AER/0000755000176200001440000000000014557444472010701 5ustar liggesusersAER/NAMESPACE0000644000176200001440000000273113561127502012105 0ustar liggesusers## imports import("stats") import("Formula") import("zoo") importFrom("lmtest", "coeftest", "waldtest", "waldtest.default", "lrtest", "lrtest.default") importFrom("car", "linearHypothesis") importFrom("sandwich", "bread", "estfun") importFrom("survival", "Surv", "survreg", "survreg.distributions") ## exported functions of AER export( "dispersiontest", "tobit", "ivreg", "ivreg.fit" ) ## methods for class tobit S3method("print", "tobit") S3method("print", "summary.tobit") S3method("summary", "tobit") S3method("formula", "tobit") S3method("update", "tobit") S3method("model.frame", "tobit") S3method("waldtest", "tobit") S3method("lrtest", "tobit") S3method("linearHypothesis", "tobit") ## methods for class tobit that could also be ## inherited from survival >= 3.1-6 S3method("bread", "tobit") S3method("vcov", "tobit") S3method("fitted", "tobit") S3method("nobs", "tobit") S3method("weights", "tobit") ## methods for class ivreg S3method("print", "ivreg") S3method("print", "summary.ivreg") S3method("summary", "ivreg") S3method("vcov", "ivreg") S3method("bread", "ivreg") S3method("estfun", "ivreg") S3method("hatvalues", "ivreg") S3method("predict", "ivreg") S3method("anova", "ivreg") S3method("terms", "ivreg") S3method("model.matrix", "ivreg") S3method("update", "ivreg") ## methods for class survreg S3method("deviance", "survreg") ## methods for class multinom, polr, fitdistr S3method("coeftest", "multinom") S3method("coeftest", "polr") S3method("lrtest", "fitdistr") AER/demo/0000755000176200001440000000000013165152422011606 5ustar liggesusersAER/demo/Ch-LinearRegression.R0000644000176200001440000004652713463421674015563 0ustar liggesusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: data-journals ################################################### data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations summary(journals) ################################################### ### chunk number 3: linreg-plot eval=FALSE ################################################### ## plot(log(subs) ~ log(citeprice), data = journals) ## jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) ## abline(jour_lm) ################################################### ### chunk number 4: linreg-plot1 ################################################### plot(log(subs) ~ log(citeprice), data = journals) jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) abline(jour_lm) ################################################### ### chunk number 5: linreg-class ################################################### class(jour_lm) ################################################### ### chunk number 6: linreg-names ################################################### names(jour_lm) ################################################### ### chunk number 7: linreg-summary ################################################### summary(jour_lm) ################################################### ### chunk number 8: linreg-summary ################################################### jour_slm <- summary(jour_lm) class(jour_slm) names(jour_slm) ################################################### ### chunk number 9: linreg-coef ################################################### jour_slm$coefficients ################################################### ### chunk number 10: linreg-anova ################################################### anova(jour_lm) ################################################### ### chunk number 11: journals-coef ################################################### coef(jour_lm) ################################################### ### chunk number 12: journals-confint ################################################### confint(jour_lm, level = 0.95) ################################################### ### chunk number 13: journals-predict ################################################### predict(jour_lm, newdata = data.frame(citeprice = 2.11), interval = "confidence") predict(jour_lm, newdata = data.frame(citeprice = 2.11), interval = "prediction") ################################################### ### chunk number 14: predict-plot eval=FALSE ################################################### ## lciteprice <- seq(from = -6, to = 4, by = 0.25) ## jour_pred <- predict(jour_lm, interval = "prediction", ## newdata = data.frame(citeprice = exp(lciteprice))) ## plot(log(subs) ~ log(citeprice), data = journals) ## lines(jour_pred[, 1] ~ lciteprice, col = 1) ## lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2) ## lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2) ################################################### ### chunk number 15: predict-plot1 ################################################### lciteprice <- seq(from = -6, to = 4, by = 0.25) jour_pred <- predict(jour_lm, interval = "prediction", newdata = data.frame(citeprice = exp(lciteprice))) plot(log(subs) ~ log(citeprice), data = journals) lines(jour_pred[, 1] ~ lciteprice, col = 1) lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2) lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2) ################################################### ### chunk number 16: journals-plot eval=FALSE ################################################### ## par(mfrow = c(2, 2)) ## plot(jour_lm) ## par(mfrow = c(1, 1)) ################################################### ### chunk number 17: journals-plot1 ################################################### par(mfrow = c(2, 2)) plot(jour_lm) par(mfrow = c(1, 1)) ################################################### ### chunk number 18: journal-lht ################################################### linearHypothesis(jour_lm, "log(citeprice) = -0.5") ################################################### ### chunk number 19: CPS-data ################################################### data("CPS1988") summary(CPS1988) ################################################### ### chunk number 20: CPS-base ################################################### cps_lm <- lm(log(wage) ~ experience + I(experience^2) + education + ethnicity, data = CPS1988) ################################################### ### chunk number 21: CPS-visualization-unused eval=FALSE ################################################### ## ex <- 0:56 ## ed <- with(CPS1988, tapply(education, ## list(ethnicity, experience), mean))[, as.character(ex)] ## fm <- cps_lm ## wago <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) ## wagb <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "afam", education = as.numeric(ed["afam",]))) ## plot(log(wage) ~ experience, data = CPS1988, pch = ".", ## col = as.numeric(ethnicity)) ## lines(ex, wago) ## lines(ex, wagb, col = 2) ################################################### ### chunk number 22: CPS-summary ################################################### summary(cps_lm) ################################################### ### chunk number 23: CPS-noeth ################################################### cps_noeth <- lm(log(wage) ~ experience + I(experience^2) + education, data = CPS1988) anova(cps_noeth, cps_lm) ################################################### ### chunk number 24: CPS-anova ################################################### anova(cps_lm) ################################################### ### chunk number 25: CPS-noeth2 eval=FALSE ################################################### ## cps_noeth <- update(cps_lm, formula = . ~ . - ethnicity) ################################################### ### chunk number 26: CPS-waldtest ################################################### waldtest(cps_lm, . ~ . - ethnicity) ################################################### ### chunk number 27: CPS-spline ################################################### library("splines") cps_plm <- lm(log(wage) ~ bs(experience, df = 5) + education + ethnicity, data = CPS1988) ################################################### ### chunk number 28: CPS-spline-summary eval=FALSE ################################################### ## summary(cps_plm) ################################################### ### chunk number 29: CPS-BIC ################################################### cps_bs <- lapply(3:10, function(i) lm(log(wage) ~ bs(experience, df = i) + education + ethnicity, data = CPS1988)) structure(sapply(cps_bs, AIC, k = log(nrow(CPS1988))), .Names = 3:10) ################################################### ### chunk number 30: plm-plot eval=FALSE ################################################### ## cps <- data.frame(experience = -2:60, education = ## with(CPS1988, mean(education[ethnicity == "cauc"])), ## ethnicity = "cauc") ## cps$yhat1 <- predict(cps_lm, newdata = cps) ## cps$yhat2 <- predict(cps_plm, newdata = cps) ## ## plot(log(wage) ~ jitter(experience, factor = 3), pch = 19, ## col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988) ## lines(yhat1 ~ experience, data = cps, lty = 2) ## lines(yhat2 ~ experience, data = cps) ## legend("topleft", c("quadratic", "spline"), lty = c(2,1), ## bty = "n") ################################################### ### chunk number 31: plm-plot1 ################################################### cps <- data.frame(experience = -2:60, education = with(CPS1988, mean(education[ethnicity == "cauc"])), ethnicity = "cauc") cps$yhat1 <- predict(cps_lm, newdata = cps) cps$yhat2 <- predict(cps_plm, newdata = cps) plot(log(wage) ~ jitter(experience, factor = 3), pch = 19, col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988) lines(yhat1 ~ experience, data = cps, lty = 2) lines(yhat2 ~ experience, data = cps) legend("topleft", c("quadratic", "spline"), lty = c(2,1), bty = "n") ################################################### ### chunk number 32: CPS-int ################################################### cps_int <- lm(log(wage) ~ experience + I(experience^2) + education * ethnicity, data = CPS1988) coeftest(cps_int) ################################################### ### chunk number 33: CPS-int2 eval=FALSE ################################################### ## cps_int <- lm(log(wage) ~ experience + I(experience^2) + ## education + ethnicity + education:ethnicity, ## data = CPS1988) ################################################### ### chunk number 34: CPS-sep ################################################### cps_sep <- lm(log(wage) ~ ethnicity / (experience + I(experience^2) + education) - 1, data = CPS1988) ################################################### ### chunk number 35: CPS-sep-coef ################################################### cps_sep_cf <- matrix(coef(cps_sep), nrow = 2) rownames(cps_sep_cf) <- levels(CPS1988$ethnicity) colnames(cps_sep_cf) <- names(coef(cps_lm))[1:4] cps_sep_cf ################################################### ### chunk number 36: CPS-sep-anova ################################################### anova(cps_sep, cps_lm) ################################################### ### chunk number 37: CPS-sep-visualization-unused eval=FALSE ################################################### ## ex <- 0:56 ## ed <- with(CPS1988, tapply(education, list(ethnicity, ## experience), mean))[, as.character(ex)] ## fm <- cps_lm ## wago <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) ## wagb <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "afam", education = as.numeric(ed["afam",]))) ## plot(log(wage) ~ jitter(experience, factor = 2), ## data = CPS1988, pch = ".", col = as.numeric(ethnicity)) ## ## ## plot(log(wage) ~ as.factor(experience), data = CPS1988, ## pch = ".") ## lines(ex, wago, lwd = 2) ## lines(ex, wagb, col = 2, lwd = 2) ## fm <- cps_sep ## wago <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) ## wagb <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "afam", education = as.numeric(ed["afam",]))) ## lines(ex, wago, lty = 2, lwd = 2) ## lines(ex, wagb, col = 2, lty = 2, lwd = 2) ################################################### ### chunk number 38: CPS-region ################################################### CPS1988$region <- relevel(CPS1988$region, ref = "south") cps_region <- lm(log(wage) ~ ethnicity + education + experience + I(experience^2) + region, data = CPS1988) coef(cps_region) ################################################### ### chunk number 39: wls1 ################################################### jour_wls1 <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice^2) ################################################### ### chunk number 40: wls2 ################################################### jour_wls2 <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice) ################################################### ### chunk number 41: journals-wls1 eval=FALSE ################################################### ## plot(log(subs) ~ log(citeprice), data = journals) ## abline(jour_lm) ## abline(jour_wls1, lwd = 2, lty = 2) ## abline(jour_wls2, lwd = 2, lty = 3) ## legend("bottomleft", c("OLS", "WLS1", "WLS2"), ## lty = 1:3, lwd = 2, bty = "n") ################################################### ### chunk number 42: journals-wls11 ################################################### plot(log(subs) ~ log(citeprice), data = journals) abline(jour_lm) abline(jour_wls1, lwd = 2, lty = 2) abline(jour_wls2, lwd = 2, lty = 3) legend("bottomleft", c("OLS", "WLS1", "WLS2"), lty = 1:3, lwd = 2, bty = "n") ################################################### ### chunk number 43: fgls1 ################################################### auxreg <- lm(log(residuals(jour_lm)^2) ~ log(citeprice), data = journals) jour_fgls1 <- lm(log(subs) ~ log(citeprice), weights = 1/exp(fitted(auxreg)), data = journals) ################################################### ### chunk number 44: fgls2 ################################################### gamma2i <- coef(auxreg)[2] gamma2 <- 0 while(abs((gamma2i - gamma2)/gamma2) > 1e-7) { gamma2 <- gamma2i fglsi <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice^gamma2) gamma2i <- coef(lm(log(residuals(fglsi)^2) ~ log(citeprice), data = journals))[2] } jour_fgls2 <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice^gamma2) ################################################### ### chunk number 45: fgls2-coef ################################################### coef(jour_fgls2) ################################################### ### chunk number 46: journals-fgls ################################################### plot(log(subs) ~ log(citeprice), data = journals) abline(jour_lm) abline(jour_fgls2, lty = 2, lwd = 2) ################################################### ### chunk number 47: usmacro-plot eval=FALSE ################################################### ## data("USMacroG") ## plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1), ## plot.type = "single", ylab = "") ## legend("topleft", legend = c("income", "consumption"), ## lty = c(3, 1), bty = "n") ################################################### ### chunk number 48: usmacro-plot1 ################################################### data("USMacroG") plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1), plot.type = "single", ylab = "") legend("topleft", legend = c("income", "consumption"), lty = c(3, 1), bty = "n") ################################################### ### chunk number 49: usmacro-fit ################################################### library("dynlm") cons_lm1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) cons_lm2 <- dynlm(consumption ~ dpi + L(consumption), data = USMacroG) ################################################### ### chunk number 50: usmacro-summary1 ################################################### summary(cons_lm1) ################################################### ### chunk number 51: usmacro-summary2 ################################################### summary(cons_lm2) ################################################### ### chunk number 52: dynlm-plot eval=FALSE ################################################### ## plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1), ## fitted(cons_lm2), 0, residuals(cons_lm1), ## residuals(cons_lm2)), screens = rep(1:2, c(3, 3)), ## lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"), ## xlab = "Time", main = "") ## legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"), ## lty = 1:3, bty = "n") ################################################### ### chunk number 53: dynlm-plot1 ################################################### plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1), fitted(cons_lm2), 0, residuals(cons_lm1), residuals(cons_lm2)), screens = rep(1:2, c(3, 3)), lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"), xlab = "Time", main = "") legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"), lty = 1:3, bty = "n") ################################################### ### chunk number 54: encompassing1 ################################################### cons_lmE <- dynlm(consumption ~ dpi + L(dpi) + L(consumption), data = USMacroG) ################################################### ### chunk number 55: encompassing2 ################################################### anova(cons_lm1, cons_lmE, cons_lm2) ################################################### ### chunk number 56: encompassing3 ################################################### encomptest(cons_lm1, cons_lm2) ################################################### ### chunk number 57: pdata.frame ################################################### data("Grunfeld", package = "AER") library("plm") gr <- subset(Grunfeld, firm %in% c("General Electric", "General Motors", "IBM")) pgr <- pdata.frame(gr, index = c("firm", "year")) ################################################### ### chunk number 58: plm-pool ################################################### gr_pool <- plm(invest ~ value + capital, data = pgr, model = "pooling") ################################################### ### chunk number 59: plm-FE ################################################### gr_fe <- plm(invest ~ value + capital, data = pgr, model = "within") summary(gr_fe) ################################################### ### chunk number 60: plm-pFtest ################################################### pFtest(gr_fe, gr_pool) ################################################### ### chunk number 61: plm-RE ################################################### gr_re <- plm(invest ~ value + capital, data = pgr, model = "random", random.method = "walhus") summary(gr_re) ################################################### ### chunk number 62: plm-plmtest ################################################### plmtest(gr_pool) ################################################### ### chunk number 63: plm-phtest ################################################### phtest(gr_re, gr_fe) ################################################### ### chunk number 64: EmplUK-data ################################################### data("EmplUK", package = "plm") ################################################### ### chunk number 65: plm-AB ################################################### empl_ab <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1) + log(capital) + lag(log(output), 0:1) | lag(log(emp), 2:99), data = EmplUK, index = c("firm", "year"), effect = "twoways", model = "twosteps") ################################################### ### chunk number 66: plm-AB-summary ################################################### summary(empl_ab) ################################################### ### chunk number 67: systemfit ################################################### library("systemfit") gr2 <- subset(Grunfeld, firm %in% c("Chrysler", "IBM")) pgr2 <- pdata.frame(gr2, c("firm", "year")) ################################################### ### chunk number 68: SUR ################################################### gr_sur <- systemfit(invest ~ value + capital, method = "SUR", data = pgr2) summary(gr_sur, residCov = FALSE, equations = FALSE) ################################################### ### chunk number 69: nlme eval=FALSE ################################################### ## library("nlme") ## g1 <- subset(Grunfeld, firm == "Westinghouse") ## gls(invest ~ value + capital, data = g1, correlation = corAR1()) AER/demo/Ch-Microeconometrics.R0000644000176200001440000003050714303126201015741 0ustar liggesusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: swisslabor-data ################################################### data("SwissLabor") swiss_probit <- glm(participation ~ . + I(age^2), data = SwissLabor, family = binomial(link = "probit")) summary(swiss_probit) ################################################### ### chunk number 3: swisslabor-plot eval=FALSE ################################################### ## plot(participation ~ age, data = SwissLabor) ################################################### ### chunk number 4: swisslabor-plot-refined ################################################### plot(participation ~ education, data = SwissLabor) fm <- glm(participation ~ education + I(education^2), data = SwissLabor, family = binomial) edu <- sort(unique(SwissLabor$education)) prop <- sapply(edu, function(x) mean(SwissLabor$education <= x)) lines(predict(fm, newdata = data.frame(education = edu), type = "response") ~ prop, col = 2) plot(participation ~ age, data = SwissLabor) fm <- glm(participation ~ age + I(age^2), data = SwissLabor, family = binomial) ag <- sort(unique(SwissLabor$age)) prop <- sapply(ag, function(x) mean(SwissLabor$age <= x)) lines(predict(fm, newdata = data.frame(age = ag), type = "response") ~ prop, col = 2) ################################################### ### chunk number 5: effects1 ################################################### fav <- mean(dnorm(predict(swiss_probit, type = "link"))) fav * coef(swiss_probit) ################################################### ### chunk number 6: effects2 ################################################### av <- colMeans(SwissLabor[, -c(1, 7)]) av <- data.frame(rbind(swiss = av, foreign = av), foreign = factor(c("no", "yes"))) av <- predict(swiss_probit, newdata = av, type = "link") av <- dnorm(av) av["swiss"] * coef(swiss_probit)[-7] ################################################### ### chunk number 7: effects3 ################################################### av["foreign"] * coef(swiss_probit)[-7] ################################################### ### chunk number 8: mcfadden ################################################### swiss_probit0 <- update(swiss_probit, formula = . ~ 1) 1 - as.vector(logLik(swiss_probit)/logLik(swiss_probit0)) ################################################### ### chunk number 9: confusion-matrix ################################################### table(true = SwissLabor$participation, pred = round(fitted(swiss_probit))) ################################################### ### chunk number 10: confusion-matrix1 ################################################### tab <- table(true = SwissLabor$participation, pred = round(fitted(swiss_probit))) tabp <- round(100 * c(tab[1,1] + tab[2,2], tab[2,1] + tab[1,2])/sum(tab), digits = 2) ################################################### ### chunk number 11: roc-plot eval=FALSE ################################################### ## library("ROCR") ## pred <- prediction(fitted(swiss_probit), ## SwissLabor$participation) ## plot(performance(pred, "acc")) ## plot(performance(pred, "tpr", "fpr")) ## abline(0, 1, lty = 2) ################################################### ### chunk number 12: roc-plot1 ################################################### library("ROCR") pred <- prediction(fitted(swiss_probit), SwissLabor$participation) plot(performance(pred, "acc")) plot(performance(pred, "tpr", "fpr")) abline(0, 1, lty = 2) ################################################### ### chunk number 13: rss ################################################### deviance(swiss_probit) sum(residuals(swiss_probit, type = "deviance")^2) sum(residuals(swiss_probit, type = "pearson")^2) ################################################### ### chunk number 14: coeftest eval=FALSE ################################################### ## coeftest(swiss_probit, vcov = sandwich) ################################################### ### chunk number 15: murder ################################################### data("MurderRates") murder_logit <- glm(I(executions > 0) ~ time + income + noncauc + lfp + southern, data = MurderRates, family = binomial) ################################################### ### chunk number 16: murder-coeftest ################################################### coeftest(murder_logit) ################################################### ### chunk number 17: murder2 ################################################### murder_logit2 <- glm(I(executions > 0) ~ time + income + noncauc + lfp + southern, data = MurderRates, family = binomial, control = list(epsilon = 1e-15, maxit = 50, trace = FALSE)) ################################################### ### chunk number 18: murder2-coeftest ################################################### coeftest(murder_logit2) ################################################### ### chunk number 19: separation ################################################### table(I(MurderRates$executions > 0), MurderRates$southern) ################################################### ### chunk number 20: countreg-pois ################################################### data("RecreationDemand") rd_pois <- glm(trips ~ ., data = RecreationDemand, family = poisson) ################################################### ### chunk number 21: countreg-pois-coeftest ################################################### coeftest(rd_pois) ################################################### ### chunk number 22: countreg-pois-logLik ################################################### logLik(rd_pois) ################################################### ### chunk number 23: countreg-odtest1 ################################################### dispersiontest(rd_pois) ################################################### ### chunk number 24: countreg-odtest2 ################################################### dispersiontest(rd_pois, trafo = 2) ################################################### ### chunk number 25: countreg-nbin ################################################### library("MASS") rd_nb <- glm.nb(trips ~ ., data = RecreationDemand) coeftest(rd_nb) logLik(rd_nb) ################################################### ### chunk number 26: countreg-se ################################################### round(sqrt(rbind(diag(vcov(rd_pois)), diag(sandwich(rd_pois)))), digits = 3) ################################################### ### chunk number 27: countreg-sandwich ################################################### coeftest(rd_pois, vcov = sandwich) ################################################### ### chunk number 28: countreg-OPG ################################################### round(sqrt(diag(vcovOPG(rd_pois))), 3) ################################################### ### chunk number 29: countreg-plot ################################################### plot(table(RecreationDemand$trips), ylab = "") ################################################### ### chunk number 30: countreg-zeros ################################################### rbind(obs = table(RecreationDemand$trips)[1:10], exp = round( sapply(0:9, function(x) sum(dpois(x, fitted(rd_pois)))))) ################################################### ### chunk number 31: countreg-pscl ################################################### library("pscl") ################################################### ### chunk number 32: countreg-zinb ################################################### rd_zinb <- zeroinfl(trips ~ . | quality + income, data = RecreationDemand, dist = "negbin") ################################################### ### chunk number 33: countreg-zinb-summary ################################################### summary(rd_zinb) ################################################### ### chunk number 34: countreg-zinb-expected ################################################### round(colSums(predict(rd_zinb, type = "prob")[,1:10])) ################################################### ### chunk number 35: countreg-hurdle ################################################### rd_hurdle <- hurdle(trips ~ . | quality + income, data = RecreationDemand, dist = "negbin") summary(rd_hurdle) ################################################### ### chunk number 36: countreg-hurdle-expected ################################################### round(colSums(predict(rd_hurdle, type = "prob")[,1:10])) ################################################### ### chunk number 37: tobit1 ################################################### data("Affairs") aff_tob <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) summary(aff_tob) ################################################### ### chunk number 38: tobit2 ################################################### aff_tob2 <- update(aff_tob, right = 4) summary(aff_tob2) ################################################### ### chunk number 39: tobit3 ################################################### linearHypothesis(aff_tob, c("age = 0", "occupation = 0"), vcov = sandwich) ################################################### ### chunk number 40: numeric-response ################################################### SwissLabor$partnum <- as.numeric(SwissLabor$participation) - 1 ################################################### ### chunk number 41: kleinspady eval=FALSE ################################################### ## library("np") ## swiss_bw <- npindexbw(partnum ~ income + age + education + ## youngkids + oldkids + foreign + I(age^2), data = SwissLabor, ## method = "kleinspady", nmulti = 5) ################################################### ### chunk number 42: kleinspady-bw eval=FALSE ################################################### ## summary(swiss_bw) ################################################### ### chunk number 43: kleinspady-summary eval=FALSE ################################################### ## swiss_ks <- npindex(bws = swiss_bw, gradients = TRUE) ## summary(swiss_ks) ################################################### ### chunk number 44: probit-confusion ################################################### table(Actual = SwissLabor$participation, Predicted = round(predict(swiss_probit, type = "response"))) ################################################### ### chunk number 45: bw-tab ################################################### data("BankWages") edcat <- factor(BankWages$education) levels(edcat)[3:10] <- rep(c("14-15", "16-18", "19-21"), c(2, 3, 3)) tab <- xtabs(~ edcat + job, data = BankWages) prop.table(tab, 1) ################################################### ### chunk number 46: bw-plot eval=FALSE ################################################### ## plot(job ~ edcat, data = BankWages, off = 0) ################################################### ### chunk number 47: bw-plot1 ################################################### plot(job ~ edcat, data = BankWages, off = 0) box() ################################################### ### chunk number 48: bw-multinom ################################################### library("nnet") bank_mnl <- multinom(job ~ education + minority, data = BankWages, subset = gender == "male", trace = FALSE) ################################################### ### chunk number 49: bw-multinom-coeftest ################################################### coeftest(bank_mnl) ################################################### ### chunk number 50: bw-polr ################################################### library("MASS") bank_polr <- polr(job ~ education + minority, data = BankWages, subset = gender == "male", Hess = TRUE) coeftest(bank_polr) ################################################### ### chunk number 51: bw-AIC ################################################### AIC(bank_mnl) AIC(bank_polr) AER/demo/Ch-Basics.R0000644000176200001440000005165013461527000013471 0ustar liggesusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: calc1 ################################################### 1 + 1 2^3 ################################################### ### chunk number 3: calc2 ################################################### log(exp(sin(pi/4)^2) * exp(cos(pi/4)^2)) ################################################### ### chunk number 4: vec1 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) ################################################### ### chunk number 5: length ################################################### length(x) ################################################### ### chunk number 6: vec2 ################################################### 2 * x + 3 5:1 * x + 1:5 ################################################### ### chunk number 7: vec3 ################################################### log(x) ################################################### ### chunk number 8: subset1 ################################################### x[c(1, 4)] ################################################### ### chunk number 9: subset2 ################################################### x[-c(2, 3, 5)] ################################################### ### chunk number 10: pattern1 ################################################### ones <- rep(1, 10) even <- seq(from = 2, to = 20, by = 2) trend <- 1981:2005 ################################################### ### chunk number 11: pattern2 ################################################### c(ones, even) ################################################### ### chunk number 12: matrix1 ################################################### A <- matrix(1:6, nrow = 2) ################################################### ### chunk number 13: matrix2 ################################################### t(A) ################################################### ### chunk number 14: matrix3 ################################################### dim(A) nrow(A) ncol(A) ################################################### ### chunk number 15: matrix-subset ################################################### A1 <- A[1:2, c(1, 3)] ################################################### ### chunk number 16: matrix4 ################################################### solve(A1) ################################################### ### chunk number 17: matrix-solve ################################################### A1 %*% solve(A1) ################################################### ### chunk number 18: diag ################################################### diag(4) ################################################### ### chunk number 19: matrix-combine1 ################################################### cbind(1, A1) ################################################### ### chunk number 20: matrix-combine2 ################################################### rbind(A1, diag(4, 2)) ################################################### ### chunk number 21: vector-mode ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) ################################################### ### chunk number 22: logical ################################################### x > 3.5 ################################################### ### chunk number 23: names ################################################### names(x) <- c("a", "b", "c", "d", "e") x ################################################### ### chunk number 24: subset-more ################################################### x[3:5] x[c("c", "d", "e")] x[x > 3.5] ################################################### ### chunk number 25: list1 ################################################### mylist <- list(sample = rnorm(5), family = "normal distribution", parameters = list(mean = 0, sd = 1)) mylist ################################################### ### chunk number 26: list2 ################################################### mylist[[1]] mylist[["sample"]] mylist$sample ################################################### ### chunk number 27: list3 ################################################### mylist[[3]]$sd ################################################### ### chunk number 28: logical2 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) x > 3 & x <= 4 ################################################### ### chunk number 29: logical3 ################################################### which(x > 3 & x <= 4) ################################################### ### chunk number 30: logical4 ################################################### all(x > 3) any(x > 3) ################################################### ### chunk number 31: logical5 ################################################### (1.5 - 0.5) == 1 (1.9 - 0.9) == 1 ################################################### ### chunk number 32: logical6 ################################################### all.equal(1.9 - 0.9, 1) ################################################### ### chunk number 33: logical7 ################################################### 7 + TRUE ################################################### ### chunk number 34: coercion1 ################################################### is.numeric(x) is.character(x) as.character(x) ################################################### ### chunk number 35: coercion2 ################################################### c(1, "a") ################################################### ### chunk number 36: rng1 ################################################### set.seed(123) rnorm(2) rnorm(2) set.seed(123) rnorm(2) ################################################### ### chunk number 37: rng2 ################################################### sample(1:5) sample(c("male", "female"), size = 5, replace = TRUE, prob = c(0.2, 0.8)) ################################################### ### chunk number 38: flow1 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) if(rnorm(1) > 0) sum(x) else mean(x) ################################################### ### chunk number 39: flow2 ################################################### ifelse(x > 4, sqrt(x), x^2) ################################################### ### chunk number 40: flow3 ################################################### for(i in 2:5) { x[i] <- x[i] - x[i-1] } x[-1] ################################################### ### chunk number 41: flow4 ################################################### while(sum(x) < 100) { x <- 2 * x } x ################################################### ### chunk number 42: cmeans ################################################### cmeans <- function(X) { rval <- rep(0, ncol(X)) for(j in 1:ncol(X)) { mysum <- 0 for(i in 1:nrow(X)) mysum <- mysum + X[i,j] rval[j] <- mysum/nrow(X) } return(rval) } ################################################### ### chunk number 43: colmeans1 ################################################### X <- matrix(1:20, ncol = 2) cmeans(X) ################################################### ### chunk number 44: colmeans2 ################################################### colMeans(X) ################################################### ### chunk number 45: colmeans3 ################################################### X <- matrix(rnorm(2*10^6), ncol = 2) system.time(colMeans(X)) system.time(cmeans(X)) ################################################### ### chunk number 46: colmeans4 ################################################### cmeans2 <- function(X) { rval <- rep(0, ncol(X)) for(j in 1:ncol(X)) rval[j] <- mean(X[,j]) return(rval) } ################################################### ### chunk number 47: colmeans5 ################################################### system.time(cmeans2(X)) ################################################### ### chunk number 48: colmeans6 eval=FALSE ################################################### ## apply(X, 2, mean) ################################################### ### chunk number 49: colmeans7 ################################################### system.time(apply(X, 2, mean)) ################################################### ### chunk number 50: formula1 ################################################### f <- y ~ x class(f) ################################################### ### chunk number 51: formula2 ################################################### x <- seq(from = 0, to = 10, by = 0.5) y <- 2 + 3 * x + rnorm(21) ################################################### ### chunk number 52: formula3 eval=FALSE ################################################### ## plot(y ~ x) ## lm(y ~ x) ################################################### ### chunk number 53: formula3a ################################################### print(lm(y ~ x)) ################################################### ### chunk number 54: formula3b ################################################### plot(y ~ x) ################################################### ### chunk number 55: formula3c ################################################### fm <- lm(y ~ x) ################################################### ### chunk number 56: mydata1 ################################################### mydata <- data.frame(one = 1:10, two = 11:20, three = 21:30) ################################################### ### chunk number 57: mydata1a ################################################### mydata <- as.data.frame(matrix(1:30, ncol = 3)) names(mydata) <- c("one", "two", "three") ################################################### ### chunk number 58: mydata2 ################################################### mydata$two mydata[, "two"] mydata[, 2] ################################################### ### chunk number 59: attach ################################################### attach(mydata) mean(two) detach(mydata) ################################################### ### chunk number 60: with ################################################### with(mydata, mean(two)) ################################################### ### chunk number 61: mydata-subset ################################################### mydata.sub <- subset(mydata, two <= 16, select = -two) ################################################### ### chunk number 62: write-table ################################################### write.table(mydata, file = "mydata.txt", col.names = TRUE) ################################################### ### chunk number 63: read-table ################################################### newdata <- read.table("mydata.txt", header = TRUE) ################################################### ### chunk number 64: save ################################################### save(mydata, file = "mydata.rda") ################################################### ### chunk number 65: load ################################################### load("mydata.rda") ################################################### ### chunk number 66: file-remove ################################################### file.remove("mydata.rda") ################################################### ### chunk number 67: data ################################################### data("Journals", package = "AER") ################################################### ### chunk number 68: foreign ################################################### library("foreign") write.dta(mydata, file = "mydata.dta") ################################################### ### chunk number 69: read-dta ################################################### mydata <- read.dta("mydata.dta") ################################################### ### chunk number 70: cleanup ################################################### file.remove("mydata.dta") ################################################### ### chunk number 71: factor ################################################### g <- rep(0:1, c(2, 4)) g <- factor(g, levels = 0:1, labels = c("male", "female")) g ################################################### ### chunk number 72: na1 ################################################### newdata <- read.table("mydata.txt", na.strings = "-999") ################################################### ### chunk number 73: na2 ################################################### file.remove("mydata.txt") ################################################### ### chunk number 74: oop1 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) g <- factor(rep(c(0, 1), c(2, 4)), levels = c(0, 1), labels = c("male", "female")) ################################################### ### chunk number 75: oop2 ################################################### summary(x) summary(g) ################################################### ### chunk number 76: oop3 ################################################### class(x) class(g) ################################################### ### chunk number 77: oop4 ################################################### summary ################################################### ### chunk number 78: oop5 ################################################### normsample <- function(n, ...) { rval <- rnorm(n, ...) class(rval) <- "normsample" return(rval) } ################################################### ### chunk number 79: oop6 ################################################### set.seed(123) x <- normsample(10, mean = 5) class(x) ################################################### ### chunk number 80: oop7 ################################################### summary.normsample <- function(object, ...) { rval <- c(length(object), mean(object), sd(object)) names(rval) <- c("sample size","mean","standard deviation") return(rval) } ################################################### ### chunk number 81: oop8 ################################################### summary(x) ################################################### ### chunk number 82: journals-data eval=FALSE ################################################### ## data("Journals") ## Journals$citeprice <- Journals$price/Journals$citations ## attach(Journals) ## plot(log(subs), log(citeprice)) ## rug(log(subs)) ## rug(log(citeprice), side = 2) ## detach(Journals) ################################################### ### chunk number 83: journals-data1 ################################################### data("Journals") Journals$citeprice <- Journals$price/Journals$citations attach(Journals) plot(log(subs), log(citeprice)) rug(log(subs)) rug(log(citeprice), side = 2) detach(Journals) ################################################### ### chunk number 84: plot-formula ################################################### plot(log(subs) ~ log(citeprice), data = Journals) ################################################### ### chunk number 85: graphics1 ################################################### plot(log(subs) ~ log(citeprice), data = Journals, pch = 20, col = "blue", ylim = c(0, 8), xlim = c(-7, 4), main = "Library subscriptions") ################################################### ### chunk number 86: graphics2 ################################################### pdf("myfile.pdf", height = 5, width = 6) plot(1:20, pch = 1:20, col = 1:20, cex = 2) dev.off() ################################################### ### chunk number 87: dnorm-annotate eval=FALSE ################################################### ## curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3, ## main = "Density of the standard normal distribution") ## text(-5, 0.3, expression(f(x) == frac(1, sigma ~~ ## sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0) ################################################### ### chunk number 88: dnorm-annotate1 ################################################### curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3, main = "Density of the standard normal distribution") text(-5, 0.3, expression(f(x) == frac(1, sigma ~~ sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0) ################################################### ### chunk number 89: eda1 ################################################### data("CPS1985") str(CPS1985) ################################################### ### chunk number 90: eda2 ################################################### head(CPS1985) ################################################### ### chunk number 91: eda3 ################################################### levels(CPS1985$occupation)[c(2, 6)] <- c("techn", "mgmt") attach(CPS1985) ################################################### ### chunk number 92: eda4 ################################################### summary(wage) ################################################### ### chunk number 93: eda5 ################################################### mean(wage) median(wage) ################################################### ### chunk number 94: eda6 ################################################### var(wage) sd(wage) ################################################### ### chunk number 95: wage-hist ################################################### hist(wage, freq = FALSE) hist(log(wage), freq = FALSE) lines(density(log(wage)), col = 4) ################################################### ### chunk number 96: wage-hist1 ################################################### hist(wage, freq = FALSE) hist(log(wage), freq = FALSE) lines(density(log(wage)), col = 4) ################################################### ### chunk number 97: occ-table ################################################### summary(occupation) ################################################### ### chunk number 98: occ-table ################################################### tab <- table(occupation) prop.table(tab) ################################################### ### chunk number 99: occ-barpie ################################################### barplot(tab) pie(tab) ################################################### ### chunk number 100: occ-barpie ################################################### par(mar = c(4, 3, 1, 1)) barplot(tab, las = 3) par(mar = c(2, 3, 1, 3)) pie(tab, radius = 1) ################################################### ### chunk number 101: xtabs ################################################### xtabs(~ gender + occupation, data = CPS1985) ################################################### ### chunk number 102: spine eval=FALSE ################################################### ## plot(gender ~ occupation, data = CPS1985) ################################################### ### chunk number 103: spine1 ################################################### plot(gender ~ occupation, data = CPS1985) ################################################### ### chunk number 104: wageeduc-cor ################################################### cor(log(wage), education) cor(log(wage), education, method = "spearman") ################################################### ### chunk number 105: wageeduc-scatter eval=FALSE ################################################### ## plot(log(wage) ~ education) ################################################### ### chunk number 106: wageeduc-scatter1 ################################################### plot(log(wage) ~ education) ################################################### ### chunk number 107: tapply ################################################### tapply(log(wage), gender, mean) ################################################### ### chunk number 108: boxqq1 eval=FALSE ################################################### ## plot(log(wage) ~ gender) ################################################### ### chunk number 109: boxqq2 eval=FALSE ################################################### ## mwage <- subset(CPS1985, gender == "male")$wage ## fwage <- subset(CPS1985, gender == "female")$wage ## qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage), ## xaxs = "i", yaxs = "i", xlab = "male", ylab = "female") ## abline(0, 1) ################################################### ### chunk number 110: qq ################################################### plot(log(wage) ~ gender) mwage <- subset(CPS1985, gender == "male")$wage fwage <- subset(CPS1985, gender == "female")$wage qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage), xaxs = "i", yaxs = "i", xlab = "male", ylab = "female") abline(0, 1) ################################################### ### chunk number 111: detach ################################################### detach(CPS1985) AER/demo/Ch-Intro.R0000644000176200001440000001443213461527012013360 0ustar liggesusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: journals-data ################################################### data("Journals", package = "AER") ################################################### ### chunk number 3: journals-dim ################################################### dim(Journals) names(Journals) ################################################### ### chunk number 4: journals-plot eval=FALSE ################################################### ## plot(log(subs) ~ log(price/citations), data = Journals) ################################################### ### chunk number 5: journals-lm eval=FALSE ################################################### ## j_lm <- lm(log(subs) ~ log(price/citations), data = Journals) ## abline(j_lm) ################################################### ### chunk number 6: journals-lmplot ################################################### plot(log(subs) ~ log(price/citations), data = Journals) j_lm <- lm(log(subs) ~ log(price/citations), data = Journals) abline(j_lm) ################################################### ### chunk number 7: journals-lm-summary ################################################### summary(j_lm) ################################################### ### chunk number 8: cps-data ################################################### data("CPS1985", package = "AER") cps <- CPS1985 ################################################### ### chunk number 9: cps-data1 eval=FALSE ################################################### ## data("CPS1985", package = "AER") ## cps <- CPS1985 ################################################### ### chunk number 10: cps-reg ################################################### library("quantreg") cps_lm <- lm(log(wage) ~ experience + I(experience^2) + education, data = cps) cps_rq <- rq(log(wage) ~ experience + I(experience^2) + education, data = cps, tau = seq(0.2, 0.8, by = 0.15)) ################################################### ### chunk number 11: cps-predict ################################################### cps2 <- data.frame(education = mean(cps$education), experience = min(cps$experience):max(cps$experience)) cps2 <- cbind(cps2, predict(cps_lm, newdata = cps2, interval = "prediction")) cps2 <- cbind(cps2, predict(cps_rq, newdata = cps2, type = "")) ################################################### ### chunk number 12: rq-plot eval=FALSE ################################################### ## plot(log(wage) ~ experience, data = cps) ## for(i in 6:10) lines(cps2[,i] ~ experience, ## data = cps2, col = "red") ################################################### ### chunk number 13: rq-plot1 ################################################### plot(log(wage) ~ experience, data = cps) for(i in 6:10) lines(cps2[,i] ~ experience, data = cps2, col = "red") ################################################### ### chunk number 14: srq-plot eval=FALSE ################################################### ## plot(summary(cps_rq)) ################################################### ### chunk number 15: srq-plot1 ################################################### plot(summary(cps_rq)) ################################################### ### chunk number 16: bkde-fit ################################################### library("KernSmooth") cps_bkde <- bkde2D(cbind(cps$experience, log(cps$wage)), bandwidth = c(3.5, 0.5), gridsize = c(200, 200)) ################################################### ### chunk number 17: bkde-plot eval=FALSE ################################################### ## image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat, ## col = rev(gray.colors(10, gamma = 1)), ## xlab = "experience", ylab = "log(wage)") ## box() ## lines(fit ~ experience, data = cps2) ## lines(lwr ~ experience, data = cps2, lty = 2) ## lines(upr ~ experience, data = cps2, lty = 2) ################################################### ### chunk number 18: bkde-plot1 ################################################### image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat, col = rev(gray.colors(10, gamma = 1)), xlab = "experience", ylab = "log(wage)") box() lines(fit ~ experience, data = cps2) lines(lwr ~ experience, data = cps2, lty = 2) lines(upr ~ experience, data = cps2, lty = 2) ################################################### ### chunk number 19: install eval=FALSE ################################################### ## install.packages("AER") ################################################### ### chunk number 20: library ################################################### library("AER") ################################################### ### chunk number 21: objects ################################################### objects() ################################################### ### chunk number 22: search ################################################### search() ################################################### ### chunk number 23: assignment ################################################### x <- 2 objects() ################################################### ### chunk number 24: remove ################################################### remove(x) objects() ################################################### ### chunk number 25: log eval=FALSE ################################################### ## log(16, 2) ## log(x = 16, 2) ## log(16, base = 2) ## log(base = 2, x = 16) ################################################### ### chunk number 26: q eval=FALSE ################################################### ## q() ################################################### ### chunk number 27: apropos ################################################### apropos("help") AER/demo/Ch-TimeSeries.R0000644000176200001440000003171313461527040014340 0ustar liggesusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: options ################################################### options(digits = 6) ################################################### ### chunk number 3: ts-plot eval=FALSE ################################################### ## data("UKNonDurables") ## plot(UKNonDurables) ################################################### ### chunk number 4: UKNonDurables-data ################################################### data("UKNonDurables") ################################################### ### chunk number 5: tsp ################################################### tsp(UKNonDurables) ################################################### ### chunk number 6: window ################################################### window(UKNonDurables, end = c(1956, 4)) ################################################### ### chunk number 7: filter eval=FALSE ################################################### ## data("UKDriverDeaths") ## plot(UKDriverDeaths) ## lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), ## col = 2) ################################################### ### chunk number 8: ts-plot1 ################################################### data("UKNonDurables") plot(UKNonDurables) data("UKDriverDeaths") plot(UKDriverDeaths) lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), col = 2) ################################################### ### chunk number 9: filter1 eval=FALSE ################################################### ## data("UKDriverDeaths") ## plot(UKDriverDeaths) ## lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), ## col = 2) ################################################### ### chunk number 10: rollapply ################################################### plot(rollapply(UKDriverDeaths, 12, sd)) ################################################### ### chunk number 11: ar-sim ################################################### set.seed(1234) x <- filter(rnorm(100), 0.9, method = "recursive") ################################################### ### chunk number 12: decompose ################################################### dd_dec <- decompose(log(UKDriverDeaths)) dd_stl <- stl(log(UKDriverDeaths), s.window = 13) ################################################### ### chunk number 13: decompose-components ################################################### plot(dd_dec$trend, ylab = "trend") lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) ################################################### ### chunk number 14: seat-mean-sd ################################################### plot(dd_dec$trend, ylab = "trend") lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) plot(rollapply(UKDriverDeaths, 12, sd)) ################################################### ### chunk number 15: stl ################################################### plot(dd_stl) ################################################### ### chunk number 16: Holt-Winters ################################################### dd_past <- window(UKDriverDeaths, end = c(1982, 12)) dd_hw <- HoltWinters(dd_past) dd_pred <- predict(dd_hw, n.ahead = 24) ################################################### ### chunk number 17: Holt-Winters-plot ################################################### plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths)) lines(UKDriverDeaths) ################################################### ### chunk number 18: Holt-Winters-plot1 ################################################### plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths)) lines(UKDriverDeaths) ################################################### ### chunk number 19: acf eval=FALSE ################################################### ## acf(x) ## pacf(x) ################################################### ### chunk number 20: acf1 ################################################### acf(x, ylim = c(-0.2, 1)) pacf(x, ylim = c(-0.2, 1)) ################################################### ### chunk number 21: ar ################################################### ar(x) ################################################### ### chunk number 22: window-non-durab ################################################### nd <- window(log(UKNonDurables), end = c(1970, 4)) ################################################### ### chunk number 23: non-durab-acf ################################################### acf(diff(nd), ylim = c(-1, 1)) pacf(diff(nd), ylim = c(-1, 1)) acf(diff(diff(nd, 4)), ylim = c(-1, 1)) pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) ################################################### ### chunk number 24: non-durab-acf1 ################################################### acf(diff(nd), ylim = c(-1, 1)) pacf(diff(nd), ylim = c(-1, 1)) acf(diff(diff(nd, 4)), ylim = c(-1, 1)) pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) ################################################### ### chunk number 25: arima-setup ################################################### nd_pars <- expand.grid(ar = 0:2, diff = 1, ma = 0:2, sar = 0:1, sdiff = 1, sma = 0:1) nd_aic <- rep(0, nrow(nd_pars)) for(i in seq(along = nd_aic)) nd_aic[i] <- AIC(arima(nd, unlist(nd_pars[i, 1:3]), unlist(nd_pars[i, 4:6])), k = log(length(nd))) nd_pars[which.min(nd_aic),] ################################################### ### chunk number 26: arima ################################################### nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1)) nd_arima ################################################### ### chunk number 27: tsdiag ################################################### tsdiag(nd_arima) ################################################### ### chunk number 28: tsdiag1 ################################################### tsdiag(nd_arima) ################################################### ### chunk number 29: arima-predict ################################################### nd_pred <- predict(nd_arima, n.ahead = 18 * 4) ################################################### ### chunk number 30: arima-compare ################################################### plot(log(UKNonDurables)) lines(nd_pred$pred, col = 2) ################################################### ### chunk number 31: arima-compare1 ################################################### plot(log(UKNonDurables)) lines(nd_pred$pred, col = 2) ################################################### ### chunk number 32: pepper ################################################### data("PepperPrice") plot(PepperPrice, plot.type = "single", col = 1:2) legend("topleft", c("black", "white"), bty = "n", col = 1:2, lty = rep(1,2)) ################################################### ### chunk number 33: pepper1 ################################################### data("PepperPrice") plot(PepperPrice, plot.type = "single", col = 1:2) legend("topleft", c("black", "white"), bty = "n", col = 1:2, lty = rep(1,2)) ################################################### ### chunk number 34: adf1 ################################################### library("tseries") adf.test(log(PepperPrice[, "white"])) ################################################### ### chunk number 35: adf1 ################################################### adf.test(diff(log(PepperPrice[, "white"]))) ################################################### ### chunk number 36: pp ################################################### pp.test(log(PepperPrice[, "white"]), type = "Z(t_alpha)") ################################################### ### chunk number 37: urca eval=FALSE ################################################### ## library("urca") ## pepper_ers <- ur.ers(log(PepperPrice[, "white"]), ## type = "DF-GLS", model = "const", lag.max = 4) ## summary(pepper_ers) ################################################### ### chunk number 38: kpss ################################################### kpss.test(log(PepperPrice[, "white"])) ################################################### ### chunk number 39: po ################################################### po.test(log(PepperPrice)) ################################################### ### chunk number 40: joh-trace ################################################### library("urca") pepper_jo <- ca.jo(log(PepperPrice), ecdet = "const", type = "trace") summary(pepper_jo) ################################################### ### chunk number 41: joh-lmax eval=FALSE ################################################### ## pepper_jo2 <- ca.jo(log(PepperPrice), ecdet = "const", type = "eigen") ## summary(pepper_jo2) ################################################### ### chunk number 42: dynlm-by-hand ################################################### dd <- log(UKDriverDeaths) dd_dat <- ts.intersect(dd, dd1 = lag(dd, k = -1), dd12 = lag(dd, k = -12)) lm(dd ~ dd1 + dd12, data = dd_dat) ################################################### ### chunk number 43: dynlm ################################################### library("dynlm") dynlm(dd ~ L(dd) + L(dd, 12)) ################################################### ### chunk number 44: efp ################################################### library("strucchange") dd_ocus <- efp(dd ~ dd1 + dd12, data = dd_dat, type = "OLS-CUSUM") ################################################### ### chunk number 45: efp-test ################################################### sctest(dd_ocus) ################################################### ### chunk number 46: efp-plot eval=FALSE ################################################### ## plot(dd_ocus) ################################################### ### chunk number 47: Fstats ################################################### dd_fs <- Fstats(dd ~ dd1 + dd12, data = dd_dat, from = 0.1) plot(dd_fs) sctest(dd_fs) ################################################### ### chunk number 48: ocus-supF ################################################### plot(dd_ocus) plot(dd_fs, main = "supF test") ################################################### ### chunk number 49: GermanM1 ################################################### data("GermanM1") LTW <- dm ~ dy2 + dR + dR1 + dp + m1 + y1 + R1 + season ################################################### ### chunk number 50: re eval=FALSE ################################################### ## m1_re <- efp(LTW, data = GermanM1, type = "RE") ## plot(m1_re) ################################################### ### chunk number 51: re1 ################################################### m1_re <- efp(LTW, data = GermanM1, type = "RE") plot(m1_re) ################################################### ### chunk number 52: dating ################################################### dd_bp <- breakpoints(dd ~ dd1 + dd12, data = dd_dat, h = 0.1) ################################################### ### chunk number 53: dating-coef ################################################### coef(dd_bp, breaks = 2) ################################################### ### chunk number 54: dating-plot eval=FALSE ################################################### ## plot(dd) ## lines(fitted(dd_bp, breaks = 2), col = 4) ## lines(confint(dd_bp, breaks = 2)) ################################################### ### chunk number 55: dating-plot1 ################################################### plot(dd_bp, legend = FALSE, main = "") plot(dd) lines(fitted(dd_bp, breaks = 2), col = 4) lines(confint(dd_bp, breaks = 2)) ################################################### ### chunk number 56: StructTS ################################################### dd_struct <- StructTS(log(UKDriverDeaths)) ################################################### ### chunk number 57: StructTS-plot eval=FALSE ################################################### ## plot(cbind(fitted(dd_struct), residuals(dd_struct))) ################################################### ### chunk number 58: StructTS-plot1 ################################################### dd_struct_plot <- cbind(fitted(dd_struct), residuals = residuals(dd_struct)) colnames(dd_struct_plot) <- c("level", "slope", "season", "residuals") plot(dd_struct_plot, main = "") ################################################### ### chunk number 59: garch-plot ################################################### data("MarkPound") plot(MarkPound, main = "") ################################################### ### chunk number 60: garch ################################################### mp <- garch(MarkPound, grad = "numerical", trace = FALSE) summary(mp) AER/demo/Ch-Programming.R0000644000176200001440000001645513461527032014560 0ustar liggesusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: DGP ################################################### dgp <- function(nobs = 15, model = c("trend", "dynamic"), corr = 0, coef = c(0.25, -0.75), sd = 1) { model <- match.arg(model) coef <- rep(coef, length.out = 2) err <- as.vector(filter(rnorm(nobs, sd = sd), corr, method = "recursive")) if(model == "trend") { x <- 1:nobs y <- coef[1] + coef[2] * x + err } else { y <- rep(NA, nobs) y[1] <- coef[1] + err[1] for(i in 2:nobs) y[i] <- coef[1] + coef[2] * y[i-1] + err[i] x <- c(0, y[1:(nobs-1)]) } return(data.frame(y = y, x = x)) } ################################################### ### chunk number 3: simpower ################################################### simpower <- function(nrep = 100, size = 0.05, ...) { pval <- matrix(rep(NA, 2 * nrep), ncol = 2) colnames(pval) <- c("dwtest", "bgtest") for(i in 1:nrep) { dat <- dgp(...) pval[i,1] <- dwtest(y ~ x, data = dat, alternative = "two.sided")$p.value pval[i,2] <- bgtest(y ~ x, data = dat)$p.value } return(colMeans(pval < size)) } ################################################### ### chunk number 4: simulation-function ################################################### simulation <- function(corr = c(0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99), nobs = c(15, 30, 50), model = c("trend", "dynamic"), ...) { prs <- expand.grid(corr = corr, nobs = nobs, model = model) nprs <- nrow(prs) pow <- matrix(rep(NA, 2 * nprs), ncol = 2) for(i in 1:nprs) pow[i,] <- simpower(corr = prs[i,1], nobs = prs[i,2], model = as.character(prs[i,3]), ...) rval <- rbind(prs, prs) rval$test <- factor(rep(1:2, c(nprs, nprs)), labels = c("dwtest", "bgtest")) rval$power <- c(pow[,1], pow[,2]) rval$nobs <- factor(rval$nobs) return(rval) } ################################################### ### chunk number 5: simulation ################################################### set.seed(123) psim <- simulation() ################################################### ### chunk number 6: simulation-table ################################################### tab <- xtabs(power ~ corr + test + model + nobs, data = psim) ftable(tab, row.vars = c("model", "nobs", "test"), col.vars = "corr") ################################################### ### chunk number 7: simulation-visualization ################################################### library("lattice") xyplot(power ~ corr | model + nobs, groups = ~ test, data = psim, type = "b") ################################################### ### chunk number 8: simulation-visualization1 ################################################### library("lattice") trellis.par.set(theme = canonical.theme(color = FALSE)) print(xyplot(power ~ corr | model + nobs, groups = ~ test, data = psim, type = "b")) ################################################### ### chunk number 9: journals-lm ################################################### data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) ################################################### ### chunk number 10: journals-residuals-based-resampling-unused eval=FALSE ################################################### ## refit <- function(data, i) { ## d <- data ## d$subs <- exp(d$fitted + d$res[i]) ## coef(lm(log(subs) ~ log(citeprice), data = d)) ## } ################################################### ### chunk number 11: journals-case-based-resampling ################################################### refit <- function(data, i) coef(lm(log(subs) ~ log(citeprice), data = data[i,])) ################################################### ### chunk number 12: journals-boot ################################################### library("boot") set.seed(123) jour_boot <- boot(journals, refit, R = 999) ################################################### ### chunk number 13: journals-boot-print ################################################### jour_boot ################################################### ### chunk number 14: journals-lm-coeftest ################################################### coeftest(jour_lm) ################################################### ### chunk number 15: journals-boot-ci ################################################### boot.ci(jour_boot, index = 2, type = "basic") ################################################### ### chunk number 16: journals-lm-ci ################################################### confint(jour_lm, parm = 2) ################################################### ### chunk number 17: ml-loglik ################################################### data("Equipment", package = "AER") nlogL <- function(par) { beta <- par[1:3] theta <- par[4] sigma2 <- par[5] Y <- with(Equipment, valueadded/firms) K <- with(Equipment, capital/firms) L <- with(Equipment, labor/firms) rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L) lhs <- log(Y) + theta * Y rval <- sum(log(1 + theta * Y) - log(Y) + dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE)) return(-rval) } ################################################### ### chunk number 18: ml-0 ################################################### fm0 <- lm(log(valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ################################################### ### chunk number 19: ml-0-coef ################################################### par0 <- as.vector(c(coef(fm0), 0, mean(residuals(fm0)^2))) ################################################### ### chunk number 20: ml-optim ################################################### opt <- optim(par0, nlogL, hessian = TRUE) ################################################### ### chunk number 21: ml-optim-output ################################################### opt$par sqrt(diag(solve(opt$hessian)))[1:4] -opt$value ################################################### ### chunk number 22: Sweave eval=FALSE ################################################### ## Sweave("Sweave-journals.Rnw") ################################################### ### chunk number 23: Stangle eval=FALSE ################################################### ## Stangle("Sweave-journals.Rnw") ################################################### ### chunk number 24: texi2dvi eval=FALSE ################################################### ## texi2dvi("Sweave-journals.tex", pdf = TRUE) ################################################### ### chunk number 25: vignette eval=FALSE ################################################### ## vignette("Sweave-journals", package = "AER") AER/demo/00Index0000644000176200001440000000052711354653130012744 0ustar liggesusersCh-Intro Chapter 1: Introduction Ch-Basics Chapter 2: Basics Ch-LinearRegression Chapter 3: Linear Regression Ch-Validation Chapter 4: Diagnostics and Alternative Methods of Regression Ch-Microeconometrics Chapter 5: Models of Microeconometrics Ch-TimeSeries Chapter 6: Time Series Ch-Programming Chapter 7: Programming Your Own Analysis AER/demo/Ch-Validation.R0000644000176200001440000002577513461527045014401 0ustar liggesusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: ps-summary ################################################### data("PublicSchools") summary(PublicSchools) ################################################### ### chunk number 3: ps-plot eval=FALSE ################################################### ## ps <- na.omit(PublicSchools) ## ps$Income <- ps$Income / 10000 ## plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) ## ps_lm <- lm(Expenditure ~ Income, data = ps) ## abline(ps_lm) ## id <- c(2, 24, 48) ## text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 4: ps-plot1 ################################################### ps <- na.omit(PublicSchools) ps$Income <- ps$Income / 10000 plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) ps_lm <- lm(Expenditure ~ Income, data = ps) abline(ps_lm) id <- c(2, 24, 48) text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 5: ps-lmplot eval=FALSE ################################################### ## plot(ps_lm, which = 1:6) ################################################### ### chunk number 6: ps-lmplot1 ################################################### plot(ps_lm, which = 1:6) ################################################### ### chunk number 7: ps-hatvalues eval=FALSE ################################################### ## ps_hat <- hatvalues(ps_lm) ## plot(ps_hat) ## abline(h = c(1, 3) * mean(ps_hat), col = 2) ## id <- which(ps_hat > 3 * mean(ps_hat)) ## text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 8: ps-hatvalues1 ################################################### ps_hat <- hatvalues(ps_lm) plot(ps_hat) abline(h = c(1, 3) * mean(ps_hat), col = 2) id <- which(ps_hat > 3 * mean(ps_hat)) text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 9: influence-measures1 eval=FALSE ################################################### ## influence.measures(ps_lm) ################################################### ### chunk number 10: which-hatvalues ################################################### which(ps_hat > 3 * mean(ps_hat)) ################################################### ### chunk number 11: influence-measures2 ################################################### summary(influence.measures(ps_lm)) ################################################### ### chunk number 12: ps-noinf eval=FALSE ################################################### ## plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) ## abline(ps_lm) ## id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any)) ## text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ## ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,]) ## abline(ps_noinf, lty = 2) ################################################### ### chunk number 13: ps-noinf1 ################################################### plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) abline(ps_lm) id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any)) text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,]) abline(ps_noinf, lty = 2) ################################################### ### chunk number 14: journals-age ################################################### data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations journals$age <- 2000 - Journals$foundingyear ################################################### ### chunk number 15: journals-lm ################################################### jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) ################################################### ### chunk number 16: bptest1 ################################################### bptest(jour_lm) ################################################### ### chunk number 17: bptest2 ################################################### bptest(jour_lm, ~ log(citeprice) + I(log(citeprice)^2), data = journals) ################################################### ### chunk number 18: gqtest ################################################### gqtest(jour_lm, order.by = ~ citeprice, data = journals) ################################################### ### chunk number 19: resettest ################################################### resettest(jour_lm) ################################################### ### chunk number 20: raintest ################################################### raintest(jour_lm, order.by = ~ age, data = journals) ################################################### ### chunk number 21: harvtest ################################################### harvtest(jour_lm, order.by = ~ age, data = journals) ################################################### ### chunk number 22: ################################################### library("dynlm") ################################################### ### chunk number 23: usmacro-dynlm ################################################### data("USMacroG") consump1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) ################################################### ### chunk number 24: dwtest ################################################### dwtest(consump1) ################################################### ### chunk number 25: Box-test ################################################### Box.test(residuals(consump1), type = "Ljung-Box") ################################################### ### chunk number 26: bgtest ################################################### bgtest(consump1) ################################################### ### chunk number 27: vcov ################################################### vcov(jour_lm) vcovHC(jour_lm) ################################################### ### chunk number 28: coeftest ################################################### coeftest(jour_lm, vcov = vcovHC) ################################################### ### chunk number 29: sandwiches ################################################### t(sapply(c("const", "HC0", "HC1", "HC2", "HC3", "HC4"), function(x) sqrt(diag(vcovHC(jour_lm, type = x))))) ################################################### ### chunk number 30: ps-anova ################################################### ps_lm <- lm(Expenditure ~ Income, data = ps) ps_lm2 <- lm(Expenditure ~ Income + I(Income^2), data = ps) anova(ps_lm, ps_lm2) ################################################### ### chunk number 31: ps-waldtest ################################################### waldtest(ps_lm, ps_lm2, vcov = vcovHC(ps_lm2, type = "HC4")) ################################################### ### chunk number 32: vcovHAC ################################################### rbind(SE = sqrt(diag(vcov(consump1))), QS = sqrt(diag(kernHAC(consump1))), NW = sqrt(diag(NeweyWest(consump1)))) ################################################### ### chunk number 33: solow-lm ################################################### data("OECDGrowth") solow_lm <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth + .05), data = OECDGrowth) summary(solow_lm) ################################################### ### chunk number 34: solow-plot eval=FALSE ################################################### ## plot(solow_lm) ################################################### ### chunk number 35: solow-lts ################################################### library("MASS") solow_lts <- lqs(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth + .05), data = OECDGrowth, psamp = 13, nsamp = "exact") ################################################### ### chunk number 36: solow-smallresid ################################################### smallresid <- which( abs(residuals(solow_lts)/solow_lts$scale[2]) <= 2.5) ################################################### ### chunk number 37: solow-nohighlev ################################################### X <- model.matrix(solow_lm)[,-1] Xcv <- cov.rob(X, nsamp = "exact") nohighlev <- which( sqrt(mahalanobis(X, Xcv$center, Xcv$cov)) <= 2.5) ################################################### ### chunk number 38: solow-goodobs ################################################### goodobs <- unique(c(smallresid, nohighlev)) ################################################### ### chunk number 39: solow-badobs ################################################### rownames(OECDGrowth)[-goodobs] ################################################### ### chunk number 40: solow-rob ################################################### solow_rob <- update(solow_lm, subset = goodobs) summary(solow_rob) ################################################### ### chunk number 41: quantreg ################################################### library("quantreg") ################################################### ### chunk number 42: cps-lad ################################################### library("quantreg") data("CPS1988") cps_f <- log(wage) ~ experience + I(experience^2) + education cps_lad <- rq(cps_f, data = CPS1988) summary(cps_lad) ################################################### ### chunk number 43: cps-rq ################################################### cps_rq <- rq(cps_f, tau = c(0.25, 0.75), data = CPS1988) summary(cps_rq) ################################################### ### chunk number 44: cps-rqs ################################################### cps_rq25 <- rq(cps_f, tau = 0.25, data = CPS1988) cps_rq75 <- rq(cps_f, tau = 0.75, data = CPS1988) anova(cps_rq25, cps_rq75) ################################################### ### chunk number 45: cps-rq-anova ################################################### anova(cps_rq25, cps_rq75, joint = FALSE) ################################################### ### chunk number 46: rqbig ################################################### cps_rqbig <- rq(cps_f, tau = seq(0.05, 0.95, by = 0.05), data = CPS1988) cps_rqbigs <- summary(cps_rqbig) ################################################### ### chunk number 47: rqbig-plot eval=FALSE ################################################### ## plot(cps_rqbigs) ################################################### ### chunk number 48: rqbig-plot1 ################################################### plot(cps_rqbigs) AER/data/0000755000176200001440000000000014557334660011607 5ustar liggesusersAER/data/Mortgage.rda0000644000176200001440000000445312534531320014033 0ustar liggesusersY}lT`kCq1!4ڗ(U@M)}C!_TUZWҨjEQQ@DM? @pCJ1nh-U9invfg7;;n^ X|W, In S+&ɥ6M)]A;3':6ܸ%_HˤJߛ4dyjlN&%X-1("%_'hkhզEJI.OBI$u@?46쮆t#:%-vKԅ>]b[6tŸv)m5乆YRm>>"jׂMWQRfm=-3ku*9._.& [&7{-xX۴WUO5װ7.tw|wg6Ü;r_{vmG׃ v PQ/.ђR_~ |s3w#دaGoY`Y/qTZISqƯ^x[|coɃx~?!d =Ǿxv>Sڳ O:V82|MqVTz;"޳Qǁ]#Np:*~#$N9"v;@ηq˜/4\]?$P}*;& :qddxIqѝT]zī׺ϻ>G_Pَv+WͩRnB{vC# _KܬlGۋˬ'};ߏ.OsH=GC kb;Bs/..jcs=֧ ^M~UrO5\/TBEL@#.g9.xRY$=<ƅŨY&\|9 ?GqǬUxH?alwLxo3` ?x-޲~%2X?gQk&+O;9px?2G+9/gq~W/zg0iB yߺ?695.RGKJ^ n3ʴiv 3\t.|h =5p׵r]3!>KYjӕ3q-K~qw*>=(OFSySMJkywJq{MGוtC\M˭+i!il& 9Kf6WTO2ȾZ?ͣ>4sx\-) +qWI68 ;G{3fI58o/8[Unb6ŜtIÝEo?u_C[ 7hԛXy @[8 7@&^=lFK&<3^oʗPzqh*O1 Nf:aӼUT;£qA>ŨQkܫ&+/\/azZ^'d';q'iœ;,]e ,^i6βG/2DZeIu%>4r,U ߫Xcy 8=X|u.䣐iy#I,,R7GB}$/Ft5\Lw : >N oׯ1wt<9pHC_>ۭ+q_Ư;gnng#>Ing׏z ?NǼ_O ۄ0.ցuԫz|8ƍb{C8[i̛N,zyZ;Gy;xƱ];=!?}huj~NnJѧ\WK lRp5+l 9=\HRYoJMR`S%.SݖJH)˥ՇfcGPjf+ D[&l.ݚASI'ץ36jI߽%=^ & ɥC9#ORw֠bF a*DB q*$ +Pq)ĥ0"\r)ƥ8\Z%3F1Œf0c#a3F1"acD#ƈ0F1"a(cD#Qƈ2F1e(cD#1ƈ1F1bcc#1ƈ3F1g8c#qƈ3F1`c$# H0F1 C&^.#AER/data/CPSSWEducation.rda0000644000176200001440000002560412534531320015022 0ustar liggesusers7zXZi"6!Xm+F])TW"nRʟX\qjnj-&J B~^5Kg2mH׾I)3Io`D6ܝb]Mo:h\H (ne rM`p5σ:~RB~V%xȆf_LhpQsz1* ]nr̵st*]Ǻh 4."ocK=o,5i9'оSc"Ҝ\#xvZ>72W.{Ȕ:JpݭC.>8${8>kϳ r{9 5T7=t"K_5-nBlt-78unB=WqK/F^l|s#8 fr#dK:l1\ZHGSX"2hMS"E?]z̿xSpzz˴v/6<@˗ lj:k 锃e=v;R3?ґ6+/7S:L?t(pэʁqv4AZ3w9%m^P-`|rh\w4Op1k.PtGk 9A-P})z_(by2*v"]Stui^Xc/0Y߂[)Х,k2z {B@xBL`iW a8QWR q dH(F't"J-vxFd,hG)X'0dΟQmQ\{H W!UC|!vBg'ԅ +Z'wB.DmCy7S0;z:6T|(dD, ' $-9v<:D8H=L3^ NHLArʩ* Ϋ {{CΕq)01_x^V`" ~$2,!I,BEH꼠=.bݫx逼؛2o:ɕd50A^ ˝Kn۰މLv' 4mzxj_KvEC]`_RzX.3 ojG&:_;O(5`Hg<:6sGX(ޅ*Oi)+'¸šq$`h*Ul9ZⓇf3]  Uu(8 s_b* ZycRݰX,Z Б/Y$ipj'CzJYA*,H ܽWƍ[M椰?j7eh=)5%2YЁmAx}VJ#f:_n%ڛ&MH]["_.n;nBV[*g U.l Pܕ.N8.{`ylIV4}%amcrǗd>]G~%a9I&Gu7/[ZJщ{gp[ᬫf/ITo#$)V;EGc{Pq[g[mX:IAb"jWw"i j\DNqp>.'qyon3 BU@Mɭ+ U3C{Wɇ`6v}zm C?Z:LbQŽ?0i`ֿ kTUp6Q^ . ʬX 93`[8e1=WTD}A%Q%\} ?jwa0E-߮f nS G&% x['š;&KySuS g|*ofIEY3pb%1Ρ, L.9w耺Ȩ5x:p)0^2AB˹ƝGQ,g%Ƅт݄GfԶbD4+27bQ1 6S 6]ښ_@^˖֬XGK?IGM1G\`\Qe3?J!z3rdx6g'rUr3b 'Pu^2yݢ}3@fKp@]^J&n4 Jd(ȼq!`w3g('RG̷}-'sUfGH_];SXajzztpKܵVÂK D8,<\R4"n{/FԙwsйpIPB$ސm>e.Wֶ!Mˬ#FRpJvj^OK)KbP85*ڱ}U儳nZ l)+x!#NnliwGrΈ aF:f Q& 4!^4];EHMuS%_3@"șFgߧsUkdϧZߓE3f2xзò 0k"o9~Mn6ìpkU9؎^`I4%# tϽqs.(gzCi!6cZ~' mZtJQe FeҼq=YYQ i,vg}S9GlK zϱ/ /BjSNݏg+>Rlj6 HMp%6ޛdSA@oS>gN ꤀㡮vd8fʌKd3n<2 *.m]eIBZR2S("e"5ײْ{ ]'A,k^;J =;<QMAYD2eDZm;FBe`gt퀷p壖pAd9t՗,O;,u!x=7͓!q_0<%m˪ڭBцS=[K9Wbk'CR'z zƽLݞLOY69BB̜MblW M{^bL߰ބx| {}=YTxnR"ڧٍ!ƽnثq\ZnHnIͳu.^]V H_@`{QUNvx$ft>5hy(8Vhׇ\B f*pvcSe\b*Rl6Y9;:k 9|f{,0y{odTceҘ~gdn]̄Hxe,EYˍ5V͠K3D%V8RI4܄GhF@%ŹI3:QF`1Tl[,"x}9lL[՛]٢neÎ#+HDoS52}Π2PayX8FmDHJ8BD NǴ~;wD7=r cΞ ":h;K)V3s5ִgp_}3 |tI`KOmi`0)|BV>hy2`iU꼹mC NȘ7){!e?{էqbM"=a EUü| 0C-;|n."<ծ XFP&ɀΠɵ>Ql i-wpՅ'*._T2aLͱ&I*ޗ•(N7Qu$vQJqŇZؾ 8>0kcs跋cޠNk:qmfV/8Hy~g'rIi aQVwgZ'Kpx7̡،bQѡw$>s9jH=t׭pr Q1y"R8L e?MWW'4Hn#$$R'E(&pVοi1G &YjXπ0?дBO/12{N->: /9.u\]h}} ؎WPy|ʸL^*hȽˣҨ~Z֞4yҰ(Xc~F)e:h$O%rWA$I &7B$kF5%5VV&=]dk7ժYf<W @ NO; dw#ҏ8 ^Si(EHvMaڻ axxb.9B,VVʝ4e&atϢ~J/Y:a9YN%ot∔g /?jRKջ#"f总G _YXfHF9+Dv(j䉡6%U@A,`#1 Ң9HeH}( gr^24Qyy.JSg=i@ϲRs|]V>8uNcI`F)~G޹Cq1Vor &M}3ŖhՅ%៭v |UhHaY⨹|5mB) `/eY嶫kpO vb* 6s3gv (H<./dVq׀HϐcTeBQr  m`'GS4xq(4*|WAjbT$ifH9|NV<Ύ2$n))(u'-@xr}mp{VHm*xbnxӝj7q]ƜrHODB:cG%KPb!Y'8-)XQ7k- @+g23؊'ygHE@h?&Gĉ[1:{n\VoSPsgb=U3âP;b۝Sm,ڡ>*14C"'QO¿*U:U21`fӗ Cm}`;:aTghOn8 38;ܻJ׽R O ؠ'z4txW q :@) yC%6})6iM9&Dm@GVG /UD8vX$@)י C5&Qo&޷3-9oS=, p Xk6KH=.%^vg@Jo)ѻ|DX<3d^BqtJ< ctbsǘH4$U}+[@2+C=ѮΊ%tɉhQjwsl+-G݋ %f%(ꏿh ªYbg$pa8|E8d~!{X\;ƊR7P9 SVނe Ggq [󀿬Ylrnp@sAbaKvgfEFM :DSiIx03 E,H݃EA.{K#6O!s+%6ۊڅ#eQ U 1Ys齰<2'D+@/:୴VG?::jTiMG+y.wAe$PoO1RKZTIґK6\mfc0dcD†^[|cb"-)"ƱKq>4%y>B P!Zt"j@ +Ko eCIXB~Z:E|63۸ &.!`-b9>iS2lb625tM8yҽT.5)@dϓښ~Yn,k_1ܜrcQ;j."Tr)ƥ2[`5FCܔj8O:K]VK~+E5}7kn9[Q{D-/2dިf7g&,PMj݄tX7h͙nFOVk ncEHx,th'e&[KnCQV}f8:HT{΁~`xsOQ:eڔӮYSƜȯ=tYgp3Ka`Af*Mqi c1,9mC_)-l~2l-jyuA@d/K)["#0HMi\0+rЄ5+h$%1iqk1_2|LJzG҅Q(cu8uFT6odĕN>[}gZm&/iS'$4\ĚXf &q j\_j>YJ.5^%4 r=L0fh:@Sƞc9Qbr%|9C)Ƴֿs#g)nl) sYo㚉d4/3\ nc(!nm;6x=ףF:ֱ%'1TةFﵳ]es ^:}gBcHNO5gf8l@{e) |^N>ePmtI~)=~x2^ihip5ԭvi>í \A[}WFCTH`# `!t&k578Bs P7O&e>J)՚T9 ֯5t7ϊz" fgj~#;..?4 } DmV ]txnQ%&{@jl;uo<1&շ<$ q rŨ3C\}[  r)Q /[ЃA +Zd\BDkn >w _9b,㺮u+J"Z怿Rv0fps=a(ARJѐ>]-,Iw.VȠmV0b"kDsýAԄlGPdHÌ!q彋eJS qqdž+y߭J.X7m/G 8R-Ljt^ſx*Q}ĺfMz55)yg>Pq+YRF4Uhm, ZDfU$@2i!N6d O@(渥ɚL?UaUe/.Z}jLR؋h8!V@>-% o6\Dz`3oǙvϹeٱjw+ޙ!VC[R͘f#;茛A ,@\O"{a@Nc UJ,kTfE z={7#\L@.G-]թ[6/~LDy<7J{//@(| ,ہY,|(łS@<蒵׫˽ͧ{E- d \ygn`U햆ٳIJPk:fAhxPDJf QV-C>0 YZAER/data/datalist0000644000176200001440000000225714557334660013345 0ustar liggesusersAffairs ArgentinaCPI BankWages BenderlyZwick BondYield CASchools CPS1985 CPS1988 CPSSW04 CPSSW3 CPSSW8 CPSSW9204 CPSSW9298 CPSSWEducation CartelStability ChinaIncome CigarettesB CigarettesSW CollegeDistance ConsumerGood CreditCard DJFranses DJIA8012 DoctorVisits DutchAdvert DutchSales Electricity1955 Electricity1970 EquationCitations Equipment EuroEnergy Fatalities Fertility Fertility2 FrozenJuice GSOEP9402 GSS7402 GermanUnemployment GoldSilver GrowthDJ GrowthSW Grunfeld Guns HMDA HealthInsurance HousePrices Journals KleinI Longley MASchools MSCISwitzerland ManufactCosts MarkDollar MarkPound Medicaid1986 Mortgage MotorCycles MotorCycles2 Municipalities MurderRates NMES1988 NYSESW NaturalGas OECDGas OECDGrowth OlympicTV OrangeCounty PSID1976 PSID1982 PSID7682 Parade2005 PepperPrice PhDPublications ProgramEffectiveness RecreationDemand ResumeNames SIC33 STAR ShipAccidents SmokeBan SportsCards StrikeDuration SwissLabor TeachingRatings TechChange TradeCredit TravelMode UKInflation UKNonDurables USAirlines USConsump1950 USConsump1979 USConsump1993 USCrudes USGasB USGasG USInvest USMacroB USMacroG USMacroSW USMacroSWM USMacroSWQ USMoney USProdIndex USSeatBelts USStocksSW WeakInstrument AER/data/SmokeBan.rda0000644000176200001440000005373412534531320013773 0ustar liggesusers7zXZi"6!XbW])TW"nRʟX\qjnj-&mrSXlpmb:.m6:/$;p~y"2+)-:j4@my1 k>Yrػ!C B_a_:NgV)<-t&AS5.l|4XCjX%u_S>s-[m]tAfm']|&z 41]Eif R[x0)Oy'%}M(D7z:HOQe{-Kv^(,fVHdnQBfPy@!ViumfQ%fC]EmN~;TAu;]O :ymMDNQQ\X&lavm C"O1! `Q 8K+~wE}VD؃&;kr2nMo_WoK$`B Toĭ f`l##L 38;v ~ֱOb5r.> O } o<&YM|h5¢0-[(zU1vM{Y {e q :d$#ܬ_sD1%1JEdw& = Y'Y -ȨsƹA:eӕ? O,LR~I&GZLB%,+l3jUx3.mKX;,~>e Rϴb6,=c*rw!m_^󚖹٧fy.#KZ.N-ӻ<\gf'/|fZ|mQ18$Tԗw\$V O/oD BOoC^#'xBsz{#Z/~[ˍ]ZHї!v{>2/l|赈Shfm68t&e_Xzpb 0ņ6pVQXyѷG%cp@):M,硷%14bJ\c6j.[v)HЎ{vGղ|Ӱ$.eKs{9ʜhl7u:"=pU} zx>zdV(,T+Hh)e"yantGK깺aL#n`k P+* PΞ;S7vtSGih;O 3sw]ac> z+l>#mėh /`d?otOT>\&.)i'D2KG{Piڌ\SV]W24chi՘cιq|6eJ':pc4z4)Cmk%EC@JCe귙CCBxSXЉ1aNxcp>uEԩ lFsH3=Ib:Nk tt#LsP=o( ׳[͘ ,):6 p!bʐXg(BS^xh |*a^L_ %2^0}UW'Yi4M1W}'z_pq<*e</,ZYbn@|X-碤;-q쿋0{oZA$L>MD0Z1.$Z+dy{-dȦ"ĩMSDb{rIEf{Z GϊMr ?ꬣ/._ZBise@ɖ':v-A]x zĂz ]}츙y7 P#V$hKğ:ok= ӞB olrj0UX(L.@GP7UBW~6"i& C7J>8gnI=J{\i=W0 :Ps.~oOڭkuHJhk^ 4w:\ \!)Bs*ݘGj)L SwGYv|qWїӘP{]_rrQX 'V@X~x&;4Ϗ5mO3zi)`?c%y1>Jf{~S(/ʾVQJ)I2=¿Ύz%_#@:Y 7TYރ wdۆXeGIfj_G#=@Нޚ_Aa{OzfXؐB`?&m_WwaPb,)ZbojA<~䳻w?`5#v-cý>)ٱa'1 y;OtOiƟ{MF~VD}8. QDƧC.[O.Ϝ*@0#e?IUq7ALpViQ΅aӳNCL'V~[^lw (Dg9-cme ][;3!jS3u͚g;ܨ8FʖRúz[þ_Վ/XFi@(&b~~.Nҟ[^y$V} vRL`ePJ_{߲J&G;XuB,&}o-͙cZerfJOOJ ‚ʿ9};6`H[(.8]őyҋB\* g`[jr {frkظ*tF`h\>ZEhĢrNjs8`eDM耘WP;CG僸j5Nzjݫs&`wEyHP j?>Ż{= [>^w4АkJqz%dc2n^Ra/C,D&P_M1ZƦئ持OKW 7wbtTtiYlSפ-wmV=Leey91wEQadDMEġ.M6*bKP[[҄+Je9{Y&B?GϻT:A<5<+>Q ƲӾюJ]y$*&T -mYN?aK'l#1WM8 =>Jluqɻ«un-PثOԢp7\m21@Ձ}k Vb(FªN)$1xSBkFwDBL)1z ­ܓ4<zOҁt\UYe-lnU t3dZek[c/ b`nl (lH#=(d"`;oq8JMŏzȩj]>e"fxJ-p$HpbĞs6[!g[TL2Pfۮ<}I7LNJ\ \Xk JD` wASC2DJ\V,aƜ%rlC?2}I8Ŝe+k?yhۼg'р`0N?Yhli_tg!j_-;:3ofr9O\ik^]4}2`y VR~XC Z Ǐa3QR*s1 F8s)ˮyI~D*]4$ AWTdԩ){ 喬7S.8r2G SDT_GNV&#p)C{ʧᡥ%KA3k۩~\>$: ZDyoB;fxh܄p<ɝl]u,L_Zn2bS R 8-lbePx \m{HUWeڶr1h?11a5aUwKz9d7-FOx+IIY>CAV̀⬑{`0LH$"ʼƨ5 }RKqpEF}@/-j]͒@pghg!Єuɥ)B+7K8j_N5Z/587)斲$Ѐ U4{.WJ0WK 051d,@hP}QL~ w{N[M7 6YD0~~ԟ2nA6-UJ1R`LmH]%{$+?*?7=5tM"`d(Et0ZeR "ManvC -:ݣYߞ7<c T;Y֙@(-rT-vLjH``K'.8iP*.Т8,/ٟ84rw^tJѮ+إ Cԋ{S)ii)tۆߥgZOUXO^vBB-xlq˵$P)zVa6Ǭ~+~s)ZX=Ŕyo*ᾘe?H,K\Ol6 9Bjqy+m32*k$-qc( g25Ud#Ȣ?kY[D"S_9S1 T)?!G7lʳd>떿U&,5gֈu<52 e4ؚs$QXfμ=Byrz+}*Bɩ{ ~L1F&{~K48.2d$!\'5o5nxdNRGړĩR?nhE (A'ZrdVgPla0V/ښCs1 m.Bfgi.ru>JrόUg~]^[W%تwnRe sTrH'Cz<(x:,/4H]KHfsF:087s+}_}GuH-&S^L=v66LpR3E8xq2[,{m32ff~¿b<`bqlRo;@!_HLs?? l>ɉH}<)ˁ"61HH@kyת_s(tU,vhHFw-At/ԌS>\CTm`;$[j,6hCkwOugL$LHaK:+! a 1/d |jvE,[Pֽ.{?2+Yޛu#чȜ⃂`B/)/v@}; s|] /xM]G(9JN0~!ɩg&E$ZCڔEqDXbbZtEwN8@ULB`0^n(*7mQF*`aW9]6 $P,npt+f2X#fjkWzHbQeшc)-Wc yzjg4Ĥ< V `+U#,Y穚#,3))B: &K|`UQCv}CC:#sngGy]uT6J]ȭ@\/Yw:!5=ksyF2YS`czoET"f$IvUNH;NDu+%mGPc|l('-cX.lzf-:hp Qk_֟8';\pi=њy\\QF7?-68MtQV2 `Zzs_2i>hA:鮢;n,CyVɰ@a"rGg}U|$f.8|-z>.e&h!ߪ}'{e׻q|Cs0'Y|3W^>wno|&+Q!anܪx;Y} {,[3gG\ bC3`ȶu-m#5Bt7͸x% ==5vyծMWC3^r ᭽ŻIK{_vVz&A!H/n󀪘x!O[[Qb,%$GbV*{nš!cPo:!3Q(H%4E5\+WiK_S֡h: EBƹ_ܸX%tOdZۻx*lpjMbk)3-{`1|t ׃I痋p~ý\"i7~i Wj#qactě^ʔ<>A?TM#?5'>j 1~ŇS;{C^ID 6HUnr|Ejh[m`k*> 3IsUf w/` Hͯ(rI,_Ն:z,s5)y }NOm)v[tAw/^7g㹆M0 ũ+ @EƞIsSRA!$-R Tt oWվ\Kt8BmbfP:\ҏb4~9n'RkzҕEػ5@|J-+y>͒^W1b?+x=gбB*r4gFACBV/ 蝞6O#w +/Uj] >PV*f*|q娖.tʨx(QҒ"Z0;V6N𺲹⹦_Zg' M9^).$Pl/m,lT(!hA^7}u- ^-C_7>;1'o*[!8XFD}" FƆ3^bZ[VqgjÝ싞 k2i#otIUf/81@CMBXV3^Xm ?mvȕ5k}_tkU>wa82Owd%Umz%MIzr3UzrtM0!rr|}2{5yԞ\E۰ iuӖ}ZOl6gSenҚWn v^1}M= R2džKAP,΀oϖ2P%nYƇ@?쭽1alI[?!wc{fix)czڢ끥VgB e6f&{'y|~h}43]].H>zQy5-ޢ8ذ@EZ\.KJ`Uo?klbxhT6Z,<' Eԅ觡6}Ej7,Jah/ &}x-ɺ |,V]+*8/C>L38\Z_ kðUu%zLIVk|=\K۹|m>(<XdBo۱3\e\!{V%[t(O6ğ`sk g;w9R.W'̉sRG|S줌Ū2cyfGh٤!L@^}(wd3vA=(6i\GW/%4A?W\|6>ܹ4xcGp[KߓG=dq.@y(sͫ4(i&i%Ø^4r?6ѥ'vI|' jcbk}y !& ^͜vj=17#AQmz5<#,T&H!}_/r]9HkDDue˕r+KPNLfY|kCq$}K: ЉNJ ++Xc-!<-3eǓyqխHIf3ef/%^ߐdXJW倏BH;$mOz-'norb dx"X9 Ih!|~+'?=gcu{r>{eC܍C:m* %O  )HU0fP%}9"jR&㜓`C1={|GϙABn1yӡN !LMr#ne27Sd$cgs.JcX!cȼ;g775@ c`Ie}LC..}Z1P.$FF>O@ . uadڞಓ/N TM"6ܟJ?n\@FX^n%R1k;\FSon:@Ǽ [Q*b>Ο˺^eަ\n>1{F)PC5lj< [8t[of} b`b;=R=zUJG罵S0 .f Gª_ k`Ш$:gRB7uF_NU@Mǁv_0`"Ÿ9'B&Y2ߌPaA|uóW 86eT>fC3nC6£-E~l z'd5|do_3Pz؀2 8EnfFԢ.Glt U<8C#jd=wˉ;F /hx]+ۈGcq0Gd =0rcEm}Ց8^dWfJp`#̓ N?Dbd뢑0:(Ҙ8iWتM/y0czAGVW*\2F_lkqqrTvQw48+A)~Iߕ0@)U݀歽R7jρTyr$N:qb}}` w870xNH{#y؜T=XQ)qT:aN尡[i$j]t@ /HfzGFS=kzxF\ Z")"aDTRg2}`Nl#+J) 0Fg.+!GHU2=! POJueH+sq9Rځ-ís}yWQiBmR(;GaBY@v~1^xO;i]s9嘱&5&ٰRsj<]$sC4DTfou喜FsD`cK?a5ԤJ`֊#K>8`E9 Z8+(5Ӏ2#+MrVjk;A"PTlgĻo( W}",n(z`%$҅JB@- zV{FV'cR9jk 'ج)>h1ٜGjټ]63 \ MN\4{ݬ#@ JgʓP*E@GܪBҽԽL=?45ڵ҉ :ISpq)66m(Awz+ hӹxoE30ӎ僝y}勽ozB~5\Ä7Vk0 00$JK]1o?t94a ~|9QՌzw[KoeppH]7O=Dkk%ywsRB.}er-߂W9cvTpi€{ :AFnr:ad-<P)ح.#$ >CrLmW1#OYؓ idd5+>w}zPS }m6{jb;¬7cNG~_a8 /AK%!lPvKvlLȌ&O}sc]Yɲ=2{u\"~u1MWDEt=|q[h϶oT|4SĥUnyaw7oGfi$W>;=&=Fko)b&:΍uӓWq"5T,`4A-|ݘQ\OXIh#z5s#in,ėE2!œRU{iKK.V+L6Q"| ^Jpb|B"6U*&lz GDDx2TYDr9 jfO(^hЋkzNy(? /3s=Yؤa>>y hx犃*|ݳq,Ag,݋_!'> ɠi >+LAf!a`Uu,\k2lKa~R~~?T9Rb_,%3{e;OK=&vS⒲`D0_o_?55  N5 7^bCބ+((WQˣemD{1Y7-iEɢ2ks|(oy4a3O۞<( i+P C+{(X<P=-N-wEG32>\o(ɧ"%BzZ<#l7b40ܣ۔bozlN ^&ŢqQ~8 R} -y=!Te>ٚ"7hu{N+Bl K_˪c40Q}зT\n?c)FL(/}]>:vUчN1K_Qj/>偻zWK^Æ+tޛs%3dyy%&+_|qGRP3 \|\kS1o Px%J``rV_UO|pohd& =EgO.qL8vߑGI[stCzgM­Q81 -" ZIzo]#foxxdiV&V,81#˥~V8]z&̋9'1>xqZ!2Jme-SDB^h+5.!R"ImdG#$yewWU)npt\Ƅ _5ʐP!Ů!r8EY=4A,Rn>Py,[UM 齧Rar-cn;Nd As8NGRT0!HcƯC9Z¯Xj3].AׯߦyTl!@rx~l"lSڶ̢22-qIJ%RԤ-XN[X4q@+E͓)\F0+7`T.)@BZe S_FPi^qQ\Z„.C.֎<\Wq()M?AU@!8K6 +Y^jb) /oG\M h6]P\\ qY9$>BtG I.crpHfS_jnqug:3+BPLQ~U,;LIqeUgJA͸,hs]Ïw(`!762YU`qD7 0< KH.xSMw 8zjM}~՘/7j LPcB n;.ӱJ^WȗQӒJVvc./^O5IyUj8!86c".bl  sMŎ{Vܧ`vsj/>%+g%"ۆa8#Nt:mYDқs)'ˏ(ND!Ǝ2`[ڰm|`jiZ7%$<sD8"܎=_|͏UlݶWAgk$ETdK>,BF,#5݉ڮjPp8fh`tc +E|CH Y %E˽C(& 7-Ɠ36vyٛ0JeTH酺8g_#W\19`o"HG {٦u4Sm `PyP5v:F #Dw$΅4AA99g@!8T!G񂨁n,koCeY䰝1`4z-o:Yg 5x7456TĜm>ik@eeR4pc: &cKÝSc/8%/ 3aWpeDv +\( #ټJ2 T%&8).؄N_ ˭sN_vwY)_ș^ngL]ϭɷL2KwX]%hWv:COE2|LU+oP9Jjlۮ+-E[JLe>9K{5̢2E 5c/7+Iv qGs{_^\.(ba@Уx)C$K+XlH!1voߕzm7hD%, #@@C]s'Նu@,Ӣ&OfTR/{+Od 7#xl|ڌ*P3\2~,G,E}EwyC=2)N'9Y\oWQq:Wv_yߦ&= =^VܫtF@41R缲@db?궲{L}Z;5_*iPe=.'z2h0#}M@*) DBwE=E(VORs-9Q:!>Hyon%H1r+)+5#*(Wa=Sє$d&$<^ZjD!BB4 UUj}2 0sv K8S@h:+#JFi<GvBV4 ;&7ތEX^V;$RJٿw5ؓGSރ?GΒp\\=忿Rڿda ٵtc,T8j!.)@jqyHw{lR-`Kb"9ژ1 Ș#x'rX˝%CTZXcP}wEH$!xVE0@pccB!=w4`uP2zausd(')zRƨ'6U ]Li\Z;%ּR|l;4`L=dLQhГƱ-6^1~4iR*Lւ6f9@q{c{dDv2OZˠ2lzJj[ O_] Mwd[Lnɉ#f˨#?nDBXlXt (pLAm@B>F>H6Iry _UBZQ UKEY(wh%ӫٗdM5Q \x>d Z T^r4 cDRܱ󈌚5e0*1# qTeȂB .K2[]cN<{.FP.~I/Z/lt5!B+ouV:yp lII.ꭶegX.$ 0ogN ? MB=2y)Ax PӮr #!//ꡖ0? %6и>J+Me#Ie_nsC݆8sGPKcJjl[[,@_d|7: n'}6!;Z ZecWuB%)2B_"(yLS U_8*jN*BY]2PA#E7VNG;{VLC Euf`\j.ikܛ^/'3 rK5EZމ6%A`lg^scfCG^YOn̓#NuͿ˝!pHndL_QV/[1q/GI NT55VHՃ."%ڛ::AUu1 5ek %Pv{+ /ɐΰ}XWSS=]|ge(("U:f'6Uޱ8ą2`1.hj,#׳%Y^ڟKVȆ !$#( ~҉lMhb\Y<&,Jʔ5u_uim^N>Ti/nAnX˯&c +5 ID%>5#X5 6`Bg~S@O5S1Atڰ+gpyNf|*V1:(PKPQ"SUOt~ۺhV%,ЦDr]> &ZZMbRi+ZAa.ԟb$c/ZCKfƷt|:qlt]Qhbݯ4!`^1uK1kJWxq9UMU^ؿÐ4".WgSAMo = ď}0нoL5n(>0 YZAER/data/USGasG.rda0000644000176200001440000000320712534531320013353 0ustar liggesuserseV lU^'k= (C9BWwr!!H! * !ăˊJEAK)z|g{fY~CAup?@{ k@q\5aHx+U>"!}|-L'G~bIkj"y/Ӕ|Djix_:̛̙3<|VoԾ؏lX[s3,`>k6ZM ]$wRL۶uFKSW#-qP'>MZJ鉂Q) ձW {~%1oCW _ZY*wԀhhECvfQ?^͠VՒ 6r)RF^:T9S'҃:.:u,F;nmAa4Js|G"8"rźN"N𼈒шo A=D-&T=9۾Ԃ~< SQj#˨z%~zdrP/-]j>./FD?B|sRiKU+RZ/"at#zH&;*˹oQXWrU>T)*ġ 8U~Q_kЗk%> Snjՠ`MM fP=-3y aViZڏ_pz?N$/W^T*3q)* )PL7Q`-+Ge\`-Up]=W#?*P{ B@;-/w;jJ״AsSj7D*UB/-nPS%Bt!^Ow| ̉lb̹́,7>K0cZVc\i=y=6c6̳1_bݩ3u@rE#䭓1̖PmdI ~,79dw' N&,}5eE.$ǙvN͑_Oq$ę`ștY'rR؇ yHPtK_%^0 AER/data/USMacroG.rda0000644000176200001440000002156712534531320013713 0ustar liggesusersu| XWU?l RimuOiEPMXMDDEdp~4+W-J/S̙3gfΜ9?r?v4ARb҄1^>s#FȤ,y#XseG]6`Hm^<[Q_nT7_?_#O$cGL$rJI!rJ9|֠"݈(ozA7WX_t/%p$O G+L y?|? /7/b-3$Ҙ&BbзqOv߀WY}mWW=Wq..1|;yS ׻Bzy{ ;0^@8 zlo %u|o^z֞>1*իºЯ;տu?ٜn4+~ __&}>Cka30<⛈9;ƁoLFߡck iiJ }n ӡGs .w}wXW ݟ@v[peVv E9{?{>%F}a|Q}}|b}+ҟ1tQ\?WU?õ;*~Ơaρ ī8~͠Ag+U0yYfW~+;f[s\"N>%<F(q֧K5@^蹥c^U§y170dWMぐz浀a.ozkWJz3X`#_awSXH } B5b1Ż֛ċ'}@_p=o Oĝve]!~#Ne_;J7:A/e~˘R8}+ut/7Y;<+ }˛I?FyB&Yߴ7<㛓X'oy>"xJWIg}_)0ȩy}A*̯]̫5ewf}g>C/EzQ\֏(5 |ѤGӎya|}/c1C.xјGŮ$_ucr^œ?n"!j-a(~=87<%=OD,6bޛO^qRބ䮤wr\!Dڕ8ŬKwpb}ORS0tWlxM+[;?TK,ul ZRyK޶u9/>-{ ߝ1?,qI.?<WuyfJoy{y"=yi>X>y /t()`SzBcaB/22ssNS8`}z,! 7^>}O.\.wyoos_*H" -`L?  p sS5gM(by~G(z"֭"օ"Sk_&<>}jR+|]G[g>vJ%Kxb^)६#SRۥ'@/27eF橍8r78M6^_-䖿r|. ޠo }bgl f[1oзU@F>eܲJΟy+MW W8 n}+;6m͐y#ȫLy&U0UU70xx;Aυ~r;v jcyƯinbǫ(zNr IS+8jrL < |'ovp5K(s\w 0~¼>vM]S_SBӎ)ܯ)ܯ?u)!b*`*ןF;Q4ʛN?L gPo&IgQYĿYw@Mllϡ9s7OI'-~Λuۛ3C}o)ϏT?  =ﳁ|>|G !܇P":1:;m!=|.a5zeݘԹN2淽ﲮEs]k;l4F}1h<71>?}|o|.0>c8/1g,|XH-^ n,%2>bs==~'<_*#}1z K _DDY"+DOd^ԋ]CI3$Iyyf|fܒ^㮊dpee5U3,ӝގ(@1{j @3XFGU90t)[5s/Ĝo'|]V@'O'r1s#Uq|LyPGF) OMײ6\r\9bb>J"db\‹yҋߛyћuțޔMy>O>>̓>\߇G|OwR?|?Y݀.` {H D}W9}c~ &=9-S(L cg`^3vu̇#0"o$_D'j ld;B\E6qߥxbgg'ĝi+qW pxw/߽ ケ~/ۛ{SZwe9S'p?p/Kʳ 92;Z-Y$g][O)q-k5jq5{oN?[m4\'kyZ5hz9r/HZ$_wkƯAǵoϧᄚG?65O{MyUx=lK5]} l+ǹ?zmGVw8]W\_kyLSޛ{_˫98W[|m/Ѝy} qm-5}yh9\mCsj'ϵ]hhfovr; 7?K>ɧZɳZ`;w!>Pxwv~Ux?-=Oϩc~>LUHg>{TY /|P/}bdq' |Jqi8R ϑUudQCZy{H?o1_KI;)pn!uw·l=.wG~#|~~Ɖ9!+ aӽS_˓5~Uײߗ=啄/k71kU0͖/Bb?!iؿuq!5c~U| 9u\(BFT1oU-B_ s:!MS!LCjWqz:"">P sA _>?¦)G`a}tV~Ryc+ uqܐ5+F§#~Cwo*ox|%qY2~~ !EDG!1s4k""ȟ ?FEC~8x8tf8:;ķ.د{ yP7֍EM:o.SNѭ9խT6Tឤ@^^ij+.t9 O&գ>GvF\E>F~xBW"sy7ƍWNWp̺TU3-GlYzT}iR8Pp(mzP߻6?A *jv{+=ޗڪFz3OHX-}Z+ +^zx6*Z:;i۲?ٽo~.CV?QX9}Z8\tZϋ7 #Ռ!ҝy+'ÿ'$Bː]l?$s&[W/\.75dpڭlag Ŭτ]"lC7ƄNo6 M~%cL>e0< Ws~^%,:q9󡰙Έ޽N4L$f=+}R|=}A}5pfuDQ{ʶ=aTx#URQEI)oÅewucq_%  {BUmv**M.-ꐩpػ^9ù!ʸlY]f)Ժ&uWŠ/3R+aCkBG~I԰.s"~}G8\@rx`r""ٺ ~):(p M|$\Πu}w"ca4ya;ᖅs`_18[;GtV뢳ٴ[o$+<:ǘMjHO+ AcK+M-~FtU?Q턧4Qij(=SvyQq ba:LQaƼf$gI94{+gwf)Y.L?3 au_&7ЈפCZD7.E]tY0srUB\uKGݑ?y<?~>~Z}1tշxA}Z ǛfϊOW̞ zCE9𰰭|TJAzzu=}~ J`8h__4S6\Yw:/_UH8% j8x 3I 1Igo}jW \2-4ض(̏K~;JTz)%}ˇ6R@x`SυL?(D}3t~\pa:cNq acq+;\IxN کU9D΢-~3gag{Tg>9N_tu~'zG~ Ga)9ڛ5vP/3vJ;[Dm*w%Y]u=1.)>\Č /=SkҭjB)n\'MaNaeAcj_?/g lZSNS#yO(V:+ jyִEٶDmZ$K tG7Wєm$yIWy>oG( *E_F[n_.W awUm|0>cHV(;F|Ƌ0?śDAc%J)v"g\6b'Db2aң;W6Lk-oSlL|d`mfFFʿa0Y½ȧ[BL?v',(|_T4N憇G) ~i8l(2 Րy~abty^ZAE .ߖGG)R&b=ֆmM1 ƚ(Mc'7OBZ7DNAER/data/OrangeCounty.rda0000644000176200001440000000204012534531320014671 0ustar liggesusers]TPTU~-( %QXF.C~;`cF o] ]awy쾕FR9eDilǚFL`K93{ss)S#JPűFMf_2vl(5; LPe#ko>s ޗ ˑ\`M.u%V6&m2)*%(?3 "B-@/vz]S`FP9P7žB~c#ح76"cpL#|pafU_P|#t[W.:\Q|yF2. 8}I8u9;Q'EKx[ׇg%}aSէgjGy7*Ϡqo7܅;LXpi 2O7KGaUί !Vn#)O2{1.r:wAMIB찎M?Mh]/ίS5+=5[(|q] 9Ƶo6fW3e<@ Ӧ=`owcQ)|qKz筃)“o2kғ|~'ᗟs=W%j)eT:k _dnVB:GRxھbiW@r)E>b7>Mdmb %&?pt/ȎF0Z5BD 8Y"F*eǣ o AER/data/MarkDollar.rda0000644000176200001440000001003612534531320014310 0ustar liggesusers]Xy4ZeȐ9⡁CJRBI i@=SdJ/ ȐXBQlL\u׽\c yooo}g޿>k?^}UW7311131s[uylX:6py@pbbbYOa>an|r^I E< \qx 9Z'<}EaHRj_2%r,#C:S[OyKY~ |^̆n‰^ν0YÚ2UKǣp0kvSQ/nXH Hg O?cAtTs^d# GbUi7,da8 V%3KӘ"[w8`:5sT g39Q\$bߍL;nda0Օߒ.G6+dd k䨄/~ݫ0m1it1U`mp:DNCeB.uAz-VP-O c?=P> KMzt:ls1-"w+\ 06!kB GxyE+_3ˆ/P/"ešSL`M~LdώPBixSx;^%LAa4Ƽ5,JRK3vZ8 ~i:^<rpaʖ;ŐIgB_%^xu{^Eݘܸ#u beErQ;22d <@Y\{hcܞQ5}C~v@YyZ!E-.w^lkW1GPchcKTn HdCRuOވE= \:;|f*WFl>wkH1p39' TG2㬡2*2D-kRd!IËZ ?&n&KH$ \9/BPjaXK[Fz$@c0[SM&,L ZD®EgYx?]/_CjmXA)#)Wto[[V)Dhde W EuvwUPNꞇT[ ϑ4;z@n~h߳/t_gPj^_R@pKݎdrԾc1[1T)?BP~Wdz$ܙ Y,TRmkfX%$O ^) dZ2a>٦Ҷ 7Q4 ;;*p`$e, X9/…ӃoGil:YK\ş\YFlt=Z^$xK/1?A+ޑk^ ~-T76_;Q$eKI퀕u7BTMr{y("=Ǟ萐 %Op \ǃf(<3Xbڟ|f36,H\@lt<@#]X1AiCʔTI, 靳˲ OrJH)p{ ^SH3**ƈ5u#8BMN39h ^ɕ2)}{zfv{ws4jVNGlm"ix;|I]H/>ӗr `ڨO$_xgpj];6Ɵ}bB] 0E4b-+dum$@[t EU朆OvKBen \H%$ѾWFeyx z:K[}jOkWXXrmKLX{|QYs k]񫿫]t(x-ZYj^!Bhd9*B*? h]d%Wa\T~q)x(`#)3]5/^aSy0֓ů0Ґ>r[N^@<Ίaؠݴ=}/ʢ㸆Hm9\dT &Y8hFʹO;6ۡ)j^jj~| 1a'- ڢ IXtsA_ P"4妌]\0Rnxi;S'$C V+O:zf}yC|ziDq9W;\vQA lw \wOB_T>aiޤ<>ԹP$SA6 }׮aQo0 -HLrvUslk]}Br T̪4dFRXMbsm:9a0^z>*gP7 dX2k8+qlx7c=]%}-AvD!V{le8P6Zـ'vxs %n9%-R eaKr 1˝SNX)ɜI5݆PTe޲H}oXy3]N60ܢ+#8\dvoaBLfjF@(92[)W$Wˆ{'Jn{fLfkU+6nA44݀s)Ab@B_a?<Ͷ٣\'/Zԋqyjy(n.S3# 6\&HMO5 ٖ4VV bP#n;˙Zi8R]* %}lC!juZSruTfH d;@.E鰓 ,J]Y%Zu#W3i^?#D"rY.⦁Xˣ&6A;QgjzHʢ'Ʋx?L!@ImzHU$Rfh++$!#)g %<S}+:Ő2up>>Br_UI tQPv5] ?&ȍmqhg ӒoKԦIiU؃WZ!?¾m݁n^u.pQ>FEH+N=y(xBbk<1l; Vl5TJ=dL}qS`$HEvyH4y>i&:'QqSNeTaq W!}ᮾq)O*3̥,)ڜ)vsшD{͚n R]]1exZ?=я fH)CyR )?a\oM C7ljT'=?NT~ߵLyTPŋq&x["SuE`*ijϖ.7+x!"?νJj&enhIy&^/1u\|UVω]YOR&59C.? v€t*3B5sǭ2kJ[9$gPxYݩCY8aS{ӟ´7ew]<##6=rm@^\C1Ș芔&] bt{Zk;+nTPD.{ڃ2/cQ^^EEN*l'D𳊶)1{^%Oo{~f ^NA4Qu_=4wߑ<6;*HU+GǕ00rYtv>N_ c`B!liu>w 7W%:Lq8#ydσeų( *Sri`尫Ar'l㜓S쇡>e$GS%mO#CX.u v ,dʄ0ƹ A_+=Jbc$A|u4ԇ 1.R]b2!<%1[IWb3&j&fH[L]3 rר50/"W665Wiļ;QMShXt/$I˯} :gf䴇 0C Lfӑ{ͦR㑽h8g,Hy}4@wEZ]e3kkPK%pP8dFr@1r:Ui~IUN'ßgؚ5Dm?* x 'V%slT` 4ZTÝI? 'QK7#bH动pX,9C񋃿/Ҡ/Ъ43!`Y$L\*kf.V'ļr%/TԦQH Lċթ !U=Sw7$?B_=~ nr,ŝ|& ᄩ,i֑3ԍ4 Vg(_ 2dx#! 0*U,47pRMt8|m!=b~\[2|ޟІτ{3BMHu^v׋.+"T(UܶXfJV gWʡ.M٤M[ʨAim7u">9 "ߡ[,i2Tk5f ~\!T\bڹM9@Z @V@$׶7} F1 ^MDao@.CnP u&8n0䌦:jAJ9&qrn/&m({LwAH|Nf-KAƩYeDa#BJ%-;e^ /*s!.cD`PR\TᯇL\SsCUG.y$A}qbqn=T 5qi)J} JLuèy& +K.61n<]U@:$I$g-oA?;E<[VKe>bEOf Lx]VlIMVixsHj>R{ ZF0, {P.xдlђAg&abdd3'iSfZ$1Q+u91l w&Ԟ'2Ԑp TYhئҁPu)`N"|^O%IMAn*G|ZmTLi>[` %a6t1DD;i-52(; mf&:{U*ǽG&RC;36ߨ"1 .zT" M֗cl,~v>3< dm)c#sx7>k! G>bET"vZ#2BV{ -:G). SrГyf#MS`&tQ(Emɢ:1EkW5}COOml&5NZˆZv-ZW. JYi*﨣l霚 RӶ ba}ZwZs~P]Z"S0LӧRZq/R 6"O9"5AŒɳ*(i60 /l'}RN@mf//I1t ߗ <1j^zm)vK'eJW6#?lYvb! |RNǻ|OK)׻Rei+?(KW/YJH\ 8Iq"HKf GޝdUnynx!yNv=ˈbɥE\b`Z`DŐ9uQfuauflXj2xJOhbDFL̓{]b/A ved4Vjƿ~IP+2l`D UuoMR?zrK*8bZUaiUBAqռIP3hLcE F0u\|sHpVZ_uXyNzW][gCoǴqW>y5}>H~(8,' {Z`M<Ł1*^jm@Ômni;pcp<<^K})&>< dhrd`L#D'CQ qTTFklh?|H GL[ VgA/H*m㘇)Ffex*3K0\m wyjrd4[ gii?X#<[XGiRE<9Ur!lG/ (觲*\ snXg9nGPHv/\F^֬7X1焴+ 7q2ICXS]+lQ 3M˾No1(dx0]:ޚrpmiFH.\c堏,ONڦ$6i""LY"R32*4i$oE*>yO,ڔd$3nYY^~Hd/AhI(l |r\G?U5pHL(jQ;'u<5aPh5e;T0eƅ #YSvj hŬ.m-|]/WIwվonI;]6M 1|x{Ad9pOOeNL6Ҽ.XuױQoidV\e,f{!l2wˌ+7UC"XZvgnj'a{q3:qDA9 ~kK]U> p۽RQ7=]\yʡjuxY#8~xvRQGH(0 m#+NJG/*HO,]^y%F|>t֩RQBz<& eרd+oP=! vN*ځK^ W9?3' Hi|SOlAc+U0l7&>I:r'6dհ!84Q] kXMWG:SawIN V䪝FJ2sdx)'<1O?!%m(0ONr "Ŭ+3y&^Sl3(ēsҩ-RIvXD;$m{y'}s"bߟD~'q_LB 2W(M `Flc9P3PՋӰ!1 8yVW!︘앶&uTl7GR=SIov;ACi6eX*"bȉĔ%J,tL ̉roDGL4tuIba2nǑ5X,#} x2/OO 9AV4/0Ng[ ~Y~#b=iO>gc"lQ'gRD&s g(R[ct}HG/u-L靋^+ :$!0s9IVw6U;hyV&LD'$*Rpz({F$ymg)*X lY}c\KR.u7y^גL>UH6 /5j8$\F> ?N tXޖ yut;]rˆFW1(p (8@y ;D(=0Ƨ2ϣ*˴Ln "EƣN^($S&$9@5hPDy&&a1feL3No;rKg8 ]ݠ֎‘yft)A8lVW4MtKYztz'v DSw~5(yOd/k 3>!EN 0*I1TYX7fz˓09Iy턪|W_%&|)Z %VpͰ=x/da\}K򪌯z~W#㻙I`ŭ/R`:][y+uР

d=k^mapWIv2 4!w.io OfFpgiI<ٙ(};1k@AvdN)h\(/+guj%!k7b?yr4k^X_] vhd)=_\иkΫ S^վN*מx %+zewvdsܘQI* mH(Z]I;6fD#E:)=0`l$s  WîT<,yJ]O`}>g1Hkj˳RR u}m2K ܒ,e.Jbbc[d+gbGIϗKKp.),~{L&.c[Y6ظYШY*bՉ"YXő' aKE [,IWCɡt9)H⸭攂IJ $@\c,`MԜ/mx {Ұ\jc1COi-ܯ! +=n/#T-ph&j?~68n&uBN|L 1v4֟`$u0ugכ]GFkȍ}ASL/Ld<>kp]qFЉYZ~ P->fXc`⬴"kUtu oq Vj؊7vE>4vd$,-@mm@;τ1 ?se8DF<i( ϋqs88Crw.?:VɏM볦b8  pT)5Ef12.iZ??Ó1&j !2Z1>S*voKVوjz=MƳkW^blr5n8zv~0wiDO*ظtfٸ;QVF7_&_k}_/1C zDBjtNOZ5p4̭|J#<_uPTFebpHc/%%08Yrj7a_!ӸhZm5|i{VLio^F۾KbVnxԋі-2V9+]i"7jׯtC$!D֢ZRF'S#@ww6^ ¿aE0u> ؏(0'z9Ƹ[,^m/$A ja.93Ks,Xò5~)֬q^/5.Ǔ+[5YE5elg=8TWp :/aj _)şuҡIBL "LzϰjZ,Dk|?ma_іs(35$EBCѦ[V CU7vsd8Ĕ'7T%={IYJ5] PRYAu˪a/X~9$fit^uC04<>A2 /8f;1W[FErhS\[sH . h0qͼ)YKrH41l,iL{)a=N#x%9rC)3U81RƼٱgzx2DJt[Ugܮ~JR/J* ᧥Ckة x3%[{t(w~;Q҅1 @JU2Q Od]2qpr'&H44o}NƙYP~ᢷiͧ-DZ (1U\;nrryfRC7OЦIC\О&6Ĉ@峽1g8D 8\]4rn=Y _}°e E~`K::1vd4ʢ:CeRLJRĽ *@1S +QA(.ob -؞3+SOl$DIod1~̱ +t+ s{ :n2Ej8_6&O?)vV=P,r&hD'oBw^S=>FQkX;H;gZj=ZrŐ%lo&;h!fRk=TZME63oV"e ,J7E=;1!-b'>ۙ;7=QLPU:G~3Ie$'롉 9;[vCi u >dMsT2V=! VܓŞnVxX[t_TcnqC ~w{`1~F-OwEG7wK *'5WUDO0,J/,f{e#~x%kޡn>>&_#b`Gd0$B?YT%@  ָ4ɍ"!ĵb/^ ]&e4Xأ)"͚#';KpnV) u%t@-K߆zb+s/*jMҿ}Hry9El XzjAAg( /HXsU(:dCޚElnFq߸5DvG|WܔlyckEj`o=,vuG7N?4bEe~0*uc0 pY7uu;[iw䑫K`f E\\[TK%JiwXWnz ;lBzЪ6&%%Z5R͸&Y2jMvFy] U{Uw)Վ︎6F Tz;?n=a z]/x] eXO\-"hu5,69*_}ǨHpO1dNDc-ܘ־k!yf $ Paxiñ]gm!i=݀+v$q6p&l1SS %7<}wCZ(>T{"NR,|l,:sc&9+ x5r>ƺ 0 lZTF}6сkPP^3wb|:RiftR@43/ RLlFsIC: 7,d` 6PJmB^zɰ` 3ҚdƧzҡK; c׮?׿sƽ >jwːhsn~.;fop7A/p]3XL(p#^:=j`x^qKC§颉WZ;/LIMTfxkY&ipOޠ?`ȄrAϛm^\kOP![x)i#3y'&O׆$wi׻%zRƕĠ>(2g?v!O43WW3A])7>c3꓉m1 Q03!Q-ͨb?;v pI϶sc-9OKf $BK9XsjuZ %3axFz #m#Vm#^Tʽd+^QIRȼS\SYW7Ykt*J)ARH1auȄ Ru$AT+D\s͔e“ X̌ Pݾvew3 U΃SY`Lkqѻ.ΐMWe&!&j*w>"TP;YdZ$#HN1WZ i俺u!F`HDk1NAˆ'5ќ PX@A08zzJeP}b瀄 QEX57Z69%y[PI2ڹ'QO |j۞-b<}\3+𣘞{*Ή & nUXo2+U-+g_k Oׯ A c҅fޞaЯO|DZmg p. $'|C\=CWĄl#@Rϟ 3ٻJKWC}|\}sUG]>bJGZY.i`%m^ZUħ-7aL$M'ro[~;'\ˊy$[U ꭓlrܦHd9,gS1&Xsel8$dt(%5w@Q~#xh#YIQZZ$+5US2I0l֪H˳b$̪޼_|iU`\MMۿrOaVXU':.cL} ~=92G)'Uq[u2`-\ Ϛ03 m4Dت:Wݢ@_MPW)?PEhcM|H)b? لQ;X)$_Kԡ{1(F DM[_պ\=5.kcHװ-<L{׻ݠaP7Q6jf-Hܲ:b 9 CE\r?L7Ex4EsT+1~pH%x/0;NUos H//~)OA>4&]*蹂7ұ[Q胵g,|/c'Y[7͖6 L@)ȉ9ўc PRE:lǛ-Q$'D/SB ^^ G#و8,+'nC@Vud.b?5ONn]7] N#T A'sl0%n@$t6d[~ VųF+3Úic?zzxݜEF` 2 !.t 0݋WidXKf)U7CDyr-bmr5ü"Q2?Z%/#k PkR #^oX DP70jY;D(S8igʤށ&{ΉGC,rus…xSF=a~fF%G%1>F._/6Ef-̛T:Zr7N%RQd+/%LDhj2S'`Q` Fpi܆ נnE}{ً0Wfj\]|>qn&q}%%B0dunPE2tKr:8uLA ]0Zڲf" Q Qʅ|Y vQrȷL͜q WZ6u-4Zzt|(u"z^" }IumWj'{{,:&LlkGvkU4CYO:Y#47hXpx70ZRſ0Ju4pi3C?xߎAVI3,6 50{E8~^{]?J3nUOeaAtA0.FvF;R}2vb^J\Q{f2ű?ΰ8 ;qlsr4JV JK>g K2O @i@g82;KT󪙡y9DL',$yxPOκIFm vvK9ûԕnPD{p1eJ dOنL\7ѶX&Ed*hK0!_'o F`#ٺ (_čw/?LGU=),9 T;ܬ˿B8lYJqgϯsY]hK$\EXjwZҤ3^m~V AoGѹ4M4^˛GMڟNJ;0'D }Z.. t=Ŀ>L%D JzJAVA+ڻ&) S\"7]ѓ=G= I [ŮjCbϓ-PW|wOs?av^+ =.$&Jy0#85ۇ;6fNGiN\߇x{?IFkyXgD$zƽ!,qlp@G/ƩqʙޅH-6_;tl|~aGLۍE--ӛb^`HƬI2ƫ[E)MN`P;ϸ`{@GfR!X"έUBJԋvrm!^2! CJW[COѕz(|SJc#e rօPԫ(_"+ؚZ*c%D6&oPusz‰T&{ή#LӰSbilkpGp܈R9 ɜ" QW Ps7g=FK=Y\@ᾌCv86*Jfc>PgOXFoDp(*d\ GkQGOZNyvh i{@z]sY|7TM wDLqjZę6ocLuL)Mb ~0 ˥^J{H['f:Row=& =7Tb՘+,cԣ^[7Qw*[v7^6JT&Wm!1t1]HxwG 2JpJFXOCe^C4gfjs~q S-o byYȉ,I8~)A'4:>&欑%xl-Lj2J_44UՋM{@e!iJjQFAIMgq7s1l P9+{ COWo&IsiS)opRD+<"]lHy6|-Ԡ_p:p?Xd\&o!<tHqA>~sA5o6d/j-p3]n bt*Jo1?W^<1[x8sSe8pj\ԫ*:P B<:5w& jXOJ6<| +D-faUޕ'_, C44Д._H@Wvs^! Eq„^ A{o^i(Ťy}Fհ[w (^`(Povo,Zݎ)I4QTb%KKs Y`X)I/U\|[Yk"w paid6tYj{7&RVZcw:&j? &\N||;u)p!4j G1".PO!KDf.ӎ@ iޗg=OPLpJi]׃& R/CHNE^ښ KZƨ(tN1TCS<mt5QwD^{~c,N k^uWWrP.l}aq[=:e&#jb]y6Nm7^[aBμ@(A{Zd&DJϺrg@xVs,SK8ZԔV'߁2`d[й3/T5# (aPjwtm\ɋݞ;8ftqb+ 6 [ U(W4$zb93@%j>{"?:sDe<po#5?2*ƚhƗ[m#iݎ<;6P#A_AFO C - -K  ;1 {9҄+rtAev EseR5C|umwQSQ5> Ļ%auAm:k[W=Mp>G.X3T1s.YWY TH% .7LD_QgכFbV|; 沧Eb]"Ӎ~f/'HԑHlr/MD7SԢ-;$r䘼(^pE,/%g$XtH6^"PI+KUdZ/C%"m<jvIHsfiWDlumZLXt8p8@-ƥ+׫(iy] Mtğ!&n0R7ERW$ nʹ" NWAEmJ|)5t*MI(5Hc_ތCkqk#_{HCHKq s,0}S{&nʍ0 Yf]O v*nQ>zߢ.R!Gw ipjK?C-ql;{Γ+Rͫ|"  ۷s+ɪ2 _,%Zӫ:oJT(X ;#]7Ө#' B*ށ: :X/avb>+$ssp&ۥmaS /]j0!Ƞ@D a^JSfqM9W\^dFsі6q8ZV/he3}H%ExOVF|c&Bި9}?5PuPgH|3ȫ zVRcS%wc%.ھy>f񐅽5U`Gs܉Po")lώLaԼH2*[G0¼xn^i5NUv6JrF*k{[ag3E bޞ3HÏv&͓54'4zn ]8[RhʪG@?!jݡOed{ 8= 1ˬe類(&g0gB$V .'=~B(NDKU")c7O1ƀ q0V2T3/KPM^!@F!oLlf%L %c1+U=찪+k=$*$2VsO4nC!Ѭ kKTy"YP6!#46XtѳXO8`O .1E t`]+W ӈc?e.`ƪhK%>n pMH*6 gu$]HV#-rc$UbG4Xhvv a]ޫKF'<5<8ׇJBRTGWs:1KX 4^v@ZP30ou)Ӓ&q餟8[ZNf\Ӆ׋BJ z- }9/<}* MWo|EEM/ntRRD0tsjLqrb԰|6et{qZi=lc% `h,?]5 \)pY{WKəцKyeP-$6r ;/ !^~ tD!eE5y )di7'f+X'wFkV~Pk 0eH,9Y1#Oxj79C(`zd"{tHg$ 6e񛀒";15p /9Hju@K\Om7y0a8$nŔĝj"M* 9|iq_pZߠ4'N@Wfuppݤө{vaS7:{~:&8u ou#YdYK 9)3y!ug~XVoE돞L~&59<_| -ٴLv DT&r3F\NT$!ջy #(X,ʍvO)9Hύb,us?Ȟ/qGuÀ'՞n!2OСrAO8m:7=4pbTRJPN+ݖlC!ۿ4}lUGrs]?og^8 ӻ.F43L=!LĦ钒UB ~_ Y6sTIL IgQi<G/yR$᳁5HTdxnp:5/K 5CIuw3mў r7iikjzV$g15ūfㅳOFkYݏJz{|.0| 䡾E]Tߏ+f1$7V5Y.ߏ0N9f .M8/p藋 %fko%_6 V`-Ee{qtycHO44skת]42Z/8ȻUW|-?ޑzR ҉HhS t\  c]6%yMBnm1캾uO5V%9K{.;Q!z8XLs˧u..d0+P괾l\2dRuY*<ںqP\~P[!ȠS.>qFχJSpoNz^=Sdw* )t*=Hh@JLxXa׋jA蓁Zq=G:op0`c-ZF Τ-䊘iډ057D߬5*=<26j=—@5w@@)-dOc Af 4UDj0@78{v"T;a꿷ҼۼeW6O+q-WêlՠU];eMk^l`?Ҩ Y-㶥K0\ -wevwdcary pʳz! Vћg75*%oF5vf>#ЇS+:҇C z H^S ht4Zcݔ}915/ZdIϫзt=Q&iKfVޅGZ 8U1IMP_p6LW ɗg|Bn~J UӃӿ fiM>! muA#_A$| T-RRN1 u]-NBL0jXL/-r"Iyn-'34]eq f8_kU'ylĵ`)cdCQ*=/' SM!dDQ@KYB@ܣrujsUKr 0"`a`>&58*J`c6+G@#u~l`VȎU kQ8~7mWtzY1]oea9 BV8TUU i;ݷeAxǮmf>ѫGI&*L΃6 ͷ@{('cg?s`{{]86Y}PqAO>KID;hu=6rLv6EGÔؖ6Cgc# vXS/Z~ kYric09|/8z(nFdF%um V/ 4_1ϗ3{vǧG=d)qfxnef6u)hwQC6~j7iO+G}{1 ;"ԌWdIc%17f8*kE_P>filjd580l3}t/D<ª0Tnn.9DՑoK-FwtmY"~^ҟ FZClP~Alh9is)~hu}I&/}-SaǢko8Ra˯Y&׭P[Sm`E$~4W|!Mo "/>}ғWPnTK^!2%25+.mg1Mi=qC@%]BibX9qajѲw/5(-\  ށC-C=H׉79((HT'*Bln6^ 9IgZ_ I!ze l4\/dsh!bU$a{rcP2&;`:3UmhEMtV`خCB#w)8R>U37:E55>NaԪ|D= sm#]2T{{1Q;yEkd9"gyj-@fE&]`O_Wc?N~÷F;`pBK#*{,(kp+m5b@*qj]ؒ[}^ 1AM1 P,4IĜ}6m}[rBHz%lR6n~-Ύ}\07tt2ѝLt6uЫh.0 PM .s=YsPxپ!JjO 8%hj mqM0vćsV0o= mT;/ݕKCs pFBDn}z|/e'=i+(--[1'!Z @_|H:WCXoZ9@bN\`v6ufl<`ŻU5@h|KigB'罷WGVxp]ң%ʗQ=D/Pmp%=Lgi0"C \ox8J1T~Khdgm$i7XApIzF~u\n+eZHiy/2a0hX/cT|J"ϐ-z^2|y4^"_wxiqy |XT*L"! ^"iH"Ua 86o-}Z+e ^9yǠ NuvJVy?wJq%x_wqpcBjUx9:-C?`+B/-|Z>s D D (aKG&1␂]0WCF㇆ǟ dIST rglANLA)| ' ޗvYg0'ɞ1'!0q;C;o)J&5[I&hbJfd Gj 8ht*|>!"(޻q{R/P'd4^!䆝^<1mwB/󼒸gۻcmo\{BI$0U&{H\q}%C(~@+g衣 Oȁ '1~z4xĿ>p$R /c~_|VEW-Cb#H0"kB2NJADt]BBkPw 2[aւ.c ]RI+&rB>_͓+ *_āG2WWCYPȺPzʮs9* 2–HH"x$h@r IU^ڑ$ĩ;hd Y+9 y 3Cϧ&HRn]KJ{}joݷqϾ QB#T0JjUo]`9Qqw:Pvl s B  ,fFTH %9 Ni&ІI,1?~>l-] n&ϋ7CyFB`ߍ#{xI.?on z)S 9 ok76?h5{48@z^ydz rܚbh"Ik;~G 5rܷ}U:R/*1w^jT oKMVdTPjfIpk.ˍ)9k>QޭZ,m@x˛X"oKe;;LʻW1>Fs;Ko I3<USXVͱDҋ̠{F~Ʉ,]C:v^Vwi;=WӎmK~ WQXAUTkdYe]I {iOt^d5i#%W&K7|R2X=~Q{k\VӧQLt[MS2÷R )˕DdKnS x4|7DoDW/I"nszijcG73xXX\OvY`{p9EuvrH zFF/_ײG͕%khAP*A;P>gp ͓lRܹ8@*180X'?;iTAג* 9r0m:r!Jly|! v!(mȻ3 .i?)a w\t/u"H`^^i^z!Eٕ9//њd3#8O5$xj䲅2 .}͓cwWL9WtǵV(_f=#j1>o0TuEm]"Q x;()At~snS{{iz4y)( 3<[D E\Qo]Ci&o P5AuѳffIyIpkk]+j32XN{BVv\՝x΁P.. 1TYݏswgu=G謕M.<1\~yYmr7aH 2D<,VU[:! K!3wk9M>M=QB<>u 6 !62$2Dxв.skÉ3Vœ90BY|1_Si23V kHOo=Q 7 !<.,ŀ:P&yѪ'9vDλ`Rr##냂%tYYQH:+Rr-U:ߞJ<&)R~'5 >W+δjxAwreL7JGl$EV{2v|qRk4{bg[hܑ~(vS{_JlV pv ܑY,#^Z֗v9>pRd=HM# pyuT!tcdK>qHN8v07w`0-V"+&`KIB-@즾DffsD$?G~CG6a EDG 3"0N^wi %Wt:`dV[V|4$/:/#3)%u+Xz" @xf.KU[#=iȐȌZ28,L)ڕGMhT1@&rɴd E3^O*~mZwI0CzVeUfkG˸֭.=/т~ݿ\EZp>yk8\,LyzJSJ'sw3F֘VYץ4VغFPL?o0Z[)A _BPwSLLqGK= ̈=I*rz!at7員 ~pIIJCOtr| [^Mm$6rW1Xod;WԂ1jp&5zAWFߌV{3u INvNǹ TG1Zfܵ0 |;ie&\§!*2$Oz97hX8e(@gDم [Pa<E?q/JRaZuCvo^1ǜR(vB\*<%Kp!T\&<Y]|Rs,D̡šcM#(COV `>~%]:R!>eÌԥϬ27pUW_kou)T/u-@2Boab6ɜyťwYV;rB(k}DY9gd.qӑ%h%LJps6$`a$^Jz -c`nYtmwy{ I@lbѨi]ϿI jM EuK4[%ɉbG:)C.z`ݚ<)-Ď ~>FGnUtKI "ȵ. _pWZ"؈ew߀>Ypk>Kf2@ f K~*DąC9 gE>0xӑi˭"lY{k=s 7 G?8\>c䪶7Usl(z{#*tަ8렡n&\ېE,D}̇UK96SE:Ipp'_o #Λ_Ǿo<+sC8ͷfhah;2"R PmdcSdtSay$&6C8_~[T(asgW+$gWOT|,EN jH.UQ|Elz0D7L }홢+fFQU8N__2^` |q/jҴkl`'2Dq@~fb̤} ٱtP-ZV)DmsyJjm ʆ~㢔"ZĩvΫu[|JӿcZ[u@JN]/^w<)g|Iʐ]"f[>fH3“0lBѴV>SMoSBh1߾ H:y[z =r,5A&'Hu`X)>R+'5EffKOFT p FÚ|$Evux1UեGNR- lj g2%eX:&#%,\& %eAV­RZ&?j]L;IDʹRC]F֊m‡rqtuJb|Uq^mNv^ \XؠՃ3NK{;c}?3aE>9!%O`m"S Wlp!4_c|w))EQnY[X=ntއ?H& o~+ϙM4p*OYыDud탟Gu";9ow)CR/1A'0pfnhzuj̮Hc_{[W"2#1sq悠t VWK.1C?BLP Usi`J0,; 퓄 n{ QO%\G'NJEm*Q/k'tr2@IHjKW=ˮly ;13tpyEDU,^b5@cN"Ju[ <ڇٛ%!5u04DMH}y'`j#"f%VB6j@g$ ,a[~sQ9e\/?bTK 25"ߙeȅ -dy{QߗoYǶR@%=kB/-WP 3+X˼4Qyw#cE;DIm/g{6ohT|z][{ΔtaU`Mn&aq7hfMXfؚ1VT{ot,6ELG ><[ӨuoV1VF@箽ʌXdNgbKmːj2\r!f>f8C& &]*qQxN5ΡwI3:4yQH& :P>/[i52|>=Xi1Qx:H E;Ep*x)?LIytcَ"O>([ъHy1c.c%O#DէM(YK [7wGXik%*y3[Xrk0!$%6C{Dź kp&ױ)-9~Uf԰"w oǢ⨈+zIqjwAn]gݘ)S@k̛ g0ozfy\EpJxpW\߻ J߀8cӁ"* \tD S~g8HNI؍11'B/LJӝ*O6tH^ +,i 7XBbON\Y?nV:>?Ż;z 8ӭ=nk>JZ’q/>+5J p5F\ cn4j̿kregcI[Pk)0.kArJ7T4}J+Bx+cx@2,˅?y(ؓ4qmԂ_bl;UAƕ{V^t+ 6q!wMT"8Kq?rɂn7I(AK$8 3RƳpɃ }`3![$d aUF &}L`ӭHf}{ U[4Z4}5zrY; Z5yajh3<mM[e!]Pcjʔ~]iF/@ّ֞~'oz|-f%aB gM[0LQYOd&Op>kh©WuYMCH0Ё޼'(D}grk"w3gHhCW*w,79YإR"n݊,#8YL/f$N2}~Ôns3# $;T~TkEǔmt,Q! ">46RbжX.utxGw&8J'τl:CpK?\#VBOF (tPnhVK"6䢐H@*JNe0AܖzPD!u7Kڬ=/ybVcM_Nrs~pR3BQ_ֳʨf<,Ph3,ݨ4_3N5[ʮ!mxO|K ӔK){H*]3xy$:Fza\I}nR f.,\ĸQ?ݼ:P}R%lNA#%3UEtnݳ3Ewl)پ{*z0z&Č[*c/W9e NɲTKkZ;5ЩqY_6Ɖ taHW tOwd OglY~]Vg9XuPœ,K_>̥ϱ uڙ˖ )sפ/^!*$V48A,6ށH<%zS}cb]yG1&DW`^oCC8ۡETͭhWj:pk@Q}푳7W-T]xjvǠuT=W,!юypotc< E.<4R0|KQ[iiAdI Ԋhe;wdtg}q8ܽvpd,3i=$ɛTAU#CNJ^^<ႩSUJГ7J}Ţle.$Aoz!51=`gӦ`p<_bkV#S&Bށ0?֥\B_ >RL߅z^7 .Ѓ\VqeqD rګ4qxP=-M*$GBԂL85xۗAp`3V|L6W*q윂$0"O7 tK {[t ĕow/'~EIzXP]S6IG)ɂ9gfk8myNlƶ- EQH{ޔ*=ՖjOXX#fL[4Pqʖ.w~Ǝ,*,'VKcA1!n֨sLyBcq2gq'DѵdSoqޓ2p+z_gԚWT s]N<|d튪o8:rG8>U:}QBx8T>Gۑ̣=*ZNaAh*ͪ^7?bU!rC$l-~t#W-Q?jC( L; rSgD:A0MÑ#@YMPyhP}TѪؕmwމrbѿٛ!m(jOȵQy2zE0imcGs2pcEh$-"iAqT0X#v UjdщMբ2u쏋@F?$:8+OS=#߾աV b1~VgiސR>đhke`_R\G0v *9JB:E)]e7eYڰr1@WBj{BQOV 5jP.c1@>ȝDdW>vR:>/%w ̌rY s0[#v/v+}׌>jGH. Mw'i2Cn<7ܣ㹰Bk%D -xTgqKd&HTY+u(ҵ bsh T^iUM"2n'A_]@/% 橋*9:HtYhu-3:x>kQģ_tU?br>J,rį =NM +eei3V]G2]awXCUl̥g5"8t$sy]+!TIqA |FŽ6V%X˵%"oV vMkC?Dow!"a{'Mp/wUE@ X22ڶY|2loG(ᱵ8RQ0$ fLN6n8Ǽԓ`#.HؒndV5F _}u {5/#,lJrOR~|n 'Y |Vϗs1Gmtba9 :؏Vj\*SaP@X"ĆjDzǘ9@ogd-ѯ::%  'u`$OVwwgAȥ P0B8Á/y Yr$LmK'@-jgu N85Khݧň8ߘE[sG~NOE6YLP2"7Ik?~9Ba7>}%!MHB97bUDT+n\R7^#T)>^ȣe(_Y f.U-IbAa۲s&H%ۇ禭%-*9:DWr>5D?"*U.O<${_ߟ"I{kb$9~1;y~QDڤ O=7g-CNۓ֢u C}[AŚGUev9Q0xJMQ/.MVُS$)B XhJ!ZlJ7NGtc{w9ݔhL`!BwTE]R#^z]ǰeWRQ419:0htnX%^,eQ+*YمeU8K49/\y8j+Vﳧyj:ɘeԼ)J.KKNpP[T}7 `(VRq`#PW+X%֘U">fNTd"r"n feC E R}2v2>U TMCbP NlraRU4^O:vd.d1FpinIlai֪PtP5_#|?zx.%] `"]"Sdfcߎ0j;I&K8W$`{4O~25Ͱxʺn&>iw!N=]gQ|^/ |@-xzk-+PeLf i`;vvm$\A|LT[|`EX{ԫ%nCA./D bяe5(Gr?HBWr'Yimh±4R`X0|o'mv#6}y žl$GTԧM!^.y7|gAR4[0T~0}3lW(Mes(6}0{:|Vk׌ݿH  zTў*3„/6 )B2Y<=MܐUvX,:N _0sgDWjXE|{=+MX1f˫㈗DF=gIʋ`d:8 *|sGO.2"'[v,.t[8EYHB#9?< 1B6Hۧ>gn Nf`,jY;9MXd?G} ytJ'٦{6, p6+f-̙ː,jU*6CY鴹aw\FVA08-aa9ϋe.\w $]3-;Uwʲ;MDc(j$]3I[IJߝ wJoK߇`f>k }hߜ>|b?{L$YjMZܛDK) _G:Z DFߡf1Fk/@wrއf43*IRGO_nm!?m3T/܁+6@;cWNG4۰P/1sحHc8#oV8SH#͑񚠄 ѹ.xn^"Lj\19Cr8+ ԁgǷ|%+J2|2콉cL*;TT?RL+:k&-&[i#kc#i)spN/t_ϑpvWꊋ;X9abfh ќl*dl) nŀXtH25Na^YEoy}h..OkQ4G6Ӝt!|xdeЧHnsN!y.J=e L GaQgqE:{;>WWW U t'ÅoXs1\ePIیUؚ9(Un8ɟFUjmQD?^$bZ{PlVې##ь~4yDTl\>֜LQkA?R~9btmfq7[s#}vUG6،YGkSw]vUsh 2uh#г%Z5Km/DT,͈k2]TZ_Iza`\N tEz&+L ]F*Ӄ/D]W%_b^ `[,G|Ju:J@þV`W_VQ;&J7+y2_}5BxHF+n Ӯd`8BClEpr1z k IC5iX9}{Q1p1Hµ>-I9/*" 7*pkay=%t֌ $QL+zŀOb+[6au]+;L1=jvsh5 GP1wK%ч"l|c_~1χ`n*Yۖ6盜̣֐V|׍la=i7oS״ P *IaJe9~5IH|d GHu.htӾD,HA:KSM։P3(CPwǞBP*ʬLDF"ۢ#~٥~  \6#tp" 2\ʹBٯ;UIHON.gS]?.:EEa}A@QϘRO izQ# [bWS{IBCGGAt;^uXv&%nx2h9~?ȎLr0W Sw E(I)^F$v6.tM4uӪ;S1vB6H' ] Ki5;챘kꢋ@>,s_F? 3hՋ@Fڰ!]>0 YZAER/data/MurderRates.rda0000644000176200001440000000275112534531320014522 0ustar liggesusersuV le^K)miD$`ooѻk%G^j o ȣD/ ,RD+mJ8avvvfLI4 a8:o,qat`$esl_$Pd*$LaXHK9ʜDgGO-6u~D|}PI]-b@f5Ǩi)ۢ/XQ&=BaE֙-f=l }_C݉$+͵gy@~IVEϕv=tuα"S+'<~e]o0+|E!ѿWzlLHw. -Cu/Z7ivؖRFGJZmGRw]L{;f\?E:N%umwϴFP;͋O~8{*j8S=sv݅g9^Og=?A:]GkU_5CGbrVmÆTg뾊#D.30`d3r?1J5]| յWM .c9!^4cc cc6z%% !;'0z%00|4Wޢ1)9{1mj`8 쯛87Q΃# ޴c4n %ܿeOFOt\oW~}-<۰oƹs {|c:0J/T[/2pŞ*<߻~T/aMye {)ɸn䛥'#Z, OA~nŧVx)<}j\L kJZ{@%ؓfW{r+I -)|φs_j^UZ뭍z ;wfňsV+ZS]/*j˺w - ҝ5GcԾs1Q>^ͽwq/ŀ|_@!3Raai_;\ }EC#0KmAߔ2O2.9!'CiHA(XUb$/]) -̛ }0L( G`TF¡7ߞ ܈IWS \JaJJҵԒ%jiki4Ss85Ss85Ss85Ss85Ss859LajSs059L..r{+js}༰Ϟ6 _zP% AER/data/UKNonDurables.rda0000644000176200001440000000100312534531320014726 0ustar liggesusers]]h `|i$IiZ(d95ܱ-61Z Z47.B4xy<>Ǻ`vzrv2 $pMRgfGe%yP)$ɢrBt؜ Ṱi1b?[ !J&ŷv@Fsy3ߠ6>](]ո~BRy=Pmƫũ:ĭS [3G}'hP;ET_;ÈpxV%!8QM֮~Ǭ߰Y_3Ş<9u5U •h婜pjw~^.0/ Wmp 8\V\}vx]5׺v-ǼھLp'(~#v߾Lͺ46P5}k={G8 WV>«^x%J053ԑik*?qRDW~j3AER/data/MASchools.rda0000644000176200001440000002410212534531320014107 0ustar liggesusers}xUUI! ۓxMB`fl\ ro {Q*3 .bu 0,Z{#{jLwѵ7Twt7xUbF[t6tqqW|\)J)WʨT5UDJUMunTMaq+,nţz\z\s^ūx/^%Wa*^ϫ>sSX|?W~5ׯg(JEDa)QXJ=Wq_斪jFTq_*,e KR8(SX2Ets9Uztէ%\KcP UӴRUukX&zGhpjg& 56*LWk МR.XYP.H hf+YY`h4oBeO̞R6+WUŖIUp}5tR\XLң*\cTcᤪ-,_pj"F7ePV&T5DXrUs}ݫkPÔPFP}uYdi4O8,$F(f{B+j jʔPcNpB HRX,S,KV4M9mJ85uYI{JMT2v0%5/<ЌWю4Z&W׮pz6Nh5EU6gמYb k&>OĢ<kBu\o-ҩwZ8aY$4SrGc(W3 Go`Sx 4.xZ ǀd gA>ؾC .T#+ Jx#xg7S~>w8d}` 2dK PBϬЄθ' +C0P378M{[m~z4 p!?>%#R(Wۡ̆ǀ `#iB0x4ǥrAFGIc[,|0z 9{ ƀԻAP^Rü`?V-|#'z 75P2u_J%'һӆ#]n>0dy~ii9OOB xedl̀&'.F~{aiV&Bt5-].OdlI/vGۯB|&w" c+ Or>#鬿o(ƕhI|7?A.C8X oÝh_lNue[PяT(>6_RE{ND9,znltzyA9r"޶{1N?y˚0NOޒ<RQ/[EV7yB=ykkmkeӑC1}H۲ 6y浍7n >{ÚFhEs.jEkZd{xgQo!>"%;uC>Cy7%mU%Pʹn=֥(晨mc]%ַະ\OBh{%} CQrSQ׏9ǖo6/bC>>r9'\k}"u>=^Gp]/|XXq[yˬ˰ ܭCO&Yk']~7Ҁ,ϖ}E3+!t?Cc k?>p8a,FkZP={~?amuֳ=/7t|E p<aw?y/3A?K:ҷׯyrص OA־Sq4?ivɃbG^<ױ~1 kpg/:w'w9dmg_z|t.?pvN=^@y}/iDZ19s U(lQyp-ԍo 6ἝkY.Q(pF̄e%PY=XOwOԙ`-b&pZ3}@Lj<u'$^.Px'\XSAl9G }P 4s^u3X;^o)pAp{Ʒ+MK7gwE Ȗ~'rfHxob|C؁ff"\!$`}o !W֙(c*?37 <o@?+i2`ӍOЎYn(nL!`Yo]J3蛘aC_PO(&߻ HF?t 0ݡ@ v<ڠt ?|;%ٰ>f=!פZ̡f@, cO^7T}wxOv.8\M`cYhlhgf|k{@U&]QyY G_-׍l]P7=yˡ"9̙A4E8qZ O!4/Rjh$KOe&?R|f8VbWaN@GX,; ?ƙO`Bpwɣ?P*d;a?Q7Hy'?'#lx"k+rԟOk-Nxqi>׹BwRۗNxO/|[|k_hCX< O^g$ Ix=b?QH ,`;S2&:,/f~r~q2t]裸4ax+{}h]X(Ke]PΜݼ/C8ܶ鲞m%K|!|L2e>= I>?cd=݊m렏wfb =.=6GXЦoǢ9VlSmsgO滄7̟+cr0=cx! g2_lsz8r"reo^gY.T~Cp~x~)<]4ڼbY.-ϰ]ٯ/LK^sDg/Ӷ`-JO<Oq\Y/q`7#GXb0C<;N3쟼|UJz|Ӽ7JnUx_&`+ۅ@q$gXajsM_'SLK_u=`kk9݀\4~0Uq/yofx_d,俁|yyq>/ۙ|k=?_ߴ~>3]^>3ci~O]Kp|qPڇٖ?ۛs^Oxr^t:!̏zxP}9y.#ǏZy~u9KOsڗ1#qA`~' vqN}>_ǫs4maxkLs~~+9lF%?[ Azn6=yJ;~e/|p1>|lGߵϣ6B?Y/{l~%o8~yJmus ]I|/;)~NWqr3_ o[T`~|b{پop0?*NTyF%o?L6=yVl7=JcX *lt=9YK[:~P.p;Dktp&޴+ň..cvя}x(<ޔqx-sNEaAk' kVpii;E)+7|~km|B^ZNmTg/p wlٟp9럭x;JS򷯞Ao3 .lpxƻck~+F!FPq= 4ÅB@=vAb ԃ@Iq9x^ъ/ E  }UV< $ 4½C$oV3Z 5SE%pMy(ݎz(Pp%>]ٯ|*P:0*^ h1`˾ÿАp A9GND>Ӂ٧ o-PiyC +'#G?^_)\o'uf޶?vP87VjEA M|9 S^EO < \/ 3 [%SEڷLQt| }b)JM}=dxp:~Uw؅8o_z3{([ QO'z>9lމ<77sю|oZ_P?EDi"Ɖx5 /Qa-^f|Q$f0ķap~`vbO5S(=%?^wo} }Y8gȄ#\y%Ny]U&YY-^N=TBe) 69?e9?ZB,0OIm;r+XH|>V|*oO~+=G68mCzme^X_d=Pj+EloG16N=y|+6brޔ_>je98gQvwXϸ׷:|}X{cOm=68n>q9O1=ہغ܊Oٙٮo?ҊG1짂J)}re=.zPXeqs`;0_/o+?J?Hݍ :g=rܲ\?̗ b;[jÿ#u_~Gٙ'=2lu:خKJt=֗MnW?9?slpʟ7Ok_Nm ǯup|O`;8-6ALƏg?/X_,?)o/YT>hS/|Yj}s~f\kc1}La-n{q>Zo_z#|W^8p^gWG2Y"r>ҫ^g%|[v?J9+rg"YN}ݵ:cQV!(G`䧼K|~Bާ_;;لK|?p;vɲ%WxDOuw<ĿG^|@(|+TtٍIX>jmmSPρ;~/W\-#\$*{A}#/#pءX^G/&QVȶ y8D`hd9tؾoC?v ;$\#/*s\`EC$˧}6@-Ku/oGǻ#%\YX^{u7 wKfa)+Sq~{P twGQI7p.oMǕ#?AAgm3~K~E~s5)z I|(n`+F-Eq_G mQ7^Eʫ8 +n~[ŗx)D;v(->DMQFvlGXtYގKv(/w:'pP6~?6Jڢ2{<8t~_ EǙs+:/=x,?:Pf![KW"[ ~j3^ζ?q{:3HzkrTPTzcDje^uHC(iR?ni/C!\ EM#Vj_m"1մmW̛l@ծ s:{-R ECdsZZ">ަݧZ|ϼa˥j%u-uүKP7yoR4~=]nE ugRW?toR4~_J'RtU*uU)oS4~~0E]9]U9?0EC]S7)oS4:eLAhS4Խ:ww)62}ab2} 2} K_3n.̗ijc\mxr;\rg[Sܚ[SwXL̷ij"5Mwij?}5Mk/DS+Ԏq+.hwijk45}7LStYxԎqۛSW]oӹrL璟qIv:tfPNSg4VGCIΔPShN<$7dƷ7tAER/data/USMacroSWM.rda0000644000176200001440000001342112534531320014161 0ustar liggesusers \WYobKZlDΙ93sfΙy^mbAIŶ,A[V}aHh[+%R*UDW*"P(չ~{ge.kJZɾ>=MMsss6=Yh}윲-7(y~l{V臅EH@Oc\ewi E^۸0ۂq71r_yaEM#*ȡGo<}˪x/:1Cs7_; a0xM 7D;_%A?}s͵~v)G(~7-/O7~q"~1u\y@=4]ŏ'KC?~8y.N !OI^I=M@_W),qz"ϐkݾT3z&z 7T`~X<1!'][w??\_:ZLFe.=2 vU|k)1+\9ѷR$K䫒%~I_JY~eѷfqQ/"~bEp_[^W 7UU\kg Ctv}]3Kwm >\39ʹI)@Z?i|w 7w}gުmb&86hgDEg|o>_9oiZ M8ziZio3//kvV_.o~=*߾\. NnOq[" }fye^y:a*ѣ\~v^">$~~-zіE_GxWw>}}+>q㿾-|ĕ>âg=晽׈=g<쑗z_;.=_-O{K!_|G|.z~{E]/?/t}_?vN>_=})?|~7_.=ѿU$>|>3~1a>cag)~KqBg)8絏|-'Muω~8QԍS2,oz*e9^P_S?Dz?(ztSNrWdx?z\qbFqCӧ̅~|Lu[cMߥnഞ|g/^DS7_W'\/>>s֯U|yݱ1%!ܟ߃ϋWSu= ~u*O8|=V[+LGO{SUu_o}bgU ~JNUK|${I BRw08=kRWLRGUKH? *A[Ӯ=qPJϙ6 .IO$IE5uz$yfM[H2$5$U]p8$?Ho }UqbIQBO]%nRB3p)bKS"Sab ze'W&u&u34$zg"n$M\S i) >I3>1Mܤ'iំi/ |2g3@? zeA,tuB7 ,goȝEn]-r/^9or_C+5aЫs5\\Я#7Eg68>||KG_~⃫OGN\}p=߃nooz=~%\"ޖKm #|!6lCm蹍xy;ul=L2ԅ-[7q Ne.#2uO>x}:>O_{ w@:5@vom:?v[?@ca}7J!;!b!uCY2y=D[C܇RW>Tr#0BǚW#g]F}Gg#n#n#c1oLaLyWӾe%OgƌcsB|NcLS=^Y_'c?M{o&&'9!'&]QSO x +# yqe;+ȷB9WʧjOtT{=ծך֍״e `+bȋXOV3?XAa]<:nl?7意z-=Lu[}ͺu:ZwqaGeoq`W$& Wދ2 d?-xd[ (Ap CY' ?A"w} sj~$!~b?.\! Nb=_1) 08yRϽQ`0 }L]} U\z?Sϩ}JEG^_~$rFG!Gfė>g|c^<c3}~c~ǎqģ78y-S'.b<&دI< >CoܓKaUc|L7h?M {ipH/^iKK[>_ b92 e1sI; 簰,2YA,E Asg9~x99Oz=a/=/_Ou mqaJ{&Gx@牀c!../E;,K.K/B+o_B2]ƞe, S燐yBU7+uM+%].ȳ*K5ƗyFsO5 vowu^gS y,uT;Y.G-ޛO 8ys",϶xob]<FZ{[<)78qPW`l N61oJm&l=p6ЏG/q48Ro 5n;5x߶A^oi98瀃j߁{`'yzFjb&yK_7&~$59Ǣ*MƓ&O4oB8zP+%|[ؿeŸBb}m[!/Z܃ ]mn'mαlc}9# f=Nc_A .}یmzirn>.vp9wMҲr?|o7p]5>2.%Gw+?s9_epyyw`y[y"Ovow:;i<_9mt~E:S|a`뒝?O..e]y];?O]]..A}..]R3.yQOϮTՈR9T5fǮC' ody\6wWwaSSʕqS;yo }]oӃ?Ju|iΝg{=vBB1ЙZ=Hv Nt¤yQ[t貵᧛nqԞrpVͧԿs^rDZXhv*];">*U՘]ͻ닚ӯN߸=c/nsqh5Q̷a~8=Jc;sξRPnyRz_u%s'0<}վQ+91av]+_Q~W3z1ח}E0Kiyj)/enPZ3/C ĿBܯeNn_"\b^TvʠM1yֶ?N+iq>k`GB1z1xif5]R9?$Aߥ9QM9N g@o˷ge=Ln/L=~L{<=HǤ$6Nϧ~ufze޹O,ת8'eKg7U}}m&S?i x^4ɇtY[IJf}OjDN.yd,gyOs[zSIoF%}b'S1ǶiCL+؎i;XZ|ӗڻ<cz5IL?^7 =%hgq?vlj<}km/i qOFNh9+ɩwx|Ԟ>{ _ߍ볐IXMȚ$c?K/&N𸉝$$;s{7 CH_rMn9@3<μ.;|L&Wzҏuqdw^Y%߄[¥;4nk_R{֛q,3qu865ɧ^\ЛmVX/7jxڥ^բu:Jz+1J-y$b;h y3ƞy%P8L̋'պu:K=&}P$urLZKr{iyf5yxd:DK`lK"enb'M҇ͅ ![$E"Kb+({N\iS~(R & ~f: @_| )} ,JKnKAlŒ'G@Za9 %$}4{zNbԂǾmCȶJ,owO@TXC2e#BE2dv"Yפg!UER@yhGC5 E';ٟ /̬_4;AЪȔ5ʿ qb˾#oC쯀þ\#B֟Cܷ<"9/Ӯ񐷂:o/I>ik̝Z I98CȐY2H<7<,Tk7y=ZfƥP>)duߍCyCWRpwN&7O/E)F.%N> k$*g>^˰bAcOO,J@4Fb$QnBK"n9[M<^C.Sb+@}@?œrIGr}w;@[I9@K@敱kw J6{wɧ~ 丐y3]bR *嵠 ey$,d pt?e9/CwCdtJPY5<4 )LiE'ݺF1ݮ݆d|ȑ vTvN ɒu8iJٽ(/8Yygӂ%Y!NlsYLŮ(xYN8'j]G4٠!v,!O.b%hCp\Qy_SM,OcXwa6?mh>d*oK n+)tqf?ˡ) K`cXgzGa|~S88t>[.| I58nİ<3_ 0X?KmZŶy yHcmÏzXnO 8>mQ5Wг( {rUz r "n<ߤ:j"v˩O뎚AǷ;҇]/Jʏl!G5lϐcuSM/rZz׃mޚ?0Q<( ?f M[Ӆz@]or8*x}$+x8??z $^l<WT=C\^l׻VZ(HO 6KۧĶaA~5_qZˎn}Oau0`-MuL(Qq+57߶- pKԐGqIoҶPLӬ w B?(ՎAM@y"jUܹy9c3,Ȗ'ઌ㴐/PPliOe`P2SW`'K/|IsڏHpxY`26pcWp- O?E*>K _3@v\\Jo1GSVP43*[pc: tE4!|1 e,$ 9@>Dw J.C, D/cnpw[c(PEj 9,CO19~oPJB@ʔs~+WB˹*uUE"fD(!#?t`G!m-PNk (Q:_}WB 1% _"_RHIyҋgL| + & %8Ay@^_hG)w gJFA"G plxOE*(PfC1.ӣUP&O} 6VR]7@۠@HD3)5W9*<_W(xJCol҈PGnR*? YtSrz/lE@NuhEA:='U/t@ܫ0@u UU+90lS9z~ qmt8wOoyɸ?ݖspnDQ"_JO@_(EYpQ|Nq;s]8>ʋ{> (s,hg\׋<^h{IA i%7ț` 1Y~5s f,"9NM7F=1M`%  a?v'A$pWdWw5SY:ݿ/A&YN93_p͛SkUo*T\Tuʧ_4 jVuڷͪd,2~FU(PCITI-՗pI <?X^: ˃E7r`R8xL>P : W`04Om`Vͪc%=U&UP ̓L=UK;* 7v|? ̔N+ܗb&5*`k& VYս楀`U2"X>UdI [0=+ͪgt YnTF}4̔zQ|+``RuZVƆc&PQXs˦0zEQ^W2cO/"wX0zY\TmTEf'fE~kun;#m3V*KFYעEaӽ&ĶM)S1PITҲ FyDvU}RtY|`iGw*4MtA_)Hީ-H֬rZ(HwT Z!HCY%h${%}#[AVA ;@;{; ލ, htDQA䥃~S~$tV9A yC{a9AeAyo#EP4A邴}y/;>BA  w3  *$8e=ɻ#;-79#bm}1/靤R>`+AER/data/ProgramEffectiveness.rda0000644000176200001440000000102112534531320016373 0ustar liggesusersS=o@ݬcߝ;H_)SE:_AIRHE.ɶ%ԩ#:uh ͌|P,۷3x B! tQ²ho0ǯTf,:.$V1u1u]irgzvlХQNmmRXSZڧgdhJJTy p=_^э.Ϟpw{k?j.&:/;O |"!E_P}>&ma_b^GSs9O;\ͯiHe@p! -! tW1-c%w17sc'wbiGA׎4f4.daƶ0GmU$/HhLQI:2Ugi ʬGZEn*,("1 "Dl!T93,flmf;Cb={(PCb=b㊫?iXtAER/data/ManufactCosts.rda0000644000176200001440000000353612534531320015041 0ustar liggesusers]V XSAY> VqCTx\Dl#$(e'l" .BeI(*nXhq%炉" I@&!f3wrϹK7htݘ:ԥe4vgD~lHv$cB-AJ[fJ[cK_Y/UWKR-P°F*,mbLi*|7PvЍ\)vJ:0auxb;QP,ŭLTG3&xrʫx :J(ߡ7l*uMTR~9dR; TeQjx gFy̋ nf}R-J2o)GIݥc]Pbj_y;%'LE:P*=p7:y%Gك>֟)fCY,0™LyÙՉ1WtZ"xݟL*5Vlrk*Uw}Ph \Mf^h&߭+g#;[:_ 7zm{ogN̛|?kХqj-f39ų6T48O$ߏN ?u3m5 .z`ҥö{|5ZQ; ZvDž~E:.yoO~0+HϲjΆXu 1Uj%ı+'U:f@{qh y~BG)'~6OE,;',c]]KL&& iQm޴YŽ"^]D[BTʋQAh(~;;![Ʃ.MYkTڭ}Zri1C LJGǏ!wE R-yIQ{vʻ?ֺ;f83;WW6Z-\sOjȨ5(łqnNS:U)in=_7nZVD53*'wA&rVW,(&;xJCOOгhٛOډ/'^ % 5%V&d6t%vZڂnRLFKHGwÊ1]z!8s5Yl>oql(HQP$ UE@S(N"C92KT yb=PkȐ<[޽юι%Z?}D`uS|0"fVJS9B{~jiC?FV6#hkxcsh 37c`3#2"1Pa[js Li_͎ S IT&ԩ:m|iP Fdj8 IPj!HAER/data/Guns.rda0000644000176200001440000013331412534531320013201 0ustar liggesusers7zXZi"6!X̿])TW"nRʟX\qjnj-1JU`=q5iChM_=bTI߇5NP~Y똲`odOAK`B3z6/D;*j~Egg"lI/J| `-,eIˁbg\5b32C]ի:ҝ"0?Z $QK \ -Ϳ5нmiFҁ ksšZYr恁RLxcL4t(j( VZF(F/x.(LmI;|M(kT; ޏv*6zx q5xx|{'aO=v`tjYkL%+L\#_ty&v; 9$ t"kxIATz2st[Tl s)i)2llhNj=Aѯ8\[8w#Tt5KԥŌ W%gXօl T-du+,&4U_}ILHS">:V)AuS:f|r/gOkocvnMhW+ w2<@\C/32Y/{ aC S-a3E7P8 geH1pJLzp4j{ʤFIգ3e֣WQIr%ŷn[>%>W1YdWà=DJȳWD2|Cf.ipYN0+$L ?c F'?-&4ਚDlUj` N梹ZZ6.J a\ܙ-9N{6AwŻh8\SѺ`M4B-h ;2159 ԋƁO +>xbPRtwƫk5 |Ipmtj?qlGՃ{p >V+E Ri7KD8$HeRTiidE}=փ^F4EU/*\(`fKX#`o,q- Ep=Fǁll]k%2P\_V ~}-QZ`){^+=L &Pasv;heɦ}Lѹ KGl aD<'£TC5Ce*EgpwjjG ]]ΤfS4n.;zlO^T<% ~phGU&?e}&frv]R1Yҍ5 Y-/S 1{JFu[ErydlQ0^=ٿ竧JD yȅw>+c ~I#6CRT$j*PxqKm$vR =CA~Q7 21F AoԨKbAJ0`.MAQh..]I{ߗ= 0PHcJ}~޼ v{(HTi _vrܚAԄ;S[ -7nQ4nM!+K+>USTqR>$:D~XO^╌vYo.zP[*c. *$K]<]q 0d EG{zFOozۉ  +Eqe{G}XU19P C剽@Aoi5"toh]x wĬ w[n3ùgL蔽ӔD*]lDt0E_wky `*Wd>N@^8a1k"P Hn6vf^ǫ 7߳1I-Q2[z_ew'вߛbd!GU ~hcClkY69~n; 6X YITҹ[DP]7&]jc"fфoeeQW^q˃H܄f<`b>d:C*=ڏ~/񲛍׵Hڟ9HmN*3Qk@ommq!3GĕwY::\d]DNͬgXP9X͹`Kѭ`MrTwtƆ աn ϗǩu$wѷ1Ji',~)z(@VPAUj' }žFG6Xlrƅwڅ1$6B}/ 98f*s1< tw̦}0.%.ُ Jz(ev+V9dD -DYq0ϭk2\ Kؿ 7]А0j{ k}}|4,PYj%uq8CQC#,-~ i.1U*[Vx[t8آVA1R# &m,lpm멶. %.rdÎɛct@a:r rߐ~]q[tJzQ闲EWBDnQjp"S-B((ygT)\M}O}Y! 6rY0nfh]ZҀkX]딞;r > ucc}PcgH,otNY ו5x@, bsܵ ح·Yi!BpQ/i3wi΅۹n<>z{ jAlk+{c-WvfNmo.d YU9Rxȧb{ PLDͺqCɬ5pdKb3mxyA nqSܦ+~O'/PhꝄ\ln'uk\uSqEב:W:1 9 jh1kcWM+C wytQI&sMg}va/8- q1x5r_/S@bțQfNndD9^`Y֣U V-g4;$%0AIP#L(s8\Vqe/D^Ē\UMfe[Ƣy|;Z4JQͥg[~\> ,|;]Y0s@哒3)Ŧ ̀Yer"(.mؤ6ETUfddPV^5AxbN N}+k Px?A: *QˤJ5Ӟi\5fXa`vX4Hߨ(#8 %PwP?I̼d#IgZͼAS JBQ@T>-.7(F1eCٹOq&n+FQǦ r 8PVIA$nVv2xɧ_8ou J3 k|wlPӹ;v\e 3.fk>SSKQ]Td̲h܄ww}vṉb9U!6 ٭F%j^@wQU;%1c]bv!35<{zj.\Gwdroǀ?:)mGj>/Y;G WG}]Rމ'>/*tҞ<^r$^Bu=*{`ā+eta i nZOG}@%c6B7Lj x73w <$;ʺ}IfU@)C(}^@j#j8y&K㶉Th(:&'(D? *e h\1M#0 c6Ce}ӑ-$xB*5&8bes^RKd}UmoZPH7˝in[c%9G ՇtE<|YPgL@(0" `3@ 3ԕ$gx.b` R^( DD,q;v0-B9VX:AQCX fdzjhAܚ|(i.q狨 B$Y3eoo\naw%"_-\™Nn,YߕT '>C)xkv Go K`yjfvX/yk$ERE?S*0h+|M!_tO|a.x}ۯ-4 d ]N*l%+m6Xy&X0(< W얷f.zǍCc gS򌉒[ݼHwCr.s/ =rCZw HKK3.]=X !|b8 saZAz|rsYv,+Ӵ(>|j3c~u;e_HLP_Mys^p[(y +=vj1{>d;v]uZ`Y};6a_~( gUqEV(wխ ݀/_]+8?ϟr[i`n$7!͖&#;Ap&|2@>h=d 7s(^0ш-ǽ;eS4Ұ)s!f|TB@v`4Ǎ1llɖ#NoM* eLW'KCZPvu -'p/.&Ge:Ndl mne 9+3 rcL݇ZҸ]o.Rh<۫fw]m8$nʹ#&F6)ɈO5 G7㎚ifOw6Y}j@:Ts0ʖF!e'v}1f& !Oz%֍|*aN=9zenOiӯl6?wJ>Pl!=XK>\ @@;$]-Zj!㜦ü DEOz,7nܽz ZYA **E0u w4).p !p&0E|AgzC (vn"}: MPk4*Le rY6}CE8 }[qNr {5ƨfxZ3'O3gb+d *n6.`TLAoh 㹤6'GvMgWTL}L o#F raq8h`0mSK5Mfb6Yu+Й J@4Pr# mV,W0_@I; :GL~W̷2kUheQ"]+hi/\$wsI@lǕw Vڂ K^MҹfXʊb!FAMiC ro1sYM@p(Ubg,Ds5-wwRL}YuX\}dGf$p3zvF?gK0='jLq+W֌RmB3z$܅r`B-u?#UJe%7b%f$x"n>]l F3RmT ccrv\)&u%l_Aft306|?3^D:#Sb2Ń|qo)hOgϾ"w 0\ĸq/@D*鼣"4GB*ou:S>%[x7trfA""$ƻguQsY)2g0m|Aty-Btp㹌'$ѣ5t7p&4gTzUv=|e C2271ѵ{2cF1|YEg>Wޘ~Ry|G fxtЩάAXK\S%,g\D _ c01>슰;T]n?U9nC@CE̴-TH(8zɵ ;3@^cޒWI8 3obx1ҨX3 ˫mӿ{[۲Y w,֢$`rb.8XؤMy1?(fω5M;XwaۦЩqO>`ǖ"N\birm@0$nZ0#=T!TڋM}U }1 M_,\xkm]8WEr,tM1(Gv S-)4;搌s[҇yǵ2di&ꨯa!glMR{6 LL.;ϤAW$LA`-UkVu3^K0/ʷWEi**(.asِybhS.%RBƃzN;W Lukn6^kzgar> f'o F: ;2oX6- Xy%0d{5g2L 6q]ٯpxL]F729j8|)-ȉ7rpi|u4 ,~zFBI  /f |5]@i]ji9 Y+%;.=L:r>#5Ә-MЈzva0]˿ 3dk\J`6 ko{HesPŋ &׆J~$Mz$\dTZ^.[ _;U[,[%l37"3.~Y*n=BD'>GV3`<8w̝Mݑ1?~AJn59,\e#E8tn9Q*y!+m:=NuЇg٧cdX/ ƨf3r!3g݈ρ+JY}iv3wy9%_Җ @I GYTuǕZ2$hw22VDXNBcanW#:,!|La`n#| @ņaL 9֞Jw ~:ܮuЊ(S^ Ÿ2 lݿwuqo dgI"m,v_p}KmG,#'a0ɷ5=/K=xϟkU|Xu 1&?@<_BMQQJ:Vh.Z 3[WJ)CW_eׯ7q]IUt#֠{ִ-mh $kГ.{QY"}ab 53C6e-=$i[\WDi솒h#:h'Z8IPaR58c6AF-ĝZjGTd=Jbrⶑ;*/>LTa8;8.Z _#{&W)rӲL -5uz02CoB!1s D֢t(II$hɅd] UyScx;& < iX;8 @\k(%|ܢ΅ƳNr0FF3IAi6>X$*\\*.: TKuu狠SmҠEs,h[F ^vh!FۏF4ѠZhs2ԫnwUz8p5O,Iq20 ,F~B?+[SױTDr@Ln\ #L. 1ة斞 n5;^#(%I M_WTPոŋdڈ<(iNK^^dZ5szw>xLWTN<MMWPG2ÝCË6 I n[uۑ .KH~MHYUw)Z٬|JuzO6trKpm^ R?R?E3DHV]Hv9z=b4q !9~G^X *HS"6" +fBϻq)2Hl1sЕrvā%8?'걚dpb+,ŁYsPM }m78ab>HFO?!؁Ŗ^9 C7 \.$Jw}@aUv=EKuB2Q+D)[eA&e(1?k7gECމTJ8}ɡb,.Rdr@ ygR I|mGS z׏:\s;9hE>uD߷i0mİy 7Bs^3W3:~ F@><&x"ICVp#2]\HA{xYh(f8q.*vީ8,Aqېb &-9J !~rNeB-V ` Y"!6p=8zETPt^g2fJKVa g>:$hAn#ˤ1$4+s!X0~uqKPg&O(._rQR6YVNiG:(u2WAзbdj>7sZVTI"̌O2nom6h$j&[dn-__LZމO{=)pf2܀%7!7ԕegt'ʤgG܃dISꁜblIԒ7M-<.. (B: Xc4wQ&y7jCWXoz>7:Yс9ݲfl$)I'W-HSJ\E=M|>?~U/R]IoDf֣G_@x4JZ4aįpx xtx3CZGO,4r+UT.&չ$i?!!

W<1Bb\V.r^~3~iiܞ7 z&WӜrSx.p5T 7m]h0y@iފF/(Bɯ9qbLJG^I#(O/ty G&cwXpe~b*bTȰ2쪄~cMj>>~_6KOmwU'& JC<͟&QYiuc>>L"ECQO\QRK \:TsiGTm(9'fwP?1ܕ{O=ʔ53X*,{J?W qmXs@e${7ϰ]JyyQzp}9nnj3.}X%c%#\]P HJGn{S`Th}8Oف]Iǐ]otJJi-=/p)c^-ZX9pQqmѓA#;*傛cP93nExɒQԏ373;A_#{qKny%y|6Ɇ;\LVoGLpn/ $*W/}OeIz.| u:.B/QrbJn"w>5Ҟ|MIRsW D᭐G8zՆ .̳U.tE )*#e5*k,1(GOk̏:{;fG @zz:|99PRni#iEZ?93҃Iځ4d:+(iqaׯeEJbvz#ߺe97JiHĊ%6IޏYP 3@$ B!+?0+?*G$NDm%J]9Ru>]Pզ/h6ֵi*dWzR0e`wLQr6ina Ki[j:N劣+:Xciny ^㮈D>`E',ĕnr,_1X獣71|ѧ"95s^UMXMI:7?‘{*8{n)m#eʺ]z5#^P9/uі Zfg䡸++./ۛ\.$>E^&uMwp CԄ劎v6ݯԦ[W#W7:L1 'd FUBpdpmF|x*;-eA2GS֋%٭! -:zy`'8 (Sjk~d +M|iOF@4x]pe!zjkDȄLdRm4]!*7|6p1{wt5%A*O62ĞC<͏qP+$Y$qJ20eZ&c|Q't;{TV(=5ZulThSۯ^!ԍW.yb<.?^< ?-I˃i@ >u 2bQrK`g5+$uCsc/ Z~ʟb`Op.\Фf; O*12rg(1$lb&.l3=_w@kNyȓ@[?{Qd—,ĤisMXMx]{0k7>6݇>+3p\ȮFy8w[v@}il,(er]URP޽F6_mkVƒ28q\0iIWUB"{ک  .>/l>ܰwqH;W(ŸMa|DF߄#["гCL҈yGmM7&WO`kKe PrbHZs*-M~F"EJ@`8#T̚"Rq%UIfK0XBU׉#IA^ yS/$}G\kҼ"c2T8%s堼"b$|(߿OIl wjKJS]5goh]CϣN_wƤ5-03!$x|X*jR)ԛ̂[ݳd,H#bb;jN,v;])a`wmk:SC*8<ȊU9ӄ=4gj6!*" ?l"g*i W^ -:uQKFnx} Ų>3c8r6›'H>Ќ2F5~*<<.*ܻ(t?\Yӡ? 6" )V7a@)HM#4jo!~#gH0^[vV% nm[6 x5Jzz};q)P !ɷbq*H k =hjUK]CH3 g1 qsJ۩tǕ]2a\v3]ʼn\kKӦڌ.TP!jPj^rc>L{wjrR XV&,@@=C9QS0 s C`].`t*>05 )rh7x!USiHy{2e_Gb:*eXp~pq7xiPnqUj@D\5e3Ctu bZ7c$=%,HgMd*SW#ٮ2fO$#3nIaOXuz_=%?r.]`FnNX"NS, (92P!?eQdlʚl0"ʚ>|951_Kʕ>{"5<3rw/GȡGva$vlΚ5^$L-keύ-D-s-#bU/9_}W]?,̵ ƼŏΙILkHצԻS gѨ{WĘ{-C?'K8<Կbb'LPQ5c2!3ecCG 9ؗ-n\!iDSk}]2ՎOn.A&LKF @FRn :(5!݈FX׃,Hu!q<})V #+KT<؋}VcFQI8lCa 2 ţMxarg,Ȇk"WC^^aFk_NF$U>+߯ 0ELkf ½n'kuGXJ1ʣz1ߨ2ɕk*puy<%tҜ_X$ZWz.~.xcE"e pkjGSjh?a[;%O(r%MBNY\LmEi͟CnT"J":ѵxX5q gnӮϜžP+50}&Ώ]jװ3gG3DADSae_^a/ 6&ݨ'v/?e(ۤy:1Ceœ%,0rCG(gaUYBq4ӦhGfg֟cM{R MK0PZ X +Gt^0"2SI'd1qc|OH=@I1p@ut.##u5n䝅嚻,lce13hy.Csy/.cb7ߓwXr @gDZD)/7;ɾ \z;' sb"Ͳg!:Bh){Ų|J4ۙؼ݌ŦST;Ml: F,0I]pdq:Wi6U8ݭ84ww4.za(t-lq,C**\_n#OJ}1%q`  Z^bÌBJr-'NlHRs/Ed(=D٫By0%|ܗiN2> ʗ;ēGMB7W#&E DuG|tl\h\G7-47^Gz8ޓ\' (Beyh~Zq3f#T^C`[DJqTe]1XNĴԋQZɁys P˓zMu1+!LJ3 װXgdH 4D. ռd8 "1K-R* ('e9 d |w?# Z4DX:۫:=q,4BEbO6h>m|#|3@+w#1R`KFŮ| _j| YM9e|kodf Q6SFm]> PkLu9't ךL@G4,F y==8xa;oV 2F/d޳׮l+\ D$g@50LK@[pk7U\K:Ja+,' iV &J2X-ExvXE;ʹR*Qpp0Qr4l~ #(pjuN8$jUuQ_E|AE*(]4T:ʃ7o*_+vaD&}*=Sp"-YXL1 EK d@nl0kA`_jY g:Q2Kg<AJΆD84IwK@l@&QBLf6UU#JN8.Wi`":(tul=ޙw0=?jݦG&.[trq]rK.`s"ZXc,{hKD o "i͡YۉKҤ0N6;TӳxO mܥ lґf㞩pPɃ9[ ɄV?qJbIVZURT;wZW6ۘ^,M!ak]{ވiז7EDҡhB'8pDiJ>.H_?WeMy:;xB7 &xh?WL W |35s^n'mⴾ.TXMu0ڒU%x\͗&*TRY^`¡~`s?Wԑ!77]fJ7/ WLAb3t3.Dqj߹2ٌ^Q9AbPBbڹ&?nwDwea Uƣ),I1m,aTz =w9LoB+MDvF9K';ter9`tߏ((Ni\iJU)ݾ$OZ I.BY̼j\x/Lt]5@=dj7ġ끲,[ޏ? Ya{ag?&%IuߴQF_PGUk#:c ^.+4m^byfPi$׻Y}_p%R,I,d"5aԂxvxɟA |!*|h32B@j݀P ONN_ѹN8aqy $i z. gȞ<ȖwY#]"޼>6*Mk55 6A-=ld^yUWN 6|n:m064n~]g~'>]W)~a +-.%T.IM'zR3oYB/!*Q:cBLqD˰lܪt}قVz9xAM"!2؄}70G#;dtotq2-lVRpgs~ʿ[լUFHWld;O՝qXyPK~ymC CGuQiUb 9,z]yFY⼼c4[zTY_vmV3U(mE pBճ8"e)l[a%J Z!z߯ .^ln"(8 5;M?;l1T1U"9n'Pk3{tGDg5FՃk gk;~\|:Vp<{?H4o`3^zYmOL:UC:9jAO͋ӤG׀ y]4Ĥ%6tu k!50F1qc~/·iRa)qLn3Ht\bS۪3xƂa.0^HY[ Lr$`4r$#,fD 2.0EkTVZEރ[aau_l!.[5f40#z'XpfE+|}B1yrIzyHAMؕzs)XGL<|1.%`t-lO5^HNj^ݜIM1NHʋBSszM[ [yt \;~yA'z®4]*GaƟp|gdRB,R5J^jГϐ\D>N8NBںMdFY >J)] i"ٴoV_& /J$wš majJ#aN [4OM)|䮛ɘ5c>(˓nAƎǤ3/f=;d뢌`(uy#vͨenC䪃 rŮQcy&Kg#!7YM!{B}nuȳTFf;a!K9f^2tʽfbڗs黛$4LZo7>Bӛ݀5ROa{}, WS՛D}C lB"L,>~ ѓz30Q, ;/x6g>=$~E~F%+ D*4c/# ATi/XXϰpO$l{9p>"IkD+ (\$m hppB84?4nrh_5s]C!0HU;T!Iz$1,Ӥl$rvV `cbjdekO;~"XE3g$bdA\EPNQ Wċbi=bLqW-F28`L#/) ΢iH>ATtHgtfQ'0Ͽ\L-KV兝BO hIׯ)'w8{OyYq [ǕcpKis1g`ʠr6Q'ƻk&8l0QN60v[qq+ؠq2v2yB?̎#B+ lu[ Z# j*v'Au$1~q!ԴHih*÷,BQmP+y5Q' u:O@\7ȵ[3x9l]ŠtE.#nTό37I uEٙH癭D6 _i/!#cᔤʂ6I2޾r6Lj'4I#=Bs'#Jbl4`8{sh=J@vF";_޽WyJ!5P [2(iyV`aRa߁_OWm؆95i<#שr}a+SGD0VtӒ GEY:ifO3>OQͬj#CfM,3:)CMR\ABDu1艻(xO<95}[äd3p=?YE4bUnSĞ& Qgm j 8h(miDE\A,CTrbm֙D9{p~j@d. WwS[ڱfS,(Pj xB°@C {<(19>9 uuSa2I"%ɅEH2f=O*o6UB$QM* T* 4Q%닐 25X EB)];}NtҒl~_]Q*5pPkrtLjĖy@u"O4 hj`,Fbt[eԸ;jc>^"A\Ӟ=Cc`$azDq!SZm~z+ SA%ZKTaҳ m'\UGEY+Ǭ?fyv51.ZXDhjF8m.u-ήy"qW a 2p˱wOolinu4DU_,S #KW*!ΆS$NTvx"ql:PajI14<;:cP.R- ?P]¼NHyO*,*֌5pW?*#qzS-0ɹfm827;OxCe>Z`<@ C",O/3l 9G 6+MU玮QKᥘ+Ǻ4]:a2B8sgX8ڦ b{WiUɰ%vL˰Ia`V{7:%+kc\!_4+Cy▶>7VIpL1ҦŲGrqm_Pgi:RBIfWky}+*G_՞Mɒ-_hƜ`ZT+ (^5~(8%B*'UHp%)>'a ) hTs1 G?>#n+CdO, eё[iA"Bf#sq1{Ctl $_ƾz6 >Ov2A.3yYa˟-Ke1ɰ~Q_kp5d 8=iJbŕiӔ|"@Kֺ#,)޶G@bMHa \{L(IwT?:3P洍n"%>`c6vjQѵR:yr2T .% $E2f%ψ (߾6v墆'KQ-״yRd$R1/0bNGj:.:M"u/{PFsɁyf9@7GF,N̆VYc@B|L`K WW)*>X%(jTEEG.1p@m(.́r7%4gsǂ]N U n];՗{9܊zÃ(WUw{"~iL\! l{ʮӜ9y@xg 1AZ5mg _켤Uo&˅GGOz?`6I#ҹ1?KK" "R*2t3Ymو1-15-)siluIZW|K ,Pq!¸lX~tz@| ŚlG0֑| nfy&m |q#UIzR۹rD#),j3jW[;PCMv`>wT9rW~}%7af%jqK]42玞cU"Ka`Q]"FBIQ> 1SN3ZبY@\8xgFR[\?gQs{m#2F^U#z7KPĀS[qM@I(K:Uh ѣ¶ooI*_"cn4Du#ƣy' l9Vq}dZj&Hg @5hvӭiV_KД:I|dCZxNyi:R$T䨫B}Ά0  GbиJM` 180u/LStwCȑ{ltǐ)Tڲ:8RW17 tʿZ"LtzfSqo=(&J8:~G@^FHtgv={ّg=~&FYES:|\\M;XׅŬʇv;F}^f\Iz[,5s=h07R[I/9~r)ҍu@C8Ns.әmndo# cj gb;7zvQ'ztl< Ɣv*%.,h~̔k6WwPjp_iAӜ6S5%)AFd~6t〾gxpM;6EiH z ofg_K 焠ID7PzB6jU}'S'e0쿄-.\n%(4+qV j+6^-&FY%_>C^It 8'ʮ"s2kDDz&q Hs2ݪMmJbkl\P_'ڑ^'Bbwp(to],٠*"9ab(CEW,[)|v>'դƪo^ޢ쯾31($;W87U+Nls_8cra NijH ~.;5FBZ aeBd3f'5qEH1^)q%މ.ZE'Umtj}/ezcϝj-T4N*s2ʴ2|PSr1$ع΄!u!"i<kR,Up)֠MzDcPizBٲ+Fm, =Ea:wv=\pvijikA‡SfyIo4ޚVFl#5p٤emW$ٙlmlzǶq@=O1ǫHX P=q? ^%B=x69 ~k]?2u Y]cβs/Wl %$`lM'UV6'^ | 7aN9RZHg."vQw/0H/]?faw322ӂ"/6~GKn{rMv(gDH Y:7QF5CΞL&R<1a;9xI1u9VA45ڹ?WcDTX9k֘ 26YU jk5i$ɖ"CY)r`l" g.b a'^~`^ Z| <%g0>"C$ܶͷ jH;^~ved%V%уZryru&Vvyq lC!@:/-?7-̿N 307!h  lF+$}A݂7 CT:y1`)m7#9LM@mNB٧Y;ܾnv(a/2H;!B8MfCGCO[J[WgU\.ߛԵәꯉq#[3:ֿU=S7Y#ϘNco53K*Nku{q13bx-kBtlj _C-$Pq+mHߪfyrA(<;r.GJf Qm8 8ax 4-J7Q]2i91jCɟhч,~ )9݌n csg|2N}!gXy68 c* [{i7[Zg!\P{&3vF E8r>R f[l{/}|\i|ڳw E&ͷ0rGF7K*c_U4/R38 5|6-Y>c uy gvLzRCXIJ'A646.ONc&yMsX^>j6vO)à@@Il׻| i`QaoYUDb x^(+bBǤ>.Fǖc0;YAWD6~e.XxA =rRnX}]&Ҋ%ӕw?$=wd;I~ 9733azCI sdʬu`=^Ӵx T+R- \wtZv1-zztq.kqi946RRaMsZHQs-vp?ݟfYc'f~hS*LQqh'o4šsD+7~ cUw/TmU`өh|-gle@n t+b r1dz{iuX1nЅ.u]zRf[s翊i9ւ0Dе{5RG"4@t|V;Mծ6CfcH޻ UcZ ʧiuZv5Ce&6&}Յ$~Dz eAw%rhZЁ'-ܟ2f.G ql۶ȪhPYgzj9ۍg IErޫŚ5ڭԍgV??PmP1/\5ԗ,۴1)@ͨeʫUrCsPfTD& x($OH\OC&$I*Q-OMZ̠|n=e2ٹ3gL^(laJ*#`Qc9 ejp&0h~ߥ;+*0kWQOx xKS9=sH*/xYh?H Ѭ>Cin9QɱGrدjTLUS'olv1uFxޮri|(vp73Hq~?G,K~ޘ j?,:7\Wjdy/f-~;mFP0(P̶]P u8~2^Xe+.kl;!?KES YO2 >~A;S!O*kZ),$iA\ 0mĝ6WvF`v L~r6fSYpCAuCZ8<1k88zp oK'a#ƲN~O9|󃽍n*7U~Ga7{kĝ09)JsPLnAT|~I`Ui+ƀ/AC<-XyE@#kxio.QQbt]E #T;ef0x%}x:=>_nGS1gX]\UI?8_9컚J/;mX8Gjb/&  ây+).gg_ͨ@ުk?yK_}4X)Bl&HFKgՠlZ%+8XR6+[-!^Su?ep|:bfOR!ߞN>+/J]FIx ^SdҞ۞DE4F ҳ6g }g Z6{y*dߵ5g\ K2#OWpFífd~|VfͤwAnHp'y ӮlaDtu$Gό~ja9-S hPՕFØD2FFT̆hUGiڜ"v: C QFe.Ntx6Œs f< g/wV)hQ-ƪW6gTj3纭6^V1/d+ٽ(jGސ8Q彣vmf C0~kh*VuU$}~iKѠfXɦQ4'cC^{^d]_{R&;Jg uzջvFNPJ!)QM2Ud\yat<(s)`1mK}ݛ&$)vXe1c|Je2{oO=f$ݖ+>~̇yȅ[UP%2j'TϤ[hӭaq~-9x=S#F:)\\̹W4Z!mK7 $ kHI5HySX5<'7ôUk(,N74M=T_қR]߄|LM(0`#/!SB2EHS-lKq=΢;\gAp!5 P!gCXeӕ\Q6ݸU:w?-JY4u~ޞUʤ(իnSmrUq>/l_V0w~4G,)U#UjL jrd8G3Lŷ,~ivەڮg9q4x^x J@~u*ٸIC+0_qt;3f37ƭ/#bl))6OH@ 3lNjx+.QՅXOU)^sMn)cڈQ3D9( D:{7)3PI!UjI'ғ2bpJy "W<n*C/Lʶ GG ըO@տU?iJDq kb]@ӈ|̶<#R؂Sth.ah۽:I`K|ϴnN>&ڇI[VulF,/-s<`j4~"A Uq|,Bݙ A_Xl5e|ŢOD e6 ij Qҿ5%l]J č޶\^ջwt}#Kq<>W$ .jI M*Gm9ZMf ` a)K=J䌃N7rrT&E0['<`=rnɩQPϤMjZ|TQaPcZ_naj-cJfΥӳp Q[/"J(.]"O@:D1|aL{b;܏Ã:\XO0=6@zX9hvA5e ^"TWrywl@rCȴANP5ĕk:"@=L?'Cs#hxZ?yCF+9L|+!/?u2(gf>=}dB!gG?Oc+otvx A Xwf\tDQǏ܇VvPeF7䋊٥H C@'P񽛩4!xx ("檭"KWSF3A n=Jvt@OjmM+HN׾|m5zIvbd[:so.m\Zc̝&bB,T2S\8IPɮǼ$o qpt1CU GfgWWM3%(Ģ/*Fh1s.+36, %;ij,0c^8k)/\kw8 4 En"H㽰;CI"{sg 蕺=ސO_ʗ8vOZDm8dԚ`zjXNmoG2ѤB)i? eщY -0 +oY%9/[f:]`yZaO8Ѳ&Т (4W9>hJ$WZ1:B |aT[,K>6f֏2||3-:$ڗ ؾPk1~Yﮋ*-Rj}o5IΕȢ7tnQG S6l>:Z &XZoOK6XޭPZ]';aT }V~!Hl"o>mgYI V督=]PI֏Qnz娐]76OSUPKpu!̭k3L3Px<ӥ`3Ԥ_xY'ٚnMB2fH~Ozj. tu~`8~.'Kh7Ew19V0:QD, B .%;UWw#tR8aMiP}Dj*"[I+MPb4esNj!}#u@Qa/m۞>%0o8#*|HmA&4ɇbgTS~LoGB ;eb7-2wX~Z/d)qZr̜<{ihh^=YDF72CWNtw ~BE >B)9r9ތhWYdt;_>>IUrۨVMǟ 堒cKNMLh6_sdUqʆs :'0 tE=F! y! oS͟ Xˣyh*q&"+؆R`b$e8^`O )%@GM{^?*Wa hAXx ۶\)Pw h (ZqʤI%mT/dGS֝o *"o#(#>K9,gyTk/yyxJ+G;?`WB}7Z \*AJ. m3 G6>A{Ʒ3] /_V{_petdmB=2}47Bȍ865n|1s_\HR!"t~Ҳ43d1yx,GF0,dۆxy$/[w*Br4\Kd+ w$} RpgCTG y,M 5?X2T{b |ew~!ۤŔ6G||ӝ-JB n܂Lٍ3sЇQZL?27$&QU|1 27i@gog[0ꛘcfeoPc״[[ ķ,r^Dqg}~01ubo)rSCqaŶ:h[4BrkR}"2Mny,1kŊ/aM|Jp akl(/f 9s7{Ҁ0~EnRKHtn܍4AQ. T/j)UՇS$ y 4>Ž8Gs8>\-LCY&uBݳvqƾ$c$ I%9'ENC EEj0핁l lǜUn|P|U{*kTw ""*\>/ac=#@O)/#ToĩdRT8q!"OQ&u48sI!zAAþF}zY.ez"h-tm߶҅IX~)SZͣWd7ԅ$o /!<& %CF;k[K&=J]7x2^\rYރۺ}eͣpOjKުSٛ Td;ǩ,)UW 캽PX̰A zymR-谉S >< GC:fL#.e:K\aٌO4Rq*診;f;hW'O𮃺 Ip^^Y,LA>HdGE8 ! /4mJ+OM»>>KujO)?Reޮ>o[I.nv(a"1ɭl:|`^ ko4،!g$]RiF9Ob6';%>2O,Nuݬԯ54-9wp6 :$b|W}|]2S7.f>N6r+{>VB 5}\]sF-^}1url: cNqiꓐI2BG (xi@m٩LVjmDLs|{T{vTc 5]PJFg̋elQ]uHq5i.I},W$챦Gz$,>2wR/f~&ΫA0l&j l6 <"J>XnN&{#v\C5t_ehܰx#J/!@,G"}zz{T;q7Q]Ml?(N(\͸E'x0I.0y+Ak5ڬ낇RfziNz, "ڶ%5KfE@,1Ețʪf0/-y:jpz1QZ3hCC7ԭ}&uOWK~[fY1z*ExjAnWt zfa0)ETr?ONeq ΈH>rȚ0#ENķ4<7ˏq?LL;S?!| ˺EmilTdrUT N,V$^|U'=敠p9)uoK ά7pҍijpB`xˉP%‘՝ yKq/7i_ȿ5^޾EAm6ngDFS0jX`9+f89 5[1#}n +8n}N=#r->JPs~ V?]9+iDM'ONz@!P53Qt2HF8.Ul;-,!Q^ Jd}cJg9=-8k~Lc ](C?l q[.tsS\GOk3ؼH6BW2I[/ys|v1[EsF{2#0'EՋ̳Ceڧn%*B$K3m2Kf\'թ"(,7^90GLo0 YZAER/data/GSS7402.rda0000644000176200001440000007724012534531320013243 0ustar liggesusers7zXZi"6!X]~a])TW"nRʟX\qjnj-&鱑] Q]cRH ޽k4zUfG"wH?S $L~-iۓ ZGe|- K ڥDě5l҄Z(Dt@mމ3IHh6%Z>p Vp)wd{ J9}lK^A1TV;oqrZ5_$}#e[;lw仈nPZi)m[/$8 :C=qxu<#9$B+DYŇIE,2g-F=vpӵ*^=gGws,]RhDfRV<#\VjoGĴA;Ѐ!lOVwӤP;]&R,V6+w umLݓU_9.5W 4l-(kp/ceeBxrsbK; JĆtjVy NnpBGS"!*2`y4T-SG-AT}[٘7aI IRFn,ڄ; 5O{λlVo7f31m=c7?9[|T셌߄֨'pV]~UrN#q Nu=1mpovvvͫ:SՌ}nGR7[vDzLD(Z3>cYlÐAU\lv/y)~վ!)O;zlOfqb}*U[cw$N55F(|yK6 fQa`so nt2wAY LO~rcUbK&G"\Bdsfx<ˡZSxR$=&kW'ӡYr}z0:t7۲O>d /QN$Fo0<*0J`=2mOdKmtꌫP`8ՉdqV fk$Ə*7BSk޴k[=?TM7lH˿7N;㉝4aލ j&C]K^~#}Ÿ+Фj44&5Ǽ\pB X|۰]<Eܳȸ'Вdփ\Ađv[Ms16x2h#q̨x/~.҂Ct&H;Y^vg[s'.Uf@w$B>2dUzxusݜvO*'t;ɲֿ$o=7 ;,en(Evcg;mA8wџ) jP̪~̭Rf wݼƀHj, N pE0k_WeN.G]Y2Vʥ$:FWnCͳ*%yƄQG4PK5ݒq}j7_ .*y C9fu 0DkHbǁ9Nv,yԽL O~.Kp6APNP-@({<~" b%5Ү;9`.i}f-,Xl@ܞQ]A1&`[ :B֠YG-ٍɊ! '8j>g{,O#y(?kL@C#XRq騗+0 &U G(!U%& {ıhcfJ+a™N Tf-(> wNK z,X/}',u.pW}w Qe)~Z9Rb8z:Ҙm* 6UHu3JB;I|0Tm!Nx XM9"3h7:l6 ns|/RR)5;5WJJA@QI"+$:wH#{G(V;?TWg[OeOvbu Z]љ6vPZ;;5g5.gLf2G|(}΍"{ۯXbJehiۙa@v4_kL I{~:7VAM)nnхa^dwLJ)ᆻOfP&NnPEٖ&=HWafߡH &8kؙcОontW8TFm[]tȜc9BV:J]PR8[^ݬ"/_,B*s(qʿjqT]c6 27Y9d?ZGFxٖ\v+koy|mӮo G>5-51noq  _E;S{Al$r5S3O9 X6yiBxeRP*d: JQ<id=fy˽k﹒PUy:d@p JZxU{ͷ P[1wg4b  pKܱ4~YG%*,x;ܙ4ZRd=r$jQ3~3n@IYI#4{ئNgPE~ɒRd^XF<n[T}֕wLS:ʪp٭`{jZٕzuu nw{TԺWq:?.37; Pq;"ONcU֊Ws+] vBy$Sx8s(>|Vٻ{2e$kо~4]vR XۂO=&.J3dS2-Z|& RG62*&zt[iʫ{ gy>gFCb YWN^ Jȼw٠kzbS1}9eDr1# !Xªh؏.xoP 92);q~u܈\:r?[j*̣fŕKmI>ظ-YI":-muqٰX1 }dN`z8W7{BH yޝ2~Sqin)fɧϛ%@E)-3GN}va}끁3f3yʥ꺵 n9*=B!y:;'Rt2N >Ę0ɛ3┒5J_hRO '+RatGʼKT"y+Aq=_1& 4(DYtrқ'kw߾4Y-%~k;O܄ b(+(d!ك!+@ڮD6=gz83,fFM{\3|+|7n53`O_/Ś6QZ%gGeX\߽2`rI:j&_}E'[JjF , 94$`r4#!,_cʶ~2J^ZWdfmM,:"Rh6uܑ:Zaq0'Ʌg~2(8J97?_b kPL??MJ5; A84 C|'X+ܸ^d{(;9D8##nU{n>ַ7GKW%&( hF#,3'~,%b*b|M&]%ܵ+o8[1(Hj21ő|dMO;<@4aG;K( :U6^FOR~xuN89LSy70|rsWMR+JǬ",Aam_Pr[?o! F2ª/*ȷBDv) L;{K5d;xAxV 89ױ0M- d-IcO,͆9cr @ʂZuku~UTD)SU^Iթ1^v C[`'2p.UB_}7NĿ`*~3S2ZkEMe(j[u&YPtAuUK)wݧZWrTQ\l٣^ߌ;xW'Ժf?QB)`1WN9:. X8輴[X ʍ%oŒ"1Z]* s_" iCE0ޠ+%Y[Y/n,>nj"zs<#.aLv1YA#Du#逖'@]։{{M=D U@ATZ @ w1K@w>.G;U}(jր4?gYdv_o^d {ܒJ- +H;c']KDq1r.( 7, ǃs4dv-}k4>3*Z|@$z*t,Fw@[} ^kCW)^[Z(ؕy6Q[ ,7g{g:?yt9NIjwixE.*"$ufhh7TB2*Yu[/:XVĴ1c4~Td!B0"tq}Q(&}zulbk Q"aǍ&B\@Q'V͒RQUgxKg]c6|z91Or{ 0>ր %F:gD8~`(Tnqahq7`[&?Sv L̻2t͠SXcV^ʭt:Zh`1~) ^3aP,w#hiy^kD(CTJ7T*WC[J`:h4Qg6"Qf‚eMIHjF{q[7tq uwiQȯav;:x1ޚu{be7$Q8iN8OCzGlؤ?>5V" NoEܽKiw !ݫzNh^E?f۪1*c/Tmߌ4:=yBa:+yʵ 8Faz~ht+ȼOswt٢P*#H6s 5pqn"d=|6@d` A͗i\6nte1i=yANNX_ ݄֠@#)m$:Qیڂ<.߆<`< 6 o$x tg|_Ѓ&~uݰ&΄P\8 o`s;o09s=]9D/X~eZ DNwU020]:y {hXAƔLk1v{+KutDl]-=tp-s) 3DSdi;H-Բ<7>HA8 uZk< h(1GJϿӹ{AM)yZriPoDPsKՐ$[95-Ҷ3}8V6` b%IEr6`^W-p\G/ԥ6%ːè[W ǹ,KE]H|uf^f ^4ÍPM^7n=>m|ၛQelДhđC^wy]bؼefϏ?=1 xĐYeQ{إo\o|og>J1̴ƚGP g'y 8:EZMZ-jXT.>IM'dh.Q>IKk.QZ%}Ox;\™2iKM+_g~,ЁU&T|wa4e&iXօ^c O*2 qnTLiUyپ* aHlzSCL؁5FT eъ=ó<&=\wI-{~\j6x?'Jc-ϟ61;0-A|:NF8k]-vfJ Cx8Kc` o{f>RxlIO34+ AQYwIN^mb"qGh}1?ʳv/vCwZ/'"XM,w>WV(ͪ8 c:LuOU']e2*\&D蝣;n2/@2{~芐Q?7>TſOXeh3clh۲a9Gs.a^>u>ö́?#9=vVdA6w*|l5ն5)x oBj&0Hޒ"fy{A4rTQ0[naeQa(@+36+_DX*[JfU:@OHbJt>o+ P7K6<୩~o^LAxg qm܁g*k37 -nCh}^v{d!Mg=ì:y9YelUKG3,jZN_ʀ K޾ńyr zWR%~I+*נ%O B$Ϗ=` i+<>>p;:`ڃ&/m3dsW1(rĎrw4{ }B[4]E=*ÿȜ_9X,"tU.Dfe# #ٵH̩J`qFp>qW:|Z< K 0ZV1¿HBQ!u 0D(L1Zsa Y‡a3 L_5*܍P䂆\rWblHZŭr3L5@'q|#Nf7>wsn0\c}ViҚVT>\b_+%E@zϺu!Wwnq=]:~zю1} jo:99#bBZFpzQ;Ԙu9M#(z3xW7? 9gl]7{#O:AUk-="$[ \ BvM92sb _*4c`,_Hͺ̰&8Pј2ײyRQ@e+*kHHk'ϽޜMGM u=a{xcRonV@ v>If2[t^hQ:(ՋG.skQᑹ #@0?.bs幤;m5nMXbN M}SgH=t0AGBb"d8z7ǫ2 r#TfH +^L>lϸn+xGWOqӕ N8ʙ|F?f_lz5-΄c>J0Jf8뎹_6._#<` +Y6 IZ7M]􃎯]tKմjRU mU~KXp_2$<'Uy7:3Zl #Tfm7߁;uu%: 6#< 5u[;0;ihiV_g4QM ǿ8zŲ- D# 6[s0O⃆ 2& 檪fo"y6 oFhxhU Wx.t~ mPޤS4AĄ>V[}9. ȴl>Ք4hq䂨!|yl}]n~|G/&/CQ V^I2ɏG_oCh3Jۏ:%[Qdx㴸a ]+{œ;sx/GU$ K*UcM SgWW}$W璟05">usv==UɨId#$vHm MyPQ<"Rs^jr1-İϭ={.Pѩ5q2 EHZ{,(c];ieh9{礀x=Rp3Ũ_ocV:rхv)݈k) J쭯緭Y@퐎Z| DqPǹ pڛ$cQGV7#H`\@'* no0s/-ϵ$/g!n+m@?jV 8R.ɇ_&ImdæMγ㺞%4"zrCB%J^r~x'ѥ1EߦGn_<:7C5C1L`b&-=BYnYaMM1HF,;hmd}p9tF5, v7l S5K^J ාѡ,mHwdUJ6,m1H=NF2RG]̙i3@-eRu/W?9;A i, zҞt2Il1!ΒtSbeB6cͲL<Eclwk&Ui撈]B 1RlR̈k:~| AvKo S{\=z;z`gn>^swm[kL\p+=`FP$b_u֬r3%юĹ05]J얠oe^ѱ[S~ _QJ[ Y;'H'wA 0D#'^2)벡!ʼn7,+_ PeuWyN?Y (yG~Twa=~FTۚU'wITQ*1o)̀X-Z%U1B SmٱM2񘶼?Lk8'm}]ũGkxynsV%A '=-2 ϴ*x@  1 ]|l? $٧^֥2MyoyP-CB |n=rۖ?\;`QF -0a3H XM>~5 i;oTR0ixVڪ5 %>G7d T 񹐱 ȓ cC㨫 r__hTyIPζȾaQ8I_fz;zu,#~tڙz&^HRVC_g? 5Lu/V[BL಑ E-5O4 sR_%g,VCv hzQq&`Cpm_Y\3=Lul y6ي~v0b>(pO@ŹX0_ti(׽=4T%U4l$AWBÊN)`<;K8O>E6'*^y-x+kK<3ks,P(md6)ZIXP$Ӧ$񸠠;8a߼u)cJ)Bxhu2'lGbZm``FywymJ-qRN7Tɩ!(C 4ZwH?iaN6$3DnXh=öm4eI~mU٥J|9Za=X#%51CvZzvq%N%FD*kh;(8z65 QdB9D5=9#{𻠫C7cc09,6j&ws;^:#*j]9^e$FuhACp, "~Nacvn[f?a`r;E~;p!ktR6F$ sıT/T'{R?b\Kt+n䤫\a#X'P9KziNR$!nNGƫ.n;5yALkQ3 ?&XyowmݰٖacX{Ӳ+QƜYYwzVj;:R󩟞Y:?pjZgָ~TyE}R` >y{fቢ"ST x"R:\n̖! =y4|5d[[pbn5g{T#h 0$(Lb[oڗ:x8C:$36[tWhGuI߮ JV+%QP$A~Wt;Qy bv[Ɋd@)gYk /Z2P@t2u>D-[^}Af$JkK[Yzpwҷv,5{Bs{r:{ΧT"F9k||$4SH?k}8I{CGKqEECbo贾DXVk .'QaH%fpjYĞ7d}ݜPJA@,Xu*1`z(Uⵍ,G%?uCIppA[ ` JXxhx"PV[Dua#5˲WWZH=!͵X{$\}'~ Ba$#2g 4K- &* [SKS"'4f1+ j2a`ѯvEFkv1|Aܭ{}X C6%M I V h}E~M}*C:A;jtN ]~WoG@$0y8Y"&]}љ~4]<-D g4B1ܮ/ǤfI RtQnjJU HeeMZ"r' wGe}.LwK9Ja-quW3n.KYJd%E}+- \;JS7\#vLI-!^\yog1naV/CVhcwҸVuz}V wePV[2NFdT7Ţ-BskR$fj1twpþ2({GZ3|, KRl6@6U֟aAlBvN{֧DwԠ6ߍFXïKF<: iBRm0wL|ōKEpSeԯP !ŋ|o,#Z~m{a |8)IlDXTvzIV릔_^p$1Y. FUs2vC nf$O?ȝ˼s)sT93Rʬm$ct{&_NeZ1ȏ (ͨmsj|FPn5K4sknXJȨGC l̝NlvٙSgLmrG1D% g3 #d u#Vwg ҵ/O+pPzy>d;?Ka{\J`+u@շ{ l*V" S9MQkP`HߥSv9XȰP WfG!>-4j^^Zs s Ew&H$@#)7^vA1%UQ魚[T^eKAEZYhq89S[FJ17`q ~8ɤmq@iŢʒ-*xf/ _٠]`%\AYь&x^d嗦:S]>J$#]M*TN~xTuK1|:B-tFR`yE<-:$k۬wz=# /[HϳG{(wwXAv=Z6Ϥ1wǛ>(#m/ B6௙l)vsw*nS~:8Kz E^=)Mع +ܴ/$ON{n_SBVY2/n߂k聆x:L8C _&%'z&'~7\1bpC>pX\Կ^y]۷y0TPyPc)$L.<.a}Y;RYj3*S 6 0y͈=ۇCoI!u`#k>&ukf.Z Z^c$<㣥gߚ m}SdxsKΪDrǥx*GUb'cKi?D>b>`1T̡sQ ](Cҳ)m?dUn`ΐsMdZd؋Զ)^i،c[?!i~AKll*\H6lɡ $QMƠ.a*J7:ǽ?[]d(&$7W_14O`i)9ZQ^\+r4Ul2S?68c҄Y(VH]3,^E{]M|.p6"uwգ F!|(,|1Q,RXS\3btĒeWbwW޵Kv^4ΝvrLRN4~f.D]QT0O/޹N. kyWސ.&<Z5_g4΍K(nQƳf> @zkceiTv#g*@?LvqhyϏ2@rX@t =g:<7IL[J)̕ +qz̺AD–CڍiNբj$ Oǡ$eG0SaZpǒPM҂g0W2s99@)%D?X~y<}/~uWf羺D0ko(]2jK1by#D?ܷ$m1XĻZ)A νٌFs] wIIḒ&xBU (/m YEp~k;Nm5BW&an\2xCXZ@b!fޏ[@ieܬ Хl-E\2拏_$d6j,BQqgӳPN" Z)Ec|C!ɣ<&!lics6~t> bxPczs79b ^{o$-Q2Yh ?KOw&'OϧK6{Bbm 7l͕@ l ]_b?{\> zXܭC=#y1fo^YΈم`X;FVB IUml</#hx9 _W:ƢR#TGV v Ck76E[O)7nTXrxoV]A"rؑz M3h5Noᦇl3 >+C7A~h-TgdYJL{\(1v%cnYwo+t)?nSIjT{3_vyq?eW?gPNÀ^U@5R  w"VEg7(R=[WSfܩD$v£ =EOy,ZaEdQ5F3w nOX},R7]âǩߊOK3ΞЀްR LP9Q@^pよ& +,`50Pwѩ<j-c)[Ħ0 ]֪1y犏Q|DB.r1.5RG4§n&,Tvxߚ;GWRHICVDiHcha~2tl&fsPMLɔJNWJXeT\VEV6ynϥ&,rÝ|?x>Rr#=OG?z"] 5EqFÁ~NhGS O7MSǶ!틍c׶4LLr/fp @8 FM9YP: 9J|ҡJo5[!Uq<7F pXൾh?!X£{0r/rIhb7GzAXlR1( -D0]~^03bFbXems,ס'K3C!<3 2Og|%Z`F5 "Z{Y([uֳچNi1diYʎO^B;Lر iُoi`*{G)8B=fEVaNSxQ4baB_{fAf##Or~&( Z=[}AP$]2@p;:O>`IS^ 3yF:@Ǻ%Nﭰb$b=zہ֌ĶF֭PfwK1z8q^̩I PmxNQCL'\LWurnxg%|7/ȉn=a&N@yսU+0@ M=IA1 BgLvVL*d '!* i,4UgC:ش'5U^إԑ7,G}pxOrڒ u [to'O9X[Б@dqO]C%c,nH8 KT0j66  7k}mĖqϣXIsўXMȻmm0AH%5/+Z(ϯnyL pIT0z,ue8|M5Ӓ+pYC6j2 k9I#]IZY-65BlJO.}*k)ky:7i@h~rCy/JM17 j04[dS[* 8yyԙ5A#T2͚gk嬽tM:8ǎ K .*ug*j.Fޥ}b|w&,W{ILТaLuor[۳-0Yt ŝvO)ehݎl+0Zk-[ h&P_# 6JPDjx-r{2ڃ,E{ 9AeQs2"9yʿzvH4"Eݿ *d!BI }7Zs( ƎCe}&8a8ڙYG!ʍN9zO`9J( MR(Z>-080/?#8X:u?sw@$з#͠w%m&tӋHjtW[Xرlc6KmwmiRK`=p&mz?qtIdIn2_Y" 9l]Q'pd *ALJbD2t)u襹 Uevgѱp+)9fN_b`U͍ =wHݴt6> 1 M(YAbԭjfG"lJ&b㺔SՉ!uh}i ܅1Sɢ +Λᑔ>]%αBn5zJ=ךgunRt4 &گA%XQrߑp!V^nH]%lum4Wx-_REVܸxlbysx>]Z x?zS@Ad($8;tj7펄+O;뉏v[a .~ѡ*Ek14dۄWjȂܦevP=?4'sNt6Jv7Mӯt"M[UhGj>)|1M@<-ţ)Lc1Rn'UWIldΨKJb%"I/A\nbqi;\&OuY\JB(vQ1w=?2dnd,,LHNWr$MʡM^ׄMwDxA1ŬuP!q 2@ٰN $D ScAg'!r3';y=$&LBtyb̞h[Q@OL a:YI %2&)'Gls:؅iERxyĪ/ޔ>þ{1Y3egRęc8l3͒c}\)`H=HDL|% ,hV73I '* R<)fe!FbIRw&U5YDB۵)2zGhX=u%b#G#lʒ1!A.eHR-$^MFnWObWo %$1jg 9A$b]$CX C1T㌡g i)բ>_y5ߏcVC"9ÞQ^Dɹ+47nDKy`/?(FJ }J1x%7й#~FBѢ<xPIvG"bi?T[8,!HsvveݸM|0brK $K8o{$GA^}x9un/հ")肹mW&f9_B DΗ7VAop})}ye" _ϯ{SU yxbU]r/ Zӕ1Stφm$A ݧސ9l{M;2?);3H곸_EzҾyH5[cw1׭1yANw$Ldc4{WǽnVVR>mE\v] \S 7R$1&ByZ 9Y*&]QL%\89㳬&8`5M=D-֏ z^T\n[mQR:h^;碗ˉPyLwoD~zCWTCiщftvv[a jN>VH Lo% 簬P܅ᣊu8B2Oo$"Q84%vl [;S{;L~$4HҘ~Ֆ>7c^-){~hfiQ qr#`MF tMtEY LrUbwϚyfzMyU,F<8.rM0+ 9LW '.̫2%HB7żqTIM> HFnKjuV]?0 fimI[p8`'eYU~RDSprB%q Wr, ޞUY: !R8ઙ:h{ZqʣW=QLmjXkzJwӲ& n>Pv{![Z)i‹\M{=RF靮YTfd"QEcPE A -V1dpMo\CJQIb*hjumvDM `@f}?/`oKRL D)DqK# ;x ;D a4{6fQ4'I=!jRۦƒŠQaZ/!z'>x"Cv@WcqB8_Wdϱ-VhD{hijc*Ga BR<8hP7u3s=lRƙ KjrףEOW^&R"n`> ݴطA8>>фCuѿ}w=&hr 35R8fDގ2)n,ք{P0ZrVwDWZ# A󽏔J>4͸E}gEzC,q$;|rϏtOI/ZskBJyz,ێ2)aQ'MY Ȃ'k}Ur,xp9tBeh{3ӘErԬoii "oZ(ߢuR"?bZ?$&!;zO[ C%@ѰLv@Ź'BB_/3er$aes'c'"1Dinogv]g\TNH2nQeU)u;nwe ӒqP9a֧H8{F~e=O 3Ra53]ViVb¥-)*UZpl$K-EaSgDeoEl=iv +O0fmFQH.(qI$EcI/dMskFCʭJV/#fT5+Nރ G&U@UR9(2  AXV߲Aߕ;1nĹůTȻhEC-Tk.s!tI◎;9ڸ~ KٶL%iW0[:dÛDfYFT bܫ'w+WiS[[S@EHW1ܿA* F!`4E^`BAlt.1?*;<~g+N0/ƣKg"=wAbFgf.H9>>c}6'B+u+ccΥJnvjc0VE]H#7K|r 4E'Unսe)AnꞖ(/DѴq> BC~zzУp==nDҔP]qn4THĸ>i0d̢gZ|#NoU{zFhPen&{"'{B- .J&CcI f;*í֠\sFj}=)lgU+<=XnxT5]לY֪ԓCͅ]l jF}B7IyKQؿF>ܠǦߌ\w[Wduf o3J T. slYU`BEٝӟV9"[RvƄc# omy+Gx,'߂mD }35nwFki #!#.7!+@6Z>g}&AH4Y>7$}c?ঌ㔐l)m4H5^8O|6J;G;JРwTďU> Mt? =\̞UQwƈČM%yYP Yo!}P`*ܬ* 0ɱ.tiz,pQgl[W2"y 8O-򌞣+]L"M55e|)(w̿Cln AIiT<3i+kkO?\2/:'3J>HvӞ˜.l4,Fx#0T[,$~ ܠ(<}_xVt6yML]!mF=f0Mzo$DC䲈$K>q,񽋯/,,|]~~RI#',M]P b.Ȼ*de&~0 \rYQ %JwuҘm/$PrKRW_4Bcڃ⻚oiG!ݕnk3#:8r#mW4R7m ҃.6Op1]C~vƴ;ѱ`t mU Q|< D`y`m})],uzڤMZhϯl8&4yڽAѱEsb+dXMaY +0@Ԩ_8#Jbc3m&V)eF+(ā][n떮oA#s$p0$\@Mi$+%Ҭu;/fMF,׾e38s__ŏlNI5e K/^*CC0TDLʁ9PKUc]r2&ggo;g[H o@sM&Lj3OcrBO M׏9 âs&DV*o Fӱ{LӸAa h#J,$ fηR786vhr/Aۇ -rUcikRRS]Vm_ǖ1K<ޘA`.eBz:IAʲP^$\L76*JR A Kldy@X(Lx$b؇Cu$3eub/Ðr! _$ՙs%y"*PFۚ]̆C6"p} I{ƤIU٥P  qyŽAH%(G>׽ЬLx:7QMO!Jh/|_p{9ib7NFqlx t@\Qhlۼz{З.= P1z^֛1g:Z"j6yH)`"To|9Y^[ȚU8%Cfr?w'4I΍ߑV{;}Ųy?"X!c ʓ/>i%vavH>._ۑi[Ƥ [78}7³9-h'gBn[9$R+] 6v;,7t7Q\eF*g:7J:fI"v}A(֊(.}j|A"t9F,)C)Z}N\"-puM?)VX݈Eϗ@%A\hoA\BHunPq^]<W.t񚱂sz`uʅV6V+ެuﻧU[$kvF2J1Öfj[0Z;GO+ hۯހ+ˇ A(lѹ͡>R[+Acq$:9̿QK9TfTeɧP~o;[P6GG%cP$L7tUӵKX[!?8~?7R헕~2װћx̤!50y.{v\t|7!vsdzTMOR ׷QC64$<}SHfEuhnسD(]_r}ȵ2rfRos~Y@Pc`門1'LJ3C;K#X":tQ\G4̕P2lj7)#{ߒs$zڌDz浙G:E%.&5K,mR%yN}%ǥYj&{ݖ|VuIS:P&띬~{fE%}LIc)dN|/P5MRQy#z);#eXr;MXm2xh-u wp2:6e/786WO7:5>p'0eqpjZ8m {}ҞD*:({-=ڧPq%s-!P0`K6jLޗ)[K@*E'0Lf4np unGI  LEW#\1a@LRtqRL8pcB T܈!;`ڽd \ذO >X Ponͧ(q C _@I~iNH; =M:tp V-l6jel 4Cƻt@0|!>>!YV}wuHGz̄UJ %3DW%x*/B_eQwNz>=.86B}64Nuac n5Jupem3,PܜVa?M6`0WEUÐ\.ƯPg1 h݆"5>xkgu:UoC}3W86WL~1)O`&{pC~ˬV\@] 6Bǐ`Ԁ9?=9#¬jC%vfePX{IK@Re#x:($nwo t)R6-5߾mr<*Ap^?-RG` vP"D}Ȑwb.#;~4 e I *w >@SV5 jz/Jvo3"@[c_!v/Xh|q7mN`?#b'-3һj:.'$WY> 5>dk}6#$߀6eeي~"1>4[UeW6ɚ./lgW̒i;&_0_>3x_)g" 8COb>0͡=Zv.^O}0EQGG^hk}A9Z?U!tv`'H-TCp 6K~ف/ꉾSZVu` nۏ{/nIygQ#]2SmJR=n!J*v.RR=-5i22BdTwVLɔ쒓1>'웩HsƫXU#*DU4'>ا8r~?df3&d{,=1e4L*MՏڂ:jJ17URKtGN:Gt&utM<#:CF^+ciQcMwѓkɏ&H]/ožt%Hƒ9ہ_%41]ɄlexDm|ϼ9t,1|C\+dΦ#̈́?@S>qWT:Blo9-|[H5BEu`PLذMoh8@yC$6JM(;>|Z{{1a,Q;qMW->v{v zUBid RH.Gcgnt0NJ5 Tzk'!& _j bmcuH @D@Khla\2N)|cjn9%Ҁܧ*x䩭kTTlNZ!%^l]yET$ ggi2V6iDϣ7].7.Rb=ұtT}t7_[)ƿp2dLBl/qI*8c1o@ zԪ^.}0ȅY?2bF$J!m|`jWr*H#aϡ0O"3ֆ N %t'0WJq(|-yK[Z HEK;Jd,yܼX97['g4 AKչy9LԶh05,8QsnuֵHT#OXp.(y-;Kf0J[~Xk*f{5RɺVRO@]4Ec:%AL 41_tkahj~<~R$䳜8=2%)EDG`V61┸Б0 Tw ptVs8Ww$ꎠ&gA!(ypp Qܨy4āӦ`|#'Uʣrb\нd,.2% 0WuQ 0i-f[CaqZ$|r4Xo fWj^p*8 Z){EI~(5٨sl>zZhgN4ZA1JJStf z{9R-a&c~ dB @OȶxhςN9nvns0y)qūt6 DY܄ZE/xy7'N7fd4R*\&S |b= M)ts,nŋ aTMbVv/~0D|wfmFdD1l\aQHy1xIY:b(Q:MS&_11^KJT)DCbHz.L~g% ƽuԡ7,-$Iz_qNɶz:jpp|& q-0fN{5Rnp)`O!FΉu>@z&H]AK2J1XKI$뾠d#Bq vJzuRlc T}5P:pu#=d:g*JY}$O ұ4# 1_mTd[ +Edp7V A+-7̏OzԔ"rј*DpǭOF|fDC9/E~dgygEQ:3'Xb;)1?P70GίJ u`?Vf^zѷ< y's+{a.iD).'uGjS幊CҹV%.VVz®*SnvAJOiiL9 XEc)XKJ0Z>їj$/?g/H~+aV]#o=/lZ 4QY4UOMB`O @嚻t4Cr{ې[e  Jis bws|v9&{\Cfθ!FēlK\ΓSL|,7^?r=Kˮg44QBF${ Q4K 0 YZAER/data/USAirlines.rda0000644000176200001440000000530112534531320014275 0ustar liggesusersiTWoUW "187^51m5bi74Ac Ch\A@HWw; F\`~|·99^[ޫ;I8h% P98q°p]Dxdh =_"|UжzQ_/aK&|qÈ#BFm[kXK)Oۄ&6 sd#cl$`}Qz]`NKX /tu!:%a"DδN!hZ7gfm6nkHm!:Z'ĭM tKZ2^vNN+NikWcq5v\Y6ii]^tWWWWWWgubf݅ʅrC_t~^@TBlqQhO< փpxgc\x7iɌ%6aݼAX_|@K/wىWr!p|h?td=`ӥ40D/?rR]t#4wU0qQ6 q_^t6g8{S[zh}:mo}sMX*}~q+,e >c.R`fdT_HT,簱>KlxSzkǃXxa1xER7 Xr-lb[xXF=Z_w>Jraѐ1}:-r?GnxmAXqGpD{eVP] +/l1G0=Ovy9oC!K?c"F!i[X8#>q,h8v5a⮢XzbIBK/ H χ`FY;%uSƃ-GL˸e -̟YfG?2?x}fmRfm_'|UwoL7"Z6:S}uŝV/ 5=9GTE00fKJ׿c%neX<9!NYèm{ih<ø|lES li.,<ݷuтgnyhh1tj;l8nŏ{E/>~\À & |0ϻp& *@qn .9.r Ma"GX̡aw&/>fŠFhs"ƀ: @R ,<`7YFgCod@'LN# P@A߁G$8N(5衝ڛB@p@O5P[ _/,0Ӂ)@|O R ʑ$:z%5r6@Zͥ O{0EMdpH@Yo*u3Pߛ(>jF G"~cS2 $ݎ81 +:1\3D 2 $WAbP P@i~8 fR`#oD nZA $+JA *P2x@6 0j`*]lo=f@,$ ޿Koz5PM 8:Nv~AzMN gs*Z ,0u6a7(e H&C q3ȅۜW#'*9VZz 咴څo[Ri*4Z2 BOK>rGs<DW7w6'Apм8#Z.{h'Z }a ױƘ'<:;?ư~/Ӆr:9w1vqG)|zAc_5JP=$o笊 g'u?9d/4f #^DTpEЅ?92/X'nYo^ܔNAäAcŦ>]/q˷αvdbȕܥ>3 =5òѴ ū<И͓-⥺<}xXV9+W~6{TME< .c͛bʪH_kXv=LRh^dAER/data/DoctorVisits.rda0000644000176200001440000003574412534531320014731 0ustar liggesusers7zXZi"6!X;])TW"nRʟX\qjnj-&WqlSMIKy3,(y9,ie+tŀh{X#l{ aRg߫Yœzzqi2O! yyi^ !*Lh3X/YS 7W': } aIofݥ7Cz1Ԍ]4q"uzTNC ЎGYCkc/Oy'2X\rڰfՋ!J-g8m{۫$+\5z;>/t|YjKa6+3 k(Y#9#`0hD#M̹)0'rW6f=g|'_/֚Ewu̸eR%S5_p߉>Y[k=>dtZ;pez7'g|& }nSE>vLڟ8C병.@Ke0'!43TFsዅdn>>% SUyZA_GI9#|:6{9I:iEƎ*WN3-uԺzfs,d!uTgI]"b{tfkjWł.1xܵMTk7BUN #b!^)( F8XBOM. +UW#l'wc[- EU) 6nz O7=WW]zUL7LjؒVǼdc{2`i]yOQ9޻?&i/!S?Uw$|x p pbShΐ *:g>هp2)0^/4d 6AŒD5> ̊azچ@X*?Q-<Γ ,YF{vm+[ UqON{Eֱ6E${0o4dʃ:fAKBȖxQ}U[s92E]Utiz^m!ЍN(DĈ޳[@N*A$rTMbY&P9e4mzZ}=m<*yi  A`m3 snH@k!~mfRkΜvZw[?%d0Ny[KZ?c&)$ ]KDM j]H;}W|;pB(%oSN\ٰPڡb"x<1~FT^,u#3l^? wtߚխ-64EI LA7sTy +`&Pӎ‰<2c\{;/ZjB/ 25Sۻ\whJԭkID-m?wׂy&#| r{N0(~zh[lދ6U Ysxbڻ@0aѳxr/#}Zf= ֲ}_) \xr ʅdڑ[8?bxqwQΥ _i[/jiɟ4Fڃ #m\ 2Bpup0ie>/; s+(i/x,q)ѲeXL .8M'H5/@䂲"8ynWcwrsz(>f77'KyUP`7YLxX\A%9WO<]E 44kp _~L?_#×Wd(2( ?xw FωAZBG6.W26y,ߛ3I,Bʕh^a cU/μt#B+_pXIKW?BahVq~4ﵮ3N"5Bu_W AIjaK~. i Q,8ӸQBDH"Ǫ݊wG=VC uYX+K?4R2ޮ2t{#uT e..S#I {CPX>whᓃjV aA&{EW@FeLq6HSSTt!Wtsc)(־ d܊(s,EV\ #[:NSnl->g}_͞*nm.Dij&ٵ}V7{qNؑgF`T*>> A5A oF(b r6>\0sb5Qd#,l_GhXZLQyTC&oN|;T& TA0KǏaqQPzWXv-k\IO"/f!ý76긖a?d ZN8= :I B.[aR E'}vY![܇&KRUHQw-Us a;`jaALL, MQdxu`9T=~͝8[E詚9Ŗ&_|ʮP=2 DC3^9}uܶ$88)}- xW*cܙ iŗ&BMƒfڨ-,;@vfًq^ |Z¶j$ 8ٚN^~)Wah=\З9_???~%o~ Cq;e+,[݂q8sH_`WukoW4O}-Z,rDaFv"i2jδDJ$j MW_Z"O\bU4>vNJ #IVX`*a2:N䳌'c }M_mV2ʸڻU3.E%ѳO"3۰"OfR6zlp+2a/5h;Av=B٘D\^2 L6*KiJ,2 fS呌.)_X`;944>B㔕;pƅUgus># ҽx{9|CZ/ wjG+{ȥK1 42\/:XdoFM&ӘS9ܗݴDز4f/N%PD>zO X5p)d ^' Џ ;iC W :F<N'HiY/4KP|)@8k\EnW>=HLTzպ߿(qVL}zk>xp*]@Vۣஜ%7(dIcsڜ, Or KE.O9B g<\y噻K6mrvQw89}ƷViA(ŷ_{۲=H=2)s^,$Tb ~`ۅW5k>z"LgyU5E (V;8xfw lݛWHx k7іkP*F0*jJ]`݆ r+ǭ+-tۣ[^tm,nJT_+/ww<%ed*%Y"ɻeJ y٦ӻyr E^u9$v!JnVxap棸<:7Å'U' bGe)>83ݨg%iNXf C~ͣY L1x^-3Rp 5Vh&R.Y^};JO jS$-Ge܎%rjt,hcpx!"bReXvL]ܕXZd ~BTS݈M ,E)=8$M lb_ѕiN *;qY:0+$;=д뭢#'(T Q~tưjҺ5H_CܑWsn~8}֞V15Dٺv+uۘOI^b|%i2{a,rmOPn' ]7f>*b(&k7rBѪ># ZҔ"EAߚ}J!jUHomK (^cR l$Bx.Y6=} ۔8yk-0f'0~W6aP{=Im&-Эc TbQ";D50Clf>:耙H޿*J mw>|9}mR&puHa+G3܇6Ho(GL],-^ +3)M^04aleyx$o@A ҖGǥ qv $rXY|nVgDUCj%Hx~7q~ZFH~ /d1t[ !j*)x; K3C 0b! Aݣt5 fu/fu{ź%U|KSFId mgT;+JG5c]OV'BV.YCڃﲺp[ 7/׆ӄI\$d<]BK>?1+{4 \W_-Кmrbc :m i,$t)ֻ|b`q ȤCm㠅,iFq'v4Z ?z<KDaʿpGAqh ѧkPcA@*=pBC TB =*|E ,dO'haRfr [r 5ݫ+O =6ƨXjлNLݘ#2 DqŇ5t|Lk #glw[2ާZ0֩~ gwc;BuQH şZlrh2 ?-B%APHft/!>q%f`dc?'߼~tWc`vքAម i0ge~&$tcbm-"9őv-Tƻ= Noϙb}(6jxW_TSlUAl)z)E}~^:uh֝.rr 8In܋cbGKM'f0*=.=+`O@^:k.ؖ- &OY^I씬f'L埼^~g ֬A@ȉy+8ъ3j  #ƊCtﴮL:]4j ،oCnEi VdE#iWʬe(?Dz`K\WYۏۺ޳RK|vinӜs?WWfDς-'^0i RJ3Y_'Y1Td֘[ "2FEaEdIt 0E ^0 3\ /SD_^'f_̍W==y?B8&; cky9޶:Eh`t @Y/>:NDD^ 8)++ٲDR%]|-RXSkPLd([l1^]:ȥ[ԅxI܃8c,%_~s}o>^EH.?h}BՌי({풩&l59ԸցZCbǮlVܸ%)' @25J1 ySEm2p{`g&y R5iH YQZ1?@)F߱BgX􉖺a2J-0{ x%4Vb{esEx#NjPS1YiPУ%B[1SY_.d\(Kf PZ䓲J7t.X;BX&( X:5w]}!Pl 0`^gjzYew٪A ʯI2Q;qs/8PFV6N4!m) aݬC\1] {vkErm2?ԱY/IJp {SC\i?8|TcTq47dG!QPm~gMBj890]D0 {5X0ˑ(E!j_Cÿ'.X[u3h QfI%gևT3x -7(LpQA VKX{pk_y=ݘϙsRb!u+Sr]#>u30_mKnE]vn. n.6-̈\n*3S{/(JauD&Dg.ZaҴCyi=8W[)ŞyewCbDB^WMOk,f VZ3Fw ^at%HPG ;l`#Aֶ`w0&1R•Yr[K4e5:ן|^6I :\>[w8׃5>H`@k:'kWo=Gy ە ۸M@O?؍TX& νߤ 2{T*+uYBWlzOuQBƜqrjKlJCĩwRAq*K9h08H>|+ދgq4u5 p"Wؖz3Ien|V*mSAyR=o)А:Ha*9P7=bW7 =]6/JOudiۼ" R={qn$)qh7fTLKpY)j*E F% +qF#/EShCs 9wAXjYF1:44сϩ^)fcYA>~cnt6rwdqPY#{@ `.ˇW9]"i]J!%p9VwWΰa.LrV'񊨥(B'+%͟oraQ69o ruBLB(vd4YYRXx%Z?!36tGS)))8 $"mV!GfOR oYfG+K<| jrOG"K~< /@%iujGןMۀgV!{?OL%%}^Tw$qBMI_xYDO&}bTZh:?5ÉPECkjV`%ق3SpkR?9|FD<:JU8np?_a [ϵ=2&]Q d]8֪hsZN7{=O X%ܸhvkn7γl @9Ƞŋ y"[dLBͼN8 (ĩޝ~f}ʁkPBY瓡BTGiSdrUCn&e@ Z+bgZEx=T  XzM@SFKA*n1W9KË́ #"B`tŦnog>Ġ4k)P0`G 8)qȓ1.䡜8jV)p8`U1d41,ak|@xk*rRv͂PU2|/s3'b!E&\8N&X0i4dl.E>lurMOor5 !? mD^)hqBMgt&T'AotW4 ~<-y{h Z.ȶVQx ϰw0OE6lA7O!fX'`8œȖrRs\UAfUda}I-g,֗F2"swB k"M8X^aqqqIx8#۽n90+Ӄٮ.E.l7ji|gwٛW|la B'7/EqQQAsi? ]h6Q(Z"VzԢ+ZdƴUXys2PrL`א:EfNլ z|TeΌqBY j6a(?? [:G"'`FZE)s/[;&r@'Tb4tvmVq=܂N GnNxWC[NX H) 1gPWh|m:{#CMguSH$`YBrZdv*:0 ZC\wh4,, w18rM&|{Yɴ- N'c>PX#}SAĂ?p.w 3?!\[ojBz' ;*'%3]Ju L_j ѐlh@"|X3v 隢^ 6xEU[5Xk^ I+T&IT hOfT98#\̟rZ:Ts˝:!ift(a BYq7@>n8wdSHɩ0 ^]f95囪=/Y:M6?ӱ;Ep &5T:N Lw[A3~3Yu9& VDX\u$?޿E@qݞ]sWAKʾ9Jm{E Զ{- ?x5%X;\pm7‘QP ͵kwU%8۟ M VlcD CHkD(OWOb@v;+1H5YD`3f~+Xbk ;>@f('lJ٦ MueIO.za[#;Nk :XI|9E+3^Xguw e>0 YZAER/data/MotorCycles2.rda0000644000176200001440000000044713025016606014613 0ustar liggesusersmMJPFyu`q .A:rf(T%ڴ1j(PСKp ]{` 9;AEc<}y$5Y\e4&iCĬYێct>AGr`ߕR։1 +s>-xP?D{|#fvMeJ\J\6W9Թ×?'/T>B朡gy@_t1Y:(_/5m\KY4/L/+%9AER/data/GrowthSW.rda0000644000176200001440000000415212534531320014006 0ustar liggesusersW PT~@1C78Iy ]Hu&\v.6Ll';DcA[5Zۚ&ԨX `0 7n;Dz4͎}9wym+lM& DŽ)۪-y T88Cw%{/\ZGci-5h1ABv S>ME,;C]UӬ[LwB݈mBq &={$ s`3փΨ|~k5nkbQ"Ϭ_9 x}'i~o N??w=;?EQwG50 _K=Cσ!aon?9ޘ sXf< .? `xτ?=S~#gܓx/~Mc tF}g $_{'%X{~*|)5|KQ? qVztB{г1u{9,u?s_J s1)`W#XW ==yľ9y5 ΁;( 2o|EݛWaߡ1ގG=V b| qKG7g\ Yg+2oݏ}֣.b_khuܻ1cxNC!gcϱC-O|{9`m{j"3gC]ĕDV9"ygIoCoE#{WξV7Popނxs- o^, /^KZ@PZ&C[o`;[g>ǯ%>i#z<!9eǁ4tΞuȲ=k9Ïaw壸/_*1(t$o)qתpQwΙb良)?-C70FJ0IA t?wTt5P=χT8+]]=?{ݠy4ύt7_JJ&nԶp_:3_!x^M9|dI&6ޟşf62onz'9iOqf=xk#!n?q:Rߑ;W:?ùH'ߠu6llYvo98^L"2K+t"A 'u!A4^i:&$OۥiB$3$fs޷DxNtLLY#xƥGPXB+VQf^$J1֧I ^V +yо\˼.ҼJZ%wP! z^x[fSsTl9 "p!-ma^&n`/ˈ+aJa*!1P-(1Df8\}be) 麊BbN͖#d_."Y %j]BP~0)re̴TVB:YS YbrJuxc`̫ wTD{!ְ@R1CDzЮn]2K)" kW%/^ :+#{7)AYwd./1u *7O7/$AER/data/GoldSilver.rda0000755000176200001440000021712312644737744014367 0ustar liggesuserseeG?@@@p \COl9=-grq.Cpw[U<"}zUV-Uk?Q'?C|ȡW!W>{+?W:*\tϨC9:x>l[N|g￶xϟo-'7X㶜yʝѿ~~|뷜#_ˎ׿-'~syʝ3_)[N%_=![NrNqO_='?oI_K9wi?y4lj'_I4utzk/ꖓzon뤗]u[Nz~~/_l9C_;Qz t'Kj'\aϿ-'9i'|&s:pj i=NF {NxLG3T4ׯtg0|Wt;/ˉO'wI/soOڍyҚz_'#u>[?\_>_~m/OXON>,}ybrJ)ԻO8wZ>\kviMi{ڞ7%}sL43wfz&>M7gg<?湟zDNm^?=O{uԞNΟvD六ٗ3:sK.ⳃSw2=p'&ǧ0 Sw}{;}N84ܾ'7MqT]=2C~C3ӇCN5<ϰg!{y/U}=Oޜ4쏭J|@ⷉG4s[#٫xN\-L"Ė4do*i6S{Ưg=5[f[ѭ|^KyvVvGyl}_6gjߡ}_Snϳ~AGQX߭gKz8Vx{fCoy\ޙډ}1qH`'MOxaz+ӸK5nҸJWiAz>cW]K͛k.ѥwMMr~k0&97&ć'~m|qmIӜHݚ_7o|Hk~cS-zuaׯObٺ<{K?}z":=WMZI4폦}䏴E.ޝѲZR~[Ljmz4i?siW?_-JQ+w%zKXN&:[}ѧstMu4ѳ3}WzOw%4{k;IﭧS}`OtG]5Wzu=Q{4=G{4ˉ/I<>sg*oZ?<߽uگ~M4ŇYJZ}=qkuc{riރSLt9=7<:D%io%O$]3ONwr%wrF/>yi춴ofyf9%s4E׶g~[GE|6O^~ޒ0=i=s/Nt_OX R EzzQLZWn3抴RswK4{ߗ8gٍ͇};4KR3̩~dzR{ӺN="ci~GJ9uDޘZjW}F<;gVi<_ϥyɉ.N_SIa]'I$m>eIN~|n~ba4t{o?_е6yG.5XI󃘯==y~Z{['}Mi^zuggȷߧw3zmCuu} Axn3Oué]!.s~~xY܃~g1׏R3IurozvwRr5Gu1C<ɛ#>1{/rs / 9og?A޽=7ɉNy|ڗwMt\0߅Cßi<:<~+kn1\gA9Dy8<|i_7ǏyCw~..?A~f{>)cIz^fkK nfN \`-Ӽ_g^jp%^Zzn~5{m3lߧ??3z!ői)xwEZ鯦i~wiӯO4i{ڸV)v,)fג&??F~鵇c;SoIύL.w ?DC^:$DοF%T߁~MguO=z: wG{hϰ5xgȯ"tcP\ft4w||}|.91o'GUY'fatqkךs.ÿvg3F}7b-t$(1b ϰߣ%CI ߖ5P??d]S-6<|sC=d_O޻ Ûy ~!q sK%910d'nxI5;Kwh;_o›.>3~7鲓Z w"M_!A=w_c^.> TSPv]f. ~#epc?-y= 3 O7Nt yMΏ-ͯ4US}>ܹ'џN[A4?;&ѳĉ?5J_g ; N|{}t}7!5Y^]/sԅw߽ZC4n鈷vi6>/=a%<~Z?>\N5;?_~vy-^Sw5Q'5k8skc ]UJ|zy_{C>(r&[4HۧSkpKkó7t-T< _mmq_K)jw94#-3}[Ln/i\G|3_~BUÂ^}kOi&~+sۦXŇ9ϱIt?e?Sm63m6 / NO[z6k%~Ռ8y*Zu=zQWWzm# ?p)Q^;On,ߖS?ҸKvLo od}#,湏_#_'G8Ze~5yߙGqz :pk8RS?NwG}xNn}vMUpЫ󩟾j8}Gvn>gOtza/iz {{ugӇd]z]&wzOa+.ޑgdA.?ϑgkڞuoa|pz>ڗ8x_\6=W|?wg_XFo8FN'wdsq=*?f/Z?kϟI`?/-R#~ѓ pf{0W 5w~<?҅b>pߞuWŸ1/rr@ܾ/>УǞxM]Ӌ}1?ў8o%sܿ~'WB4,ᦽ?'{Wr;C{zhp筗IoB}_k)_I<;<?w ?]hO]zz☽6:W=y4]vD; ?s{Ku`mҵ~ggϼuw.ewvQ.Ÿ򺱋sr}v.c~A=Nw;%98|q%j"q3gޞ Sgk ?2ZZ |17z?W?i.t~U\¿S|ߗ~ei'`+VnLGr~qh+_­+tG*z̷V=sϡ*򫺞*zkZE<7XGr|::jQׁw[y09ހGuOPs ted>c% _wkHYM_zξ5™kr.wT~gJR_*]*~OEUx-//OO}o+Oj2xQ%nQyG\3% /#̇Zk~8iw-W<~u?U\w𳿥q¯o=R쬶UK,अQ^ϡG14^8K+3%_5 '(C2Z [}8M5bF~_9|~Pia4?%.mrT h=N7i2ѩ%"ZVbg-y|-n-yKo{Eۄc{yiKn ZOJiɳlW m;'Nj-clM?ԚHiohKvn yej[gKvZKii~薼\Nk=>p}om-\~\16pg emxy96f'zwO?7 TK2_Vѝi b׵em? -nrm6;}!Za8?Ծh#p6ܶ} 9qW #'t_j_W{MSh l{0{la42_ʻ{m[C|jh"fѲ{p6\LDKm8c{=îcٻ` _;O:OV+>+~ܽ8x!-I?(B?Nmmy,Bn s x{ȗNvwC]/wػ%epwî xHm׆w=9!׹8S!+N4=R vv/.bw79  z-;;xZcQ87XrKEIea_Q rx}=;9&*DS ip:­X'kr: jGUZ|_ֻ砏ܞSi}"9_Tu@yyp_"?-:pcvߪDKkqǎ8o~w:/qW꛿|\i~'t8EMXij;KW]9.<{qF\⑯#WĽ/]8H?t4ސOc_ѿ]>y7 18O |vxx.2p]"ߥB<g^Z>{}b_}/É<|o_\opCt__둇5` ȗS"pK2?upqNrg̭ǀ?@}4 Hߊ ȭb_<,Ξ;pzy=nj|` 7=|#>Ayx4\'1Ezf 3c^W؁|A_@^X θItp|عg_Ȑ]9ts4<8Phu:>s;N:dge_qCObF8P|ix+?9> ^Us/Ǐ_N}s_zb봽}z\{ȯ{|K.Dn4. j}pxhϹG9Ogo=9{)Ew_g_Cη?~a};K_>E?O}O_>ZԷ_ɞɇEx/?qO=/ArR<^>{:G|{ `` p7S_ܤWَah 9ǮՕyFG?[viz^䡳/zgփzgYw8Gwqtŏ#O{0qț=GO]y5B>^~1Lǿ ?P^E'D7:&?.> 95ˮ“r>j?:r({{qzC7pvNW\{~EވXV:WNڵKn#NC%2^^7;;D= ޓ.!d|}:XGA'].ɸ_-NROZ_Thkq /᪵r-NV3uUW*y/']c}ur.rޢU[TVxSΧ?ȇ T9W_9_@%_yؕ*:)R^CI^ y`\ҫW_*ɵRܢ:R&+tٹ~.ܲ# Z\Ӻ:{[\׾t]++')9:u<_>w&w:7wzqSpr ggQ7#&J}l>J-Ϲ\n5j:՗gbU9H-T_~yKѬOJ3Z|%|ʊݙ U8a_T*-+\):IMcnS+Oyy z}RK~I[%J=d%ZkTxRan-ZYK~Vi=JxM䓕2O8A)PK|-E>~謁G9UVǵO {꼞< _u#=ԍ,/pZ|ru,5ܱ8;sz| '7gokAq]]87ujy[ QWo=}"*xdlc\*Y+Sk|^]ß|9-xAk?>m7sD=8OmBnbњ籢4>u%;8G5?}8ځt)9>GU\I=dRQ{㼗X={<|r޻bT;;17ï)ie{9la'{ RKU*ϫc;<ƥAޏK8^"\skKyB!K!CE%]fعÏpn|}(ɫ\+ŋJG|~.?MO݊2Xʧ~:ۙuwA^D8Z|kU"*qn_~bf'myxd{Q^h+ =*|kpj byr2pCuaבsy߅Z{o?剖W!,~.؝< bA?OuA?z# :9;x!/'ׇu'S >S/+Cܑ8VxHXw?8G)~T+Jq_Ul:Szo)T߸yv]߿%-%-_I)Ȼטϩ2|>l'q'M cz#>e?D=<[,Y?}B,ן`>~WHŭ_<8ƸIq++8ş+>Y2/,]Ї]?_\CB"2|0.X^܆Ƕ)mr֎smq{?چ3p~iKə6㗷\ |_+D[mx~_m_wq||QG$G'~柴A^쿶O>d;΍^ s^zƷG@1ic*ĭ vUuuV*׹Gg}w~/q3wqR^Q;-%Rʛvq Y. $pK ϵ+uǜNgWT烎K|au,;#o3uO>eUW;3OԾC$+|T^#OGVJ]>9)pWxPK[[?-Bq,EOIQ}@vy%>7"gvQ>p*u89^ WJ>y`y6p֓} ǯ2ۤkvUmjj~`|nUoܮxF-Ε jQXu[q Cg/a<wnhU7<ގzzz/߫Akcc 7-39kzfckXh##$ge~D> k~n > !jr&_ry:bcm?gWQWN>h>򝋊_FFkj}M}/5| kgS˸_9^NB>׾ȳZ1x/{ns5|֯ p\˿fswYyۥ~;p|~^k}ja_yOR3=fgNqo$wr\^|BΈeS2E|_?]G>mțطqeOf>X_~η&_5-mwu|&:NF7Oܑ|sSԓ:pci8WN<=>r#8uHj5;៘<\Ǚ!;}܁{tQBu#5?繋eco'?0; >jG~HdQs친_J}L9|Gm衧ΛT"Woٓdnt+;Z8Ew߰_sXGq_39;7sCݲ弴{-߀?ΉZ=#UzG\_;<6`'|^܁3t7Ougq}ZNauવ:9!.w7/por;ž3zFZ9>߮l߄>'Xo^Kf~笟{'4S ~;|k)މ-.XYzU<(g> #z?a߆f8cč}=O18r;jy|ŧj9ͼ/|C!