî‡0iń©É› }Ž$˜oÈč@ž—U d€ ]«„Ûì¶„ç· d”ŃÙw@vCⱘu>‚g.7úȘ‰6By8iĆ >3ŒĄû”6$CÖd3äA~ïŚ<„˜lsŁ1+jÌy‡L ƒ‚/„…Ź(‚Pé]ŰÖ/ÈE©!Ł?B/›‚•ˆ–>I)ŰÏg“t  o’ûžÇh§đfŒÔš‰Œ>Ó W8ߓDë°0ìŠŃ"V˜œ9:hú­kjÇȘ‘Ą•łù7;&V2ŐWśҁJ™)_Ę«ÄFzĆ!ŁùWžsÚ&BŻ„ÇśĄäZę˜[G  P\ÿâ 6XSÌăžr]űvlŚŠœ‡2ĄÖĐȚxšˆìƒz| 07}îN[ĄĐÒ 9Ők——ž„f>#)|iߣtÿL€ąšìœčlő€AŸàëĆCV-Ôöó9ùśńò\đńM%N>Üʧl_e„ ÇŐ ÿ<ßÔ%ń> âà:šőXCóUcèË?8Ù֕ĆșáËàš?ăŚ(û)ĐŒ9”Ìm‘2±šÜœąX2)de50Hś»ź'ÀtÈ-$ű18čjÂÆŹFk[Èśœż±~RĆÄŠ_òz‡.ąfkÎ>]=nșa^eÉS<[ŸB—ù dï‹&'ìUÉț…ëRÍsمÂÿf:sK»Eaą4Ć\ǝ 4ÆO;l9'㘊P/Ț‰T.}‡@ÓpƒŃ”Og`žÂ6„}uêb“ŠĂtăáÙőôu –]ŃDžőB}êŠÔʂo©ż™tZ_vé$}xö§hLŒńӞψ*Ùó§È™ït(ÒdˆÈ8G©™ ­‡} &˅6 ÙgžäI›„‡šžŸW•œ|Ê|? «ŠÓ˜ŒÍ>Ìv^Pâ_0ČWÄTĄ w#…\ĂÔbŽhr1[G9Ă!& óČĐöÈF€F`Ă8ÜȘžŠG—Žtț#błÓÒzÛ&aÂJŽ#i™/©Ov»6ÿæ&òżÔŚ$ϜțȚéÇÉÏ0èŃÍÊà‚ŹńÎwsuN„Ü딙ہp갏<7‘ŸM’Ÿ>ęŠA©`„™n4|f j{ÈŠ6œȘăÀiKőHèdĄű(ÀmÆj$[b„áèCžŽÙViŽTCçą4k­wSNÁnÇvmwŸ_ô8pJ|xU#é·ÿ â|Öà1ÚëYrÀ­ȘÁ /U­]©ù/ŠžđÉ”81›őy2€ÉxÁ*ők wëÀ’ƇjűJsn·ńț•»KŸeŸÛÁ  Ę=„ôĂșŻÀoàÜ)–äôï>úNȘjż§äO˜x6cqÊțD,éw©ő&Á~đŒÛNMżüÉ€7ó^D-Ż™ĆO‡îæ~@šÛœ[ŽË9rÎÆV°cF. Nz©}^b’‰Țà ïƒzvj“5’I¶8éXÁ9;ĐÀÄÌz°ŽŠ>7łĐzń^6òő„ÙÙkÒœpUë„ÆÂęgIYš«}K|Nù±6âêÄë cŁ• Ź 4țÿ Hè5wW°Ś…Żwú1RI]2꟏I?+Ł{RoícX|úäkà@·oLÎÒmbj„ß;ŸĄ/Đ6đûŸ02©ÍÔűőqû›Íôù‘GąeI#hqLŒ«ĄČ:ßćȘûàŸ/k•†ßhxë— iŠSû€È&?k‡șúĂjȘŽĘl”đÄYĂŃä‹Óê9±1ÆÓ•nrbđń„ČaL+'‚ŰSòÙÉŁ_úĂVÂ2„Ÿî.u2ÈqöÒ0x,Ì”)Qï 3[ÿܶkȘwX“Ż”Ć"€jȘš!zwڱ_â»±{ô‹mïČahÒôm| OŚ/’<}m»ûÔÜ·Û°Żò„ÎȚd‹g:;=2âŻÄjš%È„c$Ê œ»ûw M}˜ęZüyŹ>ŰÆèh;G3Ž1:-š€kôWč˗“îö­äkŚdyś:Uw^őz=Ž}tTÔPą?§8փŽđ*„›-ß_ŒúƒĐÎl¶€m_Ç^ršĐŃ€‹FÓîÙ\PžÍŽæIń»KńšŸ±ûÆPÀÁϒšToű¶*‹ŽŒ!3Àśùb@ü%y!%YÆź1†0MHùq$˜ôLsžx€Nś§źšal,=œĐ?ț-ęÉrÁƒE™șńcrçZéšU‚~q‘§%†úëăèó«já;f—H(-ȐÂ0˃•+ „éžĆCnšOÂ_YX©šK·AÒ$m&§‘ŁđÓÉ_êĄ~júúz1IłTÛ DŹ€Fúă?Ä8)ž„Ó~e8œûLVŒš^o|ââîŰÏ­ÇH„·Öőû”ńÛŹDk#æËüđ |žq‚ÆćêeÓnÌŁàŒyçˆÓü9 ±PaKčháOLËĐÛĘ”uƒ)Qo‡ôßРʰĐ?śéâAśŒ~);"atíĂ%5ڈ+`-nő·$]ȘF2ƒ3ǁȘ :!ĆÈĘsöŸS–ŹĆzÒ©\“Ă 9ÂÖŃÚdA­^ä霎F5 ¶ˆ„'.Ș 8žŠ?-:Ź)ŒÁ B,UŠCˆâžD„ńMœlvĘ.ŸÂISÓΏžV7vWÏæs™_ĄÓÜs!:|eeȘŠÎk™ŽSđQâpìDe†Ä‡źâœ‡F ŚądèbEŒ[ŒŠ;dęG6j+Ï*턱èąS†ÙŠŻąÁëüÉ4țŹLŻN|Ö(Ɖ2čÆĘ–ç^Ëä2S*â/îô>fÇ}Š9cRm'I,LȘ”‘›9m+^S5P ëeŐZ}h'a@yD7ŠŐrŠÔ fæUlۧé„óܓ‰±Ó|î‡ ?‘ˆÖ2;JKٞ’†ÈjIÉ~ËÊ[ߋQÁîŹ&Îöq=ï†)Ąú)ŸÎù‚K 3OKGR~ƃ"èŸK§Üâ#e毌^!rUAž[&JÒ)H–ÚT*ô{œź*íZTĐ3=f“íBXYO(=ƒ†ÓÉëŠZűŃgśŸ‘ƒYą—đQ-o(§«ƒńŒ=ęß^ÀúhÆ›{đ~ 0ôÜ[+OțRBą‡ź/VÒ·86ój,UM«QI”OWș•Rč —éAĄ©zX1`č&6ĐF*d­|S*ÀŚqĂŰÿ+XÇéôÙđ*—éȚp;Îűàâ-öÂÇqkęH€|è „QÓ%ćŚ'ŒÜèaŁ?]’ûé™]ç@ǜ8ÛđÂ?áîC.é°ÛÍŃÆ(*ʶ§ä”æU[wŹl<![*îčü~ßÖ%p †.čnÿaéußœŁ~À$qˆi·łőžeT&1đ˜'w^ëžôŐKb€Ćσü@[ր“mšI ÍD"–;ÛqŸ—âă•6Ö.U`ăÉá\Xț€É/ÇhqÍújÖćîŸ'ËܘȘíš!ï}ȘőcY(s™ÛS ’í›GRJŸfÒS˚sbnëńdæk\•ûŹ‹]+˜ćrńąŰęlVqdsŐGę ŽÖ莛șŸ=g2œwŒˆ^`őń[Ödšp€ì$ɓrœNuVeôDTæL…ƒŒ—  5Ûl»…Ú,FMCŠ€à}í’ȚX’:)o1Š —-CțJŠû…ÔVj—ù&SUÊ8VžŒțMGòŃ+VFĐ5ÌBź0>„šu‚$+HÇä;źŽB“©ƒŐ6€/óăæ†Șœ‚ô Ÿ Lg^.aQë{ „ÚzśTő~Ángz ŸŠ2˜/Ššö‡áÉ|iyEHf83”ŸCùă(©…)7șVäÎìȘ­S”¶Ë YŸ.‚Úƒü{è)~ĂO ă@ 1“0ÇËÔKmIŁȘ’™†r§ Ä|éNžÓ‘Ž'̑úqObÜŽæEĐ+ Śhs9wXcfżÏ â>ȚŽÔêŒw3«"âNšô”ĆÛïTèÔŸ˜Ÿ2śzêJożû[ƒ:șûíWäÍs\‡ßđLĆHˆ„ì↑ Ž94Â$joi72…”9/%ä#Ÿ–Iű§‰óŠűˆÇtAÁ2{ŁÊrĄŒŠ‡,99ÜÁrÏĐÛsgƒ6FśČOh%ۗeń–ÌÄd@†ŰÙÿ Ț"™P endstream endobj 43 0 obj << /Length1 1614 /Length2 13277 /Length3 0 /Length 14101 /Filter /FlateDecode >> stream xÚ­vctfʖulÛyâŠU±m«b>±*¶ŠQAƶS±m«bÛÆ—śœ}ûöžĘżúëgŒłæškÍœś9$Š*ôB&vF@q;['zf&n€šČ†ąĄ””Ą‰…,œ°” àÓÌGA!â4tȰł5tr4€&Q 1€…ÀÌĆĆG±łww°03w|ùÄ Š„„û—毀‘û?=Ÿ™Žf¶ÊÏ ”œ ĐÖé❚œÌS k @DAQSJ^đEB^ Ž:ZŹ-ŒČÆ@[G 5ÀÔÎ`ęÀŰÎÖÄâŻÖ>±„†G{ ±ĆgĐÍhÿ—‹`t°±ptü|X8Ì m>gàd°°5¶v6ù‹À§ĘÔîoBövŸ6ŸŸO0E;G'Gc {'ÀgUEQńđt27tú«¶ŁĆ§`gúibgìüWKû>a>œN†¶Ž' ›Ó_”Œ€ G{kCśÏڟ`öÓpvް5û:€ĐÌĐÁÄèèű ó‰ęŚtțŐ'àżtohooíțw¶ĘßQÿÉÁÂÉhmÊÇÌòYÓŰéł¶™…-ă_[EÊÖÔÀÌô»‰łę?}.@‡żôćŻ=CęIÂĐÄÎÖÚ`4…c”·sú, űòżS™áÿNäÿ‰ÿOț?‘śÿOÜŚèżâÿßóüïĐâÎÖÖò†6Àż“ÿŒcȀż.™ÿlhcaíț?…ÿ{€đÿ')'ĂÏAٚ}ŠÁÄÀôŁ…Łž…ĐDŃÂÉŰ`jhę9„żíj¶&@k [৚@ÏÌÄôo>Us c+ÛżÆÎöĐÖäß© ô7qFU9UM9Úÿ~Łț§ű©Œ“Ș»ę'”ÿèDÎÎä?Ą Ûč<é™ÙXôŹL̟î“+›śÿPńo æ­ć ,ÜڟmfțŐü<ÿZéțŒ˜­±É_{EĆÉĐÖäs{ę§á/·±łƒĂ§ȘŸűÏŠÿčț{فn@cžć;cž ËÔôŸNŐŰYcąÚ=]ÌàÁöEuȘùč~•vŸ©a›\eŻUÁ őÜïżĘçíßv„iö†ș°Ź©:“ç9ȚdÔĘčš([9hśőŠžhDy^ÌÉn@h±3©ïm))ëŸBNŽČ:À\ÜSő ôw^AvïâÓțЁ„à1ÄöI:&Itr7pž­3~‡|va‹+•'p#äŁ]WVڋ=Ï:Ôôó3ü„Á'@RÉX‚_äÛèŃM>±Ă9”çűĆÊăMკ?7‚í:‚~vÇ!Iű^R°ššSc|2pą2wǍaä_#Ü_Já!MtÚűœJ‚+›?I;8Âăé0>„ Ă»Šàï7Û)¶-+!~«ÿę|Ă­Ïbœ<`@‹ï§ xîŠ~o ßęńQÂàâW6.Û­æܰ ]æŚ[CN-{Xž‹è&ùûÆ`šé.hCïu¶E;E­^ûhșYgíŒö'@‘)ś})áóGšĄFËy]ț1Ï«nęüjÖz1pČˆĘwˆòĘÇR”uH97ƒ/ü B9YÄ a$’ęb …_%N…ç4ƃ… )ꍈŽȘ–Ú?ÊűpĘ߄QÈáŁk™çZ†‰6ÁTŻvš ŠKì‡čœžČ“YÇŽ)šŸSMF[Ąìń°uÂHîTcX »N±­â‚È1†eÂe;]n+,Ă ˆyE°ĄhN¶ŠÔ{ aÚpv\H°Ìv ČÄë@ÌÆ ±ÊižF_ÎËcjŁU{Ą±môű:>D1ŒÀštŹgƒ‡š_ђˆSąČLQï™<żYòPäDt3Dü7őòČRÉ[ž/ś©‡n*Ùü+^g±RÏnAÜÚÚÈ y@ÿá~ÎH=,§—ł‰-Näyô`ú-Ś)«/ÖË \âc۔Ÿț*ìLÒíádąáń›=zF,üűЇbv7Đ9dĐ"‚)’Ç„fقč†èah6ŐÌôí>‚Ê ‚tąœkâßú òiĐ^îï*}$à ·L—șł[[éáŹD望ă 0" żáfoČĐÚ€ž*ę’{Łú}Œw7q‡!_eIƒü5z‘—Œ@X6>"€Çș^>ȚE¶~”G%^»;KOÖkÇ\V3&#Ÿ]†P;pmL%7˜ÿ5źàxö"­KrÙUû ÔńÍ0ŰòCŸÛ_°NˆtV”+K‹©"dŚ4h%~żő 2Ç„ÍaÇ_ĘjAáwŠ㌔/ˆŒ3o‡łç.}:RźG<깄8Š/ŃcSi­"ŠÇ%gșżś Ń·ę±6SÈźáV(€‘ÆXuÓÊd3;ÉEČùŒD[HvŒšgś`W”ӆ•žMs‰ ô($>gŸèŽȘž 6Kź}í€ÀÉąô:Ć5€›”Iúí|BțCràŐę≌ažÈù/|2áȘS„kałv}U“+ìg2N>,œêj'&_ô  „íêC)󜰆îRü,@cg©köŁ(ŸDÂ^Œ`Èșˆ՟tîu'7cíÁY5żMlÓV@RbŻvœZŽœbïU0~#>&–ÖÆò‰ÎÄҗ5c_XŰ7æűšÖtœàțpF`J{r0…Ą¶ źÛȚőĐdKcûN3ˆwWFÓÌBäYŸ?O tíGșŃ ÖŒ>ż‰ùłt”4ÆQ|™V䫌*˜æV`ȚƒÈí Š7ùžșšŁżÈLÆŠêóHù›Ï qæù9zł7nÂ=kĐjæQá^ôđȚÁì~p‚FVR9„șšÇŠńnyŽ\V+̰yO iÈæÄ6,ŒlˆMs­»É'~ź™Ś‚ÌÙüɏĘŰI„MóƆnIV‰ÈÔh <ƒvËqÇ#~ÓGC|sCćČ.jŒŠ·•ëû‰;ÇÚoö‚à (q$aˆ%CY§§É±æ]Bx4“2T¶k‰“8­ÙqZóÖëQ3<–+} Ûđ냯3?ä_ŻßĐbŸìé `͙Կæ~«`iÿù›ÁÖűśÆłá=ÛJ/ú^©À4è˜çț@Îú’Ameÿ‰‰ï@p—”ÖźÄpüxoïS5&ćò"žSȘéÈK•őŒsĂYŐPÈ1—uű‹leGöI_ßÉÂ}lfș—5Ęn8ÊŽŸ~ŽÛ)Úa©|-úóIÇ}+ń›$P–æß=l™Ÿ‡ú‘‡x+Z< ń^eŚ=P.˜Rç[(€ž–7“çrrŚÏAo>Żì56ó Ê`èc±đçNđÒ(*'pai©ÙÏŹËœâÖ{ÌM(mM9–EŒy$zIay߂“lôpaË;OŸêƒFÉ\:‹ęÌż^f?nœš«»ɛΚH\Æ3ÇżXNŽśMofˆRŚí_nÒ€ö<0úe ôf?àœ! lƆ”»-Ța}Ș€“(Śm‡|~ÒïcŻK¶Ô)UaoaUæȚͶ„Ûżôëî E·=œXC5zČ]q ńÀȚûVőȘ$ŃÀՐ:ɱö1šhÒx¶?'ăJŚìț™|9φœhz”ŹȘfG‰2-ÔtYÒ5™s{Ç«r‰±€É8ŰJèÆWćèŚŸBOFßlÏśęÎț4’Wő:H8ž”6ÇH82ÛzB |ŻnuކW|‹\Rt;ăàrĝ<#ËcŠìœÔîÎ@˜MFÖqĆŁŠÉa ClÌ2nL»đ€a„ v‚ÿÒ ƒ.DŃšb3T…Ÿ>ŒU\iŰRzÜÚ”sǚ3ZűjlrĆł„Üń!|Ű'1ÜĘ­{Ž”+iç ­Ă…iéŸ:ÌWƒŠÈí 'úIAäŃBBU,žÉĐ!Ìù‚ù°$C]o’ÎVúĂżź”‹· ÒĘá=B>vChî4«ž{Ââ}CVÓÁ’©«ì§Ê^ĆÁ€W/b˜ ł›Í‹sbÊLK7ĂĂM6v#ÇgaÚă<țBszNd%'ŃęąÖ˜€aÿH L.TjcÇzyŽÉkĐaŽh:UŸțZ•Ÿx‚!BĘŒR§>L*ÂÏ%„kSĆ~êq#VsÂăêw©ł„G4ŽLT2&Ù'L°ŒëD4’3'0-‹dü‹–w#„áCüÄûÀjsÌ7śȘWĐ.s’B};‚țą‘ƒt|ÊÁDgȚ>+§ŸKŠ|©eŹ<ę‹/ŐŃ·Șm&­ÛàȘ«2AEˆÄłTžeń$ńŃ[=DGj0Ü ćmcófrE|üæ•ŃÆpa‰ `żF\čÙFÚF„ó2|ș”„žM”»P¶{Í[x âćÎE6r›±TRZ*żeÙ+Ą”@VX^Ș2ąç™ŃM敓~xˆ’Ix0\êŽ9\ĘÜ%hZ‚ńÄÚ*^lo™ßȘ€èu—”đn·Bùë4Fő ÀđPłžƒ2œeÔ6Ùł‚ž (5 ™4 ©ÄëÄPŰźÍÎïźvAp4r'|[Aà…GĄfd&ùŃ}ŸăOÌ[ú><ÖÎś_5ÇĘÇ«Ä'ÍŸhȘ&í#$œ(GŠb°Âüd„ź·ÎśHĐĂŰ&` †„ìÔ0: Ÿ!ìűјowJș~~㓕â)3Œc9°čÄÒäČŒ-L„z1•/ ›ŠÚdśVĐąyÊ/]Ž‚Fę·g[ž¶¶ ‰žëźŃg^q„B ù ëI……űZFR ą3\D튕g”äÂc'AFR’5kQû-¶˜X]„“ŒB!SH ‚č. ć;b1:vÛjęÖUB"1Kê—Ë0ȶ€švDM!FD!Ä)BxȘłè€N™* őἅa©d·ÆÁŠ%d( ˈT Ênêű—5 ŠöxXFžšc­#š‚ŽìCž–'Îüß֓‰òhœșD=„ÈsŽSó€„|êŚ”ü ĂhȘÊ n§~ц—h ÜśîèéXàźÿ nsš'§[•–ˆ¶ƒ4ïąZżŒđ8Yٚsç“X’^;q–æ<žr'bJ,€v tÀśqș4ûŸ_šśrą!BœHŠ€©MokĐbXŸ.*“țÉXŃП~…pę0Œbéăƒđ` ÎœĘźŸdw§k|'Šá ŽƒĆ¶‡ȜKż6_đö\1·š  o=·íèÀQŸ_­Çó5êPêç­źHaèhÍòB[”æ:œè;’>ÿàč-Pp>Ś€Ü5ŒìÜęgO‰n,ÛqS»ÔùË 0Úbc…Ì&ZȚSIstŚÒœ"ìŚPłš2ș~±šJ[­‹ÈfȚKqźż„n ÀòbšSą[1“ÌIŒZ˙<'Ôq¶Ąуf•óŹ)vLTá(‚CśšdŽ–âźd$,jT¶-ú— *ÂčÉ{7ÚE—[B)_ÂŻ"T»ZâUêzĆŃpŸ˜? ».|vű֜SÈG±ÏÆôč;mTO֍?©őY,@ûN6(ïą]Ńš{òòăÄT)‘„àìĘșPv!i2Mà%ĂĆΜčŸú”Z‘Í ÚZžČśÆŒïExĘą »i¶Đ[€›ŹßŰ_v„ž…!đînF(üԂËœßWTNS1-r<łP [Œ“†í"îœ4‡hŽæ0hćž&ÿôò–…‘»NĐEf€Á«Pčśą-.ӝ$Rt,GN„ô+Îë9„‹š6àŁ‚ąVáA’1¶ȘìÔBÈç]™+›ŽÇüĄ1$:N{62ENçŽ[H˜ íi©‚fŚŚä\RŽÚíŚ #Đe€Ê«ÈÄìÊŹ.Èߟ+ś_a1;ëΞű|užïc8ÒÛo]kM^€?whŚč5YHYÀÿEÚț;I)FőR»’›ĄÙŚ[ƕŰAŸîUíXْÒGXŸvŁ<Û\'S~èÁQŐrŠ„rˆ°"~öbÎ|fÙϗÛ‹ÜWŽ Gt —Čâ5ąvà\TńȰ›àšűÉC=Ä<Ÿżi5ą›šË€|ʰ͚‚ŽÈ{ĐüžЙcdąUrD|[±Ÿ° íœÿJ'ț+Ś”AĘĄ:‚.oÎ['öۋ 8ÊłèŐw « ÜIA›"Eúૃ.úÛž‡ŒIYÌdҚ«‡©°äÄGÍT)_ ÚÛ€Nÿ¶Lqmu#p}‚ûYm ìNÒ&{ płÓȚ%LŽ t…q %‰ÈŻqŹmrëŽÎŸ@â[Iș€©Œ+iU)êDÌæs/ ì9…mXŽK&.Ęł±qîÏ«š°\RšΚíM ö- yh+ûƒp‰Q6Ë$”€*蔂Çsźș蒔ŸâM6„,Ï„š•„Čì ?iČcA±ăpY€ên<úMĄžEŒc5ŒĘòÓDôŽzßwŒ h­ òn§!őÛ·ü  ću±u&Fź+û/-‡QÎôțXȕR5ű~ÿK&[Â7űŰńiŹĂ°€—myëèŸ\„۰›v` Ô*ô¶4ëŁ) ˆììcD ÀÌbȘÓ˜Q RPˆ%s_«X˜P@ iÎ*ÿ”*Ü­IyòæZ;ŽI8^ËÛ ÇKiZ֎Ë+Ță—đí)ڌÌH™ńWÛ3zšŠ‚MdÏóŚŁńe@őĂvo úÍxÆöÙĆ6«Rk§€ÄšŠ±müÒÁi¶2í\UÇiÀöXŒvĆàč_ă)2Őd\žÛ9?n”a3gë1Ńj7źˆąˆm°»ĂZ'w‚șoeʌż#FO2âvVoVüÁ$1ÙÄ- ƜAç ’ă:*;cG^+œłEŒƒ±ČÊ#Í*đHëjńăŸ SG;(+ÂŽ”!FóÛŽź)`$†UhPšd.ž,üPŻZ+}Fäš‘ȚV‚Ç9”h`çšVŹœ3&ähÏ«4”ÚËœu,zÍäSș©·^+@=‚Æö*›ìRÌ€ŁŽo]–JÔ1Pæéⱅ„Ol/ÚĆÊ{­ŠAUš%ŒM†,œBZAۃMŒŽ@„_?F*›|k€Ž‹”×đ6‘@Ÿß©üšąl.đ„vü‚ò‡ĐŚ’ŒMÓDÇô}„F1{iUË4Œc_ìæPymüŰ;˜‰Aő»écĘìÁácè§PÙh,3 ô‰äsò‰%á’úPMÌ «p+ęŰUȘ~‡ ĄXÜ)ÓÖçáFŽ/–ŰçldąˆD~8Ä~_čŽđ e—3ƒȚ•Ïќ«uqSND5qíx–Ÿ’©§ôXZ"" –ŠžN!yčÁű*z0/Öæ%[æ`úӒ†–wĐÛ afučÄXä›ćŹDŒ% HíEbÊoq.$ʧ)O,§wuęžq«ú *l5ÔŒÈÚM°àƒĆíWŽ_KŽ”šQžvAHĄRĘŽš|wŽjz]gńc€Í–…XƑ°”‚ɇțZ>ƒÔtłŻ’cST…êb6+”dȘ&ƒò&òl\Șz€ Žćż-lDR—Ô~ßöčAšÎĂ2ë^LÉeęÖČÇxƓŸ+䟟ŒHĆgĘOoìGł'/ŽŽNîb$Ö0‹ăέ4ŠÀ ›źžéEÀ0žQƒWö\ÂûĐ śˆhżÓ—•`±A?ÎÒí|Y4Qn`ÏčŃÍȘN°‘żâ+ÌòLFŃìUëńê΃sRˆÈ/ÆÀŐv©ŽIgH±xqHœŽ^EG[dnrNBKLĂż0CŰŹ“’(lŽ ź6J ©š)î°ë‚SHćA›Ÿ”ćđRYցîț| ő%6rçRÇ0«ł”áÖà/J)æĆÏËg)șúÉćzZȚđ-ZJyeł§}6yƑȚ‹șÒœü‡VïÚuÛ2Ë*ˆ„“ŸÒÚDZčČč@Șy“-sŐȘ⣔ì'îx ČúŽn“sÁ/>Ț#-_3ű“Äuьú]ËZšțí2)ú38ź©Kč–?â/wšTbŁúUßùKJaźżęșĘVwҖé‰ÂÄl69XRÀóKä-a™„ÔTvÓ/d Û<çąÄi»î@œ”@­cI?œ[ÿeŒçù[~î“tÊF߀٠đQÿȘï5›Ê;wŒ‡,*Œà}èș¶àQčŚ}€úŻ>_€öÖËÛ0ÙŻ·‹_Žꎒ1’Vê\Ay,usʧÉ`țQi¶ m nčk–äžĘ~€ùD*ÆÒUł;JŠ7xȚÉò~»îEZŠ0͘˜ȘŒGfFKśEĂ Œ@±Mś,PŃuőrü”À:9”vžŰ–B+§Ś›2”\żąčˆĆgQƒ„Șßè@XË[ÉÌB}_ăűV4è;AË:š“)XŒtFòł=çÜ‘ńK6·źÛBȘŐă–k‘"ìínTęœ<œóxrhSœtm]òZzùöŐSœMäŚ1ą†ŰœĆ<9;ûížâ ­Í[8Ś9~ÒRțœôcn?ÎÖš=“„ˆ™R’ æmÙ}ȘJíät?Ë­Á ÆÎÄoő[ÓzÎooȚa)è@dxsXE¶U܋Ąőôœ1|Wc7S%î+VĆÖûicu6Ăș‡„čӍtìryŒÔïż© QPŒŚ“unæŸf$.wȘhä<&KÔRqëĘlšÆ€ŐëښˆXEÖŃls»$æ·‰„EĘŐêŹűM&2ëfÆ^gԐęÛż6)nłČ±ëȚ­0Öàìù%Włżoű5mŸ!Kč„‘ûa0ao§·zîęK.Ź|H€X°ÛA­ŒÊœ]— 'SEë+( û6Æ}Xd„~YńKú”çśĘpć2\Ńv#”äôd[Ppo©IŠï|m|RAkìR:Á•%rŃdŒˆé˜»ôn.LÇ;Ș:ϙIuv»ˆ8Ú[ƒ,`&ڒ]Ô8ÊUÜ2KŸ>»Îh7àÁŽaUŰ9ÆŒ€Úrűûx€=€6&% à5őąSč‡ÚË;—™”„„ŚÙ„ùû©Ą”ŸźÌ_‘Ÿ?ƒ3J¶P-Nő¶€\ŠÂłœC|‰JšóƒFl‚É^kgž8|]n+ž4.ŽC*íGpÀÚyù˜+À3ą»ô č{;wąÉm™Onž‚?©‚u©\ y ?lïTă¶ûĐ œĆvy‡æ*g đńëR0ù*\éșș±›ŃWÀČOÎŚ œ5ăȘ±B°šșąc I@\ŻÎpL1vCM̶’Ś< ScR…ÇrČÎtLÙé=ÿ;‘íÚQWĄ†GhĆ:öBèŹ]ău”#LD AŸLčăOÙB.àŠŹ:kï^Čô辍Œ/ő«YÙlF0ȚzƒÉș :]ś”bă]sž:S„ëG'f|\Cšrgë_ÌH0KÉÌ&ź,Hč^eX@94҇ȘKÄćŒȘdšĘ^żetxÎՖOü1ŸČx0_–ŻH‹7űŁźe@û;Édüìjwä˜ '%˰ÌFVCóü€yțhičO¶űÛ!}žRï>čk4W5ۅÌW<ș/ÏàQ= 0șgvMVÊÍÜsűJ «àt—áʝ™ Ć\:ŐSn”:Žž@šćLçÖú5ä(Ęè‡ ćCzhâÚyőÀűЇ`ŸĘš”Č œČŹFž7يêÛ*siDi“‰Êłs:ô.„ÍRHò Ô3I‰ȘœƔ ŽI3:ÓgfTqIĘpŹč8&B»˜_a&3ąp&+C'‹ˆ%č˜łű4YI…LvȚʆCșҐúæșrw~Oœ#?ÈÉżig~M„Ó(*đœ‚ÇmÖ7y¶1d €ÄÙ6+y@ć0udțiką'[…íĂőSûĄjTä쇊M?œUÖĆ#‡Xx"‚ő•Éœ&á4Íh €znŸMàX,â­RbÂđĆÏ$Aÿ”_#ÌÂT\]ę‘ÒB:ŐRÉ+ŒčigĂhőۑ@ F8ŒsîM~|ë­ć@=C±WS_1˜ĂŽÂä(ŃQŰE퓷‘†”cȘÏ!ùç9ÿBçBjÉhnz[ęҎKW„WȚMOĆړL«NO^Ÿî@'ę`9L.áâŰÍP€4ęX3šń8#ț]bŐ۝Žr"4ÍŻ5L]ŃYôźùꂰï]„OÒÿ2ĆëW)ë©Ù6ÖTçÆÒĆSqźßžŃmùˆ™wő~P]cŻS”ĄŸ<•ŽfÚÁüˆÈÖJó…XxÚ-ZwgO”XyìđYČ)!°„yg8Ț+kÍQ|FÆy@ßz7@ĂáIVćƶWÏ••nÌŠ(ÚJ0›yțÀJK±Žü#ȘqÆ]Ö&ó‹`d€ŽźWDś‘ŸyFAfïsò0ÑçqMȚîś/n VțtK§ <ź%û`GĐ:zŠY-m±XûôȚZ=•"€'ù\sìlČìCT˜úƒwöàbG/èf‡)°#„ż+yšű”Î ô.żë„š’ąE`ńX[n.G0áë»§ ȘDżŠă˜ w?§Djm;ČȆęTx†Ìąo!R›`pé*ńˆùËJ{{qIęSȍ­€ÚĆîHus±.—ŠžCœęzo5êž‹Ù>'#ÂŒGą8ùșûŐyôą6č‹,ÔFśJšő°vËzLï [PcĐcÆț\ìü°zÇDfxKmL€šőűKîá­7E‹Ù2Öè:&ŐΟiLÀĘbtŃł3j4…TđabžÜ΄«1álßíŽ+O±ŸÈpHĐȚ`ÙŰț€ńzŒ<Ö¶'7űI†}°fÓ2áÄł#ÉCœRƒ&Hˆi”aőŚąïœtAæżž#ulfł>ÿÚâÁuÉ Nbż[ĆZùIZ5 &àÆ ƒêmvÓ§wMtjĂț&\Ąï>ԅ %…J+AʰkȘW'wo(5YmMQ é pžˆ ČEÍ,Œ¶ÛçU[vhùe:yƒ˜œ˜zÔ©ÙZ§í"òHłïNê=5’!2“qÂUtŻ-”ljŽep-Ór‡ vފ‰É]VĂŸ?Žž<šKĘ·ő95iœçüȫ۫ •ŁăhŹÈŠÍű ΄ĐPŠ©ëő w“36TUńčVÆîBÛ<ŠćIČȚ;[I|·uÌ5LűÛB;1kEćĘZî6Ìzž2tÄŒ%M]ßD íÏőeE­L)‰HU†Ș4AćšŒ€R"Â\ŃKÄ?X“„țx@gYwŽ{7HhzŸ‚nû ”âś Ö%&È„“Br9ßßvü°'˜FâA€BŁč%ís9©°#¶š©D‰Œ‹ç@FN«‡ŻtS<}ifšCź,„ö/ƒÓyą‰š łÙu챐;ïÔ$łÒæ' ۯюČße»Ê$Żó#Ÿ{ìüscè 2Žqâä$)üÖ *|±>9+òíÊ$s3 æÎч'q`nkțaÍŰÙ·DpNÈeśˆÀíùćŹČ2:bÁ,Ô JQĄÊș朓ŒGœaż&âđPëÙščÉmÖ*ûź9CêoôÙÓ&爻­<8+·”\0‡bÌ”*Tsx“ 0Ո<~±6ȘBQŚCđÁՒ•G“śăź‡Ą6ŻJˆ'±šn„UŃ6ăț=BŽòŸÄé7Œ™șÂÛhv`+šq¶T•Ííî&7ÂîžFo_ŚÓÎ1 ș#‹ êpˆú¶”ïKŹ4Qih`Uìë“:Śë1P7ÀîŒkȘś”ŃBmÖΧĂU•_·P@–§ïFӊ–lz| Œ%[O4ƓùqÒeĂ§˜ŒžÂFÏcy€ Ùċu|îÂeƒÂvIü9îÊž©;‰­‹#K‡űÇpëüŽÉĆ*–rŹá둗Ț`šđû뼌 _Ó/F.ù7+D 5űbó)č­Ù9Ï^ 7ä° œŒ<^ŹŚnźx_ĄäŰ„đ9Y,}Ńá??n…ÆSè_°ˆ­lšš\Ă`(,äg՗Jz9ÜȘ‡§UǒŒÛì VhĆ C’ ,ÔzÚ}c4xȘZüÖæ€›čÌČ0Öű^ۂjï]™C܋ŸŠëèœZcviÓ6vȚê4LÓĘŸG8‡`À„¶;öƒôì îšt%„OśáŸÀșż=xAô¶1aÔ"qœśiü‘F”ś<@Ł(OËĘÈâ`ÎaȘJĐ{ùŸ,â{ś1éwÜû(Û-QžĂvâlìE‰-G5WȘ‘†cŹ[0~YY đ­zP·+(ÉÀ/.nƒîY’ßšÊPXiŸ!!.òïú3ăWOęq–@nj‹ŽÁ·ŹRFmæ„gNĆő]a"V{np\lșx$ҚÀČÎ,Oć†êÜ9 ńŸp€Đ}łáèÊéXĘÁ`™Țl„ô€Òs)—qKxwéæÖđ7šKɑÂ$Ò8†źK/òÇEćÒRQ†$gK€ëÉ ‹ŸOiم[ŻjąXÆQ<ő°mîjÆ}ăżŒ‹€ĄæTăs@·UńcȚ"ČÂȘÄp°żÒűáŸ&1>Îy;đl2·Y—> ­ĄnK/¶ÜOÒ}„ÿ‘“`~ŚÎœ?”2zZŐyń'W€Hƒ$k%ÔÆúÌí#ŻÜ~ȚŹŒóEłrÉ(€ùë}[ÏI;ű‘a– œ ZΰjÖSAŸ}ĘëC9sÔzȘc:;xìQ„bm5%ő+§æMšÉŠVÉ&/ ùw¶(OŸŐ‘Næ.œ­#k,~Ƒz·KŽÏ ÛÔńš9źp{aŒčæj•ő &Êa3žÎĄòt ò” l„ß­ paŹJ WTƒ\Ő‡ńŸ'©GHŸŠO ßÏËv97'Őú§ Ńbyx+ƒÜ©§™úÇjó fÎ žŰșGç*ođ~­"Śd 4]‚TK“>níæń èŻ•ś?íłđđÍtI7|;1Ëxłžr֘ÓSa)ő­PkhęÜʈńši9Ć8™Š㖮ĂŻÙ^R=Qaá±f {ń Ôm4€3àóÒđè6#û„FÈ#Ł໋?•Œ„ŽŁ3šê)m̍Œß)êê75ÎN­`/ôĆlÛS[ŹšË$U™ƒWîȀšk“#wĆM{j %ŽSĆă™ztȘęoŽ‚ôo]ápÂÉ29,Ž}RكˆșűŚ én…j€$·HžÖcˆÖČÒHヶ…§&e†EmH(~”J§ö fs*ê; ŐD…ǏSˆd©\žŻ~9áXo†6Ćb[aꅗ$Pé)ź“űŸ;j’IžzPy/ ’ŽZ›àĄEÙó .¶šrŽ„ő¶Žg©Y‡Ś—= f‚'•á89Ăă‹ŃĐ ŒîžÍ†#lƒ—Q+‡>RŰ@çíŽc@’S4’9W&–U#LjÊpœûsfGœæăŁuُ2!vÔ΄x’ŠR]›ŚÚ±“HióÜn+2\· ӒôŚSŹt#[ò’ŐEőE€RÀ]`C$œ†Ç„gÁ ’ŻvĂbô\n8›ŸíšŸC»"jD‡űRŐćä)6­šÚžű;è/[ÔÆúSÁ^Âè‡$” ÈXCI;îúîœْßLUÁIJśwYEšE›XMoù‘ž%AœŠÓæœ`ÛÎŚwì Àr°óWìÎÈæVté:Ńćïčä†Ő/„‚—ëń¶Ą—•B^ÇÄy¶|y|<:YxlŽ( )J±=Gg\8»X.^Íæ ŠîŚŰÄÿÙ„X Âț~Üîž`j ┣(3˜fÇ3[Ûì^œ*Xb =œȚ$ ș†Ç Y€ 6őˆà…UËoŠŻé}æü_5w(eÖô˜w„{‹_¶]žC…çÚę§ ł‚f`jmE!ż ź\–Żœê˜áœò¶]d?,t’çÿe<ä«84ÄțwŸ:60_”ó„B‡ÂÄéùŸš>úEÆ)C[*9!ą‘j]șé&Ł‚Ž;.‹<ÁÇš(ìÀö$ÍâGxMɆĆd+ Żb æ{ƒ Ž””ăy:íWmƗëEö©8šŃ–SMڟ»§š9WäČVzœŒĄ óàH‡˜dˆGG ŻÜ’Ü ô g™€ – âۘ㠊Óp}ÜlC"ę„dîß&%Tá Šö4ÎÁMiœő7ó]N6q­êlż†CHBÆœ3fșQŹÒ3ăÍ^ć„ßàŻ H ÈźŃä3šIŒźQÍeŽ·œôÏć6Mb %Ęê­úŠÇ3Q‹ò2Ł%ÂkĆ0dF$Q ceJVo[è%[dI‘™é9I”ż-é#á/*Èp.WÈ^ŽČЏ$qč)cO„8Ó9Ő­ IŠâ-ȘxjŚșPD0BöòkĐԁČï*ô!ÔłŃ(Çúk{őâ/€ĘÔƒŻ»–—Cáv/5TŸ|KÂçw·žJŐ}–Ź“TxàĘ%–üÓ$žÈń Ż<_1ÆÏą­fƒŹs±O§SG‚ȍ5Čœ_B !Ć=ŒYBLeSìRÏÈă @Ź`i@fËêÚP>%”"ńš_nl/ze­ŁP*h٧~ŁȘ“ČÈÀïÛEțó bŠç7W€ČÈ:âƒ)Á+E=ĂijŰj>z&ŽIĆž&Ž/FaTPÈv†}ˆG~ís0_ú3[Fo“V cÂô;G‘™áhź*Śšò0á†&, *˜b ŹÊ\ŠÀàȚÌüû—dűâæ%ô'5ŃÚ91:”gLĄT«ĄŸËä.łS3꜁|ś»Czgû—ąoÍïùƌ #![DXDœŰEżGŐ0‰š3ȚĄN‘UzÏœ˜$Èß·±°0ÖûžâmˆŠ18æ_ ŃĘÌHqzáóż1Ê7`|g ±Đæ˜ŒśŁsŽècG.2àž\Ùûˆ‡h#›„Ú0ŒC?Ő2ĆI€-ÖHù đÈáï34tÈöهÀïh€›Pü …_Âúâę«Đ(EÁɂ8oo曆œ§Ă7a`©p##öźŠ;ț`1Öí4’,ŹÂțpâČîϔî‚zăÔ»äK˜ĐĂùńd?ú菼•€ ÁŰAF/WI KRs–N*ű^Ű„©úàäÈ_ž[àCeoàöÛ"—Ő'›Ăț™’[eçü?œw[$»u>BQ.MĘ^~'ЀȘošŸŃ$.oÎ Ö7K)2~Äțz>Ș&b„âßàçZqH4èÇ^قńxÖ ûă2Ÿ·—ÆśĆŁÙ{5™ąŹ©>"č’șHЂšáÿò:€Ű endstream endobj 45 0 obj << /Length1 1616 /Length2 20191 /Length3 0 /Length 21029 /Filter /FlateDecode >> stream xÚŹșctf]Ž%›•ŠőĶmÛvžŰ¶mÛvRqĆIƶmT\±ŸzßÛ·oÛ꫿țqÆ8{­”çškÍ”śgŒCF€šB'djo ··sĄcągäš)k(ÙŰ™ZÚËÒ)ÛÛțšÙàÈÈDœ€F.–övąF.@n€Đ 403˜žžžàÈ"öžN–æ.ÊżT44Žÿeù'`ìùŸžż;-Ííä_܀6ö¶@;—żÿŚU€@€‹`fiˆ((jIÉK(%äŐ@; “‘ @ŃŐŰÆÒ kiŽsRÌì6ÿ±˜ŰۙZțSš3ę_,!g€ÀÙhbùwĐĂèđ‹àtČ”tvțû°t˜;Ùčü큋=ÀÒÎÄÆŐôíföÿrpČÿaûŚśLŃȚÙĆÙÄÉÒÁđ7«ąšűđt±0rù'·łć_7ÀȚìo€©œ‰ë?%ęëû óŚëbdiç pzžü“Ë0”tv°1òü›û/˜ƒ“ćż4\-íÌÿ‹-À hnädjtvț óûŸîüW€ÿ„z#ÏwÛÿő?9Xș8mÌèᘘÿæ4qù›ÛÜÒŽáŸQ‘Č3ł01ț‡ĘÔŐá?}n@§DùÏÌPę%adjogă 0šÁ1ÈÛ»üM  üżS™țÿÈÿ$ț"đÿyÿÿ‰ûß5ú_ńÿßóüߥĆ]mlälÿnüçüsÉŰęoŃF¶–6žÿ§űÿ©ü’ÿG)Łż­Č3ÿ+#=ă-Ć-=€ŠŠ–.&3#›ż}úŚźfg tȱŽțŐóßVè˜ÿ›OŐÂÒÄÚîŸÆłę‡ hgúßčÿ•è_æ ârêZą4ÿûúoœâ_í]T=țRû„ÈٛțÏĆ?(ÂÂöo:&vv3'Ëß#ÇÌàbeńę?düˆéżÖrF.N–że32ę[üÿxțk„śß`ÄìLìMÿ™#;Óżö? ÿžM\œțêúï™ÿ[ôźÿu Đh·¶loÂb•‘éҀ™?<)Ș3ĐÇ>êPȚ€ZRPgß럱ËUmű^Jß<ÍęùÓséÜáăPšúhŽÆą7 xUˆçKBŐ_„șEȚÉAsÄ _Ž˜yĄă}œ(»ĄÍΚ~Ž7©€Ź_ö…?ĘÉâsęD@âVđôŃÉÏ$œ1œ „ä[CńùyòéÓ#ĆàŰÈđPï-dÿ!.M^<,Š_ê9QŠ‹§ĄÓŸ&“OÈW7¶„găD†.ÊŸ™^W±$æ;>fà»ápŰÛ** "q],ÊüÙòvęł”ó{6ÉĐԓ*Œ:_]4g'ă\;^ˆXvĘpŸëÎ)Éò,Šêu3Ż™(‰VŹ‘è;œ{<ÿCÌáuq}ÈÙ<čÂÄ#^REhNűÇŽ9b”â%?ŚV}äŽȘ6Š{Lw‘țGÒ ÂŹéq•ÆX°Ü6H„ó1ÍzŚ,uÚÙ$â*2ƒ„}DwąČÔ/t«ŐŹà7Ł—Úź-$éÁąáęEG^^+jał;·Æj/[$ČËây=iÁèïŽ$PN%$ëVvȘ—(ün›młr~ MŚ-”ÚRçf€6˜°ïWë§§LOPòʐĂìȚcBÄáP#âJîxYäŸ"qÆÿYÍ^„*jìB͘MG8źśÀŽi7ú]G'æűˆ JœđĆv»ȚąÏäĆ7>Ùț€o84LE*Û?3œü™v„DûęÇ~ŸMTÂçƒĂ”CÖál‰Ò‰“jŹ4ŸŸšòÚ”ûE†À»Że—]A)ï›h3OȘšÜOC=ùS)ÉébïČwšŸ»+Ó$;čgy”è9CRP+u0ì‚}Ö~Ÿ‡c`û֍7ț”=Ó*Su€äeÿá)r&d;F[ÄAÂLÚ.bQ>TȘÎáĄÛ|fxw7žeê5ÖEOăŒ±˜!iêd[(îàl§LYƒ%țšńú•Ő…śĄÿ/F ìȚ€š«Ž"-ìćĚÙđ.ĆF•EțGA6|S)ûțnW·Y€F7ï;"•ƒîîÌÉ)đÓ oüzË(}G—žà-ț‹‹(ǑڊÏG *ŠÊÎŽŰŸhŚ>:j§ç~šČrâ¶ŁY“çł`݈b q㻚.č;ٗ8*ÔBd ÏC ]–Ïw C둆áoÀŹFw&dőt~„ö ~(‹Ú˜úc•ŐȚòn^Źž‘Oä\C)ƒUæ*8$} ‚(8ÔîêâȚigË œ>éœß꩕ęÖaâÌ5Šž*'/$Ą™.Cû=†â$Ńû4§g„ĄÁ@ÖźnȄ ]0ĆËą€@ˆ$˜z!á}S‡ÚșKšÈÓuœăúŃ”-ę»?șÈÂÆïŐȚ[ČÖvV tö2¶ÊXhúÓdŃ5!Ł@FŠéŐ;NŠ~&§mèë©*%~d„âUŸÂP)7Đ}łnśżßQÒąóŠŐ‚ Ö¶ć†@ùŸœ0›dŒîuz„ïßü:b.΍jy}ŻšÎȊÇGÇ©æœ5DßÿáĄ;6YŽ›ÈȚóÖzë{f—„ö†}3@'ïćń§Ę›Šö.bs?"))” ‘űāŒöòK è•”3K»û(˜=›BÇŽ±Hš<ż%h«zœXÇbŹœ»ô.rùÄÏU>C0·74JjȚœëńGĂTÒ~ç8\!è« )sÚbæMìűPüĘk9¶Ł ûÏAìtdŒŰyČÜ]$>BȘ tö|șsÈOÛs •ÈŒ—‰] SŒG38·1Ș#ë ;ŒüëŸâŐôx)o0œæ3R*Čqu‘%wŹÂZ”J,æ5| ăŽóžò”o –ŒôHìÊ[±d‘ĂNœ‰û1-2@œÌ=hŒÜáßúílê™Żцn„Ą=nz.§—Uù·Ć±ŠébÉ€Ä8ÌsÒKÁDĆ}žRĐl™‘ex„AU|Èù—,ÓTŐTAöȚQ{uQà™­èIČÜŰȚI°[ö@ë€sà:-íJyxi•R[Nęæhé$ŒŃ-ń æ†Ę72‰Šörł[ćé 'iő0ˆš˜WúîœđČű1ÈȚ \"‹©ï»6VSŚ*&”"+ŸŹU„ßïć1©ri}°Ì7FíȚ6ΞR­D0Ą2”#ÌĐ»ç'äAČ38]'ńr݁ú„@źÚ ìŸ(4YšŒ))àM4M!˜¶8–'ÖeĂúyŽăőژKëo™ćÍ-eÉ"ŐìŻ(]Í~”Ś’;à„­ĆçœÊŐW…ƒ·€ÆèĘ0•(Ǘ› Íœ“É8ű2`v&ïĄi .ÁtlŻ’˜—óìß?“ ÎJÖő›rć8Ä /ÍߏÍD1ÌT‚Uœá‘ ęșŠSH(‚q”7eP@Bcæ=ވ0ś4cćS…WnŁ”' .đ F#Ç]Ê ›Đœ‘kŽ0ĂäÈÆ2€:ށ hś›DCaT ?_ÁžžÈB8ź9¶ŒI {#gK!»”•ùC|èxPZ[;ŒÁBšhë6†„[7MΌŚqGVeÈŻ6yKQádĐà$êuâżÒc[żw??ùšedÄ< 8HYőw_XŠ$ő zȚz9ƒSÁ˜MĐÌńÏ·s**_úI)ê_;4I!{u“·9)Ò)B{ŸUaœz“č6ì«ëê\BűŠ„O†5Ÿ<ą!Ó!4tg%3đń”Ăƒ”ÊÔ:ÎȚ˜Ł#JJŽŐîÆ'Û`Ű,îžÛ$ô„°lC»{/ËáđʎI”ô†“•È•źYx~ÄqÇ0m.šâPœ· èĐtœCî6J—briäW[?Fÿî ëbwh_łCZàÌuœbæ4ù~ùOÇ놶ôK!X¶ÆđDÂ|\wŒĂÓë1Ù&n»°ˆ]è'(“O©uDfü1«Ó΀,&Śä.'ČÁ»mjÆU‹‹~ś]kx9†ÍHU›hJ«Wž(։ Ź™öK–?śt(Š~4–ŰÄčŁrgÙ ”–ä™%<æ?$ÄÍÚïÀá0W– Œ!ŹvbûČckœ~_’śí†CžłŠ”ĄšŽĐzSkkÎߌA€ -+9ew"­ Žjq«’FnKŒČïńZ˜€ű7~7·J‘@­ț`„±„*ćÊ û!û^őÍȘßĆRÙ?,@źÈuuű9ôœtäuü! uțƒ„ÊY’Ÿ‰vœßŠÀ$=eTgí&W&RÜsRèšż5•…CÄ”Q)•š­Č)ĉ­“ÌAÈ`ÛYżúĄ+^SÏńŚwSNțG; …5éÏéЇMĂcܙ­»Ïć&« ”îĂqdțŰT˜^ƞ&f|SŽûHÚäÇ~lÆÎŒ7œAvß3ú!‰ŁkÛz<ś^<ÈÖS;E+šÓ°őRÍ· ö”sëMąIłoR ÙöŹűfæȘ2{Á>rSPȚ-èá ']élH;1-"ƒł%ûlù~©ˆŻjŸÀ›érwɃ•($êfśŒ/a°Š(ß$éĄú’Ï.öxò—ŁÚ“ ń/{î“ĆŒ„4MÄÈg˜‚PÔ%gè€óˆX}€lsÙCœŠtXżK€I`ߘçrëŸ~*‰g©Ëț–wÉÙÌ@ Ä‚ŁăĐN‚ëcÍő/ÖÆÛԃ€ŐV„:’{1Ü wٖ”ĆȘe5faG§Ü;ÏRÛ@æùîÂ+Ë;1q/„…ÂaĆŻčÇùâÜ΄ïau(ź(^Ôu°k§)ǚ,šr4ÇĘŸ%úíf\%§ƒûX†Ń3àbá ęÚś«ł^ńŒéc„7%9äëÎÛvšvI‚)ƒČĐ!ù,rűŹȚőoX[Æ:ŚßŒöÈp|°· Ž'C<Ć6Oʎ 'ÁóR”fŁè,p‚•ÿäG„+Ž“äŠ aö… ô@”ł~ˆHÿ‰ćžÉ/XÉ*żŸMŽëˆâő“K•m4WŽ{ÚŒŒeÀČ-”(§ÔïŸ=”À Ùuòæe+vüXšp‚łü.1>€N2 i,îȚRŽƒ ìÊàÆwŠèŽÖÈŐt°úqÁ4’ò A $§/$ۚ»n\ZQ[DŰ87‰e±ő!ŃĂÚșòYꐻ…ƒĄđș1tԂGuÚCzàą„…z˜üàŸûŃÄĆŠg±Yô,ïÔȘû+ČȚT—5ïÜqäEoIŠśZŠ+żșŹfél@2%]xCHłßź5m†§MLć8ckîtt≜ŽôAœŚ~)âGž żhq<ŐÌXP”ĘS9Wò YéŹÉu^&ïZa7Âty>ç\ZZcïƒb&Ę;¶ț§M1A îÍՅè҄ÍnëæGR­űÈ'™­8zk˜ö!eȘ@AíĐ4Ăùæ…z+€mčv3‚ ZÁùćĂ^>Éő6DùnĄGûèôźÆ8›+ĆN{Ç5EŻy[rĂÏRfv\žÿđŠän2đĐÛŒx7©˜pSÎ^LÉ(*ŠÄZĄžŸ]ËU,ó ›Ő•Q!@іÆLî%čőičűűčvă0ö~ŸWٖÙĆg# …ȘŠzEĂŚçVȚôHśŁ2ÒőòîûŸń; -{Č$ÜÏà‚•ÒPà2±€7ęh“śńH‰Őä enAęŸÓ‘Ő đ<*>tI\ś3çä8śIŠčcöá˜S„ÆYTÙtĐĆZ=óRô€+d͝€~ ›ij “ún±.Źzš8űb–}<»ć݊p@íŚ?š#öG§ÿM%-"§ÄŒÊI?ȚìKî]gqi!ml8ĂXæĄR!‹>J“}æ5t3H=UÜv±P•Æe„|ÊÚŒGŸĂ’aŰ0đ$›4:+ X+zȚ*žRÛÔK*”ŻyÖĘâ€j#|„8‚YĐÛ/!*ănÌBú\"Ûç4};Êš• ¶â"gáÉÌWæbo ÿZj{čÀO€Ò‘ȚZûƄ„J ĆšśHđ'L…|ɝTQŰ«ßç)Ž‹ Șê üÒöòƅ‚rśéć1 ù7Ô6[À)źëhUPe»źCChŚá‹VyöĘ”jš2ÍŒÉĂ:Æ…ę-ó|áÂmśïWQNiOŽ”ő9RœpŹ;?‰š‚í„ëû8Æò”n88ìùŠœ»“;ìÇo†šŽŐŠGæš‚śC4ș)˜*ÛÓęÏŽ„€%L›1Äș1“”qŠW@04 ù-t[;șÜ©0B:ÉzGs=j˜ù9iƒtÉS8oć«ˆJ֎[îęăzȔòÍłŒèE4ńk3É<ÍĂM2öśÂ[Öîę°zq&!Ê•Ąćđt8StłÇv/šƒƒ %‚ú҅€Í*_;ZÖTt-6ă<ț”ŃP—čN YۊhwdĂŸő‰ v{ò‘TXB]țŽ›«wCšŹEœĄûHt”ÿą|ą?ë“Kඉ¶·ȍÆKöæKäŠIŹŒÿtžŽÌoĄQ‹tE­îX7ÊÓaŸsIxí^úă1Z%rj z©ÖҒTF‡ŹŰX-d‘Át•Tn‚UóńąűȚC „Wğ“ax6ʫ䀂NJ.̇%–‹ÌcŠŚ ÂTáwšÎƒçŠ}ß'Ë áuûȚùDwòìÛZA%Íæ<žžhSέ)7Ș”(ƒ°ËŻő¶ë§ebntXùp" „p#ąœ±so‰a6qŠŁșH¶űńa&v$P>…|űăŠj3NӏŒBV¶|éh‹î€1·ü€ï=0áFÈ~€eíÆ‹N 7©ë’ÔąUšÛ“çWÁôUŸ:Öt•öG ’EC§Dˆ}ènáeűÜ,Ł}PlBxń`ó6x2±Č­û”•>nKx°DčșHûQŃšč[rKló1-:›Ół_EQùÔôS=UoĘ8[€È†,ĄM=c*Îć0Ú7 ÆŠŁ±ŰèŐ^ ͇UÛ|ğùUë2eűgăvqèĘû­Ÿ2 ö'œŒŠó—čś9őú02ߌlĐh§±ŚË†ùčŸG?Úw&F!Łîń„…› “p/ïG’|!çŐk Ű€Máï3ȚțvńóĂźö™_SÙŚ>ïC3żĄŽŒ…„.L9}êöÏ %ŸÜg:iIöò&+ëaT 8}ÏJč<<[)ŰN‘æ يi}I˜C&Î]€íĐŒäl* §%–%șHBś(fÆÂŽ{ŁÊV–|‘‘ Ssg·„ƒ©%Ł#9dtKŻùĄá&Űzș,îGŠțŒźŽÌ*ÜÀ«ïÇ֕Â_”ńiË;Ájš:üKf†MćMÄÊdmqˆ_Ó{ÀîǕŃŚŽÿ]ôXU +ŁìU=„¶Ă\8úʶĘZ!šÒl”â&¶T™XŁûJ‹8NÜ*žêç9/KÏ)m§đŒJäÙ§LvàéÇȘhÒæwă*šIć“PŸ”ž…pű Í_Ö2ș!ÆN·7+Ę»j!\k)aòÊà‰ eç.ïÇiÒٖuÆjqÓ§œQGTŽA=ìUčڍȚóačZëKêÊ3Ń|njp»æȚë3n żcî^aźTś‘Cb‡{ˆX@dÚ&‹őtłćâ˜b1H~ȚaË+8|Vźf‹fšjęȚ©|•TWżV#YŸÊ¶û“]|w6ŒźA5䎫-ś "dÈ{‚łvWăÛƒ‘›W*ybŸjê”Ű”žmyÓ`\śÜśSDca©l"ËÛôî~EŰ ™YU€»Š„§ë䐩hű…šïA›íÛŹF@ïjXÛXÈĄV 'ŃÀ^Ș~Üéș–ÖŸÁ±û{Ps‡ŚL‘nțĘušNÈË?ț‰Ûbšńö<ÓțïqîLž#9í‹Â9/!ł€%ș…Ÿ“â"Ăa<àș· LÀ’XJț/d śN!`6Ʒٱ20îUJo…™{.‚H~­ûš’ŠzXmsgÖâĄû[ƒ‡èڈ”öĆŐžUoŐń4áÂYÔESU{:< >c ~@ÿ…^̞„sÚ,mY’ Ì/ߏeôӄŒ Éł?ł!đHèuŠ:Ń·3ŁLš, ă±ö?ÇŃeÁcu`”öéÚmûšÎJNŰ%¶mžC„}NU҂ °./§&ì°òł†”ŸZæ m>4žJ}Úbâ•o*ˆž )69cę*ž.5ÀgpăÍ,F™jé6łÒ”HëC”ïf\YHŠA'AŽ2BÉÿá>ûÓYXœ- OĐ č< ;‰*Őb2ÙìԇTràg0V\„]¶ÎG(tÄFùÚg'Kt,­tȚÍ Kaš M5êMŽQ‡€țôšGÉ!„í›űŠ Ă瑙n3ő~ûÀ|Úž:~pj¶Đž"ŽĄFÿ"z¶ĘÆwGd-Ą¶ ·TEaŠŰï’J€‡UÔ&Y‹80’î4}pąÙ„ł'X•Ț6đł*©IX<Ö4]«ÿtV?őL]‰_ËŃil‚=ûÉ3IĆ6EnŰdFäó„ôâQŃ>WGąH ‡g Fœ-7)9éËƂiS•űâHÔó脓ÿšűÚà1v}„IíŁ™Ú €S#SdĄX@ZS '9jÇiX-'Ȃ!Ë 5*DOc‚'`Yj-7­èM•ÆȘRšűLb}l­ÜÎ␜ó$.GϙxFˆ‘-žjJI-dumI$Œ>Ϛ€œûôÇšëh™—_ZvȚ·" ėÏ”äź> Yü6Nb>XH"]QŸĄÍƒËę`X”úT2) xąéÙ#ÓuŃÓԂSžná(6uÉÎžÖ Vć“Q É‡§ŠòÈęËšűç˜Ł >ÓÌLțÛ”ôăȚÎąŒ,!àwA€fï°ę7pśòö6α·Ź °{jȘiòűłmÿĄlH‚·R=aÊҔtŃ/ÁŠKžf́uE%Èœ…_#» \&xÉ4“űú5?$șA‡uJ?*È1†'ż› LK3‘+ÄÊòz•蚃çäPnŒ&-' |‹Öł"jŒ1>V-jÆÈ1±ÔŐ\†žődÖœrÏ5혚iśâŰv3)îA7ŃÀ‡ÙĄ}­ Ç4†ÔË8Â!ß <·8•{Ú€SúZMŠĂëR¶±mZÙRÔmČûsoÖbJÉđsĄ#瓩ÂÙ·ÌXáWNߥtą™#Ò»l~JALbË`JŁî€áÆț‘«4r“Âó·‡ad©&p«ŐJR]Úł0Üf?€:Șá7(±êqêć'LoŁ.H»Č–±ë}˜$J}žÇŽšĆ`Ăâ~™~eœÙŽìpő“AÛȘLĂR•qFČÂq „k ÎyidcŰh:M©6ˆ‚Œ&’źŻkŽȚ.è?’•u‹2·ŒC‚ŠŠƒCT™S‹„–űI™ùąÍïdÔ ûyÙù;œđKą…’JF»d;mŒkBŸZ?ÉË=8·Ÿà%żŒ !Ù¶‰íš˜âݧțhb– (ŁÂÎ뻟đ^òÁ·‡őÇû„VAmùz^„ÁTŁŰ ^1-”bRXtÖÈò€3qa©œh0j)@°,—–kÒâ* ï{îçA· ìßź9nX•‰xeÀ«Ó†“ÆôŃ盁>8‡ăUJÁF€{ÒüșÛ”äM1_b|FĄìÙș6ĆfűŽ,Â^ß»ćì]șƒjÏÜąYz‡\èv/Û\[5Q &?Ó/ûMöS^3; 9WžÒȚ=Q;4œL‘€3ČäJȚŸ)kȚ”Ș© ݃:s­Ő–ôàÒŃQU܆(֌)ìö”oÇÿèćŒdŹ=+Š<Ì_n§Ź`Q_ê[ï0ÄŹ‘°_œ#„:Gƒ_Șă9Ț·ś.•ĂȚCŐêKkÈagŠvćÎÌŻ’•Úű˜Š^ÆöDÙ>À„Ÿ{š0„>á’K᱀\/ïßÂPę^ .1Óž-¶đśŒŻ(TÂôđêFDäčT·6ĘkهĆò„œC » jiİ 1Âć˜Oaśî$ŽfÂŽ-ćă Aț •Œ•ÙHCٟá'ÓŒŃ/źâ†Ț9ÖDwŽI°Î”UÒĂyń`WËź†˜íź!ҚC±čN‹Ö<ĄoˆĆcŒ&Lțśțœ‚ț=H™ÉĆxŽXŠ+H8zöű14g€‹Ś=Ăż1”Ô;g `ÍŰgÌÍ |ŐV8lżÉ:tđèèÁ»Ï*›$“|…MđÜŃ*€Sš_ŰæOńsțÄšGÓ=@û…âŃÿHŸ”UCêHkńąK,QŒ°V)ȚÏÖ[źƒ2ŽA68X‰;ńțMÉzTg4‹d`Z o™N"ü§žŚA·€]M°$dŸY5VZHmϧà24VÁOlw9ę‹ręk°KqtŐMźB;9„žˆ2› =ìö“Ú*1Í„Ą Ćsڞ°7Ž8•eă&‰Fäáč2jđmô·š}íÛGÂŽÓĄj6%92òJk,L_Œàš:S‚ĘL•ĘEÙ±àŠÎ'C_vmò»+ f ¶ov_á±p†bÀÙ^Śè]"ü\T‡E6„‹|„ĐW‚oTĂŸ:íÂmp°ûJ ?°žŹŒ!›Üu+›>-J©ÄcĐßíÿÌÌșˆBæZÌÛ7ŁhZ2äVđàö.Œ¶òÔWlȘè§ÂP…Ąf«8îì©OïƒĂҞ+‹f/ƒj óQ-ąD'쎑(%P|΍ÀnčĄeđ3ÂŐm jƒ9a·ÍÀE çÔA+ŒśW!=ÓÙÅ%ÌK~?P 3ÍźYŽjӂëۆïóƧOèźhXAB”ș0}”TÊrb:0ŹČí XAvYȚAs |QV‚îóLŽëŸÊ80J rȚŰܜwƒ{6!yÖg”^«XÛ8«ăÛxÌí9ă€Í$ɕ l%Ń9E ÏăËæT¶â„{“]œ^ÆŐżÿŰ€ź™~mëbRąO$bPÛ°Ą‚ÄÙóÖĆĄüƒ' ˆ/E•Iô=QoÇZm¶ï9Jh±ÿrN”"Ž û€Q…îŚM° 6áüâæžœ­dâ èfÂÁg2Ő'ț Íđî”}êù–ăIÁzĆ·őÔĄJ:RĂȘèȘè~Úp»ŽöSh PÎÜut†vÆ@ƒùĆ!ì.xăúêFÔQJ-É!§ûn ęș{ùÌPß-”NțUçCÒOšֈyÁÎkțˆ( ćhù‡BôŰ ä1žŻŁb΁źĘĂ&Ș§8bźŒŽżP·ÿ‰ë»™û€e ÛVÎâ .R·&%2ôșwŒŠBŹÉ”œß1žżCŚéu‡óŽÉÊ̟= Â;)ŒC- tǝGĄô+exîŰ]ÀŒĆśBĘ+ç`5ĄWz&ÀOœç7„IÍ9kŒŽ•C9¶R,‰ÔN“xżé?ű)ëo€ŐžviO\ŠĄ‚»~8y "(.ÉKs‚ń–cđRŽË_čyiá—eRЊfʙrh¶5ątÉÛ,5ƒŹ‰"¶oR‘ șg¶ŰX Ÿč+*őŹk.˜i~„ÀÙ4PŃ»ÏÌÒэ,Kóźye$ëÌ !:€{è}Cšš!çPi@ô“”Ž(’ôËàgéòzkjd—­q4ŒA†ËtüŽ€æTà4Ó„X"źű 2·ŽAk±]"dŐÁȚi€t=45|Üšj{…PÍ^„‰Ź}Y\â[»Œœ9„‹ÊĘXÍÌ@ÜčšƫҀvÒÁó­éŒqژ2Y6ûÂÁ°őê„ì`ŃÆl€ĆK±$\Al»cR_Ù{žĂvi'ę:HaOƒ'Ÿ%ۚ­Äá˜pűqŽ@=șAÉ.)xû6BIĄûÌ”‡ZśÌB„yÜȘÌ΀|Yśìm/ĘkÒke‚ĄêZf}Ő,·ôôë6b[ÿVŒ€Vž]Ë\pL`Ńh}lJ‹Ûd^áP ˆGbőDąÂùèż˜_OłB~bZ Sbi…ŠDĆA čïžv„{œąßŸ…””W±ËA…TSmĐ[»ƒJ-JiYÇfkÎÜđŸ»R%vtYÀ~óèŒ#)ƒ"5ŠBrˆàŹwkuˆŠbÒűFœăÌüP2.Š’Â‘æŻFi'4šò3őîYxÙćB(ôç7ôð8ćŒŽù2}tîæE*̃±4Ɔ"š}—Á‘^1čbÓŠ#ÁośŒkZ"X+Śû¶éˆ}x_îK¶k{ÉCù…Ș4*™ú •]ëߕæjb’ČÎ}șFż&»O>¶„ł§›·}ïßBß ”ńQ>+ŒvZČžNĘ6Œ—Yšüł_óWšD’1 aźÔ8Û”Ÿ.ńvóà^J© IőÂč§ßKÔ焐 q–Ú8І^”äόż?”­jmu޶îèčm @ê4‹ęZł=\Ö*ęX4H`ÌćLŽk4q,ôĂ7ÔjŒ/[Że”í (•ŽłŠ/paĄ’bZ†_ÿ"‚ê‹òŒŠq–8ˆ—ÏŁXz11ŚVő–4ä›8{aK6Q! ŽQßî„3É=ŃM>\Š8Yą9ćâ%oI—l;±Æc•€•VOXƧpHŃ㳛ÌțiKŻ âàN˛š$łœ…ŐŃÖL đfŹș•5I0ƒUĆDšA4GG Ù0(hô{`/+©\:ƒúsdWqgƒA+"XâIß»YlÁ~}Kß7ź6«ŠÔ#ńáép¶àu »ź°ÇàŃErĐ y·ç%KLzęLíџbyĘ|=Ÿ*ˆĆ'x;ÛÂŃăz>żŃûuê‚ Y†Ÿ_ëN‚íLźX\$…ź_&;X»&G+Ё]§uĂŹR’ž\3dą°üÙÖĆÇȘJIJSłGG]ăčźD?Xú‹šś<ăŰJìáăœą‡S5 J'̓9)Ő~ê’ˆŹiïËÁG­“Ièƒb‰6ˆ–̍='‹?_Šlž„+»Ö&b1 ·ûKc‡ąrŸ˜‚Ę eó,7ÁŁ 64Ș„XöŠ"VքšŃŐ Û±Ó„궗/[Hڑ»@PĐI„đç‰=Ê[ì1$ŒMˆĘ5Ï}Č*”u‚Śâ7=}–=%#$ćĄ Čô‹ĐČɋ/›ÈIȚJÉőŰ)Žä|yĐ,Œ”pkÁŐhÀr T·ƒ~ô7ŚŽžŒ Èatęzț2OđhČ;_#2­ ńš|5ű{ —đä}E$(ՃĐ:m…š[䊚őđ†6ï­tEđź8ˆ±O`>"A„!Àó^[NAżsêY+ïO(°…W%ő‹D{Ï2XĄ79 Ô©šPĘŸIMyÉA‚"œšNî•_ ȚVišoÁ© Ż(9ÔÁ`ˆ6P_iâü yÇÊÖą[8vfćó,qĂŽ*\îÎړŹàšœ—«K6qÖŃ ëËüTt©ŃEùĘÁA {—úè;Ò/ˇ‹Ê;ê]Ż-Úû+ÌÔ‹imŒĘ쎫Xæđ—±àÏŰ•č[Šr7êŻȘÔÚY–«rBŠŃæ6ÔÊł©Ț32ä~łëÏś*ńźȚ–䉇)#k†’“ŐŁ6Ś-óHäo꣔Îá˜âŠ»|_ÁĐüyó°Iˆ• ^"Ă4@­ß6«öąŻzá[¶é<ɗvù6á߇êțÀźśžąô„…âe*ć+ gçÀŽźpÿ^Ż8ö2ƒk’ćËqg°òżÚsèÆđ<À"AĘÚË4{ÜlŽŚOQŻr}žž1’ČO• 3ìVR‡QÒ ô}œçŽ+­!±ađqœô‹ŰÒŰ" Ž3·ÉŸÌ‰”ęˆՐ¶śĆ(“\Êća5g^dŽŁò%s|Fí šÌ5È;4”à6“Zœxđ‰dÔcűí»’­Üű!d‡ Ś}’à9ûȚ€ŸTźĘG*K~iw.ńë#6QKK¶kÂßqà‚° ”\듁ÀźæUùŽ0 ućÓmYŹAçû‚îđßHè·ń§±ś,€áÙžš•€!«Šôà’t{ć‰ê1ÁĐî@WUżd˜ j`Ő&dŽ—„òæDŃ-YGŽ »ÀčÄŒ°avĘđiЧ_T^43ÜžÏą@)ü6M§K! ű ÁÁYiŠ$x°sč„șùš˜T€ïŹ4qÌè6È —–nlmÔK—hTŽ„‰ó€Ż6Íęˆ{“lŽ =4"‚Tűö;ćæò~t‘联c:Ž9ˆ«ì-FV 3|ŹvŒśMú űê°ÿBIU•WęȚÓʱđ=ƒêȘ2(śŃŁHxhśă±~șŠšąöDżW@{<ÍçT•ĂH”jÈY’xADcHuž]ŠZGÖÇǁhÓCŚm™ÇÌŒČČ5LšÿbG‹†Ò2#ˆźÔìÉ+ŒúĘŠ[Ï% ‚ƒ„FS• /©»—©Ł,K—–‚ôùÌ}èAZHvßQ"Ê5<ÜGD T„ÙÙo˜mœJŃ!čŸJÈ Łużáï'æZoSáĐ4cć°î!ë.2ú'Ÿ”őčĆż±Ąrœé 0<$û„±ŚwyLț‰…ćœ Țš»PáÏÉ0ٚŻțÇ·8ykʁ;1<>Œł àșŹÀd•§8[ûx&䚚ÉÂR-đŐˆŻĂGŸ ˆ€ËĂYZđŠ”RźËűJÂÂćÉŒEŐPÆæđ&MVâR.BCÖś\%ÿÍÒB” ”čŹpőhç”Z€úùuuíš4D!ÔH;JđLżń]ÂV:{‹z»ÁG۟> àeŸ ŸšmĐ©ćŚÏJ‡CC판čȘTfœÍž^ńgOalŠ'Ł3śfĄš zkûńyǚ•)fŸFfRȚUŒíòFŒ/À=G~SYhĐ ŁÛ§«6A»Lă_Ż„àaŠÔ/L–Œ©ęÌ0BÆÙ€wë Ż”(űș±…[Żł)—XŻk$Èúi­ ‰ŸÉęqBłSŚ‚LŻèg†kžÖśŽúkî“d[^šé$|Č‡iL6„“ińžúž’mŽÒćœŰ(š¶Óûëeês•!ZȘL ß©ćM"…ZJûL•Ț?.q¶ű2è{ѕ{bВ©ÇY $ß~;àQ« p;—ˆš7á–òÔĆČą.ŁĘL֊Ł9ž»6ŽX~À©°w(ăc…ćÉ4z›„Ű?^Ű_ìßölKŸČ‘i˜‡(ÖgŽ:Ű7EÓnsQÎ'·5±ë@â…PȚGö(†Èo»\Ú©dûìW[œeû‹ałnϛ€ÄǏ§žƒ QÄbe–đÎÔŐd‘*öĆÍüI!đóæO—ŁFŁ­jùPśőĘkżx8BAv3‘©3L8ĘÆź†Íu/E`SÚX@Éś«Ëä$ÈÍ3l­{>=Ąź űIœę»o‚úJœ(Ü&JÛ-ovâ$IȘjIŠcË`żÆÖÎcˆ;Ì~ÊĘ8` țLÀr)–ÀžőÙ,žńü) 9zšgú'ŐIîțRU&ed–Ăƒś«5œ˜ EHa/€ń)ˆpÀ—ôô{łŃŠ0K1ÿŚ+—Ræ #[óDÌÄÁcÔ\ûOűCȘ¶ÂT­ž©ú©©Mü-tv.c@›_ÀÇżű–ŠB8!œ†ZoD©ùś­J_œ‘r”BÉö`ÓFXÄm) &65ŸkžQćĂ$iAź€Ó<{ŠăoŽ v·;[)±æ„GLőÂ2ÀÍő??>QçPÔ_$»P1ʝ\œôIët“™AiOCò.Ó&Ș aŸëÖŸęIÖűĄ·–WÏACé5Žv”óąW0œŽB€©ˊüŸżFæéGĂ{„1óÒ:‰ÿ: ÈcE0KÊíśś`^? ‰.Cì—ÇËĂvòAœŰò°țiÌïf™țGàĂ4|ìÎÍpswÔć&f·Ë”z7Č«Æț Oç3”JĐśș(€őË'4ŒöŒ~ÍX8ȚtX–”ìèž>‰ŠžŒŸh|EtҝԜ ž±Š§Z¶Ł œl^L+XžüSh1őCc«Ò8}JꘗòL‚šP[Ÿ„©„fÀęë|§?|ï üIEönïp ÖHśAQ…/,v<]^Ź €&ùŽ›âŃܟ`çÍáÀ«Źqœ€@ž‘uŹG„GXŸú€ŒșC,æŹ%21ï˜Ò©ÊfÛ¶ŸŹ|â.Ž&;dkÁÍ•&±ïüŁ7ڌ©ÒäéqD–•Ź ThÎ|aŁPËćV:žß·câö昜3ÆHh/RNźpô™JŠg}V“ %Ii­Š°Șǐ”đrV\Æ_%ŚIŸ?Xű\țétK»~§Ą+TCô\xńdTč±:Yx†·U¶çjì/úkë—äÜ#‡‘oíiƃÀ˜gW,Ò úSV5bô˜ę:ś2RûŒe’ț»űU՜?v†p ùùà Tü’ áĐ”ię1nÍÏúő"&Œ öțMőțęú,–ü̂žü_(ž%¶wC”ü¶›š>F”JWțÇŠŒ.;9öŐćśk<Úöš$rÉ}șĐíùƒꙇn&ú‡AÁ;k-Ç"”»Mű"ëjTÊ±UyYDŠ0x%XîÒÍÉq‡bŁę4š`”>Âh€‚óšp­ŸšlvàÈ„çsOŒBö#)POÄŚm§ż§9ŃÂÏneŠĘj‚YÍ­egtŒú‚é2Đ<ÇÖPÇŸKlŽ„BŚž•™ˆÓ+ŁŠk<Œ€~]Ê6 6ŃÉŚôdŚ H ԛÍr;ŹRyŁŠ,€Tcf8™Q€Êæ‹äR Žâ €gA|K5Ô€čą'@=]œTOșČ^<;Äj”śÏžÆćënžŸłÇá‹A,ȚÁÊ-q€s|p’KćsŽòe±KĆ^”ăš0U úËt9°+`mĐ\0ÁE?Śê;géŠ`0Ο°w0~䌐—ű.&&ÜŚÄúTčƒKèw„o ’iHł ŹĐÉż «žÿ»ȚmđVŚlô!cp Î˜‰[î 1…ű±üÇá^‘iއûD1ż,€»zč;ËR 1`”K.ű9/ácôčxŠ“7S?Ÿ,–“ö0ۚЭÊÜRiHoëäHExûÖÇ`ăőŸp8t*»Nż ń“…‘ÍtBO+Š{€ÍśâńŁÉw9śpăčîe^\ŁTHòmŠÂ͆9ó!zçÎ~Đ%đ†á h”€$vÓäâ"!xé=I§,ĂĐŻ„”ąù'T~3ĂŐÚüž5}ű08P/ŠičçèÓ}” üäZcUEțĘăț=ßgëzÇj±+û™)ąT‹ą©–ZÓÎa»>Ś*àÉ^2ű ÿË șóP/:˜„ĂđhTZU(ôÏ^űÌ6‰Ü F•}œ4%čĘ=žÒt;č„Œ—Af!dU{čaìöŒËžEIg9\ńQńĄł3 „Y#rqĘÛ~Őóîâu1ă'ń$g©o\"ĄĂ Țâő©ù>O vŁUùV)șj‚ €ánBüÆp},ÖgżP$ÌUK-莉àôĄÍ§\Iäië|ŠËÂÛó™z-iß”JGšÒpȚÇ귈 ÏgÆłč]3Sg©-j§°Z^…ńĐă{łÛ± LIIRGœ„*GÃe! śh!ïÛźÂŽÇ:Đàb[Ïûàà֊—t„œ^t< ˆŠž#0Ł™)3›ƒĐxTËv6Ă)D\•©|^u'BB“ëĄôTwÜ4©S?Ä.uæ/4ëôóˆÇ2Üdń]șÂCˆŽbí±L–ßôJst…,ÜîCÂ#đ]ÄąŽ€8Áè,Ă)Nvœz^˜# g»(WXłŰ`ìSS"j@˜~ŸĂÉ€v>p(©ìŐ~È©$˜BȘs-OM,ák$!‘ĂN„/ôYŃV·~›ˆKN™{|0\d-Û~ËàźÌ»&ńŰ śéÂȋû-ĂQ@ĂńCÍË V”@ >Đ`Ú >͑š!œ«·ˆ8Œ ȚÊúsŚPïí­!Œ±ŻíF-mß|]á:۔oP^±ÁPĆIžà„)’țŽ0Ïl+œ+Čú’ç;q!é΀:1^u@tW­ÿ/CZŽÛғɐ«"śN–;čęžgËl:ՄBLo_g\8q ƒ  PÒh]xâȘ:Ùûœ‚ìrŸ"ȚŚżâȚ ü 'GĆÄ”ôOćEŸÈ˜œÄÇĚ TÛ#iw[kœ# ś=EŸœuü%ĆማæžùçÖ±¶JìgÛgTûžpç3«Ž_&AŃŐ>;*‹ w\œćDëGÈRjęrcȚ†ŽŻëmJ»ț綍.MÂáz "Ĝêc~ŽĐöŃ}†Û„8ôréßtèęăBDúj?ŸĐÂĄSsGÄădű„h҃œàUáôvkGò„mèlÍbr陶éƒĐŠWê[…1țUĄbWôŒWÂŰ6œCPkŠŽ"ÉeSűȘ%…8K±uÙ©e;OÂoÉot9V— Ó4›4_œá*Gßz*·Mœ}ą‚„‘Ńߗő.-taŒ(Y~EBOwù?âšża֖Ę!\ąçmÖèV4U«ò‰ősóŽuśńŁA@Œ@žóêoüŒèPXzž{©UìĶà1ŐÖûqKÒOJΒ\„±$†\IK–ŰÓ­1ÁˆBmôá›sI±é‡ž:ș +Źâ ÜĐ/֍ćˆU;ő)$Ní5‘»:"ÒÛüÖÌUæ5Ÿ/BYKŽĂĘ~?°àńćDS2Óû…ÎÙg_° æóÈžŹV§I9Ș>.{›cÚłŒDŚi0ĐòńČ6ˆK9 ìm°șŃ Kƒ„rN ürć@xlŃÍaA}/ăˆÍÎÒ{]?óïäőXŻ5=_€ôNčGqh˜;Nÿ=Œ]Š…/mêÛËôM't†ædÍ{#ŁŒÄtxlkSĆĆZœšÏ «}żšÎB­“Èț;#7»_è(ŃCž„—'“ŻHn'q€ƒŚ î|¶çŻÔ"” Âœ‹Zń\H y5ˀ DŸŽJY„çćĘ„’† ŻĐ‰SïžűÏ …YŸ©0Ëhăoșw?t“qŒ­ïϘN‹ôü& V±ÿP3ëaŒśęhü í…qtŚ(‚\%‹M©+=|ĐS’đŽJ_”Î(ŻM+ă\NĘcàȚ\;pĘmMàÉŐ3Ô!Ÿ]śjśÎzîÚŚÍ8ŽŠú’żzč6ŽÉr”š©–ÊKzUbÏ8>hŠț€q)ÌĂœÀqĐzüRătDæ…żŹ1DNÒ·Łoś©Êâ§tĘN8Sț‘”[ŻWŃϛÓSyćŐęk"ŃY‘6ú”íxô”O!ZKVbč+ù3)ß©šùkUŽX†ćś?ű ăžË˜-‰üwČŒ|kKŒgŸ tÊFŽÔÂÍ:ÛąÂ±ùŸÒ‡^ HœŚŚșl‚žsÌÇD ±eÏűÇ)Łúłî3áq€ò”wćž/,BoڛÁç’>N(đŒ]yŸ>žHŸđßà“Džu4Óè$lăƒ€1]ˆ=HK+Ć-qèˆ_ÈÌß§@ćŃ ”ÙVčŁœĄŐNbü5ĘVÏwłbù>]ȚÀęg„ŚH{X?˜Î!Țe5’żVĂŒ+čąBtŠ)œ3„ ĂI~BŰz>˕ßÜęé‹/‡-Š"ž8‘śÂ—èXŽš|ìă›SžRm’š©Đj’8y;—Œ8AŠšEjÆwśŠFŽžâ>ù«Ü\Ž Jl+œ‹HŰ(Ëáæ9“6îD|wAZ.žÈ‡óK#Sț ÿàîzČ%!žÈ>Ÿ)Â7‰‡I;ìTX‰ŸeŠvăq $kbbQ7:±4k;Ń™Æš[}ó7ڋ™9ą„žN•đù ç.·đˆ[LzzÜßsƒ^uc*ŽŃ+ĆF Rê5Ł)YŽ+Ò‚B6ŁŽĂ°zÎȘ{nZ ń“ȚsKĂwđ†p]}P9„ˆ‹w^č’Eă” č+ăÒŃ©ˆáÙŠ6Ùż %yQ„T=~"č.í0Čœž˜O°!gpźă^Žç1“5.«¶ö$«ćrêĆ0‰ 5Șămr€ÜĆÔŽ@Č/KrFőQHÁ¶mȚú”Nòô{L™$änzÉ㎻wŐÓ§ćúŒICó6N,,”l Äf ț‹P6R„üEìȚxp‘œÚŽcúčZ2öż¶iÊó{±iŃžƒȚ©xаU,șÙ©ăzțx »ÌD.jvČ኷RUuÀ±čÒ ÇCÄêÖ*SoßIÌZŚvĄCšo*'‚CŠÁ}ÛYÎìXÿŁÄąìwę>ïÜæ ȚUÉVD~ą»dòO©őÇeę)4˜Ÿi}KE&_aÁp±5bÁ«%ŒôF$àö<‡ŠȘ4z3ŃŠ»hń[ž…WЌȚę}x‡sł‚’U P$/ ž—[_‹Jß >ÁÛ Œbd\Ż%j_.fŰGx»ŹÛæ•ë•âtˆæž+ÇÍț‰FŽvĂĆșiӌń#š€ŸžaÛê•|*SSvśđ.NgG'D„0Ê7aé\͙@~i.‹YšŽXćdi»ń^€v>5ęąVìˆ@~BYœ—qȚ7W^ôÙIG›'Lć°§I_Çű–‘őXš€>aìŃĆn—ô”/ɐ=Ț{íYqĤËrˆ,í>J>MƒîᔩäŒđŽ ·Œ” 6cƒ@öț4Ÿæ0Šé„V§ß@!Ìó8ÀsŠâUőbÖÓOŁ7Ț fö A (ÀGíęÌ:nđdcńŸđ›n^œźń+éń$&w|ŃÄRkI#[üV`”ć:a܆ŽrńVžá:˜ÌîÔȘfIźd-3xxŸi]à(ŽŠȘŹSN6"ÙQŸŰBiY(Ÿ‹tüŽź­S±òSz”ÜKŰë†JËjGMÂÚŚBYlËxEđʑi(ci\Êïd(c~Àœ"ń3<Ę Ęß|tđœ†€žDN :lSük5IüŠ —/Š6:óń$à–7śc€ÜÀ1füŒO”‰†)ÒCÁƋAŠóĂÿ:3,p”Ò&’ôă{9Všf4rćˆH°â+C§›S°kę·BDÖ?ÈŸWM@ĂçeIF˜Ú@§œŃœ˜H@ZèÌÊțfŸ=ăù;DŒㆠÇČL‚Ò M·°ÄŽšiń·|țvnÉU~Xp}:9yÂéœ0 Ț˜9æ\j=Őʍ jÍ úAe™Œž•Ő5Ÿ?5^üßCÈèy`>…^á8rEÓöi8ËĘŸ5uàŠ*€·œ!k2hˆƒŠàțGáéÔ‹ÛĂ·ƒ}{ÌÒ[ì0R†ÎO9=óËžŰ Źˆ]ŻU‡öu"ʐ‡Ű&’“Ž‹bĐżt5|©ăŃ€@æÜ_UșU„ ŸàŸŻőah.UgŽß­?ò–RènyĐg…»mĆÀzòŰÛ<í†]Œnà;vœŃ±+4»…ł7X” œC‘X}”ńűyMEë`:ÓÖE–fIŠn*4Ż•Ć)X©ÆÖł„ï^EÄ:FnGZ;“ïs­7ș„ŽZ—lCŚÓÀÄusQÜ`±żc‹żæ)űo™B úŒíMj‡Ę’d ?OgAŚt«„jQá\źE+ÖćÒDțÚ~|CŹIÿEËìWÏûęŐpÄȉeȘuűÁÿŸ^k "+úiÔSÚĆőżDÍ{<ŐțRĆ"“Ï+Œcd΂>ÓÂăϕȚ3lVś`mčî;tu’)&Pćßtꌧ tJѧéÏIïooâž(?)}êxMM“_ŹȘŹŒc) t)?HEˏiÆ­Û@čl(gpțb“3ÌĘ`Z… 5Čgűw9!çÏJ šœY”òŒ-K"Jvß pȘ0Â~ńÙX[}Dƒ&|șÖđœ“ÃśńzčŚÏ/^ » ż-„ÓŁć&©tżcXs†·ˆ-€čWżeÈ7…%„9<ôŃûłè:€/ÆȚ=èÚ»V6 Jćț§G}±žg Šș‹:úpĄ}f€Ÿń_òłČłWȚ×`d h…ç ź·•˜YaąŽșĆőcGăW“é󏻻ĄEفLà€Làèrdúă‡Ńçè+„€jòN„É™Ą0“„~CŽĘČíșòrVކÀ†AŠÓžżWcăöCmĐçŐúڊ°ąÁĄ%B‚2çÀÿyąęœÇ:AkÆŻqÁF‡îQősXÏKGÔęÍżŽkhț•Je[\ s± |ÉI۶Š™<æèŐ™ÿo‚ść‘ȘŚŚs*†őČ•Êż‰üpúoükH•oa|CӀF‚†ƒĆÄ‹ęœ~' “C+ Ɩ‡H+„ŃÒ,}‘9lï0’KKŽźÆ™©ȘÖ.eȘ>N3ÆY€S~—HÄ}2ŁVÏùO{”Ț:ăärłšiLiȚő uû ‘= •Ăƒ§ëŻŒŽ‡EeOțȘ0ÈBztÓÎiV@qcNJ©t·»ùQ M BęéNÔÄ‘v}“>^»sÇNËÏf)FGg|Ś·*fj—€fÈ-”úf<ęÁ(_Û'#ȚaEqRœź#ôêè•ïĐ ÛšæŽÊ]RVòJ'?Âæáś8}źN$âl[öźĐšáÓóœŽpńê&ÏŐ`Â*§CĘV΄lnbÂI¶€9#ĄĐĘ«à43t™"úmîρòcy°Ę•N>©hZôUHŽ}sŁm5ą/H\crFűŁȘK7Ĉśûâ$Üš-ő”€=Tjf8»ÿjf\"šÉ/­$d~Í„BŃí~B äÓ #.ìs˜ŹA`›/wLôí!Ž}ÙŻî‹Č«J H˜`Ùë6-¶ÚÓ#”`›=­%ÏۃsDfđńœ°§Š5Űúș_ćh:ŒŒžÆRžJúEAúŒÔ àu˜ÄŚ»gޑį Ź-„VK+æ/=h vAîói7‹"Cço–ÖŃ;¶òÄ­qęX ŻùȘ%‡ò” šbșeƒ1}O§ŃnCaáíVfĐ$eÿÁŒȘ•Ü Ԟź,Ű4+ÛBșÎOâSźś›«|”OíÆ`™ŽÇ3ŐLŸD1&3§l±À‘0UČaqŻăUŁX©Cą·ZçÙgźȘH+"3EÄߋËné©â|YóíšMž2ï„y*œkë8ŽűÁÖț_Š»ăßZ_žt•‚*p™ùíǶ±ƒ~Ò$•\W„L} UP­&ž=î»xhʏOÄą‚ĂFźjsÓFž|‹yŃš zu0A,ùyœÚ=Š ^…gZâ :?ë7ŚÀ}ëäŹYÖ#€0ó7s, =JäŰ(üßvHp·BA…ûq$©Ôó5lW«vÔ˜“ĐśŒváKÂÉ%옒Usæ{›fÖ_ß27$ ÜÆœoÓÔZÔäsuș‰˜˜ÁiśçŃÖ,é‹O~ëÁۘeæ•zîőÁ}ƒh—©«ȘdÏMż,JUă§ŒÔZ:­ '€Ą ć'Ùž ŰÌN7śÿnnO.œ@~(IÆăÛêÇqï·bè?mžŚÄȘ­C1€¶ț§I'.gŒæ‰q°uëIYŚđx4źž’;~Dvj–ż§x $Јę·kœY\t{$RoïŐæ]ƒŽĐà"/QjŻKčE1.ô§ńópäę~Pfœ!łÉ}êÿ͕Í-ç­żžÇaÆö,ČfêșŐ.šÏBm킹ï˜oO$żÿ‰…6P±Ć‰±<}s.‘G:žęÄRùăD€o¶ .șHßąń3;6ș4–üg{Ć„.à ńw8=3™‰Œš…2é@ă!Ê »ëĄÿ~ű ϛïkœjAbvńEbJcù R(%:ŽÜ.‚i"ÈCÛŁî“Ul €ÁŠLyXmùȚáÈôs€Łàđ3}Ą©‡`1@9N!QƘuâąéï*ÏĘ§è œ»#|Ț3OOjq–ÿó‘:ńËùßö(xΞ̌é+‰"ŽÒPáłÄö{šWcłąCM©Ç=’€"RÀ»YÒdț‰’RíBÀû_wU±maO/Ą°äÄćùL‚&˜ê š/c—ȚąßxđȘËąEśÜđæ0č\l·ȘŁíêÒQ,z)X aì‡Bîëi`âÇ—ąśö9YBr?žSà(Dk[1ęêÔ„§~ieIÍdĄ>yŁ{ę;…çcČv`T,â((cć;”#”°•țȚf)*O' qa8%S[»ËŒßT™”„†€Ż$Ę`»…ŁŚ§îejŹ=sQvą†ÇÁhŹžXìëž±œŒ"QA[,}„V Ÿä;eȘ‘9ă€`ÉÎôèŰMką‘ąšKmÓ ÔYăf 0è2”«Z.Ś:æîĘ„HT»Ri°YźŃzÓBï#5Šù"fÿžl9ż6ń—°Đč_Šń”ę àă„]p§oßźœYÄśÌ^"qȚ_ŠI™I+œŻ“L8a'„^PʂçÍĐĐw˜Y{éOüÈ5*< 0Íz±gű%?Ž.…ȚżXç/Ž/Ÿș> e1íæš;‘Œ”śò9aUƒä9W1Ź„ż§E>üÙ$_°Ć{Xę_æŚà6rEœ©êkÒ„6Hw;ȚqSíŒhô'3ŁÀ ŰȘł™xčŒe Çs|ž„pÚK–c4!* ˜-GÍô*ÿ0ś $úžùjє7Öž\›œF§}ü@ù#_>ș¶ĘšćȰwÄ$©YF‘ș¶ÏÈ·Š‚mxß_ĂË<èjꂿ «58uŚ„’]Ś}Šć9cŹ©{«4Q”èqéz y] ăI'·ț,dìI—ĆŒké‚È_sęæ7TNïïimĂPs† ÎĂà“‹ÖóI<{€^Ś endstream endobj 47 0 obj << /Length1 1620 /Length2 9019 /Length3 0 /Length 9843 /Filter /FlateDecode >> stream xÚ­weT\[¶5Á%8Á„pwww î ( ‚ ‚»»»·ww '8Śàčśëî7úœ_ïősÆÙKæškÍœśšą&WŐ`7·7ÉŰÛA˜ÙYŰZê:Ș@ 9Ű^‰YŽŒšč‘©©%A@ŰȚN  t@æ)€ƒÀÎÏϏL Žwps[ZAtŻôŒŒLÿČü ˜șęĂóšé¶ŽĐŒ~ž€lìlAvWˆÿuą€X`@òœȘžŒŠ,€NVE Č9Ÿ6Ąêlj6(Í@vN z€…œ#ÀæïÀÌȚÎü§5'–W,q'àä2żŠ\Í@\LŁ-ŰÉéővX:í Ż3€ŰÀvf6ÎæŒÚ-ìÿ"äàhÿaûê{S”w‚8™9‚ €ŚȘȘR2ó„X!j;_Ę{‹ŚHs{3ç?-ęć{…yőB€`;'ä ùSË0;9ŰĘ^kż‚98‚ÿąáì¶łü&€#Èèhnrrz…yĆț3ő ű/ĘlÜțʶÿ+êŸÀ' 2;ÇkM3ÈkmK°2럭"oga`gûÛnîìđŸ ÈńŻŃęÙ3ôŻ$€æöv6ns2«Š=ä”$€î§2ËNäÿ€Äÿÿ#òțßÄęwțË!țżžç‡–q¶±QڂțJüăŽ(ț\2`łÿŽÛžęO ÿ©ú›„:ÈÒÙèűïîżáĆí,_aægáțÛ v’»‚ÌUÁ3+€ĐæuVÙ”ìÌAŽ6`;Đ«ŠÀÌÎÆöo>M+°™”Ɵásÿíٙÿ;ęW™ț"Ï*Ł €§­ÉűßïŐżâT_ő‡hș9€ÿżˆŽČœù?P$$ì]ÌìŒlfN6îŚcśzđűčŰœț‡Š±ÿk­ „8‚]l,llì€Śś?ž­>üŒŽ™œùŸŁڙżnČțžÍœ_”ęëÜż6ęő_Ûr™!ÿœł7 ü˜š‘©ÂË“2èéb‡r(źŐ,Èóęfßé“șÎ_nòXÄR7.đÜì6{àđŽ„À°=ԅkCۙ :ùBìEIߝ‡čBÓÊËžíÏjTŒšvšéq:ŁŽ«ÏĂŠœœ1ŠŠnTôO2ȚÊéˆxzCïKé’ç‹Cuí€æm–Róź Ł «*ÿà&aïæš¶oxp żó ź{‹ˆ1;‰Zˆçt@žq3qŒŹ5{†»wáę4ŽrßAjúQĄx`àŽïб&Ü$ÍxĘ+«ö[Š(č=Œé0^G[ùńšÙLaQ\ńćŚ(X0 ’R!= ÓFśƒjćòäfŻ„/•–IOȍ’ ł.ž—1ĐĆÛâ kx2ĐÚa |Ńœj‡WK@…ÁčÔsŒt‘éˆHĄtv"h»)‰{őYGk{€ui—ÊúŹlĂȚ#ÙŁ%ôśźï”íDŒ`#± 6ęęf öăü*űŹ,€ÏÀYą zèÏK}«Îźk•4qą*˜Țč4ąÚRQo¶ê}Ué j[Y°Ę˜ń€'M6ïŽORyB‡WDÉCń*“§–L #ęUżŁËFŻT9Śkoûš|ÏĂ~û‰Ą|b ôŰöőZˆA{Œ Â. ŒmҎ9›j/~ÎVĄ…êىGŻúĄß˜Â|„GƄÉČÇçKhĘȖ˜èŚ)Ÿ^ŸęûuȘæGŸ{o% íŽkú-Úhš{^șŸÂwCÄź ;<” *Ż·‡Ó [€ŠPˆŚtM%‰őË–"黕ŹÄŰĄûàźÁŻj+ HcTXoŽń$ÇŽæE“ueIè|ˆ ÙCà‡°‰b&‘+ ÌÈ4š7ę§Ą/Rÿ‰ÙÒ$6O~Ûxłmzˆ¶żą/”Óœ€C œÉa—‡ÆÒîąĆÁ^d”șeæËăžp–*«(Y,±pZ¶tčmQ€$«Î™9Ì:ąTBęšFL©T.ŻòńhähéûŒŽŠ: •˜żÓ1‹M;Ù2^… «äŐČ#U­Ÿ‘­ž©kżK„Č‘_ §Šö±ùT·ŚHĄbŃf.ČeÓ7IŽéyúM|ÆzNĐĂIڔóÆüć·3rgźTRV—üLć Ó«Ș‰Żêœ473Á9‹ű9{žâÌd+Œőšœ_‘ăèŐE™Üžé}>f~Ap)Vű<ùֆä1nŐŽû܄ ˜æ^›[~óŐűm›ëcvJ¶¶Š‡gšóÏ7ç‡ÏPźH"^š…›đȚ>d]|ăFKEŽa2ĘܝĆú™8hzx«QÓo[7h€8ꆖDKNw‹œß|l€OȘVpÖâFn4ûùűŠ ”«șĐ.š©Ș ÜȚąú„ hLÄkŰf_tąsĄAÚ)Œ°DÁPŸÆËséì{I[=üÒ·ŽFÓDî„9œkàe8±f‚Ț„ÖyÇÒDáqT}?&BȚú Łź\UłŠλ:†Ë‰DO ŃË èçÉŸĂ˜ T,ŠŽjžÖŠÀĘWžíe$Áćà‰B*c‘”«_cԌ șŐ»R,­Àš‡»ć‘ސܒU! ŽÍU!kRőOč2áĘ€€ÍQ’Ö^òèäÍ€ÔŁPÎ+"”ą †)zߥOQE~Èo Ï&LŽ\òÖ4żŠJëĐ‰}Ś^ëJ •,zA‘ê0te/‡J›CĄ«by9EȚ'§cœČŸĐf†§áł;ŽÜô„{ÜàL7[ș%‚Ê,ùz…,†©™«Ï•ôÖЇ‡Ú8)P~žú‹őóZW ÎIÖÁwđŒ(N^ms|őV}±ï„—/%ûș}źŚ‹”ĆA¶"#ŁÛDŐbôƒC?Œú”ZŒ4°Țû Xűă3Üe)„ lńÔòÄœ­oOjŒÛŒŹWä}H*†’8đY6™«*őxI’±ˆ”©VĘ<Ïąn ƙëÉáŽ1Ê1ÙČz!K5œvHNÜ^œƒ=Óa/€œÇ@kš#źĐÇ©ŸÒ#ĐÍì©_v€zÿ~v°ƒ˜€9ˆ隱†A@­cš5u ç(3Eț”Î|±Č§.ÔÆ.;‹\ćF1-cc™ÖD(DĘLÜÁŠûÉZšPqÿÜj•oŃcl• FÌ'LX]€ŃŠW-büąĄ{ úëș7vtË|¶đÂű’ùŸd–jòđĄïE]ՓË)g`7UƧ‘€Âè™+`r—ČŐąàÛ»e7œVž/(jû@ȘÆű8W”_ ćoèoŸˆ  GX|Čț\f3Lz±Hț6ÿ'Ôê^ 9ŚŒÍ·.üV<sTÊŚ‘[gÒ9dbÀiőLéXûtš†ÚßitĆSŁ+č Ë/èÂGű.ÔڞrËç+üŐVG­aäP…ŚČ];ïä”.Ÿ–S=§šs}5WLż\"JX=-Ń ‚ ńj”kăȘL°-2K3ŹĂ(ybưš ą<VT SNœ—~pĂă̱ż%^čv[]“Č}ął&*y{–{‹–î6·y.Ș!Ś„ÉĆ<W«ŸFX…ƒ^he€á ‘&Ÿ+!Ż‹R›âç|TY-[àŰKèÊ Q#Ś_äą„áÀüì1Yí#œAŐäKłźÈZŰBĄÍڰHÔÇE|‰À*r™ç«CmÙ5E§íÍ%c.)ÔČy!E©śÏ„HT”}úđAɍŒô(ˆlŽÂ<=š]{p©QŽ@ûfó’kq”Uíëÿű^’tàX‚hŻÄvÖ„iŸE@ áfK@Ę©S|cF8:mÿÜ8śîŹ ÚoB5ž &’Ő:ûO4ê)-±g+äeÎ>íCYz‰Í9„[o<SR§Éx„BžÆÌæȚˆ„d腛üț3GÁh‹PŠKü ÉJԞ*VzźfïV쒎<ëĂ}Cç Êä/œ“±vtŽćŹ (:YoZ5P?§œóûáÇđbŻțœ#q© ëjiçRȘ"(ž l€Ș՘Èè*Œš©òśjžç™Źù>|čx*€Ił»b0ű6,LYŚoô°QMŰŐńÉ·æŚÚ–ŸË$Š'bèćó|a‰—°b˜æ’ćPńžșùŃ\gkăétĄM’ÂȘ‚ùkOґ2ŠŠțæŽ1”S¶;Â1“$/E±nLóî{_žçč‰á‡ÀoËG[ź«4~JÉFâ qÆë«Š •iđC=—žáRÍwä€â …°€»ŸSjškÆÒöż ›ì/S ’‚8P&ŰÒđĘÇĐ­-òÉśł#=l@9";słçWÇAˆ{Ew =6n/ëY À ¶dƒ Fkÿ·ŚÖ—ŃaÔZƒ5„~ÍR Œ^ÖY_(ȚśæpW“IšùđïćÌÏîïxcĘ\Æ—ă’ t€„”‹q¶]#K+»Nbx·sLŐúEûĂŃźJZÒ ›(ÍBû»VeŒäœB$§¶\L7Ú9žÌž8"t.f%mÍgÄÌDY —°š_ˆŹüę;¶ŹSżŐôM—˜rÛ%‹ôü3Ÿ›”Š™0썈Xń3ÓTæAË,òÖč ÄÎX·Çx$·HÉ2ŠD}žWÍu^­±3ŚÒ,afËŁò„ß\Ć|s”-?ÒΖ·@ôc>Ö±Dș`çMógAmen‹KÒĘa^YH`í?èÜäj’·Wúó-„G;țÂb)@†Ńï'UMË7w°@ ­['[ł”{1|[ óź@U”ßh4hcTÚDƍ?Ń)śKÂ8 ÚșűjÏÀOŐۗô‘»șșÓJțŃÖ$š2›.!Ń|€‚4ÂÄ'‹—“Ą %t‹R©Xíœx+Ú%Â$•Ìț;Öę“cÛ”ÌIÿÍÁ’?hâÁn,7 šó°žłČÇöÍűü‰& ç~%ÀY=…E<‰hŽ2ˆŸŒ"êÍŠ﷎EÉƒêĄ‰”xrŹażëČÌD‚ŸwŻÁQńC°HFR!Eï‰yeLŁęŁđVZTș1ŻQ›à„šÉáćSșć';ˆP‘ôqÊjG6:㇩EÍŹp€T§Œ9ăÆŚę\óÂ2íćÜźYûg†Ô„ËDc CJ}9óè‚ő«IAä©Ê~Fę`pÍoűT]zț7čŽìž{ IéőXD'­ž§Ù$lÏç!óƒƒÄ‹oEæő9up=,Đ"ä‘z=+N€ïö\$Àq‘ìâ6ä±”6lńžâ HĄęôŸ:LžÄ6E­/—°đî’5pËűłVÿ‚ŐVèâ7 ă >č? ç”¶ŃŸu}Œf+Ÿł˜)Mߕ^Ï?č)>•ôj€†vú}©Dł9œÙÏ|Ê»«ĆźVČüź\ *C“źNOÇrKŸ ČìmyƒĘ҆†YmÀ“Iîîw<°–Đg[àđ…8Ż>–ó‚È æDúÙŃ౜çčK*2™Ìöë ń&pZț‡<3ÊŁŰÂÚú›t‹ș‘qm…'č§áÍóâ_ ú‡I.1sč_oź çŠÂÄá»SꞰpoÿńËUÛŽ©œM{©9›éĘ`ARmÊÓàŁPÇ[ÚÄŠ¶LÊU©«ßúȘkŸ—Q>qc%°F89+~č)Ł ‹ż =N^AÚWÂÓ}7ś/Šg •[ùJ”‘<ę!އ:ęܙ„OÂŐ`ŒÖЂU@‡v^qÏč* …ùjۖó„Uț»ËčM}#›č].žd€:ŚDòÛNQUóÿcŹȚPSž‡ûĄ< šœWžêÔÀÜ &7œj€g_šžô–|ÄÜB ă*v§†XîŰ>϶đ“^“Śo©™ń`[nUł#•PțdYĄwt|ÒZ””á•ê,ûD»DZ=(?Wš»Üï3oźVŠY$ö9ńhŠí̀œțKźă–Ł;ń1ĐSËï'čˆ,êÈNÉf˜śÆÉä«k ŹÚ˜ŚT%j0pƈ !ÀK'*Śy"<ê2V;eYÉšKfĂk„(Ÿ€úU 0 ŃäK]ù]œăá ûpŸŚé‹WP n> ©ÎćK©æ‚ÌŒF(ąŸżš8±ï|ȚčRœă§Ą<(È:C(Ÿ„ˆđŸè»ĄÍ53šžˆëmT7›O“>ˆ1=éâÛB4™È^~ęžÊÈšôž;Ú)Ɣű©•pš3KšȘ˜§ûæ§Ź»W…o„§żTœWśÉęts``>·őĄó]±`Œä§}ô–wôÒ:}í‡ÓË! Ÿż}UđéŠ • ÆÁ “vTÈ1%ÖCŸĂEäóŸêYnDUÿíńKyÒșé›|€—.;ŁŠÚŃcńadČCSÒ‚č„„ i#”Ë֊>wȘ’íû:v$Ž“I<lê.AqŽÆ”»Š3l ’:Z»9!ÄŹ]EÇrÆâjY}űÀ:ž1öË;x…’ȚœÎü‚$œ-Șđ?Hš äT} ”òâ˜âż>@ê<9n]±Ęb\?ˆŽź…B4D5.úČžŽ«¶>}ŰA_’?ƒÎ¶lRÓĆ»Iđ^ ż2űäM—QæŽl`}sOg4[zöÍ{!àççJŁ~63ÚžwpĘ«#ÁŃ71ÚÖg=ìW:†ÖD»ŒÌ&_ûűì"éG˜ĘDçáCșű78ŒIBe-„ś<72i» §úŽK%JËző ę"á:Ț€€(}#ÔțAX'.o]Ïl0öŻœ”ńLAÎńŒń!A ÇíóĆPáȚëRʶÖ>EîĘ,X'ÓX9èÌm o§¶Â˜€Ö۝™4ï6ä[“Š_°ì8«Żćé vQŹLÊÒ;"q‹ó ȚE3őŐf(È!æVšÍ|đœè‘#Űڜü4©§0üźÎvÚ)ö=á—M4lB<ščN€Ig}äéoV‡áŐná8č”Őw_9‡|æ'( ł·9źÛuîąÌ\n϶Y‡ˆƒNŸÂô#©!…ßæˆ•€yc?҆`EÉdâĘ܇HÛń•„ib‰LÈó{S‘É?€\ æœÉqwœæśŠ.æÏ*7˜ÊȚžUÒ۞ćÚ1`”`bÍ.Ón„Żéž»»€æâŃëgTâêŸ7LîQüú2ț€'íŰ»Ńês5-e'Leń=v`Pˆç6ŠÍÒTȘ™è’,=–™(e0ÿ,e\i…xxˆ>ÀĂśTf›É©EŃeĘELóȘ+lęSäXźJ$ćDś‡ì ŰcjÜ5=jtL@%eł›PƒÙd żűȘç«źš žŹ;Œ4T{ĆАÛä9|TS:Sô–ÿ»òđ&”™^Ąá<Í:!ÚE –BĐ`=“ÊĄì'QŚ/„ LÍVżȘ)‰­,Ánaó.(„ö€ÖÛ7Ÿ­ú­€čg&żGZÁ/śČß#ęˆÀ«UÚoŽ„©Ï àęár„ˆ8f|”VœFE?ítd%Ûô֋ú[6ȘęüŸŰ‡Ś&ŸŸUÒO¶»AêaČhÈQc”± É}Ą±"‚óY(©Bá˜S‚‡ˆőTÄA„†g•ö äŁŐ;Ć2)uĆûŠ’š€êOÛłÎ6@çŚÜž”=ŒWžÛOÙS&Ÿ‡CŸśÈEà?óŒ3,U!šq»öÓXà"1:èqŠmêێRÎçà6xÚeá_üN4 ű»ìŚV+*ìbnP›Æ ±—uIԆ:+l„„fYÇ?Üî9U〿KôNRcâ%'gò’ć@ÂĄì5G“_ș]óÚ7· ?;Ű8ÀÂÒg|…ŠR?±f–ë&JJGăç5ŸZ81AŽTeÛßp±iŠ– …ęLŚvÛSûœFă‚ă‚șŹÊÈÌt~#éČVÆŐV!ŒV\ó™)îęILëwŰ 4†4yÉ»0B]G‹ŠăŠÍ„`*VÌ8aęæH.^"”ïLHó¶nYÉqM­TÄïțŰù‡l”uÄ4ŸĆüa™b‹,ÉaFìéˆ6pےH”«.ÜÄí0ź©V‰)KÈ©ÍęŸAB8ÆÂiŐ”CȰ«ƒËőûdƒ€>rž“Š€t>+Uqł·œ— üoJđi™0,rLGßaAD:>ՏâŚrôx0cé›%TÎęEÍE"œÄ„UUÖ-ڟh,ą9ÛWùMNûgŻä3‰m ‰GL6òÏ Fb“­ăŸ8Č eț«ƒtçB‹ìo€Ö/”„ ŸÙìïŠtôì˜MIąÔ¶A/yÆ-[!#] ćuȚŠ!‰śĘT)óùé-3;·7)Ÿê¶ŒB8ß1€ËćT͈KőșłšŒhž)_ÔžŚæNæűpŚŒ /)…hpZĄÓ„đŻ(ą2Șl9-ÁwÙńB|\$ƕqÛmd”{wű$`I! ïÎn%Ë#ŹŁ"UKôćäŃ”! [œ@íŠń°ESŒÊÿQêu†.ƒË·aF>m§AVP.żKß¶éț0Ÿț‰ˆ!’©b@.ł+·U+@űź|šÇɱFŠZ0fIđÚĘźœ9hƒBnӟŰÜŽe 0Ś„;ÄdŰqœÎÁêòM„ÌaȘłHHFWT„"MHH(Țûzț„ćšà!tÀ óŚ€k.ńÜL z?‰Úƒƒűx` ń$HIf^ŚÂÁž9ӋćUš5A™fŹ~Æ?*\U»ZdŠ+ôœŃ]łûy{]UŒ.âæÒÍŰ w êòbptÈC·Îș.ÓćŁă_Ź~€êŁúˆ_ò“œÚcżÂúf!MjŸ_Ę>‡É%ĄŠÔ{›ÉŽęæęcËDKèZTȃG}•…ăÈìșÓ$ÚX)bÉőÔ°»žŽ‰ŸœA<é6ì©(ƒ°AÖSZ-ۇíÖźŠ„ ź$ šșŰD»€țJ‘—șÚ뭘8œłèŁòđąÉê­#3&”sn7XcĆÊQ ûóÆáhlAÎgùȘšÉ §É ŸÌő€œkŽ88‘·Ć«ÓÖÄç Ù3lz‚tĆÒóœȧżnż‹…T耜裇tiÒXë‡O˜é0ŃąŠê°]jq[šuhÓzdp"]DŽ—1Čžwjæû­XàăLWüÆŸîìÔ$ĐŽ'~ë_ È·Ô#ŸÒÖGq„QUŒă=žș›dž ș[˜Ÿ„fÒïę8EÈxȘ„àĘáÔ}‘ÿ' °<ź–ú…T:|i”È‚œ5iöî§1$°ŠÊxT>˜Ì;WÇ­Æ-”›ńMPŹÔÊÍŒ©-Ox§yI$Nș{șà“-ëĐÈïĆł’?¶ =BÂĄDgڝ'YBŰàë`„Ær|ˆoÂÌ%sŠkC\u[Kò,Rú㳞Á‘óù_šđđ/J˔&Ï kᘔ$Nź­‚oá8€ÁČ;E‰t·Y'ŸüđâÂ` Ț`…}ÌQôŐf$űŃlá^B8ŃwŻ»•ŁĂkC„ùxžK~‡/ÚœáŹZĂż·.èŚˆ}á1tû}ì>­òù¶”†±`” 7çeŃHĄšB’!:–:p•Ő kÜ@T€äúĂ$4«‰äBO• Űiăۃwș [І}ł P˜ƒmV^ÏVÙÊMh&.őȚÇ"ÆgŻ*CôbJő”6ĆE˜éTJńfL8ŠYęć B+˜V=ú ț_’Ú ÍśŠ±·E,w@ćüó VȚșĂ/é|ëâŸŐ—^cŽ"±aűŁ5öțŠÚËZŹ:žVęÔÊT>éœ[X«dCŸDż"†Âę„X·Š0 uŽŒçžBzêŠÇ*”)òŠîekS!«Žç'ż`ùOÄŰè4gb0gŽŰŹ«·’ôë©Æ'ïó#OĆ"ŸÆĘ±âțÒ.#ÙÁäŽeÔß<łòŃnȘtÇ ôĂ<Áf#ÌrgžqŻP\Ë ›rÀŃsÎČeoźĆ§Òț("‰{·…kĘ?+žŒiË€ăŽđN=(C» RĂ4MæšÁo–Ç  -—ŒdÀÊêl9’ë‘(pç7–lŃ! °-W űfôÿ`Ƌ€-ÈcSűLÉÈŹÇÒ?äÈʶ!Æ'9šWOíÂSŹźćG„°ś}Òőż €sä8–„fÁ|źWžÄùp“;igʙ?ydâ ő îšAÔìàïxEGM|Ü.8»ŸțnHȘ/§€ŚmŸęŽqHUŠ>ŁïĂ6_ò«AúăúĄàÚnNń>!h7ƒä$ËaنyËćfÂ~5«;)ÚgœRiNVDh…SÒń PN#Ę>]2š3u{8;cœÁÇçĐ[‚!Æ”{NêÉí9·lL7Iá ș9Ÿ(žœ©äèĂ©}'›]˜'Æ m‡$Ùč&“ikÆe˜ÎŻ=ű„"©? ŸNŸ@5ö"žËOmKăT KŒÛ/S!˜ű5&NżÚ”/ =ЩΝË;1d;$ű­ÿîbnj꼆sgäzs_Ԗú`ę!Š*žóőÇÇjÄ4ï».Z‘ŠÖŒ•& 'tÌ\b‰üj­›š6wK±â O%ń"pš\ß§ÇżŒ œ±–Έҷ35ŒÓŸđéMš#Ț‚Öș»hșQän<..6+CÙ}ĄęÓvhXLÂY+ô©-?«(·ęȘMu… (`yDL„{+hôą|Èö39tXÔjOíšë`¶Ó8”ZÛît™‹—ŐŹŁŹ ù/î_nÙ:vúÂJï8î=‘ž.úg~1“RÒïXZS憻ÇîĄ+uÚŐ,š%Ö ƒžöiżaç'>ž9${@9ÿ.=ŸÜázúÿ]Ʊ‹ endstream endobj 49 0 obj << /Length 663 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[•j”WHL7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐÜ$Ÿ—âƝÛK_șIțsßE77E[^Nź«\5źžÄsߖ;7ˆÛ|[l›zžŁàmSŸ_*7Fę?hćȚêæ3<âöŐęžtĘûÁôúIÄœÖĂ;­_d‹«-8ô—ëÏuÛ<u/„$Çș©òöĘçhžĆtTsŹ›ȘÄr"„EU—C°ű[žhHȚ}œwÚ6Ç6Z,Äô…ÏCÿÁÊîąéS_čŸnȚÄíUywČ-—ąrG*Fœ>îONLż7u]~ęèœĐl+ŻŠl+wîö„ëśÍ›‹R.ĆbłYFź©Ÿ­©r8ޱ)ĆÊ9>*QKrʁ7ì˜äP†°ČôŃ:MÈĄQ^sž$LDÌ6Țaȑ*Âs.$S5ˆ6`Ń>ĆÆ„m•Áë#TLŽ 5Ȝkdš‘­}WìXssc‰»*ÿì{êčRęh/#„?Ûń§ béE$èLÎ|ږÆă°ő8^yŒ>eÎSQc’ìÏçÀÌŻbÈVÌŻcöáNa'_ì OÍțőAŁJęô195śœkàŒ±dț•ś3§ŚE»Hž@œ8çܰ%ŒĂ~A—s*=FÆă Œâšó0ÚÇ`†{RLŰPh33żÛèÓűYæŒù$ÉLÆčŹÇŹŒ o»šqMè§sîÚśÈŒÆ tÚÀ…xö•őčì\˜ \šcΜ-üÜÀe™k–sLžàÊ ?·"œ@>qžhx źŚ·Œô=Ęl~1űÖâŸÖ»>*]Û!‹ÿüïʧMôŚa@ endstream endobj 50 0 obj << /Length 663 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[ŽÚ+ML7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐŸșI|/Ƌ;·—Ÿt“ü硋nnжŒœ\3<:Wčj\=?ˆçŸ-wn·ù¶Ű6őpGÁÛŠ|żTnŒúĐÊœŐÍgxÄíȚęžtĘ{oú ę$âöőđNëߗÙâj ęćúsĘ6BĘK)ɱnȘŒ=Aś9šn1ŐëŠêƒń 9‘ÒąȘË!Xü-O4$ï>΃;m›c-búB‹çĄÿ`ewŃô©Ż\_7oâöȘŠŒ» Y „Œ–KQč#Ł^''Šß›ș.ï?:'4ÛÊ«)Ûʝ»CéúCóæą…”K±Űl–‘kȘok*€ŒÇ۔b敚%9ÖÀvÌ r(CXYúh&äĐ(Ż9O&"fï0äHá9’)ŠD°hŸbcÂ6a‡Êá@„ő*&G†YÎ52ÔÈÖŸ+vŹč豋Ď]•=ő€\© ‹~Ž—‘ÒŸíűÓ±ô"t&g>mKăń ŰzœŻ> stream xÚmTÁnŁ0œóȚC„öÆ6„ŰU‰@"ć°mŐT«œŠàt‘@úś;olšv»R‚ž3óȚŒmź~<î&YŐŸžI|+ƓÚs_șIțsßEWWE[žź9Ę;Wčj|;܉ǟ-wî$źóm±mêÓ o›òí\č1êÿA+śZ7—èˆëgś{Òuo}mú ę$ŸëÓ|{'ˆBpđ/ŚuÛÜ u+„$bĘTy{„ő!šy1 êŠêƒńG‘ÒąȘËSXńł<Ò Œ{NîžmmŽXˆéœNę;{»‰Š}ćúșyŚ[DïÎŽt° dŽ\ŠÊšő{ż?:1ęÖŚÇûçśÎ Íkćę”mć†n_ș~ߌșh!ćR,6›eäšêŸw*€ŒÆŰ”b敚%kà ó‚e+K­Ó„òšó$a"1Ûx‘*Âs.$S5ˆ6PŃ>ĆÆ„m„ÊA Âú‘ĄF–s 5Č”ïŠ‰577v‘۱«òÏŸ§+uaяö6Rúó:ŸŹ!,œ‰É™ÏCÛÒxŒ¶gÀ+Ń§Ìy*JcL’ù|Ìú*†mĆú:fț“vŠuòiü©ÙWUꧏɩčŚ\gŒ%ëŻ<ϚȚí"áőâœsÖ0û_:Ìú©ôę3x0ŠkjÌĂhƒyîIYx0aCáÍÌünŁOăg™3æ“$cx0çČłò<<Țv5ăšđO#æÜ”ï‘u7ŒűŽA ń6ì*ës™Z˜ ZšcƒΜ-üÜ eYk–sLžĐÊ ?·"œ@>qžhű|ÜßòÜśt”ù›Á·ś”nÜÇg„k;dńŸżGăG«‡Môóc endstream endobj 52 0 obj << /Length 799 /Filter /FlateDecode >> stream xÚuUÁnÚ@œû+¶‡HɁ°kc{!€5Ƈ&QˆȘ^‰œ€–‚ ÒŻïŸ™!•šæzż™yïa/Wß7Ś/~’ÜjőäĂylüdù}{ˆźźȘĄ9ï}șśŸőíćîńN=ŽCłń'uœ\WëŸ;ĘòșoȚέż°țO*ękŚÿ„`ș~ö?''3ùĘÍÆ‰žt3\è‰ÿč;œȚWêêS]Që?»ĄżSæVk «Ÿ]{ű9FSрЕ»źoGŠ^ 32±j»æ$WôĘìC0hȚŒO~żîwC4Ÿ«éSžy<ï€ô&š>Œ­»țU]Rîn·ۇ„ŁĆB”~††,î·{ŻŠ_™ę =żŒŠéÚ°șfhęń°müží_}4ŚzĄæuœˆ|ßțsÏHËËîÂ]źźĂWŹ“bÍ šMLłD!E!ăB ±FAë€CÁœÖ\°Ą‘ÓdQ€Q(˜Œ%¶T<#àh^QqKƊL0cF F͌€aîâÂÎ.źš_ÛQĐńČ mÚPG9Žčž'„+XÔ3â8ìŐ)Ś+àŒ±Îč7¶\'~Áœ5°ă:rÔ%ï%Β뀧â$1Ó$܋șa %aN*At†g&ŰĂW<‹éWÈyveš1vYòn‚Ő€ cx·1cx· cx·3Æ+`ònH›ÍÓ̜1q,kĂ^+:‘•%fͶd vÉúmƘæÓ/iRü޶f ëO±·`ę)űëÏÀ/X =ëÏš—őgđ^°țœűŹ?#>ëÌĄč`92/X[B|ÖfèŃćçÚAż“láËI¶)°dKÉód‹gĂI¶Űć$[dè$[âH¶đë$[hv’-|9É~d‹ŹœdKó%[èw’-t–’-ö–’-ű„d ~)ÙBO)ÙRŻd ï„dK|ɖű–ßNÂò¶ĂK)™ĂK)™ăÙ++Ζæđ›]RŻdŽ]ÏOᜌz͜Ș–“€Ț|x8€?ŽÓæ<Žá€„“œNOœ›]ï?ûĂp@}è_âòÿ„«‡:úh‘ž? endstream endobj 59 0 obj << /Producer (pdfTeX-1.40.23) /Author(\376\377\000V\000i\000n\000c\000e\000n\000t\000\040\000G\000o\000u\000l\000e\000t)/Title()/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20220123181841-05'00') /ModDate (D:20220123181841-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.23 (TeX Live 2022/dev) kpathsea version 6.3.4/dev) >> endobj 2 0 obj << /Type /ObjStm /N 47 /First 351 /Length 2298 /Filter /FlateDecode >> stream xÚíY[sÛ6}ŚŻÀŁęu,\H\ű§3ާIí$”4©ăFą%¶Čš’T.ęő= ^LR–c§}ìh@Àbwyö`B’ ŠY ˜aR†,b2 ™L“S·… 7ÍB­™4L[Ô,ł")Á\š™’Ì9ÇŠYYÈ9š‘SP)"˔eR ÈHè”d ŠŃ24Á(€Y- ‡.­%SŻ#ž†șqž;ŠP者đфź±@Ă=ž8Ű eèFĄĂŁ@#šœÁĘ2-Ąą:$;ŠimáêÂ*d:"53r0a$^M*f”P#‡›ŽXÈL€WŃtw€‚ ÓÚ0c E[f,àÓ·íï3~Îűłì"cüˆíÉ€LłćXîČí|(öƒBÒćƒƟÓeI—’.9]2șLéČŠË€íMÛȚćîV‹jÓąêZ$./Ű0î>Öѝ“GȚzÍŒ†Ć-ëëgG3°öÒ„vŽŃű ÿÀÇÚ ÂòÀU–T„ČÒ*Z*oœušŚŽÒûĘ?ߝWš—V¶X;lŽm=OîË ÿJühź ŠQx›3 …›ę BȚȘ ­($d ïHOXĘ)OÓF˜49ăQáÓôQ‡/ŽÉ-?­đ”BuzvHÚÔźCr΀‚ˆy9 'ú†“C_OuÚŻBŃMOȚćŠBb’>ÎèĆŒpč^Áæ]üháŒ3äTĆ ol8ÜcV05íʶ°i#ÙöuP”kyŃŽûœ©oKŰÉóĂâs»ˆÚ™ĐÎśÛBÜhâ>,䗟ÆĘ>ô"lCpW±ș^75]u¶BŽ%Ć$OWe–W«óËű†zNžțrüÛϗ“lYd‹žŒÿJĂœłd¶^Ä$žˆg «Oê-ٞŽ4;#xȘi\LhWfŽĂæ.^ꔀł9Șű†äd“ú0:ž—ń",g‹„ĄóŒLnȚ‚á#țźj ó8§Ő‡Ç|Â'Ù[Ź)OžáɟëxÁŻÓO ŸńYžÄe’ó9Oùïü~×<ăÙ2á+Ÿąœâ"č.«§Ü^%yšMùŸëŹLŠ<ç/’Oɒé^,âbÎK^Îó$áć猯ù'țW’g»Ç)<ÇWí>{[Ííű^ü|zńțô‡7gżŸŽ‹xšf'{OČĆôNhś$6H{šs{Ô…ŚŠ>Œ„[ Ż2f ŒR|­ìâ{ÀùöĂg@ú#°&”Żk (0 „>*Ÿ{€äűÙéÛśG}@Îțx Æà퐧€P”1ƒ Rśq]Ÿ)§¶âÂ&ÚÄă)?æÏ€Ê ?ć/ù+țšÿ„ÎùĂßòwÀ*žć1űś±„ç$»č‰+’Æ“uÙpőHLg|ű| «wԎ7ѭ㌔ː niËlæŸÀ–ănúbÉçï°Ź&ü|ÀÊ­Ś-@5_˜ í=lć]XÏ :‚­gÂՃ  ÂVVç-0šŒVăz깏¶#àfp ęȚ ÇŐæé,Q#8û$.ÿ |ß Đ›\tì5ŽÓŒ(‰Ì,ÙOâș"%jżŠÓr^ĐQČmđ€łbßp‘œY‚S09ș{6ßçê=čyàȘșȘ:ž"ü­§ĄűЧZ|‡§ÛłÏÀS7ô4Ű Șù¶«ò;\ęÆkàŻÚđ7ìùënęuC톿jÓ_:…+ènMGi#țs:-ڃÁê|gÀđWër‘.iśŠŐ<%§èO_©ÔíÀŽD6•A}PGÿËű§úOŚŻóäs=ęÀšg¶«œxI‡CRmêĐ­í;uűq=ÓŽź‰ŁlČw^ÆyčKÿ*ę#]UwïŹ$ęąD§źvé"_ŻÿHűÉjĐFra…5?IoÒr`č+y5ô°ó_LĐÓKjmż%Ű„?ʆ: :‚­Šș:ÓúnvGƒÍÓf“z‡ ÿ"›*¶çž żncăßSÛ&płälæoŠä–ŠŻVÉČ:€„żùjSۙ+ endstream endobj 60 0 obj << /Type /XRef /Index [0 61] /Size 61 /W [1 3 1] /Root 58 0 R /Info 59 0 R /ID [<3B52010419C4E745703AC630F74ABC90> <3B52010419C4E745703AC630F74ABC90>] /Length 169 /Filter /FlateDecode >> stream xÚĐčma†áo–{XnƒÁÜśU"p DîÁ ™  b"úp7HHHHËŸòè•F3ÁHRäIžÌl/* 0đ sH@*0ƒ€!YÈAŃ€Đő!€! ` šC šÒ7·V†*Œ =ű€>4ĄŸŠàÇ­”MßGWÓ_äêËôvŐ5ĘO2=~cž‡˜ŚÎ а„Źa[St?ä_ôńÆœ endstream endobj startxref 68262 %%EOF actuar/inst/doc/actuar.R0000644000176200001440000000073014173361122014655 0ustar liggesusers### R code from vignette source 'actuar.Rnw' ################################################### ### code chunk number 1: actuar.Rnw:106-108 (eval = FALSE) ################################################### ## vignette(package = "actuar") ## demo(package = "actuar") ################################################### ### code chunk number 2: actuar.Rnw:117-119 (eval = FALSE) ################################################### ## citation() ## citation("actuar") actuar/inst/doc/risk.pdf0000644000176200001440000126747414173361157014753 0ustar liggesusers%PDF-1.5 %ĐÔĆŰ 47 0 obj << /Length 1757 /Filter /FlateDecode >> stream xڝXKsÛ6ŸûWèHMc$Ûé!MZOš€ÓŠn/qYH)Rá#źÿ}w± MÊŽú$p±Ű]ìóƒűêzĆWgü‰ß/ÏŸęY§+‘2)’xuč[‰D3•©• Sč\]nWŁźęg}.s™jK‹Šw­șœ­›őčHą["ìŹéúfD¶%Bœ[ÿ}ù hʧšd™Nc0Äë0EŚ›&0‚I‚ćI"‘DKŠc”:W K’”ű_íŚvőqoIÉëŸ3Ő5ž‡9™„_Ćò8đÿYč/ëXF¶i]w„AÇ~3 &H0ęqï*ëe(Î)@%g)ŰíEü”N’ÈU…­::qQś„íH§b‰ˆƒÊìQ•ïÌZéèËZÉȔț°`<˂źpöœéöÎöÁHwmëŠôĚÁ•ŸFÏ6œțœGÚÆôy„bN«śuŐaœp›,ĄĆLÚ\Ÿ)0-­‚e:dˆœóè œź·}Ń9ČÍÇ-gč–ÏòŐč”,泊U6O˜X„‘Ï•Xökú5Ž»©··D€<ò”ÎûÊ}îíɁCœ”%±ű<ő4kZJÆQyPŠö GÁNJ¶‡m[Îtš4‰n\·ÇUŒö áX7Ęź.]MT4 Éź=’ƒÈúrșeës-dô’ÈWœËŠíèˆ9›uթۏ‡ZHêvÉ.,7%]ÒAŠû/\lá\ă6œP$†,uÁőËą4îĐÒș^Ë4 iCC?hâżțöđqŽ«·'Ę!(í[JîÄXò2ȍmë 4 ŽÁ€ș,-$ é%–!j°í €†r%Vł\BDàÍ >^_kÁc[âtŐ±ïˆLbÔYêCaćacùЂ†Ì ¶üYìb Öóš.ƒŻ‘L'|˜s(çXö>Ióû,“„ÁÏą>Mô΂35Y“ÉâLÒ ԑhÒDŒz –oBiŠÓÒš»[/őòš’wśíB1Ç©o‡áÀ à·Zœă€șÏœ©:ŚĘÎí™6Œ_ŃĐœ ;•,SÉ<0Tłq„)stŸéÆčC€čŻ‘œź>ŰđQÙk3dÜ :JŁ‹G7{‡„‡ËÂŽaPwń)‹Ă ăaŒ-f ㉟c<ę,ŠŸVà›} ;ž čôeœê©§š…îh¶ŸJŁ0-˜uèqžS0­”Žßö›OPxí -CîÓ  ć‡‹łŐGÏó¶ìŻ€+lGMÉÂIp‹…Û\ń„?Ș ’\Èč J|ÿž]RôÂ6*ŠÉażóŽZ‘§ù3ŐŸ¶Uï0ó`M ŻöĄ]žçZ%9ŸiŐ[cZ2ƶFèX‘-Y%Ă@=ÔË­Ÿ†,[Lm=IíÆT€ÏQOű=BßDiŸ dÒȘžfš‹P⟀’\Oß6 EŻŚƒî»ĘŁ!ÀSù-\`4ǖŸv5¶*yŚșM94żD±Xœ4ż]_yd…% ƒÏ»ź °Ÿóű_ß9`a6“ĄA€Đ?K{hż”žoüèąíN֙ hzEJCA#ŠćúÚ[rŸ” Đg‡æ‡@#Œu?àć9H™œ'FËü -›ż2îς™č”€§đìS1“YHE€ëć~ìŃÏj†f>N†œęcAIæŸ`ÔFżi8Đ TĐôApb€`2Ä7‡xšpï^ąą_"à…ÏĄ#ąXąeTő‡żŒŠ:BÚÀ‘6è;/^4UqÜȘL™ŠŒsŹ`&Oőyˆæ°^š€˜îśœÀŒ*©CÆ"ïiÌžSöŐÈè0äC†/Y0(űțӂ– šÓ‘çžÉlKö ɋDêGá!łd Ê˜ÇÀ’nÍžHŠsąnÂû&łfȚlŒî„Ÿƒ±`­ (ĐDȘ'oBÏĆő><îï(#@[ŹÛ~Ù|•ĐZÀ‘Í41È>• A!ìŚűaIÜ&Ö'‘ÒóHù?8`n&Ùđ°_Đ€Ą›&« Ś7+›rÁRȚE‹dj\ĆŽZíÿÛá3áéIŃIĄż&é2ž=\»š„àÒ DOˆ,Í}_vsl‹zä 8FkćÄG#ÏO—gÿ·tïä endstream endobj 65 0 obj << /Length 2840 /Filter /FlateDecode >> stream xÚÍ[Y“·~ß_ÁÇay ă>œ(UŽčìr„RöæIńÐ.'"‡kÎPÒæŚ§q́!xŹvï‹fÄĘÆŚ_Ł!<čŸàÉ78<ÿzwóí;©&Ićän5!Œ!%őD …(“»ćä}öi]ì§"+Š3ŽuöiÊiûžŚőaëȚMÖŹófúÛĘOߟSшX"Í(ÌçÆzë»À€ E\‰%“AZ(ߋtœú8ąšOnłq'ő5s)Î}/zfźźÓítF”É< őbBƒÆÙšCŸÙ<úżÊjY<đOŐ{UKoŹÒ¶• ŚŠET™‚Œ†_–uł/燩€ÏWÙŰmí»Ì>N…čË|Ÿ)jÿs‘/Öț-šÙ6ìV kQj'Ș”Ś?–Đˆ€%B«0ŐÙĘșđƒ6yęÁ “‡iÖNCû¶ŰU3Że ILbŐjP €Š`ÆČòÏbJhĐjsțČșśížŰ>ŰÊ54v~ûČXźüKR;ąÌÛiśkB;€dm‡[?Ö}ùŃyxj>e${L ?ÓÙŁ Ń~ˆw]żȚă8l(j=Î`Ią%lÄ4!Ÿ›Ąj2èőo,pÒĂ9ïDțœI Öu€AèĄMö&Ą>Ńăźï?ś©Ńà«Îˆï1DšYYëá !{‘(O­ATˆ«ûÍû7ˆa» güOAS=\æŐŠdƒrŃu$ âŰe„ ,ušć»Č¶kް°`ÎhÇĂÔU'¶BZ›°`̘Vì7IHąŽ30Nz)çÊÊ.ș^íRéSKőŸ€ \qg€ eäÈnc1°îzTiQZG.s$‡ìćxH,Č@nïrĂÏL3#ŰbűȘò*?æk8ą~aGT±#jùá»níûi “Đ0!Œő"̒žHVo2kËÉLEáûÈÇ Ű ŒąćEœäOĂÉÔ T=ï.ȁƒˆÈò#:Ą1źïdéc@ŹđŽÆ1 aÊ&3†ŚzDżî cêN‰чĆŃçmÚąÊډ> S*úPXJfž}°6#ÆcŒjj.aEŒò§…Ÿ‘>@-U‡Š„„dÂxźÂ„>ŽĘî*ßèx‹mLó †‘êJÆŹŻaÌú<‹%'Ù4PĄÇ‚šXIÄUțÏbÿ?žL‚󱫠Xœb >š*É{(z Ús1„‚śô&íuDđ‹!̜s;`ÛM°ü: ąćቅqĆ.à Q‘šŻȚ ŰKƒśŒQzŠäö›éÌbëK(Łż(‡g’oŃaûÍ Äbt &vČîû·”&€śžs—o’èšÀźÜÓ#Ò3bŠPuĐë4[œ!ČÂ"d…LŃ"kÂĂš'F;ê(çë|k¶Úm–~·â !±°ĄôEèˆc6†źQș?€źh„{‰ą\—@G: b7L„/©E’†Ń:™hŽ0(…LZ8€ÂüŒSkDŹ\˜<ʉuì]TȘcʎŰRö˜Ț ôÒ1‚@Bšcì‹ÖÁűÛÀșđĄŸŽ!wJżäț„°ažzÌì–ÔT„ŐŽžw¶`ęQ cäÁ~Ÿ1H [{?JÁąöš6òôœûś>é©tX:čœ|5d•Ì@PqŸO ±‚Đ!Iv„’ę!đ„tB(ŹÙš5Žź±+ì/ûTÖ Ÿ™‰|Ô#č†Ő¶‡ęÌl„eđlĘìo–dMùßܓśPòeąM^nƒ¶»ƒ-‰ÙwW]ƒW°ùÜQț:!-vĐ€0mÏÌgR„­3*·„)˜?óć)ßÔ‹uUț~(êđśÎ>…=ÿy84á»PÁY~ïò>oê„ayW œuTmÀ°œÊ@ûÜ&š çß7x‚Ź’“œ-ś¶üòĂÍä=tfY],ú/yűÆW†;¶iû9 ?”mzçț—ˆÚ»ö}ÙŹ·° ÿwĐÆöm”±Í]aŠÿSRŁ”«(‚?”ő­Í텝’Őj ò4h-Àićê€đ‘oÖ6ĂH—­mśg}ë$$x~•h’ûČŸÀxj 9(uüƍÎV»œŚ€vÎe…Ż›âÁżÙUőżCëC^‹ŽM›üțDà!Âf"ìj QÀNàL”Ž*¶Ÿê«dö/>äśíû©ÉvSȘȏćÒŐĄ•ÈV‡Ê{–3”ˆC~ÒÙnÛ"%DyљŚn$;cïsö+Ś”ûi!ƒoÊê°;Ô]Op•Y{Ž.sˆtòhËÚÊ[Ù+)YŻ‚ûk‘‡—|S[1$ÏæĄăĄvNoN@xnwËrőÚüx<«»}ă[-0čŃșQBùò1Ú òDț<Ü=!-vûÁŚÆ[èvmh˗ËÒ~ćÁ Ńß]@]ŰŽő)Îc#ę\$ïuűóŸŃY☟DÄï…2àcGQHö‰áČšv;t—íé»lOÜ„7ęđ—Ą1m‹òë(ŽÍ~]ùgŰ€đVVM\áæBČ>(€#Ă.‹ÌzÚ =5˓ŒLôœęĘŸp:Oß5Đ}>iSŃsȧÉ)BÎóZ&et”ű99•VŃIb·„<„JÆY@šy>/7„ĆțæŃ·oóșö]Óś8ö=źVîžô—@ìe”hÚÈ –țÇĄÏÈ€’G1:ùz{Ű»O«fó8%„ŽË!"–Üߏ:ˆÀDzŽ „]ŠYí6ȟș4«ĘaßAG§Í€)AÄ^ï–5Š9ÀÌUą€ 4(EFœȚÏđŻ=<§æhîö­4éù LSmż\Mᇕ'éŐą8s»‡ÚsęŸvò,âÏ ȕx‡…ß%Ïr0$&GŚ…NmŐč>§S+{"t\çœłăzÏWÀè(•>Qu`=ÍX_Ÿ’ÆčÀh8§SvĆëLÄ?L4€š°­$'#ŸŰí“DD>;*:=á ”Ég†NĆh„qK^Ź?{ÂÓ9ó™’”ì/±ÌÓN€ŒčìDŹwą+x3đ8â)ò‹ćèČbKĐòGÀ)3ÙcÛ6ś\:ܱ€œÏćaš#š†,U`C5MBőÏ>:ž)ź„ì9PțgÂ5ŚŻ„/¶Òh-4Rœș{8]ńăZó«ĐšGû3.àűûlD!Ìϟmj$l‘ËNŽÊ_dĐ#Ÿ9f‹R=)&ow0`„/`1üX#ŰkÚĄFąț ïz]QêKNčż,:?őÀXqőâ.ˆ@ä” ‘Sń‰‹Ž·żčĆAûő Ș€dogô'2Ï 7‡jن€«Â DÖ+†"ƒÿ@ŃőùûĘÍÿw/Æ= endstream endobj 84 0 obj << /Length 2587 /Filter /FlateDecode >> stream xÚĘZĘÛžßżBž—ÊḦßâ!č‡^oڧ6·HS@k˶ZÙr,9ÙôŻï I}š¶7É.Úëƒ!Š’Ă™áÌo†Nąu”D?ß$“çïn^Ę*bSŃĘ*ąœ­ÒHIM—ŃĘ2zs2{śçnTôn.“$~[wËb·žÍ™Ąq”rÏf“»Æ!Û-«­kœqg‡"»/ó—žț0ĄßË}Uìÿ–7›jù=źûêV9ÆLȘŁ9OˆH«ŽL©©%ă„ĂÆæ”#ՃŁJUDÂSJ‘L. Ł§zăš( …’‡i’æÈțžÈ$À\J$MaՄ0ĄćmhYIÒ4a^šKÁxK“…fQDіàE`$MdK±q#uKPr7Ć«ÙœČ˜…V 0Ű3L“ B»Ć^ŰтH_rA)IL'—7Ą-Qk–C©€ž%ZlXu~łÜżÈ„ ăŹàŐ5ÁćÎ/È==•;lbdŒÒž(IÂ,ÉȚžV8éYáœgæyć3”K0Ž †I˜~rĂ|ŽăJ{±#„ÚÄ†č”4 î’QąX·Ëû°!icž@wŽß† W„ŠĘł€œ}©VaàÍ©!JĐœ?XĄwwD’ÆÍáh[:^,WźkŸŐu^»Îü![4ćgśâÈ'nfÜğAł9ÌL\Ś?߯OW7ùŸv}ŐjòmYԋĂLÆySü;_Z6p1”éă"03‰Œà@‰ž°îCІÏßvśEVçËI<,«EVú˜5‹Íù úa‡ș—Ő6ż;šAČh.4ŃüJđTO<9#\G–¶ÂLÊ»ëÚ>áĘ|{ßëNa€8{žEŸŸ†,$á̋ű§°7àŒ;FïqÂtçrț:ź†ÈȚ)ę#0…!ìČKDéÎÏŸ­!Iąäu— úÿż»ÛŻrÀÓ9LV`7?ĘĘ|žÁŸ$ąàd)ű/I‘X·ŰȚŒ{ŸDKűÆC8ìà“%ĘÂŹà+ĐÛ–ŃŻ7uX|ì°UB_ÔM„čĕ‚AÚIÚúœż hÏ< ï€ïώ$źÀۑq~mlç(y5¶ë«±]Mx±1gI :J-ŐÔ늅Ò0RőíGE_=*æÊQQæąPÀ}]w êwăôÓ`Ö/u_íM&òuiĐ©ÈăNiJ4»èM”$2e—Ü©†i$ćyűjĐH>tŠçr†ȚȘZÿEÇòą%x}Æ­ÈŚDÏșŠ3s ș‚zpFLwù°fÿőĂG:Í:&~>UôÿÇŚĐçI±ŸêÜŽy°±+0Dê+0D'")"é1Oc-zHF(€ßß)aS ąÎ‘çPˆxÂŽžjì PH*Ô7ِéQ?aCs=NŒ†Jä Œ•Öœ$t 󆀐 1ÈŒčL§I°íËvŸŃŽT.?śôÍĄž?6E”«]Ś2qœ ç“qu¶m»ȘÓ^lîmź~ŸĘeŃ|ćĘ>WŽ `Š›?ìóE“/‡Uæòèóăjʁčóp*.>,eŠ—4ކ%ŸÖ°Ú28:ű©è€ő„öć­«>€žmæ1ź-UßëŁU!ˆ…Kw܆Ćì,ÊòŠË,©`‡«2@cU±2ÁEŒÍAâXZš h ÔùKăhêMu,—ź}Ÿ;ê]ćôbçÊš„„ÏšÇĂÇ ŰMndžÂ±r„8X pd@h1REÌńtR;s] В Lêàșœ€FŻ|sJqíjW~žQäÇvCJIӎèęŸő~ Płë䟆w*ç’čŠâÒőĂ>òK8@Lő8ErÂđ°vÓŸvÁșnĘ#C›>]J’&Sô=ń &„%IĄZŻÍâʊ }…]RŻX"ŹœöđÊ$ácÙtÒ`Ü ÇęÏ(6ăg,.«Óń§öüâ·{> stream xÚœÉnÜ6ôîŻĐQƒF wRrišm6m|KrĐh4cĄZ-qœŻïă"4æ$q<ùűűö G‡Gż^à“_ÿqD""5",XJ%"Êë‹H2)ž…X,íŃtÏo<ę­&Ń/íĆßđwŠ:™p' ä?_^<}%U”ąTR]î#ą5âŒELaDS]îą·ń«ò0v›„Š$&Ï6 “$~ŃÖŚYWömăöÛœûĘ·mW»ČÏíĆĄüœ ćXĂU»ë7ï/ż#Š(á†< ˜a$ˆvÔmS `%"ŸĘ$œ«xlÊÁŹdœ5;·5\n±·~‹&śĐ@ÉЕÛŃan ­;Ùú;™û©‹z[tÄ0döŠ0w†\ 1!„B8ș̋°ęô•–Áˆi ÜHQ!FS¶@ï°ÀJ-Eͧ|‚É€\ź'€'A T‰ `Ä ˜:bP1œ"*Ԃ^@А`r‚i» ßi­Ÿoö`Ÿć}ù&?„ïŒÊú̟ckæwiZțhâŹŒîvÆžĘò°ń·ńŐxšłÆƒûÍ*Žò‰‰ęłhì-Š =œfXA›D`mičŒ*zkšQ’ŠdéŒX.x*€tŽYœ·Í•ûp‹ŚmكŸƒ(9Łń¶lÚșÌ*ûIâŠ8€sÜp{đ À}9ÿ„EŐ ^ Wu™‡œéD cwŐ,€’ČsËÏàŠiÜ&C76y6BA§óșʕï0Š…ß/> EÓ/pWU»Ą*ŸIBĔÍ”"DłÎ,ž æÛŁw{î Xì¶ćĐ”9«„˜Ó!`ÄDhÄŽÆś)lžXÏ!âyÀ6 Ć|4YNÀ}âKŁ:CÆĄhŠÎšÂPbăb>vęŹ.bY$ûÆ*sVBTŠLźXI€d BŚI©ƒÜÏpà;ŠX8†(Ӏ„Űg•7!Ž9J©ŠPçƒg_”@Œ­<;Ą:uBŒp1(…Tś•W4„’ëYțGź"XźŽđôNaF/i‘ˆq- À.ƒq–TÈïHk4I<[ĆO!­­Țن5Ą%œï/aäŁ8ś6~‹œ š3əŻ3V†ŐÊÊ^„mCĂKde8DźW"—ˆƒlŒ”œ^«M„E|őńxz[A†MBf\4d*Ky0ubä =ÚÁ“’ž“q CBŒ šÉx’PL&<ÀG“Û* æXÏ<P+„ócÁ„NĄxT€ˆ rï"䎑ûžPBĆĔ<Ăéì$O˜À0„žŸ•}§kèos öMźAŐ„nØ(#?€êGO«P­•‹ŠăŻȘț,ó§Œ_ŒŒ\ôl$Ő(”RNЉiÇȚŸÇŃĄŚÖэ­#*!h`#í*zœĘʶaH1"ąÜžüB&Rsöuö8G瀚F•)_‰EۓȘ,j™0&“nż\źhBžźDš‰E\ƒ†’pđiè,©€üè3ÿ ÔŁPaśĐ`źìƒŻ(tłj,‚Y2țžfû`É»d ąkőjèfÇ| Ț—tPŻ@V¶P†#€ 3Ô§ûČöĂ„EÙ9ƒÒËTńÄXGߘy€ˆÜ料Fß?ƒÊ ǎÈtžRÄŻ—„•EïÈüÄÊŹó¶Ÿm§È$ŽÇf(+wàÛJłìÇÚ-ÊÁ¶ôÌ„PxČîšM»WV·ną•Wmï§cfźd§dhn+!}§>Ü۶ŒÊtщù†Ï›ă]Ûű•éĆÍé śiŃ€.«Až9t±· lÜŹ-ëęÍțș(vÈ”xMèvć~CÌTÓ|ʆÛsS-ž„ŒÊđT]tnËIGĆû,śš=îÍśÆæßÆő֍ۚŠæ`ă,ŹíÜDÈ#t; ŁLúćՄíÆFà>D`ßVź”ćńŰ;Z€ëÒá4^ÛyÓ4îËúș*üyăïìł~p«ĄÈݚòĂX<3ieÓM‡fJ`Š Ómÿ;ÛÆ©è–C€u æfÖÂŒž1¶ ?ș0'»vÜZBčń;+ˆE–_čĘĄŹgÈÂzZwA™]gč7ŃC1ô~T;V§3§ò'ƑĄZgŸŠŠ§ƒ)Ž_~Êr3ƒĆ:;sò3^ł±Ę0bG”XĆÍæcLŐö hÇm5zÌźŚ!ś#«yîȚŽä4ùrn„zčęÄé[1±3ă3ÔÙŁÁ•U}»$2ELșá‡Ö~TÍW0Pòę|čž© endstream endobj 77 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/risk-002.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 102 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 103 0 R/F3 104 0 R>> /ExtGState << >>/ColorSpace << /sRGB 105 0 R >>>> /Length 4769 /Filter /FlateDecode >> stream xœ”\ËČG±ŸŻèĄ= éȘêçÔá"À"ƒ{Íœ8,vđùäÊW­ÚÚH:[ÒÀ¶VUfŚ;+kí%—éË©LßNÿxúíôiœæe™ê±ÏŚ>•”ÌŚ2•eŸ—uúá›éÓśO?ęńwżübúÙWO‹X.ÿû«Ÿęæ©ÌÛ2ęë鏞–éë§2})ÿ|ûT`0ęúi[çșOő\æóœ^?mیˌÔé»§mŸÏKáužs•Ÿœ ÆŻy+śyĘîò&đšWÔîu.ëTŻ:+`ƒUœöč4Àu>€ĄK>Ą”2 sjKŻxÌë"pŸ«Âs>Š@ù2zuHßÛÔJĆÈ–č­·y=ëŒoÏčÁśhóuL­úˆŽmźÒPmóźŸûŒ]„yő=Đ~«çŒȘï5Ś:”¶Ì;:)“$m­ąëË|JCMF‚ńÊŹ”]à>űòčbZ;ç ă=·ù†Öeźê{ÌEÂrj퉑””وd àșaŸ{ș€ïÒĐ*óŒnȌ6ih=æSke(2@Ù'EኔjۂIžÏMfr+֍ë˜wih“9’]'Úo[ł5*‹tOFžùÊ"nҔì q‘ő9„-ÙGQŒÎéW7  É>Y/ĆČd˜ČQšŐŸXę&;„˜ÿ…!ë†*Č+é^æ]ëe‰e]šl%ó/mn§bʏ„ʘì&{KšYGioŚM |Àű4|°í›Íd)Ś|ĄœĘ&șÈ.©‡b­Re‹ĄœÇ žá<o†7lĐ&ûsŃțÊ>ÚȘbƊ„Ê­Š/í•EB{—-N‘%‡űĐț”‚‰oČÁĆ žÍË„Űړœ†s!XIiČ0ÒȚQlW•vèÉ8bțdś”Mńeß»°îMŽˆÙËvÄá8t˜ÀRq)>u~W=&MÎP±úÖ_dKÖŠŰöÏȘӎŐçs=1ńÀ¶Č+ËĄxÓțɶÄ!|hÿd_ž‹âKۓˆcrlŠlÄ”)^u}°WĆ»ùŸzRŸ†eąŃȚŽbÁČŃöSq5\ŃQ`ÛȑZQlûY6Ž‹`=jE6Δ*Ÿtțd#TŽw ÔŸŸÀ{Š,ìy*¶ù’…Ày9âŒ`â‹b;_2‘gUlûE‚órȰÌ_:ș)źÚ8·,„QÁ֞DŹv)Țt=%dáŒ>ôûł–ȘűÔțKĐj֞í—S'¶áłèßWž‘Țußè~Ś}cŚÙëÉ[püĘ4}ukpŃ- Ăi°xŰé&;YĘ$0™Űæé&Édè=Š›|ńÊçëùÇ;óőăł\ßżšrĘżúËdSÔÿeێHĘ4dœz=}¶|>œúöéçŻôÓoś”íAŸćę}Û%–s}ł69äÜ^àŒé„LÎë œOœąÈy gÏ€<ŐńÄ wbÖêÖ é$ƒ&·ąÜ"aà äڐc—Ù@* }Á XŻÒ€:ÉS@ăț M‡Ü;ŽLĂćź[fŸ»iȚêźù”ïžùîŒĘ]ń śóf üŒ<•kA:§?pCXB|óÉűÿ“ kŠ–ęÍÿxFü>‡źù.Ș7»šÚš*"ôș4Äk âśÿû7?Œ`Jæ!‘șʅŸÙ,üûSˆ4h·œŐZÿß>ûśŸ>/|”gÁÛĂŽȚy†GiO…#Gf܃Žg~‚#€(íÉM†àHv(Jûę!8îsŠÒ~Eœ–P,E±+ &ïŰ ÓŽÙ-èƒĄ‚†5€P¶”äx1nÏ0]5#đZKĘρ~UMł@îèđÓŒ<ŸȘàÙ: mZmv~ÜŚç§/ÄX†Ș)ŸMu/Űížô•"@2y_hHŒpŒÖČOós`_uS-ĐÚęońUÏÖŽiŃ=őújĘŚGÑû€KŽì“bI­ŽŸ»FŃłZ:ŻQï) û:Òo›”• 3ÛÓwŚnĆ· ™””őÖŻđć~ûXšœ }Î%’©Y·Ő>Éłs{+Òö€ä8zœ§cî›HŸmÖ^Čá€ïŠAä·™”·íőȚ/ść~ûX6{ŹùÉK$víÒ©W}œCCÚöіőHœKúvŽi­%'îÊđ•y8[?öŠžœ'ûŐëÏH“á;ôc9Žiˆ]ŹnąÙXuÎîĆȘÛpv'Vʆł«ÚëŸ}RÊé)s>UÎ “>՞ÉúT<߈ö©Čg˜śAG™ű©ČÌüTS?h˜čŸzցüACÌțTy•0ꃆ™ÿ©ç1@ő<c š^eà€ĐQ&êŐš^Û@a ÌŐëˆ Œ™ ¶,„„‘č †,ƒÈ &™7łAM ÓAM‚óAMBB˜(f„š,2_€čæA|Ń?ûŐß>—úì_ßüđùŸ§W_Ÿç5îàAȚš"Szqôᯋw„òr ÜŃűÚByšxœf“!ÇÎ8͏¶1Ì8Í϶1SÊ8Í϶1È8Í϶ńŸ“MßC/ą˜êźwjŸčšDb’d OĄRûœ)ƒWŚkFŸôÛf%xžčŻôw_ûœ©èÙ{‚¶œŸśŸCżÀ{š-̗e‰mȚk‹śäżč’I™áœ€ï)Ż·ì6|%kF%’Ä€ŻŸ]òÛIœeÛ^Ÿ=U_Eß&“gQČ/Šęm‚'očΟáč-œȚ2Íđ5Ô)Ž,±ŸĄĘŚhČÜÎÉąEÛQï=u_e”wh'ÒČÄŰșő4ȈŒ8I€Ąä8Č~óŹÏ™>GI€E‰‘aákDY|»iŃvÔ[żÂ—ûíc9ìMۉ4*9ì1±'u–‡8‰4wÌúĘÈ%śMäDZ–p,pą, “H˶œȚû•f…H:ŒùóšdŚë±DB)„b'Ê"Út"m]ȘÎtÔë3,}9‘–%J†…ŻeɒH‹¶ŁȚûćŸÜoŒćÀ}'¶±üőtC–pàŸíwśmlżžocûÀ}ÛGŸÍ~JٗO)°Â“·ë«pwyD]]%9=‰«Ž…”Uxawi•íæPVɄ“°êlŹ«:w–U] «Șä@ą*ŹVŚTÉC$UűQŒ$UàżIR*$Uò€ J’TAžC’*èvHR™IȘJ]XR„ąœ.©*SIRIIȘ À!I8K—T©țŠKȘ”ï’*0ž$©R¶œKȘ œ!IUi;KȘ ÄaI”8,©‚‡%UPâ°€ û%UPæ°€ Ê–TA™Ă’*`–T•u$UPî°€ ˜%UPò°€ J–TčČ'%UeœI”> IȘ€YRćKȘ€YR%KȘ€YR̒ȘČ”AR̒*U‘€ ˜%UÀ,©‚Òˆ%UÀ,©fI4 ,©R IȘŠő”T•í$UÀ,©fI•*›HR̒*`–Tł€ ˜%Uűé%UÀ,©fI0KȘüš”Tá?,©fI•š‘€ ˜%UÀ,©*{$UÀ,©fI0KȘ€YR̒*í&IȘ€YR̒*`–Tł€ ˜%UÀ,©fIŠćăJȘìțJ ’Aú­>ê m덜*Ș Q”œüŒA6°•ÙÀ¶LdîrŽ€ >’ˆȘ]kšșëË%TĘść ȘîûrUś}č~ȘûȚȧ<‘ń€ ŃiTOeœțæ`ˆȘ±Ž]űdˆȘ±»H9㐠êÁÊ)‡l`=Jêà{k—$ö~€pêș>D7„śÇŃMù ™”ń€ˆœKWM%TS˧ăÀ$„Bm?f ÿżûÛ?żÿúŻßÿߋUSe{\4„YéÛESgúïĄ™ŠęÏi?EaËœ#Ìz&Țٰ§œf#„@ì™UÚÈŽ({òĄ6’ Æ~?Š^*îËè„|(Œć€™rIöÂșù۟»VÊë4­uŸűs-$”’ŒĘ€Qâ#ÉüuűśìÏ]%ćuÚśĄț±D*fw(8N—+y~ Ą K€ąÖČIóë ,$‘RĄMMż‚|-ŸȘ K€Œ zŁ~C_‰T,ęXȟ!SBFlE$‘ÊzOéÜ7Ńą'+YőgÏđ•ŒS—??‘D*ë­_áËę$R±GčÄ^l&Sò„5wŽ"’Heœ„WáëHżM)”,{śŐWn~[I€Č>{șì7ę$Rq˜ž€Z S™’&{)‘rD©š7 Tű*Á„RÉru_}XQZŸ ©ŹÏž.ŚMż»Dj ^oD§1xʋM·áë^lș _oÆŠÛđE±‰~ÁűT„“ZÁŰž:*(GgăÚš m\Ź+Ł‚¶qaTđ6ź‹ âÆeQÁÜž**šEw㚹 o\ì+ą‚ŸqATò7.ˆJÇQÉàž *)D%‡ă‚š$qœăKÇQIăž *yD%‘゚dr\•TŽ ą’ËqAT’9.ˆJ6ÇQIçž *ùD%Ąă‚šdt\•”Ž ą’ÓqATr:.ˆJNÇQÉéž *9D%§ăhr:.ˆJNÇQÉéž *9D%§ă‚šät\•œŽ ą’ÓqATr:.ˆJNÇQÉéž *9D%§ă‚šät\•œŽ ą’ÓqATr:.ˆJNÇQÉéž *9g‡“ÓqATr:.ˆJNÇQÉéž *9D%§ă‚šät\•œŽ ą’ÓqATr:.ˆJNÇQÉéž *9D%§ă‚šät\•œŽ ą’ÓqATr:.ˆJNÇQÉé„88D%§ă‚šät\•œŽ ą’ÓqATr:.ˆJNÇQÉéž *9D%§ă‚šät\•œŽ ą’ÓqATr:.ˆJNÇQÉéž *9D%§ă‚šät\•œŽÿźđ19ž„–A=D€ÎCâL<(§A2đšÙÀŽUdÛ7i` †nç(>&±ăš‡˜W@=Dížê!jÇőOQ;.zˆÚqőÓj'2ȘuĐ>1wrkar#zȚșAđ;n@O|4·`Š'L‚ă "yÆźu“—Ń<ź;z”çqśG‰wżÏô ÉmŠž‚êq˜ÜNLÇ-ŚăÔÎ'd{c!'ètÏïżÿßżțϏß|ę‚ išÇèŚ:œ•ïùà—Â{IòPđÁƒŽ\W{í1Ű iŒ;—«aÇŠ‘ŒéɊdÇ0jäÛŐ±cŐz….=;æ`í·XʜâV{‰ÌÉÜ äÙҖôÙc¶ Ä)j‹sBđ3`_%}˜Ÿ5üŽ3Ÿj€ÄM^ëĘ3?îë lŠćKôŻŹlÆÚ4ÜÿčxŠHٔőGĐAê›hčXلgÊZșï‚&òۊHٔőȚ/ść~ÊŠŰ7TáN uЙê#G€lÊú5X"ő]ƒ!r Y–œ*'q_ˆ~–ü¶!R6eœśÔ}č߃Č)68—œúW3L]t¶> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 114 0 obj << /Length 3205 /Filter /FlateDecode >> stream xÚÍZK“ă¶ŸÏŻP|1UYa‰'‰JìCÊ^{“Ș8ńNćČ»ŽDiK€,RûÈŻÏŚH‘Ìcœ›”3ÁĐĘèw3]ìé⇫4ŒčŸzțÂd ËŹfqœ]pe˜batƄԋëÍâurZê€üő\č±]źDŠ“Â›Ș]»ćꀓŽć’‹äĘR‰€ven?ayÒŠęȚOę>7žèÖ/45îŸsî„Ï#™ź{?vÍŠXJ›|ü:ütëèĄYžžSËŠ·œâ‚)­0Z&9śhÉĐk›&ï‰/Š=ÍȘC4…Ùdˆ©îèÍöYżTtȘÖ_n6±Â2eùb% 3Fz\^ €Ów€ Ś-€2łiæĄ^©2 ž2™!fE¶Aőú0;W1„d/Sb;i&Ҏ“a2–*q’=ЄBÎÒ|ó@#Ë2SÉR-ú„ˆà …Qf±Ê˜ì‰ûGJ@1€Òžü|ŒTʄ:DűmX*Č»üŸúțúêŚ+ÒÆtÁ$_hŁ™•b±>\œ~›.6x čgÒæ‹śô}gFZûĆ««z_1A‰4ÚäzĄ5$Ą?ł`ŠÁO“„ SčÆ ‹…,łj`«ŒŰË8'JédodV<ŐJ9éÉûۇBsx*1ɘÉzŁüÊ].ËBû[ž<—Ć`|,ŐßÄT‰3miü>¶LűŒŽì!yđ*źìx€xa§‡†-Šzá‹HYj<Úa“ńgč6†‚E„y+°—.Ă0›©č'RÍ€žrÏÌž—ÔăôŻ„IqŠíÁ‚—ü|&æ1QČ4U=îéäĘëĄq ȚÁ ^±GhQ­ûw›rß:OžÁö:ÄÇf{ć%™+ }ÔSŚ46éUp'§ÂNȚȘŸÎ›`à«zfń»ąÚ·śxƒiìó€/òhš§čąŒBŸ€à˗ÿ/•yÓfz!ú?9)őEœÿBNÊïvRiìžÒoÁƒ h*‡«ˆÁÎAć]#2òwbĄhTyGƒzÀĂĐV ŒWö”‡#wQ«ÌáŸb• țe=™Œč!ïh9|šÎGönîGq6G$“ÆïP ‹ÛS™ƒ ĐŚ •SӁł€Bćđœëł±3a§ò/ÂXÚJ‚ÊĐ]ń c͔±đ 0n*šő:ł.c?áŠì„ÿSK—ƒôóŰ>$šƒEśPL‚Ț‘œš;5ùrőEۉ­žÊŸ&§ŃèajŒ˜" E<șaŁĄ ß>WGEĆrʫόatÈAęC4d4ÆLm F1ÚQÄhNŽ”°'…Œ—Œâ“î|.ÔÆê'DŒT•ù„ˆq%Ô}Î b–ŠyÔ3“0Ăőăƕț!sÌÇòˆIRà§ 4ÍÈĘĘL!Š]ÀâAÛ(î{!æ/Ï {!ˈ„Č›—Ű aÒę!° œ0çù„S &™&*uoœCŐÌU àcV}‘,KȚ-%ąá}”ńTÁˆ“RÈÍ<\á3“m|»țIòIŚoŠÂH©ĐÈT|ćˆò$g F‘/ć)+™ńäXž†‚Oë—|Ę6uqăŠrXòA'UoÜÓmYÇh7‚?ŠÌń@cÆ6k&éߟăєs9nŰ€û­Đ/‡’ éV(Òԕßù2Ò/źr†çČóc±żŽÓò€ÎÛ4áÖȘX™‘¶œQàŻpYłLdSș|â)…+Í^U‡ó>ˆČÄłę-šéń„ o~ȚTbőŻ·N 1ńÎA›03gŠőŁì8óuÛÇrKűDÎHÉûeł0üśX›)żx‘›„äÉGO:%Z^çRÉ2>»ăòpŹNźJÚ'cQ%GHW.űSêƒȘy뇣.EĄßžz ;áÌJä6^[@Œ+= y$ѱˆ&` d–ČÜ<őćƒqP4>¶‚;–NÚ 7&<o3H,Â=gZF>Ă"@s^FÂČk§~čìk”RéžC2ˆ‚WT[ț{àŒTn=†LہœßÄ3…‘1‹\ü€±tč .ùe,æÙ ›1Óž;»èYàšœubÖLéɧҠíâó©À=—Ös±ÊïÓ·]D–šú€G•!š“qBÌÓqÉuG BÀÉ9{ÇՎl#=W][î·aȚúqÓÔÚ·uhöP7'…eŸTôè€îÂŐx.*“¶e8$XŠÙźÒÂj 1ćWŒżŠlZĄÖč˜™wŐź.»ź$Țž¶›è8†_rOĆæNűź[ß>\qíŒ^ïÊș<‘±ą‡Û óӒ§Éú֛0ŚșsĆ·°·«ÖarӀă>”î\ĂfÒ+tć+ò“JU€<ž§șóŽZ„šò?ÔËá}ÏSI OȚ6HST§ŽÙž.-7ŸÀGÓCÙĘ6©’ź‰\ Gê–ÉáNŠĘîTüźj»X1ŰșŹ'@;áÂ1mć=.Č9ìpœ«ĐéDܧaäŹDÙl }=Č©Śćqš*Rąn•šțÀ‡žZS5,ܝ}/Kfp áçĆȍ?F ŻxèM”]ò<Ùșz$č^C 8štÜŠ3‰LzŐőx­o›Ö5őđ’ŽîUÓGF8W5恻„?]