_z,';%:qnja?;7<#s`֎s{l'' #ҁe>Z#ѹ܊S9Wr˞8ޑu+[NR 8tUw7tՁFB=z={u{;_osmr:슮t]QEn{e/?C'.'vm7z#QǨ窣VjV3ws)awQC.:X<~rW|玟gtA ;tw-"; ta;iy-:Y;;7aw⼼> ;z.pNHwvIƷKM/tį yr.p v|?wMNu1wNVEyw>~#d\8B^ሹ[>=h;t%8f8GBq ܺs+;ϱ:~~톯ȗaW؉ GqOC".?.5?%Eao=8Uonx*<652]c?^n {'◾^75}Y3.u+jyWJc>9~=]wsƹcN9WGpn_E9R}JUhq#s|iqo+/L󍗽'{a=:94EU%+rC˷.{ђmWؗ*W>}XcAHB݄?Vf-eԫsCW{>EǺB~ߔo?ssyXͯhɶ{'yEi\mr>kۧ ~f߶&7ljor.ߺnoS;́Mq~1/#ѫ)njsق;&S .܊o鸞WK݊|,[ׂkZ/h_9:5-tm{-|'jkôG} ~ܢ[p=bsy-|Ԃ·6ۄ5h]wwi'Mr ?kǚMiM>|ѣɿh}Ϡ)/;[񜦸G ^ԒOGf9 i^-.v|قsw#E[ٶ|98tnZ[3-z5Z8j:՚' xh 䫴#-rſh2x_{Y>OK.o[o zh-Z@Z;? y-/{|߂;er:A(poNizOG vMm㚉#϶_m`MOГKt~[NG0#MM:˼K'L&!x﹍y|Q+e=[WE =_ny5<`,Գ/u.1/wߑl[/Jlۯmyւ 'ae}io|We=]+R/"q! V(cu7-+/^Y^>K RD'G ;LaK=8C|ϙlK5揍h짖gn<Y2aK<%~+[*ijZT?uw]&\qv7|f;x~I3__g;>ԛ/i={¯vG]4e?* /h:$î 4O5U4 iD9W)T 'k>Ᏹߛp+ejʃhK7wzMql?gl~-~ȭ_}%3Eg~af~dZqlw?/֞iOM>`r.˃CIfy#ok{jq&+ۥÊ63Mq&|~kjcI4+hCf{|m뚧h~j7U c^vD> ܠA69|'v\Ag!oodIMqݦx{S)[]7p?kU<0Mz)O)mvuB[MvJ3}vgS>̭|..SA*5#ͼpOl~o_\2'a?h2N'Ӵlo[քo7Ek[Yܖ|M^Զ轖8]c>G09*廯N|֛#^칰W @SƓC}*:f٤7C_A8Nč/]JݖP86m>$6S\^&ךMu/5&sܟߔߙ#G3A%{GG>W3`9w.%₭QOEɴr6*O{jC{H~A.֫hs =ۦh[__>%6{xp k#ctxyar<}KD<z[6{Mf6н׸ٳmYц6>lowMOm8V[#;㌑gu~~/1]yP坉_E_;I(Mu u 9*h%kjKJ.ѩdGXKeow o/-w~zc_K:O@-zEݸ{zBܻxI?EK΂g;m6ܣOu̬G]\g_X\zfg:jB]__S^r%7ꠊ#yݣީBp'Sd]R4?*^Rig!?`O?O)O$? vVu0oq_ԃcgⅹ БVз\g͂,QA\TAu4U8^^Z2Y ?,WK~Z{ss%U|@ܺǫ/ף׹+Gnΐu"V6sk~bO; 5{5Ӊ8p>GNJtv];H_J~9X@-Ϲ/r} P3ء\& Q/c1;GR|gQS_%o~P>|7+cn:#R/zc[g#cƒrWQs=tzŞw:o=8~4JL |ZQ,η3-{3{tQ{uro ~}5'ge} uWޛ S\E.ן ҇4k w@\{fn9[>{k֣{zG+AW?]LfOo{}c=9vEw{;O}|O{=C|W'?}~c_dN3 /Z|LoK]ݣzv郞|м?]=y]i}ٕj{Iat{u]rב{6+A7owG)wGv@=-{2ů{ g}BNF 辜z.{<]֯+^E|^~cor z={ƾ9cO皧TػbӞ<?G.ęz=1z+=vI'ǾzWշ=~^g'ٻ=~Mg9=f֗?ܓ>;/տ%y}>~3y~}xg{|'K:_|8 @gʀC ]ƇOǓg5^9xw;oi(mX;ܖ7nʹ>y_?|w2 }o:n>ې|ң& ې=ߒ[_I8Hه' n@%ʭ8`1;| hꇿWF?+}v\_/.|? )x CqUGz|Ͼ? ëQ!<[ !{] ĉO$`90 E慞lɐ#fy@ `в~ׁXQ@}P?w%|Bk꿌{+;K>Dnp;fpy<SS2@aZ-}==>?\'9jN'wwpۏ0O@v ^@>K75zWOCFS컭rD;'7d ^T?C=S=[y?}$>/Fi#s4/FU~.wtDI+o07!rtKFL쏑}8FpO':]zL=O't>hm=:OYs??9JtG'JM$5)\e6eN},3}oO{씩_ǟfWO;G?=jz#4g]i?zgZ|~Z紸8dOɃf_1~yO3]wKc'wLt]x{'.] M'o?Ϯ(mξ#P4+7wzW8K/)sz_znZp&#t ai̜ggn7JH㜅S_0G/(oV\|SsO|9^sdWso⓳'&>݉^/H3[^q\=ޤ殟fV>k?.u݌ُY~sYg`=fowv!q]ez+g3#bf2{~2=Mϰg3d2w y \m>=o"3G_Jɚac3q73 c =oƯs-/r6۵~>wܳ9ٯSpYv~>>Rg[sZ9unN=xgI"ڹ/;J8k2|}Js^imgq9ڜ\_K3o:n_`a^\hZ_O㞇7x$7}Mh5?y<;e,zkq.7/b>0_~ϋ?J>W9nxќpn??v܏G}O}i^smn:qc:v߹wx<'>8s~c0^{/m}|k\o5웫ه̋#ͫ1}Ü7WB{95O>͇?#~ok[8h}ٻܟ#EDz} i pt,[>Ƶ>[<,g.ҳ┋wEy%BO.wYd-g^]Tgۣ9q#Ƴo ]/=8ݷ$ov߳D,a,V-.ᒺ:K2~Qo6KӖޘ\Fex$wI`3w^k[#/ӒѥEtٕŴnKpy|ZWe?ڕVZ!W *{I?ǷOk9U$?-f7c}Ǐs}^zn̏ϧqZ%:қ㛦+,n1^Z+~>ztB+i|{~WՙDʥ+T|/]0h>qUqUqՏVOpUx y O7V~עaC`u^`?Ovc~9]wØ=;~;egkkun1,0ŏ{?K/fV+ݲsKp凑mNHYG^z}Ig%O'ON\OZD7/;.36EjMu۪ \2>*\jirZ1pe8U\?>筃/É)F?YO]ޚ<ծV]YL-'{¸Wn̞Ks>]>~Ү?Xyn*ik)?l3~kUzvUuɳ#8/$_G-sԮ3ks G_~Jo3ɱk۟c|[\r}į㇐'goIڏ㯓~Xx6˿b7~z%WmeV;:wU\dYMeH|?ha8y#;ۗn7ۯp:&C_^x%=Ɵc7Ev-2/Ə=9y~ ?ؼs=a>Xv|k-:>Q3Ǯ23'>~ c,:柏|sd/~}03 8o/47' [+H_֭vcc|/#/jvU;[~Zɞjl%W^ÏkoLk{koe mO%Nkqߵ]4wLtD. i_lWƳi_];j]ݶO&SWM]MwAilW=. -}/ؠ7||]܊3l6~޷y6OJk-y=pҺ_Ƶ4&o.3qG_Owsmr~:~_wj? qu|En^úuri};⷟˵CςV4Om0~|jׯvW4O_?]Vg[G뗢scswSWn/׭Y^wd]~ᗹ}q}4sz4 q ~8Ά81\ m~r^fƽ{.77mzi?L|H&J<=sG 6HyT-Ji\[\7'W~7ass7nf3[m^19ȩ֓ݷW-|}߿i:7{}i_lzC_Cn x9~xm6Pqi|pۍm|5퇍޷y#a-#dMҸ6`:Oilnغ3k V\rS\b/_qt׎cS;ncqrX_.v|-wS^S{vy'ww~/g'<4ߝpOysZ}_|LZ]v5޷KtdGn;_k|&۩Ι4.;ٛ;)_  %v];.mz.yA;msE;ƱX=5NuPww~: θSTnřvWv#vOb 7')_P=hw⇧>;GƿHt~n=鹝NwyM'\msatW>N[mWieW<.]w-K.1vsw9i.w]&쒿~[wwgv}(wM8v;s]wv跛o4 Z-udמؙ{u-LKgu<΄y J<'wg3μy^=ac~/K4}Y}OI[Kw\zϾ&'7_U&z{?g<}Wa}nwߟ轟ݸt@?4_:]_SiOKO-=Gz~qKDwJm-w浆~gwq}/{'ow~#k:|{Nn={h?xh$>>x>BnWKi]\9Xهߓi)~zCO޼Ci~Sj<{ȏjw?W+oh?c91nϭ훇$쓯oԟ;z㾿yWoƹϹ}>}?7Y*NO~@gq^g~^^~7M=|>~1} 7YzPuNxW'_|t|=dD{[&_U{%Cދĺ/D7y{=w6:6=7ί77x<}7_}˗ї{탾}y<>uO}w">\U;\J. A]c}c,~<8u`>=%ɭ`Oo܈\/.".t~y)=[B^f]> B/;E\c# gO~աr~ɵGycޮo%}Wo6E1r}q?:-v{wYi~^֏^LOsW4ި 3Uִ]q=w{Oow[SDg3;,#z_V]x瑩w]~[zK]uq݂#r@]ف\O;PGeB9z=~w$ځ~<\/@~_C_]|q$}y=4{쥞|v]{]umu>CtŵMu+ыX d[ͭ:YÏھ:=1(DߞxI_ <:7םq~˃s18z_;lr:~y}>?h y :'}xr;b݌hcX_>/< 2mWޞKu\0c4/?|ax%J>y:sSCrhx5=8e ࠃy%<*k ^6 t<2943<ߴwNAD}8^i\vP^𽮝-7oU{ 4ԅ%{tX?י8u>qKq:?4$׆hm?3_[3}<g#3g4ϭ9yۇ'z䑏}!F\v8}u.1O/Xΐ}BA\}.ϟӳpWr9ʫ^HQ=퉮/K_ǶhOflcWm{_%imf9/ދpEu[pn~h9EyzI.:3 \TvmpmoH-),7Êx 8Uy.ȣ}*ws3#y?G~9#Wu<;< i>]pb?Hi|=+=.&2{XyN>_9yOIyEǦ.>;b.$~_.||zCi]<{4&?6%]0~E{{/wi.|n߅H=2"zq3:_Um©4 ޛ@H4s?~s}'S}{N>8/S]hw<#wy#wfsI~zyN0ue}G|z{t]>:W?z$y^v8W~6=y_o;]}81~r/sg{_Z?? v~= /1pm70rjzz{>/sq%3.W74_v~B~ dמNzy{s{{O#/kχsN38ȫs#`?!y︝?6汹\W;nb=~wb;Sn~v?tw6wwC}M'sSͧ$mso#}ǵS?jL_^7;.^v緷SGn?ƷMt`7l}a_mgz_n?G%l?Ϯ,=9}M>Zc5EoKƗ97kNϯ9} 6S?N=1]{kq~OkٚxnM9>$Dۘ}.0(-qsyǕ9exvκ9G0DrB^ʜg⥳egK8?6Kēggew̲Wgfg}m3/<|#_9q9c⟳yFYCpvi񵩷vaZs\O:}{tJ[?->4-.UKL9.iI|?ji񰙨3{M3hif>3^Oӷ1#F)l6u(Prs$bR}0)^3yAzӸ&˟F&o|e4!n_Cu)siCߙ{>SGϿ?S‹^ޏ~{csӽ,G~+i>Cm v ?i5q+S}s?M=)rx| w3;~'-SSSS &b<ViD.&nRԚ?7!nڙ}h?9mȹm원':/>> ϳSO^_I^<o:3Iy5?w![s`^}E_oӳΩ <ɋ$o/v_c.7{;lW6֗đ>~Yey>[ {is.O|zpyrxA}hy.M\rI^xQie2gR3wλ/Z^7S{iѮȗ^)EȊzN+;>NJ*\sUU_;ٳx~k7~U~k*k$'GmJY@'啬.vyۯH|JYfn8:yO/LڮV8Nn,[Vh|sNkYw%'Uu[W ~Y'K%2yԶYb/?~2~vEy+ƿ"g_ŷ+Uqw~עRxz=0e5y x%5~g}ۯ/grs;}s? ?]Ih>yug~ς[7Eo5VC'V%Ʒ |#~ƒ|b>5Iz_U0iܯ>xq4x|igc׮iUϑ;3>8,+;\~CM۾ݜsc3kꇭ8ޯ}蘿0k!t$Uxso] ;΢m.YZ+|D>6~Cot|bx3 GC}o#(u_/wu|yyyy3/;/3u73'Nwp;~+S"z,w}mwĶ]# t #G|f1WSw}G)Aa39ysspq'a7̰'go=#gf 3pN|g?2wGO‡>7K#w4Q7^+q %wQۢ凌@v|msvv1z;U~j|axWv+~Aۂw d/OE_-[0Ty/ wo}_ c^T_,>pr {]\`N2\ n~ux,o'{}~-2\:9poy/v}qnwumo旌g|O̩/'#1ΛϝN~g_b¡gfD; gO;3*S}z8}(ɺLj5d8p)~8)WOeicμzy'O}>-?jOv278e ~9{S#9~;'{37KҾj_]1oyb6>K 'ѯuRy n=%>IN79yIߝ|SP=!p4ޑtSR}O|t-eO[ry}DCzk(|~)(=8{ࢗ C盆ϐ=>5y]Od'r gRul=3/Iu|ui]YkwζoPetq978d}rN=OoMGE; 'Lj<{ģG}>:߷׹Ɇ6ۡy?Z^ٰO'/G6_^eD.&Cg?? :CqKC^fó;;3>P>谝=3GՆ{ȱo?8|V0>y4W/kqSvbG}9cwcwhto5А17<1~w~Zq!k|>|>u7ʧ3NgE>_z.߻?uQ bCy]Ch!;݃>0/znxG< O>)=SCz?:]ݡs0XxO/Ou;~p_1w?zq ɟ3Һ ȷ>8mؗqWރ] ^<ӳ|{<:;u|!&kȱu"] MC@q obթ9oAa~esL.3ڽ;Iz}~Cߥqq>;ijz2}Q=6yfAC+Ҹk;XkZ^J Sÿ;uy܁ v;/#ϺIt} /i:;~B1L^g9.+Kzzo&W k!ȧ> |85߉{hO^W/Ckw==3٧ >gzE-ӅчՋEr|tf_ͷEǦ{Ѫ;y*^=ו/ۗ~U_bϑ]E.{5vɻyٵ~]/³w?.5.}euũoOG^SϻtO޻a};[?+ ng/>{pU=1ѣz;=/jC s}uze'oȝs]tPG%wo~==y{=q]ԣi{m¿ W>aF׎ณSjpAyfSNģ/9CL? nxوOE>!igĥf瞽D|ιٟ|v^]c1^x}S|oynp{_{~9׻Ep{߉M M0%rQ>=)k$aR$\vR|e'N1uh)z&ɦ}w8}SiyYS+i4=6{VӾ>sG߈WXEwN^׬xge:͞\Xn8;;S} 5hW)y piuߦo))Jf4gM)4bQ-*y7nSSpi߻qȟ>xߴ8\\4cF~մԦSqpͤ${Fw=#OG䧎:z}eߌ>2):;O9 Wta8zj<~x٤ߌ䭍fN8a!>pԑ}ח=0:n3 P>P\jh}z&O2Q>F_Gsx!>0b7n#gGjds\O9:sEkۯΛY_% +x9CeCq1!\2ÿ*C~s ;鵽WPN 9G5385~WWyȞ:>T}(i(rSo3YH9Wȗ |f@pgt\rxu<π8~o]ki_؈:Mz?;:8b~D~i}3~_=3.F 8Nlσ_{߽nه7|Lٶ>n{ǎؾFnzmS66>z վxn~^:7z |FEig]b RwDǮ[W<+s9ps8V~}!x`nW⭵|t5T?w#[Zpo:u:[:.VN5Nvj4<#TGO`-Vqq3uz_5U˧]X%k~S-~бkޯH^Ջ}\wZxsZ~٣p犽]VTM~9 ^ɋč*so%W^w8D࣠ y=]5yYÕxn%߷?+Z۵a-S_}?t_~_jZNuh5{V9ǫЫq|NWtKq.|#6:ܥ's|wQ֕׵n;/w ]{WKOuֹYJ!]ZWq9qwsŵWʸ*xf?Mo+J\oP9X>أA%.^ n[%y^]ǸMU:{ϭ#g$󉖽YW'(ᅥXRo W toGTv>ѿ@O;֭Ϭ{/1SVJJ"*8Ut][:[-EIY:RpʗqjS)dߖR|igI⿥U%_+%R+G>_)JkJy|R+H9g}՛cq* 8U}NQ?)%|t>˭BUidwG⾂P--͗7v|JIޗy+Q^‚.ԣ.:Ͷe .d7!-Z՚Hy-y|MhΙK|ڭ*ͫh{CwF =wuhG7q4-w6~{WSSD&I>5VM&0Ɨ):tΠId45ߣsZGN!p:Wݔ/6陆ukg4 e_ݸaoClп z^ &pw[&ę&ĩ&gOHn vلKjxp?h6Mu\\܊~5ן|\q'LuΠh>;?/j|,]CX?`7q y hm w=woxA9xy?6GfM~mԀ'4ﯕ֔7`6yMZДoܔҔO|3yoi[J|h?4iw=[Z-xsPA6"6|%%/l0ѳ%WkWZ겵wТpЕnAg_4 `4 y @܀{4ą𾆼ِހO|q>lʸ_d_|= v7clZֹ5áG&ɮj/9Fvn>j.Z܄w4-;;;|MuƛkEЀ5]%!',؁ R~?I?igoYS}h15cW7G !Y v6!~9!?x9o4۹e/L!6kJt^z >t_v 9܄g7o5MuM^]n >Y3u6< j[л7;d4Cmʗow7~cSMpNv(;)d5MxRz|ub>25FؓW~iܒ; ya7z 5윆K~zԀ7 8b~t^y!?i!_!z!_4O8CN83զ G'ȃ =7qr>Z {_N'A9p>7\ߙMLɅ_6xЄNfWOW[;o⎮p~u^1A/M৉ p m9&ԡ_ڗ~cL1&N~28zu6H/L7p P_\t+|6`M[^c=][߭܊gl owJ^/mg*Wi׶c&#G筶"㟸2N[[]leosozh'葭mWU;'l+\VVrm+w+ *bVVps͇x<*UV88!~2N?Z vxiO|r 7 >pw:7φP!/욖8k+pGvsS| WqG6ܼxA[ܪ j=|h[a7ãZ .Nz7n'4צ}ׂy5&\ oSqmJ)OG\+ͧw @JBEq;K|J|Jvaqkukz|U_6m_3-Ѷ6ܬm~}_ȵo}YXߢ~vLբm{i5^GWαِ/8`O6 []G츰;#`o4 \ մ>/7pܤI7;'Ó9Ԃ -q}iz_|kW-[В-ymC .?nK6m?kvh#-u"Z8Ka= g t!|})婕lJt9y%+#hkKxGn_'9ΩxĽJͿosMW_*9>,SR-k./!'}5>ɹGeJe?TRoy^?e\{^ *`dO/%?|nOK|QC|?k5!?;xWtCoD[GxZ-[{k8aʹlta/Woʾ(__㇠ .W9ot- 䇰ȿ+5އ kꈋv5&/kxS-y_V^=UsW{GfGZYM:ϲnŽڢȇ0N~VOzh<܊^%)bW7]_$ջŞ#g}Jy~}XwJzt-/ѭ$/ʝʳyPRϠZޫ3[InC=ҒsGq7$Q9?}_[Tr>c{+Cy|nߵɋK6;PͭxK)c-Ԗ=旴ɇ6mR._a46w#./nG۬~jÝ;/9VO!co67o7V؏mbǵ"ozOݫ߻\coLؼč#<=C/>cTa'u߹Ԫ[-O?w*yR?b]}?Vr5)/RT ,/nУ?g~*EM_<[*ql9Y~/Yѧ՚}!n\+r1{wT25zV-8?UO>?.R;@C^:wRL +kw^|&fog_f7ZPO6mG*·߉g;}kQETpHv.=]Ӈث\<<u:N22}!;Gp%E׾Rߓ_=˚X*~1y nPp/S鉚W5f 5S;_ڱOFwgTI|~ fkd8'a?.o$OJtt.93dK)~+=Qs=fYT ȳv< y'o] ,OK -.ӇEK!8D^l[>`^m'، `SGc\^+|}ƧU /ni;=hn3moy綸^˴MŶ}X2nks闶8tr awxuhvn[6MOg##{}c_}۷/?Z&mvi{V[^R;1=>}״k9/ނN6?xz1}86<=;%-ti}&EGۄ+8]B7_x7A^LMI7s2M~PSӊG|969Ow|Ԅ-qlɧVX-q{uE~o?{-_M_f>׶ĕ[BΧa7 =?j?+;G_=r{ t部7WF'd~ҏ:>ߣxj¸ۏ{YC?:p%;Wc =xz!G'Y wz085ܥ‡g8.ZK*bWR8PCr] r+KE?r> sƏ/Z鷎<좒X[Jlƃ SoD'_>SF98DAowJe)>ڧyrO;woSE^[wj3^[3JvOm:%F|+#ՑoG\3z{_q%wc{>%Ά[泥s {jyO9,_Wȏ?hN%CCΕ!=z?:><UJ~aA?<[u!1r!roxe[AΩD'GFG|: 9o_|>QWKtf\Q*O}HU'QC~kurgO\0jÏ|Hpnce\ε'X<>+y9~X9_1yJuK~]n*87uǩ1#_VB%Z|vtyRߢ|"8Rhs>*?4쫜GvG_ù铼{Yk/VcdhEĹO*unb=/g\W_초#F:<|%9qoppsߝc7ZT)6@]jВ\.gr=MW_pW ﱯ[gv<2DY9/չNGWR~ey mkga/n]",pVO>~¯k_-ru6y^5{}=qGY?j+ǩ-_ĭ[w{^J 1p{2-h+-V[ْzR_{-x~ b_9-)3f?4rBfK<|o[i֑ͮi/D[NSTҔd6- r{Gj×"0ׅ서xMx,|n, ܎\ B-M;'D\o[f蕼&?)nD];)Ԅ6eM&) &~!/.-vT3>h=GSq.R-ug𼨣l'j->i1LneD'_ܠXn3gxN .ܚB'b&-iKjE~+}y/DW'-q6<%Ϸ ^69n٩9ߖ}ߖц_;_< o^e:1m~f[=6ZG 8a_=Etn;Цw"/wgvJ/okW#} D7ZŹа>EsUG/3og ? sF|q3: Ÿsq.$@%y쇒{ OP^8~ܲ?_53' \,έqn(?W mv@y|:9%_}tpdٯl;Wus+/)exs~mq|Nz?Կ.y\/\(OxG>֒!Zι-K\%o[PlC:Wf_khGiI?/ ?o 9Þh}g~zumyd9/8Zwd,H_W Jh%Q+Mђ{ӹ )x?(7p>w..<wWp"{x?y'~\ЏGXpĶX[Ӳ3]ٯ 9~(5z]y '|67 |ENfT#h7k㣰Zrǖ|8&f|%6G+ܖ5:DCީ=Z8\ߥQ53G?XL|f8Dq3>E~\r-q69k=UأŞyoԕ ^r|/Uxw+wV>)eŢ#s"\?q8W(;iiUԛÿ>}y|ȣ+]}R|dϖХI ޟ- ;^1.>rδ/OPR[DAO|1#g帟y]YGx\Qt T 9.y {8s=Po.^Tq׳ziOU9om΋<'}zG<}u:ֹjxSwޘ֥þwqu]ѻL߁=mGOa~6 }p?|Q^Oq@I^}'S/o/f2p}OPP݇áo=|w'nD!>:07h}W~$n1bg^:'ӇöL&?` _Od/O]wJݔ)AMNK?-v73iq##=Dz~}FOo˾}V׹|;豇Χt_y%ݭC9..찣z 3v{''ϣ})oCp{'{ei^]]=xMѕe}'n燺߃W; p S?x~a=ȾW~ Bcvb ރCuKyn_zߐ=O>DM{oϟw>~dO/pՁ̀o|k i#qOi4?='ggoҸFx4qk{'HN^\0)"Iύ~ᆱuO]=yD)=&$~d?OG/r:L~8'ߖ2/|>Ƒ&La~S%?S?SVL=)?ZO/:?2|'>cÅ4y>x絣p!y;Wz~x|t~[{}ܲ_HľLJ_M70|%3e|'C89A_£'hyIkIx֤: G=N޷~wߚvy}7ɃБ8494GFHţO{rY8g8$?sr!$;u8R7~FrbOgOG'}o>.3ryЈ}2zu? w;y=gnL\G8Amz99|SϋV|{$_ktC;g5ng쾑:19'V~~/3yuJNSM@GnC'cv)v2r 3dO9cTQdNnIqɋ;'}SJbL?2}A7OC?o]^4e_;-/fyə{gݛ1#lO/|siqik^:s4ܲf3u|}Rp齳Y]3L󘽑ɫg̼$n$oǜ]ؒƳ8tq13moH/ɶ8$ tHߢs< ɳSឋ/0Dm˷.[49Wi+WԃY+>fW^0?Y}lV__V'+▫hW>plոl,n<>=Lo{Pt_zDנ#>swޞ{R7~hc;]uz-״7_$c8>a+'w_<୫ V!Ve~"J_v|]_4x*OmLϫ⒫_zq1q ˯c4~{3߆ac cx阞!}/zLnk`ȓ<&wIo_LtvDvݽO<`m)GYֹD5zoq~y=p&z}I^n:i=;V{v:sOZ]v9ej]Rڝ|/OvzTozڙD%~[qTw_mNx6~lO]M8k'T;WS=ݝݼ_~qD `u'hٸFⳍ#<ֿ޻q#g7wxڗķk[ZzntW73y 7vB'OW\uՉ/?hgz/i'Ps㚩oڏoqߺͷ&ms4>ǥlai|;NLfgw8g7/Ktxjλr}x+_D3}/OpU*9zUz8gjGcqx^V3iC^95s2&!8~}LwcN˴|Yfp OeO=f_׾0gC$:Gw"[PvA~x{t޺Oux= ߶nOh. ?%g(l[p>j^^T-s{AԖ,GыKJ/±ɛ%z-WWkVj^:;k.;; y]GV]'\s vD H98&ge%le^Ƶ;8ߒ:3W/'Ѯ m\',___/V1.}9KMZ+wo"瘝q!F~X1?n̏_{( ۲'>.oO~E~4ϵڏo~O~Xku7Jv0{}0>҃[⛂JOxʓ/ëWn5=$4vz:cqQ\y"V呍aoz<%/p}<7셇yg_HHĮ= ]>:~D:.Oȭ˫ۀsnsf`?֝+a|s~rY}o_v){5/$zo|]ʿ8s'= q [/g_c6=Nf_/oOaώC 㙮O:fn/N;g!w<}M{ù :}“~6?yuy2_ܪw{x2~vZ{s; ׯ-mۿ/ų駵ه !⌛3~}{,p;/rj|uy?z>m<ǘs}'9/>/׷Vl_UI<-͛_5ǧ[I~o O7Ǎ>&]ok)>|~0&:En©v xv|>}]ﯼZxm'WZ=3h'{[|fS&9y'N&yYñSW8w.޿[ן?9wN}z;-;o2|(n^v#:LqÌʞ5}1^mrj6!n6oƟ_W|S`ڄ+_84+קyʟyUw)Χl.2b':/wl-{q==p=K{D=JܾǥuG~oW|f/g!'ʛ{^^0X?}=>wi;=g;LyZgʧ>ptns7w3HɎ:iJϳ, ZIt;wI9^g=5yl>}eg=?{?u>i\,ZL=[?} w֥Jxaiξ_nܾ8a|gפ>LKu+;~i?/Jt= /.UHtt}Y.DEǧ~.zY촎>4HqFU9w;ms/O >HǤw{q< u=h=zrނn;iў՝[zO""EQ@ X(Ȁ, K#]YFT(؝[NE޳˳cAG(""ey~|J]~s~vx>^oy޳Ÿ}Ɵg[>7>OGx~Oۿ]n>dv~{|>3zwg?Ƚޏ|q:?yշ߰sۻ빏tOws݋u{\yd?uɻ_޽}o_Wᄑ܏ް8=+.>p~<zO}~ݻsx>.ݯ|^?w<5_{{Y{|}7}f/_=7=W[ x{?oЭ/۽{qݟsɭޝ/ݟ7>~|G;{M~7\p{vo/sɯm;?_Ư3U#yï}}]W?~w?na|?~wz|}kvO?s}}^aFO>wz+{[S{']][~u1}|td?~nlE>]>Χ~˧[ __+yK}m{x]~~1y;wf_vo综ڽO7?|'voxikO~z^ӟg>?z]g}y;~ëo_}zy\鴏z.><>a-_}/w|][}uyyUo{}:3:uqo;SkR~g_vo؟ݷ˯>9wV7~R_|wiuenX_&O_H|h>&K^ϸq۹\G=7=6\_mq˳|[>Ο=o8FWo?_y=gI<{ۭO1w<롇^75poy߃%/y x?J/׼o; Owmo~|_cpwxw_y;4 Uv_~7}^x駫^ONk ݝ9v=U<|ǝi[ࣜ:il\q>AzypN948vفmv~wsF7;yU?w[w;o:rzuw9NzON+Ou;{N ;\,~`ӝ~J*Aug}~st9;>e}~~wKNO:>t/;?oM=tCж߇}ӣá}~߇לO8C>:u}~߇~:mN>.s߇7:a}~9JwQ>tßttCp~߇aഅ{~߇mûN>tP9CP>tPC!^}~Gz}G}~^G}tũG}~U}~Gz}Gל}Gz}~]wGz}G}téGz}~G^}~Gz}G}~q}~Gz}sG}Gz}8#H>tH#S>r#>#>rXc>c>v>vc>+N>c>v:c>c>c>vcX>vc>c>vo:>vc>s}z}|~z}q~^qc>vcX>vc>c>v;>vc>y~'^%}~^'^}~\q^'}'z}~'^}~'םz}~'^p'}'z}r~'z}'ɞ>>qO;N>>qODO>>qOSO>{N>qODO;DO޽NTO>uO/9TOS>S>uOSTO>uOӫN>uOSTO9S>S>tOS>S>S>uOӛN>S>uOTOS>S>uOSS>uO4pߧ}קz}z~ߧz}ק=}קz}~ߧz}ק}~^g}gz}~ge^g}gW}~^]ug^}v~^gu^}~gz}g}~^g}3>s>s3>볞>sL~^g]^}~gz}g}~^g{7z}~^_r}z}~~z}}z}~Wz}}~^}z}~ ^}7}~^9s\>t\ss>ws\>ws>s>w9>ws>ts\!}~_^_^_}~_\v^_}z}~_^_}~_לz}~_^_\w}z}q~_z}M}z}~_{N p/B/ p/ "p}~_z}q~_^_=}~_^_^_}~r~ǩs?t{u`އ8N_w:}KXޟuz}Uz N_oOw}_ﳜz8ӳu<8}lY|Qל_urW:}=q7{_|}{{SzouBw8g qN]~SGzԑ9=^lkCNSozO;W{:{ΩGuR;uOw?ԫO9uwԯމSzgNӽ lo7v\oԹvЩةܩqW;uϜw?9u N>SO{ҩ_vs+~o:[N{7zѩϽutz'}w^?yɩ}u^Nw_zqw_zD'ũ}Szg:}uӖt_z_qU_z/u^su__䰾~}7_^&'}{^ҷ^o8^=~qtw_z^x{+^JW~z+^JWzox{߫N^W^x{+^JWW^z+^JWzo:z+^JWzox{+^W^z+^JWם~z+^JWzon8{+^W^x{+^JW~z+^JW{N^W^x{+^JWw^z+^JWzozN^W^z+^JWzo{+^W]'ox{+^W^z۫{N^JW~z+^JWzox{+^W݇k^Zz5oy{k^^y{k^Z׼e^zk^Zz5o{k^^y{k^׼^zk^Zz5~zk^Zz5oy{k^׼^zk^S׼~zk^ZzM'o{k^^y{=^zk^Zz5o{k^^y{k^5o{k^^y{8{k^^y{k^Z׼~zk^Zz5o{k^^;y{k^׼^_5oy{pF7~ozF7z oox{7^o.;y{F7~oz\qF7z oo{7^ox{F7~o9zF7z oo{\wF7z oox{7^ox{F7~ozF7z oox{9y{F7~ozqF7z oo{7^ox{F7~o^ox{F7~ozכNF7z oo{7z oox{7^ozF7z oo{׻'ooy{[^ozKNV~oz[Vz-ooy{[^oy{[V~oz۫NVz-oo{[לz-ooy{[^oz[Vz-oo{NVz-ooy{[7^oy{[V~oz[Vz-ooy{;N^oy{[V='oo{[^oy{[^oy{[V~oz[Vz-oo{[^oy{{ߩ[^oz[wWϛS:=x_Ĭ>f^@f//=.>Nj=^q#0Ǐ)Ǖ#W4{| >q&lI0{ >/Kfg= >1WW'5{ >Nf=4W/2{^U௙=_b|̞?O=._n|s7yVUfW=~_c8|yf7=o6{y[Mf [f>j.x!f~4sDmfo7Ef73g5{=3!oo$xye}f^ w3?`\kw&xs=-3f 1sP𬙇̞1sRfN 3sSO̞||Sf ~WO=?^0sWp`_ÂSςss3sZ7Z04{L<\,̞K3+33[s`͞ ̅Aj 3sbP=J3?̑Ak93i3g?cg _0hy4f. Oi[_1kc_5>Dkf o̹y7MWo98m}}3/}_#f^3/6sfk\?0svny;퐷Ç;v!oCy;Cy;퐷כy;𒙷C?1v!oj퐷Cy;}Cy;Oy;퐷C/y;퐷C?!ov!ov'y;퐷C}?퐷C̼vuCy;4v!oz 퐷Cy;fy; !ovy;퐷Cv!o~Cy;!o>ay;퐷Cv!oM3ovۡ=By;fy;퐷Cv!oo1v!oz%퐷Cy;a퐷C4{%퐷Cy;N3ovۡeBy;퐷6v;r~>e퐷C!ovuCy;y;퐷C̼v!oͼv!o^7 y;퐷CCy;K!ovxf7vۡסBy;퐷C3ovۡ׫By;퐷 s!oz]+퐷Cy;y;퐷Cv!oͼv!o^' y;02vy;퐷Cv!ofy;퐷C5vfy;퐷Cυv!oh퐷Cy;:^!ovx!odz_!ovo̼v!o^ y;퐷CCy;aCy;fy;퐷C3v!o!ory;툷ךy;툷#ގnvoG}#ގx;oGvtfގ1vۑA#ގx;툷?i툷#ގx;zioGvfގx;oGvǙy;툷#ގvoG}#ގx;oG=f̼voG^ύx;툷#ގ>oGvu߈fގx;zoGvሷ#ގx;1voGy9툷#ގx;f툷#ގ0{9툷#ގx;J3oGvۑץ#ގx;툷3vu3oG^h툷#ގoGvu#ގx;[ͼvoG7̼voG0voGy<툷#ގx;.3oGvۑ#ގx;{ͼ=e툷#GvoG#ގx;oGv=3oGvu#ގx;fގx;툷#GvoGoGvdO 툷ͼ#ގx;>AoGvtb툷#ގx;wv3voGvd?!툷#ގx;y;툷#ގ1DvoG#ގx;"ގx;툷oGvd/"툷#ގx;̼vtۑE3oGvsfގx;툷#{oGve툷#ގx;g툷#ގx;Wfގx;툷#{oGvoy;툷#ގwDv}7v#ގDvoGc툷#ގx;/voGn==|4v۱cގy;H1oǼvl$혷cގy;?v1oǼy;3oGbގy;혷c#1oǼv۱cގy;He3oǼ?j혷cގy;?v1oǼy;혷cގļv1oGbގy;1cގy;H1oǼvl$혷cގy;?vU3oGͼv۱cގy;H1oǼvl$혷cގy;f혷cގy;?v1oǼy;혷cގļv1oGbގy;Hͼvl$혷cގy;?v1oǼy;혷cގ7̼v۱cގy;H1oǼvl$혷cގy;?v1oǼy;)3oGbގy;혷c#1oǼv۱cގy;H񞙷cގͼv1oGbގy;혷c#1oǼv۱cގy;H1oǼ?o?v1oǼy;혷cގļv1oGbގy;y;?̼v۱cގy;H1oǼvl$혷cގy;̼v1oGbގy;혷c#1oǼv۱cގy;H1oǼ5y;~1oGbގy;혷c#1oǼv۱cގy;H|1oǼy;혷cގļv1oGbގy;혷c#1oǼv۱cގ_6vl$혷cގy;?v1oǼy;혷cގļfN6v o'Ix;턷N$v o'GNx;턷# o'vH o'vb$턷Nx;?v o'Ix;䲙#ɣfNx;H o'vb$턷Nx;?v o'\1v o'Ix;턷N$v o'GNx;턷# o'vrl$q3o'Ix;턷N$v o'GNx;턷#53o'vb$턷Nx;?v o'Ix;턷N$v o'GNx;y# o'vۉNx;H o'vb$䆙N4v o'Ix;턷N$v o'GNx;턷# o'vH o'vb$턷Nx;?v o'Ix;dۉd o'Ix;턷N$v o'GNx;턷;fNx;턷# o'vۉNx;H o'vb$턷Nzf# o'3o'Ix;턷N$v o'GNx;턷#I`턷N$v o'GNx;턷# o'vۉNx;H o'/y;?v o'Ix;턷N$v o'GNy;%3o'vۉNx;H o'vb$턷Nx;?v o'/$v o'GNx;턷# o'vۉ]WNa3ovj$픷SNy;?v)oIy;픷SN/y;픷SN폤v)oGRNy;픷S#)ov۩SNy;l?vSN폤v)oGRNy;픷S#)ov۩􊙷SNy;?v)oIy;픷SN폤v)oGRNy;픷S#)o>nH)ovj$픷SNy;?v)oIy;f픷'̼v)oGRNy;픷S#)ov۩SNy;H)ol$픷SNy;?v)oIy;픷SN폤vz۩I3ovj$픷SNy;?v)oIy;픷S})oIy;픷SN폤v)oGRNy;픷S#)ovg?vo픷S#)ov۩SNy;H)ovj$c픷SN폤v)oGRNy;픷S#)ov۩SNy;H)o3oGRNy;픷S#)ov۩SNy;Hi`픷)ovj$픷SNy;?v)oIy;픷SN폤vf#)ov۩SNy;H)ovj$픷{fN폤/y;픷S#)ov۩SNy;H)ovz)ovj$픷SNy;?v)oIy;픷SN폤vۻ?v3dvogG2x;팷3#ogvۙ쒙3x;?vogx;팷3dvogG2x;팷3#og=jHogvf$팷3x;?vogx;b팷̼vogG2x;팷3#ogvۙ3x;Hog=n?vogx;팷3dvogG2x;fH3x;?vogx;팷3dvogͼvogG2x;팷3#ogvۙ3x;Hog0x;{ogG2x;팷3#ogvۙ3x;Ȏfx;?vogx;팷3dvogG2x;팷3#ogy;?vogx;팷3dvogG2y;y3ogvۙ3x;Hogvf$팷3x;?vog3x;Hogvf$팷3x;?vY`Hy;팷3#ogvۙ3x;Hogvvogvf$팷3x;?vogx;팷3dv=̼vf$팷3x;?vogx;팷3dͼvۙ3x;Hogvf$팷3x;?vogy;a3oGry;휷s#9o缝v۹sy;H%3o缝?b휷sy;?v9o缝y;휷s伝v9oGry;Qsy;H9o缝vn$휷sy;?v3oG̼v۹sy;H9o缝vn$휷sy;j휷sy;?v9o缝y;휷s伝v9oGry;Hfy;?v9o缝y;휷s伝v9oGfy;H9o缝vn$휷sy;?v9o缝y;휷s伝vs#9o缝v۹sy;H9o缝vn$^9ͼ?e휷sy;?v9o缝y;휷s伝v9oGry;|l$휷sy;?v9o缝y;휷s伝v~۹y3o缝vn$휷sy;?v9o缝y;휷s{fy;휷s#9o缝v۹sy;H9o缝vn$휷s9oGry;휷s#9o缝v۹sy;H~9o缝y;휷s伝v9oGry;휷s#9o缝v۹s_2vn$휷sy;?v9o缝y;휷s伝7vfy;휷s#9o缝v۹sy;H9o缝va킷 .6)x킷 .]voG .x킷 #o]\2vaxo])x킷 .]voG .x킷f.x킷 #o]vۅ .xHo]va킷 .]l햷[#-ovۭ[nyH-ovkd햷[n폴v-oGZny햷[#-ovۭ[nyH-oy?v-oiy햷[n폴v-oGZny13ovۭ[nyH-ovk햷[ny?v-o폴v-oGZny햷[#-ovۭ[ny?>a햷[n폴v-oGZny햷[#-ovu3ovۭ[nyH-ovk햷[ny?v-o7GZn4vۭ[nyH-ovk햷[ny?{4vۭ[nyH-ovk햷[ny?v-oiyvۭ[nyH-ovk햷[ny?v{-oϛy햷[n폴v-oGZny햷[#-ovۭ[ny폴v-oGZny햷[#-ovۭ[n3oG-oiy햷[n폴v-oGZny햷ۻfny햷[#-ovۭ[nyH-ovk햷[n폴ݾd햷[#-ovۭ[nyH-ovko햷[n폴v-oGZny햷[#-ovۭ[nyHowy?vowx펷;tvowG:.y3owv۝;xHowvg펷;x?vowtvowG:x펷;#owv۝;y?=f펷;tvowG:x펷;#owvU3owv۝;xHowvg펷;x?vowG:0v۝;xHowvg펷;x?]7vowG:x펷;#owv۝;xHowvg펷'ͼx펷;tvowG:x펷;#o_9ͼ=e펷;x?vowx펷;tvowG:xnl펷;x?vowx펷;tvw۝y3owvg펷;x?vowGzu<@=[Wn?|^/~?kozww+YAER/data/OECDGas.rda0000644000176200001440000002307012534531320013427 0ustar liggesusers7zXZi"6!XF%])TW"nRʟX\qjnj-&> ~Ͼn;fL<ip˰,ÕO du+Ko v歝Wi7}Ɇ3B,;vҾ)@vG0(/R=1+`/o^)(횸;5lKy+8$&b1G eV߅nNÚH'YA3//8q{h7<I O7xL >%Dzxqf&D_%!)r[荌 كwzdJe ь{{wKez4-Oko%yAx.;>bze|j62UӋU$@zʋ-YMo nLa>kC?y#qЙ蛞-}0wm4K4UoXyq!*C!=T ͯs&q6 5 dಒ*@AHQ )U~pj %bT•+I+KMư,b?9 ݀ʦW%J;g,.Ojsg,=Bt5+"`^}.lT N}\ơ`a:YTV]3C%|b!(F[e &%4V{ !L><@/P>zOBG/5eKuhTEqsb8pܩע0aq3q0f45D釢P*#Ĺ_),)DF9Lj4鑹iXD{\yݬZX|n4#RF2O Kp <ýaN`p ,L׭9)<JMso"3׮$^07Obn g;;Ca‡F:0R.nmӸ8SwGQGOҋOeoЌyzj@knusRCCD?9Q;ȝ';6`JeFktݽ'2H=>Tv:{TkL/0x `VnV1hϕ;Pʈ~ &vR07dw)=oq?L%N6{:qa󐟦 ꣐*!EhBO* %M !Fteѕ3|0]] ^!& !2V $2jc;ب01paťV&e_* [8oPwN c؁r'f]^uRvxb,P~5?VgsZ21b8_`)d} -x\(_`yR<7t/P! &Bf͗D֪:Fhl'%C^5=/gj~:Cnl&U}^oqs ɜsX;Ƅ~4WEParS|/h[6ek~7 0(!T>MOT UAznafePRh|7(Җ'@ YTa.dE>(Llf$fN}YwD5K)3fI8UL|*oU8Z7/fra Qp2n=(^t]/޹T[ɕ+F^6hmSVU*] E#] f:+ӅM$}@N+DׄamKi%O!xcE&`o@"?椙&/ou._3Uuo9.%bLNgJ\(b}+b~UU-ʡ!oUP%W7 w.I2(rhl4Pb29Do Crү?[~ .K P8_%!ϒiN=RA=}Fs`&3E!Mdo^ei5/>"ɵ[d n=t**vNyhY4KkQG'Л63㄂)D~F)IbE|bh;lgb8lGh{-;>먼8o^AhQX!Dwx}Q&7,== } T.S7Sd4r'`dN"BV-?TnaYg*NC4#H6^~r4ktTCq88swGb0M${3fiK,w9d{9iXJ{@t%bxFi`dtutO-arA- r }WEBga/$r]Y]#4ӜXXb&Pv!">i"@0?R*mn< )Z\)rn>AZE6i(?p4O%DqqJHD޷u\E6%Â~aqfϘ7 vXEc  z]~ڭi_yVTR ӯ;eJb5Ѿdr'f JrƤ\n[jF@VGN$Z| 01[^@ `3!!eAGM:ʱΑ廚֔]^1Y*Z|^X)KeUG;Dʀ0ip(CLFvԷah^޷qgtjLP!Aa5JRdFa~ATIDvYCU\m(A "UIe5eVbǍJ¹Y4ҺL!\sts A#>l>ڐ%<?,3ɠ{ggjvA#3#1$K؊cD4],JyWDi];hyh%/@f%Coe5v#ᒡOѠZ,+lnb8\.ң؄r ܞT*^)B#l3im֕ji Ut|%SZAE.C>1ldqXxBS$Tadj<.+m$$m^dr}>RDHS*rj9D_.v4wLrW`/FU0QEFhyvލH;j_AԴ{5iFw% Hi#l-IW' -t濾282*L ɀj5>fIl(8D>*R9 a=j4 #_T+-7DȵQ}6#-$X~萕WӞߢA \NTQ3z✂ kّMg>SVX|J)´au0r QA39B{3pHX/\XtYv9+y-GjX%Zy {F^dEȁ<1ԗa.Y`ExȜJeF?ɝsBNu @~`7 YW)X< @yE{ 8z)]z??0e/m8'.=,i|j OM}V<6Q\R{#DoBG:TVYrӧc10g| ݑ~ 5 }Ja0 V VX"ҹu86jU&L#n*} |a)fVe?LmPǛax \]+^ۊ8ce $*݊G'T( -DcUr33)foQ}CI綧iVpYW{=(F1t|!βĥϝb =T1,uTc)^ŏ#VX䉮aEz2eʗ_ ܝN@WM|psܦ* jwsxnYVrPfFc9G"BpoCp΄0E B.TPwDȂ B7֚I52p=eR]rP4A_rԴ^8((UΚI"|RLs _)?#$0x@iO6ibj$R~-gA"I"4(abk+U5 l19O{vF  ^2 ]i#MCUmf=xe1J̺M~LbcSCRN<v/ua2sNפ|S%i@|7 ъF-e 8\]shc4.;Ρ+R5LRq}pyґ24e& 7N [د3.{^'su Is>g+G(/ `vVtcֱLrqp$t$Hz 53Ƀj*;Q)RUA5lsQ<+ \w }i e#IM56 #WT/D?vh-QRpgo/|Z<5~ ɉ:1 }^WgC)},>W L:PV7?hoq fR^$(IWQKbM$}n#jeb?>,Nɦҟ ~ RXM P gSrE"u!3Wuچ- Q4~U-wMqW~o7Sf[ݖ=9wݼJ WS\InlP1A]E@ qӤ >YAO| +i4FIYlhu)?;hb!{ 4;Yҕ ߳C'k.da ʯ?  3 ĽfYݭ $n Q2`P&X4y%\M3MIw_{6 m]^ML&.n:"rhIVطsSd7+O5N;I=ۖ< $@K:؉͑/Xu#20k#:Oz町gr~pGJ0 +zkQIݴ\Pwp͞/: q?b' PTN nΓR&{n]ZeEV>Q^tr@1}9+7$Pi5q4l3 =G׬7.]ưF‘x3i|4߻z" hVW$<DņnY̥NzǃB+{D5I!O[99g=}xu2OL{PLV{f]c6Yo 9U]+8*F<ޞphh5Fi!ǐ5YX';bHɷPwFzjU7ɁxJ{ک?m8Tde(=[2! xޡJ*$tf :b0372r2CRW_&KGʵ$㪮av2} ޒY&{΋ѳq,CUY»FS 7SCIAGk(aeEeB%Pu*!qfJ"5EԯUʆ3ⷃiR8$rxfbuZY1aȤE(d}mCK⪘\pm 5N7p}GkiNlRR`];TRRJ9m{o6tbQLܲoӂXx'cs r,XP|(.0ӫmY·y`}fh_cU쯻8 Rӽ^"\6B|S^Wok9L РdK 9@,SD|+|us6낙-EEbOq]wJ[ X)削EnF+.-{.$RI>Dw[bqpl8P yR>t'xt;Hes=ڟOJ~alB%LA@@AJI7!]JLSwFQ&f }@QsQ:x )}0rBLrȥQ+)~b@ZǦATl|,ԫeZOtG!/Kz]뢦5G3TBDb.+6X :)Pfm AG9F͵ZA!͵aMz Iw^F^ljl0Ti-NEnPK{ji,qSiq=}yE f5I^fs$ջ:grDrz]*ɯ 0@bKubja8Uj-S6~lG!7;[\9f.{u̬b#O(þB<)@zU$~7"H%P]/ iepxt)fQ+yciQ M+8lB<{ZI/Zx&! daQw-WF/cT[zW@3g \i}?LͶ.wJ|7%G/(U6XUf> 05tU=6="2I6$ ӕɵOJlϸm=3aȝDo/>.u$!%b5Pǃޫ7~|H M :I{y5;R߅` .D仁^[2?rڏ`ճ(7DëOաB%+T|uXmغ]@#%fUS!O3v!S_YFBs9vTٍ0f?'7pl#%37Fi>gמ1KEe Ͽr|SA^UP@ S/d`5kf6Erౘs!A5"ʕkQD.W$R.݀e ۴\Òcُ =kG v,.&^gsj?ϒXS-ctS^a.t&"UrajuCiwĆ 6DG"`'L3^HpXC Uc.zAy¥-^0+8:ݭBeǼ&z 飗e6ZflZJBpNcC_Z 7y#}C?㕏Ql4B̕9W`Lc>0 YZAER/data/ArgentinaCPI.rda0000644000176200001440000000102712534531320014524 0ustar liggesusers r0b```b`@& `bN q,JO+Ktd``z?FfI:׹l _ T=n @\_r`QoX@Kc:pY`c kvʋ@b{$Az! ` T!C@s!4BGBI(ktHtC-Y2[9C.D] n0y>Iw̷س~؟K_Cԭb<^ l߂r1s58s lΉx+`-S_O0vX7FP|92u# Ƚ> {UYAh(wX tx4ȇ_`x`~`:+X].|S`~U0nW|w;}(ĝ z9'>,Ṵ0c8Q(sI1ș0$*Ch(@šX\ d 2D0QAER/data/CigarettesB.rda0000644000176200001440000000251712534531320014461 0ustar liggesusers]{PSGؽXHV(tI$@Q &-|"QZ(QD0HP:`aDAıU 5k?ow~ c=r|}iy] p&j@e+קYw~੟Xc +F799`ק&\tu, QnFQַEi=L)hQX_nLdm ?TǾЦT@ҁ/o]qbGo:a0mT @G9ph7 Ryl[~I7 _e>Gtvz~>Γ4UtftmIL2tKnW[E*:j*';uiSr5 `+sȍ3%;s>=rTKZr>9O 0n> iz۲ahm_M^^st!68V.ccyn\mwO7@VUvߢVH-WV.гpŀ i?,YCjmd{:{f7{rxѱܮw|itM;ʭg1 |}IT!_gFEHF9jo$,sϢ1lE3`žO.o ho9%Uu }š{-_ƳO^ܻUEl7T{ﻊP湪 J emxmroꛀS|5U#R}#H?S6_Y45QzlNI4ٺďD6r/}_0GI`J".` U ;B)jH%z_RiOC5US=~$%>EDS JO"0EQWJHߐQ-? YL{c?N,E0a:ArW˥lpF_#; :>=9JҥU9W8"2hhSdOMh14 ddSOPT* Pbh F~h@4#F54 H4'T#!#LF# h0 2&&L!4* 䧩T GO?TCC=4i4iM ѧh&B14)ꞦLOPڀA` Sh0 424hL1% $AH 1gSҗ7 -:PRy |??t|a`Yi0sџ$/ۣ f)/=? Ւ";䈥v6>c(LR+ZERPJu1K$&*_ƨ,CkKuŤ9mZ h/$ ;gKRkJfdܪi;ݝYl =bCE/Rv(T;Jlܒ"jX]}Fƅ r5;Rx4 Qi4*kTAMm[Ju农eݼlL@LCBRN˱|qJ 1B=0NSHp)YNyn(sM-$hg̓ǟ?9a.ɺx4zB+Q0wXOM2)z[Ɲxσrlۨ {Ӡx(p|Oeѯ&&M6n)<h h0:!փ6ƕ[ VʢT%Rlr#hPT"?>fjb|nXJ=ˉ{4q4b}Bf55CR .ؽ..:&NMtRL+]x/[8 ]Fda6YԐ0Ni8_diͽXGGNO.nΖ m ёɖ׍<+׵K,WU1G M5SF<##~6NX }I<Ǩ ]k;éiӬ:Jo*vʗ9X~7@< ԈO<8l/"Ȑy{_W+]DQpQrۖQj-;5&sbZdEbwUH$[xAF݋s5D@$ʹ\(dwL54us%3$Id(G+. 2cE%EI2#b `%4rFWJwuuˆL "1%$WFJXFHj%ᰈJ٤ #fɢɩ IMJL]CT!.11wBVE%2UƩ I,"4E)lR c 1@!@d$AByuc& JSML$3(Dd[ $i#xrE %EL" E#"ȚM LD!b2XI a e4&‰c4EFu 6BJE C~>u3DL }N]OJNcq$0 Ri^/uiZRiku׬-MZI$I$I$I$I$I%+KkZu6vgGJ 30]u1bmm m 6l@mĝ@_}ߧN:@@%Z m 6l@m؀mbmm LiZW\óIn:9/bX`Cy@谓 vHu⍴sy2~R{H ^`AER/data/USGasB.rda0000644000176200001440000000234412534531320013347 0ustar liggesusers] PU?Xeai -$hQ$ᱱL5Ͳfe)qW)Ӏ6Ȣ`039w39=|;Rl*lj8k!l-E qD:,kB~,k{,:y!7J(9)K'T]+b 0$7µPAY ploG՚hJmF$>HsٲRz x>Q{j+e]}ea#MGoRտGf) ρN^XOٶyw8;ާ<}-y ; >g?V<sx&ce`֧0]\s*ʲ^B}eQs ʲ2W:ܣw\Ņ\݆}h|mxݏ5ЗnܣOj`~_rNm7<1~*ӌǥLI]'wS@7J2PdrvY_bZ?+/"!6U1e^:pp#$Dj|ᇮb~Wgn> Rrޖ&7*i!=&;T%Ы4!CPk|p+?1>O;0+Nơ,)[;3#-4'&sVE-ܦ]~i0!Ne}U8픋jrཋ- ]ȩ \lA.6vԋ{€No}u,DI0;#z l#@3-F=e^<5X,:Q/{F.vWҦVXu|UJDj RSnsmq5f"unםE[yk .c?Q߲-I7mDAlA}[ =ζk2xna]|㍗Pل/QwJqo:az<<12[$R\=4jl<|fKLFRV_J*arE8P6AER/data/Parade2005.rda0000644000176200001440000000261312534531320013765 0ustar liggesusersBZh91AY&SY TA ˤyn hiD!=M zA hhGi螣#52 4di6O@Ljz4z#@z@C@z PhFM AFLFF h1 d&F ёh14h0j4j=PiCG # Ѡz hzzѣ@@4hh4zq BeFX~LD.@"{O .̞p1C3{VD2 jޛ߬,l @U#.q[J .l=5?:EIfGPĩ7W3xRb&WҖwQ51үuWL#8IKJ[ZDhAȰL'tM`]K=7R6baY1`$R,X"tcWl P V E)(+`c06i a " 3 ɹ˺KO/`tT*UaY[]m !BbNKn[Zǵkl܊*:fyXaam(!`*ݤS4 B@Wl` RPΩ|¿$(5[\C(yq#t3Ziv^ ,Z~xxS<̀0 a6[zzwԢ4-=7Zy.*d R0uiߙI?qR辫vT ;8)e27/߯_jђ$^ xkY7@M.c -JehU6:lFU%;{ l!$R$: %! l(qS*gܑN$)C@AER/data/NYSESW.rda0000644000176200001440000002757012534531320013323 0ustar liggesusers7zXZi"6!X/9])TW"nRʟX\qjnj-&,!/0ۦTq:\7Ɛ>2oZ$ۼ3Z5kN\JLś[81ΩhxFQdgg!&ZZ? E _ u@^Aa,ë(:Ϙe(&z>K$Uzޱ'lU:\W#Y #Ӻ:K} 9EwgA¾M6ON! E BN72]:@eI`EX0^S+uIʇQ"nnR2Ɇ&/'^NЯ_:XDU1#;aii5 j 1? V uϠ9jc"oezq}&|Koڲ) NN2vg>٦)D`0/ސ(pʦnZe^4a_9((,/`'sc/;bWo8L[*ůZvY/M0U4*$QRΰ㎣*$8 ~ V3zZ9y;%]}a{[VHU'We; Gd;{xse1,BE'tੵ8ǽz*Ͱ =:sӴ)lUJi {1;L!2B fYX(#H U]6v(yBVM<ߑ jTWiT ik;O>C芽1@IeaM@kL=TJ|zzh䌶VŞHNn\[Hvzh)YM\`|APyo= `~xZ{U+l-w!QX+ά][A۴ɳ$+\'@]3jRu?\B2oJˁ.s+j{Yr.`>ҫxSx9K L~9-M^~Q ާT=XWXh1J6'茄\bL3Ge~( #HRѬ$RMo<)qcb4d͋9_$|g+(ƿjW髪fوdozwQwᅬؠ-C?xUi4IVdzy68I1{Jh`Y"gaDMDW` lWNtr#hЦ< I1kt| P!ײ'P3kdHHTT9-5Sq&7(1gae#'qʬW=Pv=L`{~讄B~[l&`wl?ݑTf8(Ƃ&j)D䠬+׌]{ā.-<kHޤ,ҨSI/d:)VBň>: S D~--I,U62{'x`ۈv[Wk?%S^+gNuo4; OU:׷^U9RZIr`[ $ӟ:Γ&bHHŽ.O d1>tii-zyHVȋ~ Aiԇ6P$wpNo?λ l \fW:pdGvKۈRPl3`X\fb]yϣ֕۫-?%VUO*W_~;3Ze H%TۚISZ&X QUM>*lS.Pd]6Gp#$'6Ȕh`5,ZJP)aK2!5i2!\``u gEI$)=Z:^reYpi;;Ewg}cktˮݧ27om0ҩhDJ?*t@ڝmrSH# ?1:V i~yQ(Ǯq=3^M(]O׮X+;DDl*ȇ9lM\A9VR]|{TNQr"bϘI!98)7|քϞ$˯[ 1-09f5ML/Xs݀WFDzĴ_^,dVDarv<:r_0*Eumh BqNICͪ 5)1^0s\{C{H*Dp9:#udJeM?`K7)57GQۺ;0NIgF }ɵODy=jzo?:5#̚_>~?l.t٫&Q:\^&`u =v"zi /~=Bۊ[?OeRL(qod Om cP{8@RdrѤWUuDGaʂ~Hu uFVǪ偧1p|3onlsՅQ-ڵT)_<}}A_XCV֭bʗ s1W8ni r:T]:,/Sr1hcz dE{#޹]Ό]#߉/5\}髡nҐbOYKFt^ n&%Jf<i `8>LPun^M :!ǧ\XB)ehCsW׽TLulR=dlkz?-n]5֭pʨ~?PbơZP"yZrFOAttU/ ^Νh/.vUXf0*LoVY<+ZHM[i>'ڵ`<,.z()+[gQVEѢ d&UXdjB,Uްafܛb&~^- ?4EJU)/Cd 2EN>J>ijV:^ߗA7K3<IJف6^Arph\) H|Vx 4ms{έW;lf2X3Q F\h)dH.6\G N?/'Bn]Dqm }!@j&Ҭ0 >N1޶5VĮ е#.BΪ{ iX׿ ΌAc}+ˢǫ0V=K'OCy>J;N9䅇ʭ r ilpTz# R|^Jr+6iĆ=l@ Gom Z(Xk٤Ą]k3! a_НlQs`(6pr 9292%f`Oϩz ,d1<UK33GзzNJolIU2lNƽD8\of!s:ZÞ}o#G逬ܚ'9A?̺X? 7&Iw}1G*6]ɆV՘%,UoIe;wlrZq-Β5eLԝ ֝qN'elgm/>g!ab<XK f`Kk"ֈxZ^-/B[K8 Xib Trm ,G2oԸ)iQ:?hѮ9D"/<ѽT|DwSG4ؘQѠ;x(\}XWk%K]tǰr;[\uwcp3iRײbdu0 2>&*699U Y Qj^R86 h0v0yȪ9"!Ę"OԔZ3ϊQn`9RX>7]m0ݙuœ4>;Cvket:ޗO.2XEayL$"]$~ Uojp<\p£b$};H GwPs Կ_O'47[fx!V(hue'틯΃x ehJ}/ϐՉQh<S\NpP[N$hYNmHPmDn}=eShSʩ,kKl,J5ߘy k|M:ZktVM&aȸLi`&8s WxK)֮k{F@4щFV턝եm[ 7V-??-s 5`Pu-0$R<9c۫ nܒ8 9lPm֕ vە:+ZS> q̊,lʀ#7Yg?즶-fu<<5yw0; vPsߵMP#Q_6>ӏE_thѸ@&)j? j> ܼ U!J]_]8 4 KSzR'(ުG#x6ϋqddf[cЕL[ ~M㙰>3|k4^_׃8k#ŷN񤣫p(0O ;?CCzxrbٓu-.DzɿXLՎf{& (DӺH!Ѿ,/Y2J.`#VF8;%GUr]p'\ ;М!yDM1sP6ö= wB_kL<9S&j\dee RɛĚW_:G%@L=bd\0 lP*b%\$qWfL_Aag0]sAd\,&^3fX4tyQJ/\x?&r'OMT"Y=aU*N/qӜl{gwI"z4RzBo'? 1 A}1{S4<ƈȊZ,aCoy6 dn|G[b!.2+)%w- 06~}%rI7 P{|sGtP1kDSX8a%c-5]~#;m@'5鲶)(ʁFzEfae*bVtɳPMSgbM$`@Y^هC,3>h11FF,ECle~mV(1d*σԐ _x7ޓ [nթ8Ÿϝ'SB4r@歪8zJ a j}R%L%K!"H jef2fZީ hՏ EkXSBdg&$I4~ +.[|PF9 9aq9t+t+ ;i./ | nC, CBb]60&ҫ+힜O}c J`8sRQq.lW5ꬩ03eVf-&FL{wzZJ1_j'2&.r969iSO]J! ƿռ=0̓6kOy='@;l-,^.;HپlT"zZbñ2Rt%Th=!>іW-㨺}0f J&-/J4l<89J9XKIpc]gs"wPjG 28r2* J9VU2{$|dEeQv$/ċd9}]JJ-^7;$sDz)Z[ ɸWz^qr]ǜdzFc\N- p9iQ-*B5Ҿrݯ}`;@zKK˓VŵgʉDͥyt2ߣUa&ۖ&uRi.ն^-4/d(qL8HX+ptor0ʍו +?nMblj{KNԾ YyU8Y|_VIÞ\{(آhyx dw"Ȟ9^3E ~^1/{GxS;owuZrfT^ Y %LePZ h#R5ƃ|`^+shzBUY*[w66*)C+GEU( 2wmYz!o70kT߂S)Ŷ8n0ĻQ&cg9p>Bc8Ot)-  #?Y[Y/QۿQWʭab;Ut>Sl|aRzRDz4rDžɷW1dhf{b fH]~#dlkA j #$p|~ʦ Fb 51TDdeH75 j!26ItQ)/&!sr:pTb| wD3Lo,:M ZL?y#x-8ߍ i_+kգ T]/iXH$}P]q舑TS~PB0)H"Y4ݢ/xvn;dëNOD:b{,/*ZM{(Xcd>1@o!¦1װOJ&BQ_gdt>WW@Y=|9g/(qiN2F&!ͨ͟m^}' ,.-qV"yFYЬhJG̗j$sk*nM?:Xh~p[:u":B镃ϭ:ۅ>Fy]J۹6hw! ӅfЅy{π7k…ubpԃ '\vz&#|Y ĿIVYNڋq{p<^-&}Bo !Z]n>qzw{SV(A 9KǖuT/}{ tY H(? HHY(U-s=َعo0LF(i%ճkmlux +Q{ERMఈvfλoZk\|8rq<?u-3F("cNH u 1yѧmL'T,5߻_˃ezsx,8+ʹ6 oKFU|jZsQe{nQ06 Ueiz2mA1)cҦzbXk\ri“I 7Opbf=S/_xYWK+ܭma} |NQCeW~٪ l43YQu60,В.<|=)o5&p*Pp+S'Ud.Y{TnkC  b's,j`ިB_c9MrW5&mg_fvsC' ]8*)2:]lP3xb1UiG.fɰ@ڴCgrBϧ&))Sl82Ws KkUuU#̄%LA0-Bol2d**~y%58g0#d~r-ƚ0z+ĐP ũïomssn3}VKyЍaG]73a C죻(SgjMT߿lCdyNP6o-ݵ~N\n]fo_J@ #BK%ٳvPXEzB11"){{s$ϲTӎǨ~b@0?w^ӛ[ ~vN'`f2sDo{Iߢsl%D 6x]7f9C;`I^bsE};)7ՀfGCC߿'X]5#axc/ Qw`r|L۟\Gms!m.q'7~KG\Uo4-Ͱle+Ņu\yYJd,Y%^ {rJ6Thq~'O]ߦ?2H_s#)|^Oup\2֫gx]1Rʼ) &V;CI׃TZ:n,Ft Oq"9B7ݭZi,mаV 4N@OWסgɍ]NG͙IqJ$nVZô1oc;PH.~Ɔ^&/۠=Y8ᰰv^0>0 YZAER/data/GSOEP9402.rda0000644000176200001440000002252012534531320013455 0ustar liggesusers7zXZi"6!X%])TW"nRʟX\qjnj-'>ǎ:Ӏ|E@)Ƿ^tMIq~>-Ndѵ˥W ћƥތ^\C8ԭQOɫ_<.2i 1Sipjr2ªFQڊ.((=`@ƟV6i$kqla,@\RbuxC *{_IvS͚"J#T5ha3@뱎{jpxv4̤c7lgMCab_c-YV E.O<\KGŞ\{0PqW6QɢMWnOu~I M7aP)>륳ٝ\GPK0PǶb+pۭh[PuVN@bWR :}j#]ita Zlk, t!k+A#oݝGK(1"]-&\e&fRğ 17=ȦW׌P$8dkPM-)ݚZ+VDBB@]ŗꀊ a .pzQ4f@yJZK L}+mQ9]sj5,84Q %Twj|RǸl"+zJbW{:.|d ~6.>֤ܸ]߆?Ζ u`3'yQHо}lRfZu/wqxked|86޾ "ŋհT㈯dSxrob3N@WУH_eV/F/> "E}7:uzzCz#Jo t`^u+S4)?lG ltLc}"ڡ*ӟw܇WeS]nq\MEH~::x'eUjMcVɐsqN`ɥ:@rǎErtAcxFΥWU}UL`# ҌHsa ^?wf) 'C֯c /`0!L8o j[r4\< Zui36ۓr@*Ky#ǐG ܧ h}B-9y0s|^wZo1tc+q!P @<2)cWizK* V818,jB;OOW}j,اbaqhc[Klf&SvHUjb09@M873aL*ҕ,wNWA&-%(s7{gNW\s 愈kt% vF~oZKbMFZ#} yIhY2474pE PQ0'fx, zͬ/T 4a xRFtG#ZtE;& zq1seb,?'bNʇ "Qj!CKwK:@}]>0'Å[8wUґmmV Qqv=9':#@bP_nrQ{v5%|jجͪM=# L9Iq!mu忻1^xܤX: ~Yy;NQo(s+Qkp2[bB_|5Jy MS9V1 Mw]o1g^]Y`!@4Pe RhSrGt,̄&I|z?JhLѦ|ΙyZ$TIͯUUEݖT|n[?wP5"dnJĨA`evF_ǞosQ_zS=>!YҙyR޴Y˿o&f'kķܠJ/oCܻS$6IwHd}D_lxY*>kI4ev)'B.HR Vco̗o/T>ratu'h_ݩbP#J!9+Gu҂!>%j- p,}~A|*@x&gQ1'!  :-cӤmJ9 W+~1rΎ&G`Y<\p= ߰+/|}YUxSur@C)zAn3CzT0UapfRGjzBD(tB䁘zL1l_T ǝGo'85@[H|-xB$l R{0>pٙun>@ =<ޡ: KZ/i;88\$(bJ2h+d$hakvNk<0Ff`HaLE B԰}U6طYR~͍aPUSωvV@XRWM]abe |TAWaEj^%yD?J𴓀b7[c)8vxMEpI֊*3x`=.nm4teg[Jh_M>ffWKx& ~XZw]ceɐwQzpIToy=gEU`x k(sޖoG7!7׈n Ufx=ʙl=B`صʫ *_V* C5;Vw~/#@p$#=0r΅etE#]\ʺa5V#|$P-^C4pzߩ'rύ,pBKbv.ŖL:=~Hԑ)ęx9!HHkv${37dCu?eYU0uG@ڑJQd"ļ9or~ {hoUŇy:{ma4lج|f˻ќC-v Zn1ͩ%wBJ/U'Ё rs4ouC$*K ŗiL=IL0zWg`kUk5-PmѬ:ɨ FEI,+Ma f`Ѽ8>gݖkHn2(qnV{`#'[F.LB5 OPi}[l7k;<fVoa0B5W$gcA= >ޅ.Cyx`xܷJI\V+6XqHWٝu۔wgPtozjMB;OK1Hh!+.QWq>x_P5}Uש?o?'})(3T4ax[C Ĕyn˕kWŀ?a'+6hԻfX؋@ة{ h~TŮL]q"OA& 򍁖rtEw,mM> T4 dv*%eQb PS}J"Ndy-Pxe1m8ei c-W96U"3uiS@$b?RlI\1=T4@=mOU.d!e M֙Y ms&Enj\jjRsH|Bd)5*lta&hM]nbByxqjgudb6#gdDÎA+dQ({ԫiR fMϥ8; Rc4$dUp}ڏϭrߡ{[$1~ؙ~V %R!.UO K\3/qbcRr[ .Ie21j;- )"Z@!:cȐ 3 `Qp)B# ث3Eq~FUg].K4S+SצvYz@\7giO<~GSUg7U Hd]UT^<,y]ͺȮoPe~RsRzE3rH GQ^)_|LFd0%5ߊn$zn.qx &,:XM`anVK4~:D'ŨSK'x |2Nݩ(Űb!5iS~*IwKb kba8l _Ӯ ǞĐnpsn24jR;5]oѣ6uvSO2p^m¡T`~%:^^h@qzW< r$zQH[#n\ = 6=XKqE,1k쟵Fwk"2Ƨχg`2>W8[G!WW|~n 4m^tkHnj{Vn8z=_יev򷅒dWeD-oa1z jP[@Z;hV}9̾%p? Jk*ۏiOGGV$ӚScne"M~S$Apm@/-l~ӣE8ΚUOl76rRG Wվ!gծ}BuV<ʧ |D|ŭ (mDYܡ# !~z0UW.'}ڝWiL SywlOQ͸mhg:>bEe < Luh bnh:?mTE(Ղ7sJr7}ܴgR/&RCo+a/})stj`Z yY87W=_/|@uSeӾOToh@I] qĹD號N"0Y;;>[Gv Nc bH\yu2p|js,nYkXZWLƺެNff?vtXG|fi* HD$,/:'{ 4E <,J`/dP4^M}Ը@"LE?} K=z'X|6$<[ `Ldk`/o1+vAa=&{1}&+qs' n6 h&̊=X#x>E0wԦ¾}YgSl"T0 YZAER/data/WeakInstrument.rda0000644000176200001440000000550712534531320015247 0ustar liggesusers] \eggm`! 1@΄s"$BBjBABPyT`XHeiK-wev;3;v{wL'ٝofwws{UK%͑H$ί uy?}ٯYj}Hڷe j۽;G5|-^s邛p[.P'}UM&ip֚:81 ѥ~']}ӫ?K}?vWqv/..>v?FB0ty@'e?~#Mu^e}-i"|_joޗij]H3OuH\ ?Xoscz לJ\Yu_7/? /Ы ᆹwHqg LMxR{L`ނ`{OsO%x=5޺3,㋟y4,s}+n ncrwx\ě+#WSw` o<ȥ\y^"X5Y€Cw?o?Ⱥ3Dh;BGw ]XٵA^>_~}yzðSU MF ˥\%Lo?wS$OyRó `h@qҫOЅ\GpA~D%C+4ǝtC] /U䗸G{͢/xi\]g]Ge~Í?WwݒO\CgázoT u}!YU'vq~}gP)<عOGe\?£N?TXGe=~= 'r?j:%GՋ'W%/f u`i3u*WIŋ (z /s,gD/yzz3])zIե9#'7z ȿWywUN ~|*ԅ6Ia]d|0x'G>daznOY[τ">/qJ[᧭ yY]ހȗ` zЋ|hؿ(!|`t7>$k1t@QySDrr}o0lzJ[It!:D_8'KB37I>_ qݐ1 u;A+MIg4 C>DAxF!{YEyU@U BN@ɺ8vIq3*^0wSh:G?KnԻ aB\v!"\3핺M-%NpV'èCӈciZ֑DGs[~QQ*7N<;WWS3E~~ٿ9%:PF>"Ч?!^<8yԋS/:"=CnY /{Q7:[p~HH#xGO<).*c=R_@Bcv>C|3]*wc¾PL] +pߣ,Η%ø|<ȣ'EʈYIAltaSqW^߂.AǪȫ~9W+ ? n< *iҰO®8G}p؜$~M}nؗ~vzO3כ~18qrΧGi94к:VcCq^S.K <`ÍM[h`oРO  \ {؏>Zc<~n68>] vp> [4\ }:pgu)8җ3k 8p<qL9yp,? \9 _ΞfCvT5X|ܓ:dc{L._oKNb4uMbٟY;f.sY80y"$`.4<0>o_NMyB4JV) {Og<gqy!/E~S*(|DUE ҏ|LdƷ%Oabug~Y؏ܟx}B~T ‹aI|r14yyL,^'q}nLvF>&I'y~ba;؍_6^Xx]`n|?=_ElgՔW)f!Kkoc}ٖ:C{e^7xxxxRfx+ <~Hyݹ`~Y2a"΃">9neGloc}Wlkyb4CgsaE+a=UJf=GWl&xܯEf ,Rzw!\ޥ=O:S犌S ZՓ{n$?a?_>𼼿 '|~~F#xCdg- g(x?d2")'H?o且B>g HqqKv(S=fO#|bUu/7'<)|(}X,ϭ[)/Oc_yoWA~-VG>v ~Y-kd^r|'+/Ἱ `?7 usYs35CҫָV>y5~=ݼzd%[x)?/&=s γZ>Ϫp-^sp3E?n9 T>y8q9>>?qu䒧_~+DB{]smP'e@:ީ+QFx|/P؇k9C^D+#?}X EiVWC뱠&Οتq"bov |_J]s >5"ι؛׌DoJ~*;V/_+ź] ζjn8M'KD{W\jXu퓖CŹ7Z7Fc' ),#|q޵l mOڏퟋSΧnX'vJ'X'p㿺No{F~]W {Rm& hWo{ޭVU]L9c2ulm $/+L֓ϴ 19A+B~|Pu %2e0[>(뷼^{ߗQ>o/'[6[R޶celoMCw/7:EfE>Eqm]yY[18cnq}:l;)W3VpIEگ"{bzL:Fmۖ<ޡxnFD\wdо1⻳=źDܿ,h UviknK4gMꚸV?qܙjg7M) gf՚rLkk8UNo5Yw Lfl&l&/M^M^^ ׫j>US^un+TRB0|-) ݧ0| ç0| ç0| ï0 ï0° ï0 ï0 #0 #0)(*****¨P BaT( Q0*n5u?iMMkfZSҚԝn5uhMEk&ZSКn5ugM=k!VaVaVaVaVa{˭תߪjЪVXJBZh^ ky-4мBZh> g,4|BYh> g-4B[h~ o%NiK w)AER/data/USStocksSW.rda0000644000176200001440000002072512534531320014256 0ustar liggesusers][tUE !" iһ3HQґ=-A JTQDAF)޻@[Zs_C6Է ǨCԏ +Jd֘A#O|!>_8ɴu9ETjU?E =1M}2~&l?/Sǜ$gK}k[}IT#^oj޼19ʔ)o3`8Vjv/eV6/~;LȪⷧW+N/j^4~Ro~0ioo٦ԨRyfM|\xB֋y{PT/[͒/+3"~x,ywo_H{+?EȺ}?x ԭ]Eц.]VR ^ rqŸ|&Ӫڣ[mZT ٵ:'9У='/]*?\!_zw;SCNv7Z=EFw~dթw~|u}[QJNU"?k Kd_^^.C'~q)6=٪#Ȥ%~Ov?]-m^ŏD)?2 +v#b7 c ͐Q 7']<_7[q/E6PyBmXJfeɪjb]Qo!1F}1_'}jO\h/jWL֯=TQ&dfT!~.lB݆7)'.Swˬt+ϼ7%>AY-V5[ 9n8/d{ruƦ]:UiX2^8w-@1϶ɈrZg%uU)z7Z niλIeⒷ΅X+c_ L5k{Fu VRZٔgݼ&*C3\2nsO+HV^uv|mZՔ-g)ψE)ýpP-_y}7w7Qҷ ,noߵ+pqn wTu?x{t }m_0Qc_(mb&^!rI}k{^v|H p*&O󶜒iRH<"F8}jܻ )"?nIvg*C!ȚRDlB&f@eO'k^s2~EdQڲj%kRܷL$ЗiFp>SvQL` 2[$M+G!`?ž홱3NC2!yMeL!41]t5J~uwe 8(,2]N_S71kۼDdc{ @ (++sd"wpo*;Գ8~r+4L-x}ʄڷa?/,U]ӯdˆ㧘(b@d$^\kL*Ԅ~W:t˱>z^iXFnG#["NQQ(-3 '}oܐ| ?UZtO{a/8МI5P ҕPC u\A'ju-{ xQe<u{"'}:Ѫ2"FL0qXT`db5ij)dSsѣ26L:Q}j*ȅ⊾ˬsbBA:.=ݘ#Bq?+Jz]o~qCWyI?b@7sT& ?~kpRFyI!]LU՟ WB˂Y48\&*i!*JUUVFc&çTJcqiQՃo{+}rK5} C ^Tt\'衤(Me%~G&w=R>@n (sO/Y\NCJ ''ASb-v})#xu{z0uB?b,7_a+u-×suٴs?#.B7FWamJZOJkƟQ*5Qњx<, S4\6v?tqG1=^|9%6{Vb pfحӔ_D1pBrsFkl Q"c v8#jzE2=LIY?klb)a8+Ys2n~2ʄ=KeZũZ05l( KRJ;:075RZU[}@5iEuKkZʱˆU(I(^drmk_):^82OKŴ2~Lʭ2*Kae\G2FaAop;ʖ!wܲ~:ͽ='}^~^_!S=3YU%_]E˽ŲΖ_EO%vd c'cT`{7ҽzTχ\#K˛e|_YwJmٝ = +.2 . cP&|NSϞv2y eA39{~ =Տ>1~(:X\${hA( 8(@8נ$D)9kddcA=X|L nso]PUݷ9IZN)6*eF׹_JMʈ[ ˾"dc{Ygq_U Y2r,Qٽe6>%O5],=|~L2nI܃>tˠ;OzK=Lޗ UzyBX5p]4c܋Щngz#r.sM/KQuvOП2y7Ӎ{޶2+cb}t] (WN&_ŕug~UGdf,.U;DONJ CO:K1::~L܃wy[oӳquOȮiNi; JTOΟ\>{inE3-5.| $u4aL5E/zTlsƹWSIV]}-|plp"Et '8V ޽~wy֡Z8* ɘG_ޜ/{w/ECGSa,q5wws!0aQc5zŞ2q{я#x]pQ\'?I 7Η 9W|jRx2eRm bQ\G^BT%) ~s8 &Nz׉%U՞xFt4=vYQc$@npi!'1_BJ黕Z N]/d xS0p/آ%gG?6*{~{_P0[GYRKWcT^^rb9ُS\2z3?.'oy%_JN [Le1'GGN>]&Fg=@kFVF[31܀92Yh2>t}\הw3M֡nFduF~oWgEuMþx>) >f " gi[6 bM,T'yПyiטf]Ay?'?hLi&d,c|"~f)>Yٸzz"s A2qnKVԝ99Y Gf_o?!_;{-15Y uL0?}1&Z[ɿqWדuz6cw9[sDy8sеL&bB>JogMyG ݓD82pwm4z 54'|/Q^-9׉u? Uww;y?~?ON_y I d1p26!cdl@];}f,`Hcd4Q!u*Wx^kڀ Wdf̖Oy>Af'wgI/}=pZAE)V=7K_K:l+S;:ޞkd7#k$d.Ӂת'9xi6m g]\0a36d 䀟8'c?3[8 #5xnK Ï<`?Z0'Oœݟz~|O&F e]`TwBV%]տ2҃S 8e9S" ocD >פ^a//Y'>s@ ?Yːm_v{ɞ <77mzn._${>#" {r@she}qNr'$Oj|{pFN}+}59UÜ>3˩+9O@FOn 5\T98U[eӉϽu`턁Y_`Jio󀘜8#.?<^upsPDΓ"[Wg1s^=99sXrྜ[>3:P%O7wFv.qYW?v݄ c//y?>:5cm<> =TA9w൓dykz Wo ?㼧ˤ'98'$g||vO8kzܡ/۝K޾Tx:qঢ়1Q'dzMy"9=AkĜyM9#k?x*_12KOq<&cSJPiO|s=2^r+/|Sq(,Ez'̩?G_Z)8kFnjY+_;?;Ӛ~6׬_*Iǚdjsn2OAO[oVԓz밿70 7{\H}PO dŰџn3c3:7\lo0Řs'xJvԅ1H2𜀌sc:|a7"yާg c~n2\ٌ()ywc<r~G1#fKIf70ws9-#xA<6L~|ulsdlOA ;9%c u/3:p3kx>W|rKF)L|l <5̷G+j]\JENaE9dmVq~Ӑ͗õᓌ<%s.ys(p2{" ay%{V|Ղde<#+N\z>:i ; l';k_""1Yu `ntQSI}@k'ٿ"oxxn{!tsU_[V-=noE#Y6 z[O"ײx+Չʏ2ytAD>i=:k:['Y_ccxJOZBţk޺ :aiAYVXk:u]H\Cv)}և>?@t%<=>}K_<|^~;t˾~/RsiHW `OWIQ3Cp3X-3~י7;=޶+|nZ>WEYsvjZOe;)ȹͯ\#?B?ϟ|%!tnlP2X\1OGo:.h_[9wPGG  t+ <$@ <VJ*/# 0-@S`""nT\0/p^u), >,p?xD">>:aoS-jρ䜅87P}T]8[` /AO, \~V#*FTQX%p7@ @-J` F`tu6 s=lO8S0T OQ&s1O( "Hr$_a lcoq2z_2ԷX| [u}{KؠQL.k{`Ix 37AER/data/MarkPound.rda0000644000176200001440000003562212534531320014170 0ustar liggesusers]w4Qf*i("eDeTWV(!e(+QȈ{_^o{gQ_}kܯs?^׹xいe2^ݎtQ0Փ70"!s2Jh&Etwk)C*PHCȳXgp=j6fzaXC'i)L.m~a 36}<JP,^1

,w^uXWb 6>@2apP(s n;1%'f^r0L|٫O~O RP(BE3\}}:]K6!SwK1w־pi/6TWwĊ0 {01T$"d_75Ι%fUGs\R4 ? kX_3%aQi8>Ä6^o8x>ة&vͽ:k8<jJ~wc!Y~rO$ǗCu g0=xQc+d!o/A&/s>T{/-‹X$V^3_; ΐ2P+7ӻV`>K_^cP8|]$f,?&S§lzVI38MQjCٚf-F I@pU,!Oh y%  $" H,kX{~ŠZ膒Ơ.~WPa7I &IP[5tVSouϽŽx%,#K `Lp/öشEFhX]N1QXh;\ ð _@% Rli}U(>8#.V! /)g4PMmS 9$X[c2#,'R!7ȸPףܼyB|8x,:!Z9.Z&nd.`٬'6aʻqfW)_ Eݵ؜WhaB C/ZWD|98d04#גtg[ \쮛o]ˤLIX̹mq:z0N5C}peE趔}vFs7Y=īOZ&īfY8ss8uVq'4נ[K! ]8突%q7`T,뚿~*& UƒB_K7o ?gOMUb4sV#Ack:r~7=FЦ¦ җoq0ck򧷉7Zh\go0s:76"R;ON7WD|0x?YzJ]ۇ j)^HJm#3| F`sϧ'=\r`f!&s \muR9y K."v⨕Z9~L`wZ">l'xml;2)4PepX- X}kwJ#]UΉϫNpD/'W\ cdZ1H(vdDb5?"r;TI `Uؼ3#gժISu;#9!ya[PYkhn%hVBeM`,_Xj3K "@?:v\7.LS}Ѫp/`Ok3= d@4-,>A3 +g:sؚ[WTթ?섚APAiȓF9kG Xom/ua‘N+&I~%}޾E:Ri_m!R$G|tڹ|26ˢvN9%s|.? \ .Y{\hfn4Ty٩zbⷡy<3E.xR dէf0oHx7$L {C\Z'czt}z4.A=>c7 [XrXkEcZ$#% tp^O^$?~C99So^6cb3>(|Ȭk+ܼ`Ǧu-9uc_;,DWM'by)m 4`E)i/ tG3( 01dJJi]mEs7!>t|oT7ߋyEja>zF/|>CLUO셦a#Xz8ob2#s5#+ -I)7`v='Mѽ+4Ż6bbl5^׃!'`KCG':ISּb"i j7+aHp1|Ont`Sآÿ C}oL-ozZj~AuL+T~}߻ ,/Bs4wCIv4__y,)uFii%BaO!Y@Y~ o݃*DןqaRT{n#t`)U {Lcjhz67% m[g =뫫_>;Xaݹ\|uտ>9C7vO2g.%Mp3.,:Cڹ!;MrgY(]:j"%w_58aۥ߀7km r(vL~@Yː RץyڅP#AFr ǒwn`ֱJUh`~)6 ]"`߶­J/537(^~~i?V\HJL_>n>,jQ1tIS8$zc 5 _5bgo`X 6ȥ@\٧WP~ g:-z`Tw-8U `>/l1$oX(zh,~ 2wy/vwN²&qZ-.-|5dcPRƻ-đv͔BHWVϤV @/`=ZgAw;wOY@*_UN.A"ݑ#K:=0$]!wKy=ر?}FdE,vuY/iAV3Gر!o7C $ObVcaA?U'y13i K>í/~&i~aƸkgGؓ9 KGΆRUl _^vqA?,N8) \LЋ#?#i`3WqeYu,JV4zuTFT3s7spG dt)!yq,Y>,!BJP1; wq05!Vo4J0ކ%/w?^( ,̆Ģ  X\$̂JsC.[ck"j3*9Ͻ!@e +ı>'IoIܯ@LWJ99@m?:.XrHlAhWSkbUNRL\xE勸Z2 ꃂY\7^o\ʍt~/<|+NW2}l$F67a Fz=Erla/ C&F8sZhC4 uhdyx+2>%n0tPU$/NBL+Hl` Ƽ֔ĵ#7ձ](nZirtepe{Q7Mt^suՃi8R&%*R/nju"ؙ5P+pbZklx#o>.J -')VٹY>SMր)|7,O !Dm,`&9[DydxNv1W M$o]b$T`<f\ ı+e>4cը T,mc9R cnxQd*-㢏Q:vH[zsz= #JnnŭaK| 7{O=cn<hA>z=;>̒ vrm| ,+gǕ2bJڮdcYNm6NsХ۠h&Y{¯$=g e9)l5eS^ ZA@i6a> K[k.X7׈[e.2L'MA+03)(5֠T @*NYi1p 3|"#T{U:^oe)rʎiLdz 1c<>"zLV 6U:!WUǤp6ʪFf=yi Ue\|;X=]/Ko狇65:W~fAw #O9U>Y'tfa2DH}׸҅ptJ |[2Y ]Syb_qKv I| G؛ bWz2ѩWd Gh +1`s>r}12fZy3.ZR8-sq?G2qyd Nу_Taİ.hB)˛]`ꕤ 3SX<ũ֒Ds]q KQ=܂ykM"/B'1elL2ܢ7oZIͤLU SWi a?x K'q5+LSl~x`VO:[S>KÜ0$Pzu92w^x_AghcY׈ll\| ,7ÅW信ɱCB]bԵ%<9 K?ZCm)IAa }k9q}#M]`RNJxؔr>'miMQGY\Hyk_uچq8>y2ؾvǃ  Yu6~\Ss P it MokzFo}x }(y@xubbp;/Ew`JQ+h\r;ѽji*'w5Dq)6J8J҄.o;CnRϽW-i44]fB.PTdnCGx1 iR G'J U?fe+%F#k`C~aP##4bkxllNWhYԱ(W&}[OH|k̃TekĖ* z1Ž7 C@I[kPCEF ENO 0O#ALĩݏ!ꥇ< az['xS&%A8ⴣN&j*z)ʚw1>pZ 9 I W1Ce|ury#?Oz-O01y~/?/CzV,!2wK١d{)yIL{N#/:Oߊgr+޲7ǰNԜd8 w$ޑAMS$l-HTvB,"V0t^_5&!U^LjTQDfU֐RbK s!sRhRٷa_RW>b֚tG{?Vv#F0P nZеAix}&fN|g$U:Vif *WZbU!?Wb&EG)*1=bӞtךaj6#lie3 i+6CiOӅK:l)ix 8vr1&勇jCΓVٗxvGMz3~qDqr4kY>pCLы{WW3Nn= 쏜> 7xcV<, 8ؑMo`Uss{R9Oi&~~BԚV60h~(AZJ8"1mq:,ۚկA5wwEk+T*zn@L梨p70SM\:ZتQ3H}ti*Ѭ['SMӭh])F:ʞ|!H}y7oÇ>&*\ua>$'D1Eϖ ʢȩE(g)4.~,Wdјbuϗ92KVtMiCef0^$0z6'wbvtʔZX*DCHZw#~7l@"=8'{ҁWw ACg\VRpNJhiX.*LaZgd1Qַgݔ<,(9 7]ÚŢQk6pW75l5埄~Ц-Xw&FƹxHAE+,Ԗc!X;W5D q2S1JX'g}C9s&+ԧSdW@WOMnXimfm5oHxo{{Se?WB4O 5)o=K~ztD}9Ӄ|#s4"Q\d.zO]ٞYC>ТY %VH@|ɫءJ\yzB6o c&SU`%0udDZq?AF]LZ}xk3 VY4 A|V. VV1IUNT@_:˺-(gy6^ W݈mq]*{<qBδE-/qSuGiB'-#3S*M>\ nȗq"ڝqb6?)T b9R1>t]+bw}V.Y[k`褰8|6$(_=#Y;%}j$cyڅ6lB*:PbVwPuLTj"cdlPO@aօ?/]LPcVa771F<[u8tm>&߿67^gPw i<Űi@$V/^c&d$?vbCܨqJ5Gew4mv+tOaWh2{rAl5-x: gD_[Cx|lTzy !l QWr,; $m*[~ B[A{M~KFSYŲ@ -Nh'̺[_5(]2)oѣ1&>VS^ѝ޳ {:4tO0f9 i$ob=,o 0wѱm,T~, VxuPTK`b쪼+FZixd;@cﱗ~w6+ `~]ηJv))/oܓD %KUaeveO?z r5*)w}?<ؖv";JBx9v:w`u15fOp[zow);1z]>Wa܆ e'õYDh؂ )\c# 5_ZD>ַPrLS~yAUop_,е` GBZ1Ψ139Jru}%$tuVzNGp\s8 䏋 $Uz bPU:wBunBE{,B5ts |oWUYG:0Lb&$.D쩃΢kXY*U=k`-uP/k,QpDhL*[4Dj)Rh|.Q` 5(l>jy -x}9%)?9-O w@Vnp%tְ19y.ItKXRBHgb{K!^/ #rAE=-{>t&>T &Y8p`hQ҄1|Nf(q:?܄G,%(MmwT!})(')vUVgŽ0-PYX#7#r(Kݞ8}Liy(EqKnaYrjj~)LTSnU; Saە;X!ͳ N[hQc*)/N|}} vfC6H ?딶oV`yDRoXl_BzB=c!_WBkwcHp=q Wڨ;C.o#Wѣ;ђrfoo&3hq%+"_/i7ST0̊ݪL^ A|b=vTK

F*9+9Nb ~pk$6?pu 3n7偑!/XQ-# JY)5,:./HOQB`K8qѵ+XFNf{tGw$* #1& Lq^ dRz*HAߡC@$iϞkn$+SA8G~_v4sc*m[0*!=ta+m"G")owܸYDM#. X~[Ug: i# 1nP)7tלBu蓢`!dѮI^}k=Ge`NU0}8 bsfn47WO(f24w)| /5Ms"G?͸a%+ql%G6.At`s;+D,[600.`| b= t{qzN(5F=6 V5f_&_gTEc@)ҡH ntϾsِÅ(K63~8]cu0j<.p Ôa|tJ-bÞ`!TM?]4 7?@T $_g;[2`j8TdQj tkJJ~ۤkejqN)r0Z-oYeGɠႧCp^3ҞEH[lF♾ePe&#e@-G|30.P:(0$)!T|̞鞍 6p۬: .ܿw=BƱ^raqWt9IAS\&bQ[],z]'F m*CO1tsM qPְI{,~K]^Ilc3cgl1dzuCs]uv&IYxs\aV`G< Ժ8b;Zؿ! ">aY@WC ,?UB;Sfum9eU)*1baP!nZCI2 fHhCdIYӥnlg]dŭr=Ia1 2H*6Tߜ5e-&9\hr‚&Ø9Wﮟ#oU{"E bXKPaj\k\6+l'Dr;#8\3^JEٻ)E.uRGu0 IL}MtrLOZB4):~>1Y-,Egyl+0k_oX*7a|.[?KCJjؠT| <:)v}aږyC;M kw(HlL>(Q()9!`ZC01Ib?\/OP/6f s~' YMl낪H7O16o~m<ʓU* ",+BvwN^/c#4ɽ~AeL?u)q>:^?`#wY}5«o2 iXĠѡXIns5̯0LUn}|6dr{@ O/c|u)ӜgLˑ6!C,LxX oUu#ӢD} 5^g+.꘴6ZaO>>Qظ>ǸR:@Uf Wkb?߸맰\ҞBٹ o2-!]L vLʱ6 *vc9H5`W2C!7bxڄ~n{^(QbE^|M/jOULbԹRwHŸ"JvPn}%8]/|zܗ3_̺VwC敖 s9#QjC1H|A99]^flj-iZXQ:ش3^-"V'Aш :iO{]_4/v]gְFDXd|+6а7c翵.T;fsbؙ/R3_ bi cs Wr~Cf?>Wyne$*,>/1_Ve= ZFDvcYZXG}GNRaaS\:n~JU`^U?Onh:/܍]=rř-oi}`•6 /^~~?6| o<.a^Ht̀ȽkDG"f]YObENehgmȣAkHv}U.l/Kofm!R[jl_Ӌ5 uFu~dN2*e |CmSk1@gu1A(yc6ķ9fz j1i&cuBwOL v/!!6 *èOA!ZXv,H\T10Wq7|۽_DlǶRBgk{8tq'Z])DaQNN49Q inG=aC쟪Z3_ݞ$'P&fcYEӳ|änd7ٰxo"pq~0i݁ Ԝi1aGDŽU0Ł`=Eh.ϞYb7t紵5 uωCs3HVhw.!af;?F>AER/data/EquationCitations.rda0000644000176200001440000003147412534531320015734 0ustar liggesusers} p$yޛ{ =x-W$wĥKč]"ȥl40- iXVd˶,dqb%(IGN*>bv\N✕ǎR()I`Xvw.OX }JʨJg5?)U%|N:moNz賥Tf H0j|C܁ sw2pF jnn|=R)O}(pZ2N2|j1j16zcm9 |脁{z=pVU7+ k$M40'N<)\qܦijA\sA|3:.xnqdV}sicۂƢhF^fk4dζ ed ಿ5ig:a;3ca[NޮcݚmuX-8#Xp+iT0927@pnBL4| Npr0ܜ82y>p.9[ºJ Ǥ崳  *Aݏ8tMʊ„4%Ѿi7)V5l"^鮹Ŧ2h47:^qvxj#Yyn 2mX= X4\"|96H:7):S MmI 7 o2k_o ~ZԒ8DW& .l,BZ|+? sNR+ 2L":AC[1S䧰D%] e#3u<ނ[\!;˫fC]Zi8[-X :z;e s+GP~XТWXVYZes+&6lhO! 0?q[m46ǫ.`6 cm$먎yHF^SԪ:75 ;-m5SnS7 wwݠ1-j+mei㜳 sLVo&ea7a_-v+_Ұ20^WH;]_ܰh_uEsSڍ=DuN ¢`6 zZ+ iv)JcYMo;bd̵@T4"B%!*x ap+We0c ]˹^ dt&8@W,Rz+#$@SH6z֯^Ӊ|!h׎R>ve:]ŝE?Dz 쾎fAFm5C- W 3Q'),8A +$H#Vƞvk~!TVmdz+.ľ#!Lxvud9jSo`#J,tXfsD4T؄xV!-rh 3^n)qv#DCf>7\J;Nт#"L[sýy>E;2^qcqI7tDnߪFF>4YvwoF7ȗ:._n97[Gmw( \i< iE'Тl;[adoNoj^+^rVN7%;(a9 _@dS'j%0QF.aVĠ2$P(ŏ|PKւU~VR,H$I.=U(F4EdѦ b.NqeNqY`Zkh*\W;N{}&6ȤH&,t=>ʮhl" ȱGxZƒZv[ڂI?uoݚzBWncWrM YZ ٙn1q@v CSʔK%+TD@ʼ0/S`7 XYW> $[ޏ#Űa$xXZX{Df [M;$m~܍}W/<,>!ڊT!H~9X>jK.z&j9 w>;i lC/VY zήeg@`lM)SO`kZ ʁzsnzIo6 #imLv/jsvw1l:{]=`kb}G&Ν,]ܴnƅN˵xm NGԪyt(Rh,K$j}]B#;bilYMQ,x+ď0(CW(é:l:^u o$%ϒAqcY O}q(֮#vZd^S:[&ס]9d=Z~ح4"*8yJZE JmId`$^wシ*Y:N RҮݔ%d]i>ٺ4n9$R{ ljAx\ش]|8NCW`F&-Q:|.@Z߉b$=7-:c7-,=VyIaXw3p'a9bn Ύc,:z=q0憎C.U윛 _I/^˚*"s~ɏL6U(Np}]vDx 3i7)YZ2~UN!{iK0|5(hXy n=(sB"4bʌ׊KyσFI8 ~ݎ+s +; twѢw]*ȜQ;q~%tRPpWVq¼{HE/pv"۽םY&hwe4q黫±Nek727ٵ$焏5aBP?شŜch;0n`cGBt$tIuvp?zؑҦZ/@޸ml N|,^IR?IpmD"e ɶ,r/%Yd"ʂ#U:^RDX ŷquvۭD0^ocưE :Aty'<z`;2>gS]TP]:K2$ֽvCoR-7 t%dUT]FDi[lW "X足YR}@M.V&n{ilFfQm+ٰiʢrPn۲5:||xOϫΒ! 6)* xk'r:Q;I_F{m:9ƁIWP$,{m_ʟ0K雇i{ {McN m<Dom'Mzmse1E:} B7(O= GjG_]$I|]DdNkK>c;k-ƎU>)&LDo:[u{:?>4&%CC{c(k' 'PEl&BPECt4+ -̹Y+JJ*P:[x[QƇ= ݛW|QyCSAۮ׃DB]|m'&gZ,MuD[;I="ec,6ԝ WV^ h#Trm/2ܾ]<Z]{#+9Fz'B}VJ-V] }]աrT< 6Lztbǀ&qR7v]K'>BXέ7ڄth; 8ouoh崯vPRG &cy-N[FwqRbV;:MhV*-XOΆ:Xwu``T9kdUrtޱZxi?M.bc~Iv.kN5Q޶ug|3%r%-'xD麳4c%$QsI۞coG&|C3ٜD۝D“-HUu1ko)*٤Fv4ϼA{QIJa`!ӄZ~}xiwvm-1lSHgE|9܈N}Zc4F."o-:zF(b(dήR"NNt3!-]&s7Yt4ms+ތ7öNgնy' RG!yi.D(9Ҿqִџ-H# ?xn tHwĊbȧS|}O/TQ 'U]|? mW  ?H? ̫xR<2`@&ὀ?G_kkxcqSk? R8/ _8x `-]0V)/~[Xoה`ݙ{Ifv̼ xe>tº04Qa^/#cx^g W* @RXw!(u` SbZb)&329R??GiY2XG( 47 HC~XG*+ i&*AXhwc0G6 `MZq |9 ˴5k؃~Co'V/u6ll8?x2`GA7?6ĶH%Ua3lw zS[l[N~[)#Z c+g/_a}g9ζr=ҠGzKJ&iM'_D6 4hLKl i$ \ҠIl9lC g<2@ lCf-s M2|g><2IXG Ȁ&Eɀ?!t# -KtN [ٷzn$ |Kmd] +% d@,ewϺ>9{O);BQʁF9*r+:@w>zO>XS8S~`?r[߉:A[,g+=_p[|˷cy*a{aϲ4>d9<|sES]"!E]/AJO *n=+FgOP'(xVJ.da#Vg\40F~K3:m]?qU6S cgEc.%MF4yn/.ߘK{Yg,d-}ƚ{}ܷ1YOyVÀAd6p5p/\ZkVi ;KΘ\sz^2+-w9e qVı=3:qXcm9zɖ SrF_}ۤamʞ_8}Iu?->+DF;Gv\&=߽QhW43ɯ^vh_T8ڶ䵽s=VHHɳMt%?'~D )#*a2ڧSBsvyLHo/kAc33T檅9w?D7?ϒּ9LQ:~F?CvO@j\r݊r./6EϏ/kȟy;e}$C[<͘.y-e.OdY KJ\GQu_vm̶2<Ŗs:Y=]2}eÇm˛\O*;^cmHV_U5'o^v.{CK\Chl _SNIz!sl]:uȾٸJKb!lU1/}<尗.j\}e<4~ɷC#<1i^fȘÜ0gպ+kLwv^|IjuۊF\aFTgHdx.)Ŋ4+7}oȫŊf #ߩ}M鸟._hj׾XѬ]zbNJ =z_??ƊJ+eMySXѬv"9zDu;cNJbEcESއk%Vî;b|}7Ch[a*]Gxgb9VUWUgVsgNJN'k5ij׍R4cblcScWUƷqoʫ792k^c&/ocu1oî^nνKhQ_O z_e Y2ms|.;6܎޹^+oúz^ keLW=oW]vkOĊ?WU[/8x**~'|ߙ|46հ;ݫG洗:s|IqI1TewXχO>QlQž<O*~fJ; icNz*b~;^LXf|oyUn /=eA]$һEQ)7.WulZFxc7:^|>#8HN3--w1nӐC(~h<[yO1}& ᆊ^ fN0xM$ONO3wqg/@^EWT, b7a|@a^`%^oo2ݟ$'>?||Bi~@\dZsX~Oq-ƅ^Igvi{%c2tyqxoYꐁ'$Zc?`|/q,{p6dcV7yƻ3~$gT[KXyىsbcaq;|\:q/\yǘt\6[۱35}AL6[r[lӻ=or_9WL.dxsJ ~+5e:19tQR7)Bi*GOsLaƛ8Z"L?k&Z9LyOaBi{7eƃx]<ұyRΚ[o[WzP'ɐynˬ1]+g垼#0~rJ|w>ҲxL CM|RUYtɞ (yx^53Jh /K1}sf :SJO1h̩JUZ w[yo'sR}S/ACMWrAdY~*XxDwN3r|@޿8j; ]7|G)S99mʮʘ)md?QdYjR4"wg~^UZDΘ-n sfGGU y^ΟxܵS%+OڠehǤ~?¼(BO^0[5Vg˰g9,Ms#Jlˢ SJ)rOOdꖬ>SҼ6Ȅȋ_lZĴ1m]Mi~v<3a\l5}iE/dy"F J)s9w%~}0Ec3J]"σ, 2P3)ϥw)rcL~;USq~ArK>߯\PL5x}R()| 土Vڶ視Is2%O,C6rD}I7`N3M)7{;2(g>gUv|.DC ji}$zPFQOy^-1 T 0of^Q+}q{Xi=kJK>c/jJ3N2?73>J4z%vG&sy $OxRjOEߥt8tVr$㵋0ʹę 4v?qnWU=<>уtul*3J}#Jto:)nCjrzHsbˏ8;(Ӕp|A|mN+][qErIХT=w$LuJ>SkA=)%"S\ڑ~d|y,;Vʨ~a@i}?t(I=EC/cSO*TzUgn%)f:W:V:}/43/M,xJ'5aP~mS|+[N"9$`$;+`>,uQ\7t(qkfM̃9o^+{ ʸ{y(4ڀ7Y{^~ y@AoSW nCm/(]{1knˮכ5d]aRgԥ!(+I-Juʏ#CS#t)7^#<7J鿯"B.V&{@'~BQWcGGۄ'mޚS)fk+ ŏ $ΐY'5tmƔGh*>)m=m#NOR $=> }̱MyŮHx@)m#y#[dFJ#3:%ʾ#yR7 9WJi*`ʜ+{w ė[4/+]/s /M"yYK|F>oTi]:2PSdͲN'GkFe|텖+bdKJ˺F/Ӫﯙ15ƋXl\k3JeE?dӾ]\ڑ8θ|Lg(XuI9퓳YGLs=tSJI9t<(6](6zUɁ:3‡trvYi^ҜcIIZ`(}b鹤t!g<I_3*Pa:ȜDsi>k&z}`_sAKL?^,ӛ+gdoyT鳔%G9{T\"6;*q-ɢlN(}$ӐJ1U,xJGtQ`kKLyi){^cJ$xIVHG?ڛ{YiXc,T(\PzHb8cLǔ5bCˌ;5 yTڰ#>oL8(q7o(c\1ܡܗEjGt^!{rF*9dO0;?Zi{'YDŽ5"CrT(]k.*}. J3,J^u cI-Y>_ZE4_E.ySLkJh2Ntvܖ)à,?/pGR]Z軴-/N/5egw׾[z4ot4 ߼QnM}sե߿ +Ҋ}+qה <߆v.l__% nAER/data/STAR.rda0000644000176200001440000065737412534531320013057 0ustar liggesusers7zXZi"6!X$,])TW"nRʟX\qjnj-1QI ؃ Ϳ pSIȔJ Tq̻i <ӘaQJ-|U(W8 ]IFgʭŎe:)S_VI1KpSu.ߑ\AnYgM!%",`:x;`ӥo6Nr|-ff,~<'_r=Ҫ;X7H?:Uِ2oPz94:_TT#|RR҃5!Ui&}&k/f]÷c/MWENF:6𡲁~the(Ax+G:&@exHKUI1l؉kf,n:XD' =9BIoSMq(Z1,Sߠ+q YkKFv^С5}M qWl!ϼqۛ-2Q aFys+w5FY/g0ѡv0w|9}})U*PE5Y3u׈CQRTY_t) @Ztt&0g߿_%Cwʈ;x {v%vJjD!rXbËt~璾ɆqdَXWl/nR/jo!?psx}aJe>cc*7`o#XG)W>, @YZJOyk4ȷ'댝?)S|JQ` LQa̹5y٘ e,p0nf$feFqSK$QTIEcPMxԝshYȔ8+ L|?ܣ&C=q<*wCBjiN#(gfcNX5Pe~ {Co4plf\i j<F b{)ۗcV#e3Npg8jno!R&PC;wU% "3vq[hOG,_L`F)JD;(m\76 2vh8ڴ!m?F2AˡCsYs)UF`wbi=V=D9yX9"VMIwNtH%`gBӿ@<:-{ GC=5zyA(pЄ.^vэiq)_%/sI|`󴴦vzߝIMi3&2[S Rȸ 㠡t馣() mYĹh " JV>sKQ3O$CWpxumha7O;#pQg|>*J8W#?YCfG;QD7@v%S%Tr,}գ1<"hno|4Qs9 7H$E׫Nm 1qHx>Pg8ϢK ev-nˎX?z`V]ŕlD0 ańt^B  = SJPH]Bޜ1\'G-te˓0 K2=^#u8ֻDcɰ2{sP;ۇҳR<Ѿ\jm=?]TVwl-5[@D|gn|*a:m}|)'$>F,bt?+v*Pvd$6U9@ʄZϪ^ \?{#tu@@M^=KBzu㲪U1ޝ[zAtlZ I"͞Y_KYB8gFnOmJtbcTՒh*!`=tdU8 .hG=4͠đvJyce^}@9<`Ji,PPd4kQB>Ҧ e7a2tľ)_̡e Q<~>(Dq #q~{E%Klu -x*{If1k W%x_?FbBRɝBVӘ2}>$ۓӬK@Fym|UL%Beo!D>?};Wq|M[A8x8 GfhmCsXFb.Ԙ$iM寲A?w7v?ϸO\D0}:U _/fbrVZ :ynqwީ"K)Ĺ; 1aWkL^ VxQnbJR9&._һ m\s(f)\UВj. {[܋R4Uɬknα@_\ؽ[L^vM,cX>MMH)(ԸhtUԵD|Enoנk'^yj%YPǕe Oci閉uiPSc)-J2bsKݞf{">*ɴt*иox`jjNi,l5PbCI ?Fe{Y7ԷVj_^_XJjZvn$,赩R"3: PsfT6Äbqˌ;\Jbb Di4-y6ܟMlƙS. i)z{r#mE), 1}8SNEW/@hbfǨǫo1_`k$62;3%At2vW(A||4(^8~1ߍh}hy~]k׹ ˯0ߊ'ʋBWѶd3VBHTK#Gh8&|^ϺP̔-D\ 旜ÿOuv3T cE6 |<>%tM\(%FK{߰=F\+Ti9]bOs]LajtțNAY{;'<<~i®@0[p\*^CejR8J^D7Ÿ `y>÷eBŰ脤|Qڿ<245SbOKETXsDd-MlrÐ+,Jso,<.BJpTlWeGcP0ӳBF)䙱[N\(OT6Ge? &ZCzF'l+S/{txtS Ec6OCӝ>|0r>h jڣA\h(r/>lyWZHB?"ݶpx6X zB\0%O): НMr2!JxڪN*X֙-@~*gL/9h@[e| i6GY#poJV!L{2!haA|K,GPSu[͘bO-yUN2PW>pl\4iR}Xˢ=İ?iexЬ}o+F{iFR T3 @¬T9fՌʴD}$P3gPIQ2˘sꦖJ^#rL B,y;4a`cs QBiJvG6sբ ,h!"7ezT+w+۱mĕ}bms1(Noj؋)hi{=L6"x ou nzI?}Iq2ifE6 m2{>Ů;SGLN-"QmTbQ2\Š- `K^h^ȇ`sz[>H_R2*|%d2Un@ؕ` @ܾ[[ 0wƗi tVSI(s"\-s!)vNOkn7o{)8К.x+Ά|-D]"W?>AY.|d}8^H[Cbdg1,@7glh?wC I $g)|kb@&Oa"CT瘗N9/qsbXBAkS@G/s)kfYspMZ^͏P@B_SC gOSguLԅo_'bȘg&mVcfY^ ?S1ۗEf`q =)j ͽ3Ut)VR2<;{4؋i'Oiޜw]݅-3t%R ׇṖQ□"Wk,j;nn t;fр֢ـ gޔ)C 5zwejЩ'3*r:Ud#[nz!>@В?Ic0Sy6%$ f"k,=/XGrjzPgK e ρRa>1 rSCƉrGɾ3pW+ɉDAf%INYM?ϑNSg7#مbƫu&y%rE1WRޒL](SNH4wSmgxvuu9pX\Rd s!_r :ٌYY}E\폈{drp?BGb_NL(ܨAyىPH|튞g( ;E҅Ao'˂IDLT+AO_jU7!+G`"Tu׎ @ld:I8lF`l,Mh;oDip`R9zlv'`ItC,.Sޕ?Ѥ=s:o㨂h-7&0\1Hzv.A&]rD!S$iC950pؽWhO'P!ڝOL5"xtF]gGb",E} Jb1ew+grewެ s \:C8S{?Zq]5DSK\WZlu#8oxD-7oٟNp[{dn}Yߕgx8%\Q-Km}oaY8A^u(̋;]$7*Ic1oo1?Rjs{^?v"(M!\ 9fY+]E ؖ~8X xwJ c <͏ :wn>e-.O}zI OϿoxTFH!hE] GL҇4Ӎxdfk1"Clt/{!wDfC\N**sxFAH jH /qLj&Ǵ8B>N04 XZR,-nJ `t5B';Hk}U}#2zW{Jkzj|2c7k L(T%(8V^vdȟ8!ohf nhsAV}"lRρä|?1ز6S@ś=FSXE@*VO}cXңrBda?ZCc:ct60z rQJa h1 /;=6aYJT X]X̍%2-=ctOr`Z뷅tfZ]4N^ 4UFea1]~cP9d7:Y-\ C Di8eK[rR0I(PiW]YhB$+OMx:+] +\:n4=v0-(Wk|Nس㾻 p.@A~~l7( Si6+t@4ӤsO ѴP4UEBf\7!L}(W޺QqBR? x7hV*QXm(b#k m(ZRԩ=c[brhi_.̾ rQ '>'A#E#vE !CS`fB47߮`BC[kǁ?T2Nr#w7 XۑeZGK鐮C1Ӭ2&㐹$C7qr7Kyd0ҚlC m~[vx:2%*G,VHU)7\_+{WOƌ)2놤?0( #; :')3:#'#Vj(&L ULQݍ^<>vImy~'42MfF̢lHD3$~ D˼ +z/duB f.m,}׽~ˑGd^wҸ},>)^k hXQJVejvFMR5XDd͜ ϬxD&FXTUX3!Q96U ce:I^XQS{/J^\Gl&:\mmRԩw4AR"ц"A6aa=q} Ǝ %}"B+QJυ* e#]9cnAe#pUVN_)=Tⴥ0(^akfT1TIv24JS3̼Nҋ^cVn_QHA0i{mr)\-*|9e(Q%]f% 9lz O EWZug .`Xj\s}E<=-[$P4 oT.mlw3 12sYJ|͡ ź5;цza:_?7 M4-ڑ4bzG{]=/y䣗UgW"~7H3ɫd˿!/5A2ӘWHGpZo} k LtŒ1t6L|.g5lw&Gq'I5*ޯz6vl9.y [:k@-n>(e}́ CMp ;$6xщiy QIÈħFCOc9y:%LTEg$RDpݗY YsF8ߪ,h@Tm_ocJw!u]f?X7L0YV A[N#d-EI[(m߇*c6V<+2bI'YS4?O4kcRP'$,F͌"Ǥ%F)"dc5oTYG1Os,|LHk!pD-V'xp.7qoKxl>4&PXnǸDZ Yx71iy hRZU]_~f Z8>6ehHy vWƞ]1#$wI(ߌ\"0üzp}zW40dsnYԮ6Sj[v9~Vaxtr/\ڠ2)ގ,Bb$( 5iCOdJ^oyڛn9wNV 55vS)sb"yoܦ aK[s"F,ݵY@+` jHӆ8 +ݹNFXM4XM'>}IFYZSg}Ciu)mJeWvEtd3v|os"tWP10tjǑT_qBX(~lbҟN3xb-eطVv}Ӏ((w瓷8inYŧѾd7zolH,܋EPI $ϦY+}Ht'R`7 GCǣB\uɘ8m^wu?nʺ4`oG㾫r@\nb-3%7DQϧHGzٳS.3UmjkD:`u:c/.r ldQ#E#%Fms㺚V2!O1bd9?%9ѭmj5!~wĝ)fDZ)6Ͳ%Sr _`=5_[%vw U&)6ju4; Yj;` -mi9?o,2>,y_kٜ1d$UƗff2U{7ijr~pQݫgRbc0+2;Գ+s*lLH\άP_$_2Q29 Q| iha"~Q :L#<16`{#v $}C[S{׃IH<%^0wuGedI( g|$ 2W4MHQc:aÿ 2K^hunQ̓gP%Cr& ;<] Kt< cH5zځU?yǓiRDkMi<V{4fS~Idvu'fouyGDݎ;%^yYUӎp.HkgC@4S$r NF]5RYvc 33:UZ‚y-!΀AW3O!ADxj&ر'1DGRF\r$Zc!y-p򡭪.w9qJm S{"ڨfL-W.6#3M>b [)D?~ʰ,&t<1iL0X!_Am-`9oۺwg好brpEӘGd{gBe9G|(z'gu-@nHnuY$x&ߐ ڗqZg,Td| O*ɟ6t{-SrG5'ɼ,oE)5J1%%b_T/"Q:!?Y<d6өc%+B EP%u4Kw1XaqBUb$SXbY);C:!bhH)]BgX@W:DG+Ttr%8=OwY\ϓUaDp*V,X*VI#.=qx\jeUyd4פ|-WɥrJ/`FzdtfFQ}`᷊"NcA6 %2AP ń8҈&Ḑ{y`Ɣ^&Zx&~-Yɪ>UjpP33@OQY ?Ž`;ck>)uNj{q([;S09Lf(c<~ulގ~ )f ճT٧Y9/猯tNEJdMU>FmB 0F}e&i ieOcgϙ|O%ٰѾsfŪ b\i!׊2ERqT~w/btRVހ~D_:1s:Kz65 PiBÌ'9XmB0xe 1p;B|&p\ *yFd I\<(Se<^E-㗠=2VӠOۜ 팏Co%(ꖴ9$9ؗ1eP3O n@'oiwe=NyKHM2勅SPdu3R^Mh]׉!GQM A)eV 6;W`A`+*⑱Ч-ݏ ޟK߬Ļ-xXo>l 8Y*3A"I)U쐶eG']cmd^~ vٸ4k{cnn΂ji 0ĮSQ1:>d,,Sa&,\  MiK:1>*j1ϥmcFP4ߌ*VycB^',M*тyqlfa^AcF%[[&c=Lp: eI[)ExNF4)ښm%ܬ!`Jj`Hݑ`(RH B#$tΈ{te/)g:OOB0I G^ 4dвue:-*G$,HA!%+ t?u7ayP,IV֫[ne(hZ`K$}T?b$4:`^FfTXs#rlcC zaJ;P۲HцֶPyq7 P zɪ+zh^Dm ` KIOqއk!OOJ- "ĆF֢{⫏߱I{<aVP:ƽU ͇CJ  ޾W;R]=GgNl,afoGH']oXo`"'Ld?asK;|Ul峋};~/?[[NSOﵓC2ZEQ=5:/0򝨬^qjdּ'cw:wB@g*4݈ue2dH?4Y@nNRsH;LX ~yRO'T98ʰ4ҹ0JB5=( `J$FKsVWơARTƟ./L]> 7L{ҧSp_ (I~1|휤ݵ"L޲۝~@8鷜PyZֽ-g4wn"ɯ%*QMND$tq; 7>na~+*PvMK8>fk3m.~S,;A(xrq'M0hǘ${ ROͿRGr7`?e%`C%"y{#F0zx:]`XOUͼ*}'TO[XPrakn&0Һ/ y6SglixjR<$Vb=󗛆w3I'*ӞS%aP:)3;j4%l 5zܹ%P*w[XGK{;pd ΢R5;UDB`dNv^~Ed lSN@:88A8s)6 {߄*̯ln!W|Noei`F.P$Fdph-Hmv*Rv¹{Fs ,X=at]uX{H˿2b&7G(uNg~w榄̇-եɻ,eO w[N27';|ȏK>"HqK׳ˀ.I_ybnMR]fl?ɤSLxdVY$i~0J@NIB49f/'4c[f?X1FE.ɟxu|q[1"45%jn%#l1ѝBVgJpCC.(,=Ik ϬafBj&BUQѐp @2HnjZCAVm᭥jz!rq?~Xx`!fԆ_by0vI+rs$Xd^lCNp6lsl=*P/Ak{ˡmqD^wP? WEGkzjUU9 +5 iz}:Dvu* `wrp3a 8(?\SӭP=FjH鰂LX Oz1t/%Oti@૤_t/h7!x+`fNcJr!@0/\ ~#*E*_=҆XjXep-V-'MJuw.o̓)>-|e՚vNZb E0ӗm/0NNc+5vcta[Tn,4B3}mi<71观SYD2loi[%4h9>;"p^፸|yŷEMyy D8Rob-@( "Cst຤s4j'emr>"Џu-D@Tbw0CfLXLKJknptB^?zSv\XsFIB 9>'r{_R9-'e"dq}67H e c)E2 l#juYH(DguBDϢl^bIy> UwÚ)y,Nؿ2 U䘫{ԥnQޘ(5{wwZrLw1rhncs߾0fcN܀."EIu'6Xb}Ŀvt.~6 ڶ#3^ ^ɲf_de୛aCR7_ly큛}[|Vâ)1N$C*^-NŒP열4cllaݢn:IA,5R(_}٭zRd-a \BѯfK\8%t6ܩ[R@Zf=)1fJgnS?S X p}jt8P[f.Ip]Aګ=SpGlQ5S(s-Ȱ"0rφxT݂/ⶦ"r7$a!՝>.{G8LP+ ?Oy:vE@MGj{ߋ`20WͳÛ_%qy$RD~.B6ޞFddʋivkt 5s5zMP'FU8˗kAȧG*()1QE@0t 6RGUPd#N/7 spLq o}tPɁ4cX-._L\\4B;6oi(DD/mi! S,qF*%ẅ`?pyEEjpYL]L0^+.9dg-#VgC|t")>g8 $[ٽwQHe#s&JJrBǓk~imsN,>H|93s0~qRD1k~Ən<8Is淐f%jO0V滐Uui +3CVܰ~p.zy+wtZ5_?P:o54~,ݵn)wqq|ɂ!, <[{.VD8ź,o:eT ʻQ1<2]>Wџ pw:äos&,5Nl0s<:"STXL{2 xWm2$8уÜ(ήs vv0c&qTY]FpcJdɃ#H&\MX̕$h)^ґ\WyWj6+R!G\pX `LQ+j HGN쵣kQϞl9@y ><+Z7:U\e~%&!_(uS&CI;Ϟ1TA;Yvlp?HD_=~Xñ$_(J{:z\L5 Wiz׮Β JX<() RG{^(E#UKC6tFqZQy ,+Dc*P؁1pEAvꊌ gd4*4iKy,ee!`G5R1{=4DЂ>A8}[Zpz@qeժ}Տ%`E6n M+yWEZǾj<&3:`3~Ikw1,Nkj+z|Y⃩uhRp*wj=';0CP4:o2U`^-#U* A :7ٟ*7ՉQVLKcUAZ2 egX.2JF@&-.zlZԠwKik-LO%H `zU&F9 jARFCT=IML)óGO)$﷤,AfN a)ϒbQIAT{+Y=R} fhJI 0%Z^Y%~AZafGFeO[TgNioqY>ʹΚhJ4ZYtAcUh%Ck1iz@k#~QVUWnE$]O64W^[j8U,5̨]% 66-v\7Z+67BXx~d1q\C"UlϥItW9JwĽ.Zq- /Bʙ)PW{7PZٟ^Y7@`n\ K+G^ Nc>W(G9mwNӺv%:w'U;=rKoxEa+/24K~@hXJ92vޓ<:"o5#bKa Ȣ;MuH#f0v{!GnTrɴcvop10dp|p:sH/mPn?7_}{-dud)Dh_g4=iag` l¬kLbpD(숷b&.Z>3%%L"^Y#)p[r5۬|d௷6drn ?|ȪġaorCg;Ⱥ)P]F#0icH8ʞ75:KRl !OJcQAfJPzpAr"0c;[xD #cآp}'\X3@Ҳ!X9Šr^i+k*jlu+q1;WyN6[A/ ɑ͹Y4UGJSQ%pey6|'Aѿ% /=?x:vV,_lS虝&KV:2u'B6nluˡ]=uD=5?U­K,DRQ&FYT@ (FxmBi8S>Mkv`eyت"$iD1!qA\_rZM rKl =!N?=Bg;ǒd@8,t&XKF}ZۋҧW`4 #CdnƠ!A@M!0\A)ĝ#m\H?zQZ (0:{h fs>%#)}E249r&!#""by_D+%u70Ԝ5\0LSL9<|OS9EN Gf ChV~a᪴fub!+)R<+k69 ]. 1ԙO3qxu7Ra&ͯP5.jZ=h$Pˏ+r Cu$_ko]c||K6@a>~сײYR(atΓ؅cZ&[fJl>9bBbAC9rtIQGf$@)^Z XHG) ô0k>`9wWdZ i)KRk ~F."`gH&#k0gfkRCh/! nZ(<5@c+Q4l™i$.zvT;#):W8uusMyÍcuOCf!$B@q?ZkxEG _ҥ׬5.*XI}qҖ`d9ߩц0r& *nj*a`t4uXQld;_;`6H(5]P+3ye*|5$ލ(V agK͜efts4YǦpFqIC7[ޒUI%kBXESU5 3lI$kfc|wzAz+l4{-/P%a?B3q=Q>[THW4dERFy]6.$C5nҭJJ)1^id/wstVDa #W1Xe[W{V=RF-ƻ`_[4`P+l$*+ [Չ v Rܑa|$X`0rZ>5'|iNbb?B6ܹnf?)rOk>A}H&JVta3J`gW4^&7D <ϬդzݫoevT\ zAP̧eɿEǀ1zbCuxW:ΤnIǹSP %BMFO;L|.Ĉv$\%៦ŒWWCQq1>1Sk>8V`Jwow nc+3u"o}DpZ=mD=I?A=.'Zv['v+@Y=o As,q8kGR%@};1^ ,qAE -ݖvp!7K_j!vaFDd3U[BsYt`moI fRBMNܮF|%iTsZ ^n7BOhHYʞPO^mV& *;163yf5%ɽؿkoxY[?'tIH NdV#N5HT* ɰ4WoK(ZJ6hmBm}h~^OH頺_P^?dWEG"}I գ{3~:ͲnRm[z:gKm\𬟍 I <vZ\,''O )Iܻ+ȮM)ucBP;R*(I8yƒb88xY{h؅no㫯SG{ߞ %v[OC6 FIYh: icuW7(G~TGFØDFtEKu籘<1JK1K$8%.oջ&w4'Wp̱NϑyA@VbiZ8Ē:9y9+)JS䧘i0(wQ0xy'.)0eOpRO]k[vܼMTMA'ӝa!X9Ň9yJ׀m%8I芯k-BC[@CFV.Py\5Aii[wvTsrIq}Ces5PKUv\ P:>H!3^@&uuWz,CU<ܛԒĕ=muDƆZT!`ʠdj^$mQO>ve t,y2oEKjiw\)&ݤA =p6zvt9o"\;7{j L=DSǶXץE ``H/O^ećA[Via[Y$R[i pCk$\Vw$oaLe>6ފK"rX]Tk+# .96J( V acbu+x8Jsf{h8B Nc:9`11^?h^g{ZfO=G\:p[afN c 5!2:O< %b#?P~SM~ާW$oF%& i0wވQ(2w>-ܚIy27&")oMcӽ_`S*c-Fr7pN+N HLŤ_*mOd«*QN 160(Z?dMv%xݼqB,wpHkFqa*g u$S\>{o/ ӑ:ݚˬgR'e>}$wPPh3pR72jQΝM76`SC| *8 .f"#eAϫWcd2xZe4w?7f@Uz^LJHfo|sNn䑬zU?VX<҆p KBܓOңP) CqB:z`6W,铜kJoj=h٪/px9[Si<كϓ˴6鶝gt ;yl-op^ahHPJo s /<ʈtqSKhwgxNZRP6ɑsz3uGIFlk8 8ÌL~IMuZvA1]zJ>ޡYJJy6nngH:Y"i'&C0^5E@݄ߧrb e8?֏zOCػRf&;5il@R!A 7飓x-B ]qB_x0(6lBS'a}si̪y>9 % OF)XeYM4MM *aH)e&ALs,qb@$˃U&j -P#L!|##~WE'/ ڧӹ&`Al iQ5msDɴWLCex` \NCHXA^qj[:DJ@qv:;FaGH0Sq#^JX4l?}GA&-?^r(Xk?8TUB; y9d!!܏2̶w0'RI#iм8Y)ˊWہhӗ䅶JLҚbU7;qV1o;*4pnl̲F _nFv&koHK> >`Pֿa">/,,7F<}ީ @[fgGد }튥$7jhthĮU;ݖe6P㳻?ht^IqXDm{1ǽ\T$s[]ײCK6`e?k6)pA>zO м(65L ,\MuvsO1]df>2D"7C XA fÆb_m RRs%owH@g[E 8`O)z:CSo[̄qatt-Q{WIg엱,E2spCD]vd:㭠r_ rfG8>dQ 7 /is2ߴ4H=p*k"4ц*͢irQ# ^'wRp'ѧ6 wՒ6G5";k,W.qdtZpvq6͈w{Փ)swshթ=}a^$7)vJEQtW W7I$Jh@g:tM"wi O&ՉCUϢ9dWtb >/@:Z5+:a{vY, 5 oSb0dq2>#dh 5š]Yt7(bı ks0 Mu:iV-3%ltέZ\zr8şU"Z(ee[̓'p&O紲$9$Reʭ{?IBc|KY67~tpZ-qq1畖(&|c__wAcyfsEH`5X={T>Bjx=t˕zikH'̕Q5TAbﰹB*ʗu B RTD*V3 Dmo^T&-F'?QޯN=Bv$\uxhDU.$+H+B=۔1LMj{xHZfؼ,@Eu/K5q8{3 z C8;鬬bMLD{ݫ*d}e2{=Q=蠃@i#$;%ψmT+HVoT-r12 )?y h./u;(6 p- s(I|,6,"NrKs5"*~lMQ$Lˬ_j]@#dthaEg&`bi32~Rr̔KDteˀ^ב N7ucH-J rc'Gܭ3A-cDb<&P;Sj@Y+;:l]/ab;VpL*FѸ*lXՐ^\uaUGCΕn y; #[MWt쳐ǜ;< &z:R~xgOGMʙ\^25\2g]VCO洈5B>Q ?Ԍw'ïqسfa]iXxOsĄm}K3pq/D#3 ]"P`jGHW*ū0օSoV)/oSj"8~8 >UYj# \ GYj֭]ů,Q)Rf>E")߸f9&al`8l9 J?E/% |s8x(Y5p"Q&38{HBߊwKP{Rc\+d#/q_!)ʆv7_ ӔV']o˞6L.&dgyCFn3K+v%S\6^9J/˒f3BGUJ:8IEE6kV-Ԧ蟘ggOdDitϺ}!,uULQ6.nJp)кzuok&HAwCEeUmseD$3Ytjk򲍩nz 9rx522.Iۚm,NfEn]YE9pQE8޲3vci@G$Nr=:ID<;1FL;O@&vnO]K.՗IgB=[ރhS]dS}f2wI>. BN޾fa:1Վuy$T DŹsŅ׃rgPX<{@oG? "/e> g!9G\F}k8NMqVr'\vg>)r'C_qՇH8^7w0|E{I8rE֛ㅗC ]T>CZ;*"sէlm2039ZC?'I[].ݗr}]{ 0-Td;Ƃ Q93} " t3C"@v.L_2ū6U{ءRɗ>! x jZ ~..Grv?^!]P}64+$W/mN*vɜysS[H6o 9dߧ|.q{>(Xk]VFBdss҉-G;e$FTY}ܠWm;`_n?O}MDKj=U)nkpl"Z:[x ˞p񧿚6LYYE7|LHίR }aē=zq.aotx cC^y)huGaR2_onc-%2G?o;M_ bQg!0=%xvw{_Q 4coWcmCH?vIɹˬlnCtE;턓l#3rWf\m FP7Bn%dcg#h!Ujsf'ѢChɈXmHA؝T7LzQk~YB_ a< xx4H/; 0d/n?&0viH\zs9wot(=;4Il@?:oyd*. y[gWTk>5?q:ڠ|PlFˍ<8k;Dx0XxSU6D*{3:鸾GpL*!҂kI7"Rez1vz:,#/AY)`xW9yAoї4֯`F9<\OAU: = Z|똳XtK0DB- (v:2Lau_k |9iYeW!_YBÆ$f QM ZY0<$*@@;s#El$y fCRrxY.͔`ю1Wi:-Ko܅/N:l#-uݽ\J61jS`d3C})w:ݡVvAYe+(qW $^qFs- "}ɨuΫ[}Gp?zM$c>UuӛEiR22c,\FJW)*\~0 p|46E Q\N` n"98UJ;elhC.w_p|E 2ض +0&\6bB}"!e}ghc9ѕ`9BRuBKs0!}!.ϋGsoBDKCsBz*S6!\ѴJSiYj{-尿õ@+Fg[n+t&덚A3 A)y%"h|埣w =#)NP> uw ^=ĩ*aUS;q&TM,@hq+^=Nr:X|"EhְQwv 278 չG@vMK1)3nA\n7(-ouD"iEΆtDꬎ+㶘d}mmiLEBzk&(~B(6o +Uh& \j=y'`J1V*;h1'"qI6f!|iW#cCG8Y6:*t_%pfm x[^MEa.$)+ط0=sQ,>+uknЦ:Wg{eQ)9`U?+;+9 GٳYgHdwC>}CP=νڐے_Ug'WgyC8 ;ծYlHs|c@VHJCb `2‰i E'{ d(>rpeYz%.e̦GpbKg$I!ЍWB T@sr3WJ?G%_~E9rNnw `˛%dyw&.8+HTYeV 9CY$rD^۹ֹDCt4p%ޔ"nb:hPRԅG\?v^4ǑW#;EPrk3noSY\dM/*_Yn1A9CkbE bĤ]߷p5TTOJz`}L}>|1wkɐ E:x%| U< `8S4MV2쒏 A%q6.P} 9Byw֜u+#낁g̫ pO?՘cGi?t"bhl=~#W[#:}0=X%brIſ%zY^#6N#^B=gaI\s'Y路3x}]~*&:>]`d|۱h> g eeeb33be>]Z{pi1ܝ(#N S1 Mb'zX!ޭ{̱673,8@5yo廀 @xny3ƴJ)̄͸Q"}2bmDή {t]N>|n6U̬FCid90v}(FgH#w>y~Mk"ǣ]q?͇'ԣLQśJe[ft{Qѡ8Od͡#+4TE~_P+AA2(_,'$!3Qσ .OtDIFheߠhM3>9K ykkΕW^} GC#cߛBE7^2**_e71n#dkq {7k\*e-sg~ 栺Aa\ۊeA# k [E(?j=Kˆ I¬:=îf|aNr zP2z"eBћ5dK  j 6**8֕$o5- !',o3_^=n+co "n|bO ?_,OfC#F]mwi:F& f)2QEf%+C*/eb./}]vrE.s+Ta4l_Y:Ќ?9KӁQڍ@2nћ6˳Iq|4빤.6麝_`nLmYTA߲ {4:ɸNi̿w?lv=<|&o{5 _6Rs.l[>њVJ0[jNJzU!V ^G蜀{󺈆hz,V4hT "Z +/yD_?1-Ġe$4-Tе,[<LS = eT:a%椓5@pt _&"&DQ0_B?; !_*!yyY:.\ mA1ݻD(UKbi$d6ݡxl+XҎqzZVY. i?Qosdkm Y: 571s8JH-;6=r&q5bg E{>b'-o~Uluu`Ȍc(faںZoyDOގ] 04k6m_,v.S.pqt`0f;djhqs51̞Y *WQ*93>gd!Lʅ/<'ʣ[>bܱ])/: aӖ0R+?1G#b󖴝 8}V~QW-JAT-Fdy&XS*O8w~V GegehmryoZZ3ۄ8ը)e_^UqGaW9B4J+I QZi :zExw7)s0ه=pj AW$~2E{g5%E^98s»LSsOzƑ!BbզZvɸRp"Q*s_s)Է?aH-4>J#A n;|N=4M9EjKe!oЍesdpdN3z0bZWRچPc|nSisxp5H2ɏ7-)!2o}6a+O/ edf5YEus$C`.J09]P0K$>mZe4)JTe;i:KK E;75)/kKxܴT 4Ԛ"%Bќ Vݔ.E7-:PI m93&VWjMp9r'v*hΠelTJ1yB~S> K/GNjjI,JZ.Rҋ& Ap~wSSQԑ3Tx%<^@oj_Txl ^ 9Cd9P>/y[- ԭǚ.'ZFuƸE`[?IFey*ܗLKFRDo-IjWGW.dgen8L[b5Zֵ}E[ŋOgG>)˶uzСd Gg \h[Rj(%nFFչ[ߛ8 Sv-b,l[h"7T5}CjncJ.@#)Gϩ*.e|7 ڰ뫹i& <3ާyuCIhѼHKtVm epzoa7в)}JқM'ym4oНX4OBRW+ TxEYS|Zf}jrnp(g2{xtQyϋStvꃠɁ/+rvǐ[~@z|GXD$E2ߤC׃=k9xK\d(k6,lFbx|#H3;Ow Wvq$I|Ӄ4p">6U%Z#G\7,{%Q,p&w9bI~ya$Go3LlegeiQ\&E%2|h͚,<(:Z;P'c(΁n:laWSŘ)POL4 | :׭pw#fyf]mxG3YW/eYHX!IQOr:8jRxU+uUpRq[H~v!B cAM`I;59veM1;lcuy˭t[MP,a\\PXnȂ1WS%Mx6eR:ckzPD Fg::|C5V7m2,|0f)_-`AI[Ln݊ Կ'\pW G#H)n<] ayA3f#$%=JP[J cyi %vIW'$0xl Z2]ɣlgBj~EVڶ=R1<2J3 nY\IkdzEC4565ʁ<0n9fl6[JkDC^x٩/3d&7^O^RzUԐ"FfϬC~}ڨ _OFK`>!!ȌpqG9Mks\ucΌFV5KC*A-ߢG :wt F94~͌Ҳh# *0pq zhAoa\,s tzvYv;+ĞrUlj.&~mt좸ԅSzSVT{ 2^N9  (r̚ve&5#N~HBFjx*F޶:E1%xCs7edI: (μIiq´׉Z8EO4;0ƆtMrFMJkQR_۫W'MO)vٺ6N/ iN f{r:%݈oeARbxbt'(SDgY]46@>ڎg0;]b]Ae;o&H:ҿ-6&$o=jb\MEϟ|`XDrhtYrb?aV'j Gӂ$6l68P̾(+?S!faOR\oh~YK@%KhP-uoh1Xϱ?m 6#K[5)J}C>3Q>Ǻ3P11 m#_xL $#Wz\#>aZ9Y )"\Sѐ l `> 'M#FWķ‚cMD[agw!pCya#\(HM4SVު"Ci'᤾VY; FRT?=V $GܭFȤ`]xM`-0Њ4/UqW~zPMBMV>>[Wm >ICU.<6@M}{B<(=.´eAws+|f]1,"rƹc-V0J`*"s4[&aZ2)U|T4pvyvX`H[Thw~gi\MXopF8N@>w'}9䀊>tw̚fڂ`"%u)3 fN02!c ziDV|1Y[pmD Uj&C gh=!CMk kq3T&ǚN:7axDgm " 0= O)\2eP&1YZ3mu)i#YcK?q<<ۏ*t(%|EOGȦ$T .;F }Q֗ }\I2rW4$TA',iP(i"ol]u D-MaZSf¬8^l|/fY4+yk`JZH KɅ}9VӻԚI}=u%ȺaM^BN.aƿAIYAzq'#Ԉb$e6( WrS5tl/J" ޑLT)J@EXT䵻4Inq8UgB@3"YttJ9y  l*b+ 9ÄqB|ъF eM6n)3Ђ_gQ懙 <:t& WygNG=zCl>ٔ1rq]pp>|2jBiSl?U]XWGZ[RJDŽǴe ?Vq [y" }7w6tZ*T&Clkg[OS| |ˎ[+ֳܰfwDO3M>c+Or sSm~f۸|yv:Yf-xGdv+Q ̨f_S kh pi1oaul_0koa7ptR@H "I=U:Um9 RnF;27DVW>nN8 s`3:]. ~ Z=I1M+:UϜygVp +5/̭QŸ-DD)); O(.uLtd=Ǣz)X%O\sȰ^ ڛr 1T38l!0= ?UU;ڔhz+,, pR- EVWY*`0?9Z[tb.+FsjNL(_*{w܆/b(ٳCFb- kRG:~0.w F @uT9!^;/+h+z*`9r;=yxE:}^Ob38_~PݡSt$rWiuz`6ԛz`QT08l2V5Mudž>q# _PV%iE.pPXŸ4& ".E(Is^bG1` KP+}&N ePM{VC)d^;$f>rtkxrX,+GhÊArgrw~֏&i^(|0Wk( 9q 4%T*t\2@ꂱ/jg} O`T aSdT>z-G^nBn}Z`g`jU5OFCTKQjtJ*z=9D8?w.GHz[]W ` p>I<C`>ɧY{XeX8$їAF\ X{`Vp#+^ε)e erg pp$8s9Qmu8OZ+ x\"qi92egR‘sqJC(Q3f]X. I> +\܏M/%{DPAw)n uJ^xiѹNEQS汈pw2CCԣj5;2 #;@7e!WRxx8>sV^⚡ڤ AD,b<CnE(sʇ2)Ďnt+5 /X"Jj %-meFR8gƅݢӖNBj.P>j Xɋm@۳,J"=:wk]3p}uXi3Mْ.xeI,S=9˛-nAOBMG!+Qx$%Zpzy֋^2| ^-xwth3P}vTٯw_U]kj1S#;poI2Ӥ7iif%(_%8e ŁWՍYXKu{L!uQqP m ƀVBFҘA/_%ߓq'C:"#'21Ɵt*[(~*(okoiBZ`ㆁsaYGJhSf9j.E{U센7+M;LUd9?Psh.e]9"Z" S f e1@m,Pѭ=iMTփ@-mfU07`&P׳>`Ktt†VƆ;tY:UnGUx! E.xf;s(#1dՀpļ屫8vYʍqkaj{܃ƒ`S-zL塑08VPʡ&Ò$g"K<[yk OΠ4A<YgHh} ݢ!^"y,aCЮ +>d(wrFT>(C=Ym6У!'BVmRَ"YQ KYn g`N5Gɿ4n?. z!َrƊV0p)Ea= kcX-JZN1pN [q$GwO44P20Ù.} \:}ڜq>_q}ª6J_nӯ < { K5y.Uߣ<Kl)/B;KӀa|:4h`a-ylu6 'l^/\v:l-gX9  {3x*zAƀIlOsRH'?ùj!v Q-+a0mgQpaAPTY5=  3I/1 w}#$ڶ|F1/"dqM94*kq3LjK*{A(|&AƱAQ̄RUe|T`1V$:<𸝉AA$[|m+3J#pFS'а b*/'=V̆Z) w::Z(;5V1tId5Vyl!Ř .c׈g<ܣ3}vo̧ q=yCK*\(3FOFPF}!yjвC,1K/weg=;K :ts΂2WRAD(64J8dosN͞S6#A=J@dA'`|ճ&V.e)])j[r3޿n"tA!tcB0t&5&F1,r[`eפ^|U ZT"(jnc>/ֹi(Kc YbPWkQۥ=2GU^*\ œ Q]2U?IQ#6YI;su},w4:zI6ԼWkٿ)^`L@(lݺz(l"_!8p2qF-;c BUg͔7U1y[ 6l,nܱ?n=iIqd&&<+/"/lFPPxXm%\P)+Y{"b.W͸⎓agD)6mϊ=Q>6_轭еT.N9 1Y#?îY /boJ3(@ D/ 7ʑTɌ\َ{|{*5_Stp*K勸̐,oKCR$H,mMS׭W_sq_Žc=M.fHo0>?/OׯY8j\&7M򳼠1/j$:O%lq/9`i) (NӤ6Y}1<{Tkz?2E+J4Vכ^`ZBÈejo,%[4 sOlVb?'~c;RþqtpGň'b]Vw"=?[1AƒӦ3X}߫ %x$iրʶ_c2xuYXaEdS+c)sHPb.o~faHk71y2U~wmS 0Xft>W}'+BBQ {kOD}\~׿τ R\ GW{=%8]I ϨΫ&etwL6(NW3SPss#dT}jpsny> @ب(nUwbɆ#0_.uĩZeͭ~+:rpIH%kw̫3X$`g\ P4Nzĥ3 sͤԙ>qB-qHWD{P6NBxW6RTbդmuZ/4zP2F-tjF"@cZU"?w/ӧHO9|7uɆf?4qz&twAOC7mך!x_cSfh݄u'b}:$#L52aŷ9ue %W)삄ava"9 VBVI FjZxmw>)Qe[T#C!/r8VQ ŲtFfNى!{j#Z(n+V2["91 87m 犯K HW9[I˃G)%/_' ?llc$ {ab!&p&qf*0eSh{aƷN^}D:*ׇ4nS[5TJtz}ԟ濉Nrc]Kn.H K'$cQE!z#k/ްaOI= dFlQTˤ*B;8S/CD}BQX2q(;8mř)}M+or@(]VF&,Q^5l32!b@oGV cw QAﰄ{LS˹cjF}㯟.'CKVk}EԷ\̕kt-\}Da+ e;eit; d_O%*8 9dKt)7yWtDAyND#7`ʬxAF?"g|xX<+wc" o=߽0 4: udž5?EKԙYRGpz((hwzY nÒ`y@$i;=>عn05񇠛(RRlkIN!㙀 C _5&g ^RcKmWy0~p|g⦒&P 7?$KhRK!s6PQَt+m#Pn9IL GEZa4)Q{lDbn)u?f K!\O Q󲝽7x0H@i;1^J4DNsjtH}a^_"OMJnV>=y+,Pq" uW"Kg;e{d-E7MH;~Tްn#ͦW ;,YOOr0!gsNr%\v6G+"zLVa~\? 3a *f6>==*A=K\0Vokx(*zoA- %zXkX=jYy"Y6}a{[`Z7+j~csA eĪX& &L-eivcjF r{>TCY>\2r8^]{pmtײ;P_7}hFբ\-xHLpm>U7[/NtgJ|spCX*c-#xÐZP_t/|a{.\m7F@8푭BuN_'AM.(Z9(H:Ga)X|6iN"m\xi> }D@W8>gIDo7orCM󒇛]q,%~[q#)\ZCe2>~ ,aI'7qF{GU cgs z4g0ZQ@X+9Ǿ)t7F62$ ;_}ڊLRƒnp \IIsG Uq<աD䢩"4RwIM^xh vΈyΪ}B֯xBTd8to[l{lkϵ(w`,hh\A!J>X7\o:K1T3rڽEmɪऎY`fo[b mW5YZQӛ#¦mʞΫOMjAc5~ Ul;$PK~J5Mwl9p~Gd dN'7HЀ7V{ +ՍvܞƓbsCR_i<#ӫ' F8 >H+{ͺ_c9W>չ*4~;ia˶.k+ӗizo P03n^M2:߻wwQ ޝHWGmlco'&g!qQG oc.s[J~ffX5* PxBQ"Kgjod:Ư`:ˋwNmhW9Iw COiAQ'RM3EgX6P L*v$1Z1b DJĴ SI1ͮyS\2C]R"$CӜyfޜ>))cJnۧ&~h8'lۛ=#b}Śēkk3E PWh4A.&Gq>h~:wzJ^RJ7Ծ4&YI3:*׍S3hTeUdPv$T<8 ~R>x)i?ke*LR+&P@,}V3}Zǹ)uvb!QLCd4+H5stse8Vys/pnvw!Dp(U !bg?iD Eֺ^"2f\ AgGͱZHOú=*bɸSqp?Iyoyy : B*C(~O{|ʱVk"pX /2S}J룋/S!b y \l> WD°XhY_U.>Ż;,/p9-x)|}z ǶXƜ{k`bpn! 橣iguԿB-eDͨDsNZ Zf@̗~$z eAz, :o3a`8Szuxezz"}B$Ś.@aqp'9EoJ~TujIr\uv(1X1Huٳik%mn嵄d܇P3J1%nDRfDM6aaC8ӊ%cVL8JRhf"># ڻR2)_l-_i\oS[>xʴ|iUP<мPqlb"PIGƓ۟FCjD" BT볳kwӽNoTsI~k8EjV渜IL~w0yB">mJy*yH0Q2ӏnCX<(-)JR|OScY€˜q}0w.gD3b||<Fu~ڹKrL O\/YN&feHdsNȲ/Gzgm1Yv\>` })~Zj ݗwz*ZX>W3sύ' -']&#[J~@2R(>wtO{ e ZMXCĢX\k<Q >*VT)nDe#`6{ 1]T>33z-!kNeCo9M*PJ|kS9#MU[اby.wlZƕEwB?]ë} SRũ{aTܖ5v\&H:|t1=@.+0_{֞妔ŀJ57Z'ڠz rQ ha^n͆|ψ57{ f7| ANTfar~ 5s7X]!9eg>Ɩx Fd hvmQ$z{j GVx#?T>J>u>܃Mebn`ga,{{v X cjݙ.0eK~<^rN6J7gϾ4Dk_3 <[+nS }5c2ˢD7#.ybHE Cty(/Du05T.2;9y8+_ CqV(gx~/.X4[x`wl ]fŬ1 ]gvᅊYħ4&ɴpAɀYC,X%'9mNno^zi!20]#ᑕF=BDaΰӶKdےFOǒs F}-5krò Q^N>=*Mr>ƢpuUYYjD̓}v/wI"T4h?]_ x]fjRJV 1CLS 3bh<e7גV2)i躬fKT葡M,ōS0%e5Qf99Guo?v ɪib;2Wˀ˥ /2TLe,%Qr x'@f^ZLKr+8lS'vgA:Ic$Vl3jkM0I׃t]j-WhW/UwL5dsiIL}|MJ2C9Hit~yWhݻl&}JZIhdd׭fppRG]}vpF~GOP2TX|x~p͈v(׳)JqPl胠QE~%64k`"p~-K׬[Ec SA-4MaxW/( }b00YؗFؗž&3mC~z]֌NJ{bʆ1m 2?0tZ$88ÿV?b0r4,R~lDA$ \,ƅ5;D 6d՜NT!607m'C=ߔsUQGa$t~HA`,j{kKX9b}oV,QQGB,3czq+c&GĭyaIF6QaN/olg6/,I]e-H}En'qQf&ȝ Rr{tgؙB/^PMHڨMYUݫ Jv?%: 5+@Y, #EnSs&dyy~痸ax:!Yѥ#NfCg(e׏8u$_7rw|nU/yy( oÔ]6|Q%^Du\_-7ɬ} GU+#^ n9))c/ApOg __ RO>ei\8 6'LCjMp<촬\ex;RrhAEd-HG X~]ٜS1ClT8W>Ŗa=k}7Cެ)Txē,iFƅzoGIγUyN0^E+MGW1)ZHy[vgZ玈Yee !6WF9S*F}=E=EЧn=͋|4fvpsn =(߮&2VV"-|{_wFx(H%m:!*:+>4œVd:'ql{ܛEwkUymfQ% cJy_K%ZLȟPE2#]|μz /r|Qª| sY.}'$ "]}0~r=v}\,N/օSI{Bo.za;QCVz2 pGnE$y{!Th~rc1~>Ou 75yS'È[5 9Zov8n}H e:&L`[ rl z ؚNO{;q' OZptG/A(xgAՁ~Ҽ:`z$!,Eg,KA=VRc8j4;CyZI :)t=pU; lKjWvAA sGE0 4&s0XE< fTH.d]G25j)@/vj2[.N6ب M RƎÿlM%QaAEًe3k$fcIQlnogӳ\4e.8C6=Rٓ[uFշˉfʓ%,:'M)/inq.q Z{X%)@Oq&~̥cQVN۩`[،qϫĕegiT}-_pXo>ẋ, !,ՍB.b}%@+73~䝌.ȀzYti.s&b!ru^SW]' (賐fWQVn\Aemg2h9HRc{}MY%/W~%Ҍ&~[yEBFnP,2D( V) tCK\)Uu oȩ#K'Omx,w+ x1:E*ofE4XˍL8MM܂*nSˇΜ-}U4?gE!SܑUG#fFu35lE"%ZwQ̶ b7AzJ>L\im|yp:g˺Nç=(&w=25Oz,7ףd{^ Ԁ/,^QC4 $DѺWi~ x`''NMo5߉oµ Zǣ_ '+[ӠO +`fDd$/QsKL^|,pS .%;%h;Y:İ*/j݁&(V yyv pBy*(re~1(z>8IO:Vn6Q?"ݚǦ:)_I 7IUhu;i"?`\{H57F֋fSH I^*)K`HH!;t I7vqծ X E1F6#Zȃ!Ct$Dp Z~#}Rc $՛t Pi㑾> dJqLB#QbdN}3(<71UxhCPo1ߺk\_*B1d{hځZX^?G6a Lֱ[ m.CE<؞w(ic=ݜ%oT:Y(Ví>ƒVʻpͫcMeWZ=nU YE zT- 9§qXp5~"ΓO/byp!O%%Ȱ6A N %"?pMNI$Ai8_\%`/pZ a`#wZ?h-o=wbDVҿ` Sa8Ԁ!Cgb:vnFEnKYGXxfGHư8f)$?U}8%yAHj-..oRN.xxFD,B4((>6&-*5s'%u5XRwaͣ_dVHgX@1fm㎇FN ۓ2VHUp@n~B6;T:@@HzqD" |!*RL*;\ CNywpKFpѨ6ƨZh>94q\ޮ.h5au.n%wIÉo}ӊW7ɤI֓cHKyMxZH8LCo3YmSՈ&qL8|3H»OD"?Ȱ}}ZLy莒ȭ!٬S>]V #XE<~xbnx7A5n߇83QAѲsTE {2^FvS[͢/ RJߧt_38UygԴ#V'RZ˼(%` .>wg=@߸D )'LJw*Fp6g.w~cmq?Cqؔ[|n:q^͆t[  8h& (߰9b-.=%Qi$[u,5ΡMm!EпtBܥP]"a؞5@ЪGŜMBCڥ3<"T^k͛Ta`[^UcMSO@÷P&ڱhUGoŻ6i^,ki 9!S1ns떏!0̄"eβʷ7VϪ'~+HFny [ ѦO%"袬fSl9;]{uZn2"?zU%`3݊3IdSs ԼP[ Բ؇VD BGB# bǒɤ~Iԭ"t|AcbI+ټ)t^(ȯ}7. ߥyWdԻƳݎ$ި0"s݅X7Z5g1cv( TrL+f4걆R- > UO}Ԍ2[nP]n~)qp86VwwIY-JLNU{i8T5R=6`Nyk&96tV{};GdfZ:oNYE~RkRvC.^]<v|k2 f7yA80!6VY-&uTTs!Jh߭36;hg}ZgтJOC{jpM2< $z,`Q#HoSa9ŚU b-pN78A<:`ڂMĽ9&(˰ PO۔Y_/ς-cqP $paheBxN˥ oyEWYxh:"="*SswMpP8'䜜|^ϻWC!iڮ j梌xon ͟;42=/CSLp(C|[p]J~ gvSfmy${CE)ZL`}@'W/闟A=%6s!ՕpG ^[:_E4=fFW{yІ3Ɯij,rs0l\,rY ՙN1׵!nqi[EbikK\ )OKD"/MՀq 1ƖvC{ (RH;|Q?eɺ]pzꑖ1[WM!_rKӦMa,ݼbH֢ݵ*cxiS?RU8vR,]+@6mk,Snǎ,TϰW\lHS"˕)qX;ޔŪOB!'gA㟣9H.g(ot ;ؐTlXF2늘̦"vrvxme {s:wWnCG[}d?ʛ)p9`-5Nr-^P–hotć6NuS5:5Zce$&1ϯ _8P3}1ݨ[hjWHEMvTi;LA8&4|#+B-e[~@<$ZҡLz4@k/C>`q\4`lucf鍳L8{Ny*]۫j폕9BqWqpl؄>gp6p2!LH G!+6:7¥نB*CڠXy rH,vny@BшG).4Sq`쬇Cf#O.0E =à-kS`  4E[Gn96}q0 7}x:T̫0]-x\];Biƒ3j϶Jt4Y糖 㢡Q }qn̔)G eer8Xk9228HvZ ~/Wy?%sz~O Sv ^je~N"'lhkYC?pJ1!b͂oۗndO\WbhU`Xgikɻ:$[ ּEfM5W ;0Xdg"yąbA뺫O*=43yWo&R1Q5|{mⓎh$\ƅݟ4{] r{g2|]xtKzKt8|ʞ`X]&1]7# q=3ֲΕ.]2*8 \\L _&oiʎ=m6'Fݰ=[i4)eB?G~j6W`!sB8 hdLEBR*F౲3K$N`340FV m = #ϯ0]^GZ[Sp,>&^30mOHfNXc;kc9A%;u{:VƾÀx+ȸaD]dO>Y bgh $RBtR ^tYxR9y'Jt֭ by͘wޅM )2\|yNg*bOüuҵѽkGݷZX;mͪsAP] V Zhhs0- J=S!+^< Пlrw'4-)|&{? op!!щqm@3ܘ:q_EDɡfSYlHN%ūzN0d[pIS3,99@O__ڄۧPLAS[JH^&0ws5\ -~BA.mJzCIǗr]26KX=-#" -KIz8ID㦍8<MRKo-Osi\ɼ,RXb'mzli9hUU:(l Ro*;*=ݱnƚyxj8Q^ADN>^X~If;X5.IdP/W@Y:J^"~AwcK4X\ԭԂbn吣#5m%} U@wz^K/NdZ Dpazg݇ns7b`D(":n[N=n :!N?9Fa({Q֥{Ql -?wY7=+|o13p0'}Y A%y1E+ڍyPƟv&:8ۚ3K#^i?na  qJcԵM~d~[!^kJ1{ۉK5¨/&y v׆l_U jKVJ}Jr(KՕ:؈D/[B!q 5mH;%:[ۅLЉ_[ҝ>Ť~Rd9w<.]ɭD!J# 3`J@Yar[ܙ(0sX+Xnz mQc,lh{vxUV8JO_^AsËK}R9DtFRX)2s(Όu%lVf[@7xpGy]ፍ;.G]ZVGTWqcCޥFnq$ԙf]6t9qKtϷA^Ŕ uixAR ;'5L:_RC`{\B[!!8' \tMj 5v⯙2S&esZʸPzh='_Z4cMlTnf;8 #.lڴ\B@>k%z6ƼI@q^ #[,p*Ct2,tMJq(P Jŋ-^sn)} ʴ zKe/uo\`X3M8 .Z@ C?j}\ `݆[{Զ*v[yo'f#ܟK ^b]%NrN=nc{ h#rI:x?15E's͎$_=iQ6a嵄+(…7&-p=>(wP?c\.sRdh&ʨkJ(~A#9j, WS}Ogԋ~*qUհ=tp4הv٢S9[b;ߨS=CܟeALȠ`A:.4ӜVoGW_5K֎[ؓBRe7L*9 ƣ0S;@ ]:Z)IST SF ,`d@E$D~<~! Ͽ$*eTSPd>6mu/ SoHsԀ>DFG)(8tb}mctpR|orF,C۝khJm˹R6p{E_ ⬄Y;IyixY!][80*e$dȾKuWl{$R~RPKIsϋU uc&~6I(0o=7.ݨ&n. F {\vJ[8r7wgjß>~J]gA+7RZhx xPƅrh= HCh>!$2F,n&=W :jpN8SN3g}+{&XK KgV:9:)ӯ'+x'WLN+/z6.@΃_92N>Z.“Pf)7t]pQf)nt-B%ZBF4np1jN:C)SࢽD`10JF5Х8hH;3d2*8p5-&H#0ː[YGv[W_C$&!.}%m_l @ٴ5Z@hs|mzYn@^S"䳃6B$=i|xv5& o? Z i s= Y:޷o 8y) S o1@vH*$Y|g("$ٶfuɲUeԕ8|Ҡ}E/}a=`n~[z1 ͪ .ɯûؕ0%[6T솯JEU-]s;#''\]o׫ĘvɡE50ԙ w<+Y%oD չ'Dn]Ԝ}9Um d؃w* =]"MF5hM,+k&SJg:kΥ쎠)KmiD?e0.9[|~64 ֒ Mzzد?*n+&[d -:GRb< 2`6|zqQ)wtugJ>>,᠎o2d\B_<;',X>]U4Pn??~'R-n҄x4 #@\k_}qƋx; (3ÑB3?jQU -ZLqyM(_ɵYєM{i F,V.q쁨cp`6na KH=uOܭ2Ge> neŸ>e3<{P߼ 7aiF7ub3~\\ca<3 `ϕ֥:ICJ+{H> ba+IOLZNO\6rr:vO}iJg & zZJ :f?mQ|Ѣ18 ӻ}$oPrv'!vM9ji D2FvN7`3 mDv l7690m8\> W, NKI{Kp?/I֠y^ ):Y6oAR"ṛ 7ZXnKRS NPK(dw >'K&]A|/XH4NixC J)E u-6hZ &c7xtPYfk>?7pޫ.l~4!k#Zj NYB("kf 2&O@K' %_d'(LZZF+;W|&ܜb\35xs9h.a|t~6T1w~ːlob@ZwSg}% JapKf&k 5,++շKм]{"nq |̎H$52Bd s i5s?oѮoUpr%m/4&ܻڧ/ Napǥo#G3,ix1-HVwu#$᜘@ )~(w&Ldz0}"D! )kºl2hYa.ny5jMEnX6%wJIt [HƧyҒD3o}GG8 \z V|A_BbI!{.D?1>f!DCh@" ?ASxձ񹍶t4c$q۟l93ل4k -=Hmj ޙbKw,`)y ` 0?m~!"VO{SS؎u =>N|2ggIc6hB; t j0g tYm4OKKBm0"O"0C" XBw#'r"ѦTo;Xo*+ȝܪVE,@zJZޘIC{ۨ1x *{P`wԇ LVR!RPǗ1-ҹҾd_Q#@r^5+?v3CGfM6Ctc@!/fNc.m pHlڂtx8k̈oxptjWu Gn B[y ҾRp\B^TAX2rtZIO(Ƕ? 0Tyݰ8sŬ=;ƷHs}dH5EVK pJޕUXJl`aV/`?QgگUe1ӝ8C`}aƝfrǞ6zX l)6\^\N}jƀLŒ>gűZ.{= t>0'AhTéC-6%U0`b!<)o7,ZoںX-K#Y Xw;k".NzR7$|,/`K!aUޟ(!(s _TZ?w֜lemFObC) &a?BWj!Bj@Y$?-b +;@ C#͵,4eM0;Vѕ`3Arک#; b d9҇6ZEn%…R>VR7U+ܹjGH<8{۵dDR%tH |l)hf9\4JPޓ=l!,y; %ڄ!^L5i pNH.ک2✫x\msUQ82k\ Q6Ç@2sq- V\!׸&@H8F;?E<1gAw$o*4.Z‰wIKhoX`5bH%e^X~g>@.;jʧYf򖖞n.Wus?Wtxn гjҀnP)>&"f"طqkIEsznٕt3`Dk1Kd0]<4EDWV%@FS Rlapetݛ>~HTPSH~]e3i & +yvVk%]ޯ~핰wJI$G8g+JT"߃Z(s\ :L[TH#_sv7 b]ԅ +Ma35ʬc_f9E>G yK҃jT y*u(r  ]l.K*@j{Eh'ΗvPb.8vi#Hmp}bh;Gk݃ 2 S'UEkVpS/g'p8dn[krrHIO9^(isXDa X=aquG\r#'M;{Q(.tP\D-{Ûءoa&9T|ϟQKLJ q/K3N ]0])yu_;Gb{*> N[ yi,6bFF b "9H 5/eAn <CcŶTw{w7q};w/) mt58NcW)ԡ|xU`<]KV/X2:40FT3}rF*]\ҫ)Uf-acf-A-0$O-Y%ll /]4owU].;NMB2^-TfF;LkӴm>7Q ,&[-`A}@Yý|,K_{JXUI- : 0MiK!K$JPyѣ&WFSmjFhLBD+,|qK 5J˩ls8ob2kEr(G8ұPSb^ryNwSNte1cByTÁ>ӌ89m2BK\\ȶ)Gtco 3V 5U&+*/b寯h|ZZX ;_fd zNꂝ{XoU~mGfBG8jҡe5~?7!Zx).Ql)~%$Y)+s>پy(F6I!Zq>TN7 'Iܲx(= g:Fv>8 dHư9zvh~^'m!0V-cwwKLAt:^Riĸ* Ba|>"gҩ"ucSbX#ˀOdBSM]Dh?S?IDª}0!Soy2I-SMN`k. k+yfSFyXkZ?GKdf]-߻YK Ү5s"vw߰\ڕ0q&Oi:-R!RZ Tz6rś?󢘉P+c ;$`/&%Kdt|Zd;>_y{eA>]f<=c R:ӎikO576e7ꬮ51AIX)@8O#lz6 ^a,m^l@L-'-ke%*"R_z,][ڈw p5!S%f:(PH2s0+G+OYKs}s;|MQ=K0΀Ol|f3EZzy?PX}`|IvI<Z^p:Ŋ55fn c,6ʆIھCzFl&)(S&iVU#T h"bXr:ǥl(EcV ӏQ$z:Ohb.5Zth-- P2Q{]}EEmzTv :n],v9(Ɵ1!ߘ01SW_ay*U_\VʪTZ@߻k]NbK67x~sN?#v"O/[To5+`8hW.2y'` 3B RК)GL 'nhelF  ^NLd>Jmyr2%%)]t ph#UP=j`gn26;\X|&@[npdvKeH!3Xfo#`ʖ,Nx#4)_>LGnQ JFw[vzh,KC#WpC\x\A&Dʵ{NU=60YIAc)Yks*US({)\X=3sViuiCH wahI"J4@q:C kѸv?h(}p13҂I롧}>"Y(Š}PjHp> h' ȥ6.dCwlb$7X2r_ ^rZSؕrM`= Mbv +iciEem O~\Yj"Q\vm{J euZvIAd;LSb 5!I?* 9idsgET2ȖO*V(^PJVF\+d]⢱rK,OALtnM14Ƭ;PV]奕ƥ[ 9,g.ûR $d2% T\=Rsoч/zEzwGDtV{wN/uE抩gko} x `5W?oSv|}USm 4%Žil}$6P?0TyȨT7-Gq-ɳ!Oo x:`y z:Xo f,BiV/Tx{DC5`}5-wdtLL!Ĉ#>nZE_'-PI8HR?=A u0Ws43^+&5Ԁz|+p ,dq{3>"^p\SJC(_Î5Iz-4*o,?yy׈Iv\{ͿC؊Tz.FxF:cjigS7u>Ri h8't{%(r~%KV$98߻ĵaaIB͙Bm.cm-1$'`\\(gg:d%=E% J蛿z%E&AwBt{Lc0ڱl,q`hEGOOmש0MF.Ө'()C{\(<"romD%C3?k&f [Z$pZ*C({B;8M2'SCQ4r(%"?goǏw^V͆W&mºK}o*k}F<#mY=H;Fc^ޖ C>HJcwB$ENB<7+-x؇=K2A+>٬d%E>qv&ϮA`XeG,y)\"LOJ-H IweuCasvAg3|!Dbʉ'"T :kٽ1URh`$2P ##0 3. mԥa;;NU"R4̹?S׋J#^1Y:EK='SJACW2[OP~EtU[!i]c6~{FtHQL h;)\,~ PI"sgA4RFi\ RtoCV\:Jz~ccN7/B\No^Ů8نgBdZɔmJ)̰Q3U>N-jxdUtp 4Q7:Wؼ^]#N8_?f@ڰ`=yvJNH*>/c( |+a+ m{7Jfi:r$% A,_eFyWWz0 q/7N+20:(j#7|^_еŚ%?I;sP;LI%h {lp۸^my3}ˠFL .#*VH&$+h"mbF9Ό~4O5Z9tP?y*ӽ* ?1) NI@lW"y.;~x~~b}f!kԾ.ܾ>, k~uZ]BDf-v#2wקVV{3^+D65U;QD;HFnncH}wCƜ 42SP)'WM{QXY1hԐ%ƼؾMzCӈT |(r`;v:+qkTP w%x9[˜j2xShPݚ$IXukKs/TYt ZۼSKK^V||IظQ7SZՠoK.!9nmO߰W:.' 9e8YaMC [@/u'eHÒ;hƲ*$N"R4B=y$$B He%&M6 %0唢@FbGS5/`ȬŵA%h;#v{ *:H}(CBK 03Rg{>Ͱz.'}MBQv ,SX[P󂹛 h21Mȋ'KZEn4߫Lk6jiU&eGzs]~s1  :acˊ$:Md`Q qq1]潒7Θ)t c8hUaMc'P6؇, O2. 6L:CxxiQ0ؼc "Kd$;V≮B<㰥@& j-.7}?{ :)`dd(xk*uBhsζ)St6'k4s˝z) J I GQ - V-ŝaK(X`\]D $]FWoe֚L><](WEC`:.^]FNk/يK ҖD9Z_">E#Son,+TebŕfK),ZzUpBKA8nG stB)ZvAC{웰1~bD+y+{Qr<<A 4 L'ݱzثs+ɏ 댕6[džڣ{ l@WBݽ?A+Q3xysyddp^10%dNK遰t>?=Iug, GFJjp_ *k֞砟lYm^u-?Ɣ,JeNW:yN%k,6ԉ.>4yJ^H>(`2|TpeȂ{bJWQ:/LSp5Dzo/h.M~s!Vz;LyGE0@FpD;w[NߩGx'nWܹعl6?=W֧)wUb|h2Wp/ˁldm˿pq-xQ6Pg--rIU%[ucpJ J| :E)+oG CZrJ2~Rom<`[H:l-u~u8l.w}r_y1ZlB@ Tjy S"_92u]gCN{+_變\okct|M=\0k/lڌm44-{. uUJo%bS`q=zKicq᧜xf@s`kūQˊꭾ3TgrV,S>ŮBmxܹ%eyG+_t$s# ~-$:R%*r-C (c+&,y>&fmVR&U *E} 균quwxpMAH^6Ze4P@y^Uw qҢ⤙7n|ɉdjMBZ. ORMn^{L̯_bbL-^XsGd$"pqaAT(ӻp +62&Fx"a`RA pU^Rc4Qt ŀ _H֫)>$-jd Ξk"& e$b}@;ӉY=lG=;y4;k=4g"5nw}`@'v4hKamNc=tB!%'Ƃ1a'WR(e\/DWb7-1wx_,ӠLн* χyx8V8p`1Ƕ-f8<uaeRm;E)5Zd-UkvM^ѷ2ߢiBfׂf|7\2 ֙ {CH#//ˠuE|+VM$t 5#(-}㞒TJib8/$WbGc12Y3%A?,ҟ˜IPԿݭљx!pk@VDMKuE+dN-QǠYSy…ݾĴ&'(BTC ej~DX+/yfµD+yz]oKуZO 7{PY-m>\Rr> T jkO}玏'M^i:"2rad"ܬKKpP8e:cMSe/yw,̖hyJt 3}h:9P"3tD+ADߨ nU>k4@fxHoOI!Tգbq u77^L'Mr7oѯ߮<4yúCGqIt$ ו rco%)!9= E]Vܶ&ˇcؚ!_܋jOͿ%NY) $e sъӶ,@D8COVTFˀcHlXq ZFJﲳhjId"626IMvky[{6;'YAaV `ъnV"&PXB| mfVYQ@;:wD@} +, @1 HG/GN3<}5^Ϸ (HKz[') èۖذUctkGb`,ؼ˓ю1QdhR|u5+S ̺n% ~h2_W4堼[FTiBJd8i:O.~}KroȈ0Kߡt(F|Q-=y>@o b܉^Fi$"N{¤o.BMW^y*ZjVU!#:1$Iψ(NxT(ʍhj +]x(w[)/5MTx% 8⦩Za}zъ?5qM!ҿ(?vp/C]k$ /q@TJY]/DDyU6u1XXbyxcZՌ w ; 1ߐF,]y)l rueX<.H,lsd<(6َm7,aKB4!]{OT}xrRg2`{Ĩ>,&q+=,^a˴B/5%@(:~ ,ZZ0CIi+@Tb۽6[2W=A"[;2d8"c ʥ:w,o9_*/O]i4O5CAKҟlaJV@^gM)|t+槠LUzU"o";*_ zX?>w\[cL 'cA\MQCpax+٢@ܗ\mh(|žȳD^aB+HĵcS{БC2o%/, LIA=<WxN1)װL+ܐ v>СۘZ~":NK*߸!@9+D=4qo`4㣆6~({!\ZY,ӡBt?2ĵj~j8Pp?VVא|=v i8Zy8kSDE^deGam &scb?yWRm[`˺X|H 4uEN@,lam@wPĤ쓊`*cbh2w.z5 Q13$\#YλU[UX-a}rև0>kd4t1%YXQjYiEAxJ5JP׺¹7AIV3hx,%vQoU8Wqy/ Qy9%K0 EF5eEr1tlæZw9dF]5X}HU:nqco+0\5_E1-vo㽚ᾖs)kOIH9""w!D؎>i{]t3otZq6m,Mk-j9TWkC_iQ:a $H}\!P1~,LM"6 Bϴ;7\HFsJf 'k* \z[ >eDjUh$:Zv%NEXʺ6@a)}]n!$KSub;UO"q!4"%XevIDsbI*C4T?a*ϫB6Nʁ,S_.*\iW1+Z?'g,#1bg< V$ zA#Rs,Ql-IAJ!dDeaҽ0 /Ֆ,ǺM7&If֙ʂJ$A0˸,#U 0z+3|tu 5.9(xcO}Ϩ-mLŶ/iߊr 91#$BG`z Ts. F\cl 6 OftZýWA [:;DeNͫjv'gݜ̻]l5xDZ>F[w7U]m0 G2Lgpף&PЎ#@t8A9A-y\!|ans nuFʴނ*ɧ$gvFo/CZZ6(YgL=ZSb ;|Gxr.)7?xTخʉbŅ' v+m1?+xZnlۇGoB 8 Q)[igPeUMGnb\O\c2!hL1;< +,R>[D`'CvKYQgkl̂R0}xdkl[8;Ex5/޾?C%ׂH .$N+N35jY?4!?c#U8ݱ7}E8,~bIa"ꀉn6h:6Ьܖ0(T36u{54vBDNdj _G&V# @.OKJs<2@;YW+9\o.EdrUeR+3.% `%ҋ.eU{t# F%dgO?~Ky̫ח$hϴ5mK ]etQmbja-4Bm >dYI=#J:e [ ~3! VsD8zfdUNu$ )>usPj`륧EXU}cşnjvx4*_8΁֏=;5GQ=“@0*㱥lGk5LSK_XC~.1h`q\}H)NQd22]=b;||wĴ*O} $!y=mS?> wX@Iȏ51z6B^͋mA }{+Oņ/ *wo6++6xQ@ˋ-BqU83EoE6ٗ E饂g=ٙ&vPZYX֫z)6`6"hW#`ޮpƳM5Ȁ\"s#jP23}8ēv_L6GVO]=<L&ff.ԓ(m R ~ JPM|bOZCE7fH02` "ns8Mܯ)p"fd:.-:2u3rHE}4Tkږj4Q;{s pk|@.p^;ŁP_gP&|/7iK<{A:k,SsI)_^DbsG˘}{UYVJǙ-MJd0W;O_Օ[)'!}GJRx5Q}̵GawAO4Ps"GR]hpO߹+`YX(0E ~yj1Fu$&Px-=v6{'Ob^`3Os}G P7LV2w4I`h,tM꧵遽.l&( !+GMx%~x,HYE,``d*&k yEǷ q"!+AU5k]!UDς3 [iexahl^Ob Q;u˪+HiZ*vbzF[U˻Խ}.گԈ:RnPS9fԟ]x Ӟ;K[JSGM IBI O\v߷zS>R} lXd%8tv{36MJ(+TG* tл0َI7ރ|)~>B،3kv/єؖ:{ ;'". -N >La Ħ*_CyܾV(܀_D!pyn\}{ }J ('*AVC7?H^G^k[LG ::_ WZN|gBc$;,(>@v y4f{@=-Tn Tz5a7\?v<¦IGME糬i :j$RNa_|:} ]sSx f`'8eAsRA-V0Ќ1V# R50k5zl:EE4V(,(Bw9b\DW ؆ ;Y;#ba( n-,lZ`t 0l3K y#-i6K:w\4Gs. `5^%KwlRH6vDK26}tHbwCHysjX-9BvҒ N HQE{WİEA){Hc\)jRDJU$;O7OdY rG8ǰm[`9 uN2{RE{I9CLs'^&ت)rxd*UK Td?״a3gvi=D7/-mwj{Wr1-{3]^(ab]<7d<#yi9d3 L?ec^חCڈoM0Atwوm6;ul"עIIJufʗM1 'GXQ1laߎy]Avчzt-QKB0:vʗ ւ5 ((o,8Ei%&I%EoTd8vMtޏnFJj5a57V^ѣ(FFX&)є+3} ڸnA{9W9?5xh`ໞ!JE׳}Ž, h_Mb!eg$[1HtyRMd ]҈5c զFw㱖ܧakbb.OBʄA{=דem 5>-?_*UB0 KhNÿ6ޱ^O7H= ƈ\)UpTȤE|Bx S/ l?S 9Om(}5>OݨAZCAotKWiHQPک|XA.Þ7(&rSJSziKI#%XEc[UQ zpHȖimG;^rOMqs`]F+2j??o%|Zhk8-j¢;;lzܹ)~%JC[>tSJVʎ㠢:IRRT;p v;KrbZk ɕzR7a@ ^d $  3ͦmi}e6sH0`ס?bD 6"DjH«Ya2ۊrx]`a#' Żb4֡h?0jVs:"pۄN8-@݃"ל?XɿV&]Ž3^XbvSZ8RN%=Ɖ] M$?[zBj߈pŮQ.;x+_y /=i,m5$V~`_|KJ򒏫Bit /W~ \hm0JĤF҄T@ E/\xygW-e~43f%1 AKZft; o2zmV*>3} Lq,Y1 +|mp>r&gwS`;f&'C#2<i{`W0PEFEWa ݨ;uqR"=ARuznMd]Ƚ"0&LUjE u/29`J 5<052X(IR3{.m"ߑr = :m1j:Tb=LΞk:&oi`L4%犂v(s܈f%Lp0ϫ@(Q/j(cA>WP@d" t$Z.z% W$OWh8PA,m+ީx'7 ˢG̈)oUBv𷡢efz]ҟ}sVn=k=uc}r3L;ſ Ӌ^%o䋫DemNpZAfwS8U^Jܼ_R(Q01z5D>9\_:Էz!d ]!&[t@$OgUy\=)g)@1LI(͝q }Vj*F|Wڸ1"bR^(`FTSL,P0ATX A#=`hOp~wG2A-*9TqtA2Q'Q-S ;`x^tyn\Fdڠ[>w&+Cznn{.mc9ZY3iIW&a[djkդ \vty*"^M+{TKToeO4?4z ؂1Sʫ,f^־J@Atig3ͩtIJ!beIY\Sr׎̍V ̮5qǿwLϒd)td܍ GkC%O l;pk1h `S?9:(jcr2([m%p0+ԚŚ3 G`2߮8Θ(c":RH~dkqsN<-OC _G < mqdr49m9_$ɸeĥjdo~[& l_ -fmy%\;^s=06nyaݔ񁡘R|:Ӹ,qT1YkyDB/-$o*}ہy E4 V\xFѪQ*܇$ɒJ]]O_AiauX'4_ʜBҀI7&m*|']u㏗ID18*;P@5 4AE57(Α}5sCxp ] Y2tkc7A,TA3 4|c76iG:?pIxSR" >{7 v#ȹ\M~4LFk[1E~xю :kC+;%7UqFJ:Y`pd lb 3pdI;C^N5C+nrf\YMQoZj2| WʡHu,E.6p2l&2ߛ}h-]k (emm[)D̓]5 mz Oc덦J@?lMr~8y]BHSS*s7>pCWlPDif E- ucgW(p5F9JavAjK.؁ݎ"VLSFS7W%\.h&h?Rs) R7HA,H]c~RyQjPeE˼ٓlF~͌i>o- q-o@>yrِc:k,z`n75`Аdpv5+' >Jt$jVʷ (+"~%>ԫ.Wu9U- ;&;y2}TU>A>GVBںi 6J*?e+="\u=<T\Zb'6 /qQ?[Tw֌A NЂR K& #gWmA&ȼXrKx}q HۋdT OT" qy@AnGbTU F\c/q5.B/v@b)H-׳{u mN2 2)H:bݼ%xl| <"m1\d̋gqRv֣:$#hkgȐ1JiگF,'nRq@pyZ]mԏY'_$Q.Ŀo7`׍z4Vx}AFG!EO-]׆0^Eٳ΃Guyօ<*=_KYGQgyf05%@ܳ- &X.#g94#'_ba\b't z3يI:iG71r;mCѹCBKBش~YheDQOzC*R68OMް!K'afw?.wAֽQs+\K+߽T H.A v;= TR AߊU3DNզI2]jZvpm5wh?uc2q3 ?MWxXoPñ m z# ~qS74S>IJ*R8%ǐDwT9GsDk@ ..iL zZ*iO2nR25ȅB-㿟Ѽ0΄qk,ɺ?zl=udahS-3=~{Vb8"ݢJZ9O}[lq4JY`+z!2inwW&Y[(p^/25#Bd{R1d2A xb"m9A^Rgn46 %w~mG,@UC*H 0M"O;+@[ۤ1vm?H/c'y;[MyeUZ<'H,%Fx]ۡt0%3olO9{ˆqvo?,ɬjzG⮝YI'3 :äm"[.ƞ3#ngPuԐТ!JkX6ڑy,(E*-1?A̤\SoddGx5L0멷7R9>/1EE{gt65lB(٪El&U36[ ]ƙm=zŒDI#Z##;8bThE Lj[Gu|e2?F4U36[k (c3$i{&4cա ^ WRDVY 1Z)f_?GYusfD(v@igtZOR^諸4Yӧ41/y^"ɐ綺WWŮUR{W%2#c- m^91x]3NZ7淀:Aq1SW}Mf! ~n 3P SNaONd`4Rv7' V̾6t 6 NS<‰ yO2`+WaLAVŖK,)\ Ƒg>-޽$LA/z1{A% L (\ǭZfG9v<`Q`f0D[M7=B^a^Y2hn4A-l9ٖ L*tJvio|rׄ0xNl>4ohڷ>BR P}P!-4\BN:NѤI^!}rPu 0hz HD.UZܤ1lyI߀HOOkD=pv-op#*,z5$DGD@o`p[J/ sZۤ7>Bi`oPGoTk:&d8aMV&VzB&% GY ;[Į{bM#3PqOּO|!.Wf9C#,PH6Ra\ƾ[툸幘 } @/ Nh]PK1ư($M@Map ҟmd&}3X:P)|_~/ERgU В"|R1OT#w9/80f]cbί3vUI\ҽAt}d7mfD:C?ǖ^,ޜK;eT"[GrpEYF%sEo]y+5f R gF@.%&U3|4TY( j m)xP .Z .ZVTprMDv_S1!)6}JE٪0r_u t4BVjNHoOl-<%K#F^Kg{u m+E-Y7ɦM*jF/<"5%I~2QHqAe⎼j"#D>Oԣ lmtY]!R}.h|X@_:kg ] &Й%:2!0ݹK_JV4D9Io&6^|QdՖ˻SCe6Ke"r9_cn+3#Rvp>Tm̲g`w";)6%lza uQu@Nc֫@%;8#  BKUuo,HDZ)!%=ٟ01+hcʋ(yblZ&^2<$f:#0/)j&D*[c! ΝލE ~KD2-S/QVXc?q0ְ*P_&/fPovsA. y. İZmlG;o^s jr~-CmmgE1"i%6S%`P=./aGJ\򹢚}dڍ"y藐B9e' 1pO]K/C>V]pD[+#'~G<@!Ƌ1drAc6o8/A ~Z_3gzUV+\ͨ9cG78̊s*̱%3$W\9X'xs@ LbPSxTJńz|NOZ{4;Ԣf⧧;x;Ngrd!55ojh4ѷBD2Ymͪ,L:[Xk\VvDɞ5r!6QC.\񘎃2&R?t|R^6֍$.]%Ղ4D 76Š6_%pjKnA@$Gl_jR y+)_E/O7 5Rb ڝA;>aP&wȗ -r~IfQJ}Ôlv~fo Ję^)C2@q%$W+^~]%lВ1ރ臑KWG_<ťL ) R37زd$F.jdf7v3yiP>'|4%xg{|oq/A!;3rb1{-$%9g+R hUҪ,OD A簾FwF/>*b01DlծHp0@=v9;!+ii,o[ f|u(M^My"դXm_i3G4Flx%!8W)A gQ_r٣e;HLEn*a+ i{1 m?A1 ZLNkWzv.ɋX4X]* $]{٬eZ(H2nOZuuYV.0bF sSD6)"FZE: 9"x|QuI]j2-l-Tw]vlyFYa+2DO=ve1ci5e Q`kc\1Q-lf-Xp-uƆ;{5nYHcQkjaJGŬtBm.G) ( 5zgݮ`eP-3. +aD3E4M3uΚ߆BکKoo-ZxCԙZu>y(3DqmЗKoea+چRg&0`I}:cF ڊmgYQ…x#kزV8w x8=P|2=j]lJ z"Gʺ*VW9z*jmoK@=_WUNm_SY}#;Y bBA!|.䁤r#`KR~ k|Y4oxgvO0]j!w`9tA [,UGd5?yh_5!k$}#:]+z]y7׌QmMA(;nj /?ځ_WG‡pY(؋B+asfyVklw G9%E@R{ ;6B' 3b#q|PC5L,BINp|gXBJ*}s^$QR cFzo<98|w<đ0 E{M Иi޳j0nDi ǟ܍Iu_\d3@]]0Hd y?~]#CuXM/jQ20ʰ{uE"|Tp#sLrw.GPjmz8?g1Ub(CN>0U۠ h 0>5{szn<FK@@҂D7j  mSfp36U5iiT>S:W`=ſ 㸙u1>-C 6O77B z{{`vb8@W0;(UVŌZD{1sVۤ&x[ހJ\mS:IAU_f`6]5CʼnQ,2n2ez`e\^ݿ7㴏uh/j~ah#j^XszlO"bɭʒ~ BI&"8V>;ޥɮ4 Vr}~RXU_^fCMC ~ F/r}ݝq. `4wr"IWP@}a"X _8X9ci(=/seF퀺B }C45oՔ߾[{Y^L(!v2BԶz iHt6x:;)Y Q?1>F2ډF}NճMɹ- {B\jⶥ v5LCRYV&hjǛWHSB{K`3sh%fO~PF>6S ZErҡjfkJ %1$$?T{YdgIb T'XK_{߀Px ݹvb 'LXK6;[SH/A(86hs"I×ǩC `5l(t9u6D:̂}46YY~^jm+WZ,rO[83EL&,N3iL2Wz x>frކ##V{w]8eJ& t44q_5l(Yp4踺F=Yٚ xKpwܶu}RZogBgCsTYvKX ojUhcw5f1>yz{l"G͟Ndr(D⅔\(āDDBuQUXx|FBonEzz+e͛(ﳻF 䒦s#gq۠ -HĜNQ6Ȣl#9m<(N. [bACK 8vhU/CuG +LԞ%'^rs v_s9:FG5zFydsgɇ-鄶lشT^;؋mMBe\$U d%%IVFs0)Z0.`>1-n~>X=؃Xڤ v+09k[QwO49E%}aC0IBQߝ|>p6^98qd1ԈeKdYYӿ\'s_d+`u!xoE_o~40T޸=6t冰Q}7Ի"v]%k= 0lFGafH)S{ QFJy~̓KmDmd3j?F0/.ãmrjx9<7V5s>(*V>:vlLpd|r*4v. SL?ƯGzp) "V2",;1Əqzކ/ŐF/Cs6IMY-Ci qHa |K^2A#j {f(_seF{\Yw.@CF8=ZL4[6\Vκ6tX Z;l M&,ͯt+* u_Nwh%s|.GD)3>uQ ~^/Z$02s0'Vo6?ie1%!c+jn9UX !m&T%D4p?aEG8+:0+jV҂!$km2Ef2ܰEj!+M|QVF Wl9*/H#͗,sWݣ.oϻ2j: Y,x0S2,gC"8p.046-a擠sOOT1ԪǶq=O/CUJh^cK{||qjs'!i>ml#62ư{G.~~ _O~JҏԱK? yy $lRCNPp4΀Fpp- g`倉Tm=K*OpYXxx&n9,P*2p5 AHfP$G1ԑ5%yLw\=>v\%eOȉG#DXHzbtk_Sy>mZ F'FaqVNr[)rHYz67z5I0?3=JaKO}ds6nIvL;PӾacGj1#%Or9žn1`}m@_QFfkSMkO_.!-UJ=yX׵VVBY7 !SG#YwfF<`L^6cek$T=E8'f>3[)cki9\9Lع [5c@-8} ŢWǷRT)/K 1w T)?TE\KL5jWX44|~Vo; Kf9㫭W|&zH t>%Zn[\ N s.g&33|੿Yخ̡;LDf8&\TldӲ{\M8'qQ=-#RzHYsnU0Hj; @#bЫ*q3vkyx* )XHi_Sg GcRTt?oΥoޒM9?nsoU FWlK RRɌBL0c~/-.I]%t!XW/H}ClKb2ㅠ1qt"nrNmm Bx+ `mį(Yzz^%Mk| +0x;;O >6QI.P)w/߅nm$z*rw'+EbeFz^HCW=S T$9+ EA&jUbʵd{ NY-x1T~${nx뜍yߗo `ԟ7c/c10:7g!5"#Ρe@4%B^sfaxʔ?v%_ەZlmRH>!eUV{/zŰ]y\@w_\23"u88 \f:ɜqWvgҙSK-HW2$WZ1@XIzBv;c-V%q,d6oޫgd\v t쫊97[)۹CL[ݘyC1ڤ %E d" yI~~av%DjalS%ur(S{r g&}tu%~h[벯1w5 EbT%~jFr !Rn$%pP<3T}cԵ!B;yx;gE|^m,ڄ;:y,rrDN')bk".6e1S X\g!QȳNtbM}nqf5M?)=MZJCA3ng'!JNeļ)(\cȒ:@Xa`/F5"?D޿1RYG;O0ks fqLd,Z mzG5EdF14$ Erhp}b躕;Z#׵~iOױ9؅Xz~eaÀ{WöA,5[ }n*]L[Y 4N nkGS#/=,\{_O/9PV;^K.J/h*&hV˨pd+͢ѻ? *xx>friF$t׹Xһ҇6,'$I `8Kdd (^]Xj؍zʊlf#znW01Z  n\wr73ʙ&g]6khQ}pp6؉Yڟ 3z:Ng~'6{ϯ>~!?o )2 0D>)Y)JSgNm5_R{F`\S72p\z8cQӼF2ZɑS(ȵ dxut1XIzix |N(n&7q-üim+ У+dJ:]?G=%D~U/A8RwvTvn^-J$) [zm4}1ad;=QES'MR` Zu텢 38A/@[~;ãe)}dǏqPE- J\ yI$8,%@lpn(\UQa{<̈~cȈ>@=@䱫嶸sXiHӤPqҿBuDͯ߄ T>oK7ȅ*/XB.MrQ3&Wt 4jܟ^UOiP.µVc~ ;H͢!E6RZpKi>_XՇFwܷbKY?#-</xSS Q:CgXT\j$a0MBXCX9«]Y5JZECgx9s泝,WH,o;ǼAϹCFDs9 nt)8l%o||M  aXcO+1oXŀq cfM`eѺ] 劈#,om ɖUPfE*Ά>If[Rs^LWj* ]c:yrm,$3b7Tg[sN&.p$'6ZVuC'=!@zGCJcQghp(P='O .ԁ3i\!F"Kbp0i=ar3Idpm E]cc0 $T]چ_Y[g(T.JWg\gȭ3y*@D ޟ B7 uk W]cAjG5cz2*2тN75n dzPۖ&cqo/̻Ĩk D.nY5Wa,N̛\EP'$gvW },??i.Bl_p9uVU = 6_j/dG\Teߖ XWlJ--cWyI2{`L8wetWːA-ߎfSwE<ө`h/'v$%l7oCلxhQC܋_p "ŴÍ۷ɾ Ka5 /Ƭ;QUԷ) yf7e(rRP𴫠z+꧔r?\KBTo<&sfvD|W}Kf_< /,4g[f}j&O S} +~6I[b6~qf3p}<% R-E,>RQ=-^s!̪wd)\Pnvtu.ʱ* 9sB.F-b*kPEܵ ^,v%&<0:&<@hdu0@w<g: 1:ùňeVF)|DLӽdO/]> ͯTT'[Iibs,P/r'5DP[ .25c (9E:m6ғYeY/r%ߘ`q$JؕMT#vT a ֟f'llf~1^ɨ[%b$YKr:Y wyТ7XL;ό: M^oST)n"2 _'> $/Dlk<ĤzSʶJ('} ƽ3G9"* e/v[OD !C0 X樍Jt>c00 x8v_Ƀ}Z$ 2&p?^D;K(& .Zg;)>rd>h} [V_Q+qh#9>Wi:QU;CwQt[.sfM^NK ,)ٲ ((e(d)֥.O2l6&Tؾ ^ebyǥ2<36) #j(F2F B-7wjn`1D,Tܨ'5WQ/_Tee9o)E6teG2'tm#auUƷ|Ag{3]V? JkbY(AԬP6Yyup_ӧNTM da0]^V1$pʶvEF"Yf9h͹<1@g:0B T Qo*bfqi8טp55Fs9/"]H5_ gPg7MəR٤d#pa09B)F$20~θ֬Ӎ>ֻ^;?o{ C1~BǴHZy:S7 3#l{O6PP֯mZLlw5Y,pƈ2U,Xjc]᪇@%?4qTh9yoV؁ ^|# ME]P/X "5΋)5BF H7ػ2gq̌n|YPM,Ϯr w&}t3yx{&ZN ?[}J;W/RMrkf`(OhgETeoaXzzƟy9oDocNiԏi)GcJE9 x 4:B:0n-OȊAlpSJEæ7#/_AŝQb[T{[~Z4af',mG`dRs]..WL9W[fRWY03(M14m4NG`]qxEe6ObAVnb >Ye)wc2J>^n7"K,|L;;өhsExCo?jzIHJF@gp]n?rF!hnhpv)0gem3P2n)R!40&+.=ؑi>|sfj6c6\OGLh)q[ufO|km5 $%*k*r0k<"[hk% {Zw (?!ZUSU+UD#XG9#aǭi4+-EB|t|ᾉqSUV>a#t(~ 3p~"eMܠ@:=qr6RvO}F5Q1 훤UGZj[+np"j-<^ތ?k8j̫,B)*|nb,!9Pa7栓t還|ZRӵVXN:y7|̓=!+R_,oy~a߬q`_ 0j #.:l`1D%CcJ6HH* nJ5vFqmC9|0g".HU#^X< TH;&dZf~#~w4SJǠ2,_.BjE=H-GĽ-t3$a4U*NbGt`} ={Y?YK[{_}msz,-1 MZ&R0C&gf+%3W愺_~pt =s5oAp+*T5٬}?= K?+>$z,kɹj 0wkI% q?;)8O 1G㈦َ]J<{iDivث\m}UΪ}Yum;Pfl~!튘Q к&' Get'eӣoeҹ`@ Ⱥ̃A#t~*[嚂74b]W;g"3Dͽ3 UjHF]8M'2GT2}uyf'! q_F³+=Dss⪀*@ + FEVysYX) {Tg5C(c/H2<,XXx#2B(?|n-BdyyΟ@_Wo~qPkۜ|n*2{*xHjU`erv O^4M4js(=brA15Ln7\>;PqTqr= ۾FA!Bעcyo[w^Co/WMo̹J W?ž1ᷨs5낛`{l]KXV 0\kt_I Ŭ,đ#l|U&>d-<q됅, Ih0LqK@u5热6Y<'XX04UڢlٞNV *+ FYYW Un@%hK"b6mv >Xl]oO6'F 鳤~@(h, p!H/VZc[bsW3p] lyY9> 9,pl4~ nNwn"ߤ*wzࡐS݆nіpM#՛9S sӕP'xΜhxY2pdcdxH06}qc{_d4c.MUa:^-WU#EfeܥnÅxbi|ӧB0b#:e266U\WHFM89 n:/ЖLDV_4G !\o.2-|AXM7ri/fĢ+坨YcZho7Z0AC1ai"ݧğ)BPhe6x1 W2Pf-Hr7R~9^M{Ph=S~H2h)[ @) 6o;E99q>t%]?ꎌ7'.jVh$oի&k0Q9 6Zզb7k7Q+=LW/>X833 9ؑ P77~_\d)A5̰} !{6rb0<YWLh(d?8qiYY !qRvE-_>^cG@w N1U[/rErĶNzLu* ,,wF;I0Qqn p0$otKە'Hy䫿XO1s=lk)' ~b8'ڛիyJAly7[I5r~ e"t^ m e.GOQ1SF⭄ h;R`ZڲfD {(/ XÄ+X6 gx|()F>{jhV{Z6g\z$$L\'dmUʬw1'ilBuMJ (o5[\;&uRƎi>z#l*։ Z }H ~L({E+xl.ڹ" f=>1#S)I{Ë՗L&G]$S\HD>xiLUזJZE #LҴcVzkqG5K#њTNF|EqeukDD('{U,yTUG]H1!G-Be59M%V3+弱sH]hHl (Ǿ&A UTg%1h8{K'/4wkƁEQ*nؖ)?-h-{[|sG~`?6B28:Zzqj}([ç !{#_UIʛrjhJezP?VIKd6 >k:NS\'3b[ yu,\B%0Hz4(ՅFdbIBlr+v/剟|΀XUI!_qٽ+ (QPh؎aw IpF?(Y-1B."[,OE87rL(s[H¨=`j9q!o:gxk0jjŷVn5-H_tZT6E lI_":>]Cv}KHDލmq30Bf1psqp_6࠳bEEr?Mc{9|ximT;/=Pݞ^I)A)X7NI]B *~p 8PнlaWgC)WDe06Gpʡ3i'soR'KX+@hHIFje%G;}ny ClքZߵ @[1I1>td$-/ޙIhݰ]; "kpD0t g'a.3LWaPF4l)W2t]k#A<~W Ԕԭ o[)HQsޚ55WQ5ļޑm\H9Ä [MSppM H'´Qd_h<nG%$F'#"CXMg!}E4dmXY&eX,cw+iLXS}2A,؎Tta> }7H>niC̨S)-F1pyhXQKPx,y9Ҏ2l;oAT\Zp5vG5סF‘彉4Q4Wk(";7 5es4j*\ܺ bK#TfM,`p;[PSA+iA@]{}r4EO 1h2jH ν8TH>4Rz ke8%$FUa; aZ`#HOgp'6/ ;YbF$~2(8Σ 0c>۫2ّq|NU^d KY ůjApj,B4r癃N 7usaXXﱍ:6 4bP;d2VdvÑLNngCd)vW/ "PLSBx,诛wyrʹ"WByZ,\[gY_G4_VPM] C4B@%|ӷL 1n*ފǙ<`Q8xZ eKq>K a`(`x|VpO)[y;z6i0Pb]_eN kzr.?$aob^_pL6R5CgaXCV1Um(jVh\,.jr{sT%^Kd- A. x2ɬjFG>o|ӥs+z=̷: ~qQ: w 9JJѭgۨ 2)m{L{v3Y¥N7 N̋(" ISFdʭZEMd U =:-!%odA+RcoHIJY)l )c "JȑlKՁQf{@26-/Ck(\g˃8i Z!Z# ʺ8gFUgޫ, eh@OgnIqԦ)+ɩM)6EN =3I"80X)?\G^L  N莃UDxXR/ӑ. 5R:h$*ODD, Wt>(nCXob*+*Yei[݇hxdjd{Y=|U4tL?x"TOXѯN!!=Hu1:^~J -^чKPjǶ1[(S+KkShI?3RH5)MQKK(=6Q7ƞed6>Hz>}h '&"}bLv(]"iTAY_Eag2@BE_,fՆ爿sAS~1*S\U^l՝_Ki]-0]|ߑF7j&]l%6 @jn2q?aٶ>9uqco./Z 3/Mr}UoY5gTirכzP#FPvsHߨtc&oJs1@l1N}lgzj?N˭cBtRhȘi=8q W=>աas,u209 jU ^_p6:qK|Ƃ1p;TƇ{W8QtPpy(Ժf=Js}ŝY>ub78%;:ؗ\Rj_q³3OfjIK|}|Zkvob}dMzapY{$MǛ&Lg#[`e+?3fo%kb4Q}vkx|i'/>~@mA(in'5CyctO 2d)u 35zؘL aȿ%6 "[q ^| 16o&Ra 45\/p9=m{׭ޏCԯR8Inka"hv>l{]y}ҍ*tL >},O"RrM::\%bQ[,/M_Z(n9zS[Pc1"l5VAȚDn8NJ@GY~O#gw=g{w6rȼSNv8TAszNޙF1\NJ"<52v۱N"S@pfJs[^5θ:dٯɁ!V`g)^YsK8i,C g:9xRʂi±xjY@"PaSmΏ%vLzyԄ{(xh[w!zǓЋE\11J{~ ~ *Nzo%@WOC[gZʋ);0:96Mv~r"n#A҉-l ^p$p"\luw5Kb%^)]h~&?^L>Gc7l+b˛W'Za kj (W CGTHN6AQnneooRI$6 N߭Y+YQ"XsFW*q$C xexepk}؜MɄGE[f4n-RBhV5Qs[[6 w&` Y~^rSQrkOV`!9z_aE,_\֨':Fn'JǯyK9Z;> 39 W4uvB}qsS! 0xF_^Nq[mE#rW~ ڹ̂pU ~8TbI/[8RNdaᝈg!j@80ŏzDk=r4m~_;b9grlC}.<|TZS$|>et]ki+.iKY<#C-&m јWȳ"ݴݬ~}kfn$Wa4 䄓c Ĵ- F7͆D;!b$F3S d&!>,Cl"N`eyF;y=7{czyДJ]΢L/jNbwʻw#xŌ,y,Ya*(įũڱѷzpL_xm`ΔͤH7~Gn91-_fY) 0CPH Z =v~[z1zUMC1sqW O1♳R&u-`6Ze|đfʌmfN@'V~ Hö =hPFV3kR@I3ݙ+0` $|_&.2%LlyVʱdSOt&qd_Y )U#Wu3;eS@ߗx9ae`t+C>T@O߻!E cAj/|l`2i4aXg4ߘk+;"aaϧv[yQfWEn7:)"lz_kt0L6q}vUFt8rx%Aze$|Juy^/Ok/j:p9ǰh3WE"^FFֶxJxO]@Z^O -lUY;Un(%Q$\:bqyH\$R cHַIx)F2]5[ѽxoQ3oA(Q*luT+n\vek8RB3cmhR d[ZpdHb}K6lTT93a4kvˤayۦue`GXM8@rOXy 䲌LENٳ1~ ܒBJM`?=Uf," axYTN P[U-%mG9&_m[70ez1`teea;vj١ ٖ$LgS9I,0^SuJJeEB*i{P] rN_\zsIη'-y_$i Qtܭ7 @Ix2gF'Tj5;yL(I%-fGz26Udck_/gSp 'x;i =^󴉨\Hңi!v%GN92h87J w6SA`{]ե&h?g?g=<${",'uZ_|:Ȳe$ߊbd+ĚQqIlݮPU݀%//asF).pHqxg%&xLW&19Lq7b/W4_ )9ݜ'9kTɜQk몙恡Gt?diG' r4s>ٛ@Y m"^1Gr.V/ ō1)…+ zZƅg:2䑅cGnX7M};톴–(]8v'Sf,AyA }´sMä[.B|h=~]bOe,\Y24AFn%.v0`y3;ĈSH͑ Ӏf5a|؁(*%5{蚥iV -){3rP`?<4xH|.{t4m ^DE4fh8.ByԦΘמF#8,DIUVQ߁?h$ gyn1 U-14Kdq4D;$KS7+qE%w4o_ԃp;^T=:&n&[&JQ?%ѵZ끔 Rms"]4K[͂uhhK[mǽwwVv)/P)OyHzn6WNkI@k>ތ"AN/VPFa1'ɒ6P3; øرgl&Vfasjy)O+љVBJЌrHPCR T=vcwE{>(S5ɰhudlU(-0mE1m>FI]| W0h#XE:wS; Ik Tq=>5S-7hpuX7UI}3<ŧ5tʭtnh "~:6vPLd1lH00-?!nq@kfmԕs~6-=f|*o0 ;vD}oY;;5Z,2b;oKfs<rt?[jēW+N/<G>ECp-^hM ox;GeorMz.`NV즟%Ex+9 4R^:R9+T)hO =RM[NХ ̻OOwdWRQʫWKkw~qjSf=*×?X 0}|t55= 渶ۊʍ(U},"#ͬ8`;w磊Scɲ5PObhӘ>.h8C'>8'ДT6);fM+tmVȷwĈ?[i =>%T=w}d㌗REq.ĜߘJ}i]T[k,3nlaeDԁZ>5aa\D<*(`9WY Q!ԇ|0մ@¿[)}q oǞw"c:<D{k5eg'WyOOv:Z,8{ iz"FE$R+do᡾ \bgRۙùVP݌Xq,*WXuHp'p= ٕ޴أh7GK2} Ol$m4Q$V/Lm;hYVW$A]#@D؍|6 45%0#i^'=a|twFCb8Lu8lbzb-i(q  r /ոƫ/&-;'5bCgRZ oɛip$ϧ4O T +IƑ2ۥC?r z$z"Hkh-d}äLv`h6 n7!e!yjbs]V_-Z/Pa$~]Ap;:wp&rާgek(_T]ڲI.K5k>b ag^407A 8lOXc?2~UVK]چvqRQsk ^CXG8fNS)gr< i3 =;b٦: ,h>Fu>[}W ĒqfןTCkO\d#YIeF ܂cP@KXXF߷(ƒ{d!¾nHLKGcIwl5L50U ]4?ڙ3G:T 34 ҖZ Ds$nS 'k 4ίrSBoN$8b Rbt2?"CwNF9kXaxgbJq-8尯g*p%vNI^k SbZ!&#wJ|9?yNU!}sɶ<6"b: \ݝgNS@ɥ׍+MFh :CH.\wj$x =4vz ǴpIiJlx>]&u/FO:&KE *NtէUר촮?R(%2?|ė~UG%Sog=Lz"ggm[yEjPjw4!ǓB¶b*+rgww/f3c{b9x9yRɀԤfiOҌ@ix'N崉< UǥoU T2hM()7?zz(N99rqV lޏ<]bJin9ԫ!My\z{U~'FmLϜu4@q+9TS(uPK kI& AH%(̵Qb#|0`X{*S|hǵȜW/J@i-> ԆH$ RžQR,bx"yBjtKgme>TpO>uK^U9Dt4RvӲ4IM#gD9ilWt6=Ȥ|\=@7`ON$gX5- ah{ +/]dX_RxaRXҘK+XbCKfxиRȓ +uKY\w1lSwmqoMp%L 42q(o(Xe"gZƧDXk{ZFnHOǥR\4FN}{pجZG/:Z̐!ZvݫK{Lm1A[(.EP?`m[+6n3Ԥ~?qP^} ? dyRa:dBs2 \dܳ8sv,T#~v}IĹe1wr Yk<9VyLH(!僣ucϙQFD+s>s.i}SPIF 'KԵ5ja'~A*hT03.OjriWm%\;[Oe)[Z53(b[2,ޫ#@ )>kD !A(>4E Ղ*@9y!R8{䶚&,]Mb=ֹT:G"r[iqago@4}ð;*M;%z#Qҫ7m?#B룣sӚ(~W΃3Kޅ03ߦtLlX9r xB1/Έqg5dF ҿo>u90KD:+[&h[XG`[YPWSܹZ5epk%6JI7ALY.u=s ,9C^R$)7!]/-p?@2K,;v&[̅3T6Y*AD~8:e^1](`b1% A>5XQ>∝GIq rC3-}(#\Rk* fW&g+߱HgmK!Ťr;p[(zT!8[sʪn2k#uꈎJD<@ԗ &6ã et Tv(لl8; 1JZ`vF-Yk8[=su!d?yk|4Cg^ovO%$\l8vZ"9[Q :l0"63Fft|*ι r_H;cTޠZ>e,␋^"n$ڵ q|wN3-XnWGx¨\a.|S l޻~4}J-w|o,yz0#dlID4\o SfFu2Hm)f`^Ô!sm$1F^'r X|ĉ` ;Lk~tM /b{U#P%´ƞvLf'5O;ۆ/йXr,$\nZ2# ԘUU"1-K}z&+zd+ A UC^[*mY0ZKWhoJchh͟ b}<+T0R_ 'c ) llH:^T-|O-ݺ,l|U{E'X&<\uG=Drjk;W! 0@2,1J+\6;4wXip<%h[E9ק/^Ԣ()v]kreAAj-UL qq&SȒ5)QzxCg_ew+=,,o]g1S-=CS ;?#EZK/9djJ}Li!S @~/g귔M,w&XuVqk7,LZtjp wKq=Sol{ PW2>r,yiA\s gqQеLI w5.?БDijO_8k0E3"4>Л qXe+ZS`Uiv/,I|#,`! S.Ĩ?8, 7T]gY:{-u[$hFFMrzG-|cǶPon) 1j\ ArK[r\G$*$`˰+]DÖϞ2T+,Vzh4 C 5dES^9 ;^]MpLUW{mH0[AY cdG' cb\Ŗ!CQ!A4Ί/g=*q+mkza -k_ϳ֜U{ۣkM2hױ/ڳv@ ՓCtFX.*|$n͂UM7FtFo8gߎL1cGa)T ySrB–$M}g2O6,?e8nAܑ10zĽa6M/;9˲*8BNTRvUACӶ'_lGB]RQGF* Ar8™_%NEu`NR_?gTZ:vNVg/`WktxKSﶵP(A*S8 cV/KYwW:,y`؟aR-`j_D=F)U=[8Z˔F>:+V^Y6Zע@r.1x, =okقB&w~E4&ַՌ݇4k3 \ yuQH/n_&cwpmnX2۪X*6l\|Ptf$yuC<ύ6(ڡ7@ e8GWpΊT]ġz gx2joMgOY3U0M*}!ӌ봩)enq㳋+.i yqɫe$Y v$P_v ?7]EJ '9:-ON5gGuҎ FyJlA&K(7ż~?W}{Mٳ)yœHBzB߶}uD\nދNdX{3]oߝq7zJU?vӚ#ה Z?o#|F7'4}XDE7谈&gWZis؄2yD7]vR+0~tȤdMC`քMF -L^}} MyqNϽC2 EniIJ$P;!*)y: &|C4^:(~<8fFCQ*%J҅vE6Nקcv$V"j'݁ld- ? Ȥ3KP.>w:1']~gcх+y&,j4ޔ|:(K\`RqK1|#-dξKJ%߷i|(|>E2h% xWrQTY"AWzI/X)+2+uIX#?E[@>/ա,Br'KLW0"LѾg/ޚs> >Hm7ucp&5 PNqv)X8(Y\J|ëo '-J2*w'7x酊w+* :B$=؇αeʋ svE?LU2%;䪩L'85h9CsȾh}|YPt`:L6 jjHTH"g0B<ŁV<ε7Uf#7@xnN 䭅JLVuJPV, tC{+T l`A{JHP2͎!$,U}fmCӜ#ӐHIbHi[iiij4'PB.|LAL9Y+ّZ_Cq<9ۉo,.h!8&S"BoB!4M,GwÈ%^jnʞX릟IꓢNWuTހ=$CĘ_{'\ ݺ+̔!-.R ˜ s+v9u% W@-7dx2Rr LXK5e γ$LĆ4UĥCf wsz$1e2c-w}E$/`f2ǂ\ĥT`Mnm׫H_ ۋh3-Kg% qlg 0.I Fie\bVdd_ >ӁtI5Htoy E_عۼAa{l3LQFZrg՛ĴN@ `6޽vMaZ/\C{ZQ z@}PN!W iKbp$$ʑN7BP^柬ShAc4e\o<1ܟ\qޭ 1Ԟ/%lzy1 8QU%yT2d^9#͊) ȣQ.2R 0{Nl*ͩ^-.un[֞;]"v9,, !iݾI4N%psaMnאf`9Q󃚶lL'$g̅L7Ea;Ys azRǁ+*nQc3AdDF),;]a7~ļwOc=W; Gz|w xsÝD|xs,huO5;hߥmKhH2ٔ OIdi[s(qozJ.D$9Cٴ uw=0TbՓLzzN2ҕsgjy6]WQO#S*:Eu÷`Xe`[ZI)(`OJe3g?~$H@ !߶`Pxj#KaنZ-2q:n{r̈n4-w_ Qgu*fKfH;чQGȵ0 MBKl?/jn3#Eմp[wqYQV xƐ>ϣcJ^k/3Mb%=9]v? _V'=Xӽn&84=K(0H`0gP|&s7tN1 og3fЯ)3휦mW_S`ϋ~m\g Tt寮][Tm+\{OvVHU3`0Ivq_do?~*ǦDӣ2aeNtt `~GAZ1{#PضzbLs"QLe$o" 6ur!VGsLU궖ŋjjPH{!# 6bf 2c+Ϲ$HR;(D";+4ۉQÀIe *Gܜd+gx !5Q`ݦ}kvY. fa?]\<2e^׏pc./g'G5$7g 67\6퍻2f4  7SO5`1qr%RT{KӰݵvãR(;:F~K$DO < 9Jcz/;|, W<ǐx.V a |-4MuGDkb݅ r TH |To7(j wn` u`~[Rl=_"Gg˙RFmp|N>K>+I]O)ߓĒ읁pU8tigjpe#+WnG>DqYT:x5zcpTbSoXD\Sn \Pyle$cv\[^#ǰ+ ퟈kܙq2pd:9%QErv$ : M߉[W,-dv+>ha36Ī2Ex˦H^Br9Ę *v*Чy6?~8)3CMOxC_ 8j_g { Ne4s7Ea(LfР C+Ãꕱ yF_nvʜCS̍hF:~\z6wMoWIGC#Iz92ǢU)Csi%J N͉F&Ce'B Xϯr!>rZڏSS kVf#yޥY.=1Y2 H$7Yfu [Ldj̴yv%c ;rA%3^ [X 5[:x.JffuzOU4f]ut+#_GʉQycZtgZsql_ok%_Z^aCة[ Ӥ JAV_/9ڔӃ 6’~m,Âlj^2Y% q6Tm(]ZJYbC#^l1(]V3Ԫ:Gd`̙dZQ5WZub~zF<9u1n.ڥ|۹ 5vYAy@wk7}+)u{aX?ʮu{%{ljLˈ?7MhX"ta-bT//:~ 0N$FP:҇}/ҙa%HټV% 3Z y&9lz$}. cvw<t oƱ0KdZ{&Gh0eRU=IR ~KV-dDF l)6E(~T kj# CwUR6@c^NyƩOմ_߱Y ٨tyTA7M:ЮJ Af+N8m_ f1X#lE=!'1;:BUфOy05 a5xQj5}T_/8T/_.o&ޖd *uq6VU&JN:G=&H%4HUwJPdƝЫw` L?!##؂fDd= Jj`|9HΨǁ`/ % !9aI n4W>`cҷ>etE8fTSe0ɘAҨ0P3"6 l{$.5쳭vl :]mB|GEPb/u2eY+3dԊ>KvohMLk < UͥH}Bg9X0pn橗o]K9sa9эV'젢˃63t:MBhZ@ܭDJarvKc!ֶ$c9#bn8?aw'\':Wyv<;|OkWW=нGD*)q7JGP'dڮt<h;2hs ӓ[6)qXS/yIʂg&9_\c *.I^k8geﰼfx7&RCOʹv [ tg  }t[&j2f: n;Njor ep@x/a:9J n:߬MKNCZN'UvKiTnD_ 0\P4ST9ebj~wGLG`8[ ?dad\Tv3O%Nf^1 t3[#s+q`R%I+1OZNxxU [<5ëHѬvIra#?~bZrx%NAoy0_@HB4b!0!< nvGڔ@ųсd+`=܋:ݮg6xz4)@X[^Nx+&P؟̫{9?!0֦fnpN R곂Yg0Ϝ.ؿtuͻmw 4+ƮƖ\w e.F5 3 s(ـLD`_N ,H]/ϲF*غ,Bɉ `t%~3a*8̇G贽1)s)d D0/Xg)qǴژb1igY6Wff9&%wdN!Z# 2!<%'gi},|įHDV tr;zq>}Pgib4\pN>!z$m2F̆!c4y#u1Ѽ(")'oWۺ]s׸>8|@'aHд|'7J1PV`HΪc?S$Hr8K0B&KPXmj/ڍSGF`[}t'cs5>[.LWwפa[(tm zm(jSpBa@Q{@*y\4 V6M\+>+DSuX#wiF;ļ{@>P n3KSNcz gk|K&GZE'PFV֪)"}n8:v-:$B(Dm}?/״v VF lٿۨFʊ rKۨic?7s{3+ X^rQ2AY(\ *Ɵ"G-]0JfxlEAThN"쭵 ,D1|H^v5i4AkÊ@h͗"ѯGП:!A{Ss1&24?+wpѺ.UJn, "@a0q)ZVp5‚x]ٻ21*ߑD@n5Nv~aZm@Or< Tºu*lgY"UKM [JyJv[i#w}̱Vʃ${">:VxkM/k+ۍ}uF"vqh1-"rQm /ħN)9xvNՍ4oa nkHO&sC/] \;M ȻVVIrg+&jImGxf)ٓ ꈏ &e!6IG&̩\Yƺ>MAR_ t 6h_XVZj'F/EVԵZS|w[ɂ̶֤x_oRn \q 3=FH:\]02PݪrqsAX|Ur"EԭNfH/Nvcȓ!{w--GlAI}#TVf( #ov$G|eyѕ.gf EdW"u)$0̃M$(v~*mԋ5}JTFI$j;ʼ|JP4md?YnlDNE*GFUO落]X °}Y 4x+ RZ tb5_h7^_KL*ԯ\(S`Z0=*p]YN@yʄ]x/ 0/I0U܌3}a3Φ=)5iψ'x5Ӣ,ipGpWfs+5RsgVe'w#O/0+㔦2KS],]uIW5Gq#l"Nuk51 ؕQxzEadղLk=L|VuA`/1&n€㩉j(wߜyZգD|;<,ViiK^X[b+[ܧ `o>;1i%47y p ۥFj/@_NzGJU6 v!\; -H<,.(١ řKq$qD k4l&Q JːW$w:?}c28ټPȽyHJ@[z~TX|;HEw$7ϗp* W2r/ U6`o4Y䁟7[ zs%oe5r;\a˃b4` />l(.Jr)GMRÈwfmy#H/m(0vI-{  ]P QO&tv2H153bZ),}Cc)#Ti;Ơ?Ȭo<`?0ga .c Fa%wY;G-itaY[w-)tѐ\vR O^B_*ˠ:3Aꢨ֧,hRz!ĮE;8evd_}~^:cȍ1hH?æ,3.ݑ#ڒNj6 0ȣ8?ϕӍ\CC"ff5@ҥJ] 4:#ujP5s b%p9' ޵<8J<\qe@P;VSI7@EwntU1DN 0AL:9\OYҽ (0G^H̙gv[) G7Eb;8}({9ʂ '3 U͗tȈdE)7ΝxZ%{GuCy tӡQ *pٛR3퐨_ ZnMXdY]h>Z=`Hn p8*2|Ԍ˒ReIWLZVa/գ$%TT`zREiu .uV=E Zᗛ2R&MFfS ;iaU$+(A\(ge6pIh5@A_Xv*Q [5\o= : 3oӎM pBó\ۂ́}CI`wk{uR8I"ټjyzG"j s܀-#KˮYɑ>"!~a冺d9.lzg;F7fƮc_ȎI6f3!n}~j{:.5 ߾g?nW"9x FSLot*2Ga.ESxP%GűuLpJ|hn()z)p$C=ka8 Itm!-$Eu5 -s#ggd~gfཕχ1G3~DaHf?עؐ}8i*imv;Cp*&g7Cpb"5NS;|ŎԔV(-mF4HU|g+ "1(?FĸR[OCچg:܉9ϽkaU)" gKTׯ/v4Ţs^w VVYqyn g%lmV+7 Hە6 _GrBU^ S-C;\RaE@ Fau2~Փ2؆Ӧ? 9Q$n&TQ\a7u.)Ҡ5Gj ~EF?yWH:?pNJmI ED)YSf⥽L^>-.e~9 ۺdkTJvFt{%q>;D=#HpG92&_..FQʦIRst` N@pJaq ྙIDyWC@ fEGz. $Ҽ 8z}#^~4PRAPK㭪Q]R2/q Pv\7Mؽ=7}orom= _DQ͔qkS1X J^̑qPٜYjvx/NW'-dR4e㜽큛E|{`u p[}8DЕTI!e=}C:x&| f 3EGSjػ : )3kMq W/ u3v].d >4hdMB~ş} z+zxkܮ⃦2h"! j8(m\̾aҔrCr :Nm(t<j# G!nA4n>^a3cgfH=mDfqL]I2̰퀶GiK V-pff\2sE1Sׯ<ĠjL|>֞ci_sQq9I݂#o[Xzyԍmṅ%[) u]5wŰA^Rq+5pgޖN~ߐ+ MbeCq 4Um8I}¥>'QwexZil0)}8xeYFɥoxaC0:ipD15MvN/+W?e䓉0^vsZ;~Uwi:O=}ӳ}MAS/H(>3cy,t~B9TqAL*)lAt*SРgŀBވO'Py? ۑlψJ|)IWXӃ2DO'"Gzh;aRUuSM)wS/tz1x?=NgFLl9 wEl-!2'd[4W߷5eۈl_b<(c8 ͈+1*ʘ(H~Q#3>?w/酡!<Im}LSPyLTCUC+R*8׋qMaBK$Y~{z ]7._qRne=֤,gz!ec$*b>6$3_hY>lcSZe']Ki _%XE4hc)Ȱýq>mKxCr^s] "JdM%C)?\CůWע,v}Ft @Vmua]A [Qpy XkAiE}pd>}~@yA0DƸ{@3ٹVܽR'ަ$R-S%IXDRÙJhKhkRÉO݃ӚMKdFĚ\3}XkN10{U&8)avF~4!XVM,ݬ|%> (q} 9|`Ep㪌mD΋-;>HF8U;_`XD ~V=\g+,3 1Z6ty.bB3[ENH[Gi2Ox1/QS=k;OLo)E̿h}z老OCVtȝ̇ۏF1C_Y&JܔջYt,QQ&ӈcV5ߞ_f{UM;˸dfAj2%!-;NLbwZ<ԗʖ61 gEwQһ7;1RG\+7r\=@i.(,7A?^?("XʳIkRagID 2( /) +ĞmRdE:RL+]1}%sz!F]gY^!<J;ݍUr0u[QB.%UuaUjy&O؃fJ:~ugke#Re(TT]z"Ň8lKE?<p'7ɹl"E.a 6z~\m[+.VBWF˫KIP.|qM0bDwS[&EK$*8%a;Vy^?Τ e2E);=iM񼐘ZɎbrozȜ,͹1GY'!o63'_}L4dŌKpčԻ*@\f P3\rB@MWk@3T ֶ;:@S5ۙhK&QI!_ /yX#s\ 9a?&k" |sD#b[LYAxx;+6Yef]+;Eٲ[{B\4ZuzHKiB`$p{ cxk#PZ[KCDzB14Z@'#JEX8LAO s/0K\%*9m>z`qwfd2&]POF~lJmG/Fnz)6簧A o=w_f3p=Lvצu֞@RTAщl+YrR/L-ڦ7U2PV2"ߩWpѪ_xyCMD_OFXag-Kt}yA#N+;  0Q̯*pP(^앢%foi-~;vxm 7Z\8PjXD]ϽnaӻpX;42 #6iί3oiɒ5H/5nT 6ԧ z4CV Aѹ2LU6|Pe8 V%::Iܹ0sMki;_] L(! K'c)f5lc*Rӷɞr^jq^Nn6:5c r".f3)YLY,d$+u&k%{R>"s5(`Xq-B{{̥.:h9Bc&ʍg"- ?S+o r ,|#g6BHɓ&˜Z;+TK Udk.ծ S59~bx}}($lX,Бe14@%Ł1aP|ju3(3Ѝ&Cc`=q&y1t* 6pZ۲]R>*}A*}fa7aĠ ͙#$kBJp.Iպ6jVg-]kֱ>E}ֳt?0qIB%I0F;-rU YBVogC]<^7!W">sV.oIsdK~Be^ VR#hH#i0^B;3H:'kVKG1r~EIݽ>S35@h&vJr{*eCmI-\@h!cd{E#RwF>A_5|W# \=2@+cu(ދ)UVZ.iMQ KD ;Cs_Rɡ8pac4' d}pw=A"0]iVD& $`6!ha΁źCOr(jIuben# WXdcqh.R4W(kG} F|_t!'K[۔*\K "Sd۲"IĨ&r?֬o`|S bBzBD ,٨/@=9 !]h?"7 ;-q90`mZ )zy5.NʘZ NXD&cPH3dkH: E"L: fjFE;\"_Y^̐h$B:.pQ @Y _Q6㆏ԑEK\,4^ǪF@}A47|le`7ٮYm"aRJI?,$)rF~ct5*7Kb5O=1'vK,(T*ΎZnt4wq2c] &GH^%bSA=Վ]fO?LBo;^unB+Ja-D)7ȝ]dNm>h/IB%g#ӑ"EB"(}>\/# C1n<|\QuQ 9!}'2萩]"~ E NtzN C ۶L.hu3AYJY%a*1˅;8\ߗ/Jzp$ 65:Dbl_nS%G5`lfI#K;֥4g.|I9ۼBez˕Q9/)J4|<&UfL@s.W͘PI/8l*y̴ p=M!餬L;xtnq7bx7꩸wwiL=}PkK tH*R܅siSѿ膃Xgst'puȿ῭3ɋ'V6abs#O-X "9̻sD9s86 @`4(7nqP@` 5>&Ԝc:olO08nobv}4JXM#q^M_k!AgMS4=_ly'W?VOWq@S`AGyS)Zŏ@!i#Jd4vȑ(o1U +[K.7+u齻&ܝUrk֤HɡEjPGoae ۃU ;jy&L13;jڒy.Z8j%<õl=2І8lP$s+wLE/x\n2:b#!" RcSfgM l Hs ɇEFu&$N#xKB;{~~|)ItXzOxDoVw(Gn\U~j1|ZkAO(o~7o*=I#_soÎir) xnR4ҳK|QLV!.$ :y"v5_)#%k\s1/^9Ё3}l"y_ӓ~J,:C8jOnsRFZ8KC@v\ݖWNѶ WU)N4q[^饢}+vf?v)jz:)R.K̤k!bD#nE< A+ؒzA p{-: Eb~r M~_::/X !N3H'|j нk"I׀uLF|iQ) &1gGwȘeݪSlpv2t+s 's's80f pik(sHF͙/MJ)1mh:5\/<Իӑ͏Ii(D}uw^DX1* R, O-ChBJl(Jci;Sq?U,)BNknُE4셹ͷ`j x@?հ_sui,Nyo[򖏑_c|UTz-1|im)3`E7?w+so0()XPo-npř(;hss8%"[9=IXάȠF!!խoYP6R}K!WZ: I<{n|d{1w^5-O ^" {ӻz֊kaHL}WŘC7D/|)%sYA?/@O Օ(  i@e"r@m'Z ' 0 M T/!6MTCQ8ҨYQwMDp%M&XFr EN2@G;@Uy8t.TMz$hE= N/&΁s\;; %箿qZw?ỏ-qy/D(+5K~KnnuQC#'#rI/-wo䷍q@_}rtVN-Dkz[bnYӯe*SYW @ۋĮю$r:S`srLj%&8eT3 #UfʴV /3]MoIxhrA]'Ů_VFH 8x®gDmBG5j̗ݘiW7A1MI}y2| l @ awm6+pVg(v2Y^Iq XTZ>`d okwSeHz,&' 6-e$t%Epٷ|/c̜Ҝ\'*j?4 'GSnf6kh^= :mLgŝm,aUzS8|huHB6yHnYC9 }G:8y8R3|P:3j8*(ҧ)!|7_dӠֹĹ^@k`@VȞ(mxӃ1j:`z`7|O\_ֲG^3bkT;ꞂB"rd%kɓ+4 " ZXsc7FZ([5>sߤ ^u$gDCiJ>&TY[(5:S},묵u+H!c5@E'zubgᰠ C{VN.̑3P^CC1W*P@퉋._Di'< !BGOQ w)Xw:&c=lB) %qXvKw9Ňq:@n,6ƣrz,GʷB*mt=]ǺGaurE XgdW.)ZN[RU N0\MVz%68:hځV!H96)fn ۓȣo'@%;(z ׀׃rCjX|F qXܼ=9,p̶)ȋM&+Zh0)] 1x)u1\ _MOildM[ P j&og)Q'f:Fe?~"Rj[!?"a!9\??6 I2j΍9 HkGI1ӣQָVj3 %LBܨ?M%Y:`Fju1 ft8LӋZ鯉 w9<`iO39]VNJMh:oqf<}9 l9mz* ҅Vr^kV7%'pN\ͧdN(' -+,1d) X)}X$>,`7]@Dmɘس|ס.B'K_x$4LHǢM@Zn_fĜ豷H 'z2boDe5?֊sK2DG4 |:(&[Wn6 ~)z4 XY5 ZCD|5xKDWyU3zLJ0`(X۬>$ PW jLֿpg$03ZVd-+G`WBݴ *"4(ݫR[t!o1?9WӋft-kQ6B2SgKNX]AR` *bA<ҎBijT+kt4ϨC!kֻL,kGKt cKH'` d%$ohP)<: Ϯ"cCd\pYFNyNijNq4aꐃt | bF[5zæ-oņiǼU$㞇e=p pg@ ,Ȍq8 ߑ[~z@9ZAɣ8vYobQlmMvΡOO|BN~̡軣۵|Bpۂ5b#/E;$EkB_ɻeNhl1_}+S$ڦvZۏ*RZ>OzR亄|'Ԏviܭ5cRrk7Ѵgϯ2q-Ex&mJ-jG"'(o%gJǭsh2O/0A =𣷚 ]x@CBg*a.qAԦrf[xg+D,߮2zOؑj^7.1νj?UHO~(љ&=G!/t0Xs+?,j)mPk7 ãۈ({r BVاfRVܛ.w2+*obk1aW |ܚBxZxa"#8]]OJorg:05"]A5zll ;M[Zj>9Dtq  u@}w`Q_]e:N'WKshoAprw[v׬N$ȂӓTSJ J"̽zxv_6ky:__.vJ&P۶ŭ91oک ƧCo;kv'пбQ h3;3*lD-[Tiey>ʼaH$AδD\QV׌˾ οtPDS PߒQ .G7 h-j mb3kֻuc+r0{ &t1@7~Bpi}o@ު3ExasݺŘR?t޵,H5J:Qm>^H'J>Bo匴u]y]9849փ0@D-5I~RySp --9\Lݾju;jk?#~Y'!\gD"jwf0k&k5.&`$wYIJl)Ɣ o&|\d 1E |al'-7DC _l@0U ?w$*V,KM$ӷʟGJn%V?@57 I=T#{8s{ä'ɕ8 {TS-P.Ǚvt[ܗR]=BCw(!b1O#Fn}upu)s(êԮc;6~B$.BU\xxsO`,kqNa= w]4F_#@r(x =?,P}Oϊ #[$@l 3'Sv$n6|l[k$!ϔz|,W#7< 05˜Sq̼:χÏrd4fP?PfVK\7ʇXל=Qx{ppC3=KZHQbc$ G5,/])ͻIpEc}3O-.#lCz;U3U{,xG%t+^XX`^hV\zVuƷ2Sӛ#6g İ3m*V6ycbcsj ȔSā *ZMu<=fъ3u`t#KPJD+d*"gG!v8ֈ1FˍQoGGPVJBw^ @&y:vZɞ 9 n(u630e Ndsvk`,^gQ8:; YhWDa? @;+V淩 {맻=d5tp !΋>5[z޸ۉ H)LP~]D}lhK̖DB]՛`WX(7l3u{6GRO߭eƉ6ÎѤXLn2 "eߐ'U6% s P{M &.=Gh(89RVՇ3V'4/KvڋEAdc4l-?7NonRz7  "˽5[| *NOVx![FܥIWolP(zsEP֛֓9ﰆ8[ַ"reǰ{NWW#nPl/d"}];:.ƒ@#!1D",]-/14sT*Rf M!-* mDh_JfPw~ lRPI>a9*;#ҒFi' +[]4I1# 7^gNJaZ <9dwWYǙԨ7N(=:|?-?>Wo @c6O~T.r ^-Igg 7Ujib,WFQ;Nь>bBt 7ؠ% g;0-ȡfBTr6!s'z%Q-=3%BuIPD=Fo!`-Ԓ8V *Mz=g !;n>q2F=XGu{ d~6Q1`xta4 >yX*p:O "%*k)\=2/dhTaNdSԆjb*QRޯ|=-߳k*7G|)gYL=tz19&uD%Deܤ;j4`k} Κ}~%eœt؅/G;~;;EP{ s9=VyNvsWx=XK) Wb,̤\yir-Z+eBtr5lbMῐo5ɭI ]) f,oRbNbǣQ.J%7}$gD%<@vĄٸ۔&|'*AՎy0-jeJo0UfDlaG ." 4" 0icJy ?`G(ò>m8;Z !G{\cgiY/ 9 F%CD2iFQs4:FG3NS'hvDBȻln쟓)OdJ}\L W,QoP2nWeTY g aGATZp` RWfErW+EV!oY2uRPu7 7K4D#tHXE4z1x_C;F}vӥٟnak!2G>{MXMQjq%^ yȧ[C@^4`۴&$͗p1 //)#>?jTfCOHqwǃGy6ڎ|SCL4GLQkzDdӱ@^7=tqM_2b J]toT~iB5jO Ô26c#+7[@")8qJׂhXV4:g{snp<[GZ^8;1Ơփ}$EiY*:Tw Fo )嵶 _|%Vl=!b{1qꀅT~_kY;0Pp,a'l#WwZL I@%<_WuI:]&]S͛in}a@uh@ve"zޓNʎTj@2Qbc&?h8m7ғ,XA7fjF-N_ fC=`fj(byދ9!z=իZm\>~ThhiƧC4.el;Sݱ$%Bct6=S4yBsXz1T l Q2K/텹A KDQM4 GcNqViL/Q:YfuO>__-JAz:TPK8 Z7#e(ІsPZ 3=aRP/w} ۈ >X|bQ 6]Θ ~TfJ#^LEc1{=`u!Ӛن7gW_FH~;_\E_[ݭeLrs`nЬ^X7*n1Xk$,tkz!87ʠ ׎ֲKnlKR)v ~}Ka$ݼ+6?ŻN洲|_qy"Xz4^/jN!7, 4chI!$Bk:,M{l{$$4e Ҏh!\iJH²tc-̢X kK''?N$" ?$>Q@ԯJ!6ƶmhf ddEŶ6dQB?h#Ukh<ِLsV^ghu_7S ըGMa~/OĊG RrxwUS]WG&vLV]^ ~^)ȳ.CrAη[OP1 TP歂؉2P=7S)دݪLɡvϰ 4⋶VsT=Duʓ=l_Z"X$3*NݩۭxM~ JQ@J4\(%mrBJ 7W(0`f/$q(ijkW'0 #x\ą 6ɓ[$zt\Q^k0\͉ddF`&LNO1$NÕ4݀!?Լ6h jҬ`C4Qi1.Y—UKZVDNfp]k;Cc6Q[,Xt7>S3ն<Ţ2MlE7Ŭ2G 8îId\}=Ʃ;W /ث7cF,nV8c? \{Է@X̤ :uh;g16X dΊ`cxBOYzսѲ#pՆu*{W>`G =&?xTlt1'۲d#p(jˣڸl,2!!8Lyvv[Ca'<ߪ9f*,W2C_s+}t^@4 vxQ7c G_-Z4`4!D 59J8ϦxۡHZh6k\=%ɴc=ary \yߕED0.ˆÅF[z`zcqǺXWW˄XKac/ݗMJGmBO ~M/-5?]יfH 8A0qsEݸBbF?"M tt~&R(\w t/ڗ F{ZY^~F O(tW3 FU,wIB CUmSjՈuyJ@@qd45 %m݂}{3I%byf / w{fHgxm31<p z6rEN LK7 j)bK˔.h"L~-FerbdUDŽe۠C77eݜBv5_=ѹ۪ܰ S`rS}A%HXaI3cE;pw4"dMn۰7MU]$㦎m!SpWmkxM[ Бӑ'rB#憤|bnSzJ.a8fݷr<ð۶1noDPZ__2G+4P)om 7s㛢%l>yR`74Uɤ\PL-ͺᰏؾz>(ٳY=NwmPN3-n'HB㵓St|̋hiG#w\ s:?;>[b1GY6b4(\AzJc1i#>)gF8ԏF2*t[`iVPv0.#lkPpWBq~,gnxb8A%zYedEr3.)Rɫg ' BX,m uޖEv&0mo6i̾Fm'LV)BNDrY9ef@ڶ+so~T;6KT=Il`=;KZ0jeP|+I(Lː[vpÒ)"\_% \#a&puK]nzAlw֜P JXYi m,& `ēOn`^taS {W>w_'%~|&Zɩ?K AF&G*d0^1\5Ub7 , }ei˷(]f~ Yv_h.*$ F*k 5%kT_> .x`VT!-%'5BCgf+c=MYF CPɘV.s~ x0ݏae[CNᎀ^\74^j!a@&{خ$e) {k6^AsT`_Ը8EtzHZ>KYy9/T֨W ""T"_G=%o]m3J<\KW_D&00]aG{{*QN&9OfKYpΏhIZнm-9h 1`9tppQR; i4.z&(;rPW丢0s9Y7!nj9!0+{+u/b‚8N}XaTҟܻ UdZ%,!#/֮ske6qaU mz0&iĥl=j/[GT〖fdr8yDyARZ. \7 Qȃ 5,W`fJJtpPyBm,_Vj<-XsC+BV69vmXPtÖ Z½GgF\r*I֗r>^1VOMWHzVI 'KɌqow46>źIZ̕L{kGL':0ՅѬ&UEMe_v|zE0YjCjGtK& džHnFP-?]E%8 OkSȴ煂5yFP1rմ{ Gȗz >Swx"tJ+SK1`\W6C Tf = XL0Z!̤p/li͐ ,g34bMF2䩤эm2AѓFHq佬|SiF-"amGzr~è‘yj{Ub2 Ζ(6y\2V S] seQ-`?I~ ~ j6:%R\ƖX` ;d7$EF\r DRJ)Bsp8y߭H!k׽yA!(i᫢RnRy Gp%ܠ[$(Hdm&* K&Xt{8JkvVKȓ4 ʟsUÓ 9wXGd&NhM$МԶ`Vd|uyȦQ0r{ t;8uBb4[ 4-)El(jMS(AY/=MSH喕gcJ@2-0lA-/kŨ]R}yG01%EHC U(ɻQH?~믤e(Rr@܈ 1?bTR 92 ipȊ6uwSPwN)xh7mz E}5oEk3 ДymL;pu妔 Ǟ FOQAX xPĸJ 0RWʼP-0?f@`'s  #͵z0+<+8qIְHR.juqLp`/*p]L7|s!ky40_5.Xh_]\ D%3G@+ek&4z~19_} 6AKpͬNH10`[7OrWQes`5@WWOCg+| Jrh<)wzR MI qrYXzy"Nedo-c.jpޔmý%a&T4:]r*دDn5Qei?hyAJa>i +L^&M㒀=$b\l)Jg=-}pFM]\ho`J(ڦy(WH%ܠ/U#;` P\=JيNJUUID4!c+ܐ:0Ly+WrvߥKE$:o j.%&Cm:S(U@q^ dOm%Y}ђ([1C,clNZAwbV/1*o*zFGC ๦m#ۋb :sDT6 =Wjfjժ.PB[ٔa]h,0ڠa>jt~l*,p=3iyh B;7 zH3~nٟkC#?)z-fª6 Aa(ϓr(\Ơ˄?* 4<ӽUflk+cU+GOQ $a11ЁZ91eh>{&DCxT|pH,ꁅ"حF6%D;%${/D!2)E\)a:uچiP@F˘ _,%K0!eTQt"W?KUxwJ):@ gQ(r)評'| ;hYň|_gFm~$ba~mHg vZ78F3 [B5ț6u[L,ϕ9y3_\`Lݽ̘<<%}[sj ]7p=qL9>s_^o|"!t QWF˛EEK9^o,ALqE$/YtSՒ|O a:14k߳)CQ$9jCdw0JHGթ'E %ڢhz KmvTWE^N^22p: H)&{~dF{T҄P h_3MG2;bu"RCRT?B ޸<_9 ex X0Xnja+BL2GvX'7Jquwd!w)TUġcҖ) ?og n|t/:H7~rp8ׇl<-q%! PZ$5_sMTMfHb ܁0,5nu#lIRR7f* `mK+5w+?y|twI|sj̈SZ>J![%'VhXm)4h)[:I V`!|;-LH~n`1 g%dK'Mh$O0Op1am1?4!JD1#?U%>vfØ29&zWЃTlګj6/~^o,@^ Q{DZG{aWaPBT6-N%;rTÚDUAd\\aj{ޢd92oy,1͗Uˣڈ* l` 7_?[$|3Yexey+`qi):D>`P$pn;EYD9'0D]®z-OA2ykW QbBV]ʎ^n%DSufҲՒFKm3Mi?nc茨/CFl`|Kو~Q1L!KH6ɃMфM{(NuVCf2I @ڔhⱺ >D\ U1:"YNST.u ł'gNց|KWkyܽ4+yll%=9DD304t}?di.^5uG[w~UK1$cX*["Qɲ֭zP{6 |'s %ؿ{F>>LEι\v0DN>D؃*#m0CBu2 \dtA nՙj^̃[xF7l `9=Úې@lTj%WB|x'7C5K=+0$XA{cCm<`D_& da'fD'M B5GRXڦ;0-'_,1\Oj/1XaTKKo8pxb$[Y;VzB jTʝtg0ԊZb< ~E~+Ø4]U~s]K_E-LN o{be F+$}|7/g1[vӃN /۳ZEb .w"+$)c+%J8E.|m<T{ݿG3TS;-“^5Hy򒋠6Z4AI;Y nxnBm6 ]]U`>ŋ_5=>ʵ$oH܎w/=7&]X`m|HK4_ꕐJ:lԣ!v tv]Y$d~D/kLؤ/ Go13*n*O:OMdGc<>y/+v|IJE=,zGSW=P24^,ftuM7M5YqЙ3T$˽rݢ76&nw6;7F 5i VlQ8"t< #^>+31."6;}t7 |oAeh߱j鰺f2-[xϓ V`EU-xzs ^91P*G@ %8% T qWrlyg'3U k. a}5K*xV`ՄPh+0װt[ؗHl!F\Ԉ _0BPkzf>iZ%D҈wB_/!Y"^`7 JUE[ g[i8{ M.Qm.705? dKoq5tv 1Z(zDQ7? i D3]Q3.ܣ *+N_d50CN)*zdo#-=n K{lX!S+c~\bis^Uq2I"DŽo_ pyu!.gOFjaUCv8,tD_Ʌf&3+%@׸0dzٰ[Ȱf<&r: b&wpTe%z4JM~*9dNlH/NŻgI^q; eݦ"hZLEt$ cq-ⵓ۪Hc8FBVG 7߉Cd d'o>Cp$bήʈ`X$*+laH9R፯-6WxpBڋ-.ZFnU]:g Krm6*IK 3?ZsM[õAIO] ef KZIJ $ NM;j҇ m?ej<േŤ[mؔ^;Bc$9ݾ*Wf:FWW])iGsI C~LNQ)~3 QxH`/HM#'HqeL$xӾs:'e%4Jߔ-F~( Um\oe"3} γӍ$RMQE4=MIVQ|7RO4X˨6kWu(2R#j}x".m^/6 ;a(|jބ4缾U}eSAs@0:P]?F bM2Mt=dperp⤆,ym *ߢ%4sA!c>t̽@+~gG8%kMM:0`Oc?{8o30G=47ur: #Iڝ\m6p㬏ldH{.Inqt%wgk-o)>`MODu{zݪ eO} bΚ<{kZ6!wO<ٌّM8S.$.pr2/MЩ ْ4ı`UڿazLb;3mє(PL.r w1. ]|)VM= Š3D8ꁛ#_W7F\|hh8ZDiN[Td٘/qQpV]zC"v ~T}iCJFUdiҵlj07 mM*]]FQ> bICwڃXO+1ilB~QcI༕z-# ^9?) Iݨe}Xx$8,|j > ܂u)7ٶ n;b׏Hpg)ɰ{W7(c6+'t0<<6;?Ʉf筷?eU/Rܒ{o~*l[حw!{{X3G1yҬZ8cM\r*7pˮAq BQcʞX(^[$8RLEƵi 4&B弮\qIxw?#0,u=b맘;˸x@Uf jC~r[STccVMf[gʻ BY +F%:fm)-#(\K[wYֺei+:)KqA^xbh6D/c=4@i4BڍL?u‹\}ndWMi4KR~2pQuM#4f:49%$R#"Jj3ݹW`*gd7n̢8jvUW Vyd[San?Kr!)o|-Ir(\6 s ]CaeJ4A|b3nu x܀_v|!cPT y9\c%1Gk0KhUx[uO4eZlN)XnJI_lm DvCֈ#b%{uճ(;9SLwpS&,,A}C^>OX$x.i)׿p SyrpFOMg̺kS 0}od 8WL">ɡaJ"8B=9vE՗t*Ke+ZUǛw5Yv*zf9/l"s-*S#饆 *T_`{ T*cgi% RlY]_Jy~.ut/ T6 ) 1l P??CW݁x(P XZZ-gx7?fL7 5UtW'=!PsYPzYh,v.--1b3,UbޯT+lL*EF+7q si=vc+p u-nہ};c wKuSjf=_^&:M ~I$i6}ӕ*z`:I-u$˜*I 8p*[<+j{']gt!S)Xe|hq@ QJ7 E9f-6Gie9 M.m !+\0>na|1')[F94@y⻯sCtF3==9RD<ZnSrY [njq-r)Zyr<uD 󖥾dCia^* Uá5$*#sףX^k:a5=A&(4t~,J) gysLEW=#3VNj?19;ifԛ_f`w Q 9$VVI F4sV"yќ$Gz{DP@+'ETSII 9?;r=*L/UWj>T1Xo4S ߥ.xbrE|Drbo9Fuvd^ߢ1ioҠF&)1=e)3je ,!?5&)s(z !-iq6Zq=cXЉ8i^.\<șFL{ ܳ[0FJýeBhgޚ+3P[Kf}3Cj_tq T(9=WwZ"1c]@i$_O1W (~8waqIDjR:Á¨,-5uX#r՚k4uJƅH޺ ֟Tx&=8|flgƀKL.lYUmi]'Z V^PiV9Y"KvuIA n!Kyt 74;O^ѭ% 5q-nH(>S@r>\lZ5vvfsOQ_.vfnV ,%Ln/,݅-hYb{gꑮlߺWT~\?T ŭZUdxn+''/ڦIf pX:*Osx&;հtQy*e0TH܇{jBҔЉ}*Kc1a{tI/La-e I6:.=(N|]5,&ff?%8>Aҳi7 9&4xc,Z&}h˱JF:߁RRd"œj025l8tѾ`΄N^7ԯ91O83/̅fm`0:kN zIB6Z$qGXD6w=SݫqCґ\-פLRJˠ <ڰd NEQ|Fr|тBn#Bt"b$DD2;pa)?aYR4OьhŇ :{Tx⌌yۨȯN-Q:>~b+園N6hhkj9N`2f S yltDk+&|.wW7 ˬ?Mpmr):hdLOK(Xwذ Y u0/CqGtW2;SBWIaiM=xE>>IU I{) ݗLb}:ӵ凞 (SlMWi@[" E5&=i$p)2<[YB {p*ƞU6X?l/46g6oՕwg89*@L:jCG{!4߂KnV{'R!^@vg *xd'A46r*RdP;md;,)]GUfwU%>>]#smЙ$h;qǫ^AcI+v+^פ 74*9'z 3f͔T/-Q@VD##ʾy9VQ :V%8K+Ϙ̿;(ǂuԟӿښEOpPVzEOg5賟ojW# />2,z6^p9r [<< 26@0hTGY+Gemfe{C~i2k`^O_ǃ.'}p6s_ 0 ⇃6z]dK3Ogb'pzٓڂ>P(IS3 %߼K3(1AmܠُyM\XڨNf C2~Zל(syld#ZVg*Ka޻_ K4-C\D8W Grp/eOM^Nb3YKrZnaXaM-.VoW#y>EAݮɿAJ]HislLz=[6=Ck Z4#пzaclMMy0vJH+JR][Cڳ _m}Y}YҞ0 tjd5ziEEYA# @ ! PY1@`8bf*;nT|H GznWʬLXUm Xi򯃡JLe%܈&G)}BN/:>kҽŕw9Jf3nȢɘ'-Ջzd"ӗ(C t.B\uw3_-;|o !x8s5Ka^ջwb6@N~5,A殀GAXIF!_7^׷,0YfOxV]h!q)=|"A`⹣vW'c~MjsZKUʨsT3"xR`q֯gfL%v~*X^cp(SV۵:-;> њHAsҠS 3e-veߵtpDۋa섵d(xyا'6Q+q] 3ٞIm!%W=e} #%;ZҴrgtRQM MϽJElE "Ӳ[8BGrF3c;SuRh³K=-[_QFGYPjeP,=CI[E/I*&٣c`v="iG0 vݝ X<)c$~%bUjXzի|!oP(G/_%~X'hG#Nw-L^UTehLHQ`Ɵ݉Qq27$pF~M;]xya%uN[N#mt1Gx`]9#RiZqCd|Fr̆XRgϗtw"l5Y10;-JFu?mhJ;%ؿC>Ro^6\*?x=k&pF,1~v,0"5<ӄ*8wsa;}GoW).Ok| ar9%e(Bu \S+>y :ͫs̆?5RV !7[tai\d- Xrv"%rw q3|A"$QNKLT99TJ=Fڀ(x!pdǯ*(Ok.vHϽ(gj;tnIXK@*7?{ %6Ig(^{ ءgo:Kn>j)" Es\җ.QYT2XgM+ Y_Ć'^h92Kމ?p[/% \+X:R`\0zYf=#|J}U(7˯k{~YL0L:Ql&{2fFxaO H&M-E=Ź36ڙ1%CTx]RE@P!ݖ8wk=H$bdn' 0˭zpw.().ƀ>Rۧ0nq(ŏj'#LЊX7ĺ7ε3uT L/kjiy^ 8 { ՔJE줋5RknRi+Ϧ`H hܙڏ_kSxAE%L l6J`Uғ^\MDv/LUY(IV~.Jh&Т 9W EYP)\Z@"ˋ빪OAMWo6wӰ[ʫxqI4A a,+6Ksvr{N)9ۀDbl- !#c"P0Xj0n>x}-v]YOQJ՞TcV<|M2J[I&<K[Y6eA*.k9\ak%:#$,^w8Eu[~ *3ML2T,Gqײj5϶"Bb9j(Dd^ɾdrx'/=>*9D &oz{%]4Soizvδ:]KZU hLM_QNJ@_(3K_ŚW1.T`64lS'"sq'eި/J}fU(ԛ /R sbx cjAJ{ȾW{vOuwV]f]]*jCZ)e K78C88zփnjn)e|+2N_nRrF1?͒j-/UxB| SWԉB1- <ÿ!Hh|d,zOSlA8tv&^fp=Ȱ*e!=[ Yr{VP܃P7Qf?08.i3kӚ $ȿb|)▆X*fCG3%S.M Cq a6bx򿸱X>wckW6~|EzC\?ڪB 0j꽖hd! l9M/I7/ A!V%Xo@0sl2I_c3zf*4|2$ [(ɦ5~L82M^r) Jj)dOpx;Im5|tYa0.'.Ɂ#Y|X0Kp^ι?!FtQXTGKhX-IH!kE] *V],+-i =MZtvwQl|-hS$T1 Σ^7€OuΟd/?o>ttfaaYk=TLi*66Ԍt$:O~a߱CP)yvylz3"˰1HTPr lk&/F <*U hF41ny9,hD<9'腾hbp ZR =94ԁq+ٲRx.ҁLCuo %p L9m?F<9x[ՎGp^K7ȅk_hϙ=W3M؝,Y:у;r)"~Hܔ۵7%w̰QZPk7-4PKeHX0Iv5WZ@.R$τxlz}++a,mÅT\y$fP@|AdIGdtxJX6@d`gV+h:Р@qf_9ẙe]e)U,ODt [ńSh,W@wd@a`[8y^Ω*Mk ɧ<'1gAa^D ,SZ+Yp~@ifPi#'TO{6RS$ĄbmȰTfYB!cWE9X7_l 0mvE}jV$ e2C'yw~94-\-\3 ̷3ɘN⯳ZOGЍ6!rB$ulߝg/8(k<7yB;^j_ܯ=e(a]e91%4SS[q˲! 0j+oW xSԶ,"Cۍ+%)MfT)˦ -݊3$PpBxFC-u5F N` I"YUVx)zoT9~ň rNLbfEF,e mzɩ(bMNjY,Vyh 5/Kc(H煪qjo5>"Aef[f:rטSY^C*#gS}ϧET_vFk?ۿxN݀Y=,46 ;R=EmU3cf003%Zsƪ$eqSsi8C5=9ˊXïui&A Յ">'=O:7.AƟ7t݁7xljCao|~P^9¡ag $3,m et mkYM,lRvZ)xM,vcCSc7u~3~HΖ9ym >w炃 ? $3+;4 , ;1: Gn]TS8MMɓ_*@Fak~}i`Ka->id.+qmVtt\×O F~a+d5@S= ȿgeV2韉;*xWjѨ22BPF&؉ "/*? ڿA} pp@X$mS䥜P Iby~i_2HYXy˜04re.d`\W!pk~OxƤ,w]yJxIj{; ׯΡۻ d> #zpq|! QVoaD@%bV(H>#I*1@X @S~L"3L%QyK;AZ)Q]oeĝ5vLH R 6gX댄/:,]-JAp*fCg2zN[۳}<)w !ARk-hYi7 YX95摰$עX5M kFzY)e1|H6Qt]§LU'/ˣ:7`:\0V5b!<߽<cr^. )2oK% ;FBmQ-nS\Ee,\m7Fg mtUNxlq#S8:`B9O e Ci-ۉm h/9Q'eEIBeˣ||ѣr2vߥOe*XP P- h1 -DQwށ??tr.<{[25b@f;2[|h=[$iP4tbѦ]~_Ms=._i3pԂ6͌^]BP]Fw[@,XV9#Y<.[PLw+?s/WzVWe| uQ[j]C;@⊻ؽ$ԄO}?qa!T(df):3F^.ao˅=Qqٵ1f8.ǩ5_wֺQEYތ h7gKޫ'aY@ȆiM؞ t(2?  8Pl,~ޣ73d8BXM1)Zpx*t{N!%NmVzϕ'z@`lk"vf1O/kc^+aVXv'MNT3H# "5;L2?#+Ut(At*eOѿ_R{q$yhSz ;ěLᔹfuiET4nJ#V_xy@>m1y7%02ݦ^|P:XVE NFDہYHLz !) }iaew&? =tdjmtp3AW犰>7n%/ LȯUO[gc#`3+҂A^RWC>Ŏsn'l}aYe>w:)%GXXRK^kUï2tc4v|)x,"\'4 z`at " {9-<*WĘI w]j(6O+¡@O9!M%I) @g|^nH永ulkUXyP!V9ѳ!JޥdlˋɘC$x4s͏yrN}gıypU/({%4~3b>NX]_cmJXpZ-dWtI1~I3/^Q9‰mr]뢛 Fpگ yn 0_YQ&XY {*mޢ^|\sh;DӴzx C8ӁS/RmkՆ|~cVʢ: Bwdc(Ջ=I.';5tDQxA4 髓(&pXDHI %.Q(fjQsE+CWӸ7^Փsop"BZMjN2T-?Jq빉Dt-Fnb3o6uG'JlP &z<4K|ZVy\$C+d`CJqݰ}.~*_YkyrtKH?sŦ\90.~2 XaENQ鲓eJD˨MObW/|mš29-8Jf2}FؤrQ'ZIdr#\wʗaS5]!I$p}Sghژl}N`"#^Ћ 3+7O1 ajSl.ܣ:@'J]ݞ^ust[)7dRXck׾XP3Ѫj&x #DX@[a 6~n'im73d餧:B~(Kr45E&u:a=Ad A6{mkvwATU%g젪b';r~MYZ*. hĨ% ,t.eHQQq ;~KVfV )\c3B1ZH`kPOүZ,*G'dkf8_A" JHfZEގms{I?`C`127NDg4 O@Ban8qgÏRdz$ ً-&`=aS96!jf1>bN/dyN#؟ L:~3z=Vq;[Ϣ)nӲq6v PQ-%u/cZ\0' 86@Y\?%wJw sGOgӨv/)IE{4C,9cyWWޥyȻyb1_(hVF~](~ҏMN%~'Y϶WC)bD/!nX{Ɏas*mTf:A_PPBP2ߑ[afR&sܜY8@Otٶ6 ] BC.Ym bc/߹T+DNXúq7+Dzڃ1d'ǥ,iuҽoj@ !Duc9GEP*t#',p 6QySpH=l;4C'@l_ ZqX݃3ߗ/O26lIҭ4 |b%_y ;ߛ6rc杂ąo< ܴ6sFzp_D `Q)ހ@m9ybL>B?F^h(M >Rݶι6b;Ve(9H NL!b4GHA2+Dr$M1>uFa,G X/܆^kC3Qw[z7^۶1&WyMb: ƀ SVX<5y` #+_4Fk 4T&tvŒ֣!sj&K" ʿe8zR70Z@,1T*z-ՕGPWPLSwL8D ϒWv"FRlg1VL0ӮXPͷ̈Z/9pm]٪uP ( Mʭq*Q~ul-B"ĶvH7.LЛ4hRT'`F\|ʏW'W>[|23٨{Sp05.#fAc~0p8k)ĕ/X)_mQ&Ms:ET?~ Rkq. OtLkԅ J9H&IU։{Yh)JBUW{Ha= #ҋ< z<͋4ImZl|8B lz熳=txfm{ElEЕJZîaZ`1s;faݳULZiy46 ܶC0_amtұ6/kB!ሤAzpSi0VHtTQ'+"Ut%HQ}DQ/o&Z/Q@O$f=; Rg΃,̃q`1d_=b|g3GƥrrZ7k<`='V D֎RP#cwkۉ< 2W~]FEHߜsz4jlMf,4عjJgE"$B#Tm(^,ys0=@^vLJ5O/gHHu9?7wm0˾yˠD{T^\..np>&:Sb. t nj,Z[!HbS-7JcB;(ak$4nwԜUmZ *qjVf-ZQ &^gaUB{ɜ~.9E޺$tVVBޜ_-X UUq!Yo0JnXQf6,S@ɴ3ʍ^7'ی҇-e`C䍣28蹂+ax^UZ6ZB_"H9ڷvq{;L w0ÊO[aZzoܬvU:]BJB\k$-Nk[!9"gꙉ&dڱlCf}Ђn,؇L(08_T-RthWjm2_\f)wMA<e[_B`?v\m2}FyYՋ:W۶TmWTc}9YOfaM:9y^T~Ժ bM}'2Tݺv;ffIܜT+ fa.jH0amf)1w%Ӡ.zv}y} gM)')]h:K7JTNxMډIq?ՒܗcHߎ-֠8;a)3˱p{%ܺ' V՚IR ʘ dDO ^ew28Cdo=$3rh!>u\x\EUY pӃlX - FnQh&8** $ tM*W #CE!]h %R;I!d/Y 7H>(Qu ougJEjĞ._W9'=6y{ҟE4b]\E\!_'GӒ ^!2"X:^_%\kR R#;T!TDJg)9|Ƌo]&V&>u;@ }BMtoӺV)JKq^`3A~BaU/YԋN#l-XeuC94qKT/Ym0I':e*l4 WYG䧤we*||'(Qo?¦9"Vau_ Ou|9Ѩ]HD*J#fIaRxӰW]jc'K4 xwj( /Ql`ѵh*r٢(] <i ,B&)|@|'-KR!&1wߠa0ϧ9¦O#,fiĜ_NUt%r7eK)pi]R.}656+3"G6lTE_e p /Ii$MƝW[wW#hągXhGa\3mӁ5Tg5^nМ8?<<K88c 3A$l"!` ؔ&qs>o^eJ5^ר"qp`Z2'?D5ʯN2Pġ-:)f*z^ڿvꛐ̛緓WpvI @s^b:u7?a_)&TE3B8߉<~Űʭ'ܑ,>gkţɼ< @\)'Z_`|>^[ƶfXF,=/Z!WE㺌vFw HG1v1N4}^4ܥ~ݏm :e Rt5P֑㺁:luԇT@g g{p%':Cdgfg1MYrql͝k~k5_{QP|z`qﲟZ>P.tw@UWKn#=IaZUG.l4G;p+' PZDʔ$낲LfS^f='z"l:m2HN+%&X%y rEbm{|0Vwp~G!;;{hߐo٥!+LDE#/3]g:%\J,ËeIJ$QZԇatf0!}}U#zHr$/Tm0*j0%DFЯ}X+tiY69BޜMĸ9dZ9O-Cf۶FU}Tw2|<Ӡk\KM6.X I)GZ'ו)YՍcnDQ:Ԡ a-N&S5ֶ0gx=&pmz2? AI?[.N@*X1 þ!YӔu$`LI7Nq7jSӊ=q"}L>s˛"]4fŋtۗ";3H~O' Бw^#kHvNR] u2ducٻ[Yȹ=U:3XwHu$_WH$a:aLk;4})3_")5u#@Jk?Za X|ՠ8L-Q9V߂9_d%yW'y= KFְ|hL-YűSB ť.3LOOԍpx<0 'l$.ޮuv3^*);gǃ,CW /h1Cm2ڎ7kQPyBhұ14.g˃=ؾQNJTyӲ`XR TE5TP8h_XKDIY5]KmW&Xl:‹wSL@<5[Ԡ ,b 7Uꛛ2roOե;i3ҭ{g;G,bǎ=ExFti6 2pa=CP,u o%'Vya$|[~fM-E~_^rC% Z|pq!*2角oE*@8*m~&{R/lц* jZzQŤ6" .O x 7ۺZ B; IO#8_ Њw0xSa{3Y?O2 <IHg8z4$?\e~41k_=\<#+SdRt1X^Ǭ-?TޢkN`,|}&[5c~ H=r˹=C|9)o?,)|z<.Uˠ (~> D=EÔXO쨨uvr.2ա-كq"$ -eoP7%CLGsm3 5~S7S>;?]*Z>_A8cl ͒bvmN<~U"$+L^˯*Mr^r -J;',lܹS\t,xoрy`1X91{FaK]RDIPA32;ǽRbCŚFPD0ѩEUs5h[;oF# [~IǕx*f 1nI5kB_;84v=zF֡ޖx3 _<8xsMHQy"J4fފ(Tix% ȽD{C=^@>U ^SR],UseO>BRneU}]j;Xq(;܁fp)IK7wOct x#6?I7R<_53͈ok t{@ Bd /ZI&P1ccIxC;2N\,KxUUڶѳym&s4ch<|(Gu*H4+Ω#sxneQ˒l9?DA)wȥϟvϰ; H. ҂oYGA7UoYYm@>- BLgXCyxXf1¥PSXyb{bڔJtv564ǻیʧ‘:#Һv{/aJrER/ncsЇ1h0D]*"V},ۍJs0:h#KB$Ue3OVGTP+t:AJA7*54b h^K繹Ll1?^]f! tr=P-Ncq} BHU\@"5 X%zoDVu}^Gb aDҍuKw%(Uo/FrhI9U<>yz;`)}On.Djjʖ3 /VNk8D&< /N1]J0CaUP3Րgx dɫ׿b IBRiL#t!^Gx#,I©&p ^x_ G}kMJa_3@lЕSU"؜& a̹Ҋ*fMPf㗍p|2b5]!NOld$6_Ç_UAs9D7H}YJW}!Su]Ni?m\:rd/q%a 67ؾG}5ׇ@AMF\d\t+KRzq+4BbN'(.X -!>HY>5^t"as59ASz?Jzиc\&j.<ˊA\ڄ =k߇2gZug!v6A?`*lLH^$Pd6]y_nC32/Wfsn`&d%ύnN Iȡ{LHa|U1ݲNYM)D8z ˷YBNFߞi%3èFpq*h9nsP2iPL]Me> 0f]1ׂ_/`x, ͟J0-чFb/ FU5@zQr>4Yݳ5W:כ!=Rxz[Gj`EsRU=9W>DZoZmM/dm4a"[#T[ YJe%#Jt 4a(|vF1?噦.t6'dzC@pKiq[Iad-݇yFK+]7%Ϡu5EU@EѺٙpLލ=ّ-ɨT5縬pigFI>;$tH+;ц0J0̪]ۭ¤iC8C'Ӆq5[," hi f@>@ H TB|lf : 3wJhhtO}0-mJ2ֽ@rc64L ƩB/SH݆nL\ E 4Z[gtW@5ʇ7_D=NQNM@o*~aeF07գ&gg?,]{d)b >z7ua^u3uruzco^ZPl{"W[3R)Mb}00zD06ʗaaߺ8g;rªsp:s60XH)+a9tU;f{EgkQ+ݧ71gN]f|${0̻rFm`$׊ x©+ f1 [+5-v .>@z,3=zIh|' a\!ipP4đܓ㇕;Y4א:֕xDs0؈c5!jKz<9q8zm]rHg9f)CZ[3FNرs<;a0i?!B* ~c8~Cm`./&H%LE3y8cOD~r]*1Ф!3+AՃV5U-RH0~+p쎡8AuGǟǰ]dsdʌʽv̧fE x )y{Ec;3e]gQ=KnOzRN3 tWY*, I[5P 3XŲa$m^rUKyE6 h} +K`Auʔ.2SX;*:M-HűEGi;FqVh"+}kK6Jt ih&mDo׼Eߑ 9- STP9̷'UZw41i:u LD>kxu:{ l#&{;>tO d=E@h] 4i=#}!8L;ּTvK UJ\}XZƳJE eG<^X$*L{.k2욬}ݤb5Ӥpa 0Hu8LXL?UCN˶KAv@l8Yz>zL'scbZI4kW/c=UH;h7iSMgyfCW nwG8 G,R/ >qIhEݴ|[+6T 坄պx3{3c!'Ƃ'UP-ɰkEK8('AMMWG@MԸVFa~\{=-Uz(Wࡗ;+. 'FBh p1DͰph#{ՅJSCۗU(`H1a\bGiܜey28~61F޽zǺ2CSa}r  iEKw1VI3`r2Uu w14a xH%69F=D`L ݑMz0K舴nZhMt0CƒVG]DvJ\t3C2z#,:\a3[aXx̋&RLN#.ż56v29蘟? Uײ sm )Ŋѯ@c)~> zK)gKxE` ;/[yM ۗhk ы Su66JmzK=h3ϺSFhJtenNi[^g8ר~ C ୽$ñ=/^ - d=)ƈ^ ,HHqS7$r4U^]Fp\ygt @%xi R`n%A4\] $aunjh[,6ʨTb. ў| $ױҎ3}6?+mF%2!N:HB}sfܑIR'\D?%$Xl7\bXyAτ zlTǏiI\Lb}3!IFXF?i0@s(IKǮ Se_ڌ㯗,_X-vESpppU{H)e,rπ#Tl|܁q@ G[RoElMNzpLBp9GL &CM8i\m+Dn9iy}D^xGÞ HFEN,=rxu ̗ɓC;`[D>giީ ߯ bEis{O ?I:gFjǒy֌rwM"â1ݸ@j&8#m>Z6}יoGݴ=rLb%b)V+i=0NWbzm;EEgTllBAG6Q^_+"#4׃BkMcxTR*[vĎ~v=}(eIIǿH/[C davѬJ9}JbC!5M3C@tV0NS%3.*%j:&#jtR*\_tt/`~_i;]RSCX(hg-EϠ=h>5jR>h*Zyw R|_H~tav U$AC_W`p:Xm~-]eQ + \"VسHwT9,"^mYo(-dL*>ބgi~Y+BsBҎI0~G]z2F832clj+C@d=aLXUnW;nϵJ+`#24P<9 储pA.PQ7ӴN l=[Y$XC-Ztn,<@ 9<3F Q c5E-\U{&BXD^.WD`Dc2y3uh)ZQ,Obox6Sż)Ki @ ˤ(;:g ?IjakhjE*@VԻF*aKSrn@$w1Hh-GBNqPW< 5͇WTjɭ~M^Iyq!'ʼnYz%YCYppx(bLE_iMd#Q9kbva^dltuh[ A~yuį8Jۂ̓0X {B2iE,2" ڄdX {ˡ*;.]"7x}v{ѩzvP{N#vXش6c9fW L1c* ׷٪So`TtI:Cln#qd²J܀։8|V>L[eMyE@sw SƎj,{ 1W>دJ:Axm0A6̕\-z`&k @k!w 1Sڞ. kϻ8Z,1fF OHA E(f]!/˕ڏb:_C7}乳n@r?}e͗,6TXO֙ Ú*6f(3d.*K3.G[$ jrɎj--O]g#aAuk)T¢զBPtƆJ d ʜ`OY9$k}~j?0Ia23+P(Fg`Z6x/\1v;PuA*v`V69`T^O_LuG)LY f;O4)XV<oת.}+$s)u/RK9)@(Q cK_SE1250"maIq}!ٹsCwzv+Oi|8w{jHA Z)\ Tpjª мChS-v-M R6w)4cQBhW4v߲ /U#J.5n ]o;S)LoGơe_]vnzZ7:]+:6YI/[+õW$_pߣHb.wg9TẍX)NFbԜ^;06{mx`m Uoq$BvBg#/f㢡qC:"?L^KsVk2qK}xš!FV?ݭ_71@liGL> cxR.a?8U'Dnpv̡@u}'cSaD=QkG0'2I$*̫Jf$9!X>CL`mJm6uk3:`6Q 8ZWd qBD ĸt4p ضgѰJsdmĒ "pЛ<__FHW\JRrsrkrb?ZZr:&0( C#!Hߤ6 a\툾}AVTN u5_thvc#XTo\YQЌQ+P]S8z+7#<6'$d%.ٙ|. I\H2[ ^oR}ۼ:o>GgYѿ pK0s]b}Q 'ψ*sSapi ?p0ى 04;L[¬Vv~3rB!4P,Rq֥ٸd5uܢ-sG%7{#FX",׿0z.#Fs!Y.:$ Vx00o6.[Db;?u|\OQ9+,.d[thWD#PP=/T*} ܟ& cNS5"B%p|-$ ~&kztuj*gAaCsALMx7CY !}[~)򫵵E /EĦ1ɩ"{@sSifG4ҷNt~E-{7d:l7;yS.R0T/b/& 4u  [f{Aj`:|k85RxNccmMc)Xȉ7}%Nk^w_C|V Ѻ\pEV_껌> zUB~[~h3Âlh[y%Yb~jXO AD^u=8PPgϜ`>)(!ިǘ'XJIe~=<Ag\ϲb?p-Uדm|RcTGMc#B/`y6BJ,}nj= UH­ &b+*fF|6nк3VPCa)3T©2; 0Qu0ޒS[ |Es%lj";Z% :t[WP\Z/KAj*ۿM'1p*٠`36@*!`ا3@1{)l}A`|0&0X2)d|s"GθPRMRxTaƼ4n]h9,0Cu5#7vQ}PqlajH?'~'_d/S2d~aք7;(3%c]>+4%C QeV6Tio7nB*N\^P!}<٫4HGtPzZ>W6hWn󋤾bӭq+b\s `i.vXe0\P2*M%=d@]DH׿ICw8׌3rTCm{\;L^HU#DC c%ACnv9eQ$-4\p3$|Ǡ|b>sSnPvIJhzHdke[3)6KO\x2Lmq?/p;gFoN|B֍{OLt;J#PCQ->.Ceqg 9]6YĒ4cI֥Ӆυr$1IU\`b5BWtT3vm BMM( zK%>gnMρso"k=Z+g]GcL1 &=%gbo 1)XXJue'켵O%k1T:٣0M>ݙk9 ;]\ntz++vYB~Va:p @tΡ@cҹP@ ͓44a~1ϐeM̕- L  @~b!bíՔjA`+ X $ v]Ccaj! xpUCV>?e6Hc `F2ő@pAZPº:A5&WQjt Bw?_FLʛ<tG%gyYf*B%־)TRKcW] \eFi F.M@C_'eXk)ZjNwσ'ħ)ӈIeI{biJt %$N%܆v /C[ t빈XR(IUF}ǒzo#$/^\Fih>孟zmϏ4j2f8w$ &L[ڐ ÷ky3:6U.eW wޟLa2pRw6'r{V܍~9$m u {BBE,M3Ci.!,JinTP^dJ!PIBPsOsd4ZrD&d<'أf!i$WUl7b_L)vOF#>\nHr|46>?s !2QIU܍kP,lx?y?&Z2t@Z?ETrGUn1A$?H"UrRzXuMo~HZBSN"F cR` \RT{>ק7QHxpqu8C>3J˟= $Nb豯jwFwa u Dq{m[\ ``{S' t ShX# #&łsv{*g.30?KZa_ӈ |Kq&SV Yoo:ٖ fE. b\ÛtJ̻GY킺䏍⼑7 7Rs|k& q<8&`.rG RK-G:ŴoRU܃Αǒ{q"Y:.- T-jiUmCW:k'CK O5m㬨╴%aHF"3#]Obןo1ܚu& Y0oJԾ|]s7pB{^[skIίƏ-Iz#R|I pҏL!F6wAaؘ}n61g~ua|6Lj|3:$f; h"dPOib$Y6!gJVƅ5 v23л1ȉl/-WOU+Q28Wm!rH~kʜx cB,y4uQ (cWlsOzJ/~\D`dpCF(Kž|¼M^TDSj\Cd_pAvw\Un,QJ3>"dwd"J~v_XD{㴳A[h 6ż> GA60»Ak(~]!p bp2Oc3)Vvu%9as+xv`~,"L> xw-{..w@ʇ(bM3!m)y>gť\C Jj'\TrLW?slaP<#qVٽN S]TG3uL9aJ5ٓKg/rɈ#AW 1pB3vqw-`3 j85U#gX8wTDRoÌ)O̧%<¥i } zV Oܑ+ M`> G`zD4uǛ't{enc-!xe_"6N,!֭^e F}C%KAʭ vUDl+L6= yۥݩCbC륀i0dHzGpzr <N*.goYNشrCihș K6 ZN\ 눇do+#Ta4B!Wd:AYPhw3 -xAnc8|S=#'eu"˴u5Cst/vE^uU;__n$e$^N=_c>]ުպQK #&B+LhnazXO3C7˱68kb!FR5d?pC.Jv gT?_ y,n|&PjZuWay,恣ʻW%XL!I';7`Z뀓<_ZФ P4o9?݄͋.mOa1 ^Y8tJ ρp;c dzu Ug|OR'ucM3Rg\ȣOBL+\gB3e~ xT6KYHb$ <-LE)t2 )޶A2-+OX3*jezNP/+ů1t2x|zj;q3m)du9-,ILQ^0pxqꓨ+6rf嵋{j pOyeKN9D3e%1';Ϩ7 ̵JMiwe-{1m#;imPdF%&Ѩ+Q\lrbzcpP/&:UYOUN3R#hʳ}*z}iC:Jӽ Ĩ~Q@YZAER/data/PSID7682.rda0000644000176200001440000003440412534531320013353 0ustar liggesusers7zXZi"6!X$8])TW"nRʟX\qjnj-&Ɉ_ujhRs[f HV}z슱K5UcY_?4ѧ4#Q43R1{Ox01n4!;iH;?6 %,(AodJ[P̀DPD3"&gԧz06_B-H c4'LRϝ6\Y_zW]}L\@!K]i`^nH@_>SVGm?ƴe1֡e韄{LF1iI# U.A'XBK6~El.Y+[J@m$=^#>h\EKsaTW"=~:r(QtBafX )eе6H߅-x~XA^L? ;"E=AtNU?Ji < קߦe;ALLE\֤&CJa"@(26!HskuL!I9)pTћ1aV%7ewƃ䚍D.mp+Ysio+2"> L\IW Puv俼60ki!o#$!WcS22M%>E½sh,,+cv(p3“}Yu啃B`t@fRS:E~Tw'PPuRn\r/>9608Rt<~Y6YHih8g[`"Ա~?dxg"!Ggeq!"zK651-RÁ?/?J'<$Q˝t2m#q\N}0n)6q8Vv1AV0%pYޕfV쵡uB ie$r ,KPbC&>LKfJ q(ܹ7fd}DZ#2m?2*Xۂ'r / DKR7nLP8}H佇',R+ /ydkx(0rY$ӕZ$އkpJ6ZJ;HޫTֹ;8`[JG< k iXMimD<-a1hݪ@3pсfa$ F`LXtiy.~t~w˝I`Df`d 5^2l$}Y*F"aMqNU7Ɗ'Yi]3U\|XUHk#~ELlSu*E]K @8=1DmEz?'9Sn(uyG\"Xb?pG.e5-܋)S`bBܣ觑d%jlWbO?q7M}RqmtI0S0+5ٓz]Dh-KU=3*x T ;`$IDž:dl>W`Sρxbw>g"K#%m(/yׂ̒רggA\>ńV2\'bXqZ"g7dG:mpHtk 7/9 1@8ww?  sV*CzoxO9XPJh78ߐ41Ltq: 7[193a*Ekzȑ%{:c֛^~&\EӋFBv[5GήȠP>Q[\4\ rX RэHHVh#}Lo05.4+?#k.quJ|É;W x)brs ~"ːF\p lA@e=:W $kա^n'MÚ}㼊t#w\Oq*ۮo4ཌྷKdMbt6Sl"gZi@QfݻTA8t%$}fNq x 1Z1i~ju%L*aDInp2c/!,_2-#I^#D1Rxiocx62Y XZUKLՏ%@ȏzHVgKc˽uϽL, I.⒓jrm cgK Ǘy5w29&Hf"0 碠vDtfks}x͡(O@ؙ PU):h3UZk|# :u Ÿ󌆇J07R^YL0B5T9֝A+PSv8!{Uk#"U9G6uX)j[|zfn^H(SHr"f<*N^B=01ZdHU)BzN(]IgsAxn% ylKXm%ԬE4T.A3(T_b=CZE pwͨ]"gR9 T&2uhJv0N0qk'4H<~rw!XUR1y+{ڒˣXѲ)'l R_Jʦ>rKٞɁS5EőZ=7;jQ^{ "ݑ5E F+eK|O``zlՎx R [WX*ՁVSI1ภ- s¨L Z%GoYLZ 3H|Y6eM=D7gho7UdPZj|\HF vm5_-? :2r}WR/-ŝva<pZZUę ,kGcT.lޛYz1zx WOt$5w-N_WlndF9j@XDO=\ rr+lI.0zFQXJ\3wO/! 0?- zVsy9RR;r^N?FE|C)pT yf|ATmiL>4 H:N*k]c^{uQ5W%$c?(V㭰! M+oIHn6ٛ~p3UNz4(AgyqD %./fh"+Mˆ EtQR?y5Z˓SM5`0U;,at'L/l!Rش$å"0ǼxZ{ a*4at[/u}+!*xd ~77ˆDKȜ{>iE6 (QN5mv|MكFzOy;/綖@έOh'V-r#WMձ55~q+*[R3,B9+#tNRULlXFY1o'zob|ƇW]E9?҄ڲ:Y2M0 ?d?_xeߨsF% ťQ㱋9AI NΨ0 ﺛC`4<}Mp45VRk՛(KD;_渽|uV et+t>2Hkbr,kSz-iJƬiFJVg^t5y͵AJ.uv*Cyh*Wu~\-ب"զS */27[:-]V,5΁ױ2ڤ {ٽ͓c m|T|h {P)]UyX/dv&}:1)opUi9A %ʲ:mŽ.u=M0R d05;/oރq+R?EĢ=Wz҆ |~*9՟v "Iz{8,esq!n׍RBJ2X^[Ǭ]+ԟA;bg!0#ō%3ٝ e)go+%CЧӞH8h,'[{v"LK.y3*9h7 %\s!iƭN7 MUC,dt3V19\ W%<+ VK$.苩HG_]ų[? f[DbQ1@-c!ɍ cICv/e+!rvaZt l A}0ްK^*1w"RXF~AZ9?^eB2c n";C4v/t Eڗ`{Yc#6P%8*c`X#Yɦ^XvDJo=d}jǀ&$L7djJRg4,i\롛]l@j$y1O7^R(Hp 7\b%-hAV22vKGf[XZy:ϝ 9>e_]5 k~Y hEǬ`W+)@`Ml,>MP>{<:R:_S -y;3ZwrF.D2NVv'9_lPrwU}/(,V`q[^\IPꬲĩKBQ-1xk y0 2dڸLLfc2yɴFz.t 9*h f~ٻ8I %f X/V#œ ( oS%W".f!q1) ^roAAJS@)Z P ԄЀ}J۟vS3.ﰮe!SgQp|sjcUz.1cz '@i(Dqm{`rFҫ)"f0;?`e)a3ߤ:Hyx/o\ )L#nSވf~J~@X_;of.AW(Z'MUۥΦ*x: 9sZ\v'cS2Ei2J!.^[C ZeزZim'Xc; ^q]0u n7,6n¶fKa3*M~@|FR`aдRĝ>ts얠(2[/f_쭖‹+$=$V=?~YJFOf<:|)AyLk}rC^  ,ofȄ۷V[`Ju/%n;jq{ЬzڃŤcC}!j EtԼD$KE ᧵%8מlC<vZ V1rEnLg6̀ h(FtVL笮7߇#P]B)#pVU2x pخiŧG,A#Pa@U>Aӑ>Aj7Id2gB]gtM@ j&Ei_`%#6>Wd̋7'*R{ Y_ڡS<[uZǫEQ0+XxKVս<: hgZ{ml"}N[h_,7I\ʌw&4s67aݸiSf8,v]s'ċ&ߏO@W?5L%kB<N#6f!0/ӓsX4p՘J?HuVqע3*\}?c&($\kCZ@ 8׏ʩ_ש>|e'[RiOh|J&1=)&Igv|&8MX{Vҏa< # lf-3n,G7$YOveY_0XrРo>rqq܇|狿:Æ~rղ< UYJ#ej#Qaw6c';LSI)eg KSG>S/@Ӫv?@|6X_;d}8i!?3{U#`(2B!7b4:Ͳ`|ȳM?9qs? bWcRLt NF8bP"bǶ Ub\坠nwз_='Ӭ۳<+LW~f[ꛬO/'4jZ~3GR;i^+^Q06D|h;?6̉PXBD Q`᱃o6-A6:XrfO7|, ŭ,}lz$.jZg ӯ KjD` EYAI;oL{6Ƴ)cRepi(M ,rBWc;Ì3[<"Q 7i][@P/v i3]=7:SzYͥJ^(IkAAv+#PlnJ6wW,dOp9bsTvJE2VE~g˥SU0Ci _åSft@CDd ϮZq=JDpt tif[_ȭW M`(?3V?{v.Bٯ>aPx (.h;@Rz&x@ma"@1&+2qj""2{Xa r3o67%,fog1km5.'Yɶ:8+ y{0uv'kբek&7u&)vpd<r^\ TF@t[.b[o?Ll˸ S,0vAwwW6AiN:Sjd覅YxSFRNXounAz}X6z|^iqs'& Siv}$gT:^72}F󵭄$䠨ZMhQxnָ4j,s7t:J+ Hj 9l_XpH4y\x0*ىnyWߗDU٥ʿ{|N$Y})x ꥩ /$y2 5;,[ *ҍ6RGEN,ƠOJqv*# 02*ƫaT:ڃ$x'yˎ"ؑkЃo|R!/ *7>kh(EZhAgm d%l~6QOZ_c`?\$Rnz _+au鬍†j8&G/qoF7hA ~ OQ2/Ҫ96l3ZV1%(O @O*R YB*ӝ4L ߊjCDۭjQ/a[K:% aK_Tm 3p=9;AI@XϝqWlCKo a46i'fg5bI8,$h; \>cB=% *ISCk\)v.7~'$7q{ˀT:lYXByIJfnJ,˛Lff{ig}=vA#d7Ϫp;p'gؖ(ya}ٚ-HmFcڠܽukv2h܍佑g-ʕߑy7?L{~?2uXen,抩~]aXOOIHv2nx G* \%Qt-a*vQz`1>]e_̗ѽ n{w)PΡ$㓐@HYZ*,]B W"3"q'ķdZ̟}3w {th0TO9L`ֶ%kn). LY&.^^9҂a˧c_\FCjf=" ك;Tu7H>lX!BVpw<{z`zN^L>ȸ#>[g6~z\<&W B{an&d')T@Q̻LC&zK/.a3 ~qpC-7h2ipCN..L <%+{z[_Aq.7Pn"=rGMlܢ-6m6J"]X}q&~IUVXM|~/UǾt.0+0(DGi)]ba%`FjS^_L4߾Ϙ=i\þﬗ%yHoR_*ѩEզ  keA! zѭMiqL ]# c[[ l`RV;9|13ֈd3x;%:榢0jb3QtIu;t4-8s0@(Lȣ!KC 6VAxP"nxϝ>BCCA6XQe둄$b+ndt)T1%v>ZJ*6dMMY95/mCzߒ݂4ˀI1a>K )l*={I .j g% Zw},gCMޞ xwɆ~XZ &MF{fdme;s)LBzh(E]tVʉ'2鷪+DRY%Ӝ :7 `Hmُ8^CɃ|Z`I:$*M+,H9]P3 pϼ'uayRO`s?,ϊʸMU\Uh3Q~(.8}h1%F}G-V@Ld3d^g"B~{Q*},r)Z ^Z 6Xyxb|jX0:zz6FT ]&X~vŤu櫭\#LamT!@G=u<O= wkcab!%f<~\F, M0u"nn:XW[/>4˨ikJR/к·Ȉ.=[Z$U] < \V01(HtC?~FXMsAtDA .pɻ/z}yBtj<jrDS *l>O rPsP(%0$9|y:A5Z`6D~ mbӗ@[s5߳"Qx Z[G)I>wR5 {#s(Fm52gg}+I\9c#ka8vi]JNuN$HPt2  i#O05PQ#3T)&fx/ڤTAb$uh7A7ׇ%n[K2G:"r1knH oiw ]p 'tU =AvD/8?gjGD[LFrIA)2++sC8SL AzL ( r/ɫ<3n h P܉o#}m?ڗҙ2i6Wݗ'FN 8bPfŞ ~i5pGuD:JnEANY:b-j8lBXUE% R=5lE;5a[9:C]=0ٯ\Sss鯩yPi~y$u%|*XFQ~ňaNrBPoG(b<~!@J|$au5ѯ>AX!1YXacm"&Xf(Hm!`qQϋS$.HjГ*T]^4t~S4$lKW Kx R=gqZf>0 YZAER/data/Longley.rda0000644000176200001440000000070012534531320013666 0ustar liggesusers r0b```b`@& `bN fKId``rޖ$0oo8@D(~wo~/B9=QB/mC -DG0fpSH0_g6t*{3:OfTIrK֟Rұk&IpgNyͥ6Y0w4ja@NՅ[֑GmiTF[{UZbҌ茥fQRщY:i⸙M em|nY弙+Y.텫jg1TXYڱ%-LmE=5U5YgF(Ķ!~+gr7ԞT]w[:6u0 ]9RNfGگq%9VJ7WFhiUn=gDɔZq#;8ҫu.;IT1';QN}WINlћ^}ʿ?.[>]oٽ8>U!BUu{i~NiP2 X,x`T1#N%ns|2GiO]d?rRMCLr$PՊbyQbzy'NaoCraGxqI85%IAt*ɇMqs]K&IVEAixIsd)`Em5=́5O%eoLRZ = IA qqZ.+n6[mƮ6-kns Źːlc.skحWb[Ʒ Tsns\˓[xRU[Ӓ2˸{5z=F)ôF%L|="nw"B22FWxι)@E7srS, $&C9LIx*^5.sWI.1)(Dx A߮FHY.)L#v`S7si]BBYMEFB3"v䮜8ݾ4:s<#0DSш"3IIi BJIqKQXSFChH,`E !i A4EDTBZTlY{\UF[T[VjmW\X` #&r$0,11Hc2M1IQX`bIPD cHDIjM"I! P4T)LAFI$YI|ݖ%~mkl6zmlk4?"GZ!uņ3\]fL 2҈Ǣ|C&֊zFCZy@m-{TH,|/:dHi$-vRehMo-'rc_ 2Au4 T"1W#Ws cM)d }L0ԨB uL ))B+OGVJrcQn>%V%hA{43fb|q`ɀ;)% VHΣe/1f 9v?w]–;.w{(~sXHQeDyv|`5 )cFO$*Hayxb5gm9F;[BcH"[;6crS#nHT"7$>81~ mZpt@mjS~@3s1J\ֲD+ߝjh" Q((ay^e롸"<}6+ /g^\EaL~,y80WE :zUg7ԯޤou˺U"][xA9z_:E#}cu1zl% ۍ:]S³q&^Y4p6! %LJ%X5p>bHT- 6PC*ik_P47D3]{$8T6v9Tq"P1jʀ"_~yltH bK8nܘY\'M+.p!̘AER/data/HMDA.rda0000644000176200001440000005463412534531320013005 0ustar liggesusers7zXZi"6!X tY^])TW"nRʟX\qjnj-1U΂1>etIQS5d PJuhjR8hu6VUW= !yIZ7R$l4cz@ۈs5^rkLXKm2T8ו(o~JN԰P:3Bt[-XvʬO;pÞ[mcFC,OF=t{޺BV_M͵=Ms6qpܷ>ﲘeӡFs&`kpopLcGcڰ\M˿/[G۪ ٞPb$[p`9gO< 44 CZ:T)J xLy&J&xMT]_@j F! fR%$`~#ͥ/e]bpĭb&C=2wsqhbXD~ ;ýh3‡`ihK y7:J8槊\2Oh,2j O 4d=T=uǭt+̳t 0 ˁ5Oա$ ".a/y"#Nyv̰]ջ,M.ߗc}Lf,G߿6C)z I^8oE%&L- iiAx̄v\IY&\Ҝ+YgPE.-4{K}[U`ty 7 d[GjXGh1X'F瓿#۪IcմZ!|-WϜ I|j -]>O1Z;7md_ ']ҁ.D{x}kE^fT#N"?D12m?g-:Azs5?\r`_jkDˏNg#u--zҺ{!芧jeD|\Sl-![۷ S(>^/™Gk } wC-YoI"2Bw/Q )>IxyH"󜭛ꇓOtEb<>?)'t젎od:q)RF&"12xi÷r0} uߍkj`D!}s~XHXS/F.>iЍƐ|2(~"*`D^F2̇q_NQuN@6;O6UA|ųxMB-2*K~aW3s-zbGvޥm,Yq\ikf?rإwnbF uFb2ID}k":\qw{S ]kys\[U\xjNJܙ&`oVǸ,6Vs6u 9` Dkgo$Ǥn#ɧ>ǵ~Eԭ7D~l߃SJ2"wh)Ȣ,"W;BR'vp1LBiVRMDб~≷ 4٠@\Ӯft$zkC]KٲTP(@fI븝*>:٬7QܶDn[O~/H'+5e5A @T]> Kx/7*KvЉ:mm! -x,-G͢iTt.EL'7{Հ^u63iN \Vb紒[9FΩ,=TI dh i+I0-ů#*X 4J}*1|(5m1}ه_\n(9~pDݑ;eSkof&ֈq}!5*'(F/ Q_U9RXoVES *"(T5E^tUe&M##MS.L)BS?q˜?{lDDw"łdyWciKd%]l'C@e~_ *aW^'[V±ɮeezɿ91h:/y !&iw&@щud֋;Y 7ޙKfZ~0q- q_J yXáYj[9uiR$iJlaBn$&%夥lχ^ bַ_hfuU7zbl$ͧt^Min(NK# #JsI(C*Ҙxq5ij.cP#F̾EIGC\ꎔM/P@O6Dy[v%axa.+=,UUGIYp3`HÐי|{K1,XO)'QUaf_R*ZSkg }|?I% WΟyA ͏ =2:ݍ8S8 * >D[pVf=Ȩ?KA.MJ1̐DIRet%#Q|F]Lͳ6;#3}?5*U R,a;횏hp[eȟ5 ;ؐd"&KkhzŦ&dn GվOO-bB7 /nHRg4ʚPf{q < -*J(~̄~@+md*`ռN4ƀqکD+0]$4߀7:rg7q &g{/ã02N4Jir  _ȁ0+| ^e!ʆ}dĿݺ.k9+`-w;d7glmHŐ%1A R$+ b\M'(kg;|)V!i#\BqL(YO+oC"*#NX`Gހ  GۓtZdIH 4 tuB[{.aLh(s9l TBad_ǹ䔪e9EDe(DIn(9϶ƎW`?ARX3_ZR(mY͹ `ݝS5qdQ߲YZjĵd"60Z&I8F a<:ךMdJES5r+7~nc 8zQduþ_ϗz "H$)hw>@8 MsN]ˀ2Y\܍z/A}L\2JhdF>e)4gljb?m ԎH%JDZA˟_H^eX&Nm8ejbb~esȤ\v$IT'בf/T9W옽׵I(M6)XJTP58uٱk l/ ~`11a$5?"XAXPAlZJSwY 2[߱ uޒx5ȇd-ؖo1C5՗n;<%tgYnZ) a7GCr Zi87y<4ԍY0 'fj/`.d4bd'~gA{l(J(*Ia?Y>BDA1l^8.[˩oz4Hf{G-M(V_|rcqќ+0\nsՍ`@g30>"0ǎ q(Lz̖Lg };_-cesT _PePVA)M tMWyR֮?Cr{'{J鹙{^K OYpM-1^n(M6vӱ|@\6dPğP e^Y1d f㗱7'1vcf =ߨ @;:E]:őu#,*saNb7 i[F/X6ұ[k2(s kxxr|́Mճ P)Q#8kCIeGlb~ OJ> @v[ޒF"r| %͙ C$ ڤyl%6*TK*g8(h7/:p3q<$t5(m,Kc#Q,A}B&*!r5=ENXJfKoUiZl:d5;0dO J+(X-ApG^\@EeZ'nIʉb1X|)1#MPswyPxnܦ- G/0 {#R`5Y=Џ H MUpnNU1yVC(D,eZ\fE$Sg72Y x3Аrܒ%Kra2@X? V+bj%~9|li:E.l 16ҏ|"aMvdscG#[9`'YV'Ghr]OsY)qcrDѓRQD1ц!y^wJIUDN1|eb;݀)&Q3fzϹ<(BSY]7! ITvI5rŝ塂ZϠwu;'޼UbMK}2 pEr Ȃ-cQ[T^@.^d Yp@0<,auV+U $hٍ꿣 sFHmF-S!tRWH﨨Y5t>Xl jISVTIx/l S=bUaқ ])VY!]ebaa'UyvTEL "OPz@Y?n3t.G+\uHS"jO]ߒCD[Å?JZR*ڿ?w)tX#ȩDEiX#uazh(Bɥ1)qZrZ){/m+0CUUl.JӮ=J+˒˻r%̾ aWuM%?vFweF',+wTR|N[kELO1( {4+lTpB6Hf+6.}!A4jsvgWysBcgmX:{pFG\<_G ws.lwj# Dia,iE>V'aJN7 B4:owȶنc8]I @ F?A)dq O9Ѓ@i=Ce4՚yTAVPHceiO)O|,xspb5=õo6VLiՉa }fPE`nl6)9DVz.T ~Ϩ`7cH9>myC*1rԽ2a('QSFZZ~9Ƃ~T|"VT{M+8n#.V:Ac@Mç9vNR2 v /K Eԙ=a*ɳ\Z0v*glFqܨYYWt(ot`}SQ}Jags:<-^.+3 00k9%k0PqkZv6L9~M_%ri^G@y&&>xI8W4goB˄`;:6@ cjn,9zK;xŸkښ <E2sRbQ(m](np~NudQp)ecPG`H>%w=-X Ji's;ޫwl7ڟf5Z,p䨤# 'wI q3SXpPf\ǖeuj+?;@\;fL]גYRg@اF/TXX$vl.MA8]y#cߝD7 佗Vi 'j׻HR2}@D+ 57̼ ӛ`x=Afg'%h_:q@ߐK0n|z# ?s6E.,1DP$1pٓI"?6 P>Kw]kb\I7*;zrGwE2ұ1 ŦE煀T-]ZbHJA"[18{Oۮ2nrp?V[G'k]%xc~5)N+g!{LXkK&<.$t 6\.@"l*`žJ7xM+e=]*򳹰X"j3η=I.Ewe-AD!ҫ\(Jܛ䬐[<2oՃ%Lo@R<1)*Ľ@Tg 4(+J!C} L9FLKf~F:#$c)NΓ;ETJo=tefMbMԈLF7L)Tπqǜ:+W!ÜYm5ȝCG,UkuQAp8h D;#ƘCek.g>O:M\ޅqNN-BE47'm؎o'\{9 oi9W7g_zU q$?Nxg;3R8$Gz2Hu ,ᤚu=_qjJhw/緝?x㘆un|A,/>oj%k pSa:b:b/bg?l߶.cFiF7hײ\v~( 0ylez&P K 뀁΄xq5GZ$BUGC /c1h /Nb5W>!#upe30;1ZFՍ_)t*A~aA_l3R~8WO&uU" X"__h+HُH9F%-0+D;9<Փo5UѮbDXU{\y&%d(:רH)1P8=^kd)1*s< FI :rݾ!/.?Bb|}hD9:~cq8 OWLscM"4hLp%>^mN P/]У?c`sL)ֿH79[LI`n۴ȣ%*1DF4KG9iI6\JwؖI]X:>ljDI0߽2#ee+;LCbNIZ63.e.8'63W\fҊ?!:7rx^#/WbQ؏`w㣗*+9۷<7E+ޱV(Lc'Eu˿4q٢@Ǻ;iwh!"꜐ddkqٹ/pHp |b˻İ?2d&:ODfwyȹ =U)A y~'} 9ҩ랎KvaB@q oH!(fY/0I ,NV4~ad_CFNrbռCronu$^l.Aw^ev/0.*XNߠ !0bp^[@6r(Q| `+˓ܭCe L)3d (m%C 5%4sܰFZ7u3S߆<䇣e ~$(R ڇǒlwSFL!fo>k=i$\'QCu*,^d(xN?*]  G=jWl@'vTh!_ʨ1@ l=A SX5,!!s'2蘈v{o 6)Bjr+ȧ_V!/٦U*E/Q=6>\nσ7bXM𯃈Xߪ{G65r{RL8hbOWo! 7Fh8G*&[RvXa'h E=h@c:AQYX-99,Y;uM )Hp!`·h [SY\+0AE5 <{0ıaR/#T&ؼq|i  c9ux(bDWU#IS")8htzkP0p/uvh0!0)Bq]]|b!ܟΌ^0):Uc.$EL L ʊfE|S'@H)Cr"PRn=CRxB;'ثu&KMߟv ʿ/.z,Kg|ZiFC[BlflJM^{hTdz #RUgar,Кb>l53u}NSF!8gI4wk#}a:C\CC]NBT/龨lmd,@#\uzO[uyk/;k WxO@k\VoO/*Xga=iUOysbV~œL[$cz#*}wj-s_E^w!ͥOS.TkHnwrS> ~c7"['M,3e+U zjޅ@ZnԆ7p.Ct*R|m|)/"]! o}~ʲ:@gi-W~[fLFeĺ1LVEn @й3[bz1P%vž. 4d^uXr)ҙ=! q않L}>;sUeݯ~;*hԖ,fp<]F8_q t فxAΠzCc{{r@~_dg_F KJ$CY {f&mf;i+Xu,x` ⍚Q rİE.Uy  ܁ fiS2Q[%󳫯R`|~2Y$aP\rHK4_!5<|A*1I&ks4 {Gٰy˂JwQ2Z1hF#z>D4<<}\f.n_UvE#oZߤ\y,[Y(1O%Φ.\ oE@VZnܑ6 W~#V z~SMwHa|Tքm4NK} 7TvMƲZID&BD^b}r'x㙙nc>/$HBJQ`es6nD`|']1،|~}J$yʂ7J,?耨%Wfs:M G1w]mzy b9ghm:PÕ tOD8}lG9hU!C+~:etR%ƞJsVJ۲ |2BPgETcMh$PbDRڇT'sE `&_~wQet*&UKU Ўi X/̈́K@y z"QT3Bs} -C/uǕ )=J #q@ 3/`XT~ r@Hݴ:˙=Fk7BfiP~&[B`n$g7-+ӽ[hG?}>˽-57M|WLj@#}-@( sX"&\Y`yU"Z-(w.q4Hw?.9'jIVYb>O"a`2Ғ!m^cz~óQr&" rm)DlQZiqw ׂף 1gW?30ER9ܐRd aUJ ,5zqoi.;ʣ_L퇰i# AL>S9 J@ /3H|, 7+:9K5\{${(D:z1u]΃!i*f+dr*8_5%UV9jq_:D=+2{A@ܳxk|R=I+qI,ڵ^} ׵+R0q4odn ׷TҢbLۋG"vC4@*ZIىb[/bG-C'ޅPt~=bEclLԉj 5HRUhW\ b Cq|S&X0]F.Ҳ60kO*e MQX=Tx_cU)1tq;0yV,zDnMWùMsiN(A kPͪ $'^C.w],eyxx$P S&6s8^0h>vfG23]=}e9cE!$-'+:&m?~#o9TKͦеIsڄp(OhZ.EAX!\/<ΎDDXjJ&"6MC]Mmjpd2ˇo8;+_X^o|d,"T[&7iF3Է 6I^@#SjS4kdc>] z|{l݉ `_PyF+S"7 nA?@_eX6K1l8Չ6e9@W`7(.}A}7iKk (Tų>t ˜Z 6чyխڶq/`7 Jr! [0MowSY 9fXO|@=ϟ vk0H 0w`bp⩓u7TTa-5-Y9 5a7U!QݔRn<=PZ8'}wW*fzw-wX4끁J`Z) *LM@N9)mD~GV;JvEh?D]IJwVgT4TN,5|C V^ZCm Tr0VR_ eVp)/y*&?˾Y/m5Gg{N3?vtm|!H?4o39yV Q~ͱO mGgE`yvD3h?Q.2%HfY0B)FhDϲ̘q1 S]Xuawh0xO f옠s{J*6HIi{G-=͓ _'t鋫r;]vy]1{ڑ1X&ɠ ? ߨDC!EL( N#"in<ޞk-5avzK^xcH:ɾ;ޒI/)P^cx D7zŏMDh;mD!ON7]zј[p7_'D_ !޲~Thfy  zg]۴Ƨ6B|>Wbsv۰/~z 69p*Tf^Ҁ5OR:îpf &ƽ-jpѪ{Oh i >A@.\ҊB3Qhsr;]䡂oG9[Wهi 9^X1Gkb@lwiR+d+=5AaF%Ì,$y;nfP˩ 2d=;< *qZ-;4Mm ;̒R/yl|xT;?Xufu,nTu d7!%i;fsߪh%Wsr\'"j)z?K[B ?!K Y:6XfL~s/iNIx )'\Z{0vǒI*kG>lg6nRs:FءKA(zD7_>X! Pp; 2!eyRZH4Q\I)!` RyAk84]:*8"xSTeCE *y}.x- 6g0P}ܸ#^98^L1 B'cZqy hFgRr 𶏂@UR#_-%,dx88nd ڝҮH·c/j:Nep-L`TU%Y?3XJf;0Э);oYeODre1Y)l~z᭤b0KZ9Br19 ̼s )+3ŕ(Ӊ +=B'ES7&sGBQK1} ZXCv/ᴑEY$d!8ĞGOp#v/}uNp2@2، cҷ̗€̆o-@cE[ c:-́9ިԺ2khN-Lwݕa297蕣/EJ|i†j(E<Y5~M#P+I,]UD.5(n4q:p`%&ġ𛫪π'Hڼ5vg ES>fuh2;L͜E)L?@WI^Y/Q].ժW<"H#"qEWJac5Wvvo6/>q }021R7NAsV^{%1Wö}؏ऑlg&K劵3t*Ar+jqTa`ņw)Hl78-4)Y:a',OIR)Wطy醭 {(. jvfbz=^RcՕۼL$N(/ J m9}^T ,TCkϸ x6_3sG0'FP;a,1Lw9EYt.8+'o;e/ԆTe"X#.Aac]fVG#d- $]j\T"P(ӔzƸ%+jg9Y1jM[_Tboc^s&3'4L^:KwZ {21OXoԤII R^%( JfGi K\Fn]V"Yqdӊ,_p:7}?,8HnSSס6z?8몢tJ`#yH`.C0x7љ_Ns]gm,|HI#73cB1PKby)1ש{={PBIu\ u0SL 'ZfvJϺe\..vd;59EDBւW>tIlNӤ/Ap5O/Y B=db㟞,Z q(hԔXLW[oLl'EԸ ƃ]rgin`h]YBG+Uڿs^$Ym[.T}u[ #m_Yp'trַ(fAQlW}E3dgY+E͹ڸR\t?e^h v: )Z'xc msjytr#]%|A}OX6f %-3x5j:fn \{h;΃(` W76˼<X⇯"la^-k~EŴ;`$^ݟspK@>;R=0xOnU+Dsѡf?aA{P#WS%w$iHk%֤~#¯a&D)f|Dq4L ,3c4x"|ʢUd<%'I]@fWC&$IT1d85I&__l`lxv h q6i! lr{#TǷ}d9!]pL U̎$>4CQ0SH4e{5SΈ\Na>6 wl|%-;,[Qe3ႉ)(7-Ky8}YN4<\L1w:I*&7o: :urx vJT?$BYX4/.ό0$iIC#U[ QX0KLc1_/Dj( ՂɕRdj΃7h `Hd4Ym-G^Z8ٲ:hjgW l~0q\$>{$X,`SK<3`-۹^t='4M!G6Tg7PqS߶^x]0#@r#G\Ku(:)I4"&jUx$ vcTJag:Pʂ[79) (1s³UpX%{ꐉc:K$oOwEFy񩭞Vk@6\ %M:ĉAMHLB(%G{ALV3/'ݯ"TUwh)+Awi{XWmf -5Ato:MuA,>Hxu*eU'zŐg؍Q۾/6iU!~ qїB襁 w]׶j$(KP9#(Qʼ$/y3͵$,FeGoh/jlXHȆo3jCF11+S#* (cY.SqʶfymNOPz:Hŵ O$ H2>0 YZAER/data/TravelMode.rda0000644000176200001440000001315012534531320014322 0ustar liggesusersBZh91AY&SYO"WM<pt y"D$A4` х='h2MM Sjj62i?BS)S~4d4ɠJ?iP4hP{jO5P@ 4(@G 44hw  0FSi0iizCGhQShd4L20iM 2d@44z F@C@P@?b4WLcQMy|eEWVbqaxFQDD3uzw>Gr.{\ʋXZgs X#3(ӛU[+"1K"Q$ULާa֋xV;9ZCP*EAHRr() )hJ b BT)VJDZP(C8@G43z|CP8 $ V 2h+*Pqjdwpe<E:,5ls%UZEA($a^f\Ҭ.仹Ϩt(0 `rG-%łB f%Td(JBt0bJtGTeZbBI$I$I$I$I$I$I$I$I$I$8I$I$I$I$I$I$I$I$I$I$I$I$I$ ji1[]I VӞU &hM\"{; jǍiUFjH hd:p͚ɃI(آtt˗V 4vV#pM[QYj3fq@Ny`ֺ1A ƷP^WІԆ) k`bl5[)0Qc1""+/t[ HUv4 ?}>Nъ ,VyhPD ;ب20yQ&ա/CuBē, )X@ 8rpPa@*6&m 9h!MUXK` UTviSIs̰IPdDQZp OKF, sLR(9p3\pp"iE :I^Htk힩AT D.p834R\)fz)@F6ylBSf'Ib!|Ffky> Zz;أI#(D\ȩyjHjQA 1(@t, C5=:S-:+~9o>{<%@"U alAgG ErdP 0RIb[(qLRq)%xf%jαZX'WgX QPӘYd(T.Bh@e5elԩ˥TYe޳<6mYS[LPƈ!2FǘVo䄊DbIL AcR` tai5UgX/jamZeȸvPQL"M& rQV!|an fׂfliENhB=q6t.k+,i N {/ݤiQQlV\ |:D1D,MRs<{hY׫H$lӰS]>ZE )Cq]fX C8('?Ϟ $ u#e6"B L 'C \c=S*%:<^S:(74C5v}Yx(܋P"3nkbGyPOsۺ{ġyr땂c`D2" PQ)@=7u''$Pq ^DE/쨁n:Û6XW LˤQ Zǿdv5u7Y>=;{eΥ踉wWE+!zuK,?4Yq72X>?8/sM NW#2-'oak.2zNݻLuV'Fк@.N8fb$F"r"d@2C!Ewq==^֛7Nkǀ㱋 ׂ p \% `rU~6[Bn[Zl~,HT Sɜ8]5ŧJ>)#s7]Y-m.PCٽQ!b GP+۬ZVwsf) |F5ŵʣ|0dӟ̍C$abx(ߕEM욭ٞ Sd:aWƦz!Ӫ5 1̐Zy/UU_GK?~HlZ/Nqꘗiگ!c@ "Ly:wiݥ-.rc7A"fg+!Vʿ' (`1+É1kɐy>&m~յʴRs۳4;e?JՕ3NS•Ա4N8׵ۢRVF+)^r/=o-m}%g 'Tw/5նܢ]1!V0~=Jފ(ȲN-K[@c}&Pl4jiAKzAmprTB!SSa i4HSag3fG2C_J3mtCzw~,~(l!=~o{1ꢅ9_szMKsχ}Y+BB _'O*{ڝU5eB痷ǚX_`G'F3%ZPfڱs\nHcΗ8OB_*R7P7~׋KAUʯJ(;!L^¶~ W7F\?Nv'`@:r~ zدZZez59; ^`/83t`[:\}E>b;Cn ˌT&yKϥ(hϓ-9O"Ju%v^nRMwh#zΰ>hb$,vಽRe⁘եtPKVL;ʹ>G]2FvO^÷N 6ߝw!6PqZB(q@% w`%{?C>C[.Mta_3j~ܖ)ꟊ |1 Pj$+3d]EԢ>B, ʌ;aqqsKLdS{*Xq$Pnf+ǽw%g9fAKXS@,lU2 b硘U > Aut 'V8Ckb٥+>{e Er%fۅ !TCdA'&b"A0еc@&sjЄL! UbGM-;!X$3(ʣ*Ce ;;dK jC$ #3ɟQvەI$I6׺ac80`I$II$II$II$II$~. . ͙$I mv{nݻ5.:$XIV$+@ ĐbHml$IVXjb o9v$1 @$,IX$bHĐI$dI$pjjͮׯv۷fĐ @$,IX$bHĐlI%2I$@3[ujjպͿo9V%bֵdUREUJU(DUTUREUJU(DUT UU,Xb2I$@6[Uo]u%"*PB""*PB"aDDF͛2I$@3Vm{~U(DUTUREUJU(DUTUREUJU(DDDlٳ$I$nqc6^7 (DUTUREUJU(DUTUREUJU(DUTf̒I$ m{z(DUTUREUJUDUXBI$$HBI$$KB!qqqbŋ,Xi1fk׻v-͛6lٲl$II$II$II$IjUׯ^U^  JBQ@4Keu9((i{|.I0!H/z@ch "!6uIvM̶ݤw6e0 H 0M+#?39;āAį9v yDcFL.2r]AL 02'oǟ){Ymy_ND}ˣ{\QEx:&uan8wr#fxSHL0 X( ɠh0Jsdt (LGg b6 t  wD5%-]c!:Ḁ22 #w M)w(hL Hij(KHRlC&lHDR &J%٠jaia@SIllAfk"(H'+AER/data/USInvest.rda0000644000176200001440000000070312534531320014000 0ustar liggesusers r0b```b`@& `bN  +K-.a``mAYg, @aR;?e'q:0гn@ 1gsK&Aė}1D}J|fȧHˁڛ3 "yb^_ЄU}*sj+ 8E1_;naw "_-tdsTnGV"D>[萒 B@ 2 v8d>j; -X ^/p+|! ȃ9HBŠ(ȘdJ?|.A *9%3H?(}'b [ @BI+22 c-(LNWZDuDI1H7(1;;׼`haMI,. fNnI1f:gZAER/data/Journals.rda0000644000176200001440000001257512534531320014067 0ustar liggesusersBZh91AY&SYg 5^pđC!w9MND@6Ȋ6Gf44 ɪy&SMOM0SzT!F<{J=G(hSiyMQoT?R?Eܚ6<˰U-9d?D (a`;ˮ(N.w 7jiٳEuؘQ8oN6v->.0&Z({.@@Ly;YG6nt\>cs=-m9Ɗ$4i!]C&Qͨ.(. It\B.gq^p:|.' _Ub'<ё}f`ݽkuo\Jc×>MJ8a;ѯcܗ-xBz zXo7PQ(efDKbUNs2K jVo#ē@b) "Ƞ DjL)Vʲ.SԶ*̭I٧$?zټ!E_nHXo;C {Q!$uAeYߩ.2kSؔ@m vQ@'=s+T6V8PSHC6|w!Yș\n;,t韾H D`9>f*W2$G A Zj_E05k' dO W'>nRsUrsQRߟlc \z?-Rz%,s\x8RX=:{)*'Ҟ vUYbkI]OGfƖG;ӵ3\2ɃwG78]ޅWdeAjV[ֳrOݲC4g*&ar2f\6D " 6]*]L bLN}<ݔ[tkfa2;0mIM!N RyjzѹPB#u7T T1mcynvG7)H{+>!@ `uΛh@'~X}xU=?v}={]# u;zA#sgtvʹ.đ Hm=lhu `IH@=@!bOĄ 9B/h"^(Ϛ$i4 UNHPs29072"-hIUdM#N%&_HH);0a jJEa#p̛ q~)w, i7uŸXO"BchBPSYRs3D=Pә|OsR9j-B6:y*DJʚRZ(0RSBNM hL&hԚw E&A0.(d"л]2AMe SxSJp]`^NuRPԅ5#[7K#=BB]$b-8K`BhVmi jhQAhнZvaf'JO6eڪV&I%&Re$IB1-7Z^jmU?$1He Uh>2'Q1j2(b\+6$݉ @^&# *:7{q" haQIsBxRU)B8G9PYXDF+륺׳dG);Nx[y @`(bsS0-Xj3`!_v T|-m+ u.JRmX`otiF;zUSjC ±@4̧FEo/WRoߥn: YCfl|4J),bDeW=YHMQH)|WFi8uhkڦFF:KOu5vܼ9jҎ+pb Mp;f7Zi1Z涱eSflL_"OGQtסᧄ S&G"Yl[RTmY.ⶺ wWg): jK_J03WYl+ԜgLDxU&fb 2zeuqF(hi ج* Q3 J8nNNk;ݞ#&&蕼0z#~ԏ$cbwZPQ@)C}5**$g̶b=DӴARAΦX gF]L5V@_L,li!mʖUqXb+':ϡ6_nR$\Dn.Ϯ58n5Q3h'G³;3oZP\PI;\@&H܂,IJ54@AcJ.^Pbdc!Gh`XںPc=t57&# 뽪 5q7G7-[p]YcO'9.N72nXtpq79%$A݌J!l\j' ZS(1$2(=2@ARY`(ޔБ*c4y+omC U1eW[o6f@gŹ,T' %|x׍vN-ɁrW R v1\@J h,{F5;͎>!M VjnO aN Hs s  cBPt<{%RH(j[N& i$6$jV\A<):9sp,W)MD8PIE0CAam˦ X@ֲ,hi)Lb%."kow$`a3,ZMEPZ AR{- V^ 3sǥڝK9h/bW!=/S2M  ib%jYyc@ @$K٫A`x1"W-^a0l+bg($aZÕ!("FXEbIi9lPLezTr^V:Jk(Xoh3"A׷2HM:=U e i]Wb*hhPChP ȼ+i ͛`Kl}EZSGfB&́&Q;[;5dڶ2h, ,ccE9#/ZVyCWnΚtB\~O0%Vىf7H L)+$)PaX_!TBes/:*nb@ 1 ! ɓ%B[A>$^jDJLM$6ɑ1K(AH~%,@WZDeZ&`spr$bq"vj!R&׊U͵VSX:UA:M&JggJwp" h #L+ˢ5ɴ`[Z5+JCu#zG*Z{c9Kh\(M$#Lα1# *cj3 &iQذNQoi-ltgȜ#2ԅ%%smu&&GBŌYZI-[PvA`p;^ɹȈsW \XI3U,c&(;QEJ \IT"8`B5BKK )%d Md5rUS$X$d)& B3+H[$*- hD !p\q䠕)J[Kq"iFuMU8MWL *LKdN)tbjQT j'^K/XT!*EF vƦL sK 쨚ݒB*BXN Dϙ0"Βd}͂Ve9)„guc8AER/data/EuroEnergy.rda0000644000176200001440000000064112534531320014345 0ustar liggesusers]J@ƿIk[AA_b}Elmil6!ԋ7=$E (z@jV̗ͷ3C֗*J }@1:4Il(noP(FgM1x-^.x}N>0oU~}3eP]q5,`r jZ/ J8_n1D`od3Lc̶4;JJ?Vt.a##] =2[leؠ%.<&k$spI&T^rUBf!`n*sj']m}1|6sTg qJ"'1#'/}c\7\zLߢYuY6,̶TU_kv1AER/data/TeachingRatings.rda0000644000176200001440000001172612534531320015341 0ustar liggesusersBZh91AY&SY<8<{{o# TAfRo|p :'v2p[*!&i)je6&dڙSswӣykvgrÜ9g<<ʣqI$I$I$I$I?11s<3nm͹sM:tmmmmmmm^_}%}n3(F#d~oߒIη:tK-K-K-K-K-K-K-K-K-NW8SIى؈kvpĘrcrhћFIJ}^_}%|@Jh~6&!mFHp Z4bVam[m[m[m[mNc&hdpccFɣF&%f%f%f%f%f%dreYL.Y&ɉ<3T6Mo`ٌkϔ,eYe2,eYwv]wweݗw V3L5ztLleV]wweݗw $$BI 7cO&1143Lfޛzoo n晳f3f͚f͛4͚BI $$BI (fc6ZZ'mjsDlSbkFtܸw]ȹ$M ȩ]n:닛p.WS399ȸkѹ'q!6NsWwIvm7wnl鎖Bn:Η.X $hmb-&شZ"65Ecm!d(54mIo0F+&PM _?a e)$Y!krD% b$PTED"DF(DH&FfHA La0[V%+t=("z ʗ0)oi1s!r?$Cb P"yAK`(#JhQa)-A4P{pzb8`6,iHq~G]Mh10)4[$Ġ9ƒI#IϬ/_67sTլB[ hr.Դ'~mG}{v/|gff{_/)>O D2`Br)2e4 =}N۔=l_>\aHlJYkXUMyzdDZUV]vnȩXn 9"dCܽ!/ p unʮۼһ=s/Ea3Y7 ciwo@rc!R|$ODx` \D, 3 'd-0t HL,枡Pw"8teD\ B"%!SalQ ~k,pỢ;.%ʙ|;B[b~D}\h!m|"0'bk_}Φ1,OD^yzGc? ե觫fִ2X~zUZ2t۵TUpZu2D dl2AW bsS\PlkKz_oC ՘[d0|v:(hݲvڍ וUII '8Z,6n,uO*\ۋsu+`['Q2; Ь- J\qZk5vz쇻K:Zt# B 6 YuPNcvFC8lfqy$it($w'\'f5ͰY-)X{ͅOh֪4\]X!+M-^8/G򐃝bz$%6A!:O7Q+WC׏qC=9Q]'DgHv8MNJO~ǒ ,X~PQ&3:!/gvhoxkxN 0dYaiH"(H^}HAER/data/USMacroSW.rda0000644000176200001440000001017412534531320014046 0ustar liggesusers] ՕNj^Z- DIh Ei6ZnC!!::D2G3&8gg&ȌDQ~߭4{w}_sckm'˓U|?d]gſΚ15uٌOvǓ;)Zz/DvCK/mêѣ}X_ݬY :@ at_n zܟh ۷;ț\EkkAgc|YQK[\fR*NqW!n,C8Ж u O-?O ğ=_zTg0 O:]A8L|3:H3z됯 #3}7_#t۹1;#C835Q}'˓AڹCr*璘_?5ղns#B֭Agg}hT 6l>eⷸv6'祎^gY|0~<׶zfE|w[v;1ً1A68c>׹ k\-7ot-.n@[VIh\kl4gwiuc㓴*O?v#|;qz)R^#Gckd=^ThE.jr+VƨClc/N1qoz73BCT9׊VV' D>zӢ'OV~'~ }t-ѿ<~BOATo*rtQigz+S?IύKEȒ3Y➕YعzƯFs۶HQ6D<߹\{J⟇IZH򫝼o;QGo~3SPrْ먔&Ӂݎ+w:$O@_%D'J./ ?Kң$OJ'C\"I2ŕOTvSŪOjJuAVɥʯ0œnz=#Z~?ɼ$%#щ\ų(WלH 7?u1!Gɞ?17 C%/qvJwtQv=9#:r {۳3O^!ta{!|E=ǣx2w)-6w)v-nz[ Yid5*=ž3w ^}X> 'WKܓk_{7{ [fM<~r`yoح[t/[~,0~5cyi~TQc#{zFw42#R կR}򆽦]>7c[GjXW u'=:0O 5Q&h|^9TO~VNݽ{;6|!??"gsq>#{Nμч=?˱y!we}5O~|go ~TSj|!_J^G3s1qUWoGT) `@:ugn|e?yA橗'gY9~E.<#?RK>h}^e  vTns:U9_;w6-^?\'s{y#"ߵԡ=Uv_޷ͮ|!y|?lz_j&_7Z53_Gr}X)=v/ f>'av/_ HMԡ{<6_c߃_+ $~P\- 7 %=W!hu:K5zA~mA<(3>=suv/%/ȓ=7elw2Gߞߋ8|vГʾa澢>6/ џk_}9+?"gx?-1B__2>&eχ~8|xWSI_Tϖ| vCbYA6om^"n k=߅yޭcG9yN6mwc_shas=7 Իy䛘kw(uuJ<#%Kg|KM} ͆|P~%ln=|G=GRwA|F<kysE>}ޱG[J7 E{'h9r ^`_~ޞ׻Y6UĄΊ K?$kdۄ.Sy]zHKViA+\f){X_.*`ݖazs݁.]ƫyVmU.S?tکu@moSOtQu]WO%'z~_zBKW-ҿxǢZO2̡SwEԶB#esn?}b_thZǷϒ{KZΑG׍%Jnot.m8#:&XxIRWȏ8߫.Z0AmRŚW:t[s3Iu!XsR)~SR|799s+Oo7(s ?A<])Ӳ̇wD'=WK܉T( ]Cr;~3Ǔ+t'Br9_/;0ow_e&|\7%X޴c{O+~_9x>b%ߓRG9}F9lnя){=Vi܉yֽEM}W-q:y;#2h}P$| ']^p@t𹸳S1Jonsv*Foz n~驼m+Uym۝\nzk W髍utmݰa]ѓNO]Ut+ _7[y;P(\zOW}*  JA蟿)|=hf GozKJR¯L믺T8Glua>e#¥gk4Z#\s#c]=R*4wpy)pJq>.shAicivrqE(S J-NuDb~KoH׊KX֝4ΎˍL ţ.3~"q5tXΏYX/p+AER/data/PSID1982.rda0000644000176200001440000000774012534531320013353 0ustar liggesusersBZh91AY&SY$bHDd\DDDDDDUEPE@JJJHzB!O@Ab50)=O5&C@<F 0Gy0PST"@z4h&SFOPz@ё@6 IU4hC i iC 0dѣFJi=C@F@4M#AFCM4h h H!1hMi4P 2?9{/'&z3|d|C:ߘ99Lz`ڢ+o׃K=Hm2dH]ۏWgPY\Gpa"=Iך/)%cWoAe*jB7=4VJю/xĤ䭃n(BjYK#?kt󩷵 }ﻂd:Gcomd 63=[(W.g+jlQS%ޕFwkrBdv`·A.[?!r?vx /:KnoC|dF9ao(lxIIa(, ~%g:~/MOvosm=݌w~b>djo(kdd4Ϙq/CTJCIޓzwBh_|ϚISk`f1x@JrL'}󓻿V4^Zh)/9:mTbf7YPe Dgqҁкj؅kGJwIa823ח`D˲6Xf/JȞ61lE+Tj,^Eԉk*\:Cq DFߊmYUp%ӧ頎邖V\v26 |jwV[36;"zfN18UV{3w2H[iHgm\e7Uv͐K٪מ&CFxc:82n> / `DbCm h.U!.a[n"j K$t£3;kT Y\.`V}Fh}2 Vހ<8cօ:Ðѡ3}1sj};sDX 8AY-pKn }LٌI&Tѯc*|"f7&Q0K-;Bvowq×vSӆt嶚ʯ[JrrCB}ݮzcM%i ҾHG=CZE+ۚt]>詣|hOm<7eP}!7͜W} l-UU@p<0q$I$I$I$I$I$I$)$,2qI$I$I$I$9s9s9uvٻeFǵUk\I,cwwwwwzܒI&RI/{ qI$I$I$]UUUUM=Us~۲\҈B<\2[nhVX+FڍŶ,mkPjfދ*_>,Rd t4 ~BpVBFFX%`Sɝ~մܱ>onG?<~H,n"g{s:y9yz&\|t$1BlE(Ϗ<$7h+ZtuaFc;R^v1 FchQۇCm5%ij.Ј0e!$@UgOV "Um6}LVΎФ%61P ,$#]j/'&EqQ$ee=!#@X.ib@0s$UMCn5Ϫg^h!ߋA Qieo*rnOVbl#z`T/!אƜZhPhwXջ/+3>=I}^!TbVwֆ8  QU\-pmdlܜYսt_:`OK.p HAER/data/CPSSW04.rda0000644000176200001440000005770012534531320013334 0ustar liggesusers7zXZi"6!X_])TW"nRʟX\qjnj-&;kkXtzQj$;1t"TTw4;-Tlanק{[:yŊ1'̳N^y3cEs"C ~R~XeaW(P MB,6q)fcG{ը/)b7o B/̹dR+ĭOfU%Ws⇅1W!0߈s9P>j╯]64~+RyOxKn n5AiL W8hNCnٓ5 K+.'Q'EQ؈p;p 'QMEV5BW@OzB8Ӑ1V`` LA2n(b&lF E}u9ζz݆cAG9Px@.PP6RCЫLF^4ɖ m: 6;s L+b#wsoOIw?|͎fhShߐvmNDӤ0?c<1-K Yuy +=CCWш >4(3@ VD ojC]wxʸeH[vꩌ w=6m,%|@5O'aor}{d'h st-kӛ  q͌ ŭ;oKS~/~Q9^ASGQ2"Ywj܀0QXv w%IDyi%¡H*;voP rHcİ/A,ZKF5JE"Ps0rS#-}wf5a>0[4iS0}qНbN΂ ~5iqv8\>x߱}_@X] Qw>;MƦgx7.[ Tiq,ٸDcbjK.z)=,P073Me}1i˖_UUuDl $E$C3.o*? |\ 3h Zu.Ta P\f.pjmot 2d}hm[l'ZS=,,k;,>pE\_V q6΃ՈUl7d@L.ɄL<i3+]艆 0y `R`.yz bXPI| UؿhR i#'E{mY/0nnc2H7tYD[?"'B$21ǘ ?jtM#DMhxLS ;df~Hr-~BԽo`o&/Pr<yw~_`?&\z2kK.鏳1{~ǂ7-i]Z772p M4^dȦ^YXo@s׬w\I8eyaXaʻR"vtEnM?oF pk'5]3+5{Z:9YwPu5]h1F[-FIE}F߷9K:QlСw\ܔga.Ҵa0qVؚ@ex-P[OT\YEF Y5o;o%𧍀]sئ aYJ )'D59}ū1j$ 2zrbT @ffP`6iz%^?tk֕q[PEg6&yj(΢ ݔ+2E U:Z8q  3 לܭQa93ݎnavzdeK![;| MAۉg#F#*Jd\?P "mEԒ͋Ri $L]'}O ŚekԼuOy\ug9|-1k5o "Ta!-u] l$3m?+0mDг TKN]ڭ2ṙVPr%נEO*鰡+ؙz1(m}i}/&ZeaΧx鴊*^vFюC/$^-RʫI/I aE~.QA t2KGM_w"xn8l/}ON=%aصg7,SJ0UA0F+ަb]ľ$RR~-t㉁oetP@H fC;xy#Ìc0;4#;noT=*0`>/,nF(T혪('dHѣOF"1M-HA=9 9*,V<;D{'PCj1nz<Sbضs2K,"P- B]S ,~djdg 6@)b.F4G8]{VJC s雀yuyQN̼LQb8Rn",mA6 C~zyb?efV˻H_[VɅʼndeQ PNہ]'#p1_ !i'F;p`4Țlƶ@!'Oo+8`iP~YIF|k$V6zY!f-;pqeV83kpߖً0,&"?kzƷG D\]52p7 W&Ya\MMPl;Z2 BCߩ1Sͭ)늀*QVъ}J,\BQ 5LQ?rSer}'­McHGVp68ӗ8u;xU@fX8נol GEU2+_uL PHQx4. gq 5x#L1=-O^s1kqotr-ڃTeF^oKهpL1tJFhX7MzmiW%MN r*o2I,!U Iwk榥7dǠ`0(IBڑwtT&bgѹAĻbywd#]L~,Y֏tP%ASv;RywGF9+ +1Xw"qkoTe&izޔ _MRR+cRQ}fc uyI2Ț8kHiz?$LWjD$i&{ /_'30zUq?Ĕ0Cp;3gry Gx'O<}CYGv^9b;:k#RB:`3}C T$@]#k #}誟_m/͓-g'ˮf7nl\@ӃֺzǨb{HÑxf{$zj멽s,!s/DcT2{ia_co6yw,|ж4݌oWNU e|@DV|jZm~@X1`b .e [o|:xm8} u֝@GjA\J= )b'š6ձ*ƪw⁁#GǗ6S mdI Tf`oc҄r>ON^ t)Ͻ Tweˎ9H-uJAl&ӑ\maͦc+MP&%* Ȁ+okdD" [-VgtH䗔i;I n?C3+ٱSvlН;(Z4^+3vҳ%Acھ$~D! tGXǹ:YA+O)`Bs#}h@,kG&yv{S6''k@^o+||_'jaz*-z@bؗ>ϸI4gy` r1n8XF$R2(ý~W.g)‡2n6;- )L~rH ҥ)2jKl;_!)eytl qQn]N%XANfgow+<{ʰ+]+Dힰ</Ժ0D2,\${ %R25i\˛V1P˪+=y˚j+RҤxz3$aLHR,ض c/'N&VxbC4cr)5+e[;?Ԫ6T?h}x^ (KIvifvfn B_S桼=q1(jqt|Ǟ(bƱ?yaN]toB&WizI,!X$0dJ{@u1šȖPbH씪T$t"vR%f9"b[[]_\Ъs=3 P;h<#|"s8Y?xXMB ?֘xpXֳ̝BUy'<{3#Wtω8&+?B|ԱBF}@U$ۣ@r9{Z#l~WIpT}L,E̡*S{b"F_IT:domxˇaJJa!~~;:[jZ; tR L{u 5Bw_@'.DB*JsDJ=*8@uI< z Ӄ],0(~Rh Hی0r"+O!c S2-er08[{!jgZm^6Lbw%u"f`y[jl(ӵ+Z/bzsq_Sk!F5&~Dd!Ma5Vkm"QD8X%#E+y./lwꑇ}Ts[g.?Mfj%D)QMo]vbΊQ>JُaDSMc{ْJy}S?qd KtOAoXIL?!afVeA'{ѐ'FJlrOD}: %~_HP{=97t|_rfN7 @\#6a`ץx\maUa"f:!>+LHwiԢ}}EşD5m Trk?;alaRSwnCpc+ZIR%i@ xnxaTF:,3(RuR\^yZR&c:ɿUlv&\'#ҹqæXkRb^X5zk# ړ~9JLsb֗\ blL>?G02u|w?1\2i1R'3Gv#ފBaR,k`{~ڡ_wI §vJ^~k&KV@` ~[_>mDcISWGx0i42cB=:#hKCN p/d?$eWt+ Zht_~ժP0ChOHKQԢ/?XTB⌒:0(WKxFV%- Kq#C''4E󭋧\x)KM˘\M1v} ov 8uMs$L|*'*R,#îOrĀc(5Egluߍ_1ڎk_0S>Q[R;c&7Wf-_,$\8AKwbeJVHAsO{W!.i<5# w+m LXzZaߋAHAF7A(tYQ 0Qm - ^/fw';QmgPsԖ8(]y?̨͋^wcLމYcƓO˙mdQS1+KM/sP<d[La?$eEN4ʰ*I9xcIUwX7 - b£ә.f(G}Vy5K|эK*;`%IiQA~Y4GYY"ҼfM?$d᎚y~'J}-~cfo '^nf1PK]%tK|KP6Ǩ̛Zz mf~vcoG$铠 Qm"̬A}Z,p ow@adV%UjfٷO?3݋|@"fIoI930& )[{$G'Q[rSsH9zn+ۻu }r}A올BF[TW&6 }o Yvf);T)B*c $gYNO$#[ޤV DUgpA W njСݽkafU=G_C]%p/9oib#)Ezwb+i Q!d,&9&ny$4oee0lg@B,[ۺWJ0!Ղgz OUJYoZX;(2X7Oq]n(FI /Gi?\2d&UҦ8`i+qhPݮJ#uD{iLQPQ)$ PW~@FvOFrl,LڟJj|)wd4 DO/6@%!UM]PA`.; 5b-^kRLK@027 n]W Ax/9s:+zcfѝORHƢK8[H](CsNA{b8o $ړ-L>Y!3]=hGxtS$@):MK;ՠ3<Nt rcVE>ne90+ Xc}k`TfJ?KTsa]E0o"UzE#Ꮨe5;j4-)x {|y2* n7|յ Pˢ̸_ KP0<<[bLE(,ޭ%nyn'6U;HDsL +ya#kEjyb$.{If&lK:L Rl*ޅ,hˀy>,|iofߙ♗$EiWk+ xkR-fT)bS߯d8$L{A]. d)k Ka- _> ꒊۆ尵3;oXhԋG'brKlV(Bܭb^uN2ԍWG.Lqt4HN`R'{pHo.뺽Il3IDzSڙaxF 1é|<>)ɪU׼SV )wWT,8KPC+,2ew[űU4I$˶_^^Xu Z1O/FX@p% /" WKTt"p{k"v~<7!4fܶp,,}S4}p]|ŸQ3'oQp2$:1%eC7rVq4Ä9HbnY*e~COhZj@Kx7'jXSI`mn2k|{]<*f% [`( ^"J=yu,Yr3*jVߚcB. >]DtpE&d'o}SX ;M,n=?0!o9Hi9huP++A98@ ^? V]W5?M?q~uPdkrm!wgP%<#GѤ8'P:__#&!AFr"d]p=_j 0w5$ցεVcQ9哗nH?ًLi7UN˛~BCtcP{2)hrƛ۠&϶g+F?VInUɗNFDKBD3/\S'+P ܉0F~|T[\X;Z qsߵeImU3jf4" LA|[ڲg ? ho7[ۨ5B^ j>]3 a v9CjArIR0rGLЄdz5K_(q sb f pNÎGm2=19/]™\OR tQaưm xܙYkY#p 2.i|v S۴mbGuHyw 3#nN=YR"ޫ\i&z4KTgw_DX+}/g0V~02fD9`|_~HybH>ZO)*88+V.) 1M#!4f*d/š".m\|k“Yk]ԇ|:`CWV>0;Qx Y͍=GPT٣-x!xAh`Gwr,9Gr`ʩpONiTprcX1\WMz 䂐kJMų "Ȉ=1sY҈*a򊥋JPS/mtk76v6;bZY! 0<wG\@W'B}-X8bbtx`I~ڇ.zө E8g\Csœ͆qG mvWEG"(ʬR$(hPNX=rNuv])R3+ӹ&1Џ*xoJWr˦[$~D_w+.1t; ѡsZ$PRIE@`-0E=n/n^pH;\Bv!1^DC\R-5WWu!BPۧ~g̭7Mdozg$P'J\(B??<-(*>(6׷uO3!*an(WD̀l-hTKe#}8,nu26A C4; +'F 9ʌL6x[9Pݐ b ^Rw8( #sv…{S;MIXxq83G /tSYBxÜW DkO]&bo<{i02^ͿWo?Y>O{kD7IAEG$aho&߰ I Ҙ gyi-U.Ā44<ǨGM,4u|JW! B`VLw'(:3K 3V %:0ɝ\\"خmh1K~)Af&n͢jZ;/̓\;$J:rp #RE8VbOs H#mHR2G+-ɨ -½m豾Wy^$}OE졭i]bt`a0W%3xjΝ, phn?{|ZֽI_޵&jwvKTRGp_xF̂5D6gmH.xBnEIYɛJE:qג}b!jMs 3Cp坉v-?hRCqW<"_[@dvZeL_ͭ }6|#.b3^$Oqu2Ih8Zi?>ORGnVDRI\eΗ# O~yTm0:.඀dy;*WBAvvnVݰzzmLf?'}JxX{Tf LB3]! b"5oOSn2y3%'$T L`8/>= *GHx޹;̠NOVfi:E}85#xevJSm[ '( :<=͍^[%Mv]~x:l?e _fhd+4]d3^y,`/Gy֤̿~$~ :񷰻ONC.}$ >T~}Qdr}y`a{tΫޟbT#ND*CTLsPɐ{"dסj Mh3<-yf1#> 0ˁ${ա-[X)O=PƎ'Cү~o.`ȷ%_ g nJ#yPNiDv) 82ֱ<~%MRAciFu7o-׊%g|7y"r&Hي.I\~h*fLX"BCJx$mnZ٣o@5e=iz%ޱB"3Uy۝^\EĊ(^=V& y݇^A=?2VHSq28' n+6-5jLyLmds붨í6n 2 ^`N:]G $}jXĥ'4pUS{eŻU9 "/lh.NXz>gW.Xv$-.6Md`Jts&EUӑKo~C m DnCCbtK&I`ADAyZ\>N&Pfcf2v{aV5jn n?Sٽkb~mD?ENߞ{T$w]sQ4K.RC@) Sq=[~PY;-<2fW]:H,|3Knx1%5'NL8,#R ه>F P*0NjiB^WI>Kw- tTOzk|ᓖ>-aˋ̚,QL,zKM.nǞ(hZgB~bx{&?@!<DžrBm珖Zb#Kv:뤀O "\% :nj09+8?p ouv񲟉o %2C⩍N* !2g.MAtj {q62]]Mgk[z-мi J"?- oT&g,A~g^mP;>RSK0j7|‹;"Hk~2c6Mk+KgsZ2+$_*sPXs퇗&hcg74<;ĥY qҁ=@ttj:2먧թ7;?mB\|q]T9`J{}# )X<u @sP1a0Slˎ撬AGy J oΨ(f4YhSzHWW:ۖc̚tbo ںœPu#7? )^L@E vGYpt_Ug}ط?D·{&ΘPnk*1ߋMO;뫾A؈?K2UQҿނ`օEx}<% O}:xjCL+רsH\૱8$hP]j._9uF>5G{@rY_TZ3{ɔP~)ޫ%\SCզKv58}ŦSok `X[?` q-ǠeIҧ)A飫)s& egQ0;o"͈P0g4&0O& =^ɛ0aTMMi}8fY)EUkSZڀhى0LJ|Y6BGeLc5딦K60J〣p02w :{6V7<.%d88FA+6dq 1_%gdCؔG {.ӷ12K=4~d8%N)O!YM2*d|NS =MM4Y-lSm4nAi ]6L`~PNV$2KT +a)) 9݋T] (׵9mB2H}}͝L1> tV \ٟ e ŵ2 Jv3RYF#hS-wA( sC!b_qEĜd>#(EBt;3{\&ړ& I&ۆi wm-=dZٟU|e3= A j8y5mElBvv1Ul}lR®ks1Stp]:Glwm%0U}F,g~g'<[+;` t[6`I~^HIn&-NHQeM*gɾ0B3KJp[겶2G`l)pџwHt>re'Yq0Ug^"!? -ּ롹$Y-{;]P…r*T/߽ՍP55 53zf1:|\ci =rO-IP[++v&모 P9o8VB:,X?&M0^4ibxL2NJ q#NCCLP=F}6kO{l5z-#R\ 1m@%Qy [jB =36|(,oc:>́ۍT '"Q20 CUܤW<aN(p.T,aj<tZxkp_xF ӈB~oHDUЙX\# 뿊8BS KfGqzN<\'=Wcp]S/ 7RQoӵ4(58%>r (<ﶒ Zm) t\M8&6bh%/)L[NCn#HCo^ Z0hSQwW Bg.'^_k@؁S&CG_ԉj!.&v2];m~IR!bPү_1*;}G~N*Rs.ԍL ih"?+'fSv&&IIȀ|$q!pWVrP̶Fa/Qw~]n$dj")V߅y]x΄xA{90z;![16.CGe9O;VM  }Ɵ{-fp8|V:Q6}/'L?g'//WC)BDr?G_x/mۧfªh?nh?"%{55 z_Ȍ5*a7աК=W=lR旰U6ymw5~$ZJYFvo0Sa(_ f^o9{سVԓ"/49bt?g Z3W P#t|)ɌbWl =YfB޳ܣogbJ[#.G@K{eTVK?j'ehDciˁ.(gQJb!xSDOХ+sote+`+!! :h}Pu%fgDߍ^CM6\qxоIRS !<j]>A>\ >7_θ3k|ol` rN+zV)bdWi,8H$PQ۔=bK;vQe!9tܚٍp>iBe=ޣR?3E23|Դ/:Q!VƀVE˙}Mzob;0 zvAH,(5>0 YZAER/data/TradeCredit.rda0000644000176200001440000000177212534531320014461 0ustar liggesusers]T}lSUh>E4(dAVGN6 Ž=\ﭙlnsC7"3‡NBGøP!Hl. x;w9{EUG$Li&yNBOy9T]r :6{ u_z5QqTQ{K1*^7 ԃ?^!/D][qt/ :v}58ģwϛ |FGeg_ g). :}cI忭|>xVz7~y{Xsm~೏E>(⑉.pX{+aoŊaGW>Υ!GЁxoy݇ڛ!E Ҋq[uo@{{%kn;*1iFmo=l:*ӧvC`+43 ?=%}FKz/Ã`ZFF>[%SI]JA/zppSYkտ>]b67bsޫYz|œAsZhDZDn/9S6NX[$;{d62iSMy<0s{O+XpOA 1b9d 21." V7eaiRz7@CJ~Og0<܍K#0OىuIH{0o# ]0;6v۞Ó|o,>Fb? ma$FP1IÌw 8%c`E||bz~$}KL'?I|^5!;5ŽJ>*N;O j6_  Co/l@i{yo&JZ$N UfXe붋^6Kb/YOT~{$;`'9׈|ޒ%i‚$+IJZvJ>7H2t~xKܒUMxܒ{6Svd|hjZG8oq^ę2|o8]TEH?s7I ~;V7sQKqՐv=$NƲphѣoD64~<1J4b~=3k):hv_k̙τn)F4Gtoz'dTA/aȇα]s2X4z%pہ|RjX*3I7 oV_E#x\= =?I1n2\eMt6d3G*"Y"AKw5Epl~WTMV}e V _Q8Y}!Ţz&}LqP˂1OwCWa?>?U ȣl GBHRJ6e#Q܌Bc[_|*0}렛lw[ C)f d?4 es_=b"|KQN>Ptn>儨?#cH9x#BR AE +>A)q(>^}+5Y=ly%[wTO5YW0'|_ڰO֝MI~?sf5svigÛ%Z6IҵͨC[VN 1f|%M ]sЏiIg쫌dW3L}BF-0v7#n]i>Mt4<1x6gUsm^B'%rj迂oo=9XO x7C6r&^̾O3;Y}37oF^VxiF59{?EY&?5W&7ja2rYgޭľ_f$}6U=sg\Uհ/&}&{m߻__߿q){Yw؇nIrS^s)qqFGg |OxeAER/data/FrozenJuice.rda0000644000176200001440000000501212534531320014501 0ustar liggesusers]h7R:c .LKM zUqcGic-N$dӔB C@RCD ~H'8`HѓC0]iu"MR{wx*{ Ht$:nɎ_O4<+G_;3{:e2r,|8fWtFT>o/r~O$G$9'uoH1 um-9Zʽ{Lbw=,Q_psl/vIuS_](瓜aAxfI.q~D>7=.v8ib>kMab}c'K_,3?̾'msh>9&O;̮}R/ o>c|`S׾a,g;it]fg"_4e\ex z豿.}ǥ\aw;#ÿ=S>q|t,<聕*w еSf3KM]}~܃qg~>Zw KK ;E]yzBe-'XSg HB'nobGC7OSCamK3ϡ|ط>1`W2u(9&~F<_G,/*:X{x/X=9:#<':^2gu,H-q F~Qc;Nmoh;.Q$ :=o7Kn1='Ϻ`;sCqu{~H ?ce]V\\%^Լijv^'h;铨8QF/wͳ IYт$#`yHrS;D$u%)ewKJ-c p Qg RQ9GUEBt)ȗ""лeZI`^ixE}ܗ_ix(W^idࣈNi9 2ԟ?Yx{*3O>}O~+<};x9ȟg>/b"yy[Hg;; [fipPog+cK+ .R{"묣K^E+<#.y;6}uf߯@yAN^o~$^1<-vװ[g^./|-{/yC{f,-ۧuKyWnMKk^b]5>b,G}x쓎/O/<п.k 2q{/uPG=+𪐷 *]AGWҧ_W|U5' W㉽S:I@5/F׸j웼o_ŭ~}8]֘SCcCyIe^xC jRj_4\k쉓?| e^q*s> Ok}ܽVvoF"77" $Ӛ^9 >紎g: 8k{y!m ~' ҷaOSzC_)~Wg^ãq1^ڳč%wb<㍿}7_yfoq~@fF ~iu:AER/data/Municipalities.rda0000644000176200001440000014230012534531320015237 0ustar liggesusers7zXZi"6!X᣿Ă])TW"nRʟX\qjnj-&[jdH&vh ȇ)f1/M?(x1HTnx ."rAuĸZn 6`B~_q.`$uP@PN[Ŏ2V4FY~B$ H0R:̎9>ؾxt{gyϺ]('G8/zu/!vN^;Jw*D]^p5 $`^+ I{Ù޲/`~%= !,؀מZ)~&oj[[Mz:f˞@4!7Lie_F |S9l\*&lnQ5e6* 'OMVq)t.K =F r#gh6J0Y^~!Q`33:al%i?reQv$͔%0!ʶEA9yoC#?yۘlb!IaG-F*SY\օt-6&&lZm2|4h;&8d@˙?y0"zG -zt̜"r6б?g@^|)&z vc2'ө߉~L:1XÉI9!A &G;8`B7²%{Bł75;?,j4P.6|V7ߊBfiݰF~~ZLK5q-m~ur.2ٛ `\+i^o鎙QΚ%M=Y LdKLXi'͑*w=>9 o&+sfu2{f+$eg1ٚ?sg?%T>s?NJ}4a&RdJf g8 FqOȩER4nraw*vn#`bʪޅ~ܟy[)ThMN3>"ZUU7SFq7D'S_mX *ye'mXP$,ȹ0ޑ*X*ٿdvIp 3oGTUf)!y%_.!~}[܂yVi YiFJn3bEougPdVEeTր14X1DUQ Fj??ywEͣ9q x?|Z>3-.vj!k`X^_.FRԮ] 6i$O]&M)q7']J/K=o0Z[W^5V ՔTRZ@nYF.v+SS0a(^`9pVU7.X::kx=r0iube[\qۉNrRRuWd A+aD{utVO4Й꛻w[s0:rN:3w5.{S9T\DPN,$w4D0P9`$f7Z2SHM 5;$?f# D^/sz)8)=&̜kC;d=X( =$ w xD>Vhtų_JD"I#g;pDCԾ܌Y=VOA忍˓J5ir0TWTsWkMPb!$j Pxo`ˈ Ei`haLqm1v?qajT,"d燂v.Lngm?sLvdo5P% F$#{˥كߝ*j?x*Ezܔ{6RV`k" R ;34?(hf}vW6RmqxdLngs8ڎ- 1o"}o9Mm#0I* fqCjGٌ;e󽲨M̠&NavFRվT4Zկ4~0N 9ܵEͨJ,2AL:VƜ.͘Wop-0z"z PYeC3>o0qqm?5ǧp܁h-*N ~CŏmA]ѪRI)1?浍Z]OD1Rl6zWv9n.BfGkAFfCuX Ĝy|/+sj$-5h|/:1;o&`tj` ﯱ3aEu0Oݟ:ߟXëì4/09ɘd-_E*àAP |A'$dbeWO?ɼ˷EcJA1 [623/Sqs~_ϸK\Yh,6] x<t=zb3$p>6H9p?^EG %+NrX ZmK$6/2Ŵڝ!C B2I t5J$)T5r,r&oڋR'tscۀ88\1a7[ u_Ǔ2nMA QjNe<@Dw(OqͨB?;g ql=Q ,<39|BRRk@oWCz$#B2Vc>ԋp@O2E+P;'Ø7SɊ(%U\\&;>ZtሮiAGaR(u_ (տ 3ݐ,vDA52} ^6fcslVR#4|}o&3Ztu kۡ=[28x@ƙh14J-wP:'ԟ9\M#M#=(@,NJ#TO LCDFP7-EDU;wi8 .(libf^3]'PZ&Ԯסu<_;(`KWMr[x|j=U#9G 6)_QVGxPWYYs+)u#'!D*lw g8h$urO38~O#!Ab8]*t=̪% [[}A O<−&u֩ 5Xa(#6 EEQ/md|%$łS,r5 `(IA@'6qW"GǜaFRR..V(4հSIMCcݫJI.JV z9306sY0p Tʙ}%7<L-yn,p.X7ȗ%itQ| ؕmg:9Kb:Jv~*g:X/CTHu%4?BL!/g؟pq/-r񙃒hWQГH"i1 [7*dv [7w,CZ,{q1ǣ+0SRHs%kYU-&Ѿww9wOPuOq.^y_%`m\`i&dBѫ(k;۱8O ATkT}ѿXy9)VT˴NhgΠMLc+dZNF-XzQ @bSD,VHXhvSݍd9YWͽ1Y'[d*\Cxii Y!M'0kHlL .Q wer3;.RxZڞJ 33/|2VG`UD6(HxmW*Am+UF,Y!+ vҦGSiS!`X6}F+L"bP2E$<_ڨ[<]Pzg쳄%S:Ecurqz Hsm/#.d .)j˷tL¡6 Fq {%\Kgw[P^GO$f;y2EM4 ꪔ^dLK|6w"O3(I ZST쾗ϼPRb!#9f3 ͮUy´mհ lKg{6;i7| m.ђkKtsOV*_"`<~Q$;ڠ6; -I<\I%iJ^L;FvCfFsNF GTrksVF> m{"/93%E2 B\]e'QD<>~*8-"7Q HinØ6m/sLoX> "{cqЪRJ@@~{,INQZ1jBe"3=oR!mRu=tOh:-[i=gv)%` _{b4nYq ^/S8O۪8Iqş4ېMcݿQDW8y[Lȟ;RZyc!E%4iq$IvO^؛g.ZWNbRF~>tz{]Qfҁ%G<ֳw4$zȀ) 4FNll"0Vn|KWZ,mybK3d8@ 75d+$kCLXXhwC qD>M秠 &s0xPo`(oPz_+߆"dn?9=Ap<.]ѭŴדw1Wm<nCyAh^`tHh*zz4S/?U ӱץϕ5Lbp-8~ZENLm^ 3oE6؇͘E@4OBwt?%Uw|qgz'̾X$Ks1:E h&Z;pOaoG,P@ vaѾf竆vݨuQ>:|>Kdr8mRFΌ"Pd+or{ޅh{&ظͶŻ mWrMg+ʏ@;(&ql( /im2{Q5gՒR$*%p<ݞ^wӼKƏ[Ƿq#^5?ϟoMyO (BY\y`&/%圿w2j! >@̱/T7_8_D u帟KfhUw{͟z&N !TzABn)rjFiF\M>Ze; dSWQ_W\Zzu871 Fg׮TDƕ @_:2K涐6v@Zq1\nhX(tS!NQyjE8B#y錢"EnT~ҁI#a䋚(L0Pg:KgX@fO wU>9}6ꇢ~@J9 u4>9 B]&Gа|>ZKQ@qJOEy6#P /pnaV[4A$`Gf1$fIU/vqlԔl_Y︻aoh⫵ŰZ^b$=v 4˼TIo:h}R8vl";7'9bn8_8 19ٰ*0Ԧur(0t$titvz2nv9ƍՌn+LP2t_K&gNIͥW*6YbXee#/҉1 2y̵ف[f! CRC^ψ 4ȃ1 ^@*F QUzXKxzs|`g9䔋LM FC`uy@gL|DKY#qםWOdTw1[:Q 3Y),I3b24*/-ѶV2z\)D'#7-UBw5xo7N0ܓ ]tꈺy]BMOAp]h"XŞou ڪ/^7`fzmٜ2>ʺðPmU&轖)4t? ^DZ.N(B *贝2#jCѳb"X9iM=Kke^2ȱyyN2|m162:8WqCH[-sGYuCKCRk:4 laߓB` ,LG(kUV|lH :[31-.>z;;;R S^VDD2oH/ٱnI= nQ{ǁ})ejOHjXɆL />8~[I\4 Q `[9o|yfi*jnzR\>lo8@ ixIJυT,/(ݜS3^"{8o+׽!fpdssȢZ]Dc[25kA˄LU7ilUeXk!i1n=p ñso](i<6@PwA -~߸}Mn;NͱZE qJX-<"~XV8-h|NDDP7pG`t\;g){!4c k~nk?~"1 );+4*DV:6eNtn4̣ "'SWrB29e/2NSM )Ȝ_rAX).]'BOepGS-^ *S-Dn`Т\ѫ6XaD:x>7.̑}Iu߀ &}:j9&i>5!47LzW[0:ї#r;uCmA7rTS %ș`&){ߤ3VzGt=I)H_RlF.:amB¡"T*z!MOygg?h22<|rDK6̻sl0y98u0^V6}z}Q!c^qu o+^*H6¡S\]TD fYE&y4Qgtt]R5oש `Lltk3 Xg:m>gp-gw*sm Zsp.FRUb2Ŷ!rl6gwqxfQ(ύBvV6T|UkStBA*2{6 8Pڄ$2!/Y҈쵏zllUH o9FًAd hc5$b$& C~4f%if Ia^@d!)c>GqWASjqR 1H* lUyF6$$ȒqUO4FEIDQ=PTZ"n|$ꍘF .voS%"JT+lf4FʧQAWOqۛ/.zL(oC XD:}$-jbE}wGlpL qA_I@g"򐨨, *aRB}hA fB=fBqz郞\t ة6Aq"H'XYa="k[SD9;q?3 ^5A!x[)N& =T` @eŞR򖴌P hҬYǼ)zQk~Zd6c@͊2c@NtLn&IVN1Uh~l=j3 SoOV;woJ@չ H"`}\E$jo]0o"Y |4mxwpAs8ۂ\k9Ls~1|=F陯oD5@lb)jr_7oՐ%/O%'Et%Q%9™ #V4P$6鐛LTpFOaJNZ3Gj3DD =1|TqV?7RVIzBM?x|M- Ê Re 3$nZ[{fyM #ƈT;7UI`O.ui~V,ؙ* M푞TbC?IG%_4) 5muRt,&#lǽ[͘ i]KYZ]z7<4.)wP ^{°56BX(E #;0w)/ R]?2lhk6wW&&Ci{$̃x^gtR&']XǓg_s/`H72S)n7UHILiySsb:F S:~ :<-EmIlMqO ~+mǘЛn0up%I6v٪6sgZIF謝S&6VHh{ e$cZ9|.) ne2NN4N灷F%KІjZB|xF4hwMA&fHmj&]]cWNˀQ3Z|:@p)>c2r`DEP ~_7yOP/}eP/?+6VR]bk6H6MG + SBګ템lcQnSFhtڝl%ln*h$ I(bPX}!'۟T}w$%>nCO+.K? T석:DVN] ͂)Η+T q )djan%W?*7ػJ’@eo M)e7w 4O;@ D+kt~؋(C4~=f4PK۩V[֑`5yL0 +I҆O2v-Q["b 4E?=^T_ w3+aO k,d=aĒBQ<}؉.ckd-܃eLԸ lFauyi.@œ{Fdvy"es (-uciJT@n w0jy)Io\]^J=-'s*Muov ]:T xv*a%7ܕh$udkL8ۤu"yHGSY9ֆV ]3]Na"Cu 1 4_Dir˚F5 ޖdqj$AeL*x Th@jvԊcTd*XLm$?K*N`Bx7̧׾ }"%wX&Pl4YZv4c%kxczbzE, 'j(sl#iCLKGR^[}bv)s``I%ߏպ*O0K*.^cv$3NBJwǃ.2XDܗq*aa#by' =tڊafrG[{5bKy7LX܎G)g xԚ˳Em^W8PP[:jپl)#ӭR{kwʄY.Lhd~*“W8?esY:UT2Q6 .046KչieIN[b<XMZ v"Q`+\tL~S \HYƭ(C@fwٺU~s̱e -SK"e :|mƥ.[# bjnzz`<}:bYތ*:q|FUt,n K}mZ-^A]=TOQMCEA\ 5ۢ1CʼN]BѝJfHbyhY& uw娆E 1qaSwZljǕ"g>PX_ areY}w.D]<&ikpԥves%2+s4D_D 6rȑxͭ3F~DUy&}٨g7A}buX>ne3pwOnW!b%N S.O7 OX~ٸ> !hV5/bgrכ/?ŵ)U"=fr8pgt.KA)۷TP .Vg3Y5R&{Kx:gϳGӫc A"JÏS42[_EGՐ'Vo>j>pZgj!ƾzIfuWEkox& = - zh׈~ CmdT\ AVN="Wp Zly:_׭]v=α@uRҜbGٟę^ ;K[ѲA; #PaS䁛xؐG  #9s66U):@A֠}Z= P-b OiF5nf MKGvn[Śo7&SAG7x$?VWGd~l sPߚzkD B]¢$a6ܫ%[8']yGHnz2R ޱqk!j=?qZiE/-IfXuvP{8G-N" SaZ"qY{ WSDeqAԧBSan1rݰ;"8Vm*h3Z7>݇6V~t223ʡG |؊h]fSKsQkɜcQ2 1A^OMĩ"f2$߼8`wmvMٴI!]-֬!(/14_lLQ}Me @ʡc瘊t]W y)R8m`K1Z;06u$B#ndW0U05. " ^SA.g/L OȊcY]} UQdb bl#K B=<=hJ//9IWyM  bv4Ll kYwIMj ̡R\ݞ֠h$y:${cA\MH >]0SY-f={:c{SVci,2[0D%Z,yF98-tW>L.5$, :ܦDjjW o=,j]$3@R?i#3 ga>o<\=߆eX!LPuPMeM<}Qt'翑"A|&~ A~z'f +~{GT Zg^ن*[qN}%܇vst݅ii|'=x N_fkiyg-c:@@_n`K DnWЯ364!~s)$eHu玂t*7:aL mx:3vZ0?a)tߋi}0!?ʹ2Lc$;bFO Euc$lÄq/1N-:p?|ڗT"N$Ja4exnwf OJ&{ZbOO˷״MJ\SUрr^]cxRӚ WurE/6]O:i>p4_zLR6vZH!,cdC[].? {OyG,T5*#k8]Yi N"8 O4_% dHV歭*`~*{ B4[韮E[Q};Mr?tj c>&=1&Ip5[ZaǶx QUXokuCdֆkȂuL?Xz>.x/{صhK b*&m4Y =7(kw+dK2'9ۜs8=ZF*LX:vs@YX9:ܚ_ -ËQ,#hPSAY,lw-sp#(/߸o 8yy!jl8-Årx^6 0*Q lJJrϛs3Q5JŰk1 o"^n&m*.UD[ZRA;?/"8VL'Fq$73\;\-oEUdzi`5J&K3DΡhޏ1:%xnԷ}Zw~Z` .Sq'^R=2ϼWru:mQJә2aX<5f ?Gۇy c^[|Ce~2Q֝o Pf7s>93 ?ĝuǾDSX[L(1AD;z4Ny݌[m"ѐQptοQcmcC$)'+ǭ[M"tح)e;^cGU>B Rc㛢KX]s٫8Ӧ|GzW6/$7GYx'wS|xF1൳#H!`ί=THߕ*0'(:4H 6-{4FTd; cdd-a"5ϠK;/׃a60a)t2HP.]O Q 1~9G 6{$˹lQF?D꒢p-#b 9}D}/ßX<`DԂZlUBE/ x8^qTBEG*Jkaayq7Lvl+HjPf>{L_r)MunZ74i1TOx?#{ŏ&,Yι k~F{'C2C/dL:@>#YVF6 }?or"QfYCw?k"0.z5v&Cz{/xKS[^8ɵ㱄DJa^BDyB" 4<"XQ.ʭwzZeneN.v *¢Ean#J{}biVFO~X1zIe AUl]T%=M]NcTV2_gy,%Mk|80]-n, -"V PiF~Q0~iPdiԶuЫI\WaE1J ό+Sg񸨰֏j#):(!WEyY,vw`죊rU;25YT r@p%%aSK$ s~+*qԕ *cbaMY_f)̟Ð*0D,(Fh/ydh75&ؔ$xV%J9Y-vCBW^+ݫ]X0m?NW2-ٝRlaKt#.JkJ#`'5znZbPjo[֡'4adN F ?IUf?=;cޞamhl]\MvWJ2ߥّWק"ÈF;V Xwa[uwU*8lz#4_`\f5/H);FM[o5E>MmًCب? hȽF56W ,1\nf7;qۋ` ݡtM`ѯ{7գX%Rw*}e4P'x.@|">KrӰO ?[5ZtZkp获ߒw{FWxVFL{\. ŁffQ 'c Jv%\8}~Z&PYJХmY xs\}~Tw8ݣ~ۥ}Iv0 KiS'C lm E4>kbcb,rss@ @v.3_web7T0kHB&>E7_+!5 sAm3){煞Gύ[YUn.wlBvQF7F(~L/VlR'U"3DW=uh5S_Tht{J^:'GYK/\WL%16c`&5]iJrTd 50 Rh&%,'\U7T73Ɠ܁_ͯ#np0O2TSE%Y,8ʩI>4m Μ:'F4&H::{J6^ XnOxCR ڟc #sVMwxm>&uMeXzHܐ}PZr3nLbvj1݂ mP2jlC H.PfyC#'SF+P-u<7da3@g׆,0wA XnA?koJdWEb.f"|_~-X<Ƅh&gVfu /*WWdZ+5r#oW)Bd B?(3l҅k5RqH`;Hf)@`/lD&=8C᷃v|buND'GffzKcZn%?5a8wm^Re;R~/a i Z$0(Ǜ[/\m uUSȟt-3(-XLNH4Re:Bl$CTeYWYST"ŤŰԶ6`MHOP2n[ݟOEPt)#?4 |(KQêt(~h+@v;v7lW?\8ӷ/)ZvOP1DfϫϩJ%lDp6T뽌XBZEj#]qPM!19h,45M~[N _2  -coqn&B 6댣^n)@ݏézup'b]M.hgNcbSNmoaãr -eGQw;3$,O;JxJ౭לf3g ;g5R[օo^|pK'Gn{Kqa6#AY4TIdQb;60h/t%O=?j( W߻o̾pA]֞V!g 3e\!F]w҆4kNUKF+0U;g([e "mUC<-c$?J ڲL.b!5KjpQźj:ls/ZYj;w1I?'I|;V?f*4+O$'^0$}ok7Цe@N"-pc'Q%%ּ{d)V:_A:h RψP#&9y'z=jܝP`"~i :H`S%9 vޫ[w.٫IEn-OT1#3XmԓT=sPSۭ{Y`䀗w+Qsn&[u*9Y9 LTX ÉYӖ1Е ] TfyQ|M yky1zyF_deCrQ1,/(~&b#t#%\osn"ɴնi𮋡Hգ6)f'cZR c~3=!Nj'zqyJ r8(O/OKDZ79W [[G6vxN7}:ٹ(yA0ޘr AUcƏ8,4qqY n"AiKKXZ)aroOtx1.\\ЛWdMaFTI,&wpo&[w{`W~5U^L[z:Ax2eWAcXb1wd{_tVh#TCyyaQ)\&JAq2umnȩPX%h13 _pbn, 1{`-#@"~aVg {B*K8޹/Fp( ^\C!پoZe/;3Zݳ_+ Vk;ssF6 Υr%]hmڜ*+ ꠒϏLk ȑ *&4"4)ŹV҈Q!80Iю^ ɷVF] VUmܮU@{lt;n5? G[&==A=W!BB Q@K!Ht8,He64]Ciԑ-ca7Tk^89rbG\kEO6+^$P2~H88MëE$`ҁDU(Zt0Bȡ h6>\|U%m1̢;YXip8e+FaR]X:.fG)2Cm 1K$V21!B0nHOn]Af~sEc+imk"pgwV-(j=b'SCnlC-<8r $gNCfg G%տ'EB_T~шeQz%VRX9qM+Q-Wώd=XԪb$@iwwZ_iyqMf=5lJVܾ݁K]?x26}ng!ƀIYo'['2rY_vɧLLg<Շqٗ:I(ޭPzA]h?͉ })BsY_vka痖LoV(Lh $T'=y8żH=GgOJ{fi!q{bCmd.%>b\#O`(-pl{"tģsC҅+Ċzʛ,0}=G;OO{^hޥDKs.Yk/Bo!FCLg(2gHoRF@>Crغ65Y:j4&a=gHv.V jTgb D\9_#O7)hipsumRbv8Xɳȯ"@ӻj3GABB ]yJ}QMmQ]DTw0*uϏ!evpaZvGpY1;wG02\h. U|+x!u$tsJVl]"HFVMx,"@z}&9[[w@Nω2yLxQ!jq#eנ745 (%|f#vYGOGz@A+Q.kl:zā+BSZ ̊sp>3+)2b)ioL ~M3QU/mb/j: !M%7zIq;Rmk/ف.r ;nE&LBAC"y"LfG!0Nn3L`" '#z0{#SHV+f!U#So̱HU?w@k8DV2Ѓ&WG^GKH" A*{|ț* s:aR5Ll6tsp%jpa⫶t+LW~=|sJ#R;\PHlr#`3'hFnĂyGy=ҿ2?bLj?-MU'ip~dreSo;]+WhmyfU1O!eHNZ6+-K6rfC"8y` ׳ 8A23wo|L8ʜ_ۊ}]Bc 1lK H S3 cb/jafпK`0i._hYɛwƓEfWH}D/ #>qa$K^HN<}h`r<%?f,RX'mVA?st"K@V\n"|{J7 <i"]E'8͝2C[|Vy0A j+X}+4B:3i$y&N'0\y#-t5̨Q`V]S̼ҪEvGqBa ;/W҇}D<َO8ɶw<UlNӶ}FPf(DMibogJ*^t\=p&(xT JL?\p׮\ }?Q?\|$|`;N[$JFKYQ_zdn(PWk8a_ ݍ&-j,q@s׆q+=oZS]~(Ģ~UXaqlV{e;% YhLd%m0~B6Gb7a_ygӬF6 _UK~k ̢]p(! ZQܵ?J}fjF l)D}ebx{}_7_Dd< ϺX.bQ;= gX6;`M $+B|#Zɿ]a˱"&qqؖBobH:^8fKgu/PEoqSXTj[*Wfgv/%4EIT>3(2\,$5 ֠u2!){?$6kS=%*ջfqSVMY&Qދg^a`/3|”n@=[C,E!gl\AD]>?Uj-؝A$j䭣* 5/Ɲ$[,ˆjg"mN}"QtOHqB uk^D ]os'R>Gpl} f>},z9U(J(×KɠXfJ⻳!LwHuݧF$|BhELA0>÷[)q;?CخҨ6<@ %XC7>uhI:^3a 2EUvR o7𭺴@?-P Be% Sr7) ?IJKY%)vO}ث-1*.^F3ɘ4!:m Jbb!,G{̣Zc,G\f>]>P;xVv1W"v0?&A!<] #hp mZLQFcE\ =) ]ŋ?=!sP_ya_}') }F/0( v{%ZD[ o'ob l&V][SV1mV؀se7Q7DQR}n h3A ZҢQyeTJ P|Xc+ț< J,ZPC]J0ֱy&jLO0b4c ;ŏ~ H }FP7ژS oG3sRBb.REM76zEIZG1hܪ+zJfO <1#d@\nE {تw+e[ /ap Bnn/qzf@d$FYd ئ|߽@R,?xg4F8l -εdA|9[lb_򑮎S}>۝?@!ן4b:%Kʃ]luGO9LUgh'\RgM9rTȱ 8*Jcb{wBeOs 4VMֻN H=M{=G=aJ(~s~eKxmՊ + 6TEO90v$"' aDi-)Wr%[_NӲQzM!9q$%z@Ͼ |vIM|+^'?Cc&)nJgjOSjfʗש)<=4'*S$p#v>t=λ¹cZ1v Gg 5x,C`pgebکfzuJQZV1:ob"qѷm L8e|Kv;K"=7^_u<[ YGȮfP౜3KI=O}s s̵8w0Nh(}Eej0nDGZ,2esdaD ,سځ eݦ&߇3 f@ӁAụؖ!FJ|$C*po аYIW(d&"3 RUDuz PGr OqЯ7@bщU6mW05O#lTo+{@u2&er';Ugrc[Gy_%].`~ 0#&a~cR7!xVGQUP+/M%E 7u2^yVU - ]ٴ w.%m(TᾔHAyڮ_i8BL Egh5 lɃi837idDⶠ hETAWPwX.Hůa(@G=sJԓcejHk%w;+1z4:iI 5G \l%yq}|jZ}@ r JQܖc}PΪDr{ 9#8q$~H iq" {$>QQj+ r_`T X"y 6x_sZh$!şw瀪0Ȣ$ۥߝ7cDivQ#MWn[ =dcUXoq RxbˢyKM3jA!Ρr|ׯM\z]΂F諼CF@/dn2g8 lXjGdjtlJbā\tixv`R,Xxʊun 8/l_ NA VD^$䔂0Z\y=xMV)s$&"88 #6v!}3@R7 aRj=Hr.4G K.+cՄ"݌hrt]$?Us f=On|w;{8ރJ ,RqJ[S8gDK"v0ԕdcQ%6_ n#>v2IYNZ'A f:l!M o%\?0AxT=. 75x҈07pu,2'J` BCԻk,n!W9f|Y*!' ,P?|4&4L.VӇAF:eP"KD_toʋOhqaY$9 )ȸB|*aϲZv}R AWs&mBQ"{' S|\7q@~ޜ}Q\kF:7l?jLg7_ vxinP•Zc/$tnFFg,<)rcgǐo'BG!V!P%v"GB^J:7]^%kjgt SVé/&9ݜO_C)$3nie6&p*D%Ke6 vհ&\LNt \3 m1 V&ioс 1qi<}gԕh_ZZ+Y  4SD+U!{IH<t Ĕ)jwE^4f>t]j}U>`a^`[n' 5id =pV[H.#KD^w ?dK>xmb5M#|r"ծk-i֝MIuu?d8-Gg?.d]3䅠٦!f B 3 \/sI85}$,hKuXsp;XdH4ʫľgⷂ #@Ka,-$ ](]P'RL -o>coA:|,ӈNr= CelȺU8=uH:ITI9"an\wjaY#eDpYWmP~rn#L+ {8ƶYPqTVʾQH3yw2H5+r|W3Kzuc Zx6h*;j/pF[I ,替 lٸr$e=)9 žiޘQ_aXA='XgLRq%)7u+a6l K4^V5`JSiO'υXqYlLRENn;YyFީNabٻd ǗSΩ-yjG4Up$}'гߧD~GMd @Y/|,R"яB}`& vMg9~E#r>@CaK?Ȑf$N3-M^G"9@R Qk29'}+m-:6"ڿIG|{SjE19̝Rӗ\Վɭr><~NfF! K=j>)~ JA$2Yz"OSf{NaZO2'7N҅)`Q<2iWDZ^Dq b9 E1PExJdtdH䚼A;XʞFF|5ieWI{m4pD,mvgux~*F  YSd/ꝴ "4=R8BNh*Sŏ!݂RВ.Xr&)c7(T# mWM'{JڔKZSűë1xO}G$myІm h-_WDi5]DK|)$eۇZ7/Ü9OApnͩTZiuWV5d'=kaNɾ,FCgsTs(3A_6]J%??¢]S62GJs.:ǎVG'-BKɀ޾o1sbg*A9@ά˚v+M`B-ێsyc;D¸Kul{ ^W7$8VֺNvޮ-@%%%UL&׶y+R!fR贈ȕyFݘk0i U,=wC` {܀Z$Q-=Åx ͹-y; !*뽓BO{ۦ+^6@qDFOVcR%~M5GvȄ_Q"0 p #cWdžyAj/I \"\Opbv,.AwQ˲z1G~$ц&>/ Ia% w|~!H FQ!ބ-ffevw_Vql>ZJ{+(f>wR>4T|#9b Ԯ>XiasxI߄/j3;h0P ` %K4kp9?Ak1״8+}}'Ʉ~ΰ !cGF-q 6CyA t0*vưuXΝh:%Pf<|i)fq~JͶr|o!2OO [Ne:>оL[BfghP7MEԨic ɌZ}>x mb-PjQD.Ģu(D0<-o ;CA`/'MJo9dF&O5fx{4[:*8lȢyOZԇwe{oo)gBt$0mdj+e@"堵ϼA;j.6 KZIc<>c~'t͟7N^1#b,l3,l&kq ϫNںL[ &Ka^.kqDDBemMi nM":xCvȅoV,fE`F`cSC%F`peUș\+r ®9qjU>S|1㳇9 3LZwN97?<gl׃GveQJYC:^G掊 d%A\دwi ˶H*pJW.1}[Gbʝ1V4y,%7`or"+oG`ԚK6@d1XLs_cABj+wڻSN!P@5k ~ >ٓ5n gr]%a1RF#F ɂl h#RoZhuDuB57[ co0C߁CC(om2~-^NF s$k' Q֮dۑԍk<~ƮܛOUoa"_9檪Lc߃)bKep@}g'u?/he0*7׎e6> dDk+ATE$~WuńíGnCS^ BL^|c!cݢ1˕;r)N:gț.e=jzPɺSHSъn023LS84n8xփ"v}LPTU~ oL$t#6'fhjgyhۥS(nHBMn^{x_PM,7۞RwG%"QWM`}`e ='U(vG})sou(X{Rc4M| Xqt{gok2`k"ntgE'G{%_3խ7m`(. 0ؘmȜ-?(Fֱ'7; >U^;Pӑ2wrrxIЃΤ8Tՙ(Kv]0;:ݐ߽>N-Yrh-n! ᯑ8+j.wS0Ȩzvm澸VL`4X;Euh< E@ S_7cVԚF9%} #:~/g ! djvUq3*e3;PK_t `| i_3j]uΙ% i%:MS8)|зbUzM,m_$?A07h>kv? ?sy$u9g*U^bz&ҋ&MJ{`@ 1n IzԂ"} ͵4x۲.=\]gd:-E`5GT(@BOv6N:?Hi|oؓ%A^o7ld<:%o>#yq}!s7ižsKT-'Wc4l̶ӍD!s MU Tȱ&DxW h:D -o ~m0s~UAfq 'uC,vf%D/Zr\ ӝ:K,92!ڌV5%Ыi1cIID̞qL<:f}b5z=6s8k c Yddlsq NX紎n3uGxiZ(-sAǞTi8KX  3S9G '&ơi8a#ʆsWq3*e9lpbKIѫ?6J.wnDd3\̆X#G$?N{@䤴&!I9{j<<6X2kpϒŔ/Kb`O{Ohܾa)A5~ǬŤ& mnt/>]d#_gK5Ao"^HeWmˡ) WCZ"I/WQ zuc2 hFX^U ~#l\jYȳEqT"JIg%6(ը0WNb7^\5]DskחQ?B\k'߇Xդq@^꼞oy.iΊZ`~RAEs=+g+ M01ᓫ6=u}EfzilsֲZeAwbﬕ[7US&&ؿUemO|ՖwgI!Qq̽z"~y3/6MmXAGDvȀ&K-`_.L9:E~1AHch߮0塓ׂ 6M4A[feܥ Z<ԃLsuǩLmO%V>2Zb@qK61&VvQiq"9S - ^VԚ+z׸Q>/nB#,%_GJ”vsz( d[m"S8*_p[bQ31E@e5wRxWSkv?:zm}^;n,).LL%0f6xdhlC.!$PK ޓ h)$)c$T-q陒(LE;VT)~qP9{؝ʕ=0hBFK4S:-< |=|7uRV?}H6׃}JNhͩ1X!D jnP LTy)isSѲCWbR`сH~ ۈO"`aHC!q2g9ß1%7h)/ J*b$w_>4L%ԑl*4 kЁ3Wq{O|]7k&5BhLiܬdqf#ٲ4 -܌!m,XA8#i5hfqU}ţ_~OS&sQ@.祛)Z՛}_3:md"L~x:[{a.:2d@Q/zs r^jOwDl/ܡ7)ˇNl'.}Ӳ=f;%DR6sр)źDZItz2sP2_rS/zKIbNoӃVxYžo-rͥ6~;禥q0E-xMp zvmooM_ˉ䟿)37%w܃o#Y!{=SE3*w'(T+}8Tj8Lj$]I9RF_kE_ZP)2~T،Z{QVG-#TY!os>KoNC;Vh8kKZR@QV?*ƾ 8&u TYAμ@Iu \CW>, 9;"̹YshY(2<'L"kF}#h~T#+ 2=Nz$Jt[[ahʰZ".i꜀7_ כB&`=LB&:QE;{!&pTmd4c 1i͝ACdMj|9VjOGn7qD~Sf пѤ}c.?BLU,s(uQЖ8EqtD2R.؞*wߵdq1E*lcF:nOw!mKPW!㗆M=o˧/5՜=+K{ M:!- QZ8Lц;ϝ(ZNQ~7AڷH n](p#}I|gIKxlN(,f'e5gn`du' 0Xkt{׹QE40p~&EΏ_-S4mF@7m>CmM蹵.A3,_پ4'},) AVk!4P5 rMGZEb1+y?H6D9¤7NEko1Dj0 >czMA:&^ƧhzXom4>tsD ˂Qonޟ2TzTjM&w-{C չLe򐘣K8yamWiFMW<ey .~&Xtߛ|ƧdTcËnDҲd~kY?0m!{EdL/9p^.k8ϥ9ګ8nۨZJrA[eGA]ojy@ x\8uV#<6;+%K8Q1, 0y<6n@[Y\R?dJ֖Zke]yߔ\scn,X7;ڞ{n:-F6:쁈aߎމ 3+,<nȎwG5`%iWs]?7FVLdG!՚~pwjBnD`ntbQ]56gP_fLSᯋ6]-m2!NPUkYdH\ս.B+)y _i5dK)иVorƶ%S39v?o[ӽ"!g)CW؈̔)ڡ2a̻r6v#{xV}~%NeYmR-8sj]8Փ>Tjmhϕ[4K͋g)񕯤'Oe X!5.zOHg/$0Myzs =mĒo#*DO#"e+nj_p PNJfEcgyM(L0K-k-P52Goֺ2ݲ SI*]D'Ƌ(qV6pOe -YY%#ل h>.>piʠvna%~^2_CC*ؠHlW%rFʸFSCs-bƌfm-':vL+垨%Ž]Lŗ^)c6l}o i—cb4.I{*jVy2ei ~dkoԩAC|/14`Bf([ UXPгE+$P'lCųR\jS2!, O^vh(5IE~"`UFb/07;ɏwߞi Y/l"D8?1;Z'y7aw23<2I@C[Ctrʪ2L'*1O? 飔Ub%Jkɲ:v֍%zYaLt8EJ̢K#С̀ (O Ґ 궟/ϋ~ scV?utT>;5(bE TBj =Z +DU=B;8G:`%js/^>q5BGA@M6mhRӱ.;twSU!-Y_<ਗ਼ȟ?K l:|$5  /Xgėz$:FˢΗCnFkZk (Y`8ٕqs.qo_] Wzdcynym-|Gm6 Ks 昪+j&# \b] 2[ mo #)~Τ!:QF3 i}Ҿr9m$:U\fPa>\]03}KoqD~ÇS)c/S;Jd4< ^!0~C41ߖ>贌be(~[WLyɭ%r8&0r1Qj5ławL)V2.gO}I2NO%8AHB8yס~DjZ˯A`OSh%||J&sGXۅtfi^n1)`>iVjKz l4e]!1=xDQ̞}Qy/a&j6I90sd8h,vW`͓DOzi,1maް7ǴWo#r U(6\m|sX[jڗnGcf{,3}ב 6Că~ =GɎ}~R@8WyB%U6wDt~ґVo$74o/F|q dXĎ`ɜp<@ݚl"Ϟu!=Sw{,o=5RϮC 7_d' % gWr@I|V q]ҕueNSs xSj{^B^zY|..jp]oύ3'.SQ4)U2E:CIg˜ -:~8#ǥѸ<Gc*[ ~$49EJlW%*WIjIxlS/FZh0,cB Ph]b {B[ۗQh[P57VY}-.l*˿7å絍m6$>oImi騻:Cլ:p.B ihV`Sʘa5VjG75|m I"D˸Ծ`}Z&FPe&)tfy/I㴷]r*#HvtǴz y8kxkH>{QjH0^ޓKMzSفi߭+Wh0[%:,$5v8[&s]9MYO}[9V.3^cL0{SųFmXיb!'P}hx>2WPk-.^pE!eL\GQ#o2=T _y7|1 V6礡7nJ&KD1]|-~kڦo.2tf8e%&p90m#= }\W>RYK ;:,Իh덍DHPz!PEp4͢ bvE=0*ů~zx˿avs\^xY;Z4 *ѽN7-.ÜJÔV`wkʠD-y'7TnK"U׊4;/wosBZQ6dnA'+3zFSՉg``M]>69""8;ܢunDW9+g. 4x/*izΡ?|RMlN2 izV atfd UL*~iRRCx xsTz(%GuԖ e.(~#5e/r6Ҟg0'[Q3.c7料 (ߤ.diS+Vӆ\N`Qg ^4VTT.|%F~bntH͊+ɣ׈*q4owL%$ CTBY&oĒЅ B?{1=2C01zywmAv*/rh UY;Suo]*wtN2DAHkt3|kk *rN_ԍ[Z o}^35PN '."t]W=ߣ%IP5b ja+~P589;MV miy f1l0#LeFL1DF痊XτY𺱜|ݒ]4|+ަ{ˬ8>q6۝]m\AdƔ)/i@ a1R>k[k ޲K-ږ(tط{Ts:y%HicQiA>lwM'Mm7`FG&~iFa3M:aTTY5|jk˥zAn^ 9E=H~H6W".d?>nnnyuaHvBemLi5ѶnKrW,E&@ՒĉO\bw{y]X`%wAϷ3 ȝ FJeڻ;[LU"໿K[5"߰u0: ->0 YZAER/data/ConsumerGood.rda0000644000176200001440000000433612534531320014672 0ustar liggesusers]V \MitOe0 W49rMJu-uG5dOiVm]*T{w9.Kqh7y %~ _ĝ6"怲Q3(3 МN6r% 1|Ǵytwju=P1j-As>zVQM٠ɊgT@tʆ];4.yoM#@Ú]ӪZ$z-Šagn}ׁ3S==rXŞAi'hxcP3ҁz>ޞPQ3^؜I@#g n~>k+u(O==<\ ,Lw|Oj{ 5E$P;5*9N$0\>k9ܲ- &[ӯ^`Ӳ*#SUwՏS-'wf2d,歞[R U GPQ7/U'ITb bqO<\,m:%}dmX>OfL 16 Xxi9ܸ|&i|'xUv,/nA=㟳wAMK]ĨC[/@-8E۴C֚N} +?{|0^_,SP'x+j_21Ҁ'"'i4>> >;qh~P۬~7 ۵j7&aa8\ԭ;dQw2 QcLc1;/_x{\Hy_:Jތ2-{4(KQP,uz$ BjώRZ+j!œV6}kGw6i(\Y~֐S4^{ט|h?= Ϸ/Y"zG4S @˜5#piAlh!hyArS4x訿?/IZ^= -!3ކKcwsNMQЖtg2hJղZMv[և&'ULz;4/rs(7[v;/.?7&?@A\}DcyYb⟕i܂/7{Z`TTwڦj hP.B(ݢJ N}JK>kfBbXy=Mj"澋l(Qz uW2i]G3P%)Ah f_ VAtP=c\=)xr@>Ί/_ r0go;eHt3a(.Ck(JЭNiSfB*iP!RYg#u O>˩!%ވ wY!mFRt03zU YH5pvZ&OAz3tEҾ.fH{eܿOwH{2H;/D$cYFb݇yyfHo;Q4v[׎ ]">Ξ'~A:9pH'FMt ҡ%VC "2_3"hEHǬ*t҅+f^DEcPdڞ CES4JbQ4|Cb+4clҍ0WHȵ`ote\<r^~ ~f?4A~<ҙZH}p^HԴHgInE7״zt@|,(*_c\嵧Q535o,'q,%?<;$.7_@EPj~$&sJf.$H$$/17`5lyPwjEAj^JfIiL<bPPba*|59'j7̜ܒb( 9)8xF(AER/data/KleinI.rda0000644000176200001440000000135312534531320013435 0ustar liggesusersmOHqښ23[ (*$Qu'[-n-:;.Zc9: SnAЩCPAH3[rh`;;ﷳXk]i5 #d:߰x$4xww7KyIFӓޙs_ e&~L>6˜_/̔]0T:!v[Ir'&qW>|U"~J"/9W;>^8}Ꮳ-] `4$߈"QQqIcט$q'i4 *#~y~Lw,}$Q_}/?"~L}`"dε~հPDOi OdQbT(ZVx6d3/= }3Û\C|Y$~&d\~,"%<3L Y ~ M|I34{~sjzMDfh}(}t G>~Cib0ըu:E{8w 7ȹuCsFyEqcO^,0_o Ix.{}i _'Cfdy{Qݖpܭrjo8ꖫln쪋<0Vrي]͖SQ?Nv%խMEmMU]?} ;qY%+e]B\>t䷽ rAER/data/CigarettesSW.rda0000644000176200001440000000607212534531320014631 0ustar liggesusersY{TUe$wD7r_\W@-<|L kTRWjfѲ&-!cib-jLb!1iso߭ʵw/It[JrR9 wU'A eXDiQ[ITc,8)2X!< א?(Ese(#E%hQcE'Cx(<"xQ&2QILKoQ2UiLe(3E%(e(sEQQ۫厥3de-LE0Z-6DrF=E+ZL2k˹q4ǼqѬq84+qqxXKc;Mx%$4;HRtEKӸJlqege(VV_8E6rw%hӍZsV( i_g›qχ*s`OxW2L`شNF²Sn ZvRxcϿ@d_ hDo`·cN#^u 4F}E@} _zҼZ,V4S|PS&x֬۱>=?]qXzTc}YY[^B>hԏh \)'oD+ >_Vކȷ6ԡN ~ߺ`V]Om5Χ>Vs/b|>jpqtه}7EB~3T{q)ĿsC}:`g~{Jk'w罷 8QJ9'KFU `)HyAX``\(2ޚՎl@{usfox | ɡ^ fŸm<  N}t,f漇 %oE~w6]VP_ZS~vS./`Lh¸թQ7ϧwӋ棛Gqsΰ,fݎz;wO9 nmT?7|6ϣ')7h7#/͟S?1'SO`WR~AةOS忛#o{/6^x_>v_d?x[ngb<"g-Q>o2pazmڰVS?nA?i9[z.\s?kz4| FuyM>0g׀ \~ { u6CޒsG|Ӿ+PwCˀ>_ 4ϭ7n}uwՂgϰvW3DL=aLZ>a3{!\O뤙nmA-n]M ; n#cGh'xh=w|ʳyoI*} A_ FBm1TF%>XM2= B'U[Pto\JHWWPT#>?7B~MWu~%_Cx8+/͗d;Jc{5S+^2Z7$!<Հtٟ)Kٯf1N(N'q2(q2Fَ6 Ny>1ZFy˻~)^뚕|>I#BFn򳦻I̾5>'S^KM{Ke'k OPԃ'{x*|zyAxO٥ѳL=PHk!wUʛq 7kezGSt‹_._zsD-+lau)>EE`#DMi۱_:a qOaoi u =5`7x? aciLU9O=\1oop" f}9 prIZn#_#1K)4F,TW%߿#^>@Dn#[^ <>=ooA|RK歜kM꽟=/V ݋| }DV;ϴOAjh~In0=>穻c 8p}3/j'6JӂIvFiSpbz?_9Cmt~EL}NXp"yQ/dwՃAE|~9=T ԉ-󡊳^ {;Tʪ[UeՒr{mi"%^PV#KTV(5k9k \wWyEQ+FQEyNQbP8XSa-5-k:Xc5sCjP39̡f5sC094̡a shCd@d@d@d@d@29̡e-shCZ29t̡csC:19t̡c=sCz39̡g=s009 aq209 a`#sF0297B{ݯڎA;gPpΊAER/data/USMacroB.rda0000644000176200001440000000417312534531320013700 0ustar liggesusers]WgXT^A]6(cK^FA5Kai  #Q4uѐĚU "64{9;g}|5bD"J¯T%m6#h:8>&@"1-h[gxQQ }>L(b_^lExQr7 W!Hd:x%9lz+%з>[ނCa/r-+} Y~Y>x,W a`Q_1xE9WS^3Y}UnbĭuCB{?[vԝ5rԥ#Hͧ"4i6#OD =xJq :]*).ށ~wOR:):N ȓ$</'^:M,3PgדT- +<}I~1ܟGv^C.)xd"Mr g[wxNW|j/.(6.u. lO{#!On/9LBYMrQ>|"/l$M&grXR ={x;hj)x:p^;>\/n} 5 #9\M. #׾b{cə^KH9ҫȾ$ Wd;M LS 8^s=fmK'AWvY- >mje{^sQHV·D4Mo~ h6T'<1pۀ0ѱhըuMDTԛ9t"HE[o$*Jp1RtT:6AǏҞ'BAER/data/USCrudes.rda0000644000176200001440000000216712534531320013763 0ustar liggesusersMU;&1 Y/f>wy ă r6fKDX/QS.^D  ɴz~U^spشy ZזlC'=oҮ-?+uq}GmK5]yʣ_vgmx|?^M_{iۮ/#Uk~l3oycM;Ɓ֔AeQW|&Q|Zi|n;?WU䂝Ve.9t͟w}tW΢d7PGu5FmΩ p~{s]=X:f>t>Sίs;C 7qZ_{6c~Pwq~vx9qw_~p~G=>8<᷈9%ȓ"">Cd|ܻ w1oCуm/9}9> }!C지ob}ڜ /=b^H<@}'sYǰ{㺁}6v!2!ǺxnøCxϸOyoM3}]k:ߎ?pSO~a2S[ +4\K޷zc΅)b}nKۑ.SNar(cFmK΅:T9P^?$I/w*D%wsg?_n/Nqg_qfQ=ʙ:pq찻:*5_ގ^ƖJH%SIT2*9J#0iHZ,-JˤňĈĈĈĈĈĈĈĈĈĈňňňňňňňňňHHHHHHHHHHHHHHHHHHHH((((((((((*s ZAER/data/USSeatBelts.rda0000644000176200001440000002521012534531320014416 0ustar liggesusers7zXZi"6!Xя*L])TW"nRʟX\qjnj-&__ vȴz;jq6՝ߪɊQ[4gwf耬H_ 'SI&8"NJBk`+P-Dlj(kpTQ^W>y_;_1b"|"1 b# +*] dհu!*boKASĕQl39`ك Z5Qh`{Rw4SGI2/~PN#= 57QwfӚH1zOV.OtLHB@ifB4n"^mF^tW.ꉨ܅gv #BtLߒG'7'VCs2ۇWQ2Ť憰nKaVܳ4͗Cr o\,RSUv^Zpn-E췽 Ԩx g K=گk_Bm,%᠑*ujЀW\J q<>RS{hqWuĿ4Ďs=PSWwO%N 6X9l:\NϗW2I2 2fnL0((,V' &{E \~x0<S!)gso[C65[=W-UL3loq8(ef :l1)ӥ_rNZuF"ě,hq;/P "rsHg6;mDB,_O91m&|Z&F&4,bErP+4kv9FbF膱LP=u82ئk_Wa noKVԠ.B^ڜg[@s'ECX:ЉNl9&2Ek ᛽wyK9`vi@#3&' R f$*.\a%Wv.ďHރ̩`wY"i3S!A&&F7)!p1pjtwgUhn(YE3$jO-@XAE1XX x]I*.ГYwsRc[ _L'X>;Hh/Ng3XʖmȖH b"C$9Y*w7P}L_oXKdX{Kۛ;;S꺢Yyz^=_d$|xР)  ytK(/ Up(VygBʒ o=㞕#RTnC`C_d" vo_$[粠j wlzx\ h I{:PugQawaGQ'nU;2n!`ÉSW ,P{ZUӎݺ%j|45"p][_`t+ ד0_){!MZr_rϰZ*9F; D'"0b$r@Ő'˜8Pzt_!,8j}Kro`WʱٜӟWK@uQ`O)wesNx݋S<ǒTn o_DW8ОQ~w LMx,xoj+7rs lN05 j uG?,6(@NS4v߾239C& r[d]zEZa J 3]uÜ4ʪy*94|gC ʌ4D +vձgq/C]N>l5?+0\Pht_ng+*pOB?`A m&7z]~UC=bVh$J /ZJe?j0FU*퇞NJˤzDkf~c[SH2CbK?=B2뷪{/wjmu{ݕ ںzB2hdMwJT3iHu7S8I Ŭ:D"lxAɰ/Gu9?۞zDN)M>"/Uᥠw,@|_|7HI^{_D~i[BAܛM1bjo΅Hx3!by!M":;V֙۬VSN=jDR9,'0pe ~;.B䚨-8hH{g[0eOApx.u!ҥ`;PRPQoI+ky-IbikRd#I71ĉӚ9_5k.=;(Z dxϞ "*>[.kM>I}!X(}gҢ+9:㬋q`!k{AvZO8=K֣ft*66N@'.l{25\hĮmi~)"Iɟ5Z0%4HV6_R(SVB!%S#R0f3C#پWD!8GG *|(/rGÃzܜC @rP ő㞩p,|yMxFtNR E3.{uGX5d`+kMz) Y"Ҫ`t`!U/]hq ^0"U+ "nf^yEV!+f[m@rCIk& 3.EPAפT4/NFaNOꐄU7|nP,dW-k4Lg˂kh'_i] )9oIbcZ':j_6a>VSVTz; HsuqX X CIb=ӼIsП_ >CߪlK,ZXi8[p!7f/!!@SHxmK2̦hʳwpkڍ(@4`<3N۸^w'Zd?h؈0Zs&EճLXCf@a mPѨ~H@^Š4zJGuOĄTkt v}fZK7KExE ϗIm&ݍtc8@`uf!T;qV1ט!mSȤ[pl[ͥ+DhlѮ1 L60++.S 5&;{2R1QϾ%g*W:#IiW`i7ϧ?pT?lMуr0`?۳5'݈3ˍ|0P ҝC뒘U5Ey[Ƿ[TyV2eVSWUNħfnNk$l/NWg/2*@^® 4)NpLa:W=zx$D%~;E~"8}qzF'GUR VBKKsNI>-zm޶9D4)hz=Hr'}XRՐ@7{O~"S¡y0cBz9/P)>C0 )1<#GI|Up]֮f鬤ALK+iת]F[|sBad}˂p X$g;ϊbdH??{j\-)!x0&0BZʻ|,l]t \a}E=a$wM1vÅ"_DC3a}WT{Jf, G321'߼ 5}(݃ecF`Ltj<ٸ]""2g\zܹ~Q.?a\'`K?1s"w:+!kJ'@2,/eQB:XĭzIغUňZCr$'xLUQy-k0VJTec1 cXQ@7Q=5nI%/p!^dvHh3+υ6|]ZA:kSK96.lƗf̪Lڤ)S{up3RS7'Ff 1B4GUo GV^f{ zH4@)$^~){Ng gՉ@A`Cȹ^М6Fy>瘘Og@ƹ |,zQSoj5'z{ĩäx@qde O7u?`j`9bĬ)ʳo0ОKj g Ie Gʻ8LXn}iMKRuICbh2E7!c:u ;$SŠ ]#@,|GAq;) 0t ;\=pO8̢]1hll%j_ɟ@cLG䒪7)Ae}ܓkUaдJ! PwV>gܱnbkn K(O^u]Tmi0)q@$PB|) xkj-ȼ1 .W/izLʃhYbP&+1Qo/+66 pSf80ùJ&0|mLoʉE5 ԫ;a9>tOYA1`(|Y*hCjToJk=_J3?dP_;Yo<"TC;`\뼿sq=Ac6D<.QQ1cAkn+S?PNOqU(~Zn$hN,vetjkS Q4iL9 L:J=:(J{`0n&#PD[Aᙙ\O@nFח&Үq)6Wȑ4DOU/\-~H܈ ;hz<HGØWcУn۶\n}t 5=.=Ub'wC~Tʷ}o?[.3Uś, Fc΍ tղOB&==(Ncd#lR u{uS6Co'[0c/e+ܗei>31rPI#+v";hkRqDpeANkQ#Gߴ$Ű](pd1O`xdUS!l0#$iIv7 A{S~niwiB`k/B#ݣ|q1SBz`ށz?9]1Tl'fN5#2ۙTչ"V'ŨaPaWeXcZyIAIM],˫E6A[x(&dm8 Dvn5OTb5t+x>¹lPBÙPvUZp3BGG["̉Zq6sh[akE7R53%B F'_P&N5F<8r2^H 3J5^!'3LxS۞$Ugzi^<[>*u %h{)‘"O%!C=uw]]fSo lJh%~{5g<A7 i,\ ?{:(]B!/=nwc:д,lָJwk?KںLaet$d'|6A=)ikQnlZ'VX=SHk^@߯(&j B4N>(&c!{Q#q+1'+d-X?o7[Cq<0dEdAB?pLv`~\+/\`T#5C&1è9Lb/+p%tQiHLPDmy_91qy`Qsk9,("KG>CcpC*iDlɩ>d}T<I,S8#![ 5dl|Y@"vΧ)jy2[زVkįFILcb͓IN8>sdersFJ4Ҵj^ "f9*E d[,/}6"PEyu0|'5f4+ig9ُ,$ W|p_>Wp nCU_3enC6o .9u\.$,h)4S.fVb ve'B~M-^W˻0*u8fQ]7\}:\۔ ou9!˛YI-dPrJS>?ŘJ#ԸxBW|&o ;5\;/ҭŻ4Dc|C«`X=LgO>}7d kAi/2|Oz`r%k :;<r?a&G78=lyЍ+'=zKu}7`v۰IոAs:bmB÷*(U:JbjX%DLj*k y-?d!^4c@aFG*03U$ J) nb6v ="Ո`B XCHR&5#Qd[D@\IǙ gm(3l琞-SdTv4@[/F!1>%a҉n' Uv^Ȉ6RU'sC*_:ƺ17͘~K@˸mu t*"iy |SZك$UR”]* 4CB,vAz f"{݃l"xOgHAW 6(åw0~fT$X7zIz@F`(Aњ;~AT'Tc2\꤃ka^EM%@&AqT9$oEΎÈ!5}f_,48Gߣ4XTg<lwS4͓\Z5huմgاlQM(Ǘv:/fi)SzxHM }(Iݯ^U<,~B>Ce RD$W4NoRcTbEr&JF,4}@TʐZ'q%3L Sg@$O?G`4T;U*s0}qIwP| (Zj̘zɕ?ҝoYMz3iqvYv'X狢+;-d"\9'A1)xIJpolOd VkC/]\&q/y}J~MQF8#.s S,iUw\6s& ٯ%80ô7ҧ`'@'i @AJlU; F2#CS rdAqP)M?DR>ZJnq^낪V o aygϫ!X Vk>+z 9;)]T뼩GHOiԷA.^emҽOw׵'('XJPmlbĸX|\{9\'~^@az;4Ud@h?,*AG"!n`=͍\m#PУ v"۳op[>KS,)'Ǖ|9v]ʽ9Gy֦;/ԇ/߈ 0 YZAER/data/Equipment.rda0000644000176200001440000000165012534531320014231 0ustar liggesusers]SklU.]mi%X~ ힺlh;uLI ᡆH !D 0@C!CPmI'9 ib'1˗Q؈8[{ цG(_EE@G|8jk,'B$XL4*ѥNZ S~RL#x;W2/i'2T0BcjQնOn4&odThvU:e\b0iN4<6L'/u˜ \B&oG٭&[!5asͲ)#TM8a#ߜIeZrfrM@Jl.KP#u\1ƻN2o56'([ Yqkԭq㔍^UNJRJX$j$iWRAER/data/PhDPublications.rda0000644000176200001440000000743412534531320015320 0ustar liggesusersBZh91AY&SYk=\B H@P`J_2>#ww> n᠀ eM&=1C24b&5hT4%CBFa L#L#LɈd``j~*&5 4## U$Ah&0 &&i&hD24 =@i#SA&4ɡBB)'3PL `4 0L2`M !ԉALMa=~/@H}g(H(;mUb&_M667z*X 3'>I2=l) y-9"o0X2hQZ{6cMoC777:" 2LFȘFdBCJHRX )%$&ē3ATh#I!""MIJ"1%4»#ҚbQDLIc*Q221)@"D0My虐3FFdI ِeD3f dFxb؉I]8h\0s0P;0i2{"dž%IUg" G1LP;$-u3ͫ 4=,ڕ&fiA'F)6\%@Cx ru˸fHIby7[Y(f&)f9w *!'`l7S<1X Gr/L@a7/a|d_ ߬< +IL58IDFʼnT6ڤa'3 ˹s]y4!swzisZkdt@8x2;jy_EkBp|~Ņ2ᵭkZ֌c1wmmmۤ9m=rK5&1nc}kԸSnNz~FPC~7JM~bꫣ,0Zy|[ҺyUؼmnF-fUuSヸesojݣ0ɎdF{lPB˛ {}Yל\8ßw; W%p5W%ZwI[,@pJpJ͏;-)2eR:6: 3("YkFjAQݿJn& LCT#KGNC+o.v[\D2tazk3h86)-VŎ'rS,TAVJ#h I߮ӿ~ Bp JV+L(BB@43i9Pe%rZ)Q BIJ:Y6KUɬPⲐ92 hRCJ9 TEH¢.@4VGӵU4'.YpF%ȈiYS63J5l5"[!\M BB.m=yy8fXWfۆmfŕj"ʄ)X~4tWYn**S^Gr5O#:lL,Naj[0dW; $"4Tr|AH1q>"(o$ׄѬs Aޝ7'u~'c=>o_ f]wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwemrmmۀ8ujT浭kZֵJ*fffffdfffffJ P SS|ͷ~n~S>#-K2 e:l465 +؏*|'kspu@Rya%jr5kPeZ ?_'w9q3'v:t뻝88_ L~qOҬ2,b,1(yQ AcDu9Np9,064F2i%: ]To0S5r׶W\;˕;7ws@]ݹr.g;&1d9ÛН;:ݖ-]FW5K؉w\Ŷ71IH aC#,"ΐ/@:Z "DFB0Edko:ވH>)%i2PI -Օe MYaiգVfB3EH#.p ӂ$AER/data/Electricity1955.rda0000644000176200001440000001234212534531320015066 0ustar liggesusersuZ |G׿b]VU%%Z]=cmK[kjiE$"j_TkREQJ-%{Dľo$j>3s<>_Μ̽C4Y`0|iԚ|jh_~1q"&}` Z ͵w\Wjm硪õyշ\ <Ho%wэPΟ g4_~wddz{a3`DgߴoP\8Zg/pd^57^oG҆-}{`N8VsDŽQm0#^˚%s/Ĺ/ׇ8WzֹOg9̞G&wC a~{^YGrCn1AfYVOc>\7_Xm͋vWy`_cEъ53!S'͚M]pkYnן65kW5e:ܜإ1{>_\^+Zv'k+k1ڨve[.f͙Hdbw|ef=/OCa]D@XZws"<dk/fVpp Egpi?jD- ?&e-jMK1o"I}/,`qxSSmcNDy?d;DX'w?d_(5#łz]6Bi' \uR[ Zw)-_⼏\qOI\)%ER.EH)DrE4%(JԿVA(D8 )B AGRA3JԻg)rM=\N E7mB%u)7_[;V?h6ހr(KJu(Ѿ(e1RB={j܋)OЏ}(Hy`,eJ)1ɛQn2jD!ewUíO_f7UO#1W1zyCy!?e}lpn?\Yj6`dk Pߙ{^ Nqo8ߛ75> ~I}'aW43h9Nj(@fg8RS4 V 68cON`x!ҌNjMXdFug/: s'ur!9Ty~yscÉA̭ :myű"Gkzb voMH.Fj[N9A_)J)8&|MᐶLl dy wBF n)bvhIH~+ [;vg YŒ֐y}9i?!p<=iX>-׏&|~î]p3dtNΐ$Ͻ9 KnA\):<U)e7Z-j!\+(EY}f 8vW!M]HO/YBfHVzuyp=DmoU~NssądWލ^fWuQ>ܺC:_eA/{aG/!Ӻkqll  üvLI[mpV%xh_^xqQ oJChO[hzi,Zq$ro>,IӺ&0MYw!h>O;k֎CCFֳ6ES 7$-TRpH /O~qq!g8Nފ}QdG>em҃O1d>' ǓCNd٫G㜞IdS?IӽŕDSxs姗y#)o\wz>W!.ō_T|{;韘vzٍ77U~.QG~hғivqQ䅞(n<*H~G'zVqy?䝪 h WzR- <[+[hZ(B;I9S{8lP8mkKE .|W (*k庌 PjBpXڽ,;a:(J+~% WC1B%[.7\F~Y,z`GX997`kݿ^4j=c@("`ؑ' :hׇ,ڳ!*ᬼ CO=(|K?A>qmҕP0WnPg (C:Iסӱk\NAp3E5OWsgQ9sJE{C)p B.!q  yM^5Db;B y<[/t; yy_C?IWWgJYPDž<ɏqW,ߗAPzD8pt|._窒s*#L, 2x@C{7(F?ܐ$ȿXP̭8rzfb\%XWb B0AԺYp׍< v^}Mh\o$yocq7$›)?=Ǒ>JNs$O+~= Kq"}Y9ő찠q=|P{uk㭗 C)NdGdDv(/*?CQ>h>)T_4^qT<'Gy='{wm?'FAH$M^uLxzK+eŝI~||o?о0mF^릷7c wk/Վ>39"O! jw[~ 9hl;xPKϟbAC[CxG*9]\s6o!p1ByPrܿ 7kG"BίWC%"܅N^U~凉Nx}m W4Åȏ*y)skʡכmY_wj/߂ y]FQwA3q8 O9}EJ %g,Pr⽭S\7MrA+G['@i@Jx?#o qqeRW\nu7T47Tu(s@^s__*4s,c\ )kTZT7utWE"8{ _y@qyxV.v<7k˙+~N %CZ]dT[+XQ '"A=`;ˉut}48B9x3?U}E;6圍Pb|y?+8*~ 438nNneT-jUˢZVղVj0) 0) 0) 0) 0) 0+ 0+ 0+ 0+ 0+ °( °( °( °( °( °* °* °* °* °* °) °) °) °) °) V #Xa+`0FV #Da(0BFQ! #Da(P0BFU #Ta*PJ5ݺM4M޴M޴`7u4fь:QG3hFͨu4fL:IG3h&ͤt4fL:IG3hfͬu4f:YG3hf͢Yt4f,:EGh͢Yt4fѬ:UGhVͪYu4f>v!zXBx\xרXmz/+/AER/data/CreditCard.rda0000644000176200001440000005607012534531320014274 0ustar liggesusers7zXZi"6!X[])TW"nRʟX\qjnj-&2v {3&-c_9 mNj{a$ @/mo@ bL-D~,-!S>R'# *:f:jOTTbV'+1%MmTSϳzv$QyyiCBXIK 3Ǣ5\& S3DL"2lYD~|W/3̭b̯P_X~Auٞվ ɓYr [41M;{6(,NtmgWhh&ގMoX}|P?2$|sڹl5]ÞeU'6̳֯z"X٦OkEIPI-2ѷ<\~8m?j%'D:o3U7ڱy.4 i=9ŀw?