ÊL*皘ܖûٟ}S3/˜ ŐÊä"ù©ï«ș+C Üww±6fX8ąńcĘtęïÚg ÏŹ]ŃÎ.ŹÓ%@vœ&ićșÚ~ôžM˜ è]1h$-ëȘó3ʍĄ#ú‚Őùwˆwœ1 —ï]’ăbàĄóŠȃ>†ńÈNtxÓű$±ÄOn±… 'ûGFâc±ßôO›°êQÆÄwÛ ß6$`"č);Ÿj8C·çă±9…3ùSê[™,áa4f–܇șžA$,֕.Úœńęë!†ęCŸÜ‰Çú ìzâ\Œż™},àì ”# Șì°gw"í'ȁZŽÇ)Ű?‹ _EęŁ1ŁÎ ‘j‘eé˜U0lyïó‘usŸo ab„ náM;æ îOœ“ƒ›€PÈ;™‘DZÙQÔú§qH$ŃI;/HF/Œ<4g@ș˜ŃÊč ńÆh»;69âŻz ­RíéV© ˆÒÒĆù-ÚÀżś±ÎyïŁz5A-"˜° Ô~@4íXÖșêàŐ}…3†D+Ő!șŠ(æ&łSêšDitOyïòŹœISQ»jI.ï~™'/îOÏx–"]6ŸÔ"Qșh™sÍmŽsbÀÇ[Ąuč9Í ƒ0É8š=ïnCœ _ LBÌ»hیe—Ï ûDpâô/vVrFZEœû<5r=ùțúêż=Ä\ endstream endobj 127 0 obj << /Length 2048 /Filter /FlateDecode >> stream xÚÍXKo#ÇŸëW äËY¶û=Ӌ8À&¶ `$¶ä ë0"‡ÒÄCwČÖżȚŐŻ"›Jr°ršbuuW}ŐőjÒì>ŁÙÇ ŸœŸűúJ™!Fs]o2&KR0žiU.TvœÎnò‹„(YŸê¶Ûnçé}ż0ywŚÖ[ÿûŚf|đÔűP{ą_šŒ^MęĐ<.$Ïw[ĘÚÓÍàż›Și''Žèü·»«&(Ź‚ Órq{ęlÉ$1R—Ł‚Û©­Æƒ6Eóu3Œ}s73\źi·Šż([žrê«ŐCł»ś‚?SEWm7„“ÆÌӌ,–J˜üúÁ!P ŹLĂT”íç |Ș­4”ÒĄ+ ű:Bƒ_«Ț©fćY`śÊY46żUÁ\Xí6~Ùû°ńÜ#î›ń3îFÔ`ȘfețÏ]ÜńĐMíÚËm«_f-đ2Źź`ć4†3QćÐzNœëŠû‡,Śù0Öû°}·>>X%;êŸ~ŽoÆÚôŽč±ńÔ{ą wž%úæța <:âÎKBIûCŻĘŽRâ$żŸ*ÍQź(Ce`ŽÛQĘßśő}5Ö߂=^:É,]ME”ö€ÁÏKVä»ÁëȘŹč„‚žÿOœ=Ï^čęźÚjfŒ`Œ^â藉—3vQZEùfòIFŽŃ©kŹÓ]FpŁòËù­ęáŻèč5EIŒhLtȚœŠ“ŒDOF PÛöÓXŸ„ËăBđŒj§đîÂá(’ŠIĄb'čBđsÁœˆ$…æ —Zx©Ÿ‚ï4l'Pژ3ŒÈŽ€l šŃ(‰”èă§č“źl̈́ĄČÏè·1jNŠwI8Ɛ"ÁÛJ­ÊÔĘW]oïŰäMÛN¶X!LŸwÉ ò=”\{ę’Ú[Ù Íș{BU0ùŠkÛnÁ è:źZeŸíÖuûȚ–ć⠗T†ł]cțV9Ą }űÓ æ’”‡HwőÊŹ­Ìžhê&Wè€ùŻź~„F ÔŸê+膀Ϋ/ŐÛDÂÓÛč;6Dèóof ŒÂ Fƒ…Ț*3Ś:`ùčË8§5*őÙÇj»­æŹêžX§Ì$Ƈ»fșÈÙÜqp_\˜WB99ζfh*Ś ĂsÛ`4?ŒZžkyŐȚO0OÍ6Æ •Üx)AÀX­7ž2$Š Œœ$†đœńkLàŒŸ)ćę0zuiô^Ś€ÚEҔ|]Re~ïÜ€9í~°ˆœ*ő$\cĄÿĐÍĐp3œÏŰű+7ŁIqń‘o- 8L>íîšjšŚžGCK»0u„—ô󃃷ń_JÔ»Xi()ŐIVû|1Ő-ŽŽăqàوjčh‡Ÿ fzź.Ą‡–oîüPÿ6ˆśVââ»ë‹O6thÆ2&ÜM™ Ł 7&[m/Ü1ż |ź`Ìèëlsńì]€,łț>CúǏgùÇZha§Z„d0ń›·êIž©WìAąÌ$d”1bŃțґÒ|óäż^úŻ‹xî6ś.ž-őôÎŻóđe6°ŻĆÒßűÏe  Ëws“áŸKC­öȚN-Gûh8Òvÿ#6j}ŽoˆÁvFC[?&òđûeL1aN țșR%!fœìCÜ֗Ń=¶’M_J]ŽśĘ笇=ìN`ląím”œ[WÉ‹N|"ĂȘjëS=Cš„Ăîé?[,WƒZA€ÂÂWÉzrőń4œ1ŒHącŒàßÚȘ Węa xôôwÛ}Ó7`eúöêęÙÉÿûÆŸ™Â!lÿa"ÖO@}_Ż7‰ú–Žą_IúĆêÉB ąä©Ś)ĄA P‘4HòƒWHŒž’ęjjž”Ÿ%Ì2FY4ŽâĘւCʛKa c[vt†"3ż­ŠvW<”J9™č,« ;`kœÿđ” ő§© Ł3,„“ê§UœĂΝßósŸâNm፦…ŐĘŽ­ĂĘbIŻ à‡ -‡GPÉˮЖš(óćÊ쉎Xf߀ćő"+”$ZœÔŒŐÿźhžlűăEC…%ì»ö1-ìemo­3ê|Yę…Šüâ…Fęÿæ+»űr•æßv?·đOŃá^ńχ­Č Zây5ÌNÙ@=„fùßÇű°ßÙéˆ\ÿ­śä„ì˜o‰0Ł5Lû}ŚçkăÜœ‹ÒaÍŸhùćȘȉÖȚŠçő:Âe O˜4e~Ùuă4f’˜/Ț1î‡Æ}í!wžČûâ>/­R‘&Ó » qî0P*P y yyyyyÒGn¶ŽÙÀÒlžaôĆâ…‡(äiäiäÈ+W"Țs5膙šŃ ŹK?Ÿg–šÈcÈcÈăÈăÈ )z:]Ęđò%ąŹÄęy y yyyòŠ3E5–([â~ƒ<ÄÍ7GÜqsÄÍù ÆšQê[”ˆČś#nŽž9âæˆ›#nŽžč>ƒQ©šęÁ ܏ž9âæˆ›#nžâì F-oQ"ÊbÄ-·@Üq Ä-·Pg0"jDŒžâˆ[ nžâ–ôLŹ–ü%ą,ƁDÜqKÄ-·DÜqKé1ŸZÏ42ûß„dPŽŹęgә«Ę‰qô„ßìèz endstream endobj 133 0 obj << /Length 1073 /Filter /FlateDecode >> stream xÚ­VMÛ6œïŻ Ò‹ D\~S Đ)’]Žè„‰{Úű ÈŽ­Ö¶IN6ÿŸCQ[ź7Y ÁÂ+òq4Ă7œy#kÂÈę »xrűÏ'Ü”KG€TpMȘĘͧj€Ńj°8K霞ęm'țææOűKKyò™Ÿ9ęu~s{g,qÔaÈ|Ež”Ôš‚HËšp–Ì—ä!»«ŚÇvŠ3?˅’™x5Ë„4Ù}[6uÁfž"ë7Ł•ßê¶źÊmÄ«ć óßoïì$Ź-hQ8Űéđ}4™ìŹ ÌąAó±/ëœ_F—_ê~s}Űnul»úó p—wŸß4ËàSțv~–żÄ^{iEHѰ@“ÄJʝ&­'«!Żđ왎k‚ăwśOâçA4á—A€âÔrśÌ0iûĂ BâÎR© ŻR*ʄŠézp|1Ë5c™Ò”áH#ƒ˜AÌ"f++s€A>Iźš+”$K›1,glvăš%/0JGŒ#&ˆIÄ$`!.Cj 鯐ZĄ±BH_#}ô5ÒŚH_#}]ŒTÿ’ 4IÆ sƒÌ 27ÈÜ sƒÌxŠ„°cHƒ)1 sƒÌ 27ÈÜ sƒÌ}Š„4 4IÆX™dnčEæ™[}·Ä/tÀPgU3ZˆQŸ^=ÒÙŸź|­ƒ2ĆaĐ„đì7uG«ăŸêëfg =)J˜EE Ł2>FćH.yšŽ€ŹŰÂ$:l›țŠˆ I…‘ÉèÓŹó~Ô#FAŃ© i8M äaˆ "œÇN“L‚49hÇ31QžˆżÀër'BOćŽfÌ”»i$wÏ ó-č?2p(šSELÆ/±ÄÂ!„ßu/#°lèĄ©ś}§?ÇÇĘë?Țż->û¶—ÖÔbțîŻdđž­w“”*D`/Sc‡T‡ßÿ)mK•{>\hÎf‡Čú§\“„ÿÀ˜Űû.LMšŃ€źüŒ‹ìKœtÇĘźlg9ŚÙڈÄîâ€oâÓ?ömYőŃOœ_5á°-c‡ nÛ™ËšĘ•šÏáđœRÓB|QźŚ­_—œSwę‹+Mwœât•ÿí«ŸŁłÜj UȚv=$SéĐČ~,j%DVâ˜Ÿš„…«íÈAŃ ¶óćțZ;*ÊE‘ŒÊęòZcƒNŽùt,ś}œőWœ)PĘSDHplV(ÿpOräËźȚ±@dUł;û \ŠĆ °«Š ua—öÓE|P;€qœ<†ă{ŹáHÇ K8—¶Î'*?ȚۏáÜż!.ʘ™J…”‚4ț0©ž’€âyaŸ/źiX8WАîšCïBŚ0@Š‹g_ČÉs'Ąlș!ÇûQ°ÉòT“ҁMąÉłh§}Ž‚<Ą$Ÿ&$|Eæ@î›aöò»ś_lÓù endstream endobj 130 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/risk-008.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 138 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 139 0 R/F3 140 0 R/F6 141 0 R>> /ExtGState << >>/ColorSpace << /sRGB 142 0 R >>>> /Length 2841 /Filter /FlateDecode >> stream xœ„šËŽȚÆ…śó\Î,Üf_Ű$—¶¶đÂöB‘'òț%G—ďŸșœ&›ĆA?Ȱ<çđôl6«š&χ8Œț}ó=ęśő‡țöíđìĆÍÆqú_<ûčó4üśæ§_†qűő&Ïéż77‘Ăßoææ<Ì9”2\†ŒŹaœ!†æžȘZCÂá˜Jši;Ùæ9Lqšì)ĄŒ[Č,9€ušì9Ś—ęTöțź¶›ìßȚc_}p&ńĂ«·7_—hÆïÿEwp@ÿQ]ŸèBś–†ûËp;Ț śonțz/żùóCcœĂ:ucă5ƒç1,„œźœRæ§čÎŚ ž+?é}pčbpN+Ż‚}đtÍà%…Œvƒë6xą[†„„)ÓsV•k ËŹÏُ°NĄÌ{@eHÓÖę ] •ŚK @öœè-ĐĘC?AĘŹ|ŐMVĄ·Žô€âȘ«1žÓûÙŃ1ÇP+†§ë‡/sˆĂËŐĂSIaj_ŻŸ.alż\=ŸüçʐÆáöÓÇÇwoï~îŸii˜yEÆ%ÌúŽęyĆ$rkYéŽ ŻYüʓƒ»ôg§Úž"•æQ†Ÿ8 ­ęy'=ïdϛb˜Š țùöú«N”=ú?Ż?uNmđÏwm4=öĄ_:™–6MjZWź_·ÿ_ ÿ*•)Ôq«kÚ€»ș¶.!/Pzx3><‡1AéáfPč§Ăkš3”nÆé0Śæ%‡7cáKŁÿÓû J«1ń)èđ,ś!J7ƒVĆeXGîŰȘäđfP„ąĂ),+”Vƒê ß7•išUzž3ß7• Ú5šÒĂjÌ:-q€J’ uggiÌm@%êŹa^%@§ŽˆłÆȘź!*P‡Șˆü†ù­T©8“vŹÈEą@" Îr–uíuÖvŠ•©D@œ8ÒYć>éęą ± „UCNû.șß'F^ł™Cš›FVáĘGè"bӈÀąí–\ żp”iÀąœM’ gžž–@#kÁ€äYúžjDÔʙߌ‹lÊÚŽFš”êf –Ì”èőÔË„huA#ąőùY.·Đ­€Š”àŽèMŽF`ŐÂ[IŽd~ĄQ‹jÁ"`ą‡S›FÖ¶ΑUś˜ąQ‹^ČUnš6&”4­X+Ę»F żŻĐˆˆ•è*r-ާ 4"°šÈÔՕß+hDÔąő±ÊoĄf›RÓűűP+„5Rž'A#kĆìê tÿ “è»BßÓe ±6­XüÀćPÙ[ÆŠ”rQșȜQ;€FD-zEOŽH[QˆZ•~™œˆJ Ővh4‹•,ošyȘïЈš5·ș±V~ ĄQkńP9€:,ÌKą=ŐzhęvƒE5MZSą’žÖŠUùœćH湍ˆX™™|Žòp 5……ŚKąÂHÓ ­XTrdaòBĄ‹€FVáeљ{4"°ĘDć‘^ hDÔąȘXč'òrŁ’­‘fIûăÈĝXòÀ/Č%ăŠjDÔą­șł;ߗț=æçÿ›¶ÓôIÂea,úś˜?<ŒúôțĂăîhg:Ü> —‡żœûuxùÇïßĘŃŠ`žęóńòòđ™ßßü$Ăwf endstream endobj 144 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 816 /Length 2410 /Filter /FlateDecode >> stream xÚíZÛnÛH}ŚWôcü°ÍŸ_Á‰œÉ˜ìށÇhŠv˜È”Gą‚dż~O‘2EJČÌ(Zg±ŰłEvuő©êêșt[2Á,ӂ9&„a‘Ic˜űą˜ÔLk4†Ù˜ôÌI4E+Éą#„h˜cÊąőhÁFcœ#m41FwŽ-˜{활w‘iĐGąóL‰àF:0„è"Sę3YÀ1Ź-ȚSAfh Ì °ZĂ dPÀdh*‹~°6BŽÀÙ š™Ć« ÔÖCŒv>2§ Bű•a8:ô)!ZkG^Ą‘y°€à1± žy `Z2‡ï /­ c!’ ‡Á˜Ê©X}ŽjĐ#è=ł"CËV`0A•€J‹`ądVŃ8…Ö:EZiđÁĄĐÌ:«GR`±Đ#ï~ÎZȚ“ö‘o™țóÆÈYÛ7§Ç§nßM_žzÜä~ìz»îČ;éO•”Óç}ÿąGșMo]nő—« %LÚÁE+ÂAÚjŃ_œ;ȘqfŐŚÒe;ržùęÚ1›Ú1Ęi[„“V˜E_ąoSG”ĘTjNŚíc”Śęyòÿ"ŐȚŻU»©UûMû„ìÏW¶VrÌ7Žș’s/-úŒöÜKnS.ŚeśŹćô±łêCÛ\ƒ•èyk2W-æŹęŐ~?Lż Ów'{Ów‹—­©\¶óLÚ_5ÌŻ»z]ĆśC ›Đ†oÛÇ ä—ț ?žóȘöó;ïöѕqŽ'Ű)K^Ő©ăéÓQröő6gɛô:%ÇÓČÊËjΌ'ÂQršÏ§‹Y–Ï)ȘżŒÎÇEú|ú… |p’u1ƒF"AiȞ•ć|Î)ùŁ)”ošĐ4±nŒhÙ4ȘitӘŠi_ŒzhkîŁäíâČȘß-ÊOŁäùt6Îg5.q‘ü’ŒJŽńæ$HV±s$v\ƒ–Š„}ă7ÈDŽ2I螱uʊ*çżNçóŚÓq>™›Œ6€ƒÀA ‘ìh!€I ŠA㣣q†KoVpąă‰àƒp^æłË|öțőéÙáÀ(€ Úà źEț0 fBuĆ Ș?æ$/Euü!ĘbsùL”Ö‘ŁàXr’k?”óĆJ v€Iż~vzö“: 5é茫53P—łò Q!r‹ÊCyÇ-™Ž•Uj܀v’4«é쀋cöPŒŸ{éĒßÿű“j2îQza9JŃr1™\ÜKȘkRTŸ\ąœB‹êžGkŃ*íčFQ»‹V9ĐREm$śšȘ{Ž/k5ŒpT±/ŠŁj}ùÛă»Zț†KČæî7*öf°JȚÌŠÙÛjGp=yÁ’łüK”ÇÖąźłëQŚéęąźSß6eęÒFoy}œB›Ù1…­„‘!hçè}«Ęô˜Ő283Űjș€ÆY  뜜ÚI+#ö4dŒ‡Ś»iï,Lx…D«`čÚíŠUÀKáJÕ†A ÍĘËíń•‘ŚG'^rcÜË}ŰZń›–żÉ¶¶Y}ˆÌËï±î`Ö­;šęŹÛ79„o’IjëqC:Ä ZAÍd°ÜŃY !żą·ûUqœ˜ćüqÔ ^*Ìë“KxÀúš‹©îwŐoÒò#ҟpH,Ѐ$M,±Đ^ĄcĂę°À ƒìú€»#G6"}DéátÀjÊA|mđ1»I1-¶~Sù‚4ƒh%œ)ú;6uwóö68‡nläîßsSÇžŸ©ŁßoS‡_hàÄFąžVțÏò”âÊIZćìÉÉOH_”Jˀ7G˜u:Ÿ·ïŹš&è9e/géí‡"›łßŐíą:Ș%/Č|FœđŰ\-çšÒ§ŁŸ hI:ûˆ>ÊQòô†ú¶T:ÏëeK~É'ŸóȘÈÒQòś2›Ž‹òș>«'ɇłÔ[Yțíùt2ȚÎś> stream xÚ­WMo#7 œçW Pp€Z+Šą$öĐCfȚÚæ–úàMœŹÄî&Nęśćhf$ʙÉѓĆGŠŸČí:Û}Œ°ăśËÈŚvĐą‰!uÄlŹ|oŸ.ò†»à xß=ïșû‹?DD„LJĘóCWÖ~\ÜŚJH”Àčô`"đwȘ™lÿőúâĂU⎠șëûHx,tĐ0aw}ŚĘŹęxčČvEvZĆČÇeûœŒˆŠțÌÓ&ś››ëß»”7œ [ƒž†hĐȚHX9\–ŽŒ—hË.úșËR š~Ìùòș=œö»ż-Ù«—Ÿ†M+±bفË5śű‡öìK&”-ŸÜ‹‡{MÊÔ”<–|3źBÔqCzȘ`ì„ż.ŚŽV»ÛăáNŒEO«­|ĐŻžv§ÏÇ»a}Œï•Ć”%c$íÀs·ż5 G~:ô°ÿśÒ»•\8Óî¶/_‡Őöövś2ę—V§Ï»aăőp·{~üș?< űŸçK^?m?íś§ŻC@ú"a> țÓ¶çt «ûŚĂíi<üœöÛőLyÉńЖ—śâ)ïțżú:Ó2ŐŚwêy§Àz"”&AŃű&!ûÀ ɘ°śV/†m¶ĘÀf8ŒcÜ­- 0F_Ą( Q  _û §VȚżĄ‘Ò›`} &TÈ&W!tęaœ„äM”ĂæSŁ.9 SŸĂ„jčRÎu‰Àb+ŠXEÉžÀŠs*ŒąÖŸ±5Lœq3ùYIIéFe»Ž—Ű«pt–2œ»żƒâDÔR>;±@b«a„w8©p&ŒZJ:u…NæB!„eÎ)Pb-…Ÿ!ń8șbޱp‚–üY!' ű7œSŒ0nê±3)Śrú†žh§egc˜O ‰ooă-f9©pąmèZpČè–9k1qJMÜ-h˜ ÉŽè–s‰°p MBúŰŠk“Ÿę2g,œźÍjgłÁ5В[Œ{˜bÄ&&«kÓF_a2>»ąÔ»ŽđĆȚŠE‰éŠA 5ŽȚëC˜–9§Ƀ%(Ni©5tĐ4Œ„ËvÆ)F(斮PÛD 4€H˜”ŽĐ5R–›^—ŽFI’ŽÌ™jŻ#ËZ ©áŠj§ŽŰ“mjVC([ĄŒ3)艘Ç\Ș1bTœ2;Œ{2Žڜóœ\cDŹ,‘éaéLÌțô”„ÄeÎ#ÈSŹLÜXÀšĄwĄpźgȚą7`k€œod§;Ž>śźyZ@â 珫Ê)Ś9MÁ€ ^$$ƒ+/Ă[Ò2’-żČ~æH)äțDć]QCÊ^_°ê`R±<–RŽ]Á±†ÈéÒÚő€1ëąvbLœŽP7Ï­0Oêê+σ#é ŠCȘP|ă;€T|ŠčœCi 1iè}ó«UÎÊé—T1IGvșü()ĐæT^°ŽŒ €Íç ˆ“Śș Ć9*猿ΓÆòt€ìŠXšp~8”F,•›ËjTœ!†™ËlvšaœXŸùŻaé?aèS‘ș”üE SRfœ$äÓ˜ČˆQ endstream endobj 155 0 obj << /Length 2474 /Filter /FlateDecode >> stream xÚÍYmÜ¶ț~żB@‹Ü2|„ .ĐșvÚąè‹»M?8ù Óòök„őJŠsęő!©Śăz/AaśË-EQœápæ™gæhtˆhôí őżżßĘ|ę:ŃQFȄ'Ńî>b2%šń(QšpĄąĘ>zÿí~łBÇEӟ[s RÇĘCÙșéáwoŸ§”ŚfIü=U4ŻśîĘ1gZ7ߚș…•Šč7śÍÙÍwÆÍœ7*6ˆ*ÚH;iŒ/ʋÎ-/šz»ùaśçhË$É€„_F2ćU†/iÜT}W6őfË3[UpĐ–ÇŸÊ§GÓ=4ûÖ=4uőžaŒĆÄîÚzśŠ0ïA/źŽÓ›+Ÿòâ]~À™Ćeʝ7YÜìûŽSn! Š6çČpś}] 2- üúušÍnƒó”(Á៏äïò7nŃòÊ4‘\kđ˜O7b2֌ܜșșȚȚ‡Č{pJæU™‡›i’h±ČĐEaŁIx€€IìÄàhŒ Iœcàlsś#ÜzëîĘoQćmH#–p"Y:Hù"?ÎæwæeÛ}ĐJKpűŃ4dłŐ {‡W…bŹ üŚxeŠæèĘîžĐduôSßïJîșađÓFp°`o¶y·=—í;7ęĘ&ƒio(Fš(ÍÜ8%,C·#2óç!Őáu4[ÓöĆĂ ;ïŹ–’PÎ@WPŒbWęęì͖DŒ‘2feRB”ÌđÖk5—&ăŁ]ÿéśHç{€łȘÙęrr C6zôe€„Ò4d‚„Țx{jn„Đ4~1î9ś ’„c4…,Ș`ß1 ŸSJÚX`Ì:Ź»yšj.ÌúáÁX| È”€ äGäb˜¶”xÊ<°fĄ‘uoêžW•Ù0;xŹÀg„@Ÿí[„J.†/uÈőpĂABƊŚ7iȘÖ ‚óÚÍćîÀàC­<ę}ŸŚ]Y‚èÌâßĄŚ æÎęƀŻn ŃY(›\'ÄÓÍàneç~!&‡ž› łíK„ÖŒòoòҎhl~>Á"XÒčDàóÈŁ+Ž·YŹjWE^UÆç‘ő]»ăÍȚÒoÀÒŁ»0À=81ś–ń”K§ì î,?âôűàÇłU/ń §àb4ë«Đ> ӊ_óŠèt\ńăs·`aă·—0ƒ?3ôuóM˜!Ìx*TÀ^r–J9(à3(€K•*]^î=8Ț1›Ÿóă©DßÚŰłŽĂŠžPlHF’)=œnCæá$ÌÓ܁›Śƒ“æw͆kßàÇ7Żv7ïoiŚ 8gIŰDŠ"*Ž7öÉ2锝DgĘßü>\öùă7ß^œŸ /Đ_ ۰©śybœő‰4À§LL ~ŽU”"eÂ+{ʎW&mŰ2€âï+Ł_âęÂòLŁìKwĂĂú&ž+·= u#ЁÚèroŻÄûJÔ_ű”zź‡őPs=†ős=06Ż‘ŚDjE\5ćʏ ;jDż„Pቆ@ŸP)ąiQő{㞐<‹üâDÛ[Ÿ”‚áv ÄIPòôąŁ·[ĄUüș<ô>.páżrjáÜńÁșî‡Ö %û{śŐLpĂáű|w 8‹sf„Oˆäƒ7Æëßń~:Ł ö7QËK8æő#$`iÓĐ]YçŽÌÛKVáw_¶…=nWțÇWäےÄ~™WĆX“àĐ3qÜö§SsÛ@&{ôǚ‡őz%ùŠźÏρăs`쉞mŰ Rʐ€#–Ö»5Ù Oę†ÊGÆnà”à]YśM?Țòèß HâŸ*ŹfoȘ€&ń“hʝ€Ł·ĄíÁ4”»{Ç-șȚ‘đÚœëÿk=­ŐW]č=AM…6ĂWg+G'[…ĘUæꘈÿbșÛ@,„rŃ…ÒFJx–ÍëŁÀ>`/=f.Ž‹ *YA!bŻÔèÂ@ûšÎŹŽÜZ“šűTőíPŽ)+öb]8AOsże æŽF&Ž8Yś”k:śkŻ1@'dDĄWg[„L9™đ6°đläÁE85 *ÿ'6ÖWmŹ6NŹÇ@€ËțŰș‰ąÒWŰDŁuÖ„úç)ű°^„ˆ FwW\țB$Ê©Š_!I3ŸfVɚœ}MH*žXđ2Æúí‰%8ž†bć^ąińí)/śn4łȘ]uÉ 3à“š?ۂX@ś§û GœA°,RÏË2§©?HYCu‘W>ü2 !:[zÁ"JëfXùT%M §üŁ·œ}ŒŻW+lz;v#†F˜ćŠàO‰5Íăˆè.Ö„©œŠŸ«WN łpȚććuú‰ôzpS9ݧŸÊ±E| ѱ`îŸTí-Ołpć–BÍ€WŽčźőÔJû*Žx’úŒX»ŹÂ›QzIăä*ž„ŸÏ$™6¶űSŒșâO̊?ìh2Ÿt!l„H-€ÂŐ2–¶ÁŁË*¶kScò]æ[ä$ÀmMńPc ș”ŽœàÈHí:8˜%p|ž]\`Ó|,Bf8ôÁżHš'0XBÎÜŰÍ6éUŚŰŸÿŽÄ)I‘śÙ3`‡GčźŒÖӆKœÀǟłiIYû%&€äD=gËïÊȘìGĐqÔrd•cXÏ[m'Œéć<†aTsőK\©ŽC.ƒ:Y5„cŠü”MXŁìó±ÔeăQvLVżčžŠÜœč!ț#Š æ@™ÁŐdkíÒułFłșÚ4ąáÛct<äsz@ăÀą€œĄ€-’ÔÒç†Z Ăđ1Çì©í|ÓaDÙIŚLíJă9FmÌȚxfdę]ûĐĆ‰ÖŒïmŚ™Í…rŠ6]à_Î"èg&‡Se/e+]śÇ;k TčđOćDaź?č_ŹíïÊÈńŸ_üȘCÉç8Ô™AæjćóäY/ÇS«2ÁV̖aß{Ț9]ę3ëčiÍh9<«u0H~lzKŐF#)g€ %IŰș[»l@MĄä9Càśr”ŃuÛC;à™DQíH’ÿ“Č,[|ûŸâŒjS[ĂśțE>ÚƊÙȘ•e%.߄^5Ž?)éùꀓėŁÙæȚ«đżŠŒ€ÊkÎ.”*ûìăȘŻB±·ä}àC KĆ8’nJ—’$R\cÁìÈ§ÿLX©±>ú,LŠáSÉŃ6áDł+î(Hąx4SæÖț߁ú€Ł†Ï&ÿÚ*N”‚*F(ÛČw}äÚW»›ÿś%Ź endstream endobj 165 0 obj << /Length 1368 /Filter /FlateDecode >> stream xÚ”WɎÛFœÏWđHÞȚ'ŸÄÉÉ!@9Ű9p(j†‰HÊ$ć‰ÿȚŐ )’îY@€Űj–Șk}ő'· N~ŸÀ«'oœ„H3 3Q"’ąŸűx$“‚;‰ÙÒœÿ6ź~©Yòc{ń;|ÆWÙš3›)ęa{qu-Ub‘T&Û}BCJê„)ŒšQÉv—ŒOŻ«ÛS·ičÉšÀ){łÉÇé»¶>æ]Ő·ßż)‡û §iY†á.üŁŹUWùÁÿl;ÿ̏ÇncÒößȘ· ZìöAhżùkûëŐ”š›GDš2đÈö‡Yx^șĐ8öfÈ«ŠÜY9đsd@_F2Bx‘ûjžƒ I?`L?9üï]”ߝîKç{3űĘșîÚ]o5Nyƒ/PŽŠ^gȚś§șjn#p‰€ŠŁ}ży -‚ӄx6ŁÄ,pÄKŽŸdpL‹säL ÙdŒyQF1’Rœ”eL‰4ovŃ Îő*ț냕Ö_›żŒąjJÒӐßd~Ò+iwŸ6DhÄÍ«Òń Ô ü™ŽaŽÉ$áéő©ƒ~‚Î!*­[W’—à˜‘éĄ"&‚(›<ÛN EŒïĐJšțâ…țŽN& {&ôÌźlZÛ°kßä›tšê°ugÀźŠC^Őă,ÌNFëbK»šúž(N]țrŠÓțT܍gç1Ś5Aœź]—KŚčtźkĄœ I#ó€„lœ„Ÿú‚°zê0aSœ{)úŰa“Ô«ă‹ĂŰK[ŠÌ9IP‡ÄPÿ ö!ŽN·6Őžbh„žú rÀI[ûő§ Ł) ŽüæȚ¶{ÿœÄ«f(»Œë*/{đ»¶ùÜì€őœ{Q Ÿ•ÜŸ]ęÙŐré‡Ëaæl]–! Ś,R02Îm#"†ÆÄbÿ”–`OPˆ ŃĐ:|™‡Lą 1Ćk ÀW3 T}˜U„^vÒčŸcĘä쟑âńUk‹–)D”œ·ĆÛX„țùȘ&\ž ‡i6?,>˜2bY K2 A&záŁZúÈ ‰ Țzˆ m’łĐł=|Âź+L‰ùYç"S«"cú”Ç)€”ńŒŽGëùŹH"JgćŁTó™É—1{9ÄP=Ú[–*̆<ńȚš já3æÁ€HŚțźË(4Ă«žvp á‘npöË9Üqo§>ȘúâÔśUÛ\úû!Źóʕș}{8ŽȘ€FZžá{Èßqę›%KÌ $†Û {4AKĄś™À8=:;ëêTĂò‘€Ăș€CËb˜š=x“o›~ÈGșÚYfIޱÜDZ.łb„°CWƜœÖœœ‹:Čh«yòäAŻnOÍˋÆHŸ™Û»hÙ Jž$ çŽèÇÒB™xÖYÿMZžZŽ„EZ\\š0æiGܘUp%ĐXŁ’L3ÓcDđBæ§íĆj± endstream endobj 151 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/risk-012.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 171 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 172 0 R/F3 173 0 R/F6 174 0 R>> /ExtGState << >>/ColorSpace << /sRGB 175 0 R >>>> /Length 135477 /Filter /FlateDecode >> stream xœÌœÍź,ËvŚżO±›dCKÿM‰¶ °™ܐԐeš&ĄKÁ"ëńsŒ9#fäxšŽąîűòÛgïÈš5+kŹÊȘđëÏ…_ûëÿęĂż~ÿß?ÿûÿęù—żțì/țđü<ÏókÿżńgÿÛK[ùőÿęáßü»_ÏŻÿëᦟżÿïoÿŠđëęC ?-ęjé'ç_ü•úűyâüőë/ÜqI”țD1ÿÔšÇwĄ”ŸLž 1=?ùQqzú‰Ă‰›Rę ĘÖ qöUé"7á_ț%Nâűû“űśÿáïțđÏÿU|Ïű_țßï p@țäÚç?:żk‹żțòżțäùÓ_ù·űŸÿrę—ÿÛ4„ö3ÊögĂïùĂíùéyûĂńwüáÓÜMûĂéśüáVçNÛÎżă§8æŁÀțpù=žÇŸ4¶?\ő—wcóŻžJzśYRȘá§7Ùgw<Ìs'i;òúËxqFùÉ͉›Ëó3ìo@܄ôÔùxĄ€ž òVa[Ă~‚¶łò϶“•ߟÒúëĘ 0äŃűóyzÿ›:€đS+țxüęŒ·ŸđÇóïță1ǟÂ|ęę|ôŸ‡ÿűț»ÿx*i>&Öă{paˆü!?r’eR2ŠF}3¶‘ńÿy7nŽêÌ Ixđgśà_9<ć'…_iޟ\æżđßüÉżűëżțÏőŚÿțțêŚŸęÇÿ7üő/țűŸțËßęĂŻÿéoțțțóßüŸú+>żțäżüĂßü§żûÓśë/ÿü;Ú|D†țÓägìżțŽ“8ŸZÆûŚöù˜ű_ęæîëÏöęog{ ïh~Öę‹ăÖęï-òśÿśÆđSòúĂÿöO~ÿż:VnęęęuŠüĂÿöOù§ßmÿ”?tÒûĐ~OjcÎŻÿüWżț_śßśțÏb.?őŃč&OÒÛ\3Pæáü“:’VĐçáöóD$9LđŽûśđű© IŽđžł9 ­Ă úü§œÿÿûó I (óŻx·”Ž•ä0ÁûšűăŻńÌglI밂wRœ‡ăOHrXÀ;çșß1ęžIr˜ Íuż#ăœj$‡49-áy'ID”+N!ͧ‰„ŒŸ6–đțŐÂ"#üÄș„>gˆDBȚ)Čț !̟J‰"€yÆ sHdDBÚOJKxŸ”"!ƒƘ‡$BX$<ïßșÖùț|œÿ@ő'E» DȚŻĂ|̊Ò~bc†”çŐÙTȚD`†ô^n­Ëü«ÌąœŚ6q]pŠ2g 2 Ž“’Úz— EPJó'ïë" fQˆ†\ „œæ32Aüsßÿń>șĄzŸçÛúçæw)‘ PNJȚcï Ašæy)9•4‘ĄzgA_PȚÍ©ÌP€ú\ûT†\cź EĐûC6Öąß “š™EïÚEÉóçÊBńęÊëßò^ŠżHÈP€Ț°N]óç Š śń1Öć}ȍ‘/>ĆűDÉó9  ĐÀٕ(ÈûK˜űŸźŸÓțü„Ê, ĐÜđ”ïŰë3 1‡ÒŚ9{ŸĄzś!Ë_Ԧӊd(‚êû[Ń;ßَ, Ń»UëáęžùwŸ#CÔ87F?†ÈPő?ï8|ç<2 œ—ű^œłY^»œ3m=5Ćw$ŽÊ šÎŸÛ©Ô9ó‘Ą,”ælœ|Öæ C*?}>^â;ßӊ, Đ;rÖs>PȚ2 <6Sió9 P—łßńűț!CôNĆ:ŸçĂí Èą­§ż©”ùL€ hműŚ%ٌ” EĐ{©Ÿ¶Ż‘śWŚiź”ąśÌ SÉP€Țm[+zÇăûŒ€ šcÒ•ÈPœSq]ÄśŒÏ Èąœ@ëŸûțtŒÏ ÈP€òŒ8šJÏ ÈP€Ö5âTú|N@†ÔdšÆw<ŸÿNdQˆÆO%Ï?Ž EPÁ”š?†ó”X±)„(ÌW+Só9 Pü©óçhț€ŸÏ Èą%čĊïx|ŸĄćù›J›ÿd(@ï“Ûú hÏ|N@…šâńòŽÇwsĄ(Ș댌#!Uf(@ ?$m]ż#CQ$đNš™ŃêœÏbÁjäœű™šźæ|–IÌP€V$—_ÈPÉđ˜ŚW‘YCòœă±7f(ŠÆú‹æx ÌPŐ©ś"ê}N@†ą(ÍÜ`ïsČtU†ÖÄLO^Ż$CQŽ~ŽÒû€űŽd(ŠÖSyzÇăûœ€ EŃz*OïkĄś9Yąwžô„Ź+sd(Š‚(m>' CQŚ_ŸőVČ(†äŒÄőșŠą–Č^ó C1$ŃșBB†ąHÎî;çsB”磭ÿJZe2EkÀŁqDȚ;Ʌ֊ȚńŰ#3CëÔćőïDƐìô;C`†b(.„źçÉP ­Ă;äòĂ ĆĐđs<Ą†jđ;ZÿÜwöÔÁ ĆĐXÊz EQ_+š?@ŠĄuvßńX#ł(Z‹źe='T»˜=ŃTÚzN8CëÁđŽÇR™EÙĐ:uïkűű0CÙŃTŠVvȘìh*}='ŠĄőxéa='HF‹œŁ©€őœp(;šJ]Ï ‡Č#-ĂOĆĐz0Œă±fQ4•ŒžeG\•Őó8eGSë9áPvôÇ_ùY Ńźœh*y='ʎŠČ^Ɵʎ^ćœ,ŒńT4•žžeGS)òœ°+;šJ—ç„]14GP~ÇcŽűDS‘réPv4•*Ï »ČŁ©tyNەœÊ{q‰çU4•ÌçSv4•ÊçSv4•ÁçSvô*ïxőT4•ÌçSv4•ÆçSvôÇ_M ú]ÙK¶œr»:”łróÚYč]ÚYč]ÚYččNíŹÜ>:”łr»:”łrsÚYč}tjgćæ:”łr»+5ŚčʕšëÜźJÍun•šëÜîJÍunw„æ:·»RsÛU©čÎíłQó„ÛĘšùÒí«Qó„ÛGŁæK·»Qó„ÛWŁæK·»Qó„ÛWŁæK·»Qó„ÛGŁæK·ŻF͗nwŁæK·F͗n_š/ĘîF͗nš/ĘîF͗nŸš/ĘîF͗nš/ĘŸ5_șʍš/Ę>5_ș}5jŸt»5_ș}4jŸtûjÔ|év7jŸtûhÔ|éöŐšùÒínÔ|éöŐšùÒíjÔ|éöÙšùÒínÔ|éöŐšùÒíŁQó„ÛĘšùÒí«Qó„ÛGŁæK·»Qó„ÛWŁæK·F͗nš/ĘîF͗n_š/Ę>5_ș}4jŸtûhÔ|éöŃšùÒínÔ|éöŐšùÒíŁQó„ÛGŁæK·F͗nš/Ę>5_ș}6jŸt»5_ș}6jŸt»5_ș}6jŸt»5_ș}6jŸtûhÔ|éöŃšùÒÍ7jŸtûnÔ|éöŃšùÒíŁQó„ÛGŁæK·F͗nWŁæK·ÏF͗nš/Ę>5_ș}4jŸtûjÔ|év7jŸtûjÔ|év7jŸtûjÔ|éöŃšùÒínÔ|éöŐšùÒíŁQó„ÛGŁæK·F͗nš/ĘîF͗n_š/Ę>5_șęfŁöQșí%ÛYș}4jŸtûÍFíŁtóÚG鶗lgéö›ÚGéæ”ÒÍ7j„Û^ȝ„Ûo6j„›oÔ>J7ßš}”ngŁöQșʍÚGéæ”ÒÍ5j„ÛŐš}”nŸQû(Ę|ŁöQșí%ÛYșęfŁöQșùFíŁtóÚGéæ”ÒíjÔ>J7ßš}”nŸQû(Ę\ŁöQș]ÚGéæ”ÒílÔ>J·ùÄíÿwëÛŻś!X~Íf@ȚwŸ•ożŒȚËkȚŸčę}ÿZȚ>ÿO|s^űGŸ9/ÔïžđzkȚ|XZOˆÇ­)Żž =ĄŻŚk_ë ńÌPäŐłö„|y­ Ìń©=aÁ|šr•‚ž°êeŒ‚őŒŁ=!Ÿ’šŒÎEOŰô…0@—f=aŚêEÀûWÈ=RJ”ŚŃ ë1Ł5ĄDB2șԄÙڐŠÊ5a”Rd AM8Ź)2ÿŠ(-ßê ‘Ą5y”‰ŠŠ ś?&-șBÉP€ êDt…’EŠžŠdWíČSQ•WUì %C”ąŒbW( P—Kv…’EÊïkœujŃJ†"šDœ:t…’Ą ¶|ÒJhö\«oAW(Š śÇŹ„_ÖJ†"èęa‰Ò8JW(Š śVśƒźPČ(Dï«¶œ+” eĄÙÄH=$]!2A!áA'ŻÀĄŠž`DWˆ, ѐ_N°+” EĐ{’ĂÚt…’ĄšŁ^Gé %CT‚ô-ì %‹BŽf°u…’ĄȘ(™ŰV륈Țÿ˜<ĐJ…šËő-»BÉPő,Oì %C4yĄÎźP2 Šö]ĄdQ%iîŽ+D†Tć…:șBd(‚ƒnYșBd(@ńè ‘ćő3Ń@±#]!2AóćáȘđĐJ†TeŰJ†4ĐN +”, Đ; Öł»BÉP€ ȘMt…’Ą±ÂCW˜¶–(㠄]a¶gE%șBÉP€đäÍź0ÛÓ·ą*/±ÙJ…šÉozŰJ†„_z°+Ìö{ąòÈÛ]Ąd(@Q~ÄźPČ(Di.ÌșBÉP€ȚŚÄRJW(Šąő|ÄźP2 "SŠ]ĄdQˆ*Ê7v…Őú9ą&sW»ÂŠswCőè W†ÔńÀź°ÛO€!éçŰv«đˆ0ÈŽ+ŽA¶ĄŽț-ì WĆP;șÂa}ź!yŒ°+öxȘÏÙJ†ą(KË']ĄdQ IAŠźP2Eȍè %CQ4ä/’ź°Ú-qŠ‚<7Č+”,ŠĄ°~ÔĐJ†ąH~/ÂźĐ~ő»Ątt…Û/= IáĆźpëÄ6Ž*v…AgʆP'6ŸޯѐüW_ęŻ(Z°u…Ü€­ŚòÖòśő;Zőu…ü ŰP“–O»ÂŠE Ą”"ë WŽ!©”+lÚ8r]a»ëD)ŒŹ+ÔN̐ŽYÖjá”!Śö»N”ȘÊșBmłtt…Șlhë ”đڐÚjUu Ł+ìw(Šu…Șlhm€u…ÚCèì UÙŃÙȘbh=ê¶źș]Ą*;:»BUvtv…Ttv…Șìèì UÙŃÙȘČŁł+€r ł+TeGgWšÊŽŸ»Â ­ŸŁ­+äÏсΟP•]Ą*;:»BUvtv…ì~tv…Șìèì UÙŃÙR9ĐÙȘČŁł+TeGŻ2bç_ô[oțò­ÍYê\­ÍYê\­ÍYêžÖæ,u>Z›łÔq­ÍYê|Ž6g©ăZ›łÔčZ›łÔń­ÍYê|”6źŐčKŚêÜ„kuîÒÆ”:WiăZÏÎÆŚ:wgăkŻÎÆŚ:wgăkŻÎÆŚ:wgăkŻÎÆŚ:wgăkÎÆŚ:_ŻuîÎÆŚ:Żu>:_ë|t6ŸÖùêl|­su6ŸÖùêl|­óŃÙűZ竳ń”ÎĘÙűZ磳ń”ÎGgăkŻÎÆŚ:wgăkÎÆŚ:_ŻuîÎÆŚ:ŻuŸ:_ë\Żu>;_ëܝŻuŸ:_ë|t6ŸÖč;_ë|u6ŸÖùèl|­sw6ŸÖùêl|­óŃÙűZçîl|­óŐÙűZ磳ń”ÎGgăkÎÆŚ:ŻuîÎÆŚ:_Żu>:_ë|t6ŸÖùìl|­su6ŸÖùèl|­óŃÙűZçłłń”ÎŐÙűZçłłń”ÎŐÙűZçłłń”ÎGgăkÎÆŚ:Ÿłń”ÎwgăkÎÆŚ:Żu>:_ë\Żu>;_ë|t6ŸÖùèl|­óŃÙűZ竳ń”ÎĘÙűZ竳ń”ÎĘÙűZ竳ń”ÎGgăk»łń”ÎWgăkÎÆŚ:Żu>:_ëܝŻuŸ:_ë|t6ŸÖù­ÎæŁÖ9jœłÖùèl|­ó›ÍG­ă:›ZçšqÎZç7;›ZÇw6”Î^ăœ”Îov6”Žïl>jŚÙ|Ô:WgóQëűÎæŁÖńÍG­ă:›Zçêl>jßÙ|Ô:ŸłùšuÜM•G‡ƒ*Ćw6”Žïl>jßÙ|Ô:ggóQëܝÍG­ă;›ZÇu6”ÎŐÙ|Ô:Ÿłùšu\gsŚ:ÿăżœ(ü>ûkííÿ­žJïIduȚ€È"JïaԛŚm†Ź„űțn»IqNsœ'‘ŚDv“â:Üđf|6P0æXD”Ò:Ź·%ź7}ë=‰|Wž‚ő!‹(ąŠ~Æą‚¶œ»šXĆ›ćE2nBŹö2ZIÛz(‰„ŹÏèÓJ"!ïŐüꀇ’AÈÀKIéĄ$Š€ąê‘[6xâŁ7u9ƒŒ 1è)$Iž•ś$&»Ś€àŸ(éŸ$ŠČ¶JÛ'‰p‹âû`]Ë@ù$ nOaùôŰ,Š îJCù$YąŽJć“d(‚B”Ÿ–O’ĄáĂ9Y>ûtNąűÈÏ Ë'ÉP€pƒ-˧hwà*ŒŃQÊ'ÉP„ŒÆ ć“dQ€2ïîD•·@‰ &žÿP2AïLZUÜ( PăͅrÿĄdQ€j’û`x?ąd(@Cșg”OÈPœÏäò •ò Š wșÈϖ”OÈąć2AŁÈŐ3Ê'd(ÒGœDé3Q>I…hÌ”òI2AïÓŃșÀfù$Š śÒ;íśJ†ÔćŐË(ÉąœréŸqÿĄd(‚2źžyÿa¶ lE…2î?” EĐ|ĘŸÊÜ(Y^Í{rÖ+bÜ( oŠÂęˆu»o šŒ:—ò  Pc'ŽÊ'dQ€æłŃV>!Cjòâć2Am1Ê'd(@u+-ŸEAőà†–OĘ“ŁšÈ}0,Ÿ$Cš°P>I($T(Ÿ$CȘhsP>I†"hŸlEÊ'ÉP€ț-(Ÿ$‹BTćY‚ć“d(@śüĄ|’ EĐ;福Ë'ÉP€x#ʧŽĘèHTć•Ë'ÉP€đLÂò)Ù3 Ń\˜ÜĆ(ć“d(@QîÉaù$Y"œčPʧŒßT±h”O’Ą5ùMË'ÉąuyćÇòI2ôQüŰkő菜ą€:śk܈"nićę‡Ńîz%ÂmêzÿĄĘÉź(ăV_Ț˜ín`CȍŒÿ0Û6±Pæę‡[çLTć&:œÿ°ê}vZƆȚX”ûPÔäRŽć“d(Š€û@ù$Y^u©öX>I†ąHnCù$Š"ččć“d(@C~ÇòIČ(†äV<”O’Ą(’zć“d(èŁyìjùôècwCQ”O¶ÊGùôèłę†äŒ°|z쌒ûìX>=v+žĄőku-ŸęœûÖG=ÒOiùôh…„(H?„ćSĐ KQ”› ”|ŠzÿĄ!čEQË'^KmHnĘŽòIïî4$•§•Oڊnh펕Ozw§Ą5T·ò‰CuGrŁ–OŒ$ȚPuśÖûĆőlż•O|¶ßŃúçZùÄß^îhmŁ•OZœ’VÔÊ'-N7$·(jù€Ćé†ÖXù€Ćé†Ö?ŚÊ'-N7ŽvÚÊ' Z+ČòIoĘúšuv·ò‰gwCkŃ[ùÄEohíôV>q§t–OȘZ§n+Ÿxê6Žvz+ŸžÓ:Ë'(':Ë'U •_gùTšìè,Ÿšè,ŸTÙŃY>©ò»>ôk)Ûę‡TtȚšÊŽÎûUÙŃyÿĄ*;:ï?€r óțCUvtȚšÊŽÎûUÙŃyÿ!•śȘČŁóțCUü-ŠCGĄw1îèUJÔßQP9ĐTŠțŽB•M„éï(TÙŃ«ÌgÓž}Š+<ï>ÓžwŸé Ï»Ït…çŐgșÂółÎôçGéϏ:Ó7žwéÏŻ:Ó7žwéÏŻ:Ó7žuŠo<ï:Ó7žuŠo<żêLßxȚuŠo<żêLßxȚuŠo<żêLßxȚuŠoˆ*€p™-"Ș2NaxĄđT·Œh‚.łuD„p™m š°Hć©îQžêń ȘÂGÔȈ&á2GG4a‘Ą…K{ŸucŽe€Qèˆ&,"3*ŹWUIäAź3ÊHĄMÒ)tD‘őÆUá2SB4AH=…z ƒBE4Ąź7#D9"ȘRNĄ\—9Ÿ_’Í(%§ș$D„€SH—ÀeŸW‰&á2k@TAH䩟Ń!<Ő5!š €BóBâ2[@T„§zțšŠíË,”đTśŠšOőˆˆ*É\暈&‘eź‹U‰”T Ń!ƒBG4a‘ÂŻțˆQBa š €AHQ!2ŁBÀ É:ٌ$ Ń!\æ|úH6ٌp™©#š°HăÖi š „§:D@žÌœMÈxĂ „h‚žêÙș$û#<Őe š €Cš Q!#—ÀSĘ"ą <Ő­ š „§șuDúzë—9 ò6Ł””S(—ÀSĘą oa>…ćmF)á2GE4A—9:ą Bú)t/DžêùŠ&o3J‰<ąâșzÌیRÒ(DDÁŒŠ«ÊیRO!^BD@:…ŒhÂ"˜QëRSą B…Žh‚Ja š d@ˆą BJ<„/Ëœ#+o3J Oulˆ&,RyȘӃš—™ą Bê)ÔKà©Nфwœ‰D@űˆzOČD„ŽSh—ÀS+ą ‹tžê<MÂS]ą ęș—Y ą BÒ)€Kà©.Ń!\féˆ&ŹÏŒxžÌyœ±}žƒžêyœQìĂŒđTÏčZ¶EűˆȘŃ!éÒ%p™ók»Ê6Ł”đTÏŚe›Q$‘§ș7D@žÌUá2GC4AOőˆ&,‚”.V%BPR(dD„t фEäă%ŹËĘęCRŒ фE —"ą Bò)äKh2ą ‹Ôçês \f,ˆ*€đT§ˆšOujˆ&4ŒCBG4A—™ą \fnˆ&á©ÎфE:O”üšöíTƒp™” š „ËlŒ*<Ő­!š „§Z~ĐÆvȘAê)ÔK§0NĄâ3uÂșP”šOőláê6Ł”đTÏöșÍ(’ÀeÎâ·n3J —9«€șÍ(%<ŐŁ"š DNu^ŚêêĂŹ Îșš˜MâÔÎl 7 fSéŹkYąä”t+\t+ÌŠu§ôKŃYŚ*ł)@\tkÌŠqŃm0›Ä èł*@:ëFbV…š8„Ü =2ł)E›uŁ2›Ä ƒÙ ù‘u"Č(T*ł)‚dÖùR2•Îl PŁ2˜M$łîÍáaV…(Q‰ÌŠ*‰Ù N%3›"Hf]|äč2ÚŹÛ3ł*D\tŹÌŠqbg6EPާ’ă­pŃéaV…š;„_Já€Äl PrJș>êRa6h8e\JćąSe6ˆ:ł)@܀ü0«Ôžèìżö۝ł)@܀ܙMâ”ÀŹ P§ÒĂ­pŃ%2›ԜÒn…P2ł)‚7 TfS€žè2˜Mâąk`VeĄ„;|)܀őuGÉfʆűš«Ù á”q)!œJ·Â Xϕé˜uD܀őò.łHg]‹ÌŠqŃëY.łŽˆĐł*D܀ž˜M€łn~;“dS€žè^˜MâôÊl 7 7fSéŹëÙ .zfUˆžè‘˜M„Y·îŒE†b(Q ÌŠń‹șžÄl Đ 2˜M$w5Ÿ9<ÌȘe*Ù F%2›"šqŃ!3›© fS€ŠSÊ­t(ńaVšsŃ10›”’o…+ł)@܀˜U\tŠÌЧ”[iNiNɜuAž+ó6ë ńQ—2ł)@\ôz‘˜·YgHʙM©„p+܀4˜MâąsdV(rŃ93›Ä ȍ٠n@ÌŠńQ·^ȚćmÖ)J\tIÌŠqJf6š:„Ț 7  fSe.șffUˆŠSÊ­pjc6EÎș:˜Mâą[dV…š:„Ț 7`œvło¶ÜÎ:˗’’o…‹nÙA:ëÖa>f7 GfS€ž}0›ÄEÈŹ Î:˗ X/ïČĘ.č!ـ(ŻĘò6ë §ŒKÁŹ‹òÚ-ołÎPqJč•F„1›2Qᬋò °lłÎP‚ł*D\ôz +ÛŹ3Ô©TfSaÖEy~*ÛŹ3”ĄÄÀŹ #ł)@܀˜˜Mč±1›Ä X/ÌÊ6ë u§ôKI\ôzÚ(ÛŹ3Ä H•Ù n@jÌŠqŃi0›"(sŃ91«BÄ È•Ù n@ÌŠ*Ï©”çVžèò0«BÄE—Äl 7 FfU€j8•n…‹ź™Ù æ”v+Ă)ăR7 EfUˆűšk™Ù .șUfSun@ëÌŠqúĂŹ 7 fS€žèž˜M€łźWfS€ž#2«BÄ ™Ù”‰ȘÍșQ˜MâąGg6ˆ°ú»j·anH6 É șÍ:E˜u{Ÿ”L%2›ԜÒnePÉÌŠÂŹK2đë6ë (ë•NĘf!.zőwu›uŠäŸÌ™ ł)@‰Je6šRéÌŠ §ŒKÉ܀˜U!âÄÈl 7 fS.:VfS€žè8˜M*N)·Â Hł*@•‹N‘Ù .:efS€ž©2›4œ2.„ĆSińVžè™U!âąsa6EPN„?·Â X/cê6ë qŃč3›4œ2.epò`6(;%ß ućaVeĄÆY·çKṌ‹Ą¶Í:CĆ)ćVž„1›"Hg]-ÌȘqŃ”2›Ä Xż!kv[熾ëw[í˜u@:ë,_ Ę*ł)@Í)íRtÖ”Îl 7`ęn«łŽš:„ȚÊpÊžuëőR;f7 gfS€žè^™M€łź7fS€ž}0›Ä X-`;fuŁ0›"HgĘhÌŠqŃŁ3›TRoE6 ËóvÛf"Ìș,OÊm›u†ŠSÊ­4*ƒÙA˜uYŠÂ¶Í:C‰Je6šB‰‘Yąî”~)˜uYž|Ú6ë e*‘Ù .:fS&â'æùRžëĆP·Ś7TœRn…‹^Ż—¶Î7žèՙmż!n@.ÌŠqÖKȘŸÍ:C|ÔćÆlŠ ÈEŻß'mĄż!.zœ^Ú>DC܀ő.‰ŸÍ:Eé9•ôÜ œ~YŽ}”ț†žèš˜MâÔÌlŠ N%‡[ᣟVfS€žèژMâÔÎlŠ Â šƒÙ â”r+\t ÌȘU.șEfS€ž­0›TRo…‹nÙA:ë֋Ä~Ì:"n@ÌŠqza6EÎș^™Mâą{g6ˆ‹îƒÙ nÀHÌȘéŹ…Ù ì”|+\ôšÌŠ § § ›uëŐè8f‘<êŠümûűę u§ôKÁŹÛó„$*…Ù Je0›4 „‡Y Ìș"uăöQüÊT*ł)@Jg6Ef]‘ŚnÛòo(9%Ę 7 vfS€șSú„dn@ÌŠe§ä[iNi·Â H‘Y O„Ä[áąSa6š;„_JćŹ'ća·Ąnˆ ł*DŐ)őVžèܙMÔ⩎x+܀ò0«BԜÒ.„?§ÒŸ[Ṍóöö±ę*N)·Â (ÙA#œÊ·ą‹îÌŠU§Ô[á”Álʋ?Ă?ź»Ć‘U!âąç5DxŽYGÄEÏ „đł(pæ[C$«BÄ ˜OʒMâą[d6h8e\JäÌg\ÉŠqúĂŹ u=2›"Hg]OÌŠqŃ=3›Ä ˜OʒMâŒÀŹ Î:˗ÂEÆl PuJœ•á”q):ëæ+ÀđłŽHœJfd(†•ÀlŠ ÌșU2#›”šTfS€*•Æl Đ Ò™M$w”Æői7ÈȘe*™Ù .:fSu.:TfS€"•Æl PqJč•%>ÌȘ .:ffS€žèۙMâÄÁl ĐpÊp ż źÚY".zŸe&l_°!nÀ|'‹dSnÀŹa%›ÄGĘ|Æ Û—lš:„Ț ł)‚"7`öœ’U!âäÄl =_‚‡íë %.:WfS€ąSâ­pJbV…ˆșù,¶Ż 0”čè˜U!JNI·Â š‘Ù n@MÌŠ*\tÍÌŠqŃ”2›Ä hł*@:ëZ`6ˆ‹n‘Ù .ș%fS€ž­2›"Hg]kÌŠńQŚ:ł)@șèÁlŠ u=2«Bo…Đł)@\tÏÌŠÒY7ł*D܀‘˜MâÌŚŽ’MNN‰6ëÖ3nÌȘ§”[áÔÀlŠ u51›”œ’n…‹ź™Ù n@-ÌŠLTlÖÍ7 H6ˆșù†PŽYGԜÒ.EgĘșü*ÇŹ#âʚ€łŽˆ°j’rÌ:ąî”~):ë,_ 7 fS€ž­3›ÄGĘjRÊ1ë€tÖ­ßx”cÖqŃ=0›Ä è‘ÙA:ë,_ Ęł)@Ő)őVž«Č)Û-łŠtÖ­kÎrÌ:">êzg6H=˜MN—ąłn$fUˆžŁ2›ÄEÆlŠ u–/…0:ł)@ČC.Ë6ë *ƒÙA˜uC.y¶ŻYŰPvJŸ•F„2›"łnÈ%Ïöe JNI·ÂEÇÂŹ QwJw żs!č*ÚŸtaC\ôú]Ćö” ⹌%ÏöĆ â€ÂlŠ À HÙ â”r+\ôșÌŰŸ€ÁP|N%>·Â ȅÙ nÀșÌŰŸ†aC\tnÌŠJ\ô|‹xŰŸŠaC܀ò0«BÄ (ÙAù9•üÜ ]"ł)@Ć)ćVžóæ’MTűš+…Ù ì”|+șèÊl 7`ꂩnłNQ§Ră­èął)@Ę)ęR7 >ÌȘqÖőLĘf!>êjf6ˆ‹ź…ÙAP+ł)@܀:˜MâŽÄŹ ÎșV™MJNI·Â hÙ n@ÌŠLÔlÖ­kˆvÌ:ąì”|+Ő)őVžëJ€łHgćKṌ•H;fœȘŹvÌ: uëąłŽˆ0fUˆžè˜MâąW}ԎY”žŁ0›Ä •Ù >êÖB;fÎșuĐŽYGŽ)~¶ŻvŰPĄ™MêNé—"ł.ɧy…í 6”©4fS€*•Îl Đ 2˜M$łîÍ!0«BTœRn„Q‰ÌŠ’Y—ä3Á$›Ä …Ù .:4fS€žèЙMÔča0›”’o„9„]Êàąc`V…ˆ#ł)@܀˜™MâŁ.VfS&âw@€G.â¶/ŰœźĐ¶ŻŰ7 UfS€žë}ÛWA \ôj˜¶/ƒŰł)@܀u…Öí–YC‘°êŁnłnCÉ)éVžèu±Č}-Ćž„2›"(qÖ5D·Y·!n@MÌȘqŃ”2›"(sŃ”3›Ä šƒÙ n@{˜U!âą[`6EÎș–˜MJNI·RRo…ș֘M€łź?ÌȘqŃœ3›Ä ‘Y u#1›ÄEÌl =*ł)@Čò Z’Ą(ÂŹ“OВl PŠ™MjTł)@ƒJf6Efʞ/„P©ÌŠéął)ń»$’|šWŰŸLbC‰J`6šRÉÌŠqŃĄ1›"(ÄS ńVžëùiŰ-łâŹg–±Í:E˜uò_aûj‰ %§€[Ṍ“ÏöőâŹwlŒmÖ)J܀U*ŒmÖ⹌óÓö%âąS`V…h8e\Jæ€Èl PqJč.:UfS•p*%Ü 7 ufS€žùaV…ˆ‹ÎÙA•‹Î•Ù n@nÌŠqJ`VšńQW"ł)@É)éVŠSÊ­pJb6EÎ:˗ÂE—Êl .ș1›4œ2.Eg]ÌŠqŃ52«BԝÒOe~˜/7`^ H6(9%ĘJuJœ.z– ń9fÎșY*Äç˜uD܀y±"Ù n@‹ÌȘéŹk…Ù .zț–!>ÇŹ#*N)·Â ˜dS鏳|)\tÏÌȘqza6ˆ0ß`"ÙA:ë,_ Ęł)@\ô|!ŸcÖnÀHÌŠqFf6ˆ‹•Ù Yt\ÛWR’[fÓú0mdS€2”P™U!jTł)‚0ëÖ;>‘MJPæÓiÜŸ’bCĆ)ćV:•ÀlŠ N„‡[ÉNÉ·R©TfS€ž±1›"ł.ź»âö•*N)·Â H…Ù”‰g|ʙdS€’SÒ­T§Ô[áąç3nÜŸ’ÂPàÌg\ÉŠqra6ˆ‹žOÊqûJ C‘‹žï)ˆÛWRlˆPł*D܀R™M⣟ fS%.z='l_I±Ąì”|+܀ő޶Ygh8e\Jæąka6š8„Ü 7`ț_Č)‚Ês*ćč•ä”t+șèÎl Ęł*@:ëÖa8fQvJŸ•æ”v):ëZf6ˆĐł)@Ć)ćVűškÙA:ëz`V…(9%Ę 7 GfS€žœ2›"Hg]ïÌŠqŃ}0›Ä Y•…ąÍșY*H6ˆ‹žUyŒÇŹ#âąç;+cêRg6ˆ‹ÎY ÎEçÈl PrJșn@NÌŠqŃ93›"hÄSńVžč0›Ä ȝٔ‰ű•ožŻőăö•JNI·Â ˜ïl PwJżuëȘ(łŽˆ‹žŻőc:fQsJ»nÀș¶JvËŹ!u–/„8„Ü =ßYÓ1ë€7`]Ą%»evC܀uù•ŽYGÄG]­ÌŠ §ŒKŃYWł)@Ù)ùVšSÚ„èŹł|)\ôüGLÇŹ#âŽÊl PwJżu–/…‹nÙ æ”v+Ă)ăRtÖ”Ál ĘfUˆžè˜MÔč=2›Ä è™Ù ê”z+Ă)ăR7 WfS€ž#0«BÄ ‰Ù”‰ČÍșՁäcÖqŃë".łŽš8„Ü 7`5)ù˜u@:ë,_Š.ș1›Ä ˜o€l ĐpÊžÌ:ù Ćž}%Ɔ •Èl P§’˜M„Y·nGA6(Q©ÌŠU(ë‚rûJŠ *ÙArËì‘/%;%ßJŁ™MTžè™Mâ„Âl 7 >ÌȘu§ôK©áTjž•ì”|+܀˜MâÄÈlŠ ÆEÇÊl PqJčnÀŒHČ)‚:7 =ÌȘńQ—"ł)@\tȘÌŠqŃ©1›"hpòĂŹ 7 fS€šSšSű•)Ëeéö•âÌ·¶J6ˆ0ßk!Y">êÖÚö•†œ.ż¶Ż€ŰPrJșnÀ|dždS€†SÆ„èŹ+ƒÙ .zŸ4–cÖ5§ŽKŃY·.âÊ1눞蚙MâąÛĂŹ 7 EfSéŹk™Ù >êÖïpÊ1눚SÚ„èŹk•Ù n@kÌŠ§”[ŃEfS鏳|)܀ț0«BTRo…ș™M€łźWfS€žèȚ™MâôÁlŠ u–/…‹Y".z$fS€žŁ2›"HgćKáŁn4fS€žè1˜M’ (r™Qì–YąÊYWä2ŁnłÎPĄR™MêPÖeÆö•†0ëäó2ăö•JTł)@•Ja6ˆ‹^%Ôö•†"fUˆČSò­4*‘ÙA˜u{Ÿ”ä”t+\tLÌŠqbc6EP§’Ă­èą;ł)@Í)íVžéaVšpRd6ˆș”˜MâąSf6EP}N„>·Â Xu›u†ȘSê­pŃ93›"šĆSińVžč0›Ä (Y ÎE—Èl ]2ł)@Ć)ćVž„2›"hđQW:ł)@\tÍÌȘ5§Ž[áÔÂlÊDÍfĘjRÚ1눞èùŽÓێYGÄEŻËŒvÌ: À X—Ín™Ę7`]fŽcÖU§Ô[N—č­0›”’o„9„]ŠÎșu=ӎYG€‹nÌŠ§”[áô‡Y u=2›ÄEśÂl 7 WfS€žœ1›"HgĘșXiÇŹ#âąÇĂŹ =*ł)‚t֍Ál l@•jąmłÎPuJœ•A%3›"Hn™Mò9ą’MÊNÉ·ÒšTfSaÖUč†ŰŸ’bC\tÈÌŠ§”[éT ł)‚*ł)@\thÌŠqâĂŹ ŃpÊp ż’bæÀl œ.3¶Ż€Ű7`ꆬÛ-ł†7`ő}›u†’SÒ­èą;ł)@șèÁlŠ N%†[ဇY".:EfS%.z]‰l_I±!nÀșÌèvË솞©0›ÄG]êÌŠÊ\t~˜U!âąs`6ˆł)@܀œ™MT⩔x+\tźÌŠ5§ŽK©Ï©ÔçVűš›oŽę˜uDșèÎl PwJżuy0›Ä (Y".șdfS鏳|)Ń)ńVž„2›ԝÒ/Eg]iÌŠ%§€[á”Îl u52«ČаYgùRžèŐ0cÖ5§ŽKŃY·ź9Ç1눞èuÍ9ŽYGÄEŻkÎqÌ:"nÀșævËŹ!uëšsłŽˆșőF­qÌ:".șEfS€ž-1›"HgĘșÎÇŹ#âŽÁl Ęł*@:ëzb6(9%Ę 7 7fS€žè>˜M€łÎò„pÆĂŹ QsJ»u#1›”œ’n„:„Ț 7`dfSéŹ[ż!ÇŹ#ÒEfS€dŃòIșqûJŠ §ŒKÁŹkr”8¶YgšP©ÌŠu*ÙA˜u{Ÿ”%fUˆȘSê­pŃĄ2›òąÄŻ€8ò„d*Ù nÀ|‹•dSaÖÉ'éŠí+)6ÄEÏ;~Óö•*N)·Â ˜”’Mč±2›ÄEÏ댎}%ƆžèyVÚŸ’bCĂ)ăRR<•o…‹N™Ù .:fSen@êÌŠ%§€[áŁ.GfUˆžèy—¶Ż€0T⩔x+܀œ™MjNi—Rčè\™MJNI·Â ȍÙ î”~)ș<˜Mâąç'Ü€í+)6TRo…P2ł)‚tÖYŸ.șfS€žèҘM4že0›”œ’n…‹źł*DĂ)Ă)·ÌÊ' K6(;%ß uóÚ*…cÖ鏳|)\ô|_| ÇŹ#âÌ+4ÉŠqæć—dU€tÖ”Èl =+ŸŽYGÄ hÙ á”q):ëúĂŹ Ęł)@܀Ț˜M€łźwfS€žăaV…š:„Ț =ł)‚J8•n…0"ł)@\ôŒ¶Já˜u@:ë,_JtJŒnÀÈÌŠu§ôKŃY7»ÄŽYG€‹nÌŠé fS€†SÆ„èŹł|)ČhùXćŽ}%Ɔ•ÈlŠ Ì:ù„aÉŠ%(áaV…š:„ȚÊ ˜M™(rÖÉGK6(SIÌŠ5§ŽK \ôì5Óö•ŠT ł)@܀uA·YgšC™dÚŸ’ÂPäącd6ˆ ł)@Ő)őVžłKLÛWRJ\tz˜U!âąS`6š9„]J~N%?·’œ’n…‹N‘Ù n@JÌŠ*܀T˜MÊNɷҜÒ.„êą+ł)@Ń)ńVt:ł)@șèÁlŠ ÆEç‡Y"n@ÌŠqrd6ˆș\™MÔčèܘMâäÁl 7 fU€t֕Äl ]2ł)@\t)ÌŠqJe6eądłÎò„pŃłyKé˜uDÍ)íV†SÆ„èŹ›ćœdS€ŠSÊ­pŃëj1łHgćKáÌțNČ*D܀u)˜ŽYGÄEŻKÁtÌ: u–/…Đ*ł)@܀֘M€łnV|)łŽˆ‹îł*D܀ž˜MêN闱łÎò„pŃœ2›ÄEŻËÒtÌ:"n@ÌŠÒYgùRžèń0«BÄEÊlŠ Æ Ù nÀÌŠU§Ô[N—‚Y·>úŠĄì”|+Í)íR0ëÖ(!›”šdfS€ •Êl P§Ò˜M™ˆ_IqäKÉNÉ·ą‹îÌŠ §ŒK ܀uÍč}%Ɔžèu)ž}%ƆșSú„Dn@hÌŠqæ'EI6š:„ȚÊpÊž”N%…[áÄÌŹ QsJ»”üœJ~n…‹^„ćö•âÄÆl 7 vfS.z]čn_I±!.:fS€žë‚2o·ÌâŹ ÊŒÍ:E•ș”™M*N)·ÂEŻ Êí+) 5n@ȘÌŠ%§€[ŃE7fS€†SÆ„ôp*=Ü 7 ?ÌȘńQ—#ł)‚tÖćÄl 7 fS€žč2›Ä ȃٔ‰ŠÍșŐk–cÖqŃëČŽłŽš:„Ț 7`]č–cÖéŹ[Wźć˜uD\ôșæ,ÇŹ#âŹvŽl·Ì*ÒY7_-Ù >êjfV…ˆ‹^”ć˜uD\t­ÌŠÒYgùRž”3›ԜÒ.EgćKáއY"n@KÌŠńQŚ*ł)‚tÖ”Æl 7 fUˆžœ1›Ä èÙA:ëú`6ˆ‹Y"nÀÈÌŠÒY7 ł)@\ôèÌŠU§Ô[áŒÁlŠ ™uù‘æ­ŰŹÛPŠ™MjT:ł)‚dÖćGj”í+)6©$fS€ŠSÊ­t*•Ù”‰ű•Y>V9m_I±Ąe”]Őn™ĘPuJœ•A%0›"(pŃ«íÚŸ’bC\tŹÌŠqÖ5D”Yg(>§Ÿ[ŃEfS€žèô0«BÄ X—Őn™5”ž©2›ÄG]~˜U!jNi·Â ȑÙA9žJŽ·RœRn…‹^ÏÛÛWR*\ôúuéö•âŹúšÚŹÛ7 wfS€†SÆ„T]ô`6(;%ß 7 DfU€Ús*íč.ș$fS€ȘSê­pJa6EÎșR™MÊNÉ·ą‹ÌŠqj`VHgćK)N)·ÂEŚÈlÊD ·ÌæG.VšĘ2»!nÀșXiÇŹ#ȘN©·ą‹źÌŠÒY·:łvÌ:ąì”|+Í)íRtÖ­_ʶcÖqŃëzŠłŽˆĐ2ł)@܀֘M€łnę^¶łŽˆ‹nƒÙ .z]òŽcÖqzd6EÎ:˗ÂEśÌl PwJż” è…Ù n@oÌŠU§Ô[ŃEwfSŐp*5Ü 7 fS€ž#0«€łnDfS€žèő àvÌ:ąâ”r+܀‘™M€łn4fS€žèљM’ — ĆĐ ˜M„Y'țž¶Ż€ŰPqJč•î”î”ÎY'!/Ù ä”t+șèÆl .ș3›"Hn™=ò„d(!1«BԜÒ.%rŃë·»ÛWRlˆ‹^ŚżÛWRlš8„Ü 7 4fS%.:tfS€ČSò­pÖUt·[f74œ2.%óQ#ł)@\tŹÌŠqbc6EPáÄÎl PrJș.:%fUˆžèU«m_IašrRa6ˆ*ł)@\tjÌŠj\têÌŠqòĂŹ 7 GfS€șSú„t.:'fS€žèܘMȘN©·Â ȝÙA:ë,_Š.z0›ԜҜ2lÖ­«èqÌ:">êÖ%ò8fœ.nÇ1ëˆșSú„èŹł|)܀2˜M⹌Ćí8fÎșŐScÖqê`6š8„Ü œ.Ç1ë€tÖ­KÁqÌ:ąä”t+܀y#źdS€†SÆ„èŹk•Ù â”r+܀6˜M€łźfUˆžè™Mâą{a6ˆĐ+ł)‚tÖőÎl u#0«BԜÒn…0"ł)‚tÖYŸnÀÈÌŠqŃŁ0›"HgĘèÌŠ%§€[‘ ˆr7¶Ygh8e\ f]”ëŒí+)6”©DfS€•ÄlJZš˜uë]sÈŠ%§€[©N©·ÒÒ/łNŸ,@Č)@șèÁl =«ÏŒ}%Ɔžó„’Mč!1›TšfS€žèy—·Ż€0”©€p+܀y)(Ù ê”z+șèÎlŠ Ź‹ÌŠqâĂŹ QsJ»”ÂGĘljóö•âącd6ˆł)@܀˜™MTč±1›€‹îÌŠéął)@܀ô0«Ôž)0›ÄE§Èl PwJż”Î H‰Ù n@ÊÌŠńQ—*ł)@șèÆlŠ u©3›Ä Èł*D܀˜M kh묛·9łŽˆ‹ž­qÇŹ#âÌßK6š;„_ŠÎșyćšĂ1ëˆČSò­T§Ô[á”ÀŹ ÎșyćšĂ1눞蒙MâąKa6EPâ”Îl 7`^čJ6ˆ‹ž·ĂäpÌ:".șfSen@MÌŠqja6š9„]ŠÎ:˗’œ’n„8„Ü 7`V’M€łn–č9łŽ(;%ߊn@g6H7`0›"HgćKáąÛĂŹ 7 EfSéŹk‰Ù n@+ÌŠU§Ô[áąûĂŹ ĐàôÀl PvJŸ•æ”æ”hłnŸ…3ÇcÖqf±,Ù â”r+|ÔÍÖ8ÇcÖ鬛/rf=kۜYGÄEŻë™|Ì: À ˜ż;—l 7`]òäcÖU§Ô[N—ąłn]8ćcÖqæ=@’MjNi—ąłÎò„èął)@Ć)ćVt:ł)‚0ëČ\Äm_I±ĄL%0›ԜÒnePÉÌŠÂŹÛó„*Ù N„3›"Hn™=ò„$(áaV…šRIÌŠqŃ!3›"šqBe6(;%ß 7 4fSőçTús+\t ÌȘqbd6ˆł)‚F8•n…‹ŽÙ ê”z+܀T™UYˆ_I‘ćë2òö•*N)·ÂEŻșqûJ Cá9•đÜJrJș.z]Ąm_I±Ąá”q)1œJ ·Â XŐgÙfĄæ”v)é9•ôÜJtJŒ•â”r+Ę)ęRtÖ­ËÒrÌ:"]tf6ˆ+ł)@Ă)ăRtÖćÆl PqJčʀÎlŠ u–/…șu‰\ŽYGTRo…‹.•ÙA:ëJg6(;%ß œšÚrÌ: u50›Ä ˜ïĕl PqJč>êja6EÎș™U!âŽÂl PuJœ•á”á”jłn]čÖcÖqŃóśű賎ˆĐł)‚tÖYŸ.z]sÖcÖU§Ô[áŹËÒj·ÌÒYgùRűš[Wźő˜uDÍ)íRtÖ­‹ÛzÌ:ąè”x+܀uYZYGԝÒ/EgĘ(ÌŠqFc6H6 HW·Ygh8e\ f|1JȚŸ’bC…Jf6šQiÌŠÂŹ+r·}%Ɔ•Ál fUˆșSú„`Ö) ë6ë e*‘Ù .:$fS€†SÆ„tn@(ÌŠqBe6HʙM4tуÙ n@|˜U!âÄÈl 3ł)ń+)Ž|)܀y+—dS€ž«(lÛŹSűš[ڜÛWRl(9%ĘJuJœnÀzĂ@ÛfąÈ XoŰŸ’bC\ôú%ęö•jNi·Â H™ÙA‰ ł)@|Ô„Æl PwJż”Ì HÙ nÀ*-Û6ë qÖŐb;fœ~ŐߎY€łÎò„prb6ˆ ł)‚tÖćÊl .ș1›TœRn…;ł)‚tÖYŸ]ô`6š9„Ę 7 <ÌȘéŹ+Ù â”r+\t‰ÌŠ܀’˜Mâ”Æl PuJœ•á”á”Î[fć{$›Ä X—Èę˜uD܀u‰ÜYôÿ“unÉÂ0ŒÒâ·ï±ŹÖ€ô9]꣈šÂËnđźSN C?·ÈëÓu ”ž•”•ïșçF{}șäCČC#(#+,`LȔƒŒëæEvÔƒÒłÂĐł„ä]ś|Èœ>]ȘA©YaèÙÉR í ì€t0'YŠĄ”–•”™ïșčÈR 1ôú‘]±€UÈR ±€ŐÈRòźSN CŻN–bˆŹA–bˆŹE–rwrR|èM–bˆìÙCȚuÊI©A©YaèĘÈR 1ôîd)7Úê:怰€çł?]šA™Ińź{>*ߟź±€ûÿ5œ,ĆĐYÀ8ŸƒïWŚ ­ Ź€XŚs^zœ’â…Ê K14‚2ČČQ6YÊAÖu~CŻWRŒĐDéd)YŚŚ7,ĆP5„üÈź€ș\d)†VPVR: (•,Ć (“,ĆC—E–rĐ`èú#»*A)Yaő"K1ÄĐ”’„4ŻŻ2ŻŹ°€çŠż~2+4‚2ČÂUWYÊA‹ĄŸ»èŚ+)^ˆĄ[%K1ÄZ#K9hÿŸÊțe…Ą['K1ÄĐm„bœ]čQÿŃuçC'K1ÄUw Û_Ż€x!†Ÿïûë•/ŽƒČ“r±€ûnńdW@=(=++(+)Țuś eÿ}șTƒRłÂîoâž,ĆCN–rwĘę„ÔțûtˆÜß”8YŠ!0dW yŚÍ‹,ĆCÏB–bhedee%Ć»n6ČC =;YŠ!z’„ÚAÙIńꛋ,ĆWĘú‘]1ô*d)yŚ)'„„f…ŹJ–bhe'Ć»îŸìżOځXÀ.dW@,`7ȔƒŒëv'K1ÄĐ{“„: 8o:ÙĄ…r‘„܈WRœOá,K1ԂÒČ2Q:YŠĄ2ÈRČź{Ț@kYŠ!z“„ZAYI±ŸÌŸsRȘ)śÓÉź€ÊE–bhe'„2ôęÙsœ’â…ZPZVXÀęÙsœ’BšęŸJûeƇnd)†XÀ5ÈR ­ Ź€tźșû†Čż^IńB>ô"K1ÄÊì ˆ”‹,ć ÁJ#K1ÄĐe„ZAYI™żŻ2Yae’„AYÙAÙIY, ,ČC, lČC\u”“]1Ž_eÿČÂĐu„bu’„bu‘„ÜššëîÛÒ^>]bèû†Č—OځXÀ}CyČC;(;)ȚuśgŹœ|șÔƒÒłÂîaOvƐwĘss[>]bÏÍmùtˆĄû K1ÄĐϝkùtĄz}•ze…ŒÙC?śœćÓu†ŒëF%K1ÄF'K1ÄÆ K1ÄU7dW yŚ)'…Ąg%K14‚2Čȃȓâ]7;YŠ!†žƒ,Ć ˜“,ć ï:ć€pŐÍE–bhedƇȚd)yŚ)'„„e…ĄŚEvƐwĘ*d)†JPJVXÀd)†VPVPȘșN9),àțjÈÉR  ŒŹ°€ûëœ~șΐwĘs‹\?]bèûëÇœ~șÄž»èúé:CȚuÏ]tętˆĄś$K14‚2ČȂȒâ]whyČC\uÏ}ętè }^Ő_Ż€Čź{瀔‹,ĆPG)d)†J%K9ÈșnsÁë•/TQYŠĄ2ÉR í ì€ z‘„j(›,ĆĐ ÊLÊdŚì š„feedee%e]_e]Yaèë"K14ƒ2łÂźN–rĐfŚ"K1ÄUW~dW@ ]&Yʍx%E;oŸêŻWRŒ ž?@=Ù ž?=YŠ!†~î\_Ż€șșNČC,àțÊïÉR ±€û3֓]1TžêZ%K1ÄĐ­“„bm‘„bÏ e{uŁÊîçűęőJŠbè^ÉR Í ÌŹ°€ȚÈRòź{nKÛ§ë@ =.Č+ ”•”țû*ę—0 YŠ!źșQÉR í ì€xŚ)'…ŒF–bˆŒN–rwrR|èA–bÈ0ÉR ùYÊAȚuc“„jAiY™A™YÙAÙIńź›?Č+ †žYŠ!†ž•,ćFŸÌŸsRXÀsŁĘ?]AYaèçț·șÎĐu}•ëÊJ JË x>53ä]w?êïęÓu †ŸŸÀśțé:PJÏ Ű?Č+†Œë”“ÂĐÏęoÿtˆìJ–bˆ·„ŻWRŒĐÊNŠędöŒëd)†J!K14ƒ2“b]wȚŸŐ_Ż€xĄ‚ČÈR ő ôŹ,Sź‹ìŠĄu}•ue…ĄŻB–bˆ\•,ĆĐÊNÊf諑„bèk’„bŚ"KčŃ ëöù€vŒșNš„f…Ąï/ ôś+)„vPvR.đ|R;^]'ԂÒČÂĐϝëû•ŽŠœÉR ±€z‘]±€û߆,ĆW]­d)Őë«Ô++,àčEŻŸÌ ±€çyŒșNˆÔI–rP+_„•Źô ôʰ€șÈRê,àț†òÉź€ș]d)†ș ČC, -ȔƒŒëÚ&K1ԂÒČÂĐęGvƐw]/d)†X@od)†X@_d)†VPVRŒëú&K1ÄÆEvÄF!K1ŽƒČ“â]7*YŠĄ”ž0YʍŠșN9)>ô"K14‚2Čž;ŚùúÉŹ#ï:ć€pŐ=7·óÓu ”™đÜÿÎŚOfyŚ)'…<_€˜Ÿź1ôó!śüt!ï:ć€Ô Ôʰ€ç.z~șŽƒČ“â]§œ””–_À&K9È»nęÈź€z]d)†zČC+(+)ȚuÏŚ1æ§ë@ œYŠ!†^,Ć x>ŸŻŸÌ:òźSN Wƚd)†|èE–rĐú}•őˊ/`“„AYaèę#»bÈ»nČC,`WČC,`7Ȕ-uĘęo7úútš„fćY@?Żd;ù(/ŽP YÊA§ë>9) „’„š(ƒ,ĆĐÊNÊéșóUAËR ùЛ,ĆC_?Č+†ÎOf?9)ć"K14‚2ČȃȓÒXÀUÈR ” ŽŹ°€k„Ô_„ÿČâC/ČC,àÚd)†X@)dW †.,ĆC—A–bhed…”I–rĐäȘ+‹,ĆC—M–bˆĄëìŠĄĆêE–bš„f…Ąk!K1ŽƒČ“ČY@md)†ZPZVžêê K诀űä€űГ,ĆPJÏÊ ÊJŠwĘsÒٟźùЛ,Ć xC[?™}!đ<«ŰŸź3ä]ś<«ŰŸźő ôʰ€6ÈRòźSNJ JÍÊÊȊ=ÉRòźk‹,Ć h›,ĆĐ ÊLŠw]ÿ‘]±€çÍÖOf_ˆôB–bˆ«źWȔƒŒëžCâțtš„e…<߼ߟź±€ŸÉRòź…ì ˆĄG%K14ƒ2“â]§œźșŃÈR 1ôèd)†VPVRŒë”“ÂÆ K1äCOȔ4~êșûš9~Ÿź±€ûìvČ+ pŸĘN–bhe%Ć»îțÎÒű}șÄæ"K1ÄîĂĐÉź€vPvRŒëÖE–bš„g…ŹB–rwĘ}^:YŠĄ”š•”‘p©N–rwĘd)†ZPZV|èI–bhe'Ć»n-ČCŸ€M–bhe%Ć»nÿÈź€XÀźd)†XÀîd)†zȔƒŒëö"K1Äö&K1tp^mxČ)ŽŹëÎÇë•/TƒRł2‚2ČČPYÊAÖu”–z’„Ú(‹,ćF]śÎIé(›,ĆĐ ÊJÊu}•ëÊJ JÍ žO€ăőJŠbèûì6^Ż€* }ÌÆë•/Äîï ,ĆĐ ÊLJćȘ»ÏnăőJŠbèk‘„bŚ&K1ÄJ!»bš±€ÒÉR 1td)†fPfVX@Yd)uP6YŠ!†ź?Č+ ”•”ńû*ă—P/ČC\uś‘jŒ^IńB;(;)ł|•YČÂê K1Äê"K9È»N9)>ô&K1ÄÚì ˆÜ'“„ä]§œ†n,ĆĐÊÈ ž1'KčQQŚĘ§‹Q>]êAéYYAYIčXÀ}F9YŠ!pŸQN–bhedee'„°€ûrČC-(-+\uś·ÓFùt!ïșû Ù(ŸźŐ ÔŹô ôŹŹ Ź€xŚ‹ì ˆĄG!K1ÄîĂĐÉR ±€ŃÉRòźƒ,ĆPJÏ žŸm,ć ïșù#»bó"K14‚2ČÂĐł„4ŻŻ2ŻŹŽ ŽŹÌ Ì€xŚÍN–bˆÌA–bš„g…«n.ȔƒŒë”“Ò‚ÒČÂ֏ì he„ȘëžSWętš„g…ÜźN–rwĘs€ȘŸźqŐ=ç„úé:œÈR í ì€xŚĘ_`;Ù ۅ,ĆĐ ÊLŠwrRXÀs^ȘúÉì ő ôŹpŐíF–rwrRXÀ^d)†FPFVXÀsêȘŸź3d]w^4:^Ż€xĄŽRÈR M”J–ruĘ;'„ą4ČC„“„Z(ƒ,ć ëșóŠĐ“„jAiYaèëGvĆĐú}•őË ž YŠ!p5ČC+(+)ûú*ûÊ ž:YŠ!p ČC;(;(Œ’âüČÔČC,à9R5ędö…XÀꛎ“]1t±€û[{ăőJŠbèçÔőz%Ć 1ôę­œńz%Ć ­ Ź€p?Š;YŠ!†~ŽwŻWRŒĐ ÊÌÊÊNJ-_„–Źô ôŹűЛ,ć ÆĐőGvÄj!K1Äj%K1ÄĐ”“„ä]WYŠ!Đ.Č+ Đ*YÊAȚu­‘„ȘA©YaęGvނȒâ]§œ†îYŠ!†î“,ĆĐÊNŠw]ßd)†zPzVz\dW m0 YŠ!0YŠ!źș±ÈR 1ôŰd)7êêș玟șÄîŸZœ,ĆĐ ÊLŠwĘęo}FÿtˆĄŸ;Śțé: ˜›,ĆĐ ÊJŠwĘú‘]1ôó ąșÄĐÏÍmÿthe'Ć»N9) ęÜÿöOځVPVRÚ龜_VjPjVFPFV|èM–rPżŸJżČÂöì he&Ć»n_d)†zČC,`WČC,àțńÈÉRČź;/±ŻWRŒPCčÈR ”J–bhŁ Č”ƒŹëÎë'Çë•/ÔƒÒłČ‚Č’b]wȚPyČ+ ŠRÉR  ŒŹ0ôŐÉRn4ì'łœžûŒĄŸÌŸP JËÊDYd)]żŻręČž܇~2ûB,àč[ŻźZAYI)ŚW)WVZPZVXÀs[:ôï^he'„2ôsçúz%Ć ùЍ,ĆĐ ÊLJc„“„ȘA©YńĄYŠ!z‘„ÔY@ę‘]±€z‘„bèZÈR ęÜsŸ^IńB, 6ČC, ČC+(+)Țuś·°Æűtš„f…ÔE–bˆÔM–rwrRșęÈź€X@»ÈRòźk…,ĆC·F–bˆĄ['K1ނȂ2ŐuśWŹN–bˆ«îțÎҘŸź1ôę…€1?]gÈ»źwČC,àùd~șÔƒÒłÂĐśDóÓu†Œëž»èùé: ,ĆĐÊÈÊÊNŠwĘXd)†zPzVfPfRŒëž;úùé:P JÍÊÊÈÊ ÊJŠwĘü‘]qŐ=țÏOځzČC,`.ȔƒŒëæ&K1ÄÖì ˆĄŚE–rwĘ*d)†XÀȘd)†XÀjd)†z ȔƒŒëž/ÍOځXÀZd)†XÀÚd)yŚíÙCï‹,ĆĐÊÈÊ Ê ÊRŚ)'…ĄŸ;úőé:C?wôëÓu đ|!ié'łBȚuÊIéAéYńĄ'YÊAćśUÊ/+Ÿ€E–bhedƇȚd)yŚ)'ć, Ïä—ț=À M”J–ruĘyGëxœ’â…jPjV:Ê K1ނȒb]w^;^Ż€x!z‘„šA™YÙAÙI±ź;ï‹=ÙC_YŠ!†Ÿ*YÊA“\“,Ć žYŠĄ”‘†.•ìŠĄĆJ#K1ԂÒČÂJ'K9h3td)†jPjVX@™d)†X@Ùd)7╜O_Ż€x!†~îĆ_Ż€xĄ”‘P7YÊAWĘssûz%Ć 1ôssûz%Ć 1tëd)•ßW)żŹÔ ÔŹ0ôóőŚ+)^he'„^_„^YaÏ'ŰûÓu źșçìęé:CȚuÊIaèçv}șÄz#K1Äú&K9È»nüÈź€ZPZVXÀžÈR ±€QÈRòźSN CJ–bhe&Ć»ntČC,` ČC>ô"K1ŽƒČ“â]7dW@,`VČC =YÊAȚus‘„bs“„bë"»âȘ[•,ć͟șîŸÿżOځúŸÿżOځFPFVXÀ}‹<Ÿź3ä]§œ””ž•”™ïșû^üd)†žêî›ÛùûtˆĄï›Ûùûthe%Ć»nWČC,`7ČC }ßÜÎß§ë yŚ)'…Ü7”'K1ÔƒÒłČ‚Č’b]ڟÜçë•/TQ YŠĄRÉR m”N–ruĘ;'„„geą,ȔƒŹëȚ9) }ßPÎŚ+)^hedeĄ\d)­ë«Ź++ „’„šA™YaŚ$K9h—ŻČKVXÀ”ÉR 1tčÈź<ˆWRœÿáfYŠ!pߖž,Ć žo(O–bˆĄïOçë•BCŚJ–bˆܟŸ,Ć š,ć òû*ć—†ŸoKçë•/ÄĐu’„bś§Æ'K9š^_„^Yaèû#áùz%Ć Í ÌŹ°€VÈRj, 5ČC\u­“„bè6ÈRòź»B;ŻOځjPjVX@ÿ‘]1t/d)yŚőJ–bš„e…ôF–rw]ïd)†șČC, /ČC+(+)ȚuăGvԂÒČ2ƒ2łÂÆ"K9È»nlČC = ÙĐ Ê Já'łïœpߖž,ĆWĘę”ìY>]ÚAÙIńźSN žÿĆĐÉR ±€ûy–OŚòź»ïgùtˆĄŸûßòé: X,ĆĐ ÊJŠwƚd)†ZPZVXÀęyïÉź€XÀŸÈRòźÛ•,ĆCïF–bˆĄï߁Îòé:CìI–bˆìE–bȇȚd)†ÎĐÏżnŽlŠ#ûÉìyçæÉR ” ŽŹL”B–ruĘ8·‚ŻWRŒPEd)†:Ê$K1ނȒČ|èE–bȇȚd)††)Śì ˆ\YÊAÖuÏś.,K1ÔƒÒłÂźJ–rŁJŚçÛ#'K1TƒRłâCOČC>ô&K9èșŸÊue„„e…ĄïŻ†ÌŚ+)„ C?7·ŻWRŒ žżśqČC,àț€öd)†VPVR*C—A–bˆĄïolÌŚ+)^ˆÔÙĐÊNJ+_„•Ź0tœÈR ±€ZÉRê, NČC\uíGv4‚2ČÂĐ­„ä]§œ””–•”™ïșVÉR • ”ʰ€ÖÈR ­ Ź€xŚ”I–bš„feedee'Ć»ź_dW@=(=+, WȔ5uĘsŁĘ>]ȘA©YaèûkÙł}șނȒâ]§œ””–†~îąÛ§ë yŚ)'„„d…ܟƒÏöé:CßrÏöé:CȚuÊIaŁ’„AYáȘ»?äžíÓu†ŒëÆ$K1ÄžH{ędVhe&Ć»nțÈź€zČC =YŠ!đœ Úëß8òźSN CÏA–bˆĄç$K1Äæ"K9È»N9)\uśÇöł}șÄĐ«]1ä]·*YŠ!°YŠ!°:YŠ!†^ƒ,ć ïș5ÉR ±€”ÉR Í Ì tuĘsÒ韼1ôsÒ韼±€ç€Ó_?™bÏI§șΐwĘóQyÿtš„eeef… ­ś+)„FPFVú>/­ś+)•ë«”++,à>R,ƐœÈRȘżŻRY)A)YńlČC\uś©kœ_Iáš]_„]YaèRÈR ±€ÒÉR ±€2ÈRê }ŸșÖû•B ]6YŠ!PdW P/ČC\uśIgœ_I!ÄĐ”“„ZAYI™, NČC-(-+>ô"K9È»N9), ]dW@=(=+ Ę YÊAȚu­’„b­“„bm„ÚAÙAčÔuśd]Ÿźő ôŹÌ Ì€xŚĘg”“„ȘA©YńĄ7YŠ!p?ˆ8ÙCȚuÊIáȘ»ŸUŹëÓu †Ÿ1ëútˆÜǘ“„ä]§œpcÖőé:=ÈRòźë‹,ĆP JÍÊÊÈ CÙCȚuÊIaă"K14ƒ2“â]7*YŠ!†ŸTëútˆĄÇ K1ÄæìŠ!ï:ć€0ôŒÈR 1ô,d)†vPvRŒëf#K1ÄU7;YŠĄ”•ï:怰€9ÈR  ŒŹűГ,ćFE]wŸĘVùtȰÉR ±€ûìvČ+†Œë”“ÂĐś“ U>]êAéYaśĂą“„ä]w?,ZćÓu †ŸżJŽÊ§ë@>ô$K1ŽƒČ“â]·YŠ!†Ț?Č+ ”•”öû*í—° YŠĄ”‘•”ïș]ÉR ” ŽŹ°€ĘÉRòź»ÏŽ«|șäC/ČC=(=+Ÿ€M–rĐéșóÆ?ËGyĄ†r‘„AYÙ(…,ć ÓuăŒšyœ^IńB„“„Z(ƒ,ć óï>9)5(5+>ô$K1äCoȔUûÉì''…ô K1ÔƒÒłÂö$K9È»î9öOځZPZV|èM–bè,àŒIúdSYŚœsR:ÊE–bhĄȔƒÎOfÇu‰]?™}Ą”š•ÒÈR ùН,ć ćC/ČC e“„šŠ\?Č+†6C_…,ĆC_•,ĆPJÏ žYʍx%Ć''„„eƇžd)†XÀsêŻźst•Żr•ŹűЛ,ĆC?g·Ś+)„Ê䀹_VXÀsŒŻźâȘ{fŻWRŒĐÊNJeÏÁlè'ł/ԂÒČ2ƒ2“Ò|èA–bš„f…”I–bȰÉRê ]/Č+ †ź…,Ć žżNzČC, vȔƒŒëê"K1ÔƒÒłÂĐu“„ä]§œĐ.Č+ †n…,ĆC·J–rĐbm„jAiYáȘk“,ć ï:怰€¶ÈR ±€¶ÉR ±€^Èźï _ŻWRŒĐ@id)†VPVRŹëÊyŠùz%Ć ” ŽŹL”E–bhŁlȔƒŹëȚ9)=(=++(+(Û~2ûŸïß;žì š„f…]gÈ»źuČC5(5+=(=+,àț€cÿ>]gÈ»N9)-(-+#(#+;(;)Țum’„òĄYŠ!_À&K9È»źÿÈź€XÀęšÿ>]bè^ÉR 1t_d)yŚőM–bš„e…ĄG%»bÈ»n4ČC,` ČC=(=++(+)Țuó"»bèYÈR ±€YÉR ±€ÙÈRòźSN CÏN–bˆÌA–rŁK]wŸŒO–bš„fƇȚd)†VPVRŒëžì ˆÜÇȚ}}șÄĐś™v_Ÿź3ä]wŸiśőé: ž#Ÿ,ĆPJÏ CßÖ}}șΐwĘZd)†jPjVXÀdW@\u{’„ä]·YŠĄ”ž•”™ïșœÉR ĄŸŠmÙĄ”‘•…RÈRČź{ç€4”J–bhefeŁ4ȔƒŹëȚ9)„“„ZAYIYŚWYWV|“,Ć ž.Č+ †Ÿ*YÊA›ĄŻF–bš„e…\,ćFŒ’â΃,ĆP J͊=ÉR ­ Ź€\,à>»,ĆP JËÊ Ê̊/`“„TXÀę\ödW@\uś!qż^IńB+(+)•ĄïCâ~œ’â…XÀęïO–bˆ”N–bˆĄË$K9šùЛ,Ć š?Č+ ”™”țû*ę—†źYŠĄ”žpïN–rw]­d)†ZPZV|èF–bhe'Ć»źvČC>ô K1ÄĐíGvĆĐbí"K1ÄZ!K14‚2Čȃȓâ]Ś*YŠ!ĐYŠ!Đ/Č+Șêș犿~șÄĐśłĐ]?]bś7qO–bˆÜ_ł=YÊAȚuśƒÎ]?]jAiYAYaÏ€~șΐwĘęžtŚOځzPzVú~\șë§ë U0:YŠĄ”š•”‘†ƒ,ć ÆÆ&K1Äæì ˆ«n^d)yŚÍJ–bš„f„„g…ÌF–rwĘd)†|èI–bhed…<‡Ąúé:CȚu«“]ő ôʰ€5ÉRòźÛ?Č+ ”š†ȚYŠ!†Ț…,ć Ív'K1Äö$K1ÄĐ{‘„܈WRŒç–M*A)Yé(,ĆĐ ÊJŠuĘy;ü~œ’â…Ê"K14Lč.Č+ RÉR* }uČC=(=+3(3)•<·ÈíŐuB5(5+#(#+ ęܖŸ^I!ÔźŻÒźŹ°€r‘„šA™I鿯ÒYaśs““„bÏÍm{uW]éd)ë«Œ++,  ČC#(#+;(;)Ӈžd)†zPzV|‹,ć őû*ë—z“„bèú#»ZAYIÙ, ČC\u”’„bèÚÈRnÔŐuÏS†țé:P JÉJJϊœÉRòźSNJ JÍ xnŚû§ë@;(;)ȚuÏ}ÿtˆ<śâęő“Y!đ܋śOŚòź{gôOځjPjV|èA–bhe%Ć»îyŃ?]jAiYaèț#»ÚAÙIńźëYŠĄ”ž†î•,ć ï:ć€Ô Ôʌ ŒŹűЍ,ć ïșȚÉR ” ŽŹű&YÊAȚu}‘„òĄ7YŠ!0~dW@+(+)Țuă"K1ÄĐŁ„bèQÉR ±€1ÉRn4Ôuś·]bû"K9È»nWČC œYŠĄ”ž°;YÊAȚu{„jAiYa{“„: èçÁŐxu!^I1ú9°Ÿ^IńB„„Z(,ć ëșwNJE™d)†FPFVúú‘]1d?™íçŰ;_?™j(…,ĆĐD©d)U†~ž'œ^IńB%(%+,àêd)†XÀóôćőJ ĄÆĐćGvԂÒČÂÊE–bhe'„3t)d)†zPzVX@©d) PYŠ!źșçšùz%Ć  ŒŹűЋ,ć y}•yeưÉR 1tę‘]1Žș^d)†X@­d)†X@íd)†žêê K9h3tĘd)†X@û‘] ŒŹì ì ,uĘsv[Ÿźő ôʰ€çx·^?™uä]śô&K1ÄJ#»bšł€ÒÉR ” ŽŹ0td)†vPvR (“,ĆW]Ùd)†șțÈźš ]/ČC, ČC, VČC ]YÊA‹Ąk'K1Äê K14ƒ2“Č_eÿČâCOČC, nČC+(+(U]§œ†n?Č+ ”™•”ïșçÔU?]bèVÉR 1ôs€ȘŸź3TXÀs€ȘŻŸÌ ±€çHU?]âȘ{ŽTőÓu z“„ä]§œĐdW@, _d)yŚ)'…Ą{%K1Äú K1ނȒâ]Ś'YŠ!z‘„AYa}“„ä]7.Č+ †•,ĆĐ ÊJÊdc„ȘA©Yaèù#»ÚAÙIYŚWYWVZPZVfPfRŒëf%K1ÄĐł“„êAéYas’„Üš©ë”“âC/ČC,à9ŁŽŚOf…XÀjd)yŚ­I–bš„g…<§‹öúÉŹ#ïșę#»bÏéą}șÄĐÏŃĄ}șŽƒČ“RŻŻRŻŹ°€]ÉR 1ônd)yŚ)'…ìA–bš„g…«noȔƒŹëÖ9:Œ_I!ÔPYŠĄ2ÉR m”E–ruĘóO-K1ÔMč~dW@ć"K9ÈșRQ*YŠ!†ŸYŠ!†ŸYÊA‹\“,ĆP JˊœÉRÚ ]~dW@%(%+, \d)†J!K葿’âù•–„bÏ€ż~2+ÄžÓEuĐÊNÊUŸÊUČâCČC3(3)ưÈR Ő ÔŹűЛ,ĆĐ ÊJJeÏ1ŠżșNš„e…Ąk!K9š1t­d)†X@md)†zPzVșvȔƒŒëž3JÿtˆŽFv4‚2ČÂUŚ:YÊAȚum’„bm“„šA™IńźSNJ JÍ C?wôęÓu Đ+YÊAȚuœ“„bè>ÉR Í ÌŹ°€ŸÉRòźSN WĘžÈź€VPVP†șn4ČC,`tČC,ày>0>]bè±ÉRòź{îǧë@-(-+,`^d)yŚÍF–bš„f„„g…ÌN–rwrR|èI–bȇȚd)†XÀú‘]1ä]§œ†^YŠ!†~ž2ŒOŚê,`UČC,`5ČC#(#+>t'K9È»N9),`MČC,`-ȔƒŒëöì ˆĄśE–bˆìJ–bˆìN–rwrRZPZVúčŁŸźí ì€xŚíI–bȇȚd)†VPVP&?™Ęçè0_?™ȘA©Y(…,ĆĐÊNŠędvŸÇóő“YĄ†ÒÈR ̀͠z„ȘA©YéAéYYAYI©>ô$K1äCoČC#(#+;(;)Öuû©ȚŻ€b諒„bèk„Ô_„ÿČÂźI–bhed…ĄŻM–rĐ`ÏŃaŸ~2+ԂÒČÂUśÜôż_Iáh2tÙd)†JPJVzPzVVPVRC?ÏMȚŻ€bèz‘„b”„ÚAÙIÙć«ì’†ź,ĆĐ Ê ÊRŚ)'…«î9]ŹOځFPFV|èE–rwrRXÀó8c}ș4ƒ2“â]ś<ÎXŸź• ”ʰ€çŒŽ>]âȘ{ ëÓu†Œëúì ˆ<_śZŻŸÌ ±€^ÉR í ì€xŚ)'„„g…ôF–rw]ïd)†jPjVzüÈź€VPVRŒëF!K1ÄUś<XŸź1ô˜d)yŚM–bš„d…ÌÙCÏB–rwrRXÀŹd)†FPFVvPvRŒëf#K1äCwČC,`ȔmuĘsÒٟźŐ ÔŹ0ôsŒÙŸź±€çł_?™uä]§œ””–•”™đœ—öë'łŽŒë”“žóÒțtȇîd)yŚ­A–bˆ<ç„ęé:ĐÊÈÊÊNŠwĘs€ÚŸź” ŽŹÌ Ì€xŚíJ–bˆĄw'K1ÄĐ{„b{’„ä]ś|ĘkșäCoČCÏĐówŸËőz%Ć í ì€œź›żs^ÚêșêAéYYAYI9?™żs^ÚúÉì Ő ÔŹ ”N–bȇȚd)m†ŸÙPCd)†XÀ5ÉRțŃĆ+)>9) }?č^Ż€x!p?9YŠĄ”•”ÓuŸœ†ŸŸ›\ŻWRŒCßÏMźŚ+)^ˆÜÏ*N–rP)_„”ŹűГ,ƐœÈRȘ,à>]œ,Ć š?Č+ ”‘†ŸÏŚë•BÜwô'K1ԂÒČÂê"K9šÿŸJÿe„„f…ŽÙ h…,ć q}•qe…Ą[%K1ÄZ#K1ÄZ'K9È»ź ČC>ô$K1ނȒâ]Ś Ù è•,ĆĐÊÈ CśF–rĐŸŸÊŸČÂú&K1ÄU7~dWt©ë”“ÂĐśăŒëútˆÜ_%:YŠĄ”•ï:ć€0ôęÜäș>]AYaśŁ•“„ä]w@źëÓu z“„bóGvƐwĘ}t8YŠĄ”š†ž,ĆCÏI–rwĘęUą“„bë"»bèUÉRòź[,ĆP JÉ X,ĆĐ ÊJŠwĘ}}]Ÿź” ŽŹ°€”ÈR ±€ę#»bÈ»N9) œ/ČC,`7ȔƒŒëv'K1TƒRłÂĐ{„ZAYIńźÛ‹,ĆP JËÊúi0ˊ╟œ””’•ŽRÈR ­ Ź€XŚœsRjPjVJ#K1ŽQYÊAƇȚd)†zPzVXÀő#»bšțŸJęe…ĄïçŚë•/ÄĐśóëőJŠbW#K9š±€û'K1ÔP6YŠ!†.Ù (,ć ÎJ'K1ÔƒÒłČ‚Č’2úč]œ’â…X@Ùd)†X@ę‘]1tmd)ÍòUfÉJ JËÊ ÊLÊâȘ«,ĆCßž_ŻWRŒœÈR ­ Ź€ìë«ì++ Ę~dW@ Ę.ČC;(;(U]śÜŃŚOځžêž;úúé:C?·ëőÓu†Œë”“RƒRłÂž›țúé:ĐÊNŠwĘsÓ_?]òlČC,à~ÊpČ+†ŒëúE–bš„f…ôJ–bˆ<ç‚úé:CȚuÊIiAiYńĄYŠĄ”ïș>ÉR ùЋ,ĆĐ ÊJÊđlČC,`üÈź€žêÆE–bˆĄG%K9È»n4ČC,`tČC,`LȔƒŒëÆ"K1äCoČC,`^dW@,`ȔƒŒëf#K1ÄĐs‘„bs“„bëGvćAM]§œ””ž†~N:íÓu†.đœQšț=À ±€çÒ>]bèçtŃ>]ÚAÙI)ŚW)WVXÀęÉțÉR qŐĘ?ŰžÚ§ë yŚ)'…ĄïßQ\íÓu °;YŠĄ”•ï:ć€0ôžd)†FPFVXÀsiŸź3ä]·7YŠĄ”ž•ł€r M?™Čź{ç€T”J–bh 4ČC„“„t~2;ŸwőY–bš„eƇžd)­ßWYżŹ”M–bš›ręÈź€ÊE–rĐŸŸÊŸČÂĐW!K1ÄźJ–bˆ\,ćFŒ’b–sŒyœ’â…zPzVXÀęÜäd)],ày(Ò_]'TƒRłâC/ČC>ô&K9š°€çéKu xfŻWRŒC?ÏM^Ż€ȘżŻRYa„‘„êAéYYAYIi>ô K1ÄÊ$K1ÄÊ"K1ÄêìŠĄÎĐő"K1ÔƒÒł2ƒ2“â]ś< éŸźŐ ÔŹ0t­d)†X@md)yŚ)'…«źvČC>ô$K9È»źęÈź€X@«d)†zPzVș5ȔƒŒëZ'K1TƒRł2‚2ČÂUŚYʍ†șîțAû5>]bÏÙmè'ł/ÄžłÛűt!ïșûûSŚűtš„f…Ąû K1ÄžĂĐĐżòźë›,ĆP JËÊ ÊÌÊÊNŠwĘęuŻ“]qŐ='ńé:CN–rwrRXÀd)†XÀ˜d)†zlȔƒŒëžĂĐűtˆÌN–bˆÌA–rwĘ\d)†jPjVXÀÜd)†XÀșÈźòź[…,ĆC?yƧë@ œ/Č+ ”ïș]ÉR 1ôžd)†ÎĐő|šțz%…ĐùÉìŹçŁòĄŸÌŸP JÍÊÊÈÊÊ Ż€˜őÜčŸ^IńB-(-+ӔçžsŸșÎŃĆĐÏ=çë•/ÄĐÏĘâë•/ÔƒÒłÂžÊùê:GÖuŸYŠ!†~n_Ż€x!đÜ ÎWŚ9Șć«Ô’†.…,ĆC—J–rPû}•öËJ JÍ W]éd)†|èA–rPżŸJżČÂÊ"K1ä Űd) †ź…ì ˆĄk%K1ÔƒÒłÂj'K9h2td)†șČ+ ”‘•””ĆUŚ*YŠ!†~îĐ^Ż€x!†~>䞟ź3ä]§œ””šz‘„òĄ7Yʍ–ędvÖó9űÒOf_ˆ<ßÍYŸźqŐ=•ŻOŚòź{>ä^Ÿź• ”Źô ôʰ€çVp}șΐwĘsŸ·>]òĄYŠ!đ|‚œôï^ˆŒB–rwĘšd)†zPzVfPfRŒëF#K1ÄU7:YŠĄ”‘•”ïșçnq}șԂÒČâCOȔƒŒëÆ"K1ÄæEvÄf!K1ނȒâ]7YŠĄ”š0;YŠ!0YÊAȚuÊIńĄYŠĄ”™ï:ć€0ôșÈź€zČC,`UȔmurRZPZVúyʰ?]gÈ»îyʰ?]*A)YaÏ#„ęé:C?ßYڟź3ä]śÜŃïOځjPjVXÀóașÄU·+YÊAȚu»“„êAéY™A™IńźSNŠ=ÉR ùЋ,ĆĐ ÊJŠwrRZPZV|èM–bè, #ŐÖOf…ŹëÚy±_]'ÔQYŠĄ…2ÈRČź{ç€T”I–bhedƇ^d)-†Ÿ~dW@ ć"K14ƒ2“b]śÎIa諐„b諒„bW'KùG…WR|rRZPZVfPfVXÀę”ád)]ć«\%+=(=++(+)ćśUÊ/+Ÿ€E–bȰÉR í ì€T†ŸœćőJŠbś™öd)†XÀę âd)5†.‹,ĆP JÍ žÏn'»ZAYIéŚWéWVș6ČC ]'YŠ!Đ.Č+†ŒëZ#K1ÄĐ­“„bè6ÉRš, mČC, _dW@\uś‘Șü>]ÚAÙIY, wČC,àțüd)†X@Ÿd)yŚ)'ƇȚd)†zPzVXÀ(dWt©ë”“Ò‚ÒČÂîóÒÉR í ì€xŚĘGȘr}șÄĐś1Š\ŸźùЋ,ć ïșûŁò“„ȘA©YAYaèYÈźȘ,`VČC-(-+\uł‘„ä]wÿŽą\Ÿź1ôÜd)†XÀȘdW@,` ȔƒŒëÖ$K1ÄĐk‘„AYÙAÙIńźSNJJÏ X›,ć ï:怰€ûRźOځFPFVvPvRŒëv%K1Äv#K1ÄĐ{’„ä]·YŠĄ”’°7YŠĄ”^I1ŸÿăiÙĄ”–•RÉR m”F–ruĘó­ËR u”I–bhe&Ćșź?wô'K1TQ6YŠĄ”‘•eÊu‘]1TŻŻRŻŹ°€ûŽŸŒ^IńB3(3)ĄŻF–bš„d…\,ĆĐ ÊJJżŸJżČÂźI–bhed…«îZd) z“„êAéY™A™I™,àč]/Żźbèr‘„AYa„“„ŽXÀę$èd)†ZPZVș,ČC;(;)›”M–bˆÔÙCŚ‹,ćFU]śê§ë@,à9:ÔŚOf…XÀęÈéd)†vPvRŒëžHętš„eee&Ć»îț•J©ŸźùЛ,ĆCßßY*őÓu Đ.ȔƒŒëî'd'K1ÄĐ­‘„bèÖÉR ±€ûÛF'K9È»N9)\um’„ZAYIńźSN h‹,Ɛ/`“„ÚAÙIńźë?Č+ Đ/ČC3(3)Țuœ’„bèȚÈR ő ôŹŹ Ź€xŚ)'Ƈd)†fPfVvPvRŒëú"K1ÔƒÒłČ‚Č‚ÒűÉl?ÇȚöúÉŹP JÍÊÊÈ Cß?Ș)íÓu†Œëž“qûtˆ<ÇȚöé:Đ ÊLŠwrRú~ WÚ§ë@,`,ČC+(+)Țuc“„bèy‘]±€YÈR ±€çLÛ>]gÈ»N9)=(=+ }?,íÓu†: žŸù,Ć ˜“,ƐœÈR ùЛ,ć q}•qe„„eee&Ć»îț±QiŸź1ôșÈR ±€UÉR ±€5ÈRòź[“,ĆP JËÊÊÈ X‹,ć ï:ć€0ôț‘]Í Ì tuĘsJïŸźŐ ÔŹŒ ŒŹ0ôsÖïŸź3t]_ćșČÂîŁpČC>ô$K9È»N9),àùÄ ż~2+ä Űd)†ÎU7žß#•Ś+)„ŹëȚ9)-(-+ć"K1ŽƒČ“b]ś|ŁÜČC=(=+„’„d]7ΧęŐuB5(5+>t'K1ŽƒČ“2źŻ2źŹűYŠ!z’„4}èE–bš„dưÉR ­ Ź€,†Ÿ~dW@,àșÈR  ŒŹ°€«‘„Žúêd)†zPzVXÀ5ÈRn4èșq>œŻźòĄ7YŠ!†~>wxœ’â…VPVR.pAöd)†ZPZVfPfR Cß_-ŻWRŒ xžbŽWŚ ±€ç3Ś+)^ȇ^d)yŚ•M–bˆÔBv4‚2ČÂUW+YÊAȚu”‘„jAiY™A™Iń꫃,ƐœÈR ùЛ,Ć x>1ŻàÈ»źČC Ę*YŠ!†~ŽàăÓu ”ïș¶ÉR qŐőÙCś‹,ć ïș^ÈR ±€^ÉR  ŒŹì ì€xŚőA–bˆôI–bˆŒBvćAS]§œ†~ŽwóÓu ”žpôd)yŚ=‡Äùé:C?'Àùé:Đ ÊÌ x‰óő“YGȚuśą;ÙCÏB–bˆĄç$K9šțŸJęe„„f…«nnČC œ~dW yŚ)'„„e…<§źùé:CȚuÊIaèUÈR ±€ŐÉR ±€çì6?]gÈ»N9)>ô"K14ƒ2łâ Űd)yŚ)'„„g…ĄśìŠĄĆöE–bˆìB–bˆ«nWČC œ;YÊA›ìA–bˆìI–bˆìE–rŁ„ź{N]ëÓu 3ô<焌+)^šŁ\d)†VPVRŹëæ9:Œ^IńB e’„(‹,ĆĐÊNŠuĘ<7ęŻWRŒPJÏ C_?Č+†Źëæčé_ŻźȘA©YaèçĄëë•/ŽƒČ“ÒXÀęę̓„bÏdœșNhą Ȕƒș=ÉR • ”ʰ€k‘„òlȔƒC—JvԂÒČ2‚2ČÂJ#K9h–Ż2KVștČC,  ȔƒÖï«Ź_VžêÊ&K1ÄĐő"»bèZÈRÚ, VČC, 6ČC ];Yʍx%Ć''…<§‹ęúÉŹPJÏÊ ÊJŠwĘsٟź±€çAç~ędVˆÈR ±€>ÉR  ŒŹì ì€xŚ)'Ƈ^d)†fPfRŒëú&K1ÄĐŁ’] ŒŹŹ Ź€xŚ)'…«îùšíțthef…ŒN–òêO]wŸ#O–bš„gƇȚd)yŚĘëïÓu ”špÍöd)†zvȔƒŒëîǂőśé:P JË ž ž,ć ïșčÉR 1ô}HŹżOځz]d)†VPVRŒë”“Ò‚ÒČÂĐśŻëïÓu °:YÊAȚuk‘„âȘ[›,ĆCïÙCăśUÆ/+,à>»,ĆĐÊÈ CïA–rwʞd)†ZPZVXÀȚd)yŚ)'ć ęüDȚČ)B„„Z(•,ć ëșwNJ JËÊDid)†6J'KčŃEŚœsRzPzV|èA–rędö“RƒRł2‚2ČâCoȔƒ žf'»bŚ K14ƒ2“Rú>uŐś+)„ú~†S߯€bśyéd)†X@éd)5†ŸÿY]}ż’BˆĄË&K1Äêì ˆÜǘ“„ÔËWé%+ ]+YŠĄ”•”Áj#K1Äê K1äCOČC>ô"K9hȀșÉR ” ŽŹpŐ”ÙCëśUÖ/+5(5+, ČC, UȔƒŒëÚ"K1ÄĐm“„AYÙAÙA)êșûŽŸ–OځzPzVXÀ}/~ȔƒŒë”“Âú&K14‚2ČÂĐśż#©ćÓu†Œëîïț,ĆP JË Cßśâ”|șΐwrRXÀd)†XÀ˜d)†žêf%»bÈ»îčč-Ÿź” ŽŹŒ ŒŹ°€9ÉRòźSN CÏM–bhe&Ć»N9)\uëGv4‚2ČÂÖE–rwĘęôćd)†XÀȘd)†fPfRŒëV'K1T‚RČÒƒÒłâCȔƒŒëžÛőòé:P JÍÊÊÈÊÊJUŚ=ç‚úé:PJÏ xîèë§ë yŚĘÏpN–bˆĄŸ›țúé:ĐÊÈÊYÀóé€eSYŚís/^_]'ԂÒČ2Q*YŠĄÒÉRČź{ç€t”A–bȇ^d)”뫎++e“„AYa諐]1ÔËWé%+,àêd)†XÀ”ÈRČź{ç€0ôę#Źú~%…C—J–bhe%eȀûAÄÉR ” ŽŹÌ Ìʰ€ÒÉRZ櫏’źș2ÈR ùЋ,ć }}•}eưÉR ±€z‘]í ì ű+)Ț9),à9]ŽŚOf…XÀsthŻźstqŐ=G‡ś+)„jPjVXÀsthŻŸÌ ­ Ź€xŚ)'…ĄŸ;úöé:C·‹,ĆĐÊNŠw]+d)†șUČC }?©íÓu†Ú龜_VjPjVžêÚ$K1äC/ȔƒŒëúì š„e…ô‹,ć ïș^ÈR 1tŻd)†zPzVVPVRŒëz#K1äCwČC#(#+,à9u”OŚòźë“,ƐœÉR 1ôű‘]1ŽYÀžÈR ±€QÈR  ŒŹ0ôšd)7êüdö“Âî''K1ÄUś<ńèŸź3ä]śœșú§ë@>ô&K1ÄîŻÁì he%Ć»îțŠ\퟼1ôŹd)†XÀld)†XÀìd)yŚÍI–bȇȚd)†XÀs^êŻŸÌ:òź[•,ĆP JÍ CŻF–bˆĄŸcLÿtĄÎžÓEędVˆŹM–bˆĄśìŠ!ïșĘÈR • ”ʰ€ĘÉR ­ Ź€xŚíA–bš„e…ìM–bèYÀúcLWŚ ź[żsFyœ’â…:J%K14ƒ2“rșnęÎ#„źź{Ą”š•”‘ș“„ÜhXŚ­çżÒY–bš„eƇ^d)]żŻręČR‚RČâ Űd)†–)śwÜêë•B…Ąï/°ŐŚ+)^š„f…<§źĄź{!p­Ÿ^I!Túêd)†úšd)†fPfR žYÊYç’ä:Á+™òț떈DQÄn*#7(Ș%Ù~4äC/ČCęRzTX@NdW 5đ>uuuʁžêr#K1ÄĐï#Őq$…Pÿ}•ț‹ (‰ì š]J‹ÊŒ””ÁĐ%“„*—RąÒ/„G…«źTȔŒë”ƒÂJ#K1ÄÊ KÙÈ»ź,ČC ]dW@ęRzTX@­d)êșśe|șT/„F…ĄŸo„•ńé: xŸt†~2+ä]ś>ٌOŚÚ„ŽšÌK™AńźS x†Æ§ë@,à}Ÿź­KYAńź{ŸtƧë@, 5ČC,àùŠŐÎR6òźë?Č+ r)%*, 'ČC, gȔŒë”ƒÂĐœ’„—2ąÂz#KÙÈ»N9(>t'K1äCȔÆï«Œ_TXÀű‘]qՍD–bˆĄG&KÙÈ»nTČCőRjTXÀhd)yŚ)Ƈîd)†Ú„Žš°€1ÈR4ŐuÊAńĄYŠĄq)#*,à}šŸź3ä]ś>ÆÌOځz.ČCóRfPòï«ä_TÊ„”špŐœŸŸÌOځքʠ° YŠ!đ> ÍOŚÆ„Œ xŚ)…ĄŚ"K1ސöĂĐ<șNhą$ȔŹëÒ~^:Ž€8PE)d)†:J#K1ŽPYÊFÖug C§DvÄĐïw–Ž#)„ŹëÒŸ]ŸGŚ ”A–bˆĄÓ$K1ÄĐi‘„l4Y@NdW@őRjTJ&KÙhęŸÊúE…äB–bš]J‹ÊŒ”y)IńäF–bȇîd)†ú„ôšŹKYAI>ô K1äC/ČC,àęșŚÒOf…2 xŸ.ÖŃuB\uïsÁq$ƁșČC ę>GRP:YŠĄz)5*ăRFPêï«Ô_TXÀû°„ŸÌˆÔÙW]Md)yŚŐJ–bˆÔF–bˆÔA–bˆÔE–Č‘w]û‘]1tKd)†Æ„Œ xŚ”L–bˆĄ[%K1Ô/„G…ŽI–Č‘w]ÿ‘]qŐőJ–bˆĄ{'KÙÈ»N9(ùRrTX@d)†æ„ÌŻRêșç—óőśé:P蔕~)=*\uϧ őśé:CȚuÊAaè玟ț>]bÏęÎR6òź{>ešżOŚÊ„”šôKéQaÏíúÎR6òźƒ,ĆWʘd)†zțÈź€Ö„Ź xŚ)…ÌB–bˆĄŸÏ*êïÓu†Œë”ƒÂž3v–bš_JŠ=ÉR6òźSJœ”•q)#(Țus‘„bèő#»ê—ÒŁÂV%KÙÈ»N9( œ:YŠ!†^ƒ,ĆĐș”ï:ć pŐ­E–bhß§‹zIJö“ÙOJAId)†ú„ôš,”J–Č‘uĘûmeËR ŐK©Q(,eŁüû*ùz„j(“,ĆĐŒ”ëșśËՖ]1tJd)†úùP€GRh]Ê Je©‘„j—ÒąÂĐi„lÔX@šd)†X@NdW@\u9“„bèÜÈR6ê, wČCőRjTÆ„Œ ŒßWżšűЃ,Ć ȓ,Ć (?Č+†&C—L–bš^J xcv–bˆ”J–ČŃâȘ+,ĆC—A–bȇ^d)ÊêșçdgW@ćRJTú„ôšŹKYAI,àyÒÙYŠĄz)5*\uÏ·Ójțt!ïșçÛi5șäCWČC,àùôeg)†XÀóHUó§ë yŚŐE–bš^JJż”Đ~dW yŚ”D–bˆĄ[!K14.eĆ»źUČC, uČC ĘYŠĄu)+(ȚuÊAaÏàÎR 1tÿ‘]1ä]§ĐYŠĄv)-*\u=“„lä]Ś+YŠĄz)5*,àù gg)†Ö„Ź xŚőA–bȇžd)†Æ„ŒK)êșś!±|șÄUś>$–Oځú„ôš°€ś9Čè'łBȚuÊAaÏ'A”|ș4.eĆ»N9(,à}Ô,úçÔ.„EƇîd)yŚ)Ć0ÈR ù&YŠĄu)+(Țu3‘]”KiQ—2‚â]§†ž•,ĆCÏF–bh^Ê ŠwrPžêæ K1äC/ČC,`ęÈźòźS X‰,ĆC?Őòé:CȚuÏÇ_”|șÄV%K1Ô/„GƇnd)yŚ­I–bˆŹE–bh\ÊžŽ€˜e?jGRš dČC„„š—2ƒb]WöÓh=șNšą,ČCăRFT–)ïCbŐOf…ŹëÊ~HŹGŚ ”KiQ™—2ƒR:eČC, 5ČC, -ČCëRVP*CçDvT/„F…äL–ČQû}•ö‹ C?ß·«Ç‘bï`ŐOf4/e„ł€ś!ń8’â@ ]~dW@ ]2YŠ!P*YÊFƒ<Ÿí,ĆCŚÙĐŒ””Éj!K1T.„D…«źVČC ]YÊF‹Ąk'K1T/„F…ÔI–ò Šź{ŸtÚ§ë@ ę>]ŽOŚÚ„Žš°€ça;KÙÈ»N9( ę>ÆŽOځú„ôš°€ś„}șΐwrP|èE–bˆĄß§‹öé:CćśUÊ/*,à}iŸź1tïd)†Ö„Ź TđȚ‹7ędö@őRjTžêF"KÙÈ»N9( =YŠ!0:YŠ!0&YÊFȚuÊA©—RŁÂæì ˆÌD–Č‘wrPzVČCăRFPŒë”ƒÂf'K1ÄĐëGvŽ.ee„ŻČRTXÀJd)†Æ„ŒKéêșśæ¶șÄȚ{ÎźŸÌš]J‹ WĘ{CÙ?]gÈșźîEŽ#)TQYŠĄ~)=* %“„ld]wæ 4”J–bh 4ȔŹëΔ‚ÒÉR őKéQńĄYÊF5}•šąÂÒì ˆĄS"KÙš1tÊd)†X@Șd)†X@jd)†æ„Ì t†Nƒ,Ć x?7éúÉìX@Zd)†X@NdW üUFŽ CçL–bˆäJ–ČŃdč‘„bèÜÉR 1t^d)†X@IdW -P2YŠĄz)5* ]Yʃ8’bÖ}‹|Iq đŸüGŚ ±€śćÿq$Ɓæ„Ì xŚ)„\J‰ xoŽÇ§ë@\uï]ôűt!ïșśy|șÄê K1Äê$KÙÈ»N9(>ô"K1Ô/„Ge^Ê ŠwĘûYĆűtš^J C·D–bh]Ê Šw]Ëd)†Ú„ŽšÌK™Ańźk…,ĆPč”Đ:YŠĄu)+(Țum’„ò,ČC, 'Č+†Œë”ƒÂĐ=“„bœ„bïÇăÓu†Œë”ƒR/„FƇnd)†Ö„ŹK™ê:ć űН,ĆĐŒ””ä Xd)†XÀûŒ4?]âȘ{~Sç§ë@ ę~ n~șΐwrPXÀûqÆüth\ÊŠwrP|èF–bˆŒŸUÌă'łB,`,ȔŒë”ƒÂĐóGvÄĐ3“„Z—Č‚â]7 YŠ!†ž•,ĆCÏA–ČQgïŚàæń“Y!°~dW@\uïóÒüth]Ê Ê`+“„Ș—RŁ2.eĆ»nČC>t%K1Ô.„E…ŹF–Č‘wrP|èN–bȰÈR ­KY—‘łíçÈăHŠ”KiQ™(‰,e#ëș¶?«XGŚ ”F–bšŁLČC e‘„ld?™mûÁl?™Ș—RŁ2PYÊF…ĄS!K1ÄȚg·uüdVˆ€F–bh^Ê JőĄ;YŠ!z„ê—ÒŁÂÒ$KÙšćŻÒrT:ÿÈź€Æ„Œ tYŠ!źșÜÈR 1td)†Ö„Ź  YŠ!PÙCżwǑB“ĄK!K1ÄJ#K1Ô.„Ee^Ê ÊbèČÈR •K)Qé—ÒŁÂj"»ò öSŚ=­Žß§ë@ ę<¶ß§ë@,ày0ÛYÊFȚuÏÓĆÎź€úythżOځșUČC, 5ȔŒëž§‹„âȘ{>«hżOځș'Č+†Œëz!K1Äz%K1Äz'K1ÄĐ}’„lä]śÜE·ß§ë@,`$Č+ 02YŠĄu)+(Țuِ„j—ÒąÂF%KÙÈ»N9(>t#K1äCwČC,` ȔŒë”ƒÂU7&YŠ!†ž‰ì ˆÌL–Č‘wĘ,d)†XÀld)†æ„Ì xŚÍA–bš\J‰ ˜“,ƐœÈR”ÔuύvKŸź±€çyg)†Æ„Œ xŚ=wŃ-}șÄĐÏ-rKŸź1ôsÿÛÒ§ë@,àčÿĘYÊFȚuk‘„Ș—RŁČ‡~?ò±lŠĐBId)YŚ9( %“„š—2ƒb?™}OD·,ĆP蔕ŽRÉR ­KYAi>t#K1TQ:YŠ!_À KÙšÿŸJÿEƇžd)†|‹,Ć H?Č+†ŹëȚć,K1T/„F…ĄS&K1ÄR%KÙhȀÔÉR 1td)†æ„Ì ,YŠ!ÙPż”†Î•,ćA™ŸÌîóîw–bˆ<śâ;K14.e%1ôs»ȚŽ#)T.„D…”Jv4/e%3ôó+•vIq †.ƒ,Ć x>æÙYŠĄu)+(Țue‘„j—ÒąÂĐÏWŹZțt!ïșśŽ>șÄžyv–bˆĄk#K1ÄĐ”“„lÔX@d)†ê„ÔšpŐŐE–Č‘w]«dW@ćRJTX@kd)†X@ëd)yŚ”I–bˆĄûì š_JÊș”ïșžÈR 1ôóYE˟źKAńźS è…,ƐĘÉR ùЃ,ćAE]ś>é”OځXÀóùÀÎź€ú}Ò)Ÿź3ä]§đ>é”ă'łB,à}Œ)ŸźÍK™Ańź{ŸQʧë@>ô K1ÄÆ$K1ÄæìŠ!ïș™ÉR ”KiQał„lä]7YŠĄr)%* ='YŠ!°~dW yŚ­L–bˆŒwôćÓu q)#(Țu«‘„bïíz9țyĄv)-*{è}:|;Ž€ČźûFû8’â@„„ê—ÒŁČP:YÊFÖugJ»”•ČÈR6ČźÛÈïì ˆĄS"K1Ô/„G…€L–ò JŚíÓáw–bš^JÊž”•u)+(‰Œ7Úőè:!đȚhGRȇd)ćôUrŠJč”_À$K1Ž.e„űЋ,ĆPœ”đŒ“ßÙC•«îœé?Ž€8P蔆Ι,ĆĐŒ””–ŸJKQaè\ÈR ùЕ,ĆĐș””ÎȚǘztW]d)†æ„Ì xŚ)Ć0ÉR ùYŠ!†.?Č+†ŒëJ"K1ÄJ!K1ÄJ%KÙÈ»źtČCćRJTX@d)†æ„ÌKiêșś‘Ș}șÄĐïĂPûtˆĄŸŻÁ”öé:Đș”ïșśaš}șÔ.„E…Ąßç„öé:C™ŒO:íűÉŹ xŸ¶ł+ źș–ÉR ­KYAńź{?}iŸź±€ÖÈR KAńźë™ì š\J‰ è…,ĆĐŒ”ïșśÓ—öé:CśF–bˆôA–bh]Ê ŠwĘű‘]1ôÈd)†zȔ •,Ć ƒ,ĆPż”†“,eŁÉÆ"K1T/„F…«nțÈźòź›…,ĆPč”0;YŠ!0Yʃșșî}韼1ôûqFÿtˆŒgôă'łBëRVPŒëȚǘțé:P»”đ~âяŸÌ:òź{cú§ë@,àę8ŁșÔ/„GƇžd)•ôUJŠÊ^À>‘}gS„Æ„Œ XŚíłÔÛy$…PFid)†J'K14QYÊFÖusżü?€bè”Èź€ú„ôš,”J–ČQgèÔÈR ”KiQ—2‚2~_eüąRP:YŠ!z’„Z—Č‚2ÓW™)*Ÿ€E–bh\ÊÊbèÜÈź€ò„äš°€<ÉR qŐćE–ò ?’âÌAaïęï8~2+ÄȚ›Ûqt xŸxÓÎ#)„üURŽ Cż7·ç‘B,àœsGŚ9Ê,àœsGŚ •K)Qé—ÒŁÂÊ"KÙš°€śóqtPœ”†~o‘ǧë yŚŐB–bˆÔF–bš]J‹ CŚA–Č‘wrPX@d)†ú„ôšpŐ”ÙCȚu-‘„Ș—RŁÂZ&KÙÈ»źČC ę~(2>]bèÖÈR ±€ÖÉR6òźkƒ,ĆPœ”z’„bęGvƐw]Od)†Ú„Žš0tÏd)šêșśéb~șT.„D„_JŠ]ÉR6òź{ŸQæ§ë@,àęôe?™bï3Êüt!ïșśÓ—ùé:Pč”đ~Ž2ŸÌ ÍK™Ańź™,ĆCB–bˆĄG%K1ÄF#KÙÈ»nLČCíRZT|èE–ČQû}•ö‹ ˜•ì ˆ«n6ČC =;YÊFȚus„Ș—RŁÂæ"KÙÈ»îę€f~șT.„D…ŹL–bˆŹB–Č‘wrPz5ČC œ&YŠĄu)+(Țuk‘„j—Òą2/e^Êâ'łkXŽŽŸÌ ”J–bš_JÊB™d)ÙOfśéđ;»Ș(…,ĆĐ@©d)e†N“,ĆP蔕†ČÈR MSr&»bš€ŻRRT:ČC,àœé_ÇOf…XÀóÛld]·moç‘B YŠ!†.•ìŠĄÆJ#K1ÄȚ{ńóH Ą~)=* ]&YÊF=}•žąÂȚŚÓëè:Ąq)#(ƒĄk"K1Äj!K1Äê K14/ee2td)†ê„ÔšôKéQY—Č‚Č|èE–bš]J‹ h‰ìʃúO]śÜhï,ĆP蔆~îĆûïÓu u)+(ȚuÊAaÏęÎR ùН,e#ïșç^Œÿ>]bÏOźw–bˆôDv4/eĆ»źgČC, ČC, WČC, ȔŒëú"K1ÄĐ#“]KAńźSJ蔆…,ĆĐŒ”ïșQÉR qŐ=/ÜûïÓu q)#(Țu3‘„bł’„j—ÒąÂĐÏÍmÿ}șΐwĘ\d)†XÀú‘]őKéQáȘ[‰,e#ïș•ÉR 1ôȘd)†Æ„ŒKIê:ć űН,Ɛ=ÈR ÍK™Ańź{nnw–bš^JŠœÈR ­KYAÙ]·Țóˆ,oć@íRZTæ„Ì ìź[ûDö~Iq ‚RÉR őKéQY(“,eŁêC/ČCՔçËQ;»—2‚Č»ní“Çûq$ĆÊ„”š0ôsGߏ#)ÄÒ KÙš§ŻÒST:ÿÈź€Æ„ŒšŹKYA, 'ČC\u9“„bè\ÈR6š,àčéßYŠĄr)%*, wČCëRVP–=ÈR ù&YŠĄq)ăR8’ⓃR.„DưÈR ÍK™AI\uÏ7|úq$Ɓúù™s?Ž€8C?Cę8’â@,àyÒÙYÊFȚuÊAaèČÈR 1tMdW P3YŠ!đ<Æì,ĆWĘóæž?]bèÚÈR6Șé«Ôđ|}gg)†Æ„Œ xŚŐA–bȇžd)†X@]d)†XÀóAÄÎźòźk™,ĆC·B–bš_J h,e#ï:ć ŽKiQ™—2ƒâ]Ś&YŠĄr)%* ĘdW@ Ę3YÊF‹ôB–bš^J W]od)*êșçÍ~/Ÿź•K)QaïĂPùth^Ê ŠwĘóòż—Oځê„ÔšôKéQaÏś§vvƐwĘóB/Ÿź”KiQ—2‚â]ś>˜•OځXÀûHU>]bèŃÈR ùН,e#ïș1ÈR ŐK©QńĄYÊFȚu3“]ćKÉQał‘„š—2ƒâ]7YŠĄz)5*,`NČC,`ęÈźòź[‰,ĆP»”°2YÊFȚu«’„*—RąÒ/„G…ŹA–Č‘wĘZd)†öö‰ìę8’â@„’„<ˆ#)Ö>KœGR(_JŽJC™d)†æ„Ì XŚíÙûq$ĆÊ„”štSȚç„ztĐș””œżJÎQaèś‘ê8’â@ăRFP x>}ÙYŠ!†N•,ƐĘÈR ÍK™A©,àù.ŚÎR qŐœwǑ—2ąČ.e„ù&YŠ!_À"K14/e„3tț‘]±€œÉR őKéQaè\ÉR6 YŠ!PÙ (™,eŁÉUś|#ŹGRˆĄK'K1Ô/„G…”I–ČŃbe‘„bèšÈź€șČCëRÖ„4uĘûÓ>]j—ÒąÂĐïHût!ï:栔K)QaïcLûtˆĄßg”öé:CȚu­„b­‘„bï‡"íÓu†ŒëȚEÚ§ë@ Ę&YŠ!đ>:4ędö@,àęP€}șΐwrPșgČC ĘYŠ!Đ;YÊFȚu}„òĄ'YŠ!†?Č+†: xo‘›~2{ 0&YŠĄ~)=* =YÊFȚuóGvT/„Fe\ÊŠwĘLd)†Ê„”š°€™ÉR ÍK™AńźSŠĘÈR ±€9ÈR ­KY—ÒŐuÊAńĄYŠ!†~oŽû§ë %đȚhwęóbÏ7|v–bš_J Cż­ôOŚÊ,` ČCőRjTžêȚÏMú§ë yŚ)„\J‰ X‹,ĆĐ^@ȚŸxôŁëYŚ9(„„ê—ÒŁČP*YÊFÖugJCéd)†Æ„Œ XŚ9(e„òĄ'YŠ!†N‰ìŠĄÁR&K1T/„F…ĄS%KÙh2têd)†ò„äš°€4ÉR qŐ„E–ČŃbèś.ú8’â@ YŠ!YŠĄu)ëR8’bíóËûq$ĆÚ„Žš°€śăŒĄŸÌ %đȚźŁë„žêȚÛőăHŠ1tid)†Ö„Ź äôUrŠ (,ĆCżgGR†.“,Ć (‹,Ć xŸË”ł+ y)3(Țu5‘„bïMÿĐOfÄȚEƧë@, vȔŒëê K1Ô.„E…ŽJvƐw]kd)†șuČC ĘYŠ!ĐYÊFȚu=‘]qŐœwŃăÓu †î•,e#ï:ć °€ŸÈR ”KiQaèń#»bÈ»n$ČC,`dČC,`TČCëRÖ„LuĘû{~șÄȚŚÓS?™=Đž”ïșś¶t~șT.„D…Ąç K1ÄȚ·ÆSÿ<€wĘ{[:?]bèśĆòütˆĄß;Śùé: xŸźŸł”Œë”ƒÂU·*YŠ!†^,e#ï:ć °€5ÈR őKéQńĄ'YÊFȚuÊAń,ČC{eżÁžGŚ9Čź;sP J&K1Ô.„EeąTȔŹëΔŠÒÉR ùЃ,ĆĐș”ëșČoKçŃuBíRZTæ„Ì ,_À"K1ÄR&»ê(…,ĆC§J–ò Ž€Xûhæ~Iq đȚÜźŁë„XÀûîy]ç(1ô{[zIq †~ßśGRš]J‹ÊŒ””ÌU—YŠ!†~oK#)ÄĐïûȚăHб€ÒÈR6*, tČCíRZTș Ȕ* (“,Ć š‰ì š_J CŚL–ČQc”„b”‘„—2‚â]§ș“„bï+áőé: hìŠ!ïș6ÉR ŐK©Qé—ÒŁÂz%»bÈ»ź7ČCíRZTșwȔŒë”ƒÂF"»bè‘ÉR 1ôšd)ÿhüì'łkŸRŒłCőRjTžêž[Áńût!ïșçêű}șÄž—–;K1Äžfg)†XÀŹd)yŚ=·‚ăśé:C?·‚ăśé: xnw–bh]Ê ŠwĘÊdW@íRZTÆ„Œ xŚ­J–bˆ«nuČC œYŠĄ=ô>xGRYŚícw–bšądČCăRFPŹëêû.qGR(_JŽJ»”•‰ÒÈR6>t'K1T.„D„Ł ČCŸ€E–ČŃdèô#»bè”ÈR ±€TÈR6Z, UČC YŠ!†N,ĆĐŒ”y)‰źÛ‡ï,ĆWĘóFrGRh\ÊJòĄYŠ!đÜ~íì ˆ<_ßYŠĄy)3(™ĄŸoŒăHŠ•K)Qaϫϝ„Z—Č‚R|èN–bȇd)†Æ„Œ T'YŠĄr)%*>ô"K1Äž'ggW yŚ=Żaw–bš^J C—B–bˆ”J–Č‘w]id)†X@éd)†|èA–Č‘wrPX@™d)†X@ÍdW@ ] YÊFȚu”’„b”‘„—2‚â]W'YŠ!†ź‹,ĆC·DvÄZ&KyPVŚ=ß”ùÓu †~ȚśŽüé:C?/sGțtˆ<7Ú;KÙÈ»îù"ĆÎź€žêz&K1ÄĐœ„l”_%ÿąÂz%K1Ô/„Ge]Ê ŠwrPXÀóè°łCăRFPŒëž/uŒüé:=ÉR ùYŠ!0~dW yŚL–bš^JÊž”0 YÊFȚuŁ’„bèŃÈR ùН,eŁÁÆ$K1Äæì ˆ«nČC =+YÊF3}•™ąÂf'K1Äæ$KÙÈ»N9( ęŒäùÓu v)-*óRæ„urPê„Ôš°€çmúÎR ±€śaš|șΐwĘû0T>]òĄ'YŠ!z‘„lä]§”œ€}îΊu”L–bhĄȔì'łgJœ”•RÉR6Čźkûaè8’â@>ô K1ÔLyŸtÊŃuBóRfPZú*-E…ĄS"K1ÄR&K1ÄÒ$KÙÈșźí§‹ăHŠ”KiQaùGvĆĐ`9‘„b9“„bè\ÈR ­KYA™, wČC, ČC>ô$KÙhęŸÊúE%_JŽJ»”źș’ÉźŒˆ#)VÛwôǑbèśŽț8’â@,àœŁŻGŚ ±€ś^ü8’B(1ôó]‹qIq v)-*,àyUŸł+†2 š™,ĆP蔕~)=*, 6ȔŒëj'K1ÄžïZŒúé:=ÉR6òź«‹,ĆPŸ”đüàtgW@óRfPŒëZ"K1T.„D…ŽL–bˆ«î}F©Ÿź3ä]Ś*YŠ!ș‘„bm„lä]ŚYŠ!†î‰ì ˆĄ{&K1Äz!KÙÈ»źWČCőRjTÆ„Œš°€ȚÉR6òźëƒ,Ć è‹,ĆCDvćEM]śȚô·OځXÀ{»ȚŽŸÌ ±€śvœ}șÄĐÏwPFût!ïșśŽŸ}șÄf&»bï}ût!ïșÙÈR 1ôd)†zNČC,àę ą}șΐwrPz%Č+ q)#*ëRVPŒëȚÏ*Ú§ë@íRZTz5ȔŒëÖ$K1ÄÖ"K1ް·ǑZ(ƒ,e#ëș}ì8Ž€8P5ćœçlÇOf…Æ„Œ XŚíĂ`Çq$Ɓ J%K1Ô.„Ee^Ê Šu]ß/ÿ#)äCwČC>ô$K1ÄÒ"KÙhćŻČrT:ÿÈź€æ„ÌKéüdvŸ:»łC,àœÿíGŚ őKéQaèśÍțq$…Pbèś¶ô8’â@őRjTXÀûȘü8’B(3tù‘]1ô{ÿ{Iq v)-*, Ȕ W]©d)†úœE>Ž€8Pż”đŸïGŚ9Ș, LČCíRZT|èE–ČQû}•ö‹ š‰ì š_J CŚB–ČQg”’„Ș—RŁÂUWYÊFȚuíGvT.„D„]J‹ h‰,e#ïșVÈR 1t«d)†X@ÿ‘]±€žÉR6òźë,ĆCśA–bˆôI–ò ĄźS x_,Oځúœ[Ÿź1ô{·8>]g(±€śnq?™bÏo w–bh\ÊŠwrPXÀÌdW@íRZTžêȚÊńé:CȚuÊAaèś­ńűtˆŒśœăÓu 0'YÊFȚus‘„bèő#»b«‘„lä]§źș5ÉR őKéQY—Č‚b]7öśaÆŃuB%‘„(™,e#ëș}Òë8Ž€8PFéd)†Ê$K14QYÊF“ĄS&»*(…,ĆPGid)†Ö„Ź ,†N“,ĆP»”•q)ăR&]·OîÜÙCżwhǑbèśí8’â@,àęźĆ<~2ë(„Ż’RTê„Ôš0ôûŽő8’B(ÿŸJțE%_JŽ xï#)ÄĐïĘâq$…Paèś‹Ǒb„’„b„‘„Z—Č‚RúœÏ;Ž€8Pœ”P&YÊF”E–bˆĄëì ˆĄk!K1Äj%KÙÈ»ź6ČCőRjTșvČC, ȔŒëê"K1ÄUŚÙC·L–Č‘wrPX@kd)†X@ÿ‘]­KYAńźë™,Ć è…,ĆĐž”q)K]§†~żŒ°>]bï ć:~2+ÄȚ[Áőé:CȚuïGęëÓu †,ĆCA–bh]Ê ŠwĘûąp}șÔ.„Ee^Ê Jù}•ò‹ ˜?Č+ ~)=* ęü;c}șΐwĘ,d)†XÀŹd)†Æ„Œ xŚœ_^XŸźùЃ,Ć ˜“,ĆĐŒ”ï:ć 0ôú‘]1ôJd)†Ö„Ź xŚœßÿ^Ÿź1ô*d)†æ„Ì ÌßW™żš°€UÉR qŐ­I–bhœćǑBö“Ù},çÎR U”A–bh\Êű*“#)>9(e‘„j—Òą2MyȚÔîìŠĄÄĐϛÚyIq z)5*ęRzTXÀs/Ÿł”ŹëΔv)-*>ô KÙšüŸJùE…€E–bˆĄs"»Z—Č‚RÓW©)*,àčéßYŠ!źșçŽ~GR”ßWiżš°€ç.zg)†X@d)†XÀó2wGRőôUzŠŠœÈR ±€ò#»b%‘„l4òW9* ]2YŠĄq)#(“”N–bˆ«źLČCęRzTșțÈźòź«™,ĆPœ”•q)ăR’șî裟éÓu đÜźï,Ć xîĆw–bˆ«îčŸéÓu†ŒëžwŹ3}șÄžÛő„b-“„bÏkۙ>]gÈ»N9( ĘYŠ!đ|Ązg)yŚ)Ƈžd)†ú„ôš°€¶ÈR6òźë?Č+ źșžÈR KAńźë…,Ć è•,Ć è,ĆCśA–Č‘w]_d)†Ê„”šôKéQáȘ?Č+†ŒëF&K1Ô.„Ee\ÊŠwĘ(d)†zTČC =YŠĄy)3(ȚuÊAáȘ,Ɛ=ÈR ­KY—’ŐuÏkû„bÏóÒ̟ź1ôóŒ4ó§ë yŚ=oögțtˆ€bèçmú<€p”~_%ęąR.„D…«îœ?€bèçmú<€p”YÀ{/^ŽŸÌ ±€ČÈR ±€šÈź* ęȚhŸGR1t­d)†Ú„Žš°€ÚÉR6òźS CŚA–bš_J h?Č+†Œë”ƒÂĐ-“„š—2ƒâ]śȚź—OŚÊ„”š0t«d)†|èA–ČŃ`m‘„bœ]qŐőN–Č‘wrPÊ„”š°€>ÈR ±€>ÉR6òź™ì ˆĄG!K1ÄF%K1Äf&»òąȘź{^OÏúé:P»”đŒžȚYÊFȚuÏśyw–bˆŒ7qőÓu †~Ÿ%1ë§ë@ëRVPŒë”ƒÂžË;»—2‚â]§°*YŠ!°:YŠ!źșśV°~șÎĐÛuùśÛśy:’âD%‘„ê(…,ĆĐB™d)œ]śæE–bš™’ÙĐ@©d)œ]śæF–bš  ČC &YŠĄiJ.dW YŠ!;YŠ!†Îƒ,eŁÉĐy’„b%‘]”KiQaè’ÉR6Z ]YŠ!PYŠĄ~)=*\u5‘]y‘IńæL–bš]J‹Êž””Äž/ ì,ĆP蔆~ß%êHŠÍK™AÉé«äźșś–GGRœÈ‡d)†|‹,eŁÂȚû™æ]w"Đ2YŠ!†n…,e#ïșÖÈR ±€ÖÉR ±€6ÈR ­KYAńź{_7¶Oځê„Ôš°€ț#»bÈ»źgČC Ę YŠĄ~)=*óRfPŒëȚ7’íÓu z)5*ăRFTX@d)yŚőI–bˆ«ź/ČC =2ÙCȚuÊAaِ„ê—ÒŁČ.e]JWŚœ·‚ęÓu đŸKìț“Ù±€ś-`ÿt!ïșś-`ÿtš\J‰J»”•y)3(ȚuïëÆțé:CżŻû§ë@ =+YŠ!0YÊFȚus‘„bèő#»š—2ƒRYÀóꆝ„b«‘„âȘ{o(û§ë@ëRVPŒëÖ"K1ްȘÛÙĄaJú‘]1d]wæ ”D–bšĄTČCóRfPŹëöÙoł]'ÄĐ©“„ê(ƒ,ĆĐB™d)YŚícĐf?șNˆĄs'K1ÄĐy„lŽX@žd)†X@ù‘]1tId)†șdȔę“Ùo x~űŽłC\uï;łqtŁÄĐïÛźqtCżŸWŁë„Ú„Žš°€šÉR6Ê ] YŠĄz)5*, vČC,àœÏGŚ9*\uÏŻűç8șNˆĄ[&»—2‚R_„țąR.„D…Ą[!K1ÄĐ­“„lÔX@›d)†ê„ÔšŒKAńźë™ì ˆôB–bˆŒ7NăÓu źș>ÉR6òźë‹,ĆCÙPż”•u)+(Țu#“„bèQÉR KAńźS WĘèd)†ú„ôšűЃ,ćAS]śȚòÌOځXÀûrn~șÄĐïÍÊüt!ï:ć °€śćÜôŸÌžˆÌA–bh^Ê ŠwĘûŃíütš\J‰ xoœæ§ë@,à}97?]gÈ»N9( ęȚ~ÍOŚÆ„Œ xŚ­B–bˆĄß…óÓu ș“„bk„lä]§źș5ÉR ùЋ,e#ëșŒ_7ÎŁë„2J#K1ÔP:YŠĄ‰2ÉR6Čź;sPŠ)éGvÔ/„GeĄ$Ȕfț*3G„^JÊ@Éd)­ßWYżšűЅ,ƐĘÈR ±€ÔÉRŽèș3Ƈd)†Æ„Œšű&YÊF)•”ŁÂUś~Ív]'ÄĐïÇëëè:G9}•œąÂȚŚŚŃuB,àęší:șNˆĄßç‚utŁÂĐč“„Ș—RŁÂÊìŠĄúû*ő†~oŚŚŃuBíRZTæ„Ì ŽôUZŠ C—J–bȇnd)†Ö„Ź xŚ•E–bˆĄk&»bèZÈR6, vČC, ČCęRzTÖ„Ź xŚŐI–bˆŽÙĐž”ïș–ÈR 1t+d)†X@kd)†æ„ÌŻČ~êșçébę>]òĄYŠ!z’„bÏ[ă]1ä]§”v)-* ę|”uę>]g(ł€ç1fg)†Ê„”špŐ=O:ëśé:Đș””’ŸJIQaÏóÒÎR ±€çahę>]gÈ»nüÈź€z$ČC,`dČC,`TȔŒë”ƒÂĐŁ‘„bŁ“„bc„lä]7dW@ =3YŠ!†ž•,e#ïșÙÈR ±€9ÈR 1ôú‘]­KYA™,`%ČC,`UČC\u«‘„lä]·:YŠ!°YŠĄv)-*{ćę6Àú]g(Ńuû`·•ŽźȘ(,ĆPGéd)†Ö„Ź XŚíłßV:șNš]J‹Ê@™d)YŚíƒĘv–bš˜ò<ŹttPż”†~núW:șÎQa©‘„b©“„bè4ÈR6Ș YŠ!+Ù ȍ,ĆĐŒ””ÆĐy„b„]±€ÒÈR ­KYAé ]dW@ ]YŠ!P YÊFƒÔF–bˆĄë K1ÄĐu‘„bíGvĆĐL_eŠšÔK©Q—2‚Čș%ČC,ày%ŒłC, ČC>ô$KyPVŚ=ßf\ùÓu đȚfdÿÉì‰XÀó띝„âȘë‹,e#ïșśO{țtˆĄG#K1ÄȚżÛùÓu†ŒëÆ$K1T.„D…ĄÇ"K1ÄžnwvƐwĘ{ƒ?]Ș—RŁÂĐł’„bł‘„lä]§”v)-*>ô KÙÈ»nNČCćRJTXÀ\d)†Ö„Ź xŚ)…ŹDvÄV!KÙÈ»nUČC œYŠ!†^ƒ,Ć X“,e#ï:ć ìĄśńp+]'4PYŠĄ…’ÉR6Čź;sPJ%K14QYʃÊțÉì›;YŠĄ‚2ÈR uSȚû™rtĐș”””żJÊQaï]QńàDăRFP2C?oGW9șNˆĄS#K1ÄR'K1ÄÒ KÙÈșnɶÊŃuB dW@ YŠ!3YÊF•Œ7qćè:Ąv)-* YÊFíśUÚ/*,àùÏÎR qՕDvŽ.e„ł€śn±űOfOÄJ#K1ÄJ'KÙh0tYd)†ș&Č+ P3YŠĄy)3(“Ąë K1T/„F…ÔE–bˆŽÙCȚu-‘„j—Òą2/e^JUŚœ·‚őÓu đüfg)†ú„ôšűЋ,eŁÄȚ7oŐ2{ąz)5*\u=‘„lä]§†î•,Ć x~TłłC,àù çȘŸź3ä]§”z)5*, /ČC,`üÈźòź•,ĆCżwŃőÓu q)#(ȚuŁ“„bï]tętš_JÊș”ïș™Èź€XÀœd)†z.ȔŒë”ƒÂÖì ˆŹD–bˆ«îù~ŐOŚòźS CŻB–bš_J X,e#ï:ć űН,ĆĐž”q)M]§”r)%*{è¶onÛŃuBóRfPŹëÎ”Š’ÈR KA±źÛ§p­vtPŸ”•†ÒÈR ùЋ,eŁ’ŸJIQ)ŠŒśœÍ2{ą~)=* „„lT:UČC ęȚ–¶Łë„XÀ{[ڎźsÔ~_„ęąÂĐùGvÄĐ9“„b萄lÔÓWé)*őRjT:7ČC, wȔ ȃ,ĆP»”z‘„l4șüÈź€X@Éd)†X@éd)†șLȔC—E–bš^J š?Č+/êtĘ>kőŁë„Ê„”š0ôóSôŐ?]bÏÇë;KÙÈ»îœE1tËdW@ ęȚ–öOځX@«d)yŚ”N–bš]J‹ CśÙCȚuÊAaïgĄęÓu 0*YŠ!†,e#ï:ć °€śźš?™bïKËțé:CȚuÊA)—RąÂf"»bł„lä]7;YŠ!†žƒ,ĆCÏE–bˆŹLvƐwĘ*d)†zUČCóRfP& X,ĆP蔟ș5ÈR ùГ,e#ëșŸïgúŃuBőRjTÆ„ŒKt]ßoÇŃuB„’„j(,ĆĐD™d)YŚíƒ—Ö8șNš^JJż”•…’ÉR6Êù«ä†~ïŠÆŃuB ęŸżGŚ9*, MČC, 'Č+ †Î,ĆCżęÇŃuŽ* (?Č+ PYŠĄq)#(ĄK&K1ÄĐ„„j—ÒąÂJ#KÙšûН,ĆCŚÙ š‰,ĆĐș””‘żÊÈQaèšÉR ±€ZÈR6š, VČCćRJT|èF–bȇd)-P'YŠĄz)5* Ę~dW^4Őuï]ŃütˆŒï©æń“YĄv)-*\uï«Źùé:CȚuïKšùé:Pœ”•~)=*ëRVPŒëžűŹùé:CÙ ™,e#ï:栔K)QaèçgÎk~șŽ.eĆ»î}­6?]bc„—2‚â]śȚĄÍOځò„äš°€™Éź€žêæ KÙÈ»nNČC,`.ČCęRzTXÀûZm~șΐwĘÊd)†Ú„Žš°€5ÈR6òźS CŻE–bhœZóè:Ąy)3(Öucß8ÍŁë„*Ê$K14LI‰ìʋ]·OZëè:Ą|)9* „’„bèśSÌutŁÄĐï-Ï:șNš  ČC,à}«łŽźZ(,eŁÌĐč“„Ș—RŁÂJ%»bš°€ÒÉR 1ôû‚c]'Ô/„G…Œ/8ÖńÏ8Șé«Ô†ź?Č+ †ź‰,Ć š,eŁÆê K1ÄUW'YŠĄy)3(ĄÛì ˆŒęŚŃuB, ČC Ę:YÊFƒĄÛ K1ÄÚ$K14.eerŐőJvÄĐœ‘„j—ÒąÂz'KÙÈ»N9(őRjTșČC,`4Č+ÿšü~êșÿ?§–„bè™Èꀿ„Ì $đÿżŐČC,àÿOˆe)†žêțÿn[–bˆĄç"KÙÈ»n%Č+ z)5*ăRFPŒë”ƒÂĐ«„j—ÒąÂÖ KÙÈ»n-ČC{èśÀČ)B%‘„Z—Č‚b]ś>FX–bš]J‹ÊŒ”ûÉìû;oËR ”F–bšŁtČCëRVPì'łïÊ-K1T/„F…€ÙC“ĄS#K1ÄĐ©“„bi‘„b9‘]1Ž:gČCőRjTX@d)†X@žd)JtĘûËuËR 1tù‘]1t™d)„ßWIżš”K)Qaèú#»bèšÈR6Êé«äP3YŠ!źșÚÉR6* Ę~dW@, %ČC, eČCóRfP*C·J–bˆĄ[#K1Ô/„G…ŽN–Č‘w]d)†|èE–bˆôLvƐw]Żd)†žêz#K1ÄĐœ“„Z—Č‚â]ŚYŠĄz)5*>ô$KÙÈ»ź/ČCùRrTÚ„ŽšpՍJvƐwĘd)†XÀü‘]őKéQa3“„<(«ëȚ{«üé:CÏJ–bˆŒ·_ùűÉŹ#ïș9ÉR ùЋ,ĆCŻLvÄV!KÙÈ»nMČCőRjTÆ„Œ xŚ­E–bh/`í[ž|tPCÉd)†&J%KÙÈșîÌA)—RąÒQYŠĄu)+(͇žd)†:eČ+ q)#(ÖuïûËR 1tȘd)†ú„ôš°€ÔÉR6, ČCőRjT|èI–bˆ€E–ČŃdùGvÄr"K1ÄĐ9“„lŽ:wČCćRJTX@ÉdW@ëRÖ„șîÌAa„“„be„l”žêȚ;ŽrtPč”z‘„bïZ9șÎQf”’„Ș—RŁ2.eD…ÔN–Č‘w]d)†Ú„ŽšűГ,eŁÊZ"»bïZùtˆŽN–bˆĄÛ KÙÈ»N9(, MČC, ÿÈźòźë™,ĆPč”Đ YŠ!ĐYÊFȚu}„bèù#»bè™ÉR ­KYAńźS CÏJ–bh^Ê Êbł“„bs„âȘ›“,ĆĐș”u)•ŸÌŸÿ‹eW@,àœqȘŸźKAńźS Cż·_őÓu °YŠ!đŸ§ȘŸź3ä]·&YŠ!z‘„z~ûUVŐOfŽ.eew]zt°,ĆPCid)†æ„Ì ìźKżęâ§ȘëTLyïDȘșî@ &YŠ!†N‹,eŁę“ÙôÛśU?™=PE)d)†Ê$KÙš3t^d)†șüÈź€X@Id)†æ„Ì  †.…,ĆC—F–bˆ”N–bˆ”A–ČŃäȘ+‹,ĆP»”PÙC‹ÔL–bˆÔB–bˆĄk#K1ÄĐíGvćEÍș.ęöŸöŠź; xÿŽ7uʁúęŁ|I!”ú}MrIq |)9*,à}5ŃÔuš—2ƒ’zdČ+ †•,Ć ,Ć x?æiŸź3ä]§”v)-*,`fČ+†Œëf#K1T.„D…ĄW&»bk„lä]·YŠĄz)5*{èŽä#)„ŹëΔŒÒÉR 5”A–bh^Ê ŠuʙƒRPYŠĄnJÊdW@ëRVP&C§F–bš]J‹ H,eŁĆr"»bèRÉź€ú„ôš°€ÒÈRÔéșŽûŃuBőRjTúę|à8’â@,à-üźŸÌ %đ¶y?șNˆŒ‰Ç‘bèśńî8’B(§Ż’STX@û‘]±€ÖÈR 1tOdW †~Ÿ—Ž#)Äz!K14.e„rŐőJ–bˆĄG&»bèŃÈR ±€1ÉR6j,`țÈź€z&ČC =3YŠ!0 YÊFȚuł‘„âȘ›“,ĆCŻJvƐwĘjd)†Ê„”š°€5ÈR íĄó~.8Ž€ČźËû5ìq$Ɓê„Ôš ”F–Č‘u]ȚŻa#)T.„D„]J‹ÊŒ”y)I‘òțŒú8’â@ ęŸÌ=Ž€8Cż…Iq &YÊF‰Œï5ÇŃuBíRZTæ„Ì d YŠ!YŠĄ~)=* ęŸc=Ž€*>ô$K1ÄȚ§źqtĐž””úû*ő†.…ì š]J‹ xÿ⎣ë5źșÒÈR ŐK©Qae‘„Z—Č‚ÒY@ę‘]”KiQaèśïöq$…Đ`”„bu’„ê—ÒŁÂĐu‘„l4Y@û‘]±€VÈR qŐ”J–Č‘wrPú}Ÿź”KiQam‘„Ž€8CŚÙ xÿVźŁëePYŠ!†ź“,ĆCżŹÇ‘bm’„lTXÀû-ŹutW]Ÿd)†Æ„Œ T†~ŸF#)”/%G…ŒB–bˆĄG'KÙš1ôû4zIq 0YŠ!0YŠ!źșő#»bÈ»neČCőRjTXÀ*d)yŚ­N–bš\J‰ CŻE–bh/ î6_ú焏ëΔŠÒÉR ”E–bh™’2ÙCÖuu}g]'Ô.„E…ĄS#KùG‰#)Òû/ÁY–bš LČCęRzTúy#™Ž#)„Rț*)G…äF–bˆäA–Č‘uĘûOÎY–bˆĄŸż é8’â@,àù›°ł+ PYÊF%}•’ąÂĐÏçlé8’â@ ę|¶•Ž#)Äžśš;KÙšČ€:ÉR ”KiQaèșÈR6j, %Č+ đZ–bˆ]gÈ»n ČC ę|O(„OځXÀó§}gW@óRfPŹëȚOÀ-›"TQYŠĄ~)=* „“„ld]ś~ŽnYŠĄ†ČÈR ÍK™A±ź{?·ì š $ČCęRzT:eȔzú*=E…€B–bh  ȔCçÙ ș,Ć ȋ,Ć (?Č+†&C—D–bš^J (,Ć (‹,eŁ•żÊÊQaèšÈź€X@-d)Êt]ÛÚóŃuB\uÏ7YÒq$ƁúęŁ|Iq †n,eŁÄž/„î,Ć xÿœæŁë„úę[yI!”ș'Č+ Đ+YŠ!ĐYŠĄy)3(Țuœ“„b}’„bc]­KYAńź“,ĆCÏDvÄžÏBw–Č‘wĘŹd)†zČC ='YŠ!đ<°îìŠ!ïș•ÈR qŐ­B–bˆĄW#KÙÈ»nuČCùRrTXÀd)†|èE–Č‘u]ßN#)T.„D„ŁdČC „‘„ld]Śśß§ăHŠ5”J–bh\ÊžŽ€H}ÿń9Ž€8CżÏ‘Ç‘bè\ÉR ÍK™AI, ČCe‘„bèçgé8’â@,àùäpg)ćüUrŽ (•,ĆĐŒ””ÂĐïÂăHб€2ÈR őKéQńĄ'YÊF•Ąk"»b”„b”’„lÔžêj#K1ÄĐÏïKÒq$Ɓú„ôš°€:ÈR6ê, uČ+ †nƒ,ĆCżÏ‘Ç‘Z—Č‚2òW9*\u=‘„bè^ÉR6š, OČCćRJTXÀÈdW@ = YÊFȚuŁ“„bc„bóGvćEU]śțĆ­Ÿź1ôó™_ȘŸź±€ś/nŐOfÄȚżžőÓu†ŒëÖì ˆĄßżžőÓu †^,ĆĐș”ïș5ÈR ”KiQÙCżÿJȘeSíŸÌбÿVVędö@%“„ê(…,ĆĐBid)íŸÌțçô#»Ș(™,ĆĐ@©d)5†N,ĆC§N–bš]J‹ È?Č+†zú*=E„^J ȉ,ĆĐș”ëșś+N–„bè\ÉR ùЍ,eŁÉȚ„zt (ì ˆĄË K1ÄĐ5“]1ŽX@íd)†ê„ÔšpŐ”ٕq$Ezÿ©.ËR 1ôû'ì8’â@, ÿÈź€X@Ïd)%†~ŸęšŽ#)ÄĐïăĘq$ƁX@d)†XÀű‘]1”čêF&K1Ô.„E…u5ędö@{ûߛÚÙĄ‰’ÉR6Čź›ûoÂq$Ɓ*J%K1ÔQ:YŠĄu)+(Öuï?vkYŠ!z‘„Š€NvƐuĘܟ¶Łë„ Ê"K1ÄĐùGv4/ee„ŻČRTX@źd)†:Ȕq$EÚÿÆS:Ž€8 xßHvęóbïSW?șNˆĄßŚÇ‘B‰ĄŸo€ăHб€śoBŚOfÄj#K1ÄUśțM8Ž€Ê Ę~dW@íRZTX@Kd)đ~,ۏź*—RąÒ/„G…ŽF–ČQe­“„Ș—RŁâC/ČC, ÿÈźj, gČC,àęCŰ?]bè>ÈR6òź?Č+ 0YŠ!02YŠĄu)+(Țuِ„Ș—RŁÂÆ KÙÈ»N9(>ô$K1Ô/„G…ÌLvƐwĘld)†zvČC œ~dW@{ûßÚÙCƒź[ûŻÜ8șNšĄTČC„‘„ld]·ög~Ǒ*—RąÒQYŠ!†N…ìŠĄÌĐï_čăHŠUSȚ?>ăűÉŹĐ@id)YŚ­ę—ć8’â@ ]~dW@, $ČC, 4Ȕjú*5E…ĄßǘăHŠ1tę‘]±€:ÈR6j, NČC ]YŠ!†~ŸQŽ#)„: h,ĆP蔟șÖÉR 1tŻdW †îƒ,Ć è“,Ć è‹,eŁÉĐăGvÄĐc‘„bł]±€ÙÉR6Z\us‘„bèUÈź€ú„ôš°€UÉR4ŐuïKšùé:Đ;tțíz<Ž€8ĐŒ””ęÏäß~ș˜úçTP:YŠĄ~)=*˔śĘĐq$…ĐțÉlȚÿŸÇÎR U”E–bh˜’3ÙCćśUÊ/* ęŸČ9Ž€8 ȃ,ĆĐŒ””šŸJMQa跇#)ÄJ!»be„lŽ».ïÇ"GRˆĄk'K1Äê KÙšł€:ÉR ±€șÈR 1tKdW@ Ę2YÊFƒŽB–bˆŽJ–bˆĄ[#KÙhțŸÊüE…ŽE–bš]J‹ W]OdW ­ôUVŠ CśJ–bˆôE–bˆŒBvćEIńÉAaèś Óúth\ÊŠwĘûčÉútš\J‰ CżŻČÖ§ë@ëRVPŒëȚíőé: xßv­OځúęûŽ>]gÈ»N9(,`%Č+ °2YŠ!źșś”Úút!ï:ć °€ś”ÚÒOfÄȚ?„ëÓu °&YÊFȚuÊAńĄYŠĄq)#(ȚuÊAÙC§ęđ8’â@%“„š(…,e#ëșŽ_έŁë„Ș))‘] ”B–Č‘u]ÚGR(Ł,ČC͔ü#»š—2ƒČ:7ČC, wČC, OČC˔ò#»ò Ì‘ùęçÁ-K1T/„F…<ß”ŰYÊF‰<Cù8’â@ ęüőÏǑbèç[ù8’â@, VȔrú*9E…Ąë K1ÄĐíGvÄZ&KÙšäŻRrTžêZ%K1ÄĐm„lTúùb>Ž€8 xțVîì ˆŒÙCL–ČQcèçÏi>Ž€8Pœ”0*YÊF«îù.z>Ž€8CN–bˆÌÙ ˜‰,e#ïșYÈR ŐK©QaèYÉR ±€ÙÉR6òź[‰ì š]J‹ CŻF–ČŃbk’„Ú ŰÿzÊΊu”N–bh]ÊșŽ€ÈïżŹnYŠĄŠ2ÉR Sž?>;»bÈș.ż_^ÈǑbèÔÉR ”KiQ™(ƒ,e#ëșüț ËǑbèœÈź€úyÔÌǑZ—Č‚RXÀó‘S>Ž€8CçN–bˆĄŸ7où8’BšČ€2ÈR ±€2ÉR qŐŐBvŽ.e„±€:ÈR ±€śÏF:șNh\ÊJgè–ÉR 1tkd)†Ú„Žš°€6ÉR6 ĘYŠĄz)5*, 7Č+ Đ'YÊF“«nüÈź€zČC =YÊF‹ŒN–bˆŒI–bˆĄÇ"K1Ž.e]J¶ŸÌțÿÇûś)ë'łbï_–üé:WĘóŃJΟź3ä]śțMȟź±€çÁlg)†XÀ*d)†æ„Ì xŚ=O]9șÄĐïŸüé:Đ^ÀûmËŠ-”D–òGÖč%KȘĂ@p+łü–öż±9XUV5ț»•dÄ\!ŽšŠÂŹÓ|)ƒJeNhQéÌ©ÂŹ‹—wDNš}”v+§hcNˆE—Â| ÌșxyGäT€úGé·Âą‹3§hČèú0…ˆ š•9 6 6æT€ŒJgN%ĐbŃu0§Ä쏰šÌ bȘ1§ÄŽÂ| «żŠŐ[aŃ­1§ÄŽĆœJ ~n…EśÂ|ąùQæ­°œ3§òąÆYŚö%áÈ©őÒo…EïeY’"Qy~•òÜ đ^Žœ °?”›ÌșD,ztæTŐò«Ôr+lÀXÌ©±ïœ‘BäĆ/ćÌșęqÚ~f‹^•9 6`⶟YtfĘțŹl?łŽˆEÛĂ|"œż˜”ŸYGÄXgN%ЙufÌ©ńšóÂ|"í•9 ÿ(~)gÖycN(Đă#L–€dT:s*0ëâ-!U–€Ô ”Â|ąI„1§äĆ/ł.ȚReI AÊdNhQYÌ©ÂŹëńá#KRbŃőa> ‹ź…9 6 VæT^Ä%)ȚܘSê„ß ‹ȚaČ$… 6`>ő|d6Qaö”Ä.ł.șV™Sȏb—RـęÉÒó‘YAlÀțîÖeÖ%bze> ‹î9•@EśÉœ Ѝ9 6`tæŁuœżuɒ‚XôțŸ$KRbfe> 0s*șٙSê„ß ‹ž“9 6`s*&°æŁ±èś~»Úf‹^•9•@‹ X9 6`9s*@óŁÌ[aŃ6˜dl€MæT€Ű3æT€Ű˜tfWæT€ÚGi·2>Êž6À;s*/9ëö”Äń3ëˆXôțî6~fđț¶9 h@Œ;"2”ƒ0ëâĆU–€4štæT€ŒÊbN%fæKiTœ9  eŸô˒‚üŁű„Ä#ł?ùR:•Êœ ĐąÒ˜S ÔYt/ÌG!bŃœ1§4>Êž6`jY’"Ń(żÊ(·ÂąûbNˆ èÆœ ż”ÉŁn<ÌG!bŃŁ0§ÄŒÊœJ ĆŒÆœ 0s*@,z,æT€üŁű„0œ9 6`æŁ­Č.ß_ß[aŠ3§Äʇù(DöQìŁpIŠ:âóI–€Äąśç“,I!h~”y+lÀŸh9fЙuûąćü™uD§èÜ `•ù(@gÖíˍógÖńšłÁœ ‹öÊ|"û(v)gÖù`Nš”~+QôŒïKČ$E"Ìșx1D•%)U*ƒ9 ńQÆ­•ÉœJ Ì:Í—Òš,æT€&”Ú˜BäTŒ9•@“Eï0Y’B‹n…ù(Dl@sæT-6 æŁ±è>˜SbŃ}2§dĆ.ĆۀnÌ©u(Ł2…h}”u+lÀÌ©r6`LæT€Ű€áÌ©ÙG±Â%)~ò„°ï>‘BÄŒ·FNˆEïo:Č$EąÂąśÀ—%)±û;ÊÊGf±ïœè‘S TyÔ­‡ù(D,zUæT€XôŸżA–€Äì bKfĘA °Â|"m•9 őQÖ­°{šŻ|d6љuæÌ©2n…EûĂ| 3ë2_ à…9 6Às*@,Ú's*ÎŹóÜ Pÿ(ęVąńևÈPÂŹ‹W:TY’BPŁÒ˜SPZe> ‘QÌ©ÂŹ[q=F–€Ô©8s*@룏[q(œ2łNó„°è>™SbŃŁ1e#Ă#ł?ùRÚGi·2©LæT€Xô>-•%)œ‡‰,I!ˆ ۧ‚&ł.°ÏódIŠD•E/gNˆE[e> `9 6Às*ș} D–€Äąś%)±^™SbܙS „Ygń°,I!hP©Ì©ÙG±K‰Śā‚œ Pû(íV&gNÈ?Š_J<2[ś“<ÈG!êT s*@‹JeN%ĐbŃe1§Äą‹3§4>Êž6 >ÌG2] s*@ęŁô[ajeNˆ šƒ9•@ÎŁźNæT€Xt{˜BĎƜʋœł.žâœ °/Û˒‚XôûHd•%)±è}ș.KR$*lÀŸlïùÈŹ țQú­°è>˜S TYt_Ì©±û`ÏGf±Ł0…ˆGĘhÌ©j,z&Ȓ‚úGé·ÂÌÆ|"6`væTY7s*@,zNæT€Ű€č˜S tfĘțóŸYGÄŁn5æT€XŽuæŁ±hoÌG:łÎs*@рxˆŒÊ’‚ÖGY—‚Y§ùRêG©·2š,æT€ŒŠ1§łÎcšË’‚ÚGi·2©4æT€œÊdN%łèȘSbŃ”2…h}”ő«Ž‡łnŻ/ƒœ ‹~/ț7Y’BĐü(óVۀwTGN%P)żJ)·ÂŁîę ĄÉ’‚Xô{%„ɒ‰*‹n•9 6 uæT€Ű€6™SbŃï}“%)5ĘóQˆÚGi·ÂôΜ șwà7Y’"QŻżJŻ·ÂtgNh}”u)ƒ …ù(D,zTæT€XôìÌG!bȚ]#§hČәSbŃïŽöüÌ:"œs*@lÀÌ©:łn9s*@<êìa> ‹¶ÂœJ 3ëü䣱^™Sb|2§ĹʘS ł.fr(‚:•Áœ Đą2™Sy—€hû±.äT€cNh@y~䣔zòQ€bÖ”'ÆŁ,I!ˆEŚĆœ ‹~/,7Y’BCك­ä#ł‰*Đ:s*@,ș-æT€XôIČ$EąÆôΜ Đ's*@ʞČ$… ÿ(~)EÎœ đ^XŽœ Đú(ëR‹‹9 =Œ9 ńQÆ­ŰG±K™<êfc> ‹žƒ9 őQÖ­űGńKYlÀtæT€Xô*ÌG!ȏb—blÀȘÌ©±k0§ÄŁns*@,z9s*œ °‡ù(Dl€UæT€ŰkÌ©ŒšæŹË|)íŁŽ[‰ÄĂґĄ$2*9•@˜uš/„SéÌ©M*ƒ9 §âÌ©ÂŹÛ˜!…ˆEŚ“BÄą«3§ł.žű|ąFƙSšeȚ ‹~Ż4Y’"QgzgNˆ è‹9 EƘS 4XtwæT€Ű€Q˜BČΜ 0 óQ€&‹ž9 œæŁ±{RÔ|=€ 6`5æT­ú«Źz+㣌[aìa> ±V˜SâQg9 í…ù(D,Ú+s*œ đΜ °Ï«ÌșDQô~ò  —€xseNšRÌ© *‹9 ŁbÌ©ÂŹ«1odI A Ê>[lùÈŹ  eo2ë9•ΜJ Z•Zoe|”q+l@Ì©jl@uæT€Xt{˜BÄą[eNÈ>Š]JgÚ`NšSYÌ©­Č.e°èȚ˜BÄì3Ś&ł.0óQˆìŁŰ„Ìò«Ìr+lÀ˜Ì©±ÙSâQ7óQ€‹ž“9 =s*@lÀ*ÌG26`UæT€XôÌ©±è”˜Sbl0ÈÙ3æT€xÔya> ‹öƜ à9•őœu™/%Ï^6Y’BQÌ©ÂŹk1ŰdI A Êl]f]ąI„2§äTs*0ëZœÄɒ‚:”ú0…hQ™Ì©ÂŹkń\–€Äą«1§4?ÊŒ6 uæŁu6 s*@,ș9s*@,șWæŁ±ʘS 4ۀîÌ©ńš•ù(D,z æTÍçW™Ï­°ûT°ËŹKÄŹ“BÄąŚ`N%ĐbŃ˙SbŹ0…ˆ °ÁœJ cŃfÌ©±h˜B4>Êž6À s*œG7æT€X4æKŃD,Ús*@р_»Ì: ÁYŚăôkÈŹK4>ÊžƒRóQ€â‘ÙOäENšA©ù(D“ÊdNˆEïł"Y’"Q<2ûæÁœ P§Č˜SZPößž,I‘š=żJ{n…EśÁœ Đs*@lÀžCfĘAEÊ|"=ù(DóŁÌ[aVe> ĐàQ·s*@,z æT€XôZÌ©šl€=ÌG!böw·!ł.‹¶Áœ ‹6gN%ĐböùÈŹ 6Às*@<ê|1§ÈXŽs*@QôˆŻwČ$… A„1§dTs*0ë'EÎșDŠ3§4ĄÔÎ|"§bÌ©ŒˆKRüäKaŃû[—,I!hAyov‰| ÌșXj7r*@lÀțĄS–€ÄąśŒ‘%)±èæÌ©Șl@_ÌG!ê„ß ‹îƜJ Æąß瑚,I!ˆ ŰŚ©f>2+ˆ Ű#iÊŹKÄŁn_ʒ%)u=s*@,z8s*@lÀz˜BÄŹÂœJ ÁąWgNˆEŻÁœ Đú(ëR&°s*@<êŹ2…ˆE›1§dĆ.e±^˜BÄxeNˆE{gN%±hŸÌ©±Ÿ˜SŠĒȑĄ$2*ƜJ ÌșSK–€Ô ”Î|ąIe1§äPja>ÊF\’ąÍžME–€ÄąśE(Y’BĐú(ëR0ëâéÈ©±èę­K–€ÄąÛ`Nˆ è…ù(@• è•9 Ne2§Ž>Êș6`Ç•Ì&jl@7æT€Ű€Q™BÄąÇbN%PgŃïă0M–€ÄLcNh~”y+,zuæŁ œț’%)±6˜Sbl1§h>żÊ|n…E{a> ‹öɜ đȚč9•@˜uńDd(‰:cNhA)…ù(DNe0§łnƗĄ%ł.Ń€Ò óQˆŒÊbN%łèfÌ©5(œ1…hRYÌ©ùGńÂ%)âpC> °?·-™Ž>ÊșÌșíČ$… œżÆÈ’‚Ű€śÚÈ©±û‡q“YwPeŹ0…ˆE[eNˆE{a> °?qMfĘA˜uńÔAd(‰•Æœ }»”xd6šƒœ Pû(íV&”Ú™BäT&s*‹nÆ|ąe7™u‰”}ćM–€H4YôpæT€Xô,ÌG!bfeNÈ>Š] f]ÜÿĘdI A,z.æT€ŰüE,i°:s*Źț*Vo…EŻÁœ ‹ÆŸžIŃ@țü*țÜ `'…h~”y+,z.Eoäxdö'_ °ŻžÌșDqÔy܃"KR$ÂŹÓ|)JgNh@yŸ˜‰|"û(v)˜užĄZ–€ÔĄôÂ|ąI„2§äT&s*0ëbź&KRbŃc2…ˆ ‹9•@ Ű·žčÌșDlÀÌG!šeȚ ‹öÎ| ÁűbNh7 ?ń““珎>Êș”˜uꉫÆČ$… Je1§4š8s*@„NæŁĆŹëO\I‘%)±ènÌG!šPFa> ‘SÌ©2ƒĂ€h"=œ9 őQÖ„80'óQˆgNˆEŻÂ|"œ*s*š?˜u=nŒœ đțXÔeI A룏K),úęŽÒeI Al€9s*@l€7æŁńš{ÿźș,I‘šČèśïȘ˒‚ąe_šˆ %Ń€Ò˜Sr*9•@1ëȚ<™SPJa> тR+óQ€bÖőXő$r*@,ș5æŁ±è֙S2(œ2(f][ò"§Ô?Jż=óQ€&‹ž9 6`NæT€ÆG·bĆ.e±èč˜SbŠ1§ÄLgNˆGțƗu@ÆąWcNˆ xÉ|ąőQÖ„8`“9 ?`—ą‰æG™·Âű`NćE…łźÄßx‘Y—(ŠȚ·"#CIŽ>Êș§Ò™S „Y·_ŸŽ|ąńQÆ­ŰG±KÁŹ«ûî‘.KRjT s*@“JcNˆEżí]–€HÔêŻÒê­°ía> Đ s*0ëâfș.KRbŃęa> Ńű(ăVۀ^˜S 4ۀȚ˜SbŃï9g—%)±èśąË’‚Ű€Y˜4ëŻ2ë­°èéÌ©±èU˜ŽŰ€Ő˜Sbìa> șśJJ—%)±hkÌ©2m9 6Às*@рíEfĘA˜uq/W—%)5(u0…hPYÌ©î9뀾$EoqžË’‚:cNˆEïĂ]–€äT:s*0ëö[»‘BÄąGgNˆEż_ïș,I‘šČóa> 0 s*@“JcNˆEÏÁœJ ÆÌɜ Pÿ(ęVۀ}‚ KR$ê,z æŁ±è5™SbÖbNˆ °Â| Áąś_§,I!ˆE[gNˆ đÊ|"6À;s*0ëâ…ë]–€4štæT€ Jy˜„Y/9œ PƒR+óQˆ&•Μ ż”xdö̓9 țQú­,*“9•@ÎąÛÉG!bÚbNh|”q+lF’K6â’=nśêČ$… țQú­Ì2o… xo‹œJ Âąß·„tY’BĐű(ăVۀaÌ©ȘlÀțôo2ëńšÛłO–€Äąś—!Y’B‹žƒ9•@ Ű#©ÉŹKÄŹÆ|"œ:s*úó«ôçVŰsæŁ±ïĆÜÈG!âQç9•@˜uqŁV—%)5*9 Ie0§äPJe> fĘŰś7tY’BĐ bÌ©-(”1ł. ‹n…ù(D,șUæT€ŒÊ`N%±{Ț4™u‰:”nÌG!bŃŁ3ÈYôz˜BÄŹÁœ °&s*@öQìŁpIŠwuY’B`“ù(DlÀûózäŁĆQoÒíČ$E"ÌșžńŠË’‚”}J–€Žš æTaÖĆkr»,I!š}”v+“Š1§dPja> f]ܛ9 evæŁ±è9˜SbŠ1§šŚ_„Ś[aö…Y’B‹^9•@ƒEïŻTČ$… 6Àœ9 6À+óQˆXŽOæTaÖĆ}]–€Ô©tæT€•ÉœJ Ì:͗ҠàűÉY—hRqæT€ JmÌGÂŹ[<ÄrÖ%bŃû2‰,I!ˆE·Æœ SqæT9ĐóQˆ•Ćœ }û(ÌöŁzä#ł‚Ű€ś”ÈG!bȚŸyș,I!ˆEïŻwČ$EąÂąś°,I!ˆ ŰßĘFŸ@°*óQ€êó«ÔçVÚGi·ÂŹÎœ ° 2ëj<êŹ3…ˆE›1§ÄąęäŁEâN–ÈPÂŹłű2ë *ƒ9 ƒRœù(@ńÈlßï7E> QƒÒN> фČ/“È’‚XôXÌGŠGf{ÜÔù(DŠ3§Ž>Êș”ĆąWc> ‹^“9 6ÀóQˆŰ›Ì©2íù(DQŽÇÀ—%)M(ća> ‘SÌ©ÂŹó˜æČ$… „6æŁgNćE“ł.^íù(DŠ3§Äąś”gY’Bż”xdöÍÆœ 0 óQˆ•ÆœJ Êąśá.KRj„Ę 0 óQˆŰ€iÌ©jćWićVXô>é—%)±V™BÄXcN%PçQç‹ù(D,ڍ9 őQÖ„ÄŹOü€=sÖ jTs*@óŁÌ[q*ƜJ ˜u#îA‰|ąNe2§Ž ÔÂ| ĆąëbNšBiÆ|ą„OæŁÙG±K1=óQˆXô̩͏2o… ˜‹9•@Îąqž»MÄąWe> `óQ6Z˜uś}ʜu‚ÚGi·Âąś™ˆ,I!ˆ Űg"+™MTŰoÌG!böÏÈČ$… œżŁÈ’‰b֍‡»,I!šB)“ù(DÊŸjŒrÖ 2*9•@1ëȚŒ˜SjPúĂ|ąI„3§äTŒ9•@Eż7ëvY’B‹ȚÓ\–€Ž>Êș”ÁÌΜ ‹ž“9 =s*@lÀêÌGšlÀšÌ©u*Μ ‹¶É|"6‡û”-6À+óQˆą•jÎșD„<ÌGÂŹĂ=Č$… F„3§4© æT€üŁű„`Öí—!…š”~+‹JeNćE\’bàw|Y’B‹ȚȘ,I!ˆEŻ“BÄìˍ&łî Â,cNš”~+룏[aìäŁU6`_2™u‰xÔí“~Y’BPĘâzŒ,I‘ł.^öÒeI A J©ÌG!šPö-3Č$… §R˜S „Y‡éeI AJcNhQqæTaÖáGzY’B‹î“9 eæŁ±c0§hČÙSbŃóa> ‹ž“9 6`Ïa“YwĐbVe> ‹^9 œœ9•@ÆűÉG!Šô8Ń6™u‰æG™·âTŒ9•@˜u± x—%)u*9 ÇrÎ: .I1zœCȒ‚XôŸ")KRT s*@F„3§ł.Ț5ÒeI A,zîČ$… 6`OsÏGf±û;­ËŹ;šČŁ3§ÄąÇbNˆEï Y’"Qcæ`> Qû(íVXô4æT€XŽæŁĆ#łcāêùÈŹ e_ys™u‰”:˜„Y§ùR•Ćœ ЀÒ*óQˆŒŠ1§hČèîÌG!bŃŁ0…hRiÌ©9•ΜJ ÌșÁă'g]"ăgIŃDlÀpæT`•ù(Dl€5æT€XŽuæT€Xޟ| gܙSŠà'J—Y—hA)…ù(/\’â'_J…ò¶ÈG!PȚL"…Èšs*0ëâiő!KRbŃóa> Ń€Ò˜Sr*ƜJ ÊąŚĂ|"m…ù(DlÀ{*9•@íùUÚs+qÔí5/‘Ą$šTs*@„VæŁaÖí7 §ÔĄôĆ|ąćœ›qȒ‰0ëöW=äŁU*Ɯ Đű(ăV Ê*ÌGš,zuæT€ÚGi·ÂXe> `9•@‹E»1…(ŠȚ_ŒĄ$ZPJg> fĘ~ 9 „ž|ąIe2§dPZa> f]Ź9 „?ÌG!bј7.EoÄ%)Æ~Î9 JƘSbfc> ‹^'š°èeÌ©±֘BÄxe> QuûAXd(aÖĆZ;C–€Ô©,æT€cN%f]üÌ3dI A z–ł.фò^œČ$… ŁÒ™S „Y?­D> ‹¶“BŽ‹žûC9A„æŁĆŹ›Oü镜u‚•Ćœ AyoČ$Eą˜uóáȚ>łNPƒÒóQˆ&îgÖ bŃәS ŽXŽ=ÌG!êP|0…(«D†rPÌș!Y’BPû(íV”ò0…È ÔÆ| ˜u3ź`Y’BP§2˜SbŃű‹p)šÈ©tæT^T1ëf,99 ęžŃY’B‹~Ïè‡,I‘š°ï‹!"…ˆ ۟Û5g  e5æŁ±èśÚó%)Um'…ˆ °Ćœ °Âšł.QÌșYăW–€Ô ŒżY’BЀÒ&óQˆŒÊbN%PÌșr Y’BPÿ(ęV•Êœ SéÌ©ÂŹ‹wČY’B‹•ù(D,zLæTM6`8s*@lÀlÌG!šTœ9 mù(@‹ 0cNˆ xß ù(Dl€7æT‹vcN(ŠŽ§œ†,I!hP1æT€ J­ÌGÂŹ‹ëœC–€ÔĄtg> Ńü(óVÊÌGوKRŒy1§Äąś§ż,I!È>Š] f]ŒŚ:òQˆŰ€=’dI A,Ú óQˆüŁű„T6`iùÈŹ 6Às*@‹ÊbN%PcŃû@•%)Eây€ÈP *‹9 ŁbÌ©ÂŹëqV$KRêPZg> ф2*óQˆ :Ÿłî Áąm2…ˆE›1§Ž xe> f]Œű7r*@qÔí»O‘Ą$šPZa> ‘S©Ì©ÂŹܕ9ëu(ęa> т‚żÎœuaÖiŸ” eOó–Ì Ts*@e_‘%)9‹ÆáîR4à‹9 hÀŒ9ÜdÖ%r(ća>ÊF\’bÆ@‡,I!hP1æT€ÖGY—‚Y§ùR”ö0…ˆE7cNÈ ìOܞÌ&ÂŹ‹‡"…šSqæT€XŽWæŁaÖ-țïçŹKT?Jœ•eóQˆ Ê{Sǐ%)aÖĆ«‡,I!šQ1æT€&”ę±ŃeÖ%r(Ű 9ë,Ús*@,ڍ9 h€ĆHê2ëÂŹÓ|) J™ÌG!šTœ9 ƒR+óQ€0ëâ†êÈ©u(­3…ˆEg> ‘C±Î| Ì:‹yÓeÖ%Ts*@QŽÇ„ Y’"fÇŚY’BPŁ2˜SšTs*@49뀾$ĆÄ”!Y’BP‡2æŁ-({ ™uaÖĆ­­C–€Äąśź”%)±èśfș!KRbܙS łn=qâ$KRêT&s*@ Ên«,I!È©tæTĆŹ[žN5rÖ Pš3…È ÌÂ| xdvĆŽ"…šAńÂ|ąĘ€…‹-Č$… ‡ČŻÈ’‰bÖęć1™BÔ?Jż•eÏᑳ.QÌșË Y’BPƒâù(DƒJgN(PÙÖ3ëĆŹ[5Ÿuɒ‚:”č˜BŽš8s*@e=ÌGŠY·*ÿ"ÎŹE·ű…L–€dPÊb> P<2»‡ÉydVPƒ2N> ф2ù(DĆ+óQ6šxdvÊ=‘SŠÄę0‘Ą$Ze]JÌșŻQČ$… e‘—%) *‹9 ŁâÌ©ÂŹ‹W Y’B‹Ț?˒‚&•Æœ CÙ§SfĘA˜u±êɐ%) („1…ÈštæTaÖ V˜ł.QŁÒ˜SšPöŒ‘%)9gN%P<2»FüÏ|dVP4`òűÉY—hQqæTaÖÍžź)KRjPza> Ń 2™S2(ö0łnČó9ë±hÌ©M(ț0…È© æTaÖá§~Y’BĐű(ăVgN%fƊi>eÖ%jPÆb> фb…ù(DN„1§òąĆY·b',™u‰:•Ćœ ‹ȚŸ Č$E"Ì:|/%)U*Ɯ ЀRóQˆìŁŰ„`ÖYšČ$… e:óQˆ&?ù(DŃüș+KR$ÂŹĂÏ„Č$… eæŁíŰ_ÌV>2›(f=qőbćŹÔš4æT€&”ń0…Ƞ쟜V>2›(fáW̕łNP‡bÆ|"íù(@1ëŹì;ڇ,I!šBńÎ|ąAƘSŠąăń†!KR$ŠYgűiE–€Ôš æT€&üĂgÖ òâ—łÎZ\K”%) *9 ĆN> PÌ:ëńehćŹÔ ì0Y’BЄ‚?à3ëìÊóÈ,‘aÖÙŸ|ąeÿĐ)KRZTs*@NƘS łÎFÌ>ËY'h@iƒù(De_’%)ĆŹ3\@•%)5(ûłÒò‘YAрXU)2”DNƙS łÎ&+<łNP‡RóQˆ”>™„Y‡+’Č$… ĆóQˆąèăQ–€dTs*0ëâę‘SêPö}BČ$… E„1§äPö'‹ć#ł‰0ëpïŸÉŹK4 `'äŹKE[üv.KR$ÂŹĂ53Y’BPƒâÎ|ąh@Źm0dI A;!gĘA˜užN%KRêTŒ9 Ć&óQ€bÖùÃăÌ:A J­ÌG!Pš3…È  ggÖqIŠżŒo›”%)u(ûăT–€Ž‹ö>Č$… ‡ČżzÎșD1ë7˜xÎ:AƒŠ3§dPÖÉGŠGfŚc<™ ÀMžłNЄ‚ ÏŹäTs*bÖy ‘Cń“łÎńÉ"KRŠąśłŐÈPŸÌGŠŚžqWžŚjTŒ9  „5æŁ9ŽőÌșDńÈŹ[Ü0àùÈŹ ĆóQˆâšóűiE–€H„YçüŁÉY—šA±Æ|ąAe0§dTs*hbIŠöÄą3—€PÔ·Čï>E†’hneżmJ"‡ò¶ÈGÚłîÍč$…ౕ¶wćÌ%)-(ï9gäŁíYŚžž#2”D Ê{V4sI EÊz˜BEÇcB3—€Ô ”Ù˜BÔĄŹÉ|ą(:Îóf.I!š?PđżßŸTˆ*cN(çV‘Ą$2*ƜJ Q ŽÆ|ąeœ|ą {{ÌTˆŠWæŁÍ(:ȚZ5sI E *œ#ąĆóQ€V4Àśm*‘Ą$jPæ`> фbÆ|ą]t‰ßÙf.I!hÏșVâźàÈPí”Ê]ÉY§h]âŐŚ3—€Žgʛ±·9ëí”ÎęÄGfí”Á˜łNŃ>êÊܗíg.Iq–€hj.IĄh7 Ä‹Đ"CI4Ąìżˆ’łNP4 źSÍ\’BPÌș§_3—€PŽ‹źmŸCÌ\’BŃn@í1dKÎșD1ëê~U2”D»èș—ŒF†’hB™Æ|"ƒČ‡l9Ì ŠYWăمÈPu*ƒ9 ]t‹7čÌ\’BPÌș¶Śè@> Ńn@‹u9"CI4 xg> Ń.șĆe’™KRŠYŚđ7žKR(Ú èű8-ç‘YE»Ęűżf }ԍyțau‰bÖœŸŸ9A»sż,JąĘ€/ Œ 栘u+^à4sI E ±3ëíąßŃN†’h7ÀbłÈĄ$ŠYg%†IÉY'è-ș?ńŠš™KR(z‹îqË-òVÖț?7Œ“5vțÚŻC0Œlő$îxÛg\†­fÂż—Q /Ÿ́;ź^°zw¶í‡ /Ẅ́mûe܆«fšgóè{3v°íï6†ȘžÄkûVĂËT3őłyìÍHël6ۛ‘ülvۛ#ńƒĂöké /OÍ4Ÿ›ÇÏfËÍ 6ÏśŸàsxq‰ËđÂÔLílțûˆ3Œ,5wêț ÈđąÔL~6ś°7G⇃íŚ1^š©ŸÍïnÄËQ3­łÙ*ÀȚ‰¶żq^Šš©Í…`oFgs}öf$ËÍ 6ïÄÛ_T /AÍÔÏæI°7#­łù=>đòÓLŰ©Ÿż^|zŸï“{ĂKO3ÜÜbs$;›ÿæ™áe§'ńYážîdxŃi&ìTßOÚ^rši~7ϟÍ~6ϰ7GâórŸÇźáĆŠ™zn^±yá‘›œì͑8[èfVßN^dšiäfˆÍ‘ìln`oŽÄÙâ{5ĂËK3±°†CwϖL37;@lvL˜ÏfŚÍœ- t€œiœÍqàïْÉÎæVöæ7ćûGèæv6ÿن—“fšßÍógs¶öæH|ŠŚśœé†’fâNĘO@^FšićfˆÍ;q¶űŸïÚđÒLíl^`oFgł9ÀȚŒdgłO€œ9g‹ï[% /ÍÔÏæżó'Ă G3Íłču€œÉÏæŸöæHg¶ì›Ô /Í4Îæš4fËIÜ©»•†—‹žtfËŸŸÄđbŃLíl~ç^*šiææ›#yn^±y§3[&J‰ÙrR?›ÁȚŒ”…yۛ#ÙČp|Äl9©žÍ”ìÍH#7w€ŰÉróˆÍ;ÙȰc¶œÔÏæI°7#ÍÜ\bs$?›Śۛ#yf `oFÊÂlÄæHëlö°7ż)ßśéûžĂ A3ńhÙßo /Í4sóˆÍ‘,7@lȚé̖ęJĂ @3őÜ<bs€u6·°7G:łeŻToxégК›@lŽ4Îæi{3RöžÏăEŸ'”,lu€Ű©}7·ŸÍčSŚˆÍ‘ü»ÙusÏÂȚ9ˆ—zfÊÂŒìÍHÜ©ûŚ&ĂËYőÁuâĄƒ@ˆh" ;öG„ !bÁA Dœ)ŒƒqpFè";)łTû%ô_a‰ĐA ì8ŸŻ0Ÿ_AÊŹ$DÙŐ­‚„€(»ș- 7€Š` "J™œ€„€(eö!ąìêî v4ÙŐńŚjÜՈRæ "J™‹$„ˆ.»z-eWÇߚsW#ÎK˜ż‚_‚‹oJ|É_Žw)J”]ę^ˆ›œQ'Êź~ÿȚ'gc‘2ßkż“3êD)óœ09ŁN”]ęžYá ŠÏźȚŻGđÉƘ3jżÄÈ'gԉ=…2@B@œ)Œ_ŐńæD‰.‚ƒ@Ű1gÔ>ƒòÉu⾄ń+H™­ƒ@Ű1gÔ>ÿńÉubKáę:09ŁN”2‡@ˆ(eÎ BÄ!»z= ! Êź^BÄ%°ă”2­„€(eZĐqÛy ÂÀćGˆclrWGÌ5pŒaFŰEè "N„ˆ~ ț#äŒÚÏnùäŒ:q€P*Hˆ+…Z@Bˆ˜3jìKX“3êÄ&‚@ˆ(eÆQê,QÊl ÂzïdWżóqF(»ú=Ë]œQ'J™$„ˆEÊ|ŻP-ΚeWżg˜xśĄDÙŐï&‹3êDa@۱J™ĂA 8)8Âû·¶8ŁN”]ęśœÀgԉȫ§ƒ@۱I™ï‡ÔâŒ:QÊ\!ąìêć vìČ«­„€(G”u„L "Êź¶ aÇ!»ÚBDÙŐï—ęĆuâș„ő#L)Ó ‚á!ŻP…q ăW8eÎ}–»8ŁsFí§·|qFŰD˜ &9B) ! șŽ9Łö§¶/ΚÇ%Œ_a‰°@ ì˜3jîûâŒ:QÊŹHˆRf- "Ú%˜&3jîÁhœQ'v&„‰g[ŽĐ HˆČ«[°c‘]ęŽVăŒ:Qvu/ ! J™ïwyăŒbŹRæš ! Êź BDÙŐï…qF(eÎBÄ&eŸSË8ŁN”]œ*HˆČ«W°c—#ê=7Κ„Ìć "J™ïP2ΚeW{ !â(_a”_AÊô!âș„ő+œ]œö—\Œ‘0cΚę*d7ΚG „‚„€h" ;æŒÚˆnœQ'¶ȚżVăŒ:qŠP@ D”2k°ŁI™u€@ˆŰE˜ ".„sFíÏ\7ΚÛ%Ž_Avu çźF”]Áč«ßè2ŁÖ>qrΚ„ÌśÄÉ9ŁN”2{ Qvő;1œ3Š±Èź~dwΚ„Ìś«șsF(eÎBÄú|…úü Č«gQŽšUAB@ôKđĄI™Ë@ D”]ęț†îœQ'źKX?B—2­@ˆ(ešƒ@ˆ(»Ú HˆČ«œ@ŰqÈć BÄSfÜsćœQ'ÎK˜ż‚‹°@ ì˜3j șsF8R($Da€@x .…!bÁ@ D”2ß©ćœQ'ú%ű`%…Ö@B@ì—Đ…%°Ł?_ÁŸ_Ą]BûdW·!ąìê˜Î]ęß'â©óïh‚‚,•ț}}‚‚—RŸ"ûțïO Č=Œ ČíDP"7iÀzˆBaî·Ò?Šœ*”È]жB ł4àï`‚‚ÊLćïĐ …ÙE™DP"çxSô«ô[éEŠ.‹Jd.ߏRo„~i@1"(ȖJ­DĄì\dÖù{& YP Č4 :diÀ߇P(ÈEŠn“ ČĘäu+ëW©Ò€fDP„èț…Â,EśBÙnĆ~•& è• ČuœAA–ąû$‚čKŃ}AAź·R?Š4`ŠumAAö[ń_eJŃmAA–4#‚‚, èQ(ÈKŠȚtłNČœ?\*fdi@7"(ÈҀQˆBA¶r)V>Š=*äu+ëŁHF'‚Ù„cAA–ą‡AA–ąg! eç–O*ț _E0+d9êæ"‚‚ì·âżJ)—RÊG‘ìË–łŽY°żá”œuÈ:ëV%‚‚,Eïș–łŽY`…(fi€5"(‘uÖY'‚‚,EÛ ‚‚, °IY`‹JdufDP„h/DĄ0KŃȚˆ DÎY·ŸŒz•ÌM”ByŠÒˆ  »(N%òyȘ±–ű kxŹQr„AA^ąT"(‘—]:ä*ŠAA·2>Š„RąPMŠź… rż•țQ€uAA–ŽB ČKŃ­AA·2>Êș•„J—YWâăČsÖe–Łźu"(ÈRôțžŰ9ë2kŃF%r)—RÊG‘4'‚‚,EśJ r•ą{'‚‚, è‹ Č4 ;d9êö7ŒÎYwr“ąG#‚‚,  òŒ•ùQ€É DîRôìDĄ0[E0”È:ëŠAA–ąW% …yȚÊü(Ҁęő­ăáÈÌ:ëę*ęVúG‘ąŚ"‚YgĘț,ì9똄V‰  K̉  KŃ^‰BAÖY—èW‘ìoxKJ> šńő­sÖeö[ń_%g]Żoł.óž•ńQ–(‹ʛ‡Ìș_g]æ–Êțœu™„èę)68ë2›(“Jäœu5>ąg]æžJ-DĄ0KŃ”AA–ÔF%r•ÔEY°ż› ÎșÌv+ö«4)zr ÎșÌҀ6‰  KÚ"‚‚,E7'‚čKŃœ…Â, è“ Č4 ;”Èăč”ń|)zŽ8ë2[E0”È:ëæ …YŠž“ Č4`ÿH¶đX§diÀțykćŹCÖY—èW‘ąŚ$‚‚Œneę*:ë–AA–쟷VÎ:æy+óŁű­űŻąłneZ9똄։  KŃ6‰ DÖYg‹ Č4Àœ Č4`_\9ë˜ćšóA%ČÎ:_DP„h7"(ÈóVæG9 èńŃœ8ëNÎYŚăsyqÖe·2>ÊƉ DÎYŚăZáâŹËÜD™DPg*”…Âl·bżJÎșŸ?‹ł.s„AA–ąÛ ‚òfycțúU€ûûáÁuÉăVÆG‘ąśW&Ÿ8?s‘ąśe3Ÿ:_Č4 "(ÈҀę­Ê8ë2ËQŚ”ÈUŠȚ?)ńú’„èꕉ/ї, Ű7JgĘÉíč”ö|)zÿ^ÄWéK–ąg#‚‚, ˜Jä^.„—"GƜDP„è舠 KŠA‰<€Ӊ  [EŠ^…(ä)EŻJY°äy+óŁHŃkA‰ŹłnOޜuÌÒ«DP„6ˆ DÖYg“ ČmFYŠ6'‚‚, đF ČÎ:DPû­ô"Eû$‚‚ì·âȘűÏŹÛ_H=gó9êFüŽÆŚïK¶[±_%gą_„‰2ˆ  OQœ ȧRąPs֍žâÈWńKîąL"(ÈK#‚9gʈŻo|!żäv+íŁHȘAA¶[±_„KȘAAî·Ò?Êș•őQ€­…‚<ꄌúQ€è6ˆ  Û­ŰŻ2„ûsÙńȘdi@DĄ0Ï[™EŠîF%òȘ—ČêG‘Œ‡(æu+ëW±çRìù(Rôțèækû%[E0”È^.ĆËGŃą òŒ•ùQ€É üć"ïđŻûq P˜„èś4ą<9똄èśĄ<9됋4àœ;$P(ÌҀśs9d)zU"(È~+ț«TiÀûĄ Č4ÀąP˜ćšłJ%ČÎ:kDP„hëDP„ïçr (ÈÒ/DĄ ëŹKô«HŃŸˆ  Ï[™ĆoƝuï—ÀòäŹc>Eï‹Ì@Ż’y‰Rˆ DÎY·/2AAnąL"(ÈS”EÙE1"(‘ÏS­użí(æ.J'‚‚,E—A%ČIŃeAAźą,"(ÈăVÆG±TêC ČKŃ”AA–ą«AA–T'‚‚ì·âȘÈZu_6 …YŠ~ïš)\@Č4àœ™%”ÈEđ^‰ YŽșśC·pQÉóVæG‘ą›A‰\„ï%ß@Ą0Kz#‚‚,Eżß —ÈÜ€è>‰  Ś[©E0Q(ÌrÔœt…ËdîRô,DĄ0·[iE0+diÀlDP")zv"(ÈRôœDP„ë! YgĘ*DP„èU‰  KŃ«AA–ŹI%ČÎș”ˆ  ËQ·Œ ČíDP"돳J sœ•úQ€ֈ  KŃ։ DÖYç…(fi€7"(ÈҀśkm (È~+źJę™uûC·æŹc> Xń‰ZńÈŹä%J%‚9gą_„‰2‰  OQŒ ȉâDP"çŹ[ńqY9ë2ś[éEŠ.‹ ȋbDP"çŹSô«ŒTj% …ÙnĆ~•.EżśȚ.8 čĘJû(Ҁ:ˆ  KŃuA‰<ꄌúQ€uAA^·Č~•)G]ëDĄ0KŃmAA–4#‚‚, èQ(ÈKđ>JQž d)ș7"(ÈRtïDPęVüW1i@DP„蟈  KŃă! Ù„ŁAA–ŒIYŽș±ˆ  û­ž*Č6AĘ/Ô …čßJÿ(ҀęéȚrÖ!ëŹ{w--głœąP˜„ûsčá‘YÉҀśž€@P"ëŹÛș-głœäu+ëŁHöçrËY‡ŹłÎ*Q(ÌRŽ "(ÈRŽM"(‘»4Àdi€äy+óŁHŃț…‚<€^ˆ  KŒAA–x'‚YgO"(ÈíVÚG‘Œ±AA> °8hœu'çŹSô«tQ äy+óŁž(•Jäœuûœi@P‡(ƒ Č=‰ DÎYgńużqÖen·Ò>ŠíDP„èR‰BÙčç#łŐâd€ă‘YÉҀ}ŠŃ9ë2/QœJä"Eïïò\ê@Č4`șw>2›YPdi@u"(‘kč”Z>ŠœżšsŃÉҀV‰  û­űŻÒ€è}ŠÁ„$KŃï5śÂĆ$KúC r—ôBčĘJû(RtŻDP„è}2Âe2i@ŸDPû­ôąE/"(‘çs)óù(ҀnDP„ă! …ÙnĆ~uŁAAn·Ò>Š4`4"(ÈҀ±ˆ DÖY7ąP˜Ç­Œ" ˜…JdułAAn·Ò>Š=;diÀDPȚ<~fĘ{Ï@ (ÈrÔœś ”‘łŽyĘÊúUtÖí3°‘łŽY°Ż”ŒœuÌҀ}„däŹc¶[±_Eg]ą_E°diÀ2"(ÈrÔí‹)#gČÎșęŁÇÈYÇ,E[!‚‚, °J%ČÎșDżŠm òŒ•ùQ€ûȘÍà#ł'ëŹÛ§#głufDP”h'‚‚ì·âżŠÎ:oDĄ0K|AA–ą}A‰Źł.ŃŻ" p#‚‚|àq688ë2»(N%rÎ:ł.ł čßJÿ(K”I%rÎ:ł.¶ čĘJû(RtDĄ0Û­˜*ČæBő81âą ’„èęs—],Eïł.Œ YĐ”ÈEĐäq+ăŁHŃûLƒ 0dźÏ„ÔçŁHú ‚‚, Űg\†AČĘ”ÈMŠ~ï/\ŠAČ4`Y9똄è}5kćŹCÖY·O#VÎ:fi€?DĄ0KŃ^ˆ  KŃû ÒÊY‡Ü€>ˆ  K|AA–ŁnŸ#ʜuÈ:ëö9ÂÊYÇÌąÛŚ~žŽƒä!J%‚‚l·bżÊ™u-^èUžÀƒä.Ê"‚‚ÊŒ•ùQäš[‹Jduö…Â,E›AA–x% Yg7"(ÈRŽw"(ÈRŽO"(ȧń­@ŻrrÎșx‰V (È]”Jy‰Òˆ  »(JäœuŠ~•!Ê$‚‚ŹE/"(o–”$ZŒĐ«p1 ÉM”ByŠÒ‰  KŃeA‰\ê„”úQ€û#ÊńÈŹdiÀțpqÎș“sÖĆ;ż —–Ün„})zțpy ÉҀ}ӆs֝܀ûș‚sÖe–ąśG™,E·B łßŠÿ*]Đ*äq+ăŁHŃmA‰<Ê„ŒòQ€͈  KúC łĘ ”ÈSŠî“ Č4 /"(ÈҀQˆBA^rԍJčĘJû(ăVÆG‘ŒF%ČÎșDżŠ=&d-zAAö[ń_EgĘp"(ÈRôŹDĄ0Û­˜(ïË|„ï9B (ÈíVÚG™·2?Šę^WšOÎ:duïu…úäŹc–Œç+  KV% YgĘDP„èś‡†úäŹc·2>Š4àœhJdu‰~)Ú:Q(ÌÒDP„ï=& DÖY—èW‘ąÍ‰  KŃïwùúäŹCÒoDP„Ț‰  KŃ>‰  ŸąëŸQąrIŠÌç‘Ù¶_Š č§R&Q(ÌK”E%rÎș}Ç'ä–Êû‰Zč$…äq+㣘(…Jd+—bćŁô[éeŠ2‰  Kê"‚9g]ĘT.I!yÜÊű(Ҁ6ˆ ŒčÈŹ‹‚‚Ün„}”y+óŁHŃï‡nć’™‹4àęĐ YĐd)úę\ź\’"s•ąßÛ *—€, …(fiÀ˜DPćšN%r“ąśÇ—€Üo„iÀțä(œu™ęVüWéRôDPÇ­Œ" xÊ%òx.e<„ĘJû(ZŽAA–ąW! YgĘț,,9ë˜û­ôČneę*:ëV'‚‚, X‹ òž•ńQäš[F%ČÎ:+DĄ0·[iE`• Č4À&”È:ë̈  KŃæDP„^ˆBÙčțÌșśșB (ÈRô{”ŒÖœuÌRô{se­9ë˜Oâ}u^ćäœuń2ș@P»(ƒ òeA‰œłnßó čȚJę(#•śë~ć’’„èRˆ DnRô{…șrI ÉM”AyȚÊü(.Ê"‚čŚKéőŁHöÉHĆ#ł’Ś­Ź_eHj! …YŠź• Č]di@5"(‘gč”Y>ŠĘąP˜„èV‰  û­űŻČ€ï͕  ËQڌ ČĘ Q(È&EśJčĘJû(ҀȚˆ  KŃœA‰ìőRŒ~i@DP„ʈ ŒY–€űCïŚęÊ%)$·[iEđȚ ČƊę*:ëö‰QËYÇ,Eż_śkËYÇŒne}iÀ>œjxd6łÎșDżÊž•ńQ€èśæÊÚrÖ!7iÀ>IkxdVČ4`Ÿ”œuÌrÔÍIÙoƝusAAî·Ò?Êș•ő«èŹKô«HŃćŹc–ŹIÙnĆ~u‰~)z-"(ÈëVÖGń[ń_EgĘr"(ÈRŽ=DĄ0KŃVˆ D6i€U"(ÈÒëDPç­Ìâ·âżŠKlAA–x! …YàʛûÏŹÛ—AzÎ:f)zŸÇőœuÌăVÆG‘ì‹)=gČÎșDżŠœˆ  KȚ{)AAö[ń_%g]Œk±rI ÉC”JÙDiDP"çŹÛŁAAnąL"(È3•}NÉ%)$»(…JäóÈìúUú­ôČD©DP")șt"(ÈҀ2ˆ  KêC łĘŠę*ł\Ê,„ßJÿ(ҀZˆ  Kj%‚yIŃuAA·2>Š4à} (”È& hQ(ÌrÔ”JYŠn“ ČĘ”È. èQ(ÌҀ^ˆ  Ż[YȘȒ­Ç™)—€, xïn YđȚn(f9êöI—€È\€è}Æ%)$·[iEđȚŽ Čߊÿ*:ë†AA–ąß{AëÈYÇŒneę*:ëöyÜÈYÇ,EÏNYŠ^ÿÉ:—lÉun„–`ę(qQ”ÿi•M ‰ŁîÀ‰AóŃm;3ŻFĄeł2‚Ź]7;#(`č꟏qÆî:òÌÊ<íșiŒ €es2‚Y—ąC;#(ÁÚu;:YÀz…B¶ŹŰ„ÈU·*#(ÁÚuËAËĐk1‚–,g%X»nG§"C{a Y†öÆ XàÆJ°vʎNEź:ŸŒ €ehwFPÀżŒžÓűÉ,Ù€ëFÜi»nóĆAŻ­|w<’bóîșű“™•GR7Q#(`e0‚–ĄżśP<’bs•ĄëĂ(rÏJż”)Je%xwF§ÒČÒ.E†ź°, NFP‚{IJ/—ąC/FPÀ3+óRdía xÈZe,W]kŒ €eèÖA ¶')ö\Š,à»G0vĘfˊ]Š Ę;#(Áł&eÖK‘ôÁ X0 ŁPÀK†•° =:#(à‘•q)ȀaŒ »\uc1‚–Ą­3 …<ł2/E`ƒ”—çŃuß˔軎,Cż_:­swY†țî4æî:p‘|w?™–|wswÙČb—âYńS©Č€9AśŹôK™Y™§ą]śĘÒÌĘudz2‚Y—" XŁPÀÚu«2‚–ĄŚ`, XÆ X°&#(ÁÚußęÊÜ]G–Ąęa Y†vc%X»Îđoo'&»nłeĆ.ĆE錠ÿ~2ÛâO‰FÜłÒ/eŠbŒ ïźłžà‘Â2t錠€GVÆ„,Q#(Á.Cc,C—É XPFĄ=+źŠIńF…° ęĘiđH aYÀś!ÙÂOf7YÀśêa±ë6·ŹŽKŃĄ#(`ÚA ź%)”\Š, =ŒB!ËĐ­2‚Üdèïf„GRËŸ;…ŸÌ ËÚ`,W][Œ wș?ŒB!ËĐœ0‚–ôÆ XĐ;#(ÁŁ&eÔK‘Ą»1‚žY™§bORìččêȚïŚ”»ŽŹC/FPÀ++ëTŽëș3‚–ŒÂ(Č =:#(ÁÚu;:•š•z)ȀaŒ €WVÖ©hŚÉ že„]Š,`,FPÀrŐYeÊÇ~tʎNE†ț^2ùî:òÌÊ<íșï¶ÓwŚ‘eèï¶ÓwŚ‘eèï¶ÓwŚ‘eßm§ă'ł›”ëŸÛNß]G–«îûź–ïź#ËĐł2‚–ÌÆJ°vĘw«ç»ëÈȀ錠€eèU…Öź[pËJ»YÀšŒ €eè㌠kŚíèTdț0 …<ł2OE»Î#(à–•v)–»Y€wFP‚”ëŸÉ|wY‡vFPÀżĄăéVI!ìYńSÙ]7ă†ŃÙu›‡(Æ x‰2A Ț]§Ń©Ž­”Á(ČeĆ.E†.ÆÊnr$ƝJe2‚–ŒßȊJđîșűcșGRËĐï~€Y—" xï)#‚\eŐAËĐï­^ă‘Â2ôû;ŹÆ#)„=+~*­&„ŐK‘Ą[g,C·ÁJp—ŽĆ že„]Š\uœ2 …,Cż·zGRl5)Ł^Š, wFPÀ3+óTL†îÆ že„]Š, OFPÀ++ëTŠ\uĘAËĐïči<’BŰČb—" ”`íșŠ =#(`zLFP‚]0œpËJ»ÚFĄ=+źJ‘ŸÌÆŽ žg„_Š\uïíU+»ëÀÚu;:úęj|+»ëÈȀś&-"(`YÀ{Q(`íșYAËĐï[ŸVvŚ‘es1‚öŹű©hŚ­‡Q(dzFPÀȀ5A Öź[‹°,ÀFĄ-+v)2ŽFP‚GIÊ(—" đÊ X†~oŻZÙ]ÖźÛѩԏÔK‘xgŒČČNE»î}ŰÊî:Č=A뜰gĆOE»nG§ò:țČră‘ÂS”ÊJđîșű#ĂA·­”‡Q(dˊ]Š‹RAyčJŚĆ_3Ž ž‹ÒAÏŹÌS)2ôûjłńH á*Ê`, űî)+»nóÚÊûRČńHŠÍU†ź•°, FPÀ–»YÀû:±ńHŠÍM†nŁPÈ2t+Œ €gVæ©ô')ę蔖•v)2t«Œ €e­1‚AËĐŸA[VìRdÿșź?ńòm ë„»(•đe1‚üëșțě5I!\EiŒ €GVÆ„,QŒ”—ćHŠYčńH ᶕá'łÂ–»„0‚\dè€–Ą«1‚–|·†źÛ\Ÿ€ÔçRthg,C·‡Q(dYÀw§aűÉìæ& hÆ Xźșț0 …<ł2/EĐ+#(Áœ&„ŚKY—"CÿŚÍ#)6úûĔGRËŸ7H†ź–ôĆ Űłâ§b:Ž3‚îYé—" •Q(àù$e>—"CÆ ŰČb—" ƒ”`íșaŒ €{Vú„èĐÎ X`…Q(`íșÊÈÊžÚ*#(/Ïę“ÙțÄęÊÄOf…eßęÊÜ]G¶ŹŰ„èĐÆJ°vĘśÚlîź#śŹôK™Y™§ą]ś}z;wŚ‘eèï–fîź#Ëfg, ˜“”`íșïŁÙ軎,COg,Cw=swY°*#(ÁÚu;:zuFPÀ++ëT†,` FPÀȀ5A[VìRtèĆJ°•€XčYÀrFPÀČ/ŒBkŚye,CŸÏĘu䑕q)ČkŚùd,Cûbü[@ü꜈^eł‹RA Ț]ÿœńH ᑕq)++K•%]E>"(à–•v):ôdŹC/FP‚?™=ąSé[)Q(䙕y*U†ț>àć‘Â2ôw Ì#)„GVÆ„ÈÊd%žÉĐe1‚îYé—" űn€~2+ìYńSérŐŐÊ X†źÆ XP'#(ÁCP#(à–•v)2tkŒB!ËĐߛ5I±Ùdm0‚–4c,C·ÉJđ”ĄÛb, èŁPÈȀ^AŻŹŹSY2toŒ €eè>A[VìRd}1‚Ź]·ŁSŃĄđÌÊTƏźûn€}wYźșï.ÙwŚ‘eèïțÖwŚ‘WVÖ©hŚíèTdĂAËĐßę­ïźkŚ}ŻȘ|wY`Î xde\Š ęĘ úî:°vĘw7è»ëÈ-+íRdïoq#‚öŹű©hŚMc<Č2.E0”`íșU…B–ĄWe,CŻÁ X°Œ”`íș”AËUç…Q(䙕y)ČŻŒ kŚíèTdȚAËĐ>A ÖźóĆ že„]Êo5îăœ]·Ùłâ§Č»źÆ­€îąTFPÀS”ÆJûîFwŚ}ߚCÜČÒ.ĆČb—ČČČNew]œ°팠€eèśígç‘ÂȀśK„A źČ€ÒAQ#(`úœŐë<’bs+IićRdïĘ`DPÀ–»z1‚Üuhg, šŁPÈ3+óT†\uïËÚÎ#)„eèZAËjc, š”`“ÔÉ X‡^Œ €uhg, hŁPÀSĐ #(`șUFPÀ++ëT–, 5FPÀȀÖAËUڌ°=A Öźk‹°, ?ŒB!Ëza„| ­]śȚßöČ»Ž,Cż/Ž{Ù]G–ŒGŒČČNE»îœyíewčg„_ŠeĆ.E0 ŁPÀÚuïÍk/»ëÈ2ô茠€eè1A nȀ±AËȚ›Śˆ €eèś1œìź#ËĐVA îČkŒ €e6AÏŹÌSŃźÛŃ©ŽŹŽKY—" xß G%X»î}ŸÛËî:rÏJż]ÀbŹ pFP‚”ëvt*2ô|…B–ÌÊJ°vĘlŒ €es0‚¶ŹŰ„ÈĐëa Űe«0‚îYé—2ł2U©GŚœßâìuwYđŸ[Ž xde\Š\uï‹ă^wځ”ëȚ§‡^wŚ‘uhglY±KńŹű©hŚœ_íuwY†~0zĘ]GžY™§ą]睰\uï3HŻ»ëÈ2ŽOFPÀ2Ž/FP‚wŚ}ŹŃ«lîąTFPÀS”ÆJđî:N„ŠÒAQŒđĆA 6șFĄ›(•”ÊâÜJg„łŹ¶2A™lą[™őRdèČAÏŹÌSYȀú0 …,CŚÊ X†ź”Æo“ČNĆeŐA1ț‹”~)3+S9’âÿÿî’y$…pÍJœYÀwË#)„WVÖ©ș#(`YÀw Üđ“YaYÀû뜈 €=+~*U†țî’y$…°,à}Ÿ°, ;#(ÁM0 ŁPÈ2ôû”óH aú»aä‘ÂȀaŒ kŚÉ X†Î X†¶Â(Č,À#(ƒƒĘÊŻëÈrՙ3‚–ĄçĂ(°vʎNE0 #(`YÀlŒ 4țOJŠŸŠvĘ쌠tțGRú„Èæ`%X»nG§ąCOFÿ(ËȚï DŒČČNE»n=ŒțțQ–ĄŚbôśòÌÊŒYÀrFP^îGŚ}·4}wY†~ßÄöŸ»Ž,C·4}wžÈȚÏ#‚–|w=}wÙČb—âYńSŃźûîúî:Č,àęPDPÀ3+óTŽëvt*:ôdôśòÈÊž]Àb%xw]û8I!ÜE)Œ €gV愞(”àĘuÊe2‚^ą,Fÿÿ~2{D§Ò¶RFÿ(›(Ńß?Ê2t錠OY@1Fÿ(śŹôK‘”ÉJđz’ČžK‘Ąka YP+Łż”e”1‚ì%)^.E†ź“Ńß?ʖ»Y@3FĄ|,GRô81ŁóH ᑕq)2ôśÆ‘GRl.ORÊs)-+íRdèï&GR{VüTjIJ-—" űȚ~vĘæ™•y*íIJ{.„f„^ÊÈÊž”••u*ÚuߝéŰ]GÖĄ;Łż”eĘA{VüTŽëúdôśòÈÊž]Àb%X»nG§"WĘw—§ç‘Â3+óRd­3‚Üdm0‚–«źMFPÀ++ëTș, -FPÀȀïœćdŚm–|7ŒswY†ț>ퟻëÀÚu;:Y@oŒ €e}0‚Ź]Ś°=AŹŒK‘ôĆJ°vʎNE‡vFPÀ3+óRdăa X»nFPÀ#+ăRdèQA vYÀhŒ €ec2‚¶ŹŰ„xV\•%?™Ł"‚–|wÉkwYđĘ%ŻĘu`íșŠ ęĘ%ŻĘu䑕q)++ëTŽëŸ{í”»ŽŹC#(`ˊ]Š,À&#(ÁÚuł0 …<Č2.E†ž•”`íșï=śÚ]GnYi—"CÏÁ Űłâ§2ds2‚îYé—2ł2OE»n.FPÀ2ôz…B–ŹÊ X°:#(ÁÚu;:z FPÀȀeŒ €ek1‚Ź]·ŁSŃĄ°,ÀFĄ€”ëvt*-+íRdh€ehŒ ŒìGŚíèTdߓŒïź#ÏŹÌSŃźûȚ–ûî:Č,àę“ Aÿ`ń*ÜÙu›WVÖ©ìźłxdâ‘Â]clY±KqQœ”àĘuŠ ę=ńH á)Ê`%xw]œàpÛJ}…B–ĄkaŒČČNeÈjc, š“° ]#(Á&C·‡Q(䚕z)ȀVAËĐ­1‚I™Ï„ÈêdlY±KńŹű©,Y@]Œ €eŐAËUŚŁPÀț$ßK‘Ą›1‚–ŽÉ XĐ#(/ŚŁëȚ;ÓQwŚ‘eèśžrÔĘudYÀ{O°gĆOE»î}Í:êî:òÈÊžYÀû&6ąPÀÚußęmĘ]G–|ś·uwY†Æ X†țn^ëî:p+IićRdö0 …,C·uwX»Î#(`Y€ FPÀČ3FPÀrŐ͇Q(`íșŠ =#(`ˊ]ŠgĆOE»nFPÀ2ô4FPÀȀ9A ÖźÛŃ©ÈU7#(`ˊ]Š팠kŚíèTzVú„ÈĐ«0 Ź]·*#(àš•z)ȀeŒ €WV–*íèșŠ,àęvHDPÀ–»YÀûŒŃvځ”럻䶻Ž,Cżß@mwYđĘH·Ęu`íșïFșíź#ËĐ>A[VìRVVÖ©hŚœï-#‚–«î»©o»ëÈżĄăšÁ#)6ïźÓèTȘ(…đ„2‚^ą4FP‚wŚ­x4à‘ÂMcląLFPÀž?ÓĄ#(à.Š3‚žY™§2eća če„]ŠeĆ.eeeÊ*IYćRdèRAÏŹÌK‘”ÁJ°ËÊb,W]}…B–Ąëdće9’ąÇáWƒGRËȚwš…B–Œ/H#‚–Ąż›WI±čÈĐm2‚–Œßú XđŸf(p•«ź7FPÀ2tŒ €e}1‚–|ś”]śă& x?Ê<’BX†đÌÊŒYÀ茠kŚ}wŠ}wY†¶Â(òÊÊ:•ń$e<—" °Ê Xź:kŒ €=+~*Úu;:Y€uFPÀČŒ kŚíèTthcŹ ˜Œ €u‹”`í:sFPÀ=+ęRfVæ„xVüTŽëæĂ(Č = #(`z6FP^ò“YNEđĘkĘudˊ]Š ęʏĘuàR’RÊ„ôŹôK‘|/ŽÇî:°vĘûiÿ»ëÈ2ôû!ü»ëÈ#+ăRdț0 Ź]·ŁS‘Ąż[à±»Ž, đÆ XđĘŒŽĘu`í:ŸŒ €GVÆ„ŹŹŹSŃźóĆ XàÎ ű7ŽÇ)€öŹű©ìŸÌÆùXAwQ*#(à™•y*»ëâ­Á#)„«(‹đÈÊž””•R…^%)«\Š ]*#(`Y@iŒ €=+~*.C—Î X†.“°, ,FP^6é:—”ÆźÛÜČÒ.E†~ż30~GRlöŹű©YÀśČÖŰu›{Vú„ÈĐßÍëïHŠWÚAËZa Yđț氈 €ćȘk”àV’Òʄȟ»dăOf7ËŸ»dcŚm–ŽÉJpŻIéőRFVÆ„ÈÚb%xÈȚ/)G Y†î…° ʍ°, /FP‚”ëș3‚îYé—"C‡Q(`íșQAËFg, ‹đÊÊ:íșጠ€eV…B–XeìYńSŃźłÆ xde\Š,À:#(/ÏŁëvt*:ôblY±K‘|7Ż“?™ę±vʎNEźșïțvîź#ÏŹÌK‘|·À“?™ę±vʎNEđ}—bîź#ËĐß{î軏]·ŁSiYi—" űn€çî:ČgĆOE»nG§ÒłÒ/EàŒ kŚ­‡Q(dzFPÀ2ôȘŒ €WVÖ©hŚ}ßȘ»ëÈ2ôꌠ€eè5AËŸWá“?™ę±vʎNEźș5AëЋ”àő$e=—ą pFPÀ–»ÚFĄ€”ëŒ2‚–xc, đÎÊËëèșś/oŒ”»ŽÜČÒ.… q*[Dÿá%Je%űŚuGt*]”Æ xŠbŒ €=+~*żź‹Ż "‚ÖĄ° ]FĄ€?™=ąSiąFPÀ–»ϊŸJ—”Ê žg„_Š, #(ÁăIÊx.E‡^Œ €eĆAËje ŰdèÚAËĐŐA[VìRdu2‚<ćȘ«‹° ]° ĘFĄ€—, FPÀ-+íRdèVA{VüT\Đ:#(àž•~)rŐ5cće9’âˆNE‡žŒ €GVÆ„ŹŹŹSŃźûv|wY‡vFPÀȀïyÈń“YaYÀśq…ïźkŚ}Wűî:òÈÊžY@7FP‚”ëvt*-+íR,+v):ôd%X»ź/FPÀȀ€gVæ©hŚ‡Q(dYÀśă'łÂȀQAËU7#(ÁÚußsąïź#śŹôK‘|_°śĘudYÀpFP‚”ëŹ2 …,C[c<ł2OE»nG§"WuFPÀ2Ž FPÀ++ëTŽëvt*Č3FPÀ:ôdć?ÛstĘûŽiÏî:Č,à}|‹(Č,à}|‹ xeeŠvĘû”%{vŚ‘es1‚–ŒÏC…BöŹű©hŚ­Â xde\Š,`UFP‚”ëȚGЈ €[VÚ„XVìRdïSUDP‚”ë–1‚îY闱COFPÀž?íș”AëœđÊÊ:í:…B–xc, đÁ X†vc%X»Î#(`Y€;#(àßâtÈ^ćÇ»ëâĐAă‘Â-+íR,+v)Kc%xwF§ÒłÒ/E‡žŒ €]”ĆÊËEșNŁSą8#(à••u*„$„”KiYi—" xGRËĐïă›ńHŠÍU†~ŸÍŒGRËȚŻ E<ł2O„ÉUś>Ÿ€–ĄËb, (Î XP+ŁPÀ]P#(`ș#(à™•y)ȀșA Č€êŒ €eèö0 …ŒČČNƞ€Űs)ȀVAËUś>U€öŹű©Ìš”Y/EЌ°, -FP‚”ëvt*:Ž3‚–ô‡Q(dYÀû°”`íșŠ Ę;#(`ˊ]Š,à}’‰ÊËőèșśĂêî:òÈÊž”••u*Eđ>ŠD, xS"‚¶ŹŰ„xVüTȘ,à}‰ žg„_Š\uïÔŹîźkŚœ’YĘ]GnYi—2Č2.eeeŠvFĄeh«Œ €eïóPDPÀČŒ kŚ™1‚Y—" x?ȚŠJ°vĘ|…B–Ì ŰČb—"CÏÊJđ,I™ćRzVú„ÌŹÌSŃź›ƒ°,`#(à‘•q)rŐÍĆJ°vʎN„g„_Š,`=ŒB!{V\•vtĘśàŐvŚ‘GVÆ„ÈȚÏź"‚Ź]ś=U”ĘudčêŸGж»ŽŹC/FPÀž?íșś;l…B–xe<ł2OE»nG§" ű™~2+<Č2.Eź:kŚíèTdŸA[VìRd߃WÛ]Ț]g€ąTFPÀS”ÆJđî:N„‰ÒA›(ƒđĆA Ț]§„FÜłÒ/E†.ŁPÀëIÊz.EP*#(`Y@錠€WVÖ©xIŠ—K‘”Á XPŒ°gĆU‘#)â—„ˆ €eßSUÇOf…eïÏ:" \dïśŒGRËĐ߃€–Ąß/^YY§Reï§qAËĐߏ€žY™—âYńSi5)­^ÊÈÊžÚA î2t{…B–ŽÊ XĐ#(`ș FP‚”ëÚb, è…Q(dY@oŒ kŚőÎ že„]Š,`<ŒB!ŻŹŹSŃźÛŃ©ÈĐŁ0‚–ĄÇdìYńSџΠxde\Š m…Q(`—Xe, °Î Xź:[Œ €ehsFP^GŚ}7őcwYđțÚ""(à™•y*Úuï_ö±±»Ž,C7ŻcwY0đÊÊ:íșő0 …,CŸEŒĘudú»ż»ëȞ?íșŠ ęʏĘu䕕u*ęIJ.„e„]ŠeĆ.E‡vFP‚GIÊ(—" đ‡Q(䙕y*Úu^AËĐ^AËŒ1‚–Œż‰Jđîș8ÇÒx$…p„0‚6Q#(`ĆA Ț]'P€Y—ČČČNew]RQ(ä&JclY±K‘ĄË`ćeÛ?™-nő ?™îYé—2EYŒ —')ćčYÀśÎĘđ“YaYÀwĂhìșÍ++ëTjIJ-—ÒłÒ/Eđʙț<€°gĆO„ÉĐßÍ+€ÖĄ;#(à™•y*]P#(à–•v):Ž1‚ÖĄ#(ÁCĐFĄe­0‚–Ą[e%ŰdèﶓGRËZg, hÆ xeeŠvĘûE,łĘu䖕v)Ȁ¶AËš3‚Ź]·ŁS‘ĄûĂ(Č, FP‚”ëze,CśÎ X†îƒđÊÊRe]ś~Ë*"(`čêȚŻ-ÙÜ]G–Ąßï$ÙÜ]Öźƒ°,à{č?wŚ‘GVÆ„ÈĐïEČ軏]śĘHÏĘudY€uFPÀ–»ϊŸŠv-FPÀ#+ăRfVæ©hŚ}7őswče„]ŠeĆ.eeeŠvĘ|…B–«î{ÿ?wŚ‘eèiŒ €es1‚Ź]7°,`=ŒB!ËĐ«0‚Ź]·*#(`YÀjŒ €e«3‚–Ą—1‚Ź]ś}hîź#ËÖb, XÎJ°v?ŒB!ËĐ^A[VìRVV–*ëèșŠ ęĘÔŻĘudú»©_»ëÈȀï;I ?™ĘŹ]·ŁSY—ąCOFP‚ë“”ú\Š.`1‚¶ŹŰ„èĐÎJ°vʎNć·€Żćț<€đ„1‚Œ».Ži5I!ÜČÒ.eˆbŒ €WVÖ©ìź‹ó`GRëЋđÌÊŒϊŸÊîș826ąPÈ2t)Œ €eèÒA žČ€2AËÊblY±K‘Ąkc xÉjgÜłÒ/EP#(Á.CWcÜČÒ.EP'#(`Y@uFP^–#)FÇ<’BX†țnÇy$…°eĆ.EМ”à"WĘwË#)„eèïț–GRËĐ}0‚\Ÿ€ÔçRZVÚ„ÈĐß7xx$…°gĆO„•€Žr)Ȁï%¶ïź#ËUśœÄöĘu`íșŠ ęʱûî:Č,`tFPÀȀጠkŚÙĂ(rÏJżY€FPÀČ«Œ kŚíèTdhkŒ €gVæ©hŚÙ`, 0cŹC/FPÀž?íșù0 …, ˜° =;#(ÁÚus1‚–Lg, X…Q(dčêVcć?Ïçèșśx>»ëÈ2ô{ <ŸĘudˊ]Š,àœKžÏî:°vʎNede\ÊÌÊ<íșśv<"(`čêȚûÛùìź#ËĐïęí|vŚ‘WVÖ©hŚyc, đÎ X†~ïoçł»Ź]·ŁS‘Œś”AŹŒKYYY§Č»n|ïÜ'€nąTFPÀ&Jcìą FP‚wŚit*#+ăRŠ(‹”àĘuŠ ęȚSNI!lY±KYąFP‚WIÊ*—ÒEiŒ €gVæ„ÈÊd%ŰkRŒ^Š, 8#(`șFĄ|,GRÄßpC, xïL#‚–Œś”AËĐï‹ăÉ#)6ș5FPÀȀśĆqDPÀȀ6A źORês)2ô{g:y$…° Ę&#(`YÀûâ8"(Á­$„•K‘Ąß·Â“GRÏŹÌK‘ôÊJp—ôÎ Xźș>AËĐĘA Öź{E;Ëî:rËJ»YÀx…B–ĄGe%X»n4FPÀ=+ęRdŁ3‚Ź]7#(`z#(`YÀXŒ €WVÖ©hŚÙĂ(rÏJż”™•y)Č[Œ kŚ™3‚–Ąge yee©Rć'łŠ,àœ3 Xźșś›Ùłîź#{VüTŽëvt*ȀśŻ E, xï’gĘ]Öź{ogĘ]G–Ąż[àș»Ž, XƒđÊÊ:íș5AśŹôK‘ŒŻ|# …, đÂJ°v7FPÀ2ŽwFPÀ2ôûSĐYwځ‡,À'#(`Y€/FPÀ:Ž3‚ț ęęéFDŻòăę“Ù8v3"(àž•~)S”ÊJđî:‹»AI!ÜD1FPÀC”É xeeÊÒĄ#(`ÚAÛVÊĂ(Č, FP‚wŚ}ß»@<Č2.EP#(/7é:ûŸ@pËJ»z2‚ÖĄ”àR’RÊ„ôŹôK‘Ąßo‡LI±čÊĐßę-€–Œ_ęˆ XđŸŹ xeeJ“Ą«1‚–Ąß/mLI!, hŁPȞ?•^“Òë„ÈĐ­0‚–ŽÆJđŽÉ Xźșț0 …lY±K‘Ą{e%X»nG§ÒłÒ/efežŠv]oŒ €kVê„ÈzgŒČČNE»źOFPÀ-+íR,+v)ž?íșQ…BY—" ”—ûŃußœvß]GnYi—"Cżß̞}wyeeŠvʎN„g„_Š ęĘHśĘu`íșJÍJœYÀû*|öĘudú}Ï=ûî:°vʎNE`°eĆ.Eźșś=śì»ëÀÚu6AËŸgÎŸÌnžY™§ą]7FĄeèYAËĐł3‚–|àÇÚu;:z#(`zNFPÀȀčA ÖźÛŃ©ÈUśŸčŸ}wY†^•Q(`íșŐAËVg, Xƒ° œŒ”`íș5AË–3‚žY™ȘŒŁëŸ‡±»Ž,C;cwYđ=ì țdvł,à{Ű»ëÀÚußÛò±»ŽÜłÒ/efe^Š,à{ȘüÉ쏔ëvt*#+ăRthg%ž=IiÏ„ü0ăyh°ë6[VìR\”ÎJđîș8ùwòH á.Š1‚žąLFP‚wŚit*2ty…BątFPÀKg%xw]<;y$…pÏJżșFPÀȀZA žČ€ÚAŹŒK‘Ążû~I±yÉȘ3‚nYi—"W]{…BöŹű©ž, UFPÀ=+ęRdm0‚òČI1âTÙÉ#)„eèśÛГGRËŸ»dcŚm–|oš]śă"CśĆ X†țȚPóH aˊ]Š,à{‰mìșWčêFa,CwÉ<’BX†”à& űîL]·Y0œ° m…Q(dϊŸJ—Xc, 0c,WMFP‚”ëvt*5+őRFVÆ„ŹŹŹSŃź›Q(dzFPÀ–»YÀœŒ kŚíèTFVÆ„ÈÖĂ(°vĘ*Œ €ćȘûîmwY†^° œ:#(ÁÚuk1‚–xa Y†öÆÊËóèșJÍJœYÀwï4wŚ‘WVÖ©hŚ}ošçî:òoqîiDŻČÙDiŒ €]”ÎJđî:NeˆbŒ €gVæ©ìź‹CM#‚ÖĄ#(`ˊ]ÊĆA Ț]‰F č‹RAËĐ„1‚ŚwŚ‘GVÆ„ÈÖd%X»n-FPÀ=+ęRdß[açOf7ËŒ0 Ź]ś}íÚwŚ‘eèïŃÀwŚ‘eh7FP‚”ë|2‚nYi—"CûbìYńS™ČwFPÀ=+ęRfVæ©ìź‹srçïHŠÍM”Ê xˆÒAŻŹŹSÙ]GéÎߑ›»(“°‰ČA{V\”„GR|?ëB,Cż;ëw$Ćæ™•y*Eđ~k&"(`YÀû<Ž~GRl¶ŹŰ„ÈĐï#ÓúIńăZ’RË„ÈȚ§Șˆ €uèĆJp{’ÒžK©Y©—ą pFPÀrŐœ^ëw$Ə{IJ/—"CŚÊ XP#(`Y@5FP‚‡ ę>x­ß‘›eèꌠ€eía Űd­0‚–«î}ŰYż#)6ËĐm0‚^YY§2em2‚îY闱C/FP‚”ëvt*Ȁ^…BY—"CśÊJ°v]oŒ €e}0‚–tcìYqUÊŃuï3È*»ëÈ#+ăRfVæ©hŚœ)A·ŹŽKŃĄ°,àę,"ąPÀÚu;:čêȚ+VÙ]G–Ąß'™UvŚ‘eï“LDP‚”ëvt*ȀśIf•ĘudÚA Öź‹pËJ»ˊ]Š mŁPÀÚu;:Y€FPÀ3+óTŽëŹ1‚–Ąß§ȘUvŚ‘eh3FPÀȀù0 Ź]·ŁS‘Ąga,CÏÊ Űłâ§ą]7;#(`čêæ`ŒČČNE»nG§" ˜Æ ŰČb—ąCOFP^źGŚœo«îź#뜰,à}|‹(°vʎNE†~? Zuwyde\Š,àęŒ("(ÁÚuïçE«îź#ËĐ﷉VĘ]GÖĄ'#(`ϊŸŠvĘZŒ €eh…B^YY§ÒŸ€ôçRd^A[VìR<+~*ÚuȚAśŹôK‘ű`%X»î}Ź]uwY‡^Œ €GVƄ蜔à_ŚĆ‰ˆț+Â]” ŰČb—âąTFP‚]gq:óâ‘ÂC”Á x‰bŒ ÿț<ÀJËJ»z2‚ÖĄ”—ÛțÉ읊,à{Úlè:ᙕy*E†țž6y$…° ę~…jńH ᑕq)Č€ïŽĄë6Wú{ ć‘Â=+ęRdï'ƒA{VüTZMJ«—ąC/FPÀȀś#ȈBwYÀśÌÚĐuÂȀZA[VìR<+~*CP#(àž•~):Ž1‚l:ôd, š‹°, =ŒB!ËUŚ #(ÁÚu­2‚–Ą[glY±KńŹű©hŚ5c,Cś‡Q(dY@/Œ kŚíèTäȘ띰eĆ.E†îƒ”—ûŃußC`ß]G–|o}wY†țßúî:°vʎNEđ=ŸuüdVXđ~‡-"(`čêÆ`%X»nG§" ű;~2+lY±K‘Œ’­Ÿ»Ź]7œđÈÊž”™•y*Úußsbß]G–Ą­0‚¶ŹŰ„ŹŹŹSŃźłÆ Xź:댠€eh3FP‚”ël2‚–ŒŸŁE, 0gŒČČNE»n6FĄ[VÚ„ÈfgìYńSŃź›ƒ°,`#(`YÀœŒ kŚÍĆ X‡vFPÀ2ôz…B–ŹÊÊËăèșïńmìź#ËĐßăÛŰ]GžY™—" x?<ŒJ°vʎNEźșï!pìź#ëĐÎJ°vĘśű6vŚ‘e^A[VìR<+~*ÚußłÙŰ]GîYé—" đÁJ°vʎNE‡6FPÀ#+ăRd>A ÖźûÇî:rÏJżÚAÿ‡IGô*?Ț]§Ń© Q #(à%Je%űś“Y+ńœ8đ“Yᖕv)&JgŹCFP‚—œAwQœđÜJy…vșTFPÀ2tiŒ €GVÆ„ÈJgće9’âˆN„g„_Š=AËŸ/cŚęžÔ€”z):Ž3‚–ĄżÇ7I±č>I©Ï„ÈŸ'ć‘›‹ ę}ÖÉ#)„{Vú„ÌŹÌS©:ôdÜČÒ.Eđ=b;~2+ŒČČN„•€Žr):Ž3‚–Ąka Yđ=?;»îÇ]đțĘꈠ€eè:AŻŹŹSȀjŒ €[VÚ„XVìRtèÉJ°•€XčY@uFPÀ3+óTŠ Ę*ŁPÈ-+íRFVÆ„ÈZc%X»nG§"C·Î ŰČb—âYńSŃźkƒđÈÊž”••%Š?GŚœß̎ X°AëĐÎ X†~?ČögwžÈȚWAËȚWAËUś~íÏî:°v]Œ €[VÚ„ŒŹŒK‘Œï8üÙ]ÖźÛŃ©ôŹôK±ŹŰ„xVüTŽëúdŹC/FPÀșg%X»n<ŒB!ËȚOûęÙ]G–ĄGc,CĆJ°vĘpFPÀ=+ęRdhkŒBkŚYg, 0c<Č2.eeeŠvĘ,ŒB!ËĐł2‚–ÌÆ X0;#(ÁÚu;:zFPÀȀiŒ Œ\Žź{Ž#‚nYi—ąC;#(à••u*ÚuïŻE# …, xŸ|œìź#ËĐïc­—Ęu`íșś±ÖËî:Č,àę$9"(à‘•q)2ôûÌêewX»n-FPÀ-+íRdnŒB!ËUç“”`í:_Œ €GVÆ„ÌŹÌSŃźsgüúûcڈ^ełeĆ.e‰RA Ț]§Ń©tQ#(à™•y).Jg%xwF§2DŒ €WVÖ©Ź’”U.E0AËJa Y†.”`—ĄKgÜłÒ/EP#(/ˑodŒ €[VÚ„èГđÊÊ:•" xß"‚îYé—2ł2/EàŒ WYÀûŃlDĄćȘ{ŸGRŻŹŹSi2ôûœè<’BXđțĆÆˆ €eu0‚–Ąëd%žëĐÎ XĐFĄgV橌')ăčșFPÀ#+ăRdï^DP‚”ëZcÜłÒ/E‡îŒ €=+~*Úum0‚ÖĄ° ĘFĄ€—, FPÀȀ^A[VìR<+~*Úuœ1‚–ôÎ X0 ŁP>nGŚ}śęmwY†~?ő¶»Ž, xżŒ°,àęŠmDP‚”ëȚÏ:œíź#śŹôK±ŹŰ„ÈŸg¶»Ź]ś~bêmwyde\Š ę~bêmwžÉl0‚nYi—bY±K‘ĄÍA îČsFPÀȀù0 …,WĘ,Œ kŚÍÆ že„]ÊÈÊžYÀ쌠kŚMcŹCOFPÀ–»YÀś<Ôvځ”ëÖ` yde\Š,`MFP‚”ëüa če„]Š í…° í•”`—ű`, đÉ X†öĆÊËr$…}?˜@ô*›kVê„ Q#(à••u*»ëâ€xç‘Â]”Ć ۶R ŁPÈ.Jc%žÊĐe0‚Y—2ł2O„ÉŸ»äÎźÛÜČÒ.ĆČb—"CwŠ<’bs/IéćRd”0‚žY™§2ž€ŒçRdïG'AËŸûÛÎźÛ,W]Œ [IŠ•K‘TclY±KńŹű©Lz2‚Y—ą XŒ Ż')ëčÚAËĐía yeeŠËZe,W]kŒ €eèÖAyy]ś}Đ0vŚ‘kVê„ŒŹŒKŃĄ”`íșJËJ»YÀwÇ>vŚ‘=+~*ÚußMęŰ]G–|·ăƒ?™Ę, űnÇÇî:°vĘś‰ÆŰ]GnYi—ąC#(à••u*Úußgcwčg„_Š =FĄ=+~*ÚuŁ0‚Y—"CÆJ°vʎN„e„]ŠeĆ.E‡îŒ kŚÁ žg„_Š.`2‚Ź]7#(`ÚAËìa yeeŠvFPÀ2ŽUFPÀ2Ž5FPÀțŒ ŒlGŚœ_ôŒ xde\Š ę=ÉŰî:py’RžK‘|Ùî:ČeĆ.E†ț>ƱĘu`íșJÏJż”™•y*Úuß#“íź#ëГđÈÊž]Àb%X»nFĄ{Vú„ÈĐ«2‚–|ŸÙî:°vʎNede\Š ę}êd»ëÀö$ƞK‘ŹÉ Xźșś n»ëȞ?•Y’2˄ȟGIÛ]G–xa%X»Î#(`Ú;#(à‘•q)ČŒ kŚč1‚îYé—" pgü[ÀˆÏźŒ]–#)lÄ3+€ąTFPÀK”ÁJđî:N„‰2A[VìRdèò0 Œ2;âÉwò'ł›»(•đ„1‚Üdèï#%I!\łR/EP#(`YÀś €ŰÜeèú0 …ÜłÒ/EP #(`ϊŸÊĄke<Č2.EP#(Á& š°\ußÓ&€¶ŹŰ„èЋ”àY’2˄蜰 ĘFĄ€— Ę #(`Y@kŒ €em0‚–«ź#(Á.C7g, èŁPȖ»ϊ«ČŽźûßÖî:òÈÊžYÀś„·ű“ÙkŚ}ŸźŹĘudz0‚ÖĄđÊÊ:íșQ…B–«ntFPÀ2ôŒ kŚíèTjVê„Ȇ1‚^YY§ą]ś=ÉŹĘudY€UFĄ-+v)rŐ}kwX»Î:#(`Ú#(`Y€#(ÁÚuł0 …,CÏÆ ŰČb—" ˜”`íșŠ\uÓAËĐs1‚öŹű©hŚíèTdßśÆÖî:òÊÊ:íșU…B–ŹÆ ŰČb—"C/cće?șî»cśĘudYÀś/çOf7ËŸÛqß]ÖźûnÇ}wče„]Š ęʱûî:òÊÊ:íșïŠȚwŚ‘eh7FPÀ2ŽOFPÀž?•ĘußČrvĘæ!Ê`ŒČČNeÿdVŁSiYi—bą#(`ßJy…5)Ł^J„1‚žątFP‚íIŠ=—"Cc<Č2.EP&#(Á»ë,ŸĆ#)„eèú0 …<ł2/Ćłâ§Čd”0‚Y—"CśÚ<’bł?IńçRdŐA[VìR<+Ÿ•ú<ò“Ùïm"(`]Àb<ł2O„èĐÎ X†țŻ(Č, #(à••u*”$„–K‘ĄÛdlY±K‘ŽĆJ°v]sFPÀ2t/ŒB!ŻŹŹSŃźûŻ Xđÿ^° ęÿ^° ʍ”à! è“°, /FPÀrŐug%X»nFĄeèQAËÆ`, ÆJ°vʎNE†“°eĆ.E0#(ÁÚu;:ÚAËŹ0 Ź]g•pËJ»ڌ°gĆU)GŚíèTd6AëЋ”`íșJÍJœ”‘•q)rŐ͇Q(`íșYAËĐł2‚–ü’AìYńSŃź›đÈÊž”™•y*Úus2‚–«n.FPÀ:Ž3‚–ʇQ(`íșUAËÖ`,CŻĆJ°vʎN„f„^Š,`9#(`ÚFĄ€”ëŒ0‚–xelY±K‘«Î;#(ÁÚu>AËĐŸAÏŹÌSŃźÛŃ©èĐÎ ŰČb—ò[ÀwN6ąWWéșïï=!‚îąTFPÀS”Æ ŰEŒ ïźûțj"(à‘•q)++ëTȘ ]FĄ›(•°eĆ.E†.ƒ”àV“Òê„ÈÊd<ł2OewĘ|ÿ ‚nYi—ąC;#(`Y@íŒBY@Œ €{Vú„ÈĐŐA{VüTLP'#(`čêȘ3‚–ĄÛĂ(đ”Ą[a, h•°, 5FPÀ2t댠/ș FPÀȀfŒ €gVæ©ű“.E‡žŒ €eÍAŻŹ,UÚŃu;:ș?ŒB!ÏŹÌKńŹű©hŚ}^mwY†î° ę=U”Ęuà* űžȘ2»Yđ=U”Ęudč꟧Ș¶»ŽŹC;#(ÁÚu;:YÀx…B–ŒÂJ°vʎNE†°,`#(à••u*Úuc2‚ÖĄ#(`ˊ]Š,`8#(ÁÚuV…B–Ą­1‚^YY§2efŒ €[VÚ„ÈĐóa Ùłâ§ČJRV蔞•~)3+óTŽëfc,CÏÁ xde\Š,`NFP^îGŚíèTtèĆ Xđ=Štțdvł,`uFP‚”ëÖd<Č2.Eđ=`tțdöÇÚuț0 …, ű0úî:Č ę==ôĘudϊŸJ+IićRdȚAËĐȚA ÖźÛŃ©ÈÜAŹŒK‘«Î”àĘu+ž~GRlîątFPÀ&Êdìą,FP‚wŚ}tđŰJy…BžąFP‚wŚit*M”Æ X†.° ]Œ”à% (“pÏJżÚA vș>ŒB!ŚŹÔK‘Ô x‰RAyY€űț^%"(`YÀś 2ű“ÙÍȀïc°ë6{VüTJMJ©—ąC#(à™•y*U°A·ŹŽKŃĄđÊÊ:•& űžd»nsÏJżșUFP‚» Ę#(`Y@댠€GVÆ„ÈĐm0‚Ź]ś=ЌĘudY@ïŒB![VìRäȘ냔`íș>AËș3‚žY™§ą]·ŁSiYi—"C7őcwY0#(ÁÚuc0‚–ĄÇd<ł2/E0œ”`íșŠ\uV…B^YYȘŰŃuÖAËl0‚–|Űî:Č mÎJ°vĘw l»ëÈ=+ęRdł0‚Ź]7;#(à–•v)#+ăRds0‚Ź]·ŁSŃĄ'#(`ÚAËÖĂ(°vʎNE†^…° ę}Đ`»ëÀC°#(`YÀꌠ€-+v):ô`%X»nG§" X“°,`-FP‚”ëüa Y†ö Xà°,À#(ÁÚu;:•ž•~)2ôwSo»ëȞ?í:ŸŒ €uhgŒČČT™ò“Y§‡ÉŸÌnnYi—bąTFPÀž?•ę“YO4&2»č‹ÒAÏŹÌS©:Ž1‚nYi—2Č2.eeeJÓĄ'#(`ÚA[VìR<+~*»ë<žȘ~GRl–ĄKc,Cc%xŃX»ëÈ3+óTŽëŸO4Öî:rÍJœYÀśÈŽvŚ‘ćȘûžAÖî:°vĘx…B–|ßűZüÉìfYÀhŒ €=+~*Úu;:•‘•q)ȀŃA ÖźƒpËJ»ÚFĄWVÖ©hŚYe,WĘśÁÚ]G–Ąm2‚Ź]gÎ žf„^Š,`>ŒB!ËĐł2‚Ź]·ŁS‘ÌÆ ŰČb—âYńSŃź›°=AËŠ1‚òČ]ś=ìűî:rËJ»ú{’ńĘudYÀś$ăüÉ쏔ëvt*=+ęRfVæ„ÈŸG&çOfŹ]·ŁS‘|LŸ»ŽŹCFP‚”ë–1‚–|LŸ»ŽlY±KńŹű©hŚ}OUŸ»ŽÜłÒ/efežŠv7FPÀ2ŽFPÀ2Ž#(`Y€OFP‚”ëŸo|ùî:Č팠€9ô|âë\<’BŰłâ§òëșùÄ#“Łë„GVÆ„ŹŹŹSùędv>ńÈäűÉŹpËJ»e0‚ÖĄ”`—ĄKg č‹bŒ €ee2‚òŸ‹IqD§"CżŸ‹I!, x?‰ xeeÊŻëŽèTdèśŁ“Â#)„eèśŁ“Â#)„eïÇA ź5)”^Š=AëЋ”à& x0"‚–އQ(dˊ]Š ę>I±čËȚ›úˆ €{Vú„ÈÚb%xŒBkŚœOA·ŹŽK‘Ąç`,CÏÉJ°vĘûmąˆ €e«0 …,CŻÆJ°vĘꌠ€kVê„ÈÖ`ŒČČNE»îœ‘.ewčg„_Š,`-FPÀČ…ÖźÛŃ©ÈĐ^AËŒ3‚Ź]çƒpËJ»ڍđÊÊ:í:_Œ €{Vú„ü†ț Ń«€ćHŠ#:•š•z)C”Ê xeeÊî:N„e„]ЉÒA»(‹”àȘC;#(à‘•q)Ȁò0 ܞ€ŽçRdèś#‚Â#)„eèś#‚Â#)„e„3‚Üeïo6"‚îą8#(`șFĄe”3‚©o§ëÈ2ô>co§ëÀÚu'ș•–•ö(Ȁ}ȚßNŚ‘=+~+ÚuûŒżź#뜰,à{ĐQ(`í:+Œ €[VÚŁÈŹ1‚–ìKƒvșŹ]wą[éY鏱CFPÀžżí:›Œ €uèĆ xeeĘÊĐ8#(`YÀű1 …,GĘ(Œ €eèŃA Öź°,`#(`YÀ˜Œ kŚĆ X‡vFPÀȀY…B–ÌÊJ°vĘ쌠€eèčAËŠ3‚–ŹŁP6ś«ëNt+–{z_ìôÓuà" ۗ)@X°ŻAúé:Č œ/0úé:ČgĆo„–€Ôò(Ȁïæ~DPÀrÔ}ïl”~șŹ]wą[‘ĄżW)J?]G–ž1‚^YY·ą]wą[‘Ą}2‚Y" ŰŚ ętX»Î°eĆćo5źA:^™=|șNŁ[ią4FPÀC”Î ŰE1FP‚ÿ^™û[}ˆ €{VúŁèГ”àőKÊú=JĆAÛQʏQ(ä%Ja%ŰKRŒ<Š ]*#(`Y@iŒ €e„3‚ò±|’bÖž’á')„-+ö(ȀïŃIDP‚‹,`?1vĘᖕö(:ôbŹC;#(ÁU°À»î°,`_›ń“Â2ô~tÂORnż€ŽßŁÈjglY±GYYY·ÒuèÁ XP'#(`Y@]Œ €eíÇ(°ÉĐ­0‚¶ŹŰŁÌŹÌ[ŃźÛÏhìtče„=Š Ę#(`Y@댠kŚèVäškÆ X‡žŒ kŚőŁPÈȀȚA[VìQdèȚA ÖźëÆ že„=ÊÈÊx9êú`ćăquĘśN{§ëÈȀ}ù6đÊŹ°,`_ŸÓu`íșï'Teœź#·ŹŽG‘Ąm0‚–ì륁?pX»ÎœpÏJ”™•ù(žżíșï_…B–Łn_ìŒÓudz#(ÁÚu'șYÀŒ €ec2‚–Ą‡3‚Ź]·Ż‡Æé:Č,`#(`YÀŒ kŚÍĆ že„=Š,`:#(`YÀ*ŒBkŚ­Ê X†ȚOzÆé:Č í…Q(dϊߊv7FPÀ2ŽOFPÀC·žĄÎORț{ev¶ž[>đÊŹpËJ{”‘•ń(žWE>I1[œŒò“Â=+ęQæQöiçdŚęq‘Ąśi'?I!,CïF~’BŰČb" Ű甓]śÇ§ë4șș,FPÀ2ô>ä')„eûlpČëțžŐ€Žú(2t­Œ €eèÚA ôßŁŽŹŽG‘Łź#(`z0‚l%)VEP#(`]€3‚^ç•ÙÙâVűÂ+łÂȀęóœușŽ,GĘŸ[ŸNځ”ëö}îușŽ\łRĆČb" ŰgƒëtX»nŸê­Óudz1‚–ì›Ű @X0*#(ÁÚuŁ1‚¶ŹŰŁÌŹÌ[Ńź°uĂAŹŒGńŹű­hŚíÆușŽÜłÒE‡žŒ kŚĆ X0 ŁPÈȀYAŻŹŹ[Ńź›pËJ{YÀ4FPÀȀ9A Öź;Ń­èЋđÌÊŒíșƊ œ ŁPÈ2ôȘŒ €e«1‚ò±_]wą[éYé"Cï ~șŹ]·4űé:rÍJ}YÀ~Šà§ëÈ2ôțْŸźkŚí“z?]GnYi" ŰOütYŽ:oŒ kŚč1‚¶ŹŰŁÌŹÌ[Ńź;Ń­èГ°œAŻŹŹ[Ńź;Ń­ôŹôGŃĄđßz\U9^™=|șźÇłgŚ6Q:#(à%Ê`%űtF·ÒD™Œ €GVÆŁèЋ”à%C—ŁPÈ]” xfeȚÊé:nE†.•° ]#(`Y@1FPțs•OR\Ń­ôŹôG™Y™" ű4D%žÔ€”ú(–{”••u+ő—”ú{]ÀbŹ pFPÀžż•&CWŸ•Ÿ€–|—”AËŸgA î2t]Œ €[VÚŁÈŸË·ˆB!ŻŹŹ[±’+"C·Î X†n“°, FĄ€”ëzg,Cwc,CśÉJđ”tg, °Â(ČußUUꝼ#{VüV–,ÀŒ°,à»°,À&#(ÁÚu'șÚA[VìQdŁ2 esčșîD·ÒłÒEđ]2EìYń[ŃźûźȘj9]G–Ąż+™ZNŚ‘uèĆJ°vĘw·<"(à–•ö(#+ăQdèY…nȀÙAśŹôG‘ŁnvFP‚”ëŸW)j9]G–Ą§3‚–ŹÆ(Č,` FP‚”ëÖd,CŻĆ xde<ŠgĆoE»îD·bY±G‘,g%X»îD·" űźAj9]GYâYń[ŃźóÆ Xà° í“”`í:_Œ €kVêŁÈÜAŻŹ,Uä“sÿODŸržg„?Ê„1‚vQ:#(Á§ëöŻZA›(“đÌÊŒ•Óu¶Oê#‚ną8#(à‘•ń(ë(„0 ÜJRZyYÀwR_ùI ᙕy+]†.pÍJ}Y@1FPÀ++ëVŹ$ĆÊŁÈÊd<Č2EŽșČA :Ž3‚¶ŹŰŁÌŹÌ[™Č€}Æ^Ùu‡eèZAŹŒG‘Tc%xÉŸ‡AAśŹôG‘ĄëbìYń[qY@uFPÀȀöc Y†n…”ÛŐuûêĄź#ËöŐCă+ł‡eßS§ˆ €=+~+Úuû€ź#śŹôG™Y™·ą]śœšRÛé:Č팠€eèïgK”ź#Ëza%X»î{H° Ę;#(`ș#(`YÀśƒŁˆ kŚèVäšë“đÊÊșíșƊ, /FPÀșgìYń[ŃźłŁPÈČ+Œ €gVæ­hŚYc,C[glY±GYYY·ą]wą[ŃĄ#(à™•ù(žżí:[Œ €-+ö(++K•.ŻÌZ\ùvŸ2{že„=ÊÈÊxú{ŻŠöÓu`íș}qÜOŚ‘eûÊ·Ÿź#ÏŹÌ[Ńź;Ń­ÈĐß3œÚOŚ‘ec1‚^YY·ą]7œ° = ŁPÈȀYAËöem?]Öź;Ń­XVìQdèïÉ`í§ëÀ& űûE, ˜“°œAëĐÎJđ(IćQzVúŁÌŹÌ[ŃźûȚ7ȘętY†^…°,`5FPÀȀ5A Öź[“pÏJ”‘•ń(Ȁ”A Öź;Ń­ÈĐțc yfeȘbWŚí u;]GnYi2Č2E†Ț—ûvș\JRJyYÀś—"‚ÖĄ'#(ÁÚu'șYÀŸi`|eö°.ÀAÿucż’TùIŠĂ§ë4ș•ž•ț(C” ۳â·rșnÿą°eĆeŠÒA >]7↱뷏ŽGŃĄ°gĆoe”€Œò(ș€Á X‡žŒ Oz1‚źY©ą pFPÀ++ëV– ]~ŒB!ËJa<Č2EP:#(Á.CclY±G‘”ÁÊÇCșnÄ ŒÁź;ŹC;#(`zßzà')„WVÖ­YÀśو €{VúŁÌŹÌ[©2ôśÙÊORËöƒÌÁź;, Ű·AűI az1‚Ź]W°, UFĄGVÆŁÈQŚ#(ÁÚu­3‚îYé2ł2oE»ź FPÀ:ôbŹC;#(`YÀŸi0űçțX»źWFPÀ2toŒ €eè}>NŚ‘=+~+ÚuĘAËQg?FĄeh+Œ kŚYe, °Æ xde<ŠgĆoE»Î#(`Y€MFPÀȀQ…Čy^]wą[‘ĄśȚ<]G¶ŹŰŁÈŸ_”F%X»n_'ÎÓudz_ÎÓu䙕ù(Ȁ}8ùÊìkŚ}Œ.ąPÈ2ôʌ €eè9A nż€ŽßŁŽŹŽG‘Łn:#(`zę…Öź;Ń­ôŹôG‘ì ŻyșŹ]wą[‘ĄWe, XÆ X°/ßæé:°vʉnE‡^Œ €gVæŁèœ”`íșƊeĆE†öŁPÀKà…°,À+#(`9êŒ1‚–ĄĘA vY€FPÀȟŒ €eŸAùx]]·/ŒÖé:òßĐ3.™űI a„0‚^YY·rșnÆŐ?I!ÜE™Œ €‡(‹°gĆoćtƌó~~’BŰČb"C—ŁPÀ§ëfœś/vĘᖕö(2ô~îÊOR{VüVș,àû‰fDPÀȀ} ČŰu‡§(ƒ”`ÓĄ'#(àš•ú(ȀČA뜔à!CŚÆ(rÏJ”‘•ń(ȀÚA ž5)ł>Š ]°, FP‚Ś/)ëś(rÔUg,C·Â(Č Ę*#(Á. h°, uFPÀ2t3FP>–OR\Ń­Èö†ó•ÙÖ{”••u+ÚuûÄOŚ‘eûY§ó•ÙĂȀ}™â§ëÈȀ}™â§ëÀÚuû2ĆOŚ‘eènŒ €gVæ­hŚőÁ že„=Š=AËöƒLç+łŹ]g?FĄ{VúŁÈĐVA Öź;Ń­ÔŹÔG±ŹŰŁÈĐfŒ kŚÙ`, °É xde<ŠgĆoE»îD·ąC/FPÀ3+óVŽëÌAËĐŁ1 …<Č2eeeƊvʉnEŽșęK[?]GžY™" ÆÊnż«ëŸKɈ €-+ö(:Ž3‚Ź]ś=_lżÓu䖕ö(Č€ï—¶AËĐÓA Öźûž ¶ßé:rÏJYÀśd0"(ÁÚuÓAËĐßubûź#ËĐ«0‚^YY·ą]wą[éYé"C/¶ßé:Č,`#(ÁÚuk1‚–Łn9#(`ÚŒB_RÆïQdßć[DPÀ#+ăQdhŒ kŚùdÜłÒEàÎJ°vʉnćoèęŠ<ąO9ląTFPÀK”ÆJđé:n„g„?Ê„3‚vQŒ”‹tF·bY±GŃĄ#(Áç•Yn„e„=ÊÈÊxÚA źČ€ïÚ,ąPÈȀ2AÏŹÌ[i2ôwáŐț>IqX†ț㎿OR–|—LAËȘ1‚ÜeèïïŐ”żOR–Ą«3‚–ŽŁPÈȀïJ&"(ÁV“bőQdèÖAŻŹŹ[ȀÖAËÚ`ŹCOFPÀ:ôb%xÊš3‚îYé"G]ÿ1 Œ~IYżGiYi" è•°, 7FP‚”ëúb,Cwg<Č2ĆłâȘԫ럓úVOŚ‘-+ö(Ȁït<"(ÁÚu'șY€9#(à‘•ń(2ôśIZ=]Öźû~țpÏJú;oőtX»îD·" ƒ°,`LFPÀrÔÍÆ(°vĘ>ż­§ëÈ=+ęQFVÆŁÈæd%X»îD·"COg<ł2oE»îD·"GĘú1 …<Č2E° #(ÁÚuߘˆ €e«1‚žY™·ą]·ŒpÍJ}ˊ=Š=A ÖźÛgìőtče„=ÊÈÊxϊ«ÒźźÛ—ítÙČb" Ű'őítX»î{Œ° œÏûÛé:òÈÊx”ż컓ˆ>ćOŚyœŽ7vĘផț(S”Æ ŰE1FP‚OŚit+&Ê`ŹC/FP‚{IJ/ÒDqFPÀ#+ăQdèR…¶š«" (Æ XP#(Á§ë4șú{«ę}’â° ]#(à••u+Sđ=‹ˆ žg„?ÊÌÊ|Y@5FP‚WMÊȘ"G]Œ €uèĆJ°—€xy]€3‚–ŽÂ(ČgĆUŃORht+Ȁ}ŃùÊìaYÀŸzèìș?.rÔí«‡żORnYi" ŰWŻÌ^YY·ą]wą[‘ĄśI}?]G–Ą{aìYń[Ńźë•° Ę#(`ú{.Òúé:pÿ%„ÿ„e„=Šu}2‚ÖĄ#(ÁÚuöc čg„?Š,À #(ÁÚuVAËĐÖA[VìQVVÖ­hŚYgŹC#(à‘•ń(Ȁ}áŐOځ”ël2‚ÖĄ° =~ŒB»,`FPÀȀQAŹŒG‘ĄGcćc“Wf5șYÀśĐ#"(`9êöC;]ÖźÛ^vșŽŹC;#(`YÀśKžˆB!ŻŹŹ[Ńźû~,ŚìtY†ž°,`vFPÀȀiŒ kŚÍÉ X‡vFPÀȀ}Éd|eö”ëVcÜČÒE†^° œŻdìtŰdûĂűÊìaYÀrFPÀ2Žÿ…ÖźóÎ žf„>Š,ÀđÊÊșí:Œ €{VúŁÈÜAsëW2†ź;üŚuë—)ü$…°‰ÒAÏŹÌ[ùëșő‹§†źnYi2Č2E‡6FP>§ëÖț«tˆ €{VúŁèЋ”àòKJù=JÍJ}]€3‚^Gù~æÖűIŠĂU†ț~ĂÖűI ᖕö(Ȁ}á5ĐuÂȀï7lŸ€8ÜdèbŒ €eè2AÏŹÌ[éȀČAëĐÎ xde<Š, FĄ€M°/ŒșNXŽșjŒ €eè}UĆORż€ŒßŁÈZa ÙČbČČČneÊĐ­2‚nYi2Č2EŽșÖA Öź;Ń­Èš1‚–ŽÉJ°v]sFPÀ2tÿ1 …<Č2EĐ;#(Ï«ëöeÊ<]GîYé"C? kótY°/v&^™=Ź]·/Sæé:ČeĆeeeƊvʉnE°Ż‡æé:Č,`_ÍÓudϊߊvĘŸŰ™§ëÈČ3FPÀȀïWVA Öź?FĄ[VÚŁÈFa, •”`íșƊ =:#(à™•ù(ȀaŒ kŚèVtèÁ X‡žŒ Ï_RæïQdóÇ(Čuł0‚–Ąge%X»nvFPÀ=+ęQdÓA Öź;Ń­èЃ°eĆE0'#(Ż«ëNt+:Ž3‚žY™" ŰŚCëtX»n_ÉŹÓudz9#(à••u+ő—”ú{”–•ö(rÔí0ëtÙłâ·ÒdȚAËöőĐ:]GžY™·ą]wą[‘ĄĘAÿ- ÄőĐbŚ^ąFP‚OŚ•ždâ')„»(đĆA»(ÎJđé:nE†.…Q(dzÿl‰Ÿ€8|șźÄûbŚnąLFPÀ2tYŒ €eè⌠/Y@-ŒB!śŹôG™ąTFP‚ę—ÿ=Š, 6FPÀ–{”••„Š|’⋌°=AŹŒGńŹű­z2‚ÖĄ°,`ÿâËńÊìá* ŰÎź;,GĘŸ4à')„eèÖAËĐûҀŸ€8Üdm0‚îYé2ł2o„ÿ’ҏ" Ű? sŒ2+, è?FĄćšë…”`íșȚAËș1‚–ôÉ XН”`í:û1 …,C[a<ł2oE»Î*#(`Ú:#(à‘•ń(Č[Œ kŚŁPÈrԍÎ X†ƒ”`íșĘJÍJ}YÀ˜Œ €WV–(ęwuĘśò|ÿź#·ŹŽGY"GĘś ĄÿNځ”ëNt+2ôwRß§ëÈȀï€>"(ÁÚu߃†ț;]GnYi2Č2Eđ±G%X»nNFPÀrÔÍĆ X†^?FĄ=+~+Úu'șYÀjŒ €eèïqEÿźkŚèVdߍˆ €GVÆŁèЋ”`íșĘJÏJ”™•y+ÚuËAËĐțc yde<Š,À;#(ÁÚu'șÚ#(`Ú'#(`ϊߊvʉnEŽ:wFPÀCŚ}ŃùI r9ŻÌ^Ń­4Q #(à‘•ń(.Jg%űtĘț”2"(àž•ț(S”ÁJpę%„țE‡žŒ €M”Ć xeeĘÊéșęăjDĄeèRAËĐßs‘ÎOR{VüVș, #(`ˊ=Š ]&#(Á& (‹°, FĄćš«•° ]”à! šƒpÏJ”™•y+ó—”ù{z2‚–ÔĆ XĐ~ŒB/șUFPÀ=+ęQdߕLDPÀȀÖA v9êÚ`,C·É X‡vFP>źWŚ}Ś …BnYi2Č2Ćłâ·RdßĆNDPÀ=+ęQäšû~ Öëé:°vĘś”^OŚ‘uèÎ Xđ=€‰ Xđ]UőzșŹ]ŚpÏJ”‘•ń(Čû1 Ź]g…° mđÌÊŒí:댠€e6AËĐ6A{VüVŽëNt+Ȁï"0"(`zü…Öź;Ń­ÈFalY±G‘ŁnTFP‚”ëFgÜłÒEđ=Ɖ Űłâ·ą]7&#(`z1‚žY™ȘŽ«ëöub;]G–Łn_'¶Óu䑕ń(Ȁ})ÙđÊìaíșƊ,à{ÔÛé:òÌÊŒíșƊ,`_m6üyaˊ=Š=A Öź;Ń­è&#(`]ÀbìYń[Ńź[…Q(dˊ=ÊÌÊŒíșƊ œ:#(`z#(à••u+Úu'ș9êÖdŹC;#(`Y€ÿ…Öź;Ń­ÈŒ0‚–Ąż'`œźkŚ}OÀz;]G–xg<Č2E‡6FP‚”ë|1‚–ž3‚žY™ȘÈ')V‹«M~’Bž‰RAQ#(à••u+§ëZ\vvĘá.Š3‚žY™âGÙŚ‰ŻÌ>]Śâ:±łë[VìQVVÖ­4șTFPÀȀbŒ €eĆA{VüVș ] ŁPÈ=+ęQd”2‚lż€ŰïQdèï'wŸ€–ì‹ÀŽWf…WVÖ­ YÀŸNä')„eèöc Y†n•°, uFP‚§,à{° ĘŒB!ŻŹŹ[YȀȚA·ŹŽG‘ŁźwFPÀ2t7FP‚]†îƒpÏJY@_Œ |lWŚí‹;]G–Ąś†ź#[VìQdߏÂ"‚Ź]wą[‘Ąś•Œź#ŹŒG‘ìË;]Öź;Ń­èĐÎ X†ȚvșÜ~IiżG‘ìk;]G–ĄÇ`ìYń[éȀ}:nxeVžg„?Šuł0‚Ź]wą[‘Ą§1‚–ÌÁ X0#(ÁÚu'ș•ž•ț(Ȁőc Y° #(ÁÚu'șzuFPÀ3+óVŽëNt+Ȁ5AËĐțc Ùłâ·â%)^Eà…đÌÊTe\]·ÏoÇé:Č,`ŸvŒ2+lY±G‘ŁnŸSŽÓuàÓu=ž‹đ“Â]” xde<Š‹RA >]§Ń­˜(đĆA >]§Ń­4Q#(à‘•ń(:ôd%ž—€ôò(Ȁòc Y†.…”`“ĄKe, (°, #(à••u+C†.“°,`?:xeVXPœ°, FĄ€gMÊŹ"CŚÊ XP;#(ÁKP° ]#(`ș:#(`Y@+ŒB», UFPÀ=+ęQdè6AùX>I±zœ%ó“ÂȀ}ÿČëËöę~’BxeeƊvʉn„e„=Š,`ŸkÏÓud9êö‰ô<]ÖźÛgÉótYĐ'#(`Y@_Œ kŚèVthg<Č2eeeƊvĘ~\1OŚ‘{VúŁÈĐVA{VüVŽëŹ2‚¶ŹŰŁŹŹŹ[ŃźłÆ že„=Š,À#(`ϊߊv-FPÀșg, …Q(`íșƊ =*#(`YÀhŒ €eû‰Æ<]Öź;Ń­ôŹôGŃĄ°gĆUYWŚèVtèÁ xeeĘJŃ8#(`YÀŸdZ§ëÈrÔ}oÄôușŽ,Cï_­Óu`íșƊ,`?ŃX§ëÈ3+óVŽëNt+:Ž1‚–ìÇ‹ŻÌ–Lg%X»îD·"CŻŁPÈ2ôȘŒ €=+~+Úu«1‚–ĄWg,CŻÉJđì_Â-Ÿ2{Xà?FĄćšÛ—LëtÙłâ·2e^AśŹôG™Y™·ą]獰ĘA[VìQdnŒ kŚèVtèÁ XàŒ €=+źŠ|’bY\Jò“–{”%Ja%űtĆă gŚną#(à!Êbìą8#(Áç•Y‹k3ç+ł‡{VúŁLQ #(ÁM†.°,`_Ÿ9_™=, (Æ xeeĘJŚĄ#(`z2‚Y" (‹”`«I±ú(2tę1 …<ł2oeÈja,G]5FPÀ2tŒ €=+~+SP°, FĄeè}…ÇOR^2tkŒ €eÍA[VìQVVÖ­ž ƜpËJ{”‘•ń(Ȁ^…ò±ęźźûžźŰïtY†ț.íwșŽ, űźÍ"‚Ź]ś]`D Y†țźìwșŽ,C[g, 0c%X»î»Àˆ XŽșïq…ęNŚ‘eèQ…Öź°,`tFPÀȀ1AËĐc1‚Ź]śHÛïtY0 ŁPÈȀYA{VüVŽëfclY±G‘ÌÎJ°vʉnE‡6FPÀ:ô`, ˜“”`íșƊus1‚–ĄWa Y°*#(ÁÚu«1‚–,cŒČČnE»nMFPÀ-+íQdk1‚ÖĄ”ËŐußč¶•ÓudYÀw–đÌÊŒíșïDÚÊé:Č ę%[9]G–ĄżS`+§ëÈȀï8"(ÁÚu€{VúŁü œù ú”Ă.Ja%űtF·bąTFPÀ++ëVÎ+łû‹èˆ €[VÚŁ Q:#(`ϊߊéĐÆ ž‹2Aë&#(Á㗔ń{z1‚Ö8#(`Y@ù1 |șn?–CÜłÒE†.•°, tFP‚—,  FPÀ2t™Œ €WVÖ­ž, 8#(`Y@-ŒB!ŹŒG‘Ąkgćă*ŻÌÆ'ï#‚–|§ăAÏŹÌ[)2ôwÆnü$…pËJ{Y@ëŒB!ŻŹŹ[©2ôśąŠń“Â2t›Œ €eߓžˆ €=+~+ÚuÍA[VìQdèïWVVOځ”ëöI}=]G–|Oz"‚–Ą»1‚–Ąû`%Űd}1‚îYé"G]wFP‚”ëŹ3 …ÜČÒE`Æ X`ƒ”`í:[Œ €eèńc yde<ŠgĆoE»nFPÀ2ôśžÂêé:òÌÊŒíșƊ,`4FPÀ:ô`ŹCOFP>nWŚí‹vșŽ, űD Y†Ț;ítX»îD·" Ű;ŻÌ–ì+™vșŽŒČČnE»n_ŠŽÓudz2‚–ÌĆ X°~ŒBkŚ­Ê ŰČb" X”`íșeŒ €[VÚŁÈĐk1‚–űQ(`í:݌ €eû€Ÿź#ÏŹÌ[Ńźsc, Űgìà°eĆćoèű@Œń“‡OŚÍ8Śæ')„›(đÈÊxe0‚|șNŁ[±ŹŰŁLQœ”àÓuń ùˆB!ËĐ„0‚Y" (•”»t]| >"(àž•ț(3+óQ<+~+E°Ï”;»î°,`Ÿkó“Â:ôd%ž–€Ôò(-+íQt‹°gĆo„éĐÎ žg„?Š,à»-Q(à.GĘ>ïç')„[VÚŁÈĐ”2‚^YY·b%)VE†ź°ĘA{VüV†,`_ÉtvĘa9êêdŒČČnE»îD·ą XŒ €uÎ X†n?FĄ€”ëZa, h°, uFP‚”ëÚ`ÜČÒEĐ&#(à••„Š]]·ŻȘìtY†ȚŚCvșŽ,Cż„3;]GöŹű­hŚíë!;]G¶ŹŰŁÈĐû’ÉNځ«,`_ì_™=, ű~Q(d9êŹ2‚öŹű­hŚí0vșŽ, 0c<ł2oE»nTFĄ[VÚŁÈFcŒČČnE»n?€±Óudz#(`YÀ˜Œ €=+~+ÚuóÇ(Č =+#(`z6FP‚§,`vFPÀȀ9AŹŒG‘Ąçb%xÉŠ3‚îYé"GĘú1 Ź]·#(à–•ö(Ȁ5AËÖdćăquĘŸ§ëÈ2ô~ą1NŚ‘eû‰Æà+ł‡=+~+ÚuûJfœź#[VìQdûĄÇà+łŹ]·ŻdÆé:Č,`?ѧëÈ#+ăQtèĆJp+IićQțeèSÏŹÌ[9]ŸS·żORźą#(`e0‚^ąLFP‚OŚ­žÿÿśIŠĂ2t)ŒB!ŹŒGqQ:#(ÁC†.Æ ŰČb2ł2oeț’2ÒDŒ €uèĆ Űłâ·ČJRVy]€3‚žY™·â2t5FĄkVêŁÈêb,G]uFP>ÖORht+Ȁ} <ùÊìaYÀ>żìșĂȀï·7öśIŠ?.5)„>Š œÏoÿ>IqX°O^'»î«,`ŸŒNvĘᖕö(#+ăQdÍA nȀęˆ`Č뜏ôG‘ĄśYò<]ּ데, #(`ˊ=Š Ę'#(ÁÚu'șY@_Œ €GVÆŁÈQg?FĄ€”ëŹ0‚îYé" °ÊJ°v5FPÀ2ô~.2OŚ‘eh3FPÀČŒ kŚÙdÜłÒE‡^Œ €eăÇ(°vĘ(Œ €-+ö(2ôšŒ |ŒźźÛëtče„=ÊÈÊxș3‚Ź]·/SÖé:Č,`?€Y|eö°,`_ŠŹÓu`íșęfź#·ŹŽG‘ì§+‹ŻÌ^YY·ą]7+#(`z6FPÀ2ô쌠€eÓA Öź›‹°eĆE‡vFP‚í—û=Š,`uFĄćš[Æ X†^ƒ”`íș5AśŹôG‘,g%X»n?ŁY§ëÈ-+íQd^AËŒ1‚Ź]wą[‘ĄĘAËĐŸA{VüVŽëÜA[VìQVV–*.ŻÌzIqxde<Š Ę#(ÁŁ$e”G‘ì;ÔÎź;<ł2oeÊĐœ0‚–ôÆ XĐ'#(à••u+K†î‹pÏJ”‘•ń(žżŚĄ°eĆE`…Q(ßŐußčvDPÀ-+íQdèït|üNŚ‘=+~+Úu'șYÀwR°=A ÖźûNÇÇïtYđœu°,`FĄWVÖ­hŚÊ X0#(`YÀ茠€ec2‚Ź]7œ° =+ŁPÈ3+óVŽëNt+-+íQdèÙAŻŹŹ[Ńź›°uß=śń;]GžY™·ą]· #(`YÀꌠ€-+ö(2ôw~;~§ëÀÚuËAËüÇ(òÈÊx9êŒ0‚Ź]ç•° íđÌÊT„\]wą[ŃĄ#(`z2‚^YY·ą]śßFÜłÒE‡vFPÀžż•żźóę="Dÿaˊ=ÊÊÊș•żźóű(ûà')„›(đÈÊxe1‚Üuhg܏òę>*ąPÈ3+óVțșÎăăミ€nYi"C'őƒŸ€–”ÉJđ(IćQdèúc yfe>ŠgĆoeÊja,G]­Œ €eèÚA ^ȀïŒ?"(à–•ö(Ȁ:A{VüV\‡žŒ €u‹đÌÊTE>IqE·ÒČÒEàŒ €WVÖ­9êŸù ~’BX†țȚtü$…° ę] ~’BXđ]ìD%X»îD·"C7g,CśÂ(p“ôÊ Xđ]ÉD,GĘśóš§ëÈ2t7FP‚{IJ/" ű~ÁđÌÊŒíș>AëЋ°, ;#(`YÀś,"ąPÀÚuVAËĐÖAŹŒG‘˜1‚Ź]wą[±ŹŰŁŹŹŹ[ŃźłĆ že„=Š =~ŒB!ËĐŁ2‚ìȀŃAśŹôG‘Łn#(·«ëŸ›ûŁź#·ŹŽG‘ìëĄvșŽŒČČnE»î»ÿ?Úé:rÏJ”‘•ń(Ȁï'T…Öźûž"ŒvșŽlY±G™Y™·ą]·ŻÍÚé:Č,`_U”Óudz#(`z0‚Ź]7'#(àž•ț(:Ž3‚Ź]·*ŁPÈ5+őQdËAŻŹŹ[Ńź[“pÏJYÀZŒ €ețc X»Î #(`ˊ=Š,À+#(ÁÚuȚA·ŹŽGY" đÉJ°v;#(àżÄGÙ?I!cŸìșĂrÔí3v~’BX†nÆ Űłâ·RKRjyY@Œ €eèęDƒŸ€8Üdè¶AËš3‚–|?çŠ(òÊÊșíș^AËöyÿÄ+łÂȀę\džź#Ëú`%X»źOFPÀ–{Y€uFĄ€”ëÌAËĐ6AËĐ6AËÌA Öź…Q(d9êö‰ô<]G–ĄGg%X»îD·" Î ŰČb"CÏŁPÀÚuł0‚–ÌÊ X0;#(`ϊ«ČźźÛ7±Śé:Č,`ߥ^xeVxfeȚŠvĘ>3]§ëÈ-+íQdè5AËöă…?pX»nŸ™źÓudzß[^§ëÈ2ô>y]§ëÈȀïëA Öź;Ń­ÈQ睰 íÆJ°vʉnEà“đÈÊxz1‚Ź]wą[Ń8#(àżŽž‰œŰu|șNŁ[iąTFPÀ–{”%Jg%űtF·ÒEŒ €uèÉ Űłâ·rșźĆ™ébڶŹŰŁŹŹŹ[q]€3‚–”Ê(ò„1‚–ĄKgćcù$…ÇŚ™?I!, Űç·Îź;, Ű·Ÿ]śÇE†ȚgŠü$…° œoùò“–{”••u+UŽș:AËĐû̔Ÿ€–Ąś-_~’BXЌ”à& hƒ°eĆE†n“”à. h‹°, FĄGVÆŁÈĐœ2‚lȀȚAËș1‚žY™·ą]wą[ŃĄ#(`YÀŸ+ì§ëÈČ3FĄ€”ël1‚îYé2Č2E0:ŁPÀÚuĂA[VìQdè1A Öź;Ń­Èfa Y†ž•° =;#(ÿyțÎ+ł*Ž žg„?ŠußÙàüźkŚ}śPçïtYđĘ·Œ XđęI˜ˆ €e«3‚Ź]ś Îßé:Č ę Îßé:Č,à;Œ Űłâ·ą]ç•Q(dˊ=ÊÌÊŒí:€ćšóÁ X†öÉ űoèű8đä')Ÿź‹/ÿFÜE©Œ €gV歜źëûvâä')„kVêŁXVìQ–(ÆJđÔĄ#(à–•ö(C”É XàŒ /șü…B–ĄKa, (”`—”Î X†.Æ X†.ƒđÊÊR„HŚĆśƒ#‚–Łî»)9ùI ᙕy+E‡vFPÀȀï ,ąPÈȀïWâAŻŹŹ[©2ôśƒ€ÉOR·ŹŽG‘|w?#‚öŹű­4z0‚ÖĄ'#(à™•y+]P#(à–•ö(:Ž3‚–|*'ąPÀÚuߝۈ €{VúŁÈĐ­1‚–ŽÎJ°v]3FPÀȀ6AëГ”`íșƊ, -FPÀȀ^…B–Ą{c%X»źwFPÀȀnŒ €gVæ­hŚőĆ X†îÎ X†¶Â(Č,À*#(Ś«ëŸŸ[ÌzșŽ,C·|g=]G–Ążû賞ź#ËŸs툠kŚ}ż„ˆ(ČuŁ2‚–ĄGc%žț’R" đÈÊxϊߊvʉnEđ]=D<ł2oE»îû]ÇŹ§ëÈ:ôbŹ pFPÀȀùc X»nVFPÀ=+ęQfVæŁÈfc%X»nvFPÀ2ô4FPÀ:ô`%xÊæb, X?FĄćš[° œ:#(Á«$e•G‘ŹÁ X°#(ÁÚu'șú»Ï=ëé:ČeĆeee©Òźź;Ń­ôŹôG‘|7Ô#‚–ìëĄvșŹ]·Ż‡Úé:ČœAëĐÎJ°vʉnćoń܈>ćđ„2‚vQ#(Áç•Yn„g„?Ê„3‚|șÎâzˆŸ€ÖĄ'#(`;ÊŸŰiìșĂ++ëVŹ$ĆÊŁÈĐ„0‚–”Ê XP#(Á§ë,.0űI aˊ=Š, ț…žČ€ZAËje,CŚÆ Űłâ·Čdu0‚–ÔÉ X‡^Œ û/)ț{”š•ú(–{9êZeÊfù$…[œÔó“Â2ô>©ç')„eû€ŸłëËöé8?IqžÈĐßÏ-&?I!lY±G‘|wË# \eœ2‚nYi2Č2EЍ”`íș>AËŸŸ[Ì~șŽŹC/FP‚”ëș3‚źY©" űȚ9(òÊÊșí:+Œ €[VÚŁÈŹ2‚–Łn_ŠôÓu`í:댠€uhc, °ÉJ°v9#(`zFĄeèQAËFc%X»ntFPÀ=+ęQfVæŁÈÆ`%X»nLFPÀȀጠ€eèY…ČÙźźÛçęvșŽ, ŰgìÆWfËö»ź#ËĐßÏPŠźkŚí“z;]G–ŹÊ(Č,`ŸÔÛé:°vĘ2FPÀ2ôšŒ €eè”AËöł;]Öź;Ń­ÈĐ^…BžY™âYń[ŃźÛ+ìtÙČb"C»1‚Ź]ç‹°,Àđßâ ·“Ÿ€vQ&#(Á§ëâ{°“Ÿ€îGÙ§ÆWfÏŹÌ[9]߃ü$…p„3‚¶ŹŰŁŹŹŹ[9]7âț??I!ŹCFPÀ:ôb, (ÎJ°Ś€x}șț…B^YYȘ ye6><°,`ŸvĘᑕń(2ôŸčÏOR.2ô>3ć')„{VúŁÈöĘr~’âp•ĄÛQ(dzŸó“–{Y@kŒ 79êZg,Cïłd~’Bxde<Š,`ß ìș?îȀ¶A[VìQthg%Ű~I±ßŁÈza yde<Š Ę#(ÁCĐ;#(àž•ț(rÔőÉJ°vę…BnYibY±G‘Xa%X»Î#(`Ú:#(`YÀű1 …, •”`íș1AËĐc2‚–ŒĆÊÇóêșƊ,`ß[ž§ëÈ2ô>aœ§ëÈ2ô>aœ§ëÀE°O'_™=, ű^3Œ xfeȚŠvʉnE°*ŁPȖ{9êö9ć<]Öź;Ń­ÈĐûÆń<]G–ìÓÎyșŽ, X‹”`íș㌠€ehÿ1 …, pc%X»îD·"G/FPÀ#+ăQ<+~+§ëfü$fČëwQ #(à)Je%űt]|ìuò“ÂU”Á ŰDYŒ €—(ÎJđ’ĄKe č‰ÒAQŒ°gĆoĆeèČA[VìQfVŠ*Kș.>ȚQ(dzŸ€ń“Â2ô>Iă')„eû狯Ìțq)I)ćQzVúŁÈĐû6+?Iqžț’RRłRE°OùI azŸ0ò“‡› œKÁORËZg, hÆ Űłâ·Òeè}ȘÇORśŹôG‘ŽĆJ°Éš3‚–ĄûQ(dș7FPÀȀȚA ÖźëÆ žg„?Š Ę#(`Y@ŸŒ kŚug,GFĄeh«Œ kŚèVdfŒ €eăÇ(ČgĆoE»nTFPÀȀŃAÏŹLUüêșƊ œżà§ëÈȀ}Né|eö°,`Ÿ úé:°vĘ~Úï§ëÈ2ô4FPÀ2ôœŒ €=+~+Úuû^ĄŸź#[VìQVVÖ­Ž_RÚïQdëÇ(òÈÊxúûSÓOځ”ëVc, XđÌÊŒíșęû?]GÖĄ'#(`YÀZŒ €WVÖ­hŚèVdhÿ1 …,C{aìYń[ŃźÛ?śÓudÚ#(à••u+뗔ő{Y€wFPÀrÔùbü7t|™sò“‡Ï+łńeΈ €»(“đÌÊeÉ')źèVš(Î ŰČbČŽòĘŹ(p‘Ąż›”‹Ÿ€îYé2Č2EđŽG%űtF·bY±GŃĄ'#(Á헔ö{Y@qFPÀ2t-ŒB!{VüVzIJ/" űÎû#‚–Łî;©_ü$Ćaû%Ć~" űN€#‚–ÔÉ XđĘÏ]ü$ĆáQ’2ÊŁèĐÎ XĐ~ŒB!ËZa%xÖ€Ìú(2t«Œ €gVæ­,Y@Œ €ćšk‹đÈÊxșÿ…Öźë•pÏJ”™•©Jčșî;©_ćtYđ±G, űNÇ#‚–Łî;_ćtX»î»ÍșÊé:Č,à;c X`•°,à»»Êé:°vʉnE†6c, ű~S”`íșƊœAŹŒG‘˜3‚Ź]7~ŒB!ËQ7 #(à™•y+ÚuŁ1‚–ŒÎ X0Œ° =&#(ÁÚuĂA·ŹŽGY"GĘü1 Ź]7+#(`ˊ=ÊÌÊŒíșÙAËĐł3‚–Ą§1‚^YY·ą]wą[‘ŁnFPÀ:ôdìYqUêŐuߝûˆ €eß%ÓȘ§ëÈ2ôwÉŽêé:°vĘwsŐÓudYÀw±°,້ X†țÎŰW=]Öź;Ń­ÈŸêAË|2‚Ź]ç‹pËJ{ڝđßöm DŸòǧëâk˜ë»(Æ xŠ2A{VüVNŚy\`TvĘae1‚^YY·r^™wF č‰2AŹŒG‘ĄËb%xÖ€Ìú(=+ęQdőÇ(đú%eęE†ź…°eĆEP;#(Á.G]5FPÀ2tŒ €gVæŁÈȘ3‚òq“źó8oìșĂ2ô>Śțû$Ćaú»ĄŸț>IńÇ旔ò{”–•ö(rÔíÓńżOR–Ążêëï“\eûtŒń•ÙĂČ€æŒ €eœ0 Üdè}źęśIŠĂ2t€-+ö(Ȁ>A Öź;Ń­ÈĐ}2‚Y" °ŁPÀÚu'șÚ*#(à••u+ÚuûŒœź#·ŹŽG‘Ą­3‚ÖĄ'#(ÁS`Î X0ŁPÈrԍÁJ°vʉn„e„=Š,`LFPÀȀ±A Öź›•Q(dz6FPÀȀÙAËVeÊæ~uĘw‡zőÓudˊ=Š,à»C”`íșï'œAËöy\?]G–ĄżJŹ~șŽìYń[Ńź;Ń­ÈŸ{Ë…BžY™·ą]wą[‘xg, đÁ XŽș}6ŰOځÙuőś‹S=|’Bč‹RAQ#(`e1‚ÌźÛ‘3‚¶Ł”Â(ò„3‚ÌźÛ‘1‚nąLFPÀ2tYŒ €ŚQjc xÊȘ1‚–ÔÁ X†ź“”à%CŚĆ XĐ ŁPȖ{șUFP‚]†nÆ XĐ&#(à‘•ń(rÔőÂ(”Íç“;ȘŒ €-+ö(3+óVŠ,àûÍ@DPÀ-+íQdè};Ÿ€P^YY·RKRjy9êöY>IĄŹCOFPÀșg%žÉö)EŚ)ËŹ2‚–Ą­1‚Ź]gÆ X`ƒ°,À&#(`ϊߊvĘŸăh§ëÈ=+ęQdăÇ(°vĘšŒ €eèŃAŹŒGYYY·ą]·oJÚé:rÏJ”™•ù(Ȁ1A Öź‹°uĂAËĐł2 Ź]wą[‘ÌÆ xde<ŠgĆUWŚíłÁqșŽ, Ű·GŒ2«, Ű7Çé:°vĘŸ8NŚ‘[VÚŁXVìQVVÖ­hŚí;ŽătY†ȚwÇé:Č œ:#(`YÀ2FP‚”ë–3‚–ĄęÇ(òÊÊș•. ű~â°,À°uûœrœź#{VüVŽëÜAÿ- ŸVѧžG)?FĄ€OŚit+M” ŰD錠€WVÖ­œź‹Ïż­Áź;,C—Á xˆ2A»(‹”àÓuń%Ž5Űu‡eè:AËĐu2‚ìȀșAËڏQ(dșFPÀ2t«Œ |<ÿ^™œŁ[‘|ï>E,GĘŸm6Ùu\dè}ĂkČëËĐû‘ődڶŹŰŁÈze%žÊĐœ1‚îYé" 胰,`ŸêMvĘ79êŸùŚdŚ–Ą­2 …<ł2o„ÿ’ҏÒČÒE†¶Æ X†¶ÁJ°Él1‚îYé2ł2oE»nTFĄeŁ1‚–ìs§yșŽ,GĘXŒ kŚ g,CÏŁPÈ#+ăQ<+~+Úuł2‚–Ągg<ł2oE»îD·"GĘŒ €GVÆŁèГ”ŚŐuûŹgź#ËöęčușŽ,Cïó•ușŹ]wą[‘ìûs+^™U–ŹÉ xeeƊvĘ~z»NŚ‘[VÚŁÈöčÓ:]G–ìûsëtX»îD·"Cï3°ușŽ<ł2oE»Î#(`zß+\§ëÈ:ô`, đÉJ°vʉnEŽ:_Œ €uhg%űt];Ž‹]wžŠbŒ €M”Á x‰ČA >]§Ń­ŽŁ”ŁPÈ#+ăQ\”ÂJđȘIYőQzVúŁLQ*#(ÁțKŠÿE‡nŒ €uhc, (ƒ”]șNŁ[ŃĄ'#(à™•ù(ș€ĆJp©I)őQäšÛżŽuvĘaz?awvĘŚ’”ZE°Ÿ°;»î°,`ÿÒÖÙu‡eè}iàìș?n2tŒ €{VúŁÈڏQ(àțKJÿ=Š œÏ۝]wŰČbČČČnĆJRŹ<Š Ę:#(`ÚA{VüVŽëš3‚–Ą{e Y†î”à) 胰, OFPÀ#+ăQ<+~+Úu}1‚–ۏQ(䙕y+ÚuVAËĐÖAËÌAŻŹ,QüwuĘwáżÓudz2‚ÖĄ#(`YÀwă8ąPÀÚu'șˊ=Š ęęșŐ§ëÀUđ]ÉDÜČÒEŽșïbǧëȞż•V’ÒÊŁÈŸKЈ €eßőÿNځ”ëæQ(dzFPÀȀYAËfg%X»îD·"COc, ˜ƒ°,`NFP‚”ë֏Q(dzUFPÀ2ôꌠkŚ-c, X“° í?FĄ=+~+Kà…°,À;#(`9êÜA ÖźóÁ Xà“°eĆćomÿ Àì:p‘ź‹o»yaŚîą#(à!Ê`ìYń[9]ŸóÂź;lY±G™ą,FP‚OŚĆ·Ę"‚nGù. Œ°ëŹŒG‘Ążó~/ìș?nȀbŒ €ee0‚–ĄËd%žËĐĆAËjg YPđÊÊș“Ąëd, hQ(dY@3FPÀžż•!CśŁPÈ2t/Œ €eœ1‚íŽxeVyde<Š‹ÒA î2t錠€eè}fjìșĂȀ}fjìș?¶_Rìś(2tę1 …,CŚÊ XP#(ÁŁ$e”GéYé"CWc, šƒ”à) š“°eĆE‡vFP‚— Ę~ŒB!ËZe, hƒ° Ę#(Á.C7gÜłÒEĐŒBÙ<€ëâûX>Űu‡[VÚŁÈĐßÛè>NŚ‘eßöˆ kŚíłäqșŽ,C[e Y†ȚgŠătY`”`í:Œ €-+ö(2ôű1 Ź]wą[‘ìÇĄătY0;#(`zFP‚”ëNt+Ȁ}b4űÊìaYÀŸo9Nځ”ëNt+-+íQd«0 …, X”`íș5AËĐk2‚–Ą—3‚–xe X»Î#(`Ú;#(à••u+KàƒpËJ{9ê|2‚ÖĄ#(Á§ëFœÒ vĘផț(3+S•)]7âFàdŚnątFPÀ&Š1‚^ą,FP‚OŚĆ·—|Č뜏ôGYâąTFP‚kMJ­"CïŁÉź;,Cï[x“]śÇMP#(`Y@-ŒB!ËĐŐAËĐû`ČëțžËڏQ(dY@+Œ €gV歘 Ę*#(`ș5FPÀ–{Y@3FP‚‡=AËĐęÇ(Č, FPÀžż•Y“2ëŁÈĐœ2‚–ôÆJđ’ôÎ že„=ŠmŒ €uèÉJ°ËúbÜłÒE†¶ŁP6Ż«ëö‰Ń:]G–ì[U‹ŻÌ¶ŹŰŁÈQ·ïf­Óu`íș}jź#śŹôGYâYń[ŃźûȚńńușŽ,CÏŁPÈȀYA Öź;Ń­ŽŹŽG‘Ąż7}ź#{VüVŽëö”ușŽ, ˜“đÌÊŒíș}’¶NŚ‘kVêŁÈVe YŽș5A Öź[‹°,`9#(à‘•ń(Ȁ}gmźkŚyelY±G‘űd%X»îD·"C»3‚ț:Ÿ1ä‹]wxeeĘÊéșçN‹]wž‹ČAÏŁ”Â(”Í.]rgŚźY©bątFPÀ2ô~éìș?.2ô>ëqvĘá&Êd, Ű7vœ]wŰE1FP‚« ]#(àž•ț(ȀÖ…nȀ6AËĐû‡łëŹŒG‘ì{Î?đÇœ$„—G‘ĄûQ(dșFPÀȀ>A 6Y@ŸŒ €ćšë‹đÊÊș•!CۏQ(dYÀ>pvĘaY€5FPÀ2Ž FP‚§ m“°,À#(à™•y+KŽșŃ…B–Ą‡1‚¶ŹŰŁÈÆ`%X»îD·ÒłÒE†“°,`ŁPțsûęźźûÿ?*"(`zFĄWVÖ­YÀÿVDPÀȀÿÿ… ‚–Łîÿʈ €eè㌠kŚya čg„?ÊÌÊŒíșƊ 퍰eĆEđŻł·é”€ÙŽóæę+zH]ù9• `Čx h@SŚÀ5űć{MË?ß§2"jEUR€À(>Á§ûíuV”śź]Uk ETÀ>ëÖRD…üœ?0ș•àaJRD…ŒNeœ•˜uûc#*äv*íŁÌS™o%n™Ęśy3ąB.Š4ETÈĘ”źˆ yÊz+qËìŸĄœr=•úQŹéR…<­èÔQ![Ń©+ąB¶€„ˆ ِ“"(äeE珈 čžJę(ր<Q![òTDćædłnßčΈ ي.—"(b+șLETÀé:”t}”r*ćŁXŃőRElEŚ€ˆ 8§CÉéŁXjVD…lG]특€‹Ę.EPÄր–Q![ZVD…J7„)ąB^§ČȚJóą§"*d+:eEPÄăTÆ[‰Y·Ï‡0ąB¶ąSUD…ÜO„k@ꊚ€‡5 ETÈőTêGńą§"*dk@ZŠš€§5 _Š ˆ­9)ąB¶ąsVDŒŹèÜQ!—S)ĆPČ"(âu*˕błÎŁ·b (]Č5  ETÀɎșę&­hÖ—S)Ƌ^Šš­ûMZŃŹ{8[jUD…\O„~”q*ăŁXjWDìłźETÈíTÚGńą§"*àj hI±5`żI+1ëÄրÖQ![Ńm(ąöYŃ[±Ž©ˆ ÙĐ/EPÈ>ëzVD…\N„|k@/Šš­œ)ąöYڇ"*d+z^Š ˆ­è™Q!ŻSYoĆg]DoʞUò<•ùV–5`vETÈր9Q!ÛQ7§"*äu*˕j·Ìîç±0‚"¶ìśN5fxœÊx+>ë"z+Vô~Vc։­«)ąB¶ìSU5fÙgƚŠšœè„ˆ Y HÎfUȚ2kŒNeœ•gÖ„œÓr3„)ąBž§2ßÊ3ë҅s?•łÎž„ČߌTÎ:c+:METÈVtZŠš€Ÿ[fӅ·•·ÌWSŠ"*äaÊTDÜ­èŒQ![ŃćREl (Iò<•ùV†]Š"*d+ș4ETÈրÒQ![ÊPD<íš+Kr;•öQŹ5)‚B^րšQ![jQD…lEŚŠˆ يn—"(›[ÌștáŐœqÖ[ö«{ăŹ3¶ąśëČVR'+zŸ)ŃJ ă|*ùŁXöىÆYgŠ5`fEPÈ>ëfSD…\N„|+zeEPÄր5QûŹ[Kr=•úQžą>Ëk%EpÌ:ȚJ6„+ąBnŠ ETÈóTæ[‰YçŃ[)Š,ETÈ=””AŻSYoeZŃ©)ąBn§Ò>Š5 uETÀː“"(b+șTEPÄęTúG±”ŠˆÊÍĘf]ÂçÄźY\O„~+zE •ÆÖ€=ó;o™ Nր=Đ»f]°5`NÔJ c+zÂÓJŠàœ%§b h—"(bk@kŠš­èžA!+zdÒJ ck@/ŠšÇ©Œ·RíšëUČ=Č"(b+z4ETÈր1Q7kÀŒA[Ń3)ąB¶ągVD…l ˜E°ÏșÙQ!ÛQ7§"*d+zUEPÈ>ëVSD…\N„|kÀŠšŸą3>h%EpÌșŒ3±ZIa\O„~”aJSDł.ăLŹVR—S)„Jû(óTŠ+¶’"e|e­•ÆVô>Ÿ«•ÆVôžùZIal HSpČìS›Cł.žJû(óTæ[Éր\Q![rSD…ÜO„+zŸfŐJŠàâEOETÈրęÁkh֏So„^‡RŻbE—ąŠžJû(րęą;4ënvÔ•Šˆ čžJę(րČQ!ŻSYo„[ꄊžJû(Vô~éÖJŠàa šEČ5 NETÈęTúG±ąëRD<­íREl hEČu­*ąöYŃ[±ąś‡ÀłNÜN„}k@[ŠšÜ<_łnżșϘub+ș/ETÈրq)‚"¶Œąˆ ŰgĘ~0c։­èŃQ![öۈÉ[fƒ}ÖEôVŹc)ąBî§Ò?Ê:•őVŠ5`vEPÄőTêG±ąśùÜłŽìłnNETÈրčQ![ögÖłNlGĘ*Šš€}ÖEôVŹèŐQ!? (ű@:5낦©Ź·łźà]VR7Sš"*äaÊPDłźàÆÔŹ .Ą€€ŠŰŠNEȝš"*à˜uœ•jÊRD…lEçKòČąsUD…œO%k@§)K•›m%E*8«•ÆÖ€ęșŒxËŹ±5`Ÿę\šuÁëTÖ[IVôțpŹ•ÆVtœA[öËćÒŹ{8[êPD…lEŚ©ˆ يȚŸY”’ÂŰĐŠ"*àb Űb-Íș`;êúTD…ŠœQ![ú„ŠŰĐł"*`Ÿuœ*ąBź§R?Ê8•ńQŹœ)ąöYŃ[ńą»"*d/z(ąrsŠ[fÓ~î##*dkÀꁱu#)ąB¶ąï7)ĆŹ#'kÀę™r=•úQŹśÛˆ”b֑}֍Ąˆ يŸ/J)fŰpżș#‚"ž§2ßJÌșę 8Ł[ źŠ4ETÈęTúGYŠtETÀ1ëöśèŒš›)Kò<•ùVbÖíoăAS’"*ä~*ęŁXŃ)+ąîéPzú(րTQ!S†"*àaEçK±5 gETÈրŒQ![Ê„ yZŃ%)ąBź§R?Š5 4ETÈրČQŻ|(++ș&EPÄրZQč9ÛŹkxuϚuÁvÔĘł$­€0¶ąśëČVR[Ń­)ąNրûșTDTÈրꊚ5낭èęr©•ÁيîI±5 WETÈրȚQ!ÏS™oĆg]­}*ąB¶ŒĄŠxÊz+>ëÆTD…lEÏ€ŠŰpŠˆ ŰgĘŹŠš­è9Q![Ńs*ąB¶ܟYA!ûŹ[IČu«(ąB¶ąWSDìłnuETÈùTòG±ŹĄˆ ً^Šš€cÖuŒąj%…q9•òQș)Yò2„)ąŽYŚń„•ÆÍ”Șˆ yœÊpĆVR€ŽŚ­€0¶ąśGI­€0¶ąsUD…ăš•ÁɊŸ/ IZIal Ű/ ·Ì[jSD…lGĘ~YĐJŠàlE·Kq;•öQŹ-)ą.րęÍ`ŚŹ .§R>J?•țQŹ­)ąźÖ€ÖQ!ŚS©Ƌ^Šš­ęR…ÜŹ=+ąB¶ìŚÂłNlEśĄˆ ŰgĘžA[FRD…l Yò:•őV|Öąˆ čžJę(ր1QûŹ‹è­xŃSr?•țQŹ3+‚BöY7›"*d+zvETÈVôșA? À#„Ę yŰŹ[xĄšuÁ͔Șˆ yšÒQÇŹ[űÚO+)ŒË©”ÒMYŠš­èTA!g+zżĐi%…q eżț Ę2ŠĘ«"*dk@_Šš­Ł(‚ČÙVRŒą·bEï“L+fxœÊx+>ëöW'+fžœJù(Vô>›”b։کʷâłnżŚ^1ëÄր}ÂkĆŹ[Ńû%jĆŹ#ûŹ‹è­XVREl XYČuûÌڊYGöYŃ[±ì3k‹·Ì[ökáŠY'¶Ź©ˆ Űg]DoƋ^ŠšÇ©Œ·âł.ą·òp"P+)Œ»)Yò4„(ąŽY—p~niÖŚPRREŠ]‡"*d+ș]Š ˆ­-+ą.ùPJț(vÔ”Șˆ يnCp”ąïKłVR[î—KDPÄրq)‚"¶ąGVDÜŹèû5k%…q=•úQŹŁ*ąîvÔʗŁg­€0¶ąGWD…l ˜—"(bkÀLŠš€}ÖÍąˆ čžJę(Vôʊš­ł+ąöY·’"(âv*íŁXŃ«)ą^ր5Q!? ÀTĘJp7„+ąB^§Č\±•y?Yr5e*ąBĄÜŻ?ˆ cÖć}ęBÖJ c+:uETÈíTÚG™Š ETÀ1ëò~ËZIalE瀊ۊŸ?mf­€0^§ČȚJ±Üß:e­€0¶ąsWD…lEß'ßČVRWk@Šš­e*ąB¶ŁźEPÄëTÖ[iր:Q![ö+GÒŹ §2ȚJ·ą[VD…lE·Šˆ čJû(ր6Q+ș-ETÈőTêG±ôŠŠŰЧ"*àiGĘžA[ŃŁ(ąB¶ąGSDŒŹŁ+ąB¶Œ©ˆ يKò:•ćJŽ[fțśę•yËŹ±5`żžä˜ub;êîoWrŽYGöY·_rÌ:±5àțl†ˆ Ù°Š"*äy*ó­űŹ»?xćłNlEïŚŸłNü4`_ąÍèV‚—)IpÌ:ȚJ3%+ąBŠTETÀ1ëđüDTÈćTÊGńą§"*d+:%EPÈ1ëđüDTÈőTêG±ąÓRDÜ­è|)‚"¶䏈 ِ‹"*äiJUD<ŹèÜQ![ö«Xæ-łÆÖ€<Q![JR…<óĄÌüQŹèRQ![ÊPDŒźCYŚG±ąkREÜO„k@­ŠšÜ\l֕}Vr=•úQŹèęșŹ•Áé:”t}kÀ}VČ5`ż.Íș`+șUETÀ9JNĆІ"*dkÀ}ù"(âu*ë­űŹÛŻš%fŰŠYČ5`żè–˜udŸuûćČÄŹ[ŃóRElEïÏf%fŰ0«"*`Ÿus*ąB¶Łn%EPÄVôÊŠšŚ©Ź·âłnETÈO*^ĆŽ’ÂxšRQǏÃBČVR—PRREÜM)ŠšŚ©Ź·ł ÉZIa\M銹‡)CpÌșŠŚ­€0¶ąó„ŠŰŠÎIČ5 gETn¶•wTQ!ŚS©ÊȚŻbZIal Ű/Q•·Ì'kÀ>X5ë‚íš+Yò<•ùVČ5`żžTȚ2kl ŰßȘf]°5 fEPÄVt­Šš€‹]»"*dk@Šš­­*‚BźVôțà„•ÆVôțÈ€•ÆÖ€žA[zQDÜìšëUr=•úQŹèȚQ![úTDÜ­ăRElEߗÜćłNlEŹˆ xXFQD…l Kr?•țQŹèÙA!OkÀ슚­s*ąB¶ŹKČÏș•Q!—S)„Jû(րUQččœfĘ>Űb։­èęń­ĆŹ[Q!? Àă#ĘÊĂ1ëđlˆŹ•ÆÍ”Șˆ yš2QÇŹóè­S–"*äÊ~߯•ÆëTÖ[yn™}Eo„š’Q!SŠ"*àjEŚ€ŠŰŠźEr;•öQŹ{Zk%EpK‡ÒÒG±ąëPD…l šSò:•őVșuíRElE·€ˆ ÙĐČ"*àa hEČ5 5ETÈVtŠšŚ©Ź·2­m)ąB¶ôŠŠxœÊx+ë:”u}k@_Šš­ăREëöÇłNlGĘlŠš­è•AÏS™oĆgĘjŠšë©ÔòĘń‘I+)‚cÖáÙY+)Œł)Mr;•öQŠ)]pÌ:ȚJ1e(ąBîĄäąŠx™2Qw+zżŠi%…±]’"(bk@YŠš€‡5 &EPÄVtmŠš­èÚQ!ÏS™oeZêTD…\CiYń8•ńQŹ­)ą^րÖQ![ÚRD…ëÖPD…\O„~”§xđą[y8fžê”’ž˜RQ!·PJVEJ7„(ąB^ŠtETÀˊNCȝł"(âq*ÔrÙŹÛûeQ![Ńśùÿą•ÆęTúG±ÜÓpJ‡’ÒG±ŁîțĄh%…±}ŸL)ZIœ­è’Q![JUD…l (]Č}ż©/ZI\ŹèZA—S)ĆP«"*d;êî™_Ž’"žæC©ùŁXêRD…ÇQź˜ub+zETÈրŃQûŹKČuóRElEÏ€ˆ ŰgĘz"(bkÀʊ𐭫+ąB¶ąŚTDüÌ:ÌF?Šq5„)ąBŠtETn¶•eßÖƈ č˜2Q!·PŠx†’Ÿ ù™uć„ÔJ c+:ETÈVô}nčh%…ń e϶Ä[fƒł5 TETÈVtŠš­è=•Ž’"žXjUD…l š]re ­€0^§ČȚJ”ą[UD…l žÏ-#ąB§2ȚJłąÛPD…lE·©ˆ čJû(óTæ[évÔőąŠŰŠîMò8•ńQÖ©Ź·2Ź})ąB¶ąGREiPŽ’"žZjUD…l šCò0e*ąnVt]Šš­-)‚"¶ŽȘˆ ÙГ"(änEśȘˆ ي—"(bkÀ™0¶Œąˆ xäCùŁŽSiĆ0/EPÈÓ0“"*d;êfUD…lEŻ€ŠŰŠ^YđČŹȘˆ Ù°ß0fÍșà§è}çŁ[!ÛJŠ;ʊšł)Mr3e(ąBžŠLETÀ1ë2FŽVR—PöÆÂ[f{(ûSxŃŹ ^ŠTETÀ9J΄Jû(րÜQk@^Šš­èr)‚"¶ąKVD…Š5`żʚuÁրńDPÄVôhŠš€‡=–"*dkÀLŠ ˆ­ł)ąžVôœŠš­èu)‚"n§Ò>Š5`%ETÀˎșUQ![Ń9KE‹­èŐQ!? šűœX5ëÈÍf]Ć;°ŠYÜN„}”J*Š Ÿ[f nÊCD…\BÉEq7„+ąB¶ąś#­€~n™œŁŠˆ čš2Q!PöŻčVR—ëPÊőQŹèÚQ![êPD…l ŰĂąiÖ=\­è–A[Ń}*‚"î§Ò?Š5`dEPÈ͎șQQ![ŃŁ)ąB¶ąÇPDÜ­óREl Űߚf]°=›"*d+z.ETÀð'Aă-łÆÖ€ŐQ!ÛQ·†"*àiEŻ©ˆ ù)șážVR7SŠ"*äiÊPDłźiXpÖWS–"*äJꊠˆ—)S•›m%Ć+z+Vôțà„•Æ#”ûzDPÈ1ë°mČ5`Ś©•ÆVô9ZIalE—„ˆ 8[êPE\O„~+șNETÀÊŸoI*ZIal ۧȘ:o™5¶ì©Ô5ë‚íšÛgłŽ’"žZŃm(ąB¶ąÛRD…l —"(bkÀHŠš€›=Ș"*d+z4ETÈăTÆ[éր1Q!ÛQ7ł"(b+zNETÈóTæ[ր•A[VVD…lEŻȘˆ xZŃ«+ąB¶ŹĄˆ ùi¶Ê"ș•àiÊTDłźcpi%…q %UEPÄʔĄˆ y…’“"(›m%EéžRE+)Œ­è}J+)ŒÇ©Œ·ł7đ ąB¶ąś/­€0¶ąKSD…l šIr¶ÔŹˆ čšÒQ!Sư'äà-łÁĆP§"*dk@ˊ ˆ­è6QW+úŸ#Šh%…±5 OETÈęTúG±ąGU…ÜŹèę ˜VR[fSD…l ˜Cpż„_Ê^I±œș"*dkÀ}ń6"*à˜užOŃ­WSŠ"*äJJŠ ˆ—)MpÌșÏCCł.ž…R’"(âiÊPDŒŹè2Q!—PjQEÜMŠšŚ©,Wl%7FPÄրęÒ=yËŹń8•ńVbÖ Œșk%…±œ?Éh%…±5àŸ‹Č5`7>5ëÎր™A[Ń3+ąB¶ąWREl Ű/șSłîá˜užńŃ­7SŠ"*äy*ó­<·Ìą9ŒšË©”ÒCÉUń2„+ąnVt™Š ˆk(ûSűÔŹ Ąì“oZIÜ­è¶Q![Ń=)‚"¶ôʈ yžÊ|+1ëp xŃJ c+șETÈÖțR 5@l Uđ̇2óG±ąGSD…lEó·oȘhòșe]Ć0ŸŠžŸJÿ(V4û–ŠȚŒâ–ÙWôVŹû€ÁÒŹ ~Žș…ËPŽ’"8fGo„˜RQ!·Pî›fAÏS™o%fŻ©ÖJ ăJMŠ ˆ»)Yò2„+ąŽY‡E\E+)Œ­èÖA[ÚPD\­ûêł„Yl Mq?•țQŹèUA!7kÀŠšŐ€zá[§ĆYgQ![úTD…l èKČuü5:êÈӊEČ5àțń8•ńV–5`vETÈV4‡—ŠśSéưš"*7'›u żæIł.ű)z_ŠÌèV‚Ç©ŒČL©Šš€cÖ퇯3‚"n§Ò>Ê<•ùVbÖć}IŐJ ăbJRD…ÜM)Šš­èûŐœj%EpɇRòG±”K±5 $ETÀ1ëp=]ŐJ c+ș^Š ˆÛ©Žb šIpłÔąˆ يŸßvV­€0¶ąï·U+)Œ­=)‚BîùPzț(Vt_Šš­è‘A!kÀ(Šš­óRElGĘ}2„j%…±=‹"*àiEÏȘˆ Ù0›"*ä§ŻîIłîá˜užœ«j%…q %7EPÄ͔Ąˆ y†Â#žłŽl+)jÁŻ•ÆŐ”©ˆ يȚGŒVR/SȘ"*à˜uû©ĘŒ ˆ­èVQ![Ńś'ŒȘ•ÁÙĐ/EPÄրžQ!wSŠ"*d+ș7ETÀĆĐ»"*äz*őŁXö{­€źVôhŠ ˆ­èŃQ![ÆPD…l ˜Irłąś/šVR[Ńł*ąB¶ŹŹŠŰ°Ș"*à˜uxæzŐJ ăfJUD…Ÿ‹ŠŰŽșUQÇŹĂ”ZU+)Œ‹)Ur7„)ąB^Ą€Ź 9f]ۗ8T­€0nŠLETÈ#”\A!ÇŹĂEaˆš­è’A[Ń%+ąBžŠ4ETÀÓ°GNŃŹ źĄÔ©ŠŰŠnUòȹDŽŠŰ0š"*dkÀ芚ç©LWl%EĆGU+)Œ­ł+‚"¶Üß°#‚"~Ž:J7e*ąBžĄä€ 9f.ÏAD…\CéU±ʛ"*dk@ŸŠš€k>”š?Š5`ŸûŃJ c+zTETÀ͊ȚŸȘŽ’ÂŰ0—"*dkÀʊ ˆ­èŐQÇŹĂ„U+)Œ«)Uò0„+ąŽYçŃ[)Ąđ⏠îŠ,ETÈ3”\A!ÇŹ:Ê8낭è}ŠD+)Œ­èRQ!/S–"*àe šEq3e(ąBž§2]iqËl˜Ö·Ì[îËPA[îozȘVR[ŃûžVR'+zÿk%…±5`|k|<€±5`dEPÈù:”|}”r*ćŁXFUD…l ŰßŃ4Íș‡‹uł*‚"¶ąçTD…lEŻ'‚"~€‹YĘÊĂ1ë&~‡›f]p3„)ąBžĄ€„ ùče¶îç›2‚".Ą”'‚"îĄì3%ZIalE·Ą ùče¶âșDPÄՔ„ˆ yœÊx+ÊE±=ș"*dkÀlŠ ˆ­ł+ąžVôȘŠ ˆŸąfŸVRśPÒ„Šx™ÒQÇŹ[èZIaÜBÉEń4e)ąrs·Y‡§»!‚".Š,ETÈVô>ꬕÆëTÖ[yn™œŁ©ˆ ÙВ"(âaJQDœ­è}Äk%…q9•òQŹ=)‚"¶ô©ˆ ž€C)éŁXŃû}żVR[fVEl ˜Ep”Łn EPÄVôšŠšÇ©Œ·òÌșvá[íÎYg\LiŠšû©ôČL™Šš€ŸYŚp "(âjJWD…J %]Š ˆg(č(‚B~f]ÇI슕ÆŐ”Šˆ يæ/ĆRŃâeJUDćæłźcë"*d+ú~Sߎ’ÂۊŸßÔ7­€NրûÙˆ ˆ­û„;sÖśPFQElEß§Ÿ›VRg+z>±5`ETÈր} fÎșàgÖőŒ]­€0.ĄÜ_Ÿ7­€0nĄ”źŠxš2Q?łźănźŠ•ÆőTêGŠdETÈ˔Șˆ 8fËȚŽ’ÂۊnY±Ęș"*àn hKČ5 EPÄʔ„ˆ يžUò°Ì©ˆ Ùp?±5`ETÀӊ^SòS4nűjZIaÜL™Ššg(9+‚BŽY‡SŸM+)Œk(u)‚"î§Ò?Ê „5EP6ÛJŠ;Šš­èę@+)Œç©Ì·ł¶FEl ŰSI+)Œ­è™AŻSYo%[ögÂ[f­ł)ąBŠ ETÀÊȚÇȘVR? À-Iˆn%ž™2Q!OSŠ"*à˜uoŒŽ’ž†RȘ"(âJˊ ˆW(l>gĘĂ͊ž]±=§"*äÊʊ cÖáÙżˆšŸŁn_}ÊèV‚{(%)‚"^ŠdETÀ1ëš~šœuÁ5”z)‚"Ąđ”łîá˜uœ•Ê腷Ì7Sš"*äÊ>%Ł•ÁˊæżTŽŰ°†"*ä§ŁžhÖŻPÒ„Êf[IŃńĐŠ•ÆÍ”©ˆ yœÊx+1ëxi%…q „EPÄÔ„ˆ y…2.EPÈÏŹYż˜uÆOŃ_’i%…ń % EPÈÏ-łŁhžà–YăJ{"(âJŸŠ ˆW(++‚ČčÇ-łK{Q!? À%1ˆn%xœÊx+ÏŹx’BÓJ ăÊț,Ż•ÆÍ”Ąˆ yšČQÇŹĂÓ šVR[Ńû;`­€0îŠETÈ+”ęŠÚ5ëŽY‡Ć'M+)Œ[(©(‚"žŠTETÀ1ëšŠäŹ .ŠETÈ=”=rŽ’Âx™ČQ?·ÌކßáÎ[fŸtBœuÁÔ„ˆ 8f]Ç©M­€0.ĄÔ€Šž™ÒQ!ÏPæ„ 9f]Wó9낭èÙQ!śPÖ„Šx™ÒQÇŹă·ęZIaÜN„}”aÊRDłn` wÍșàJŠ ˆ{(3)‚"^ŠETn6ë~Cł.žš2Q![ŃûeA+)‚cÖńفVRgSŠ"*äJ.Š ˆç©Ì·łnâXŐJ ăJ_Š ˆ{(뉠ˆŸđ ^­€ŽYÇoL”’ž…Ò›"(b5`^űl6xËlđ3ëæ…ƒłÎž˜RQ!śPÚ„Šx†ČżuŒe6ű™u“_dÎ:ăʜŠ ˆ­èUA!?łnŠ}Q{ÓJ ăÊȘŠ ˆ›)SòS4îphZIüÌșÉoWŽ’Âž˜ÒQ!śPű߯Ź3^§ČȚÊ3ëfÁéD­€0nŠETÈ#”ùDPÈÏŹ›Ÿ‡gq eżŠi%…q…żĂ˜uÆ3ț4qËŹxÆŹ›û#(âÊțźS+)Œ‡)Mò2e*ą~fĘl“łÎž…Rš"(âÊțÈ€•ÁÏŹ›<‡Ș•Æ%”ęr9yËŹńÓ,VBt+Á˔„ˆ ű™uł«HÌ:ăJŠ ˆG(”+‚BŽYǓ’ZIa\B™EńSôÀ„ÔJ ăiJQDłű@D…\Cٗ i%…ń0„(ąB^Ąì—É[fƒcÖńòż©YÜBáρł.ű)zâës­€ŽYÇÓfZIa\BYKńÓŹ7hZIaŒBáρłîá˜uet+Á]Ê~Ú0Ł[ ^ĄÜł ČfĘĘs¶s%…s“RöOłs%…óć~ۉ Yłź\ž"Ń­—Pî7F+)œ{(ăREü;…:WR—J/Š ˆk(Ł+‚"~ŠÆ[œÎ•Æő …ԋŠ8›2Q!? ÀÛ+D·ꂟYwżúEśÛY èûaqŒn%X èx%ą[yű™uÏpê\Iá\BáQ†YgŹąïïўèV‚Ő€‰5gˆ~”àgÖ̈́y’8ëŒYtœđ°šÎ•Î,úÚù·ÿÏÿűoțŚ_ûț¶ÿúë?ęÆCO~è?ÿŸ~ÿ—_ű\8ùxÖzíf<ÀÿwțęàÿœÿđûÿŸÿßo˜ăÙó0ò~śÓŰ?ęáśÿțûïęOțßțçęûßüÇ_ś cŚïkÿOüïț/Äż+ęțś?ÿïÿú•ö)îÿćWۗƒN\$ó _AL\Ürÿț+łí+‹ő}ÚvâٙżúnÄ}R­ÜŽżŒ™ž<áWßïf'Ÿ·ÿ…‹pVì‡ö5k8uőC{BàÔí›ú'žŚőkî•(8™óCûŽ&ΞüĐ~öÙ}æäț;ïùŠûšË_kÿ&Nlü”öŠ‚…›]­ęUćˆę”öóŚŸ†ào~"{(­œ"äÆęIđç3Ű};èîGâ-|/ÿƒû…'+ęJś«çÏ›$p_ázÿŚțĂi?!đț+ï‘ȚVӅ‡țJyżf„ ˓žÜżO)áŽÖȚ§ïżvÿžSȚ;gïż¶îkÙŻâ)áăÎï« ïżŠìmiśa“2˜ [xSÁ}qżÒœG«țŸ”¶ęșŻ OXUxóțN6áÉí7ïiéŸc{—›hÓ}5ĐțśŽ}Éâû°_śÿĄüüû;Ÿÿá}Z<ÌŸGß·§1Ć{-Cš•ÿȚŸ”țęëb3úțą -|-ű+ኟ|íGłÜŒ?Zä –~x?æ='|ŐûĂû«“œń€ÿȚ·žçŒ{è„čWwìçûÏÏę|ȚÌ-?ŒOf>ᇶÍű™—düJk/3Ù7ÓìÏÏQtÿÚâąș›śYÌ}!xĘoùś7FwęùÚë]öÙæŽy_‹xŸ‘ÙÇfŸöŽś‡òûuèŚ]èęÆàÂę|żrÂC„đàflqHXIöëțAÜg. ûa\Ȗđ _9ceܚđĂxúHÆóx?ïï~iȚ?ßû·wZ–}òëW. [qqÉï+x”ß;à±|èÚÿ=lŐƒ_Ï;\Xőko-Á°Pž 蟎ČëŻgłpcöŻę„5ȚŒ¶ÿ|‹Ûöż·=ŚçęïÓͱ?ߎ7Œ”śeà‹ő}üï+žńœ]ߟ:‰Ÿ§}IW~NŰîkb ÏÙízGӇùæ9`<7a7Ç·Ń\ôqcośŃńVwìzçÔ§müûÖŸ‘|żęÜ?ŻUôjƒßÚOÛĘo öŸçy™ŽOś9ŸęŰÇÓżäĆèČŁëżóĆ(—ęŃ4­ęELêû2ő5śĐțÓ~Ę'4ê.!M­ƒëû"2_§ÿčWAęÁź'Uòöx˜eúgÿĆúƒqț Ęgçÿ­ó}żÇ?Xâ+Àț[ïö゜üŚĆôßüùŸùAÿùo~úđï~æćïżú?țŰÿÈÿțx_ÛuOÜ}ŃÇ_ęĘïÿôúĂßüӟțüÇÿś/æŰïżűĂïÿáś?ęęÿńÇżțóțË_țçßőïęÛżÚÿÙÿŸż7ț·țȚüÇ?üé_đ—Ö}”ț7țÒżę‡żüiÊïżűŻ?ÿßőęKțeŻÙÿ?ÿńïđęÓßțőÿóÇűûÁߖöcŒößöśÿđ§żüęŻîêßęőßțțëüÇ?ęük&î_üü»ś_ÿ~ęÿŹZì endstream endobj 177 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 183 0 obj << /Length 2814 /Filter /FlateDecode >> stream xÚŐZ_oăžϧ0( Ł1Ëż"Ùv \»‡W-RìĂĘ>(¶œèΖ|–|IŸ}gHJą:ÉnöŠȚ‹E“ÔÌp8ó›Rtqł ‹o/hxțőêâr»`’™óĆŐvÁ„ :7‹\ćıžÚ,ŸÏòćŠQJło6?žÚn_ÖĘrĆ-ËÖMč]2“ę@)_WŰęéêï@Q/,±9ϑ ]Ź8'šrOêê¶\ź„2ÙϧąîȘîÁÿû©n–\gw5ț”YŃú]DœńÿÎÚDœ9Ś„©$pœ á É”ê'ÜÇ%“Ùfdșí„(ê/ÖáöĄ­ÖĆ)ÁȄ±ĆŠ1b•òDȘș+ .•ŽK••]ŃUM}‰ï‹ìú„âKšUę9H–Úr{Úù>ÇŸ”+@ÉfÍ}”wŽühŚ„§ÓL󓼋ëjç” ƒÍÖ?§Șv2Ó©°mUŻKż•wKÉłĐŸ-–"Ï~‰zlTu ç8h‡’`ڌ;î~mì·ÌN=‘Ó„'șiÎČáč)q .7~vș»ž\»/v»Č ÄÚîX­;ç€0vhÚȘ«z;tł›ĘÉù@˜юȘm0ÓPć}Őv­ł śżÙÎìù»Sœč‡e<» Ż€}ś,æZç‚0© Iźj€M“‹Ï±ï.ED»ÛśŠ›œMIf€Ú°ÛïÓ>'Ä0ăû X·3'˜Ű.:Œ•ÌČw ŃÄÚÈű(M›ű ’RÙzčRÙǔô`đTNęâîíŐ1”kˆ]jP»Äđ•kí¶‚é*ĐÀáÿ&ˆuw[:äòRK‘"ÀùŸ:íęÀ±èÊÔNP [1Źk.'9”Ó‚±”è"e;g8±~j‹m‰ĐŽí]SlȘúÆO]75xNQ a0fÇ)#č2Ż5jăxśŒĄ)›_ ™ÂòàžyŻŁ'vłè§0…M%Wr˜ńç”-ÀêYŒq+idö·mJSœˆ\ÍV9LŠUő&©oÂèÀđcŠ XĘèE°6!8„ŚMy(á§î0e€­w€)Œű8Ą±ohBkĘìśMĘśnÊ]Ț…č)WÖ ńb‚—ˆçsș"4źĂ°òîXu]FAźT „D‚©Müéÿ Őxÿ‘€#K€„˜ ązjæ3Á L‹fœJúüqú2ŁąGŒLK-@‘±ÔIG‚đÀÎH=őb[<ăƆ@(žw‚)„ƒó»“Ïv‡Ò-”’JŚ&†kHÔŸšŚ‡Sœă5€T€=F̘gBâòs•ÇìèSjnú)vŠ"rŒŽĆș;©zBÀêÇŒ ópê°çĄ–ÁFœAAôyQ-ĂrŰŒüÉZF­}o]5°9; æËg˶Ùí|ńćă‰aI˜PÆöX»äYYua<8±ƒČÊ ÿg߄5AûŠŹKˆ"Ͷa—RšXHFÉÏùŠz™oŠ_Ó7gaÜJęt(€œ6wÙÀDáŻô㯷BęÌ 5DΞÀą]Hź—‚eźÆknÛÓȚí3țŰșô>œÍŸ6ƒĐTúžíÄkgQV9jö>Rć“ƒÛÿ d‡,2”Ü&N =>iKšPÓìæ\žhI>fTë4kł`î1Df§ĂÁ9c.Čëjßëʛ\ŽÓZ˜Ś»a4!‡BAÌo!2ÎŒO‰Xsô+t5š“ÆisśwЖŒ””mŽ €uEzêł)ÀUç búÚÙÍÄôÍ(œvć}±?ìJÈÍÍł*”Hš'3GŚgòOêłOf±ÌÆ-ïóO”q’&"?#ăÖ}LćL€fšÎ#Ûhj`Xùs”Gfu©Î;ûy7ćiëŒ6ëŒłÙBjù€‡#ì$‹ ÆAłö™ć»*H±™…}u5°/Uzț€Æ°“=êÉI!,úBZ Ï|R5H>–Ÿg2EˆüëmÚb f€’=kTĂÖp~ÿè‹dh(’qÀ†ÊŒÓßžŠœ3ˆN­őG«Đ(ïćșsGXÔfż,ĄÎ*v§08Q‡û_Őë ”‹…SŸs/wˆJŽ.„1šNçÇ\^ÉïŻ.~ŸÀ*“.Űph/(š°ZŹśn€X+Âș8w,ۋÁ+đ,{qŒY í{¶?fą€ ›3ekš^Æfró0IÖҁÜŠ]bû‹‡ż XÒ>uÇíȚßlÉzWT{?òÖ? 6 ÇïƒÚC/č+đ,0=5Lăț•„źšˆ3G·ÁězD ,1 !&cCá‚T…Ëęù ûägPÂò\»í|N_sO!9‡t^Gސ;©üÓ`šmăûC.