<:eP^](\. @2wdy;ґQ-Ł.YCpIZ[D?f yt>s UDbPFe6Dyfwg}nIؙ߮C'şMNd;kuOjn!05^Bw[殽_X,a(EJ2}^: MJv2 ژu*U6E8KҒPTZjEh0_?JiWIGqձfUsZ_JzώЎ -_EE$+ҹh&o'M_U|0%\TUQ %?5{xзeDr=AGF>$sO &z#q}$znj醍q 0lІ@Oó=9r6RZA!ls@%s #-CpXi? v1ncK8VGh'K(V s8{WqQc?:V00V$|ѪJu\g)iB山#ĖǦy"7,5LC %Ѥ6]=}oZGQ@5R4-[vq{.|UgN!i[?.N.420!;׺:JP:q10(Uތ;NTh  ʼ]_sxFw'߾Pnʊ1,BC'eKv*SHņ9ٖYn3$[e_ZjV2j-zMɤ]㘔pMZ/D101.gN>k,wk!yp? 5wT{:6ak>/o8|PܽHgMBUnDzC88ϽGpYnT0آL1Jn2'{m$6Y@`r8ħm{ =UҘd׫ps3w8J偄JY τ !_OF+v֜QxaAdȮ1iKOH\K S -ViRgSzqWIDjl qlm/Xyw&>6U5w(|Ud4@9tBVsXy O- xT|2ǔna5my׫$)O#1ҜၴJHCS;llI±ϗN%-m\Ɇ߮mJlBz@!?'šG&&HugmL` ؀w?v9[ъ8(PBI~JF%6<_Er1_q+M&TD{bɹЧt4= ;rA꧹A$SԮ))S2ؽOZMJ!X" Dyr @:?ߑ:mt]m@ڛg5 8H҅:9 V;&amW[傈FFm%Wϧp4ndyxuYUL!T!YlP*qdr @:Vus3g#$,Za>Ko>+)% ۘ <^WݵX9k7{D|딙){1DF&[ׄwՎ8ZZ:lxb!#?(K s7rmw"Koc%¦N3ݺM)+R~߯^Tb'f")aȍĥ}gcCm(Xjx~",2:hXXP<ǚ8`:,ɷ}jCG*B}>ˤr!LM):EpsP#اH氁Ht]'8ZV=5E9Y~OZi¦Ä/CШ[dQ`]0p#OE1D[,jfb^.  m_cf݉i2S;}}-$('OF,I8ѧm#=IkǸ$R9cUNw|pDV֊ޚ5aJѬ^~&s<"qz{*8'0.F%,޷(x҅-v$}K۽M{,[ym o?tf'_t,cW-`;qQhV=Jyd M)#%ӓ1ڻb JF Lrehp&eغ1c'ޱ,wL?1~89n ;2[%2ߺѺL\ٶS>n._/\'h%r^{Ar^ĩ/Zq]: e?+e"IdQQx1tfs9މ% -t>n(ޙk#Sh$-4qZOPd.Xuh}r%Fr1ݏ!'X R@^4[]1!k64yced%ԟy˂auO[M)e*wv߅rh8>bF,cCwy'`"&ރxˬZMgzO%wcwU,BA&B"-Ow2D}2ElJ!{;kd^a251]41I:gC٦%(]0*?SEDvͧb۱XFmD7\thU!ch4p <ډTJ ,S;^['/)مJ Sr92] ɂ2 %[`SZ_{e&s 'ltlO.w׏ ;"KL:I$py:@hzY{J5׵=Hx98w!}RTDh݀Abx;F7@G%:?"'NSa/9q0Oʆ64:us#0Za T AX Q"_#$d'OH/$;;)} U^tj5PIz˿У =Wxrv_^vڵuczn5HKKIfv ) {>aqp*xN}$apArΚ=n>\j$>1ooOCKBڕU޽J$rυNG5L4@:cQXr{M.|ϳ'K1LF]ч")כ }/CY_Cg>a&7TÑډ3";ƥQ}b'sgSP_uy5$wZJK.rịX*h/m҆GxyDՙ1_~6]Im\FxYH,m -A0˱);{2+`r<aYz+f䵋+z uo>p%Boj[nD,|Aͫtd 7qXg4Ua+)~"򇘧Fq=‹zKNfaZS7Y70{ŭ;OOXS՚򊍹Jbg"ω˔gZ^lYٵ *fesD5Q,cݳT/,D@z1~s(%A)Vn`zjm|Z%gmlkj27:%1IM`$X;%wHdqBV"v`vXvX#_i_eJ=oۋk&LoܣJ?;ӢYW#:"X.T' S2@Ƕ_5dc&a Q^l*{Hbj^jQ:L#uR U jO, 4pb#_/rCEaQ:.?v6WŊkslƜ)R"yW\M2W;-&X z< 2St*)c8uZ.M2鈾f\zqx I(Z8kJH*Q 8 SǮ)QIQZgbzV:omEZ0w_1bYE(4}!O`̠u;~[~⣈2-r~{Cщw(\{?L6sTΜi䵐sp|5.~8~|RCWSR P$+~5U#jhlry>cNÝ~{Or9#-VШ\@+Q&jJ]9vi'7 I{j$8zTY؁Pt¹ogu hnxofߝ(}zP B{4a!eKVX[ _+rV#騿hLOL=alzŜ ji5H 9 5d*ڍXk8H%鲪 )BV=]¯{.Z ~3Ld݂i0㔨]f3wO|V\Xjv :m:]u\ = htZr{2pe\(3sC'YѾzx-(D-hQ,E>NN5%wگNNhjK Ml6?kN@X*f8rؔ={FPUMnOG@[x*b }",A}[}Iu͛! VKŘ~ ~|c |/h!>"UKQ{WYPLePT%6U9M8K¶Ŵ/KojwE qiE<m>B[´Tv I3wnޟUmWp&X8n`c!>wΝ+^4;&Y aަݑGvFz{K6Bj^D} |Z6cNEZ6 x6[y޻ 3QyK82L}1Pgc!-[mXdS}?aaD|%}Kc@)a(&y?19SJP[NPsrECHԘF E_ v-꠬q.UNWc':;"D2Z58]CG\> ͇UÁ``"_QF|!8;HS&P@8_ ,H^,hmJfߢ,o%ڒ3 7 PւF4SG|om㣳س?otfM6o,5P|;/?S֨]+̹!tzDVkʉ-Fy}n^=uAL ;9jRYv7+~U6az͑Y=)BِOzF[|&ӟԾVjZcHJVg R}{/Cj~P792EV^QN  Dr2@tM~8o1:NSs\ǂk<Kh 0RkCc-WwLyx[3 J ~X V:K[ aiJM񃬒C:wp L_Ku: BV)&C?x\cW` 0d, 3GQ|oۻ!U´֮.X \9/y5z [bq۫v)&%(B-MVyCk 3!ѼxbkƇߦQ~v $hG-{"zgޜ7RvIc+Y+{,+ o-uCp(G_)OѤjTCXR:xF>|`PfXYck5דt|svXCEQzd08 ӫ^$h=ŶNB89|AUmtn],WV:nF?SXy|]wJ?V_`@MkoáQ3mb]t kF[emݺܦ@v ٹN%=QқiJ.ԐaZ72aBH9'\꬇}nI.ĝ>GScE&_X0Oene\kO!A!'0H=dX|C+gbk,=\ 5[6Q̲Ԗ1c n<*ygx71"l񖶓iV}Bznm^XR ݦf@X(M1>~N3?W3#e/)?,cDaHftC[RQIS^z;qP"Ae sshMCȹ59OxwaIE.@[;>VbZV$w&H)6?F0=5{R;)YtǰD$$^ꪁ\{L8'jKY\ Ou\RH}otsn`jyG2'_ 8J[Y%BNp8e7eAqݚ%sT ;nA1/Ir4.FtK*ˊrNBAN]E#-WxP)FEr{5v*΢RWtWTϷ™P׾7't_YFѴlHU:_΂tmDTݫZ]#²KBb2 4SoX>uTxF1 c44e.:%7dX[FYp (!WN>zN `8A^&XDw<#ԕ^@R]փnS(Krjx䝹`vO:qYmwO;YT|%94yFZ kN@j }la,܊H]elTds_j2%hԟ.];>0 ?-Ê0qmWE>z!ݾE[BH' Ru;d`pAIj@:(:YKwHb3,]+d`Ҙ.RjW뉵[&s|^{Vu_YԲjK}PT}5 \%o7O\2@f.s Aq?U@ )ltx1[tPGKCm6ڋ,x2E&3+80Ի=c=6ILc o5xS[ 4%翄jx %~yIad*ʁ!7z AVrsN,^rf;Toq~GWQHml9GH|seq(T! Arj 6q &69ɮJ Ԛm,< vGS|@\@%9L:m{D7j(Y2?ǖXԆȹTls{>!*ڶ+ cWeD!X_eU0_  /8YϴP{\QtyE?0HPYBԧws4@HbG&hpi:c*j>9/۬K9s|~F/xvo:klα,iJ#Ae8Y\3򃿜L>KXȏ]o*TxDj D=A>,q@g#spOmz^Uɀ;DTεt7Udq@Sf3:qo@?=Y27cDhPUNݢzYg ȼ\QV-?ܠ\m-Pz.>}`؃tCx0\?^pNQdݦ[yGLg=} 9\!y="}&2 ,{@Hq'<5 1 w'Iɓ_n].Q vJ:üTqbuQcPa>ڹIؚڕEprQa[*Zz-]G~i_1,C["\Ujv",xΐzY.sNz?J"ݦ7TE31{>p:I̥# 8q{4kj'0CQlr4+3QG\ٶMZ{ч^zL .w̵J؏@h NAЋoWmg=2e\"F9 `;SHe/{?tz6w͠4~?G2ߴ R o Dx`cе<ń5F2D` f N)Ӗ1`߆-Lټ=y? }w~^ֶz5~Yk]az ad_W|iWexiZz9 ZWI:^"}sMdvDƂh1K_K{Ҋ&SaJӂ.,ؿ7^uJ{G17FDܼ"p -|g ۯ3W;iƺ|5!lcCn<B7YZ~D~]9o>K AO2>sNcFX6)'2! %>H F4f^>vGxu.xA9~$y` T5sMuox RpL]u7J}s;i&4k쀐opYX;,)GΛDA2ԀOF+jWo=q ߬1%lo8Ň+d&Ĥlw鹋_prYcpD3aw??4@HDy 6{ >F=o!;*~N2p@zW&pJSy^iHVCDrqQT{[)7srCoVHrF0nOrϳs n5wOQu1gAI3!T w]dz!yp؛E,{rSټ_pbęvߊ'P\dZY 28%^KwD])8J݀ꧬLe,GM\!K="j;6V\Q:cE b !)4Dpę?tm>v.e_} QJZToƃ6Kf/Udx۪'`B=LO߿9TSŞ~PJ[~>1˓٭EEZ)G;_P6oA|qp6܆  >fe񥥭)c%\3kcSDMK޺HRb7a>dw`jtdxHgXCd#fGP]Bƹeڪ- }bt%Apۿדsnǹl?EG`Z"r?zLeh :?-|XyK|qIBb#MM!( I6TzyYH0MzQ s'rK.0\5Ț]~P_zs@q67oW'ޣC@v }Pvv̳%_>?ۉ2fW|d%q`Ƹ [RϾVԐ|Z RrI-Rhڊ=s)v,*- ~9~\Bb#dYh]0^΍@NoٴW|)QVH1D8%]>RILy=`x3A"Oږ-t[LT qe\vNh6ɉ79]n9%9fIeXgec$⢣ٶްT.rx}kys&Y(zjZ(S-3K5h>^$gKF~8*jy?0c >98{~Rib֢)r Idjp%+j[qS VNF,{ *ĤI)]锞B{NxU 釮<%$KtW]8QޅD~XFY%:n ZũkTBBG_4䧜[$gʴ^q< >_e8C\Q3mk7FB+"Tտ$̝eR0mVI.yv)'s Ҡk Lk3ăsY$\&blUC1H"d2=òd}5W*PXΙF+^ gƷ?,Zqؔ2%rw\R 4|*|a #MAP"lxguhy!بse>*$RA1}i0ᘮojߴƤxcTI|$+qO0)ۚFlԺg̰p}SCʐob1XٳiDWC3nmFe.GV{)R1;/jo)oĕo":_*;TjTPX~CaG L>V>Ef&AqIU}M ? O#eC%Mj Dtz+y {a~$m9?I6-&`́|iYJOk Hr 6Aq͇BEp~&C}6B luf|94=Tl:8: Dl-=a3JK&hfEŠ5=F}v|#sdmy/ww6Lwy@\z)6cލuj"f0pK VeibTQGF΁*gBb`DmNm5G8-zbHA ʋrۗyKȐi3c0nf}:\c8p. ]& Utȭ60Ai|Hb s1gjw鋆 NP>U0@N%zKz^_PDLsU{Ү:hƔ%{<0QII(^G B̤#M+Տ3nua,=[* ULն-%B B|G;,c.Ok M:C>]Іq}s޳?uV_xgAj _-d:E`R:i=66g68@tS;G6F9l'b_=6|2QH#ՃQrf!:sNۓVg6U0KD9<{,fQMC{.U }p=ھ8m E W +h6R;g-*⌣%+H$62,HJ $eY1TjrR ~^ód jGI φKh5hqs;2IHB0ip.gN #H:dVz]Ճ]1)j􂶽ʳA|/6N0XBZZTP&>~f?,ǎ7@cj} ˰it,|Ki=W\Y0hN?wfpǤnc'>a$s5y Ƒ8!>GڀRt Yr$ǺWNYQ[lkI )`][BI M<8S p~H`ΞҪy9.\,UIHsOe!*E979qHɯ=tmهCs$~[եIB- K:,AFa[tIbpQx @ٗ$D? 7f"?.Nr{_Jfݦ-({jĤT_uWlGfa){0ﴁ~xdk{Ǝ/ Џ^ׇ#CkM BEbi_3xWK~gcf>+ a'H5͕#%_ı澌LlBAKݱWq$?N)WÛQW08A!UqIEqH)}(L7A h.W#+g% '=Ɯ~b)vO _lX{K^Yvgf>Gךh\>58J̺mA/ In,6H[k%) ja~YN8eQJ,1{{[|bغQ9~hM{oqPc{LA:bVC1 ̵x?} QGe#íPٷ Z֕>~E&f@ Z9ciLazeSiI({,feWCXazm#XBtn${d z1mS gGנ R}!oCguC*?}L`h9Z);k]09.tOdɠȱv8nOܡVfug) ;'z;ЕAvScɂ\5H%sOI{s˪bA%+JZu33j%SMT‹#K[v `r&|I/BmvfggXnBMkϠeW x^ ?1ϲCF!uJWIy_^{5Iя5 @׊ ݘz uĠg!^f4* ` 6Y~H6~+C)ZmJtuX)7NMz*E]ΒƮv!7xek0(H62 GO_؛e[kq,)?yF[}HYUF> Ƒ@0;RO.c^t x $K-8D*VnG#+t-Y-9rN? ${i/E n8m TV1l.;^ 4J^(xg XK0#h6Ӕ`?]|ɀNFnx(}":h]I]q4=@) UxH 8?IFZ3}dKq _ʾzi'܆5`Cڀ9S<>Y忥'0i7Ztt֌)P&b% MdeG3N>ә>}Fc0e&+A@ ΉS !KfОnW tDg?3>8Hj{Mpp 3ۉ ǂRWqz"$ ˒-Bd6[݉쿱QgVx}d"П[b we4 <"#|9@Zpꪳqtu'>?V.pE"(Jr@C4uuv!ȡYlz&߅Nɜ'o"FPB 7P?[64 j[.3ɭ?=Muv7Q5XYba̓e^wތٰ}oPѨ,Ϩ$VXVJCgw4t!s2ieSNNtM\1CJaho34v:d@FDl CKS"LQYK7-3c$;ϟ'჎G72pi*M7ݘ6+O[&"|);8p/uzk!1 /ѡMWS\2uDžf1LKT^r=WgA[<^=i2]2fCˮ<5[Y7-:!Mد[/aiTVmU ]r93%Rc"gdxJEwn('ؕ} w6j>9 1_@ʣmIz_0lJi4+ä":Kc?=#G[%=MDWm~w[z:gT Y_k2n ^*ޗRHj%HoAմ^#~ Tl'횉Ru'-fwf%}~ uo _Cv$ F樂JrN\߅b)z]n0V7ܢGa™}d+yUHb $[ #Ŝ[_cwh 5K~U;CE`xI?{qPq[O@6~U ɞoaN6/(#/,F=+L̹fȾN ' 7Q;uX&nZ֭BO>"ɑc.]YgJA&<>P:eC 3jJxW,-1 Թ2GK QZ$(LQfu00띞,0h(^ݜ@tV#7nl23![ExW8, .*ɻ}B3\Jw= Cc"hWOPtJ~4ȷ-6iT+Vj'=LUT\s1Fŷ'8Wї\|QvBQz\ \ ;,2?J&ؽH8c|wʩ߳:ܷ7dLsY8BiLC =ў-J#QZ1ɧW/֯.x?O`h?Ӥ^(e ψPu=M9p)#Cb_c?܉݇i2etrx{j /C傭jK$U ͡[|+Qr3bħ9R9qIs~g[P/tlEBw@ 0 5p²RߵiDW>Yc5!;g/>uw+T5$f#l3B vH7 t3E˵F="08>5X(4% Oֶ8k?0}Y3&-Vk-c|:hYTBe"3Fß.!zzቚϰ +M[$$``+iD^c( <{Qª^E"o(@!i&0AxpW.sTT7#t36vc҅20nNyKar?:i,ks}T._K(Az ;IDm|;~%bhx ѵZAd~kȚE-S?CYJN}'4\|cAfc}ܳxV] ?[>eӉ'\CXDs&ycYe$f Id&r[<+FE.oV_3G+G[KH Ѡ;Gu.4HFEN;3f mFԤ<Ơl? r~ӝ (i+ \c3d}7ƕݝ Npw4< ŒL_"`W\`ߟgS cJzt.K܍eІXF*|V{ m&4*Zţ T1ݜY*#OjXߤ/m`i4!)T aFyفuhͬ< XYbL:䭌K+96vԚ_X' BLSG@֢CNj'%^`Rݴ~V踿u2ܬ|0d-%UiyMcr\ڸT5#*CfAIl&S;VRV{AH [ mutV&Õ"@֫ٲ_ 3ZHFb*񐻠4klw[#A Ctgq>:&Х͹]^2w##וX`z8Yksl=pJI=,p`څ 13o}.MsR@$&{9ET(OvAu DV§BnB@EJSm{)TD_eK,_p>CزCj9]u=X5ue1u-PPkŚ~hz Zh5r[/S@b8MhkXiUM( F&bc>#%C&b=0#NBِw]6rl#;kĈ&*G>0 YZAER/data/USMoney.rda0000644000176200001440000000311212534531320013614 0ustar liggesusers]W LSgEgH$3nF 漋:mP{b /EE 4EfsY[F]lfq{}&w5iy!ho8\ SHI_T*h*mʧE(~oZLr!#^}PC2C®d9J.A_JW>%]kua<<r8L+\xG?R +G(Y gs_r*(U="yQf_jmW՛'a_}5̣&o5 oE22N:yU"V'Wlջ`W~mk';n*ם~b_!$7Z&5/'7ooLB7]bp8VúvBrg':۩: }+a=oa}`} 5R7W!XTz=&iXUE-L!Ǥv!gkObBUm(f@=mm֤4I#VhɮB UP|M*M E.߳tLҩj ASaƹ+b\f_{Q$܂ 9~]go)R_E㻨g xXWG㸃Ys<:~.v#XPǻ1UGGx:{O=a<=uD1]\EIۀ|? )͈["[~~,~Ebދ~- }wAދCFNc%[/Nx4p2a2 gy ճ'G^]ޫQ_ r~{p&,Ⱥ8ߺGQ,Ag:XG]5UW8~z~z7D#=y|)S&R~rm~ދSC!v~1p_Z>cx[/j0q"8z!Ʀ3W_LzAl%v"/}[dc<4Gbji/f:L44icf>XEӟo NYϛqc~#5s&-ڭV+Tv*v*570۹sk,C?9<_GjǤsZ?h*|(v> tGރ#(;OnC<#sd^䙼+k= xldHG\'}vz{WN|,CnwT~gk sx}C82@7kܬīBc?U q.k.>GqM215HW)νyzj|@x5ch\t1QyW I;?rlk_q_|Whq[sC<󸗺mj?Z?{_~hDtZ#׆ӟgx?J_kX{B{Y\gvWJ]TQn'. g6 7Po~Ph=} 簫CmG^`zP7 2{'Rw8<'KVr^Z#<?,o^ ?[v5^~ogq:(\6Gqvx3~*S3z噬cF<q(ϯFLwWk_}^#nZ@^?g5(>FKѡpm qίgϭJ/(ջGgEB3ԟ,ƒ'uԧ]w?4_qwP/V+^B !.yb|s,Gd>s] ҸUY ГEYL(؛^p:0_seEW/9漆0Üy2o>g>.<{NȗY~xpM"Tл]LSt,^""+9?Q1rJv;5.c 4~2ZJ7:+/Z 1̈́ؽLsr/F'Vr%T5궮`zslmDw-^FO<Z?~$|X?\g< +s ~= K5Nq, "fmR]wkSu/\NktG[g6C:xOP;w+ޙM6"%C }L{܉?&><wc_7-Gk2T:;ѷ8ѤtF8?3#vJ~;-7]}|R}] ?V0^bc3Bz'\ŽqN gƒè3y 1{ Iby|xUSu&+r<$|K+s8R{^r wGjKr{QHz9?fSҮ}B?W|'T pztckTv O)s9u%S:S v:\QW <>e<=}_z KtG8KzpIR~.S~^S?\\ŤΖaӇm=$zN*#:( UKOA_꼆~$>ƽ>.;ďݥu{Fq'3I7Fpefsdf'sL9xd6׏%{ Nֆ~ F4Y^Cz^?Eӏl|83.\7M'^΢ /'7o3?FtIsG0_v":ɮ6.?{Pv.A;#7Uxs.@\odpgsr$oNfbGuV'ys *ͭ:Uʫ1%KiOnGZ4Co5==(AER/data/MotorCycles.rda0000644000176200001440000000033112534531320014520 0ustar liggesusers]ϽjA(yW #CԻCP5)J h |ogf?uY"bb5 HV{Q/(n31,(5t@ %GacEbW13?oL0}RZmM[T?k.#O~YoF*IdpXAER/data/BondYield.rda0000644000176200001440000000055112534531320014132 0ustar liggesusers r0b```b`@& `bNvKLIa`` 8(zNA`u.B`Vo>@A׭JUJA 1_;(YJPZAqP6FAHY"H8 5 T<no *= AAjB?] P)(%g@ଃ:aCC/^D- ,/ u,T\j4]RPR0qz8  0wɃ|WA0(@+B1UK (K@x* X(ZXs $A?EvAER/data/StrikeDuration.rda0000644000176200001440000000103512534531320015226 0ustar liggesusers͔kAƧi@`"ش~4kMx(Zbm%M&"XkzQ=Hۣͳx,TPdy0[Q.w ٰ̕sBG8{{&x6櫥sI<>Ѿ $x<^oF鍄Y.XF$)WA]O8: sIX*:>=}K<8Ew:Iz/!yGwk+˗.ן<^|݇,F[W͏ dAomɕkoyIu-S_ݵvu1 ?;G(L,vamۦ{ux mP6h mBpSL.dRL0yLA&:$IC!tH:$ECѡPt(:ECӡth:4MCӡ0t: Ca0t:<:<:{k AER/data/CollegeDistance.rda0000644000176200001440000005607012534531320015315 0ustar liggesusers7zXZi"6!X[])TW"nRʟX\qjnj-& rcoIPo2:TL!jzي_B.w@ ;'OVVL׌;{y_`Eb*-= p8 ֎ӽYq:XyRfZ=}:~^i,kuQJg]| 8o*s4db*͔YYqX;צ-"u-nYElx+Nv} QNWc9 tE,Y{9%;q*  %] w?#t5 fסYv U?]OUaZHz:X7E w_~~$0P`Ep ͝\*%MBVIO¶m99gcA~nZy`pn  /05WZ;cTkXoWZ/n> 3uĐͯ^`HV@w;rdΦ\ MÛ:`֛0>^d(J! wٻ w 9 B|cx7> 4tYq7(@]baf7l3ܻlXX2};gwWc2_|-ԯ y2Tlx-ټG.T# %eLѕnmrT=tI/C*Fn_2 jl7l9w8Uj .iK WFJɶ :0KHA:fX6@gObhGcI~sf< +zȢaI_9yE]z3˿i0?I`llGRP1K'y2^۩]_  ]MMQUG*_.l@vtߜ8Kã+lj; g;K",$ z줷p _UDIط 8P\wiSP=_25݉J NMB'sh7;G%Ta9EҬNwVXWl͝&N;- {i#yŅ|Tqڸ\f,eMs_ ^FA $TQu.vsL\sMĸf36l-~U¦b1,<Ӷ1O9w햀"dOo~Ü'eh5^‚ܕUw~"Vҡ6(Hb_x!V\gdS:˾~Cē.V26)ұ%W;ZZԇAo?q ] O2Sbvтhӵ[:/,m7p p85R*'~OpG.Щr Ź C T.ҋ5w㶐`n9Vny &!DɿʌV~~Ƚ%`/)W\ ÏFI"ouhWr-#[ ˀU `kHlca'!hUӏ'N.>K".. tHֆ畱%=z/ Y#wd;j贕T׾7Meksk2Ail4i~C)F3 %{$)XH4ETD`D}}0=cgv*\΍bZ;D3w4|WrCo]v'GeYo4ukmsG÷_чaւVRۣa݉/MVb].yP"$|qKGWMLD695yh1~b/ Wq ϋQ 5#PUCr5mxe@'W,!̊Xn_]ՂYXnz'tb=Ao.wE%ʫX[YM¯|.31a"`"ߩĶk@b4]ͣ3J:+OsQjSW?utf'q[f+yjfmsǠMlf+Y *0? s>wduЃ+aW$K|:豨'N@+N[ZM.g+$e4@+s".a.A5A`]\]zz1Q{m#WC)F cB;$o"b|oޒ+U^zZ_ːAnPfJn3#tbsޏ;3%ס'kID&C3Rfz4.iΦ]IbLi͆ yJVv#]~`)^}_f:;x'Dx٨;%2yܝ_ <b@ntdWƁ)YjMdby8-;Vm.;VNjsZ]MT(0|)H#'4d Mr!JtZ.v&DgF>" ѝN lwHtȍu!#mE y*eQ$ݶ-8uHtW'lϢ[zHA i~aHd  mGK]$-wIEӉ疉v.|eн= 7~& 3g8hH}M iD?Է!M8ۯB:&%ɤS 2R/PhnL ,>Ps@d{ ~Te,:bj2J]%M{;̎B&qdK=% ]8p;c4\ ҉m56=cU Jmieu(&GN 1=+wy?HǥW/P*:ruZޟ8:u_*WV`+r`?IsK.U 41 RW\ ` v##r?3ݖ".XW\F ֻcciDo7A異ư@ TaXk/1حLQmqLkd"#.|ΣHbOތ3d0p:#l,4U)UWjjչSqzF4U-_52JGυn,-)Κ,C*V3-=%[1*S]b"_0nKEh/j3Lzy ny "'X LKR:pwuP:A'|sMlY E {jC&*fnG)o;jNod9mGG9$m8$짯,ܒ]b`ENte,E'!PuwlsL׭1/I@"ޞn M-?_nىQŰ%e_G IpگD֍ܿMݷRӭ ,1%B/b}=Klܱq.sy=LǴSJk($*Bq,4l?ymI7cEl דRݵ6tNGh+3D,) vi-GܡcA!F2H$b͒XtAϻ:>_TN\ )m'lɽo;UiMnco>aGE AJl^_#P~|_j\xb#nВ-B|x{.vƋVŕP3q:L>k 's9 χ/ܻ  baXiY巼t%(du/ý/s0 D1 FlF5P7[벝@[NoMpbTmT=*9%ΑH:ޛ~ʛMC'xIp(3]c->x]lu?_ sf? c[jTo;ƃ|2$T v7z*j2|g#gID9ď)靍Tt&~_3d?9@z4TXbDy0Sae/g Ӕr3o]Ś "ofjux0X(C.jƅ۪cXJonqc0C=:pi6u*M^%cw ,iqxcn觟O0Ķ:2̐UIU@B rGJm[b$jhP(CU_ji@FxNS`p!jx7fs&D/oW,Cy<?dHR̝8K~-܄սUS_hQVfv/50U)-Ub3Hq`c>jio{k_h4OO;.0]O`,MXѧn+U&]Mo:<՜DZHɀlwT"}e'$ l"i`1-U-w>{S6p3C>v O.dqR wB?pp67-Vg˜Ip;llyo*PuȽ`g${3mk_Ly; ʿb$SBIyZ;yufQuzZ\*Jq<Ln8DVgp4͈VT!2Pb\@.,*iTyg4s=mObf#ARU)oSdM۰aalݸQ؉Q$s71 L\J4D6DfuXi}^U=$Il|!Rai<[h+ۥ?$r t挌qj0iH|Lc 穻&&=gL0~`Qm̋Tk6< Ԧ_e-Ε3ʞGFA-mi \Q/bu E8:~Xi)}9gr eP c-R?vX$Vx =&p[=JDba}> ڮDm<@7;g`fN(.ݑm;SV?qt(:wF@hIonƅ4]!>/!dִ#R|JShtAlXރlJf nVK lAW]MVzAt`ԋBdL9يC4;2XHKHZ+dر5HfF!doJxj,[w+o%ԕnmi NuҀF6Y5:f S5T3ZnY/F^A1IDf_9t *xr3$ ́6r@yP΢l?g6˵5}UFL jl'}9ig*̗moҼZfT3zeCw+P׀:[%I*n˕0d3Lf8Rrb<X|b #nr]Dɧ0[7M"Wt(G[s8Ɛ-i$(d[{FQO"l>M@TF y{𡋎>:w`n4lDz::+Ɠ] Ҵ:~'q]%b&b"1XޭZׅ1& pm|>&qKЀɎZu+0+8xǁ׫()l%P25Gppm^reB02ܬ}ԣKADND"%a,`5">>)hMYx#\ͣHByPŮ1> =b_j4ߺRlaN՝()AE e^'6sp,OB˩-*9bd-M-bnG}0QBzX%e\0TK^JY-tvf\;yy ]\3}S2X;6R{[7OXrq4$fߑgA}:abK f :]ۈLvejT4񉱥z@\mMMpw(mG }Y[hx*Ċ/ 5lK/S4w=ꔏ "2pH6b)/G8| 猧xSʗvӜKT_A{x`Ԅd`7sj"үYƹjum ;QmWuS0oDx~1ADBP[D@Ad^vU H/&"EEdGS3fٞ'X!<g]Alm͚qi` Zp@ؚ*t!)M{xߟ/!c;NyP:Ac'Hnݛsqd7̹ HY5'q5<3MgE6z}N#pQ.>uNbS&`1ԣj瘣QW+/5!Fh:'\yDbؼel᳜Kz9.CĬ8|` \/}<F 95Qݾ| I"{Ώܙxe=SF/$--{jn>ZT/C1O%ܑ8S@Ώk>aqԄB25ՁeX*fΕ]& Q a5P>j?W cmiżE7pE ursmq7ķ# |hD` iᕻarkM_ P$;ٮve^вagJT< ƧP\a\)|>W<}<&y#I#@2${fkW,>Y2⚈V[5l벲VU`%QucE#aI,8c;Ue(y GْRwU)^]E߈ˬfkX3HGW'"^êZsa|D E vb)I;kiުZSLdϖ}TOs +'P#κgf.g;Lu R?cn?%= λ\sDJSk"X YYPZ[lmVQN'Wy]VLNV[)˗B..-02xgs0c0'ZRB$rgD1LZd'<_7)i^٥}e"Š oj.OmM^4\+MI~GH3.%+8a+v6 @f pD!~F7@`aD2@a@2-9 ךߖψhv|sXIjH?jn+AQes7b.ĂAsnSozSYm`.LĒ2u@a^k ,V5ys*v_5֧]>s)*!lŹ[j}qp:KDoRbXƞ) {sSgۙɱmcwh I/ $) Fq=% ppy)z\s<7S6SC-O~Oھ^1y-| HV>댝^n\mZO4W\avB 8TyؔeC-\@SA:擬G0IVc) jB1*y86u>w=)PO.0tƵRbr8$7 C*8X*qa /nž[%*=B4=v69A՛D31ߜ "(J#GG9Ķ.؆c&2#~^o靝EAwu@{hT+c3*I&hX9!,HM$&_w6~0^+:8;#ަu1;kT,WBl9yb_i}o^us@ӁGgtsC@< ?s\3:e$tYnUA;CE^=0d*kr^|EFjB= *j0he9Ed$b3N aY$ȭ-F_&R{8ަ޶hB1hB(366-Uf[$ϿP ͧx)R]mGco}@ κH69Y=+dA.M3wkWooRIݔ0x/vGtf,Y-82Ct+Lt 37"־1Ȏ9co'dR0R?Dr| &aa0ܧJ5u9Fk G*CHL$BJ`iF{l?v5mb5ٝm$~ LqxZ߱|pޯ_ snP[z yN-j[HN8 _ Au'8>iNVʢ4@usp XSTERͥNS.,^RZciӶfȧX "yab- -6I)-B 3Qۃ,,ρ7,PrqE`&K"*,_cNbkaas :o &#t  ZWIEɯG^m#TT$vӓq0 d/4Pc2Ŷv/,x8L; x2y|\RqyAP [̠ gmJ$J"XNého>t\CRE700a#tI3& kK\C7rgq~Կga׭B=CԆ/ ''{hv,u%딿}E~02Ϯ#*TcIpuA,9/2vNbV,, EBq~ &wiru˫tgN &X=bpSr@@y=rRT6qt~(I?VBZAdC_C_ә@J 9iA ʉC;biǏVS KrvVqVh!ilk>jd{sگwi\ts3C#lR a^ݭ{zIXFGM :seAೈћhX1 eYI dCt8~lYY ˮt}T!*4 ,|")7lfМ#пI ֦ia_cf- 8]n%pրዮ{}󬨪#/ p4oJ .q2$54t[| J2RdBvH8( 6n3-@'}gN:VۉHUʌaI 9 * qv ]DpYM^4ь >\obs[ 63VרOQX૥ o)4HnTӏP"tr"r .7ï _?Zg%f k]:iQBb0'|Z !-J:H(wYރ1gsX2$Fp[OfFAkKdcʞ4ϸ { c9ɼd!J׈X;h0ihG ;#jRg3D x'LhWc38%ϖ]b87۟8#λ|gMJ}}w{0$&*Ίe㼤{Q)U0cd>r72_z kѲ^sXEhp>Z-TԚUH|z tF}vR; 4_f MoiU AiCTLyE{R,\OJ`4`4ؗzԣ3 JG+5ƫ2zǢ2&B:_MOe(deSp4+JE9 YpTD@3 w5N̅c/ԇ^%E( k:ڑybæ8#)uٌkj9 T#K)IƆɍQEQj:Za'0YOQxHpѿ+qłW+\2$G20|h fٿ} Me |!;=Ve`qW,bCb4N8eSã3h+. AHCʦFȨVvO䡩kHb_.tߑ c(Z_ BVȝiI=k%{ӭ%laf#«\]cc熡*!Kc^+I^x ]BeUusyyky7M32BwHgƤ"uJßg[~1mVdkӮʠXux;Bre?3,G5edZyFSAсɘgun_ΒA68+/5aGy&ϝӚl3?x"q& f۶ ]p g " _|ӌ\KK5 g %$8fka ,?THr+By9D"=^_z!HEBtRKKclx MLYf]9ל9DJOFlO̲$q~Njzd0mvz`2XB.dt!)YEQa~!ǰNx]ؠeO&^UT* /|~)G)GF6HӤkVCQW#&hy#*U0ɺzuݜ| 9k?H`:yL rN U(HcV}bX ~13\E *CBkG̈́AWb"3:S~wOc0ђ zx{^ce4S>Bffeε"!GQ(AD#OkƩz1rFRK=eA Ba5.gRUnش~Ti[8 P,E8B%(SrVn0σ Q/|zeM =lP>Zx"] xi#S B >&x/I:6_ʫ[F8++..Pyqw1lzZa^џXͩ4mz"N&N;R3J?[nv!%)%ϯ zSןc4)kD>''OK֢tg{d-,[FccOdrͦ_T`l~v{iX drU`ԶY[y<ը_ &Xல#sHQ mY21)`ޯ܅1eGlxh 2ɳ.6ѻLNEkH0p ;Y+dkݘ:X\\R37.Y[iYsJ2y%k[#k(3?vCK[w}O UOk[S>E1۷s1g!= ؔt%[\4;&V b(gDT{>>\ "YDO~C* xT̵@:xhT-Xd "Ԫufm dHZ Ḓ.kKtjbxAeeW'R񏱹f#i^h5ӷEijp3E.VMj|, f ?i.~3sL@t!QrP IY G L6u\P˅%f}Ca9ߌM'`ѢI75W,_zT9҆g*9j{v\{[čy\t *`ys=N$|ᗚ;~`XX%B^cӌlpzB/#7P,qQft> w"oUtnH{c]9ߥ5MQ5 Ua|qּ_\%|js(cK%9a8材:< k0M}=oQj`xnQ<{n[ӈ(ӭ *24DU F=#׺"S2<'\@9' b qqz/U<ɕu(q*t+S<[Qg'cA@$o9Y'GdM%YcTamﰈe Z7 Fc4bde<O Q+`Ռ H| T2_mW*nA !2\F)1i~h7Qf20- `ifes['G0C`3yϺAl}-C-բs4-2 pzo ߱6Fj!ng9*DDBɕY;W2*6vJC\s#GA[Y\WCdJ# 5)Z0ю^j_QݫNk?"F_+BKMDH]7\ZAĺ<qm,> 뉜\7RO8٬jdH+}ɐM[ƙV2<ßDnc?#F?M-KkaQ yh1~=ӫB~0lqUHE{\Ix0YHR)j7~ D[S7盩a\kc#&Mu* G ĖTuSeɠz('HOHLgB(]k.ZT7z J+;V!Cf[%W9*g8\ iwEh\y {I̴D|;3 q1+xWT ~%4^G#qQT ;n75a5qpp!ffP)'ϔi> ~g6|Ֆ[ʲ-1x-L^q^KAxErORPnK;B;=dDp@4j5A^K[ r)QpCR\W= E;bsFTFI]N܆9U]4 VS.lD8+/Gv;7^>՘`f{A.RF&A [sz$ G];27ϙ7 !199buZ4eAV 6 ET"O]fL/uV4%E$_6=;FX(mسEG|o xbJB,)I3?2;051 C#Qm<(dYiR)]z~)uWj/*.f=!fn#"'2`2<@,T!r\? {^_{;fUݜaIT S DituLG ɐEW/FNg$=diE5wP/ "(!I`x lOJ=.ʫv$Ma7}ndwӭ-wɥR6lf_/ ˄Jk{I$vgi@miȃL>dl](++a15!uBȠ U@Gf Q⽄KYZ+oO69Hpg\ BPן}!ߍ]͕Y];b2#·WUIk `X(nJx`Ai䊟B9,}Qw;/xJX@y_ഒ8E:wg:Qܦ`2溽3|zȍjf-4Û́nҰu#Ndv@GRIA!l6 4*id< c<F!&CTy<91z_CIf3M2bdDDDБ:D"(" qwܖ@6Tۡt5x#@*bc8 >/ 4]Qr۔c޸bfbׄu?HdҖg*ZOa"U>=߯gT\fPv!y@MZFaKl-l=.jH<<-VFqZso'M_pmjpDg9uU\a'i.h|BJB LbB䜂׾ܹ.S=PSٞMRRJ48"rbsHb_l{6qoEv-e}sH+\D2ZhAeHᓰb> &$sMH* ks:rOQC[ҲT6; s_TB<[bHO93Z!uF&6P*+ݩp.ʭ]s_4xI Gѹ@:j l@UOB!:)CPd5+J[w8]PϺjBsS^-mp LL/PUYM ЅVJ# e,HJn] ^/ʄFKxwڦ:5:WpO 2P($|*je{8~ v_ժ4=%5du;ul5K}_ؑP"a[Sb/-JlR}r? 9tYlBF39ؗE^ף6ӏ2HQwcY2[/xQ 2_B]YXܼ_g"P1 \dG &B(5;C9^vUYAf㼂3.bʣ%[*<22YQ7兾^CnJˊ-8L*UyF'꽁BY3snS˹h8-yS6h؂~{xД MnYT ?upEW?A S! .n 6_5~ёaXRR@.LT"xt Q~2 ?|Zq\J./GSa~~1j(T؅@fv$$4tCCdHf1x^4;F;Xw}hAQBћ3q\-Z1x$ĉ4RV8dxcTY↼﷠J͎o,$IX6X]UM=E@* S;|&h <Cejk0߁=rwu:`Ưx迢nS lJj" 1ΜF:P"e u/. ?ez^B!D3߀yj0G/$V pI[PkVRd29|W`2WxvJduS4z F? MRRHp|9ٿR[nOM_[^V CbfwB5Ф \^v])7Z5@_~#lbMUZQW+rN"~=%mb/3fQ4BZ.P{\~v'B|_eFީG@uz2njCȴ+>?m1؆LPXGqpT+%V$RE_Dva9/zޏ=Q1D +/AZEĤ~pƃ2CyRO w9sGd ՛$&ƫ?W-4ffm$8 ?{ɢVRu ʤK 0JYD¦t|%ҤKx7hEDqʤ 62np|pQKICE^zY}HGPm,t0d8j]ORķ5yNfY_+5v*Ov@LFSuQ(؃ &ՖH ({!0 /b~q@l_#b߁kB-WN| K/xЫtchS: 1l/4>wx/O[N8^r^0 ' cc~Ɩ[rM58e]Q6M#}HE$⮿Pk wZ] ~}v^7~OoK3v'ƢZ6n]T K3g=\k(}IE/lL^eR)h;/˦lmآ2H&+#ΰ/]>ic4Tt񈷿hڳ? n~DD䡳9:j1=" o`V]5e'EOYn닆Wi/Wuj+4BFR_(2,mͶQ}K$3fsHo<&%VٳNWx0<,.֘nJuNbOI j$A: / DqP$ǔL1P}q''2ĢȬ1,Sqrogrl^! 吔ؠi0cFczOe2b^; c{-vھ*r=eOb@CSlέzInV>;%]>M D hib]vŀ: z5JvEWp%Be|l90 YZAER/data/DutchSales.rda0000644000176200001440000000114212534531320014315 0ustar liggesusers][OQVlV VEK ޫL"V)_5#{$ۙg9 /o& b^|ƥ<ᔐXnw^yq uPKZhI4׳3Æ;J=hu01!駌6̍f`C}*eMzR8~x'͹zSgw{ABwwS.Ϛu Пd^ˬ8_´0\j9r:yz5KΌsׄ-9fUsES@xȜ݅ǦL(/#t)}[B}e(Y|%'VA/⭀ozz T9D_zuJP&K{r2k_6mqf#W6Wf_eglSc)>0u@vm w5Mom o&g*{{xC-yMh}wQU=oO[ oN}sEOuWE |Ը?b5zNSgqo_Ad#@ 2ͶGЇSZRg,[CzQoY OEqӢ np9VO7xC}2xL d¥k|P-k% Cl@/xO P7%p2{k?7{#uN`_\W*y.J8̥L]8˨!5qQ5|Ridq3QAq `"ۭ5 jyC٫,gg \pV/{ݳ\̇z*{$^0csH/lVktM<V)֭VpF$Эܹ bʲ/(DcΪCYT7k2fP=*M쪓kNQ _nQT2!4CT]|Z(/o[]%-" 7g~I 3H-ʠA!Jϙ8`T~kX"O950B٭>9=~\*oY熔RPK&# ”ܤiVٮ\sՓH. V̊6 }-|-mJ m0Y==e4CV1n+!u+CYʝl hQ l:q~9pf$&łZ8'C s4+ISmA@gs=b%]Cڒ2/jC!0Kx?ِTleϨۘZP^O4m'ENNAoNx"SM.?aMt4pEap8=*uoH{g&! 2Kix3Ȗ}'Y?>C@ ҝ_&9K0S^_-8^"$ @ R=;u]p zѐ)~Ǟckb: jה*6 'ntvp ]^pTچb}CZJ"t(Pp Vk\e+" i7XtPq[Gߤ^'驵nclVPǽ4Ѿ o~ZK-ˣOuK_!6^xD7m Ț$P.΅>Gl ؍4T f&I]Z8V 8O%G0 S&\2\ϐ}"ʹvnh򕤣uѧJ.n/'}-:ƒǻ D{8E4H6ʡJ5mBrΌeҏzPR;wëc\f d 4Tq2Jz_e=B _)b$%Kխpͷ1q˽vUf#x{³+13A73zd,̝1 )%qu  F,\~UJR=Ld4 &V\< K GqZI/vY1LN5zaQP a%ƹ@hy.*N:3Ύ,>+Ce>X} [7c ]e1 @*ab1[z8Ai޹͉)`#p"U׌o$Vj) "rdԄzG=vl9)oj(sI `B \14T<)bJ^Dz16-p+T{>cEOQ@zaXT:RȼF`J:"h 1%JK [JФlVi)om6exM dtx^FP#Yr<{V@kK"kVt%>uN>TbBLοUjs9PRU0QIw"H% O TQDW~ e+ZK)E5c;);|غktA=R;XKG6)(0(f(IEk+n.L1//p8NO8S^oހFA0־|n}Ĕ?^権#@@LJj}:) EW>bқ c  %j {Sua+-T%~5b[)St] /.8q*^^@ Q5WВDRG˲A;J(" 7jѦ&x%.JC65%}oД|\ΛG ThE_>5VC|[,ZCDolEݴEϭ(Z7qdm}Ij+QR X7IB{.Frc61_@1I )m˫k;-?SjDJ/iN&Vk4+MǮyȑi%tSfټhT-ш␵ gȝ7\YLT;W1Řk?>%60܋bT{0^YfԤymK2%+4m:bjJטHS<;gyje2 +ݐA'gvz/hTzUcWѸW!/H,Ss{_6P#';c5jhM=z#c5ov:M=W!X4I91Q1pCH B`>+s p՗O߽yCWWź` u |BKdn#<â5ƙD/\B]Ƕٽ C'Jx ?E7a,o>C>]ܽ,!3&INKn.deGW0%+G$ +N=Ҋ?NюԃT@a9̚EwyIϦaxk{cI ^< аdQlȈ/J`%)lHk0+#Oj^!haI}xg,@خ\B) E27n;j}-^{'u%>J&k\^<,>ԉ"J28j i%RHٷMGF( 6H_ǜavz꾼bV onUF/3s*Mm?CfY{n~U #EwzB6\\izdbf_(-kZYu$B(&W c/+BH+sW=!3OՇ[J]|C`xk Xo#o |tHbTE@fTZ<%ޏ2\.at*;C-;!ʘbdqnZ*Mc("x.:?@mׄǩrlzzQ(Ls UӤ^>C[StaH% o@< ʹ[:!ϓ 7UxGFu9,m% ]Z.EH*4zG%CmMKx.M'}ec8Qa؝۾SnԀ,mGG׻2+ gͥ.40p%!%->+;ʭ7%fkBnA$+]jEβvQy0s^D$j#'4,D7ag7;?"FMg `0z$S@|a IJk Q\Vʾa|wqdB(p6xb_7tqj]UAG HwR%7i;bWŪNs\y?IQ12}i=~@RFKF6Zo߅}AoD- 3qm8Gp k{[^}9cNݰ gRtˈ~mo|5yѹ2x]3s&[󚨎~ƯșQ SH$tT*xzD(R[:$*m sP-Bt`S&L٫lV º[xL.Ay)NLy}1Iqv>|"*w++ەW7D IRؾ~æ#t ó2e"<'Ha{§4Y~vHC >rޒ,nfQOCOȪ<+kD*ՄT3hϬP" ԍ -fy|};qOJKRh @l!,L@L-˛+%\1#ܠf`Zؾ6$zO ;a AL?t[oؤhcSd)Ɋ+twSo&ZPvZ ZSB6_}HD3%VSyun2YR(_?oJLN- @- \d]dX!x]}<voϕ|AJ9V@v p]EPg捚*)~qe->c/KLG3nknKO^V~CyFAxᩬ4 bt-1 aZOY>p-pa\Ǝ&[XL 6;r hk妿Vђ-E4|H63Kfy<%:@7X#=XŁc*g]l Y<82fKQ8iU=cCK`~l!4)W`p_Äɠx:* TA3'*p kL'Cs 2vAqco$zY2U^ KTǪO-],B+MYYFT`h_5슷2Ls>g |! T܎sB:!呠Up%xbq|$et0E2m uR ޝrpy*F=ۍ ƷVPxe"rqXLHiFeEjYCq??i7.)r®<02άw#cؕL";EUwͿ"S?(5= XƍE94Q,nkՆpl0T Bѿ<6%-$ώ>_gq^ٝx9B,?'\ cUE`IY+&13(/eTeTFه;pRANq(= _ M|W̹ ^eH'^XiTS.)pN]ܫNCI y2XH{|ޑT h[ ;*fk2' 76V:tFrj8jךvoT{fP5#Fwx$/cVcZQ0TlҦ^B1'$:ݘnf>.I)#!uk- v1Qt*d^Q=;.'͋lKc#-׉[ʯ7B'Z{hrboUYzѶ&n{JS 3(ܘ{}/*{M񚌬=.F9$ z؀uĶ#use_t=D!M8j> nCүkcZ@n(P+nu.UK616sz[r{ 8ow&Y.WސDLJ_\Z|XL'CGcfcj3SX`V)*UTyEs^%f2OF6>c~(qZ4 u5ۓom0U_P̐ɋP01&Ṳ .T*TAKs*fG6^eFܳ sU-`)W2pT aaVSp}BIi ĦY=c:J[rhs/8]QoKβN Hx \M +@#v˸ #XϭȡK$WȒm 5I(%ͥJvAJ!9̌|^솱 e*`4G+>H@>EJ B{f%$0 P=AaLk=!Op*@h[);ٽ>zYEl!¤ks'&Ļ({-DTZ.&N:ʊBCctgyQ$EI)AWX"&ߔk2U?Q-nccwř7U<)`y XjA G"nwRQ,;z)ӋԝI_F4Nt6sHr?İ%d2-ywޟ1N1/ bNaXTtWvfjO_r8{Z-b|>(?C#W b8ˆ7IVP&x6hM6-dDrS>,(~9{.V{1IxLM=tV [@[ӏo;+b8cVk=/r5|]ujh=|X][r#q%9,I+|榛3ȅB@Qix܉tin֓|sZ"lwuL/±;+0)\ZٯҊrz&F쀤-6ݫ<ʴQH"У>ߩ<*W6I*IiS~v5@P(4* }%FRSyaF3j Û^Gx\ p qE]f/<N] Ǒn7 k~d];vӱqWoR kжlk$v $Y'ۨZFriۤOm@ohRtFjFy"I9R7Jx^Nϵl G+(Ȝ*dHkDEdƛOeN*U }[W^)x]}-yS_124ryه  jQ~"|ގt]ZoZO~M- D!l@$="̰~g. ~:m;WNyQM Y:얢f͋\Z59sU3,MsvHEb.b-8frRIx>CZ>zUƛ{ox ܇Y,LX7n4%óy*aH,$ęVRZVPxؖ[phl" ǯl28$W:ces Ӿ:kr"NѧH5s/ ~G; c+ӕO0#}(uӻ! ˇ;^n{WGυ&yV+4ڷaOgpcBTCpH棴zJ@QniGCmf9(Tji#OҔ|@Rf*Z*T .BRK5o'9s_2Z=wݷ0׿p=9RutLp":$D/`T`V=;x "@z+|㔰*f=t'B7^oq(A2 oum g8$j^ ٤'#U>}|2{xkHgYF8R8Ӕ^;T/}F; s&TKj[3s(Zb|U]^|*UoI`O&b^}œؘ<n_NUH`A |4w 6pǢKQ L"ţlI|.򮎶7gFz54FR*pj#Ge4W?p7Z2cTI&A}6;fi!F gu"` ? HQ AZw- o{Z!F+fmx{A a_KWonezXXooAOU&=n9R(^;Nd4/"8c;Kv-Vq홒Z%Y "t +xx >OX嫥ȬE[@ \}Zʥ4P(ٱ0f3^QDXpZ1uI4sőj6 Jz Diam ? Ivafca_@%PAp٫<#جYzُm%'s~,~Ziyc7ͼ1EK 'Qc[u2۶oZ)ԓ VN uç+l>b>̦ IL/F~m 0(6\[ 5 U͆K!8ig.`8MDJZEEp`SrZ ywc ˋBWo+1] `1k9iK":`s=RujVDOF޺6 Cmj C2 PSݭ֮GʷL#;韈`y)2j=_ tql54fgA>10S_O"o`w= "z3%2~V78 'ZwIAGwE`3ˇe,>f&?\LvFcUv)Ts.|ȾnWW^P :;f(KMF52k0ƝQ+0^ID4ac=C̲SۓS%m~;@޲XU[Vi<_"1b+U@jDJc,*CBa,mE:=b#e8ݯqX*t͘sr #$8 S:|w8m/a+QNj,гXo_$;O;G|IϽSȠqbG].Z&kf$̦y`7ߙT몈OPpN|bWO68:;D, -?$+prS-3$GNV /ɢkVRh~jM+." Ocn2p(_P?R2/b@3(ܔȺ![ksܚ}yec/νuC3T r:Z_7:ZPq 3󻬏f~hE1†&Uv+B ɆL0 4Iett"@FAjFmE+#9r/ n(5u"sX*P;x<}VI 1oNם#$!5z9y mPؒ^t4@42r ;T+> G#-Z> -wcJX ҬLĦM+X @ǐ uܤq;<&=?xUd~ i[aThpg@( Bnx,֥[cthpX͑Nm[C* =Zϗ% v-)unjC%0N͎,R8 kD*_}q5;~$b$6 mB_V).#xΘ_Քh#*1I徯8ڎ?~:;!t=2'J:F'y2 n}$od0+,xJӸC$@+&kwNx(m&`)vpojJP9{s&ٕ4edl7n݇[%*m,9Gù>I;PY#Oo,7:򶴘Lꪨb~V׺9LiMڛ/[>&8nSmM죛19:~tO8p7[F@nwcL%,}x;E&:/ ^tFQЉ^ !uL ev"EgB_39Hvl+i\9{R6C.< ~BJ (G2j,f& Ò{dφ4ՍcQq{I<"w yтn6k+s$5 pv a(̻[ILK0GmW ~rHuLyXY2%Sfec$09G\i$F t)&+r"Ώ*B?;zw36^=+e=E;ms(_kdMXN,qQsR|2pa?+@`rt8@Z&b>rjSjΝWMAAi9(;AvzG̱k* FhW}wCY!s;?q #HpAZQ!K96?$96@O;V1y˱ANֱ%] a#d~'l?ӑ:a*wWNs,mN@dz2Cmu*ԛM`_! mbΰaBNIl;y0M౵ޥ䄦ThPG&=5}KץC2:5Po锪6)Eǐgqy~RfpqO&{Ur8BϰgtoaxB=}Ta9n_Wg 1ºPt:Q rw ?(@;"]Y Et"8yoԢ>H'RwxLeQʵ vuR>>m6!A MFe7<J߲[ "rV)$%)1*OuwpW`5M,K|W4J!m:8\ɇXHEB喷[ZJ4*7IRA U;F+4#hK'ggP {iAic5MZ;Pac5);J$1tV~ݚL V\r1]q@ ]@IgEfx"2T6܌3Ș=21O4Lڏ~"2]ˡ31i(̂'W~zQo "ED,6xp9y_ VŇ'et [f-\)J ^37g*Q{o7 6gq/a~-ߨw5>HKtWԈ7[,c+>cHɺlJE`1@ @G *"/ .PwԽజcnBDt֊"1S?ܹo :ʈy5T/>0 YZAER/data/GermanUnemployment.rda0000644000176200001440000000101412534531320016102 0ustar liggesusersBZh91AY&SYiĀ@/7`1@ I$li@.bMBSQS 4ѓhh hz@hhFFSʥ 4 hɑb`Adɣ&C $J 4h@@z`05HTķ6xn9]j4AgI >)p힩b{BhBҚؐD E8J!]44й{ ^.mxɿbpF-QNV"nFQt:.pITt 'H_*#jk=~ZFSe9Y hQp"jtE^EB,` {,!K:S+d#f p)L+2Cﱑ@FS) qnKEqͷUSc~xu[d슽~'l5/D+]|d'їR8;чl/;WK";>r(Ku!OH u։xL_Ř@}FΔ^@wsfwL" BX>J ;cpU(lϬHO[-nJ=碴ʂt͠@#Zw}oXfCQX:^(mv8[|U>9?]=\,ek䯗8Z\]fT4:iiOeb]n:Fz}Ϋlź>QBr+SՆ+nQ3M&Ľ 9YKQ`L[tٛ90&U/齲bf?ɃW,CV(N[eKXqº/RRQSQ!}"KJ:>XD/ #nD/5-V‚h3Ta2/vcz~\|9I0L|H (#'YPg%zb6W+YuybvB\?%'9tMhמ%&4΀54􌀄,VVV= iwi؏)tkgKR-ZN語j'v YNy\6" a8 y|@e^6KQ4:[q1-# p4J_?^i\9 CG|A`Ll"Nh *aESD@{N6iT.uC1)&]7wv:-}ׂ?BʥT)D =+ (R(Q8Q0!1\]w7?UnUE#xֿ#!ޛTuUsWQz٢mNYgtj~,NfDOlH Us0D}_9M}w6SWXSRpzrz߁G`R޾T+ l,a=%K`NBlO@>>;oZt*B-B ޕApH(]]lΎØ`iZMX Lv>.W%_ $Sd[?CGܢzo zJp _!%z{ R..\8 /8P)^^ԀgS>l 0 Ѿ{bZYБ`͓2]x,7$*Jt91Mm[JKurh.3Ԝi-&zy=лȳJbZi2AẄ=jG[n~8  T<wnH%lTn媫d)k+%3:oke'!^{AߐM|Rտ -!F3N1mLol, -'P>=jϋߋokc{O'+IVEʴyMפr/Y= ?@uyq4;a8pI;M1O)&)J'>$K)K*Dk'񪀋RtsL#wRΖqvOg?fA!MaYThQn7$i@ >U]&@~':O9+ز/*3T˰ѩ 4U~ =E'IID W*ef CLpW?>LzUשwP2p H 95`f8 DPV:E8J@p*S=] ,2g;pݩ4"Rʠ82tUFbF\-sJ"K t`ţx1՞~K3mQD8@¼\^bdASaL${QƄZKDVy)S/B+ZBS-* sH/fy4Eflt n>SWbd'enc E[4 c$Jf=ڃ 8=>q1:%O JP$=pmyC!?sYOIcʭ@`B9JPњ= [#} %JDgr4GhkGTPA44n9Sl- sK{ؓ& *gP~ ө*;tc 5TB(dGHt$ ަvu|(䄝݁4/M71p>'=\_s{4m&NoRbcߠjCټAV}ӯ-_=Y̓nG-Fh #@{ٱ, 6ɪ,=FڲF;Y:;f˪1a @Zf9M8lKIԖ6WQ1;[< {0k[]|ېZ}ҁzqF+t1j˄RE/68m*yl tI5|G;9Z@Qk53*R)z0{4S:=XZ:¾GaCb-;ê `rjo D-âuA>.$ܭ+*FsuR g@]mic&$DW,6T VGC )r -6W41z@G- A0>OrqݒD?y'|3^E1T@sⵂ[M/$a;\B#D3 e"NNbd `I9 Wdn1Eakn,Xԑȣ1!2gb1H.)S4ЕØ:CkH]17wj]]HBK:(8B7}v-F}zgm8CL]@Y Q65nո 瑞]aWELل0vg%.^8~a%KZv8p gΖ7kuBt *H ~z>cYHIOS||6Ec0`(P%41!rzխpB hڛr/@",BLj b4b܆TӺXMmdIXN{;a#;I޲(wJS'D?{|O;nofEܾk>+rH5wփ|uZA> PuG;8ZV 0%eWӺp#ӄ& o&utA=j+QE Ѹ'܅j6O愦To93w;廯O%ص_?kSz|̾Bny}nN؞rUd$bi|!utn'a,8XڠrQ^=Sf!4If;k)D+iߒ$n|q=J5Րz@,d.=9A"5e݆uj()t^xI_+B=6Jbό(6IO+ ; $>: 0/c*f%۪F9Vs p44b%P~St[.5b'dsdyٱƩU5; v, 5Ho^QU`f˒rb? AR4]JT#e-z2ҹˬlSOҖO]8~AZ&43璒ܤ%dLVV|UT A& \ssuZE!',ˏtOpΆ+s}z!V@ƃ?+bo_{Pjtg-qNN8)ϿavP7;+2" wp˕܇t kv^Kb(M(͂ĺj03˛\;~~:Wu Q_X^R-) gŠޤIˁZ*y'C1QHA7=zUT`Y}_~ٲ?&2A5HFv^m̿RBP­ Y,mqpsY+9ng>O͝s ݀[-pC(4QӸKZ[‹ !H99TQ3r^D"NzE,ءBJ!#pS!"P'zUtLβFW[J,P 4".)8Jڕ.FHFa.DC:eDPcš8aZjM#@ (eEv~ӚtfG zdUJj".0p b׈֧γEh^8(`o1DGVS\mw[R FutsB ڭY]J% YKlhj[ǜ#PbT{u5.Q3A^ Ly帺IۥV Ӻfں7vs̼ԄMϻ-3q]#8?J~ug¤&>NWP =26¬zEׁ[.Nl}Gؘ?gLK礌|r -\$ԡc鞳f99BM[bF(Gt5S'mdc9J&T[?MK מo-SAe^Dž`[h |~Вh A*fPL7Nc )/ ,ȍS=2llh`ulI~}q샵fz6W2Z8AKO %P{XmOV۟J84TSVOdǼĝp;(yvoJ'2*8N>ă!!C slomdҿ}SX(KRv1 *d}6ͯ,ܯP#T^.x.@be\o]P}s,PGnO 6b}qT [{gyʍ.&|TV[@%RfiMcj]+keN֨/T"KgEsBhjEc1I/ `l^2QW^Z(RFC7T1 lF*İ/1@as}>*Mҿ>"~Yk]ûz҃k#ΚsgAH45W,Y4w%ʶ)ҍ Ǧ!XYE9U]~:54 ߓwuDV lgF8O|)Cx(#D&A|`ҎN5 tƇ; =A/**yRi_O5cS 6=/xll6! #f!["R0RؓGxovb |(rKI!,ڶ +{QPz{t BOX !'ѬAʺeJ='j8/iw"1lev[_Sʲ<luAހb03Qg5y߸$kfk*b]-} 1xKY)^ "eٸDhOñTjrhMoD[&7nHa&ܰ[i@%x#Ux2XbI_ oӅ˜{nѻ`),m ,% b8 @mQ]w|)]\1'$@R54;A$N>0[WY>C4IERiDܗ* ۼoփ7L|vD]233xSD ӄ0I*O#cUzV $❙|Oom×#p8/($Dcb5AqYz#9;NI8H؄2#TgIU|>`[j94FO.s~`[rru"d_@Zqxboak`j/UR7\l!E*ت4MW5z3˛=eQ u>ݤUh.;U~@Pt(DoR#N4q.&) ]C{H0cչ7kJI8K&ɅN!*!h:nfv ug P"12m;9Z`,Y@B?rF&Puш'@[Q1ܢHLw9hEٺ<+oR^c]R,4iz[$N˹aieL)Б up6t(=NdǞTjMlӏМ%OfS=q) o¿gS| D@2^Vr<F%їJ|7${6ybV4]%GWee\V/%sS4 "xU.A5 YOF1AF.t]:DLLG?7*P'Iۋ̈́.5?47uT5/VL0\:7R@ Xs5S+t`YfF[j:?&+մRnOaؚP]uL ZYu;K/m/&EE=E贀e6OZph~F䌾CǨ >oskb${iyjpŴX{!G8$\Q2>d@}JQ7l;B=*ldE'6Dtf{>ֲau\a9qKbŎlg=m}8, (`5M«Q Aݻj!hOp])B^{33u+K/$Nl}N ;0n(AS~'e5RQRK x*>Xd?dG-77OaWU!ix '} ªcvzjDUIu+NB [# O tSZf+V# >gz"5;%IoGaGC22 ) 19v%2؅PDI+[_S- +3 P^},cbP)Ր=IaACޚ"$ \Q> qP8f3h؃!(C0UZ6z8hd:f =+'Չug'atta&83*휫E: ["6L>_,j=#2<_{Z6Q8]m\s"D:d-LeR˃|xFF^Ӹqt]bd)E,;X#8 !>edz.ς%dpV&far8q-s:2xu#Iewf<9O+B&>{UW |<)l=h"ѢFA{O$}3pMBz6:߫PVA8k6K%0g I%+;KȥPemWA} NII,$e.!z461CDbF#G6L)G|?|G ~ Qo%5l )$ +Z`ĿPB/Uߞ[&5 !փwd7@+]t.&;|܁SHh8>tP#Wok"d5d宫.{&w~10 H8`*=%P1T_ag(!p`JSU_щܿ[F}*>r>6qO"VtzUQ@ʿ=}:/o3$;HX^iʂ[IV95BqE(@Nt'J\Eho~Ihع kwiN4MБ5DC`88:9(C4Z|:wًL!3d.0szfZ|F{Lpǁe^QZ|T[{NICC ō@Yv&MDjƖضP>Ɗc&!VIj9PEb&Jb?Rg:8>ImQ{\}Tߠ4I9gB s޲, %9YdEo*19mp汕,D_:>_ȃ{D+F=.jD_Ouƴ #>}ڐkTw|5n ")؟MN&w /Pwt]ې_ PEb}ˊg<5;)"C&VSդbc*Yb:#M.tA-֜w¨ "|SdV D5n`Zتup]'hݩrPtI ]X}D12$rI0.y!5/ё-q',0st;jNӄ |&{g> aQM3ܜALC quU}EFeY{!pJoqwҠXMtVTsa9.?nFJl젻hRIE #aJ93GS>)7~> 叒WqrKw6^#&mx\qx-S>oh4v6.m Z'7RЅb٬ݖC߆1)Gdvvep gg(80Mw Qup){+Jj{x4FG&m"Tԩ<3WZxŰ~ULڀ62o9.L@$ӡ(l_ UCrqxn\!<#`WP;1궑 voceg%W3rPv< Jv z3#wD"ZU<ơڏu: uGg|7eإb O#n2TH1)ش\/2sг'; uR1h:nȥV[o VYZq,YIGl؅eP 9$S f0xX6λگ r(H2W!V8=n91W ;dKzHZJDW"X֖iOpPNb5z&w_aosױy,A+HBI4KX^ݺ(&OF}sР"BuEER ?yd\+~K0N<–)\"IѾe [N~" >5vY뿪L 5"G M };US6 rA4{{ܸɘRPzQMΌ*EKrE\ {Mo.8'Se"N1c YEtNߺa먛Z FsnO՛jV5M]UFAi~.;xRFuYb }1\` `u;]45̈AgTM9l=8չlkJ tiXQ񦍶 $ɮt^&_cxZ9 jh{%~O(zZCJLmDM#4%*gf88;T~yʜt(>OjUaĽ*rx|~dаXr,hؙ;* PUclHG|FULLYb0L=.݅ k Q3B/h*yz4YrJ\YFOYpMtd/AMM];B] :C&z#?Aa*'$(9ZN9B)x †G^ Pt]&2FVHD7t5򙷃h6[{<_I,,xԫy  ̅&|*L /X9yDִQ` Wbe`5ϔa:uqjax@6v{RE#%Q0;*iPO 98vPˏ݂uçK`6E(y3S-S)Hqȏڗطl~&ViLzG)]Rbe#ZGnr~@ܥ-") ?q_$}~ ;3̌@kB`v" vw9M:'-֎2kEX9D qt<6e4z^uN =c|S Dx9YC-+"f[Xʻش|bm&|^n)BFBڻ'H41`c:Y@{X,j=ӿVrb5Vr0yHڒ鸩񦇃2ǭQ0S ;fQAWXJ w"4* q(I]o"p[@GLDܧ Æ +$Q8S}f+i sQ& !Hu2mGܦ2Fi-C(:0Ty\*Ir9\#b~w q]dSkFW x!p;v)=4 9~>l-s@!9>@t6]{1+soJ:un4h|ΤK `[qjDc;EhԮ*v~sd+p#=XY`], 4,R#jfޙ%Ƹ}awӪϸ)Asu6q$9a.^u'&ϴ{}<4p ZWFѓrU5kS{az9\Q&vF&5P@!*`@50OcMruk9j[s8ftOΏ0M跾9>d~rȯ7 7s54hi(^;{blܯM.c-X4j},0΁ y]?ILgmeaͤ"]aղbDp& 2'Y艦K]d<#h4CDV`Lr_9J7`HAjD(*wR"\[w<!.R-X4,#:Y01B4pZZG9(DEׅnsp$;7DJFNsNP)(VzJ8[ I%wL-f/Jʿ+Xq)O*뉃6 AaRf=45.kWB;AHH]֓!^!&N;sm ՆϭU >␜X]WG+ګB: dd(h}V!P׈'G a#쳊&y5ӚAb4-;`2K>m[BN`qHǶ"D7} U(y)[VOƖjY"뻩{*Q6Ylxǽ4]4t\.` k "gGNvw+V:T > V\G)NiĒ_$'Oi @N?8y4]}c|l2qȠhErXLxtf)O9PFv^M$hkFYl - KKj5toC ȨDžZ(b8lrvbnu%;.<4Ih)\n!i2 EBy磔aCՕ=S&Ue;KrR x-uխHݞߢlEMē\4f74ޣYFpdF0ȖöU=i0t׬\aV}[fHɷ"ܜ7WV)V}C82R9i[.o;;4]#C lc'ZHו}*inѾC4(ɤmbڍl]9mtpyLKئ(i\H%aQ!#8?3cCcD*9VXHc)M54$\tfr E|nJhw-n)k$TIN]B//Ӆ(;QLp~a!?}o+ m'JتqT~"j}) VRfum%amif[?fAۀFK?M4%bF%v;"&GxSϸhW>sZnhR꣦Y~Ln񬱲M^'z\#tF &2`g8Q kn%_H7ο弫0+;$G~+zHߘv?3qa3C=)*".a jc^e\ w_:ER ɉ:uonV[\^0n#6Zn> ;Mo!Vݳ$YU4su||GNSʲFFte ž3)nvC+W"qNX( A~-D{Ҥe/ۇ2j4`~49'b&_>J}pz1υ06`}tU?1o3X{MU6l^FI.i[аK1t35gj'9 K5Tȑ^H*-V J%ƴL %zvs(*c׍xm<`KD,[n=!EJua!k%S&W@ֲܛCOx67τ* Y <=q:!Eۉ'ؚ oH$qrUTEIڕ pQ<%ȋZ]3sbIihPMٰKR;A:LinICǐ* 6n{W#+ ̹t"H"Tlږ3 wSflEly*[{|v j7vdG#G ! ٵs!vN 8sfS^aGFA,Qzk78i0D7R P>~tJ5αS!rY¡'Kv0mahwƶLCp0P=P.7GF2Rո5-HH1dt2e*w#7ۀ {LoPaj~[Z_ J}au#Z[G",󦸃4Q` &8e@);ߩll>(Z:ve<:W}|hӓ"3K)Ӣzq|gފcT{~XU,1bE'B|!L.=pڿ|dBO UƳ;j+[ev~zN;&ob_Y@ꊘD@%dKaB XD-aWJ:5Ks#!Y *۳mX f_ni .k+"!Ҏ 4$ձdcFK27URaY;NDy0" _Y ̪¥4녫*i^tUeyM2F9\r͚C,5 a3O06li&?wZ$q0kKf٣HY\ޤ P1h(HU6 σwxc [H4|ͤ(Fys[>bR/qJL؎[( Qpg\)J]QY)r6j6{'*T6U0pyGwk뺄$dJSjpvOJ!gA@UO[F=?C@$#Zo9uDB6m|$s@DxG`4F-Wi@~ #JE:¿/6U! I UM= jݳZ]/!P7saQh2e^=\:+/ySW]}y/ mA:*&O:1TOڷg[TI?PО&n]{6m?$̉w9_~Ţjdyۚ5ܞ:6ߐ(-e;ا`}Us;…K8W! 1dAaAl2 } Mgmh"Jc⪹,"G-lXgM՚:3#\A \{:a_,Bfe{c6;Ib,=Z^mKj d WG9h ޣS`Q_uܡEw{/:Q.ZʼcBLêԘ2I|Ej|`u nuL40g\3P,tneZY0'NtӡƯi$d[/è'xo!v>#õI&- .4+olsx;'F;WsM#/ficA3>0M}^338A򸼚Qs}R`-D`;/`Pǫ,t>l)Q/}4z9/N|Y< 9OO[Q߳%~7G7)*!H0jƦNˤm,+tjĻK:JH&@S!mXF,3.;@{D%$>mWKYQPc$QCܺ<Z1:2\wf@ug9) ՙ etWkw/! _8>"$D3!8T*4~!@T] ap>ǭ1 J"Q 3F[A1X;!GJj+ ˢ[$@W,U $U\yV$I(F_)0mO&7 3 hrAC{prG͇|݅Ft1qM_^vZ| ϝslOg `cRϩY$=^eFR ow^@.Ys]N=4.$ick'cֶ ߹S|TM_fP.k)N +ԽoCQT&zn x sS>?s4˨| ND,H(TgKp[tK4-R/o |h^'9| =q1?.1("&›d)?[^ _(ڪ.px [d{*->E>K X)e')[tXw8˜371K ;F`>Oѿn}d7/XKf٥E2O1L{=5Ǫ1 vW>2R}'J-KdhҲ[I~ C/_ > Y&Y2or4'/cv 9d(y= S*ݬεTGE )@Zεj!uU 0SNQ8^_J${3uATQ"u="fkJGRu3:;iXL_~6yd'~VuPkcԋTϢxzmaŀۦߌԘo+`heC :MfCi{(&f&fd !j䔂(TFdϓR8gK5LM?;X.7TN!:ofEBkjQ'̷cTf'my[NJ ZB `DJ.$C"}r35upv+t҇s}^n(Lq 7$狤]7J1ɭ/n W+ԯZ,CrQSTg|CfK^b։#аks䓬=ejbӘy7`?m0uI-PN`T!:]~6Z15ْW̮[8a);߿}^ K͟3. ٣=E(G\=BZlpz?3J}8{o/Q^{ud9eه+; 11$;"k^a Qe6 :JwHL+\W*c6smPƆV MD7lTYUt;x4x*sTi/|/KSQLGu7$ n +— B?p]Cy46{GSQٙlhyC/HH~}Zfd=&*Sφ|{ mA3VS@/ `qZ_cCS.rbVO[wi Z{'NR4$]S*!Z5/t_ 77܊{q_;PHhv#uŻC.hӡR:}L&)G +A+&f(O!6%BoeT[`ǒ}S#Um  !حSWta-  B iƴUj'4ވahrH}fK rxcp׻kuB(]VC+}(wi*v X4j]O{W{ܤC{nG7R>%a.I"F>Y%dzn֕3^qF.^[h"$sEp`2xzh0%mpJ\GU-o& 65/ 3 `5{Jy87cU |zzX~=eh?]%u6g}Vs#t\HEQCF^-/ .+>Wå͛~ EEל)GĀ2dgu%{kb2بF_KPDOWϪI':d- a s 3а˭^u[-w_Qk`3yB l08ۜZS4C JgY|q$SEKēR %wj+݅>'pk'(eMNjFB WѠD'<[ i5kfDzYa-dEeIV&!K~ATyepHʠEFaU A~Éf#l_#PP|P=AIbD{KP`.RVsZnXOhn7|Y'@.vbs. М6|T:@}Z4`wj["V+wAb,!(F%Kϵ x|%1OD-\LMM7C5^ LDH6ecjzɷnqY}8'*X ]aT1LKm 7x\'7s#%>,[k+) T, CA%q@ |APc?9~73$T]8z>#Eآlv.]=Ծod}\?XL7|LQ d經g`&d6RZ*=:H*ʕ ЩCur6#y1ܞJåGi#u+⋙Dެ60="($:}.iNz?ڰ/F6"߀fbO#;qHԶdخT f3[UxU 6NaXBwӢq:܅; V[91M J6ӱtiTnNs#`Uh_ OJ% K:{cU-xn'ŢF2Gp4 KOM=O,Kݴ`2.{GJ\d5\𞱍y=k[hRvEpc>ͪ-M4>ߞ +zm ]$/RȋlsqL06EhЧRN-}̚Nށ+{."KՑ\/oo<G!5xd/8 eSNdk>6d8Ra^ Cx+?F WfR䧝6j_ՎV%(mi׳YGIHsrU] cT7x='&z @u4}࢑8 ,/AYۣ9L>Md@=;jcFg)~-IzfC,Ӎ4?P#T>p}K@]h|[O8^Z*)PEݥf9#oi,+”ڿwUTҝ4w]{c/2s|RIY6>Rڛ(sR @ U!B;HpU&hķ5FJBw܌0~혘"oȭKjpzqpz0I:l"u$7(vjDN`)+&\q0#(Ƈͬ[hv3)o, 0 4 n`k!hVN<@iv.r Mmսa{¦`!.٨rW9|xN);5s]۹$ 8Ls4z usܱ6Off+S f fڇ;/=Rhy13O$㕋GKcG:Uh:` y4ztFGv>Um#mofF'Џtlx{MR;'HH?x( .m\; XⓟPŀ{VJ 1eJ[ґ҃ ק$kΉ$ib3A t-߁iŐ򞦅K!֓2`>?de֛D1s.-SN>[o*@΅'TjylHZ[ɍ`ޮr|H8)|8i7VrcZTTYnK"Qo.:^3e@3tU<X@gR р|HJYX۱-;88G9~C!\y$6G@ANn> )aspb4/[;Džc=aAE͜萰x?>q46t#-cę!!az }~l⹶Y{+fUDw2NjA>Ehۭ4or0V!k~$oRxAW.E׮}v]sꑋ?F! X/ B<3QFҾ08Y`)Ew_7|:Уx>Oʴ-KIkb»?VXm^;([iS߰F* *)/6',[}'WΣ]&O9C?*H,\I5+qX9Krs"l&jA;-o=us-S"5Glv)/ClHx=5&IIG38,rNB>0NYFc.QqGjP7YL.F6k7mU WRqJek/36i[?Վk<݇]qPvw%9*1 _&RgJM'KWsWW|stkk.8'[fCD -/F㵟揎}M\]k(5ӹo5AO ~sAFyj gyaqO^ahx5RLnwlY&Ûh,\߼9HϗT]̶,H4efY"u\)k|\,%^2m[8?Ly(8@_ٜVF+FQ bRb,\p^ao~2W$6cϥI/8.*LP煆c(;ϥKrMԘw yU P?`++@`處5*GfL hv.X+ɢsD;l"dlUJ8XV՟H8KdܰP~X-Љ!.069fJY]mު,Ե @Sh[Veh=1ExW"ŝ-ߏ*o-D_cTJ\$ޢKat&O2|dϓ0 Ϻp%]`%9@YB w9M7ѻbw7Ѱ;DD]sRhbOc(j p 9}X)Jƿ+tN?;e) {G~vRhP&hh>+se \R3Qsv %dN+1~5obCd+u Za wF 4- P|~m/,׊ 3WB\ +)[ՁN/qG"ĚԦL/rSUa;ƒ,z[E\c!s 'i^nd34stD]( 8%#9cR=qVs1Z@<"¿}>O3; Ŷ;;XqyiEBn|shg] ̕W#א[|`u#]SC)1w5-8ĮNF @9>wjM$o F){ROi?p ӤYi/1CU IJۦFQB] 4z t!ݎDE?kSq1=M+K8 ^zsbgEG SnsEMZOѕ1'jzc ZO'q`}4T/u| (t@OyR\p͔:/{eJRǎLn`#cx("9kdRVE`8u=+d}(m3w^S_vc ;oL {XswC%=p~Ra袔VMɡ>m Ou˾Ǻ,Torg'~IK&m==jҔtjCW1;ߚ0x"si`H1wF#3<ڍ3u.3ngk#& vL[>Ph*&@LWz|xWڜ/z*|K^(a9]Kg98r+ajPv53 =]fܯceވj3f=gMC +S{2 $];Kׇ,O!L:TRixmu !boT;_B !rXG~Ug~g٤$Q:cӀʼnݧ1^LB˭ɧlDzoT6mڰ.ļ8T'f݀?C(hwRkȗѥjW mw2Vx4E]?1FF7/Jd=n踬[> 3ۿce#u3n\^} Qt5/g0Oa~ii;ϓqen Mmޤn|5MrNj=Bس:wlڰ8} _(qжcu_VÖ.!ӂW``|~3."䃫Nɧ秞T 3b/wO`l5Z-˹0?Rި/*nA_GpPIF ޵lՑ:aY8Ay^4ޔ܄g4)5@JҢ#daע)oֲ|o FYXf j܋S(oP55MS}j~3{1 nӄ@z"a$B–1f[:7~, n"4( 9жNK(plgwmdXh0^23U b:R(`M!3n#h WWp#[уJ YC\{[QE)_a!'8?bWubf, E[a-ݖ&ȡXsl™({PW i (x_t .zYmƎXq1JBتj S1BXH>,*W?ᖵ0یx$[#zx+S`ԁ`~pNhpBNg#DmQuQ"ϗueH X1u8  MAXD% G ia +^:shk]$&p2YשloKo?B{-ؘtUR*|k󼔸gE`Zx[ywe2ԑzЪo[v+h\Kr)jҺ4ǴLNLQ'Q@'Y{b7GPJ߃ 1ŰC6Z4a6ԁ)@‹R$ypOB'#xFY8>O̤Ue?Ǝ@ pfcX?u2Q> ;w^]nJsgW1?O .t)L|q;Y:DKm9֓tI0? ׇ]AJ;a8.WD k_/1wr%݇Yؒ  }'%)h,a^nɴggot"g.eG-]c>Bw1˓p" bͩPİuFksD 7䔕1֨.ʡߎ9 1Y-LCOp+ vطw.[Dv:Ԋm-RLS!DM2=*YOE޸&L}4JޒykY¦O UVqAHam$~@|Qz?{|:+!\/k6^H9P'{TY;(bW'dqjVsT4#q~)b҄noSC3:Ptig!}b(\,nE?3U)Q;ۅe m2L:+Cx{W =28#;^dPBCA} :s.Μ0s7iL&͔kƎL>%MQTxVQg?i~BL]cWJv4S?v; լrbbAM^ ,/{,V"Z:9 j2ɉF'uLXT{!}L-0R(Lrt%!;Qܹm [#YK/\Ny2%~/RuG܏Hl3e' "Re Hp4[j {~`Ze@⢍veQ8p'/[f Jy/'+ ګ^5ccJq1D.wu4;Y`$q k#:eJiD0u-EvΙ'KueΝNӼB?plaEHеV>m(TjD2Loٱ*`Vt8Zp[q keySRhPPv)Q[zmf47wBα3mjQ0 CEA u DtYI)TV$|7\"n3Tx}^4i٩\I##o" heI+Y(e{rN `_x>~8SP 绳[*ws%"{Nd`0kd[Mt>ÏmPs]O$<4'24wq8`kQ'f*"jJRWPb٫1] y/_ U>[m gZ\ia׆,Ǫ,u {sP֘"Avۣ"3mʗ&F lt]ifϖb$Kj#Hy[b7.^QwKQ}Zn?'"ȊYLFʗcfÈ=9A^/ALi&;غJ[=lH9yg-+8{SQ\4bV2aݗgsxlNo]$|/V6aFF=Hz i TsAyZF⛱`,Heb2R]4 MHL7#HD2Os!nnET%[O):I4e-Ɵwf@p֋Ќ  Z!Wix0=PeeZ`* rH^&PHH.O#M5Hag{p]<~+ l4Q"Ca&5V.l% zXRl!txzdN?L=F=lzۄn nеc[I Lae|*Sr7,'wPUI+vC@p_@}‹yj095o sov/?D:8|i\>j ;jsGt_d)j#9kdbx+ۘFcх:.~ {"}[4pSƁZgǘ/߲جRm\BnJ*}K k=Wc,mC+ pE}R۝|254΁BJ|Z|玶P4̀6tq(9ݚ^C_>sd˫Ϩƫ6~0ֱT>C(ӾX6+=Ngx7ӏwKXSK:n-HeZ%ryc[gE}^ 2]ړu,Xst j0h=;,6]xMdMDL -jiDK:"7.a rg.'>TxnO2C%^\QDy2-9DssÿG<` ]7NO=×TJ$]3,a(Eмk>\Ј=?J͉.# }UӾU5BZE%^YuVصiL:|(n)]5!CTlȡi4Ap%{9Rrd()eCcꦵӤ)n#=D85Tt=^pUK*lu9t,?-g[Ӈ &f%!>(!ܱͥU}MBBAЌ11\qEvՙ sDTr#tBV,!JX5xapKGoECC,[d(#Jo@npbQJ+kXB{ʏw4o.,WF*4ZߤT&06!GͨllLD"!2: +tR+u::d}`+`i-܈8ä=Ռ¢Tm^~e&DrdKGa^q۾ :UJ#[_D &_H(]*:@Zx3,;]x8yrO'zC=NEZ8@Rqf#wLKK }N;OL熑E試o9H- = uCB[\p߮ݱ~49d Y;^ðְU9^0 P؃`sJyw(\~Zҏ(Of`˒|>T_'K04_hUJ=J"kyX1=cIpPp*` ؆ΩK(bt/ Hbɘ)$(!&~$gkiΊRƈA|g+$YҌ7 H0gQuɡ |e!+ 9; 8[ASs*[5 '׭rr?^-/T;&BOS/`%ȉDdJaCOO΂̗5TsAOdsI>YoJ(HC Cڦ W,@z4%l>gvx Z(6\4RULG%s胸aE*))1b@rSXFrm>b 1gm a4_J_ ^ X Fp[l;~ f$,jQn% ~.'^m}d|A]Е;NHB0&l(uzrWm$v/\n0 5p>##9!=K8%B>d|D$0h(w~{BT볖dM$ aړr " 0݌APֵ3L96?T~>g]y_`]?PGj#,L:!S D2|&xK [cB5S]`jWr@v^60_Q>is/5w}M~K;EM ka˳PqyjX=-C " 21X3-u)ʘ:IJkγo^?W9q oޮu)"2-1Vm= 7Syf3כ۳Ċ&2r<1Iu+Yuoz^3̍&i@b94N'oT}"r^nw-"(chzot+xBN5uFmYW "_xN>U7 ]tg&ʑ]L7mlk5ɄVqC":y`UǕV  H 9-Pjp_SNK3OV<^\#Hȑ ޻t6)-p|G`d ({[BAs{3Y93 O""3gnkewtjB 4p"Iv`MkN}T!±):vK.JEgJS(.flddLK mAc|zQvS>ek]F~pvS DHq(hpW4$ ,xD)M}Ⱥ R(GmX; (PIb2e}F 痞WeK1c +#g&׮y]j>71SDih+LKWiIl2Zc I}3i(HyZwO]䄀71}/9 h*Yyx X= P;Wȷ=GM}b媖j!b~lU"95XME S}X+lbt*3 ; ]<>g2ջ:#8CtsTze'+,A7V!AQFw^!żIkR|(<o$Ywު/x\esFxd$) H9B:Y?R~ l-W)roʡ {K(2XB%m RR0{.J,Pxb}mMK^SSW|5UUC}Eu7K NXP |3"Ni@,z̓.s9,{ =92eMS7;v)rpcyӡ c߃~UyP )\ϭ2%!=ǡ鈓?qHbt ISy~73h&ףbmhe(~ F&"JdxΞMe3>9*rv`$ M[f_z.rޗGGuƤ Zi+biqHBZOs%'6BbЈm^u0ol"1{;}smz'/NwHc aT +q̀ջD`)/=GMȍ*|`͵" ʥ.fVb!ud`"ǫz8{yM|ܒGl7* RҚhBqQQ +[3s*9$B|!PͿMΪ$"<̇ ;aM0 c[[if)=qϷai6ܔK|=/}nlL(ݜL~X\DQseQ&#`$!ڹ+P@-hZA=m+A햿MRI 6>l*/A d*t2y;9KFh?) y,!Ked +[/h͖^y-+ l2] "ť ߂٪MBqrbe4^K@|k*lz74Ț|؈9 mna ȭq%+]򲵯M#9uOr*?)h<|-<#ҕhz^нNQ6,t3۷a;Z#@1(AkEC/'Sf[~]9g^]s}Qp˻H(aF>Im?Ig_1OkvdW`LJ_*8Wqfw0GX¬ d!Mϐt}ԄoWfv,+j(X J9f5?G83=NviO-9~B LD c$s#nf_̆8S`$$awauZbT p`KSTr~>XkkJ q EpW<+؄cjj%"+=P:c\:HCK3BGZm 1|D*|ᵸe_әB^8C(BҐڔ A2tRnp:L@Pf 1j3IGH٘f Z*F<Q$"nk[*.UehS RTtwJ9΄Uَ@SD)IPu K:`X? $X+YgMF-O cVUԼvHJm3IA,=AHU/%4(-W_IuY Jjy5i^O gn*NcpjU_ cFjDi1Zz4IzYIGd qyx*efq&ĝsxŭ56W A@e A8*aC =tqa=`.O`vm"E&>0 YZAER/data/HealthInsurance.rda0000644000176200001440000005544212534531320015347 0ustar liggesusersBZh91AY&SYQV/DU@?ߠ@@cŔIe"uENB'/> 0H"D h: *v(/Gْ)ꪩ;:6Ifܺvh UE't%HTE)AJlفHB>P ɖS1C9Ъ}*z\F{m[lj^S>9~A>]mccd^Cnz5H@# (6ǧ҄÷Skcl̘b{nM }34k:JBNzLthM;W:RX>҄ No˛ݹfR#6Ya!ZJӪ)ƣbS`hd''.2(qA,݉I+l F0Y%o\VB:ݎo=ڍ?.&9$0Q&'gcJCf'G9T/UJ$jԳM WV!1h4WGjNZ&g!HƈHWۥ4 TWŠh@Za~=pggN}8W G("{8yZ+e{OVgg(~<O|!r,P^5/ wRӠ>K}^ç#|d]g ~Hhj!. SE#-ӣAFt<G)!;GOy`< pgkQ,G|{Oez_@FB#LF"=twY$yb :%϶}kt*9''#3.@D ^JgZxMq)=-)v2L h<<:<@5ܽ@<^î{t*4(>S!))lBk? Џ?2P[:}J@䇇i/n<ҪC2*&{=ByTeƆ%"~'t~Ryc23=$ v 5i50zzNa8ɒ ȧ (Em^<.smryCRuκrE] DRN~ňf$}qJv(R(Dɱetvȶɍ Wl%ͲOr҅7 asg[kkǽ֗2.Dy)2z@{{4WkzX:A:kKY])zݬ/\D.ojRc ݐl`m1HH|[v'a2˄o31ş@r1I59OsC21R6ewj4 -A%*_쿯 g MJE f*! q? 8Mw&OH)Au.ڧJs/|_J9kW8*[kO>1ߊ,#"Cm9C:6v 9 \8i=f뫜~\ZȮU2m0olKIMr4ϜzcwŻIK[R?9,\@Ml#b8l5Ì#RdDߙigkU`Rq|}cxdM۬[у^!Dɳ}6^~Qj{|,D} 0A߽FYP'o#"5 !|ݣC@-p x}OYo%Crg_&zR}/>H g+vlUzl2\R;`,DPVYH-罼̊D3@ҋ{$ڹ;fFMɆX-5)îI&SVt|.Tiuvh==X4_Hi[S. g=D׌^tL~Wӎ4 Yh`1a շu8Og߬t4Xr\ qܵsz?;'nuf+55`1 >X O$WJwkqֺrg\@d7有WқkMV9s<;Y,([NӶKzDYm:K:dYZ%2YS ׉]y#>1/$ո~iSZgp j(>Uadl9南a2C .ˡǝ@+"LVЦNDqO)%7<vsrӝi{N+Ǹ샯 V Q' Wvh,Xƕ<*6 [Mr0 8`z&XO;s:A^ԤYdwحmf%Sh>aZiI}`H^Z FJm-7Tosj䣖 g|7y _O2<j˖Kzi[Uש'to<ׇLTd/sSɲ)L7inO*v u7njnik H0 u\uNq{RS]Էȱ rDA-`a$qmirMk_*{QÌ[9wL7ogV}qaB~ϋ|j>8û߿<<iJ4ޖ-ƞ>2 D8ilq+9䥉}t"TyKa-xy\+凥Y34>6vܓ?1KZY (M[߇QXNQEf:=m{j<M8y#E<9WĽW\lF}e0.Xk eçzB"{n^et~p[t[rm CAZ|ߥMrQS[F|ja|kԠ/wmv_X|}u?F8K^t~ecO>,-y_LyӞ9{p [;eMP5?xGޛةzrM ]IunEg>st"OsktqMe/79b<ߌ# tGm2Wԋ:<[ 4O킩=0bk׺)CԸօځ>뷟eޒ\9]x%U ^Scu- wǾzxy.R{ָ3q~N-Y*nà[>n'oi1:y,>M51u-{pxg;sä_e{[z.B{ N Gnmus^|<=mkX-SX?T7zd;pqJ\Ýԩ,?S+a[ߗ&{tmx5W~tvM~M`| FX*6FыQQ-TmъŠ KQ4V"`j5حHbQhъ**5&QhQEEX4hmXX(M ŌllXX65Ŋ6*4m&H"664[jѴF*V fkQhjLlTjJcEE6Q%kb& #IEcllbŌbXlIJ(*MmmBQh(mF4m#hڢ4cFƱbX[ƭ&-h6(QFѬjQDHm6%E-!Ah-_储I"P,d`(JƢجUb6bmbѰVIQ1F,l[FڌAb1DjFŊll`,hT4m mhT5E KXI,TB[XQ,X,hh5(lmFTcQQi6TZi-DlQ5FkFƣl[QEIhE,ThhFm Qb*1XFhE`:Z*(ر&Lbb"XIa(*-5jɭQ"I% 4hXFЕ1Z*6d1(]튍XjbY66QJ5+Eclh5-b#i&U6ElmZKh5h mAXɵ+QcDЍi ymh-VMcbEQōQ4j+b`bcdQ,j65֒ƴTh(ThEQlX)(AQ#Tli(#&ɋ(EAE,bSpE؊ѢبڈdQV52hJ+`,Ddڊ%j#5QF QEQh6J666LVEQEEcc(,1X&bmHvۚ#XaAlY"hЛh-((SLYe'2!6"(d l`1ёO]qݹ/@Q3IIQIZ, F,XэFRI%J (`ŲVѭ6Z E1Y#XF1ƍXѱj1DE&++mBZlJITj`LYI bD6LX#kK% `)$ 6 Jh),ɱJ$1#AcE"P #!#@Ȉ͐B!`hdļޏ][ӉWJ* l-~7WiN}"MQc,kAhhZţQhţj"EFT̓lcXرQTk5cR-Qb15Ѥ6Ji(0"ت,j"S4FJٚ! he#$M$f-FQLTbX")&10l63#)D4 (utJ4mFLF6fl 5̓%D""1 2i`ɱf)1h`FF&đ2QhLAF%)) HdH׻r M HAD2$ 3c3J)4&&E"4\wvM㑯Y$ΦaRʒV[~v;-KNrIh>ߘPّAWbdI覟+ƍFE5F¨F(FQbbkTZ(TlPmEA֋Ib#hرI K666li-`*4mQj+Fdflb,1!TjBQ6!Mc#1- kk6*5%A0&"2XA! j J3LJ 00JvhLjEh4 C*$H$1J$eF)%#Ib L(M XDɣ6"02fDB2S fXDɴ$4HI @{khb!%EFh11SS40ĢiREf2QD)0%2w$%AR$HL"jL aAZK2,ĔHɒdLe$ " WqER ); i&@4!I!$32AH@̐etQ5"@ E4 ђfƙE2a%LHHֺ2Fɒ#$  X BH̤I$@ IHfQfQQa$hbQlW:wiwyvȩ'I11^ȦbW%u7mKi,$ }0'*CΕX:cm,n^av^(fm&}՗@dϓHeRok(g T;xs BcfkBK-hXڪf6͍G}guyjvʋԍ6z֬o}w>4[ X&#آZ,I16Qmbhkض Q&LFcAD mDF*(ыF6( bZ ("4XcRD"3I-̊ D$،jf&H( 1aeD&b&P@C &B& {E2-(B4Q RIhb R -1%HTI"H.c&h D4 (D1e&aFڊI4JAH%%4DҊ%4 ,`1JRDjS24IP XL#EHhe)d2E1DheJZlX6" FY Q)L"1Sb!X,2%C!,PF"b2b1đhɤ(Fl(Ȃƈ 1aP ȑQ4P)@("L6DD!-#MAbAFhͽ{.ů(-űchԚ#IFH$Md0M5n3 &B6ALĒ4i"I&BI&H@ш4W]MM"R&6#3!Rd"dHaB!F"1"@aI0WwhQ$D$2@I@iB `# REI&$($ "0(3&dH E1F"(bPa d#21$M&XP!dIRHdbJP ) E#& 2QdI 3!"lIɥ "\rXшJ"c1C dn0 (b&)3LQ0$j3$쉌"`F4LDC L(KH 0 FR%0PJCQoupB!H$LL!I16LI3RlCB,If)PM$ A,&A 3FŢ!`C1"1eDX"4Ѣ" I1M&PdhE)4m0d DXD) LK112fň Ґd2II)JJf&BM&0*2 S#P$IHҤ" DԒD!IXѢLJQ0ђűIł)1EFŋ`iQ6(].^49JkrC{TԪY|tCU^Pj3$!Ϸ}I+,_o'8C&y#30HoX;Yyg_]SY'zAnZZ_3E)9;V!'{>|te5\Nc2 +Ϭnn&@:u%KVV|85SZU<)kED}DWUh*hRA(QQ7_M*]mȊy)ܨ@Tw#"v^id|((~>ё/̠u͍{s}6QQ"ヘ☇͋jY`M ;,!.qԁs`i[0"zSG\MBDגhINㅭm Bv%LaՑ>yI#ޝ(a__mkz¹s"k9&E^UAbnG"/F-szdv#I n=Y֓Bx.zw)M#踶 ԏJ OwId۽CL!2gw\r wcw#$):Hi ;&rbE%te Dj %L &FEuibsn^|z,9H!f}yOG׼ -j$fZk2H=W=C5%2x73mSr"DS Dlr:+0,d\< T!qI siE2/LK B}FgsTy̯+D6xs A^o9:r)Ն$1 0_?LHf`~lHxxNb`I1[<Ѣ99rt'Q'D=1|=4KN *;=>E<9|^\ {kz<ڸ^]%Zx4RbXD;:bx %$INd| *w)b([\QwN1fVZSΝ&u}´N@|ێI~c*U=^4B஬^W9wĨD<ЁuN'~![{%1$!;NȼNC<GUw ktIR]*+h'g7qP&fN#9C'H"b:CWntdqPN we)zT!N]j&:HwglFAAdAw@jR룠 mE*SCHRWl44?6 tʮF,EQگ;ǫCOa mĝQ-}&'l1:$hwx@-wH)1}Ĕ'ONf/:3x:!|xb/]&mp~k<!y2zgzs’(N4W#0#P¥g"KFj=ۡRǼ)Og;h뻸BU-%Qh )JHv}=}tI:i|OyG2rzb h)=h Jh PhJ5F 5nhU7Kkx$]>MePːÒ]v1冞Xh["BHdtw{=9q !Ixh8_$ogM 1H:S䞂x޽N>ĦLrL$ǵƴ%_wXt@Πq q9 /qGZ)ЅJHSJЇF$)Ӈ5Hm=k'')@I-.::@ ˠ4AZ#@ND5v'7.&$4B:h:P+6,U[{XmQnʮHvN)zVP\9$[ٞU͍=źPt }&3ʓLH?.)$j ގLDIOI^ h4 T R)5 4ZI44$JĚSJhB_NϽe7\Pj{@鎹/%Ѥ1ރҚZEdh^4 ."^^msEQn`-!4 RtHzt>D\[v_::n uj9ͣcG5[¹DW6Ӻ4Tm+*r-sxSεEhiBNE)J:ZX܊cnnQrb.lUsQY5.pѶnQ^U%cA]"ҽOJkb h4ERBZ(cswvU u֌+hsW1[Z[Q|kƨŹsZMX.bѶ1FMC*1,V5c\\6+N\Ũ6XH@tR҆#%m ܷ5Q ( D ӉCBWwV栨.(.P:  If766Z6Ѭm樣QQrh4Z6á4: HP[eX'w5ܹPnTkܫ hM%-!M& R!6Ɣ4 :SM ]9^GLy>|~]Wrpr yZ%0p>x?iBOkkIy Lظ>;ꇍ-N%Rx|qA+q^&yx7' FqDFR&:g֑F#&ߘ܎"WGlN2Iy2҂ 9ƃmg=~qf19%J@S&9: 0{HH ܤWqӔ[vrvZbwmlK Pm>7cWz#?G{QǑx@cோYZPyEegD*UoLM3@ tw0fH䜒mv=11PЖOj P9^䔉,:bţ=}I*E~a_ \md'y \:<{"rS(s&YfTXSIc굉p}}R2= b G31N r$X>t1җe0)NPIa&:U3L~{<\dXS%_f'0">gHゞx}>e LO;H1.gOx)>bHՑ!V&I,s:\-~|G(d2S)ܝԀb4 }QfYDlwlNXV_2''1wy ]5S ''?_zWҐ; IHbJQBeVR'mJS`9Z|DNS'R$9<_ ԢL x}u޺u)8^=fvn+9ҤLJާuttc)N}h}`cFwvӰȆVI"@N4|$y@I>~,%$!~%<֍0eh2O٠NwI%SAUU xb.lTr:y"LT!fNz|҉<}_B4guHÚ޹H8&"p#IYMy}e{[hu *|>\[}^$<:;j&W] C̸|Be11h4f2ϽzcO,;'ޡBYhyQ<+1>a3Ȥ!$H×^ U|_T"H |8Q7k~;lZᬠx@YtfMRaMZ6p*õuXP6'z9ma^isTؔkNd-m6UaiXX׭E+GVXg$ 87}G,9B9j^F6wKxBrXqHgx[%5RK,pC%־܄<; bgAK*[[" !I^γo|<+k rOm90Ld$Y̎K N5*bD8l(Nm"Fh5R||T#ױu\F>>NREu)YLq+h]ad)ȴ{JHf^ 2ޥ%!ԫ֓lfHO GFzʾC$>gz{bm4 T٤I!s  CPocp@pǣlD^}ߚz!E ( ?&pќ :k?H|OКd<]ism?XnsϾc[XpjvxQ/ɈC_v!YQMWo> -!R_:O٧pK`UBzˈe3h߼rf} ޔuħI϶rQQ#~d=Y72HSg ȼBR$M~|fFޔ 0sH.,Xɖn;#f86eY!R64|޼վ"-1@Ȑ/ma% $!|$|t˫yfyzϽ'}4͖\șmfUM{<\95gqL->SOwnz!Ŝw{oE0b{-u:x T`Qcv ¿tA.5ۂ3dH?i)؊=k`)# 5M1>U^ۭYjfCgŚP.aa:q@<6":ps4Ӗs}CYBTFn12p*{{AQO5<ۮqsvl mԞsdݲR. ԢpRzg' wC ߏ@ן`qlky[%썚 AA80ބqd;U ]qh] #t @̒enac;lNH}$B&nlW: c0-[DcFA}FǞ[4y<۱#R}]:}c-n /c5Yxb8iPpp%1 nus0@" N$"4y*M)0j|u{Pz5-YpڶϹFB鬒:@fFl ߄#:gn < \ a)}Drr_=cC[Ao]~7&ȤUhmڧkƃObwJjt={,^`dW3d&.j`&s~rxQԟvbCǵ*e{PsGS>q*;Ƥӌ F5m_3Ws^iO㍨ _Ml jǦ?Rb@0?Jwɘ/aOQr Zɻea)Y_/?H'ߵ 4xY#`(p^C?-eR<^29Ňa‡jm0Td'&7O:pb$ضHBjTdz%Y-xtcCQ[lMä.2dXbrFd,6!SRDͬL$ΔOQ9KVF^z1;pg5nAu9߳> (i{j0duz !kK;=-v'eN!RnF H#b݃nfNp+pwQ Ƨ3R|#u]:/i1b0&m&zj!^M б&.|J:%%t* M|GMߖrV\Lcػ~$GsgCX*O[̿ͥW}J$7G9%vqڑ /sځ w*jo͇b!CL%HM{^r?z*azpj}QV`hr͇"{yMKZz!{3d#b~!:5>=̑}*s/&" j-o3>01iܬy %00O v.Tc8AUzp([68scD@Av)4L'e56qG|KM'c٦> j.-$;'=e;-BpLfh; )H?l= ʺO uA@|?v)?+ +Y Cj˖Ž+oYVZ0 .M >),Zļ6rQpb]5L}=IҰR[b,ϵ4D%s||V󈎴7OJm"~$H)]̜7Z&qV[/9bOL;H>.E`˽B/?ݕ,mVW Aٿz.KKMzWG\ ܲ0!ׂF07qb-<43 !܈سQ}$;"{u2gMYw!Up'l >>/v2"^!6α뱖BP64yBPQFZsÇ PQ&!/{C3FXKHWEÄEqblކNll%GDIA]N$|JV%{=WUA2rBvz۶OyCSxdsh5R_nc%^8#}{CT7/T-Eg[@^@%Y(GKj3?51}p+nY c\ gpP˟Pa1fataD;7H<\~V*ީꯜid;wASu1 ߣ3T~'Ψ0ԥy8™c sWԠ5.i[#6 Bn7kkll{%ȗ6WD]p6XCq[eۋЯg]aTəau8V7Dp֝Wǂ:ZK,[RVJfޡ 8EL4!2>8 цƒ[$HÆn4Mާ32x[}." Q&ALc&f^n\?XS4ZS>0R;9Vۼj{ ڡXCT ,ab'x 9p,XKxԡJ~^.Kg>ɷ+Np~:F| (sd0$6]MsOrkeK{L,OK 7}y6{:}B%>m4ɚI2OuT9Z$ʨ2|ĩF6@v#L~le6l %НU?a+ 7 3h{^&{Uij#O+(EkmpdlRLeA~in7ggZҠtt T. UPnR ,Qt uymN~Nr8+=?m1B[cTX$]T PX7:6I1藜i5Axl{LC״kND_WlʚE_Dk1\F"+녋N"%(8 pVf|4XMj'~ OmX'&bf[uF#,ZQw둌4,GZh 7D6+ջ0ǵըVߍT FuMP)afT ./Uz+MsO8)yǤ*D?k6R┈?))q_@Wa1Ɓ%%2XfR9Xk8MЭ36K˜ ٩˷j \LdYȁQdmF5UK`e͡U"\@Ud{ i–c;E^;oR|Z(}uB)Ӵ ny @nJGYwU?fcdnXG(NI*(gOڎbdɦn(2?.m/: [8˶lXgxY7ϵ}ӯYO)>@F]94֕r+tTVл~ksΊ>!L+ I;RpzJ9yvW }6"̓Z̚BPo_sְX&ᑗF!k6l@(L;⇳Q+ LHlf&,aqLOj.WDӁ΃HX%G`T5 I'f}QP]aO梯)t&{)6 $G $W´Dv3@rtB]6px$%|)濻E,5\b)-촱 dZA66٤7|xoEt5Mz:W uXR}RyKGf񛧻WAEOꏔ{ l>p2l1ᳬ +ɡUbLy8ZRUo[9]3 Ifa9|];;|kj54!Mo7zӅSeV0lAΣUpZϨtA?Cae'::rXfe ܵ]"&ͅfDC''8J3\fhX߲e ctioJfwjWߩ@@q<,}|AoQ X&]8nWʝ~~YŰ+퀹Q }R*+]xe3Я)%HХg/ɱ'P~݌.< P(Ӌ8-u-qHweye<[ v̒'w \tyXYO=L^:ͧXؚ8%jXƛ(-О m|GDZ"e aTVFEfɩǍM\l~.;jkb'2JErJ)uK!\=?,-6 "(+]V'X*4Q=7xurxr?~6J񗱟㷜a,(z\xL@uRN̂5af!ID5 %$FЖӂ$33(XJ^@2:V~.<S3 pԅ }8*LC|Oc+J*ajA& !$YqT.hV J{NfLOSU *#L~c> @I^pҜ ۹gcHű Jt>:03I{(G|%5\ڙT_Z.40 ҈IqrB.W63ӄ#8P]>oPW!†zP>F0:t=k3yhڽ6Ƨ#EZ W>:Mّǣ3CZP0ZF5k!ql=h>}^z,rD6gk%Oww#bw_K3 @^9ϲ^]N[OvQg ϯy,bۈ rҾVڻωVo4åi:݇xݷzNgv x b:hʑr~=eC,s15?\?ֱ7!g7LMBW. ׯ`(̃~ֻ;h !X76S c1`/ jQYnA;+01J]';ޯtޑEZL4d!C ew(>YQL[{g;䎗Go9:wx}t/"__){t({WOi ȣ>녺 oݬ++ GSFcG:M2oؓT=hRR0zTUTq2Xl諰?t:}C=Il: $2K8*dz5 %C꣥rAaXG&A`@4O0|?8M3߰A▁ XyG<bR&0.gۊFE_t08/,P5nA]Z@XZk +M:DYI~s99=)a/;2מo轓J% `گ׏KW;41ʍ@E\+dG#ECZND_#%dc(p2PᝓJUɂ 3oٍ|GD)f>]ԯwsxWM{r-j . sFE]Q< 7r)3GXb}x"[4F--28ar D!)-g{$xőMcKsn(({Plvk. ) Q*N@9]C6⥟\nȈwP յ?)nlY8# r-&*4FĹ@)[jkM1%o^嶔4,i&a5Q,-CLɛ@_vg;;N ̓ ]VG zղ,;($BGoq,_m+] ^aOU ӲB_Sޚ{b\Sy/e)'V>Fx` :ۦVdő]=֙a}W#p2DBg1uNQA$K9jKyhIȉ>Џ;X~nurn\xFQL@p7A BZ0oOϣy؁D2 7`A1\ mȍE/S3qw/N7ۧ|fBk;cĮUaYz3?mO%ku s̝5 D]QDK[D"'_L7  OWHyY+I5[8[FC+֢̀A`zXr9 ouD ;6zSJ[@ @,y7ulvg; QPO^bZDž[<[ŘbCZґs#w _mD[Z7U U)oI /.u7JSmNv/Nn];i!ge>i7>lǰ79awz|'7ĈF9\>0 YZAER/data/SportsCards.rda0000644000176200001440000000242512534531320014532 0ustar liggesusersBZh91AY&SYKb%H/ߠ@@mAD54&QDli6C FC#!ѣjCIP4h Bhh 4U?Ҡ@@IDF4 4t 5YY1YbOaS M65X]&EkNqQvuePmS[߇± L Q$(B*  P$ARQPT($ P!, D)V*PBT`ͥ4H)!@22 A2j Dj$X!" ""0fa1"EIU tը2H#"`A2\+<H<! CLEVŕ mb)HW/`RD<# 2SqH$o;̼<UEM`#JN)&4^Cҹ+oe]ԨpL$efaR&K|)qyI'ذ”)JRȈfg %×`S:N89bp,RWy/Ŏ/=3 dIy|Y 9snnltAO7xO7v`YRr44RxwoMa Y߻JzmZ7ȩm_6ʞzෂZ˷vfU`ݴ ad7:Zx7Wq9Zdž\"=Ĉ uUq E}v2ʾADL"ydT 5." ! @@Tv h /E,$* !"`BZ#lsno`RRy}(R6p߸okv6plDFPUeYakZiNzI&! $$eW{ֵ4cFeW{ֵ6|I ZRDDDDDDET3)Hp=z%fgHP:!3:R1bfq@(cIȈf UVUJȡQ$j[⨐Rs!htZXaZ?{VLo3#9G靾^\փb3bƩ0-l}&h0ԊhwQ[i*3DP\5u@"XU:8$ o-K&ķQչ2VVgks21:7MƒԲ~Ų . I#E|4>fL3{Mf刯=η3s={^șR*@wZ <$ *,)),*]_R%ƌb;UvunIaU)GQ2{*ioC_$Ӯ%fbd͵cڽFe_at'&lȹ,50C2 3%xnO K2Jԏ#}}"?FO[͌<{FZ%2 2ל_ѼQ?ݿQoF gz^&$M+1a/GqOS^8\{|mwMuq{(^V)^o7+n:xN"g9̱M4X&7Et4>k8Z`>8?֏ĘM 'GEd>Ik }xqRn/+ C)T a߸M_ܾvLɔg<`/cM$8'h_ڕԣ<A+={'Lp$#蕂?5DW3sk#b#` ӉEx؈!6䀰` "4r/ih>?J~ؓ~$%]&:{?^{/XQV j),PE.Qܾ9.pwLQP}bw JqvPG^9sÞuma?V/W# iX@;Pox}@z8ΫqTsn@ߊ K@nL^mA^WRm8M n3y| .wBZ !D\\rWb #^"{F/6cv"q=u ;@QGW~iva[ǡ5q|.=8׭8-߂߂}ۃ}j6">[5i]܇xF$7#ÈS3w@R{MQ?rѰOǫo6{ldt߉i y=!v83w8p9Q< tb< &cDP/'=O6=^OꙐz6q\~WD1S\żxM IѬjgMۛ9!z-?<99M`nM~fGFꛓf߸isׯ2 SrJ73kM|o1hb>2&йceD:_$>_$qd&7oolN1:Zߌ}e2g]m]KMvMT M7]K)CZtӌQL*]e__72t.e|SSVw}6>`6݂;NW Y~Fmz[o)n,C"w v܍{a? ><' ynGϚ|{'xp_xWN)MtYvbG`5asLOM*(3m!l=G#x`/kum0d)? `[EENC_+8p-tW;rsW<^タF^G>S+>V*}{z/ OP+xO|c=^ŋ|zqbt"?# Cٵ;~8^g@w"!?/؎xqn9CO A߇NQ!ف¾ y|?!׎*}؏ط8 F_6zO]p_dث]8+C#< fY ;|P4^ćsgoty?3C˩"7^=%o1)8N}P80~~7$.G~ k_O<_pBĹ9Ղ~C}|\{jG0߇+@m.'206̟?Gsa(I3q3sdGg5y;){YDw'Ky;  C>x.e?g"~RW31_Q>CfA x zŦ8[9~oӬ yCXz2}Q`e78r /|;g= ~Jo8xq˸'Wvv/Zq5i=x^ZǨez?<#j=7}2fz}VoG=/r,Y)y^߮z9M}ԥv|D?,#+c=&Y~K!94r%sm5#@8" y>1~.X'oH֭j-Aaﰞ\Ǡ"ȕo.[H}|߁_ ?˛![/EK7eY8r|_1.~O⾆}xX8\W@f W$8՘g]/z{=!PG9^= >io|o΃i5uW'QQޝnY;{x%'y/\{2޳{|ʱ2C_~L7e}^|Cf}73-~+ f%c}/~iW=P>+|py{*%Υ0ϕu+2k!TL?Z˞a}w306T^exV .>D󥖟(o%_@ϥݰ_,* ,-v55v-}{gBΌz'}NnhBK:b_ >{Zk瀿f$!W8^1~l XUˬ(3| ^qw(M_̯?uS0_כ?yA{ N8~,[XO@lB҅Zm)7kƋo'=-[Ge29#ЗLԓqۛL U?^ " aA8t)3HeDxGX6A>Ci D ")b>$zF^DX*dJ3u|ڧ }?u_r2̠%b]͹pq_c7`I'Ϥ"p}Xxh?گ1놸*aГy]gXˈKsH= " \wѠD_a\ *;%<4%)rOƸ~q1OOl֯K:}  W/A>b̋4rc^y~Dٌw??6+7}gыcQDo~^5|E?k6PeI#`jf} HO =f!N[&ۺCnr>[ } ވͩӶ\wcrsߺQN`?oa)p`=zw7ҏMHPa*7^o8 n$;G@3vo8O{yh8 )'7of_/}V= [_tt!gQpɿb;xpDW1!W<,R&_y&h^.ML~_D1 o@_y#M6$:n~zkKYgsjPvx_(f|w5pM-kǼ2kY㽵qp-lɼ@<[xD<KTp]nSƙy#d%c^鏛0?h*'ֲTVNnG>eE݉~]>3oJ!t Ю9 םþ1 އ楜^( b1́(rؿ %ԲY"3{W"UL{¯-ߕ+c/|^ R)X⽐"hx"߿8qrH?>yvHn.azH}Ӵ(٥{CY -{ \4ur%kh3Ŭo7˸w9b~v@y9yWƼnȾ{n޺|_/zi5NQ6#[κy:84뿏f5T3޵zu1<߬w G!>qx!- >;OaP34I.;8q,diZO|Vacnxg+YoXoҟjٹ.'^2ƺs㉤ST'1u@>ϓ60^rByzG `?_ Ӿg;RK9peޱ/}X)_ʸVa_]Po}%0xlk4q3?r]ҹg~|yj=8df,7%b%{)wq\ꡜ^g+o+ȿ丟WDNYx_FA|p}֏/8߇y^Q= {? SovϳwD}--.<%2:Jd@]֑Yq7 lк?z#iP,x*AxC(Mgx\/FBz oGd(WEN6hB ~JbbУgC.] }ºv-tBOboH8-n=2u=흛XU$uL*_b[ܤ{Ff[6YĉPmB\̲,d-v<Uqe[mFi0zMŪT}&ѣ.aF\ U,K6Iw^M6K"e J& -Z%lC/%&]. {1uPY!Rad,yjnwN]+&=Zt1U0kjuKVuĬAER/data/TechChange.rda0000644000176200001440000000142712534531320014255 0ustar liggesusers]T HA۽#EL*~Q$ $Bޔ"&yyk?AHHDD?Za!EDTG !!r^ޞ43"vgv}ݖ<  Fѷ.% YIKniqyZyTtW;OУO0ڱ7/ڵ z۔8\w%ʫ_&݇gWw< o?\ƴ[WMk}#k-0 Nf3 <;YS%SIx')Mę8uI&8 |/~f@AXo ~q#L쩸274y4Z;@k` !ׁ̱_J 010h$;l%"ߎ#bWZ|?;ĈO$cd^"<&obQ /1u#foA Z<y:Epd!#?<"r^9^xSQzd6 iUCP|wv.`PQ_\α2;*[# q)W6~ 6 +@1Nk⪣Qd̙)6Q3z`[M\80v "gX:2yCe Ok7S!m-31S[aeW}bt[ncQ5JZYzتUeGVv:HZCoUBCaJŁKI4AER/data/USProdIndex.rda0000644000176200001440000000144512534531320014430 0ustar liggesusers]-lA; PiR ^]wnwӄkH&P8TBP8*iev7Ap&<߶^mٟ+i[Y^LV'/==[{;;W9Ԟ~d/8u<r#co+w~I>?cc7'[ı)8c5\G~tk ?WvQ=B_DF؉JY9#Ge(WspL\{U Òk߭r/h8 AER/data/Fatalities.rda0000644000176200001440000005110012534531320014342 0ustar liggesusers7zXZi"6!X0R])TW"nRʟX\qjnj-&2YQ-e;ىZ HWeˡVFh rʶDK|EoFY=}53!I!P)v>/'qV>\)~}HLܠrEQ:}ɱLK>*r`kA{{=$4E`d+! yBw  6kt+GwICI)*_`fsi޼ *5ܠy=y]ϴ9:iy#j93Ԇ(f"?Ԃ7|ԗXq;~Zwk+ƑV1x|z0cLUzN侽[ICPvk8 ?!@..SB\ca-[ѹ({ $%MMWTlglg"8M,1~j`~f~{\-I[ʐP&Ⱦ_05Kd6H- $?~RKegu>{ܓ? Xtu5UA;l$'JbA` lcsPmG >$,!n:AXk֚{^^9%HOvCiͼnbn%ZX?ܻ^sn!V:;sƠP-t-J՟Wtf #{R{w27$ԧ]^3ra"S '0? Zx|J)*ڼR3oΊ&_W/plפK,/B\AQ9C^m!t~G-K!0t(k:sew]XdCghƭ>9A3[E,>vt*`#obJ8qcgÛhq/"DN畒(GF`B޼mv]M_7]* A$+k*}o*WяD}Zрͯv~] ߗs4>ŻD蘻R= H mc.o+Tpmpb. I ɱ|f=ͨKl73?'I?v!rQIDݫ'T OAaG2a\V('y&)qsFm@@oRJCD1"N;q*ǦRܢ֗ 7]aZYRÄ $c=Xm-J/eDe0`p$d w5Ľ;\H]td߮[G{])zsdR -Ƙ{䐔cVg,>\|,^^/zz/fbmEA *}Q¢)$-̇e&sdr.<ūts) 9XBjVgVvԗŭ_p-2.= X^͆Ջ6:#:4,9ZuF2jY;-omU5-c_ p+i!fQ/f`a S<2R|iyj"Σ 1dʡ%a'z RY*VzC^DayQJm z3pTR&M%SAn3FG(C0A&UbOk[TCh!Á\Q 9;iSA>g!UOhhHғW#U 0> BJ3N+f56] m d.VC.I&jF]ރs6#־T}U'{Pv^?f eXj1ճV(8BPXef:. XbV` +TR-WE{K cbXj)(:gtj^F)Kl<&CksSIF* 9q*5zƗvi27Q@a0Wf ,y^ºQoʅc@gָgdֈաK"Pkϊ9K@pD3w5h8rbJQrBGbV\uhYqI]bVI +SfxR<> DG:e .f*ןۥ8E۬TBHJF|9W7&zLTdr1F{1* 1#БD`Nlza, "Z=/"94Ai?'pl /=΂_w"C&&a)(lB\l#O ZVtDz 4g=)tp#@ێ*0P?K;0Y_ M*hfPCyA=bEGڦcƘ{5;.\r 4|dD+meBXY/ @X9ٕ(I#Npq.B4JtUMM9e%o %;3 8 Vcݫg.jJ1<3_a\Z"ͨ/`ivC\B!i;wJM>U;A\N|ۛ27beV\|,u((n' oEpH:Z. >9>X`BCՌt\xsò\'^e4 jYU7t@7?!~Q`?}8TEl*$d3n#mX)1 !X4@Hl"tڍSaq-ЧgCwAQ FNB& ]k)j7WDWmӾN5%̮DzSPi敛M@!&ߴ |$4_?7,s#aDJJ4^^عEN,[Z%_I0Lwh6g񙆅G?R#9Wm8ֳoVUJsxZH݂|5m< MՔ GǥLBst1tG&K"bDShc@F{<[krf2cu=@|Y.yJomY+ MTKC^fy&K&N?(wO)$hmwwOq%!c| 8-LPDdbiZN+5v+(T4.X-NeTוf?/]WoLsv@YtBuez?BO)K~#n詃$œŅP rKB}nX&Tkl8\2~_@*ڜJ/N'n FSѢDoP4j^-I`Ia_X|t$ɘs,keO@|#cS} ¾_h'ڳ>B{3 Gqũ,i~9i"Txln{'g|OҶ|·x3Hqk#=:!k ?hLهOɨۢZl/lVM!'ž:ɣJXQgrU+trM5! sJ㪗["| br&f6F_{UMMxMحEd2Ǩ=)g\܄vzW%[mu&U6\P?|]\H =sD)cqYՖ.(/ujã{%}u;7mӺ^#TR%mDamy6 RL\.TA:[ Y'Ki|lV*l,m^ƥ@)$PLc SV+*J7|8\ P+i'/V(> }9"Z9o=Q]96gA_{cjIZyU$sz"Lf[)/yIM|e0B5pGgznCs0f..`r䠏+?aoNw!|R\U}@*dQ#?FKf_1Ē0*,ȍ8MG`Ig]*m\%Rj )QtPe]2a CۅD|d]d<ҭ$Uױ@Dc'wnG2j?;Zz;m6)~ea呞O&:&KT ~ r:ࡃ9=ڎr"7TsH \ ?R ^{g L$WC3l $LWRè&u^L!{@YP_n[LtAF YWTVxx{Xt=ʦvUazET(11pCޮS Co+\UjxSWq:;ʿdutU;n8.* v"DdPzX 8'.OHvg:9 d V1Hc~MbrFhJK J=k φO.m|VB8yK8 ͍}xoXE'?O z5hV[tlOȑg7F^ `]{{K;#y8po_T2p D@X 4z!=/%?pt *^ žsiQAl-~۱_ܦC}}tyZeV@NSpZqW4f:xv8}l&/M0@GB tPbdWEL@Nُ}?uͮOMzzc谧3QҘ冨M3úeXw~ql,fDy)gHiYFׯleO_T?MUZapwiʤ8fKhm{yNb e8JJsAW6g>Ivl⇜@q;+tѴd螊KQmL˳Qlg-#֚_cz'O, R"[Zqms^Ȩ " bǼ%7PG4QѩF+_أhO/; ysΓ";i:(ѐ2FbX^cnxֿO(u#&!ѵbf.UU y޺$5/ڎ z2=V!soW tV$5hU;= -Ӕ.(-m5)PmQ+:^ KwjI>⫕S\P&9z˞(,8%Q@3Wm +b:R -N>ءMԩw1;vͫtZ@=dЏ ;CE.H@T.'G.pAXAjB~U9R2A\Sb#A=(X*-cWP#XGƫ)}:9CO-g5?`9åoBaДI<0):"}s/*w HA**r%J$*-hbpJހԌ1@=RSqwj<|ݔF4ZO?wpE'_vBIV Apa8TɡJ+I#Y,cd Gr1Ka02Ș_Mhar] k| 䰤0drI9%>a+JrX wMa=]M=EȄi'uE_yBb>`h T7$0{))AWZWXn[걺q3H)AuziW2fzL&MF] ӣm*lf Ts+Q<]XiD1Jξ9/|x .8jELX>Gd@\]"%Ԫ ,gxEL{Vk!ƕ1 }oyÐw+ڵƹtK9Qسcm/*e(ln<Ρ8=YGfiWDJ[bf |oi1v«D/=w}^y%/fl/zÊ1EӉOn.7vdQ_dK43vX,ijӑXWUi _mtu'2Pbf)GԢ!::CḲų>`b;;`krm%KCW lW) W 1$j7ŸI9P?N(i}[g}|]U%COjrZo}˥<EK8y[nT=g]M4#mOK*<ߟ'` "%S#t:?iLڶzBz*`P8emʗbvyg읬Qhlc}QOm2t:p猽i=u k;?T Pl,> !3:ʚB0{8Ko*r6Yފ!\_\,,Gx2doщ=F hg)KxҜSȾl VSiL{g5ȩ%͹NV:?707ʒ)~{%,&^vgʳ4W#9Kb#GFhD;}%Uiu'v*dgBȣ2!1=aE4Ex;ǯM9ZVp{*g/??A0h4z)\әl9mQ$lg!CGs}HUQ~b~ģQd\T q*=@S2iw4Ota+ajV1p?gDB;H VltJٿ&}Ω^Jp3a6urk* G1QDK>BcM޳FBEopjmQPSoD4kNek1 a> DM ɩ#~2-}2{i P^ W-Ӡv4JCiLR{*Ya`IFd+42eis,A08 9 ̏j0JݐM 4G/t ̮LI#qW`'Ey*JF*g,3.T* T1D!@Ǒ j?5q0`ͻE.&h2v>DڎRr:CEDoFb7(1MSWpubYoy)U;*B'q]fDּ0'U%-оn5R$o%j4PnJoSpoFvW;h /.Vƥx޺ 񙥃8l!`RD"0 Cq&FaNߑ6qPfrfՠ>[")(nPGeߝ:1ǣ)ǩ!K>X#Z(5ӓ gTbŽ8}. 1wn2̫@ Q.abSVe /ru+m-2S܊&Ï`їC6%6y4}I,$R A(cJڞWP[ r_fb 8_KT];Er(?aZnI:IƝkp̹߈_ {bHGCR՜#5n~)߃9sȐYMJrO3YR 6_3ޚv S͌+ OI V[_%>Ar숹4Iӿq Cza_yὌ+o;!6)_=2 n̲9cZi6,i1' u4JҌ,m?Yi=jtp8="i?1<]m la܌!='/sL +%"ML9'`w?hJ /g މP=d@Z# PTtP0/*5S/ 5DXܓ. VK7t1wqY{(#.3//3,vֈeTD/HVH?4ͼ7+a3%լ!oiE<9ohխ"yt/&Uu Uհ, P]u"vDƥ}ȒBaxO)B7ټpICW3ٚQZ[LU%h1—y ngZiw\TܨYdAhKC!Z(jrXj=!;8)|NqgM:46uOSZVJ׌7"zo2]Uh tskgF + ge KN-Z~ 0Ty$4F>['} 弰l#aO =+M^;Łz[./a'T` RtnAނ9|ar#֧aND髄¸RY/ǧʠͯZп^#ն]ޕh(2AtbKl$ԘP0W ٴKf3}B>qzi׍0}B E9,WA(4- oj ?a wr) ̒ƴ>੢F.~9Nj(]9[ѽ{# Ľ Psf!.@w!Wq#*XG˔wyYŀ}JK0-LÈ)k:bp1,T.olWJYhAlhR0ץ\3* NNe M0&ALVH9=Z0tGyp^D4 8u[dUIr`Hèorz.A=/gg#&)'I|$󛃕:*ݠHށ,l߰qRKNxt6@k''?E"^EwJ`ы7u5ݷ*$ o(>'Cm#=-QYG ,}>bufXuZ&Y@^?N6G'ZGatls*Tpt乼ҁT,jYS!dFօ/~"rDL ^eC9R#L?w}[44:?9EySNc_އBv[y4ZHKum9K0cZAgAqɉ tol7;]Aq[{ };.hXj긖†2ϋ]{WevAMQMyhwΑ}Aȗ.#g#W1결>8JuĞ@ r>l| Fcc%*#iaakk2_K^gbALorgg넎D}G?_HZgAN0nq?,pw8 Ut.w4Rw&ѲeI#&ݕbK"ҋ/.=yj c/.B Aq ̶X,f Aqېkw%)#~3XTW)zwFQqb&CnR/6Gg,̽iȌO<]D v1Oᵋ(|wé2} iYaf1(JE}ET.t-UQx5CW{J&A'F%{f Eƥ,b)= 9a-& tC x$/PQMkxx qu!]&ՒHL8W,JYA۸ @)nS~ʶ;WbR2ojE͂mHTyhhFSsfH(T!ϴt" \4AxTpw03ǿ}/ƏVE/4I: y:GZ/-fQu( 0Zh Y3>Q`\Ƅ="Z8=M^?N)ZI 4&Hl6c`ܔ:9;[3Wt8Ùj^c;({ Qp`ἵcM9tRUNϓ! ثn ="Tޯ6[~ d |pL!d1_9"*+Q1; Hn?J=*32Ú,'r8sv9 ª`=\g[79?6@QnZ7=Rr.g LD Q`QVYPg]Z>"9e(h/Tv~6f+oŰZ5, )}QPQ2sыHJҩ aAL[ɗUԀmi%o8-Ձ4K5"W LBe0[~L_{Ģrlk=bՀ.%F 5\N _^_FuQlJh'tz[c' 'hFQ~@Ш WL$CZ5 7yڳu곛E=:ay$ X\%Kp02|C,y> &{~5H!83όL8ɃbMeD=^[w=/l?g,_`kbNn3[PfЀ=:W8bA׈xmC+D4u{% Ҩ`΍i+oa,$a7 @tˬ ҀL{f`O|CPl3G!Wܒm!W] >mV4@ {7_9GA`% fqdz}a]yqd}xE-&QՉ_ (p$d)o22[;޺3wgs$yLn+^-xg.4 GdD] !WW "}Ө1愈v\ i ӹUTBhCKԊ` u+ V;Q9GYq;ƫ{'ahEl&!]1X`诹ڜvt(ܽŅvR7U-& )'R9HLb_G?V|uM-zѴrwļH$R5UJd4.TY2.>ˢ˒Bb[l3R%pi L%e"E[ˮ!Aik>cy1֢ξw&7O]cW<#{*"8fTA7tgQ ^y=|Èr4Le*N.MyMȢ82; ,jK\L(ȗ2dսIw6{HhL"|CrÆs3+{ͮ _#/^nɜ:SBӄ е!iI̚O'ql~; V۷#OC3ּ w{Տ:Uq3VeFpK\84~NTiQÃ%,~,"xZ[}`ZV_1 15#;\J ~o:j,x ܲ_T2![G,<P;L w`{#fq\(VGUԳj?%C\k->M% %ɠ{#P֮S~)fB.!z"Q-k}PEn WoB0 +\6vw"D69v%©bWxof"J UC de9z^th|^+/#*,SFo( ~` %a?^OtW'8tw `Bȥ;idNFcY"}{O+s"[>I/ Np_?eea rD5>ʫAlIx2aek5P㓾[LH4a1y/Q.L*g>^yç \nۣb1%wĔ; j*OЎl0imz0& tdq#B_50@#X oY/9f`6Tk ay:0m&ʕ_VYcLHс"5ǙE*ľHWvb -K) ]%%0Ix#_IJ'!ÊBpL#,剈'h|ācIM8'cW0HU;wtg8ʄhQ4L>ܽA׍e&ׇ/z,i Pbu $nvQ~M&{i<0 '9\H} hlM–Tx A^62l%^%qSdvLIr+S :*g=bHpOvڡqmgcDu`z^-sijfС{Id.fȎ4>W +2\߬%1lIM]}*0plk{l֧wh*s;Ǩ8y?Dhy},x !5(FiaAhU۩p.p @,4Rdbס\'v}m3C+Qk/@J6 vAWYjlb :2FEtΒno4y4:>a"IW||1EUVmKh8nZ&A5H,ܽQqo&9 3㓅%O"Ju =V k0]"No> !T $@S%\X6VdT k U,: >^VV:A^i-aö/ɽ7} bt," $lW݁Zm'SKKFc ?m|lX!Ӻ=K9>r+~F6q0R4mCutQ3җ!X|9<7<|a"n Q/(N>txއPex[Qg=Ī^fWl ?vtgN~ʋ4:Ws8[y$"IE7b9߫yJ,ǭZ-.wE;4&񝟿*&q+;UUfi !p9?FeIAU:Ô/=ɴ'jg;Zje{!Qjo5>fSF:R##XfaY{?pgθ엹9--H ='!wrbz~Wug~=^bm^Eh.IRt:! >lO>W[tD:$$zRghXŹ!4[^a]ӽ2g`OI`myፁ5Hʆ|[n5:82;/JU+|pdaBLMoOkg)̣oԾ7ROP`!]>'r\ʆCʺ(wט juh:M۪6p/9mNJS>f_ S,z[#֢B\LO6,Cr>6M쒕`g4ìli'ǃ PNhܺ2,D 7_/aśq1Ջy=[UK 1=e{]uVU[Rb3/Txdhd#"ʌ_:ǁۦ'ݻ{^Dn~o@@Y=l\*-Yn3ZXEGqFBC~u}D"ҿi<;u|%&<%DK]o+f xDUBdaqǺ SRFap{TwS,;sȁe/%V\4I6MD=ݏi'ě!’QxXFXM^>R )) gVp^~^4"D :Xc?êYP ??͝v;X8wf㔱i[.EG߾;'?uly:YtSO, ld‚!栠^A^z 8!__[u?BC(Fp+.^\U'K` 85CN@PµGl#VsVE%? > qEh2Qͼ]sD;Kܻ^ nzfХfL}ӿSz~L#U~L GG->5/Zgz]WNߺ09m+d7&+ TEQ%J{ i5MQT(<<Ωf^j"ί' f:P.kzǫa|!H'(H$SCw!0[7LךB}3'.4JiTK,v0ĸ/vHyu Ypߑ~ 39~gpj*ˢ:6-5]O|ͣ(INʵԂ% Ds$sut*O2w" &a\ IJi.'JzY\)Q>o4۫rlHJ v7ˬXAjR]~@<5>41tԅgUe=7b8 $-dF^ēַL'WaXCPy(VEm`O ueZmNfωf"eԙ^pn<$?v7 o(( J779"Lѭ$ Jc>T#} 1< D\7PV|W}9O`'?j @],4Va"lӷ_yz67|n"3+2iӴ +Ɛ5F slNΑ`3 <: k'䋸&969^а8p./*0 YZAER/data/MSCISwitzerland.rda0000644000176200001440000007060212644737744015273 0ustar liggesusersw|UU{Ć+bW] vņBH9+"]{"}DłM}kS^{Y==<}~rW?+[;УO|Y]E]y :#Q|SM;랿<1/o꧉[M}w89Qֺigsմ8Qx[~M=7nʉG&fydu7,Q7}5RZWKϞOͨD.W!Qw=vrJ~=%}y _M5Qܽ`~KKON}}[>4 1i]更>01i훊'||Pb= 6DM&ꢓ~IٯnĤAcnIyS^^߻ru/S{vDݕ/:^=%&zz'Κ#Cngת?2XnAߔ'u'.Dwܞۣxu3CuC.ouR9Ս>mW}>lxuWȆ$&PNk'ݞv%궥~?=:qzbmx+Qk.yZ3iKo#F'>ܝ%&yPO&&U{NIk҂:1i'nlbBQϟs{ߙ=w@o!'㺋ywT~cWi=tD?=zQj0(Q_S9?sMPy$s{zQ_C]S_tDի}sS.Q_rUT{rVc}j7ݻ褟^I?LyTsI}{ SU?p.o&գis=}bbT&o<N91yú_uNb'&p*{-PGOӬwHLKg|zONL_nՓKiK ߘLamL?L^DÞ*ɿޓQ;  ۫hءgwI4~ t~~2: t\ {Dç:7U|[ j>=&74lzpkÓ \\ _|6ziFaaO,1eMBÆTn OYU3eєCS.rmOq NLi:?SfS-%~ʧjUOS^~Oy]:SV}6nrNɨ7bDG=YH~zиBƯƷt]gWilWU)i?ʼnƵUoWEf%WS?>渞S;ÔwJNd[:?#>wQh8@W)*_KqCs<;?m[_ߦ'=4n8Npy:&Gos_LOFgrMש64u_McΛT4o8A֏F#w2)|y&OPoZ{y7M+9?MACxgRO1ngUf7D.~~4oyʻDchU6}/5Tm*5mޘhZEi]G囦˻[цSoWmjP=mqi'k6jWMp}c6V}j:@UӎM%MuMlGmc{z}lt #~|WՋ={vgD)j'hjN?hLYkAya =D{ԧD':ڟT?~7?ysŜ/_68Qh:W MVM˓Sy:OoԮ75?l%y)8Ѵr\v׼f|Ʒ]Uo/UZgZZޣ<>V;hR9S-wklXhDPg-ﵜ~vݵTurGKnU+-ՎouU-˵?vx>m]4NZ=E⴫՟M2m7qm~`U3}z/VUU޶nzQjg VU[R;i}_{kDmB{?[֏4>z:[CU^m{뼵U֠zv-+zXqmW_8WN[?fuZyn}\^׶y)Ͽn[_G[UԾ[kh]@۞jm;k\mDA*|^϶muڎWjur|wk|o{mOh'5JũTS_M)?v~FSϫK}~8}w:Pߗ^]= {_U?.bHmH-W[7SRgcz_>Rtz=ojKurCjGɧys?%~M%Sv<1^d}}rƅ/7iOjTu<4t^񳜘GT=!:Gs^6$_H8,j|KvRwM.\Jq:5ZWjs/h˽ T~zӣ)!RjN1=YnTHs5ަ TAjT.ޥ!Sܬ9YQf.}K~ՃlOfSjwWr\q!S8+fWSSO%h>q&P+unMPr}n.E:-c:Tr jns?h8FdqxۋUO ꟊoTOn1~x"Y vrn!z\@Sx s7kp/k+ V=,m(=*=\NY{j 5O_ʻɧ屪G}T[_*+>`|Cyғj׫^Y:rҝju~Koߦ.wW\܆󔓷5^q6UV|rKVakG/wreyz}gw%WSvs\/^Tgv/=rYn{i+ᩯcǃt ~oyO=zRg}qA6>:ZTjTF>W>v6To3Cp:Qw3cT27de>UgK\ 쬾ry<3dyZ1lz] q|p\Sc ngJnW5*]j7&,crA9[YR!3_g<붰/jhʹlկq,]G7R\\ʛ*Q [>/s+|CǙUNשz\ؔ~Jp0;X7]~5dVǟڿaگxF&:TT cx;|^FOc~w<5ƒK)q:Վ _mySNd3޶^P{ߠ~?E~maʱpEXL,:B~pƗ4~OYX7Fy\z^H ޹}Lqq<Vw w¡ ȝA .g/ysPܽ~̽?~dk>,7Lץ XSy7?B{uv wQ?z!?xƱ#|Xk%zh|*SOO G/s+;tADaݾ{>ECn57G!B.:yv|U\qs4y=(W:b:m^zc)G.?|Ga>ԓ[鏖s=6A<OFq+7]m|S?C?zƗ wNT{o3mϨ^0F&YdkUr<ϥ|@s(!E][/T ;%/:hw ooKXqqWa7uߺ8H/nMZXx(1OgN|G~|Pl:՛≺R.G~ĭop=\Rmơ/\uѴﹾLej7Ŵʯx>X1^~\MdS|bKW_x[|Ix,y3νH;{L)O}p(wKSi/-X؝߳SiK~q2o\@{['ϡߟD;Kp-i'}GMW;1,wP߅3(GCN^\'mԓ}rs׻ccEY\z1ZWlV^8}F˶uq9&/S6r*6qr>r,V{s{ASi/^Tj}DV]w|WU@mՋA3--T. :ϥ5VPI4_[z^4rz}@z%ț,UJ^WqKu^KK+}`ؖ˓5/8V!e?ԸRt^KuߦoGe-GjoeW^z\0u^*+kmeS}cj7傎\'T?V>&qk-OyWE_ruPZ֓OKOKåYS?T NSYKť[ңǼK4E{AQ,aӸμR+8ks).]A^E%~8R(}˩'qoӪe˕i?{,V9oqP;*߭)|cJWA\TΨ?,rlr|P>zʧ%*QWL~|% Es{E9T~~mTcN[+P?^u\ɣ ٿC ~+Fnt]Go غ\V}#:W5omTs/hrG>Mn)_U~c{_GVznU~6}=jTsK_k*\}U:*&*\]j'uT>a1ɭ}S?7|tW{^d|Yr[7}fޗ)ϝhN󙚯rL<8Kq>7YPڛ|_QczAzƲyn0Onyds_K_M4)}Gz g Gly>LWaN?*r[SْSԯgTΙUvޗ^7Rr)r}o*lEvfγzdջlB$sSj5ndGTٛGm*0ճF:u3>ejw՟fR:oo4gjoOm{i0}Ov,;J5yէSU(oTLC~)<)vq/{۽jgq|I:~8q+} /;&vgmj=4$Is3.q.yJz{xTB 'QO/UoT1DcOWpt?V}6n+{wW;U#UGkj^nT}jLVPשiS7O<[5εo@rO/7|_q@տcȻ\>Bӱ_OB}۫޷~/Կu koxqwwSj4t !/Q&QMWx15,u<]Ej's݌YME:r~^ od +#_~ڶݩo׶ oɧoOKa?ҶcW|&} OmzJ_۵FZoT9fȷ'Om%>n}Nߺ~h=Cg2GO˼j׷ަպ֝uzAZ?9ql:VyMytOLMi3&j{:iu~_t:u%+P.vq\<nW9O0Skq\uRF>qo۶c~É϶_ G.Wv"Qm1jj?m? os9=Ojmg>MC*m;xNfhjGϿUoz׷m{OT)Y;QۏU=nZ~DoM.k[jWG?t_c}gn}&)Tڷڧ?Ϣ-7vq7wkI'`mƎuڿ?~?}oT:b|gD:Gj\h~w-GwLG1/Mgǡ*3T.\:Rj *Y}'W@yt|3yFjɝ䤎p_؄yN՟%_=h?S>'KrN}(6NY؞|/oIp<{&y8SZɋ?0_aߌ著XKnFy p|{Q30N29 y)'/ר>'oYIurG7⃬wrSy=[\Sj\K_'e~2<|сOļ56WvG/8?1ekqcCw:WW;y b*kMܯzS/ q1u/U>HԮ7fV>ݗIv븏ϥjoC9_߫>m!-|~%uIIfj2bAẏYL!gh|O2ƽoez6f{ }9XIf]._+ƧܗK[oD^Kujԯ(sԿq0ns&n|\oN>>We=j+yjǡ\P {4c s_Oӧcqc?|G;9?urF8tx?qr1*䫪O*gzlba<T~0s,|տ 7R^b>雔ck|b^USo0_w=Ih*gG+h?˛o\1V葉eX^=55 7e6g~̫ܝ0w_ש3}S/镙ϺzrݧJ4}(}nzgQ*!+O׽E/=y3^x=~}*-I& oz7=rumBy/E~,uIu2[`Cl#x~pѼ~SyuK0^󊆪2ԯeNW;$O̭<yX#qds c+G&\3sp%4_f(9*sw\n'Pg=UAʏG23:OߙUQ Ƴjy޹6ϑ<2癣?g89۷eLzq {!՞;<?M٫_f[7 gܲ%Ǖڏl|y5Wkv&Q=ޯ-x~ϽTy:9_sҗ\}+eոBǙ۔xj4ϟyú$nbS[)wy_l|/L~Ocn'aOfUQ[>y#ٔ|Cؗ灿}<,k?r7\yB=xn7/m(Ȼ<=jWV8_%R;ϛyȏߦo^@Rؙ<y _3?YNLYZa 2 ?S[X/gHѸ=y2{{oAѓڿϊ1a$ 'J[:䩭~hMT#ot.yw}bqg!yx>wQ\HS?ۏ[e|-=6ɿ{EWݡqԖŵ5>vqsWέ{ۋ^߹Y_;}Q[7<~IxIujrQN?Wݯ]iSVr{KշПMuK GTߨWg1~rS,V]zUֹm(xzqw]6Q/Ԏ_RmvymO'W}A.QmP;t~o}?[[٪V;?;AQyDC5sZ^i^fs?Sy^uk3e3_3.@># {ڝ#gq#x1I[UgksGxSfqT_PW=g5V}Bu`uuU<_yR|7PO%7V_W?nvTHQgouj.G ꝡq ]U "Ծl;tP݊n{?Սz}YC|:ׅʏ2o5/bpgu?{躸EY+ xV2ouk?#nYS)W|4;Qzys4Ɠg+i<,';/2 ]e .Ʊ?3_0blϰ~@y[|y}X7 (̏yzt6aG1<ѷUg'zz!Gu0y0ʻ/ƶ|\>ZOp>{N-'~si<&m]~̋ޑDSQ.ӹ8Ɠ ̧Xdj'Yx1K}c]R;qVoڬ?b3yyX9<;T}ȱNVngn/݆u1_k!l=v\Va7zl +z-PeT Xa|^z{ >N{=P<^00yMww=)nO{2ՒOKTZ~ c=,j̻=u6b?=ra) Yt_L9Aw'YXX_):^VnPMǑa<7v[f?\<(%=uYO=3_NgIݾOɎc9?7Os)XyK%)E,y&Mszٰ^[RisM?qÙ J<mSXM_@>5\Nȩ̇ڊCc}z]Ǘ,:o'#~^M听'o]#ٟ<ֽot8˯9I3's1Oߥ.vou~$k|}dToY}(=T۶bZa^]+J?o|cTsgsۓ̃A阪8y[<|Gޒހbuއ5XlH^+s|w4b}_0nօ_B>7̑u=o;|Iٗ|w w#a)M?yFjydےoqcwu$֟?8j˘w[̿yQvWbw #q-5%ߪDS*mď$ey:2d_f?ևҏj23^Or^&9a^dژUu_^N KGwºFM-y; = #9|d'?|[&O=c>gV]# |ͺćŎs6wXC-X9bY`6kzO|̳|/e=؅u`Xc&gNj/mpCc>wٝ?|}پy\/:m>gS]S \ ;u/z(]X`_=?u*MrW le֏߷^=0zެQG~BLr/mϧ˺ EgtSXmf9K?5۹wgG|knʏ׽ܟ܌77X yf=e:l@^_;MnwVȻ,L?|6ɣ$?792MQ9g/dQ~AFv<췬{-e_ޖ~w牜CX?im?z"20?!fW~q8| lKQ[@F6^35zs5tX?!D9xuݒwvҿ:O?'~v#>Y$z"6r7m9}~k>b~/(l7~`}<ߗ|7#uG)w__y\zwθ;Vϥ݂g^c_]?֠]Oyvg}~Nu^*S]Ϻf!u~W`5^׷ĺy/;T"8#$=~?/"~$y[}qɑ9u~%[N{_Q5 gk$ָg~z~2[u~w{s|XMubX{<*aE~8oh.ɓu^:HG\ʺ#睸v7Ys8ޯٟvq#b]'\>wc{_C=9Iyzvo=uV3Y-yý*y?XiϬ!7NSEz ]yo{`wuVO1olѷ}:Ʃ9#t]݄q4wf];_ff1ߢef3b]={|{ch ȰzEL߉}\Ld2+}xe|UNg4nmS/2Q,9SǕSyghbY*[=w*ss?xu Vf948?b=,wђp뼥`$JOʼC~;ؗ3X`6Bz^}[_<փT6)NRݥ<}m:>E1|`W'8x)W0o>_=1_pWS9#ϵ%sjj--> 7#Y`ǕS=HfȓO0t:nO;g~kܮq1ہji}''/ӕ?7u4/zyi?9B; ~f8@u߶>ϭPyer_17e!yYyԎc{ksuF\?ο g>5S_L~~0) _WLv@p_c)A:y+[u=owo|)pr\w}XGr]7p=1+IoG #.Q^8~w/:qC@>+g"/hǺG1"~']Oۊ^npm}~sRUѽ]/_oo*)t>'w%71G̢'C⏈?"x'ğ/$^HJ)gğA_M51E/&[#^Bx)R$^F'⟈!W_F;,j6~D17qV&^xUW%^xub@kE6KLRSz'D<6 ވx#⍉7&ބxSb=6#ޜxs-$LPby#IGI|C|,G|<'HO%K|2ħB|*i,u:gE|8qgC|.G#6𶁷񶁷 mmbmmoxoxXB񶁷 mmgbmmoxXN mmomUמ-16moxjx&616񶉷MmCMmmo񶉷Mm"ސox&67!&6񶉷-񶉷Mmms+bmms16%ޖoxx&69ox&6w%&6񶉷x&616񶉷MmGMmmomox&ՙx&6ćms416y816񶉷MmEMmmoc񶉷Mmm񶉷MmDMmmomoxx&6y616񶉷MmOMm'x&6y)16񶉷Mm^AMmmoms16y16񶉷Mmmoxbmmoxl&&6񶉷x&6ۈ;񶉷Mmm3MMmmoybmmox,mobmֈkx&6o &6񶉷[񶉷MmmvbmmoxۜAMmmomoxlbmmox|ox&6!&691bm#&6$&6񶉷moxx&6x&6 bmmox۴񶉷Mmm'&6񶉷͈ox&6_#&6_'&#&6񶉷Mm?bmox&#&6񶉷Mm?bms16񶹐ox&61񶉷Mmmox&61񶉷MmmoxbGLmmox$&6񶉷MGLmmox$&V?b'޶E-mm o[Xx޶E-mm o[񶅷-mm o[x޶𶅷-mm o[x޶𶅷-m !&ֶx#޶𶅷-m?bm o[x#޶𶅷-m?b '޶E-mm o[Xx޶E-mm o[Xx޶E-m&#޶𶅷-m?bm o[x#޶𶅷-m?bmDbmmk,1޶𶅷-m?bm o[x#޶𶅷-m?bm o[x#޶𶅷Xx޶E-mm o[Xx޶E-mM #ux޶𶅷-mm o[x޶𶅷-mmݶm o[x"޶𶅷-G,mm o[x"޶𶅷-G,mm o[bG,mՈ񶅷-G,mm o[x"޶𶅷-G,mm o[x"ĚA-mm o[x޶𶅷-mm o[x޶𶅷-mm o[xۚG-G,mm o[x"޶𶅷-G,mm o[x"xV1޶𶅷-m?bm o[x#޶𶅷-m?bm o[x#޶𶅷׉𶅷-mm o[x޶𶅷-mm o[xZ@-Gx޶𶅷-mm o[x޶𶅷-mm;bmm o[x"޶𶅷-G,mm o[x"޶𶅷-G,mm ozvoݟox&6޶񶍷mGlmmox&6޶񶍷mGx6޶񶍷mmmox6޶񶍷mmmox6޶񶍷mMmmmox6޶MmmmoxNmmImmmox6޶Mmmmox6޶Mmmm{41#6޶񶍷mm?bmox6#6޶񶍷mm?bmo'm{,1޶񶍷mGlmmox&6޶񶍷mGlmmox>ox6޶񶍷mmmox6޶񶍷mmmoxbGlm_Gmm?bmox6#6޶񶍷mm?bmox6#bDϖox&6޶񶍷mGlmmox&6޶񶍷mGlmmox&6޶kx&6޶񶍷mGlmmox&6޶񶍷mGlm 6޶gmox6#6޶񶍷mm?bmox6#6޶񶍷mm?bmox۞GLmmmox6޶Mmmmoxx&"6޶Mmmmox6޶Mmmmoۯmox6#6޶񶍷mm?bmox6#6޶񶍷mm?bmox^@Lx6#6޶񶍷mm?bmox6#6޶񶍷mm?bGmmmox6޶񶍷mmmox6޶񶍷mmmo;xOGmo;x!v𶃷Gmo;x!@bmg1v𶃷?mo;x#v𶃷?mo;x#v𶃷mq𶃷mo;xvq𶃷mo;xNG=񶃷?mo;x#v𶃷?mo;xNo;xvq𶃷mo;xvq𶃷mo;xΉ8xK?mo;x#v𶃷?mo;x#yxvq𶃷mo;xvq𶃷mo;xvq𶃷Cmo;8xvCmo;8x[lmo;xvq𶃷mo;xvq𶃷mo;xNo;xvq𶃷mo;xvq𶃷x!ęImo;xvq𶃷mo;xvmo;x#v𶃷?mo;x#v𶃷?mo;xyo;]x#v𶃷?mo;x#v𶃷?Jmo;xvq𶃷mo;xvq𶃷mo;xYHGmo;x!v𶃷Gmo;x!wxbmo;x!v𶃷Gmo;x!v𶃷]G\moq񶋷]mox.vq񶋷]moxH]GAx.vq񶋷]mox.vq񶋷]mw1v񶋷]?mox.#.v񶋷]?mox.#.v񶋷䏸xݓox%.v񶋷]G\mox%.v񶋷]G1v񶋷]G\mox%.v񶋷]G\mox%.v񶋷]G\mw,1vq񶋷]mox.vq񶋷]momo񶋷]mox.vq񶋷]mox.vq񶋷]^GL]mo䏸x.vK]mo䏸xbCϖox.#.v񶋷]?mox.#.v񶋷]V񶋷]mox.vq񶋷]mox.vq񶋷] &Lbmox.vq񶋷]mox.vqmox%.v񶋷]G\mox%.v񶋷]G\mox%.vK]mo䏸x.vK]mo䏸x}ox}ox.vq񶋷]mox.vq񶋷]moxBbG\mox%.v񶋷]G\mox%.v#.#bmo䏸x.vK]mo䏸x.v[ϖo{x#𶇷=?mo{x#𶇷=?mo{xHLAx#𶇷=?mo{x#𶇷=? !G=mo{xxG=mo{xxG=I=G񶏷}mox>񶏷}moxD}G|mox'>񶏷}G|mox'bm[bmox'>񶏷}G|mox'>񶏷}G|mo{?mox>#>񶏷}?mox>#> >#hbmox>O}mox>"1񶏷}?mox>#>񶏷}?mox>#>񶏷?ox'>񶏷}G|mox'>񶏷}G x>񶏷}mox>񶏷}mox>񶏷6b?mox>#>񶏷}?mox>#>+x~ox>񶏷}mox>񶏷}moxLbG|mox'>񶏷}G|mox'>m1񶏷}G|mox'>񶏷}G|moxox>񶏷}mox>񶏷}moxxox'>񶏷}G|mox'>񶏷}Gx>񶏷}mox>񶏷}mox>񶏷%x'>񶏷}G|mox'>񶏷}G|ճ%Abox; $vGox; $vGo vox; vox;BGmv?ox;#v?ox;pbox; $vGox; $vGo bG& vox; vDbox;v@Hox;v@Hox;xb?ox;#v?ox;#&oox;#v?ox;#v?ox;h#&$vGox; $vGBG1vGox; $vGox;Aox;v@Hox;v@H`.1#ox;v@Hox;v@H21vGox; $vGox; $vGub?ox;#v?ox;#o vox; vox; v,!&$vGox; $vGmU-1#abo䏄x;!vHHCo䏄x;!v8ox;! vCox;! vCox;bGBnKC?ox;!#!vC?ox;!#pbo䏄x;!vHHCo䏄x;!vHHCo䏄x;hb?ox;!#!vC?ox;!#!O$!ox;!#!vC?ox;!#!vC?ox;OLHCo䏄x;!vHHCo䏄x;b?^GCox;! vCox;!m-1vCGBox;$$!vCGBox;$$!vX!&$aox;$$!vCGBox;$$!vCGx;! vCox;! vCox;! vyx;$$!vCGBox;$$!vCGBLCvox;!#!vC?ox;!#!vC?ox;|ox;! vCox;! vx;$$\HCox;! vCox;!#!vCGBox;$$!vCGBox;$$!SoGv#G"oGx;"$ގv#G"oGx;"$H#oGx;ގv#oGx;ގv#oGx;ږoGDx;ގvDH#oGDx;ގvDHx;ўx;ގvDH#oGDx;ގvDH#oGDx;ގF?oGx;#ގv#?oGx;#ގvt"1ގoGx;"$ގv#G"oGx;"$ގvv#oGx;ގv#oGx;ގv#M &$ux;#ގv#?oGx;#ގv#?agK#?oGx;#ގv#?oGx;#ގv#?oG5b?oGx;#ގv#?oGx;#ގfoG3v#oGx;ގv#oGx;ގv##&$ގv#G"oGx;"$ގv#G"eb?uoGx;"$ގv#G"oGx;"$ގvWv#oGx;ގv#oGx;ގv#- &$BboGx;ގv#oGx;ގ#ގvDH#oGDx;ގvDH#oGDx;ގvLHc'1#1ގvc?ox;1#1ގvc?x 1ގv<ox;1ގvcox;1ގvcox;x;1ގvLHcox;1ގvLHc'1#x;1ގvcox;1ގvc8Acox;1ގvLHcox;1ގvLHcDbGb%1ގvcox;1ގvc:δ>ACzZ-XTOb4:6i>v7,]IC7%ҁ;o'޶|y~/`E%ZV`%"=!;wG{=fT0`TzhRvq̇'Z%%1?gc6JC]3HVj&IӘ76okׇϞ2a=`a󮼋(nz{Ycͱѿ;wvg鳺n^IU,fqI=d51/0vM>M]6l7q1s#{~_?K4v."2)8n WVC.W@B'SgvKpt>w;k)wΆ^ִ>wx񶡂 n*HXݥ2@_V[Yb4wbm Vmb_Y@mXHHȬ[m sQR J3YuҎX;!He<ڔ(_0f].lPA[[[amE x^ w{5DS2d)Nף##JHbM1B!Ҙ!"LsNa H1#.Xр3JhɔRB6HBRX۷өsqpR4 u8ѳZ\c.<z:o[%eYu{#>H"A (""@ૌȺ4#D(Ж) 3hYη[]9W (A, L "ܫ)ˁe`"0fDc3dPѲAE 0l4!$ǽMhR$u@H![L, ꪅ%}r{@4Gs( vB$.f=:֌,hņk38pq:DcG= Y֘ |%H*F4ZzPddHZwo>LZC 䇩eB>5"kDN5gK3{5PS71/- d"L#R o |;S*5i6!vGΛ{Yd/&PXRԉD$KZm&Co5Ė> Y]S켇BX2Ht w=[-f9N`Jp _{!Kg}I=>|ϱ a5l0 @Rkn0a{xĤk qĵl:3eYm_X* K( 9؇2۰*r͙/Y}f"N!3E`(wzx$itᄉ[,& z-,Y̺`KVێˏh) ,9kĴ@r`ws ]LLy;%ufb ) {!=t7THH>bqdP,wT($L;s .7qsC;Ŵʣע5׮K)tPq7IF^1 j^Ka;nh9(H]Q{ث9 ׮ױ$m^XQC&!K-d$̘I. y_2b!H V R/;[k["[rJjAxy1>""<^UAeaב%-${a3NelndKun=&>PA3{؎Ւzr !9 6 & rv:]VC% n wrr5\.A%ȉoPuJ%&j0VnH&;ppcTW6k#H#sR%3$乑 ^̐J|XAUm$I g"!"BDIl$$uǸO}.Z+}˚%vw: ״@(Ъ]ĉeR%<հ$ǧ% $\#)Biu}8$)ݛUpH,qQ ׬7i qO1/.Y? 0C 9vKBC-Q +Ivx93a9V=_kE&px蛑qoYN 1gAȻӽ"M;ì)`zK$Vn_YaCܷj>GOy@4KK JK`JrĂ̒4c8J0F01acf09acXBLp!egY&p)egYp#Fp;v0an9z`'$B&ȕXV <  tAER/data/CPSSW3.rda0000644000176200001440000020222012534531320013240 0ustar liggesusers7zXZi"6!X癌])TW"nRʟX\qjnj-&%kXkOXQeT@uӆSDmO`YP_jw 5tcԥ >JvJU#-~q<ʪvzdq|71Au0Mʁ"N"UJ5!fY~zA7qS4v7>U쑗&qp bЀg9EvT-(koXg39^:J;yy[C9̻}ɚJ'!ǣ_l&HUO3瞲X]zp}EļgH{?`GZFFdا'QKaEq4k?vhL  Pk$4 \%a߃ddמOz5 ܢV 8,2{4+PJ@ SUC:AAar !W NTІ+Q0 R닶|VV=+ }XG–H@|d\"E`@KE G32/#gbDѡ]g?{m+9wff:<@BDyn4Rk@dt<338rmRCP=B07F5z.$9*HXHm#y#i* &XVLIM\rMc0rA!/ζ}D U(~H,ט6ۄڿEvzu XV&h#4}kkgBrJ_yo7ٞn1Қt䖁%x+Gkhy-Gp=kVbZ-NGMzx ='q^t&tI=F.f7Ǝd|XcR+7,itGCV"i7-lbN@5 >\g^IE(8>%-hp讖L5*Ǽ1u0bk|3(`n[<CD[&K/+Vp«{6k1[5( &T J&N' OB;3e:O{37q<7+0k'R5vnI"F\1cpx"HCڏ_OB9z4dD[2<ꏙ?R[nV́{8%}8,̮} ܤ/8b+&icuXGT^1;Xκ<I쀧έ=l<|UNܠN?4 1aiѬg0VU RKܺ*v e HpV/<ݯ|}8.Ȍhho ͐qHϴFTFJiֱb3 :0KmX+B]}o&FdJE$u rgAzgϷԸ1[#E©QZêƕ/uT6ڃd͔8,^= 0:8wغrݶj{e6~;#? :g/h?"b3XLOXL*x.:nwmP(%D';*-pvϋ?kmIBk<,0ix)Eop 4c'>E:ܔD]6AL"+YV1όw-3jV%kXpK7 6:Y mU@1~;gQަ!z*L% R$TX}8n+G~VWsoG^L5AsNJ/WKkz,3ЈiuƬRgkCn4- -t,`p5 Ò"޸&ŧ1[[epPiSJE~K0N 6&);V Cws4#N(I5f&SM$N<ԾX|tgTrk &zxЗB->hd맩lݿ^3}IE/zOj$TLLX0^Ԭr o zG};a=2KX{7DL%>F.Ħ)ޛp&m@|jkC +ս& ` =7BP>RVHNoƦFT5UfK4TqBTN5GOid|fV> mO`Z0ȜʌCtTF favfAbZ&I6dA5 f}LcF5(%;G*dTB?0w9d@>K#3I)ݔ(+^Sb9 4㦆F%ӿa.[ю36<,;\bLnr_ld%l[zD&ޛRr$E*g0Flx@ja>ɥk#~CIe֢z4Cǭ=,䛐~|QF+4+#@9`ilXc,]I0?RgY#K;|xnb8HQ2'd{z&;0/~^ fmAgn6ĴT.㈄~^(MrwCõը!dJBMWhՐbi { 5t iv#[')PZ0/<} gR&A`Yu*"^/6Vm0ZHF4uBȈ7p=N570Dٛ>o]A:Z d~^oQ kv|H'Jݮ^Zf9i H*ûj#a.D=I":`q^" H"<_*\3Cn}׼ܣ~i3Dl:b4KHYvtLmE_LU~`x L+i$`#^2zMJu.^shUCݑ&I̙nBs/OIsD IK<'ܜgbROƄP(V3Yʼٵ9k-1#l=e\/pٟ,yj}gNqpzQ zU8YȐR@HAFnŮ鈦h:kĀXh6. IT;Y^2] 8Ytc.!#>3lZ|֫eHCx? +f*`@n䗎V$9PQĶݠ)zsC=Kn \>IALD@k;X6{:ܙ&L--]do= r~[ FŰ,ђ$q;YO°[u G wAࠡ^juZ (O1w%Ȍ{@1]h<ș9ĸA0W9 bv7iEΥ8DLQ8xWAJ:E,%ш# zja4KE͛kA!bbAD|㧐DGc`]>d N@>B#Owt1YDUӸ݊WFDos }vÆKR䪅%xol!$sbh`v/+n'?9|,ݬkuЮJ[jz"yYOې6r/\(vRo;XEVZFpn JY v_.YƂ9mrDŽl<8qCe JM}${ꖣ٢lTց ;] .qsol3(Q/28S?闘S9;YWHL]4Ė/z hы5fE<VYq*A2>lriOl\5zψX!持\57:u=)42!$6:\މI͆us PYBmxEnޗ; d3ȺAp (MJ쯔(>9WΔvؼ$?J+T|:Wpϖ1z!V2E\EQi3$aJUɭ4g97تƷB-\+ eF0 1Iv;]C}z莆_neqk]".{qed.T]) ><]׿q#O%Ӱύ@;&mp_?72,?zS;ݢ4t"Aۦӷ[>19!幥EV"D`SCE1 3Ҙ'JO:X ! x3X!1 mhh'^gn z1ײAj캺Lpdli7K"&zl!wW|Yjɓo`n hZUjQPICZgN]xyۏXcpnB'"d#Q^_L՟u j6Ɠ$$F//|a<aB| t9CڠUM«2xc;RF);=ɕP̌uDvݔr}*u X ԟb%"_iMgPȊɷJid*b<_x'yk\䌮j%*.!"DIkH6oZ5z&ˑh?䅗eluֻx%ЉwA,,f$"|-5jl,edT*f:PvYLκa]=n#o2(,r^M[\H(-|Uj${~:LQ_znGz}D#N]G| ׯGP-Be^IĢ4& \az7a)[9ٜnE0 `"ݣbʞbv׫7 c$0iV,j^@92)J):?'6 F_DHi= tk1ݵ,: b\ QH TvPć~taZ%]R.\;ؐVgtNK^ݠ-E#[x {'҃4=TY݁Q^˸"5+~N{ g)?G|@o=.A࡫A I&Ä5u2^ۦXUyMC"vܽfPcGAaPjem]ږMp|ёy"uR y(/S8*?5Pe< öԆ4Eޣʜ'ŔZ9z@,}> `M\1uSc݉äRՅ JyӟDq60jcZ5,y8HWԬFEE+(?/scav[uW=*~22YSX[H60>*)n*&Hlnqap!U%>o"?A'mT1t6i<r] En}/܅2>묜q)XJ'oq%z%ƻ"9MN3B~sRN]0L0uN̢v0短# ޯ?cgXtrbx_T^D梮t2嫕-jNw9)sMaSɟ 0ӘMq(5 |LD?K[AnX.Mm)<޾Ӵ &0՚RbZSr$qNcO6}P3'KwJ 3n(EePeD=xT>201sh[/bb5>A֨|ja߆nyj%sҤPmvW72:ZѷS&U5Pz /RWkm]p0"u lLz1'ͦш|J1c󄛘a6[n"RD0^^:1wi(]Ӷq$\gb$ tf vV?XÛBPd*SMqQ$ { I}XsA࢟E]O'6$7Ewe;z<3_W2'}[M,ٶpx:'ӡ֞ḵ-"q?U4[EgqUpQ GO/\q8 ioҖ~](zv{ : z;K_B Ak*1ȘzwJ:-I_.-<{(=p-}**Vqt@هLZ a:zV|qd:&YGrre* e&`Rh]QFE*ѺAAUSƥ[nǁd@'|4{:mDo: ȵ/w` [2иvR)R4\0ngskdQ$|'y[v?{GPj֮s3 ݯfj\?"'kc>?TA#($9R*G*E@j;ϟ߫8|AxQiR<&a ܇9lP QiP9eWLp M7rˍ?Ȟf y`KD[ gŋ$aan F>\-ȣZX!uE:` NgCT8oT ݮ"j|F!U)d?l(I-[:f1M4vr fDьT#dIg*JqtάqeVhA;EFhHѼ>N 0M aJ> kHtvFV%˄1lº ?42RƂ޼ Zo1n".gʭ똀!q( ST_Z(1fIUtLi V_FCu_[#]&tjnyEcYelz|%LgŅMS3932H˶gv"  va@8[9~<[??yp`SC? l0KRIJdQ$.n.C,ykQHgG?:!UB m5qf'ҫjp`o25蕌yJqacGFXff6HoL2u܆܇Wĸ{73qJxIk>"q!yEay.]Қ*\}a&2Xb~n`b-%LoQYe{nuOӱ}?t>udN\w7,PfzsNdRͧՠUzYloKkD(.2|gg C8H7TI[\Mm-pS;/(*\8 %irM}%1kս,}xJ}IfSΈ "@ j>Fp,Rq`!Yw2P{#/+0Co_>M{Х3{W5<#W]U*S抴i!x"b_լoʌ]X@@Pwqdl0ܑX z#vMhxۤz|=W-涼a𙚅H.XUer]%]LJpR#&#%e:t<M=SւBkmC6^/x7-&;H##JhUlٌ[5&W`hYB q>Je<:Y<0k$2]<*Ф~zYTLjjTG3|cVG>TL(-*VaL9dhfdC?H` bstt8h,d`m%YIA5~r%bpy*M 1$#7Zп.<:߫XDo3:ϡKUU4NkG_wM?ι̞v sRSO+=ȋ} -HArϸ[ Oi$ܹ7,L7y@Db:B⁣yf̓Z5 #:IFSlݕK ߴmKm`ύQ#, Պ%\eYA $&neYd|ǟc7ߏl@qVp8iYWov3ِ{FP߷SQ#\ӧXP ܵ¦F1j0&Kj/qmptڷ1n̻|q|^w}.;bT ɥַ/C%mv= c40f =O­&t%% qÎW[;;_ ({58s,,4I<vZ֗6Yn\F6SWّqFG~ &2K%-d}XoUd-xrܜX[ %UMS~)VF[:*-ه7kJM'>f3 Ƴ$Ԉ-1YPiu}rz=PZGk8p3x7tD/$cbEj|)Ƴ85{]) J^AsGE-ؾN)TkI@)Y?Ϙorp \ x 2`Cy4KkPMa:"ep19~X-Pt#?X2οkKhrOb8 JRYYp GlA O'eǾF#{Ȥ_+b>۹#~s)-T#Hr9M1=GI} QnKDsslQkq`bJd/W2j6=UM2ݶG }K9 Q/rضlՅ[9Dh=jveFk~;{Qeqʢ8{ 6f}D6_- <}6y$b"MHphB(稩Gb[nt/N7i?Fژ . fO #:j8v'Wr(Ufo,lt0@ ysU I`S9A= x6u,zְB(D1%S--ZMhH(t5 <bmJvYGV !0~:84c4ዳ#78^bW{mϓӹBA)R;s:VFk`'1-90a˜_Pc籴WrŸb65sB?&r7ާџט}wJXMu|0P8^uXv7 <-\G^(@kR}K A}d 9{/au'枈uDbk4j\ka8Zl.uƕXZa"4D2+Q]lRGNa0jEJ1Ítxۮ3Ѻʛn/R El Ng3]s}Z7ي ʂx~ELV6lHoC,*)#,Ýg`1}$i{!Gr~4 B]Þ.؎ t@!4Bh+XYs)'V~79#m檢|9 -r;9Vb0 :CDi/z4f (׼a1U~^^(="\)Oitr JvȒs+vdr]ܫ^결ڹ>ƎFYx<:`Eo'iAСsbN BA&( ‰ۣ=&\H:dt`Vʴ. 1϶{K\جủΌ]VRCG>61rVG)Om6$?CD@ r]J0N,HcWA<}r2zv/[g?dH[*KTYM:H݅PF}(;a|d؋,wRc4)"IڨA,.;LN ɭ@y?tT+@ɷcG R o9:ꠅ ,#xе_NLOw b-"_[INʚƔ?]?u$O)+!zz: RJ58:NO:ڇE^eq*\6Q]< atwa](kVәvk֜׾UtV)핍gC wX[D$IE!ğzX: xAs q/]sD ,Ѝ%~ؚ?+Ox#"u5  ϋxC@YG!N,fVvLF~[5;m(_GbZJRXg%z3-$J@έٖ?+A ~ 1[HI"*;->vN_"^p4I\)xN6u>Z9E7p_t^(soB0c_Dž\zA ġ:?qסkk Ю&R| '?BOaMuxfm։Sw9:XQTvKaK@u6:nKg6_XBDJ 5}!L?`Ƃ,dىn庺08x%kLR #;#ZD5oih"b8KFص1QRmӂMyh*ϳyZQH'b [-}r8PZp7'\4ImIg3A,(Z>?5$>"OP@ȋMpZ |gc NO#@ 3 QŃ\Y:bMagƅTN(O«dj%*J~isUti y=ae,]1W0vdDWޑ- <4yHTW[ sB ۋ/GZfJ?9=<)Vۏʧ$k=cwuџ=ja֩tl6Ak˫JxubNK! ; &Wq r,+~ X ID.·֫>G Sb6~ߦhP]npU -fQw7ig dGǑHɔf[z#U;6 hKb͓?-ĬpW9mh|n\Q%7Ƽ >?́?b'JT8D_ پЌUo3H79V [i%±?](RީN:OJK!0L3mLAw@NcbqERr:)zrɄMXT*!3<ݥ;|^ RVW/^MZ׏J9Z5nXqv/Hj%T?Gf)is X+HP&&=0a9nxƈWپ5uu^N.oΪi_A QZzz,h~9lM1XwaLDAmA`RHt &=wͥKXɮ[({SaU0z2Hߟ%OɲcoNȹ2%)s[fPpsH5B/Hb$N\ld), ޲#wաħʞӞ-FS> t ?ݒ=N.ܤV,[ z36|TXt~L * j}S6 ̋Ϟ*ɒ`#1K%>v~-)6ld+;/F4}(w ՗=PkHĕGv;KɈ9}2\]>~?*E\p, W-c cADž|s{r%mOn<ѧxl: x[Q:O{Z-k[>Z"4EDzhIC0,>f of`j^-܊G~a)F%c2pd#=[x8GaE[??GZD{@90| ! p@>%y{G%[=zrQm?JKk>ȁ"[YGRU@ky["iUs~h\ ,Zf|O)w4%|^WRjYw'sUR]@fyڄbm![vGmfyr3/DuD} POsנE1,p5~t6- U1K@V ѕogk&bPޤM.JQs?,lP;Å׾Tzf]HiAcsM Yng1_SmaTH dPB1Kv*! J1<'`+~_ߠ MLݒUi&$PU/%y:{ ~F;q,:D3yZVРBv$@7iX)^{ݲ1YGV"]7_RFZX9 Ҧ#Hc;?2'㝆_xAZ`s*zAgC'vd^Pf$QVI>$$}J]ߥ"-QΆL: %kVF#oڮni^} >ɔ dF_$!AfK8&eE'1҆K6ywZ{[(RtF_ h*@ &6fn#8j9i[a5fmu"(h kF1iVk5G` %W` 5Vɟ~V/KvFʝbAE/VN_|pjAُ ,\kfwi)ۿ>F |9Chϳ$Es)т=Y}Leσm7?.}U]yMv|Bg{eI. }2"`);̷.š{2c!|P R#\:\n0KKTO mo1:r;"%;*×#kB|!8!v:bjʡ kXuv,— kʽ{+ OHAY1wO4mC)h0c"8 o^B a^яS?[GK@<Мq@ax$5^ފ^ KhI3@eO'MvD^" Eȸ*1XI>;3ۑ"—mF~6m!Skd6mq 1S1PbgONEC] ʸGS}Jv9ᢸVͨ9Z VɬnF&~V>=mŧᛤS0T.¯KcbKZ41r1چq`ufBR'# PƬ( FgwtlUUe#Z_*4']:#gKNAR jfő=_h+[%nOZ?e: 9fduY"-G m/ NVQ< y/i~n@ 48'G)BF6#yg> ṌI b-h0jXĺ$CDT.xtmZ(}42jL *&eb BWXuЛG ӵhX'8bjf+K\f '-A7C萿.<43jPY8`|mriƠSk܅H O ;@9 宦NE2TWnBOOٷ/ jthK{~6ICRcIyD<5n(sXd."ce7>z֝) &\%S;U'M,(FmrQȢpT:[ܰ{O'co2KaC0 u[Xm3gCkQ6Cm؅ 4Mȇd=8 ˋfwg;Pw-yfB Y2TbRHf3.L̟ a&zu k1p0ABrjz;Ҏ@=nK~g9 wZOQ'P~8n( j3O꾊 `*4u2)7slO4$ITp7iO]?_fŬZl*Nyje /vI`xfs\X\F;}ve뿬v3"N jkztp[7O ?>1>ϪcBШ8-k2.#1!;u?_J@)`0T5LWǧ $7"9;- ojxɖ$xҁ) < f}VkTUEl_/Ly1ݑP=!7w7,;O1/b{x/O!:/ivB\yOjfv+Fok0,;;RxL?h:7SJȏye̪$\؉?FXHx8wv--NWy_ JBg鈚?Ñ-aUNNU$fy :Rt ~=ȍ|z},A~3/$2zhNpr vYbsX*2F6+ff^S|?wLa<\RNX'NgČU 5qtgYREv!x2+\=O InPˢe7}ae#.u o&LⰽKZ7%23)/ zLm{upw^0k؆'nSMccjl\fJ?(ワQsxV1fyk"뼶/zK}sQX"0Dĺ-ekY4mrK6a%>r/b{pkQtG[S>!;M1j.%5P4oy׈x2 ٔRUj VZG|O. Z``T" ['`~[fPv XW㇫ۖ Nq\0d麁 jZ{'ɏfo,hU_a\\|Vl櫠 )^%QqٗLLjRL<}o}M.A `-uN \oc4黗B7m(U}5\fgDƒ!vv|<+0.Uo߅J&ŽK{v:er^ш0됖*=pnv zߢF[{,|ҝP:%q _rD%Jf& qжE* ^tB.{('@%I~9q(/  |CdzlTEYϧŻ"#P& 2ZEgr5"eߛ{R#LkJW c}CܾRZa#u p'nI{ItK,kQ:*gv8PKmfڄ)+IZxUL 9[Bk.Ko.ğ?ģ9gfr_\J :"1!zA{0ڿ~RGlU(Bfz":G-BFD!đjAzjhuI{؃b2$y'0,]Ja~FiG&[{gjOzxLzuFM1sNcdD, 1`1҃tDiS?M\ck= Zx*li5>H$: RG%'Nmxq> \(NpVd49҉B yUfͲ_s}E0([xjkܓˠ=Z%ǒ:!po#uJNBa0ֿKœ4hRevh'l' ^-Gaxku3v esA٨׋;4u*6PRۿ7Es^ʨU\~V':Pydpx7}W]݈os&lS,my1roTy; i74z9=⼫4|y\G םrF#p`섃@h)C]&'rH5ꍸB5M{A65F 7r`5׋Z.vGm)ˇwgoSi"$T{-q`"_dY1w7a,}inZSz$*Dwjµ)4]bNM%[%Ds ķZ6VY9}mW0Z QafNp R5 p1'x=#'ÚTBuh׀k jk ѣ.x-YiCLo"="ͦKL[ȱ\ n[f~G ZF"t qzOO8^sM?@1-/_ŒM'44pn, Kx)=/EmBt{FCb\S^']}Haظo0N|cEK$WIģ.Md#jx.X!mFFGem'ۏSJx1vBϮiEIt9yTAY⮜v1]N_or)F-&͟ קּ4¢Òuq϶ }_fſ5ݫ [aÈ%=j~l:NrAf>"OP@mBWG.ߪ=hQ5H P'_Ϝ1mXT,rWS Yem|v2{Mi`CP:f0w HW Rh"d5 BƳ:*&Rd-6gp%(+ppjfM=v[8JEn̅"$P֛d+J>CeۍA? _~l;4.nF_2Cdtgy:jmNG1\6[/v [f<N{.mS4IEOF4yCM$fqHgK}ZKO E_ i!8oΕAEԋA_"HD6$<#i;3r":(i˃ VӀsjX<['rN+1#ƹ?; }1_v {=jd3-{x_jQۉ*S tspԈ ]nbH͋m$ѿ&1$^-{j`c=| ց}?/$Hijl`<DD bLC,CD{go Áڍ? C]SNJC"҉hl[L"ާ )& #SmlU N+Hz lK4( L5WE*5sBSl-/W"2nsc傩XoRkJ`q7X-̘ #fՑEchhY_?grkyI.6N&tluN'///^cgGrӰ*X!/YWZzX$1B| ҘcBϿLH17+W FKQu [k br܁*t(o"6*J?c4m+? *9*:]-H|+y"2;̈Fd 8?k2ͰA HF2'QPntP>E1OdB"[gIHQ2W7Fv>XcC:DzU#:c0ho>m(VkGCȻ\ -báE&K)9iٶcIhN'smٵoksq"7~S’؝g/7~H M J?8k+G;ލlEۮ @ 0m:8DT(N,q]:Sll#'{[Bu@%pB?B dZUmPXqϘwjKJ k7C%Twv`~pd" "0n 3m)q$Qr5 ۀLPi̝$rI_Nb.Z39?+$`a ؓX{5z0f_Cc9<5T;yu$-"]gQo]LVKnw^€W-ӎu, {&OIܹ (e~|k7ncW_ 84|x22 M\+8ZYyOĽ^5YQqA,ЂiU" V}Y3nMC՚<f ̚At%{5q|nrDA|%:* }Λs,;e,`;w5KBT !3:aqpǂae$y,5k og|0y1Ы}9%/]B!t=T|HQ%i(hpAnl slZQF5nb1q厯Gb>p\F0PPUc~#I+35Eeʿ(;\F5< pOD V.z ڞ0 8B>Bϭ() 뤮_[#ܟ/>ylWrz;XҪ" '}pۃpO<::C 4 frl}[V+X9Cf_?jT~)g h8щօD2tLڔG A<ߟ @m:frMqfX|s!˵`F16fkxV?ԣȎw'P\8ђᵀTmߞ!hx7Fؘމ*U|l0N\kuRpgCxnr?bH*9Ê&6B$j1GR|1/wBLxNmԽ(]z4{riԙ/{ۚŕeo(y`KIA(Ӥ\ ?^rOE2] fP 2@91qP*l` `%:9(̕bj @GjF{6do#}%?['ճ_&;@eE},ewrȲ}q{Oєq%yK| /*[Q<<:ˁt AO3Q*xGeHBp6SLqWY]X1 V] $JYG6~$Sܻdkqt(#ԧa!3܍T#S̷A4CQ pQh#& pM's *3z( Fo.,7OJ5̋l+$Gk $1vLLI ^-'?, Q>#  -P^}?Y^{H³GA6)K͒v`P6㧹j.)1JϘ)9ʅX*ыv˒9M,S\-wL]nm~ lVPbt@JȊ7O9mbhU2>3]\jݛ]f1ēƺmüɰ('j_æexpX,c]^kMK* Dߑ'}}\ASRo^TœyĨPcC<&I :ٕ0HTF eFfZ㏖[OjSnDaz@KѼ c3dIU ٴbv:kgCYľxr3MB ϦL;&vwZXT߶ni`Im0+uj+竕n0('HjK$:7ۧa`PTB-;dЎLD[8èÌQڬj PIAA6煜σ\YAg&*0bOwLy3Jf.<` .%,JvϏ[x-A(ҩ}*E1v# .+n+A|c-6ޱywe{:~<22ti)X ޯUo~@{#?E_27*RPg'G" dsKoѭ-D۶  @3Si?koGF s[siNӭ@N|֍qyuzF5ga iEۄL6e-Zi΄3O:6ԍ?CκiRso:ިl^69Q:ny..FUgJ;*V푠?!WܠaX:+ALv(YW7Bu`Ay#_ʬD55i8[]ZͻD(Jc C^8ڠ?QÚ^q`jaiK5-)L&غ+2W9Jͭ:+rGmwFPSP-N;/ӃLMu҇K > BHpX=s-بR/ĆӶJQF}x׶uP2FHώ-[A3{Z3_z W28`Xտ؛o^asq8ڗ$'K6!'Ww`flOu[rP^9wjcS&ϓ;Q[ KJeQMl裞eg࿑n٤jk*~EX$Ii3_l\Rs٘jWQUqrwğ42x8Zs1za _p,:(ĞSj817c8ᇯBzdPUU_99-Pp'e3w`xgq (@yTHD# gݙ%OG^ cTfKsŻL2Wp$$?cϯ*o#~5? /4߃   ބKb{|.N.ipF$]'\6jJ,ʂ ;lP5/û`kqEmPWX:x &* pMȟ}Cy0fM )7 Z_G]0;n6=c+J6'75Yu2Q:,N &`eL[* !X9-};ꠧE{v9FiOtqkԦ[Ҋv!ap?Okl1K^k4[7Ym99i3- dH,/5 6>c iVс @dIMO>饤m`(f=n*9gԒb]$o/[R-X.SvL%R{[tf ]SE⽍7Yeħ)lTuI.H:vo26a3*f5q ^hrp~RZ̒i3xMŤ$`fveBAazv1ɛ']qnE+q +l/0ϓD{ yy1焏߀?u=GA6Zat!4"JؖgۜѰYeIZ_4DKsc+W]Uy؜[v-b_X85sJ{D"=KDaq.{SλZb_FBE?k}f%1U=<8' ^{<+_F6T3T7_<⬁9 30AmzYd)_nxE=e&I*6?㎯.(6%"pm3'UK3s20QQ_*7!$d'ӵ"iշJ#`3m8rR9ڄ5z6]Z =x[gg,QbpI%ٰ\/a۳yt6Mf'u EڐY'4 Cf#ѯH$7\kNRx-&,t@QF iuc.+F5ޒ-30/ũ؇E:%Π#<3X`QF oxiL~ '4.IĨ :f3Ӂ62O $1_SS5o۴ՅIپ"SHۣ%罀.Li?@]8!IK{xtC#w>EhmHϹzgniU|pjguMe`Kݸ" EPjLLp>+2~豊B8>t. gPp=;n`p]I^Jv% ρ(CMx*Vq-IQK3ivr~A"~ɠxZj)zM옠l])²EӚWB4E}+mVc^7yl*uq!#cU26pҰ!gAP5u7ۓE*[D-SA?”NC8-Tk|kcH2F/gtZBJi -߾ZvPds߼9'\wJk3U_OvzSp-kE^F !h.%Bgwp<+f@f݋w^\x j)4YXĝ;7Jڮ>2mR@pƹG-d۬soUou9vFͻ -h - ;$0h m .ĆM5!*Ʀ?Gg@ѕ^-a?9M/J9oD[@Xw|<ŝu3* f =}y'AfCufkbΞҺ}]T^&yy vGn0<=S,BTc$E#Z# y$NW$|wwQ#8#kYN?G܎z3̍ 4^bN Q5$jsg%w+-yt+B7q+%+UҪdշrlJp_w69w)SEO_65oCS=_^ԉ˃rSeT/MWh6FAeaVċжj[i-Ά U}2ⲛ(*I.M#Hϥmp fv2&|4!qH}UFjAٝel1$<R,-.f2ձ0 P?0#ci3 Z 2ܮ9?r,0)g=NjK <45 < /Ǚ゛ûbN.'XyZuZ 7}D7|Pظi؞H [AXe UVnh2K㏦%*@)RLYt$~TxnA.$N{INnt Fi#{ ڞg'34WYK٥7E{N2}\!_ vAEl}ӂ<WaH }5QSQ/sNM2=,0:Llc:s9­I ?j>~:+Gola ߣFmqsS)Fc)"y"k*Պz?>:-<ވ |jnJlu852(Xbe&fC̟4'_qZWQcZ^#Ixr6MtcWL vNY_ RL}s/sD. Q]TΔy=`;^QɩϞ ɫtѝeEY eH='vR8ꖰmjDMBWGƼk.mTd¯gqm?M!UuXV0`ZNɠǣ)9 ׺Eť b}v8UЗKf[V4@nd>_q*͈Yg$ǥ&[skq3V{՜!Z)YDn {B*ڠR201YBF R]7Vǹr:ƇRp蚞Qq|D?#`}s:xPdPgYI=\wT8?O@(+-m[&9 T( S*i4=61O>he_~ab¥źՒ (ۊ\ɘI>0[KMهO:>3?~M]r7Ku :PGQgf$Oȁ}O1d, hJ޺4&Cd cLMm@NzC.t#9ud%g3%^,кs"N'649!U'e&r@ƕٷoxYTQ)K% 4ZY ;mayVǖcyK.9Xk|R"F-VA^6D&72k-fQmgc;G2/3#M *ϡؒ?Eov@4ؒH #%oXm]J,! Z/tFß *+#$, k`X#Ȍz n8+ŧx_DdwJ'J\ecic}6; LP3IoCLe* nh9#7CqAums-)@"wgټ1|uR9m/ONH7 k2v~~Fqϒ>2<#٪s"֎+H ]QQ6.B|Cˋm7ڜ`ňjX LүŬx\e}Gz_˯[g |\&vYGf$.ba KYB&2a0ƵW1l:=Ү:tSFl(%};91 8GkeQemyFLlwFNrUǓ8њ"}0+=l]썮!7_Ҁ34u X|T)!36_M?Cb{N^r%7Vit2.ވ~U!ج()R#G*mm52dtw zZy/H` 3WO͔a6r >J'G8J 0 /kTS?p<qrd{l#b%kZn&eOv |C@ZDAK;.Xx|۽V Bsn-9 hu:wù1Zn7ZtufŐnX+G>G6q0ǩQ%m@$4J%0Cйpm !I] X9s+$3[IA%F2*<)A/ 5'qA\sSulx6)|-?nB< Tv RA`[R/p,+ Q̦LvɪS5܉{Q퍾S yh:.;D7~|5tjb`U9=\GE贄2FwpBvf-]#-I\p{C,2|1h  &RXD7(_fD8jDBs#.1ި{&YI՛8ыCjޒ;SAf=`GTIBi!\  ME\ۤ8J"*R<ۧF6 ݯ6%Z,|N8 **[@6.T-wd2k+ -A;\XO m'TZڝUZ  h:kaϚ BK6^=EwMucԇqYU9tk'XTS|_}bgayыĔ :\}_°USeu\G⨁Hw'U?@ rHn l0t5#v#8M޹ڎ~F2.;/Rqa#$U+x=`p`SV4tc:cKZVSr󶣫_i`. %Nכr-27%7 uj_>=+y7^ ]Z_5*Dkh=y,E0Bg%7p|-x4MiJFe~>_2 k{~ek_ev)# ݚuLtzn#嵖/Un ~O>Ax}+'=pf =Ю8CPNmWܪ|n ]n1݋kS[ oVlA6V@Oc{y'&$:s](nFC*A5nz.S(>_~<ޗ!͠jJGt KONTZBE9mTFĴ3?| R{Q )}urD\Wd)iBUNKΝP"jSZ@-𪕫c%~KRg۹nR1AoG^?b78vfvi>9EJ8r$ԓ!lwl3e٣h z&CCjÙw[~wqV9ƍ8cfʐa 0M\]@I_ z0LO69@, >t/w `HˁaC{\30wjP"k1ӱalB`xg*\PT)t|dNMM[J)U<󭡏tG}u7tg&q `kyf𓏋 ܈z`l 1IE/%!dhe3fA/_gTRAxM[/D#p!`y4O> 1nK MA , PgLA DHl] Bx%9'0ACsu"G9(*[ x-׶suUD@~v=Rw _) H e"vooe BqW{DPlJfGۄ!"=p01@8 _VD94 .tƖw=Bb :RhD Ցl9ZIz:XTuPv *ÕGR:D/Dvl'R"iBUD1 :yAACޫ`s;۩&g̝)ϞB~M>9^tG>D}q9*eQ-.M a/qqs5^U"7%[,=T2c1LDbK/.<+6G@"AUG;fCT֫ri]! ]`8JS 1J<`K1\ KG9qPXJgcNַӰ&HTܩEMUޏ f|FJrdQ ݝ䂃Q{B%.}| *XeןoW4OQӓo?Q_EI (f7+مy(X0Ԓ un ̙ bk# L7-yCa/{c&O2M*ʴ>3j,; TwQ1|l|a' s~f*)JhZ'f`(JB^^nS6Ixjj}s0r\ϐ[H>ӻ~$E]tItxXp(#f'\mq>#z+[` ^QW$+j_:ξj;5ȽW!Wo}k{\Żou=w51FM}W( c+\"5NBM/eM,qUD\wHwh?[|pc1:9dE+-ր H.{ؖ7DnҢޘULd䷿0T?7*+n*Dͪ 1auEn t-/[)Lr$miM\౲u{J[>|pqF3$v&OH)[Ep5~LN]>7R`? G5`EzvU GQIѤT2ԫ{>W9Eš=wmtTgo/)L(cnM<è||?=Hj- c#P8k#bW({\.Hb)x7Q-QܖD B{|CjqB? ǟ@КdWs_7ÃUa')^e#+r<όcޛ2^B*+aȧJsώo17M1?$Xs-ǒ SP+#\5)o>Fd'곩}v8}G=F3f2fĂ '}\k/;`:;4KfT =C"|y`8Rd %-1SqZ^M!]G]s1[[=Op'´r;<6K >uMJ/ą ? 'x<16VN~KElAM9N7;.&Ƨk1Ve"0N:YfL˾6:d\^4h Fzxf*/Io?p>(78˞NwBAm;[Al)~; Akv t *QURzhU >QDp^|ũVT_yꢽ|+Eӣ;苕}.oz+#݉M`͒Gҫ bnO8ӰnJ}EЧzC*7|`UxK_AuLV[w@al]ҶU[wA_;'z1?))BB(>Wɹ$KF#4Dk圝 ߔ{G,L7\E}})Z%W+cnnm! G I;faߨtZ֘$SOпz'.L6hйC+GjI zZ1ҳ]Z@8Q=m}~=F &g!翓V[:?->S=+ړ=譶!KKh:tv( \Tz4PEyZƖI]8ꛘIGOĪ 7SbL8:YV[~'YU@!MbM4@}5UR '!͔r>+a4||4<\VXV~Pz+}kс:?N`X}VSCPf s|W<`Oi5- {m$UPչ]A5صEZ>hnx LM3 {#ʧcbHfJ@ւ#/B?5MDF'w1[ʼ^ۻX[ʩ~ SUqo3\6BHyrxp%,vvJxaL cV.gq?) •?4*Ʈ];-Y O/SQA*{>Òr)^4Q還VX+m~)=s vzJ # M_x8XU9ýKQ 4.䲲ˎ]ZOܸT cƌ@z? vr_E}@ [UY h nfTLƫ3(;@V :;q̥ϘkP]i/3< #/S~Ll\ְ~yYhy_26] Nk2cz%ch2noewVf幔]L9l!cmR 8yD503qaHj\pC`;80lWxmR %l=luz84Gdoya8ݪjc~#39[.IfbVSZ ̌b4QOgᙂ]aԞך4p5i`΢~agKct@ Wf|%x!{2h`c}QXX!DSu.̡>rCC]jSMHHk] RRGsZΚv|"q"f/ AՔ`:tS]F 0օ~qi{޽T X=;!4W+ sMWLRpcF~׿пνD ^#2ǐuA+d0 (Y/'V3Ѷ4~{ ^6U\''KaS>/ڧ TNBjCΡSka43|N_ۥ`=w:!yr7 L"^TVAhet q+^)YR$GQ}03 ڥ/PJD MU>qn9?ӁeQ4_U1I q ܂wH_v2"bɻ*01-Sﴲ25V}5^7}5!]~hoTKrI X 2n@B?IGe vރɳtYɯjٌ0$[yZCa#ѼnXߛsffbhpK252 BRDVӛsbDB'&"Ϗ,x.YMx(3\Wr`eh ZQmʬKa7M^9yr ʚ@hI8 ~#ͣчO~eϝfO/1w}% sVеdA/Ȭf criu JNR.D!>:O./j(HU9c9r^z qژFfR{)P a1o؞ pL)RVrRHϵ,>Z0Qȇ3lˆ9} $LDz GAbRlj곯a2fR9=W]6sw_x8Lxԡ׿ nյ1dظ`+Bq~V 1 G]ӠbDENKuӭگ#KSx 4 {3,P)RԈ씽oEsoٳ 0uǪ()`aEZoؼr|FZ:-zD2ZNG!Y)K"{g!!-gv5MA[㥵q21: ,tGە*Ca',F-(0^ ZzTf胜뀙拄[ x-$SsgUyjIMAD=8h"djIw){Du8M/Z6m*hzX6f%9)Y(!`BN2[{bbfh!qܺ ڣ,^``&G֯7 *vMZߠ\a^Mʵbs8|}2],Bwb6F?xzb'{(CS]L3FS ƝRh[j[CcM -)6·gV p5vb6# dzNfN> J倒~v_"5ZeeY _ ̎<>|i);/<+S-mnƐb;c uQEI(^| #[\@UvS=ӻ0Iǻ w #iyů.`jG} HUw [Nސ)ʥzwtC_(oЙ=D {tNh>c0YrSo [bϯ93^6 4wo_u0 ʌNms_q6ns90#k~S]+i)%,eɥ).j^0YhC{9ا=h1i!>!V{Sqb^\ {S2~4  }N(m/bS*'kE3aV]MZo5"G}~e xI&b\lS`wELWaDћ5}=dIm9jl_?\V&ɴc? 7 K<-<‰qb T %lFI@C43E9TecJNG餻$SNН5O׈\w[#ZӸAjǘpqx2ڑb&ҩ&KڃY4TȘ$imϳiQpmA[;C_BZO'gOG,!:\uS gn-$NxRܑ{LVfl9Ǭ * Zc wB3Mc&?r=ZE?֣!u\x2L(`B[Ɔio`F@ȉ?Eĥf)YJH_<6Ƈ~d rS| cu$fj-GJ:J'S9ͫ)Imfx֩jꙕd]OC$dOD627LTf$ ^qE"gԾ7xށm2b&%bv;yV/R=IWY֭׈AnwT-uM]j0$0ҨK,Orڃ70 qddEČA{!8Ir!fދ ( \Udڴ'% Vxuiޅ:WG D+}n\Y TKN`,@0Y@M=]2|5#xN0m4 s4]z&HUY Y#y3&˄4adב?pr~rW2i05Dffc.e/q +QmN"ժ*³a~{j r3r## m{XR<4-hōhTя7zwz`XK.r[ \S7h tk" N>+٣P*Y%1.A$d$^^M?x*vܱGya /n4mbU:EPʆ̞k3B#Wx&FT&7P 8q8w'w12dg@pXqkNb)AW'mL_M_Ԧ\==kPB:h""E?%~P&/C?m)pSu@Y-E{LJ#b>" ̧?#'كzv ЊI,ql?[_8:w6Z/|msq)\`߉ A#]ǟgMS1}c7:oTKc_>Mko%fJ7;t~B~`LZd$.3Ȟߣ޳9.!J:e%T!l5N}uAn5$ޯ +%/+}>;[nkD;K|Jܪ)J,.g|遁|o6dI Th…ىڂ;XVOfE͋և`~GFɟ5h\j;K"toa;p uDwM8xi@;Bsg_p"ƙq Zis&@qsd)}tIͦpSwjDN\v>,!rIt.6 >Gƥo֖URJOzQ3O_mL<!le6V5]9XtBo^ <5?ZY^*lO,kCV$0!wix\_miJx^o #u7V 58Ioя[OjyO^j 0!ұb+4%kd/Np{~r7e+0 L`،=YZ5~j*$ y,@Rp8t1X`-On M;`8PY hAz0%k^&1aTM_D1LًZ^<Ɉ\ `^%җgY̳ [9%{xh9-'642ĥ'2a9HRqn'i76'X&qfecd a^^ {ziHca"Wf]bE sK[Lp-ʯ#KgZ21.v$r u (?M#@[/R~i@7OveXwLj"Z$xRzr%`ƌwavs]9r|մʼnq}x0_ ZP^O,JV`azD'XδB)biww:9R Q&뢽WѾmb^uԡXP4Pt"c]5O+as7I z4wAYK/Ob^6+>g.t["Go'p?NS]"ubg6[ [ )0ϸ!01#L8<ڱَE9IEqhF8lHN΢\_{Xd KoϢk&򯈌=w)Bi4sW,@COꭺ{ücWgS83:" kTR`gO:ђm_xroFء!Nd=|,Qu@~{j˚4F%'Fิ+zc,xJ.`-fW7k4sja Z|W/B0'v*ͪokYGX}R΂4qslcD* )uFZ5N ݖ1:~]h [ѯcV1"79Mf.2 oc9ś]vbURGk<:ѧhג"Wz%qMBGܣ,*a7LX{V$<`S,c!@K)EtCp(4-/{[-`:n R 0곐ߪ2),hSW *@4m 9K\P\{x\wUb1_XACnM$N1d7iNH):[Jp$g̭fˊpjR:Slݔb2%]= XlcΒ[YMo<ľ$@yI!ptZ&O'W qD1lö Zpǭ=rZr zoH{Yf>(.ӧzm1rmwcxnL.6=GCWV?wzh_~ʶ` &c*[/a\-m[^mX8*_:lS QD ]WMF;Gw"0|a3/YDsY] .2~b VKZRΠD:!}P&}%]+-{ORE?tDhϤ[ei&ԥckB/zҿXR֖E3e"wĪL%`T^|Ԟ"ܾWu4Ɨ 3sY"U9@~~L1P8f ! %v!xGb@dT$L bcXQa5_wуPuB$0F!ݷZe {# &"dg vwj-VEN3]tsɎ-\3N`Hn%zu?ͪ'i|^XemR?"Pɳ@3s_.;86V6$ ]L ʣɻ9a1F|UCUj`WH}5Fvh֦}8Wq pOҍ $%!Y-_drbL_=ot;eS#հ"aIdݜ& { T=*\_ JLsLڛ|Ң'r}ȴ@1D&̉Z[MYgUlrg ȇP޿֦- 20t@6@T=JYbnWSOԚ%6Fhbų 0T1 |f|3zx/aw:H(ߜr{"A߸Ы* $57vs){,WG;WwQuт%.]jeǬu0RjV_$Cx#}P\jq?譽U݄Ifp{p>gdq&֪g  ClguGj4B}!XhiM)1!Xj-x`M4U_*K|$h,C g啸n5JLƉ`Fr; p&F>df|v-Ga,/;e_3ՎZE --NtXn HuS9})s0(|󒏿-@^yCJF/8qLXĽ4=ծiJI7acũ; mu)'be;}R{Ͷ"3kQrʾxE-A|Zyh|ASݿ" bg$YP_pyn;7@ <-AOrGӘj R4qMhۼLcKP霧xjֳ>^KO_9b-G FhDBHry(rs H_H!}h;ZԐ0tDHZ]Oo) JR{ [we ؼ6Vq!xqUK)WO`i^͌=e2QԴ2z;htqYUlACl(d/5aͻnk7y&~',7VX&d66sWWXb-(v 7y>GLuOrl y>=zÿ4&UZǬƇ8-92+ӉYqӪy?kF}#md|j &Hr3?h&36`Wr)0\6)a_0lf`H)T2`")cUT]җOTK8t{㻸R}:%ɛ$Wvi@F¨G_6h!qS3}m ֤'7:9GY*JfT(<Fv4nά4أ'@m7=R?'RVyCr$}_BL3s^i ND^?b:pҿx%go l`/]&iFXw.#`tchpB>Q]*:53njzH\LZ}q|)XLpUcãًrj8Φ3Q׺Ib]V28 '~QUj(]wXo| 0f ";I1VoӠn.lt7Fָ-ju+BW/wt]'*}ɋ|e8!=E7-iBJR|'Hehz!6'+Kp0]S*EEGӈA4FB;H||AL8jd}M>MFQ\Ibd{wq:%ϋIyldZg誩u@$CM.ÉVp_XP[Xp`JiuXJC"{Ed'i 2\[ZZ%,"Q`P&9=So{^]n{|lFM= آ|)vDB\@23=];=DD[)M_Fl{ /sP # 24r5GakWX@?+vVMbG;$Kt"@U k%vok]]lSY,)Tw0${YӒ^7Z™akVnYzgp~:6i{W#L `01*z9B 1}uO~q6$' R"ʆ d皍mcAW.^ihNF=ف2;pn]9@O=ײ߳$ *9̙?|ZO&4xh$s5D# :2砼 mdo+Ui3HJQ滌&`m(sY=<Vd!, HgH"$ _oh޹5@w1ZlokCCePnLk5 4I{Gpa0vR/"j('nl q8uQ]p~5<ȷ^G&A`[?Us@#UrP aXx7ǹ^$5,G6EGA eXVem;^Ւ{¯"w#&8kaϰUY(C/8dqIqĵ┺z!` 8J(,S }<%&S̉Wwt/o5g |:y>%0lAZג́71=*_Ȇ)>Z+ .|=ΘfQ5c2+D2&>b+K88:/(Fd,mR\Xqq51%(wHB  HH;eyәJ,ۊlFZ#?on?&v#Š}CĄ, I Z\76H۞'~@}PƑ{ $u ~M /Q)v? {|K#E[SkO=6xM G/MeK.&CT P3JW]b~Fn/4Iy/8L}? M;~r])5kwFN~!a_wG`JmE&J0Tko=wnUlmޞNNU= : a`-5X(E) -t+g.kpbwf+xi oV wqkb)~S5sB %JI閍^`VHYd]m0_E\trUڂ@7I|7 %%^o 1?uNx^~wq"_-& cVoDiDy5Š:EjYZkm5/fs``<^uV~S,9TzÙO9̹Zur8,s퍿~evSeWӜb"ed;q.Pȇs įR:nA}2s|ځZ5zz2"NB7mSƣaSW~Fz)^r9,,=ZW4R ~Ӯ} y7.M+wGLv@^}sT=kϋ3Ukp}co, uE˚10=]Iv3ptjdެҵx_K~uNfGo/$aM< X)-zNvMOw +7uPW*= S=]D=޳\Mi [` MGR/Iw꧚{F!T{ĕ 6UȘ9D2k;T [Lm, !5:bMhp(7ÕMJYEEE ,>KCY!.Bm&ıiXQM ϙ : Whՙ=ϜU7gcJjnI90 }:R|K}wj}_ZD>h>QzTkow$__T= $Ó&- /Ќa."zI@D\r p.Jlumc,\\TWT7ghh^M7%Xr&O=] `8bs2:(JǴ\օmW J*vcJkeQ$Z*kOr{AςOr|k!NQ`؁#;]Λ%Ȣn羖䞢Lwڒ:3b)mP}Rf1s)L~tsL:RM@r-D( N q7$/SBi () y%:E{Lqٴ,kuO (IUXImE*X9Naxe?4g͵ktʷL68G@gJmZ'E(*/ G?< Z:ףH*Ȃa*˻Iݻ^+*CQ]Xw1#<=MgB0|\u?)Yv^fDƔc3pqbBۊr Zd|Ӏum0[2Y,_Uo,E&Dih@ji!l9fݣw{_AejfN٫1F1ut.^ã`ɓQ]6xEl~rn{0(: 7\~ȇ3ա?hٕTL0y"~^)$78Ԝ|gФκp+?t{=b1O RBS4Ռ?g}S_α. Fu8PZ[TEM_3 8ԔJN`g[gp+ OO5 jCg`i(ȡQSÙɏѹ (bn@0UҖ3WAV\3XD`[.[/=ͻR 7[&~X  ;JeM/? ΅},;Ԓ@hw9,FMŖCi =-f7М@9pcZ8.2݈B,vzWmNN,ס+y4gޓ[%^:;3'JLqfAqWpR#яsXh{Ϡ$T5( ñCAʐMXޚߗyK-uϻՀKA_ XbXz/KCqYa;M >aEv ]dL^ G"5WtVgSzKq{2&͸y@^u-TGB!\_ԟG)BHӤ.qy8AhZo@,P_ ˇưoX>%8ڈjbsi9l`JȣiCas x%V06}Hf%C!U1SLK%vP&+LM ݶ _ ut$qhn'Fj1JiGGb[0 K1 oS;mTAk;fjP]#~ܳZ~~eɀu&~LuFvҹa q`W;ô߯=4>58z(A龚uH48C40QeOZaKhLvg ;Vjg~e o6g@D[3HSOi󂼼4^ؤq5FPF Oר6Jq 30W%ayJpcF g -fԸb  Id6^zzAYه&,44DrQ_m:oN/˥9aF\p3 ౬X[ߌDJn)J0#EmQ{rZy7|F'ޑ}r!{ƴw6=jr ":z!s c4SB;oT 2O

$J;҇:bߟ'dqwJ=3nII_W$]s!;s)Y?V-6T$)%;n(M=^b*v5غsbm˳*WMj='u5˖#D>^!oT 8bMN -iA*!fz'b`ZD 2+t(]i=Q"Zǰ)9ǯaF%^UcTb@'C"UNygׅƃTܘgL>9^΁9*xR<߷k/*T2/W4&er,m0.o °y:HN$u ^!G y Qj..3*l=2>3q|Їl;l*r\{] Y9wRU~@Ӿʶdi3|4L,'Z@ =Q>:АZ1A#C0Yyw3S:}u]^"ü aJCT.ŠQ}9!`8}{ň?,Aqa:ǾZ1Ca|AI[+˄yɻrD8tScڋ&e47o^-7QFcx˭ۇθ DDUBo{xd W0%eMMƗrj)~y1ˑ%8$0*7}0IvSrn7R COKNzy^w 1ЙČ:,e)V1'E35:4x,Fr/~1VX$C?LD˽$?I_}mt SOv4I(kwV0r` k9vD `I *`X;&0kv0Ucʈ9 jvVW,{!kS:/T0 _Rpl3<|w;):S#6sabԈ8iB ?L®X1ZH7qU0O9U@c^S*8G4] #qھW0*r pTʌF7\k:&(B +si|x51" ^)k۫H æN|fia/!?LjeUWc.pnJ~t؂|%ˎ^f$ͫT{ؠϚ/C4l?n%! ""g$Ab&I!Ac[ѣƴ9 SoYCсR:윋sBMOZ֏@F. 4Ƅc;%-~AQ{gͼc\QtH-%BP6DxZb[ǻ /oH. B@P~z/^ht6E8aMγ @׷NV T7T̞I!jdFoGa$zN$[jIx30ZΧV -:o-{rN(!SPt&]cQOKÆ+t Z8SVl`߼f ]+h/T&K;t,\kn$rEV#.y4C:-u(]r6< ĶMƷjsE!(ͳrʯ31iź{c,%V) sAJҳD!;~2Ѣ\'z ~ZL4D+v:{ q(+EքڪV&$Ǝ/*^vP:)8<"AtRr{!z+)}UDŠ^WVAD}y!a q!zet}W#X ǤjH>rp6:rC3Y|KgqP`t[wwT\eU{i3<{8iXZFAKkJskG_?uƢXֈY 3y#4 _kP;V4eٙsv %ƹC'`{NdsnpҞF,Hay`]>?LۭMtQ$ͩĽy"% ͣ͝J-ZzHoGS`@BH?3%* ̋:xr0{S T=H!!aaIdٓwMfmBG}V'3,X{Pn':X^ onKƃ*4Rx vLR$kmt~Rz@nXMڈ5choqA(YeNEumoߙIjm许vcVz}"Br3 D#=s99:uBdC}i~إV7A8xU+[-c/j$(2okdn%l1@P kM#_-|Rՙ |B{"MKIla}ZBcY2fT(pvc\jYrU~V0uRtȮ@Ee 22 7"}:|Hmi}Cur*mzEC_#kX_|5qyrq->N"u5-"ga;h$0ٿꏻx=BClm`2w ;vڝGE NvwfMdٖoymHv4P#U.+NQTPLJp]/_2? Yu&g5j?\^:wۡ.)$zBGa{oҬ5YLԕI"-BPkT*_u- I{z P)9T `}~xjh/8ľfG<_& n*#P k~?'AlV~]h?d~$T/U ] Cjyh1['%t菺ޗ?xl]ܽG:jMs; 9zn \%R#t¶Dku*) ]j]St%Ne%} p)?m;;wuԱiEoc鮫Hh?>nҘYD\}Rz/u[g:ZZkL*$d.Ρ$_V "MM'IKjyBM5.z \qn `ym;J'{ Yƹ2 *hT:$ٿӸ2%^/Nz&6dBd$^ī?V`I&@FHH!F +44.IO/`4!d! 14?LǓHW"ZP*3BX>f,3A/N1rԋqgk3ɖ>4yLYσoXPhT 9%%lD&56(v}If}M\&ۄsJ4ҏ FhQS}6ؑ6kⷝ7%S8)[+rGJ>A˝.{AnHYlV%O˝dvNdyyiڴRK֯,΄YK8L5}>UQJ}ctaIZ#%B"AvCkU^@ Rm6'3CW68!^E {Sc L޿~ (p]BOhתWlŏXu\*3jaBW` \~L!$':s*"l-,x]cHdep ,: ':Y>S5J"bZ7p0oJ6ȑ)s42saK7^5(ڢ['5b,ȈS(-ЬElɰݽ7 !68aLȠU+*Dm5Z7s6OOI+rc?z'6. sCф(^{amUN+!c~X-NvEvMz_[aFۂz@g-%(XRጐ܂U;,ΖM,v65A!VU$E-{>0 YZAER/data/CPS1988.rda0000644000176200001440000027645012534531320013255 0ustar liggesusers7zXZi"6!XL])TW"nRʟX\qjnj-&;kjr#QQhLt%H$%>.YIy}%URiF䇞Lhu{QÃ@ON X K0s-w3ڄ )nTNiuf%HS?#©`2to+wАHGT*Ӫ" 终pOޞ#6ldײ =RW)T y4t 3MDF) Ip}'`nb@P=nM;LgSEd^dyΖ5JC7Wע799t7еn#ԏ\ :Znm\f5xe?7$Gpq&Ats,?~(o7L'lP{}M=?`(|6B|czzPYZzQA ݖKiD`Ab= `CF@C9nG k+ѭ8Ilp]XS׹&@Ji[_8M/C5|>UhE]*uI@a,D0ѝ_ܲsݟP]1 Rrflԯ%ukAP*|x&{EךMi[\1fd{ҋawFYwAJ0'% T>P~GsԥuMKW n@$0NZ gW |ճL 2..Ne<*xNӑE6Ÿ9Kor~be֪*n{?aN\ P֚?u;dK)xC# |[20 npV}fa4`D5d h0<;V/Ld,,D_\fEdAڂj!L#p˓3|wA2AX"* h|ZNt_Z2g?V՘tc[ "Sx\Njxo0LxuǥSF $:qRT(q\]ڑ4M7hvCfd|:tNɯҫ(Yu?y#0WQU+M [~^'KTQA#Իa@HfhmS }7}'v*=MVn? ]9H FT~D( O,ľFN tqI-h" Z +_E5 VTPƤ]0S7|mhc"eY_ytZWKRjYvr ( A5~7"K_6#Me'i&s2_A6 t˗:#H^I_Ʌ} Z׬`?5<' آQ|ْp / # ^/z`e֑{>P=u~kuy)qcaIvBڟ~U4,XU[EX|厮{& 6!79Dz3*01]˙/#yQ1ZÌ,2L^̖t Z:Ţ~QZ)e[y axCwfđ,j)_- RWk6͂=JYρ,\T%+UzfrQušʧS-#mʙ,5]QX5`S, aScE"[  }jjQ)J$L"4S.](dL] b 1Yd"bmXWr7 v),)[ܦaeـj[ /^T j7#hqȩ._d :|۠ xwsӃY11M=aINV#xĝk,6UqVJ{lȆA9a\ E_\:)Esշe Vڱ8,ʜ1EMC-'>˺ݐoHDZH/v}nC\21~>_,̽:04t0  =F͡yۈ¼m5Eܹڳ]瞣:YHK{J?.֊ blc2IMKı+roWA;ҧ[<8bÖނ3KrqHqƅeb-?LDwv5"òkGILy9$ \_@1v$oW$}ذ%5O3:*T) y6Cij :Z`d 7|g3znθ E7ADj-oGuַ)h4_OeW311:uɰg2)˯:ǧ-!u' :{d_8]}f+{ ȡp L4d [-፥AxNWE(DsٚQ|8rjVm \g*<8)6Zp `Q~=u󊏍NlG]Qai{c>$˗\/q:v1D݉^ǣ"%Khw'jluSIEhjD xg0yB(aH 4{'1o**HI95ԯDI/K;m=`bFM&@11vT+ZضFV\FUZ XFVڞ_-T脖>af7|Z}I|^<^='E5NJtb&۩Jr8+v,˾,y@2ag|G<>_m"O p|u~] 5jo4wnwSF`~I-\H-ԯgeWibw L8@Qm?S,󲠈l -uC -<%.zrj pchFO\ݗ`rac.qt3-w-{bO@Cf_ G:Vڵ,3sj{`":m=#{V@& atGO=w3l9,P:X?uwӡҠa%.UdŠleu]kR Ұ:^c8Q'YqN~e%EV=IFRPYe^BCN]8)p2_(ls4gMia¶TiaȆ$P%`z!.ErXjPdGDʔ1yZS30U-I;Ct( b[ch3O e K%y< Nh+[xv7rV 4_~b(#L 5i^?QqykQ&@Zbw-z;xTW0:L)s2 z:.&n^Er~ef9sټNN={vFW?bzAmvӴ*M؄q@ri009ol&x.Ӆ}yKC H_Auޝɴ? 6rRսvH94$26 <-ɩC*'^}cMʜ4+xLڕt *F`3`u fˆMk] +{2J𘁯 ;K(FKz\x"ڈ!9n.j, ٯm@;wt!GjKu g\ GaC6A]SYC>Bo* $J%F<{=ӫ?|XyKNt8:s,BoЁ,g*Ѭ~Q`twKM AvO< z 2W@p02Q NUWvzܝe:#N :"[=(~m0Ͽx8CK˜44y ?e:#JjM^{6[Pb6{f/(Mn[̏A[LQ܏.:]D.eMj`o",SzW)F*D^V䶵ۑ_8o{-H*w#>&G˓IzP ڼ&+gjk9 {Q/-֫ QL}9?G[9Mz# Tk[yݣ2q 9}qGm/ډ:!MOY~(&Fߌz"@=QZj0tJ:WޮЭwŋƶ\=ytr9=Nw~zjjkY;_m]^!Vm,SGQ(Zp`p {rBxȊ~w *tAY/~RUYѐNUԵ{1?%,04hYȣ'R'S/WFƞꎦVZ3VɨI2z:qCRV XRؕ0f\%QmKkI%Дz4HW~CBf 7>@ KlM!"> xLۥp^t+,flu?e^nnX4gl!ٔnnX?p~wYS_YޯSׂA#lClgdD%ıRE=2k 7O-_˃JA8j^_6AZ¬f.B^*+m9s7Pu\==~ߎOrD]~d+ؼ0˱c a>&n PP/+`Zl Calʻ:j)Oѩ5b!i>~qoS-#h5Ai]ÄL'{> =hV%ݮߟΜoϞ..&e Dr$1~ x=]~h꺁*U&`,SK^gB;7jWrɸ٩$諂6Gu<,ɟsi-["h!# IUzn-2mI#{O0ig EHbpnX-˔j@10vtybxn5Wr\5B˂@2ȲTKK 5af:9a]T`7=&r ?$+Oze6Ѯ矓f|fb#J d X}R0 *Z}bC\ZV&ZǛ=,Wc>KF{nڙT0`Pv #e1f'!5J`8qK' W h$Рx1.=W?E}k/ז&0[ .&ADKLYX> ;PQ YJEy޼}1[V7lpwz`d^.>x`Lx|]m{` _"3t>^tDMozo(+@g'RDg8t%i49/a]!&q3P<WCQ1݃F."ymt23,4e['gj|3u,'.}dʄKUg}JFdVË|n@-clwڌ/ %1yx)V"XԺ$u\$S ˙8s3S묇d;vH<A:O"*}j$R;ɝa{abtQ=%tqϗP|V[lg˛ μflcuA,-{X_gn;^BFd\"*w;]m'}luL+<mMTdp0ugGj\ ߅YC|/};֡[]0MAkh]5ģ]AQ6"f2ҧd8zeN{sԴ}jwE#ؚw-5gxdoFʸxZxy9 =>ο1ʯA2@5cwYEocq?[nrr[*pQ A 8mf_Cӌ>NIV9r9'+ &7z̵)Z-!#*"ki ˔UvFkKsBu w:MKh>}o{/-xhA_a+~F^ߤ/i!;MDm$}JW*O\JKۡZDWf3(Jw,dX |mrtkevI _B Fe'd &(Q] 4Y̕?z \/~{^dZ+u~cJ+$a- 5A=2(" A=cY2F.P2E,iΝH8 } #[e묟fdaxk6M*Ku|3V4N|\pWՔ䊂q6gnQh,= D;]ddsUtGV @B(St"ַm!6Y:!;rxۜUGhNDf~mޝ^OԃU,Eu5ǡk2R!fY_B, ArI0ԦxV5Qlj9Ee߇T>8Џ 7* Lݿ(̣F9,(@ iJlMpnsW]CI@*2a{X|We?̌S=3>O?:40*O+goj8yb>6wq3Zt|)Z(]+c_Oa!%89WmSk,q'4P$)]MnҎ}m+!CRt{tLJ{7Y#β=*@z3&KS S`$& Ѱ#~mO1C.9w 4>b#Ƚ0t}+cZN(CH L䃻cWRTP01z9oCu.{1QaW#]eF0m2Um}뺼г vώE3~U_afQg`|QKD2!5keɆԢ`K&05wփ h^9QdeLͻ̸Tckչ2Kq˙:XXwGh=7ԏx}R\B ƅ?<XqIԢk=+vs8&ediQg0[ˮBr|c8Q5mJ;?&H/YFqϟE-yYʍ0#Z&}{ڔ|.kLHdz='D,kWiWNF}|OeskHWNKxإKg2Z`zdUH@E)E.yt *DR''҆UK>X"Q OTN}:reYن= j5 \ *Ҵj̾]!8'Db`3fO+LO772kh che?$QxPX!k "o'ψyvvz H􌎺p961a*:'_g_K>j"+%鸮ogqpVW#-pkX[8";Eг4ft>l_wՄ@|Zo>_-^# .H=hkJ#aaJaLQ+!oO{­}a aPGd"}wx͉@BoÃ9Y.7 ՠFR&`OV9!z oa"K.,p,:mPM y(jueրf!, Չ#>y{9bt*~e~@E,'1\@q&j eݒWܻMtw(F1)2">[x7H _{^ i3][$b f z^<~ @ӮnNDŽX-̖ܪ`~pzƀFXMseեx R{1"UGLVŐz&Nq#C;!6Cf7b$"7Ʉ.@|Z#KjTx0RP1t*VGtY5Aa7|f:P d*5 Da>?cyZi2ac `LmPpYab}|tؖ$8OM.6MfiCa*yrHus?7D["00ﬓ5'}]z vG2V '_wŎuv#^y4JڈL o݅k0S`\}#s=f_{ 6ҞaY]j~"dTrԉVagi"e3&[wo`rS(Z8:>+Ek!=LjrAES,5-3XԩQJpϧVѻ@omھc ,*չrglȉl .ڳe=K@9 o  ?򍚨dr/ @WȠ*E9uSfu]oܟ8F G88Kli ~onA )tO=i \4F5l.&=\ VYRr8~Xf@W} RN>CDb&6w v).zp^K̛b o RP5AcOȒI 軻v[B2 5ڍ,tSGӎl_Op#t :d.j\"RN8|*yI~qd.֪xrnkJ  MM }A]b_T?,݄b<84ɭ]]E8?^\xhἥT!Йq^GC;$#I+yoĜXN 0?*$\`҈ܫw mE#E|AЍ1 LeΘmRܩ|h4642~N c,>W۾J2N }><N]~TA'.E6FuScM]pMhHq2sV(+]ÒKG'w)>K/oU'Hvhj31M(;tY:Z1N:@͏d|Z2Tg65/fdiaIA _nbsUH(3Bpwt >jZQD-wӤVilO ɚuI$j'c:6|]4ңehU^/CAxy#E~a$S5֬YɻHBA!xà,-3H^Lo\IÎ?an[.f &}sP|cYR$/a5dHSmTs̱Ha< ̃T`TslkQz:)F8$Ob'˴!Kl'iRg;Ady.R1 $)Loɤm Dxd!VR A`YLYDj@(M"͡*ye!~t}9'4vr?J;^e #Nf^C{=-6\%g>oXd靶?C?I;,1sm3'@w)`QkIhH:IṶ̀cnT\W,#U:%5SLGʸ 2x֩TXPhibNPTh<2_WЊ@(`T,dAPo驚sSDE'c)l4\!\rS}oF@Dgs̩/iռG KཱྀP31{ _/2C 5<`d2 Z{MG0^gBRHS?<Ĺw]lEhcI4[?zWJh50kJW\F5Ӷ`ʢG 6!Ib5:J24+eFLD Iр ޼D-gkTE#<ѠĬ1WӇeZPkб3Pu.M@ùƶ a%lbSq3)j$O؃_*lzx|~+Fp(Hlr͍|4+Z߼+0_VazpO|"2QX1\ ~TI:DjF00+yǬnU j'AJ,5hc61GfR2":B }{ck₦ SJ,4dCְLTmCeWhXbm(#swUI9m>WЀX:X>jIi9YUM[!6W 7ŷ8O1μaxMvM .7 T}dzYmTȳ>\׺/tOnr)fOTM /x @gl5LB!;9Җяe.`÷ßI#o}bbvAuhΊ6 *F Z5 a` SĿ7u]y ϝ> R'8c3|;E?4sU/iſ7wG̥?2`tro$ҹ/c+]h]3}れ[wU3پ_U&|>N'oo@ѥivxY qPlpHO}hߜ|p J1;ôYK;.0WJIDpwpsbz8%m-|tz^->f|8V>^*qC]idDMNQ ei0ּ&?cA&xl:(aLCN6oϲAT]汿W.|Qv +q%[pU*? g"ijBp"ס3 j}h*WjUZ,amjWf'𰒥 (i0WPLNSLNU*"+՟#O<%>Cͯk{N_C69 !@ɲmNO/RO3U,:޿MԪbNiM׽6\2!ہL2D꿳;`%ϨHiS~3tfJxGHYU_xxĻ,ʰ+AtUSC,D'~htYs R2C(dM/4+Ch"$XXr.[-YsgX:j־ :L7m׎]dz[5@xmeJtB^ -9?4-Yd툲f`XwF5%1!J=*|AjES뤏* ".,fW[L@QzZVtNR3tp%. о=$P 3z|.#)d$yǿiFXE K]†J#Skj[s{ú|Xo1gCO&U2=2Sh&4;:=;;^Fh ܕ)ej26xV DbbiNWHR*EM싈݊YP`ɕђ((2cQۢ˜\㠅>)3篒rB)8M*A'/Mo[I6}fRsܚ0l@!wYYq~)c *~mV-cy~CjĖ6Djs?R?9 },>9i}Q"DM^;Iw禝T5#Q-&^a"D~J5KُF]sSlN(G+e4?sȤ5pQ׆Of;ZcݨF`@msȪS̾a;8molM>Q:l8v1i,F+)"%l:EeQ\Eywj+4Nk̶Nw",)iIBy*~Ƣ2@k=sMlxՠ#.W[yUɒ ͒ל3@J|)i^ s!s.NaƇqJ@@d?Je>s;U]+/8}l аb L+hY@8܁/g7 C SC'A!&8<ni%t0,['%?9YapqY>UY4$ɥN0q?viSA. ; No4Э|…&Zl:oldgЩN>+!ѿ{܎\~ Y6[oIe}G9X%diī(:_|Z6S)%byx@;'P4C3:43`Ne ;N$&w^# ]RN`K +i1n< Uұ[V#e~sYU:@PT^+mk-.F \@d AV&YKZO1iT^8kK%9SRP@F{mO2PEd}BL j} vuZY$kMQ韙d#t_ : sdA\nLzMVxdb3 uFucRZ*kQQgӆz~g]DyDjmyx pߝ@XDA|+h{)L@Lg"Mie4iՠ)|R&CֽvW?&Q$<߆[X[gèouʚێBsX wgJ{Zt=ؖ`zeXSybKuPPWEZ-"+XU Mec! R#9xI98۩ D 0^,v -hQR\&⪱_ƾ|ޤz/~mYNr`B8ꟲ F0?JƐ=]lQ\י">p'Z-KY.Uk]2S` Dt*c\ΩOZK8>^eG P8Lh7H;Tx:W>ޅ8kD@#IPӨ~\@됃FAysU\A?_yCS7wXG}8 5K=!7I@ZAkQOu8V)OCN|):`}6xEu Y]ENozGZ5q, GU yv1KwFu )gil(ԒI#.YO,L‘Qñ!90շN߫ꁰK K~"8*le.5;p7/V#[X&qy9 g!Ȥoꌴkj*72r Fyӂ.jCt 襦 XIJ3eT|,}i+X'A q=(+~k62gQ9;43tPJ $ԹS$R8=Y`CZ`0jOZ䲧 /Lsnj'&LLvpPeG{,do ,tfBT!i}ز+F {1z;0dYvJ{0qrLz %Qgm~\S("Uw+P5)7R1~N mM]T+7̑X[LR2^pVdg,lFzBɗ{ogOaOg2l @`|iw%X|ʯN0PY۶˫Z,F t6iЃbx3fɿ qWV%[b"0) Ɠ*ccMKNNn?9uq$bJB; 3_^Ws* x,ZqK&OBzLxZ8Pê%x/nj-@Ҍpe\{t#)!Q*ǐ7r8#C_vI\DF˝ c9?NȂXT4Z63o*3D7"rnE{Uw*I۝`5J!D;_I#x Gį}#PEjeQC}1,٪( g uI: ʁ\Lg5cjrt$*Nܧҭ]e(p-MRv9 ͣTC~+'Stq.Ϳ~_m@if9>0G؈_tP_ڧ$.%e'|,X =Y/x~l) g#y73WQBUN/$"*y蒻=PMCl>0r&j?:'B6?I=!ȷVWK }rd1kܰwEL}s!\^Y8 D2!骨 6kc4b6WL{; (?$s"ܱ>Fq=\7nTT+%^Cكi3%f@7/kVkH&Zcwl}2|xIrp xP+tZmz7HpsrnU~2\gʟ25EQs@ßKF-sC]T]HN8Ok$\v)ojd&ˣy[:+]TalPfa/!~4=b6na#Wqe ߋϘ4B~:VFxvy4U<;h-eҞa0)Fޑ *,GN%StUM w~]ytO$ӁYX*EiְツMdp4Ȫ]ClMu{忨UvcX/lbZ㷜MJv? ~^O\ fCC1jCQĮzޭi!Vd|,shz1h!>_f`d< }RFlM$7+z|8AJ_|WjeI.8m; h\;ڕBY} 8k_#9>w7TV\iк2Jt$'̲bRs;k"yP267/6#@sٞ9E'LOP_[{Za`Ez {l(sqkd$S=,?]u|u&քy-!螇/o,:{=j0[HR.*ݵdA}~#OI=?  mgr)_ `)17v~\NF[0s5jԮBAEO 2 ,xPwv;+?HQp®ONH]0 @k&/C- _UVtmgaהI(Єʀmc p6|ЂCdL"}ƣ1+;bUR5dlF̪Z )$u '}Op+X پpEˇ8>L ao5dq+wb䷺>&*Q9P:DzGiWuz.se=BC+ g nw 5ﻏdfb?MHm/_Ԅ R|d}^Zf;[?+wkkyZRQ-]QHVhe7>ͬ=Y?ú=~YQZJ> wd$ 8Թ9SGdޡ܌μa". 'z+0-j{2?)7p嗹̣u(8hBkkKv 7+h*6%Bu(ϼ4A/clё$)Zwȑ݆dC=\61sJ)}լ[ZBJJdҡ3EQxr@ xQq-H@? TYd$w嚐!q@؅l@U/6*3'w>x r+ Psz_N dofv38Gj/X{?6bM D lHKw唃I]O[M;DCV‡0rًO(zǭ|=WB yT1 xxNMP`6'_G.4DǸESY蔹|hvd]FEKXr>M]3@9ioV_5e\ T`'хLy\.2Kʢ_͜x[v)N(ɔ*⹉MbCHCVhY"fq5b%ŰH_ |Pֺs\|4;߹,HX挄]c*G%&RO@$ JJ͝㊆^78rco;F!]4` tP]*wǡaoi]^@i/Άم@ʎm81O@r&LAk(R3?k!$“ү('wP7pgs#yS*Pʥ~%s`n),xVv~a UCu+ H] \mowfj3U WS\k_ £ޑhH3~XhDˌ+rdmxOCd;_jnHhOqHq Uhw?E8j-&ۺ [ TS`j#zN)(wի6~0\)s]]Q̅#5* dBL|8+bk8d$ˊT/WE"oqQ}Sĸov5cir\1A*5׏eE5ai3lG%L趲~ X܍۩vmr;tYPvH>5bnY U;ckm/bçe_9jj+_] ~:iP&!ԱTC\0WR Fw"2@%e?m^v,fzfqS @@o߲ZB@=QVc1ԓuҗ:U t~Uz#[>R?Q!D+ŮwbZͽşm9?(Iz"Yaa.%o>цV/\;ኴ[]j6T C<}si }A==u7;$fԕU9 k#4%-(uK=Je24B@dU nEpĕ37i_R''ɫ \gƢ!GCviV~5̀V Xp׎[1C:˅ sc vB iO)9epN4ЭqSi;N6Sh!ZHME鑕%KQg ꬦv7"o/4Rd"dN'w36uH'j$s꧒>foں1i9u "%p`vF {ZK}Mh XTUإ4mGU~P;,K~0 0SɧY .l(v&Pgh MdeB=}FSkpR)x߇}jҁ'X (5G6A@zH1OS$wC0 |/,'rAEɢ O5맴t--!t4T/V@b!q5*ҸNVEf= hSWN.|t.RԱ01 "`o =M)yH.g%60ɔ>,4_)9)GSNw7F'z(* ' /c)C-X0M5RHnIfUSݣ8q{)dQut gFp+h<)IC{,17H"9!Nܪz*a9 }'g );-lL&ӽDw4p 3 L.ȔbMMH]hH=u,O|B\o؈Ai:\jx̭;8׼QN!J@y]A*v*I 뤬"%c؇XxW'w?}ؒ4:a3@nqr>稩λ khr4y 7SWJ inb78uZI4ճU fX*MS .l5R.]o))P||8vp:=jC~W [*Z?I 7e^ȟr٦%'0v`Hq҇ ڑDOD1xJ R-тf雷rN@D4 (Ӏ#k~O0W`ia/QT#KMZY7y lѧ6j%E !9i@I\#MkQqѡζYCho~ vZ};?z*# 1X븡yeHb=(~F|x^e`VY˸j%hb2Tva.>HV5vE0.sOJ ^GF:~ؕ`fj}O"+TfәscHҋ ƞ 1τ7|00 #:HLlA3$LħF!0h?y (dx;{ Tj ','ɝKrb8$^A^/?Co@=? {gD  2$ nMINHT-M ;ѶPqegV_ ZmYx*xhe1׫<eA{@7(+HjBTU*9}8)I `wTgPEMz,LNҥ1܃0Z"{\D4&@5+@P{%͢ڍȺP!蒫;ӓNT*4JtBFnÐV}G3*޹C,cR Qo i\NB)mY\l+ݙAh ~a2OԂ@7hmCEکa/3#SWQfBT3Uc!1*^TUh*qRnR[ Jal`s,s֖mrꋆԞۢDŦΎ8) ge$s)E| dzu6Sӎ w>k"e>K&_gB3E5NU{fǮ(k%V.Nb)PjzҺ:<ކ928#72w^b6}P `o *2!È5cn>׹/7mojdokAa;JllQ:<urYܢوs3X\uH+Le!vUhT9a%>֔ xZyl\-I ! ^9R5c22F#@"^b~ˀvf*8l!%lBjT+Qf#c_Dmc7\lyQfl@7xD.s[}ҵ|fhMrpnϗ`hu&Pe ٭NgkJ&mΜV p \@X !!LJW\EۛPg _ {B ZMWI8PY>Oc cB{&ߢMÇ)!h3ٕ{)d,JJ*qG5[cFY/_GJwVZKd)jRCI\dmlĪCb@O*\IU8e)g\uu*,b){u|3`>9NFII}.=N,ޞ?9e&xMTp azYOH6<Ũ[[O03A]9Öufm^PRLטthO[ݲ u_af {w+,z4^}y<@=2a!kޘf$cLf?2*,>c#L{{KnB0 %v'le@ B `߆*g} -zŜK-O%f:/Q 䢠{WrL:sCTe]76>/%R\hg ዟPqj)TiwVaBWw\)PdWo=ͭVH.\560 1$.B')c ԉE-4@Aǥ20|{@D  INl?X|F\-f4r&w˰>?znw˳fbc\]WzAGMM\i(?q6ao]݅"׻0FJ t=E(O=cVDyĹv%/J<;!4X:Y)1OY% یFbl4OBOgyׁ0!tuɔGllaPBٟ gS$[|(D^uz^&J PzuHr'R~,~p Nb:%$#Lwj YJ4[T$ D=SYwmںA>U[M.Fy-hCD*xvXņV-սR\CYZ5c^0գX>{H%o{~пXO/z*./+A10>"*&ĕ*`YA}Ĥ݄0?#Ə*AkZiK>.&qGŸ{ʘͰG8Hs CVqz(Gi\za}HW~NZVe 9 xD˗Q|=>h"D]rN!5 Ug1OHnR-%h[C&3*ŘLJZk*FBc G!R* sG]4q| 7O[=>PT5m*pmU$^U!>+ ~l.Hvxd ;c]6&D2hXQ\L!ÊC^*/ﻫgqԙd!@WXH!~m!4=·4ru`M= ^wݚ< )-,.Ugi!Μ:*@Dl4o='nb&aPWw)': ?Hx 0|AQnPZ.q%DĽm\#ZQy ޱ7NXeV&yTtb3݂)ȕdOFĺ'au5z_o]>W(ս[4'21Q꧃)zwPySdw5y~w4;V䆊{NPg (`(=ZtG,$a,MvCrf h(_?dJhEH+Jj-% x6jZ/ϫ锜{M]P}#M&c7)=I"G0>ɥS`\B⹭OPZ~ITmX!cORF6$+; m|jxj3s|ՒY8QcMBOffMwܻUԧeBŲN@ɓ¾!/zSzT_@ }$Qn(%׻T֜b%FjRr)bԺo M)`9$~i٠HX.7?Re -&!ǀ2lW{?6Q7,oQZeW{xI$ */ HH@fҌ&WxNi,r  kweACO᷎52wz˴ߩۨ28$(ɏ/5j^ 79!KuiZ}3KlA%[a(rj˻;7v&@c V%JWW(!@jnIm?OQ8Td%cû0Vi: hK¸e{QHloJFar1[tCHψN|ݱo<ᆒv E\'_b'O3^8&4+u~u&񋔏fz4k8*?Շ4d0B{APCD꣍ѹqb9lwK# L70t~ާ*8]-rFB\VX9TF)J Ϟ2tރ2 @j]:pIh iD-ǻ)Suj[kQ *vGvI<  I\J8V蓧,-x>v̪d?c0 5w~'Fld=W;9S/G]qST$yIfG&:; Ʌq!|xY1`И4F0byʝyTʿhş$9"<,KbΉU0{ɂ$07yz2r׾&k(xzW_9<@}qyb1j%9LN9PʣBX\3G/5/p2ZNQek?:sGt&ɹM+aMqzqĎSPJ-5$cc`w}#}=z`[76䎆QƣTy\ov ؉z渋>c&VB E.uM/Q`k9#ޟzX~;&ۊ^g3U /kSXfTο-`DTGSF{ XFW<0AƚjDlZccL;&tOm@:DJ'9'fۺDUe(Wq#B@ 3v36ާ׬vr}?Bjo=2ʔD -nHR/AXwB*_T +wGY|yu,xV-M2ǂ~4Lc̄B}<{B_F+\F $S؄qY" b%O0w*#ITGVrU-Twӄ3SnF &HtxL hTMx+E" I4Hkv(X|^XllpVZ ޏL]}x ;_>@kcx:0 E~m!a UZ=PEǍ ڝCKAwР;|VPbvX]TbDМczI=c~V m$jx i9+<Ӧh]gPO Zl@π#=EDT ^!(ZU!׸a&ȅ_bݤ߹K)a*P1+q♲0dXPe^8)az ҸQ7 \*FeՓyk/vg5L,d ꇍU~P&`ڥqZ+!e6BL%^ik:j|P+^ٵb=zNƎ2bN翬V,f3͚0hb7=i%ULk!k{He;gP:r+77˄8bGCPiZPkȲMqy*U\{ǯ% R(@lcǁªʐ'QYHX2/EP_='oAjZW;h/Om^\F o[A^E|5Jfub*P֮ R;%0SF-g4 6C6̾frp,\fX hE;o\m'JEJ+K-op3X9S|aLW"9#ΪiA=rw-7/ѿLkl.}O -.` I{D E/>K2tr9~ġ5В%};chZ!|}@C"-tQ(SEW pjՐ@[Ow.ľ^M=DejcOmNojq1_a%'sO<=H'%7q"d{ 0SX9%qzE Gׄ-/cB07ojm3 pEwPI .!gc 1]`(ל'IIw/)J#Zo mUWbЖg1؟G2?oL<08$)Zfȡax-O3=ph|(hhHGehT̒^ضѐB[͉O#*薩ΒQ4g%+&^FYmTfB:/'z/]) |wpYi5|C2AdڍÚ8 ^.XR`ZK_uZsfFX-Y![ہǙ sDzfvu%PY0ŦAS&Λܖ062KO3UH#˴V}Cg1'2 ;稝=ԩ*+>ih qg9Ay?XeQɎt]rG[\ Û"Dixޏ}& ʓ"D6ܘi"}k;+o{=*D*Be`rEaBEaF(f*Jlwfee ZY0oGYdjJCYb|3y{xoh1IO㮰[" eqA$ ,L{-]Mu׍V0BUuv3:Og&*=&xsL4rIDnmZSuFkRI L@v&;-A2-8 ['9BCdO|a#Թ^UMē\5x\'AqJ4dzM'#*{bGEW)pSDQH=eeS,8jv?%a@pjĚR(^ !$XFN"TW&a;84KKp.}E0Aixf,j 8}@ MoB6R˿1M]] Ǻ >;*=qgJʷgy.beVѥD'Vb~*ϸCg,'@s`0/@FJt::966# \odsV0Rq|C{YO m Bx"(Pv4QTlI7Yނ܃u cuwWp/Ug5_Ve-.eο,j2)l}f[[0+y p/j5~gJXhf_No^!)!Z\M (-]L;ښͷH* /9Jgg\rsagGco$1P=,|B'͑ uiTH7MVNKsujBNP4v;ٹ)(߰*SsUX JtH-yy8{_^W5EZV;|qIOZj%·Oq"xU3<_c,$"-1(w_᪋N2xa?DEV_@"_A gX,~byq˻|ot],Qz;/.-5^Ɠb.bYnCb!HAm%2#K'H l] o9h]Ls@Utt e!q.ݶ'aqʃ"*'pN5Vu>p}>/K;=S|E2vơf?c8 ,c r\sϹp/f8(6Ozha~ȟrZ!;8LQ1ǚ_3V􈴌YbFlX܎lђ9]` D;PѾGZ;yW 􃘡±$NxCx-%K"Unsf6TS,KEn!nwUr 1!(aJ#ѕV! Ŭ"*dtǯ%yf#ofbꏻ6ʸANS~In06[1:ǂeVMcN/:!͞Kܝ8]jk O!}v&c.}RXgݭ2DrҙSF5Pd yh]_4z2t_f׵1NvfJH# /_p)r;f8HazG&wV|mW%)8l}\~ PGt6u|!rתad εyC2HXs*/;I _V:$a~4h vW#!UNmo+PtAu~4SY*F< ^ӛ@jyp4Ei 3' git]psC_iUMv:z- @_[!2EtH°oK ʕ_R{R%cY0GuOLX,{S;^jΏo 6h11>q|[pPP" {<5ѷ%ldF&fǔ);Ls ;>g{˲,clx<r`8a}@ B%/n*m*8o2'|1FRU}n8b%׎l#_An?X LfI_.Myq )IJS+M@|T ӦJatT4]RkWT*!GϺS|PBlȱu9ӻKfl-/??pp]?|HREٍZH?xr\H#ZjvKg21ޔwI x^a+vtRU #,!bwДd.* =`24Kt[xM$֌d :Ge+y#p@D!.Y`ѶA9#@h8$ܤ<ُj .[}?#Hs僣CJ7V39gcDdjIF2fIoP S[|핢A'37NPA{|mb.׳ z$t^8Mcv1bE;f _a^8@AŪn* y@SRiɠ, ф;Ss H2ҮNF \d8ZyE^ 2S]%3)nB=/jm\Ϥ4E>{GXXV9/Hq-\j2N+)=n|֖2*-8Tzulկ穪,y,P}' õNrri6<[xy;#.Y5%ei}Wy:͔3pX@Ue5.Wƫ$2<ʃg~(hZK2S)/"\y)_ i wPnbAH^&AdH AngD`1*e`FLm<_=tWȪ KhT@TQ|+"š[N5v}I!J}tћF8Ul!DY6f7 To0@f>0(t"nAE&_+ ZUlCl´Ȃ?Ż<87 A UH" 8o[tyYr]i f` k7Gp Mw[dzUVLI 6d\8EWO`=tAaU Q CG HuLl^LDuܳ#z{eahA^7}N(H/E `Xp@T-Χ菊|ln/h_%ź:/0"C'QBeY·*g$Y3K!521tHwxB&s4fJTpW_kP @0vX(/JB~#pCqwq1XXy^Rg p!^Ey銱Mh#44.  0Zs%0\@$ҨB,ɟ(DS\:(?ɶ䧯5H-@kFlz<ĒO =%c5r`iP)qFfJ',YłmEWեV =tco &h h-g&㋖?5 SX> R-;/ L/y/UԐcҩҗ-R"D=Hh_h/I͝rFv=]wa(.7_( 1|#M+T+۫-:+N6D$/S;lPs31{ζ{2{o$kFl]VxSkӀ,j`j]H6*DÚ W#ɂcPĕsS,ӝ-dD 4ImA]꒙ )ĊfI}Hp0~'a3$ia 4Q0 Oχ{]227 k% Oh{B-kzSZ~*:9ظ }/ʼv!u֡f]E􋞘F̒slAǥ҇se3vUV̜jeMM:HS$ѷK0'͒9duxΎsL̞wgޔ{KdﳻŨahBhRؐ*)?,7i;\~FErzs;`Jl+t<}CŅzo:N6_-S11.4R4J)r^N\ e6IGژ#N*h* D֩K*@ʘ}-zuhHK |)9=ʞ ,HϢW[D؞ik:3;e,(y0ZE5ާr%?"VXW8A&t$_d]ezBH~'v%ɕ٧ƜSivJp^7[J {fpιT$,uI =ZǢ⏖b"C-otJe$()o76uh۞KߓS}l(:K?EtTfh4U{#;BSJ`%Ne qICy)ҡaZbc#"T%籭zmѪٔs5C;hQwRP8fs̙jH^ȼ3  ;%Me#; }^Ͳy *_~Z>7|r^UGu ZS Q@! o(|NrzIEg:l/'b26r(\[Z]o{l&?ރLsRT!hU{odAj5L!ƍ A[!K{4Ba勂K UpSӮE=-kZP* WeX ZrՔyHMtmlK.wF'#Y,B+OFW*k .; Ra{| ʼD >{v".xNEMgm<`v#j9r {d-HȢa،<_ݬm;Sr '$՗c:@wMgS-Ju/b'^ {.)Gs0U(FV16`_ ,(\uGڳߚXPEwx1lS$0,B5&?#Zȉ0xKaj^4z"4~J!4ϳJ7hxa=V_}'%tO>۔ʢԎ#䚔W_%/$3ΓwhUcr}(DǫE %3Nޔ@FdkHo-DJx7ROxʴ.5դoɯ .f=IԒcٮJ7B&6 w A?sl_/ł#U>"pE (R` Z?[reN%!ph!WqL\_i0[er] gi:k7lX@ͺ0Rm^aK(PvGw>tWK@ЯlJ 2z&ٛ!:Ps=C2MGzIu]*}v#8(:}jŦHT?Fo[p|8t"=5Iwx(G+Gnm*_4Q7\?ԚȪnOÒ%t4"9{?ƞq9*Ǝ$Iqdo{%1E`YG1#\%E?NC6m lذ-,aBԅ|@WA+L&s{fNmtj&9RzxC{gzZjj5D3V_O6T̀Y9꘱E*KʥH_b<|d_/dy((p-=Z/6L.^W'/$RHts=.<W櫰i<0+?n<nb _r ~^^^$(?#%FY0\ 5~o BLi5TEo)$*Xsj ae:U^1t-F}o$ {2>/0+sI;<˜eo/iγ&B#Ka>з{pD퓩yuU͘/D8~Ί`7ձQ(!r3{/b5~=EK0i([L@ 'hg<i6 -IRL V54 A8,jh2q@F@]ΖL1k?ns_?Q5!1BDzj].$J4ddr #9 tC({hud$)sV{3oHk-Lj㷁`si\ rZ*6r]fbĢF@=ňrgWo_>-@-JJo*ߌM+*aUųy 6OƁt[TR(J?J݄W7mP>-Czǖr(q ,)mz1`HL``;>.n4Ѿ'H9'LZō njP2gXHs!/>b5kt:Dpԭf- ^i6@ۛBm`P)%VS(23 QQcgb֊@`} kEBaTBZR/n|P!3SzyK_| LP@f*tTZK82 kn oh1 u6 dP<+xʾ mH{R\n)/"ݼvZQiI"O79HظeVfj' #pyl-nap! Tu<d_JFM"y꭬M8yv%JΈ{TWGK]xDEj}!u :>sVbM pwl&:BE!TFT0XB|sIy٣A3Tk6Dl,lϕ6ԈĖ_?ӱvhbZm̍'t!RBQfS=+OIv-Nw8О%UC'[b-b!lbUGII;r`QtrhlO!Ol^h򨫞n 9.h&C8[[τ 5EZmnGp D/\2P:)`\s{ uܬz/>&BDZ7 q#.1XRI^~>gBft~4'.zScϯ .&7rAm,LG1i"|(a#r_BCDŮlaxyPc}`Ұ'8&P!dg+og"=Hh4zN jsmK2Ãpi^7LO53V  r{}H"&O"&4pBv#^kRwB NOh$4oc(Oq r:N#,In ZHf^`o(Xsqnkֲ]rڱ[.hP ;!mjR2,U{Vڰjp{ +7j L(R"=UqC9{s8:WR6dx=.e2o`$[J[ǖ0! øYMm ߸y 4#~wڟ-p܄g!qd!7xFӑȂm͢-awϥ39dGAquҰ#p*^}}}ӈv2[>,Y"E@L6B#evsi@,ئLS=m+]@ay]fuE zOĻ֏L*r4ܾ&J}LT,*2laQ'unpӞ_7Ve^3 Y_gvuA ё:xU(08QXmpa8V,}`I(0>I>4q>CJw"(i;blX 5 ^N|ff.'Q6 }%N7k(5TkеדzSfKDgF%kmR;N|?0 IMVXsf )ϊ^ q3]ؖpel^R+ƾz&M^yS'yR?Oy(C2hE (Jk>*Jg%1n0_--'vܵnV0XJJI$^|[I3IZ`XHL&ghcb-'yhSw%3Cz7' hs &Fއ5u|=IL2p0t 9L^mX+/&g4<>R6k5$5N\R+޺Q+bKtzrrR"xeQ6V%/HсKcC8`ϋ뎄Z >#%ku?HU;IƦwNm|<-KlujZ*h:}pbt:AU-ġ&"$/+tCx0KMpX6b,D[MŠrֆ>Kf$;A3 uk1Cǜ6pJ+GgݲĖ͎H1:`Z  Y>CccPmx؂S' @2"nJbfO]\$Nt}[!Ã4 3{}ޭ;!lnmiVi/ H3qMއHPặ9E\C.@`ʶVLśIi[?/+ĸe+`8PV+Elx,B&[ MFP꾺&-U2Mi 2L7SvxSmTja'k#S]PBp]AHZ4) &[D~2_r:VSȗI%o~2G9zi~hOUl2[*Yo*ړc~`+Y]}TXN{a${7 |Lt0Q5%F]#k{Wהۊ׬U6qs>ǧzwQA+X|~+P5&a}Oe\OH$o…}_CVQ\o4-Db5̚aǝlʚsr37:v{rT8'6>GQbuL_Gq*># "W7K|U 9'apsaFaL-hò@։ k8j*sxh9 v$P.ǰoMkp,}VHoҴ9WC1H_9_YU]`Cɶ }QQ SA3 QD[ׂsLs2 ő+ vnLU_c: bɮ;x Ew%CDB5n^Ok6"*ζM-PxBCʻ @ۑ.(ub*u$Kldš?[e;8[1:TG+zPx[߆149wQ RO$eP㤤=J,Q<&=i%x&SzSU782EHt믐tecT-Pz>`NƛX)e3bF@ͿFWSK?I'FdDЅ (?uCևOח8Ҏ0>Jm$z>c)7U當T#l\TQ\yڭ=@ sb?r?JPŚi`J;lmʤe %p#CP Mݰ ʨ{1F)>* x4j+?/Dz8X)v [~[6"k\S=^'/.}&_bWmlc0my[~-t?VIR<#.0ae;OכrxƏI߇Yb9﫶á߂B\b bgwTcrX _n[&VJ 9x_ oqas˵AغP~j`T;|&26R%]0Zgɧi*Ǩ6e܍=n-)r7T|(\ kWN(4-Cc:|B hťw'dw|%rb 0/G MD>hn.qUKpOy#fX"Vm;&W/\(Kma-MRAÚNNhzqԊ٪7X12}֪sADQQ幹dQ/oSJڎG{j)i`Oo Hшz4?.|sVQKT N{rA#^cL*G001h]0W4xF&̜<wtHt%| y:$]Un$֛؂\nn=s!C2ի%?7"Wp Ǟ!; ~6C1V-T" fWz9ȋPiI ,/50+(eRۨo2 ✅CoL90s1`Mu/buG &e;; ՑeV{8$aK,qm4-$tجA"Fɓ,`+_@ T*<ۃ߁̷? CTV<ϷeԮnrLƷ$_T+H.\gӐ `fz[x`E!3PK ydpNLo ٕ)Zmi lAfTWc)VaL[M y>NJX#1i?Tzv2L/h35T:'I]KH_4E.0i m{ב*j>[/jx.;yrɃ]PГ}I+f0 ,[yhaoLg@x~-upF3\nYT`>˧;̗{Qc璆zЬK%|[a(I;|wxXhCyتq^Oq̈FTV%޹4G;[TôL0Fp^7qX?Xͩfi~&D b )oRR0BR6!iP`fIW s7mzǏm$badڹκjsf/x8*(Ԙjyќ% NVȝ3LgMJb9ȝ)HQH?\T-C5/ d }P֖LVC#OB})D+>btg4+%"ʮ$Nj%`:Y?f{wJ-~>V@cr$oiS @mTڎE. s\0TŤ{ oVJZCjA[iҭIVҔx@M$dtٹ jpbef9P;Z@g%.Ԕ e!U';=`=Ҩɻdrc:^P sE-S*3/&`v)dNwD}Opmn v~pv)zyB>Zx\m;( ThXo+2*^Z[6sAp9AǏ y٭XUI|A<'0(Fږ4i dhShPD1mVSy~Bȑ@H6-! HVХ#8m _C%Goa^+Mَ76!aȋSD}T$LE;B&2P| I}J"wsb#2׭լjCҳFMMs#t|w.9g"(< Žh'կzj<^JtA:c-8bFb]b7Va䔽YneruE͇"G (xf;ו[6`mR~V;$NzF9nz?(Mܞ Lm摿?ÑkN5!CoDݬybT #G LI/^$ڗˆ@#^b>@km^ M7}~`+N/ G6nR(I;G5&1ۨ{*^haw[sp?Y|7?F>Ek]<Z3Zp<{c<6RӪbr)h#{t P /0_ņQCX|j=)37eD>1xk2;oSs{;WY#p^Et[}E@ˑ^1v jUgQ0'/\Dy:Tixjq?[Jĝ=xv=+L L.2xx}Ck`rb:1q]U,Q{ V# [9c'I.]3%9S8,p|~Tqaa'iB8R9-B^P'P9xûqY`nL0oA]3a?Wpy(` /t` WǿqgXt3kIF+ZSZ(Y;6ͼ<ͷl?JKLjE=*"*'؁T/si}z05"^iZҭ~O{Y๬%s,j$3q8oU160`SN h#yT:3!d!> 8#m-UJ:roF/2 WݛǼC:?⢅rPS6GEJ/><%,V(`YXKJ| ̴@`սeee+\cUYdb<ɛ|肳H<8`Siܪ#2 irb5ND'0+ۦ̀!N&ë#&9Xiڧ)Om$S-rhByN7HvI@ ztӅ_12-]pW;F,,Jf+b8&f*} &ߪwMZeMEbuom17#:f$֨΋;{>`j 9YT9is~ZM5ɬcU*b,8Hp=L&(: Cn{Ujq_X_۪3mUښ1*hMՙ-Dq*>*Gz=J.0/(&+@TBC#̢\ז2j;tٷe5P5L[5`z`w9K*GWrT)f;~(?:4WoLXx߆%:jOsk"cʱ[Xw, \(F`Bk9\zzd-KwMjV ڮ șF=H7xJ$qvsq=l Ev@yiZ  C%j3P[ܯUEuS\tq.v(K1JGX|'HCPĪ!mnLkZj@ۮrYj-Y9 ,֧Sc''|eL𼶴եWME5s;EtW29A!z4M*c`Jր6몮S =5ƥ3o=a_ ^.Dl,=YcNYB̺n&ŢZA$DTd ~ʑt^Wŕ4Jk!d#XQClVLwA+}(Fhh:}d2Y}P9ɚeKFlU8DZ昏hO3e(^O(q,4:!X| q?etB7+qiD y>^uZROOԥyXLvoTcGGIkq(($MD[ uΙ6 1\ִ;onl.p!r O0X&  [NNn]:i_(akPS nHryH51r8'^+U#>*<~/oGKL2:^52\e%{|\as>f_+m)зO: 'Lz[Kq`Bn׿W0]h2T& V,${IيsNS qOwA;aޯR/zfK_n{t4l^uvv%tJKT?qU2_)ݹ9@ư87|GƋhY>ߴ:-XĢk(c-83~T4! }iD'O%c3ReruQsAS#Kϸm7XTO,bR=r̙0߰p(ې4 c$K{b#J+%#ҳŐW(gj($\6ԕ}9mmΓ_ja. =y&="8CC,a@g0гys"xnN^q7XLzxkbc{׼_(\0>[]:1(z}IHj!HO[[ճb]l ĔB8pϞ~l:Lj);F/n|Lg:գ'qAX LN/SzHj}O@ل tA9rLSIApuֲ1k4Vw>="]6N}Mo+zzH@*M=Ⱥ҈ZǙ:>ay[[؞:4)6oWTnλ?!웚G\"YR&٬Ǹ%i#>i8,mH暋\}b% M8'q"_Vcg4/ Wɖi6^Y Qƙ%qi!{w^E<M8!W"=PY9)x: FLO-(nFR5׬63]=:ׅMfl%M,ԅ~̖:NC-&+: qrF"R, ](Cn\c.w!)9U,;/* ޥF'btpm/\mT_[RޚZ6`IiP]$5Bqml,7ϖw* t ~s5&6tfb,6mb*JbĜ4 vK7ՏߤAn^ǺsN ,1n 1'ƈ0CQcH?m,2lf(H_X9Yd}~?aIޛ&*p(:%JE+ZA^Tdh(A"KteY zi#zb.܍iޑ;(#ڨ{>NIzE߯ۿ]iHZGn¸lxblok)4g ܤ7i\ߊޤdmQh<{ $f.H2S8(78N_{b1M7_@[F'vmR% am--נޞzT כLoP"wEy Z,^7;\ќ]U2d4Õ+d>ՇMq4U䠌K&fs;l~+]*-Nh4*Ѵ{ & ԁQ<ҪxJ1/"# "iB_{,..tƲkǐu  ^Kch(EQ[6BӉu+CEԀ*eJ5ͿAGE:cdʳajSZjGb g#=quKst| -6{!+ߛQ&G_< ۝lp|EHoyY1hpݭ́ =?Lk8U>֋$DҠs;s,hkQ zpꇦBCG9*1dkH"S2:B{#j?uElBC +_'fnP"luXFjyURF;<ʌ}lj24kVSAiG݁G־>U(#;mXDu C# ;OKP5FG`np˭+n~ҤێwZu͆y֯*u`곎Lw4RnR`gߎ&$9ulL8wkZH>).Xx^"l+x\~NFzD^3|[Nn|;UhXu۾89aj.8d7zx4{ Dmr TnUMZ7ɐLqyvۻ&g?:.k*&z+RmN$iҌϣ mU>kt+VB⇉16Y]:q:nɔEc[\& X iꔑAFMO,S1Kv7 lng>= $Eș{ *N-@?1?m!j(P!ѱg0(k[12Y^HQ+u3ܰ%aIYkiyxJ8][TgU\QJ]`[e2Sɷ[!gdA -R6fkK;r!Wy!k3k+z|܌Ȳ.Q g 7b῎iX>oPVm츧Jc2mGvdW}PvIjY =CxW!T)kyTcO;DɬP+ $s: /۽ хy5wb J39K7p&9شHȗ}c Ć IuVcӥL!aw42vaJ~hj4W*Ge#gjF4=.xJ=`iLZ|{N) DIqZ5BXdC~Y5vS+2J|KUh)F7P5ilquϊI{xQT _b x9 [B  $n"/OlP&2΋yuЮ,Iū12 %Y|IXCNj"S2-*ͺ|[ 0PTgv̝J~qVo?^ C9 5l~ BMEVSƍ@* 2ܱ @p }R_2 GIddu[?z` rz)XfԌKwkt>6t !y-Jq$Pt$˼ȋ58ݨla XteKJaK/ĚPcXVY?KQr" M*"yj4I!<ҏऌ``?MBՑPN'9?Q٢u2hgYI 6:ښ 2AqP5#NpC5v+s-EtQ~bTRKet`K8GdI+ O9!4Bij[LbQ No)@4\hc3NR=+pn܆gkuwX Ru c,9š}~WuK1܇kaqhR{;E©96)-j%b #x}wYu/-l|V 0FxTb+MܾqƤeÔPԝLo9Fxf{9dQ&.8Tw.4J,סּEjY̜/Fbr>qlś7aS*rPZuz5W CA@.E s|V4Y' |ynVVrŌN!Abx:^ ^YF?.j5\Z{M2{хm [L֪pCi# 'YVC3" l!psawj PEJj 3hk RUTVUG^ /L85p@0}Mb2oj-3ܞ3uw'謊@@&.3hGp fHcX$X3nLU,mХ*|X{%tLtKl.2uq4pʜPRCK_&VGT[}<'[v QF6YBirE*閾%1^.PCB>rZŕ儌_79`aIY" [ ֣;zz9xn2"% h3"ƲN`JLS_ OJ#0-%&zM3xF><c(w|44p.(F-X͒w8XɰSTpbx )M% @3arլN͘VS=A@ 'VM5wA|h==3y䤗xL>;JC(w-)?u_<-s8_s7Ob\T"&,"xtYvY9Fh ("|nmxلp`G]`8P(tWɅ,I6|(4J#NFҜFz( doJlD2nhTֿ[ ցLv4.ܔee4D(QYB\vY:NyuM"SNVz2zus@{\4_D94|XNtJ%~!.y׃AFXu]SZ|57 `R50HE 0qԸA⬤$fi=9qE[Ǵ+R<+|øxmݯnDeb12[ 3)]W08e|:JٝӤmǷNw |Jn؄9,UeSȰƒ$i(z6:1b[rzXɼ .Mz] ?@BJ&MO4MS9`8+8y|?Mlaȫ;G3?a# GLiaq}70C>^5dOBrL F2'| :*ۋ# ܞmJ\r;6*wjs ѭD ̲@ip_he);A!/( ۺhdhpQ%,K72E܀eCQh0p4,ӆ4 r8BrV׃ƿS(rW-Żt(PqCDnPvv\ T+jQet1T &ε;D߼.e-E taB 61qM6M~GLqR^o4x@?i KK1_mIř'5O}#^MP Ol"1~:Ѯ B~ڻw&>`I=ʺ1zAzXo$lnIq$P@ozS_}ik%!V\~(_6+[JM":$ϯg#a6r'I2#SMnyIkq Xm^.lyDȣ(?7.j!&tp.?*iwbbɭ@3)90?'-H$ [jA9sQ,"ِ_] }Bڹ ^?Fjfib"82ISAGkN>SqpiLz=ޗ"_+:F(oKgxF {<< XA>RnYYA$MJY; qNӑR'I%uhsI̒ļp_?S j<'x' -=լRʴk?tCwINʪ {?8YKaHɴnil|&ە)yC h |NZդlY蝨j{0e9Vnc^˓?)HJXm(袙žGkù`6w#hERb~i~P_d%eJE% =h%|(B/Rk R{y:$[ (rh=z?4ϓS{.B=[in]A5'uJhT[$)x+EH3 N'Vē1$>/Arbӓ.u9";djc;;lRiUC 6,ry0E#&tֺY @Yĥp ;d&}.$3l) b0H.y}HV_>F3$jyՆEVx5=HF2,VWg'k-V`F'_z#"a'X1kcMZE#F67#+ۂ,KhZCYGd#9*XdO3&fR=P` Ri ǔ,+6Y?nMp쭓rSzEНTtyLya̼U*jcNw, HcvpF(Rg ,~bnUXƽ;.v͝d=/sG2}]GRNqn s.`M h|&0oT.ή"*v$ݗQ^\ΫrR^[]o;[s0X%Tz)vש*Q0XxzA_!{ Ԕ]> ,.= a٥YւӃk<ϟYWsj`:Kgk$b'+KbS d#2BbvRCOd7: 1tn D⡮lR^=YNe(k~ & x8UW{=˿i2O^ ʃ0#-i𚕺|#x$Og)n "$%‰Y>q2* X1#~ n>ߒ\FfN)G:uV#1zr7=顗h{G8m.KƇQAPǵH:.Kv&Fg훏p.¤Qśr߆0 0TY/pJ'E٥az|e$x`lJdAd!5=JE݆^>\l@ Tyc>M&cŽdnh/ Tb1 1Yb#|#[U9g+. WƚNFuL$GgΎܱOLV0(^H#!i-Ƣh'ӝ凈-dZ0wrҙTbߨ%/WAPк|yT<# :7]4d`o,J.f$5twRb ]NQ< ;W>U'Y#f'cˁ|RauSX~o&]n+.6ddh5 ^s= GN N;^c܌C#OX; abc ʩj]tizt]v! wŗqm3OW[v{eJCxdMF&.j@7)c(1;EiMJm?UsE㗺A:ꖭ gƎ2EHmvD!d&4c NQe_l(,PZ\g,Oޚy_e'h{$c,yU_*oX*iyV#$drKf+ ꎲ0*"z@/9Sfro=bn9a ^ ^։8K/،'WS2}aeK8(6PUZ{A JݔT1? yiD@؇#N8'Z&q7lMʥVUPEd%:I{+| wHᶱ+AZK͝ wh!,C _Fl+G?mChkL]B)Α-Rڟ w+[c ӗ^ tT="Ї9(c[O|.ڊ)+0 (gd^$5E2`ZQ6(fc'+CBag(3.[|qVD]dݬ@NԶbCUowXw>E)"U S~ղŝdƥ{R/ jˣԄg ꑸAӏp;hDM$ W߯ƨ0rTm WNvs; ksȉAnzZAҭj;[՝cLFZpkq1MDz.J4lKZ1[թ$S%:("Ƥ:E2 D _ɭЉ`v8Y{.r]ҏPfޟRSu]/l^ f#߳&q_'Rg f&we$H.uH6q_)iHa %.^vB6'zrYN凤fVGEnZjd|1hxVy,n`41"NtKܞ@'"E(xvU"Ъۛ o41T;bzo) 7YV,4SsyIᗲ>~! vfzWî/uf99΂Z;+ OwV/dt&BqTpK֤Z_ok񼒞VojMU4z8sqy^k ]+.?M0`M_trij+\|uឧTL^Vof]NWs]}'R AW͞Έ&e.|cͬḦCJZf6>x= hУ*"=/|O M_ȨvXn} /4K6DCϜ,wS1R7U}GU4V{Jd';~VOjpWzI\POqy G+ k`g jпPVڢOlF~cNLaA3')uq&afy>~]RvPGc_J;ƊA"XG91/IcgY`i T^=L#ڢgyhU߶w6ʛ&+ʶ\%5E\2H y ۏl;/ aCtby!&O4GZY͇`U=^ydW!Y\w3#$VN̖ YfP? {tNb&qH@Aん6:h4"q2 ƞj~dL * Hdp{0{U}* >yJJ%ږt83 ?4}^;l8*il s9kon̋ pDO3jj`½O2Y ,Tu`m?ZqLZ~^=6rUJ0q0 ާqZp,1ͤ8E>OAl@7Į cꛁ@ӀiyHȗ&><7۬(t#iyͫfr 1,q +NP#QQ<ϵ͐A\ո\<2!,򿉋Uc"Opl(}Xmg's Akdή}^aӡw:~x띸FI'KV|D1xrc &d,k0ހ |cg+̛Ԃ&M[i;K0+Q~\*2-&IܮSR[ѶNAC6v}) 㭻ĕ Y m)SObYb^oFfuEOoѠ9Ԋ;P!\fqrqPb2{@IHBn`9wIY!pBCi]1jz({=T0 ,Cȧߘ{ UbrhV;@|C};0%rQt{6GӴi3DR(>LA$(Yg8G9 6{>6v)O&HQJdsW9REYCܔ|^%uj&bnEp@vgiZN) nN0V\TWA)by[v_%aQM Wt:참6ܩVȭ!$3#23֗UVA&+_1%vwր-$)ʚS ^ ʱϹhcqc`Y}?ݝ48h֖Aq`ӨI(!O5PWzmpz2 BwN+a9qάt|r 8:*Az(!㎊s!_FRLm<_,3b"AҜ]׈lzI$=yڥ0a5v{YK?.Ok^6Rgſ^?=YYJވ$O&`nwSٕ5APݨf.R]/6Hv85h "[֒1.c0|_ Y?Ъ_$-G`ߝ02.x w͛)%`iSXݙWB\(1SnQ B[ bq%ϤDIB"::` qFPb M֍N笨t㢱v\&C9k- `uk[4V/ԪE;m$8:rXNȰ &mv6DPg gv!O>SP5F ISIش]/$"TΤMވ~P#8(1φ@T"3R+,zW>&pڀ |JMrڸ)ƣ+АXbpO F6|;:9jjFf&+4t#T9D(F{5a`;_)ͬVDεRSߎ7VLѱEob^ж; 38޾&~ϑPlMlgsHM>h=ri L -v*sZ'ejS|B ɢ@*`&i74E1[v?7p̳ 20+"<0d DDžmjR"e4C#++>Yt iT2Ν0s|@"k U~JReścU]D-]V'(TrRoǗUx0A -W5Np@iP=Ox*-iz/+]c4Y[iXm+/g攢{32)Ipk:a^hts %Urx1C-Br X)Jp;:K9Zfst!1aA~KWלZ7{#|1.#hWI*zE978ngJ)|Zڂ%. _j>O^IbRrdBXvS;ǧ^U+3q6܁z|~jnͼb $V%#]*NH%(!dH}~/> kbS7 &D0g\;CRŠ,WB.Լ_ J49\TQ grq8@֎v(qHnb/1Jol3w5z=QVjv' hcNW,vl_G'A;ȴsy:=Apa߸/yJ9ާ@ l;d蕧?m~M ALU,2~@ ‡oIxNIF,^>:ؠ4e6"/B? ƙ~)ME+خ)5. g$|kC0Oԙs1{nʂ)4C>yr" >*15f3)pڬ^Iz+IGICJ:+oѺr&V`u0$@8Xw\UDsMլ!TAv[)-9 J{}&,“5O]jCJ]/T E: a36ڥ{^&mcͬ|tRf**ҹJ]򨾵:$wɠ0DZ@͠?}m#e/Iң4LܱV'mA 8Q{?Л0E%f:>ez D;}ANL!cz)3~1+oh!q8?ev_!m,ό[܋)aC١s hh{=L-m6,=TA}/%Iìp "%u.t}(6.xx4qZ{Nln#tmIЌ—EQMG+V> 7R`a1nZα Gvuxto. ǎSxseE2EZev}iJ@3^mUH|3.1+[RR 6Sѝ!e^5|U/g2lg[Zv dɲ_Z|%3+!WpuCtwj!&)3øZLcqUK)~?Qm2TV܁7UPt^*g~m4 TMщ4Bxqcaİ[krEJORRa>*t^l{mj{I q9na 0-̶L(1>8Xd)njf=X ꡳF,Nf"8d=5.j!r3#CVZ' T%S<AQI?!=:4M败|f `1n|>n}.!HwE6+L> ]7E_MK?Ql5ϰdHsta q^KDC#,#);UA Ι{"~g$M_0,?MƮ?=2v@0xq+ i\tٰ82&16gwIr Z4PYUgEmbF' Z@U7.1T!zKVV9g,ֺadOZb7Z3W?#'.B}#@T7N^gmB",aՕ6bp~.ۨ~]~GDNhؼ~)nTTI*R?$p(~ JInUct6êrȤ5yI[a<63~@M`D%rDKl-<ƫ5\}ZM5 8RC]# KKnm/+x$[I h[X4f*W[ c+jIBp,@iNG_fUgt:wS/x ^횲| mvH49m!I1:ϱv߹I\Tbݓ#w@Y`~z!1Ҡ 5_˭%=C_4k "Wt8u=6Xt"LѕԨ뢽gp+|'MK7k(jYij.;F7% s5FETpߣ+0xf ç`7)TE?1y)69ѕp f GI.pH'?fi*v!ܮ&),5>n9K=MeqwLX)܋ 0WP8Ⱥ5ԨϞY’19$Gj 4h˭XGٓ6GVm$SR/"CS0UZj p2g*-ZqV֘{p>:BNqI$]Q F-t|?lዚ6C?eD* |Bd (O_y| 4}&jʎH9/8:`6bEĺUn0ьdY眷R^執i=TQ fbM3P;QKk0I 䊺;;v1D&*ܴfP"G Q (?H\)qˊU]F6?aՈ2#?Y!{b4N)^ԟx{)!S+ssjZj&a79b517sĶ@ }?>Z=Q+'*ksUL}U@wwW[σ;nWm@ܿ\p7p]cdB|D:uG!ڊ򺽾9;ʛ81aw@wLZ<[pPj]#[.xri*N{ k-_]4lJ3#7 zaðRф9=HGL.P7p;c:rlA!BkN=w)0R溻LI%6c5˙շ FP' BnL"KOXIƹ%J>5+Fs ếTl$Iz_ύ՚4ؔ%/2gtdn Z^V cDMnF4ӯ`y|DI Lp5ob`:1o"K(ZRVuv~/?K%A "s[-"V eJأ^2w B5;T875 Hc-C}|X*# !{iZb oScfw*@1T]_Oj.K1xB +ˑGs,ۄ1HcSDaęd VAп _པJҥ3]&yTjr&: IK<|W -n31s}56h$OPrwZ?a#GN`0O,-9 Ҿ|BrIeARBfc$lu31SC踠3&គYK>F^Wu8 4scQX H)riSKT>xηj{BrJ,ZO3vpz_nm|$r}rրuLH`Ł?QX^c8`=hLKQ`ꭠĠo^RI mHV ?vs,'Sg._RwgM]>Hf U=CLzS+zhQ&! ?N(kQ/f @\s ѹ>`uis| m"!XaPL˧bX' G.p ]YacD Y)} /1j{/7;|&X]J!(SP yo%؆2;J %6Fd2Do|w+&t~6 QHM[w6~"t|oZ5w)֬ wELCRcqYLi}BI~E PA옇$Uknbh-<&@#9Qs}lm0;%R+K* %^Kv,+5E|B<!2]l}3[c:.IKOaӁX@Ə ņ R78PlVNSz7pYaiδK ]t2{-k| ;VHNOտ&xc(iNGCLl"EԹտ bl0Ǽ(WGŔx0I1T28‰w./݂--Qo8x%+gʝY+tYaSZ9BErr#" sZTk'r̒79a+BZ@-:]7#vﶿ!a:cRJIoj7mn r`r u;RqZx *U'mOb,$C69;XRG,cT ĜZUb0 R15Vd-ixe loe'ocZCCע>dpz j};o|!5ݿdlEl-0v=Q y=AdyN_D̵GqlNY\>Bb7lFΊ:jL .vVQ)h5Мr4 wlbSGʼnV+8PA`S:3V [4_LŇEKHGq= }l&.DW4s-: V(ǏoK<%s{!Er":/p#ٻVye$9 /8%l(G ȶ %W2gnSSrٞܟNea4X,&XlƫZQd.NP)p9dp|q@oDipgV=Vf,9qh1ݲ(% =55Wx0pwitЌ q #c]UVHR C嗳i@|YdUdØWŲ4 Rh&l?OiDRVzE"\KiY 30c̹m(@WihLX;S)?)gLOeʟOQ҄[SdvmT{ӲXVܗkQ"WPcH;3 _l{2r #pyl#$|Nz3ᘤC A@;'^uitVbU"0ʱOZgcפ~'x^ZRE~A)vK[+W!CH&=`%ΐZ!ӚYԁ|)8!~.? y_hr.>.zt g6~_%Zun&n`{H[aH2 Dl<ܯf0TwƔ,K \IBʑGdTiEo]@V>!sIWKj2h.jX9bH\1A+.4'!:^^R}Z%}Kg/Єu-Lf}D70;W 9 x~l ތxc03 ij 4Hb`%*pAh%KGJȾԼrʳ8=?[tբfYu2%S̺ߒ yZGPDB&hElYsmy 6 V ^Fbma楬%A5y868Nț9W-qWѓeEWFr|FQ}83^iVT0Wa?8cj|3Chkk^M ޗwR B=:~a g 3 /X<8)eaX1ZW4o=BȞPܚ ÆcD3VM /6IǶ0qcukD߄E_O\{6V9`}}c"Omc*.%$#MJԿqzM "RD/vj1.=?ˣJ>I{j b >>H·tq32fs_{` -C9}NŨRU̩cF <UY^HWmKg(ߩX<$xgV,.  g5 9's枨n u32VK>g*}=+Ԏ<=5gzwwIÁ(  ơyrݺ rKúۇ~y<:^E>O}@;p Py1f3A~u)[=囬yRuFFsgt>fcAkSրw˴ = `vi?V\ !BݘMaPv /^|5G .wS_ n_سFjK,B\9*T9|`j SWfcOe6\*>IqS` 4hd4}%RNnlSy$8ïzxoP7DwZ_i4<{ïV[ yN),Ol_~|vjC'zfTijAx)zqQ pF|GjG'cY񲭖6o1,jHӋ`\;錒{gP\T0f_!tܶi LK(MQHUwr6*XWpd|u"Wqjs,׼2 d3X,@;4и􊳤#8y$,dq5;wMDqR8+}^g2PE ν |/cUMwsID8SwĢ8njW Gݸ[(b /?J0l_h6p n<ڢVh7i*c2[XShW._hWq@IZvٚ瑱 sNR*[QzS3.g`"a}Cِ !^Gv8j6P3BQ`![JH<+ b,n /҇P:ũ*|t vn$un+e& 橼omz0ᴔ0~2ĺ1NPN)kt dt2 n}jFC*?./:t6 PO3mR,_(l\rǻ[GWljYpvG̒=[=U{Ӎm|N?Y= d/i{|:P-(z'9\'K<}_^S<0CMAR;S41QHj 5o2@L;ɌQ1oe62#aCwLØLcL M9=PB)lo-=W}6XUftJ9Fx `}T WhGoB5t:r#MMB%8w5b [%L>(;G0?m(('Fc3Qy[r]ƤiB1Ũ75REd. !+3wqpJ*\#-k;c 3uql:;>͒Ok3c)%umo+x"*{}ۍPcIw[w.GX6LX1Vx7׷ ;~K$'Ak-;nS_Φ΄D"QԶFrlB2yw=~)O @!QYM.Ɛ\yQp/k2B4PD| \ĥkүo4 r4xR7i:>E:os&qɭP _QU)l]no@ ]u>j$k K"Txf)(dXxu@phJj<ǁܟC ]߶kCKgU$ELPM J!:O 3ᙻ0g> 2YTX J2ᛐzx1,ty ?Cݳٽ,iIR0EO¥tXMs+BB@ ջ`܋_ye'kf_6glW )ղUNB6]ϖn]A/&I[OZT VRO/zL5qZ~KR/;6Q5p{`)\H5q[ CS[y,"HwHsۯΔ|\;܂D$;j-Èج`mgk4loHy*]HX&O>$(+6WF9˸K~|Zt#xF@C+1ںn3v{v{iH[k8|YKRY?s ),M}aHKs'٨ep?U AЫm#qmOi5yx Cd='?Ya lɩX_އUDĸ>MAp_=tZ ~PN *ܳBty v8׬J13Ԣ{F-)˖XA+X*PUM$̏7+T"$ U-(>ܷլb.fƎgyxZ%jقU{52yf`G. RO% R`-0;(2<;v'$ygqM}*;P5ؠYW4|e xng7 9_n |Hso)/&†L-@Um[ riǭn_Y{)'@y&Yf!woA47߀_m07E+(fY%l $a?-Y4ً*ڴVr~&ǔk5Q)mWY{~,.8 _2/~^i9@M3l<şN"mq72m<05u@) nG#D$YquLgӽ{FÁv9eh-ݢ.}pa'Cim,oO!MDXdWx 'Ȑ;#Z_%+]#\Z?cD9ċl=|EWtiz>$gj-?] s=4idǝaSo^22gb!q IWI[v׏/G7]F>!њJ'4k |ڕtU nEVi 9\LQTڑ,}$Ykgji]Oׇ4Zey|QZi6 =gi%X'C;hx8oWh̜`CvYYU_" BADH~ich@#G'_QH&s➢ؾ1p_5,uE׈3 b;j6TzwG,[{%WFQA·6]sQ:$dTئ_hNu`=U)@>F&Ql7܇YzZ#+j# TIkcESB@f /Jk)ʔ&;"ִV[hI% R^|= p_\)ux}R=Jmlÿ;ssioFD'(4^2/Ize|g._ujY{1˙E.m/P=`/mߡ4No;y;r'y(–MH6zŝ)ih=B߫pE&^yqpEkC1k]Ӂ8*"/_és|0Xͣig"- '6 ;HJ!{u+ZXC tdԕj=/〢[{f,=wȚ[C=5\Ԅ vGyJd&Ͱ=( ۨ(3|E:*Er2:V4d=?!D|&fC3*sҩ&д(9O`4wYvLK 6~ bxJZ%[9(?I=0TF%tKv| [:+pk K't6i}Nn,f;wy J TE RZ6asKզ-c^s(oI)]R}Ss`$#uZFbŠeCL%S @8ݝ ֑$:xV ^a:2 *Dꍺe7 ,i.; f&}ZDhju0`3~ajao1731- F:^B}3Υ 7Uc.C,z9ۊkIm!۹TrK i? YeE=l]d?e ʿe⛏0|uM/ȳ_P35c$ AQ8 |CsV$zxqF'9 zTyg|,y#2EƇ*c[w;[E&ރ}<^c}ziL%Rjԅ*0_$wRl= OL@#*m&ޞS?T#"/4(L$82tz)/eSD )L4*.ը }m.9[K 9ZBnSdF/>b̻>C=@O'X*w  Tf9zTFQZ fr"rC#[\h3fN)7ySEAxP(]@&r.)6Šn`j~~zvN^#q>owb|l@8!dn8Qzwꋾ򟯁@xj2(gsŞY~IaVkJ;|‡[/¨E~, fKY$$,0 .s}yTl*{MW^-3t?u-rnV²k?<ĕj\7]&y]a[WP4s1MJL~5$;Տ`ĭK> ,jF2,R}^~δ+5a }A񒵍-JUk "rĀmb2 2^19adb#yn-\=;E?t^'0"Jlt 0OLWea=4#:Vf'W/Zzk)Qy-h1?H<@5EbH`с`̳obgJ8fiCͳ$Zay"1v:#QﻃSղğMkb䨚B *u1"I,u݊AFe;kwW @9q'&%7/ {dD% N@W G@m<9P`;Ľv/UwnL{<:Ch״ H$N BgixTmUU'*۝Jܳ\2$],$Ñvg޽Ψ+Bj:ܴ^ ç)Q9 Ejx{*b8۵%[E,qet _O DpFjn7zHg;(t/*fcljgs G:Ѕ&Q 3=g/q4zĮGɡ3Z~yз(0`PΏ8"E^xy! okYyK6f~O5]5{ YJMx g<qQ1 *U[cTY>&  ,eChGIAzԁP>61jUnK.GӕQ3Hqb%/'4Ս6&8;EnvF٠zŀ*4HI U}惴=D:?7D2-49 "y]y)F5/RagA M'wg {U<^tArvn[vEC0^W%;Y)8[D0>ZumJ:3 )yB&J!wU:$VhA#Ԝw^ZeeQgwCw.0ںTQu$4¦П;07qySwO$pD? Sj:YՉ)zg[{k e PM1M!˱\Ty[MBBn`ֺ#O}jު+ ͋>M ǣʻ4i:~[q希ˑ:>GE.˓ #9sGib&!bvC" |qRY!ap|q,jՍZ5Z)Ik\湆 hHBGoO60 t h#}ro0tnwů'3Z/yx þBx* gX% "nrR tl`a5@23P޵Y`hEz &bHg_oohj$%6.OV}FNX9qϙ'(< "Yچļi<4L,}h+~.+2bu`jU}XsuqR9YRi-ڦ<zb>ё"'xc{UOm`Rp+"Q6;F~'+7!2Ğ Na0nJRSg; V>ir/Oj{wђ!vTp"2 &3o`lS<\5gWGT 0oZUvHCLmdyf͍i$?t`T\/{0̤'c'הxKVTIBݢH6Eȸ8 %!sC<@0|9k&_ϽOdrȢx/pǿP7pW X$K tƱ#8NҜǏV MovSk /:3B [נb p\ KqR?fuCrdGF{_zk~ +(Tp/@֓,C|(66]$2JahġJ(CKK)C!#x>/J̠;moҒF:m\10]bܬw^ZPS+|H* :{TEgnSFp)&dDc=eI/Tw @S8gp:&Q8C zh0Bnq!4~*~*/D5ʪ,Aw=0˅:UϽȪkMLy650Am~ _ s;!ePH'|&ET0gߥPiDi-M*\+M`,Z)ȸm[Q z~6yf0{׳&@c؂Uq_dRIqt[q˂ul37R@ >rsUF7ɤW(QD^+5zcj@|d1Au4v"1@N^!*ܸ Gc5VϒP 9X?],8m>]`^m#o]>] aUdTJGI/+H?wΉ"bsE'ډAC=! Vt'&셽Y X*n0Ź{cj GX7V)dٛ}&0/wo$Q;jOߎ[}jPf17SMT9^O| Aw\FTվ|[Ir9q@+]Zتjjmb8"OӼgK ;n!=fk|]!;p]L02=6 %x7#'m!uM*4FE ?rorX%E1"PUwHJ@eh4_*7c@ Wͼ$ -m.0f6m+ C:9a$^yāq)ضϲU#ЬWAapP,^TD2l$=:o$tM5pP7X5LnGxu@xkL۸uD=!Սʶ0Wy-5BܵD':9ݮ}BeO/1Yp?O ڡUMs:5 l-&|C("N@`Ї­,H%(4SdMR% f?T)m|ҵG s0$f~GPNՊk{rOݧڕ/2Pf:/zdǨ)XZveFmXX,9 v9lg`}WOkZ?ѸCͻP66 Uuak8l5!TwPy&R<Q*?^{> 8ձ)L#>3tLwʮ>0 YZAER/data/DJIA8012.rda0000644000176200001440000014100713033552033013304 0ustar liggesuserse{=8=CpSy6ؽ'cclj|cc|ޏ_=꟱cBq95oMa_uqo\~ s:nqw3~2g9gW?'0.'$o!NGej3~ c^N`NXG홰p>:4o޺߄fs{uބuT + vϑuW=&C0{\o wωgyZADW<]MTtzbѝ\;>YFS'n;S_V{aA\l,8x}\}:ÉҞmG& }'qu'ċ:~>Iߤq^qU''/OZ+'^B=ǵu o>~hC? ۷shӮuI/ӎ_uc8[ΛzL ޓN:w+՟~ ?O8ZJOhO8^&zLg=BT_-^ߚ%~'.NqFqHvǟ(&Qti#+ӏbps;rMLa<~xOm΄RG&)Xr)||$;i2._;+kq{ґa\?'G\F ~/~P{'_MA흜U?L8ߌW/S=&Gc8>{Fj5~]`˼2ymNlףIS~ߓ)׽mvQ~[ה_ЯreC;EwKq0烈x8wğ]OG2~c<3qW;F>|5zu1]$拋9TƥB=̼ L=3y1I;?3|OSf]5aSZmB{?>Gh{@ Y~qi:n+Xg'\r?lw G5?gyPt>ᾛz~v87un#8<~qt.za|Æq|6Gd);w֫ﰞu,1"֕ש_ƾ}}%c?Ć߯=:-n3p@2{ e'߇p׹cKa})amb<0C{ e| A`\7ϗߡeh{YoMbwe=ǽ[3oʶwGN/:pjǔo)MMvL}G'GsAǾ`PǺe_uy(~L1)p܆U guEsث9?N[;iSK)_ya/P?O9[2%/MYM݈oh_>Sޥyź~\(d;5aҎ.7]v:n&dꪺԍi/vԝSV{ҟS?v?}_UScjG: ji#q3䏩%)]8=[B=BP9u4~юߩ T;zN;]ΟFM[zNvM*>Mun7qWM{ABq?8]Xݷ~`k48~]LM{ ȏfSOG3NUV>G+~Y*?O{LF}߹Gz] Qk)>~/}>~uiӎ9/ړOi!s' GhGV{(__wQ1r}!l:s7)/~Ў&ϧ5P%jߴG?qrlEs$~xb@]~\W$oe-8Gux@p7ZBN|ԳRM/q??3'8w*-wzsr\gmޱ&k62\sv0O5?}R<M+\SiY(|6|=z:T֏cq(q'ӨjTׁRis P?vvy48~3xqΛ?]緣Mcpڎ̻r`f+̟?0φY cDx1u~[х긩_qїh!ӣ|:;lҾU"Sѷ7ϣzLq*붩ixK+_#h#v*}rޥ|~<};Q> {09_ , Gw#Jpaq|>}G_˴w7/tFoCCQ;`G?F>ٴᖕ&~ <_F1| įsџ?ҴaWӾ⼗c[~$e|֥&}?w ~j|~cdko?>z^Ez+(? 3Go) mvϢ8K=x~2oGxpa{0n%y'_0_/ӷ?~VNߝ6uW}jF^~PZn͆Y [6} |>X?}.*"~IQ>{ yzy=]ߖqNzi^ * ~ߩopƜ z{q~E#O=Bb}>z[\>t#N~=V~>ZzuD}ܧQ^丩s0Uܗ|gp(6O'顼әN;C~iO%g;cC}?? 8J5`^|<4@ߔgWiuO%tLo<=}Nl9L 65~q|v_ӯp|(x"?qP{0}*ތݡ?BPaFNr |S~5{9*i0,g|1hoƕ\ao\?Sό7f}}f^μV9L?AgͺѺt+f3]}>kݷfq@=k?7k/}>k fݬ<^M^-uY<U~}C }(ݓC>u}Yoʯ2:nV+sϞ1?HYҮ5tgQO{>f:#:~A: Osu$TS=sx^8w'{J~w?>.? T}L{!ϝ;O7Tv 2U=vVyp=뚽Q~:jjo_?Gм ۫_g=?D?=5Ʋ6&_?O~{O ty__Sqc^z}& |-9c:K/7Tռy|,P$'Qn#^999M{./`_s/`j|5j炫=\Q,hWSxLYUi'ϻ77?'c}8>ԋVgPoqGu8|?y>;5 9-$N#Xm>hy>8b|Q翂N|/$NW{!y^Y01]҂-'r@w5z<8}+߂ԇ}ٚLqk$]|N=  T^_.Qߨy2 w?n|-$fE4vYen~ɊE>Q<,Sջa]á}pk w~{~B= |׮Oz4X o˟P5q{_oZkby 4|, g5;Pٷ}u7]|uiڹkq#S_NjsjqJ~]"/q w/cO㽪WcO=OX]h慾6rEuزAgc߸Lm]o4k<?z,C_-wzC1nߦZ<_qmb8n<?F{;k`w=M?vI}Rk>i\8w~>qx[C8RqX4)^kv9}r/Mrޯ]MkˏMohMkmoI~i:ZմM}4X~lڃϯi|4=U䏦'MoMgʟM7%5=@GozM7gҼۼ|\'in^8m~S:ֲU˖nsQ ?2-{z-u\ңO45/||8 m҅/A+9}mWMe~ջy m^OmބH=TSs[Mj m6 Ztn"'|f40||&zw[O'3?_>oa ٯXp>\\ ,<.곶\~u=գvߛvpu+*=r\7 ܏k. q ;~3(o‹9k}>*.z(a_}|8j_8NZIЏ=}KN _o! ^;wo 侏Ӯg8Xtӊbo8ӢQϢoO龋x0XjWҰYƊ/,"pyu E> w\gWգagcnk%V-:]c6sK pQÃO=e,}"WxㆇЗi`qBw]q+wEh?gʺ;,^uѶvV.ޗݎ#ϑ_: s:!cқ.'O9O{5XGyW'hG7߇m (v5~ÏXTVqCk.^4+=i1Pߧ'nӆV5ɺxn:8#M䯦KX_7]#}oznhg>B~iR4V<45`Y7j~jw:MYOb7L{.gQ>\-k /MSYéMoM{P~|nM-ꯦ*}M?ag}`կ~nLkޏuYT4d=]eϾy2գ9lY_oٌu3E-Ϳp/Y_-nYGq->TIJkT㱅7ro8hRl-G_e/{ eW{s5y_׼ 7{zIoK)Gs([ & icgcćPy'yK_*h~xSχ ji3%goYs'6 ۖ7-ۨ-_;'7W1ee4O?GZ6]o-kpܾS{ZgixH}P?xꐿZ^{̖S8}eum0ne_B?z={$e_!%y{Cw8z4B{2m\:87O_1[g?YˆW Z!n$_)[ nS[Τ7n]Q/haD{^}HZy_Pꇶtom5{viێ({EcA V Z{򻖖бC7'%~fK8lgZEs?*qzw 1yXtf 7Oc2K߆܀<øYy`c3ΐCM<'Ͻ~)Ng -+o|^~hCWs.=xK)<Ǹ]u{ooBGnxh抿yNu8pWKhKܯ><(suݘf~ #WnwR80ΞB;sFgK>-lfzW\'i4=I|cpysG^ ߳5\z;9n 㼢kݖyknuw[s(>gk+4 }~iЧifywm*?vmw?s]t2m׶kN: >?*S\.cqOh3?`[,>mǠZ̗k _yc`s:Dr%O?Od^Mȳj-Km۪m}m#iWՖmm|>E;=m{*k׽ |9X߶Ю _kiM2F~]9i~g ry{s2K3ihٱ\ 7|޶Cip[O=yZ[ⶍ}zm7/mCfƗ8Sq0mLۻ%e1ٰ޼wfǶTG$i8Ƕ3z!hLⷩt3΢;e8~5u ǟ $^{%h|}?pqZ)/c|I;~]q];|6~jo'yG/]&ϧZgEh0?|2@/~XӫQm}D3\'+hY+K6$-=Xb_kɫozT/*ջQw>Gmv~7JYv}/T{k~nuws;iN>\*_,G_C{Nq4ڟViy@;h'_}/#qОD #o7s]^@l~v:~佯'+iO+釙kk75krxq_joPulwl*?u~/u4:R:;~G^寎UZtⲃ}wx~KڗyDko&%8zyfq>puuW@]ǎ8ڷ&u1=Kv޷ڱoǵ~q{;vw w*߸~ޓ~)zt |vAb~Ӿ!~?>~ :{2oOkϢ]әc՞uKxn<~p8/q'9q G^A_>?RxYAwajqݾ]~H}`vޟwWx|/-{l }c\o({۟'O3еOon?e6UT1~х.":3=ǶI~xK?ul?'sjzĺ`楩ԗu1GY{ޥ{_~W},txjR~t{|a:\=ſKӎW2υ*uu:0~F{Ӿ}t2?~ \R3Y?xbG J$;>dx?~,Rq@mXg=K5n>k[DctWG4-R~߱6 ,R[zڳ/eq{ҳj8~҇4,kghC,M.1c7~oKyS4N.QZ:^Q75}[ ǥ/~f~9_I>~.v]!YsuwO:󽰷~.svWyd'`Rjv_>_:*GK;=j)oiJwiw9G~8DXpԋߕu^u]_,wޥVZ :S=:g?,qsYY=[HZ"K|ju?W+os<ߙи|^qV3O{|O~KJk}}4QסOoבk=Qz*NVt]V^,=zz#?w]~,?vu>@Dͺ{5ݧ`]҅@}Ut_TU#__u{kUPz( ջ ;oGKߺ#ݼof]?鿕.G[J3Hҽ9v+/}nk<ѽ{{aoכCj\فbo Nc;J;rݰR뺖:G&I׉҉Wt}O?oxyS7y܏__s{}扚q=F}:;u&:x+]q?[}9:@=߻OS\w5pqp~vu7'<}"t v1OOn#}-vmPu1ߥ{_潺].&.C}~KqC7??}TϮ爟;GyE_OiuOu88`tzzk=իk kqz woe>~v?N Næ5=Ã诽Վ]o\gw Eûɧ9hn~?۽!Q⋿0^K,kwD=KYg7~L͢=먟{N8}={=Aޓ߳6u8L~NaS?=ꗞ]sϷ_dOj_?AN9Mz92׾u ~j_DnҁȵWb'r \W)"g {C}{3{KdOLT~~QEW|EwUD?>3&7z}}~ʼ*bs݋Ϲ]Q7GfRGo~Y}*Oj>(GO?)O(&:E]>E}gUF]MG:]>\}N5O.˩|76T~ݫqW"vwl)}Cvn{XJWA?kwj[x]q;U~+٣/1POfڴo + #7⏿'=~c<ϯ٣ߩ1tFHbRw1[.V1b,q[zgl+}ioQ=AM=Yl>o%O{iCz⧇~}/'xMǟ 5bYjjGqMG]7OqY_=k}5t8A?C_=?ExTfy9?c;70t1߅M*?$ݤD8qx&1B q5qe%K'㞩~?UwnScOWTyH8-Q?ǫҕqC|7$VS&L U&Fq4/&2jwrcğ]OIJh'WHKIC_g\/sOvIQ[_"ojҽ˸җߤ|QM.W=R䓧vn6W?gZԥVxOJq~K|z.=JI*z$χ?IϓO.%{Iwyɗ?蓥27[ _Q 5WR/$'i%JIS>˩Ku86cc͞.I8NzK=F<*u)KjgԖjWj#Kjj}VxL|8L} #Nn f'o}OHy&umj?fj(wjG}':N|88F'i|O9ԃ̩W6if?eH2y-#>;P^^D_Jf=5d78|MhwdWE d3fzٓ5dϑng/߲̻5;M.۠~Pe(kvO, ͶI߲VΓeߗsA܍o5^rh^E EΑsW)~s=j[qc*@TCʧOWGwH_˯_jgyO`ՎMV_44^+@gUFIw_eXY/A5?xNTޅx@R SFOGt'GjY,뫷uk;>֣OϺN_cݢ}fHț}Ȼd{YaŁUмj5'~߭k?{L_kjڛ_읢}}5cA}W9{}껿,m$ټ//"ažT=Uf,ۢNJs;?-7{彪W~KNHWo[׋+w4?zx{s׶9#W uW_?֮CU,~ V.þ7[ϗ.uX~:DUhv珺ˏ`}WQbj:zh=bߩx;NOUtNűР֦uޗORەw>UEg#us*qoO(7ȟ{\wM|La5 bۺK~ WWX VKyjQkTd:_:Q|]:2+e-Ųt'65i-4R{)siUv{OWKsơ-:MZJ3xv_?;ߠz9Hϝj߃:QαrsQ'hq9[0_-GvٿngPG_9II?m5S|ogo銳 *?YlHq?)=SΑ{g475SI>CU5n%ζ|rw5Q\I?sĵ){{}^#uO:OYC\~(w^l/wk~wc5]לM0\y\x0/3?( Ծz{}_ڿx}~SxzoƏƹ7V{PU|{_;N*=v<~,oѻY).vV_aMt޼4opMk+sS}*nz_5޽|խ_[󱿽㽧ykT>kFxH}_;'i{M8eיo ѯwo'-yL46f#[b3DeK0߆InLgċs>w`|l.Sծqs8lx2wjc^~1+LY[3Zǚh^63s̷h{PLqU?zkc1D<o~Vkw֙Qeo_1~uo!Vzc]彭~ ϣ?k>|[!׼_G+u}Vwe!{/^z.zɟO|/K/jv8)}?~SxO4xqsc2ŅO!c#7Ӵ^?34%#3^e~i`?Ck_nrS,yʝ'g1%龻tŭS܉{o.ݭR?Wmm'tP3֏^BP{RwCA?z6Gsl ֪w㭥u\`+S/=T/-(=7ٞy_U<ިu)id\g!_AFWắ?!4dd> z`ce:ܵ!6Nz AwGci\4훠uI{ϵTCůH4w0V^[?ht>^536aOT^?3K\)x_pww+5_{1?ۆ6whm\KG󴷳ƣy˸リ>|,1oaxs?T_oqh^t|Fr4lEOko׵4M574o>Eo;.2c-:ޖafuyI.)}yak9͛| }:ϴk}kѸ34tSc{usXoޝZO{Y\+ѩ:8jx ϽSM pZ$N1f]j:G_n fK8Gşwq o%iY;XuT9?yqg _;^F)_g^5w{{KIn}ƚ}M\{?|ym&ℿl>`=o~/Nfu/o3tzk{e{&`GͫQZ{GpO_@颿3#\7:at7wz&uƓ7~"yf$zkyWrݼn^[Lo&>+.r&8q=>gZnؖ}G?s/z5 ]Ok5A\^"~ppn~ ~OOؗx6[Wl40ss+@+4֧{=@k IyMr'[? Sz=D8xZW_%o*U?Zo~ƻ}NJC? i;yޔT|ۼYO\\}N 1_<]guđN= ?:Cٗj9Kx0WNM'qwu `3ݡǞvԾ{Ɲ{C <">vj"GF~wF=VYWiT<⒇ ŵ[e;M~NzNᄂMKv(YJ8=u:\8}קjۉܟ7Zwgpy;bqzӽEۢyMx݉4~˽A[ȶ*7[ha3. U?ނ'z>^~r~=Q<#prơ3m9Qv9?Sq$vrA<|z[o},ŗ݃cg[mzO nz'͚gk.]KT[V]l,W54Y 8͋k0ԫ)?Dzkk*Xh]'k>g=sӸIA[T-s}m-N_zp +ek~hM_5?2T^k߮v͙3^NZh[h_Yf,~_gG>w)փyؚktf##Nuf_Yϐ?#Np];A^[b!<|>x&Gˮq l[zX^[~*-,w秣+yWj~)5aztǍ-ߠTfo+v{7>YGhgB]t^ovyh\?gշ~&9Ch^rٕ<ԯ5Oۿjcg_Ǟy=IoOOK8-.- OtVn=~|͗ (lϼm4ghّ|-U'Wͯ^Awԃoȓ|zlM`38t%a\s"u::ggⷫg5;GNDq'k>ttg¹tz8YyG*y[4>\O;n9Cp򺶕8sg'}QuҼ<>Ӿ1멁Ϲ&ȇp7Q;_ "_S;qFtf^⇣^w(kXga |~~n=U؟X.N6i=c6fq?Aݓ/3H'̍<' 9_g<}3Ef"<E:fFw)vA[5 쟖9>wpA(=}EƏPvlJ~̇\~sx2EM+AuReޛn"whMzNyVx.Տuk?ݏ5Kj# O7޻jŽGwGZNC'}uѩ^}Sfusɛ `r"ρOy<Ǩtދ1;Fy<\MSҞ5_-y{jٙ}-fgsLvc/g_r3oZ%d~|Ln73ů#^Yos^a߻_f<\~=saI=(^u;9 us|FSZSyu26q1Qc\8 샚3v"UˤGk2j9#OY<?j:|3G/|{Uso{長[izȯޮm^<Y7.,/BC3/DN9fyy2<6zW=WwMU?BkuqKTz޶j(ȓD#alEVpϠ6%5wr5Ņv>.qi_\s[г|q=y_R~^=R?7ܗ/3Ky[ վ:J&pvڇp?.| 8t;'ft<ގ%iͭ팣{xN8t*v'.菋_`Ad|y_وzm=vnuN3|1xt*F}Y_5יv> \w4?{UyDwo=1<}~͜7NuuumS'x#yQ-}2[Yf*Bx~< 5w3]y>zjkWdsti+3sэsiG7ۡگ53~d_w!g]]ͺlwT|;xC+=x^K{k{y̿' /"?u˼=4{2?l+y0j\x;<:ŷwSV7'xŏwi5,[ޏZ8NFu/Q(Su?C5x:+ +x iGxz;\M~ڿ6?64y1uwƭw"'ǖ9~! wsɛ3덡߮Szw{i[#y@]:⯩_8NRJ5I^N."F;t{v@>hyK3^XW6gMn?=m񄿏EGn_4~7ԿN}N?# grJ._tݻGM~wpx o/s]q(ˏcpo=I?wLJi~f0>{=lƟ=p/#֭ދ9O-u/JNc|N"HM:Լ.-?I UN~WKGTͫ8׭8Q?Ot_FWx?/ɏҡ`w+El#} vռ .Q?j] nw/Aۃ8z>,P?Klupp*hV%)}9hU|Q/ZqXYK_ZV@W(*kMN$}5x?)l*# +Eese}Ϳ 4oW1އY9M~bI|wX]毚=\:^MR뜯xK?V8GG=ϕEw?^)\wRr +}Jrprr8ҪK:QIQJQ\)+ݴ3'3*yOq\[j7S+__W:׷?D]2Wr{Gl( fh&i]ޠ뼯8+gүi>=iWZYC\}[@3գxݻ'z<ػw'ի|epQ;{FOo׻B^KO{wzcޔwϹ!C/sOiۤ띩׻XnػhMԟIg{.G;&}BYs%4>!Z6P]hGaee<Yp+qXLtgݻSqՒ}zWx8~ovOu3muWmTyXMy a>wշͤS5{WJ_zzzsq)8[rmeC?Nݯya-w.g-{&gGͳ){o>ۛҺ78ꍋ{Q{mN\㲃TG/{]~./^^VOWOSWTPo[h_*jPoݶU4/WW9{8wZ'iwW__ wѡh콚W{7:g3~Uj>L7խ"敟o~\(mB|x2;;:|yC_o?JW5k*{j_yBzeo8g;qqng}//2QzW/eJq|ubx( 9xSAIyAܑ7_7:K_ou}%_Q] W+Ti 58֕҃wu }w_X&Ϧz⤺pGpŮ3?JϪw(~h^'ޖhߪr99-N|79>=uBxucp< #~R<׃dd{;_ 5_p?>2Xqy'~9n7PѿF\k]gnE=n"͡}}$hlپqS) z= nbi\lO)#5.S }5 )s/|W?GS q79R"׬|{/dq浚=J7m!A+},]_W|js-|\:v` v*0Vz\suFv9y0r'x1xooi8H>Tg??ٟ ytkȇQȟ)#LTSiw_jt-x}y nynwyI=c~K<)w9E_Oe{ݯtWTVN ?_%W^&'3\qX?jrկ2GU9Uyn?.xyW| #ʟ^sQxo(|c3\T o\Q߫ƺy y)s=z&:6OK>'?w{?~ 0ύz%o EGQ;r|k8*]Ux>B@E6zsUvBW$|;/T.9q❚B|䁶u˾}ˊ^\J<ҩu`U>_TAu3cu7WϹu|8⨺3oVO!#ŽOXD~^ywzK4zKR?VG;]@^g׋NJϫi5yF됯L8'.?TvgyO6I̽O'zj/?G^Qҕk4+X8qa!8]K{yj%^G]ԃ},8=BONGC}&']?]\Yx_S/X'Ldzq7S:TS~@kzs%gVHhVO_wc(::"lyYqӻ1yk];]NGoO g~VOwo~kcW֫_U7oƺ1 N^9; ;;;;;ۈmƶb`ٜ`c6`KX `yIw}v9E7ocŮ~ +7ؕX{߱`Z v-:`7n ;#vgݱb`={(lXSa^{ 2<|{+.=b>} K|w]SӰwE|w-6`.⻋BxVWK|w]9lK|wYX⻫]wrױwE|w}K|w]wwE|X⻛&7w7ݽ v; ,M|wK|w݇`wwDP,M|w`w7}%j,M|w#w`n⻛~;K|ww7zݍ^wOw7zݍ^w XFn;En⻛&n&n&n{&n^%nF{aA{XA{gA{⻇A{⻇!{!{aX!{g!{%{!{Fc!{)X!{A{⻇A{⻇!{,,zC|=wzݳK|=wz݃^=wz݃^=+wz݃^=wMYGud}, qG62>"[b'A /0"{`W}`,/10"aw`ñȑXXe8,3rq98e>= 8e¸\eG2EI=܂E"aGbĢ̃{F,yDŢ#DZ̗'K0t&2D&c`bW#Xt(2 E`ѥ,sb,zi[6,YE"]XH]ı[$E":c#E`ŢFX2,:y݌E7#aX4]]F>OnK,GâÑF', NGE#FaW%Q;^G(]~G(z;~G(zӣc(zEb(Eu(Eut/,<ECuEuw:1X;^GIX*~G(ze=; ^GX8,~G(ze~G(z E(zEK7a(z E(zE_c(zE`Gc(zEsOc(zEpbQ:z(:~G(z'w^GY7Ewv,EuFQ,Eu4OwQa2¢Q:a(EuZY,Eu%,EuEut},\Eu~Eu~]EuNEuw 1x;ozCcv ގ߱X:oCcu ގ1;^ ,Ccu 1x;~zcvl1x;ozCcv ގ1:^Ccu 1x;~0,cw 1x;ozCcvl1:oCcu ގ1;^cw 1x;oh,zcv 1:oCcul ގ1:^Ccu 1x;րEcu ގ1;^cw 1x;ozCcv ގ1:faCcu 1x;~zc˱w 1x;ozCcv ގ1:^Ccu 1x;~Vbcw 1x;ozCmXx;~8zvq:o,zGvގq:^8Guqx;~8zv!Xx;o8zGvގq:^xq:o8Guގq;^8wqx;o,zvq:o8Gu|$ގq:^8Guqx;>^8wqx;o8zGvގq:^8Gu o8Guގq;^8`8zGvގq:^8Guqx;~8zv/Ǣqx;o8zGvގq:^W`8Guގq;^8+uqx;~8zvN :o'@uN ;^'`@uN x;~'zwN x;o'z@vN :^'@uN x;~'uN ;^'wN׉aXx;~'zvN :o',z@vN :^'@uN x;~'zvN׉Xx;o'z@vN :^',@uN ;^'wN x;o'z@vN߉N x;~'zvN :aa@uN ;^'˱uN x;~'zvN :o'@uN ;^'Vb@uN x;~'D,DuNI;^'$wNIx; o'$zDvNAX: o'$DuNI;^',DuNIx;~'$zv^'$wNIx; o'$zDvNI:^'$DurNI;^'$wNIx;9~'$zvNI: o'$DuNI;^'$wr NIx;~'$zvNIZI;^'$wNIx; o'#X:^'$DuNIx;~'$zvNI: o'$D˱vNI:^'$DuNX;^'$wNIx; o'$zDvNI:^'$D=X:oBSu N);^,BSu N)x;~zSvjN)x;ozBSv N):^BSu N)x;~TN);^Sw N)x;5 ~zSv N):oBSu N);^Swj$N)x;~zSv N):5 ozBSv N):^ESu N);^Sw N)x;ozBSv N):)x;~zSv N):o,,BSu N);^Sw N)x;ozBSv NߩX:oBSu N);^J,BSu N)x;~Tv V7c4zvNi: o4FuNi;^4wNix;~4zvNi: o`4zFvNi:^4FuNix;~4zvNâix; o4zFvNi:^G`4FuNi;^4#uNix;~4zvNi: o4FuNi;^`4FuNix;~4z X;^4wNix; o4zFvNi:^4FNix;~4zvNi: o4zFvNi:^4^EuNi;^4wNix; o4zFvNiZ?;^g 3wΠx;3~g z3vΠ:og A3u;^g 3wfx;~g z3vΠ:S3wΠx;og zA3v â:og A3u;^g 3wΠx;og z3vΠ:og A3uΌƢ:^g A3ux;~g z3vΠ:og ix;og zA3vΠ:^g"Xx;~g z3vΠ:og팅E3u;^g 3wΠx;og zA3vΠ: og A3u;^g YE3ux;~g z3v΢Y: og,EuY;;^g,EuYx;~g,zw΢Yx; og,zEvY: og,EuY;^g,w΢Yx; og,zv΢Y: og,EuΎY:^g,EuYx;~g,zv΢Y: og,Ev΢Y:^g,EuNY;^g,w΢Yx; oguYx;~g,zv΢Y: og,EuY;^g-,w΢Yx; og,zEvv9΢Y: og,EuY;^g,w΢Yx; ogJ,zv΢Y: og,E赺 ozCsvΡ9:^Esu9;^swΡ9x;ozCsvΡ9:7 oCsu9;^â9:^Csu9x;~zsvΡ9:oEsvΡ9:^Csu΍9;^swΡ9x;oFczsvΡ9:oCsu9;^sw5`Csu9x;~zs,Csu9;^swΡ9x;ozCsvΡ߹X:oCsu9;^ ,Csu9x;~zsvn%Ρ9x;ozCsvΡy:^Rf^N̺:2ue[ ̻֙Q>2'k8eelֹ(3O[Pfe]Hۺ2u eqRGPAy޺2ue{jֵYYQ)֍&u ew֭6pu;e2aEuu7eº2|aGΰ oXPfh=H XPMy4ez2Jqexz2b=M~Rfi X)5D52cM:՚JQ kexȚE52d͡ 'Y(K|p2^k )2\e5QʬVpF)_Ve8: Yݔ##4+J^Yo[ p Yi𜕡 Y9ʬ˭|pU:ߪR^ e8z2ޡ.ez2jO~> ZQf2|k}B> ZSw/)_a}E [R^Iy%e2eG3e2lFwp_p'e2mSنmxۆm޶m޶פ o o; o oexۆms{ exۆmxޔ2m6m66m6m6m޶m޶Qmxۆmxމ2m6m66m6mm޶m޶߷m޶m{(m޶y`6m6mB޶m޶m6m6mє(6m6lxۆmxۆ)6m6mmxۆmx>2m6m6)lxۆm o o<ϰm޶m޶/ o os޶GPmx۾2m6m6Glxۆmxۆ(6m6mņmxۆmxI޶m޶޶m޶m^ o o o{o{xo{o{xo{o{xo{o{+)???? ,#> oOooOooOooO?2>?>>?>>?>>?>>?>Hmmmmmmmexۇ)>>?>>?>>?>>?>mmmmmmmQ}Gmmmmmmmmexۇ}xۇ}G|xۇ}xۇ}G|xۇ}xۇ}G|xۇ}xۇ}G|xۇ}xI oOooOooOooO0_Kmmmmmmmmmmex'ć}xۇ}x'ć}xۇ}x'ć}xۇ}x'ćommmmmmmmmm?Fmmmmmmmߢ oexۇ}x'ć}xۇ}x'ć}xۇ}x'ć}xۇ}x_NmmmmmmmmmWP&ć(>?>>?>>?>>?⯤ oooooooooovo)#### ov02####H`ex; $؟2???Qx;x; $x;x; $x;x; $x;x; $x;a `8ex;Gx;x;Gx;x;Gx;x;Gv@Hovov@Hovov@Hovov@Ho 1vovovovovovovovovov02####Aex; $h ovovovovovovovovovovovovovovovovov`Q&$2####rvov@Hovov@Hovov@Hovov@Hovov@Hovex; $x;x; $x;x; $x;x; $ ovov@Hovov@Hovov@Hovov ]+v?eG*vޮxBHޮxoWxoW #xoWP+TR+vޮ?R+vޮG*vޮxBHޮxoWQ+vޮG*vޮxBHޮxoWxoW #xoWT ]!oW ]+T ]+v ]+vޮ?R oW ]!oW ]+T ]+v ]+vޮ?R+vޮG*vޮ oWxoW #xoW ]!oW ]+Tvޮ?]͉a W`TqF l嬲TBU`Tƨ 0"duw\{ivvvvGC?Џoook[?Џoooo~$x;x ֏C?Џoooo[C?Џoooo~$x;x;x;`vvGC?ЏO6ooo~$x;x;x;x;#ۡ HvvvvGC?Џoooo~$x;~y;x;>ټЏoooo~$x;x;x;x;# HvvvvGC?ۼЏoooo~$x;x;x;x;#ۏõy;y;y;#۩INNNNHvvvvGIίlNNHvvvvGS?ԏ$o'o'o'o~$y;y;y;y;#۩INNNNHvv~kvGS?ԏ$ow6o'osS?ԏ$o'o'o'o~$y;y;y;#۩INNNNHvvvvGS?/mNNNHvvvvGS?lNNNNHvvvvGS?G&G۩INNNNHvvvvGS?omNNNHvvvvGS?ԏ$o'oS?ԏ$o'o'o'o~$y;y;y;?ڼԏ$o'o'o'o~$y;y;y;y;#INNNNHvvvvGS?ڼdvvvGS?lvvvvGS?ԏ$o'o'o~$y;y;y;#۩INNNNHvvvvG=\K?R]]]]ҏoooo~xxxx#ۥ)....HvvvvGK?R]_ۼ]]l....HvvvvGK?R]]]]֏oooo~xxxx#ۥ).ޮl.H=yxx#ۥ)....Hvvvvyxxx#ۥ)....HvvvvG[?R]/m..HvvvvGK?R]]]]zevvvGK?R]]]]ҏoooo~xxؼ]ҏoooo~xxxx#zgvvvvGK?R]]]]ҏooo[?R]]]]ҏoooo~xx~y#ҏoooo~xxxx#ۥ)....HvvvvGK?R]]]dvvGK?R]]]]ҏgK?R]]]]ҏoooo~xxxx#ۥ)....HvvvvGK?Rx=\ [?Ҽݼݼݼ֏4o7o7o7o~yyy#ۭinnnnHvvvvGk[?lnnnHvvvvG[?Ҽݼݼݼؼݼݼݼ֏4o7o7o7o~yyyy#i6o7o~yyyy#ۭinnnnHyyy#ۭinnnnHvvvvG[?Ҽݼ/mnHvvvvG[?Ҽݼݼݼ~evvyyyy#ۭinnnnHvvvvGinnnnHvvvvG[?ҼݼomnHyyy#ۭinnnnHvvvvyyyy#ۭinnnnHvvvvG'[?ҼmnnHvvvvG[?Ҽݼݼݼ֏4o7o7o7o~yyyy#ۭinnnnHvvy#ۭinnnnHvvvvGۭinnnnHvvvvG[?Ҽݼݼ֏4o7o7o7o~yyyy#ۏõ#ۣGۣGG?2===_yfGG?2====я76ooo~dx{x{x{x{#ۣGۣGG?2=/lޞmGG?2====yiGG?2====я oo+G?2mGG?2===okGG?2====я ooo[[?2=lGG?2====yoGG?2====я oooo~dx{x{>ڼ=я oooo~dx{x{x{x{#ۣGG?2===lGG?2====lG7G?2====я oooo6oooo~dx{x{x{x{#ۣY/l^^GW?}jGW?Տ,o/o/o/o~dy{y{ټՏ,o/o/o/o~dy{y{y{y{#۫Y^^^^GW?mGW?}aG{W?Տ,o/o/o/o6o/o/o/o~dy{y{y{y{#۫Y^^^^#Տ,o/o/o/o~dy{y{y{y{#۫y|?\W?Տ,o/o/o/o~dy{y{y{y{#Տ,o/o/o/o~dy{y{y{y{#۫Y6o/oW?Տ,o/o/o/o~dy{y{y{?Տ,o/o/o/o~dy{y{y{y{#۫_l^^^GW?ڼՏ,o/o/o/o~dy{y{y{y{#֏,oo6o/o~dy{y{y{y{#۫Y^^^^nGW?Տ,o/o/o/o~xxy#ۧ9>>>>Gۧ9>>>>GO?r}}}lGO?r}}}}ӏܷ6ooo~xxxx#ۧ9>>>޾l>>>>GO?r}}}}{aG{O?r}}}}ӏoooo~~yxx#ۧ9>>>>GO?r}}m>GO?r}}}}õyؼ}}}}ӏoooo~xxxx#֏oooo~xxxx#ۧ9>޾6o~>ؼ}}}ӏooooc?ɗ/?=Ë~?~_~<_O/QAER/data/UKInflation.rda0000644000176200001440000000105212534531320014441 0ustar liggesusers]SMHQ~lu5iMb̡^[^ RhœB%F+zs{hٳ*x(bJ1ͷd}ofmzl9BSZjkcV+q}ýsuԒNr_ߟMotV>d\9++yCvvMH.hK*DUajm/վFJQ?_QQT[}@՞LSvSFH_#AN98yա|^<ϲGb\#HO}'?/Kį~,9 ދ+!*kOŘw1 8ޑH3xhyԝ{9 ~ܟg : 1rPO| Q9>Ok+W*212fY؍lFxbn6w& T-~s#1DlM=/;/pAER/data/CPSSW8.rda0000644000176200001440000064130012534531320013253 0ustar liggesusers7zXZi"6!X2])TW"nRʟX\qjnj-&%kXɉJW}w[$>ر{w@͘C)լA#4- (3v8F)4Τp91G97&E-O5SƩ P:9=.-l4 5$ dk=Cz%qt>#o$2 ݾ~y;f[1[%a%';|V@$<X蠇Atn6k8q^ܾ(p]`98auGJBpp3\}=F͜WKlM0MLn!mh$#l?hft :ۅ6 w:,iÞ&adJ \<-cގ0>M? Ț6!n@H%01HƌwN@EƇr_ACGv7dII"!ߐo U\_PW24~8k#1/IJ1 yfG"[b[މ:Hp7MjW ^^ƛ%*xſZ톉E+rVXTri JS:(QBTtQ(=i!:'nC`%EA&k)!pc0Ou;c5;QOum ؟t;~sxetM4PBNA#llS16nxOILx9X4`{/ ^T06("ސ7Jr78mbtWҞU|خ `س~6T1K\aqk)Ί^n+iA(@&; v/2h8%٢x#!"K=p{H{*@OZ #ƿTpu nۋjśQ7PVxɌ(rH s,vg 3R,m]J奲l*'OgJ3ZIϠ.cZ&{"),% eprݍJ?'Mn2kMU <U>D\Ff F"Ek񊈆tαƸ狛J@`xHkbϱCVKotCgwLݸ>z⥝ O3/oi3qοQ"d¶)EsڠG╔n,sm{&*l qBKg,YjDN3x<;; 3.cj̿ϩ;9Ĩ͠.wR +X %Fhҥ~uWP"-y'3с'r Ү`+õ-Adl7/rأY=o+ۀa- uprToJ҉c>mhBES|{N.%sMB櫌Y'~*q?5 (T Ô'\ /$rC(id R#[_#a{ ! *p$ =KrXD:qIٵUkTjg :Nj'Z&LJ`һ;#=q4C8)9t|%;=Z}Е'+2s%R-*dάF%6;aF9[eXآa+".g+Ny3ދkx9YPB 4> ivU){5Gk{*F-1ܷ*LӇm+G8w5`T8 mN{Pt`֑|-'-keX`pMrpz$ԉ>*?qUHDªKf, ^|,m R-=~Q֐M .yM|Hgk"ȈkDC 2c%}'2RXaO$ c頿AO/#3 cU?Ltp괮o-I╶l(zt j`&MS_Ũۡ4 q_N5:j$ݼpI>LLc\loVWBSK mDso_i=J HKdM,{ˆ}¿{ V'-1? esUc!r-{YPnWD_ MrX)@4m5q&j Ƽ&t\M [qr2]e̥˨gi )QMN  rh"טY.r2*N`DecC6uGB_$0y4Ep.xcH;F}:(;Ž,<27@s^qMOog!QJ69B}`\Xkch޸N)I*{y`eUE,/a@`>˴s򎈌gvKO,ñ/+G[^1e2 sCMp\|!{.7yk6y_64)& dx9z5rkBm|'sIEĶ`Sa?̟ˇݳ H@E(vV(ي6vfrSuύzcR%3j: ak,@^PreǗcvJ"Ek-FJ!۔/uv[)tX~uE+,m'YJIWY, 6he 8%8dgFݰ7ާH}Ӷ5c#tNpLr֠ބ92}0 ۱X4$./M (B kR^F`vDzbqU$@:Ɲٖft^1LZ|,ڽ*4u~{|ERS^C[s*Yf"iZ6H\_N:W "Ǩ!]1V ǣk/k0NRUL OY[_?0r;* $/O6Zl1Ia_f!e垍gV z !x 5zRvxS#(zf__!@gOnȐ{%Q]ϳ Fn̐]޻%j D<`Rn Bc't1clQP6k"z*vG~ר?fz~ R>r<]ߚG|M[ #멽(;"˰d3I $?H}:MQF Y&fopY9E_6!^a-KDLy09aާc67jo^#uRrJo-g smP.hY)"~8nzhb!s Un qd'D D #ˮU2 yU'C}DNy\OFez$]Ť3؞oiN)p=J!sמ`4 r[ A)tpUn%]`S}r *3/ٱ-E93VG?<$QJvyt{;}.?dƭ6,Wgw׀GlzT`FS6Seg,&ș K3l**|Gehk+4V:5גm7T ؊㕗&EM$A^hӘ3C%}EͿ yw#KƢ2S=DP3Bqdkr_PO `XB.(nK0̑²_x@9/A^ea4Z/VE}!S&D`l3@_0&T=ۺ]9=v?<6ѻ#TT [j4 d[g=m*/85=:j^$j&A[+w8XۨңgFnCį9R6gIL9=2YROL֛MV:.k!#AWy￟6zg ,d2) 3aצKt/ϙ|,gõ1sq;^9VM&!ܣd##~ARVdeF߀ŗ}/t驽-k #L|01_D쒩HCLP-FS9Uւ0}w%2}w2:>ع?i#*l% dTh+MjjdIP 8 "ͦ1.Ph%/FL)hP: "Ų;'vn>C m .2clT|r?btfF北k&P4SYu@m.|{Ӂ Nld"#%X` 5oURK-|K& LRB=,#GJa#ISxsWk[8Ѩ7y 5L;7 #ȏզoAk &ïb;<秼lhv)dW˿si&XvE>ȹl@V!$ a oLRw@@Q4oP yh*% >Zc;M'gR LQERo#nH%b{̟Oh65@O{: S_P0|q{BtHFM?j~,[Q̕ؤՙhp ${pJ]͝t4Es "K;u1-+lh9$ӝbb2[92 O?oء}Hh ڼaeeс678ǃOrj/; yԛG} WStv&j 8F`ꬺH}wKJ!5fRAd=wå^8XUBj$>|p @]o׉Τ+&-(9YOe8>Q̧,WNGK}ze /H'jIl릁j&U}I,Ͷ;uT= F)ݧmO\v: ) &oexPܛ>L8vA<>ƛiNP ^핏N_(X}kW#9R= 0Hi_MjOMCr@LUdfT^x5Kl&KKs=^O xGtQp>(S(N}h4DvŜcW V nspbQE iֺv ^Ȋ"[e7IeU.#zCo n?#h a<\ `x7DW7QuQ hFrRHnT-4S  ŔN?GEwm9<[LmsɯLI숫 v2KH9wO#4`f2urv;/9۽)ӿtw3%hbm;*Sb'4:m`1 13ʂYm*l(?`͍,G.>%:d,7};.' ܺ d)q,#op=ɚp;':S,D/)MaQe [/)P[3$%Wo4)!@ 셋(?&\=@[^A/͂R10f?e yNAecc-߼ͻD 0)TA3m3w{w r@r9;QI! RT"o{zD|""M䘍`F. ODvXj[|0NÜhīt5ng/9M!Rʏf[˨k't&iUYd~F R$/Z*Q+yhf5 ؛ - RsF=B G*u,7`OYX[VuY1(}}lćP^Q4lPVoÛeS8̌s/.n;tý(qo.s?(*=I55|둎gS5 3fA}6@&;}HG%jFKo@w }uL.aX{t `ieCgOYӳR \1Rieɂ̨rjG]WNsjFTg-xA@GS$Ы,; !HlPYEY#1cdMĹ&0|L*nfGfwaUy+HI" e9EarLP9"2ݍS'^K7RȌ 64f3GV;xzY=f,Dr}ɓp@|vЀ]@PLק KD KQ$QZI@)fM]BuZlѵe:/nt(_%b#PNm(scA|6(fMa[uRa0Vg i)!$i|ɑ~LA!;oV.1oϐ'{3mBW`hўgd ɿ/dg۱v &7^6(^ PPGf3vxUᷮflj% ɲxBxbn7 OE`ٳ@*g( tx(Z-+Ϸ,udͻ0G.prB+ySk%XP iK{‹$khz&]_YVD^̐*'T59$Lj{/葇 LIvF)|E$nQ.TכV‷u+c*QL8op>|=뛨c3埰RliLjJGLk/+KS6wݹYDVwm$*aŊ fXXs\ yPFRVkzgwmҧ&^D|f<[[K3ݪ/ $1]薜 Ó\[|ݮ4z>#q6tYQ PE8.*)&q% &QF2^nHhLnh;TvUuWx䆞ؤg0LU%fÓΌ~$sN A;Kko?F;=G_ZJRJRg}eGW1*8C옄=)?m%C_ѻؖ.yR4']Mds}؏nDg#Y:""2tMǜ Zq/_=k -OwM^,ȴS99+Ů!kĢGթ8yUⱟV!M!$4)ki^XC]4!=[.t,z@n>U;ody^3WLfmL;@vzfɄ'w;1r*Eh 1f>BsM~s@cuy#tRؖr`*eX|#xv!iu?8z&qqd c2t8J& Pbs;/[Ibw]Ěѓ*|9.!ƣ^T9xJȯ:EO~.'OXHζu+'.&!lf< 㤶p$彷>"D.ܮj^'hz4h' Ċ6Y0& T 0A撻֚^'q,_?ZGŘE)6PQH Yc)mB{8=7 &#w_6'׫(YwgTsKk+u44mN  tZU%6c-ëݬ*/>r&n95&5pFtz{Lr ZFst #' kuP%{L_>y1r1+:'> 3suN#Y4b\5A_gV, :)rjx&ZݦY ; V>ıfH%m C.T0s@HQ՛cLP;yBԡD_01 5RD:2?[2–hۤ54D #?h&)2X 5r*2óp|%Ȩר(C@EE l#Ǝ<A#ڏ' !=SrEM-ӗXLQ; ^f&G8ĸ+[ So(#p{1ָ F[p׽1/Z9g- vG!]\X^#T2%@IDL {z?DyP1CKKj/ZYI.| wKbԍflk_9/ ea0]qӗ3̢;8rO䃅6*֑5g(v{̄?i~m?m]n?LkP#Ў@n̽x x+ؓ`aw̳ 32fp:h+o^0I>h9 PpO-sn x̢~3iCPzرLj:>}31.G 2(3pQix<ڧo%& F  Iڳd΍%",'150BJ#Q&I u)fk< \жkfXB,2ў$b@]'WS86!p z+K& @(gv9#egXL3jӗ/B'?lյuP;ƇxPM>uos+ʎ eǽmNrŅT[aBPBiNw ɜj " ߉ t(r1_J_=x82R.*e t _IpfE"yҏ{[?,۪.*mqJXX?7B# xNnĽy  +:>Hx׫lU`{W_Y_J놋aB劶DKZoS#`.5,'_rZukot \?4ՓM8س-U w"]őYʱcYϮR_%} =72NhM3i3T]-L\68M!6#,S̼:bH&s+_}IPjHk$辧8#[NJP-V>ys9qiRyo-s꬝k4僤5%HBr  \N7O3q;ԬR/cHdA^;@K͚k y[C3E fd[U8=ϏP [F>EqAK|+崉]>qU: Car,p"nn!t5K~pъWIyz,=&J"^WƦ&z?gAuơz( OL 0MvۅjO5edpZx"/bĩd!Nw[VMJ^t£~&-Ҿ:ćrâlUܫU Ucq6]i[T g_`@f bWȁc݀4$_+<;~KD[oZy98?,=e0_6CwgxZFV% =ś%(E q_L3iۨ-*oCeD'~)q8kRiͣ+R/Jw?U˘vF* 1g? <2Z8\T_cU.LqL>wĕǿz/ɘ`'cUS PT"q)J:6Q3,rwq"B9@(|O|_3G!G4Gڽ=lH(sea-tNE^_S^PrhsרR:ύx a:*oJC.pmYen\5iK)L`K3OOŃ 󖻌s;(Sf7/mP|m8 s-'ZN v1u˧:|"w c1 q'Tj;p; -2!C8s[@v*=3GByI(?@c᏷H8.Yւ/'5bJ?Y`Z?2B1$qz R6R@GLuhKO*!E1nc;q@"QF/rc["QJc~>i }Hwx@1)Q9 lrEvBY"2z ٣Ѫbj)fN_ P9|1ܕ9Eڏ1S_S0Mϗ VѺc!gWA 3Db"B$81_J}`+o:sdr4wVo^C.R&Ŗp2ۻۖ 1DDZ0{)#WB_p9 1|uu$R&hh)6oKeR@XNW CCC1UI_=;+>3a}P?{21%΋ܛ ])J4OoCJmZ-Aj\+Qsb8X0^uƮN0.#]z/;.'rѪ7S26KRN]h=f}N+V?=1>0PqY5Z/Q vo~{JdW`1j *ϢaDLb^ȳ/? uMɭeXhL#1)*+j;}%bZ-_eӋAeJ#?)v:PWp6@<#27K//Gm|qɂ{2HMr([X \ir==Q'vNb̌Ng885_v5efW["oEfӎn*w86ѣL@=͝1S]VEy[rZؐMqJ!%u*C0^kq0Q)B֋ >*~.V5"iU=bqŝxj0C_1lk6 WߒuzTX4>k pu,^X?`_縏S$Fe=W%57iwdt 8ȤGH}S!8#."R;Dj`UFpS(Gq4D1"Qx\@j\󬺪κ@v:5Y, ./ivh:O.B DdJWJ@!{@T\_c=3dA\4 8E^xe9ICwqg8.23_cxΓR .G -zN A߄qhL]!_[>xۋ@gv,O ߒ֨tK'+|]$mn{=7*tW>qSt~csw1}_4ݹS<3qtxԈzSEvX B?

d7Ba{ĺkK@9 0Ÿ jaMj $ 1=hREݯٖi }ţJ $bo͔`i7KxCMsDZ@&+ӤC2}]m&NCS[4a=q( 9~}BͪddHՑ4Q2R%*ZGɅ^{ /R̩{Ӕxr#0 \I !dw[Y!-K>ѩ}h[t/ZqcB"]6aow@ hqyהQ2JnfƇXp7XRLmP Y0d=/ Րe@/ѿ \>wrITi'!}lsplJ]|S7RJ 򈵛]e(/\ꝡ;x>Zz3A!tjָ _s (^\sguT_hF񪮉YšpSS R,l̼؈_rg1;};-VyqĞu$^#&ڕxe9OUu(t?iD%5lyOuH>qm$6nѺE|[6k7JO^Ka5VK}1yH ;<}@o96t3.T7Ϩ_!A=<I.ZH(w$^KJJi Q/0QV qiy(##muݶ y_q "Or/Bo,~xpɝU!)CKDSH%qohb.S,Fq{r&Zk N:|evP,Շ6W"V<s7 \+B![?'::y(?n/9ŝ1Etb|ċ=͕L?l (~~MhL`Y;ICϜ2q & E'VsP((ˉޓRd KQLJ^<ȍQ*.x/ T)ڛ[Kк9\E+!K"'ѫT\UGgyЍ"2s/:&*w7)/nC?\r />!CVހ2-EC֏-PJ[r*m5Q״&66+<)8˟@%l|ӦSl+H6$ue+-Vwd"jOFsMWnbBRv0PǶ3n{:|t3c ǹTћq!œ]&axx@1n@l  Z.ۑ7?')u-4^gܾ־8 hfE-Bn%q{8Q\Ӓ}鹦ōh|Vg^ִVi]F@֚Ӝ#Nişt=Pbf )\`ıGGdS~Z˳GZDwbE3[UÈd~G?yIە"HعX qΎ@9oE6@)=?B V #^.:xJ%0 }`Hi:9DL~q:8nSM&4>ҟ i-dk1G(ڠ`Bq<< ߛ]ReG~T$Dy\w[O|EA`ύs~rTk%v;^XFN#T5~{a >Z+7 7vKR9늆/bƃ }`:i»~#d۳FK'qLOrʪLHC|txE.yC )ʂ9*+.@cyG# @ * ?80onjSK=KP &qF4\l i >(u>-] PGnrqV1a2Zc]t rW<#(Rl̆ւTcW?;q8$-2JӨq$20"BShZV^'+R*|Z11;^\d%kD6anu}őuFU,]C"{qz>>`/BjA߶&ayn&Co9̑2g6͆k Fm(/9BI)=;I| M5`>!K{6rOa#JAǚ C.SMP{̫gH$C{h,"5%ZfC֢^P'Aߺ)Ӆ0jɽJ}*Es$yB`ϛVrnH XNc nQnNuI9+$T.E½<"e֟Mٻofu,SX%'SĨ*K .VrnVDn♰6||CX hY@:Ɖ{>O+p3a1|!(J#EzH} ~z4n*G-b!A4w2bi\RU KݜZ>Z; \.;4~cndCy2_1+_-bEkEecB8g6'+6a9k w+}p-/r*[6,ˁǾ1AMQ8lQ2_;Mb:o}TEjykObu~c J"IR 4r"d ,{h34j>&R#)b[gEý. ?d\`lF"D?'ke-Pf 9*\~h=55ͤb+zݬ\o[;NP9]"+۳}_T;FMHX9ڷ_*]mVQ\}a86ɗ$ n@wNk)ELjp NfF;ូF_zJV4{ѝ;e3=0,AWq#w3dLX?ExKTe/1ݼv]+dhKNiT 17qMVFhjhh,Rυ;!VD$ƔD$+ϒ HY%`_ jCghfrKa?nNjW-JWIQPR#3xorl[SY*Vp6BhD<ݵĄɣ@l'. žZ'qT8(BĬ+B-=C [ك /Ud<*:WGz1aQWr:Ś~3e>YSN_X[?k2T clߺ a0w1lx9S"6 "A>/ JQmWTz$f6.2]}|ͼ] IZƋ~?۳v^_پGu(k'p8lTJ1i ɮ> vgɥKV|ſqi E\E. U4J U/7S**B06b_$wi,[h;Z㝸8̧TC%EL@9oT+Zb=>SɱDB1 I|{eYVg(׈>){ǿܑA2,`@$ՅS``_hDt́@0//CI)LQ LŞ,f[n`O Be7)V6|k_r YhU}-W pg)YˊcmKM"KT M(e <"lQ]:Ex9-I1RPW=HvMԸ?y]wAUvi.<} Φk\jXt>sS'؆2wT~u&v3:G{?A,,t7g{A27r$!)'}77,"&~ BΓntg;5,ݑZO:APecm@7VЕ bKGF)gXUnx=lҸLw|1[*'1X,}6#|&U [HLqd'9 _n^E @$KU\2[5)k(f{}Af)mFŊ-V@XͣU]62' q>ͥc:jN=iҷZ|)PU_Gd\ͦ!9NU'ƧU9g/+ɢw:{ UM$Wi0q) C 1Zy  Q@} uYd58P9obB n݂H 6y =;Lc6]BJ˥ 7..8YL, %&5 HVjő,Y98_bd'[vL Um9lXt0]q;>k͒dqaz,}Ϗ!oMx]b-xƲЛ.ݓضH e9\ζ+-kY8N`/+qkزlw c-5?jR}c~=CW^dHK.rv6yTVԔm`؂޻!7?QV9n%}՜^C^7]lޘ}ߧ0Pf7a wcg)z!Rdޜ,^~hS[EBf(Mj#o7 _$sm@jk;|*:!*rӰ.h y~ͽɽk9V0 LZ'bjD;JxX("`1Y_,ԬR [8S2P|S̭PǙ#73G_S%4>ͅN;PYɇf%lL;*Kf-(H"/dڰ|PD-pW%z@O.-XaҪ.AOt^$YK>\)וB@ >"Sj㢑*loD;UH5dnEqqM4÷ 6ʂ/a ү;P*MDLbcQ,'gURNQ"V~gԩe`:,1$Ar/VS_*'{k2cNg\}hݣ9h98DzC:X0g\zo ?<?SwQ3Vnx5McPF{䰨a8/-u _,^eJ<ˮhYj(jFV'bg:7jA|JjGk _obnM le ֑eZSKiLGjMzއ}SfިqOk CO%IvOd J!A`*\(RRUeeTEޒOl`Yד~q$QL~uP ֲa;v3Yl9j&>1kѢ{|)X=2OZK4ח3l-c ԯ(,%3-g iU[ɌjIs9e8G_L'.023]x<ֽ]G̭G ˿oȄkm?UIeK[<œT G'Y@IRZ-β X~s+êCF5Lxydja͇k/1A"q,Y NA*Hu|ިNZTNj0ŝ Q#>:.-qf2AƎP&-zt̎s+js9?i,X b%Yُ-gX'ngv&!Rލf|#,g1f5z\ {yẁqd! T4/&u5#_S?$ FJ@k>;5^aNnC; Zq􌪊)oEIS2qۖ3EO̐['Ry0JӼRpRGl`C7GMP,|!DèOepWs^!:!z00OYoQc/`浓ݪ~\U%>P+,d.jbWH 'a1t+WïwK¨S 5UEZmKiՕ/Q63QJk[m V'/uL>,]acҖDisH\U3hKtrhtۇ FG 7|65 ) /RؚusF Jx<,E UHoqdQ@f)ًxl -*]c栏}FqJo%V%N ~#"Lc2|5YU:Ttע;LU6 YM/Yw䟚JкIߣV/?:cJayDۢ@?_s@r :0ӯP#8x`h!J FGvZ7L9饽Ĥd4|O׵F;SunqR]BVa7dM}hf㱵kqX#ǧBwW[8[:0,g<f<%!ViS &i_:do*_Z#k $~#|_~W=N;{/dqI`sKFLXv){a}>?K4m‰!\ Ì mSWU'+V/)'Oޙ(0Uk\H/n3ewۧBPSe::앓!gKczi;(,*^R23\DM=Ӛ[uQs9[>)WA<=dyPI_, Ϩ=+g)7LUJ6[bCog`Ħi;ܥ:Fei&wJVlfDrH_d`6:QuAP YدvgDu}Oҽo|Rb2=њv94_I!a2x#Hi B0%t,\ɬ~ws6o91rmf FR-rm*xD\=rcwל_^"2ح$zn"4!R4uj;93L -EyvrVreǏs4Q.cg=T{L`^qN nWP6TӂagWwڲ1]ud:q?9υّՃY9LILe\躺QJM躗t59GHalUssiэo.WB"Qe& J~v6ȜX :X8+AiL~3R3!|><֣6'*9WӇ^X0HO6Q; +*a2Z_ú;{.ڲO0 :D:!pGdH9g{>Н/@]~z*F|,G.]Ub2<+Nyvޥ)<<@?"k; ]ϯ0-* Ľ^] B%۳CbCCɨDŴGP҇o]2udq!nܮU߈%˲\ߐIr"q>OxQLjKE[NŻ zh%.J]j$1(1h`/$BDMrN8[V7By">RZ{8c`;3~N =s9Fp0S/_Ȥ1Iב.V5, Vg>;qV-OX۳/[."3E>("s3oVbxq6K"'%Pk>Nkd 3S9Bp olLc4^'h6:+%N5}։.:!9aM\;\؛l<&fxLH~yrTP P͔u *N~LW.^V69&zP1`Ĕa0v,HBo_56m[%4 {L cF5޼0$%݄"z?|R bu`3*xM ,|C ڐPGuX1怉Zn7O|e<*V;e*YғNI^8'*_pZUv 8z"ZhM&){I MU:}۟LKzJ%3(!J4"!ةj+VU'V9eNPF83 |OW} N&S0]X:mNZwJem]N7/7.J8ш1˃^ݙvzE?ƥ/xG_N-뭕dZ^ˆ|8<%:lӫ h#u'[@<|GZ4v`$ x:6/u)^ cجCu s^"Hh|w@TC$OL,;҉?cmDlvD3;c`/;ܫ8 x.to/u@M-iL |\쎂ZĪ-/\8 ~cκ }F /./{$zn}( b%܁! XK]nȅ4YJ ԼY>1n>ϒ{>#AI}ŽԪjF知>GFzM I߸(^TuVlR +DSFO1Јz$v}|!Zpe| [G7_[|mODYʽ`LpTpܗaXPk+JnL/%3TFޤu/F͝^[=Hrʆ [N鱴DEP;g<ߎfKIscANQxES1PD^T;x<%W宂Nv,}39VUp!xB#rd"h8Bfq袦l%"iMh_N?Ө{9͙UFgGkҝrչp_+56mwy/ktzk6kULԶGP8@~B] d!Ysq9 iMN@%SZ*)ZWh\p+YXp7[`HH[&|B[qИaC+7P!j^U'sZ@}"|gy~]oJd-.r"\&i[uk':?FKr&ȸVʲ|5ub )a/Zz8Ï$㠁d[ e֣tK}]Eom.Ytg Pg`XcuȨa_Y2Hj|#GC%y-ΐ<,ʡ 0PU[nOQU ϸ PFi?mܵް]A, ~#z<d39u\n,d :$b1ڸ˺ 80or;LUml1 wDU59O }jL!TYE U AtP RVJ] D#aRnc3pW4 pOf2`9a'Ҫ? / q])N_I1dm9c~J03V}awָ%SnilK(B &tt=!]첣Gk0|D6W\f}M*{[s g`L `'&aWLwFq#?C&^ge;#ȳxy QuG~r@!vZ'z?mɃ1+f]"1-u2Ak2՗K`4'#>&"NnbZs@.rXH [N!2|0Ӥw̓5<>9Pk$E6;_DA:1|ʹ|B°UvNnR =,;,BpħψD 9\-TZ]6FiҶoR6{6pT2x⢚k箄-Mz\츏͍s]S[9%:[VWAkn8#P?!ͦ/q˫;! >:tVSnLί:JpIiŠPV݁WjKU1I4b&4ZХEnW*I#q/'t)w `f|h%LW1'cf5j]] G'p%^<ܐfӂ~ܒI̧{F0 7,Iw]'oxÃ,w)mukn^p)ߗW~սs;_5`KbzY)îz ;pp6J@uTKsFH]Gjx؄ H}E}9/V]A^o hz\[|\\B olF/ @'0VKQD[2h0p'ߎ ӏMڲݔN͓C60u*B\qmTKCJcԧ)[blY"1AG;5Ŷߑ_I㼏Pϩs~#ײGUp&wh뜄Ƽ1J<VvB Zks E.̯3n\0%f!Jw3qTPV.PI1Q$[$g/*K5S7-,T;R p(7f/%-X}My?by ?//{n%-l4 fEUF6_H"G Ht*+>Oh}+|SJu + >s*@x#!Uѓ(OAO6r1̭K]1OX ;J6"jMknFd{%6_&ʴu?U<\)d J\Ďen$eęV%a7ˠ(]N6m ABƻ w sfܯ{9h)qwy:;v^1ԔOXOOzœf$c-d )b`l.nun?qZڰD9C䌠d_3;jFϕ^mim/5poN^Sdy(fBSӱP&nZעwRp 5&|:(:#|8M߷Sri5 i%gJQ&d[ăNL 3j {BSձd NG;]Whn7ŗ;WSL0F 9>Fe3rY+Pw$#}{~0hx᫴[rTLQ|DĉEKPw4H߂C(Q&+Z-|tHXρ__9SGD0_I6 k8RAvҞ%ͷ nuqX$Z7(=Q#甀Kwg?, k(56/WV,I 62%|Z m AR^_~kqqǍ=:yR@E`:;UXN\j5ԉFӐ0ҧ$?-ވq4:9^;#OfĿU)"j|mb>%> ne?n_MǐP:تO>o|N;]<)e*z'Ӛ~A.ŪE_p0GkԻB?;= =8Ezq CF}/SƢ> 8Kxou-9%J mVZYQ[$x~0ytCq~8$M[)yLUs}/9q#Dˈ> )bp I*n$+|mK;2;@bޥ5&`5w`S0_.-hn$ɭ~rsyӵ')F#l!=ϟju׆ 3#jF)sX,XZV ˪ό>ҽm>wu._yAH70$(6K_.ԾRG[(i0EyZKڝ */bjZa;Rh([@tl1~4W5|^)٫7K5͒Dr!eHNHxcb(':$%7"J lY{W#;39:aL;Ϟ*鱪+Jhdڕ>/ ul] sg ]> )o쭀x&#ݑLՀaf%5^p!l/90y.1b3q4K(CF̫-8R1SePP Yjj{ ٶN^1s3aҜ-aG;(2<9)c|^GV0-y:poV ¡잛dPbouH4~D^κ J.z{ϦK]AO2,W$vNqww^jP 1"qdnNan_UF *ղ33H7YՏ~k@nlhuP#τ\T .roLƕ^ΛFy.EIix_Ʌ>&A*C9jWb!}n0DU4cHax T'zҒG?`.]A~:fǥ^/XE>èq#(2UfZE$hOST<`}!Z kOo^e,1qSK=,[S7ų)Y-|G!u`Uޞ׺(@F j?D*j5MtB*/Y׺-,7_r@D,P|Pc=^Y0Js{:O6C QiՏs6; @ 0iGwZWVg(s%hXjkGy(g4e0A"1̪Cz&{EÏxZ CaR 2,z%}H}{;,cӞ>.F5L"L  P)BD| .pJnQ {̒%|j@&p{ų(oW-|sp֡X*>]Qm=1 0x'B/;MtA5XT{Ӏ㛅S\DqUbo1I5o cp2Uh9=NUppɺ8sr2YSK_nF1/[ x"%)ܞ>8FZDA82H`97#7H?lb imSUuW2ҹJ t)aK}mh~(LvWV+$.sŮr񊽸ʔaty\8PO((u d\"?]Jkm,`nM } wKֲ)eY#$-tzIo׍2#N1d蜯oa8jid qϬ H!qm{9ZͦljI{-Rgr*Ccf<i =J>nO)U=DmR/rW}$=ZsfiJ(ZPQ /E櫮FִW*lof *XQ}nk>f qllB*"SD?^ 䣰ΞU1;}MƤ4rSmpI&xuk0c^;BSK 7oZXF\Uk0}vs*'u 'o2!91w U6M G~U`&xl´cNz=b[;yuǯ~p_+Pb:a|%j<>]-]ӦA).EDC36ītԤsq ՛޸|$| ,l0چ!"a*ś(Ȳ'rzί0_5dFv7V$bz2#/. `Om^&̥Mq I$Zj#D9S0rү݄,% *-t[W{j(wc?+}W:G5307|!cGMsVșC( /Ipcc?iil|RJz@2l]C1m :ŪߚCCH,*æqQ{5􂮒@r笘 "hdhUls [QK(GFinƒy>g>3 W@Ҙ# 'y4'媣Fryugc=\`OQH1P6ӣ ȃ].b02zs`կ1{%kϘ ޖ]=8p+=zdi*3̓O( {P/bTYT@]|C~7NE@6( 6)|gP@'&iD*KTwgCdžFY|*Xdtɢ w y^G[0JhVУl ,SCI䃮l0`+(e6nqxN/N@W0wk<,ߑ-v ^v8*f:ZDbhLSnRt[ FDaChul4\r?'-PCoq>;B'Vs( /b ߕQbl) h}e'zcbg_Fw3‚n~5<BXMgt,|3^M2~ %)2dʐB%IfٯX gO41++8o N"dHټGry fɐbjuzGv^ΧH,M.;-k$`_l^ ^\?R X'W䇆y:1l3P| ~i\ix$ t" hecϕR5 s}Mq0&E]u̦Ȁ]C]5'jek$0J~,)(pBY-t ֻyv4|*b_^0_ZSgƣ+oBt4l/2+9:܇u(@_ܩ輍d>a~m_;W 7"_[z5@B`w螟 ?*Eȭ̌&vެeiv0ˈqtUmU"E}کgsB-jSU8'M9T@/H*ӌwB[#xb $ݗmMyVf>qVo 6P*UޏUҙ5u ?bU ?xlr 9B{oִ_`8d~ 16q$n\oϐ w'^fT'}޶WAKTS]h=CDa0p!9; wFZU(jz]G/܀*[3vWDg/g-Xrf@+}(TW5ӓB?,&W1,J jh$[ cc ѝeY5L{|h@XHGoޕS""n|l&Y03ݶzJ\ZWBÛ.éiiGI˓Gj_#v2yj NT2K>ݖUw(g7cхgگmo͜eO39@Pnie:242 7^P="j ip 2ZU(!mK):,X]Ѧ|NL]+7ːݝ}pZ(Ռb ʞK\.!قHi'6 :y@i.Fd㘛uXҫ&G4H(LCHq9D8/t`rեm,)Q5S(r@TZ<8Z"u?}ҼWN%S5.#PR{?E'"Y̮mAM$YAٝZfA0xӏHX)R0+y$X߉յ!le uVg76H&^2biϲS ;ғ^KPG2WGx  d~9OʇxWq8i;!zjdT WQX  o8W zaYܾH,Q6?>0xy Hp-q&9 zBDeۼ`c02mH|_UO^kY,'1'ɲ2%6 ~uSF($ou z8n؋,' ^N~8zƱd5 )&{ pMցx#S3uWU*bt:a=r8kb_-qW4<+8}\`rn 576ag͉OvJ<N<-σ! zy3|{k>?v8ܵP>h&I_o dYupVWMQ゗2~u FO݇=ĎOJ+T] ,IܙFHh=.S7pTEv5AF#MխA#>1/+.eݍ2:i \gsqv_֗6Ϭ,'nS'ByuP;Y(f*ʅ:Y3n"X~Щ)YJ걈K+:f \epGߙQX/١C]](;)kieL)j[aPкśU٬1Z<ǀ<*`:+q0?8KڞK~C qrGx)_T{qHEZ{swr:]&.aUʩMb8u@Đ.LJr *f/IU45hQU_ǣrUCJB(Hvuɐ'Aj,¨4 R06_ ~bcwp "S8f@y1isc Wf;i:eM'/*Ճ «sVBAM<ȕ6̅oTJϊo߮wYC~3.E8!C>Rb}9 ^'JI$ 瑖f-"Cތ*1|0jv }^C 18 Eq~x*\A)F6lb/6qfpF4ȟDr_ᐟd ޯ`g2I,F,BJwnX2foA% ҥ~FǏJY!g2gڎ] k sHb@˔=27yU1=kȢ)!~8MxY,oGRy)CHu5j̍XbJ_% [S?q,|kw[Qylr;|Sfr |3k0'6zqwM2~ePqrBsZ9fߴ ,a|S=O) B R?#-KcHЉVF'@54od30;T9A zø|3&;j08cgnPQơ qa3ZP>+'.xǡwM~;T $Xs,gC25v]Rr:Z*kptNDip@L0ܭ{fSAޒHdIwabyn6shZ= R*n[kT#r)ƪ&~jǴk¨@)MQ|9oPUāF&kPO>ĭ c MzlMCOa]'J0eԖB*nvjUT_8^=)#gsÇGYF:@1U቎ى6E*fftYyzeґ"0?"4J&IIe=3qU[%e-@pt .@>El(f4n_h{?v )&v(Q[;c+RgpoS%`KgMU";S13m) UfrWOYq 5FZqkīV%pƭ)uqyT*5KA2im[xpOx8c|ܛ#CZotH_0 :u]J ]eE"Բbi?\:Z@ a~Ė>ӆ퇜_UG86kQpET J )͙:Ҟן`Se20+ }Y% ڇ襹6ȓ]8PMbROV?@D 9t/ۭs0rF|xp C=_)e eTSbo,\@E7<-|Ӿq׻olzNύ5+n, ܺ,mhRC#V-xx; [~XUbF s5;-?atte] mP2yҡlAȻPwn>%߷,G#2Zy S,i Abڂ?ʑ/S13\h uih֌2liX]à#Òue2wUPn:!h"#]k}H=jꃃHcx.׃IgAH:kRu"Y v;<̜RA7: [ i*sR1ֽԯ:ߺM{ ӌ*YĢ\'=1[DŽ,܂g>>p@ZF-g@q-3P,;R1$I΂?˩qa$XsJ*zR5K/k(8[Hʴ@(&}\;yqHjP0c0_(¸v9a'0SmNplEm17哄f8תd|[>ފNhAiϽ\y0BSVc$G" V1׋ג9}-T<O Y$f2 O]RBq}09n.N*?z@ J-F&G57p-d$7w) !X * ' G+WHA8͒ \حj‰f! *9 ?g3"fZ@ Vsn;Qn)sd&wZ,T١P{΅0`2%lIj}& _<qs[{33">:e3wݍ߭RZ ݫ4٣ߞS+ܞmŸgr/(!vG L:$'b2}kaopxMܓݯEC"A/N~UV j:onCk󞫎<%Zvb2 0 k !gDۙrn&_Zʟg'unwm^ּޅ$U=Z% 2)#tM%kOKQ)%8sej™gGlޤX"* 2&)(0>uc+Fp]bX^Ax~UXdfiΎ Bެ:i~c)e8)g_H,r%0+p~xapt3^a,+_SD7D{ڙpoFyY$B1,wI~9Ltwv)6ЌL6>{4a;?Ylsc`CDȚQ6PzqVMz/_BuiP+,ȃ5jg3xhF<͟&N;! } F@r(:9»!#[1_@->wP=0cvCfF4a"*׳;$Ό0&|Xw_/pj7,BH<g{1Y 'zy?mvo; {řp’(ԁc98U,jTۆhJF'DZܲ_R$|MH.>bbW#FH δߑFs.*^^e47Zs%~ FbC<4ph»l/Gmgl}i ֯CGxHc#xWxS BPET>?՜>[iٔdzsQ{֔X6 jʭ9 'FOg)OsDmt7t̥ >zwL'–PΆb ]|ީRӂ G+Z#4 2=+ԿxpϨJW=h22軽Y %>^5CIVNw1Nw)ԾdgHz?S-\ owBi"Cej 6i3G-dAJ;1i#vol@ w@Bfベٵ9VupUǙޮ=CasBp*%POo0U|` ?K+WI)gR #~]Nz֌ΰxS ]/{Y1RJq451J?w ӊkڝ:U*/J 6)]}K)bˠЕ)0t*؉ Zw(nt$T|K]Vrp4lhXwZXVVcqHVjR~*?"`43Cd$iOuʖ ˹| VhN~m2hiO$gAng"oz631/G^&8$%{aݢ=RF?;u5_OTWْbkgTP@B3cV'ڴ : Vc @w]cOp |>ucͨzD2,yX [fN$=.`7a*;XU-XBs~]1C{np ѯc؂7>2̺m\םsN8 W[=Օ+d I==ocu1ת߱B佛 >rQ)_ ,ѽ{p̷e[IՌcmp|99ʋI[2[VPX5"W85ID†043 nʂV%BQ'<7XiL&c@ # fV3P&vg9әP%.gVIٟHI O!)m)PŢ"+\?pfc!XDY)zY>˴9 =/D3gFDA= /їe#O6V,cUV4u1|{vQ"uڨYyBYNгhypÊi7\La?a`6[_'2~b`cl1$dw3LSS "Tɓ͋+="`)s ycM_V!B[Q8\Ez;F!t$Re\$x CtxqT8O+4me?N .(CVeuv0:x~⸸p#avw>omю%}ӖN[VND`6roa9@ȗ u+NN*g_з˼H$ ̢xĹ+sw;tc+a|kh:WXaL1 9&c@ss[3J/&Mh=`GOL%'U.|6wYܒ-(Og#Pz#eGELj:\45^ 3ԣu_d*u cԑGuZ  j#r܏Iqg"Hs fG &[]7 )' ч}e<$R]꼯o-VV/uHL]ݍZP\vG17hX66"]vD`/_ZRDļCOsIiBi|L͑@>51JP.YHG[Rcy|3\07zgHz_ߕKe$( Qi*Ac7z'7ѪQqPyfn5`z%fW}dڑ.i<-0}gf,>&q\~R`aXtֻe߬Xvq"V3j!"ׯM&WSJCx' X5C'sΚgϐ?v%΋]p^3;Et}P:&x艋L>72W0N%hkd$Y64pw7Euom7!0>0`} {-vS^e&˨."J-:}r^L{]An[WapT8p6AK9wS3+ww7|D֣p9hu*>^$}~cv?ۺT3}-=pg gtݣEeslO*:$ TGRܰ1ecq&9咍U4C(aԆz [La~ JR`D7&C%Wg3 fo?*74 nD}Ai>%L)\8N>DdB~IWHVo0Tc *^-3ΰܧjs}DDpЛ\Ᶎɤ>93͝l5QPrJ>RFOsChi,EKl)2Qh 㑠 * 32A81H[}h_MvQ.I5L׹X ՀrWt)pW nsR &/jB˯F1Yu0 aU@g$53 5 "CE{2w݇ ՉUϽtYbG\#擭ڥn^tdo|-Apw $.{d(C(t""\l +Q!8[d1ai0}㯠g 0rew\ )_u\4ץ/MXθ7bDz޿F#F σ ;!6>_ߧX fqK5lIU~ګ0Mm5W$2E VAJZ/Җ(c}f|| ?\]r6e5Mx}q|w lRg +bE6؆T؇Z^JXOi<Ň7HȖb αb^L 2Rl;;oɌ QF=$4m`sUms,R>2hl_}3BȓPYr J?%qJGIϝ١sv3k[2!ɧR"*^`iD@nWaKJHIǩݽ!!8l(hb!xGDgwsŀvJO.bubTpZ{/#2U֫^]جDD m%P$Po^φTyY/D=#ƢBհmuW3ka2O l7'qФq8Ga.^y.:ץ,/{_]{e O/?T.@/?audʉ䣐9e<U+Y۴QU2 TH榻Ѕ}\$y\ 2h'ʪ|F͌O+@PvADh 禵@5=<#yZZ;)d"Xf/ŘK_#zIDZ^t0(ﶫwhAjhd) ` IZ*׵"n צLo-qm!rZ=ũ%ћYXޟl|LIpɊ0[LJzoWo͛ζW^Rl:Xb#.(:E`pےϛy+ 5gЛw8zʏ1g~[uJdN}hiM../Vld{DEqZ"Kd8ah k*JE~߀xLAEL81XARJhj I@Ol`ߤZUj(ੰHf{&1 Y T1/_܅8NQ-1L ? XH33s.|HF}Urrvx!m$lJ\}Ieҍ-yj:au, ?_C E[^-m~n,]n,n@T"PW?fF{*9 Q8" nѓOd6}C k^9AF/j JvY.h>N4^ ָ$Nz?͇)!O.a+򴨸=ߙ<[A wbAͱvxi qdZc!hƍN"5Jַ` Y?AĒKeWk x90֘8*-G`~. 4. $vE{!Jn܌i yܔ? 1"Q7떯?o -pv+ HuL\u[u];"%qe7N,> Y| s)8Nz3 m;pBxw|| U抵k4XRPۧ^|zDu\ضBBDDNMA\N$L/b5O<+ kAv&5@dsztzc@/tTV8-Q@;m)U8DZrhyĠo s\"tYUʛgF6`t 7x/U㡘fRο"B)߫v>`[ @Bƭ9r̅h7'[Ei6atEr`*`/]0<6S^Ex9J9q:1`8rLLaačeqDx߃)ר.i ]f* a6 Q6"8,WY=9F"MɁhimݲ:qƫ+4ۡN:1s&cFfQ5p]Cg@@ \Ɨs9 ̾ ysʙvݢ\Ώ:V"Wm[;ql"ƋRiZfx`X4f%M%>ݒ$~_Ʊ?%'2=ߎ4u/ՅInzYw?a|/wxqi -ьxص9pe~ʞ66iJ)*ó*NS39,,7)GyN\G8V(̸uXȈfM~l}msRrC%@|o\o:0,^RI2N g}.&xOmz/Q3CA7ϨV^'b;*F))΢h|>iGw]-)T en9۷>'LIr).Bǀ_ gvQ;RkZ']d &bՏJQj5ReOzumѦH_{Qf{N _@ωzh7Q܈sl 8+S^AE|~xb(e\Dm}׽ v]xo"6y2wPTHfNaWL 'c1Ђdl&=6jKl+$==v+{FU+LxžH[μ[k8WN_yn~J@[bWm!MXpC1 p\h u[l g* yYŒ#d BDEFෂwUHv/s], 8yt7Z׀Ҕn4%q2/acﮢ G!nG;.yrt®CE,K*T/_" =G%INDYȻ:.JkglF.Di3=vY)vnwt,`[ |k^Ǡ)7Xx/0h@d,{m޻r<}KWWA;`Ѳж k.K J_6N MS /+;2o=6$i#5pI}e ")Qpo<5z| NlB],SDf)uØ-Mg]5*ODAzN0N&/-0kY"-y0yr|J/#$z3EG\~-[ j|_{baڶ\hV 5`zH7yOf ϩ֨iAN NBH2{w(֒j 7{5rQ|Zu=߾@KKm\ަ/({=du ;m%KnU{M*N%hac> 㙢tBPT?D&KGJi ,Z[էztp+,+lcYm@OG/[(ޕ ˆ)l[dsDq".r̛ط] T5]oJT'DP2RS*Vɺzaj&iSK PVR\?<TU!1iV9'E1<MDzh=tߕ 3F;QF~kZtq]5 yhڗЈF\¿x.SQ  ?vd8%Xf=tէ'# ۬RߘX,t4\لW2_T!1Hq~ G"J{ Q}&?{Z!.|< ~ncNUK'˪/Z Q'ao)Mj4ԏX FL @n CI8:IZ'D'#dIvdO4lȟ=k7\?=BWwL%&47>]:&L 5y[LzFJ4 f{ 1.}ᙍ"9 ۪W%bSrMR5#]qAc.0 p%VÉHmZn25u|ڪc-iRAW}-+NcVBV33?2aETm=kVoI osؗ# slkqXctYP@o EVf QWK KJy֋H!P1= n"T,f"#Q4[I,׷;eśkWge% ӂ ^E]sek~)C׆OYEz<C:PО*7Yρə[WPa^k^P Vw )`}LQVY [+ »CM*="㟻[P\iL'ee'aNO~NS*TzRI ػLOJCMVL%;>#jm7ݞ2̍~xO5NX9zSc01u-䏉`S9mL b,dgHu! 0- w]4ASKOKWYDSzu9:tcv/s9(8VvHE(ZI~P1 ЖoHClZ±f_\?ʽ{JaBC : a9 h dꪬY+h%@R 7⧄uQھ._Y%f}1h!i%c4}s͸к*@)Lə7k drH^$+9~^Ȯ޿ݴBިkicH_ G]]A-$qf{`^N`x&&%E/!vps9jB;dt1 -і_*[ʰ`UN$R6v|\ Mek߿l|Y> i1^"nU'ѭ N%gJ5'zy>R@M܍1&!n+6 *-oZ1[WjcI*z]~v"-, Uf݄ߊ\V-·4E R\BؠW˙)(zaR'z@ @.}P>h.`&J6Y< *X.w(doyz|C1e-%2O;܇Qݾo|^jo[ ̪$xr{omE>KV PXqAQwdEPl !T ܫo6{q4DD3܍z+Mv(šJg>,c| Ǎn {|3+W--nc=/ӧ&V72 .ҕxG!viz]B9RY(7w2 =1UŸ9FH蠦E%.UL]Z8]f&khD7*]<%zo"oVAOM[EtMxHCS'7.=Et9"ʶWe }X--Ű0a#fM.-e/6Շk +]>5N>Yc7T)"NrɻZgQiGr5ցïaǜO: B9|h+b4C<9/BBǕ!)^dm|iqd) Oz4o-; qx_Y~֞V2ٍ03:i(Nxo 7Ș@$G Cb #v9%n˧r5 'cQ[%A:;raME/}~{+^ʿ]g['L#%Xu>#UuNmϵG8^nܓBsFYS k+NFf )C>7!(2VB 5QcE=n̏Je |BQ0..ǧ%(\GFG &?2y ⬃ -X)?[6 :ʵ7p4XYAh''†.paiya+Rv3}p`w鋠fZ~FWX*+P{,T',/ssIM+qHhߢo(.';?s7~iU޹ 3ѷ, q>/*%`\br=ェ~pťX!ѭ<2]{W|ű'4$,rϴlr\֖L ZtV&]/\zGhC='bF[h9<`i! gDm6RQ=m^knmٹ w򫭺9wBP>>E}BYKk ddF"RdUqn _RTvQl>X_9P\fdgO{Hz>Lk&o8 s&=KL X-;ĘjĐO?էA;>_lN%ݙ||ǿt85 p@5U 3 TI&U Rvb 0{ ͳ:3 c+kT_;n,!EvɰqeV'M1g2ݓV"?K"(bF_D+A$ `#Kvsj#$e$9;D-h.)bھY$Hj^o7C' O4*J҈ko@rX=]'Nޅ;\uq2`oU\9 NV{ `۞^BE>ike@n' @F;k[]Kx" P9ɍKQݘ ɋSyzS~J0UTvX"őFGF4|ex)|BH4S#m%U[dPVQ fF[ 'LMܠz+8};s%-]`@9v޼GZ Ǯ< pQI2.h KHYU~zLlwF2H AMձH,g6ǿBz44-7vXDx`v=)1aPE$/R?V;xn;I;B7* w/A͍{ }mP^nLg)&nUD" /_&L\}Al٫,U_uA:Gj ԑ|@"Je-ҕιW7n\.|FPb!x .:5Ff2F͕O7xH{"m?&]ۛR5≪lvѧ@\((+Zp}PAmjtBXF̽u${} fV7(zd_JE~p4YEۄ{ N 06:ܚJb\B 6VzJkcv-|x`XV`+=>LAݍQ2puͬaIe)0lomҳ}hF@15,V~ڻ%Q>e_:]Џ2i& /|ͲKl5Rx189ݢXroRI 6o{-n"y2bE-KёOs .YwoN<^|;C ZBb, u{\HL Dt%YƝ^J"\]&_3٨)RdPf1w3+Q@tTΣWHt@?@@]!l,%P OU5[ N)S e!揨(|0o˳VX;[-ߨJEzoȶH]&]{̟yRܹ?0؊|{͇ U'i"x.[uԢr3P&|H#2J0)F3%KpIN3go*ыwGZEe4O ubeTf[!,v/?L&ԍ\%EPD&Q`.}(HC[u;%b-Z0JYkОdmqEJ)6&a*ή=[:bv_n6b: MJ5+̰mT ἞}harLn>EVTYc(=ދg\Ķnų.}v- 1sv06)Wy? 0öL_nN3MDb#)• $hX$y+'gYSz?AS 3k`_8-765ˍO#+{xA(EKX[0(yS~;ID_溸ңА5Ye \S 06%zV :tB;tU% 3S^*Yݚ EXyJ8Mf4Hd.7I߳qiGu4^v mTC3?`,($_^CQ˻qUB\bH➹$Uo>F,ϢtChFTP?ur# %#FD5B/Bwe6c#|V{tnbu5 "GKO 2I:nߥ-yAB͎/ڛ\Ft--DƼA0jn&vK=@rȡ&ew+NL;ZȔgU6p,ЋsۑY3p̜ԯ s%P,;yD ?[Ww˂Bz@ F哨/9+Bewein7hճPV{i(6F@勜"ؒQX3\xtrm"A9g&係)’mtbR٤Ƣ{23ܮ8ѬuiW=ܣ/>+ϕ{y`Jm}uUy6/k7UV̏o!Y9듡%9w)zgeLbZi C%9I)غ*~#6B_9_)mNUZf'aīuy |sp-OW5q3fx+)B\ъ^,'dh%j0 bn!6& ƜdʪNtWӰ@%@m[c&r&Q~U_iXNZo6Hx>  >Cccx +g^?,e`L֏>GY$\O)\D520J.;ވؗBQ0*3 lDP3ax~>ůs]Zmo~8E>6d.ZRV4f8|?VCQ^6at C0RXp&$t>:#NtͪND~;,tV "^Huh8tU?M(D]q:HFkdGd@T ,蝛'QFg8>)2Gv=I* |SD{h:Kemc`#=]4W>ۤO|32h(Jb QY0$ne$<4&ӑ]ȊP^ i8Tf{•*Cx3J?w0 8[bhi>(}N#K\^J)>Zz1G |CJ,V&l%cC̾ZU]JoNQWy55jQc-݁!Ѭ dx\;bTp`-r9g&Ŗ}Y÷;?p4;*3Ie^{y/%f@&%6},V}&3EF%c }x)H9(8@>g:r 醤̩2٬ ~Oƅ#]p:zqȅS=sVB|dЪݙ7z I!%Ř+Ն4kE#Rn;& ne|][r mڍ``tjDxzuLD!( jxPd1 n{y# 5[z3qEקc[yӋ꾰f;.8f *c}: nWH;Q}@\h Gş?=f]`yN6"4)"Yƿ|OE\̵0,żGpQꃘ^'i鏼vj``eX1 xPmNatLzBW+ s lJ3?5(0EhPU-&9]Gl3㕏p:jb*"SqT!)jbn&8CG:+}* Њ34-vm|6#REƼkt"bH"SIM44jG|3␴;7Z|tYg%Lm؏q*R*ogE?hvd=IBE.S77 ų\bW@ ,7ǘBIEq?ʆ,BUw\:Kk#u27JίÆ2PLI=<?y`7E,ߕ ,kAvq9c+p0݃pN;٠Yz,bh[sSCWi_=g4No_l̜:ijTTXKoۿnNDԦt?.1 #95jtP@_Ùyt:1d뇲Y&`Ptm[݆)L,G5.pB9,&+H-]E鸐eH2ӞOeZ0)@:zxokw@v崯GlUM:8/EL,yїKTE>6! *$IޘސEjm?a5c2h(Gi^kdp?.ӎYZ"vcTϫḊLZ.T18ͿI4PqI/UQ-Ҫ2~; _lf&RɡÞѿAek٨ۉ 'VȎ5@y*;9 5{ns셳.ʰyOF̆ՠ'r}$:]d^evffl)N>4QQކ[h]L-A044HU fWYk⠅R_VGg Dyک< 7oϯ5g*.Pz`P8gDđδ8p&^,uiR#W(=Y?L#9mX3,k4V;;̞N4 ǘiPW[+WF2ecdhDUo}Qif+݄5c7I'ėW$@u1P}k\:,_ "tt<=DKp/ҹm؉HOi_8}ǩ 1/QW쏀U[M\bQ|w8 Xw[Ur|U~{ \0JK9Tef pxdNDWXx*$fޅL?-I>d˻s1`=O,7,j_r/c@$Ϟ&3#.o7`mߟ2jϳL{E67>-ē~ס ;q0?SB0/q3R ,V7Ѝ(g^"HX\Z\H2J/s>cOpʎrUuNW3 ?{Ò.J1}57?P[g1ND%|Dh2IѫD;hٽWBdtDqYedC:k·6=y@0ͨ$n!" `m1jvԒ^7_{z!eE?cSr;]j~SKZ$4tjFd7˜6_ ICY2~^hA>_Ϩ 8_׶Uwe}Y8~1!oh1vSbNv́܏׋!4 '_D!ϻVȽ[YSIv.)C.M^D]Vg[zUK}TQx"2T*gH\ :ѣ 1<6ք)(H[j7FE#NVx؍K:O=i>4sXq)7d .t-6mw|L[nHFf6J/KSI*I3ǯ=)GpqQ@#,}<5P"WR$ .g<ǝܚ$U5FJғd6'*dJk[\DV R5 ;>^ɃeflIx_?ؼ\;Z-@S$tE賷'W//`$^5q骱WrOԿmPXT("89ng& Uv^/3t +$]LG̵p!`T-P}0fnPʒaXM,L'` =dyG絮-gt {8#'UJ⒚L B5WY e cpb=#YN @&qOx$6S69ܟ^c-qPX}sY=q>Mi¸%V^Q91R,a E{]IJ z7jW޾,FH/w)eyL@lN( yH.g3-ސJ 2&4ۆMgraT uw*GD( 'ͩ= d4{߮mTcKjUQ{gCߗ_eUJA` Ci8Ed@hLN5C %}ZzGyls2`1H0H9}OZzLOq5&#èD)møh:'V[DODʬ\~ S+52}ȥ,󔬈NV'ch yrM!YX<o%4QhG(gUYO7gm'wil˫-17_Tei[B#Df!$KsY{BYᷢ.F;"ĵg[ ^ dQvI$.0 GvlM,U+DH2O 5lL U-fY##)*OOe?%i[)شH#6Y #-wH$/֪Eb(ILw\@fkߦsY( !Qr ?;{J&1&bËLW Up!J!~IsX« j& 05x_vyi6H\ͫ2A' ,i3?(tm2s5lvBMAd0ik0'ؑ%=R8\ 335 DS#{5a&2jvЖ"*_ zOBH?+"EUAf1ӉUz J[VzmաR,Ryq2,4k`ۂBqET~ݼz-zp u"y/YF;툜";\Tq}bX1dZc! s7%] T b_{f3WKQ8'NɝW?隄$߉ɽc+&%t-Gnr NAYW7.Rq4?l[&^="kmN6JH30svnv]BU<&2Ӭ-mNoҡCWLG1\(5N.BlJDŠ{|9E>q2+ |Od𧢔m=\+$^M`AX 84{=8* 2#' H5\^B0#;w1z,eZMf`7bz&$]jK7"R9Y3Lq\E|smhh}s9ծែoݹd!Y`jL%UmFMX#UA>J}zy?d'aAX4/䤋^.b\'n=vuL-Uݎ0oi'r䮍a>I` Y>ɕ,o5 ،jАsZdKXg9Pǂ`5=TIxuƎ#zW 6*ACeTkvio  tϽZz(VVLwkn+ERӼRA*[9~_VGJj$hdܠxF޲1(+ q`8ej%nl Dl9w#Y&VO)-DQI8^| ثϏ LZCD"]3I*JD;I_m&.2:Y%'||2)d9&L6J(MMF8OvC;VMm*..]_ ʯU'L7`2TQ `jǼGP1$`} ik6r+ӝͻ,_sߚEKe.O/}at;c piw/&6&boIb)CfQq? D?‡.gt_Ӫgd#א_YTC)1SS8kU P9MN]yk!Xgͨ=kG й׎W^FXJx3̭fkCF&gd ҇0E8A1ef+!`;h]Ұ&#W\Q7PI:ݬN|_Um*KTLS]1~%2,>dˣJX҂(X$H[,گ'ϥ3nKR:]ƶLwyWATwNKU֘ϐvȑؐ  \I? S4Vv5Goz?l@7H 6"3n ۸=T#!K#烷K2.sg3kߩ)pb8c8&|D/6C񦏥q{nG,JS9F|7NgRg 87iﲙVizRG'X?1!usä\t|5\JT{~[{3z,)K|üH? NB.E@!wfY}f3mX?>]w.?99U|>K8|>Di>bJ^hBumAf9FB$ %eu+\4lE\%IJ.YU/ {RK׌bG[-fø >BmܵG5LTԥC0(Fs Ē8>Xˈ#&yVt% @vS4hz'p9M^i@TF t9%y(0)z:vJO`pWtѳޣǯv:QkD Og`:*^Wl()yl+RjUY+9$')>bx4,Inҩnb۞lij\oU;4,ĐUMRkb5M%!oO[F -ξk눽}s-(=c] @qB}[Bsۚ`9~GySAj] 5L7+>@jk[*08Yh 5RqmGw٨| \|]3 5磀 {7Oٍ'; u^5W[ae Xuv.f̠j Z,yٕVvU Z)SzT&Գˡ ЏcO8jԛIejΫY`(77Wq*Q&FJqYBq#e' -ؚ+?  S\"URC0^L\Aq'P{,n\у(r"\PX,I/Kwn4_P "o9[Moxp9B 1 )Xc$woAŎs\EXcK 붾0ϦL{ҹ 7|`W٫x ͠ UG0V%٣Hc:B?ȦG4Oj$Yq\x;ңn-M+,xղ.Rǻ2_A#%pEJ}[a5?fgBAb`0&Nr:r5b=.&f`4tZ֋Ȫ7om>pرw? ?ӗރOf8iR:=9nIPKu וu-w[r66QpB F_4Yed.5R[,vIyfҀbլ#hm#ޘȌ/smP/O9/fyS* u3Lnstc)zwIŦjg*oʉ[k[KTy!`}IIZ!ea`, 0$斤u@xrj^LnE6? Ж{8Rh=<֌=I\:5g\T#|Kx=k#7,rߦQq>EՀb^!peuMJC@0,'ts%^ e_:!MyeyxK(U 'lrH>*$+<Ώ:+B2TU9 v}}QrMa XEBdr q@-6n٭gmP=;,Y985KdpLX-iK|1RR tCmh(* QA5kojh_1}Wct%E8:cO$^ ,F^%yZlE0Lcܨe y ԇ90(*0= z~!V1NBG,uCq3eq|ݖ)_Z>Cy\Q&9 \ +$Y^𱅯/ttD>!AgV?(l(! e[%̪{2um)&MIPьh Dy3f=U[wF=oQm7q̪)w2 8@! N\ʙ1&31 M!QB[sX_#7>2W ~$4gfGcuB>=t8ΛR`ϣLϲ0eu\aCRogҨd*Y]D<`r|JJ7K0ߑ\GKFvՄ faoQEAo'4Ǯ m}CGMyxa]DR D̿nO{|^?)YhA|D5i"hj9F%Ҫi{ U\XYk7SZ  kİ_xHϗTņ~lIYad9O[z\;6(7WYCqԨ9yh~~haCN4A8a;'َ!YrѬqx>WY]!j؈\d6=55e4/Z($ȍlG" /0ಥ]A3J4G9gM4=pً`IJrrA@jzy<(&:/kKѬ$ρ}B/3P',N ~.juIeW @<|^ QKNXzQ(DI x@oЬ_ kaǟaL.!eE5# LV0]r)5#s]|xvRTaE$O"vL2^w쨵 W(d/_b }f3OKhjT2AQȔ|ChUQV_эT06b+h4^[#0 \VEDAۺ㶠A1E\ z!nA^׃gdK7۴mv=e}P7X{pp.G b2 }[7`Bu\]W8鍎~Iv(8y';%wpӟl)tPoGA|}9Spww )5Q$ &™"`lf: j0/nQNjOnYPk %uIpT BmkOE)<t?*Yae$I8 sߐr@|p ;q QiK_*w|+)"]3^{0Yn p6Xq+)i0:MX#r(UM#XBBP&ry% #_7Zmߓ>p`[:_*Ho$ˎy2&J I isuw> \}7WA %=l] A`H+-mhw%wf$ Zplʪ*~HgյEl7#0 H~ۭ݉wd,W|]v@qE!_eNUb?,{)_3r2|nz(! &X^ٟCvL9/Ͱ#?i(avsB%_uy0T?@+8)_k ,k=O?PŠCJ4ŧ`nKnÇ\z4H#>/;.k/EYapf̉9*xE[vg3h5OmI[,+c 7de'Pw̩/0/qqY @2_6t`d9Bi}UZ-<G}޳Pwv݀Hw:|2PgD(Cj0dRXM(2B\k dʾ `C^17wa 8+M&T.Ҍv?IV/s e8Vt>X7[XVD"Cptl E@d9aX@3UZ5mQ%F4etE_bϫj*-+ ;a*Q :?Z I?aWįeug,HItThQZ2~f cש*EVks o2O3!}CEWi$/oVXt0fj5Hδ9q8w,X'KnE=c;*~-'̐#%Y3WJCD!,n>(\,eÏ}D=ϨΗK&ҁ8gњb9Kǫj$qS PLfFqJ 9uݭ (C?R"&6'Q*s\.̔nWv#ocE|FPSKW _ GHtV8=aIirk/]l^Zкj?R,adg$.`ІڸX$93} gM^5qސ85(RGĀ~ 2%IzVq^&o'V{ !; e/>Xk||RGt[и`8q,;5di?j^Q1.kv/AMM7fZ5{סM*KҨ*?YK,G[p)KP$l7쬬m}GQ"-n8Pn].XNk K̮4Ch 'vLI+G%P$f t2wq[f5ȴ*%\{"+!W%D̨JU z5?320G,:r$BhPe>͑Yfj=As~GseN9V:,=: ٧x !2&2`>d?Ѧ$ 6DO%^}-A]bU-R:~YEFiI2 Ox S. LԓQ4+nT59gPl~hًK= ٧ô1@ǺnhvRuU-ʘ&šSbkXXw(]Nۅ}5} q=H3(( :ƵHBvm  *@)=D~##ʔqRSnWPXh ;niN8NWZ@K"غлۯD*&+ )e &*:[v>3e_U-'xm6;!m"`y>1}*ﴜCˉ>h+@#[J/s 6GMX C]Qnyh|[;0QP\Ayr5,N+)&j2&T JN,j&2T|W{]DGlRړRUdI^-3[lfS [YzUe,/>&{ p T₹5ITfThSO4Bkhfф@hȆ  ^7ͳ5 T֓X -iXOH59E,BM#MLBs:A\Օ>JmT g KU (x ?1v?@UL5_  67xM*L*{;a>K]cO݈@sRt哫m=#:4AAdX P<~rP86$Sil5 ľ; \U4uqB\nez{Ln5#*A/@^iDj8j:b2%՝_r]3R{,Hr6(ɸN %0j]T|h#>UeY%,=]WS+Gȃ6F2e<8fICr:Dy%{.prKPε8Z~KMr^}WvHoD1˞J2NmIowG @BTT#\wBubZ<&TqMƠ!+3t\<XȂM0//Pn5QwW&ļ"T`HC貋WGi+QotK$,Q9¼sI[-]jWv?4)pEH |lzse;'פ]+pz5+*F>V\Llohd257}XRB`p@^vt>یEIADiw 3^٧lo^x Q .$dش"Cq{~0Bt&y"W"4pYѷqxxV(%]qۏ~vF"]l6<9Pb{?[vt02X }{}صn@^ Tc$=/YaHLaEI!*FxF@Oxѝrf'}K7ḁ d\7L%*p5ʑݧ_VAˑ̏k0lp,9:ܻq~#6gIJǟQ& WgUAZ BqW6* ܱ|:87 "h`e3rD*w蟎}1' g0Az21)h3U" *ؑ]y >&tYvApx֍]  DDWTp A-E[Q J+:`dhIzKT"zAppA:SBW/Na}WAaNmA abl҇ 3HT&)Dedhh/KxDM$ x-ws R;`<0u4WՒkH+ ,&q@}kKREq gPW#b<:rA9^X<׭941=[v FH0b_ʰnQ ' .\̤*7mYv))Lv3+FHiQH[S'vC)²gnuP#f?buL{zz[HE%<""Td(heoh$IiK=5V ;(%#vp76eAlʥs(fHů3~'kG!*APpв*wüWҤmw;fI[qܲ/ahkJd{(:k\‹$;np%8݃k.bh9@4Pq `l[BWz\:\h\V]F1KgrOŸ)fB^]a ?r^Dd}M:~=(Vƻ:lߴ-#KK gK"|@ږ7ʵĈ _$39tӔ֋2 *Fz֯M(}`QV7<8Jy?88x4d΁!H+~H{AЌ7k+DD4%;X Ue5OM{wmBH3"HgR"s\qS"͈ Xz`mmJո9x̡b]J4fY+뵜 `!W0E7 ic:1C ;,Ͳ7+Ds#m *~hDWެ΢haYr-)Ҡ 䌺Uf/ss 0XGUwK9i%?., 7,yqNd pwt$8gZ{vso[HJ!q?p:U(8)&QK"&q3hp; ]U(YJ8Lé I#{>K(@(I{o}#L?Dh4֌ClbI[zH< #QUOQ_G`'1fW?>@vSELi4z/;N3Jvr{\kַH]m )0XVŋ4ByJI.U 0;d/З$5.T}]Y0N Ӱ&:=}ԨYd3¹l4_C ?م' Iz?inPXSâ6,n#_. )tN1 J3j|p; Ehft0Po {{ [ dzF*_iQdmV7:ف*(s5M/Ҥ$%gToY5D$ҫ΂zo$d6jp|)c~yV)ޡm-Klh }LnazÔj/C.+2IaXp˥'" *y'-=w[9_̞ޛ H)ɳ2ZajA"?czVs$H*KxC)n ̾h%q)p1B$2 T*AÍ1 I'>w7=Be/ebTIOT4dGjt4dY7 jR^~65ʉxB^Sr˽S+Dno԰`ycRZ|ڡRD-StI|$g9+ZtKll| ([@Ƌ~)V|:s(pͮ.o@9;[̭,`&:?"L+7gt0#W Gq4YGK X@:bo\/M X[ |#ffPT?,Ïͫ m6?rW7QnrҍoΗҳ- @wKJsC!UvIOhCy- | 耀`.t4 w)紹vNt(Q.Uewu[҄j8+xL+_?\iݯM^5NRN5?3W(J|ITlIF |knT?A "~OY; r(Y.w{sa9ft@Z'MXhuO> /,]r^Obkmc{ͥVW]^Z.}A[LWO] %OtxߎIk qؖu?yePL\@ZQ[S=7˖ #վED6 ϛRP]"ϩÜ+>a$6NƊ[zڥK kz.ƣǯcPo1PP_Y4 *l"`DalrBAy+< sw#zV0uψ"yu~x=ޓ썉><木3Duy1Զ#^ JG(qȰX@Ӛ%Cc٬ E, 5N[bC'l >g&PT+*LI&#)P$iHIhLG˶+b6X,{W{?Cߌf2p{A8^n;gGzΈh4 oPj![d.QY(PrV {yOo;L0{ 0:o[)DɖS d1$u^8$k YL 3{\}8r'#ho'_j䩔fL38P&0Ɠ@:ݫ+9S)=ͻ;]Z}6?|(!}l9\t^D34!}&Y ҵTm) p4NFGM2s;]YGb83MӔc84DYYe:,onVaƐ{io1qoQѡ L-4lOENo3|W"6=Ox95AcMvd%qgHjT<[2(C\*l"+&ZLySV{fv-4.4Re*F+__ΠlНUOr8 Innco&ve@i~Ҳ|ZoV.ugk3w;jMRζ19}9xۤ\%7hЯ.UkvLM/t/MfYf÷X`A Y״y 8|^F1(@ y86kGw;H&-퓚ڣa.UUVu7Ȯ纁pAAϘ7\N7 #]p8,DxO+;&>6)4?.gmo;z6k+r.+ :z{< W3gr4AJ<|&T YhϏ@*q^&S#xrk㾨Ơ9uvA96, F]O_8y/ ّ xd#mV1Kcv?f=>1=J%Mw6$`얻J{q4cͪ_8>O`&jP4/`R?AɑXEJю$ 5|(\2X݇sRvŵ\xn M%ķ[?SӰ ΝLht.P\dzNgoŨ Q~k4Y ñ/:(!cm8sE.ܟ^l>RNC,:4`rol6sMNTeZP5Brm\Z0jZznYRřa :A&5.@O2XWtqړoIޫs X-"\|L[C46gK#.n4Iwb̓_afˠùF*g( -X&<7}7&agTR#˘Ɣ-0 +T(u͕xj3M${yȞYt q%;gLV٧b_|vlvZCɲ`?&0tW׊A | 3KFOxQ`DΝ>Ec{pXMqV ;u:ZeS&d@lP4ȊlWP㖦 ⶧dӅ=j2@擏 iC`Ni+W >uf+YR^~ 8%nGUDuV2jr%FL바Y k.Kr)6PX? Eu<_=(@K̉J/bƓԀOWĪE cYrʛD:m>8Sm3{[& D7Ls8)z>/&$kù:>6B#& F۷߼V> au; "a F0 M=A-Qj ?JQn_`C>677}U.*IVIHb]N giP;ݛ<'጗;ԯ0=<9\lϡ96ғ34pNTwN_G ?Eg#آ/"eHFy>$7oEhO/gǁq vF9'oIr[tcޕιw*1{]~vl )SR5}IF !rhs[ }ۮmjVb044)kdw]xAO͇us ?7h-k#-cVDIyzۇIQ~5|}pyP2bK _eٶY 8<4E71UDŽz6IOu+)­4%>8f}(h1Rʣh:Z1{8Pxt\.`iSg׵2-֠EȽj)T-m ݸb9EL0"J΅z4.!NK0eP)9Ǥ(Ef&(!(VÁ]86xFJ)`q˘FRM!>.5A|Հn< kGYP =i^Fs|{LIx4 @w}+VNG$_)Pa5>SHB"_@Vm0~w'c\1dP.KXѩreNwRZ񴱎:d.2c[N8$✇!7*y60VqY0ƙ,1S1\w|zRُT^ I :bV&BfDkc%:x V vyY&"`ye8_;?.!;Ęmt e2h~JHMɮncTѼS&USBA%-.nkEL ՙ Y..yÝtA/OZͅ*JGASP0A&0NWWwT͋xł%Vd$䨆v,n$tG+7(kIC5<$Ap;ƂI!X9f D [jU#TDL:hٺf+HQ:RiZyGLIT|"yNy% W}MW ZȝQ,(BG~Kvzx0u in乮^(qM|;7Qɗ (1J{t-^-9}XRG8g“Rt;3{uix\*|IU17:Jn'׉4+ X4~5X(;꼁4Nj,T7+D*!`d5u 6 W"x55GT˞9 1uZeP@扑5xLh:c!&'c^ 9Qdݮ"^F`wmm!F$Rƺp"Ľ"mA[ RԮiW-#:N 4.<њ[6TcR]ee|эۙx?VS*"pVOo÷Цɠ'5b0QWIrT{bw!fJ2FHrJt_5O%G.(ܺBE.ٹ0(noٟ M/.KPClalхawKckmzpk/+e sl%ZTGt"-_DA}lmo"t\Rzq4@nmVGx!⦊dOY釺)Nr)}+f1^pao5#zw1 ֥` V܋Pf$ȥl g/Bӷ^whIU4pR1̦kهL o b=sAd+sմWf'Ѿ&F"B~пtdlTj ƥgUH$ٻM {I U <-{q s[`[͡D|dWRG5;Eɬ}iQ";Wk w-,=/#2r!UGhTΠI>ͭul mTd^7 ?N蘺x+A@vJ YɼaIJVQ~:I?ܬRR-Jw?u[i:ڹ.3{x*Oj599DMKѳn^DDՈPq%W(ZI4h@ a&fTID q09A4~)HԶAvu>Hb|'eѴ<:dd\-.YHq~!.b;+CaQBbʫA[%,\É Ng e[4Js1;i:u[Ie+U@{t\q܎.ƩӾtڴr4BޠIXR gsIy6"S{sc6/!]t%n8^F$#/}gNMJ_()emjAHO/#˟n(( Y!|qgMaQzha.U _DFt '9ԡ=~HwuJl|k`H`MEL T|قdJlsZőv ؊%f, 6 g!I }Wgl"-ipY8ffX`]'F_M6( =X%E-c9,.ÑYW+ hj.fܦk X(Y~G~Ǘ\yab H(N { ^$F*m U#7C4z@%ƍ>~SQnw%SSe]fJ,oqm Yf= GkA軼.HE#l6kqe 3cՔfB{q+[Ur?߹\N1wǕSA3n|`@8boKXa\Z _4!0(7 NZMZ{dN&3v=iW3ּ( lF%@Mn3Kcn~)zn W4 <:>wihF9*^G[G㿓E4ߜaBY04&l+b5A(fyvW]GNiB92LD?5.!.ΘCSmj":ы,Yu 7, *DʸbC8p&V eH`sw= ! Y|@O++?# X㞳;dP+S@As] Wgrr}kDjg8 =r4v ']}+_ws_/oBg6_Fni7SRU6YBh״ΑG"Bؕ|lr`84֩Ty-ĉdY:ptCw `#ӌDܶf@aŏ^Fk׵K.!Tr" q&wrÑpv/4 @|P~bA#ymv=Di/|jl,܂bm4,U 1-_c5H*e/RҺ( NG\xHTSnˢeWR/U#(-b~$paA $凣}qfm_#6ʪ<-;qnME#/@Cax7Oz]:rj#%CMspG'nW)3=aOtK:(N+ (:ϩR y[4(dy>E A۳mvB?8A)hUl> 6ҕeho{65'k.vd}J 6z.u#v/D&$, 8aUotZW^;lʱiװ&uhX(҈HBpbY/(1d& ~q;:?SK4֗u@5D1't.ad}!]ȕZ4UL-+PiU}#úD&[2[E  MvSgKgi;٘7P vtx)-."ӢzAO O_)=˓XgCaWB~@<*7%'CrAҬ~H7-YSu@5'G@@#ݖKwN~WQ{,ݝ8yuzmsԺk*ƹM.cuKeQ׀Ni#19K'nWrkم٣F%+26U|zF"ҳtբb< AZ''lTfQ ㊿0؇ȓռP{YLZlmtO]zi@Vz+b PNh݊@bw^%Mo{qF],S&V1!͸v}J7oTS:V鹴qd0F6;R&& 3;k~6ʑ|[*?Ӈ [#N2C菰sNj#Ď%$Ljޏйʱj^1.xk!P\nhݮ%>OR0tǛ GuXV %cKWwk& R:ƴ,r;'.#.Vٯ=PұZuo6DSU%Eɯ 1GbxI-ix c 7;s6P޶Ӈ m)\<´m3z#)<9eUw$)i]UBfJIi}ܫ^n`Mvb^}pDY%k3{y!^K0зE詵 W)uϹZZɡB@maK˃Sykxf}(h=K {rqQg  )2G?A;hLQI]*޻]/2 0`5!'~! qF fÉb"!/Ma}1IL"$ .UW@ދcdT9r1׾.v VArT?-0bDcsʦ*]7[Lv%Vhsgd }R#f5]#eǮ2{ObU3cg/:*g٧^;{_"aA4'tLA/~aY 666󲫊 6F"nKIqu6ҿ9-;8[չCBsFmuu Os6Cp[33UX^fUke= XWzy{VLUS-ڍ.-8^b J QJxiNn2)Ȏ4گƀth='s>(Dߐg(=3{J&zu慽U-ESR: ѡLr3s`G♏xc3J.}W(d 1P @$n!Wm+ pI5l3 w|+JZRdoclAWR~/'a͵L7CN= khͩa\ YBQe P_#0>6M $g*>gcڦU+ZjZW&C 7!XYh%M<RbZxH*ꀒ<( r6 YaKU(Ad;'C^q+IH~mEe|܇vQ~B}Κ.g=๑G9b B!\=; !^2{qD6[6GEu1)m!-Rzgϥ   @|;)5~y:qχg&dEK>`0QsN!3G׉'3-gp(f&jڶΣQpǨ2]a[`!lH8;lX, >B`A{LhၠtDr^Z#d^BZahCv _VdzuO7z, K%ćZXԴ|dp/ښIKA^=W& P\YOQ4NmF^+Pb(KRICp@*qfgxa|$`Ė*SkFXH*)!W'8Ž+[_cMZ}Ea RBؼEie֊3 ( )eL d~ ]֐nqWs|kf >CL6)o C#^L) XΕПSL/g o4U ];I] ah #cU}\I< 8gyix/ l|"S㎴4EΧDi kRo㟇njڮl )mGe{eXo\4H9F(iLHdP:Ζ#aS.7ҸOakYE7aLULzdsHRfjioQaiKCٛnߓ@YuǢSZ" QyWƎmMt~NҖG$gt_(&Ypx628e,2>%*?~@,/v++21YEr%!L9,r_p9I_@6+BHe `ͧ3;u㷇<VN&mo0x?1:K#`&qpCj 5 cI!,P_ / w9Y!Kr-v=Ӷ߿d|ɑq.6 16oWHī~3A7Ftfۦ 1aPTV؂)"N&% 2: 7_pYeϮuN46_s^.v6g[p>O (إp@zwu=P~XCsXw]u*{hd$$W id9-0aCuBz{crg-߃CPɽs|:yD1i~ap%㤃_Y'2>mrk%x2WsK}̭߭!g.3i1D #Iwg]ڨ='lMt,R ݽdӎD.dؼ`.CE=Vٰҧ| ,Kzi KPY"J6A$r/+V=0JnI4- ;s'ĩ"q3liq$H i!*YKڝ+f}GIuӒ vŎj0>! 2?0u߾pqB޴p!u|3VObtҊD޲3h_*3R!{ ?^gLjǪDl̉:7*R3Bpˋ6 ln˴kyʜA f%ZVõ4 Y;"rS '2  qVHj—C@~+%NfN8EK F7ʒ"8pR,v Eʡ'z}s"nDN"?$0a  el( M j 9*n{Pc1} Ưp6\w8ݞUB:uDJ9I` )pRF|wQٚ1Ma"#(8wYXdl!',)D0Ԝ7 lNLM\厪p+m[Hx@$0F{^ frБڡq@#Ֆ_zAhn>r t||$ %#%'>Fyt!Ȅ|q`s 9c`_sB}l}=M$j1`q}]uBgQ-F9rxsNi]NW ڵ} h:.`[,+zO~y oӂz/V(_J7L׹=QuB>[⡘F˂$ f@s! keܗsjđJ`ux(ydp 8Ȋ<~;&L zENbnK"yWLc>\t"y_yh%),6us}. } TZ]kQkt|%=aB/MM hz==u:J%Q'#-ȅ D]>1xoZ0"vc__gHLlѻ.=0ww,}iJ5Wk1oߥp4TWׇs, Rx٢Icϊq ;liDD@>XfFw݄(A/[ 7hz J R>ng|_Eܹ4kp" \M-Zv){Pjpn;r!ZJK25m&0GR"”utH,6(/hfFic7"V!2BÕ* lvr@,߉ba`e-/*CNKDl]lf=|<ɏj} ϣy!`|_1XyI88"sφ3,?CL4z- f>BxRy'TU v~y~NwR7 (BP)* jB)ʼn\_;ʌ!~rk1<rvapfZ'~QД'S 4+첦kRdJh`YHˮD *m͗ EKrȈsYu&N P{hŬZl1pe0<u +yfotk=hqưė׮ܴuB`@^pr9,O~q"$x)[P+o9ԭٰ.x W+q $6'LUIJѼs:)#BE uGuNCƅ)[ĭ =L_u1оIĉ0[K7U NM 5fg3uIըj(<%7QH R֋z.[KIEj??66|XH^e'RUqju]/*x;d>ES gSJ iʗ.%k@gA%J /{gYee#{/T{)ΌّGCu<_II"_R8dBg+ފqmcd0dfr!gSBCq+NzƼg&# <7ӓµj=yź(ӄ򙘑_фp t4Uޡz8KCZAs^9ڜ_Us >lQþ k(5[V72鯸=Ͷ:.0ޮH![DNY^}j*l(%c5>3ņ.d?_N.ywI<QWB02ڸ&kӚ)u݌sTa=df!7>3DS a@kͼ+BX]bB/Qf⵴Օ\+:{nC`BAhئL;_5|v&^^DUe)mF/o90<ŚBϞj*'MIx1 avPu8յ}cޘH9܊beB7B OBE+\\Q¡֕&\Q"l$G)p)lQ~!Y ŠWB;QrXm9wb5(\r\˃ؿլYIJ%a" ZnS9~/l-$#ňCGo('%pTa΄硕fq³K6iƋ$ֶ3p6&ן |3n蝑tz ZhE59b:a4c5PNJ02_L)2k딁'D̀qwCH>Ey{RĻ"S.5xF֪G{,QLbDKa_Ba 5 Uz՜s$d]jQg`7 l+A]Gky8$<C)#1ӱF76׀ 9Mnf* ~ *趣9[$o okSVrǏFGq~6^BpC2+dv!Sk-Iz=wHF[SđƷ|)=G^hXY3[E1&c>e8j gz_  aocЗ.8Gx aynnV#4! ,̆@n  " 2q |Ah`8\
<R FQI3DaY01A넔' v.tp7)c,ag O,AE65dfPS~6&T0}uO+58-T.]4qmqtʐ)gr0aMׁeMA_w&E[{k n6TudOOABG%9H'۴-z>ױ,Ic$ C 9[ш%R׀?xcŋdAs lk&R$Ë3^/l.&K7 ƛz#\`RoY.cWL#? x^a-)%v'znwz"vofHK3 ɴTZ?K ,IP٧c#ʟr;)( AvԛWvd0~-7h(7EgGk&oe˺;WNqNOS*^'hj(ws3IzL!qs}I)o(6IMSXG5E*ϓ뛞ٓ2? T9ԧYU+". a=b42pgyx:E*H|Dm9N T)uhΦ 2LtJ8_,*L]V3o%:PQ-7^}jyY$aJ0d2&--UY^?[Y;@5M:aZ52@#asPԤ2gBs{n3MMbǝr`[qUv`y_w>MY~Ӑd=vJшyӉҨ` o,[PMcpބaC12ABZj7 |Ok p$VEFodGK9KdB]dWx"50%\AH2LsX8W5[|WCvTsd0(zNd45 OtIrB]OC6 T}rn?w"<aFy)F*qa3;8^35,/nMŽK*-+7\@OBLu䅃}'^mvԦi`&0~ Wd<4@Q 9đ2\yަ{ |VlW9V"^4[ƈ3%4 3Vrw?\ձhYe~(j 3B/] p֏ XipwH&,ok8ƃoblТujJ::Ďgp0ܷ{ r&B;x?baL5IgTe_QHJY;M6Gumx`7?y]/$n Ո_)ZnFX%@+l߭0eNZ)%)HyB&j)،-R.^RR8yS/So۽9~dJszy=[_0֑q?< +=ɬKգsXHZIOI`Ï|YUgMiIMc^ Wil @0ʠ4p߫:[3Cf7 ToIY,D} tu625;˻}lfX7i$:p7kA(㗳b56/ NsH@xvc6%zi +T}` 2|A5U{{\L W+by]M)I.QٵO\`9%nQMa.~YbRJ(%c`/3w%HYuAZΜބɒLR;2i*K.4J~>&Wm5*Co7kK3ɭW),Uu1(3mCu4NQt 5kŋq©:%)y oz ~_;&>(ruAvvO%fb\=sN@ޤ=UokrQ!+\+=  oy3*&pX/ZE(d3Ȩ6(g@sSJT@ํR]x=S\V)TR)^f} A7uw3*@(G7ԪW~õ}'R:3%=>e2J21By|Kq+? _#wnN +;Uu[kwLWO(8tv[PΚk:Xd2~q!dng͛Q8v~V[!;+Jdq+:$_hM!Pp%|r~gYmwYp?!L}hS* oOeԙsvNZ(Q.*$`:bܯqE nfy7O/" qj\`L;'|}oeeuH'Wgq2X nÀdE\p`X4-tP{ +ԔQ&1l V5ij vיW]o3Ys6lxي}GCeIp10{2QDܯf&v;DYM"t#yVj\B[<~*v=rҠ+0\ YpËh]k7#S$ eg뗧/m.A]AY !y{Xdz6EPH,4IS*;9/UT.BWj+5}IxFtL#hݎzgW}R_큝7DO'kyݻd gA+,1؟&7!e8P:?pG8JȄ,B__XCBrPlhpt~ ?r_;|ftXi>9 >2-\Chƽ\͍Wkhgq[q`LҚr}\붑@>{Rj- l%K#OH~pIOa',3u$x>Py#0 9#mf>zll]L\RBK!~ PcOg M%1YhĔ,- s ~wS_bIxO%oXxޮ2"j1*[p8p}/xhI{&_7ʿ4F ZՀB4 E/X; ^yVl#Ӂmc,4'8?*lԲ 5z@q/"v˦~w8|&v@?qd?W:QYEk||rq}J[s?cf>wl B Ag: 1u!Ӌ{uH\x9_H9sa7{N7^+A1/RK\34D+24):Ha1}#(wyR QQ_Ul=l铔SP- qEαAZVD.^ҼZ4x)\7y%ߩYeuiOS_fb*C~|k;ո͍'$ߌ SNLlYoɖH@s=5H(kG٣-w`dj%)*uEk¯8[,fure\N?^i:sQ$+t;)^gog]ڲIֱR Vm;ALlVJ֕됁VT<%pV_r WsW@^kK,8sdXYBBcKc|PY=ZXgue+UKNs"Gս wұЎ7 "I\2ff'7d3eᓓ?ˉ?dGp|e"0m"<(ej7kGpGN|Rϻ,߀$X+Dٟm/Fq<nUh|śoZ#Ounk9oHQ/Ewes9덓 "B2OLZ4t;ιj0Ξ&:i?}K#E Khp3Gj6CҌd7gC\4~s ֶ}qĪR 6dIJS?Ӄp/\1 |#چ8JY;&ȱ_f~Ʈ%حhZy ae doM wr`F{)P@>% Gmh ue8,΢1?H\iK|ƫAEiҙB BtDTn+2^&5ΘM X1Ag(&D?L34o-M@18/cBӢN#Н)d |,15s;%eiW˕z$q4g޿tVrcPֱ%ϙbCI(|~ywH765Y9C|xJ"5B6%oƻ|!|^;x M7wutioocSEޫ)4oOΣ$Nb-2n#CQ &`Mb ^}ѮwPUxOlxD/baP'k YQx8HQr!Q] tZ}=e)Xfd*Yce=ݠPO&ϢrRJr+hn0V vd4xMXAyvH "bS .0SQͧ]([ sL+*Yj]nJu53.<{ۃs{8"ryN1 Nvk$>}מ.O 57yڄ w3ݻucQ*0hoTtWv$T'߸>1]麭>R>$,x8LU9B-Bg2U\zC4P3Q%NU=(:qUhlK箥 JW` ڤrX Qdodz-˂CjRd :!-6aBmԭe&^ؐZyT'`\eH%\&!wC=_PN} c)rt/Y5(?=_ ->_|dÙ uYEg=Q`Pzgp 'N&)wET 4F_>5=rmGi-{Ȓ;Dkx]A(ٹ<;yb VZ6 w'hb[bh&q-$8w4~ E_}W mcG$1*4.1!lReHeO2sKR$?20'NwUϐquSH1o-}G4&Q UZ`3 sDG|@re*3bgFcN(,iZ8gu@B`(Ϯo ltYXƯߝIBc?p(u~ɷ]N ꬃNrgsg6obOk̀y4phZS|E M dIvZЭ>3  Kz?^o 4%&,X N4UP[ԵHyK,8uV&m}f3fq'H3F{+$Bh8 Iݹ(+_^.Uf?+I@s cvg/(ªU$ƉOjMC- XT_ʈ[Ι3FsB/↦=" Idz΄hGkH7ƕ[3< %;&w>JFSm VijjD~6CgZko,R8!R7OU>BW1&0ysŲPr? nh@_`=)EY(|P[tFliSs2䜁7#P߈WƋ}}ra!uSp7iAK\_ > >Xme8P2ǿ{-a<1L?I,H`mcYIw{pi?hIhΊv@`:5!Ts }@jfbA$^l!6Ql[#p.zX ua(Yɱ'tzifJ(ҳ]J1\1٘u98D,Wa݄Yb1=%: ~'=9[(x 34;gy]pOh{3 +Scj[HXNHMBpSˏ ar0e"gF|gG$ଂzN7E;4qFׇ]V2rfh;BBxMviwAwggŇq8F |5E.}EMXC>V :o%exm8ad?` %Y2x.,v/EuЫEHN>R4b{F:ҏ-O}W*A~z\acL2S\n ͩP* ę ^l+Net^;o[3zRO%M6Ij^pH8$ix#9exվP=CKVF9:~åj'wf&@oӴÏFoUj56BK\M;Ȼ u]Ŧ󲆕V߯ Msm2X޽9Ϯͥd{Z#H`0)ſ΃(s6 a{2 U;-W&}WgB!֌5u?Svcp 1sD2$JI' RR(r8hA)%;9;ݯ '}1:6 &&0m.3bveƕ+=>_ӛ~oYHcSLq"`k %k@_2~׋ uָ3 御xHElRRrASu;zPEa55-h6G~wm)T~?%ۀ?FocLXlߟNAKV"GB?t 6k}ҙC ڢnɋ! Q8&zX0HLڱ^tJwp?pDP!Go:cbnb)/ǖ+ӝ4@q%Ko#fx>-eKgN|pAX&4:b]GfhVe}z zYu‘g­xMI^%Mq˵󰋥|Bk?o rUaM@!p;fE̯g&|vx2Ҝ N14+(cTѢ꽀,fJl ѓ_"Pcʺ6ItNgx_n.@?1O FD ݽScߜn]Ҹ˶\XbRui![Ճps[9G.=Vd$#8 &Wf ٵqI\K N0.)P݊0^A0H\ɐj6TRTZA,ȩsV3ť<K,^ifN[%BDeK8pWr|Ukw߾CZ+,,n3M̻MC|o=St(pE9^H$!##n\!UN2t#UU7S5F昴X +32BZwP mbR1Sag{s-dk3mL$5 ӄѢQWu]zĵ Qs1 6eJ 捦5HX'.#mAX$1 `抢>- χ)x &#h?qwvse!ϪE.TKKzoD+7Y==ѳ`!K B*z&cOO%m($uS6lٴZaGt,(0u\[-ev H; ;,7WxBKWMfɁ9NyF Gd,X xO>(PCow^A.!2W,|!.eU:RJ 9&fdbZ~sIvvK/il{g'l(~E~aD׃h *pŏ"dHm>6kcV֘c߃|zTj"I(y{2mN2mi8>/ES]іƴnr^Wӻ?E0as]c85,+ Xs&J*G/ąG ʂO0@I ɞv80YmL?o #SZͫY\fʚټYt 9W)$sD|+~tn[ ng:k{x3W5ș^>~z8[|ۀdM1rsaaLص"Ok=A/UP.5(uPA7ik֔cZG_a<;^ϛ\&˔DBjgsf *PbRwOЋ?]l`Qo!zoZ id.4IGv֭#,zI15eWnPeQ|cInr?o>Զ^,qI+@kmDxR FGk64խ/~ZB5ʛ0]y3#RgFZ)H7"zh= 7l_R^2+4{+f[?q ˍL{ _k"};Ów *Ȳ(WoӜϺa $ض4z$))@Tূ6W_vlrN-$es>T4y;i3U=%z-ȱ‹ ?2qΎ1cڽhtu{+/OtT= D#e.A~Eߛ3y]$Kh6"rXE(ԶQ202e(4a8quNǏ%@83 kZm2 ֒X/lPIB+*"bz:o{W@s S~Ý.OBFuL|[9 Td2ST, aW=k%"-:yO3̄#Bm柆22X5Ku %&?JV)5qs oE^&.A:^I Fa/meeDmq}[" LL}D&v-ev xK:>7ޒ( Q5L'8+k%=a +Fev6(ښtj8;n&DyX(O1hp,,GjȪ W%cC.zs&'O%+htQ#S:jL!K;JjrL˷s,E(i@hJR5R\$i 3kC_10(o}HFW`~ P?p-Cc}o"kVC=T_fv.?ЙF%SZ7*ɏᕃ9rB~|Z 壝˟0_ >.U&;&Wa9`O G<:O\yaß9&>0zd :@laORr Wj!Պ&Va.X+_/B^|5N.o3NxV"4x\C^զawʅ2Бrq;X㠠9,Td{s6]Ε1G*OU]Y>_^Q}k"ǎf%H9V"$jv' G+mHŸOH $@r %mw?T%$3qFzpX[綼˸Cn b6JxYZc(9)5.»㹧3 _Agm r=ۈف !W&+G⋽lEjC)=2vX?&ڴ$>3*q™+fSs:y\kiҘuGꠁ :=Vme`⹎Lr]AP*{$?aJrmwBY:ZԖԅFR1NxLF>؛|[lhBP#CIq߱¿=i$ SOZp">]цWDD?`PR՛t^gD09^M(Yc8 ;G̍p\;zDAWzc4vѤ8SQ+K0ͭ$*_:l0DZUihdS8`QpTnF$%T2G/Pũ]~h6_;VU,b\!+ % s(;e" Ri͹cϯEe䲛6T~yv)(~]$𻠪<xn q0t0B,S5Ԍl[,YhVHm =5 'v3eݷ9jb<-G+aCtQ 88xj(H#i]o@?<e>Ւossݧ kuOSUcHt'?>k|+2Q\]!mPɾ:%i/Ob%v^6Hv}jBފ>tlhpш{[rqM=sC(Xed7q$ͼtp-TVv{D~eڴQU*k-`l;W`MۥfKnN- 2ʟ+BΠiq8&-R{LIzxB6Fޑ<&WX:^7̍~(p`)| |yU_+s.(o= Q\=KVtlo‰4g1Rʨnx.@5l?).p`7" l8їI,+iA;PYQ9z,HԄ0i`kBo M['!޶g30Z8y0 r9/C[\+YĘ,>SȽ҄iᖅc ,bn>.G^xEb)b9?z#KսTP"dvc[쁈|Ѫ K(y< sTEhFYZMS!KqoieK P2inCѾi k;'"櫫65GX{cՎxsReohYWjG"q>G RVe7DjhsjֱB~bMxG>0C >*ӟP?O4/O_&O02fHb@kAz*+1Vr\5Hj1 h/=mZW#X17 j, Vym'9+/(c]Z],ڭ{:{;< B7[WZD ,wc:(܁)9ρ.I[(^\LSt~0v]d/iɵp당Էk)]jD\H_Gaױ% @& M9sm&Dm)<6A=HZP qb,Levi*bb㺖g[ H3 o^9,tDsh|1&YH1ƳY3|#un%x4'yId_ Q ++*[|W|^e40quIU Д">ޣ=pZ7 52ylGNO1ƽn';se5B?A'58Fpc?5nJCwrMb`?=[^WYy %Ep-T-y,* eaD5)0ۂ"\~N0EmO@3\r*5VvgCz 犖7xGajF&<\҆,`vڬԴl?w(ĝ'A!bNC"-,hx#%78Fsw$6Z& Vrz`/;+\H a.7LAZ1/#wZ2p {)w7k)% x g,)x uNJfAѳ抒PqBeG.4?#yd_#BA tLRv#?fxEvY'Q 9/1_,}uT ٘ ;`G ] T.2Iaa(b6]ɅK{ȹ QFC*:-(pT~|ģ[l2ܥYɩ"QzXfoia3i;vc=5;IX8ӘٌUCɌ9CB2!l <̡p0̔b`48 v@{ȷZvƀرy<_-eVq o:bnk+Vn5жOH:4k9sծZf;> 5A\!,7_C SjGY៽Ȫ`-وUv sH>K:t B8"Г$B/Ǭ-p fӑM> !Ac cFp,2*j9nI-Fn,x=[ @w,X!_x%^H3^ChVE~"Rd4ӲTA}&]׹\qʖ#0slD3!;X,Q [-Vxr1zזdC4#k{dԾh|8$^gDz_Gza6+!I4' iUKY'5Wb!,d#6$z8bR|LN'ݥY[ 8&vyuSwї|Fw h՗%5lmj?$dcS RkR0XtW{);n1@CH?=|WW3)~Y݋_35&gŒm{WqBxAɢeteTa쏆 6uMIvXtܙU=UҟMUuFá'o'w\όuw LZ6s АldqaZ Pɚw[[:5 `yViB)˭(;U!&L1ϐM5ɝg8Kdwy@lUgy 8UQCrS9suf'@PV9MLBc~m훀 [ٛp?0j*ݡ&%1_2 (()E$I68~O[HΉ)dB)u ӚfkS;S1‡@X+_Oo2pO5YcgYCWɮ;.ܟ~*H}ĵ[ c1ij*0 ﹾ.:;nj _)7=?WhLi$Ioy9E/^F-/QE?o AluzS3Ha$1;'ƯUAWNgz g ]tMpM%qP`Y\oBIe'_ϭ{,0j\-6l!z4ún#f[tοSb]zp889{,?d^3 #g=Nf }w(5C F{T4J^l}#'8 ] O7|#&sWPq2|QNH'8RߑV}, (ة J7AѸL EqK>\x-k,k(Z ,(Ԅ!~*Wp_7 jC{Gv]^l#ї5zkubT2F ,GN՞vpuD1TJ'G0.%aZT&J cu άCd^|lM͛A6~JrC1nZ2|MgnyaFqczXJUG5eS2 &Q4{;鷠1Xk2NmsrGbċ {ҁLxDt k+,u98˛6E|˻tK "$j>!$uߵt3)S 5tq|k}'GHR{X }Ƭtk{gFJ9[:ҙm0 :K[G\+2%df+!?j'䆆 m(bf_oX[<,l^9u,ɘ\狦ᄪ^MW WVY8ѻbSv!|-ҜDD7-(h x˴C+$ktQ X*9!;2פ7Ey_0OZ * ;-6 G0D^;qLgPq *H[=0;‡.bXáIzcN0J{4me3Jo;l+A ,IrrЖC'0́7OFFM"mӗ;`n?{i0|U/y!<.3ӣ\ݨKGTK`##*T A@Yp)!|W9jjRd;J_Z(\z *4( ~cYlAݐ4BWA[.hڳgEi pUAT:#Fu -5ZG}͕)U(nNP`W}F]jz3"iiNFbRM [!wpGN^afAs&0˱R)kBz5}ހ$8 sp8K_c 63_]azz[ޯ@`ΛlAx5% {qPvܘdA"Xw::{_u=lD,2hIh:ZW弽b1CS^Ǚ؀b˨{$+ mH@1Om n/ߺcsdSϿٳiö$| s{p_" lVXBMN Td~g..sEoگ,}9(.{H6[iD[O3MLVO/(נ&)=ˋB%MŢvo?kNYU"$P M\x"Ax#  e,AѼfH@Ь})RஔBe2Irˇ>HʺxX]E#`RrlFfrbىY]S LRARmX %+65AufIWӓ?-F3COxe6ѿˌxj QUʚ}yA* P,=M'mNY(RzLs~FZ P]g7b 6{3G, PzqLzټ P%iSz=I86Ɠj;@lvTD4|W%#5*Cu Ii 27i;5" xfw?!$Hѫ{X; Jx}q|`bx36CB.))oZH˹Pq!᫴3+OYgTܾ[~sWӒk|%.{y˸J 0}̔Vʏk>h^0? KX&J8E5 wZxe]yXmFB [*n 7fxDgZļöFqه&mb+k&pUvJ؜% }5qjb64SBDFcvU4:=MjK+?G?ǏHyVO `c㪌N#|'ZyyjHA8:Ӿ '^l<,H1p wDRk./-LCt?YV9c6.>Pe вaA?wFD~ׂ>2]nGҲ[Ћ]kXiWbW i[bSnj`-\iSL9w=R{LqQ-5m wumébd^ r 2B`t]9_,l7_{̀*JEKy:4 2!Հ͑:BOTNM×=%$$?KUwW/`5{ӏ$0`b9p}H\eOn޿a=-BBw2g0n”kC!pLr $۞/uƴz;(ee `@rR!a[Ws:,QKP鲙뭰/_ (hr!\t 5aD:Mosi&Ѷ'a\FX3ٍ~H%H>Mz-Bk̋)hm y"xٯnSRqBN4)w'"QQ\q-Sܬ>G2&d5C 1WbSz |]\ZUO6^W=PLKQ#p\;ǃ3zE=܎©6U,gyDKKZ;Nas ׹9<)f\ F֊02痓vXw@,pOi&ՙR~s|H)p 7M/X&7k3wfPe `*{! OKc(zZM?N qɹ-K6;T;Eqx:> +sRIm a;Xk8Js|n*'cSRq7/Xᗣu5"P.pĺ`c$3,l]7dރd BZQ,۽a5k H&-J比>ށ 7Sw35 ,&nH?Dzɼ%*fjutd̩_*YVHWЀB҃҄(\:J(*ƈKL(Eֿs>fRWA *g.Aq&jTR 6Gت#ވ5V ?]ikj XX&A==`ĸ!-°WRSH(B3Cyj`m#ל; pQ^vӡ-V<1Au8vo&\<5\QD4*殞 Ɵks"|-hjo8Cxw D"[<=<+V<֘PQ-bG+lïgϩSӿZ-jVso?Sg'\Gخ*U t?Tl2ƾ@-e1rɶfkE[\g,'vh6x?{՞/: 7uh9gE֘:dW V8c:±*٫PD!K6(_I~'-z1v#|Ʃ*HB' xÌBe;}:%>;ĊykꜝJ` O Jҕ@ҋzGW ʮUɳ*dBiK3{좌85C/WG2C[ &!|[5c!ڟ9c؞=j9r>'IyYs򶲖gKQNZwk' ڊOm/'hU)l+_9Zf|ZQc ? }h/ ~ .,rI3LO x,* ޑ zlh.Ֆi%`p֒56*AS 6(k8z-*@!Ø{ ڜ"Q)/@&hzdB{;gpXi{4~oIP3 '(j[W{lk$l\8{BOuEBDjrԅ4'2 n| |7_vK֑FW`BNԤ!ڵ(h3ll6_Y"JݍĢ&vm>hN4-X((g޲.yca\`eET$Y@7H9*J fĂ*y_azؑomoK?jɸB>`7dӜ"KRl?K+x'ҫt4S V\Eha֑  If؛g<`;y[*JȱSno5ꈛ&i0o39AKcks)`Pd1>: J% npk?^/z6>I\V~*%pCif߉gs+' !f;ߵhLaaزM*O$1/.*j04 ֶLIzW)TeE)Rw-7$[t#o\ZحU`u[ˋs-wdj8KP"T\C0)2m2fF#^*h3a}xչ]6b3\. fFL>ۚ:pZw[_"\,CXϹWi ԉO$tޠFwr狈f-&}CeS ")\$Rcf$s8+ƆIj_/7ErL&,jGX*raRcO#j1Q _6qU6cZ xM5Jl" (p͍!d(NImYIۊ݂[3":m@q!!X2͊G !sQG`ɑb:0%+>'0+~3Vrieq\qu;͸1lND^gFe=w!\X;.sr:}>|Wyؾp.ʠѮã^aά&}0!2- j=$V·m w1m"359>E,FOjK?Aso{5XkBR5W(t1V-"zjkBc ֲ[VG. \x溘4*d96 fYpACt^2})(ӈy4389aըy.~}O)%KߞX㉯-"Ϧ(E?mtXf&k2w;77j5=v*OL,CL ѳ nRl T62M=TCZCպal>Gal^{~OX{>9q&HWIk9!a7 ʼ=T'&@M<=<+SF M?ԷR_= |+4Qv{GP70!^w?e0 , Ԫ2ٴEW)?o .>Pc\?<;X?p:JTϧcHQ]]b>ϕTNRXC fq4x:jKGhTەh"12 b\\(lf-!$jwLj"H`/Q,*MD?d|tn֗"4")<&߃~4~km~EQpPhӐl]xVi vv0iJwuU?\zñqik[;UIY 9_8ّNb]>ܗĝO'[,_2Ry`΋o Pm'lh=sw#Ն&k'~\8w _J+OA݀L"?gD!0]fwz%ZLV>:J5;-6lQ&b̝N9cYhBD}B~R.H;K<$4yfN; ^ֱŒ}BɓBv8 2o ?aӫ{ew*0o6*Q潐8erp2QxW0M3nOh0S°ʋ~ (uگ&MˌiN tEoZ}q ң:[S{V ҧ"D jA"I< ^WbT:cI`^Q8O_TWWzNt [ٞI6\&Lî-Qh 5vZ>sEsTҋ*!LQWAcE/t>1NdGCtqz^t_ tH擎_MPi~Y cA-tF;N?W =Fr\C(bϙ@-%W˾wijG5C4gѴٍI|3Vdu@ +Ԭ\4#: $&b:ک qXitH/n`sJ7n: -1Wھhu%Pv {3a\&Xb+QzxoPtR.Rh E)ɇ:DRn˼_2EE}\u[-{QFj]!$S l F<{El6wu3@RSV;{(`#Aev}.u 4ĩa `& 1w9gt܅3}`Y扇(<WP&ZZYiL*&=OK4+dP6_ǿ2oI!RNS@s#a<~ q;)`&L73 rƥ +r8 4d1$,(?w3TNnJ>y%B^p>k .oa7_{rSPGE0V0u`BN%!riV@+zjA/znr-Kuq87 = U ?QyO=rfcxFaĐ&rsJ$T>᝼UKsemZ u`,=jT?tcu-@ީRݖru2k,lጆ@ӤX~0W[T:ha+Bu%}49i 0+]b,j0^mIuvTLej`Y2$gERԐd#<62=瞸j!: w_Ф<2ե|ă3`/DCGIg?De/b"U5:x4 +AN(T:z7ms8Hؿ]*%vX֕RaAz6PvۍŹ:I׆57ȺU>G)f6z!x~:X37/٣ ZBo# 7KMPH }RhɠTmK1c/- c(9k59(!0|< '-eg7Ԍ` =HfpUo0 MC#NW?(TIBaa$hGՈ ͷWĵno]sG[`ATh'}&NjW#(, 3xA)4ja`<]/Fw"  .B؁<$ښ Q;7nć5ܴB|ӟ)j>:"؈\}kq]|?b*YzJ8c I`0&n/zxZg8 l2m> W8pJP,*E 1T" IE% &J* ,-d{[ꜰC@/^*q*V([!4WsYGٙ 1g)4ZS\ڹj_fԌI% ,"ez#*`ǁ&}z8/fK|+sց>>J#c-ES̃ѭ'iTrٴC43@@?,"FI^V̲0 A˼Ջ[Cy[RLaoޝ̩j$ayywn]'s~m@sZr-XEN [QMgѳ\!QjK y3\y` X'^yh]Bq"=iq4רzd|)ѓjMv+Fy[f!nMBba>Flv^F".QiϩP`eCݾ:fĐ3w`i+B#RiFʽs* ١ٸ@6#7]u9y۽;q8o@%1<ӼhR< ^_m8f3 DrkY#-I/;= MWpO9a<_gWF|X ,~!C KT̏Yf *v~8#жhSw/6yhk~sH)|ﶸV 9Py.Wݞ[,gn",]p%%FR!7mZRNl{ nvƬeM? '6Ug5ۛQsBMJ⺮ܣ &d( U3eв[p>j6+i6>]HBe'FVH6& M6zozW2_Y圔j]ȴ _Idwc5?(aXۓs΢ Ybt)ڝ4 jY;`ȵ S|(8[ciU0;=QD݊]O7Jmuc(?4eXE.ڋ;9#=zdguJ?m]\NeSS<[?hb`oב'7wK ֐R6c!mWPAspqyot+di F;Řn5zNm&kmyw[ЯU{SoNSulR宱蹃fYxg܊$J)n,L=2?6(|9?=1o_VгWt|(ڻ\%S8rSl-tnL33DL v0A kzr?ҩX>3ьbmsU((P}ߤ`KsRe WVIwJ0NdF몞#+)\jd5 G:z6\}o 1b Oy֎8kf/.E3Kpb.b0  )/7h~AKb9^| 8nE 8@>kp1.=1[0gYϕ;>Y'I%G]&B?+EL:Ye.ׂ륷Ns17d5 *mQ5> &D*%b9~k},.$ij1w@| ԕ8V8k4J79x_ewo=X$S `pe `qwt존ؙV#Rӝ t-Ti昐t>d";ص~E(jb%q7Mz,xj?9;u3@ݙ/+#gh7]sWx[xTTETy2ߝmY_VAgoeL>3 y Dtpk52]]K/Ο йv֊=\ا e"-rEIkRئQh\#]Ɇu,^@n`)nXvAsԕxo9v|o矞2c8P8+riyf$z_2Ufgn߸n_&ؿ^h3>GKxYջŒk!&K?0 Ζm؇V5g5=j.MQogeՅ8jͳXg W >t|cjW g\z5² -\TdN`Еp--,dpWαxQiHp/%gĸ#q%ϻˡ]Z'\O uuU(z`%*,fE]-~.8 r[{3CBЩx;]L̇5T 4\&~OZ'ax =Қ>H isF((Ui=1s[ kԙ&%ߞs~5eꗽKNuILh0*@w@$]|EtᡋĞEG QN&{\#[;A~j mo>{^ޗ`]m?8f?=.3CF8Mu蝁=: CץoVctםrrbҿ\e 9N##K bPAS{?2&W#Q`/USO!YMOYܤ<-M IL3z4k#@{++RP٩HeKGmG' :cTrp:V/'KjNj5%HCbфted?7~܆F& ]_I*g `ZTa7E\܆QRcvlM&;1s/mI)swtL;6{ղ;ӏWt*.ut(~Ή͑ėB w՜2E|׊ BDYA0L;Hwo'  P #)Pz Z1? JKJv_fͅc$`K~S.?Jl̠$N_e١}z)]r+@%}K7P߿9l>Xٟ/94ړT11_ 5eĠ if٠i6XA4*ؑ4]r\Kkv:AQ|Č(S:e2{`EGQa[N& sK8Ԁ΢@_lh |*ahtP5OK6=5ɬI<<3]]`Q)v{`?f=lg UˎѸ2z pWI|_rW<"s[d82d 7Rf$H.мS2@qL1a7VC XJf+(jk|GR_ָZu'/ZT=$um."{b7 O >ԭ@RpL?@'xj8Tu7ʅ02:䏐<Ǵ7_hTÎt6rݑ%-: ̵W7no ?1t=x kߵ4[m(Nvg=+8_BQ$Tyf"h')ss :;)!4S4'lM |iԑܸ.jUfFЉWX*\L ?v@QA=Hom}: (%f379RTs۰`ÁC'H mJ:s'Z/hҊZZ)p-'o3DDXB]?SVk/anݳP wݪL.6:lJ\a7L::| [kD\d Xx: BPa6_\޲Q~M L:(S D|^ՑH^Ud11x3t,Bd'`bOP[3?~&wfJf8TFc{@[B3m#׃5yص*j((j,"4pL+oAe\*Vh@Ή: ֜^a +[K )3;Nuv^{Ou |߼jWg\z&\*` in8kNŖ]j+YSRar1Wofj^uJ { mb< R!SQ.n*J8⁩* )7P69PDvyP6K ۀʋtH&Ggkk-$aA4#Ȳ݀2͇hTsߊD_r.x:o&}R]&xSX]< @\{#NdNS5ߖNz΅GV|ksα]=%aE2]қoŁݤ}5t-AĻL{kC*iufӀ<)AˮߍcCc{V8*3'cRZ Op8(Hux' | AYeE ɐԩ Vne,9VYޔm{kG s Y˨pH!(j_xS,Ў~b}ߤ~i+B}T`/uf}xfn'm!(PO%JAĝ|9/(j~*biH/0E1hDTJG7zrx,~OJ1G,-ejILgRlN`"x*eekbc$5M7 ϔOk1l-K _Y ÔAK ߨyb ǘ.Gd ( 鹲TQ\޲-Azwk㩊Xߜ!7($.V;B6l;yT uHK*|'2čBgE u`Db7IrmHGM첽xb9ö!;[gKjBmR 3i`! AM*@룇T_Fk jؖMjq;Vlϵb}qH巼|ZQl?u#U,ž=Fԉww>6V=&W{6uW"Qtm8h7~dO>LH4O{H(vb5Lӥ +N^ut7* ZF ^iڧNW2<`>׺!i\UID0bB].nv@x_ڀ[aӾfoi3s1hV0s̋Tw}5i߷AI,t4^t)bc;愸ԅPCrJS2f [^$ɠ7) NULboM,Lw1nL{2Qy9о2y⥒Y'FNhtaXl@POW}ģ\qRc!#L|u 9Dsv2>Z,[O#UX)^)ݻ $Mƽh}OFѐAS`WY @=)}Ax.5Hl;ʨ9PrG9qVͪІCYtk'l,lښV]3>:=Tc+^j\ I r:]+7}g3'o~5[ Ilh;nPɶ85ݳwCˉUzP2]f!ne. gNaWk}:K@-|QǤRI4\D-JBXiOMa]ptJjv B#k%fg8XOǁJD\E;0_Nt&GPQKR1NocοJɶ ʬpLl>(`u' M`-[oy{mbp㞫9{hKxdRf4ITnU .FLS:l5I:H#LsBWAK:Ř蠺y.PҠ@Kr 7`k&e_$J@]:pv?nNyB4?|wLYU,K1^qHO 1RW^{ mgp5J5 *fIlY}{`$icpo|di}ܵɋk޷(0F'o/Q&QӃ0c5DGހWʼnM%ZՂʪLg7${>^+1 ܻT„~oGS&$jxzk煶5)`aG:k l4K k&Q{! :Gc0Yظ?vi5W_*d4*pF:"r !Kq5ݪ0F$EMot- ̚(#|@D'7-U˝/uzBgqn{FRɿckFZlxZ9 d"'+LyHgpV*Ӈ|)QvxVA< lbe0a=\KP8}Lͪ?uPR/_DDZpLw-/\JsȻ?#/<'֗˔1۹tR + 1=^ñK2çj4J=L2̮#Ќè]c^qżSij D0Upn{IsH,lgi i&Qd9]syvMVﺫXJ[u W_|i-/IVs uu9Ȣ^%^7 m}tdq/Ap0/q`bx2bͻ铋-1W<~)k%bwſZl2q3R?phN7W|$h}h@ظ"⻻N)s$l[g8ɇM|f=@DHԊJϳDhBGj \" i]/7&aW}Lbdž DM^]$₫O܋V-Or$sX p3Wa4w3۬!|f)T49Byn~X@yi GT T)r(]56F՚E5KnoM=1q]au*R6G>J/{o'KqI5TljŤ[z07y` y6fDjL+^UDqbXW.E׾)UBvr Vscٌv"^`?6-;< ,GcT0C|2e:vRP\qCHa7a\pnrNߟ'sl>etLR@Y/t"9y S+-}<BTٚ.ū 5oY`4Ե%CBDoV~[yʿnha)Z̳䌌DDSX/Nb)~*&to Ǿy@" (|Rӯp:U^vst; C<O0 D1;7]ir XK2bh6(ɋMera{F@XFRo3$칉V%;""ʬNpJi?B EU>^%{DغĀ宎/6鴁d@N*^r~P_p=x٬{9YƜ\OQǬuΤ`R,HyDxk . =8r@^lsBgyZV`%M­2)(_nǩaP7-}RR^rFH-Я1vzTqIߝoBcPn+MUџo e$D"oѠ{mOBmSy`wX}jSGye{]NrٱM ! ApЅ2ԝb#Y (3?VS=! *Q6Y)γ'ǯˊ &p˧"Awx&[uBE"Q-]X. DBCC/ r749V.x"36RQ_qg/t^л R>WeC8 d`E8ngXY|,HD:Q̉Qpuψz*D5'_ R >aZӧ 4l󳙮d^sц"ۯK\:Ӑ2z (@$$O qoj D>_Xx#(ʌa&.ES}%RjԒ!d,e r,7D5{ =R`"&|}-tg&'X"Ϙ,\Xܮ;vʎ-=bRrWu@'_ԙ( +a0dW <)ĞDݙQ5ӗ'ԻJtE#W0c zuKoK1 *])^Bd3r%8}6+L8F^qetS> qa[;|K>`?+QZ|`c5|65eDbB%ZgAmW \Ov0qN;)KqmHLhju&X V- }˸Bq7No%Cu Bxidp(uyG?])+V5'y[9bapu~^U&S\VwpG\ 'jP!oHhme! lV5;/#P脈{J鰖4ER 'klUKQNxI_G 9C@=VK>.XСBFv q/&0k_[*1ZF/lpn`0(]w0aZh0mJ\[")*KT3/WOZa搒PJ 4Ds{+_p/b}R-w+Awfks**{x|pf!&"_DHXx❕Qid':w{b2{*A2Az5P~],u. O(DŽ\? j Jlp:!p'\h*†r.1cis+k X5r$`1Vb ;l_0m ̨DQ$V#8\c7 {]IFFkJCZG^@f$!c7YJLC;YӅK;Hvbb)ݛŒҽwfCx'ّ T;n+GbiyiJ$!"iX`3őDgq @45x1 yMds$"MKřHemA|c$D_8h[E ?GPwBx46soJJs<|M-{2]bW5xͰ8__`gea"DJxɸ8[`LO]>ȑv* U~!u`d1gSwZ&p Dg;A b0܎`S nf{qģV;̈́Aa&"WI-~;;+~+ Q9zI2|Enz-x܍( mCřP~@`79k@( vhpY[,g=}u`.I7 ,YlExScMcnǙ=􇆮W'f;MfY {Ε*}]5Ae9[ 4eAˑz}\}«Od'۸ʱ8mOg(Sp[:㔔aTOy`N&}( H`eOO^s 4!(1ޯ1;6h1uqr* jѮBN3EP.͔lB3y0eqE311>eOzfLGJn"nu4 dN#]Me{s`.?]m)0JYڥ0&|E5h͛(Tn&j i7 QJ}b M}/{锺a4ddmZkyEN5x NHԈZ$ZBX* Z +)K, `(=!3a:달w-{ʘ>KfX+5R2X+(T|4C-ۥJQE-A(t`" wa]ˤWopNƓؔ 4<̇X,|r:bdtVXGA爻}sWˎ>5d;˧<~zn*qEˆe"=ano? @F WXw MK(Wm-TP sZ=zgDt:iRzCA eL U蓤v sųm^&G[zBFUzT'P s%BgÞE=M>Ď>\lS\$kObCgDkRX=2D=6sMϖ`%M  MݐD@>(/B/hT kOD~'ƀX ~^0?C/7a $wUb%@ط  0G$e!Fx-[D)kz,$Cv_Цq) YMMqxB8×}#\+{avJB=O<e?ʔ^\wq,cu7`VߓK8oU((s|`~{ZmPӥqxMBSyi"]rU);pb΁tI/ Dl ҆o_:sڨ `B_,*%\wc >es)(S gzv{jfL V0,0(5/,.N㻕c_LtzG?%x^LZX,lJ5.X ZﮃBp/9ѻR4M֠`Iu1M5yX|bJ"j6 c, 5dG_xI1³0a3~HLq+'q%lX(#6Lg$)򀞀c>?V7(5˺`TP%'_]C=,CZߢ̗ pI%4P.`){b)ZwU.wV,<.NuPo-^, &@9/SQiy *rT*Lm= I ܏8.6ͽ]x:%>hh`gL8"NHf,݇dUeik =&1j`Tl.c 4 Z?GLຑ=ZvIVa,7E!b}OX+ƙ=AhIhiJ1=;0co9;:Pf-=z~e\aO3=KL7o;4}wT^֔~G˺:(btȥ }LJ3?K&3I~rBҘ~La9PLŹ}1luYPmP *{n0m[v䧢{)g"?s5)R.X;}ڋݠEa[o\>Ƌԍ{[p -toSЧ *P}"8\.Ae!$<1RTkQ!Մ;cJ=>} ~>Go`//`!Ӿ @E,x!cЎfq&"O UJJ_3~j+7{$ bgf r`G^5}`+\T_p^}:ۯ%ܸC/j?+J߭.^)pz6dg]͞ k&dKeMIbK`Ar0A`B|} jq$pg.s ݕ{b.|#ֹ?,W ڬ%Z NVg0RLkn u/l҈}̪j J}RѺv5+!;TXjPguS} DG_F4[ٯ x]fDz- -=9klFct 8E/cd )4Cݿy= e[ hTHFLP#N.Gpfz.}aeVPV2n28r *IφZ[۷MxqFUl1ͅVWgSRԋ(Mț A3fgԿ6.d[tvsol?K82$C2hwg6LA <7Eܫ.QPv n xP."{VN8tA΃ck:lfs͜2is*!u5?d͢96[Zd*CP;H\W!1K^KC/n,c@G3nzȏ!8(Cp>IvQ[D (cPJ۟Bex|KƠ't4Gl$MmÂq:-x^AqWZu 9,AL&DQڐVՋVsךXdgXERsI( ȃ"5Hmu'iݹ)nA fS>4bø㥌JsͨOX|SƛV2( 0KAoUU4u=*N<=Юx6SZ<*mxy㿪򌡴c$G;j8nL&H/ GPg~x@ԛ?LGך#)J^w#3_>ӛ,>'֖&g?1nUz1 V=58K0ϓZu^z>A dْ8g,Z5$*=N:`Z2`m9H=h|Js qTQ86+ 3e K62'𜤀2 L>3=\sMi"Q#ٍ7e}&+#)'Z5i-Uc*:XAqAZkOi`1"& ^L/wtƅ{Υ.f帖"W11rbjOGC~4 >@akm'YD 9!Y$xKiZn cSz4Q^vְD76uyZv0ӎ?b_!cD?k p-~ S`]ek8_[@Tnl9YL~͝)b=ApӖ >ȷXoUo+;&OGJ6 @e\q!eɐbMH^lʧȅt8ls*7ڧG{BpC5*OA-ƈčI= ەOR׿.i`x&Zl. rN(vO34TP'?9CISiB8> M*X>U"7Țľ&r[bn訢NF$(vkC5VU3e&'CnVSI9PIķ^tgiGȬxjF(l\n{Oq}SuT9T(6?}۬O(!Z.Qx;KDc{[ ZQY < ǰS^\NA-=fGBO Z'"fM]9HB#B6,KJJZr_W1nz0Rx[ /~{q>=$7Ey3$Vd­PnN[Lf ᶝa:W\n,xk43Lh1ۮWjBBx-؁B4/#YYLCSf5 $ Bi\# 2DoIJޕD!77sWsƕ v ?PqO{J0},Ebnp-ʓZsC_;t>QB=h t?9IE7hF9Cߌfp eH&}Cz`Ro&ksQ8gՙ% }HJȠD>Ț]}2{`K{䵑vnNGIG-IqT%ASgOE.rZhsi 0ЫzW BLͨ`&#^)pN79C$M |iLUgYMq&$*U1Yz8ujvث`$ ]'P<" W`Ipq3lJB4fwv7 fJNƥ`1&$ 6$ 3Rc˻̻ .G80 {Lm1Kb aG Qi Ff`VctAw(5S٬49:,^舺G~Ҳ}aK`\ysQ?ɵ R'@ܠ ptGAQ9eS騶ZCms 5}@cnF,4@%'iA Rn?#P#eDipl T`ю֑ʖBP=BH'W{.蠇,@jQi@i|4AʋB+LJ MH.n⪍"{JcפUbb | ~먴8Xո>SWdf^F[*+H9Is-??U 7̴h)=ʣ%T6`@fl LO6vAb|NBxlCp"}OP*s=<8Sz.b0~` U:P)@'ͳ+K\fʔ|x 7NgBWj0T`F(rW&v,/ǍS49зՅOxLUYB%:6w7+ݧ((5%0%xACR ^u#7hn8 9x5G<*}yqҟ\y3#0ImZߌ1!G $yQwH@Rbz-hPB\zVuji+CP%g vU?Mqu kG͞6yd^L8xeK|hqvUX^UP9ςO ؉LI>t`Ѭ i3ᓋ2^wFk_[j*оٕA NXau<0I\ 0zberX khk.{WҥLzc)>nX#CBd4?Sn\~ A.n08(T#f߁PzN.S9E72!uPXHrGW@3ͺSU2"$a>vI")4FСlҷ=u炮!N:{D۽O/K(i@?`WKWl.\uK«0V*x_,eo1{ r$0TàsnώuzBIy0 r+b3rW;`"__L:dٿ.s,R[(pقȗ؛qP*ɺs4mu5͡_=F>UR>׹{J(cCN_t@ F3-.C9e81[bmTѿAԟۙsPb Z U߫o N8(dTD&{w$r8T(&%#/Irh 땍a!czOf 9k͟S}YeoNo7nu?e%G9 M.,&Fkx!%htܰ @ȗ,xq$~Gt<γ=j\I+h828Ү'uCZDg/zS-gwU'ļ1*M4řgmn(BX\c/#>QsK8j]\i2X8/Vc bS~c6D&koq_Nmm#sjG]%AJp=h:=D?0]>phʾ? we!%9g`!I"G(|܆ z()óz)\#!%c(98Z؁$I |*"<^bAm8)¡E~@|_E8?loxpcu~,t$iYy!S*ɛlJ{O&Y9ﴜ LOԿvIE`))ͬa6^mDݕA>nQqV)ጢD&s=Us1tߔEeݬqa* 8IoG9 B(ɽ)f/NW`˪ZǴBK$-ʛZ`vo}b/<]U`O[/m;@T ƧΏG(]CQ$,8o)xITۼ 1vC ^Ks@&?x_z6> 2?~ :[T,ƽ KHJEeބ딗5U^L}lCg?X+Ԇ>䛙tyO=SHvIe l=#Vڏ%šˉ{..US^&AAMwSGg=5!-E Lrp9LKvج ,NmȩF~$6.q+E@*@:/[ FO'h+،Ϳ;WemV\)އqO,K:_ԪˬZuEkZ-@ń3Z%SS tu5j]val%DF8T+T% CDެ*7h sdh0&gs ȊjXw׳wk;`.~|N6Hvr!B{ uvtȗ*8oQlh( >hx)~W 4VHX xԁ^\+:MϘ494OIFr^!mJH8\Yjt_%_#dAaqOtu9tOcc6JZaJaY7d"z4 }O.#H(+az> skSv&SJR8X;MSJvv53J™/JWݼcܨ:AFKC<<*h+ E{yT؆YlB&O׻7 #H.E$?w=lZsp4%(~ ""YhJJΫ+4ܕ$K*.*vla.[q#] Q5a~owi13'un?1~OuX!oǭ>oM _*hN]pOljEW團c֊sҕ,j_zt[sS퍦]C MgQe[àP܈&HH!8JJϩ_{"jnQ4Is1RaO\%=RSW,#Vq\,<;ogOntDn!;}yLϿH>˟]" ׭#őOl5Y祖mx}j,\-D*Jāi`fx5 PS6ER4Ncx|V RC0PMqůHqCZ+7#Ђ^nrH TboCf),OJgͱ4:0ኰQƕ+]k. 2kxM8l.uZ=HRM^гW'WYxo/&.̕_?N?fuw{A@o[;˘șZuB@ q ౲3\ Eh ?mE|)9IRhU)c(9~4(V5<ɼZYS3 V,6TM`@Y9Nն,i1Okc>H>b#C2X# i^:*Dl2$rz ye0^d ǧչI߱3q`B:6xkSa$XXQBKMu+\ʪdz2Ŋ2 Y{|UcGpxQC+n.'vnW9I$CHiH`+r HWݛf+uk]7l\f`ZiY֡ )xe1ڑaQkI:KSYl#'.RZA9LT>-V2eg3ur$ +%)p0tl`XW4۴_Mv`vT JM_`q3jmE }v- `ޔ,5w>?[]dkӡR!B@]͖h%hú 2. IM]ڼǙ H3qCE//);q>t6V~x\B}QT-MI9ؙܻ\dsL"QUb^aj1E<%wsSE7+G=LO_p뛏şLyf/'Mbn䦼U,xh>73\eѓ`QU9N9TBV ig.w!SiOThNhbss,1rL=zQCGO݈H:)~ ׅ=nnd@7LmVaSr{ZaBKu˘۰59(] w<ϺF59f/wB~|%yJ]w6@ HE}Pqǣt4 (0e DLбRgq;-4W*6]+KcD[_てwjXZN43ni.nՌGN$ۻG֦*pI.cP=*Gi#h_۞J+bX^V8X#.m.Ф) -emVaN}x'3G-- ;V]U@ZTʜPnwԒo,J,NN[&t*cy V^o ,`v~Q;K;+s m~2t -0%A1. 38D To6quK{~| XP4}[^[|}5i44?m!L~0c ^2PoݼqC0l.Xd"E$W:@:LAYdՠvH Z^L7jrVY*:I:a QH|q2gtQ8>bنR;C/bZuA<貘Á_W!A_q~̸֦i*3M2wc³^6HOk'$~+N$M9$hr "+ $sdwABpC[ D!΍\I@{xDDMPݙhgtHCDJZީ\5*ZTs;񔮋cޚ)VÌӱl59e?x8Ec1 m<>sUcѝ–61_:[bl 1}-?Iyzo֘@9"cRZVpǵ[ax2JQ +lԾ4/A~oϕ\R "T'&D *_RO-*jZ*FYZq/>JmMY\Nґ-UF& )]kE g͈ne?D{þ o4IC]8^ =$ٟ"5[dG-Dc\l "9>'3DC 7Qo]yZI`SܲW% =qx;c(jS7r/"PՒWb~TkpN&g'pbXQk*:?)ȳ( El-=~s]6O vBX?Y kL$zS'kyw!;]W,&[@c* dIH)bgeF<:ؑYje9Se‘0.i@9E>54v<-<#=zDMǝ}w`qغ8GwWCcu[H2)kQ3ϬW]:P*ZK;ul߽徧Zr`e  ~],.|W'XCTGb47n(+I 1 ?2{ 3LZfgZz{#cڅqroDWCDA(m!-/u;iN'A%-j((,S#KGZoBk X3sqS?Q9qŵ8,{4\]ˣS!$[b4M,%Zk#Q8ǹ*'f@EdNa;aUjq=$-KnL8/mi.{ȶI ([ qB-6&/bI7eR+j֟.-~TQtc`}$R[b:;zD%@ŽqH*g'40&N g3ΨRN cfkxջh޳$atog3*<.JeZ?kۣe0u<_s35/z7 `* %u䖄s.s5ۏ(zac6`AR[bΎһ?8I ^bܩV/,ץ&2A$xA5uV= ʊI8bR?ƍm<ŕ6uf # 8c{4N9EG9T~:FFa:Ӆ=(tE +#K肭t@gxe^ynY絁uk5pd%$*"+Rap ij-.ec^(˃NQ)^6|csMcb'l|jTK!: yhc*c$H߁kN3'x-Oځ(؀5i+esӻ6ݎ0wv- Ag (w(|B2b"XB.#ug\r%3 v>6dBYB&`췒 G.NB@p. [|[c͘}"gҀ^p9FEnkqYmL?eMeg_G+P' nh.j4SROu17k"Z-GihĈ1>,#g vyG R}d=[V,ri[w4zZ+ P{quDX8T$&{C@kY|zl,$=P'r ,,T`D+f͵{Q ؍4 VuӬ] D=1.?;n3QP#Ɩh]NYyŒ6QvLM)MX^u:9htz]J 'Ӥ0~߈f[0cȘu&uBqY Q4LUPdq?@W C+l/|wMhP@۱>=C儎^PB_WĄ~A^؈x*yJ## 2M\J[W&_J-/C&1 ~ 4*&]A!/G5S vt!+HgsOֱ${ :jx~03b* :Ulԙ=<2X{Ti0ϝFCАqۛzvQNo+' a ExS㲳0HwA>Պ>ڝu/v8mEl԰/Jq|ljBtbyZ?ш sƪ'x!mUH Ϊ>Oe"dTYz^a"OjWҳ$ t!Y3naةyrCa9Tt!:02 'Xz_E} 6(S8ʍ1 _&%fWnmqXEsQ#-ؤg֓n0(2ky/I o@=?&}."ؾv_;uG~\ؖtAp֫Egbie`u,c% zZ)Dkzi߉Cc7!b'Z UU_RVkuqJhrO1Vf-GK)yX֚U;VdDŽXrb>be\4[֢LϮ.lSQ-9h/R\#F**7r@vSit杯n-Yq6X7fӰտlNc毞 ,ʓB jak"3%=3eO<F 6" !0:eC9XWb;߷$#}G%j, ;_Fῆ~{ .|U6o{Ep^VȍXahR[L`-bDvtDYfݚ$ԁ欥kmy6+-hgĈ<3Q5E<˜oۍe^q L*ݫ'KfC0P1)k_g>b3 xnЂeXdJF&`=1#jX3>箵A 5 \ >8r(bW}'K/IXI/DUO7dTOMRW *tLZR<ɡ<)ى eUØ6'2tELg'HhsLOƇ N2[pRRGH6/~(FO@ }ēұK4I.7*4;+q`LqwhGxphwVkq۠}1.8+uy4۴ѯZS[9-}H_hIE- _`J~6z-&t/[5klXj=0ݕ u/]iI񱤲(*sF;D=}e;,@!bՠM &F/3|mF_҈ĝ0#|GI-=*sFβ rܶ$4q<G/ n⼃j/׀8ݘ4v&V`rʚz#C'i5FL֘/HSQ+xԇ#'YIkAE( gyp[CWf2J@iL Dk ip +(Hqߠ{ͶzYgdn4} )g2ϣysMgӶ\Wl.X_>}ZeՀUԌ`g}g瑛 ABЂF?!1~+Ӧ-K"υjH1u%כ;_Aε>ًз b/ob^hx_"HM:w 48(yut9" ;Xf./iIsT>=%IiBOb,~WIhx@tB~kMx4Ÿ2+o7 !lL(+UIN 5E(/jGgZ8~s#:CW<{ ;$:o[!M퀲6zE6M8[ot?t[ ڥ v|\nF-UHBI8B4ܕ)hIk̺$Aַ^ O6- joA}9L||!C;yb&X[4DZ.w?%Hf3|͍Ik7GF_k𸚰W_~3+ '<Дv165p1{wI1T'9t>\Bh(cό Xɓ_1gRy)1h8So𹽵4l`gnɄӞb\L>+Fkw\Ua@S) G=c+cޝ`)j*8f+q݃䫨`iNӺܭs7,q/آر(=\?0!!$a- `S;ù!o=;*P懃f\2j5K$Ǐy6}YoUb!{ig0g7 k+\Rw}FzeȻgj_+=upϥ4+:ԡ!290qei=l "6MsTp8njx'CƦv<"7C==(4 @ sva\Dtd_luGs? ?Ղc=ul.uz‹Tūp<&D,MHRGĉӢCSpz{)DxZ  Q͆|!a+1RI|8 גu6|uOޅ><HĿj ]@D+Ks01oqfTyZIeSh3$ @(Ά!)'{±P؜[AtI]7D`{3,D^CU%UiQ|$̬;'D˴?s[%Zrygo^o:Z\k5[Ւ*:XYoXN>28.e~%1 Q淳?0;a좒y%aZaXT!1Sqk]>Oڣ%\ZxvQ MnLĺOj "S's!]وxͬie&{U2ErmCRǞڲAg5ģ^q[SN{!rYmd~ڑO I9_-nN :)A2AG MQG׻-9ˮ tƌMr4]NJGj,ou?:&'cw77H*|#s]'ϾoTA{fp> xEd3Loa*ew|;Tq_)|2O%cW vd&_K6\>rm8yOeXPD.h")CQ<DzBTo5`xxd*3g5!C{r%lJp"SWl>Yz ݺ[/aNWK;J =φ+hMO'^tN mpZ$rc;06)[WHD5X@Ibn'_54)~NLy}pF6b%δ ^m2BRO,.o #x\R Y Twо$d Yp/y:闄H[f0ê1Ktmz:u | ";bJ7׊p5YReΒvѺ"0\݀BVK TP-2Ci=@W$j<^:cL+BvE~VbUgCn"SGYY+T \vXv5>I"d5"]#o?~g[5^g QN (e.,K)`^/^ ȚzK^QrlQM/-Â{b ;bkFΚ5`y{j,s r#cf5 DZFwlfy̶5>9E.HSJ9rLdO`p9 Vޕ?ʫȆ GxNI/DHDZ|SԍLٺ%":KIdY*D2Nd֞ Wa҃{Dq^H*]h`O<y $W j(R:(Ge'Fyz'tcgkΆ`[A.F1$ թ. $}A~L)SzSȉ ?{@ 28n8l 2ɻj[)9v+s-ۙ&#@]/w$0}Psӝ Aɻg `FV-EDܶ9h >j%$ٌ(VD[IAtQ,E8T3HZ Neҡ|q E_Z3w` 1\Sj{n{FecU^tmZ"TJ]?Ld01ql).l*\;brϣ0 }( :pZ>lS T$`,'CI̧Sdx܊G~gé῟eJ $HZFٍX!" )]f|'oKVڑ^ J#(6JaSz7 E#։>ZJפT7M;HWSB~AL]YXO9@n[A0ܛΓ(k՚9.sNxحxIJvp>{"5Õ7a:aƘ.@W#.;$@D/;DP+fN[ISϞF,^?ڥ)3[%``ն59Ze)vb_,gs.4/27ovb4UӅHQh\Ve^Kika#]t'@xdybBxݣ(E7|Pv(){\z+&zpx=#/tqoI&_B*_CK!CY2Gd h JZ@eT'1jLA\}wr̋ 01K;:)`_e1뱌ΗYdX_hz Xصf_s6Z1P**7 w\VH*r6+54uhs>֏'~și^HHP[Z>"pGvښDVn?t;~ik;v?n8|hdIG26aHM;|#A8t"ೂ,Lf?cvKF"C%#/1 bDA"Xu@jW7ݥc0uMXQydAy&#2<'Uśs0i+` 0F&#祉Q/o)V>x''m T[ pptPO ''i5@rբ* "bszBkOP $l̕ZFvhe_I,cgDϫdVXGM {|/Q܊Ц_Qq> c7bfa'mp@5Q`, qUѻ 󿥖ubF|jfoػP'EgL=Kq xBIygdҮ8 [[ +M9/nd,TU) ]aZ9Q9o~O,?<GQ4DҶN*$o堽U`E6EH`Tb)%EZx8lw6׬?eBw IX4ľ~[wK|d /ٵ])fXntTISBuŲB, >ǥ{aA;REyȧ՟X{A(܎ 6s7DH|Ȣ_uyթayJ 1| ދd+1Jl>J7ߌW9Jٯɕ Rz PL1^:pbkI`1 bC1^@ ?c E8W._MJ(W-hKeoc{ry_w-Fۆ,Li duQ|VٮLƒ(8i)-WJ ""mF7u_`|<}&y#eRb890V'if 7hdw:v5q4W뎈ym ޠHbjaW`),V/EUG Jۀ 弍yG)gTTVR 2z~oHיH=5u=wG@w-"9Z,xU VA;hC7<x;HdYdS?s/ӧ@Ki [cmc{ X;YWԅaQMY_cE{bO9b[l)T2#nhNҒ:R2| HJ6kS_ y>p%&c@7˥@Ԡ``8ekV*EULbyq*H݀p%Shbz:b\6y[^\@{A8A.8~֐;eN|1DjeGh&sM E^!pqI"rhwx#c*DǗW.j hb֎{"$'|Mflcxco3/TfW#(\tW )e)4?]pʁQY'"\V7ӹ.kAu%Y6OU~|cd\{{(/%6ŮQ lufB]?̱4;UdI}h%>!@IM\(-[6GTұգ=^VbѪַ#LRP*6Y΀"#98X M[" Y?%P׏ =9ewҏZ}2ဳZV}?xFo$ u<԰Ӫ楃k%G<]*:ԉ"[QuuR:}n_+q4e^nZR䏝\ ;symR!Sgjm<8:Lı2S:dIcQqSfcgѢ,DޜQ_`tU'&ξ(2RG:!Wp^d4}Ѽ8F|Bm?R빰lwꕎ!&FҸYiq&z=wWTdF0uی{ӪI O0^֢CU>Рك{ܸJh'mww@f^ q?1'Z҄?wê„؏c! v7Ypf$_ա&ӹV-BJڈ=<" %cP(W"~R ~~;mO_%60Aul@Gt`9G1ٝ1칯4GJ0g.TB2HYHdB?\4;MI|FOvrb(J=ǣϸܳ01!"W~gïw0uM oTI~5j$:XNӎOxRGd6ֆtQ'xgz*Kً)ZW 4E̩ry 2X)6ѨI\ƽA[aWl{Ψr0>_c6Z&kj`d}LK ѩ=g*ݛ4x'@ ߖhuvim$K߉w~Z@~^Jf?_"  GfY m˻g0 vPفN> Sz#pbr:|* ޵5? V$Sl #}7/QTMX|5y]vG_J9 8v 4?pA_#rms&O Vf8f-B4-V؏-҄qd+[V9Q)5Axlȏ`Y">'|C~|M+ܷ|7G$&pDJt:S >KU`*Kj۰|g}r0@PC8;|)怷b zs*$:>~WN g k)[7\k @'xLl)L_b:Fk0DAr_E_}/UAoWBM;g8ͽ.[ t(|8=TcS0 ߒyW8X} .*PٴSrx?D;뗷m/?`'eoy_I~AVeen p]%rLȭ璧0l3lCLwȠ&H!Z纑_;v\ lT44-W=.42NRIt3un窮#N' "-LOx5+:;DKG]pSϪϯ R*y2з\CXuǑ /@iVّ+=j9i;Qо=FR0ڪ\M Fş1=bog?ng-)4`Hɻ+e* Xm}ZĮ!qgMبc/1uunfcĊ(np:25c"!0?jZYԇGADb$]@ Aby f?s TOM4ct J&{Ϲo1 Dj{qQ9Û6f7|x/M!XlNt,;W4yfO8/UpFm3[*>lyI< l<ߧ Ė͇·:uZ%7`+[&~Z\㡇naUGϹiH{-c8/?j͟( c*3󭮔Eh{ƉUovRp [p3!|`9eBRTȒД;32pO?UPMzetѬ9? I!i"GpGMHϐ6vG6>9ܦRd=d,n{N-zۘ g[63t: u|ӓu䵕7 $WMYnK>"Epp|pU`@"2Q"/oAsj.iIA 4t7h<՚QୢdM2mW}J`*@C7ޛz;sL&~LgW%Ș1BœeX75s2J5cޙϴq)y K?> k 2A4xff(IJ<\*SF|czUyB{av r!{MOJvˇSBpfk bo'\Q "'C"=uhLrvO! G=^P`9R+eMn#.aSNK+dΟXTE)f)LNu^;r[intbt䁆)M„əۼϱif|\9m7)n'&>VdAW,΅p~^-]XE}`N-ܕvy 2=gg3iq|Rn2{paGKj~G=J22Dx' },҇0?KGFo)PW} 5[84='-wI AM9f-࿉v}S\{jv&,wշپŎtPb3Ȓ#*sKNrra%]33.gfZ=|l*ꕕďu_e / l MنHJ l %>e 1FuN!14 S_7t7UKQWቓG !ArOA/ Um:\/.UJgc9Np"FT,Rzzvgj+!Uc^py\q~ZX^َ[^_GB]](`㵹rۡyVxFJz.N{"gξQ)Rx$ {Le(Rbk|I vty CPu2 }|'0Gh 2/nZC 2`V%G LAn8[{f\#OTbQdjdAY5o}ihPl~3?\[]cBe!$^'+SPlh`^Gج˱IGr߿ńD2h:4I-! HB:5Npv'F/CWz:\-q9O?*BF4ăoEpfޝ_GɘB43NK^{  w"m?]699A7Tyݾ6.hX^0?"+Z/B`*[y7g3+"D:ǑyKJE͞oXӀQ o!FUt{!\C*zq=.h0OgX;/DGA?PPs~{S% CVB84rm\ iabHr1^bU@Á%2:h9mL`yS@ ss'[W6z-1m! WT}qp *'uj{H]ǘ,iv(۔&9&6&dԓDž^>dM'9187"?{+YH=~ÖvokHx+XR\P+U)tB,ګT8djVi1Ը N3# B\F:H狼 a,+$r-D< gJ}Y\T' {&uhܓ x[N63Ki*E, pᷟ[4 ;ۑ{'NbTۻ,-0j8=ymPmmάnɛO6a=_'[8 `O%jgU,Z|gߞBi76MYn5/#7ܖ/Gc\i;]dy 8&$lna I8ݗ) *տcSVW"`WJ[3MLHF9Db^UVUrb*ZeNUȭVvQa WUAlV?u񝊽)+HU. ޓ#y/yRʠ'MflDt},MVނ+8A ^ E Ϣ64\Y\qyVNmo0Ln^LAt)܌'bZ'vzSk1wT /Wms^k }xZ/t/K`ҦFXHkk!)( RqL\cٌp.z~S5NVQB,X&g-&d2tf\pS 9yfycl`9yX{<4^6hˮ+-t,K^ IqQ_W:/@dMGړm U(xЌ!9[v`D^w4?L€k̷i22O Pbpa__QǕ.20!Kc&ᖞcҋA3qG*s&/ɪ~PwnWQh5\ʵVME' laA3hM::RdiҬ+$t-{L8cTW{z~[Op jA(T'a>^[vLyH8gB`Z7Ho &wŴGM6.H|N .766s,JV<ש U$ U샊aӌANo2L).o%!.KqR 9Bsa3vNbɫͧ->2&Β[C~Xv$q-{j'"?vu<ջz/ 4^Fo9׻ @zqԣgp|v&LHƨIX62`Jl#kLP/LqcGxPX[&} f0Busi}-l48V8* :~{vQ0EvΒ R4< ڕqPMEfro85tqr0HN^ae8tkM3EiQ`2Y:;PSGbSy&iHfڻQ:&(Nh'p%|?W.>BT@/V gmCXVT=ky[s.,28}~-X5ςJSd1"N}^IT6lH[Ý,ߝ-Fr#PJjTvgPޜ"#c~x+ɣ5/fBG ч3!*&+5J?O8 eSYCŮ2H LQau;)x7T7fv3>#Re@R1%}$!K{hkL݌zrp:Olpi^W51|4SI4tוyvEUsd@dEh㉩StCd> qP >HkZ՗W?6!h$!ťV.Qc,ut/iϘ? q7Y;!4βg .;}&.hQ@~[-EF\Ұ{UAC7#HVW<(Y|,PdˋTJ?Ц x <;s؉5z7 Xn6;Y|XNBvDjwH%ΗԼޣt-52p+ИQ9_^ԎCچ_ uq[Ay&٦RVI~Xu=8P9q>8 f/+R^N+c\R+]> &%UB;֢y˓ u jMyȞѷV7m/{| s4uᬷNQΊAh6$/Ax^Vft?| Ì:n k;YJp҆_\f_אr("ԃ^qvLGF/F+n- Gm3SSœR?z f4'=5X=)lL$MwXt@"\CۈW@WLTT!aZy;4Z m7ٛIf4ś,S$")A:vl}L+֠Q F&򐝅̢ tɝ^X]мH\ ,зjOФ;c*-k7(2d#Ъ)XkW3t=Ft"{#G$vsX!Z0)JfI8ז좕eVYx]BQaBr1#6]b~r۵)6!KOfDd7eX;Z@$w _lO;xzJR>Xլ8I*E !F\ @uިYaeO45HH;mԹunjL똤C_2PGb^ˏNeWM_=K̈́D@]Mnt*KgRs6ꖈq%*ڴ@;B|%Ŵ9< b7.u9%eV"GO1T-OKTTIA(ʹ"CB)|*Mf{߂@z6̹8MJ-Mj8Wܼf K_X+},݈lk*8 1$X3ݛH'&tYe_n.˞rGk.'YeJ=5ceđeDRnUI"u}I%\-gcj'%مØJ}ZLdhai!J)ȰV[4O *lvОO#Ьv3Խ ieQWgణ7X6?t]K[_'es#d,kQ$ᨄ6|`yhMp-󇻢a-SlL-1nl[A6*p_J{1\4(\( BIc19U#s=@{ ܂x[/h:9Xi֧mUH50B6DR;V,xEOxB5x{6XkN^ɴL8Zϙ6xvqWj*1IԸV˪{ VED}re!.9@Oj~yT8_;A=Ԫ<$Ti>Ŀ Rq7Ȳ& ݐДp7o4k]X8?"*_RNRv u+=n^ Z,m3Yc%hRzO4VI|3$_$*glfLX4ΩXb_\AU\dy3:%Kw$e|XR[aXBY<;Hh[Kl]-g8͠0})^N8 jC$Bx‡YBOA*y9!Hi DuD<čMɟ3֌x _0Mj“I*K;V*Gv=OiOb]㣕ع0kw iiaJy@d1rp\#|t_i坉Cވ#C Mugnp̞siÐmI54 罖Z*-舓ѓ.I*Y3Eӽ kf&C&:_qdRd7g;p7.4 *L7R!<&EKFf#lREC$ssbEdV`GsN}lߠHIT3W7 yY=4E{rbI9*TǦb?|`&DYr?60BC6uj1x٧*6r!~w!^ Gg#oh&Ϧ(Ph?R zi9 mQA[;"٦w=X97LSc?ܔ֋k3)+'_Z̹. \A; a!}jh-/]n\\pTc-]Hs7iU6]^]ĥk - |Có="gN̓32₦4xزp8ièag1ٔoMV.ϊ3vRYmMƭ G69>Mˢ@X!Xg=Gjh` ey'0(Y+WR@a %. "//]*HW,}7igEkY]toOCQ'gvWڷ55NFiC\:1+S9W}j󿬕e(r:w}Bh0 D\݈rR>G3ބ&Q=^hZxwJ:斛s ʲЀdȇ7teJBP%PSb~_,SJjThfTn8^(aξp% ?t4'jePJj v}vD7=.a :Peo9(&xj2bɕS]jMX_RK/~pw-˗E{+e_"0Ր 2럴NDz-^b|LG\Kx3z\2Xnx3ĬJ6"Չk+A^ MQjР"|.uSLu;c%.ߕmDZ,0X?sp{ 4qk˸S{*S \.&չs̠wK㖔,D- _u%qP`ZR3Mu]:-iMZnl? 4DVZe`N"eO$'Sj9^@S {e 3ƺ['xԜ7g}IvFUgu]jrhSv eeih "Q\B?آ^kq2#K"( lrG/V=IHQYl( $z%@IwXpBkUU6A5Z?7Q 87;l>:D𷹕曦vӬs 0NIf*BWjlpux@y˘uWN$L32MX2hV^ռg,N#t% */*[M4@ '?7G-u"Ҷ XkåDohog)$ ^pd9pN&h{P D"\AHgcy~}?Tmh;Bnwd9KbDZ0satϜ~03Z;UE8$Uҥ5ۍE*4Cz2N/jжbdA}` F06|q7hG*\anS-VHEAx695% ?ZF IgU[ܗ> U8J{B\S6nq3 DSH4}(@2Sfq9O拭MW8E[k*Ё+k:Z")v!΍RzU5ɻEDP^Y1[^GœwO{QjlI\*_FͱwUX,R w9EK% sXMMX1DX‹p\ݑn\eJ':$|v={[+wU ,+ےD'Puy.)Z9?D@u\*4Qa.V? h 6(*sTE kbL&<5D9D^߼-IҮZd:30= Z8!UHia>S\>t.KX - 8Z=| {=;`Il[ms>cJe,U΂]'SNGT$}3nkHtmvUy;:NGq ﻴf7ff4-U.#帩:qԿȰ6H0))'i8w F:1_RO#`iJ\;2WJq{`%",q$^*y0Y23 EjO6rb, JƝh9'b㈙DRd8,v^qt<F9T^1$pJei Nr\5_!aYC:O}@T}| yB)z\f0{=_y)6q@AO`? |A@KUa ndWddl[~K}#K#,7JwI6=]7YP}1i}r!7x <m;;}%P'I,\ԗ"BuwwĴńxK"Ӱ&8Yt#\&[3Z T_3%3Տ˷|k!{2r)qFE "j-IN]Y'sVq9 ,Y~h8|_w7E2d <,(\d#sN;/|muЛpڦSk6{1zF@Yd?=L> y~d*X9G(] \4'utb+vH|$?j>YRkyx.N&K&n>~ɅFK~-;%m (sxn[bUI9Zv•!{:v LR/-A2ۄCi5 KWB&bDs8: <~$RٷٿTƖ/¬}{sHLj$]R8 zAiٶ<;>}IA&/ 4Imdi~ '.[%bZV>AN2.p5ŞP >Is|y7ke:9U{4ȿ`XnZOg()>+׽a8ҵw.D03-3`xUo+z[BjY& =0Z5>>'>jxt[?̘ +9gT:%{ pmeO'pFw4mrqcK5h2(m@-OxknhlM*V]}@0cM'O ͸!5ֻ3 MdxܬFs< 0 ,]`f*jr > #@B.@p܋UwbkX(.v}lG'Qp[3\}tAr&h8r]Q<`Tڋ 'WGuCjJ+ ]o` #mITr_W3jdi4YrlwAMSr;RӀϕk@F}VA (O7 WCOM-*?Ѐo."!.3^)Trt|Zc2GFwsvyQ۵vɳSЅF#]Μ+z3nYơ}oOtwc՟%Q ؔgO\j#5^Mvc- 7o͋-cRf%Ӵ )xMA+-4`:J]0ck>.ƢzC ]XKQĊU{h!qd6KZR&5CDOjZ9v;s!ant?gtWLݗDa}~/S Jj1R_Vla:)z1s% 8& (&h .h<4ymyDkSVWeyv( 1~Q"ʥDq. D4>7/f6aMXvA䂜כ^v?}UĢ2B1=ੋ+b_)_. Բ>aOAcCmdY$G  :2ob^oڻv.\6JGܵ/'h݅<T|$O(uXysGSI = `]BW+gy\3I&qRsMަhV0"Zxd;ԡ7B䡶+gٷ cݣ6Bu*r) [ڒڕoE-ޕ|.p#^ȏ7:K]ȹG:d604!l2?v*9ANL$* wtG/ԝԳ4eWJ`łOv\Y4e]^Ԩ_@:2J}E% imife̵=:Plf:ʤw4U -ݴ㠌eӬyIԌTf/uP0^e˒ 7 c~vh 0c 8턓q5ud ٙ&r SX`1N j1`ǓjjnM5H3IH#Olj0kʉf@ԣ2R]FNY AdF(iUje#yʄx_[Ñ\yaG mtLoAٝk~s:I_?Sͦ|o)N+(SW?Iaz@&;N:O_Wc,* -Mﮁ3cG7M@!hkNB'I뜸4Ē&-2e$DYlJ)Zmf]q&i+cJg'A$x q*&rݘtWC/eз^8D))KtU;2)3VoCLLٕDS8HXl z@&|Mg[k%-ьY `ϖ /+*8H4ı!w VIYgW:$Śjnֈns[0󱐇4YȨPĎEGE4vO7b272S̩:@h<YD"HVʭ 8:Ғ@WM@:IsA1^w"rgWV0ʖO®&)InRyR&mAoZ^l ո+ i(]FH =A=3zUx'rF+-vؽB3n]zmQ_(`0".{H"<93OyIkdD|2ؘ\;|֡ hY_?+&A6~ǀ+(Wj^{LU$AoSSQK`Cg%߻Eۻzg&rp ccX07%+|Bx0yh+)U⾠+;G! 37J=ܜn%`4Q"iJicLX48¼:MOfg”SUy&{T/lXt82qi\iVZoOZ4lI,<,-h|J\PJ`fmNQj}8}xOuB'UjӢ;¥Y_G8 Ղ$V&%|i=]_k]3|W~/˦TodD-2%Íw$:梪ҕC4_+]:Jß*} '$r sb&"#CTQ{F r Mm d\J$s,F+h;oR*IC(1-H^d0VFiW[ՔƩ{pn `~Te+T / ?Zq!= po1Øvx͵ I}ב[4iFӋcWDDP:[QyN *t~jp xK:ȻIuIS&@'ThW΢vw"ii/&[zߔV^DF+QLP<(cyV̏ﱟUs:-qY%P1M#}K Qax nn_/4rš݁lzoSPbLGbphOěV;Ghhu}銯!21aˢe]VHT_>Be,xJIˬKkpVdzg)aVS5J ]JXU%.ERe. Që:N}^_b6I 6@XA`%AVR*t1G`߷Pz{7! Ĉ\ϻmkS,Qp'XXMDnH9dwM)s=\X~|MslKXotCh=w=I/̄= ɻRg: M^PTz&pwUl"-EA~n?  !ί`@]ePWMp,sj}D;H@ @Η)X Vx TW!AvB샣s o"=GVsCutStIjZ/ 1O:w4uq±[ ~jO*M{J2_&*.D S '|oQIQ" ZF#YxgA˕l] ޢ)mUBTqo~$zo7HcU# 58L`<`JU .4 zDa+Æ)~Y}[Wgy885q n&Z0QuZeЩuό8%cͱmhm]w06?̗+MT%ca%_ydy0vê$2hXUEl၅1Đa(KO+ >oVQ_ub+]$T <1D)Y,B|*J> _.-{`]Wc4cQ&h,qτHG}RnZĘCIR~w)cm 0bЅ-֐oГ@$0&rPW*.xc[]q陷˖ %@Soc2[,嗯B oT>a,'tJ\<<#}\h #*qŐFPcpǤm+=y[jD!T{ K! 8yiJQ苎w-7+3;2dcg ^QB)eZ9ÁUOVLSumSO(-](kPf*\1-U͌#=ŊCe1N{bEIo]<ĞLljg9]ۊ6pEe4Nx PFCsy "1bAɵ1ψ4j;29X'ހi/+C7}aA ^,4q÷ticPp*Ev#YdAlͩ¯3 lf0 {>7H8K>h :e7 IkRUE)TgZjEJ[{]mU3t½_,FOOV%fRJ >Nl]!5+dC䓱AGa4q}*IN,h,ھOeC>\Z (miKGE¿"N+I >{ D0\^+ 驰20@03 "u-nZi龩Fvnvv.~&/4M۳0dގDefsSĪ,lUzl}{xq&1YCyv%.xߙg"v$R%ʅPyoIvZ޼1pa+,/х-¼yr# v6nt8zpӬ˺` ;J_&k9+KODІ_JzЋ|4X7_mcj|9ҁ]!z1*#K+i.Tʲ7FuW4BQP#5r;uo&6 PXk;s4OȐ=y +E55/GU80ARU]{_- 2ND1Lh:%%B$mvFtSTs/Pd*5 ,i$ˇ{2S{rPI7W]0NL 1%8j=fE~] ʇd䗒1KI3.ũf'/!4_[@<ŧ*8Sea8O{ٙDԦǭ v]JFT^=.w[ (1-wok(F;SPS&p&}ceu]]9yB~gCQrU^(r \sYHkK2REDūrPk5MrXQ44F^8M==0ZReO&IfX5>wݜ0eQBP9 ,"Bc"!콽ArRػi]q Õ ;[ߵ>)ŝFQ0BX hCKkL ;t8vCu֭1#uwZWUм=tYUP4Bwut3uVt\"9*-oȚ*7٨ٵ<zm36eu8xg1.!E%H :娮[Wp[@QG(MK1 \gm`:DEK5K5ЌJM:Ή6Jk',kCw_QvPKV0 =}ӟԨN K@=ُ3[ F2HԷ/W_Bpktyi{%tCƖc rC>I—G'ćdx< ݱ/J4\f WMμIw;C ?<|^ @ƵԘ916~Hy$1U-q 2NǚlkR)0EVll$ mR`%6eč~g,`B{P^;h[Q3O`3B4n$aN|×⓪2of_@v}$R$W"<@;!o06s f)"=x̃ŶEuͭB< dQbn\,}{㛿p-BrY)_ZMD eg.vGߜ`X{d>3&MMҋ$Jc 蔛QSLBfEL֚2dJ=` _P%3n-eC"a*w PtUg"l.Z/i7o&"fsPۍ2C_T8p̐aD~kVW$ ӄ[ڢFIJ?1ڜb#ͮؒڷͽ {F`?Tm"l?JVQZ'<.ǍKǔI.Tܯ8|<7USs䁦&hP|}ptKȮHR޾EսV7 PI*FhӾ|9Ow 54v/ ɤ-֍)gpyՌbGz5Aiq laoaz˓TwR% 5YAw7fNU9: I`N/͠:qP{Y -NNBt54D Wa7en5Aġ:'錎+p.L3.\j1:Uz~[1|p8Dh\n~"`#s)8A@*P#?Ťj2&.Xc@vH.28zk{輊LQhxp7Q%QfSR'7먺4OZ&L# IȂn1J-A+10"0#&3?n#*4O\XO%e[cܙ|ZzzWx8K2Ep4asC(QT ěoP6thF@YPVtA[YJ5q _}u@K3~gnM]`Bqꆓ0"4[c&80i-hlp2g:f᎚+=:xE_= [%T''?K14ֵ!'fDh_N%S3Oms I @)ΰ- l9ȋK έoo3!~)Gm"׿1=xŒ_NVp@̇|圯Ɍ,vP#R@~@zl A\ w&5x+|^: ' =~ñ$j ʛM۟b҂JUfTWxk'~!9:Cc#7&o!h!Q8qNCT ^Kq70CԽ팠Fy \~Of"iv# 𚰃O Ccc՛TX֠aoWWPGWp'{=s? H%#Jɇf[f쇪hF>#iV 㭙Pr[o,mʔ)oA{VD +ݬ@K:C;]%²=~bĝj/Ϟ1woFmt'C{;7k6MNd$:]T<8: bupV˟^hҁpbQ~@76 @ExZ)R̆t@KL){E.&p0-&B%AKw- >S\[%Ȁ~ѐl SeѬҽ!BJY S7Y7kv сD mH)pķ_gX:U g4]L%WURDx3wgJH_ÌfNk; 7Nbb'&\-%S=C37;O;*{kwlN6)z_]he,jpiѧ#\JK'᧢GKwR?"^ιjr'XڠRZ+J'"5s[Xzs|rv/ t(ضA?_̲ldzrNMB=s_'p>,+d$ZWXWh }ɂac;A5~ DEN;}^X:C)t'Z]f{b)\Yjjׄ-D? ƿ DYh9֌HVR#tdeC\(⦉~)ji48^?'] {zehRv \FpL E{_$;~4]Zyp*PV& 4%X0#- EhlR_%Ao?WW0=s=u1C^I j3@>YcN$"=%Pӿ|Bvsm}F5JWJ@Fi aIʖx 8OBFqm B<NfG γXq| ]m7fغhx_" `IZL+t A SX@N27% Т°8(mt%vׂxD]7ʯ7 lڶՁѾz֫ 2$Z9JʁRvNi&M (AR5XqL\=h?{&,TZ`d?ZFٖk|E,vE'rɳU l ~r\z۸_D:y ֢*8|n %#"m^Ăȷ`"Z7tϻ0ACA5'|tBW> ?LM K,$ ~+% -\<j:qâ[ kxcpNNdk\'|BIB/:enex@SǚmEOq Iڤ?{N}w;g>L$; HmQf(gE-*T їRTVe#@!(d[ B#[k).,V"썩l.ӛ3(;H-:k)^לmtr0V>Ӥq8FYC0-0?Sά;tvrkQ-B"uݓ®%SS;&FvؿcVIt,*1K?TʼhDWSkf5:0VѸ(xߞFQ`Db̟^f {$-gÜBDy"tݷ]R< cvą,ls9ϤU aҡA -/@l d^Jꭱ@2]!*z-$yY,,(Ω3Ip YLq7oRɪe|`"#[pQ R FWR e9'ބxK0N|&dfz0ȃћOZV&2՘XJ-['{vZڝ2÷3#(Ijfr4J 31e%Xr ߿ ў7<͍Ba0Fc.(s钗j#/,KY}/rݘ @Um^ǾmUގxAşSXAiYPiи4x~Oʻ6emrx[jШ'}Z1~7U쌩8gg dХuցZ3K M.E?:(O,@ɐ(4ʖg\aWwUX&Q &nR1  Kw ޾z;a\=A3.8;G[9ɁNU~ C4Ty(*$DUZE"U9|»7u?{gڸz!ZѴ H:IZb_n TM/o[3{KR!2o!EHA4uC–$[o@wL76Mkʥ ~,n:`a13WD _!洀 鲘F\il/qFT]\D n]-%ѻ q 6 =lQb< >Ovτw>1`tbfL(}kۘ<݅ǶWsmEРƔ C֙S⊪忋n1MY v&[nB;p0&m~\Ţ0H=XPUDc%U1` ԅv4KVqgp*0 YXJ8O9t }mwz-nQ2dm? \kJ&I ir =[t^FaIJi jZթ8r8a, 6?Ɖڿ5G 愅 .[Ía6[N,}V矇;P kAqze⮂ēͼ!?frqA95ןܹ7Bcx A-ƪg}|gɃ.>}V Y 6/ԑSeGM,4.\5pbyGDw[/ΰn!=7ƍ{A諚CT?67 !+o` 9HfJqHFd϶{|e[0󻼏Sy:@:7Mu6;֦* k0#?]B쯷RPx3FeN7=Sԡkގd{4dۀ) j39 c7Jy9 \1hzBJtŨUA<:!մl< (G`Z ,R3⣀YWLh,:uzH\fttZj?2[ a?Pؑ )T £>:3Pk!=ĩ#)~3w ` $6>T}}޿uTo2s\ },=?A/7=d\M `n.+q< nT9[V]yetdTZf72MW&ӧ׎h n\ AIXƍfL6 RbHz6zJLۯNV&ky; J<8܀2% 5H2w=iMhDV]xW. P}P5WRtz|uq!ݙLwx`G* 'H]l?Uj|W#[/eƷa \zMSG-Q蟚OwuÄ>@2@}6N (xzL¾y{ l֞OQKjitg88ǒhDk*l7`i!Ÿ}:WU.0_YRs$|P__@ӫN DU+--,O+"I4"n#8Ii+:2uzr%ǡ,1Z1Gģ &ӬOx+BQ?♼ |^,DrqRp2U'(n7ETS3^j9gZfێXY:=k_bNJ.#Q[fc<O[Zf.l6POFxo^5hnũjwgv``(Y1#z=TMnQnq9|%0ߢEk$dKgD? [0>v1D'e"ifPD?pWTw#\9>YRDAn[[ѣ}RNhmo`*l][ |  r98RW+.HL#WdsFg&B9j$IcLPt;刊z#P臐n|LW};+bA[=x4î&(+:B/[b U܎5R9gxDpZ=e",m>v*MWzTcA91A~E-q6F2q f8ݎn3}Qu^cXn pa2_#vDŐR*6^޹UhHC~DDj.>>曧 a no/j1y.*;[bVA[{$lfZpn\ٲжQYZ1;*! ܗ$g[)nDͨpFw=M+4)XtsmkV79dzUT0 ah'Ik4׌z%tx٬b1\e=E>Qg$)1(kD6@²a![dO̬bؤҔ_0G4V{h1ҌS:F4_'kk#!x 0Kx\i`"I!辊DD>ׯT|}#hksw0iA-iK*jw&2%H\/wXEWudC׌80l٣]Y"wfaRvPDBՠ7Jdbr'ֹtb+eYY@35sί!J[/q\9mfasv HrO`_?6F(d8L92<, ݉@;&41DSvnH|eR鳄Fjo E ,D{4)tSwφMἱi9Mqmn{놦l'*~2=o97˜Hɤ򯚹n:Q]2P>oB{zYsڼ@9Ah"?k3XvŒ7 HPRG3R !%Or]s2ňO5>v_ j!n~;oY[#Jj"8dg։?I3kj\vԍ~.Zpl;^ 1¤MI#$ؤn{ມ|Y]?Us崑g@1pl Ԓ^yzzb-bc^U'<_]ڴ# Fww+KI> -%D-5QU\] Z[!v:xGr2ԃױRJҎ|{Vd..=jb-QNaͲؤ]pl!Rf)@2ߘ{+ tZa=u$2\ 7Se,\Rp9lj~f(j S_jܪZ@,,|IO=Xu/QDðb;Gԋ> N* ϴ}&]av^GG)/yBn:&J줶-3I(3Obͫs#<뷔LFhZtm4gEujTk9qhdsv?A7 rBWE}ɔ1[“zzm)w<a?'?(zc!acwrv4[mc98wSgfaCaqG@qLÒsPLs9nXabnPA\g-!؀X)푭/ې;z}C&OԃJ!g'Pמ):R]vt ^{W8|RJ ~X+>ݽ177 icN+튃ZCiv//Gi O.Q_ĔVփBMj§UH/u Ԍye1xm 8$8*4*Yrt * e2z?*DM'/vPQu2\W -\HI_V򰺫 ֓aPR~փ!Zio; 0W5VdFs#oo:`Ec1h1~W(ӗ)Wy|ox/iz60 j ?N CcN!eKoT"Bۼahrcy=8\z' ahK $UCSd_pNCrTAxHbTOL͊Ν2R_p$8QU ?*-x%7"KG"9!x$杁zk(*.Nc#d 2ARhPi'kXz:ew^]-ZaC=ЏҧP4#"Δ ݵ?3iuf&d$蝠+o|~3L .ZŴ@L ZRɟd\W!onۀ@h(j2Xta(%ňUI~޼;}KUf(v$Ȼ)+gyGQ5ƶ0!"a8o^/$'<Ե8⋯9?ZD|bz tL $}!u^O U(qv 7>B"o:NÞddOp k.ӜA)=sYCTΟ|{sIl&V`tLxԸ-C66SfCV_W5Vu1p\mr-C4Nl^g.E49 CX3rz"(ǴmH}ïZ6ȮčO@J7 .+(EfJfBd?}t' U21~b*g!1 ?H"WK̃+dqa?{zԥ؊Vq3ZV |'meKJmnF;o۪O.pj)M$~Q0Γ,jJ 9fiH"Dsn_=h4\4ƒ!sUT:.k)̄8fݮ.GJ&H]iҮ<jgTݵyq)Ùڔ$w:$ܔ{VO q#*;# &Ђᡒ$|>f.ټ:DP69!B-EjY1B_V0xx` ':{H9*&(iTo=ArQ5x+,u)Wl! R =uЙ,f~iVk,F.|:[*Oг<5TG!"l̆k1p'b(L{njRy{t$w{Cڑ/̜?y;ʷ?b8N :%ߚІY=i,spU gU/.Nݎ'Cj kV|6M(As:oʏb#G}_Xз8ڍϙ);0 JQ!BFh4IMF@&d4aCM4r(JfFD4Hf fA#3 HD`f3(e)3%4R$% @d5!*e &BQ0C)M1LdZHJAHM) 2HC##h HRF12!&ɤHF# Ѥ%%(&0eKIM1M Sh`4AB! a(D)"Hd"Rfb1&!I@BL"1 )  X2PH$P10+2fI@A d@P4#&(YXR$%$@P`E1Bd"a2L%2fMH H42HDQJE#fa1$$I0dPlMQ3e!d "d )$MH!A1JR)$aA$HLf$1̣DJ"H1цAb$3AS"Y2fS$RI XR)Hّ$Đbb@)6FȒ&f%4ĚiA @$ (KC!0 D 1e M$fIK)F2I ) 5,DJS&(͌bh$LP(3fL ,D%%"I)& `$$K2d̄BJf6) B 1bE(Ɖ 120c6$I)BRX ! E02D$ 2D24`IB!HIAAH aSCȘLaKiL@3&K$L# )J2XL I(RL͉)h%2"Q %"%DI%4 c&0) ,0%h I#0P!@c(i fJAədlc"2%)bY P $FRf&@ib#K&#&a$X"FLS&$DE!$$I $LDe4hɕȓL" $DHaa؁fl#D23I"dM0͑)0ȌLCh 4,L"4)șBIA&HJIb"RJR !1%)JB`I2L*,I&J%1BXSB!)XL4lP)1I !bbE4`4( HfJHL2hfIґ$AI&(SD`A@dR(h I@ȄFL(bS!C4B6!(@H‚h# LH&&ih4P &0)"b@рB"A02IAdDM)Pf" "PEdbQM$4dA#b2 aɓ$ hBH0 @LdRbeFl&0` 6XbFЙ 6Ff@6"BJS!&3Bd@̓#HQI !S!2S"(#D) D*I!6FI$ҴF$$d$LE#K&S$)bBBdcdDI%"4eJfb0T1@& JI1B#&$(hfD 4FEiBRKH3*IRABID)1H%JBF HD4b(,&RA)2"I!ʔD $%A4)$"H̒LI"40D#DbhJC(K( DM #I(1QLJ4(% I0cS1&QdLH$Q $F$aI`l$,RBd(Bh(300 4b )D! @$2bD$be1"i,0a@YAHɚQb,C" S(K@(ĢA))1D)ĹH I30b0B3Cd҅0&#2(D#Ihɉb1JLQ$0F%%A",cf#*,(`0!P$DI YT0214# &B & ɢ %30A3Hl 3LT͒)2ebLB(IK 0R!K $("($bJ2@2E$2,BS6YbM(ɚhY XPe24ȁ#c0XAD04d$I(H43F$ (bFdbaQH"$SEd", @&i PPD6624ȉ)0deH&0i1 ( 4R HLRQ(H$b0H0 @&a 1$iKa-)20ZHII "hʼnIB%bS@4DF FD$)If"%4"D$ S!,@HRR4T&3(S2J3 dH؉1F(E$a2$i42a$h3# 21IA+%F4F @d ,A3IP`H2M $H iJHI$&*h4CPca1h$`a&E@"&2!&`De$2@a DJ!IF# b((I&22a&M4Le@Ld‰)$4)!DH0jD$"0ddH2E ai!eDHĈQ̣$ $2 lPC)A4 f1$2)MDb#ĘDDFDDaDdPJHD(RL0 $H2e%R2h2@L#0 CьDP,(!Y L@($iD҆b2)( R!)%)dʼnF0E$4 4 !0 ̖l@CK4&62a ȓFFRI 0K #3h4%0c(A @TM0DbXBHə5)!`d1(LQ$&!D`Be034$ 2f%Kh&i fhBLYL)F222a6@"1DŔ  $m$#12iEK YLI @DDDd(L$R$@f @% fI1LE"h$1b14c0dII% #),SCc" J0a&&F(L̃&b2ȃ@ elC04` 32S24B a3#(,Qf2$h"0ML̑HИf"S22LL$` JY cBb `bb&HH1(aRfS$Ѡ*EБK$ɔ"&h #BB, 2˜35 &M&J3H$P $bc1FRi0LM$ ,1)IE,JLI(LD$d222$2 b0Q&d1J`f@HJD))2X"ń, &LADH@EL@J4LP(0eDL#đ $HHi,F1hC2( CJbЃ&#@`I)Lэ)f"")Q!a!! 2 A%(P1*c 1a4(B̘͓"H0B2Ċ(Ah2IH1B3D21HJ&04$FH2R`"ɲI % PPM ȓ &3 )Q$dI0@  )aQ2IH3 2H"i,FJ#"S$Ԙ &(0!H1d`Ȣ41B10S&A!@ԲHR JDI)2DLJRD)fƑLLB*f1L&0LbHRD)@3D2ɦid"1L  DE044Y!$QDDB0&2Rc0 ʁ(IBY,bHFFŁ$JRBe` F0BƉ3 D 4Q fI@(0 ‹$  ȓ02XaLBd#a"L"a!$0` ID2fS#03""R4`(L2$fHd1`Jh4R iI!#d"2LD5L$dD2P#%"DM2h cAS#F@1Ʌ(S J*d hC b"aD6cA 1 $ 1$2" b"$BA@ARDl!DF(əAd04%,&$I,P`0" &H$1 `$!IJI2i0DDLHP " (LBc41``dBR$ia 3K#F!LɅQHԄ("IBB)P"1&PeS&RQ؃2!IRJaFIMBFhLY2@`L(2 RSI2KEd@FȌ4ILP"IB"ɦR0 @R#2HM2"B$HfHAdlI&$"2bDJHiC C)BII21dЖH2e$K A "fR&1"QeILLLHI!R`6C$I I4$@$A P1I,D0&lȆIC!$"LLi(C!(@3"M&ddH- R2J& hdQ`4Ɇ6(!Sa dI,Q)ƈf``($32҉*Ie(L4A2đ S`cE &XJLȐ&2 $"!2 l$&2IDA!h%&c2J# &HF`2 23*PfD`0 * $RiB4F҄fAj4i 022 #c(FLԑH4(D Ɇ2f!2H@!f% D`4AiiFEBS) RbhRB)2`4A$TblP"͒$Qّ,dcQ1PiI&d̄4P#@%3e1"2IJc0M&DM P)12Ěi! $iГc1)DB($bR %00a%JbC&!E)IDH1HI0$IHS0EE4 2,1,$MLf0IFbD1 112D& LHA(F H"F!"I((3I0f4"FYBd#%$A@ ,3$`&ƒȁEE$M#@b$0C # ed&4ɔ DfȊd43 Pa0 &L2Lf2 ٤ 1$dbB1"hhDҘ & (EE@3L"L%0DXHPIdȁ@dIA 4P$dRA4e1&di%D3 S Dfb!,%14 J3LLBL"SJ)@)aLRDbRIij%" cQ)HRɒLA& 1 $@h0 A iLiB44I3 D&`Ƃ"IeLB bBe")!!" "LFH 4(2A3 $HPŒ$de#IQABPR$D2IFJdcb2IA$!1RH E)FA&ɔFĢ&`У2 !IL"&$"$0`,$ (l"%iS,h@Q 2lDFD&LCQ2I )S3 F$4 )$LLPR,LA)F!SLLVi#hIldHa!4La&IJ4)& 2 22l"" 0̢Ld2C1B$ĕE$"fe&D111!F ZPB† ى"6LcHHH%1Id#QED)2i "!De#,Ic%JbdȌdeBI!3  ""$&D$PB BHL3!cDE"i 4FH2&XF$I`h(,dI 1EQf L@ &(m0I21JD4)3Q@ d& D$aFi1BeRЦa(&LH"b iS,S54H$„JFL3#$LM)0e)KIɤ@„@!J@Q$L"$H$"&$D&B"DHX4M dPR $I`#@H2LaLŚRde*&)Bd@R 1Faff"h Lf%I iɒHfLhJ"$C)0e14"E0RD d$$AA6Bh1BhQ52i!F 0$eL$A&4fI&D %,$1fIMAY% dbH XBHJ! h HQHQd)C#HDe62ɔ0lPLeHMDH 1C4B2,aD4&PHBAD0(@ F*Y1A2I M ERe$%D@(BSA 1# #!(($1 &AQ FB`A&F`"I2D!c(L$ 2QHTXBD3 QD!6)FŘҒX BD"Q SB2f$SB 32P3#B A$XH1,@LLHfD0DP&$ &,bJ`B6hA`fD H% (I%JLB0M"bPf"1 ђM(%2a1&("@23"ZdbB,"00"e#JI$0$dH"b$Q$%L@BHHXXb E ̄L())2YC  6II Q"`!) 2L$! C! h#@P#a l!$iHJ2 Jdɰ$B#0)MJT%1a х#0CQHb ġD24́ "IL"@ F""11!P“#0,I"ƘDL,&ř22RA0 MlheD(i1 ƃ2ؤ$P4DHJd PBH$Y(%(QdQIF@b&Y3D`"0`B$R̠$hRL IJh2@R)"31F(a $Id&R02Q! B L D2 XB34F1(H0,B!$BLBBh$ i0dc V"(f0A!DDFB̚RA(Ěa4B&I(!SI  4 4Š (IA2JJLJdRʖ) !R@dS, M$#M()( I ( A e)$A #I@cFabM(bL$I), 3HhChI$$P H&cDLL%0 0Ģ"RhЄ$P҄0Lb&ii$ذ )2QQdPa" MIaBXX bDhL$RC" ) RA( EI&DA 4HC#F32IE240CPi&FFSF҅H!2hP23LFFQ$ɑ&c(QACA&KH˜3 (M!$Q(""PIdbaHĘCh &6Qh()3&6i%#I$$)H2lQ1f e1(J"BL$$4 L c1& 2RF`"B ʈC%I%f!&L̔(( 0D!%1Y56$3A5)$$A$R"*,d2 hD lA)PH1e4MIQ 0FB@ك 2bfYdƄ",  @H1C5P1FD,&YJ ,L3&0 JP )#(hɀADL)41H K)# 4a %2X dM0PԤ"&I13$R(SI )# #ACdA&d$#3J )4cf44QldFS DF dLbfKdHa,m IRRC$$fRi$ @&FCJiBC(B M( d)IE6LiɚE1 RF1i"h$RiX"hf&ARi2" )%L!& `6QA6&$R̐Be61 6h 6T)H2ٌ"(R`HQE(h4&d5D#M4fS  DaH!@CL 0 3L")IFlD HIIJLJD$Bc D(F$"HCI0&RA!(Q bS a @Y,dQ$YR$lQ$ȊB@A3AC0aLfH!"20PYD&JR@HLd4,((RK2b!)h`AFXD̦$E(c) `)iBDɃM)&40B JeD"HI)DbD` ƒ4H)#$D"K&Pȉi2!"P҆ĐIBF#C m )0bAH  )0 4@#&2d(%$S&šYHlHb&)Af(HdI$TBDc1$Da6 00(̀L0Ifb FE-&L2i!@JBaA2ɒE "0X3 (L1CHR&0FfBHF"CH) % %R"$hQd$#0Xhb""$&LS) Fd(c4F bB!E$Ș(& e,Q(#iR)I!!aF AC )&J)1,$"S`K$$,CJ@B2ILL2Th4 @LR(̐ل!dDĠf@Lhɔ`X420  J1&2i%T(EI$2%&"J!2f!fRLla3fc1&L"$ȂM)2 )Q$E)!HȘ@f4̤@LBġJ,K"db0@ !RF22baDB2#H"Q$Dd2h DDI iDS(a)1"fJRl$Qb4 DLbSBI&+@ѐP"(di"!!Ƥ̒dX6dEd D &2X AC44РA!30$)a3)ERBR`¡DXI !HJ(!ɘ1fJ)$FffQJFiBd2A&CA hPi)X@@dfd%22!R "f"MEBD(L4"i@Q!3A A"B a!5`f` )DDb 0H%2!)DB!DQ#,&)M(MC L(Љ$E H46C$e J@%#4!a 1dDL1HJ3L)LI)"R&DDbJ( 0IXD&D)IȤI4H 0iIHHE0D2D!M3 e&JQ LA&Cc C!2AD(d@E@&"fXI"dc 2HR1dL`J3LĖRI%dB2JA%&2!L3 &$ȑ&0FXaH6)HLd͔ RD)0e2"R,f$d$$ aI$R!d d hQ1ȄRLhhّBD $H͈H(RLш$B@ H I`1BMLцRh1$A0bH4R3"Rb"cb$hd% 4XHRIQ`1 b$I$D"HL- LF)&0" !f1̥Qa̘0I"&ELa&FdR0&#L10@$)I,J2BB j0 XK!F) F(R Q,"IM IPHA L$i$E!&F4da&&))M%$DDF$@)JFCAfb$dHBYI&&#dA L4!4XH i a!12#I"J`HdJ4L&P%3&("&HL6hJ!dbIR@Q(,$!(&dR@`c,@HM2HD3(LHQPfS 2$&6R!$% IL $D (,H3B ,Hld0I JBH&i4 )EL"!1`IL$@0b2 `Q "Q@H11IddQ `)$0P!HDh2 MA2de$`(Q$I" "2RB0DfdJ"SPJ"$$hIM##H $ddF̖&iLDi$L3 %,$PL(0D3IhB$ L2IIDFF,٤Y!3PJA&bP3PLL43$H!!H#@Lh&I)b1E2,$#b)iQRi3FHА)%(R)HE R%2dI `dAB@)&,(@)B2bE"dIM D#2hE$h0 JJQ ,@$h6" &!4hĈA DfT`((B""XLHS 1@`dB`e% (,bLBBiHfDQLS"L"BLIcDcP F H" "bd͚H4,2D1!L  $DI#$"2f"B&&i4 M"B212B@dɒb&S 1MJI%SL10i$Dd@0Lh# JFBD h3 f H eh$@LDd2&0 bI$"ƊQD 2(&d",FP"0)D`F"3% H6L YEBȚYPQ1 2@4 IA!F003BDHlF$2$"baFIH L0II1fH`LL2Bѣ LD2`"(̑(J&K"i2CB1 L4#!E4F%3 D2!m ,3FI HLS$4LF$$ !" J2dH&̒$)Lɑ@i&Db"SL33b1$$ "a6d)I)&iCMI B b! &0) LC1$ bY 44RJ@M I3 ( B@ 1!H(D J#FTI(TRhB$ȑb6$3 @JH`1&$ф%IXT€%% #22( RBX#% A"e ca!404MI 34Ehi &h&¦B3b! 3D#H Iji"E ,)CDLbFB6"dd$I"Q& (2bb@TJL5&2#@" #dR(#I,Di,2 &LIefc&PdX*3$(lA $fhfPC4ș,HfFa#4)e4Hde!1bPXK@((3bd$D Q"b$%2ňf!e1" aJf01ɊDa4BFTC0&iC,HL&(D1)!L LQ0D(P $LI LC#%!d0I2L$1"Kd"M$Ĉ0) &M)JI&4K&$LĆPfLAI &bf2FBfRPle1#HRBX) !D C6KAE "JQdbY$31HiHd0J Q& &Q%F M@PɛE2M&13X$$($4bD$`Jj $lȄ*a4$ AB(i1F!,dъi%@DDR4M1C0jL $Ȁɦ 3AH$I)&,H D3)HL&bA,̌$i" 1 f3%4D&$e6Pe%$d2L1ɑD1PJI!d&*BhY@@R,FBdQ)Š@I%LLƊ(RHRhLS2d0&DR11 P(hdi% $$Q2)bbheI 64ICBRI1D( a$F2 IIJ%La2(I&" %44$PE*`ـə $li!!3@I2C!4"1&2Rl )E0AMJdE0fB$LX)4X bc"JR&4bc&%2R2HHD33i4I@2II$De"L0"2 F$E LɆbRhB@FcD6d &"B26Q! @X%dF"a!2D23 %2B b R@MI2)(I 6$D H(FI2"Y44 FaJHbD446P H*)S$ Ld2BB@BHD$F1)("Y5 2 XJ&Chd"2!h˜R$l ̂$1II$PMQ Fb)310 bcf#$Œ2R))@YRPYJ2I$E@2 D EJIHB$Li3I DTD3h!2@0$He 1($d4fI$L0@`LM2,f#  0e$1Lن`dhE$fP4L"$" ȑJ"da b1,LQDSBє,2DC 3E!Ē1)$ LMD"Jf0c2"@ $2M#F%$$H!J40 AHj̄ȔHIJ@JR3L%A(,e"RI&LP)I%!DARSH$HiY( $IDifS" LƁBQ,E@hA 1LhaHY$R0ЌHL 2 I0b"i22,LI)C$ I@"A4Jb##4!!JH!!$̘PlF1IFa LAdH!l& 0eA"dJi&DIfH4bf5 ɤ"c 4JJ E!B4Ѡ 6@H30R I2$`R(RYKA 0 4$D A0"Li@ 14i!lbbI02&Ф2%MD̲I4B"Ј!LŅ &"L%#F)" "c ,)E L IdIDfFA ĠI4d)ҒL"cDa%32 % h1SŒf&Liae$ L" $"$`i4DYMS2Ē0H@cJh SH&%,Ie2 bR(dQ!&c2!3H!a ILbd$LA afF2$2L1 D i1A%L JXX0Lh$J4IFF2H)BR"IF!f(C)Hf&$4&!#BI4hE"$ d)# 4bD (d6F& R2 "%22%A B3aLLI3C4LiɁdc2I *T#H0QD K $-2! &TC@ (BD3FfI" D“"1@1R cR͑,L2hQ0LE2Y0F,&K ,044bDAP1L"`LH&IJeP04DSКLlBF"B!$2IH@X11)2IFBʙD D!LI$D&"D)%J1#$Rd(b4b!"KRD)2CD LJ(! )PLH Bb)$ Bl$I&BKDE01’%3e41M 4AH`Mh%! i h#RfD&Ldd4H&@#He2ɢlBI$`ȔJH%1M0dL)Hb"D2I!0F!J&2bKA0Hш 2)FL!FbEHc"E!(LaRI"D $0C&ji0e("M"0Ј$ &#؄L2H@ 3 Yd 0$*H`% BMBX) ,F1 d !ALDH3&E@IRQJeP0be#JRlFd$0id @10Ɍ4c$`f&4"4&!@RF0 H)dJ2dȰI)R&Ad&f1*1$e !#32LII(„2F ,hID JdDC3"̔)2 6f I)4SI&#`a)$`0$fL-$L#YPF`R&D$Q d``  I&iLHJRSF!aDPCdIH(0LdCDbI R$`dR2`HA$B#1 Ei"FiA&@EQ&"lX ($B DED@1d̈#)BF@B2SFc S4d$EDL(!$dfERm40QDPBI 1 *0!Ba`fBF$&0E!i%1R`iB $ cIe&bP$2AD#2h$Y)f`hљ`ń̂L0h #IC i M&&CDɄLL$FfA ,H4ș) LY@0"1JL3 AH2 f&&LJhXFF1"" aɱ%&4ѱ I2Dd(2!CKa " $I&%%0hF ͒X#f"A$dI4! 1("Q% И(A0¦ %@d PHm be1HI&ȍ IL&̤(3dDf#̤4(3 ! ,@ 2dA4b "b 3I0LC )1@ɄM0FIFS)fI4R$"0hh43Iƙ"c"D"dIFB,2I0f b0FE&4, L$$@ J$0M2L"Y"B$I$"DdB1He&@#)BA2b4$Q&4cf #JHcIf1 JLLX$&2 b!0 DF h DLLFH61   D$F`1lILY&(Р*fM2d 3$#2!#b e D,a 2F!2QM(LI h3)"D( c L`#Q),"&DaF"aJDC0BfHf2XL)S 0")d& 3!LL)&$6l"Qji3&hd# "F)Xa&B @%X,ƃJb DA 4da!ɛ)2$2H`E4afJ%E( 4%$(db Sa2dLC$&i5) 5LA $F@)&)bi$͉2MbIi$&Q2"Lc( !P#  )C"%!(F122QX!$CMa&D"FPaC,!&IHH&LMaAbLĉ42HH,2ɤ&D!Di,I2Ł SH4#b)&M3$HIQ$% %c`DM1 3! ` 2 LDđ 6dfI5$$FXR2 QBRdFS"Ș % D%2S2HM LF f3 @FF(LYdD d&B0Cbe3"(*%%2 FI0 HM I!)M1 (dHJdB`d HdHbfBIFaHQR$ &IFJfH!HE,٢L2Q6A$$&3)f&A d H(ID0AH 4,&3 a Q)$`))LA$i40ش4A LBe Yh& 1ɲ P"f4@b!E!R@&i$F$И4H,1*ƕ!(ȟD$D)0 i$14FL2Pj%,ؒPM d14264Йbƒ Y,ةc)2"E 00D4DD"Ff0RPɂRH"(DLdLDdADP&2"H4#"J"̤A DD52II)H e` d0!#&b$ȓf$(؀fR2$aA2)BAP2&̢JB)H&fRRBeLE d)$6%LЂa"hE$h`$0ɂHD`QB21!%=\3fe4̘% ̘$ LhHH &)A2L CHE (hI"Rid)ґ!DE DТS4!0A2!L#4BRPMFSD)1# eI1&E3A&1E4#F" HSK@A2BDa4TJd0ŌDM$ !edP&"$ 3I `L!!$,06d1 Ia&H(3 %H0,S!0(E &R(X I"Y&RB BPa,YI0 HR#)  $2413LE$D"LɄQLA1 fFE HI@J$$bi1 DQf@Ĩ&"ȕ)d@ĥ QilB1R2"a `FE$IA% BS 3&LIIlĘ%M bII$Li E(RDJh2IBHR fF "" A$̦j Ѳ RMM)LL@R E%%2 c4Ja LdD@&R"&%)&cdF$6b4TYeL % S(4$RHDhAئM0DP0D $%DI4f’iI$R$2$Ɛ$H(jSCC6&dcAb)&i 42lHH`$BI$ $RdB"3!LR&QBQ5D0"bF dL"Pa#$̨dD)1 I10 I Qfa"f$cFD̔@! L@$ bjHHP)AcbIddlBP&bM1&LJ2 !aB Hl&b2L!&DlJҖ" CFl Id 1 H`2 cJ 1$CHR$ a&f L%) JF&"J$adP& RE fcab"BIY$hH# (&%3FR  ID̔2ddR!1ȉĠl01b $BHd҄$ HYFfBCLPbA2I)&")I))a@)P$S1!)H42FPLR&Ĕ(Ȗ`L( #$hREH24¡R@E%`%4 3 D$#D2cLd4L fH$h&hI "L" 2#2(H2L@FL!D#%"$1$X"`I !0 d̓ I&3$c ,Cb$FQfe$ņ@Fcd&h1De2((Y&)!#I4L12HM1(`Ac1e$Mfd*")S" 0"a4%J%))" !%21L,la ы)FQ3(2I!Ila&RDb"0#S01IaHP"$H)HI ,ĉ2Y#0$c A! )`L((B(4"40F$0Р @A13 $fA"M14,i&D32Q#@4F"4RQRI!b%c$RDd&JjLJ$ 4&BR&C&3bE@#40Ȋ"Zha,Țd$"HD# H `̄dI(@0#E"0)3e(R0"L(dXcD@SJiI H"dD‘ (*Dѐ C"c"bBa(d4 S$$&dȌEddQ0J4$26Q)FX”̙ $C4!e)2iI dc$3L",K26I&))@ bl4@"Rȑ4"CbHhP 2)"Mc%" Y&PL@""$ A2 HȘ Č0HIdɤ)#$B"4ȃMDf"3Y42T(HBDSLiL,!AA&$A@ I$J! Td3%&3H3f&aAbM @) A@`Ll#)b ($D̂%!`R& IdI6l3@A`lF*6  dM0 ĄA1!L2ID 1bS cBYE"HJ$@c! L0#*BaH1@bP$14ś&f,DlF@H,BeM Cf 20eLc0Q0aH2$Ii)&dYC0hɢ4؄) Bd Ldd1bL1#3LPbI@i ̑4 T`Q%1#)$acb$¦34̙" “#a JiC1%*LɌi$`@B!fJic Bb,(2H$A(#1bc0($fĘ1`P JA1 ̦)1!"XAF" FDI@daH#JALLIIHK&3)2aAlD&)(DS1 #D EI)a 4A"$D CD!2P&Y"bDb@2D%D#IK0TL0aSB223AIBLe )&4""L&F TJ) bDLDE  1$LRdRY"Q,R LM3hDJ dLSJd&HLfPȄ!DD12I0(L$4i)&i3IL abL32`fDęD!($"4i$h$ #,&$`@d%fbeF !)‰ 6AYII F4L) Le JL`Ɩ)IDJM 0R)"E"L)%H lB1$"H1ańb)A1! ̆A%@d1Y2#d"D3L!C3hLHR&d!11a$I$ S hLF@I"DI%$C( `Dh*0$L2l D& 24 3X (&fM,i& C FDlH)AA4b@` bHf$Y`i24"(`fd̋$RL $$%2$DSL JF4 #2)! b"QL%*IƀeAE(̚d#(4i4i )Y3i,j(҂1134 0BģM $ihL""0J&b2$%DL1٘$Fi$Q$$DdFD̦L$% D4f#J21#JLLD̚)$BI S1RYeD$dPlbSBBb&bPIJR& HP)2$ SILĠ $I44 d !$E@HP4jdƒJa6)3LK$Ѕ̲M HȠS `1E1cK@cd1(I0̒I#I@iEH% (IEƉ)% )LEdHQ F"If 1$IM!hR!2f$ I% R4DD&`l2I$ae4&D(Pє$T&DLD6fTPdIb 2dRdLƌABc%P f XBD$DF2PJDȦ )H$@SIBF$@e2Q 4!1Li @ 3D jAbCP(ԆX̄&0#DƑ4 $(#%ID3dh 6" jL$"Ʉ4#L6$f0͠BDaHhJ0`&%CPX$͒ !BYFQ"`F0A d&RI$&`P3LPH3&$E@ɉJiL#%2Bl`dF)YI1H,,d"FLSLE$т)+ RM*LPa2҄R"JdC1# BPI%,&i45a4`l 4JТcQDf%(A4fQ(DR4% I6 "0XЛ$000b%L H 4FP1 #H(D l Pa0d"b #$%1RBR̡d$c  b$@1L@hBC)"43)%DSHIɡ4B FM,0& jFP(1)LJ@F,(b DafRD`C2c4M6 "A! 2H1H#BH3 I$3 #dA FK aCe#B(e,  L0F$1"1&aBHF&B"H&(H!FdXHaI02$ ełfFdF1H@e0!"1M$$P&0 II"B#DY&3Q( ! %$0щ $E0b I" `4Dl`#a$I) 2@4HhH# RQIM)BiCD$"(̒RI &QI2Li f&HBeɉ)h@Sdi*$dPhIB%)h`"#"HԔL cS$@PAJH2IIH2jLB hA1!dR0I "Вi# RE DY3@Q(0VE%LJ bd$єH!) B21&$H%I5( % Q!1I1# R4IfS4K"R0""QE H&RP )Ȑe!L%Q$D(b(#4l3LəlBF"LFhBDH16IBfi4b`C a)dfTfP"4302h(@0L$4$&2" &I Rc@$Fi) H4Pb4c&"@!FJ!dFFbBD%0e0e"ERE)HfH$"LPb0Q2PPIH $F IL, fFm&3J(X)2EBT30!Aa, EDd LD0JBJfQl2E *L""يBP,JF 5d1)SaPBQFM!bLTH !f F$b€i,c1BA,i%(L Y 4`aB0" L1Lf2 M!0YC!0QR- M3 LI(,"1d#$DQF Db! DH&FQ&RI(E&HF1SDLd $`(@`@Re"Q i"B"I61%0c"$e6MB5(i$K)b`M&,4Ҋ6i`DL4L$PH JAd0FTAbfY2)FFFE# 4M"I4LLD1h$"d&ґdc)"LH&I#Le &3DiL ")fLb$I#)QHHfde4#A&,J"E0P 3I SLbD ) Hi1D(A$F&K#AFi1JF` ) 1(LH `L& dI6) 1 0f,dd1#"a&ĀȈFC "LH` 3L%&Ta d̳10LE0d  !RŠ$&#!$L,b#QA62RDbF0 Id Ie"cLd4 F hf)" $IbM# 2f&hb", 4 DQf(b$j $0S Jid$B04 2cLI"P0D)LE 1 3HFE!!$(M4  DbI (c Œ10S"$Q$L&$C#RXF1"S"Fd ,d#)&HL"d4̩ IiC$(J(!D3L@DTdd@"I 0ʆd 3C)F*I !CD4F dbf T3D4!f*L٠,"! H&d% &"IIF1@@%,i M#fi#3CI%2HL$4#0 !)%`HJL$ 2X%$L0Ldd $2%$c"I4&K"Qa3FPbHC!LI Ibdi0$ )"d"M)$#1B"!$d$FD"A"lP4Ȧ$ DLa"&FHi$ #4&$% $FP1a"!&PȄIHM@F!%1)XHLLBdȉ K%"3Q1aE$ȚDB%!@ )D "hٓ1 B!#@&@ie @!,ђI1$H$*XC(` dl&)0$ "$%1&&"(MHHK&H"B$S0‚&JPX fc0$$@@ƈA!F$faDA $"lM2E0ƚI$1dHI Jd!AA2!4Fd0ic@a#"bXIHA%6I!&L)2 S($؉Q %!$)4$1Hdh%3$҂eDFRf!$!$L ҔHhأ X J ,b 2A(ғ҉dSIL"J42Ie̤QBS240i0A!AE$d̙҉(b4 aDdS0!C)(&# 43X&RI%&LJ$# C&ĠSfR1@h,X$2A"dcL"XId@I$D% 3 iSdșfDc$L @1D&% d&c IPLYA&F@&$e06fLJY1$ea"HD@!(dLf"!#P $BI! R42H4HFH,0c)%HLJ((`YЁF  2fbER "XM2B@0224 2D40P!2$"0B!Ld46 34IHF 1F RKf2$T ؐI0L1iQbi` 0!4a f"F2(4&Ȥ`@FF#&IMLhH0BDJfJ11H 2LLFAdcE4X$dd))i2L(&dЦbfLLFHHA$`fT0d F ICHA !&)HQA$ )AR 0H"dL 2 H( H2S J` Ę ,L(d1#$2h`$l#ʈ!BR,E0L H)JQ1,&LXfRIILРIc$RI @ْc(XX* LE2C 6C"cSK1Ld2(`62Jhҙ@ YHĒY$$2@hA0J2DH%#dPPcK&1c$M#$i$Dd$I 4$0fXh"(M))J(4DLD̂E A H3(J01fP!Q j4Q d$1EPFL&Hf0$"0%2)IEL1%@ 4ЊM) 24 LPBD`D4AL͖P d&DdH1@BJ4f"lLLa DL$L`بĘ,HR@I DKHY‰fđLm @ ( f@R4FD6eJID̘"d*0 bHPi2K E)fQ (Ifd4AJ$&LhaFLQ$ @ILbA3%%""Sɡ(DDF2)H"4̒JJ% RB@D DDI%125DK($(&IL0$b$DhQ@ɀH҄i&d) ) ,PdHhh2Dh&e&( hb6P$@a )L d21$I(H "L $F S!ab L$̈#%M41FHl16HLhD,LEA$h!IA!iL4D$4"D`3e(,A$2D0$FBLB1I,IDIfJ4ADP bc BDƚ%($D0DJd@LQ$$QFdiē5)&bM*d!!M B&(@ɍ0"iS&dɓF EdX !#"24,IA Iab%&؉2l D1%1BHi "B4# 0L2HčaI LbFfbD‰4XL̒L2e Ԓ6R2$YJP(fh1$3M$``F4SM& Y)j@0$Qf6  E F(fa$"iHԓ`d"&QS! 2IDc4hIj4fH)L`L26@I&AH2P)I$d4F2 DIJi%(0LaƔA$(dD̙d$ K$Q2DlDHLDMblle1@ !41 4&J#($LʚLJJ$#&!db1FdE & )4l 4a0c)Ff(mPh Ĉ&DDA(2&H1"@ąI1BTF)bSH3K)RE2"e$Ɉ BɊH!I 1PSE$3ȁ٠ʑMa)P H٘T04"L4i# A0b)1DYHfEP$fD"c(fAbS$D)RM,Ibl@f"3bS(SFL) i4 HS&"2 h&2R",1!B$Pdi!Lha1&`BIP(H3$ A$!SB$b4L$I$т$faFb!1Y $PM4d(`d 2RJ &!@)@ȚC( 4B҂2@Ȍ2$I`d̡f*4L $H$XRH)LJ!6$M AD"1!JiK RJ&L# PR@ňƑ!(ɡXi"b3"Q$P&!(Ɖ4`#D4*AAb*)LaBJc DJ@H P(`1%hc)i!1dJ1(XDfJ$`3, & h H-52Ja Cd DI %Ei`0hDJ`Q H#&ILHD!$F!,Qh d@P$RXJdD!!IM2$"%P&Ih&bL&@Pa$LhbibeBBHI,@c`fH!PBf%52СJK @M1SJ Ȁfb&"!C&&4,)aR4B$ьc& #E %HM21@hb4HSI&`)5#b"1I`A&FC2 4XL0,JJX )D!K6Ȑ@JBɔbbe%D2cB1#$TdL H%! JDda$BQi)I٦HT 2@I idA1 JL#FD!$3I)PDa"Lfa!(e1ư$"HIBDLB!(&Lf&DĔe"ȤK D#La HƈL2&B3@P#$d FhS(2(($"2!Dh#@Ȇ20@IJ&ɀ Q$$B&P@3LP!LC1I!2$""CIReM!0011iC4MP$@E3 FQL42FB$d@dPLДR1,f"hI$bA$̲"LD 2$YD%"dF0dcI ,$$0"JP٤DL(@Q"R`"؉ Sc 2h0f $Xe &TP f0AF@@A 4RCAf"Lbạ(2) 0TBL@h4,4a304BbB4&H@d3R"H3L" DȠ2DB*E4ZfM3LK4Q4@H-%3!,afdYfDQ A4"bCA4F "K3aH1($ (($&DdH"(d@,R`!@AH2Q1&!2 @J JH"Hb!C($RTI&4$ђ 6f$FfDc &I% #2h@DC& BfJ 2@%c$2 PL%l4DL$@!"$d$0fL%"(&fi B"!0`& FL$!%F0ɤ2h22fTQ$(FM(e(d! 4Ɍ1d,!BJ4Hl1libK #CB(Q0L&XJ4I$d Te &!JLQDP2i@`YQ$@QƁF Q&DBDJ3($`1lhdF"hS2!H@h,fIM2 , 4A%P#)4ȂADF)d RBLLFQI AL1BS#Le)BB HcI1&b(c&DLlJ!H) D͌`( `҄ƐD& 2#B!$ȲDiFD!P% ` R)ɒL(l0h#&"(AL RfšdҔHA$ 1BE!LS$ )$* &#M"$$fj$#͆f)L@@41 5" FPY h!$H2,!f)ELF$1a Pd4Y#B2,BB K($, 0d dJ$EQ42HD"HEIH` &ɍ2LQM3Y4A#4L4)AC̈LA2&c4)0DAR4`aAdX4M$#(&)( đ$H F,&,@dFfL(ɊDdd$C dF(Ғ$Pd#YfPP3$`% 2 hdiAD id "$H $e&HQF!`bD hAbj&Y%$2I@@$P HR)hI  10QDa(͔J JC "H!F)$™EIJb!BcIҘƉ&KJ!%$ `&dR R`2(L"LԌi1ęPb#, &J$I%0!%4"#$4  c4#0dTI34̈&F4fɈD% L0"03%) LiQ2"@@ah"E1eȑ ($d EȈ LR0dAJA)F$ZB C Dc$ ABM%2D $a 4h$H2fd@K)$JKI"i)L"AL4MlB@!3RiDdH0LIQ24ҒPF1BA H0A$fFJ!II")b)&Hi)*VL̦11$fM`ц !Y(43ddٔ bD0`B 1HԒA  IF d H DHQ4@D$DFd ,I$1 M% &( d`EDb`L#bI c4!"RhĤ!!10"ґ%%4@IAA 1"@6$QCb-!E2#0"3A(bAPdD )@PdRR2f",e()Aɐ$$"R$$e2&$PXSBlГI5&A !QCLb2%( &1C X4 cR`L1` &@a$@h"P E$  Y2 $P@@ E!@" ɐ!@dM" &L&i, 1b)"HCC % 01@A$CDm+,(MB0(i&QAa ($"QfHJERJB&S$0l4$Db#hLS6B L&$R&ifY$ "H i aDș3 #4,& 6R043% $ L&4A)dI-0)Hd*J#)@$I2I% "H##fJA%I&fi*"e41$BQfJh"4J3M)#JLb% JhĤ 4TLH0"Q AҚQ)$B0Bbd)4 A1F)3"BHLI($ i3b4(D)12Li&("LBd $$b#&b3cFHa0`4@&JHK!(0 0F "h#I$bHȢb(A031J1aI E bDđFHE$S 2XLha32l f(TJ2 $Ă2BJA3dLEHJ"2L@%&D"4ɕK1) Ld̔P&L%)Ja1` $BF$Fi Yi 2@1Be!$ъ$RYHD (1 Q 2A"c$$Qa$4 bTL&Ĥ2D "R&@YLRe)&d(2 M6DXQDH#IXa3&I0cLDD 5F$H!QE%4)`PfFf) LM  K aI31# 2e3)Ff(H4DFf!FJY ("bDaIbF41#E3 F4a&L" @TA Q4S#BBbb Li,i&ـ3&$d )I 1 I&L̘HLPRB&4!"`A(@"ddhBhP(LI$bf2&Q 3F`b`$$#,A@%0&#dCX`&2(d #``I јcHb2R( QB L54h04fd@1"Y I,Y)PA2Q1`Le)0 JhM& F6`"I`c0dD$adh 10QDiAICDH0&4)҄K,PD%&LbYa Ƙ@i bFR#14)$h")#2 T"R2a40Jff$& $ĉ)3,4LHa&"IJBB!d2Q! DH&0M0Q!IHB$ؠb D,#3RPj3` K$1I$b 1SHXR#0BZ dDRhJ$ ,"L@ 2Q 0d2@FDa2)2FiD"f2 3P $P&DdfKE$i!D1)B&F0"HaDBXH 42BfRDe 1F!$%$R@ &!F QH&0LfH LiHJaI),`4M%FI1( RM2F" E f$Œ) ! QA&M,R0BF)@hɑ4BPE(IJPi(D@I" ,)M#4ce# 0fS3)$ EJfH$2M2 S2ADffPdȈ(1 , Q3DXD3 ґ (`Ҋ6HJ&LS(ȦHBaM&&!PS,$R Yh $əa$Ad$H)!bJ"JR(Ȥ!DA)IHdC HMaF Ĵe HfIhebM4fILF`1"&iLAJ,SC`F1LMB%3d b 432D@Jh؉HD 0B)L&LBA$T@hL04`B"i4)HLIBFD`ٚP"Q &QL(Q (BfJd2f (2fRbHC2Jl`hBb!B$ЍA$) h@M30Ȗ)JD&0%&4"%F,%3# (1,YDa0DIDfRDI1)bBA BDAF4P*iI$A!LC4DbI!L"`̉2HSRB FLD`$fb6(&dDRI R)$ 1M$0 )$dF I6c 1BjhD2f1B0 #hĠdD"D&T M DJdeFEB&3D&4Œ ` əA4%4fXBLĂfL$c($E@!#(DԠ4%02 #0$$ɓP" (@F4EBDDRFd!Bld b(fbJ0DF$ 2f$)1DYfXBiقD)Ħ̤$I`4`1c%"1d" ` cf1(3F ic$$؄DQHl 2fC24"!bL"LA""X!e2YS(PK$K)&D  DH10Y @`1D"̣ iM$JF20C,HL "@(hEI"1  $! 3 00I Hd bDMSBL"F$2JL64BL2fRJ l#C ( AS),dB FR!E&HBJD1I"ȕASƊ@HLŠbi3- ɖ H`"Xi!2DdaLJ 2R0B)KI Jdh"FS(PPcaL0`Fd@I1 0Ɂ(`M P@f҄B`B2&DIH( F(FfdQDĂHJ1RHD5#d4D $& "h HRQ0Df@RH Dh$!0IDF",f!1TPDD2A(3BBRъ$HD) D$dC 2 I$ ̐DCIHF4,a bL00dY4 1"dЉ I" 2`hYD1,fRɢK!4B2LJ14$(FDD  L4hE2a `bK&") !!" d`,e , @I B#2HM()$F( e  I(1H"$@FY"$F)F$#%64f0QDɃI&AJ)BbF -D ,$dAFH4PR"A3$Q2DE  Q$i("f1)(J Đ!&,R(H4(,)L6e0"($)!i R) 2F1M$112e0̌&K"h"Ldf&@@h!EI$c 14#ͅ$!Pd`@АY%!Jb&$)HD$M e3`!"@CDiIK$(S A!0 L$ ̌L6&X$&`Ęl ̔dDi  b$IdEJL fE#a2AQ%DH҈&BJhY$c120$ɉ"bAK)!&ДPCei )(`BBDDR" HP2 CA i@ 1CC$ ̉ ILM6II&EH"2LJ c!&RDIE %4̙db`a)&BLbEDfd&% E4 B J2SL!Ee $HPa5)d3HI@A)PI"H "f4@d6` -)$ D(LLBf2Ą "AbRb$2L)0bi R2beّ4LJ`E #C4SL$LIJ Ll01Ȋ A2$I#P0LMD$&b4CX 2bfC$l" PB& LE "fK"PLL1I)0#0dD%CC3DI%$%IB,$QCL #$` 0Y2LB*h4%,I!FHс Pˆ!cLI &M̠F ,Z JPM&E,0aBLC#4D2đfadL"!$!JI0"$FJc`$ L31Dɔ @H$Y2$$))(D`Q)I#ID&ȅ0$ȑ&2@JDD)(,0%b! "BX!4#QI @a()!M`J 0iFR)LDI$ Mf(ئf1"$јD҉1$" e,!()eRC@RI$B($ DЙADS)! !E #$`Y1,Z2h҆@1#))@f#3i FZ0`bS, &́d % ae2A@є01B&h% 3$d$)B d 1c1)(JRR0%FDI  2LHhLP2P22&f&d12̄2(R0 &e`D &HeD@ ILE!ĒQbi14faD Rȑ@Ғi&$FRdIABDHə4ID)A4d@c2؆ Lh)SBh%E3K(1$ 2 334dI $b"K&iHR1E"`(""Adb1! ,&i#"4H( aI!23I&)!2h, L` 12JHMibH̘&bA D0̑$4M 2&C,&BFd$Q)$d0DD$F#DI0%$#&F!@Q%2I(L"4cD!MR!/t*T@h@4+b|$[Ϋ& 2ͯh[OX48>}k&Xj܊]ݳAUZqhu\;Iu[݋Atw+;nۺҫtsp›tݜG4ٳl3Zvwu̪4.;eY\jwjtuۻZ]IhmYնWvghmնG31svw2滆9ulwl[wi֙*WSw L.-ju뻻WvݶnkΫwn볬ݷr+r)۝I(wZ۶ZkmUwB5wsSqqs91]i]wBۋe]ѹۮI2n涵[ ۃmvu[EuuivvӺwwngrڇ&s-b]쳴*᫸:ƫ;&g[iۚeݚw[m][[՜mۮNw;VmnȬ]wMvN[]+N[S\uʷunr8:.rw;9vݺYwvͻr;NXζݜm˳.fnݶgm:m&UݲetnY˳M;ݩٻNnTXѭsb*nLm䭥wvۙNwu4ƍ:8#n5smvQvV3 ˫ J[vۺkv6r7v5vvPvssm̃vmlK]\StuM;;snںmT`WvWfl;]lְ֝kݝ.rinu$ݺ݋v6Clgma3udlwnөMZӭ7oT@$dES@I*U?2aESa$U$L &"B'zzO)ืi&b Ȁ!!H4 "1&FA3H`(&2""аl#I1$)& B4$ 0iD&$,$dB 3RSHR FRRDEL% &PJhi 1064e,B2e3(4CF1RF,&)& aI6I0BD!d", 0LƉSLFai1)),0J0B$2R`Xhj3R@˜6332!R#he(I4̙ ͅ# C,Š "a"D&E)bfH@)a)" 2ф liLXaA3 `M&,eQ6ID fP$I 2KC& I&LBbd34HR(Y2Q`CDd eM 33RA&LS0%!R&aADI)A F"cDf 6hˆѦ& I%"eȑ1!DA3CI)lD1b 0$!A$JR Ģ I (1(H$`! Љ& 4I$a4THAl ,J&I$fD@fMDaA &@LF(L f $"03IJ(00@ f&bBf"0$d2J##AK3eD0 2"DFE2 $HPC$0S2i2F04`MDbEaHM$%& f02&HlLb# F("P2I)@L(QM1! Bib20K(2ADI"‘2i! @̡J RdRS)! fI BP2@c4d( $%LR0L& L6i&)$d`%!)2 &X# $C3hXL2IAe221ILe$h& ib6FJ %Cdda0đ"%HD)ABdL 1h&!&b!)3DEh`&dL6&CI $ɒb& J hňY(XdA& CI AHF4 a !C R1DLD@0hRL$ !&"D1CJ4,I I&(&(%)ddJ#FIA$0H J&"PQ#1AL2$c&MI,̚!,Db$RD 2$ bLfQ&0F$@ SfK1J"AII (%!A1M*a1SFfQBJ1 23$ A(Г ( DE&L*Q(Ȓ2!!"a$2ADS"M @ b&c#42&HLE"J I  *RPb 266fb2h@ld K )$a% f)"Q0 $ I`13&#! K($$R"L̃(Њ1J10!"B)L1fR *HIc2$ !B1DCa$30RL% a(RDlBJbLcLJc)FHcJ"$BLYDfAbXS"4E1!DB d4 L0il4"$F&LHBE K%)IdTh2Y3 FB4 ̑!3 I4d(AAa#D"L26e!Y0bCDb&AA1Hh$$ɣ(Ie 2iB!$&bSAIcHLJPa Ј$)LLI LI2A4&4B H"!h`$dP#" dŠiFi%1Q$&XJ@i,$Q4e0Lf#$&4!&`aFP*)% #1I!F41*Pɶ$L(&fD 0$$!cC"$ B1iP#1"f$@I( d2&ME&H YDf2(&&aBAFFP0bJFi ɉA 6#3 D"$FM(ɘI1I1 C"3F,f)4M&)H PhRRd! Ȓ"E&)`#J(Q$# 51-$!#L( X)bH,cD ,2"$ɄI bM@̉$J"2 1&4Ɠ&L$dc$)f(4)dD202&H#d$"LI!34#&i"dI Af%"14D0#(,RFa10! "m!1HP  @D$ɕ"(L% 2F!f``dHA 2Q)16,Fґ&2)D%I1$3 CD )E!d%E4 )(2e AHJFf&H -$@e!I$!J"dLC (Ѝ$` 2!JB %!Mb(4I0,2b’263a@lƒ$(ibXFIH0ѐ 2`$QAH3AdLD؊b&i&2 3@e2Cb,D!FL HXBL` iI J2 @F0(Hf1 A Y `ȣ" bLaDd2Q M&!3$$% M3"4 IC1I 6A3$3FfhȔ4L̒#1FD&$ɲaFBR"04bi$IF3$2C  F0M Lb2!&KD2$&TI 1J((%"2Aa#&@4  0(YdFfJI4 PH$DFI$`H0$)(0SJT !3D20 ɐ,AB L2LhD1 DD(R"M($PF YJeȥ$cB J""$%,b))$)J  &CBAJ1B"2HK0S4 H`%#) LR̡EDPi %3 S(Cf!@R RH"IF)Q&,(H SL )RD Ja#1IC aɡ `F*R1 1$%PJD$HL1ITR))@3&ȄFɢhJD̙lɱ D`ŚIE2ĐIbJ#&))2 ”bJ$id$`RdA dM4%&ID &2ĔLhEdleFFR,LI4$b1bB$1H,R,i2 )T2lRFXifab&dґS( I36S)$A0a&$ h  b" fiD$La%i& *cbM d)hf"FhM@,  D l$BbIH0 &j Lc Ȉ4T &P FH4$3 0A$ S$2M&  63lf! #C4ĄfX0HB2 De%)&iL()dhL$" !(`JFLDH 2e(3(e&)&Q6FEa$‰3$("M0S2)QB`"c($` " 3I,"L4Ȋe!P! !0 QC()PbH)6h 22QII#"&Y)2bɦf dČHL Hh1$ lQ2E$`!2e2# " %2LHXP0bF26-$$PD@24I"%`a($Kc3B#,&BbJ @`d,Ԍ5QIL 2 Ff2DM1M,F21d Lƈb!FM6(d$ Da`PI "SLc1)I6C I1A&dBA$ "jf"2PQ$HI@FaI H&D"ġȌȄ &e$̌`b3(4&$e0b*$@ccL%6PL IRc&A,B4,JPe ,R&")$iXD,!"1" @( Fb"a$&cA*S$cC)QF d FRK(lac!"#3hJ"6(CE(Q0 H!*bfFf`D(XRXbb$B(ă4aDRbf JiK$I%"dRh)"$MJ I@P4EQ114&@JFaRADYLaƙJDS bdfK%Q @) @aQ%IM# DH$h&  1!fdc31 2ddaP1͔DE%S)("!0"e CJQȡ `M$ca!%d1 Li1)!c&02h`QAF @@HbH#B2fJ20$Id,ILA%D4,ba)LFd2 4S111L$&1H$0h!B @1JI34 IH2S)dH@0bM3K&"( 2 3#2R$R$d H$dHX01f2 D%H3Dd !,,"XȐQ03L"F Dhc P)2d41Ah IFPD $eaM2YL)&LS$aThlD$2 , *`JHbH0`C` 3baF XBJM0Ѥ$%$)D 2HM2Q2 $e)Hd# $#$1C##EP)e#2$LI@RJL1,E0)d*Rd@JK K%La$QLI$Ѝ&@R# a&&cF$3HQؚCL1 H$hEƉPQHB0He0 ĘFfdQ0hFI BBIh$h!R0$RHУ$H$ ȉDfJ$HLfĢ2,"1 H$ 2fB)I2"M!E$A 10$I 4FƒcLD&4b& $XbQ$A04Х !03bSHIH4lL E B3&S4!#%$ 4AS$2bI2, @BDh Che&ʒjL@C# i)%",)L`I L&li63$(Rc!FRȦB`Rf(I"JIEII(lH@e#%%#2H(4M J!"d4T Xa3 L60 3!"2S@Xd a, B (i!1Q 0B(D,H$ˆЌe)XII(c3 ̦#,AR% DBL$І&!fRQ"c KLHҔK)2$iHE 1"MLLf6LP@1 ę1A!& ! )4d IK DLi4ф@0&id%(LɁH IDb((Ƙ[0b!RC&d"0K)3&0hFDddى(#2&"Af&d!& BH2F"h( 6$(Db&)2@Y("b&CS Ď`H4J"I24 )( bƉ !R !Bɔ HD5,A C) (FM4ɁDa#i(QJ3dDB(f L`fF42%3&&h3aLD, ҄$ScFЉ"L hP"dbdMIP0H3")H"Ġ`2 ILH(В$%XH)B!$H,# BE c)B1!2c! b$"!,c1f$HB3H$6$Lؑ، )dH)4& bC2̶0bHeHAi2H b) Pj( S0!14ɐA " (ēD$3l#4H$ X!hh6HHA E(2dY!I 23QHƆ@ &Ia IĘ؈L3)$!C% LB4ȦJm0(2R`4$K, L d "F Y4@ѐFA4HJ f&d$Jc H0L31LĈ̐cB2D#)"I 3bC1((I!1!dTJ#I %`RBd%3$dd MI464Qdl $",f)E lآ)&B$2 ĨDHi!D!%bR !%2,2R $B$D!2XDXe$%3@AP"FHLL#3$HB0I(0A@ 2R -e&2l$Bii0HL##a4#&" %JB6PJM2(Eȉ Bi #&10LLRT"4fбHQ(X(f,&@$HMDh̥"B!HC"d@0D 2n^I$FR&`RAM !"H DЈeBJ%HB,4(IL L)1 26  B`DLH@H, ƂJbh$hQ)2 % 0ĒbE 0lhM(ВF, ),RH(`f`aM%!H$(b@M a(Fa4Ĕ$DS0hK I4&J $,deMa3 hLJI$̖%I4d3" !@2ʒ!FdHLHC%JM%2S"1 K ɄfIID,$ddɁE i#DăeM(T`"QIFDCBB1!!A4@DeDؐ 0j E0 FI0%$BɌTjHɑj" LY&# H1 HQ$&dRML!P4a2H2$H$*QC5#JFI$%2ffID(5130 F2LHbd$A30I2@fJQ&I`&aS AH` d""& L&(ĈJH(JƑ$ab@e,JPђ&0ā $S44@B RF"`,e&QBHHR# "dC R#$$"3%ADbF 0KQ2*4!B2iI(H) # F!P%!$$% 4" I&11LffBIF@C)B&bBHRFPBcDD(Ș23&JBik 0ĀD e0LC*J@H3,D(҈H2RbA%#$Fb0HI !BLLfAC$bcCEH!I$H1H3LH!!0`@Ie4 6(P$f ̓  "YIBH)F$&LI AHF HbQ500,(d!b"!IdfdI!A$3FJ@e,LQdI2iC$2L *J`l@H0@J 2FHbS$4ɀ3D,$D%dA , CD@K$R2@(%$& R I$șLS$E) H P3P!1ARɑFe$̆FB(&DY hd1ZE"!@ HȤH$̢e ͆$HH23&RI LQ@T141 fPʉI$ DҔ% d!2LQ3J1  $2%Ќ(&,FI1"R#@$Ea $L@YA %RRF3)d" Ldb0adFB @ 2R4i&P4ɆB1dbdHPfLЄ21E"LR@ɣ%#H!(!H12h, iRI$H̐FfE",M )LbEȚA&2d L $ PЙФJDŌdfL2dĒdB f`d0L,@SS@fDJHHddRd   `HP&IE (`%%MDia$JE& &3&I&CHRbQ`M,@26 (b(02!&e4!SDfe"2a$RHR1Y1$Xa)d!4 ĒYFmĨQ22)!HX2$2$4B$AH"0eH@3A32$)"K&#IXf IHH), !F&cAK"L, fHBD"dFDH$J, "I E4Ț1 )PAHJi$ J6&"FL(bhd,lX3e R3#"dhE!#2Had(J$R$@#4 #LEI`D f$4M bYe&LI3% #$)E BJB`2%$"DF@ ` Ib4ɑ$IFJd22BB#Dffd dJFc $ h3#"LdDb(,HL$D2jF44ad)3R0f ddXSBdRiYH1$6 "),L @"I4ȥDE !afB1&420HL$6S fRLfCID$&Q1#LM3K ͚D)Ab`h 4 Bj "(fM4 3)1ac 3@ B%2` 4bɃDɐbĄ2!DDH1L`(ĢYH)!DB$F6JMd IDSA@!P 3b&RJHYXHLbLdI&bHS@fhC1Cb%# #& Q(EI2 21)J&lH iI0Ffb0 Bdlɓ&F$0PFʈ&"L)&#2L@6!$$ h )bŐI1iE0 %$),"iLbM@bDfHe 1!0R&dZ$HB fHd $LHS 0h$1@!JP@3 %(QF #Z 4A# A##$c% ĈRR C A!1dF&(A"IC#DDbP3&@ ,) A"IH3MHLL L!PA1L3&4 (D$31(d$D& a Ȳ6hbS4`Ei2@Xf&2i34i$Ȧd (R $Lf 0iBLhғ!24) &SBP3 `c3$$̄! `A@hD%Fdɘ 2TDX̔(2LB&`@d#Hb)@lI2` $$,A4P"%K4HĢ2`B 3IB0H41(20F"YDIDd"c2LƉ $fidȂL$2`f"h`2CH#%i$D&) bQ1QRR#(H3 H F-XІHL!H BFAI 3 R$l0&lMт4(j)# ȓ)D3$J2$$L1#)C&i%(D ҊF 0RIH LDĘJQ ,)1D#E1aB)HIa$3H&L!0a32C-ɲaB h1# ! 2%JJCBI1DRK3`L&$`2@2b #"R2LFF2$2, d$&R LCb$$fJL1bę1 # Rd0aLX HƉ (% "i1i"0 3#DBX (@I BeHb1H ! 3 41 H̀ &PaD$BF"# CBP@PF&iMd@BDD(Tb("a1f@fI`$1$fh1C#H1 D4fH$P&eRIIIRSE 3"@,”aHBI#JQ40RL"1D*M0b#$i$ Ĕ̄SPYLJ2 "Љ6dbL$d@B )41 F)1&I H&`BaLfHIA3#I$ɓ"$L0I ,"RK"i$,1"A#$II Db$)J2 122"Y&Q 4afLbcDBP&ɖd*0JCIHYJ$4ؒJQ2!bX"$i&JI1 (a2DIBCLXD&,L$ S"Ff$PI$hP0&FF(HA2YF%,e#B4"`-2Ha!% h`ň *Lɑi 3 h  $"0Ę lYBcP&41%4DI0id%JRH4ɦD E1LD@X%!$30$2(!F)E$3I% P&"B4Ĥ&H#FCF"" $ C43# BL444dl 2(,d!1 !H0т %PI4eda&3F0`00Y&4KB`2BeJ)CA$0Kdf6AHdfhDƘ"a%!bL$0h`Je!22I` LH PJLA1aIb&&ň12)2")LH i&K&HIDȊLHșf! `i"iE Y Ҥ4h2bIdb$@ 2LS CH(dA)ĊF6̅&E(&HĤ3441" D "I,f(a$fl&$b$Cad#3Ff)-#"d`HLe$$QBd$I33BdId FA$L10!JRCI`L`0#Q)a, 1 DDɓɄde166RPfae&15H @(PR(hRF(HHHHҐ "14Mb#b b))"!BLLI%& 0 c6IIRF0"F3d12&C ! )D)2FFLɤh$`I3@К@ĆL %1 ɔ " L2fF!QCb(4L2#B2AJJ#@1(S6M#S `D)#d( K2PY#HRH2$ LFĚF`a&ț3C"f%J0IR,2A$fd!$$̐"!") )0I`XLXL$D !$$$I 1%"bL`@&H&J4iFDI`A TAcLB$K „$HLf@ıB DXD1(YLCbL Q4f$LD̒2$)P"P!2@DI&&aL2$ JhS0ɋJiba,CK1I ! B,FD2"#$%%d&FLI@jI fFLeHhL&HdD"SQAL L!hd&%b)(F6i""BddlH)BdHIc4$",b И 03fI&&BF2 4͐ !F%4Sc3E4@SH`BRbL& d̒DH$4HZM3dCDDdD &F$SIL)%M&fB##$ETEL@(1``BbbaH0,RPFdd M2L@D2FdXBP"!DDd&a&FPMF3#%,Xa4! LI#HȔ"00FD&I!a&S&RɁBDdhHHDII"RID$#X͆ €)&lȁ%df@SHKbLIBS 0B#(2D1#D&JCLĂ$if@ 4 L@$1BС LA1& LH06&M$@"$R"2A,SC&D` Q!!&LMe!DRC(ER#1HȌbe ,LaM2&QP2ĤbaL C  Dd(!"2L 23$ "c""H"(B@4$PF4 fi d6FQ &"HSLҚhIF 4)bLiHh00E!0І 0R "E2TfdD02RAM$bI&e B AI`D,6D1#1ŐR)0 F42($#LDF%)!DQ0"a)bD3$%ad# L$ I0dI0fE4̤Al%%L114H !H4$$I Fh ie"1JH$PCIA0"fe bd245b(44QIX$#1$%1E,&L!4dS6RI)"BbDɤYK$2a,a$Q(@QȌ &aJ&D2IBb)f%*F,X1Bi40)J"X HM c$$$%#)Y$R $$F!bS LȘb c #!HLTE)3fQ$FIB&bI"$ (J4ȘS"!#E&$bbi$h$ "&AbJD($ 2d4dRXe)D#3  " 6hd@c#a A& L"Y@ 2AH4&(b!LM2Hɢd) MLl$00f II$ŠIIH)1H %&Rc,4HF%4 IdK)I$!I0,IAȒFFl*%&0BFfJc%DBcFQRi2j$ldfdSDPDB`%IbC&0JL2aJ)2ae%DHd3`S4DID)Šd(!bJ#&J"2dLd0!$,HK0REH14F, RHeEH 251bBd41`)c $D&D2l 0 J(3Ca$&`HƊ&!$"d3 Q)1&%RlR0hb0FI$fH i2 ,Ƙ R(ĀL(ML4 1I" ɔ"hȥRCC"HC M11 %  A4IM4%DE*fM0 0DbQ,0 ""[M5,gsu8S;MLs7vIMŋlcm^k&Y)"xU˕77,ɛTUQB,`_c }r}u~Ni2O8DF|)Yk?'$R< 4ФsD휡SYlm&Nl[q:ݙt>bE=etbUw76ilfr='v HRn7N; #e$,N8bbUF]iKU_ߧ"v.}1l6AIU =. ,p_ W݅C*6F;_zH @$O›=ݞi3 -ѐ,[Q+Ք].m/Y_Pv $M/?ཚ+ -0 C\ݤ:T)!8r20􂰊]qI F ^X҅8C|:"ǖBykřS^⬥{fRd|cP#'4^oGi(}*hDBtLB<)%e܇{ޚjHViħJ7sk?M|;eH^t\Rsp|"Z|TCR>J P""<|ّUgw3*%:U6rbh˪]FS>Pآ "BoޓSA܊h/XцC*.1 ZjL<| _˸OD+[Jӈէ|9*m>)Tc 5IS2n6k `OXtؓ~}+U3W2xSxOJa3ytu<&Z^_V}wv{~}^={*}媴/F[sPaT" Ky9s![ϡƥ\>t1 Ep5:ިr1:gt>οUt*kȼq)ͬ3-a\{{^1Y al5SsHj|UHD 饿~1/s*_^8Ud.XS#5gKSXzIZ@CeaYkoaE$1Kf1}\}%dߓ -Tg)cMkS7fɤTŅ>Gm]2 )E}:c-ݛu^Aê; M/BBGsu/d4(—JB u9|n-}W'N2NSM)3R%ZOغ1 Uo3^~ؑ ?%v*}k#K<3xrwԭ헦y)D?'*Wb[.yTB"Pܜd<㎀EFԒ3,P&*gkڧP6S?9HaOD瑿J=-œBbxb/5i4-C0B0%ςjd%Lo^v,/ 7bn{ْIo۷ӸI^`c QJgc5W٣/!஫}g=%[c&HrtSyr65m|B.My+J߾{b" ~5,bS]Qߖods9.23?]I{k^Z%Yږ~o.e2`KLi|cY c3b|}%!g(i)#` ^R4Lن q;xҭ 6#~~Zp*vE 0s?1Fx qW-C#Hf;#-WHw\zjE9N6p5b;T-NT EeB!ahЩ_K~-b~d ;uq]Mޮiu߯hߜ~O^{WOX11ݩS @ߛǨL}Цc*%u$r3_T6G~Msz[獛fTЅ[8uO鶚0X1A sB{[6>D3Wa6ѹqJSg 5NIZeZ%}d+@jjcwnJ/_Ei1ԄK7UJWWDv5b\fwV j0ɳ9n_Ӏ#?c7θG3O!X)HtϐjpHqwۓ5aRZ͗)+"tD cwt7ܶ( N\9rYlv@[Nh)sÛz:с/?[cMd LlPܱQ7zxck/^'%ŵkbZCh_M'V@R)pY2ç\u*\,DUen4FmQ iE=[h5tʡZ֪:o:(;h*)VihA4F C'ssͽKJOۙ&c I2ruNn<] DM|Y1TŇAW崧XwՌ_1-tJ=O罈P$թa;/U8 WRE[_{Yi,K,URwݟ1_틯b%B#հ4+Jpd,0K s_n9g/!m(MϏ\̫Mݦc_4%J.L3 ) j1ECml!G6BUl61aӍmu=173,%pISiT7 aQ_Wэ뱓P4APK$WvOuQ!DM>OZ5>< ޮ_»Y& AG4o Ȋ$u;O]QÙrް'F'/1QLͦۀ~ ]||ݫB`PU%lo;F'=uh /au%;RBD3TY#Qɪيsm:_o<|*w4K۲a<L}VNsaF0Z *1z,Ý]lofQnxӇ֋6t#>EcXo7]V[5EVLjOY=HkݾcZZ_z~EX"セfԟ(Z!YͲOtëIuwIH_lN儫yHj^NÁYv[ݴ׈ 1$Y5Qr, YiBrv惈 7.ю'PP֡4WyLwb}$=SMB/ pWuh>m޸AmƘ ĈǏodd>t <)<6 dSΩS s~l4<]u wLs 1(֛"X= Dc'Wӯ=姌zc:1}'zFzwbASP09&`9S^ewQR.,s<~X5yS^T|&nv1 ͜˺AVs؄wc~wK/m*cټDzNd́2гޓ•=/Ƴ5&;v>%ÌWR0\~t.pb5`)4b# )>(k/\£=/MwNcPfm8y5Eb=(ԝZ1?B=Yن: ͨ]Я!x`hN^0ɴ{Kۇ TLҝ3Fo{떴VVK82X_!v)mzkrnlC,i& ٧nzA%3؎ᘵʈVE$[wDkOqP(iaKǩsK%}SbN-;ܿ㋬ҺEKy(UܩӦ"0.㔬E8EafT*KS WjE0B`.(z5,"pێs?U6J`J.ȇ[ wε)}RCu&vkSoءtWMhJB2s!uGD1dȶuYj99SKPkomz0oew!߻tLbj4a7rT1{=Uͣ.A)ӳL[۞-;.z#Jb'b:Sf@X/~-۝iALa|4W2j ga,lv4`мq=ӓc3Vl6pSڇeDȡ/jecgQ4TݴdS+K{My2 0O"g\Vдybl7P"qER0z-Pn$9?3~sWcgQw߳dzQ|?EMG}|k[XqO~iBUy1U+fk2K;+ REq|C t}J,== l ^aҚ@n<}k>e\Q~%%N:φx9d4},}ӧb7n(5=ՆKTTV] ]/ Ydw_<#g/x9T10{IdWu咒T̀-/ls!6MK֯Q[磎F.*tY/w3Nj>6Vs WS~[e Nc?^kwd'/w1%G')#=p28YE(9nh[{j{WP7aevuI!U[tEaooP$a*dS;Vs~hzdUJc_YwW%a"m6o.jPQReBE%Ffwy=/MBkPOr{pLQЯ+-oI,O,KN~>o_ScKt>ϡ~U*;=x&+3**|{,{z|>UB7Β<|!%5gԶ>Wk6gth"Hfҭːl봨šfgAؗ>ؘؿnJ. /V'ьrIC&UY7-[ߣo(F]CzO?Z5ɗh+61}.^ivHzWP Y K[;~>}z'g ^EO6V{Hɲ3]Dy7|2sL?򰮭 fٷ[-䘿AsYJŗޮ;=/)`qZ:VFc dE|2/='@{T[ Եԛ02;]m"qV^yCȓUGg<3TãEJA?IQi6tdyz]d>~x~)C. ݖNP I3&.ugıw"#a/&W=:h[OrMDF{y*k㟱 rk;1u$0OM>șik(͉+ o|mΊgZVu1.g_bnҜ#Ӎ/G Pv}L$[.C7Cz/xzx(4adI=ΔSTȚz&{\t`7Ae<M`ml.s eUVjR=7Hе $??ΦYp [ՕM9Kz-o쌇΃/6cBjcSj08l5!B*ʗZHuS[c鿶t|u cC6t?{ _> [^:1@JN? SY_=T[19Zgցpo%+ /w$c!s=ے4~/ RnqSA݈snF]Ȱ,{b6;0%j.: x);lInm2m` oϘ8{>J+nR8YR5\\aހg<6~%i^FiF*`&z01b%w~aLnMgs¤W*{_] ,^b#TJ k9Bs(:?zv]lLCV KҶgTIC;(3%ŒKm{y*BVN,&-nǛ ϽSc@_W]׾3.ayZokeϑ-v <_vQ-xAe7r |~D8jxtUSq,Z' zĵFm4$]+G4xW]ћ<!v:2wu34U9hey'ny%b|osc ]Fdhx ^pR*\ST9X$Rooy*JgKl`,cTSg%nTjPP^q?QCJw+#=9ىL;g65Gf=|Dwd"d@MZ4lJ )1s7/>-1k ?DeO2Lunh\: :AJuF٧j{9nFvSGk(0;zde]#rst\'N$=6WĨF >vhVC廪W8ﲑE&|)Ngx-Ɋ1SyE^Ȩuv/o(mVx6sZzWʯz9 M)YXi;,Gi0ҋT\sζ3)=\\_jr:";5W&PT:^ӠZ%a&c*Ա,B{"x?xC+}幀c3WOK5)D nWd>CXG؇fZroM*Li eRR_baEXoW*[]&eٗ #%ֳpYُf/r: p7)$:.cB>̨F9@0dk06z6caO pO$YD7舯pmkr.~>J DmcPOs $V̳w*4'JFy{lX~dXm%hEE\X^%'rk[ьUX\aw՗J=ZFdT@x1? ek#%\h5Aow魏ߐeK4;f/3G14+}2,iH1=/زR7vY;Ut(_[a\)BN,>qZˡdlڙ/t #a6~jI;+ݣl񋤃Ι>[v2*%Z)Ne f*˴<-iJKWYkpoC=}_K9Ib^|Slipu,7T",z) IۭVE`px|Vr6Q^g(}$ tH@&q1}>3@T &e[;L1inf r-ruRq&.䙋h;Zq!%EF^RV1VS܌ -;WVf=,=f#!mBmkq={~t͊ R,y6!֭;2wqM78 o£l8 ?W=#5'gggsY5-~]./6nd. Afy{k?E sjَCyMx^(gl>i JN~ȌAY\D1: :HXm ,eY KUQ n="vWX[Q5P0?E6yN.zoq_joA{9sb1*ϖ: !yn: mCC0հJ}62,<3VUr4nw1>/T?K[?ZTmyV? K>5.|KY[3ZGm],vv洄?>Ѳqxd]`DZ9TSgsOJ'b+lj;uM& TOyHC8ɂBB?&SV<@O04礝˩5 .גl^wϚ֣֟Yu@1.9-U}8m;7A &%& zعW{1SMR ߏf5]p{+ٟ_id˶p+>,1coEx6*6+z.צ 4ZL4hUMf(6yÅcx}ɈdMɫY׃>e4w4hnM&,4dq|?6gd2XsL^kOétWA2Qܔc!sB<[즦cc ;X x?0MUg LslgD?-/5#U>';;v˷W#TL5u"^;>T-:=ZkQ&6l6]bu^U̝7u?6.|֭zDzkMCbxPɐ;|p6^= ocʟ+P;VN?ȍ^5~nU"ZS]pXL~J{|N,OG-0g=:4ϛdag#٢"p8hV.n850_rɏwT_2o(;LPEHy^SnFŬ4L ZPjuC']_[}7ŠPox֕^rHJnc^,7;fF( Fh׈лi6y rf\hT3x_b |"ek3o}8ע^ӺvZq07bgVW5 ~p^KR,]|266%@ʼnvK|Ju&Z\{|}9֢&4#ó:dWm)jN¤nl"֔؄`Se kdבqPНSAf~_+I[ vQ\P[L;Ωc4a.>cW<_E tav{a3v ;Pmd"A$72GvhjiL]H= MR jtdk6]& gvfe %):31VHA~]=qv(t׍Lt򷏕kmۥ^K|nmbHbt>ܼiVGJYM{eXiղ-I.+d% :>3_m.f~}c4Y?} |˔27c *gUXd晏77Ny3"*xm` oqQ!51?"o<|~ijh4!9¼ 5va_ެq*^ ;1)!-WkZ"JE-4V789Eb=ֺ+ %,wS/3j]bFWqld%ۘ*ͻDs3/|r-kX,z;zKMT:ws =:ȶH._BBW1s' `S֌Z iUټcw+$Oq'?@𦹤wBk=J-(RT>ܪdE-j*FX<2(#vҔL1$n =s( 2e!z]],L9PƼ-+[k H@S5:Wӱ,0BO)@j FCJhJq7Nr'S!V"j~xf2ZGOp}?ĈYSˬ"v>\ido͒ +{%yK719Yx] (O?׋QnSѝMfiFɇ ɢ߃gl5A!#tJcim|0 Wh}TDaۧҽvξ8{,3ckD@yof $d{P8-"aq7f,e}Qs+f=Xb pE|3K 3!s?Vډ]Wzz!WU4 >ډ?IXYrhֿSNr5r4ij]dPX51>'F/μ3wG[YvԠvm+Y {~ )w%Ѥ.g藷T\,'˗ vZ1-V{}agCi~*#M*˄~d 3rB ]t ؄9kJm8ﳈ|IJd/ؑex݄{NƆx.ևbLX!TC&&r6c8S=.R?Oߗ\ }Yn].I DMsp%1= .#pi1&Bw<<5sщjD(96{>|7 >i⹗+'͆^C!cCK;h #Lf+.-iK؈r91ա ߭Ԡ.PhݧjsT^  a-ՑC4vS:d?E?8~n8f!hyەׁ֑y8i<&^~՛ʞ1?{rb"\-st-q "ljJ{./ fTYvŦ4?kYHp\; ?>wln2Xi{w6ZBΪP0KbN\mdBح˫eT֐=ܹj[4MĮʝ}QE8{TK&D$grFᨂnkE53ijiZM:_rO[)fv2^y7({zX#7x4!:XɳTs=1Ae(ijhPȸSC?pxApukxZׇt9U2puRתRVp70xTM|б e*sC+[9P7I/6fU٫0VZ93^8J`B܇E%cȉ ҵAck`\6:?dҦض$QaP%2WnvQ϶UbR=?=(ӣS~ $<@on7 qSFn BߵjhkxX2u'X:F yV5h}@|pC g{?67 .zIz5F!rg;K9R\>^ =ڈ(47!RUl8H(y&0ZB %n9˻-[Ia"&rt5'RŬ/`E sf-bWV{dE,'!Qݗ˔naLէWLr׌:}-/.g|vG'6w/sPƢ2\^JiVs 9k+"꤃!ұB/L%^\c>z\H}'ʕ)Ae<'rt^<ڊ:9A>X5In{szV~B,ja |>u[Ky¤:9SZN~CLJkL/ObS4\Q\096;\U _ȶ3M攂7w"52,t*q0f^, S޷ylH8杊Hi襵h-Aaq,o+۩Lpq#1 Ȼ+M_ 崵=hZIs6na(CRA#ժg2s]Bfkzз}̘Y ȁl7e*Go;Dtw#V71PBMbv#l-_;77:=T)wZ_'69PR&3m?&@Xa`,c? Pwܬ}ZƟ~&O147? MVǿ lZBҍ*^rb_~hD'EҒ+ S m`ZlEKD|_Rxژl>yh)LD}Ҿx)_++ثSjWh-,tH13,d-L(VVOg'lbTކcpfER ׆+4S;Jlv7 ^49~|eFHTUW#3#ዶUұ,j2IMx`--rSl> _/.`#܅{ޕ:Vpv+N ۹/tHYnĿfDDl!kL3h qS6۠ Zg65,b^o<.~H7uȊ,w|Y3>y0gɼџffݎW*U5Ss%ltY}#Ω@ɴQm%QHnoht?ktwzjdUqr*gUO_Rʣbǁy"ܜ2EK7NqlRSC|_y =~Y/Ppy25g^Eu/e'l/jE6x]tC>Vf:!6(+Xniј좤ɖ1~;F0XyH vfvOu NA=ϓj\kO[JxQyjV3Y]/:yLoU&,ZwBIHkkn\}z雂㡌d6GoY7N8 5Oj$Ę =yo_Lpve(g (rn`MI ꚴ@4*sC\_F\K~LcԬ8$[Hl뜡T .v%&X]ef7[w\[=|zYӮ_fS)@$$Tɘd7Jbz<};q #DNVu*d3-ÝC9I3S]v'Q&2HQK"wB;͵G$ ~2}16XIN;8G4?*3a?6U@É]a?-ڲ ! ڨK-^EBQ0 _.xLA-6v9rkm?!kTGAh =[)+<j*I;(I?W m_@?/䪖5|ך+!uI_)C{=,Jr#3.5f[uG85) lچ2HAQs.ѾS!ޤ+"ĺ=_;˟|bH>i5Rx׷:Pѽa|$#Q.cCo&XҘM[nb^@܏`E^Dyر! <#*Tj69n$ ۆVykn&*ASw+K)俶2n=/z[{=]Ko)0 0 _[WlT&X- MR(A*.^懞P -b&q>G|)Fw+rVg_8Ч*\d- 4U>$uϕ_-ůۑ^xy@N>~ԧFUz~sJRimz U~oQG9"gؗp~:E(` ,XUYALEQׁ\{&sލʉ;r+ҬBO˱F_]ٓUK;jMP喒:y{57be\C؍T&x"۞\ 2ϑ6i6ܥK^w6o,w[_ e 4DoO~ "ݘ׈ubXL)M;ƅ47U2ЇqX&Uʕ'S~ lGQ=bsqJY2[,3;:+{}?uH;`;>j.X:yӆE:|{ zRA5xaV@~솺0ѹY[e{4ɐ4"s,NCX},B5]g1EBCҨԙtAX qmz=`yi"(^0<Խ`3˽,Р`iIa4 &-#6L~ &$]) Ĉ.h8s&=(NUL^nҗhn07=!S'c$oѴqcյySKS^8)2$o1u_o+VxEx|CcШ,RA`WqGPpI) \ dz3׉kFJuCLC/1]Wy5wdz2lN u$81W)[^73֌{ tc$b[RWI}?=>K൴'섙6iB6)=+Y]_W+e"0KQ|PE]mhQȪ"/ZUmdni[*',P'W-#E?g:m<PUbLLdD9Vj")-[}%Vuwc*%}]͔jC/c_W=nQWtaD(pAIS!JT?w$k\B1Ѭ fTXذ29vYRG@RZI,Y%fx \jkF%/S(lƷ?4ֹ.b<{c^x7m%SFD'-5A qu&ٲpHЖ93Ax3K޴V>䰀prӄ4^XPsllU${T&vȤ0I7H&aVZGF T ~|YٽPfgxk^ڜ+O;.08zj08DB$[ʱ韌`uSJaaRu`2\}rFPM3]$8"|A/?LsRCXB4EwbF[akXxaݿh}|rq @YTh^ޤl+*̾-m~|J U2j+'XjP(nE.h+Ru>GmijꄶC' |aQ/v;w,4f>w;n>e̹8];g:4dݟsv Nވev / ЋmG }-StQ.]Oͱꦙwa9gV ۸*7nXדl'[}>H &!,#\ZDYK Ǜw+jknuh2g-rC~'-7+Lp'&&iT[&pqV(́1%~NMVxb{&a&c]%!SrbF#Sּ7c$Kk-m/B1 ('ʐg1SKC4J$:{AzSZ1GP-.5T~N(<_4mVu][ )#{Ζ eŴCKWrj_XӅw-d R@`'fջd-4Cؖث#0bC*k֖yRL(ozkoCTq*< e-T}^_ԈSaE?'{7 ߳Ԋ\N[?ХTi9:#-֓O!sw~/+׃oU:&NEN)MI[fZ3o1T~[2 6a͸? wd) ?EG#`Y{GѲlTy"PbDFPY"!:(V'Í;X ,^fK>Ulr|J>aEBE\okDN_f juMDB?ٓ}6/!grU;kܢŦ#T0J2bW*ŀl(ԓba17b.>+OçK}_aQ A, IuC;İL8hmfߜ_EpW.}/A*a1UKi LiE.i|.4AF&T}^相 ңh74]GBA0/us_OyqGu2%]ʶ;Pٹ0ngNҍTq]4'LgMn$DLBnT0=>ީvy%Nı刧1}Ui,j4r7<Cg7:Bp ./ A?NM2?|n6:3解$Kb2b۬>UV nw zˏG0w꠸U3u+щE%ӺEewdh`;NEy JW t~wHyEQ4[⾖ ʛ,*4 CiOKeU*iFɂ&^WT giWȮA0D:INY׌|ad42WAj-«tOדJ>C*v*OzgRH2rxǟu]}B&@= E&y̙L4ӏ xЅrrV+y|IJՑf%Uy-8B{۝]mnӑ9勤IWzGIʗWzNFT-d?Ɛ늡9>2,oF#f0e DMTb^:i؈<q<hUPoKX>ۓ5e|$c~Qn2vO^ruؓ[034Glc{T0<5*NwuJ#</*g];C<&@XdkI}/]wN"rhkJs. aK2GF`^Rnc>(x^elȓ i;Z\yyglfKQlyzy2bE-㙳هϮwg˻8~Ra"Ψb(G+sjW*"Wno5ǧ3ʋ+_ߗEecv}5 >P" 汐^r eYi5xCB#4¤vN}\Ρ~}Л trt^;`։Flj ^z鼈vټvDÆ{ t"'yvՎ9GޔRro8˅1nܧ'@1+ U&)n`쎈].<˻9r jU/t:)ZN-5m~,EAboȷ+^dfwqs[LSʬw-K+ln #~A~shm+YLGoRc9S*mu9Űi}Dzڢ)UDatҞ">Rz-#ퟺwfR/":@k[1 *e0?7#>*p߸$ {/W\egJ2'ԡyxܴ=NE8qf-df7Ɯ|>U*x1M?>v6lŸrz׊`[pd>3\BzQ/ T_@eKe~duZSӧǸoI2Хo*#&a\ ZtʶWȆ]#hc2;2 smq ñK5T L=v׼.Uz_s1*!6Ͷ`,ާx4$g5y [=--qq+z-3|Rpl%M$̌}}xp՟Gy'Jo4h P,ƓXSjn4 `ZlbQ,QhNEv TsU*>,m/},&=&ۿ1-/E1GL\mfCnܡ RRk@%?7IE Jw njަp7@+QVL 9!W|g&4*f( -Cָ bً)߸p 4S6)WynaQn; xTޤEV{ 0v<aJuSqˍI$/v,O!PZ1ݮe)8]0Q1xݟ68l~2C_=ZFw>iZBފ޲|Xwbz&)u?S}-Lނ`p5BYķxE?_B3N^ЖsWwYqfkaOn6r=_RlE7PlQQh=J7)}T>Eb}lxQÐ&+]G0ӷy˝Y_A]K7]o߃V#%.'^{L* \+1 l,A~;3˾ [![˵Ozr/:~˶,w]Ic7ē !?uiZ'#eJ#j}צMvӓ[VrdfӍ<)(/hym~3 qa =U?|}Ԅ}VWQ>!Zѯtȸ-.S+eȨ.~ph*zfa҆Vh3KRg׋M^8D뱷hF^:G"^&3v\Кv?ޱ!U2VXstGnNv|JhZ`}j*hRJ`ˁWm$2=i|FA9-o0@"zó+~7TUcNkXGa;D!J4UH6YR,43q悎B.Ϝ>y8{0B<#spL:C'K(.`YٚZ!w/ťytfzA9ZvAVg.l)"G1I\?Q`[PHLMC&#dpCE:A"PIQ `.J`ImZ<S1xN!N}^{sT:쿭 >r/ #:ލ5wPv ^/~I*&b@}F)X׊?z >e/U wPFAU\SK<'M]ͥYY 2-×Wo$A},H[U՚mxtC!M4@F)]܊t|*ʂE;>EU.(6~{M}' 5^|>,uWν y!6mAW OuU5˩Rh`@mnlxѪC/G9eㆵY)2pRp4;$e^ziyFMIU.  Y'bx+F~rXPImq2L]o y/" U!fʮ+b~FΚf][,ub; c LMDcaiR*H&$q &31ms:ot[OXDa0.-/SӰddȅlM[bG@T}δ]بpBs%@q fKnϾAT3.Y++v2ed/eݽ{W#g''fd,>Nh~P1˩/ەCDR>7y8478(SiRB7"Z&jzI>E76"B`'dxgh0O7PSkSm6YB!SUAGU3 *nC1.؂hBw:LM?*1|AQæ$ntuڟo8+e㏞nHr:a`§o + sGr&bs"ޝ^&[Q75 0 \MSgR<S.!b8 o?.`z> Gi,M߷ CNϷ#Q ^0{a:W I}GϢ{J WT}F_!miȍbNtDY-쨉a{hL#WA04m+wS堰gWf_-BVI+ݕm$C<2t/ݍ䫙Y_fPQ^v^z5)QuA~GdĢ%Sl5H_n ҐU/ cy|UmRwYB_z!6HtЗoKVs9(X(B{U>Mm-*QK<{eSvȦʁbZVǯ8 F GR5yT/G j%n69d]Iu? ~r~ItF?י.JL=tY$ҏ[$.`>WD4>#;K\Fl%>*^avwc[ (RZOXZ|vz˾ώvoe&C.:3si-fsO]ًS[WӦ=7|šqv?T5d}M,@Ao:3_U:Y߁`"[;;*آ>!R\T(B T 4GWLa<.n=ͱF68%0ey Z%/z+,Ͽz/gUKy|ɖ? A"*+.aZ>+4\`M2]4ԟgWg|kR҈hyHԮɞeE";WEkKԽD}t@?%7ѝf$瘪|T ֟Lf׎EM3OT˷,ZG=O?r.8j4o0V9l~lmV<ŎPB{ڏeM ~^3c-%v__cMW(BFsz4QYNCiQ2g7EQ%Ul"zo4r\M}F:KM4>h؏Ffbzd#E7h"nip)v@vt^h!CP-ccm2ֹi&lJ󴨀y>jR__KOil* tIfs҃4o˺/(4Rr<FzOCx!ǣ[mt\zĘ^ϱ ʘ=tzUUBTIֿcu=Dh+j!fRGG !DγR4[IͳcW۱X}m-r!eKkr_U3\L!~qHr5Mޭ\;ĕt飗,*ex8JԮ#ؘ]O#>[Cy 0H*P|;J7OOn]?Uƶ+DĊiN8$j:,,Zغ< M^]Ey>oxY8mSU^XbPLAz`*XΡǽ.#f'Lkra=7Vpl"`)iOy[pi9-"Qk9үҞ_cW|Yve( װP/pӜ_wjkV:f4V zyɢM{.Cw/DKbleҳ7"9vŽ0EuM =5/U.^Fro1ưmÜqPQwʽ͕lL%Q%AbCtܗNtHԾ/ XÝO Z)yLqgxC]0Y[8^oO2feCqGJ=߳hFs7rSavCdWl e:rr-r`@:C|Q 'Y#o1uo͒q;-*DЖ$?;.k~prfLkW!6PE,l@1>Q8Sܺ;Y55U'bK9ZJ*=IxIR}T12jl)wL}aR6󬐇> 55C;%nft!iSJGnVd4Ԗ6w`ݟ"$} Lklm[HQ3HBKlbJsćP-ک3Y#߼ FOKz} Ts#݉+cnEEP$u܌#{;,H4=a)q\$agpXU./δʕEbFLJX\\% <0%-FE(P=7HǯT__A_ܺkF9raXۑk$)pЙ`fۜAm~tfkd?MJ@jwʋdZkrkbnN[g9.Y@l,fhL㝯Ѽw7K.+~$@!hwˣe߆2DY󛲝m=JiL4C}s}qZ~;rygJgitj*d:KJ[cݛ1wJ58w'XWݎ&@}Y>2ʼ%]S8(^P+z[>fe&ԒޖQ>h/ˍ9Э*l \/,|gZ',Ɋ.)kꌔݞ,묒&kB,%_t x'(M494* s&#螬U)c'g"9|н;|Y7S#tLIZRya:~>N^w"lhJ`)/N5?~_os o4mh'D}Ÿk[kp<塍~^~xcX?1r w`S@ ]4n;'4E#^D~T)T=312[wo#Ê-P1+?>Vb Nvmh#'[_?&`si<^H .l ҵ>_yͤCuXfM)VXG>kFXoTLB*o2Fz0^VVixrdgOۼs]pU7=O1W*Siس3n>&xYZ9_p)?~ꄃr #Ƕ=fo[ qƵq+roʵ ̽֊Bג|Q[ngޕ>|j©y)#HK;RQH[P=肼%/.qMiwaj! $"C$ $5_F;_ ړƣV0lbS{+.#'񬰦nhA 0]ӶԘ:[@'Akc1خZٜ":D..*7b=nM@\/d'Yfo,sŢ$vɰ^={ݰufP!'\7 3+ѝ۬=wAO0$M6dWptLsdzt [ vx$-͇1,9ۺ 4 ݁%ݖ gWC"T, *ۘ 1C5V3Nmr]uѤrA:7FxVhxlm2PyGxK|0/uL|T*./BK sw M)5!(E׺}GN횶JUIؓO̖r~dnip~q 'bu E@K0bZm@GgJ59|q(ɹYڄូ⚆LH}ߺyޅG<:Mc̏*6 ֹVQ5ʸ̓հq8n $1 !ocaezU Ͼy-E[(X-vn"F{z$k4)bC[QkES j] 8噒F9pVYc O12~!RM$-x ][#=8]y”^+kSԔi;Pvdea ȯ:i٤+Bze,yN.k6 kr~_o̚`]$ӸZ; 쥄ﶭse7ĉU"*~4*h 0H}7P5F^@yQ}S#[||fR_ǹz@Tm(;&s`9y[L'k6AO ~dQ(Vwg]Bb}4i?l[MiEjsc2Y܀[ I8{C֑^Jr;ה=qp=کᎷp9Y߃ZVׇQOU{5Wk7 !Qj=j_nGK ,HL03oH䘪ĺ(kS&)AYKYUǿ(T-M.:v7^U=(n/d`&u%jAk,緖q\UV+3 d/gwQ3֋[-WZex!Y;'j4l˔MZ,ſ: 3*)j}$8STC w~2ilF0KNeptOO7GJj!C| xj;S1vr93y2y19 {+`Ϣ>1M'v-炿U= ~Z8KF=_Pxc(s?;f^a c_'ֽY֠9XĂiRU~ݲמT4=1]3 ܞ! JT6訊>"{&S-B]& j(n؈1o p~4UY^M+^PXi߇EMNC;׺[{iO}ӕBm9C"$N۶>3Tc"]P5flLD/ *5o}s%%r@ q/F8~CSLd,“}9qf )-9+NݲHBX䭴|MnݺJ'm޴Р/Ik҂HG{4Zj#>ʫD߾38P!԰YɃa2p(k.vzbC/ oe>yh-V!Qr{jCU䊑%vOiS2&SV&}pgDƱ8{Z"lmJd2K{LC:MeUQ> 薈 n(ӟ e| c@y#*[ ɰzFl0_e5/k s!Kzzԗ58_|ȆVNc[O؞>9yPi(E`Z Eh:`:ib5gLAW{ ϱGn&E%U~;yqR d1 SҭD4hv.Ӵ{ek#.v+=rdjb薁F%3FU::zВ,-eCF7pD)3ye2m\1Wct w_zRr=nDhCb\?l?"jssZ)_kIea3wc-[BEע%&?Oǽ%>nղf^(L.;oAL2n[e:š/:/^+3QoU1vCs6k=0Y#oX!Y%0 ~+FˊSb `z;=t9Àڠh;7v]6` cmn.v?DQb՛:JtU-nA7c4W좋LhKD$;bBç|fGtn@f9/V]cߧ@IŶtڋ<$i]ͺu(ǔK]hQꊀ#>z~v$X.Dyh&Wr<vwCX1:n>A0]ߒ"ՖLG k(foo:pULOK7+&rڗ4آY"|m[̨Jrqܽ|"֭o$9Գ[641tof=bqaACiҹ|Qd"=[d!C:mϰ-tc[ȉ8p͖JFO; p>ɣ =Nq?jmkS]ZK|-L>?/Uֈ sSRiSI 8i iIa4 ]UbJWdiF I'Ksc%]]ݾ慦'rvK_~Ûo@2b[.]t,x?I%Uz? wo鈁QvgĔ6cydYe Ҩ碳jU>Q U ͩg/2y~BoojxZh\o[rs $,5od5ɇ[rxu󉃿!뢙;L݃*S;TwnL9 h+!A4gO'@5Dn_ Afvi%`1c>$׻ V*}UWh|60с%$nSEe([ a섥oE~b$= VS[dQkGD=6Ė[*uKY8!rNp_>=UBA\b^a5@Ղg`Q OqmbǍ7Vzd[ \QģTi6~o5SsA v_a&41-Semv|CwW~ PJNKrfک<{{TW ,xE Ws:kzt9wNҵ:rZ +ZP/,O(k+yce'8ꇞ8*g~`tHㄤɢRiYpl况X:CMP*2!+ %QQ֦aFd/6RC1^b6W[M7~O?sPsqѲLa2Jz<9]]/Gv-D<ףʃ UGD)YTEj2\vv9wk>Hn_Ba?d?,Tm_|ꓫ9ZXl |x4]9.՗X(xn?Zoۻإ咒c& e U@/)J}\JTkrT+5S]m5ϋ>zzN5o{Ѐ܀ËCˊ~ΈVk?O5lEWɭ%E[Q@DY ]'#L%L%"\t3, I/qtyEjJD1˩0R@<ۧ4A;r(yh?,*XGfXԫ8^2@ &/\uIwC=pxsH C كM]L_>H%)UaMc Ce`Fos@LPTz*M~̝I2[zYSQC񖐲 ;d%mtl!SPPF>˻h1v ,C'vFm-YAT`Tv$Luwq(۩b>!\(f)tXEIPMXZz4]d/yuqx5crp-ݲCqQʿ..O,V}IN=GsV&׶lB-օCxjT¡>WS2ťg(\)} ݌ *A}pFJ{3ۛ}%KԼ#b#ٍ[N/Qj zRhq/`O[WxJ6su;R>-CNOzZ.bCSm,;+d\*SYSLXCvb{Kн)h*ә'^,=xr5H׭{0ա즌B}&3-2T,i;4}y0_m3D ./2AYqo8b,ca!z gSỉu%M}hJ$Cjh=<[Ϋ$+7Ms(% ފn*>1(}7b@>?c4U_ތ-E -,8PG/x>vV(L>'D<ݣ+`u;ݗh0Km N&xZv=S.ie,ޗ{.V[?^)E e]=|Pa3d>~JFmX"=[UX̝};NY>r ˽v]sR>hD[njeƺt頵lmXMho ,cۋwfG(U1|AVGsRX~3l/Cb>&[/ ;E.o!WؗlsgCCuE(?fx~Q gZ d{:&DT+;~f=3u_ ŠYgz'B(-lFO̿5C²nWc6S#+Z->e}d;Gyۥ/%2ƻ)[^ǣj3iipVg6Q$S \Skxfi7bnW2_aFJG 0FW*fUN`K˿rkN?_r?H5O2ɳ0vFjgO<#{!V%Aˊa(螿k@eR#dU³JZ~)fAf?&m*Ur؊abJLSeu#8EE?rTI za\G{ژ2a݅S0Ϊ !l_Nc__ұƅCF;23_/J5oʬi4RaUruo'Ҵ7/e{6u}Y=:YNn҉-<.Y=>zUOi5d7ml |ŒFy873j޼0T>F# >: dXY~1|yՈ_iY̵w|%R]W-ewdïJQkCʦ^ zAZS#rQtEii67Œ-or@yvv&짪ETp|X58=z p쫋O5`bgfh5dd'U-k+|q- ` } +qYC|Օp"y*+ˀ }#-WQtuzXxE'0O}x=Q!b5ɦ,o]K~>FuSF-$l/ jFHZ,i)=m=8h?~K_5*uy}NJcFKQq ,yWٸuR t?Q(?wQyK(׮Fk7h/+-z{g{.;> L0^b_3/w < A xcS/% A%Sc /\XXE6*~|ڴ'gWxD"V]I[KՖ;(Ll),I*T(j!e}jv~;08Qzt[-%B3 >@e`Egbf_0hxO>:*K7"L85uJIG&|e{ cꛗbCMTj|6S<;ʓ@38hvI9b,%Y@Dho7Z:"!^~{m~r(eiE_@x6DѼD'1)4ymk'B HPZE!XV\G YB-(*H뀧Ij3oinlq~ۼeШAgEs#x5V70ݹ=*ʷ|b)ߺznފfس z!( _M6ox6{crՌiixxaxڤPYâ%״<+x^,#q0_/we꺖){ďؾےզ qbS MyT4nrޣ^G|nA9geΡ?['e h1ڛj^i 1bw qXnKm{΁U/ bڛI1Aoȫ-7|sS.2aLr'^̸hĸe 7UA@*Lb{e5^ ozVԂqkiu:/>}a`aQJlۡTI,ݼ ^ŀS{XQEԹEL6|fp2p*4a .n'[2׫YxT"fAvŖg8jbd^j}5ȋ! ٰv']SbO,2Tf򙝩MN4 uxQسݳa~/7yH-%iX,?ݢֈH:]o|p;naCm93FcM[2,9>z K`Ò..@~Ұ/eE;F&z$<`OS5}MirC"qW5<)uئPh&^ ,~6K舘cyմ\#ok!RQ^ߋf4gd}m}TiOٖ;tߗVxaԃ|?/^)^S@k+KC+4`/YDZ2 EjVS2sB{O.Ƙt4#eYoDD32 lT`!"xKԾ̘򵋉?@14b *O(1fscj7|+-*+ȵd]xL!2[(;1^N|tx<ZO}yp;Dqhi~F_Y?$}3O˵4s-@o=hy>^qtVw^3}~-nI\0hjP9W(ugsb1 ]ʎ4!={Io4O觢u*W\,٦?b6Pdl0S5檵-z*' ӷ,梋>76jwĨ pVzk@j,m@/g ˠ޹[CԤz v cpH"4) Ww7ze3 h$TzYjxhd|ny U>%&F*9@63!p<:j UmWjI;+(1t7f$\D <Tx< qvT TRqQvW-i[/V|yR.޾dxсL4ST`ᤣ!EFb=6kWb4J~S)嵇S%$uB5~y՗ɋfV|m $ y=/6(}yk?l%'V՛gUhh7,mm52坂itG۱Rjt|ȇpv!(Ƙ(loF^q`avL9J<̾)jQ^)ۻ fbOdb&.+e׬)V#Xl50@>Ki~S<dqPp~|.!?乖jNST\wⱗ,RYȜ ߡ=Bhi~te7s#wn77.w@DTyw9Up?Lc&hddQae%"UR2R Rl]޶`(LK_{1YeYP2bW8-L*O_MLpϧ"y8rبJݐ=Pk!eUN>.h@gkˣ@y*GEĘb\m;PdfG7-ۓƳx\0Al94nvOOCbv9X؆TV9ŷxC{p]di흂(RC=l t~yYm*%lZB6JIHE!a) =xM3Jn$F+-# Dd>L -Mޞ}EP^W .r1MQ"^nm2cWox.vv%d#v>2LPluMUh2Ɏ~r[i=Xb!ڛ4LE|3Ϸ,BBO.ƞ)=Qwj٦MApo0LSazIė`jb)}2ܦ{oh|fmxԸ6E ]x.3p|29)nODѯ5!}?bJuzxy@LNmKA~KҘy-9ّǶO@u)Hi#tcbu85BC[:C,GN̍v-0g#q@NRo,G$E1C.Y)-v(v*7ۤ~κcbY>?˫[t`Nd:<Gg_ӂt`gS`EFq'?&Sj>́:DO͹% U0z577_ym`&k\8) ącKN2OWަT&p3ݛtJX {^/Yʵ;|pxpTmLz*:ۆ\MkB0> )chi$% `3O=g$#9WBuSzTLBWlTb;࠲^,J{EaǓ䪃gP.W-9;^H :v:2υ7NR|c-Hẅ֖oaqۘ/6*ApԔJI4%a<\}BrhLqGS!T) 9_Ot28 g{E7+. 2j'G'QFEs@E̩&2V3҂!Ѧ3eaEaĒL8ƟTrc*|闷xqa{K@vr٥>wB޳S26:u-JdvyMLd2VD UuQV' nWȪ_2^-?JSv9F2X)ݝ&40m!4❙b 4vg<5YV(O*VgBڀ3üۨwK[m$aeɚӰcO_QިiN;=@pXDM=W+8iNzF.!Z3$z~V_?ͬi/>k}bP)C_ed7$" 4A,r$4Abf4PSV.o]N3>^e Z͢ |k=NUNg;?z|.ߧkς{0)Jo.b< k!U-%oL PƩP,_T᱌[S5?+&#Y\?_6>|#%5?/>v䫳}O8XZ,g*LM58i!W1asmܻ&Yiw5GȘ ,ovb{4Fqߔ1;'e'\%솖٨^ko*}pÜFFFޡw tRU\2RUBd? i}"d(jF;S,GKVc*aǂ\]zgE0N+'E(i2r4]ϕs('JPkud6jB<E.`P6?=,j0IK[?1AVSڬ;_U0"oAySSK"Ʌ[ɣwU#[Ārĉ4pM{oR+NUH,#>T܇'nbKb$Pj+ (Ց[I=Gyy`l:Z;%fL(Y?Mײ]Sa**OQ%4sĿo*MCGeed~c'9U642͓1OX;ɞ]<)m/cSdkI8 믏dwUeӇ>]$Y d,T[+z[,9Xf1u|'qJy2ve 1f.a#Aoˬ}U/cm>鋘F,g]OSAQg>O岼rnW/34vd.%b?"/vT@=&GFhz,f&X "- ݺ w'gzhBwV@ze҉vtb,#12~bZuL\NH\Z oӲWE|V3lIL?\\D)P^j+.S, eE 勁&Y4PYD*/b6&iJ/. V^ L7c &hɧyΖu Mn& fkIvu$zUJya]I9Rq=_X^$طNu%}M{2b_w˽e:87#у\}"󂫘iTv Og 0:j 8w eԮ}~0sʢ0]wԟJ2B}3횄 ^? <=~)w7ƙm7+_4|},&#*^P S U낃ک&iHoKt^;T W QY-ע[r?=7Jf :S f7H`6VlmFff;o4]KSե'55.vtwe~[~8fB?FKuHE.?WIj.qö!e :N oabjIjǽHF>l1,xǝ7ӐU"F}E(Mic -#=q#FzL\hW|wNh$ iJ؏x ǔ׾CΝo&}Ot EN_q`8%a ^O,V1 fh6S` %KsK{},Qzi+(j7 zSK~-oNmD@jw yj7YZ`DqS1%t&Mpխ=Y Gk= c+>9*O{cqVe"ڽl^e5;\)5& ĀMmTr+hd\lTC﷔.U)]1ԬHSoo9}@1>z˕?w2Pqqnyy綜hM>%_ uۯ\' I旑/w&?>.65AvyetɹZȖv6~Kzk{VU#CD½Pi y#,$]d)X- :5j%-cNdS/m4R-k!G@x.!C&<"'[oHf* ҡqveTXlJJޭH_J-xUď:jɎ1 S/KL00ŷA#6/6WL{ CxS߮N,_p7 ='!!T 6#?Pa cqf7a/2-$笎60Ǫ줺=|6YL?'JF];xY~ Bm=M Df(cf06<]P-bݡ'vaLh  s #g6NF'{ע0ȗʄsMj^)O!1 8GVGwx`0cʌrT0%2s!A әKh5j|LꕚL-^ЖptiʂLʼ5%=s4P鶁Wd .0?Te<癆7p| Uj G/Gm[lz|_TuNOc}: [27<1yk.8݉3`QzLS"Dh ?gۚ7lànKh}N _S;68)C:lmڶS .J%/;Kn-rXRTU0 YJwmZ ܺ[Fb^fcq R GQe\oe8j%מ,2ڈeɔm4i4]\U5s%N4Zj:-3!ĒSkjq02Dn|8x" SyT7ѧ5c'D\Ԕ?E9իG^|q#0s0wi' ղ&GP6H뻯eFcIU,a%LHz Xi M*DxsZEU7KvSdCx+ '8hM9dz mnʰr#όiY,lX Xykd`hu 5yAU!7M,LZLF#l!"7u2!T-·"{[tӺ5o T@aϮ d*[ѝI @&ȗޫ/_ͼ< ~zNG0/}DF}iiBք~rb"Ӵ+MjwrS.(74ԂnȂVd;s(7=;r^jH ӈ;@t[)7nc^ꔥY4өn[gn~kN|GH i|ڢC'#[]c5Tc^磬p&_&6}Rx`e꜖hHcۏiOLK0A5X>v"HwatMi=:PvJv5-/Si& _.jY/ (iם 7hUyExO6R׷=) l ݧQfqS͌eh{^sO uܙKNmbcf*n-UEk՛@T Y51G:9t57 ]U6?0q~o9Tz|V͕JMtC8΃ ċ0%T;mpå>6W mÃ˫GS֌D>K_<3>Pr6SHn-O┭z+CaOYeFZ/~ jeWG〄yߕSd ~}ϩI|ɄA>,cİde,4.gCoWx7gE">b=%gথQI&_ Ø5cG=_]{ " Z7mMDHAe,fJ9-x >[qVoʚߟE(PKF[zAt>J)ԌWjlÆ^ uyWܱqpf/RE\%ݍiZ9$mtthSq$qjUX|ZXO2SB, |2 eY*A(⽍8s^yϖ  R h͐G7&C!=9>̒ш͂t+FQuX0B*tAGjFZgu+~c/7hȩX:ٖ6'!),;C^C9UB3n$.jB4uڄDL.qR*7ldK.kC"GUB@ IFnne,|sc/Po@Ϟ =:Gam1WٯU߿I1,d>LZ>]I+ SMM[r&B-]a#LywEo`A-$O%15|*}y&ѝ+)RaW[^;"cSp ?1!o1D>`9MY`Id_]{.wUPC>|tOEP-)/JIM 3ex_h^H˰ҭƟ1l^@س jpuWM\n0q1,P`3cIKgC_TӸ_3'}*r=쉄 r "MM)U/[3;S75s%ZP_~^)ψM~}9U܄8}٠sdC$Jyn(F,Zi[=؃}i xw+ygCO 3-izT ΒK_l0,7̹s#_~tdɇ OTq)gR+|@ţMI dbu[v>(\r?)X>IPZ[|nӓ~Mc9z7ŽQQ9vn)ʅc2%Hg}DB!,+{%sE:6Ei'y[*z]OzmL~ڶJ|iTOqĊDGV֌-:5bzm4,NƚҨbӆb A߁-ZX lJ||$&z"R],bEm;XŜaUm=0ÞCM[<=D;-qdhFگ_OR򷜕}?O ?CB9Fy[=D1vv*k%4qvIiKXz p<6OđF0aO8&}fxc LIiPLm(FS;[*W#˧nޖeDN+n>_HCQ좚zVrm=Cm#4ܦ&ܪ^M$W㦣grfBݼ<0hAc˰"Wmǧ33=u yu>*%öӀ6r 's5, p֋/HBQ)N6sM mBJZ1NäpUf%ͤth`-.)|:`pka z%raR'HC;|qxA }IQ)15C F'5auvG\:h-j%M3K*-g|ɦDdj&rSYhgcY1%Gy92)u{K 9m sD#@/DL*"!?Sj. VƑM\v;y6@,Ԓ# m!/濽Pr)] ;SdTkl;_D=`=v>2b:WļIqS‰9jq%ܢR[PJJKO"Fj5s®ݢp;/JT CXY/\r\˻Rz%v"/Ҏ@e/[ -Y܄]fD:NHFt̃BδUtzF@]4vYXf@:;}h.!C&wU'py?xnkGVY9&,v54U 6!dD)KXUJE۠ƻ_:_lnxwW>RE }$ݘ-MQf󝆷Jzv6|t]i5HJR |>٦'1NKHv&Z&bor&1^QYGϭEƪ{6b,406: _9\PVndNDCUFƲֺ$"6L(R1F,TV@I.e`< LnBm?_ZoNBLIu8!ƸwAo•ԝԒڽݤ^g!٧^iKT|`rbzLE{J{^"WN51`Yw2k2zpqioX7$CWMXK:y4%vzPY:U֠-k6sCt2, 4!y1Qk}mwG^`.F ί~פ8Ժ(qbkjAyʜ5pa7YqJ*}SSj7nQRRqCnF>jo20z(3ݔ[8#82L8iqOQHz񬒳&6s0~ʨs PΔ0k_྾Qȉ's;@צ>P RW~~qWF}opn[CtJg~5_>Չz |9>tsEBԺWoMM$-<'g^jV7q3~,H=~XKAb='nCU S-+Nr/NjI(nq(X2@햐Ae M ,i9s\2Vz0⦙ݑE&:d66LuUiga[iWJ#6<żwXDQr%&'`U}4j D~_UvlBğVyu_Kt;^[HX3*#f6`VYzqADdTO[ƧoɣUUҎzطWΏ,$jU3uD6T_{FijC4%ۻ`b1q8Dq3 lRYԹl_ 8 e¼ƵgM S71fc?^j L^/jv $g"w d)B- lH I3څ뜟\:5离-#-x ݽKD iӒ1;AM8f/RNU>;r t~h`"sSIo'PtuSVA49܉ N)AƻƀY+ЉdGg>|l#@ig'4{rJ d(-9Ddl}|DuĹk3DCag: \*5k9 0y.?ul?Oߦ >T*'xa2oVJJ93XR=% nx8sȫ 4G69McA%6qN-*2rVĸsnȵKp nY,x+∦N{0^U=n- %yM\ZPH?>8,կ9$ ^XV8| (R@<=?M{Ӂc-*.^A+ϓ.H_e %|%xE_O.t:XŐ" gYzj\A~Souj~eOA9`Q GhsurbCV,7/u҆>hN*犃ZfOm|tkYfў[n2$(d?i ]3ض]ԡZ},}五,z2*!皬 ]x:BG\t1knY.ZE=KTYж;]4 ōi\O'7->._tOچ;6V44r^m^Z3]2wJYb {|3+Gdm _*.lk]]6a8߲oՖJ%WL=dJ򥌆ҍw@{+0N1R*aRST)n7M);-b.parYuZޤY9g<ԧYi8Y;`A]9;Tŭ]VjeEbm+iXh[3. 򜅭S}Faq'G2=#rmi9tf ~8(#>:tӘ+a.m~lń` !I#B!USg 7S|=LE998X hB2S`} m&gfO;4چxU;i>]6dPȒ&G"^6[WߵoE_W:=uuCtݲCʼ 'e&}?rLT ;\zZ>5=8?v|1-*˨)4oWg9o}%*vx8B04""ů M *%]uvAܸ2[z9nNg}*{ .\ڦMϷZ+mF_;(Wi%Y%TyPqES* xF+O$2#1wԶ 7{uL8];y."惡rƂZ=݆WC={ j/䣝S±MǤTԦ`h@nr#OUmcΪ$R/ A /eZHm2e.^YaY ܂'B6n|80adV:d$>:"ʦƏï+93/we %bY&WS2-W>_=ڸ6jOb70`?hoތj Y8MAK\OtI`tc1jbVF#by:-T[e)[8s EA۷)dNiV;#tRvtVpM/$:.-VU˻L29e熆)SK R]_{B VwD+l~Li<D^ H1ƻ-gWO4Q@sJfztma\\X$V5+_&C_~uzzzYm5ZlE;>$F}nqɓNW{j6 ʜ U7 7a_=-N'g |d?ߦ68lz' CdĚ :PkՈw^ܶ AßdMC/v<+jTR:rdK\4tl2|K}a3QQn`>Ղku>O`)pgyM- ,'$#.5! >{9">e+*+T l!(5(JyU2cUuh?}h0i74Fm$Ks0|@cƲ4tβgo hN|R藈C=ŵkqBe\LߠbM-,7T62W{v ~sAhr|(r}&/ݝkʣHn)Rf颢r2 ̿ L91Ym󺩨C4% :`Iڬ>݌*5ʌk(g@>P-e6ϵ0I|:ka [IE8)9NMׁUܼ5=Y!!\NqkQIm̖ss>cşgjALӦړ?49:L&`jRģ- (k0dwWkswbӂabd=S|e\N- "@zo-XhlFa(U8);Lؿ{|JP1_c!y0cPjIh50mpcX*-*LS!യ_>%#ɅxJ_+NYxHkXL^XFϩ$vKBϳ)|$e? s;Uʹpi姩_{_,c1P?R:)ampy$K eSd:Y"=6-X\vʆN.\%⒀p(?I3 u@Cs^ X>PK jPT^X<DWoaCiטq /Р]4%6l#ϒN2Xo9J"$pKϩ/T?A7H`3>ԒP|ᾝj4+!Բ=MXW!B xjsi' C[\ƨ͞n֑1zˬ ҚeuʶN3뷳 NcYq8YD7-yssMJ+"I#.[[cn 1~<*D>066dkQ>Em;uo,B1 {$d0i5N9)eYϪ ?-KO<Koza037s {0מ_Bp#Nfm#,畑cvQ]D@EݩrjF6 'F$՛nc9ΝUghvl=Q d:Ty}L~`Z Lg' ²jtIQ|3GU 6 t 3%W%)et)1!̄Gw}܋21}I %R]dz]ˊd g+T /g6DTk Gjc%V$ha(g gM]҅x6` yhYOlpm8ˆ#DivIOm9ajڨ/ZcO8u!}a; xv7 &onG]l$wn_ݶ&-nLKsp w.eP`LLŷzB[eI/2k1AӶZLUsaԐH`հ6+\0*3L BkX#^ /lZKE03QyۇhC{[u@<< wBa7DByQXާ饏nm݁ . SƘHC6}]yq쓡>gd @;Iqґ.=h[*d/aUZ[Jj\R I'KG3l<$̴GrD,OmaPqi-X~x"HGZ:Bf<}s Oά5zA  0eC ) ?YW[eo,T8 ,&Xې6mṷ9%wM7)3c)tVe_TQ39QQG"=P@<<'5]>?PVI{H^DX/'^ٯs:nnګ7VmvYYѸɺsnw-t6Osr{٭wWRst;+eKuW7uhYZwMzn萕\ۙn-n[nˬruW{۬系-wG{muvЭλfkMTsv=oo7YSNn{qtޙZt]{=eig#5ݞmw+k=nZ:s[=mcwotTwqje{{Jswݛn+{5Zg7tN6˻@w.ۻZ쮝ۧUݻ{t.U&wޗmqzmwzڝ˽ݬVWwO{{{yɷ6{k JSGsqKe֎gwqקwۻzwvsgm6=mTݭw{זis\-]]owݚz2e[g]rokׯWo]yu^MNꎶ-FvƻvW[{owѷ^rm^Ξڻמ{]uk{(=j{o=:{mzn9v$YkmKe;붓wW:wnvyvmvQ^rfhs-=׽w ݶ:u6wznc{^ݗ;޶w{޸۫뮷#m2WYfޞ1vvnֺf%RyMU?DC UT1$"@PR@ɑ8TkmZFգhl[UhQUֵEkmQUmUխjƶڍVm[hUZQ5j-jصQ-5m[j*lUUkj6ՍVkZ6jhcU5+kXV6֣Uljkcj6֍mբգZVUj6kcm-QEmFbڣjbV*cTkhVjѵlmkUjQZڍ[[UѶFQ[j6UlmXV6EEՋT[cUF[hT[UkTmmEQմVūb[Z(֭%m[Ubڱmb֣mZ6[F5kQ[Xckmc[mlVVƪjح5DkFQZƴQUcZ*m[5EXZ*ѴVѵhmZ6ŵEZ[bm5-Z6բXEbF5Q[QE6֣mգmm[EmFՊZjѫEjVm+hѪ5j[mFjڶ5lEZ-hQ[Q66UFmEVثbڍXF5T[XmEѶŢjkj5jZhŭmZ+bUѭZѨѫجV[mcmQVZ5hѪ [Q[j5l[bbձUVm֨+l[&+Dm6bFmlj-XŭE"5Q[VEkjƵmE6ڋ6jU-EcmV6hk*#j5bl6AVkՍEXcZhV6تPjض5UhjŬkQj5lZhڬmhmmF6*-VkckbV*+cmQQjTkFPT[QF+E6+PkbZj6mbR&chZ(m6-*hZ1S-b6EhXأ[ƨhlbm%mEj-i-hڴmQmT[hF5lmjjkѵj6ZTmUUbljZ[FFhQ[+QmcVjŶƨQlkjV*صEmmZ5ZbhElZ[ڴZ[[F hmhƴUF֍-QF6-Fڈm5c[dlVZ5*kXETXتZ-hQTFXUj[Z5ڢkFƶQVJZXbجjZ6bIѬQmZ4j(ZTTFѪ-lTmTjUQmImQU+բ*5Z*66hhkTUQj5Z+QŶ-Zٖ5mFŢجjZؒjXص֍-ڍb4ZV1j#QڊkcFѶbmQF*bmFmlZ1j5lhj֍bXQEQTmj6hԛP[cTUb"lV-QV-XUUUUѵb`mZm F0lk-ZkZ-mbƭZ6U%ƵŨjƶXXգQV6-hѫF-FZmQQQEmlmXQhEXڣj5QUcQƴV6jmTm*5mj5mVFclTUFEش֬hQjVZ5F5V4ŵ4QhTmj+hح ,QbQkST5FXZڋ[Fƶ-FQh6-h5AEQlUY+hTcmA[2[#HVhE Eѵ(ThصjѶ֠LV+bV-6-bZXV#Z*j5ElbƢjQ6ѴhŬZ,E[5#cEFmQl[kQQŨڢ,ljQT[QUQmEX(HUmFEl5 lXjHV-KQj+hX-TQXB[ōUb5j**ت"5bFkhƴZ5bVƨڣU4m3j*5Tkb*5hlhb6ōQlm5KlmFV[ڒjVŬUFōV-cXձmbhڂTkhU +56 mXڴm5ƢkFѵI3Q3hFLQmhժ-F*-4TX55mѭ+lVƶ5"bڋFƬhV(hضFj1XV4ccmƢm5bjѶUj6ƪj*+TZZ%بc&Eb-[j Tm&5RkƣcZ5(,Zj5#XfMcb+*d-Y0E Zj 5mcbhhDV5QcTZThhjƨ5X-mEXQTQ55lVQ*FZ-V-h65QV4[XԛhƢت(KTli h4QmclZ6mX IV5FQ[ڊj-6X6hEQjhQZ5hhڢlQZZZ bkFZl`&FXkQcXѱ2jضhDlQk (AEQض(#iѢcTchT$UbZUثر6+h-bѪ*TV*56EmU%TUbV)4lh"hckFji6F[ETZ1DcUEfb5k6lTj6(4Z#HDZ QkcDTj5Tcc`بգ[ (UFcj5Fب66*ŨkcQ5F֨1mZصImUZƶ ,V5XhM`(*XѢhF#b,Am6kZ#aM*1T-h*4j-IEcPFclIFbڂbƓQZTQ-F I*fhS51i-*-XmcQVjEkb6ZKmbF5EhՍ EV-0UcbEclmm&XѵmFDPmZEXmcD$Vƨ #Z4ZƴZLQ+b4FQLZ4h#j,cd-dɪ4F-DZ MhEbF#)lfFQH"TFm@a-ѭb֢֠ZZEEb6MlVŭFѶ+b66FZ562U&4+mb6(ՍXQűUh2,XRi,QXe"(TETX,b4EIQRcldɬTV5hIFcj,Z+Eb-h 6 E1j3!MI`6J,6-Fb6i6Ib#hѨ6Hb4mF+EE+`RThECDQE5kbՍmlUlkQTh5Fە\+5hQk5TkEQ+EF(bQh+TUEFڍZ FѶZh`4ZllQQHj5QŬli6FbѱV+EQ5c&2Z-QFM-i(5F6Mj-bѪ4T[&AcUE+-%[Dch3cb45&jcZ`) Ѷɢ$b TTlAbEFXѨƠH QQQXm%ZclkZ"Vi5I*ƵF-llj-,QhXj51@& XZ6ѫbTUTj1lmش!mb-`E"c#jQQ*hōERQm!hQk%#lQj-Tc̪EI[(֊6(6"ѱmQFlF`6dm4AcPQbX2FLb6"œdlF6(j LVdFi*41Z ,Ѡ[ث̭VibF- EF+JI& -AcET[6*$MҚ,HFX$SFQQmc&+FcUhŴj4bh5mj1ej+mcjQ5,DTkQTŢƴj4hQ+% $QXY6FhF61H*4FQhlF("эZ+E60Qm1`ŲQIX(1mIE( fFɢeJf(ѶѶ1ImDEQX%dQj֒b-d$ɨF"E%A04ZQX kmJH,Xڍd͉A4YKEbERc`6ĖRjCb-DT%EQFeQh,QAY2F1h1RE ؑ4PAl"ƐQdIJѨ"lEF,fHfb%1cIILbh-m#cjcEX1l›b%Ql[ƣRb6EFBlQB%mF RjJ1QUXA22S-[kcE&%bhmcjaV-4QEQQTV*4Kb,Pj(A#ŤFѱ%6 j43,5l5F6R,bƌE$i*14c2Ѩ5ADEDF61̊0Tb)* T`FMF2Td40LT̖LFa 5E #AP"40Ѥ10PUFi%$lF" e#hɋ1"C X3 LmрE%%$Q(B!1"Sd!%"#bDTkDXQb%lF4Pb$Q(##HDTĔX)-h HB(*RF4,Ed 4bńLIY, Bf@HPdD0h&%FPhY"h( #Fd6PH- I6)4F!cF FD5b!j DFP&J"6-6BdFY0PL R$)%$dXƈ S,ȨDђLBa02 4&"$LE$d&d$I$Hb`Sdf$J3bLL5`H$ˆH$dl  ("D4R3B(! i`DX I IF4L43&"$2( % %& )&Ie$?H/~ӷ$ڔ'ҋҴbAםwbs洉W3Н[bW!l oBduکYTfT7ڎ hͥ`V'6M'kg.+r\4VP 3B[ik;K~UY/L-k/Q&m}yu(%()FL@cAF1 `ܼycv1L5PGۏ>/Q#+NJ(4Qۍ<7yBz~_hZ=WAuFMAWWZYj2`ӧ< 0By?Zx2ĵs_~|,e4 xäRnU\ \P%_q=_A)de(ToEu{2z:\E1t;zSaV拍W6=@.ʊG8% ɳ@Jꡈ?Rg_[7:lC=ԙꘇkS~vn]ӒEBHDU,b55Y$~;~ $&8z ,lw axz ϸ 51 ?ud',r㝻* c*rJ5j@Llj/B#Ճ 'eR20'uuU$?=8*USAYinj6 >:sk&A|FFmyٜՃ~<0Aʥ=b.vTQ n62.>pg}g?M19H{q@|N#bkÒ4?ϔz'y4ë@\ Mcq K@Wbv zʏ n#L4`qb=rv.)6y$8}xUA&=o+p˘?h:Xh35:B&ِCD7ŷ߰X@SXEY8%& ; yoDyIG՛%jUUm1Pgi3<,V0ć QHvz@diڐyiG^D0 =&OI]:Q@,(q܈tLmKC#ç/M}xUPؠDWk3Y ~$@󹧏Z1E***B{3jSS| .qq3tEOxIyHpCOv==zۭՏ^c^vICS}r5Qdg8HQ71Zktug5g'|!Bs6O?l(D br6z X(vK9j:T/L'ܑ> ~]_ blO;u]+1c(,:J{ '-ƨDdJg3]ϥq,]- AĢ;g1Qcx9{4Ak.M7U1 w3vB- H*1r1Dv:Q mŖZAO'Wii%Z%qܻ8{@Nꊡu5Zknڃ:ZRT,QmyaO=Q@-"4ݞ:pf'/YdQ։7zESU7J%l: ͭL C^_]?"P߻j=>fwQf)b# >3aC i2cc#% -wm*;2[[0ɱzbXpj)菔VhЁL3(hV! OaISʉX9ry,20z8}2Ct*ik]uJ/ nWj@ЎqLqtJS*hD5 &}qtv-0J[ !9SuX<tEEɵ+:sB3xתƉzLq:2X˱â1Vj}vv6ӌ^,({ۻ`6׬T= rT#(=ye^l,|n,43'@y.snYp> %;{m6K yW2e -m=yGWii|K³H}݊h86t,T/V! Tdq^].<-2Tb3\<!qZUJ:Һaٻzd)sM_^5pditE-iu[!޹o\4S`=ub<<r!^XsXFuɃ9 ])fAWftGRGy"u۟<;+N`h"KSzL|43xq3*v>̷BǛrj4ѡyM!UI'J5y;\ؘj؆ل<3xޘvC̠Ɏxxԙl<,A:ms[,pp9_Zϣp1)$cK?ǃwR]{E)X̘;L5Yʼn@輖5L8GoIu$32nXiݵ.)܏zڡSyT,>1 d&OJ 0~X q^1P6YAu&ݥ~=4% /nAϖEy~T˭Ye; A6Ӣ*@Y iicLoJh`[=uG Kp34Hs&t~T[)GEHvc4uwY%f8vrJ񋚴R%Yvd< [C_kdo$FyN!"C,Oh_eF㎇;KviCІ]' uqE2ݫhZ6:ps+-yMX--G)u*f1BϚ/y\ُxhi$j=oaM%mM&?k`WNPy#oe.$hw آdqQlw>U^FWOGܦ311l1oUã!+sDzMVfj r[RYRZ X˦'d^jC&${`\phŶ'(~՟4WPVo="`@Qg3͍e^͟Kɽw',F:8Ngٳ^6 3wB$4|T2U?niW7T&fT)8e{;0u^Q{7 ض0p's:NQŝm"l`9ip4kuf<9 !mxn]]%1!ԱbClQ4l~ls2A\PKBᥗ!+Y *o%Wvjn)J Ui{dŏZXL$X.`"[b2.y;'YS=t8#C& DƑ\.?Kz%1Y6X%FpSdڸH^jc6 7$4"j[ &3F 9Wbc0cSDʽ1VƟs;ǷM9WX }mky+b%cXDIy >'Ud#2:b;M8О{3[olQ5#THu+pe̷nզ81CQl9] b 3ZwU }kS {iַ"Kǩ{ޢm5S_*gΠ U(cΗ څs&v&tCL$ep)xB @-_`{8*-*)!@ߐdm z}ƀgxSq+*UՖ+Xnw]Eײq<4Ob6[<090hy"}RR4n5)p)CǢԘ)"qN$t'ô xΓ{jFX U5;͌.xjL}۬98UΪ"( m\Q[΅Ą?|\ʊD˪ hRE5Qp,9paKvO9UᡧLY$G£'h!THxzޕ&3I*)65ȑM@G]6[\DÔ硌ݢ$S{1 8?sq,̤E ˳UFi~#Hﻮgr ߘ- m; okF71'`mC.s C5Ā_8S%puv 4;zQ# A(kav&`NWUqbsޯ0 DKvQ'aQ"|$2NF5fdƗ(io:gtY)sD52GJIGέgw[BV@N5 T]w cakc4M%$Q$BhʊT`pC3 [i f }Dԅ Иt!n_=I; &j e M k<46 _O)C;)ecl}HIk!ߑ1z*V$RUXhv5يGs| j#^9[1bMYb16 xȀ"}JkrIʃ|OE[Sʅ+ )QPi瀲&i4Ak̤ByOfZ[UE 96/`s׆3oBx{c ޮ&l1{Ϫ TԹH"4kb1PS&iYk}XGvCHDГ4b1#F+ڥ&kJSP'wt?E$Vu>dOA _v`e#9JǕﺚMl_FI2 Ԫa0eE=+8䶗fOzM)Y^1\Mˑ#ޏ5W$6=zumpɗ/UGJby5X6wA釨o݈cj=eaS(?Hlrwg1n4!q4V "銳U-n? {"4N"C{15|r]M̚ok# rmC*4)}F. g|jh0a=nb[Ո N`[閸کLjB{ ZsUo->և4ol9IӾ#mLPLhĥj Eв#˽cjm+kB jb~&_0$?WLآl^C*S#9l]Hf,|g:%nWYς-lƐG/oK8u@ζ1hkЄVsw , 9VHL9ë?^v6F^:ȫsS.]$TcJA LO=x2e`԰-j.ﷵc+WZh}Wi &8jRёJolv2L qZYCq7׍zf@v4:4RӬm%4:Y%D•$]$Lg[ NbӘZ)9>H+YdB̩N]4oom7\BHzrS$W(ű_xSz*7o GYb@"ZXd]= ?z+0gAd*ۊJ[ܱ1gt{ JHϱYAi* &{ ?-&*О5=,-m;> 8(Ov-dP!giRO.e7ic3./%DVvR=}ÙUT<'jiNltmi5|ҢW)Vr)E}LzM)1K `96Md^h%Dd}t!N^$EEBF]Zlaf\Ӯ 3 ek/)<>Zpc㍦j6uVVmOEi&ZyV&`M:{%|^tX2\ <W>d1]B#%0|j<X/LjW3V_:iB-.DӤ)͝VE,hЛnWz)( - M%$D"{ VH>MVnT%[&$jH,2<3Rm4!;*)hz/Li@r =ֻ O>CkCW[㶠 ڂ3[KfnTO Gڄ: V6]+$kEs*T_{hNo^*= Fh;v&>\-^2wMȰ ~9RSN?h&L<+uLYiIa^`z(u=e7}[1G/n|:^׊O{x^>F۵$U0>7S"Use8[b]O<@rccZєS,ngY[7BUP.N29JL!6j9+aoEߣ.d'eV.:%d !~ u?6aF)v g,-;tSӉ$@A1?8r颌!󣠲̆Т:ilbF/ėwZ %xJwQc( RwJIjmy'4k'QhZnb0vW!hCm-# :<z<9 XRۢ9Ug0'j LG;n_1?pi5o"~z`9nc謚Zac0&' ;pHCR„v_ nR:!u$PRr%둔L2Z޳T{ɢRCnR]̒cZ`g)f 5HZF?w$׫W^<5'7J~[{ID ݁hjXtmهcdƧidlΑAb%Et-I]D:ze d܀z>ptH%뫅'`s&oH)@k %*?V9q\B\ig͞Dl4Jvcמ~:̫0őA䫢6oSodEHl j7;/ *cf|ksMlm2ZvB%Rp( 5תJ8% wBDNXIkڥ?F5k+b=yOaQ1|iLӔ$6^nn8 jb 曍@aՈlzH_-Tf į{쁬Ee~ q^oSv.{vE vӦJBvs0d^zr"ċj|i&H<Ō7C0V]\uS;s߈6e4suImhG-?]RvH#:O)3UT6/GՠUKle=QxI{cvHkALTEZ⦉vŊpeUniD LJu):hU,C#Mڷ.%5Bں? 8qR:x-@qlnH"4vwxzoBF~]P,'ծ]sT C\9ykS>@a&)H_'(s/@A#g~m[y˸mҧ(Yuk!) ? y43';Q,]&AƆbad5̫&llJ<*A٭[Wru0zQ Nd&>@!$kM.4͔7Ь1rMԭg/ۻ0 }0ml|oʏ7 k,'6"207px7g T5xOyXJ I?(ev,ۄ J  =qߞTOGձa?*bF~){qcE3}S +&t JͶ&pGx̓i4v@!g}#߳$=̍ňv6kaSt 3!ף6U~2fߡ2Be%~mrtgRht Y8wRs ٌy73UX_ltX[dՌ&s.G<8^ӵ7i;_ݺ6T+EW71~HxC^og 82b5wË :wv aC2ǣ냣4L3R8oDHD<4Pdna=ٔʞ[ Ɨw*.]LBUiC= &msam6kqSvpJǿ'GcπowL68#$=1h*Dѱ~7|i~yl? DG}`ɛ ?ɬ×p"%PT8}BObx2lN8Сɻd՝0ku$]5aM Xd朧/EVW,򠌒,lͽg%c! VWZΖazPI<ظϏڳz.\ʱuzC\<[stߢqn1b1Hnsh7sh~5 5S6RZKd*1̌p} 2lc ܎IlXsync S:ه ŖlIhdHԐފrQ %]\ DjѢO&30Qw'%j+měݹ*%$e {LJVY%EM)խi$^ǹP&}fKOX<ιq.):&IoԢNUH}ظg_c5Nn"p/ay;0^y%rE~ߦ3lSpFߟZt~6'PdΤ}TP~}y ;D*+? ]´K7褘M V'y&RgT]QOtk}P -u}xŽ\a\蓨w?ŧjc¾"iE[q6_N/%9tn./5arK###Pw  ȃfꓴ:J}=LcUc,Z&b?dxs&r&/wm 7 u_ .^[:靕r(lO["cp̃@ xoώlaL4שrt&F3/S3ҵgV} ;QGӆd^w%|@ރ.mzp$#UVWX >L ~ 4jhmaIPWw@N'nB%K!"کB"fn5;lrt zƙ::$Xrw:̻ۢГ"9b[@SC͡ЦuBZC-:DŽuo ]9ʼdt8D1[z)StYn~N= :þIFZ*rрrMGu劓p|aoRȡ8koHYCFɩz g$g,Phf", Eyԥ(CU[O0^ð bl^9m@hٯ-ԁ/1 pVVJ*BrA]b羝&PuZ1o>'6~]/ &5Wlk/o9uY6I 6;#;w5*x=Gױ I}@C,̫Ym$2r6^%Y;kv'~tqo=zOmMy<|[m01aaB8+d|7m]_`dh++;نz\r&Zc+F`nlsq8ޅUW^a KI, 0$:B# 95cmuHckjcFIfst4: li &@7[!5Faq4>z}lIjm, ٸCiP0|P]V 7Tb}Tؠ=:#e\ƿȨDE~3Q9.g-b;  duHG*u+ q$LѶX6Td5t9u"vF˽*c"iVgr>9 n!:`^F[^Tv}{#w=S#͓B!#;FY_{4M7#Iݟ{s\/`&=G2,wnعLTד -\Yx&S.1U+)3z˺<>J3(,Qs{b/`1XH5Y8hq-+C@9blxsS:'d6B5eũ^Vnme' " ;mLː &zX W>mT5'R17ESeRh)rJ*eJ`$ٺBH={ u 0xiiX[?XoO,p¾B^NmZ݆U4@,'FVps_=ߺ%J@ La[:C:7! &79 hQ ]"J*iEe6D6ߟ5ɠu?( X?4Rx+\4$p(zO =>kp#!g sN-lDDoEн֯2㉉!ZJ&1=!cO2vWx+vԟWU7ZTVaā0DBUɦ2L=R" zml>jYaOݠ23?#rBvoSiBr|:rI6A'U;Lz4="HGa92͆PIlkn>h*)i)9FܲF3\llEPWoD 0F_cyC>ƹʙBdt~m.G?8kazV m#9@G1ugN"y3wYv{ҋV)r*? m.ᾡISͥ>أKj^0$Z0*-CU =ʧor5)j4>mbI;=udUֽ`K8Nc%@"C5RGקI5Bm4ޛ#эR © -uchIOgºh4`݊[\\E8qхz-@@p-?$\-?x+ENN;FeD7m@}IA"vDzq&,2 &RjȪrl΂k+:{x#z^HogFNP4{Ls KR?npT0^|97OGoՂ )RD3Uh/LUnM>7Jjc.w^C&rA3?o mHǮ/i߭[4#tlcX:'6;>2ysY6~q|fc3&byo|9 owW$+,'oi>B>k$lLֵM`#<B}:f~8˧pEX1Uل2_!^2DNK>ȥ臧!޺ u_k?VO/G[?lw Y )Nb5X8g?NB7@ab;GJ^zԏwF#5lVcWź"[٭[z•>T0Ry]!7N}N* }‡U  .c-[?.c +MBur*8pi!1 K{B*YփS~4 TƼ0˭Oӎݬ/K&W#$VH"ZP9>~y&#X .ٶiK/O=NWt=)nJPBX6 Z_K,+L).Y\:FG,3АJvR͋Sc:Q.8ӥ4TIaVc#箶Z8,APZn> Qo7g{D+z[rh6svjc9U;| W o1~65-EQ>t4ZڨUgd<ۺܔyVY-7)j~~})鄚$cپ3GmVDN|t2*eQf@>{7 )'ȁMMIl[ %|!FM]6\ UlK~"ƄghwlfL=9/{>(-)e #,nw\v[g-/x tVb k= \/=XpL DtIA%[$bmM=J+9r4WD}//v5sv? z`˘Pj.x1ProGKneRܧ3j{HB2hqgeH)sCJ[LFTﺵb9. 1>iZy1";ЭSx 8ȣ-a 2B924kS:4c,M;W>U SN>x7)K͙M7XtvfIՓHݩIJ$t@ ~܎݄H|gm_Ze0`ොw ڵ8{`PirMk hS=:s3>[@> M Tá=X%鈨d I56l;eCXО=;Zd1^jYZd@9\> w=[:@ChI3f7˦=?]{PC1y筥>M " (=v;{ȖC6F gM#tXPOLP5*m&nҵY3K l u#IK+.ڶF:ʅ 1nA:1s4da㪜MS*WaUԽfQAAl+B|L,]GYCAP6͑M`8r(])bI ocK+qy2zv٘5ҴΏ i̜ep{D){#?DiܕAljEsfN8U;/QnL} "OizM\*1&m!gՄ}.M5ǚYqK # GC;qfn*4m!׮KgLz?@VTľIFp29?60@9ۂwXD;MHD5SI{ܛP4b[1hUdDײ+X ݄ >uW ƁOf6ӏH-N6` w xjwD:VLUٮ(/7wQnwe3B;FA@{jC倌yWk$k!r@.C}{?gK,viMUsks@?k{K.xˍb](l4EEC"Ž>%Jó[ئS.7 $v. Y>]m[+hKM:bLM߼ W3 ?+,l8 1eRpnJ7WQmƏe۲t ̇ o\gV1DAh[)y-3{6PiqKÌ-m4=^_x/^>M0[8?Z !C%>Xo{"vË"xNyv_]\{=-0Fゎ ,BgZK B@"׼kZ@] __>,rNF֚lulE I`pN7Vj 8c2{<zZ̽I&JEx  I\Rk8.V+LHذŘ8D9چpNQD`S$Qvbi= @A{c&l=C.=WXX5G w:i3gs-ǪVD=ZUdx 1G&=QzOy7J#&ڷ*Ezj2w)AXrK.h Zb"x#mD/17N.r` wI6m1X*~q4wW5yMCcӈTBlɈTaaz2z}AZ5i=s銈2)? y:9KWaeƵYPFzu >:q?FLO/0E͍UBL9hKSTWIko3(RaI;xNWy#y^2TRc>Gϱ4{ˆBONB8}_ٍ݃ECR4e > B\qХKSm8% M<=vs_z\*>m`U?&yݟ`?ѢF8`/O)&&&*3Q^ j2iW 5U7I_G#NQb!8+먣hߙvkgZZFK}g;GrUw^}RԗWƆ*9ΓP:[^ jrP]ڱ,KqSmH@!@꘍YClT 3 sx0҃d$GLL7"2w ggGT`IMj=kއ-^M$/FˬX4N[ɛ]-{dqPޚ߮ufEQ_@CmsNWAT{™(#bcV)]I|lW$źeDa;NwlYdޔ5oYbK`')g?Vj^{>Y(PcW8)N BD(QAP^7 ЍZv( .hH{ܛ6ԦrܟȞFyxm@9#ZA L%><)/vp= 2Ld͞6NŵPk@˚CV\ |&G RvUA=faT|Րe".E[E- OHE+b+ -(>;Qs& QNKn=.v'Kۖo,؈6 ~^SDH :a yKb!ݟ9:.ԗJȏX}`l/лUϣ`nh9{v}>VpEXh5M 7lMU}=܀.unsmO-0heڮSkHca5v?aLpm6UPvtTMO:FñPx{Pg4e5DͶE]ϲ RvaMۻI&iN ǣ0-!A<a;3&wu@$OpaпhU@MmxA8*wݓ[0͘.dߺۑUh剒ʖV ᆹ#z$eM,-y6ե)q,85]dXZ7 m3T'bZ-<6>LLVJ 6bz4CWQWBt;uݍ66rhJ RޑOaWP5aA6w슝=Uͫ D6pl:.q, BP>Zc>cnJ8O\`.u'4%I؝>坳˂5Y_%(CdlfzI*g%O숖)t3RhȀ=IWf=ki;oXˇ/:,HI^ֲ2oj7(P|ۣZs {諜loA|B0~BF!Vޱ8*#@㪶,]|`D5m Pԩ񌺞Ǧ"rn P5 ?یHgNDD@0e쨝T5ػcPd1H71FɟH[S :`n(fdLj!fe4a yDsgjxEN[RX+,AÆ32 E z5!p;<ŽRX g)JxǻǑ^[*.q 2yڮ֦Ĕ+8Id {2,B]kL g +jJ׿ݰgJy× eƏf]"8B$v| qoFDis_yoxgMsIdvCGl,8:,ОQ:0<%!g<ϒ[=_'joW&D9-uVX GJ&6ʿ'}nAUTi#4F4sHBv^id#^Qf>mkaԳ5#crUzL:* *W GZ9aVaI[trlT=amHqmI'*&3񻷲sW׈Z1w{.ƞ8pfPTW7'!m OP7z Bh/IIk&\-6p{tih]\״hwgvU~u:RTW]L7nZ&w3jbI:-7Khz[ b) w] g4'i&[j^ð>8چX.zКi?!S:x#a)(gP  j괯/Hsau!/7|azfӵ,^oXgsCzب6*QCZ F?ɏZD~bo S^biq?$pqHMo=$5's<6a,,4o٣SʺMcCg D2F b-nRҽ޿ehfȕ]e [:"ۥ>Wۆiq7Y'gBi@u2)6PӜ*,c6CБ!sMTFݯuW}{ &:\v9X!ųJM@7uY!tzc{L:)67*Iy͉u],u  rg(}.jFH6!ȗwp`h"L:&gz|،|[5H9HuV]ś1Rn <0~g;LbhcHY0pq#!wg~9:O7э z3kĘIԲ4*mNϭޢ۶on{1|7 訂Yd*TI+7mзhW(x3Pb,Gg#Fcy$80;犴]+~k>!h54j[j^ا~@>gov{訠v }76%oڧ+DL:Y}7/E;)+(["z|}~1ܘe8jϋQ"v-ԇnGSK zYo8Z^-;u^˯D,3&& JhOY.;'ЍlLk <C@ӄm֍Vt1 @O&SK@C:;k Ω(fCD;hXyǯዦqTƑ,7([ q^ˣ966 ,CklC,j^ ה0¤{AuApX_]}4WK."o9>Oo]S,d:KqM=:wR☣3,#VLPQN!M!v\d Q|"mKxX1#,\;9 VxDR C{M"Mm@G g՟bOXa5߈X*|]]DjFQ& t',d3-/,>l!!vȓ2A_ +2I)@$DAq?\CvkD;ccm0>2C1{+qVEkww`O&A)N Hׁ[PyB%`ּYlw,ሔ'ۙ BUt̜M~^H<跛;).~Dp=&vBb^ |?t>RׅLϫƪs`8Ξ2pzZ0nF4Ț/g,RZU0hZ&nZv\RQcG7 szzy5^s[qJ=8h$Vn>[*P^yO|Xnkcjq.&7,#}LrmNz 0y?c$yS]I_Vln_Z Am1Hc=(Ջ`Y`aNh|1 ESdˈ,XT6d_<ڳUfm;۝5uhRıLM'.)yjVE b3MF,et[[OOGp$-2s:$[RO֜4e̜wLȠ'Eb߫-C[gI -Fu`T2dO+&Y~rڠHÕ&Aoo2l=TG60Slnbl}D_&8N c*X7HImsXutwʧ#Ahi, +c64gD|jKnuZ'€, & z>Hs̠F㟘7ئ$p'Bf{%P@o^%ɏ^WUYT6 {/k0&⧣|bQ hjλao+ b1 .aa."#ƃfp45(W"貒&YM)ncc.4B:(PiǚҠE%gBiGlQd3>ν7U^j3n&kiu5ء_jB2ݬ z&Ke kcn9-$>h`[xHMk5]S%B1LEK!+Q[~~1A {jqHhdu hDk8&2 ˽'Z8">C_++?n8PX`P1K -i^:6hL yOʹ;oMn),*!uޡOz4|(yK:w/ % jBfiRoP9gå@y+6xFVx[vݴnHs2D<ԤӀ?Q39/pw3ktЏSS9Wj-{ݍwVj6^②cK9ZXC4.ŧQ5BC 5M?=خeO %DZ?EI[1p mkˇP$̍[3Fn2.F=ȯh^́j SAir0S׮g.iJ Wc-A %ꍤfmÄ`qH|: V*4F[\1h=}p'.vzX"gl=aR?l)<1.З?qxWgY H`+ugSEzޙXL]#f]H!xUM(A 3]PN>@'Tľbs%@Wޯ3 ,ycH\Sb@'0UQԷV G/|=ud]L̖i,Գ;+cw2@|܁%0a*]=V ۰U?X%v~e7/4|mqW:N9AiA([\ʷ8H4sCfc&a^ui-$g"M:t5l\1C4mH}3bX6٥7{$ָ˦'٭63F?`MⴣadW):M<Y5R.Wv9* d>L6/K뺛Q~{"D+~nxhW0[ %TvC2 _5Ho'˹nJNև$C *"MX Y"ݓ8Uҭϑ2mhlV&K*kmfn8gFNOI2=ҒE$ W56pFNԴf㻐fs,( tv&(4m0i!hQe[E;=TzW:,HwŶ1|!Řϧ=t"a57T4m# N͠;eч5t1%(u VS[xqӁg{%,Mcbe"Tb F\dgQ|=dfhݞ0n NM/X.h|ȇ-}<z ;9`"+܅p2g3_Au m],$[I$+beBwt,`F}Ձ9׵*n[jcY|aZa2FlURXNNEJ?᧱;YO\"xkw5*Um ?H0p ɵR 4nkeTk,Q-;kӀڏ 8ꗣf4z3y;{B~ >b@X:6L' .3|*$*`9vV'm쇤&49w9 ̶ -Y DR3Tf#}¶l.nu7 ;=DKU$79\dgΟXfe <^8%dnR͋gtЩI%ݜVŠ:W68kgyD\]U^b@(m議6o7bQ8_Yu?$PRIy|Unm硾 㣽w4f`zcx8MTERvhG)<#-/D_aC1oi1n^&/Us wn?~Ior35CDQ-%VFtIA^7* 5~v;t+&8‘=CbŔK)O{j9jQ"NQ5Y׺spgj.&Bee0x֛B##=ɮ,y_- hf#ϳ2S͸|z E.1ԫK;=7fڭS@~=L_ er <܋Xj0OXUH~ИPwJqGPo뀞o vv^^7XF 9aE+wwZzԮλ>ץwyL\F!%ʗCrl2O !IB*C,֮o|'JVC>OHm07 aOR"<:9۲if`-~? ؗNh,cP&s0716p^^vD ϻ772h/Ϫny;QNMNc8[7NJeɦ=UI*sKdJi xke̹קFX^]'GX`:BI:عhbIgsyH6/={q<a]'=>T;}TbOJk [m1;pnUKs,J1ʞw7 =л;/EOq?$&(wuH/Vr\WT##b(jƘ֘AK.+ u#қvXVھeՍH& 0]~i5ḃH=lƘOmYt#V!4;-AIF=\&/m|&;CT~Q'Үa0o;MJ:.sV(MesgW^-r3(VWJ7sDǖ5'-7eicC ?%B̯}kXM1~r,P\F9D=kE?A3C}{7V_́  (H-ϔc^ ?9rJ/zD+F ʀo¼FLEϮCŻ#6G \HjO(n ?ݔ:nn0xʶA^Xm'N([D~Gr0081~1I9x[1"kr+FVkJ1d)>*ϓM융h_wL6*4M%KAR^Ż?>g Ѿ٫O_2ߒc)4 KoqPKCɨ"#cEHls-'yzy9&SUV)mp~Lt|<|]LEv+\RψS[ =5A"Z"l#1wضo18U=/wFIXpՍ$2qh4Mv&[UպƶH㔅7cVs6g&1U]oXVQZ>FmsAdKd2!N8W*SMw*.FAXt25HtD bYܗ(#6d^3exp\t]*e;,:B&_!N/^x~4tLK }P-o.q㆓Y,(7 T\me"یnxCR B]Yp (N[asbF];y InlzHbP6? 80 Lr+Ń~~cr2?i~{#mc-XT <8C2s٫nhZhTɭ"}Ɯ7Y@oU^hPK7w)â|)2dK=i!d@(5ğb&px0A4gx o&I/ʑ:OƏrm/7}A@3[sRX0ۅ0^9I;̂Y@42VFu `A9x 4'?)n~,+dQ0痹pe`eU2fU}&boEx؅J1z`NkDbG >b#s)b[w턜S 5k{b9*e Ĕ-oLGSbZӪdE~)8 aуy R;oBuF^S>r%8̟_e6R&ew Mu-cs,pr8zM`gg ՞E/^mNAxxU60wȭzǧc{s_S-j+ _y) l&+:\1d3zfAV.J.2J:4ÍF|0wg/ G^fZƥTErY؉q6pdB(sNhIST(b?US0pUiMɝL 8j$SZjM8VHPǐnUDWP:6zp1 cרLpWkD@OS߮3>wn Eqdg(jv]ً!`^iiZP  X@ hE;Inۛ/MZ/ޖůVv5`(js.Pɀm al\ĸ ,3vQO bOPe1jI$9n vp/X0f%)$5ok.cE- K&j*O X3ŹZ|N]StSF;6$o>HWSF5.\|o>piiShm-i1V<;.OG} ߫׭I'Gͱ \UhJI_$' OTdiΤO'Ozhl& STCt iy"{ꄝ@4S!݃|Voe+}a˻x^3U;'(J@9u#.|vg+O^u57Y4ʵy['9 W2Sȱ}lяwn-& ˤ9K#*p{ JͥI+iDMj-Pvlr6åݒ@w034ΚΗ@xMv`F[۳CPe'zd:Oe4-m2]Ķvzp{BdsGǻud 2{ ^"Fq/FRyTޡ-͛ 85 Qԣʩ@Ur2qN@Az1.iHLMDۻےѻr-إ9Vҍ}bcT@m:V!Ų"f~jvF CdBq0 [b?J^630$i|ǣuKmpP \mO rsZ}q JM!1W4gݍ_C[&pO(8 U;Y+:rls aY1(] =w=a\.:Ol ԽG+E'qz#Q^yXlw3zAȐá¹)0k{,ONε9 $ѻOj(Fz"5M%Z`5$C!R[הv(Zs&J%pzms,$ٞvY٩e!Gx@)iuz ltdBr"h/n탆ZYs`[7*% y(cHs97O0|rw0]UuvC gZ_m9J+%t+bS:nJoꃆf-Nu4!h,}OSV) PBi+E`2Qx .Ŋ_'AV0q1c~T#bS tvvV[A.\fN$K.$|[e͡ Rvn,QJ̦YɎT,qʂ&8|N '.m=[ƅ&2Ӑã*˛G@lp*,as\w=@=ZjW2sw1mo75:*UY4azg@5:#Higc'hGClCaTAɑ|ّlc;y^`%)Qe: mtMV\Zd-S9ɋs6!,&\< &1*Yw%&ԓKc PbG3]XC pl 'vZظδ1 8Eqi9f|iimSq2 h˘u@E7ম /K#(RUo;S7@xF4\)\7,-P+~70@.'glI+S lf1XJu@+OۭF?d(W`ѧ˝ɐtgCDG_FYXhE*B1tɈgY(4ū?bqƙUjI: dx}U̡J{NLYy+  GfCLlK2z-zod0q:5+S?!7ԩykꞣ^%[Z_6G㓈)mwVY̭wu~Ԉ`b.lnî445Nx6zs<y8}#. _AKg T w;[rQWꜲR h3e7@{鉩 cRWw#Ȣ@{ A1T뫳vofI‰z%vZ m|k擝e;@. loj)35g aJ)s[,'tu;`sb,{8ˎyڙȘY:Pb񏇕'~*ց+nvss!@33z:33 %Lź>(2횺O/ǡ>tM ~`Fጽ܋3љ8%.%XY=q%^ޫJ]ר\g -x{f `c3m۪e`NPA_0uIC|˔[K1su1}5'YmcB*ahPle8>aef";h̎Otl?PlS74Bh&<.ԘCdZW-%Ñ#9C2 {;u_a>)>4+Hɟ%vO"Pt*EPL .\n ȼ[>~߯ ?]#`g?p3V|5ѿP(PfN̴TLpR~m|7 LEZ*.[ \P+g'ܤjZC'`gwШkZ#xl#{_S1Meh]lѡ`~?C;y1C!ꤛ30A^̟0bjpg59f 7)Ҽ"aLv@ ͦTʍgF wB.?cN` fwG=G@J/ON\क़Q\ ^O;bzӹ-/-I)To{.h/k7( zf!Z HXX6@kΗ?Ii9yڦ]/m~hn'+aߠb+[:G\e%qݾ?׿-Zj~n rīSldZN<ʼnyLEL.I陡(-BAvM{PnKd S"S NL梀aLحX :bK6"rŻ>VhX2#0TZT䤴}FEl?hVR"yOow}z7t8-D{@Ftp!_ݙ|#Kzkm'mlO50xϑ ]9 `a[g ׸ MΦ~vTW0ݥ 5md-7)l/ӸvoNnc6t*G7s/"o *]V4ԉw}G8=n#`!YaRRCxޥnP}wDO#m1;Beyx-K4i|"9$&eڌ|/`a !8Q/&ӌCwTƘ(Em>t᛻&@'RsO5@>#/ DT-rs+QbbN[XUPRϳ/%YK}KKc>.e!/1N[I_4񾽋Z] |vHg~ (P)p wE;a-}{'1vT *vC|@ 5Ffҿ GiU1SykH"gi =$wǃ].a4¾VV|561LcQP#̨#=*|d^+p& o]Kpr=ύ ,hZ_pڜ}y $I> X{<>u1Ɯ!7t0 ٘j'=7/QzvZK;'ٲdlj:OIK8AKF趄Yo"4[PʒIv]0;VK۽wsELP SJ2fIN7RHyƩ-9ƽ.,/(zE/;݃cuÿk8<0vaR)=OT48sKyf\C:P3Csxh ŏO>'Ya?ⶮnQff܆bcc5s 1ΜHeNmCBhKgt`Z"2t,M jt126^C\M0^E2Hs :ϏR0 )Vi/d+׈*pEV p>m1l7d興t8fܱ#尷 xc)Pڠ0AՄemtS M="z L\&Dջӳn6×N,r)/Z:4x:wc6GhNz83CFTWWU#2榧GDӸ)>E# eSÀ-e)£p{?QЧ^o 異o7f,5&vau:QRʤ<ZoVE^[># d_)"K=>jj> X= ŦᐧW&qLYlc?ٕvu]5mV~31br9c{JB2o'iUC &px~-,/a[~d@wU ,Zn0KUӍq -%3CU™S[Ox*3J3Pҙur.,X)&E99PL#SʩQQq]Dj#{YOɺJNbj.nD;SjB *I;@}L@+J<08bE- \(eEd*FCk\߈L0-&! 3>4S}LG0B%QgdZ`RwLhWNND8V=)]MZ3²qi٨!ݓ&ga"߻ 1#/pDaz͟20T7|mFحgSP~SM$+e4O.;G<,.i , ԉ#W4{ȯƺd.7v|ꚟ)IN`s1"Z6:C\ɋ4e hQV S ,& apV6]V_,R aƍt'^ 0BMStꕕ5ƂM-,|Cڡ#\%KZSJvWV4ayնZeYWA?-Wv3'U+IM)Y%Cc  TGB'cTCPC lopJjtBo]}Ǩzܟ{ F볜5>RF9%i;S.$K]Ti~3& T=fPǦr/>ObESN;_ &ن7PeZ!BSLyE$s/{ \(@2, "=-BI1r:HN7[N6F XΉ0l+xw E9MzM ^ M{oM@:\N4AL$@zvm,4 )^rE-jbq-mFAnЛDEћ As HD&/MVOl)p0!lxnza0lGML76BznՐ.+uUe8dZ)0s3PVTB`Dvnvם FT<05  ڋ / ,Ɠ'ngm,l8cqO "Xn!4m4-*m4| 7&zϝ)pK9x2^vqe%nkb6\H h*!/%H(6U;hlM.:Ic '*ëHvؖt IdF:SO2 ސmKp4ו qO&,Y6T8gV[\2>ԓSv;$ <6wM2"oZ~&Z4 r@s@` b. zmDϻ#VL#[ڳ6Q"4K9.RnޞYӚT6&MbTLcN5fKˬ;1xm!#0">5f2zVkdh6ˆM}N8kZ6 e=) B->fjeT?4YwM4YOb.xpK<{3ê17p+2X qrP({LR ٥b() ?/OyW9vьCo26%BYR1wV v弽)MBtZ<|~4ZZE3]Ə0gQ0-9F7+DgE`%4T$[R%4"Fvpi4/TTS.j!t\fj[1YӍ ]QZ8~V! g&cׁd0>طڕE6 =Vl݄rLP9W\K-M0& nOxR2ܛp%8ܲM/[mklU2mZ_?IoPLICEmQj;IB6g9\5,*t?k\+ l$},^Fcvh͍a%*9{ng *TJz =B}tMI$[D)冓h}rWY ?z J)4&&:\wU/gBcG)/%DNS4ͻ0+:YU3ΠurJќT˚+ 0:-n% l)1㮘P(zchr+P{<@CQ g7 OW*ӧ$Y/m]>Y`%c. ~/x&_>%N{os9XV˧o?8~C8wRkk,$(n3-i`BHsTV8}9M["4['Sz`a [f##}7KP!tbz7/;Uahj,81Lx^#F⸘F#-Hg9I8+_d_ .29Kd 7$S*7^`f s2*T8|1w&e| 6EžN1X%u-K= l+ҭ~W'p^]E4X>rShiM*.P de3뮘+LL>tOze?okq8Fl<Aqwgh'g=,v _9=Ι_G*qT)e^]E?4gqeS~n\5_TJNLTw;UAhfMxzY,GG ́hZ*%[j NnV4HJ|ω,w3^ɔ1E pAD3{1`ʏUi!b4v" ~?z)<+ZtYٗo/^!s& 7iWsh-u-XA9:4sP qavz9(JXeWp.D\cFsls;&$ LYv6_kOKcyD!얥E`}y/bxAxȫpB(Z s8c $a3bZB^///3[O^Ѭ ߱,mI;[ hOt-z  LcpbU6p,JRgĶx1E >4Kj +gƾW2! ?G;> zC_҇`c+D` l);{PYt!",T9Hy1!aw|54̯9]=#X@.܍F+p{"77$/F7ÎYKF{@i>lpڙX`,^}Pd~vO/L< GٟTy1K@gc2l"$p;=cP1=eJ 7f,yh-cĵ?OX8XEjv2%!zBڊK;E[:6o%vEH}(> H 匚t򜟭 8 H(D~ J:y] lOKm!5?cjm&]MZ:7 \0jSvAE~=}v¡&q[nhؖc}6tuZZ"ePZ#ehh`vfo_im>}ý~[M0D6gS \jsLfɊƎtQ9߾ϻu@{Tء j@o2LM_~L}d-NmoC( ч.~3\ v-4?Z3d/70Pݚ,DlBRڴ'Zk?? 4Pvۭuil-UDg0焏Xղ=߂Wu6"mqiKgMp;d@TD kQF[|z N=D;Eݬ3SZ_yL柦{3vcn)Lyu0z0'_Q` ۤ>W A;痨s\-`䦷z;<6/z=8 2;_3]X1}MՄW:UnHF6>>5Y9mU2Nw/yf;MLvլ5X4VЂS~ ]bo)SX ;:y䜋ͷ4kp<8.vO9мbW6ͱE _Ke^-ͷd1mva{KKM}Nib1mVCQ󑋎WY+-y1lT>aLPžߟ̑<#{+}mx׬]2H{2JkqBJi \'UZ^'ʼK|ncVIeEǏtCP`3Ύ֯Cu,L}buCܜ֡_?[hz{xS #*\& 6-t[vOV[bqIB6l 1݌ pO@i@ؾjURax5xn X3-j {Nsl.'9lqJ% g0ƴa-H V*ѷvc}Fm]M"븚{w;n[PqG@p-0ixtPXX܁,ykI9]$~`?O{#zgzL"ayhjjAf y/ gjYˀ}ȈrO=ۘx' X^Qk!%}&S\۾k_҃m0e)އ#* ȂK ]{(k1ԍ=i5E1Mn"jlɽ JY0.X.ac\DCHƪQUˀ%G8 85H텵L5#Fi ]U<}QInl7Rc`oQDIɰ@l`i@hʺjD9i^)Rv-f6Cia/Qt0A߮u|GI6#@v8g=?#ܛ08Rpo_ 171ů3+^r~a?{QYHFSAM54 ʜl1m$%sa K@r\ASq'K^DFuQ}:Yx`},[})Ҫ2 OVBSw'.ݶF\gf4f|8ߢ(#Xϻ]Fgt;;* M%*LO+ r٣ q -(8j*mŲkɊ$ošĺ˱babX;Np@;p>=3p z~Ժr4LQ.?xT[3[KvT`NP_Ats<6FEϥ\2ʋڞcl $ll fɃ+G/>D1Y>`F*LDw:d<{2&:a *Fx4< ,#K?n40~p wHt]9mCLߓpL0W9Z?wg|I هy N%|/^j׆LCkle(X], xcTjhظ[ׂYΘ%n!5aHX+s2kzi *:2b"&ߌ,}BB[gvT s+˫ؙ a/d';ZܘQ/7JӚ^X`ͫ.-xW9#-Ze +7M;b%s\Qء;CV.ձ^$Cd*$`퀻b_HRP8/SZ4zStUm4ھv0ESˡdUuKzpM-]mL@%.ƻo?n|HR̔NDŁ 8{@ .ES<ŠåoZXnkG=B 2 N3_m7+y"qN:q >ȹ⣊Es:almbR9th;կM^qw4s~);43bƕ~ڡ?=d |>Ie]&鮫9#AmE# 6:|ZJ&VZ)jR5٭4ڢi S>zMu78Oܹn`":F1F ˆHɱ*ꜻuUfr~\8GJfmZ~A7J=Lתo{dr!Dt_$\™ȭ ܱ$6Z<'n^6y`q|n˸=D6R|aiynh8'xML\øh9EW*3'mT;/>wl^T̯^"<*[&TW/1 wzV&m۵sE`h dyt[!/׫)s%D.֔pDSxYu@dsc%a;.hh3yB'mU[KD;/ c#5*u6Ƃhm==O 2> G$^vM-avΞdX#!=K]64!CĐ_UODӇrF,1%S&6*PᎹ+X+`K 5&F:qԑ%v[wcV\InMB_칸]XݎȮw( x)?;V:Xנ'Kq@VDd,lXFHJ9y)@2CSfy Jg='@*=l9$,x_Vlfs5bnȸKjEuH9vZrp5Z ~~eg{u+ #A˘!Z>|v8P]&<]UHa H,M*BC[9,B@ɃQL|>MүX=2^^={rޙM )6Ŭi7O!/ۓPQܔ[vRΰ< ё1?5X 3JS3% @ՎpI ԢL(}6jo~WAN 飵(L?Lۖ IOBIXD/n50.L \N@-~/pu,/pW!A9>pl\yKM!qn{*6p0 תdI EQ%YM 6KaXoo6PkeJ6}-lth44苰l)5d $lhOl?e}ֽL-]E8 +7e @egKQ<ȓYX?+F@̦6S]{oyDgu-) |0#T4GϦX(쾆ŗ5dڦ ބW F$b1[G9h>EsEv[Z"4?Y .B{܉ s?4/j  dO>eZ6Y ?эp|-<6%D(AL') h< PϩίDdj:u5~# hiK_o 6 R@2%ڨ|^ @>K׺SDl}Si}@BEHofqM|9P1}s8'\0Dw=+mE9a@NZBcݨޞr4>Ϳ#.eӠeuo,Z>%+1qUꖟbeꋲ)8߶#z'%m[rO.*H;oާ]d&n"Ԩ?Q\{%wDQ6d|Dfe>ST<} cVȕj@E=3,jD'+1~݅BeRAg/#{г5_[- k? j,|OV黬ƳhT8o\׶#iQ_ZH0|fr ˦$dQ8Vc˺mTv) bcfj Y9 qs3jH2.fvEboDbqeg>*DquG{Ka*:]pAնzWSQ9ԕ $S6StgosON6UMAF. y@Xp=0# `iw-`٬]'=6 .k(g"6z;aRYJ&|X?5Y'OJC醐oW'PE]%{&{FU"iP*ptl]WB,V{sy?W}-Pshhv׶(TeyKbd$C`lR]LLF囗&A-{rgyןZ6*_2P2W!JUKyNb6(1hXؕx7f瑫TUvg/q?},ب#L{p\iڍ2oV JIJvƧ"TnJvv{RaQ USwj_x†CDMq'۩\s7⼮pw&zlMNp ojQP2H,/Pe:C&}BA AܔBAXDaCxHTSLd[^{¨Lck&W>e̊Q3~IorhƧt"5nWQ=/%W}/ tnpu-)jQӏ:yvMb[b& *ȕ*sNCcB-aMk1_X)%N$D&I94}v?朸5!Iy-P41/i 26l7hYEXB=(-9.UZe^&AuH $S[3D]<1]ɞ#[ؐP6P m=/,'֝WSrkIC -Zwz1cO'3gbd}E!UXT% M>Ha9<6ڎ'g})A9-6FtR~yձ^+v)}J bL Pޥ-q(/ӂwgfS, toaNI=3@F1^۵/m@jXG}:\ f|F'@7=2[`2uchǤER->Lv2鑺qQ4bbgL"PjY2Bp.n$W(H>s }55+kƪ[ &0IBEPIN$w:(EK*Evxg6{e5>5XO)2*gx781KRR.2"Ėݲ$-omirUc1- 'W1i[m`%HxhG'qo-w,M7ƚ'Bk{[3YFى{n1fimʺ4NRo@k'WG'#T˵4R&XagIN"m'-;e6D;oOYPgpo( *"cP`]䪉{;Rs#Z [G-1/Rv$Yreer ʣ4Z' ɋaLn/i{_ӌ3NkSF 72;My6ʫ#EIdCboI$$mF%z&iTm ^T|zϭ,-;Qx5a75z8?Tf ŋRV1\DEt%T'͸Q1SR 0Is&K;ѕrƌi]5^EE%d^4Iweed 2%N $H(ǂ÷P&̋&s} m@eszb_( _ik cf EMWԅVTbۄ<] /bXr;>;t2*Oo6^˦sVQv1Ԫl~/3b{ӝ!)6b_JeKN> JјғS k2nںiЫ(ʉ±r{^dxJr,5]z –5TPmV=qzLm(WZT܃Ž^+JnO,N#Q/Fm:nnfl B0=HW8c,N۹ʶn}vldf&?%I1 L;I;Xk)ԩ NOD]wv!究 R[pb|uyY U-zxs0 _ŅlX/,6PĶ䃏V*  lG(w r-hv5y[2hܻ_ӲOYq54DŽ;z #{xrLcPesY-Fϟn]6'n 3wMT'3N \1˫VU#[W"Y :z'&OķpNS18fn-sݒncMopX1s7@D>CAϮr@@< 0NɥF?wY RY =2duH" ^+&DZ:]mP5g$h%3K-OMQYq>芭 oXmo:Hgny {Ǜ)jK쨧֮^pI0#ߠY깾5^ xa5rj쓪 9t" < n^d4#UHl&pSFq6>=u]9ʄƁopM`yw;!zPUZΏvpm_vcwҨnܑ^:!@ 9BM̆(DF;T {UU4J& sU! dnQYl6t;Rx hM@+g2']QL"`eڞu-H]FveC(a헙I 0v;Tp^ܶx.-]Ny`ZO}} !V8pN#Qf4 u;m:]:1=-ѳ@2좼+S&CL5'aNiГVT/ FqdۘMYWRm֮|m:&鴆51\ن U^OOUcyo{%l^tHxn<]i]BoAgyv8%>͖$^-҉Xaj!)"9BR5- jT\\*ϩDPVISLJ08bH gDxgR*PJJ_C% Rڢ)kMLm)3kJbS`ڵ6K6 6e UVm(44( 5PR(m B(l  4ѡ@#M4h$U 0FL&J4h4@TR4ha[!l*[Cdb*[%-Jl[Rڣi6ll%l%mT[eKb6Jlڕ--l El)lFVՌ03)F¶F6elحe1Lٕ+ S a--&+hUUH%Ul62elef5ZUV 6ԩ"jalf+`)bTSj+jA[Ql[j +faLl[ [I)[JllU&6M#hV­E6ؖ j(VVj eVMl6Md‰Eb [Q-VR5l60$m!mT[m#d6J* eMA[R[ Si[JMmC`P*(L L3+c)f lA-ʦ6(6M͔fؕ-HmTmCi(SSl5c C6l2fV6VF° ڰe l(je1+`Sa[fM 6J6lSmVlՂ2m[KeKjB ؆ԛF[R[ lV)6lm#eL(ePjVUl%-Vʒڠ`mJlmR[%i[" "l @ShQe"MlTl5V+2351VfVPĕ j*VlemՌ MSb T c53m6(5 efٔ1L5ilQFțQlUcSf516VmlPئ6;ie LVj jaL³5lڋh l656͕ljaYSPScfLS bVʒImR *Vȶe5Uīh6[@lFYQ3j(l+lQ[ Ul[-bM!lCdmEL5jcZ 6[ V6ډ[PlhV¥efLVf) 66XŵbC(V1lSmX6ڶځ b(ٵ(ef`,#j6Hlll6*lډm*ṾjaLML(A ajئ VʛCj[AY +bS56jlءYVP+6e1PaL6ͩ6Td-(٨VfbXDmU­՘VV٨VمMm+kh6IFlm M["J5mlQ)؛V͵FV6QEf)MV`Q l ml+jej°cmMl3S)5 (lVebƬ2 LX(F6ؖlRڔհ+mXlFCSVb+)%mXت66Kb[#jMM%5Vb-+dm-mmT%6CbFҶJ6&жMLS +l2(bL0fVƣfjYZe S5V5emJ[$lFFűV+QQmmm@Q[eF*TJ؛+hİ+cRjՂdVѬflP+2S+l6PaZ)ڳYڛ([D%6Df+f6Xb6(j6+5j[ SkJlhiM6J&m * -m+emk)bƍkQV6e[Ql5bج2aLV¶-em[ H6[-l%[FM(S2 fU[J"l6T66-[J6RlUQmF6elU 6ͅ Q*fQ1MQQ,j+jحalڶ6SS`V͔c+`+fհ+3+emFVͫc(eVFj ء3QIl-+hl[[H[TllCj-bڕ-T5؍V-Sh- ڪڛEm*ѭ+FVCU(ڂ(5lj Ql[Ch--m+ce c+Iح(ŭEcllZ53( 6SjٰRؖԣhM6dM) X+*bP56h5[XQV*[(ڒڍ[hխcUcXڍHc)lV5VV6b(eLel՚2cXŊثcbŬVQllmFbJmH[mCb6[2 mJ٤56jlbj+a6&MMmJR()[6+LQX̡FڔjSbbmFصQFmSe[&6Kd6ٲBjfڅ lT`֛I[TSe`RSZVĭ[[JaYelRd*dѱmLlV1YFP5lSSmfVḇQUh6F-lj-6e چأf(՘6lPڳP53VڶV 5e3RQVXbkb6bƨEjL̬lf2Ɗƶ5Xڍ[[1V+EQS 62m2PձFV٨j1FjU[-l؛"&қBlmU[F*Qh[Z1V+EklhcR66EjڶжRڛR&mڑ[A)FimբkEM[VF)% `ڪl Z٫lVfSbPڅVƦlUVڕlhVej mX+V͒إ%F6l٫cjM[m6)QѨFƫEcP+QXڰe1VQ(bVMV5-@PcP(ت1֠ѱ*QTQhc L¶Ԭ@VٚVͩ66EmRhmmѶXŴFF-V1ōD- EږƭJ64kd5bVm6IVŲ [RM lZء feVj5[EՍVjضEb5Tmcmj*HV4lZ+V4j6-mbЫiUʭڍkaM3jlZ6--bئ6ʱb5ڊ6lVV֍cFXbQmelj1[lSlVdhkEmEl¶e6Uڊ-Ecm,V2Yef"٩6*kE+bi-hѶmTR6Hض(ғi)(FQ-ڪح[1e6$jڰ٪6Thhڢ5h),eVV LUTY4ƈh -cV-bBmMBKhiPm)mlI[ 6+e-¢kXlVh+5lj A4m6bbѢVFkF-ATh5b(j66جlmFCbVhգPj6-[d$mQ[M*+elIlPj+U0գmh*6(6jƣZ*-%lVc[ثeF%e جjl[&m4`i6ŠUbmFJ m6UU[CaVԛ V ڀ+difԬ)6Fضڱm F&aAM[6ĕXlZfFƍU (@[h5bűFXQ5ac)FX6-l-+i+lSmYF`6cdFK5ئmC&أQZ+4TUɢmmF&ƵbMj**"hmZڍEhl6mAm31+ [Bj"1F,Z+Z46+aMj0Xl#jM%ffѱ6U[Ѷƶ,U-eHƶ-bFEPV JF-VՅ%Ji`[m4ZaV5-XjJ6hhcVQEdb66"Z-hJ6ChضEm-ƵQ-QhQXŪ6ѭFbQmEX+FDm4QhVZ6VcjlFJh(lmF+bbƋhZ-&64(رƴ%@[b&جbŨɶ*+ b $%Q6*Ũ-FJJ5X-YMBPYVbհVFk-e6 ؕX+FѶjQhTTMY,VjeaFVeb Ʊ*1ڈɱFhlVMV,El3ci2YX+m@HFFՋQj1`ƲEVP6,F(**KjƱUhlB5[RQV6F4mbڶmJlSe1XVҢmaXbQXՌV,52VV2iT5X5Xmآح&JMmQj"QX4cmEEF(m[cQTXF-F0))mj+Lj-hPbF5DjV -b&ث&-4m4hڊMc2()ADJ`5IlV,°EEAEэd4`14cbƌZ,(֢l*ؕ[*Z*mŢF lSefMlmFXCVڊZ6ch-lh 1lZłj66FƶLkEi1ƱQEbF5A2@%JKaYXbX*#25TZDQ-EcX55F-AQQlXFj-b*-j6lZX+S+5 j((Ţ2Dl61hjJح [cEQbIX 3 PE6hEPbFC YMX5365fڙLbVf#mM5allحY-5h[EE(j6ETl6 QbEQhѴmY5lm(6ح&FشA*j,U KFդŋY5cFMbc#F5(Hh*6*MDk IL,"ŊjQhF1DIF1AƤ֠ baJ2Xĕ5ZM؋ب S,ZI hb6TFAIEFCXM6ECF0IѨ,T bV5FƍXٌł$6&jVl+61Zj,FjE SaLVj mfPjYLQjŵ%FŋcmVMlh5i,Z4ڊ̑Y`QYY6T%,ZcXV*PmT-hجmQ4Zj-bƍQ,lZ bѫ,PQFllbQ +E,RZMX[L*41Z"cj+h, &ŌF A1hѶKIF1V,mTUmdD,hřTEFTZ+6&ŐآKEE-Ah6- 4XѪ#F%@Z6611X6Qh(k4XQI"1V QQE[*(3(ф+2M b[P5 VY1Ul[HlRض5fQX)em66j IcclmXcjFmEmcc"h,[cmcTmQTdlZ#-cQdZ Tcch1Q[M,hTQ%64X(5FZ6lj,QAH EIb-&Z4QIa( QL5DED&4Ti X(&!6ѬmDmhXU3cbFlm4bhM3#Tb!L",c+Y1ElUFصED[1ֈlX؄"cIAbH,QI"cEF b+d؊mhKkc LaشP3F1F6 -%4QbdbjCTTET,TU2[$QbD2 kc[2l[ fjVئPj MXͩl+aM-UEZ#j ,[[m[mA[24i+EhІhh %Z+%cF-%li*hPhEѬKE6,جh5mcIdƨ[&MM%5, cmh&dAѱlRZEFQJ""BYRHX,U&j1lMV,͓&f4lU21Qb6lb1h C+$*T(j)%0ElZAbUkF(&ѴPTb#TRh!MQ4b HPckAIţEI4b65ԑQFƐ40J(IiTlcI h 6ІDch$1`Ơ M[&6X*)4ILAJbfThXIȰʘF!&Ph6BdZ "I1X%Zdmd UHJ!eEhR`$$)FQ$ha[mEEZffV(PMQŨV-Vke2mF0-mEEb2(jlSa[j)Q5j6h6رV5Fƈhѭ(cQcVرmRQh`-AMLj)5l&*"hb`+QV ZK lRj5&5&j[)E bR-)(FV1Tl4QQEPPk Q5Ʊ"F0Eh (V XTlj6I ,Z666ԑZ0Rl$QSE&(K(ƍhѭFK!j5F!cTS5H4A[,cb#Qa(ƈ"& Qa5F(ŤCRLEE%BHcJ%#Y0hRDbKhZ2EbX),b2%VD4XL),X4hb!QF4T`DFLEAPi-HEMPDQAQ6ƘL$ѭF5F@C,h QXhY"F0QH6JѣfY0EѨE0c&IE&ƤAƢbRj1h4cFTc&,DS*2i Pb3 ڍM 0RdLjH`dQ3F,cH&51"c@JML65L1fLAID խm&V6ٵMͱj6mc[[e+YYcQXfK*6kjlhhlkbmbFVXƶ5hU&ѤƬX(F))+E5bE֌[Y-т DmEhi E!i"XآMѫE,Y(J5Eh[KbF+Ea(ՊDRdH-+266+X X,jɬm5dd-6TXب"BƘPlbjFQ&4l[hŨL4"mFCPZ TQ2lDTZ رb4DDAɩ*KlA(4h5!"*$̱X) ьTK 4U%4hѤ-эF#j-DأIMFJ)1mhر ,Ti* 1I%&6-bh&MQQj#FTcb!4Ŋ4l*% Aclmb5b[6ţD&jLXƈDThcDI%FIE5k"4[Q4)0`,A 5ѱF2b% 0i4`MC5ƍB@10FR+QmlQcj4đcAdXmѴmj& bPQbLQ4)4lFXɒTV4EEUfQE#FlV$"Afd Cj4bZ,E@Z EɉDƉ(,Qb F 1h*CI1h$$Fơ FM#X HTAFdD&&,cbS C&IlZ-[#mbQm)[YLPSlU3Mmc[Fj5hhX6-lmEFFlEj-Pj+FmbeTmQIJEhcdb lfIbZ5FBXFѭ#ZJƊF-+F F-QTR#QV+$) Z؈ƍD,Qhhڊō4 X+QTXcPi-5Hh,+Eb-Z5C3 X4cf1d-UƣQF5cFM 1hɢŢ"h5ؒ( 1("(""Tm%FB,c#2m&6$ђXؠ4IA(+F54Y *1ED(ɍdQF4X55F-Ŋ4Lk!PQRF"J"1LFRcQd*( QlQHF,*fQKQPF5I4FH@Xd(QIP&bŌQl2HL54dhfd4j"*LCEDiQDX((ԡlh[ h(#&m3DVH&؂6Ɣh#ThԘYc%b!D$XDhb"$B%lh*4A"hƉ(Bc`MBk جRFɍRHcQ̌0hQha%bf #cdьRDb!DM#lmA%e& $BlIHhؒL4RRm$h@QdE(h (Q $جIREE`0RIA"d"&(̡[h6 1RTm1!IQcbѰ[0I3 "4ZLIQ&PƄI3A!%!BXF0%2`HCdEDSFKDJ-EJ2%H4h#"F  "$lH i$E)Ii6d1`RQJQ360j)B"hi4 b%1ƙHĀA(ى$1e1Dҍƀb6TEcAbC"("I$$FcllcLbHL$đ11`ĥ&@CZ1ELb6JĈ(@(&2E33)0lJHABH&# DHLѤVf/kFV-m"l[fٵlV YLV¶+FVh6Ƭk&QRmlU1J²Y,h4mQjhڍlAkATlQ6FE6*0kEhMQQ&؊6EQF*P(dEX+&(&k`ţQ(QbƢ22h&Z*[I&f4%QAE EEL0Q!Bi6"1`MQb҆I*5&66*1c"&M &4dS5b hm QDQL*DckHXōcl&H)(6LZ6(" 0X2TEcRkE & *5Q2mƈQQC(Jd"4Q$%b#bUQh+4 lɊF6,AQTS)"Ʀ5CIMEƘBV6h3mDŀ`L2lQ&Lb Œ0%E`-DH"2i6eEBX"i$4mDkm2S,Q&QF(5E5hThѲ`Ta$k1F01c2HȔlF0&&(jeF `IF&lҖ5"m$I2,PV-6 (Qh1#&dK!"ƒII6(IPdb&Tc% Qe i"XeГ(DA3QX(LPI1(a2bM$)eAbKPe4P $dD+" (0dhcؐƊ Ti))FJI X522F-0!Q`)$ !,HF X,Xab"M#Di$i Y cB22MBj0S cXd3!40 41L$KT!@$ҔCJSM64hƢ#R&1 6!C #PE-TdDɣ&a6dj2dذFP#*1!4I0a X2FC jMllCcK  ,LfPHhPRB6e2fI0!% A$06@L"iaFhRm Ra$0B4X( #&1A,P$im & I f F B(A@m&#R&DədȆfQd &ɛ2XXI d"lY4QHQ@-(ѤY1CBETEM`Ƀ Dl%I bK"dY) FEFIH1IQ4R`Tэ h4 &L  HFd)2cɱ&Y$fF[0#DcIPd2D )A (C"CE$$T$Z1& 1I2,0% 0hL Db $fJPidi014d1bj$Dd !Q3eh%!&i,aM@!͒$DJ1&4Z2`Ci#%i%,M  #4E0d` b3 "6)aPLChBh4j!ID)B3$32Pl&J(STIIdHhfɠ$!0#F4fHE"J$()Ja% !$‘,2Y2$ődiD6Ld(M3,$d12S2fF6PBDch!XȠP&Ll4,02dB&F5 I F٨1LF6LM3QD4ML FF d4  @QA2ɱHd$ͲLѨ6) H 2a"FQ21j$  (Ę@FlPX$ CE 13T#E XhAƌRjJJ15 FѤB,Qh(`(IlbA"lIcb`Qhmd(ɊKIbƍ*[j(\9oO_~[!rB'֡@7:U/)wH |P@樂PDE)I)J($/ͬ*m0h+C[T56ijCFMY 25Ճ!U$(2 f4ٔh(3,Z[d JmPP9pPH(oGaAm4J EE **$m $ %mU |E?Bh& H4bSI)SR4d` ɦ4ѦEJ0 J*  d ɠ MGߟk?'_C 0!YŔi WĔet?xXiH`GV__Ts\/:޺3F hLHV1Ʀ(>"VsRm_?a+wz V'Qonmo\pSG^L P.YUw'nwT([FS(x~SNP{zHpƊ>7Ur3.0g1 E -d^;ì{2=R/wy~ ^3h\tͺ+>&t9ngRO)0gϥҧɎIb-07!(c,ÂEttȤo(4k vil 5;O|fG l8a6$EH嵘q{BroW9o=KnMGrzlpjsЮBfs6qip1x*JO/Qm%KR_@ny+o:(3y@tEH睆;sʷ=z4>\5. T='MN{M.N,>Y}w&V1Vk:A{]5),^0Z| xobol]Ņ?JXM\r~. c"$s8d{uM.M<&U iҵB}oMp?^wWήvu## ~畳F(&'E[JQ9YfSYrREg\R= 3TM$7&-F"ΈԀUy\!IGJR%f3>ADh<4$h*e'}uk }KZK9LPHQ/~vW}ҏKߥ02c~Ze[xk֥ X E`%|;<$63;#1>@RZsAxݓQ몜GLAH& dw'D 0:E#Vdq*B>a Ӈ$]#>(bޣkѦw具;GG0E冀ɇN, %,A+"Ʒ13P"tuї ŎvAK9h?$)T[ӟ!xVs/H i` [ RF6^c: U#]]sFY)k'2/}R`D~4EgI~Iol F^h"B3%~8pM^K{αWyx_)nTKM!d ൂ' @IJ腠SP}[^/G1Y,`90ޯ֛6`B"b]>GwħQcڟ3[> v x-& ( < stV}]^hv} tE>S9cW!w(_L?BV]X*ñ2";#}ćNT^;X₲4* Kdz2|H6kriElC㍧Nk>a .O>ISg<=kI#XaAiQ~xA_}KSAg.G#^)a)JL'Ǔvs7d c(UfRGǃbס}{rt4TPE${\&L=NpBڅ-ZFGWNAަؙ}GJ (:$Q=RHF9RltFJwM%u-B)w *[jbߘ&1m-&~k$xsJ"f+|!{9\  ;/OH άyJJmΫmAݜA8U׾h($ K*rm[T% _RSW7Rh:G Wy޵ŝV(gCx#%-{Z8q9l)'cfͅ70Q"%0Jo~HSe7Ip㵷{tX*fO(_ڶRhh3:e^*]esE@Y(x 1s +6Rx{,N3%]a4A4Œ`í#R$_Gnq ;kQByM(PӔ@Ȼ`F¬J&j Kg!h\9WCH̓1ם+7av q፩)|[+qS}ʄSLl' ݢIWfSVMFQ80x5rM) Š k9`PUYO& *l/m8*vBIdJ=˭TDv͜!ݞu+D.  ]*J 'lZ(dL0TsiŗL1 ~LqQ(Aƶ:#wrh~N" _c0(hۣz Y%!Ia^jɢǟqVu/ r{ZJuׯuGT,ZEW*6žw'&xC~9^{t£C7D/_9ll"4⓬m/fY?x j!s/^+_}5e,Gf,bV$ȿՕ=8ᶼldƳ yI)ps9QE0f59ՈEy̾&oIkc;o}_ySҠ V^7ײ2sՅ0tH"{ƨ맕eH`+1 'q?>U[''uK.wjΔ)QXx~Wmc#?8T.`|۪i9t_UmM+e[Ul$UQ[ mjmA)6+fbmL+bjl5b[mJmChVTڒ6KjTѶSjfV2Ũli+i&6J6RV)%KkblVҍ6LհV ح-+dڪQfKbm-ڃhڍe#h[DmQV[ -V--V 3+el6-آ؋j`mlT؊UM[6%m%U[*؉VM[dFҍ2Lfڍ6DڊBl%i&ʥmDV6 jaiM"mQUFjƭ+0h[*BPڋjdڍlڔڤFжeFc(j0Q+mMm 56lfԲ*mj[BIUm&iM-MEm%lcPf3Q3S b6R-[!&%m)[)-MbM&ЋemJm 6+j6VmJVҍSe-)l%h6حVlFb"V jU[EM6l%%["ڶ- UmKdmSbP6j [RV+j"26Ͳ+`lf6R[JQ-lf51QUUm+d%-6mJUlS lVf՛ XfVlVVfX͊FPaf)6Vele5ledlUl ڊٲ"[J-+fmYF@Pڳ+mV3Y&fVҪMFYfڦlQ6#eE&@6h+fQlVVCbkal$ؓi[*[Vlmmճ 1j+3V ŲSdlثaBm`ڶŲ 6SbV6ضQS`lRl mZʶړh+((ڳ)bjY(%dlUVжFԛFQ6emVV`VV̬̠Efڵ4`6UeTMʕj ٵc(MmYaM+FʫeFl[#b5`Vճ+(+jQj`j5lR[ҖқDkaL56j+50)T6KHڋa+b[DVfe`)mLSmmS[6556ڶf Ul*څdKaLQXbVjj1mC5MM6 UbV[Rjm¶j˜Ơ(ffCjbVPڲf ٫ ٲ)[ ՙbSaVʓd H֣d MZ 1cjL)VͩXlJ%6 ؛Jة[% [%mJګhچl+`M` e3Sm[(jF+mثV6el#e[HQmѵ**6-5֣fXjjVfV jaCe YZ6RCjm)ѵhض5ZV4j%+eT(٨՘(aMKQXf(Օj4[ MղMVҪأjjlm`fZ[Bm"MSfƦ(5m̠b) lՕ[*+aMiPڶP[3S5S ڢeѵITklmbX,JQVfնe1[jUa6PVի bM)V6•Q6mViSbjV-%FFZ+TImKdVRVZjVV-+m[b[mF+Qڱ`mLFXVQBS6ձFVm[1Z1c(Q5hŶmb[0lVVڶe mlS2jf(JEAcVŶѵEVdi[l[+Pڳ Z l m[AbX[65cX+f) Ca[ll5-aEFVb-FFl6(fVVT6KbKi QPSXe2b(fX+jj͙@5`5 m-j1Emh[jf+lV1Iڍ[bڱcmEhXF6lV[Q6TlE`ڶ mFZ"Cjl+dmSj6m mELSaLՍfkVcUEmDli%lU%l&ʶmF["Eee3()Սhl6mJ֍hQl[TZ-F5EL)mLV1[jm L elڵQk֍TV-j66ڰmjFѶ-ZXjYSj؛ Umlm6Rm ړj[+h[-٬+dj-dh֊ذVF( Q[)ElblVFFحfSc([S5e6*-amVЬA@+VXV[2XڌSm6mUV[6hAe-l [ lMafVՍL[Z,bZlj5[ژ)MbUFQQX֢mhֈfٵ21LS3P+aF53Km@j b+f(ڌRmCVb6U ؛l4e3VVcPmfj٨ղem(2յFmmV-` jfllMm3S+Z"ƴm[ cP0aYm(-lM*m EŶh6ڛmAYb )jF[) [HLʡL5 [eبTmcjFأVѫET)X(VcSl+26ղS+6 FQm)[5353S* dڣd֨QhY+D[TDj#kl)-[I(jf1Y[bmeV[2ړe6Fڍc`RbYVQXl))ŒڛU)cR)(³e1XjXPjl)mL)@EmVl¶b6,[mZXlmlUlV+lUHm[PV VS2ئVS`[dmXՊQjͪmkb[+`ձY ٫0$l[eQbY3PSbѶmaf ƪf `m6M+ilUXmHSmS0PeSbl56V5mm[(Զ[ mBڨ%+cFV-[-&ڋV4QmbڣTkCFkTj-Z-bZEXS+2 SmMS)+ UjmZlQ6j*ѶcQV65h[F4Y5eV e6 LSm5FFհjlV(̭lTmFF5hkXQXF-UhڌVlQ65hƂذQbUlhj1رlUQjTZBQ5F,ZɵEcQQe [3jfVZ[F![clEX"XQ̕lm d-0mhcV- m4hƱmVŊ1ETZ5Ql[Xب1lmS*%Vڒ6FZ5jֈE[%6-[Ml4Vel+l+e6VR)l&6[bգXF-lkE5EQFLcbذTj5"b5FƊiMV6V VSjlV`5-h5m[6[*6ѭƴV,mE,kF,RT[Q³Va[elV̭AFѴmEѶjm6hŊ[Fƣэb*D&jLQ[2QMfV05XZ"BFjLVEɴmXU4VѵDl[j UFѴTB(jԦՅ2cbkIhQEklUEkUEQlm lVl[&Ц[6l#b6 ij6[X FV"m[*[dScdؠjƬem`mZ*,@ZQFTlmFXbVlDkFѲUkQF5hڱkXlhXţlmd6Mmj2LFl6 f*5FXm-aLV([Si4+fS 5V+XѭFm5FV5*V6Qm(Fh mQQcZ,lZƊlTѱdجmb#lmQTFؚmZ Ae#kEcmFcYV5Y2Mfef(Vm+aڍb6QX&EFڍcA5lV6XFhV6ض5jFjQEQlmEY+PmbMDQh65*6,VճQBYA,؊lbصdQEbجZ)-*Sj6m#j-Mma m6«6+P56kQ(mƨcTV6V1P˜հh+lj6cmŢQ5Q6 Z1Z6Ʊ*(jKX-&Ŷ4AmQ6شmڊF"ѵ*(+c[%j,jأ!h#+aYMLV(+JcRU[lSbm M`(ڶjئ[*lVj[ 4V[bXLVmAY[Sbm &,EZV XXF6bVX66Fm‚XcQb,-QQ EEYQETb,i0-h4X#Q14jTU5Mk Z5Id6F VBVVk`aMٶS2C(j3QXEV1El XV5mڌZŴkmmb+mhb-bmcmb&6 hElQlh6HĕT[%h-m55[mFABUlՕFbcITjѣjMj6mETUmmhcQUEE6AVҦŴ-lF-ڭafVجjjFVS2fD&ʭ-bllhQj+XڍM4Z6أF֊*-X`ŊMDZEh6ƍlVضQhZ+EXkQmEj(,mhEbX-F-Rd$(Vcb(Qm+bMbc jdmQ61FRb4F-Tl[EdđbFՌjQPmFVٲFĶ*U+AƦL%V6+U6P̭F2 mbF+5m[փj4FPɋ+VEmơXm5`McV-J5cPV2[EFmUm((Ab(EF DE(cQFHQQj"ɪűd DƨضJ6(*a ckj" ) ƬV" cѬDPb*ڰՌ6UlhJ"1QEh[aLPQjbնm#+2++l)@mEVMֱ5blm%m&eF UFƋ[QcIFƪ6&[F1+FIT`F"5c4kmX5cV*(%2lb5EmjѢJ5,-0l) H[ITV*c5b4j5cFQhKE4Y61m&Սk"(*EEm`э`MbX5&TFh55j٨X%%Qf[VlMXmSfb+l5f+b5+bllVЭūE`-QcQTmU&ƋhjhQlkj[QXƣEl[bEXMmhգkXbXبض55bb-cb6*ƢرFkDQQ#D[d#&(TZ*b6 QY5Q"+F[بJld%F0F(1Z-FePF56ɋHjƌQA[EX@ (H؈5EQ4cV6cF`6j+F5M Dm!AQXlY1m#FQLm[6b[HԶ)4j-mXDX+F-QcmmhجXF6ڣEUF4Qj-b65cEE-Xb+FՍV-lZXՌmRkcZQUEbcQRUF+!EEhƢՍ+ljX6رX5EE5jk(EشljjKDQ[E6V"QRlhڤ[ت6-BXJ(Z(51QXرh-X4chhKRcccbhش ƣV6 h (رEɵhX#EI5 ,[!#I BVѪřA[jb5fmj5kcXS2LVc(ڶSYe Yl5bEcZ ՛j%mYEhZk1TXѬAƋkEhءi$±-,V54Ŋ5bkj ьmƴUQd؃QZjTKRU`(ړFMZ6-FUAb6,X+FKRTlkbVƱd+IVLTXb-+Q6( Z4mɂƍE5Zl%lTEmcQZ TV(j QfJ(!4[-&*55%%hűDX`` 5#+ŌIj(5+AllXcDEIKEdSRmmAZK5)[ee6e3QH-BV#j6آZ$jV [5Sb6ѣmFTUM2Sb@ i6ڔ̭Dk6i6-H)5[j2"ѢF6U1j4Vk֊-FشVEI+EѣlQ[IF$Xص5Ekhт*m5,h1%jM$,V CDjE-AlhY-&Vѵ()65ED PlQjbѣDkQj*4Q%US1FQ$hՒ-@JDZ1ѤűhѬa,6* IFXF*!1EhRkKEcIV* cԑlmEjR BF*-+QdXQmF,شQk*,hѱ D`œƣ`,h#` Eac@Rj I*6`M6cQ 6RVĶ؛(EaVڋi6FFEcjkefm[P(ڶjmX*2bڱmFkQZMCj6VԑMZa#E5EZ5mb5[Q5E5QZ5IDjl6#khhEQX(6f Ʊj6mcj,P4m*lSHQMEj$ڍXشh[Rhi,L[!F+E%A0ȶ ##hF6+E 116F5lV1&`ђdAZ-d̫IY*164Q`a(#hD E lhjbF,lUb QbMQcli"AdQ*,*bMVMB%F5&[ѴQb4dŶlj1F TX1lllUb 6Ea2Lɂ4MK- ,Z`LD1hֱIZA%EcѴmLXص&d1m 6j*f"(A$l@IFAI MbI"!DEEjf4j1*&SY $Y,bL(UYO2DaS9Vdi7C/0$a I6txz]woΜ/k+aE+lQLC)SV6m ͊m+XbVUcj5PhEj5[F֍jV- Z+QX6رVشl*5lb AL3,Qj+bƣkV1hѱ[Ȕb,Z*66bƱm&6ƣX(K#QXVVjl(V),A,DhƴZ66XhhEQi*clb6F64 cj4`R)SPZ(4HXڍ$,ml3(ڋ!QQb A`-THj-b*50F$` Qѱhd 4#&6*61dX2X&eEQ1QQbmQ0F"XLb,ƍb1Y0XddcQhYbE5"4hFb  X-Fhƍb 4Qh-1F(dIa* f@RlhF,QhXC+D#F,P&4APjB`RL41cdؙca$mDUDF6*0l4b! Elh62F1$E,h`,,XDTQAFbXj,A*S  X̤M%!%"&أX͘RFL2IB ߥծ-)"hXŶ6Ƥ hEIX,bJ0c3 ,3)!6L,h61+6PY(PE%&`P)1dL1F4Z2JH$ѣl #Q0҆Q (2iXE dM )f3A"bh@LDd HJ2) S`R@m!)#"%S2 “&b ɌPlS@]L>g} S${yY,%qy!haMƷ&CҚ{rHH" FBDQDEEgaKM^; i^݆QS|,R^@^b8&}o\!R/0ofmgLw'>҃/j(+ɢɍ62SQ',:|+40g@g~ L!"fLk  mpmj\9jխj1b {L &o7S$Ol6K.KҒQED㩙A\-2a6=T>y +OE1Ŏ#Q(_ۑ^Ȕ~^ih"PRlAB)ݲ|)xoB' C,'Dkc!R6$c= +~,쥵C`qilIhVB|ȅ?$kQr`'QL_cgYdu sC,)̜Ω|![wS?V035K7׳.DEQy:'TGt+A:_1n |)j(Y^3LzS$yU ,g iݵEڶqΚyVI(ô8p/8!6Lah&pٝKw»0oQ)2% ΛZ!9oYDφ')d;oS^ iTn{5'js,9.AT jzcG/e-$ׇ$ﳦз2Zɟߎ:*aiǝ=!g}hnϬ/&DKD9[;#=DQz$ rlRڳM8@Ou7)z չOM6TӉK9U |2=?S䒲^sqw*zE[WeTyˆ N ;BDH6wj|E> :I Ù 2VsqhB14r5 2=P (P0^ dXze]6t.K%l"L| {!od#4Jx$E6PW;n*|V_BDT$hvBouHEVpo\fu˔|?O%++kc'MM>]<=R!{| %(%f/). ޹>hl q宆r&TriJVVhf_DQDELKҊÆϣbŦfTV0[c,j^? #2|ԤJ W_ NLԉc!<`)k`/LJ@H \X^H\z#lעk$4۫UʪJQ0Nuj[L$FQ-F6Ye (I!L%`|3M_jPmP[eRH⡆XͮHrzb]iaY\=̊q<ɑtt"cAMʎWEe&4+i63 Ti'%'$ե^>k2K`m (n. *q4\¸Y:3"0Hz0Km2)>Q'3C*fx^)BhQ׽ijwB;Fda3KQ#eԊ-e82J"S$H2&gpg~\Q&=;jFcyZ0fmbOЉ7CFG]˚ĠN~8^G:Q22OVc銘Q>-@)ϸn0+8lvcvt2ƪ\T|JXN z2<֍O~$',8efqBtW9J:.k[8eJ=g\jhi 9.G " dy?U5998ԏ QFKL]LZJΐXmq $ٵm2tqxŻxى8n¤0bxJN$5nRC3u'AWyu|HRߴoase.aivX#A FNq7ӆv&EuNe,Fj1hVޏpY-{l;&G닿 gu]UhdDc7euCMCc?⛂9:$U#1v\q X?ŒzZvFI8xLi,x8g\8/ o;|AYib}=װy d: "/Rr mZӢBQ@-+ws|NC`ZvIECTFv| _5evWHҞ)nX#jHڃT)r8L!)y41ǰgFJ 3Q/qTf:6ET!:sEPH2 v݅V\B=|v斂 Wo:2ێHVC2{nF̤PvWf'fdT7HQ2@^? .ڒ3$q֕yEEI{ol V錔|wʭq!s6}녿% #FDAcq-3~'L/gIhR3F=Ih/mNG-2&#m:Ad"`Tbuzb!A+s=ljΔ-sYIo0UfE^&0O _/Li.-'{@\Fcy[J33eYQoui k })HYp/{e0l$002T&[ yms()pft7| )YFgofʨH][֝l8.^8I i :R2'hR:ץߍ{ @P*Nb޴^T$4#2j$:%^bZ QBt ppW0'gcK@U2m6QTה0e0&gQ"`Жt(.) TMU%#0/\NpT1@Ue4 G+E`WakjrQ&vZ'oL+#L&/KBY46z˺j*^0__L8J&d5ڦiO ,ႰV O^sl;|I!Mګ'l&4=9=J}4!tF `JC3I18nԡݼ _CGD6!SENTH:[WT+όln?A@$d^d_P\d3~m] 0q>IK_3 D㒻JԴƱ5/Q$慿CKΤ<_6uB+K,8v7X)3Ɨv֍aTmuN^L1 STp)Xꗸ2w%jPʓ7Ja(q]&q &7kI]ujq8{ЩYNw!]y4 @`*ʊR<Rf!4bjD(<+a oGda2Vo.H6BYtg-^m N)T ++ AOKi2Sv&Ztd/~HQ4&ICjBtc*98Ƭh3R}{?(&TX$jga#8* T&VN(Mm twd#;4;TKo-] \ƒpcrV>c3 vdÙQۇ$H*UHp9? cm(31JBf Z#F:lZ2]S9Y_~Zm:|faC]n A2Y4-П1T|8qMH0u6Q)Cbj7tlro Ozu\!^%RTɲqQ20gfPH CJ"uH[[Vڭ|'%Ns=i.;xUD.m˛Nsg=s8Փ#+\?:.W>{'"i㻎iH$Bʖ0)mt3TxO!W!I÷l˧19.OV vp3wpqd>vULL]/="'K0di(s(Xf b+\eAvヰɁ5`sPZޘwCX/I !7q*z,yv|-{k䇤a:4sFj &TQD^qMyDUrIVa^XZW`\vzzg9D|5ɸo7GW4tNJ'1T,6#[^ڠ6#m+ 'ƦRb{#NLDC*d{ѝ]Q*/Udd6lsP(\(ԔRJ8oBqQ&8GlL  ~ǟ~yR:)%zҸfUR.G읇Ԛyb4#a9л3E":U<ȻXTWdw$Ϊ:]lD$3q)O+PEz6]aml$欘rqƍZ;&m\rG,Fu'162")=K|ݣtyE)*-tOy3xQu<Cz3WgVg5yb{"#ރ|L=WK2d79sJ5žnD{YG\6nNLz{"Ƴ9$%_^}wxػ9J]}ey⋅K^_$J5kZ{ DoKb,IJh.,+OEzF{W?!:)#'D}y0HmGs 3{nm*ZN߰޹* ɑp)gZMWә#ҹbmjmsRo1Qz’Ly%"x%^ė"(R*MuԞCXܪ+ToϜݹ9uTB1ŤqpPz^ؚĈwsNSH7}x]]q"rIh ']*@GP!Z6 $ua2C)7mO ><6.ϜAjBV|']"G   )!omHF>z,]kejŸ{he؞WV##3S`G H*&QTN\X6|ڸ.8ِ'/i`D9 D_LЊ!Jdp|G%]@6u"(.x"g-HncJNdgl{{'TOjU;}ca{vWO;s~O Ԇr#%u˒#0..@^m,r:En62_|򬧶MHZw/"PO?%^=JPE$ߛ= #{R4 yǜfSgn%dǥ^HflM,1DKMvWk"+7 rL]DPL6Cϯ)r8EED5}S;rY=y92+#Wagg哖ӶXIey0՚g r(3k:Ok]Z=SqM5.EXKcd4n4Da5k.O<'m:Yur7?5k (T.8.?$qqUAهIBu"y32>I>ZjᔑkϮiLWk{hWQ(bSA33sJ)$&ǭl &K]Fmt/gt9Ry"䣨V˼zeWC/(^Ovu/eeT)Կ1nw7y8Y>eKFA!7:nθ^⣯2Ah^}yrXM0EdX-O<된v鍮U7ezx~*NQ|O޵+I>|`BBε4;τ9fhzyzd;EQ|&/RHT@|%Haiv B^VP"+ޝrfi|\MY5 qƆG $sT4zQAQL1eTxU/:[# =Yz5K;"4;_G+0׆- ecZl,'`A98AaRkK 2q6ѥߗJd$L %?,QٛwoaHQeY2'U[]2_W41dITc{h̊,?/L ,Gx&bTTsSWH*YV75S/T2V:HޙN?M[,DT|Y;hNIzk9b>{cXtkC+5V=|qzi͖]ؾ6H9G&c>[%ƛK8P\%Oc{)0詆}LIMJ7zsԥ/ܧ y?v9,F؋=ԟ#TG:[JCL'ZkD%:%f~)Y\Mzp`Ke#)f*Đf/)BNy&[mVH^cɞwC9[+˗XNyiW3)8rw(/{##K4o27qu+J%S'X֕#WӞVf\?12}H:oG\ xD@ ypG;= h".8OCT@#RS>0-V rߓ)2e{u]6k感BB(e|n* /!C+XѵȮͫclsoSC '(]ZN}mnU3)-PŕB^`T G:sG- 3k0h}(<<,"PN|pkwr?j]hyxTrcؠ%AjДD'Mv\ը G l7?TkPiz Y#7焛x'$[BeQP"{ᑆ 6K^/!\8Aem)iJL& cL)}$j^3=aAS_l.(RY*>.לOP’ʴ y$0QB Lg 1nTO!k򆸣WٖV[Njz5l/ 0Dj,_Em>U*|.w~eJ~d]"/AC&sD7?QqڒQ1ϼ?l<>-KxqofȒ^H5JAWYxrZ0][c+4kYj*!b*sL!ct㰦i0Q }P@44L,H1x03Ӿ*bjһi:RM[g*Y].Byy_uFEJ޾_EM#C+L^as/4Y`4bկ)) Y(.>y>[֠x/}llEW}7r.f _*P{AWW ,t p^Ǥ-f0%}̌uܡP! GcYE 13[ǼO"Q-(#cS;qz4PKA;aS7µ AmA΍t7%AR[>N.۲cII8mXu,;P;ls%hLOI 9 :Q QSIygo'R_$ 8wƗ@-J[K\PR+? &[Tlu?R}N`ܿٿ-PmypS-au_O͟ԿrWIZf,E:s#2EH5 MoOER1iG#+Э%B0kw~y82FT~"w786uRg%HpJm}9@k+.6aZH5 ^!}8 w/CxSx-<uOXvKi(-5T(a<,ziG FH4*~)53Y7O?v,߅Z۟3,WjY )!ר4l/XZec$' s,crΣWYVU==mzO~Z\_Noow'\ۧSzMfmt03iWѣґ~ Z )|ՙY!y=VeHP۵#\WA*E]%ޏ+ xR认"xSew[N @F% $RT-@".,AyXӡs\͍2iОZZkn-B x+VTff.P&al+r޸ C1^Q֣Nsk8:CLq:mN(]v@>c津!P P/ora)9.:ex8w/T$(&1YC.lyK5f HF~W\м䏊Y+xp{/67Jb1=dU]d͝ n7S].H>-[I  aW gDAH"Cp ז=ʹw^2ݷ\]tylV2[c>;)wص^yV53)thhYsx7E I%2A Ak;cFÈ+= j }B֕|'m԰4WETlBw3g? U뿺''W/RA~M&Ye;Sr/xP$2y=ޓF@hkǺ4p8xsMH)gXӏ@X("`AZSx怫$n sA= LDA(&u rQb7FMMO6Oip*[ Ey>3VEqi*evgjXKh` _٦sA?bW _Yd" ;򢆲ϑ- 6(g9^wܫE^$(+ǵ0JSo VW2ԥa-8$3>%R3ШV<5 ]%sMk-sD6%ir ;qz_Y/?1?`E%2ْ2ÛXJzg4<pj4ւM DA@{G]&HtpOɑp}h[:bf!Gʌe,(1KJvkfaL7 %NxBR;M#IV|%3}BZV56JfP\=9epj-ru\`Pp[mD*S2~l,ՕJXM??{<[ì鏗 4fNlr9ջL1_g/d(/y#Lo?}Lm]u)Feqµ=KupUoח9D/ִ1߽Р*ܽ'L v_ٙ+oQ_QY5Y':B.ہxL7 $.h'ULfe{cV5&39dL~^HA>3wP)awMQp&cq* r3vh VD B:d^TZ_o,k:~a Z5w *6{r>;ū#+&$9l_׋Sms;f AS1x LKߎnuq Xφu?H,xY{t5< ^et)dD$ij#HqFg9-p;}X܇F8[ 7YpX(2Y*| ! I:Y07qfi@-#%ʑUPֈm=A9gMWoq4"KQs0y<"o9v3#fy<AZ9y^N']v#DPol-ϋl%oN]q TUx%%D-ѢkzR%]A);? -D'uǿkbq/̳0_2D 1iI9&|r^OۿgDg9X)WWa,)u).P]Zܽ/ZD`m"65_ÄogaKHٓƒ7Q3\X0MВ s!vjedWlO`w`XziMh,r}ue0[9dˠrMzi:,Ma,QaR-]]뵦$JMjU+b=#T]Vpk%q$:vN`u-W [eV[ʔE0Q a^~_v޶Y vSRur}/qǑ3yLaU!bqGID{dG2Ԫf xB* ,8"|ȦWL' lya'$֎2\+J5Ӧ۟QٷmiT0 ۉ"WV8#2yYhВ'~޸y>$'(#7,d 3fF}'k wd-aZeEFmUKaڧ뱳!k=źzM'/0'Y);Ň)&S$wiWgnFZve?ddR|KQ4Lu7Lg*cZP/!̙xٓ~ F#7Mw~ e<sPȸ~OLYCZ:J W)i2B.QӅfUt=q)]Cjvr|T(mnWSªzx&%+B(o tST*v2*Xx?5͊|VZ5_%|$eJs7O'[=U1w}Q:f(ITA\&&qabI'8,QY`N:(.$՛hfWHM:{&tbgf᪬N/H7 }X5Dm=y3e;䒰cP{B귆fF[S9RΔ{||tL%||ˮ~/A\a^ղ@*e4ȘT9Uc+QV_aMWW]`jzxqq i*/,n=2s.r8,{BHoDh`įe>K:B,dޡ8Ucˍɴբ%͖srY?x]Bg- ^wIɅ/ڐd 1_!b@}Xr͠6m1mbCI$$KҖr2l9&b#}FP{k.m,Ҡ燙ܨ "('LJg4icЙp1y8m&hW`.;oIFwF?{?~SP{ N{h+{2uuHNGaIqYX3=8(L^ẐhsY_S QМaQcq(-G XlêI4+GVUp[yȑyŭ#w(v0 ʷxZɚ?:>V_|wY2^7%/zEoᝅ?,ZsP&y XTLB CWYZ>_-OKȚ}ỻ&Gn '`̬1[C"/Ff:)CH OqNrgy^G,V ܅ST@!eZa/H($yiH2^3 ,i궐*蚬-Xn=B mjF>瞽zEides}6L]?Xb]! imbȦQqyC:>"$pqޤFZn*Č5^w>y_ٙd \̯+IGٯ\rYHAm8?"h?Ku({Դ7N:m Xd̅B}yDޥW~ވ9\)qVDqFo`@x yZ_Tlj~^'# GY<{457Y Iy:T`+Q5~ 5+(JD=Ѭͯ8%RǓճI_c THrO/ϛhf|.DH| DtvwN9Q򭂘g>ب U~mW/a)iL떯\ÁXУ :7hl)K09d*/;ZuQC;r#?-"l Mw,.D! `MKt\6( qqfOMvEc(.[42.kۛ+,=}RYSB3JšיSzXmѮ'sC3͸Q}lue($ng{_i=&^*~ƳfJٛz-Aws\Mo\cvgh̊V|e1ս2ՙU0\ixtybGc %> TkXZr"LD\l賜jeb)l德|6oN;waMhukwչj{,C| 6j(|&)PVtf>!rYݏjUp5l|*gO2C%{[oьr[L.ԊE*tW,j;wT_8#Ե44+\FlRX4<kj5Xz?#=%do{)z1u} Q@ͤ5/h{C$=qAz h0ϗʟGU}=4'#(&=<\2nVȲrYKB흊VF U=!Hsت _4*Z?vۢ .8kG2RXo[* ȧ4?%` L'6~kB}P<㊯xkyqmRddk"ۧ99cE.AF Z#ڝs'I.lXHUv9]:z$ZcaF_r*qP*n]DҢ8qA5H^?|#=<`h,k28rBDr&S, z5bPZ?س|T}%@5MhسKeNT;OHX"8~n\nM!Wٖjj^!tPXXW^iPmfmZ_IAf@O#)ZT\jaj~XHdF'\ĉ7_t4#YuఙZ?us.+=ݶ*;,[R>CL_*ZZFEXx1ʷKCdϿsʧ0v?PQ=Z/#\{#TEsly^e;syµطi~RQnyۮdyE9K!T8HrኧKZ c]$Z,RYMF e}i2)\o0䑹q- ./[ H{" v 1 ɵc] :a?C <ϳb޷- 1ɨ܄[A ,\*Z񌫵u)2JYF*SksB] T5b*p,&0"lFl+:]Ѐ惆ciBEE&˱Bhk]ÚjC+L$Ga @_Skh 6MQ,.շhSfq_!Gȶ՘XM.AfZ(2"j9ȮI;4gNT,,6k  ?co`sJՅBqզ^iԏ׮KF?V>@ ЮeZʤkXpApek뮇b;9ݦ֖$6 |nRTߊ][@-"zآ$1eUj5Rw$Yr}>aI׍ɹH/ق;ܮ~2“D̓/R%Q{ZlD†[`aNc'Y3`х%FjTl&AG!U._@$6},ƨS=9zu+s顜[E #CJ[lJ;?~"!oN{SlIZܵu^F&r!{ P5 kB*uca[,(h(\ t"alBe@"i}3؛r2` ]\!@\f/:U8+#ύOZߋe}wF0y}Q7_nel uĄ).0v}Wd͚,%l',gN`u`C;/7h9理^~,-:ǿ-82" (?!:Y+U9N+PM]1̥ (VQpHeٍNCONׂDm"iyONsIǶ#J`d <4{aǛ1Jj`:ڷCV D}>-xCQB !KmixY02ёVh˴Wl{p)z j[AS1S, J"t}nKZmڌV4+_Zzၧi]'zu>ǎ=$40S,=imo'Npl<+O'r=KKm[҃A3ZGC lk1f1`\KIZnrr􊆻aKOD+ߞѬot-Ba@w0t6xXζKaoG3;KXcBY%*2gm0Ɠ%͉xKQdAuQk,eW&0aq|cWn)R]m϶6J;v34Ww41::t7/&pV6u Ѳ; -q'v3kF~7?!,2lM60&O)g6qR?)hp@_{mzLS:rל昺 1 (#_JO>UuLmYK͹PB8'g_9x~ '̼od)p^ FEX+p?\Blm?APR]Q2n<=!(# (~bTp%tRUTsF.Q F^6! {pڶG2 ր=^@$9ot~ (w$L+OR8KXGݧߋL9nq_D4ƨw}rgpQ-ϔ/&5"n"_oU^|Zz+[j( ҭT ~Uh_M5=HP43-Ѻ2 RΧب䍥農Ay޴b">{c@~~'x,<7v1u @:Rt%D,u$d[ + H Y /5bPdMMUv,%fO1}bSjX| -~9&'3'B:)mo|K<- P֟4j" Q>t67;'Ŷ(Dol7O-"e*R[KC'Wɫ8E.p^SѮײFڱPx*RN?~llY=AT?t:bǜ`dIjJ#>Ww &*挐"'o>W6w=Y0uIr9YO_Hu4,yh(]I% B敖z<'v:Upbʆ Je+EPD/Av.&V6)iSo ' C){`zl&ef `aexehC-ɞ$d\o&[]aS?vW^Fk |̫i.-c>#D2d{9a8)+ehWL0i\7*:l xMy]o*\ҐB~6.K(MSrz8;"ٛ5詧x)ٲDBcJHO+`P9(c"&gc=K8m̹ (L/f$GP?O L$Clo;Ho+B& So5Jݎ=vHo>E*_O;_WP]~[PdsѣNazUYϢ$ѫe( ->tDb|{AS'a7NLf:Mu-&swmTmByo$WXTho2?ū_>o_w;7kk D`;nB~f#NIXmW!;M}毸qxIV_U?W" 4CQnj3U(ִm\97i W¤S΢}mq8/On0uAqQgk(hA9؃i)ałNіHŀQ$_.MzEᘥfPUP%Ys/qodۧ'tYu]鎕{~Jwy,Gel!j '|xc6uo|5A<2rI( h\#G }6|pdR|;g4G>c ǣ- -ivZZm^w+v2CfγWIn*vHQZV=A #Yʪ^pa_*'+sXo#b_hAEt31'3xYCOXC\N*mNBKwGa(-WhյY ti6Mr*Ven)mGFQDNbsYnV }͛A]^Gl?;Ȝ7Mn#wA35o9n,0䚅xR>L0MpIϙ;YhBB³J5r-:Z" xRG~_~.Jz ѫ:~}2e9se L_3cLSw#^qOOjjTO3)4 1U5DVMcl{a";F2oAwD.Ɯ"r Z`?puz鳭V;O;XsGguI,]ǹ4} |ߏI;!2@ޔZJY +#`|1a\]s@iֆeK[>d^GstYov 룲Z֒ϕ[wFrپDYev"RîI:vi u2yx.r%:4RnY'W) \t|{ațpȧjqNJ ~r%22ioW%_nRSPX,,Р]%" BTӳ!u6]~zޤ$933{髴:R}t$\RUz1"gQOc6{Mqɗ /BLa(<.z;%Q^DӼ ʞ\ dG[2yy l2*{XVw^ul4A 0-vm4-? # pc;28Ag EDrNd[F41e nؠByӄ} Μ:M/(p:2@ ÜO~2X}B8foHΨNv* E( 1dSKgjS=/GEڃM}ycv-\0w'Pr9dx{a-|eErd fɂ❜tXa rդS+rCg^p7zI%"U"oj[܊ː:͒ϊhEd Ol{ǪTruPf<p^ 3UӌfVd7 gOH󛈪;Y_Ou I_,f̒!(~d.C%CJw`s ےtө`8p*̜ܺltʊI%ֆ"/d74$FS,[mAH/" {A<_ (Ԑ& z {N:aVZ4 bAȞVM-̈́/c-Uwe$|}99yȕtߢccCĐXB緦hg(c2&CE^uf{j0iUy9'DW xͻ\anҰM'ؕf)G*AE.<7~#Yr?)JP#UsEL䜹oofl`<DheR71W!`Л #VcݵGd_@ `$_z&C`[@ "`FgCÀl 2a)Yy<_8WAVĸF0fU/Wx=씠 q;qQ Asg)B+x4 =0e7Z'"L Tbz ?̀?cAy.c_snJr ^ EU]\" ;+E CHA/2b| ~"6Zz.~怒\b>dY-T4CCF;*5wX6)xƴ~Dc`!.+&Ku<u߇}d T\'m2aYc9/ 2 Z47{D+&c3+13XM[W9#D,26U,hA}iq( +8sjb4\ItXXEMdg9ꏊt6s^y!4B`ho *=$ @P5iyuaH% %R3^bXoXY`8kwWRuA'cgvx PB~Q=ǛBsӫG'ӕ7EK{IB_Ά[eyP գCU>}ӧo5e;C/z%K575oQuZ01;mg;Aʸ+"0ox']+,BdO/d NN6p7ժYe.٬;uKה- 2ȲHpJ8>LP_N`C3*AR$2Ch Uܕ=S9RՊ?X GUl:Sj .y +7^j e@_vjx~╸fٽO)v~7:sc0ִ{1vFAo%@+d+Z\=H%y-ÎHH&S~Cq)hHGJMHJ ^ xb=;[•_fg;12l`.b@#zxKGQV-ߞYu6q厴JË'\ 77̹ s\5>*klV!W_g!aM Jv`5f⚦:$vaf*#Azd[ln;(ٍ  noDi5~VzIo]ͬ2w3*J]c B`/2zyNfQLg2ThOGsE%`%zs\5xT+5X+Tp1'UC7W%7VBA:%QKweYZXP  gK;8\nvVKV+dj'17 as91mK=aZZTnyTň0H(,3^eT*}4nV-221ƪr8|@׬k8G۳ ;Y盰ahWO2ʏֽQxIoC[X<, NeK@]l`]-F9Z-zuܷks?ixp1TeիN&ssr$6e,jO"5%m̴J!nd|iV3@'z/jFTe3P9O-ӆuGȣ/?=\T +`2SS7G؅v0uYW!E(\M`ƣco<ٷIO]ק31b3O HV-C,dUFx,(lm,gqK<~feKtek\C.7jGеyCƒ푎G34r.FE5ieP%B*St}ƧD2JU0s'pKDecRDy "J"m蔟_3^i(G PsGf⾱VvX9+3 D\m>Py <3hs+c)b)kzsc%H.=T~4ZF2/u-$mqѷ8uie#wa"8.= 0{ fnƇ} @6҅u}=; w}\q ٮ{՜n4rTÁ p8[dU Rf5UkBi9%{fQ #uctGέb؆\Ķ&EWZ"r@On-"b,tif ka; 'J{v\TfSEˀ#v@f#) "PtZX.Kyk/Vø[MY{)Od!rz}ieό3 JL^&MAbڢj=B͈S+`i:Z ?x>3*o3n!rJOCnr\ie?a|yBiP=ep%޸ظK~\~I~1NCl_%-aRݝ~G#LW] ZaAɡQ:)gUœ dd{~y^ ð_3SYvh(Gg8q F [HoKn/b̭KʤY܅hGnef#Űht6*C:Dy&@GH+.9EBᾓ"ѡ?5aty/OHk>6Z?P2)rOS:%;㚖 w tv{6pr73KjS+MC& |bC6/Vb/{c#d e4`]/2;~qb|uh$RC_szH EbA?|US=I Hl|u^!C#HȂ36f }s@{%nU]|˚Pk-x޿?^1=2{TE>x%\=iyG|szg&yʽƴKwZn[*4 G 5<͓^ DπƵĹ6M0XD.(Zpr3u QG[֦y8٨CwyB !o(8[8B{W{#ӗ';!]]a[ÜtBY(a}%f轶U'?=+ȲsH<3ʳFGݱ `gKdA>,dibі[m)Y".N63 jzR!l!/!?K7d^=a֔QfM&I~;/=!B(WLv0'473[s% 0 01pݓ`dj>MOaM:ཷ!WIUa MZd{!iQ!YJb")EGCV nM\gm#~ Seڜn룑ʫ@X$c\u7_$o3PM U֝ D/>%wP+`p*)v(=43wwbҙPzvW_lv`x08 ZPjڗgcp4lho͒¶ej<:pyؠT_gFԮ^;Z'}C(gTz$J"%eV!| +}ƪetځRYcֺ=ʉ[ky!r N 𗕈Z>?痉>7sh5^vËѫXªf GW/NCO![ȾِBqeEn:Z=o𜄂FnK!'PV^eX.v:0h^4uOzjqXA[ƪDϺ,߰qpWs-?swtzBx8χ >U*aZ- - VkևYB|Mo{qPp}Ry:7]fvtq VQu 9?WByêqKV/յ6؄ymiO´L/ZzE+LӤN08"WlK8L kbJөG#Wu&i,O+2\\̌#[vq"߯EzSUܡ bml^fiռJ,*@rQ>{"ŽoY$b"L|Խ$

q䢧EOdnv0 gNuL]XGnhPVsў^(#6n!`%Vߌ_ 7,0#pؕN/V ,r8("p88n L1$hBJ ΟJ P״- yȘ p0Xl.Rti.!eQ|DYم;O6|E]" tˎ2;ģRt%M;^5ECp+>- ⽈PmjheMf*ixA2Y$ Nxyyc)x0RvRnױw%q+i BNOf pƮ,CO֚/?2&H3071##u\/kXi:Ii t@hjnn 9ċuI޿0ET:SFMCقX$.BxX# Q]_w#QWVsyK;F-m|-N,a/AEX"bQ8qʧ|^WU}Kc^BGFg07Z"Xm)'Xxs"D7*rӰ^׽fyce_4 ){[NKR⌋B. ^Zm#/XO/Sr(UYY\>&G=^l+lQ\d6e3.xp2Sak觯ۅ"5DQ}u(OF6C/ҙݗPpVo̙c{ Q<0FYΰ?ڊl7Gpذ"NDbեoO4;FzV a][Ȟap-q1]is$#{'̸s0?ѡPВѓ !F>PrVXM^MBc+wxk Q Sqvn"둋hv}gVPm]~U/J1$x/RDyB{g_&W L{fzhKU@oř tu]_ w#O3sC%(z}ZZqV~=Cm 9@C?Wj&|*\)8~4Bz{7{rH[G_ZE`x^Kʩ{o{ 7[O'J? h,"1S 9Haͺ,3l[sr{ng vx;<'tfU{*$b;[:Or9qEO( Tۛ/{[ɲ_yj~K-e6Xn T-sĔpk>A vܒEzl#:eX^%+}a?O`b]ϝ W٪+VH_}h#( LֹHc3:N-'ľ3/{Vq<{fMj KBlSKҐҋ[ F&8Eֻ>?l+P#!c<t #vz|Y=)d3+jJ+T/c[WXEv=:y'_j.1 ×u\9UX;r /y.t2,pP^51Fτ+mSHYcSM[Nse@3$C 6<~~ؙ&ܭjȟe #.ModNI,6Ċ'O|[&?< IQ)b* e#:̒pxzJn7{>ǁSh}c+1 Õ_k*RrP?gR_\~p`XΎ>й8y<<o09|Mm7,~@q S9[OPV[ :;~E(Ƭs;1 ::KO&P }Z=2٠<]."jB$'5ersɧ| St{JJѥ04Nir@x+mߛpFV]riqF6y.c5FsHgd$k0X:z[WUݛ$&2wР܌˰7o[m w kն4wW~jèLD0r 7~-b%.oP 1w #.@@l 3c/yЌCoW:&^i7>ٯpB2Jv&~R$SMb8f&I2Ag鏚bX͒G}}И. τ2j6drdkN v}]ogM*3? O4kĽ¸3K\QR"4O|I&-秔yQ6{\Jdgv~-P}])epwuD-=,96ѽ朄XGF5D7rY{PZ=c*հC(ztz'˶| ]n)wzjeVgtX)VĬJ+j( oYBL1SG:]Ԑ87%$ E33nv=Y V@̉6&fëhGҚja4LGoNS'i >}er v 7M2K52MfrsJ-g1PsuY^(\W̔Vp076aߜO'WYQ²a$ hV@cOcNoW^}RB|w^XP ,i?C>  Rw#a[*[N(O< 1#x.LڿFZAT6$$KAdfe1{BO3&\t;-wp$FF[[һoIIt+C(t7nJi_N",xl1M ad[%S# $ P{U:r#^"3e]rxh++̲ [Nj݌Zpxs\O0C[P[?֛蝋X?ɳPW~0L3VG?ݩ5skwžΫZmmkYz<9m{R:pN`)y,&bP?]=6#+qs4FZZًƒEއk VJ%Zԕ0~kBJ\wOUo_$k6ٙfZ^tF6g2^ͯ6|8\<қptֆun[^a !Qlq.~ RFyGۢ|0D)rm_쾩ê=VGjlim˥fSfG3G|P KZ?]amI7:Ɨ>;9- ~E k9o ?\,IwY7)}2͎9 SOϓ٤5YS<_pCLǧBhQbd a d{({]ϬN""z[rfx G;3]hK)pE]5iL;pY)$ұ\EBmx]\40F)b=y N;#un!z{5= *mL@UvKʓ$uPe ^Wq2t{j̓.+ L ,6;e}m,a? $ܵuz$WH ~ފ_{nOh6-SUj&a༶.X0-kue+*>wEi$}QȄ3Wvyԓ &!,LG;^%3HSnKAP*[ע ,wJQ޽ҿ #g"[>vˬmzi;*rx2zN&Bcnt$$]2{ѩ9[?9=/LPuPk6ğSݦ7 6-w6}bRq[^5^ 쳪Жny#UBh1q<;!$fW} p>1Ӹc<[6*f&wIWIwvgXʚK hTj@j'+ [?)L6iZe#j '(”+1L_1;t_-lzaٝ}"6C~zujUfFrĠPή GD>պRQ^+H?_Er{=&}@LC0HKQwuF҅Wwux<lR?&Z yX} ]өnmツMGױ䳛1xI92`;sKpR:YR,N!&LC-$fCN[3Zȼ}R2pv;50@V5M[ݗIf.'U5exuN. 㔉j?J%[po0Y ZTzFT > Jp8G:KcyɸzYӷᔬ퍪5;;eKtiפkT00=&BUnvRw܌mFMoYF@[ $􇫫5;_JQk_0?Xobش[<KaMW}i|n7?blz A&Y8MB'nCMnBNƺkHB[ӈW۞9m8=:xzow?:{0yKX >O5)MwUB[2 Kwy>YحѤ0K?L (З<:'3#=;TJJZO/|IamܑmVd{ׂ3團eR!iP2+5 MƳ|wzN0m^lZIWigu߈4g3-ĝQ$Q3.vt"FGBȾ`]Ω o݄.;;4 ؤJDŽ [>awƜ NS2nSȡzWWp=nDg Ҁ+`L~c0X \)dKl>OƍfS޸"&G+"ǙɆkAUhUH/1f] A_o kw.~N4_#GM#PJxȓ s)[8KtO'QmV^D7)x?PA\'v6/WԳ3Z˯v󟠑up`Z#+q[wP](`F%ns>.9˴1mJݼjUKb=W<}/W6-@kaU^'dPF!}|l' ˙(+O7*1ZFÀ愋tGE+D`Q4h‹7ө3 Y"_V @GV f}.?)<$QTt$J>h{F o6щ?eW`P(~&("dKt%\ 7[ڜ@  3.n_@3  U! F%t{eɥjv 겻Fű&Y%[A N~ߎlE Vv9EVՂEtVR X~5\o^JqIJwP"_+IJH{+fyuA9v;cAIҺCQ8Ӻ}FEg{>BEd]|еF+p ɂa,4ZLnHr\*<={o@ AV9>KTqKhɻY.L+?P(ѡQ%N5E!i|ףK-2aEYӪݔᄙ3y@Tš?TB rF-NA79χNd\ XZdGiXƥ)yJ Vu8JBr;(@39~hj32dB$Y<$QPw`j ,pIٓNSOQL?iÄC7nNֵ{Qam{N<^Q/<_y1D)𼿧cԜTYfYTZ;yS_ $A"yi(9 E<'"~}8<5'(,]@A8#_r]]B`t>Og{lB6l].sv$# ~}oފ5uuls Ⲓ]D)_[+!zU|KMSy/ qBl͢AίWy Pdf6;?GC*+NZhA6θ>Р _VimL+G4B|,źC6P!*(hYI(lçkY @Q y{R<~P.\x1h\#ev"eg blw(NPܐq L IYcOPG%o&bb yۭ>vi}:UT5q> \j R?xcO.J]*S;"I@Ze0d{6TD%ϱoQYNٿQfH&Fo/煲kXZ |!\2 jTʽ]̞&ט%(n.vMPZ*ed$j-{N`] E̎3ד;:E%ڑiVK"0CƴeӪ>/[.lLCLT+Kk7?tĿS 78v98e\MayD-$1H^.4tCy eMd2CQ>r}OKkGv6`}~L.6f.\ASgQG *_/;[a:ko:,?/ʻf1+_\>JZ{q2nУn4k&`pdHrWjwY$?n*0Q3YIr_LA 5mEhGFY"1}0BH]x IrYd 9|>M[ªxb ^e& ƒ_mp\}*,zqn\U^hs5c ʨ\^V+(4E9+RjzjwH9o4E ݹ:օ8` S8:ք)Ѯw9]j0RS#rogނ%lWSW ۶.Tm3  -eo 쯋 JiԢ{3RP=.2Rm̯~u_'`';BX,zjPݖ587E32`o|^3VF,['[,p||?/݄|8o쬸r:#*Gv壮?l' {;9vutZk~戦>FnGI }%|۴J 0p ҅Z;*AC+d^\3W50zCC6xǝҗ *UWZ .vEhmcvEGKWH]lU',sFv  3fb侔' Et nA[Zq^]^5-=iߞ6sdpzRFCw \͆N.ķbkELǧM<牐f|9solw#imƩ_5cY&t'uYƳFYA%b>]<2K < | t rddhP}|`պ3TҝQ%wp fDA`2\6j` nôtWK9P{Y}Pw6]Vh)1l'P( v^/8BvF>,"sdNq0Uvٮ*Q> 7pjF2\H}M7qA$3R/^67tA4颪~u’q3In"3a9ei * N9Z}Hi+,7{%mHx .&W`D:Ph@S-Rk$gסw5m\3OvVq|ӂ]偫ԜS^d[v7^n dX~V۟z]᧹TI5.awSUm $?&I>霗wc=?ou?gO4;=\\{AԀb5j?e3Q5rG`#|wHdD)Q+ϔR#P|q/<]&DSG`m,a?;=aJc@G;Me0u ͪʁ6~Ɩ[r"|xR]O ˭,.wԛ}|vH?v1(oDT A|5{B-qحXg7.W6 XRDHe3/+ҌO&RJ w-7ZAU/3K=arNP!ȿjsDRϸI1QÍOl;vW)r#*#58>XbχğiIyC6Ss"Uze2.~+NTOC:$_תkgb% ݪ <Q ,uFu;|ʙ}x~|1pzr4-<`kΠE,=谳9}_G be;W0I^}w9b5 sNFaV=^? ܿ0hU ~?j%<*17@#G)JĔ,l,ueAI|Kiq/N!t-G衆&M$D)tSSZXpM|mrEs!=wۚ R"k({|#=G,x8sno7&J:` 2;OS []u>~'e )՞0.s/pƣ;-ͯLJn!O1]Dݐ~Zq#+\.llmbaBB՘͑ MqaZtK\'+! YWxr@sn&PmvaV$zwFF KֽMDG t}D1b֟e,J%5'_ӖQ?B_XfdFL%ߒz*]eRprm~/>e"p3}|i,S;* HTƂMZ|;\ˑNgH ՐY?sCS#dӁ\@͋KPV퓳 䕚TQli`N ^M#F*]n[hfKФ?_ӎLg I=I}^8HZ-.M1Szvjzn&eAPzCu˃%3cb %kى* eC/`s2ۑ9"iK;vlj[#'ޅxCe0ؔ-B1aW*M:9ΊMGd^Pc'Sc"b S}2|ys^nBq^s/fB! ٻ5j֙){*XSaP*f= "_Xi/ظZfVP[B?{aͦ@Ń{1Vۂʑwe&MDYF_By bk!qCeo"l3l[̤#f<ӬvۅJ#]XG#tzx;LQZg&yFL^:61Dȗc=Wlͬ\~!aZ.ّ!i9-ee@ uzיs=K0*#tO X5/#=[ gaZQ\K!YJjѾE<( nG|v zOnT_' y̶s*y-4n|^$Z> +v"CQWLIc,FFAC}itLoJE#LﲔcG2tԶm8qЏm5} Lʼ Ѹ$Vk:7hqcWvB3UdIҺ\==]A SNnU%MV)E 1Cd( :XՓ'=X|!8;S,/v-\d^j_&ϢQ(~Pf6hTriB~eyEYyVZY?}`0S×ZOG0V9zd*N` AcFF {Ӧ Y`$'>^/2@Y"]}w^qWw~L{kvv ǍCƸ7Hw'*qZ$ ҝ6 6 [r4tML#$%|Ζt+Svᆢ* *wj +#ɻ7Oe'6MIj*]md_7,WR%꺰FѴf@&;<E%aqA-N1KnnJX7 ĆPq;(F_t(%Y4X Xv2j7Hn׹jdYR`I>EtYM,SzmnI&+>9U5ΩWt-ֶ5͊K%#50̈HB! Z|sj'm2/.W6Εo[3m|u,Ql&ZοԢ+C,%n>\'~!%#*Uu)o^|PoTKnbܓMkV0kU9ѩT'N^7Q!_۪ov?v;^ 둝, bϰhmZn@lccw0˗$S|lN/rȐK4>C?[0Կ\2 isrDŽnSoH>SZjBtAb4ɀf/.v֞ӑyڙ%J߯jiQ" ձ =Ci_p~W`F DP}D&".қ4Ι;/^ݩg|n3mϺy˖)\Jq#r;YT6ˉL+4qNKtOSYizٷ%Q_<ͯ߬<~bG[-+r H Ndpi =|2XAic?edukUY#UW[ `u7 0Ht^|mYuswO`D.JYoh% ]+J#+$k5W*4C!Ь߼lfKmz0{~9ݨ!x򻄸E]uB,p@*HU3xR p^$2^َzb$uF|]pe"9!CIg3KQ.N1#^Ԭv$+#uk1u˾_d z4ch2hx%qZڰ׍,[Aw0g:\$%)=d;>fF[^jj#xW ȌqOS?B8 d,=œ"& 7ezWe+S6S '2m u/F{GMhJ'#-16cr:\i}.>M6-43y#$pQdֈTD -رg YY:T?h򴯒g,wVg@+8CM2Ip#QJ]mu"Nt Eb Gx5pRi7g_Ex<,[y\G$.V5*ZN,ESeXdO#^OU4__X5$7uk 4fY8ىqy:x @gV.yƘk"D۽K0X(KEy~=o]k%Dw˂GDc 0tZߌCQz"s]U=a< /3CM=.xrnv*дB cM5~[Vm3;d:A#DrnEPN\(exea-vlKegYL)`VTz=%2ſ@mQO)p-\ۓkTeN`̐ as!?\P>B;ƙT;Ju莓K`eJg6:ks|8&L;Oq \s,-`g쭜˲EcƑ'= ]ZR2l췪rTjN <Cl:K/°D 25N'-5e,6gӧ+\C]X7@LJegdc8)ݓQ(<ͯX[Ƽ$vC)^V3c_E;Ų0.fp,nDMDPEJ<c*Rcgda:ʣ_NxX?7В ~WN*wqŵzj7WKszYiH\,At3 Co}55-4X xe>mX?\苛PLXTԾv0};>IK{e=P6o>? u K&S=w=#9 '퐾P|,2#.09GTox?Y|U!`-s.У\b_}txfsa&ΕG)yt|ԀH^|듾\Pwv6_,}:^^ҡGW uy~9ڂ(J-H,#m79&dfr w@+)3S=Mgl|k1#4>Hd=CՐ}g'ˁ)`cRSR#*-% D4QpHYft:z' Q?eҡL),Њ``lWXXQ/q.3*4\"TV,ݥΗ 5i,K[lCuЍxK*Lpu H9<8T.L+՘<s}4gr+4#䉇Xb sqYC6gb߳v;V\h#w˩1^ZÇo ?%E^"6")_;8n}~ r͑1ܴӷlh3_b?e||:vTٛbqQz4Xn |>Rry *A֮[e{fa9i֑FkƄ OϒX(}i}`qE?1V6k@JJx?*G?Bu!Nl/oӛkA^,3穝$J֛en:!GcN}Eu:x@BFb)֕P2Xv/%4?šny<~ag85tfkG tG~nE$7`0M+ xZ*#B2ԕR<^'dPYݞ|G};ÿ:p>w-SP.9Kb8#AhIGuo15ՕTI0ApYae;VAsiQYuJxyLNMD4\qK,ʺNIB?/)gi5vP0a"S\o -5:β_r>n'}&}܇cEpk^T7h~ʳbbބψ+[&K c4$,r2@&Ú?4^ O0KcEUBhx $B{ifƙgJv͡>7|m_u7xnFahbǙ( ^GɬHl@Ή _;ŸI{lU>+ 4M;Y▏+t}#B@@+yuk<jV_Aо9j\H[3xYjt"/IqQDnΰWH_4xXx œށ8iF{h%ӹJ8*B~aeC$u/,e Yܢ!awQ۰f>ΆV})$v[ /(oRLIkXzjcmȊuY=}-WcmMκZMN!kۢZf+ڣQ57l).*ٲW/^>+ >V@9;'DG0sUߙ-j[`\ުFRc_n]޾JP2u+PW>x8z?Djmrn*. Tf=\bP35p,(2l҈XoMMn)Um6^l%f/JPi{L.fdMOKcQT1 p4M̝8xeYO-,6ҽv)H%Qg4ee[Gvh|U2h'i]!Ta-UnՍqi[(;+&Pu2):G9`ǃu0o}Wwȼ.:2On]cqjr0N+Ly|6'ެtit~X?]\Nkw+X%c9z򘰧;-Ho2huM$i]+h ˤ+WrM'[Wփ& 7ݪV&D 5B7.Z$gYyw1OO rթk{!6/aHl2.U+k;8@BΐQW;)A>d b>{QKN1ux N;AxJ/E^yПI%: ~.hm$g}ɸo]&YycY7_C$haC4`ݽ7c*i[10D O"]7|`ь409ħ 66< @]D/Cz*j"z5*Yi[ŔF=:HV ,W4 #QTB p(+9Ib9a9gv:>Q%8W%{͠ZJ+ϛ!hSkO7B82Bq~}S._U6b Ơw'>f1xcZS.7WG}PO~ao[be\I_eMib np]Bm vj7ce+mmH;60X!TZ\0Q.˃ν +A[j ݬ!"nnPKFh1]%QD30꓋wXw`n4Oe?7dK9`H >H /21{ Ub{wwhdiX [ i9zpD$_+/(;$.g|O\#l#rP  ~;\r2{B~X'UG\N/-ڂc(7lB#?' Uޞ2 ?ceP,rg~D\K}̷aRǃ!RTz-שMLMy/)vyNT,pxF:~+Czg-/zڭBΧĽ.sW4tĶ0[5;*M3 Foe!gv\"ҒCSF/7Ypmk<*,鹗nG].Ak3O1Fr\{:2s6=V!#xm(4'_S|h/%AZ):lI@a* "Xpҫd gEy(2*czg?:M TkN0My\zuqɽOeOfl#$}~6.N66F' G _MSۗ^mNFpjУu:˜ 3M2YڅP)7oW`7 ﰓ'9,Ecٿަd鰴A3M]R6D޵%CyIk4rKzd r$Ia}lӂ*VxTrmee,:X l 6l3{]{R#.ɂ'|MBby?*R.*`+HP`1 { bKDHt\B/W߹*ҹ`SĪj !r=X-Z5ಂ$ RcXvwE-9H#Q}l]942$ %1qC cG-q;85ڃC6H,2Ry4>dT pml/H5lhs0U]ۚ (8k^:h~~һ3i!€f;.,oB5- 6i %0jcۗmFـX`Ϧ5Z~d]:PՑ>ěٸTLq_ںNq,K:652tώ-Q}e]V5];3wUQ֔Z DP"Y*M΄NUyhx2fҠ_T ͺ7Qj~GLRMKP-ן>Y#kkPWlzwXw{b#"jFGY<+1r7Dž qJ!72媾iǐ%Va[ (f0 'g*M/0ٝƫwE]=䗯h^tu=Dy 4Y^{[4gިQ Q.93uVp:E 'zB4^u/|2= ;x呼+"u8[lI¼ Il!G1E$\3MƗw>Q1?q`,U2#-8)lչ۵12AmB2~r:5 >EF=d3_]YvTcitKHg%f_=Ks qFlm?| B>l+iv7O}wGD9 l"9 orƑA8}?2i,-X_,遧[ڿ@Ӑd, (d *o0[2k-U{Ը hU%lEGd"Vs٤o}ւ *Xp\1Z4ƍ2+SW!&Z?+x3"uFj%)J"% ~^Q=(ja|,6aK$o빥J# ߚ=@,7%@r?pf(a UFaYZef'FǨ).Kt%l;߆E/hs٪u2ti@a2z66p\eF!5 FXJ̚%ris;6Fxu`v8Gv[IfDŽ"i~f¯ׯ֎=O$1 D|@^MLrVٚ^h[E,P4 ErxaYN>!*0 c#_%|h54S ZzD9|//'u5W4eVeuYM!V!b02[A[U-2z})ooSFOyb C[=ȣj!"]EX v`ۻT*rͥ;at#m2Hz!=a¸JIp[}վpѩ@SR\FQG@/ 8kaxD~Wn'b^3w|V˕bbK~??AmC0xbJi3X Ve9 AqFe2t4Fx\PjNUplSMr\Fn! 'gz&B OFN$B_%"|IJX*z_ST6 z%fFM KpZA d  #$ G7-"->ԫ*gڢwsP YOsWzcxY|-ԜĚ8D(h;(MM[W3UTVקx!J/ֺKil-ڨd *h[K'أCGUh͢$,$Vg}̚QT$&X[Ef~-ygVoXtJ2'ÎsRTU<˕cjoy2=d^j呒IduS6N__}/%w$Z"_o:*K+.?r)jZ=kB/s¢"O ;z",Dfd>W NV>0GtK=$гT Md/d> gѶ mMڧ$|uOmHhR?MS%ɡs9}qjf{5N?j]C)A5A! t9 ޮ^ECS5%iX*WEh ^! ]JAo+O{‚cz@Ӽb=UWB|\AhnMr KʽoXG'JmLVG+hQtHA(Î7!u+\ 5,Y՚;hAr8R()GV"~iVgQ &G%=V?dUf.K e2x)RK5:V\,>aޏ%.ae| | %9HK x-\I%=]PՒ-p ]|bثp([ZRF3rq9H MaGasUW*ql5qAWQzF,,#ymsd*n1dWRS'A*ˎ/߆tFNoG+xU4Ȼ8shVbeKMJ̐=5i hrhwav f3B=J.EP|yeN̾ZvfDžgܖz mE}anYɠfC5',vwⅠyrX'lG.-"n)-32ҙPæRTYy!B~g o2Oa) ̒R1dоҤ&De!Z4o \/d+La2kzNdPEDvZzHV9;O,*5BCpR蝅FbI.3)v=~?+17T'E.z|+tFB pr2vs7 e]AJ9>\S" LkÓͿ Nq+|%0")鷳'j'A{W )h/5W~Ќ{+ exƶ>{P^u!Ht.|ENsWJXcHC پ/FFyoӥ%_T7FxnW'Vx2x#{Z0|T3Qg'Yj ϙ\rLrhdN=ϲąTthD`Zf"|le4AAP8Beuꏰlk+rGb"7 µog(Rb,! @8H q3]n!B2_Xq}%_^Vq~k ꌫ6E Y hE&ϯy҉$iwh~,xt|lŒ$m᭽ $k/_tI /䖱qO@D+G&SBȫ8up񙻢7dחE)ל)=9wBP%9_KF챬-iJb=T+кk;)*^j%Lʴ+Gw]@~ ҿWG,T0f( :lJRfSEk+} iz6r94Pe#6s:]&-$^ ж P\J^:}mVt*#簏VRYnS ȓvJƵ~cWEl [6 ag+[ kv WO(SGe{ sct uڅ \[)k{!'?}gV} ( "8Hx hʼnM{V}5mZer :SBe}}QzLo$uN HZˆX0DfHܒZ̻އajowoa~FGo;Oq({; A@?B2N,*- ΂b  !Fj_(+<;֟*ǡGF p⢦\p(Gs][gX[ S,xD7dr>c Zot <,iԎT׆yWJ=oGZ H;1h-"=mL;L]6qgo=1^P>^v Č%D)"CfOoR}N+ًFw;KȖs7ކS:鰡G^?Iy4(>Q3(}`" >K.Dpj59`I^zNqV mBkn!G/^Q+d[u4Rj7sI){heyQ?H x&*ˌsOΎaѧs5hN}`{hLy}dzà?a VRU ={BEK17T @35IbNe!qq=!N=yKΡ@UmPeHI-_[^LWI޺}:K 9'HF ƿ7.TE'I_@`s-.&dn\_"JѢ-Ky1u+(ˑҪ.4fXy3\8VK : #_PE|xM@7xUK s\ 4Z ua ?TZx_Ң❷ܹ$Q86D^ƅg <1%rj:Z2GU2E$N2- awan.`sk`KɴO}m}d酒˔l92 xĂɼh^lߥ,:n{ιE:bN6B#~e~Qu2֨K/e.ˏtUK怩 OriiaE@ /NAZ}QacE;0GQv%f>c@-2KLNL( /9c] BSGOS1CTT"_=ui+SHk~_(㽱Hrۋlh-V|#> ^法#Mҽ q@  ̩,LOupB@3mG온:jjTKLf GYBƗ(|/DO*hp67Yaaw![G4B%,3r*:֑eǺ噥 t/]cI3\Ѿ*d vUjq͉P™"}gQ ;_'(x 8r!\jjQ7LJȨ?t,Z|}zM=h?Bl:VJ^G qnf^ ՛ S]0n^_򈈔jRVIƼid0K;,&q ][z@ik|0=S͘$ ;HvϜ|C6$&[Iq.qr㸭IJ;oԹ˽ Т-A_O0 ##\c.UpI?˺)}DiN-ns~-2wz'}57BT;t3dHqmƃ8R-Ҵ$ϴk؈u"rnu!n3" 9xjyq|H(43~(eF6Q 30Oo1_teTs*}ݜ.;q=evW՚CNW8AU1Xo m( e\'5p9nS8ZcSކ4f(^&w*iu!h'Go֑[EXW%uwNY=|'Hcf 'I=:2%J o+L^Ca0oKkFS=D91!v^e@JM+2:@dPʥ1Z~#UQlLq S)y}s?}?P ؟ŨTyknqTz瓑([(~UAx;4jtUO'2DSo\RkWz9*RM !1*:^;ʹkp,0:l}/ǿ܇bwAq*֒dV|wC}x?͎,O-4gH[%U/Fpx[el={ȱ+`7T4B@48fo>`٬d`JEh;/;NJVG~!`4!g˪zO猋:IaMsW7#|J,rePD(\" f*6X>! \Mv_d7mZy 㗄S'ޞAEY- v( c_y蘂X#ר[VD;@NwzlDzGXɖsԝ USGH}:~X"3rdXpe|p$-B 8eq :6FےCyks)گyRc&;܃] zs^] yK}d|8E"8Ίx%b F^3d`8ζ>;4^Ekv妆e^j Y4G?WnAS'e/BP&0:8LX ھᵙfl)ߗrxL <a\Qu7c{c~@U-=BŽ-fbfJk:Bv24u~Ʉ)sJCA;_R@)V *߅}c޵ 0}+}Wf hqS8ʑ#=x(Z~~TDqTdz.b=zw}XNnl}.~x)8^eM(er( JIi%pv+fء13F4xJFVqp%sHu/ '~VH́=zʉfwI۳RF4^Kr=Z-dqB7PYjnڪ9JV.&r/ wĻ,B8~:7Tٶnsp[{lrB+_ʳz{wkEh1ia^ AwoIC = 1p-q'ѠJ_U*pP.:^H^]tp#Q+tͮC a8x5JM{GN+p*2st(ˈWbq"eWl⍌(.>O+^Z6T_үOwėpX>l`>(N{@jѿiM\ЋEP cKz`O߿~T?RώJf*+(el#zzʼn[l9Ua5*{d4O,|8_%FZTJ%")OnfS̴/=`x7[1y5"Xl7[( ?u=^W<!` g~hE4iJQN hՋ}yW!̪юӬwWv ,l54MY9 eI& X%4fkXq_10H<{5b_-8ާNpq8eG G?#F*{]o\ A"i/.vpc`D܅g,ޛOsw'"=Ό u|]}:enԯ9j717 uaiSfrgj|j{'Ib9˫|޽ʌ We"@Œ=Z  v` C+1~<9 6gk(=;<h؈빪V 9rڭ݅rAQk46Kx۔(ܨ@W_`QGvQOtC~al<ΦMh{fDY9̇Y{,U{i'KtQS!{ 8Z\ @o݁|ǥ^H'Xiz'cϷGsmh'r:^2)\'z CEf!TT|ZaS 0WJk˸O*/kZ `W?.dAf-C|2+6H ْ>2,0*;СAk'|_Y=tأم8z'A\O;8ri}FY/>x9a98˓c5j=T2њZ淜L}V6ofhwhbw)v?HKQD{ֺgemxVNG,34vItRAeם!Gf5J٭FDH^G+Enhmmot A%̕J*_=t/7mGtovț*el 2{)x/A1x678NZ xs4Q夻p5/yϾ:u2"xd=Җx#j&x63J˜Ŝ&/.P{f$UӔ hˤnntr%d34arPy>7 K?nG?Lz`eM9(Ƭҗ |02A]q ક:1jpehnK6 _)gZ+Yj|wC7 Bb'HqaYLxmkYhN,r*29g >!8M/$*v Rp!ĉ1jKȎ};4vsZwջ>S($a] za7XP $,+jan(ٕ.8уl:cW0IL$To|/7S MSe]2BOvZS0{ 5d|w:v(o(F ڗ^I BpSf/k /to/'P'} UָCGEn[ :؅@}rB>(Nd^;uffEd`-^?̤;9M,?`[\w{eWpvn o{[D@f8ZS\Їä~i2Dgϔ_%zwBl.(AlǸ`}wi6C'j}Dиgse^0ŏR$c*>{;UZqi/S/I9Y#6_bicC7':h>k}`Q,aܣ̅3 B橛,"6N7׭o0ˌ}lo"Ũbu "2Jd%-:umP_!eى|f4nv(U;Uݱ z9 /ZY Vw4/l ϝ0ˆ¢/5l:<,N-Iz ck\8T#+mm@s2nz+P qG#<;tN&4v͒iy}0_N'g =[{ߢnDFkUm;B9{F *?L{[c40IQx#w\X0^C̍ |ʲ]}{.+lv?x~L}~k r-O(pVdM2b~ j-|?CR^u+?OQyٯ<1rZd U#Ed=~S[|`e?sù|[!OM0(+WF'Ać+S=R3؂ѮkQ[,pk3}QZ/Qs?$sHoZ$^l*UP-Qw( E JÅZ`$Z8~V㰍dT|KvȃG)S||Q[}vRŎS)D0IW8`A"婗8hoe|l'aY듭R0X)E~p]_«7`t/4lm6O,Sw+D:1:S*[8г uRhpLtbN>ޅ /s/}awW)׍'[88*zsP_Al̾WW׮Q{,@Ү_uLv8RsԖ\Ar`=DosS V\ ZT10^%k,GPm#ǂ&a+Jx8]W<#'o %]Z #-B >6!eB3=Qy7ՅVHaL]^;91ZrSPLwomƌ{DW. UZU<4^tn .y11 Ԇ^΀TߍblG+} \Үb/#\3@ E;rD8zU"gsE`'K9fPČ*Amf^EC6#L*jX&i-tTo!_H2_2KE̳iKv_''d)&@c,_)FfU yT\dH;UB!zVV=̕@FWu_8^7^4cD25zW$bE֝M]7dR> 'e8m:w i ɱ];dT_{GXsOg~q 'ˆTZ:hw7<5IʇPR=&G+cdA ' gX,s?]:G'Z*6 1gҟ!ǥO u),CknoV5ܶ7>ޓ#z7t~hr&.9Z>SwBOFe/Q~{s \:QRmfZH.?;XFQ?-}c{ysqGShix23fn*]mM>M Z٦]5OQ NMdꡚ: -wPԩJ8ϙ"<  Q *H)+"@zMۏ,n_4yΈz]]f1eab1:j~C*ht2rJss#E+PJY섟kt^$6`깥KT˩7N⿩JzҴ*z2NJ~Т{Crzd!r"#;OJI[~ 7 pDD4Ђ</zOz" l(Z0M>ſm*4&a,'^>+euHy|'7;5p7Gq߿8j CIn ˈdseaL{T+~d[]Wǂ'}.5dݽf~Ri틿ϺdCLCfRzbڊG!.܃{*dY]yat\g[E:JE ͛?{5VS/5F7T K/wV"NG^# 1me90ճgM`SvX|o@ӹד/v]ȟ4 v^.jφ-`T zשJ8qHKNmAIߓMRxlX)(fNkfhǢgFeWE;K`ٕIn3Mb[;}UBl[#Yx4 \BpPvEUdQTlMxK'ɉ\^vẗ}Gx{t⬍7# >⌼:FvCP!62>aO IG1c:Fk ,5?l'Na\.=+YFW(Heۻn_-ѸqϛRɐ~yHBY~v4UM;zjǒ9·x.>Ŗ+@+zlP0?Q @RemYU:]ZUcҠ O#a @~i&kl=I͑QK6:Zgl\Mfk!uG؏o 3.ԚSH* ϟseM2|a2BqkShq ɆR-8bҥӷ_TO.|W9Vh7_L<ĤL Qp1u+ VQAWl +Dy~)FQm8$6ωA5Tߣw-OA`._~ ;qykSAWɟ}])6@4 92vk QLz!^9  DSX@[{,[&~X #T@-#|e!Q%bPKЫ3d/J؟JXOP?31ԷIb(2)Rr5*huxdx,%jX{a!L1@GŴlɸSـ,$eíGGJ/7^a!.Ko>A8l+PpYcW;(LrG:x~_$|.{WL\V,7n~vpЄE4y#zI4!-PVk2T =Ձ?g~SnW4befE־@ vƚOi pX㙵*Jv7閄FxHS,h7ʭd)N6C0?R| ks+$Ca߸ oVf3C;*Y:e3ծKAO̓/TD2 ^UY1hrtO_ P8ԅF\?bY \<A;ːj,Tsx| ¶,*N"e2*HA2”@92/~ti>% PG,M  Ti.QMK p\z5"fEQZ/3;8VךOy%VFsi22>?_%+(ڍPrߣ L N[fC(jBsy54 _m'(y]|-B:,(3]U&_' )چQT`R@ Fp %fU0ҳMN6N!5XaX_Mr~xzL_\.B'T^bzݒsqr2pM<9$ #-RQu '{+Pzˁ,L3=?V*9ڙTtʊo ۞P_ѯد4?=ZפhY~-`x4"-Z ͹œ$TAzF%Se-NV6-ז޳ylx̎4їe[rl D|ĦI!K, yc.+;9ΖMjHgn0AVDߗ{Q?ێyB_˗GFˋ,sꑃo>Qzj!3"Hsʘ_،CcnݶaM;S'7WmsS}!|BN!_(( d?cӵ@(7 GCeY&i/S8keiqZoz"}]nO@q5@J I iSB}F_7m'zun b8) H&5:45Q0vf'k]h˙r'k1'ٴtSEnSyljW 5 WS 89LnzĎR{$ g@2tUENNR0CvOM ou}9!3R`py:9x",B;FU%.ql,AgRK)Dk#;Т෦|u Ɯ~I&,e3Ψ6 `Á`s}ͬ[){Lyׂv`{/&mk'g9ݧ#Eb6ՂHkUgO"zW@eUE  PQI^ #&ӡ.?4>K~@PCC[*.(%4R5WTjkܿ}Ý7TYұ@N @Iyq+| Ts *:w2 P&mrzWj̰ 󟎧 !f:HK'*'BZ?%5GgVwQ SPCC\*l4 9YG{7h&ɛ&9ɯxO֮4[~̥ 0'(7`b#sR!};:zmxQd ƕ ' 2;HWzN:a(MT}^>`ͭga3'2e-G0b`@r2x\TYЯ#=阐X;fD[ņ%O9{׿?7X ˿R QU,&7ed,S%IBQj~ӣR5V~zW^C;{GmBp-mW=ǸY=PJ͇af {gcT ~xAM"O=zRgd҅(F*%g7R)šOPT(oux L9zoz3a-= ri*p>sQXNי| #kг/)Ab 3 OOM~ɦDDhA,v,k(BGtxb;+LSa +<§̇!iI~/JOϺzX@o#f7omB;|H`.l ^h镧`.;Fu{Z@Ϛb`}ć1nJ8]PO@nҚ2}=NHK>dj=0A{4jqcSjP]C QKjVU6._63ZTV 2$;x]•VnOb7Z)#k&3+;f#~<-Yg`(:;,g/P NcxxB`)= sbގm5H!mJ=( "M/{Ӣ. D8XR"*Ŷb)0TGZ>x?)XA5J0oV[ et2?WTN9q;ol;DSGtel;q 0;94QC@"YSFÌC^ɚ\op0j"J䁍O)-~h>JqT䝻.ݳ`zԅ{=q"ߋ~ .&Y1g6ݥ9[^*̈LiHxeClõg~WqCmUic쇜% ]Zm> f}'{^*F́U-ZZw$P^WI(#tPV%_4fj@(ЈT|S܅AP(|,(M~J??æfVxCQ2 cAPl^Oͭnae\ c E\ϢkC픻oypjsb;(eX&&OTz cA4Ѥ u*&v S%y\FSl:9RׁnK([-y{S_WN*W9UIF\5x/JMUH6J+xBxH*:C@(lg 8Ld̬= y˃QmҮzkKzg}{ny}FSj}f5?1d!z7jpLҸ~'QIrSyR}kd _-7ED1Mwܵ2!⡤`%ч (+7qVTj`{93[+vRl.]VmF|Ӂi `齚j <[Gn6uHPÊ,? )פnVwԈ^7{.еe]Ƒ @v4uz/6`M芕L$Egp|- @Wҕ t2.ڪYkpk 7Y:,=aYVegSՊ`.O˓DCTIǒBba;NTB3CS,}F 5oG'|Q5.a" u;EIY6)AS/TaX*173{+qzjC&K7J[bԍG9x Ur5@,\gDVQC->ޕY3˻ | ?mOF[buM$ 7Lݗ"0ETdZ݈J ߓ']19=?E]xxK6TpLrHvUnd=_pf d+ F4E_qcBWW77)1Z%cl7*,$!3 3cԈR"̌g<84=A!^&n_^VZ"?Ƭ~Apyo e ċU> MqG{aX~R]I@`W4C˱JOg'[[!CmRM8eJzDecD>vM{:'x6 Z=z,} ADrrr)?lpuØJPd h'|ew$-y̤o{͒*/xƪYFL'c6)gK77̲NE<w%ڞ_|8Q*[;> -e׃B2˖1Ru!|sz`Ge/*}l9KiBJy'`[ܘ|fiN%bvw~dtK[n콽vn".٫Jn E1gpĺ|=>yZwXչLWy EVԽv>’d X=VASo{4Dqs7]vBӶ+kj ,;^#SQ̈́UNR$˭ﯹo7O} Y rTg#xҳ(J񓑚=a!8ԿT\vOuEL&j٭5D r ɡ~P ,?!Z/f@EG#_vB6Rɭ#5Ԓ w#䊻SD R89Eݢp- S 'TyG AZYch h.YA:Ø_S`җ*庥J]M_'i_.`/pQ+']$1Ug ΋ /22]_K׽nanMT\YB]Q ( @^* v e:\5 iX!eRY u﷣ O:0h[d[\tY.~/zB' З=ЮeRߵRpW&xZ-vMXÁ'ڙVՈ[ёF fP9ٞ.újF\s̳ |̛ !*Z&ժyO! N~bf.<Ta o*U9.5P(/q55=яF_Hsj^\. :!1JV\M)3)u\3M]}r![uw Wi3s$9wCu*4dat^BKФa^qQysR÷ _EȜt/^;n /-׼Os}ͣo)v]7Ce16bmPQ=4nnu7X.?3 x&[D qq k/ȜELSZkK*%&;ʅ:4PyY7ea=)C楕v2~%rGeeUY=.UԔb%e57e,_I {^+ЖA"j/ncria5y2ZssHt_ HeWX[,1ⶡ}u@U- $T4<~O\9cJH+nujLӼ{n{2pQ]sdJ@nm?URX&NuRyCye!톔hɗ!HpàacqP6,O3+9lԮB*Eeþ?cAY.,k S] Jȥaշa>O7+|D#뚣*}ƓKԻ(LD?cت?ZXǰ6*;sME}֮H;9- nJ|Ȝ:AC ZCc2~,WVxBMmbNGQQ[79V{1[ A\J*ȇfD蟳߫5HZ-5A L;Rz=[-Ɔ̣5A =;f8t6tM+ygGn4}o9@S?I2)Â:-/LE^Fסf"OK'(+joIG+lQtX$&k)EH lO},%0@B *0ֵ5(V3dT|G,EYDKLқo w 6< K Oĵ: Faď&ғu4qn_L0U0"$qO$è}}E6&ԍ 茳Ck iw?2 0M FRRh1moYn_)]>ʥ;0 M%"pwKFU:!8Il2Lմ9FE`+a:%+4]~Ή (drF2*9YC/#(ep$ KЧ.hlY|[{/;|z$7y=%w'fO2}_ *[u{T3v@|Xs^UfIR/ޣgYW $4&ksK3 %}O:V\%'=b 44FsbPڱK{UV,e@Y6c٩VBx~(sp/؍\6oleCl9$JLhȪk(1V$ox H\arItfKvsu=nGUMeLfSz5`P+p#yA_Mc(ik ezW \,+8-zC50ݏ1s4;C)CZ fKb؟{\$H:s!jl*~!tg$ޝ +5/$IrbB% q6|9 @ P4\Q)KKPqi#'@|Bpىj26h.d%7ҳS<+1M TQFIZNw "^A0Z >άqO]IJ$qzs˜SǷ؛Klpo`+VŔ#xS 2C#2&=.{~n'ht>톇2 .u/TB7gQr1UC!۟Tzꮰ5oQ+l;(r կa~x)\{2gw-0O 1LזG'Ϡg}ZS !Q2 ;Ev!C,X4ȹW,p7k̔tx—ivyj2.jw^)gq2QMBz4S%}(YrGn _7T걡p'EOlTӫKyq։ %~UurCGVنħ־eib9"߾z)Z](ӝ}Uﴷ=UǶ;6_kE0SW/h/)Yℾ¬]15?cH(q6(6A~?`WJ%N6LAt`S@ƹhi &qg#+a"JoWw<xг^3]oG#O*X: AVpaGA]9?A&YaW1:ȳmkAWJ3jRÉ=1ǙrQ1dN=|0χi*n;}~Q~;pAe繡i{Ca`+5mxH0>wޘ{=uxhgw7 ) ^ڂ5~"- RN"jL d3Gl+6|l#pC)IUsQ A xx>_E> @ D9k^z m{PMSC,d?-+\~q]ul6ƾ;b<'+UT̊JgJ7?p}-uūDJ`bQ3_u)_sJ8 ZPۯ]IVr EZ#S,3rT SvaxWINX<]r NfUɔynf2> k"Q\jJh6;xed~{Oa0L$+E@2F޵+lwy FBYWhr˫pH=h:*yNR,Wp۟Gbjh:  ⵊ`brmOw©"A@P̌%>:6;W'>+QF{/fߪ$:gFOvԒZckh3T"Xp1i=qutrYAEY/O5%a?Y=q5cBZY 46]Dn=m#~ŒRxj&wĨ'"\35D2k,,65Wyd^A`/ȰN( O4^ :II&2)D(9ҾO kE)HB"\ )$>*Hz؏#۩k=cP˶MŐA2ΨYw2-tOzbvYaHEJ?G5G3/֘H&\{ҦH1ހIIAf>0aidTƣ]c+];E/(6YJ9 t AF%_TFܑlɿjs7 㺋xxD}`0ۭ|w7GʕfSVZArO.:HF$lQvWEѵ3t 0xR#$qK2yP)6+Of:#H@Њ60bk$ 0U*H fnmN RyHӼH@ yf[i0e ZT.z){|<9k?"g\.1)REduG:UA+̜ DI~^/ WU>aTjUfy\9ezEOffa R'lw s!y~f3ʦ8?dQ'Z)ufY{>EJVZ_D|D{ς)E@iGP[~]t?:% $GT^gd)g4XJ2Tlj]XyjZI/&Z NڶRӽ=R4NkXh;IX;#T[S4PHdAL QԉL*G͓?iLZ=y}/kK , M!dBxg38=Xx\ ~Ag2}*radSƥV&:O##MWsI˒UA3w+r7jTy2qide(Tgzq|(^,*V^u%X[l+o2 b@ePKTGkUVj)gPK!LWrd )XT_" l#3Ѱl wщ+=#ixs@c4ZNsvmtͳe'3餲@yZOϭN\8EA!v/ l33YMpGޥ->i#K431JVmFvCձRSfp65hjrH{\XpiAF-+S.F!]e$ԥ>;m{ NnOyb՘.֜bvܜ.( Jex(b q0#; i{i@nrK4| R~҇1:piu]]g)D:ɥH"nL-V&OYnX:j0fCV;S"K`}}EWAۼ|1[{ O/Lӆ%g-$Vw?fe+ 1uo҄XD ]Zըq: ~oI~\en6uVt}CdH^p)AiϬZdo*kt= TɣNE 'e̴Pht݃T>Y$N?B$"G+'9wFe ]&2/BGj1=RR(0[F H"A21grJc:\ }ZE#h@;Qj(VlC=RFzvGzr8ﺼ8[6ݯ6}4w5O3RS l;el˓cM5xriD(қ6AeI[ha] ,_=O}*gA'Ǿ2rrwtF_O_:#3^> wDlp \2wT\ˡٝ&zIrvS_N{!t/2e'w=c mfb&?u2gN!mǫ[OR9L2MЅe&a|ܿ Ts9LL"kϾLepߧϾUSsjHU/rHkuHq őifi*B|ˁ4&)?O!DtAѓ^jg$XE\ szW_5I:-@2 wng5C20VTT0Z=;nrUH]dlc2ʔm\"wx +|/8-! 2/.rK? XwWIgt(aS{QRVMx{e5._O/Ư?zس.tZӪ*aclqv40DGLCŗ[ o¹8}cU,F.WXDNFӥٸcFΝN7lTW-Z_'z?snS`3w[CBMeMt-:]},q1w0yGGf a؇He 0DɈd`f)3< |+9BzŤNܕu?V еwh*B΍B,l ٛ"^lfTj0cߍ}r'rn& ^|- 茌"̳`4w J/]C*0,q!J}0I(Z*fYɎlNU:2 SvE9'VrGu!`fmϿxvt7ci;/o"Ks{}Xi"w4b FSkaf[mԝ'kȋh!^O5V0V2$B JЭgt~Suh G~m&][ u1`Ry)! :E[dU妹Xqfe?CL£Nؑ I_ZAP54B XʆΆBMX@OW6Hp9*fCf̳v ,*NOR+` 57ʬu Tb4&pMSR&̥jcbZ P {1MwZU1H}+DT)F󽨗UW@#YKJc}΢1oo4=,GrQJJXdjt~`1I=u4 cʎ<;iPbl<Θ=yDpFOCg9p?pN^ uekv_qKQ#iT= أPQ'Hd?b ! M= _^h?R>ke害f*T; ]m틑YN<';]og!:FHP <,,M.F_h蔂Y4^a yB<RgfCR(vx`ՂUXD?76)'SbV52mj6\ B1ct$\hJ?uq|~]s8 g/v0ADVt **f0 hDf d36]STcoϛ!//kF:"6Ҡ?1TIoqmMgkjUh.l<~_f2AyEsJ؂#Ex $K"UR b<ڧ^ ';2 {YMe5*f4d}`}N6ٙmNdH(O$ * )?:<R@LJ`mRZ:-B`#EeR+! ⰰrbBC+*"nU$jdDK{aUy(hodİ_ӺS!$2-Z2&kS0 -+& f;nO8]Q^Ge2W(ڻcjCo$7k F0z®mMX^oQljߖɄ2X0P!WSYgs۵7~23 P<݁dD!0%~kHߜ|ZeĤlNrvF%e-Rr,A%-*;\7PW_:z%chݲ/(T*w\3/_% RϞy'y` )4c$5Pᙶ>f2~&5v=k%= + "X\4{F1qm4N8gk>F-gߍWsO.4 6= N*&E15vVlEga(J,ZBǻ0'> jR$;Fj]YY=렞Tk8S(*fhOvy e7 O11X**LWf@KkE)@ɯlZTrX1vlNЀ($@fTaJJVמ_?{x(U֔}(Yp?W^uG]F@&l3N䄁%57 F/ɓbughϴli( Q}7ڙ"}K{\5>2zm4ȷ\U㬰DHlJԜ|0ÖedIL A'g6ڝ-0ԔBCǣ;Ծ Љ1>X|6nKlH,]j6ʨj>;DRep MQ&{lHg(2Ҡ#Q2 + u1mv{ywy|uڕ^@{l:{Vsڨ;o^s-%*@<#Pma1dRfaXd0Sby**r 9ڗ ąKŸp-I'$3'2SLP I|p|tݜ>bLX5uE"٢,LhJ|w6$ U3m䲤FT `6 H_1Z-TbLʉ[-BU=T n! sr-eLSOѩ9sv=HQmQRHb`ۥOM?e} |B;;PBLb(тٮJ3֡<5o%[b'אߖxSﴞ`bȘ>}_<~N7HB$ B$H;9_t׼,< {TYeePxZ|X1QtZ@uXԕ+"$BDX¬ݸMjYpr-y۸> +IT̃ȧfb3}t0嶶%j3*m +x j$B+q`}+D*PeeJTB\^X^;Y; B9q&StYBd`LO)C/.*0g;ak|~7!lCFM`\*#*,3.S3FTĩcmTa(Bb r;V2%ӛ=U!i cXה 6 Y VC?l>SD+I<+#sj*3ƣc"a& _xz [Db!K OTbRHcHmLFWDnҠ=i<5SRc>O O_ܘ!J?.Fĉf 'HD` ;wEB#nV:YoΚ|9RMZ$#g?yь Q"W7Y\* V)gƉ~*K0l @V"M R5,$r_%!`Y^r3k>uJFC!fjl+ٺ X3RgΦDG,ϗX!̜>Lݵ U" dΝH0!<1Iˋ -yI Ȉ,UCڔE c K*YXmhxigTSX ؎Ri snچjZ/`57 Y 8LjRqqZ IRxCc>h|GZB@ yEVS(}~'Vr:afiZug'ĹJ%F <ǜD"I{2+T}3 vk![2Xo6l yiا{6027)ڲ{ nj@J/XfqCz, 0hsRNMw! PqyNo8_LbMH~+Nwbj;㎵H=hyH/B3q*%y;L>9eT\ i`cu|SyV1\x,d7 /嗖H<^$(YAW*_ri%J}PH$Rr{P@0(>dwq/X$J*DJu(J>&g0^ԬS&|qE@I~.ݜ /hHen'nu̬3f:d?99B+>4- HpAI?F+Os"t4&%MdD2am~\8@r; Xq! 3YY0Nynܜ f->z!&\`*1%i^(t{̌&Mbb8i`bl%F l'B >;Ffgyj4(C9P m|pqO^LSZ3' Um}hhVQv}̀ `ߝ|(33 6jP!=jCz6E2Ì9H.,{N~]\^ZO3~aR ^f!scO& >jxF յziTNQA򥲓lu͈L$?(K*Px5*8WhUMj(nO_*^O먮KkcI*jx3%B]+/5}pD_cݚPdB@E1XaS;w/]Q8Kc}U۟j!Z2b@PI8hcC, ğ-B'Q0 U73t}څФ(^ ĉ;m`7h4bLٳJKTNIRV't.ݘB bHRW.!gsؽJsjL XwUm2esO |9^Ȳ39EhS>H60o*)Rp$|=sv훾ܕ1Hqĥ!,ٹh hf477QGٚFiArVu{}6'+ޖ"ަCrQh F5,m*?,93 *.OA[d?g9oR^0D pR? ,ҍS8N|B1.%rd""E(LlwQYmjJj" ݊6$Yqa\o*[Чpv1aYI U*u{LY쇆!hJWh}₊,*X(zBiG s,36ƽkQ}CT"Gljmٰ['6cKu*,XR;'9).[ʳ%_Pͺ>Y"]w'Nyr 5/#BBEl4XDIQP`kCÞ~TRF W08 NcL W>&IBĨ3*Fm(lgަjR*Sr;ۓGKJ BAU^5(0=dRߴ1-kS[maKfT) |vW¤ jewX#2(V{ou)rC 'supɨOXxPE*pv.()+?5kzٚî9?De\ŁɋJRԾ~6i|쬍767؆xǾw\]?,P׷{Bel[#[uβ/ 9ŒXTH؂:榬$xRףxD}*˴\h@"q~3wqf%˔b@er '~gUyiF]Q睛~of$'n!O{@^*T3B Ycn8dIdF8b(bGLjf$|Hra>-I?h!! x`'Ђ6;hϴ{0 LOd% $ fT&&e="J.q>pic[y9rn ѓURj RN.1BC51}O,giW=O<~{0V^Y(Q>!Ƅ rx2EpͶ*0U*(kH}|<ʢDU~n6kXQRv:!̋2(f:m~Bm'94Y9\I\>kJ}0MWf )X(^#H;ˣbbxt1`@ZHqoR*lQi/h hsX'u TsZ(U28fևaDum jGPvC{^mfVyىz1(*vU9ؕe 5dg6] Q֐%9%'g 盄پq$' Pz^mC"ɍJt[ώ]!|_'Y>"|z=F) RyE`Hsٙurs;Rokֶ*@] )/B> Bn)~lnH7"Ub$IznݨDDYϖTD}㯛 FV h+` Q#3UKlXݥr TMnPg+ ?C NmH1 0݉]ZAEOΨ " f5FanEP{UC痕+_][אLDvc oɨS\ź򗒊=VET+  DNCǽ'>~9C翘|MUMl?YXC =d*&JR{M @dtUE SɐvۙMkP37MByRMrIW%G\tr6:,a ϓ{b+<d)gƐNS!S[ ?Yy8Hмyn 1?VdӬ+9 %y ^?m3TQZOVBmdlX6OUzmr ad'ûclo~~jp}l_sl?9Y2gZ~u /-ޫٱHY!'f%/06I쐀O*OK4d&h"!TYPǴ 3vESR!JLnVs|eh>߰~ث#MBxo!<$' fde $O. ߙ<)P|Hmtb$W"DEty7FS\̯;dNZw:R`9Q˟g=+2w{J?@ X10ec{<"H(f"+ ZvHm̬H((H1sBDٰ]K ʙ%H,ECVwPR@Z1C3u E|c:y,( c"n$qwfLiaTM]Ej[`e*i0Ad%~ZC~vJ&vhq;+~̜@16X;] !ǹ'(p-Rs;'MMP!Np*** jXWI9ZZ\Vy0mSs6*w3qqBT(H~'d j(L&LYd W-vO9D;m41_vdɽwOrHXRAf{vPT}痀Kп-<$vط9 10O(3n|%YqbMshPqv,1X2 I 1`bxxoPp+̑Pg<V #eKY/&MICbI11p`HL0G]JdkQpUeB`Eg&jk-BH:٬1G-pt 11 Xf"@>l'j]JD{[ i;:f:"]2@2%C{V9:NdfC'*dAeƺͩO1.q [L$yEٸv>;o|Umeky> B@q|KPLǎ\ X# :ei Oĩ" ,V ƥ@Nc9CXaL,JȜMS9j 9Z&L+SjԬSn)9!Y㒡ύyɘīԦcّg6UgJm2s1gx쭁1xjT+DÍEmZ!*%mLM 1,Aul3&꒠B'`Q!\DE*Z㸡ό3iJ1A99'lsᲩ/Kw$ F݌fM1;WvQ[OWOx*LAX# |İ36jϟi慾sbKKߕ!/ʶv{m9@ +?)h@2TqL G1HMVaI5E3*)YJ=*Kif%J/.̂|rW"ɴE΢}l&bX{&x:{o"hQ֪/fsaaMN,yFc>=~hxKL BaD"Le339e*,bz8`)gI(B bQXQIj)\BTdTjV3Y=TR"%~o*Ke B@Q$"8Me{V V(3 墋=n]B'MOЈ97yy'iV5Rh5;}uXF_,Ȱ1X.-DB|ɯE9,DmjO/^J_< .uXy,j!Ln'stЄTĿAv]@6+OyR$њbo> (xX5{n֠MJD 't\f bU# |?;3v-^32/37%sfJ ݌V>ãq&81YPQ~l:6fa!c?`<.;0 :rW=ik9qA]b>*ms֣{9;jGea](rJ~ڢ Wr~5rcQmqfJ/?/3*+7XTM*(Y*dьI>n}l]qo92Qn(__4>> DNeg;3heejYr0Kф+:ԧ.ە2g4Lwrk/oʐcwe/fPv+56jk: :)W}6-MnC4GPkd^bye@&9Qщ;zm@!xC*)O<'m614vG4,ıhHDmK-2v"P8qp\D;9,P䪂R|M`^bSKEVşjܺkWYUE1@ GlB,Ej?a㞯c"g!^dT0(DHeX%!m%up`jն d+ݹ¢:ƔAsybεu*+A֣(ܐ$|WE&vVeH fݟrLWr"|}Cq# H~pb .T $C#%1,IFB=eA ]?O*BX2~ 0"*aJu?jrXg5?똳 r"_b  ۃlH w Qiqa hZk=ȡhB`n^YfK"HB"~ZD:N"g̉::Q݁#8B !r%L֣&2sQTQTs]KKd.TlC#wr~6f`JV"]@7P$`F eu+CRuRdU_Sj~/]ڌ15I5Nf 37Ϸ@-3DzN,q D+ xH;0;e!6:ol~]ŠEW׭YOlO)$srN2l3\ؓ~\>8N"qZW5{Yu7W#idN͜[0~'z a*Cߺ` ~cx`l.ES²|1CG,8B|y.V8O7_n0Ƶ>jf#m*1*'-nZ}nb | s?{;t<a@"]ϺF-IR+`Tex  C4d258&m~$!ʊT*"4AkQ,<(XJDJA@-ju  B+­K^j@Qzٯ0De*#$= 3]AdyY*Y=y*0"-ZU][ Ct1Z)ғpM- Xe"ZPhHbM`,``TDA~ " +RbD6jXEE2u"'*Pf82Oh{ % ܔVEm?r N=ԯce Fv D*fS@^Afd/C{mkRޡk6su2bTI^1~Ei`=,@1quB  " "ЙF6(QD2m[I{tI]fXpHbHd0̗7~ysQQh9ڞ[ݸyu/ĪZABr㥒XF&\j56(}<+9SĨ͜ːI̿YRjW%rU"Y<]<;?xᏝ7g5Ra0B(LVĒۙQsELdzm|-EKfb"X"2fŸr,rdE|g"ŢxШ^2)+s6ϽMAUIu7CErVڃE_\~%ԢO>9'K2eDOf""juRg?d̊=~cC OnҮAkrV>lc< 6yM*" \7reOF{,WFȁٸoovvG*[gm(TYGrDI1"@ V1~Y<6ց^zJ"T3\Nui.!vD T 哆fU^\ C"!N8ZEp<D ŨRőVb%*TΞc{7D oɐlVzu֊)Re)LDbX/ڸ_j@ 0F}68/q?>8Їg^D!#]uP&bI@($VŽ[Z'T3 wqO~ҤXlɭcL$"ԀO FK,|(ٰ=eVXj!d> z) g0DL1@K6{{ScŬ"#o%BS)X!C[}emTj"u]cS7Uo3m60E{0WRa:b<޽nXkGp¿IxQ(z| k'e8Eceh_r³+YX^(\?5k}`XjȄjqNpP&9JBMo%ڕA{iXY$ﶟ1r |I0U3;e\gct2}kOvsf8Vq߉g,] _9gwsP_-E5'nmY (*3֤VmLӄ# {$ {MLH$ʒbheIa>IDZZ9YD~RMn"|z7։񨿌ևG"3]\BԬ'%vhrd7d@YE`P>B?;㚖faB-EOS?*XX"Nj^`2B5lz`aRNo^%)Jj]D+X5gy70֊:"Ucq1 _fp, ksB(AC絨 1#9n,'lB"h^%޻66H^H $DZHUVI9H0rg&) zy&"B Rr `nYYR!̟c"_f|TU㻜Qd E`p`y@%#R6G3m̨}V|L\|8`1;7#ĝX0#"8X/nu;'1~^9=N7eCVЭb҉^bG>yeK1*Eđ*(»UE&j"XODG~ئamY6O(lؐ&˯{獠da_Se[h9@Rag>1=9mDLXـ, @#8/pf JE!7 _/Ŭ>qqn͏ڰ;zh{q7 \\YB:gqf\PR iI |ɉ!sĂO:f?¬/O[! Rd,idJ{ܐeTc-0%ww "! &4Q2MԬʹjW dDwdsV&Q %Rb+UHQ[ d,̴ss`d &1ѰCh6E>^L7ymaA=h%Nw+n0,g<[>" #t=i@Y7h R2YG\ka',Ouѝ,vxȕ&H2 D6c!<\Y&7İ$]|ʒ$X?l`cH 6>ỲBͻhP9WC#m EAnJCw+ |yיn։ス|G='nym3bk! P^ԗ~s#;V"Ā66Ϟ\*>wg*:Sdiw4>kz/C7w2h1"8۶LM2 ʓ26|KPeS21KDzHpѐ8 kumX)/4H(ڛn# [(ub/`_A%>CF4bI-݆s02X(Ųk "*eȲXE]_q"p[톶9qUʔ6Xi{Ę!L9^,vfͬt1Aݩ8K=ݖ8p`n%O $GK zUQ|01F=ȇQ0BM=l*4_MJ ٴR:ϻi9l@;i 661sȝRrϹ5*TֈJ&Q]"j4+s!H,cnHX8hHXJ|\"EIdQdWlxLɵf*a "$D6T" Xm~$"]ɷtG Ky)V3F-%EURےFD>ҞӟDg:3h&/r_ʛl5c<)栥$g1T!odyec]!4Z=ýJQe)2˔ $ܹM0"13#1r2 텨鹜*kX(wlۢ?U6r_;BD}g-iYT {w7jMYmX1[wMe"? ŪgFg2T֥{)(DC#P%Q+z DAHCE[h,mYa+U*TWb(1\'6,ad$",%P! űzhSJ+ΪemAZ6_<>!J]?r=jkEC0"3:'bDb,C!27ݳԞerIu+%c%u&=K"kMf!aˉO\)iG|7zcObRQ<vܜAT= ʈv_z`P*NLj0Rec8s_F55LbOWl 1Va*l =Vu쪧%X{&`g1dzxLÉI7yR@ 8NT\L-;YԜ$m?IsPERƊ8-/Izg`kC,>'(U|sR'qk˧,N#ل {`; vRLguA2a6R!MVfBd6[;U2lQ$^Mxw sTDL_-<-}JS8LAM?ݭtB . R}""XϏgtX{3f]]52O"Hs/k6Z?g@ؐR%V0}A%ڙvTu"wa#V@'J?ξ4(eF%R2{6H__3ktmX!"Lq{9lʑt'7q=/\W[YǖD,,Cx@޺C{f̋NK@w4Tp=d h`# Y=((]9 V_{x6,FMOg^Y8iV4$' ߎ>[@=oM8'*|cLR@;mQt4X`|镑i"+2x3 '{wj㺕c^OX,}wyIcv'Č)%q>7!T<ęRʉݗrRUm8acTbyvٝ/lKa\@C|T=t1f氳*W>8f"o;O5(u:ԬTD`dJ$ Rr ]E;c A}p%F"_YE|noCHh``gmJ(j%a`G L@^kloV2TUʟ*MKK"%D0Xؒ!RI8 |ݡۺc5SV*RÞrsA9ڧRcyu惯w^Léy J`U(^NU[$IqR" {FiؾfĨ%K!;s<5(!! {J2Vm|/pnE)I!',z5Qs V bgvCC޴LjIXEʱ۽hFTX ě~񣘑=">'!e 0q.Fs;YǍ1cTSXY>!R6rTNKjn0eDJ"Y+wɿƦXZ(Z2@,JѸbl "X)3Miv1X̬YEk6 l+:fݱs+9]C*gcqkک {l"/)IR^b"Lhy:UDeu(JȈ `[[XQYS!7Plic7x-a^&Ul$)W9VjذP]T6TtXV}(}zEU5;a&7mBbjL0 fF,s-7` oT_-{mփl*VATU ȶ%Cfhml~%=4G{zAld?"ynjLX.&cd/s6| $Ο̿Į.c ۩.]DIJu\"E'6t#XNg73>*W>x4ߴ1 A*\*ɉ4B3 3q#"4$_}xk|/>-WXHg'c#~O˦Y2)b4튂zռ\+# J-C;QIiu%݌mEV1337\ZYarA_Y;iڬH,qjNxNs#*\C mj)T={v* !%0AY͛qcmk ŒI>m2j M!#m%1wuϥ*GN-ojdTKd<\Ss;ϣ(Tfrg7f2 " xeb UhW藴SkB0IRx:}դ!^YjBI'!QN|n?i+$Ƥ&u\- =vHgݟR.ʋ+,AMWʒ Yi~sjì|NIY D9Z0IBd"MKXE*DkDt~%m[% \:_*휟}^k6jvJD,C/\U`BBrgb=Š?+PyaS"ڂ(|gs!]tv\@` t-'hgw,YKJ#jsz_'2*Ty.+fbAj8I63fERh,K$؝U@FgvT*Y' ޞmig9vscqg# ~F?~83LIw2asT!16g(q;N' L$K{\T/F'S\3;˔TT|f XՑۺ@ 19^+9mLs$l?I$ Ϻ!(77G,"噕cg{# Oj|a l6ۘ ;i4d5bFXǛ }qXelF`̽eC: DLx<`DN*Hڣ)i*"dyX[pMNBC%%zڡ3aDU _@Rb͌;N, $&Ű&svv| <a"!㈶n=z(cd;{&.6~Y0@HyuNQ5gUaKVgy,2-PMvzțb'c!ԸCvR\فZof3,i @qXqjR` ʾ͋LH{wg֝kg'^QO"/kgdmZ *la[km! Yd$Duݥm͈W"ʍSX->Si F4Nא_ 3ɼP 0s.dH\iI8I>OoTF'zJ),j= y3-(*8T-: &WW{"k>#,(0(EImhA0-{k9= (S%HJ9SU!"$(Ee E(s/9W Yl<%=I $^=lD'?9Y~Y3^,,1nT5+)L|/t@!5Y@ywꤾX#'80$D?]΂VmUH`cu Z" ,TBU53 7l;*jڠAzT[9dЁY16R)3`C3p"-%lʟ[럦ISN'H D2TlVŷ+. J%lI&$(b^߷SdEl@pԔ8CzLT#4 oi )Ymg'33l6 y ӆ41$otL(ԶO\mrPL4&,cR\LBr@I1 6&]瓝agBBeg'\2"Q>vK椘$HR D! ;8V8[7Y։JmIbT0⚙"F`\=Vb'$N''a+Y`)료:? IPi8: JrhxRb~&V pVVSM>8ۻy$okD u̒hROrԘ}P^3V?\Y!ļv\L\LC'<@ @ĉBļ[㺊6.A:$eв+(/Ö s??1$h/ xž΋@qR FĀd*WBtbbpc 4]HA,MVeU1hpY* JPB(71b!\TVեɰ (Zv;X#1f`1M.,s"b>&:V *DfS{W~k=nU3VQ dY?iUy>MtO<1֐/' {oy^H9zɿ2 s=4@gs?͵Z/Y|т&Z JqKa~RЩX*2 *'scSBڲ2@26L]#B$ߵ3b{,3 E+"Nf27d'|bFm&>rJ-~B "2{r+mg0G{o68Řg9hGhB #'|eOxO\cٚJ f,#PO,ℐP"nP Νq! K|=g#5o3mgJ 8ʼnYHLiL_'ĸOoZ\6e'g&^aRi1p:SJju<'yO>x~>{ި"&;曄BS*:J3A/, v>.,! _~K`A=pFscfnǗ,KG6$ܲ_9ٱkoF=dod}E  }3SW<]Z3LŮ<׻dBD `O!`1i*v?S΋DL۲YO(F"gs!X4FͶ2ګyg,aTL%E>~Pm&S5C1py vy=Ǐo3'K)t-?FmޘG[*ܔTWݡ>gۏg~&6`=9+~3*Y(|fsTCV:EYC-9{iC KH~"%O-4I11"Iȡ qʜ'*?vM@&-Ok)c Mx: Sܐ>#9`_~B?mDv3H-aE Ę'89͟ߟ:9#WDFkfwv ?w J|NWc$P II=oyJ!95)wiGNBPj:tr !C C*m8Կ( Nڍ3azY!mp"?cgw,$\S2Z4ÝQ`s8ΕjU)U : %Ĉ-ߞ#*>_906ڦu T3F-/bJ*Td!+QlH[zB?[ңMj{j+GYuV&AB3 ag:bW'jlUL# 1U0jYc݀.!~ݚ5ѠVʕNo0=Хgw=J5J$ BH .v0R"F0 )'~w}/yύHmOn=%~%=JDf:6[.km^VXHfX|cwh9ٓ1&B,"HSOM[dǗS%݌SBhvc** (o&'tITB,#vCw/$Z33DM\V7:M Y;ЉOy?)kDC'$2yM<4ZI 13Y;mE3 Eb8k}ybIڷ  7n[seh!'[,a V~Y1gDy(GsTV -m66Qأ3)=y}s&AkRwpYs9\"=y&C;fnrَ! :ky I 6G У6*Xyl}Hgslь,DQZ-iqCZF4GᑶQf0}Ug%O)}b۷>WI1XpRְ^C3 Dq@اfexBbxtc qO:[9r_)UBnR|j/gƥH^f3 hc+3 {ݴjo NB&"T،5-Z2ĩmS>rIbq8#ߋRB*B>֬TU_R졯^M59]i#yB# ̘fMXtiҠ9:c"UU#gI'Z[leJEwhek6/ֈ >IXH8b#{1|O1O?KPt[l[<;#LXRƙXAG6^ڇRVCc{$$dk}ۉmη ')b G1xɔ'ݳ m3!!xeT3t"F&Xݹ޴r$[[B!1_זX{9F"^h~{UR3[LPmkQ+A%HYnA#XMMm0 ³{81>AXf_eX, &:,3N ig1q?Va~jfcT=rĞT}fQr// )Od\_c|7@kDm'kDuR8wrw8uANe^pQ{ I7g@ưŭlPKXO>ȨP)_F-Xfy$DRy-6QXx{Q估K QmC-6#RfH,J:.y+zjO.ՉvʌF3[r&gYda>CÞT}5_wTI̓\DH H[3 +2uˡ$ HEB*&=^!hH-rLP>y"|T"e)dV"IsGwm1Gzi/:VNuf'%"ũ*)5ENKmD@:"G|lt N_Xyip Oq8@!baB&V~4"D)A-9!"!q-S΀EC9*fD*A}8Y / ,˔$9Naә"jDY3O5R"%X>N]]٭R+%T7mE@Ox`@#mk'6+ʶTԍEHfTHBSEQE[*h;rpͮU;buG̏6~&\߉qj+OBIXqaX@pѢ4%VI%{Pg;O?;(Pb qMt=׌}ݏȠx'ߔELy@L+T(DݔOܟ2% ]y mN3瀇0B5R#2A!\00XfSv6${x>o|KHY"B3ILVKl[fOٰ- "1RC̱"HQ q+ǵh.) 9/TO4=אs*z(*VfۄD}~!_* X<'M^ZH,%D# CjL#{({Pu,E+Z,IX#P)(E̼H/$PJ%MlgC ʔ*H1bvŅ`WTC1i}T%@x%NA(y\<-%HևXf ,b}}bDUJ-bŒm*Du(JWjl?&LRDB02'tJOgDaW Ԭ\ʈ1R?_(g y2n+ ECVkPj ~%Jǐʄ$ԦܪؒV;WFS(1*l(5JώIUPDe-UʛTB$Cf$1%,z0R{L% nT'-9ȕ 'XjS[7]{jjM!1d O%qgN,P3@ݭᕇɄ@",1&E/EZo{f2Ƣ˜3T$$21kB'3DxЁϖ*:a¬TyF)", 7^s3 ¡YU @C0e.P9{/ sGR֏R]BTS,<kXeLDVmc̡s$IBVԜI5#wM\H|7I0 b*">b DeKHYA[c㼧DqBJ52(K/Цj^P#P"Zi0ï- 3/1pBRt;5*@v¦9XhHQ͛cMGhJ"#J|}S^cd eO-"^2Аv1R@X._dʖАn!US`eM FLƨ%('ha%HZrj 'ZsIj̢CNkY+%aLC+ƞYP!,?2IшDg"Rdh% XZ)( (@9_uDQUaQh5~YX*2)Rig8o EIRso4טv!!gngrovML 9Ԉ^vq&a ELʽdXR1 /I^˶}NH*T39$(_$Ed 'yaᜓ8I!yq`|MvU>^R fdìï5) mJY+)IrɌM{ Ř$c?JJ(X lǍ@,'*b*Zcy߶哉B ""y*Qz#QgǹEQ_i)K|L#TROcʘ՟Wr-bURIf(D7̀n8bT'PVDl"]![<;&3%y{uLRؙ"̙(* 9kz¦BŷPuP!\}$vٌ.A;2{YJO"۞X(1)i ̬:s0L!"OufH1},FȅHUZA[J T:bÑg%^"2XQ.efrϨy؋\ou>< Z5{OG>X ꊜԋֈGuDZmW*9uTaloNN+ )ETmS3[a^eu,'|چT1CԨwE-S{J'u2.k0W% q7oM-f{vy`LY@Vy|05%DBI+eb!DJ: TRXgbb bcA"'j@QeJ&Ev@͡&Ĩ$FtL^}C ((+ou{ŞwOs&KU$*Ԍ?,?RpVeQ_w n?pa:-l 6F~+ t\D6C|PBbrFTj# ,Hsgp9JJ՗a/ |%AG?rE8P AER/data/BenderlyZwick.rda0000644000176200001440000000111212534531320015027 0ustar liggesusers}TOAv8u ƠD#P̄P++bwC/-v L(,7v[LL`.In '}}{^M)n]jg}tw/Oo 'kUYPFoqm4W" Joa1ul=6wu>o 8v><.M.$D"]<vS\9 OYόaE ~Q;/ow|_C|y3?<+^}#{?G'@U2i3iO/`3sOq&;Mt֝un'+.?넺CݾyqβK4aOijN'h?Wo}zΰ"t|KQW5H{?۷UlgكLXHwbnhgC2$ǃ(:jptVFv=s j[~tI֊3IRns)qu|j,KUVdɬ峕>eZ$A5W qma9vX]q?{VۇVχjҐPZ.Ȕx4l[09C|w. ]2?\a1Z;Vԙ]$# ~I)F3oc0rH87'B>JxK%ܮ ~HAER/data/CASchools.rda0000644000176200001440000004044412534531320014104 0ustar liggesusers7zXZi"6!X@])TW"nRʟX\qjnj-'Q_YFih\j㤋]q|6WaX%?H8݂4 z}1  > -܂8GN>E @[pc<_vޛSp3H>1Go@&w͔3\UQ +ȓٰ˓3\>S7HBQWoy9]`3$C]=q7wFVr |l,\ST4maxbنEW2]$1d;[BXGIP& E_Aj4 CZD(Rp-:kp`ۜ uJ6](Ka &UCFz^ک^m?U1سtb7wZ\p餏CWZ{2Fx'}zު4bW޿3,գ:8wFTتONl=nRjZzH#['BVOX+b1& ̢zzsɜSWP4 s^("p_ $%7RBnWI ﲫ~|N*zd,dyӦ^8E3k tWҝK+w*~:2P9B Wߤӛ Cj &?&,Ռ#@E!7wǝO`NfDاlhU5LMET!AfЕTC $vTUVpzGF|f%U:t"v hdRo ¡N39G䈎t_,z0O;i(ߩ,#MMWDos6/7òA:n `qᎃ˸KY-VI|l5kEWBш)aX 5 1`"n'h fCDݨ#)|ibKu3I︱aYl@msd{RfA<܆djԃ >$|;e7֑?A,4muL&(qd\f@h٥-ULdC[]7 \g\>Վ/YZ\2B&6Mƹ$^y2! @ j>$N6|@"G8w8|! '#,FlI/̞C:۳I$HW6dZ4BQg+H_nq-q &d{~%`ڡXČ/n?<`pm kt)f"K]ަ̽ih0uǽBV$t5ȀA1ƲA_%RD|O<P=a൲*Y<2  @μR`Fz|ENc0TpNg]xv6K5d^lÏyr4~^>di*/>րpj &U&i辭3SL *) yn+?faonYf0aC<'Lgʟc{3ǁ {>HO>o,#ZYAJb 2.\\Rm#"-Vg݄G%?T+>GK,a |ma%]fU ,ul|r[ҧؿַEuVn]3)t0Z?=UT-|.W`}r_ G4\#h@ɛH9r^+{?;9p˲,Dvak0 LR3y,3 2gVq0T+Ydl+Mܑ-'6 ,'FI8,d=0XqOfh4gn`^6RZaՑkc+ Kڊ,60b}w*.gi߾y5qn2{ܨ-)gG.>\E!:;^ٰ:AL/JHt/| S_7iJv5w_`>ZPFmw]Lg_ae+ch_cD :3鬡-wIE2dtSNIl0^U)֕69[$b%~a7Ќ[D~a.%&y4M(paeV;F|o\c]0A8n>%& q+5.=ډ2t.N{̒EeOtȯ&[ IzJr+MT[u'epҌGc=q )DAZ",zi+o 2!dEؘ8WgKc FYq>幸 3))'(tkZ颙-bi_PWHAs~L輗iw2oMgd&!7 Fk0!v[.M]GTʜ5f}v$ޢ\3 ?öYK2A- ҽFp_bSE2񾰜Ͱ =S/ frVB:Y1)CUF 'E^ ˼7x52g + G(#%x#$;ڥ(diD4o(%S7] ˊ:pY}Uk\:Qֆj3yՅK`5?ܣ*H~"gwfwciyy)%O{ΡSe~7cU=EFuVDry1pWD*=/84Ϯ)b<-@qF> !3S"͒y~^M-t^-*2 y1ROVܒOݾ2ɲ,dw̚ Eslt2xAF+}p2hm/L rHSB\%s4>',ԃ/]-Cߐ%S08oi`n^ts\O[N<Ƽ(^<` 좃G""Mn:JXAu|b4Z'/lhLN X 6M>ۓ? ePtHUVd}yw^^mmvNP WA##T 7~"ݑ[e?&}`i_Js&R!`9rb٥fLR<7Ӈ Eepd8t}F6O 1 \]LVLt>pe_*FЬalƏr?]k 9|*quv[g궁2}>RʳjU\&t;t L .W1_LHd9<ӉCޣ_ sii{ Az-Q0+B 9/D%=EE'<-`"ė"pJ IA341. `3@b C5"L'o05%3'ޝݨ|tq t%E"TܖKY:]6P*=z h\0:&F򞤷 $ 7Fn.mHT}Bf8q\O[OK­AJ]N[ZodnH?Yk9]:z8AO/_䏀 j] !:!I`Ph9tĘYǗw|j!Oq |ѪeVP1*ఉU!3T:(~`~;x?[|)-y1N5lQ[y? |F;~IsjV!Y'R2;# 䩖)}A7fLTLFosвGkpg+鬥6NSu =o8qde mW^]]=K2<&c0z#=TBo R )%VW%*1.h8Œm'(AN [e;a AZziujl.P&̍adT奲Xo؇ Yy"ӐJv-EJF &Z@HJME},ٰԜ/F/— ~͉AO:u5LrH00|Wo]*ܣOCcg3> 1kKC~tK,Г:}wc \^/CM_Vc׉{yfTï:~ohxIЏ|~P\-69O鉱U5gn'Ox{2Hpjo9XN~DS9a)ј>6HʉzIOܵ}k0ϩڰbZżPJdVn N0H\뻑foR.[oMUj6o"QgL$k_VBiOaSTcE٫ޭQjW`Ho(X;5aT>4PB"{m>2|Z&w;Q3 t3TS`ׁDrfp%^෦~B?{!GIh CDd0*rpZ}%)OcEƀI 3'0dQۓxA~bik;ŝn)(DJ]W#$Mѐ)(3-Hs++P`z2&ebN; H,A8c 79*WK0 |ƽds:tk#frfjD$Niwd&]A{]_8z]n;;.bwQTWG"Wpcb~슲s|aqQJsD>"S@VCnC4S5ް#tUu-ϳ%,øJ{**+̮U xUxRl*KJf@whvZzl4wj ]7h{#H司H] fH]]>u%)8/XqTk^5FL׍ 976[a<"A/~*CoD!Adf /KUu*r#\Ȓ^V;-[έnoL ֌ %!-}&QT_8A(a7=Rus(iUhl|Gu))2eِ`:cA*D2K 'exrIw xԠa$bbQjC51P5=*$? )ԣz*n*OMP(1-YY,Dfmam ǼbwCJ噂1WSVʷ(S"jX_1Y?\o|&udc9|q9m݈0~ L_!{^cdb[)Oirjl n} S_蕔@c,#;!"6zM泓HE|ܗK$-n1Ƹ4wwQ…Τ<#N`˥ܛ;ZZ)yOr4>HL?Fdx8k%3+WJ#rɂDM)a#JCA^V(Le+ V଼Rf!rm%I@Ƌ)N5Rz)R6<ܮ.e-Uv7e ڋwP VLcjߘН]_4I}o QU"X' d:yir!9)]7+?gi$Mbg6^Ac`hzeF=v=Z1@7:}pHNT0zn$NI?aiz Vu*kI8cT OpɋN@@_ιe;ƍa8"o>tN 2]F^9k^(aѸ~RYVl\,JGρr4MHPh,5GʈT^|2wL#J*+JPɫrcɉ'o٤)A|?*gU);m=K;C5LvUM7}I?~acvos$v`uOVxn>qZԍέ|Vῒ _JAڈ.4<8&}WEMvG=eol:_+E9;h".3NT 4[ GȂ$:-*nvSJ\5ѽ)'xÍ ` ˼Y]B —&R+g^%>Qfhn`?XKxyBjIi Gm#Dޭ;~k/΀rǻ) ]G8q6;Y.4͜PYRԺluU s&Nw_fxϣuT:S4=oxpX%SqApˊsXfĤu\VLyWpRd,s\oGL$OiE@Zar6/ot~a?SbϦ:M!) 1cг.fe]v}1kH (Dd6o\|~i#nDL,2b`k bG#pƴz.o[4EGuVu.5XB:jq1㭳(?(J!`mCus"G\>3 XHؙL꠱{seyDS UE|yyWmʵ4Wel${2[?;B 5ŬLKk ^/u= @M.W},0HL&C37ݥ?QQy?iZ3H MŞ9X]@ -ޫh>C,4"P6*6ꇷ63{|rx]$`>۹&5٩TgL>53 lnoDKBvu ud7u'-NbJ6א ~P#D]dDKa*&&=,"ƕc蠆S+WQ lnh#J<@/澊9(SkrL ^!y`[rxn!f@MAfKsze:Z)(`v uPR,@!A70=RT>Ub-W͙,N|q)9ES[`uj0Z0=|=Ь"ރ <.~ > ȋ iy.4u2{FwuW!B0wj!R Vh2G~<>Hf,+oaeKqmf`/bzaR֪#um]lji, ,[d9hՁٕ}OZ[T1Z `բɒeZÅj=#u>, x#_纇oR_k[f>sFOS]=:UA{%p[Kx-t1j_1gHk#=`V~Q\qf,To~XYW٬aӕRSWH!J /ZkA~gUK &Ȍ@n,WI/\d"O:RВRNu5KJ0'*WoGTd|ZnZɤcV y`N}`J@QN. f}1Cyfe^. "f;QQboqe7pں*kn$ vrz5vJɹ[1A#3c|"M?;W&"f묂H6Dan-M>Bq|7؆HzgK(u `—}i}B5-ਟA5_ BPQz9&Gt=-o! 4YJ-i*lD|q冁$w%a܍yFKl&[ %魋TNč[X #|ftDirtETVsD,oM724g2Ṵ.CM͙KV!Y$9 ǕQm%4%d6W~qoWjRZzO+ w7{4l gM; bv{CBSN* 52ܨuB708wF r$c-AW$'"^:YBrG/4! BKHEv]ޏ=v=P&5SF'nZ+Wv7rDrbOK}ķ''I=Q ]o9*%n)gBKfYٶTm W;2yF2v9VH8EyXN~7gDIO03OB㣗#d&!l _ w?f9yuΰC ˫qv")N&tHZ'+]V ; ZpTLw+>41/~@95˖ҨO\mY{g5^R$&Q\5[iK!۫ycg%1TXtu7uyd>8e vÔ/lCCdWlky=f 4H;7{ZIǃS3R.9P>QQIǗ[zXwKET7-v|(w9|`4r嬘s-[%o|bzu4Rí΀H{*^ɮЊm5DZFٶg^ a2X<0\ʒ8UfԎm÷NNJL':0Fo]^x%-8giGOT8KE'|_DZU8Æ1Oc^Ie4W7  +sZ긍۸蟑3%[hң4?ܡ#"4"I>EF0]T'kewv Kc2& h|bƥwϸ>sψT;37~iR#4&zy ;!q` AV;S%gbкo>͗#fKh\EΨu4"B du e zw8Rws΅#uLǜ ~j10 #+Cepf[8u7̂)@bFB9I.k0喵fEaXnSGPAXS*m z>KIՍ$퀈مnvoڌY3lb1kc&H9 p&לũn0`sL%VmO#G>i3 Ԡuqd]d<)MRZVmzSqO|AY]ݺd|>٧v=Mnmc JOVLAN2\݄M (g oRԠF4cqj2:IDHWBQ$~te-+{rMCX%X5墷T $I޲XB%%e"prkfAH8ʓsi,96ZRNߨ8)$leÉ@"{q&/q2Шbi~Yœ,qZj;#Ht,]Oz9k$4h~S*!f7ְQ?wpYѡeRy&H0Ł"@z1[ $XD<%1YuS~Gߘ+~l w2T"ֵ od㵽2t+y ͇8Bl(';,|ޒjZ7d-=]dE1-1~4z0YW&zatյ3'VZ"Ǡϭ=TQBRKZ~< cGVg @`%>yR>!v~%{T ھ+fTF8T8j{ZbOigܹJ#[49(¶J=5Ϭi(79*ɁA9M[fCӎqX]kQܔX M%s< ab:"h\} \W?: )=gtz%Tqf:I]WqN dG\Ѽ]nUL8X3ܲLzAK`gHRi?7Ph3J4|]ii /3 `xN2鉭?\ "Pec[%s$"qJ︑N^8׀6օ.Mput`o^Ewvu)J~XHmғ]PBnp>x2:=7e K}McFt<W:n * nv.jyS-x y6?;]ɪw b$uD '-*،Oyh)LO 7i7ŨT$r$OwcDDi^2K:Ƌ?EbYdKj l]}Ŝ$NSYÃ`S,w5[Y2)\zj@њv6/HZ9aܷCV Tbv$ƋRJV$)X WTq!]_ N+XDnp |{(H Uq>qԾbx&.z{|D*jA]JTh]'x@gVR}A%F8Ly=7z !U{߂]BI9 X&:uHR0 YZAER/data/USConsump1993.rda0000644000176200001440000000066112534531320014505 0ustar liggesusers]MHTQfÈL K͟~fF~jUPl/1.EPDv-r HhAբU"ZHϝ9;\>[7:,-׮D3a5766 i(@]dECW\;谯|9=8@K}a_&$~zpxC-Ӑ=y70:!Kpd|Ny&֙e}irUB_ݦsM-R1]efx ρv2<,lrH2%u!=Y㷨㿮idKukҷ*ے:P Ym fAe\EUek\?%s=u=B2li*,FQÅ%e^ŎVm7uAER/data/USMacroSWQ.rda0000644000176200001440000000426512534531320014173 0ustar liggesusers]W TSga d1XKqDQnEDJEA@ѱ:\IfXVFG(*"M޽aN}$߻~%'Oy2ro!W5J1~xK|y_h$EHATsR!R@:aRwa^?KvG{ؗi!0vz5" xeTx?ޅ鋼pL3=w8A^ JxVyސVdMCr{y#%x rngmVƼBqȍy`hVxnR8PÖOW5OG\722/{ܘ~?^9s>SHUU2q8Q^~}#mNA`Bzx7g93nރEB|pTXҼ:/Dp*/?)7%X_Lm}WV "\o8>,p}@Yh{W \ bgre`G~Gպijpq(;8յ`e28!X:oH/3o z};ge3sNvy"HߞI(;Q_lgs~G{_X|q>REy J{ϺgN506G,fշp Nph/psWL~ /ny)6>V>ΏYpyL6k^\4yy޳&9 n?w&dF(wwZS0#; $%kW.4O'=uQ6v9HPcݷӔ36^`6Ĵ?/v_d;ڟ}Xrp~о㺍Mr: c|Z's{ HΙ 57KO_-97mj~T L37,*|oCVܻ" ^6`CՆt |xB#"ݢ?~MOVc/9 - T0i܋oz@ЭY0ByG3yX43DP– FҀ_GMfz׍yN;ϗ>AYȭ!]8P £bϡsw blվ NwMj&*:abuq2_hš)FaѡK\M'ݹAER/data/USConsump1979.rda0000644000176200001440000000040712534531320014507 0ustar liggesusers r0b```b`@& `bN v+.-04d`` 8ל3`CgP8tB]g@;z ~3/D}+ļcv?D}5xG4߹"ﱄ, \_d`U PI^bnj1- Ul̼T(; 5/%(ݾ  *fy' A1 (ZXs,d-)2,=MAER/data/ChinaIncome.rda0000644000176200001440000000145412534531320014441 0ustar liggesusers]UOHaw34 AԩCBd2\fmݙݝud(b)IPe :Tt.yСo&p?{SJIdh}u!~m0ZBnޔ1o ֱWi!;9?y+x>臖7IeJXs;a2ºo>}x١]$Fǘ4#Xq#`ny2| y~!x$y7X~z~a(d~>ֻ[ 3"/ܗ a6 ,.~tg" T=L~",xu[|Cpfcn_ O;i(ǽ\~]h/ g)ڧye]/ o`]/r<y8/~haʸogӒo@*EPLm]KޚxjC=oETIYk&ni\M۱R.'bSBE±TN-4L.'781q r-6~ g?DHAER/data/Fertility2.rda0000644000176200001440000016677012534531320014336 0ustar liggesusers7zXZi"6!Xq'])TW"nRʟX\qjnj-&2Yl=ت NvP Ƅ(`[{8D3zFEC'CY[a5 I3Kq"EG[0>lX@OYr]yͲSmVN'Smߩu{׵C^ѦլVa<~ΟGfzcDBwSAe= ԉoI}RJ%1PgȻ-턱Ζv޳ѡZ);BΆ&[;b\jA\gå.Rv1^Zbx7919pnhey"[;.GyuiSާQ%cZEVE3=&aqI~||R=P ?En/H4!sյ;F8KsƊwP?4QvIПwsIIz_}vT [D*.G\Eu!}e3U32V{ۆYUǫXC\اֹy9B!jŝ$X,sAa6ꁧƳ ]>R%0ΖԝX-3V!pمE |En"3c, 7mQ"~sIPuEpnj+hc ˊUblE\:|7X lJ6UrY;J "C}N4 &Ry)S_RX^±Hص[%:;D'U7lG7( m שU,_G: -oswՃζo\16G+qk*#?FjR7xK:qen4\BVáNm*BcT-jR2oAqp ?r+~&g3X8i~]m2 <9J@)#c%&T#K}v v'}w3J, EG@1t]){r`vsZ̟06ךL7 YBd^&\45zbuBԐ2%ՃXj9`دFMW.߇uٱp{G`O&`; Myh$ĜMi)wMp^|!k=_C 6#OEJ/sXn9|.wdW-V^f6ʣ?=a)`[ mhza:z1I_M^k$e#S?w]̴XgB= fH>׫"L Ȕ~K^S>(]"dLeXRӼvkTW^{Hhe:Ȣݟ^MgVm$~Hg-;r<4[8%PpM˾o M64d7#WՒ@$b\1Q-{VqS 1ew!*܉e7e1+~B wc~"i5 YWdž#{$#d`su]FP:2l|7GxNwƀv0d?e)Xė6L5ﳠs'DrpHHyyy?ۗƌa|m3 y)q+̪:(CJ]G>P]xa YDk"`kN7X]fCy"~FX^o4h?t} T,RU(-aPɎcl=&gIPŮ}w/jn۳Po}̘laM+MIOxwOwb(^*LGoV%1EnPnL۾@bN"0de*p`jWJZ;Qˎ9عe}7aζSG%yd&ɣmۨ 2Z$Gc&(x ^ N-d̲7oUar:*n`P(,Ko~&EwˣBliXD$$@Βwn@<^u@۵O6UIw+ɸOL&Qr v}eY7FW$6u5 D^!s,/Pw1/_elGK7ԯx˖7jag.T Ȕ!mKaDs9J@F}Cs{>zJ,[ me,O$aj@4Z*[ Oc90l'e9$(mI +fjvQa] Pwv:nJw t%\J3CnvSFi>֬v;&V*BDbo>kWq$c#Aty(^2܂5N+FRSecK zZϔؑaEʔeBDfݦ8U 5f}$5|^ߴ-ֶ wE~VR 'V ;qor%72{#x>=BD+z!Vv3'"q<CLΗ! 0z 3("=ŎfƓ_N5]Ye+$ #x^MUTK.V2#yPţwUDŦ,`ƨ$ש^ߗ`6x7 9jC KwzJ]3AN-?Oo)1`R0u[J+^-têt]Llpa)4bhUס!+|ﶩnğH1F|ˎ>4x 5C 7goֱHaA3u3. ,~p_"BG?XMQ(n_v6J7*`96"Qs>gtfP!?eƓPL!Ÿo9s_I"9.g#U2ƣʱu;L~VfË́_H=E$z*e6桅BthO =~i\dČ oeZ=iWl /ӷC^dY] kV{DmAUAB9F Mnݬp)Rb.{s{zQdn"G 2WR-3 +.f ֛["B.lfeZP1a86VTg_h|;e#NgH$߿睉V74L2R(r6٘ݸ@SV<4}o-HЌS;آM268g`efPuZL"OAx M8[X㟰 Ph"M'JСR {*m3eGB0!FT9y > Z[ ufL1.̧{ʖ 3}'ʻ&_ܪ@joU0~kHQD ػ]v~(:Ӻt)DaV[]p[[+_DOm݅~_aL}%1=MnvџT?e |DLxl4ӥ"kK!TLku7-eD'8ɸ*޴rBZW0y4g&f_CE.I p.D2RS~diSmpJޔx{cYKSI&HV{xETR?ퟱrܬ2d:95ONhB֙ g!D:T0KqS31K-fqbco )~O]l[Y߇&=@-rfA} Ѯ؁R _0š, z]PO'PBA{~\[Źo0h\\Nt>i*|f2KizL A۫7T{bY'`|}B_>CE '{rr+u=ќc0rJv+gI{a_Q'ypUL僫w4/Ǹg9~ٍXi-؜&ƾr60gu]oCA6[7rH(hЅ}yJD#[ly|<\8CZÕsI}Bzw:_!&+uP!a ˯] 0X ;0&Nj0BQ_Fbo0(%"N>@t$Qai96wDevR52/Qɟ!ma&rxy6`Fд.\MOw=4 'cJGB;l䈈 @C_/XӹEppҡ=v+rI52Q w@;ÌF%Y9 o}Ԟ#Degsc`?dGeO3lGl0?;КcD3+h@ s!25&beP8)pՐ` U]dOf$y,c{5}T3U? \7FԗOkm{_ 4J.%P5[mK*ɦf9)٤%txbPM"e;)L'0,BLicğCB{"[95^PJqڇzusCRouHom,-ּH?Eq+N_<TsF2$ e$xNlQn>ib<&]9>jѴ_Sr)>L|2| 9˩So`pzWZ ŌUQ !g~jEhq)B>⚳vu]Z0l& ,Ě'k~ߴSTTAf闏o[POuRp vQ8*\+n>HބU(4bj?_Izvi;׈I8-!w9:Xx04{/ޜ`Wq;si)y#>B-D?O6n'"5-cQu:vv^&s6eMwM[T  3 d?[_dׯ歀4^^YJ[LH'=:[<7D|Jzo[[ۑ߾FAXV)Jh M>ȗ|p$r?1:S+Jv0K\W T؟tB&mxbQx>1ظyQ|Ԩ+%'3I۹(|f3{:)w-%m+nHxܫL6j |~˫Q >TY?Y|Li_w'#)@СW'AB5 51ު oC\h-Mr&℁KŶ#D 5ѠC,q~D@*0Ӥ!v ̥x$ܨȅ&l8\(Ol ++7gzsQg)7hX9w%Jpard#v f<(gT)(O'(pObN>N䴟}i%uҨI#7b5TpK{L^Էum&doyr! ھ[&onщ}xR_WLXc^4nzf撰%Ϥ׮N$7Aj, |-ߟ$w& |gzΖW!4~˰AV=.#@'2ص"T1_? - {wj,wT?7ɰobx{0XvsʔRlp'<%μ3PMXzɎY~企Dܑt\+U ,lOq' =Hs2ׇܵ@I.~* V'15Z?FU.E*?jMeo}B{UԤN'Rw HOK}nU /W|LL {0o?L<+eSJ3E|n b1XgUI>gސ7G-g5ߕ zB/SJJC4?I n|b>Ɵd}ɆN Mf=2%^`}ضSj3GN xLi(*ͺXmSX_zgX>^Џԫ9$z?>xXБqPݥl?k#z1$G ڽHSWq2`!?[DIr'Z h KPO*=诽8;Ӄ=݋4 >ѬiR.ߖd(BSch>2doXW3]bЭ)($I) "ҎY3"[_:;0ԕ:dv ~5Upn *Ɣ7lTRx1Vh/١в0_oI[sh#b Iɟz ȵ`fRy8[cĚEV0(~^ښ :2:oF=Aø@R*ujCGg';иW*^JP`0 B 'd4XZ=:Qnk&ޡfN*c_"\% dCdB.SI֯b27>4@`$9'9*m5)FyE4Czplzo_jdl.`̪$e+EkvEUƒ&v:({:b.1NV/8AdH`_]n"RK :7[1"m>u^&:Vkul"(=BKYm=J4|v3 zQ8dF ["DUe-f '캞:y# 8$)\h)>Q"$ $ ;!PblYk_wIJ'lt ()lj"vQJo:n; Cc/ZjAu7!"c^iw_4RVcPҕ(_0/bmmNM,g8~0-)ۃӣ(̃quAeUwx J>} zPSeW]xؠj,v}&5H,s7 cR o+SRurM h\fne p\rKKtOo2㽤 g̥Wp[d#!HաkI]N0b:]eVMCg}n9xbSѡ)2u lvS(N6@j>n>XKTM^jf!K Xw/skTDu |O9A2Թۂƃ+Tc%idE<i]zuI(CzL ?]tjho~Mڋ?>xNm,ĠU"'\ WeTd{N$~ePkl^aN4 A~ 6^S"cTKb$)Ըݥk牥y+3WKh؍2{)w5Ac{JT)N|)Ml〰 F慒^sz .9H7LpD8%3dB`)?;82"<SەĐ&CAVV3`΢9>0Y@TO0.ZydR>GQv"^Lb)|\J; oίT'$`;/no v!rc<SZK5]g\s=`* `F , A9m Y8z DEvң@*$iv 0`2TrxoW5vPj5&ɏBV`th—QDƗ# sN̫]9bй@<i0@9|`(ώrɰ,hS6"Td'y+}H{}碘hzҹ.2kGvFZz?lK%Z@V_Wv e5H\ P,κ@A,ѻI{Vrx:| h۰J~a?%ftZ Y6*d;5g݄`1|h%X-ֱm[MwjLn4hYXGRJdzB4ˎQsԺd,:T"_RO#męL̬č6CN4Ґٔ$C5IuL>U`&E^Czy03pNn QU ; $N]SEf855א?fMTLS߳w]=F/"URz!Bp }D/"HO(+:O⸇ei\tHء@u݋(!$|.i~h2LK@IN~BvTnBU?J}Ńjj@rjE^ˠ"a'lj@4ZѦ<te ryՉ 0קBp+Lȋ?S@9z%S&@6̺ш,_ez ٤ Tb |=UMl=WIt>>%l[tP,$- gX>xh}b Lh/-"͢jvI*n"w#M8^]#|~$M!*)7fv['*҂"1m"QCX C3Ա3Ȱ`7m)Tq݂<*4aR&̃ -ӱA*ilBL2O+:=B =]I7~*u1dN/Bpj2|QνW3T[ )K%#ʕ|/JN5f*2&@ۧP uq{:D= n-灬ʰqQc`89UiI .+",~$sl@ZI6ߏ Yb(>qGSpot.sXoERûbrs,EP5 x&dz q([W˖`=~,-qP9{0Bf&< ~/ =`{AZ/-2G`Pjo~c95RD~ǿAZSG^ŽԂ~z655a58%J_jG[b.hwoO`}ꝧ[HJXݍ涻+*D¬.m"fߧG+AtPhO*kAwQO-.Z3/BZ[];$Xr\JdzRxM1&:Їz%U}+QͩƇxƮZUCb3VkyHwi*M}G |ʋR/|SȄ&Ʊ.ЛW{rp(nӧ"4QJDl~_2[䏀ëoI_ut/m0_`DȊwzzd-fc:E'@j Tk(1Rkc{ `6&BVW_F2l}x-P0dSY*Rtd9ԝLozDRP\di]VAo׾#GI>3WJO!?A`Xkzi恨j`GcA p(30TY@Zp^˸۩m(Dv WqJZf^mK&%z:kf&*,y y5L=j gj֖H97kFG?|',6?/L4RwR3[(wsTi'kU8"(lM#QR^),|Oד.-~NSVN0v,}(P3CQ}Z#ɺtNoa+{S#MmV%V8,8J.$ITsс#HAƝTjL|g# 2Hq7cS. K )n{;GYq4?pPpy7*R^ .fI3:ݼ W(K!@7;,Qw!V0sr'a!L՜IT[|3AR A&#@[A/4jr ={LTb BY$۳* TIͰMXJ)e啇KPPa-7698yHpo'HxNeɳ$ *,p~<ʝ.ae)`U`0 ;[ P%B_/j7vljre+&Bk-yl4+-WBސ +[4>k2Ck5ۭ@XAա=_խHH?uO\J,qWy@ R|ոAB&gV&REY+tnnC:"y1cڰiU1^>;\/k^Kr;c8jT;+t*6X@ L"1wDC߯=4:P7Tq'9 $vtEh~dzxS @iѥu} EWVh?=9 ޅ38sEP\*}'+Ӵۊ̬ Y"UO:SV8Utt75cF"[F)X?Io}U2Y>+q3zS/!!s<2f-P`+QI!⪷ȹfRҾ]Th/craEYn[X܋rLE:ڥ c|!_ J%Wj6um78`cluN҂٫ʇ 4#nf9}Z-% 0ʘkm bp6s)Li>)[v5?8ՓqWF$"0Kj9 5#&"DBi8ly!'1C<үU[CZ,>:O@M#Dpm wtJsy@;y zkt=Ӷc%Ak?̉~'֋(6]7d~^qW]B*4z-'IJg)_SxBO=%ndϲNq;"o>ޜTڒA_:3cwL8ϝX&t$$4˺jvYHc%ܳ [`4 KTGvv˪ViD7{5vs#5T)9G,G˨@ Tuz />W۳:Ps+93EmWGNޫ?'GT@ZЄ]\hrS@f۞UR2}N@.tu˵U/fPFZp6ݑjʍۣDZKӰ>J(c@ Q6RZ UV`t_L/SJťvQQF_r7sv%fL;(|okS.@᪆MFv{^tz֨G0nl|Z(. 0FTe"Z0fOD )|t0gQH4a!iȝ9[Ӆ/w-PL89Uq0y!uXJBc ]MpB˒i<3H=qW4=3f_3C^6W Pa__Oc+m8^O+ؔ7©2ßpcQ&<ǀ/l/^'FK4a[+Jfi؞~%&͏ZP-:Ogb N\ 48%(.