Đú~PàGî ”śœț§"7ìą+<ËûuÙ¶«f»Ú5m ㌿ȘWȚŁ ‚”)`žs«+Mcú2•țZ†âMŹ ÇŃC±6{hę«Eètú\Ml+ä…Aɉ ü̊±lM^[IiązxiF㏠ę‚ 5™ß,œá±œöŚj4lŸW€ńGöĐy(Ș0oÈ󩞜­^Ë Ő@C`‚îŠ š•©ÇČûr“șžłÂYËë„Hi 0ÒgźŠgŻ#ęe@;;ônú;TÔ°Łx2,íOœÏ–"ì«Ô"ùgœő릟ő›çÎúꅗšH=číâül¶3*Ńękêž@ÁŸèž _tLʚÔ>˜ÉíóŁ"A6:y&Ąăáí§m«H{/ż«Àł/+F1zÌnażÚ ˆßđ–LK°UY°âàŸŒMæŒżșű/ŽÚÒ# endstream endobj 193 0 obj << /Length 1050 /Filter /FlateDecode >> stream xڍVYoÜ6~śŻÚÍC"Ć -ĐËAúÔûæűAÖjŚluUGČțś™!©]iœ© Öpæ›“Ă™„Á! ÁûzńeđŸ,`2#Lè@hN8KƒąŸùś†H!ÓÄ"€ÍzžqûĄN‚ßڛżàïÒt<ێÆÙȚÜȚIhą%—Áv°4#™JĄ(áZÛ]pȚ™ĂÔGiXF1Ś,LȚE±,üyśś4ŒuٌŽ_Žć>bYű‰R^˜;üŚ}öSSŒŠmܩʻïűä[?#(Ÿ }>–ŃĂöUƒœ(a’CJœ(:Ûö —‚•c^wU聓äá4˜æ€‚ÄûÄŚžÊ‡aȘ;ô98Œ mÄUű9Jxè±_Ìűä@]é°íÚóʉmЉ1dˆ0!:IàˈNSá0őyS€5AĄ*Í ŠćÁł oĘyÈśćűì˜U›ïlűxŰc‚ˆ°y Ç»Ü%ő‘J JÄ’/î u_Ț†KځŸvs r{§ČEû(FRèêő"Ëž(‘1†Œp%gśčD€9ÁfÄœCʚTJ“@!U&UÈź™‚òs‘ÍЇ+¶R੘Æ'ü‰Št(矣œôŰvóá#ôßœ_ŸŽUŻzŒœłUŸúŒ{?ìĆÿŸ]쏎ú!vßč”°đǍă=cuN 汳BÇűn čÒčȚQś^ÎÖ9‘+«Ț‡W‚:Ź<ȕ‡ț©]û€‡ö+Œ-tin^$à9ę{șëËÚL”;üèy^6uŒè„Žźdü}gÂA°Âżéú¶{ăÍíûví‡zÁŰźŒRYÈł)đ%*ĘÌĆÊN”Ț,L­Ì ˜‰Ÿ#îÙÌgšŠ':“üD+yæK©VfÔúŸ«vĈ\tÖá«­ ó@ăœ lhÜX˜`qBaÈűœLŹíŸ}û˜?šÊà\^n/|Ü2œLseÀ@€Św¶>àűä8ì°j˜‡Òö%ź* f^6 Ì«/‘à0I…Ÿœ‚]Vćl&eš±ìóŸ7Ÿ­BććŠ.g5Ü4HUnjϫ۩‡«Ă1ÓLł+»ț5#±Űkkmkw ŚaC!,”3ç%3Uv›ńÌ/P”łJ‘WÈĘvA Vv…0 ZiÌèϘ˜ƒș-|Ÿ”șćt±~ęËí'žae°6Bńpæ8w(ʋe#ŒßÊft\;Й kˆzpŹòX”ĘèÀnG/ ÖíàeƒÁŸ%3wWVYŻ hrű –ÂÏAžL\ԌŻ@°/Ÿšä€ű endstream endobj 190 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/risk-015.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 196 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 197 0 R/F3 198 0 R>> /ExtGState << >>/ColorSpace << /sRGB 199 0 R >>>> /Length 1160 /Filter /FlateDecode >> stream xœ­WMOœ7ŸżżÂG8djÏűóŰ ¶R«6Ź”C’CD@ÁÒQóóûÌŰ»ŻAb„Xíłž±ŸùxÆ&žSÜ”ûșüćŸșÔÈGW„bt™ ;n»û śȚm—ŸȚęö֝œ-žŒśnț<;ùż–äț]>|rȚ}Y‚;ĆßőÔÀęŸ”@E\”ÄĘ.%R Ę,„’Ż{TqZQ€(+*”ę5YV$ÔVżV(đï‰Ûe™`Š'ŰšźìB`j“oÈòÉJ00Sš|9QźŹTWŽA˜üä+‰ŰO°’L$c 4ùÆšZaĄ:‘Lüä›"ń`*'’ÙSš|łP™̙ÚDČx “/ú…§KŠ8‘,Čžà«&ž2Uï4±őššrÓB*n’ -R6ܘmˆ”Ł 'ŠÍ1UlżVՐ’źöìŐè8#>o8‘Ž«WVŠ+ű· !ÉN<êÀ†ž i‘LĆE’P;f,T'l4GòɉŠÙp!†ż Ÿì<ńJDo0%*1iĂ+Î*‰UE§žQc'šžh|…|FEl=fbű'Äoț±™Z”žv>‘Á7!ߏȘ?¶”|`Ą!^ÜòǙ)€oÆy¶ž“ŹžÇ›AŹźTŒÀ Û:t\»±óTÉȚp§ZàŠœć!ÉÎOv>ôœŰűő|CŃčóíù‚Šk±x€ăą3JăMÊWTÖoVi(’fù ˆí?ì›N!ͧèyąÒVVy(ÎZÍżÏ†›Î"Aš«­CʘFZŻdț*o­oéőè»h}ł¶0Ł©?ŽjçŁq1•eÛÇXÒiÛíŃ(QęœÎ#ĆQżڂ‹áąB)=_’ŒŽ&í·ĆlČcl?$JŽ„Ś{$^0w:_HăIĐŠ­ăŹ…nœ>±ŁpVßOՎx9ę wFÓ lžiâ…„ëKȘ]#š¶dń@ï .”ŠâŠcJÓlę|ŠŃÿqÏô[ì֍:ŒqîìÙzGˆšÇò˜Á»őgƒ>röNCS;ƒ'ƒŃ4{ŠÎ3é} “ÁÛÍÈŃùĂrôpŽ«úWÆÍŸčthđ±Đ?:ÎÖÿŃÄ·čuGX:v›ë旍íęČs@ők~âÍxCâhÉÙ;ŸȚ›u>ež_ï-çü”y=À·H™™‡5kęí4^7ă%eb’^±gëvKKr]Éd»[p2àțšŰ 8ŽŹî :œ §ÁLqNÀő›)˜NxÖò¶ùaߌè0ü0C‡:Ű_ïh Ëî?_ï Twț‡ŸŻ—KŰĆÏÏ:`hv‰Ÿ§Șϝ€źéÜĆŰÁż]|ŻŃ”ŒÏZÔpPy`žăšÄ{G)țüćúÛĂăíĆöѝÜ]\^^_áû‚c{JáTzÓ? aÁâÓG.qu~śńèûÇăĘŻ ùćy’ٶŁTєâGȚßęswìȚ€űŃăŐĘöó ț…čÚ>|Ïż}Țž_r›Sc±üTȚ™‹ endstream endobj 201 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 209 0 obj << /Length 3145 /Filter /FlateDecode >> stream xÚĆZK“Û6ŸÏŻ`ùÄ)[4ȚÚòÁÙČłI¶j“x.[vƱž‘HE$ǞżE‚%ăT.RtŁ_7€’ JŸżAțÿ»»›—o…LtŠÉĘ}‚)Í€P‰à2#”'w›ä}úĂęíŠ šVuWóă±zž„$ÍwꔫöeëÈüxËÓÒŃo>šșŹ» úęvśăË·J$eTal'ß0Ș,Gfćj0ÁÒËBÁ6)„ę(HsűƘ â@è$ł±ŸÈ(!Q‚-“ŰöĄŁrźBádÀĘ8Š b&ą3s;€&yyb;|êPDXùJ|źÇÁ ĐgÔă>ąè,Sˆ&«‰àČÛF#+‚‡A©±Ì4|eŽ[r1șCŠ­E„śÖ ÿèËșxtŻò¶íś‡ź2>Ć<7śźg·­ZŚČo6ćÎ‘ź „›òŸŹÛjœ+_˜1L€Ó¶ŒĆ$}že$-Uśèú»IVv„(ôKnfë„rOlÁí`–nvîyí=Pߖ›S æ`»”ŠÍàĂȘĘźOú#H‹§‡Š-ÛÌNŽYŠÁÄÜ ŒȚ6ÇźŻóź„ù0°,1%ÓĂ6oËUśx0Q‚©Š1pŸæh]ó6ż„Â3ìZŠfï©źńÿ[ß`„ßœl«ș(Ç.ÎyOW8˜T~ŽČ 8ĆZ#Ç „F”qçŃDHGțúęMò~E©J_·ûŸmËÚ}ć=ż6»öśÊî"+|`Ț Ö¶8Ź™ÏŸܚę‘cÛč‡vÛÜ™~rOĘ6śíU=ޔހÀÓ¶UaŽyüç1ß Ăț«ô!"Š1ÿî덉u gAœŽ·pMGą[0 „|æm|Q*XÔ·b-Ă0•vFz>§ €ÒxšÓoŁÚ%ÄIG+X/+6WOùŚèuÚ!€sctÓ~}ÏŁZ)˜tZ°*O+ú%¶hXL} >AÍOU·ńE4€Bl‚ëŸÈq챀œp]F‘ɀګ˜șÂ."%ąhl\™wăĐ/_Dż+€Ż Wæ~ę™Öű„Ì  9St„JELdàÁ˜°à–ò śPe”ëčSŹŐ”ZűËçr@',œš™ő‡S­žfHzW„Ëò‚Ú€à˜ ƒœŠ ]Ÿì~ät'oó<:ű~š§‹Ôl_Ńž'T‚ €ç^k·'Ó&dÇtȚ@è…LDl;PaČ+Ă|ÈЙIŽ>8źö°MӚBqĆaŁißĘBd/cAYț.ĆQˆ€âŽ‘eÔYR!§Î’*šææ^ĘőûÚ59[tÍŃ=[_b{ć»kxëpRë^@6‘ûWïšüÀ)A2PúÛÁë©2KˆzæêŸíš¶5AüY„ N29¶‡êc]vÏî͚ ±)»ŒÚyÀżą Îńƒá– ipŒo­Ë@ăÎ=Œ;|Ț‘ôuœ)V›—îdxŠ;Ą[wšé<îd.ŚY„ûaJAÍçőŁ#.Ç7 ¶Èēâ[“2hÓ5Ü6©eœûZd 2NÎ`dV/.§7„éizcĆłqÄBzoțTzcŠŰ”ŁNčÛ?,l2ÌimÂC±†””Ș?:Ò§È0@Ÿ/]“‡ê†ŒćÍz–œ›g7DŸ¶kpĘM N$Â~Ô¶«Ź­ Ú ·Ô8țż ùR°‡ò (SŠæQlÀœŽ€ùˆôțfąłeìK!ò =[ôæ„_yÙ7ÁŒQPžąÙ_ŽyNRő•_đŽpqˁò#Űžă6Æ7$ț‚LMXY útˆČŠù%àPE‘ič7^4Œ$Ԏh;ĄhY"S@ę€Ûtçb§s±‡š†âŚP‹ę@\ÍÚé|ÿæŐli٧€pz Ï3m§.zđ„F9ËŰư,tȘԁĐgŃ }Ò­‹7ÀŹŠĆq Li˜ˆĆ _ŠH=Ûżp><Ú-Àș±ÚÜGĆ© 25cœqȘŸšMšÙä“Dïż±AdXșx‚–^wŠpÛ@Źâł'§=j1íč`_’ùÌĘ*&Aæ Šge'ü’·1–$Zï3é·,?)Ošê‡èĄƒb<đäuŒÎ€`ȘIŻ“Ąê/= Ł‹@S§/òSű öç)(u~œnê뒶ù.2€Üiÿ›(țä&.ËȘŻ^Hz.+LÎ`ÄTM«(J`J†Úì’5Á2neŻ'ĄŒ°XOÀqÉI6'™Ű@ÌĐq,_†ÏG|ÛÆœŒäüZŽÏčžă•ęR’Oéć$?€‘W,›/gwà>)žB[đò;„gČuë©y#ČÈG9ÄÖ„!æő܍9ˆ±iŹlŸCnűùEtnšMOSížÇE=Č#7]ÙÎtŠo{wìÁ‰–"ÌD~ČŚ'êČűœ<ș3wĄbӝ{^—Ę'«q6+…óˆR“5rêX(Êá,fˆđ!3Œ›ŒâȘ"I˜pω!æ+„)äîŐŠ4»S—›áÈŰƧ wÍۘîiiô|QA™1Š ûh=©šŸ„ô§-ÛÇc4m}ÛR`Ł)Là%o: Të§,»Žƒ ĄY€l~†Qűá^Çű{‘ú\óÏx—œ}óHHûù‹zŸmŠâżbÙû…H;»])$\9ˆđÉí s8ąM™PÚZœËÀûș°úŒtɏ>ïŰW1FH†Çë\:dT—Uòąëócl$ ÇPcëœÜ SsfŠčbËę°fÛŰŹÿWZÿoÌĆÓfÜ#,aFŠÎç™a*Vƒ…Đ‹GścJŸvÔfè;‡hƒqèŒ(f\-„Țqźóu”sȚÜâ0·N(s’Ž-¶œk[û4DUWölȚ>ŽĂʎ]߯ąbS'Ù/T9O2sçC9(aæÜùiŠŒ”ĄÈòsQ:G{^4šŐàM]^0íïŒ,'w ÀèĄtL$š”ŽÍ‹ P &‰ĄTé\±’,•*a„¶ŚeL]dsЭ黃­‘ÀŒ'ć€ö8öŸĘ/kęì"Æá°«NĄŽžąûTGÌŻ#Ă%=Gž-·„š©bTÕPŻL‘Ù)RÀÁȚÆ<ƒ5ęÇ­Ä. Ś{UŐvzÛÉGH[żÏ ÿń`˜Ą5H€[Ś Üdä#ŒÌLi_§ÿYß•>TMߎŠÌ=«Tf~»ś­›Ü]zb=ێeS‡èŁ=”EeBŽœĆÉPW6äôž’yžVÒ[35ŚŸ.ÆÉ XL2;¶îá“=„š»qôÒœÂnï )8“ˆ\Ê)óöŃ\Nq sÉÔŃöńÓbߘ+B†eŰÛ{Ź¶Ő ÄĐUę`aÓîÁrhšă±S˜zż!Țw9ôŠŹ'‚±nźÒ•ua«ćûjčÍBęœ%@BiÛć’ÁÆÉ閭!ʅŚŚ.Â4F{ÈpŚ8ČȁYŠôpŒfnÈY/M —uUû[lŠ!źžLe#œ~6‘PÌeC^%čœ%Áxà ń ’=sb1BÓS aŹžYĆX y6êgôDO~Ł ^ â€.“èBĐAÒç{˜œȚÜĘü56˜ endstream endobj 222 0 obj << /Length 1603 /Filter /FlateDecode >> stream xÚœXKÛ6ŸïŻP}’›áC€€ Ù E/mö–æ ”é]ĄČäJò>Pôżw†CɒWŽ7Eڋ9$‡3Ăá7™7>\p?țtuńòÒÄAÊR#Mp” „R,6I`tÌ€ÒÁŐ:ű^ĘÚr1_*†UiˆLžËšÆ6Hë°œíëlk[[ûjCë6[ĘÒʶZۂśM^ȚĐj‘7mC«śyëYWŐvêJŰùrő3Ű»‚„ÚÛT‚ą50*fĐH$Yąđp]Ïuh±&=°:ČO9û@ôËË$ž@ò˜ ­@ĄS޶;â; H <ÓbBŽf©Š{)7Ùv›MÈ˃œŹ\OZÄ$zQ»Ûöqg§dE,1iÇÇæË(UáǍś’óâRIÁ”Đcgöźžș†dZőÊgś6żčm›Ù„ú(fÆÈŽ3Ë$ 7Ő.ćÈŒ€1Ł_}€ĄwĂ5Çƌž·ùC»woJsÄŽđ<Îô<+膂s&R3Ÿa…IEűŸ.2‡ çš€6Žè ăî6kìÒ9ÚÍ3ŻéČj‰hö»]U·v ąűÛĐp7dˆ€:|$Ÿƒ;ˆ& ê„4őÁdîGgËêq.“pU`àbæ7KkŚv͜ ±4ŠŒÓG30j /SŐ\Æsè©83Ûî ô24·ŐŸXœÍț°ÄÓvç·YKF f‡êy!ôT”8ż+Š)ŃûÆ8"h ö&"=§„ g*9cÆcŃAíÍT|r {8Ó>?È(†šȚdûąĆ‰ ïæJ†Y±·4˜> ƒÀ-“N^œï˜ž&Ę ą‚ČÚe^ÖÁ† bmđƘ!„_áì6]D,<Ž•fpí1ČK,r]ŒżșűóoÎŃçs„5KRʶnƒ„© $8 öjl.~…#pˆ%0ż zú·'ڇJÀ,pö‘ °6}КQMč^ •jW‚źęvŸÔœ‡»&'âő’F|ÄĘȘÈòmCkoh˜ÙÙŸÊj6Á€‘†gëŹ”Ł /č˜ ÚôÈqŸć-Fü)mOśO*SšÌAgBßàÚĘź‚Ohwł/Wm^•Ä„ÒśȚ†f_ßćwˆ©ŠËwż|zïŠêȚÖŹÍò1ËĘÁSęEy†Șáh§¶ÍűiDüH@M\⏀XìîOiÌ7‡ëŹîč} ŽRšB4ÜôòlŃŰÎ@MD‡„î/û1GŚę{ÊÖŚ¶ŒËëȘÜBDżòB„ŒŸŸÉÛ©#TkŒÚbmšÙ)7|_<Đò3Ì-8é 0›ÂÇ=šżŒ—…"‘cî^ƒaœs»äț&$N%Măi:œFI S5iŽö"%ăBWÔMcÁÔû_AŸ@/hjˆ'EŠœ•±–À•Đ4eB%0M;ł€ŠĘsäč$tœŚ!]ąs KdLj?ĄĂĄC{‰­1>ݧ‰kXÒtܰÀÜ5,°ĘȚÏ#VŽ8Hś ­žŒämĄwjœ4ß™č~ öńđÒ#rXè»č/#Ű:”P«łșÎ}±ŁŐ6ßÚfáéźÿhrWš[š­Čącź&{SxđXŸ)ŒR‚çąAkxČPĄ<ÎÍžP ©`1ę~•êHKW©ž©ç|©RđQ<.Uç*ÓtuQü_Ô«ź*ŸÙc*^ŽöĘûˆČÚÓòfÆPùúF‹Ÿú†’‡i(țÿ‹šżöŽ>±†șœKÁU‹ÎiRD2Ńqś;pČc]ŠžW N™Ń!5éĂ„î^䫗˜š}ÏŹ>qfŹęï«Ï·fYĂÒ8gÙËŒ„ôó8B„˜ŠLìû]űĐșÏ]b2KŻÁ %­f4@ƒł¶"FüÛ·țŒKUŽÚŐsHÏŚÙu^ämî>QŒ ŻU8ä%R>™lé üĐ~9‚Wú„[”ĐZ§4«ŁBźPž/ŠQmГIű]Ÿ‚±łédŠĐĆH­Æ™VĆ,ßń“àHI—hŸ§æ|žűŸƒ4ăźÇg»FD} F*1gšlLSG-,|òÖùƒËâ.Èè^€à]Èą/cO/±?ÆłìÆsêżR/v”}ÏzîT?Ł–rèƒUĔöeJDNdw0ó”nî| endstream endobj 237 0 obj << /Length 2374 /Filter /FlateDecode >> stream xÚœYësÛÆÿźż՗‚SńrïGgÆÉŰn›L'i4әÚț‘…š”Źÿ>»w Ž’üh?Ű8Țííîíă·{'š­2šœ9Łńûûƒ/ÍXƄ FÛL)N˜rÙbsæˆs"cŒȘd¶+łëł_aì"Öf»U6ŒÿőæäüXŠ)ìXАŒæž+§Śț‡Ëło^[—9â4ŚÙćuƐ‘°™V‚híČËeö6ÿËl.(„ù¶Ű‘Ćșš6ílźàś‹đYWmśŽ*șĘ5W“œžĂ]ѕÓ]~¶±‹ÙûË€:sĐĘ)5yWTĘdÛyy>Ę êű`SŻ!ʜ,,pVEYĐÆïÊjuÓ”‰)‘‘„úƒR‚8i‚RŚûzŃUM6àö}ÜÜîw·Őm±žxęòçß^E‚usWîHWTS’?ő'"G†Ûnoșûm9–őfR+ cÂcùáN`„97B 72‚ß87šiM)â$i~JžÔ"RRă€R&Č0Y[&eV§ç”a©Ò0nŁb$öÔŃó§ÿ]YßV»ŠȚ”uśm<ßGÆ”àÌú}jKŃu;<æĆ9Dv۞Ÿbę–œžÛWőùlÎęȚĂçžçÉ|ûæ”6ŁdÓÄ b4±V›"TiL"”ëż71«Đ„ŽâB+~žÎÓÀÇçœʃŒߔuÀă»<ß4Ër†đƋĆjćózćœ‡3>Ă0`ôąlÛđ ú$^ä,‰ő—MyŐMŚ3„<ëjQźïĂžȘÁ> ÿkôg±)gŒçw3 Ÿû€FrÁf°<ĐmnámŐìÛ0ٖ}…âFæM]†Í‹ąë‹fłĘw‘Cšlž>©U™íÛyJS_FčRQŽÍ|QŹŚXR8ÆÊòĂŠšÿ܆ŐESßúŁŹś1H`Ò{ êĐfż.ÂÌÄ „Fà08 ò=öÂĆŁ»C§TŠB…xkNz–?—)’Eïâ őuZAŸŁk%u“ EŠą^ŽśĆ4æq)ÆŒ'ß4û:J™°‚W‘|YÎOś+ÏŸk D”á‹„ßgfHgçX/?‰U2!î„bĄÓi·˜ y<Ç䃋]—Që2öR j˘ï'àY1tSÆŒŃ *óĄ5úgdąÇL,‡Ÿš?ÓšëĐŸöœSŠ‹ J;–ÒwÂf•ÀRG€t Îvۙá痩jÛ&șq>žŽÀÄMáźênż%ôźE„nh FƁ„8È['ÒpőZZÀhóáÂ)бx~ÇFy!†Û„%Ô ­#ü8ȄÖ°(Sq8±*6;,ĄvZ2]€Ę&ôsDÈ!OÄ5] :4ƒ+Ìá#È‹ĄI•sËr[˜ÎȚ,Ï~æbsȘ@K{Tc*„i_ˆDŸ„țfW]A5X†ÊüŠK‹ćuÒÆĐëĂâÁIĆ«†[©~őÄ+À KG>ăöaäOLŚ#oÔțDTB(łƒö›”LGŽÂòEÒp=Ć«'-đ6ÁCz€ŽSŃĂR‘:$‰„߈ê}ÂB ŒÊQą)ŠóËŰJ‰C·„Ę= {z%Xš6eŒ#@fÍŃÉŃuyÒӅŠFUŸ«Âqz|áœ8ˆÁ=GBĂć8uŸ¶±áêS°uŸâ2ÁđPˆ8\U_$ÌÈ,Űqđ{„ ÜÆÄ(šS:9ÜząŚi„ìD©ŻuŽț09€4błĐĄHź‡Kàˆ&Ö±©SînʀG‰è†»ûœțÏ ‚ÊŠÈĄ †JČ żȚ”ÍŠ(\€d0êˆRòIX·'š„Š°Ă EșŠŒÊŚßÒ Ćš'y䎍Çó‡’æ`\@Mç9àÙ±ÎS‰pësöőQ<;Í>+-&‰Ï ïfu_ Śx%=}xÌ@ Ê8”" Čۜœ}Oł%ŹÁ5…PśÎSnȘ…@‹źłßÎ~ ïÓHƈv.ățąê©SZ+@?+Ô! ž9d‰[2†Đ„uúPÀĄZ *š^üžmS.Ž3ń(NĄęÒP٘… ÌÌc* tçö(PíQ J Œ œă“țeą8@Ä8țóòț Ç©;Č6›” ێàûjđ/ˆ1я•Œé°űa|«˜1™/ۋaŽś«7ĆLèüv4ăŸ‡‹Ńókł`ÏŒòÔpxČ=2Ł ‡xöąê‰îB~•ì>Ą»àŸŁvœrCLyŒŠpöŽK5P†ż«™đŸ©Ž=&‡X‰^}'zÚIșcЉl‰êAČÎ `l]4ˆpîa­w”üPŹiòJí@hŻ9›ąąÉP„Ú%=ÚöÆ ”B ȘÓęłăűš9főŐ|ęŒáQTĄOől_‚“öp+Ű>áX˜C虯N*lĄo B.ü-—»=‡$žp ÄïȘ.JÂô” öC6ˆż endstream endobj 248 0 obj << /Length 1357 /Filter /FlateDecode >> stream xÚœWIsÛ6ŸëWđÒ)5”`ìKgzÉŽv“SÚúÔ4˜ą-Ž$ćˆdb猜aĄDÊtÇӎfxxxËśàì6ĂÙćțqF2"5"ÌdÌPD‰ÈŠzńa$“‚ŠŃgŰ΄…óŚ”È~Ț.~ƒß°”xźFL_]-Î/€Ê 2’Êìê&#Œ!%uÆFÔšìjœË/Ümż[ŠŒ\źščűqčbBç—;{·qE\ÜȚıÛ$Ș»ĘÒäÛk{í*Ś=Œ‰dŸë]Wl›Æ8ÜôMŃčmóOŚžÎÙ*NZiEàąȘo—ïŻȚœ_š±&*@m‚ŒQȚ“í}Ź9Gš€y(,iŒA8Wyœm;ÿ%A+ ^żŃșź·^àö @łŠŻËĘaż\š\2šÛ*F6^3żÿ8 …8Élç„&ż_.@ j&‚Ă œ#‘ƒk#Çő¶)ăJßșæÖć92œOđÖ6—`9ĆóïęYLóàÛąß”îă’SïfżzłőöćûÊąćJž_m\:Ò·œ­Ș‡Ńùœ c"X»¶óÎ}ÇÄ+țŰU Ä悄żF-3‚ӄxš4Ć`6 Òc"Žšâ"Læ81†qJD0pDűț¶€<€!•Qˆ`ÉȘ2ÒŽ}±X2`‚óąŻÛÎ6Eé‘AčÎ_•ć?”mŒÍ=ÙŰș~E柏ÖiŚȚĆđčw”íÊž–‚('ĄćÊÁæœ}áoĄ†äćœ­ïȘò,ÎȘȋEe]?mœí›ź“]2™hÛqxkŁS·s–„˜"Fäc/ÛV $"Rć|Ž(zŸđ”Bűà)]·sŚœÇ[R”ÛŰ€«›Ë`-„ÒàVˆ9źSŒÌ‰#Ł3ș©©nœïq|?ÇĆ#}ąä2“ÿ4نńž–ÌáĘ+?↓H„ŽÙ@"”‚11€6QR:wĄB܀%b8"űeńËŐšÆ0 3"Ł’#Á”Ż"ïȚăl {o e1`đ)PÖ„H†pŹČ? =.6+!  ŃэÇF›èùÌʁ–Sqdű‰$đA1ÒZí­ÀöVP’Ć…‚2Ú„ 3¶ZA…*Ì|9…\Á#„mÖI8=Î mÈ \=ŸĘ4Ę'źY0`ÿč€$& äăș±†ÒC!Ùó“ê#Hóo‡48A/É€ UĄ`ă$ڟû+.0EžwĄlrïÄQ+H€SHą^’HśD@YÌ(€E|2z2 ~ …OÇâ‹XŁŃ/ ć‰âa6|„ ”U[Δ}Đ-ő|SŚ>(\™}±aù€~FÂ_܀·ŠLâüąßÁ›%5xÛ ohGpțih©ŽÎŚe7ĐžŠŒÚ„§Žń=œȘ]_ÇùÎśmuáCÏ[ÌwH‡ÌđÉu›ĄeŃçă~1\Ï žìțź,șrgĂ &mŽe‹sŚÚK˜RȘ`X·qhíMé_€ț»ÚÚ”ž„IxÁHńwțù$†nÍŻčŻ|ÓODŽ"Ï)§tźlC0À퉩 É­žăEâÇđ•čoÏæ0Ò{ŠwóÂŁŸ^xÈt€!šŸĂ?;šr”8Ét”x=łóÀXąéë“úÆÇwâ(yÈ äÎ%ïÁ endstream endobj 225 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/risk-022.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 250 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 251 0 R/F3 252 0 R/F6 253 0 R>> /ExtGState << >>/ColorSpace << /sRGB 254 0 R >>>> /Length 1218 /Filter /FlateDecode >> stream xœ­VKo•G ĘżÂËdQwlÏs j+EjUH€.€EĄEM”€ EÿŸÇžčá#…ˆ+u‘›{îÌńűu<#tFBWôn{Bïš N™šqÎdYč)é\”ȚÿIżŃ›íûÛ§?=ąÇç[â”í?Ïÿ‚_[Ą¶g/(Ń›Đțź6ń ôóք›‘UáȚèfk™‡à˜ÂIézkS'3àÿ ™ô3gpSq`ăšà[f5Àƒi7–æĐxÒŠ\»ĂƂ@ȘșwŚp'±Òblń‚q„ź\3©áŹxpRmnX”űšŰb]*K%•ușÈpĂ 3s]•‹ ‘#.î—ÀËÖwî…1Á,°)'VÎÖDҚ»ížł5`]öłpż"'±Ž@P8©Æ:ŚśAâĆ \„ű‰ę%{ŽęgÓÀÍáŽ™Żšž€łńÁp«äÇJŰ«•ü…[ùl‰|w;űè'EŒ«„ęV9Ă_E>ràÁ|äwƋÀ;âEšf>; ‘Æ1ń`q~ò°€‡șă‚Va7$Ò8ĆùŁs_Š»qœiB"^Ô«ŠÀHüEY“F ÎG۱.â‰ö6H-pæSó4;ÆđQïìńxctÄ łëšĘIyńš:ń„?–8#^žùP3.đmńȘU/„ă4ڇŠvŠôk6Ż#‚ŒêiźŹĐóĆśjÀ„çJ 4!SÀˆŒtoyšȘĆÁP * (6pÍ»ÁaçÜF–êź…P‹NBĘĘźŐî3`ÈâBʰ9V)ÔmàBĆÁ…Đ)€\|AcŁê3]8óŁGÓ8lžÀ‡čž…zŸ› Ú¶á°NXčT‡9>‘új\saƒÛÜŸĂȒšč:ŒŸ'툉(qź‹:QŻë\h9ì+í>Ő0;Łă ÒÀDÌaʁó€ĄWƒ°rp%6CwG}M#s5‹Ăî%ł’|jôČ„–‘RÀR6E€ó WrpŁU B PĂtŒ9(!ăÜÏæ*F€yŠÌ bLÀž?0F†őž;§WîíőPRÏłEÏęêù?n–yoĘĐČ?á5Ńùœő‰­źć5aë î7Ìr·aÂʆ%•ÆwVÜč8á~ĂȚé»v]ŹœșęBŽn_árțS.^“OČč0?&źŃő9ŽuqC'é”.ź¶.ÂòĂTżąP«O\9† ™ŁE?‘őČOš\wd;‚ì݇±w;CFÛȚírGžÏ$Œ60hoÖŁ)Ÿf©î­Çu3ŃnÙïS –Ăú‚» ~/!o‡ î7àÆ·üiÄ» ˧Æœ‹ûűwA·ËÆźy„Ùìțböd î.Œ¶IŚăéîžT&=MWOCZôz4Ęæ oÒûçĆ_:ĘršYšłæ oł˜Ö«űÍaś-Z¶Őœù^sˆw±!?9òóì䌜§è:yûòś——Ś—€·Żéé‡Ë7§/èâìՆ§ ȚˆM›=ÿ᳀Ő“æĂÏb‰Qíä_'—I.ÿ!Çœíäç'GÔk±ŐìüțÚŃx…­V{~z`?Ùț˜h endstream endobj 256 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 261 0 obj << /Length 1484 /Filter /FlateDecode >> stream xÚŐXĘoÛ6Ï_!äÉÆb–ßÁ6 ĘšbE‡a©ó”öA–iGˆ-蒕4ûëw)Yt”%Š ó â}đ~GȚ“u‚“w'8Œoæ'Ż.€J 2’ÊdŸJŚHšHĄe"™/“ëÉo…Î8Ɠ,-<±¶{Oʚ"ÛçeQûéŸt#™dćvŚìƒÔМR5čŸr:±•ÿŽ(›bdÒbé‰f·[_•Őôóüę« 5ÜèŒp$ öyáùŽLFLâÒZƒ·-Ç',đˆ2ŽšâO3źEEZˆgаSsÓńÜçû›éŒ2€Èë5 (ă^ï2ŻłÊîó?ìˆvAÛÀVÚcuÄ %eÏł^WvîíÏyœŃÆ„8pŚa»ć&Ź>wB'oç'_N°á„$„10ĄA$"Æ$Ùö€]@ư„PŠVIe“ŐÉï R€~R­“žŸ|śäśĄÀ[’c+ŒÀÀŒÔNtÊcœœ"ŠI5D{~œÎ†ă†>xâû™Qq§g·KaR:òë™gàĘèÎE WUčőÔ~ÀaÁʐÁgŠaP†FGù»éÌžőzow‘@g`kś7ć2Z:ʔś¶:íNç±ÊȚż«ÿ«m‚x쟌ü»8Ž_t œ_cȘ+›5UßÙÓ§¶KvÛ*—vƒV•ęËŻm j«<{‘|mï"q8sÁí]U.b<^ÉgzqĐÿÔaùB‡Ż^àđł7û8Ą!i|F Ż)æśńSYUS1±őź,–y±†§Í°j”Sš0-±ż±žŰUS3)é"ßäûÿ­\ù±jò"Ô=0NșÏÿcUD"EĆżU‹hż—Łìœh‹ź#|ŃuœQ 怹ƒĐUbWÒJO»Ęڶ-T.7#Ű2’.N‡ *čn™/òu3•AÊ1đű áƒÄșJw7yæ<ü‹JD%EB‹žQê<ûv•èÈJW‰^hçùJÄŽ3ŒD{WçÇčŹ;žęŠ œż3~˜ő á°țtątêŻț‘úăêăŽÔÄȘkûĆIueBtÄâ!șęâ­Ù"/–NQ[ë"Ńź~gA}è)ŰűôæžAšžäÁáș»7­ rPÔȚΑf4ȚȚ59û !$bˆÄĘT3űčtM2p©2Ž› "•aÂ$œtSF ÓŁ2ü ƒ„€\ËȚ,=vFźĆ@4kźfՑLgGdˆTBô{ĂZ+5*Ł2XK{ °P’ÊèĄ †ì0ĆÍšŒÊœőSÊ9 ‘EF? ,J‚óœFŒąGÈP+ç}/„ùá8žÓŠâȚTwŸsçùo¶[€ż`Yč‰ öbÓŰçzĂÈvWĄÓeÜ:Ì/ŻȚ>e[œ~‹ú͇OO(\țéÉÙd›Ț†OmĄpDÿZ„ćŽü›ČËiX*;]śy}cßbÊ떡-QË&kû„ÈôÈ3DàÙi8ŃËZAè S—<}ńr- …^,1.©sgPăuˆú„]ÙÊ™­ŁąűB o…©țˆŠ3†ÍäuœmêÚ~ÖÖvF RSĆ'ćČÜÔ·9Lž`Đčçy»ÛtăŚ}XûI^xU^ßú/€DÙŠÂÉĂ9|1j’čšÀŻ·OC“nÖeOámži ÁŰùȚ*ÍnĐHśC°F “źsù„š›*tÀ(€ŐÉŻ)lLæY>ț<âmVćÖ}Ü ©!};Ô^w㜠ó‰BiWü,Ž@J"~”àJĐhp’Yç1Œ4°żw€K5yÆ7ÖȚnÓf’@~ł±PcïÚfÌs”Ő¶ȘÍf_bŁ4‚Ęvņ„  S§]3ËnÛT&Bć>|,łÜș&vžú:Û7i•Ûqž(4QâW cÁz ĆçDS!€tæ>1€vÜà7ÛWhŠDś§Qôv,lF endstream endobj 145 0 obj << /Type /ObjStm /N 100 /First 880 /Length 2286 /Filter /FlateDecode >> stream xÚíZmo7țź_Áő‡ă’ĂśCPÀ±›6À][Äڞ›ŐÚʋ€M%m‘țû{f-Ë«ś”€k€Ț6–ˇÙg†CiŁ…ÚĄ•Ç3 RO/È:ĄFăĘ)aĆ“„óO/‚âïAŒŃ.Аì@' żâAî•H„wŻE <Ü`ÍxáA:€9qw ĄM„(ÁđôÜĂœèà˜ś@BoĐđhDÇ|0*)îÁ’C–.%îᄞBĄčÇ҄žH‚ÈEpŽ‚L„ĎÀ R“gBüx4JB➠(Z Š#‹ą%(R'F=xè C5ŁYʈFâž$Œ…8€”0ŽeÇȘM`5%h;òÒAgf'ŒN`(>¶z7°,˜ öEXôˆ'ï +0S–-P a°Nî!4<Ó8Ű#+ Œ`čÁĂŠÈ8BçŰg4XO0;l(Š‚•GežÇĄá̀`ë‘Ű(`ÜŰkđ± žźŻÆ=; œ V>Lj',$&ËjÆđÄK·VÀNőàƋAöȘžÌƋ"{«…|JŒA;°¶툄ê¶ęőڃìç>ü»,†ŒłŸšć·§uqSÎĆ­È~Œ~%Č·ćçčx7À'žéíŸJ|ÈïËAv…YËÉ|ïŠ<|œ)gu3-ÊYëïmŚ?Ëa•żŹ?‹[žÂĂpCąw˜&Ÿb,f-ʂꔞeähețù—á3É4HhhҌFKQžꎞźŽ] ¶l}1ŰŚç,&»œLj°șmaŽeыX›ș„d7͇yûțjòqœŹ§ĂrÚNĄȚeßeŻł«[ĘŸ°P۶[ VČÙÀ•eЌ FČÀP%Ìt—­fnDömę¶ĐëWwŐ}3-„č`ÜE Ł”LޱĘJÏPÉDŒáNÚžUˆò·&ŸWőD’Ô]Axßá3œö}–<Ѓ?ș”€…žś;#ÿ2⬍i„0.I¶œ!j`„% —?@LŰ8FM^àï ÌÊ;6/‰Țć]ŚïzàZëűűèj·áCvÏmÄÖGFˆyNŸäN~ӝŒ9źŠek;ŚùŒ_]ÿ ™?"`Û °«‡;żœ­æ#|y#ŸæŸ~­Š™űĄ™jæíą†MQNù+ÜJȘ‹Ć\5w]ŹźŽŐĘqîԃìû|Ìß^“ÏÊvKČïÊŃïćŒ*òAöÍ€š‡ŐäŸÍ7:+êÁÒleù·—őhx_ßć{óÇűC=âŃ·Ùë«+ț0ÏVûï:ç{»œ=û©š\NfŐÓçëêîźÄònß"‡ÈÆŐ€™‰äłßšz^ŽÊ»9ŁF6ʱ+łY•ĘOóßË,/šy™ŐŽhÆwŁòs6ŻFĂ2çĆŽždŠ%h0$/ ˜G6Ź0ĆŹšeđ5,ïČ)æÎ ŰÔh”/;m&śùŽòfžŐśő€ü˜9ó›}ʋrĆéü3h…6°7#Ê$iNű5o6ìú ¶šp^ »ëILZFJꈑšJF› Č‚éâĆŽlæHCOĒh6°$êcCsxÀDÎÔO Í8at‚"N’“=€űҚö| ~‘Y#:™­Q±šæ„Œ*y•ő{E§DèUa‹KŒq) "ˆC‚}€0lC‘úûÈ*태y$]ö“ó0w˜’uÒ!ȚOÜŠ'Ä}ˆ6Iç Œál|?1ÇÛÔË$ÄvčÈ2DźčË)qw5_?ÆWÒŠŻ€Ł}%ȘUù Äb>-ÿ7bq‡o'šr ä(šžzŒA<%>P$‰1Ž7|ÜÁ“2}ŰwŒ±ëx•žW]Zl1{bzÚnGœywÓtèą@7Čv¶+™űjd”\ł:-H„uŽàbMŽ ŚĐ‚+I, ’žvńt‹§?kÄE0Ó`휒\ŠĄhțpY;hw»œ›ÙʜŒ©GłŐû€Ïx!“±i)[2ńöA™ŒBP Yö*œ—­‚Ń"žZöȘàżˆL\°@"ò$!>ÿÙ"­¶ź-9Ç$Œ’àÓ!ÙLûËAÒz]ƒ Ź}h…–\:ńÖî'~D › Y:ÀÙGIÈ çȘ:öăÌ5Šä06J†¶Òï%ŚAûT*ș‰QweIš+źš–opxm¶àe ‡G*`ÖÙ*Dށ•€ž…•ő‘~n”sggëńìŰE>思Ewl@ E żx†Ć3.žG0Z”ĄÉèĆsHŒ9gőÙŹtp,§9Äłę$©`{ŽŒtŠö„îŒŐS‡S6Pá(b‚Bîà‘pXHĄśăŒĂ™ęŒ‘ÁYi8ßČQ:)1òàĘCQIï†á—eùqœOȚûxΐ= cx†cN_Hr„íGalpÓW˜Wőt܌òśß\ȚœQ($Á=ÉHâTęgËŽîS©=Ö(Œű– ŃČœë5^úxۚÏx-ôHs–’X’‰‹s=%9§‹#dzŐȚRKǏ„â ç-D:tAČ^zá›ŃȚ‰Ä*í"7ĐˆÊ†ösn Rl˓ȚÆÄißȚbmÒbG-ÊàäŰŐˆ™Łă;$?Ú=ïæo”&ÓMv•0W2n¶đ”EH7ïF©çĘè–@jì_Żłžo={æÙ|߉óÿŻâôFżä%_ő1kIʊm%œŰy»țű€ČŽ}°A<žmŻä<óŠŁ{é D>6‹3üsw„xœ!. !.œő—Đ?”? %ƒPđÎwńio„ÎŻoŻWę·w•öéÚ ¶v€FÛßxqxó=‰‘iuÖU¶© endstream endobj 269 0 obj << /Length 1318 /Filter /FlateDecode >> stream xڕVKsÛ8 ŸçW莄f"šQ${K›&}$;ÙÄĘËfŒM;jlŃŐ#ĘüûrąÔ=t€$Ù:#Ùùy5Rű'Íh„0ć:ăšaFE¶Ű}?ÂŻDvŒ˜Őű]Ì>m«ìÔężQUŒ6‹Fß͏fg•Ì4Ö«Čù*ٜcY©ŒK‚™–Ù|™ęƒÎêőĐæÙŒàL êm^”œ  —3‰~ä%C¶*Ó,ădŰíFٝšeç+—„ę}2¶ksÜ]^PdîêMĘ?Eč[Ʊê&ÙN6–¶śŠ©DÛș±Ëüßùgˆ° k!ąĂCW7ëŒ`šąwÖ>lMóŠ‹Ë…kó’ ·úÚ5QŒòö†ÁȚȚO‰GgžŹ2—,”-ĂšĐEZż·Mo+N+tiM7ŽŃ%Űbś»ì*§ ­ìąïąÆíìșLłH›ïrNŃÓ+ fùmèú-œ gWE@ħ”NQč%„-갗‰ź$ó‚ngÚpriŽmçš(ßș„Ę\fgrB–JcB%€ì~p a0œ5}œà—‘LsôÒà¶^ŒNX=K>=ŃœS úI<œŒćò–±ȘÔÇ1‘ "<œÀŹŃX‘dà=>ő" šœkôôP7Ç^ Đ<—%JÊ+€Ź~žće |‹R,^{čß€ÙæNŒH,)CșjÍ@1pZit]w~ŠĐüȚșö)J'œđdŃŠIïÁ’óZE{”=ˆ#Áb$űXŠȚߛCë8|4›M‚ïÂ5KŚ€ŐșLŸ}șyśg’ą€ŹdJ0ûҌàRœ‚:Š&èÔ6CĘÇ:IJpÏ"48yÈÁȚ•“Șƒó<»ć‚zȘ}Ź'›”Đ&âžycșçBZ6ź)k{2QBócÏÔ ^ębkăš&J2UbßO8yeŸšwÁ A ‹ÍÒűò4Ă^BŁ[ ‰.»¶¶I>Dy[wƒç#û:1ȚĄŃ•u˜+Ïő2m ù9ĐY!©T%d«,èïÔ€šÉéЛf ǕJążsÊtàhÎʰ±}҄4zéeÒ^ŐkëÆBšôK€ƂìkÛjH“žzÎ/Ž“J tÒDóŚqۙƃYÛžŐâ'Ńd ”•êEcFÔ–Î7Á…=Ä,.±R{|vCÛÄ2„±7ĂxÓÍș}ętăVęZùAR1è\JMH%·D ô86GȧòR‚–źö-Ž’Š˜ȘŠËÙ·źĂ„ \C/I± ©œ¶‚ŻŚ1Íž ś~ YNÓësžëŐËl0Žá-0:vßś»îíl‡cŚźgžpèu Pœèç–ó‹î@}rٔq=“C_ĂÈŃčmï~]ÿU…‰*ǃxyQ…čŰśZx ŽțfpČŻ5XȘńEÂ0NT…Äž7ækz€I_Ò?cρMœŸșÀnvț™1Țùq°ËúÒc1M./-UÁ QIŽfŸâ…ʰP=€CÁ†s©šlú0?úüœäá endstream endobj 258 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/yw/mzfqf1qx4dlfkg7dd4fjrs4m0000gr/T/RtmpaOuVIS/Rbuilde0247fbf51d5/actuar/vignettes/risk-025.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 271 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 272 0 R>> /ExtGState << >>/ColorSpace << /sRGB 273 0 R >>>> /Length 1603 /Filter /FlateDecode >> stream xœ„˜I]5…śïWxIÏ֐ AZbAX1ą4"ô~>çTÙ·Ü(Bz°Èë>}]śÙźńKtŸ»èȚžw·ŻĘ;W§ĆőìKqč$ߓKsúšÜ?čoĘo·žŸùìcśòŐ-ű‚ÓÏ(ŸŻ^~…żöêțŒ}śœ îÇ[tŸăߛ[ä2ść­GßłË-úŃĘă­?ŁË±űȚÜÛ[> —đ#vÈ}Ș.•á[ą,Ÿd—Rń‰‹Gś-žȟr⋻‹ŁùQ(ńçêbO>Êîcr±#d Á§éb™Ÿ5Ń8/ŹKày©›oĆÜč!êéGt15^tL~Â>?ŠèæcsüŠèés†–sB§ä+ìĂđIuőm@WšQ?°Ę|‘ïËÉŰc›±Šź>7q1òú<|în6_e‰ŸV7ËÚL)<n Êw•ÎżÏÄۃŹđl#L‰ë,·Wć‹kś%șăÊb\X”Qž¶LG 8Dn±5Ț=€^j—Û„_ä{CiPfÙdÇn«ƒМžăê3„.ɏ@Yä~GőłS&±ćÄ6ˆÄYrrXŁ›œŐ—IÙd“ž%ŒČòêRˆŒH9o•‡H™łHl^l“<…ĂrŁ·$fÍ"ƒÈî»Ű±„śq@ÄđY|š"őiś)SŠSRt„ì*‹w(“ÈÆŽìșxú™DÊ6 ÂpŠ”M–Æ(Ec5!ˆq4JÙdMô€ÜFȘ•ï€ì"ïŸR¶Ń’ČÉ&onž”•#ŽÁp€”/Bò6Ù€x?!yG>ä w(eHȚ(›Źr"ü’ë!;‰R6‰đkó™iC){Fò†rÉÌ܍‡Ì>«mÙű‹ÉɂsIæmy7ÿ»);|e¶éct„š—;ŒYĄJ;ŒÛÆ9–[3ś#€ĂùÍè·ÛZÇ àÇ5eteöAúêÏ”ÇhžÛc¶yt”ę|ÉsAë,@Ś•Çö'ÔÍœ`ÉsA‘>z-Py.@mEÉ»š<ŹSíç!Ï+<îíĂă:QÉĐŁP*ĐE%äü{đŻÖ} æń~sô44F5Ow›'ôLjžï7ǏŽÏ^î7GESóz·yN™NSóöÒbčeÆh,“ŰŠ‚-qZ­ÿw1â„j„íš]Ęqș(»ápŒąńïOżú/^đŚëû-ÿVâè9•ăć+sÍN +#“‡ÂJA”~ÁJFd3ă7ŹÌź»Â GŠi°"-e^°Â1ovƒŽŒ ^V8~*,(ʰ6èhœ`-LGü+˜Óu^^°2«ŸÁJO:ŚnXi…C™Á & t7Źhœ0XáXš VH%Ą­DÌžčźˆY5^ákc0`‰˜§ő|J,1ĆKŠ,‘ł1KŒUjă†[ŠéE-n-Ͱ…0–“q ŻQí\bXłÜ"ÂÙ †.y”§± Ę€xąđ‚ëïÙàN•™sÁ ÙmŒàłFƒ—č‡j…ÄG/á€Ÿ0Œ ‹ÛŒ@JÔ,x!èuƒÈpÂË\“ÿ‚—ÉIÛàeІ—ĄțÙđ24-xOxékò_đ‚©”đ"ođÒ€G]đÒžsƒ—Šê†—Šˆżá„qç/ßnđR5G6ŒÔ…c ^ê"Ź/uQ҂—ȘÜđR5Ó7ŒTMí /0ŒTęO‹ /U/vĂKUÌßđČxsĂKŐ<Ęđ"1p‹d„Á‹”ƒčIƒ—1žÁËx/â_ƒ©]/„/§/ę9ŒHđŒˆ ^„U ^„U ^„U ^äÿh ^Ä)/í9ŒŽü ^] ^T^đ"Yfđ"èjđ"íđö7hUÁÀ endstream endobj 275 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϜ7œP’Š”ĐkhRH œH‘.*1 JÀ"6DTpDQ‘Š2(à€ŁC‘±"Š…Q±ëDÔqp–Id­ߌyï͛ßś~kŸœÏĘgï}ÖșüƒÂLX € ĄXáçƈ‹g` đlàpłłBűF™|یl™űœș ùû*Ó?ŒÁÿŸ”čY"1P˜ŒçòűÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeđäÜ'ă9ŸŒ‘`çűč2Ÿ&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đÒ/XÌÏËĆÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ĆÌ07#â1ۙYárfÏüYymČ";Ű8980m-mŸ(Ô]ü›’śv–^„îDűĂöW~™ °Še”Ùú‡mi]ëP»ę‡Í`/ŠČŸu}qș|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏRŸĘïćaxó“8’t1C^7nfzŠDÄÈÎâpù 柇űțuü$Ÿˆ/”EDËŠL L–”[Ȉ™B†@űŸšűĂț€Ù薉ÚűЖX„!@~(* {d+Đï} ÆGù͋љ˜ûςț}WžLțÈ$ŽcGD2žQÎìšüZ4 E@ê@èÀ¶ÀžàA(ˆq`1à‚D €” ”‚­`'šu 4ƒ6ptcà48.Ë`ÜR0ž€)đ Ì@„…ÈR‡t CÈȅXäCP”%CBH@ë RšȘ†êĄfè[è(tș C· Qhúz#0 ŠÁZ°lł`O8Ž„ÁÉđ28.‚·À•p|î„O×àX ?§€:ą‹0ÂFB‘x$ !«€i@ڐ€čŠH‘§È[EE1PL” Ê…âą–ĄVĄ6ŁȘQPš>ÔUÔ(j őMFkąÍŃÎèt,:‹.FW ›Đèłèô8úƒĄcŒ1ŽL&łłłӎ9…ƌaбXŹ:ÖëŠ Ćr°bl1¶ {{{;Ž}ƒ#âtp¶8_\Ą8áú"ăEy‹.,ÖXœŸűűĆ%œ%Gщ1‰-‰ï9ĄœÎôҀ„”K§žlî.îžoo’ïÊ/çO$č&•'=JvMȚž<™âžR‘òTÀT ž§ú§Ö„ŸN M۟ö)=&œ=—‘˜qTHŠ û2”3ó2‡łÌłŠł€Ëœ—í\6% 5eCÙ‹Č»Ć4ÙÏԀÄDČ^2šă–S“ó&7:śHžrž0o`čÙòMË'ò}óż^ZÁ]Ń[ [°¶`t„çÊúUĐȘ„«zWëŻ.Z=ŸÆó”„”ik(Ž.,/|č.f]O‘Vњą±ő~ë[‹ŠEĆ76žlšÛˆÚ(Ű8žiîŠȘMKx%K­K+JßoænŸű•ÍW•_}ڒŽe°ÌĄlÏVÌVáÖëÛÜ·(W.Ï/ÛČœscGɎ—;—ìŒPaWQ·‹°KČKZ\Ù]eP””ê}uJőHWM{­fíŠÚŚ»y»ŻìńŰÓV§UWZśnŻ`ïÍzżúÎنŠ}˜}9û6F7öÍúșčIŁ©ŽéĂ~á~遈}͎ÍÍ-š-e­p«€uò`ÂÁËßxÓĘÆl«o§·—‡$‡›űíőĂA‡{°ŽŽ}gű]m”Ł€ê\Ț9ՕÒ%íŽë>xŽ·Ç„§ă{ËïśÓ=Vs\ćx٠‰ąŸN柜>•uêééäÓcœKz=s­/ŒođlĐÙóç|ϝéśì?yȚőü± ÎŽ^d]ìșäp©sÀ~ ăû:;‡‡ș/;]îž7|âŠû•ÓWœŻž»píÒÈü‘áëQŚoȚHž!œÉ»ùèVú­ç·snÏÜYs}·äžÒœŠûšś~4ę±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~Œè!ùaƄÎDó#ÛGÇ&}'/?^űxüI֓™§Ć?+ÿ\ûÌäÙwżxü20;5ț\ôüÓŻ›_šżŰÿÒîeïtŰôęWŻf^—ŒQsà-ëmÿ»˜w3čï±ï+?˜~èùôńOŸ~ś„óû endstream endobj 278 0 obj << /Length 575 /Filter /FlateDecode >> stream xڍSÉnÛ0œç+t+X WQÌ-FăÔIj±€ąh{`eÙP#‰–țû MȘˆèiöáđœí"Ę^3rž_\.RiŹS–Fù6ąœc•fQ*f\Fù&úŽqœ0NŃœé{§fÍËò©1í‡ȚE*lû ‚l=•m}úÖvqBjÆÚ„ČeëóïBÇìí<Ö •㟏{0íÆGæ!s=¶›aș€ÄM5ŰźŸĆ?ó»Ë…z;żÓh”PŠ” ÓßŽĆŸší3TšWČ[/M1ŒŠ«LíÍŸšÊ¶(}ŚPa˜d0;ttchŠŠ7„·)öòk,%Șê2ŠícJéTÀ#EËő|ć$ z§*IŽĘăïh‚ÿ@HP`(>¶†^œrtä}=™ł2ô)x'ùĆŽżË.Vއ˜S†nCF˜»nì€O@ˈÂ<„Û;źŽFŸíx»‚&™B‹.†ÇmăCÍ`Œ6Űà)‹*qĘĘ_NizÌVëӟ €,2>=P<‹ô \ ęńÆ7·\¶{ 1á…["xë/5”œŁF«,Ą0]đHÎÎÓĂa8!;©Ńá. ò-țàPJŁÇČ»Ÿ‚-‚ö9‡©_bΐ©Gă/Éőp ë€ńbkšȘȚû’)TŰæÙŽŽRgmȘ~èȘ_‡cìńÿĘÉő:_źü%ÌÇș.‡Ș=ÁC*1‡<ŸÊźûÁäLŃcŽ"M±Ìt”Í0•Â7 ú(é&żx2ł Ï endstream endobj 295 0 obj << /Length1 2737 /Length2 18340 /Length3 0 /Length 19717 /Filter /FlateDecode >> stream xڜwPÍ¶%nÁĘspw îîîÎÁĘĘĘ=8ÁĘ-žwܝ@p·áżśĘ?čw朙šąêĐkś–Ő»WwŚGF€ L'hbgłłuŠcągäHÚÛÙ:ÙY:zZ°Ò)Í\Ź ïsLlpdd*ÎÖÀÿÎ ŽL èèdagËő·ż°#ĐĐùĘ"bèüŠâÈz˜XL\Ìì\ïfF&Î9Ú9rd-ŒÍ ÖesCG{ ™°œ‡Ł…™č3àï!€Ò˜ê=‘î=š™ dhoșZmÿ-€ÒÔÂŃÉÙÖĐHoműρ€™Ą…5œ± íÿ–‰éŸ ÿœȘÇ;5ëwü§·s4û?EČĐęÊț/úÿ–áŸKPÚ8ęc àbìdB4qĄąÿ77 c ­Đàbkt(KÊLßś`ęOû»3@h t|o„ ÀÈ𦩉œÓțUŸƒ‘ƒ…@iîìlÏĆÀđWœé_SôNŠô¶@gȘś‹ÚšÛÙŰmà˜&ÆÎ# ™…-Ă_©T<Ț92L€ŠÿÄȆΎîmFzFF&ă_tß[abgkíńÛ]îœču%!-šÿFE; ÙčŒtL6FNÀ'6€Ïż'U0Žű/RŒż%mMíÿ"oâbÿŻžțSxʏ đï©äìœß{ üœk:ŒlŒÆï?LÿŒțáđ?©çŻŰ?eđgÂÉè_ÒùÇÜßêù#ÿCFÿ’Î_>ÿ©žżBèuȚëüßtó—Ït„ìÿé,ęŸŸÿż3ó?ž“ÿûé`s±¶ț‡ )ÿà]Ž€ÿàêBÌĐÆÂÚă‹yùOOuà?‰ÿw‰”ÿȘ€łá;+A[3ëżMNbî@ gcs€©Ą”đŸvŐżcma T°sČűëą|?lŒÿ1§bnale trüŚĐÖä?ˆŸł7±°50ł±  =àß33À‹ `ńžÉtŻÍ@okçü°wqöyï #Ü_§ˆ À ű—韈À ü}0ˆüFœŃż#€Aì7b0ÈüFïYdÿFŸ˜ Šż3€Aé7b0(ÿFŹ•ß蝙êoô^AíoÄù^ÁđoÄúžó]€@G '«ß.ïäțFLÌ Ö@Sç?Ìlÿeț§<ÿfú§Ù èüoțœ,Ûÿ#àœ9Æ#¶śÚÆvÖï{ú7EÖż,66żI31ŸwĐäű^ű;ĂûrÿVęŻy—śłő/ Ë;™ś”6Žù#Ë{+Lgyś0”pę#í_Óv.ŽŒ»˜ę.ò>oöŚ{ üÓć»ùwÌÜĂȚhû‡Ç»ÍâűNȚòűŸYVÀśæü^û{ŹÿűïùśVț±ąś+Ÿáw)¶ś\¶ïăwȚKÛșŰęő ˜ęA‰éœ]vżIżçŽû#Љé}Ąöż§ßkŰ:mÿmłY™țËúï[ÍòNÁèű~śüáÊț›…Ęï e}oŹœ”Ë cz·8üNóȚU»śĘÈúŸwë­gz_Ęï l! ëg{wwzȘÿ.úÎÍéęÂ6ÿ#Ć;”ßDßßgsGà’x_»ł›Ęï9\ț€ïÛćú|ï€Ûçç=ÚęűžȚăűȚeÏßäȚ3yÿYêß.1cÇś6;ÿăiżáț…M-ȚŻQ Đh ·ôĂΘ;ŰČ>žăŸVύno’ĘöÊG‚äÊu-ŚWŠc96éˆ0xÎȘššÖŽKŹQ-ńeűÙ”§¶ĂÏ"Í}ût1el ò§Đ‹+cváŻC}ÜÓt€I` .fü@5ù§\ŸŽ:ÁŃhùìĄârEPĘš2ò ìÄOŁŸ†ÛŒÚ jÌłź­TK>ìöʆ]K" łŠŒ_fű%Š;țwۉJŒ±Ć *ągKDfț !jŸőaP–ayˆGČ ÔüI{Ù©őîJ`mIfZ™6äŽÈä–ăàSdÛP·Đ)‰hԛÔ{ÏüqíZ°#AÂ1 °+€—ùCqéúŽvÀ©‘1Yą”°pŚ!S˜NÊÈÏââV ^€ü^ȇŠP?ÎH$y&ń–uæËÔO]/lÉl“œLL"6Țä4±ó91©PÉłÀ,-áŠöŽqő"mȚšąĆr„Ú'uǂ5šąMz\á…6ÎČ çp0LŠ„ŒZ–=čŒv-‘‹nÀkáĘd:ÁÂákÆsĆÍÜgvßÈ„íHv5èš‚*̕B—žfbLNˆ2„vPX8tș©čÖQÁ+„ç#ù6‚žÁ]s:ôdÜ» ŠcEáRȘ°RÒoșÈîF°)ÖE0˜•Ž© ó3ă4jVÄô/`Íé:†Xže8AiĄËđ{à¶ŐŒÆrsŃČL–†¶ÊdDń›[ÇčœÍ°óăœ0yß%ń{€»§…[™&êI%l8ëŽr–©ö8ìžĄ7/æaężșŸD'r$­ŠÊ4ąxJDæ4Úë¶c»Ç6țńÀț*D%ą'~©cÛąƒÉ[ščä˜è»+%I"€c°é~WÜ0`HZ€șÁg‡çGYëtï"œEM }›”ïT•޶T’Ć5”*5<§œÒió[G‹ôhőu:öÖË8őMw.°t‰MՒüĐDžÉNR drÏL /'1]zțéĐőՎï2žLD&o¶8șbGĄO5„ÆçzŸ)\Ćç{Š Â ­_‰óz|‚ËșĆJ]’_Čù‰lT í ™¶˜„ßm„ű ɞx›$ȘL*`4Ę$rè36ò9îŽÚG…ăW=VCȘ{śŻĆ­Ć!ûP,ób`…Ö–ëÄ_ǒ!ĘYűjÀDĂutÎzŽë€°Ü e[ï8'íŽúT%“d0üF‘^!ÁăÊ} űHÍFÈîÙ}ôâë#Őè’|‡KŠȘ`}è?îöiQ“‡PgEŠÒŹîHBŻÌ”Ô+™ ôœHŚ8ÍÇÔÒ=Qû–ÇŠšĐȘ±dgMAŻiűw4’ôșDޱ!‡°DĐۘ‚ÙpnžcPٟa»™KïUôŹ#àmYŚq;źżÁŃ€)@;Žo/lű)7`%ÄȚ”Ś`]b; <…ì=–ZÆȘ,ŒÎëÎʘ“tČ_Ș€Iov·œc"â}Š5Ü€6rf;ŰÊXŃŚ\5\ôç|>Á6cqćÏjn{B‘Í4šąú^Ôă'œNš*FŐäM7ۍáűĆԈ4$wQIì#çt°§à1L œ-pêêkáŠÀ™*JIWÎÈá±lȘ4W—\‚łnŠ Äă'†Đó^ÏšŁcDoŽŸà,Œę%dè—ŰzEŽ+[•¶,”^ë ~Ü{M€(ES¶Ű";,€†XBŸxç.œœ?!&‰ę±‹=ttOnđägŁ! oŽkAöŐó§ TŁ/.(źfžNmΐ?Bڶàrë6êKcH°h•.YžŹ(ä-Ž™CTÚhqŒP¶jËg Ű\3~H5MçÊpîŽXȘɖŚN ńĆ%™S˜ś„EĆWĐb‹ 7dûn„Ć ŸËĂĭ7ȘĂŠźdŠž°źÖ˜ąù.lĂ~jætAzž WòąÿÁČițŸ 1ŽąîęȘę„·ÙSiÊÈÀéwÓ5ѓ64Č|{Š»yČ_Èćáś%ÈòłŽbêg#…Šő7”OâŰŰšĘÉ ÌußfèžFp 5ÕŰU^4șš1ę„$?Wœîo"ßw† ì)ÁGOŸŒAąț,4,L]^—#Û3ü jŸœćŠŒ™bƒz·OSżÀUÖpGŽ\dyĐÉ _Ê+AZ‡M/w4jš{†0Ș”4dü(EŁôÈÓȚę%ŁÖˆÒë§țlœŃVäăqŚÖ:đÀ†Ê+_DvŠölùÖŹ  ĆbŃ4‡„ VÜZAî^€·ò…qç[ĆrEmĐ5–șż?5É.~Ì|VËțÿȘ ąĂ±‹Ÿ±H $Á@ú':-#ȘĘ*§À‰mì†Ç•avĘ`-5vPC$›«ö{\Œ.™ł:űđšŒúŒœ1ș“6ś) _ìԞč±#3cíbàúqËQWÇ&-WdÆHÉô‡XòƒW˜ž“ČaœóŽ‚žbçΩ gÛ@à0.4őSł‡_ŁAu x>łl\Ä(!W9‹ŽLiÔŚN‚7ÏÂÉÖlhO7‘ŃÎűő”u;ìț"ÆìLéCŒOÜÏ8w‡^À'Œń?ÔĄRwÏ4š”áÎJŻœô.‰êo#zÉ-h‚,¶đZa$òTÀĆńŽÙĘ*g§±/ ôQŸb?EAnìč–?ȚĆè&Òeó#›€o ‡}'4ËǏűäŒBłgçąòM–Ô2»zN';"30ȚUăgđÖ&5€'„Űf±o[%‚lę*\§Óxïšûžșè æ:űgë/UŹLRßyšdyÈM+:ńeàΈlV`…ƒ«Í|yśJ°d 4Ń˕&@ű7ŒżŰL(Źò‘Xš\âŰEś#' їȚ1«w”Ą|ÂÈúȘÈH,7ˆmžtYœiźš@čÎ=Áò)łv}ńÓ2„^í§“4'{« ÍźłŸ<ę].űÛÔę„ÌŒyœÇH’ę©~gX>Ą¶óŰD8\cœś 3Jr‡ ìŽàŰæ)ŸžWćÜ{9ßžâšn7ś3ČćÏH KgdiÏjEoä>yVŁÙdŒ·ćé± ȘB9ŃLá>p2$O߯3a8šÉÜwžÀžç˜KçNöь4B]k&°Í#Ÿ9Á”x2|}OR%IdyXJ>*À"'yÉćf,XÄFuZ8Ÿà©\ôvÁ‘,Č;Ż z>łBK … ’È8ŚÍzÓó=Ł„t =O0sÂâű‰mOR”`/č=À€|䌦4ÆŚ€u€}<íÏìíp†!ŠßńxÛtșSz't3ațò‹'…đ՜Wű„_î2=žŰ('<ÊM,ÈÛóâ~C}tç ·uhè7:zŹ•5?3—FÚWÊ3ëEGyĐ­°Ôea'Œê“Mr-ĄÉ•æŹêđQôI{Š’«ŚłźćŒŻȘôć$ÌÍ{­lvțÌ",cS5RzŸÖ "ąËĂ·ćo†'ç–„ƒ()4 " ùŠÁ” 0ƒŠȚÜ6Ąš iƒ)ΛÜȘ[v?!†_Pڍń«êś§ź&wY·q ÄÚæŻ#Ź"Ć!Xć,–ä>^ĄZŃëČ»ô–ŰŸ2ŠšŸq©ôNaoxvÊ#Ë·ïÁăèB"ëŒâŠ{ŠÀ—7dűÙ«>Wèï1„é~ś„ìNêY@ŽÜ^=[a“ù|UyüĘtIâ1 «èŒț4‘Ï…śàVf —>ÜzÛUôŽä 7 ŚQźZžșÿ_ŻŁ\_ î4„O”NșXÓDV nÓŻ°ìWœ””1ł‚Œ„É1șĐ]§±Ä9üž\ròKP”ÊË»Î}fŒ "‡KéÇđŐûLöą‹oD—ÏI*ŽčN»ăxh˜E.‹2țȓœ(~úÇ„™xÚi‚·ęÊcœi‚\2iaV·”šÎúE±Țf­BžĐhÀ&*Ś—íçôęx9Đ8@„xșLúƒT8{9ș…Ą›ˆ”8LÌÜé(!vDČÈ!áò‹MIʰi§Źæp––ȘćĐdč jÔŚ$žß[ÄkÔF6±æ'›ŸœźäŽijŠ1h úÆêÇuA6(ö ] %Û„î?:ìűZÂkÁŸœÄ°»śŸ*Ż} ہÿnŽÂd.üEùžvqáxQZ–AÍ*AH‹Űă#ßŃŚ*œ©ûFĂîUŃX77LÜŃï[:}Ëœ›ĘAŠ)– ú|ZiRÂÙł%fß"‚¶íï ©†žm­t€í0Đz» 6C#ƒ4^sÈÍh8/G­x ƒĐ a€EŸ‹Šž#ٌé]{(‹Șq6%Gҕ>âC–žÌVçßTxáwÜ rÊ€P lÜÁ6­ŽŒÏÛ|`gč8BȘU<1óuŸ{*Xù“%żPÒi6)1‹§EfâcÜOöËòi d7û GžȘ$’ÒźàBfRŻ:g|4VłĂo-vȚV2űąVœèVx-ć%ò BNí7źz(ÙșżæĂtÊBÊÆ–șàU+S©qúĂÌše‘ ńž §nÜ4ÀÒt§üá–Ć^€ç=4%ÖÆt <°öŸEŚ·ú«LH!+—w›œ/ăÖJH: ìß#·‡©úì2Ă+ šű7ùöńĘd9·. æœ+ÈxŠ˱Ÿ'ŽéùŸ°;Ž[LȒ’hszÔłKóśzy4zpŠáGpćo/Š·Ôù‚Ë, Z~Á9É쾚4%șł9ÌJŸ€bÛái±Őí §ĘHENąČźh‘„TÌœX‚ČùÔoïFÖË”†çöł|4äIòF#ƒő^3Ćô–@y!D2ó‡űfïčú‹oŸ?ÈŠ’Ä:>IÇû4ă âËR‘#H)•óńùœ5ž52Y©Hio[ńy€Tò(OșumQciŐ&Ł{š°ĆäF_/’[T;©}^ź`ÓՐ(ŃîƒwÜ eU߃_Ű`büœN>§[sZœQZ;>:ń ś—Òęè·ÿ<șmß¶™¶ (^‰oW­Š+2û]ÒúŸ§É yæÀư{DŁ3DRfĄèòoÍea-óÄ5aǖ!š„>Őž–ùź ŽÜ>Ìè%Œ?|m9Ęngw>żąűCI`϶0m• Žp  Í9(&Ÿ5iÎÒŠg}Țt”šoCàGĄU©Ó·Š‹7Eô~}ê>Łƒ>8DŽ0ÔŒ#êca‹ž‹DrN5À©ìXÍ:Lr _x05FCC}éDŽÛìz –F7Ù>..!éˆȚęÂygF‹ù cID 3±eŹ/§ä@,ӛi#DZqšŰùÒù‚ÍȘAÉädi?Î5XęxV·;±ËúSÄ]ÇûPXÏßçpkrăQ™Œ‚?Ä<|z’æÇ¶ŰG-Ò-MêŻ@Â9NălžÇęyŹôNzŃK?F ąČ±ÊIwAw4Ą|&H”ë›^ Á Hô©űNlÁŒ’ń!l ÇóÛÔÜțšÆlîȚJŐòÁ'}‘pˆ!B,ÿÌïlG«€ŹčT†âÁę,ÙĘ2ČČ)Ą]Š%áł°1 81ÍőžHZžËuóèàÚÇì‰Č Z«hràNJÆŁ0F{=exM—t„$Ôö@ù:ś•|p7·Ź'^"DćúÍÀaȘ˜­Š-ŻxŐkىșúŃ29+; łŻÔuŠ*ŽĂȚlBBq’T†Hš)$ÈL\ÁISkTzIÄÊ«‘óы±{𠂦śœčB43éûŚÚ)cKőö?ȰF’óEç!DéČÚąGçu Z WĘ1>,ƒÙŐ1žz·ȚW%1‘’?Ńbû>©sŽ źouÈG_Ž™šÁ)Ć(›Nœìž•‚tĂò IóCyśnäČAm |ŽlűLŒ1șى$ŸÊVȘ¶ài—á?=2ƚ0ńƆ>[yÄŁŻj:`ÒAÊ„zu0Ö5šïŻ‘!Xy ïööđęüáőò^ű§=7HŚçkÖ+x~WÈ“8oÂpNŽç§]Žl€š7đCf _)+ÆNëę`>ő·L6™±ă"ł'æǜxòZ‰nĂGN$“ÏÙn…C㠙:vśPXÎGé†|­»“5uœtdH-Ӌ“ń-[Ę24s«‘a"ÇśÁśßÄèDĄmI3BüzyYżL›KÙRđśE—””]ô+j©wY{7ĂG­}W(Á$0+bBiWi#G*"Àv\ČwĄz°~Áé[ƒaÙÜŽiZđ]‹dْSuÆàÎŠŠ‹ ăëc5†Ü†Ky©!Uű!6Ę>:.wÚ}ۑ _Ś­:A%acJü"Œ€t3–4œśČ,ĄßőBzVŸŹÆüÓôC–0KКۯ,·X„,A–iÂőzXÈYödśĘ€Ąbń)0>éEŹÈ„%‡p˜ç{bű-›ő-|E†PIíCkê ăŐ*|U[|LD„?Ùq'ûO‹,ćŒ'9=[”»scę̀ö\ƒćWTlWo)±hŒŽÎ™ïź-ęr‘‡˜4qÓ‰}œ–Z^‹ÆÇŠ`W­ò›qƕ{ÏyÔ_Ò¶jÌ3ˆ70Łó2|<ÒTYpwĂ ÇÈŸfč<Ét†g æÍíÁăÄsÆËÍKvÏź}?ČéÌŐR©!täÛ«bŽŽăÜ„m‰ąZ”ÁÄaż$Țh.\ż~É=ŸĂĐ@,A{9ßĘĄŰ kR!`N(mƒÜ¶ì”ȚX~m $ùŠțCrüÆ?»ĆśiyGX©bĄÁž<§”˜ö‘üĂòő Ÿ„d.ć›Öx ÿŚô”Œœ\‘™â3ʎ (%Yh) ÿò€Žæ«—c‹„'Ă»éËč.á{4_ëć!=(M݈ÈčۗŁÇ*Kđ{AĆ íșX|C`ж°6U4ĄüużŐ1ä:JXg€ć¶üW©“Aç*iAòqyÊK7”ęÖgâžXJŸm3öKŸÙæ;à•šȚ‘3±Ç«„ńĂ­3ÈgF“p™•ł$+ÿòÿ…BeƒƒJțę3șI”jùœ‡+)ÍxOïEŹuč>hÒ`kő„\šűäT:ùxő:;Đß<*cK›üpĘë2x<öá6łć-â“)żùĂyƒ€kl;‚MVÎ&žŠM&KáëaĆĂëô†ŸÌ/›ùIŽȘțt»;żÉŻË§ôŽ4p±-—¶ÔdF3_}Âő^<7uÛ܏šÖ]ÓŰ Ăì!ëJ%0ÜorŰM!Ł—݆ÁCa–uR‘›IŽæ;tćx œÆűŸ|—ÈąZÄ#č^MS€=rÁyq ­èżHùœöôpkXiŐaőŽÇÊŻ‰C PîE-YÓX=èè–}Ő;gÇ­šô9R”PAsđ›ă# Ÿ„"Àżq-5fîI~.Ę"ÊÓŹ čăË›uBöŠâyB^@>0-śHû(Lj2Ż­h•Â{ZèĄ2| 9<MúŠ”‘ÛőŐ/áÍ mÔ=i$ÚI?· Ïçđđ èr!„ëì„æ·ùŃT4'0æÜUŒìeW^’ƒ=,ÛD/e ĄûĄœŠž(zvĂČ>FlòČ~òzB›Tù;á°źGçܑϭ6jˆû‡ŒsËóìœŃ’ï@’Œ]>féE@‡‰d>ćbV”ńÛza¶ZźÙđ“œgvQ`5Mč5vq]#úażqüiÁE  u5e=ÏÆ3T`=ŒzUŃ`ÎĄœè5Ÿr=ű†ûÍsŠCV 3uÀ~){˜ț!Fɉd}Nț”ŠÌGoäÓĞ8ʧš€±\șF•êH?}qLôĐÍó)üJÖ%–Ó7üĐ JLhyŹzĄK è11#żHg‚Cš‡L$ûŸ‰Ò Țƒë{„S«"jmžś_œïyšȘwwèűÚVÉ„#F“„“b6ôՒ—ŚčĐÒë»KÓœgtQՖÒ⊉śJÁ _sæ:Ę„Xž™óR7=/ź.ž!h^&NwgsôŃ6&ŰȚ †ČtÂĆr=€i Èï$N%Ž;3j_AŸÍJ’%>'ÎăFχ»pÖG{ܙ€/3e–2łIÌęŹÖ§ˆ, kńż#kNŁUšńő­údÆ‚ìy‹ÆŸbš.ˏ Śïï}=“Ë„D~Önl«–‹Ź4ŠÆÖV»Ì&l8Êù)"ŠŐš/œëę›Ò{pÉ nA&Șf0ù-p|ÓÖiìrÓż.{šĐÊz#Ž!ÆqŒé+0GŸ>‡àŐê|—!ń(őc­w헣öžȚˆùïîKûí*-šd:fmź>m„ČO]œ,tbnúG€țì拊LÖŒ$6ßEÎ?Ź.›‚żŃuÍóéf”șđÉ(á:7ò9ÿî>ŸŰÔ>^S[]{:˜ŸÒÍ&łŚÖP)œ:1ô#<ÔëäÚl]4nóƒCLœI*$;ƒŸ]Db<ôЇ ș$șr )3ąœ“ÉĐ€öšS8j$¶f*VĂ^ §w‘AG(“p2t`Ć ű…=ÏaőŠXŹĆÂașŐÉŁ~4@7à€ĘÁźtsMŃ6‚ÂȘ”dۂ FÍDÎÀ”ź2Ž{/P|u’8„Zç<šXKSżûÂN€9`{È€ëŠĘ r8Ü-FȘĀbgžŠkí'í}đ)K…(#Ü4„ë,öäČ1úòíä[òŹÊ,mĐVpGŸŒź.ôG]q7ƒ“h ięÌ žÂ7;~Ąț%ȚMšâї«æôŃ­{…\SlEloL2ȚÜ”°€Âöi9†ËŠLŰk;ŽȘ»ëJ3êa»YÌĄ–R䬟?q菉†gDüU’ĂŠąÍvZbș€ÆȘc䕈ÒêôœÆ@fę8ŐzFĐÊ^ÖvpÉÂ|=eÜ;æ[S‘^ÈĂj8śF„8ŽńżÀ( zčî‘"|ùÜíWČFȘŠ0­Żb<Ȓ4€k8tmY7ÉÖők N;ÉÜk+ôm$Ś:;êb/tČ[Dn˜Eœô0VFQ°±ÎI%>ŒF2e€M(Ejv*BĐâȚÄÄ멊«Dœ”¶J<țIMDÖ2@4YOXŒ”:â`g•ÒĘn°œnq€üŒDÁšŒĘˆXàÉÁFv@Ś Œš?S­j…)ó*§ s"ÏÌ+ŠcŃéúl™žu1;·œHJŻ&:ò;vynąÈRôh ł@]Dż{ĆÖ€l%”‰@È"ÛȰ ˆ|Êô #űxŚÎߝL,$óv=é&„tr·ç°BtTàmé“JUݧٶ*[¶íJ/K'* 1y‚€č«Ęh|ž Ò9çšÜőp;Ź•}$üJFÿŐ'rf:„†uš uÊ}uÌ]Ù|òS_ŒUČŐ8x ö©»m ?EáNÇÙêĐ!HUŸLŹ^ČJ\Dű՟»Àp2j e ŸI7N5CnYžbğŠt;Ž&o„;à—€­őXȘq/I+p6Cƒoä+őâ4€H6LKSàJS_ĘÆxÿⷀâò$JĄwiAHI̅„}Ęx`• C[ŻzËŰżĐ]4ͶÆŃő˜0Œc“Šrűj߷ϝžK DčwUl€gï}êt>€öaMڌc1wÌÇh„;j}dB0ÿ5;ÁŸ‘äV|ÿú=gĆÍ»”H}æ"ìê Ă9»~uûÎŰŚS‚óÁDÌú‰Q.šÙòškw“EPË›LË!«Qà™Ëés$AИ=áÜlșŒÏ[?:“ź|FžŠT`«™%ù|67jțaćÀƒ“žO všôuáìHzEő'ęˆù"Û»-Xv6±f"W3ĘJŹȚ•æęP@W ŒbÇwŸ`lgV]òtEćœĘòő•G"_+çM8ź©Ïł(úì…Š¶è†w|;üˆđgźEëPąqïć„Êjƚ‘Ą<ŽĂϕyUw‚ÁÒœˆu0^XÆô_ˆ©9żìŸ$;ËÊQÁ%k Ổòd9ł…ą„±úEʂ.ܞM>çÔK9ïćɛ=Kš í<:śŒń•<ŽÉ1€q]áÏgjëÁ(ç"mö0ècjocÊùàÇu¶·ćìê~œCßWŚÿÖqQd'ŒQtߟŃpSòC„{ƒßT ]T _@ĂŒeuMioșßboĐüłqâ5Æ[»$w Ż Í-l:pLdöx’śJ QÎ7źkf)’mŠÒ'G€]vf9†ŐšąBÇIoʊ'܌0ìńšÍ!EPŽè…/ r”łû Ź”ęșł‘8ˆ sÇ(lôÌèòNŹ—)%žINmÌ)’ÍŻÏ"űLă8 ›€ÂÓĂ-“mȚdčöíèû”ê<ÚĶŁÚ7Q8[r6JYÒȚk ô–À_Bš»ÖĘâ-7śnÚ2>ÙÛĂÎ\Æ @5Țì—@ÇDZzÄö#[‘Ë,tE·Eq9Ő7%àE{žWű‡éŐMŸ!»éÍ_#ϐÌœÀáAè)Ț JI^ t8`­Ś—K^ež_§•™pą†§ùÚÔKÉkŚáʆˆós4Č?ْș"YPŒŻx–úLŽÇ’kîŸXRčô!iòäG¶ŰöžÌ ł`͟~â|łŠÂm‡3üĄŸ"žYś äć Y‹„żÿfŽHNF«OŽŽìŃ?{†@›çș\–‹;v.-îÙT%LuȚü+Ő›ÒĘ”‘}ÊÔ%±:§1Đî «ùá …+ kŻ”“©R~·˜qȘ'š&­ôăÔHDÿžüIxÄóVeÊącÏà ”D‘Iم`V/óŒœĄO~čX2ąÙ·Úîꇗô[ă=șĘ»aÒò˜(?ï R-k)ű]œÛòú+UˆŒòƒ#ä9L„ŒÆđŃÜ!Z‰üÏI=&Ń8,Dá[głÇËî|üäh›äÎÔA ?ù…ŽłńŠ€ pü·á»‰Źor›”šĄ•1’‹WšéMàŁ~Űń 6~ rMńš—ĆY9[ žX”éEȚäȚ3Ù€~ÈŻoÉ㉔D)ŠìśxŐȝHëŒ(Űö­§źŠS4Żô\aOĄk2ëX]Ą“–œž‘0Ù'ûyßRŸĄ|\mžŠ„ԛđ"íȋ—  ­ÍĂ·;‰{Æűz#›ÛŻąQƗŒ’ŸÚ?¶vLò)ćE€Dž&ž”H˜ŽÉoÍęCgžtú]ËyÿM<ïűá“Ț/čZ?"Ź~à{p-ìƒB3”bźtx9!ŠJtڃ>.Úń(5`ÚÂà–©†Î(XĆŁađ0là›äŒ^Ü= ÌÏÙU‰ű$źżi—őˆŒX6^ò»Bœš^˜KĄł~ì2q4VLűPY 6‘MCŰtžÀŰ‚Ìő™ ê%1Mą3Ăđ:üĄ–Í>ČVĂFŒà!DqxŚÊP»a=“ÏĂytnXy˜ébž>(ÖĂ{í)Šd23…˜Tì™;’})A/ †ó+Q€<§$ę„ {Ž<óêźg•—šą!š§‰jÚŃWS$W” {vҊási3\Q† wzœ xMŒ·ôŻ”çŐȚ,F‰țÈ6¶çDŹe»ŰTŠ~qk«Ê)í>MȚ‘Ü}ąű°Ë‰ą};)ép-ž•ÏœwiV”~ÂKÈ#[Ńę“œ\*~IèőöĄČ"6 o›òCȘ€„fÛ[fLŽŸąÇșNOpe°ëAô*œŰŁ?ۂEó˜x—;rtÙÓxKą‘á•“§xśÆw3| †ôèq'ÿ֐Ût>ŠąZ„ ŁŃŚ&Őìn_+čČź< C>/Ì^N:CßĂ{8[/6…Ï”ÛéTÆm™aĐÉäĐȔc­űĘÄ&»YYlOGFäa;R(Ɵ-°rnŹ&:{t?Âó­ĘwWDqPïă{2g”'^ȘŐdČ5ÂÊ~‘ĂKX/ÎDÊp~±­źBL ]ĆJPÓĐ2ł„Țš[ bèSÊ/C$ĐTSź{@łő‘Û4œzŠÖ4èŸźÏÖßÀź3UNOJ:Yß Śÿ&hԓd{·{ł¶l荼đć!ùìsßwæ;)amHç)ÊÏŻ–[Č3€`¶†Hčz;^°›ćà6ÔìJb'«•’!ÁŁÖ§Ô~Ο]ǂ"°…l}c4Z ő¶:?qȚ…Ű:Íx&˜QËZÇî]˜@íś*à2òZő˜6Łv\Ÿ€wÉđá~ĘceĄˆhfbûq©ęQŒ­/A,сùz7#ąQ^dŐa&úXšŐRC턩‚TN}Łč^^[2Ś ÿž…¶äjA滣ŃìG"żĂúCaäŁáÙîȚƒTŰdŚjJE QAŸ߅j/éæÒ^VÊ^!Źá“ëTO˜·I„çƒkĄ%îí»mç±)[șëá{!č?bŠ·Śçq(æŽZŹiE@Gń ­C~1…k-Ÿ@_îńŸgc‰żlmXžșn~;Áì©ăä͋JŠîđۚœ‘ŰvtE©pÄKëXæIzș„01í5éŻő„Q{•ŁœcÇYŽrł?F,ä=–^X]”wQzÔaö«Û0Ș+»h ƒ»A‚4Đÿ%tDp›źÔîŐoçûQÂàŽ^CèÍ ŸvŁŐ§łâí:(R5ەEÖ6K\ïMÜÚFmɜF«űŐĆÄ„ûúIă©LâE„óTGńì›ÛôdÄ»©­*Ü@ț!À]ëIŐȚŽóZ,5]è@a“Šˆ-‰D3 Íč”Ûë«W\ś «Œź)<Ë:̇‡M—ívÂ*,jąĐz]›Ł—~ôĂVšŰXYŽ+|=\ +—èoÜ8 zUôŠÊ6±‰Oû‹™è9ƒÓÜć_KGčŸŒIN»% ›8št8Śž}d4ŃȄô@ŹčĘ)a}„OQ”Z3ƒ`cRăóžăYgߏči܌ź_zw:-"D[Bűb`©`fçY*2ŸuÛÆ·SœÖEÊëNYÀt€5ùm7UĐjłŒ.žp‡€ŒÂ‘—2 àŸŻÉ!ƒz……Ź ôÇęánó =>IŒ’­Œt°ÒŻÜĐ$V1u‡1”QDi§ÒÆûĂűwÆ»q dÚ] @p^‹SFtÜśÀ`.q“JòÁj;p˜]"F‚…Ž3˜V±ÌȚ§hÔő6ö چ—2đëlÆ5ćˆoę"§đcŒDS›Ș1‘‰Eü U’éòóš9Ż 1ŃoÉì\‹d&ê@ë QҒs*»v!ÿj‡*ă±ŒœGęÜr%äRĘXvJéŠ^ߏ.`âb:–ĆìűKv ڂßIŁßxRH5Ąq.?!ĄkëŒĄIJÛž‰3g! Òó”xŚt€7±ćI— óꍄ}€ÚÀÁO‰ č8^—ĘaŻțREÌüžòYŸRM<’b€ąâ¶zF;~à«ÇŒ„0jž’qœ‹vŒ žńXŸTՍïxQ …^őŒS?ZF7š”i㯎˜P–G]șș±Mw^źó=îÈHùńq0ŠxSòç=·›‘}hîk•rac@?üx…ĆŻz,đłGŽgëbpÏqkőÆčeÆYìh‡Ëêۆ+'@DĐJąÁBHӝ°rêüą ˜Œ·q./ŻĐđsov(Šr4Òio7u—”$Ž5Cè-„ÇÀÄęŚ6†šŽO ”œD‘„Ÿđnk±\‘|nć7î`sđ>if"Ăê;AUśŽÿy~iȘ–FÏ«ùŸ‰ö:Ő?Í h^?Ś™?…Ąg\ûć‡4:Zp”8Đț‚»ÒPie%öäÉ>ĘӕńÚ#Ս)›–JđhKQÌŚżkBǚ‡ˆčńűìt©† xXäÛčśò€ßS—tßkæś%_Èž„Dì™yÛÙ%țQgY+ò[)ÙiœźV='~†` %Ì=hÒS,>3őŻ}$„ ćÎMwqö&ăjźüóíg)ÂĂŹX6ę*Ć Ny/=ÇҜ2[€‰‡Ÿ˜(u” `r_źńśđ.\ ]żĆĐâ„5­mcx‰ FĆŹ«|ü€»{ž™ËŠźžÿò“&Š2[Ù¶N^Ń7aAOíÈë:c+óRÀ yy<űž~2•quȚQĐ#ĆΞ„7€`™IîWE°ƒâŐębMÁòŹżìÿY@q@n'áRÌž…ŻÜ)ѕauőÎ2ĘëÄHő^Nú`©ȘCLźqČÒÖ#Æ6űE» *í— ˆCœăŐśÖŹt6›‡ppqŠF;€p¶*ϒߩ#XGđ°dÁęçr=œO‡öTzińwXy—ĆoÓsòĆ uó Z©;žŸŸVä{ŁpÆYHhšÄ||À¶:Šț:ŽwŐą0î>œòÏNÙKڏ"J:ÔGuźiÁv`°Ă ń 9±eŠę^Æ~‰Ä±rÆ/{Xc!F6%–‹UއÛ|—ŠÛ&ĄŹȘ{Yö˜»éÆWŻ8ÄMDO·6ç)ÀőŚb  6jÉŹV€ĄM €GíW·2±Ż·ăČÇ»RٌĐÊb㠆žÛś,žlË|Ÿ…†Œƒ~Qł  Œ’Èoœ^â‰YtH#'-°S*ˆÆUŹ6^*ȚH„JžP|ü0PcżelîXvíă ûô”GŹá Œ!ș)ƒ^ôFìÓvlŠĄ8ĘÄŐB‡êˆ69*RŸ9ÒZ_푗4™] D'·Č&·‘€j©ÄK” ü*g/6Ż›]î °đŠoČÒíŚ‹æAéF8ȚŁáìà4šsœĆ.ÌüP;ű6uÿ ïŚt«úï TíÂÎÛàxWw$Ș<ŸűÚß„VìšłÜ*!8}j~ô«ùWć•rŒĆ>ž˜śÍJJʊöÇrä…6q* hÒÉúéqyÚï߇.eź©ŽMćϖBrußđčT–ˆÀ‰d­ŃMYMï™ÌrŹÈŹKőéu•·ŠŽPôȘŻ‘ìÛdJ =°q0]€NW6RƒÖ>†•čëŃFӋ&MJöBœ"æiăjÈ'5áÙ?ïŸȚòę`Xk,Ă篞j1h·)uÂl‡ƒ#Üፚ$d[ÓÚ!ž=Ë$GTû.)PQ$Ž|Œ›Ąl‰© śìÌÆŰ»žŰÛ|•>8ŒHkRăúhńŒœŠnxÂȇöŹ;n=H0 l鄌~`|Q‚tÊöÂC•%ł†ŠÔ™. ÖoƒWÜ·b7é Ä{R »ę;ąńđÀúàŒ!*‚±Éaá[ćâ(˜ĐČü]#úÇ@/Ï8€Fìôxő,œNˆŻû·H‡ zą3û‡EÆoWŠ4В™wȚțğęM'“Xž,TtšY„nÊŻ]š!FÚË”pbO[ÍGŁçż|t›‘éÁƖœ1ûIP@ęőŠÖșŠ+àbś€Œw09K"ÎëêĆyć" zOœĘì@RË6)â鳙x&ïă".4ŚąÄVĂòYń@ËoŸûČ,ž<ùäš@ôe6ŻÛïUê2™–=ĂlíhŸ‚îÒűVgΩVnê9ìŹV†¶Û–B[­ș9șπRûÙTŸń;8RPœQ§‘@űőj@æÛț8zŁ^kúŃŻÏɐŽ š’*Pu”±ĆxeNjw0ČŃ`&ŒÔ ÖmŽ€'uóQ†Ó\ †l 1Jm:±3WCźŒ"žËëmŒȚ3Ü܌wVLđ[rϱć5d-ôœÇ6Țú•ŐŹŹÜèr…äGęŃőȚù\HĆ-ÚíÁȘMș p°ŰÌ—ó2ÜŠäíjß5¶âÎtȚ\]ž.ĘoH„ÌxúŃŰEM1ȓ Ÿ­†Śą“›œ.Ë<'T^Đ2-űÛ”çĄ őÊ„ÆŹi»ą?Ÿ±•ц!đ{R9ăBë ©Æ6Ę#ɱțÒÒïĂ%gùșJÔ{|Éɓj›0ìivŠ*±òű2kś9ĄJLvA9ŸLœ`áN•Dš"b„ÈôŐąŰߌOę˜xÎS#q%O­W ń—#ïâƒ@îʘ0q*Î Á(Òҍ]úB'Rrń=ßdxo4#~G_UÚQŠÙűžGŃ„>—c%L2…€‚€HÊĂłöŽPiGća4ò"+1aLÒ*ȘO[őîłz}©û€t“Ą ĄeĂâ§Ú§›sï…Už0Ő'ԊÉ!€7ÛgŚ Pۈ~ŠÈ¶k-\“WKgčUŽá Ż­SûŻâȘX„(źòÄĄy˜è\"PäCŽŠù .žŒƒ].çČ5?­'`ńË EJEq)ž•—“ žÏ•ŁăòłX—ŒÁĄÇù°âșqż$ Tt·ï`sÎRlÌ$wž„°cwËìL…„Pì,êÚ#dlàCXòv6Űč„>Pűž,ĂYțホ/üPčQn­e^ŃsÓBőšŽ@>ŹŃś&śŒÚˆ“bS‚ĘîŸŃ{<œœùżNcfmGsüÔsè±ÏÖæ”{úïëmđ@l m°(ŚjűŐ!šêÖúyšćÏëciK„žĂǑVž§ *MbčÊ1Nș1bĆžQ‹/ÆThB}tÛ%Ï% ßȘ˜&èû˜ÂlùPGŒ—S˔­ÁąŻ4,ó*/ÍuÇsPö6ŸAòÙWg,śU-đC@ÁôaôQM˜Fç ‘ »ŻžwNrĘÚŐ~íąNAĂ”tï7YàwAĄżÍ xțD<Ž$bJziŒu‘_<±ĘŹ,èŁÊ %0/kdü!x—–ÿaˆÆŠYeeŃeÉÊłet7pX[˗tj5`7@ÿ)Ęăa#ÎT#¶ŒL±’±Ë7ęT»2‡dwn&ZaŠHž·Z;S“àrŻ»«»• ŃńŸ"—",ž+șs-$qŁÙ§Č,]K^vërŁí`CŁ/ÔCʋD0?}Ë…đïč‹Á`&J’Nzy0ui'šZŒÁdòÀô']ŃGô8?'xÂw>+Š·93yËÇ·í·ftŒPȆLŐ D$TwoK|Ąú˜5cŰt”?ĘČ܆€șŸÎŸ9œąž2+‘@(d@Ò2Ì”Ń“i v—y8(ŠqpŐb@K©šqi«vòš}+ű”Í|©'3 r ŁĘW3FS{·ïv‡hdȘ€V.·ÚxPdČJ+€Ÿü«–ó0R”ÂäÓș!«†a=( őž1—iO.C‡Í\1ŻÍČÿp·žŒê1ú€ćKgÈęaŠMș)«ÖĂÇÖèœpżč›ŻëkL+š)—ÈFf?ü€‚d±ƒŸ ©ƒn/ęsŹ7œä{~gA‡ú{tŹë“”Ç=1áÆ”ûd©©§l^Ûq>óśˆpĂ$IO!|€†ČŒË æ_¶§[˜+Ùïʍ-^9șČżŽž}‚Nt¶H‡NłŐ€ìűe5ĘN'©ü5Ćș&N(•6íNèêŠŃ‘ÛlšżęEöČùŽd8ÇVńD‘ì~g’gŁ&䙶ŃO W’uj§+“dêíĂU&úËç.]}łśłσ”d@ s-‚ËYŰčžąyÛ±`y Î Ž>- żŸ~ŻÖ„ܐR* ĐZ–Ez;›ź€ßæêr‘Yžs”5Đ&vêwÙ«.‡ŒA,G-žŠŚ\ȘˆžK8ˆćž™ö=˜BFÛńŚKC­™:-Ęt§òZ„Û"\¶ éá5“L ,•ÔìqYïŒ 1EÚĆŰ<œ}5ĆÄG”JSÖ}Á‰˜„„y€ŹÖoUó Ám#žŃ~–đĂ_ŁnùV»[;ќń±]„“dSńÎêłc|âŒú7ź/^GÙ ^^l«”ÊĶrÁYU{‡çCCÈÒÖçO G™ÿ{2Óû¶cï6pф7T°ă+b?r&mkWí”;Šs5LYĘA2 yQđë†'żŐŸŒłǁeÄśJsU hô™D èŠ}^•:|UV–pyżűÜ Żn޶,0§?ôIÖ-C _’…X‚ƒÔóxÿf6HŸ`œ°ž+d@k‡Fæ§3ëQÄćŻO±”¶ő”^O1xüIȘíiߎôû{܏âöΌŹ`:/-…~xĘ^d<łÉC‚ÂäČă$Û ÿx“čŒ”ŐQT «b*MSa0È31 ±N:Œê€ïXą—»ËçEVyżé‚ű„ˆś`°Čžò>UWç’.ˆj‚Ü™aî)ëČ+!ń˜ù:đCąźV…ć˜›)ŻÒn_<Vfż]ȚÈa4]źpZé(CșÉ9Ś.žÒ·ȘùÚ`öŚ„śűfđŹ`{ìŰsyri Nm—”Ô3G@‰5ŃYËt-ÜrìóCMtސD! 5gŸ4%·ț5ó0 RGlš]5źž;v›€‰“>ĄM/è˃‘ŸŸĆmíÔț ’ąŽĐIiëû„8š”=’ČĄQęâ{ü ‡Ć¶$‡“ ÍȚ•î‹}1óor˜–‰ćî/> ?›Ăń‚ą%QȚhnrb…A-~ÀšD™PÊę̟ĄNÉÂŚóšlYH$d[;țȖù/BŽŽ[ÂÿȘIœž%À­Ë,V™O’!ËÀ0LÚŐDh—°œ@{ Ą,ż‰‹ ț»Ná1 ÎôäBčîŠ$4#yKŁRê\„śeüQń)©•J@,Ÿké Fj±Â‡żS„œ±#ŠĆ+óț]ì·äąP|vĆ.ăˆ[’Œ\tĐó!Ç1—[ÙC[ŻXUÄÁÿ†EđŒÔł3đЄú…q d\‡Ù«8H^ÇÔÒëu€ŻC€Â㯋NăkûÆ»źÏV/V?h Vji U,Ÿ ”Šv œck)}ÍÌÔÙŰöĄúÛ9§["ź4–(_]ڧ},ܚç"‰YÔŒ,ć~üÿ„ŚĐăőąY™‹y=/őÏ!’üȘ·ìͶ\8Żdˆ5Ɣ Ł,:%»©șđƝqš#X¶ ă…ÍwôTÀ,f$x{žšžțQ>†'żö!XPÇ"ęaŰÉÛúáŽòÂ2M­Ń /,č}ì~„ŸŰQ‚—§đ=îïäQ2'ù ”6ćçë4?,/–u5 úłÇțà[›x …vŐĐdèYms€Ą?-îšIű‡erˆ©oÍșśę]W&±CSđŠńšö_ ±%ÒZvWjòDîêOО50P@–ö}\ƒ{”©8’cr‹N™t?+w ʏ—Œâ…ÿ4ŽTÎüÿŠ&@Ź. Çï…ä%é[3ߘ;da<­LçiCyˆË(ö"łú±ÖÈűg*țI{yšłnAóüHc;EÙŸtËŰ„žš_èąè6“šáGɉ”œ„ąžŠűg„źšçoVȘME`ÓóS.òÄÜb-Ú4Aż3&4"°főzŸ0@hÔ"!‡ŠZašäjLl. *iKĘpĂ$" ŐJÖEHH&R«Æ{=BʆGНÄ2é]3€d„ś+…YĂ”}Étûš_¶ÂßșžC§7ˆ d_%–ßDù’Ÿ:ąûë&amŠxgŸ51pÒÔ€à›8©Íç-żÙ\v8àĆŚąč“]·ŠÏ°6eŽkÆlŐÉ »Š{‚Ya­ Û2š ŠúNE‡D`ïą[ü^… 3e8 ]„êć2ięÆŠȘStóč‰ÁvȘq»ŁŒö†ŠŽ{ÍÏŹì­hùŸÓĆFùې#Ćh?Y 1Śh?/šŰcŸ„iBźæÛçüöAÄ:*CÓ0Ő{ÓÍûŃżő€SęI ÎAőJ%Ú?­[dŻáMûČq ùșœś11h*lÄú_Sz[‰ÔâÏra„]À~xEcsí2éČ%J¶”Rê8Íô܁òÁ^ƕÒdA@/öŁłĆë€n y3Ț8RÖg}Z;”jMsŰȚÄæP»țŽI*lÙ6äÀ»m¶y‰lŻ'ÏroÛW#Clc&OIiž»$ÿ‡€ŸæœűŠ_u{"€ ČŚŻpoŚ>Đ·!žIw5Ž@3CÎŒ"šł@]ûÁ—ÉčF#żŠŽé펔›@΀8;otxÏ <ìŹŽP™+“œđ>°ĂȘ“ÚOrp4&ü—›üfƒ‘~%Phc:ÂśÒ™Òz2ŁÎÉP\:HĐY·íZb S‹€Â`òˆ=o鑮Q[tĘębjÊ4lÏY5”žaKOöq°ć‹2YŠšž7 ëîHtÆëe¶Û?#æÄJ`üòYUTˆMêžE1òœÈ ŻȘđ‹Ì™ í@á—VțŠĘ\Ûiÿ@~‹՚ÏÎŒîŸBí xÖJ=YL,FÎ?΄…#Ę'\Æż~äa›ôŐțKL3 žê;Ì7œžQqHöœ7ŽGćą}d>‡Űòïn‡/„Ú]AĂbŻFѻ󣄜•24Ÿišă\Ï0 ČŽh:ș4ÜŸ|QÂ>@|"čILVî\sY…<ű €Ä ÌáÖZSĐńé- ŰÓž‰U*~oűôÜlșűź7ŻČr,°·_ŸÍYX"nü=Fž#”4Ÿo‚äDˆ iŰÁkUűČÉ&»€‘FĄV±—Ë €cF­dŸ`ń–Oč jéĘOł%’ىU–Áy;UÁÈłÌČŠ0±ÿűćąeK=N{i”Ìž`Ûÿą|Hi·Gÿ©ÀœI‚ȘąŒ».Bë.\N—ÎnŠȘÊ+¶‡Ș„éa/”Ó*‡­ś9/nLJŠW¶ŹÙ’B‘betï·z+‡PŁ>|ÊeF¶šőőŽ(0ŠÏFIÎŽSžJ‘zźȘăÍ@óp’ú B‘Ő‹;E<5SŽáŻűčˆxü ÍÒÒÍ À)łĂńșÄ4őł[^œă3ŃL‰ùvtúe gڰ߀Pđü_R»‚9 Ç‡~˜€XŰÓÍțö‰j,ŽV‹ŽŐÄÆEŽŠ Œ(u#ĐJJU±űąâĄˆŽ”‡Œ «f„EԛęšŒ\éÆÀ+șÿśGÈ\ÇĐ)ęÿăîŰ,Ô2°êmôW9dțŸÜă-Ž˜:sA9ü·°œ=ł*ÉI’š(ń°P*=2uĄÍyóŒ%K”žVUDűŐșÍčï"űśK‘ÿ‚ĄBœ^-8«œ¶šèR_‡I«ö©îJ·›?–ƒAńńÎŁ:Ç~ă}‰Ê9詃6*żœEȘU”âìƒîï.X~&ì§`öϟéŽ%–DșÇ4’lI#Ö‹dKŚ·ÜÍLG湊â—P ùĆƒĐæßFŽIˆŽłÆŰÆ#ïÇ?Àj鼗·—˜ ^!Őaă71BˆûÍ7OdńQhB#EcÀRa«e0ÒlôÚțÈz]|«6Țn(qìÑ~ `Qìí,EĂPž€'. ZîƒënU“ k­lR`~šŸ”švŹM"À2 dKÂŃäp^‘Ę›yûÌ †üC‚H=lTOÏÆžXșfńG=č”{%cÜ[mSLž{”l‚ŚWàÈÿëHT[êêæČFR„œ3š`+ږ?UÈÎđéíÜÚ6Pć5 ]EŒ€fŹœÖT)Qä9*”UšË†œ:$Æ}u‘‘.S%ł?ÎWâĆòOăYì^í.eOÿ* ^Οć‡ôvڝ 0?Áś/6nIëś1d5ùmŒhĄé9`pXŠ7•Xż°v íGKàŸüę%ČąöxúBœ€ž7Ë„K†QÜÓ»;ȚûbV-șgŻ.Ï3Ț…č5"Ą4z…6‰I˜Y#Ê{šMC><%žqpQ™báŠ_˜ÁHœ"ȚôƒeüÌy5Ȼ̄kšæ ûŐÚÇbàž¶Ź|±ÖæÚ; Ü0qïȘĆł‘Û>_ ÛđŸœœ0țŐÁïG’ÁOyM1ì± ÿMcœæ­AyÏ|œêß=$D“™FUYeŃ`éœÔX6ÖG3z˄ă°ńÄ'ٌÜÄ8ÖÍûÿKœâ“ÙČačßčF·‘e\l_ęZÊ5bEAusj“+C|^·ÿï0 ł)pŚę$š2ËHeú0c§%šXêtÒ°`'·™ÖĆŒ—â•Ùÿ endstream endobj 297 0 obj << /Length1 1693 /Length2 7629 /Length3 0 /Length 8705 /Filter /FlateDecode >> stream xڍtTZŚ6 !Ę1€HÇĐĘ!HwĂ 1ĂĐH—ŽH) ’RR‚€€Ò%ÒR?zœśőŸßżÖś­YkfÎ~öłăìgFm=n9;ž DCrƒxűā JÆ > Ÿ?€…EŠtüm°BP8LüŒŒ”)‚‘·ŽpPÍÓ‚„ĆA"â||@~>>±żáq "Ű jÔàȘÁa‹ÜÍupDȚæùû/Í–áúEÊčBP[0 šF:B\o3ڂ]€zp[(éûŻl’ŽH€›8/Ż··7ŰՃŽpfçzC‘Ž@]ˆá±țlš v…ünÀÔw„züèÁí‘Ț`xkpÚB`·O˜ŒÍÔSUjčA`9«ÿćÀü}9@èŸpżÙ?AażÈ`[[ž«æ …9íĄ. –Č:ÒÉĂì~:‚]<à·|°ê¶čuűU:š,§ßvű»?[Ô éÁăuùÙ#ïÏ0·ŚŹłS€»șB`HÀÏúĄˆííœûòțź3 î óÿûd…ÙÙÿlĂÎӍŚuś„š*țöč5țcs€ B|bü"ÂÂ@ˆ;âcëÈû3ŸŻäúiŸíᑿÜ hÛäÔrûđś{A€H„'ä‘ÿŸÀżOh”Em Pà?ŃoÍûżÎ·óG@}€f|·òù~~țùgq«0;8ÌĆś?îżFÌ«Š+§ŹmÄù»ć@yyžП›_ÈÍ/&Ì EDűțH ę]ÈdU˜=(öWœ·őwÍ^żEÀö{CہÿŽ„ ż•.Èö„›ó ńÙȚ~țÏzÿEùÿÉüg”ÿUéÿ]‘ȧ‹Ë/œí/‡ÿƒ]Ą.Ÿż=n„뉌] űí2ÀțÛŐòŚîj@젞źÿȘ"Á·ë spùç"ĄÊPˆ6iëű—bțČüÜ5( ą ś€ț|]€Ü >ŸÿÂnÌÖùöńž•ć/r»?ÿN©ł…Ûę\4~!a ûnÇ|{úƒn7ÒâóKÈ@^yKȚ¶śhG~ÎT˜ÈkƒÛBnĘn_6AŸß6ˆ=Rêàđ"$úbƒüÇ.ü'Ăőöéû‡ ü€tûÇâü p† gùúû„Ÿ?A±ÛL·R…8 À.vP7°ï?˜Àm/n·oìÔ ę±ùűüé’ŰŸĐżX Đm‰°ĘOÉțĂùŚ\l=·LäŻĘčÚßç_Żáí]ClÓp[‰p§šđ–ł*9oîŐ!©Ï,«FìÜțӈVÏŰ©ì•YĄóˆčÔŸś„3ËJlÇČ_źü·k±Łšžê4_\Z=ŃYmL “ś|*ܒ{ÓM‡CË­/»pć`âŒȚˆÚŠÆ’çî)J ]@ræĘ„âóŠ»ôëÇȉU”Jᇾ—„ŁÜńqæ!Ćc,ù6Ùă”LXHnș;Äû>wǎO>ç~șaP{ xŽ/PäoșÀŸp>î7ûZŸßŁê•)%ú1ńǑûțòëij“ț%Es/ÆìĘnTdÌNôCÎžYŹBäZxÚ@ĐśA3ž ù>ùÔmy8_Ê țGCű}‰ßœs·hŽ_+hŰ=ÄŠEŒonąïÏìőß”ۂ„$$Ò€8ŸÇ*`Ö]ń\$N ;›\üŸ§fŸ…ü Ž„·pèÚëâ=ńR4šˆŠ*Č/Šł)»ÚK琧~eÏ8DŠŒ=œŒŸwáÇOGž9ܟˆ}mpčKÊ©Xn$WÔœ0?ö†~‡n„w\;ÛGâ‹"›H¶pû&!—(_;”b!xg5Đț‡š`ű–èÔčżWŠČÆQÁYĐÙRSfàëo˜É›ȚÏœ^/őŽE]“ê¶ź»¶TQPđ\Ռ©qœ1HÇ7ș…@dŠ9ńŃs”=fFp7—eK¶= ČQïĐEIŁ+-ăBœr·`“çÀpŹŻäȚùœ“‹ČOŃmÓ_±Ș’ì€üh#.đm©îfŸłöT}A$—:‚íßfÁ>†„­&2ł\RČ«kWVđ“Gż”)¶ÚŠŽH‡rę8%Ą ku2#{P3öÆ0B#ÙÉFŽhP+h*yl*żúœílșXdŸĆĘRgŠŁRÈȚ|&…aۋ_đÓy·ÆÚÏà$'M`źŒ5q4 êwú âU•ïœô‚{LŒZšiȚj§AQLBì㯻‹Òa~ÒÔk­wĆN5GČŒžż|śz±À~©ŻÿB‘ƒźYUęQnœ;mŐRÉWŸIéÓ:O‚G­Iś7ć¶€\,Æé·ŸÀĆjŁ6 •žÆ–Cżï˜%ÊYŠ}ș:Áî5K眻Ș€;(ńá@w#^"…€©G˜­û՛‡42 ŒƒÒŽìïÆńTÀ{8b0W łí’ĄČkû‘Ùl$ ’_PŁă3i8#ٍkś D‘òßUmGŸæîj{9ÏŒŹJàXSżȚčȘ|QœàŽÖ{ƒA—3Î[ùö1ÀżÈ–!ÚȚŚ+^Żââꖅ—V”ÌÁlŹ)ń§ÇęšÌȘ»Źšæb3Ț}Úèn‰‡Ś˜M֛­Đòm ¶țML*T?ûą‚ï•qr-ęOÌdžśßÀ*"Ś1hƊ1źJˆâÊ~™&üéőęMîD6Ć0>Ÿ†ę’}{g:lRłÜŠŽȘžYV)ŸÈŁ ß_áBĆ1ÄdWŻœŁÎăă_ŒŃ*l 6ÜŹˆŽ€fŽ©EȘ/P~țÁ’œJć?î;›ŠŒBuÉ$š˜™Í\wîeß5ÇMxD@r-žWyÒŸgdÙ"ï[„)tßËYÎV”PœÊè)+e-H 2Žwąš„‡Ő„so4Ű •Št<Œ [XòæÛYU ö>“âF›Ăxˆt>†ÁË)zXČ(=c’ĘŠFmœĆYńixłȘüd4âĘăwâöeÆD3ÛùĄlÄƁHŹ@Ÿžźő#ÛÎRë¶OVŒH™Č8‡ŃŚ–Đé\)%XœŚ‡ń™Căž{m3ᄟeùȘńê=†\ČđD€ŠPÄ–ŠT‹xJƋk‰5iŐ­–7k/zVêłòô ëSpûá^ŠJOqž@žoÁțlÁäŸ98“ŒCs›őéÂcû2ÙĆÌg^SKŻcźMŻ*p5ćk,ŠHśy|ßB:/p„üŁă>ÜcB!‘ Ù˜4čŽ(K°Îc„‚ü/kȘMĂ«`wQ^‡êqyU Ït/ńô‚]ï,łNKŒ.í°ë)Ž}KsfzńD€t^#ËĄk0ɕ0!œ"IĂ,ű^đŽuœbÏ~*\\iù•Ț_#\˜Y<*=Čâ腶·čœăLčҜTV'‹|©‹‹‡‚Ń˜Gt»JrR…ŐCâZcàžQNCă>łć—6\łtźàiŽÆÊäAa±tӘ*‹țÂæ–è°€JkúțO2€ä±HŻćőï©!?{Ï0Ăcú Țîet-Żj!ônąYß W±Ąb@‹&æáÔɑ燹>‘ț({Œ8/üú$MQŽá ‘bńçJ^œIK†ô~}<ű8Qu%bÿŐÂ$Y\ÜȘĘÊȘ.tćĂSńȘùSÉ.&űÊiô‚vÉ ŽžPÇŽS‰§Șš,]…7}Wyƒê·ƒòŰßÈEd¶ÒUcÌTBźÿ„ŸŹî‡ž]ÛÛjFHŁFNèäNe„—:†>îK*âÔ6są•à$*_^”™ĂMCś ž‘Ÿ©íR Đ#ÆőgúäMo4ëpî(%—&Œăș=KÚr=<â^ÁYÈKŠ§YĄPŠȘ‹+K'ŻÖá[N '~ÄĆ[À”Rm43ìbӂW˜KlŻK%šĘ/Je'CŠŻa.a`Ő±ȘžÔœëdŸŽp +èB`í~ć( 8kkqÂy"‘ ćdó”_ Ùu4UDÁCÙ· iLkâÛgÚYkÆó|‘mÇőÄCûK‰=»ĂźlT(šŠÖCżăT@đÊZ{#Ž^ć~Êńh2ƒîž}Òvę”Ò{ó̊›|(j“Ś+ƒô ńŐ=3ĘÏ«bSŽÎ(vï"ÏœÛSû-ŸAœI&š–DhAÚ­WŐÌvšv_êÚe^‹„Ÿš’HżÜLÛë őn‘óôü íŻß­h!ÒtłŐ·o·žíÿôŒüÎ(ŐČ’ì{˜†IdôKIț)§9Ÿ›©…hC[gAcč·­‹•őöÔeûÛĄ`4fšóɱÏŐïë‰7˟KY˜ˆsd%L ÂtꁌF:3ŸĂĘÇ„'š vbôíŸaÔÍÚ5ÀÚwŽ hY 16óáeòM>w!„x'Č ]G-'Ìłò;çæ§ƒòŸ¶Ț~äÙ=ęN@BH]ĘçÏ&e’ș7ˆkqR Rï’șm|T „œ»Ÿò’Œç”sPŻêӊ[AɉfŠ•Żò›MçŠ[æmhòdôeBŽĄÙˆúÈ»TJ/òÂÉì,IșœKßÇ MCë\ŰÇüx”L2ʛ k«jòWŠ@JlQmzTóĄ#ïŒ,öÚ01±<"ŠĂL»p=á 1*ăx™G‘qœË9ê}&%jŸ,}eAçęë À-6GƒêËaH •kÙ—2ŻĘJ]ÌÓj™śNxY†BOÒűk.­Z6eŃAąóŐ;‚U<Ęű=‚;(5%’Ő5É€6Čțû ćPyôąńûì„ăàí'ê/zò…Óygż”„tv“h=š€È-Faô 1Š;íźjEp‹Ú…ëîÒšŹŽ[êzŃ!j7d0k)4Ï& GUGŠę@u/},ł”ć6†Æoæ_Żć<ÌfÀôD&ëĘ<±6 [PŃ”ŠŚOuŰ~Đ!ž˜=É:yš‹o]:âœÍÙP6G”8GHä°Ű(2_h~ ©ćNü8‰HÍaKp4hgcá…ÿ9SÜ74Í;Űłj{_Šx61я†Tàf'Ÿ$^ŐOxTłőZ8“zĆɜ† jŐí8ŁëžÚ{ŠŽ ușêäWÛÓwzšh Ù łoêšđ/vIWűòÛ=–Âx6DŐlp7ő#Čł5uùœE4R–C’CŠneń81‰gÛ7ŚBÛ1BsbžlDòŃ=žso aBâ°[S„‘P«Û»ÄK@ŒÙ8Č2î›Zi~·…đd•›wó„pP[›`K»GŸ«ŽÛíEŸŸ3%LÆo; /#€àg­’DĘÜ M9>ű‘„ßxVĐ·łgńȚÉ2–{m„Ő Vó%Ó2}!ź”r=&cRTœôNÀOB^,%Ä(~”Äk…ŸÉœ0Ź˜Ë Ża€ŐZŃaíŻV:‘ÍÀ{5ĆĂhà3ü=đ.DŚIÊ@jšHŃ}­úáËùäû9žbƒî™CŠ’âóÀșÊXąEu›V–ƒ› pەkL–/>e“%0*Ê;șĐńö)ZWÁ;őșŸ‘čű_MżˆÇwș–"ˆP—/|6æu”űĆœÙGœaŽrŁ” œÌÌàč ›¶,s „/ì€NugxMa‚VEáŰ5ŽW9țqŒOê ›èc?Đâ9™]XçQolžlê}›`ŠŹ*–‡w,ĄBb §tjßVĐ(óʐNĘ1OR2>D„„ÄșÊ©ÇT ëWy™€ô!ÌßIqæeÁd ‘6ߕȘùÊ;2ŃF± d*́‹6&…Ÿ[·ąNUĂ ]ûӏyˆ{­}šŸsN‘„>ćw7ÇpZź~č4Ò l­zX*Ń#ZÙóR. ÏcûŸû„9Üœ€)ÁĐ SÈ­pIFč;><Šd%픊Sbæèâ”æ©.hëˆnQ-_ĄK-AńÆ)m\qȚșB/‚VŸśżáѶź1âać?Œä[›˜Aòșđv᱀Äș< ÚĄ;Ÿ„ëfŹ0IOśËœ`ž SžwÖ|V?>ŽÊUțÜÚy‘%6CŐÓ| 3żÖęćIiG5‡‰?(Žœ‘išÚ6y©—đă"ŸŚÈۅ\k#‘ ÂąĂżÄ) Đ^mŸžmőŰ- euSÊT+ł—młôÊzë I?đyÖ}”ˆăhme†_A”ăcáÛYüDÊlCFfŒ€H€0…­Û//śáFćDüzQ©€)c,ôQ‚zqìŒŃ$˜@čXą"Ô»€onƶíÍ:\ZUÊLèöàŒ:‘mHłXbč O1„g‰Ađ ă`fÌeę& íqQF€XĄùvęûR’”Lê1ŽŒÆX)Ż !îïŹŠÊ„6R.T.ŽhŚpŒûę$%îŒ4¶ ,ĘO4ypÎÛKK_ÆxsĘă©üi»tù=êáƚ 3†Ánv\ŐűOò‰Ührśmüć=Úy60gæŒą:ßû?Ȟóć$lß-.ÿÔ1Ă3qî–ôźțőäïÓźśütP+nÂBÇv§ČRŹWïŁĄșpГžĘá>CâĄÍòőZ‘GFÈČŐëâxŚŁ“éƘčg!/GĄeG»u™EÁËց âÎśöłŁš}“Z8‘QæĄä`M0lŒG"G!@l|íčș‚Ś7ŐőçÈĘ0ŸwÛ1p Ê{š°\… ŚVuÖoêì(«è­ßæŽl‰rfš…tš§1Q((ëœüK}•x·˜eGgs‰àđÉŃ r4 …ŒCÊÆgQ”±čŃH đ©Ë.Š±í śźL‡-•31Áą¶đł– Qk†›O‚–œoÏóWʧ†›{» exôt¶öëąHPJÖRȘ”mŸK:DnȘ/•R"ÎGF-Oż,Î#ç=ŽNáÖĆWw…_Ì $ąrŻ–¶âŸœaàkêšlQżÖŰK_ qHs„(ȘÔ ? 4œßăńö „śŽƒłôüäś+4›+lćńÌÚòÓp-$KŒZbs'N'„çÊ ÁűćÁQZôڰ0ü›ûćUzJ„žUđÇTŽgŚÚ›™^)EÎw„NP/„Śâe^ûŹ ,űeiźT:,©ƒȚŽçĘ8ő|.©l,NŃ~FŻécöüwoűì(ˆH{ò ˆŽÙ{Ű«(SNtźM8ßÎïéÛlő€Êźöe¶7Ovk"łC3VYDÜő°Čűtû.úŸà•ž'‰Œá©,˜Vk5•żÈï9Œ±ŚÚ­ÙAßź2#r2+…ołá·é16\ŰZ˜f"[_ÿ/Æ_ìR~Wű^úX±$cLÂNęòBŻTŠÄB„^ mö–ÜÊŹń|ù…ŠVûÁ`Æ#CŒâ&)"g/éáXéČ~r˜ 9s@‰ăUàù\Șàw],+©ÊŃՏ8ԁrÔXj?Ì!m8QĊȘùKi̓„śÏZJçŽ hčübI=űĐŸZÔX¶=†Ä ”‘!BŠ„mÂd-·Ÿ}ŠŸÛòeițyƒ‹êd–G˓š„1€kąó–^Đł6 ÉƖ]ÖȚˈüÂV! ÒډYîĆłÒÎu˜±Äb+]ü2IŠWČ$rŠ(ÊcŻJđ~îl%Æ+ßq‰Ș-od‡&æ{­ûXQ8vE+ùœl,ó}GòjVxh*ÔL4VzĐá )çÔ#:í«ő0ÊPáàgÂ1ł!†QłÙAnù„5LŃy¶Ü\ƒ™^öN“Ç…BÌ%ڧ±èÛÒc9Ž$}ü‘‰^.ÄŽK1{‰ööą‰j^“a\É _ÇòȞwƒÆšjŸćZđáćŃÁèižo*€Űx$·ČTŸTq•ă ¶-ÍŰŚ©FŒÄł\‡Ìó j„wîëÜlè«2 cX?ÈM4g§íí~ ,$1šŸï‹ŰìYvËŁĆtÀ‡\ž[ÙÉPDè$ű t|Ü\æ*vÇ„â5h\Ę_.ĘcÍ4fì3OVÇKí6čĐAˆŽ›t?ÉJu?Đ)ôĂ,Á܉8èaDšÏđ(} Š‹•ŽBü0Â*Ő;Ć43Ÿ™Öò„4Œ4Ęsù8ìX,YŸ't”„~—9/Ru@­9„aÏmi+]I3YofŰ‹ëŒ Ł~yŃŻ\áœéLąßJśîSFuƒÁ¶%M Úwą‡‡ÉRMć:j 3#śšívS4ąà;œÎ_ÉçÂ=ßąőR6č9Kš^î^p€N ŽŽ‹ÈNÜ!ŠéŽe4/-ó\Šx Ł…HƒÜúČî ÂĐËyKŒ#œŃnŠ`H@™î𗋋ëû±ł § Xt«ÏV’‚xŒö àȚ¶ŠfÂ8 Yï»· •7F±úÜòˆțŻÂÈžŃ'ąćȚK©kÝO”Œôçç;©źX|ÂŒ·Ź#”^Ț¶#Gęeù©€PŰă`g‡ S6é«ŽŽ—•;ĄŠ{Ç%­r2ò›e!^xžßŸoê]Ÿ vł"ŒŽĘI­‚·"WIöƘ+oȚLPęx#.ÏztŸÁ„[pæ-uZĈNtNĐ_›œ†òÒ0ڰ@>“ÁĐìnoć;†sÎ՞ĂolÍîőä ”áœ]„‡tń`!ĆkȚlæeèÊlą@±ÙxDÉvœŠDÖ6ęâkâŹN#šhòźËä’>·śÄőÇ.mLŸzËŽĐŻêŃvÿêAB3{ÍÓ$“‚Ùb•śŚ‡ÔÙîEÚG*łʗùÏ~Ttłú05%o̊ tčj˄Ùs}ŸŽÏÇq ~F9"ŒÏÌŽ”ʝ"IœTĆsé4öÓS$æ/űôóSI“OĂÛ§šŸđŒdyÍΌ’¶?­X•DÿA‡r}r˜0#ʈòś‘>ÇËńI͗BâÔçç,TÚß!íHĘàk čûr<éžB{źÆ>HŹ„źTŚ:sï*ôț|·úXáMÒ›¶ča JŸ0Sê«ÖçŠ%ĐÛșm™Æ‡ć íĄê*€è<žŹq\Škæìüv˜ŃÖÚtoôÏŃçmŸ;éƒś(‚UÉ1Ÿóá˜&Ê_Ž~d$êŃJùqdAgÙl5‡…R[`€RËb…—a„ ƒąŸ:I=ÔҚ€{À "UTÆ;ńxś,Ú`șûb›uè!ÄŁÌéÚ= ©qㆠ‹k­9žä’”.°yt:ïÏ‰Ő="úáĐäĆ­ÖŃÊíÖ{IeôÜIgăz—.Ę\šșžS3»ń OŠ!HÚż;\˜W‚ÓÓƂ@&[/+ŰőăœòaŽgd€œ(ŁüJ‡^g§~§ĘŸ‰†q;Ś[ő" ȘèëƒíÒđfœàZ [ŚęáOč$Jp}‚Ź)pé zæ¶łŰ4D/+Á…”Ç(ó?*ĂÎ'óžÔ3 -LIgšęŁgÛ*ÔÏśȘÜ1©šC#.íËlSK$YɞŸÉĂ”n'ÛȘČ[›ÌYÔßùÛpŚÓĂ5°Äż —ÉĆł<•ÓĂżAȘ6•)żfóû0«Ł„ŒvÖ4œ*ꆊaW~űŽNv\ÌÜäÓJFĄÜsèá·€]'<\ôÚ;êäČrâL`JșCŹŸèÏă–Ս4yœŸuïqœm™_p\ű‹Û?íéÂ(Îoew©Ä ŁŚ= veĆËŁPDë7K7ÒÙïL»Tb/łÔŸ~$zÀ?6Ûr4.LÈ2 žÿp€•róČI Ô€ŰËŰójrJŠäBQÍȘŽ5śŠȚi¶ź[M€ł;/î…C3vüÍĘŚ/đ= ŁĆa”QLKŸö„bUz\`5:ĆówÆ»ÄhïŻž”`F+ÓO>S?êWÆc¶f7Țkčf…ŠÛ—ˆ?OˆçŠ°ŠŰjŠș»vș&ŃșłÁ_æKžsIńÒÙJ°‹}á=žóœžÀö4Śő^'‘ä˜;z“Ê ŐśäšcOèsZłăí;”M2Æ ˜D—€ì4òS»óhÒ\ŻBFڅi‡ę!C]Zî㍎äŹÿùę endstream endobj 299 0 obj << /Length1 1416 /Length2 6052 /Length3 0 /Length 7019 /Filter /FlateDecode >> stream xڍwT“ÛÒ6҄ RE:QCHèœś*„† ”$$‘Š œIïU©*œƒH‘* H„ƒ)*J/_PÏœśÜÿ_ëûVÖJȚ™yföÌȚÏłŚΛwűí‘v05$ËI•uu5Á $, 89áXWŰß~§) #RÿPFĂ XŒO‚Ću‘ ÖW X“‹K@@!Hòo -TxÀíș@-$†p*#QȚhžŁżÎߏ@n(,))~çW:PŃ ††C! .ësĂŻ…žP8 ëęÜ2NX,JJPĐÓÓSâ†@ąćxî=áX' ! C{Àì#ő n°?Ł 8ÆNpÌï€Òë AÀx‡+ C`đ)ö04ż:ĐHSš‚!~ƒu~îÿl,țWč?Ù…àˆ_É(醂 ŒáG ÜÔWÓÀzaï!û ăÄçC< pWˆđ«uPMŃÁOűg>  Ga1žë̂eđÛŹŠ°WFșčÁX àą?8Ćï»·àŸĂuA =>[p„œĂĆöP‚&žû˜ŠÊ Țű·Ï†Š‚$ą%D0w Ì ê$x±€±7 ö+ŸpăgđóA!Q@ü0?ž ÿđÁ@<`@,úÌÏç?ÿŽ`0ĐĆí`ŽpàßŐńn˜ĂoțhžĐ„§șűüëÉ Ï0{$ÂŐûßđ_G,htOíź’)ߟ‘ÿTRBz}ű……€üBą $"Ç?űęłÎ]üOÿ‘«‰p@/Š]ô‹ßšż{öűCî? áțł˜O]ûßL·‰‚ ű/đÿ™ïżRț4żšòż2ęż;R{àêú+ÎęđÿÄ!npWï??»Úš#»]ÜÄùț„ńDŸ–[”OÌR”Ű€ŠŃĘwYŁšÚÉćí»8)}ÿȘîü˜èÉEWą&źÒąŚÚ^Y’„CÏ"iúć“!¶ÉźÏxEt—áŻÜOn±AKі©z·ŽeZ žT œę}3Ô]ŹQZVŸs„b©U„ûXTD.W˜Î<œö3·Űc3ƒÆÇNVaÓŸûĆ8‘ł§;­­J\SîQˆšhÜB͌oFÁ“ă-°à›ZhzUŽ2ÎÓmqß·ÂkŃJ§Ś YèW†kqęșđúq4R ȞólŁ-28†A 9âVÙôRWű[)aœ=A‰^Ț‹ăĘ@ú·=Èa€GI`ôń&ît“0š@ŐâHžßœ.m:Úæ(ÖûŽ›‚PnòÎùčæTę-7EĐà©ĄpęD/]ŸO+ßSúæeIêĆűƒ•aĘ€e}J'?~ÚiîÇWŃô­'ÄF·(.ì6ćFńŒU1œÒR"H& ùìsÖæź°#3ÓN–ì5v‹Vös»s€ÍőïJ,ŠóÇ=.Śo›ĘbÿÊHž\ŸùzČœŽŒŻ†Ńç N*àÜČÚnòŒÖ{Y6Š!·§â·śl:;Ÿû^ò”–Ż”U`çûćAŽ%ŚHÛÀv­MYZÏ!Ÿ¶­N1Ćvy:<ïmA-ž@ÎIß«Í ÄœŽiNŒF !OčHúŃ ÎűG7&ʁ“ @7ł«Ît}g ažłĐÆjSššá%ÄùŠÄ'›Á$yśŠg*…=žÇÇÆșäʱ޶KÈűŽh"ƒP „ˆŰ(‘.mВĐ̜ô ƒ·űFŠšÇ.Q~1««êG!łTNČ^D”zÉő;|Đš9¶`·2VĘïpÎ0ì‹ôä;ĄX^Šßf€QÍșJ,ăÌgPŐ»č™Ù7MfíëoÖHۋ<Í7.€œ•șłtìAwȘË;3!͇Ÿ~Ù<ș‚wŐxŁÀ`lȚł[âȚc'¶ŽŃïi™èyßçšMùŰżlq ęô5ŻÌ'Bgt“+ŒœĐož-čÔ_Žp|đ­n^N>vjčÖ8ïcò›ĄgÆŰą Œ-ÖŽÜ&h^ceé` ś>ùÚxÍ/8/ »:eț4šù–xÀ¶;6xÁáŰŻfu$‰§2T‚ŰÈpÌ<ÙûLŠVÈ9Yßșe1š™ŠłęJŹIvsȂÜxŒ`^iĆ3e7äü hˆłÔï jú†ęg'zčHšÈË֞*Eß`»öŚșˆ6 pû{#Ö muòdš+pai–ê@„î&EVŰÉ [ïîȚą‘[eÚĐőU`Wî盟ÆÈÙ^ÚÆ7ÇȚ“·QŽ€é&C,ą€ê€lQĄûÂR Ù Ì}2śÔG|À‡çPSMÆJ"1nŽî­Ălˆ}@@ĐìsœÍP!+(Čž/Čs.»ĆúțÒĂ{șÂɚ·CC{ČÊŚrśăœOÚ:&ĘÍ|á;Œu]‘ą~Ï %‹nTæȚƒŽÔR_ƒĘ[Ïđ‹#{&ä§úfcZI?ô2úòô `±X»ÿ@hÛE)!ŒçÌő›œgœù†Ì'{1•=Ä^4Żhę–Őű92oeÚŃĘäźĂčšÚa„kzŻ­;4ve»P,ë1‘Š„ïÎŚÌœ;+òfÚ:ކ<ŻȘ&ç.ú,=XipՄ=Xe·öVAú°S™@¶Î„fÁxú3ä(îšH~ˆ!Mù5­„Ùf·<ä2őšƒ>™ÙÜ;„’Ü’G ÙƒűÁ„rź Ńœ+oFKŽêȚ$ŹâŸŚčgzÿčĘó‹AЃAgz9Őq—ê€ê›æĘí:q­ő‡OzăMR+ś3—€șaźÇÆ,}ˆŃ3ïÌ.˜IOÏùOLˆ"ńLV$2D˜}ÈŚŠXa•ŸŒÊŒk œŐ+çJfJRoVš ”$”îŃŒŽ1ʆKâ(j 0ù(šMHäúÁAÌË}!•ÜPíéWőHCC°†—óxÚ.Ù%±âçœ*o€Ś»zçòo©^ùŐFŻÒˆ,œëx7ä›sLŚiŐ3Č‘ò±ś1»@Bò,èq3ƒiU4©4yg-e uiè…Çx8[~<+§Jt^^ŻÏMÒfÉÿf4#[ΊV'@ƒ‡m°WÇj șŸÿИÁNÇOPnHԅæ ĂŹçSę3qzŃŸá·™„’?ÜyjbCŻsW>Ÿź·ÿ†žrùȘ‘îț{űÖû«SrÉŚš{†ÂWźŹüæęà|ÛŹ3[eCb-Šc{Ìw;çfƒZä|ÿ`dăÓú”NąŽÍC€œAŠ–&G}sJçœ>î ôn†îkŽùZ țTD’wR^ˆŐ|șa>ÎóśRŒÜ|Æbt‡D+DF±3Ą8Ț=ïíÊęhIçRÓ0öe;іIÍ·/käíŒ/ÜFyéOâŒé$ăŠU› Íôù§R&:ą)+5ÖQ« Ś €l·È,q§Ż©GÇۂUMI|ČÁ;àÁ ăȘdSÓQQo3m_\ÀèÎRêwß©zìćg%ûőSÙrÜ€đT»ń„–ËȘEukĘÙ{aÛSŒ3drEŚÔìyæŸÀgÚ{üŰ”ôŽőÊČj!\öûńÁ…a#1,žÎ”kÖö„]Æj$An3æ&ę« Oöęôq•ê5#ìŐBšè—·Ê‹ QĘąTœ^:*oÛÓ"ëžv뱟3$êD}ÍrèńZRáNy4ˆÈ«žšÈš†ÏÄ<yčÚ9ÙôéX=GVIĶŁjńŒŸšôŽáËȚ”” ’@Ü«”•Xt9 ćÆÂ(GĄÒs BÁÈžÏRJô{À‰č\êÌ9ŁCàb +Œm a7Ù7Ł9‘»Š^$wŸ˜{ę»Rő)?”KËËŠœž—ÂĆʓ—ÚlćnQł s6Š­~hżß<ÖNCv‡ĂFî6źbATÓƒòű^ț=‚‚Ô|&QńTÂM7čś9‹ŰŸUOúÖrș?éHBI+jŸe?őz#ŁČzŃ”€Dœw蕏»æ}„Ú—ż‰Q”+ÎŒśÚÚ.·:K RȚ ž_p~fRÄÉ{,Ælùq§^iu1q*^Šcćn4ŠÈč, œgĘłÂ/™ƒ—h=Ïiű9|eRŰ=đłvŻ9Û9Äï)Àò5VCyăòVÿ[ș @eqűȟÜëZș’NT*ó€‚čucűÔś”€O*Ž2Ìőô8?œ»˜~êĄ2Yß··,,“śÏP@źTbÊZŐç j1n<ó7æ „IJ±ó†+đLW§—ËÍSćt©ÉőÏ6Cü/ę\üuF>-}}u@]¶Ëú…ÓÇ —ŠÌ&8č„ĘXüĄÆúÆĄ—úč@|(ć&ƒțAhÆęšoÎKjtÆ3-ïźȚá€l1NWc’jó >Zș@]ÀÈ*ŸŐ‡daƒ«óÄȘav[Qw”ËĘw:čBOÍi75ó3{ÆÓˆŃŻ,§ë_?zsțéĆŽőHXlFÛß@É/ŻÈrxŻ*t|DžôiĐPŸb;ś€•î2ăjJr*șę™8ëÀȑśúÉUźłĂïŒeYvKŹqąȘсŒ8ŽłGĐŻs ŁHTì+Ćï„NĆh EÈ«p[­·‰g.Q-MƒêȘNă\kòڃB€ùŽ ć̶ÉÙK ’Q7Ӑ– :‰ăT+C,ĆJ\[Ć_LŒ&ÒĄüȘ#L+!‰È—ÆvŸfÛD—+Ú~ŸJj•{ńEÛË]žłp፠¶˜”,s=îïˆÙÎpPț ìȘjŒBEs’À–őșŠP*—›UCź¶6uwp¶f\șâàcï‡'Á~nfYëü?êt‡p[Œ_\Nôäi'ŠQÎ&Ó"H˜šł€ȚL©Ÿ úúEȘë·š9'Ku[»Kû6‰‚Œîčí>kaÚ śŒÚńœ­„e’[/Î=ÚąśœÏš bäÓrgYÇVEJ0R­VœÌÒBć!ŻȘć]Ûj«Ąt4Ëgw voÂÈò§7ű±àÇ™{ăídB“gN]NW|æIŚG’™CyŽÁ±o{ˆ–ŸJšsRG †ZȚlö4èțK>FœŸæ€l2‹Ț|žÓ JŽü4„r3„ȚY…|춄ô•‡O¶kÏw0ÄŹčÖ•ČŽÊßŸÆŚÎÊ­m~À]–ޱ±JlAûăÿj$VDbRt)?Ww|ܔvô†YŠòHIV’cïòȚMŽLȚ±űœă>'4ćȚÍ rvX©ôÚÀ”€Qłn{ÿő3jÚâ9AÁœxčŸ0Æ ^iúÜęJü`cƋ€2Ș ÔgÇœKžȚVó–Y3!w·ogò9 ”돶„}ööŒ›DQ…¶çŸŽ-Ö{ș5N”@ÚêČčĐeżàŐĄé€*ÛT^h•`…'Žû]mțŠùèäkŠĐ,cùí«…aÄégĘ䕩€ś ЧȚM&†. Dqű7’șțæoÛBƒ}[ÌïŽç™Ÿêæ^Ç͍lžùxŒzÜ©‡ćÍü‘„"PIŻdJ °‘ÆșŒÏńgfoˆ°rŚ“š•m„3^9œęZÍt‰HQ?—»<óÆĄŠ“{æ5€2­qKˆ‹$IĄœć_a·Ž+|SöêŽÁzR*śŠŠŒtseWĂńü€æÊ‘†Žőięü‰b­cšzâ[=ŁȚHhĐűÏæhĐÙ%ńśÊ­••òŁÖ*édgŃq#¶)ÛtYźîeÜBVłméz0ælí”$P ëùâQ8ćà…uLÚö5șëÔ¶węÎÙe”gÏćUV”™33čjűv"òіBäąœ&P­›Ÿî™<)u"©ă%ŽÍCŸ(R”%šHôôv#ăxQ˜+,GWU ś]]Ší|;ƒÒ†ńшœ„!ïáĐ úàÉz?¶—kÚë”Mƒnż`ZŒÎIF©J”zögçŒĐ«Bi(s;K;e5śÖ#Š”zmżżI2ç1ôښKX#êò"˜r*čMÖŹąÁž‘; ê#„Öùw4Ńk^Y mÜ ,”r'Šïésò֞­=S“–čwžû.ä§§ïö‹†yòqjÚ]cAtÛi{Ɩb—ĘFKo~íÉČk)§+n”ńÇ|NT諏'ąmY?»œ*Żzû‡!bô ùÖÆąËíÙÜĘŁŒc_- žó] KbfR:ż;IŁ&ò*2<)[V™§ߒ_~O(ę4·źțź—ș#‘„ !ØcMSwŃ;Š C‚^DP—Ő·ČĄívźŹ­S !I<ö*퐄K?ü驌ĘQrVnÓ%ÀR.C8›ŽìŐLbőé‡qTâFhWh5G„ËȚò[…%ČșąŽ(ˆn@űë”t·û«aŸ'i»vŸŰÒ)ź`uÂ$FȘ@©ęáŸĂc­úl<óîïVšÔ’±ä)úč„ùČ^ՅÍĘ$QSW?ÙŹv˞'Rò„VŒêKź„*ú 2<±€Xô¶ŠŒ#ëeĘń„äelûü1}Č0g„©% ùùàÏ+*$/câY,ïz«$M¶]v3+Čč`9OńőäĄÖŽ] ,ë„C ŸÌ+~­lcÔ-á>EźUo…W_é?=$% !lOA îÇbG˜(Œ(’wöűéyĆë·4†m dvÀꀩ ăK5Ó.ïESíÍ1Ç)«‚ì]ÌPâ+îȚ†Ł2œl‹^Č»üYáÄ?Շéü*ï5}ĂAÓÇw+†ùyà„?ÜL'æčKu2R–ÌŁž]:CÉ VQ¶qŐŒęT­~Ž?™/6âdáÒmôŽÉż§\DnwŽÔXĂGźèy];pđ ÈRŸEžŻ*¶Ìêj†“!9;Ôí·aČ2Ośÿ+ÍŁ‚őDȚÀàŒò.§`1éaEš/%T‡Š8x·Ö˜˜:śÎżšš0ëœYç˜)T|Œ°Lï~û@źRtŐ|dۆl#/Ś` ±ű ÿ‡aq·ÓFzÚ\“_K°_ŻgŻî~Őè€uÒPԑÇò”Û9æÜn…—^ÖÍ|:šąéč6lUÖŸĆȘ6{”ö‚G“ž°óČÇȘ1m§ò—tNŚQ?Ä!Eƒú g^ÔۗQ©>L<éçê€{ô‘ާžàđĄN“€<šv–ÿęҔ‘­ò‚Gâî0ăŒúb»B  [Ę07Z‰56Ó· eę." ïĆá•àő™úÇăCóFÆŒÒG mu:›o š›È]\‘YĐśÁžT/©Y ß6qȘvMKÛÏ cbÏÏÏ0îaÆ„­NÄĐSÛ:‰\Rfś"»ZÒăKŽÏ êtìćą#”/g^U8~oùÍHOJâI>ę_ŽÄëEód&òs<Ëă†vœ#'SÈ膀Ž5čH±«K]œț»vŠÌXÎHIœò€'À”Ÿj«gÄÒŸŃï:‡G'2E„0}Ê1tžìÌ;đh#o Â~泊œÆ»5ž_ŽË+w: š<Žä*êæ k?_ÿé.PŐÈÚ6ûź0ìFŚPáfŻk’©—đžqöó+ûœ:v8&R;#ÜX­ R*îœŃ+„đ ž§ï]Ęś'QŚ•™ e™\oáuF«Ă<.ëùűlrNń[D/ćđ§ńć6Ń XŠKœ”aȘQčź_]ȚȒpëq@@äuنU†Ź€ČkˆŰ#Œ$™Ő„`§XśŒű©cKptzy錔–ćű AIBûζt36â ž|ČEé[ęłđîϝ>Ąvî㜱ę5GD-?\TÊu¶Œ Z$™É"ŸĘqr›Úç,ú8jLÄË­„òźĆ…K;JŽ2pœrĘ·»‡©ž\s~­„ŰË© a~ĆŃČ$:©cNLJ”‘–Ă jłux™L>Š” ͋łâŸyíÍÏ->”‘j©èƁynț€À€c>áyR†ìX PHiűd”{ëäG‹ %ŸĆșűŹÍíQxz őqKÊœűźę„w‡–ûǟÖ;V>|łF‘‘àúÙz`G€źÿažŻ…žž\łèxźšæ•Âm‰èźńËI6.đrûÂű‘vèő …kzĂ7ٌăĘ(IÉùțÚ(›^ endstream endobj 301 0 obj << /Length1 1478 /Length2 6403 /Length3 0 /Length 7390 /Filter /FlateDecode >> stream xڍtTÔĘÖ>H—( ’R3tww‡äŒ30 ’/!ŠÒ­0‚4ÒĄ€t—ŽÒ t|cŒśȚśțÿk}ߚ”~sÎłăìçìgVc~E'„D Gńƒ€Re]# BÄ&P ò&æ0ƒ =ĄžÔ8(#!`SŁ0~ș8@Ë  @bR q)  Jțíˆ@JTÀȚP'€ź@ ‡xs(#ÜęPWæ˜ż—nGHRRœïW8@Ń ‚„:‚á]0Êâ†9Ń #Ą”ß?RpËžąPîR‚‚>>>`7OÒEއàEčŒ ž€7Ä đ“0@ìùÍL€˜`â őü#œQ>`$€`PGÜáw‚ ˜Ăƚ:}wü·łÎo>ÀŸ»€@ÿJś'úg"(üW0ŰŃáæ†ûAá.g( ĐWÓ@ùąű`žÓOG0́‰{ƒĄ0°ÆáWć`€šą!Œ!ű‡ž§#êŽòđ„Â~Rü™sËȘp'e„›Žò$țYŸ  qÄ\»ŸàïÎ>„#|à6ÎPž“óON^pš‡DSć "ț7æAD@ ž€0â€ű:ș țLoâçùeę„1 ‚Üîg HÔ‚ù#đ{C(€$(à? ÿ܃@'š# àqÂ‰ÿCœï1ÍGB}V@Œö@àÏßżV6y9!à0ż»ÿêŻ ±Ÿ±‰‘!ïoÆÿČ))!|ü"@ż(ú)2qÌ"èŸi ÀĐ?eüGŹ&ܐü]-æšțźŰûžÿ àŸčôŐBÜÿč5Pèˆù€țÏRÿòÿSűÏ,ÿ›Èÿ» 5/엙û—ęÿ1ƒĘ 0ż?ŃzĄ0 ‹ÀŒüż]Í!ż‡Vâőrûo«& ŒEž ì_ŚőTƒúBœ  (GŚßjù›țœ21@xB>+~Lkțˆ-LJ˜§Ă#É_&frțy€*ÜáôsĄDĆ`$ìGŒi2f' afŃ âûKÄA8… `èœH⟕`LJÌëçŒúiü ÿ ÿĘÁż b˜ˆ‡ŠQ#e șcű?ˆ€ț ÿ Áäu‡yyțțÁÄŃ ‰ńFęÒ†æßû_/â q$žG8J‡?š oŽŠ Wá”n§öW™šÀ)›I•Âvú·! 4ęš ȘlÒ?áÆ"Íž5ś„#cmçź]SoÙțƒÒc““Œ»ț‹XíĂęËŹŸ†–Ù`„ÖŻE:jÒąq©8°DN։搮ĂY+ç˜ÚySĆȘiƊôŃ.ÈÂVOźÒ]‚&a •ÜÀ–  ˜+c^§—êz<9ëÁ’ŠÂKB­l™§uć<Ő™ˆYëKlöùhÓoDƒkbÏł‡}Ős áĘ%wÒbèW ćăÏČX'†ˆu„°h+ŹČÒn_. æasްxLèžq;–kYfŒ‹Ș§2!e߈Ò@X5—5œ_Șâ6ŚíĆ«AƛZäćxS•ÊZXZ(4g{€8țS± ⻥fƒíƒ-›căcw’c‹?ȚT›pńaS}–àłoÍX~Š0”XxAB2dÿèœL&3XH˜z-ÓđŐm·Șæt2cŸŚuo>'|ĄôkauőÛ·éòœôöò‡â)›4$v}9xVϛ%| dD@cL‡ČšÏ'XÓädÒb©u”AHm/ĐWáó4Se, }ZÂÖŠ%WÁ4SJ0Wb Z7ăyŠ;kÜ3„çËĘ œkDASKSŰÔ ߍƒn2ÈŰhÒÁ ń=Á}Egg5`a}›¶ûđ»aN9™‰ÁőﰜSbÈGŸ$ś«i†0d°kòYmČÍțÓđ8{^Xá1Äđxü©‚3­˜0ƒÆ‚Ű{ȟȚޟÚîmv?UŚęó=ôJwÏxšâ‚=+ŁJ_ćI'[*+óŁ•i^qwë_z Ë%ubÛ9QŐČțٍdj Æl»Ùșőêă/{_Cž™Ia5”C; ûY /C/Țć)¶łC9é=Ÿ`ÿȚȘ!bDCùBŽ/Nđ„çăÛă=ôæ 5ßÏ;Ł/.Wn‰ńŐŸf~?Ș§oeČÙÜőDśâ”»śA+Y&SdbêŃdg‘RIò/vjx­„r©2èŹ…vRž{\$5űP/j4Vû-vΈt~Ë·ŃdXšÚ7>ÉdœȚaÌ+léĆ/…NWoÚ籓Jo],ÜkŒ‘éz•û|č“2œăÙòJRŠZ=LYŐ>ÂìkžëbSo”aò€Z! ©cièvX0;úiې°p㱁ä„äÖęxOÉ(l.ûćRfČ-äŽù©”ȚłÂ­ϑĘÏjXđĂH3l™Ìç"8…D|(Šaț$kìŁB滔•>s][ú’Śù«lúŻČ)?ö›·ßSٰ™|e3Ź Šî}fműŒíŽÚ=ô,Ԅf?~ĂVpäd—ŻkViÌaòNŻ^[<ĄœŚ(u|Ë Y˜~ŃcùŁ“rÛÒÔX1ÉHZ{SŹĄ'â«jD– ~Æ6ö#Čo€–žÂJă_ß$±€dzłO7jbԞ=&[8Û)V][E?v>1đ ŃˆÈĄüF`~Q%=ŁÎT4U&ܘaûÓÛÖ}…äRșLą4đ›Ș~ȘTĆ`Ç˜ÈŻ0„9v•.śA>«æőĘû‰AžeÀƒ{á@Ű oŠ2ûz.MXÎeđbëjŐE¶[ÏòđUË_îÊžƒ7lIB']7őâŰgÖì€/»Ÿœ‘–JxùÍČ#RæŸ{;9zŽóжú=bœœłË<»sÒČuӔŻ»•Ăł•Ò8Èi֏è˜á.łƒè‡~eR3kŸòħ‘{ă”±ŰÁŻ.ęeżĂ?,+"]ăŸ5G‚é¶śd 3Ù ÿČ-Ęâ'„x?Ž=“„ÚśÂČte›‹ònTZI'4ü#ÂáÇLĐć …Ù§ĄÎŸĂ.Ö lŠÿžôæ év àê7^nSi蛂ù]°Đ‰'Óä‘ZțW~WÚéö”Úö}čș—šz:ÁIőèŐ99J0n”äj1ŸoixQäŻ P)<Úî\E.ÈŸwÍí"éÊÎtVԉmٰ«{j?i;\§ź}$-Z‚_àӜـ»ą‰ôŰU,vV|Œ`yêő&€mn„ę ihwk˜Âyë+“ʏ#©„űi'fŁBœ9@Č"ê6é&?ú)ÏR=]Đ[ïșôYÒjô”Ś5Ąń:€v}űííb°ûŠKoò{ę0«„Ÿ±w<șĂòęp5čSźÜŐyÖlqŹ tenaOôWYą4ęÜöÔ§Á2ž·éòÍ}©ĘőŽÏ Ő°à)H˝nl{Ż… žo¶XšÇgŁ7ȘÒșl§Ćîìfù Ûƒśr)^őĆX•ÄÜČnîSÍÊoóahĆÛ3ß!Íő_ƒè€Ăi)‚||»Ț«pžłÔìKŸ¶kț ućùä%~ïfÀÍr˜üębÿĂŰç)bćjŚ%¶YÜùu†8{òÏqv”íćöUEmö)y;sz=ŃòőȚŸșl­/țș—D=~iűńK‘žƒsïLcó|x‚(~ê”)QŁÿĐĄË7—~đʓ§^Uj9C©2í”g~s”è7ƒ7Îî5Țèq9ș‘·Či{*R€‘ÖŸ—>qfÛ:èĄATfŒ4Ę>|Dz\˜”4(.·ĆÓUp˜ȘšuŁŸšTQœík€J€‘Œ êR·łûû©ç꫐󇒚ߓœó‹3†p–ź?_žóRNœČPĘzr«GàÛ֖Áv¶{Z3Æâ7[Š-™Ë 7đv̐1qO)nh‘ò–ŹEšk €˜Šę‘ą—»Ê.æ]iÌ`byûŻ»3te:/źE^ïŹË§c}æ:Ú:n? VŁu2SŚçă]§ń€~Ł~U°h+X[ìQՎÛ{„íŚIțæôô>óÿp•b”©đ1„"-={CwRAč«ęŠncŽÜőD^ïőŁ/Ćm3­±ÀőőäACŻ•‘1=Ž]&=Š=$Ît—7^æ'=3’Æ‹aiÔ>č;h’SsSíűÌzáòŰv4‡‰‡D:•š%đ›@Ćșă1™†ŚšŰ”açćàKźLCáiß»”OX„YŒû€ĐnoÏpÔąŽ ć>æê_ïd0!ÍæCÛè}mȚÖá7Êń,íf·VۄÀ2OqDÍ·ŹÖsŐ€ońéqqQB‹cŹ+ô [54FûżČŽÈ›Hm+LȘíÒźë]“[ŽÎ+dȚđ4ž.šă‡6‰8Ś©©Ôž&ÌLŸ3čÁckŒ7ÄÏś șä#‰ŸŻW«J=šŒęœü˜Ä’$ȚRíß6zŽ'Ü8lMü~”}ueùEÔ>Ví‘]șok|ŽiV`,—ERuwTžșčéű-1Mk–ÔđőÙ#č ©^3»óœrcŻ$ïiƒhFȘ­Ù&© w…M§ę»ö{œVÔ2œqúŠ "~,}äQ}-AțűÂŽ0ă̇§lυ2æ”ǚԹӃ»…ućłÔŃźĘ$…ž2ț:…$bmuń„e¶Ò@ĂÁškèłUÀęÏÀˆÇAù:cUƔ1…R!Îè1·ÆŚmŠÂ» ă{Æ$BČô‰ăVïœj&“/Ž2ŹgßŃ0—2Đ8nMӅ\œ’âB5? u„+ź#ŻbšËZ†ÊźèûŽŒÛűŽY±‰Ș">?7›ú4ƒűćEșax•Ő쌌i«…#îăéyGȚ#ŽĆ ąmœ†Y%cQÉȓ°ÖwŰńè,¶öńŽŒw.&_çVlŠÍ; ńgž+ï±â|đߜlđPÇÄ%/GŰRé±"KÛ-ę e #9i‘/€4•ïŰ F‡ó?`‹ù[‚ś]Ædh‹0ÜëŐæ§Ÿ˜3/4^5ˆí/SD«s…uĐtÌžŃŸîSĘšÔ0o„-gȚ¶\1ïćŻTë+”mˆRjóYtëÌ;&ÏUćiŠ9]ßW ŻßÀ'+Ž›wbà;#é{Ÿ|U€qPì”vâ_h6ŒŸ‚”–.‰Ö~/Ʊ­V °IŚâRwÉÂu:Î4ŽPńŸ4ŠlŚȘŁjsí‰ÒÙ^őž&ò±\?őu‡?Š·FŁ,’ÛRÓnѕPŃKJő “HħĘóŽüè>§Ă‘ÌG„ŽjęÂúۀ§ŃÏŁùÄ}_O*Fƒ!ÎÂÏś|=ž]/Čb‡Ôń–Öù•ś:t9Ż—Mùó9•hN64c'¶˅Èi^ŸqKÄêGcJnhTÍäś Ć[ęüóà“Qő5“đêfŠB·<đ·Äb]Żi•žIÔM3A9‚]ì±Ă‚î»5cąŸ{Ô,măà_ń^úò»s[łD’Â.7[*É\xcܒPûŠŒ€ł¶rĄ±DCË3ä_óU”éăąę/źq™_źj;vëÏó‰4?‡ŽÄȘ7|<čl䜷XŒ„=Àpé7Đm0©žeă_š}2Ăő)wšb\;ÇŠžZ+-iCÜ—hšśƒ°Źg·@¶fi/șŽs°Œn«NÊéȚ䐿‹N„0›ù«cîąćl'ÿ2Â*œ_ ÚčšęwúćtGërc š°Mć.F‰‡áR‚çFÉ8›Ț3ńTÜ7.‰NÄeÈyÖ,Ay RpJ—R9Ìä«êlŃ0€‹GràŐÔ„“ +ŁűVÄëÆv­4IŹ@ž”šopw:-Šeș.‚­ÒgăêȚăρ©Ê„Xäęê{օÙX6Œč&­ÇđśCÉZUFêŠeè> stream xڍyTÔkŚ/ÒÒH§‚t—tIwƒ4ĂĂ 0C—„”t— H‡€tJJ—tI—„€€„ÜŃăyÏ{Ÿïźuïb-ű?żĘ{ÿö33ƒ¶—Ź-Ì€ƒ"žűžyĆòz&|Œ^^n^^~ff}0úÇa6čÁÁ0šŰiÈ»ŹHì©5©šƒTĘ!>Ÿ°Ÿˆ//€Ÿ—WôoE˜›à©”Ű Á P…AApfy˜‹·ŰȚŒóś#€Èàáümu聁ÖP€†5Â䌌ކô`@0áę/Ź„‹§§'·”3œæf/ĆÆ đ#ș 8ÈÍd űU2@ÓÚô§4nf€Ÿț—@f‡đŽv AáHwš-È €ŒĐSQh耠)«ÿ„À űÓ7ßÜę±țć ęml œ]ŹĄȚ`š=À ŽŐč^N€5Ôö—ą5CÚ[{Xƒ!Ö6H…ß©[euÖÈ ÿÔș]pn8ò«Fž_nmV€ÚÊܝAPçW~OÁn ČïȚ<†ë…yB}ÿ>فĄ¶vżÊ°uwá1€‚]ĘA*Oÿè !œ0{ Ä+*,,Äč@^@ž_ôœ]@ż…żad țŸ.0€Č ?Ű„üƒă ·önî ßÿüû„Ăǰ=Šów$ Čû댜żŰ `ʋ€€śŚÏžÌ‘ ł…A!Țÿšÿ1†șĄ±Šǟ’ÿ#”“ƒy|čűE\ąÂŒ>>>a€ˆˆÀÿß~Ž­Áòű/[š úWșÈ>ęČǰțY6Àż}iÌXÿ!șŻ/ù‹ïÿ›îżMțo,ÿććÿIôÿ™‘ą;ò[Îú—Âÿ’[;ƒ!Ț4ÌuG ·@†ÜèÿT5ę”ș [°»óÿ”Ș Ź‘Û ”G2š‹O›Wđ/ W{l”Á Ă_Źù 7ű”o0€ ƒƒĘ0H+^Țÿ!C.Đ y‹À‘Ôü-!wèßq @˜íŻeăX»čY{ă g< |ù[i òúMf7†@š5úì`n8ż+,à‘ęę>ń#OÖ..n0/«;r$ăHŽì –Ăp>^a”ÛüHÀÍ‚€ìÿ üÿbĆ?8€vB@ÎîŰYÔßą'K\ îđÿ È6đ ]ÿÚÿ’æđŰÿș}AnÿΚ© A6ïßšš …ÙÿąÜŻéo©ë †țW(d!ÿ+)d$d 0[䔜+Ü?æ‚È|]ÜÀHęÇFČëO{ț56 »›ÒĆïęBÎôïóï òqæŠa@ńPÇwĄm—ŐČ4ž\›Ă˜+«í‘ń&=BˆÇ3Ż}Ô±2•&\ćŹl+)ÓŽgKĂÆ§ęhŰ/GŒÌ>f-§*ç"PzÖćŽčòúœ~ŽŃÛšíGEÒ"ډtè­LŃMY’ŒŠo^ˆt lżĘ*žm‡o?Ę8ŠÎ‰Ri1Č9íûš/M˜V&fD±ÜLÓĘőU FoQ_‚c/äÚą©~xŻ›Æf ,-}ÊîíI8ÉWëȘź #Ą"őQeÈLìŁ"KÈVm„Ł<–:—/M‰g€*t{ŒŒf%Č|=™ßۚĐ'à^oŻ)„«0Ôà^ š–Ìé\>Ą”ÜÈÒÿÁƒOٔéÀYÆ$Ç\e‹r>~T%ÉíB'§`Ö¶/ÜiLŠK.LÔQçą±B,¶Æ(/­b2űűÍS$!OúŸŒ‘ֆл ÚÍßH€Hš™IŽUĐ4WĘqrÓ.7~˜=ÛiúÔ6Đ~ c:€#›Š7~Ÿčßœ—Đš"tț™Ű]AQŁ6ë°d‹Ë‰› ÔÍÍAŚnmW&#:;Æg(@˜§O<ŁŻŸ’źyßDì…ìóI"§ĂRș·óÂCŻ%ƒ›$Sž<ç X;ŸśTçkQÍ:źNç ‹x·c~l ”ÜögVÚ,ȘÁxpĂ~ü͎œÉDбÈôrźÜOƒ@K’’ł\»˜ëŰïÛgőGčÆČ”Ï ‘Ɂë–o†èȚ?덄Mÿ0ö”ë=Kʶ—ręŐ9ú1‰Í€’Xch!€Œ!NšE~©—,ÒÀŽŚZœíŹ Û­sÈźáìŸé…žàF‹ĆNœæ‘Ëu™«ÜSÀB–Ùąë•Ï‹úąăE>ĆÿțäŸőX}0ÿ4”ĆÁźg"­6OžżoÊôČ)ŠžöJÉćűŒ‹v‰€„†–G”ÏxVŹűäÚC[`ń ±–đ'oYXGÍaÀț¶č‘+ÍÓ`fÌÁ•âÓ°&â|“ž©Ą|cm…cő[țuKțfÜÊæR˜rŠ/…ŚiÿKG›;•_+ ÿòüÊHó!nŠBòIŃAFsÜ$êÙőăäőtÈCĆ;rł@ubT]Ÿ·ôŠ96ߊ*Gę9Â!űò—æ€ąÂ…NVìPZ»)X‡Ę(e¶ÆțÁĂZÿ ˆ4-}9‚ń°Ò"P·bËŒÌ9lƒè3ž8T­L«"–A7úĘä»ëmÊïșÄ?-“FâCßÒûÜeX•!ۇŠI&q ^gûú­ÿźăo-°©XAKi?}â…^AƒU0HT6’-éŹ\Że˜7\û‰/ß2@b«M[đhÉùš(ĘY›üP<9»FrpQŠ3ŽwœžŒĘŒ±üGCJ&ƞź|Êl!z¶ÎS*‚IKΜ>òÁlÂśNÈclì ÛČ*—Úše”žs™$E¶*ęÊ>NŹÀ Żëxúšț ŻzÚ*”vŸj#„Ăpêx‡Ă&Umy<_=>ƍšæ5_ÏÒ7©3kćÉìg(‡„%=XÖf‰U}3žè‘0ĆÙËTÇè`PŹ!}V»/œšäÂ>*âA0C!č Íś_W"L’)ĐLČ8H‰Ôߏ}bŚ öÖ) iÖb ­ĂŻà™Üš`&xq?T Żà*QŚç Éé©Ęźoű˜ńS‡Ć3‰|ߌŒ5č”Áœiÿ«œs9p~;ùSïć”jËŸ·“oéôO’j Ô"ź,!T[śÔ"nŽ$)~–ËLK!œKÚ0…—Ë[NšŸ3Ű D°]ŃLç0ż^\5ŽÌîLšÁZƒ-f˜Gožž˜?€Äm4›‡†~ä‰_[ł`ËdĐßì~nŠșZq87V»Jô^1O8âˆ/È„ïNVšÆ~~7‡–šŃ»?ĂSyNGŸ˜}vŁ Ê ›Ó–ŻÛőĐ<ÜfTöÇ+úŠˆ•›c^ϗ'Kÿ!:™Ăo»šuŁÙpêÛJ”RID$X͎ƈÔgÙ-Śò@òZ‰Ń—„Lp0ÌXPÄÚAٕRvDćĂłXÛ0ç3ĄȚő,ÔŻ9òé=ú^A.«Œ . QÔÏôźšNeûVĂ+°#j?­RÍ6Én$7|€ŽŚŒ(ßæ™ąèyÁG4òé^hGČŚœJăŠìŠÚQ<æĂ)é/•ùŰD°KâÀŒ1c]GÁLŒtł?ƒêÊ» „ÁDúœn?éíńë(”ČœsôÖό êȘ7tîÛJ[„r-ȗ J8M8šęВyOÔŁuS?B~9§ВГ†Q Łc?HîuRy™sŹ28P;'ńrÌkáŸÏ‰9|ÉaĂW=ęî^—Jä©ú‘Î34 ‹m.(ìŹíä=‹Ä˜ÉûLŚW>žK‚è\‘ hvĄGi¶áß `±©ŸæòeRL?ŃïûŰ3ŒE°ż” Lb8F}æÒŒ:.ź„<‰ëQóÔ±_ŠqÉfçł !枎Šx5Òč_ƒ§npöéîæÒŸb=‚oÎLú•›±È*Ÿ”Ôò­N#˜6zĂćĂyO,ę<UțÛ8$vbű-Û·-Ú|ęŒ”ąs[>”Ü|§òòĄ(Ç„Àò|l(ŻE™Ò[șŐ‡ź‘qûÖ„F:»Ì>Ą“”Șïšg šó;*ȚŒĘíožŃ'Eö˜&=*  yúHáspą‹K•"{yÉśšćt#7­IÛš·€xÍN4„œŠæ«±Űśöm©Ÿ¶L1öáeu:;ÔáČ.ŃÄÇ։ŽâtŸd­ŒáśÙÆæeí»ȘŐŰś‚ŒŐ:Q X|枝ÉÒͳʇžâÖNé·%weÄ/šŹšîìZ<—Üš‹Á%^-6ńw2|#]6żòËBI}„ùCÈ0tßnÜ jÏU;ÈÿâfÂOò.:ù~ŠSHËO» sž)ú­˜>Öc3‰‡ŽĂȚEö9g5çGI?Çr~!bùț`‘ŹïSx‰G©UőiłŽDÜ»<Š%44ę̓Œù©ĘìՖ(TnFZOž5Uö󦠍ig—“CŐpXLuÍZjНćńžìD @ńšÙn‡œáYÓ±šB~ yŒŁ$ÎKsi@ùÎ+_OŒ*KB!‹BĆCûɎZÁWr;Y_eKÊŹŸw}7z‰ÎgŹ»|g”XßÇ>âS9˜AÎ'ëŠ`‘ĄQòșęì7ßXŰÉo]Ÿë߃ž $hŠąNx°„Kù©ŰrGíΚ«RVŚò/œ±źWY1Ïû–Ń3ŽéĐgóđ>†Żx5ŸÙm˕sTLčœ[ÍkóUVa=ź†F N}m(ŸkŻÇă†Ș ù•MM”őgđZO}mwßrx[Ëhő„vÎKźW•„y/Ójż\j3¶Ș„…q”·M˜ŽƒDH€yËYSαÁ¶44™êuâöNXą°ššpĆGCŹȚ~?·š"ÛȚ’ĂV«{ûzŐD™Î†/©~­UčÏ·É3€OŚÂd<“Š€ç5“bÉçTć§s'†ÔÒ.'XȚăiÍ€ÚË̊’­Á}œrá˜çsçyJjłÚ”šuŠMè*–{Ïć±őÉ}–'ìîoߗ˜LMŽŸ șg%ˆ|UVà›Vei»]]bČòŚœIŒ5hVòœxM“ßÉ.ßúæź*"đ*hŻîÄcuŻă,PmÁÈ7[crY@z&.ŠTăÄü‡˜•8)±ÇĂűDéÆkâĄrïG“ÄqkŻȘˆKç2èDžqáä_ŃÎ Ì7Ț†$JŽGęÄœMȘûőÜíčBÊ[Č*Œ}=ÈF­=Àÿ=ą‡FÖ­&ÂÒpÙS”rszÏììb6·ŸV=u?$O;é±Aˆzîźä#źf/8:C/ȚèÎÆž[+~”š—’Úéń~đűæ»|@­t‡jH+Oą"ٰw5ŻÔ6&êÇąšÎd(/ăÀdùžä~Đ7űîòAˆLŐ|uЌaÈóFXk‰ÛÿeÎsÄț` ńqŸáÚ`i-GqacEć‡:‘šZxpæÛéÒ^ïí́î$,ęÜhyĄ%7û5Ìn"Ą!