\)J +|dJ>]2s$YOZ0ɺzuD%. /'7ޫ b#` MM]N#xtl k^4㡆@0_B켭/8< |:{׉*56e&7kIbN%"8 4md(h P"@˭UEg#թi3$nErˆVƉ:fE`Zc{x!*-ۑ3}X$&YdTU=MXxCf$%C ʈ8[dܻ1blJo#ۅ]*AAU@Q1#tZlg"IUĻ\.݁8(܀"(pHG1hu-o 35[h(Z`z6ne4,Њ*+l]F1*6tJο;|*C3 /G6]pTa {oE ^7Nwmv؃j$ޜbz5ϾY.^QjGUȷW^L2A#L2+Uٱ̙M8TZ4R{n9t zQ)L!"#{npU 'r.!ޞ'Ө#J-+A3ttJƨVQkT;Q#\! 6Truip݆6 ѭxC3"rF }6~@% J2k|=H ;3F,TQ0iԋRD(.V"ͯ") [!Z8.֓$EKkw2?)G cPIj|5w2vI%&R,kX5:<&_觤P^Y&vs8l 4u9{%?]YĘ;z@;:JUD#}fI&]SlOq:!k~iVo'G,hګN1p} "&^tYN5GQjx_Z(I u]0O'-Qs=y2nluj9 јT' m&p9cBJg Ά}bfDڏАIz1<=3k{C k "]L @shP)uzOP? 1?Y *u,- CA~U c u.~h1ȕ[UPsqz#|*qWM\AP }Zsy[Q]OeO=v ]DR!r'# ϧ4?†niDq8Q`HE;V*VP!9]1bv i~b5ǝy]& KDUM&,+Py(Tc|Ni8ZH-7:y^ hyR0~@40Z""vRN~{M߯eǦV{J÷g==εjc@@PeXJ0?ǟ;t#dY||\@TZL$&z:BUjwqħ>^ Yo.;oWPOHмw`XO#[ xȭa9,#P쌟 Ds: NG"40Z=-HJQ>Ơe}aʸKCN$Ƈ="f`)Q g2pNx|q.q3@U2k3 JW7ޝeܯlgd~* YnXG$Bҙ;8N|?.H3֔D}4IC*gaQ$cUɏG'Y&)|`=(@ $7rha"oBҒ{JT@K˰ٙ_&&l|,N9AO4ޔ @>mMe0 e=6 ȨsNY=@R:G"bpޭ NP.De5PխaY+g:iZ+iK`G\ ,$݉-#Ӑw'A[57!9q,(e~&x%x7,fd8Hڡ<72z_ee7w*(HFG); 1tp'1`D 4ژv (`,Q:#ptKKr'y}>zx^8s.eLS.tq [vQ"E…װDf=W%ej R-BQ[sMo-#ˍfQm0fOd??n%BJ ϕD`.-X~wʷ<1MA;(}Hƚfq+;]ެ]ѠV74 Ķ0ߩiՌCƑu=BT_$\MuiC|BUy QAk qČ9s h5aYS2 _,Gh/_ptT.!Bxyl2l2 '2Ώ !ۻX7uPkhU-HP 6mg hũ2# =ޔ0j V]w?RgaJ&ױSibx/~喝gw/x:ǣ0ɽk-T)ȩ:=Lج(@( o1Q=Y *YYSjs"#}mG#sNdlr)⋬RÅ|f { 4懣&V'QGX] ZN1էkCÈ`1{OTQؤºNj+)QhvlprlC{%Čm .+'](uVdF82Q! )9;NE~ &jMݔRUVSvܱSxK蘱(eiꈳO{r[vg։/*fidWu'l#eUH8>%CJ Eβ!)v(ǖ-JYV(t;.U&쨔Z@FLy,ݛ[z1h""Q)IԡR@-yʂThdgB|X@L!")u2NS_1!iC$ƀvyܹ.ЫoȐݴ2L9v^h(dV+3HwW:Zb1OZ--bKv$&}SN&~_Q[cb\x8Kl;}C^os Ikrom/$ε*ݣ+|U{g`%A^_ol31܌hMFU+RFs ۠n]^&Bnv6CY3·Boݛ4"X57nFnԑc5r95u{?NI.eq&p!j}Shx($PIƙ: j9*r;M=hFt^hOb*/o=a = yhA?B'rv"u|bc〿TkE#/cAc&3II=%:~dsW4z9>n֝s/ (4YːX#$wC$Xd$fޓRTivRD/-,Л|AyZU9vMMiH\!3m*0l`ʈn0dbE&|EfGY# !x rD%z(wpfqoĂԄG4I Z-9N!%22PS:2PdFfM9:76Mk SO)x@zP3Rc R(/1>kMv ']6^ D؝Kzwj›lWu`c߸[A_a5w#-,*jQ\'<ȕ<4,iNB/X^h> q^~$Cboot1ψg:d~vۄVR*/B[\;"+x{HKrH.2,4)tݡZUkU7*\ hEJhedf3=^!Uj3/ޮLTkDJU&~7QV-pS!'|XLߓiUl>, s;Y1:RZ1^>z h;3R9Q2e X '; o* ~G ~Kqd<-6?NFZT O.徸a5K).cPqդ\窫 J|~EG.`.(nߪ*ߛ$O[KiߊNܽb-lZٴ~B/Rd:SVA:;vGw 2yxLhAfN9܅CZd!/x,GW…lXuQF>,B%iN -ksLJti|6]!wpU[PhLp|XV՛j&I=1cUh`^ƤVpR7̃x\V#;i{23 qs%guKPzA"֡Xʥ"7nz11L0̸ Cfl8AH/+xaf՜#?&]VLdgJ^/ڷ0Lmْ01 QAyۉMuͻq  % g0tiܟXC?#@72Vy^͙ Vϒʞ~sw]\ &LgaT]Fٽgmنwm_'~wn\3{aV:7Zh~Lb%`{ju2~:HpVF+R7ٽқHo GmL[ݠ8 fJ..F56AK =BEk f'Ὺmt,(ӮNA< PHY\bD4wzJJH^=^BC) Xs2k콅rMhYa5^m?2baGeԅ!It =D~w흕jE݅A{8,LV9"RV34cn=*G ^(v6SƞIϔ; [gH>!:{2Kw4fQǵzfaۄ~B1_Z9i:Yy'Vjb:EvUZVC! Fr%`s+Zc˥r_H%X(Qp,)7AHOR[*#Z=;x2#pw}ط62FoL<M0߉Dmv;V27RUl7A5ch[E?!Z48UՊW~$%wJT!o#6H4'4P ZEI nN gi i0H K1čuBt?pм{1o]Vs!7؏WaHV7L(~wGa ƔW),ժjvCsV Q+&#c]K;>zN[Tlxl`.Q%gغq [c+yIԹksl0Xe }@$q9LaXx Hfs߃2Ğm+!ah nAVY:ZM[u#5`X&5Flա\] < \GY~E ~KUO7lI4&4f5~ Uezp*Ƞ߀FbD/}iC9}:4 Qz]Nݍ =7`"Lt%!f1?Å. 8d(}MHCq/΀A ~ެ9Nw6OZ?!__Tl`N!`4dnP\cjn ;»==phb.$2 ^"NbL K0aS@RZ*jT|68%Tc°ĸM}L:e= fLH|0K0o(FEQUGA=/"&ϝ=e%Շ!COFzFO^HW1EHk5U'ȫ cC 2w5NdMNC!]A J!ybw5AjPZz ؊7Fôx@S 6LР8 YIe#]nZ~ >QC3{taa=$G3' 7 ߒu2R1ח{9XbNՁ&E1%vX~(M%{k:B嘠Pd8%cQ{vF9y8a d.';*&K_$Nj},wDJqwq'Ez~2ZF7K }k,@}6R4Y#ڎ!S/)BoV*U ;}ߣ|X8%̼d)<29k~m"U$b J t+Y K"韔W:,s\v́ O`jiaMhj{&2^(ᄥ?ۉڔusƗS33׮[f0Wf]~#Z<(fr y"_u h;j$v7mu<7 :!ƐiVi>c@67, 0?^?v-z7N_k8PܜȬmJT~n<ދ>bȫ'}>bm z' kWH|a@uO"6%+~nU6Xز~B4G;*/8u#QU8hgZs{xx1 p}-r\h$FYoWX WBdeUd:pMaio_nA%QXA5Zhs|SGu?>׬SAa/d)4W$`9X<BQ\cQlneѯNs{p(Ɨ3wFmz. CNԽW;7G#ũ@/T2-qEٮe{dY=&CHiIuHL5ɪ{QH觶t'Wh L sO6%2\x-hWh-+h r@.N7 )ЛAzvd= 7r!_>;('o4X ӗau`&-i 05YNL%"tvge>%pا;ȏ?2gb"jBmϜJ<%RrFAB鮽+ݞn7[$!mB.ZjLw? F+ۋjF">"YE8x&+(7zvY/`:$yycd&"t|qِfJT>5oXzM9a5IJ"|&|7U,,R[ǁ 2I8D&<|k1BeP{6cCҗ jtuF)ɖ}Ζ\MW7у=~ WnL'j/2'&H]xI)%iM w!i8Q!7'V|:T8a֙5Ea>7R"idl7q%ECC5C%;Fi0:1>dpCwAWj=;*#<}f  P 5sv;j7O-@r+=dYw ]( { Glʹ }7e-qDbM`snB*- >0@ԛi.e:DaYQ iLا u'qrZȥ]&+HωRaƦsZ}C|H?>p @ɮ8p%N/4f1xP~0fuc+e4RLQSF(k~e٪9(DT+$iܿrb°!$DCaDépI+r<"#&rTY-wxLe u ة]~'Y7VM1cBS8#8,j܂Y'yd@0 j6嚧K94$:.kaZ#aҐy*(l2˰_?ދLHPpZo |]KՐ/on4 cqđфF䇝4zݕzUe ~"FU i$T &º'r^))s ww^n#͑q8v0|0*NRًP+p1Mh]M|Hm'G_*6'ajQFLs "-zRzV6(akMhauYhC0NP:B4#_9sX?dA-5L6onLPЦ핂(MRwMs" mhDklc)ffVME鰬AL2BKD%B%p?'8DVe 9(/.~HN-S~6?ykSQZ㭀a .F.}=9 .V998,up%oKCl0NaE3gO `VR $W̻Jk[4t 9ej_- Y/ʭn[T$\ j&dqt[T~Ky,FZ^Ǒd覟1nG V)1 Sd{6U]L~풵-ɂ@l5k#l. th'`mئ>W) |fqADtCjޭ3OC?<>ijLpȊ(MЧR4A҇f90M!t5U␶x t;<{c#ȹTDCPs@/i2 q/ F+siȬ gFd^qmq_ Ӊ\[%x\ayv^!}o:pup8װTVs+iή9_JץP_k kwr =pݧc].͡ܘ W$6^ ֒bF3\['f7z _)}Z QhoʁZ}tov8(#SM4Ex0?#L>eL Dpƭ@ٻqM^iFOQV6F^xD4}uH3E4-Q{Hl 6ߤ:GuQwq|U3*[q;@Dh:H K 3pYy^fR$2)y)'M{I$Q>#xsJA=aV*&R\?u`wC]ҽ~00Sa J~x?Rj+Zeb+6Y@VAeי_O9'xR180fjaXf5F\ϓMT|,$M 'F~L.i5G'Osp|R(e pLeYU[V,^sQH7d p)s#\!.YO˛]\HUAsNxUuT̀؍+}NM1%mԎ6<[AFL&i޺N:$&) )&\˾+ە4nZPڝɡ{Ԟ6  Lol.hr܏j_lVnh0_XRדvle<ߵE!&2pEj"=@J}w\0׍`C3G=򒶞LD9; %xʖ=.\(o~(T1 R3NYVqW!\MIۻzG>n.ޱ1=<7٣E#Z *12)&4Plt(*(&+~Wմp;ٝOc,eVR5s#D9hwP$G_)c(ggu~ 9='WTը+Ɖ,BMҰv}Ƌ$@hɣ&IJ֣ᷣ&֟&N]Q5Mދ L!qv,Y޽I\0CWdX,KU ["n˰ڙ ~,u6Q椲w'4|a*]~)0#عFNPf-A11J(Za<c̔9@Zr>BUam'OTg?+ L E fX PLm(B[)$v/ !pt x"uNZ&ӕMRerU|KM~Yg!ZHȞ b L`r14Dl54 a2J%:j$>Ζb {_fpQ4k=@hq #ƩZL+.{Ia2L5c"5W\,kze C\M@]/z,.hTOTBz1`чTP!IDH|% Qw@&oiL%ZpߔĞRgQu DZV}&ӪHCBβԡ*pS<@!٦\&#p}<^ߒ8JA M(e6!eS%ؖ#>h @Q_'s|xWVe6DGڴ砆kK<,Wq)`EЧ7{P?vApq{褣,X p|\ĮYTgXMB1͸7bVC&Go4h;#%TH_,:\<6k?reG[eerW lXB,#ۨht'^"ֶ ~'ש< C1W1W쥑:@XV%@] pF}kBfJA܁% 7sp66ʢX %|Y1$F_8Eo2Й)gP{I0\p@""0?:osގMo WKc% 8D^͈U,AW̉f̲(D3>Ld\ E6zO%PRy`qDs%( #MSwi<'zLk&4 0$ AMZg~UHM1u!'Lwa/!VLJMVppH*R-P2P:9rvtЏq;_28ZNqNC\L7̈Oǧp.g2 U˗fKyM3RJ<͒4{\tX)uI{m}s[Zts$\tp;_6y=MW%cb\~n0ޜ r'R.B ܚ R Frj+}\yp1yK.8 _n!Lq\RZj#p5j3T.omBMIWV3$7bIb)lo)N,ye!)/Pc< JRhnif~z݉eHd3%t2(76cؼމ@h2C~:3q[{l07\HqwGJQfeṴ1ri7y "4kL`Gz-С"N(1HWH*$%c ,S MQHd ?+Hhz[hH`pJqm= @3b퇐\dNQ5jp˪I%h TCJa"DQ[IrXEp }I d* &ڈO]7k3A#O)_WVP0<,=)nOW!CnSu﫝x/8XJZ6<:iX|o^!ǽ㬱|AO.V J8Q`\xM0ES "I~jiW$K_2»S5w]WB)gF@@kRhV\Ue2 q[lDsUDԓ03mΡgءX| 4 $߃h7UhfuǧwL|>ͩZl>ɶBmӉX_e3{4e%"3<OofNZ^.T( +ASs-5$sRDmERcS-<׿oV{#H:l1?)HGq?!ꔣgd((; $ߔZ6.m*PnЋi07&TӲnNcϔdX2[A3/ډqkEKnJ :Khbr*LZrFxRv¤'3 5juRf@S.cߌ!TV fx eᅒZ00>._M=G8fL2;[hw2_\v/'`#dJ 8>K-SW}P˽rp\Ĥ9`?|?-Y˳A׋)R"x A>;rAd5Lr "oI񛏴Q~=M@3hÿ쇶 $ j~e]j&뒿G*+i Jk8ZWP49nxkGӢV[K0Qj[SUttDsٓ@&`ڒSit4@ |YE54bՅ%Sgb^R̲ +@Ys/HZ&m+f$noL%Y}mR ;B"F }WBuKl<O! PuR|39’ȷ* ,%dK=v"JB?r1C. ҏDc'Xݏgfak >.Rl~{a( "e&6'udT-rT)9j» tfOMmWK957!(AB1.u +Lʏ؊vzvG.sOP3?)ʎ' =^0mc0Po)7eagcϗZb=-RdB4+ ; fC!ohҥ{4ٺwt~2c5/1ڀRwtϸos*2Xi234F=p6 5 i+<V-j^f;ѭaR4P PLYmH2WK9DM')% FGHP_xr8l'3ٖP6HZwUK}7H E+Y >K iu7{tOj|UwR瓀xpyw#"nUF'Ih<b!}ת 䴴u Sbe ؑA5޿D[V`VD^?E(ƏqC;'p&~ պz5v 2^t3=)c09 ` Y rf)3˂nsr{ijG6 '6M.vbj ;2c~M3ń[rK5p(mYv,:mYR mOV\.?v@}#9̔|o<hv5#zN[ؼ|M p|fɎ+ְACzaQLlvYIB T*e3>8HQ/0 &lp{SjYܞƗ@ dzPBStVNhE0~mM ;g҃5j|:C\?1rZ;vvu=_\;A)U( ?{RS)ڏ[C 5OAA(Y5L*:p"[rzKK%$6ctj9_ӣɋZY DSޒ}k<B.a`Q^EV~JckZ䤂0ssipk,Gso\lYki)jҼ?_HGgNH@˚sx!gZH jol 81S-gLL~h- 얻F,E狡k&CQhpH9fJtEOL Iz[C5{Jƅ0G2AOc~G8o֧ m Wb@:HShx@Lqm=2׊'jH)7tͳ'"yj#[M5f(G1MSfS/`Kv(TCZ~ 7\#!U9$bD%wO}ZP=MWDtdO5Kp\7! 3ap.[X(Yqa 88G's MWRQTNkؘgjY-ܡW#Mw dk^ ]3ԭ(QA؆>YK@X:&M2a4٭UY;E/h ZkNUpRgV%vsZ.zX˶3\2ރÄrUhLstE06DMP^> o@1C a FvMڢ3UtuԁI %2#@(UӉ 0r%Ymܽ:I`&-VbKv4~lk+pJY13]\KQĂ}x`7g' 7@b<yH'>`OBGg(7g_b .)^:VY|dʥbC4]GΉi̾W9 wJPq)yyEs[pgv$r< duSGK7; P`)CˎMPl;̪N,W(bg13()!y$56 ëB:/=تSv:M8ֲ͡2]W` Gބ?YEļ"q/~d@يdMϭ$|=<ԾTg|Lh;`<(Ν:.҉+(JP91I3)2E^}Gĥ rݤ5 i7[3:NVw9cd;_bp$_?~%aubJ Wҧ f#GۘUIe 籦qQ;P#_)9"5rEDKX6USXR9Miyjk0ѯ;|=7n2f{#*k\>S{S0Lқ;:-sV&hoiѦ5 &m13ܞ:c!'I.aȋ״ME]Q/fFkbVxhmv>{3MG~1!y%XNfS+bu2V}3SE+1b_{q'nEpķqNh^S~rw%97Y]WiھJX?j嚕\Ptcdp ;¾fR0G!CkEk1I;* (D8&}:KiDy߰;mƔH%ᾅU~[4+d73P$Q4e b!ZG#&D)yN-AAS0'RTۙl~.ޘc:m"ӭJky#dTm3 V!8&?-Z.Ү%'& gFtqE:D +I^]/̀|W^y%^F}$9~>WW2&p4[unݰǹT[1tT{$xʈھYINAUנʰ@%eCc;7r,8\w̸ l:+eGLP[%Oa;w] u wX>5u %X|:P~ək ʀ3rEz$mpZSXd0jzGs]^ ciƸ AoTOwH_[Kg{0N$Qao8}N!oDz>Q›3F=}[%9?AojKF=KJ꿐Ewe ^,/Gp}/>LeSV{1|$o>]""^)Xc|F k;_|X2cK[! }˧7Ov:=T#wk@;"1F*ݫaiӞRqbZ-@JH*oQм8(|@K?~"dKHʤppn1Sv}%2;̲Hc (+pQmDn ]}9%R['~qW9٬3Ƹ6I"@.cK7fO @Y lțsNշ4b?0 nkKdr;T'Šފjsd'5F h7 f[S@9FFXQu0EE9"kWoL#_%cm] Le(˲B?l'D̲?u`Bn;ne=~To[W9~SYp[϶&FRw/ \+fÐX!zD85:+:%§ ikoȥCUҩaAe9VT>OB$dq_lȺL:4:cgȏ=-JOp/ߩWh5_ܟ(lNwQCF5. )KхMzs1, YUl ns0ʨ+>cS 0:+»h3vث nP+ٖA-dgcp⪱%x]yT9J4G?x 839H,pӄHSꛊ nHD)BԜ_ :lUǖ0`c{ԸU6Ow߮]ވ\ϼkW.iFǝkYpkH1CM͸@0B,h>؁pV-4?~?Ⱦ,n(6!Cy7mw\paToQPCmPpۑ'NArM,.Gwiǩ Ғ:c$kWKg})bgZR=s6:1`*Ir]GQz`Ze-Ou9T ywE"8#jC2"؇RP6[ 5x妒ut~WE:!EXp/* e͸*עKuL 5}}'?Y/figGpX::aP يzWMO8d3p]~M@;DFvUF9K.SKLQ~E9[XP U+ ]fBMA8I?Ue0FPSP}m}6)^6 'a:g$,8!6M(M{k8 5mGz'z@Ѷ%|XOt "wuAu{} 0[GA.#R| |sfBݵㅄջ,}G~ F'OLRD&R"V]*\0-@t<{Ov Z`{r,>gDVňj5}{[dAh>Ca o]3N.*Sk|`g8aKÿ'dLz5fN^cB\I-N"iF4GGbBhO>Ȗaiw{29@:j-) ^IlqNB8uW_ŤQْ7<0ݜ ?Ft߱pu#9&0t8E_vHu=ە;(%:M $5`g&nE 0G/_T‚pkɝXW }BoWI sWV  N(Od,4"ŏ= *k X(2.eߡ_ƛ Z#43֣?\9{Ŵ~ZAf5Qj w*[ݡUnP+~]b+VΨ$ZKYj-s ]!6UN@d[CBÞcӰKNf<*e;lѿUU~ ov IKN@J#.df) "(hE@Pb(ԀAgqP{ Yy!kT*NsI1wL U-SM۞m,Z׆+ [WeJk~GNg6I:/:c#qzhY%eu1 1 Uhd=Px5%Dտ6͍/rV* ׬^6jsB/T5r-FSe"tTk7bHt+/#/d[3~boȟW\P)~ GlPS&_3}]e9@#F'+5?esB,4?ӭE)xzlÌEHXEhO+3F!Ǟ[Hekm0Vw;YhD'Yݪ7ho+ݓd/8&DƯ]`wƊ*5a:9޵UcLI—lٖS0qţ XFΚ[Dg /<مbvReťP8mU/ӤA{}ǵ F[ -x#V&g9ڀэxi>6P·t8XWntfO"I-u|C|?Rˬ P 4C Ot`Z{؀~XDW[D JM{c^NW-yU۠+(fNa~e~p@{`H[c( yG7^p 0\ UX|޽~v1w^NR·?kmZAеZaQ>b9wɳoC+.>) jAFN)@oWZg눓agU˜ѐPSs]y-BX(8>荥mc)BoBJe%°!cW~], [K/N*bOߌJ%V7 ėi*QbjV2/2ਸɂ&fh:/^Uq//W U"҃_݈nKx*RԮH&t.]&<"K٠vaߍPJ-?R.c'mū\0B.Z3@^X\1l'Q1-SNـx#j0bss>ո}q)Fɏׇ}=w/f/m25 CAqF;/«[#yWtC1h$]ÄM[3!@vya{fm;Zn767-ozפNf0}Uyh'Abk-V%ҽ'-fAܞp|T Hּ {/vH+uab~=|^ Q" Йw̱l#d\2(xyxܿ H/liK\tj/p=7 UKh0 a$t>UHiQLIiv#S[*j&,dL%Єʴ[OoSM-MQpW4pD?@_y|a)f6{g?lӽx.S^sZ~iC[ϩ48Bk*mħ>6.K}!\LQ xcmEk76䥅q2o;礞&oT,h:&A9M2w;!1jh6EOHAz2w'{㑀}%2ji}g:V }p&3zB~}6jP"(ǷecjeGe '8P s 2Z19{kkQ&,zeX$h=. A D8*(n4虀J9d G mWbY"FvqX >%!ZnniԐ{5ײy2l#l=/"H r) LvEU8w&'Bf܏PM3k9\o#մܲ a-L0?"VK#YQL1l {汐Ho: KiSX:j ǃe!4"sLw3D:oNݲcrקVkg3lVxS>{P9c)C[#-tԷңk?=) Yhˇ6:52:_!@ߙn h˰U`‘&h%)_c"1cɄD;edoVA0. Ptz܅6 F^ '5;dcK_궃[m2I_Ѽm}D$uwO- J1*i?WAP ujϬ\kCsVGI;#/ O܋}Izj{Ȋ/R1 v[(: Heo1FW{pp5 TfCuY\; ĕ7@vƀ'1.rJ3:ø<-v?w#ánz1jX[ePpv. E _O[i$`|_\Vka4%D9Wv~}%P/d2f*Cb} _Vr,EYeb&PD!fʳLڿCaKȞFV|?Oo XH1ܷ6DNy EhVDLJ|FFeACe.*, do]^m`f | &@ i7I[}++ߟꅄaD%"JOZȿH9*#Ir@)j WwCdjz>ESdʺTigZxև*.zODt" =[AN//h0fB A$sV_4󼈀 fi/@NdWv[odiLLX5zբTG%ģ jѿ3 OI3BfN[*sQˁ1<31I*R? ўi`8h4k8YC~k\#y\WT@7f8@m}T"@#~%;u{ء@w2I;N*~v lE9+v wێO6GsMn*`BO&P&{%5hBZ#~JKT{ոU`4tj.>; {4/Ff`dN-HyzϖRG+2U*'1 v,izqʼnA3VȢ]FN˜>:y]v?^aꅄ+dAufdξ"CkLㅉa 7xr}p~LĨ'A{xY|vC^lu O77qRy* [ +ʑ Ԋ+X(|27-ʒۃA`ܵ/9i&;zYJ۾! g"{\JhM\ZKl[OG8@x 3a[s_|?YĆ7ϏU Y4G:LoC*R.AlYK$b61?w߷ULv6\#v1+[#[Q˧͒` ]ӐrM$C/( ˆ&P6o˪<7-֔^@zn3N2L~~ rav9hȖa||$ʙy?l0sqoJ~oY wu'sEѻuh2ey&#Vཞ!)<1} t ',aG<0= W8A(j֎^b%!-(gƹ"eBCM1ppKbX'EGh0Kt#09}tx8H!Fc-Åz ڝpWR~KV.U#"\[bRNm]?1vg`|QJ#Y߮;x,6HRƴmRHv)@4ȍ]ڇ dz3F' 2wB $9.d81 {y}>в^x+?RN9Hs;[ွ7RInX-(QO)6Uͪw|ɍɭďcLbmA:ʎS{9}71 rWA/ C A$ qɭ^HfaPikDoڪvz*f#nV Tߛ{CKuku+ߜzLXq@ND 2n򂄲Ҡx^cH`K)-2+EdW.c`&X:,Q8B&fX ᆰˎElru@#3#C1JHFАSl\`Sc"`,덎-id<1q$n*m T6!1rM~V}2|BǓ |V> bkƸfWor@Gsr< M318ls",&>[S?QmAM kJ 诧SGBwN2,bGqMQ*끅0ׁ,!W*hcɦ 0rS%^Ų4&`ppCw#SV kzeEvFPp>FrV8yF|Y,(6m fZ%f'|ou,Dih)N,Ut2,~IwY@@nºLu]hGK )dXE:8LX[>&8jPΒ7vϲsɀ{j Re,\FB?ds:=⻻4i@PuCwK燼FҖGlQAo,:|jP p=yTP(~TM:฼S Z ()zٸG6Xγۀъ Ajjw=!>CRs`hR9NO]t55MWŨ֐Z^i~-iOؕ]U5אb*PPAÜP,䫺;E2_Nw (7i*akjLfE::5i|X#GIy蹞bQ x|Ak%XC~ R,DPd=C]+ $Jmv{ 0)&tܫڠ]W3g lb,Ff*T=ͨ"A?G^;eBk#snh1~JSΨ{Ț7ڄ*K{\P5'O6!z:8joF͛un1$P<0@ }s^]Tt},)Spy@+F L]xNŗwp5_[r~ԺֱAxNv~DH? a!ٝAiHuMI[Q>[7),,q\dG1wL>!*OU T#m:{a }ԳFąKA!02@vB[fVPpP?²wi"8x0_:[X"TJE$ֵn[ϗ2 g 7YƋ5®P\ }F LK:[/dw'Di]3_]C/Ӂ!?ØaBeNzpL|Qj˽=&eun֣Skma8Udu[Jѷ6Dv,==SLAusƘlCaEXM["Ҡٹ&I{R/mb~%(]},f{nMO;ڃ!ċ=!s-#VpsS}G:ٞ_S0={q9w?R2 od:8{ H8f}2иu@5?*MYr#!m3cLڞ=GwT,Qx]qP|U(6͉W^|>R7cy dIeSZoo PD2m?M|[q!$uW"%6zwd\ٴA[m- $@;CQؖ9vd]>o.Hxb t9ݷT߸ tdâ f>@{֎k+lgܘB餤o ~̝)9_O*?Bi :ޘĜ(S&6j/%73Tb2fzfSkPFOMᒾ%*o;HI&äu6_9 V}⭅ _D#~֧SMpCYWHiOwz˓1~;JՖ2bVB[;d["| 8X@Jŋr H:#mO[*/5Fu1)XLCL(6j\[y5W!$ xT  g8j&ht)KMT[ VVy!lbknE?:"?)@KVo"tπ?;c)ޛ菷OxĿnD=qYhy 2 tm݆X  Ę: -ΩUXtͦ Զ{c.c \^Yo6靅trG] 2]&I͡Y]ç$L=PnwѹJwhg}֦ n{F"iz'疅#2D7̊i81K1%IVFAyVgK@2P+nM٬sXkDG?(ϤxjTXEn,F h2WGX)daoL?AKni"Sx=ԗ#&p-M m5e(ui0v,n~8 Ղg_nv!yR>8nՌ>ŧO(!a2t=Z{4 U .FnɂAvT(^n5WIfª&a^~ad WI;\9TY"02lشL3>@=FRPPom[?Cthq>E.T0ԭiN"Aas遻̜&I:!7/<$Sl{^MI.Fv_\di##ˡ/v_R;(qnnVoԭeX{cfχj]8ZJ`Y@سySƆtƾ"ЎԿ:`~.X{=܉f*GdrYnEKTe^z7/qguQ` .aZG AlWEdFM[Rw2TDrBtCiaط6r0o[.^gbqMp\`C0d:7Z+ݩ(BC3!FLOi^puLg3U0@QWqQ9*}4*v=? ̷mkR.˃CW`t3`Cj#N!bvYYuDĈpq)5}bP:xN03ugIT &hO= ܵ0j_ԆR  E0 YZAER/data/NMES1988.rda0000644000176200001440000010512012534531320013353 0ustar liggesusers7zXZi"6!Xw])TW"nRʟX\qjnj-&Tiņ@eřYz7 ӝ˂-IC! 7UJFF&?Fڤq4.=[! |K7lM if rBHTnbmlt\!;6 ]gڅZٽ'MU0*ϜB6;n,m3 pPXt+qO8cP*BŢA,ãgo:&0p_|Y@*Coea-OqMoWW K ؎͟P[H@܉?7yMk-{EIIV5d\NnѴ2M)k1V5OB7 9ЈyYOh@";C"2¦a$xM8\v,~^M*4uVZqgзIivU1āk20Ñ5{\[tוg#`[#3}T6|FIí9Qɺ yUOYb+\{B%c"W\y%֭* |/l 1L R:Eb'zONSs, ;@e@:.;߃@]}8sY$1](0hq=BIɓ3Z˨A՚#ECC kvR'|Ml+R܏!{ɨ6% RNWHP7KP0 ءgeKGß%ī=g ,ۿCM~@ 3 aQI0g9u`r%'b@%yp3GSX䨙ϴE+YY4RD<(~dyN!xSUu9l{OH5ogeI2 VO)_]+fvTV@Yn~:L4f˧n7,(aJA&ѬH,HƭI`Ba~x= 6XWg}Ppy;%{Ch8ě1IT N]QaJȟ8 aḄ$Emg3C+`9j Rlt_T;*ef/phf]4]RǨI V%~UmSddS̳ؒa>߂<&; ixB&ЭE(\(e5k{yF&*iV޸sU1cZћ/\6b@H!p5ظevn7=lؿ 6A[ Vr#+C"ӾXk] ǮVv1Wޞ'ϴ3~(iW֕!9(X? >eq?9zJɼ_r~G '3|ʫN#bsjmalCŭeOPFA*7oYh\4F24dB0{h wCbb-]ewu΀)sSuc "\TҴ n6Y4ϞAmҴ k_ vzY61!۰AStɣ=v6ƣyyJŐ-aT!w).,(7Fq/YfIS\)4:o쓲*6qd\uAr$4ay#ϱ;$[@-HGʀ(E7ϞVS R dHfk|鬺Sr5`3qg[*`VZ9QmllIQ%ivqvT|4ߺ,q`]&8WD^TC$]CxU0&ys `2| (/-,?ԕa|DKa\6CJ\~:Fk\pWw)WHc3CUIf+ψ +c"G[";[@Lk>9?ןO^u5_y%Rg RhK} _E8_Zwq[n 9ꭖ"=*Hp=N0 :ٕG蔬_c5C"KjmyG6Rg~JsKi(ex7ά+e;?IzCIָY# ].ht ˘Y\&> [7Kpa/޻Y'fORiV2hN#Fwm}:\r&wOk%Ay] ¯F#]7׾nmpQbX+/& ~xkQ`*ɠ$܁9OU@)6_qVF1 v3Jnk7_] A!r^ ,3"X&jfqo:G9L곝pA'5\F1fL*b#{| xx.)0QR 6y̗/? :uTU=fμDX?/cf.bL 1oé,g_ƛ1?^\rU}i [ہuuP7Л!qoy֧εBH#&aa6qf-˾`V,A5TX0ؤ5NN̪EuAP@ʚֶ( Rm;22^6Ϊٶ3y27dnhN.e{JM}9ekڿARG7a:=7H P<\PAFbgjfz/ fk1bSL!DD-)@WhoG(m}wO@q8hѡI S!4+9 #'$W M2*gĚʢh$Z;lcFQ,4Ymт@忨'>Ƴ{yԇ5Vŋ"G(vũң+T<5}Ycu,PHܖ0τz*s2t`KN",t+Wt[ûц@y՚ɲ <.QO&ap=P. esP&8rF]<ͳE› ՚q|~?= *r,rY2KЋL7-Qn 䱈 f9WA(2c3š7Lwb` 'E+6^RRslZɠ֟&GaR+f@UCG M }#/L⳵ w*!$h"G_u-d`?f]Ynoά(/histx~pH/Na,7 Ph}v9>{;#)W[몿O)6p=*o"ܯ/@Y" bRiC&n;_p5ӏq RJ}uAU'ᗌGp aT"2qQT}7nĜ}Y&? "ХPVw7i8 aFMqr?WzߚN; l`eEs ܒ N ) 0'ckF%/g]b%ž.ͅ,3J$m2ˡQTAAY#|{Jqz"s2| oi%ΉE`;X쓗[c$>L6<^eP7.dy(6?o+p;V"%eVT4W2%Uc,;!B.vd<.O-d3Z{HA x-kQ[)FYV6L$ өQK5,^RY4F:/ ːt&:EAq+dL*B;p"lJwp-Y:J!rgiL32_1$:WR<Pj|%vSH%~'_ BRϵ*(NY}ոFpһ/ KT9k1tR|vv]iI;`%'8*IW *uE}Nݙcz(=QRN^3lfREUty̖_@s⃕‚rF &7iWuhw%U~ԸŊHor.B%yzWȄmg`ECP6-7ݠ 7%lw]Sf QC *<CxsAunI+) r$X3 &.HD5V!Y0d:qs3x |)ɱ p.Usi{_ 3k/;_=q>2[0f#0Xm)noqpgDp!iq ~ڵЅn~A! }X.Cⓢw/|R$3FpQWs()%Z1ߖR9tBإƺ4;g7VuVZ+ډA5TS>E/'#üdUC9wNc@BrcSGQeP)®bЫW4^S^m9^d @ IGY ?ͬbP|=\Fؙ, / 7RJLm^dΨ}  5[pM'5ӘՊp's4[)>r /:D$O :aЭZ+Jc= XUJrm {:2m_*mg0+Xx(?bˣX*wIt/TAW.#MrTMӮqݦ@n҈Fzz% `u2lg{>UFc'Z5+n\{)7bsOY27Ay%^' ;>+@ezugβx^TwG{x{C7ckӮV֜ѫD?XbhAή^ |ήV*' @E.nMnF4-nIL-gmvg f1A+-k<<9E0C~_,(|9JQx>~Ya|kU mm2[O p\v:F.sP@3DvYEuK׬p/Ks+;_j@ lDvCs"P.&2+qŨ~}Mӑg_TE3e"dlhI gC#4~\#ַ6{¬ʬs_F,Õnu=0K}'cP(EYg?^fv&%L lmCrw\BV7@m+y\DdZKuBpB4OTd8B.0]Mp[<,]';[l9ASkM>ܻoţmmx6X’f?5"|HPި |yv(1餎ڣ-@Tm?C xK|Z@v1Z@ vZQV[5w[؀od6%eS~i=7& EoSkۮ )=U鑠?d7*AòX؟ˣli * E%BW d"RkެXVnPF {NMLՔXj`@}HY5s֚WO-.J #>-Eݼ!R ؄Ebj łDt:]? b" uu|X@JwD.Q6f!vW pc~d$t=j7 )`ShƧ) / , ¢Z4rWB0cU_9>Y&uJU` )v٥9<殼egƀk,Rϲ 'i `a|asEuW%+;.,XAK ;a*}ڠ[1fq0AGdRek[V_ܱApL_6M IymBLH:gCPEk4jhw~ڡbo#*rDzn@W/G͋7hx?#fh)O< zb\{QߥpcGp~i# WP{-꘶f0T6./AnM(xQ2b$i'a"ih$E&tHlp¾X:ML|Avg=i7|}pӣw L1ebǚݝ&/8!6@u& 36X rI2.bٞerq4H8ߙ2%%rlgOnMi|=̒Z [ϼoyOt휽/_/b^x@{3heR%PE]n5%G52PTbQVCTz1X1!TN iw=u-m94 Y?"Q~cjank#_q߿Y nGCRɳ)! 1Q綬ߡTV`WU{87,eyg5 oȀF1E^"A34#nHd֓Y7 Y)fO0_ ˔M(+DXQd@s$sS0iHOi,, ulP7<. {#8U}i5NڱɄuRD|eOu$a)/'ȑ[0&nr:~ڭl:eXbrmـh^'叕 noXcƑn:^ŽE*[j]Lu`ŀedMbáYS2N 8H=o!irr IRRKI`>w"gZ HjuMyT ЦL ]|q+5o<B xZ0eU4-ϙ8\:~ݯ́?^b/u=zci{o1X'N@>鿧fjy3}~eĞ0XVEVc2 "7fT8e[p#oTKY5P"Ehl,+ v5% G. Vyr/5\9`PZ3Fn>b9>9tԺWߠl1,`Ez6&>{)p9:nrCP3&[32h:puXkx]`{䈽a.F݌۝uX$_v(' *hF] _%6iYe7{8gB-͂P"}hSlF [ygIIr^ վ[ ]U躅9ƸS ˥9 !G K?M[_&1R<"22\5@?<$l^KHE|nMXDk&}xhWϷxZp'#^IRfrG =mw+> I{!BRDm~Ǯ-"$axT10GFK-v܁!_H/R%d'&ucc"NҖ1WS>0t QFbɿ/gHt?T#d^CYmg,3VB-_+-fHeMƩ1R#̼;l64Hq=Yh!r&NdsGQu)Y㧆P3x{"YZS08vZ ?JY)L3PݱR2}&iZ^LkXS.tQ@+xO!Uj@v>$n \2|- NIy T@|d~-TMR b-l5Q1x ۆ$1NDSk-TwUl/B\Hq.PUmU*x?b+=PT=wLr?Cñ 6؟aF7u0V.Zm 'R`@ }bo6[Te:#?*}=Z(d Vtf.QyhB&a/ivc U~-ہl;T,Xq otzR8l-xmRlytcU)G"A2`qcSUfq/,D]Kr+K c*l#T!j <PLܯ{Mm/pt)dM"V)f0:ցWאccs`Gdt )gSTHUz4AA =OuBz6ɨEn`h~8`C*?ɦ% 78xCu-$"&@T.&˚gsƸS?orm$K⼉9(AR}+w+(Fzh p'èsCh(iGw `呟|DgBJf'4 ƝP4Z6z āZxkFʀXF5ssP}`bKiWB{" DlꆛDO!ΰJ\ؼ7%GK\Rl9FM8?=L@@x8GSK y]-vpkT'/EGiZ-vMV< tf=:=͂@+K$uKC䊶w[6gڄF ds]P\PyYF&~]xଙnA$59[)҃Fv" پ:eҮXr6rB"s7} #kWI.W3Bn;7q鏜`>RtT 0+B*^$@a8B\X| " p]`ͱ\`u{!XIM58zej1+~$1: JTO'~МWI23<8- ECa*;7VB{g"edDIs!Fg {57EtJtE?f&+쬡{QD OB`R) moR:HOR5gRvtPB9#^BvR~cZH: Q41z]=&Rt(u%4(=abwEIa?(ZGzO]g ˱mCv{|hF R*u[J nWzkE~Ôi^_16 n"Иqo^yDJ7-el+'b|@Yo>!g{Ц&2, ^} $mjen(+9 Zd^]u{Ls3\""rŊga1us>CUshu%Jkf}Ή*q7x0橙J @;o4ۓ{/xf,\ӘoZNݴVK(< ѕ)ԅkKWw7e =>t%K8gjEB (;ZqLԡ KsNz摽K3 ͚7lݽȺ>Pn5,)mw w`WdOI~i:~0OyOBBl]nBIb6j˙qޥrUTM!hwiE@^S`,v}hnBvrPeT˔ 0fȾ}?*@fpvr+uv͇,޲V֍'̦|ݩf9'cwq,'3y(kJWH塀_&y}CB QG"w]qgVn6Կ5ζvkXLn,2JH7/?r25ӺzPq ә6ʗ|bq8ϷүYIJm5߯\!\D`>ԌmbaɗmP+tK`L0\>6Qd¦ vj)좀k *1̣lNWrsK@)Q6",Ȋ^R|E1PnSKx`gЃ/>JoEa{AL;+sf֎GOAq(W|E+tGzρ0YYΈ`S'>::n|K'Wd'9#sB3E{&\3!,8\ҙRiV]ˆPRqI9u LL(XDB~uy vX)@j]'B QAc&,dr%W:eQ"~pR^50>u\Q ݥHؑ߼|"Ҧ'54π "nH~7M Y`xZx 5gϮ(1x4H(}ljP9K|h[U6:dvƨ~yX  ef^Yz(*F6n\mve})o)(Zw9Hżscd8dR4Y'23Ō9~QQ3S-n5#xd$HL@0n]-^H[< njOsf@rrRaQT/rTUy7aRsb>*f%⑷Ù`8 'jZqvZf~č :Wdh}A&I^nos3! KvLb1f}< ;E;P2#蘾@ yoΩ5RgMw2f8D=[/ѫ88HOq@ 1e`WIN`CUu23&%a XD6]/&_7[e<FHdZN>M~ (9^_|ׂ.ͦhVnʠp}$w?qF=,00BVg\(nds\wGO~pթ^N 3 3 W_J&:qrRZ&5tL -yqs#4!0M{)~xl4&R Hr<76'Gt]?N'̈́jlw'R,JDj1e7Ҵԗ hysN14o^TP$ vV/oЯC׺$<1f荈<)Ť:cAA`nU y7C$425XnU:d~δ!Sޗʼu(gDLJ)_|yusnpQs\WBWaFtN ^Yo0tD)WI; ̤Wvn\볝[.BD`{ 4:i5z/VS![Vѡ[DȔL`!N \ztk:jqa9˟< >^~9(7" RWB|4l9'8h|`/|4⣦i9 h(cVdI!MpRP zkb$YMTv~Xf2дTp=͗eAdby0eL7a/׮[ cBRr~D9Ŷu 6RϬ?\QoUt|N,JG 0?inXH\e11Gd*djϲlfzP:qp*q~KJLDAnݶ Ⱥ̈%?%'~܏$nl)3wClh{?o<)D@<ɩBiŮ2"i|nӕ&Uݫe(w Bu=u$Qv\xNR?pQC24ыTL#;`ȀhH)Ŭbv  *PMUZaIIp5>M-3U+&7Rf zNV#C)𜥢bǸp#W/@@gGfKOI4c8$aAh]M:2Dby5+)=*{#%.!0t({,u>Q9’ӳTM/J V҉SduhXp ϠOOڀ$v8 L2@ eZU2ie{kMH׳,AyUC0F;S@I ?e_biL5֜L 56|K?KtKN{:Dvh"!\E w9TQqxAJr!m2:!aD8~_+kfK gW<ƎYsadye67++[%]oَ!I6j+sh#)COqaC%7|&@*;*oj5)-҆JB|nre8u v+j iؼAw42 @ (s(ڕK8ft5r:Zy(0uKsH"󭶹FG$QX*fH}ďXSM$D>ӂr`)VQJv p1 'g"rjWNPW=a59j:?JӸHqp|"@qYǀ^RSt,%ʺ;%Uj~\rd)95\7COI|>Q?1G9Mbۛ3D wE%ث@xv$\amy奁$S[Sd9(燌!fP~vqwD{l"v%/ g1`ߵqȄc5{zZ}])"jWp6DNIP^w",nPtX49рҠA0GdV]*4np#t_;|DYR_U&{/yz4$?8':<nK:VXSzm,64o_Ml|?UQ<-Tb O~ ,/],A+2#=Q$Rr&BC6ǜ15cyIBm%ܬEFFj G,<lh`PԼYHS0,aWq!θtVU:=*xI/5lg֑MY3 V\T`11غ'yPP5=iʵFa^-,OC2FǤF%0 P:whPL@Fw~w(I duToA6<[F ogWKKI䠑69u\g/zVa_2|H][HAtWtʜӘO$&aBը$JxC9/$)#,٘jpI'E\i]6c 3|t=3o;Ԙ^BGhT%Uԧ^u0cIgȶ]a{?Хe/a1X1V2_ױ?yo–2 ^ثeI,~(譿UĽNL&4Vz ;(l\ut49C0hDt3Ă]bXpX[\3))v:6D&R_`n:`lv5|,@3 ;hKM=(R.GG;cYnDлky&=C'u@b%tsQ{&TpHa'b8呏4_]8,aqUc+0vt>\d925P*+S Za yufXmpϲ`֏@c1iP9::nR{h U=EM5 _f[KuZ!G-R@Z?wbƦ|HڀgpWM)<$IMYȚ"8lr<=6|":x:G`e:>RsgaM qeN&\W!}-Wql_V-v~P{&IflE Mq:0"KglS~EIdOHvo LʖT8?Z3M6>7AI:g]8tP݅&"\"ՔG6qwD6U ply.e2Nܾr91s1'-/T.W]%wX3ۿw@P[ dS? F'f HA9iyݗg@ܽ 1)ޟͯrfl8y \e%еs˅T,Y 綎jM("=Aj 9dZu6@!,LBln !ALn+5O5i}d"f[ |eCXa%EFc9Fw݌ gњx) 3Sug;6h؎q{`; dE>/*9D?a9Vue N ]GT?p֦hb5`@l?/4̔ȃaIn..UW( B:Oin VLБH8 f-T+Əɝq ro~ZYdh+5HS'8w<]d"*~,l>X@uJa8Rֻ5>Q>iMMK0)N@1)({FXm$h\1񐘴zʮ1gi!(:} MfU//=>{AQG.@;PFI:嗛P0(g4&UP.x)IV IԖO{˞u>jA}oNgj7l'صC^y̺^>ٵ\`kG)1`ߴ>2Ӊ+*:Ke^u"cwM%À! N=8乹ʆt0 ?}<@ݥIAN#$rrIPJr ' *C¿4d`Ӕ2*Jzm#h3c_d,XrˡDxxRNx3g ۆE T4. xɺ"Htk+o(},;‰3_G2 ÷snhsy^hwxmؽL-pWT z6U26| Wd4dH ]8"- Z5OlTc o_25ÇiI(NCN_!ڻ{K]HIz fxL:bg{91p]˓YmLR*<_̢J#%Dݯ5veg%j|2rmVU78Z-?2Fmk<'_hAhUiMj퍉6cm$[I_j%dʚ+йT/[ݪ{Snw>;,*^ӡvj%]kƟ(V`ioI"[Y~x^#>-[Q.6pw\=%ZY瀩hR?r,MeuX[1<ԫ&Z-z9&Ce;K(pm[#<ѩw lt/:]C2PvkZF u8Vv$CkQ ̟Qi;մ9Em$6/\rߋ9M h{@OX˪h q:4=8tC ǫTjwŧ}5 <8ܺz%]NF(-_҂TXG#jn7[\Bzp&x4<0|i~ȼϳX$vaǁ%!k lIqjWu^ +/gA`)*3W*liW|(镞RBfՑ2/r *HodIewm-#tmg>j=82Cm/s@:qT7`t'*6b}5@>7A;lZmݰNqݿ֘CdlmGpCtm|䃝8W-$--=n9׈)!^B篌K:D-ovr,N}[7oLzU\`{qAқIa?;:*0=c! N]?Ex.V[\`?n)mۿȑF<\neˤ3%gG㨮G*j0QDFBrЇ(p&@8(E5Bbp5lCˡ@Н袙X^U2s(MKc݄ϒI,GØ0= @Tjf7( |ﯛђ:zr*ر|-H>o7dVaf6E+%FoP3=\M%„Sa6L)%[r=)۰rqPO1`åE/W9 XZ-"US\v+qZRrB3ğZzF)<`䁖s:rS[MG`KxW- {Yk d=Ol0Hk: x9pEftxLBI Ò3/H jؒqc{eԺ阇2r؎ż(qk9šM2.wQ&g2F?(\+A71Ъ xf ./Kht=qD&p ҦUW*W/Ƙ(aPK&K{f4G*ݫy"ƅ|@*Gys=$Hvxٞlg3(@2 .%3ĘRR6}8.jb Ʋ)S㥖>it)DÆn8qHW4,v+Ou/ZN0!Iuh$O1 4W?smN0oXAoC`=#ը@6P4M,;=\8DH5H>*i4ygA+ !mz6r6 sSfZ,<f.5=g'T߈M< [e~\nK>/|BD`$%v?l'xc5us;z{3{Mpu-ċsZq z{bHi8L#Zy9ߦoEs|0kXoFzeI*S9ڱo˦YmhCh5$[ڎ=R}4-vC$6um[q̓929f:$RvĉۤI։3;@nZ$? ?_&*8ٹ/f6@O h&_چux"h!45j(%}COTkJFiIaEޙR?J^V-->Qغ@z߭@/I6Ʊ0t)3Nb#s$`i22ZlMCUu DqOT=-Tv:IhfN:Y5̠IsW99S5E|aŀōhuq,r}lW3z2L鼟5مQ'ȜReɽ 'g\/f[{D;KYB8/9ެ1hPff@r%l@ |U^BFz8#%[aYI9Jx7?vHGc')Rn9jZ-N՜qqʑ!zMѬI \oMj-^xR9 {Ο PR c(v2GFƒ(vE\zT #YYpJ~pT^mܰa@h$)@[*s*!{kG 9ҪuWOy =pdĐD/gƕo+d|vd /7aÝ?iP8UGP8c*Q 2 *A%p_t08Xځ"*fkh{ J4l[ū$I=OefkhJRb<~=! IC6rq[<Ђ]8jUV&θ0OcIe ǗdrֶZ\ҥLI L>M̦EkKV+]!ݥl\IZx[{Yp*/`|ﰔ)=/u "q V-߰cl4*bϙq$ ]ES&3d6D9HJ/'}Tgo_P#8P&(_X}xs C_ԩ;@ݗ vDN;?uFLӕ1 #9P1&VL\tVZö 墟+Ck#f}zc!K"U vKK[ PܞiZ86Mv|V[H?1;PM/*nNdLm.-Q6VK!#DTsj ZRH%=-|a{`i2Y #D)!3*Z^`uiF)>zm8ű1 VrǢM ǵ?}-sy9t4IrIk8aq ԁEMz︾[~-_c' OvV"+5Yw7UMwK{՘;pIƲP ؒ 2h Il\3|oGa_Dқ\l&lA[1܊QF"U TjOi,Ը%U2}SGtƛ[ 焲GͺVox ݘ}/ 1@1s'#BjD"[^P=~ NyeDG++)߿Uvx]#`D^pijQk?Z4ET^uVљҧw&\1_Qb?@>gv#:Ml.ȯV M @H}=2OEZX&/|]=e;}b X_/ゟ F~%0-CԨ53aHX,$gV@{xT \Em^b(XP5 0ra7gƉ@XcJi7P#:\0YgJ?al&y!O/D|LjbS0(Ճ9m dONIaލf2#ϋL>.,IE@i<Ǎ$}MLQY0qϏZ/&޹)I  cix;^e[=`0KuaC&1a[.}Qm!3^':ya &Pw~6ǍuO$Q=ðV}뱉 k$Շ[rf TER2_lm9zƃ +֯m)G3P><}m5LSףQlDFYȶZTa Qys ˓ʘG%˯Yg|4O<,DSUHFg-N^^z洵f_QB6oF8}STzFdѤ Wy颽ArB֜pFMВ ^h*mfˣ@;h;ӊJ+X.!Xх6vP?Sx┵وG&` ߸ .=E>4qc4=gd9?L{lTVTaE]zaĆhx\ &x8Pl[&)͡k%4kZ@ܳEQ왚JR&P) lA2kº`DޏK Om-90{,qQ~3e?-& /$INdkR޽Q't+O/0}v39H)G*[)K-:oN=4m6/Rj;7_ BkpUAF0$|`bO$2F$, {e@82 XcڡԲl!읠”9̏6q.yS҆%} aQS6-ڪMt{sEWSA/ӈ1|ף}ZM(jke)  Mue"@ dke|ޖaU8\IXH2£{ETE+N#Ì-kж΀联NHG񚷅J^ν5')V 0V<,dCo _㧅&XrH)Q`s`OW5(AaAY}qA~j;K)`B[[9\oZӘZR^ʓhCVes>=(mb.VWr͙(`'M%L*oF'x, k2"܈A0J[4oq87QlPc%xWkr̪b$7hvwBpQI)'tP`OyWR#[7IcF| LN n ˖?ț'vp5 ܤ|j_!ɻ5lm2QG66\lXV|N~J^}m;D3 c7zu0{b.RS]^guGsMI97.AIJvI]!&Pyǔ{t~gSH:74($-_l2摑i94w"0_Qg!Ӯ_fM$P rOJ.x8r5N|2ja֚J;dnpG.9I!G:IOyĪ_Azˉ`0j[. G`J&P#.[G&_4̅E׷P zZpP|wډ5!Z ^p~dY̓ ?sxBY &-ݨk/ NEy6 ?`zp]#.m+ n|Fb x2!$t2JLq9J;%z5Ɉ˒6V/㘐d(Fẖr(&f.QJxq$pbumz{QaNH+ï!:5sNqPp8b3s/!AϒzwfdTjmD8&f>z';(ԩF* [Uk<sꭺ I?CX?K룡#<Bkiԕ gZ&nx s$: Sdf|[pd?Ƶ2txұގb"be!AkZ){(Ѱ%$m t[":H|-v Yr@%îqai9}Wa$A~9ݯ['W{IʱH V9lFZVfaOz6O2 8V)3ʙ3qEȷ;N5}:R '˔W [xf c{2P ,3*Q%g‘g|D# ĄT_btq Qw>!=qWg+%%DCx\@U›sP^[X1n3K4˥%Ms&"*4Q8nOx9300Dyv3zr)m=&){^Q u:物a wΆpE놘8:XBVklhiyk%m0|SB; ՀFU.) ˎ#n$p%AC[LכR.+q7%m|Z*+y~$x̿lϷ6`m17- [p={~LUllN06Ld t{ߞ4< bOC#.#6pCLf;~7ef##΋V{!)f]k b@5L}XY~~b9ګ>U@uݨ"ьfbLEA4:S\@ .:j/>$wtq:Tb\ #o]Gb3OLJ92QOz/CAT#%`;]&XiC$,c|VFq!5MC]xo9(;d1?k~p9 4iGe:`T`G|唈[>DdKp{`ը8^H{5~k R`֤*kg.2@!9+|6V) iS҂:2ISbxrMcGMݩ*#ClNwE/-h@k d 91TSKJ]^¬>"=T_Q`*eq)#:nG6‚A\"mY%ʙbR *Mm,T] joM!lcpT f!i=$- JX̽!b&kcGI _>FW6DPߡ:8"@0V pD^VaZP8̍c~EdU":+ M j(!Ps' 4I\F`L|`hRlU- V0S!S@-p5)LW[ >%ƌK uHfF@L @(<9fnS:3w7@v Q"Revcp4i=^0`>0jaj==|qP/Y5dฝW ~>~5.5qvFJ2^a}~eYh֣h1FsS50=XPpNK E cc< |kjsJB_$>0 YZAER/data/BankWages.rda0000644000176200001440000000225212534531320014123 0ustar liggesusersBZh91AY&SY7?>Т8:T9򔫪dž5'SMhm&~27&(hUPgꩲ&M2i @5EMꧨA'SA4L#Q N\MIcYjJư[D[Ah*kKMы5dZ+FزTUqkb6fZ)MEF#RAJ[U;#u`8 Da(1RTA% Rb15r% i.( %Ь*QVV%IU Jhs*2U*WFԄbcQF#`\pl62m$$)Qb"kJɪT+U[AD5&p{0Tfc:뭸ZÎWU_<ttvqc1sN6(l}"RӤ+HPT^Rn$IJ]lpi+c")e2\z%FÑDLQ)])LW֐ԞAiMH2c![OU 3YRbusf%SG0Kp1WA713x39m<<3%3cK;}HB !!03ÛHimq\iY$ e$H$@` I!JOOF[mmmI$I$I$I$I;UW4hѹ,X `%K, [NokZ}33ͯN:u,X `%Kk.1˗ o{,X `%K,V{NZֵ -`,X `KZֵUUoUT7p{k@UUUVj|9{k@UU9@ [mmZsm$I$I$I$I$^sm$I$BI$I$I>[/~w_hך>+&9* 8at(}rO<=CJ.}ie :;,7!g!rE8P7AER/data/ResumeNames.rda0000644000176200001440000005550012534531320014511 0ustar liggesusersBZh91AY&SY@z">@?@|Xl6VR( Ѣ{bPK` !>wi'lv @)iMcb%>ִ͋bQ4R@5itZt J]Mm6 *ӛ5p|4GLj1=M4)z$&d4HQ4 @hIJiEiF@h 00&&S)2 hh4 ! hqAL)mXҭ+@")@R4R"VS(P(5*شmэZ H%41(%")J-"*G$ -"(R PbkEXص AB*-(4+hDjɍMFjfQjأjJAXe6ՍMYJ0cZث[V[EDmQb-hj5FjZb֍F6V:V[ 6Vͫ+0jlQXڙ*)JRҔ ʊŵDUlhch*bثFUZص5m,j5FFڣmFF#mXV-4Vj(+c2e`fVmfJXEQm4[lFj* H H 50llX2*(h4ZXQŋlm&ѴhkbEhcFl[UF(5cjr8eleeaEfUbEj,mYEfbI[50 hU(T)(6V!L6(ژefe56i ձb62YebUVfXEPhƍ5lV FbraMcV5kmZڵFث5cj6hF5cjS mBnVkQhFbcQkh-Eڪ@gc XMj6*lTXJh[QţhY-dE6Ơmx,{jتjb+QQkbIk[Źmj65VccjTmcmEEc` XƨFƫr-/¶Ub&-MFآV6֋TXճVV jcVSaTUō * 1ZSlPV$ck&DIchV1`&*-!ZF_fwվ-EhDZ,XmC-Q#HRJ%"[[Q6`ɵ6Ė-& ؈1 mFXXV pƋ`1mѲQi(hֈƭjjmE3#ETj #TXEFѣcblX-X-EѿvC-cj#FűX IQJ5`(ڊ*B-ZJKz3tAL^I䑝$[bVjK kEi-E֌bƣb6lbjhkQ5f2m[c8ղ[BlF[66jMd6TmFLPm McEcjHQj1QѬ[`֍Qhō5IcV6Q6MZ}zhP賋gJg(΋mYV-6Mf6bF0hQTl(F0hI&(`QPIF -$EEшFcREQ6ւ֋Eشkdb˛+<Ôs[16* hQ* Qkh֋bF-LbZ#X[F j,hbLcThXf$hjfmj-Fi`hJѨV "6-ElQc%( cQF3)6d$FM@dbƀ "aZ;6 E k(K(oE}"X֩ d-K1l[Q-EF* dcQ6i)#F42LQQFhkAlY"Hmmi4R`&Lԑj4V(1F,m-5TVXJKUVоZ5b>FműFFX mbRj@U$4Z Cd-#%jK&Lhlɪ 4i6(6 Ƥ؍-h2cX 2 XhlbȀ)QEHEI*l6%$lB+ōhڠEF"5hLƂ$HS"+P(Z5QfXޫoo/t4F4U%ت4]j QFW-slQEKh&IkbZ,VƤQ֊6$XT%XؤňhddI &(6,E2EbX0iX[&̤- M&&M c*6l`m% 3V RVJ Ƣ h%cJ+ bPPɂ,mQZD`hk1FKaQsbÜbP ij }1z+y6[Z165HحF1hm4(V-lV эQbh DX@TR ƍʼn"i!$֒؈ъ MH4ƈC&P6,wR602I61)ĤђK TcL$k(JhbAFJJYQ3i,mH", IXD2D"PPP&La"W6(4ZME@Bi2eb4R2QIQaDS lb$$(SF !T`(i- (XLBb@mE[EZ6"E(mDX4b أF HԖ5 BRb%0!)HBh#&hh2!I (FLF$h0L0I R)!62B0f &a)2ĉBAS)AbBJUyTxuqᶮ#kȆwoc`=1m1A D&b81bb@)Zĸ%f%>PO[5(mzEnksHGo|yכr+lUo$Hm F)(ѠdɬmIclccb(12ɓ3c& cEBD+"4RmIVc2F6LiIa&aI5Ib 62 3Lb*+cC#L,cdDb$ędDD@Eb-%AbĚf) ldM(RCI@fLR HI 1 &EDTQAэ4h̓1&I3"-i,ɐ3X$̦YHXƓF)IHEd%lleEH)ʒe2&Tfe2 Lc)1F IA!&A)5#&̄XF d"K" B!4@)$f 4c1"$6eS4I11 2hI)d4jT$V,6Tl!F&H*Ij( FbIdHLDC#0CS L4lVQEI#LdfКdZJF#d&b,0iEDD 3!%LAhM(XL$$1>5sFAc*"Hэ#0ScL iJ*,؃$HɒX(h! f̊ L `PE)M#1-)EFdHQ@MEM) S2@EBh2E,"J5  HES54,̉J!)$"e ,4hE1L!`CM"""! PJ d4I̕J")F(ME"dY$dH2d3DlD)-30)`Q fL"F#3S,H&M f$Q b0iSFi3HĔ4C4K(C2ld ,@"VhkQ-EƭV4SH$PQk"iIba)eY@a뺑E4hȄE"̐I1)fH D$"2 )TlfTE1$i6RILH$e @LRLe(ZV-%!RE2iDl(Q)CZ !@AI$I)"ReBa @ g?ZBMA$lPI1V63.‹ 1uWixe64#&<"b@ǬdLa4bi8wv .﻾}yym]3y-%kLA$Fb@pb`.=fY֍omx٭`LjE`j5ch1 dĀe#jPBXحTTm@2"601c` 4hJě&3$(lh1,lbeDEX3# hDъDm&h*PL0mE `2hHԡ&EfY0#HP6PPI&dma)LCIP,FD !BI)4bb!%#bţAE!4!JHh’,m41 1"fXRi4fi)4̒BVMBR3I& 4QKX,PX4F) !ddbZHSC"hؖF4 XBP ١$EB4 Y"I3hLjFQ2#f b%6H %DaPDhQdfdLBd12M,6ɉQ(3&Rf3E5$Ҥ202SBc,ҔҢPHIJ*eeE2ie1HPTSJH4Id()$LL5d"X(m(A2`DLRA`ɚ ̊1L`¡&D,6BbL34QY&f4*32L$ŤHhL1ab&&!Sa\ 4VFE6l@RdfhaMVA6P &dM&ę$SLIJKBd!̚!$L2ld$P3dDP&IHfKhɅIbX͌I$hEh*3(1b@%"HD03E6Y 1$SRM, F)`DCI E (4Dd̉L41ɢJ6Ѥɍ$d1%"12cLhj6bV @$$LT"`faf&fHBbH&B!B&RhĔ@44!R%lYL( TCDĢ) &d #&()IlLbDcS2YɰET (Ė,RS135$FR|F(Ѵh-&ȐDe%&#ITDhC5(Xlʉ$"IJ$dJl&4h, &S2i0I2H !&LE1$MFfiL$E2cRX6bQLL1ŐK)PRS,l3!(B4Mc2S,diC f4MYF $fe!#1̂L#LId2bQJ$҂l2%$ii4i$RHԡ@51#"HS),lSJJYh !$3 @lE02h@#4IL3"LLH2d RPC(2iIx˜(ئ MY3HЅ`K4a1Ml I1hLLDLL%$C&i1HME)&S,id1 @M)!2M +2`AX*4(4MB2%,1bLdM2)b(%"C&a0FBhh() 0ȉiH !ҒdLi(jMhL& ŔHCQI%Ɖ1af a5LeI% ZR0k$cWb$h24JM3L0 K! Wu50D$QH)i(dDF )e(3DdH ( 0lmڢ6شj-l[Qj#kdشZ)1mFĘ-2"2F 332#&dJ%4IJFH)BYY&$1DҐ #Q(h !e e%(0""HD 2I !2Hl,Q6 \04#B)($ 2J-&J#,L3fa,‹Qm31Rd %IPh2IJC")c$ (i$B-Tl[XѶE,`#ba4PŠTf!FDIDAi+&I@(VD`Dddhԋ0!-(J f $XdLi&RdfdFAQIA@S)TpK< J$icw#U_az={d204@"ZhP!!PHmJ2\D#GA X=⼛e||~-9 C!#D `d`gw!Q:614:N-]D2f f :úSĄ@HjR=H>gN_Ov9c 4@J+'R B %Ghy+n/U &)9+zsqF3_yyWcy:#$*I @H_uhv>M! O(sd1}#B16'²jk OH7@#y 9w;2]iZ_3z]HUj.'4Ȣ1A){GE3KjY$  P s"fDJ'Bxvϵ cZ}$P&b ;ד˾5XՠJE!$u[$j{5-h!b Gh9[Q TX"+B=U(Dd) 8up:A ,āL2)Q)*!# 2l 4`XJi2 bMkE"ĉ"Ba&fI$-  *&[ Mԙl"!Il 52&؋A$i`Fd! b"j5(6HBb dD"1+E$#%I$bF4mA! "e1Y `1h,A@SQR$%)C %FMɣbE0M&aK#Mc# Ғ 0"4QHI$Qh,QHXD@ AfH(%$J 2%ҘR1 Q$$T TBDɣ0Q1$I@#2) ebAH DK($1 DQ ))JL"E%PKH)a0XDd5)+X EQhj5Xi4HȆ$F$bM)Xf3J()$ F`1dXD dFh+)QF)c3F#ɕ%4&&4D DKH#%$!&b"eLFQh! "H"C3eɑ fA@h4Abí3ḎfRE*ddQ$ђ$d4h"fdę)2Y&IĔ &1_Ml!`ɍ (M$!JXKM2I(6f`aF(02IЦHB1̘@I$QHdQ*B2LHTD) Q L%bdēhLb"I4%IEcde%#"6"J!&,RRfE"aL!Be3Q(؀PI4!h1i#($E4F%4Ԣ" b642 6&f0I$hƙ3LFlș RC#1PP$F3*M%&I`1bLDae"$PHm$dbb#4 IHQC"SD,) %$DBfcJ4$(F FR$4(ȥ@)@L"ƋȄA(̑HP̦)(iF2F QH1 ،VC 0cm &cb066MF~w9u +q.ۘI%<ۭP{$Tp\DSdSEj*%D! h!'1q(g H1Tmtg 9 ZFYG 6$`ln1Vsf5!lepYIsa spUGcEؓ^tv'N8ό>1+@KQ/X$4ƺɵldE [qU4Y2m(m2cKWE2rͽ~ Kȯ l {k9՟q?;/ܾhu5跷kҥA @V2P1_/`3} ,teə IFdP+q GnkjbêiϾ FH⫳7o>3k{MڽƼ[MmuNR$F՜Ѧ,D8"тT*T{!sWϦCStHS6Bh{Vfg]㜚w4 Ȯ1>LdJ;X`ƨl1j˭iTΩYlvyhX0 :M]Ѳ]ߣxH:sCgj蜹8ŹMv` 2RaBrH(M0*LĠǒcLK#HŐ[G *R]q.sP85BӑF;,La͉EG󹷜`DC]ov6/m.uo>@fW٘, 1bqP̝#40-WZʮMVf^5fAs޼RlF9x]9\s ~TͼnNCuN͗$mA0Mj6AlM2pBW5ASuf@ L!Jjfg [%_Vk*66 5LYe03bxWEI&؅NL\*E). fQb@D72LsUoU^^]wtV#ԉ4E6U4JLkS [=XkQkٲHCtpo`tړE\,$ 2=թm,hsEeD6PP5LLگ}j 9vHG#HZw9ZYݯx|kB_X6zB 30e1*LwGE'l@=GL]fA%(%P\sjw*\ {?_GE0d"(i @$!`bN;">O:4N9m%":Q{ΝN#hZAf LAfOOy&и0Ӣ(`,l| rISE.ǒ“vApŕHPuf耐 DYcm!i6j]Hk$Kuǀ}+uCLu|$LK~.֐zʖΛݛR<<2n I%Lϊ!t_ɯ*؆Z0m潛'zZz47Q0sԾld}W)B,08@6%ſ #f:b^MjYUNCʳZ!`MLWw]j6sj$5ڦTEM " #[c\+-ؑՑ# bAwBݣ]&U3`Z¦pݖ ы!ZQT+TWůΙZfm&#JR#h % ,12_;фǤ10dէL޴eȜrL0$mi1Tb/d)k_TjK"^u Ukm3g:Ws.M(K_uFʄx5RRD'@4Gٙy4AUj`v̓:s0l%dSWKAJToЬ#-=UfnV_bv%*/ #ǥ4cV/S8@Do/;-؎4= HL0cm_vRbpiƼwƏGz'Hk,8Ekqԁh[h_W@o#\z?>%c1(! iCs +JDV|Ȭbr. &Z9|!,g$bwX.W6z o~D.7ͅѶ \Z1J+"F3-9VǼ݄M0-BJf\Y$k.ƿpNp懏٬z'}i+x]f"9-F7zTAӗI"lK"k5WpBlGOhY)\3Г~Ǣ3k  c4Ǐ  RV^Ȓk*4Qؾ5ٷ$u"xfbҘ\Y*Dp-m-cR&y1/Of$ /D! tLε&>1/c8=l:TAlK2! 6f(f%8aΈ j9P\h]>ulv1^;cLXmݚfX؄,x>XĘ%CҊ.  K39j֍LPցb3M.$IrDo>5n[W.YLW(e4.x푠d6mC\`TD@XChH D^}ysZ4Vc%YbK{y. !% D'"'Q3=5՘ =W|ƣ)D~YxF!X+it f*%'#UE]m m~EG =wvz0@63&gyu@Dukf&֐QיfpPYQcJ ERED=ڳkJ2F$ޥX{3nPNBxW*! I!g-Uߧw/W(7Ӆ2Ȕ m[{YlC:wwȩZ>YTd￁WNzR"$ůl舩FJWNqA8*:}=mٯ8Ϛ_>sMar靠7u#߭tU(D|Ү0zŗ7R֋ #kPa Q5`&9u5;?iG{88[(l.Jc DzBk=nm1E#"_ vzF0 >`PreLd@9ii) (6Ir7i56m׶f(D+fAc ֠\(5Z PArH8"d1ݤ>< h$Y>?٫]z|e%69`2[eA5]#X\j]&VM%$ IF#Goc꺣LmS{v!m=yTAdߗϿ=`!7 c!~rX(]o34&ڭ✇lOqHN/vo_X_4'ښ]ZPv,mQsկUeo͋H0 33ɪv=4b1!n٫XƁ(F!P|6B :e$2OLΓLT c"DDT|4$O9 L$@Hf*`h_De9 -VBK ZȔwliGн4^Gx#=DyV'$O=ŵT1$K2fmpIkU-LL `Bu%!1AA Y[J gk~#1bmL|yQP65ZjvIV% rmקMUS\m>CjCm3z"Zh &Iia4, fv֗ J1gLI-cVK4h=J(]1n3o\#k{&KK2 ,2<ɺ2B2w`Q:Ir[Đ5hѳL\Yv2pQكMNv 0"B1m[TN}>3X': 1g\oUYU!R,Ti1< VGU qU 7N7JƎs̄>ʎʉX04VScMNV Pױ%²&8M,gL+AԃiGsDAVIꈮPCdudJ%xM P%*: ZgyuڕNmoxO^Ԕmyt3Paz,٫8^˾/~;"9T{PY. Lh\ײ%^ugypqJAUP"gU:duZvOi3#DkhuVٟ v<;Dӆ!]#ک( d E[ -?;~.?6^<~޽g  4~?ON)iied3ZG}PǧgmڜtlOק?HfWƒI#vb(|yN{ϕv3x{<2A4'WdC$OZ ~Iѯztjzy"w=x<~Ͷ!lݓvcQPvqÒ(!71G0 |^Ĕ1/چmP?|M32pb4J Za@V2 BΆ*CN~cYPS.3UnilєY\^ݾ.O8si6!}qL}u꣦6xduH1ΕFWUZ-ofֵ.la#mX4v i bgaJjyvk 4E ،M67i*\= N f\<2'Pevt^\nSpNqWUғÑRb4'_s8a{Ҏs_*de:`Bl2摍hUe= 7.-Lʹ4pn(Z~I| yL$q5]q۔ڛ~(@;aTz9=S$đ$%ʩ$ep2U(&S2j_zzdU޺wR21|@0y"6篇>%R Y5 z%8ŦDg)ܶ$)^c4m.EOx@`(qzl_9{0mvYf' =beJ(a(֕LMYjjI=#$ zW"3'!EA_谐xQ! ϻ!lFgk@b$P&)$b,bČm]'7 ߷mx_|lxbB#n^ (u)ڙLHrFyڹQw%$"IXH8(SQe՝Yo,wt-wG %`^꯭,GR9"wta۸> t͘o"l +;g^к FB*2J@}Hb$4M|wv>ѣ螹idV>⢣u)/npaf_ibj@Ib MsÍe'wzߪ=FSOk$yGAYy**""5b54iؾ$D!.<ҺU-]S۷g%vw\72M[Q(nYڇ&3Gzc_4Ҕ-*؍uj.H >I$""2ZH sj+b!B&%Tdȹq(7>3;q TZbfgؤ#CBfwFcdJyQ 9bdSWv$L~kHg]7WGv H"5mjRb)Gfk9G2Ydx(MoվH ?h{PȁQFQvCR,8wxd5W{N(NUQ%}8(]Va EYRkJ'D*Y>ƶ:aj҈X($CsDQDzM~aݳ|uYfzMTηxR#FTWxdzh"+Bʈ46V6upft_퀞1]Q0VV/ =HmSbЕX -3aʹ֛ eJ:1|.Nˎ997:]PG(paQqwrYMLA3d wZ(ͻ:ɝ=Y4,' ( ;HETI% ma <ڔjmY ڶ")E E~:!H!H@ kSOۧ0): *gF15yO ? }EBnUh?g}.a~MǟRH#H ~q!.?&ZD_K=h}1y}~J mo 4Pyta{@K>MRt#is4y@οki+['t飯8-%$!KuWa|vpndtaZ*^"i {RpH?FEdʞbfxG >@0 %hs?_;] pL+x-Z_?xlLYH7BE<| mdlOI6_yaX`%_[֔=dkť_zYO.yvM{#eˎ&8] .c]G* 8rE8P@zAER/data/Medicaid1986.rda0000644000176200001440000002337412534531320014320 0ustar liggesusers7zXZi"6!XG&])TW"nRʟX\qjnj-&,1x k>zm$l4NwauA|jUJ(LvJ; c,wptQ<5tsOӪdĸ`sP*s]/:fKMx՛~MCu6a0dIPQND`(\~F.z!TY7h%OkcIA0t ' *՗<TIe:~K/eW5ِPwk`18d&ϰ;Jد?1%c8 C¡M!˕E6E4]#.COe(9N'SKwk1isrzp',ڏtT:\/0s8 YXNϮJpA֦o쟿Nr7-$&9c?ֈ-͞i Y=4KXˠ)\ՠHn4%?2SQtba{Y-!9k;vv U{p&pאBo2܋ ߢ G s=}ڶY11TdGh3Tj4| ^and%'^˲ups. ;ݬ]Iƨmٻ)TX?KvfЈS0' ѼqriѓE,Nz7wʰ:(ng]sl"I8CYng\7Nv}*yXӆ=C.{5lC1V=]>ÁKuR A-\rE{E\LMG5B  Msk)DT+>L!1qyV<-fVUNlJQNJ2I gdd]Z{ [y*.F1jMYIrY-pJ\.;UGbG$ ̜H.AF.%JQ4VSY ky0GH DxāeBсE]):~0\Hd1F_^;H 9 9YoűDq"/3;{ M50,/9Z. >7dNJ9Pm;M#\pD);qRĢpعq1-j<%X~{#7ZQk*#l(HERNd?_)u&+lm 0ZBvNoq.q*cxiؑOgmKz[Qc1qO T3aRe%NJdʿqbdm~/ϛk''hIˆ4wȶr~na(b)p-dà,셟@R1S啕p`d酞LIb Kxw@W$tXUR 74MdTĭ5gPRmS=2 lBӉoB?Ⱑ[z7:P $t?NtUѯy Jm(| W_Ê@\`2>& %Kwz sgE1!;kLe7?SRWB<5w9m^~dsYfJw՗O KZOGs&IƉ/LhUA=:L O%Vⶒ$tQgX9I.j%3g#Ee_""oրAZB֟DֿUA6l87dcf ӯ,nUp{juѵ't2(K[aéBR=VH)j(XKBcrʀYȊwϕ,a!z\pjoFq@8P? iA5;pO +ҙq5Gpp $ka\M 1OXD[` QZluܵshYQ\g1^K6'N-`z#ƑBxȆ>TLJʺ"+~d}QŇئi#KLCA*ٶ2h m_ZT%J!:Jvg<ޣL;cE$p ]DpÞ]F;L$l+p`0y+׫=Mv]C2b(*JZO,_ p䜄W-x xmz҇aYwt<@۴[걐^}ח(HT 2t|y{=EQLiFyvi,weJ  *hŞ9_!d BkBQ0dQP r>DN-eA@av6fW9&ds^*R?y)zqrEd儣Kڸ}HrB/Rq=Ӭf|o=9pd jӃī&0Yb&6BH[mԯ{hDJI^a+LN<ytDy*tcgo z^hĭh>r?āFF > /^,hG `s3=hUeMY2J5V2-N^c* KձzPUN"xVf}5&oB`:7 [F-M[#$Bg? 0Cf$& G &_r}ɑz aLʃ(;͐Bq?Ԝn ¬d=4 '0H-8i\6 GL)4K_OS[ü]O+D#=- 'xAu5WKJB481(39Q} 8]?SGn$ KW0O:OG()umc(PRs}}R(Gl+ͦE 7چ53|U刀-x0!UN`eKgu df7 NbD:'/Tm,5M2b֟RؾW7d ,"N#ѐ'D Ҥr>B2xv-ml9dF[&x1XH'+>C lK&XI9+\7|hwo?F$)Z./^9i.&Ɨ*KQCUEIL)(x^i'9`4cʑw `θ붻XES1[J>8Bބ˳|Zhf<{x DViՊ5Vl^S|Z*)VY*p3$qW"v{ɷB v3.!v۟` i sD~FmuUD3 dUˌƴfz/^ַR^"oyuurGSgcW#Uܷ@/υU˧@~`:XRh_ZNs<elhZ1t*˚,ΣLg-n=X|pB}):Yy՛-*}EN'܀]"TM&%KXHc$fu54f{ 5ijoŊL.-CYШq~-U1z5UYT_żȳ0y9 ģ2I(0]]QH[)~džg;t/C'[ly5w3kmqq{ #,EY 'So!wܬ¤=y~o؄ܿ~VGdS)^v.oOj_ 2&a̕NoN;EVz~ZaPf̼F4wdoG~~Oau_VؼdmæEƜe]:35eCD2 Ġpt!&Qa7@.rPiAҳZכ'3;ƛ@*f ieSHDebz2J!L##.[`>jm?!]{l-J?>=԰EFCЪ4Z:=Cm+ĸQ331@k~L`rzxØKM'Cy~ݓP} DDbg}~وk%5QYxy9#UU uІJ`0`m%C ;s:%?bޕ1oF :NODDe҃_w[QxV ~W(ikzgtiRfƱs-b7PJpEM9|8 v!߉S)0͒tL07󚌱 qDtN>[hS室p_q Dl+~&tNsc@j.)${CZ:)gux֊9g~sQ dCwfXٝGhpd i3V$SIKqJ^Jkc-'JK C:W:`t!Oe&R]ޅEs?ix-O4tml.rAj9$ r=yD풆X,u< `fTpb~@dz\ MJaܪb ٱn2I1I/]" S.7pϟ"ԇ77%b_@1[v{Fl=:[Z~w>X!xsSG &e/TٮPs~ӳ*-]zgh}["&\WwܐbJ"FpNEB,6@i:xѪޗ y [د֌.Š 3=.۬8zyBCDF6Bx$1?9/(iaH}yNbs15s7H& bׅBWMIɧ:0&N,F/Q$Mߒ3 w b FZ\o ` < 4G|a-ȣ bV^ku8q Q;ⶮ]q^i3:dHE G 뽾/@“zȯj,F[Wh'FĄz:i16+EHu'GsFB NSGv\U@@ u! Yv`{!bmA_ v,\RWEgn0UV.w9ZO!B2:i"$^?H&9 Ic137mAڋ@LJLe'Tr`dKqۛ~[Iu5 [fu!h]p5?kt#>앺ٹSTm&Qu }i::J"ez8f'aGDe]-MK翡d% sΑ,AD{E=KնB~\U#"H{PG.N''h m 9"T^Ӷ~V.ʰ8ẜ HRr m2![DA8ebJ EbHSjlY(?0t *k.cF|+3G ~XΗ\{xϋ!bHT5w.^D$M\|Z9nl Ujި&y5uZƐ#)lb'3H㎨+~v,tS*`c;ŗk?+2^,h9a#üҕw$)x)T_e=GaRM|?/~o9?;2wqTJxurR>e}PB(`N-E.M?gR/$*Uν.Qyx$:^}3uK(ՆiʿMA' ovw+c'?'سTI=]?QDkȎ<,Uty`-q P TcWVt>%܅jyԾɐPStwd/',x#_ko2¢:߫h \G!Ĕ`SOR KAl9FWWR_ ZbB-EU^u._Ʒ@H͗ޚRBB~)+B#L&:#Ĉ}I sYT#A7I`Yfi"齅|n`'St&NvY_; 쑊^6ka^$c zs!ȯ$g7_KHY:7Yk@r, <^Ύv?Y%)>꒝ѣJ CFrv9Wl7 @S 6 f`V9\rsL{B8C5e1r0V5#<@7=6ot|Z ]eZɹ= tJȵkEs +ygB,E1xCIC#7[,/ضg?f5ݬ$ľBW FJy_ 漑$WG/2KZlvTx*V& 3kĒro&Lf9~~8z޽3f&ݟ'9'KCvXr|̔&ymB*Ŝ+S|fA f9 qeE\SnmMƗYuiKP0<NsT5G_n) n4M (x_̒sKGH"ׁT曞 g}I6nx{'@S?QiRd.aTS$ `- \p0!S)z}ȉ1C"j |`B{VLy*s;B@DYTև)?jzcqÉYMG]#暷=3J {V6nǑi)J'V<)nѯAZ}(킻yolp($bm‹t35#-ІƱ~4QorH3q<6@ Hkg8債Zlk P8Ob瘖3wMCLT.BpCP҃'LaeH#aDE8yP(vCy8<#:mƷ)Saz=HqddX g5#@ _6Y/k!}t&PF2T9X{̊DSs`4SXr{g!9CdBpT<͌Vl}l?C='_-KΔܿ6ڨM*ѣJ˼("}V-^Otϛp]ICN˜DU2Z PhIݾIQM-D>0 YZAER/data/RecreationDemand.rda0000644000176200001440000002025012534531320015463 0ustar liggesusersBZh91AY&SY8  ¯OZvjPI/}$e%/RTKP[[j-{u2C@&400I)6hMT3S i&b `&MSdM='CFS2 zbi&i =IꟓSd(5#i<"cS@@@ah4hI%?OUIM4h4GIz4=&@@m@Ad@4hz=@Ah 4%H&LL0F``ɀ&&C&HF14 !z)dT= ISOޜobt83x}z4WSo ܻNT" J [Zu =Ǝ%xkz mi64S?uAM8HaU&-X礭4ӕӶ;p@[0va oeR{yu\j|NaT.tnqre| Xre??& Go\7[?r.ZxlB5 mYݣb:.yT4oCB9OR -Eȉ> yG# mlg8ڴpRL)JR&mmmmuUUUKŸkqxTК0E}}}}}}n6Z#b飬pc&_i啐V@ k¶s9V@ YEQD# (GSfлUUUUWnݺNEkdYl9r+ d((FaC!M4~aф!4VV*V@]YY! WGfֿ նۈF@@) M,oH%{" RC6PRJRdVX|D&aЄ1skSG 뮺aEQUF Y+ dV@ KsFE! nhܮ뮻.\j8 af͛5+ da[9sY+ d wP+H! 0Æ88vzYUUUReUUUIYUUU6mm%+l iilv풶smmmmmmKsk|Єpkj1<<)JR)JR)ImmmmKo\ 0h`UUUUX QY-vlٳfxO<<)JR)OUUTmmmm(V_ |$S\M7Ӥlaxl17W0L+潀hbD٨Evķhi4 MN765aYFhpCH:)OC3&AݿT ܘdM/) $0Ybł Eq<wU8#swߒERѡh`AeEb m ˃aɥ8`6M U XEXE ,RB((+`\X[vʑY`IbB,bȠ,YHm 1!8ͧ+mrJCbmr N<"$H(,ӁdY$8!ow 'sRfm&HZ{8LJ 南zxtwG,nO;w/^zŗ $#=xS bUNI(6!Ӌ VFW --?8@e‚i:g(:r)1 }six3k"z8O8 wyE 9,τo*&AZHaQ40]Q=gfW v0S9"JÄI22O1P;b̨X) Q(Z=GLTLFɲk @?R"~cj<_kDֈ4+git&!!f)DQpFK1GӂuoБk~]A\iu%En]JJ 6B+o)lH.61Xj]y7E;B#e&XdN xw cpRrYyKտ\|\ZsǤB92y\ X^81PwEmݶZ{htD/F ]'Iqr8-ׯCdO Ξ`Ix%L:2Lym)PzXMQ֣v,kĸ/,EyY8umNj$V y4b@`x<[9kΟZQavҖa9 )d%Ϛ7{ܫ|;55ʡ"N7"B;;>d0Cej&Y6ZM XV&V6ƫ]-^#87akJ3)~==6N$MoeD̵Yy1\8JѰ*i۱9fnb`ᡃ7$D m!`i*y=Q 3壜=@"lf3Rxe WG-sGF6g7Rgo L2v#(}!4ByCvKXlW\("49*';oql9B* y/}\ QĨd0V=KbKslL=¨ +e*s"Z .CA@7)0^ӡ"QB[a{y:SQc!um,\t PWwuXU-r:bm1uUW¼SEOL۩MSh +_-66m)Q+A3VUL.uj#~Өm쇲4uwyB30b0\ܟ-;ь6v^Hi6Y]`괒W-+#6bC1 fm=v (SiNʅz e U#1ZV(vb)+!ȏL(y/# uMR8 n3+:T㙇wϑ(%W|]`P #8* 4/,uKA䯷,MhV_QP ɴɶ0䔇ˈ/Ɓ9n = ݤv$=f͙@Z6SG ~Q"t^ėL'mn?a4K|isI$@&phFJс;A2H_g>;7cDԠ%8)-ZZV=?/M-; eI5h< LĭX\kk$G ϔ8Kk%c[ Ldz #' xl%YE/}/RS|РtXÇ̈́3IW}a%xCwߗ J@XA!KB %Ui0\ג"GL@hB%JAanyTd+Tcw>]&ZZЊV0~%)TicU(v_n9 ­GUӞSH.L3zBH p4#rÅgETb` &&fɜY#Ku$dGŠ&.SlJ,KO}C!$ xG`'t]5}1 "sMn=\Ws:6C@LpPŋZ~@тÙ)Ge6tR9 S592ӦCn2|vڞUHH-hHb|f>,L~%+HԳ!f~+ zd"ɐNcDFcf>?a\AI҂j$ VycLD7#Ԝf2T`VQx}W'x%x)@Q:(ݻ`]ız3|>3??-:o 3-'`t LtpGofOS`򓬳I6 *9v}}EƵI;ʹG ׳qE_5e hrIԥ\ߺsScu|G\l++b0n>d032!kM;$Djˆ n/W?aۣE>,&;`a otenD3R؂;8ds@X"ٝ?-RN\m8ZVUwV.<׻`ClTZ&RHf,/x4I88>υԟR¯-]CJqL IWVeie#&rM26u{ +CrR)J%k=6H.%n!޼{ݭVb𵖽']s]D ˡהH"wVڭUK 8,!l:|bӝVw>VU 3;$mm>6?1bSsj|ڠ],~$&WPyzD(n3e^b+: ;O@C9i:/n_~;}1Jc!tRЩH=*cʄQ\Ll)gfeKr&@w''%lv}=e[+cIB#P!2QAE =!#'zMꚷ- mV""f)Qn$aV=,ֺx`eb{&-nٻHUX[9>Hw{cҞGGk7D3OVTb瑯ǖ97껆T? %D$&ƛm Y=e~x+Ui %T#W ޓ2lh,j1vB]LmeM VIdX%*.hNKLX+tt$ujJ@5lWwe[/Xh@7s?Bӑ_Jx9JxifnmY"uk+[ŕn 8xl=F RN<(2jpؕ=bSL Ww_:KZt툥UŞbrB;K!26<:J?xnxUA^w)<OК* BXu9׼["{wm}yGܓʏO1-Li1|;aX[%,vkǯܓ1|=Gpi-_QѾb{>oEn+.@@NOT1OG3QN7 '9J}60)Sҁ$l% PF[|I㏲NhZ3BGm(Hpm>#}Pؒ1~Dl>I{Kiqq$~_S쏠pXNqsyQIx3#)`jθĖ3GI?v [zqYEgst?$ M\`崬f ۆ_U M|,K.dkb$>} ]ؤطv|[:ʹ-!A>@0lj8m) tN fm㭺0dn |O=psYAa`;m_ PbK:($KG,36$]>td;+.,:;xΉ딏F_!,ʤp|w1!ML jtm1y]wzkr&Jv`j߾ۻk@ %;DosrWy]0X:Iho8]ਐ3]`Dnrkz?)<7/{\c7!jV$1/.ؓGi,1mUqO$E;SXlAϊ\h]Cnu1f#M$ ,DLk =yϒ) b6 ,(5ֵVRmit)/ZI ůQPvs!~:m"J$n*wt%Is7$dFn~MIa\gQh=ß/rE8PAER/man/0000755000176200001440000000000014557334432011446 5ustar liggesusersAER/man/OlympicTV.Rd0000644000176200001440000000127014252214047013612 0ustar liggesusers\name{OlympicTV} \alias{OlympicTV} \title{Television Rights for Olympic Games} \description{ Television rights for Olympic Games for US networks (in millions USD). } \usage{data("OlympicTV")} \format{ A data frame with 10 observations and 2 variables. \describe{ \item{rights}{time series of television rights (in million USD),} \item{network}{factor coding television network.} } } \source{ Online complements to Franses (1998). } \seealso{\code{\link{Franses1998}}} \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \examples{ data("OlympicTV") plot(OlympicTV$rights) } \keyword{datasets} AER/man/USStocksSW.Rd0000644000176200001440000000437114252214056013721 0ustar liggesusers\name{USStocksSW} \alias{USStocksSW} \title{Monthly US Stock Returns (1931--2002, Stock & Watson)} \description{ Monthly data from 1931--2002 for US stock prices, measured by the broad-based (NYSE and AMEX) value-weighted index of stock prices as constructed by the Center for Research in Security Prices (CRSP). } \usage{data("USStocksSW")} \format{ A monthly multiple time series from 1931(1) to 2002(12) with 2 variables. \describe{ \item{returns}{monthly excess returns. The monthly return on stocks (in percentage terms) minus the return on a safe asset (in this case: US treasury bill). The return on the stocks includes the price changes plus any dividends you receive during the month.} \item{dividend}{100 times log(dividend yield). (Multiplication by 100 means the changes are interpreted as percentage points). It is calculated as the dividends over the past 12 months, divided by the price in the current month.} } } \source{ Online complements to Stock and Watson (2007). } \references{ Campbell, J.Y., and Yogo, M. (2006). Efficient Tests of Stock Return Predictability \emph{Journal of Financial Economics}, \bold{81}, 27--60. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ \dontshow{ if(!requireNamespace("dynlm")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("USStocksSW") plot(USStocksSW) ## Stock and Watson, p. 540, Table 14.3 library("dynlm") fm1 <- dynlm(returns ~ L(returns), data = USStocksSW, start = c(1960,1)) coeftest(fm1, vcov = sandwich) fm2 <- dynlm(returns ~ L(returns, 1:2), data = USStocksSW, start = c(1960,1)) waldtest(fm2, vcov = sandwich) fm3 <- dynlm(returns ~ L(returns, 1:4), data = USStocksSW, start = c(1960,1)) waldtest(fm3, vcov = sandwich) ## Stock and Watson, p. 574, Table 14.7 fm4 <- dynlm(returns ~ L(returns) + L(d(dividend)), data = USStocksSW, start = c(1960, 1)) fm5 <- dynlm(returns ~ L(returns, 1:2) + L(d(dividend), 1:2), data = USStocksSW, start = c(1960,1)) fm6 <- dynlm(returns ~ L(returns) + L(dividend), data = USStocksSW, start = c(1960,1)) } \keyword{datasets} AER/man/Longley.Rd0000644000176200001440000000314414252214056013337 0ustar liggesusers\name{Longley} \alias{Longley} \title{Longley's Regression Data} \description{ US macroeconomic time series, 1947--1962. } \usage{data("Longley")} \format{ An annual multiple time series from 1947 to 1962 with 4 variables. \describe{ \item{employment}{Number of people employed (in 1000s).} \item{price}{GNP deflator.} \item{gnp}{Gross national product.} \item{armedforces}{Number of people in the armed forces.} } } \details{ An extended version of this data set, formatted as a \code{"data.frame"} is available as \code{\link[datasets]{longley}} in base R. } \source{ Online complements to Greene (2003). Table F4.2. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Longley, J.W. (1967). An Appraisal of Least-Squares Programs from the Point of View of the User. \emph{Journal of the American Statistical Association}, \bold{62}, 819--841. } \seealso{\code{\link[datasets]{longley}}, \code{\link{Greene2003}}} \examples{ \dontshow{ if(!requireNamespace("dynlm")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("Longley") library("dynlm") ## Example 4.6 in Greene (2003) fm1 <- dynlm(employment ~ time(employment) + price + gnp + armedforces, data = Longley) fm2 <- update(fm1, end = 1961) cbind(coef(fm2), coef(fm1)) ## Figure 4.3 in Greene (2003) plot(rstandard(fm2), type = "b", ylim = c(-3, 3)) abline(h = c(-2, 2), lty = 2) } \keyword{datasets} AER/man/USCrudes.Rd0000644000176200001440000000204314252214056013420 0ustar liggesusers\name{USCrudes} \alias{USCrudes} \title{US Crudes Data} \description{ Cross-section data originating from 99 US oil field postings. } \usage{data("USCrudes")} \format{ A data frame containing 99 observations on 3 variables. \describe{ \item{price}{Crude prices (USD/barrel).} \item{gravity}{Gravity (degree API).} \item{sulphur}{Sulphur (in \%).} } } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}} \examples{ \dontshow{ if(!requireNamespace("scatterplot3d")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("USCrudes") plot(price ~ gravity, data = USCrudes) plot(price ~ sulphur, data = USCrudes) fm <- lm(price ~ sulphur + gravity, data = USCrudes) ## 3D Visualization library("scatterplot3d") s3d <- scatterplot3d(USCrudes[, 3:1], pch = 16) s3d$plane3d(fm, lty.box = "solid", col = 4) } \keyword{datasets} AER/man/HMDA.Rd0000644000176200001440000000417614252214047012445 0ustar liggesusers\name{HMDA} \alias{HMDA} \title{Home Mortgage Disclosure Act Data} \description{Cross-section data on the Home Mortgage Disclosure Act (HMDA).} \usage{data("HMDA")} \format{ A data frame containing 2,380 observations on 14 variables. \describe{ \item{deny}{Factor. Was the mortgage denied?} \item{pirat}{Payments to income ratio.} \item{hirat}{Housing expense to income ratio.} \item{lvrat}{Loan to value ratio.} \item{chist}{Factor. Credit history: consumer payments.} \item{mhist}{Factor. Credit history: mortgage payments.} \item{phist}{Factor. Public bad credit record?} \item{unemp}{1989 Massachusetts unemployment rate in applicant's industry.} \item{selfemp}{Factor. Is the individual self-employed?} \item{insurance}{Factor. Was the individual denied mortgage insurance?} \item{condomin}{Factor. Is the unit a condominium?} \item{afam}{Factor. Is the individual African-American?} \item{single}{Factor. Is the individual single?} \item{hschool}{Factor. Does the individual have a high-school diploma?} } } \details{Only includes variables used by Stock and Watson (2007), some of which had to be generated from the raw data. } \source{ Online complements to Stock and Watson (2007). } \references{ Munnell, A. H., Tootell, G. M. B., Browne, L. E. and McEneaney, J. (1996). Mortgage Lending in Boston: Interpreting HMDA Data. \emph{American Economic Review}, \bold{86}, 25--53. Stock, J. H. and Watson, M. W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("HMDA") ## Stock and Watson (2007) ## Equations 11.1, 11.3, 11.7, 11.8 and 11.10, pp. 387--395 fm1 <- lm(I(as.numeric(deny) - 1) ~ pirat, data = HMDA) fm2 <- lm(I(as.numeric(deny) - 1) ~ pirat + afam, data = HMDA) fm3 <- glm(deny ~ pirat, family = binomial(link = "probit"), data = HMDA) fm4 <- glm(deny ~ pirat + afam, family = binomial(link = "probit"), data = HMDA) fm5 <- glm(deny ~ pirat + afam, family = binomial(link = "logit"), data = HMDA) ## More examples can be found in: ## help("StockWatson2007") } \keyword{datasets} AER/man/Equipment.Rd0000644000176200001440000000525714252214047013704 0ustar liggesusers\name{Equipment} \alias{Equipment} \title{Transportation Equipment Manufacturing Data} \description{ Statewide data on transportation equipment manufacturing for 25 US states.} \usage{data("Equipment")} \format{ A data frame containing 25 observations on 4 variables. \describe{ \item{valueadded}{Aggregate output, in millions of 1957 dollars.} \item{capital}{Capital input, in millions of 1957 dollars.} \item{labor}{Aggregate labor input, in millions of man hours.} \item{firms}{Number of firms.} } } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/1998-v13.2/zellner-ryu/} Online complements to Greene (2003), Table F9.2. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Zellner, A. and Revankar, N. (1969). Generalized Production Functions. \emph{Review of Economic Studies}, \bold{36}, 241--250. Zellner, A. and Ryu, H. (1998). Alternative Functional Forms for Production, Cost and Returns to Scale Functions. \emph{Journal of Applied Econometrics}, \bold{13}, 101--127. } \seealso{\code{\link{Greene2003}}} \examples{ ## Greene (2003), Example 17.5 data("Equipment") ## Cobb-Douglas fm_cd <- lm(log(valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ## generalized Cobb-Douglas with Zellner-Revankar trafo GCobbDouglas <- function(theta) lm(I(log(valueadded/firms) + theta * valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ## yields classical Cobb-Douglas for theta = 0 fm_cd0 <- GCobbDouglas(0) ## ML estimation of generalized model ## choose starting values from classical model par0 <- as.vector(c(coef(fm_cd0), 0, mean(residuals(fm_cd0)^2))) ## set up likelihood function nlogL <- function(par) { beta <- par[1:3] theta <- par[4] sigma2 <- par[5] Y <- with(Equipment, valueadded/firms) K <- with(Equipment, capital/firms) L <- with(Equipment, labor/firms) rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L) lhs <- log(Y) + theta * Y rval <- sum(log(1 + theta * Y) - log(Y) + dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE)) return(-rval) } ## optimization opt <- optim(par0, nlogL, hessian = TRUE) ## Table 17.2 opt$par sqrt(diag(solve(opt$hessian)))[1:4] -opt$value ## re-fit ML model fm_ml <- GCobbDouglas(opt$par[4]) deviance(fm_ml) sqrt(diag(vcov(fm_ml))) ## fit NLS model rss <- function(theta) deviance(GCobbDouglas(theta)) optim(0, rss) opt2 <- optimize(rss, c(-1, 1)) fm_nls <- GCobbDouglas(opt2$minimum) -nlogL(c(coef(fm_nls), opt2$minimum, mean(residuals(fm_nls)^2))) } \keyword{datasets} AER/man/PSID7682.Rd0000644000176200001440000001070114252214056013011 0ustar liggesusers\name{PSID7682} \alias{PSID7682} \title{PSID Earnings Panel Data (1976--1982)} \description{ Panel data on earnings of 595 individuals for the years 1976--1982, originating from the Panel Study of Income Dynamics. } \usage{data("PSID7682")} \format{ A data frame containing 7 annual observations on 12 variables for 595 individuals. \describe{ \item{experience}{Years of full-time work experience.} \item{weeks}{Weeks worked.} \item{occupation}{factor. Is the individual a white-collar (\code{"white"}) or blue-collar (\code{"blue"}) worker?} \item{industry}{factor. Does the individual work in a manufacturing industry?} \item{south}{factor. Does the individual reside in the South?} \item{smsa}{factor. Does the individual reside in a SMSA (standard metropolitan statistical area)?} \item{married}{factor. Is the individual married?} \item{gender}{factor indicating gender.} \item{union}{factor. Is the individual's wage set by a union contract?} \item{education}{Years of education.} \item{ethnicity}{factor indicating ethnicity. Is the individual African-American (\code{"afam"}) or not (\code{"other"})?} \item{wage}{Wage.} \item{year}{factor indicating year.} \item{id}{factor indicating individual subject ID.} } } \details{ The data were originally analyzed by Cornwell and Rupert (1988) and employed for assessing various instrumental-variable estimators for panel models (including the Hausman-Taylor model). Baltagi and Khanti-Akom (1990) reanalyzed the data, made corrections to the data and also suggest modeling with a different set of instruments. \code{PSID7682} is the version of the data as provided by Baltagi (2005), or Greene (2008). Baltagi (2002) just uses the cross-section for the year 1982, i.e., \code{subset(PSID7682, year == "1982")}. This is also available as a standalone data set \code{\link{PSID1982}} because it was included in \pkg{AER} prior to the availability of the full \code{PSID7682} panel version. } \source{ Online complements to Baltagi (2005). \url{http://www.wiley.com/legacy/wileychi/baltagi3e/data_sets.html} Also provided in the online complements to Greene (2008), Table F9.1. \url{https://pages.stern.nyu.edu/~wgreene/Text/Edition6/tablelist6.htm} } \references{ Baltagi, B.H., and Khanti-Akom, S. (1990). On Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variables Estimators. \emph{Journal of Applied Econometrics}, \bold{5}, 401--406. Baltagi, B.H. (2001). \emph{Econometric Analysis of Panel Data}, 2nd ed. Chichester, UK: John Wiley. Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Baltagi, B.H. (2005). \emph{Econometric Analysis of Panel Data}, 3rd ed. Chichester, UK: John Wiley. Cornwell, C., and Rupert, P. (1988). Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variables Estimators. \emph{Journal of Applied Econometrics}, \bold{3}, 149--155. Greene, W.H. (2008). \emph{Econometric Analysis}, 6th ed. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{PSID1982}}, \code{\link{Baltagi2002}}} \examples{ \dontshow{ if(!requireNamespace("plm")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("PSID7682") library("plm") psid <- pdata.frame(PSID7682, c("id", "year")) ## Baltagi & Khanti-Akom, Table I, column "HT" ## original Cornwell & Rupert choice of exogenous variables psid_ht1 <- plm(log(wage) ~ weeks + south + smsa + married + experience + I(experience^2) + occupation + industry + union + gender + ethnicity + education | weeks + south + smsa + married + gender + ethnicity, data = psid, model = "ht") ## Baltagi & Khanti-Akom, Table II, column "HT" ## alternative choice of exogenous variables psid_ht2 <- plm(log(wage) ~ occupation + south + smsa + industry + experience + I(experience^2) + weeks + married + union + gender + ethnicity + education | occupation + south + smsa + industry + gender + ethnicity, data = psid, model = "ht") ## Baltagi & Khanti-Akom, Table III, column "HT" ## original choice of exogenous variables + time dummies ## (see also Baltagi, 2001, Table 7.1) psid$time <- psid$year psid_ht3 <- plm(log(wage) ~ weeks + south + smsa + married + experience + I(experience^2) + occupation + industry + union + gender + ethnicity + education + time | weeks + south + smsa + married + gender + ethnicity + time, data = psid, model = "ht") } \keyword{datasets} AER/man/OECDGrowth.Rd0000644000176200001440000000662014252214056013635 0ustar liggesusers\name{OECDGrowth} \alias{OECDGrowth} \title{OECD Macroeconomic Data} \description{ Cross-section data on OECD countries, used for growth regressions. } \usage{data("OECDGrowth")} \format{ A data frame with 22 observations on the following 6 variables. \describe{ \item{gdp85}{real GDP in 1985 (per person of working age, i.e., age 15 to 65), in 1985 international prices.} \item{gdp60}{real GDP in 1960 (per person of working age, i.e., age 15 to 65), in 1985 international prices.} \item{invest}{average of annual ratios of real domestic investment to real GDP (1960--1985).} \item{school}{percentage of the working-age population that is in secondary school.} \item{randd}{average of annual ratios of gross domestic expenditure on research and development to nominal GDP (of available observations during 1960--1985).} \item{popgrowth}{annual population growth 1960--1985, computed as \code{log(pop85/pop60)/25}.} } } \source{ Appendix 1 Nonneman and Vanhoudt (1996), except for one bad misprint: The value of \code{school} for Norway is given as 0.01, the correct value is 0.1 (see Mankiw, Romer and Weil, 1992). \code{OECDGrowth} contains the corrected data. } \references{ Mankiw, N.G., Romer, D., and Weil, D.N. (1992). A Contribution to the Empirics of Economic Growth. \emph{Quarterly Journal of Economics}, \bold{107}, 407--437. Nonneman, W., and Vanhoudt, P. (1996). A Further Augmentation of the Solow Model and the Empirics of Economic Growth. \emph{Quarterly Journal of Economics}, \bold{111}, 943--953. Zaman, A., Rousseeuw, P.J., and Orhan, M. (2001). Econometric Applications of High-Breakdown Robust Regression Techniques. \emph{Economics Letters}, \bold{71}, 1--8. } \seealso{\code{\link{GrowthDJ}}, \code{\link{GrowthSW}}} \examples{ \dontshow{ if(!requireNamespace("MASS")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("OECDGrowth") ## Nonneman and Vanhoudt (1996), Table II cor(OECDGrowth[, 3:6]) cor(log(OECDGrowth[, 3:6])) ## textbook Solow model ## Nonneman and Vanhoudt (1996), Table IV, and ## Zaman, Rousseeuw and Orhan (2001), Table 2 so_ols <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth+.05), data = OECDGrowth) summary(so_ols) ## augmented and extended Solow growth model ## Nonneman and Vanhoudt (1996), Table IV aso_ols <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(school) + log(popgrowth+.05), data = OECDGrowth) eso_ols <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(school) + log(randd) + log(popgrowth+.05), data = OECDGrowth) ## determine unusual observations using LTS library("MASS") so_lts <- lqs(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth+.05), data = OECDGrowth, psamp = 13, nsamp = "exact") ## large residuals nok1 <- abs(residuals(so_lts))/so_lts$scale[2] > 2.5 residuals(so_lts)[nok1]/so_lts$scale[2] ## high leverage X <- model.matrix(so_ols)[,-1] cv <- cov.rob(X, nsamp = "exact") mh <- sqrt(mahalanobis(X, cv$center, cv$cov)) nok2 <- mh > 2.5 mh[nok2] ## bad leverage nok <- which(nok1 & nok2) nok ## robust results without bad leverage points so_rob <- update(so_ols, subset = -nok) summary(so_rob) ## This is similar to Zaman, Rousseeuw and Orhan (2001), Table 2 ## but uses exact computations (and not sub-optimal results ## for the robust functions lqs and cov.rob) } \keyword{datasets} AER/man/MarkDollar.Rd0000644000176200001440000000221114252214056013750 0ustar liggesusers\name{MarkDollar} \alias{MarkDollar} \title{DEM/USD Exchange Rate Returns} \description{ A time series of intra-day percentage returns of Deutsche mark/US dollar (DEM/USD) exchange rates, consisting of two observations per day from 1992-10-01 through 1993-09-29. } \usage{data("MarkDollar")} \format{ A univariate time series of 518 returns (exact dates unknown) for the DEM/USD exchange rate. } \source{ Journal of Business & Economic Statistics Data Archive. \verb{http://www.amstat.org/publications/jbes/upload/index.cfm?fuseaction=ViewArticles&pub=JBES&issue=96-2-APR} } \references{ Bollerslev, T., and Ghysels, E. (1996). Periodic Autoregressive Conditional Heteroskedasticity. \emph{Journal of Business & Economic Statistics}, \bold{14}, 139--151. } \seealso{\code{\link{MarkPound}}} \examples{ \dontshow{ if(!requireNamespace("tseries")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} library("tseries") data("MarkDollar") ## GARCH(1,1) fm <- garch(MarkDollar, grad = "numerical") summary(fm) logLik(fm) } \keyword{datasets} AER/man/GrowthSW.Rd0000644000176200001440000000315314252214047013452 0ustar liggesusers\name{GrowthSW} \alias{GrowthSW} \title{Determinants of Economic Growth} \description{ Data on average growth rates over 1960--1995 for 65 countries, along with variables that are potentially related to growth. } \usage{data("GrowthSW")} \format{ A data frame containing 65 observations on 6 variables. \describe{ \item{growth}{average annual percentage growth of real GDP from 1960 to 1995.} \item{rgdp60}{value of GDP per capita in 1960, converted to 1960 US dollars.} \item{tradeshare}{average share of trade in the economy from 1960 to 1995, measured as the sum of exports (X) plus imports (M), divided by GDP; that is, the average value of (X + M)/GDP from 1960 to 1995.} \item{education}{average number of years of schooling of adult residents in that country in 1960.} \item{revolutions}{average annual number of revolutions, insurrections (successful or not) and coup d'etats in that country from 1960 to 1995.} \item{assassinations}{average annual number of political assassinations in that country from 1960 to 1995 (in per million population).} } } \source{ Online complements to Stock and Watson (2007). } \references{ Beck, T., Levine, R., and Loayza, N. (2000). Finance and the Sources of Growth. \emph{Journal of Financial Economics}, \bold{58}, 261--300. Stock, J. H. and Watson, M. W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{GrowthDJ}}, \code{\link{OECDGrowth}}} \examples{ data("GrowthSW") summary(GrowthSW) } \keyword{datasets} AER/man/USProdIndex.Rd0000644000176200001440000000272014252214047014071 0ustar liggesusers\name{USProdIndex} \alias{USProdIndex} \title{Index of US Industrial Production} \description{ Index of US industrial production (1985 = 100). } \usage{data("USProdIndex")} \format{ A quarterly multiple time series from 1960(1) to 1981(4) with 2 variables. \describe{ \item{unadjusted}{raw index of industrial production,} \item{adjusted}{seasonally adjusted index.} } } \source{ Online complements to Franses (1998). } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("USProdIndex") plot(USProdIndex, plot.type = "single", col = 1:2) ## EACF tables (Franses 1998, p. 99) ctrafo <- function(x) residuals(lm(x ~ factor(cycle(x)))) ddiff <- function(x) diff(diff(x, frequency(x)), 1) eacf <- function(y, lag = 12) { stopifnot(all(lag > 0)) if(length(lag) < 2) lag <- 1:lag rval <- sapply( list(y = y, dy = diff(y), cdy = ctrafo(diff(y)), Dy = diff(y, frequency(y)), dDy = ddiff(y)), function(x) acf(x, plot = FALSE, lag.max = max(lag))$acf[lag + 1]) rownames(rval) <- lag return(rval) } ## Franses (1998), Table 5.1 round(eacf(log(USProdIndex[,1])), digits = 3) ## Franses (1998), Equation 5.6: Unrestricted airline model ## (Franses: ma1 = 0.388 (0.063), ma4 = -0.739 (0.060), ma5 = -0.452 (0.069)) arima(log(USProdIndex[,1]), c(0, 1, 5), c(0, 1, 0), fixed = c(NA, 0, 0, NA, NA)) } \keyword{datasets} AER/man/GoldSilver.Rd0000755000176200001440000000552414252214056014007 0ustar liggesusers\name{GoldSilver} \alias{GoldSilver} \title{Gold and Silver Prices} \description{ Time series of gold and silver prices. } \usage{data("GoldSilver")} \format{ A daily multiple time series from 1977-12-30 to 2012-12-31 (of class \code{"zoo"} with \code{"Date"} index). \describe{ \item{gold}{spot price for gold,} \item{silver}{spot price for silver.} } } \source{ Online complements to Franses, van Dijk and Opschoor (2014). \url{https://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } \references{ Franses, P.H., van Dijk, D. and Opschoor, A. (2014). \emph{Time Series Models for Business and Economic Forecasting}, 2nd ed. Cambridge, UK: Cambridge University Press. } \examples{ \dontshow{ if(!requireNamespace("longmemo") || !requireNamespace("forecast") || !requireNamespace("vars") || !requireNamespace("tseries")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("GoldSilver", package = "AER") ## p.31, daily returns lgs <- log(GoldSilver) plot(lgs[, c("silver", "gold")]) dlgs <- 100 * diff(lgs) plot(dlgs[, c("silver", "gold")]) ## p.31, monthly log prices lgs7812 <- window(lgs, start = as.Date("1978-01-01")) lgs7812m <- aggregate(lgs7812, as.Date(as.yearmon(time(lgs7812))), mean) plot(lgs7812m, plot.type = "single", lty = 1:2, lwd = 2) ## p.93, empirical ACF of absolute daily gold returns, 1978-01-01 - 2012-12-31 absgret <- abs(100 * diff(lgs7812[, "gold"])) sacf <- acf(absgret, lag.max = 200, na.action = na.exclude, plot = FALSE) plot(1:201, sacf$acf, ylim = c(0.04, 0.28), type = "l", xaxs = "i", yaxs = "i", las = 1) \donttest{ ## ARFIMA(0,1,1) model, eq. (4.44) library("longmemo") WhittleEst(absgret, model = "fARIMA", p = 0, q = 1, start = list(H = 0.3, MA = .25)) library("forecast") arfima(as.vector(absgret), max.p = 0, max.q = 1) } ## p.254: VAR(2), monthly data for 1986.1 - 2012.12 library("vars") lgs8612 <- window(lgs, start = as.Date("1986-01-01")) dim(lgs8612) lgs8612m <- aggregate(lgs8612, as.Date(as.yearmon(time(lgs8612))), mean) plot(lgs8612m) dim(lgs8612m) VARselect(lgs8612m, 5) gs2 <- VAR(lgs8612m, 2) summary(gs2) summary(gs2)$covres ## ACF of residuals, p.256 acf(resid(gs2), 2, plot = FALSE) \donttest{ ## Figure 9.1, p.260 (somewhat different) plot(irf(gs2, impulse = "gold", n.ahead = 50), ylim = c(-0.02, 0.1)) plot(irf(gs2, impulse = "silver", n.ahead = 50), ylim = c(-0.02, 0.1)) } ## Table 9.2, p.261 fevd(gs2) ## p.266 ls <- lgs8612[, "silver"] lg <- lgs8612[, "gold"] gsreg <- lm(lg ~ ls) summary(gsreg) sgreg <- lm(ls ~ lg) summary(sgreg) library("tseries") adf.test(resid(gsreg), k = 0) adf.test(resid(sgreg), k = 0) } \keyword{datasets} AER/man/summary.ivreg.Rd0000644000176200001440000000642414252214047014542 0ustar liggesusers\name{summary.ivreg} \alias{summary.ivreg} \alias{print.summary.ivreg} \alias{vcov.ivreg} \alias{bread.ivreg} \alias{estfun.ivreg} \alias{anova.ivreg} \alias{hatvalues.ivreg} \alias{predict.ivreg} \alias{terms.ivreg} \alias{model.matrix.ivreg} \alias{update.ivreg} \title{Methods for Instrumental-Variable Regression} \description{ Methods to standard generics for instrumental-variable regressions fitted by \code{\link{ivreg}}. } \usage{ \method{summary}{ivreg}(object, vcov. = NULL, df = NULL, diagnostics = FALSE, \dots) \method{anova}{ivreg}(object, object2, test = "F", vcov = NULL, \dots) \method{terms}{ivreg}(x, component = c("regressors", "instruments"), \dots) \method{model.matrix}{ivreg}(object, component = c("projected", "regressors", "instruments"), \dots) } \arguments{ \item{object, object2, x}{an object of class \code{"ivreg"} as fitted by \code{\link{ivreg}}.} \item{vcov., vcov}{a specification of the covariance matrix of the estimated coefficients. This can be specified as a matrix or as a function yielding a matrix when applied to the fitted model. If it is a function it is also employed in the two diagnostic F tests (if \code{diagnostics = TRUE} in the \code{summary()} method).} \item{df}{the degrees of freedom to be used. By default this is set to residual degrees of freedom for which a t or F test is computed. Alternatively, it can be set to \code{Inf} (or equivalently \code{0}) for which a z or Chi-squared test is computed.} \item{diagnostics}{logical. Should diagnostic tests for the instrumental-variable regression be carried out? These encompass an F test of the first stage regression for weak instruments, a Wu-Hausman test for endogeneity, and a Sargan test of overidentifying restrictions (only if there are more instruments than regressors).} \item{test}{character specifying whether to compute the large sample Chi-squared statistic (with asymptotic Chi-squared distribution) or the finite sample F statistic (with approximate F distribution).} \item{component}{character specifying for which component of the terms or model matrix should be extracted. \code{"projected"} gives the matrix of regressors projected on the image of the instruments.} \item{\dots}{currently not used.} } \details{ \code{\link{ivreg}} is the high-level interface to the work-horse function \code{\link{ivreg.fit}}, a set of standard methods (including \code{summary}, \code{vcov}, \code{anova}, \code{hatvalues}, \code{predict}, \code{terms}, \code{model.matrix}, \code{update}, \code{bread}, \code{estfun}) is available. } \seealso{\code{\link{ivreg}}, \code{\link[stats:lmfit]{lm.fit}}} \examples{ ## data data("CigarettesSW") CigarettesSW <- transform(CigarettesSW, rprice = price/cpi, rincome = income/population/cpi, tdiff = (taxs - tax)/cpi ) ## model fm <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax/cpi), data = CigarettesSW, subset = year == "1995") summary(fm) summary(fm, vcov = sandwich, df = Inf, diagnostics = TRUE) ## ANOVA fm2 <- ivreg(log(packs) ~ log(rprice) | tdiff, data = CigarettesSW, subset = year == "1995") anova(fm, fm2, vcov = sandwich, test = "Chisq") } \keyword{regression} AER/man/GSS7402.Rd0000644000176200001440000000764414252214056012710 0ustar liggesusers\name{GSS7402} \alias{GSS7402} \title{US General Social Survey 1974--2002} \description{ Cross-section data for 9120 women taken from every fourth year of the US General Social Survey between 1974 and 2002 to investigate the determinants of fertility. } \usage{data("GSS7402")} \format{ A data frame containing 9120 observations on 10 variables. \describe{ \item{kids}{Number of children. This is coded as a numerical variable but note that the value \code{8} actually encompasses 8 or more children.} \item{age}{Age of respondent.} \item{education}{Highest year of school completed.} \item{year}{GSS year for respondent.} \item{siblings}{Number of brothers and sisters.} \item{agefirstbirth}{Woman's age at birth of first child.} \item{ethnicity}{factor indicating ethnicity. Is the individual Caucasian (\code{"cauc"}) or not (\code{"other"})?} \item{city16}{factor. Did the respondent live in a city (with population > 50,000) at age 16?} \item{lowincome16}{factor. Was the income below average at age 16?} \item{immigrant}{factor. Was the respondent (or both parents) born abroad?} } } \details{ This subset of the US General Social Survey (GSS) for every fourth year between 1974 and 2002 has been selected by Winkelmann and Boes (2009) to investigate the determinants of fertility. To do so they typically restrict their empirical analysis to the women for which the completed fertility is (assumed to be) known, employing the common cutoff of 40 years. Both, the average number of children borne to a woman and the probability of being childless, are of interest. } \source{ Online complements to Winkelmann and Boes (2009). } \references{ Winkelmann, R., and Boes, S. (2009). \emph{Analysis of Microdata}, 2nd ed. Berlin and Heidelberg: Springer-Verlag. } \seealso{\code{\link{WinkelmannBoes2009}}} \examples{ \dontshow{ if(!requireNamespace("lattice") || !requireNamespace("effects") || !requireNamespace("MASS")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## completed fertility subset data("GSS7402", package = "AER") gss40 <- subset(GSS7402, age >= 40) ## Chapter 1 ## exploratory statistics gss_kids <- prop.table(table(gss40$kids)) names(gss_kids)[9] <- "8+" gss_zoo <- as.matrix(with(gss40, cbind( tapply(kids, year, mean), tapply(kids, year, function(x) mean(x <= 0)), tapply(education, year, mean)))) colnames(gss_zoo) <- c("Number of children", "Proportion childless", "Years of schooling") gss_zoo <- zoo(gss_zoo, sort(unique(gss40$year))) ## visualizations instead of tables barplot(gss_kids, xlab = "Number of children ever borne to women (age 40+)", ylab = "Relative frequencies") library("lattice") trellis.par.set(theme = canonical.theme(color = FALSE)) print(xyplot(gss_zoo[,3:1], type = "b", xlab = "Year")) ## Chapter 3, Example 3.14 ## Table 3.1 gss40$nokids <- factor(gss40$kids <= 0, levels = c(FALSE, TRUE), labels = c("no", "yes")) gss40$trend <- gss40$year - 1974 nokids_p1 <- glm(nokids ~ 1, data = gss40, family = binomial(link = "probit")) nokids_p2 <- glm(nokids ~ trend, data = gss40, family = binomial(link = "probit")) nokids_p3 <- glm(nokids ~ trend + education + ethnicity + siblings, data = gss40, family = binomial(link = "probit")) lrtest(nokids_p1, nokids_p2, nokids_p3) ## Chapter 4, Figure 4.4 library("effects") nokids_p3_ef <- effect("education", nokids_p3, xlevels = list(education = 0:20)) plot(nokids_p3_ef, rescale.axis = FALSE, ylim = c(0, 0.3)) ## Chapter 8, Example 8.11 kids_pois <- glm(kids ~ education + trend + ethnicity + immigrant + lowincome16 + city16, data = gss40, family = poisson) library("MASS") kids_nb <- glm.nb(kids ~ education + trend + ethnicity + immigrant + lowincome16 + city16, data = gss40) lrtest(kids_pois, kids_nb) ## More examples can be found in: ## help("WinkelmannBoes2009") } \keyword{datasets} AER/man/TeachingRatings.Rd0000644000176200001440000000534714252214047015007 0ustar liggesusers\name{TeachingRatings} \alias{TeachingRatings} \title{Impact of Beauty on Instructor's Teaching Ratings} \description{ Data on course evaluations, course characteristics, and professor characteristics for 463 courses for the academic years 2000--2002 at the University of Texas at Austin. } \usage{data("TeachingRatings")} \format{ A data frame containing 463 observations on 13 variables. \describe{ \item{minority}{factor. Does the instructor belong to a minority (non-Caucasian)?} \item{age}{the professor's age.} \item{gender}{factor indicating instructor's gender.} \item{credits}{factor. Is the course a single-credit elective (e.g., yoga, aerobics, dance)?} \item{beauty}{rating of the instructor's physical appearance by a panel of six students, averaged across the six panelists, shifted to have a mean of zero.} \item{eval}{course overall teaching evaluation score, on a scale of 1 (very unsatisfactory) to 5 (excellent).} \item{division}{factor. Is the course an upper or lower division course? (Lower division courses are mainly large freshman and sophomore courses)?} \item{native}{factor. Is the instructor a native English speaker?} \item{tenure}{factor. Is the instructor on tenure track?} \item{students}{number of students that participated in the evaluation.} \item{allstudents}{number of students enrolled in the course.} \item{prof}{factor indicating instructor identifier.} } } \details{ A sample of student instructional ratings for a group of university teachers along with beauty rating (average from six independent judges) and a number of other characteristics. } \source{ The data were provided by Prof. Hamermesh. The first 8 variables are also available in the online complements to Stock and Watson (2007) at } \references{ Hamermesh, D.S., and Parker, A. (2005). Beauty in the Classroom: Instructors' Pulchritude and Putative Pedagogical Productivity. \emph{Economics of Education Review}, \bold{24}, 369--376. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("TeachingRatings", package = "AER") ## evaluation score vs. beauty plot(eval ~ beauty, data = TeachingRatings) fm <- lm(eval ~ beauty, data = TeachingRatings) abline(fm) summary(fm) ## prediction of Stock & Watson's evaluation score sw <- with(TeachingRatings, mean(beauty) + c(0, 1) * sd(beauty)) names(sw) <- c("Watson", "Stock") predict(fm, newdata = data.frame(beauty = sw)) ## Hamermesh and Parker, 2005, Table 3 fmw <- lm(eval ~ beauty + gender + minority + native + tenure + division + credits, weights = students, data = TeachingRatings) coeftest(fmw, vcov = vcovCL, cluster = TeachingRatings$prof) } \keyword{datasets} AER/man/TechChange.Rd0000644000176200001440000000275414252214056013725 0ustar liggesusers\name{TechChange} \alias{TechChange} \title{Technological Change Data} \description{ US time series data, 1909--1949. } \usage{data("TechChange")} \format{ An annual multiple time series from 1909 to 1949 with 3 variables. \describe{ \item{output}{Output.} \item{clr}{Capital/labor ratio.} \item{technology}{Index of technology.} } } \source{ Online complements to Greene (2003), Table F7.2. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Solow, R. (1957). Technical Change and the Aggregate Production Function. \emph{Review of Economics and Statistics}, \bold{39}, 312--320. } \seealso{\code{\link{Greene2003}}} \examples{ \dontshow{ if(!requireNamespace("strucchange")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("TechChange") ## Greene (2003) ## Exercise 7.1 fm1 <- lm(I(output/technology) ~ log(clr), data = TechChange) fm2 <- lm(I(output/technology) ~ I(1/clr), data = TechChange) fm3 <- lm(log(output/technology) ~ log(clr), data = TechChange) fm4 <- lm(log(output/technology) ~ I(1/clr), data = TechChange) ## Exercise 7.2 (a) and (c) plot(I(output/technology) ~ clr, data = TechChange) library("strucchange") sctest(I(output/technology) ~ log(clr), data = TechChange, type = "Chow", point = c(1942, 1)) } \keyword{datasets} AER/man/Affairs.Rd0000644000176200001440000000711314252214056013301 0ustar liggesusers\name{Affairs} \alias{Affairs} \title{Fair's Extramarital Affairs Data} \description{ Infidelity data, known as Fair's Affairs. Cross-section data from a survey conducted by Psychology Today in 1969. } \usage{data("Affairs")} \format{ A data frame containing 601 observations on 9 variables. \describe{ \item{affairs}{numeric. How often engaged in extramarital sexual intercourse during the past year? \code{0} = none, \code{1} = once, \code{2} = twice, \code{3} = 3 times, \code{7} = 4--10 times, \code{12} = monthly, \code{12} = weekly, \code{12} = daily.} \item{gender}{factor indicating gender.} \item{age}{numeric variable coding age in years: \code{17.5} = under 20, \code{22} = 20--24, \code{27} = 25--29, \code{32} = 30--34, \code{37} = 35--39, \code{42} = 40--44, \code{47} = 45--49, \code{52} = 50--54, \code{57} = 55 or over.} \item{yearsmarried}{numeric variable coding number of years married: \code{0.125} = 3 months or less, \code{0.417} = 4--6 months, \code{0.75} = 6 months--1 year, \code{1.5} = 1--2 years, \code{4} = 3--5 years, \code{7} = 6--8 years, \code{10} = 9--11 years, \code{15} = 12 or more years.} \item{children}{factor. Are there children in the marriage?} \item{religiousness}{numeric variable coding religiousness: \code{1} = anti, \code{2} = not at all, \code{3} = slightly, \code{4} = somewhat, \code{5} = very.} \item{education}{numeric variable coding level of education: \code{9} = grade school, \code{12} = high school graduate, \code{14} = some college, \code{16} = college graduate, \code{17} = some graduate work, \code{18} = master's degree, \code{20} = Ph.D., M.D., or other advanced degree.} \item{occupation}{numeric variable coding occupation according to Hollingshead classification (reverse numbering).} \item{rating}{numeric variable coding self rating of marriage: \code{1} = very unhappy, \code{2} = somewhat unhappy, \code{3} = average, \code{4} = happier than average, \code{5} = very happy.} } } \source{ Online complements to Greene (2003). Table F22.2. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Fair, R.C. (1978). A Theory of Extramarital Affairs. \emph{Journal of Political Economy}, \bold{86}, 45--61. } \seealso{\code{\link{Greene2003}}} \examples{ \dontshow{ if(!requireNamespace("MASS") || !requireNamespace("pscl")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("Affairs") ## Greene (2003) ## Tab. 22.3 and 22.4 fm_ols <- lm(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) fm_probit <- glm(I(affairs > 0) ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs, family = binomial(link = "probit")) fm_tobit <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) fm_tobit2 <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, right = 4, data = Affairs) fm_pois <- glm(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs, family = poisson) library("MASS") fm_nb <- glm.nb(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) ## Tab. 22.6 library("pscl") fm_zip <- zeroinfl(affairs ~ age + yearsmarried + religiousness + occupation + rating | age + yearsmarried + religiousness + occupation + rating, data = Affairs) } \keyword{datasets} AER/man/BenderlyZwick.Rd0000644000176200001440000000453414252214056014506 0ustar liggesusers\name{BenderlyZwick} \alias{BenderlyZwick} \title{Benderly and Zwick Data: Inflation, Growth and Stock Returns} \description{ Time series data, 1952--1982. } \usage{data("BenderlyZwick")} \format{ An annual multiple time series from 1952 to 1982 with 5 variables. \describe{ \item{returns}{real annual returns on stocks, measured using the Ibbotson-Sinquefeld data base.} \item{growth}{annual growth rate of output, measured by real GNP (from the given year to the next year).} \item{inflation}{inflation rate, measured as growth of price rate (from December of the previous year to December of the present year).} \item{growth2}{annual growth rate of real GNP as given by Baltagi.} \item{inflation2}{inflation rate as given by Baltagi} } } \source{ The first three columns of the data are from Table 1 in Benderly and Zwick (1985). The remaining columns are taken from the online complements of Baltagi (2002). The first column is identical in both sources, the other two variables differ in their numeric values and additionally the growth series seems to be lagged differently. Baltagi (2002) states Lott and Ray (1992) as the source for his version of the data set. } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Benderly, J., and Zwick, B. (1985). Inflation, Real Balances, Output and Real Stock Returns. \emph{American Economic Review}, \bold{75}, 1115--1123. Lott, W.F., and Ray, S.C. (1992). \emph{Applied Econometrics: Problems with Data Sets}. New York: The Dryden Press. Zaman, A., Rousseeuw, P.J., and Orhan, M. (2001). Econometric Applications of High-Breakdown Robust Regression Techniques. \emph{Economics Letters}, \bold{71}, 1--8. } \seealso{\code{\link{Baltagi2002}}} \examples{ \dontshow{ if(!requireNamespace("dynlm")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("BenderlyZwick") plot(BenderlyZwick) ## Benderly and Zwick (1985), p. 1116 library("dynlm") bz_ols <- dynlm(returns ~ growth + inflation, data = BenderlyZwick/100, start = 1956, end = 1981) summary(bz_ols) ## Zaman, Rousseeuw and Orhan (2001) ## use larger period, without scaling bz_ols2 <- dynlm(returns ~ growth + inflation, data = BenderlyZwick, start = 1954, end = 1981) summary(bz_ols2) } \keyword{datasets} AER/man/CPSSW.Rd0000644000176200001440000001050614252214047012625 0ustar liggesusers\name{CPSSW} \alias{CPSSW} \alias{CPSSW9298} \alias{CPSSW9204} \alias{CPSSW04} \alias{CPSSW3} \alias{CPSSW8} \alias{CPSSWEducation} \title{Stock and Watson CPS Data Sets} \description{ Stock and Watson (2007) provide several subsets created from March Current Population Surveys (CPS) with data on the relationship of earnings and education over several year. } \usage{ data("CPSSW9204") data("CPSSW9298") data("CPSSW04") data("CPSSW3") data("CPSSW8") data("CPSSWEducation") } \format{ \code{CPSSW9298}: A data frame containing 13,501 observations on 5 variables. \code{CPSSW9204}: A data frame containing 15,588 observations on 5 variables. \code{CPSSW04}: A data frame containing 7,986 observations on 4 variables. \code{CPSSW3}: A data frame containing 20,999 observations on 3 variables. \code{CPSSW8}: A data frame containing 61,395 observations on 5 variables. \code{CPSSWEducation}: A data frame containing 2,950 observations on 4 variables. \describe{ \item{year}{factor indicating year.} \item{earnings}{average hourly earnings (sum of annual pretax wages, salaries, tips, and bonuses, divided by the number of hours worked annually).} \item{education}{number of years of education.} \item{degree}{factor indicating highest educational degree (\code{"bachelor"} or\code{"highschool"}).} \item{gender}{factor indicating gender.} \item{age}{age in years.} \item{region}{factor indicating region of residence (\code{"Northeast"}, \code{"Midwest"}, \code{"South"}, \code{"West"}).} } } \details{ Each month the Bureau of Labor Statistics in the US Department of Labor conducts the Current Population Survey (CPS), which provides data on labor force characteristics of the population, including the level of employment, unemployment, and earnings. Approximately 65,000 randomly selected US households are surveyed each month. The sample is chosen by randomly selecting addresses from a database. Details can be found in the Handbook of Labor Statistics and is described on the Bureau of Labor Statistics website (\url{https://www.bls.gov/}). The survey conducted each March is more detailed than in other months and asks questions about earnings during the previous year. The data sets contain data for 2004 (from the March 2005 survey), and some also for earlier years (up to 1992). If education is given, it is for full-time workers, defined as workers employed more than 35 hours per week for at least 48 weeks in the previous year. Data are provided for workers whose highest educational achievement is a high school diploma and a bachelor's degree. Earnings for years earlier than 2004 were adjusted for inflation by putting them in 2004 USD using the Consumer Price Index (CPI). From 1992 to 2004, the price of the CPI market basket rose by 34.6\%. To make earnings in 1992 and 2004 comparable, 1992 earnings are inflated by the amount of overall CPI price inflation, by multiplying 1992 earnings by 1.346 to put them into 2004 dollars. \code{CPSSW9204} provides the distribution of earnings in the US in 1992 and 2004 for college-educated full-time workers aged 25--34. \code{CPSSW04} is a subset of \code{CPSSW9204} and provides the distribution of earnings in the US in 2004 for college-educated full-time workers aged 25--34. \code{CPSSWEducation} is similar (but not a true subset) and contains the distribution of earnings in the US in 2004 for college-educated full-time workers aged 29--30. \code{CPSSW8} contains a larger sample with workers aged 21--64, additionally providing information about the region of residence. \code{CPSSW9298} is similar to \code{CPSSW9204} providing data from 1992 and 1998 (with the 1992 subsets not being exactly identical). \code{CPSSW3} provides trends (from 1992 to 2004) in hourly earnings in the US of working college graduates aged 25--34 (in 2004 USD). } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{CPS1985}}, \code{\link{CPS1988}}} \examples{ data("CPSSW3") with(CPSSW3, interaction.plot(year, gender, earnings)) ## Stock and Watson, p. 165 data("CPSSWEducation") plot(earnings ~ education, data = CPSSWEducation) fm <- lm(earnings ~ education, data = CPSSWEducation) coeftest(fm, vcov = sandwich) abline(fm) } \keyword{datasets} AER/man/USMoney.Rd0000644000176200001440000000131714252214047013265 0ustar liggesusers\name{USMoney} \alias{USMoney} \title{USMoney} \description{ Money, output and price deflator time series data, 1950--1983. } \usage{data("USMoney")} \format{ A quarterly multiple time series from 1950 to 1983 with 3 variables. \describe{ \item{gnp}{nominal GNP.} \item{m1}{M1 measure of money stock.} \item{deflator}{implicit price deflator for GNP.} } } \source{ Online complements to Greene (2003), Table F20.2. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("USMoney") plot(USMoney) } \keyword{datasets} AER/man/CPS1985.Rd0000644000176200001440000000556014252214047012706 0ustar liggesusers\name{CPS1985} \alias{CPS1985} \title{Determinants of Wages Data (CPS 1985)} \description{ Cross-section data originating from the May 1985 Current Population Survey by the US Census Bureau (random sample drawn for Berndt 1991). } \usage{data("CPS1985")} \format{ A data frame containing 534 observations on 11 variables. \describe{ \item{wage}{Wage (in dollars per hour).} \item{education}{Number of years of education.} \item{experience}{Number of years of potential work experience (\code{age - education - 6}).} \item{age}{Age in years.} \item{ethnicity}{Factor with levels \code{"cauc"}, \code{"hispanic"}, \code{"other"}.} \item{region}{Factor. Does the individual live in the South?} \item{gender}{Factor indicating gender.} \item{occupation}{Factor with levels \code{"worker"} (tradesperson or assembly line worker), \code{"technical"} (technical or professional worker), \code{"services"} (service worker), \code{"office"} (office and clerical worker), \code{"sales"} (sales worker), \code{"management"} (management and administration).} \item{sector}{Factor with levels \code{"manufacturing"} (manufacturing or mining), \code{"construction"}, \code{"other"}.} \item{union}{Factor. Does the individual work on a union job?} \item{married}{Factor. Is the individual married?} } } \source{ StatLib. \url{http://lib.stat.cmu.edu/datasets/CPS_85_Wages} } \references{ Berndt, E.R. (1991). \emph{The Practice of Econometrics}. New York: Addison-Wesley. } \seealso{\code{\link{CPS1988}}, \code{\link{CPSSW}}} \examples{ data("CPS1985") ## Berndt (1991) ## Exercise 2, p. 196 cps_2b <- lm(log(wage) ~ union + education, data = CPS1985) cps_2c <- lm(log(wage) ~ -1 + union + education, data = CPS1985) ## Exercise 3, p. 198/199 cps_3a <- lm(log(wage) ~ education + experience + I(experience^2), data = CPS1985) cps_3b <- lm(log(wage) ~ gender + education + experience + I(experience^2), data = CPS1985) cps_3c <- lm(log(wage) ~ gender + married + education + experience + I(experience^2), data = CPS1985) cps_3e <- lm(log(wage) ~ gender*married + education + experience + I(experience^2), data = CPS1985) ## Exercise 4, p. 199/200 cps_4a <- lm(log(wage) ~ gender + union + ethnicity + education + experience + I(experience^2), data = CPS1985) cps_4c <- lm(log(wage) ~ gender + union + ethnicity + education * experience + I(experience^2), data = CPS1985) ## Exercise 6, p. 203 cps_6a <- lm(log(wage) ~ gender + union + ethnicity + education + experience + I(experience^2), data = CPS1985) cps_6a_noeth <- lm(log(wage) ~ gender + union + education + experience + I(experience^2), data = CPS1985) anova(cps_6a_noeth, cps_6a) ## Exercise 8, p. 208 cps_8a <- lm(log(wage) ~ gender + union + ethnicity + education + experience + I(experience^2), data = CPS1985) summary(cps_8a) coeftest(cps_8a, vcov = vcovHC(cps_8a, type = "HC0")) } \keyword{datasets} AER/man/USMacroSWM.Rd0000644000176200001440000000173014252214047013625 0ustar liggesusers\name{USMacroSWM} \alias{USMacroSWM} \title{Monthly US Macroeconomic Data (1947--2004, Stock & Watson)} \description{ Time series data on 4 US macroeconomic variables for 1947--2004. } \usage{data("USMacroSWM")} \format{ A monthly multiple time series from 1947(1) to 2004(4) with 4 variables. \describe{ \item{production}{index of industrial production.} \item{oil}{oil price shocks, starting 1948(1).} \item{cpi}{all-items consumer price index.} \item{expenditure}{personal consumption expenditures price deflator, starting 1959(1).} } } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{USMacroSW}}, \code{\link{USMacroSWQ}}, \code{\link{USMacroB}}, \code{\link{USMacroG}}} \examples{ data("USMacroSWM") plot(USMacroSWM) } \keyword{datasets} AER/man/ivreg.fit.Rd0000644000176200001440000000553314252214047013627 0ustar liggesusers\name{ivreg.fit} \alias{ivreg.fit} \title{Fitting Instrumental-Variable Regressions} \description{ Fit instrumental-variable regression by two-stage least squares. This is equivalent to direct instrumental-variables estimation when the number of instruments is equal to the number of predictors. } \usage{ ivreg.fit(x, y, z, weights, offset, \dots) } \arguments{ \item{x}{regressor matrix.} \item{y}{vector with dependent variable.} \item{z}{instruments matrix.} \item{weights}{an optional vector of weights to be used in the fitting process.} \item{offset}{an optional offset that can be used to specify an a priori known component to be included during fitting.} \item{\dots}{further arguments passed to \code{\link[stats:lmfit]{lm.fit}} or \code{\link[stats:lmfit]{lm.wfit}}, respectively.} } \details{ \code{\link{ivreg}} is the high-level interface to the work-horse function \code{ivreg.fit}, a set of standard methods (including \code{summary}, \code{vcov}, \code{anova}, \code{hatvalues}, \code{predict}, \code{terms}, \code{model.matrix}, \code{bread}, \code{estfun}) is available and described on \code{\link{summary.ivreg}}. \code{ivreg.fit} is a convenience interface to \code{\link[stats:lmfit]{lm.fit}} (or \code{\link[stats:lmfit]{lm.wfit}}) for first projecting \code{x} onto the image of \code{z} and the running a regression of \code{y} onto the projected \code{x}. } \value{ \code{ivreg.fit} returns an unclassed list with the following components: \item{coefficients}{parameter estimates.} \item{residuals}{a vector of residuals.} \item{fitted.values}{a vector of predicted means.} \item{weights}{either the vector of weights used (if any) or \code{NULL} (if none).} \item{offset}{either the offset used (if any) or \code{NULL} (if none).} \item{estfun}{a matrix containing the empirical estimating functions.} \item{n}{number of observations.} \item{nobs}{number of observations with non-zero weights.} \item{rank}{the numeric rank of the fitted linear model.} \item{df.residual}{residual degrees of freedom for fitted model.} \item{cov.unscaled}{unscaled covariance matrix for the coefficients.} \item{sigma}{residual standard error.} } \seealso{\code{\link{ivreg}}, \code{\link[stats:lmfit]{lm.fit}}} \examples{ ## data data("CigarettesSW") CigarettesSW <- transform(CigarettesSW, rprice = price/cpi, rincome = income/population/cpi, tdiff = (taxs - tax)/cpi ) ## high-level interface fm <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax/cpi), data = CigarettesSW, subset = year == "1995") ## low-level interface y <- fm$y x <- model.matrix(fm, component = "regressors") z <- model.matrix(fm, component = "instruments") ivreg.fit(x, y, z)$coefficients } \keyword{regression} AER/man/MASchools.Rd0000644000176200001440000000577714252214047013574 0ustar liggesusers\name{MASchools} \alias{MASchools} \title{Massachusetts Test Score Data} \description{The dataset contains data on test performance, school characteristics and student demographic backgrounds for school districts in Massachusetts. } \usage{data("MASchools")} \format{ A data frame containing 220 observations on 16 variables. \describe{ \item{district}{character. District code.} \item{municipality}{character. Municipality name.} \item{expreg}{Expenditures per pupil, regular.} \item{expspecial}{Expenditures per pupil, special needs.} \item{expbil}{Expenditures per pupil, bilingual.} \item{expocc}{Expenditures per pupil, occupational.} \item{exptot}{Expenditures per pupil, total.} \item{scratio}{Students per computer.} \item{special}{Special education students (per cent).} \item{lunch}{Percent qualifying for reduced-price lunch.} \item{stratio}{Student-teacher ratio.} \item{income}{Per capita income.} \item{score4}{4th grade score (math + English + science).} \item{score8}{8th grade score (math + English + science).} \item{salary}{Average teacher salary.} \item{english}{Percent of English learners.} } } \details{The Massachusetts data are district-wide averages for public elementary school districts in 1998. The test score is taken from the Massachusetts Comprehensive Assessment System (MCAS) test, administered to all fourth graders in Massachusetts public schools in the spring of 1998. The test is sponsored by the Massachusetts Department of Education and is mandatory for all public schools. The data analyzed here are the overall total score, which is the sum of the scores on the English, Math, and Science portions of the test. Data on the student-teacher ratio, the percent of students receiving a subsidized lunch and on the percent of students still learning english are averages for each elementary school district for the 1997--1998 school year and were obtained from the Massachusetts department of education. Data on average district income are from the 1990 US Census. } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J. H. and Watson, M. W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{CASchools}}} \examples{ ## Massachusetts data("MASchools") ## compare with California data("CASchools") CASchools$stratio <- with(CASchools, students/teachers) CASchools$score4 <- with(CASchools, (math + read)/2) ## Stock and Watson, parts of Table 9.1, p. 330 vars <- c("score4", "stratio", "english", "lunch", "income") cbind( CA_mean = sapply(CASchools[, vars], mean), CA_sd = sapply(CASchools[, vars], sd), MA_mean = sapply(MASchools[, vars], mean), MA_sd = sapply(MASchools[, vars], sd)) ## Stock and Watson, Table 9.2, p. 332, col. (1) fm1 <- lm(score4 ~ stratio, data = MASchools) coeftest(fm1, vcov = vcovHC(fm1, type = "HC1")) ## More examples, notably the entire Table 9.2, can be found in: ## help("StockWatson2007") } \keyword{datasets} AER/man/USMacroSWQ.Rd0000644000176200001440000000167314252214047013637 0ustar liggesusers\name{USMacroSWQ} \alias{USMacroSWQ} \title{Quarterly US Macroeconomic Data (1947--2004, Stock & Watson)} \description{ Time series data on 2 US macroeconomic variables for 1947--2004. } \usage{data("USMacroSWQ")} \format{ A quarterly multiple time series from 1947(1) to 2004(4) with 2 variables. \describe{ \item{gdp}{real GDP for the United States in billions of chained (2000) dollars seasonally adjusted, annual rate.} \item{tbill}{3-month treasury bill rate. Quarterly averages of daily dates in percentage points at an annual rate.} } } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{USMacroSW}}, \code{\link{USMacroSWM}}, \code{\link{USMacroB}}, \code{\link{USMacroG}}} \examples{ data("USMacroSWQ") plot(USMacroSWQ) } \keyword{datasets} AER/man/dispersiontest.Rd0000644000176200001440000000744314252214047015013 0ustar liggesusers\name{dispersiontest} \alias{dispersiontest} \title{Dispersion Test} \description{ Tests the null hypothesis of equidispersion in Poisson GLMs against the alternative of overdispersion and/or underdispersion. } \usage{ dispersiontest(object, trafo = NULL, alternative = c("greater", "two.sided", "less")) } \arguments{ \item{object}{a fitted Poisson GLM of class \code{"glm"} as fitted by \code{\link{glm}} with family \code{\link{poisson}}.} \item{trafo}{a specification of the alternative (see also details), can be numeric or a (positive) function or \code{NULL} (the default).} \item{alternative}{a character string specifying the alternative hypothesis: \code{"greater"} corresponds to overdispersion, \code{"less"} to underdispersion and \code{"two.sided"} to either one.} } \details{ The standard Poisson GLM models the (conditional) mean \eqn{\mathsf{E}[y] = \mu}{E[y] = mu} which is assumed to be equal to the variance \eqn{\mathsf{VAR}[y] = \mu}{VAR[y] = mu}. \code{dispersiontest} assesses the hypothesis that this assumption holds (equidispersion) against the alternative that the variance is of the form: \deqn{\mathsf{VAR}[y] \quad = \quad \mu \; + \; \alpha \cdot \mathrm{trafo}(\mu).}{VAR[y] = mu + alpha * trafo(mu).} Overdispersion corresponds to \eqn{\alpha > 0}{alpha > 0} and underdispersion to \eqn{\alpha < 0}{alpha < 0}. The coefficient \eqn{\alpha}{alpha} can be estimated by an auxiliary OLS regression and tested with the corresponding t (or z) statistic which is asymptotically standard normal under the null hypothesis. Common specifications of the transformation function \eqn{\mathrm{trafo}}{trafo} are \eqn{\mathrm{trafo}(\mu) = \mu^2}{trafo(mu) = mu^2} or \eqn{\mathrm{trafo}(\mu) = \mu}{trafo(mu) = mu}. The former corresponds to a negative binomial (NB) model with quadratic variance function (called NB2 by Cameron and Trivedi, 2005), the latter to a NB model with linear variance function (called NB1 by Cameron and Trivedi, 2005) or quasi-Poisson model with dispersion parameter, i.e., \deqn{\mathsf{VAR}[y] \quad = \quad (1 + \alpha) \cdot \mu = \mathrm{dispersion} \cdot \mu.}{VAR[y] = (1 + alpha) * mu = dispersion * mu.} By default, for \code{trafo = NULL}, the latter dispersion formulation is used in \code{dispersiontest}. Otherwise, if \code{trafo} is specified, the test is formulated in terms of the parameter \eqn{\alpha}{alpha}. The transformation \code{trafo} can either be specified as a function or an integer corresponding to the function \code{function(x) x^trafo}, such that \code{trafo = 1} and \code{trafo = 2} yield the linear and quadratic formulations respectively. } \value{An object of class \code{"htest"}.} \references{ Cameron, A.C. and Trivedi, P.K. (1990). Regression-based Tests for Overdispersion in the Poisson Model. \emph{Journal of Econometrics}, \bold{46}, 347--364. Cameron, A.C. and Trivedi, P.K. (1998). \emph{Regression Analysis of Count Data}. Cambridge: Cambridge University Press. Cameron, A.C. and Trivedi, P.K. (2005). \emph{Microeconometrics: Methods and Applications}. Cambridge: Cambridge University Press. } \seealso{\code{\link{glm}}, \code{\link{poisson}}, \code{\link[MASS]{glm.nb}}} \examples{ data("RecreationDemand") rd <- glm(trips ~ ., data = RecreationDemand, family = poisson) ## linear specification (in terms of dispersion) dispersiontest(rd) ## linear specification (in terms of alpha) dispersiontest(rd, trafo = 1) ## quadratic specification (in terms of alpha) dispersiontest(rd, trafo = 2) dispersiontest(rd, trafo = function(x) x^2) ## further examples data("DoctorVisits") dv <- glm(visits ~ . + I(age^2), data = DoctorVisits, family = poisson) dispersiontest(dv) data("NMES1988") nmes <- glm(visits ~ health + age + gender + married + income + insurance, data = NMES1988, family = poisson) dispersiontest(nmes) } \keyword{htest} AER/man/DoctorVisits.Rd0000644000176200001440000000534314252214056014365 0ustar liggesusers\name{DoctorVisits} \alias{DoctorVisits} \title{Australian Health Service Utilization Data} \description{ Cross-section data originating from the 1977--1978 Australian Health Survey. } \usage{data("DoctorVisits")} \format{ A data frame containing 5,190 observations on 12 variables. \describe{ \item{visits}{Number of doctor visits in past 2 weeks.} \item{gender}{Factor indicating gender.} \item{age}{Age in years divided by 100.} \item{income}{Annual income in tens of thousands of dollars.} \item{illness}{Number of illnesses in past 2 weeks.} \item{reduced}{Number of days of reduced activity in past 2 weeks due to illness or injury.} \item{health}{General health questionnaire score using Goldberg's method.} \item{private}{Factor. Does the individual have private health insurance?} \item{freepoor}{Factor. Does the individual have free government health insurance due to low income?} \item{freerepat}{Factor. Does the individual have free government health insurance due to old age, disability or veteran status?} \item{nchronic}{Factor. Is there a chronic condition not limiting activity?} \item{lchronic}{Factor. Is there a chronic condition limiting activity?} } } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/1997-v12.3/mullahy/} } \references{ Cameron, A.C. and Trivedi, P.K. (1986). Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests. \emph{Journal of Applied Econometrics}, \bold{1}, 29--53. Cameron, A.C. and Trivedi, P.K. (1998). \emph{Regression Analysis of Count Data}. Cambridge: Cambridge University Press. Mullahy, J. (1997). Heterogeneity, Excess Zeros, and the Structure of Count Data Models. \emph{Journal of Applied Econometrics}, \bold{12}, 337--350. } \seealso{\code{\link{CameronTrivedi1998}}} \examples{ \dontshow{ if(!requireNamespace("MASS")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("DoctorVisits", package = "AER") library("MASS") ## Cameron and Trivedi (1986), Table III, col. (1) dv_lm <- lm(visits ~ . + I(age^2), data = DoctorVisits) summary(dv_lm) ## Cameron and Trivedi (1998), Table 3.3 dv_pois <- glm(visits ~ . + I(age^2), data = DoctorVisits, family = poisson) summary(dv_pois) ## MLH standard errors coeftest(dv_pois, vcov = vcovOPG) ## MLOP standard errors logLik(dv_pois) ## standard errors denoted RS ("unspecified omega robust sandwich estimate") coeftest(dv_pois, vcov = sandwich) ## Cameron and Trivedi (1986), Table III, col. (4) dv_nb <- glm.nb(visits ~ . + I(age^2), data = DoctorVisits) summary(dv_nb) logLik(dv_nb) } \keyword{datasets} AER/man/CameronTrivedi1998.Rd0000644000176200001440000001243514252214056015177 0ustar liggesusers\name{CameronTrivedi1998} \alias{CameronTrivedi1998} \title{Data and Examples from Cameron and Trivedi (1998)} \description{ This manual page collects a list of examples from the book. Some solutions might not be exact and the list is certainly not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer. } \references{ Cameron, A.C. and Trivedi, P.K. (1998). \emph{Regression Analysis of Count Data}. Cambridge: Cambridge University Press. } \seealso{\code{\link{DoctorVisits}}, \code{\link{NMES1988}}, \code{\link{RecreationDemand}}} \examples{ \dontshow{ if(!requireNamespace("MASS") || !requireNamespace("pscl")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} \donttest{ library("MASS") library("pscl") ########################################### ## Australian health service utilization ## ########################################### ## data data("DoctorVisits", package = "AER") ## Poisson regression dv_pois <- glm(visits ~ . + I(age^2), data = DoctorVisits, family = poisson) dv_qpois <- glm(visits ~ . + I(age^2), data = DoctorVisits, family = quasipoisson) ## Table 3.3 round(cbind( Coef = coef(dv_pois), MLH = sqrt(diag(vcov(dv_pois))), MLOP = sqrt(diag(vcovOPG(dv_pois))), NB1 = sqrt(diag(vcov(dv_qpois))), RS = sqrt(diag(sandwich(dv_pois))) ), digits = 3) ## Table 3.4 ## NM2-ML dv_nb <- glm.nb(visits ~ . + I(age^2), data = DoctorVisits) summary(dv_nb) ## NB1-GLM = quasipoisson summary(dv_qpois) ## overdispersion tests (page 79) lrtest(dv_pois, dv_nb) ## p-value would need to be halved dispersiontest(dv_pois, trafo = 1) dispersiontest(dv_pois, trafo = 2) ########################################## ## Demand for medical care in NMES 1988 ## ########################################## ## select variables for analysis data("NMES1988", package = "AER") nmes <- NMES1988[,-(2:6)] ## dependent variable ## Table 6.1 table(cut(nmes$visits, c(0:13, 100)-0.5, labels = 0:13)) ## NegBin regression nmes_nb <- glm.nb(visits ~ ., data = nmes) ## NegBin hurdle nmes_h <- hurdle(visits ~ ., data = nmes, dist = "negbin") ## from Table 6.3 lrtest(nmes_nb, nmes_h) ## from Table 6.4 AIC(nmes_nb) AIC(nmes_nb, k = log(nrow(nmes))) AIC(nmes_h) AIC(nmes_h, k = log(nrow(nmes))) ## Table 6.8 coeftest(nmes_h, vcov = sandwich) logLik(nmes_h) 1/nmes_h$theta ################################################### ## Recreational boating trips to Lake Somerville ## ################################################### ## data data("RecreationDemand", package = "AER") ## Poisson model: ## Cameron and Trivedi (1998), Table 6.11 ## Ozuna and Gomez (1995), Table 2, col. 3 fm_pois <- glm(trips ~ ., data = RecreationDemand, family = poisson) summary(fm_pois) logLik(fm_pois) coeftest(fm_pois, vcov = sandwich) ## Negbin model: ## Cameron and Trivedi (1998), Table 6.11 ## Ozuna and Gomez (1995), Table 2, col. 5 library("MASS") fm_nb <- glm.nb(trips ~ ., data = RecreationDemand) coeftest(fm_nb, vcov = vcovOPG) logLik(fm_nb) ## ZIP model: ## Cameron and Trivedi (1998), Table 6.11 fm_zip <- zeroinfl(trips ~ . | quality + income, data = RecreationDemand) summary(fm_zip) logLik(fm_zip) ## Hurdle models ## Cameron and Trivedi (1998), Table 6.13 ## poisson-poisson sval <- list(count = c(2.15, 0.044, .467, -.097, .601, .002, -.036, .024), zero = c(-1.88, 0.815, .403, .01, 2.95, 0.006, -.052, .046)) fm_hp0 <- hurdle(trips ~ ., data = RecreationDemand, dist = "poisson", zero = "poisson", start = sval, maxit = 0) fm_hp1 <- hurdle(trips ~ ., data = RecreationDemand, dist = "poisson", zero = "poisson", start = sval) fm_hp2 <- hurdle(trips ~ ., data = RecreationDemand, dist = "poisson", zero = "poisson") sapply(list(fm_hp0, fm_hp1, fm_hp2), logLik) ## negbin-negbin fm_hnb <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin", zero = "negbin") summary(fm_hnb) logLik(fm_hnb) sval <- list(count = c(0.841, 0.172, .622, -.057, .576, .057, -.078, .012), zero = c(-3.046, 4.638, -.025, .026, 16.203, 0.030, -.156, .117), theta = c(count = 1/1.7, zero = 1/5.609)) fm_hnb2 <- try(hurdle(trips ~ ., data = RecreationDemand, dist = "negbin", zero = "negbin", start = sval)) if(!inherits(fm_hnb2, "try-error")) { summary(fm_hnb2) logLik(fm_hnb2) } ## geo-negbin sval98 <- list(count = c(0.841, 0.172, .622, -.057, .576, .057, -.078, .012), zero = c(-2.88, 1.44, .4, .03, 9.43, 0.01, -.08, .071), theta = c(count = 1/1.7)) sval96 <- list(count = c(0.841, 0.172, .622, -.057, .576, .057, -.078, .012), zero = c(-2.882, 1.437, .406, .026, 11.936, 0.008, -.081, .071), theta = c(count = 1/1.7)) fm_hgnb <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin", zero = "geometric") summary(fm_hgnb) logLik(fm_hgnb) ## logLik with starting values from Gurmu + Trivedi 1996 fm_hgnb96 <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin", zero = "geometric", start = sval96, maxit = 0) logLik(fm_hgnb96) ## logit-negbin fm_hgnb2 <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin") summary(fm_hgnb2) logLik(fm_hgnb2) ## Note: quasi-complete separation with(RecreationDemand, table(trips > 0, userfee)) } } \keyword{datasets} AER/man/USMacroG.Rd0000644000176200001440000000535314252214056013352 0ustar liggesusers\name{USMacroG} \alias{USMacroG} \title{US Macroeconomic Data (1950--2000, Greene)} \description{ Time series data on 12 US macroeconomic variables for 1950--2000. } \usage{data("USMacroG")} \format{ A quarterly multiple time series from 1950(1) to 2000(4) with 12 variables. \describe{ \item{gdp}{Real gross domestic product (in billion USD),} \item{consumption}{Real consumption expenditures,} \item{invest}{Real investment by private sector,} \item{government}{Real government expenditures,} \item{dpi}{Real disposable personal income,} \item{cpi}{Consumer price index,} \item{m1}{Nominal money stock,} \item{tbill}{Quarterly average of month end 90 day treasury bill rate,} \item{unemp}{Unemployment rate,} \item{population}{Population (in million), interpolation of year end figures using constant growth rate per quarter,} \item{inflation}{Inflation rate,} \item{interest}{Ex post real interest rate (essentially, \code{tbill - inflation}).} } } \source{ Online complements to Greene (2003). Table F5.1. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}, \code{\link{USMacroSW}}, \code{\link{USMacroSWQ}}, \code{\link{USMacroSWM}}, \code{\link{USMacroB}}} \examples{ \dontshow{ if(!requireNamespace("dynlm")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## data and trend as used by Greene (2003) data("USMacroG") ltrend <- 1:nrow(USMacroG) - 1 ## Example 6.1 ## Table 6.1 library("dynlm") fm6.1 <- dynlm(log(invest) ~ tbill + inflation + log(gdp) + ltrend, data = USMacroG) fm6.3 <- dynlm(log(invest) ~ I(tbill - inflation) + log(gdp) + ltrend, data = USMacroG) summary(fm6.1) summary(fm6.3) deviance(fm6.1) deviance(fm6.3) vcov(fm6.1)[2,3] ## F test linearHypothesis(fm6.1, "tbill + inflation = 0") ## alternatively anova(fm6.1, fm6.3) ## t statistic sqrt(anova(fm6.1, fm6.3)[2,5]) ## Example 8.2 ## Ct = b0 + b1*Yt + b2*Y(t-1) + v fm1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) ## Ct = a0 + a1*Yt + a2*C(t-1) + u fm2 <- dynlm(consumption ~ dpi + L(consumption), data = USMacroG) ## Cox test in both directions: coxtest(fm1, fm2) ## ...and do the same for jtest() and encomptest(). ## Notice that in this particular case two of them are coincident. jtest(fm1, fm2) encomptest(fm1, fm2) ## encomptest could also be performed `by hand' via fmE <- dynlm(consumption ~ dpi + L(dpi) + L(consumption), data = USMacroG) waldtest(fm1, fmE, fm2) ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/USConsump1950.Rd0000644000176200001440000000315714252214047014145 0ustar liggesusers\name{USConsump1950} \alias{USConsump1950} \title{US Consumption Data (1940--1950)} \description{ Time series data on US income and consumption expenditure, 1940--1950. } \usage{data("USConsump1950")} \format{ An annual multiple time series from 1940 to 1950 with 3 variables. \describe{ \item{income}{Disposable income.} \item{expenditure}{Consumption expenditure.} \item{war}{Indicator variable: Was the year a year of war?} } } \source{ Online complements to Greene (2003). Table F2.1. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}, \code{\link{USConsump1979}}, \code{\link{USConsump1993}}} \examples{ ## Greene (2003) ## data data("USConsump1950") usc <- as.data.frame(USConsump1950) usc$war <- factor(usc$war, labels = c("no", "yes")) ## Example 2.1 plot(expenditure ~ income, data = usc, type = "n", xlim = c(225, 375), ylim = c(225, 350)) with(usc, text(income, expenditure, time(USConsump1950))) ## single model fm <- lm(expenditure ~ income, data = usc) summary(fm) ## different intercepts for war yes/no fm2 <- lm(expenditure ~ income + war, data = usc) summary(fm2) ## compare anova(fm, fm2) ## visualize abline(fm, lty = 3) abline(coef(fm2)[1:2]) abline(sum(coef(fm2)[c(1, 3)]), coef(fm2)[2], lty = 2) ## Example 3.2 summary(fm)$r.squared summary(lm(expenditure ~ income, data = usc, subset = war == "no"))$r.squared summary(fm2)$r.squared } \keyword{datasets} AER/man/CollegeDistance.Rd0000644000176200001440000000473614252214047014763 0ustar liggesusers\name{CollegeDistance} \alias{CollegeDistance} \title{College Distance Data} \description{ Cross-section data from the High School and Beyond survey conducted by the Department of Education in 1980, with a follow-up in 1986. The survey included students from approximately 1,100 high schools. } \usage{data("CollegeDistance")} \format{ A data frame containing 4,739 observations on 14 variables. \describe{ \item{gender}{factor indicating gender.} \item{ethnicity}{factor indicating ethnicity (African-American, Hispanic or other).} \item{score}{base year composite test score. These are achievement tests given to high school seniors in the sample.} \item{fcollege}{factor. Is the father a college graduate?} \item{mcollege}{factor. Is the mother a college graduate?} \item{home}{factor. Does the family own their home?} \item{urban}{factor. Is the school in an urban area?} \item{unemp}{county unemployment rate in 1980.} \item{wage}{state hourly wage in manufacturing in 1980.} \item{distance}{distance from 4-year college (in 10 miles).} \item{tuition}{average state 4-year college tuition (in 1000 USD).} \item{education}{number of years of education.} \item{income}{factor. Is the family income above USD 25,000 per year?} \item{region}{factor indicating region (West or other).} } } \details{ Rouse (1995) computed years of education by assigning 12 years to all members of the senior class. Each additional year of secondary education counted as a one year. Students with vocational degrees were assigned 13 years, AA degrees were assigned 14 years, BA degrees were assigned 16 years, those with some graduate education were assigned 17 years, and those with a graduate degree were assigned 18 years. Stock and Watson (2007) provide separate data files for the students from Western states and the remaining students. \code{CollegeDistance} includes both data sets, subsets are easily obtained (see also examples). } \source{ Online complements to Stock and Watson (2007). } \references{ Rouse, C.E. (1995). Democratization or Diversion? The Effect of Community Colleges on Educational Attainment. \emph{Journal of Business & Economic Statistics}, \bold{12}, 217--224. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ ## exclude students from Western states data("CollegeDistance") cd <- subset(CollegeDistance, region != "west") summary(cd) } \keyword{datasets} AER/man/ConsumerGood.Rd0000644000176200001440000000131314252214047014326 0ustar liggesusers\name{ConsumerGood} \alias{ConsumerGood} \title{Properties of a Fast-Moving Consumer Good} \description{ Time series of distribution, market share and price of a fast-moving consumer good. } \usage{data("ConsumerGood")} \format{ A weekly multiple time series from 1989(11) to 1991(9) with 3 variables. \describe{ \item{distribution}{Distribution.} \item{share}{Market share.} \item{price}{Price.} } } \source{ Online complements to Franses (1998). } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("ConsumerGood") plot(ConsumerGood) } \keyword{datasets} AER/man/Journals.Rd0000644000176200001440000000671114252214056013526 0ustar liggesusers\name{Journals} \alias{Journals} \title{Economics Journal Subscription Data} \description{ Subscriptions to economics journals at US libraries, for the year 2000. } \usage{data("Journals")} \format{ A data frame containing 180 observations on 10 variables. \describe{ \item{title}{Journal title.} \item{publisher}{factor with publisher name.} \item{society}{factor. Is the journal published by a scholarly society?} \item{price}{Library subscription price.} \item{pages}{Number of pages.} \item{charpp}{Characters per page.} \item{citations}{Total number of citations.} \item{foundingyear}{Year journal was founded.} \item{subs}{Number of library subscriptions.} \item{field}{factor with field description.} } } \details{ Data on 180 economic journals, collected in particular for analyzing journal pricing. See also \url{https://econ.ucsb.edu/~tedb/Journals/jpricing.html} for general information on this topic as well as a more up-to-date version of the data set. This version is taken from Stock and Watson (2007). The data as obtained from the online complements for Stock and Watson (2007) contained two journals with title \dQuote{World Development}. One of these (observation 80) seemed to be an error and was changed to \dQuote{The World Economy}. } \source{ Online complements to Stock and Watson (2007). } \references{ Bergstrom, T. (2001). Free Labor for Costly Journals? \emph{Journal of Economic Perspectives}, 15, 183--198. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ \dontshow{ if(!requireNamespace("strucchange")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## data and transformed variables data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations journals$age <- 2000 - Journals$foundingyear journals$chars <- Journals$charpp*Journals$pages/10^6 ## Stock and Watson (2007) ## Figure 8.9 (a) and (b) plot(subs ~ citeprice, data = journals, pch = 19) plot(log(subs) ~ log(citeprice), data = journals, pch = 19) fm1 <- lm(log(subs) ~ log(citeprice), data = journals) abline(fm1) ## Table 8.2, use HC1 for comparability with Stata fm2 <- lm(subs ~ citeprice + age + chars, data = log(journals)) fm3 <- lm(subs ~ citeprice + I(citeprice^2) + I(citeprice^3) + age + I(age * citeprice) + chars, data = log(journals)) fm4 <- lm(subs ~ citeprice + age + I(age * citeprice) + chars, data = log(journals)) coeftest(fm1, vcov = vcovHC(fm1, type = "HC1")) coeftest(fm2, vcov = vcovHC(fm2, type = "HC1")) coeftest(fm3, vcov = vcovHC(fm3, type = "HC1")) coeftest(fm4, vcov = vcovHC(fm4, type = "HC1")) waldtest(fm3, fm4, vcov = vcovHC(fm3, type = "HC1")) ## changes with respect to age library("strucchange") ## Nyblom-Hansen test scus <- gefp(subs ~ citeprice, data = log(journals), fit = lm, order.by = ~ age) plot(scus, functional = meanL2BB) ## estimate breakpoint(s) journals <- journals[order(journals$age),] bp <- breakpoints(subs ~ citeprice, data = log(journals), h = 20) plot(bp) bp.age <- journals$age[bp$breakpoints] ## visualization plot(subs ~ citeprice, data = log(journals), pch = 19, col = (age > log(bp.age)) + 1) abline(coef(bp)[1,], col = 1) abline(coef(bp)[2,], col = 2) legend("bottomleft", legend = c("age > 18", "age < 18"), lty = 1, col = 2:1, bty = "n") } \keyword{datasets} AER/man/MarkPound.Rd0000644000176200001440000000430314252214056013624 0ustar liggesusers\name{MarkPound} \alias{MarkPound} \title{DEM/GBP Exchange Rate Returns} \description{ A daily time series of percentage returns of Deutsche mark/British pound (DEM/GBP) exchange rates from 1984-01-03 through 1991-12-31. } \usage{data("MarkPound")} \format{ A univariate time series of 1974 returns (exact dates unknown) for the DEM/GBP exchange rate. } \details{ Greene (2003, Table F11.1) rounded the series to six digits while eight digits are given in Bollerslev and Ghysels (1996). Here, we provide the original data. Using \code{\link{round}} a series can be produced that is virtually identical to that of Greene (2003) (except for eight observations where a slightly different rounding arithmetic was used). } \source{ Journal of Business & Economic Statistics Data Archive. \verb{http://www.amstat.org/publications/jbes/upload/index.cfm?fuseaction=ViewArticles&pub=JBES&issue=96-2-APR} } \references{ Bollerslev, T., and Ghysels, E. (1996). Periodic Autoregressive Conditional Heteroskedasticity. \emph{Journal of Business & Economic Statistics}, \bold{14}, 139--151. Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}, \code{\link{MarkDollar}}} \examples{ \dontshow{ if(!requireNamespace("tseries") || !requireNamespace("dynlm")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## data as given by Greene (2003) data("MarkPound") mp <- round(MarkPound, digits = 6) ## Figure 11.3 in Greene (2003) plot(mp) ## Example 11.8 in Greene (2003), Table 11.5 library("tseries") mp_garch <- garch(mp, grad = "numerical") summary(mp_garch) logLik(mp_garch) ## Greene (2003) also includes a constant and uses different ## standard errors (presumably computed from Hessian), here ## OPG standard errors are used. garchFit() in "fGarch" ## implements the approach used by Greene (2003). ## compare Errata to Greene (2003) library("dynlm") res <- residuals(dynlm(mp ~ 1))^2 mp_ols <- dynlm(res ~ L(res, 1:10)) summary(mp_ols) logLik(mp_ols) summary(mp_ols)$r.squared * length(residuals(mp_ols)) } \keyword{datasets} AER/man/RecreationDemand.Rd0000644000176200001440000000711614252214056015135 0ustar liggesusers\name{RecreationDemand} \alias{RecreationDemand} \title{Recreation Demand Data} \description{ Cross-section data on the number of recreational boating trips to Lake Somerville, Texas, in 1980, based on a survey administered to 2,000 registered leisure boat owners in 23 counties in eastern Texas. } \usage{data("RecreationDemand")} \format{ A data frame containing 659 observations on 8 variables. \describe{ \item{trips}{Number of recreational boating trips.} \item{quality}{Facility's subjective quality ranking on a scale of 1 to 5.} \item{ski}{factor. Was the individual engaged in water-skiing at the lake?} \item{income}{Annual household income of the respondent (in 1,000 USD).} \item{userfee}{factor. Did the individual pay an annual user fee at Lake Somerville?} \item{costC}{Expenditure when visiting Lake Conroe (in USD).} \item{costS}{Expenditure when visiting Lake Somerville (in USD).} \item{costH}{Expenditure when visiting Lake Houston (in USD).} } } \details{ According to the original source (Seller, Stoll and Chavas, 1985, p. 168), the quality rating is on a scale from 1 to 5 and gives 0 for those who had not visited the lake. This explains the remarkably low mean for this variable, but also suggests that its treatment in various more recent publications is far from ideal. For consistency with other sources we handle the variable as a numerical variable, including the zeros. } \source{ Journal of Business & Economic Statistics Data Archive. \verb{http://www.amstat.org/publications/jbes/upload/index.cfm?fuseaction=ViewArticles&pub=JBES&issue=96-4-OCT} } \references{ Cameron, A.C. and Trivedi, P.K. (1998). \emph{Regression Analysis of Count Data}. Cambridge: Cambridge University Press. Gurmu, S. and Trivedi, P.K. (1996). Excess Zeros in Count Models for Recreational Trips. \emph{Journal of Business & Economic Statistics}, \bold{14}, 469--477. Ozuna, T. and Gomez, I.A. (1995). Specification and Testing of Count Data Recreation Demand Functions. \emph{Empirical Economics}, \bold{20}, 543--550. Seller, C., Stoll, J.R. and Chavas, J.-P. (1985). Validation of Empirical Measures of Welfare Change: A Comparison of Nonmarket Techniques. \emph{Land Economics}, \bold{61}, 156--175. } \seealso{\code{\link{CameronTrivedi1998}}} \examples{ \dontshow{ if(!requireNamespace("MASS") || !requireNamespace("pscl")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("RecreationDemand") ## Poisson model: ## Cameron and Trivedi (1998), Table 6.11 ## Ozuna and Gomez (1995), Table 2, col. 3 fm_pois <- glm(trips ~ ., data = RecreationDemand, family = poisson) summary(fm_pois) logLik(fm_pois) coeftest(fm_pois, vcov = sandwich) ## Negbin model: ## Cameron and Trivedi (1998), Table 6.11 ## Ozuna and Gomez (1995), Table 2, col. 5 library("MASS") fm_nb <- glm.nb(trips ~ ., data = RecreationDemand) coeftest(fm_nb, vcov = vcovOPG) ## ZIP model: ## Cameron and Trivedi (1998), Table 6.11 library("pscl") fm_zip <- zeroinfl(trips ~ . | quality + income, data = RecreationDemand) summary(fm_zip) ## Hurdle models ## Cameron and Trivedi (1998), Table 6.13 ## poisson-poisson fm_hp <- hurdle(trips ~ ., data = RecreationDemand, dist = "poisson", zero = "poisson") ## negbin-negbin fm_hnb <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin", zero = "negbin") ## binom-negbin == geo-negbin fm_hgnb <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin") ## Note: quasi-complete separation with(RecreationDemand, table(trips > 0, userfee)) } \keyword{datasets} AER/man/ivreg.Rd0000644000176200001440000001242714252214047013046 0ustar liggesusers\name{ivreg} \alias{ivreg} \alias{print.ivreg} \title{Instrumental-Variable Regression} \description{ Fit instrumental-variable regression by two-stage least squares. This is equivalent to direct instrumental-variables estimation when the number of instruments is equal to the number of predictors. } \usage{ ivreg(formula, instruments, data, subset, na.action, weights, offset, contrasts = NULL, model = TRUE, y = TRUE, x = FALSE, \dots) } \arguments{ \item{formula, instruments}{formula specification(s) of the regression relationship and the instruments. Either \code{instruments} is missing and \code{formula} has three parts as in \code{y ~ x1 + x2 | z1 + z2 + z3} (recommended) or \code{formula} is \code{y ~ x1 + x2} and \code{instruments} is a one-sided formula \code{~ z1 + z2 + z3} (only for backward compatibility).} \item{data}{an optional data frame containing the variables in the model. By default the variables are taken from the environment of the \code{formula}.} \item{subset}{an optional vector specifying a subset of observations to be used in fitting the model.} \item{na.action}{a function that indicates what should happen when the data contain \code{NA}s. The default is set by the \code{na.action} option.} \item{weights}{an optional vector of weights to be used in the fitting process.} \item{offset}{an optional offset that can be used to specify an a priori known component to be included during fitting.} \item{contrasts}{an optional list. See the \code{contrasts.arg} of \code{\link[stats:model.matrix]{model.matrix.default}}.} \item{model, x, y}{logicals. If \code{TRUE} the corresponding components of the fit (the model frame, the model matrices , the response) are returned.} \item{\dots}{further arguments passed to \code{\link{ivreg.fit}}.} } \details{ \code{ivreg} is the high-level interface to the work-horse function \code{\link{ivreg.fit}}, a set of standard methods (including \code{print}, \code{summary}, \code{vcov}, \code{anova}, \code{hatvalues}, \code{predict}, \code{terms}, \code{model.matrix}, \code{bread}, \code{estfun}) is available and described on \code{\link{summary.ivreg}}. Regressors and instruments for \code{ivreg} are most easily specified in a formula with two parts on the right-hand side, e.g., \code{y ~ x1 + x2 | z1 + z2 + z3}, where \code{x1} and \code{x2} are the regressors and \code{z1}, \code{z2}, and \code{z3} are the instruments. Note that exogenous regressors have to be included as instruments for themselves. For example, if there is one exogenous regressor \code{ex} and one endogenous regressor \code{en} with instrument \code{in}, the appropriate formula would be \code{y ~ ex + en | ex + in}. Equivalently, this can be specified as \code{y ~ ex + en | . - en + in}, i.e., by providing an update formula with a \code{.} in the second part of the formula. The latter is typically more convenient, if there is a large number of exogenous regressors. } \value{ \code{ivreg} returns an object of class \code{"ivreg"}, with the following components: \item{coefficients}{parameter estimates.} \item{residuals}{a vector of residuals.} \item{fitted.values}{a vector of predicted means.} \item{weights}{either the vector of weights used (if any) or \code{NULL} (if none).} \item{offset}{either the offset used (if any) or \code{NULL} (if none).} \item{n}{number of observations.} \item{nobs}{number of observations with non-zero weights.} \item{rank}{the numeric rank of the fitted linear model.} \item{df.residual}{residual degrees of freedom for fitted model.} \item{cov.unscaled}{unscaled covariance matrix for the coefficients.} \item{sigma}{residual standard error.} \item{call}{the original function call.} \item{formula}{the model formula.} \item{terms}{a list with elements \code{"regressors"} and \code{"instruments"} containing the terms objects for the respective components.} \item{levels}{levels of the categorical regressors.} \item{contrasts}{the contrasts used for categorical regressors.} \item{model}{the full model frame (if \code{model = TRUE}).} \item{y}{the response vector (if \code{y = TRUE}).} \item{x}{a list with elements \code{"regressors"}, \code{"instruments"}, \code{"projected"}, containing the model matrices from the respective components (if \code{x = TRUE}). \code{"projected"} is the matrix of regressors projected on the image of the instruments.} } \references{ Greene, W. H. (1993) \emph{Econometric Analysis}, 2nd ed., Macmillan. } \seealso{\code{\link{ivreg.fit}}, \code{\link[stats]{lm}}, \code{\link[stats:lmfit]{lm.fit}}} \examples{ ## data data("CigarettesSW", package = "AER") CigarettesSW <- transform(CigarettesSW, rprice = price/cpi, rincome = income/population/cpi, tdiff = (taxs - tax)/cpi ) ## model fm <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax/cpi), data = CigarettesSW, subset = year == "1995") summary(fm) summary(fm, vcov = sandwich, df = Inf, diagnostics = TRUE) ## ANOVA fm2 <- ivreg(log(packs) ~ log(rprice) | tdiff, data = CigarettesSW, subset = year == "1995") anova(fm, fm2) } \keyword{regression} AER/man/Municipalities.Rd0000644000176200001440000000320414252214047014702 0ustar liggesusers\name{Municipalities} \alias{Municipalities} \title{Municipal Expenditure Data} \description{ Panel data set for 265 Swedish municipalities covering 9 years (1979-1987). } \usage{data("Municipalities")} \format{ A data frame containing 2,385 observations on 5 variables. \describe{ \item{municipality}{factor with ID number for municipality.} \item{year}{factor coding year.} \item{expenditures}{total expenditures.} \item{revenues}{total own-source revenues.} \item{grants}{intergovernmental grants received by the municipality.} } } \details{ Total expenditures contains both capital and current expenditures. Expenditures, revenues, and grants are expressed in million SEK. The series are deflated and in per capita form. The implicit deflator is a municipality-specific price index obtained by dividing total local consumption expenditures at current prices by total local consumption expenditures at fixed (1985) prices. The data are gathered by Statistics Sweden and obtained from Financial Accounts for the Municipalities (Kommunernas Finanser). } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/2000-v15.4/dahlberg-johansson/} } \references{ Dahlberg, M., and Johansson, E. (2000). An Examination of the Dynamic Behavior of Local Governments Using GMM Bootstrapping Methods. \emph{Journal of Applied Econometrics}, \bold{15}, 401--416. Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ ## Greene (2003), Table 18.2 data("Municipalities") summary(Municipalities) } \keyword{datasets} AER/man/Medicaid1986.Rd0000644000176200001440000000757014252214056013764 0ustar liggesusers\name{Medicaid1986} \alias{Medicaid1986} \title{Medicaid Utilization Data} \description{ Cross-section data originating from the 1986 Medicaid Consumer Survey. The data comprise two groups of Medicaid eligibles at two sites in California (Santa Barbara and Ventura counties): a group enrolled in a managed care demonstration program and a fee-for-service comparison group of non-enrollees. } \usage{data("Medicaid1986")} \format{ A data frame containing 996 observations on 14 variables. \describe{ \item{visits}{Number of doctor visits.} \item{exposure}{Length of observation period for ambulatory care (days).} \item{children}{Total number of children in the household.} \item{age}{Age of the respondent.} \item{income}{Annual household income (average of income range in million USD).} \item{health1}{The first principal component (divided by 1000) of three health-status variables: functional limitations, acute conditions, and chronic conditions.} \item{health2}{The second principal component (divided by 1000) of three health-status variables: functional limitations, acute conditions, and chronic conditions.} \item{access}{Availability of health services (0 = low access, 1 = high access).} \item{married}{Factor. Is the individual married?} \item{gender}{Factor indicating gender.} \item{ethnicity}{Factor indicating ethnicity (\code{"cauc"} or \code{"other"}).} \item{school}{Number of years completed in school.} \item{enroll}{Factor. Is the individual enrolled in a demonstration program?} \item{program}{Factor indicating the managed care demonstration program: Aid to Families with Dependent Children (\code{"afdc"}) or non-institutionalized Supplementary Security Income (\code{"ssi"}).} } } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/1997-v12.3/gurmu/} } \references{ Gurmu, S. (1997). Semi-Parametric Estimation of Hurdle Regression Models with an Application to Medicaid Utilization. \emph{Journal of Applied Econometrics}, \bold{12}, 225--242. } \examples{ \dontshow{ if(!requireNamespace("MASS") || !requireNamespace("pscl")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## data and packages data("Medicaid1986") library("MASS") library("pscl") ## scale regressors Medicaid1986$age2 <- Medicaid1986$age^2 / 100 Medicaid1986$school <- Medicaid1986$school / 10 Medicaid1986$income <- Medicaid1986$income / 10 ## subsets afdc <- subset(Medicaid1986, program == "afdc")[, c(1, 3:4, 15, 5:9, 11:13)] ssi <- subset(Medicaid1986, program == "ssi")[, c(1, 3:4, 15, 5:13)] ## Gurmu (1997): ## Table VI., Poisson and negbin models afdc_pois <- glm(visits ~ ., data = afdc, family = poisson) summary(afdc_pois) coeftest(afdc_pois, vcov = sandwich) afdc_nb <- glm.nb(visits ~ ., data = afdc) ssi_pois <- glm(visits ~ ., data = ssi, family = poisson) ssi_nb <- glm.nb(visits ~ ., data = ssi) ## Table VII., Hurdle models (without semi-parametric effects) afdc_hurdle <- hurdle(visits ~ . | . - access, data = afdc, dist = "negbin") ssi_hurdle <- hurdle(visits ~ . | . - access, data = ssi, dist = "negbin") ## Table VIII., Observed and expected frequencies round(cbind( Observed = table(afdc$visits)[1:8], Poisson = sapply(0:7, function(x) sum(dpois(x, fitted(afdc_pois)))), Negbin = sapply(0:7, function(x) sum(dnbinom(x, mu = fitted(afdc_nb), size = afdc_nb$theta))), Hurdle = colSums(predict(afdc_hurdle, type = "prob")[,1:8]) )/nrow(afdc), digits = 3) * 100 round(cbind( Observed = table(ssi$visits)[1:8], Poisson = sapply(0:7, function(x) sum(dpois(x, fitted(ssi_pois)))), Negbin = sapply(0:7, function(x) sum(dnbinom(x, mu = fitted(ssi_nb), size = ssi_nb$theta))), Hurdle = colSums(predict(ssi_hurdle, type = "prob")[,1:8]) )/nrow(ssi), digits = 3) * 100 } \keyword{datasets} AER/man/SIC33.Rd0000644000176200001440000000364414557334576012541 0ustar liggesusers\name{SIC33} \alias{SIC33} \title{SIC33 Production Data} \description{ Statewide production data for primary metals industry (SIC 33). } \usage{data("SIC33")} \format{ A data frame containing 27 observations on 3 variables. \describe{ \item{output}{Value added.} \item{labor}{Labor input.} \item{capital}{Capital stock.} } } \source{ Online complements to Greene (2003). Table F6.1. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ \dontshow{ if(!requireNamespace("scatterplot3d")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("SIC33", package = "AER") ## Example 6.2 in Greene (2003) ## Translog model fm_tl <- lm(output ~ labor + capital + I(0.5 * labor^2) + I(0.5 * capital^2) + I(labor * capital), data = log(SIC33)) ## Cobb-Douglas model fm_cb <- lm(output ~ labor + capital, data = log(SIC33)) ## Table 6.2 in Greene (2003) deviance(fm_tl) deviance(fm_cb) summary(fm_tl) summary(fm_cb) vcov(fm_tl) vcov(fm_cb) ## Cobb-Douglas vs. Translog model anova(fm_cb, fm_tl) ## hypothesis of constant returns linearHypothesis(fm_cb, "labor + capital = 1") ## 3D Visualization library("scatterplot3d") s3d <- scatterplot3d(log(SIC33)[,c(2, 3, 1)], pch = 16) s3d$plane3d(fm_cb, lty.box = "solid", col = 4) ## Interactive 3D Visualization \donttest{ if(require("rgl")) { x <- log(SIC33)[,2] y <- log(SIC33)[,3] z <- log(SIC33)[,1] plot3d(x, y, z, type = "s", col = "gray", radius = 0.1) x <- seq(4.5, 7.5, by = 0.5) y <- seq(5.5, 10, by = 0.5) z <- outer(x, y, function(x, y) predict(fm_cb, data.frame(labor = x, capital = y))) surface3d(x, y, z, color = "blue", alpha = 0.5, shininess = 128) } } } \keyword{datasets} AER/man/OECDGas.Rd0000644000176200001440000000243314252214056013073 0ustar liggesusers\name{OECDGas} \alias{OECDGas} \title{Gasoline Consumption Data} \description{ Panel data on gasoline consumption in 18 OECD countries over 19 years, 1960--1978. } \usage{data("OECDGas")} \format{ A data frame containing 342 observations on 6 variables. \describe{ \item{country}{Factor indicating country.} \item{year}{Year.} \item{gas}{Logarithm of motor gasoline consumption per car.} \item{income}{Logarithm of real per-capita income.} \item{price}{Logarithm of real motor gasoline price.} \item{cars}{Logarithm of the stock of cars per-capita.} } } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Baltagi, B.H. and Griffin, J.M. (1983). Gasoline Demand in the OECD: An Application of Pooling and Testing Procedures. \emph{European Economic Review}, \bold{22}, 117--137. } \seealso{\code{\link{Baltagi2002}}} \examples{ \dontshow{ if(!requireNamespace("lattice")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("OECDGas") library("lattice") xyplot(exp(cars) ~ year | country, data = OECDGas, type = "l") xyplot(exp(gas) ~ year | country, data = OECDGas, type = "l") } \keyword{datasets} AER/man/WeakInstrument.Rd0000644000176200001440000000131714252214047014706 0ustar liggesusers\name{WeakInstrument} \alias{WeakInstrument} \title{Artificial Weak Instrument Data} \description{ Artificial data set to illustrate the problem of weak instruments. } \usage{data("WeakInstrument")} \format{ A data frame containing 200 observations on 3 variables. \describe{ \item{y}{dependent variable.} \item{x}{regressor variable.} \item{z}{instrument variable.} } } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("WeakInstrument") fm <- ivreg(y ~ x | z, data = WeakInstrument) summary(fm) } \keyword{datasets} AER/man/STAR.Rd0000644000176200001440000002107414252214056012501 0ustar liggesusers\name{STAR} \alias{STAR} \title{Project STAR: Student-Teacher Achievement Ratio} \description{ The Project STAR public access data set, assessing the effect of reducing class size on test scores in the early grades. } \usage{data("STAR")} \format{ A data frame containing 11,598 observations on 47 variables. \describe{ \item{gender}{factor indicating student's gender.} \item{ethnicity}{factor indicating student's ethnicity with levels \code{"cauc"} (Caucasian), \code{"afam"} (African-American), \code{"asian"} (Asian), \code{"hispanic"} (Hispanic), \code{"amindian"} (American-Indian) or \code{"other"}.} \item{birth}{student's birth quarter (of class \code{\link[zoo]{yearqtr}}).} \item{stark}{factor indicating the STAR class type in kindergarten: regular, small, or regular-with-aide. \code{NA} indicates that no STAR class was attended.} \item{star1}{factor indicating the STAR class type in 1st grade: regular, small, or regular-with-aide. \code{NA} indicates that no STAR class was attended.} \item{star2}{factor indicating the STAR class type in 2nd grade: regular, small, or regular-with-aide. \code{NA} indicates that no STAR class was attended.} \item{star3}{factor indicating the STAR class type in 3rd grade: regular, small, or regular-with-aide. \code{NA} indicates that no STAR class was attended.} \item{readk}{total reading scaled score in kindergarten.} \item{read1}{total reading scaled score in 1st grade.} \item{read2}{total reading scaled score in 2nd grade.} \item{read3}{total reading scaled score in 3rd grade.} \item{mathk}{total math scaled score in kindergarten.} \item{math1}{total math scaled score in 1st grade.} \item{math2}{total math scaled score in 2nd grade.} \item{math3}{total math scaled score in 3rd grade.} \item{lunchk}{factor indicating whether the student qualified for free lunch in kindergarten.} \item{lunch1}{factor indicating whether the student qualified for free lunch in 1st grade.} \item{lunch2}{factor indicating whether the student qualified for free lunch in 2nd grade.} \item{lunch3}{factor indicating whether the student qualified for free lunch in 3rd grade.} \item{schoolk}{factor indicating school type in kindergarten: \code{"inner-city"}, \code{"suburban"}, \code{"rural"} or \code{"urban"}.} \item{school1}{factor indicating school type in 1st grade: \code{"inner-city"}, \code{"suburban"}, \code{"rural"} or \code{"urban"}.} \item{school2}{factor indicating school type in 2nd grade: \code{"inner-city"}, \code{"suburban"}, \code{"rural"} or \code{"urban"}.} \item{school3}{factor indicating school type in 3rd grade: \code{"inner-city"}, \code{"suburban"}, \code{"rural"} or \code{"urban"}.} \item{degreek}{factor indicating highest degree of kindergarten teacher: \code{"bachelor"}, \code{"master"}, \code{"specialist"}, or \code{"master+"}.} \item{degree1}{factor indicating highest degree of 1st grade teacher: \code{"bachelor"}, \code{"master"}, \code{"specialist"}, or \code{"phd"}.} \item{degree2}{factor indicating highest degree of 2nd grade teacher: \code{"bachelor"}, \code{"master"}, \code{"specialist"}, or \code{"phd"}.} \item{degree3}{factor indicating highest degree of 3rd grade teacher: \code{"bachelor"}, \code{"master"}, \code{"specialist"}, or \code{"phd"}.} \item{ladderk}{factor indicating teacher's career ladder level in kindergarten: \code{"level1"}, \code{"level2"}, \code{"level3"}, \code{"apprentice"}, \code{"probation"} or \code{"pending"}.} \item{ladder1}{factor indicating teacher's career ladder level in 1st grade: \code{"level1"}, \code{"level2"}, \code{"level3"}, \code{"apprentice"}, \code{"probation"} or \code{"noladder"}.} \item{ladder2}{factor indicating teacher's career ladder level in 2nd grade: \code{"level1"}, \code{"level2"}, \code{"level3"}, \code{"apprentice"}, \code{"probation"} or \code{"noladder"}.} \item{ladder3}{factor indicating teacher's career ladder level in 3rd grade: \code{"level1"}, \code{"level2"}, \code{"level3"}, \code{"apprentice"}, \code{"probation"} or \code{"noladder"}.} \item{experiencek}{years of teacher's total teaching experience in kindergarten.} \item{experience1}{years of teacher's total teaching experience in 1st grade.} \item{experience2}{years of teacher's total teaching experience in 2nd grade.} \item{experience3}{years of teacher's total teaching experience in 3rd grade.} \item{tethnicityk}{factor indicating teacher's ethnicity in kindergarten with levels \code{"cauc"} (Caucasian) or \code{"afam"} (African-American).} \item{tethnicity1}{factor indicating teacher's ethnicity in 1st grade with levels \code{"cauc"} (Caucasian) or \code{"afam"} (African-American).} \item{tethnicity2}{factor indicating teacher's ethnicity in 2nd grade with levels \code{"cauc"} (Caucasian) or \code{"afam"} (African-American).} \item{tethnicity3}{factor indicating teacher's ethnicity in 3rd grade with levels \code{"cauc"} (Caucasian), \code{"afam"} (African-American), or \code{"asian"} (Asian).} \item{systemk}{factor indicating school system ID in kindergarten.} \item{system1}{factor indicating school system ID in 1st grade.} \item{system2}{factor indicating school system ID in 2nd grade.} \item{system3}{factor indicating school system ID in 3rd grade.} \item{schoolidk}{factor indicating school ID in kindergarten.} \item{schoolid1}{factor indicating school ID in 1st grade.} \item{schoolid2}{factor indicating school ID in 2nd grade.} \item{schoolid3}{factor indicating school ID in 3rd grade.} } } \details{ Project STAR (Student/Teacher Achievement Ratio) was a four-year longitudinal class-size study funded by the Tennessee General Assembly and conducted in the late 1980s by the State Department of Education. Over 7,000 students in 79 schools were randomly assigned into one of three interventions: small class (13 to 17 students per teacher), regular class (22 to 25 students per teacher), and regular-with-aide class (22 to 25 students with a full-time teacher's aide). Classroom teachers were also randomly assigned to the classes they would teach. The interventions were initiated as the students entered school in kindergarten and continued through third grade. The Project STAR public access data set contains data on test scores, treatment groups, and student and teacher characteristics for the four years of the experiment, from academic year 1985--1986 to academic year 1988--1989. The test score data analyzed in this chapter are the sum of the scores on the math and reading portion of the Stanford Achievement Test. Stock and Watson (2007) obtained the data set from the Project STAR Web site. The data is provided in wide format. Reshaping it into long format is illustrated below. Note that the levels of the \code{degree}, \code{ladder} and \code{tethnicity} variables differ slightly between kindergarten and higher grades. } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ \dontshow{ if(!requireNamespace("lattice")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("STAR") ## Stock and Watson, p. 488 fmk <- lm(I(readk + mathk) ~ stark, data = STAR) fm1 <- lm(I(read1 + math1) ~ star1, data = STAR) fm2 <- lm(I(read2 + math2) ~ star2, data = STAR) fm3 <- lm(I(read3 + math3) ~ star3, data = STAR) coeftest(fm3, vcov = sandwich) plot(I(read3 + math3) ~ star3, data = STAR) ## Stock and Watson, p. 489 fmke <- lm(I(readk + mathk) ~ stark + experiencek, data = STAR) coeftest(fmke, vcov = sandwich) ## reshape data from wide into long format ## 1. variables and their levels nam <- c("star", "read", "math", "lunch", "school", "degree", "ladder", "experience", "tethnicity", "system", "schoolid") lev <- c("k", "1", "2", "3") ## 2. reshaping star <- reshape(STAR, idvar = "id", ids = row.names(STAR), times = lev, timevar = "grade", direction = "long", varying = lapply(nam, function(x) paste(x, lev, sep = ""))) ## 3. improve variable names and type names(star)[5:15] <- nam star$id <- factor(star$id) star$grade <- factor(star$grade, levels = lev, labels = c("kindergarten", "1st", "2nd", "3rd")) rm(nam, lev) ## fit a single model nested in grade (equivalent to fmk, fm1, fm2, fmk) fm <- lm(I(read + math) ~ 0 + grade/star, data = star) coeftest(fm, vcov = sandwich) ## visualization library("lattice") bwplot(I(read + math) ~ star | grade, data = star) } \keyword{datasets} AER/man/KleinI.Rd0000644000176200001440000000325714252214056013106 0ustar liggesusers\name{KleinI} \alias{KleinI} \title{Klein Model I} \description{ Klein's Model I for the US economy. } \usage{data("KleinI")} \format{ An annual multiple time series from 1920 to 1941 with 9 variables. \describe{ \item{consumption}{Consumption.} \item{cprofits}{Corporate profits.} \item{pwage}{Private wage bill.} \item{invest}{Investment.} \item{capital}{Previous year's capital stock.} \item{gnp}{Gross national product.} \item{gwage}{Government wage bill.} \item{gexpenditure}{Government spending.} \item{taxes}{Taxes.} } } \source{ Online complements to Greene (2003). Table F15.1. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Klein, L. (1950). \emph{Economic Fluctuations in the United States, 1921--1941}. New York: John Wiley. Maddala, G.S. (1977). \emph{Econometrics}. New York: McGraw-Hill. } \seealso{\code{\link{Greene2003}}} \examples{ \dontshow{ if(!requireNamespace("dynlm")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("KleinI", package = "AER") plot(KleinI) ## Greene (2003), Tab. 15.3, OLS library("dynlm") fm_cons <- dynlm(consumption ~ cprofits + L(cprofits) + I(pwage + gwage), data = KleinI) fm_inv <- dynlm(invest ~ cprofits + L(cprofits) + capital, data = KleinI) fm_pwage <- dynlm(pwage ~ gnp + L(gnp) + I(time(gnp) - 1931), data = KleinI) summary(fm_cons) summary(fm_inv) summary(fm_pwage) ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/USAirlines.Rd0000644000176200001440000000444414252214056013750 0ustar liggesusers\name{USAirlines} \alias{USAirlines} \title{Cost Data for US Airlines} \description{ Cost data for six US airlines in 1970--1984. } \usage{data("USAirlines")} \format{ A data frame containing 90 observations on 6 variables. \describe{ \item{firm}{factor indicating airline firm.} \item{year}{factor indicating year.} \item{output}{output revenue passenger miles index number.} \item{cost}{total cost (in USD 1000).} \item{price}{fuel price.} \item{load}{average capacity utilization of the fleet.} } } \source{ Online complements to Greene (2003). Table F7.1. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ \dontshow{ if(!requireNamespace("plm")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("USAirlines") ## Example 7.2 in Greene (2003) fm_full <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load + year + firm, data = USAirlines) fm_time <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load + year, data = USAirlines) fm_firm <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load + firm, data = USAirlines) fm_no <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = USAirlines) ## Table 7.2 anova(fm_full, fm_time) anova(fm_full, fm_firm) anova(fm_full, fm_no) ## alternatively, use plm() library("plm") usair <- pdata.frame(USAirlines, c("firm", "year")) fm_full2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "within", effect = "twoways") fm_time2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "within", effect = "time") fm_firm2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "within", effect = "individual") fm_no2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "pooling") pFtest(fm_full2, fm_time2) pFtest(fm_full2, fm_firm2) pFtest(fm_full2, fm_no2) ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/HousePrices.Rd0000644000176200001440000000430214252214047014154 0ustar liggesusers\name{HousePrices} \alias{HousePrices} \title{House Prices in the City of Windsor, Canada} \description{ Sales prices of houses sold in the city of Windsor, Canada, during July, August and September, 1987. } \usage{data("HousePrices")} \format{ A data frame containing 546 observations on 12 variables. \describe{ \item{price}{Sale price of a house.} \item{lotsize}{Lot size of a property in square feet.} \item{bedrooms}{Number of bedrooms.} \item{bathrooms}{Number of full bathrooms.} \item{stories}{Number of stories excluding basement.} \item{driveway}{Factor. Does the house have a driveway?} \item{recreation}{Factor. Does the house have a recreational room?} \item{fullbase}{Factor. Does the house have a full finished basement?} \item{gasheat}{Factor. Does the house use gas for hot water heating?} \item{aircon}{Factor. Is there central air conditioning?} \item{garage}{Number of garage places.} \item{prefer}{Factor. Is the house located in the preferred neighborhood of the city?} } } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/1996-v11.6/anglin-gencay/} } \references{ Anglin, P., and Gencay, R. (1996). Semiparametric Estimation of a Hedonic Price Function. \emph{Journal of Applied Econometrics}, \bold{11}, 633--648. Verbeek, M. (2004). \emph{A Guide to Modern Econometrics}, 2nd ed. Chichester, UK: John Wiley. } \examples{ data("HousePrices") ### Anglin + Gencay (1996), Table II fm_ag <- lm(log(price) ~ driveway + recreation + fullbase + gasheat + aircon + garage + prefer + log(lotsize) + log(bedrooms) + log(bathrooms) + log(stories), data = HousePrices) ### Anglin + Gencay (1996), Table III fm_ag2 <- lm(log(price) ~ driveway + recreation + fullbase + gasheat + aircon + garage + prefer + log(lotsize) + bedrooms + bathrooms + stories, data = HousePrices) ### Verbeek (2004), Table 3.1 fm <- lm(log(price) ~ log(lotsize) + bedrooms + bathrooms + aircon, data = HousePrices) summary(fm) ### Verbeek (2004), Table 3.2 fm_ext <- lm(log(price) ~ . - lotsize + log(lotsize), data = HousePrices) summary(fm_ext) ### Verbeek (2004), Table 3.3 fm_lin <- lm(price ~ . , data = HousePrices) summary(fm_lin) } \keyword{datasets} AER/man/Electricity1955.Rd0000644000176200001440000000360414252214047014533 0ustar liggesusers\name{Electricity1955} \alias{Electricity1955} \title{Cost Function of Electricity Producers (1955, Nerlove Data)} \description{ Cost function data for 145 (+14) US electricity producers in 1955. } \usage{data("Electricity1955")} \format{ A data frame containing 159 observations on 8 variables. \describe{ \item{cost}{total cost.} \item{output}{total output.} \item{labor}{wage rate.} \item{laborshare}{cost share for labor.} \item{capital}{capital price index.} \item{capitalshare}{cost share for capital.} \item{fuel}{fuel price.} \item{fuelshare}{cost share for fuel.} } } \details{ The data contains several extra observations that are aggregates of commonly owned firms. Only the first 145 observations should be used for analysis. } \source{ Online complements to Greene (2003). Table F14.2. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Nerlove, M. (1963) \dQuote{Returns to Scale in Electricity Supply.} In C. Christ (ed.), \emph{Measurement in Economics: Studies in Mathematical Economics and Econometrics in Memory of Yehuda Grunfeld}. Stanford University Press, 1963. } \seealso{\code{\link{Greene2003}}, \code{\link{Electricity1970}}} \examples{ data("Electricity1955") Electricity <- Electricity1955[1:145,] ## Greene (2003) ## Example 7.3 ## Cobb-Douglas cost function fm_all <- lm(log(cost/fuel) ~ log(output) + log(labor/fuel) + log(capital/fuel), data = Electricity) summary(fm_all) ## hypothesis of constant returns to scale linearHypothesis(fm_all, "log(output) = 1") ## Table 7.4 ## log quadratic cost function fm_all2 <- lm(log(cost/fuel) ~ log(output) + I(log(output)^2) + log(labor/fuel) + log(capital/fuel), data = Electricity) summary(fm_all2) ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/Parade2005.Rd0000644000176200001440000000351414252214056013432 0ustar liggesusers\name{Parade2005} \alias{Parade2005} \title{Parade Magazine 2005 Earnings Data} \description{ US earnings data, as provided in an annual survey of Parade (here from 2005), the Sunday newspaper magazine supplementing the Sunday (or Weekend) edition of many daily newspapers in the USA. } \usage{data("Parade2005")} \format{ A data frame containing 130 observations on 5 variables. \describe{ \item{earnings}{Annual personal earnings.} \item{age}{Age in years.} \item{gender}{Factor indicating gender.} \item{state}{Factor indicating state.} \item{celebrity}{Factor. Is the individual a celebrity?} } } \details{ In addition to the four variables provided by Parade (earnings, age, gender, and state), a fifth variable was introduced, the \dQuote{celebrity factor} (here actors, athletes, TV personalities, politicians, and CEOs are considered celebrities). The data are quite far from a simple random sample, there being substantial oversampling of celebrities. } \source{ Parade (2005). What People Earn. Issue March 13, 2005. } \examples{ \dontshow{ if(!requireNamespace("ineq")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## data data("Parade2005") attach(Parade2005) summary(Parade2005) ## bivariate visualizations plot(density(log(earnings), bw = "SJ"), type = "l", main = "log(earnings)") rug(log(earnings)) plot(log(earnings) ~ gender, main = "log(earnings)") ## celebrity vs. non-celebrity earnings noncel <- subset(Parade2005, celebrity == "no") cel <- subset(Parade2005, celebrity == "yes") library("ineq") plot(Lc(noncel$earnings), main = "log(earnings)") lines(Lc(cel$earnings), lty = 2) lines(Lc(earnings), lty = 3) Gini(noncel$earnings) Gini(cel$earnings) Gini(earnings) ## detach data detach(Parade2005) } \keyword{datasets} AER/man/OrangeCounty.Rd0000644000176200001440000000122414252214047014340 0ustar liggesusers\name{OrangeCounty} \alias{OrangeCounty} \title{Orange County Employment} \description{ Quarterly time series data on employment in Orange county, 1965--1983. } \usage{data("OrangeCounty")} \format{ A quarterly multiple time series from 1965 to 1983 with 2 variables. \describe{ \item{employment}{Quarterly employment in Orange county.} \item{gnp}{Quarterly real GNP.} } } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("OrangeCounty") plot(OrangeCounty) } \keyword{datasets} AER/man/USMacroB.Rd0000644000176200001440000000155714252214047013347 0ustar liggesusers\name{USMacroB} \alias{USMacroB} \title{US Macroeconomic Data (1959--1995, Baltagi)} \description{ Time series data on 3 US macroeconomic variables for 1959--1995, extracted from the Citibank data base. } \usage{data("USMacroB")} \format{ A quarterly multiple time series from 1959(1) to 1995(2) with 3 variables. \describe{ \item{gnp}{Gross national product.} \item{mbase}{Average of the seasonally adjusted monetary base.} \item{tbill}{Average of 3 month treasury-bill rate (per annum).} } } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}, \code{\link{USMacroSW}}, \code{\link{USMacroSWQ}}, \code{\link{USMacroSWM}}, \code{\link{USMacroG}}} \examples{ data("USMacroB") plot(USMacroB) } \keyword{datasets} AER/man/ManufactCosts.Rd0000644000176200001440000000215614252214047014502 0ustar liggesusers\name{ManufactCosts} \alias{ManufactCosts} \title{Manufacturing Costs Data} \description{ US time series data on prices and cost shares in manufacturing, 1947--1971. } \usage{data("ManufactCosts")} \format{ An annual multiple time series from 1947 to 1971 with 9 variables. \describe{ \item{cost}{Cost index.} \item{capitalcost}{Capital cost share.} \item{laborcost}{Labor cost share.} \item{energycost}{Energy cost share.} \item{materialscost}{Materials cost share.} \item{capitalprice}{Capital price.} \item{laborprice}{Labor price.} \item{energyprice}{Energy price.} \item{materialsprice}{Materials price.} } } \source{ Online complements to Greene (2003). \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Berndt, E. and Wood, D. (1975). Technology, Prices, and the Derived Demand for Energy. \emph{Review of Economics and Statistics}, \bold{57}, 376--384. Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("ManufactCosts") plot(ManufactCosts) } \keyword{datasets} AER/man/NYSESW.Rd0000644000176200001440000000167314252214056012763 0ustar liggesusers\name{NYSESW} \alias{NYSESW} \title{Daily NYSE Composite Index} \description{ A daily time series from 1990 to 2005 of the New York Stock Exchange composite index. } \usage{data("NYSESW")} \format{ A daily univariate time series from 1990-01-02 to 2005-11-11 (of class \code{"zoo"} with \code{"Date"} index). } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ \dontshow{ if(!requireNamespace("tseries")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## returns data("NYSESW") ret <- 100 * diff(log(NYSESW)) plot(ret) ## Stock and Watson (2007), p. 667, GARCH(1,1) model library("tseries") fm <- garch(coredata(ret)) summary(fm) } \keyword{datasets} AER/man/GermanUnemployment.Rd0000644000176200001440000000134614252214047015556 0ustar liggesusers\name{GermanUnemployment} \alias{GermanUnemployment} \title{Unemployment in Germany Data} \description{ Time series of unemployment rate (in percent) in Germany. } \usage{data("GermanUnemployment")} \format{ A quarterly multiple time series from 1962(1) to 1991(4) with 2 variables. \describe{ \item{unadjusted}{Raw unemployment rate,} \item{adjusted}{Seasonally adjusted rate.} } } \source{ Online complements to Franses (1998). } \seealso{\code{\link{Franses1998}}} \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \examples{ data("GermanUnemployment") plot(GermanUnemployment, plot.type = "single", col = 1:2) } \keyword{datasets} AER/man/DutchAdvert.Rd0000644000176200001440000000340014252214047014136 0ustar liggesusers\name{DutchAdvert} \alias{DutchAdvert} \title{TV and Radio Advertising Expenditures Data} \description{ Time series of television and radio advertising expenditures (in real terms) in The Netherlands. } \usage{data("DutchAdvert")} \format{ A four-weekly multiple time series from 1978(1) to 1994(13) with 2 variables. \describe{ \item{tv}{Television advertising expenditures.} \item{radio}{Radio advertising expenditures.} } } \source{ Originally available as an online supplement to Franses (1998). Now available via online complements to Franses, van Dijk and Opschoor (2014). \url{https://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. Franses, P.H., van Dijk, D. and Opschoor, A. (2014). \emph{Time Series Models for Business and Economic Forecasting}, 2nd ed. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("DutchAdvert") plot(DutchAdvert) ## EACF tables (Franses 1998, Sec. 5.1, p. 99) ctrafo <- function(x) residuals(lm(x ~ factor(cycle(x)))) ddiff <- function(x) diff(diff(x, frequency(x)), 1) eacf <- function(y, lag = 12) { stopifnot(all(lag > 0)) if(length(lag) < 2) lag <- 1:lag rval <- sapply( list(y = y, dy = diff(y), cdy = ctrafo(diff(y)), Dy = diff(y, frequency(y)), dDy = ddiff(y)), function(x) acf(x, plot = FALSE, lag.max = max(lag))$acf[lag + 1]) rownames(rval) <- lag return(rval) } ## Franses (1998, p. 103), Table 5.4 round(eacf(log(DutchAdvert[,"tv"]), lag = c(1:19, 26, 39)), digits = 3) } \keyword{datasets} AER/man/ArgentinaCPI.Rd0000644000176200001440000000231314252214056014167 0ustar liggesusers\name{ArgentinaCPI} \alias{ArgentinaCPI} \title{Consumer Price Index in Argentina} \description{ Time series of consumer price index (CPI) in Argentina (index with 1969(4) = 1). } \usage{data("ArgentinaCPI")} \format{ A quarterly univariate time series from 1970(1) to 1989(4). } \source{ Online complements to Franses (1998). } \references{ De Ruyter van Steveninck, M.A. (1996). \emph{The Impact of Capital Imports; Argentina 1970--1989}. Amsterdam: Thesis Publishers. Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ \dontshow{ if(!requireNamespace("dynlm")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("ArgentinaCPI") plot(ArgentinaCPI) plot(log(ArgentinaCPI)) library("dynlm") ## estimation sample 1970.3-1988.4 means acpi <- window(ArgentinaCPI, start = c(1970,1), end = c(1988,4)) ## eq. (3.90), p.54 acpi_ols <- dynlm(d(log(acpi)) ~ L(d(log(acpi)))) summary(acpi_ols) ## alternatively ar(diff(log(acpi)), order.max = 1, method = "ols") } \keyword{datasets} AER/man/EuroEnergy.Rd0000644000176200001440000000140614252214047014011 0ustar liggesusers\name{EuroEnergy} \alias{EuroEnergy} \title{European Energy Consumption Data} \description{ Cross-section data on energy consumption for 20 European countries, for the year 1980. } \usage{data("EuroEnergy")} \format{ A data frame containing 20 observations on 2 variables. \describe{ \item{gdp}{Real gross domestic product for the year 1980 (in million 1975 US dollars).} \item{energy}{Aggregate energy consumption (in million kilograms coal equivalence).} } } \source{ The data are from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("EuroEnergy") energy_lm <- lm(log(energy) ~ log(gdp), data = EuroEnergy) influence.measures(energy_lm) } \keyword{datasets} AER/man/MSCISwitzerland.Rd0000755000176200001440000000600414557116542014722 0ustar liggesusers\name{MSCISwitzerland} \alias{MSCISwitzerland} \title{MSCI Switzerland Index} \description{ Time series of the MSCI Switzerland index. } \usage{data("MSCISwitzerland")} \format{ A daily univariate time series from 1994-12-30 to 2012-12-31 (of class \code{"zoo"} with \code{"Date"} index). } \source{ Online complements to Franses, van Dijk and Opschoor (2014). \url{https://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } \references{ Ding, Z., Granger, C. W. J. and Engle, R. F. (1993). A Long Memory Property of Stock Market Returns and a New Model. \emph{Journal of Empirical Finance}, 1(1), 83--106. Franses, P.H., van Dijk, D. and Opschoor, A. (2014). \emph{Time Series Models for Business and Economic Forecasting}, 2nd ed. Cambridge, UK: Cambridge University Press. } \examples{ \dontshow{ if(!requireNamespace("tseries") || !requireNamespace("fGarch") || !requireNamespace("rugarch")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("MSCISwitzerland", package = "AER") ## p.190, Fig. 7.6 dlmsci <- 100 * diff(log(MSCISwitzerland)) plot(dlmsci) dlmsci9501 <- window(dlmsci, end = as.Date("2001-12-31")) ## Figure 7.7 plot(acf(dlmsci9501^2, lag.max = 200, na.action = na.exclude), ylim = c(-0.1, 0.3), type = "l") ## GARCH(1,1) model, p.190, eq. (7.60) ## standard errors using first derivatives (as apparently used by Franses et al.) library("tseries") msci9501_g11 <- garch(zooreg(dlmsci9501), trace = FALSE) summary(msci9501_g11) ## standard errors using second derivatives library("fGarch") msci9501_g11a <- garchFit( ~ garch(1,1), include.mean = FALSE, data = dlmsci9501, trace = FALSE) summary(msci9501_g11a) round(msci9501_g11a@fit$coef, 3) round(msci9501_g11a@fit$se.coef, 3) ## Fig. 7.8, p.192 plot(msci9501_g11a, which = 2) abline(h = sd(dlmsci9501)) ## TGARCH model (also known as GJR-GARCH model), p. 191, eq. (7.61) msci9501_tg11 <- garchFit( ~ aparch(1,1), include.mean = FALSE, include.delta = FALSE, delta = 2, data = dlmsci9501, trace = FALSE) summary(msci9501_tg11) ## GJR form using reparameterization as given by Ding et al. (1993, pp. 100-101) coef(msci9501_tg11)["alpha1"] * (1 - coef(msci9501_tg11)["gamma1"])^2 ## alpha* 4 * coef(msci9501_tg11)["alpha1"] * coef(msci9501_tg11)["gamma1"] ## gamma* ## GARCH and GJR-GARCH with rugarch \donttest{ library("rugarch") spec_g11 <- ugarchspec(variance.model = list(model = "sGARCH"), mean.model = list(armaOrder = c(0,0), include.mean = FALSE)) msci9501_g11b <- ugarchfit(spec_g11, data = dlmsci9501) msci9501_g11b spec_gjrg11 <- ugarchspec(variance.model = list(model = "gjrGARCH", garchOrder = c(1,1)), mean.model = list(armaOrder = c(0, 0), include.mean = FALSE)) msci9501_gjrg11 <- ugarchfit(spec_gjrg11, data = dlmsci9501) msci9501_gjrg11 round(coef(msci9501_gjrg11), 3) } } \keyword{datasets} AER/man/CigarettesSW.Rd0000644000176200001440000000405114252214047014270 0ustar liggesusers\name{CigarettesSW} \alias{CigarettesSW} \title{Cigarette Consumption Panel Data} \description{ Panel data on cigarette consumption for the 48 continental US States from 1985--1995. } \usage{data("CigarettesSW")} \format{ A data frame containing 48 observations on 7 variables for 2 periods. \describe{ \item{state}{Factor indicating state.} \item{year}{Factor indicating year.} \item{cpi}{Consumer price index.} \item{population}{State population.} \item{packs}{Number of packs per capita.} \item{income}{State personal income (total, nominal).} \item{tax}{Average state, federal and average local excise taxes for fiscal year.} \item{price}{Average price during fiscal year, including sales tax.} \item{taxs}{Average excise taxes for fiscal year, including sales tax.} } } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{CigarettesB}}} \examples{ ## Stock and Watson (2007) ## data and transformations data("CigarettesSW") CigarettesSW <- transform(CigarettesSW, rprice = price/cpi, rincome = income/population/cpi, rtax = tax/cpi, rtdiff = (taxs - tax)/cpi ) c1985 <- subset(CigarettesSW, year == "1985") c1995 <- subset(CigarettesSW, year == "1995") ## convenience function: HC1 covariances hc1 <- function(x) vcovHC(x, type = "HC1") ## Equations 12.9--12.11 fm_s1 <- lm(log(rprice) ~ rtdiff, data = c1995) coeftest(fm_s1, vcov = hc1) fm_s2 <- lm(log(packs) ~ fitted(fm_s1), data = c1995) fm_ivreg <- ivreg(log(packs) ~ log(rprice) | rtdiff, data = c1995) coeftest(fm_ivreg, vcov = hc1) ## Equation 12.15 fm_ivreg2 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + rtdiff, data = c1995) coeftest(fm_ivreg2, vcov = hc1) ## Equation 12.16 fm_ivreg3 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + rtdiff + rtax, data = c1995) coeftest(fm_ivreg3, vcov = hc1) ## More examples can be found in: ## help("StockWatson2007") } \keyword{datasets} AER/man/ResumeNames.Rd0000644000176200001440000000725314252214047014157 0ustar liggesusers\name{ResumeNames} \alias{ResumeNames} \title{Are Emily and Greg More Employable Than Lakisha and Jamal?} \description{ Cross-section data about resume, call-back and employer information for 4,870 fictitious resumes. } \usage{data("ResumeNames")} \format{ A data frame containing 4,870 observations on 27 variables. \describe{ \item{name}{factor indicating applicant's first name.} \item{gender}{factor indicating gender.} \item{ethnicity}{factor indicating ethnicity (i.e., Caucasian-sounding vs. African-American sounding first name).} \item{quality}{factor indicating quality of resume.} \item{call}{factor. Was the applicant called back?} \item{city}{factor indicating city: Boston or Chicago.} \item{jobs}{number of jobs listed on resume.} \item{experience}{number of years of work experience on the resume.} \item{honors}{factor. Did the resume mention some honors?} \item{volunteer}{factor. Did the resume mention some volunteering experience?} \item{military}{factor. Does the applicant have military experience?} \item{holes}{factor. Does the resume have some employment holes?} \item{school}{factor. Does the resume mention some work experience while at school?} \item{email}{factor. Was the e-mail address on the applicant's resume?} \item{computer}{factor. Does the resume mention some computer skills?} \item{special}{factor. Does the resume mention some special skills?} \item{college}{factor. Does the applicant have a college degree or more?} \item{minimum}{factor indicating minimum experience requirement of the employer.} \item{equal}{factor. Is the employer EOE (equal opportunity employment)?} \item{wanted}{factor indicating type of position wanted by employer.} \item{requirements}{factor. Does the ad mention some requirement for the job?} \item{reqexp}{factor. Does the ad mention some experience requirement?} \item{reqcomm}{factor. Does the ad mention some communication skills requirement?} \item{reqeduc}{factor. Does the ad mention some educational requirement?} \item{reqcomp}{factor. Does the ad mention some computer skills requirement?} \item{reqorg}{factor. Does the ad mention some organizational skills requirement?} \item{industry}{factor indicating type of employer industry.} } } \details{ Cross-section data about resume, call-back and employer information for 4,870 fictitious resumes sent in response to employment advertisements in Chicago and Boston in 2001, in a randomized controlled experiment conducted by Bertrand and Mullainathan (2004). The resumes contained information concerning the ethnicity of the applicant. Because ethnicity is not typically included on a resume, resumes were differentiated on the basis of so-called \dQuote{Caucasian sounding names} (such as Emily Walsh or Gregory Baker) and \dQuote{African American sounding names} (such as Lakisha Washington or Jamal Jones). A large collection of fictitious resumes were created and the pre-supposed ethnicity (based on the sound of the name) was randomly assigned to each resume. These resumes were sent to prospective employers to see which resumes generated a phone call from the prospective employer. } \source{ Online complements to Stock and Watson (2007). } \references{ Bertrand, M. and Mullainathan, S. (2004). Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination. \emph{American Economic Review}, \bold{94}, 991--1013. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("ResumeNames") summary(ResumeNames) prop.table(xtabs(~ ethnicity + call, data = ResumeNames), 1) } \keyword{datasets} AER/man/Electricity1970.Rd0000644000176200001440000000306014252214047014524 0ustar liggesusers\name{Electricity1970} \alias{Electricity1970} \title{Cost Function of Electricity Producers 1970} \description{ Cross-section data, at the firm level, on electric power generation. } \usage{data("Electricity1970")} \format{ A data frame containing 158 cross-section observations on 9 variables. \describe{ \item{cost}{total cost.} \item{output}{total output.} \item{labor}{wage rate.} \item{laborshare}{cost share for labor.} \item{capital}{capital price index.} \item{capitalshare}{cost share for capital.} \item{fuel}{fuel price.} \item{fuelshare}{cost share for fuel.} } } \details{ The data are from Christensen and Greene (1976) and pertain to the year 1970. However, the file contains some extra observations, the holding companies. Only the first 123 observations are needed to replicate Christensen and Greene (1976). } \source{ Online complements to Greene (2003), Table F5.2. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Christensen, L. and Greene, W.H. (1976). Economies of Scale in U.S. Electric Power Generation. \emph{Journal of Political Economy}, \bold{84}, 655--676. Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}, \code{\link{Electricity1955}}} \examples{ data("Electricity1970") ## Greene (2003), Ex. 5.6: a generalized Cobb-Douglas cost function fm <- lm(log(cost/fuel) ~ log(output) + I(log(output)^2/2) + log(capital/fuel) + log(labor/fuel), data=Electricity1970[1:123,]) } \keyword{datasets} AER/man/USGasB.Rd0000644000176200001440000000143014252214047013006 0ustar liggesusers\name{USGasB} \alias{USGasB} \title{US Gasoline Market Data (1950--1987, Baltagi)} \description{ Time series data on the US gasoline market. } \usage{data("USGasB")} \format{ An annual multiple time series from 1950 to 1987 with 6 variables. \describe{ \item{cars}{Stock of cars.} \item{gas}{Consumption of motor gasoline (in 1000 gallons).} \item{price}{Retail price of motor gasoline.} \item{population}{Population.} \item{gnp}{Real gross national product (in 1982 dollars).} \item{deflator}{GNP deflator (1982 = 100).} } } \source{ The data are from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}, \code{\link{USGasG}}} \examples{ data("USGasB") plot(USGasB) } \keyword{datasets} AER/man/Greene2003.Rd0000644000176200001440000010130314252214056013434 0ustar liggesusers\name{Greene2003} \alias{Greene2003} \title{Data and Examples from Greene (2003)} \description{ This manual page collects a list of examples from the book. Some solutions might not be exact and the list is certainly not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer. } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. URL \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm}. } \seealso{\code{\link{Affairs}}, \code{\link{BondYield}}, \code{\link{CreditCard}}, \code{\link{Electricity1955}}, \code{\link{Electricity1970}}, \code{\link{Equipment}}, \code{\link{Grunfeld}}, \code{\link{KleinI}}, \code{\link{Longley}}, \code{\link{ManufactCosts}}, \code{\link{MarkPound}}, \code{\link{Municipalities}}, \code{\link{ProgramEffectiveness}}, \code{\link{PSID1976}}, \code{\link{SIC33}}, \code{\link{ShipAccidents}}, \code{\link{StrikeDuration}}, \code{\link{TechChange}}, \code{\link{TravelMode}}, \code{\link{UKInflation}}, \code{\link{USConsump1950}}, \code{\link{USConsump1979}}, \code{\link{USGasG}}, \code{\link{USAirlines}}, \code{\link{USInvest}}, \code{\link{USMacroG}}, \code{\link{USMoney}}} \examples{ \dontshow{ if(!requireNamespace("dynlm") || !requireNamespace("strucchange") || !requireNamespace("MASS") || !requireNamespace("plm") || !requireNamespace("pscl") || !requireNamespace("tseries") || !requireNamespace("systemfit") || !requireNamespace("sampleSelection")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} \donttest{ ##################################### ## US consumption data (1970-1979) ## ##################################### ## Example 1.1 data("USConsump1979", package = "AER") plot(expenditure ~ income, data = as.data.frame(USConsump1979), pch = 19) fm <- lm(expenditure ~ income, data = as.data.frame(USConsump1979)) summary(fm) abline(fm) ##################################### ## US consumption data (1940-1950) ## ##################################### ## data data("USConsump1950", package = "AER") usc <- as.data.frame(USConsump1950) usc$war <- factor(usc$war, labels = c("no", "yes")) ## Example 2.1 plot(expenditure ~ income, data = usc, type = "n", xlim = c(225, 375), ylim = c(225, 350)) with(usc, text(income, expenditure, time(USConsump1950))) ## single model fm <- lm(expenditure ~ income, data = usc) summary(fm) ## different intercepts for war yes/no fm2 <- lm(expenditure ~ income + war, data = usc) summary(fm2) ## compare anova(fm, fm2) ## visualize abline(fm, lty = 3) abline(coef(fm2)[1:2]) abline(sum(coef(fm2)[c(1, 3)]), coef(fm2)[2], lty = 2) ## Example 3.2 summary(fm)$r.squared summary(lm(expenditure ~ income, data = usc, subset = war == "no"))$r.squared summary(fm2)$r.squared ######################## ## US investment data ## ######################## data("USInvest", package = "AER") ## Chapter 3 in Greene (2003) ## transform (and round) data to match Table 3.1 us <- as.data.frame(USInvest) us$invest <- round(0.1 * us$invest/us$price, digits = 3) us$gnp <- round(0.1 * us$gnp/us$price, digits = 3) us$inflation <- c(4.4, round(100 * diff(us$price)/us$price[-15], digits = 2)) us$trend <- 1:15 us <- us[, c(2, 6, 1, 4, 5)] ## p. 22-24 coef(lm(invest ~ trend + gnp, data = us)) coef(lm(invest ~ gnp, data = us)) ## Example 3.1, Table 3.2 cor(us)[1,-1] pcor <- solve(cor(us)) dcor <- 1/sqrt(diag(pcor)) pcor <- (-pcor * (dcor \%o\% dcor))[1,-1] ## Table 3.4 fm <- lm(invest ~ trend + gnp + interest + inflation, data = us) fm1 <- lm(invest ~ 1, data = us) anova(fm1, fm) ## Example 4.1 set.seed(123) w <- rnorm(10000) x <- rnorm(10000) eps <- 0.5 * w y <- 0.5 + 0.5 * x + eps b <- rep(0, 500) for(i in 1:500) { ix <- sample(1:10000, 100) b[i] <- lm.fit(cbind(1, x[ix]), y[ix])$coef[2] } hist(b, breaks = 20, col = "lightgray") ############################### ## Longley's regression data ## ############################### ## package and data data("Longley", package = "AER") library("dynlm") ## Example 4.6 fm1 <- dynlm(employment ~ time(employment) + price + gnp + armedforces, data = Longley) fm2 <- update(fm1, end = 1961) cbind(coef(fm2), coef(fm1)) ## Figure 4.3 plot(rstandard(fm2), type = "b", ylim = c(-3, 3)) abline(h = c(-2, 2), lty = 2) ######################################### ## US gasoline market data (1960-1995) ## ######################################### ## data data("USGasG", package = "AER") ## Greene (2003) ## Example 2.3 fm <- lm(log(gas/population) ~ log(price) + log(income) + log(newcar) + log(usedcar), data = as.data.frame(USGasG)) summary(fm) ## Example 4.4 ## estimates and standard errors (note different offset for intercept) coef(fm) sqrt(diag(vcov(fm))) ## confidence interval confint(fm, parm = "log(income)") ## test linear hypothesis linearHypothesis(fm, "log(income) = 1") ## Figure 7.5 plot(price ~ gas, data = as.data.frame(USGasG), pch = 19, col = (time(USGasG) > 1973) + 1) legend("topleft", legend = c("after 1973", "up to 1973"), pch = 19, col = 2:1, bty = "n") ## Example 7.6 ## re-used in Example 8.3 ## linear time trend ltrend <- 1:nrow(USGasG) ## shock factor shock <- factor(time(USGasG) > 1973, levels = c(FALSE, TRUE), labels = c("before", "after")) ## 1960-1995 fm1 <- lm(log(gas/population) ~ log(income) + log(price) + log(newcar) + log(usedcar) + ltrend, data = as.data.frame(USGasG)) summary(fm1) ## pooled fm2 <- lm( log(gas/population) ~ shock + log(income) + log(price) + log(newcar) + log(usedcar) + ltrend, data = as.data.frame(USGasG)) summary(fm2) ## segmented fm3 <- lm( log(gas/population) ~ shock/(log(income) + log(price) + log(newcar) + log(usedcar) + ltrend), data = as.data.frame(USGasG)) summary(fm3) ## Chow test anova(fm3, fm1) library("strucchange") sctest(log(gas/population) ~ log(income) + log(price) + log(newcar) + log(usedcar) + ltrend, data = USGasG, point = c(1973, 1), type = "Chow") ## Recursive CUSUM test rcus <- efp(log(gas/population) ~ log(income) + log(price) + log(newcar) + log(usedcar) + ltrend, data = USGasG, type = "Rec-CUSUM") plot(rcus) sctest(rcus) ## Note: Greene's remark that the break is in 1984 (where the process crosses its boundary) ## is wrong. The break appears to be no later than 1976. ## Example 12.2 library("dynlm") resplot <- function(obj, bound = TRUE) { res <- residuals(obj) sigma <- summary(obj)$sigma plot(res, ylab = "Residuals", xlab = "Year") grid() abline(h = 0) if(bound) abline(h = c(-2, 2) * sigma, col = "red") lines(res) } resplot(dynlm(log(gas/population) ~ log(price), data = USGasG)) resplot(dynlm(log(gas/population) ~ log(price) + log(income), data = USGasG)) resplot(dynlm(log(gas/population) ~ log(price) + log(income) + log(newcar) + log(usedcar) + log(transport) + log(nondurable) + log(durable) +log(service) + ltrend, data = USGasG)) ## different shock variable than in 7.6 shock <- factor(time(USGasG) > 1974, levels = c(FALSE, TRUE), labels = c("before", "after")) resplot(dynlm(log(gas/population) ~ shock/(log(price) + log(income) + log(newcar) + log(usedcar) + log(transport) + log(nondurable) + log(durable) + log(service) + ltrend), data = USGasG)) ## NOTE: something seems to be wrong with the sigma estimates in the `full' models ## Table 12.4, OLS fm <- dynlm(log(gas/population) ~ log(price) + log(income) + log(newcar) + log(usedcar), data = USGasG) summary(fm) resplot(fm, bound = FALSE) dwtest(fm) ## ML g <- as.data.frame(USGasG) y <- log(g$gas/g$population) X <- as.matrix(cbind(log(g$price), log(g$income), log(g$newcar), log(g$usedcar))) arima(y, order = c(1, 0, 0), xreg = X) ####################################### ## US macroeconomic data (1950-2000) ## ####################################### ## data and trend data("USMacroG", package = "AER") ltrend <- 0:(nrow(USMacroG) - 1) ## Example 5.3 ## OLS and IV regression library("dynlm") fm_ols <- dynlm(consumption ~ gdp, data = USMacroG) fm_iv <- dynlm(consumption ~ gdp | L(consumption) + L(gdp), data = USMacroG) ## Hausman statistic library("MASS") b_diff <- coef(fm_iv) - coef(fm_ols) v_diff <- summary(fm_iv)$cov.unscaled - summary(fm_ols)$cov.unscaled (t(b_diff) \%*\% ginv(v_diff) \%*\% b_diff) / summary(fm_ols)$sigma^2 ## Wu statistic auxreg <- dynlm(gdp ~ L(consumption) + L(gdp), data = USMacroG) coeftest(dynlm(consumption ~ gdp + fitted(auxreg), data = USMacroG))[3,3] ## agrees with Greene (but not with errata) ## Example 6.1 ## Table 6.1 fm6.1 <- dynlm(log(invest) ~ tbill + inflation + log(gdp) + ltrend, data = USMacroG) fm6.3 <- dynlm(log(invest) ~ I(tbill - inflation) + log(gdp) + ltrend, data = USMacroG) summary(fm6.1) summary(fm6.3) deviance(fm6.1) deviance(fm6.3) vcov(fm6.1)[2,3] ## F test linearHypothesis(fm6.1, "tbill + inflation = 0") ## alternatively anova(fm6.1, fm6.3) ## t statistic sqrt(anova(fm6.1, fm6.3)[2,5]) ## Example 6.3 ## Distributed lag model: ## log(Ct) = b0 + b1 * log(Yt) + b2 * log(C(t-1)) + u us <- log(USMacroG[, c(2, 5)]) fm_distlag <- dynlm(log(consumption) ~ log(dpi) + L(log(consumption)), data = USMacroG) summary(fm_distlag) ## estimate and test long-run MPC coef(fm_distlag)[2]/(1-coef(fm_distlag)[3]) linearHypothesis(fm_distlag, "log(dpi) + L(log(consumption)) = 1") ## correct, see errata ## Example 6.4 ## predict investiment in 2001(1) predict(fm6.1, interval = "prediction", newdata = data.frame(tbill = 4.48, inflation = 5.262, gdp = 9316.8, ltrend = 204)) ## Example 7.7 ## no GMM available in "strucchange" ## using OLS instead yields fs <- Fstats(log(m1/cpi) ~ log(gdp) + tbill, data = USMacroG, vcov = NeweyWest, from = c(1957, 3), to = c(1991, 3)) plot(fs) ## which looks somewhat similar ... ## Example 8.2 ## Ct = b0 + b1*Yt + b2*Y(t-1) + v fm1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) ## Ct = a0 + a1*Yt + a2*C(t-1) + u fm2 <- dynlm(consumption ~ dpi + L(consumption), data = USMacroG) ## Cox test in both directions: coxtest(fm1, fm2) ## ... and do the same for jtest() and encomptest(). ## Notice that in this particular case two of them are coincident. jtest(fm1, fm2) encomptest(fm1, fm2) ## encomptest could also be performed `by hand' via fmE <- dynlm(consumption ~ dpi + L(dpi) + L(consumption), data = USMacroG) waldtest(fm1, fmE, fm2) ## Table 9.1 fm_ols <- lm(consumption ~ dpi, data = as.data.frame(USMacroG)) fm_nls <- nls(consumption ~ alpha + beta * dpi^gamma, start = list(alpha = coef(fm_ols)[1], beta = coef(fm_ols)[2], gamma = 1), control = nls.control(maxiter = 100), data = as.data.frame(USMacroG)) summary(fm_ols) summary(fm_nls) deviance(fm_ols) deviance(fm_nls) vcov(fm_nls) ## Example 9.7 ## F test fm_nls2 <- nls(consumption ~ alpha + beta * dpi, start = list(alpha = coef(fm_ols)[1], beta = coef(fm_ols)[2]), control = nls.control(maxiter = 100), data = as.data.frame(USMacroG)) anova(fm_nls, fm_nls2) ## Wald test linearHypothesis(fm_nls, "gamma = 1") ## Example 9.8, Table 9.2 usm <- USMacroG[, c("m1", "tbill", "gdp")] fm_lin <- lm(m1 ~ tbill + gdp, data = usm) fm_log <- lm(m1 ~ tbill + gdp, data = log(usm)) ## PE auxiliary regressions aux_lin <- lm(m1 ~ tbill + gdp + I(fitted(fm_log) - log(fitted(fm_lin))), data = usm) aux_log <- lm(m1 ~ tbill + gdp + I(fitted(fm_lin) - exp(fitted(fm_log))), data = log(usm)) coeftest(aux_lin)[4,] coeftest(aux_log)[4,] ## matches results from errata ## With lmtest >= 0.9-24: ## petest(fm_lin, fm_log) ## Example 12.1 fm_m1 <- dynlm(log(m1) ~ log(gdp) + log(cpi), data = USMacroG) summary(fm_m1) ## Figure 12.1 par(las = 1) plot(0, 0, type = "n", axes = FALSE, xlim = c(1950, 2002), ylim = c(-0.3, 0.225), xaxs = "i", yaxs = "i", xlab = "Quarter", ylab = "", main = "Least Squares Residuals") box() axis(1, at = c(1950, 1963, 1976, 1989, 2002)) axis(2, seq(-0.3, 0.225, by = 0.075)) grid(4, 7, col = grey(0.6)) abline(0, 0) lines(residuals(fm_m1), lwd = 2) ## Example 12.3 fm_pc <- dynlm(d(inflation) ~ unemp, data = USMacroG) summary(fm_pc) ## Figure 12.3 plot(residuals(fm_pc)) ## natural unemployment rate coef(fm_pc)[1]/coef(fm_pc)[2] ## autocorrelation res <- residuals(fm_pc) summary(dynlm(res ~ L(res))) ## Example 12.4 coeftest(fm_m1) coeftest(fm_m1, vcov = NeweyWest(fm_m1, lag = 5)) summary(fm_m1)$r.squared dwtest(fm_m1) as.vector(acf(residuals(fm_m1), plot = FALSE)$acf)[2] ## matches Tab. 12.1 errata and Greene 6e, apart from Newey-West SE ################################################# ## Cost function of electricity producers 1870 ## ################################################# ## Example 5.6: a generalized Cobb-Douglas cost function data("Electricity1970", package = "AER") fm <- lm(log(cost/fuel) ~ log(output) + I(log(output)^2/2) + log(capital/fuel) + log(labor/fuel), data=Electricity1970[1:123,]) #################################################### ## SIC 33: Production for primary metals industry ## #################################################### ## data data("SIC33", package = "AER") ## Example 6.2 ## Translog model fm_tl <- lm( output ~ labor + capital + I(0.5 * labor^2) + I(0.5 * capital^2) + I(labor * capital), data = log(SIC33)) ## Cobb-Douglas model fm_cb <- lm(output ~ labor + capital, data = log(SIC33)) ## Table 6.2 in Greene (2003) deviance(fm_tl) deviance(fm_cb) summary(fm_tl) summary(fm_cb) vcov(fm_tl) vcov(fm_cb) ## Cobb-Douglas vs. Translog model anova(fm_cb, fm_tl) ## hypothesis of constant returns linearHypothesis(fm_cb, "labor + capital = 1") ############################### ## Cost data for US airlines ## ############################### ## data data("USAirlines", package = "AER") ## Example 7.2 fm_full <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load + year + firm, data = USAirlines) fm_time <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load + year, data = USAirlines) fm_firm <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load + firm, data = USAirlines) fm_no <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = USAirlines) ## full fitted model coef(fm_full)[1:5] plot(1970:1984, c(coef(fm_full)[6:19], 0), type = "n", xlab = "Year", ylab = expression(delta(Year)), main = "Estimated Year Specific Effects") grid() points(1970:1984, c(coef(fm_full)[6:19], 0), pch = 19) ## Table 7.2 anova(fm_full, fm_time) anova(fm_full, fm_firm) anova(fm_full, fm_no) ## alternatively, use plm() library("plm") usair <- pdata.frame(USAirlines, c("firm", "year")) fm_full2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "within", effect = "twoways") fm_time2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "within", effect = "time") fm_firm2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "within", effect = "individual") fm_no2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "pooling") pFtest(fm_full2, fm_time2) pFtest(fm_full2, fm_firm2) pFtest(fm_full2, fm_no2) ## Example 13.1, Table 13.1 fm_no <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "pooling") fm_gm <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "between") fm_firm <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "within") fm_time <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "within", effect = "time") fm_ft <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "within", effect = "twoways") summary(fm_no) summary(fm_gm) summary(fm_firm) fixef(fm_firm) summary(fm_time) fixef(fm_time) summary(fm_ft) fixef(fm_ft, effect = "individual") fixef(fm_ft, effect = "time") ## Table 13.2 fm_rfirm <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "random") fm_rft <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "random", effect = "twoways") summary(fm_rfirm) summary(fm_rft) ################################################# ## Cost function of electricity producers 1955 ## ################################################# ## Nerlove data data("Electricity1955", package = "AER") Electricity <- Electricity1955[1:145,] ## Example 7.3 ## Cobb-Douglas cost function fm_all <- lm(log(cost/fuel) ~ log(output) + log(labor/fuel) + log(capital/fuel), data = Electricity) summary(fm_all) ## hypothesis of constant returns to scale linearHypothesis(fm_all, "log(output) = 1") ## Figure 7.4 plot(residuals(fm_all) ~ log(output), data = Electricity) ## scaling seems to be different in Greene (2003) with logQ > 10? ## grouped functions Electricity$group <- with(Electricity, cut(log(output), quantile(log(output), 0:5/5), include.lowest = TRUE, labels = 1:5)) fm_group <- lm( log(cost/fuel) ~ group/(log(output) + log(labor/fuel) + log(capital/fuel)) - 1, data = Electricity) ## Table 7.3 (close, but not quite) round(rbind(coef(fm_all)[-1], matrix(coef(fm_group), nrow = 5)[,-1]), digits = 3) ## Table 7.4 ## log quadratic cost function fm_all2 <- lm( log(cost/fuel) ~ log(output) + I(log(output)^2) + log(labor/fuel) + log(capital/fuel), data = Electricity) summary(fm_all2) ########################## ## Technological change ## ########################## ## Exercise 7.1 data("TechChange", package = "AER") fm1 <- lm(I(output/technology) ~ log(clr), data = TechChange) fm2 <- lm(I(output/technology) ~ I(1/clr), data = TechChange) fm3 <- lm(log(output/technology) ~ log(clr), data = TechChange) fm4 <- lm(log(output/technology) ~ I(1/clr), data = TechChange) ## Exercise 7.2 (a) and (c) plot(I(output/technology) ~ clr, data = TechChange) sctest(I(output/technology) ~ log(clr), data = TechChange, type = "Chow", point = c(1942, 1)) ################################## ## Expenditure and default data ## ################################## ## full data set (F21.4) data("CreditCard", package = "AER") ## extract data set F9.1 ccard <- CreditCard[1:100,] ccard$income <- round(ccard$income, digits = 2) ccard$expenditure <- round(ccard$expenditure, digits = 2) ccard$age <- round(ccard$age + .01) ## suspicious: CreditCard$age[CreditCard$age < 1] ## the first of these is also in TableF9.1 with 36 instead of 0.5: ccard$age[79] <- 36 ## Example 11.1 ccard <- ccard[order(ccard$income),] ccard0 <- subset(ccard, expenditure > 0) cc_ols <- lm(expenditure ~ age + owner + income + I(income^2), data = ccard0) ## Figure 11.1 plot(residuals(cc_ols) ~ income, data = ccard0, pch = 19) ## Table 11.1 mean(ccard$age) prop.table(table(ccard$owner)) mean(ccard$income) summary(cc_ols) sqrt(diag(vcovHC(cc_ols, type = "HC0"))) sqrt(diag(vcovHC(cc_ols, type = "HC2"))) sqrt(diag(vcovHC(cc_ols, type = "HC1"))) bptest(cc_ols, ~ (age + income + I(income^2) + owner)^2 + I(age^2) + I(income^4), data = ccard0) gqtest(cc_ols) bptest(cc_ols, ~ income + I(income^2), data = ccard0, studentize = FALSE) bptest(cc_ols, ~ income + I(income^2), data = ccard0) ## Table 11.2, WLS and FGLS cc_wls1 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/income, data = ccard0) cc_wls2 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/income^2, data = ccard0) auxreg1 <- lm(log(residuals(cc_ols)^2) ~ log(income), data = ccard0) cc_fgls1 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/exp(fitted(auxreg1)), data = ccard0) auxreg2 <- lm(log(residuals(cc_ols)^2) ~ income + I(income^2), data = ccard0) cc_fgls2 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/exp(fitted(auxreg2)), data = ccard0) alphai <- coef(lm(log(residuals(cc_ols)^2) ~ log(income), data = ccard0))[2] alpha <- 0 while(abs((alphai - alpha)/alpha) > 1e-7) { alpha <- alphai cc_fgls3 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/income^alpha, data = ccard0) alphai <- coef(lm(log(residuals(cc_fgls3)^2) ~ log(income), data = ccard0))[2] } alpha ## 1.7623 for Greene cc_fgls3 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/income^alpha, data = ccard0) llik <- function(alpha) -logLik(lm(expenditure ~ age + owner + income + I(income^2), weights = 1/income^alpha, data = ccard0)) plot(0:100/20, -sapply(0:100/20, llik), type = "l", xlab = "alpha", ylab = "logLik") alpha <- optimize(llik, interval = c(0, 5))$minimum cc_fgls4 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/income^alpha, data = ccard0) ## Table 11.2 cc_fit <- list(cc_ols, cc_wls1, cc_wls2, cc_fgls2, cc_fgls1, cc_fgls3, cc_fgls4) t(sapply(cc_fit, coef)) t(sapply(cc_fit, function(obj) sqrt(diag(vcov(obj))))) ## Table 21.21, Poisson and logit models cc_pois <- glm(reports ~ age + income + expenditure, data = CreditCard, family = poisson) summary(cc_pois) logLik(cc_pois) xhat <- colMeans(CreditCard[, c("age", "income", "expenditure")]) xhat <- as.data.frame(t(xhat)) lambda <- predict(cc_pois, newdata = xhat, type = "response") ppois(0, lambda) * nrow(CreditCard) cc_logit <- glm(factor(reports > 0) ~ age + income + owner, data = CreditCard, family = binomial) summary(cc_logit) logLik(cc_logit) ## Table 21.21, "split population model" library("pscl") cc_zip <- zeroinfl(reports ~ age + income + expenditure | age + income + owner, data = CreditCard) summary(cc_zip) sum(predict(cc_zip, type = "prob")[,1]) ################################### ## DEM/GBP exchange rate returns ## ################################### ## data as given by Greene (2003) data("MarkPound") mp <- round(MarkPound, digits = 6) ## Figure 11.3 in Greene (2003) plot(mp) ## Example 11.8 in Greene (2003), Table 11.5 library("tseries") mp_garch <- garch(mp, grad = "numerical") summary(mp_garch) logLik(mp_garch) ## Greene (2003) also includes a constant and uses different ## standard errors (presumably computed from Hessian), here ## OPG standard errors are used. garchFit() in "fGarch" ## implements the approach used by Greene (2003). ## compare Errata to Greene (2003) library("dynlm") res <- residuals(dynlm(mp ~ 1))^2 mp_ols <- dynlm(res ~ L(res, 1:10)) summary(mp_ols) logLik(mp_ols) summary(mp_ols)$r.squared * length(residuals(mp_ols)) ################################ ## Grunfeld's investment data ## ################################ ## subset of data with mistakes data("Grunfeld", package = "AER") ggr <- subset(Grunfeld, firm \%in\% c("General Motors", "US Steel", "General Electric", "Chrysler", "Westinghouse")) ggr[c(26, 38), 1] <- c(261.6, 645.2) ggr[32, 3] <- 232.6 ## Tab. 13.4 fm_pool <- lm(invest ~ value + capital, data = ggr) summary(fm_pool) logLik(fm_pool) ## White correction sqrt(diag(vcovHC(fm_pool, type = "HC0"))) ## heteroskedastic FGLS auxreg1 <- lm(residuals(fm_pool)^2 ~ firm - 1, data = ggr) fm_pfgls <- lm(invest ~ value + capital, data = ggr, weights = 1/fitted(auxreg1)) summary(fm_pfgls) ## ML, computed as iterated FGLS sigmasi <- fitted(lm(residuals(fm_pfgls)^2 ~ firm - 1 , data = ggr)) sigmas <- 0 while(any(abs((sigmasi - sigmas)/sigmas) > 1e-7)) { sigmas <- sigmasi fm_pfgls_i <- lm(invest ~ value + capital, data = ggr, weights = 1/sigmas) sigmasi <- fitted(lm(residuals(fm_pfgls_i)^2 ~ firm - 1 , data = ggr)) } fm_pmlh <- lm(invest ~ value + capital, data = ggr, weights = 1/sigmas) summary(fm_pmlh) logLik(fm_pmlh) ## Tab. 13.5 auxreg2 <- lm(residuals(fm_pfgls)^2 ~ firm - 1, data = ggr) auxreg3 <- lm(residuals(fm_pmlh)^2 ~ firm - 1, data = ggr) rbind( "OLS" = coef(auxreg1), "Het. FGLS" = coef(auxreg2), "Het. ML" = coef(auxreg3)) ## Chapter 14: explicitly treat as panel data library("plm") pggr <- pdata.frame(ggr, c("firm", "year")) ## Tab. 14.1 library("systemfit") fm_sur <- systemfit(invest ~ value + capital, data = pggr, method = "SUR", methodResidCov = "noDfCor") fm_psur <- systemfit(invest ~ value + capital, data = pggr, method = "SUR", pooled = TRUE, methodResidCov = "noDfCor", residCovWeighted = TRUE) ## Tab 14.2 fm_ols <- systemfit(invest ~ value + capital, data = pggr, method = "OLS") fm_pols <- systemfit(invest ~ value + capital, data = pggr, method = "OLS", pooled = TRUE) ## or "by hand" fm_gm <- lm(invest ~ value + capital, data = ggr, subset = firm == "General Motors") mean(residuals(fm_gm)^2) ## Greene uses MLE ## etc. fm_pool <- lm(invest ~ value + capital, data = ggr) ## Tab. 14.3 (and Tab 13.4, cross-section ML) ## (not run due to long computation time) \dontrun{ fm_ml <- systemfit(invest ~ value + capital, data = pggr, method = "SUR", methodResidCov = "noDfCor", maxiter = 1000, tol = 1e-10) fm_pml <- systemfit(invest ~ value + capital, data = pggr, method = "SUR", pooled = TRUE, methodResidCov = "noDfCor", residCovWeighted = TRUE, maxiter = 1000, tol = 1e-10) } ## Fig. 14.2 plot(unlist(residuals(fm_sur)[, c(3, 1, 2, 5, 4)]), type = "l", ylab = "SUR residuals", ylim = c(-400, 400), xaxs = "i", yaxs = "i") abline(v = c(20,40,60,80), h = 0, lty = 2) ################### ## Klein model I ## ################### ## data data("KleinI", package = "AER") ## Tab. 15.3, OLS library("dynlm") fm_cons <- dynlm(consumption ~ cprofits + L(cprofits) + I(pwage + gwage), data = KleinI) fm_inv <- dynlm(invest ~ cprofits + L(cprofits) + capital, data = KleinI) fm_pwage <- dynlm(pwage ~ gnp + L(gnp) + I(time(gnp) - 1931), data = KleinI) summary(fm_cons) summary(fm_inv) summary(fm_pwage) ## Notes: ## - capital refers to previous year's capital stock -> no lag needed! ## - trend used by Greene (p. 381, "time trend measured as years from 1931") ## Maddala uses years since 1919 ## preparation of data frame for systemfit KI <- ts.intersect(KleinI, lag(KleinI, k = -1), dframe = TRUE) names(KI) <- c(colnames(KleinI), paste("L", colnames(KleinI), sep = "")) KI$trend <- (1921:1941) - 1931 library("systemfit") system <- list( consumption = consumption ~ cprofits + Lcprofits + I(pwage + gwage), invest = invest ~ cprofits + Lcprofits + capital, pwage = pwage ~ gnp + Lgnp + trend) ## Tab. 15.3 OLS again fm_ols <- systemfit(system, method = "OLS", data = KI) summary(fm_ols) ## Tab. 15.3 2SLS, 3SLS, I3SLS inst <- ~ Lcprofits + capital + Lgnp + gexpenditure + taxes + trend + gwage fm_2sls <- systemfit(system, method = "2SLS", inst = inst, methodResidCov = "noDfCor", data = KI) fm_3sls <- systemfit(system, method = "3SLS", inst = inst, methodResidCov = "noDfCor", data = KI) fm_i3sls <- systemfit(system, method = "3SLS", inst = inst, methodResidCov = "noDfCor", maxiter = 100, data = KI) ############################################ ## Transportation equipment manufacturing ## ############################################ ## data data("Equipment", package = "AER") ## Example 17.5 ## Cobb-Douglas fm_cd <- lm(log(valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ## generalized Cobb-Douglas with Zellner-Revankar trafo GCobbDouglas <- function(theta) lm(I(log(valueadded/firms) + theta * valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ## yields classical Cobb-Douglas for theta = 0 fm_cd0 <- GCobbDouglas(0) ## ML estimation of generalized model ## choose starting values from classical model par0 <- as.vector(c(coef(fm_cd0), 0, mean(residuals(fm_cd0)^2))) ## set up likelihood function nlogL <- function(par) { beta <- par[1:3] theta <- par[4] sigma2 <- par[5] Y <- with(Equipment, valueadded/firms) K <- with(Equipment, capital/firms) L <- with(Equipment, labor/firms) rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L) lhs <- log(Y) + theta * Y rval <- sum(log(1 + theta * Y) - log(Y) + dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE)) return(-rval) } ## optimization opt <- optim(par0, nlogL, hessian = TRUE) ## Table 17.2 opt$par sqrt(diag(solve(opt$hessian)))[1:4] -opt$value ## re-fit ML model fm_ml <- GCobbDouglas(opt$par[4]) deviance(fm_ml) sqrt(diag(vcov(fm_ml))) ## fit NLS model rss <- function(theta) deviance(GCobbDouglas(theta)) optim(0, rss) opt2 <- optimize(rss, c(-1, 1)) fm_nls <- GCobbDouglas(opt2$minimum) -nlogL(c(coef(fm_nls), opt2$minimum, mean(residuals(fm_nls)^2))) ############################ ## Municipal expenditures ## ############################ ## Table 18.2 data("Municipalities", package = "AER") summary(Municipalities) ########################### ## Program effectiveness ## ########################### ## Table 21.1, col. "Probit" data("ProgramEffectiveness", package = "AER") fm_probit <- glm(grade ~ average + testscore + participation, data = ProgramEffectiveness, family = binomial(link = "probit")) summary(fm_probit) #################################### ## Labor force participation data ## #################################### ## data and transformations data("PSID1976", package = "AER") PSID1976$kids <- with(PSID1976, factor((youngkids + oldkids) > 0, levels = c(FALSE, TRUE), labels = c("no", "yes"))) PSID1976$nwincome <- with(PSID1976, (fincome - hours * wage)/1000) ## Example 4.1, Table 4.2 ## (reproduced in Example 7.1, Table 7.1) gr_lm <- lm(log(hours * wage) ~ age + I(age^2) + education + kids, data = PSID1976, subset = participation == "yes") summary(gr_lm) vcov(gr_lm) ## Example 4.5 summary(gr_lm) ## or equivalently gr_lm1 <- lm(log(hours * wage) ~ 1, data = PSID1976, subset = participation == "yes") anova(gr_lm1, gr_lm) ## Example 21.4, p. 681, and Tab. 21.3, p. 682 gr_probit1 <- glm(participation ~ age + I(age^2) + I(fincome/10000) + education + kids, data = PSID1976, family = binomial(link = "probit") ) gr_probit2 <- glm(participation ~ age + I(age^2) + I(fincome/10000) + education, data = PSID1976, family = binomial(link = "probit")) gr_probit3 <- glm(participation ~ kids/(age + I(age^2) + I(fincome/10000) + education), data = PSID1976, family = binomial(link = "probit")) ## LR test of all coefficients lrtest(gr_probit1) ## Chow-type test lrtest(gr_probit2, gr_probit3) ## equivalently: anova(gr_probit2, gr_probit3, test = "Chisq") ## Table 21.3 summary(gr_probit1) ## Example 22.8, Table 22.7, p. 786 library("sampleSelection") gr_2step <- selection(participation ~ age + I(age^2) + fincome + education + kids, wage ~ experience + I(experience^2) + education + city, data = PSID1976, method = "2step") gr_ml <- selection(participation ~ age + I(age^2) + fincome + education + kids, wage ~ experience + I(experience^2) + education + city, data = PSID1976, method = "ml") gr_ols <- lm(wage ~ experience + I(experience^2) + education + city, data = PSID1976, subset = participation == "yes") ## NOTE: ML estimates agree with Greene, 5e errata. ## Standard errors are based on the Hessian (here), while Greene has BHHH/OPG. #################### ## Ship accidents ## #################### ## subset data data("ShipAccidents", package = "AER") sa <- subset(ShipAccidents, service > 0) ## Table 21.20 sa_full <- glm(incidents ~ type + construction + operation, family = poisson, data = sa, offset = log(service)) summary(sa_full) sa_notype <- glm(incidents ~ construction + operation, family = poisson, data = sa, offset = log(service)) summary(sa_notype) sa_noperiod <- glm(incidents ~ type + operation, family = poisson, data = sa, offset = log(service)) summary(sa_noperiod) ## model comparison anova(sa_full, sa_notype, test = "Chisq") anova(sa_full, sa_noperiod, test = "Chisq") ## test for overdispersion dispersiontest(sa_full) dispersiontest(sa_full, trafo = 2) ###################################### ## Fair's extramarital affairs data ## ###################################### ## data data("Affairs", package = "AER") ## Tab. 22.3 and 22.4 fm_ols <- lm(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) fm_probit <- glm(I(affairs > 0) ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs, family = binomial(link = "probit")) fm_tobit <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) fm_tobit2 <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, right = 4, data = Affairs) fm_pois <- glm(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs, family = poisson) library("MASS") fm_nb <- glm.nb(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) ## Tab. 22.6 library("pscl") fm_zip <- zeroinfl(affairs ~ age + yearsmarried + religiousness + occupation + rating | age + yearsmarried + religiousness + occupation + rating, data = Affairs) ###################### ## Strike durations ## ###################### ## data and package data("StrikeDuration", package = "AER") library("MASS") ## Table 22.10 fit_exp <- fitdistr(StrikeDuration$duration, "exponential") fit_wei <- fitdistr(StrikeDuration$duration, "weibull") fit_wei$estimate[2]^(-1) fit_lnorm <- fitdistr(StrikeDuration$duration, "lognormal") 1/fit_lnorm$estimate[2] exp(-fit_lnorm$estimate[1]) ## Weibull and lognormal distribution have ## different parameterizations, see Greene p. 794 ## Example 22.10 library("survival") fm_wei <- survreg(Surv(duration) ~ uoutput, dist = "weibull", data = StrikeDuration) summary(fm_wei) } } \keyword{datasets} AER/man/ShipAccidents.Rd0000644000176200001440000000463114252214047014451 0ustar liggesusers\name{ShipAccidents} \alias{ShipAccidents} \title{Ship Accidents} \description{ Data on ship accidents. } \usage{data("ShipAccidents")} \format{ A data frame containing 40 observations on 5 ship types in 4 vintages and 2 service periods. \describe{ \item{type}{factor with levels \code{"A"} to \code{"E"} for the different ship types,} \item{construction}{factor with levels \code{"1960-64"}, \code{"1965-69"}, \code{"1970-74"}, \code{"1975-79"} for the periods of construction,} \item{operation}{factor with levels \code{"1960-74"}, \code{"1975-79"} for the periods of operation,} \item{service}{aggregate months of service,} \item{incidents}{number of damage incidents.} } } \details{ The data are from McCullagh and Nelder (1989, p. 205, Table 6.2) and were also used by Greene (2003, Ch. 21), see below. There are five ships (observations 7, 15, 23, 31, 39) with an operation period \emph{before} the construction period, hence the variables \code{service} and \code{incidents} are necessarily 0. An additional observation (34) has entries representing \emph{accidentally empty cells} (see McCullagh and Nelder, 1989, p. 205). It is a bit unclear what exactly the above means. In any case, the models are fit only to those observations with \code{service > 0}. } \source{ Online complements to Greene (2003). \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. McCullagh, P. and Nelder, J.A. (1989). \emph{Generalized Linear Models}, 2nd edition. London: Chapman & Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("ShipAccidents") sa <- subset(ShipAccidents, service > 0) ## Greene (2003), Table 21.20 ## (see also McCullagh and Nelder, 1989, Table 6.3) sa_full <- glm(incidents ~ type + construction + operation, family = poisson, data = sa, offset = log(service)) summary(sa_full) sa_notype <- glm(incidents ~ construction + operation, family = poisson, data = sa, offset = log(service)) summary(sa_notype) sa_noperiod <- glm(incidents ~ type + operation, family = poisson, data = sa, offset = log(service)) summary(sa_noperiod) ## model comparison anova(sa_full, sa_notype, test = "Chisq") anova(sa_full, sa_noperiod, test = "Chisq") ## test for overdispersion dispersiontest(sa_full) dispersiontest(sa_full, trafo = 2) } \keyword{datasets} AER/man/BankWages.Rd0000644000176200001440000000364214252214056013573 0ustar liggesusers\name{BankWages} \alias{BankWages} \title{Bank Wages} \description{Wages of employees of a US bank. } \usage{data("BankWages")} \format{ A data frame containing 474 observations on 4 variables. \describe{ \item{job}{Ordered factor indicating job category, with levels \code{"custodial"}, \code{"admin"} and \code{"manage"}.} \item{education}{Education in years.} \item{gender}{Factor indicating gender.} \item{minority}{Factor. Is the employee member of a minority?} } } \source{ Online complements to Heij, de Boer, Franses, Kloek, and van Dijk (2004). \url{https://global.oup.com/booksites/content/0199268010/datasets/ch6/xr614bwa.asc} } \references{ Heij, C., de Boer, P.M.C., Franses, P.H., Kloek, T. and van Dijk, H.K. (2004). \emph{Econometric Methods with Applications in Business and Economics}. Oxford: Oxford University Press. } \examples{ \dontshow{ if(!requireNamespace("nnet") || !requireNamespace("mlogit")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("BankWages") ## exploratory analysis of job ~ education ## (tables and spine plots, some education levels merged) xtabs(~ education + job, data = BankWages) edcat <- factor(BankWages$education) levels(edcat)[3:10] <- rep(c("14-15", "16-18", "19-21"), c(2, 3, 3)) tab <- xtabs(~ edcat + job, data = BankWages) prop.table(tab, 1) spineplot(tab, off = 0) plot(job ~ edcat, data = BankWages, off = 0) ## fit multinomial model for male employees library("nnet") fm_mnl <- multinom(job ~ education + minority, data = BankWages, subset = gender == "male", trace = FALSE) summary(fm_mnl) confint(fm_mnl) ## same with mlogit package library("mlogit") fm_mlogit <- mlogit(job ~ 1 | education + minority, data = BankWages, subset = gender == "male", shape = "wide", reflevel = "custodial") summary(fm_mlogit) } \keyword{datasets} AER/man/TravelMode.Rd0000644000176200001440000000361314252214056013771 0ustar liggesusers\name{TravelMode} \alias{TravelMode} \title{Travel Mode Choice Data} \description{ Data on travel mode choice for travel between Sydney and Melbourne, Australia. } \usage{data("TravelMode")} \format{ A data frame containing 840 observations on 4 modes for 210 individuals. \describe{ \item{individual}{Factor indicating individual with levels \code{1} to \code{210}.} \item{mode}{Factor indicating travel mode with levels \code{"car"}, \code{"air"}, \code{"train"}, or \code{"bus"}.} \item{choice}{Factor indicating choice with levels \code{"no"} and \code{"yes"}.} \item{wait}{Terminal waiting time, 0 for car.} \item{vcost}{Vehicle cost component.} \item{travel}{Travel time in the vehicle.} \item{gcost}{Generalized cost measure.} \item{income}{Household income.} \item{size}{Party size.} } } \source{ Online complements to Greene (2003). \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ \dontshow{ if(!requireNamespace("lattice") || !requireNamespace("mlogit")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("TravelMode", package = "AER") ## overall proportions for chosen mode with(TravelMode, prop.table(table(mode[choice == "yes"]))) ## travel vs. waiting time for different travel modes library("lattice") xyplot(travel ~ wait | mode, data = TravelMode) ## Greene (2003), Table 21.11, conditional logit model library("mlogit") TravelMode$incair <- with(TravelMode, income * (mode == "air")) tm_cl <- mlogit(choice ~ gcost + wait + incair, data = TravelMode, shape = "long", alt.var = "mode", reflevel = "car") summary(tm_cl) } \keyword{datasets} AER/man/PepperPrice.Rd0000644000176200001440000000403214252214056014141 0ustar liggesusers\name{PepperPrice} \alias{PepperPrice} \title{Black and White Pepper Prices} \description{ Time series of average monthly European spot prices for black and white pepper (fair average quality) in US dollars per ton. } \usage{data("PepperPrice")} \format{ A monthly multiple time series from 1973(10) to 1996(4) with 2 variables. \describe{ \item{black}{spot price for black pepper,} \item{white}{spot price for white pepper.} } } \source{ Originally available as an online supplement to Franses (1998). Now available via online complements to Franses, van Dijk and Opschoor (2014). \url{https://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. Franses, P.H., van Dijk, D. and Opschoor, A. (2014). \emph{Time Series Models for Business and Economic Forecasting}, 2nd ed. Cambridge, UK: Cambridge University Press. } \examples{ \dontshow{ if(!requireNamespace("tseries") || !requireNamespace("urca")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## data data("PepperPrice", package = "AER") plot(PepperPrice, plot.type = "single", col = 1:2) ## package library("tseries") library("urca") ## unit root tests adf.test(log(PepperPrice[, "white"])) adf.test(diff(log(PepperPrice[, "white"]))) pp.test(log(PepperPrice[, "white"]), type = "Z(t_alpha)") pepper_ers <- ur.ers(log(PepperPrice[, "white"]), type = "DF-GLS", model = "const", lag.max = 4) summary(pepper_ers) ## stationarity tests kpss.test(log(PepperPrice[, "white"])) ## cointegration po.test(log(PepperPrice)) pepper_jo <- ca.jo(log(PepperPrice), ecdet = "const", type = "trace") summary(pepper_jo) pepper_jo2 <- ca.jo(log(PepperPrice), ecdet = "const", type = "eigen") summary(pepper_jo2) } \keyword{datasets} AER/man/MurderRates.Rd0000644000176200001440000000436314252214047014167 0ustar liggesusers\name{MurderRates} \alias{MurderRates} \title{Determinants of Murder Rates in the United States} \description{ Cross-section data on states in 1950. } \usage{data("MurderRates")} \format{ A data frame containing 44 observations on 8 variables. \describe{ \item{rate}{Murder rate per 100,000 (FBI estimate, 1950).} \item{convictions}{Number of convictions divided by number of murders in 1950.} \item{executions}{Average number of executions during 1946--1950 divided by convictions in 1950.} \item{time}{Median time served (in months) of convicted murderers released in 1951.} \item{income}{Median family income in 1949 (in 1,000 USD).} \item{lfp}{Labor force participation rate in 1950 (in percent).} \item{noncauc}{Proportion of population that is non-Caucasian in 1950.} \item{southern}{Factor indicating region.} } } \source{ Maddala (2001), Table 8.4, p. 330 } \references{ Maddala, G.S. (2001). \emph{Introduction to Econometrics}, 3rd ed. New York: John Wiley. McManus, W.S. (1985). Estimates of the Deterrent Effect of Capital Punishment: The Importance of the Researcher's Prior Beliefs. \emph{Journal of Political Economy}, \bold{93}, 417--425. Stokes, H. (2004). On the Advantage of Using Two or More Econometric Software Systems to Solve the Same Problem. \emph{Journal of Economic and Social Measurement}, \bold{29}, 307--320. } \examples{ data("MurderRates") ## Maddala (2001, pp. 331) fm_lm <- lm(rate ~ . + I(executions > 0), data = MurderRates) summary(fm_lm) model <- I(executions > 0) ~ time + income + noncauc + lfp + southern fm_lpm <- lm(model, data = MurderRates) summary(fm_lpm) ## Binomial models. Note: southern coefficient fm_logit <- glm(model, data = MurderRates, family = binomial) summary(fm_logit) fm_logit2 <- glm(model, data = MurderRates, family = binomial, control = list(epsilon = 1e-15, maxit = 50, trace = FALSE)) summary(fm_logit2) fm_probit <- glm(model, data = MurderRates, family = binomial(link = "probit")) summary(fm_probit) fm_probit2 <- glm(model, data = MurderRates , family = binomial(link = "probit"), control = list(epsilon = 1e-15, maxit = 50, trace = FALSE)) summary(fm_probit2) ## Explanation: quasi-complete separation with(MurderRates, table(executions > 0, southern)) } \keyword{datasets} AER/man/HealthInsurance.Rd0000644000176200001440000000324114252214047015001 0ustar liggesusers\name{HealthInsurance} \alias{HealthInsurance} \title{Medical Expenditure Panel Survey Data} \description{ Cross-section data originating from the Medical Expenditure Panel Survey survey conducted in 1996. } \usage{data("HealthInsurance")} \format{ A data frame containing 8,802 observations on 11 variables. \describe{ \item{health}{factor. Is the self-reported health status \dQuote{healthy}?.} \item{age}{age in years.} \item{limit}{factor. Is there any limitation?} \item{gender}{factor indicating gender.} \item{insurance}{factor. Does the individual have a health insurance?} \item{married}{factor. Is the individual married?} \item{selfemp}{factor. Is the individual self-employed?} \item{family}{family size.} \item{region}{factor indicating region.} \item{ethnicity}{factor indicating ethnicity: African-American, Caucasian, other.} \item{education}{factor indicating highest degree attained: no degree, GED (high school equivalent), high school, bachelor, master, PhD, other.} } } \details{ This is a subset of the data used in Perry and Rosen (2004). } \source{ Online complements to Stock and Watson (2007). } \references{ Perry, C. and Rosen, H.S. (2004). \dQuote{The Self-Employed are Less Likely than Wage-Earners to Have Health Insurance. So What?} in Holtz-Eakin, D. and Rosen, H.S. (eds.), \emph{Entrepeneurship and Public Policy}, MIT Press. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("HealthInsurance") summary(HealthInsurance) prop.table(xtabs(~ selfemp + insurance, data = HealthInsurance), 1) } \keyword{datasets} AER/man/USConsump1993.Rd0000644000176200001440000000442014252214056014146 0ustar liggesusers\name{USConsump1993} \alias{USConsump1993} \title{US Consumption Data (1950--1993)} \description{ Time series data on US income and consumption expenditure, 1950--1993. } \usage{data("USConsump1993")} \format{ An annual multiple time series from 1950 to 1993 with 2 variables. \describe{ \item{income}{Disposable personal income (in 1987 USD).} \item{expenditure}{Personal consumption expenditures (in 1987 USD).} } } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}, \code{\link{USConsump1950}}, \code{\link{USConsump1979}}} \examples{ \dontshow{ if(!requireNamespace("strucchange") || !requireNamespace("dynlm")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## data from Baltagi (2002) data("USConsump1993", package = "AER") plot(USConsump1993, plot.type = "single", col = 1:2) ## Chapter 5 (p. 122-125) fm <- lm(expenditure ~ income, data = USConsump1993) summary(fm) ## Durbin-Watson test (p. 122) dwtest(fm) ## Breusch-Godfrey test (Table 5.4, p. 124) bgtest(fm) ## Newey-West standard errors (Table 5.5, p. 125) coeftest(fm, vcov = NeweyWest(fm, lag = 3, prewhite = FALSE, adjust = TRUE)) ## Chapter 8 library("strucchange") ## Recursive residuals rr <- recresid(fm) rr ## Recursive CUSUM test rcus <- efp(expenditure ~ income, data = USConsump1993) plot(rcus) sctest(rcus) ## Harvey-Collier test harvtest(fm) ## NOTE" Mistake in Baltagi (2002) who computes ## the t-statistic incorrectly as 0.0733 via mean(rr)/sd(rr)/sqrt(length(rr)) ## whereas it should be (as in harvtest) mean(rr)/sd(rr) * sqrt(length(rr)) ## Rainbow test raintest(fm, center = 23) ## J test for non-nested models library("dynlm") fm1 <- dynlm(expenditure ~ income + L(income), data = USConsump1993) fm2 <- dynlm(expenditure ~ income + L(expenditure), data = USConsump1993) jtest(fm1, fm2) ## Chapter 14 ## ACF and PACF for expenditures and first differences exps <- USConsump1993[, "expenditure"] (acf(exps)) (pacf(exps)) (acf(diff(exps))) (pacf(diff(exps))) ## dynamic regressions, eq. (14.8) fm <- dynlm(d(exps) ~ I(time(exps) - 1949) + L(exps)) summary(fm) } \keyword{datasets} AER/man/ProgramEffectiveness.Rd0000644000176200001440000000256714252214047016057 0ustar liggesusers\name{ProgramEffectiveness} \alias{ProgramEffectiveness} \title{Program Effectiveness Data} \description{ Data used to study the effectiveness of a program. } \usage{data("ProgramEffectiveness")} \format{ A data frame containing 32 cross-section observations on 4 variables. \describe{ \item{grade}{Factor with levels \code{"increase"} and \code{"decrease"}.} \item{average}{Grade-point average.} \item{testscore}{Test score on economics test.} \item{participation}{Factor. Did the individual participate in the program?} } } \details{ The data are taken form Spencer and Mazzeo (1980) who examined whether a new method of teaching economics significantly influenced performance in later economics courses. } \source{ Online complements to Greene (2003). \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Spector, L. and Mazzeo, M. (1980). Probit Analysis and Economic Education. \emph{Journal of Economic Education}, \bold{11}, 37--44. } \seealso{\code{\link{Greene2003}}} \examples{ data("ProgramEffectiveness") ## Greene (2003), Table 21.1, col. "Probit" fm_probit <- glm(grade ~ average + testscore + participation, data = ProgramEffectiveness, family = binomial(link = "probit")) summary(fm_probit) } \keyword{datasets} AER/man/USGasG.Rd0000644000176200001440000000601614252214056013020 0ustar liggesusers\name{USGasG} \alias{USGasG} \title{US Gasoline Market Data (1960--1995, Greene)} \description{ Time series data on the US gasoline market. } \usage{data("USGasG")} \format{ An annual multiple time series from 1960 to 1995 with 10 variables. \describe{ \item{gas}{Total US gasoline consumption (computed as total expenditure divided by price index).} \item{price}{Price index for gasoline.} \item{income}{Per capita disposable income.} \item{newcar}{Price index for new cars.} \item{usedcar}{Price index for used cars.} \item{transport}{Price index for public transportation.} \item{durable}{Aggregate price index for consumer durables.} \item{nondurable}{Aggregate price index for consumer nondurables.} \item{service}{Aggregate price index for consumer services.} \item{population}{US total population in millions.} } } \source{ Online complements to Greene (2003). Table F2.2. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}, \code{\link{USGasB}}} \examples{ \dontshow{ if(!requireNamespace("strucchange")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("USGasG", package = "AER") plot(USGasG) ## Greene (2003) ## Example 2.3 fm <- lm(log(gas/population) ~ log(price) + log(income) + log(newcar) + log(usedcar), data = as.data.frame(USGasG)) summary(fm) ## Example 4.4 ## estimates and standard errors (note different offset for intercept) coef(fm) sqrt(diag(vcov(fm))) ## confidence interval confint(fm, parm = "log(income)") ## test linear hypothesis linearHypothesis(fm, "log(income) = 1") ## Example 7.6 ## re-used in Example 8.3 trend <- 1:nrow(USGasG) shock <- factor(time(USGasG) > 1973, levels = c(FALSE, TRUE), labels = c("before", "after")) ## 1960-1995 fm1 <- lm(log(gas/population) ~ log(income) + log(price) + log(newcar) + log(usedcar) + trend, data = as.data.frame(USGasG)) summary(fm1) ## pooled fm2 <- lm(log(gas/population) ~ shock + log(income) + log(price) + log(newcar) + log(usedcar) + trend, data = as.data.frame(USGasG)) summary(fm2) ## segmented fm3 <- lm(log(gas/population) ~ shock/(log(income) + log(price) + log(newcar) + log(usedcar) + trend), data = as.data.frame(USGasG)) summary(fm3) ## Chow test anova(fm3, fm1) library("strucchange") sctest(log(gas/population) ~ log(income) + log(price) + log(newcar) + log(usedcar) + trend, data = USGasG, point = c(1973, 1), type = "Chow") ## Recursive CUSUM test rcus <- efp(log(gas/population) ~ log(income) + log(price) + log(newcar) + log(usedcar) + trend, data = USGasG, type = "Rec-CUSUM") plot(rcus) sctest(rcus) ## Note: Greene's remark that the break is in 1984 (where the process crosses its ## boundary) is wrong. The break appears to be no later than 1976. ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/WinkelmannBoes2009.Rd0000644000176200001440000003171714252214056015164 0ustar liggesusers\name{WinkelmannBoes2009} \alias{WinkelmannBoes2009} \title{Data and Examples from Winkelmann and Boes (2009)} \description{ This manual page collects a list of examples from the book. Some solutions might not be exact and the list is not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer. } \references{ Winkelmann, R., and Boes, S. (2009). \emph{Analysis of Microdata}, 2nd ed. Berlin and Heidelberg: Springer-Verlag. } \seealso{\code{\link{GSS7402}}, \code{\link{GSOEP9402}}, \code{\link{PSID1976}}} \examples{ \dontshow{ if(!requireNamespace("effects") || !requireNamespace("ROCR") || !requireNamespace("MASS") || !requireNamespace("nnet") || !requireNamespace("mlogit") || !requireNamespace("sampleSelection") || !requireNamespace("truncreg")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} \donttest{ ######################################### ## US General Social Survey 1974--2002 ## ######################################### ## data data("GSS7402", package = "AER") ## completed fertility subset gss40 <- subset(GSS7402, age >= 40) ## Chapter 1 ## Table 1.1 gss_kids <- table(gss40$kids) cbind(absolute = gss_kids, relative = round(prop.table(gss_kids) * 100, digits = 2)) ## Table 1.2 sd1 <- function(x) sd(x) / sqrt(length(x)) with(gss40, round(cbind( "obs" = tapply(kids, year, length), "av kids" = tapply(kids, year, mean), " " = tapply(kids, year, sd1), "prop childless" = tapply(kids, year, function(x) mean(x <= 0)), " " = tapply(kids, year, function(x) sd1(x <= 0)), "av schooling" = tapply(education, year, mean), " " = tapply(education, year, sd1) ), digits = 2)) ## Table 1.3 gss40$trend <- gss40$year - 1974 kids_lm1 <- lm(kids ~ factor(year), data = gss40) kids_lm2 <- lm(kids ~ trend, data = gss40) kids_lm3 <- lm(kids ~ trend + education, data = gss40) ## Chapter 2 ## Table 2.1 kids_tab <- prop.table(xtabs(~ kids + year, data = gss40), 2) * 100 round(kids_tab[,c(4, 8)], digits = 2) ## Figure 2.1 barplot(t(kids_tab[, c(4, 8)]), beside = TRUE, legend = TRUE) ## Chapter 3, Example 3.14 ## Table 3.1 gss40$nokids <- factor(gss40$kids <= 0, levels = c(FALSE, TRUE), labels = c("no", "yes")) nokids_p1 <- glm(nokids ~ 1, data = gss40, family = binomial(link = "probit")) nokids_p2 <- glm(nokids ~ trend, data = gss40, family = binomial(link = "probit")) nokids_p3 <- glm(nokids ~ trend + education + ethnicity + siblings, data = gss40, family = binomial(link = "probit")) ## p. 87 lrtest(nokids_p1, nokids_p2, nokids_p3) ## Chapter 4, Example 4.1 gss40$nokids01 <- as.numeric(gss40$nokids) - 1 nokids_lm3 <- lm(nokids01 ~ trend + education + ethnicity + siblings, data = gss40) coeftest(nokids_lm3, vcov = sandwich) ## Example 4.3 ## Table 4.1 nokids_l1 <- glm(nokids ~ 1, data = gss40, family = binomial(link = "logit")) nokids_l3 <- glm(nokids ~ trend + education + ethnicity + siblings, data = gss40, family = binomial(link = "logit")) lrtest(nokids_p3) lrtest(nokids_l3) ## Table 4.2 nokids_xbar <- colMeans(model.matrix(nokids_l3)) sum(coef(nokids_p3) * nokids_xbar) sum(coef(nokids_l3) * nokids_xbar) dnorm(sum(coef(nokids_p3) * nokids_xbar)) dlogis(sum(coef(nokids_l3) * nokids_xbar)) dnorm(sum(coef(nokids_p3) * nokids_xbar)) * coef(nokids_p3)[3] dlogis(sum(coef(nokids_l3) * nokids_xbar)) * coef(nokids_l3)[3] exp(coef(nokids_l3)[3]) ## Figure 4.4 ## everything by hand (for ethnicity = "cauc" group) nokids_xbar <- as.vector(nokids_xbar) nokids_nd <- data.frame(education = seq(0, 20, by = 0.5), trend = nokids_xbar[2], ethnicity = "cauc", siblings = nokids_xbar[4]) nokids_p3_fit <- predict(nokids_p3, newdata = nokids_nd, type = "response", se.fit = TRUE) plot(nokids_nd$education, nokids_p3_fit$fit, type = "l", xlab = "education", ylab = "predicted probability", ylim = c(0, 0.3)) polygon(c(nokids_nd$education, rev(nokids_nd$education)), c(nokids_p3_fit$fit + 1.96 * nokids_p3_fit$se.fit, rev(nokids_p3_fit$fit - 1.96 * nokids_p3_fit$se.fit)), col = "lightgray", border = "lightgray") lines(nokids_nd$education, nokids_p3_fit$fit) ## using "effects" package (for average "ethnicity" variable) library("effects") nokids_p3_ef <- effect("education", nokids_p3, xlevels = list(education = 0:20)) plot(nokids_p3_ef, rescale.axis = FALSE, ylim = c(0, 0.3)) ## using "effects" plus modification by hand nokids_p3_ef1 <- as.data.frame(nokids_p3_ef) plot(pnorm(fit) ~ education, data = nokids_p3_ef1, type = "n", ylim = c(0, 0.3)) polygon(c(0:20, 20:0), pnorm(c(nokids_p3_ef1$upper, rev(nokids_p3_ef1$lower))), col = "lightgray", border = "lightgray") lines(pnorm(fit) ~ education, data = nokids_p3_ef1) ## Table 4.6 ## McFadden's R^2 1 - as.numeric( logLik(nokids_p3) / logLik(nokids_p1) ) 1 - as.numeric( logLik(nokids_l3) / logLik(nokids_l1) ) ## McKelvey and Zavoina R^2 r2mz <- function(obj) { ystar <- predict(obj) sse <- sum((ystar - mean(ystar))^2) s2 <- switch(obj$family$link, "probit" = 1, "logit" = pi^2/3, NA) n <- length(residuals(obj)) sse / (n * s2 + sse) } r2mz(nokids_p3) r2mz(nokids_l3) ## AUC library("ROCR") nokids_p3_pred <- prediction(fitted(nokids_p3), gss40$nokids) nokids_l3_pred <- prediction(fitted(nokids_l3), gss40$nokids) plot(performance(nokids_p3_pred, "tpr", "fpr")) abline(0, 1, lty = 2) performance(nokids_p3_pred, "auc") plot(performance(nokids_l3_pred, "tpr", "fpr")) abline(0, 1, lty = 2) performance(nokids_l3_pred, "auc")@y.values ## Chapter 7 ## Table 7.3 ## subset selection gss02 <- subset(GSS7402, year == 2002 & (age < 40 | !is.na(agefirstbirth))) #Z# This selection conforms with top of page 229. However, there #Z# are too many observations: 1374. Furthermore, there are six #Z# observations with agefirstbirth <= 14 which will cause problems in #Z# taking logs! ## computing time to first birth gss02$tfb <- with(gss02, ifelse(is.na(agefirstbirth), age - 14, agefirstbirth - 14)) #Z# currently this is still needed before taking logs gss02$tfb <- pmax(gss02$tfb, 1) tfb_tobit <- tobit(log(tfb) ~ education + ethnicity + siblings + city16 + immigrant, data = gss02, left = -Inf, right = log(gss02$age - 14)) tfb_ols <- lm(log(tfb) ~ education + ethnicity + siblings + city16 + immigrant, data = gss02, subset = !is.na(agefirstbirth)) ## Chapter 8 ## Example 8.3 gss2002 <- subset(GSS7402, year == 2002 & (agefirstbirth < 40 | age < 40)) gss2002$afb <- with(gss2002, Surv(ifelse(kids > 0, agefirstbirth, age), kids > 0)) afb_km <- survfit(afb ~ 1, data = gss2002) afb_skm <- summary(afb_km) print(afb_skm) with(afb_skm, plot(n.event/n.risk ~ time, type = "s")) plot(afb_km, xlim = c(10, 40), conf.int = FALSE) ## Example 8.9 library("survival") afb_ex <- survreg( afb ~ education + siblings + ethnicity + immigrant + lowincome16 + city16, data = gss2002, dist = "exponential") afb_wb <- survreg( afb ~ education + siblings + ethnicity + immigrant + lowincome16 + city16, data = gss2002, dist = "weibull") afb_ln <- survreg( afb ~ education + siblings + ethnicity + immigrant + lowincome16 + city16, data = gss2002, dist = "lognormal") ## Example 8.11 kids_pois <- glm(kids ~ education + trend + ethnicity + immigrant + lowincome16 + city16, data = gss40, family = poisson) library("MASS") kids_nb <- glm.nb(kids ~ education + trend + ethnicity + immigrant + lowincome16 + city16, data = gss40) lrtest(kids_pois, kids_nb) ############################################ ## German Socio-Economic Panel 1994--2002 ## ############################################ ## data data("GSOEP9402", package = "AER") ## some convenience data transformations gsoep <- GSOEP9402 gsoep$meducation2 <- cut(gsoep$meducation, breaks = c(6, 10.25, 12.25, 18), labels = c("7-10", "10.5-12", "12.5-18")) gsoep$year2 <- factor(gsoep$year) ## Chapter 1 ## Table 1.4 plus visualizations gsoep_tab <- xtabs(~ meducation2 + school, data = gsoep) round(prop.table(gsoep_tab, 1) * 100, digits = 2) spineplot(gsoep_tab) plot(school ~ meducation, data = gsoep, breaks = c(7, 10.25, 12.25, 18)) plot(school ~ meducation, data = gsoep, breaks = c(7, 9, 10.5, 11.5, 12.5, 15, 18)) ## Chapter 5 ## Table 5.1 library("nnet") gsoep_mnl <- multinom( school ~ meducation + memployment + log(income) + log(size) + parity + year2, data = gsoep) coeftest(gsoep_mnl)[c(1:6, 1:6 + 14),] ## alternatively library("mlogit") gsoep_mnl2 <- mlogit(school ~ 0 | meducation + memployment + log(income) + log(size) + parity + year2, data = gsoep, shape = "wide", reflevel = "Hauptschule") coeftest(gsoep_mnl2)[1:12,] ## Table 5.2 library("effects") gsoep_eff <- effect("meducation", gsoep_mnl, xlevels = list(meducation = sort(unique(gsoep$meducation)))) gsoep_eff$prob plot(gsoep_eff, confint = FALSE) ## Table 5.3, odds exp(coef(gsoep_mnl)[, "meducation"]) ## all effects eff_mnl <- allEffects(gsoep_mnl) plot(eff_mnl, ask = FALSE, confint = FALSE) plot(eff_mnl, ask = FALSE, style = "stacked", colors = gray.colors(3)) ## omit year gsoep_mnl1 <- multinom( school ~ meducation + memployment + log(income) + log(size) + parity, data = gsoep) lrtest(gsoep_mnl, gsoep_mnl1) eff_mnl1 <- allEffects(gsoep_mnl1) plot(eff_mnl1, ask = FALSE, confint = FALSE) plot(eff_mnl1, ask = FALSE, style = "stacked", colors = gray.colors(3)) ## Chapter 6 ## Table 6.1 library("MASS") gsoep$munemp <- factor(gsoep$memployment != "none", levels = c(FALSE, TRUE), labels = c("no", "yes")) gsoep_pop <- polr(school ~ meducation + munemp + log(income) + log(size) + parity + year2, data = gsoep, method = "probit", Hess = TRUE) gsoep_pol <- polr(school ~ meducation + munemp + log(income) + log(size) + parity + year2, data = gsoep, Hess = TRUE) lrtest(gsoep_pop) lrtest(gsoep_pol) ## Table 6.2 ## todo eff_pol <- allEffects(gsoep_pol) plot(eff_pol, ask = FALSE, confint = FALSE) plot(eff_pol, ask = FALSE, style = "stacked", colors = gray.colors(3)) #################################### ## Labor Force Participation Data ## #################################### ## Mroz data data("PSID1976", package = "AER") PSID1976$nwincome <- with(PSID1976, (fincome - hours * wage)/1000) ## visualizations plot(hours ~ nwincome, data = PSID1976, xlab = "Non-wife income (in USD 1000)", ylab = "Hours of work in 1975") plot(jitter(hours, 200) ~ jitter(wage, 50), data = PSID1976, xlab = "Wife's average hourly wage (jittered)", ylab = "Hours of work in 1975 (jittered)") ## Chapter 1, p. 18 hours_lm <- lm(hours ~ wage + nwincome + youngkids + oldkids, data = PSID1976, subset = participation == "yes") ## Chapter 7 ## Example 7.2, Table 7.1 hours_tobit <- tobit(hours ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976) hours_ols1 <- lm(hours ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976) hours_ols2 <- lm(hours ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976, subset = participation == "yes") ## Example 7.10, Table 7.4 wage_ols <- lm(log(wage) ~ education + experience + I(experience^2), data = PSID1976, subset = participation == "yes") library("sampleSelection") wage_ghr <- selection(participation ~ nwincome + age + youngkids + oldkids + education + experience + I(experience^2), log(wage) ~ education + experience + I(experience^2), data = PSID1976) ## Exercise 7.13 hours_cragg1 <- glm(participation ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976, family = binomial(link = "probit")) library("truncreg") hours_cragg2 <- truncreg(hours ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976, subset = participation == "yes") ## Exercise 7.15 wage_olscoef <- sapply(c(-Inf, 0.5, 1, 1.5, 2), function(censpoint) coef(lm(log(wage) ~ education + experience + I(experience^2), data = PSID1976[log(PSID1976$wage) > censpoint,]))) wage_mlcoef <- sapply(c(0.5, 1, 1.5, 2), function(censpoint) coef(tobit(log(wage) ~ education + experience + I(experience^2), data = PSID1976, left = censpoint))) ################################## ## Choice of Brand for Crackers ## ################################## ## data library("mlogit") data("Cracker", package = "mlogit") head(Cracker, 3) crack <- mlogit.data(Cracker, varying = 2:13, shape = "wide", choice = "choice") head(crack, 12) ## Table 5.6 (model 3 probably not fully converged in W&B) crack$price <- crack$price/100 crack_mlogit1 <- mlogit(choice ~ price | 0, data = crack, reflevel = "private") crack_mlogit2 <- mlogit(choice ~ price | 1, data = crack, reflevel = "private") crack_mlogit3 <- mlogit(choice ~ price + feat + disp | 1, data = crack, reflevel = "private") lrtest(crack_mlogit1, crack_mlogit2, crack_mlogit3) ## IIA test crack_mlogit_all <- update(crack_mlogit2, reflevel = "nabisco") crack_mlogit_res <- update(crack_mlogit_all, alt.subset = c("keebler", "nabisco", "sunshine")) hmftest(crack_mlogit_all, crack_mlogit_res) } } \keyword{datasets} AER/man/Guns.Rd0000644000176200001440000000536414252214056012650 0ustar liggesusers\name{Guns} \alias{Guns} \title{More Guns, Less Crime?} \description{ Guns is a balanced panel of data on 50 US states, plus the District of Columbia (for a total of 51 states), by year for 1977--1999. } \usage{data("Guns")} \format{ A data frame containing 1,173 observations on 13 variables. \describe{ \item{state}{factor indicating state.} \item{year}{factor indicating year.} \item{violent}{violent crime rate (incidents per 100,000 members of the population).} \item{murder}{murder rate (incidents per 100,000).} \item{robbery}{robbery rate (incidents per 100,000).} \item{prisoners}{incarceration rate in the state in the previous year (sentenced prisoners per 100,000 residents; value for the previous year).} \item{afam}{percent of state population that is African-American, ages 10 to 64.} \item{cauc}{percent of state population that is Caucasian, ages 10 to 64.} \item{male}{percent of state population that is male, ages 10 to 29.} \item{population}{state population, in millions of people.} \item{income}{real per capita personal income in the state (US dollars).} \item{density}{population per square mile of land area, divided by 1,000.} \item{law}{factor. Does the state have a shall carry law in effect in that year?} } } \details{ Each observation is a given state in a given year. There are a total of 51 states times 23 years = 1,173 observations. } \source{ Online complements to Stock and Watson (2007). } \references{ Ayres, I., and Donohue, J.J. (2003). Shooting Down the \sQuote{More Guns Less Crime} Hypothesis. \emph{Stanford Law Review}, \bold{55}, 1193--1312. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ \dontshow{ if(!requireNamespace("lattice")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## data data("Guns") ## visualization library("lattice") xyplot(log(violent) ~ as.numeric(as.character(year)) | state, data = Guns, type = "l") ## Stock & Watson (2007), Empirical Exercise 10.1, pp. 376--377 fm1 <- lm(log(violent) ~ law, data = Guns) coeftest(fm1, vcov = sandwich) fm2 <- lm(log(violent) ~ law + prisoners + density + income + population + afam + cauc + male, data = Guns) coeftest(fm2, vcov = sandwich) fm3 <- lm(log(violent) ~ law + prisoners + density + income + population + afam + cauc + male + state, data = Guns) printCoefmat(coeftest(fm3, vcov = sandwich)[1:9,]) fm4 <- lm(log(violent) ~ law + prisoners + density + income + population + afam + cauc + male + state + year, data = Guns) printCoefmat(coeftest(fm4, vcov = sandwich)[1:9,]) } \keyword{datasets} AER/man/MotorCycles2.Rd0000644000176200001440000000214114252214047014247 0ustar liggesusers\name{MotorCycles2} \alias{MotorCycles2} \title{Motor Cycles in The Netherlands} \description{ Time series of stock of motor cycles (two wheels) in The Netherlands (in thousands). } \usage{data("MotorCycles2")} \format{ An annual univariate time series from 1946 to 2012. } \details{This is an update of the series that was available with Franses (1998). However, the values for the years 1992 and 1993 differ.} \source{ Online complements to Franses, van Dijk and Opschoor (2014). \url{https://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. Franses, P.H., van Dijk, D. and Opschoor, A. (2014). \emph{Time Series Models for Business and Economic Forecasting}, 2nd ed. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}, \code{\link{MotorCycles}}} \examples{ data("MotorCycles2") plot(MotorCycles2) } \keyword{datasets} AER/man/CPS1988.Rd0000644000176200001440000000552114557332421012713 0ustar liggesusers\name{CPS1988} \alias{CPS1988} \title{Determinants of Wages Data (CPS 1988)} \description{ Cross-section data originating from the March 1988 Current Population Survey by the US Census Bureau. } \usage{data("CPS1988")} \format{ A data frame containing 28,155 observations on 7 variables. \describe{ \item{wage}{Wage (in dollars per week).} \item{education}{Number of years of education.} \item{experience}{Number of years of potential work experience.} \item{ethnicity}{Factor with levels \code{"cauc"} and \code{"afam"} (African-American).} \item{smsa}{Factor. Does the individual reside in a Standard Metropolitan Statistical Area (SMSA)?} \item{region}{Factor with levels \code{"northeast"}, \code{"midwest"}, \code{"south"}, \code{"west"}.} \item{parttime}{Factor. Does the individual work part-time?} } } \details{ A sample of men aged 18 to 70 with positive annual income greater than USD 50 in 1992, who are not self-employed nor working without pay. Wages are deflated by the deflator of Personal Consumption Expenditure for 1992. A problem with CPS data is that it does not provide actual work experience. It is therefore customary to compute experience as \code{age - education - 6} (as was done by Bierens and Ginther, 2001), this may be considered potential experience. As a result, some respondents have negative experience. } \source{ Personal web page of Herman J. Bierens. } \references{ Bierens, H.J., and Ginther, D. (2001). Integrated Conditional Moment Testing of Quantile Regression Models. \emph{Empirical Economics}, \bold{26}, 307--324. Buchinsky, M. (1998). Recent Advances in Quantile Regression Models: A Practical Guide for Empirical Research. \emph{Journal of Human Resources}, \bold{33}, 88--126. } \seealso{\code{\link{CPS1985}}, \code{\link{CPSSW}}} \examples{ \dontshow{ if(!requireNamespace("quantreg")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## data and packages library("quantreg") data("CPS1988") CPS1988$region <- relevel(CPS1988$region, ref = "south") ## Model equations: Mincer-type, quartic, Buchinsky-type mincer <- log(wage) ~ ethnicity + education + experience + I(experience^2) quart <- log(wage) ~ ethnicity + education + experience + I(experience^2) + I(experience^3) + I(experience^4) buchinsky <- log(wage) ~ ethnicity * (education + experience + parttime) + region*smsa + I(experience^2) + I(education^2) + I(education*experience) ## OLS and LAD fits (for LAD see Bierens and Ginter, Tables 1-3.A.) mincer_ols <- lm(mincer, data = CPS1988) quart_ols <- lm(quart, data = CPS1988) buchinsky_ols <- lm(buchinsky, data = CPS1988) \donttest{ quart_lad <- rq(quart, data = CPS1988) mincer_lad <- rq(mincer, data = CPS1988) buchinsky_lad <- rq(buchinsky, data = CPS1988) } } \keyword{datasets} AER/man/TradeCredit.Rd0000644000176200001440000000176014252214047014122 0ustar liggesusers\name{TradeCredit} \alias{TradeCredit} \title{Trade Credit and the Money Market} \description{ Macroeconomic time series data from 1946 to 1966 on trade credit and the money market. } \usage{data("TradeCredit")} \format{ An annual multiple time series from 1946 to 1966 on 7 variables. \describe{ \item{trade}{Nominal total trade money.} \item{reserve}{Nominal effective reserve money.} \item{gnp}{GNP in current dollars.} \item{utilization}{Degree of market utilization.} \item{interest}{Short-term rate of interest.} \item{size}{Mean real size of the representative economic unit (1939 = 100).} \item{price}{GNP price deflator (1958 = 100).} } } \source{ The data are from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Laffer, A.B. (1970). Trade Credit and the Money Market. \emph{Journal of Political Economy}, \bold{78}, 239--267. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("TradeCredit") plot(TradeCredit) } \keyword{datasets} AER/man/EquationCitations.Rd0000644000176200001440000000775314252214056015403 0ustar liggesusers\name{EquationCitations} \alias{EquationCitations} \title{Number of Equations and Citations for Evolutionary Biology Publications} \description{ Analysis of citations of evolutionary biology papers published in 1998 in the top three journals (as judged by their 5-year impact factors in the Thomson Reuters Journal Citation Reports 2010). } \usage{data("EquationCitations")} \format{ A data frame containing 649 observations on 13 variables. \describe{ \item{journal}{Factor. Journal in which the paper was published (The American Naturalist, Evolution, Proceedings of the Royal Society of London B: Biological Sciences).} \item{authors}{Character. Names of authors.} \item{volume}{Volume in which the paper was published.} \item{startpage}{Starting page of publication.} \item{pages}{Number of pages.} \item{equations}{Number of equations in total.} \item{mainequations}{Number of equations in main text.} \item{appequations}{Number of equations in appendix.} \item{cites}{Number of citations in total.} \item{selfcites}{Number of citations by the authors themselves.} \item{othercites}{Number of citations by other authors.} \item{theocites}{Number of citations by theoretical papers.} \item{nontheocites}{Number of citations by nontheoretical papers.} } } \details{ Fawcett and Higginson (2012) investigate the relationship between the number of citations evolutionary biology papers receive, depending on the number of equations per page in the cited paper. Overall it can be shown that papers with many mathematical equations significantly lower the number of citations they receive, in particular from nontheoretical papers. } \source{ Online supplements to Fawcett and Higginson (2012). \url{https://www.pnas.org/doi/suppl/10.1073/pnas.1205259109/suppl_file/sd01.xlsx} } \references{ Fawcett, T.W. and Higginson, A.D. (2012). Heavy Use of Equations Impedes Communication among Biologists. \emph{PNAS -- Proceedings of the National Academy of Sciences of the United States of America}, \bold{109}, 11735--11739. \doi{10.1073/pnas.1205259109} } \seealso{\code{\link{PhDPublications}}} \examples{ \dontshow{ if(!requireNamespace("MASS")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## load data and MASS package data("EquationCitations", package = "AER") library("MASS") ## convenience function for summarizing NB models nbtable <- function(obj, digits = 3) round(cbind( "OR" = exp(coef(obj)), "CI" = exp(confint.default(obj)), "Wald z" = coeftest(obj)[,3], "p" = coeftest(obj)[, 4]), digits = digits) ################# ## Replication ## ################# ## Table 1 m1a <- glm.nb(othercites ~ I(equations/pages) * pages + journal, data = EquationCitations) m1b <- update(m1a, nontheocites ~ .) m1c <- update(m1a, theocites ~ .) nbtable(m1a) nbtable(m1b) nbtable(m1c) ## Table 2 m2a <- glm.nb( othercites ~ (I(mainequations/pages) + I(appequations/pages)) * pages + journal, data = EquationCitations) m2b <- update(m2a, nontheocites ~ .) m2c <- update(m2a, theocites ~ .) nbtable(m2a) nbtable(m2b) nbtable(m2c) ############### ## Extension ## ############### ## nonlinear page effect: use log(pages) instead of pages+interaction m3a <- glm.nb(othercites ~ I(equations/pages) + log(pages) + journal, data = EquationCitations) m3b <- update(m3a, nontheocites ~ .) m3c <- update(m3a, theocites ~ .) ## nested models: allow different equation effects over journals m4a <- glm.nb(othercites ~ journal / I(equations/pages) + log(pages), data = EquationCitations) m4b <- update(m4a, nontheocites ~ .) m4c <- update(m4a, theocites ~ .) ## nested model best (wrt AIC) for all responses AIC(m1a, m2a, m3a, m4a) nbtable(m4a) AIC(m1b, m2b, m3b, m4b) nbtable(m4b) AIC(m1c, m2c, m3c, m4c) nbtable(m4c) ## equation effect by journal/response ## comb nontheo theo ## AmNat =/- - + ## Evolution =/+ = + ## ProcB - - =/+ } \keyword{datasets} AER/man/MotorCycles.Rd0000644000176200001440000000135214252214047014170 0ustar liggesusers\name{MotorCycles} \alias{MotorCycles} \title{Motor Cycles in The Netherlands} \description{ Time series of stock of motor cycles (two wheels) in The Netherlands (in thousands). } \usage{data("MotorCycles")} \format{ An annual univariate time series from 1946 to 1993. } \details{An updated version is available under the name \code{MotorCycles2}. However, the values for the years 1992 and 1993 differ there.} \source{ Online complements to Franses (1998). } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}, \code{\link{MotorCycles2}}} \examples{ data("MotorCycles") plot(MotorCycles) } \keyword{datasets} AER/man/StrikeDuration.Rd0000644000176200001440000000413714252214056014700 0ustar liggesusers\name{StrikeDuration} \alias{StrikeDuration} \title{Strike Durations} \description{ Data on the duration of strikes in US manufacturing industries, 1968--1976. } \usage{data("StrikeDuration")} \format{ A data frame containing 62 observations on 2 variables for the period 1968--1976. \describe{ \item{duration}{strike duration in days.} \item{uoutput}{unanticipated output (a measure of unanticipated aggregate industrial production net of seasonal and trend components).} } } \details{ The original data provided by Kennan (1985) are on a monthly basis, for the period 1968(1) through 1976(12). Greene (2003) only provides the June data for each year. Also, the duration for observation 36 is given as 3 by Greene while Kennan has 2. Here we use Greene's version. \code{uoutput} is the residual from a regression of the logarithm of industrial production in manufacturing on time, time squared, and monthly dummy variables. } \source{ Online complements to Greene (2003). \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Kennan, J. (1985). The Duration of Contract Strikes in US Manufacturing. \emph{Journal of Econometrics}, \bold{28}, 5--28. } \seealso{\code{\link{Greene2003}}} \examples{ \dontshow{ if(!requireNamespace("MASS")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("StrikeDuration") library("MASS") ## Greene (2003), Table 22.10 fit_exp <- fitdistr(StrikeDuration$duration, "exponential") fit_wei <- fitdistr(StrikeDuration$duration, "weibull") fit_wei$estimate[2]^(-1) fit_lnorm <- fitdistr(StrikeDuration$duration, "lognormal") 1/fit_lnorm$estimate[2] exp(-fit_lnorm$estimate[1]) ## Weibull and lognormal distribution have ## different parameterizations, see Greene p. 794 ## Greene (2003), Example 22.10 library("survival") fm_wei <- survreg(Surv(duration) ~ uoutput, dist = "weibull", data = StrikeDuration) summary(fm_wei) } \keyword{datasets} AER/man/BondYield.Rd0000644000176200001440000000115114252214047013573 0ustar liggesusers\name{BondYield} \alias{BondYield} \title{Bond Yield Data} \description{ Monthly averages of the yield on a Moody's Aaa rated corporate bond (in percent/year). } \usage{data("BondYield")} \format{ A monthly univariate time series from 1990(1) to 1994(12). } \source{ Online complements to Greene (2003), Table F20.1. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("BondYield") plot(BondYield) } \keyword{datasets} AER/man/GrowthDJ.Rd0000644000176200001440000000562314252214047013422 0ustar liggesusers\name{GrowthDJ} \alias{GrowthDJ} \encoding{UTF-8} \title{Determinants of Economic Growth} \description{Growth regression data as provided by Durlauf & Johnson (1995).} \usage{data("GrowthDJ")} \format{ A data frame containing 121 observations on 10 variables. \describe{ \item{oil}{factor. Is the country an oil-producing country?} \item{inter}{factor. Does the country have better quality data?} \item{oecd}{factor. Is the country a member of the OECD?} \item{gdp60}{Per capita GDP in 1960.} \item{gdp85}{Per capita GDP in 1985.} \item{gdpgrowth}{Average growth rate of per capita GDP from 1960 to 1985 (in percent).} \item{popgrowth}{Average growth rate of working-age population 1960 to 1985 (in percent).} \item{invest}{Average ratio of investment (including Government Investment) to GDP from 1960 to 1985 (in percent).} \item{school}{Average fraction of working-age population enrolled in secondary school from 1960 to 1985 (in percent).} \item{literacy60}{Fraction of the population over 15 years old that is able to read and write in 1960 (in percent).} } } \details{ The data are derived from the Penn World Table 4.0 and are given in Mankiw, Romer and Weil (1992), except \code{literacy60} that is from the World Bank's World Development Report. } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/1995-v10.4/durlauf-johnson/} } \references{ Durlauf, S.N., and Johnson, P.A. (1995). Multiple Regimes and Cross-Country Growth Behavior. \emph{Journal of Applied Econometrics}, \bold{10}, 365--384. Koenker, R., and Zeileis, A. (2009). On Reproducible Econometric Research. \emph{Journal of Applied Econometrics}, \bold{24}(5), 833--847. Mankiw, N.G, Romer, D., and Weil, D.N. (1992). A Contribution to the Empirics of Economic Growth. \emph{Quarterly Journal of Economics}, \bold{107}, 407--437. Masanjala, W.H., and Papageorgiou, C. (2004). The Solow Model with CES Technology: Nonlinearities and Parameter Heterogeneity. \emph{Journal of Applied Econometrics}, \bold{19}, 171--201. } \seealso{\code{\link{OECDGrowth}}, \code{\link{GrowthSW}}} \examples{ ## data for non-oil-producing countries data("GrowthDJ") dj <- subset(GrowthDJ, oil == "no") ## Different scalings have been used by different authors, ## different types of standard errors, etc., ## see Koenker & Zeileis (2009) for an overview ## Durlauf & Johnson (1995), Table II mrw_model <- I(log(gdp85) - log(gdp60)) ~ log(gdp60) + log(invest/100) + log(popgrowth/100 + 0.05) + log(school/100) dj_mrw <- lm(mrw_model, data = dj) coeftest(dj_mrw) dj_model <- I(log(gdp85) - log(gdp60)) ~ log(gdp60) + log(invest) + log(popgrowth/100 + 0.05) + log(school) dj_sub1 <- lm(dj_model, data = dj, subset = gdp60 < 1800 & literacy60 < 50) coeftest(dj_sub1, vcov = sandwich) dj_sub2 <- lm(dj_model, data = dj, subset = gdp60 >= 1800 & literacy60 >= 50) coeftest(dj_sub2, vcov = sandwich) } \keyword{datasets} AER/man/PSID1982.Rd0000644000176200001440000000454214252214047013014 0ustar liggesusers\name{PSID1982} \alias{PSID1982} \title{PSID Earnings Data 1982} \description{ Cross-section data originating from the Panel Study on Income Dynamics, 1982. } \usage{data("PSID1982")} \format{ A data frame containing 595 observations on 12 variables. \describe{ \item{experience}{Years of full-time work experience.} \item{weeks}{Weeks worked.} \item{occupation}{factor. Is the individual a white-collar (\code{"white"}) or blue-collar (\code{"blue"}) worker?} \item{industry}{factor. Does the individual work in a manufacturing industry?} \item{south}{factor. Does the individual reside in the South?} \item{smsa}{factor. Does the individual reside in a SMSA (standard metropolitan statistical area)?} \item{married}{factor. Is the individual married?} \item{gender}{factor indicating gender.} \item{union}{factor. Is the individual's wage set by a union contract?} \item{education}{Years of education.} \item{ethnicity}{factor indicating ethnicity. Is the individual African-American (\code{"afam"}) or not (\code{"other"})?} \item{wage}{Wage.} } } \details{ \code{PSID1982} is the cross-section for the year 1982 taken from a larger panel data set \code{\link{PSID7682}} for the years 1976--1982, originating from Cornwell and Rupert (1988). Baltagi (2002) just uses the 1982 cross-section; hence \code{PSID1982} is available as a standalone data set because it was included in \pkg{AER} prior to the availability of the full \code{PSID7682} panel version. } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Cornwell, C., and Rupert, P. (1988). Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variables Estimators. \emph{Journal of Applied Econometrics}, \bold{3}, 149--155. } \seealso{\code{\link{PSID7682}}, \code{\link{Baltagi2002}}} \examples{ data("PSID1982") plot(density(PSID1982$wage, bw = "SJ")) ## Baltagi (2002), Table 4.1 earn_lm <- lm(log(wage) ~ . + I(experience^2), data = PSID1982) summary(earn_lm) ## Baltagi (2002), Table 13.1 union_lpm <- lm(I(as.numeric(union) - 1) ~ . - wage, data = PSID1982) union_probit <- glm(union ~ . - wage, data = PSID1982, family = binomial(link = "probit")) union_logit <- glm(union ~ . - wage, data = PSID1982, family = binomial) ## probit OK, logit and LPM rather different. } \keyword{datasets} AER/man/DJFranses.Rd0000644000176200001440000000113414252214047013542 0ustar liggesusers\name{DJFranses} \alias{DJFranses} \title{Dow Jones Index Data (Franses)} \description{ Dow Jones index time series computed at the end of the week where week is assumed to run from Thursday to Wednesday. } \usage{data("DJFranses")} \format{ A weekly univariate time series from 1980(1) to 1994(42). } \source{ Online complements to Franses (1998). } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("DJFranses") plot(DJFranses) } \keyword{datasets} AER/man/Baltagi2002.Rd0000644000176200001440000001420214252214056013572 0ustar liggesusers\name{Baltagi2002} \alias{Baltagi2002} \title{Data and Examples from Baltagi (2002)} \description{ This manual page collects a list of examples from the book. Some solutions might not be exact and the list is certainly not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer. } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed., Berlin: Springer-Verlag. } \seealso{\code{\link{BenderlyZwick}}, \code{\link{CigarettesB}}, \code{\link{EuroEnergy}}, \code{\link{Grunfeld}}, \code{\link{Mortgage}}, \code{\link{NaturalGas}}, \code{\link{OECDGas}}, \code{\link{OrangeCounty}}, \code{\link{PSID1982}}, \code{\link{TradeCredit}}, \code{\link{USConsump1993}}, \code{\link{USCrudes}}, \code{\link{USGasB}}, \code{\link{USMacroB}}} \examples{ \dontshow{ if(!requireNamespace("tseries") || !requireNamespace("strucchange") || !requireNamespace("dynlm") || !requireNamespace("plm") || !requireNamespace("systemfit")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ################################ ## Cigarette consumption data ## ################################ ## data data("CigarettesB", package = "AER") ## Table 3.3 cig_lm <- lm(packs ~ price, data = CigarettesB) summary(cig_lm) ## Figure 3.9 plot(residuals(cig_lm) ~ price, data = CigarettesB) abline(h = 0, lty = 2) ## Figure 3.10 cig_pred <- with(CigarettesB, data.frame(price = seq(from = min(price), to = max(price), length = 30))) cig_pred <- cbind(cig_pred, predict(cig_lm, newdata = cig_pred, interval = "confidence")) plot(packs ~ price, data = CigarettesB) lines(fit ~ price, data = cig_pred) lines(lwr ~ price, data = cig_pred, lty = 2) lines(upr ~ price, data = cig_pred, lty = 2) ## Chapter 5: diagnostic tests (p. 111-115) cig_lm2 <- lm(packs ~ price + income, data = CigarettesB) summary(cig_lm2) ## Glejser tests (p. 112) ares <- abs(residuals(cig_lm2)) summary(lm(ares ~ income, data = CigarettesB)) summary(lm(ares ~ I(1/income), data = CigarettesB)) summary(lm(ares ~ I(1/sqrt(income)), data = CigarettesB)) summary(lm(ares ~ sqrt(income), data = CigarettesB)) ## Goldfeld-Quandt test (p. 112) gqtest(cig_lm2, order.by = ~ income, data = CigarettesB, fraction = 12, alternative = "less") ## NOTE: Baltagi computes the test statistic as mss1/mss2, ## i.e., tries to find decreasing variances. gqtest() always uses ## mss2/mss1 and has an "alternative" argument. ## Spearman rank correlation test (p. 113) cor.test(~ ares + income, data = CigarettesB, method = "spearman") ## Breusch-Pagan test (p. 113) bptest(cig_lm2, varformula = ~ income, data = CigarettesB, student = FALSE) ## White test (Table 5.1, p. 113) bptest(cig_lm2, ~ income * price + I(income^2) + I(price^2), data = CigarettesB) ## White HC standard errors (Table 5.2, p. 114) coeftest(cig_lm2, vcov = vcovHC(cig_lm2, type = "HC1")) ## Jarque-Bera test (Figure 5.2, p. 115) hist(residuals(cig_lm2), breaks = 16, ylim = c(0, 10), col = "lightgray") library("tseries") jarque.bera.test(residuals(cig_lm2)) ## Tables 8.1 and 8.2 influence.measures(cig_lm2) ##################################### ## US consumption data (1950-1993) ## ##################################### ## data data("USConsump1993", package = "AER") plot(USConsump1993, plot.type = "single", col = 1:2) ## Chapter 5 (p. 122-125) fm <- lm(expenditure ~ income, data = USConsump1993) summary(fm) ## Durbin-Watson test (p. 122) dwtest(fm) ## Breusch-Godfrey test (Table 5.4, p. 124) bgtest(fm) ## Newey-West standard errors (Table 5.5, p. 125) coeftest(fm, vcov = NeweyWest(fm, lag = 3, prewhite = FALSE, adjust = TRUE)) ## Chapter 8 library("strucchange") ## Recursive residuals rr <- recresid(fm) rr ## Recursive CUSUM test rcus <- efp(expenditure ~ income, data = USConsump1993) plot(rcus) sctest(rcus) ## Harvey-Collier test harvtest(fm) ## NOTE" Mistake in Baltagi (2002) who computes ## the t-statistic incorrectly as 0.0733 via mean(rr)/sd(rr)/sqrt(length(rr)) ## whereas it should be (as in harvtest) mean(rr)/sd(rr) * sqrt(length(rr)) ## Rainbow test raintest(fm, center = 23) ## J test for non-nested models library("dynlm") fm1 <- dynlm(expenditure ~ income + L(income), data = USConsump1993) fm2 <- dynlm(expenditure ~ income + L(expenditure), data = USConsump1993) jtest(fm1, fm2) ## Chapter 11 ## Table 11.1 Instrumental-variables regression usc <- as.data.frame(USConsump1993) usc$investment <- usc$income - usc$expenditure fm_ols <- lm(expenditure ~ income, data = usc) fm_iv <- ivreg(expenditure ~ income | investment, data = usc) ## Hausman test cf_diff <- coef(fm_iv) - coef(fm_ols) vc_diff <- vcov(fm_iv) - vcov(fm_ols) x2_diff <- as.vector(t(cf_diff) \%*\% solve(vc_diff) \%*\% cf_diff) pchisq(x2_diff, df = 2, lower.tail = FALSE) ## Chapter 14 ## ACF and PACF for expenditures and first differences exps <- USConsump1993[, "expenditure"] (acf(exps)) (pacf(exps)) (acf(diff(exps))) (pacf(diff(exps))) ## dynamic regressions, eq. (14.8) fm <- dynlm(d(exps) ~ I(time(exps) - 1949) + L(exps)) summary(fm) ################################ ## Grunfeld's investment data ## ################################ ## select the first three companies (as panel data) data("Grunfeld", package = "AER") pgr <- subset(Grunfeld, firm \%in\% levels(Grunfeld$firm)[1:3]) library("plm") pgr <- pdata.frame(pgr, c("firm", "year")) ## Ex. 10.9 library("systemfit") gr_ols <- systemfit(invest ~ value + capital, method = "OLS", data = pgr) gr_sur <- systemfit(invest ~ value + capital, method = "SUR", data = pgr) ######################################### ## Panel study on income dynamics 1982 ## ######################################### ## data data("PSID1982", package = "AER") ## Table 4.1 earn_lm <- lm(log(wage) ~ . + I(experience^2), data = PSID1982) summary(earn_lm) ## Table 13.1 union_lpm <- lm(I(as.numeric(union) - 1) ~ . - wage, data = PSID1982) union_probit <- glm(union ~ . - wage, data = PSID1982, family = binomial(link = "probit")) union_logit <- glm(union ~ . - wage, data = PSID1982, family = binomial) ## probit OK, logit and LPM rather different. } \keyword{datasets} AER/man/tobit.Rd0000644000176200001440000000552514252214047013054 0ustar liggesusers\name{tobit} \alias{tobit} \alias{print.tobit} \alias{summary.tobit} \alias{print.summary.tobit} \alias{formula.tobit} \alias{model.frame.tobit} \alias{update.tobit} \alias{waldtest.tobit} \alias{lrtest.tobit} \alias{linearHypothesis.tobit} \alias{deviance.survreg} \title{Tobit Regression} \description{ Fitting and testing tobit regression models for censored data. } \usage{ tobit(formula, left = 0, right = Inf, dist = "gaussian", subset = NULL, data = list(), \dots) } \arguments{ \item{formula}{a symbolic description of a regression model of type \code{y ~ x1 + x2 + \dots}.} \item{left}{left limit for the censored dependent variable \code{y}. If set to \code{-Inf}, \code{y} is assumed not to be left-censored.} \item{right}{right limit for the censored dependent variable \code{y}. If set to \code{Inf}, the default, \code{y} is assumed not to be right-censored.} \item{dist}{assumed distribution for the dependent variable \code{y}. This is passed to \code{\link[survival]{survreg}}, see the respective man page for more details.} \item{subset}{a specification of the rows to be used.} \item{data}{a data frame containing the variables in the model.} \item{\dots}{further arguments passed to \code{\link[survival]{survreg}}.} } \details{ The function \code{tobit} is a convenience interface to \code{\link[survival]{survreg}} (for survival regression, including censored regression) setting different defaults and providing a more convenient interface for specification of the censoring information. The default is the classical tobit model (Tobin 1958, Greene 2003) assuming a normal distribution for the dependent variable with left-censoring at 0. Technically, the formula of type \code{y ~ x1 + x2 + \dots} passed to \code{tobit} is simply transformed into a formula suitable for \code{\link[survival]{survreg}}: This means the dependent variable is first censored and then wrapped into a \code{\link[survival]{Surv}} object containing the censoring information which is subsequently passed to \code{\link[survival]{survreg}}, e.g., \code{Surv(ifelse(y <= 0, 0, y), y > 0, type = "left") ~ x1 + x2 + \dots} for the default settings. } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Tobin, J. (1958). Estimation of Relationships for Limited Dependent Variables. \emph{Econometrica}, \bold{26}, 24--36. } \value{ An object of class \code{"tobit"} inheriting from class \code{"survreg"}. } \examples{ data("Affairs") ## from Table 22.4 in Greene (2003) fm.tobit <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) fm.tobit2 <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, right = 4, data = Affairs) summary(fm.tobit) summary(fm.tobit2) } \keyword{regression} AER/man/ChinaIncome.Rd0000644000176200001440000000203114252214047014075 0ustar liggesusers\name{ChinaIncome} \alias{ChinaIncome} \title{Chinese Real National Income Data} \description{ Time series of real national income in China per section (index with 1952 = 100). } \usage{data("ChinaIncome")} \format{ An annual multiple time series from 1952 to 1988 with 5 variables. \describe{ \item{agriculture}{Real national income in agriculture sector.} \item{industry}{Real national income in industry sector.} \item{construction}{Real national income in construction sector.} \item{transport}{Real national income in transport sector.} \item{commerce}{Real national income in commerce sector.} } } \source{ Online complements to Franses (1998). } \seealso{\code{\link{Franses1998}}} \references{ Chow, G.C. (1993). Capital Formation and Economic Growth in China. \emph{Quarterly Journal of Economics}, \bold{103}, 809--842. Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \examples{ data("ChinaIncome") plot(ChinaIncome) } \keyword{datasets} AER/man/USInvest.Rd0000644000176200001440000000304114252214047013442 0ustar liggesusers\name{USInvest} \alias{USInvest} \title{US Investment Data} \description{ Time series data on investments in the US, 1968--1982. } \usage{data("USInvest")} \format{ An annual multiple time series from 1968 to 1982 with 4 variables. \describe{ \item{gnp}{Nominal gross national product,} \item{invest}{Nominal investment,} \item{price}{Consumer price index,} \item{interest}{Interest rate (average yearly discount rate at the New York Federal Reserve Bank).} } } \source{ Online complements to Greene (2003). Table F3.1. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("USInvest") ## Chapter 3 in Greene (2003) ## transform (and round) data to match Table 3.1 us <- as.data.frame(USInvest) us$invest <- round(0.1 * us$invest/us$price, digits = 3) us$gnp <- round(0.1 * us$gnp/us$price, digits = 3) us$inflation <- c(4.4, round(100 * diff(us$price)/us$price[-15], digits = 2)) us$trend <- 1:15 us <- us[, c(2, 6, 1, 4, 5)] ## p. 22-24 coef(lm(invest ~ trend + gnp, data = us)) coef(lm(invest ~ gnp, data = us)) ## Example 3.1, Table 3.2 cor(us)[1,-1] pcor <- solve(cor(us)) dcor <- 1/sqrt(diag(pcor)) pcor <- (-pcor * (dcor \%o\% dcor))[1,-1] ## Table 3.4 fm <- lm(invest ~ trend + gnp + interest + inflation, data = us) fm1 <- lm(invest ~ 1, data = us) anova(fm1, fm) ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/GSOEP9402.Rd0000644000176200001440000001062014252214056013117 0ustar liggesusers\name{GSOEP9402} \alias{GSOEP9402} \title{German Socio-Economic Panel 1994--2002} \description{ Cross-section data for 675 14-year old children born between 1980 and 1988. The sample is taken from the German Socio-Economic Panel (GSOEP) for the years 1994 to 2002 to investigate the determinants of secondary school choice. } \usage{data("GSOEP9402")} \format{ A data frame containing 675 observations on 12 variables. \describe{ \item{school}{factor. Child's secondary school level.} \item{birthyear}{Year of child's birth.} \item{gender}{factor indicating child's gender.} \item{kids}{Total number of kids living in household.} \item{parity}{Birth order.} \item{income}{Household income.} \item{size}{Household size} \item{state}{factor indicating German federal state.} \item{marital}{factor indicating mother's marital status.} \item{meducation}{Mother's educational level in years.} \item{memployment}{factor indicating mother's employment level: full-time, part-time, or not working.} \item{year}{Year of GSOEP wave.} } } \details{ This sample from the German Socio-Economic Panel (GSOEP) for the years between 1994 and 2002 has been selected by Winkelmann and Boes (2009) to investigate the determinants of secondary school choice. In the German schooling system, students are separated relatively early into different school types, depending on their ability as perceived by the teachers after four years of primary school. After that, around the age of ten, students are placed into one of three types of secondary school: \code{"Hauptschule"} (lower secondary school), \code{"Realschule"} (middle secondary school), or \code{"Gymnasium"} (upper secondary school). Only a degree from the latter type of school (called Abitur) provides direct access to universities. A frequent criticism of this system is that the tracking takes place too early, and that it cements inequalities in education across generations. Although the secondary school choice is based on the teachers' recommendations, it is typically also influenced by the parents; both indirectly through their own educational level and directly through influence on the teachers. } \source{ Online complements to Winkelmann and Boes (2009). } \references{ Winkelmann, R., and Boes, S. (2009). \emph{Analysis of Microdata}, 2nd ed. Berlin and Heidelberg: Springer-Verlag. } \seealso{\code{\link{WinkelmannBoes2009}}} \examples{ \dontshow{ if(!requireNamespace("nnet") || !requireNamespace("mlogit") || !requireNamespace("effects") || !requireNamespace("MASS")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## data data("GSOEP9402", package = "AER") ## some convenience data transformations gsoep <- GSOEP9402 gsoep$year2 <- factor(gsoep$year) ## visualization plot(school ~ meducation, data = gsoep, breaks = c(7, 9, 10.5, 11.5, 12.5, 15, 18)) ## Chapter 5, Table 5.1 library("nnet") gsoep_mnl <- multinom( school ~ meducation + memployment + log(income) + log(size) + parity + year2, data = gsoep) coeftest(gsoep_mnl)[c(1:6, 1:6 + 14),] ## alternatively library("mlogit") gsoep_mnl2 <- mlogit( school ~ 0 | meducation + memployment + log(income) + log(size) + parity + year2, data = gsoep, shape = "wide", reflevel = "Hauptschule") coeftest(gsoep_mnl2)[1:12,] ## Table 5.2 library("effects") gsoep_eff <- effect("meducation", gsoep_mnl, xlevels = list(meducation = sort(unique(gsoep$meducation)))) gsoep_eff$prob plot(gsoep_eff, confint = FALSE) ## omit year gsoep_mnl1 <- multinom( school ~ meducation + memployment + log(income) + log(size) + parity, data = gsoep) lrtest(gsoep_mnl, gsoep_mnl1) ## Chapter 6 ## Table 6.1 library("MASS") gsoep_pop <- polr( school ~ meducation + I(memployment != "none") + log(income) + log(size) + parity + year2, data = gsoep, method = "probit", Hess = TRUE) gsoep_pol <- polr( school ~ meducation + I(memployment != "none") + log(income) + log(size) + parity + year2, data = gsoep, Hess = TRUE) ## compare polr and multinom via AIC gsoep_pol1 <- polr( school ~ meducation + memployment + log(income) + log(size) + parity, data = gsoep, Hess = TRUE) AIC(gsoep_pol1, gsoep_mnl) ## effects eff_pol1 <- allEffects(gsoep_pol1) plot(eff_pol1, ask = FALSE, confint = FALSE) ## More examples can be found in: ## help("WinkelmannBoes2009") } \keyword{datasets} AER/man/NaturalGas.Rd0000644000176200001440000000167714252214047014000 0ustar liggesusers\name{NaturalGas} \alias{NaturalGas} \title{Natural Gas Data} \description{ Panel data originating from 6 US states over the period 1967--1989. } \usage{data("NaturalGas")} \format{ A data frame containing 138 observations on 10 variables. \describe{ \item{state}{factor. State abbreviation.} \item{statecode}{factor. State Code.} \item{year}{factor coding year.} \item{consumption}{Consumption of natural gas by the residential sector.} \item{price}{Price of natural gas} \item{eprice}{Price of electricity.} \item{oprice}{Price of distillate fuel oil.} \item{lprice}{Price of liquefied petroleum gas.} \item{heating}{Heating degree days.} \item{income}{Real per-capita personal income.} } } \source{ The data are from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("NaturalGas") summary(NaturalGas) } \keyword{datasets} AER/man/USConsump1979.Rd0000644000176200001440000000174214252214047014156 0ustar liggesusers\name{USConsump1979} \alias{USConsump1979} \title{US Consumption Data (1970--1979)} \description{ Time series data on US income and consumption expenditure, 1970--1979. } \usage{data("USConsump1979")} \format{ An annual multiple time series from 1970 to 1979 with 2 variables. \describe{ \item{income}{Disposable income.} \item{expenditure}{Consumption expenditure.} } } \source{ Online complements to Greene (2003). Table F1.1. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}, \code{\link{USConsump1950}}, \code{\link{USConsump1993}}} \examples{ data("USConsump1979") plot(USConsump1979) ## Example 1.1 in Greene (2003) plot(expenditure ~ income, data = as.data.frame(USConsump1979), pch = 19) fm <- lm(expenditure ~ income, data = as.data.frame(USConsump1979)) summary(fm) abline(fm) } \keyword{datasets} AER/man/FrozenJuice.Rd0000644000176200001440000000661214252214056014154 0ustar liggesusers\name{FrozenJuice} \alias{FrozenJuice} \title{Price of Frozen Orange Juice} \description{ Monthly data on the price of frozen orange juice concentrate and temperature in the orange-growing region of Florida. } \usage{data("FrozenJuice")} \format{ A monthly multiple time series from 1950(1) to 2000(12) with 3 variables. \describe{ \item{price}{Average producer price for frozen orange juice.} \item{ppi}{Producer price index for finished goods. Used to deflate the overall producer price index for finished goods to eliminate the effects of overall price inflation.} \item{fdd}{Number of freezing degree days at the Orlando, Florida, airport. Calculated as the sum of the number of degrees Fahrenheit that the minimum temperature falls below freezing (32 degrees Fahrenheit = about 0 degrees Celsius) in a given day over all days in the month: \code{fdd} = sum(max(0, 32 - minimum daily temperature)), e.g. for February \code{fdd} is the number of freezing degree days from January 11 to February 10.} } } \details{ The orange juice price data are the frozen orange juice component of processed foods and feeds group of the Producer Price Index (PPI), collected by the US Bureau of Labor Statistics (BLS series wpu02420301). The orange juice price series was divided by the overall PPI for finished goods to adjust for general price inflation. The freezing degree days series was constructed from daily minimum temperatures recorded at Orlando area airports, obtained from the National Oceanic and Atmospheric Administration (NOAA) of the US Department of Commerce. } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ \dontshow{ if(!requireNamespace("dynlm")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## load data data("FrozenJuice") ## Stock and Watson, p. 594 library("dynlm") fm_dyn <- dynlm(d(100 * log(price/ppi)) ~ fdd, data = FrozenJuice) coeftest(fm_dyn, vcov = vcovHC(fm_dyn, type = "HC1")) ## equivalently, returns can be computed 'by hand' ## (reducing the complexity of the formula notation) fj <- ts.union(fdd = FrozenJuice[, "fdd"], ret = 100 * diff(log(FrozenJuice[,"price"]/FrozenJuice[,"ppi"]))) fm_dyn <- dynlm(ret ~ fdd, data = fj) ## Stock and Watson, p. 595 fm_dl <- dynlm(ret ~ L(fdd, 0:6), data = fj) coeftest(fm_dl, vcov = vcovHC(fm_dl, type = "HC1")) ## Stock and Watson, Table 15.1, p. 620, numbers refer to columns ## (1) Dynamic Multipliers fm1 <- dynlm(ret ~ L(fdd, 0:18), data = fj) coeftest(fm1, vcov = NeweyWest(fm1, lag = 7, prewhite = FALSE)) ## (2) Cumulative Multipliers fm2 <- dynlm(ret ~ L(d(fdd), 0:17) + L(fdd, 18), data = fj) coeftest(fm2, vcov = NeweyWest(fm2, lag = 7, prewhite = FALSE)) ## (3) Cumulative Multipliers, more lags in NW coeftest(fm2, vcov = NeweyWest(fm2, lag = 14, prewhite = FALSE)) ## (4) Cumulative Multipliers with monthly indicators fm4 <- dynlm(ret ~ L(d(fdd), 0:17) + L(fdd, 18) + season(fdd), data = fj) coeftest(fm4, vcov = NeweyWest(fm4, lag = 7, prewhite = FALSE)) ## monthly indicators needed? fm4r <- update(fm4, . ~ . - season(fdd)) waldtest(fm4, fm4r, vcov= NeweyWest(fm4, lag = 7, prewhite = FALSE)) ## close ... } \keyword{datasets} AER/man/Fatalities.Rd0000644000176200001440000001607514252214056014022 0ustar liggesusers\name{Fatalities} \alias{Fatalities} \title{US Traffic Fatalities} \description{ US traffic fatalities panel data for the \dQuote{lower 48} US states (i.e., excluding Alaska and Hawaii), annually for 1982 through 1988. } \usage{data("Fatalities")} \format{ A data frame containing 336 observations on 34 variables. \describe{ \item{state}{factor indicating state.} \item{year}{factor indicating year.} \item{spirits}{numeric. Spirits consumption.} \item{unemp}{numeric. Unemployment rate.} \item{income}{numeric. Per capita personal income in 1987 dollars.} \item{emppop}{numeric. Employment/population ratio.} \item{beertax}{numeric. Tax on case of beer.} \item{baptist}{numeric. Percent of southern baptist.} \item{mormon}{numeric. Percent of mormon.} \item{drinkage}{numeric. Minimum legal drinking age.} \item{dry}{numeric. Percent residing in \dQuote{dry} countries.} \item{youngdrivers}{numeric. Percent of drivers aged 15--24.} \item{miles}{numeric. Average miles per driver.} \item{breath}{factor. Preliminary breath test law?} \item{jail}{factor. Mandatory jail sentence?} \item{service}{factor. Mandatory community service?} \item{fatal}{numeric. Number of vehicle fatalities.} \item{nfatal}{numeric. Number of night-time vehicle fatalities.} \item{sfatal}{numeric. Number of single vehicle fatalities.} \item{fatal1517}{numeric. Number of vehicle fatalities, 15--17 year olds.} \item{nfatal1517}{numeric. Number of night-time vehicle fatalities, 15--17 year olds.} \item{fatal1820}{numeric. Number of vehicle fatalities, 18--20 year olds.} \item{nfatal1820}{numeric. Number of night-time vehicle fatalities, 18--20 year olds.} \item{fatal2124}{numeric. Number of vehicle fatalities, 21--24 year olds.} \item{nfatal2124}{numeric. Number of night-time vehicle fatalities, 21--24 year olds.} \item{afatal}{numeric. Number of alcohol-involved vehicle fatalities.} \item{pop}{numeric. Population.} \item{pop1517}{numeric. Population, 15--17 year olds.} \item{pop1820}{numeric. Population, 18--20 year olds.} \item{pop2124}{numeric. Population, 21--24 year olds.} \item{milestot}{numeric. Total vehicle miles (millions).} \item{unempus}{numeric. US unemployment rate.} \item{emppopus}{numeric. US employment/population ratio.} \item{gsp}{numeric. GSP rate of change.} } } \details{ Traffic fatalities are from the US Department of Transportation Fatal Accident Reporting System. The beer tax is the tax on a case of beer, which is an available measure of state alcohol taxes more generally. The drinking age variable is a factor indicating whether the legal drinking age is 18, 19, or 20. The two binary punishment variables describe the state's minimum sentencing requirements for an initial drunk driving conviction. Total vehicle miles traveled annually by state was obtained from the Department of Transportation. Personal income was obtained from the US Bureau of Economic Analysis, and the unemployment rate was obtained from the US Bureau of Labor Statistics. } \source{ Online complements to Stock and Watson (2007). } \references{ Ruhm, C. J. (1996). Alcohol Policies and Highway Vehicle Fatalities. \emph{Journal of Health Economics}, \bold{15}, 435--454. Stock, J. H. and Watson, M. W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ \dontshow{ if(!requireNamespace("plm")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## data from Stock and Watson (2007) data("Fatalities", package = "AER") ## add fatality rate (number of traffic deaths ## per 10,000 people living in that state in that year) Fatalities$frate <- with(Fatalities, fatal/pop * 10000) ## add discretized version of minimum legal drinking age Fatalities$drinkagec <- cut(Fatalities$drinkage, breaks = 18:22, include.lowest = TRUE, right = FALSE) Fatalities$drinkagec <- relevel(Fatalities$drinkagec, ref = 4) ## any punishment? Fatalities$punish <- with(Fatalities, factor(jail == "yes" | service == "yes", labels = c("no", "yes"))) ## plm package library("plm") ## for comparability with Stata we use HC1 below ## p. 351, Eq. (10.2) f1982 <- subset(Fatalities, year == "1982") fm_1982 <- lm(frate ~ beertax, data = f1982) coeftest(fm_1982, vcov = vcovHC(fm_1982, type = "HC1")) ## p. 353, Eq. (10.3) f1988 <- subset(Fatalities, year == "1988") fm_1988 <- lm(frate ~ beertax, data = f1988) coeftest(fm_1988, vcov = vcovHC(fm_1988, type = "HC1")) ## pp. 355, Eq. (10.8) fm_diff <- lm(I(f1988$frate - f1982$frate) ~ I(f1988$beertax - f1982$beertax)) coeftest(fm_diff, vcov = vcovHC(fm_diff, type = "HC1")) ## pp. 360, Eq. (10.15) ## (1) via formula fm_sfe <- lm(frate ~ beertax + state - 1, data = Fatalities) ## (2) by hand fat <- with(Fatalities, data.frame(frates = frate - ave(frate, state), beertaxs = beertax - ave(beertax, state))) fm_sfe2 <- lm(frates ~ beertaxs - 1, data = fat) ## (3) via plm() fm_sfe3 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within") coeftest(fm_sfe, vcov = vcovHC(fm_sfe, type = "HC1"))[1,] ## uses different df in sd and p-value coeftest(fm_sfe2, vcov = vcovHC(fm_sfe2, type = "HC1"))[1,] ## uses different df in p-value coeftest(fm_sfe3, vcov = vcovHC(fm_sfe3, type = "HC1", method = "white1"))[1,] ## pp. 363, Eq. (10.21) ## via lm() fm_stfe <- lm(frate ~ beertax + state + year - 1, data = Fatalities) coeftest(fm_stfe, vcov = vcovHC(fm_stfe, type = "HC1"))[1,] ## via plm() fm_stfe2 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") coeftest(fm_stfe2, vcov = vcovHC) ## different ## p. 368, Table 10.1, numbers refer to cols. fm1 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "pooling") fm2 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within") fm3 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm4 <- plm(frate ~ beertax + drinkagec + jail + service + miles + unemp + log(income), data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm5 <- plm(frate ~ beertax + drinkagec + jail + service + miles, data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm6 <- plm(frate ~ beertax + drinkage + punish + miles + unemp + log(income), data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm7 <- plm(frate ~ beertax + drinkagec + jail + service + miles + unemp + log(income), data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") ## summaries not too close, s.e.s generally too small coeftest(fm1, vcov = vcovHC) coeftest(fm2, vcov = vcovHC) coeftest(fm3, vcov = vcovHC) coeftest(fm4, vcov = vcovHC) coeftest(fm5, vcov = vcovHC) coeftest(fm6, vcov = vcovHC) coeftest(fm7, vcov = vcovHC) ## TODO: Testing exclusion restrictions } \keyword{datasets} AER/man/DJIA8012.Rd0000644000176200001440000000252714252214047012754 0ustar liggesusers\name{DJIA8012} \alias{DJIA8012} \title{Dow Jones Industrial Average (DJIA) index} \description{ Time series of the Dow Jones Industrial Average (DJIA) index. } \usage{data("DJIA8012")} \format{ A daily univariate time series from 1980-01-01 to 2012-12-31 (of class \code{"zoo"} with \code{"Date"} index). } \source{ Online complements to Franses, van Dijk and Opschoor (2014). \url{https://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } \references{ Franses, P.H., van Dijk, D. and Opschoor, A. (2014). \emph{Time Series Models for Business and Economic Forecasting}, 2nd ed. Cambridge, UK: Cambridge University Press. } \examples{ data("DJIA8012") plot(DJIA8012) # p.26, Figure 2.18 dldjia <- diff(log(DJIA8012)) plot(dldjia) # p.141, Figure 6.4 plot(window(dldjia, start = "1987-09-01", end = "1987-12-31")) # p.167, Figure 7.1 dldjia9005 <- window(dldjia, start = "1990-01-01", end = "2005-12-31") qqnorm(dldjia9005) qqline(dldjia9005, lty = 2) # p.170, Figure 7.4 acf(dldjia9005, na.action = na.exclude, lag.max = 250, ylim = c(-0.1, 0.25)) acf(dldjia9005^2, na.action = na.exclude, lag.max = 250, ylim = c(-0.1, 0.25)) acf(abs(dldjia9005), na.action = na.exclude, lag.max = 250, ylim = c(-0.1, 0.25)) } \keyword{datasets} AER/man/SportsCards.Rd0000644000176200001440000000421314252214047014173 0ustar liggesusers\name{SportsCards} \alias{SportsCards} \title{Endowment Effect for Sports Cards} \description{ Trading sports cards: Does ownership increase the value of goods to consumers? } \usage{data("SportsCards")} \format{ A data frame containing 148 observations on 9 variables. \describe{ \item{good}{factor. Was the individual given good A or B (see below)?} \item{dealer}{factor. Was the individual a dealer?} \item{permonth}{number of trades per month reported by the individual.} \item{years}{number of years that the individual has been trading.} \item{income}{factor indicating income group (in 1000 USD).} \item{gender}{factor indicating gender.} \item{education}{factor indicating highest level of education (8th grade or less, high school, 2-year college, other post-high school, 4-year college or graduate school).} \item{age}{age in years.} \item{trade}{factor. Did the individual trade the good he was given for the other good?} } } \details{ \code{SportsCards} contains data from 148 randomly selected traders who attended a trading card show in Orlando, Florida, in 1998. Traders were randomly given one of two sports collectables, say good A or good B, that had approximately equal market value. Those receiving good A were then given the option of trading good A for good B with the experimenter; those receiving good B were given the option of trading good B for good A with the experimenter. Good A was a ticket stub from the game that Cal Ripken Jr. set the record for consecutive games played, and Good B was a souvenir from the game that Nolan Ryan won his 300th game. } \source{ Online complements to Stock and Watson (2007). } \references{ List, J.A. (2003). Does Market Experience Eliminate Market Anomalies? \emph{Quarterly Journal of Economcis}, \bold{118}, 41--71. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("SportsCards") summary(SportsCards) plot(trade ~ permonth, data = SportsCards, breaks = c(0, 5, 10, 20, 30, 70)) plot(trade ~ years, data = SportsCards, breaks = c(0, 5, 10, 20, 60)) } \keyword{datasets} AER/man/USMacroSW.Rd0000644000176200001440000000630614252214056013514 0ustar liggesusers\name{USMacroSW} \alias{USMacroSW} \title{US Macroeconomic Data (1957--2005, Stock & Watson)} \description{ Time series data on 7 (mostly) US macroeconomic variables for 1957--2005. } \usage{data("USMacroSW") } \format{ A quarterly multiple time series from 1957(1) to 2005(1) with 7 variables. \describe{ \item{unemp}{Unemployment rate.} \item{cpi}{Consumer price index.} \item{ffrate}{Federal funds interest rate.} \item{tbill}{3-month treasury bill interest rate.} \item{tbond}{1-year treasury bond interest rate.} \item{gbpusd}{GBP/USD exchange rate (US dollar in cents per British pound).} \item{gdpjp}{GDP for Japan.} } } \details{ The US Consumer Price Index is measured using monthly surveys and is compiled by the Bureau of Labor Statistics (BLS). The unemployment rate is computed from the BLS's Current Population. The quarterly data used here were computed by averaging the monthly values. The interest data are the monthly average of daily rates as reported by the Federal Reserve and the dollar-pound exchange rate data are the monthly average of daily rates; both are for the final month in the quarter. Japanese real GDP data were obtained from the OECD. } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{USMacroSWM}}, \code{\link{USMacroSWQ}}, \code{\link{USMacroB}}, \code{\link{USMacroG}}} \examples{ \dontshow{ if(!requireNamespace("dynlm") || !requireNamespace("strucchange")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## Stock and Watson (2007) data("USMacroSW", package = "AER") library("dynlm") library("strucchange") usm <- ts.intersect(USMacroSW, 4 * 100 * diff(log(USMacroSW[, "cpi"]))) colnames(usm) <- c(colnames(USMacroSW), "infl") ## Equations 14.7, 14.13, 14.16, 14.17, pp. 536 fm_ar1 <- dynlm(d(infl) ~ L(d(infl)), data = usm, start = c(1962,1), end = c(2004,4)) fm_ar4 <- dynlm(d(infl) ~ L(d(infl), 1:4), data = usm, start = c(1962,1), end = c(2004,4)) fm_adl41 <- dynlm(d(infl) ~ L(d(infl), 1:4) + L(unemp), data = usm, start = c(1962,1), end = c(2004,4)) fm_adl44 <- dynlm(d(infl) ~ L(d(infl), 1:4) + L(unemp, 1:4), data = usm, start = c(1962,1), end = c(2004,4)) coeftest(fm_ar1, vcov = sandwich) coeftest(fm_ar4, vcov = sandwich) coeftest(fm_adl41, vcov = sandwich) coeftest(fm_adl44, vcov = sandwich) ## Granger causality test mentioned on p. 547 waldtest(fm_ar4, fm_adl44, vcov = sandwich) ## Figure 14.5, p. 570 ## SW perform partial break test of unemp coefs ## here full model is used mf <- model.frame(fm_adl44) ## re-use fm_adl44 mf <- ts(as.matrix(mf), start = c(1962, 1), freq = 4) colnames(mf) <- c("y", paste("x", 1:8, sep = "")) ff <- as.formula(paste("y", "~", paste("x", 1:8, sep = "", collapse = " + "))) fs <- Fstats(ff, data = mf, from = 0.1) plot(fs) lines(boundary(fs, alpha = 0.01), lty = 2, col = 2) lines(boundary(fs, alpha = 0.1), lty = 3, col = 2) ## More examples can be found in: ## help("StockWatson2007") } \keyword{datasets} AER/man/Franses1998.Rd0000644000176200001440000000546114252214047013666 0ustar liggesusers\name{Franses1998} \alias{Franses1998} \title{Data and Examples from Franses (1998)} \description{ This manual page collects a list of examples from the book. Some solutions might not be exact and the list is certainly not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer. } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{ArgentinaCPI}}, \code{\link{ChinaIncome}}, \code{\link{ConsumerGood}}, \code{\link{DJFranses}}, \code{\link{DutchAdvert}}, \code{\link{DutchSales}}, \code{\link{GermanUnemployment}}, \code{\link{MotorCycles}}, \code{\link{OlympicTV}}, \code{\link{PepperPrice}}, \code{\link{UKNonDurables}}, \code{\link{USProdIndex}}} \examples{ ########################### ## Convenience functions ## ########################### ## EACF tables (Franses 1998, p. 99) ctrafo <- function(x) residuals(lm(x ~ factor(cycle(x)))) ddiff <- function(x) diff(diff(x, frequency(x)), 1) eacf <- function(y, lag = 12) { stopifnot(all(lag > 0)) if(length(lag) < 2) lag <- 1:lag rval <- sapply( list(y = y, dy = diff(y), cdy = ctrafo(diff(y)), Dy = diff(y, frequency(y)), dDy = ddiff(y)), function(x) acf(x, plot = FALSE, lag.max = max(lag))$acf[lag + 1]) rownames(rval) <- lag return(rval) } ####################################### ## Index of US industrial production ## ####################################### data("USProdIndex", package = "AER") plot(USProdIndex, plot.type = "single", col = 1:2) ## Franses (1998), Table 5.1 round(eacf(log(USProdIndex[,1])), digits = 3) ## Franses (1998), Equation 5.6: Unrestricted airline model ## (Franses: ma1 = 0.388 (0.063), ma4 = -0.739 (0.060), ma5 = -0.452 (0.069)) arima(log(USProdIndex[,1]), c(0, 1, 5), c(0, 1, 0), fixed = c(NA, 0, 0, NA, NA)) ########################################### ## Consumption of non-durables in the UK ## ########################################### data("UKNonDurables", package = "AER") plot(UKNonDurables) ## Franses (1998), Table 5.2 round(eacf(log(UKNonDurables)), digits = 3) ## Franses (1998), Equation 5.51 ## (Franses: sma1 = -0.632 (0.069)) arima(log(UKNonDurables), c(0, 1, 0), c(0, 1, 1)) ############################## ## Dutch retail sales index ## ############################## data("DutchSales", package = "AER") plot(DutchSales) ## Franses (1998), Table 5.3 round(eacf(log(DutchSales), lag = c(1:18, 24, 36)), digits = 3) ########################################### ## TV and radio advertising expenditures ## ########################################### data("DutchAdvert", package = "AER") plot(DutchAdvert) ## Franses (1998), Table 5.4 round(eacf(log(DutchAdvert[,"tv"]), lag = c(1:19, 26, 39)), digits = 3) } \keyword{datasets} AER/man/Grunfeld.Rd0000644000176200001440000001322014252214056013470 0ustar liggesusers\name{Grunfeld} \alias{Grunfeld} \title{Grunfeld's Investment Data} \description{ Panel data on 11 large US manufacturing firms over 20 years, for the years 1935--1954. } \usage{data("Grunfeld")} \format{ A data frame containing 20 annual observations on 3 variables for 11 firms. \describe{ \item{invest}{Gross investment, defined as additions to plant and equipment plus maintenance and repairs in millions of dollars deflated by the implicit price deflator of producers' durable equipment (base 1947).} \item{value}{Market value of the firm, defined as the price of common shares at December 31 (or, for WH, IBM and CH, the average price of December 31 and January 31 of the following year) times the number of common shares outstanding plus price of preferred shares at December 31 (or average price of December 31 and January 31 of the following year) times number of preferred shares plus total book value of debt at December 31 in millions of dollars deflated by the implicit GNP price deflator (base 1947).} \item{capital}{Stock of plant and equipment, defined as the accumulated sum of net additions to plant and equipment deflated by the implicit price deflator for producers' durable equipment (base 1947) minus depreciation allowance deflated by depreciation expense deflator (10 years moving average of wholesale price index of metals and metal products, base 1947).} \item{firm}{factor with 11 levels: \code{"General Motors"}, \code{"US Steel"}, \code{"General Electric"}, \code{"Chrysler"}, \code{"Atlantic Refining"}, \code{"IBM"}, \code{"Union Oil"}, \code{"Westinghouse"}, \code{"Goodyear"}, \code{"Diamond Match"}, \code{"American Steel"}.} \item{year}{Year.} } } \details{ This is a popular data set for teaching purposes. Unfortunately, there exist several different versions (see Kleiber and Zeileis, 2010, for a detailed discussion). In particular, the version provided by Greene (2003) has a couple of errors for \code{"US Steel"} (firm 2): investment in 1940 is 261.6 (instead of the correct 361.6), investment in 1952 is 645.2 (instead of the correct 645.5), capital in 1946 is 132.6 (instead of the correct 232.6). Here, we provide the original data from Grunfeld (1958). The data for the first 10 firms are identical to those of Baltagi (2002) or Baltagi (2005), now also used by Greene (2008). } \source{ The data are taken from Grunfeld (1958, Appendix, Tables 2--9 and 11--13). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed., Berlin: Springer-Verlag. Baltagi, B.H. (2005). \emph{Econometric Analysis of Panel Data}, 3rd ed. Chichester, UK: John Wiley. Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Greene, W.H. (2008). \emph{Econometric Analysis}, 6th edition. Upper Saddle River, NJ: Prentice Hall. Grunfeld, Y. (1958). \emph{The Determinants of Corporate Investment}. Unpublished Ph.D. Dissertation, University of Chicago. Kleiber, C., and Zeileis, A. (2010). \dQuote{The Grunfeld Data at 50.} \emph{German Economic Review}, \bold{11}(4), 404--417. \doi{10.1111/j.1468-0475.2010.00513.x} } \seealso{\code{\link{Baltagi2002}}, \code{\link{Greene2003}}} \examples{ \dontshow{ if(!requireNamespace("plm") || !requireNamespace("systemfit")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("Grunfeld", package = "AER") ## Greene (2003) ## subset of data with mistakes ggr <- subset(Grunfeld, firm \%in\% c("General Motors", "US Steel", "General Electric", "Chrysler", "Westinghouse")) ggr[c(26, 38), 1] <- c(261.6, 645.2) ggr[32, 3] <- 232.6 ## Tab. 14.2, col. "GM" fm_gm <- lm(invest ~ value + capital, data = ggr, subset = firm == "General Motors") mean(residuals(fm_gm)^2) ## Greene uses MLE ## Tab. 14.2, col. "Pooled" fm_pool <- lm(invest ~ value + capital, data = ggr) ## equivalently library("plm") pggr <- pdata.frame(ggr, c("firm", "year")) library("systemfit") fm_ols <- systemfit(invest ~ value + capital, data = pggr, method = "OLS") fm_pols <- systemfit(invest ~ value + capital, data = pggr, method = "OLS", pooled = TRUE) ## Tab. 14.1 fm_sur <- systemfit(invest ~ value + capital, data = pggr, method = "SUR", methodResidCov = "noDfCor") fm_psur <- systemfit(invest ~ value + capital, data = pggr, method = "SUR", pooled = TRUE, methodResidCov = "noDfCor", residCovWeighted = TRUE) ## Further examples: ## help("Greene2003") ## Panel models library("plm") pg <- pdata.frame(subset(Grunfeld, firm != "American Steel"), c("firm", "year")) fm_fe <- plm(invest ~ value + capital, model = "within", data = pg) summary(fm_fe) coeftest(fm_fe, vcov = vcovHC) fm_reswar <- plm(invest ~ value + capital, data = pg, model = "random", random.method = "swar") summary(fm_reswar) ## testing for random effects fm_ols <- plm(invest ~ value + capital, data = pg, model = "pooling") plmtest(fm_ols, type = "bp") plmtest(fm_ols, type = "honda") ## Random effects models fm_ream <- plm(invest ~ value + capital, data = pg, model = "random", random.method = "amemiya") fm_rewh <- plm(invest ~ value + capital, data = pg, model = "random", random.method = "walhus") fm_rener <- plm(invest ~ value + capital, data = pg, model = "random", random.method = "nerlove") ## Baltagi (2005), Tab. 2.1 rbind( "OLS(pooled)" = coef(fm_ols), "FE" = c(NA, coef(fm_fe)), "RE-SwAr" = coef(fm_reswar), "RE-Amemiya" = coef(fm_ream), "RE-WalHus" = coef(fm_rewh), "RE-Nerlove" = coef(fm_rener)) ## Hausman test phtest(fm_fe, fm_reswar) ## Further examples: ## help("Baltagi2002") ## help("Greene2003") } \keyword{datasets} AER/man/CigarettesB.Rd0000644000176200001440000000513214252214056014121 0ustar liggesusers\name{CigarettesB} \alias{CigarettesB} \title{Cigarette Consumption Data} \description{ Cross-section data on cigarette consumption for 46 US States, for the year 1992. } \usage{data("CigarettesB")} \format{ A data frame containing 46 observations on 3 variables. \describe{ \item{packs}{Logarithm of cigarette consumption (in packs) per person of smoking age (> 16 years).} \item{price}{Logarithm of real price of cigarette in each state.} \item{income}{Logarithm of real disposable income (per capita) in each state.} } } \source{ The data are from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Baltagi, B.H. and Levin, D. (1992). Cigarette Taxation: Raising Revenues and Reducing Consumption. \emph{Structural Change and Economic Dynamics}, \bold{3}, 321--335. } \seealso{\code{\link{Baltagi2002}}, \code{\link{CigarettesSW}}} \examples{ \dontshow{ if(!requireNamespace("tseries")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("CigarettesB") ## Baltagi (2002) ## Table 3.3 cig_lm <- lm(packs ~ price, data = CigarettesB) summary(cig_lm) ## Chapter 5: diagnostic tests (p. 111-115) cig_lm2 <- lm(packs ~ price + income, data = CigarettesB) summary(cig_lm2) ## Glejser tests (p. 112) ares <- abs(residuals(cig_lm2)) summary(lm(ares ~ income, data = CigarettesB)) summary(lm(ares ~ I(1/income), data = CigarettesB)) summary(lm(ares ~ I(1/sqrt(income)), data = CigarettesB)) summary(lm(ares ~ sqrt(income), data = CigarettesB)) ## Goldfeld-Quandt test (p. 112) gqtest(cig_lm2, order.by = ~ income, data = CigarettesB, fraction = 12, alternative = "less") ## NOTE: Baltagi computes the test statistic as mss1/mss2, ## i.e., tries to find decreasing variances. gqtest() always uses ## mss2/mss1 and has an "alternative" argument. ## Spearman rank correlation test (p. 113) cor.test(~ ares + income, data = CigarettesB, method = "spearman") ## Breusch-Pagan test (p. 113) bptest(cig_lm2, varformula = ~ income, data = CigarettesB, student = FALSE) ## White test (Table 5.1, p. 113) bptest(cig_lm2, ~ income * price + I(income^2) + I(price^2), data = CigarettesB) ## White HC standard errors (Table 5.2, p. 114) coeftest(cig_lm2, vcov = vcovHC(cig_lm2, type = "HC1")) ## Jarque-Bera test (Figure 5.2, p. 115) hist(residuals(cig_lm2), breaks = 16, ylim = c(0, 10), col = "lightgray") library("tseries") jarque.bera.test(residuals(cig_lm2)) ## Tables 8.1 and 8.2 influence.measures(cig_lm2) ## More examples can be found in: ## help("Baltagi2002") } \keyword{datasets} AER/man/USSeatBelts.Rd0000644000176200001440000000417014252214056014064 0ustar liggesusers\name{USSeatBelts} \alias{USSeatBelts} \title{Effects of Mandatory Seat Belt Laws in the US} \description{ Balanced panel data for the years 1983--1997 from 50 US States, plus the District of Columbia, for assessing traffic fatalities and seat belt usage. } \usage{data("USSeatBelts")} \format{ A data frame containing 765 observations on 12 variables. \describe{ \item{state}{factor indicating US state (abbreviation).} \item{year}{factor indicating year.} \item{miles}{millions of traffic miles per year.} \item{fatalities}{number of fatalities per million of traffic miles (absolute frequencies of fatalities = \code{fatalities} times \code{miles}).} \item{seatbelt}{seat belt usage rate, as self-reported by state population surveyed.} \item{speed65}{factor. Is there a 65 mile per hour speed limit?} \item{speed70}{factor. Is there a 70 (or higher) mile per hour speed limit?} \item{drinkage}{factor. Is there a minimum drinking age of 21 years?} \item{alcohol}{factor. Is there a maximum of 0.08 blood alcohol content?} \item{income}{median per capita income (in current US dollar).} \item{age}{mean age.} \item{enforce}{factor indicating seat belt law enforcement (\code{"no"}, \code{"primary"}, \code{"secondary"}).} } } \details{ Some data series from Cohen and Einav (2003) have not been included in the data frame. } \source{ Online complements to Stock and Watson (2007). } \references{ Cohen, A., and Einav, L. (2003). The Effects of Mandatory Seat Belt Laws on Driving Behavior and Traffic Fatalities. \emph{The Review of Economics and Statistics}, \bold{85}, 828--843 Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ \dontshow{ if(!requireNamespace("lattice")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} data("USSeatBelts") summary(USSeatBelts) library("lattice") xyplot(fatalities ~ as.numeric(as.character(year)) | state, data = USSeatBelts, type = "l") } \keyword{datasets} AER/man/UKNonDurables.Rd0000644000176200001440000000257114252214047014405 0ustar liggesusers\name{UKNonDurables} \alias{UKNonDurables} \title{Consumption of Non-Durables in the UK} \description{ Time series of consumption of non-durables in the UK (in 1985 prices). } \usage{data("UKNonDurables")} \format{ A quarterly univariate time series from 1955(1) to 1988(4). } \source{ Online complements to Franses (1998). } \references{ Osborn, D.R. (1988). A Survey of Seasonality in UK Macroeconomic Variables. \emph{International Journal of Forecasting}, \bold{6}, 327--336. Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("UKNonDurables") plot(UKNonDurables) ## EACF tables (Franses 1998, p. 99) ctrafo <- function(x) residuals(lm(x ~ factor(cycle(x)))) ddiff <- function(x) diff(diff(x, frequency(x)), 1) eacf <- function(y, lag = 12) { stopifnot(all(lag > 0)) if(length(lag) < 2) lag <- 1:lag rval <- sapply( list(y = y, dy = diff(y), cdy = ctrafo(diff(y)), Dy = diff(y, frequency(y)), dDy = ddiff(y)), function(x) acf(x, plot = FALSE, lag.max = max(lag))$acf[lag + 1]) rownames(rval) <- lag return(rval) } ## Franses (1998), Table 5.2 round(eacf(log(UKNonDurables)), digits = 3) ## Franses (1998), Equation 5.51 ## (Franses: sma1 = -0.632 (0.069)) arima(log(UKNonDurables), c(0, 1, 0), c(0, 1, 1)) } \keyword{datasets} AER/man/UKInflation.Rd0000644000176200001440000000157214252214047014114 0ustar liggesusers\name{UKInflation} \alias{UKInflation} \title{UK Manufacturing Inflation Data} \description{ Time series of observed and expected price changes in British manufacturing. } \usage{data("UKInflation")} \format{ A quarterly multiple time series from 1972(1) to 1985(2) with 2 variables. \describe{ \item{actual}{Actual inflation.} \item{expected}{Expected inflation.} } } \source{ Online complements to Greene (2003), Table F8.1. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Pesaran, M.H., and Hall, A.D. (1988). Tests of Non-nested Linear Regression Models Subject To Linear Restrictions. \emph{Economics Letters}, \bold{27}, 341--348. } \seealso{\code{\link{Greene2003}}} \examples{ data("UKInflation") plot(UKInflation) } \keyword{datasets} AER/man/StockWatson2007.Rd0000644000176200001440000005600214252214056014517 0ustar liggesusers\name{StockWatson2007} \alias{StockWatson2007} \title{Data and Examples from Stock and Watson (2007)} \description{ This manual page collects a list of examples from the book. Some solutions might not be exact and the list is certainly not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer. } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{CartelStability}}, \code{\link{CASchools}}, \code{\link{CigarettesSW}}, \code{\link{CollegeDistance}}, \code{\link{CPSSW04}}, \code{\link{CPSSW3}}, \code{\link{CPSSW8}}, \code{\link{CPSSW9298}}, \code{\link{CPSSW9204}}, \code{\link{CPSSWEducation}}, \code{\link{Fatalities}}, \code{\link{Fertility}}, \code{\link{Fertility2}}, \code{\link{FrozenJuice}}, \code{\link{GrowthSW}}, \code{\link{Guns}}, \code{\link{HealthInsurance}}, \code{\link{HMDA}}, \code{\link{Journals}}, \code{\link{MASchools}}, \code{\link{NYSESW}}, \code{\link{ResumeNames}}, \code{\link{SmokeBan}}, \code{\link{SportsCards}}, \code{\link{STAR}}, \code{\link{TeachingRatings}}, \code{\link{USMacroSW}}, \code{\link{USMacroSWM}}, \code{\link{USMacroSWQ}}, \code{\link{USSeatBelts}}, \code{\link{USStocksSW}}, \code{\link{WeakInstrument}}} \examples{ \dontshow{ if(!requireNamespace("plm") || !requireNamespace("dynlm") || !requireNamespace("strucchange") || !requireNamespace("tseries")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ############################### ## Current Population Survey ## ############################### ## p. 165 data("CPSSWEducation", package = "AER") plot(earnings ~ education, data = CPSSWEducation) fm <- lm(earnings ~ education, data = CPSSWEducation) coeftest(fm, vcov = sandwich) abline(fm) ############################ ## California test scores ## ############################ ## data and transformations data("CASchools", package = "AER") CASchools <- transform(CASchools, stratio = students/teachers, score = (math + read)/2 ) ## p. 152 fm1 <- lm(score ~ stratio, data = CASchools) coeftest(fm1, vcov = sandwich) ## p. 159 fm2 <- lm(score ~ I(stratio < 20), data = CASchools) ## p. 199 fm3 <- lm(score ~ stratio + english, data = CASchools) ## p. 224 fm4 <- lm(score ~ stratio + expenditure + english, data = CASchools) ## Table 7.1, p. 242 (numbers refer to columns) fmc3 <- lm(score ~ stratio + english + lunch, data = CASchools) fmc4 <- lm(score ~ stratio + english + calworks, data = CASchools) fmc5 <- lm(score ~ stratio + english + lunch + calworks, data = CASchools) ## Equation 8.2, p. 258 fmquad <- lm(score ~ income + I(income^2), data = CASchools) ## Equation 8.11, p. 266 fmcub <- lm(score ~ income + I(income^2) + I(income^3), data = CASchools) ## Equation 8.23, p. 272 fmloglog <- lm(log(score) ~ log(income), data = CASchools) ## Equation 8.24, p. 274 fmloglin <- lm(log(score) ~ income, data = CASchools) ## Equation 8.26, p. 275 fmlinlogcub <- lm(score ~ log(income) + I(log(income)^2) + I(log(income)^3), data = CASchools) ## Table 8.3, p. 292 (numbers refer to columns) fmc2 <- lm(score ~ stratio + english + lunch + log(income), data = CASchools) fmc7 <- lm(score ~ stratio + I(stratio^2) + I(stratio^3) + english + lunch + log(income), data = CASchools) ##################################### ## Economics journal Subscriptions ## ##################################### ## data and transformed variables data("Journals", package = "AER") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations journals$age <- 2000 - Journals$foundingyear journals$chars <- Journals$charpp*Journals$pages/10^6 ## Figure 8.9 (a) and (b) plot(subs ~ citeprice, data = journals, pch = 19) plot(log(subs) ~ log(citeprice), data = journals, pch = 19) fm1 <- lm(log(subs) ~ log(citeprice), data = journals) abline(fm1) ## Table 8.2, use HC1 for comparability with Stata fm1 <- lm(subs ~ citeprice, data = log(journals)) fm2 <- lm(subs ~ citeprice + age + chars, data = log(journals)) fm3 <- lm(subs ~ citeprice + I(citeprice^2) + I(citeprice^3) + age + I(age * citeprice) + chars, data = log(journals)) fm4 <- lm(subs ~ citeprice + age + I(age * citeprice) + chars, data = log(journals)) coeftest(fm1, vcov = vcovHC(fm1, type = "HC1")) coeftest(fm2, vcov = vcovHC(fm2, type = "HC1")) coeftest(fm3, vcov = vcovHC(fm3, type = "HC1")) coeftest(fm4, vcov = vcovHC(fm4, type = "HC1")) waldtest(fm3, fm4, vcov = vcovHC(fm3, type = "HC1")) ############################### ## Massachusetts test scores ## ############################### ## compare Massachusetts with California data("MASchools", package = "AER") data("CASchools", package = "AER") CASchools <- transform(CASchools, stratio = students/teachers, score4 = (math + read)/2 ) ## parts of Table 9.1, p. 330 vars <- c("score4", "stratio", "english", "lunch", "income") cbind( CA_mean = sapply(CASchools[, vars], mean), CA_sd = sapply(CASchools[, vars], sd), MA_mean = sapply(MASchools[, vars], mean), MA_sd = sapply(MASchools[, vars], sd)) ## Table 9.2, pp. 332--333, numbers refer to columns MASchools <- transform(MASchools, higheng = english > median(english)) fm1 <- lm(score4 ~ stratio, data = MASchools) fm2 <- lm(score4 ~ stratio + english + lunch + log(income), data = MASchools) fm3 <- lm(score4 ~ stratio + english + lunch + income + I(income^2) + I(income^3), data = MASchools) fm4 <- lm(score4 ~ stratio + I(stratio^2) + I(stratio^3) + english + lunch + income + I(income^2) + I(income^3), data = MASchools) fm5 <- lm(score4 ~ stratio + higheng + I(higheng * stratio) + lunch + income + I(income^2) + I(income^3), data = MASchools) fm6 <- lm(score4 ~ stratio + lunch + income + I(income^2) + I(income^3), data = MASchools) ## for comparability with Stata use HC1 below coeftest(fm1, vcov = vcovHC(fm1, type = "HC1")) coeftest(fm2, vcov = vcovHC(fm2, type = "HC1")) coeftest(fm3, vcov = vcovHC(fm3, type = "HC1")) coeftest(fm4, vcov = vcovHC(fm4, type = "HC1")) coeftest(fm5, vcov = vcovHC(fm5, type = "HC1")) coeftest(fm6, vcov = vcovHC(fm6, type = "HC1")) ## Testing exclusion of groups of variables fm3r <- update(fm3, . ~ . - I(income^2) - I(income^3)) waldtest(fm3, fm3r, vcov = vcovHC(fm3, type = "HC1")) fm4r_str1 <- update(fm4, . ~ . - stratio - I(stratio^2) - I(stratio^3)) waldtest(fm4, fm4r_str1, vcov = vcovHC(fm4, type = "HC1")) fm4r_str2 <- update(fm4, . ~ . - I(stratio^2) - I(stratio^3)) waldtest(fm4, fm4r_str2, vcov = vcovHC(fm4, type = "HC1")) fm4r_inc <- update(fm4, . ~ . - I(income^2) - I(income^3)) waldtest(fm4, fm4r_inc, vcov = vcovHC(fm4, type = "HC1")) fm5r_str <- update(fm5, . ~ . - stratio - I(higheng * stratio)) waldtest(fm5, fm5r_str, vcov = vcovHC(fm5, type = "HC1")) fm5r_inc <- update(fm5, . ~ . - I(income^2) - I(income^3)) waldtest(fm5, fm5r_inc, vcov = vcovHC(fm5, type = "HC1")) fm5r_high <- update(fm5, . ~ . - higheng - I(higheng * stratio)) waldtest(fm5, fm5r_high, vcov = vcovHC(fm5, type = "HC1")) fm6r_inc <- update(fm6, . ~ . - I(income^2) - I(income^3)) waldtest(fm6, fm6r_inc, vcov = vcovHC(fm6, type = "HC1")) ################################## ## Home mortgage disclosure act ## ################################## ## data data("HMDA", package = "AER") ## 11.1, 11.3, 11.7, 11.8 and 11.10, pp. 387--395 fm1 <- lm(I(as.numeric(deny) - 1) ~ pirat, data = HMDA) fm2 <- lm(I(as.numeric(deny) - 1) ~ pirat + afam, data = HMDA) fm3 <- glm(deny ~ pirat, family = binomial(link = "probit"), data = HMDA) fm4 <- glm(deny ~ pirat + afam, family = binomial(link = "probit"), data = HMDA) fm5 <- glm(deny ~ pirat + afam, family = binomial(link = "logit"), data = HMDA) ## Table 11.1, p. 401 mean(HMDA$pirat) mean(HMDA$hirat) mean(HMDA$lvrat) mean(as.numeric(HMDA$chist)) mean(as.numeric(HMDA$mhist)) mean(as.numeric(HMDA$phist)-1) prop.table(table(HMDA$insurance)) prop.table(table(HMDA$selfemp)) prop.table(table(HMDA$single)) prop.table(table(HMDA$hschool)) mean(HMDA$unemp) prop.table(table(HMDA$condomin)) prop.table(table(HMDA$afam)) prop.table(table(HMDA$deny)) ## Table 11.2, pp. 403--404, numbers refer to columns HMDA$lvrat <- factor(ifelse(HMDA$lvrat < 0.8, "low", ifelse(HMDA$lvrat >= 0.8 & HMDA$lvrat <= 0.95, "medium", "high")), levels = c("low", "medium", "high")) HMDA$mhist <- as.numeric(HMDA$mhist) HMDA$chist <- as.numeric(HMDA$chist) fm1 <- lm(I(as.numeric(deny) - 1) ~ afam + pirat + hirat + lvrat + chist + mhist + phist + insurance + selfemp, data = HMDA) fm2 <- glm(deny ~ afam + pirat + hirat + lvrat + chist + mhist + phist + insurance + selfemp, family = binomial, data = HMDA) fm3 <- glm(deny ~ afam + pirat + hirat + lvrat + chist + mhist + phist + insurance + selfemp, family = binomial(link = "probit"), data = HMDA) fm4 <- glm(deny ~ afam + pirat + hirat + lvrat + chist + mhist + phist + insurance + selfemp + single + hschool + unemp, family = binomial(link = "probit"), data = HMDA) fm5 <- glm(deny ~ afam + pirat + hirat + lvrat + chist + mhist + phist + insurance + selfemp + single + hschool + unemp + condomin + I(mhist==3) + I(mhist==4) + I(chist==3) + I(chist==4) + I(chist==5) + I(chist==6), family = binomial(link = "probit"), data = HMDA) fm6 <- glm(deny ~ afam * (pirat + hirat) + lvrat + chist + mhist + phist + insurance + selfemp + single + hschool + unemp, family = binomial(link = "probit"), data = HMDA) coeftest(fm1, vcov = sandwich) fm4r <- update(fm4, . ~ . - single - hschool - unemp) waldtest(fm4, fm4r, vcov = sandwich) fm5r <- update(fm5, . ~ . - single - hschool - unemp) waldtest(fm5, fm5r, vcov = sandwich) fm6r <- update(fm6, . ~ . - single - hschool - unemp) waldtest(fm6, fm6r, vcov = sandwich) fm5r2 <- update(fm5, . ~ . - I(mhist==3) - I(mhist==4) - I(chist==3) - I(chist==4) - I(chist==5) - I(chist==6)) waldtest(fm5, fm5r2, vcov = sandwich) fm6r2 <- update(fm6, . ~ . - afam * (pirat + hirat) + pirat + hirat) waldtest(fm6, fm6r2, vcov = sandwich) fm6r3 <- update(fm6, . ~ . - afam * (pirat + hirat) + pirat + hirat + afam) waldtest(fm6, fm6r3, vcov = sandwich) ######################################################### ## Shooting down the "More Guns Less Crime" hypothesis ## ######################################################### ## data data("Guns", package = "AER") ## Empirical Exercise 10.1 fm1 <- lm(log(violent) ~ law, data = Guns) fm2 <- lm(log(violent) ~ law + prisoners + density + income + population + afam + cauc + male, data = Guns) fm3 <- lm(log(violent) ~ law + prisoners + density + income + population + afam + cauc + male + state, data = Guns) fm4 <- lm(log(violent) ~ law + prisoners + density + income + population + afam + cauc + male + state + year, data = Guns) coeftest(fm1, vcov = sandwich) coeftest(fm2, vcov = sandwich) printCoefmat(coeftest(fm3, vcov = sandwich)[1:9,]) printCoefmat(coeftest(fm4, vcov = sandwich)[1:9,]) ########################### ## US traffic fatalities ## ########################### ## data from Stock and Watson (2007) data("Fatalities", package = "AER") Fatalities <- transform(Fatalities, ## fatality rate (number of traffic deaths per 10,000 people living in that state in that year) frate = fatal/pop * 10000, ## add discretized version of minimum legal drinking age drinkagec = relevel(cut(drinkage, breaks = 18:22, include.lowest = TRUE, right = FALSE), ref = 4), ## any punishment? punish = factor(jail == "yes" | service == "yes", labels = c("no", "yes")) ) ## plm package library("plm") ## for comparability with Stata we use HC1 below ## p. 351, Eq. (10.2) f1982 <- subset(Fatalities, year == "1982") fm_1982 <- lm(frate ~ beertax, data = f1982) coeftest(fm_1982, vcov = vcovHC(fm_1982, type = "HC1")) ## p. 353, Eq. (10.3) f1988 <- subset(Fatalities, year == "1988") fm_1988 <- lm(frate ~ beertax, data = f1988) coeftest(fm_1988, vcov = vcovHC(fm_1988, type = "HC1")) ## pp. 355, Eq. (10.8) fm_diff <- lm(I(f1988$frate - f1982$frate) ~ I(f1988$beertax - f1982$beertax)) coeftest(fm_diff, vcov = vcovHC(fm_diff, type = "HC1")) ## pp. 360, Eq. (10.15) ## (1) via formula fm_sfe <- lm(frate ~ beertax + state - 1, data = Fatalities) ## (2) by hand fat <- with(Fatalities, data.frame(frates = frate - ave(frate, state), beertaxs = beertax - ave(beertax, state))) fm_sfe2 <- lm(frates ~ beertaxs - 1, data = fat) ## (3) via plm() fm_sfe3 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within") coeftest(fm_sfe, vcov = vcovHC(fm_sfe, type = "HC1"))[1,] ## uses different df in sd and p-value coeftest(fm_sfe2, vcov = vcovHC(fm_sfe2, type = "HC1"))[1,] ## uses different df in p-value coeftest(fm_sfe3, vcov = vcovHC(fm_sfe3, type = "HC1", method = "white1"))[1,] ## pp. 363, Eq. (10.21) ## via lm() fm_stfe <- lm(frate ~ beertax + state + year - 1, data = Fatalities) coeftest(fm_stfe, vcov = vcovHC(fm_stfe, type = "HC1"))[1,] ## via plm() fm_stfe2 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") coeftest(fm_stfe2, vcov = vcovHC) ## different ## p. 368, Table 10.1, numbers refer to cols. fm1 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "pooling") fm2 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within") fm3 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm4 <- plm(frate ~ beertax + drinkagec + jail + service + miles + unemp + log(income), data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm5 <- plm(frate ~ beertax + drinkagec + jail + service + miles, data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm6 <- plm(frate ~ beertax + drinkage + punish + miles + unemp + log(income), data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm7 <- plm(frate ~ beertax + drinkagec + jail + service + miles + unemp + log(income), data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") ## summaries not too close, s.e.s generally too small coeftest(fm1, vcov = vcovHC) coeftest(fm2, vcov = vcovHC) coeftest(fm3, vcov = vcovHC) coeftest(fm4, vcov = vcovHC) coeftest(fm5, vcov = vcovHC) coeftest(fm6, vcov = vcovHC) coeftest(fm7, vcov = vcovHC) ###################################### ## Cigarette consumption panel data ## ###################################### ## data and transformations data("CigarettesSW", package = "AER") CigarettesSW <- transform(CigarettesSW, rprice = price/cpi, rincome = income/population/cpi, rtax = tax/cpi, rtdiff = (taxs - tax)/cpi ) c1985 <- subset(CigarettesSW, year == "1985") c1995 <- subset(CigarettesSW, year == "1995") ## convenience function: HC1 covariances hc1 <- function(x) vcovHC(x, type = "HC1") ## Equations 12.9--12.11 fm_s1 <- lm(log(rprice) ~ rtdiff, data = c1995) coeftest(fm_s1, vcov = hc1) fm_s2 <- lm(log(packs) ~ fitted(fm_s1), data = c1995) fm_ivreg <- ivreg(log(packs) ~ log(rprice) | rtdiff, data = c1995) coeftest(fm_ivreg, vcov = hc1) ## Equation 12.15 fm_ivreg2 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + rtdiff, data = c1995) coeftest(fm_ivreg2, vcov = hc1) ## Equation 12.16 fm_ivreg3 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + rtdiff + rtax, data = c1995) coeftest(fm_ivreg3, vcov = hc1) ## Table 12.1, p. 448 ydiff <- log(c1995$packs) - log(c1985$packs) pricediff <- log(c1995$price/c1995$cpi) - log(c1985$price/c1985$cpi) incdiff <- log(c1995$income/c1995$population/c1995$cpi) - log(c1985$income/c1985$population/c1985$cpi) taxsdiff <- (c1995$taxs - c1995$tax)/c1995$cpi - (c1985$taxs - c1985$tax)/c1985$cpi taxdiff <- c1995$tax/c1995$cpi - c1985$tax/c1985$cpi fm_diff1 <- ivreg(ydiff ~ pricediff + incdiff | incdiff + taxsdiff) fm_diff2 <- ivreg(ydiff ~ pricediff + incdiff | incdiff + taxdiff) fm_diff3 <- ivreg(ydiff ~ pricediff + incdiff | incdiff + taxsdiff + taxdiff) coeftest(fm_diff1, vcov = hc1) coeftest(fm_diff2, vcov = hc1) coeftest(fm_diff3, vcov = hc1) ## checking instrument relevance fm_rel1 <- lm(pricediff ~ taxsdiff + incdiff) fm_rel2 <- lm(pricediff ~ taxdiff + incdiff) fm_rel3 <- lm(pricediff ~ incdiff + taxsdiff + taxdiff) linearHypothesis(fm_rel1, "taxsdiff = 0", vcov = hc1) linearHypothesis(fm_rel2, "taxdiff = 0", vcov = hc1) linearHypothesis(fm_rel3, c("taxsdiff = 0", "taxdiff = 0"), vcov = hc1) ## testing overidentifying restrictions (J test) fm_or <- lm(residuals(fm_diff3) ~ incdiff + taxsdiff + taxdiff) (fm_or_test <- linearHypothesis(fm_or, c("taxsdiff = 0", "taxdiff = 0"), test = "Chisq")) ## warning: df (and hence p-value) invalid above. ## correct df: # instruments - # endogenous variables pchisq(fm_or_test[2,5], df.residual(fm_diff3) - df.residual(fm_or), lower.tail = FALSE) ##################################################### ## Project STAR: Student-teacher achievement ratio ## ##################################################### ## data data("STAR", package = "AER") ## p. 488 fmk <- lm(I(readk + mathk) ~ stark, data = STAR) fm1 <- lm(I(read1 + math1) ~ star1, data = STAR) fm2 <- lm(I(read2 + math2) ~ star2, data = STAR) fm3 <- lm(I(read3 + math3) ~ star3, data = STAR) coeftest(fm3, vcov = sandwich) ## p. 489 fmke <- lm(I(readk + mathk) ~ stark + experiencek, data = STAR) coeftest(fmke, vcov = sandwich) ## equivalently: ## - reshape data from wide into long format ## - fit a single model nested in grade ## (a) variables and their levels nam <- c("star", "read", "math", "lunch", "school", "degree", "ladder", "experience", "tethnicity", "system", "schoolid") lev <- c("k", "1", "2", "3") ## (b) reshaping star <- reshape(STAR, idvar = "id", ids = row.names(STAR), times = lev, timevar = "grade", direction = "long", varying = lapply(nam, function(x) paste(x, lev, sep = ""))) ## (c) improve variable names and type names(star)[5:15] <- nam star$id <- factor(star$id) star$grade <- factor(star$grade, levels = lev, labels = c("kindergarten", "1st", "2nd", "3rd")) rm(nam, lev) ## (d) model fitting fm <- lm(I(read + math) ~ 0 + grade/star, data = star) ################################################# ## Quarterly US macroeconomic data (1957-2005) ## ################################################# ## data data("USMacroSW", package = "AER") library("dynlm") usm <- ts.intersect(USMacroSW, 4 * 100 * diff(log(USMacroSW[, "cpi"]))) colnames(usm) <- c(colnames(USMacroSW), "infl") ## Equation 14.7, p. 536 fm_ar1 <- dynlm(d(infl) ~ L(d(infl)), data = usm, start = c(1962,1), end = c(2004,4)) coeftest(fm_ar1, vcov = sandwich) ## Equation 14.13, p. 538 fm_ar4 <- dynlm(d(infl) ~ L(d(infl), 1:4), data = usm, start = c(1962,1), end = c(2004,4)) coeftest(fm_ar4, vcov = sandwich) ## Equation 14.16, p. 542 fm_adl41 <- dynlm(d(infl) ~ L(d(infl), 1:4) + L(unemp), data = usm, start = c(1962,1), end = c(2004,4)) coeftest(fm_adl41, vcov = sandwich) ## Equation 14.17, p. 542 fm_adl44 <- dynlm(d(infl) ~ L(d(infl), 1:4) + L(unemp, 1:4), data = usm, start = c(1962,1), end = c(2004,4)) coeftest(fm_adl44, vcov = sandwich) ## Granger causality test mentioned on p. 547 waldtest(fm_ar4, fm_adl44, vcov = sandwich) ## Equation 14.28, p. 559 fm_sp1 <- dynlm(infl ~ log(gdpjp), start = c(1965,1), end = c(1981,4), data = usm) coeftest(fm_sp1, vcov = sandwich) ## Equation 14.29, p. 559 fm_sp2 <- dynlm(infl ~ log(gdpjp), start = c(1982,1), end = c(2004,4), data = usm) coeftest(fm_sp2, vcov = sandwich) ## Equation 14.34, p. 563: ADF by hand fm_adf <- dynlm(d(infl) ~ L(infl) + L(d(infl), 1:4), data = usm, start = c(1962,1), end = c(2004,4)) coeftest(fm_adf) ## Figure 14.5, p. 570 ## SW perform partial break test of unemp coefs ## here full model is used library("strucchange") infl <- usm[, "infl"] unemp <- usm[, "unemp"] usm <- ts.intersect(diff(infl), lag(diff(infl), k = -1), lag(diff(infl), k = -2), lag(diff(infl), k = -3), lag(diff(infl), k = -4), lag(unemp, k = -1), lag(unemp, k = -2), lag(unemp, k = -3), lag(unemp, k = -4)) colnames(usm) <- c("dinfl", paste("dinfl", 1:4, sep = ""), paste("unemp", 1:4, sep = "")) usm <- window(usm, start = c(1962, 1), end = c(2004, 4)) fs <- Fstats(dinfl ~ ., data = usm) sctest(fs, type = "supF") plot(fs) ## alternatively: re-use fm_adl44 mf <- model.frame(fm_adl44) mf <- ts(as.matrix(mf), start = c(1962, 1), freq = 4) colnames(mf) <- c("y", paste("x", 1:8, sep = "")) ff <- as.formula(paste("y", "~", paste("x", 1:8, sep = "", collapse = " + "))) fs <- Fstats(ff, data = mf, from = 0.1) plot(fs) lines(boundary(fs, alpha = 0.01), lty = 2, col = 2) lines(boundary(fs, alpha = 0.1), lty = 3, col = 2) ########################################## ## Monthly US stock returns (1931-2002) ## ########################################## ## package and data library("dynlm") data("USStocksSW", package = "AER") ## Table 14.3, p. 540 fm1 <- dynlm(returns ~ L(returns), data = USStocksSW, start = c(1960,1)) coeftest(fm1, vcov = sandwich) fm2 <- dynlm(returns ~ L(returns, 1:2), data = USStocksSW, start = c(1960,1)) waldtest(fm2, vcov = sandwich) fm3 <- dynlm(returns ~ L(returns, 1:4), data = USStocksSW, start = c(1960,1)) waldtest(fm3, vcov = sandwich) ## Table 14.7, p. 574 fm4 <- dynlm(returns ~ L(returns) + L(d(dividend)), data = USStocksSW, start = c(1960, 1)) fm5 <- dynlm(returns ~ L(returns, 1:2) + L(d(dividend), 1:2), data = USStocksSW, start = c(1960, 1)) fm6 <- dynlm(returns ~ L(returns) + L(dividend), data = USStocksSW, start = c(1960, 1)) ################################## ## Price of frozen orange juice ## ################################## ## load data data("FrozenJuice") ## Stock and Watson, p. 594 library("dynlm") fm_dyn <- dynlm(d(100 * log(price/ppi)) ~ fdd, data = FrozenJuice) coeftest(fm_dyn, vcov = vcovHC(fm_dyn, type = "HC1")) ## equivalently, returns can be computed 'by hand' ## (reducing the complexity of the formula notation) fj <- ts.union(fdd = FrozenJuice[, "fdd"], ret = 100 * diff(log(FrozenJuice[,"price"]/FrozenJuice[,"ppi"]))) fm_dyn <- dynlm(ret ~ fdd, data = fj) ## Stock and Watson, p. 595 fm_dl <- dynlm(ret ~ L(fdd, 0:6), data = fj) coeftest(fm_dl, vcov = vcovHC(fm_dl, type = "HC1")) ## Stock and Watson, Table 15.1, p. 620, numbers refer to columns ## (1) Dynamic Multipliers fm1 <- dynlm(ret ~ L(fdd, 0:18), data = fj) coeftest(fm1, vcov = NeweyWest(fm1, lag = 7, prewhite = FALSE)) ## (2) Cumulative Multipliers fm2 <- dynlm(ret ~ L(d(fdd), 0:17) + L(fdd, 18), data = fj) coeftest(fm2, vcov = NeweyWest(fm2, lag = 7, prewhite = FALSE)) ## (3) Cumulative Multipliers, more lags in NW coeftest(fm2, vcov = NeweyWest(fm2, lag = 14, prewhite = FALSE)) ## (4) Cumulative Multipliers with monthly indicators fm4 <- dynlm(ret ~ L(d(fdd), 0:17) + L(fdd, 18) + season(fdd), data = fj) coeftest(fm4, vcov = NeweyWest(fm4, lag = 7, prewhite = FALSE)) ## monthly indicators needed? fm4r <- update(fm4, . ~ . - season(fdd)) waldtest(fm4, fm4r, vcov= NeweyWest(fm4, lag = 7, prewhite = FALSE)) ## close ... ############################################# ## New York Stock Exchange composite index ## ############################################# ## returns data("NYSESW", package = "AER") ret <- 100 * diff(log(NYSESW)) plot(ret) ## fit GARCH(1,1) library("tseries") fm <- garch(coredata(ret)) } \keyword{datasets} AER/man/CASchools.Rd0000644000176200001440000000551014252214047013543 0ustar liggesusers\name{CASchools} \alias{CASchools} \title{California Test Score Data} \description{The dataset contains data on test performance, school characteristics and student demographic backgrounds for school districts in California.