ŠžđŽèÇ~ŐqőQŰ)KJełOrÒöđóȘ05<6WX)Ć!ë+üoŁùĐoYæ#æ=:šCF”/Žfš#œ žŁßÄVߌ5m§K‡iJ8>ÚÂțÉŒĘĘÆWI2KđAÜÿ!áń 3ÀWÀiV±YP\ôù‹°u’g‚ôjöáè„=;„ۄ$2ŃÙúɀ)ësFæ^5?+5ÿ/ùŸÖOܟ†e'EűŸ>~~ÛęD”ûvșžuۆÚCÈšĐÁ!Ś/Tń"zfÜŹ-5”?»Żąž-&ʉHžÇÔ3Đö8òË;›~)Ś‘ r2șr*Ì/}:h\Ćòˆ<›ŹS űƌæÂu˜­ă|†@€(\ /ă ő·Ôq‹qŠ-™(‡‚Hͱæ&v†môßó“hçæW<áTžœßˆrZgbÉ m©=š^š †aš€žÿ|è s!9ÛÍ`ÈPèÖ~%ą( ŁívÔ&];©dÌúhŸ$ő*z€gNû0öL\ÎB'N«4IàG»ź@mˆ;Ž©qE„—`ï.ŚR ôÓê3ÎĂtŠ+VÁț\ąd:<ʅ›” ç9Òłûúś&ȘëïŃ}uŰ@3*Č9îž»ÛșWnčÇ/1~9œÚˁNôAÛYVm:š]A„šśłTKŠ€Y#A%xyQT?ë6eFĘÌcł>ȚuąašH6À+t7Âá€ČÉo$*e—ê_Ú »ìn8@„7”ß”ä9–…uù1ŚmÆOăäöő›’MȘG9äąÆš< «e›… ‰8‘­üLzĈ„œh†ÂYá5âwŻ‚{*çH(ȘŻo„Ïb 8ă6?Ł|âÌč<î ÇeôìAڈ*%KcőƀdÉÆą§ææ«ZkH™X$Ó„–ĐŠöFšg—ćX€oƒÚČ@äŰ ŁĆæű{ڟąŒ5v œŹâ.Œ’?ì€3ÜYNJđƒ)ùÁę őšûZ?Ÿí[=À.vILśmZ)QАOU»•GăńŹ~ćLŠUŸ8 ś™é­Î5ęžŒúYțiBčWșçę/íEt/›–ł0ă0†n($I ‡ù5ˆ[Ąöày\3_>œŻÒ7=NcšƒPŁ•Ò šcVÊ1CœŁŽ^Sbî¶: äîÏŒ-IßéÛ2&•œ±áŰțšf> ©òúÂ"ìyČ.lüNžšă©œŐÇp»,V{Os»"ÌÁNÓœÀ€ęh>Ć»ô„ČśûÖŽČ<&Șhűïyàáű\mê7-_ òÎ-‘Ú<:Ïșgšćă=š8Ƅâ«XpšJłŐ•ęjĆÚóBÆ7^ĂÛHȘă8bCê*ĄjÛ[f«çźÙ`ő ûśW ]Êâ}@ßÔc o9‘RĂcŻž–c ™ÒđÏG)Ű\¶yè ïĘ7öÌP:‡Q·Ó/XÜüÈ€źyëb(șÚȚXLœMŠd›ÊàòmԊkźÖšŸâ'Ò-éŹ#ôúŽłę0B§ûÌSÎ~,a­íVï¶5'‹qŠ ’es|î#Ț\“źâ=eŠ0ƒńqp/ÒĆ­ÄIŻQSŠôűĂk”tHŚ@$Bïb«›™.è€m‡ÇE·ïryîC#%œ;Nș(Qè’Ł{ź^ü섅›ŽŠčű{ú—m›wÔgÇŐzčŽ=ç€x*j,*ąćçkÌÜ$j>fš€yQĄÛ7ëä {Xœë Cț bI  )W*°ÏđKŰ”Áÿx“T?_Ä̧$FÂŁ–Ś!Z·ßÇÙ”|ź[žM§ŽÀär“Ç7+‹łłŁ$q_ś$śE$›Pfԝ_~:Ț㔂šŹ(F„đdKß EeŹâ›[Ăčë4y~ÊO”ą (o•_( ńzùƒèlD±ÓôšÿÈźÀȚ âĘtkÿRźZLŻü<#è UłÒŹCÚBć0{ÇŠŽżuôá1” +Oàš>IjĂâ‚ćȚčr:MőeTsÌRTXÂéO:ßÔòyÿŸÊÎϰä/ńË{"ćí+ č:9}ís6`©ĆìgZĆôŻCŁ’l[l§:€@&Æòt\żczUl9jłWh”Ă€ÌCïvȘTÙ°dƒíÉϓÇŰÖP©›•Ń $îÄŐ/èIŚóšo–“â§4ì^ƒ™ę1‹ œ»|éSdNéČ삉/L§šu;đÓjŐł?@*ŐöUgîŸĆ„,ó§ŃmȘÜíÇqnń G|O#’ą&YgDéEmŸyŽÀôn~Œg€D]à(śÓWo_diÿ”‚.ŐźČpöNÿ§úûs_ˆWžöŰ3MTT±LÚ„âÎçez2żäL”‰t`l„3€T±"Ì՗^ŽżWŐ̝±rA`¶ÄRń °]U&őƒŸ„$ÎŚxą©ìT©đŒusA[ó˜?ú•~ N‚J«=ÆlÊźżbƒaƒGsź3 I–ò“ăìcł3«„űÚ1»ąČzÓłÆ‡'(ꏜ˜}Æö‹zf•Ž$zžÌ +UiƎ/šŽ»_XÉJ±J'ÓòFŠOŽâź,yAÂü+ï=Ę㎗ʮeMšȚŠÍ ·[h4wVÜ«ˆ0ŸžJĐ9M,6Wv Iêù9æ‚CêśŠ}dˆ@ïțVHŽŒB ><‚Žœ>Éç™ÂMșlIßȚ)±fAíæžw-n'}MZÉ)Ÿáu)*d„n` úú…štÚąÒż8VÚQëđLÓȘÒB,ń„}Êu7y‰ËŽ9Ő%owHóû’yŸu;æ5|žÀÁU/_SJÌèŸ, 6ƒfWXOW©ó*śúh^Ș·Æ Šy±ô.ôóWÚŻČ,ÊôΆ=á;”tŸiêŽiy'Ș$^öSˆĐ›Tl§g4ŻÛ±‚Gd9bÊ܅ Â毅7öœ fšnz!ŽgéB"ÂYÛÆę6–Hô Èü@™O10NŹíw_k(XZ(ÜêÊgPÿDŒOÿFêeÖ»XŸŹaÍNĂ&ÏZZÈgŽl*nÇÚê#ź°NÛMK'ˆđëns땘gé™cZIQžò6i;èc`©SǚŸ-ëĐL±˜íł7|»:-—ÖWÌèŃ+±·ąŸ&°çj;Çʃć^źà̇^w•NM‚Ù«òk”G>’Ÿ«ä‘oIȚš‰„ÌĆĂC©`ÖEÓŐăù*ŃzŹF07Êśșƒ6|dïÍ àòFèˉ0~Ź‚THżYjeĐ5äÆH/đŠVèùčǎÄűÖ3YçjŽ­iŻłŰĄ—ëeÒűPHwKšțU»Újł;ùRŰöŰÈÙ4Yaê;ű’<ț§čP5SŽĆŠ“th†ˆ’ËŠ5ŽS șœŹÄîü‡Č†ԏSŸß-őžšœńÂ#&v9Z?nśîè֐șUKܒæëȘˆG~ÈĆ çÿ4|,”ŽÔDÉÛămł›”@ńV&3ßćăèrI€7jáÒԒš…[(V†ïÔæMoíŐ«”lušU@ț}V{t‘nي¶AŻŒÎOP-Ą î Ż€Œ°,oû˜rôJ2űNír4 ?@ÖK͗aV*Ù@3ê\kSOÛčqv/±eâ4Łò<ƶdhĐ„űêí'^ĄŸÛíqJ–[Ł,G@úxł‰uőŒ”oZEUíá˜țAkŚÀœ%,«úŸs”ò9A5r1§è)Ÿ^Ț,ćïkx9{g’”Ž„Hx-Ù6‘›æŸŃ{ìu•&Š3ŁE0ęÔŹ_ڰP„ÔԅčH·w€ÎűËa±iòŹœl{B⌀Ęvš Ż_±B3ü헛Ćهć(V(†Ę˜Ü§Ì”<_aöűÄê·>śa1hș·șű/PŰûeȚ5ÀéńFú,ùî]Á^P5Òœ’,hM‡?‰Ìz„zqĘ)łÚLxr0łƒK5Tё\b™zÊ|ŐùòČ}È,QžșłújłgA )ۄŻÉ4^KČíÚ}šœŰ‹-ÆU}PÀGA睰ńú ÏI#@ßČÀm <ˆ-”‹Č(5 ”Ś•>,Šg Ôó~)'Ø̈́'źƒ‡M‡–(MÔÿă©oxîG“ úű5òVT) žXM·ÜGÍV‹|űÖÁ±šßfú (șeŸyßpŠ)tw§jZ‹ ?æ%ÙŸbædŰ)ÒAƒpęÙëÖDTáߊvZz_âkÖĄÈ쟟Z á}ûô`í9·$Ź qÓ9žĆCÛ0Ńûa1KŒ„&ĘŻiu8Ž'|WđœŸčí%ÍŰVsô~ášéGÀèĄM˜yaŒš’ÄćÈI«!ĘeÇͼ˗Lÿ†;Â8՟:ì2è+bŸ7R‹ß3ÓŽ?Ł„G­žüÖ6ï,gÈÏüŒíìeÎcquzQ­Őœ |‹qxűËaxV”69ë–rífk’ď—]ԍvȚ1_&MđĄÉYnâ ŁžHŰÊa•eóÏ· ò=Ù)j›“Û|?'!,68ʌ«œŻĆîvđb“|BJތ‚„P›Ï#ö Wœ ćȊíí,Ć!zҐ^i/:ŐçsMöÈl‘Ą v,°±NÁŒ·AŚDŠ›SŚŽo8èJŸšÆÚ9€Ű_I"PJĄF«+€.ì}ż2ź„ù¶â°|$ k•źi0żÀśĐ‰)o;ŽY“°ïjJY§űIŸ3ë·ç҅è{=š/_ˆáRdšÍŸühÉ+ۜ˜w ¶Sä°Âà§çƒp4\-~Gì6Æ-ÚUc›Xd'.R ”č%|zć_ì© êq+ł štM>zÀèű1«•šq( ±+™­Ž”Ÿ‘ŐÚaŁZćlSîŸ?EŰă ŽŠx7pę6ŁI\t.ÀëșܓŽ"'Ӆžőœ/oÖC ©2Ę$ôp%ùd”B‘ÜîÚHU4łq(ÏwhàŠZVĐ'àéàœÿ1]°: endstream endobj 305 0 obj << /Length1 1195 /Length2 2999 /Length3 0 /Length 3818 /Filter /FlateDecode >> stream xÚuT 8TŚÏźĄČ%!îXČd™[ö}-ȕ%cfŒ©13fî`š, 1–Rd+€Č”‘5€šI„—"©lɖ€,}wôŸ_ßżÿû=śyæÎYçüÎ9WŽ>šnŽŁűăm(dP©0ИpŠ# T· pö †DÄdBhÁ-ix H€­0 Ț°ĄG @êH€RÏ”@!(ÈŃʑAÇ $€@ €ûC" țx‘ ÓdĂړ(Rû—Ç țc ÁÓè ü7ș aă(dÀá`š–*“F$‚€Č2V°"â Í `ÔŰ5 6~QF9Q@"(ÿŸèÿ?ÒÓAџâqƒŒĂÓ0Ű:č¶x2ž†!A1țl†öCIÉt(o R 45CCC5d†…FĐÄBP$|šI ’4À0PE0§€NĆc‰P |Oe“ȘPńŽ "}Łm" Đ0d62Hˆd,‰ĂCđ>b  Ò(=Č@©Đ:xK#RA€BĐV6@‘Äöƀ–BŠCmĐJ䉣`Ax(țˆ!’éˆÙ8țxht* ÄpĄTTqŁH&üFWƒX%`h8žŸ‘—Í ” Gd·Ag’ț&C„’˜±” ŻÿĆ'‚t<)àżæcĂ ‘œ0A“ìEۛ°7ű”ŠÿćŽ "’˜żŰțúüŠ4' FÔő5ôżÔDș 1 CAl €!AĆnèĘŰs&ÉxˆÔ~u$ń‡Í5ˆ=FfwŻó·Éÿk›ŰĆțQžŒûłlˆĂą5­œś»ŰÙïù·«ÛđŽ&c)86(]CŁa˜0è˜ Iˆ@BĂÇáĂŰ hj) Pà hH4û–H If°•Ë(@“Jܐÿł$4Ž +“Šżkܐ‘żešD1 đB@É&eăùęßç_ÚŽ° „êșڀ:JìŐĘ èi#Nü§'–AŁAK±ń €ŰúGȚXb<> … ôQ°†±G/æd·w\~Üaćő⾑–ÖêęÚęE}û]”-i čȚÈ­=ńôŽó›ŽšŽTîđçWHó{—Z†l™UÍFÜéśî=őžÛ}źĂqȘž{*­êá˜%8č§ę4‡ENêM‡æÇ5A”o/ČOűŸmȟ<ä*}š‘§fŰČÛçàȘń yî!šv­ËdgÇgᅩ}HĄŠ€äKJ4ʝÄçf~$öxƖYWÂ0VátS•Œj–dî*ÎùąêȚ<[=GÎá¶§Šç˧EM_cUWüÊ҉}„ńOÛ7ńÎù-sè[ŸëÊ՛ \:;Ê'rÉ8óÀÚÚś&d"čù;j< Ù}¶wnȘ3źśœ›ȘŸèž(ÖȎLĘC(À•·`]JöËè‰úëUn] -SĄ±WÓq_ȚpaÊq™áf« M©ízÜüžŸLŠe\RȚ‘=r‡f=ȘȘ/]VÚ ›<Ęú#â‘|ßw„[p­|˜ź‚ûâÖc5GzŐŁgȘWćšr"łv\Ń»ö»ڊäُđ˜T%•BW5MBYŠŰu·§Sź”ŒQś:qêžY…a|Á?QΜʎÊ™žízá bȘ*keŸêBW[Iû;žĂéF„âÒcĘXÍ[8ìŃh(áæߟoáÌČ|“ŚRpnŚûĘ{{Đ˔+ÊșÆRFu‡†|PÌT äĆï•bEIő?ŁqR]ŃSmć^ÆÚ«ĂÒ)ŒĘ+GXŻ%rŸ=UÓÛâ +ź|P)'2:ęŹmû‰0-ć =ŽËêkźÀR·”q"ÂCœ»@]Ń'ćĂäV–Pù"ì*Ă5_«ÍYrU^…Ìá uł'oÿX —.~·T„ÎŐòÈ?wÒ/©f<҅Ł-ßFbç»Tʎ»r!đ0ïg̙čT”Âëő«QLlĘ·;»d Ä„ßűàÛó Ÿ„“îŻNYûáż~N8©|}nóęš}#ŚUo›g &óGčÏÏŁL4ęoŐĂ;lîĄűÇ2ˆ>geëršű•&eV’u++­oéȘÀ2 tŸ3Őr€ĂlhXi4ŚbÍD«Û5ęd&ŚíRА“… )áĂÙ)•ÄÀÍ \±Át<»Ÿż©XéìȚőQƒÈ5wźș›iüÆeșGșêʕæòŒ,Œß9ŐÔŸűQ]fŃÙćëgá$JÉ5u­Èç"Źč—Y'7ßž É ^1œÄÙ9àa±«œ âŐ ™ ÀoăTŒć':òsÈÁ«FÂȘ» e\`íaŁ3oj`ü‚NOU/è żòąÄT]™rAź^ČȚœžžwÂ+EDi„«üg¶ù́tÖŚj.‰Ç܇BćwĆ”5Ő:Ś‘úï'|Ï·žĆSQșőæ čîÄ8%ü†ęÜ*áuŹ.7ËłZ4^)f±«ódš%Ą6ëJ`êcO}%źéŚŹy&Ÿž MÂێT-șܓ©ŽĆ;ż™i»V$ÿdˆyJösŸW+Ś­ź’‚]IŽ[ _"Íß{òțőŐ$U»ËŚ…á*\öőÆr˜ŒôžŽĘ\•țöŃzfŠé6‡z?éàQ Ö­înŽpŸńŚžm#Ępm/æŹ„p±Çd‚Č\CÔUߟùfk°ț&™;l‰{Nìćïy*^îțòüQż”BŒŻ†jrG“«Ž©îâ˜ő˂€ŃZóÍèï7'ŐtfôĆüP•ăIÛv€yÓłOKí†uò#GŸ”>ó]ùŒÓ›+ŽI'OŁ협œ8_ŠA“s9. |{ćqw«N „-ő4H9 b3=č­k&jŁwû. ”sŽ'—”ß ĘjŃŁ0ń, cȘ3…+MhiÙș7ÿHV‘Y$Ćöƶ,km‹ÊśK;ìz;(dűF\{Rô(Ż9xyÌPźęj­šxûĐ͗á=ò­”‚ˆÆÈcM*œBu±)”:éhûÈ„}wŁCì-Æz Țw™zgĐJ'•C”Py3qmޜłŒÚćÏ,Æ܃‘ EĐ6§ÚüN|șH­+Ÿ œŠžŚőDç%Á#ÀÜf’Ë]Űaqj«FÔé¶á,8-­BùŸ“–M{žòdOKV»\“ÌükžÇęmˎ]IHĂG…ke%#,ÜătiŒÙØäÒđ ‘éЗ^j#Ôàă˜GK]éo{Ô_vű‰‹uŽî2ëŽű‚ÏŠŻ›àD8łźç đÍ(ÚÙüĄfMy~\è͇ï%ǰ”â§>D:›]+ćŽ^Œßž”ÿŒù‘甌 vlžžĆž›wî RêvéőŰđ5㗳].Țź%ű4‰ÎkjąćCCΗ“9›ôłe~öŚżÍ58źœ["!h䙶éTCœÈEÜ_‡éŒ Ӂî]yŸČź„šÛ=ÎÙ{žf Ąá‹;HÈ*ä ”VŠßiÍü~5<ÿÔ:š§hN”ö°,>·ęÂô+ڕiț«†=S‘šÍKŠünUFLÙ·‹26C&-M/—ÇÜ0ÖŒ%ÿÌZżM 1ŸÇĂn]€§Čë:YáÿăEzÁ~óoi‰zŐÒ7űÓÍN}-’Kxçź\fdn(•7 ùL•›»nА‚sräH^›ŸÁÄLȚ€‘CGϚsËÏŒËçÖÙ<ô°š2.R=}úë=łäŃòXŠœȚșāÂ8”ꑁNEÖBbő4^ÿ‰șuòÒ‰Čś*‚…pl‚„ˆ‰”ÀeïF„ŸŠBúŸ°žIÏs*ć'çŃŠ"m°Ł˜ĂH±źŚ©yÜԗoę­sjèÙçœĂ'CÄÌ‚¶ Rrí—“Çœ„Ælàzì8zMŽí#Ùa&…ZkXe¶Ná"ê·ĘĐőš•.‹tÙZ–Æl­4ä„sFæ‘ÆVPv’Zzæ}Qșć»syšK Ÿ9ŸQ\ę?ŠBÎ endstream endobj 307 0 obj << /Length1 1205 /Length2 3506 /Length3 0 /Length 4365 /Filter /FlateDecode >> stream xÚuT 8” ś·Ą,ɒí­ì…™±Œ-elÙw™a†13Íf§,ɚ}MրЄˆdÉ%[(k„lQÂ7ÜûĘûÿîśęŸśyæłțÎùs^Ń3ŠæÒœ R‡%Iƒe@*€)Ìg#Ąˆ*ƒä˜EE”H ĂjĂHH@—€Œ`> €Á*`š D €€@ȘŁ•™sŁú€© +Œ˜Á`†“€Ë,{€„uĆ`ù?ô2țß6 ’@€"ąKTl‹ńHWfY-Ț‡€vC‘ ž$ FșáSČìÂA  Ă_ˆÌ?ٌq$4 HüŸèÿ?˜Ș'’h2 ‰ÈX’PH@ÏŰĐCb‘†ă‚AĂCjR,‘šE"áUdeœŒŒdܰdÁMN… ]IČnxŒ ɛ$)h@Ä#áhj €7‰? ő€G<ŃÄöŃDÀĂ “p ǐH*i!Ș‘ìéyxӇêÿ,ڔș$ ü_$tq(ƒÿ–©MĐȚ€=ˆz„Ì>ÿwüDhjâŒ?iy Q’” J€ČŒbÀzÂÉuSż T>ÿ-n6鍄3âàȘĄîi™é€ržìÖ.mû^599djśŐ†ČŸà Śæž;ŻéÇÎî¶ÙŰ\čțÍïyЈD— “HÜőÏw‹!€žOUŁCb]Ę[‡ïb ]F Eę qUŻg”H_Ïw†ŃjfȚ}b@il­öÄmőf8MŒÌùjk!`[€z\«ßŃüśĆìśŚ$eïÂ>uŸź%Ž”…«]`ö†š˜ûâE>tS‚ÍJ٘8Šąô+™tZńĘĘìŠæ‹+”Ç`ÇĄżOțHö\5aiÔú}MK}óhúꘉa»%ïÉz“gRđI‹aO‰ô űƉ›,S”à„4Kf~lˆmŹ­Íàžć0xr€èăü|?áᗎ“‰OÁÙ/Șڞę“~Œ& ~?HP«Ù+Íôł2ăÊ„.ŁæĘá_Éź;)†•Iü\Œžž’UĄìæèő™x=Lóâűù9”ïÖI ±+”4o`_êéfC‹ŚtÓ\šnG¶ŠIF[ŠDłćÄі’ž « šțÚdœˆh„H‚Ä„Ug1è9ĂšnŚù|F6óD‚p±ăk‡‰ŐÌ㔠ŠÆóꌔ°‰­oË\J]tlMhê·ßLbülĄô©ìȚŽ(ÿSËÙÀ“‹ő…oùáUW·*TËt«UꚋŽÒ}ŰyʧŒòČœ)M çB‹<^{)aRéJAűFCŃÔÆ4 Ô0UË{ăç5óÛĄùś€XcäŰÆ’ÒsšgĆ8Ï·Čî?æ_șŚ-ŸŃМÛëdmŹqőaZeZnOŚÙÖ:M>k(J\łčQsńu§*̍éËń|-7ú•Țæ7ǙœE#ZÓN|Ő.]V±íQg‰†ąN%ä}źÇÎ~,.èËŁyó43J@ĄQfAX7ZGv6œäé:+>>+mâÆ NzXŸś:Žj-àá@mu‰ÖŽ$·0ő­0ÒG§ąÔ;»ö»œšR·ȚkxÜsæű††‚;Wƒtćúڜtä%3Z€c…„‘ AJțš_ìZIń@đ™O 7§Ï(tî 9cąï©qńfßH}:!ÍïŽÎ^úűüŚnšŒűۍŸ.§¶—CÒÇcçÆ”„€c­…öEù}VÜnvgŒNçÛĘâ“Ë=eŹÎûĆ ?­ŒŒ”I.ăÇ5ŽRò™îŹóï&ȚäàA šĘ•ÓÈîj]éPóÛÉçĘ]çí±Ä îŒ<ń‘eđʋ”–ÄmGx‘TÏ\ÊY5Í@Ÿ-~SêŽ\ƒŐŒ>ÿ`SŻ…QáTŠÌțæç֙ŸȚeßzÊiŻ_Îđ†\i°ڝôœȚUiqJ­bKyÊË蘄\țBT`wę7­ś9V 7=ëu»ă<ÒL,±‰±,[^*ŠqöűËÆÏ*†”œő(ązÿő•X•k­űÓóV タ/M>Ń­lÂuœńïC…8k<眠œ—æŠÌŽçzûžžûŚò%Æ€*Vž]Ÿ „ò&žge;Až TŰô˜!ĆYíFSŸEŠŒx ‰ÖÈĂ`W:Ó(Š#z»­©—ôì+tL3ŒFEÍúÈVëÓ”ÁŸ§[ĆőëïYlv:ȚRžÁ+ŃKú™nyŠĆùć­1J\ńȚƒz8űÖ`ÒvîÖBBąìà%Ï^„ȚĘÉŹÜWĐ9IÎ\'pL}ÖóŸ?öV k#„œäV"9J—}En;ic@ڃòîŽewNR Âa2ÀOeăékìè„IÛűč„8òo‰>oÂÆĘ%OÇőĐæ=‰Fž…E‡ąoWRă„k·șŠhm$ńòĐő†=ƒ[û%ŒŁWł\’Œèú^}ßR„ iUÏŃ6šXæ1±êPh8żÛé VŒŹqW ŸĘ̍œ{Îf¶šQ”ȘÓ'h…ÖS-ÔH8áòÉ92ŸRÜWXż5Pt­#òÒ^“cĆE-ÉsŻą›*łșäAOv_–jە §ŹŐlźÏ{‰H1òA’‚‚Óhí9Žo)1ŻŚ †ŒÄÖî6 .€Èsà5FŹÏ‹ŃZűÛšwXè±èEû•я:Ę=Àçs_ÔÈí—Ž_ę9«ĐčT»ÂàÜ)ÿpŸ0†€jȚÜ:—±2„•ń†đ“Ú–`Û‡©“!ÔÂdè—q‚Ùl?î”eÛŰlÍä€X=^„U b„Òl€¶DâXłÙçŒ+NŒni‡ĐB#Ă{çL=ܶ w¶áÖômˍŒf3ÓĂ^Ș—ÚŚNčÚșùżB-WŠ áÔéÒ?ęèXéXŸR3ÏŐʘ’­ńLvTAIșÈæŽâÊÂĂÍÆč—»ïfŹÖU3_}‘ÓŽ»è9æ."Oï뉔Š(Âos\wŻVGßá“[ÌÁźZ'Gó7±žœń7wêc,Ə–Îő^Í„Ò3òș ŸæI Ëz™˜„—ÂY!aŒęŚC”$ Ƈ’Ü·Ń큥 œVÏ&Î67~Fžp?ê(äß©T{ùŚÍ4éĂŸÏŒ{ĆLmËn5H g©čąźđä…Ä^æÖĘp*T}h\Ś*SAŃžgçÔ(Viۉ=:ù{ÈÉ|”S„󹐶]ÜPäùłÂĐOUvI­ ’ÓqčàùBƒœ€=ĆÔ<ò`”Š›‘ÖecčŸśÚo5ÍÛSv*h.Ÿ)©ŻÓ‚ ïZ*ZÉî‹5u:}ćEO©X"ȘČßđ_—ű-ŸžńË­ô%-đ™2ŠfEfÿšU蜍ù8Șْ`:f8\Ńęázœï‰ži2ZŽ“ù„â|xSn€CÉ?†‹bY“ŁÙ9élՍ”őïțŰłŒj)îÏÛÏTT™7E4ԋ)È΋‡i"mBí~)j°S™f ”tłÛ[żKAtË1ÍrLƒ7”JÜ5qĝÏ ‡o Ê`#heŽç}žćXö”7ț᛻…Ω)\ÿvżÙDăâ43bÆD“ü†sȘ‘ńX‘Fó.2|R•{Đ&qÎ>Őw_ ~–I\$Š‘·‰œŚ™ż”!é ĐÌr”$TvéUp4k\©„<*Šçò<êöțƒ(ÏPä“u‘ çźa4«/Kș1H3íÊŠÌ^ÚzŒS7ő뻌NÓJWEELZç©€șŹFźă¶5o»‡–îŸŃž>›adàÔ9șO˜‰ő6èïœÏäàecĄ7ćd1b|Ïz[t6ž8Œî·uś XÎ é!ąűȚÓË=üZ*úkŒœyèÚÚ3WŽÛ ÒűȘFjž$méA3žÔ}Nv¶ÚčČèŚüÆŚô ĂŽN§¶o–Cč>ìûțˆ€p\ŸbòKr~ëŐǶł ț}ÌŐźą}Ž>ąœ·»œXìˏ蟹Ą·w nf#ąÇUâîŠÏKËh€­æC$‡sÚùÙĄ)čżûgÀțĐ;úłržì‘±«î挟?„VnÄp™Ÿèö‰PXMO-oŰ}ZüôšL·ż–‰7m>ŃŃš0(–[Ę §&H‘[ż‹Zߌ‡ZÂÚÖ} •1ÊéʏŰöę^ŸčÄúuÙe=Aé6ó‚_ńıÁb0mƆ .â%uaÛ[Ą|蘓żçíÊ}Ż;͍? „Œ7^üÀô&”ŒŻœŠÖđÁšgSÆË?șXŽäùeÁ G]g4h”Î&[Î}śźű•¶VRÚQ&ÿć!3‰IEïmkšŸĐŒàđ1š ëăk ȚńgŸŁ—ôçáœΖæź";ŚŸ”k.r»`4|œ°ű݇܋ÙO»_ YșÆù+lš'ćCÙ3kțŸ7Źìá»ï/č“=nŒ:űh{òáCž~à5Ț;śì·L ±(_ÿk5=%?`Ü„k„ƈ€OB’Ç>m  Șƒ'YXŠÏ„ÆŸLeœûÆ‚Äsż "hű/êѕ>$0:ŐoԓêżÏ ۗ/ő|œ]onàOq2żV\vșoćèIȚ;kŃÓ@êCćcrœ­„‹rô\ Ż6żÁ:}ćž[ Ÿ8/ȇ⑦*ÔP«Ùw>ŃNÓĂfsF;ް4©‡è¶&‹FŐ» Ûí‹”H~K­›nôČ H~"/nÈ9fÎ`¶VΛ&EAòš„ŐZÎë“Á’Ù%©f 4Œ€ńü«śŸ e=t[ŐČ~éwÊ\ÙcuSȘìŸfÁ Ș“”Í]m¶u}hÙû3ÚG+Ő@ńóÌ‘Ć\N‚múm™ž_țS•>-ŸPöÆNDÆ-ޜá·ŃJLWÿXőŸwńŒ]đ5Bzič•é*Dń_œNjÌ endstream endobj 309 0 obj << /Length1 1296 /Length2 4069 /Length3 0 /Length 4965 /Filter /FlateDecode >> stream xÚuT 8”mÛÎVČV–š'K‘efYł‘ì"Ìff3cf0–J"ČoeÙ""KÙśBHą’d'd+’Ę?ôŸïś~ÿ<Ç1ÏÜç}^Ûy]Ś#zÚÄLJI€Łt xŠTą˜ÀŒ F0 Fê†Ă"„CdAąąZ$Œ‚%à”a” KÂF0/Ș@ĄJP%™ € "C#Zč“ahJ *·śAĄ‹ p‹śB^Â;èùß8ҝűśŠDŠEÄțŠ.Đb# xœ€D9ÀZą ‹ÆP11„8 EĄ €‰;&č—dÿWFúßVÆ ÄțaęÿÓp2…„…»SPHÀD‘ è[z(<ŠĂŃlà{ ]Š9Ɠi~1 Q öôô”FăĘ„ $4A …C9QÀh"NšB„ˆKd‰(–æEE ˆ{ąJDÉKȚ/KĐ$~/2…`ńœ;E OÝhȘDvïJ»Ąč2!)f–H$ÀD[pÂâöŰ0 € àÉŽ2ÈÁ‰ÆDîź(šęßwO((*e/E뙈ƒyŃâÒ\IŰęÜÉX<úOtIšȘh ‰C‘śęî©Bó…Äî•AȚ3Äę%ŒHÄyíÛöYÿK!ŁpNÿŐ]wÎæJSroœ)~Oá1aźXœŚîőߜߖx4M )Ei9ÈoKÖĆRQH,œ`8ZžûžĆ^‹qX<ŠŠç~)€ùŚ9‹pÁïț·;+ÔïA2EĄĘq0Òż’@á‘ÿΜŠà~Țàkæ6ÆÖÚÿȚ·}–A@î)'#'ÀH$˜ˆ¶FŽ“à„”‰ąîKă š @t§Ü ”‡ÚÛ"E Ă1°=ű7rĂQ”?" €Ń0WŚB4æ GțSÀźîÎ2PL$cÿŽí“0„r˜ŒEÿćű?«7Ą Ć܋ˆ äŰ?Cÿœij°TÀBÛüœì?ț_ÿ?ŐÔ$P) %Ł (BdYÙÿÉDž“HŽéÛÿÖĐóśy[P(* úô€PpNHN€ó€œêÔ¶íöU‘•ć‘‘ßź_QŒ$XáÔÜÄ0(ŽĘjm­ï8çóüրX'œY$Êq4ò‰  çUȚ Â[]Ęn·t&ŠÓhöń»ÙšòŠ)-ʌDG fräS†W/\ żș“nŰŚ€Ïۘ ŰÔ2œÒzwĘlKużÔDQ€æŒUăëœ7àü1kŰ ćš x–$χmŒ±^,<‹{V8„ÄńËśDŠ=kV]ôȇ^ÿ șۍž áćUŸÓíTx˜?BtÛìœĘ:ÿ“áŹx䚳ó —šYÓëUČ[ąÀ ŐȚ„Ÿńéë,ÁŚrŻ(ôı-DÏđêŒđęœ_æțLÓóòŃæp Çńl~ٙîˆÖó‡è»âÖáTʋű&›šä'gîő\8ÒQIȘč.€c#ÒVêiśČĂèÂ-i„h»2 x~çÜ9oö†Šn%Ž,_±"gő “.(•$óÉèœKd*±GéïÌÇîìdßĂP»ŸŻل~ćöCșˆJU€"æĂrëę“wr]>ÿâĆLČ_)ïVŁfè,€'•đdČ«Clș™*dXÒ7Ä^;asZZϙći]` 6Pàƒ~șőÔÌBv—N5”Šq%lB ^Ą0ŽÂÚæÂièŸŐPșƒ™ßțÈPȘȘD§Û(=D”J‹Ú˜ŰĘșüÊ>„Śjxžž_ĘĄÚd·łRypf*_čŰDXw*-WČHtžÖ˜†û?áZ„ó$ ­jÈéöĆŐžL{Í.ÔQŽ}Pú5fúÜŽ&_†ÛîÄNV€l^çÚ| k* Ž%ßăœ}ô@Ÿ«eï&sJ)ëzÜ<œ/+\S°“ű+öLLö|ùÔ!ő>Žó JŒ¶\ƣể]àC‘7fŸ†Äâ>­+MmP]ûv±1MŻwêÁś˜ŃÁșńdoˈ'˜Łƒ6Ăhm Zys‹û*Ÿsû«ôpß»sU5” Ę{ IŸȚ”öôö«KwÒI_u'N‘‡+†Ó ę8‡#äČ;YźÔšLGŠÍÏâÙ/gő—Úšh…ä͕(o…pÊN1d±,QbšCF±grćžQ3Ÿy©bš~Ìᆰ."Ż7Ùɔ;ÒÚđŒąNĆ8ćé^ìŃŒ(X±Ż4íIgŐü„<òÉӔéœBńӓs+Č}kf·1߅]v żƒȚĄ-èDO¶ÂŃ«őĘ3śŸ=›Y"ÌÜŠ9k}6¶ĘŰ;9œ„Z‘)1Ôz+á=’֎+Púž)TćÍv ’ČIĆänÁŠ Ć5ÍJo%&pz;o:á*AiX;ûŒ:cńźezęĂ1Ț˅ӧf8żĘŸ]«‡3Fź«Ž;…/=Ï^]}QtB$tŰzûíÎ9ŃcööIê-;‘”§ÆUĆȚj(ûPźlV9ő5;XÈÌn+ĐU…Ÿ TŚN,5è'Nűśž’zp§0Ëk‡9&Ur10l ”ȁ;*ĂHˆöoVsp]ٚđQGKÔr0ł”âU㳚Ć·”Șzț ·axą}ȚòH””‚)3ĘÁó\Űły“É>1»TVsŽźČ ää ZíRÖPÍàź„N{ËA#nÙϏ·Ÿp -ôÖôaűæÚ^gPŹ­ĄôA)y"l,+Â”æ‹Ś{ÓNČC]š~ŽęŒ«ïÇዹ·s^lžŹ ŸjœÁžłȚYöęțq|h[«€Llsò†ČbœáânŹ­Ÿ [ńĄ3 h6æŒûuĘÌMU}ŸY«ê~/\œôŚ nźE‡ž#ć°62·òq&ç°ëÔćpî0±i:âSUû/ÇG\;Î9”}šùŐ4S ‚_đà—ÌžŒê“{ì–6ŠjsL†ëêüèú˜Yó#œƒÂ7i8ˆláű–”-ôê†ŻÒ/©òځV}y ƒÌGőoą‹ä™Íœù-”l͏Źßù5¶\éæl ”=ôĄNș@Űv~A>ìńóĂéŠRWęVĘčÒî…P2Čoö3śŽŰH!ÆŚê‡ű©Ł­[­.ŸQz”•~“™ÉȚ6ŒæˆÔŽ·őŽłö?qj L.—VòDŒ2‘Ț%ÿâ«ÁA_«€€ƒ–čééùe3}<©:»D ŻÛ"JL»f8ÚLðOÜŚŁs‹M(Â7Ò1Âń+ú-.ÈŸ‘†Ü‹eóOYm<œ«Wÿ™UwŚÁŻ("N’ę^ŽúÙôőÄłO·ËÇ{ńAj>_Ő{àyípžÍ—ˆ’§DÇÙëtĐ̱h6yC,©/Fæxf–R‚ÈBd, z‚ŒęTœ/3œŻƒÙ *q)R{$Ź}Î)–ö-V"‹-ĄÍžfaFG$§v™`îo*ÈÉûVÖ_ŹÌ”QÚűÒț`f~"Î~#WŹ%#Dʧ»ÂáČìćxÔű¶űA©źt™ń€ŻźaPo`NßÚyŃ€Öy>ž'Y3%jϞíbúÄű»Eʶ4[çЏŐRč—ăbĂ?<&(Șš[Ó$áà‡ƒ3çŻpż‰›uÊdÉßÌkÒyŒÜËWp>šù žŸÂ„kȚáÎći›Àe@:ŒČ@M€:€żUғv~—ç-Ł'횬ŒyVm1Ą…C!›Ûvûæ[ ùë}~ôBƒ7”,{NŻÙÔ!$üÒIÄöI3§đ˛­`gA/œźAj őÄöRć}„FF{”7°ë€cÛˆi,C[‹oŒ‘îùș_čoyűœAÀq«Êˆ8âcöÀ^Ś>Ÿ7tó ŒËÿkŒ t]\+Su"šŻ5ò1êÆçÚÓș'nÒ€ń‚F–XőG–3!6‡ÒÔ°nÒW܇ҫŒoŻęȘ/qW篏KDÚùȁ#ńg*—ŽâÇ'ȘN`ŒŸȚ zĆk•wK@%wYĂâźH\rę—a—ÔѓD™(͛M·YM—Ò«R`ÎoË%EŸ !•őç'p5œ§ŻqOÓSdŚ"­ƒ _šOŠŽ3&x(ŐWe…v,śîđqæ(= Gșy;;^ç—N©1©}Œț…=đèžíy— ·qÚ.à±Ćłr­N‘Őm}Âg<ëÒ+„Ș“šé`żxeÒĆÉiÒrÖȘƒ?ć[]"ŽüNü‰zf)–7Ç;‰kû€\^'Íæœ«Șz=§sF\ąœĆŠ… 8đB†y$/*SY~]áŽĘÈpƒ)Ccš›„wGđCæŐ·ŰȘÆck1ŸKETú1Ë '**֍‹¶•ÊÊÓ%©=DVœûàv9L_RźŒ!©Ńž0 CœRÉÒ{jhÜ~ӍOăH+ Ê=Ú ŹűPÌGB_ùCÙŸbńÛńŻcaEEđ’4X">a:Díqúä!+–ÙC±–ą‚đőa(,đôA*ŒÆĐHŐ]æÈé†yôI‰*UŹy‚b+0šșD@)«î™2™±CŽAKÚ͚lĐ^IScz˜ÌăO),ŁĆôèčā„­{šą$O§Ç‹”GˆËÌU‘.Ïíç­{2„ÊŠcœ:úVdƓ±í†bpϒ„ƒžà§Ìă֊0Ï"ț3ą'zșùzź“Ęœ©ŚĆ3©Őbùž3Ç Ż›•5/8 ‡=O˜ëșînźeyvÉdÔÌäȘæ©òÆb}^·Ć•J/Qú(gîVœoŸ•čù?üčxîò$<űdăËO}’ą“SśčÙփœuˆ8­Q€ô…łêłyŚ0„-ŐĄęÛç1O‰Ÿg°•V[  ż%<śŽîŐÏZĂnXÁ]zTÈńZ§«bÔŚç Ê‚*‰ŃpƒœéGKÂs Fóœ»ŹgóV·„Aò űłtáQ A”<;œÁŒgśr.S'y‘Ÿžó‘Œ‚NčJłsÌ{Rđčäƒ-~ûQđ1oÆ€ZîÇÉÆLW ’Gzûxú\š˜(qÇ5· 'y9FŒÖ*7ș¶l›55’[ź ńwtx;±ÂÈ+—ŽÆ…Sc[”éŒN}ÚÎè–IűzĐeČä{p„`ŐS{ôGuŠaŸëßA†IŒ‚`N‹Ł©ùeúûŐ Žc 'ęŐNè‘dŚ639ug‚„TŹÁ“ÓŃAč/%FXĄnÌCÂXcłx;XȘÜDŐU ‹‹qüqßßè«[áévî«:PxÛ·Ú »­[E$ąÀ†:ŸYű^6}ÎOÒ}źÛÜcùEꆱ$ˆőȘÿ]9țûű…–Â^茆”ù) Šè+ —žŽČÊKóžZ!_`‡~LIŻČúŸ^3lšzx"aèęFóˆfƒ#ïàË2lvG.9r&ËDáU›§Ï§yä‰SáuĘM~·ûjŸ^Ț™€ĘĐeߚӬ‹$ÆŚìôïuŹx]äZ":ÉÔł;ÜìqÓa–y`(grybŒĐ\ĂÂP~†jÜ}•ÚĐlĐŹ/4ęFšsémÁwń%ηiïĆ” F„ë+°-Íśæ%†žk_YȚŐqhȚžazôtŸŒf[š_•靬đ_ï»'^;eyîÀùŁśCúD’v"țČfEW}[ćh>ż%ò5dûÔ”âpÛw‡âRۗ6O­O”-°ïʎߝńRź%tGöúœ)č«îàÚĂ„æ9MŃiܔr:žDíäJ—jÿ”žt)àyÈæŐ+š]ƒbÉÙÌ?•ąYHęc`Æű…ëŸw—șfËe‚Ä_2·”WˆÜf{][OÍJùrsö:ŠH€Í©uê€mAVžú‹GćêăŸeżđÍx ČP‘SfdÓ_àJ>nÊIqܓÒ9Ă@ś€ûBŸ’ïâ·;îL$™uŠëΕ—“5©Â”1nœ_-Ò.Óę\.‘< endstream endobj 311 0 obj << /Length1 1614 /Length2 16385 /Length3 0 /Length 17214 /Filter /FlateDecode >> stream xÚŹčct„]Ž%œ€bÛ8±m[ÛΉmÛFĆIƶmÛvĆNĆȘ䫜œ}ûöžĘżúëgŒg/Ì5ښ{ï3žsȉUè…M퍁öv.ôÌ L<5e E##SK{Yz{SÀ_3;,9čšĐÈĆÒȚNÌÈÈКĀ&3777,9@ÔȚÁÓÉÒÜÂ@őƒš––îż,ÿ„Œ=ÿÓó7ÓÙÒÜ@ńśÁ hcï` Žsù ńš\,€3K @TAQKZ^@%)ŻÚŒlŠźÆ6–&YK 3`fï°ùÀÄȚÎÔòŸÖœțb ;ŒÎ@Ëżi@ Ă?.:€ĐÉÖÒÙùï3ÀÒ`îddçòw.öK;WÓü”›ÙÿKÈÁÉțo„í_ß_0E{gg'KÀßȘŠbÿÁÓĆÂÈćŸÚΖĘ{łż‘Šö&źÿŽôŻï/Ì_Ż‹‘„3ÀèáòO-c ÀÔÒÙÁÆÈóoíż`N–ÿÒpu¶Ž3ÿ/t' č‘“© ĐÙù/Ì_ìŠó_}ț—îl<ÿͶÿ7êr°tqژ1À2łü­iâò·¶č„,ă?[EÚÎÌÀÌôvSW‡ÿôčțŐ?{†ú/ #S{;O€)Đ –QȚȚćoIŐÿÊ ÿïDț ńÿÿŸÈûÿOÜÿźŃÿrˆÿÿžçÿ-ájc#od ü7 đŸw @đÏ%óżÙZÚxțŸÂÿ{€đ?8țŸP€]ŒțBŰÎüŻL LÿaŽt–°ôš*Zș˜X̌lțNé_»š)ĐÉÆÒűWÍ  gfbúo>U Kk»ÆÎț. é§țW ‰3*‰ÈKȘˆĐțï7êżqŠ•wQőtűKít"goú?ÿ ˆˆŰ{Œé™ÙYôŹLÌÜ_>ÜŹìŸÿ‡Šÿ1ÿŚZÎÈĆÉÒ ó·íż™ÿ4ÿ?>ÿ”Òûo0âv&öŠÿì#;ÓżÛëțq›ž:9ęUőßÿ·éÿ\ÿ»Ń@  ìúŠœ oˆUzV†KVîȔ˜Î@ó·‘P‡ÒFŐą‚€û^ÿôˆ=îJÏÚP†ŠžÏvÏćs‡?‡ßiŽÆú0m({SŚùűŸ€Ôę(۝œŽGAŒú„1Ț7KČ»àÚLêGûSJÊú%3ŹNĐ7ÏÔ€nèdOˆ~&i ń]ÈM šu…çɧÏO”CăŁ#Ăœż!úńhÆĂóaù„œÿpń4tzh4ù„xscO,‡‘Çś àšąĘQV9Š’=û–{ȘfôSƒ_žFàŽŻÔżĆ«Ÿlæ€kî֙ÊÚëÂł@Aû]ęâS8ąÈ“”PP5żȚäbäB!lé‘Ę8°^xŒ–ÂKòĂe·}“G.!5i–vțÇSŒOŽÓôœ4ß&|`ìbŻű/YI‰ƒ Žë]!˝Ș Qv:-^€*àC€Ÿúł+òÛaÜW9ƒsX@ćŽlżš lhó&TeÀ`=”ìiÉ!‚‡Dûœá<ÓcÈźțÇb‡NšZ“ÎÙ|’îÖuC@‘©às-ț#.ÜHŁăș±èœśCŻin3w ­ žCQÊá?Fńéç !Æ:Š\Íy„œ*j ?Íqł, À’šÂ{™æĆÂ΄󇐀¶:0Æät'ДQŰé«ośN† ‘6ÙLżaž€șO<ÎÂABÙĆ<†ŽÎkȚ 5Àƒ©>;™œÄ æ|Ü&yą`ź%"žC·LœVńQAôĘ*ù6‚ƒŸź ›†áÄą:ÔH,?OKƒ ò3š sWN Òo3!<::H …ÀÀń źh}L—ś«™}.€eŽP]ú}ś9k*›un‰©_ț*ĆLß»"IĆ"“öŸȘőYđOÁĆíïĄòI«ĄD…ҀΠÌó„ ŒĐ"Pńmë˜Éé»ę„”W„èÄ·$4‡ń‹LhPߟkü$aĄöÍÖúó:;éa­Ćä\ÛÁŃŁK4qČÏśXhmÓ/•~ÊęĄl? Ć}œyD—LȘ”ąAb‹]ć# Ć‘MŠ kÀƶi’„ DփiڐANÒéÏ՗„ń9°UçŠÏ.â!Đ ȚšR)űH,>_ŒÉì“ÚDArŚčuțcjőeÀ(Ô(LČ(F‚™«ÍTvhȑtÜyR“ïÖćtšnœąĐž#ÊN±`À"ăÊŚăê}HŸ…Xà•D?))ìMűÒZ‘L«ˆl‰wŸq"úÛQhąŃ§'źŽÛ$ED{­iËÄB`»وł«ts^n–»ń ŻsN6”ŻÊ—YÔ@Ÿč1ŹĂW™wAsљÚQ1ż»ÓŽ8ąB(SAśžȚ‰‹ô2ɂÇú]­ëÉÁâÁŐÛĄžš_5„5cűr–Ń“ŻÄB`1°(±òBș„oU”ZóꕱòMk3qbw-gÖ|OyôZ:Á|*ûòÁÊæÍqò‚;æ+Ń7AŻź•ŸvÖbȚ2±oNŻèTżQŚŃž:Z‹êr=lÂ]§‰ÌÏ™ MăPúÉ!.5”Źž`\(꟝\żyŠńÀÒ­„'±x”ï‘Ç?ʓšÌČíà᳑,WűșqUv=Üëé~‡LèăűÉW!ŚOi­Ö‘ÉwMa—ύúkȘÓRł(pòŚ»Ëà’·‹aüíȚŽâ“ž6Y yEdțŽŰÌ *loä±=‹Ž`<=$œ,V ¶țJŠ ă·ßłtàŠúÖȚ±ĆȘ^ˆZĆv_tgŚÁ xßœ¶WÖxÈèÓ3hv -lGÍŽKńÁEN€Șn(<ïHYè9ïź-âžIB8őFn’ę§șČÁÙÎÆÎY•Ä•p·S Ú)͜·XJvdt7üö7ÄhzĐ &FZÀ3áäQkêö-”„ÙÁV±TŸćűmÀ¶!űLșTòźîbł š· ö8;>Æ`"S/8ș쎇űÓB«îX#)ŻPČȚ%ƒŸmY€g„y 2áŸćŸpŠnp+èDN|[vÚZrګɶ ƒÙaÛçE\Îde”-š!/”Tj#ÔFM Ś(跆€\ö5ìŃoŠ(Ҏ 2k٘)}HĄ2|NŒìTŒ&SV-č˜}{·rƒ užg.8ÏRE™^’z= Ž țžËčÜőZRö©-EZyŸY„mȚ5Ńu2ƒlÇ·?VćțœúażŻw$ôübgÀALW» ˜n0$ÍÏQ‰šTÜ5$ùŒQł”ëùUĄ|G’ž’eD‚XÇ\–/CĐešÍž7HÏyŒ߇‡ÊŸjŹSžI)܅’œ”ï[©›ę°PŒ\Z%RXšY™@--*gmg/punïXRfë u['Ő=‡OáŒâK”>{7ᯊ“őț`<öȘś/Ă0Ër{?y“ VwlŒŁ“Œ”Ëłb›ûdĆ;ĂÓÄPôőóș$ۋœ7fćdč} €@ûŚ6 S3f`Ję©Ubo`„bČÛž&gï?€œ€NSŒpŰúV_ €văúĆ0cYBxŽŽŸ°D%›áϧ(”|[ŹArŻegœ‡ęžEÊ ›4FčlšŻ5 >‚Q_€ÈBÿ.ZÛ rœźiFă`Z:6nŽŽ”§Üà`Ç2áÒ;k ƒč֑RC­êioSÉ*â‚pÜd{Șíu8~hfŹé”-tÌWq})Ż#àUAŒwŒž(ÿ [œíoń•ž™¶”Łö Z·°cT^ì€ÒŚ„H$UÓ­=ĘŒ;ĄĐ„ć¶,ŐŽDtQKCˆçûÒ­#É.EÈ`Wr‚ÿz..ÍG2X_îEu „SćŸv Y5'ò=òĐ-ˆ«Äj•èęq<˜­1&Sąú#w.›őI:ûqóÈ©9—›T$ŒÁaőŒéæúa]x„%eŒI~ś-€ €yѕœÌG;R')]ŒNőá7»?TW¶|€(TPÌùè7˜îęÌÊ{±›ìógEȚp_ßOoŚšŻŹ: M±{<š}Ąx2i7òûÓ€ĂIsŹ‘RçŽwb„°qËźč¶_)ś_©»æž;Òù>ŸDżÀù̶/œOUßJóËŃhSIÚÂȘTç •šTš"›ëĆ2üè’.ę_ś”G<`đeŁčIçُśÎ„äŸâ_ÒyŃ ÔÀNć€;$C,»Śč‚ïYW­Dû+“qÙÂ{fwVŠsPŒi>Ș ‚\QÜ5+Qœ­/ ™}Ém[˂’ÙžJéëhßą©0đ烚ij*8ÏČv-ë.űBj_>ÇłÚs>oÓÍÔśHTŁ>`šud}.аôČʈ{~őÿôŽg ƒNÁ1xȘÎ.  ìCŠ%őꜱ@;]äÍè‰$=Ő§WČU\HíÂńËČÁلܒxțŒëArfTÛ"©ÄŃOjĘé;m~Ëo[ŒÀś”É8«Ò‡eóę7IțțJę`qú€a2KžÀ±†pősԁÛÀŸWÀÉrH%ÜĐkëP—ƒXɋŠŽÍà[§”ț‹\Ż{8‡żœ &zŽ—öÜ„lă6œÙD„pȘG›.5$Ń~LÛŸŠîuĆáśŸo“ț@"Őu»:ÒmGöÁ;ùĂfn„M5§i>Ąš^wŠ5!ŽN·Éš±:ù>‡+ŠQ“z†~žCąÏ\(Źt~ßaÈë"śT·ČÒR:Nž­á[ÄÏ­myz *7žïű{„{MąÊÜÎ_Š%Ò_zcŁqmO˜#W0?šqI,ƒ©Œș“ú…ąVGR1SH4û>“§ŐŒíŒ&}Y@è©gˆć^#—őe«RŒœo`l—wćK]w">Ò‚íÖĘ=~îíöŰ=†Ęé<ƒč©IębÈBŰü^ű·û ­›Í"äÿb(y(Û.{đTgíƒ`'ŽûGtŐ-]M}}Čb7î•M^.W€òÓ1l~#ŒŠ "/_€9țP—őT6Ù¶ëhŃ-—ˆæź"uꏄeĄ+čĐù }JÈm„ÁüyKBM<‘VŽțéŒ1”7]â|NßșeŽ.ÿ-˜-5Ì”ç'”x:ïąpć•4‘ĘV†q0óœȘŹ2Đšh_U@]1Y5źŁ¶y#Êásœ [ç{fá\yΉ¶ÜÎÄ\:ÂC€êÊiˆg„BAsôwíuˆFŽ2YŸĄàŹ„+l"wVŽ”đ\ÄïúșśȚš?Pă(V_Ù:ò0‰ç$iç}€ę¶j*žZżzèĆÈă t$+]}șêK#ŒQÏ9 „=–ŚÜsdBÉIűUö•)ɑŠŸPÛ„»č«óà \Û x‚őŽj’ìsë.±Aj6}ńÏ5Žf [őüDS˜ HŠ!Ùđ¶˜GŠJ~-)]hœ1}T.<č;Ú űE”ŒÖbáŒŻ"Bd‡p$Ć_@ƒHʎł»vkI GVûę)šXuŸOXŒÊśuĂDj9]ńAk%Ö”Ž"”?ƒ@@ášÖł­Ű%ąŒö ÔOĄČIĄÄ>!ȚŁüđD)”AsȘ"xXŰČÀôO–+^]§¶ÏđŃCÚĐÍoûÎąhć‹oö€äsp‡»ùŠgæĐPD,ZÜŐżżÀUșLÏž*§·nÒ·elœ]e2·’È- g JȘTTđ\u[x5A+wÜ-ÊaÙêŸłn{/yœ„rÉ»’ }Ś—ÄNaAԇ ™ƒœĘ{à‹B™g™«Q<„àˆœŠXÌòŹ b†Ńˆč«Ö<ÔrŒc@Ă|Á—r ˜ëòŸŻ_k5ăq]5‡UN—RżëA‰gù٘Y(‰‹ûæbŒGkžPugù±<O§·Ê7ŠXoîЊ ęAbÓáK;”iœ”ò†FŽÉÎl ‘s>»Pü…zț‹@„7v­LžĆŽmÄś„:UćșŸkĄłé2(Äy ĂFŠgĆ„(އݗ1EĂÈx òć1żȚ7rÇerőENòU_·ÿpüćț)FkfSÖKt 2«œnó,„ìâćJ§T]âžá‡Űr1„çQ{ðżÜ"1Šëí ÿK2©“RzÚcr·˜ÿă@ê‰Ż™śăE ïgÿçJ!axä}žĆŽËçùąŹ“j[늁tS™ËÈŚšé=Ą@;žš° ȘBG|HJ^Ïûïœ]ŐÄi#č'0;òî+єŒnIoecҙ‘X ‚ ]š ëL© @>·wCÂjIó{ äxHŽI(q’łŒBżóZč §KŽflj-CK{žÈł·è*ĐdƧErqŠu•;ڰ—iôŠìfš}Ö)nśm6©Ösšyc6žbœ;\sțêKu—K‡SI ŁčżpƒM#Ž™f©ÛëÆè„ÈnK‘Ê€)íËDćÂdPûđßj9Š)7űÚaŸQău‹š·&DPÉuŁ<Š\@"~lĄÙ‰ÊùŸ8Bh”c©WŁ8^ń©'LšŻ3Z”ÜU`Ț9‹žmrS.ÍĘG~ăûÁȚqžŠ©ŒabqLđ ærDțÚU±‚jÓ^È&ßy‘„2œné8«XîG­Œôêl„YËÓŃ«ß" 1ßï$%œæŽ|ZčÜŸTC„\ÒčÚĄˆűÏYNËDh¶%;ú ?șq&ìö˜FĐžÎ!6 Ż58˜Šo]©cĆěőúG7ű{ÈśÒtMéÆêÔ"đ©“z~N%€ڞ9Lą/:1ŸÜ >Žæ[D±śő'uéßzfyfÉ2 !űS û6ç9áûőțĄ±úv·ÂŸWÒ:^ZŐź”œÇ±=˜ 2O›ăFšËٌ·!ț̟vÜuŸ·ç0żN [Ÿ ò?"˜)?8Z fț|4U€èÓ«5v€èđqü ő9sí§ÌślȐŒ›Ûx›K‰Éö 8Țő!ÙáĐŠohšPAxèÓ:32y¶% głêźÊ«Žû7żĄ0¶Ç3©tĂ©"­„C~;¶ ÍŃ™Ò… ȚR?n`żžwóŸü=#šŐ9(E}Ód(”vq>wŸ-ü•rŻ"tLÍëĆtêŸcśőŸx•…ûąțS;4—\“zĄQ /.BOè”,Ț8 Ú±g”vR2ŐŒ#­ț Ž ́ úÎ\mź»s.šs-òsŠž„„YŃÒT,Œ5Ź€BŠ>'1ê+ƒe*;“ÁKJ I_-/E”|çuƱ†‡ÔóÈŹ ŠûÀDFËfaŰÈ~lДșŽ±Ë‰ąGL„Oq„ VÁîÉŚúŒ_~»q•Ÿ'«ó)Tžx»crE•‡7˜­Đ‡à>Vm”ĂJ#"=ÆíĘÈkGRQYŠžÂ$)§”âÄ ŽGőŰJò–XŸÖű>żÁf€x6€-Hˆ»5čAz0…LŠćše„Św “_„ŸANf`†ęÙegÛšÚśaY=»kÄ&6„œžÍm}IúcĘrž.‰uRv>E”Ąž śsż@c~ÓB­1 ±yOòA“4s~č‘֐°kFö;:Í#ÌEĘ7M„\ߟ]HÜŻ&‰±ÀáÈZŸÂs|K$Ûì㜠EÂz…Oźò«Èy† Ÿaż+ˆb”XYˆBûŸq«ŚrÈ" űśÚ”žQkTʝ -șhA”3éYƁ4·ČéȘÊÙù8šrS!aŠ4ēzÏ<9Ą2gČô‡Â{›F#€!&„FV#á^ Pï}†Ä‘ç9žHtANȚ?ÍČ/Lś{Y‡­§˜Í-ĘčÎđsÂî[śÍIĘüU©Jï<*žš_äáń}&:ĄÔÖKșÉZï žé3‹u źY}`[铞X‡CMŸ/ś›!€œ‘Só%Ą1zÛ–k wûP28--ŽNEZ(ZÔÊvŽźÁÏđ“yAȚ7—äÚ_ŹÉËaŽ‚„ŹćPč=Ș3Z%ë±ë§7ț(UÙsŸOłìL­„ßÇűȚMϋ‹Ź$'<Ò/s~']żU+śïÛ±ˆđâ˜T‚òˆ8Ö§‚_ŠyXę™ò,1I8ä Ç«‹:ĐŸVôązć4–{ żÉMÊ .êșmà€N©ŠÛ¶?^ś8J<Ęčlśž$rY¶VąÎÜp5Ùu€ę™t ˆJ‘ÏßărÀ)đȘ'1=ÖĆOFK&"š, r'c}e8+ÙՔ ÂáŠŃ‹Ą`_†hF6€ëËé—€»,Ö„Ίû Clš@0«}­đwä_ž–&zj,^ÿ“4Jf©.”ìŽ~ ź§Œ«Ž $2ÜŸzÆŠhœ ±3IBg·*W·äńȚPïëÏ<2uŽVŒtÖ.°ęéíŁqP87Èć*ŹȘ68q•Œƒj0Ĉđ0ÔȘçdűłÖÈ;PŒÍyšVLő5!^Ví]„xÊ6Žőöx ™pɟŁĐ<^ÈÉUBîęšÂ7JĐQ pÊ+|MăĘs[êƘ+Z*tWÄăDĂś‘B„mlŸOÜó#€Eę&„cÀùL^‚âČšÿkČ"CcȘvŚT†Ą œçu‹"(àFŚy”©ltxćUÓ€Ș ž1z őÌŒ'Cò"ŸHj żHŸŒ‚ÎÌsˆHVüÍ.犻9wèæEÓNo<|ŒP1>üś/ÌËĆŠjk©…âxÔ(JŰûì9ÿ€ÜzBW瞊NÊÏ]s‰ƒŻ…0€qqæÍ‡Ç” ƒÆ­@ëç‡Őr•‡—’ĄÁDbàÆR*7ùœ èDÚ 7çąlöA5ŸŸ\MT"7πć_"Xχ˝DS­+Œv;.aeëè ÊŠš6„ŠȚĘ. ,fí„Éü5±–EH*Îߎ+‰ĂD?úîJ°5~/:čOt},9ÿ çcX”«ÈY`‰|ՀӞǔ“•dë­ș]phȘĂ+9Ć ‘b&b€ùI`fŽŸ,í_;o›\ùĄÒą„„ŸÖNbr[pfç Uí!%¶0úCš9ŚÛA§ÍòƒĆăÇGŽBŒ^Çü+ÇŻì|…°ÖqÛ@qæapd…[Üy2z”zĂ€?î˜4Đ{XÊۧđç4áËS­gsąŁÛ.SśK߯2h àûăÚ„À"=!StÁX\Öû, MșÛ}hțfĄƒ DJsœ@'ÇA];_Ž€„ <Č”«nWśi^úź:}Ÿ§-€•\ÊŻÈwYó…‹IHÙ”ÜËÖ-9rtÏ8DYf“ŸÌs¶)?$úÔŐ©è”fo%…93ˆ—ű»Z–^2&±ùž˜É'-5/ƒçî^Áă łyŸì§û7“ĄÔCnÈO‡2d”ú?Ì~ĐOì}ą‹ŒZí’ÿă'g“ó"Ű4 Čł` łțXOê¶ ;ŁŹ=]ΙółĂó#yÍ€űFŒ=”± Ÿőd6ă=ИïËxćß'&ƒ4ä5"!2òșuêÉôű”Jž”vĘR©pR3Ù}œű:¶&˜*ŒŒŹœ7áê5~nè¶ïtÍpłÌtA Ș˜Ú[ČéHl”I2dę(€4P ž’(‰»p3…Y2ćocĂ[ËŹ=œšœßIűÏĄhXïKŐVèêĂ^[TyrKGèŽ–zq);vžÆČek’æŽèB›gÂôy˜\@1Œ[1Ű]Ł””3 ῜ŸaW‘“Ć‹i…&4‚0ŃRœšÀ­1š5tÄšp‡Ù¶JŚg?à*”R”łđ~€ôTÏú.(y]”Ÿ!éÁPžęÌA:ŚĘ.ÉÊŸ•mĂèșbá’ńiălFÉÇHƒCa`Ù];»ìĘ›ƒé(Gâœc0[*PzlbÍŰÿăÓàËș`TÌ8_mû±òŰŻ»ƒUű()ćilb îèKśUTœÀ„ÿÎ}ùò9»n1o„Áź'ÿ"îÙ>ŻæÙ+°š§~•X̉œW)—ÖNœŚ çÄ-ËxÌp@Ù2ꩯ_ÙűŸ*ž_*ÈÜ)Ïîʛ?tÒ Ę«ž#˜1Ÿ%F­ÜĄűžĆ :ú¶ùŸ/`ï ŐĘż“·yÖ»œŚźiRóî>É·űâ+ <ąt@ăćDΗáÄ“FČcù,Ź+¶™űukăęČÈ"« Ć°ŃÖŽÂ=âlĘ_11ëJŒĂœ+$wïrkä#ÒĆ(ŻëùCĂ#<ƒĄż;\a3őY[&$·żljBmùg«uY‘e„ź'mŽˆæÇê^JLűš$öì™șŽĘ‹)UĄ[™x/„+w &Âi¶Q&ˀű7Ì©yE,țz˜uçŒf%e» F°ÌoÏ» *đ È<Țű-”š4ČHÓwH„Ëk^ń„:ʟhg"5&Ͱč"ÿ$Fg9àÇ$'Z€»ÆĆp*Qiáâ|œáI"{Xážh©û"Ă2jÚĐTÛ­&#{¶†đŁÒ G2Yašùș\”(ŚwŁ˘/ș”úÛ!Ă»Ü&ÿ˜€[|úÓSJÇÂ:ÿśeĂiߟ< œCKëhŒ'Á„à ÒFüg]ŠCwü713XĂșl‚é'ÚŸÚț>Š_-aŒĂȚ ¶çéiÙ} ò[ŸŽœ/3§ÎOôȘĂŹ ód`YČnô<«­BőÏoʊh< ŸșŠÄȚx ȘŚÊÁ§Săńłbka2`s{ šĄS’T}ł\ƒEÏő?äș*7(2EgVßĐ6Wć+CbU\ĄŻwËä(ŚMlKșœŰô©€ö c”ăS€3ŰáŚVàąŁ ”@ZJ6m:_{ÎŻ'ȘÿšTsŽ›\ŹúX’Z†śźôIÒ lqśŻGìœk4q (Ż„qöĘ@›]ŚÄÊÚżź?úeü\ÎY[Mę6Î&©Șí‚æŻV§HuBś=ń™Rÿ„Ű Käà”ÇÊ€5đșOÈæàŰc}zÌÂŒn‹ ÍêÙá``œ-}Rș ˜čúgÍšv_Ć6< “Đ@ݘF9ڀ^ې«iö'j–M7J4ÉÀ§œżjŽKC œaò·”ƒ­ìM…©ì Ù3<(ÒX|ÛÏžŠš|±)ŠÌ$. €Ïyhf6j"€ń“Ű«{ç*<śhì|fë{ă[Z#șdF"ÎjÍč8C»Y“kïÁ± ƒùçš đ0U ęŰ:Ú'È/ŽæLŃ@C‚3eû“Š&žÚӘÎçő~<ÇÉ]>…cő|jF'ąÉ,ČyŹ+Oúąh=äĆ)żÈŽÀk; ZlëĘÍo"ïk‰\ù©ŐŽ…Ú…Œ:á  NuÔd)VÇŐ ŃÊ\Cčí*œ"Lą"€ž'óQ?Ä-Đ6g1ȚdGNȑ‹őÛč.†w˜a_ÛIE0z âeÂá»gj?Œu’%y?úŽcè±ju^ĂnöĄˆâ*oxîŠlŽ~éŽÙiín‘T€6êFJö9ÍXíűVȜ…^SiÒÉęâ‘XșĂېOżrăæŻPNÆEÎ:êTFžê±œá9 Ä1‘%«O/Žóaš;ëƙY`ü2ÁÙG|p} m8ÆÈ°Aé“Y?''s&…€u:;ăèF jîćÎPBő¶óÜ*BҒX§°ƒš| ÄT8żgéÏj»{(ËuxŠZłŚÛH8ű™(›î3áŠ;šbqŹ”ążE8žÛ=ÎÜŹŽPż™Ą mŸ:ȘBqZ H3N?wô#čT“©­Ÿ‰/ͅz€:{|ă ŐągKËăĂÄAìźlM7X]~rV4_ë»Ç·nÔcn“Ë›:"š”èł•ÍÚkw•‰0a,U(-Śœ§•\ ¶›’šȘ!jĘìŽ[”íj‚ÓÓŻŽê±"ËЎ L§]ûr…ć˜Ùőé“ÔdٝĄ4săǚO/b{ăg ù™ȘSŹeYKP+.|„YC‹{]óÂČöˆvbŠeĘñÍ'3»ï>J 2{ÀˆÎ˜ŸçáčU»ĘÍ »gK?0â”uú@@$|Ï슙ÊöÄtwUuŸMú,ő9Fà.Ëîâëìníé21%#©L‡óčEł üźä-BIÔôÂ@Ę-ç8Z[óAŸcîœbąź(€8rÁ‚hb+Î茚švpł/592ł@—.iìÔA'Ú03TfŠâ“żi 7ÿáԟ[ÁçaÁsđ”ăVŻUhvHoßD|¶b‘őϋ<kÁՌ‚æșћĂÔ]čzä—é7Bï‰Zűæ€ÎŹ •Ìü•„čUoűń62/?KùŸ€Ă&ÆXîÒìO§(j6ł”è†ÆÎsÏÌ͒Bż?đ ź°y• Ùìúæ'Äέ­a]m ҈W<ÆEEYß6qëéÇO>]%oăŹđ.RÊŠw„=@Áÿđ…ç쎧°ŐčÔ$1eș$T§Ăč^~iŸW ì?ì„yœžž. śƒ•æTĘÉÓ í4ööăVqUtæ;“J­$Më6ˆàV|!+ƒÒä«<ĂŰÁ3 Ž‘7ó·XŽrÆž»[žßÀŒƒŁŠ;,űNQҘ,[ŚÀ=Éq™ž—kTtĂułáÈĐw‹;Mđ|çGĐtìÚŐ#†ń źî©Ć€–îĘăJŐoÛS.?œ’9ŒÍ#śŽśĄ|Żó^čcQvàű54țNÖĘ&„Ï=•>éä¶ö•@ÿæÚ%’™ƒ)n‚_@ˆ‡%­Ő·Őò»Íł’żÁ‚ńUƞNŠ!U·œŽ8XÔË4hšïÒÈH?`(*ŃhÊŐ.öh,œÜ•fPv*·|ęHó )HŠL:Ő~âȚȘxlÉàĄ€%FÿŐˀÏy ^H+đÌ« p$¶ŃŽË;áćŐ2'·țé©uÍpD-}–rr“šą3ÀáPțmJ8ÉÂ0çhCôKà >vŃšíÓcy]K CxŃt"†ˆ’”Ă>ĆTțji;ÁĆÉ_Ą›ï›NM76iN§’·à]Ÿhú Ÿ\E)?ĂO°ÖŃçśÂ¶«ŸÎ`ČìôT/0Dh$ÙtMŠéÇ_{}ÏżçÆf"B4ÆANé„Yč!źۇ„gűRAú‰PČ\ŒÙv‚ÖWÁ c4bș%úąŹT œjn5«olƒ~_üƒU0RlĄ °M‰#UŐ^뒳wțs %AfPŸ„ÈqT„ô¶ BÍ\Tł ·A­rćéçjùŒa2ácȘŽĄÌíțŽžâVSʚe4,© kśŽÄąNÿ+¶a"ă \œM [Cźè»ń€5ȚîòY”aìĆÛ%•ÎŃЋ šÙÜÙ“·)gbzó; KQ‡żŐȘ2È ›ì›it>ę/U‹ĂÔ i3ÏlÖ”· çŸ,Çяhđ%ü€‚nŸ<ŻIșwcœ[;4YÆ·òûȘÒѧőśìë3u°ąÇĂăJŁŽè=à§ŁdęJ8æ‘& –%ÚщzŠÔ8?ŁZĘZż-5Eb±°Çz#g! úh6dŐć /ép û~ìÒÄź[UABhG$țŒŐèîqŸ% ™±`ÇD­ĂòćŹQȚĂÆÈgśÏ[ِéù•šçÁ}żc›<…ԁx (kÊŠe†gĄ:©‘}3ˆ‘ŠŽWUVG™ˆ_xß, ȚżŽCŐ+<±rđ1 č2ß@żsuƒtrÀŽŚËìÔaŒ2_œć ›;ŃOœ‡~­ö‘@LLíă†|ŚÊ!T`[T^n&Ô·•Kp’ r±ÆŁ°ő2PtF — <í'uąČ-ă2őÏʞăÜ„Òk)nfzźÍRÈyRčĆœÏŚçč»üÁ ÙĐíȚÖbœč6Ü`ŁEïĄ‰5œ8T<˜#|9Â?«,ö>„Kë“U„©(,»îè êńĘyœ·¶] šRùIȘŃŚkÀÆÉu„/Abœ–à}lšL‰/úhúî$Ë.ă±LÌżM §ìÁąoîK‹Á5‹WâNÏÓ5ζ8߇3ęˆ&ő!à.ZŸ/ËÊß,‹ŒVȚĘńŸy_‚Ç Á%č&•—Êzòrc Ędf4'ôg°—.¶”Ì!È\Őfoé6EśÎțrč9™Ä©€È맛”@ôć|žNVđ097m^Oï”'—űhû ÏïNRa§”ÿŠ|]Cpął[Éț!SőV‹ń(j”­ż+zYOEwnhhë°șmšÓ—Źê)V9~Wòdë¶XŁHh]_@żN«è·}uÍ}ëșscO©Jx" ŃÚhŰb*=ČÌ«ăO:ȘćŁGą#ë%ž.ÔÜș±81sqUâüFR&FPšD̚)Ê08— ÌWOÿÛÖf\!i”pˆìșÇ à—Źû@ÊGȚ –Á‡ęH›țhfOcò“hĆ žźKś‘ˆeïEścȚGo`ᚒÒÁ;š” ±ÖOÉmĄ„Š›Ôb%†êÊpz~^PőöéÍÇ·9©ńŐÊΙdd\ö»Œ2JïźjÄ è#eđŒGGSF%żjQŻŠ V;@€łźxÖ1qsiÔő5-ÏÈí:|țžÒ#Ÿ:#€ ČšQC^æÆŁàIąŸ§d_#ƒ»>1.Ș%bÿÁx@đƖçx‰ê=ì‘,ž(#€M€†6͔|ZŒŻžç‚Ï … ŻÄ.ÁG·L‚(Gim­tâÆyíĆ^7@jȚ„»Í=éOÁLÁšŸa+H=Š˜}Gԕ& †#ČŐv8YqPjšÔü°)Rv‹‰“șÉ+uîsčR‚AmŁYËQw­V·»«ëĂZNÜIź>4Ym]òÜèò Ńptn“cébżeXŠpäáî ”‹Ő2Û`”Ÿô~4Àđ:M9V’žçdšz…䰏.Ê0ƒ·sò64čđvù+C‚ˆ'§Lń§ßqezSgēłšŹȘIä;ÉŻcwêŒÎág2Ê9‰6Óóyx{„]%DPÖÏ1hDięlœé8/łI>ôȚ1©śQ“ËŠ">aËÀ€«š2èțëș|ĐaF/:M%OùŸè—N í|„gV1òEĄŠŰR3y”áKûϕr5Ź'śL›ș˜\IvÄ€=á țà%P.ûqȘdcseź ‰mśO­5§ńlÇ@ùMoä»2.LLĆï|àÛż„í@đ's«Ú¶żäkŒ1ûëJïL„?"ń©ÆE9"Eüšâ ÀÚ —H UJŻ< ČÚœ»eúzË}d ’=˜Ç=c„CrŰź“OVÖ>žáì44?Š ™ŃőŽŁÖś’Woí33օ”m¶ç}给ĄêPpÀQ°‹›çj Nâ…Ú(šȘЏ“vûjæÜęaž ț żyüƒ°pUçŒĄ0 ąùÎèr5ć'Œ—òĄŃŒ‰œÆL{à 4™ŐëÀgM4îç+ŹÛćUÄWń·C áiBɆY6VŠÀ/Ö>:ŒI‰–í-ś:걊ÂTONőW/Ž&QĐw…„AĆ ż6îœÓ«XŸ—q<ćGÆeőŚ‹=ĄO'/ä#K9bg„Ž`ŸòpŚšsÒáčÎ%MéY~`śêèpw`ûV;À|Æ,Ô HÿŠrš'óEŒ0F3m2a•jž'+BÈz9­_ă)ČQ@Œ»ú A«Őќ+Ôe_AŚeÊœ ïńHrÄPŠV ·ÓM+íCuëŸÿüż —=uœîuĘÉObÒœM^‰șy ä<ú)`Ü •}àŸVÙpńäSrk·iCx"Ë<"çÒšŠCmpMŒšŁ•;ćĘ›ŽŚ_n͆Ôóę-˜Ž‘ëłÎ4áˆ:­;ì\ć•9Ù`‚§RäfęYar SșÇ>”łœź·^_ĂéńçÁĄW*g’1ê‡Àô•_æą{ąT(sÚÜnÊäțaov'*‡čƜDÉ ¶ÒNÿ»CäF,ÔdAƒŹ#œ(œ«Ë.ŰśÛ FôšM9Ț<ș4$ö5 „GČ©@òË4ĆŠ»ä˜=ăâ,ÿC©T<6 Ć/nŁYĄ'IàĐIìšŰÊæFÂsńŁ;ßù,ž˜kjŠ\VĐïŁÚł/U rĂYoČ6áă0œŠȚï1aŠxÙ;~ärTȚśUÁrY{';m”4·+wŸO8sąĄæčlŸÌæ 4ű"ȘłÍò7”ŁžïÀ·'k”îçżM#ś­37֏ëôŸ©"zÇȚ”ïêȚÊ+:K3„5Ž”†(€”i‹Ó.ł‡,ùz żőś pŠAS„‰ü›oÿ]€Č€Ë›Îą$țĂdl2_üO˜Ăn #Èé°Śb€fŸ”Äl3J+łzÀÒ{ú8úM§ÇÜLêÜÂ\j+Û gűŻžŠhŰxszm2ű›Ú GJ…{!æFŠœBôđŻpf|±©ęv7“äŰX0Jőï†kâÇÛ>í(źëGŹ«>țńóV»ć_‡ïúïÏčSQ/íÆ.XŠ r†Ç­.ël‡pTNùëO_rȐŐAIąb„Dđ@fRä€jÒç.ę(€Ou2v1' Sç7ÙFX©Ól(‚&/ÆÎH‹~Ż`p/ï‹Ö /yŒR­Őw–BN_3ĂüÓ6ÆÏšŽ>Rê8 zĘł°JD-A˜Zćc?4ïë=țŠźç>íH*"2í~Żú5Òó©°Ęđ•Ÿ?z[ʀçÊ~­~^éY źĂŚŽöZMȘHž čóÒ±•g`p-Ú±ËÒÇÙö,›DíôôG»'«ł7’ä~= ’ÎhÖS_^ț$J€F+łȚ&Â%€Eű#ńê;3ŒÄăáčTô[v%ÓĐ~1ƒĆBıÏ3 OdèHRȘ§Ÿ3쟘6șL”ŐZfó§iŒȘF1ùž-ìłNą,ÆŻ˜x7ńÍkïP5XdǑӛ ›…WŠR€Ëœ—ûF±YÙÏ·AżđIt)b%î$Ă;ÈÌ%&C ˜qúDöžÈc‘”e4Óîq†z— žCó±ęqƒ u™łúJG Šńęê*\R*—M. æ˜ †17ŹXB‰ŐTԦ՜>NQłJÒșć­s”ŒšĘă3Un%ĘPłŒƒçTŒŒĆىökË߁ـ”™ćÄ&úz-ëì//$ÜK(‡K)uX+ b†Dő—Ò*à(zƒŸgiÂ[Ò+˜WÁmĐ_2\"«Úśá(܆Č&7ß.oj›úÏáÖzŹdÆìÓLÏV Ê. KX{ ‘űœč8-Ÿs«àTű/üÖfć@8çŰéÄű>V\Čž?6tôߥ*svXb0ì„tʐ©°ŒöźĘÔ4C—kžáțéè­ž•.ȚȘ(čBŻŐÚß!ư۱“#đ[!(,nò}z˜jn~#ìÊÇóùXŚÄ[Œ\x`(çOò ëk,B—# HćæƒnôÜÀ/ߣšĄúxä{LĂÒEX««ĂiRYĂȘęi9Ű>Ci‚„Șśž°Ű|.ôÎe*±aàr‘…1đ‡±|ÍŐ¶ÖAÚÒp=Ź…[‹ž…jÀßsÄÇáŸŹÒqn©rF|]!»*ȘôҐńÔ–GOF[ßïiŁâeęäŃšòڝ†Áäc;é‡ĘG đ†ÆŐTè1­8ăDĆČŽFN”ÌÜűVÛ»‰ęì¶Š—áÜ;UkÇU êTڶ\Đ9:fŐă\þՊ“É”UQ{œë_-žkŸűNȚûf܂‡j1xÛ‘)­7Ę€ ćѕ·„Šaˆvï‰sĘï«.L)Éù#Ÿ<Ä”rŸ‹‹îäéՍ,d‰Đƒó.·K\Ƅm…„í^‰˜Ę'‹–ęjŹäBóXćșÇ–Žà•.čËÂÚ!—7Šòűąę}A0Êői^âû ?TnźžvٕUjË©e,äóŒíű;ÛÄ\łeG¶Çu'Nw§Z3s·lć=8Ql 2!OçÏ3·’gwëar̖üÀ☧DÎ-Íî±,u– agïȘv;4AăkHYxwÉckÍjŻțd*ê2”Ș(ôFÙțÆš—ÓtÌ8ś9#ĄÙĘ*’ȘžŒOÇô6cšEæ8ș(xŻÚ- UQÈä Ÿ2eÖ­é6R)ł•šò–BNÚŹ*Ž…|ĄËžû]űšűy ì7yæźï>jüś–{èÂUòÖoLF‰‹ŽáŚô`“ś›áDHFQÔ§§<łżÂU ^łdÖ36,ÓŐ{íÔžÎáȚșŠźÀT™ÚfgBVÊÀƕ5R’WÌłCŒĘąœ/‘]¶žuŚ …PĘ)—ú·żëòŰÇà(\Yń]ș§p˜ęùi·Ìiú›@ç€D-ń&ț>á  •W+ł54D’šéŁtă%nOźiS{Z­‹ß9îž¶1XŚÌr3ʝ<ŹS’qă¶vtvŽßÿ zÄÿȚ(&ngMŸUPŻÙt+˜{è°Æ·’îîŚWAŐà-|Ê\ÿ{ïśEZ¶/˜ D¶ædđ qń⓱·5#€bOÒ„?MÆ^{nè+ž4ŸûdČzĂ$Àz7sż©^€ úËâŽàÄpëÆbÜÒïyáa7œéáŽr- 8Ï”»'ÚûÏO˜ 햙Ń\VGYĂàZÒžł-c.»u6æE|’p„Æ ÖŚŹúgÄ!ˆSŚH#hvùú>ì^6íî{KŠ.QÆŻ>Ë1^4gm{ŸcŁÔór›YŹ&čőžò`KKZ#ÙIšőڇí)ْ8^ê˜&Ÿ­8źpá ć€ûÒÄï*Q\J 䚃3B7„ŠnČźŒĄ ă9qăah:üW DiCKĐČĔ턐áïß!·§û”źLčQUŻE Ü”öv»Àò«Àyű8ŽšëÏ9‘à+Ÿę x îŒ|ÿì˜bˆ”bÚ¶6ć[k­ŐcŸăzšüĆŠĘšŃù ČG4Dyœ­đ1o0™­\QېĀ ÿrèt$čPÔg’Úçg̛}w“Ëmˆf«+â‡Ői–Žę 3j& Hvćü‚ÀÀŸ€ÎöŻ„TT··^qÈՌˆoZLűS – ?gÈĂő!ìpîáÂ,i§éȘĂŚÜqëÎ[Ä&ÛëÆùZÔÜŹŠ“dÈÓâŒ?z.ÁF€lö« €0Œ…„ê?S†ÚK·›J8'ł(ÜHŠŃXmêÿ0ÈGÔ2e_„żö7h.”©°îGùŹśËeęoüoŒCoŠûąïBOÌê&û\”ps7=șBI+֌ŻyRbCm;ŸĐO{猷€ bś’c,b‘òaüEdËȘ|Š#áq{L;zg‹1ż”ÖÏ2ĐЂŸy€hD]?œÔ:Ą2€‹ˆńșß żÈź‹“Ÿö2‘˜kd”Ì@%ź4><‚ÿ=ö‘…Żs7%oxAog뗙ßlqșÖßÏÚ~R_é^ȘY%O…+Xì,RÚ0ÚY@§3zçü¶5ŁQÊČB2—\$Ďf«ÌŻq|ćZ%lxƟJ1üúóæș”4€/†ăőXqÁÉ&6VSœMĄ|Ń`f uGćśnW€šbó*Àl1ZÿD†/3à±,U«çtÒ5ț”‘ayĆLæÌȚČ҄ÙÍ0ûžűƒ>%ĘC?VCÊ蟯a‰űŒË‚qžêÓȚÊÂ^Aéùp‡7™V3Öϱœ"ƒęÿ .Ńę‘|»wŁęEőßôœš DŁĂâĆ<úÇòvŒWęÊqńLŠëfI\\œĂ™ÄB&Ÿ}А˜ę.ămgfráC[M.ä/`À蝏àŽU{s€ł8ʊsű柒Ÿ>äBŸÇŸîíxCvűÉŒÏGŒ ő§Ę'\ÏŠč”‡Vâ] “Çź”Š+€ûie4ïR`żb#vŻCÜëăAˆD޶}݆ŒÍ¶}ÄÈiWB+ÒsMș„ëáŹÀ ZGÆL’†Ró'ic~ B‡€Uȶ |8‰,€é*(c|_U$™Èúyă^ÈÛúQt­&ÖžÆD‡Ț(~Ä°ćĄÁMu‹ÓȚŻ»ŹĄŒ6†êČułQČ6È„ČK@é$ iE>?± șȚڀÌámžŹhVÖ©1<&™§ç"&šÎLözÊśC[W0yRÊĂ~@Kd§”|” >ï‹nŽ·ÌgȗIŽžt„Ș‰nHlRÿ]бôőȚQŻŃ«ì{ƒöŸ$śô;ŽÍuę=†mæ3oÔèùș„TÇ ŸùEĘŹbÛ,Ûr†ś€èÖhEȚU?šžčúT&~țŸĆÏ XšÈ‡(h4DŸUY{r!ŒiìÇäІ</4Ć>}ű‘ŒJąe#Q€<˜˜-]œ„ˆÌŸôÔpy8Š*ú„ endstream endobj 313 0 obj << /Length1 1630 /Length2 7267 /Length3 0 /Length 8086 /Filter /FlateDecode >> stream xÚ­WeX”í¶Š»»éîîîNif€!f`†Z”AșE„D@)iPQB@BZș›ƒ~gï}źïì_çì3Ś»ÖœÖœòyȚ¶‡†&|J ˜#Xőá┘[=<€ L—OæÒòzî!1<668èAU>`i€P;„…BRRRxl˜W ââêàŒçáâááę—æ· À1đÈœ'â°ß?ű=`^ž`šÏ=ĆÿÙŃ űž‚Î0@ĆÀĐRK_À©ĄoĐCÁđû" }= N]ˆŠsœap€Ç_À A~—†àżçRB€„Ű rïp{ę†x^`ž'ž@8êsßuòđęNà^ï û“voáyĘ“Â>'8ÄËpŐPUęŻ<}\>żc# ś0æ|o ‚9ùț.évOsú!PÀàó;–#‚ Œ<€ś±ïÉŒà?iű" P—eÀ €ƒ]€pž§čçțʝŐ űŐœŒ<ÿxĂțXę3ˆìá̏'$|ÓÉç>¶ Š'đ{]Ž Î0€à_zŻŚ?0?0üOƒ8ï Ś}@ ꁝńôa>ś!œÿ·)óÿç†üńdÀÿ‘ńțÿ†ûśęCüÿ=ϧVśőđĐz‚ÿ8țqÏtż/Àï›âôż|€žÀçőwK đ_©ț&û;ö·Ôć~&|RüRi!uHdńqr8=î»őGoá(ű~Ș àüfê qr‡țnżŰ_ ú{ú“č€ŽŠź©șÏżż]ÿŰȚoi đ߁,ô`  ż™”•a$Ÿ„ €Oä>!A €”ˆXÈż‰ú‡Hè_ČĐ X ò îżÿńù—dû75š ô{oL|€PĐęȘęSńvò…Ăï'üçôßțùÏ҃Á`'Œ™I˜“L”[VÎ ŸZꂟ!Uëź!ôŸhŻ—ïLK‹Ă«aíaY±‹RoźkąùëG€o›żmyĘŹhsŻ~ê òàhȚ-baáê,&go‘àY°{Iűâ—E"rï«î†•ž ùêҐ‘±]ù5ăH‹gïŒ+œĆŻ8œ‚őԋ(Ô)ł.™Č•€…ʶdë{úÆÙ)GÏçțŸȚöÌÎzžüd\6 uhÆÖĂg>đăwN·˜—~ˆêșìî†mwF· _ a쐜@ìŰ*ł°-‹öäù” Ż%Hÿ…Ç%?0*8ššƒí wšž6ę%Üœ%îâyLZŒ„BšśŸčÏaDżeïŹuB”ȜΠ–ČéC›̞ÒÖ2ą :ŽÖ=ÚɄ·ï@ìîL6íđâXfh@ »çZ}HŁ_OëtŹ[ű'©Î;-xčI©Ź*ëlőä­ä•ÜÄ«/ Êđ©/:Gßű&ű5vžrX #ŠáÁŐoS:č·ż€«Źò,Oz“kR9îöw„p­„b~y$‘nëô›Ìm]QŽbLȚ-ۏœàĆż"<ŒUrN=èK»m•fĘ˜cëłYÀȘÛäᏜłCÖÎ6—űXUË~:Ôn5”‚§$=èLÓxÉ!{QÚȘ ZÀŸ|V(©đ*(Ć@ą.R¶>‰,g#Ó>`DKÈrzB‹Ï7Ű.Ѱ=r6 ¶NżíH es’Ám}UƁĄčŽÓ‡śäŚn|u/S$=ź=kŸ˜z9Ź9)*äżŒ_8àB©1ó8‹°~jč-Tü`\€ăxâĘ@ĄT‚)ÓGˆòŠ?Æö„í©äx!t©ą…čX§ávÙ0mÏęȘ«eő~f>t~ÙŠ'Œ[;ćŸó™jE4†kùòƒûÉÒËCÿ‡ˆÓ2ó?……␞vëšő…Š­0=8{î&IúÏ'aö&șhEKè;–ÒM9Š€ńœ-€!;òÚEŒ7íæÛluRÛźżê„ićœ=\ŚUH” CCë‚K„ȘVthŽ$ț5ĄC<"EU%đ,.QùàŸqî՚Ż/n)Â."ä 0èù“ឣ\Èí«»ćCôW֌{“ŠÏŽ·sXWí>‚5±%çFÂVf„ŸAȒlD6U–<ђÔÛ^I/±Š±óźƒRwŸ˜3a;/ƕ\ŒíI7 ~ęŰtƒ«ËF>·€N‚SjÖS,OăŰćÁĂ.+[@oá‡ßŰU{č§ĄëEi«pœ€íŰ_a!hëü‚ńnÿ„âÁÓÙ'rLc›I­ù†“čĘŐàÆBŸ,xí ±Ù)Ë5|Á.@ńHܰż€ëgQyeE q–=łW}Or*Ș©-c†WE§rjâ‚,è—ñR č|¶Űꍞ”‡RŹ{ìrIqÉŰòšo4uêű,&éŽ@ń9ăŐƒŠ™BQÙ.s–|V >eP)v!VÔ}1t>&ś™(7xC żéțæÉN; |úœá‹;Š/äĆÄ#6šÎŽ%UíÍęĐVf6ž>6œT_}"Af8Ő Fđ’=‹ìŽEÛ1RÜ<Š%Ÿé0àÀ|bÓë'&W }ŁqȓÎ/5;Œæ6ö3tČ*ùHŹI‰}“#”cÙgM]ægšÇCä…bÈ·gÏÎČęËęSRjˆo eđác銏ŁR6đź[È{Yú—58$0jìÎ w P‰tÓ;’‡ ŁÁĄi3I9"KĆqĘhA głËU±ÂÀȚÜkŠ„űÔőwR`€dŒ~Xá5Lâò2tÄ:æuÀl+’§b’ž4{Ëï‡ß|AèƒbL)tȉžő˜b í\N$¶^ÂLÓٕńwŸŃF{çș;`œ$azeKțȚìśš€PŚM?Ì>‰»˜pćĘY~„ đ8M–ÔRĘ[HEĂQ.Ț}ìžČFÈž.Êô8S§.pŃJ(u2 ŹS€ÏoÆÒ\S 7d3ZęÌLöŒg·çŸsčڄ0S–É_(ŒË>9ú*ĐĆ5zg°"Öœê–ÔšîLxûz†zę0e:E"Yš»Xz[i‹J›Ó”9yčۄœêäˆłÓ#Că•I«ütȟæŸ&düIrh–ïBŻV]Żw\T©äˆü8í›Ș-К-W°ȘŸ@WuÄ`èłŒÏ2Ênê+șĘËbšDżĂšŹ±~ËQÙÉ7#Ÿ™)Ng’!ç+Ä.4čïÿìíŽ …cę„9Xo–ÂŒtdà˜=4O"qn\ćúŽÂ“)♼ƋŚŽ@‰ó™èùjTËYű|6ÄZÚÏ·zqŸ: @Š{ćhï.äAȘ€yŹàZ/Č.țeÉæŁyI ê-_bLžčüMő)-ïžiT§"DS>Ž`șŒwšÌœ4ŁüŠûĂáÇvąGÇŐ{<:Ă}mW'±­§ŠKÀćČoQK­Ê±XD‹ŽaœšéŚjE_{߃Iżđ 7ÿđŒ8ì"LW›•ùPÆ@0v}§Ę 2Wocś <ĆŸÜ$èÁ™l]RX”‹ú}ÌÖ;)bŽí„ÔL•âDÒçÈ+Ûò°âł_YFdŸ»Oûé>Ûé»ÒćÔž‰%}–öŽńïœM¶&ŒÊÏÈČÂô^ 2îΕÒ~h_æë€ÏR<һܖž¶ l v†ČiI¶»©zč]3t€ùĐżŒńâÓZŸ5“©ÔfĂpŒnŸaŒŚWùAżOob‹Iđœo0ÿÂ'#ö”șÍÆ˜ÀÓNP-Ž»Îó(bŸВ eM҉“‚ÍČÚ§j,GaÔżSŠążKHWìÊ ŁÈ\è,Ž8ݶKŸ«-2?z[҆,§ ”Źę~Z»ż,L(CùÜč‰%șlč“ęƛJ$ ¶"̀ڎÓGžȚ‚ÎK€}ާT§™g©ÎçgCÔ*5á(9‘ F„ÒĂŠ„LŽúŸăÚÄŽű-漊hÊí’ń‡łžËìą†â[zšTȚíËȘŻ˜èŠ±T,°Oăkk…bàńÖś/ϝ9ÚŠłY6 ÊɚTŸžVi0Șű‡ĘÏ/Ÿ§_ŽòŽ2ŒÉÜiŹ˜È•{Ì€‚Đ©]\+%ŠiCË9pòŒ·J—Đ?”ŁŻÁä3é-vž~:-†Í‚Áûž˜șą@·j&u2}śÉûÉ=ŠȘƒ5SńÏêžê«ŸÙ û~ț‚WśăŒ~l_ ·Žá bRÍČ!›™e”˜ÀÌê»!%5ÜÍÔ~f{swú0üĆ%`ŠűÍp™è„eKuH$Č9rhĄ9ÆÖzÒr9Ö­~Ę8šșëBŃ5ùutEûÍòR҈Ă<‘Oùœ)»YŁÛš0ćș¶ÒÈż—§’æÎőńöHj@ëôČčźY^{'.ŠŐW wZë§ Ő-êžąa}ʐ‘òfPț‹KŚ á\ ălÇĂeùđÉ3Èáìs±“sĆ·Ă[ŻÇsΧűŒG7sÄ^Đeu#o…M»è•”™«Î6™ČÁ;Rđ€—NŐ„f/`™ $wQ槉•ßËÆAwxŹê!ÔÕÄ6unJ–ćűVæMȚńèăžùśŻÉŸŐ·WŒŒő<ÿ–óșŻwś‚¶b<Ć"cżÙ*ÚAČv°?òčgȘĄóQô$ÎôuopCD$’ń°ApĂÓh,,oÈ~T JŐŰćű)ŐWNžúËbfqêüCŸEǙ§ùۚÎ JÁof\ßïy& źO™°T) ±'”ŠL»žfe žóâ~)Èf0ßĘáęèAJLb¶Fü 0SöY;PŹ)Ăńő5ćőd–9Ő©”ĘűÌdmÒŹC1lĄÿh+‹jĆÒbÒ»J™+ßàržÉæ"Š;„Kp‚Nù€Ú"`k Xł¶?Mć{ê/†ś„%k€Ź%ÁëüźÊZëä0#䂁(E?ęyûùĆG—ZJï­:ÈűŐîuj\˜gżRăî‡,gŹGu_ó #êŻló C»!~ùËŻgL—tyđž—-?UȘ‘IęÔ ­šĐxűlìՐżïżÇ<(a){IíșóźoŸèĐIŒ‘ÌœaÀìXh&nÎČ%QŽ]«l˜ą’4/2č”YÍÎXŠ4„ćŐOæ"^pÍW•’ïŠĆi»YS Ÿ7MTIČcONw#ĄŹa”„ŐÛŻ€šió&Z9 p<’tć§ïMGSFȚźÇ”€Ú_R.žd>këp-§'üv—[Àżm=Śq 2QôŰeąÍæ^đz:?°E=1DP Ùővn{*/È`Tz°šč’zü>Ƕ•°7+rÙ}Gł.|%"tœ°^`SƒšĆ?ąÁ™T™ \Jé}Ęi”•š^kÁŽ)yĆ<đv5žNešŁÈ†oŚ‚ç;ĆtÛÂ(‡J‘}|ș?^Üúϖ Íč±ÜŐkxhžĆ¶FEĘĆäGoÎ3sG?oPțuąŸ7"Œ4|ƜŽÊE‚5ŠWÓ\ÉĐQGnUĄÎȚŸ†ž° ~iÇ!šś} ˜o &~ȘúČ)qˆÜƒKb“ôŽŹq@Z+¶’AÀŸN߅mâLr’žÛ”gi‚ś€‘Ÿrč”—čđ1쟋(ÆšàZryceŒÁ<êâżÿ”Ă çûbőł™o›› ›‚@alÒ4«2nQÔvęŽE&=sCÙŚàlÁzYE‰™eÔłóXéKœK‚HÖUĄx`< üB֘șMĂżç26ôÔ,Ł1t°đA„ô󒈀#ùîK·ž*ć„ă%t»ŽUû:&§ìSš›ŽIj!“ËaŐ[ć\œôĘÆțn È5»bŃö;UK3ûU±€LŹ2Ć«O+sž`7aĐ„iIO ?ÓO­jcș3ł?äÜWđ œC%UàÜț˜eÂ}šg˟óÜőŚü͈òGƒì ą†4y™‚Aú óG;IÖȘ±9fÒïĐè;Œm6ÆłÈŠWѐ!LÌÒE‚oێ8"ĘKȚ[GˆÇ'ᄀEe_Š4ï'H[č{«œŸŸˆn°$ëȘ•Qρ!J Æ—ĐŠ¶ó·GĆ[„,fú\ ›Ć†ë,…™TT:š«’ćc†Hé@{tWżűĘsô;às{Ó]:ÓÈź™ûPźŠÏ–;ï@äҒwoșU…Ù”’ŻȘ+c[ÔTÙc“čÿșeK|éˆ^Ìț9uÍ·xSGnŽžŃ“‡ Ôs QÊÜfĆ9REŻËő=GÊôKŒ4hđ‰ä Êu6Ÿăê]ä ÉkîĄU’ŽvŸæèŸxBpŚ0{ŠŽlqˆHU­SśśKe%‡ÜNśÊ.š‡uŚMŻ€ŠóâčCӏŽż6,X>v{”Ž$‡k™Š^$Nóí°$¶Űë 71/Űö!Ž$›Ô=žà3T›ê&°Mč_:c<ŠùákŸí‡FÉ„.òVśb..±DŹć •B꩎%:ˆádóA]·u Ÿá9íĄ~ÌšÇ4âȘ83=^6 :nM @ź*Ą°¶AŽŽ„ą.>æq.Š5…<ëűŽjšq•4óČRpöB, Őț" 7đ•ŸÁíjŽœ0L/ș 5Tv˜!ç7ÏTĆe§a}RSŒF…ć:ùŽ/ÆőùU<>ŒsӕR t\ü‘ù„nŠo/{‡òƕ*î‰0WIQEjqSgÏ<Ÿ]5c ~Z–ítô¶V”:…Y‹«Ëă›?Ęê‡é2HšfHOÍg6ł†KæËSìżæ°ƒ?W[Ÿ+Ł= zęNêAșٙî1ș ˜|ÍcveŁ@ˆZæ >x Çîi™Kž…°Œ; È"‘ß8 át‘Ë՟5^1·Ö}Œ-FÌ ŹGűȘ=Œ™tçV Ià;-itepjœŠ 7‰TOeĄÊĂń4ü<;D¶N ŻșJ–rț/Š /2ƒDę©X[•(3Ű8QßX{Kł…żOJU—ÓvÖœxÒ”fÈKI€lÀ:Ÿ ŁzG5Ű0|Ë„7°%€9ReŸ%‚DûJ|ž|tC.`0 -pKlˆ3Q_,ï%ŽËĐéőœkŸ7ŸÎQłè§ćmíCŸi­ű™Œ‚„Ÿá9Og}+l’ÿ eęÜ^ĘG4œJëżIùT§ †GvՍ +sEÿÜčaȚp \Ü ÆlÇîX}ƶ—-Ÿ)CÚÿ:ûÖ ;ʄéÁs§eC–KŚ',P^ȘNXSî»Ûf/͎%~’ŚûÇÍ O mvČBƒö?˜”(ăö°2;p\óŸ4,юșÁmŰ;ʕ°mgŽĂ{>æ%ӗćtC-ŁimFŸČÒٓLxK‹˜KF&RĐ`L€J—đQò5Ÿ'őÓ$TțzșđS ZBæçû,ŽÏ5HçRÜ9Ę|©`ݟÿBIëŒz?wGŽHêőG—ŽLH|ëŻÈÀò“Ż|/âÚŒę& wŒŠ…Ęš2’hs›ù'ă9ĄMç^Á 4SÓ»2Op…zÆèÎBqŒÒÛäàgȘÍüÚ·ÛŐSwț]óăŽŒnUćÊ œ2°ł»pÍ, ŚžóY€z0†âš6ż)‹òs=yÒ/Aጷ}Yô”Û8żąŸÙtź–G“η5ą)z Œyu·J8ŁȘ6à%=óŸô}{”|…3OŻSÜ(m9/Ă$YàjCGÓ R‰k7Lû<Ž-9Cۂ ‹Rt$kúi§Ć4“E<“GÔŃ: Țm^R|Ûf˜Î)čæîƒ”łmîÜKîé^ä«,%J„Ș&ÍÖFб·9ŚcÒî믞ê˜&ÏȚę\«kÈ)-Â/œ°łqߜ“"tYšA9ä2Áy!(ȚÉf%<›(C\ŸŃ±è^~2.!?đf!ÁÇSoȝü–LšŒ2dé‘ %ćÆ%:k4ÿőŠżˆĘ'ș›ŁSźłçÈžÚükæčï_l]cs;ë;Ž4\ŠŽűź’ê"’dß-”•„g ˆżùä%gő+ú,ćHę$ș49Ćm~yEbźêUæä[Żä……ˆèXŰîą„b†·Àë›ę"y©Aœ€Ćù܃)L*)*Géû_•*ĂÓRì`Á9"Ćźéò=œh1;K({ŁïæižáDșĂ\ \.;q¶«D.:ƒ‚1ÖOn ČD/ìȁ?_œŃ }m2Ü}űlh°vžŒĄąíĄÒvÚ źç5§šÌSŃèMĄ~ëö›ŒÜ#P“;lț–@ŹÓłŃ_8țl3ìłŁ+űˆ–„ÎæZ &AżÁö»IG%đD«‚>žô–§‹à{ü„ĄđhKæcI/·òÜ&Țç,ź]b™ÔŸ˜Ö^t 0&ƒJkOš1ópql)exœČh·#Ę/…ążđnsIőżÇÓUâUv+w2·>e` ù•ŽP^§€ĄiüÓà)u‹hùŻ“Su jvgú§x Ę#7)Éd7.˜rŸèˆU­€áöśCԖ7„‚ÂΫ0v?·VöWĂ”łf>g.(ŃŐ8ímlKeF±M©ûOęŐÓ{L@2WTJ‚hăGö’à!ÆŃr,$-†Îdžæ±:hŒÒX;Ä©fCâęŸÒ`[ŻÛ@˜ htÂ߯ŐșŐâGÀNúÏ8†-úGäÔVțĆq‡(› •öÂ{Û:ù;OÜëéŹö"Y_vÇŰyőőœĂv<Oï8˜‘M3nûà6GIW­ÖȘE.ȑëB.Êőm)D’Ńƒ "Ś7–*1Șžű>N0gą ,!RÊٔ…•òW(.›fçgOol/qj{í«•GE'qJĂxˆŁeBk“>㚠‘ËEhh'5hPè„ùí,_Ê„œúÁ'ćIÿŚ%Ca©cŁK±î‹ÀőÌ9Šg’-XßčÁ€ŽómŠĄ–Vđ^êlPæź‚?ˆŃ%š‰phžŸòiûœDÇÿQłŚÊm‹"ëKBő†œtü†BíÓȚ„߿هUî`é€Ż˜ŁÂYmJ;Ïa •±sŁšrC”éú{Ą Ϙ-_>ÖÇCòh'8Țpź”4ĆÚÛbșź&ń/‹ȘG”ĘÜè ƒû±iŠëŰo4ÊÂù+{JÉĄ)&sè üŻÊ:EëdŻțûê6ûó)яćȘï(Y€/D]‡źÚ€t`ĄË«Čś[¶ÛŁ j±Żł«#àŸbÒ$Šdüę ”š wfçoÜJì)«j:&ít)DŽ!t"Ž·M^‡ QoôüÄ='윰ĘA#‘D\ńŸxyڂJșą;Ș0%íù~ÿ*íG6 endstream endobj 315 0 obj << /Length1 1616 /Length2 22793 /Length3 0 /Length 23627 /Filter /FlateDecode >> stream xÚŹčct„]Ž%WʊmÛźŰ6*©è$9±m›Û¶mÛ¶mVđŐûȚŸ}{Üî_ęő3ÆłŚZ{źčÖ\{ń<‡œXQ…^ÈŰÆ ncíHÏÌÀÄC€ŠŹĄh`ii` Ž‘„W¶±2 úkf‡%'±8mŹE ˆLí ŹÿöÀцhmdédüżv› ÙÚÛü°úëû Šhăàè`dŽu$ú›UQTü?x:š8ț“ÛűŚMdcò7ÒŰÆÈ韒țőę…ùëu4Z;9\ÿÉe 2:ŰZžęÍęÌÖű/ ' ”é1 #Č˜Ű[țÂüĆț§;ÿU'ŃÿRœ­­„Ûż»mțúŸ€ŽKXf–ż9ÿæ6ZĂ2ț3*RÖ&6DÌLÿa7vČęOŸ3ÀțßQę33ÔIÛX[șL`ćmÿŠ$ąúżS™áÿÈÿ$ț"đÿyÿÿ‰ûß5ú_ńÿßóüߡƝ,-ć Źÿn"úÏ;†H–èŸKÆú‹6°ZșęŸâÿ{€à?Hța€ ț¶BÈÚôŻL Lÿa:ˆ]Ɗ@G#3"Ëż}úŚźfm °·Zțêùo+‰è™™˜ț›OŐ hdaęOăÙÿð6țïÜÿJô/sFu!yQiÚÿęNę7NńŻöŽȘn¶©ęRälŒÿçâaaW"zf"z.ÖżGŽ…™ˆ›Őëÿń_ æÿZË8Ú]‰tț–ÍÄüońÿăś_+Ęÿ#fmdcüÏŽš8Xÿ°ÿiűÇmädoÿWŚÏüßąÿsęïšź#ŰŐ%#Ț@ó”ôTÇÌìĄ QŸfđĄ ÛâzՂ<ß*›nŸ”Đîręśê ††)žÏV·Ć3ۏišĂ‘ KÊî$ÀU.ž)uoÊ&E;'íĄ?Ł^1BêčF€Çő‚ì6„6“úáČ^Ń;țT;«=ôő3”/©sž/ٓ-ą·Qr] zrjMțÙ9EÂÉóćÀèđĐ`ś-dï.mV 9ŻŠwâńoG7}û‡zŁOÈ7göŰĂ8ƍÒÖTś«š:RÓmOđŰqì-•‘èVetyë^J‚™Șčż=›`ŹïJF™Ë…ĂΛ”–qšœÏęîWt]s¶ ăÂ%Éú"Šê~3§'ù=_#ÎkjçhîŸVÌömamĐÁ4Ą ÂÈ5FREhVžvJ—!–FńR€{3!lJUÙ%Č3OŻڎl0mjL„nŹ ·R©ÏtTłÄ)Mn&ž€ŒüWìŁ qQâșù¶jZÀƒŚÊŽMDécÁŒĄœ@E;n>sa“;çș.w+DOòËü9]iÁ4:R(ûÒ5skŐKdçÇæ9ïŰúëĐÆJm©3ąfè`Ž+‚”“æg(y6È!QĄ'’ša߇肻XŸ~łÌ7Dź˜‡•ôêŒș””™d”ŸŁjWL˃‹*z1Gż'xU’Ű/öÛ”F=fwț±‰–GĆ~"báèȚ©țDkÒ!"Zí^„żTüçŁí”mÚÁL©Ò±œJ”4Ÿžšò„Ú”Çy3†‘GO㇂RȘhoąš5l«Ÿźü‰”äTŸGŃ;mëÎòévæ©o•đß#zÆïßD3o“¶ŚăjçŚČyămĂŒÂ\î+ùEŐ{p‚” قŃș;Žƒ— •šspà|—ÒىLŒÆš§ìȘ»ƒ6'Ó'Kœh˜Iá’)Ș⏼]™Ÿ{űô3dwûÔ,€é`öă«&C;”ëefÙŁœ9épőUd{;á<&a|ëˆôäÔ¶?wŠOŸæxcŚ›ÉÛ?IrțÄ|qg˜† #J„ÊZœő90uBț’łöŒŁ Sé Ên~›ù nuUöőÁ·ÖëT„ęÁß©›k…ăkꉐpŽçl.ѝPl_o E…Ò ÚĄÔś}•…(\üăŐ9­%P¶Àkń|ęh ș_=‚d ‡‹âS’‹ùÇßÇÆRÏą$2èż-fŰÚ8>SM@č(ÔàŒ3űęRËàŐQ»‚bŹž” „Ç>«[„©kPqE?ut»”’ŠË:…3Ą˜~hW*2ß”e1I€“S7ÂYÔ·éIJŽÁ y_rű›ï„‚Űđúš€’ű!Ć‹–(ț]sĄ'ë-$æ@Cê1ì§ŸŚűÈj VŸ~€ń‡1teó:Ôș5*čD}K±‰]š&yœžŻșû–b‹cFۜ&Č ùюĆÀ*'RVú•=èSŰ ?ĘcAà­6|d擠ó‡Ć22wŠ»äálíX"™Ű}88K`»Úșß”­mTžąČŃH{U©%A+É ÛćŸFś—êńł© {œ™p•ÔÓË@ă›>eÉ|gńö  ćĆŽRNűrŠ€»é~É …ž¶CvĘ…Ű`lÓK{ԟu;'ÄMŃ^CÜÉZđF†|vö±LEÁÜsG`z—żń-_œRČFÙ V 4‡díÈ2c…éŸ2Úó˄˜Fś+·‰•Ÿđ`œÜßÎA_›[rÂać-»ÒNŰŒCêlG2­ßžâTłR<ćAÌ{VQCš.R$\Śàçü ‚őwÛ)db Q±éíH đòžœk9öàă[ˆ„uYjvœŐ‘sŰŻțZŚ>ŽUőLÎìÙö>9ēy†ț=Ô~’WMT>űÓ9ź™fAžsm6†iQDŸOčUc»·ÔK™î[Í«ęzRfłę—ˆÿ}ęćQ©ńŸÖìđ[ÛÂŻ©VOŁö»v†ô^ZX|:•J<ęé`•U„ ‰zÈòń„ŹŐ­cĂ%€j”A±Wá[V6+ânÍٓCŁiYM…0kž/Ș;0jĘJőł»ÁäŠ/hëL™[阷2&Q.0«Ä œ+7Č©(ÛzĆê‘+#Q>Û§éÄ·„Q* ćHpEI€Xæôë+,G6OìᖠÏČGËtrWŸ±!Ÿ,Ä%ÂłŒ:&ĐN/ö‘ŰŚÓš6-k7BE8(©ü1t°úΫ\—Gż9:K»°«Iۛ«Ûă ÒGôG@Mś™ŠKÿCŠŸq'*ń—°)xQœâùŻ\#šN4™ś)ÜoÜè%>Ú¶?fyw:‘ÄߟF7ÉlŠtîF†Ž7 E‚êqZÈXżÛń€­ÉŠçcȘe5\ˆ­*ԍ'üáëJ¶ïvHÔ ÓæÍŸ{čŽä· G!â­bìśĐADwÚ7țˆËÆöÁ?OáJ öd9€(č­ÇŚä}=zF"őäŃ i.ŽnNë Hà'”|>ił>-΀ҌXŠ@áfŸČcć)šnä+}Äcąó·í šśż©ÁgƒsŽ‹·Èà’Öwț۔`,ÚśțŒÁœ1!łäí[ŒŠÂ1­&ùîÒ#Y *,·ÿh­ș'–őDĆßCRihĄŒ`Ǐ»”E}ôqźŚ-öÓ꜋t#ÛÄÉüS5ĆbÆüv‹mšÏćуNû0séXÀڙòGeš|Œ Pž.ÉĐûöęú‚L6Gކd:’Őá™ɇXd8ąśbóÂÖšžù'UžÖ!ĆXÜč‚jBĄLžÊ2<ˆQ|XüÔ4Y$LYsm'ț5à„QŸź™…óyEs‡’ÿ˜Fç"â`b% țUU1ż ęÒĆ5šÏÒâ‚ ÌS>öđ°Ô‰˜„ûȚ@„łûßd ]Ä­fY‹lKì©|!9ë„słQÉș1a<}Œ\a•PÓ»Ò Šú,Ÿ„».S˄˜·őšȘ-ę·;ÂÄxłqï”śÀőïNE>ï @NOößčhÖJ›7n‹“3š`}Ô^:Ä4Ìg\ÂÌËï‚æŻNn< ŹuA1 Ë`e@˒ Î'±oH8- úûßëçđŽ#»:P0ûfo]éaŽíÊăw°ĂÀà+«ÆĄÄ{Ăï]›öŒA#— ä™ry°oäqČç‚7őDÌ, NÜŰ€Ą4ˆĘ­Ă~ž]Ûł˜óź€đŒôƆÖág}rŠ€È,N«kÌSQÙ{É*,5Ú]šÆ»$żĄ,ÓG5 ÓeF—ĘŸĄ`_h&Ëê%äO5Ș^ÍÚíÁzbì«1€ÊPtršäßőFÍßÙO[ô€îHK(هaĘĐ,}3ŰŃTŒOś8ÊòU‚ˆáZWöüŁ„ś‹ÆÈš|gKÌĘŁ|ŽŸƒJkJ΀FlŠȘÚOkł„ăáÍëu˜#*0Űœ>*g­ÖçóŸŠąűĘÂÍúšÈŸ.#'ż·šÔN„‡wou¶tPKÜF»\‹`.AA{Ò‡çÛ:ÚrńȚ;†ëYL śu…ßSöEf|Ő«Êä·ąïrꃄ”yÇ ˜LËSț|…Iá;†ìû@#”p}€€êŰ`ăٗ=łéűîą2`gáiÌ Ú*¶K“?DțŸ ăàKoH ‘ÿ8˜é97;}XżżïIĄ·H1™vVŠŻ”[ۧĂâ ŠmùUn&©Š –ăć·“ŚæoÈȚâoËwyś,bœ“Áô`Igg AXFЁ”FÍԉ CÁJÉŃMZ’Z«j,clWcŁóP,àŠ]ĐäŚ0Ą*häQ;1»V7CüWÔĐŚ”’(íB@§‹úł”ZQJ}ósÉ;=ü#ŠXE‰Ëô2Ś!oÍ ƒŚ ÄC€—ZBâŸr|ôi)*ą„*+[áFșE–NúƋč[ĂĐ.gY§źĄŸ:Žțüîö}Ôż0CUhM3޿Ù0xAŐìśÚyqâ*]ŐX‚’ìh*qÇ ~n‰ ïń‚ę2<ŃÜùü±ŸˆÏ• |OWë3` Z429>Ÿ ”NłŻ}ó i"çÒŒđ|ÈCžžDÂ.€#T«tgwלžèÌNȏu \소7[Ć*2?ŐA/ÿgáȘg€öžsȚú0Ż‘ÛmŸÈČąxC݌n†Ő·ÉŒŰgntvW3—ž™‘~i ȘpÊ{Úö€!P!Ž‚1vžOńç-ç  F©ò_&¶X+Žè„#đjđ[=éۚŠuíÍÍÄËąà`óáń±ÏöS±`Š™ĆaÓÌ|łZÁÛŰîÍ>TEü{#ÌńÈWxŸ3Ș! h‡,+ĄùșłgłĆČ ÇƓÍSmë šŽČœ ԕőŠo—7ź/wŽ&iüëïÁ’rV0î`•U2đóœ|0ÎüÎùˆŹU ,Ćűak)cxgÔHöŒ‰ÛĂßbßąȘ,ĐŐańmc4#šÓ™-ÛŁŸŒG\ćž6dVxć-UƆCËíK4É 9ż‚šhńUđ|ÉÓô?ŽŰvŽ©ĆÙ>ÂÙćWéÉh ‰—€hȚEò}W5!Ś‘™*żMŒ™H€œ©őLȚ©Ì4ohT]Ì«æ5“° Ÿ+:ü€>*ș3™?ő6c‰Œ­ń™ÍžĂ·űäÇL%™++—5_4@.”yÙۋ űÁąË;z–ëč…„LœÁ5Żû;Z/PhúL†Ź»Ł§-is73R:Ÿ»|/—ÖʜčÇŠ8Ęą©ÄïUČRûôZ?YU^5€aźœ;#XÈÇ8Š€Ç ˜ ‡‹‡ û€Œ?ÇŻ Ò}›òsĄ–lA}ûč/ Nœ^™A|§ïú·o ”ŒcY‡3Sc P0™-ó±TÇ/Łe8«O~Àf’CzˆșȘŹ€!ށŸ‹Z0|Đě·Ú«ËPE émä~óç >ËM:â Ç/·va )șëf9KûïsŚ‘:‚Ö'țż”ríśmgóg“ù|©?M lÙŸź­Ì+-a w •l(a^öŽk°Rë@2ïHę@?°€dáÜßŰ~gżó:§F/DDŁ,g‰«èVƒP‘^Oæé!›aPĂ]Ô#NŸăo?:é©O§đìœșPŒ-cš,8dk_ÿD‚LłDfÒ%^ÛùÄb͗(Ć1?¶W=•{ęȓ9ˆ­€ȘH«ûÎï¶tĂŽJˆ—äĘ<ÛK^šŻ«<uF h“LKYW]ŁWÍb&ăɃàr^SŠÊ*ŒúmüSŠ€~„ öž­ÖźbűóȚX¶đTMbȚk­+„îûÙ¶§örGŐ¶ę{vV.êÊËïӛł’€Ä9K͒7ĄlfXȚ Ô€ËŸGç藈 ś(ČGϒ›KÜÛșž^©sĄ<Í4żGƒȚ_ÆqaüàWGlć䌊őGšŸ»TÆŻDPüó7sĆŃÓ·“»?8N/ęĄœF%ç ÒjYÙÏüWșÄ_(Êæ g'zNÔ`.O»ĘuíD–ôêÓŸY ŠzÇ#ïżz©ĄșÊ=ă ù5Ź^UÛ2Ÿ–šűúRÄÛɓ#ò7ßmêÂæ0Țh,`$‰=ą)Ô]éű`ûé;Œ“uق;$ASBŸ‡8otËÙäDهúÜ\zd .ˆ)•ł~Q€ŹŸ#0-00ńüŰ$ë%'·ï*J‚n'JëÄèB8·ú}|‹ĐÁ™ÿeą„7ń]d]"țŃČaóN ó0fú緟ÇZ˜œ«œUČđȈQT,€62|ù Ÿ2N‚‹‚iŽÂúĄ8… Ą dą ~Ł€ČìI„â}ÁGąœ .űQàśmA2ćWn%‰RĐ©"œ–Čv;džŻkÊPĂ-Œe•âąèlî”g>ÈO#ÆĐș mąäYrôGǔ}ûBŒ8àTæsÉ<#I|`oÏŠžŠP ™š[a[î0(©öŚćđK„Ëűè!!ÇDÒ8…pÄ͟>"Ż\'óyZ2ZCéß2hł`ő«ęS«óŽŃçqiČU[èÚ~†pè‹ÇČôB†Ł‘§>ąp/uÈ:2*;èV‡4Ё™FhšÖR­”^l=±]•4DźP»]Ì@NIź^—Û¶È% »©l©ÌìÖÒEÏĄÈ ‘UÖÓ żA&t@ù bÜ18șÓC<¶Űá‚ï†dòééÛêŹ QČÏeù [ŰŠŠŽ ‡žč~ęđ7FUóWòßQ}ö…IŚjr|Ś73 1F­źÓHąȘ2ZY­oùA#˜țž„ődߛ†Đ(%U}%áąî=ác\țŐs,‰…h=?KËöŒćÁ,TÚ顔S [ČY4N2›>Ÿ+hôV2ő@ü S'ŽŰ#eëmc (Y݉ívVÖòû5Óz§ŒDcÓè1ę=éca« ÔbéËq*Čä© k±Ye †cŒ.ï”üuŽÚłó”•ÂëîńŒOœP G*!ÿ;ń—ò#h!L5P/­ÙhS ΅†(QÏĄ”Kï“y3ž#+n8ž QŰi š$#㣧œĆ§&}›N;p§Ÿb(f Ù$!béĄ!ÍSŒî U íyÇ|±»§ÉlŒ&Pęw[)Ž“VŠđnŚ8ˆ9ćbtčáÍCĄÙz±DfFÿoUÄ0xÎdç‹K«*ô&€IĐć:EBȚ=_‹ìïM*ő¶ÜŰ4ET”˜WčŻ]°uPŒ)ù+üŸ·ß>™>Ž4 :ÈróRäÉ_Š5Ù2«ą*ő Źwux")Ś|rÓ,(&šÁßșÆG˜¶‹ˆ/,ŒÜùă^˜~ òłŽŠ4łŒ[&HŻÄOą=–ë ,…Űœ>éŠ5Æ.ۛOJ ÆÒò̰;úa9掎–‹’œBłî ~ tw"„üæz©Ü.K*’> ~˜ÒȘOqőłÊpÔÜTčÔ/€‡Œ•ÔžAMŐ*Y|Ž>Ö„”ˆiDUšÄL¶t‹Đœ™‚­€Yć™œőE’i΂ËÙż‡Ò'60Üd>PáBŸ-c©; êYK¶c’ŹęȚ”ź/.KD€:&ŽP_Q  „ÒŒ-„p6t…–18í{'?œ?YRíæY?†@9©.3™‹€œÀè‰Æ”œ%EBEÏÀŹt…ĐÉkfä/ee@U3Oő ÆUögœÊIp3Y†‡éÂyáĂógx3)Ö- ŃüHŒš«Ę6Ù 9i(ï$Ká+ó$ț mî_gK"űqčU&ô+€FîÏ%?6'ŽłĄá\=áh /”“œù,čè]°Œ$Ês9hŸ…U/€!őf&FŹŽáŒńÍsj”EêâeYj7ÈEÓ`Ïęž ëËcÄgúâșTœËȚ$đ„TŒ‹ƒW}Ł`Ö2pç‰45˜?C‹ÊBŹfî)ű$Z€ïœeȗ'K?Î;sĂń«nêÌy%ûÇĄȚŒㆶŒuŚ]ș…o—xÀș ÿű}« (tœšŐŐD9»jžß]ïȘG±æY|]0ŽOÏ-#!6äań|áZKÖłÄ"Č[4!ç%€Eu8oÿü‚ț†ïdĘ?DôÌ­ă$H˜êŠê6Œ âŽwÌ6)Q5bž’eˆę±@ ŰÎŚ03=‰|†‡[‹(’"97ÔęÁ­ŹˆÓĂn=J¶V–J껿'ŚjbA¶A…Žóǰ㔋 fà Ž €0·{·č#æ™hz‚Ç„„O&[Ÿƒ%­§F)w•Űw+pE¶Ëő­(yì(8ùô?-wmCă[«–>ŸžźÆĘêk%ÚæcŽúŽ‚)è„é§'ŽĘAóż”û杕ûgEȚŰè«täáیw(FŠwGièżȘ œÂ$†u9vĂäAÁr 8Ő;ŒÛ27h5ÎĂQDÈ ëæ;Șu_w3¶Ć«íYBèŻÔ'ȘÒë‰K检3ü ăž5z{ĘÚÛNqÂnŸ5 +šï|•Ä=œGç;ÙßÁ^5óŸș5›€“kÆKʉ“ü#˜Ż ZÄôD/żZȘÏąŰJ”UoÜîÂg•ƒ{™sŠ”™öË>PiöHȘtąűŃŃ*Œäáä”ÈMPÄ#ÂÍA‘Úžƒ ö•ÿ+94ü©ûăh3ń+ț™°šđObX;LQ ‚h‘Úg+%łó‡,=6>ôòőUäC0f‰úʇa-^ÁĄšóˆv*óŽA•^űăđ†ƒ úȘU©Š"#wpor fÔĆ;VÀŸZÈ€ü™îäĘvx`îq=œ”ț4…I‡nă]§‰œčêCóEjôEŠdêöCćy ŸĄˆA»€Î 3Rî4NȘ|jc"‘#dZ§Ì^03K TSXD–%4JHŒAuŒ@ćț…Æà‰țçŠ k~ŽÖDŁ2.ˆÜMîŽUÿăÏ?NćĆ?Œ1îxĆ>Ÿ>ŻbuR¶úź‡ùN#Źe%%yJŸûAX~©]nw‡ß/M+EŃę– úYdżűËœQçèBŠÒŒò’U3A'^JéüfćêÊSVG z!š"2’©ȘY܇"‹Ù诊™ó”gŠZȚ,Êz»_š‘ˆƒžŒXÍäflcl˜ƒ@ÉÙșÜm=$ȚŻ-öY€`ą‚ ô°B(EČȘ©Zšńä«s˜2% ”l™MTùÖ|œx+Iw<¶žȘäÿN_{”{ášOËź•ì Be:Cփx—Óźőź"cx?źȘ(ûM&,0€ZâŒÙ°Țî`ÈÜ-àZ="ۇw^ÊYö8#Èì$Í' zs]Pz±ç\ß$3Áę*»Ÿ(`Vƒżfźțh^}Z”‡« ipÉ-->8™Ștœ4č|ĄÇ‘;òăM„śqu›äHÆŠvÆÊĐĂfőÈÖî^·«0ʞEârŃÙX…_"8vËy>ÿ(|yüÚSą%s}zĘèŚGò7֋Œ§$WòÚĄ)v1" ȚÜ©@~ ŁąœŚ#iëDeöĄF·É%ßüAȶB‡oN‘-ȘŽ7ZÙtmg*Ć0*?KËR|ŸĘ9±•ڱ͝ >ˆBuO֞`dĆ~óž Ìb‚ çq†è{uŒuŸï«|mčk.Ćï6ébŒ_ăڏÓwŠá+ŽSPßInš»~è ŹWhbq}_q=DQ@l„Č…ČȘÒł+íŹoÍÁĂc‹śȚź}ćłŃ~L?ß@ ljł*Œ\Ł04ÿDUa…E:șzW1™D~Őê­lÖ Ç‹‰1ŽFv1ŸĂÉŰv 1X>̋ç;Ì=]Ԁê€*Rźœ}ë$’i›àršÛúR mšm«ë ÚęĄțÈégđU‹€F)”Û€æ—ÈÁÛvɆŰdĄ…:ü柹Ùm†ž\ê}eÒAŐșUIăÁ}¶°Pp ~2ï{ń]11ˆ†DHgČ\üR…‰=–Mò‡UK#ę À„RpíèHë<•L&N­†Ê„ÒkuóeŹ5‰`ŁłlCœ_.șí:AÿsäĆă€!ș0ù_[ÛdśhDšNiâTž„ԃChDSԄTc@18>°OIĐĄË„Šđv,7@YT6ę‚Ò2$·ę‘L ĂàG7ha0 ÈNF?·ûąȘčdŁ–ŚFǟĕO@8ˆȘJ„ŠȚ±AeÄșÌÖïHŒikp c Śb!ć֙ą[Ù}ˆÇ<"Ę  L 6'ű·CK¶·Y q= ]_…AógżȘ°ĘŸßéź5șjŠ%ąŒœó*Ł2Ű(A“ÿ[Xółè}<d–Ä;uÉ-žC!mʛžŽțíï&±jĘ$*č'ëŸa7>(T[[œžiqçł7JtçÓŚÇžp»ùƐRˆ>”Ú §œj#é SŒ8ÖŁŽB™ÒZƒV|»R‰%•oJ–<óËź&‹N*śƒ ę‹ÀŚš»"Ș„Ÿ­V#ƒ`ùê^ÊĐąÓœÁ?źWˆïŒöÛĆCdgĄȘL˜żBGuC}äèHöĘܝ&;íę›nOĐî|%yÔú”ëù9ŚĂ$ČZÜHI§_Œ`CVûòš[°AőŚę/ÈT†­röŻIvù§Ä‘ę„Wn)Ô0W+r”ÍËC–ïC—țÜB©‹* BìÆšÊâêéSŰĐbs'm48”>míŰ?_ûO9[~Ÿźï©ÂČ7Tx/ t7“Byű„™Mę'hVDő*!E*ßqéG•č AÒ,ú«ßÙx)Qʉyc©݊űÓÀśő@ć©GÜ=țŽùPœÌéèA…ó`뜎ÒwČ:w«&čôĂw2 X«€șŃH1œùEÁGćF30>ÎDÏăÚ2CśB! ńč}äšĆ©&žßęWżfJq-}œßìÛoč,!K0Æ&ATő8• ·„zTûĘÄ_żgíc᝔x!%,ț2ÙÛ#P`Éq»Ú?łtcțv\:ź3‰ÆMŻë‡w1nùˆŁč–źÉ7 °Ëš:<š;ƒœ°'ŁyBÒˆáwoB%žO“˜í ßR'›ĄGW>/±Őwæ‚Ă„ìżĄ\FoŹ ÚÆÓI\ùŁȚł\%SnÎőkÔIô%ôŠŸŻD웕ZÔI4“àÁ–=ęŒâ‹†ùYùyĘÈ] 5–€šá‚ìÎsĘ —ŃÆÒőIoăŐ¶úù$BxgŽœ”wȘ„w$•ìŸ[…š~ûN5Łôjk~ ÙҀ @ ô…ÏÓ·ÉÒÓÌSB™Đò(±tó<}˜užPn'­OœȘörČ§È–ĐZ1Eđą—„šóX‘–(]1Hdț±őÚŸ«R›Zçä6͕Óü(Ž#óą.6Çևä$őœ#ZD'œÖZłSՖ‘-©ÀЁKKOÙĐèuÓE HB‰a5 TZ„u (]ÙQìŠńXčGEŠ KĐ ~íG>Gϔ ÉÔÎí'‰Gfÿ›ŰtCÒ±ƒ57ʇ*Rœâ !n=?o 09)€đ1ȘBò’ÚŚśoÊÏmÈ>2Ÿ ’Șă@+kj€ŠÆr"Ì~WCÉ%†3J{é6ù8łăùÍp —2Ÿ Ò\̞ăà 7pŒÚ|ZŠö»P2Œf5eŒ2U«ÚćÛXŽË—LŻ2œì Â?EűđÇ$”‹è5èœíì/șłùƒxUŸ•Öégáë•]pš‰ĄSfÌšO,d‡č8֓3Ռ}éÍ»ŸòŐàśș "š4pĄ,Çt§b†/œ’~6ią«/·}fG/*‘(ÛH_ÖÊ^꫌€űĐ?Áó~óŸÆœYhŁĆ{ՄcŰzŰČTđóș%ș3TUrIL-kÂË&ä„’țźĂ±ì4àRzWO’+… ÎՕ1Iôv{ŸŃ“~FßFąÂ¶uń7D?ŻĆȚ—Ó]~æolŒAšöŠôèĂć#)f_Æw.ÈL `vóśń‚ê”<ŒPtf Ôh­€/­łžșžFaZEÚ8XAŽçz6č+°æUWĐż šMÄ)"ęÎÈfâʐ}–ìÎ5ŻnĄ±ówM8ŽÍj“|@é€8…‚X=„èŚőCŒœ+ŻŽÚäɜô.UŰF{ÜP8ËLüèGŹ…XFo]û@T±îîü^Ő *焭>ßșƒ«É¶Éàœœąƒpkśnô UÄ9­P<ÿŁqÖ2CæâVdÚŃôFÇ+CPUț-‘őčiMòeŁ›ïÙ€€ŒŽÉšÚős&ŸrW!Žï yûĄ!Yśïû‚ći&ę0ÄtyÉĐdËiX5) KƒȘFé8Śe#’RTż §«B|Àˆ:AƒQFf©§„òb™æ|űKÇ–Zź?P9*čFđ Kdą‹UŚź†=ÓQ=ZčÎĘfȚ%ô[?ś-2“Ăæé>A[󳞇Ï7ńŚ:n$ȚG&ÙJđ& P‡@3ź–˜_§ŸkkXóP‚œMݧíđŃjű&%OŸŐŽÜyÀŸ}ßč{6!çæÚMFˆÎŸdË7tőqL «3CČyb– ;‰żűĄ\15œc†éȘŒe{TÆ.Y$éŸYžĄûÍăłn‘šÄayÜ=Fá]ÁÁđH~ńšR!ÓÁCòűkŃ8‘â•“?AI“Ąú›òt"âÏ? ‰Ò­nÉȘ€~Æ+ôŁć‘zÇMéQășćCDY ,EáíüZ±èRłșZ]i·ÊQnjȚúödńxhőč^ŁmŒ^$.MÊ;€‹áŒŸÓâÆË<ƒ` ĐÒsŃRÖf-ŒP‘Ć4†WíF,ćê9gUČn„‚˜óőq9dŒĐôűŹâ_ùpű©.…Ăw_·ˆ°œÓŒśÒÀșoxk j‰Źá&Ț8-Ăâsż‚ŻŒž‚3MŹ{ôHî6 $kËOžYMoxsL‹îυŻ_Č{mÙCM§e ’ąs“p.šăš ƒRœá§[˜>p Ì_6Àœu^ć(Ÿ" ĐäFȆ»»swÔÎ.ôƕŹùÛàÜ_ƒŸȘ|AÂá/nMœ|KíĄČ Ÿ5Ƈ%č DGæmíeŒëç)}ù†&3ț©“YcŽÊšmÉ)â#.œŻ‹Oä= ÌUŸ!Ç·f‚źQ›JcÜĘfàȘ€>š…śMżUțZâțƒĆÙŒć„YȘ?¶Qوšgƒ&qȘ—™\žÙ[’ßí:Ÿ_Üś§jŚûMGÊXxjôŽËˆÆt0VyŁ\ TÙ"&čŒu€rČȘ„™uo’ș·ąès§ßln˜‚Û>ddà±DȚŒ=8|9›”đf>v2@aMiŸŐOgŻ;­ü(žáńČEuęë–Ï«B€Q<Űfj™/Òć»ŰŐ xU>­Uę.yRFóu &,I:Š-Ur.–CÀ1p)€†æłŸŁi ·6Z}cłČQ휀ÓH–!~ș[lm"Yè(öxŠȘÿ yàì'­ušÆÊIu`(šœŻÖž2„/Sì1ûÎ<ŽÎ€™MEö’Zę…ŰÓ)óÇKyï]EĆ^-tțäÿÍČ@ K«ŐąíĆxȚ™i1oúămńÚêÁÛuè˜ËčÔ9~W=kŐ{óÈ+krì<ŒGÿòûbH—őŠűNÜèf(ÊEOFšJ<‹‹ŸV•”T  e$û??ÓÖ©—K6ç0ŒÀZ©GÆ,Óî9Ò"Ś b:ÖÜTûWe™ŁhžŽäŽ’ű! Ycr… ȚYTŽƒ*[~Ëà!Këč†úțțœDl·êbrđXĐ2•SJ·ûvűŹŚx3őâë—äЍçÀÏÍèOÆV(3–«ÆLW­U"T—u~ìüîI•ă̎•ËČÔ+2ȘÆ«ȘóV<ƁJF‘^”Œm[)Ёśìç>3j#q#¶gÁÄ+v4…wîFĆÁǕRőśá…=ÄÁ]a‰7vŒÔŒÁxv,ö¶Rśś]öùQËÍfőâpÒ)> ڐ«fq Țđć LÜë(Ü#ƒăUŰxà%čÒűÈb«ëÚđF¶qŸ—3v<êń$HZȚđƒ4F/úUĆŻg˜}YÄŒ*ÿù5}RQd-K€ÇJȚŻpBĂß)ËhjóRÌ?”lŠkźš{zŁ uŽôXŸšú™ŒbÇśw”\}UYšŁŸȚRŁ[òé~ ‚ŰyśŒ›5ÖtsÁvX„ >H${]‚m!_LX\ăYˆȘÄ€•ÆÜ+öęÊ(ĆŚńSF|Ńł:Źn°ąÁ„Όœ+FȘŹrąäÇ8Ô»aA”ű -K?Hs±5~ïÁ€ăk:_ałUőÿÄœÈNjqruq+Đș܁YHßțšj 2ŸŚú#Ż țûá­,»AHYÓÿ=ž·żÔՇĐ?sZ>IÉÖQìà u -Ç{6šî€Vć‡Gdƒ őŐ„O _œLxH…ĄŐ+òE)éOçw&ä0ƒêG%-8,‹Ùș°fęŠ ‚ÜÒy

ąLëÜșÏ‹#eù Æv5Ś€Ôșcőeˆ%ë$]«œoàST•MkJäÂr YMâ2‡+& òDtáfłyÖł«úâPô۟ĄM™k‚ŸMF|œöéđq$Ú=ž‹•iGïJYD_?ăYúȉŒőĘX7íűĂkȚƒgŁ\żòŃ 'Ž,iË0{š‹éqz û«íÓżvó]APő»TĄÚXâ RbŒ>èsú,ŠÛrßû7"èÙÏć&‘ŰZžoÍ5 àoKRëéȚlꐛ5í…óű‚qlĂ{ Ă€V<&3sŒ9öŒÖŒ"•Ù)%©‘„M“šŹbĂs,ѓ…Ž{íN9V‡Ł2aySÔ€ÔDWÓôéȚúze‡ÒJBRŠ{Œêï/7ìjő·ìó˜ê}çs<6œ]ő†6Œ6“;Opi»TŁ#Ú4G<§hpš–Ûf>șűIɍmE eóđ€™A»Š<-ŒLâ&„m`äJĄ•O_űaZ=ć}a“śϊúÙZ0`§,V¶3M›Ÿ…@°‹ QjêĘ[%ÇméÓ`ȚáFH€)n8êÔ\­lW“ćú^Qá­»ź*ÚB“›ŹhžÎĄ}–Č=1pĐjŹćę â+/eDŽ&ì’ŹÂ“XŽÜžžöűú€ëfk{ș ”5— ì~}†,§†°K†_‡*˂ÎâK…·j,¶Ìy3šTˆ;A…+ꚃÓWÊûč#Ö lŸeyűü.î\GyMń‡!;+§ÒuPÜÏCÆ}͌űi–*/đ``jš§†ä€·@‘Ò\T‚‰[N,ČŃš;˜ÒwmĘzż_hòĐGŹï7mEË3©tSĆyŸ`Vc›+±‘fƒ>9Ç­ è°ŽŠ jRăTÜČE†]–QGŹ#`D(ŸÿùŚ“Œ&œQëLB;4~Ë[ÿR [0 ߎ‡æŃIV“>ŻAWNÒ4łK~ ĄŒèÏ_Ÿè5?»ó”žQśó”šáƶ°>sÖŰÖêH9†_pYWȚüö=mæÚ}òËl·ŐZXą›ôTśŻ c`8óżŃv‘±kҍ=H”€x»5«+ú)© L<҄iÎ-ôÉDí$žSęœÜŠö„0`ă*ă0=ăh[`EđHÊĄęđ.Ő/\ž°ÜöÖ:[rIg œ2 LMÛ//žKŐÿlsóƒÌ$y*ôÛhƒPÄ5ű볋ɷÆdú8,ž­ù›nàE^X›>Ép Fr”Äè'„9ËôŻóŽcźàpTXáŃäđŠœÈ(€Û&*áȘ’t«@ÉW·u¶ČtÁ,Ž9ö9źÂ„A5Ś*C<^0°àǘTŒșr­șJ&•(»5@_V0AüĆéa2 źfû4úVšRr“ÁÆOè&°éd7Ü\éÜ|%ÄGŸv4YŠŐyŰ\è;UKBŸ±c·…U`:òŒ`cÇH%pmè:T\Đgì–l™ywl+A‚Rędû”ÜûČӇ”Ńç'¶ęł…1 *ĆCŽŽ‚By4U„ ÀäețÖëöàălÙ~Ì4Ăs€ÙŠpĆÓPM0ž;t sSĐú«|Č ڌ  +šßÉ” k=bkkșĂŃ^x#Cž˜ët-áùp<oŒxÀ2‘'· 蔘ËČńÇ©ł;$śł,tńCđœÎž}Xțpá+…%oöČrèGù&›‡0èÛû»űăÌÂđĆïșΩ ŰȎÆ?ü>ĄvxKo;T 7rËŸs⒒xȩąțĐ{č.)äŰČ}ô©"â~uŸú“ć…üE4XäÆȚQax­Ò‚>șörS{TKb‡>]$Ű^ö„ç0G.ÿF#C 9ë»­őÊ $GFű&24 AŒš3Œ#ž\5Oc€Ž#„îȗˆ]iŽœ,Aԕî›j¶ÿöiüÄV0j87[’ƇlútŹ,`Z‰%°p­ú Á19Œ~ăG2ÜÜMÊráj*qöč”ÁìŚŽĄ‡Feïž‘”ÍӇjKŻQۂÔï0Ër‡Œ»ŠKćêL(Óß]ՈÍÏSÊę"… ĄáìLïĄëùÌ_äëźo` páŹhá È%ÎČcšR?ùvvoĆŸ%6ՔbÚ`Ÿÿ\öĂùGăƔÍêÂń+ö{Ś—šk @Á‚±˜Ży_Ž©˜SźÉJŒ‘ì«O[ŰôĂżđ­}âVeú4QS74ëVÀhŠ7 éèč5—|ąKśLŸ·)3<ČiO2«Z7ÌÁˌ=ŐŽo”ËU]mĂŃ~I ܜˌ JJČÇ+”ŰĐĐÍ9 ˆWÌèŁȘ„ÂûÛtËâäÓ:6 'Y6źŚdÙ`4ÒòrÓ52'- ‘WŠœŻc†^}ÂŻ”ßp‘ȚűÎH;ómÁŻÁóŽș.[=9êęk‡ŸQa+«){ëÔŰĂUÒ~ÔßȚOős%âÛG|„żŒŠm>@/ÙFĘMÓ[üïb@kŹŃ»SžĆ9<‰’ç“Eç;;MúM“^Źk?ęłzÓ/Ô­Er‚2ê$îçR|„vsR.ČIx&|ڊŐàÀ^<ŠżÌĄûĆá3Éa Éğč*±]#ô çőŠÓŸàäőÔ:„ÊÙ%íc{Lž8€„Aż\iïÉKő©c‚ˆŒ'ź—A;KüƒúGŰGèŻžCQÁÂĆ"yd \Sh}ă‡a‡|ä«3ŽŽ—†ÓŰ$Ë6őž„‹„îűٍŁŠUĘźv\ԂșĄóđbC?±Đ‚IìíG Ív둜ćG=ûߔ-‘Fš&ąw‹<n›•èę:Gé@Ż–yLc挧\SÈž4$#łLč•ŸŹ$Śi{ćö`vGÉÌÆœS~6ÜX„UĄ1B»Ô…žùzéč¶ „‘§Âüuśúû†-†’”i‘šf1 †·ŒŹ :FźƒU„ŁŁzűœ–·úúú7„ßăٌô%ƒ`PȘœĄ†§ł•±”­Ż€°Dô6P©m¶­ 1rLž„żűŽWEüêŠyŻPuŻcŻVgˆĆ……ŁDùÙxÎ!1LgžżUŻXZŸrí€äHk3Êhła[€f°‹ûSù ©šó aK’ŠUœp«ŰgŸÔ>*΁ß'Ž2Ü}KZ˜QFÖRŸáŒžohăuŰč|ÊkӒ„Â&ŸÛk,'€‰K9„ò9$…§Ćà!É ”€ăȘ3Őrk§ĂŠ'•4%ëžż 0!dŁ•!QhۙVł ! ­SÚ#C—1XăĄKŁÏòÁŻż›Vœ9óŐœÜ»nä·…żŚûè#WŠlîŽlUȘŚûÀ`#­č1àšY.㻏-ĘąPfUAŒ‚D™ăكӚ°ö•îÛčÙȚрÉ)ÇPûòT\éà +ÖítHćŁATrㄙ2d=!F4ÊП*ŁžHkÉ„e&œakă%e@˜}śÂżCxA-Óí ÇǝíÀ€y~xÖ<ò•šńŠż*ȇD§\hЍNßœŸètߟ[äx֚É ±ZnèŐ578Eéą1œ‰ęß<ű蟧Œ%źâèĆ­Mśù )7îAƒN¶HTŸB‡_Šžöّ‘*Ô€uRÍ—ycă]ȗÆÿÉc2âUš^R~dčú‡¶Súô–Šd :NŰͧŁ<Ì*#fńœÆ–ŒMYvŠSì`-ŒêOü6Hˆ,èn“ÍœÖșá^Œóć»$>Ӄ1ne±|a1Ê=ëÏțo,ÙIé”ăÆÏÛ u@ŻMtl–»ZŸĂ=5ÁŁ©DsAŚęśOS$"h)h Ą­ Jč:±fÿą‰ÆeÜĐÏxŠÈnlaVsŃÁ@öȚđ*Łîwß,ęv°IÖ$TwŒúȊ|Ó GÙyEŒKœêát ëæjÉô_l:èÊĂą·ó—Úś]6P€¶ùđ°~51AŐ$č⚍:śzcŐ°ĂŒx"ÛČ}ž"8Ä_żĐˆ Ìžf05Űù ¶ÀiŁÓĘč–”X!ÂÌeÜŠŽŐÊ/(2kì$S§Ç@OÀÌű†7Á€œq>%ĘîXëy[(QŽNì'” 2ȘșŒÍÍÚčÍ!ZžÌÿèòLŃéÊcVZAEćvߊÛÍŚdtÉaEQGś€Ú–<_ș%&Z•0\)w*tîÄZÇÔ'‚BàëÂPZ-™~{ö ÒxĂH¶Däé/w=‚·đąŃÀ všî9eăćç”Ág{揆À; ę'ìè7tçčțá>—)©{ïíĘdFșwźY/YäË*ÂŚ˜BÌWèâő»%cx­™5ĘS:§śÇjßڏôDK‡löî‹CŒ·țwˆÓ± 9YŚŃ}Ê Æ}p“0v•țfŸČœ7-čòïC4‰—ɱwT7È{‘Ćû.L„#°`óùĆž1ÂîĂpí” AsTÉ-ÜAȚŽV™ŚĘ*^.AĄ)•Jäž'mé9=WŁl4êd{Oœ:ÁO”Ô)_4ûÈ«3cFŠïîâ2Ăi)ĘjșЛVô:Ê)ÒgȧÙ[Ï‡VMÁłg8î~WK†%vőJÿ„Őüç›Xy’ÚlĐP+Q>ž uĆ}"]cä@§UƏ%œźrœäˈ1Y.ńŁ$đ@w”Ț[0 p&f’ŠŸàÖäJ?ÔĐȚJRFŽz†čű­ÊËìö- àùŽŽ$€ü‰Đëđÿ2òš"›WŒžÄ%–Yàò'(ű– ż–ÁòR„6?ù"úfç!€ĂxÖőŠæ›3K‹%,Uۛ>±2ʃc`KbpąB• šŻÔúČŁś”ŁęÙÒÓHÔXààšŸȚ)Ç2ęŠ{bËFÍèY}ń»/ÿâv~9WŸì]^đçFY˜OvZ‘œ2·ÈF„áïFCú~Š>LŰőJFÆ3léxóë ‚_Nł`‡…ŠĄĄMĘÊàŸ\âșL-FŠŻÔ0J Ùˆ€»țŁĆűź ʆ§œínŽQŻŒĄ)z5Ÿ`㎟nŁ–ˆÁ‚Í1&Ž*'X6 Òń/oY/ó"A0ÖNßàë1±f|Œ‹œ ł1ƒȘœ†‘ÂÿëKü…@HH5™gęk Ő|ы4MÁX”öP’C5NÈvŒÁuÜoÙ ˆ”ÒHœô)dő4-śr棘êka3^,”{Ê{Xo&X#áäșMo8څü>ÔKúć,DïĄ„ ^«F¶Œtb)cÀ «|8…„yń_ôŠä/ŚóxbNđ«’ËŹ%0»”Œ„eCƒncł·ŒçqyžM4ÔîÓD@€áó:Ó=ùŒÂőSJsiDgn¶Ą!/ ăZZTÙ6pŻ .Œđ]H'ț*}Ž ącMĄÁl”ĆüîRYuèˆìŠ˜ÈkäŐMË8í§Zè”I6ő'†íÔy,3p6gê:Đ[úèXŻáS+{ê)i•ŒB˜p;g5Òÿ4sSv 5ÍâÒàÖTì{Ȑ (đP”Ł-p8–]z=°Đò\-éșDł+Š:ŽjâlSŐčŠjăq­p™Èș'‘/(}É{iàÙPi|ûoú`(ă[ ŽÈ™&ĘF‰#wò eP)F‡ûVš“-k·+űÈțćîxŚ1ŰÄ«ă|GŻÎïâŸâZF7@?Iƅœć«…'ÓRH‰ÄčÊt Çss¶Œ€‘䀌‰g„·~…/~țžśâTÊ.ä-§ŰpșÛ~ő77ÇÊRŒł-Úæ]ÚÚlìiJ}Ęő{EĂk|+‰íȘ|#źèw$сŠ+c:ž.ZÍ»ŃńDR”[žȚèČș«…Ț2—ái“žMa€œrmé]ŒTv]MČhHîțÖ֌Rf]ęM<â(ì˜çŁäîś·ëȘœ Dè}B0ÜB=&ÆYK3‰ń çŽW©›Âńż·úušs"őlțôłă}ŰÄ„ˆÄhn »ĆÒt?žőJI;§+T•rkw§-•Ć †±łlà)lÄyu Yâææq~ÎO«ČżiÒÌIëŐ©œ'ö'E—±o›J3$lą…iû9^«‡7lC­}Ÿ;%u!#ïć-U$ž‹łIÛV’çÓd”ûÇńŐÏ VŒž%mƒ™"Ê„;ńKFn©IS )ԝí,C[9b[Æ$Zd$šN8s2ƒ«Œ~BÜâbÈôŸî6«L“S°‚J͖ÜS—n.2ĐŃeŃÿò Ud É3@ă°E"Æ»Nët„ÚÊ8àîùk=•†@ő§ÂG·’nÿI[ú śFÏAźăĐÇő%œŐ’±·i7rż:ú$% Ÿ[1éê-G€x—Ò-~­Ô–ošÆÌțaÿ"êȘéeșÚS+úç@ïqëA‰=â'Éą=…„@Ž"Îaÿô ̙č /žìÁpôP‰ž8[ D ˆ%&ž-hgW<Ą1źĄfÓq@ˆçœzeb&ìČ!ŽÎO ćŃ|ǕÈ–ïŹOȚ*ȘžyŐdIgÆ bátmBQ # RúöFšfőȘi‰·j‘SL%ô^é,9r3œ* ŠŐꗫ‚©±đlmÏș îEš„LóșӔŚȘŸœŒÜÒżĂ êÜTő+§±Ç#ź țèYôÊTфHj»čôŹ …û6ÂË5»PőȘ"&ű;E8ê}ÄÙ}}ü)P»éwbú…A‹bŸûZĄĂìA-^Ë.p,ˆLl‡Ìi=ìPč%v° śKÉŰőÜ­È—CĄy§nmIT"Œț*sMÓjȚߣáiÿ§š˜ÖîŁ Ÿč ·9ˆ\•ÿ›ĐÖ ÎÒ(t•Śž'&7ŃԁÖœŽłc”DïĆ@AAó»áqżk`·áCvJijm Àź A""ٚ/tÖ ô Sęá!ž6r—q’ŹŒ5Óî\ćPg‰ö(ÌŠűˆNÎÆĐÂΟlúL<üî=Â.ŸÒèßČ((ŒYŸœŸß–§Š°K#žJ7U–5•w Ž“ûyžúQÔ—·&{›Ò«­‹2œŹ-Żă6ى‹œ&'ŰĄŰ ú"fölÈo›ûq.§ޟ!›Kq[0óaùe>Ò7vęûڰèæ8f§ł‹Û8TŐŸc#ò‰UluâȚT“–#uÊW€IŠ ʧ†òl—ž]~MTÔčśĐ;«Hr_•ÿ»$óèÓŁüƚ†Ű…ˆ0ĘPG.ÄcDKIąÙNAŸOË5uę„R*s‰9…čGöËĆĄÒÚÍțW]ž‰!{7ÎÈŚ"»ï?:^ŠçÔù6Ł1lś#ŽÇlW^„-§{FQ$Ż„˜7T>Ń$͊ ÀY":ŒSe)pVB, šjbDșüánU~Œ*Șæík]BRșŠÒ!*zmćÛSê\ƒù2 S\&4D nŸÈ±łËCŹŸò"Àßò„đŽG1Âü†Q [y}/c#І/̒krCuWłP@58äźÛęœPÜțÄjč>Z±ÙźQ’ÔęĄȘÏ|\]ÛÈ)j琫M&ú<&ü_è4ő#ì đ'bi‘šmE),üŰ}«ôć;‹0— ­Sá{焙ăàÿ[‹ `Ię!#†|‹`òiăp;h’¶<†À‘gÓè„TͶà”ZM]ȚˆŚšĂ1Üòđ·Ć—°p»‚«˜ž†U%Ž4ć±a61țæń€U^ìEHɘÀAđIł-›Ë}ȘXÍbáÒôȘe TăêB€ˆ p|œÎÁu–sçÀžæ—zükCÀtśś©LŻpl .Üo҉’~â8Ț7GÏkȘí7”«Łčô9EÓï’Wa·ŠqșÖàfaŚ<òÍ[Â_KdÉ«úą_ŸÜĘ žœđëçæPS\|RúăooĆ{•żŠžÊq8Iħ˜;eëü灶ùš i6é]cʕDûğ°!1–Ț6œ Q>—Ž źźîzŹéÓÿd„],©ag].YÔśÊ‰S*W8a’kźd_móșełd[7úșżbeEëk3h^ÊÙ§U0BÀ3RŻ’“1žkĄnùYî ĂVČÇ8iÒÙöB,{ùÁ©%~#Ł2!ÈÜÇù7pçWgÜÜpˆÖlŠBą“[ĐŁêœÄŠ2"\Çë)ˆZŃ©žŃÇđž…%wÖżUș9O?šHĆúô=§±ïérÚÿą<»›0W/ëŰ”X]Œáwśì"– }±±úțH $‰AŽâIJY_*à *KtĂzх€<¶€9ÒÕi#É4v-ż ‰'̎· ćîvû0'_ƒ…§t žŚ"ôGhq5pŒkàq"ç=êŻ‡3…5‚4â4›žÁĐÏfL9‹'ôź+1ÖČ k‹ÙߜŁ: ŽŰË)M$#:4~dOìa'SŸiߟ#Û1”Y0” ËÉČÚŚá.kžĆ9û đN%ț`R.Ûw|p“»`m]lŠșÀ†lÙ&W­eƘßI°{ĆČïgțșú cu›äÏvÖ_ ŰВœ„ÿa9éÛâY1žqGŽș†•Ò:6H™ƒÈúžì€"ŸƒXęf©žŚ„Æ_…Íž@ŠĄ._䡀íȚ±ú ŠIšœ+‡žžïˇ}ű.ûÂĐ; Œˆ©:O†žŰđ’” ï–+ä>đŒ«u&ŠŽÄ(4òöțŰïvył„jĐ„)ŒĐGÏÌæ„B%rŒȚ™ UßhÒìœ4Ż/Ę;j·­AU‰ ›ÛU„XŐ⏛őÂĄˆLĐㅾrœÒî‘ûXííê#ƒa߂w‹˜o{ôœUąhcglŃF˜©MËv}} SŸX”ŚŽ(žŽ©¶BF=·Ÿw»ƒ$ÌŁ$”šaÏà$ÈK…U“ÂWHW;üQ­aqą#ÔŐâ͗dŸRÉo>ííAVŃ©éˆ«Ò«–TțÙN`hê«p©ŠUčA0CržÚ šO/ŒW_ ¶•ŚÄąx2€çRƒ_Š\ČdL5ÜaKá8ĘÎR#rMkÈe')î|:’Ć”í ż!^9ąąŰϱ@ö«Țè_3hż֕»/ùR«aæÇ¶ŻźËAÁ. g­lźvÖĄăs F„ûP†4 }:FłU†Ò~‰/îłWÏà/IT­\|<žÜvË»w–@”›W•ĆžÌđÒïŁASàőmą|ù™Œˆ3IQ—w endstream endobj 317 0 obj << /Length1 1620 /Length2 15515 /Length3 0 /Length 16356 /Filter /FlateDecode >> stream xÚ­·cx€]·-Ûî°bÛ¶í€c§ąŠm«c«;î۶m»;¶ŐáŚÏû~{ïsís~łT]śšcÎ11ÖZw%©Š:Łš9ÈÔB äàÊÈÊÄÂĐTÓV1±ł31‚e]Mì͜””âÎ&ź@ƒ„‰«@Û aa`c°òòò"PÄAŽ^Î@+kWÍ_Zzz†ÿČüă0őúäo€ ĐÊ@őśÁĘÂähoáàú—âÿ:PĘÂàjm°ÚYĕUte•€4ÒJši  çżMšž™ÚÍ @3  Z€%È`śïÀ ä`ü§5Šż\ą.€‹Ł…đo˜…§™…ă?ÀŃÂÙèâòśtX9›8žț+t0łs3ÿ§€żvKĐż rtęő°ÿ‹ę%Sčžș˜9]łȘHHę»NWkŚr»ÿć_Os™Û?-ę ûKóu5:ž\-<]ÿÉej0ș8ڙxęÍę—ÌŃűŻ2Ü\€VÿUÀÙÂÊÄÙÜÎÂĆć/Í_îŠó_}ț—îMíŒț ú—ŚÖtu±°łdB`eû›ÓÌőon+ ó?[EÖÁ`eù·ĘÜÍń?0w ç ˆæŸ=Cû·sƒÀ܁Y äú7%€æÿNeŠÿ9‘ÿ$țűDȚÿ7qÿ»FÿË!ț=ÏÿZÊÍÎNÉÄȚâ_A€ÿžc €. ÙÿænbŽóú?üwOm‹W©faćfgâüßáӋ:XęU„‘—‰óßV ‹ĐÓÂ\èjf °4±û;«Ù5Ì-œí€5ęŚ8ŒŹ,,ÿ Ó°šÙ:ü3|ÎCæÿœüż2ę«xfqy5IIúÿę^ꗟÊ_ę]5Œ-ÿmEù.țay|YčYŒì,œĘ߃ÇËÁêśÈű/"ÖÿZ+šž:=z,L,,Ź€żßÿńùŻ•ÁŁ‘t0™ÿłcÔ]MÌÿnČÿ4ü›č9;ÿŐö_çțoÓÿ±țŚv·°đŽ0CX[™ń‡ÚddgșÖâ~ž”Đëïe…s,mĐ(*ŹődDțâ­0~« cjœæûhóZ:u|ߗŁ;íƱŁîIłžÌ'ô#§í+@ßąêàŠ?f6,EÎ<ӎőčZTہúÊĆąuđ{RUÍ°ä †hșƒĘîê‰6Üœ ‹âŃĆß,œ>»­ ٶđôŒ*ùűé‘zpldxšçșoŸ€>/ž’ߌ?ő”4ĆŐËŰùŸÁìúƝÛiń„ûK†uä[L„ü©ž7^đúŽ`«$ę〮ê”TIZWtëY’¶–âÛy›™.>Ęș< 3°2oȟéš^)9ŹĘI3K±uoRÀ“ÈÌĄ%:@̃ü%ZæȘ§ƒ»ÏŐü1jąyH'@ÌŚyè‚QMF†ÄșŚuŸwêŽćK'wsÁż-A Dˆm©HĄ —!yX`üe[űéYÄï†ńkÄ~WçÁC[ó`ŸyăˆÌöŠü˜ 䓿Óy}ƒh zbŒn(2Ăđő€Mőą°&7ŚȚĂdx‰`†– ÂàccđuÛMÏs§†*QžH Ęÿ•°–Ä7đęŠ@•°†&L/F\“KőV;l­ĐË .Űȱ-aÒHܚŽù SüŰ`•)Též­/”nMáJU+yQ˜HNt3oUtZÓE1čÀă.ô„ÌHè-K„&Čo4­ŠÁ™ùVż’1ƒU@~dăMáȘù€€“—_mOÎpł)üÎŰVś‰ćƒÁ=ÒŽț Mi*ڄ”Ê:ȘŃc&Č<öŽT±©¶l%ĂOR`€_àŠLj6ݧéÈ”HŃâłFÀŒbÄÏűŽÏ]é֟uRL Łt'};’GÒcV)"ŹshhđxĐ3ö”ŐdDßÒXìÄÎ!§]”š<^ߟŃŰgHü”4– f` }ۘ»} őŒ5/Fæˆ_۞֐ńn•È>E_pj áÿI’’úƒȚæ€k±áQșÈh”œæ}™ÇÌÇyÀ7\ÄFŒš(„}‚ŽÜæ!țmH…y–ÂÁ”ɏfÌGšł„ÈßûÖ w&Œú힍EđĄMóŒ2gü5șŰ S9ú•òÜž{™Ö,n;Êő Ï>™P%ˆ„Ö ĐÌÒË[”čab·Œm[Ąu°˜Òe5ŻTjbțu[0; ‡Źd± |œÙŁżcV\*Ùö‘-N‰Â·ë7’Ž !ăExƒ~›‹=ƒ&ŐXƒƒYm4šKęûD4·łßö{ÍĐÜű‰Ö:ïP_ŽŒg/Ÿ¶#àWˆ"ˆÈek|}3žAZ(-q/Êź%[0[…é0ÔÜ"îb†Yñ‰ąö™Đ `Ű|rfƒ/ źßô@Z‹Ÿwsy‚wŸêÇÁĆäšó:a7ĘéB4H(f‹v‹€Œ0#‰ò ZĘ0$Ű4*–f`Ëp ZUÊEȘ©Vę9”â3 $ĂŐœżÁqÄ"Q˜ę‚ŐKÔ±PËÏ[Ž\ç1à&ő‰ú™„ÂYŰȘQÜrx7ìŸ YNë}ĄnBI{“őI„m-]LŰE™G㋐kE%%ÜBcwpŠ“éúç14s4y»Ę·-­YhÙ=, Őń–ńŸÌáDȊZ ŽiAÜ[ÌU)»ßÌÙmŽšv?yÊpŠ ”>ك8Qż“…3›q”X>…ÊyޟGțž‡ú‚ăRËÀÍmŃQ•éŐíaÜžĆƒòZZ5ćéG…ÿŒ ‹?ŽžbÓćFu[śđ |°$"?uČ,Ó\Ćm:ș»“p›Ćæ\ü¶*À†őagæČy2WòcvP=4oĐń”†G‹aéB/„íśŃËj–T%–Ț!‰s‡üʋĘM{?= üڛupuJ„ŁĂ'ÛÜt4ŁdŸÌŹ>ł{dŠ˜€­Sê»(›SGôòÁia‡!'ŃqŠE«z @š\űéż>čX× Ùń[e Rڀ^Ő«{žś6 })2lęűó# =ć„ eGŒ hVćÜIoË6IÿvĄ7‚0 țlr6ô‹6Tû)ąwÒCêȘ#vĄê(RČĂŃțĐńÌ + òGȚ4rÿPVșò†^ŚlˆŸ)oCK?ó’Ä"QqXKˆÁÊ+ă‡țČëĞ}iȚŃMVSŁæ9 •WÚ~Gé°ővàą‚ąŻńjWGxæŰ‰œšdr<ń“35óŚÙĐŻhïy–\oï™NâÌgùë-hŒNŒŰí7lÈSuqű6†_)êE<îSșź%ț wòl>L€ÎîŠÄ!ÇùœűóyóŒ`LˉœÀüSH©1.Ɛrûœ1ÌÈa-Č\ă6/>Ź‚çò8Ÿ*W·°»ßЕéÄEő”YâŹû»|8­°yÎ:Œ,ÿòùŰkÔ@ßȘ=ĂÎ+ö fć:bÏÀ.ęźć™ÊKŐr.ÿX3{èłaàLcƒÎvF”„‹šSB]ÜápëŐ+q4žȚ•Ÿ Áïâ»őz教šqàj~̈§đd{8©ÈpźšéL=ő"ûč†YŻ«öú=IƒȚ’$ŚÊM­ ?çI™î‹aőć:ÎXĐŢÎ KæiÄȘăjóZŚ€†2ÆÊ!‹ŰÄÄłRÛVú—Š&—‹0ÒŐ'”„ĘüBá,ÁŰÜßy…ČžA҅ąiÎB-Ż…đ éTĐîšDҝM:HQƒ–‰ȚÒj?M0UŽH1ih)Ő/?t|C 9ŁÖ% șšŒH‰o8Č 6˜ĄÖÌŒ| EGƂltŻ©ûșfUû‹Ÿë53fúô˜§„ś;Ćäú/U©f2I č8űcœ©'DHáf?Î"1ąlÁźŃ‹œ”b\€r–Œ§©5[jpsűèdÊșç]Pû +ۃG>G H„ăkű“5ĘšQӘ’ŹâÙ'6‘àˆÙŽw ŸŒUÚżm}œV#†ÖëoĘaĆdîô­ÈÁ1~Ÿs"TŐêìVć Ï ČŸPVtàĆd„™ûôłŸ Ș1ƒ\xÈűR˜ú4}ÄNKT.IüéÓû š”ă}òîNœçÚc€M}Ç[ę»ù:ûYé”­ .gòŐÖ2öX°çÉëÒ3îCælq•†KìNH|/2ô;Œ żBÈPF}‚w Š'«UÙ:w‰H ƒm[5Óș)âćîŚÏ3EńE1#Ł,ÈÈf!Æä4ŠÊӒÖĘOJ+šŠ3ßű\SwwŽs—d=7IăŒțPuvú€iÆTr‘ƒŃÔçŁ7óë~Žłˆhő4(Ű$L–ÁɁ1u2ìćWŠP Ÿ»%;t›ű«›9ÌÜh΋’#͖c‰Ż„wÎîˆ9Œ*čëĐó䎈^§{)vFÇàù`ώŁó“Łźpou_B›\©-yH%ŹXM“Ą…yą¶NŸŒ·©u…Őgőûvʓu†46 ÉÖOqP\ Ÿ’$Nv;čšU<Đd°žÌŒ“ŒÀ Éd›ß46ïûŸ‚Ž6 5Ł·‰Wă—Ú ©TșŚżöùGYʘŹ'’roŚtQ*{ÇW|ÇŐ zAțŐĆ«í ŻhgˆôŰÚÏź:2t*öŠČĘŒe]ûrdë‹y$yH«YBșEil§Őhw9”˜U)š6·[»űT‚ˆç ©Xš$ù ”3Ì©șù„Ś(U€öƇJ¶Ò—Ő7{ĐàÇ«+|äĂ ú\’Œ%ZM€2è Ùí­QéË< xà€ŻéjĘ àœĂ}hɘŠxÿ©_ĄßaÙh’@Aà±nUzIÀz"ՐS?ăłWӝ–lȚż;—.œ==/ÓűBYïŃӋ;:‡1šöÜWeŸśțiûÄĐń>ƒ›‚\@o$*ûŹ+2h„üÓFˆȘÔÆÜ:nTk–›J…tććFGźNŸqEÛˆŠjò|”pűf Z]ŹșšT‚ú­…6ÇäżȚę„xeœûș[“eÆlńD:ŚcŹ“•~.œ89äÀžâk›țZăŠŐÏ”aĖìÀËűJÉ"LÍ(qč‰eNŚ\68đzS$D [G‰dévĆ"ŒMBșÄhüC1ęW–±Ü/œ˜'!œâûŒRägÚIMÆjTq$fêÈPP8THÔŚȘšö@3ÔĄöÔŐ[z‰Êš„đN‡öśns†4tGŃumz*p ÛAÖ(G„9˜2|ŚàÎóÌ| ŒÆJ›Ëò çmÏoórcƖH ­Ž œ ŐŠl4kŸ2|€†3›ënŠÔĂš_>€!ôÚČÚŃgkh1’^$U_ű4ç<,}âú’ș,°>„,==V¶}a{ŃÆ4}p易2cđŠĘkuÙȘ??`Rçjő”ÔuàJŰśĂô8}űUbçEnOŠÒ°èï«ûree”W`FÈ!rÖówwŸ’/đ Í%}$ꊜȯĄ­IìÂN3\tâW’,„Fç7ÿ•È~ÇëĆpfęœf8úČ<’ĂÙfn°“«+h]{9WeŁädEá\IudSgšśnŰ?SsDćf›«Ì –G1ÒÔÙ-©Ș}PŠ#ò+P–Nę;‰nú¶"CŠ•€CtŠČ‰™žŠÉa &V-c©Çœ%Ó4­gŃ ŁŸm­Ăr$Ą‹Ÿl"”‹…y.pĐ[Uz&0é8*œž:öœ^»yń<`š¶ ß(…6ö9Ò€ƒüŸțX°ł‚b›;âÇ@”úqŠd5M»Œm4tQ ”ôŠòŸE6ő“„]…ąn€ŚÔæ\Ęrœžœ›‰îϓ‘RBŐŸș…‡xS[$eÈàÒÂ| ì|BAínùßÁÆÇ„̜¶î%Ű~x‰<ă›ÛZșf”•žÆtłžȘ«ÙăéàĄüa1ƒbșRÀ`ŸöàɝöC :E#íŁ”kŻœy­Bjäbn\čąűÏ«NÊeîŠ$)?(ŻÔ‡Űkűɏ`Ur}ZŸuŠžÎò _A Łm{ß=À /źZäłÇ‘trŒ.ąśĂë3›l“}ő`وŽ.#Sló^ S3BőÊáh‚±Mîy-mČÀçüÌŃì8J/Šz°ŽC'8 !‚„ƒ¶RșSLnčûi: &X'™Î]â°Ä›˜ƒÜÉöę#vKű9ÁĄ€đ,âĄĐì07•’È–z0‘;:Æ{žÍĐäYuâs%łlcBƒ~ Ć#țˆjű‚^r”+«”„ú™LŒ„ć54;ȚÍî ,ˆíê!ŐkÁŹ ‰łáE];U §Ilu&èú‘ŐҒ„A™fȚ'fÉ('ĆI*šc͈ÒÏ5~ż±,W;ÌXŚȘvZÏș}xžőŁ‹).ˆàžÆŰْR2’<*A “pƓœUű4™Çh&;SU!GĄ 2ÊÊò»ŸuifêŒĄ XÁJo1)ę* &‘ȚÂk"M-ëłM€}D!NčűÄ 06Já5z‘9Uƒ§}Æ'|2°’~΀Š1&™t^ đ·ŐÖ#JW8}ŠŚF(°MlŽÆNÈ©Q5!ńU\ìvښŽém€òg~lqÁb‡EŽŃx·1 և]â<ÿBP,¶@›‡ ȚQźAGÜéŹíW‰ÎÏîߟîTNžœSàÖçSԐ·aڝëàde_ Ć2‡lAÖĄƒœ:ù«FŹ”Ç6§ï„ƒ1’ìoYxîžł!ž­;’hßÄw!ńä·­Ža'ïRŒŠ{TžèvÍvȚĄș€Ș€ŸęWŸĄ12žO™Žż± ÍĐ-ÜÀìDVj—ŸĆűč ćšzR”‚oOżț(ĄhŸŒ–“—‘‰ò'ÿđä˜țlîjÎ=öńœÂyېwÖńĘccű…€]%"’@ăšĆ$§~\ïȘ-SWąš‘àUő|Xâ‚șőrÒ­TZtUKVƒHi7kîé'_‘šźÙ$AŻ™^śę1Æž!Šg g„ ŒpyÎv#ŚVtÂæŠșFđoLźÓJśr†óà}ç5HϙG!hŠ­Țj5:Źä )ÿ-!qq††?-;o±ßÌdÁżž'»â\’ŻÔjb„g ¶9*Ӈ™ä%öb@00éűä»ć(ú2x–acuʘ)’ŠMïCŁŐŁìŠš€w+€Ò{n~_˜œą2Ś/yŸjíEžÓÇŰȚY}Ńą‡ŰÖY@ ÚAŽW ^žÉćRR±ƒMčú<ł„‘w gĄÆ&ćéWŁè`?.D‡0« R—àUR’[ûÜ[Bc^Šq̍ĐŐąV݇„E„jž“P”e&ĂìȘÒ©( ŐQ @Kd Îț}ĐÏà|ìAg­žpčiÎi1‚,ńëŰßđđjŠ'7ï§8Eí)áqYßžGú†ž8—‘ÌÔkœ|ŠjrPČD Ìw  0PXBÊÎö–.gˆé”ƒá§ȚĆ>ZuÄoÜZR’Aä Ł{ÜĐZHU-ÖŠîwâw2+źĄóäA [E8œÂÓĐ֏S1CÒDíoW6}vŰ Áí/—^xên‚”úĘĆìʟŸÏ tźÊÐZW(h4ŁóĐśŻzü`Fź·č(ĂM=€źaËŃÂtÔŁ™YM«[zź*‰űÀȘjÚÙŁ-ƒÀ«Ä•Ă‹F3ŁT™Żn‘Êš Ț7àPęń”v‘àìźf›)dRû3Ü+n•ÿbš–ć č Quł3 í9@JmÍ€É<„ęIșΧ„;ôF%qWâœ'OŰ.*YŠ?6€Đ ß5TŰUzțȚU«č·ŒM"~q‚ĆpÏVŹO%· š–đ)ČŽ ̱vVc%‡@uàx…Iq Ö7=2$K+MâŃŒÉá—Äg­žòßJèKA>{—,ÿX1·CŸßÊ"‚ٱáÆNv>híR ł§6H!ßŰ{Ö7Ü8_űöd(oĘ™dß± w°È[ä$œÙ­K+z„K1y› Ùû™61”­K[ÍFO‘M8dˆÓûÚx0"mÙw•€g­€Ș熟óÕ@Ą;tęiÙŻ{ç'ƒ/ë„ÌęƒeúĐ#ô7Çđ6ûËæM1€čʆGf@~Œ€v©ÂÙæ"TUšôŒÆÉł«wă|W àvńÌÇtsÿe‘•iBâ~BŚŽíśĄÏ“6œR ;oTÜ|Í1ăû °>rF=Č:šZˆìÛ¶‹\œtŽçojg%‚"ȘÊ.}{čądp…•Ę"%‰ÛçȚÔàY+!I,AĘxpĄ|Q⛜É[Fók§ÒŠ–ŻÎ‡bÊÇČËu@ÀPŸò/­èAÁlgìș"YŒ„ž[ÌÁöJuč>Î,iüÜáîDk_`ËB·q,‚*žê™ô”^iaĂqÀ}šWæÎQeCőćž<)âăŃ G_--č±Â)‹”æfșží2œvaIü-ôŽ/;ud5Ł] Žë+êU&PĄRćf©ăŠH•Î9îśș*"Á«ìz[Š€gČAĆÛśâPă,Ű:<û)íée/„ćù”4Ę||@șđóœ2&ÄZ?—±ĘŠz‚@ü8[ęűh#'țtțQ%ˆôőDĂt™@(Dz‘Šaçl± ±còĘutòÆ »}yëžÇQ·Ę,ÔImWÜqšßNV\ZĂS­§=ŒŽü{ÁBfhhö5Ú “»rÒJ0tûhÈȘdcŸ$žÍ _8 ,8v<©,„'ČŠ9ÆńÁ-ŻźC±Ńs™ł{-Ä5Ê”±ßóm””ßŃÈ&m+NÉt„‡đȚA|À6§€ ‰%±BiŚwH¶źimCÍ b©űszjŒÎL^|p­\…Òßń—Œć2ŚJŠwă(Ž6A/ôèᙿÔőˆk– Ż‹|%ș@"†H§Âhœ ńš>IëG}Ìô“;i}3č·Š1uă=4WÈ%‰2‹”ŸTö…œ Ë9òȚÈГyżŸÏ7jtJîÁ«ê€ç]čęžEV@č[6A.`+ápÖț‡p”Ž K„ƒšČ=\ …ܙЉpéÛä0–Ă-ŁE]ĘÎ(%žȘ‘ț@mÁĆßÛùTò"&r‚€R[)Ś5e©BÖh€ĐaD€ŠèzÖväֈpțOJ“•·ÒJ~öé'úùáČxeVü ę6čc/ϑ ìiŽ1X `_–ÈK%eQƒŽôQYŠă”­—™ŸS[ÂÜămàŚèÿÖyjÔčf„ŐȚgô>ܘmáWć ż‚„K·’z2FvŃ)Ž1ßPäęcńP†9r3ŃQ/Dš…[Ł”•ÿ:dßä_”‹ƒUZ\ĆșwY/ÉìÍd.,¶J4bU%sÿÒ0éÀšžŰ,ëŃÁ†O낷ŁÊi I9=iûĂÊ\HĄÓ†qțÁ @~æatT‡nùÔÒ\Rż4ń1eœfŁ;„ÈbäB‹Xź.‹đœ\xŃÏÀc]î}P  ©€‡G”…ÜA\»‡ÁQ-bÍÄsuž4Ô& :lc=ÔŚ?5òăŠz«F[Ù3}íÚ{è[Î L5™[`EgR ÊöâțQ.-Cùúîó‹ÒȚžćœÄîśIŽ‹”uÄnpn~ž^0{ČwCö.=>ùÈÖ[ÜêŽ1<ځ_CÄnHbŃŸä΃!”șŁ|Pìx™źA ń·ò‹"étÖ «“Uiśđží2Ϛ1F{”ÁĄĄíĐCÁăđŸćÏƜx@żŠ+eIłyąKDąăEńeÊ[ƒĄĐnûôJĐ51R‡w^<ü’§éOY3 <ÂčBŰ€ŠOȚq”‡°wâGŠY„ȚJè™:hóˆ’Àd =błUÜ@FśădŒSgżęß~ynÙ\%(ŸčšŸdŹÚ7%epMż+ÓšJđmúX(G3š’áÖGŸ0•ț$2ÏŰ­”éVRKÁ‡Żűúćëž[0 ·fŰÊTśŠïœu›trșś1%CbŃ[[ç|•\żACŠâû¶>Othș7JWțÆXtٙ§tTšç~ ÈêôîdșéțĂéë.ő/ß Ž»)ć]’Č|°9Eăpș f::‘  p"“żżú'æÙŃN _љûBÖ {C(;lŹWžč.i\Ï©ö|èșSȘ*UÛÆ ‘U|žzô"z•ËŁù€§7!àFÈjĄ …w„„#œ:›Y.Ë)‘ 5P6=äőï;lrü§ĆK†ŁĂóšÄ€”‰țf~ëTŐÏ#ûA-ÎŽÂ2źÇ«úCžk[~lßGpȘ†Ń0»„d“Ï2P öŒomˆ0)W57UŹsÿÉR»GË0Üyń€«#wŚm]©O’»VŒ0Äü~֏֧^caî` 0ę@ë–ÎŚsŁm?¶Í0°=âlR­ÒyŒ“'Ž fŠs'lËÉ8­•‰ŽT¶ú*žp~đ<Răƒ5Ë]9—çü‹”F€ăw_ż&éóŠs“á}œ Ł”ž'ŠÊ.ví’ÁöőŒÄ^ź@9FoÓőUaÖÙˆ—ç‡(ÎàśgźĘćuüŸœgŃäSÏ} Š`$Źl˜À«PĘbđwŻGăÁ-|ëÍʈ#íËÙiV“-;őȚÖhYYMkY`§4łŠ[—]}-ëżäzțriít”·ŃZ(0Ę©tŒišyžĐ‰ÈÖêŒïÊŚr­ jpÏ~Ź=ÚŠN%Œ%(f©5ÖțŁqbŰ4Œfä–PŠk ~ŹËŽIĄŁ h1+ŽÎŒŸÚóRçytŽà©ì·ò__z nO¶Ôš„>Cx9kÚȘŒ^ä]ŐêGáZ!Ó~M€Ž~HÛê!=rì~Û]őŃÌ|>~„›e<:râ .cÈ`^@űyû ăŐâV6‰ń„}áti%,22±·f…=5.ˆsƒ:g _ńrs[ű"%âG'ÂÎÇ[uÎŒ~ȂCuő>LœŽĆ(v@œ†úLțÄnj9¶ÄéŚíïï䙮ZtłÖČ `Òۘóûșn%æó”1đ 1ę‘öG˜x|T>}ˆokő냫|4Š”†É k,Ee€Ò%+&9Zʟ5”‹Ï­àŃƒiš(°[j—?Ebä{Lÿz…OYDÁÆ"çțVPú«òŽńú{K4ęçÌNdŚBÈYőőf>áĆ ëNO&wö‹/󅰏ê㱌€"ź%ŽP ^[ŠŹÊӚäê@Œăż0íUÂ\šüŸKž_óìËCęșxlß}ôûÍ*/ŒëtîŐš Šș { TwšVP0ì<|…ÿFÀ"“… wőEđć6ŰAÁL˜lD%?ˆ†­Ą]ŠȘúrєŸÇć—5æ=žš]’ˆăŠwŃóÓÆWĄ‘œW!©hkoöۋ țžŻÒČ üŁzó‘;Lï­ «no—k‰ÚQ`;đŹ9YüĐ5ćâ…F*|ܛ7ĄßÏςțĐèŃ(ÛWĄnœîü%‡S±óˆrŒÈ„ëĘRïĄ/‚O›çêÌ„JČSlʧp&„[27Žà`ü"ß;‰^/8sƁ·€rÒžK4=–À|ŻŹpű$Òó:_J€¶ Œ ‰tÔč»8ÇmÍÙą ƒê$DJźŽ>˜jŠÔh+Ń^œËÆ>*ʙ@K†& AÿΏZ;§»XPśűÆ@ÏsžË@]™=Óeé__ŚÍviëpzŐa…ÚœŚ[‡ n°Æf`š0ŒA€­’K0qk5”Î%N0šXČ`Az֜FŸ“üSâ[±î7KŃăRa!%oAÏ\ëŽ Í;›*›HB“öÈÈIm&!Yš1Mö2š€©”ĂR §;.ÿĆ*žĂŐ1Uá6áÒŚ˜„ùóaóvśjW‘u(wÍçß+ŒÏ}ßțKŠĂŻHT‹Bÿ~?#i5lpš5…éÌ;Ăç Y ·L‘‰òƒĂè›I–ęx*nljâOڈ ß7+ŚÀięX>źXʰö]jŽ•(ś9A_Û­ÀæEŽŠ5Èôi‰;«…Íb@)œÖ€œôÂùáÒÛÂźáÎČÚć ŠI Á€›+GZŃ*’ș ‹œć.\ô „™ì’Áśč çÇWY팀›Š€Œ1%˜?ÒűËĂ:ŸšăaA./쓷­Lk†„€ĐĂœ_Y%vđŃæęH!}ÙD¶€jGÓûeâ°Ô/ăúę6Šęˆ™‹T3@üf<çN EËÇjî-ąt\q~c ńŸcÎńíùŁ.wäXvG짆Tžúk‰Ț…Zwœç’łhEföE„<č.ĆWä {!œvg (úoÏ %“AK,g(ɉmăŐ^aśʅ[(V-ÆÈ•Ș”\–|pŐz VÈæĐŒ›CòŰq ,ćRđ8ü6­ž‘Ì7T’UùTȚž^ȚYžš(m%f»•ìPù¶‹*ńèőŻò–ș~Aû䛌©Œ„7üòĄ €qŽFj°•ă•ß 6§Ć4șGŰâŒ+ȘAíŃw+ßÀńtź"ûRäàÜÇêUìfèż[;§FšMyiUȘÂÀł5IkvĆîHeÏR««KŹ~âJÉÄ2 *ÎțvB gXtč'E”%+*vG ê/\âdUööûspöz ń`°RŠ[UžZßś"nźăMäĄÒæ}•ź”ùûæö8JŸ«Ű.ëŚa™Fȏ€,“čßüٍ;GÒ*\™8Ïrz\nWІĘ]ó3ÄZ"›C.Š›J%/ڱÜH}­ ŒŻ ‹ëٖ—Ÿ‘JZLF|fŠà™Éž^rÂb˜ä<•â€vÔĄd açt,NáüRȚMj}ÇŃqÆß)ó`6ƒ.eœ5+C>cŒČłfž|&óR…NÊÌWŒ%2îyźTyЃ~ §Ž’Œ<ÖŁh=>,îŰeaż+šQł…t[%ÌŻn6Ÿ Ó{•é~rÇÉw\¶Ű‰ȘeŠC σ*Hlí@pYZăW˜ń”ÜêŽ%°żr<êdț…ÉÈ 1È%Öé==†§h!ł=ĘqˆƒT]·„őèÍìg&îžĆĐw!JKŃĐ%·™š)aA/UÓ ôžUąÙæsÌ…6^aŒčąÓïd-ÌNÚXƃ-čÊB–}rÀeXҎy™kɄڎ!YŹeàHŽÏz»i[”±l‘ßfÄæč@ț+a*ő§í?őŸŁjôœi‹ÁUM0Á87Ő&Jl–B…ïFš(w籩*Ì;*\†Ó°NKnEêwÿ]ÈnÈțžĐ\4áś͋}‰TŸąpVűœŸZdœŽŒ«Ś©Ë Ő»°ÏŃ ÆĆƒ<}qkŒôOö៞]°-±âG]*zxuT*ł âčńd©QĘ珏‰œRNćážÒa]é…Użl«KȘnf(ùîÖùphŠò„z`%€†+ȘË=ìJÓ`Œ ߯ëŠçw€öȟΚ|A n*ó$ű[h§SăÍăńȘE™Źü/8Ą—Ó?ÀeÏîńb"”\FX!vyoQ”È䣍Ôx 3Lp‘Ł»ĘÒiɀźdځšéLd ʆKcőčœYZńTtÏ#䕶˙’Ì­Ïàï \đQ~V/ÚM&O’ù`ÙĂGVÂ«ÀfƒZèȘwMHJΗÒĘ7ƒ ée’™K‚GVT+›Ę’‡Œ@ĂÏFÌ4K^”y1û’˜ž‹ÒŽdçš0ÇnX 7a}E\+'±3sĄĐÁšł„éÖ, 蔍˜ŸW ZČö‹ÄŐâKŰÜă8CN5Ű(ŐçńÜRe•xäșû/$ʇń&«šfávč8Àv­™7‰=Ź„ÙRZźÙ#á1cS-dnńź­]Ç/‚gE ­bËsȚÁO“ÎŻÓĄ6mÄë?šiâ&η\|aÚàí§&ٛtLr{ÌőĂjtč uބӖőafÀüńšO‹đQ9-Gćò™ öžĐáYŽŃipùŰ?[nd.ó‰źă+óÍbû|d EWèeP“iq„Œ’Ëêź—í-e*Ësőê4mŃęÄgëÄ ż&ç11Ł{Š’·ˆEHŹȚŠúnïÜćFȘo}ùä§ŰÛźPs­@…» ËR_áśАCÒČx”D&}œÏ8v¶7ô\’ŠrفGêźŽÄ-i8\›0eŰœs„fI)ozÆță«  r đuÍRŽcVV—jăő­/ńê|G…ç‚á*©”5(äX$wć3ĆȚÛcτLÔ{-žăsâ^l éDpŚ+Y‚îh‚ïšO1”c[‘74 œ)QŁű aŸŐÚG”șC/Ț/‰rdq§#R_c©”™aÜ_nöŒMë?€MąÒ‘«ßÜÜgC»^±ÄRÆ’M •6ç ßüZŽJ8őK Š7`Ăȓ@9}6>œÀ<ƒŽœâœź& fŸ~*”_ɒ@Ő—Fï›ÛŻÎŹNÖÍsă>ĘLĐڍô#ëîțçûò”áX§fyȚ ŹèÔLűšW$ś” QNúTżK5DYbŃÀÍzŠ7Í# rùJEčۛ1f€Ű~ÖN;œ7[èŠáœ»úÎÓÏÚ eŚđÔÉ\hĄíGrߕwDŰY˜uv€ӝQ_d‡Ž7”í§ËTlcŰ6ą”©l.(ŠæđŒ8ÿ.(Űáy˜ƒËĆj Ž?نûÍöŠäa:œž&ț±kVÛđz*c łàAśâ]MqÜ1ÈțIȚ…‰_86nˆ•%\Ì[u45äèœ,č食C*öXwč4mz$[ ćĐ/ùwsÁFčϔ5ّ‰Ö[ÆÿÂö[ŒÆ5­ŠÉ<ű韂—ËSSûÍGvż(GÒJ…±kȚŃR™K0æŠȚ±fВ9„SïĂ„#âŸđüf°4eÏáfšIihç«NÚYÉä%OżžÆŸ‹ȘŃ<É}áL&7jĄûÔ»‰ xROžüm~às’ĘĆ sÖz—ź¶ 8ś HL;2dCȘf8ÛyÄ~4Ϟ™8¶0gÏ!cQSwXoőuù`ćsŒ©ÊŠ cʕ;dïÍ=t}ă|›ŹÍ­»CHˆdËĘ„uœä4g MŰ~TŒûaüVƒmđÖoœ>ǒ°Ó*ú ă g«ƒ+ê=ŚûPĘ€œ˜Ÿ7ëéEôÉ ś‹ uÀ…u–ùęhŠ9đ§a(B EŚÈïš0_Öí;ÉIê!y©źwd„‡żïÁśĐĆöŹyù0%<Ü-ßf0a&—Hôű4ó«`üŐÔmZ%ăUŽvl$Ǚ.oțæCEč֊L?șLÌ"›^ĆŒ9I”‹«žÄŒeČÌ|ôLYF_Kˆ_¶v­~úYZ†ŰęW,Jù~uß-†@ŸŻ@ß4©–uxł Š)tÎp\ÁY"ŒB:Ÿn‡ÚçÍf‚ä| î=bƒHÉß ŒúșČQ ɝfDû±Qû†Ű?Ÿđ˜‰°žùIù [7–ž˜Ź…űvŁ•zQü• ÄE:îChńăœ%äĆl›ŠĄç;Ó—„:łČčˆpęÁ‰Y9Í_VÉŚx\ ~Ćç„?ïF—%ÀĂV˜™măn'Ô3ՊfȘűĂWŒèx\cőɉ[ŒAš˜a‡ąűź›Ô„Çm<ËśßfûkAÇŚíœN Še …$ÔśšęȘ)ś[9ŻŃĘČÎȘȘ„cćBÇïè4yL{"n­ŸË É«šG͊â>o^jîæôÉ_kÆ€V1ÎܔÛçÆ? |É/ĘüöÌYÌb»ŠĄLîű2 BĄ}ék„7ÖŃ„JYŸvRš‡áăò…fśź>Zl™[†hțSŹÀkÓ(3ÍX†‚‰$úr88ƒöüD°KyIä–;&:w$[Bh)ò*Ș‡™ŠW¶GB$ąÁ1ND<=Áyßjô«Üvű6gDÎqOšp˜|^ÖK΄ÛêG–OșÎę…aŸ|Ä©‹Ba ”—ӝeÍRžšf„'@œ{ûŠ?œFƔѿŃۗŹY[ąțžun9Eûü$ü©‰”* ML·*‹xâkêjGEŸóÙ(Ž1 żÉ•üM‹Æ1*MK ߈ș-ÄÏê<Ébò“­”›\Š >:Żvu97ßRÒÒ1n§kU^]*`žæ2š“ÚQ„šó]«zP7œ±œ.•ÁĂì  čÏÚ#±Ű G?ł+qęf|Ș…\`šő„”5<Â0§HÉa[ƒæ3$XêUŐ$·éЄyŸp™U7ń.ù "Ł1%~‚t­èwàéžú }ԚĘú5*Á}j§ ț5ÖJȘ|%Šâ’q©sUi W …żÉÀ^ńWÚ‰·Č7"»­șx˜ú…đ˜.ŁIŽÚÛxrJȘbrńÓÚ”5>wÿę Ș[ÜQòdSMœárKI[ž.ùÔčFlVęÉG St>”‡QvÏŁlí‹ëßLUû!ÉÏĂæńŻd‡Œv äY-žú7[K39eŒiv’Ăő|‘ßśm1o€č#iȘúšŸŁï\r”šÌ†aìaß&ÀȘÁùł‡CJïűșì?>#‰ü?În/?Ï60”€~NÁôٛ)ŠLwJŒĄßvŠČWfç"ʶˆźš(©R–ÔbèÀ–b•·9I<)›ˆÀaùnzLÙ©g‹ăx…À‹Q’m©•ƒż–ĘœšL@"ô ÂF·»pJ`Ș]˜fi|8X8ăÖuíș€U”:Ë.k1Ö㣯P?ś%Ê\ȚՅæ)črń›rŸXŸę {ŃàęaLK3ę“j#Ç5*ęțË.œHjâcűšUĘăłÏz z’¶čè/’o8)Dsš8ùżi.>jČ*<ßARî‚ E}3€NôCŹ”ë({”tVŒGbÖĆp»ÆÓXR•‚fLšÆ ]xőJ :Ö)ZńĂęŒwű¶) ÏŠ“È-ÚB—‰|›?ővT[©Q?—i2>É€’–+Șêß°œQ^Içș$”Ï ÇDûßD2Æń;NŽnsżàÊ,35dW$êkĐ{ڇ0'€4țšmpŹLaÓ2P@œäÚűî Öcó[źÙalű#»:CȘçű—|a(Ɩío{íÄܟÚ»Uf”Ú`„i’8:ÎbQ lŒ]t_i2Um»ÂÖv?sPŠ„èđfY ?|ĂOA_"PźÍ_> Ă`ÊQ żÊÈÉw<űźżù{8ÓAț2©Ú·čPÍ]CDö]ʙ;ëôÚ€R1č±-@ńsÒ«e©|ÄoOŠUpꞳŹû”ÖwIàđҜn›žËăTCă5)ĄˆÂCÀÂmmŹydžVv“Û“æő§x$‹ü所ü†-‹Œ’^©Àˆúb_ÆsĂ2–Ș1“qWŽâaŸTú©Uä«h†oÊI± 7…ô'Š[*ć“0Cé,0dRożoń QÜžá7j䯇ïxvŠDu,jĂ^„Ë#ćN’"Tù`Sóv͚_ >čP 0uđőüŐ„™`*Â!qÚÇmŒőXÜœ<+6•†~šë—œ:eŒÂòČÈ„E±ž$ÏË-NÇ=›ÄMŰ`ŚńÆZûâE^z‚Îș~ÍG%cjqUéI}ڍŽĂ{•‘Ê7lÓ{bj.Ă=ï Ùț)ȚL‘yÙCÜKZ#mèàSú茠t8C˜ddȘUnä\ț#ë;Ię©óúqŒ~ąÊ4[Ą …đ[ă+ö;NżÙm-(Êi“æx†4N™zźŻIœP҃/3ôŠ‹RŃx}4ȘíȚààˆŽ·#{ŻŹÔvК ė‹çĂę̘4ܰi#ŒĐYŠșp„Jä1Šăœ ˆsRæíjŻß§ć+Ćü6‹h.)NŻ[Û Ł‰"-æȘV^ÍĄ†—ú"Ț擰Ż4P'óâČÂWjÄâ·)€kšŠĘŁ9«qê9mĘÌTsì觉ö+(FùÁÀmęI źA§Ž4?VÌë=)˜OyÙoú’—ô#ہtșĘa'ù”„‹Ò0)lZÀąÁćäȚèPŽàJ3ŸœŚÊŠòÏ#Upéđ°Qą#t+óŃćÿ3E endstream endobj 319 0 obj << /Length 494 /Filter /FlateDecode >> stream xÚm“MoŁ0†ïü ï!Rz ˜|U‰ÄAÊaÛȘ‰Vœ&ö$E 6ÿ~=HŐUAgȚż“ÉŻśœŸ«ú~üÌÙŽuo$ű›ßÇÆ›LD-û tś  @Ùö…œ›ZîĄcÓÍNìtÙ=YńNËkŻ`T=­áRêo ȚĂŠűôeCîŸúòڕÚç(>”ĘՊæ™ ČŸAæŠț€iËZż°đ™sn[­6u…cŽ^0XaÁhî\je?ì„îŒ0bȘ”ĘprOYÙśĆû[ÛA”ÓçÚKS|Űdۙ›óűäoF)ő…MZł©}ß4W@Œ{YÆœmG;ÿë±<œńź9Ü`‘;‡äKÖ Úæ(ÁőŒ”óŒ„E‘y ŐčĄât€ba„bi<ÎgźbÌĆw­ü:/]ŚćvYsäˆâ[ä˜â+䄘#ψ]íœôò‚â9ò’8D^osâyMìîÚGȂX o‰ä‚îBŸÉà5Éà‰<űÇ»’ÁÿÂò kŁ(Do9Örá,ÂqŒB?"tŽęEDqì)bbœW$ÄèYÌèM»>sbŚgEìjqȚ(ŒæĂŚpoż$îĘ}IdoŒĘ·œn-p!J śęmê«ÜÏ-țűOĂÓ[áęL‡ endstream endobj 320 0 obj << /Length 696 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆ$ !Ù ‘8l[•j”WHL7IP‡țûőŹV=MžßÌŒń sśëu;ŃU··őÈٛ=w—ŸŽ“ìśîĘĘć]yil;<[[Ùj<=?±ŚŸ+·v`śÙ&ߎőđàț¶<^*;Č~&ûQ·‚>ìțĘț”MS >Ù_êăP·ò{=éÇsæ@öd”ôÇöçșkŸ˜xäœ;`ĘVYŚ`Œs4œJaÓQÜĄn«țȘ‡íĄ.’Uu9\ßèY6î>Œę<¶Ùއ.Z.ÙôÍž‡ț“4>DӗŸČ}Ę~°ûŻÒÜŃör:-d0­VŹČWŃÍÿŒk,›ț8ăóțyČLÒ»đșÊźČçÓźŽęźę°Ń’ó[Ć*ČmőíLrŸČ?ŒÜÔqù„ă• â5F8@ šˆ=@Šđ)&°  È8Ôč€ÂĆRx u€Dș\j2H—†ȘĄĐVÁč0CzL]ű Âb°ct‘I ©g$`htы0œÆ\F„áŒ0Ă€†sꐇá jd< —Iê6œ»őńzgóńșË»țê W €qȐ’Ł+—Ÿ#ö•ńÌÇkÄȚ .‰bȘsré…€šáæÄç†bïmŽXúŸ„Kß7Ç”Hß7Géû„ûŸnb§>&jÊې”äuœŻŒú•ń1ÜV™ś•âÜăâ”ljOu$՟qWèS/%1{\űxB!€§ÔK(hH©—TĐ–æžƒ»J©ÏÏŻvŚÜëÁ=küÒ2ű„UđKς_:~é$ű„Óà—ÖÁ/żŒ ~™Eđ+7żèËą/ ÿlìĄÛÒ(/}ïö -+ZXukoûìԝE?Z„ăæĆÛKęqíƒÄ endstream endobj 321 0 obj << /Length 739 /Filter /FlateDecode >> stream xÚmUMoâ0ŒçWx•ÚĆvHU„dçCâ°mUȘŐ^!1ĘH ęśëń#xÙö?ŸgìÁÜęx]OTĘmÍ$|äì͜șs_™Iöss îîòź:L;<S›zœ==±ŚŸ«Öf`śÙ*_”Íđ`É«¶ÚŸk3ČŸ'ióŃŽž‚}Űę»ù=©œà“íčÙM;áàŸ7ĂȚrŸ›f¶ÆnjÌ-ùeúSÓ”OLg~ŒÀ8śă ăâțÈ)okà çA„8 ö$`I\èÎŚ3`çAfŽă<ÈZ]ƒÂ!‹„ê xNkÇyăčăĐđ"œ7Áż _„㓧Ìq âH`òáö•‚nú„€ḱÂđRONH=CpB:# =Ń%8“ˆ88QA~Ą!*ÉzƜűАäT?!~Ž> étw©8éÄy*ásŁ€Ï }nÔÌçFE>7*öčQ‰ÏR>7ŠČą G]Œ;~îó€ŠÛ<©ò6OšßæI‹ŻyÒòkžtèó€g>O:òyұϓN|žôÜçI/|žŽòyÒÚçIg>O:śy҅ϓ.}ž2îó” Ÿ§Lú> stream xÚmUMoÛ:ŒëW°‡éÁ5?$R. €d9ôMđđźŽÄä ˆeC¶ùśłk›m‘CŒŐpč;;†wŸ~>Î|żŽ3óEŠ_ńž?O]œ5ß¶‡âîźĘwç]Oßcìc]=~?§}śOâŸyhÆáô9%?ŒĘÛčŚŹ“B|Ɯ‚>âț)ț;ëvÇw%gÏçáí4Œ3‰ä§áô–’>\ ‚‚6ę§ă°ż őEJ™€őŰ7ûÆ8ó 1ż’{Æ~șđÏ`W(-úĄ;]Ÿè·Û%=°ùńęxŠ»‡ńe_,—bț+-OÓ;qü\ÌL}œ†ńUÜÿI--=ž‡·B«•èăKȘ˜æÿŸĘE1ÿpÆ[ÎÓû! Mߊyuû>Û.NÛń5K)WbčÙŹŠ8ö­iÇ[ž_źčuʕMúŃzQ­Š„Ò)V†€Ú(TŰ€àxżàȚą žjy‹°°!ÀĐԕ”ZÔÀ2àP="ŠZdÔ0\ÃG©R\Ą·”).–2*ÎĐša!„UŒÄ,†łÔÛHđ° `+jĐĂ.ž5Nα@èâ°èĐVK-àxŸ%ô˜Ü3š% A°YӀzĄÎšÔ>kP#ŹłŠő™5m0WŁošŠĂŸžj­ź§Üę·.†ĐZĄŽT$X/©)n)æ#W—„o(æ“oÀRZȚ $Kąp4’ŽZ¶-bâ\­1ŠÜ°Jä æP"Gń‘XÔQŹ‚i/8șkÉ^€ÂZqŒ:ZsŒœš9”d š­Bù Ž)ßsLù-ï7œæx˜ÏJ›ĄŸÒ`ŻažÉœ)f„É$†”’1™ž dъcȘCZCù<Ł7Ă3JÊgózÌnűțHȰíáÌYɚäTœŻa…ŠïŻÆ,_»œ-Ÿ—Oë87Ë}êÛKԮܗLlčoKńšò+Êg­JÌâ.ŸGZyóș‹Vđc­48ž’ïŒäŰWtù]Í:P~`áŒń±–rZŽq.nÍ1]Ç ÇàSÿæ/©ßP•ęïuöż7ÙÿŸÌțśUöż·ÙÿȚeÿû:û?Èìÿ ČÿƒÎț&û?”Ùÿ!dÿ‡&ûż1y–ŠŒÍH·œn5țčă)șœĘyšÒ“Bïœx#†1ȚžŽĂț€]ôGoáőńĆŚMń?źXê endstream endobj 323 0 obj << /Length 552 /Filter /FlateDecode >> stream xÚmSÁnŁ0œóȚC€ô@c àŠŠ"I€¶­šh”Ś&Y€`Cț~=3ĐUW9„<ßŒy3¶g?>~Z6gđŁg)>Ąk[€ŻžZo6˛bšÁôo%”Ónś*>lS sœÏśŠêŸyoŠÛPÂÄzLÊàZ™Ź#æGűí_Ú[}źüóPĘúÊűÉÇȘż9ÒĂ}á‚â{PPÒ/°]՘W> stream xÚmRËn«0Ęû+ÜE€tA1Š€!$B)‹>ÔDWwKì!Śd`‘żżR”Ê83sf8óXÜ}‚\¶'âFż oG# (Țʎ,›VŒ èá@‚œŁę+ę4­8À@—Ć~łŚjž·äœő(afĘ&­áŹô7ÿC—GűT]ʘà4ȘzP:`È=ȘĄ¶œ[aj}ô‡ș”?`zŐêW=0ÆŹc«eŃ6ŰCOÂI ge•ÒÒLbè „‘ˆS©Ä0Yî-; L>\úšœźZ’Š4üČÁ~0§đž„F‚QúL—?”ÙÈaìșPe$Ëš„ÊŽœż— ĐđVƒWÊńÒćΎŒ*ŃJè»R€)őHÊXFÓĘ.# ćŻó§Ê›–0C~ ‰„!)Ç"ŒÙI-札ŻĐç?9ü#.<^[œ0ÏÁÜ$òțgıś#?I> stream xÚmSÁnŁ0œóȚC€ô@c àŠŠ"I€¶­šh”Ś&Y€`Cț~=3ĐUW9„<ßŒy3¶g?>~Z6gđŁg)>Ąk[€ŻžZo6˛bšÁôo%”Ónś*>lS sœÏśŠêŸyoŠÛPÂÄzLÊàZ™Ź#æGűí_Ú[m+ÿ> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[•j”WHL7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐÜ$Ÿ—âƝÛK_șIțsßE77E[^Nź«\5źžÄsߖ;7ˆÛ|[l›zžŁàmSŸ_*7Fę?hćȚêæ3<âöŐęžtĘûÁôúIÄœÖĂ;­_d‹«-8ô—ëÏuÛ<u/„$Çș©òöĘçhžĆtTsŹ›ȘÄr"„EU—C°ű[žhHȚ}œwÚ6Ç6Z,Äô…ÏCÿÁÊîąéS_čŸnȚÄíUywČ-—ąrG*Fœ>îONLż7u]~ęèœĐl+ŻŠl+wîö„ëśÍ›‹R.ĆbłYFź©Ÿ­©r8ޱ)ĆÊ9>*QKrʁ7ì˜äP†°ČôŃ:MÈĄQ^sž$LDÌ6Țaȑ*Âs.$S5ˆ6`Ń>ĆÆ„m•Áë#TLŽ 5Ȝkdš‘­}WìXssc‰»*ÿì{êčRęh/#„?Ûń§ béE$èLÎ|ږÆă°ő8^yŒ>eÎSQc’ìÏçÀÌŻbÈVÌŻcöáNa'_ì OÍțőAŁJęô195śœkàŒ±dț•ś3§ŚE»Hž@œ8çܰ%ŒĂ~A—s*=FÆă Œâšó0ÚÇ`†{RLŰPh33żÛèÓűYæŒù$ÉLÆčŹÇŹŒ o»šqMè§sîÚśÈŒÆ tÚÀ…xö•őčì\˜ \šcΜ-üÜÀe™k–sLžàÊ ?·"œ@>qžhx źŚ·Œô=Ęl~1űÖâŸÖ»>*]Û!‹ÿüïʧMôŚa@ endstream endobj 327 0 obj << /Length 664 /Filter /FlateDecode >> stream xÚmTÁnâ0œç+Œ‡Jíb;!ŰB Hv[•j”WHL7RIąęû7vJw»DÏ/3óȚŒíÜ|{ÚMČȘ=žI|/ĆłÚK_șIț}ßE77E[^Nź9ÿpźrŐűvxO}[îÜYÜæÛbÛÔç; Ț6ćÛ„rcÔÿƒVî”nź!Đ·/ëȚ”é'ô“|©Ïođć B\ ÁÁ?]?Ômó Ôœ”’ˆuSćí ևhäĆt4tŹ›ȘÄŽ"„EU—ç°âgyą yś>œĘiÛÛh±Ógz9œûwövMûÊőuó*nݶˆȚ]hé`AÈhč•;R5êśÇțäÄôK_ï_Ț;'4Ż•śS¶•ș}éú}óêą…”K±Űl–‘kȘȚ©r8ޱ)ĆÊ9*QK"ÖÀ&æÊV–Z§ ć5çIÂD b¶ń„!"U„ç\HŠ(jm ą}Š ۄ •ƒ@„ő*&"C,çjdkßknnì"±cWćï}O= WêÂąím€ôçu|]CXz :“3Ÿ‡¶„ńxl=΀WŁO™óT”Ƙ$óù˜őU ۊőuÌü'íëäÓ:űSłż9xT©Ÿ>&§æ^s œ1–ŹżòŸeΘO’ŒáÁdœË~ÌÊóđ`xÛՌkÂ?˜sŚŸGÖĘ0NàÓ-ÄÛ°o|šŹÏe>ha>6hĄŽ Z8s¶đsƒ–e­YÎ1á:@++ü܊pùÄáąásđqËKßÓŐæoßZÜŚșqŸ•źíĆț=Ź7Ń€ŐcM endstream endobj 328 0 obj << /Length 663 /Filter /FlateDecode >> stream xÚmTMoâ0œçWx•ÚĆvB°+„8l[ŽÚ+ML7RIąęś;oìĐn”DoÆ3óȚŒ?n~<ï&YŐŸșI|/Ƌ;·—Ÿt“ü硋nnжŒœ\3<:Wčj\=?ˆçŸ-wn·ù¶Ű6őpGÁÛŠ|żTnŒúĐÊœŐÍgxÄíȚęžtĘ{oú ę$âöőđNëߗÙâj ęćúsĘ6BĘK)ɱnȘŒ=Aś9šn1ŐëŠêƒń 9‘ÒąȘË!Xü-O4$ï>΃;m›c-búB‹çĄÿ`ewŃô©Ż\_7oâöȘŠŒ» Y „Œ–KQč#Ł^''Šß›ș.ï?:'4ÛÊ«)Ûʝ»CéúCóæą…”K±Űl–‘kȘok*€ŒÇ۔b敚%9ÖÀvÌ r(CXYúh&äĐ(Ż9O&"fï0äHá9’)ŠD°hŸbcÂ6a‡Êá@„ő*&G†YÎ52ÔÈÖŸ+vŹč豋Ď]•=ő€\© ‹~Ž—‘ÒŸíűÓ±ô"t&g>mKăń ŰzœŻ> stream xÚmTÁnŁ0œóȚC„öÆ6„ŰU‰@"ć°mŐT«œŠàt‘@úś;olšv»R‚ž3óȚŒmź~<î&YŐŸžI|+ƓÚs_șIțsßEWWE[žź9Ę;Wčj|;܉ǟ-wî$źóm±mêÓ o›òí\č1êÿA+śZ7—èˆëgś{Òuo}mú ę$ŸëÓ|{'ˆBpđ/ŚuÛÜ u+„$bĘTy{„ő!šy1 êŠêƒńG‘ÒąȘËSXńł<Ò Œ{NîžmmŽXˆéœNę;{»‰Š}ćúșyŚ[DïÎŽt° dŽ\ŠÊšő{ż?:1ęÖŚÇûçśÎ Íkćę”mć†n_ș~ߌșh!ćR,6›eäšêŸw*€ŒÆŰ”b敚%kà ó‚e+K­Ó„òšó$a"1Ûx‘*Âs.$S5ˆ6PŃ>ĆÆ„m„ÊA Âú‘ĄF–s 5Č”ïŠ‰577v‘۱«òÏŸ§+uaяö6Rúó:ŸŹ!,œ‰É™ÏCÛÒxŒ¶gÀ+Ń§Ìy*JcL’ù|Ìú*†mĆú:fț“vŠuòiü©ÙWUꧏɩčŚ\gŒ%ëŻ<ϚȚí"áőâœsÖ0û_:Ìú©ôę3x0ŠkjÌĂhƒyîIYx0aCáÍÌünŁOăg™3æ“$cx0çČłò<<Țv5ăšđO#æÜ”ï‘u7ŒűŽA ń6ì*ës™Z˜ ZšcƒΜ-üÜ eYk–sLžĐÊ ?·"œ@>qžhű|ÜßòÜśt”ù›Á·ś”nÜÇg„k;dńŸżGăG«‡Môóc endstream endobj 330 0 obj << /Length 799 /Filter /FlateDecode >> stream xÚuUÁnÚ@œû+¶‡HɁ°kc{!€5Ƈ&QˆȘ^‰œ€–‚ ÒŻïŸ™!•šæzż™yïa/Wß7Ś/~’ÜjőäĂylüdù}{ˆźźȘĄ9ï}șśŸőíćîńN=ŽCłń'uœ\WëŸ;ĘòșoȚέż°țO*ękŚÿ„`ș~ö?''3ùĘÍÆ‰žt3\è‰ÿč;œȚWêêS]Që?»ĄżSæVk «Ÿ]{ű9FSрЕ»źoGŠ^ 32±j»æ$WôĘìC0hȚŒO~żîwC4Ÿ«éSžy<ï€ô&š>Œ­»țU]Rîn·ۇ„ŁĆB”~††,î·{ŻŠ_™ę =żŒŠéÚ°șfhęń°müží_}4ŚzĄæuœˆ|ßțsÏHËËîÂ]źźĂWŹ“bÍ šMLłD!E!ăB ±FAë€CÁœÖ\°Ą‘ÓdQ€Q(˜Œ%¶T<#àh^QqKƊL0cF F͌€aîâÂÎ.źš_ÛQĐńČ mÚPG9Žčž'„+XÔ3â8ìŐ)Ś+àŒ±Îč7¶\'~Áœ5°ă:rÔ%ï%Β뀧â$1Ó$܋șa %aN*At†g&ŰĂW<‹éWÈyveš1vYòn‚Ő€ cx·1cx· cx·3Æ+`ònH›ÍÓ̜1q,kĂ^+:‘•%fͶd vÉúmƘæÓ/iRü޶f ëO±·`ę)űëÏÀ/X =ëÏš—őgđ^°țœűŹ?#>ëÌĄč`92/X[B|ÖfèŃćçÚAż“láËI¶)°dKÉód‹gĂI¶Űć$[dè$[âH¶đë$[hv’-|9É~d‹ŹœdKó%[èw’-t–’-ö–’-ű„d ~)ÙBO)ÙRŻd ï„dK|ɖű–ßNÂò¶ĂK)™ĂK)™ăÙ++Ζæđ›]RŻdŽ]ÏOᜌz͜Ș–“€Ț|x8€?ŽÓæ<Žá€„“œNOœ›]ï?ûĂp@}è_âòÿ„«‡:úh‘ž? endstream endobj 354 0 obj << /Producer (pdfTeX-1.40.23) /Author(\376\377\000V\000i\000n\000c\000e\000n\000t\000\040\000G\000o\000u\000l\000e\000t)/Title()/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20220123181910-05'00') /ModDate (D:20220123181910-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.23 (TeX Live 2022/dev) kpathsea version 6.3.4/dev) >> endobj 265 0 obj << /Type /ObjStm /N 95 /First 865 /Length 5021 /Filter /FlateDecode >> stream xÚí[–„ûćˆ\fĆj»™d…D z•Móôdő-ú„ü)°Nű I70ÖșĆ;^.W0Ő'› —šäé&KË|”ŸћmčȚ–GVĐév’m°WŽù˜yZ+5%FUÈŐö¶Ž·d#ò:]`‘“ŽÈŹ9È/ÙükVæ“tDž/'«iŸœÙ<‡R”ŸÈùé)bO#ô& SpÖăÉû|yŒ,ò]śY~w—Qڟ"“EŸÜQąÈ_ÛU™Íł»œV’é ä/ŠœÌ6馌€“m™‘IŸ™lwóì)óù4#‹tČY-Éí&’N&`2́D‘d ¶™fwdŽÉ,:Ÿ§5đ~»œ„›íbžnKȚ­–Ù2IqŸbNȖëX;ƒx«Í4ÛXŸ 7ärNNáțœhî?†ì ˜Ž!ùaŒ%„2vŹŽŒ©­A^æË/äűÙ3KOĐYÈy{yŽÇ“ûČ\ÿ" W>^mf„Ń13JhògQŒżRsȘ€IÏçYô ӟÿÀŹ3ÖĐ4C&^nçó›A\­Ç"lnű˜CŹîGŠflŠ$=6Ä…”3ÆőqȊEüXdfÆ RĘŁ™–ă„?’g&ĆÒ\ùáÜ”KKaîÂőáÍíŸè#8ü|kPlțGéK›NúÒêqéËĐ*°+ hęxŚiàzmAž3(!‡ ź#‹ LÈ­°_ٟ4Ö^0RA}€A‹ŠAe‹=¶ń&±‡ĆƒŸâáXyà8ŒbŽÁ~;VÔVCnpęVTŐŚ˜Rk6Ú-„ŽmŒ"öăœ°ëŒšÛÆ·ëÆ"ƒvœInFŸ ŽĂ6Ô±DÍA!>&aiŠۊ ë2§Æ{i«ڎ28 đfyB> +ĄQp`ŸŠ)ĐА1ŒĆł-€Šcțÿűß<Đ–›ÈcnmâÎFŒEÏYCŽ„ÔŐr,«‹NŰXûs8J 3NzÎbSőœĄjF&üĆ0Üù3x(X&őgc,Gœ=ŸŸ»Ša)ș3DĐ7öFjXæ ,«{+{ÙwGíHăŰOáf:C!ƒš^ Mr{.IÏ(L,~ș.Äńâ… } 8‡zuc'ô$ăr őÚ./űg`3ƒœÔæŽêlæ8ô"Qùżđç2™çüAȚ”RΚ„ȚÛo ìăBz ŰŚyÓÙ¶•CƒÖcÎÖvU2xü°GLꖱ^hEŻćBmŽ0òzQqá0âĘZÒzș;;ŒŰ­Żàçț0éšéÄ@DšXYÏWc\àÙXú(ĐP,âă‰t\4Ùłró(†čÄ$#œRDâ§H0œȘÄ&8fY•‡Ùd‡SƒP#ΉqÄlêTÓ.—Š»PiÒŠăîčÒż°JrgîàšÆł° ‰Śnöۃs„NŠo\Pš“ŐB•°Ê€š›”ą êń„Bc†Țx°cJŹfí<fÇúÙĘg]ÁÏ_/`Œ&Wž·ŽRV]UU…•VcöYÜăŸl=Z)±;pŽê° ‡<VÒ’sWZz°áUiYáV„dXZâX‹W•­{*KŹĐ$Tn’jï(‰«8kƒš{șUŠę8¶*« ÔG]=GU­†ô}¶ (5ò…}EƒêÌf:i;ng˜zXƎR‰Oۘ’ë’98*e`€Â©˜­`Ȃ!źÇŻ„­نÓfŃT)€ïÀ‡fÖHŒ5ŽÚùüQœï@Ÿzá~ȚÊ}fÖűȚˆàúŹr›740ąu=/”ëëÿłaĂ” t'șs”qÆœćì9i7%șÖ jßxùВÆoœêƜ1ëPU'Șí\·xűJ?t±[òœ”Ț>H± â:è}ÛT›1ßoáŐvź%A”%tć>nŚ5ΖÆQ”îÙ~[â{m sV¶šíl)]!űPúŹŽńŰÓE{É]úT–Ąű ÛFW~gźl!Šć©ÂđȘpéÇò_Ôéó SƱšM)u ·Êƚï±mpï đX"À,ț̑@M;gLRèW°Á1LŐ)æGò'ĂÍcû{C’ô§ÏJ–:}& €eźƒìû'Č'ŠȘžy0{Ê`Ékv™ŁIOöԍ}ŁČ{û@ŸLO†”ЧČ6A߁?öŰLŠZÓÉMëQúYVL6ùș\mÜ3(ś ęâęćÉg?/'«e±š§eúw.Ÿ^fłí­ą˜)ă›9.đÉ5JfDNÓő/Y>»‡[AGibŒ€9ÎËtžOŽ—łyAçU™-Ț‡È?FÆŠžO7űìë 9&§äŒ<'/ÈKòŠüN.Éč&oÉ;’’Ž(łM^|!·äv“NìÓwŚÚàT¶ù%+k0Ž]DŽLVóŐ΋EJŠ$#–6ÉțÚŠs’}›ÌÓč#wùڌܭ¶2#3ü…"ې{rÿ}}Ÿ-INț$_Ȝàc~Č KČ̗Yn·ÙŠÈgKČ"+ŹÉYZlËq°Î6öQ?\óՔŹçۂüć~C˜ȚÎɆ€ÈŸ™"ÿFŠyZܓ’”ś›,#ćVdKŸ’ÿoä;ù›ümVGÎ8/rĐ*OâđÙèCÆÿőòűĆĆûŸN_=ÿÀhݱŸBô=…Ćśë1ș>ß\ÒĐȚĄ”„֖:°¶`Ą”­ńČo;sžäłÙîî¶Ü”ùtwSźCcĂ †œń>_–Ùl“Χy±ž§ßwV±ê»ÛúźȚÚȚM:Í'黚jڇšęê㋋“w öWçCj‡ćâ)wžìț łD6Â̈0̒V˜=eČ7КȘŻęč)Wr\oźź/č.‡Ä‚ً…k䏋Uû“JöúSop‘Țš‹Ąe‡(àŐËwÎ߀ź>ÆS=”áÄÖÉAțuü˜a1tpLÒőzłúæDźræ"-ïÉmșéϜűKć<[lçeŸžś·6Iê—w7)úŒo­férê~%ő.ÓĄ$0 2Ț&_dĘ9Ź1Mu‹CÔ}öûËË_ÎșHÿ^œ‘žžŹæS§Ł~Ę+Ìe müyHÎ'эúSŚŹ„ű€š —ŃPëË-YçMčKËŒûđÛ”\{B 8c+”f(+„ä$ăâ>'Eéó._æćwRlaÉÄ_z›Č”ûțžțűúĂÙÎfûì„QD(5|=GˆÀ^†ÛK ÙK šÎŚś)čÍʔÌRŹ  žŠàżd òoîWàŹłEÚû ÔűûÉ럯N~z{ùț"ÏaYœŽîÚ/8‹!ęcpVYš6«,Ìê;á•02ă"HšuËŹsrÖ5”V·P#íê",…ŐP§ š*xšĆK»l±EKC‹ì üúÛéËëo»ZD‘4‰>$ìžB‹–&yS“˜všŒʈaæ­Ui3G ÊPäï¶N… GÊŠ°e·wǯߜęÚör”HUÊćF9n-ƒhŃ,n.,xÁPêuł_ÌȘ4ÿÙŸIò+ùÍéŻÉđٰTO>bč^żŚ’ú·b°(žVÜö•äî„_™/§X?Îm%~Hùí+oŚçÜw‘;~~Ž ì tÿòô·Ëçϛ†~ĐŁń'Fń‰]èŃŽšŃÈ Ă ™ ,mSkŻ„•/j ż'|ÎpJ Ìw7œ-փê/wȘmêŽg™x7‹ƒ›DBŚ–ȚùZ@«Ï7`ûìĐ3í™tæG3[ÇBû;O°žh}Òz‰őçŽÖ+7ò+ЁĄó|Œäd§Ò¶.ÿjkŽü/Múȉ8—>ì iv±q!Œ­n„XDwäz·șÛô‡’Ž?öê]»­'ÿqUGŠș=č+H}jŐ+e„śH+TxdXší(aá–ÖŠÆźáͰ+±ń”Ü ÌŸyÌ»Ž»7Û;őF2±o4ÛW§^䛱ÄèÄôËŽșÁà}>-ï û”Ćœ^œ]‚_N1¶j™}”7±MŽ„mŽ 8R<`(î0Äé0ÔÜ}¶ùám~dÈŠÊŠŸ„uùa‡óÓȚ ¶’m†B~UCŽË?œĄœÛ„6wȘăPŹÁ (șü‰Ăùën{ÚLuŒ\‡œć=x›]”OÁ°Ê –áÖÎíž*ČÍm'ŒD2ÈûËÇCż;ŽžŽ†‘ËÀ‡ĂNwxVžEÏ ƒï(ű’òHÖ/ăŻOvűoù‹ «‘rßxžÜčÓĘ2"7?2?î=`&Ę ĆÌMÂáž&~đäźæ!l†{!zïŰ€BŽ}üVÉÒőÊűwœ[sŒÙ–sšù ï‘)ô†Hx‡uL=Đ~“"|v;ŽŒùwŹûa›ìkÔ ?;Ôû8 őÙo`šçć5Ÿ°-xϱ:èEșüf2@Á^žNÊmș9Âon[Ò rŰŰ śĂűà~ÌѕcO+€‚^+w à•KŚPŽ§E î§ăœĐè¶MnšèĂŹ t`ÓfGșXäŒ ÇˆŹŒÂчbӁÛhèą[G§ƒ"XźšűĂ"Äc&x[€KLŽ ÎșpŒnŐæV艻p”ΚA1g­Â@7êĆtàh ÓÖźs›XÎ.»pđž —ÄqÖ1,tÇ8a[3æ aüșژœhn“ë„{śŒËgÛM†^_o="8žvžî}ú±/F+z—jÒBÇJšX(±  ëëË'k(ѐEiÚ,îWHȚÜ.*œƒŃ4 ûIbMNC›‹‚Œ‹c5Ők€1”łZÙÍY©ÌAАșÁšP‡Ł0]†âáÚś3„Žjœ~žĐ@4$‡!_yŸ`Źs0ÈEš:Œî†X±êćHŐ8†ŠÌ~Éû_h~üÒÎNèkA° iBĐY„òĆMJŰ©;BÚæÖe[ü -[ f …Sˆ5%żÏs»ûżžkìŻÊ_”żš}5]ÿÒP‘p6>ŸŸ?„ÏÂG©òĄÌĘv1OÀŚWű?!ž«ô‰aEžD ïa"Šûî™vò€&➧š§°óŸŻf#·1Üí!«=^P”[û‹žȚ6Í2,¶ÈÛ"Ûmß@EäŸFDœÛùoűŽ— endstream endobj 355 0 obj << /Type /XRef /Index [0 356] /Size 356 /W [1 3 1] /Root 353 0 R /Info 354 0 R /ID [<8D9BF57E431F268FEAD14BEEB46AC1C3> <8D9BF57E431F268FEAD14BEEB46AC1C3>] /Length 870 /Filter /FlateDecode >> stream xÚ%Ô?pNYÇńóœ{_‘ùónD"$y“!!È?‰H$D‚TÔ»Ł`4 Ćcf…Ù‚Fa …1vf«ĘÂŰfU;J Œ™-Œœß_šÏ<Ïč瞶Ț{~ï !„1„,ü<šČșű$•A„FÆNP%B;cÇ©r°ö06BUk3Œ„±cŽĆPÂXcGiKac;Š]›`ìm”CTB~‚*ŰŐ° j 6C“…PŠʃzVȚ{a?c[šza @ÖC)l7¶@4[(ĐÊźöQ”B­^ëíVŰĐ = Ëșw;ì€A8 ęĐmĄòĄŠì„^Ű»Ąćua/„Ő'}:í›6eŸ…úŐo ïŹMћëùà ČĐÿLó”ƒQƒ ˜…ă†W_zNÁ?Ÿ‡jNĂ œqźČûqæ,LUjłpŃÂâZŚŰ‚…ùU—a.±€žïœ‡EžK°láÊïÁ’’!-EXĘ,ÜlTK”=gáȚK”$ÖłÔ­*[Wl «“NW:É€.'>^fánčî uNàœÀ9sç„Ő «V'ŹÎÎx•ĆGOto4B7ŽAœĆ§ęșșšŹyZùĆÿűŹ)lŒ·[|u[m$'kN֜Ź9Yó.‹ukńqâă„ŐÙ2'>~z-ŸyĄyäÏő'Ù jɋ“'/~ șrRçƒßOkRìĂżÔȘćï€Î‰Łsx8étbæÄ̉™łżN|üˆĆWc1dÍɚO1s"à+<†Ÿ3ađ‹oè6Râäω­ÏsBè ÿ»Ży˖ÔTs «]Č$-šșŠȚZË֔͜5PfIț7A„RÈY’tTUPnIç”0=°ȘaÔÀvš…ÍP:Žt>ë@ÖyŐdIOm¶äú}U-–<È«*Xòò›ȘVKțWŐfÉśU햼[} ­–6TšÚféÎOȘ:,ęć‘ȘNK}źȘËÒÏŚTu[źśm°\_>Łż.ăÀTÆ`kÆĐƒŒáÇ#-'K3ÆŸfLț“1ę§8 C0 c 3B‡ț$œ*Ópfà Ìœ…yX€spá,Yn¶/ûń«ïÂÿL%«ó endstream endobj startxref 355030 %%EOF actuar/inst/doc/coverage.R0000644000176200001440000001213214173361126015174 0ustar liggesusers### R code from vignette source 'coverage.Rnw' ################################################### ### code chunk number 1: coverage.Rnw:52-53 ################################################### library(actuar) ################################################### ### code chunk number 2: coverage.Rnw:98-100 ################################################### deductible <- 5 limit <- 13 ################################################### ### code chunk number 3: coverage.Rnw:105-116 ################################################### pgammaL <- coverage(cdf = pgamma, deductible = deductible, limit = limit, per.loss = TRUE) dgammaL <- coverage(dgamma, pgamma, deductible = deductible, limit = limit, per.loss = TRUE) pgammaP <- coverage(cdf = pgamma, deductible = deductible, limit = limit) dgammaP <- coverage(dgamma, pgamma, deductible = deductible, limit = limit) d <- deductible u <- limit - d e <- 0.001 ylim <- c(0, dgammaL(0, 5, 0.6)) ################################################### ### code chunk number 4: coverage.Rnw:141-147 ################################################### par(mar = c(2, 3, 1, 1)) curve(pgammaP(x, 5, 0.6), from = 0, to = u - e, xlim = c(0, limit), ylim = c(0, 1), xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(pgammaP(x, 5, 0.6), from = u, add = TRUE, lwd = 2) axis(1, at = c(0, u), labels = c("0", "u - d")) ################################################### ### code chunk number 5: coverage.Rnw:164-170 ################################################### par(mar = c(2, 3, 1, 1)) curve(dgammaP(x, 5, 0.6), from = 0 + e, to = u - e, xlim = c(0, limit), ylim = ylim, xlab = "", ylab = "", xaxt = "n", lwd = 2) points(u, dgammaP(u, 5, 0.6), pch = 16) axis(1, at = c(0, u), labels = c("0", "u - d")) ################################################### ### code chunk number 6: coverage.Rnw:200-206 ################################################### par(mar = c(2, 3, 1, 1)) curve(pgammaL(x, 5, 0.6), from = 0, to = u - e, xlim = c(0, limit), ylim = c(0, 1), xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(pgammaL(x, 5, 0.6), from = u, add = TRUE, lwd = 2) axis(1, at = c(0, u), labels = c("0", "u - d")) ################################################### ### code chunk number 7: coverage.Rnw:221-227 ################################################### par(mar = c(2, 3, 1, 1)) curve(dgammaL(x, 5, 0.6), from = 0 + e, to = u - e, xlim = c(0, limit), ylim = ylim, xlab = "", ylab = "", xaxt = "n", lwd = 2) points(c(0, u), dgammaL(c(0, u), 5, 0.6), pch = 16) axis(1, at = c(0, u), labels = c("0", "u - d")) ################################################### ### code chunk number 8: coverage.Rnw:235-248 ################################################### pgammaL <- coverage(cdf = pgamma, deductible = deductible, limit = limit, per.loss = TRUE, franchise = TRUE) dgammaL <- coverage(dgamma, pgamma, deductible = deductible, limit = limit, per.loss = TRUE, franchise = TRUE) pgammaP <- coverage(cdf = pgamma, deductible = deductible, limit = limit, franchise = TRUE) dgammaP <- coverage(dgamma, pgamma, deductible = deductible, limit = limit, franchise = TRUE) d <- deductible u <- limit e <- 0.001 ylim <- c(0, dgammaL(0, 5, 0.6)) ################################################### ### code chunk number 9: coverage.Rnw:273-279 ################################################### par(mar = c(2, 3, 1, 1)) curve(pgammaP(x, 5, 0.6), from = 0, to = u - e, xlim = c(0, limit + d), ylim = c(0, 1), xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(pgammaP(x, 5, 0.6), from = u, add = TRUE, lwd = 2) axis(1, at = c(0, d, u), labels = c("0", "d", "u")) ################################################### ### code chunk number 10: coverage.Rnw:296-303 ################################################### par(mar = c(2, 3, 1, 1)) curve(dgammaP(x, 5, 0.6), from = d + e, to = u - e, xlim = c(0, limit + d), ylim = ylim, xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(dgammaL(x, 5, 0.6), from = 0 + e, to = d, add = TRUE, lwd = 2) points(u, dgammaP(u, 5, 0.6), pch = 16) axis(1, at = c(0, d, u), labels = c("0", "d", "u")) ################################################### ### code chunk number 11: coverage.Rnw:333-339 ################################################### par(mar = c(2, 3, 1, 1)) curve(pgammaL(x, 5, 0.6), from = 0, to = u - e, xlim = c(0, limit + d), ylim = c(0, 1), xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(pgammaL(x, 5, 0.6), from = u, add = TRUE, lwd = 2) axis(1, at = c(0, d, u), labels = c("0", "d", "u")) ################################################### ### code chunk number 12: coverage.Rnw:353-360 ################################################### par(mar = c(2, 3, 1, 1)) curve(dgammaL(x, 5, 0.6), from = d + e, to = u - e, xlim = c(0, limit + d), ylim = ylim, xlab = "", ylab = "", xaxt = "n", lwd = 2) curve(dgammaL(x, 5, 0.6), from = 0 + e, to = d, add = TRUE, lwd = 2) points(c(0, u), dgammaL(c(0, u), 5, 0.6), pch = 16) axis(1, at = c(0, d, u), labels = c("0", "d", "u")) actuar/inst/doc/risk.Rnw0000644000176200001440000010247214055040227014720 0ustar liggesusers\documentclass[x11names,english]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage[round]{natbib} \usepackage[english]{babel} \usepackage[scaled=0.9]{helvet} \usepackage[sc]{mathpazo} \usepackage[shortlabels]{enumitem} \usepackage[noae,inconsolata]{Sweave} \usepackage{framed} %\VignetteIndexEntry{Risk and ruin theory} %\VignettePackage{actuar} %\SweaveUTF8 \title{Risk and ruin theory features of \pkg{actuar}} \author{Christophe Dutang \\ UniversitĂ© Paris Dauphine \\[3ex] Vincent Goulet \\ UniversitĂ© Laval \\[3ex] Mathieu Pigeon \\ UniversitĂ© du QuĂ©bec Ă  MontrĂ©al} \date{} %% Colors \usepackage{xcolor} \definecolor{link}{rgb}{0,0.4,0.6} % internal links \definecolor{url}{rgb}{0.6,0,0} % external links \definecolor{citation}{rgb}{0,0.5,0} % citations \definecolor{codebg}{named}{LightYellow1} % R code background %% Hyperlinks \usepackage{hyperref} \hypersetup{% pdfauthor={Vincent Goulet}, colorlinks = {true}, linktocpage = {true}, urlcolor = {url}, linkcolor = {link}, citecolor = {citation}, pdfpagemode = {UseOutlines}, pdfstartview = {Fit}, bookmarksopen = {true}, bookmarksnumbered = {true}, bookmarksdepth = {subsubsection}} %% Sweave Sinput and Soutput environments reinitialized to remove %% default configuration. Space between input and output blocks also %% reduced. \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{} \fvset{listparameters={\setlength{\topsep}{0pt}}} %% Environment Schunk redefined as an hybrid of environments %% snugshade* and leftbar of framed.sty. \makeatletter \renewenvironment{Schunk}{% \setlength{\topsep}{1pt} \def\FrameCommand##1{\hskip\@totalleftmargin \vrule width 2pt\colorbox{codebg}{\hspace{3pt}##1}% % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \advance\labelsep\fboxsep \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \makeatother %% Flush left enumerate environment. \setlist[enumerate]{leftmargin=*,align=left} %% Some new commands \newcommand{\E}[1]{E[ #1 ]} \newcommand{\VAR}[1]{\mathrm{Var} [ #1 ]} \newcommand{\VaR}{\mathrm{VaR}} \newcommand{\CTE}{\mathrm{CTE}} \newcommand{\mat}[1]{\mathbold{#1}} % with mathpazo \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\code}[1]{\texttt{#1}} \bibliographystyle{plainnat} <>= library(actuar) options(width = 52, digits = 4) @ \begin{document} \maketitle \section{Introduction} \label{sec:introduction} Risk theory refers to a body of techniques to model and measure the risk associated with a portfolio of insurance contracts. A first approach consists in modeling the distribution of total claims over a fixed period of time using the classical collective model of risk theory. A second input of interest to the actuary is the evolution of the surplus of the insurance company over many periods of time. In \emph{ruin theory}, the main quantity of interest is the probability that the surplus becomes negative, in which case technical ruin of the insurance company occurs. The interested reader can read more on these subjects in \cite{LossModels4e,Gerber_MRT,DenuitCharpentier1,MART:2e}, among others. The current version of \pkg{actuar} \citep{actuar} contains four visible functions related to the above problems: two for the calculation of the aggregate claim amount distribution and two for ruin probability calculations. \section{The collective risk model} \label{sec:collective-risk-model} Let random variable $S$ represent the aggregate claim amount (or total amount of claims) of a portfolio of independent risks over a fixed period of time, random variable $N$ represent the number of claims (or frequency) in the portfolio over that period, and random variable $C_j$ represent the amount of claim $j$ (or severity). Then, we have the random sum \begin{equation} \label{eq:definition-S} S = C_1 + \dots + C_N, \end{equation} where we assume that $C_1, C_2, \dots$ are mutually independent and identically distributed random variables each independent of $N$. The task at hand consists in evaluating numerically the cdf of $S$, given by \begin{align} \label{eq:cdf-S} F_S(x) &= \Pr[S \leq x] \notag \\ &= \sum_{n = 0}^\infty \Pr[S \leq x|N = n] p_n \notag \\ &= \sum_{n = 0}^\infty F_C^{*n}(x) p_n, \end{align} where $F_C(x) = \Pr[C \leq x]$ is the common cdf of $C_1, \dots, C_n$, $p_n = \Pr[N = n]$ and $F_C^{*n}(x) = \Pr[C_1 + \dots + C_n \leq x]$ is the $n$-fold convolution of $F_C(\cdot)$. If $C$ is discrete on $0, 1, 2, \dots$, one has \begin{equation} \label{eq:convolution-formula} F_C^{*k}(x) = \begin{cases} I\{x \geq 0\}, & k = 0 \\ F_C(x), & k = 1 \\ \sum_{y = 0}^x F_C^{*(k - 1)}(x - y) f_C(y), & k = 2, 3, \dots, \end{cases} \end{equation} where $I\{\mathcal{A}\} = 1$ if $\mathcal{A}$ is true and $I\{\mathcal{A}\} = 0$ otherwise. \section{Discretization of claim amount distributions} \label{sec:discretization} Some numerical techniques to compute the aggregate claim amount distribution (see \autoref{sec:aggregate}) require a discrete arithmetic claim amount distribution; that is, a distribution defined on $0, h, 2h, \dots$ for some step (or span, or lag) $h$. The package provides function \code{discretize} to discretize a continuous distribution. (The function can also be used to modify the support of an already discrete distribution, but this requires additional care.) Let $F(x)$ denote the cdf of the distribution to discretize on some interval $(a, b)$ and $f_x$ denote the probability mass at $x$ in the discretized distribution. Currently, \code{discretize} supports the following four discretization methods. \begin{enumerate} \item Upper discretization, or forward difference of $F(x)$: \begin{equation} \label{eq:discretization:upper} f_x = F(x + h) - F(x) \end{equation} for $x = a, a + h, \dots, b - h$. The discretized cdf is always above the true cdf. \item Lower discretization, or backward difference of $F(x)$: \begin{equation} \label{eq:discretization:lower} f_x = \begin{cases} F(a), & x = a \\ F(x) - F(x - h), & x = a + h, \dots, b. \end{cases} \end{equation} The discretized cdf is always under the true cdf. \item Rounding of the random variable, or the midpoint method: \begin{equation} \label{eq:discretization:midpoint} f_x = \begin{cases} F(a + h/2), & x = a \\ F(x + h/2) - F(x - h/2), & x = a + h, \dots, b - h. \end{cases} \end{equation} The true cdf passes exactly midway through the steps of the discretized cdf. \item Unbiased, or local matching of the first moment method: \begin{equation} \label{eq:discretization:unbiased} f_x = \begin{cases} \dfrac{\E{X \wedge a} - \E{X \wedge a + h}}{h} + 1 - F(a), & x = a \\ \dfrac{2 \E{X \wedge x} - \E{X \wedge x - h} - \E{X \wedge x + h}}{h}, & a < x < b \\ \dfrac{\E{X \wedge b} - \E{X \wedge b - h}}{h} - 1 + F(b), & x = b. \end{cases} \end{equation} The discretized and the true distributions have the same total probability and expected value on $(a, b)$. \end{enumerate} \autoref{fig:discretization-methods} illustrates the four methods. It should be noted that although very close in this example, the rounding and unbiased methods are not identical. \begin{figure}[t] \centering <>= fu <- discretize(plnorm(x), method = "upper", from = 0, to = 5) fl <- discretize(plnorm(x), method = "lower", from = 0, to = 5) fr <- discretize(plnorm(x), method = "rounding", from = 0, to = 5) fb <- discretize(plnorm(x), method = "unbiased", from = 0, to = 5, lev = levlnorm(x)) par(mfrow = c(2, 2), c(5, 2, 4, 2)) curve(plnorm(x), from = 0, to = 5, lwd = 2, main = "Upper", ylab = "F(x)") plot(stepfun(0:4, diffinv(fu)), pch = 20, add = TRUE) curve(plnorm(x), from = 0, to = 5, lwd = 2, main = "Lower", ylab = "F(x)") plot(stepfun(0:5, diffinv(fl)), pch = 20, add = TRUE) curve(plnorm(x), from = 0, to = 5, lwd = 2, main = "Rounding", ylab = "F(x)") plot(stepfun(0:4, diffinv(fr)), pch = 20, add = TRUE) curve(plnorm(x), from = 0, to = 5, lwd = 2, main = "Unbiased", ylab = "F(x)") plot(stepfun(0:5, diffinv(fb)), pch = 20, add = TRUE) ## curve(plnorm(x), from = 0, to = 5, lwd = 2, ylab = "F(x)") ## par(col = "blue") ## plot(stepfun(0:4, diffinv(fu)), pch = 19, add = TRUE) ## par(col = "red") ## plot(stepfun(0:5, diffinv(fl)), pch = 19, add = TRUE) ## par(col = "green") ## plot(stepfun(0:4, diffinv(fr)), pch = 19, add = TRUE) ## par(col = "magenta") ## plot(stepfun(0:5, diffinv(fb)), pch = 19, add = TRUE) ## legend(3, 0.3, legend = c("upper", "lower", "rounding", "unbiased"), ## col = c("blue", "red", "green", "magenta"), lty = 1, pch = 19, ## text.col = "black") @ \caption{Comparison of four discretization methods} \label{fig:discretization-methods} \end{figure} Usage of \code{discretize} is similar to R's plotting function \code{curve}. The cdf to discretize and, for the unbiased method only, the limited expected value function are passed to \code{discretize} as expressions in \code{x}. The other arguments are the upper and lower bounds of the discretization interval, the step $h$ and the discretization method. For example, upper and unbiased discretizations of a Gamma$(2, 1)$ distribution on $(0, 17)$ with a step of $0.5$ are achieved with, respectively, <>= fx <- discretize(pgamma(x, 2, 1), method = "upper", from = 0, to = 17, step = 0.5) fx <- discretize(pgamma(x, 2, 1), method = "unbiased", lev = levgamma(x, 2, 1), from = 0, to = 17, step = 0.5) @ Function \code{discretize} is written in a modular fashion making it simple to add other discretization methods if needed. \section{Calculation of the aggregate claim amount distribution} \label{sec:aggregate} Function \code{aggregateDist} serves as a unique front end for various methods to compute or approximate the cdf of the aggregate claim amount random variable $S$. Currently, five methods are supported. \begin{enumerate} \item Recursive calculation using the algorithm of \cite{Panjer_81}. This requires the severity distribution to be discrete arithmetic on $0, 1, 2, \dots, m$ for some monetary unit and the frequency distribution to be a member of either the $(a, b, 0)$ or $(a, b, 1)$ class of distributions \citep{LossModels4e}. (These classes contain the Poisson, binomial, negative binomial and logarithmic distributions and their zero-truncated and zero-modified extensions allowing for a zero or arbitrary mass at $x = 0$.) The general recursive formula is: \begin{displaymath} f_S(x) = \frac{(p_1 - (a + b)p_0)f_C(x) + \sum_{y=1}^{\min(x, m)}(a + by/x)f_C(y)f_S(x - y)}{1 - a f_C(0)}, \end{displaymath} with starting value $f_S(0) = P_N(f_C(0))$, where $P_N(\cdot)$ is the probability generating function of $N$. Probabilities are computed until their sum is arbitrarily close to 1. The recursions are done in C to dramatically increase speed. One difficulty the programmer is facing is the unknown length of the output. This was solved using a common, simple and fast technique: first allocate an arbitrary amount of memory and double this amount each time the allocated space gets full. \item Exact calculation by numerical convolutions using \eqref{eq:cdf-S} and \eqref{eq:convolution-formula}. This also requires a discrete severity distribution. However, there is no restriction on the shape of the frequency distribution. The package merely implements the sum \eqref{eq:cdf-S}, the convolutions being computed with R's function \code{convolve}, which in turn uses the Fast Fourier Transform. This approach is practical for small problems only, even on today's fast computers. \item Normal approximation of the cdf, that is \begin{equation} \label{eq:normal-approximation} F_S(x) \approx \Phi \left( \frac{x - \mu_S}{\sigma_S} \right), \end{equation} where $\mu_S = \E{S}$ and $\sigma_S^2 = \VAR{S}$. For most realistic models, this approximation is rather crude in the tails of the distribution. \item Normal Power II approximation of the cdf, that is \begin{equation} \label{eq:np2-approximation} F_S(x) \approx \Phi \left( -\frac{3}{\gamma_S} + \sqrt{\frac{9}{\gamma_S^2} + 1 + \frac{6}{\gamma_S} \frac{x - \mu_S}{\sigma_S}} \right), \end{equation} where $\gamma_S = \E{(S - \mu_S)^3}/\sigma_S^{3/2}$. The approximation is valid for $x > \mu_S$ only and performs reasonably well when $\gamma_S < 1$. See \cite{Daykin_et_al} for details. \item Simulation of a random sample from $S$ and approximation of $F_S(x)$ by the empirical cdf \begin{equation} F_n(x) = \frac{1}{n} \sum_{j = 1}^n I\{x_j \leq x\}. \end{equation} The simulation itself is done with function \code{simul} (see the \code{"simulation"} vignette). This function admits very general hierarchical models for both the frequency and the severity components. \end{enumerate} Here also, adding other methods to \code{aggregateDist} is simple due to its modular conception. The arguments of \code{aggregateDist} differ according to the chosen calculation method; see the help page for details. One interesting argument to note is \code{x.scale} to specify the monetary unit of the severity distribution. This way, one does not have to mentally do the conversion between the support of $0, 1, 2, \dots$ assumed by the recursive and convolution methods, and the true support of $S$. The recursive method fails when the expected number of claims is so large that $f_S(0)$ is numerically equal to zero. One solution proposed by \citet{LossModels4e} consists in dividing the appropriate parameter of the frequency distribution by $2^n$, with $n$ such that $f_S(0) > 0$ and the recursions can start. One then computes the aggregate claim amount distribution using the recursive method and then convolves the resulting distribution $n$ times with itself to obtain the final distribution. Function \code{aggregateDist} supports this procedure through its argument \code{convolve}. A common problem with the recursive method is failure to obtain a cumulative distribution function that reaching (close to) $1$. This is usually due to too coarse a discretization of the severity distribution. One should make sure to use a small enough discretization step and to discretize the severity distribution far in the right tail. The function \code{aggregateDist} returns an object of class \code{"aggregateDist"} inheriting from the \code{"function"} class. Thus, one can use the object as a function to compute the value of $F_S(x)$ in any $x$. For illustration purposes, consider the following model: the distribution of $S$ is a compound Poisson with parameter $\lambda = 10$ and severity distribution Gamma$(2, 1)$. To obtain an approximation of the cdf of $S$ we first discretize the gamma distribution on $(0, 22)$ with the unbiased method and a step of $0.5$, and then use the recursive method in \code{aggregateDist}: <>= fx <- discretize(pgamma(x, 2, 1), method = "unbiased", from = 0, to = 22, step = 0.5, lev = levgamma(x, 2, 1)) Fs <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx, lambda = 10, x.scale = 0.5) summary(Fs) # summary method @ Although useless here, the following is essentially equivalent, except in the far right tail for numerical reasons: <>= Fsc <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx, lambda = 5, convolve = 1, x.scale = 0.5) summary(Fsc) # summary method @ We return to object \code{Fs}. It contains an empirical cdf with support <>= knots(Fs) # support of Fs.b (knots) @ A nice graph of this function is obtained with a method of \code{plot} (see \autoref{fig:Fs}): <>= plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 60)) @ \begin{figure}[t] \centering <>= plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 60)) @ \caption{Graphic of the empirical cdf of $S$ obtained with the recursive method} \label{fig:Fs} \end{figure} The package defines a few summary methods to extract information from \code{"aggregateDist"} objects. First, there are methods of \code{mean} and \code{quantile} to easily compute the mean and obtain the quantiles of the approximate distribution: <>= mean(Fs) # empirical mean quantile(Fs) # quantiles quantile(Fs, 0.999) # quantiles @ Second, a method of \texttt{diff} gives easy access to the underlying probability mass function: <>= diff(Fs) @ Of course, this is defined (and makes sense) for the recursive, direct convolution and simulation methods only. Third, the package introduces the generic functions \code{VaR} and \code{CTE} (with alias \code{TVaR}) with methods for objects of class \code{"aggregateDist"}. The former computes the value-at-risk $\VaR_\alpha$ such that \begin{equation} \label{eq:VaR} \Pr[S \leq \VaR_\alpha] = \alpha, \end{equation} where $\alpha$ is the confidence level. Thus, the value-at-risk is nothing else than a quantile. As for the method of \code{CTE}, it computes the conditional tail expectation (also called Tail Value-at-Risk) \begin{equation} \label{eq:CTE} \CTE_\alpha = \E{S|S > \VaR_\alpha}. \end{equation} Here are examples using object \code{Fs} obtained above: <>= VaR(Fs) CTE(Fs) @ To conclude on the subject, \autoref{fig:Fs-comparison} shows the cdf of $S$ using five of the many combinations of discretization and calculation method supported by \pkg{actuar}. \begin{figure}[t] \centering <>= fx.u <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5, method = "upper") Fs.u <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx.u, lambda = 10, x.scale = 0.5) fx.l <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5, method = "lower") Fs.l <- aggregateDist("recursive", model.freq = "poisson", model.sev = fx.l, lambda = 10, x.scale = 0.5) Fs.n <- aggregateDist("normal", moments = c(20, 60)) Fs.s <- aggregateDist("simulation", model.freq = expression(y = rpois(10)), model.sev = expression(y = rgamma(2, 1)), nb.simul = 10000) par(col = "black") plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 60), sub = "") par(col = "blue") plot(Fs.u, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "") par(col = "red") plot(Fs.l, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "") par(col = "green") plot(Fs.s, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "") par(col = "magenta") plot(Fs.n, add = TRUE, sub = "") legend(30, 0.4, c("recursive + unbiased", "recursive + upper", "recursive + lower", "simulation", "normal approximation"), col = c("black", "blue", "red", "green", "magenta"), lty = 1, text.col = "black") @ \caption{Comparison between the empirical or approximate cdf of $S$ obtained with five different methods} \label{fig:Fs-comparison} \end{figure} \section{The continuous time ruin model} \label{sec:ruin-model} We now turn to the multi-period ruin problem. Let $U(t)$ denote the surplus of an insurance company at time $t$, $c(t)$ denote premiums collected through time $t$, and $S(t)$ denote aggregate claims paid through time $t$. If $u$ is the initial surplus at time $t = 0$, then a mathematically convenient definition of $U(t)$ is \begin{equation} \label{eq:definition-surplus} U(t) = u + c(t) - S(t). \end{equation} As mentioned previously, technical ruin of the insurance company occurs when the surplus becomes negative. Therefore, the definition of the infinite time probability of ruin is \begin{equation} \label{eq:definition-ruin} \psi(u) = \Pr[U(t) < 0 \text{ for some } t \geq 0]. \end{equation} We define some other quantities needed in the sequel. Let $N(t)$ denote the number of claims up to time $t \geq 0$ and $C_j$ denote the amount of claim $j$. Then the definition of $S(t)$ is analogous to \eqref{eq:definition-S}: \begin{equation} \label{eq:definition-S(t)} S(t) = C_1 + \dots + C_{N(t)}, \end{equation} assuming $N(0) = 0$ and $S(t) = 0$ as long as $N(t) = 0$. Furthermore, let $T_j$ denote the time when claim $j$ occurs, such that $T_1 < T_2 < T_3 < \dots$ Then the random variable of the interarrival (or wait) time between claim $j - 1$ and claim $j$ is defined as $W_1 = T_1$ and \begin{equation} \label{eq:definition-wait} W_j = T_j - T_{j - 1}, \quad j \geq 2. \end{equation} For the rest of this discussion, we make the following assumptions: \begin{enumerate} \item premiums are collected at a constant rate $c$, hence $c(t) = ct$; \item the sequence $\{T_j\}_{j \geq 1}$ forms an ordinary renewal process, with the consequence that random variables $W_1, W_2, \dots$ are independent and identically distributed; \item claim amounts $C_1, C_2, \dots$ are independent and identically distributed. \end{enumerate} \section{Adjustment coefficient} \label{sec:adjustment-coefficient} The quantity known as the adjustment coefficient $\rho$ hardly has any physical interpretation, but it is useful as an approximation to the probability of ruin since we have the inequality \begin{displaymath} \psi(u) \leq e^{-\rho u}, \quad u \geq 0. \end{displaymath} The adjustment coefficient is defined as the smallest strictly positive solution (if it exists) of the Lundberg equation \begin{equation} \label{eq:definition-adjcoef} h(t) = \E{e^{t C - t c W}} = 1, \end{equation} where the premium rate $c$ satisfies the positive safety loading constraint $\E{C - cW} < 0$. If $C$ and $W$ are independent, as in the most common models, then the equation can be rewritten as \begin{equation} \label{eq:definition-adjcoef-ind} h(t) = M_C(t) M_W(-tc) = 1. \end{equation} Function \code{adjCoef} of \pkg{actuar} computes the adjustment coefficient $\rho$ from the following arguments: either the two moment generating functions $M_C(t)$ and $M_W(t)$ (thereby assuming independence) or else function $h(t)$; the premium rate $c$; the upper bound of the support of $M_C(t)$ or any other upper bound for $\rho$. For example, if $W$ and $C$ are independent, $W \sim \text{Exponential}(2)$, $C \sim \text{Exponential}(1)$ and the premium rate is $c = 2.4$ (for a safety loading of 20\% using the expected value premium principle), then the adjustment coefficient is <>= adjCoef(mgf.claim = mgfexp(x), mgf.wait = mgfexp(x, 2), premium.rate = 2.4, upper = 1) @ The function also supports models with proportional or excess-of-loss reinsurance \citep{Centeno_02}. Under the first type of treaty, an insurer pays a proportion $\alpha$ of every loss and the rest is paid by the reinsurer. Then, for fixed $\alpha$ the adjustment coefficient is the solution of \begin{equation} \label{eq:definition-adjcoef-prop} h(t) = \E{e^{t \alpha C - t c(\alpha) W}} = 1. \end{equation} Under an excess-of-loss treaty, the primary insurer pays each claim up to a limit $L$. Again, for fixed $L$, the adjustment coefficient is the solution of \begin{equation} \label{eq:definition-adjcoef-xl} h(t) = \E{e^{t \min(C, L) - t c(L) W}} = 1. \end{equation} For models with reinsurance, \code{adjCoef} returns an object of class \code{"adjCoef"} inheriting from the \code{"function"} class. One can then use the object to compute the adjustment coefficient for any retention rate $\alpha$ or retention limit $L$. The package also defines a method of \code{plot} for these objects. For example, using the same assumptions as above with proportional reinsurance and a 30\% safety loading for the reinsurer, the adjustment coefficient as a function of $\alpha \in [0, 1]$ is (see \autoref{fig:adjcoef} for the graph): <>= mgfx <- function(x, y) mgfexp(x * y) p <- function(x) 2.6 * x - 0.2 rho <- adjCoef(mgfx, mgfexp(x, 2), premium = p, upper = 1, reins = "prop", from = 0, to = 1) rho(c(0.75, 0.8, 0.9, 1)) plot(rho) @ \begin{figure}[t] \centering <>= plot(rho) @ \caption{Adjustment coefficient as a function of the retention rate} \label{fig:adjcoef} \end{figure} \section{Probability of ruin} \label{sec:ruin} In this subsection, we always assume that interarrival times and claim amounts are independent. The main difficulty with the calculation of the infinite time probability of ruin lies in the lack of explicit formulas except for the most simple models. If interarrival times are Exponential$(\lambda)$ distributed (Poisson claim number process) and claim amounts are Exponential$(\beta)$ distributed, then \begin{equation} \label{eq:ruin-cramer-lundberg} \psi(u) = \frac{\lambda}{c \beta}\, e^{-(\beta - \lambda/c) u}. \end{equation} If the frequency assumption of this model is defensible, the severity assumption can hardly be used beyond illustration purposes. Fortunately, phase-type distributions have come to the rescue since the early 1990s. \cite{AsmussenRolski_91} first show that in the classical CramĂ©r--Lundberg model where interarrival times are Exponential$(\lambda)$ distributed, if claim amounts are Phase-type$(\mat{\pi}, \mat{T})$ distributed, then $\psi(u) = 1 - F(u)$, where $F$ is Phase-type$(\mat{\pi}_+, \mat{Q})$ with \begin{equation} \label{eq:prob-ruin:cramer-lundberg} \begin{split} \mat{\pi}_+ &= - \frac{\lambda}{c}\, \mat{\pi} \mat{T}^{-1} \\ \mat{Q} &= \mat{T} + \mat{t} \mat{\pi}_+, \end{split} \end{equation} and $\mat{t} = -\mat{T} \mat{e}$, $\mat{e}$ is a column vector with all components equal to 1; see the \code{"lossdist"} vignette for details. In the more general Sparre~Andersen model where interarrival times can have any Phase-type$(\mat{\nu}, \mat{S})$ distribution, \cite{AsmussenRolski_91} also show that using the same claim severity assumption as above, one still has $\psi(u) = 1 - F(u)$ where $F$ is Phase-type$(\mat{\pi}_+, \mat{Q})$, but with parameters \begin{equation} \label{eq:prob-ruin:sparre:pi+} \mat{\pi}_+ = \frac{\mat{e}^\prime (\mat{Q} - \mat{T})}{% c \mat{e}^\prime \mat{t}} \end{equation} and $\mat{Q}$ solution of \begin{equation} \label{eq:eq:prob-ruin:sparre:Q} \begin{split} \mat{Q} &= \Psi(\mat{Q}) \\ &= \mat{T} - \mat{t} \mat{\pi} \left[ (\mat{I}_n \otimes \mat{\nu}) (\mat{Q} \oplus \mat{S})^{-1} (\mat{I}_n \otimes \mat{s}) \right]. \end{split} \end{equation} In the above, $\mat{s} = -\mat{S} \mat{e}$, $\mat{I}_n$ is the $n \times n$ identity matrix, $\otimes$ denotes the usual Kronecker product between two matrices and $\oplus$ is the Kronecker sum defined as \begin{equation} \label{eq:kronecker-sum} \mat{A}_{m \times m} \oplus \mat{B}_{n \times n} = \mat{A} \otimes \mat{I}_n + \mat{B} \otimes \mat{I}_m. \end{equation} Function \code{ruin} of \pkg{actuar} returns a function object of class \code{"ruin"} to compute the probability of ruin for any initial surplus $u$. In all cases except the exponential/exponential model where \eqref{eq:ruin-cramer-lundberg} is used, the output object calls function \code{pphtype} to compute the ruin probabilities. Some thought went into the interface of \code{ruin}. Obviously, all models can be specified using phase-type distributions, but the authors wanted users to have easy access to the most common models involving exponential and Erlang distributions. Hence, one first states the claim amount and interarrival times models with any combination of \code{"exponential"}, \code{"Erlang"} and \code{"phase-type"}. Then, one passes the parameters of each model using lists with components named after the corresponding parameters of \code{dexp}, \code{dgamma} and \code{dphtype}. If a component \code{"weights"} is found in a list, the model is a mixture of exponential or Erlang (mixtures of phase-type are not supported). Every component of the parameter lists is recycled as needed. The following examples should make the matter clearer. (All examples use $c = 1$, the default value in \code{ruin}.) First, for the exponential/exponential model, one has <>= psi <- ruin(claims = "e", par.claims = list(rate = 5), wait = "e", par.wait = list(rate = 3)) psi psi(0:10) @ Second, for a mixture of two exponentials claim amount model and exponential interarrival times, the simplest call to \code{ruin} is <>= op <- options(width=50) @ <>= ruin(claims = "e", par.claims = list(rate = c(3, 7), weights = 0.5), wait = "e", par.wait = list(rate = 3)) @ Finally, one will obtain a function to compute ruin probabilities in a model with phase-type claim amounts and mixture of exponentials interarrival times with <>= prob <- c(0.5614, 0.4386) rates <- matrix(c(-8.64, 0.101, 1.997, -1.095), 2, 2) ruin(claims = "p", par.claims = list(prob = prob, rates = rates), wait = "e", par.wait = list(rate = c(5, 1), weights = c(0.4, 0.6))) @ To ease plotting of the probability of ruin function, the package provides a method of \code{plot} for objects returned by \code{ruin} that is a simple wrapper for \code{curve} (see \autoref{fig:prob-ruin}): <>= psi <- ruin(claims = "p", par.claims = list(prob = prob, rates = rates), wait = "e", par.wait = list(rate = c(5, 1), weights = c(0.4, 0.6))) plot(psi, from = 0, to = 50) @ <>= options(op) @ \begin{figure}[t] \centering <>= plot(psi, from = 0, to = 50) @ \caption{Graphic of the probability of ruin as a function of the initial surplus $u$} \label{fig:prob-ruin} \end{figure} \section{Approximation to the probability of ruin} \label{sec:beekman} When the model for the aggregate claim process \eqref{eq:definition-S(t)} does not fit nicely into the framework of the previous section, one can compute ruin probabilities using the so-called Beekman's convolution formula \citep{Beekman_68,BeekmanFormula_EAS}. Let the surplus process and the aggregate claim amount process be defined as in \eqref{eq:definition-surplus} and \eqref{eq:definition-S(t)}, respectively, and let $\{N(t)\}$ be a Poisson process with mean $\lambda$. As before, claim amounts $C_1, C_2, \dots$ are independent and identically distributed with cdf $P(\cdot)$ and mean $\mu = \E{C_1}$. Then the infinite time probability of ruin is given by \begin{equation} \label{eq:beekman:prob-ruin} \psi(u) = 1 - F(u), \end{equation} where $F(\cdot)$ is Compound~Geometric$(p, H)$ with \begin{equation} \label{eq:beekman:p} p = 1 - \frac{\lambda \mu}{c} \end{equation} and \begin{equation} \label{eq:beekman:H} H(x) = \int_0^x \frac{1 - P(y)}{\mu}\, dy. \end{equation} In other words, we have (compare with \eqref{eq:cdf-S}): \begin{equation} \label{eq:beekman:prob-ruin-long} \psi(u) = 1 - \sum_{n = 0}^\infty H^{*n}(u) p (1 - p)^n. \end{equation} In most practical situations, numerical evaluation of \eqref{eq:beekman:prob-ruin-long} is done using Panjer's recursive formula. This usually requires discretization of $H(\cdot)$. In such circumstances, Beekman's formula yields approximate ruin probabilities. For example, let claim amounts have a Pareto$(5, 4)$ distribution, that is \begin{displaymath} P(x) = 1 - \left( \frac{4}{4 + x} \right)^5 \end{displaymath} and $\mu = 1$. Then \begin{align*} H(x) &= \int_0^x \left( \frac{4}{4 + y} \right)^5 dy \\ &= 1 - \left( \frac{4}{4 + x} \right)^4, \end{align*} or else $H$ is Pareto$(4, 4)$. Furthermore, we determine the premium rate $c$ with the expected value premium principle and a safety loading of 20\%, that is $c = 1.2 \lambda \mu$. Thus, $p = 0.2/1.2 = 1/6$. One can get functions to compute lower bounds and upper bounds for $F(u)$ with functions \code{discretize} and \code{aggregateDist} as follows: <>= f.L <- discretize(ppareto(x, 4, 4), from = 0, to = 200, step = 1, method = "lower") f.U <- discretize(ppareto(x, 4, 4), from = 0, to = 200, step = 1, method = "upper") F.L <- aggregateDist(method = "recursive", model.freq = "geometric", model.sev = f.L, prob = 1/6) F.U <- aggregateDist(method = "recursive", model.freq = "geometric", model.sev = f.U, prob = 1/6) @ Corresponding functions for the probability of ruin $\psi(u)$ lower and upper bounds are (see \autoref{fig:beekman:prob-ruin} for the graphic): <>= psi.L <- function(u) 1 - F.U(u) psi.U <- function(u) 1 - F.L(u) u <- seq(0, 50, by = 5) cbind(lower = psi.L(u), upper = psi.U(u)) curve(psi.L, from = 0, to = 100, col = "blue") curve(psi.U, add = TRUE, col = "green") @ \begin{figure}[t] \centering <>= curve(psi.L, from = 0, to = 100, col = "blue") curve(psi.U, add = TRUE, col = "green") @ \caption{Lower and upper bounds for the probability of ruin as determined using Beekman's convolution formula.