} \usage{data("CASchools")} \format{ A data frame containing 420 observations on 14 variables. \describe{ \item{district}{character. District code.} \item{school}{character. School name.} \item{county}{factor indicating county.} \item{grades}{factor indicating grade span of district.} \item{students}{Total enrollment.} \item{teachers}{Number of teachers.} \item{calworks}{Percent qualifying for CalWorks (income assistance).} \item{lunch}{Percent qualifying for reduced-price lunch.} \item{computer}{Number of computers.} \item{expenditure}{Expenditure per student.} \item{income}{District average income (in USD 1,000).} \item{english}{Percent of English learners.} \item{read}{Average reading score.} \item{math}{Average math score.} } } \details{ The data used here are from all 420 K-6 and K-8 districts in California with data available for 1998 and 1999. Test scores are on the Stanford 9 standardized test administered to 5th grade students. School characteristics (averaged across the district) include enrollment, number of teachers (measured as \dQuote{full-time equivalents}, number of computers per classroom, and expenditures per student. Demographic variables for the students are averaged across the district. The demographic variables include the percentage of students in the public assistance program CalWorks (formerly AFDC), the percentage of students that qualify for a reduced price lunch, and the percentage of students that are English learners (that is, students for whom English is a second language). } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J. H. and Watson, M. W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{MASchools}}} \examples{ ## data and transformations data("CASchools") CASchools$stratio <- with(CASchools, students/teachers) CASchools$score <- with(CASchools, (math + read)/2) ## Stock and Watson (2007) ## p. 152 fm1 <- lm(score ~ stratio, data = CASchools) coeftest(fm1, vcov = sandwich) ## p. 159 fm2 <- lm(score ~ I(stratio < 20), data = CASchools) ## p. 199 fm3 <- lm(score ~ stratio + english, data = CASchools) ## p. 224 fm4 <- lm(score ~ stratio + expenditure + english, data = CASchools) ## Table 7.1, p. 242 (numbers refer to columns) fmc3 <- lm(score ~ stratio + english + lunch, data = CASchools) fmc4 <- lm(score ~ stratio + english + calworks, data = CASchools) fmc5 <- lm(score ~ stratio + english + lunch + calworks, data = CASchools) ## More examples can be found in: ## help("StockWatson2007") } \keyword{datasets} AER/man/CreditCard.Rd0000644000176200001440000000565314252214047013741 0ustar liggesusers\name{CreditCard} \alias{CreditCard} \title{Expenditure and Default Data} \description{ Cross-section data on the credit history for a sample of applicants for a type of credit card. } \usage{data("CreditCard")} \format{ A data frame containing 1,319 observations on 12 variables. \describe{ \item{card}{Factor. Was the application for a credit card accepted?} \item{reports}{Number of major derogatory reports.} \item{age}{Age in years plus twelfths of a year.} \item{income}{Yearly income (in USD 10,000).} \item{share}{Ratio of monthly credit card expenditure to yearly income.} \item{expenditure}{Average monthly credit card expenditure.} \item{owner}{Factor. Does the individual own their home?} \item{selfemp}{Factor. Is the individual self-employed?} \item{dependents}{Number of dependents.} \item{months}{Months living at current address.} \item{majorcards}{Number of major credit cards held.} \item{active}{Number of active credit accounts.} } } \details{ According to Greene (2003, p. 952) \code{dependents} equals \code{1 + number of dependents}, our calculations suggest that it equals \code{number of dependents}. Greene (2003) provides this data set twice in Table F21.4 and F9.1, respectively. Table F9.1 has just the observations, rounded to two digits. Here, we give the F21.4 version, see the examples for the F9.1 version. Note that \code{age} has some suspiciously low values (below one year) for some applicants. One of these differs between the F9.1 and F21.4 version. } \source{ Online complements to Greene (2003). Table F21.4. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("CreditCard") ## Greene (2003) ## extract data set F9.1 ccard <- CreditCard[1:100,] ccard$income <- round(ccard$income, digits = 2) ccard$expenditure <- round(ccard$expenditure, digits = 2) ccard$age <- round(ccard$age + .01) ## suspicious: CreditCard$age[CreditCard$age < 1] ## the first of these is also in TableF9.1 with 36 instead of 0.5: ccard$age[79] <- 36 ## Example 11.1 ccard <- ccard[order(ccard$income),] ccard0 <- subset(ccard, expenditure > 0) cc_ols <- lm(expenditure ~ age + owner + income + I(income^2), data = ccard0) ## Figure 11.1 plot(residuals(cc_ols) ~ income, data = ccard0, pch = 19) ## Table 11.1 mean(ccard$age) prop.table(table(ccard$owner)) mean(ccard$income) summary(cc_ols) sqrt(diag(vcovHC(cc_ols, type = "HC0"))) sqrt(diag(vcovHC(cc_ols, type = "HC2"))) sqrt(diag(vcovHC(cc_ols, type = "HC1"))) bptest(cc_ols, ~ (age + income + I(income^2) + owner)^2 + I(age^2) + I(income^4), data = ccard0) gqtest(cc_ols) bptest(cc_ols, ~ income + I(income^2), data = ccard0, studentize = FALSE) bptest(cc_ols, ~ income + I(income^2), data = ccard0) ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/Fertility.Rd0000644000176200001440000000465314252214047013707 0ustar liggesusers\name{Fertility} \alias{Fertility} \alias{Fertility2} \title{Fertility and Women's Labor Supply} \description{ Cross-section data from the 1980 US Census on married women aged 21--35 with two or more children. } \usage{ data("Fertility") data("Fertility2") } \format{ A data frame containing 254,654 (and 30,000, respectively) observations on 8 variables. \describe{ \item{morekids}{factor. Does the mother have more than 2 children?} \item{gender1}{factor indicating gender of first child.} \item{gender2}{factor indicating gender of second child.} \item{age}{age of mother at census.} \item{afam}{factor. Is the mother African-American?} \item{hispanic}{factor. Is the mother Hispanic?} \item{other}{factor. Is the mother's ethnicity neither African-American nor Hispanic, nor Caucasian? (see below)} \item{work}{number of weeks in which the mother worked in 1979.} } } \details{ \code{Fertility2} is a random subset of \code{Fertility} with 30,000 observations. There are conflicts in the ethnicity coding (see also examples). Hence, it was not possible to create a single factor and the original three indicator variables have been retained. Not all variables from Angrist and Evans (1998) have been included. } \source{ Online complements to Stock and Watson (2007). } \references{ Angrist, J.D., and Evans, W.N. (1998). Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size \emph{American Economic Review}, \bold{88}, 450--477. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("Fertility2") ## conflicts in ethnicity coding ftable(xtabs(~ afam + hispanic + other, data = Fertility2)) ## create convenience variables Fertility2$mkids <- with(Fertility2, as.numeric(morekids) - 1) Fertility2$samegender <- with(Fertility2, factor(gender1 == gender2)) Fertility2$twoboys <- with(Fertility2, factor(gender1 == "male" & gender2 == "male")) Fertility2$twogirls <- with(Fertility2, factor(gender1 == "female" & gender2 == "female")) ## similar to Angrist and Evans, p. 462 fm1 <- lm(mkids ~ samegender, data = Fertility2) summary(fm1) fm2 <- lm(mkids ~ gender1 + gender2 + samegender + age + afam + hispanic + other, data = Fertility2) summary(fm2) fm3 <- lm(mkids ~ gender1 + twoboys + twogirls + age + afam + hispanic + other, data = Fertility2) summary(fm3) } \keyword{datasets} AER/man/PSID1976.Rd0000644000176200001440000001647514252214056013027 0ustar liggesusers\name{PSID1976} \alias{PSID1976} \title{Labor Force Participation Data} \description{ Cross-section data originating from the 1976 Panel Study of Income Dynamics (PSID), based on data for the previous year, 1975. } \usage{data("PSID1976")} \format{ A data frame containing 753 observations on 21 variables. \describe{ \item{participation}{Factor. Did the individual participate in the labor force in 1975? (This is essentially \code{wage > 0} or \code{hours > 0}.)} \item{hours}{Wife's hours of work in 1975.} \item{youngkids}{Number of children less than 6 years old in household.} \item{oldkids}{Number of children between ages 6 and 18 in household.} \item{age}{Wife's age in years.} \item{education}{Wife's education in years.} \item{wage}{Wife's average hourly wage, in 1975 dollars.} \item{repwage}{Wife's wage reported at the time of the 1976 interview (not the same as the 1975 estimated wage). To use the subsample with this wage, one needs to select 1975 workers with \code{participation == "yes"}, then select only those women with non-zero wage. Only 325 women work in 1975 and have a non-zero wage in 1976.} \item{hhours}{Husband's hours worked in 1975.} \item{hage}{Husband's age in years.} \item{heducation}{Husband's education in years.} \item{hwage}{Husband's wage, in 1975 dollars.} \item{fincome}{Family income, in 1975 dollars. (This variable is used to construct the property income variable.)} \item{tax}{Marginal tax rate facing the wife, and is taken from published federal tax tables (state and local income taxes are excluded). The taxable income on which this tax rate is calculated includes Social Security, if applicable to wife.} \item{meducation}{Wife's mother's educational attainment, in years.} \item{feducation}{Wife's father's educational attainment, in years.} \item{unemp}{Unemployment rate in county of residence, in percentage points. (This is taken from bracketed ranges.)} \item{city}{Factor. Does the individual live in a large city?} \item{experience}{Actual years of wife's previous labor market experience.} \item{college}{Factor. Did the individual attend college?} \item{hcollege}{Factor. Did the individual's husband attend college?} } } \details{ This data set is also known as the Mroz (1987) data. Warning: Typical applications using these data employ the variable \code{wage} (aka \code{earnings} in previous versions of the data) as the dependent variable. The variable \code{repwage} is the reported wage in a 1976 interview, named RPWG by Greene (2003). } \source{ Online complements to Greene (2003). Table F4.1. \url{https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. McCullough, B.D. (2004). Some Details of Nonlinear Estimation. In: Altman, M., Gill, J., and McDonald, M.P.: \emph{Numerical Issues in Statistical Computing for the Social Scientist}. Hoboken, NJ: John Wiley, Ch. 8, 199--218. Mroz, T.A. (1987). The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions. \emph{Econometrica}, \bold{55}, 765--799. Winkelmann, R., and Boes, S. (2009). \emph{Analysis of Microdata}, 2nd ed. Berlin and Heidelberg: Springer-Verlag. Wooldridge, J.M. (2002). \emph{Econometric Analysis of Cross-Section and Panel Data}. Cambridge, MA: MIT Press. } \seealso{\code{\link{Greene2003}}, \code{\link{WinkelmannBoes2009}}} \examples{ \dontshow{ if(!requireNamespace("sampleSelection")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## data and transformations data("PSID1976") PSID1976$kids <- with(PSID1976, factor((youngkids + oldkids) > 0, levels = c(FALSE, TRUE), labels = c("no", "yes"))) PSID1976$nwincome <- with(PSID1976, (fincome - hours * wage)/1000) PSID1976$partnum <- as.numeric(PSID1976$participation) - 1 ################### ## Greene (2003) ## ################### ## Example 4.1, Table 4.2 ## (reproduced in Example 7.1, Table 7.1) gr_lm <- lm(log(hours * wage) ~ age + I(age^2) + education + kids, data = PSID1976, subset = participation == "yes") summary(gr_lm) vcov(gr_lm) ## Example 4.5 summary(gr_lm) ## or equivalently gr_lm1 <- lm(log(hours * wage) ~ 1, data = PSID1976, subset = participation == "yes") anova(gr_lm1, gr_lm) ## Example 21.4, p. 681, and Tab. 21.3, p. 682 gr_probit1 <- glm(participation ~ age + I(age^2) + I(fincome/10000) + education + kids, data = PSID1976, family = binomial(link = "probit") ) gr_probit2 <- glm(participation ~ age + I(age^2) + I(fincome/10000) + education, data = PSID1976, family = binomial(link = "probit")) gr_probit3 <- glm(participation ~ kids/(age + I(age^2) + I(fincome/10000) + education), data = PSID1976, family = binomial(link = "probit")) ## LR test of all coefficients lrtest(gr_probit1) ## Chow-type test lrtest(gr_probit2, gr_probit3) ## equivalently: anova(gr_probit2, gr_probit3, test = "Chisq") ## Table 21.3 summary(gr_probit1) ## Example 22.8, Table 22.7, p. 786 library("sampleSelection") gr_2step <- selection(participation ~ age + I(age^2) + fincome + education + kids, wage ~ experience + I(experience^2) + education + city, data = PSID1976, method = "2step") gr_ml <- selection(participation ~ age + I(age^2) + fincome + education + kids, wage ~ experience + I(experience^2) + education + city, data = PSID1976, method = "ml") gr_ols <- lm(wage ~ experience + I(experience^2) + education + city, data = PSID1976, subset = participation == "yes") ## NOTE: ML estimates agree with Greene, 5e errata. ## Standard errors are based on the Hessian (here), while Greene has BHHH/OPG. ####################### ## Wooldridge (2002) ## ####################### ## Table 15.1, p. 468 wl_lpm <- lm(partnum ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976) wl_logit <- glm(participation ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, family = binomial, data = PSID1976) wl_probit <- glm(participation ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, family = binomial(link = "probit"), data = PSID1976) ## (same as Altman et al.) ## convenience functions pseudoR2 <- function(obj) 1 - as.vector(logLik(obj)/logLik(update(obj, . ~ 1))) misclass <- function(obj) 1 - sum(diag(prop.table(table( model.response(model.frame(obj)), round(fitted(obj)))))) coeftest(wl_logit) logLik(wl_logit) misclass(wl_logit) pseudoR2(wl_logit) coeftest(wl_probit) logLik(wl_probit) misclass(wl_probit) pseudoR2(wl_probit) ## Table 16.2, p. 528 form <- hours ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids wl_ols <- lm(form, data = PSID1976) wl_tobit <- tobit(form, data = PSID1976) summary(wl_ols) summary(wl_tobit) ####################### ## McCullough (2004) ## ####################### ## p. 203 mc_probit <- glm(participation ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, family = binomial(link = "probit"), data = PSID1976) mc_tobit <- tobit(hours ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976) coeftest(mc_probit) coeftest(mc_tobit) coeftest(mc_tobit, vcov = vcovOPG) } \keyword{datasets} AER/man/Mortgage.Rd0000644000176200001440000000340214252214047013470 0ustar liggesusers\name{Mortgage} \alias{Mortgage} \title{Fixed versus Adjustable Mortgages} \description{ Cross-section data about fixed versus adjustable mortgages for 78 households. } \usage{data("Mortgage")} \format{ A data frame containing 78 observations on 16 variables. \describe{ \item{rate}{Factor with levels \code{"fixed"} and \code{"adjustable"}.} \item{age}{Age of the borrower.} \item{school}{Years of schooling for the borrower.} \item{networth}{Net worth of the borrower.} \item{interest}{Fixed interest rate.} \item{points}{Ratio of points paid on adjustable to fixed rate mortgages.} \item{maturities}{Ratio of maturities on adjustable to fixed rate mortgages.} \item{years}{Years at the present address.} \item{married}{Factor. Is the borrower married?} \item{first}{Factor. Is the borrower a first-time home buyer?} \item{selfemp}{Factor. Is the borrower self-employed?} \item{tdiff}{The difference between the 10-year treasury rate less the 1-year treasury rate.} \item{margin}{The margin on the adjustable rate mortgage.} \item{coborrower}{Factor. Is there a co-borrower?} \item{liability}{Short-term liabilities.} \item{liquid}{Liquid assets.} } } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Dhillon, U.S., Shilling, J.D. and Sirmans, C.F. (1987). Choosing Between Fixed and Adjustable Rate Mortgages. \emph{Journal of Money, Credit and Banking}, \bold{19}, 260--267. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("Mortgage") plot(rate ~ interest, data = Mortgage, breaks = fivenum(Mortgage$interest)) plot(rate ~ margin, data = Mortgage, breaks = fivenum(Mortgage$margin)) plot(rate ~ coborrower, data = Mortgage) } \keyword{datasets} AER/man/CartelStability.Rd0000644000176200001440000000223414252214047015024 0ustar liggesusers\name{CartelStability} \alias{CartelStability} \title{CartelStability} \description{ Weekly observations on prices and other factors from 1880--1886, for a total of 326 weeks. } \usage{data("CartelStability")} \format{ A data frame containing 328 observations on 5 variables. \describe{ \item{price}{weekly index of price of shipping a ton of grain by rail.} \item{cartel}{factor. Is a railroad cartel operative?} \item{quantity}{total tonnage of grain shipped in the week.} \item{season}{factor indicating season of year. To match the weekly data, the calendar has been divided into 13 periods, each approximately 4 weeks long.} \item{ice}{factor. Are the Great Lakes innavigable because of ice?} } } \source{ Online complements to Stock and Watson (2007). } \references{ Porter, R. H. (1983). A Study of Cartel Stability: The Joint Executive Committee, 1880--1886. \emph{The Bell Journal of Economics}, \bold{14}, 301--314. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("CartelStability") summary(CartelStability) } \keyword{datasets} AER/man/NMES1988.Rd0000644000176200001440000001314714252214056013026 0ustar liggesusers\name{NMES1988} \alias{NMES1988} \title{Demand for Medical Care in NMES 1988} \description{ Cross-section data originating from the US National Medical Expenditure Survey (NMES) conducted in 1987 and 1988. The NMES is based upon a representative, national probability sample of the civilian non-institutionalized population and individuals admitted to long-term care facilities during 1987. The data are a subsample of individuals ages 66 and over all of whom are covered by Medicare (a public insurance program providing substantial protection against health-care costs). } \usage{data("NMES1988")} \format{ A data frame containing 4,406 observations on 19 variables. \describe{ \item{visits}{Number of physician office visits.} \item{nvisits}{Number of non-physician office visits.} \item{ovisits}{Number of physician hospital outpatient visits.} \item{novisits}{Number of non-physician hospital outpatient visits.} \item{emergency}{Emergency room visits.} \item{hospital}{Number of hospital stays.} \item{health}{Factor indicating self-perceived health status, levels are \code{"poor"}, \code{"average"} (reference category), \code{"excellent"}.} \item{chronic}{Number of chronic conditions.} \item{adl}{Factor indicating whether the individual has a condition that limits activities of daily living (\code{"limited"}) or not (\code{"normal"}).} \item{region}{Factor indicating region, levels are \code{northeast}, \code{midwest}, \code{west}, \code{other} (reference category).} \item{age}{Age in years (divided by 10).} \item{afam}{Factor. Is the individual African-American?} \item{gender}{Factor indicating gender.} \item{married}{Factor. is the individual married?} \item{school}{Number of years of education.} \item{income}{Family income in USD 10,000.} \item{employed}{Factor. Is the individual employed?} \item{insurance}{Factor. Is the individual covered by private insurance?} \item{medicaid}{Factor. Is the individual covered by Medicaid?} } } \source{ Journal of Applied Econometrics Data Archive for Deb and Trivedi (1997). \url{http://qed.econ.queensu.ca/jae/1997-v12.3/deb-trivedi/} } \references{ Cameron, A.C. and Trivedi, P.K. (1998). \emph{Regression Analysis of Count Data}. Cambridge: Cambridge University Press. Deb, P., and Trivedi, P.K. (1997). Demand for Medical Care by the Elderly: A Finite Mixture Approach. \emph{Journal of Applied Econometrics}, \bold{12}, 313--336. Zeileis, A., Kleiber, C., and Jackman, S. (2008). Regression Models for Count Data in R. \emph{Journal of Statistical Software}, \bold{27}(8). \doi{10.18637/jss.v027.i08}. } \seealso{\code{\link{CameronTrivedi1998}}} \examples{ \dontshow{ if(!requireNamespace("MASS") || !requireNamespace("pscl")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## packages library("MASS") library("pscl") ## select variables for analysis data("NMES1988") nmes <- NMES1988[, c(1, 7:8, 13, 15, 18)] ## dependent variable hist(nmes$visits, breaks = 0:(max(nmes$visits)+1) - 0.5) plot(table(nmes$visits)) ## convenience transformations for exploratory graphics clog <- function(x) log(x + 0.5) cfac <- function(x, breaks = NULL) { if(is.null(breaks)) breaks <- unique(quantile(x, 0:10/10)) x <- cut(x, breaks, include.lowest = TRUE, right = FALSE) levels(x) <- paste(breaks[-length(breaks)], ifelse(diff(breaks) > 1, c(paste("-", breaks[-c(1, length(breaks))] - 1, sep = ""), "+"), ""), sep = "") return(x) } ## bivariate visualization par(mfrow = c(3, 2)) plot(clog(visits) ~ health, data = nmes, varwidth = TRUE) plot(clog(visits) ~ cfac(chronic), data = nmes) plot(clog(visits) ~ insurance, data = nmes, varwidth = TRUE) plot(clog(visits) ~ gender, data = nmes, varwidth = TRUE) plot(cfac(visits, c(0:2, 4, 6, 10, 100)) ~ school, data = nmes, breaks = 9) par(mfrow = c(1, 1)) ## Poisson regression nmes_pois <- glm(visits ~ ., data = nmes, family = poisson) summary(nmes_pois) ## LM test for overdispersion dispersiontest(nmes_pois) dispersiontest(nmes_pois, trafo = 2) ## sandwich covariance matrix coeftest(nmes_pois, vcov = sandwich) ## quasipoisson model nmes_qpois <- glm(visits ~ ., data = nmes, family = quasipoisson) ## NegBin regression nmes_nb <- glm.nb(visits ~ ., data = nmes) ## hurdle regression nmes_hurdle <- hurdle(visits ~ . | chronic + insurance + school + gender, data = nmes, dist = "negbin") ## zero-inflated regression model nmes_zinb <- zeroinfl(visits ~ . | chronic + insurance + school + gender, data = nmes, dist = "negbin") ## compare estimated coefficients fm <- list("ML-Pois" = nmes_pois, "Quasi-Pois" = nmes_qpois, "NB" = nmes_nb, "Hurdle-NB" = nmes_hurdle, "ZINB" = nmes_zinb) round(sapply(fm, function(x) coef(x)[1:7]), digits = 3) ## associated standard errors round(cbind("ML-Pois" = sqrt(diag(vcov(nmes_pois))), "Adj-Pois" = sqrt(diag(sandwich(nmes_pois))), sapply(fm[-1], function(x) sqrt(diag(vcov(x)))[1:7])), digits = 3) ## log-likelihoods and number of estimated parameters rbind(logLik = sapply(fm, function(x) round(logLik(x), digits = 0)), Df = sapply(fm, function(x) attr(logLik(x), "df"))) ## predicted number of zeros round(c("Obs" = sum(nmes$visits < 1), "ML-Pois" = sum(dpois(0, fitted(nmes_pois))), "Adj-Pois" = NA, "Quasi-Pois" = NA, "NB" = sum(dnbinom(0, mu = fitted(nmes_nb), size = nmes_nb$theta)), "NB-Hurdle" = sum(predict(nmes_hurdle, type = "prob")[,1]), "ZINB" = sum(predict(nmes_zinb, type = "prob")[,1]))) ## coefficients of zero-augmentation models t(sapply(fm[4:5], function(x) round(x$coefficients$zero, digits = 3))) } \keyword{datasets} AER/man/DutchSales.Rd0000644000176200001440000000213714252214047013766 0ustar liggesusers\name{DutchSales} \alias{DutchSales} \title{Dutch Retail Sales Index Data} \description{ Time series of retail sales index in The Netherlands. } \usage{data("DutchSales")} \format{ A monthly univariate time series from 1960(5) to 1995(9). } \source{ Online complements to Franses (1998). } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("DutchSales") plot(DutchSales) ## EACF tables (Franses 1998, p. 99) ctrafo <- function(x) residuals(lm(x ~ factor(cycle(x)))) ddiff <- function(x) diff(diff(x, frequency(x)), 1) eacf <- function(y, lag = 12) { stopifnot(all(lag > 0)) if(length(lag) < 2) lag <- 1:lag rval <- sapply( list(y = y, dy = diff(y), cdy = ctrafo(diff(y)), Dy = diff(y, frequency(y)), dDy = ddiff(y)), function(x) acf(x, plot = FALSE, lag.max = max(lag))$acf[lag + 1]) rownames(rval) <- lag return(rval) } ## Franses (1998), Table 5.3 round(eacf(log(DutchSales), lag = c(1:18, 24, 36)), digits = 3) } \keyword{datasets} AER/man/PhDPublications.Rd0000644000176200001440000000401514252214056014754 0ustar liggesusers\name{PhDPublications} \alias{PhDPublications} \title{Doctoral Publications} \description{ Cross-section data on the scientific productivity of PhD students in biochemistry. } \usage{data("PhDPublications")} \format{ A data frame containing 915 observations on 6 variables. \describe{ \item{articles}{Number of articles published during last 3 years of PhD.} \item{gender}{factor indicating gender.} \item{married}{factor. Is the PhD student married?} \item{kids}{Number of children less than 6 years old.} \item{prestige}{Prestige of the graduate program.} \item{mentor}{Number of articles published by student's mentor.} } } \source{ Online complements to Long (1997). } \references{ Long, J.S. (1990). \emph{Regression Models for Categorical and Limited Dependent Variables}. Thousand Oaks: Sage Publications. Long, J.S. (1997). The Origin of Sex Differences in Science. \emph{Social Forces}, \bold{68}, 1297--1315. } \examples{ \dontshow{ if(!requireNamespace("MASS") || !requireNamespace("pscl")) { if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) { stop("not all packages required for the example are installed") } else q() }} ## from Long (1997) data("PhDPublications") ## Table 8.1, p. 227 summary(PhDPublications) ## Figure 8.2, p. 220 plot(0:10, dpois(0:10, mean(PhDPublications$articles)), type = "b", col = 2, xlab = "Number of articles", ylab = "Probability") lines(0:10, prop.table(table(PhDPublications$articles))[1:11], type = "b") legend("topright", c("observed", "predicted"), col = 1:2, lty = rep(1, 2), bty = "n") ## Table 8.2, p. 228 fm_lrm <- lm(log(articles + 0.5) ~ ., data = PhDPublications) summary(fm_lrm) -2 * logLik(fm_lrm) fm_prm <- glm(articles ~ ., data = PhDPublications, family = poisson) library("MASS") fm_nbrm <- glm.nb(articles ~ ., data = PhDPublications) ## Table 8.3, p. 246 library("pscl") fm_zip <- zeroinfl(articles ~ . | ., data = PhDPublications) fm_zinb <- zeroinfl(articles ~ . | ., data = PhDPublications, dist = "negbin") } \keyword{datasets} AER/man/SmokeBan.Rd0000644000176200001440000000357514252214047013435 0ustar liggesusers\name{SmokeBan} \alias{SmokeBan} \title{Do Workplace Smoking Bans Reduce Smoking?} \description{ Estimation of the effect of workplace smoking bans on smoking of indoor workers. } \usage{data("SmokeBan")} \format{ A data frame containing 10,000 observations on 7 variables. \describe{ \item{smoker}{factor. Is the individual a current smoker?} \item{ban}{factor. Is there a work area smoking ban?} \item{age}{age in years.} \item{education}{factor indicating highest education level attained: high school (hs) drop out, high school graduate, some college, college graduate, master's degree (or higher).} \item{afam}{factor. Is the individual African-American?} \item{hispanic}{factor. Is the individual Hispanic?} \item{gender}{factor indicating gender.} } } \details{ \code{SmokeBank} is a cross-sectional data set with observations on 10,000 indoor workers, which is a subset of a 18,090-observation data set collected as part of the National Health Interview Survey in 1991 and then again (with different respondents) in 1993. The data set contains information on whether individuals were, or were not, subject to a workplace smoking ban, whether or not the individuals smoked and other individual characteristics. } \source{ Online complements to Stock and Watson (2007). } \references{ Evans, W. N., Farrelly, M.C., and Montgomery, E. (1999). Do Workplace Smoking Bans Reduce Smoking? \emph{American Economic Review}, \bold{89}, 728--747. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("SmokeBan") ## proportion of non-smokers increases with education plot(smoker ~ education, data = SmokeBan) ## proportion of non-smokers constant over age plot(smoker ~ age, data = SmokeBan) } \keyword{datasets} AER/man/SwissLabor.Rd0000644000176200001440000000254414252214047014021 0ustar liggesusers\name{SwissLabor} \alias{SwissLabor} \title{Swiss Labor Market Participation Data} \description{ Cross-section data originating from the health survey SOMIPOPS for Switzerland in 1981. } \usage{data("SwissLabor")} \format{ A data frame containing 872 observations on 7 variables. \describe{ \item{participation}{Factor. Did the individual participate in the labor force?} \item{income}{Logarithm of nonlabor income.} \item{age}{Age in decades (years divided by 10).} \item{education}{Years of formal education.} \item{youngkids}{Number of young children (under 7 years of age).} \item{oldkids}{Number of older children (over 7 years of age).} \item{foreign}{Factor. Is the individual a foreigner (i.e., not Swiss)?} } } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/1996-v11.3/gerfin/} } \references{ Gerfin, M. (1996). Parametric and Semi-Parametric Estimation of the Binary Response Model of Labour Market Participation. \emph{Journal of Applied Econometrics}, \bold{11}, 321--339. } \examples{ data("SwissLabor") ### Gerfin (1996), Table I. fm_probit <- glm(participation ~ . + I(age^2), data = SwissLabor, family = binomial(link = "probit")) summary(fm_probit) ### alternatively fm_logit <- glm(participation ~ . + I(age^2), data = SwissLabor, family = binomial) summary(fm_logit) } \keyword{datasets} AER/DESCRIPTION0000644000176200001440000000301514557444472012406 0ustar liggesusersPackage: AER Version: 1.2-12 Date: 2024-02-02 Title: Applied Econometrics with R Authors@R: c(person(given = "Christian", family = "Kleiber", role = "aut", email = "Christian.Kleiber@unibas.ch", comment = c(ORCID = "0000-0002-6781-4733")), person(given = "Achim", family = "Zeileis", role = c("aut", "cre"), email = "Achim.Zeileis@R-project.org", comment = c(ORCID = "0000-0003-0918-3766"))) Description: Functions, data sets, examples, demos, and vignettes for the book Christian Kleiber and Achim Zeileis (2008), Applied Econometrics with R, Springer-Verlag, New York. ISBN 978-0-387-77316-2. (See the vignette "AER" for a package overview.) LazyLoad: yes Depends: R (>= 3.0.0), car (>= 2.0-19), lmtest, sandwich (>= 2.4-0), survival (>= 2.37-5), zoo Suggests: boot, dynlm, effects, fGarch, forecast, foreign, ineq, KernSmooth, lattice, longmemo, MASS, mlogit, nlme, nnet, np, plm, pscl, quantreg, rgl, ROCR, rugarch, sampleSelection, scatterplot3d, strucchange, systemfit (>= 1.1-20), truncreg, tseries, urca, vars Imports: stats, Formula (>= 0.2-0) License: GPL-2 | GPL-3 NeedsCompilation: no Packaged: 2024-02-03 03:57:36 UTC; zeileis Author: Christian Kleiber [aut] (), Achim Zeileis [aut, cre] () Maintainer: Achim Zeileis Repository: CRAN Date/Publication: 2024-02-03 14:10:02 UTC AER/build/0000755000176200001440000000000014557334660011775 5ustar liggesusersAER/build/vignette.rds0000644000176200001440000000050214557334660014331 0ustar liggesusersuQN@DS?`@Φ&PcN`U%/o]`жꁅ7ޛ71Oꎑ{κ:| N5^>W-0mk_q5B`DEbx-g| D.Z Sk@n_CY8wB"hc$ϔ&1#~foZa0_6&-S ;' .+ ܨ֠zۙ5P戊Rrx/7WǑn% eڧ8ŏZi~iҧ;0QRI~GiwhHnAER/build/partial.rdb0000644000176200001440000000007514557334645014127 0ustar liggesusersb```b`afb`b1 H020piּb C"%!7AER/tests/0000755000176200001440000000000013616353614012033 5ustar liggesusersAER/tests/Ch-LinearRegression.R0000644000176200001440000004704714251130742015764 0ustar liggesusersif(!requireNamespace("splines") || !requireNamespace("dynlm") || !requireNamespace("plm") || !requireNamespace("systemfit") || !requireNamespace("nlme")) q() ################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: data-journals ################################################### data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations summary(journals) ################################################### ### chunk number 3: linreg-plot eval=FALSE ################################################### ## plot(log(subs) ~ log(citeprice), data = journals) ## jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) ## abline(jour_lm) ################################################### ### chunk number 4: linreg-plot1 ################################################### plot(log(subs) ~ log(citeprice), data = journals) jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) abline(jour_lm) ################################################### ### chunk number 5: linreg-class ################################################### class(jour_lm) ################################################### ### chunk number 6: linreg-names ################################################### names(jour_lm) ################################################### ### chunk number 7: linreg-summary ################################################### summary(jour_lm) ################################################### ### chunk number 8: linreg-summary ################################################### jour_slm <- summary(jour_lm) class(jour_slm) names(jour_slm) ################################################### ### chunk number 9: linreg-coef ################################################### jour_slm$coefficients ################################################### ### chunk number 10: linreg-anova ################################################### anova(jour_lm) ################################################### ### chunk number 11: journals-coef ################################################### coef(jour_lm) ################################################### ### chunk number 12: journals-confint ################################################### confint(jour_lm, level = 0.95) ################################################### ### chunk number 13: journals-predict ################################################### predict(jour_lm, newdata = data.frame(citeprice = 2.11), interval = "confidence") predict(jour_lm, newdata = data.frame(citeprice = 2.11), interval = "prediction") ################################################### ### chunk number 14: predict-plot eval=FALSE ################################################### ## lciteprice <- seq(from = -6, to = 4, by = 0.25) ## jour_pred <- predict(jour_lm, interval = "prediction", ## newdata = data.frame(citeprice = exp(lciteprice))) ## plot(log(subs) ~ log(citeprice), data = journals) ## lines(jour_pred[, 1] ~ lciteprice, col = 1) ## lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2) ## lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2) ################################################### ### chunk number 15: predict-plot1 ################################################### lciteprice <- seq(from = -6, to = 4, by = 0.25) jour_pred <- predict(jour_lm, interval = "prediction", newdata = data.frame(citeprice = exp(lciteprice))) plot(log(subs) ~ log(citeprice), data = journals) lines(jour_pred[, 1] ~ lciteprice, col = 1) lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2) lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2) ################################################### ### chunk number 16: journals-plot eval=FALSE ################################################### ## par(mfrow = c(2, 2)) ## plot(jour_lm) ## par(mfrow = c(1, 1)) ################################################### ### chunk number 17: journals-plot1 ################################################### par(mfrow = c(2, 2)) plot(jour_lm) par(mfrow = c(1, 1)) ################################################### ### chunk number 18: journal-lht ################################################### linearHypothesis(jour_lm, "log(citeprice) = -0.5") ################################################### ### chunk number 19: CPS-data ################################################### data("CPS1988") summary(CPS1988) ################################################### ### chunk number 20: CPS-base ################################################### cps_lm <- lm(log(wage) ~ experience + I(experience^2) + education + ethnicity, data = CPS1988) ################################################### ### chunk number 21: CPS-visualization-unused eval=FALSE ################################################### ## ex <- 0:56 ## ed <- with(CPS1988, tapply(education, ## list(ethnicity, experience), mean))[, as.character(ex)] ## fm <- cps_lm ## wago <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) ## wagb <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "afam", education = as.numeric(ed["afam",]))) ## plot(log(wage) ~ experience, data = CPS1988, pch = ".", ## col = as.numeric(ethnicity)) ## lines(ex, wago) ## lines(ex, wagb, col = 2) ################################################### ### chunk number 22: CPS-summary ################################################### summary(cps_lm) ################################################### ### chunk number 23: CPS-noeth ################################################### cps_noeth <- lm(log(wage) ~ experience + I(experience^2) + education, data = CPS1988) anova(cps_noeth, cps_lm) ################################################### ### chunk number 24: CPS-anova ################################################### anova(cps_lm) ################################################### ### chunk number 25: CPS-noeth2 eval=FALSE ################################################### ## cps_noeth <- update(cps_lm, formula = . ~ . - ethnicity) ################################################### ### chunk number 26: CPS-waldtest ################################################### waldtest(cps_lm, . ~ . - ethnicity) ################################################### ### chunk number 27: CPS-spline ################################################### library("splines") cps_plm <- lm(log(wage) ~ bs(experience, df = 5) + education + ethnicity, data = CPS1988) ################################################### ### chunk number 28: CPS-spline-summary eval=FALSE ################################################### ## summary(cps_plm) ################################################### ### chunk number 29: CPS-BIC ################################################### cps_bs <- lapply(3:10, function(i) lm(log(wage) ~ bs(experience, df = i) + education + ethnicity, data = CPS1988)) structure(sapply(cps_bs, AIC, k = log(nrow(CPS1988))), .Names = 3:10) ################################################### ### chunk number 30: plm-plot eval=FALSE ################################################### ## cps <- data.frame(experience = -2:60, education = ## with(CPS1988, mean(education[ethnicity == "cauc"])), ## ethnicity = "cauc") ## cps$yhat1 <- predict(cps_lm, newdata = cps) ## cps$yhat2 <- predict(cps_plm, newdata = cps) ## ## plot(log(wage) ~ jitter(experience, factor = 3), pch = 19, ## col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988) ## lines(yhat1 ~ experience, data = cps, lty = 2) ## lines(yhat2 ~ experience, data = cps) ## legend("topleft", c("quadratic", "spline"), lty = c(2,1), ## bty = "n") ################################################### ### chunk number 31: plm-plot1 ################################################### cps <- data.frame(experience = -2:60, education = with(CPS1988, mean(education[ethnicity == "cauc"])), ethnicity = "cauc") cps$yhat1 <- predict(cps_lm, newdata = cps) cps$yhat2 <- predict(cps_plm, newdata = cps) plot(log(wage) ~ jitter(experience, factor = 3), pch = 19, col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988) lines(yhat1 ~ experience, data = cps, lty = 2) lines(yhat2 ~ experience, data = cps) legend("topleft", c("quadratic", "spline"), lty = c(2,1), bty = "n") ################################################### ### chunk number 32: CPS-int ################################################### cps_int <- lm(log(wage) ~ experience + I(experience^2) + education * ethnicity, data = CPS1988) coeftest(cps_int) ################################################### ### chunk number 33: CPS-int2 eval=FALSE ################################################### ## cps_int <- lm(log(wage) ~ experience + I(experience^2) + ## education + ethnicity + education:ethnicity, ## data = CPS1988) ################################################### ### chunk number 34: CPS-sep ################################################### cps_sep <- lm(log(wage) ~ ethnicity / (experience + I(experience^2) + education) - 1, data = CPS1988) ################################################### ### chunk number 35: CPS-sep-coef ################################################### cps_sep_cf <- matrix(coef(cps_sep), nrow = 2) rownames(cps_sep_cf) <- levels(CPS1988$ethnicity) colnames(cps_sep_cf) <- names(coef(cps_lm))[1:4] cps_sep_cf ################################################### ### chunk number 36: CPS-sep-anova ################################################### anova(cps_sep, cps_lm) ################################################### ### chunk number 37: CPS-sep-visualization-unused eval=FALSE ################################################### ## ex <- 0:56 ## ed <- with(CPS1988, tapply(education, list(ethnicity, ## experience), mean))[, as.character(ex)] ## fm <- cps_lm ## wago <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) ## wagb <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "afam", education = as.numeric(ed["afam",]))) ## plot(log(wage) ~ jitter(experience, factor = 2), ## data = CPS1988, pch = ".", col = as.numeric(ethnicity)) ## ## ## plot(log(wage) ~ as.factor(experience), data = CPS1988, ## pch = ".") ## lines(ex, wago, lwd = 2) ## lines(ex, wagb, col = 2, lwd = 2) ## fm <- cps_sep ## wago <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) ## wagb <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "afam", education = as.numeric(ed["afam",]))) ## lines(ex, wago, lty = 2, lwd = 2) ## lines(ex, wagb, col = 2, lty = 2, lwd = 2) ################################################### ### chunk number 38: CPS-region ################################################### CPS1988$region <- relevel(CPS1988$region, ref = "south") cps_region <- lm(log(wage) ~ ethnicity + education + experience + I(experience^2) + region, data = CPS1988) coef(cps_region) ################################################### ### chunk number 39: wls1 ################################################### jour_wls1 <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice^2) ################################################### ### chunk number 40: wls2 ################################################### jour_wls2 <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice) ################################################### ### chunk number 41: journals-wls1 eval=FALSE ################################################### ## plot(log(subs) ~ log(citeprice), data = journals) ## abline(jour_lm) ## abline(jour_wls1, lwd = 2, lty = 2) ## abline(jour_wls2, lwd = 2, lty = 3) ## legend("bottomleft", c("OLS", "WLS1", "WLS2"), ## lty = 1:3, lwd = 2, bty = "n") ################################################### ### chunk number 42: journals-wls11 ################################################### plot(log(subs) ~ log(citeprice), data = journals) abline(jour_lm) abline(jour_wls1, lwd = 2, lty = 2) abline(jour_wls2, lwd = 2, lty = 3) legend("bottomleft", c("OLS", "WLS1", "WLS2"), lty = 1:3, lwd = 2, bty = "n") ################################################### ### chunk number 43: fgls1 ################################################### auxreg <- lm(log(residuals(jour_lm)^2) ~ log(citeprice), data = journals) jour_fgls1 <- lm(log(subs) ~ log(citeprice), weights = 1/exp(fitted(auxreg)), data = journals) ################################################### ### chunk number 44: fgls2 ################################################### gamma2i <- coef(auxreg)[2] gamma2 <- 0 while(abs((gamma2i - gamma2)/gamma2) > 1e-7) { gamma2 <- gamma2i fglsi <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice^gamma2) gamma2i <- coef(lm(log(residuals(fglsi)^2) ~ log(citeprice), data = journals))[2] } jour_fgls2 <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice^gamma2) ################################################### ### chunk number 45: fgls2-coef ################################################### coef(jour_fgls2) ################################################### ### chunk number 46: journals-fgls ################################################### plot(log(subs) ~ log(citeprice), data = journals) abline(jour_lm) abline(jour_fgls2, lty = 2, lwd = 2) ################################################### ### chunk number 47: usmacro-plot eval=FALSE ################################################### ## data("USMacroG") ## plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1), ## plot.type = "single", ylab = "") ## legend("topleft", legend = c("income", "consumption"), ## lty = c(3, 1), bty = "n") ################################################### ### chunk number 48: usmacro-plot1 ################################################### data("USMacroG") plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1), plot.type = "single", ylab = "") legend("topleft", legend = c("income", "consumption"), lty = c(3, 1), bty = "n") ################################################### ### chunk number 49: usmacro-fit ################################################### library("dynlm") cons_lm1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) cons_lm2 <- dynlm(consumption ~ dpi + L(consumption), data = USMacroG) ################################################### ### chunk number 50: usmacro-summary1 ################################################### summary(cons_lm1) ################################################### ### chunk number 51: usmacro-summary2 ################################################### summary(cons_lm2) ################################################### ### chunk number 52: dynlm-plot eval=FALSE ################################################### ## plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1), ## fitted(cons_lm2), 0, residuals(cons_lm1), ## residuals(cons_lm2)), screens = rep(1:2, c(3, 3)), ## lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"), ## xlab = "Time", main = "") ## legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"), ## lty = 1:3, bty = "n") ################################################### ### chunk number 53: dynlm-plot1 ################################################### plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1), fitted(cons_lm2), 0, residuals(cons_lm1), residuals(cons_lm2)), screens = rep(1:2, c(3, 3)), lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"), xlab = "Time", main = "") legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"), lty = 1:3, bty = "n") ################################################### ### chunk number 54: encompassing1 ################################################### cons_lmE <- dynlm(consumption ~ dpi + L(dpi) + L(consumption), data = USMacroG) ################################################### ### chunk number 55: encompassing2 ################################################### anova(cons_lm1, cons_lmE, cons_lm2) ################################################### ### chunk number 56: encompassing3 ################################################### encomptest(cons_lm1, cons_lm2) ################################################### ### chunk number 57: pdata.frame ################################################### data("Grunfeld", package = "AER") library("plm") gr <- subset(Grunfeld, firm %in% c("General Electric", "General Motors", "IBM")) pgr <- pdata.frame(gr, index = c("firm", "year")) ################################################### ### chunk number 58: plm-pool ################################################### gr_pool <- plm(invest ~ value + capital, data = pgr, model = "pooling") ################################################### ### chunk number 59: plm-FE ################################################### gr_fe <- plm(invest ~ value + capital, data = pgr, model = "within") summary(gr_fe) ################################################### ### chunk number 60: plm-pFtest ################################################### pFtest(gr_fe, gr_pool) ################################################### ### chunk number 61: plm-RE ################################################### gr_re <- plm(invest ~ value + capital, data = pgr, model = "random", random.method = "walhus") summary(gr_re) ################################################### ### chunk number 62: plm-plmtest ################################################### plmtest(gr_pool) ################################################### ### chunk number 63: plm-phtest ################################################### phtest(gr_re, gr_fe) ################################################### ### chunk number 64: EmplUK-data ################################################### data("EmplUK", package = "plm") ################################################### ### chunk number 65: plm-AB ################################################### empl_ab <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1) + log(capital) + lag(log(output), 0:1) | lag(log(emp), 2:99), data = EmplUK, index = c("firm", "year"), effect = "twoways", model = "twosteps") ################################################### ### chunk number 66: plm-AB-summary ################################################### summary(empl_ab, robust = FALSE) ################################################### ### chunk number 67: systemfit ################################################### library("systemfit") gr2 <- subset(Grunfeld, firm %in% c("Chrysler", "IBM")) pgr2 <- pdata.frame(gr2, c("firm", "year")) ################################################### ### chunk number 68: SUR ################################################### gr_sur <- systemfit(invest ~ value + capital, method = "SUR", data = pgr2) summary(gr_sur, residCov = FALSE, equations = FALSE) ################################################### ### chunk number 69: nlme eval=FALSE ################################################### ## library("nlme") ## g1 <- subset(Grunfeld, firm == "Westinghouse") ## gls(invest ~ value + capital, data = g1, correlation = corAR1()) AER/tests/Ch-Microeconometrics.R0000644000176200001440000003130414251130762016164 0ustar liggesusersif(!requireNamespace("ROCR") || !requireNamespace("MASS") || !requireNamespace("pscl") || !requireNamespace("np") || !requireNamespace("nnet")) q() ################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: swisslabor-data ################################################### data("SwissLabor") swiss_probit <- glm(participation ~ . + I(age^2), data = SwissLabor, family = binomial(link = "probit")) summary(swiss_probit) ################################################### ### chunk number 3: swisslabor-plot eval=FALSE ################################################### ## plot(participation ~ age, data = SwissLabor, ylevels = 2:1) ################################################### ### chunk number 4: swisslabor-plot-refined ################################################### plot(participation ~ education, data = SwissLabor, ylevels = 2:1) fm <- glm(participation ~ education + I(education^2), data = SwissLabor, family = binomial) edu <- sort(unique(SwissLabor$education)) prop <- sapply(edu, function(x) mean(SwissLabor$education <= x)) lines(predict(fm, newdata = data.frame(education = edu), type = "response") ~ prop, col = 2) plot(participation ~ age, data = SwissLabor, ylevels = 2:1) fm <- glm(participation ~ age + I(age^2), data = SwissLabor, family = binomial) ag <- sort(unique(SwissLabor$age)) prop <- sapply(ag, function(x) mean(SwissLabor$age <= x)) lines(predict(fm, newdata = data.frame(age = ag), type = "response") ~ prop, col = 2) ################################################### ### chunk number 5: effects1 ################################################### fav <- mean(dnorm(predict(swiss_probit, type = "link"))) fav * coef(swiss_probit) ################################################### ### chunk number 6: effects2 ################################################### av <- colMeans(SwissLabor[, -c(1, 7)]) av <- data.frame(rbind(swiss = av, foreign = av), foreign = factor(c("no", "yes"))) av <- predict(swiss_probit, newdata = av, type = "link") av <- dnorm(av) av["swiss"] * coef(swiss_probit)[-7] ################################################### ### chunk number 7: effects3 ################################################### av["foreign"] * coef(swiss_probit)[-7] ################################################### ### chunk number 8: mcfadden ################################################### swiss_probit0 <- update(swiss_probit, formula = . ~ 1) 1 - as.vector(logLik(swiss_probit)/logLik(swiss_probit0)) ################################################### ### chunk number 9: confusion-matrix ################################################### table(true = SwissLabor$participation, pred = round(fitted(swiss_probit))) ################################################### ### chunk number 10: confusion-matrix1 ################################################### tab <- table(true = SwissLabor$participation, pred = round(fitted(swiss_probit))) tabp <- round(100 * c(tab[1,1] + tab[2,2], tab[2,1] + tab[1,2])/sum(tab), digits = 2) ################################################### ### chunk number 11: roc-plot eval=FALSE ################################################### ## library("ROCR") ## pred <- prediction(fitted(swiss_probit), ## SwissLabor$participation) ## plot(performance(pred, "acc")) ## plot(performance(pred, "tpr", "fpr")) ## abline(0, 1, lty = 2) ################################################### ### chunk number 12: roc-plot1 ################################################### library("ROCR") pred <- prediction(fitted(swiss_probit), SwissLabor$participation) plot(performance(pred, "acc")) plot(performance(pred, "tpr", "fpr")) abline(0, 1, lty = 2) ################################################### ### chunk number 13: rss ################################################### deviance(swiss_probit) sum(residuals(swiss_probit, type = "deviance")^2) sum(residuals(swiss_probit, type = "pearson")^2) ################################################### ### chunk number 14: coeftest eval=FALSE ################################################### ## coeftest(swiss_probit, vcov = sandwich) ################################################### ### chunk number 15: murder ################################################### data("MurderRates") ## murder_logit <- glm(I(executions > 0) ~ time + income + ## IGNORE_RDIFF, excluded due to small numeric deviations on different platforms ## noncauc + lfp + southern, data = MurderRates, ## family = binomial) ## ## ## ################################################### ## ### chunk number 16: murder-coeftest ## ################################################### ## coeftest(murder_logit) ## ## ## ################################################### ## ### chunk number 17: murder2 ## ################################################### ## murder_logit2 <- glm(I(executions > 0) ~ time + income + ## noncauc + lfp + southern, data = MurderRates, ## family = binomial, control = list(epsilon = 1e-15, ## maxit = 50, trace = FALSE)) ## ## ## ################################################### ## ### chunk number 18: murder2-coeftest ## ################################################### ## coeftest(murder_logit2) ################################################### ### chunk number 19: separation ################################################### table(I(MurderRates$executions > 0), MurderRates$southern) ################################################### ### chunk number 20: countreg-pois ################################################### data("RecreationDemand") rd_pois <- glm(trips ~ ., data = RecreationDemand, family = poisson) ################################################### ### chunk number 21: countreg-pois-coeftest ################################################### coeftest(rd_pois) ################################################### ### chunk number 22: countreg-pois-logLik ################################################### logLik(rd_pois) ################################################### ### chunk number 23: countreg-odtest1 ################################################### dispersiontest(rd_pois) ################################################### ### chunk number 24: countreg-odtest2 ################################################### dispersiontest(rd_pois, trafo = 2) ################################################### ### chunk number 25: countreg-nbin ################################################### library("MASS") rd_nb <- glm.nb(trips ~ ., data = RecreationDemand) coeftest(rd_nb) logLik(rd_nb) ################################################### ### chunk number 26: countreg-se ################################################### round(sqrt(rbind(diag(vcov(rd_pois)), diag(sandwich(rd_pois)))), digits = 3) ################################################### ### chunk number 27: countreg-sandwich ################################################### coeftest(rd_pois, vcov = sandwich) ################################################### ### chunk number 28: countreg-OPG ################################################### round(sqrt(diag(vcovOPG(rd_pois))), 3) ################################################### ### chunk number 29: countreg-plot ################################################### plot(table(RecreationDemand$trips), ylab = "") ################################################### ### chunk number 30: countreg-zeros ################################################### rbind(obs = table(RecreationDemand$trips)[1:10], exp = round( sapply(0:9, function(x) sum(dpois(x, fitted(rd_pois)))))) ################################################### ### chunk number 31: countreg-pscl ################################################### library("pscl") ################################################### ### chunk number 32: countreg-zinb ################################################### rd_zinb <- zeroinfl(trips ~ . | quality + income, data = RecreationDemand, dist = "negbin") ################################################### ### chunk number 33: countreg-zinb-summary ################################################### summary(rd_zinb) ################################################### ### chunk number 34: countreg-zinb-expected ################################################### round(colSums(predict(rd_zinb, type = "prob")[,1:10])) ################################################### ### chunk number 35: countreg-hurdle ################################################### rd_hurdle <- hurdle(trips ~ . | quality + income, data = RecreationDemand, dist = "negbin") summary(rd_hurdle) ################################################### ### chunk number 36: countreg-hurdle-expected ################################################### round(colSums(predict(rd_hurdle, type = "prob")[,1:10])) ################################################### ### chunk number 37: tobit1 ################################################### data("Affairs") aff_tob <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) summary(aff_tob) ################################################### ### chunk number 38: tobit2 ################################################### aff_tob2 <- update(aff_tob, right = 4) summary(aff_tob2) ################################################### ### chunk number 39: tobit3 ################################################### linearHypothesis(aff_tob, c("age = 0", "occupation = 0"), vcov = sandwich) ################################################### ### chunk number 40: numeric-response ################################################### SwissLabor$partnum <- as.numeric(SwissLabor$participation) - 1 ################################################### ### chunk number 41: kleinspady eval=FALSE ################################################### ## library("np") ## swiss_bw <- npindexbw(partnum ~ income + age + education + ## youngkids + oldkids + foreign + I(age^2), data = SwissLabor, ## method = "kleinspady", nmulti = 5) ################################################### ### chunk number 42: kleinspady-bw eval=FALSE ################################################### ## summary(swiss_bw) ################################################### ### chunk number 43: kleinspady-summary eval=FALSE ################################################### ## swiss_ks <- npindex(bws = swiss_bw, gradients = TRUE) ## summary(swiss_ks) ################################################### ### chunk number 44: probit-confusion ################################################### table(Actual = SwissLabor$participation, Predicted = round(predict(swiss_probit, type = "response"))) ################################################### ### chunk number 45: bw-tab ################################################### data("BankWages") edcat <- factor(BankWages$education) levels(edcat)[3:10] <- rep(c("14-15", "16-18", "19-21"), c(2, 3, 3)) tab <- xtabs(~ edcat + job, data = BankWages) prop.table(tab, 1) ################################################### ### chunk number 46: bw-plot eval=FALSE ################################################### ## plot(job ~ edcat, data = BankWages, off = 0) ################################################### ### chunk number 47: bw-plot1 ################################################### plot(job ~ edcat, data = BankWages, off = 0) box() ################################################### ### chunk number 48: bw-multinom ################################################### library("nnet") bank_mnl <- multinom(job ~ education + minority, data = BankWages, subset = gender == "male", trace = FALSE) ################################################### ### chunk number 49: bw-multinom-coeftest ################################################### coeftest(bank_mnl) ################################################### ### chunk number 50: bw-polr ################################################### library("MASS") bank_polr <- polr(job ~ education + minority, data = BankWages, subset = gender == "male", Hess = TRUE) coeftest(bank_polr) ################################################### ### chunk number 51: bw-AIC ################################################### AIC(bank_mnl) AIC(bank_polr) AER/tests/Ch-Programming.Rout.save0000644000176200001440000002624014251133010016437 0ustar liggesusers R version 4.2.0 (2022-04-22) -- "Vigorous Calisthenics" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > if(!requireNamespace("lattice") || !requireNamespace("boot")) q() Loading required namespace: lattice Loading required namespace: boot > > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: carData Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> suppressWarnings(RNGversion("3.5.0")) R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: DGP R> ################################################### R> dgp <- function(nobs = 15, model = c("trend", "dynamic"), + corr = 0, coef = c(0.25, -0.75), sd = 1) + { + model <- match.arg(model) + coef <- rep(coef, length.out = 2) + + err <- as.vector(filter(rnorm(nobs, sd = sd), corr, + method = "recursive")) + if(model == "trend") { + x <- 1:nobs + y <- coef[1] + coef[2] * x + err + } else { + y <- rep(NA, nobs) + y[1] <- coef[1] + err[1] + for(i in 2:nobs) + y[i] <- coef[1] + coef[2] * y[i-1] + err[i] + x <- c(0, y[1:(nobs-1)]) + } + return(data.frame(y = y, x = x)) + } R> R> R> ################################################### R> ### chunk number 3: simpower R> ################################################### R> simpower <- function(nrep = 100, size = 0.05, ...) + { + pval <- matrix(rep(NA, 2 * nrep), ncol = 2) + colnames(pval) <- c("dwtest", "bgtest") + for(i in 1:nrep) { + dat <- dgp(...) + pval[i,1] <- dwtest(y ~ x, data = dat, + alternative = "two.sided")$p.value + pval[i,2] <- bgtest(y ~ x, data = dat)$p.value + } + return(colMeans(pval < size)) + } R> R> R> ################################################### R> ### chunk number 4: simulation-function R> ################################################### R> simulation <- function(corr = c(0, 0.2, 0.4, 0.6, 0.8, + 0.9, 0.95, 0.99), nobs = c(15, 30, 50), + model = c("trend", "dynamic"), ...) + { + prs <- expand.grid(corr = corr, nobs = nobs, model = model) + nprs <- nrow(prs) + + pow <- matrix(rep(NA, 2 * nprs), ncol = 2) + for(i in 1:nprs) pow[i,] <- simpower(corr = prs[i,1], + nobs = prs[i,2], model = as.character(prs[i,3]), ...) + + rval <- rbind(prs, prs) + rval$test <- factor(rep(1:2, c(nprs, nprs)), + labels = c("dwtest", "bgtest")) + rval$power <- c(pow[,1], pow[,2]) + rval$nobs <- factor(rval$nobs) + return(rval) + } R> R> R> ################################################### R> ### chunk number 5: simulation R> ################################################### R> set.seed(123) R> psim <- simulation() R> R> R> ################################################### R> ### chunk number 6: simulation-table R> ################################################### R> tab <- xtabs(power ~ corr + test + model + nobs, data = psim) R> ftable(tab, row.vars = c("model", "nobs", "test"), + col.vars = "corr") corr 0 0.2 0.4 0.6 0.8 0.9 0.95 0.99 model nobs test trend 15 dwtest 0.05 0.10 0.21 0.36 0.55 0.65 0.66 0.62 bgtest 0.07 0.05 0.05 0.10 0.30 0.40 0.41 0.31 30 dwtest 0.09 0.20 0.57 0.80 0.96 1.00 0.96 0.98 bgtest 0.09 0.09 0.37 0.69 0.93 0.99 0.94 0.93 50 dwtest 0.03 0.31 0.76 0.99 1.00 1.00 1.00 1.00 bgtest 0.05 0.23 0.63 0.95 1.00 1.00 1.00 1.00 dynamic 15 dwtest 0.02 0.01 0.00 0.00 0.01 0.03 0.01 0.00 bgtest 0.07 0.04 0.01 0.09 0.14 0.21 0.17 0.26 30 dwtest 0.00 0.01 0.01 0.06 0.00 0.03 0.03 0.19 bgtest 0.05 0.05 0.18 0.39 0.52 0.63 0.64 0.74 50 dwtest 0.02 0.02 0.01 0.03 0.03 0.15 0.39 0.56 bgtest 0.05 0.10 0.36 0.72 0.91 0.90 0.93 0.91 R> R> R> ################################################### R> ### chunk number 7: simulation-visualization R> ################################################### R> library("lattice") R> xyplot(power ~ corr | model + nobs, groups = ~ test, + data = psim, type = "b") R> R> R> ################################################### R> ### chunk number 8: simulation-visualization1 R> ################################################### R> library("lattice") R> trellis.par.set(theme = canonical.theme(color = FALSE)) R> print(xyplot(power ~ corr | model + nobs, groups = ~ test, data = psim, type = "b")) R> R> R> ################################################### R> ### chunk number 9: journals-lm R> ################################################### R> data("Journals") R> journals <- Journals[, c("subs", "price")] R> journals$citeprice <- Journals$price/Journals$citations R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) R> R> R> ################################################### R> ### chunk number 10: journals-residuals-based-resampling-unused eval=FALSE R> ################################################### R> ## refit <- function(data, i) { R> ## d <- data R> ## d$subs <- exp(d$fitted + d$res[i]) R> ## coef(lm(log(subs) ~ log(citeprice), data = d)) R> ## } R> R> R> ################################################### R> ### chunk number 11: journals-case-based-resampling R> ################################################### R> refit <- function(data, i) + coef(lm(log(subs) ~ log(citeprice), data = data[i,])) R> R> R> ################################################### R> ### chunk number 12: journals-boot R> ################################################### R> library("boot") Attaching package: 'boot' The following object is masked from 'package:lattice': melanoma The following object is masked from 'package:survival': aml The following object is masked from 'package:car': logit R> set.seed(123) R> jour_boot <- boot(journals, refit, R = 999) R> R> R> ################################################### R> ### chunk number 13: journals-boot-print R> ################################################### R> jour_boot ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = journals, statistic = refit, R = 999) Bootstrap Statistics : original bias std. error t1* 4.7662 -0.0010560 0.05545 t2* -0.5331 -0.0001606 0.03304 R> R> R> ################################################### R> ### chunk number 14: journals-lm-coeftest R> ################################################### R> coeftest(jour_lm) t test of coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.7662 0.0559 85.2 <2e-16 log(citeprice) -0.5331 0.0356 -15.0 <2e-16 R> R> R> ################################################### R> ### chunk number 15: journals-boot-ci R> ################################################### R> boot.ci(jour_boot, index = 2, type = "basic") BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 999 bootstrap replicates CALL : boot.ci(boot.out = jour_boot, type = "basic", index = 2) Intervals : Level Basic 95% (-0.5952, -0.4665 ) Calculations and Intervals on Original Scale R> R> R> ################################################### R> ### chunk number 16: journals-lm-ci R> ################################################### R> confint(jour_lm, parm = 2) 2.5 % 97.5 % log(citeprice) -0.6033 -0.4628 R> R> R> ################################################### R> ### chunk number 17: ml-loglik R> ################################################### R> data("Equipment", package = "AER") R> R> nlogL <- function(par) { + beta <- par[1:3] + theta <- par[4] + sigma2 <- par[5] + + Y <- with(Equipment, valueadded/firms) + K <- with(Equipment, capital/firms) + L <- with(Equipment, labor/firms) + + rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L) + lhs <- log(Y) + theta * Y + + rval <- sum(log(1 + theta * Y) - log(Y) + + dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE)) + return(-rval) + } R> R> R> ################################################### R> ### chunk number 18: ml-0 R> ################################################### R> fm0 <- lm(log(valueadded/firms) ~ log(capital/firms) + + log(labor/firms), data = Equipment) R> R> R> ################################################### R> ### chunk number 19: ml-0-coef R> ################################################### R> par0 <- as.vector(c(coef(fm0), 0, mean(residuals(fm0)^2))) R> R> R> ################################################### R> ### chunk number 20: ml-optim R> ################################################### R> opt <- optim(par0, nlogL, hessian = TRUE) Warning messages: 1: In log(1 + theta * Y) : NaNs produced 2: In sqrt(sigma2) : NaNs produced R> R> R> ################################################### R> ### chunk number 21: ml-optim-output R> ################################################### R> opt$par [1] 2.91469 0.34998 1.09232 0.10666 0.04275 R> sqrt(diag(solve(opt$hessian)))[1:4] [1] 0.36055 0.09671 0.14079 0.05850 R> -opt$value [1] -8.939 R> R> R> ################################################### R> ### chunk number 22: Sweave eval=FALSE R> ################################################### R> ## Sweave("Sweave-journals.Rnw") R> R> R> ################################################### R> ### chunk number 23: Stangle eval=FALSE R> ################################################### R> ## Stangle("Sweave-journals.Rnw") R> R> R> ################################################### R> ### chunk number 24: texi2dvi eval=FALSE R> ################################################### R> ## texi2dvi("Sweave-journals.tex", pdf = TRUE) R> R> R> ################################################### R> ### chunk number 25: vignette eval=FALSE R> ################################################### R> ## vignette("Sweave-journals", package = "AER") R> R> R> > proc.time() user system elapsed 11.213 0.076 11.282 AER/tests/Ch-TimeSeries.Rout.save0000644000176200001440000004461514251133026016243 0ustar liggesusers R version 4.2.0 (2022-04-22) -- "Vigorous Calisthenics" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > if(!requireNamespace("tseries") || + !requireNamespace("urca") || + !requireNamespace("dynlm") || + !requireNamespace("strucchange")) q() Loading required namespace: tseries Loading required namespace: urca Loading required namespace: dynlm Loading required namespace: strucchange > > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: carData Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> suppressWarnings(RNGversion("3.5.0")) R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: options R> ################################################### R> options(digits = 6) R> R> R> ################################################### R> ### chunk number 3: ts-plot eval=FALSE R> ################################################### R> ## data("UKNonDurables") R> ## plot(UKNonDurables) R> R> R> ################################################### R> ### chunk number 4: UKNonDurables-data R> ################################################### R> data("UKNonDurables") R> R> R> ################################################### R> ### chunk number 5: tsp R> ################################################### R> tsp(UKNonDurables) [1] 1955.00 1988.75 4.00 R> R> R> ################################################### R> ### chunk number 6: window R> ################################################### R> window(UKNonDurables, end = c(1956, 4)) Qtr1 Qtr2 Qtr3 Qtr4 1955 24030 25620 26209 27167 1956 24620 25972 26285 27659 R> R> R> ################################################### R> ### chunk number 7: filter eval=FALSE R> ################################################### R> ## data("UKDriverDeaths") R> ## plot(UKDriverDeaths) R> ## lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), R> ## col = 2) R> R> R> ################################################### R> ### chunk number 8: ts-plot1 R> ################################################### R> data("UKNonDurables") R> plot(UKNonDurables) R> data("UKDriverDeaths") R> plot(UKDriverDeaths) R> lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), + col = 2) R> R> R> ################################################### R> ### chunk number 9: filter1 eval=FALSE R> ################################################### R> ## data("UKDriverDeaths") R> ## plot(UKDriverDeaths) R> ## lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), R> ## col = 2) R> R> R> ################################################### R> ### chunk number 10: rollapply R> ################################################### R> plot(rollapply(UKDriverDeaths, 12, sd)) R> R> R> ################################################### R> ### chunk number 11: ar-sim R> ################################################### R> set.seed(1234) R> x <- filter(rnorm(100), 0.9, method = "recursive") R> R> R> ################################################### R> ### chunk number 12: decompose R> ################################################### R> dd_dec <- decompose(log(UKDriverDeaths)) R> dd_stl <- stl(log(UKDriverDeaths), s.window = 13) R> R> R> ################################################### R> ### chunk number 13: decompose-components R> ################################################### R> plot(dd_dec$trend, ylab = "trend") R> lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) R> R> R> ################################################### R> ### chunk number 14: seat-mean-sd R> ################################################### R> plot(dd_dec$trend, ylab = "trend") R> lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) R> plot(rollapply(UKDriverDeaths, 12, sd)) R> R> R> ################################################### R> ### chunk number 15: stl R> ################################################### R> plot(dd_stl) R> R> R> ################################################### R> ### chunk number 16: Holt-Winters R> ################################################### R> dd_past <- window(UKDriverDeaths, end = c(1982, 12)) R> ## dd_hw <- try(HoltWinters(dd_past)) ## IGNORE_RDIFF, excluded due to small numeric deviations on different platforms R> ## if(!inherits(dd_hw, "try-error")) { R> ## dd_pred <- predict(dd_hw, n.ahead = 24) R> ## R> ## R> ## ################################################### R> ## ### chunk number 17: Holt-Winters-plot R> ## ################################################### R> ## plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths)) R> ## lines(UKDriverDeaths) R> ## R> ## R> ## ################################################### R> ## ### chunk number 18: Holt-Winters-plot1 R> ## ################################################### R> ## plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths)) R> ## lines(UKDriverDeaths) R> ## } R> R> ################################################### R> ### chunk number 19: acf eval=FALSE R> ################################################### R> ## acf(x) R> ## pacf(x) R> R> R> ################################################### R> ### chunk number 20: acf1 R> ################################################### R> acf(x, ylim = c(-0.2, 1)) R> pacf(x, ylim = c(-0.2, 1)) R> R> R> ################################################### R> ### chunk number 21: ar R> ################################################### R> ar(x) Call: ar(x = x) Coefficients: 1 0.928 Order selected 1 sigma^2 estimated as 1.29 R> R> R> ################################################### R> ### chunk number 22: window-non-durab R> ################################################### R> nd <- window(log(UKNonDurables), end = c(1970, 4)) R> R> R> ################################################### R> ### chunk number 23: non-durab-acf R> ################################################### R> acf(diff(nd), ylim = c(-1, 1)) R> pacf(diff(nd), ylim = c(-1, 1)) R> acf(diff(diff(nd, 4)), ylim = c(-1, 1)) R> pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) R> R> R> ################################################### R> ### chunk number 24: non-durab-acf1 R> ################################################### R> acf(diff(nd), ylim = c(-1, 1)) R> pacf(diff(nd), ylim = c(-1, 1)) R> acf(diff(diff(nd, 4)), ylim = c(-1, 1)) R> pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) R> R> R> ################################################### R> ### chunk number 25: arima-setup R> ################################################### R> nd_pars <- expand.grid(ar = 0:2, diff = 1, ma = 0:2, + sar = 0:1, sdiff = 1, sma = 0:1) R> nd_aic <- rep(0, nrow(nd_pars)) R> for(i in seq(along = nd_aic)) nd_aic[i] <- AIC(arima(nd, + unlist(nd_pars[i, 1:3]), unlist(nd_pars[i, 4:6])), + k = log(length(nd))) R> nd_pars[which.min(nd_aic),] ar diff ma sar sdiff sma 22 0 1 1 0 1 1 R> R> R> ################################################### R> ### chunk number 26: arima R> ################################################### R> nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1)) R> nd_arima Call: arima(x = nd, order = c(0, 1, 1), seasonal = c(0, 1, 1)) Coefficients: ma1 sma1 -0.353 -0.583 s.e. 0.143 0.138 sigma^2 estimated as 9.65e-05: log likelihood = 188.14, aic = -370.27 R> R> R> ################################################### R> ### chunk number 27: tsdiag R> ################################################### R> tsdiag(nd_arima) R> R> R> ################################################### R> ### chunk number 28: tsdiag1 R> ################################################### R> tsdiag(nd_arima) R> R> R> ################################################### R> ### chunk number 29: arima-predict R> ################################################### R> nd_pred <- predict(nd_arima, n.ahead = 18 * 4) R> R> R> ################################################### R> ### chunk number 30: arima-compare R> ################################################### R> plot(log(UKNonDurables)) R> lines(nd_pred$pred, col = 2) R> R> R> ################################################### R> ### chunk number 31: arima-compare1 R> ################################################### R> plot(log(UKNonDurables)) R> lines(nd_pred$pred, col = 2) R> R> R> ################################################### R> ### chunk number 32: pepper R> ################################################### R> data("PepperPrice") R> plot(PepperPrice, plot.type = "single", col = 1:2) R> legend("topleft", c("black", "white"), bty = "n", + col = 1:2, lty = rep(1,2)) R> R> R> ################################################### R> ### chunk number 33: pepper1 R> ################################################### R> data("PepperPrice") R> plot(PepperPrice, plot.type = "single", col = 1:2) R> legend("topleft", c("black", "white"), bty = "n", + col = 1:2, lty = rep(1,2)) R> R> R> ################################################### R> ### chunk number 34: adf1 R> ################################################### R> library("tseries") R> adf.test(log(PepperPrice[, "white"])) Augmented Dickey-Fuller Test data: log(PepperPrice[, "white"]) Dickey-Fuller = -1.744, Lag order = 6, p-value = 0.684 alternative hypothesis: stationary R> R> R> ################################################### R> ### chunk number 35: adf1 R> ################################################### R> adf.test(diff(log(PepperPrice[, "white"]))) Augmented Dickey-Fuller Test data: diff(log(PepperPrice[, "white"])) Dickey-Fuller = -5.336, Lag order = 6, p-value = 0.01 alternative hypothesis: stationary Warning message: In adf.test(diff(log(PepperPrice[, "white"]))) : p-value smaller than printed p-value R> R> R> ################################################### R> ### chunk number 36: pp R> ################################################### R> pp.test(log(PepperPrice[, "white"]), type = "Z(t_alpha)") Phillips-Perron Unit Root Test data: log(PepperPrice[, "white"]) Dickey-Fuller Z(t_alpha) = -1.644, Truncation lag parameter = 5, p-value = 0.726 alternative hypothesis: stationary R> R> R> ################################################### R> ### chunk number 37: urca eval=FALSE R> ################################################### R> ## library("urca") R> ## pepper_ers <- ur.ers(log(PepperPrice[, "white"]), R> ## type = "DF-GLS", model = "const", lag.max = 4) R> ## summary(pepper_ers) R> R> R> ################################################### R> ### chunk number 38: kpss R> ################################################### R> kpss.test(log(PepperPrice[, "white"])) KPSS Test for Level Stationarity data: log(PepperPrice[, "white"]) KPSS Level = 0.6173, Truncation lag parameter = 5, p-value = 0.0211 R> R> R> ################################################### R> ### chunk number 39: po R> ################################################### R> po.test(log(PepperPrice)) Phillips-Ouliaris Cointegration Test data: log(PepperPrice) Phillips-Ouliaris demeaned = -24.1, Truncation lag parameter = 2, p-value = 0.024 R> R> R> ################################################### R> ### chunk number 40: joh-trace R> ################################################### R> library("urca") R> pepper_jo <- ca.jo(log(PepperPrice), ecdet = "const", + type = "trace") R> ## summary(pepper_jo) ## IGNORE_RDIFF, excluded due to small numeric deviations on different platforms R> R> R> ################################################### R> ### chunk number 41: joh-lmax eval=FALSE R> ################################################### R> ## pepper_jo2 <- ca.jo(log(PepperPrice), ecdet = "const", type = "eigen") R> ## summary(pepper_jo2) R> R> R> ################################################### R> ### chunk number 42: dynlm-by-hand R> ################################################### R> dd <- log(UKDriverDeaths) R> dd_dat <- ts.intersect(dd, dd1 = lag(dd, k = -1), + dd12 = lag(dd, k = -12)) R> lm(dd ~ dd1 + dd12, data = dd_dat) Call: lm(formula = dd ~ dd1 + dd12, data = dd_dat) Coefficients: (Intercept) dd1 dd12 0.421 0.431 0.511 R> R> R> ################################################### R> ### chunk number 43: dynlm R> ################################################### R> library("dynlm") R> dynlm(dd ~ L(dd) + L(dd, 12)) Time series regression with "ts" data: Start = 1970(1), End = 1984(12) Call: dynlm(formula = dd ~ L(dd) + L(dd, 12)) Coefficients: (Intercept) L(dd) L(dd, 12) 0.421 0.431 0.511 R> R> R> ################################################### R> ### chunk number 44: efp R> ################################################### R> library("strucchange") R> dd_ocus <- efp(dd ~ dd1 + dd12, data = dd_dat, + type = "OLS-CUSUM") R> R> R> ################################################### R> ### chunk number 45: efp-test R> ################################################### R> sctest(dd_ocus) OLS-based CUSUM test data: dd_ocus S0 = 1.487, p-value = 0.0241 R> R> R> ################################################### R> ### chunk number 46: efp-plot eval=FALSE R> ################################################### R> ## plot(dd_ocus) R> R> R> ################################################### R> ### chunk number 47: Fstats R> ################################################### R> dd_fs <- Fstats(dd ~ dd1 + dd12, data = dd_dat, from = 0.1) R> plot(dd_fs) R> sctest(dd_fs) supF test data: dd_fs sup.F = 19.33, p-value = 0.00672 R> R> R> ################################################### R> ### chunk number 48: ocus-supF R> ################################################### R> plot(dd_ocus) R> plot(dd_fs, main = "supF test") R> R> R> ################################################### R> ### chunk number 49: GermanM1 R> ################################################### R> data("GermanM1") R> LTW <- dm ~ dy2 + dR + dR1 + dp + m1 + y1 + R1 + season R> R> R> ################################################### R> ### chunk number 50: re eval=FALSE R> ################################################### R> ## m1_re <- efp(LTW, data = GermanM1, type = "RE") R> ## plot(m1_re) R> R> R> ################################################### R> ### chunk number 51: re1 R> ################################################### R> m1_re <- efp(LTW, data = GermanM1, type = "RE") R> plot(m1_re) R> R> R> ################################################### R> ### chunk number 52: dating R> ################################################### R> dd_bp <- breakpoints(dd ~ dd1 + dd12, data = dd_dat, h = 0.1) R> R> R> ################################################### R> ### chunk number 53: dating-coef R> ################################################### R> coef(dd_bp, breaks = 2) (Intercept) dd1 dd12 1970(1) - 1973(10) 1.45776 0.117323 0.694480 1973(11) - 1983(1) 1.53421 0.218214 0.572330 1983(2) - 1984(12) 1.68690 0.548609 0.214166 R> R> R> ################################################### R> ### chunk number 54: dating-plot eval=FALSE R> ################################################### R> ## plot(dd) R> ## lines(fitted(dd_bp, breaks = 2), col = 4) R> ## lines(confint(dd_bp, breaks = 2)) R> R> R> ################################################### R> ### chunk number 55: dating-plot1 R> ################################################### R> plot(dd_bp, legend = FALSE, main = "") R> plot(dd) R> lines(fitted(dd_bp, breaks = 2), col = 4) R> lines(confint(dd_bp, breaks = 2)) R> R> R> ################################################### R> ### chunk number 56: StructTS R> ################################################### R> dd_struct <- StructTS(log(UKDriverDeaths)) R> R> R> ################################################### R> ### chunk number 57: StructTS-plot eval=FALSE R> ################################################### R> ## plot(cbind(fitted(dd_struct), residuals(dd_struct))) R> R> R> ################################################### R> ### chunk number 58: StructTS-plot1 R> ################################################### R> dd_struct_plot <- cbind(fitted(dd_struct), residuals = residuals(dd_struct)) R> colnames(dd_struct_plot) <- c("level", "slope", "season", "residuals") R> plot(dd_struct_plot, main = "") R> R> R> ################################################### R> ### chunk number 59: garch-plot R> ################################################### R> data("MarkPound") R> plot(MarkPound, main = "") R> R> R> ################################################### R> ### chunk number 60: garch R> ################################################### R> data("MarkPound") R> mp <- garch(MarkPound, grad = "numerical", trace = FALSE) R> summary(mp) Call: garch(x = MarkPound, grad = "numerical", trace = FALSE) Model: GARCH(1,1) Residuals: Min 1Q Median 3Q Max -6.79739 -0.53703 -0.00264 0.55233 5.24867 Coefficient(s): Estimate Std. Error t value Pr(>|t|) a0 0.0109 0.0013 8.38 <2e-16 a1 0.1546 0.0139 11.14 <2e-16 b1 0.8044 0.0160 50.13 <2e-16 Diagnostic Tests: Jarque Bera Test data: Residuals X-squared = 1060, df = 2, p-value <2e-16 Box-Ljung test data: Squared.Residuals X-squared = 2.478, df = 1, p-value = 0.115 R> R> R> > proc.time() user system elapsed 2.221 0.048 2.266 AER/tests/Ch-Basics.R0000644000176200001440000005175514251130663013720 0ustar liggesusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: calc1 ################################################### 1 + 1 2^3 ################################################### ### chunk number 3: calc2 ################################################### log(exp(sin(pi/4)^2) * exp(cos(pi/4)^2)) ################################################### ### chunk number 4: vec1 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) ################################################### ### chunk number 5: length ################################################### length(x) ################################################### ### chunk number 6: vec2 ################################################### 2 * x + 3 5:1 * x + 1:5 ################################################### ### chunk number 7: vec3 ################################################### log(x) ################################################### ### chunk number 8: subset1 ################################################### x[c(1, 4)] ################################################### ### chunk number 9: subset2 ################################################### x[-c(2, 3, 5)] ################################################### ### chunk number 10: pattern1 ################################################### ones <- rep(1, 10) even <- seq(from = 2, to = 20, by = 2) trend <- 1981:2005 ################################################### ### chunk number 11: pattern2 ################################################### c(ones, even) ################################################### ### chunk number 12: matrix1 ################################################### A <- matrix(1:6, nrow = 2) ################################################### ### chunk number 13: matrix2 ################################################### t(A) ################################################### ### chunk number 14: matrix3 ################################################### dim(A) nrow(A) ncol(A) ################################################### ### chunk number 15: matrix-subset ################################################### A1 <- A[1:2, c(1, 3)] ################################################### ### chunk number 16: matrix4 ################################################### solve(A1) ################################################### ### chunk number 17: matrix-solve ################################################### A1 %*% solve(A1) ################################################### ### chunk number 18: diag ################################################### diag(4) ################################################### ### chunk number 19: matrix-combine1 ################################################### cbind(1, A1) ################################################### ### chunk number 20: matrix-combine2 ################################################### rbind(A1, diag(4, 2)) ################################################### ### chunk number 21: vector-mode ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) ################################################### ### chunk number 22: logical ################################################### x > 3.5 ################################################### ### chunk number 23: names ################################################### names(x) <- c("a", "b", "c", "d", "e") x ################################################### ### chunk number 24: subset-more ################################################### x[3:5] x[c("c", "d", "e")] x[x > 3.5] ################################################### ### chunk number 25: list1 ################################################### mylist <- list(sample = rnorm(5), family = "normal distribution", parameters = list(mean = 0, sd = 1)) mylist ################################################### ### chunk number 26: list2 ################################################### mylist[[1]] mylist[["sample"]] mylist$sample ################################################### ### chunk number 27: list3 ################################################### mylist[[3]]$sd ################################################### ### chunk number 28: logical2 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) x > 3 & x <= 4 ################################################### ### chunk number 29: logical3 ################################################### which(x > 3 & x <= 4) ################################################### ### chunk number 30: logical4 ################################################### all(x > 3) any(x > 3) ################################################### ### chunk number 31: logical5 ################################################### (1.5 - 0.5) == 1 (1.9 - 0.9) == 1 ################################################### ### chunk number 32: logical6 ################################################### all.equal(1.9 - 0.9, 1) ################################################### ### chunk number 33: logical7 ################################################### 7 + TRUE ################################################### ### chunk number 34: coercion1 ################################################### is.numeric(x) is.character(x) as.character(x) ################################################### ### chunk number 35: coercion2 ################################################### c(1, "a") ################################################### ### chunk number 36: rng1 ################################################### set.seed(123) rnorm(2) rnorm(2) set.seed(123) rnorm(2) ################################################### ### chunk number 37: rng2 ################################################### sample(1:5) sample(c("male", "female"), size = 5, replace = TRUE, prob = c(0.2, 0.8)) ################################################### ### chunk number 38: flow1 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) if(rnorm(1) > 0) sum(x) else mean(x) ################################################### ### chunk number 39: flow2 ################################################### ifelse(x > 4, sqrt(x), x^2) ################################################### ### chunk number 40: flow3 ################################################### for(i in 2:5) { x[i] <- x[i] - x[i-1] } x[-1] ################################################### ### chunk number 41: flow4 ################################################### while(sum(x) < 100) { x <- 2 * x } x ################################################### ### chunk number 42: cmeans ################################################### cmeans <- function(X) { rval <- rep(0, ncol(X)) for(j in 1:ncol(X)) { mysum <- 0 for(i in 1:nrow(X)) mysum <- mysum + X[i,j] rval[j] <- mysum/nrow(X) } return(rval) } ################################################### ### chunk number 43: colmeans1 ################################################### X <- matrix(1:20, ncol = 2) cmeans(X) ################################################### ### chunk number 44: colmeans2 ################################################### colMeans(X) ################################################### ### chunk number 45: colmeans3 eval=FALSE ################################################### ## X <- matrix(rnorm(2*10^6), ncol = 2) ## system.time(colMeans(X)) ## system.time(cmeans(X)) ################################################### ### chunk number 46: colmeans4 ################################################### cmeans2 <- function(X) { rval <- rep(0, ncol(X)) for(j in 1:ncol(X)) rval[j] <- mean(X[,j]) return(rval) } ################################################### ### chunk number 47: colmeans5 eval=FALSE ################################################### ## system.time(cmeans2(X)) ################################################### ### chunk number 48: colmeans6 eval=FALSE ################################################### ## apply(X, 2, mean) ################################################### ### chunk number 49: colmeans7 eval=FALSE ################################################### ## system.time(apply(X, 2, mean)) ################################################### ### chunk number 50: formula1 ################################################### f <- y ~ x class(f) ################################################### ### chunk number 51: formula2 ################################################### x <- seq(from = 0, to = 10, by = 0.5) y <- 2 + 3 * x + rnorm(21) ################################################### ### chunk number 52: formula3 eval=FALSE ################################################### ## plot(y ~ x) ## lm(y ~ x) ################################################### ### chunk number 53: formula3a ################################################### print(lm(y ~ x)) ################################################### ### chunk number 54: formula3b ################################################### plot(y ~ x) ################################################### ### chunk number 55: formula3c ################################################### fm <- lm(y ~ x) ################################################### ### chunk number 56: mydata1 ################################################### mydata <- data.frame(one = 1:10, two = 11:20, three = 21:30) ################################################### ### chunk number 57: mydata1a ################################################### mydata <- as.data.frame(matrix(1:30, ncol = 3)) names(mydata) <- c("one", "two", "three") ################################################### ### chunk number 58: mydata2 ################################################### mydata$two mydata[, "two"] mydata[, 2] ################################################### ### chunk number 59: attach ################################################### attach(mydata) mean(two) detach(mydata) ################################################### ### chunk number 60: with ################################################### with(mydata, mean(two)) ################################################### ### chunk number 61: mydata-subset ################################################### mydata.sub <- subset(mydata, two <= 16, select = -two) ################################################### ### chunk number 62: write-table ################################################### write.table(mydata, file = "mydata.txt", col.names = TRUE) ################################################### ### chunk number 63: read-table ################################################### newdata <- read.table("mydata.txt", header = TRUE) ################################################### ### chunk number 64: save ################################################### save(mydata, file = "mydata.rda") ################################################### ### chunk number 65: load ################################################### load("mydata.rda") ################################################### ### chunk number 66: file-remove ################################################### file.remove("mydata.rda") ################################################### ### chunk number 67: data ################################################### data("Journals", package = "AER") ################################################### ### chunk number 68: foreign ################################################### library("foreign") write.dta(mydata, file = "mydata.dta") ################################################### ### chunk number 69: read-dta ################################################### mydata <- read.dta("mydata.dta") ################################################### ### chunk number 70: cleanup ################################################### file.remove("mydata.dta") ################################################### ### chunk number 71: factor ################################################### g <- rep(0:1, c(2, 4)) g <- factor(g, levels = 0:1, labels = c("male", "female")) g ################################################### ### chunk number 72: na1 ################################################### newdata <- read.table("mydata.txt", na.strings = "-999") ################################################### ### chunk number 73: na2 ################################################### file.remove("mydata.txt") ################################################### ### chunk number 74: oop1 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) g <- factor(rep(c(0, 1), c(2, 4)), levels = c(0, 1), labels = c("male", "female")) ################################################### ### chunk number 75: oop2 ################################################### summary(x) summary(g) ################################################### ### chunk number 76: oop3 ################################################### class(x) class(g) ################################################### ### chunk number 77: oop4 ################################################### summary ################################################### ### chunk number 78: oop5 ################################################### normsample <- function(n, ...) { rval <- rnorm(n, ...) class(rval) <- "normsample" return(rval) } ################################################### ### chunk number 79: oop6 ################################################### set.seed(123) x <- normsample(10, mean = 5) class(x) ################################################### ### chunk number 80: oop7 ################################################### summary.normsample <- function(object, ...) { rval <- c(length(object), mean(object), sd(object)) names(rval) <- c("sample size","mean","standard deviation") return(rval) } ################################################### ### chunk number 81: oop8 ################################################### summary(x) ################################################### ### chunk number 82: journals-data eval=FALSE ################################################### ## data("Journals") ## Journals$citeprice <- Journals$price/Journals$citations ## attach(Journals) ## plot(log(subs), log(citeprice)) ## rug(log(subs)) ## rug(log(citeprice), side = 2) ## detach(Journals) ################################################### ### chunk number 83: journals-data1 ################################################### data("Journals") Journals$citeprice <- Journals$price/Journals$citations attach(Journals) plot(log(subs), log(citeprice)) rug(log(subs)) rug(log(citeprice), side = 2) detach(Journals) ################################################### ### chunk number 84: plot-formula ################################################### plot(log(subs) ~ log(citeprice), data = Journals) ################################################### ### chunk number 85: graphics1 ################################################### plot(log(subs) ~ log(citeprice), data = Journals, pch = 20, col = "blue", ylim = c(0, 8), xlim = c(-7, 4), main = "Library subscriptions") ################################################### ### chunk number 86: graphics2 ################################################### pdf("myfile.pdf", height = 5, width = 6) plot(1:20, pch = 1:20, col = 1:20, cex = 2) dev.off() ################################################### ### chunk number 87: dnorm-annotate eval=FALSE ################################################### ## curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3, ## main = "Density of the standard normal distribution") ## text(-5, 0.3, expression(f(x) == frac(1, sigma ~~ ## sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0) ################################################### ### chunk number 88: dnorm-annotate1 ################################################### curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3, main = "Density of the standard normal distribution") text(-5, 0.3, expression(f(x) == frac(1, sigma ~~ sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0) ################################################### ### chunk number 89: eda1 ################################################### data("CPS1985") str(CPS1985) ################################################### ### chunk number 90: eda2 ################################################### head(CPS1985) ################################################### ### chunk number 91: eda3 ################################################### levels(CPS1985$occupation)[c(2, 6)] <- c("techn", "mgmt") attach(CPS1985) ################################################### ### chunk number 92: eda4 ################################################### summary(wage) ################################################### ### chunk number 93: eda5 ################################################### mean(wage) median(wage) ################################################### ### chunk number 94: eda6 ################################################### var(wage) sd(wage) ################################################### ### chunk number 95: wage-hist ################################################### hist(wage, freq = FALSE) hist(log(wage), freq = FALSE) lines(density(log(wage)), col = 4) ################################################### ### chunk number 96: wage-hist1 ################################################### hist(wage, freq = FALSE) hist(log(wage), freq = FALSE) lines(density(log(wage)), col = 4) ################################################### ### chunk number 97: occ-table ################################################### summary(occupation) ################################################### ### chunk number 98: occ-table ################################################### tab <- table(occupation) prop.table(tab) ################################################### ### chunk number 99: occ-barpie ################################################### barplot(tab) pie(tab) ################################################### ### chunk number 100: occ-barpie ################################################### par(mar = c(4, 3, 1, 1)) barplot(tab, las = 3) par(mar = c(2, 3, 1, 3)) pie(tab, radius = 1) ################################################### ### chunk number 101: xtabs ################################################### xtabs(~ gender + occupation, data = CPS1985) ################################################### ### chunk number 102: spine eval=FALSE ################################################### ## plot(gender ~ occupation, data = CPS1985) ################################################### ### chunk number 103: spine1 ################################################### plot(gender ~ occupation, data = CPS1985) ################################################### ### chunk number 104: wageeduc-cor ################################################### cor(log(wage), education) cor(log(wage), education, method = "spearman") ################################################### ### chunk number 105: wageeduc-scatter eval=FALSE ################################################### ## plot(log(wage) ~ education) ################################################### ### chunk number 106: wageeduc-scatter1 ################################################### plot(log(wage) ~ education) ################################################### ### chunk number 107: tapply ################################################### tapply(log(wage), gender, mean) ################################################### ### chunk number 108: boxqq1 eval=FALSE ################################################### ## plot(log(wage) ~ gender) ################################################### ### chunk number 109: boxqq2 eval=FALSE ################################################### ## mwage <- subset(CPS1985, gender == "male")$wage ## fwage <- subset(CPS1985, gender == "female")$wage ## qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage), ## xaxs = "i", yaxs = "i", xlab = "male", ylab = "female") ## abline(0, 1) ################################################### ### chunk number 110: qq ################################################### plot(log(wage) ~ gender) mwage <- subset(CPS1985, gender == "male")$wage fwage <- subset(CPS1985, gender == "female")$wage qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage), xaxs = "i", yaxs = "i", xlab = "male", ylab = "female") abline(0, 1) ################################################### ### chunk number 111: detach ################################################### detach(CPS1985) AER/tests/Ch-Intro.R0000644000176200001440000001457614251130700013577 0ustar liggesusersif(!requireNamespace("quantreg") || !requireNamespace("KernSmooth")) q() ################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: journals-data ################################################### data("Journals", package = "AER") ################################################### ### chunk number 3: journals-dim ################################################### dim(Journals) names(Journals) ################################################### ### chunk number 4: journals-plot eval=FALSE ################################################### ## plot(log(subs) ~ log(price/citations), data = Journals) ################################################### ### chunk number 5: journals-lm eval=FALSE ################################################### ## j_lm <- lm(log(subs) ~ log(price/citations), data = Journals) ## abline(j_lm) ################################################### ### chunk number 6: journals-lmplot ################################################### plot(log(subs) ~ log(price/citations), data = Journals) j_lm <- lm(log(subs) ~ log(price/citations), data = Journals) abline(j_lm) ################################################### ### chunk number 7: journals-lm-summary ################################################### summary(j_lm) ################################################### ### chunk number 8: cps-data ################################################### data("CPS1985", package = "AER") cps <- CPS1985 ################################################### ### chunk number 9: cps-data1 eval=FALSE ################################################### ## data("CPS1985", package = "AER") ## cps <- CPS1985 ################################################### ### chunk number 10: cps-reg ################################################### library("quantreg") cps_lm <- lm(log(wage) ~ experience + I(experience^2) + education, data = cps) cps_rq <- rq(log(wage) ~ experience + I(experience^2) + education, data = cps, tau = seq(0.2, 0.8, by = 0.15)) ################################################### ### chunk number 11: cps-predict ################################################### cps2 <- data.frame(education = mean(cps$education), experience = min(cps$experience):max(cps$experience)) cps2 <- cbind(cps2, predict(cps_lm, newdata = cps2, interval = "prediction")) cps2 <- cbind(cps2, predict(cps_rq, newdata = cps2, type = "")) ################################################### ### chunk number 12: rq-plot eval=FALSE ################################################### ## plot(log(wage) ~ experience, data = cps) ## for(i in 6:10) lines(cps2[,i] ~ experience, ## data = cps2, col = "red") ################################################### ### chunk number 13: rq-plot1 ################################################### plot(log(wage) ~ experience, data = cps) for(i in 6:10) lines(cps2[,i] ~ experience, data = cps2, col = "red") ################################################### ### chunk number 14: srq-plot eval=FALSE ################################################### ## plot(summary(cps_rq)) ################################################### ### chunk number 15: srq-plot1 ################################################### try(plot(summary(cps_rq))) ################################################### ### chunk number 16: bkde-fit ################################################### library("KernSmooth") cps_bkde <- bkde2D(cbind(cps$experience, log(cps$wage)), bandwidth = c(3.5, 0.5), gridsize = c(200, 200)) ################################################### ### chunk number 17: bkde-plot eval=FALSE ################################################### ## image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat, ## col = rev(gray.colors(10, gamma = 1)), ## xlab = "experience", ylab = "log(wage)") ## box() ## lines(fit ~ experience, data = cps2) ## lines(lwr ~ experience, data = cps2, lty = 2) ## lines(upr ~ experience, data = cps2, lty = 2) ################################################### ### chunk number 18: bkde-plot1 ################################################### image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat, col = rev(gray.colors(10, gamma = 1)), xlab = "experience", ylab = "log(wage)") box() lines(fit ~ experience, data = cps2) lines(lwr ~ experience, data = cps2, lty = 2) lines(upr ~ experience, data = cps2, lty = 2) ################################################### ### chunk number 19: install eval=FALSE ################################################### ## install.packages("AER") ################################################### ### chunk number 20: library ################################################### library("AER") ################################################### ### chunk number 21: objects ################################################### objects() ################################################### ### chunk number 22: search ################################################### search() ################################################### ### chunk number 23: assignment ################################################### x <- 2 objects() ################################################### ### chunk number 24: remove ################################################### remove(x) objects() ################################################### ### chunk number 25: log eval=FALSE ################################################### ## log(16, 2) ## log(x = 16, 2) ## log(16, base = 2) ## log(base = 2, x = 16) ################################################### ### chunk number 26: q eval=FALSE ################################################### ## q() ################################################### ### chunk number 27: apropos ################################################### apropos("help") AER/tests/Ch-TimeSeries.R0000644000176200001440000003260514251131026014550 0ustar liggesusersif(!requireNamespace("tseries") || !requireNamespace("urca") || !requireNamespace("dynlm") || !requireNamespace("strucchange")) q() ################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: options ################################################### options(digits = 6) ################################################### ### chunk number 3: ts-plot eval=FALSE ################################################### ## data("UKNonDurables") ## plot(UKNonDurables) ################################################### ### chunk number 4: UKNonDurables-data ################################################### data("UKNonDurables") ################################################### ### chunk number 5: tsp ################################################### tsp(UKNonDurables) ################################################### ### chunk number 6: window ################################################### window(UKNonDurables, end = c(1956, 4)) ################################################### ### chunk number 7: filter eval=FALSE ################################################### ## data("UKDriverDeaths") ## plot(UKDriverDeaths) ## lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), ## col = 2) ################################################### ### chunk number 8: ts-plot1 ################################################### data("UKNonDurables") plot(UKNonDurables) data("UKDriverDeaths") plot(UKDriverDeaths) lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), col = 2) ################################################### ### chunk number 9: filter1 eval=FALSE ################################################### ## data("UKDriverDeaths") ## plot(UKDriverDeaths) ## lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), ## col = 2) ################################################### ### chunk number 10: rollapply ################################################### plot(rollapply(UKDriverDeaths, 12, sd)) ################################################### ### chunk number 11: ar-sim ################################################### set.seed(1234) x <- filter(rnorm(100), 0.9, method = "recursive") ################################################### ### chunk number 12: decompose ################################################### dd_dec <- decompose(log(UKDriverDeaths)) dd_stl <- stl(log(UKDriverDeaths), s.window = 13) ################################################### ### chunk number 13: decompose-components ################################################### plot(dd_dec$trend, ylab = "trend") lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) ################################################### ### chunk number 14: seat-mean-sd ################################################### plot(dd_dec$trend, ylab = "trend") lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) plot(rollapply(UKDriverDeaths, 12, sd)) ################################################### ### chunk number 15: stl ################################################### plot(dd_stl) ################################################### ### chunk number 16: Holt-Winters ################################################### dd_past <- window(UKDriverDeaths, end = c(1982, 12)) ## dd_hw <- try(HoltWinters(dd_past)) ## IGNORE_RDIFF, excluded due to small numeric deviations on different platforms ## if(!inherits(dd_hw, "try-error")) { ## dd_pred <- predict(dd_hw, n.ahead = 24) ## ## ## ################################################### ## ### chunk number 17: Holt-Winters-plot ## ################################################### ## plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths)) ## lines(UKDriverDeaths) ## ## ## ################################################### ## ### chunk number 18: Holt-Winters-plot1 ## ################################################### ## plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths)) ## lines(UKDriverDeaths) ## } ################################################### ### chunk number 19: acf eval=FALSE ################################################### ## acf(x) ## pacf(x) ################################################### ### chunk number 20: acf1 ################################################### acf(x, ylim = c(-0.2, 1)) pacf(x, ylim = c(-0.2, 1)) ################################################### ### chunk number 21: ar ################################################### ar(x) ################################################### ### chunk number 22: window-non-durab ################################################### nd <- window(log(UKNonDurables), end = c(1970, 4)) ################################################### ### chunk number 23: non-durab-acf ################################################### acf(diff(nd), ylim = c(-1, 1)) pacf(diff(nd), ylim = c(-1, 1)) acf(diff(diff(nd, 4)), ylim = c(-1, 1)) pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) ################################################### ### chunk number 24: non-durab-acf1 ################################################### acf(diff(nd), ylim = c(-1, 1)) pacf(diff(nd), ylim = c(-1, 1)) acf(diff(diff(nd, 4)), ylim = c(-1, 1)) pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) ################################################### ### chunk number 25: arima-setup ################################################### nd_pars <- expand.grid(ar = 0:2, diff = 1, ma = 0:2, sar = 0:1, sdiff = 1, sma = 0:1) nd_aic <- rep(0, nrow(nd_pars)) for(i in seq(along = nd_aic)) nd_aic[i] <- AIC(arima(nd, unlist(nd_pars[i, 1:3]), unlist(nd_pars[i, 4:6])), k = log(length(nd))) nd_pars[which.min(nd_aic),] ################################################### ### chunk number 26: arima ################################################### nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1)) nd_arima ################################################### ### chunk number 27: tsdiag ################################################### tsdiag(nd_arima) ################################################### ### chunk number 28: tsdiag1 ################################################### tsdiag(nd_arima) ################################################### ### chunk number 29: arima-predict ################################################### nd_pred <- predict(nd_arima, n.ahead = 18 * 4) ################################################### ### chunk number 30: arima-compare ################################################### plot(log(UKNonDurables)) lines(nd_pred$pred, col = 2) ################################################### ### chunk number 31: arima-compare1 ################################################### plot(log(UKNonDurables)) lines(nd_pred$pred, col = 2) ################################################### ### chunk number 32: pepper ################################################### data("PepperPrice") plot(PepperPrice, plot.type = "single", col = 1:2) legend("topleft", c("black", "white"), bty = "n", col = 1:2, lty = rep(1,2)) ################################################### ### chunk number 33: pepper1 ################################################### data("PepperPrice") plot(PepperPrice, plot.type = "single", col = 1:2) legend("topleft", c("black", "white"), bty = "n", col = 1:2, lty = rep(1,2)) ################################################### ### chunk number 34: adf1 ################################################### library("tseries") adf.test(log(PepperPrice[, "white"])) ################################################### ### chunk number 35: adf1 ################################################### adf.test(diff(log(PepperPrice[, "white"]))) ################################################### ### chunk number 36: pp ################################################### pp.test(log(PepperPrice[, "white"]), type = "Z(t_alpha)") ################################################### ### chunk number 37: urca eval=FALSE ################################################### ## library("urca") ## pepper_ers <- ur.ers(log(PepperPrice[, "white"]), ## type = "DF-GLS", model = "const", lag.max = 4) ## summary(pepper_ers) ################################################### ### chunk number 38: kpss ################################################### kpss.test(log(PepperPrice[, "white"])) ################################################### ### chunk number 39: po ################################################### po.test(log(PepperPrice)) ################################################### ### chunk number 40: joh-trace ################################################### library("urca") pepper_jo <- ca.jo(log(PepperPrice), ecdet = "const", type = "trace") ## summary(pepper_jo) ## IGNORE_RDIFF, excluded due to small numeric deviations on different platforms ################################################### ### chunk number 41: joh-lmax eval=FALSE ################################################### ## pepper_jo2 <- ca.jo(log(PepperPrice), ecdet = "const", type = "eigen") ## summary(pepper_jo2) ################################################### ### chunk number 42: dynlm-by-hand ################################################### dd <- log(UKDriverDeaths) dd_dat <- ts.intersect(dd, dd1 = lag(dd, k = -1), dd12 = lag(dd, k = -12)) lm(dd ~ dd1 + dd12, data = dd_dat) ################################################### ### chunk number 43: dynlm ################################################### library("dynlm") dynlm(dd ~ L(dd) + L(dd, 12)) ################################################### ### chunk number 44: efp ################################################### library("strucchange") dd_ocus <- efp(dd ~ dd1 + dd12, data = dd_dat, type = "OLS-CUSUM") ################################################### ### chunk number 45: efp-test ################################################### sctest(dd_ocus) ################################################### ### chunk number 46: efp-plot eval=FALSE ################################################### ## plot(dd_ocus) ################################################### ### chunk number 47: Fstats ################################################### dd_fs <- Fstats(dd ~ dd1 + dd12, data = dd_dat, from = 0.1) plot(dd_fs) sctest(dd_fs) ################################################### ### chunk number 48: ocus-supF ################################################### plot(dd_ocus) plot(dd_fs, main = "supF test") ################################################### ### chunk number 49: GermanM1 ################################################### data("GermanM1") LTW <- dm ~ dy2 + dR + dR1 + dp + m1 + y1 + R1 + season ################################################### ### chunk number 50: re eval=FALSE ################################################### ## m1_re <- efp(LTW, data = GermanM1, type = "RE") ## plot(m1_re) ################################################### ### chunk number 51: re1 ################################################### m1_re <- efp(LTW, data = GermanM1, type = "RE") plot(m1_re) ################################################### ### chunk number 52: dating ################################################### dd_bp <- breakpoints(dd ~ dd1 + dd12, data = dd_dat, h = 0.1) ################################################### ### chunk number 53: dating-coef ################################################### coef(dd_bp, breaks = 2) ################################################### ### chunk number 54: dating-plot eval=FALSE ################################################### ## plot(dd) ## lines(fitted(dd_bp, breaks = 2), col = 4) ## lines(confint(dd_bp, breaks = 2)) ################################################### ### chunk number 55: dating-plot1 ################################################### plot(dd_bp, legend = FALSE, main = "") plot(dd) lines(fitted(dd_bp, breaks = 2), col = 4) lines(confint(dd_bp, breaks = 2)) ################################################### ### chunk number 56: StructTS ################################################### dd_struct <- StructTS(log(UKDriverDeaths)) ################################################### ### chunk number 57: StructTS-plot eval=FALSE ################################################### ## plot(cbind(fitted(dd_struct), residuals(dd_struct))) ################################################### ### chunk number 58: StructTS-plot1 ################################################### dd_struct_plot <- cbind(fitted(dd_struct), residuals = residuals(dd_struct)) colnames(dd_struct_plot) <- c("level", "slope", "season", "residuals") plot(dd_struct_plot, main = "") ################################################### ### chunk number 59: garch-plot ################################################### data("MarkPound") plot(MarkPound, main = "") ################################################### ### chunk number 60: garch ################################################### data("MarkPound") mp <- garch(MarkPound, grad = "numerical", trace = FALSE) summary(mp) AER/tests/Ch-Programming.R0000644000176200001440000001660514251130777014777 0ustar liggesusersif(!requireNamespace("lattice") || !requireNamespace("boot")) q() ################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: DGP ################################################### dgp <- function(nobs = 15, model = c("trend", "dynamic"), corr = 0, coef = c(0.25, -0.75), sd = 1) { model <- match.arg(model) coef <- rep(coef, length.out = 2) err <- as.vector(filter(rnorm(nobs, sd = sd), corr, method = "recursive")) if(model == "trend") { x <- 1:nobs y <- coef[1] + coef[2] * x + err } else { y <- rep(NA, nobs) y[1] <- coef[1] + err[1] for(i in 2:nobs) y[i] <- coef[1] + coef[2] * y[i-1] + err[i] x <- c(0, y[1:(nobs-1)]) } return(data.frame(y = y, x = x)) } ################################################### ### chunk number 3: simpower ################################################### simpower <- function(nrep = 100, size = 0.05, ...) { pval <- matrix(rep(NA, 2 * nrep), ncol = 2) colnames(pval) <- c("dwtest", "bgtest") for(i in 1:nrep) { dat <- dgp(...) pval[i,1] <- dwtest(y ~ x, data = dat, alternative = "two.sided")$p.value pval[i,2] <- bgtest(y ~ x, data = dat)$p.value } return(colMeans(pval < size)) } ################################################### ### chunk number 4: simulation-function ################################################### simulation <- function(corr = c(0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99), nobs = c(15, 30, 50), model = c("trend", "dynamic"), ...) { prs <- expand.grid(corr = corr, nobs = nobs, model = model) nprs <- nrow(prs) pow <- matrix(rep(NA, 2 * nprs), ncol = 2) for(i in 1:nprs) pow[i,] <- simpower(corr = prs[i,1], nobs = prs[i,2], model = as.character(prs[i,3]), ...) rval <- rbind(prs, prs) rval$test <- factor(rep(1:2, c(nprs, nprs)), labels = c("dwtest", "bgtest")) rval$power <- c(pow[,1], pow[,2]) rval$nobs <- factor(rval$nobs) return(rval) } ################################################### ### chunk number 5: simulation ################################################### set.seed(123) psim <- simulation() ################################################### ### chunk number 6: simulation-table ################################################### tab <- xtabs(power ~ corr + test + model + nobs, data = psim) ftable(tab, row.vars = c("model", "nobs", "test"), col.vars = "corr") ################################################### ### chunk number 7: simulation-visualization ################################################### library("lattice") xyplot(power ~ corr | model + nobs, groups = ~ test, data = psim, type = "b") ################################################### ### chunk number 8: simulation-visualization1 ################################################### library("lattice") trellis.par.set(theme = canonical.theme(color = FALSE)) print(xyplot(power ~ corr | model + nobs, groups = ~ test, data = psim, type = "b")) ################################################### ### chunk number 9: journals-lm ################################################### data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) ################################################### ### chunk number 10: journals-residuals-based-resampling-unused eval=FALSE ################################################### ## refit <- function(data, i) { ## d <- data ## d$subs <- exp(d$fitted + d$res[i]) ## coef(lm(log(subs) ~ log(citeprice), data = d)) ## } ################################################### ### chunk number 11: journals-case-based-resampling ################################################### refit <- function(data, i) coef(lm(log(subs) ~ log(citeprice), data = data[i,])) ################################################### ### chunk number 12: journals-boot ################################################### library("boot") set.seed(123) jour_boot <- boot(journals, refit, R = 999) ################################################### ### chunk number 13: journals-boot-print ################################################### jour_boot ################################################### ### chunk number 14: journals-lm-coeftest ################################################### coeftest(jour_lm) ################################################### ### chunk number 15: journals-boot-ci ################################################### boot.ci(jour_boot, index = 2, type = "basic") ################################################### ### chunk number 16: journals-lm-ci ################################################### confint(jour_lm, parm = 2) ################################################### ### chunk number 17: ml-loglik ################################################### data("Equipment", package = "AER") nlogL <- function(par) { beta <- par[1:3] theta <- par[4] sigma2 <- par[5] Y <- with(Equipment, valueadded/firms) K <- with(Equipment, capital/firms) L <- with(Equipment, labor/firms) rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L) lhs <- log(Y) + theta * Y rval <- sum(log(1 + theta * Y) - log(Y) + dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE)) return(-rval) } ################################################### ### chunk number 18: ml-0 ################################################### fm0 <- lm(log(valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ################################################### ### chunk number 19: ml-0-coef ################################################### par0 <- as.vector(c(coef(fm0), 0, mean(residuals(fm0)^2))) ################################################### ### chunk number 20: ml-optim ################################################### opt <- optim(par0, nlogL, hessian = TRUE) ################################################### ### chunk number 21: ml-optim-output ################################################### opt$par sqrt(diag(solve(opt$hessian)))[1:4] -opt$value ################################################### ### chunk number 22: Sweave eval=FALSE ################################################### ## Sweave("Sweave-journals.Rnw") ################################################### ### chunk number 23: Stangle eval=FALSE ################################################### ## Stangle("Sweave-journals.Rnw") ################################################### ### chunk number 24: texi2dvi eval=FALSE ################################################### ## texi2dvi("Sweave-journals.tex", pdf = TRUE) ################################################### ### chunk number 25: vignette eval=FALSE ################################################### ## vignette("Sweave-journals", package = "AER") AER/tests/Ch-LinearRegression.Rout.save0000644000176200001440000010364714557121155017457 0ustar liggesusers R version 4.3.2 (2023-10-31) -- "Eye Holes" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > if(!requireNamespace("splines") || + !requireNamespace("dynlm") || + !requireNamespace("plm") || + !requireNamespace("systemfit") || + !requireNamespace("nlme")) q() Loading required namespace: splines Loading required namespace: dynlm Loading required namespace: plm Loading required namespace: systemfit > > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: carData Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> suppressWarnings(RNGversion("3.5.0")) R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: data-journals R> ################################################### R> data("Journals") R> journals <- Journals[, c("subs", "price")] R> journals$citeprice <- Journals$price/Journals$citations R> summary(journals) subs price citeprice Min. : 2 Min. : 20 Min. : 0.005 1st Qu.: 52 1st Qu.: 134 1st Qu.: 0.464 Median : 122 Median : 282 Median : 1.321 Mean : 197 Mean : 418 Mean : 2.548 3rd Qu.: 268 3rd Qu.: 541 3rd Qu.: 3.440 Max. :1098 Max. :2120 Max. :24.459 R> R> R> ################################################### R> ### chunk number 3: linreg-plot eval=FALSE R> ################################################### R> ## plot(log(subs) ~ log(citeprice), data = journals) R> ## jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) R> ## abline(jour_lm) R> R> R> ################################################### R> ### chunk number 4: linreg-plot1 R> ################################################### R> plot(log(subs) ~ log(citeprice), data = journals) R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) R> abline(jour_lm) R> R> R> ################################################### R> ### chunk number 5: linreg-class R> ################################################### R> class(jour_lm) [1] "lm" R> R> R> ################################################### R> ### chunk number 6: linreg-names R> ################################################### R> names(jour_lm) [1] "coefficients" "residuals" "effects" [4] "rank" "fitted.values" "assign" [7] "qr" "df.residual" "xlevels" [10] "call" "terms" "model" R> R> R> ################################################### R> ### chunk number 7: linreg-summary R> ################################################### R> summary(jour_lm) Call: lm(formula = log(subs) ~ log(citeprice), data = journals) Residuals: Min 1Q Median 3Q Max -2.7248 -0.5361 0.0372 0.4662 1.8481 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.7662 0.0559 85.2 <2e-16 log(citeprice) -0.5331 0.0356 -15.0 <2e-16 Residual standard error: 0.75 on 178 degrees of freedom Multiple R-squared: 0.557, Adjusted R-squared: 0.555 F-statistic: 224 on 1 and 178 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 8: linreg-summary R> ################################################### R> jour_slm <- summary(jour_lm) R> class(jour_slm) [1] "summary.lm" R> names(jour_slm) [1] "call" "terms" "residuals" [4] "coefficients" "aliased" "sigma" [7] "df" "r.squared" "adj.r.squared" [10] "fstatistic" "cov.unscaled" R> R> R> ################################################### R> ### chunk number 9: linreg-coef R> ################################################### R> jour_slm$coefficients Estimate Std. Error t value Pr(>|t|) (Intercept) 4.7662 0.05591 85.25 2.954e-146 log(citeprice) -0.5331 0.03561 -14.97 2.564e-33 R> R> R> ################################################### R> ### chunk number 10: linreg-anova R> ################################################### R> anova(jour_lm) Analysis of Variance Table Response: log(subs) Df Sum Sq Mean Sq F value Pr(>F) log(citeprice) 1 126 125.9 224 <2e-16 Residuals 178 100 0.6 R> R> R> ################################################### R> ### chunk number 11: journals-coef R> ################################################### R> coef(jour_lm) (Intercept) log(citeprice) 4.7662 -0.5331 R> R> R> ################################################### R> ### chunk number 12: journals-confint R> ################################################### R> confint(jour_lm, level = 0.95) 2.5 % 97.5 % (Intercept) 4.6559 4.8765 log(citeprice) -0.6033 -0.4628 R> R> R> ################################################### R> ### chunk number 13: journals-predict R> ################################################### R> predict(jour_lm, newdata = data.frame(citeprice = 2.11), + interval = "confidence") fit lwr upr 1 4.368 4.247 4.489 R> predict(jour_lm, newdata = data.frame(citeprice = 2.11), + interval = "prediction") fit lwr upr 1 4.368 2.884 5.853 R> R> R> ################################################### R> ### chunk number 14: predict-plot eval=FALSE R> ################################################### R> ## lciteprice <- seq(from = -6, to = 4, by = 0.25) R> ## jour_pred <- predict(jour_lm, interval = "prediction", R> ## newdata = data.frame(citeprice = exp(lciteprice))) R> ## plot(log(subs) ~ log(citeprice), data = journals) R> ## lines(jour_pred[, 1] ~ lciteprice, col = 1) R> ## lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2) R> ## lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2) R> R> R> ################################################### R> ### chunk number 15: predict-plot1 R> ################################################### R> lciteprice <- seq(from = -6, to = 4, by = 0.25) R> jour_pred <- predict(jour_lm, interval = "prediction", + newdata = data.frame(citeprice = exp(lciteprice))) R> plot(log(subs) ~ log(citeprice), data = journals) R> lines(jour_pred[, 1] ~ lciteprice, col = 1) R> lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2) R> lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2) R> R> R> ################################################### R> ### chunk number 16: journals-plot eval=FALSE R> ################################################### R> ## par(mfrow = c(2, 2)) R> ## plot(jour_lm) R> ## par(mfrow = c(1, 1)) R> R> R> ################################################### R> ### chunk number 17: journals-plot1 R> ################################################### R> par(mfrow = c(2, 2)) R> plot(jour_lm) R> par(mfrow = c(1, 1)) R> R> R> ################################################### R> ### chunk number 18: journal-lht R> ################################################### R> linearHypothesis(jour_lm, "log(citeprice) = -0.5") Linear hypothesis test Hypothesis: log(citeprice) = - 0.5 Model 1: restricted model Model 2: log(subs) ~ log(citeprice) Res.Df RSS Df Sum of Sq F Pr(>F) 1 179 100 2 178 100 1 0.484 0.86 0.35 R> R> R> ################################################### R> ### chunk number 19: CPS-data R> ################################################### R> data("CPS1988") R> summary(CPS1988) wage education experience ethnicity Min. : 50 Min. : 0.0 Min. :-4.0 cauc:25923 1st Qu.: 309 1st Qu.:12.0 1st Qu.: 8.0 afam: 2232 Median : 522 Median :12.0 Median :16.0 Mean : 604 Mean :13.1 Mean :18.2 3rd Qu.: 783 3rd Qu.:15.0 3rd Qu.:27.0 Max. :18777 Max. :18.0 Max. :63.0 smsa region parttime no : 7223 northeast:6441 no :25631 yes:20932 midwest :6863 yes: 2524 south :8760 west :6091 R> R> R> ################################################### R> ### chunk number 20: CPS-base R> ################################################### R> cps_lm <- lm(log(wage) ~ experience + I(experience^2) + + education + ethnicity, data = CPS1988) R> R> R> ################################################### R> ### chunk number 21: CPS-visualization-unused eval=FALSE R> ################################################### R> ## ex <- 0:56 R> ## ed <- with(CPS1988, tapply(education, R> ## list(ethnicity, experience), mean))[, as.character(ex)] R> ## fm <- cps_lm R> ## wago <- predict(fm, newdata = data.frame(experience = ex, R> ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) R> ## wagb <- predict(fm, newdata = data.frame(experience = ex, R> ## ethnicity = "afam", education = as.numeric(ed["afam",]))) R> ## plot(log(wage) ~ experience, data = CPS1988, pch = ".", R> ## col = as.numeric(ethnicity)) R> ## lines(ex, wago) R> ## lines(ex, wagb, col = 2) R> R> R> ################################################### R> ### chunk number 22: CPS-summary R> ################################################### R> summary(cps_lm) Call: lm(formula = log(wage) ~ experience + I(experience^2) + education + ethnicity, data = CPS1988) Residuals: Min 1Q Median 3Q Max -2.943 -0.316 0.058 0.376 4.383 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.321395 0.019174 225.4 <2e-16 experience 0.077473 0.000880 88.0 <2e-16 I(experience^2) -0.001316 0.000019 -69.3 <2e-16 education 0.085673 0.001272 67.3 <2e-16 ethnicityafam -0.243364 0.012918 -18.8 <2e-16 Residual standard error: 0.584 on 28150 degrees of freedom Multiple R-squared: 0.335, Adjusted R-squared: 0.335 F-statistic: 3.54e+03 on 4 and 28150 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 23: CPS-noeth R> ################################################### R> cps_noeth <- lm(log(wage) ~ experience + I(experience^2) + + education, data = CPS1988) R> anova(cps_noeth, cps_lm) Analysis of Variance Table Model 1: log(wage) ~ experience + I(experience^2) + education Model 2: log(wage) ~ experience + I(experience^2) + education + ethnicity Res.Df RSS Df Sum of Sq F Pr(>F) 1 28151 9720 2 28150 9599 1 121 355 <2e-16 R> R> R> ################################################### R> ### chunk number 24: CPS-anova R> ################################################### R> anova(cps_lm) Analysis of Variance Table Response: log(wage) Df Sum Sq Mean Sq F value Pr(>F) experience 1 840 840 2462 <2e-16 I(experience^2) 1 2249 2249 6597 <2e-16 education 1 1620 1620 4750 <2e-16 ethnicity 1 121 121 355 <2e-16 Residuals 28150 9599 0 R> R> R> ################################################### R> ### chunk number 25: CPS-noeth2 eval=FALSE R> ################################################### R> ## cps_noeth <- update(cps_lm, formula = . ~ . - ethnicity) R> R> R> ################################################### R> ### chunk number 26: CPS-waldtest R> ################################################### R> waldtest(cps_lm, . ~ . - ethnicity) Wald test Model 1: log(wage) ~ experience + I(experience^2) + education + ethnicity Model 2: log(wage) ~ experience + I(experience^2) + education Res.Df Df F Pr(>F) 1 28150 2 28151 -1 355 <2e-16 R> R> R> ################################################### R> ### chunk number 27: CPS-spline R> ################################################### R> library("splines") R> cps_plm <- lm(log(wage) ~ bs(experience, df = 5) + + education + ethnicity, data = CPS1988) R> R> R> ################################################### R> ### chunk number 28: CPS-spline-summary eval=FALSE R> ################################################### R> ## summary(cps_plm) R> R> R> ################################################### R> ### chunk number 29: CPS-BIC R> ################################################### R> cps_bs <- lapply(3:10, function(i) lm(log(wage) ~ + bs(experience, df = i) + education + ethnicity, + data = CPS1988)) R> structure(sapply(cps_bs, AIC, k = log(nrow(CPS1988))), + .Names = 3:10) 3 4 5 6 7 8 9 10 49205 48836 48794 48795 48801 48797 48799 48802 R> R> R> ################################################### R> ### chunk number 30: plm-plot eval=FALSE R> ################################################### R> ## cps <- data.frame(experience = -2:60, education = R> ## with(CPS1988, mean(education[ethnicity == "cauc"])), R> ## ethnicity = "cauc") R> ## cps$yhat1 <- predict(cps_lm, newdata = cps) R> ## cps$yhat2 <- predict(cps_plm, newdata = cps) R> ## R> ## plot(log(wage) ~ jitter(experience, factor = 3), pch = 19, R> ## col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988) R> ## lines(yhat1 ~ experience, data = cps, lty = 2) R> ## lines(yhat2 ~ experience, data = cps) R> ## legend("topleft", c("quadratic", "spline"), lty = c(2,1), R> ## bty = "n") R> R> R> ################################################### R> ### chunk number 31: plm-plot1 R> ################################################### R> cps <- data.frame(experience = -2:60, education = + with(CPS1988, mean(education[ethnicity == "cauc"])), + ethnicity = "cauc") R> cps$yhat1 <- predict(cps_lm, newdata = cps) R> cps$yhat2 <- predict(cps_plm, newdata = cps) R> R> plot(log(wage) ~ jitter(experience, factor = 3), pch = 19, + col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988) R> lines(yhat1 ~ experience, data = cps, lty = 2) R> lines(yhat2 ~ experience, data = cps) R> legend("topleft", c("quadratic", "spline"), lty = c(2,1), + bty = "n") R> R> R> ################################################### R> ### chunk number 32: CPS-int R> ################################################### R> cps_int <- lm(log(wage) ~ experience + I(experience^2) + + education * ethnicity, data = CPS1988) R> coeftest(cps_int) t test of coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.313059 0.019590 220.17 <2e-16 experience 0.077520 0.000880 88.06 <2e-16 I(experience^2) -0.001318 0.000019 -69.34 <2e-16 education 0.086312 0.001309 65.94 <2e-16 ethnicityafam -0.123887 0.059026 -2.10 0.036 education:ethnicityafam -0.009648 0.004651 -2.07 0.038 R> R> R> ################################################### R> ### chunk number 33: CPS-int2 eval=FALSE R> ################################################### R> ## cps_int <- lm(log(wage) ~ experience + I(experience^2) + R> ## education + ethnicity + education:ethnicity, R> ## data = CPS1988) R> R> R> ################################################### R> ### chunk number 34: CPS-sep R> ################################################### R> cps_sep <- lm(log(wage) ~ ethnicity / + (experience + I(experience^2) + education) - 1, + data = CPS1988) R> R> R> ################################################### R> ### chunk number 35: CPS-sep-coef R> ################################################### R> cps_sep_cf <- matrix(coef(cps_sep), nrow = 2) R> rownames(cps_sep_cf) <- levels(CPS1988$ethnicity) R> colnames(cps_sep_cf) <- names(coef(cps_lm))[1:4] R> cps_sep_cf (Intercept) experience I(experience^2) education cauc 4.310 0.07923 -0.0013597 0.08575 afam 4.159 0.06190 -0.0009415 0.08654 R> R> R> ################################################### R> ### chunk number 36: CPS-sep-anova R> ################################################### R> anova(cps_sep, cps_lm) Analysis of Variance Table Model 1: log(wage) ~ ethnicity/(experience + I(experience^2) + education) - 1 Model 2: log(wage) ~ experience + I(experience^2) + education + ethnicity Res.Df RSS Df Sum of Sq F Pr(>F) 1 28147 9582 2 28150 9599 -3 -16.8 16.5 1.1e-10 R> R> R> ################################################### R> ### chunk number 37: CPS-sep-visualization-unused eval=FALSE R> ################################################### R> ## ex <- 0:56 R> ## ed <- with(CPS1988, tapply(education, list(ethnicity, R> ## experience), mean))[, as.character(ex)] R> ## fm <- cps_lm R> ## wago <- predict(fm, newdata = data.frame(experience = ex, R> ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) R> ## wagb <- predict(fm, newdata = data.frame(experience = ex, R> ## ethnicity = "afam", education = as.numeric(ed["afam",]))) R> ## plot(log(wage) ~ jitter(experience, factor = 2), R> ## data = CPS1988, pch = ".", col = as.numeric(ethnicity)) R> ## R> ## R> ## plot(log(wage) ~ as.factor(experience), data = CPS1988, R> ## pch = ".") R> ## lines(ex, wago, lwd = 2) R> ## lines(ex, wagb, col = 2, lwd = 2) R> ## fm <- cps_sep R> ## wago <- predict(fm, newdata = data.frame(experience = ex, R> ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) R> ## wagb <- predict(fm, newdata = data.frame(experience = ex, R> ## ethnicity = "afam", education = as.numeric(ed["afam",]))) R> ## lines(ex, wago, lty = 2, lwd = 2) R> ## lines(ex, wagb, col = 2, lty = 2, lwd = 2) R> R> R> ################################################### R> ### chunk number 38: CPS-region R> ################################################### R> CPS1988$region <- relevel(CPS1988$region, ref = "south") R> cps_region <- lm(log(wage) ~ ethnicity + education + + experience + I(experience^2) + region, data = CPS1988) R> coef(cps_region) (Intercept) ethnicityafam education experience 4.283606 -0.225679 0.084672 0.077656 I(experience^2) regionnortheast regionmidwest regionwest -0.001323 0.131920 0.043789 0.040327 R> R> R> ################################################### R> ### chunk number 39: wls1 R> ################################################### R> jour_wls1 <- lm(log(subs) ~ log(citeprice), data = journals, + weights = 1/citeprice^2) R> R> R> ################################################### R> ### chunk number 40: wls2 R> ################################################### R> jour_wls2 <- lm(log(subs) ~ log(citeprice), data = journals, + weights = 1/citeprice) R> R> R> ################################################### R> ### chunk number 41: journals-wls1 eval=FALSE R> ################################################### R> ## plot(log(subs) ~ log(citeprice), data = journals) R> ## abline(jour_lm) R> ## abline(jour_wls1, lwd = 2, lty = 2) R> ## abline(jour_wls2, lwd = 2, lty = 3) R> ## legend("bottomleft", c("OLS", "WLS1", "WLS2"), R> ## lty = 1:3, lwd = 2, bty = "n") R> R> R> ################################################### R> ### chunk number 42: journals-wls11 R> ################################################### R> plot(log(subs) ~ log(citeprice), data = journals) R> abline(jour_lm) R> abline(jour_wls1, lwd = 2, lty = 2) R> abline(jour_wls2, lwd = 2, lty = 3) R> legend("bottomleft", c("OLS", "WLS1", "WLS2"), + lty = 1:3, lwd = 2, bty = "n") R> R> R> ################################################### R> ### chunk number 43: fgls1 R> ################################################### R> auxreg <- lm(log(residuals(jour_lm)^2) ~ log(citeprice), + data = journals) R> jour_fgls1 <- lm(log(subs) ~ log(citeprice), + weights = 1/exp(fitted(auxreg)), data = journals) R> R> R> ################################################### R> ### chunk number 44: fgls2 