} \label{fig:beekman:prob-ruin} \end{figure} One can make the bounds as close as one wishes by reducing the discretization step. \bibliography{actuar} \end{document} %%% Local Variables: %%% mode: noweb %%% TeX-master: t %%% coding: utf-8 %%% End: actuar/inst/include/0000755000176200001440000000000014173361163014136 5ustar liggesusersactuar/inst/include/actuarAPI.h0000644000176200001440000004314514030725703016123 0ustar liggesusers/* actuar: Actuarial Functions and Heavy Tailed Distributions * * Support for exported functions at the C level. * * This is derived from code in package zoo. * * Copyright (C) 2020 Vincent Goulet * Copyright (C) 2010 Jeffrey A. Ryan jeff.a.ryan @ gmail.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. * * AUTHOR: Vincent Goulet */ #include #include #include #ifdef __cplusplus extern "C" { #endif /* Special integrals */ double betaint(double x, double a, double b, int foo); double betaint_raw(double x, double a, double b, double x1m); /* One parameter distributions */ double mexp(double order, double scale, int give_log); double levexp(double limit, double scale, double order, int give_log); double mgfexp(double t, double scale, int give_log); double dinvexp(double x, double scale, int give_log); double pinvexp(double q, double scale, int lower_tail, int log_p); double qinvexp(double p, double scale, int lower_tail, int log_p); double rinvexp(double scale); double minvexp(double order, double scale, int give_log); double levinvexp(double limit, double scale, double order, int give_log); double dlogarithmic(double x, double p, int give_log); double plogarithmic(double x, double p, int lower_tail, int log_p); double qlogarithmic(double x, double p, int lower_tail, int log_p); double rlogarithmic(double p); double dztpois(double x, double lambda, int give_log); double pztpois(double q, double lambda, int lower_tail, int log_p); double qztpois(double p, double lambda, int lower_tail, int log_p); double rztpois(double lambda); double dztgeom(double x, double prob, int give_log); double pztgeom(double q, double prob, int lower_tail, int log_p); double qztgeom(double p, double prob, int lower_tail, int log_p); double rztgeom(double prob); /* Two parameter distributions */ double munif(double order, double min, double max, int give_log); double levunif(double limit, double min, double max, double order, int give_log); double mgfunif(double t, double min, double max, int give_log); double mnorm(double order, double mean, double sd, int give_log); double mgfnorm(double t, double mean, double sd, int give_log); double mbeta(double order, double shape1, double shape2, int give_log); double levbeta(double limit, double shape1, double shape2, double order, int give_log); double mgamma(double order, double shape, double scale, int give_log); double levgamma(double limit, double shape, double scale, double order, int give_log); double mgfgamma(double t, double shape, double scale, int give_log); double mchisq(double order, double df, double ncp, int give_log); double levchisq(double limit, double df, double ncp, double order, int give_log); double mgfchisq(double t, double df, double ncp, int give_log); double dinvgamma(double x, double scale, double shape, int give_log); double pinvgamma(double q, double scale, double shape, int lower_tail, int log_p); double qinvgamma(double p, double scale, double shape, int lower_tail, int log_p); double rinvgamma(double scale, double shape); double minvgamma(double order, double scale, double shape, int give_log); double levinvgamma(double limit, double scale, double shape, double order, int give_log); double mgfinvgamma(double t, double shape, double scale, int give_log); double dinvparalogis(double x, double shape, double scale, int give_log); double pinvparalogis(double q, double shape, double scale, int lower_tail, int log_p); double qinvparalogis(double p, double shape, double scale, int lower_tail, int log_p); double rinvparalogis(double shape, double scale); double minvparalogis(double order, double shape, double scale, int give_log); double levinvparalogis(double limit, double shape, double scale, double order, int give_log); double dinvpareto(double x, double shape, double scale, int give_log); double pinvpareto(double q, double shape, double scale, int lower_tail, int log_p); double qinvpareto(double p, double shape, double scale, int lower_tail, int log_p); double rinvpareto(double shape, double scale); double minvpareto(double order, double shape, double scale, int give_log); double levinvpareto(double limit, double shape, double scale, double order, int log_p); double dinvweibull(double x, double scale, double shape, int give_log); double pinvweibull(double q, double scale, double shape, int lower_tail, int log_p); double qinvweibull(double p, double scale, double shape, int lower_tail, int log_p); double rinvweibull(double scale, double shape); double minvweibull(double order, double scale, double shape, int give_log); double levinvweibull(double limit, double scale, double shape, double order, int give_log); double dlgamma(double x, double shapelog, double ratelog, int give_log); double plgamma(double q, double shapelog, double ratelog, int lower_tail, int log_p); double qlgamma(double p, double shapelog, double ratelog, int lower_tail, int log_p); double rlgamma(double ratelog, double shapelog); double mlgamma(double order, double shapelog, double ratelog, int give_log); double levlgamma(double limit, double shapelog, double ratelog, double order, int give_log); double dllogis(double x, double shape, double scale, int give_log); double pllogis(double q, double shape, double scale, int lower_tail, int log_p); double qllogis(double p, double shape, double scale, int lower_tail, int log_p); double rllogis(double shape, double scale); double mllogis(double order, double shape, double scale, int give_log); double levllogis(double limit, double shape, double scale, double order, int give_log); double mlnorm(double order, double logmean, double logsd, int give_log); double levlnorm(double limit, double logmean, double logsd, double order, int give_log); double dparalogis(double x, double shape, double scale, int give_log); double pparalogis(double q, double shape, double scale, int lower_tail, int log_p); double qparalogis(double p, double shape, double scale, int lower_tail, int log_p); double rparalogis(double shape, double scale); double mparalogis(double order, double shape, double scale, int give_log); double levparalogis(double limit, double shape, double scale, double order, int give_log); double dpareto(double x, double shape, double scale, int give_log); double ppareto(double q, double shape, double scale, int lower_tail, int log_p); double qpareto(double p, double shape, double scale, int lower_tail, int log_p); double rpareto(double shape, double scale); double mpareto(double order, double shape, double scale, int give_log); double levpareto(double limit, double shape, double scale, double order, int give_log); double dpareto1(double x, double shape, double scale, int give_log); double ppareto1(double q, double shape, double scale, int lower_tail, int log_p); double qpareto1(double p, double shape, double scale, int lower_tail, int log_p); double rpareto1(double shape, double scale); double mpareto1(double order, double shape, double scale, int give_log); double levpareto1(double limit, double shape, double scale, double order, int give_log); double mweibull(double order, double scale, double shape, int give_log); double levweibull(double limit, double scale, double shape, double order, int give_log); double dgumbel(double x, double alpha, double beta, int give_log); double pgumbel(double q, double alpha, double beta, int lower_tail, int log_p); double qgumbel(double p, double alpha, double beta, int lower_tail, int log_p); double rgumbel(double alpha, double beta); double mgumbel(double order, double alpha, double beta, int give_log); double mgfgumbel(double t, double alpha, double beta, int give_log); double dinvgauss(double x, double mu, double phi, int give_log); double pinvgauss(double q, double mu, double phi, int lower_tail, int log_p); double qinvgauss(double q, double mu, double phi, int lower_tail, int log_p, double tol, int maxit, int echo); double rinvgauss(double mu, double phi); double minvgauss(double order, double mean, double phi, int give_log); double levinvgauss(double limit, double mean, double phi, double order, int give_log); double mgfinvgauss(double t, double mean, double phi, int give_log); double dztnbinom(double x, double size, double prob, int give_log); double pztnbinom(double q, double size, double prob, int lower_tail, int log_p); double qztnbinom(double p, double size, double prob, int lower_tail, int log_p); double rztnbinom(double size, double prob); double dztbinom(double x, double size, double prob, int give_log); double pztbinom(double q, double size, double prob, int lower_tail, int log_p); double qztbinom(double p, double size, double prob, int lower_tail, int log_p); double rztbinom(double size, double prob); double dzmlogarithmic(double x, double p, double p0m, int give_log); double pzmlogarithmic(double x, double p, double p0m, int lower_tail, int log_p); double qzmlogarithmic(double x, double p, double p0m, int lower_tail, int log_p); double rzmlogarithmic(double p, double p0m); double dzmpois(double x, double lambda, double p0m, int give_log); double pzmpois(double q, double lambda, double p0m, int lower_tail, int log_p); double qzmpois(double p, double lambda, double p0m, int lower_tail, int log_p); double rzmpois(double lambda, double p0m); double dzmgeom(double x, double prob, double p0m, int give_log); double pzmgeom(double q, double prob, double p0m, int lower_tail, int log_p); double qzmgeom(double p, double prob, double p0m, int lower_tail, int log_p); double rzmgeom(double prob, double p0m); double dpoisinvgauss(double x, double mu, double phi, int give_log); double ppoisinvgauss(double q, double mu, double phi, int lower_tail, int log_p); double qpoisinvgauss(double p, double mu, double phi, int lower_tail, int log_p); double rpoisinvgauss(double mu, double phi); /* Three parameter distributions */ double dburr(double x, double shape1, double shape2, double scale, int give_log); double pburr(double q, double shape1, double shape2, double scale, int lower_tail, int log_p); double qburr(double p, double shape1, double shape2, double scale, int lower_tail, int log_p); double rburr(double shape1, double shape2, double scale); double mburr(double order, double shape1, double shape2, double scale, int give_log); double levburr(double limit, double shape1, double shape2, double scale, double order, int give_log); double dgenpareto(double x, double shape1, double shape2, double scale, int give_log); double pgenpareto(double q, double shape1, double shape2, double scale, int lower_tail, int log_p); double qgenpareto(double p, double shape1, double shape2, double scale, int lower_tail, int log_p); double rgenpareto(double shape1, double shape2, double scale); double mgenpareto(double order, double shape1, double shape2, double scale, int give_log); double levgenpareto(double limit, double shape1, double shape2, double scale, double order, int give_log); double dinvburr(double x, double shape1, double shape2, double scale, int give_log); double pinvburr(double q, double shape1, double shape2, double scale, int lower_tail, int log_p); double qinvburr(double p, double shape1, double shape2, double scale, int lower_tail, int log_p); double rinvburr(double shape1, double shape2, double scale); double minvburr(double order, double shape1, double shape2, double scale, int give_log); double levinvburr(double limit, double shape1, double shape2, double scale, double order, int give_log); double dinvtrgamma(double x, double shape1, double shape2, double scale, int give_log); double pinvtrgamma(double q, double shape1, double shape2, double scale, int lower_tail, int log_p); double qinvtrgamma(double p, double shape1, double shape2, double scale, int lower_tail, int log_p); double rinvtrgamma(double shape1, double shape2, double scale); double minvtrgamma(double order, double shape1, double shape2, double scale, int give_log); double levinvtrgamma(double limit, double shape1, double shape2, double scale, double order, int give_log); double dtrgamma(double x, double shape1, double shape2, double scale, int give_log); double ptrgamma(double q, double shape1, double shape2, double scale, int lower_tail, int log_p); double qtrgamma(double p, double shape1, double shape2, double scale, int lower_tail, int log_p); double rtrgamma(double shape1, double shape2, double scale); double mtrgamma(double order, double shape1, double shape2, double scale, int give_log); double levtrgamma(double limit, double shape1, double shape2, double scale, double order, int give_log); double dpareto2(double x, double min, double shape, double scale, int give_log); double ppareto2(double q, double min, double shape, double scale, int lower_tail, int log_p); double qpareto2(double p, double min, double shape, double scale, int lower_tail, int log_p); double rpareto2(double min, double shape, double scale); double mpareto2(double order, double min, double shape, double scale, int give_log); double levpareto2(double limit, double min, double shape, double scale, double order, int give_log); double dpareto3(double x, double min, double shape, double scale, int give_log); double ppareto3(double q, double min, double shape, double scale, int lower_tail, int log_p); double qpareto3(double p, double min, double shape, double scale, int lower_tail, int log_p); double rpareto3(double min, double shape, double scale); double mpareto3(double order, double min, double shape, double scale, int give_log); double levpareto3(double limit, double min, double shape, double scale, double order, int give_log); double dzmnbinom(double x, double size, double prob, double p0m, int give_log); double pzmnbinom(double q, double size, double prob, double p0m, int lower_tail, int log_p); double qzmnbinom(double p, double size, double prob, double p0m, int lower_tail, int log_p); double rzmnbinom(double size, double prob, double p0m); double dzmbinom(double x, double size, double prob, double p0m, int give_log); double pzmbinom(double q, double size, double prob, double p0m, int lower_tail, int log_p); double qzmbinom(double p, double size, double prob, double p0m, int lower_tail, int log_p); double rzmbinom(double size, double prob, double p0m); /* Four parameter distributions */ double dgenbeta(double x, double shape1, double shape2, double shape3, double scale, int give_log); double pgenbeta(double q, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p); double qgenbeta(double p, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p); double rgenbeta(double shape1, double shape2, double shape3, double scale); double mgenbeta(double order, double shape1, double shape2, double shape3, double scale, int give_log); double levgenbeta(double limit, double shape1, double shape2, double shape3, double scale, double order, int give_log); double dtrbeta(double x, double shape1, double shape2, double shape3, double scale, int give_log); double ptrbeta(double q, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p); double qtrbeta(double p, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p); double rtrbeta(double shape1, double shape2, double shape3, double scale); double mtrbeta(double order, double shape1, double shape2, double shape3, double scale, int give_log); double levtrbeta(double limit, double shape1, double shape2, double shape3, double scale, double order, int give_log); double dpareto4(double x, double min, double shape1, double shape2, double scale, int give_log); double ppareto4(double q, double min, double shape1, double shape2, double scale, int lower_tail, int log_p); double qpareto4(double p, double min, double shape1, double shape2, double scale, int lower_tail, int log_p); double rpareto4(double min, double shape1, double shape2, double scale); double mpareto4(double order, double min, double shape1, double shape2, double scale, int give_log); double levpareto4(double limit, double min, double shape1, double shape2, double scale, double order, int give_log); /* Five parameter distributions */ double dfpareto(double x, double min, double shape1, double shape2, double shape3, double scale, int give_log); double pfpareto(double q, double min, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p); double qfpareto(double p, double min, double shape1, double shape2, double shape3, double scale, int lower_tail, int log_p); double rfpareto(double min, double shape1, double shape2, double shape3, double scale); double mfpareto(double order, double min, double shape1, double shape2, double shape3, double scale, int give_log); double levfpareto(double limit, double mu, double shape1, double shape2, double shape3, double scale, double order, int give_log); /* Phase-type distributions */ double dphtype(double x, double *pi, double *T, int m, int give_log); double pphtype(double x, double *pi, double *T, int m, int lower_tail, int log_p); double rphtype(double *pi, double **Q, double *rates, int m); double mphtype(double order, double *pi, double *T, int m, int give_log); double mgfphtype(double x, double *pi, double *T, int m, int give_log); #ifdef __cplusplus } #endif actuar/inst/CITATION0000644000176200001440000000165414173361070013653 0ustar liggesuserscitHeader("To cite actuar in publications use:") p1 <- person("Christophe", "Dutang") p2 <- person("Vincent", "Goulet", email = "vincent.goulet@act.ulaval.ca") p3 <- person("Mathieu", "Pigeon") citEntry(entry="Article", title = "actuar: An R Package for Actuarial Science", author = personList(p1, p2, p3), journal = "Journal of Statistical Software", year = 2008, volume = 25, number = 7, pages = 1--37, doi = "10.18637/jss.v025.i07", textVersion = paste("C. Dutang, V. Goulet and M. Pigeon (2008).", "actuar: An R Package for Actuarial Science.", "Journal of Statistical Software, vol. 25, no. 7, 1-37.", "URL http://www.jstatsoft.org/v25/i07") ) citFooter("We have invested a lot of time and effort in creating actuar,", "please cite both the package and R when using them for data analysis.", "See also", sQuote("citation()"), "for citing R.") actuar/inst/NEWS.0.Rd0000644000176200001440000004646214030725703013724 0ustar liggesusers\name{NEWS} \title{actuar News} \encoding{UTF-8} \section{LATER NEWS}{ This file covers NEWS for the 0.x series. News for \pkg{actuar} 1.0-0 and later can be found in file \file{NEWS.1.Rd}. } \section{CHANGES IN VERSION 0.9-7}{ \subsection{NEW FEATURES}{ \itemize{ \item \code{plot} method for function objects returned by \code{ruin()}. } } \subsection{BUG FIXES}{ \itemize{ \item Calculation of the BĂŒhlmann-Gisler and Ohlsson estimators was incorrect for hierarchical models with more than one level. \item Better display of first column for grouped data objects. \item Miscellaneous corrections to the vignettes. } } } \section{CHANGES IN VERSION 0.9-6}{ \itemize{ \item Accented letters in comments removed to avoid compilation problems under MacOS X on CRAN (see thread starting at \url{https://stat.ethz.ch/pipermail/r-devel/2008-February/048391.html}). } } \section{CHANGES IN VERSION 0.9-5}{ \subsection{NEW FEATURES}{ \itemize{ \item New \code{simulation} vignette on usage of function \code{simul()}. Most of the material was previously in the \code{credibility} vignette. \item Examples of \code{ruin()} and \code{adjCoef()} added to the \code{risk} demo. } } \subsection{USER-VISIBLE CHANGES}{ \itemize{ \item Following some negative comments on a function name VG had been using for years, function \code{simpf()} is renamed to \code{simul()} and the class of the output from \code{simpf} to \code{portfolio}. \item The components of the list returned by \code{severity.portfolio()} are renamed from \code{"first"} and \code{"last"} to \code{"main"} and \code{"split"}, respectively. } } \subsection{BUG FIXES}{ \itemize{ \item \code{levinvgauss()} returned wrong results. \item Restructuring of the weights matrix in \code{simpf()} may fail with an incorrect number of columns. \item Fixed index entry of the credibility theory vignette. \item \code{adjCoef()} would only accept as argument \code{h} a function named \code{h}. \item \code{ruin()} built incorrect probability vector and intensity matrix for mixture of Erlangs. \item \code{CTE.aggregateDist()} sometimes gave values smaller than the VaR for recursive and simulation methods. } } } \section{CHANGES IN VERSION 0.9-4}{ \itemize{ \item Maintenance and new features release. } \subsection{NEW FEATURES -- LOSS DISTRIBUTIONS}{ \itemize{ \item Functions \code{mgffoo()} to compute the moment (or cumulant if \code{log = TRUE}) generating function of the following distributions: chi-square, exponential, gamma, inverse gaussian (from package \pkg{SuppDists}), inverse gamma, normal, uniform and phase-type (see below). \item Functions \code{mfoo()} to compute the raw moments of all the probability distributions supported in the package and the following of base R: chi-square, exponential, gamma, inverse gaussian (from package \pkg{SuppDists}), inverse gamma, normal, uniform. \item Functions \code{phtype()} to compute the probability density function, cumulative distribution function, moment generating function, raw moments of, and to generate variates from, phase-type distributions. } } \subsection{NEW FEATURES -- RISK THEORY}{ \itemize{ \item Function \code{VaR()} with a method for objects of class \code{"aggregateDist"} to compute the Value at Risk of a distribution. \item Function \code{CTE()} with a method for objects of class \code{"aggregateDist"} to compute the Conditional Tail Expectation of a distribution. \item Function \code{adjCoef()} to compute the adjustment coefficient in ruin theory. If proportional or excess-of-loss reinsurance is included in the model, \code{adjCoef()} returns a function to compute the adjustment coefficient for given limits. A plot method is also included. \item Function \code{ruin()} returns a function to compute the infinite time probability of ruin for given initial surpluses in the CramĂ©r-Lundberg and Sparre Andersen models. Most calculations are done using the cdf of phase-type distributions as per Asmussen and Rolski (1991). \item Calculations of the aggregate claim distribution using the recursive method much faster now that recursions are done in C. } } \subsection{NEW FEATURES -- CREDIBILITY THEORY}{ \itemize{ \item Modular rewrite of \code{cm()}: the function now calls internal functions to carry calculations for each supported credibility model. This is more efficient. \item Basic support for the regression model of Hachemeister in function \code{cm()}. \item For the hierarchical credibility model: support for the variance components estimators of BĂŒhlmann and Gisler (2005) and Ohlsson (2005). Support remains for iterative pseudo-estimators. \item Calculations of iterative pseudo-estimators in hierarchical credibility are much faster now that they are done in C. } } \subsection{OTHER NEW FEATURES}{ \itemize{ \item Four new vignettes: introduction to the package and presentation of the features in loss distributions, risk theory and credibility theory. \item Portfolio simulation material of the \code{credibility} demo moved to demo \code{simulation}. } } \subsection{USER-VISIBLE CHANGES}{ \itemize{ \item Argument \code{approx.lin} of \code{quantile.aggregateDist()} renamed \code{smooth}. \item Function \code{aggregateDist()} gains a \code{maxit} argument for the maximum number of recursions when using Panjer's algorithm. This is to avoid infinite recursion when the cumulative distribution function does not converge to 1. \item Function \code{cm()} gains a \code{maxit} argument for the maximum number of iterations in pseudo-estimators calculations. \item Methods of \code{aggregate()}, \code{frequency()}, \code{severity()} and \code{weights()} for objects of class \code{"simpf"} gain two new arguments: \enumerate{ \item \code{classification}; when \code{TRUE}, the columns giving the classification structure of the portfolio are excluded from the result. This eases calculation of loss ratios (aggregate claim amounts divided by the weights); \item \code{prefix}; specifies a prefix to use in column names, with sensible defaults to avoid name clashes for data and weight columns. } } } \subsection{BUG FIXES}{ \itemize{ \item The way weights had to be specified for the \code{"chi-square"} method of \code{mde()} to give expected results was very unintuitive. The fix has no effect when using the default weights. \item The empirical step function returned by the \code{"recursive"} and \code{"convolution"} methods of \code{aggregateDist()} now correctly returns 1 when evaluated past its largest knot. } } \subsection{DEPRECATED}{ \itemize{ \item Direct usage of \code{bstraub()} is now deprecated in favor of \code{cm()}. The function will remain in the package since it is used internally by \code{cm()}, but it will not be exported in future releases of the package. The current format of the results is also deprecated. } } } \section{CHANGES IN VERSION 0.9-3}{ \subsection{DEPRECATED, DEFUNCT OR NO BACKWARD COMPATIBILITY}{ \itemize{ \item The user interface of \code{coverage()} has changed. Instead of taking in argument the name of a probability law (say \code{foo}) and require that functions \code{dfoo()} and \code{pfoo()} exist, \code{coverage()} now requires a function name or function object to compute the cdf of the unmodified random variable and a function name or function object to compute the pdf. If both functions are provided, \code{coverage()} returns a function to compute the pdf of the modified random variable; if only the cdf is provided, \code{coverage()} returns the cdf of the modified random variable. Hence, argument \code{cdf} is no longer a boolean. The new interface is more in line with other functions of the package. } } \subsection{BUG FIXES}{ \itemize{ \item Methods of \code{summary()} and \code{print.summary()} for objects of class \code{"cm"} were not declared in the NAMESPACE file. \item Various fixes to the demo files. } } } \section{CHANGES IN VERSION 0.9-2}{ \itemize{ Major official update. This version is not backward compatible with the 0.1-x series. Features of the package can be split in the following categories: loss distributions modeling, risk theory, credibility theory. } \subsection{NEW FEATURES -- LOSS DISTRIBUTIONS}{ \itemize{ \item Functions \code{[dpqr]foo()} to compute the density function, cumulative distribution function, quantile function of, and to generate variates from, all probability distributions of Appendix A of Klugman et al. (2004), \emph{Loss Models, Second Edition} (except the inverse gaussian and log-t) not already in R. Namely, this adds the following distributions (the root is what follows the \code{d}, \code{p}, \code{q} or \code{r} in function names): \tabular{ll}{ DISTRIBUTION NAME \tab ROOT \cr Burr \tab \code{burr} \cr Generalized beta \tab \code{genbeta} \cr Generalized Pareto \tab \code{genpareto} \cr Inverse Burr \tab \code{invburr} \cr Inverse exponential \tab \code{invexp} \cr Inverse gamma \tab \code{invgamma} \cr Inverse Pareto \tab \code{invpareto} \cr Inverse paralogistic \tab \code{invparalogis} \cr Inverse transformed gamma \tab \code{invtrgamma} \cr Inverse Weibull \tab \code{invweibull} \cr Loggamma \tab \code{loggamma} \cr Loglogistic \tab \code{llogis} \cr Paralogistic \tab \code{paralogis} \cr Pareto \tab \code{pareto} \cr Single parameter Pareto \tab \code{pareto1} \cr Transformed beta \tab \code{trbeta} \cr Transformed gamma \tab \code{trgamma} } All functions are coded in C for efficiency purposes and should behave exactly like the functions in base R. For all distributions that have a scale parameter, the corresponding functions have \code{rate = 1} and \code{scale = 1/rate} arguments. \item Functions \code{foo()} to compute the \eqn{k}-th raw (non-central) moment and \eqn{k}-th limited moment for all the probability distributions mentioned above, plus the following ones of base R: beta, exponential, gamma, lognormal and Weibull. \item Facilities to store and manipulate grouped data (stored in an interval-frequency fashion). Function \code{grouped.data()} creates a grouped data object similar to a data frame. Methods of \code{"["}, \code{"[<-"}, \code{mean()} and \code{hist()} created for objects of class \code{"grouped.data"}. \item Function \code{ogive()} --- with appropriate methods of \code{knots()}, \code{plot()}, \code{print()} and \code{summary()} --- to compute the ogive of grouped data. Usage is in every respect similar to \code{stats:::ecdf()}. \item Function \code{elev()} to compute the empirical limited expected value of a sample of individual or grouped data. \item Function emm() to compute the k-th empirical raw (non-central) moment of a sample of individual or grouped data. \item Function \code{mde()} to compute minimum distance estimators from a sample of individual or grouped data using one of three distance measures: Cramer-von Mises (CvM), chi-square, layer average severity (LAS). Usage is similar to \code{fitdistr()} of package \pkg{MASS}. \item Function \code{coverage()} to obtain the pdf or cdf of the payment per payment or payment per loss random variable under any combination of the following coverage modifications: ordinary of franchise deductible, policy limit, coinsurance, inflation. The result is a function that can be used in fitting models to data subject to such coverage modifications. \item Individual dental claims data set \code{dental} and grouped dental claims data set \code{gdental} of Klugman et al. (2004), \emph{Loss Models, Second Edition}. } } \subsection{NEW FEATURES -- RISK THEORY}{ \itemize{ \item Function \code{aggregateDist()} returns a function to compute the cumulative distribution function of the total amount of claims random variable for an insurance portfolio using any of the following five methods: \enumerate{ \item exact calculation by convolutions (using function convolve() of package \pkg{stats}; \item recursive calculation using Panjer's algorithm; \item normal approximation; \item normal power approximation; \item simulation. } The modular conception of \code{aggregateDist()} allows for easy inclusion of additional methods. There are special methods of \code{print()}, \code{summary()}, \code{quantile()} and \code{mean()} for objects of class \code{"aggregateDist"}. The objects otherwise inherit from classes \code{"ecdf"} (for methods 1, 2 and 3) and \code{"function"}. See also the DEPRECATED, DEFUNCT OR NO BACKWARD COMPATIBILITY section below. \item Function \code{discretize()} to discretize a continuous distribution using any of the following four methods: \enumerate{ \item upper discretization, where the discretized cdf is always above the true cdf; \item lower discretization, where the discretized cdf is always under the true cdf; \item rounding, where the true cdf passes through the midpoints of the intervals of the discretized cdf; \item first moment matching of the discretized and true distributions. } Usage is similar to \code{curve()} of package \pkg{graphics}. Again, the modular conception allows for easy inclusion of additional discretization methods. } } \subsection{NEW FEATURES -- CREDIBILITY THEORY}{ \itemize{ \item Function \code{simpf()} can now simulate data for hierarchical portfolios of any number of levels. Model specification changed completely; see the DEPRECATED, DEFUNCT OR NO BACKWARD COMPATIBILITY below. The function is also significantly (\eqn{\sim 10\times}{~10x}) faster than the previous version. \item Generic function \code{severity()} defined mostly to provide a method for objects of class \code{"simpf"}; see below. \item Methods of \code{aggregate()}, \code{frequency()}, \code{severity()} and \code{weights()} to extract information from objects of class \code{"simpf"}: \enumerate{ \item \code{aggregate()} returns the matrix of aggregate claim amounts per node; \item \code{frequency()} returns the matrix of the number of claims per node; \item \code{severity()} returns the matrix of individual claim amounts per node; \item \code{weights()} returns the matrix of weights corresponding to the data. } Summaries can be done in various ways; see \code{?simpf.summaries} \item Function \code{cm()} (for \emph{c}redibility \emph{m}odel) to compute structure parameters estimators for hierarchical credibility models, including the BĂŒhlmann and BĂŒhlmann-Straub models. Usage is similar to \code{lm()} of package \pkg{stats} in that the hierarchical structure is specified by means of a formula object and data is extracted from a matrix or data frame. There are special methods of \code{print()}, \code{summary()} for objects of class \code{"cm"}. Credibility premiums are computed using a method of \code{predict()}; see below. For simple BĂŒhlmann and BĂŒhlmann-Straub models, \code{bstraub()} remains simpler to use and faster. \item Function \code{bstraub()} now returns an object of class \code{"bstraub"} for which there exist print and summary methods. The function no longer computes the credibility premiums; see the DEPRECATED, DEFUNCT OR NO BACKWARD COMPATIBILITY section below. \item Methods of \code{predict()} for objects of class \code{"cm"} and \code{"bstraub"} created to actually compute the credibility premiums of credibility models. Function \code{predict.cm()} can return the premiums for specific levels of a hierarchical portfolio only. } } \subsection{OTHER NEW FEATURES}{ \itemize{ \item Function \code{unroll()} to unlist a list with a \code{"dim"} attribute of length 0, 1 or 2 (that is, a vector or matrix of vectors) according to a specific dimension. Currently identical to \code{severity.default()} by lack of a better usage of the default method of \code{severity()}. \item Three new demos corresponding to the three main fields of actuarial science covered by the package. \item French translations of the error and warning messages. \item The package now has a name space. } } \subsection{DEPRECATED, DEFUNCT OR NO BACKWARD COMPATIBILITY}{ \itemize{ \item Function \code{panjer()}, although still present in the package, should no longer be used directly. Recursive calculation of the aggregate claim amount should be done with \code{aggregateDist()}. Further, the function is not backward compatible: model specification has changed, discretization of the claim amount distribution should now be done with \code{discretize()}, and the function now returns a function to compute the cdf instead of a simple vector of probabilities. \item Model specification for \code{simpf()} changed completely and is not backward compatible with previous versions of the package. The new scheme allows for much more general models. \item Function \code{rearrangepf()} is defunct and has been replaced by methods of \code{aggregate()}, \code{frequency()} and \code{severity()}. \item Function \code{bstraub()} no longer computes the credibility premiums. One should now instead use \code{predict()} for this. \item The data set \code{hachemeister} is no longer a list but rather a matrix with a state specification. } } } \section{CHANGES IN VERSION 0.1-3}{ \itemize{ \item Fixed the dependency on R >= 2.1.0 since the package uses function \code{isTRUE()}. } } \section{CHANGES IN VERSION 0.1-2}{ \itemize{ \item First public release. \item Fixed an important bug in \code{bstraub()}: when calculating the range of the weights matrix, \code{NA}s were not excluded. \item Miscellaneous documentation corrections. } } \section{CHANGES IN VERSION 0.1-1}{ \itemize{ \item Initial release. \item Contains functions \code{bstraub()}, \code{simpf()}, \code{rearrangepf()} and \code{panjer()}, and the dataset \code{hachemeister}. } } actuar/inst/NEWS.Rd0000644000176200001440000002102314173361070013551 0ustar liggesusers\name{NEWS} \title{\pkg{actuar} News} \encoding{UTF-8} \section{CHANGES IN \pkg{actuar} VERSION 3.2-1}{ \subsection{BUG FIXES}{ \itemize{ \item{Fix incorrect usage of \code{all.equal} in tests.} } } } \section{CHANGES IN \pkg{actuar} VERSION 3.2-0}{ \subsection{NEW FEATURES}{ \itemize{ \item{Generic versions of \code{var} and \code{sd} with methods for grouped data. The default methods (for individual data) call the standard functions of the \pkg{stats} package. Grouped data methods contributed by Walter Garcia-Fontes \email{walter.garcia@upf.edu}.} \item{Method of \code{summary} for grouped data objects contributed by Walter Garcia-Fontes \email{walter.garcia@upf.edu}.} \item{Examples for the new methods for grouped data objects in \code{\dQuote{lossdist}} demonstration \R script.} } } \subsection{BUG FIXES}{ \itemize{ \item{Use \code{USE_FC_LEN_T} in the C prototypes of LAPACK functions to correspond to code produced by gfortran >= 7. The mechanism was introduced in \R 3.6.2 and is planned to make its use obligatory in \R 4.2.0.} \item{Miscellaneous fixes to formulas for grouped data in the documentation for \code{mean.grouped.data} and \code{emm}, as well as in the \dQuote{modeling} package vignette.} } } } \section{CHANGES IN \pkg{actuar} VERSION 3.1-4}{ \subsection{BUG FIXES}{ \itemize{ \item{Due to its use of \code{log1mexp} since the previous release, the package depends on \R >= 4.1.0.} } } } \section{CHANGES IN \pkg{actuar} VERSION 3.1-3}{ \subsection{BUG FIXES}{ \itemize{ \item{Carry over the new implementation of the Cornish-Fisher Expansion of base \R used by \code{qlogarithmic} and \code{qpoisinvgauss}.} \item{Fix computation of \code{[pq]zmpois}, \code{[pq]zmbinom} and \code{[pq]zmnbinom} following fixes to the underlying base \R functions introduced in r80271 of \R sources. With thanks to B.D. Ripley and Martin Maechler.} } } } \section{CHANGES IN \pkg{actuar} VERSION 3.1-2}{ \subsection{BUG FIXES}{ \itemize{ \item{\code{qinvgauss} now returns a finite value when \eqn{1.5/\code{shape} > 1000}. Thanks to Bettina GrĂŒn \email{bettina.gruen@wu.ac.at} for the fix.} \item{A protection against rounding errors now ensures that \code{qzmlogarithmic(1 - pzmlogarithmic(x), lower.tail = FALSE) == x} is always \code{TRUE}.} \item{In \code{?dburr}, the scale parameter appeared in the denominator of the density instead of \eqn{x}. Thanks to Etienne Guy for the heads up.} \item{The package tests now correctly use \code{stopifnot} with argument \code{exprs} explicitly named.} \item{The formula for the moment of order \eqn{k} for grouped data in \code{?emm} fixed in version 2.3-3 for the LaTeX version is now also fixed for the text version. Thanks (again) to Walter Garcia-Fontes.} } } } \section{CHANGES IN \pkg{actuar} VERSION 3.1-1}{ \subsection{BUG FIXES}{ \itemize{ \item{\code{rcompound} and \code{rmixture} now correctly find objects defined higher in the call stack.} } } } \section{CHANGES IN \pkg{actuar} VERSION 3.1-0}{ \subsection{BUG FIXES}{ \itemize{ \item{\code{rmixture} now randomly shuffles the variates by default and gains an argument \code{shuffle} (\code{TRUE} by default). Using \code{shuffle = FALSE} restores the previous behaviour where the output vector contains all the random variates from the first model, then all the random variates from the second model, and so on. When the order of the random variates is irrelevant, this cuts execution time roughly in half. Thanks to Adam KaƂdus \email{akaldus@wp.pl} for the stimulating comments on this matter.} } } \subsection{USER VISIBLE CHANGES}{ \itemize{ \item{The number of variates returned by \code{rmixture} is now the length of argument \code{n} if larger than 1, like other \code{r} functions.} \item{\code{rmixture} now checks the validity of its arguments.} } } } \section{CHANGES IN \pkg{actuar} VERSION 3.0-0}{ \subsection{NEW FEATURES}{ \itemize{ \item{Support functions \code{[dpqrm,lev]fpareto} for the Feller-Pareto distribution and related Pareto distributions with a location parameter. The Feller-Pareto defines a large family of distributions encompassing the transformed beta family and many variants of the Pareto distribution. Using the nomenclature of Arnold (2015), the following distributions are now supported by \pkg{actuar}: Feller-Pareto, Pareto IV, Pareto III, and Pareto II. The Pareto I was already supported under the name Single Parameter Pareto. Contributed by Christophe Dutang, Vincent Goulet and Nicholas Langevin.} \item{The package now exposes through an API its 200+ C routines for probability functions and the beta integral. This is documented in a new section of the \dQuote{distributions} package vignette. See file \file{include/actuarAPI.h} in the package installation directory for the complete list of exported routines.} \item{Improvements to the accuracy in the right tail of the \code{p} and \code{lev} functions for most probability distributions of the transformed beta family. Achieved by replacing \code{pbeta(u, a, b, lower.tail)} for \eqn{u > 0.5} with \code{pbeta(1 - u, b, a, !lower.tail)} and an accurate computation of \code{u}. Contributed by Nicholas Langevin.} \item{The C workhorse \code{betaint_raw} behind \code{betaint} gains an additional argument to receive an accurate value of \eqn{1 - x}. Used extensively to improve accuracy of the \code{lev} functions for the transformed beta family. Contributed by Nicholas Langevin.} \item{The \dQuote{distributions} package vignette now regroups distributions of the transformed beta families and the single parameter Pareto under the umbrella of the Feller-Pareto family of distributions. The vignette now also includes diagrams showing the interrelations between the members of this family, as well as between the members of the transformed gamma and inverse transformed gamma families.} \item{Exhaustive regression tests for probability functions.} } } \subsection{BUG FIXES}{ \itemize{ \item{Improvements to the simulation algorithm for zero-modified discrete distributions in the \eqn{p_0^M < p_0}{p0m < p0} case. Contributed by Nicholas Langevin.} \item{\code{dpoisinvgauss} no longer returns \code{NaN} for large values of \code{x}. Solved by computing probabilities recursively instead of by calling \code{bessel_k} (the latter would overflow for large \code{nu} and propagate \code{NaN}). Computations are actually about twice as fast.} \item{\code{ppoisinvgauss} now honors argument \code{lower_tail}.} \item{\code{qpoisinvgauss} no longer fails with \code{mu = Inf} and \code{log.p = TRUE}.} \item{\code{betaint(x, Inf, b)} now returns \code{Inf} instead of \code{NaN}.} \item{\code{betaint(.Machine$double.xmin, a, b)}, with \eqn{b < 0}, now returns 0 instead of \code{NaN}.} \item{\code{d} and \code{p} functions for all continuous size distributions now handle limiting cases for infinite scale parameter, or for zero non-scale parameters, consistently with functions of base \R. Affected functions are: \code{[dp]trbeta}, \code{[dp]burr}, \code{[dp]llogis}, \code{[dp]paralogis}, \code{[dp]genpareto}, \code{[dp]pareto}, \code{[dp]invburr}, \code{[dp]invpareto}, \code{[dp]invparalogis} in the Transformed Beta family; \code{[dp]trgamma}, \code{[dp]invtrgamma}, \code{[dp]invgamma}, \code{[dp]invweibull}, \code{[dp]invexp} in the Transformed Gamma family; \code{[dp]lgamma}, \code{[dp]gumbel}, \code{[dp]invgauss}, \code{[dp]genbeta}.} \item{\code{levinvexp} no longer returns \code{NaN} for finite order.} } } \subsection{BREAKING CHANGE}{ \itemize{ \item{Support for the Pareto II distributions comes from functions \code{[dpqrm,lev]pareto2}. These functions were \emph{aliases} to \code{[dpqrm,lev]pareto} in previous version of \pkg{actuar}. The new functions are \emph{not} backward compatible. Therefore, calls to the \code{*pareto2} functions of previous versions of \pkg{actuar} will return wrong results and should be replaced by calls to \code{*pareto} functions.} } } \subsection{DEFUNCT}{ \itemize{ \item{Functions \code{[m,lev,mgf]invGauss} that were deprecated in version 2.0-0.} } } } \note{ \itemize{Older news can be found in files \file{NEWS.2.Rd} (2.x series), \file{NEWS.1.Rd} (1.x series) and \file{NEWS.0.Rd} (0.x series).} } actuar/inst/po/0000755000176200001440000000000014173361163013131 5ustar liggesusersactuar/inst/po/fr/0000755000176200001440000000000014030725703013534 5ustar liggesusersactuar/inst/po/fr/LC_MESSAGES/0000755000176200001440000000000014030725703015321 5ustar liggesusersactuar/inst/po/fr/LC_MESSAGES/R-actuar.mo0000644000176200001440000002731314030725703017342 0ustar liggesusersȚ•d<‰\€8?ș8ú3 $J *o *š 6Ć >ü 8; %t >š FÙ = .^ - ?» Iû 0E ,v Ł À +Ù 2 !8 Z Az 8Œ ;ő 18NA‡ ÉFê#1'U)}<§9ä=A\-ž4Ì,?.nˆ—ČÍà2ő"( Kl>Œ%ËAń%38YI’Üś 0#>3b<–CÓ9Q(e&Ž(”&Ț319)k'•,œ)ê'/<*l+—)Ă%í#)7"aG„/Ì ü%CZ8t­!ĆUç7=>u=Žò* )5)_;‰;Ć=(?ChJŹBś3:2nDĄRæ39/m$Â@Ę/ )N 'x F  Cç B+!$n!A“!IŐ!("UH"1ž"7Đ"0#G9#G#YÉ#T#$?x$8ž$5ń$D'%l%†%•%Ż%Î%æ%6&(9&&b&&‰&E°&"ö&F'1`'A’'ZÔ'/(/I(y( –(2€(5Ś(@ )FN);•)Ń),ë)**,C*,p*7*5Ő*- ++9+0e+-–++Ä+3đ+.$,/S,-ƒ,*±,(Ü, -#&-JJ-5•-Ë-+ë-.0.=M.‹.$Š.LI[]$?  4DH1)3C d K%a+7RP/B'2,-J#Z\!.bM&QXY0F5>VO* ;_GTS=W@NA( `U<896^E:c""LAS" measure requires an object of class "grouped.data""chi-square" measure requires an object of class "grouped.data"'cdf' must be a function or an expression containing 'x''cdf' must be supplied'fun' must be supplied as a function'group' ignored when 'breaks' is specified'group' ignored when 'nclass' is specified'h' must be a function or an expression containing 'x''h' must be a function or an expression containing 'x' and 'y''lev' must be a function or an expression containing 'x''lev' required with method "unbiased"'mgf.claim' must be a function or an expression containing 'x''mgf.claim' must be a function or an expression containing 'x' and 'y''mgf.wait' must be a function or an expression containing 'x''model.freq' must be a vector of probabilities'model.sev' must be a vector of probabilities'moments' must supply the mean and variance of the distribution'moments' must supply the mean, variance and skewness of the distribution'nb.simul' must supply the number of simulations'nclass' not used when 'breaks' is specified'nodes' must be a named list'order' must be positive'p0' has many elements: only the first used'p0' must be a valid probability (between 0 and 1)'par.claims' must be a named list'par.wait' must be a named list'premium.rate' must be a function or an expression containing 'y''premium.rate' must be a function when using reinsurance'probability' is an alias for '!freq', however they differ.'start' must be a named list'start' specifies names which are not arguments to 'fun''x' must be a numeric vector or an object of class "grouped.data"'x' must be a vector or a matrixPr[S = 0] is numerically equal to 0; impossible to start the recursioncoinsurance must be between 0 and 1coverage modifications must be positivedeductible must be smaller than the limitempty regression model; fitting with Buhlmann-Straub's modelexpressions in 'model.freq' and 'model.sev' must be namedfrequency distribution must be supplied as a character stringfrequency distribution not in the (a, b, 0) or (a, b, 1) familiesfrequency must be larger than 0 in all groupsfunction not defined for approximating distributionshierarchical regression models not supportedimpossible to replace boundaries and frequencies simultaneouslyinfinite group boundariesinternal errorinvalid 'by' specificationinvalid first argument 'n'invalid level nameinvalid level numberinvalid number of group boundaries and frequenciesinvalid parameters in 'par.claims'invalid parameters in 'par.wait'invalid third argument 'models'level names different in 'nodes', 'model.freq' and 'model.sev'lower bound of the likelihood missingmaximum number of iterations reached before obtaining convergencemissing frequencies replaced by zerosmissing ratios not allowed when weights are not suppliedmissing values are not in the same positions in 'weights' and in 'ratios'need 0, 1, or 2 subscriptsno available data to fit modelno positive probabilitiesnothing to doone of 'mgf.claim' or 'h' is neededone of 'model.freq' or 'model.sev' must be non-NULLone of the Beta prior parameter "shape1" or "scale2" missingone of the Gamma prior parameter "shape", "rate" or "scale" missingonly logical matrix subscripts are allowed in replacementoptimization failedparameter "prob" missing in 'par.claims'parameter "prob" missing in 'par.wait'parameter "rate" missing in 'par.claims'parameter "rate" missing in 'par.wait'parameter "rate" or "scale" missing in 'par.claims'parameter "rate" or "scale" missing in 'par.wait'parameter "rates" missing in 'par.claims'parameter "rates" missing in 'par.wait'parameter "sd.lik" of the likelihood missingparameter "shape" missing in 'par.claims'parameter "shape" missing in 'par.wait'parameter "shape.lik" of the likelihood missingparameter "size" of the likelihood missingparameter "weights" missing in 'par.claims'parameter "weights" missing in 'par.wait'parameters %s missing in 'par.claims'parameters %s missing in 'par.wait'ratios have to be supplied if weights arerows extracted in increasing orderthere must be at least one node with more than one period of experiencethere must be at least two nodes at every levelthere must be more than one nodeunsupported interactions in 'formula'unsupported likelihoodvalue of 'lambda' missingvalue of 'p0' ignored with a zero-truncated distributionvalue of 'prob' missingvalue of 'prob' or 'size' missingProject-Id-Version: actuar 2.0-0 Report-Msgid-Bugs-To: bugs@r-project.org PO-Revision-Date: 2021-01-05 14:16-0500 Last-Translator: Vincent Goulet Language-Team: Vincent Goulet Language: fr MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit mesure "LAS" requiert un objet de classe "grouped.data"mesure "chi-square" requiert un objet de classe "grouped.data"'cdf' doit ĂȘtre une fonction ou une expression contenant 'x''cdf' doit ĂȘtre fourni'fun' doit ĂȘtre fourni comme une fonction'group' ignorĂ© quand 'breaks' est fourni'group' ignorĂ© quand 'breaks' est fourni'h' doit ĂȘtre une fonction ou une expression contenant 'x''h' doit ĂȘtre une fonction ou une expression contenant 'x''lev' doit ĂȘtre une fonction ou une expression contenant 'x''lev' requis pour la mĂ©thode "unbiased"'mgf.claim' doit ĂȘtre une fonction ou une expression contenant 'x''mgf.claim' doit ĂȘtre une fonction ou une expression contenant 'x' et 'y''mgf.wait' doit ĂȘtre une fonction ou une expression contenant 'x''model.freq' doit ĂȘtre un vecteur de probabilitĂ©s'model.sev' doit ĂȘtre un vecteur de probabilitĂ©s'moments' doit contenir la moyenne et la variance de la distribution'moments' doit contenir la moyenne, la variance et l'asymĂ©trie de la distribution'nb.simul' doit spĂ©cifier le nombre de simulations'nclass' non utilisĂ© quand 'breaks' est fourni'nodes' doit ĂȘtre une liste nommĂ©e'order' doit ĂȘtre positif'p0' contient plusieurs Ă©lĂ©ments: seul le premier est utilisĂ©'p0' doit ĂȘtre une probabilitĂ© (entre 0 et 1)'par.claims' doit ĂȘtre une liste nommĂ©e'par.wait' doit ĂȘtre une liste nommĂ©e'premium.rate' doit ĂȘtre une fonction ou une expression contenant 'y''premium.rate' doit ĂȘtre une fonction en prĂ©sence de rĂ©assurance'probability' est un alias pour '!freq', cependant ils diffĂšrent.'start' doit ĂȘtre une liste nommĂ©e'start' spĂ©cifie des noms qui ne sont pas des arguments de 'fun''x' doit ĂȘtre un vecteur numĂ©rique ou un objet de classe "grouped.data"'x' doit ĂȘtre un vecteur ou une matricevaleur de Pr[S = 0] numĂ©riquement nulle; impossible de dĂ©marrer le calcul rĂ©cursifle facteur de coassurance doit ĂȘtre entre 0 et 1les modifications de couverture doivent ĂȘtre positivesla franchise doit ĂȘtre infĂ©rieure Ă  la limitemodĂšle de rĂ©gression vide; utilisation du modĂšle de BĂŒhlmann-Straubles expressions dans 'model.freq' et 'model.sev' doivent ĂȘtre nommĂ©esla distribution de frĂ©quence doit ĂȘtre spĂ©cifiĂ©e sous forme de chaĂźne de caractĂšresla distribution de frĂ©quence ne fait pas partie des familles (a, b, 0) ou (a, b, 1)la frĂ©quence doit ĂȘtre supĂ©rieure Ă  0 dans tous les groupesfonction non dĂ©finie pour les mĂ©thodes d'approximationmodĂšles de rĂ©gression hiĂ©rarchiques non supportĂ©simpossible de remplacer simultanĂ©ment les bornes et les frĂ©quencesbornes de groupe infinieserreur internevaleur de 'by' incorrectepremier argument 'n' incorrectnom de niveau incorrectnumĂ©ro de niveau incorrectnombre de bornes de groupe et de frĂ©quences incorrectparamĂštres incorrects dans 'par.claims'paramĂštres incorrects dans 'par.wait'troisiĂšme argument 'models' incorrectnoms de niveaux diffĂ©rents dans 'nodes', 'model.freq' et 'model.sev'seuil de la vraisemblance manquantnombre d'itĂ©rations maximal atteint avant obtention de la convergencefrĂ©quences manquantes remplacĂ©es par des zĂ©rosratios manquants non permis lorsque les poids ne sont pas fournisles donnĂ©es manquantes ne sont pas aux mĂȘmes positions dans les poids et dans les ratiosil faut 0, 1 ou 2 indicesaucune donnĂ©e disponible pour la modĂ©lisationaucune probabilitĂ© positiverien Ă  fairel'une ou l'autre de 'mgf.claim' ou 'h' est requiseun de 'model.freq' ou 'model.sev' doit ĂȘtre non NULLun des paramĂštres "shape1" ou "shape2" de la loi BĂȘta manquantun des paramĂštres "shape", "rate" ou "scale" de la loi Gamma manquantseuls les indices logiques sont permis pour le remplacementl'optimisation a Ă©chouĂ©paramĂštre "prob" manquant dans 'par.claims'paramĂštre "prob" manquant dans 'par.wait'paramĂštre "rate" manquant dans 'par.claims'paramĂštre "rate" manquant dans 'par.claims'paramĂštre "rate" ou "scale" manquant dans 'par.claims'paramĂštre "rate" ou "scale" manquant dans 'par.wait'paramĂštre "rates" manquant dans 'par.claims'paramĂštre "rates" manquant dans 'par.wait'paramĂštre "sd.lik" de la vraisemblance manquantparamĂštre "shape" manquant dans 'par.claims'paramĂštre "shape" manquant dans 'par.wait'paramĂštre "shape.lik" de la vraisemblance manquantparamĂštre "size" de la vraisemblance manquantparamĂštre "weights" manquant dans 'par.claims'paramĂštre "weights" manquant dans 'par.wait'paramĂštres %s manquants dans 'par.claims'paramĂštres %s manquants dans 'par.wait'ratios requis s'il y a des poidslignes extraites en ordre croissantil y doit y avoir au moins un noeud avec plus d'une pĂ©riode d'expĂ©rienceil doit y avoir au moins deux noeuds Ă  chaque niveauil doit y avoir plus d'un noeudinteractions non supportĂ©es dans 'formula'vraisemblance non validevaleur de 'lambda' manquantevaleur de 'p0' ignorĂ©e pour une distribution zĂ©ro tronquĂ©evaleur de 'prob' manquantevaleur de 'prob' ou 'size' manquanteactuar/inst/po/fr/LC_MESSAGES/actuar.mo0000644000176200001440000000727314030725703017146 0ustar liggesusersȚ•!$/,è é/ś:'8b+›+Ç0ó $51g z › Œ Ę ț &@"g#Š#ź#Ò#ö#(>)g‘/ŁAÓUk…Ÿoż/ 1J P| WÍ 9% 9_ A™ Û Fì 3 "M "p "“ "¶ "Ù "ü ( $H %m %“ %č %ß % *+ +V ‚ 5— FÍ G\|&”     !'A' is 0-diml'order' (%.2f) must be integer, rounded to %.0fLAPACK routine dgebal returned info code %d when permutingLAPACK routine dgebal returned info code %d when scalingLAPACK routine dgetrf returned info code %dLAPACK routine dgetrs returned info code %dLapack routine dgesv: system is exactly singularNAs producedargument %d of Lapack routine dgesv had invalid valueintegration failedinternal error in actuar_do_dpq1internal error in actuar_do_dpq2internal error in actuar_do_dpq3internal error in actuar_do_dpq4internal error in actuar_do_dpq5internal error in actuar_do_dpq6internal error in actuar_do_dpqphtype2internal error in actuar_do_randominternal error in actuar_do_random1internal error in actuar_do_random2internal error in actuar_do_random3internal error in actuar_do_random4internal error in actuar_do_random5internal error in actuar_do_randomphtypeinternal error in actuar_do_randomphtype2invalid argumentsmaximum number of iterations must be at least 1maximum number of iterations reached before obtaining convergencemaximum number of recursions reached before the probability distribution was completeno right-hand side in 'B'non-conformable argumentsnon-square sub-intensity matrixProject-Id-Version: actuar 1.1-7 Report-Msgid-Bugs-To: PO-Revision-Date: 2020-06-03 12:33-0400 Last-Translator: Vincent Goulet Language-Team: Vincent Goulet Language: fr MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Plural-Forms: nplurals=2; plural=(n > 1); 'A' est de dimension nulle'order' (%.2f) doit ĂȘtre entier, arrondi Ă  %.0fla procĂ©dure LAPACK dgebal a produit le code d'erreur %d lors de la permutationla procĂ©dure LAPACK dgebal a produit le code d'erreur %d lors de la mise Ă  l'Ă©chellela procĂ©dure LAPACK dgetrf a produit le code d'erreur %dla procĂ©dure LAPACK dgetrs a produit le code d'erreur %dsous-programme Lapack dgesv: le systĂšme est exactement singulierproduction de NAvaleur incorrecte pour l'argument %d du sous-programme dgesv de Lapackl'intĂ©gration a Ă©chouĂ©erreur interne dans actuar_do_dpq1erreur interne dans actuar_do_dpq2erreur interne dans actuar_do_dpq3erreur interne dans actuar_do_dpq4erreur interne dans actuar_do_dpq5erreur interne dans actuar_do_dpq6erreur interne dans actuar_do_dpqphtype2erreur interne dans actuar_do_randomerreur interne dans actuar_do_random1erreur interne dans actuar_do_random2erreur interne dans actuar_do_random3erreur interne dans actuar_do_random4erreur interne dans actuar_do_random5erreur interne dans actuar_do_randomphtypeerreur interne dans actuar_do_randomphtype2arguments incorrectsle nombre d'itĂ©rations maximal doit ĂȘtre au moins 1nombre d'itĂ©rations maximal atteint avant obtention de la convergencenombre de rĂ©cursions maximal atteint avant obtention de la convergenceaucun membre de droite dans 'B'arguments non conformesmatrice de sous-intensitĂ© non carrĂ©eactuar/inst/po/en@quot/0000755000176200001440000000000014030725703014540 5ustar liggesusersactuar/inst/po/en@quot/LC_MESSAGES/0000755000176200001440000000000014030725703016325 5ustar liggesusersactuar/inst/po/en@quot/LC_MESSAGES/R-actuar.mo0000644000176200001440000002665114030725703020352 0ustar liggesusersȚ•d<‰\€8?ș8ú3 $J *o *š 6Ć >ü 8; %t >š FÙ = .^ - ?» Iû 0E ,v Ł À +Ù 2 !8 Z Az 8Œ ;ő 18NA‡ ÉFê#1'U)}<§9ä=A\-ž4Ì,?.nˆ—ČÍà2ő"( Kl>Œ%ËAń%38YI’Üś 0#>3b<–CÓ9Q(e&Ž(”&Ț319)k'•,œ)ê'/<*l+—)Ă%í#)7"aG„/Ì ü%CZ8t­!Ćç8û?4@t”(Đ2ù2,>_Jž@é)*FTR›Eî241gC™MĘ4+4` •¶/Ó6 %: #` I„ <Î C ! O!@p!E±!$ś!F"#c"'‡")Ż"<Ù"A#=X#A–#-Ű#4$,;$?h$š$Â$Ń$đ$%"%27%&j%$‘%#¶%JÚ%%%&AK&%&8ł&Qì&>'Y'x' ’'+ ';Ì'<(CE(9‰(Ă(,Ś(*),/)*\)7‡)5ż)-ő)+#*,O*-|*+Ș*/Ö**+/1+-a+)+'č+)á+" ,G.,/v, Š,)Ç,ń,-<&-c-)-LI[]$?  4DH1)3C d K%a+7RP/B'2,-J#Z\!.bM&QXY0F5>VO* ;_GTS=W@NA( `U<896^E:c""LAS" measure requires an object of class "grouped.data""chi-square" measure requires an object of class "grouped.data"'cdf' must be a function or an expression containing 'x''cdf' must be supplied'fun' must be supplied as a function'group' ignored when 'breaks' is specified'group' ignored when 'nclass' is specified'h' must be a function or an expression containing 'x''h' must be a function or an expression containing 'x' and 'y''lev' must be a function or an expression containing 'x''lev' required with method "unbiased"'mgf.claim' must be a function or an expression containing 'x''mgf.claim' must be a function or an expression containing 'x' and 'y''mgf.wait' must be a function or an expression containing 'x''model.freq' must be a vector of probabilities'model.sev' must be a vector of probabilities'moments' must supply the mean and variance of the distribution'moments' must supply the mean, variance and skewness of the distribution'nb.simul' must supply the number of simulations'nclass' not used when 'breaks' is specified'nodes' must be a named list'order' must be positive'p0' has many elements: only the first used'p0' must be a valid probability (between 0 and 1)'par.claims' must be a named list'par.wait' must be a named list'premium.rate' must be a function or an expression containing 'y''premium.rate' must be a function when using reinsurance'probability' is an alias for '!freq', however they differ.'start' must be a named list'start' specifies names which are not arguments to 'fun''x' must be a numeric vector or an object of class "grouped.data"'x' must be a vector or a matrixPr[S = 0] is numerically equal to 0; impossible to start the recursioncoinsurance must be between 0 and 1coverage modifications must be positivedeductible must be smaller than the limitempty regression model; fitting with Buhlmann-Straub's modelexpressions in 'model.freq' and 'model.sev' must be namedfrequency distribution must be supplied as a character stringfrequency distribution not in the (a, b, 0) or (a, b, 1) familiesfrequency must be larger than 0 in all groupsfunction not defined for approximating distributionshierarchical regression models not supportedimpossible to replace boundaries and frequencies simultaneouslyinfinite group boundariesinternal errorinvalid 'by' specificationinvalid first argument 'n'invalid level nameinvalid level numberinvalid number of group boundaries and frequenciesinvalid parameters in 'par.claims'invalid parameters in 'par.wait'invalid third argument 'models'level names different in 'nodes', 'model.freq' and 'model.sev'lower bound of the likelihood missingmaximum number of iterations reached before obtaining convergencemissing frequencies replaced by zerosmissing ratios not allowed when weights are not suppliedmissing values are not in the same positions in 'weights' and in 'ratios'need 0, 1, or 2 subscriptsno available data to fit modelno positive probabilitiesnothing to doone of 'mgf.claim' or 'h' is neededone of 'model.freq' or 'model.sev' must be non-NULLone of the Beta prior parameter "shape1" or "scale2" missingone of the Gamma prior parameter "shape", "rate" or "scale" missingonly logical matrix subscripts are allowed in replacementoptimization failedparameter "prob" missing in 'par.claims'parameter "prob" missing in 'par.wait'parameter "rate" missing in 'par.claims'parameter "rate" missing in 'par.wait'parameter "rate" or "scale" missing in 'par.claims'parameter "rate" or "scale" missing in 'par.wait'parameter "rates" missing in 'par.claims'parameter "rates" missing in 'par.wait'parameter "sd.lik" of the likelihood missingparameter "shape" missing in 'par.claims'parameter "shape" missing in 'par.wait'parameter "shape.lik" of the likelihood missingparameter "size" of the likelihood missingparameter "weights" missing in 'par.claims'parameter "weights" missing in 'par.wait'parameters %s missing in 'par.claims'parameters %s missing in 'par.wait'ratios have to be supplied if weights arerows extracted in increasing orderthere must be at least one node with more than one period of experiencethere must be at least two nodes at every levelthere must be more than one nodeunsupported interactions in 'formula'unsupported likelihoodvalue of 'lambda' missingvalue of 'p0' ignored with a zero-truncated distributionvalue of 'prob' missingvalue of 'prob' or 'size' missingProject-Id-Version: actuar 3.0-0 PO-Revision-Date: 2021-01-05 14:10 Last-Translator: Automatically generated Language-Team: none MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Language: en Plural-Forms: nplurals=2; plural=(n != 1); "LAS" measure requires an object of class "grouped.data""chi-square" measure requires an object of class "grouped.data"‘cdf’ must be a function or an expression containing ‘x’‘cdf’ must be supplied‘fun’ must be supplied as a function‘group’ ignored when ‘breaks’ is specified‘group’ ignored when ‘nclass’ is specified‘h’ must be a function or an expression containing ‘x’‘h’ must be a function or an expression containing ‘x’ and ‘y’‘lev’ must be a function or an expression containing ‘x’‘lev’ required with method "unbiased"‘mgf.claim’ must be a function or an expression containing ‘x’‘mgf.claim’ must be a function or an expression containing ‘x’ and ‘y’‘mgf.wait’ must be a function or an expression containing ‘x’‘model.freq’ must be a vector of probabilities‘model.sev’ must be a vector of probabilities‘moments’ must supply the mean and variance of the distribution‘moments’ must supply the mean, variance and skewness of the distribution‘nb.simul’ must supply the number of simulations‘nclass’ not used when ‘breaks’ is specified‘nodes’ must be a named list‘order’ must be positive‘p0’ has many elements: only the first used‘p0’ must be a valid probability (between 0 and 1)‘par.claims’ must be a named list‘par.wait’ must be a named list‘premium.rate’ must be a function or an expression containing ‘y’‘premium.rate’ must be a function when using reinsurance‘probability’ is an alias for ‘!freq’, however they differ.‘start’ must be a named list‘start’ specifies names which are not arguments to ‘fun’‘x’ must be a numeric vector or an object of class "grouped.data"‘x’ must be a vector or a matrixPr[S = 0] is numerically equal to 0; impossible to start the recursioncoinsurance must be between 0 and 1coverage modifications must be positivedeductible must be smaller than the limitempty regression model; fitting with Buhlmann-Straub's modelexpressions in ‘model.freq’ and ‘model.sev’ must be namedfrequency distribution must be supplied as a character stringfrequency distribution not in the (a, b, 0) or (a, b, 1) familiesfrequency must be larger than 0 in all groupsfunction not defined for approximating distributionshierarchical regression models not supportedimpossible to replace boundaries and frequencies simultaneouslyinfinite group boundariesinternal errorinvalid ‘by’ specificationinvalid first argument ‘n’invalid level nameinvalid level numberinvalid number of group boundaries and frequenciesinvalid parameters in ‘par.claims’invalid parameters in ‘par.wait’invalid third argument ‘models’level names different in ‘nodes’, ‘model.freq’ and ‘model.sev’lower bound of the likelihood missingmaximum number of iterations reached before obtaining convergencemissing frequencies replaced by zerosmissing ratios not allowed when weights are not suppliedmissing values are not in the same positions in ‘weights’ and in ‘ratios’need 0, 1, or 2 subscriptsno available data to fit modelno positive probabilitiesnothing to doone of ‘mgf.claim’ or ‘h’ is neededone of ‘model.freq’ or ‘model.sev’ must be non-NULLone of the Beta prior parameter "shape1" or "scale2" missingone of the Gamma prior parameter "shape", "rate" or "scale" missingonly logical matrix subscripts are allowed in replacementoptimization failedparameter "prob" missing in ‘par.claims’parameter "prob" missing in ‘par.wait’parameter "rate" missing in ‘par.claims’parameter "rate" missing in ‘par.wait’parameter "rate" or "scale" missing in ‘par.claims’parameter "rate" or "scale" missing in ‘par.wait’parameter "rates" missing in ‘par.claims’parameter "rates" missing in ‘par.wait’parameter "sd.lik" of the likelihood missingparameter "shape" missing in ‘par.claims’parameter "shape" missing in ‘par.wait’parameter "shape.lik" of the likelihood missingparameter "size" of the likelihood missingparameter "weights" missing in ‘par.claims’parameter "weights" missing in ‘par.wait’parameters %s missing in ‘par.claims’parameters %s missing in ‘par.wait’ratios have to be supplied if weights arerows extracted in increasing orderthere must be at least one node with more than one period of experiencethere must be at least two nodes at every levelthere must be more than one nodeunsupported interactions in ‘formula’unsupported likelihoodvalue of ‘lambda’ missingvalue of ‘p0’ ignored with a zero-truncated distributionvalue of ‘prob’ missingvalue of ‘prob’ or ‘size’ missingactuar/inst/po/en@quot/LC_MESSAGES/actuar.mo0000644000176200001440000000672114030725703020147 0ustar liggesusersȚ•!$/,è é/ś:'8b+›+Ç0ó $51g z › Œ Ę ț &@"g#Š#ź#Ò#ö#(>)g‘/ŁAÓUk…Ÿ/żï3 :5 8p +© +Ő 0 2 5? u ˆ © Ê ë - &N "u #˜ #Œ #à # #( (L )u Ÿ /± Aá U# y — ±      !'A' is 0-diml'order' (%.2f) must be integer, rounded to %.0fLAPACK routine dgebal returned info code %d when permutingLAPACK routine dgebal returned info code %d when scalingLAPACK routine dgetrf returned info code %dLAPACK routine dgetrs returned info code %dLapack routine dgesv: system is exactly singularNAs producedargument %d of Lapack routine dgesv had invalid valueintegration failedinternal error in actuar_do_dpq1internal error in actuar_do_dpq2internal error in actuar_do_dpq3internal error in actuar_do_dpq4internal error in actuar_do_dpq5internal error in actuar_do_dpq6internal error in actuar_do_dpqphtype2internal error in actuar_do_randominternal error in actuar_do_random1internal error in actuar_do_random2internal error in actuar_do_random3internal error in actuar_do_random4internal error in actuar_do_random5internal error in actuar_do_randomphtypeinternal error in actuar_do_randomphtype2invalid argumentsmaximum number of iterations must be at least 1maximum number of iterations reached before obtaining convergencemaximum number of recursions reached before the probability distribution was completeno right-hand side in 'B'non-conformable argumentsnon-square sub-intensity matrixProject-Id-Version: actuar 3.0-0 Report-Msgid-Bugs-To: PO-Revision-Date: 2020-06-03 12:26-0400 Last-Translator: Automatically generated Language-Team: none Language: en MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Plural-Forms: nplurals=2; plural=(n != 1); ‘A’ is 0-diml‘order’ (%.2f) must be integer, rounded to %.0fLAPACK routine dgebal returned info code %d when permutingLAPACK routine dgebal returned info code %d when scalingLAPACK routine dgetrf returned info code %dLAPACK routine dgetrs returned info code %dLapack routine dgesv: system is exactly singularNAs producedargument %d of Lapack routine dgesv had invalid valueintegration failedinternal error in actuar_do_dpq1internal error in actuar_do_dpq2internal error in actuar_do_dpq3internal error in actuar_do_dpq4internal error in actuar_do_dpq5internal error in actuar_do_dpq6internal error in actuar_do_dpqphtype2internal error in actuar_do_randominternal error in actuar_do_random1internal error in actuar_do_random2internal error in actuar_do_random3internal error in actuar_do_random4internal error in actuar_do_random5internal error in actuar_do_randomphtypeinternal error in actuar_do_randomphtype2invalid argumentsmaximum number of iterations must be at least 1maximum number of iterations reached before obtaining convergencemaximum number of recursions reached before the probability distribution was completeno right-hand side in ‘B’non-conformable argumentsnon-square sub-intensity matrixactuar/inst/NEWS.1.Rd0000644000176200001440000002436714030725703013725 0ustar liggesusers\name{NEWS} \title{actuar News} \encoding{UTF-8} \section{LATER NEWS}{ This file covers NEWS for the 1.x series. News for \pkg{actuar} 2.0-0 and later can be found in file \file{NEWS.Rd}. } \section{CHANGES IN VERSION 1.2-2}{ \subsection{BUG FIX}{ \itemize{ \item dpareto() did not handle the case x == 0 correctly. } } } \section{CHANGES IN VERSION 1.2-1}{ \subsection{(MORE OR LESS) USER-VISIBLE CHANGES}{ \itemize{ \item The package now depends on R >= 3.3.0 since it uses chkDots() in a few methods that do not use the content of their '...' argument. \item ogive() lost its argument '...' as it was unused anyway. \item severity.portfolio() calls unroll() directly instead of relying on the default method to be identical to unroll(). } } \subsection{BUG FIXES}{ \itemize{ \item Deleted an unwanted debugging message ("local") printed by CTE() at every execution. \item predict.cm() and summary.cm() now treat the '...' argument as advertised in the help file. \item Fixed bad examples in a few probability law help files that returned unintended results such as Inf or NaN. } } \subsection{MAINTENANCE}{ \itemize{ \item C-level function log1pexp(...) used in a few places in lieu of log1p(exp(...)). \item Names of the internal utility macros defined in dpq.h changed from "R_<...>" to "ACT_<...>" to make it clearer that they are defined by the package (although they were copied from R sources). } } } \section{CHANGES IN VERSION 1.2-0}{ \subsection{NEW FEATURE}{ \itemize{ \item In the computation of the CTE in the Normal Power case, numerical integration has been replaced by the explicit formula given in Castañer, A.; Claramunt, M.M.; MĂĄrmol, M. (2013). Tail value at risk. An analysis with the Normal-Power approximation. In Statistical and Soft Computing Approaches in Insurance Problems. Nova Science Publishers. ISBN 978-1-62618-506-7. } } } \section{CHANGES IN VERSION 1.1-10}{ \subsection{BUG FIX}{ \itemize{ \item Results of 'cm' for hierarchical models would get incorrectly sorted when there were 10 nodes or more at a given level. Thanks to Dylan Wienke \email{dwienke2@gmail.com} for the catch. } } } \section{CHANGES IN VERSION 1.1-9}{ \subsection{MAINTENANCE}{ \itemize{ \item Functions 'head' and 'tail' explicitly imported from package utils in NAMESPACE as per a new requirement of R 3.3.x. } } } \section{CHANGES IN VERSION 1.1-8}{ \subsection{BUG FIXES}{ \itemize{ \item Memory allocation problem at the C level in hierarc(). Thanks to Prof. Ripley for identification of the problem and help solving it. \item Abusive use of abs() at the C level in a few places. } } } \section{CHANGES IN VERSION 1.1-7}{ \subsection{BUG FIX}{ \itemize{ \item panjer() result was wrong for the "logarithmic" type of frequency distribution. Thanks to \email{mmclaramunt@ub.edu} for the catch. } } } \section{CHANGES IN VERSION 1.1-6}{ \subsection{BUG FIX}{ \itemize{ \item Fixed a deprecated use of real(). } } } \section{CHANGES IN VERSION 1.1-5}{ \subsection{USER-VISIBLE CHANGES}{ \itemize{ \item Complete rewrite of coverage(); the function it creates no longer relies on ifelse() and, consequently, is much faster. The rewrite was motivated by a change in the way [dp]gamma() handle their arguments in R 2.15.1. } } \subsection{BUG FIX}{ \itemize{ \item summary.ogive() no longer relies on length 'n' to be in the environment of a function created by approxfun(). Fix required by R >= 2.16.0. } } } \section{CHANGES IN VERSION 1.1-4}{ \subsection{USER-VISIBLE CHANGES}{ \itemize{ \item The function resulting from elev() for individual data is now faster for a large number of limits. (Thanks to Frank Zhan \email{FrankZhan@donegalgroup.com} for the catch and report.) } } } \section{CHANGES IN VERSION 1.1-3}{ \subsection{BUG FIX}{ \itemize{ \item Resolved symbol clash at C level tickled by package GeneralizedHyperbolic on Solaris. \item Wrong result given by levinvGauss() because the upper tail of the normal distribution was used in the calculation instead of the lower tail. Thanks to Dan Murphy \email{chiefmurphy@gmail.com} for the heads up. } } } \section{CHANGES IN VERSION 1.1-2}{ \subsection{BUG FIX}{ \itemize{ \item \code{discretize()} would return wrong results when argument \code{step} was omitted in favor of \code{by} \emph{and} the discretization method \code{unbiased} was used. (Thanks to Marie-Pier CĂŽtĂ© \email{marie-pier.cote.11@ulaval.ca} for the catch.) } } } \section{CHANGES IN VERSION 1.1-1}{ \subsection{USER-VISIBLE CHANGES}{ \itemize{ \item CITATION file updated. } } \subsection{BUG FIX}{ \itemize{ \item \code{summary.cm()} could skip records in the output thinking they were duplicates. } } } \section{CHANGES IN VERSION 1.1-0}{ \subsection{NEW FEATURES}{ \itemize{ \item New argument \code{convolve} in \code{aggregateDist()} to convolve the distribution obtained with the recursive method a number of times with itself. This is used for large portfolios where the expected number of claims is so large that recursions cannot start. Dividing the frequency parameter by \eqn{2^n} and convolving \eqn{n} times can solve the problem. \item New method of \code{diff()} for \code{"aggregateDist"} objects to return the probability mass function at the knots of the aggregate distribution. Valid (and defined) for \code{"recursive"}, \code{"exact"} and \code{"simulation"} methods only. \item Since the terminology Tail Value-at-Risk is often used instead of Conditional Tail Expectation, \code{TVaR()} is now an alias for \code{CTE()}. } } \subsection{BUG FIXES}{ \itemize{ \item Quantiles (and thus VaRs and CTEs) for \code{"aggregateDist"} objects where off by one knot of the distribution. \item \code{cm()} returned the internal classification codes instead of the original ones for hierarchical models. (Thanks to Zachary Martin for the heads up.) } } } \section{CHANGES IN VERSION 1.0-2}{ \subsection{USER-VISIBLE CHANGES}{ \itemize{ \item Functions \code{m()} and \code{lev()} now return \code{Inf} instead of \code{NaN} for infinite moments. (Thanks to David Humke for the idea.) } } \subsection{BUG FIXES}{ \itemize{ \item Non-ascii characters in one R source file prevented compilation of the package in a C locale (at least on OS X). \item For probability laws that have a strictly positive mode or a mode at zero depending on the value of one or more shape parameters, \code{d(0, ...)} did not handle correctly the case exactly at the boundary condition. (Thanks to Stephen L \email{bulls22eye@gmail.com} for the catch.) } } } \section{CHANGES IN VERSION 1.0-1}{ \subsection{USER-VISIBLE CHANGES}{ \itemize{ \item \code{levinvpareto()} works for \code{order > -shape} and defaults to \code{order = 1}, like all other \code{lev()} functions. } } \subsection{BUG FIXES}{ \itemize{ \item Functions \code{d()} handle the case \code{x == 0} correctly. \item Functions \code{q()} return \code{NaN} instead of an error when argument \code{p} is outside \eqn{[0, 1]} (as in R). \item Functions \code{r()} for three parameter distributions (e.g. Burr) no longer wrongly display the \code{"NaNs produced"} warning message. \item The warning message \code{"NaNs produced"} was not (and could not be) translated. \item Function \code{levinvpareto()} computes limited moments for \code{order > -shape} using numerical integration. } } } \section{CHANGES IN VERSION 1.0-0}{ \subsection{NEW FEATURES}{ \itemize{ \item Improved support for regression credibility models. There is now an option to make the computations with the intercept at the barycenter of time. This assures that the credibility adjusted regression line (or plane, or ...) lies between the individual and collective ones. In addition, contracts without data are now supported like in other credibility models. \item Argument \code{right} for \code{grouped.data()} to allow intervals closed on the right (default) or on the left. \item Method of \code{quantile()} for grouped data objects to compute the inverse of the ogive. } } \subsection{USER-VISIBLE CHANGES}{ \itemize{ \item \code{cm()} no longer returns the values of the unbiased estimators when \code{method = "iterative"}. \item Specification of regression models in \code{cm()} has changed: one should now provide the regression model as a formula and the regressors in a separate matrix or data frame. \item Due to above change, \code{predict.cm()} now expects \code{newdata} to be a data frame as for \code{stats:::predict.lm()}. } } \subsection{DEFUNCT}{ \itemize{ \item Function \code{bstraub()} is no longer exported. Users are expected to use \code{cm()} as interface instead. } } \subsection{BUG FIXES}{ \itemize{ \item Functions \code{r()} are now more consistent in warning when \code{NA}s (specifically \code{NaN}s) are generated (as per the change in R 2.7.0). \item \code{frequency.portfolio()} was wrongly counting \code{NA}s. \item Domain of pdfs returned by \code{aggregateDist()} now restricted to \eqn{[0, 1]}. \item Quantiles are now computed correctly (and more efficiently) in 0 and 1 by \code{quantile.aggregateDist()}. \item \code{coverage()} no longer requires a cdf when it is not needed, namely when there is no deductible and no limit. } } } \section{OLDER NEWS}{ News for \pkg{actuar} 0.9.7 and earlier can be found in file \file{NEWS.0.Rd}. } actuar/po/0000755000176200001440000000000014173361163012154 5ustar liggesusersactuar/po/R-actuar.pot0000644000176200001440000001510314030725704014353 0ustar liggesusersmsgid "" msgstr "" "Project-Id-Version: actuar 3.0-0\n" "POT-Creation-Date: 2021-01-05 14:10\n" "PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n" "Last-Translator: FULL NAME \n" "Language-Team: LANGUAGE \n" "MIME-Version: 1.0\n" "Content-Type: text/plain; charset=CHARSET\n" "Content-Transfer-Encoding: 8bit\n" msgid "rows extracted in increasing order" msgstr "" msgid "impossible to replace boundaries and frequencies simultaneously" msgstr "" msgid "only logical matrix subscripts are allowed in replacement" msgstr "" msgid "need 0, 1, or 2 subscripts" msgstr "" msgid "one of 'mgf.claim' or 'h' is needed" msgstr "" msgid "'h' must be a function or an expression containing 'x'" msgstr "" msgid "'mgf.claim' must be a function or an expression containing 'x'" msgstr "" msgid "'mgf.wait' must be a function or an expression containing 'x'" msgstr "" msgid "'h' must be a function or an expression containing 'x' and 'y'" msgstr "" msgid "'premium.rate' must be a function when using reinsurance" msgstr "" msgid "'mgf.claim' must be a function or an expression containing 'x' and 'y'" msgstr "" msgid "'premium.rate' must be a function or an expression containing 'y'" msgstr "" msgid "'moments' must supply the mean and variance of the distribution" msgstr "" msgid "'moments' must supply the mean, variance and skewness of the distribution" msgstr "" msgid "'nb.simul' must supply the number of simulations" msgstr "" msgid "expressions in 'model.freq' and 'model.sev' must be named" msgstr "" msgid "'model.sev' must be a vector of probabilities" msgstr "" msgid "frequency distribution must be supplied as a character string" msgstr "" msgid "'model.freq' must be a vector of probabilities" msgstr "" msgid "internal error" msgstr "" msgid "function not defined for approximating distributions" msgstr "" msgid "lower bound of the likelihood missing" msgstr "" msgid "one of the Gamma prior parameter \"shape\", \"rate\" or \"scale\" missing" msgstr "" msgid "one of the Beta prior parameter \"shape1\" or \"scale2\" missing" msgstr "" msgid "parameter \"size\" of the likelihood missing" msgstr "" msgid "parameter \"shape.lik\" of the likelihood missing" msgstr "" msgid "parameter \"sd.lik\" of the likelihood missing" msgstr "" msgid "unsupported likelihood" msgstr "" msgid "missing ratios not allowed when weights are not supplied" msgstr "" msgid "there must be at least one node with more than one period of experience" msgstr "" msgid "there must be more than one node" msgstr "" msgid "missing values are not in the same positions in 'weights' and in 'ratios'" msgstr "" msgid "no available data to fit model" msgstr "" msgid "maximum number of iterations reached before obtaining convergence" msgstr "" msgid "unsupported interactions in 'formula'" msgstr "" msgid "hierarchical regression models not supported" msgstr "" msgid "ratios have to be supplied if weights are" msgstr "" msgid "empty regression model; fitting with Buhlmann-Straub's model" msgstr "" msgid "invalid level name" msgstr "" msgid "coverage modifications must be positive" msgstr "" msgid "deductible must be smaller than the limit" msgstr "" msgid "coinsurance must be between 0 and 1" msgstr "" msgid "'cdf' must be supplied" msgstr "" msgid "'cdf' must be a function or an expression containing 'x'" msgstr "" msgid "'lev' required with method \"unbiased\"" msgstr "" msgid "'lev' must be a function or an expression containing 'x'" msgstr "" msgid "'order' must be positive" msgstr "" msgid "'nclass' not used when 'breaks' is specified" msgstr "" msgid "'group' ignored when 'breaks' is specified" msgstr "" msgid "'group' ignored when 'nclass' is specified" msgstr "" msgid "invalid number of group boundaries and frequencies" msgstr "" msgid "missing frequencies replaced by zeros" msgstr "" msgid "there must be at least two nodes at every level" msgstr "" msgid "invalid level number" msgstr "" msgid "infinite group boundaries" msgstr "" msgid "'probability' is an alias for '!freq', however they differ." msgstr "" msgid "'start' must be a named list" msgstr "" msgid "'fun' must be supplied as a function" msgstr "" msgid "'x' must be a numeric vector or an object of class \"grouped.data\"" msgstr "" msgid "'start' specifies names which are not arguments to 'fun'" msgstr "" msgid "\"chi-square\" measure requires an object of class \"grouped.data\"" msgstr "" msgid "frequency must be larger than 0 in all groups" msgstr "" msgid "\"LAS\" measure requires an object of class \"grouped.data\"" msgstr "" msgid "optimization failed" msgstr "" msgid "'p0' has many elements: only the first used" msgstr "" msgid "'p0' must be a valid probability (between 0 and 1)" msgstr "" msgid "value of 'p0' ignored with a zero-truncated distribution" msgstr "" msgid "value of 'lambda' missing" msgstr "" msgid "value of 'prob' or 'size' missing" msgstr "" msgid "value of 'prob' missing" msgstr "" msgid "frequency distribution not in the (a, b, 0) or (a, b, 1) families" msgstr "" msgid "Pr[S = 0] is numerically equal to 0; impossible to start the recursion" msgstr "" msgid "invalid first argument 'n'" msgstr "" msgid "no positive probabilities" msgstr "" msgid "invalid third argument 'models'" msgstr "" msgid "'par.claims' must be a named list" msgstr "" msgid "'par.wait' must be a named list" msgstr "" msgid "parameters %s missing in 'par.claims'" msgstr "" msgid "parameter \"rate\" missing in 'par.claims'" msgstr "" msgid "parameter \"weights\" missing in 'par.claims'" msgstr "" msgid "parameter \"shape\" missing in 'par.claims'" msgstr "" msgid "parameter \"rate\" or \"scale\" missing in 'par.claims'" msgstr "" msgid "parameter \"prob\" missing in 'par.claims'" msgstr "" msgid "parameter \"rates\" missing in 'par.claims'" msgstr "" msgid "invalid parameters in 'par.claims'" msgstr "" msgid "parameters %s missing in 'par.wait'" msgstr "" msgid "parameter \"rate\" missing in 'par.wait'" msgstr "" msgid "parameter \"weights\" missing in 'par.wait'" msgstr "" msgid "parameter \"shape\" missing in 'par.wait'" msgstr "" msgid "parameter \"rate\" or \"scale\" missing in 'par.wait'" msgstr "" msgid "parameter \"prob\" missing in 'par.wait'" msgstr "" msgid "parameter \"rates\" missing in 'par.wait'" msgstr "" msgid "invalid parameters in 'par.wait'" msgstr "" msgid "'nodes' must be a named list" msgstr "" msgid "level names different in 'nodes', 'model.freq' and 'model.sev'" msgstr "" msgid "one of 'model.freq' or 'model.sev' must be non-NULL" msgstr "" msgid "nothing to do" msgstr "" msgid "invalid 'by' specification" msgstr "" msgid "'x' must be a vector or a matrix" msgstr "" actuar/po/actuar.pot0000644000176200001440000000650014030725704014155 0ustar liggesusers# SOME DESCRIPTIVE TITLE. # Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER # This file is distributed under the same license as the actuar package. # FIRST AUTHOR , YEAR. # #, fuzzy msgid "" msgstr "" "Project-Id-Version: actuar 3.0-0\n" "Report-Msgid-Bugs-To: \n" "POT-Creation-Date: 2020-06-03 12:26-0400\n" "PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n" "Last-Translator: FULL NAME \n" "Language-Team: LANGUAGE \n" "Language: \n" "MIME-Version: 1.0\n" "Content-Type: text/plain; charset=CHARSET\n" "Content-Transfer-Encoding: 8bit\n" #: betaint.c:143 dpq.c:80 dpq.c:214 dpq.c:467 dpq.c:665 dpq.c:841 dpq.c:1019 #: dpqphtype.c:49 random.c:105 random.c:112 random.c:204 random.c:211 #: random.c:320 random.c:327 random.c:431 random.c:438 random.c:540 #: random.c:547 randomphtype.c:70 randomphtype.c:77 msgid "invalid arguments" msgstr "" #: dpq.c:182 msgid "internal error in actuar_do_dpq1" msgstr "" #: dpq.c:434 msgid "internal error in actuar_do_dpq2" msgstr "" #: dpq.c:628 msgid "internal error in actuar_do_dpq3" msgstr "" #: dpq.c:805 msgid "internal error in actuar_do_dpq4" msgstr "" #: dpq.c:979 msgid "internal error in actuar_do_dpq5" msgstr "" #: dpq.c:1124 msgid "internal error in actuar_do_dpq6" msgstr "" #: dpqphtype.c:168 msgid "internal error in actuar_do_dpqphtype2" msgstr "" #: fpareto.c:186 fpareto.c:246 pareto2.c:139 pareto2.c:193 pareto3.c:144 #: pareto3.c:199 pareto4.c:160 pareto4.c:219 #, c-format msgid "'order' (%.2f) must be integer, rounded to %.0f" msgstr "" #: hierarc.c:100 invgauss.c:209 msgid "maximum number of iterations reached before obtaining convergence" msgstr "" #: invgauss.c:150 msgid "maximum number of iterations must be at least 1" msgstr "" #: invpareto.c:185 msgid "integration failed" msgstr "" #: panjer.c:71 panjer.c:114 msgid "" "maximum number of recursions reached before the probability distribution was " "complete" msgstr "" #: random.c:54 msgid "NAs produced" msgstr "" #: random.c:142 msgid "internal error in actuar_do_random1" msgstr "" #: random.c:256 msgid "internal error in actuar_do_random2" msgstr "" #: random.c:366 msgid "internal error in actuar_do_random3" msgstr "" #: random.c:473 msgid "internal error in actuar_do_random4" msgstr "" #: random.c:582 msgid "internal error in actuar_do_random5" msgstr "" #: random.c:612 msgid "internal error in actuar_do_random" msgstr "" #: randomphtype.c:97 msgid "non-square sub-intensity matrix" msgstr "" #: randomphtype.c:100 msgid "non-conformable arguments" msgstr "" #: randomphtype.c:119 msgid "internal error in actuar_do_randomphtype2" msgstr "" #: randomphtype.c:146 msgid "internal error in actuar_do_randomphtype" msgstr "" #: util.c:102 #, c-format msgid "LAPACK routine dgebal returned info code %d when permuting" msgstr "" #: util.c:106 #, c-format msgid "LAPACK routine dgebal returned info code %d when scaling" msgstr "" #: util.c:153 #, c-format msgid "LAPACK routine dgetrf returned info code %d" msgstr "" #: util.c:156 #, c-format msgid "LAPACK routine dgetrs returned info code %d" msgstr "" #: util.c:262 msgid "'A' is 0-diml" msgstr "" #: util.c:264 msgid "no right-hand side in 'B'" msgstr "" #: util.c:275 #, c-format msgid "argument %d of Lapack routine dgesv had invalid value" msgstr "" #: util.c:278 msgid "Lapack routine dgesv: system is exactly singular" msgstr "" actuar/po/R-fr.po0000644000176200001440000002747414030725704013335 0ustar liggesusers# French translations for actuar package # Traduction française du package actuar. # Copyright (C) 2016 Vincent Goulet # This file is distributed under the same license as the actuar package. # Vincent Goulet , 2010. # msgid "" msgstr "" "Project-Id-Version: actuar 2.0-0\n" "Report-Msgid-Bugs-To: bugs@r-project.org\n" "POT-Creation-Date: 2021-01-05 14:10\n" "PO-Revision-Date: 2021-01-05 14:16-0500\n" "Last-Translator: Vincent Goulet \n" "Language-Team: Vincent Goulet \n" "Language: fr\n" "MIME-Version: 1.0\n" "Content-Type: text/plain; charset=UTF-8\n" "Content-Transfer-Encoding: 8bit\n" msgid "rows extracted in increasing order" msgstr "lignes extraites en ordre croissant" msgid "impossible to replace boundaries and frequencies simultaneously" msgstr "impossible de remplacer simultanĂ©ment les bornes et les frĂ©quences" msgid "only logical matrix subscripts are allowed in replacement" msgstr "seuls les indices logiques sont permis pour le remplacement" msgid "need 0, 1, or 2 subscripts" msgstr "il faut 0, 1 ou 2 indices" msgid "one of 'mgf.claim' or 'h' is needed" msgstr "l'une ou l'autre de 'mgf.claim' ou 'h' est requise" msgid "'h' must be a function or an expression containing 'x'" msgstr "'h' doit ĂȘtre une fonction ou une expression contenant 'x'" msgid "'mgf.claim' must be a function or an expression containing 'x'" msgstr "'mgf.claim' doit ĂȘtre une fonction ou une expression contenant 'x'" msgid "'mgf.wait' must be a function or an expression containing 'x'" msgstr "'mgf.wait' doit ĂȘtre une fonction ou une expression contenant 'x'" msgid "'h' must be a function or an expression containing 'x' and 'y'" msgstr "'h' doit ĂȘtre une fonction ou une expression contenant 'x'" msgid "'premium.rate' must be a function when using reinsurance" msgstr "'premium.rate' doit ĂȘtre une fonction en prĂ©sence de rĂ©assurance" msgid "'mgf.claim' must be a function or an expression containing 'x' and 'y'" msgstr "" "'mgf.claim' doit ĂȘtre une fonction ou une expression contenant 'x' et 'y'" msgid "'premium.rate' must be a function or an expression containing 'y'" msgstr "'premium.rate' doit ĂȘtre une fonction ou une expression contenant 'y'" msgid "'moments' must supply the mean and variance of the distribution" msgstr "'moments' doit contenir la moyenne et la variance de la distribution" msgid "" "'moments' must supply the mean, variance and skewness of the distribution" msgstr "" "'moments' doit contenir la moyenne, la variance et l'asymĂ©trie de la " "distribution" msgid "'nb.simul' must supply the number of simulations" msgstr "'nb.simul' doit spĂ©cifier le nombre de simulations" msgid "expressions in 'model.freq' and 'model.sev' must be named" msgstr "les expressions dans 'model.freq' et 'model.sev' doivent ĂȘtre nommĂ©es" msgid "'model.sev' must be a vector of probabilities" msgstr "'model.sev' doit ĂȘtre un vecteur de probabilitĂ©s" msgid "frequency distribution must be supplied as a character string" msgstr "" "la distribution de frĂ©quence doit ĂȘtre spĂ©cifiĂ©e sous forme de chaĂźne de " "caractĂšres" msgid "'model.freq' must be a vector of probabilities" msgstr "'model.freq' doit ĂȘtre un vecteur de probabilitĂ©s" msgid "internal error" msgstr "erreur interne" msgid "function not defined for approximating distributions" msgstr "fonction non dĂ©finie pour les mĂ©thodes d'approximation" msgid "lower bound of the likelihood missing" msgstr "seuil de la vraisemblance manquant" msgid "" "one of the Gamma prior parameter \"shape\", \"rate\" or \"scale\" missing" msgstr "" "un des paramĂštres \"shape\", \"rate\" ou \"scale\" de la loi Gamma manquant" msgid "one of the Beta prior parameter \"shape1\" or \"scale2\" missing" msgstr "un des paramĂštres \"shape1\" ou \"shape2\" de la loi BĂȘta manquant" msgid "parameter \"size\" of the likelihood missing" msgstr "paramĂštre \"size\" de la vraisemblance manquant" msgid "parameter \"shape.lik\" of the likelihood missing" msgstr "paramĂštre \"shape.lik\" de la vraisemblance manquant" msgid "parameter \"sd.lik\" of the likelihood missing" msgstr "paramĂštre \"sd.lik\" de la vraisemblance manquant" msgid "unsupported likelihood" msgstr "vraisemblance non valide" msgid "missing ratios not allowed when weights are not supplied" msgstr "ratios manquants non permis lorsque les poids ne sont pas fournis" msgid "there must be at least one node with more than one period of experience" msgstr "" "il y doit y avoir au moins un noeud avec plus d'une pĂ©riode d'expĂ©rience" msgid "there must be more than one node" msgstr "il doit y avoir plus d'un noeud" msgid "" "missing values are not in the same positions in 'weights' and in 'ratios'" msgstr "" "les donnĂ©es manquantes ne sont pas aux mĂȘmes positions dans les poids et " "dans les ratios" msgid "no available data to fit model" msgstr "aucune donnĂ©e disponible pour la modĂ©lisation" msgid "maximum number of iterations reached before obtaining convergence" msgstr "nombre d'itĂ©rations maximal atteint avant obtention de la convergence" msgid "unsupported interactions in 'formula'" msgstr "interactions non supportĂ©es dans 'formula'" msgid "hierarchical regression models not supported" msgstr "modĂšles de rĂ©gression hiĂ©rarchiques non supportĂ©s" msgid "ratios have to be supplied if weights are" msgstr "ratios requis s'il y a des poids" msgid "empty regression model; fitting with Buhlmann-Straub's model" msgstr "modĂšle de rĂ©gression vide; utilisation du modĂšle de BĂŒhlmann-Straub" msgid "invalid level name" msgstr "nom de niveau incorrect" msgid "coverage modifications must be positive" msgstr "les modifications de couverture doivent ĂȘtre positives" msgid "deductible must be smaller than the limit" msgstr "la franchise doit ĂȘtre infĂ©rieure Ă  la limite" msgid "coinsurance must be between 0 and 1" msgstr "le facteur de coassurance doit ĂȘtre entre 0 et 1" msgid "'cdf' must be supplied" msgstr "'cdf' doit ĂȘtre fourni" msgid "'cdf' must be a function or an expression containing 'x'" msgstr "'cdf' doit ĂȘtre une fonction ou une expression contenant 'x'" msgid "'lev' required with method \"unbiased\"" msgstr "'lev' requis pour la mĂ©thode \"unbiased\"" msgid "'lev' must be a function or an expression containing 'x'" msgstr "'lev' doit ĂȘtre une fonction ou une expression contenant 'x'" msgid "'order' must be positive" msgstr "'order' doit ĂȘtre positif" msgid "'nclass' not used when 'breaks' is specified" msgstr "'nclass' non utilisĂ© quand 'breaks' est fourni" msgid "'group' ignored when 'breaks' is specified" msgstr "'group' ignorĂ© quand 'breaks' est fourni" msgid "'group' ignored when 'nclass' is specified" msgstr "'group' ignorĂ© quand 'breaks' est fourni" msgid "invalid number of group boundaries and frequencies" msgstr "nombre de bornes de groupe et de frĂ©quences incorrect" msgid "missing frequencies replaced by zeros" msgstr "frĂ©quences manquantes remplacĂ©es par des zĂ©ros" msgid "there must be at least two nodes at every level" msgstr "il doit y avoir au moins deux noeuds Ă  chaque niveau" msgid "invalid level number" msgstr "numĂ©ro de niveau incorrect" msgid "infinite group boundaries" msgstr "bornes de groupe infinies" msgid "'probability' is an alias for '!freq', however they differ." msgstr "'probability' est un alias pour '!freq', cependant ils diffĂšrent." msgid "'start' must be a named list" msgstr "'start' doit ĂȘtre une liste nommĂ©e" msgid "'fun' must be supplied as a function" msgstr "'fun' doit ĂȘtre fourni comme une fonction" msgid "'x' must be a numeric vector or an object of class \"grouped.data\"" msgstr "" "'x' doit ĂȘtre un vecteur numĂ©rique ou un objet de classe \"grouped.data\"" msgid "'start' specifies names which are not arguments to 'fun'" msgstr "'start' spĂ©cifie des noms qui ne sont pas des arguments de 'fun'" msgid "\"chi-square\" measure requires an object of class \"grouped.data\"" msgstr "mesure \"chi-square\" requiert un objet de classe \"grouped.data\"" msgid "frequency must be larger than 0 in all groups" msgstr "la frĂ©quence doit ĂȘtre supĂ©rieure Ă  0 dans tous les groupes" msgid "\"LAS\" measure requires an object of class \"grouped.data\"" msgstr "mesure \"LAS\" requiert un objet de classe \"grouped.data\"" msgid "optimization failed" msgstr "l'optimisation a Ă©chouĂ©" msgid "'p0' has many elements: only the first used" msgstr "'p0' contient plusieurs Ă©lĂ©ments: seul le premier est utilisĂ©" msgid "'p0' must be a valid probability (between 0 and 1)" msgstr "'p0' doit ĂȘtre une probabilitĂ© (entre 0 et 1)" msgid "value of 'p0' ignored with a zero-truncated distribution" msgstr "valeur de 'p0' ignorĂ©e pour une distribution zĂ©ro tronquĂ©e" msgid "value of 'lambda' missing" msgstr "valeur de 'lambda' manquante" msgid "value of 'prob' or 'size' missing" msgstr "valeur de 'prob' ou 'size' manquante" msgid "value of 'prob' missing" msgstr "valeur de 'prob' manquante" msgid "frequency distribution not in the (a, b, 0) or (a, b, 1) families" msgstr "" "la distribution de frĂ©quence ne fait pas partie des familles (a, b, 0) ou " "(a, b, 1)" msgid "Pr[S = 0] is numerically equal to 0; impossible to start the recursion" msgstr "" "valeur de Pr[S = 0] numĂ©riquement nulle; impossible de dĂ©marrer le calcul " "rĂ©cursif" msgid "invalid first argument 'n'" msgstr "premier argument 'n' incorrect" msgid "no positive probabilities" msgstr "aucune probabilitĂ© positive" msgid "invalid third argument 'models'" msgstr "troisiĂšme argument 'models' incorrect" msgid "'par.claims' must be a named list" msgstr "'par.claims' doit ĂȘtre une liste nommĂ©e" msgid "'par.wait' must be a named list" msgstr "'par.wait' doit ĂȘtre une liste nommĂ©e" msgid "parameters %s missing in 'par.claims'" msgstr "paramĂštres %s manquants dans 'par.claims'" msgid "parameter \"rate\" missing in 'par.claims'" msgstr "paramĂštre \"rate\" manquant dans 'par.claims'" msgid "parameter \"weights\" missing in 'par.claims'" msgstr "paramĂštre \"weights\" manquant dans 'par.claims'" msgid "parameter \"shape\" missing in 'par.claims'" msgstr "paramĂštre \"shape\" manquant dans 'par.claims'" msgid "parameter \"rate\" or \"scale\" missing in 'par.claims'" msgstr "paramĂštre \"rate\" ou \"scale\" manquant dans 'par.claims'" msgid "parameter \"prob\" missing in 'par.claims'" msgstr "paramĂštre \"prob\" manquant dans 'par.claims'" msgid "parameter \"rates\" missing in 'par.claims'" msgstr "paramĂštre \"rates\" manquant dans 'par.claims'" msgid "invalid parameters in 'par.claims'" msgstr "paramĂštres incorrects dans 'par.claims'" msgid "parameters %s missing in 'par.wait'" msgstr "paramĂštres %s manquants dans 'par.wait'" msgid "parameter \"rate\" missing in 'par.wait'" msgstr "paramĂštre \"rate\" manquant dans 'par.claims'" msgid "parameter \"weights\" missing in 'par.wait'" msgstr "paramĂštre \"weights\" manquant dans 'par.wait'" msgid "parameter \"shape\" missing in 'par.wait'" msgstr "paramĂštre \"shape\" manquant dans 'par.wait'" msgid "parameter \"rate\" or \"scale\" missing in 'par.wait'" msgstr "paramĂštre \"rate\" ou \"scale\" manquant dans 'par.wait'" msgid "parameter \"prob\" missing in 'par.wait'" msgstr "paramĂštre \"prob\" manquant dans 'par.wait'" msgid "parameter \"rates\" missing in 'par.wait'" msgstr "paramĂštre \"rates\" manquant dans 'par.wait'" msgid "invalid parameters in 'par.wait'" msgstr "paramĂštres incorrects dans 'par.wait'" msgid "'nodes' must be a named list" msgstr "'nodes' doit ĂȘtre une liste nommĂ©e" msgid "level names different in 'nodes', 'model.freq' and 'model.sev'" msgstr "noms de niveaux diffĂ©rents dans 'nodes', 'model.freq' et 'model.sev'" msgid "one of 'model.freq' or 'model.sev' must be non-NULL" msgstr "un de 'model.freq' ou 'model.sev' doit ĂȘtre non NULL" msgid "nothing to do" msgstr "rien Ă  faire" msgid "invalid 'by' specification" msgstr "valeur de 'by' incorrecte" msgid "'x' must be a vector or a matrix" msgstr "'x' doit ĂȘtre un vecteur ou une matrice" actuar/po/fr.po0000644000176200001440000001151014030725704013116 0ustar liggesusers# French translations for actuar package # Traduction française du package actuar. # Copyright (C) 2007 Vincent Goulet # This file is distributed under the same license as the actuar package. # Vincent Goulet , 2007. # msgid "" msgstr "" "Project-Id-Version: actuar 1.1-7\n" "Report-Msgid-Bugs-To: \n" "POT-Creation-Date: 2020-06-03 12:26-0400\n" "PO-Revision-Date: 2020-06-03 12:33-0400\n" "Last-Translator: Vincent Goulet \n" "Language-Team: Vincent Goulet \n" "Language: fr\n" "MIME-Version: 1.0\n" "Content-Type: text/plain; charset=UTF-8\n" "Content-Transfer-Encoding: 8bit\n" "Plural-Forms: nplurals=2; plural=(n > 1);\n" #: betaint.c:143 dpq.c:80 dpq.c:214 dpq.c:467 dpq.c:665 dpq.c:841 dpq.c:1019 #: dpqphtype.c:49 random.c:105 random.c:112 random.c:204 random.c:211 #: random.c:320 random.c:327 random.c:431 random.c:438 random.c:540 #: random.c:547 randomphtype.c:70 randomphtype.c:77 msgid "invalid arguments" msgstr "arguments incorrects" #: dpq.c:182 msgid "internal error in actuar_do_dpq1" msgstr "erreur interne dans actuar_do_dpq1" #: dpq.c:434 msgid "internal error in actuar_do_dpq2" msgstr "erreur interne dans actuar_do_dpq2" #: dpq.c:628 msgid "internal error in actuar_do_dpq3" msgstr "erreur interne dans actuar_do_dpq3" #: dpq.c:805 msgid "internal error in actuar_do_dpq4" msgstr "erreur interne dans actuar_do_dpq4" #: dpq.c:979 msgid "internal error in actuar_do_dpq5" msgstr "erreur interne dans actuar_do_dpq5" #: dpq.c:1124 msgid "internal error in actuar_do_dpq6" msgstr "erreur interne dans actuar_do_dpq6" #: dpqphtype.c:168 msgid "internal error in actuar_do_dpqphtype2" msgstr "erreur interne dans actuar_do_dpqphtype2" #: fpareto.c:186 fpareto.c:246 pareto2.c:139 pareto2.c:193 pareto3.c:144 #: pareto3.c:199 pareto4.c:160 pareto4.c:219 #, c-format msgid "'order' (%.2f) must be integer, rounded to %.0f" msgstr "'order' (%.2f) doit ĂȘtre entier, arrondi Ă  %.0f" #: hierarc.c:100 invgauss.c:209 msgid "maximum number of iterations reached before obtaining convergence" msgstr "nombre d'itĂ©rations maximal atteint avant obtention de la convergence" #: invgauss.c:150 msgid "maximum number of iterations must be at least 1" msgstr "le nombre d'itĂ©rations maximal doit ĂȘtre au moins 1" #: invpareto.c:185 msgid "integration failed" msgstr "l'intĂ©gration a Ă©chouĂ©" #: panjer.c:71 panjer.c:114 msgid "" "maximum number of recursions reached before the probability distribution was " "complete" msgstr "nombre de rĂ©cursions maximal atteint avant obtention de la convergence" #: random.c:54 msgid "NAs produced" msgstr "production de NA" #: random.c:142 msgid "internal error in actuar_do_random1" msgstr "erreur interne dans actuar_do_random1" #: random.c:256 msgid "internal error in actuar_do_random2" msgstr "erreur interne dans actuar_do_random2" #: random.c:366 msgid "internal error in actuar_do_random3" msgstr "erreur interne dans actuar_do_random3" #: random.c:473 msgid "internal error in actuar_do_random4" msgstr "erreur interne dans actuar_do_random4" #: random.c:582 msgid "internal error in actuar_do_random5" msgstr "erreur interne dans actuar_do_random5" #: random.c:612 msgid "internal error in actuar_do_random" msgstr "erreur interne dans actuar_do_random" #: randomphtype.c:97 msgid "non-square sub-intensity matrix" msgstr "matrice de sous-intensitĂ© non carrĂ©e" #: randomphtype.c:100 msgid "non-conformable arguments" msgstr "arguments non conformes" #: randomphtype.c:119 msgid "internal error in actuar_do_randomphtype2" msgstr "erreur interne dans actuar_do_randomphtype2" #: randomphtype.c:146 msgid "internal error in actuar_do_randomphtype" msgstr "erreur interne dans actuar_do_randomphtype" #: util.c:102 #, c-format msgid "LAPACK routine dgebal returned info code %d when permuting" msgstr "" "la procĂ©dure LAPACK dgebal a produit le code d'erreur %d lors de la " "permutation" #: util.c:106 #, c-format msgid "LAPACK routine dgebal returned info code %d when scaling" msgstr "" "la procĂ©dure LAPACK dgebal a produit le code d'erreur %d lors de la mise Ă  " "l'Ă©chelle" #: util.c:153 #, c-format msgid "LAPACK routine dgetrf returned info code %d" msgstr "la procĂ©dure LAPACK dgetrf a produit le code d'erreur %d" #: util.c:156 #, c-format msgid "LAPACK routine dgetrs returned info code %d" msgstr "la procĂ©dure LAPACK dgetrs a produit le code d'erreur %d" #: util.c:262 msgid "'A' is 0-diml" msgstr "'A' est de dimension nulle" #: util.c:264 msgid "no right-hand side in 'B'" msgstr "aucun membre de droite dans 'B'" #: util.c:275 #, c-format msgid "argument %d of Lapack routine dgesv had invalid value" msgstr "valeur incorrecte pour l'argument %d du sous-programme dgesv de Lapack" #: util.c:278 msgid "Lapack routine dgesv: system is exactly singular" msgstr "sous-programme Lapack dgesv: le systĂšme est exactement singulier"