R> ################################################### R> gamma2i <- coef(auxreg)[2] R> gamma2 <- 0 R> while(abs((gamma2i - gamma2)/gamma2) > 1e-7) { + gamma2 <- gamma2i + fglsi <- lm(log(subs) ~ log(citeprice), data = journals, + weights = 1/citeprice^gamma2) + gamma2i <- coef(lm(log(residuals(fglsi)^2) ~ + log(citeprice), data = journals))[2] + } R> jour_fgls2 <- lm(log(subs) ~ log(citeprice), data = journals, + weights = 1/citeprice^gamma2) R> R> R> ################################################### R> ### chunk number 45: fgls2-coef R> ################################################### R> coef(jour_fgls2) (Intercept) log(citeprice) 4.7758 -0.5008 R> R> R> ################################################### R> ### chunk number 46: journals-fgls R> ################################################### R> plot(log(subs) ~ log(citeprice), data = journals) R> abline(jour_lm) R> abline(jour_fgls2, lty = 2, lwd = 2) R> R> R> ################################################### R> ### chunk number 47: usmacro-plot eval=FALSE R> ################################################### R> ## data("USMacroG") R> ## plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1), R> ## plot.type = "single", ylab = "") R> ## legend("topleft", legend = c("income", "consumption"), R> ## lty = c(3, 1), bty = "n") R> R> R> ################################################### R> ### chunk number 48: usmacro-plot1 R> ################################################### R> data("USMacroG") R> plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1), + plot.type = "single", ylab = "") R> legend("topleft", legend = c("income", "consumption"), + lty = c(3, 1), bty = "n") R> R> R> ################################################### R> ### chunk number 49: usmacro-fit R> ################################################### R> library("dynlm") R> cons_lm1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) R> cons_lm2 <- dynlm(consumption ~ dpi + L(consumption), + data = USMacroG) R> R> R> ################################################### R> ### chunk number 50: usmacro-summary1 R> ################################################### R> summary(cons_lm1) Time series regression with "ts" data: Start = 1950(2), End = 2000(4) Call: dynlm(formula = consumption ~ dpi + L(dpi), data = USMacroG) Residuals: Min 1Q Median 3Q Max -190.0 -56.7 1.6 49.9 323.9 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -81.0796 14.5081 -5.59 7.4e-08 dpi 0.8912 0.2063 4.32 2.4e-05 L(dpi) 0.0309 0.2075 0.15 0.88 Residual standard error: 87.6 on 200 degrees of freedom Multiple R-squared: 0.996, Adjusted R-squared: 0.996 F-statistic: 2.79e+04 on 2 and 200 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 51: usmacro-summary2 R> ################################################### R> summary(cons_lm2) Time series regression with "ts" data: Start = 1950(2), End = 2000(4) Call: dynlm(formula = consumption ~ dpi + L(consumption), data = USMacroG) Residuals: Min 1Q Median 3Q Max -101.30 -9.67 1.14 12.69 45.32 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.53522 3.84517 0.14 0.89 dpi -0.00406 0.01663 -0.24 0.81 L(consumption) 1.01311 0.01816 55.79 <2e-16 Residual standard error: 21.5 on 200 degrees of freedom Multiple R-squared: 1, Adjusted R-squared: 1 F-statistic: 4.63e+05 on 2 and 200 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 52: dynlm-plot eval=FALSE R> ################################################### R> ## plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1), R> ## fitted(cons_lm2), 0, residuals(cons_lm1), R> ## residuals(cons_lm2)), screens = rep(1:2, c(3, 3)), R> ## lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"), R> ## xlab = "Time", main = "") R> ## legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"), R> ## lty = 1:3, bty = "n") R> R> R> ################################################### R> ### chunk number 53: dynlm-plot1 R> ################################################### R> plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1), + fitted(cons_lm2), 0, residuals(cons_lm1), + residuals(cons_lm2)), screens = rep(1:2, c(3, 3)), + lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"), + xlab = "Time", main = "") R> legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"), + lty = 1:3, bty = "n") R> R> R> ################################################### R> ### chunk number 54: encompassing1 R> ################################################### R> cons_lmE <- dynlm(consumption ~ dpi + L(dpi) + + L(consumption), data = USMacroG) R> R> R> ################################################### R> ### chunk number 55: encompassing2 R> ################################################### R> anova(cons_lm1, cons_lmE, cons_lm2) Analysis of Variance Table Model 1: consumption ~ dpi + L(dpi) Model 2: consumption ~ dpi + L(dpi) + L(consumption) Model 3: consumption ~ dpi + L(consumption) Res.Df RSS Df Sum of Sq F Pr(>F) 1 200 1534001 2 199 73550 1 1460451 3951.4 < 2e-16 3 200 92644 -1 -19094 51.7 1.3e-11 R> R> R> ################################################### R> ### chunk number 56: encompassing3 R> ################################################### R> encomptest(cons_lm1, cons_lm2) Encompassing test Model 1: consumption ~ dpi + L(dpi) Model 2: consumption ~ dpi + L(consumption) Model E: consumption ~ dpi + L(dpi) + L(consumption) Res.Df Df F Pr(>F) M1 vs. ME 199 -1 3951.4 < 2e-16 M2 vs. ME 199 -1 51.7 1.3e-11 R> R> R> ################################################### R> ### chunk number 57: pdata.frame R> ################################################### R> data("Grunfeld", package = "AER") R> library("plm") R> gr <- subset(Grunfeld, firm %in% c("General Electric", + "General Motors", "IBM")) R> pgr <- pdata.frame(gr, index = c("firm", "year")) R> R> R> ################################################### R> ### chunk number 58: plm-pool R> ################################################### R> gr_pool <- plm(invest ~ value + capital, data = pgr, + model = "pooling") R> R> R> ################################################### R> ### chunk number 59: plm-FE R> ################################################### R> gr_fe <- plm(invest ~ value + capital, data = pgr, + model = "within") R> summary(gr_fe) Oneway (individual) effect Within Model Call: plm(formula = invest ~ value + capital, data = pgr, model = "within") Balanced Panel: n = 3, T = 20, N = 60 Residuals: Min. 1st Qu. Median 3rd Qu. Max. -167.33 -26.14 2.09 26.84 201.68 Coefficients: Estimate Std. Error t-value Pr(>|t|) value 0.1049 0.0163 6.42 3.3e-08 capital 0.3453 0.0244 14.16 < 2e-16 Total Sum of Squares: 1890000 Residual Sum of Squares: 244000 R-Squared: 0.871 Adj. R-Squared: 0.861 F-statistic: 185.407 on 2 and 55 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 60: plm-pFtest R> ################################################### R> pFtest(gr_fe, gr_pool) F test for individual effects data: invest ~ value + capital F = 57, df1 = 2, df2 = 55, p-value = 4e-14 alternative hypothesis: significant effects R> R> R> ################################################### R> ### chunk number 61: plm-RE R> ################################################### R> gr_re <- plm(invest ~ value + capital, data = pgr, + model = "random", random.method = "walhus") R> summary(gr_re) Oneway (individual) effect Random Effect Model (Wallace-Hussain's transformation) Call: plm(formula = invest ~ value + capital, data = pgr, model = "random", random.method = "walhus") Balanced Panel: n = 3, T = 20, N = 60 Effects: var std.dev share idiosyncratic 4389.3 66.3 0.35 individual 8079.7 89.9 0.65 theta: 0.837 Residuals: Min. 1st Qu. Median 3rd Qu. Max. -187.40 -32.92 6.96 31.43 210.20 Coefficients: Estimate Std. Error z-value Pr(>|z|) (Intercept) -109.9766 61.7014 -1.78 0.075 value 0.1043 0.0150 6.95 3.6e-12 capital 0.3448 0.0245 14.06 < 2e-16 Total Sum of Squares: 1990000 Residual Sum of Squares: 258000 R-Squared: 0.87 Adj. R-Squared: 0.866 Chisq: 383.089 on 2 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 62: plm-plmtest R> ################################################### R> plmtest(gr_pool) Lagrange Multiplier Test - (Honda) data: invest ~ value + capital normal = 15, p-value <2e-16 alternative hypothesis: significant effects R> R> R> ################################################### R> ### chunk number 63: plm-phtest R> ################################################### R> phtest(gr_re, gr_fe) Hausman Test data: invest ~ value + capital chisq = 0.04, df = 2, p-value = 1 alternative hypothesis: one model is inconsistent R> R> R> ################################################### R> ### chunk number 64: EmplUK-data R> ################################################### R> data("EmplUK", package = "plm") R> R> R> ################################################### R> ### chunk number 65: plm-AB R> ################################################### R> empl_ab <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1) + + log(capital) + lag(log(output), 0:1) | lag(log(emp), 2:99), + data = EmplUK, index = c("firm", "year"), + effect = "twoways", model = "twosteps") R> R> R> ################################################### R> ### chunk number 66: plm-AB-summary R> ################################################### R> summary(empl_ab, robust = FALSE) Twoways effects Two-steps model Difference GMM Call: pgmm(formula = log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1) + log(capital) + lag(log(output), 0:1) | lag(log(emp), 2:99), data = EmplUK, effect = "twoways", model = "twosteps", index = c("firm", "year")) Unbalanced Panel: n = 140, T = 7-9, N = 1031 Number of Observations Used: 611 Residuals: Min. 1st Qu. Median Mean 3rd Qu. Max. -0.6191 -0.0256 0.0000 -0.0001 0.0332 0.6410 Coefficients: Estimate Std. Error z-value Pr(>|z|) lag(log(emp), 1:2)1 0.4742 0.0853 5.56 2.7e-08 lag(log(emp), 1:2)2 -0.0530 0.0273 -1.94 0.05222 lag(log(wage), 0:1)0 -0.5132 0.0493 -10.40 < 2e-16 lag(log(wage), 0:1)1 0.2246 0.0801 2.81 0.00502 log(capital) 0.2927 0.0395 7.42 1.2e-13 lag(log(output), 0:1)0 0.6098 0.1085 5.62 1.9e-08 lag(log(output), 0:1)1 -0.4464 0.1248 -3.58 0.00035 Sargan test: chisq(25) = 30.11 (p-value = 0.22) Autocorrelation test (1): normal = -2.428 (p-value = 0.0152) Autocorrelation test (2): normal = -0.3325 (p-value = 0.739) Wald test for coefficients: chisq(7) = 372 (p-value = <2e-16) Wald test for time dummies: chisq(6) = 26.9 (p-value = 0.000151) R> R> R> ################################################### R> ### chunk number 67: systemfit R> ################################################### R> library("systemfit") Loading required package: Matrix Please cite the 'systemfit' package as: Arne Henningsen and Jeff D. Hamann (2007). systemfit: A Package for Estimating Systems of Simultaneous Equations in R. Journal of Statistical Software 23(4), 1-40. http://www.jstatsoft.org/v23/i04/. If you have questions, suggestions, or comments regarding the 'systemfit' package, please use a forum or 'tracker' at systemfit's R-Forge site: https://r-forge.r-project.org/projects/systemfit/ R> gr2 <- subset(Grunfeld, firm %in% c("Chrysler", "IBM")) R> pgr2 <- pdata.frame(gr2, c("firm", "year")) R> R> R> ################################################### R> ### chunk number 68: SUR R> ################################################### R> gr_sur <- systemfit(invest ~ value + capital, + method = "SUR", data = pgr2) R> summary(gr_sur, residCov = FALSE, equations = FALSE) systemfit results method: SUR N DF SSR detRCov OLS-R2 McElroy-R2 system 40 34 4114 11022 0.929 0.927 N DF SSR MSE RMSE R2 Adj R2 Chrysler 20 17 3002 176.6 13.29 0.913 0.903 IBM 20 17 1112 65.4 8.09 0.952 0.946 Coefficients: Estimate Std. Error t value Pr(>|t|) Chrysler_(Intercept) -5.7031 13.2774 -0.43 0.67293 Chrysler_value 0.0780 0.0196 3.98 0.00096 Chrysler_capital 0.3115 0.0287 10.85 4.6e-09 IBM_(Intercept) -8.0908 4.5216 -1.79 0.09139 IBM_value 0.1272 0.0306 4.16 0.00066 IBM_capital 0.0966 0.0983 0.98 0.33951 R> R> R> ################################################### R> ### chunk number 69: nlme eval=FALSE R> ################################################### R> ## library("nlme") R> ## g1 <- subset(Grunfeld, firm == "Westinghouse") R> ## gls(invest ~ value + capital, data = g1, correlation = corAR1()) R> R> R> > proc.time() user system elapsed 3.277 0.084 3.360 AER/tests/Ch-Basics.Rout.save0000644000176200001440000007117314251132713015377 0ustar liggesusers R version 4.2.0 (2022-04-22) -- "Vigorous Calisthenics" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: carData Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> suppressWarnings(RNGversion("3.5.0")) R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: calc1 R> ################################################### R> 1 + 1 [1] 2 R> 2^3 [1] 8 R> R> R> ################################################### R> ### chunk number 3: calc2 R> ################################################### R> log(exp(sin(pi/4)^2) * exp(cos(pi/4)^2)) [1] 1 R> R> R> ################################################### R> ### chunk number 4: vec1 R> ################################################### R> x <- c(1.8, 3.14, 4, 88.169, 13) R> R> R> ################################################### R> ### chunk number 5: length R> ################################################### R> length(x) [1] 5 R> R> R> ################################################### R> ### chunk number 6: vec2 R> ################################################### R> 2 * x + 3 [1] 6.60 9.28 11.00 179.34 29.00 R> 5:1 * x + 1:5 [1] 10.00 14.56 15.00 180.34 18.00 R> R> R> ################################################### R> ### chunk number 7: vec3 R> ################################################### R> log(x) [1] 0.5878 1.1442 1.3863 4.4793 2.5649 R> R> R> ################################################### R> ### chunk number 8: subset1 R> ################################################### R> x[c(1, 4)] [1] 1.80 88.17 R> R> R> ################################################### R> ### chunk number 9: subset2 R> ################################################### R> x[-c(2, 3, 5)] [1] 1.80 88.17 R> R> R> ################################################### R> ### chunk number 10: pattern1 R> ################################################### R> ones <- rep(1, 10) R> even <- seq(from = 2, to = 20, by = 2) R> trend <- 1981:2005 R> R> R> ################################################### R> ### chunk number 11: pattern2 R> ################################################### R> c(ones, even) [1] 1 1 1 1 1 1 1 1 1 1 2 4 6 8 10 12 14 16 18 20 R> R> R> ################################################### R> ### chunk number 12: matrix1 R> ################################################### R> A <- matrix(1:6, nrow = 2) R> R> R> ################################################### R> ### chunk number 13: matrix2 R> ################################################### R> t(A) [,1] [,2] [1,] 1 2 [2,] 3 4 [3,] 5 6 R> R> R> ################################################### R> ### chunk number 14: matrix3 R> ################################################### R> dim(A) [1] 2 3 R> nrow(A) [1] 2 R> ncol(A) [1] 3 R> R> R> ################################################### R> ### chunk number 15: matrix-subset R> ################################################### R> A1 <- A[1:2, c(1, 3)] R> R> R> ################################################### R> ### chunk number 16: matrix4 R> ################################################### R> solve(A1) [,1] [,2] [1,] -1.5 1.25 [2,] 0.5 -0.25 R> R> R> ################################################### R> ### chunk number 17: matrix-solve R> ################################################### R> A1 %*% solve(A1) [,1] [,2] [1,] 1 0 [2,] 0 1 R> R> R> ################################################### R> ### chunk number 18: diag R> ################################################### R> diag(4) [,1] [,2] [,3] [,4] [1,] 1 0 0 0 [2,] 0 1 0 0 [3,] 0 0 1 0 [4,] 0 0 0 1 R> R> R> ################################################### R> ### chunk number 19: matrix-combine1 R> ################################################### R> cbind(1, A1) [,1] [,2] [,3] [1,] 1 1 5 [2,] 1 2 6 R> R> R> ################################################### R> ### chunk number 20: matrix-combine2 R> ################################################### R> rbind(A1, diag(4, 2)) [,1] [,2] [1,] 1 5 [2,] 2 6 [3,] 4 0 [4,] 0 4 R> R> R> ################################################### R> ### chunk number 21: vector-mode R> ################################################### R> x <- c(1.8, 3.14, 4, 88.169, 13) R> R> R> ################################################### R> ### chunk number 22: logical R> ################################################### R> x > 3.5 [1] FALSE FALSE TRUE TRUE TRUE R> R> R> ################################################### R> ### chunk number 23: names R> ################################################### R> names(x) <- c("a", "b", "c", "d", "e") R> x a b c d e 1.80 3.14 4.00 88.17 13.00 R> R> R> ################################################### R> ### chunk number 24: subset-more R> ################################################### R> x[3:5] c d e 4.00 88.17 13.00 R> x[c("c", "d", "e")] c d e 4.00 88.17 13.00 R> x[x > 3.5] c d e 4.00 88.17 13.00 R> R> R> ################################################### R> ### chunk number 25: list1 R> ################################################### R> mylist <- list(sample = rnorm(5), + family = "normal distribution", + parameters = list(mean = 0, sd = 1)) R> mylist $sample [1] 0.3771 -0.9346 2.4302 1.3195 0.4503 $family [1] "normal distribution" $parameters $parameters$mean [1] 0 $parameters$sd [1] 1 R> R> R> ################################################### R> ### chunk number 26: list2 R> ################################################### R> mylist[[1]] [1] 0.3771 -0.9346 2.4302 1.3195 0.4503 R> mylist[["sample"]] [1] 0.3771 -0.9346 2.4302 1.3195 0.4503 R> mylist$sample [1] 0.3771 -0.9346 2.4302 1.3195 0.4503 R> R> R> ################################################### R> ### chunk number 27: list3 R> ################################################### R> mylist[[3]]$sd [1] 1 R> R> R> ################################################### R> ### chunk number 28: logical2 R> ################################################### R> x <- c(1.8, 3.14, 4, 88.169, 13) R> x > 3 & x <= 4 [1] FALSE TRUE TRUE FALSE FALSE R> R> R> ################################################### R> ### chunk number 29: logical3 R> ################################################### R> which(x > 3 & x <= 4) [1] 2 3 R> R> R> ################################################### R> ### chunk number 30: logical4 R> ################################################### R> all(x > 3) [1] FALSE R> any(x > 3) [1] TRUE R> R> R> ################################################### R> ### chunk number 31: logical5 R> ################################################### R> (1.5 - 0.5) == 1 [1] TRUE R> (1.9 - 0.9) == 1 [1] FALSE R> R> R> ################################################### R> ### chunk number 32: logical6 R> ################################################### R> all.equal(1.9 - 0.9, 1) [1] TRUE R> R> R> ################################################### R> ### chunk number 33: logical7 R> ################################################### R> 7 + TRUE [1] 8 R> R> R> ################################################### R> ### chunk number 34: coercion1 R> ################################################### R> is.numeric(x) [1] TRUE R> is.character(x) [1] FALSE R> as.character(x) [1] "1.8" "3.14" "4" "88.169" "13" R> R> R> ################################################### R> ### chunk number 35: coercion2 R> ################################################### R> c(1, "a") [1] "1" "a" R> R> R> ################################################### R> ### chunk number 36: rng1 R> ################################################### R> set.seed(123) R> rnorm(2) [1] -0.5605 -0.2302 R> rnorm(2) [1] 1.55871 0.07051 R> set.seed(123) R> rnorm(2) [1] -0.5605 -0.2302 R> R> R> ################################################### R> ### chunk number 37: rng2 R> ################################################### R> sample(1:5) [1] 5 1 2 3 4 R> sample(c("male", "female"), size = 5, replace = TRUE, + prob = c(0.2, 0.8)) [1] "female" "male" "female" "female" "female" R> R> R> ################################################### R> ### chunk number 38: flow1 R> ################################################### R> x <- c(1.8, 3.14, 4, 88.169, 13) R> if(rnorm(1) > 0) sum(x) else mean(x) [1] 22.02 R> R> R> ################################################### R> ### chunk number 39: flow2 R> ################################################### R> ifelse(x > 4, sqrt(x), x^2) [1] 3.240 9.860 16.000 9.390 3.606 R> R> R> ################################################### R> ### chunk number 40: flow3 R> ################################################### R> for(i in 2:5) { + x[i] <- x[i] - x[i-1] + } R> x[-1] [1] 1.34 2.66 85.51 -72.51 R> R> R> ################################################### R> ### chunk number 41: flow4 R> ################################################### R> while(sum(x) < 100) { + x <- 2 * x + } R> x [1] 14.40 10.72 21.28 684.07 -580.07 R> R> R> ################################################### R> ### chunk number 42: cmeans R> ################################################### R> cmeans <- function(X) { + rval <- rep(0, ncol(X)) + for(j in 1:ncol(X)) { + mysum <- 0 + for(i in 1:nrow(X)) mysum <- mysum + X[i,j] + rval[j] <- mysum/nrow(X) + } + return(rval) + } R> R> R> ################################################### R> ### chunk number 43: colmeans1 R> ################################################### R> X <- matrix(1:20, ncol = 2) R> cmeans(X) [1] 5.5 15.5 R> R> R> ################################################### R> ### chunk number 44: colmeans2 R> ################################################### R> colMeans(X) [1] 5.5 15.5 R> R> R> ################################################### R> ### chunk number 45: colmeans3 eval=FALSE R> ################################################### R> ## X <- matrix(rnorm(2*10^6), ncol = 2) R> ## system.time(colMeans(X)) R> ## system.time(cmeans(X)) R> R> R> ################################################### R> ### chunk number 46: colmeans4 R> ################################################### R> cmeans2 <- function(X) { + rval <- rep(0, ncol(X)) + for(j in 1:ncol(X)) rval[j] <- mean(X[,j]) + return(rval) + } R> R> R> ################################################### R> ### chunk number 47: colmeans5 eval=FALSE R> ################################################### R> ## system.time(cmeans2(X)) R> R> R> ################################################### R> ### chunk number 48: colmeans6 eval=FALSE R> ################################################### R> ## apply(X, 2, mean) R> R> R> ################################################### R> ### chunk number 49: colmeans7 eval=FALSE R> ################################################### R> ## system.time(apply(X, 2, mean)) R> R> R> ################################################### R> ### chunk number 50: formula1 R> ################################################### R> f <- y ~ x R> class(f) [1] "formula" R> R> R> ################################################### R> ### chunk number 51: formula2 R> ################################################### R> x <- seq(from = 0, to = 10, by = 0.5) R> y <- 2 + 3 * x + rnorm(21) R> R> R> ################################################### R> ### chunk number 52: formula3 eval=FALSE R> ################################################### R> ## plot(y ~ x) R> ## lm(y ~ x) R> R> R> ################################################### R> ### chunk number 53: formula3a R> ################################################### R> print(lm(y ~ x)) Call: lm(formula = y ~ x) Coefficients: (Intercept) x 2.26 2.91 R> R> R> ################################################### R> ### chunk number 54: formula3b R> ################################################### R> plot(y ~ x) R> R> R> ################################################### R> ### chunk number 55: formula3c R> ################################################### R> fm <- lm(y ~ x) R> R> R> ################################################### R> ### chunk number 56: mydata1 R> ################################################### R> mydata <- data.frame(one = 1:10, two = 11:20, three = 21:30) R> R> R> ################################################### R> ### chunk number 57: mydata1a R> ################################################### R> mydata <- as.data.frame(matrix(1:30, ncol = 3)) R> names(mydata) <- c("one", "two", "three") R> R> R> ################################################### R> ### chunk number 58: mydata2 R> ################################################### R> mydata$two [1] 11 12 13 14 15 16 17 18 19 20 R> mydata[, "two"] [1] 11 12 13 14 15 16 17 18 19 20 R> mydata[, 2] [1] 11 12 13 14 15 16 17 18 19 20 R> R> R> ################################################### R> ### chunk number 59: attach R> ################################################### R> attach(mydata) R> mean(two) [1] 15.5 R> detach(mydata) R> R> R> ################################################### R> ### chunk number 60: with R> ################################################### R> with(mydata, mean(two)) [1] 15.5 R> R> R> ################################################### R> ### chunk number 61: mydata-subset R> ################################################### R> mydata.sub <- subset(mydata, two <= 16, select = -two) R> R> R> ################################################### R> ### chunk number 62: write-table R> ################################################### R> write.table(mydata, file = "mydata.txt", col.names = TRUE) R> R> R> ################################################### R> ### chunk number 63: read-table R> ################################################### R> newdata <- read.table("mydata.txt", header = TRUE) R> R> R> ################################################### R> ### chunk number 64: save R> ################################################### R> save(mydata, file = "mydata.rda") R> R> R> ################################################### R> ### chunk number 65: load R> ################################################### R> load("mydata.rda") R> R> R> ################################################### R> ### chunk number 66: file-remove R> ################################################### R> file.remove("mydata.rda") [1] TRUE R> R> R> ################################################### R> ### chunk number 67: data R> ################################################### R> data("Journals", package = "AER") R> R> R> ################################################### R> ### chunk number 68: foreign R> ################################################### R> library("foreign") R> write.dta(mydata, file = "mydata.dta") R> R> R> ################################################### R> ### chunk number 69: read-dta R> ################################################### R> mydata <- read.dta("mydata.dta") R> R> R> ################################################### R> ### chunk number 70: cleanup R> ################################################### R> file.remove("mydata.dta") [1] TRUE R> R> R> ################################################### R> ### chunk number 71: factor R> ################################################### R> g <- rep(0:1, c(2, 4)) R> g <- factor(g, levels = 0:1, labels = c("male", "female")) R> g [1] male male female female female female Levels: male female R> R> R> ################################################### R> ### chunk number 72: na1 R> ################################################### R> newdata <- read.table("mydata.txt", na.strings = "-999") R> R> R> ################################################### R> ### chunk number 73: na2 R> ################################################### R> file.remove("mydata.txt") [1] TRUE R> R> R> ################################################### R> ### chunk number 74: oop1 R> ################################################### R> x <- c(1.8, 3.14, 4, 88.169, 13) R> g <- factor(rep(c(0, 1), c(2, 4)), levels = c(0, 1), + labels = c("male", "female")) R> R> R> ################################################### R> ### chunk number 75: oop2 R> ################################################### R> summary(x) Min. 1st Qu. Median Mean 3rd Qu. Max. 1.80 3.14 4.00 22.02 13.00 88.17 R> summary(g) male female 2 4 R> R> R> ################################################### R> ### chunk number 76: oop3 R> ################################################### R> class(x) [1] "numeric" R> class(g) [1] "factor" R> R> R> ################################################### R> ### chunk number 77: oop4 R> ################################################### R> summary function (object, ...) UseMethod("summary") R> R> R> ################################################### R> ### chunk number 78: oop5 R> ################################################### R> normsample <- function(n, ...) { + rval <- rnorm(n, ...) + class(rval) <- "normsample" + return(rval) + } R> R> R> ################################################### R> ### chunk number 79: oop6 R> ################################################### R> set.seed(123) R> x <- normsample(10, mean = 5) R> class(x) [1] "normsample" R> R> R> ################################################### R> ### chunk number 80: oop7 R> ################################################### R> summary.normsample <- function(object, ...) { + rval <- c(length(object), mean(object), sd(object)) + names(rval) <- c("sample size","mean","standard deviation") + return(rval) + } R> R> R> ################################################### R> ### chunk number 81: oop8 R> ################################################### R> summary(x) sample size mean standard deviation 10.0000 5.0746 0.9538 R> R> R> ################################################### R> ### chunk number 82: journals-data eval=FALSE R> ################################################### R> ## data("Journals") R> ## Journals$citeprice <- Journals$price/Journals$citations R> ## attach(Journals) R> ## plot(log(subs), log(citeprice)) R> ## rug(log(subs)) R> ## rug(log(citeprice), side = 2) R> ## detach(Journals) R> R> R> ################################################### R> ### chunk number 83: journals-data1 R> ################################################### R> data("Journals") R> Journals$citeprice <- Journals$price/Journals$citations R> attach(Journals) R> plot(log(subs), log(citeprice)) R> rug(log(subs)) R> rug(log(citeprice), side = 2) R> detach(Journals) R> R> R> ################################################### R> ### chunk number 84: plot-formula R> ################################################### R> plot(log(subs) ~ log(citeprice), data = Journals) R> R> R> ################################################### R> ### chunk number 85: graphics1 R> ################################################### R> plot(log(subs) ~ log(citeprice), data = Journals, pch = 20, + col = "blue", ylim = c(0, 8), xlim = c(-7, 4), + main = "Library subscriptions") R> R> R> ################################################### R> ### chunk number 86: graphics2 R> ################################################### R> pdf("myfile.pdf", height = 5, width = 6) R> plot(1:20, pch = 1:20, col = 1:20, cex = 2) R> dev.off() pdf 2 R> R> R> ################################################### R> ### chunk number 87: dnorm-annotate eval=FALSE R> ################################################### R> ## curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3, R> ## main = "Density of the standard normal distribution") R> ## text(-5, 0.3, expression(f(x) == frac(1, sigma ~~ R> ## sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0) R> R> R> ################################################### R> ### chunk number 88: dnorm-annotate1 R> ################################################### R> curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3, + main = "Density of the standard normal distribution") R> text(-5, 0.3, expression(f(x) == frac(1, sigma ~~ + sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0) R> R> R> ################################################### R> ### chunk number 89: eda1 R> ################################################### R> data("CPS1985") R> str(CPS1985) 'data.frame': 534 obs. of 11 variables: $ wage : num 5.1 4.95 6.67 4 7.5 ... $ education : num 8 9 12 12 12 13 10 12 16 12 ... $ experience: num 21 42 1 4 17 9 27 9 11 9 ... $ age : num 35 57 19 22 35 28 43 27 33 27 ... $ ethnicity : Factor w/ 3 levels "cauc","hispanic",..: 2 1 1 1 1 1 1 1 1 1 ... $ region : Factor w/ 2 levels "south","other": 2 2 2 2 2 2 1 2 2 2 ... $ gender : Factor w/ 2 levels "male","female": 2 2 1 1 1 1 1 1 1 1 ... $ occupation: Factor w/ 6 levels "worker","technical",..: 1 1 1 1 1 1 1 1 1 1 ... $ sector : Factor w/ 3 levels "manufacturing",..: 1 1 1 3 3 3 3 3 1 3 ... $ union : Factor w/ 2 levels "no","yes": 1 1 1 1 1 2 1 1 1 1 ... $ married : Factor w/ 2 levels "no","yes": 2 2 1 1 2 1 1 1 2 1 ... R> R> R> ################################################### R> ### chunk number 90: eda2 R> ################################################### R> head(CPS1985) wage education experience age ethnicity region gender 1 5.10 8 21 35 hispanic other female 1100 4.95 9 42 57 cauc other female 2 6.67 12 1 19 cauc other male 3 4.00 12 4 22 cauc other male 4 7.50 12 17 35 cauc other male 5 13.07 13 9 28 cauc other male occupation sector union married 1 worker manufacturing no yes 1100 worker manufacturing no yes 2 worker manufacturing no no 3 worker other no no 4 worker other no yes 5 worker other yes no R> R> R> ################################################### R> ### chunk number 91: eda3 R> ################################################### R> levels(CPS1985$occupation)[c(2, 6)] <- c("techn", "mgmt") R> attach(CPS1985) R> R> R> ################################################### R> ### chunk number 92: eda4 R> ################################################### R> summary(wage) Min. 1st Qu. Median Mean 3rd Qu. Max. 1.00 5.25 7.78 9.02 11.25 44.50 R> R> R> ################################################### R> ### chunk number 93: eda5 R> ################################################### R> mean(wage) [1] 9.024 R> median(wage) [1] 7.78 R> R> R> ################################################### R> ### chunk number 94: eda6 R> ################################################### R> var(wage) [1] 26.41 R> sd(wage) [1] 5.139 R> R> R> ################################################### R> ### chunk number 95: wage-hist R> ################################################### R> hist(wage, freq = FALSE) R> hist(log(wage), freq = FALSE) R> lines(density(log(wage)), col = 4) R> R> R> ################################################### R> ### chunk number 96: wage-hist1 R> ################################################### R> hist(wage, freq = FALSE) R> hist(log(wage), freq = FALSE) R> lines(density(log(wage)), col = 4) R> R> R> ################################################### R> ### chunk number 97: occ-table R> ################################################### R> summary(occupation) worker techn services office sales mgmt 156 105 83 97 38 55 R> R> R> ################################################### R> ### chunk number 98: occ-table R> ################################################### R> tab <- table(occupation) R> prop.table(tab) occupation worker techn services office sales mgmt 0.29213 0.19663 0.15543 0.18165 0.07116 0.10300 R> R> R> ################################################### R> ### chunk number 99: occ-barpie R> ################################################### R> barplot(tab) R> pie(tab) R> R> R> ################################################### R> ### chunk number 100: occ-barpie R> ################################################### R> par(mar = c(4, 3, 1, 1)) R> barplot(tab, las = 3) R> par(mar = c(2, 3, 1, 3)) R> pie(tab, radius = 1) R> R> R> ################################################### R> ### chunk number 101: xtabs R> ################################################### R> xtabs(~ gender + occupation, data = CPS1985) occupation gender worker techn services office sales mgmt male 126 53 34 21 21 34 female 30 52 49 76 17 21 R> R> R> ################################################### R> ### chunk number 102: spine eval=FALSE R> ################################################### R> ## plot(gender ~ occupation, data = CPS1985) R> R> R> ################################################### R> ### chunk number 103: spine1 R> ################################################### R> plot(gender ~ occupation, data = CPS1985) R> R> R> ################################################### R> ### chunk number 104: wageeduc-cor R> ################################################### R> cor(log(wage), education) [1] 0.3804 R> cor(log(wage), education, method = "spearman") [1] 0.3813 R> R> R> ################################################### R> ### chunk number 105: wageeduc-scatter eval=FALSE R> ################################################### R> ## plot(log(wage) ~ education) R> R> R> ################################################### R> ### chunk number 106: wageeduc-scatter1 R> ################################################### R> plot(log(wage) ~ education) R> R> R> ################################################### R> ### chunk number 107: tapply R> ################################################### R> tapply(log(wage), gender, mean) male female 2.165 1.934 R> R> R> ################################################### R> ### chunk number 108: boxqq1 eval=FALSE R> ################################################### R> ## plot(log(wage) ~ gender) R> R> R> ################################################### R> ### chunk number 109: boxqq2 eval=FALSE R> ################################################### R> ## mwage <- subset(CPS1985, gender == "male")$wage R> ## fwage <- subset(CPS1985, gender == "female")$wage R> ## qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage), R> ## xaxs = "i", yaxs = "i", xlab = "male", ylab = "female") R> ## abline(0, 1) R> R> R> ################################################### R> ### chunk number 110: qq R> ################################################### R> plot(log(wage) ~ gender) R> mwage <- subset(CPS1985, gender == "male")$wage R> fwage <- subset(CPS1985, gender == "female")$wage R> qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage), + xaxs = "i", yaxs = "i", xlab = "male", ylab = "female") R> abline(0, 1) R> R> R> ################################################### R> ### chunk number 111: detach R> ################################################### R> detach(CPS1985) R> R> R> > proc.time() user system elapsed 1.027 0.048 1.068 AER/tests/Ch-Microeconometrics.Rout.save0000644000176200001440000006016114557121175017663 0ustar liggesusers R version 4.3.2 (2023-10-31) -- "Eye Holes" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > if(!requireNamespace("ROCR") || + !requireNamespace("MASS") || + !requireNamespace("pscl") || + !requireNamespace("np") || + !requireNamespace("nnet")) q() Loading required namespace: ROCR Loading required namespace: MASS Loading required namespace: pscl Loading required namespace: np Loading required namespace: nnet > > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: carData Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> suppressWarnings(RNGversion("3.5.0")) R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: swisslabor-data R> ################################################### R> data("SwissLabor") R> swiss_probit <- glm(participation ~ . + I(age^2), + data = SwissLabor, family = binomial(link = "probit")) R> summary(swiss_probit) Call: glm(formula = participation ~ . + I(age^2), family = binomial(link = "probit"), data = SwissLabor) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 3.7491 1.4069 2.66 0.0077 income -0.6669 0.1320 -5.05 4.3e-07 age 2.0753 0.4054 5.12 3.1e-07 education 0.0192 0.0179 1.07 0.2843 youngkids -0.7145 0.1004 -7.12 1.1e-12 oldkids -0.1470 0.0509 -2.89 0.0039 foreignyes 0.7144 0.1213 5.89 3.9e-09 I(age^2) -0.2943 0.0499 -5.89 3.8e-09 (Dispersion parameter for binomial family taken to be 1) Null deviance: 1203.2 on 871 degrees of freedom Residual deviance: 1017.2 on 864 degrees of freedom AIC: 1033 Number of Fisher Scoring iterations: 4 R> R> R> ################################################### R> ### chunk number 3: swisslabor-plot eval=FALSE R> ################################################### R> ## plot(participation ~ age, data = SwissLabor, ylevels = 2:1) R> R> R> ################################################### R> ### chunk number 4: swisslabor-plot-refined R> ################################################### R> plot(participation ~ education, data = SwissLabor, ylevels = 2:1) R> fm <- glm(participation ~ education + I(education^2), data = SwissLabor, family = binomial) R> edu <- sort(unique(SwissLabor$education)) R> prop <- sapply(edu, function(x) mean(SwissLabor$education <= x)) R> lines(predict(fm, newdata = data.frame(education = edu), type = "response") ~ prop, col = 2) R> R> plot(participation ~ age, data = SwissLabor, ylevels = 2:1) R> fm <- glm(participation ~ age + I(age^2), data = SwissLabor, family = binomial) R> ag <- sort(unique(SwissLabor$age)) R> prop <- sapply(ag, function(x) mean(SwissLabor$age <= x)) R> lines(predict(fm, newdata = data.frame(age = ag), type = "response") ~ prop, col = 2) R> R> R> ################################################### R> ### chunk number 5: effects1 R> ################################################### R> fav <- mean(dnorm(predict(swiss_probit, type = "link"))) R> fav * coef(swiss_probit) (Intercept) income age education youngkids 1.241930 -0.220932 0.687466 0.006359 -0.236682 oldkids foreignyes I(age^2) -0.048690 0.236644 -0.097505 R> R> R> ################################################### R> ### chunk number 6: effects2 R> ################################################### R> av <- colMeans(SwissLabor[, -c(1, 7)]) R> av <- data.frame(rbind(swiss = av, foreign = av), + foreign = factor(c("no", "yes"))) R> av <- predict(swiss_probit, newdata = av, type = "link") R> av <- dnorm(av) R> av["swiss"] * coef(swiss_probit)[-7] (Intercept) income age education youngkids 1.495137 -0.265976 0.827628 0.007655 -0.284938 oldkids I(age^2) -0.058617 -0.117384 R> R> R> ################################################### R> ### chunk number 7: effects3 R> ################################################### R> av["foreign"] * coef(swiss_probit)[-7] (Intercept) income age education youngkids 1.136517 -0.202180 0.629115 0.005819 -0.216593 oldkids I(age^2) -0.044557 -0.089229 R> R> R> ################################################### R> ### chunk number 8: mcfadden R> ################################################### R> swiss_probit0 <- update(swiss_probit, formula = . ~ 1) R> 1 - as.vector(logLik(swiss_probit)/logLik(swiss_probit0)) [1] 0.1546 R> R> R> ################################################### R> ### chunk number 9: confusion-matrix R> ################################################### R> table(true = SwissLabor$participation, + pred = round(fitted(swiss_probit))) pred true 0 1 no 337 134 yes 146 255 R> R> R> ################################################### R> ### chunk number 10: confusion-matrix1 R> ################################################### R> tab <- table(true = SwissLabor$participation, + pred = round(fitted(swiss_probit))) R> tabp <- round(100 * c(tab[1,1] + tab[2,2], tab[2,1] + tab[1,2])/sum(tab), digits = 2) R> R> R> ################################################### R> ### chunk number 11: roc-plot eval=FALSE R> ################################################### R> ## library("ROCR") R> ## pred <- prediction(fitted(swiss_probit), R> ## SwissLabor$participation) R> ## plot(performance(pred, "acc")) R> ## plot(performance(pred, "tpr", "fpr")) R> ## abline(0, 1, lty = 2) R> R> R> ################################################### R> ### chunk number 12: roc-plot1 R> ################################################### R> library("ROCR") R> pred <- prediction(fitted(swiss_probit), + SwissLabor$participation) R> plot(performance(pred, "acc")) R> plot(performance(pred, "tpr", "fpr")) R> abline(0, 1, lty = 2) R> R> R> ################################################### R> ### chunk number 13: rss R> ################################################### R> deviance(swiss_probit) [1] 1017 R> sum(residuals(swiss_probit, type = "deviance")^2) [1] 1017 R> sum(residuals(swiss_probit, type = "pearson")^2) [1] 866.5 R> R> R> ################################################### R> ### chunk number 14: coeftest eval=FALSE R> ################################################### R> ## coeftest(swiss_probit, vcov = sandwich) R> R> R> ################################################### R> ### chunk number 15: murder R> ################################################### R> data("MurderRates") R> ## murder_logit <- glm(I(executions > 0) ~ time + income + ## IGNORE_RDIFF, excluded due to small numeric deviations on different platforms R> ## noncauc + lfp + southern, data = MurderRates, R> ## family = binomial) R> ## R> ## R> ## ################################################### R> ## ### chunk number 16: murder-coeftest R> ## ################################################### R> ## coeftest(murder_logit) R> ## R> ## R> ## ################################################### R> ## ### chunk number 17: murder2 R> ## ################################################### R> ## murder_logit2 <- glm(I(executions > 0) ~ time + income + R> ## noncauc + lfp + southern, data = MurderRates, R> ## family = binomial, control = list(epsilon = 1e-15, R> ## maxit = 50, trace = FALSE)) R> ## R> ## R> ## ################################################### R> ## ### chunk number 18: murder2-coeftest R> ## ################################################### R> ## coeftest(murder_logit2) R> R> R> ################################################### R> ### chunk number 19: separation R> ################################################### R> table(I(MurderRates$executions > 0), MurderRates$southern) no yes FALSE 9 0 TRUE 20 15 R> R> R> ################################################### R> ### chunk number 20: countreg-pois R> ################################################### R> data("RecreationDemand") R> rd_pois <- glm(trips ~ ., data = RecreationDemand, + family = poisson) R> R> R> ################################################### R> ### chunk number 21: countreg-pois-coeftest R> ################################################### R> coeftest(rd_pois) z test of coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 0.26499 0.09372 2.83 0.0047 quality 0.47173 0.01709 27.60 < 2e-16 skiyes 0.41821 0.05719 7.31 2.6e-13 income -0.11132 0.01959 -5.68 1.3e-08 userfeeyes 0.89817 0.07899 11.37 < 2e-16 costC -0.00343 0.00312 -1.10 0.2713 costS -0.04254 0.00167 -25.47 < 2e-16 costH 0.03613 0.00271 13.34 < 2e-16 R> R> R> ################################################### R> ### chunk number 22: countreg-pois-logLik R> ################################################### R> logLik(rd_pois) 'log Lik.' -1529 (df=8) R> R> R> ################################################### R> ### chunk number 23: countreg-odtest1 R> ################################################### R> dispersiontest(rd_pois) Overdispersion test data: rd_pois z = 2.4, p-value = 0.008 alternative hypothesis: true dispersion is greater than 1 sample estimates: dispersion 6.566 R> R> R> ################################################### R> ### chunk number 24: countreg-odtest2 R> ################################################### R> dispersiontest(rd_pois, trafo = 2) Overdispersion test data: rd_pois z = 2.9, p-value = 0.002 alternative hypothesis: true alpha is greater than 0 sample estimates: alpha 1.316 R> R> R> ################################################### R> ### chunk number 25: countreg-nbin R> ################################################### R> library("MASS") R> rd_nb <- glm.nb(trips ~ ., data = RecreationDemand) R> coeftest(rd_nb) z test of coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -1.12194 0.21430 -5.24 1.6e-07 quality 0.72200 0.04012 18.00 < 2e-16 skiyes 0.61214 0.15030 4.07 4.6e-05 income -0.02606 0.04245 -0.61 0.539 userfeeyes 0.66917 0.35302 1.90 0.058 costC 0.04801 0.00918 5.23 1.7e-07 costS -0.09269 0.00665 -13.93 < 2e-16 costH 0.03884 0.00775 5.01 5.4e-07 R> logLik(rd_nb) 'log Lik.' -825.6 (df=9) R> R> R> ################################################### R> ### chunk number 26: countreg-se R> ################################################### R> round(sqrt(rbind(diag(vcov(rd_pois)), + diag(sandwich(rd_pois)))), digits = 3) (Intercept) quality skiyes income userfeeyes costC costS [1,] 0.094 0.017 0.057 0.02 0.079 0.003 0.002 [2,] 0.432 0.049 0.194 0.05 0.247 0.015 0.012 costH [1,] 0.003 [2,] 0.009 R> R> R> ################################################### R> ### chunk number 27: countreg-sandwich R> ################################################### R> coeftest(rd_pois, vcov = sandwich) z test of coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 0.26499 0.43248 0.61 0.54006 quality 0.47173 0.04885 9.66 < 2e-16 skiyes 0.41821 0.19387 2.16 0.03099 income -0.11132 0.05031 -2.21 0.02691 userfeeyes 0.89817 0.24691 3.64 0.00028 costC -0.00343 0.01470 -0.23 0.81549 costS -0.04254 0.01173 -3.62 0.00029 costH 0.03613 0.00939 3.85 0.00012 R> R> R> ################################################### R> ### chunk number 28: countreg-OPG R> ################################################### R> round(sqrt(diag(vcovOPG(rd_pois))), 3) (Intercept) quality skiyes income userfeeyes 0.025 0.007 0.020 0.010 0.033 costC costS costH 0.001 0.000 0.001 R> R> R> ################################################### R> ### chunk number 29: countreg-plot R> ################################################### R> plot(table(RecreationDemand$trips), ylab = "") R> R> R> ################################################### R> ### chunk number 30: countreg-zeros R> ################################################### R> rbind(obs = table(RecreationDemand$trips)[1:10], exp = round( + sapply(0:9, function(x) sum(dpois(x, fitted(rd_pois)))))) 0 1 2 3 4 5 6 7 8 9 obs 417 68 38 34 17 13 11 2 8 1 exp 277 146 68 41 30 23 17 13 10 7 R> R> R> ################################################### R> ### chunk number 31: countreg-pscl R> ################################################### R> library("pscl") Classes and Methods for R originally developed in the Political Science Computational Laboratory Department of Political Science Stanford University (2002-2015), by and under the direction of Simon Jackman. hurdle and zeroinfl functions by Achim Zeileis. R> R> R> ################################################### R> ### chunk number 32: countreg-zinb R> ################################################### R> rd_zinb <- zeroinfl(trips ~ . | quality + income, + data = RecreationDemand, dist = "negbin") R> R> R> ################################################### R> ### chunk number 33: countreg-zinb-summary R> ################################################### R> summary(rd_zinb) Call: zeroinfl(formula = trips ~ . | quality + income, data = RecreationDemand, dist = "negbin") Pearson residuals: Min 1Q Median 3Q Max -1.0889 -0.2004 -0.0570 -0.0451 40.0139 Count model coefficients (negbin with log link): Estimate Std. Error z value Pr(>|z|) (Intercept) 1.09663 0.25668 4.27 1.9e-05 quality 0.16891 0.05303 3.19 0.0014 skiyes 0.50069 0.13449 3.72 0.0002 income -0.06927 0.04380 -1.58 0.1138 userfeeyes 0.54279 0.28280 1.92 0.0549 costC 0.04044 0.01452 2.79 0.0053 costS -0.06621 0.00775 -8.55 < 2e-16 costH 0.02060 0.01023 2.01 0.0441 Log(theta) 0.19017 0.11299 1.68 0.0924 Zero-inflation model coefficients (binomial with logit link): Estimate Std. Error z value Pr(>|z|) (Intercept) 5.743 1.556 3.69 0.00022 quality -8.307 3.682 -2.26 0.02404 income -0.258 0.282 -0.92 0.35950 Theta = 1.209 Number of iterations in BFGS optimization: 26 Log-likelihood: -722 on 12 Df R> R> R> ################################################### R> ### chunk number 34: countreg-zinb-expected R> ################################################### R> round(colSums(predict(rd_zinb, type = "prob")[,1:10])) 0 1 2 3 4 5 6 7 8 9 433 47 35 27 20 16 12 10 8 7 R> R> R> ################################################### R> ### chunk number 35: countreg-hurdle R> ################################################### R> rd_hurdle <- hurdle(trips ~ . | quality + income, + data = RecreationDemand, dist = "negbin") R> summary(rd_hurdle) Call: hurdle(formula = trips ~ . | quality + income, data = RecreationDemand, dist = "negbin") Pearson residuals: Min 1Q Median 3Q Max -1.610 -0.207 -0.185 -0.164 12.111 Count model coefficients (truncated negbin with log link): Estimate Std. Error z value Pr(>|z|) (Intercept) 0.8419 0.3828 2.20 0.0278 quality 0.1717 0.0723 2.37 0.0176 skiyes 0.6224 0.1901 3.27 0.0011 income -0.0571 0.0645 -0.88 0.3763 userfeeyes 0.5763 0.3851 1.50 0.1345 costC 0.0571 0.0217 2.63 0.0085 costS -0.0775 0.0115 -6.71 1.9e-11 costH 0.0124 0.0149 0.83 0.4064 Log(theta) -0.5303 0.2611 -2.03 0.0423 Zero hurdle model coefficients (binomial with logit link): Estimate Std. Error z value Pr(>|z|) (Intercept) -2.7663 0.3623 -7.64 2.3e-14 quality 1.5029 0.1003 14.98 < 2e-16 income -0.0447 0.0785 -0.57 0.57 Theta: count = 0.588 Number of iterations in BFGS optimization: 18 Log-likelihood: -765 on 12 Df R> R> R> ################################################### R> ### chunk number 36: countreg-hurdle-expected R> ################################################### R> round(colSums(predict(rd_hurdle, type = "prob")[,1:10])) 0 1 2 3 4 5 6 7 8 9 417 74 42 27 19 14 10 8 6 5 R> R> R> ################################################### R> ### chunk number 37: tobit1 R> ################################################### R> data("Affairs") R> aff_tob <- tobit(affairs ~ age + yearsmarried + + religiousness + occupation + rating, data = Affairs) R> summary(aff_tob) Call: tobit(formula = affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) Observations: Total Left-censored Uncensored Right-censored 601 451 150 0 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 8.1742 2.7414 2.98 0.0029 age -0.1793 0.0791 -2.27 0.0234 yearsmarried 0.5541 0.1345 4.12 3.8e-05 religiousness -1.6862 0.4038 -4.18 3.0e-05 occupation 0.3261 0.2544 1.28 0.2000 rating -2.2850 0.4078 -5.60 2.1e-08 Log(scale) 2.1099 0.0671 31.44 < 2e-16 Scale: 8.25 Gaussian distribution Number of Newton-Raphson Iterations: 4 Log-likelihood: -706 on 7 Df Wald-statistic: 67.7 on 5 Df, p-value: 3.1e-13 R> R> R> ################################################### R> ### chunk number 38: tobit2 R> ################################################### R> aff_tob2 <- update(aff_tob, right = 4) R> summary(aff_tob2) Call: tobit(formula = affairs ~ age + yearsmarried + religiousness + occupation + rating, right = 4, data = Affairs) Observations: Total Left-censored Uncensored Right-censored 601 451 70 80 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 7.9010 2.8039 2.82 0.00483 age -0.1776 0.0799 -2.22 0.02624 yearsmarried 0.5323 0.1412 3.77 0.00016 religiousness -1.6163 0.4244 -3.81 0.00014 occupation 0.3242 0.2539 1.28 0.20162 rating -2.2070 0.4498 -4.91 9.3e-07 Log(scale) 2.0723 0.1104 18.77 < 2e-16 Scale: 7.94 Gaussian distribution Number of Newton-Raphson Iterations: 4 Log-likelihood: -500 on 7 Df Wald-statistic: 42.6 on 5 Df, p-value: 4.5e-08 R> R> R> ################################################### R> ### chunk number 39: tobit3 R> ################################################### R> linearHypothesis(aff_tob, c("age = 0", "occupation = 0"), + vcov = sandwich) Linear hypothesis test Hypothesis: age = 0 occupation = 0 Model 1: restricted model Model 2: affairs ~ age + yearsmarried + religiousness + occupation + rating Note: Coefficient covariance matrix supplied. Res.Df Df Chisq Pr(>Chisq) 1 596 2 594 2 4.91 0.086 R> R> R> ################################################### R> ### chunk number 40: numeric-response R> ################################################### R> SwissLabor$partnum <- as.numeric(SwissLabor$participation) - 1 R> R> R> ################################################### R> ### chunk number 41: kleinspady eval=FALSE R> ################################################### R> ## library("np") R> ## swiss_bw <- npindexbw(partnum ~ income + age + education + R> ## youngkids + oldkids + foreign + I(age^2), data = SwissLabor, R> ## method = "kleinspady", nmulti = 5) R> R> R> ################################################### R> ### chunk number 42: kleinspady-bw eval=FALSE R> ################################################### R> ## summary(swiss_bw) R> R> R> ################################################### R> ### chunk number 43: kleinspady-summary eval=FALSE R> ################################################### R> ## swiss_ks <- npindex(bws = swiss_bw, gradients = TRUE) R> ## summary(swiss_ks) R> R> R> ################################################### R> ### chunk number 44: probit-confusion R> ################################################### R> table(Actual = SwissLabor$participation, Predicted = + round(predict(swiss_probit, type = "response"))) Predicted Actual 0 1 no 337 134 yes 146 255 R> R> R> ################################################### R> ### chunk number 45: bw-tab R> ################################################### R> data("BankWages") R> edcat <- factor(BankWages$education) R> levels(edcat)[3:10] <- rep(c("14-15", "16-18", "19-21"), + c(2, 3, 3)) R> tab <- xtabs(~ edcat + job, data = BankWages) R> prop.table(tab, 1) job edcat custodial admin manage 8 0.245283 0.754717 0.000000 12 0.068421 0.926316 0.005263 14-15 0.008197 0.959016 0.032787 16-18 0.000000 0.367089 0.632911 19-21 0.000000 0.033333 0.966667 R> R> R> ################################################### R> ### chunk number 46: bw-plot eval=FALSE R> ################################################### R> ## plot(job ~ edcat, data = BankWages, off = 0) R> R> R> ################################################### R> ### chunk number 47: bw-plot1 R> ################################################### R> plot(job ~ edcat, data = BankWages, off = 0) R> box() R> R> R> ################################################### R> ### chunk number 48: bw-multinom R> ################################################### R> library("nnet") R> bank_mnl <- multinom(job ~ education + minority, + data = BankWages, subset = gender == "male", trace = FALSE) R> R> R> ################################################### R> ### chunk number 49: bw-multinom-coeftest R> ################################################### R> coeftest(bank_mnl) z test of coefficients: Estimate Std. Error z value Pr(>|z|) admin:(Intercept) -4.761 1.173 -4.06 4.9e-05 admin:education 0.553 0.099 5.59 2.3e-08 admin:minorityyes -0.427 0.503 -0.85 0.3957 manage:(Intercept) -30.775 4.479 -6.87 6.4e-12 manage:education 2.187 0.295 7.42 1.2e-13 manage:minorityyes -2.536 0.934 -2.71 0.0066 R> R> R> ################################################### R> ### chunk number 50: bw-polr R> ################################################### R> library("MASS") R> bank_polr <- polr(job ~ education + minority, + data = BankWages, subset = gender == "male", Hess = TRUE) R> coeftest(bank_polr) z test of coefficients: Estimate Std. Error z value Pr(>|z|) education 0.8700 0.0931 9.35 < 2e-16 minorityyes -1.0564 0.4120 -2.56 0.01 custodial|admin 7.9514 1.0769 7.38 1.5e-13 admin|manage 14.1721 1.4744 9.61 < 2e-16 R> R> R> ################################################### R> ### chunk number 51: bw-AIC R> ################################################### R> AIC(bank_mnl) [1] 249.5 R> AIC(bank_polr) [1] 268.6 R> R> R> > proc.time() user system elapsed 1.572 0.100 1.672 AER/tests/Ch-Validation.Rout.save0000644000176200001440000004641314251133040016256 0ustar liggesusers R version 4.2.0 (2022-04-22) -- "Vigorous Calisthenics" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > if(!requireNamespace("dynlm") || !requireNamespace("MASS") || !requireNamespace("quantreg")) q() Loading required namespace: dynlm Loading required namespace: MASS Loading required namespace: quantreg > > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: carData Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> suppressWarnings(RNGversion("3.5.0")) R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: ps-summary R> ################################################### R> data("PublicSchools") R> summary(PublicSchools) Expenditure Income Min. :259 Min. : 5736 1st Qu.:315 1st Qu.: 6670 Median :354 Median : 7597 Mean :373 Mean : 7608 3rd Qu.:426 3rd Qu.: 8286 Max. :821 Max. :10851 NA's :1 R> R> R> ################################################### R> ### chunk number 3: ps-plot eval=FALSE R> ################################################### R> ## ps <- na.omit(PublicSchools) R> ## ps$Income <- ps$Income / 10000 R> ## plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) R> ## ps_lm <- lm(Expenditure ~ Income, data = ps) R> ## abline(ps_lm) R> ## id <- c(2, 24, 48) R> ## text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) R> R> R> ################################################### R> ### chunk number 4: ps-plot1 R> ################################################### R> ps <- na.omit(PublicSchools) R> ps$Income <- ps$Income / 10000 R> plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) R> ps_lm <- lm(Expenditure ~ Income, data = ps) R> abline(ps_lm) R> id <- c(2, 24, 48) R> text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) R> R> R> ################################################### R> ### chunk number 5: ps-lmplot eval=FALSE R> ################################################### R> ## plot(ps_lm, which = 1:6) R> R> R> ################################################### R> ### chunk number 6: ps-lmplot1 R> ################################################### R> plot(ps_lm, which = 1:6) R> R> R> ################################################### R> ### chunk number 7: ps-hatvalues eval=FALSE R> ################################################### R> ## ps_hat <- hatvalues(ps_lm) R> ## plot(ps_hat) R> ## abline(h = c(1, 3) * mean(ps_hat), col = 2) R> ## id <- which(ps_hat > 3 * mean(ps_hat)) R> ## text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE) R> R> R> ################################################### R> ### chunk number 8: ps-hatvalues1 R> ################################################### R> ps_hat <- hatvalues(ps_lm) R> plot(ps_hat) R> abline(h = c(1, 3) * mean(ps_hat), col = 2) R> id <- which(ps_hat > 3 * mean(ps_hat)) R> text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE) R> R> R> ################################################### R> ### chunk number 9: influence-measures1 eval=FALSE R> ################################################### R> ## influence.measures(ps_lm) R> R> R> ################################################### R> ### chunk number 10: which-hatvalues R> ################################################### R> which(ps_hat > 3 * mean(ps_hat)) Alaska Washington DC 2 48 R> R> R> ################################################### R> ### chunk number 11: influence-measures2 R> ################################################### R> summary(influence.measures(ps_lm)) Potentially influential observations of lm(formula = Expenditure ~ Income, data = ps) : dfb.1_ dfb.Incm dffit cov.r cook.d hat Alaska -2.39_* 2.52_* 2.65_* 0.55_* 2.31_* 0.21_* Mississippi 0.07 -0.07 0.08 1.14_* 0.00 0.08 Washington DC 0.66 -0.71 -0.77_* 1.01 0.28 0.13_* R> R> R> ################################################### R> ### chunk number 12: ps-noinf eval=FALSE R> ################################################### R> ## plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) R> ## abline(ps_lm) R> ## id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any)) R> ## text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) R> ## ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,]) R> ## abline(ps_noinf, lty = 2) R> R> R> ################################################### R> ### chunk number 13: ps-noinf1 R> ################################################### R> plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) R> abline(ps_lm) R> id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any)) R> text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) R> ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,]) R> abline(ps_noinf, lty = 2) R> R> R> ################################################### R> ### chunk number 14: journals-age R> ################################################### R> data("Journals") R> journals <- Journals[, c("subs", "price")] R> journals$citeprice <- Journals$price/Journals$citations R> journals$age <- 2000 - Journals$foundingyear R> R> R> ################################################### R> ### chunk number 15: journals-lm R> ################################################### R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) R> R> R> ################################################### R> ### chunk number 16: bptest1 R> ################################################### R> bptest(jour_lm) studentized Breusch-Pagan test data: jour_lm BP = 9.8, df = 1, p-value = 0.002 R> R> R> ################################################### R> ### chunk number 17: bptest2 R> ################################################### R> bptest(jour_lm, ~ log(citeprice) + I(log(citeprice)^2), + data = journals) studentized Breusch-Pagan test data: jour_lm BP = 11, df = 2, p-value = 0.004 R> R> R> ################################################### R> ### chunk number 18: gqtest R> ################################################### R> gqtest(jour_lm, order.by = ~ citeprice, data = journals) Goldfeld-Quandt test data: jour_lm GQ = 1.7, df1 = 88, df2 = 88, p-value = 0.007 alternative hypothesis: variance increases from segment 1 to 2 R> R> R> ################################################### R> ### chunk number 19: resettest R> ################################################### R> resettest(jour_lm) RESET test data: jour_lm RESET = 1.4, df1 = 2, df2 = 176, p-value = 0.2 R> R> R> ################################################### R> ### chunk number 20: raintest R> ################################################### R> raintest(jour_lm, order.by = ~ age, data = journals) Rainbow test data: jour_lm Rain = 1.8, df1 = 90, df2 = 88, p-value = 0.004 R> R> R> ################################################### R> ### chunk number 21: harvtest R> ################################################### R> harvtest(jour_lm, order.by = ~ age, data = journals) Harvey-Collier test data: jour_lm HC = 5.1, df = 177, p-value = 9e-07 R> R> R> ################################################### R> ### chunk number 22: R> ################################################### R> library("dynlm") R> R> R> ################################################### R> ### chunk number 23: usmacro-dynlm R> ################################################### R> data("USMacroG") R> consump1 <- dynlm(consumption ~ dpi + L(dpi), + data = USMacroG) R> R> R> ################################################### R> ### chunk number 24: dwtest R> ################################################### R> dwtest(consump1) Durbin-Watson test data: consump1 DW = 0.087, p-value <2e-16 alternative hypothesis: true autocorrelation is greater than 0 R> R> R> ################################################### R> ### chunk number 25: Box-test R> ################################################### R> Box.test(residuals(consump1), type = "Ljung-Box") Box-Ljung test data: residuals(consump1) X-squared = 176, df = 1, p-value <2e-16 R> R> R> ################################################### R> ### chunk number 26: bgtest R> ################################################### R> bgtest(consump1) Breusch-Godfrey test for serial correlation of order up to 1 data: consump1 LM test = 193, df = 1, p-value <2e-16 R> R> R> ################################################### R> ### chunk number 27: vcov R> ################################################### R> vcov(jour_lm) (Intercept) log(citeprice) (Intercept) 3.126e-03 -6.144e-05 log(citeprice) -6.144e-05 1.268e-03 R> vcovHC(jour_lm) (Intercept) log(citeprice) (Intercept) 0.003085 0.000693 log(citeprice) 0.000693 0.001188 R> R> R> ################################################### R> ### chunk number 28: coeftest R> ################################################### R> coeftest(jour_lm, vcov = vcovHC) t test of coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.7662 0.0555 85.8 <2e-16 log(citeprice) -0.5331 0.0345 -15.5 <2e-16 R> R> R> ################################################### R> ### chunk number 29: sandwiches R> ################################################### R> t(sapply(c("const", "HC0", "HC1", "HC2", "HC3", "HC4"), + function(x) sqrt(diag(vcovHC(jour_lm, type = x))))) (Intercept) log(citeprice) const 0.05591 0.03561 HC0 0.05495 0.03377 HC1 0.05526 0.03396 HC2 0.05525 0.03412 HC3 0.05555 0.03447 HC4 0.05536 0.03459 R> R> R> ################################################### R> ### chunk number 30: ps-anova R> ################################################### R> ps_lm <- lm(Expenditure ~ Income, data = ps) R> ps_lm2 <- lm(Expenditure ~ Income + I(Income^2), data = ps) R> anova(ps_lm, ps_lm2) Analysis of Variance Table Model 1: Expenditure ~ Income Model 2: Expenditure ~ Income + I(Income^2) Res.Df RSS Df Sum of Sq F Pr(>F) 1 48 181015 2 47 150986 1 30030 9.35 0.0037 R> R> R> ################################################### R> ### chunk number 31: ps-waldtest R> ################################################### R> waldtest(ps_lm, ps_lm2, vcov = vcovHC(ps_lm2, type = "HC4")) Wald test Model 1: Expenditure ~ Income Model 2: Expenditure ~ Income + I(Income^2) Res.Df Df F Pr(>F) 1 48 2 47 1 0.08 0.77 R> R> R> ################################################### R> ### chunk number 32: vcovHAC R> ################################################### R> rbind(SE = sqrt(diag(vcov(consump1))), + QS = sqrt(diag(kernHAC(consump1))), + NW = sqrt(diag(NeweyWest(consump1)))) (Intercept) dpi L(dpi) SE 14.51 0.2063 0.2075 QS 94.11 0.3893 0.3669 NW 100.83 0.4230 0.3989 R> R> R> ################################################### R> ### chunk number 33: solow-lm R> ################################################### R> data("OECDGrowth") R> solow_lm <- lm(log(gdp85/gdp60) ~ log(gdp60) + + log(invest) + log(popgrowth + .05), data = OECDGrowth) R> summary(solow_lm) Call: lm(formula = log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth + 0.05), data = OECDGrowth) Residuals: Min 1Q Median 3Q Max -0.1840 -0.0399 -0.0078 0.0451 0.3188 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.9759 1.0216 2.91 0.0093 log(gdp60) -0.3429 0.0565 -6.07 9.8e-06 log(invest) 0.6501 0.2020 3.22 0.0048 log(popgrowth + 0.05) -0.5730 0.2904 -1.97 0.0640 Residual standard error: 0.133 on 18 degrees of freedom Multiple R-squared: 0.746, Adjusted R-squared: 0.704 F-statistic: 17.7 on 3 and 18 DF, p-value: 1.34e-05 R> R> R> ################################################### R> ### chunk number 34: solow-plot eval=FALSE R> ################################################### R> ## plot(solow_lm) R> R> R> ################################################### R> ### chunk number 35: solow-lts R> ################################################### R> library("MASS") R> solow_lts <- lqs(log(gdp85/gdp60) ~ log(gdp60) + + log(invest) + log(popgrowth + .05), data = OECDGrowth, + psamp = 13, nsamp = "exact") R> R> R> ################################################### R> ### chunk number 36: solow-smallresid R> ################################################### R> smallresid <- which( + abs(residuals(solow_lts)/solow_lts$scale[2]) <= 2.5) R> R> R> ################################################### R> ### chunk number 37: solow-nohighlev R> ################################################### R> X <- model.matrix(solow_lm)[,-1] R> Xcv <- cov.rob(X, nsamp = "exact") R> nohighlev <- which( + sqrt(mahalanobis(X, Xcv$center, Xcv$cov)) <= 2.5) R> R> R> ################################################### R> ### chunk number 38: solow-goodobs R> ################################################### R> goodobs <- unique(c(smallresid, nohighlev)) R> R> R> ################################################### R> ### chunk number 39: solow-badobs R> ################################################### R> rownames(OECDGrowth)[-goodobs] [1] "Canada" "USA" "Turkey" "Australia" R> R> R> ################################################### R> ### chunk number 40: solow-rob R> ################################################### R> solow_rob <- update(solow_lm, subset = goodobs) R> summary(solow_rob) Call: lm(formula = log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth + 0.05), data = OECDGrowth, subset = goodobs) Residuals: Min 1Q Median 3Q Max -0.15454 -0.05548 -0.00651 0.03159 0.26773 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.7764 1.2816 2.95 0.0106 log(gdp60) -0.4507 0.0569 -7.93 1.5e-06 log(invest) 0.7033 0.1906 3.69 0.0024 log(popgrowth + 0.05) -0.6504 0.4190 -1.55 0.1429 Residual standard error: 0.107 on 14 degrees of freedom Multiple R-squared: 0.853, Adjusted R-squared: 0.822 F-statistic: 27.1 on 3 and 14 DF, p-value: 4.3e-06 R> R> R> ################################################### R> ### chunk number 41: quantreg R> ################################################### R> library("quantreg") Loading required package: SparseM Attaching package: 'SparseM' The following object is masked from 'package:base': backsolve Attaching package: 'quantreg' The following object is masked from 'package:survival': untangle.specials R> R> R> ################################################### R> ### chunk number 42: cps-lad R> ################################################### R> library("quantreg") R> data("CPS1988") R> cps_f <- log(wage) ~ experience + I(experience^2) + education R> cps_lad <- rq(cps_f, data = CPS1988) R> summary(cps_lad) Call: rq(formula = cps_f, data = CPS1988) tau: [1] 0.5 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) 4.24088 0.02190 193.67805 0.00000 experience 0.07744 0.00115 67.50041 0.00000 I(experience^2) -0.00130 0.00003 -49.97891 0.00000 education 0.09429 0.00140 67.57171 0.00000 R> R> R> ################################################### R> ### chunk number 43: cps-rq R> ################################################### R> cps_rq <- rq(cps_f, tau = c(0.25, 0.75), data = CPS1988) R> summary(cps_rq) Call: rq(formula = cps_f, tau = c(0.25, 0.75), data = CPS1988) tau: [1] 0.25 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) 3.78227 0.02866 131.95189 0.00000 experience 0.09156 0.00152 60.26474 0.00000 I(experience^2) -0.00164 0.00004 -45.39065 0.00000 education 0.09321 0.00185 50.32520 0.00000 Call: rq(formula = cps_f, tau = c(0.25, 0.75), data = CPS1988) tau: [1] 0.75 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) 4.66005 0.02023 230.39734 0.00000 experience 0.06377 0.00097 65.41364 0.00000 I(experience^2) -0.00099 0.00002 -44.15591 0.00000 education 0.09434 0.00134 70.65855 0.00000 R> R> R> ################################################### R> ### chunk number 44: cps-rqs R> ################################################### R> cps_rq25 <- rq(cps_f, tau = 0.25, data = CPS1988) R> cps_rq75 <- rq(cps_f, tau = 0.75, data = CPS1988) R> anova(cps_rq25, cps_rq75) Quantile Regression Analysis of Deviance Table Model: log(wage) ~ experience + I(experience^2) + education Joint Test of Equality of Slopes: tau in { 0.25 0.75 } Df Resid Df F value Pr(>F) 1 3 56307 115 <2e-16 R> R> R> ################################################### R> ### chunk number 45: cps-rq-anova R> ################################################### R> anova(cps_rq25, cps_rq75, joint = FALSE) Quantile Regression Analysis of Deviance Table Model: log(wage) ~ experience + I(experience^2) + education Tests of Equality of Distinct Slopes: tau in { 0.25 0.75 } Df Resid Df F value Pr(>F) experience 1 56309 339.41 <2e-16 I(experience^2) 1 56309 329.74 <2e-16 education 1 56309 0.35 0.55 R> R> R> ################################################### R> ### chunk number 46: rqbig R> ################################################### R> cps_rqbig <- rq(cps_f, tau = seq(0.05, 0.95, by = 0.05), + data = CPS1988) R> cps_rqbigs <- summary(cps_rqbig) Warning message: In summary.rq(xi, U = U, ...) : 18 non-positive fis R> R> R> ################################################### R> ### chunk number 47: rqbig-plot eval=FALSE R> ################################################### R> ## plot(cps_rqbigs) R> R> R> ################################################### R> ### chunk number 48: rqbig-plot1 R> ################################################### R> plot(cps_rqbigs) R> R> R> > proc.time() user system elapsed 26.937 0.072 27.005 AER/tests/Ch-Intro.Rout.save0000644000176200001440000002403514251132734015264 0ustar liggesusers R version 4.2.0 (2022-04-22) -- "Vigorous Calisthenics" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > if(!requireNamespace("quantreg") || !requireNamespace("KernSmooth")) q() Loading required namespace: quantreg Loading required namespace: KernSmooth > > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: carData Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> suppressWarnings(RNGversion("3.5.0")) R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: journals-data R> ################################################### R> data("Journals", package = "AER") R> R> R> ################################################### R> ### chunk number 3: journals-dim R> ################################################### R> dim(Journals) [1] 180 10 R> names(Journals) [1] "title" "publisher" "society" "price" [5] "pages" "charpp" "citations" "foundingyear" [9] "subs" "field" R> R> R> ################################################### R> ### chunk number 4: journals-plot eval=FALSE R> ################################################### R> ## plot(log(subs) ~ log(price/citations), data = Journals) R> R> R> ################################################### R> ### chunk number 5: journals-lm eval=FALSE R> ################################################### R> ## j_lm <- lm(log(subs) ~ log(price/citations), data = Journals) R> ## abline(j_lm) R> R> R> ################################################### R> ### chunk number 6: journals-lmplot R> ################################################### R> plot(log(subs) ~ log(price/citations), data = Journals) R> j_lm <- lm(log(subs) ~ log(price/citations), data = Journals) R> abline(j_lm) R> R> R> ################################################### R> ### chunk number 7: journals-lm-summary R> ################################################### R> summary(j_lm) Call: lm(formula = log(subs) ~ log(price/citations), data = Journals) Residuals: Min 1Q Median 3Q Max -2.7248 -0.5361 0.0372 0.4662 1.8481 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.7662 0.0559 85.2 <2e-16 log(price/citations) -0.5331 0.0356 -15.0 <2e-16 Residual standard error: 0.75 on 178 degrees of freedom Multiple R-squared: 0.557, Adjusted R-squared: 0.555 F-statistic: 224 on 1 and 178 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 8: cps-data R> ################################################### R> data("CPS1985", package = "AER") R> cps <- CPS1985 R> R> R> ################################################### R> ### chunk number 9: cps-data1 eval=FALSE R> ################################################### R> ## data("CPS1985", package = "AER") R> ## cps <- CPS1985 R> R> R> ################################################### R> ### chunk number 10: cps-reg R> ################################################### R> library("quantreg") Loading required package: SparseM Attaching package: 'SparseM' The following object is masked from 'package:base': backsolve Attaching package: 'quantreg' The following object is masked from 'package:survival': untangle.specials R> cps_lm <- lm(log(wage) ~ experience + I(experience^2) + + education, data = cps) R> cps_rq <- rq(log(wage) ~ experience + I(experience^2) + + education, data = cps, tau = seq(0.2, 0.8, by = 0.15)) R> R> R> ################################################### R> ### chunk number 11: cps-predict R> ################################################### R> cps2 <- data.frame(education = mean(cps$education), + experience = min(cps$experience):max(cps$experience)) R> cps2 <- cbind(cps2, predict(cps_lm, newdata = cps2, + interval = "prediction")) R> cps2 <- cbind(cps2, + predict(cps_rq, newdata = cps2, type = "")) R> R> R> ################################################### R> ### chunk number 12: rq-plot eval=FALSE R> ################################################### R> ## plot(log(wage) ~ experience, data = cps) R> ## for(i in 6:10) lines(cps2[,i] ~ experience, R> ## data = cps2, col = "red") R> R> R> ################################################### R> ### chunk number 13: rq-plot1 R> ################################################### R> plot(log(wage) ~ experience, data = cps) R> for(i in 6:10) lines(cps2[,i] ~ experience, + data = cps2, col = "red") R> R> R> ################################################### R> ### chunk number 14: srq-plot eval=FALSE R> ################################################### R> ## plot(summary(cps_rq)) R> R> R> ################################################### R> ### chunk number 15: srq-plot1 R> ################################################### R> try(plot(summary(cps_rq))) Warning messages: 1: In rq.fit.br(x, y, tau = tau, ci = TRUE, ...) : Solution may be nonunique 2: In rq.fit.br(x, y, tau = tau, ci = TRUE, ...) : Solution may be nonunique R> R> R> ################################################### R> ### chunk number 16: bkde-fit R> ################################################### R> library("KernSmooth") KernSmooth 2.23 loaded Copyright M. P. Wand 1997-2009 R> cps_bkde <- bkde2D(cbind(cps$experience, log(cps$wage)), + bandwidth = c(3.5, 0.5), gridsize = c(200, 200)) R> R> R> ################################################### R> ### chunk number 17: bkde-plot eval=FALSE R> ################################################### R> ## image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat, R> ## col = rev(gray.colors(10, gamma = 1)), R> ## xlab = "experience", ylab = "log(wage)") R> ## box() R> ## lines(fit ~ experience, data = cps2) R> ## lines(lwr ~ experience, data = cps2, lty = 2) R> ## lines(upr ~ experience, data = cps2, lty = 2) R> R> R> ################################################### R> ### chunk number 18: bkde-plot1 R> ################################################### R> image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat, + col = rev(gray.colors(10, gamma = 1)), + xlab = "experience", ylab = "log(wage)") R> box() R> lines(fit ~ experience, data = cps2) R> lines(lwr ~ experience, data = cps2, lty = 2) R> lines(upr ~ experience, data = cps2, lty = 2) R> R> R> ################################################### R> ### chunk number 19: install eval=FALSE R> ################################################### R> ## install.packages("AER") R> R> R> ################################################### R> ### chunk number 20: library R> ################################################### R> library("AER") R> R> R> ################################################### R> ### chunk number 21: objects R> ################################################### R> objects() [1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde" [6] "cps_lm" "cps_rq" "i" "j_lm" R> R> R> ################################################### R> ### chunk number 22: search R> ################################################### R> search() [1] ".GlobalEnv" "package:KernSmooth" [3] "package:quantreg" "package:SparseM" [5] "package:AER" "package:survival" [7] "package:sandwich" "package:lmtest" [9] "package:zoo" "package:car" [11] "package:carData" "package:stats" [13] "package:graphics" "package:grDevices" [15] "package:utils" "package:datasets" [17] "package:methods" "Autoloads" [19] "package:base" R> R> R> ################################################### R> ### chunk number 23: assignment R> ################################################### R> x <- 2 R> objects() [1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde" [6] "cps_lm" "cps_rq" "i" "j_lm" "x" R> R> R> ################################################### R> ### chunk number 24: remove R> ################################################### R> remove(x) R> objects() [1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde" [6] "cps_lm" "cps_rq" "i" "j_lm" R> R> R> ################################################### R> ### chunk number 25: log eval=FALSE R> ################################################### R> ## log(16, 2) R> ## log(x = 16, 2) R> ## log(16, base = 2) R> ## log(base = 2, x = 16) R> R> R> ################################################### R> ### chunk number 26: q eval=FALSE R> ################################################### R> ## q() R> R> R> ################################################### R> ### chunk number 27: apropos R> ################################################### R> apropos("help") [1] "help" "help.request" "help.search" "help.start" R> R> R> > proc.time() user system elapsed 1.212 0.064 1.269 AER/tests/Ch-Validation.R0000644000176200001440000002616414251131045014575 0ustar liggesusersif(!requireNamespace("dynlm") || !requireNamespace("MASS") || !requireNamespace("quantreg")) q() ################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") suppressWarnings(RNGversion("3.5.0")) set.seed(1071) ################################################### ### chunk number 2: ps-summary ################################################### data("PublicSchools") summary(PublicSchools) ################################################### ### chunk number 3: ps-plot eval=FALSE ################################################### ## ps <- na.omit(PublicSchools) ## ps$Income <- ps$Income / 10000 ## plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) ## ps_lm <- lm(Expenditure ~ Income, data = ps) ## abline(ps_lm) ## id <- c(2, 24, 48) ## text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 4: ps-plot1 ################################################### ps <- na.omit(PublicSchools) ps$Income <- ps$Income / 10000 plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) ps_lm <- lm(Expenditure ~ Income, data = ps) abline(ps_lm) id <- c(2, 24, 48) text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 5: ps-lmplot eval=FALSE ################################################### ## plot(ps_lm, which = 1:6) ################################################### ### chunk number 6: ps-lmplot1 ################################################### plot(ps_lm, which = 1:6) ################################################### ### chunk number 7: ps-hatvalues eval=FALSE ################################################### ## ps_hat <- hatvalues(ps_lm) ## plot(ps_hat) ## abline(h = c(1, 3) * mean(ps_hat), col = 2) ## id <- which(ps_hat > 3 * mean(ps_hat)) ## text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 8: ps-hatvalues1 ################################################### ps_hat <- hatvalues(ps_lm) plot(ps_hat) abline(h = c(1, 3) * mean(ps_hat), col = 2) id <- which(ps_hat > 3 * mean(ps_hat)) text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 9: influence-measures1 eval=FALSE ################################################### ## influence.measures(ps_lm) ################################################### ### chunk number 10: which-hatvalues ################################################### which(ps_hat > 3 * mean(ps_hat)) ################################################### ### chunk number 11: influence-measures2 ################################################### summary(influence.measures(ps_lm)) ################################################### ### chunk number 12: ps-noinf eval=FALSE ################################################### ## plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) ## abline(ps_lm) ## id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any)) ## text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ## ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,]) ## abline(ps_noinf, lty = 2) ################################################### ### chunk number 13: ps-noinf1 ################################################### plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) abline(ps_lm) id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any)) text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,]) abline(ps_noinf, lty = 2) ################################################### ### chunk number 14: journals-age ################################################### data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations journals$age <- 2000 - Journals$foundingyear ################################################### ### chunk number 15: journals-lm ################################################### jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) ################################################### ### chunk number 16: bptest1 ################################################### bptest(jour_lm) ################################################### ### chunk number 17: bptest2 ################################################### bptest(jour_lm, ~ log(citeprice) + I(log(citeprice)^2), data = journals) ################################################### ### chunk number 18: gqtest ################################################### gqtest(jour_lm, order.by = ~ citeprice, data = journals) ################################################### ### chunk number 19: resettest ################################################### resettest(jour_lm) ################################################### ### chunk number 20: raintest ################################################### raintest(jour_lm, order.by = ~ age, data = journals) ################################################### ### chunk number 21: harvtest ################################################### harvtest(jour_lm, order.by = ~ age, data = journals) ################################################### ### chunk number 22: ################################################### library("dynlm") ################################################### ### chunk number 23: usmacro-dynlm ################################################### data("USMacroG") consump1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) ################################################### ### chunk number 24: dwtest ################################################### dwtest(consump1) ################################################### ### chunk number 25: Box-test ################################################### Box.test(residuals(consump1), type = "Ljung-Box") ################################################### ### chunk number 26: bgtest ################################################### bgtest(consump1) ################################################### ### chunk number 27: vcov ################################################### vcov(jour_lm) vcovHC(jour_lm) ################################################### ### chunk number 28: coeftest ################################################### coeftest(jour_lm, vcov = vcovHC) ################################################### ### chunk number 29: sandwiches ################################################### t(sapply(c("const", "HC0", "HC1", "HC2", "HC3", "HC4"), function(x) sqrt(diag(vcovHC(jour_lm, type = x))))) ################################################### ### chunk number 30: ps-anova ################################################### ps_lm <- lm(Expenditure ~ Income, data = ps) ps_lm2 <- lm(Expenditure ~ Income + I(Income^2), data = ps) anova(ps_lm, ps_lm2) ################################################### ### chunk number 31: ps-waldtest ################################################### waldtest(ps_lm, ps_lm2, vcov = vcovHC(ps_lm2, type = "HC4")) ################################################### ### chunk number 32: vcovHAC ################################################### rbind(SE = sqrt(diag(vcov(consump1))), QS = sqrt(diag(kernHAC(consump1))), NW = sqrt(diag(NeweyWest(consump1)))) ################################################### ### chunk number 33: solow-lm ################################################### data("OECDGrowth") solow_lm <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth + .05), data = OECDGrowth) summary(solow_lm) ################################################### ### chunk number 34: solow-plot eval=FALSE ################################################### ## plot(solow_lm) ################################################### ### chunk number 35: solow-lts ################################################### library("MASS") solow_lts <- lqs(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth + .05), data = OECDGrowth, psamp = 13, nsamp = "exact") ################################################### ### chunk number 36: solow-smallresid ################################################### smallresid <- which( abs(residuals(solow_lts)/solow_lts$scale[2]) <= 2.5) ################################################### ### chunk number 37: solow-nohighlev ################################################### X <- model.matrix(solow_lm)[,-1] Xcv <- cov.rob(X, nsamp = "exact") nohighlev <- which( sqrt(mahalanobis(X, Xcv$center, Xcv$cov)) <= 2.5) ################################################### ### chunk number 38: solow-goodobs ################################################### goodobs <- unique(c(smallresid, nohighlev)) ################################################### ### chunk number 39: solow-badobs ################################################### rownames(OECDGrowth)[-goodobs] ################################################### ### chunk number 40: solow-rob ################################################### solow_rob <- update(solow_lm, subset = goodobs) summary(solow_rob) ################################################### ### chunk number 41: quantreg ################################################### library("quantreg") ################################################### ### chunk number 42: cps-lad ################################################### library("quantreg") data("CPS1988") cps_f <- log(wage) ~ experience + I(experience^2) + education cps_lad <- rq(cps_f, data = CPS1988) summary(cps_lad) ################################################### ### chunk number 43: cps-rq ################################################### cps_rq <- rq(cps_f, tau = c(0.25, 0.75), data = CPS1988) summary(cps_rq) ################################################### ### chunk number 44: cps-rqs ################################################### cps_rq25 <- rq(cps_f, tau = 0.25, data = CPS1988) cps_rq75 <- rq(cps_f, tau = 0.75, data = CPS1988) anova(cps_rq25, cps_rq75) ################################################### ### chunk number 45: cps-rq-anova ################################################### anova(cps_rq25, cps_rq75, joint = FALSE) ################################################### ### chunk number 46: rqbig ################################################### cps_rqbig <- rq(cps_f, tau = seq(0.05, 0.95, by = 0.05), data = CPS1988) cps_rqbigs <- summary(cps_rqbig) ################################################### ### chunk number 47: rqbig-plot eval=FALSE ################################################### ## plot(cps_rqbigs) ################################################### ### chunk number 48: rqbig-plot1 ################################################### plot(cps_rqbigs) AER/vignettes/0000755000176200001440000000000014557334660012706 5ustar liggesusersAER/vignettes/AER.Rnw0000644000176200001440000003266314303126541014001 0ustar liggesusers\documentclass[nojss]{jss} %% need no \usepackage{Sweave} \usepackage{thumbpdf} %% new commands \newcommand{\class}[1]{``\code{#1}''} \newcommand{\fct}[1]{\code{#1()}} \SweaveOpts{engine=R, eps=FALSE, keep.source = TRUE} <>= options(prompt = "R> ", digits = 4, show.signif.stars = FALSE) @ %%\VignetteIndexEntry{Applied Econometrics with R: Package Vignette and Errata} %%\VignettePackage{AER} %%\VignetteDepends{AER} %%\VignetteKeywords{econometrics, statistical software, R} \author{Christian Kleiber\\Universit\"at Basel \And Achim Zeileis\\Universit\"at Innsbruck} \Plainauthor{Christian Kleiber, Achim Zeileis} \title{Applied Econometrics with \proglang{R}:\\Package Vignette and Errata} \Plaintitle{Applied Econometrics with R: Package Vignette and Errata} \Shorttitle{\pkg{AER}: Package Vignette and Errata} \Keywords{econometrics, statistical software, \proglang{R}} \Plainkeywords{econometrics, statistical software, R} \Abstract{ ``Applied Econometrics with \proglang{R}'' \citep[Springer-Verlag, ISBN~978-0-387-77316-2, pp.~vii+222]{aer:Kleiber+Zeileis:2008} is the first book on applied econometrics using the \proglang{R}~system for statistical computing and graphics \citep{aer:R:2019}. It presents hands-on examples for a wide range of econometric models, from classical linear regression models for cross-section, time series or panel data and the common non-linear models of microeconometrics, such as logit, probit, tobit models as well as regression models for count data, to recent semiparametric extensions. In addition, it provides a chapter on programming, including simulations, optimization and an introduction to \proglang{R} tools enabling reproducible econometric research. The methods are presented by illustrating, among other things, the fitting of wage equations, growth regressions, dynamic regressions and time series models as well as various models of microeconometrics. The book is accompanied by the \proglang{R} package \pkg{AER} \citep{aer:Kleiber+Zeileis:2019} which contains some new \proglang{R} functionality, some 100 data sets taken from a wide variety of sources, the full source code for all examples used in the book, as well as further worked examples, e.g., from popular textbooks. This vignette provides an overview of the package contents and contains a list of errata for the book. } \Address{ Christian Kleiber\\ Faculty of Business and Economics\\ Universit\"at Basel\\ Peter Merian-Weg 6\\ 4002 Basel, Switzerland\\ E-mail: \email{Christian.Kleiber@unibas.ch}\\ URL: \url{https://wwz.unibas.ch/en/kleiber/}\\ Achim Zeileis\\ Department of Statistics\\ Faculty of Economics and Statistics\\ Universit\"at Innsbruck\\ Universit\"atsstr.~15\\ 6020 Innsbruck, Austria\\ E-mail: \email{Achim.Zeileis@R-project.org}\\ URL: \url{https://eeecon.uibk.ac.at/~zeileis/} } \begin{document} \section{Package overview} \subsection[R code from the book]{\proglang{R} code from the book} The full \proglang{R} code from the book is provided in the demos for the package \pkg{AER}. The source scripts can be found in the \code{demo} directory of the package and executed interactively by calling \fct{demo}, as in % <>= demo("Ch-Intro", package = "AER") @ % One demo per chapter is provided: \begin{itemize} \item \code{Ch-Intro} (Chapter~1: Introduction), \item \code{Ch-Basics} (Chapter~2: Basics), \item \code{Ch-LinearRegression} (Chapter~3: Linear Regression), \item \code{Ch-Validation} (Chapter~4: Diagnostics and Alternative Methods of Regression), \item \code{Ch-Microeconometrics} (Chapter~5: Models of Microeconometrics), \item \code{Ch-TimeSeries} (Chapter~6: Time Series), \item \code{Ch-Programming} (Chapter~7: Programming Your Own Analysis). \end{itemize} This list of demos is also shown by \code{demo(package = "AER")}. The same scripts are contained in the \code{tests} directory of the package so that they are automatically checked and compared with the desired output provided in \code{.Rout.save} files. To make the code fully reproducible and to avoid some lengthy computations in the daily checks, a few selected code chunks are commented out in the scripts. Also, for technical reasons, some graphics code chunks are repeated, once commented out and once without comments. \subsection{Data sets} The \pkg{AER} package includes some 100 data sets from leading applied econometrics journals and popular econometrics textbooks. Many data sets have been obtained from the data archive of the \emph{Journal of Applied Econometrics} and the (now defunct) data archive of the \emph{Journal of Business \& Economic Statistics} (see note below). Some of these are used in recent textbooks, among them \cite{aer:Baltagi:2002}, \cite{aer:Davidson+MacKinnon:2004}, \cite{aer:Greene:2003}, \cite{aer:Stock+Watson:2007}, and \cite{aer:Verbeek:2004}. In addition, we provide all further data sets from \cite{aer:Baltagi:2002}, \cite{aer:Franses:1998}, \cite{aer:Greene:2003}, \cite{aer:Stock+Watson:2007}, and \cite{aer:Winkelmann+Boes:2009}. Selected data sets from \cite{aer:Franses+vanDijk+Opschoor:2014} are also included. Detailed information about the source of each data set, descriptions of the variables included, and usually also examples for typical analyses are provided on the respective manual pages. A full list of all data sets in \pkg{AER} can be obtained via % <>= data(package = "AER") @ % In addition, manual pages corresponding to selected textbooks are available. They list all data sets from the respective book and provide extensive code for replicating many of the empirical examples. See, for example, <>= help("Greene2003", package = "AER") @ for data sets and code for \cite{aer:Greene:2003}. Currently available manual pages are: \begin{itemize} \item \code{Baltagi2002} for \cite{aer:Baltagi:2002}, \item \code{CameronTrivedi1998} for \cite{aer:Cameron+Trivedi:1998}, \item \code{Franses1998} for \cite{aer:Franses:1998}, \item \code{Greene2003} for \cite{aer:Greene:2003}, \item \code{StockWatson2007} for \cite{aer:Stock+Watson:2007}. \item \code{WinkelmannBoes2009} for \cite{aer:Winkelmann+Boes:2009}. \end{itemize} \subsection[New R functions]{New \proglang{R} functions} \pkg{AER} provides a few new \proglang{R} functions extending or complementing methods previously available in \proglang{R}: \begin{itemize} \item \fct{tobit} is a convenience interface to \fct{survreg} from package \pkg{survival} for fitting tobit regressions to censored data. In addition to the fitting function itself, the usual set of accessor and extractor functions is provided, e.g., \fct{print}, \fct{summary}, \fct{logLik}, etc. For more details see \code{?tobit}. \item \fct{ivreg} fits instrumental-variable regressions via two-stage least squares. It provides a formula interface and calls the workhorse function \fct{ivreg.fit} which in turn calls \fct{lm.fit} twice. In addition to the fitting functions, the usual set of accessor and extractor functions is provided, e.g., \fct{print}, \fct{summary}, \fct{anova}, etc. For more details see \code{?ivreg}, \code{?ivreg.fit}, and \code{?summary.ivreg}, respectively. \item \fct{dispersiontest} tests the null hypothesis of equidispersion in Poisson regressions against the alternative of overdispersion and/or underdispersion. For more details see \code{?dispersiontest}. \end{itemize} \section{Errata and comments} Below we list the errors that have been found in the book so far. Please report any further errors you find to us. We also provide some comments, for example on functions whose interface has changed. \begin{itemize} \item p.~5--9, 46--53: There are now very minor differences in the plots pertaining to Example~2 (Determinants of wages) in Chapter~1.1 and Chapter~2.8 (Exploratory Data Analysis with \proglang{R}) due to a missing observation. Specifically, the version of the \code{CPS1985} data used for the book contained only 533~observations, the original observation~1 had been omitted inadvertently. \item p.~38, 48, 85: By default there is less rounding in calls to \code{summary()} starting from \proglang{R}~3.4.0. \item p.~63--65, 130, 143: The function \fct{linear.hypothesis} from the \pkg{car} package is now defunct, it has been replaced by \fct{linearHypothesis} starting from \pkg{car}~2.0-0. \item p.~85--86: Due to a bug in the \code{summary()} method for ``\code{plm}'' objects, the degrees of freedom reported for the $F$~statistics were interchanged and thus the $p$~values were not correct. Therefore, the $p$~values printed in the book at the end of \code{summary(gr_fe)} and \code{summary(gr_re)} are not correct, they should both be \code{< 2.22e-16}. Using \pkg{plm} 1.1-1 or higher, the code produces the correct output. Also the degrees-of-freedom adjustment in the $p$~values for the coefficient tests in \code{summary(gr_re)} were corrected. \item pp.~88--89: As of version 1.3-1 of the \pkg{plm} package, summaries of ``\code{pgmm}'' objects provide robust standard errors by default. The output presented on pp.~88--89 is still available, but now requires \code{summary(empl_ab, robust = FALSE)}. Also, the formula interface for \fct{pgmm} has changed: as of version 1.7-0 of the \pkg{plm} package, the function \fct{dynformula} is deprecated. Instead, lags should now be specified via the package's \fct{lag} function. In addition, instruments should now be specified via a two-part formula. Using the new interface, the function call for the Arellano-Bond example is % <>= empl_ab <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1) + log(capital) + lag(log(output), 0:1) | lag(log(emp), 2:99), data = EmplUK, index = c("firm", "year"), effect = "twoways", model = "twosteps") @ % \item p.~92: Exercise~6 cannot be solved using \code{PSID1982} since that data set only contains a cross-section while Hausman-Taylor requires panel data. A panel version has been available in the \pkg{plm} package under the name \code{Wages}; we have now added \code{PSID7682} to \pkg{AER} for completeness (and consistent naming conventions). Use \code{PSID7682} for the exercise. \item pp.~98--100: \proglang{R} only provides a function \code{dffits()} but not \code{dffit()} as claimed on p.~99. Somewhat confusingly the corresponding column in the output of \code{influence.measures()} (as shown on p.~100) is called \code{dffit} by \proglang{R} (rather than \code{dffits}). \item p.~124: The argument \code{ylevels = 2:1} in the spinogram is no longer needed because the defaul ordering of the $y$-levels changed in \proglang{R}~4.0.0. \item p.~141: The log-likelihood for the tobit model lacked a minus sign. The correct version is % \[ \ell(\beta, \sigma^2) = \sum_{y_i > 0} \left( \log\phi\{(y_i - x_i^\top \beta)/\sigma\} - \log\sigma \right) + \sum_{y_i = 0} \log \Phi( - x_i^\top \beta /\sigma). \] % \item p.~149: The standard error (and hence the corresponding $z$~test) of \code{admin|manage} in the output of \code{coeftest(bank_polr)} is wrong, it should be \code{1.4744}. This was caused by an inconsistency between \fct{polr} and its \fct{vcov} method which has now been improved in the \pkg{MASS} package ($\ge$ 7.3-6). \item p.~167: The truncation lag parameter in the output of \code{kpss.test(log(PepperPrice[, "white"]))} is wrong, it should be \code{5} instead of \code{3}, also leading to a somewhat smaller test statistic and larger $p$~value. This has now been corrected in the \pkg{tseries} package ($\ge$ 0.10-46). \item p.~169: The comment regarding the output from the Johansen test is in error. The null hypothesis of no cointegration is not rejected at the 10\% level. Nonetheless, the table corresponding to Case~2 in \citet[][p.~420]{aer:Juselius:2006} reveals that the trace statistic is significant at the 15\% level, thus the Johansen test weakly confirms the initial two-step approach. \item p.~179: For consistency, the GARCH code should be preceded by \code{data("MarkPound")}. \item p.~192: The likelihood for the generalized production function was in error (code and computations were correct though). The correct likelihood for the model is % \[ \mathcal{L} = \prod_{i=1}^n \left\{ \frac{1}{\sigma} \phi \left(\frac{\varepsilon_i}{\sigma}\right) \cdot \frac{1 + \theta Y_i}{Y_i} \right\} . \] % giving the log-likelihood % \[ \ell = \sum_{i=1}^n \left\{ \log (1 + \theta Y_i) - \log Y_i \right\} - n \log \sigma + \sum_{i=1}^n \log \phi (\varepsilon_i/\sigma) . \] \item p.~205: The reference for Henningsen (2008) should be: %% FIXME: will be package vignette \begin{quote} Henningsen A (2008). ``Demand Analysis with the Almost Ideal Demand System in \proglang{R}: Package \pkg{micEcon},'' Unpublished. URL~\url{http://CRAN.R-project.org/package=micEcon}. \end{quote} \end{itemize} \emph{Note:} Currently, all links on manual pages corresponding to data sets taken from the Journal of Business \& Economic Statistics (JBES) archive are broken (data sets \code{MarkPound}, and \code{RecreationDemand}). The reason is the redesign of the American Statistical Association (ASA) website, rendering the old ASA data archive nonfunctional. The ASA journals manager currently appears to supply data on a case-by-case basis. The problem awaits a more permanent solution. \bibliography{aer} \end{document} AER/vignettes/aer.bib0000644000176200001440000000676613463421232014135 0ustar liggesusers@Book{aer:Baltagi:2002, author = {Badi H. Baltagi}, title = {Econometrics}, edition = {3rd}, year = {2002}, pages = {401}, publisher = {Springer-Verlag}, address = {New York}, url = {https://www.springer.com/us/book/9783662046937} } @Book{aer:Cameron+Trivedi:1998, author = {A. Colin Cameron and Pravin K. Trivedi}, title = {Regression Analysis of Count Data}, year = {1998}, pages = {411}, publisher = {Cambridge University Press}, address = {Cambridge} } @Book{aer:Davidson+MacKinnon:2004, author = {Russell Davidson and James G. MacKinnon}, title = {Econometric Theory and Methods}, year = {2004}, pages = {750}, publisher = {Oxford University Press}, address = {Oxford} } @Book{aer:Franses:1998, author = {Philip Hans Franses}, title = {Time Series Models for Business and Economic Forecasting}, publisher = {Cambridge University Press}, year = {1998}, address = {Cambridge} } @Book{aer:Franses+vanDijk+Opschoor:2014, author = {Philip Hans Franses and Dick van Dijk and Anne Opschoor}, title = {Time Series Models for Business and Economic Forecasting}, edition = {2nd}, publisher = {Cambridge University Press}, year = {2014}, address = {Cambridge}, url = {http://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } @Book{aer:Greene:2003, author = {William H. Greene}, title = {Econometric Analysis}, edition = {5th}, year = {2003}, pages = {1026}, publisher = {Prentice Hall}, address = {Upper Saddle River, NJ}, url = {http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm} } @Book{aer:Juselius:2006, author = {Katarina Juselius}, title = {The Cointegrated {VAR} Model}, year = {2006}, publisher = {Oxford University Press}, address = {Oxford} } @Book{aer:Kleiber+Zeileis:2008, title = {Applied Econometrics with \proglang{R}}, author = {Christian Kleiber and Achim Zeileis}, year = {2008}, publisher = {Springer-Verlag}, address = {New York}, note = {{ISBN} 978-0-387-77316-2}, } @Manual{aer:Kleiber+Zeileis:2019, title = {\pkg{AER}: Applied Econometrics with \proglang{R}}, author = {Christian Kleiber and Achim Zeileis}, year = {2019}, note = {\proglang{R}~package version~1.2-7}, url = {https://CRAN.R-project.org/package=AER} } @Manual{aer:R:2019, title = {\proglang{R}: {A} Language and Environment for Statistical Computing}, author = {{\proglang{R} Core Team}}, organization = {\proglang{R} Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2019}, url = {https://www.R-project.org/} } @Book{aer:Stock+Watson:2007, author = {James H. Stock and Mark W. Watson}, title = {Introduction to Econometrics}, year = {2007}, edition = {2nd}, publisher = {Addison-Wesley}, address = {Reading, MA} } @Book{aer:Verbeek:2004, author = {Marno Verbeek}, title = {A Guide to Modern Econometrics}, edition = {2nd}, year = {2004}, publisher = {John Wiley \& Sons}, address = {Hoboken, NJ} } @Book{aer:Winkelmann+Boes:2009, author = {Rainer Winkelmann and Stefan Boes}, title = {Analysis of Microdata}, edition = {2nd}, year = {2009}, publisher = {Springer-Verlag}, address = {Berlin and Heidelberg} } AER/vignettes/Sweave-journals.Rnw0000644000176200001440000000103412225031401016432 0ustar liggesusers%\VignetteIndexEntry{Sweave Example: Linear Regression for Economics Journals Data} \documentclass[a4paper]{article} \begin{document} We fit a linear regression for the economic journals demand model. <<>>= data("Journals", package = "AER") journals_lm <- lm(log(subs) ~ log(price/citations), data = Journals) journals_lm @ A scatter plot with the fitted regression line is shown below. \begin{center} <>= plot(log(subs) ~ log(price/citations), data = Journals) abline(journals_lm) @ \end{center} \end{document} AER/NEWS0000644000176200001440000003165514557120221011371 0ustar liggesusersChanges in Version 1.2-12 o Omitted some examples and updated corresponding output for CRAN checks. Changes in Version 1.2-11 o Rather than quitting from examples in the manual pages, when the required packages are not available, the examples now stop() in non-check settings. Changes in Version 1.2-10 o Improvements in coeftest() methods for "multinom" and "polr" objects to be compatible with recent extensions in lmtest >= 0.9-38. o Fixed a bug in the tests for weak instruments in ivdiag(): Interactions like x1:x2 and x2:x1 were considered to be different variables although they are in fact equivalent. (Reported by Arne Henningsen and Ghislain Dossou.) o Use fully-qualified calls to survival::survreg() and survival::Surv() within the tobit() function so that AER::tobit() can be called without attaching the package (reported by Bill Denney). o Started replacing examples with repeated with() variable transformations with a single transform(). Changes in Version 1.2-9 o Some examples from the AER book lead to small numeric differences across different platforms. Hence, these have been excluded now from tests/Ch-*.R with an IGNORE_RDIFF comment for CRAN. o The examples on the manual pages for the books CameronTrivedi1998, Greene2003, WinkelmannBoes2009 are now excluded from testing to reduce the computational demands on CRAN. The corresponding analyses are mostly available on the manual pages for the underlying data sets, though. Changes in Version 1.2-8 o Starting from survival >= 3.1-6 the survival provides (or corrected) some standard S3 methods for "survreg" objects: fitted(), nobs(), weights(), vcov(). Previously, these were registered by AER" in order to work for "tobit" objects. For now, AER registers the methods for "tobit" objects. In the future, the methods will be dropped by AER altogether and inherited from survival (when AER depends on survival >= 3.1-6). Changes in Version 1.2-7 o Diagnostic tests ivdiag() for _weighted_ instrumental variables regression was incorrect as weights were erroneously ignored (detected and tested by Jonathan Siverskog). o vcov() method for "survreg" objects in "survival" currently (version 2.44-1.1) provides no row/column names. Hence, a new vcov() method for "tobit" objects was added in "AER" mimicking the naming conventions from survival:::summary.survreg. Analogously, a bread() method was added for "tobit" objects that calls the vcov() method internally. o linearHypothesis() method for tobit() objects no longer assumes that a scale parameter was estimated as part of the model. This enables the somewhat unusual but possible case of summary(tobit(..., dist = "exponential")). o In examples/demos/tests with calls to set.seed(...) the RNG version is now fixed to suppressWarnings(RNGversion("3.5.0")) to keep results exactly reproducible after fixing RNG problems in R 3.6.0. o New errata item in vignette("AER", package = "AER"): The formula interface for pgmm() has changed. As of "plm" version 1.7-0, the function dynformula() is deprecated. Examples, tests, and demos have been adapted accordingly. o In tests/Ch-Intro.R some quantreg computations are now wrapped into try() because the summary method yields non-finite standard errors on some platforms. o In ?CameronTrivedi1998 one version of the negbin-negbin hurdle model is now wrapped into try() because evaluating the log-likelihood at the given start values becomes too unstable on some platforms. Changes in Version 1.2-6 o Added update() method for "ivreg" objects that correctly handles the two-part right-hand side of the formula (suggested by Matthieu Stigler). o Use pdata.frame() instead of plm.data() as preparation for modeling with "plm" and certain "systemfit" functions (requires systemfit 1.1-20). o The model.matrix() method for "ivreg" objects erroneously dropped the dimension of single-column projected regressor matrices. This propagated to the estfun() method and hence lead to problems with sandwich covariances (reported by Justus Winkelmann). o In a bug fix the survival package changed the internal structure of survreg()$y starting from survival 2.42-7. This leads to incorrect summary() output for "tobit" objects which has been worked around now. Thanks to Terry Therneau for pointing out the problem and suggesting a fix. Changes in Version 1.2-5 o Support for aliased coefficients in ivreg() (suggested and tested by Liviu Andronic). o New data sets GoldSilver, MotorCycles2 and MSCISwitzerland, taken from Franses, van Dijk, Opschoor (2014): "Time Series Models for Business and Economic Forecasting", 2nd ed. For replication of the corresponding examples, several packages were added to the list of 'suggested' packages (including fGarch, forecast, longmemo, rugarch, vars). o Small improvements in DESCRIPTION/Imports and NAMESPACE for R CMD check. Changes in Version 1.2-4 o Reference output updated for recent versions of R. Changes in Version 1.2-3 o Package "splines" is loaded explicitly if needed (rather than assuming that it is loaded along with "survival"). o Some URLs in the manual pages had been outdated and are updated (or omitted) now. Changes in Version 1.2-2 o Another bug fix in the new summary(ivreg_object, diagnostics = TRUE). If sandwich standard errors (or other vcov) were used, the chi-squared form rather than the F form of the diagnostic Wald tests was computed and hence the p-values were incorrect. o If there is more than one endogenous variable, summary(ivreg_object, diagnostics = TRUE) now reports separate tests of weak instruments for each endogenous variable. Changes in Version 1.2-1 o Bug fix in the new summary(ivreg_object, diagnostics = TRUE). If there is more than one endogenous variable, the degrees of freedom (and hence the associated p-values) for the Sargan test were too large. o The examples employing "rgl" for 3d visualizations (e.g., for the SIC33 data) are not tested anymore in R CMD check (as "rgl" currently has some problems on CRAN's checks for OS X). Changes in Version 1.2-0 o The summary() method for ivreg() now has a diagnostics=FALSE argument. If set to TRUE, three diagnostic tests are performed: an F test of the first stage regression for weak instruments, a Wu-Hausman test for endogeneity, and a Sargan test of overidentifying restrictions (only if there are more instruments than regressors). o Added new data set EquationCitations provided by Fawcett & Higginson (2012, PNAS). o Changes in Depends/Imports/Suggests due to new CRAN check requirements. In particular, the "Formula" package is now only imported (but not loaded into the search path). Changes in Version 1.1-9 o Recompressed data sets in package to reduce file storage requirements. o ivreg() failed when used without instruments. Now fixed. o The summary() for ivreg() displayed the degrees of freedom of the overall Wald test incorrectly (although the p-value was computed correctly). o Some technical changes for new R 2.14.0, e.g., adding Authors@R in DESCRIPTION, recompressing data, etc. Changes in Version 1.1-8 o The hat values for instrumental variables regressions are now computed in the hatvalues() method and not within ivreg.fit() to save computation time for large data sets. o Added nobs() method for "survreg" objects (and thus "tobit" objects). Modified "ivreg" objects so that default nobs() methods works. o Labeling in coeftest() method for "multinom" objects with binary responses has been fixed. o Example 21.4 in ?Greene2003 now employs the scaled regressor fincome/10000. Changes in Version 1.1-7 o Adapted some example in ?Greene2003 in order to work both with the old and new "dynlm" package. dynlm() now provides convenient support for linear time trends via dynlm(y ~ trend(y)) etc. Changes in Version 1.1-6 o Adapted code/examples/tests to new car version which has deprecated linear.hypothesis() in favor of linearHypothesis(). Changes in Version 1.1-5 o CPS1985 now has 534 observations (not 533 as in prior releases), the original observation 1 had been omitted inadvertently. See also the errata in vignette("AER", package = "AER"). o Data and examples for Winkelmann and Boes (2009), "Analysis of Microdata" (2nd ed.) have been added. For details and extensive (but not quite complete) replication code see help("WinkelmannBoes2009") as well as help("GSS7402") and help("GSOEP9402"). o As announced in the changes for version 1.1-0 of the "AER" package, the variable "earnings" has now been removed from the PSID1976 (aka Mroz) data. In 1.1-0 it was renamed to "wage" to avoid confusion with other data sets. o The coeftest() method for "polr" objects used to return wrong standard errors (and hence wrong z tests) for the last intercept. This was caused by an inconsistency between the summary() and vcov() methods for "polr" objects which has been improved in recent versions of the "MASS" package. The correct results are computed by coeftest() for "polr" objects computed with MASS version >= 7.3-6. See also the errata in vignette("AER", package = "AER") o The paper describing the various versions of the Grunfeld data has been accepted for publication in the German Economic Review. An updated version of the manuscript and associated replication files -- mostly based on data("Grunfeld", package = "AER") -- is available from http://statmath.wu.ac.at/~zeileis/grunfeld/. o Added lrtest() method for "fitdistr" objects with intelligible model name (instead of the usual formula for formula-based models). Changes in Version 1.1-4 o ivreg() now uses the "Formula" package (>= 0.2-0) for processing of its model formulas. However, this only affects the internal computations, the user interface has remained unchanged. o Numerous spelling improvements in the documentation (thanks to the new aspell() functionality in base R). Changes in Version 1.1-3 o Added PSID7682 data set which contains the full Cornwell & Rupert (1988) panel data for the years 1976-1982. This should be used for estimation of the Hausman-Taylor model in Exercise 6 from Chapter 3 (instead of PSID1982 which does not provide panel data but only the cross-section for 1982). See the errata and the manual page for more details. o Fixed overall Wald test in summary() for "tobit" models with intercept only. Changes in Version 1.1-2 o New errata item in vignette("AER", package = "AER"): The comment regarding the output from the Johansen test (p. 169) is in error. The null hypothesis of no cointegration is not rejected at the 10% level (only at 15% level). o Enhancements of the CigarettesSW examples from Stock & Watson. o Fixed overall Wald test in summary() for "tobit" models without intercept. o Improved "rgl" code in the SIC33 example. o The variable "gender" in the Parade2005 data set was wrong for observation 70. It is now "male" (not "female"). Changes in Version 1.1-1 o A new improved version of the "plm" package is available from CRAN (version 1.1-1). This fixes a bug in the summary() of "plm" objects, see the vignette/errata for details. Furthermore, there is now a vcovHC() method for "panelmodel" objects: It gives equivalent results to pvcovHC() but is now the recommended user interface and hence used in the examples of some manual pages (see e.g. ?Fatalities). Changes in Version 1.1-0 o Some variable names in the PSID1976 (aka Mroz) data have been renamed: "earnings" is now called "wage" (to avoid confusion with other data sets), the previous variable "wage" is renamed as "repwage" (reported wage). Currently, "earnings" is kept; it will be removed in future releases. o Documentation of the Grunfeld data has been enhanced and updated. Much more details are available in a recent technical report: Kleiber and Zeileis (2008), "The Grunfeld Data at 50", available from http://epub.wu-wien.ac.at/. o Multinomial logit examples using Yves Croissant's "mlogit" package have been added for the TravelMode and BankWages data sets. o Vignette/errata updated. Changes in Version 1.0-1 o Small changes for R 2.8.0. Changes in Version 1.0-0 o official version accompanying the release of the book (contains all code from the book in demos and tests) o See the new vignette("AER", package = "AER") for an overview of the package and a list of errata. Changes in Version 0.9-0 o release of the version used for compiling the final version of the book for Springer Changes in Version 0.2-0 o first CRAN release of the AER package AER/R/0000755000176200001440000000000014557334660011077 5ustar liggesusersAER/R/tobit.R0000644000176200001440000002356514026527561012351 0ustar liggesusers## Dedicated methods for "tobit" objects that really should be inherited ## from "survival". However, some versions of "survival" did not provide ## these at all or had bugs. With survival >= 3.1-6 the methods in ## "survival" are ok. So for now we still keep the "tobit" methods but ## might remove them in future versions. fitted.tobit <- function(object, ...) predict(object, type = "response", se.fit = FALSE) nobs.tobit <- function(object, ...) length(object$linear.predictors) weights.tobit <- function(object, ...) model.weights(model.frame(object)) vcov.tobit <- function(object, ...) { vc <- NextMethod() if(is.null(colnames(vc))) { nam <- names(object$coefficients) nam <- if(length(nam) == ncol(vc)) { nam } else if(length(nam) == ncol(vc) - 1L) { c(nam, "Log(scale)") } else { c(nam, names(object$scale)) } colnames(vc) <- rownames(vc) <- nam } return(vc) } bread.tobit <- function(x, ...) { length(x$linear.predictors) * vcov(x) } ## "survival" chose not to include this deviance() method ## so this needs to be provided even if "survival" >= 3.1-6 ## is required. deviance.survreg <- function(object, ...) sum(residuals(object, type = "deviance")^2) ## convenience tobit() interface to survreg() tobit <- function(formula, left = 0, right = Inf, dist = "gaussian", subset = NULL, data = list(), ...) { ## remember original environment oenv <- environment(formula) oformula <- eval(formula) ## process censoring stopifnot(all(left < right)) lfin <- any(is.finite(left)) rfin <- any(is.finite(right)) ## formula processing: replace dependent variable ## original y <- formula[[2]] if(lfin & rfin) { ## interval censoring formula[[2]] <- call("Surv", call("ifelse", call(">=", y, substitute(right)), substitute(right), call("ifelse", call("<=", y, substitute(left)), substitute(left), y)), time2 = substitute(right), call("ifelse", call(">=", y, substitute(right)), 0, call("ifelse", call("<=", y, substitute(left)), 2, 1)), type = "interval") } else if(!rfin) { ## left censoring formula[[2]] <- call("Surv", call("ifelse", call("<=", y, substitute(left)), substitute(left), y), call(">", y, substitute(left)) , type = "left") } else { ## right censoring formula[[2]] <- call("Surv", call("ifelse", call(">=", y, substitute(right)), substitute(right), y), call("<", y, substitute(right)) , type = "right") } ## ensure the the fully-qualified survival::Surv() is used rather than just Surv() formula[[2]][[1]] <- quote(survival::Surv) ## call survreg cl <- ocl <- match.call() cl$formula <- formula cl$left <- NULL cl$right <- NULL cl$dist <- dist cl[[1]] <- quote(survival::survreg) rval <- eval(cl, oenv) ## slightly modify result class(rval) <- c("tobit", class(rval)) ocl$formula <- oformula rval$call <- ocl rval$formula <- formula return(rval) } ## add printing and summary methods that are more similar to ## the corresponding methods for lm objects print.tobit <- function(x, digits = max(3, getOption("digits") - 3), ...) { ## failure if(!is.null(x$fail)) { cat("tobit/survreg failed.", x$fail, "\n") return(invisible(x)) } ## call cat("\nCall:\n") cat(paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") ## coefficients coef <- x$coefficients if(any(nas <- is.na(coef))) { if (is.null(names(coef))) names(coef) <- paste("b", 1:length(coef), sep = "") cat("Coefficients: (", sum(nas), " not defined because of singularities)\n", sep = "") } else cat("Coefficients:\n") print.default(format(coef, digits = digits), print.gap = 2, quote = FALSE) ## scale if(nrow(x$var) == length(coef)) cat("\nScale fixed at", format(x$scale, digits = digits), "\n") else if (length(x$scale) == 1) cat("\nScale:", format(x$scale, digits = digits), "\n") else { cat("\nScale:\n") print(format(x$scale, digits = digits), ...) } ## return cat("\n") invisible(x) } summary.tobit <- function(object, correlation = FALSE, symbolic.cor = FALSE, vcov. = NULL, ...) { ## failure if(!is.null(object$fail)) { warning("tobit/survreg failed.", object$fail, " No summary provided\n") return(invisible(object)) } ## rank if(all(is.na(object$coefficients))) { warning("This model has zero rank --- no summary is provided") return(invisible(object)) } ## vcov if(is.null(vcov.)) vcov. <- vcov(object) else { if(is.function(vcov.)) vcov. <- vcov.(object) } ## coefmat coef <- coeftest(object, vcov. = vcov., ...) attr(coef, "method") <- NULL ## Wald test nc <- length(coef(object)) has_intercept <- attr(terms(object), "intercept") > 0.5 wald <- if(nc <= has_intercept) NULL else linearHypothesis(object, if(has_intercept) cbind(0, diag(nc-1)) else diag(nc), vcov. = vcov.)[2,3] ## instead of: waldtest(object, vcov = vcov.) ## correlation correlation <- if(correlation) cov2cor(vcov.) else NULL ## distribution dist <- object$dist if(is.character(dist)) sd <- survival::survreg.distributions[[dist]] else sd <- dist if(length(object$parms)) pprint <- paste(sd$name, "distribution: parmameters =", object$parms) else pprint <- paste(sd$name, "distribution") ## number of observations ## (incorporating "bug fix" change for $y in survival 2.42-7) surv_table <- function(y) { if(!inherits(y, "Surv")) y <- y$y type <- attr(y, "type") if(is.null(type) || (type == "left" && any(y[, 2L] > 1))) type <- "old" y <- switch(type, "left" = 2 - y[, 2L], "interval" = y[, 3L], y[, 2L] ) table(factor(y, levels = c(2, 1, 0, 3), labels = c("Left-censored", "Uncensored", "Right-censored", "Interval-censored"))) } nobs <- surv_table(object$y) nobs <- c("Total" = sum(nobs), nobs[1:3]) rval <- object[match(c("call", "df", "loglik", "iter", "na.action", "idf", "scale"), names(object), nomatch = 0)] rval <- c(rval, list(coefficients = coef, correlation = correlation, symbolic.cor = symbolic.cor, parms = pprint, n = nobs, wald = wald)) class(rval) <- "summary.tobit" return(rval) } print.summary.tobit <- function(x, digits = max(3, getOption("digits") - 3), ...) { ## call cat("\nCall:\n") cat(paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") ## observations and censoring if(length(x$na.action)) cat("Observations: (", naprint(x$na.action), ")\n", sep = "") else cat("Observations:\n") print(x$n) ## coefficients if(any(nas <- is.na(x$coefficients[,1]))) cat("\nCoefficients: (", sum(nas), " not defined because of singularities)\n", sep = "") else cat("\nCoefficients:\n") printCoefmat(x$coefficients, digits = digits, ...) ## scale if("Log(scale)" %in% rownames(x$coefficients)) cat("\nScale:", format(x$scale, digits = digits), "\n") else cat("\nScale fixed at", format(x$scale, digits = digits), "\n") ## logLik and Chi-squared test cat(paste("\n", x$parms, "\n", sep = "")) cat("Number of Newton-Raphson Iterations:", format(trunc(x$iter)), "\n") cat("Log-likelihood:", formatC(x$loglik[2], digits = digits), "on", x$df, "Df\n") if(!is.null(x$wald)) cat("Wald-statistic:", formatC(x$wald, digits = digits), "on", sum(x$df) - x$idf, "Df, p-value:", format.pval(pchisq(x$wald, sum(x$df) - x$idf, lower.tail = FALSE)), "\n") ## correlation correl <- x$correlation if (!is.null(correl)) { p <- NCOL(correl) if (p > 1) { cat("\nCorrelation of Coefficients:\n") if (is.logical(x$symbolic.cor) && x$symbolic.cor) { print(symnum(correl, abbr.colnames = NULL)) } else { correl <- format(round(correl, 2), nsmall = 2, digits = digits) correl[!lower.tri(correl)] <- "" print(correl[-1, -p, drop = FALSE], quote = FALSE) } } } ## return cat("\n") invisible(x) } ## as the apparent y ~ ... and actual Surv(y) ~ ... formula ## differ, some standard functionality has to be done by work-arounds formula.tobit <- function(x, ...) x$formula model.frame.tobit <- function(formula, ...) { Call <- formula$call Call[[1]] <- quote(stats::model.frame) Call <- Call[match(c("", "formula", "data", "weights", "subset", "na.action"), names(Call), 0)] dots <- list(...) nargs <- dots[match(c("data", "na.action", "subset"), names(dots), 0)] Call[names(nargs)] <- nargs Call$formula <- formula$formula env <- environment(formula$terms) if(is.null(env)) env <- parent.frame() eval(Call, env) } update.tobit <- function(object, formula., ..., evaluate = TRUE) { call <- object$call extras <- match.call(expand.dots = FALSE)$... if(!missing(formula.)) { ff <- formula(object) ff[[2]] <- call$formula[[2]] call$formula <- update.formula(ff, formula.) } if (length(extras) > 0) { existing <- !is.na(match(names(extras), names(call))) for (a in names(extras)[existing]) call[[a]] <- extras[[a]] if (any(!existing)) { call <- c(as.list(call), extras[!existing]) call <- as.call(call) } } if(evaluate) eval(call, parent.frame()) else call } waldtest.tobit <- function(object, ..., test = c("Chisq", "F"), name = NULL) { if(is.null(name)) name <- function(x) paste(deparse(x$call$formula), collapse="\n") waldtest.default(object, ..., test = match.arg(test), name = name) } lrtest.tobit <- function(object, ..., name = NULL) { if(is.null(name)) name <- function(x) paste(deparse(x$call$formula), collapse="\n") lrtest.default(object, ..., name = name) } linearHypothesis.tobit <- function(model, hypothesis.matrix, rhs = NULL, vcov. = NULL, ...) { if(is.null(vcov.)) { vcov. <- vcov(model) } else { if(is.function(vcov.)) vcov. <- vcov.(model) } if("Log(scale)" %in% rownames(vcov.)) vcov. <- vcov.[-nrow(vcov.), -ncol(vcov.)] model$formula <- model$call$formula car::linearHypothesis.default(model, hypothesis.matrix = hypothesis.matrix, rhs = rhs, vcov. = vcov., ...) } AER/R/dispersiontest.R0000644000176200001440000000404012415720605014264 0ustar liggesusersdispersiontest <- function(object, trafo = NULL, alternative = c("greater", "two.sided", "less")) { if(!inherits(object, "glm") || family(object)$family != "poisson") stop("only Poisson GLMs can be tested") alternative <- match.arg(alternative) otrafo <- trafo if(is.numeric(otrafo)) trafo <- function(x) x^otrafo y <- if(is.null(object$y)) model.response(model.frame(object)) else object$y yhat <- fitted(object) aux <- ((y - yhat)^2 - y)/yhat if(is.null(trafo)) { STAT <- sqrt(length(aux)) * mean(aux)/sd(aux) NVAL <- c(dispersion = 1) EST <- c(dispersion = mean(aux) + 1) } else { auxreg <- lm(aux ~ 0 + I(trafo(yhat)/yhat)) STAT <- as.vector(summary(auxreg)$coef[1,3]) NVAL <- c(alpha = 0) EST <- c(alpha = as.vector(coef(auxreg)[1])) } rval <- list(statistic = c(z = STAT), p.value = switch(alternative, "greater" = pnorm(STAT, lower.tail = FALSE), "two.sided" = pnorm(abs(STAT), lower.tail = FALSE)*2, "less" = pnorm(STAT)), estimate = EST, null.value = NVAL, alternative = alternative, method = switch(alternative, "greater" = "Overdispersion test", "two.sided" = "Dispersion test", "less" = "Underdispersion test"), data.name = deparse(substitute(object))) class(rval) <- "htest" return(rval) } ## NB. score tests a la DCluster now implemented in countreg ## ## TODO: ## LRT for Poi vs NB2. ## fix DCluster::test.nb.pois() and pscl::odTest() ## proposed interface: ## poistest(object, object2 = NULL) ## where either a "negbin" and a "glm" object have to be ## supplied or only one of them, then update via either ## cl <- object$call ## cl[[1]] <- as.name("glm.nb") ## cl$link <- object$family$link ## cl$family <- NULL ## or ## cl <- object$call ## cl[[1]] <- as.name("glm") ## cl$family <- call("poisson") ## cl$family$link <- object$family$link ## cl$link <- NULL ## cl$init.theta <- NULL ## and evaluate the call "cl" appropriately. AER/R/ivreg.R0000644000176200001440000004046013706377021012333 0ustar liggesusersivreg <- function(formula, instruments, data, subset, na.action, weights, offset, contrasts = NULL, model = TRUE, y = TRUE, x = FALSE, ...) { ## set up model.frame() call cl <- match.call() if(missing(data)) data <- environment(formula) mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "subset", "na.action", "weights", "offset"), names(mf), 0) mf <- mf[c(1, m)] mf$drop.unused.levels <- TRUE ## handle instruments for backward compatibility if(!missing(instruments)) { formula <- Formula::as.Formula(formula, instruments) cl$instruments <- NULL cl$formula <- formula(formula) } else { formula <- Formula::as.Formula(formula) } stopifnot(length(formula)[1] == 1L, length(formula)[2] %in% 1:2) ## try to handle dots in formula has_dot <- function(formula) inherits(try(terms(formula), silent = TRUE), "try-error") if(has_dot(formula)) { f1 <- formula(formula, rhs = 1) f2 <- formula(formula, lhs = 0, rhs = 2) if(!has_dot(f1) & has_dot(f2)) formula <- Formula::as.Formula(f1, update(formula(formula, lhs = 0, rhs = 1), f2)) } ## call model.frame() mf$formula <- formula mf[[1]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) ## extract response, terms, model matrices Y <- model.response(mf, "numeric") mt <- terms(formula, data = data) mtX <- terms(formula, data = data, rhs = 1) X <- model.matrix(mtX, mf, contrasts) if(length(formula)[2] < 2L) { mtZ <- NULL Z <- NULL } else { mtZ <- delete.response(terms(formula, data = data, rhs = 2)) Z <- model.matrix(mtZ, mf, contrasts) } ## weights and offset weights <- model.weights(mf) offset <- model.offset(mf) if(is.null(offset)) offset <- 0 if(length(offset) == 1) offset <- rep(offset, NROW(Y)) offset <- as.vector(offset) ## call default interface rval <- ivreg.fit(X, Y, Z, weights, offset, ...) ## enhance information stored in fitted model object rval$call <- cl rval$formula <- formula(formula) rval$terms <- list(regressors = mtX, instruments = mtZ, full = mt) rval$na.action <- attr(mf, "na.action") rval$levels <- .getXlevels(mt, mf) rval$contrasts <- list(regressors = attr(X, "contrasts"), instruments = attr(Z, "contrasts")) if(model) rval$model <- mf if(y) rval$y <- Y if(x) rval$x <- list(regressors = X, instruments = Z, projected = rval$x) else rval$x <- NULL class(rval) <- "ivreg" return(rval) } ivreg.fit <- function(x, y, z, weights, offset, ...) { ## model dimensions n <- NROW(y) p <- ncol(x) ## defaults if(missing(z)) z <- NULL if(missing(weights)) weights <- NULL if(missing(offset)) offset <- rep(0, n) ## sanity checks stopifnot(n == nrow(x)) if(!is.null(z)) stopifnot(n == nrow(z)) if(!is.null(weights)) stopifnot(n == NROW(weights)) stopifnot(n == NROW(offset)) ## project regressors x on image of instruments z if(!is.null(z)) { if(ncol(z) < ncol(x)) warning("more regressors than instruments") auxreg <- if(is.null(weights)) lm.fit(z, x, ...) else lm.wfit(z, x, weights, ...) xz <- as.matrix(auxreg$fitted.values) # pz <- z %*% chol2inv(auxreg$qr$qr) %*% t(z) colnames(xz) <- colnames(x) } else { xz <- x # pz <- diag(NROW(x)) # colnames(pz) <- rownames(pz) <- rownames(x) } ## main regression fit <- if(is.null(weights)) lm.fit(xz, y, offset = offset, ...) else lm.wfit(xz, y, weights, offset = offset, ...) ## model fit information ok <- which(!is.na(fit$coefficients)) yhat <- drop(x[, ok, drop = FALSE] %*% fit$coefficients[ok]) names(yhat) <- names(y) res <- y - yhat ucov <- chol2inv(fit$qr$qr[1:length(ok), 1:length(ok), drop = FALSE]) colnames(ucov) <- rownames(ucov) <- names(fit$coefficients[ok]) rss <- if(is.null(weights)) sum(res^2) else sum(weights * res^2) ## hat <- diag(x %*% ucov %*% t(x) %*% pz) ## names(hat) <- rownames(x) rval <- list( coefficients = fit$coefficients, residuals = res, fitted.values = yhat, weights = weights, offset = if(identical(offset, rep(0, n))) NULL else offset, n = n, nobs = if(is.null(weights)) n else sum(weights > 0), rank = fit$rank, df.residual = fit$df.residual, cov.unscaled = ucov, sigma = sqrt(rss/fit$df.residual), ## NOTE: Stata divides by n here and uses z tests rather than t tests... # hatvalues = hat, x = xz ) return(rval) } vcov.ivreg <- function(object, ...) object$sigma^2 * object$cov.unscaled bread.ivreg <- function (x, ...) x$cov.unscaled * x$nobs estfun.ivreg <- function (x, ...) { xmat <- model.matrix(x) if(any(alias <- is.na(coef(x)))) xmat <- xmat[, !alias, drop = FALSE] wts <- weights(x) if(is.null(wts)) wts <- 1 res <- residuals(x) rval <- as.vector(res) * wts * xmat attr(rval, "assign") <- NULL attr(rval, "contrasts") <- NULL return(rval) } hatvalues.ivreg <- function(model, ...) { xz <- model.matrix(model, component = "projected") x <- model.matrix(model, component = "regressors") z <- model.matrix(model, component = "instruments") solve_qr <- function(x) chol2inv(qr.R(qr(x))) diag(x %*% solve_qr(xz) %*% t(x) %*% z %*% solve_qr(z) %*% t(z)) } terms.ivreg <- function(x, component = c("regressors", "instruments"), ...) x$terms[[match.arg(component)]] model.matrix.ivreg <- function(object, component = c("projected", "regressors", "instruments"), ...) { component <- match.arg(component, c("projected", "regressors", "instruments")) if(!is.null(object$x)) rval <- object$x[[component]] else if(!is.null(object$model)) { X <- model.matrix(object$terms$regressors, object$model, contrasts = object$contrasts$regressors) Z <- if(is.null(object$terms$instruments)) NULL else model.matrix(object$terms$instruments, object$model, contrasts = object$contrasts$instruments) w <- weights(object) XZ <- if(is.null(Z)) { X } else if(is.null(w)) { lm.fit(Z, X)$fitted.values } else { lm.wfit(Z, X, w)$fitted.values } if(is.null(dim(XZ))) { XZ <- matrix(XZ, ncol = 1L, dimnames = list(names(XZ), colnames(X))) attr(XZ, "assign") <- attr(X, "assign") } rval <- switch(component, "regressors" = X, "instruments" = Z, "projected" = XZ) } else stop("not enough information in fitted model to return model.matrix") return(rval) } predict.ivreg <- function(object, newdata, na.action = na.pass, ...) { if(missing(newdata)) fitted(object) else { mf <- model.frame(delete.response(object$terms$full), newdata, na.action = na.action, xlev = object$levels) X <- model.matrix(delete.response(object$terms$regressors), mf, contrasts = object$contrasts$regressors) ok <- !is.na(object$coefficients) drop(X[, ok, drop = FALSE] %*% object$coefficients[ok]) } } print.ivreg <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:\n", deparse(x$call), "\n\n", sep = "") cat("Coefficients:\n") print.default(format(coef(x), digits = digits), print.gap = 2, quote = FALSE) cat("\n") invisible(x) } summary.ivreg <- function(object, vcov. = NULL, df = NULL, diagnostics = FALSE, ...) { ## weighted residuals res <- object$residuals y <- object$fitted.values + res n <- NROW(res) w <- object$weights if(is.null(w)) w <- rep(1, n) res <- res * sqrt(w) ## R-squared rss <- sum(res^2) if(attr(object$terms$regressors, "intercept")) { tss <- sum(w * (y - weighted.mean(y, w))^2) dfi <- 1 } else { tss <- sum(w * y^2) dfi <- 0 } r.squared <- 1 - rss/tss adj.r.squared <- 1 - (1 - r.squared) * ((n - dfi)/object$df.residual) ## degrees of freedom (for z vs. t test) if(is.null(df)) df <- object$df.residual if(!is.finite(df)) df <- 0 if(df > 0 & (df != object$df.residual)) { df <- object$df.residual } ## covariance matrix if(is.null(vcov.)) vc <- vcov(object) else { if(is.function(vcov.)) vc <- vcov.(object) else vc <- vcov. } ## Wald test of each coefficient cf <- lmtest::coeftest(object, vcov. = vc, df = df, ...) attr(cf, "method") <- NULL class(cf) <- "matrix" ## Wald test of all coefficients Rmat <- if(attr(object$terms$regressors, "intercept")) cbind(0, diag(length(na.omit(coef(object)))-1)) else diag(length(na.omit(coef(object)))) waldtest <- car::linearHypothesis(object, Rmat, vcov. = vcov., test = ifelse(df > 0, "F", "Chisq"), singular.ok = TRUE) waldtest <- c(waldtest[2,3], waldtest[2,4], abs(waldtest[2,2]), if(df > 0) waldtest[2,1] else NULL) ## diagnostic tests diag <- if(diagnostics) ivdiag(object, vcov. = vcov.) else NULL rval <- list( call = object$call, terms = object$terms, residuals = res, weights <- object$weights, coefficients = cf, sigma = object$sigma, df = c(object$rank, if(df > 0) df else Inf, object$rank), ## aliasing r.squared = r.squared, adj.r.squared = adj.r.squared, waldtest = waldtest, vcov = vc, diagnostics = diag) class(rval) <- "summary.ivreg" return(rval) } print.summary.ivreg <- function(x, digits = max(3, getOption("digits") - 3), signif.stars = getOption("show.signif.stars"), ...) { cat("\nCall:\n") cat(paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") cat(if(!is.null(x$weights) && diff(range(x$weights))) "Weighted ", "Residuals:\n", sep = "") if(NROW(x$residuals) > 5L) { nam <- c("Min", "1Q", "Median", "3Q", "Max") rq <- if(length(dim(x$residuals)) == 2) structure(apply(t(x$residuals), 1, quantile), dimnames = list(nam, dimnames(x$residuals)[[2]])) else structure(quantile(x$residuals), names = nam) print(rq, digits = digits, ...) } else { print(x$residuals, digits = digits, ...) } cat("\nCoefficients:\n") printCoefmat(x$coefficients, digits = digits, signif.stars = signif.stars, signif.legend = signif.stars & is.null(x$diagnostics), na.print = "NA", ...) if(!is.null(x$diagnostics)) { cat("\nDiagnostic tests:\n") printCoefmat(x$diagnostics, cs.ind = 1L:2L, tst.ind = 3L, has.Pvalue = TRUE, P.values = TRUE, digits = digits, signif.stars = signif.stars, na.print = "NA", ...) } cat("\nResidual standard error:", format(signif(x$sigma, digits)), "on", x$df[2L], "degrees of freedom\n") cat("Multiple R-Squared:", formatC(x$r.squared, digits = digits)) cat(",\tAdjusted R-squared:", formatC(x$adj.r.squared, digits = digits), "\nWald test:", formatC(x$waldtest[1L], digits = digits), "on", x$waldtest[3L], if(length(x$waldtest) > 3L) c("and", x$waldtest[4L]) else NULL, "DF, p-value:", format.pval(x$waldtest[2L], digits = digits), "\n\n") invisible(x) } anova.ivreg <- function(object, object2, test = "F", vcov = NULL, ...) { rval <- waldtest(object, object2, test = test, vcov = vcov) if(is.null(vcov)) { head <- attr(rval, "heading") head[1] <- "Analysis of Variance Table\n" rss <- sapply(list(object, object2), function(x) sum(residuals(x)^2)) dss <- c(NA, -diff(rss)) rval <- cbind(rval, cbind("RSS" = rss, "Sum of Sq" = dss))[,c(1L, 5L, 2L, 6L, 3L:4L)] attr(rval, "heading") <- head class(rval) <- c("anova", "data.frame") } return(rval) } update.ivreg <- function (object, formula., ..., evaluate = TRUE) { if(is.null(call <- getCall(object))) stop("need an object with call component") extras <- match.call(expand.dots = FALSE)$... if(!missing(formula.)) call$formula <- formula(update(Formula(formula(object)), formula.)) if(length(extras)) { existing <- !is.na(match(names(extras), names(call))) for (a in names(extras)[existing]) call[[a]] <- extras[[a]] if(any(!existing)) { call <- c(as.list(call), extras[!existing]) call <- as.call(call) } } if(evaluate) eval(call, parent.frame()) else call } ivdiag <- function(obj, vcov. = NULL) { ## extract data y <- model.response(model.frame(obj)) x <- model.matrix(obj, component = "regressors") z <- model.matrix(obj, component = "instruments") w <- weights(obj) ## names of "regressors" and "instruments" xnam <- colnames(x) znam <- colnames(z) ## relabel "instruments" to match order from "regressors" fx <- attr(terms(obj, component = "regressors"), "factors") fz <- attr(terms(obj, component = "instruments"), "factors") fz <- fz[c(rownames(fx)[rownames(fx) %in% rownames(fz)], rownames(fz)[!(rownames(fz) %in% rownames(fx))]), , drop = FALSE] nz <- apply(fz > 0, 2, function(x) paste(rownames(fz)[x], collapse = ":")) nz <- nz[names(nz) != nz] nz <- nz[nz %in% colnames(fx)] if(length(nz) > 0L) znam[names(nz)] <- nz ## endogenous/instrument variables endo <- which(!(xnam %in% znam)) inst <- which(!(znam %in% xnam)) if((length(endo) <= 0L) | (length(inst) <= 0L)) stop("no endogenous/instrument variables") ## return value rval <- matrix(NA, nrow = length(endo) + 2L, ncol = 4L) colnames(rval) <- c("df1", "df2", "statistic", "p-value") rownames(rval) <- c(if(length(endo) > 1L) paste0("Weak instruments (", xnam[endo], ")") else "Weak instruments", "Wu-Hausman", "Sargan") ## convenience functions lmfit <- function(x, y, w = NULL) { rval <- if(is.null(w)) lm.fit(x, y) else lm.wfit(x, y, w) rval$x <- x rval$y <- y return(rval) } rss <- function(obj, weights = NULL) if(is.null(weights)) sum(obj$residuals^2) else sum(weights * obj$residuals^2) wald <- function(obj0, obj1, vcov. = NULL, weights = NULL) { df <- c(obj1$rank - obj0$rank, obj1$df.residual) if(!is.function(vcov.)) { w <- ((rss(obj0, w) - rss(obj1, w)) / df[1L]) / (rss(obj1, w)/df[2L]) } else { if(NCOL(obj0$coefficients) > 1L) { cf0 <- structure(as.vector(obj0$coefficients), .Names = c(outer(rownames(obj0$coefficients), colnames(obj0$coefficients), paste, sep = ":"))) cf1 <- structure(as.vector(obj1$coefficients), .Names = c(outer(rownames(obj1$coefficients), colnames(obj1$coefficients), paste, sep = ":"))) } else { cf0 <- obj0$coefficients cf1 <- obj1$coefficients } cf0 <- na.omit(cf0) cf1 <- na.omit(cf1) ovar <- which(!(names(cf1) %in% names(cf0))) vc <- vcov.(lm(obj1$y ~ 0 + obj1$x, weights = w)) w <- t(cf1[ovar]) %*% solve(vc[ovar,ovar]) %*% cf1[ovar] w <- w / df[1L] } pval <- pf(w, df[1L], df[2L], lower.tail = FALSE) c(df, w, pval) } # Test for weak instruments for(i in seq_along(endo)) { aux0 <- lmfit(z[, -inst, drop = FALSE], x[, endo[i]], w) aux1 <- lmfit(z, x[, endo[i]], w) rval[i, ] <- wald(aux0, aux1, vcov. = vcov., weights = w) } ## Wu-Hausman test for endogeneity if(length(endo) > 1L) aux1 <- lmfit(z, x[, endo], w) xfit <- as.matrix(aux1$fitted.values) colnames(xfit) <- paste("fit", colnames(xfit), sep = "_") auxo <- lmfit( x, y, w) auxe <- lmfit(cbind(x, xfit), y, w) rval[nrow(rval) - 1L, ] <- wald(auxo, auxe, vcov. = vcov., weights = w) ## Sargan test of overidentifying restrictions r <- residuals(obj) auxs <- lmfit(z, r, w) rssr <- if(is.null(w)) sum((r - mean(r))^2) else sum(w * (r - weighted.mean(r, w))^2) rval[nrow(rval), 1L] <- length(inst) - length(endo) if(rval[nrow(rval), 1L] > 0L) { rval[nrow(rval), 3L] <- length(r) * (1 - rss(auxs, w)/rssr) rval[nrow(rval), 4L] <- pchisq(rval[nrow(rval), 3L], rval[nrow(rval), 1L], lower.tail = FALSE) } return(rval) } ## If #Instruments = #Regressors then ## b = (Z'X)^{-1} Z'y ## and solves the estimating equations ## Z' (y - X beta) = 0 ## For ## cov(y) = Omega ## the following holds ## cov(b) = (Z'X)^{-1} Z' Omega Z (X'Z)^{-1} ## ## Generally: ## b = (X' P_Z X)^{-1} X' P_Z y ## with estimating equations ## X' P_Z (y - X beta) = 0 ## where P_Z is the usual projector (hat matrix wrt Z) and ## cov(b) = (X' P_Z X)^{-1} X' P_Z Omega P_Z X (X' P_Z X)^{-1} ## Thus meat is X' P_Z Omega P_Z X and bread i (X' P_Z X)^{-1} ## ## See ## http://www.stata.com/support/faqs/stat/2sls.html AER/R/coeftest-methods.R0000644000176200001440000000472514020053642014466 0ustar liggesuserscoeftest.multinom <- function(x, vcov. = NULL, df = NULL, ..., save = FALSE) { ## extract coefficients est <- coef(x) if(!is.null(dim(est))) { est <- structure(as.vector(t(est)), names = as.vector(t(outer(rownames(est), colnames(est), paste, sep = ":")))) } ## process vcov. if(is.null(vcov.)) vc <- vcov(x) else { if(is.function(vcov.)) vc <- vcov.(x) else vc <- vcov. } se <- sqrt(diag(vc)) tval <- as.vector(est)/se ## process degrees of freedom if(is.null(df)) df <- Inf if(is.finite(df) && df > 0) { pval <- 2 * pt(abs(tval), df = df, lower.tail = FALSE) cnames <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)") mthd <- "t" } else { pval <- 2 * pnorm(abs(tval), lower.tail = FALSE) cnames <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)") mthd <- "z" } rval <- cbind(est, se, tval, pval) colnames(rval) <- cnames class(rval) <- "coeftest" attr(rval, "method") <- paste(mthd, "test of coefficients") attr(rval, "df") <- df attr(rval, "logLik") <- logLik(x) if(save) attr(rval, "object") <- x return(rval) } coeftest.polr <- function(x, vcov. = NULL, df = NULL, ..., save = FALSE) { ## extract coefficients est <- c(x$coefficients, x$zeta) ## process vcov. if(is.null(vcov.)) vc <- vcov(x) else { if(is.function(vcov.)) vc <- vcov.(x) else vc <- vcov. } se <- sqrt(diag(vc)) tval <- as.vector(est)/se ## process degrees of freedom if(is.null(df)) df <- Inf if(is.finite(df) && df > 0) { pval <- 2 * pt(abs(tval), df = df, lower.tail = FALSE) cnames <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)") mthd <- "t" } else { pval <- 2 * pnorm(abs(tval), lower.tail = FALSE) cnames <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)") mthd <- "z" } rval <- cbind(est, se, tval, pval) colnames(rval) <- cnames class(rval) <- "coeftest" attr(rval, "method") <- paste(mthd, "test of coefficients") attr(rval, "df") <- df attr(rval, "nobs") <- nobs(x) attr(rval, "logLik") <- logLik(x) if(save) attr(rval, "object") <- x return(rval) } lrtest.fitdistr <- function(object, ..., name = NULL) { if(is.null(name)) name <- function(x) if(is.null(names(x$estimate))) { paste(round(x$estimate, digits = max(getOption("digits") - 3, 2)), collapse = ", ") } else { paste(names(x$estimate), "=", round(x$estimate, digits = max(getOption("digits") - 3, 2)), collapse = ", ") } lrtest.default(object, ..., name = name) } AER/MD50000644000176200001440000003324414557444472011217 0ustar liggesusers6a275fce880ab278929367e5dcd1f9f6 *DESCRIPTION 2a204f006caa299b52cae788a9d49849 *NAMESPACE e00fca26ae938965bf051c68172cbb03 *NEWS 9471c81ab1fee37c18893e82425184a9 *R/coeftest-methods.R c939ea5a5fc99674637505396b5fc14c *R/dispersiontest.R 6011128a4cac257b70a90b3e9c641758 *R/ivreg.R 3e21e992c6003f030449175a6099e532 *R/tobit.R 8faf250d78a120ba4c7ea2186efddd24 *build/partial.rdb 3a26a5b56fa17b65a4fe7c391ae70578 *build/vignette.rds 9f0f77339aed04276f88ebe76c9acb27 *data/Affairs.rda 41a98921a31c201dbcf471cc36bf9b47 *data/ArgentinaCPI.rda 123fd74789033668a5fbd116a61208be *data/BankWages.rda 947cf2e34085b7a8b049e35e497b3141 *data/BenderlyZwick.rda a6cd31e8d603a4f9996c98aa168f9036 *data/BondYield.rda 5d88c59f43f535a4ddf4399daf9388d6 *data/CASchools.rda 076eff548a3d4eb26b855950f62dbf9a *data/CPS1985.rda 458faf9033b213af3471dd7a7db18294 *data/CPS1988.rda d3ec2d49054a4fb8001ca65871dbcfde *data/CPSSW04.rda e1495b8fcbe82c423ac27b4d6d30cf23 *data/CPSSW3.rda b6eaf10bc7abeb60ba23ce4a6c834f3f *data/CPSSW8.rda 8a0807520bd988ab45bdf8c92aba60c6 *data/CPSSW9204.rda 0586ec8b62595a91288f9c2bc80dc909 *data/CPSSW9298.rda 9720f9acde143c06c97548fa917717f8 *data/CPSSWEducation.rda 8c222a0127ef2d8094f9ec7cc6ecc1a5 *data/CartelStability.rda c428a8133c3b5f468117eea927cd16f6 *data/ChinaIncome.rda d1ad565c1a921d79014acad39dd52567 *data/CigarettesB.rda ce6f32ace284969da459e9b24955b9c1 *data/CigarettesSW.rda e9243e86c1cf174d9f650f5bac1bc2ac *data/CollegeDistance.rda eafa1b298787db774066b657327d8c27 *data/ConsumerGood.rda 2768b2f396f9a720e79c7c06ff0a5086 *data/CreditCard.rda 6c9fde108ac91c54b29c0393633318ba *data/DJFranses.rda dc0270ca86fe6eb8ce85e2471b7e4dd6 *data/DJIA8012.rda 23fa4872086dcafb752d02ab31532348 *data/DoctorVisits.rda 7bcfa94c20ea596dd785709c785005b6 *data/DutchAdvert.rda 2f4204883029135bb632b848d05aac9f *data/DutchSales.rda 609f845b520cf5f361dc6c2226939980 *data/Electricity1955.rda 1cc3c6f43a0fa7a2e13c863db53187cd *data/Electricity1970.rda 26a262452f5390dc9dd9a6bc01749de8 *data/EquationCitations.rda 01bc843f9491bd0eed5a8fc151ef7fd5 *data/Equipment.rda 40b7c35b01522498fe95a2f717bcee31 *data/EuroEnergy.rda 008db2e6e2d1800a1729b73fdc675554 *data/Fatalities.rda 4c917304ea1577c22041d373f000bc29 *data/Fertility.rda 0e2b50b0c1cc6728735b0ec7fcd685df *data/Fertility2.rda fbf85bc4c701c4bbb19fa57ac765c9e7 *data/FrozenJuice.rda dd2b7ff4897c0968356589e34eb01de8 *data/GSOEP9402.rda bfc6f88a27e804673b66042eafa4b2bc *data/GSS7402.rda 2a1fe612bd8e5c6758bbbac55b5ffd2d *data/GermanUnemployment.rda 077889811d8e699232cfd6e1bca4cdf4 *data/GoldSilver.rda 8d67d925ba177175859280a977d248dd *data/GrowthDJ.rda a9f4ad6b93062ff6198b2e7c361130ef *data/GrowthSW.rda 43c9171d4220b6289bf5c7fdce9ee204 *data/Grunfeld.rda 0803d4810b5ed7fa3c213e394a5c7c3c *data/Guns.rda 121d94cc1554ebfc19a10f086c7c2bcc *data/HMDA.rda 18d2279136ef5479ec8c0ad9e3ddbeec *data/HealthInsurance.rda b2b25b39e75f3c62c0c57e6bfbb41333 *data/HousePrices.rda 0205a3626ae926fe0ae9a1854f8ed2f3 *data/Journals.rda 2fcdae0c4af7248925196bce171cf9e9 *data/KleinI.rda eb20a5f07cd22bf986ee5294e2759c15 *data/Longley.rda 5309e0f139c1b82be0d2199af3f4b6d1 *data/MASchools.rda eab529c0098629aa0892096f7590e59a *data/MSCISwitzerland.rda 4f3f92a9d1a6ecae0653713b152c3adc *data/ManufactCosts.rda c05ad4c4d555da474748856c7a3409c3 *data/MarkDollar.rda e5fe02e9c3ba501cac74e38f52fd4892 *data/MarkPound.rda c4ae707c937ee5fa2dda997b312cfc72 *data/Medicaid1986.rda f4779ba4ae2a78e7214a78c8d89cb66c *data/Mortgage.rda 1188eedd3ccd03501a0bb2eb3376b7f0 *data/MotorCycles.rda 892c4975d447ddb9b98e6a926587120d *data/MotorCycles2.rda 771e04f28271c0bd26f3d771eab76bb5 *data/Municipalities.rda 6795cf623a209e794d30f9a6b86a770e *data/MurderRates.rda 3be2b30fcb42e3be0e8250dc7daf3b81 *data/NMES1988.rda 1635fe903dc11bd7507d612e4791c1a4 *data/NYSESW.rda b5b4629ca98c2cd4f1d3de99987b6a00 *data/NaturalGas.rda 21e9f7aa7ba2bf911ee538de214194a2 *data/OECDGas.rda 020f8a9b656404acb34275a07345f5aa *data/OECDGrowth.rda d18835555f9b449047c9f5acc5b5d2cd *data/OlympicTV.rda 1d76bf8bc83c236e7dcfd77f3cd38592 *data/OrangeCounty.rda 0574885be93fedbde9272ea83e179a75 *data/PSID1976.rda d967b5d30db84136ffbd2fe18cff168f *data/PSID1982.rda 3b8182edc5e1ee76fa59cac49440c46d *data/PSID7682.rda 010b366c39e3bd67b6a66518a0504f86 *data/Parade2005.rda 5696e9e2673904b3099a6445d39c16d6 *data/PepperPrice.rda 5ce4fe93d8a578b95b5322ea1ef27450 *data/PhDPublications.rda ef6ca3f69de499e3411b61c9a1d7b720 *data/ProgramEffectiveness.rda 5aa982d68dcac4886c497bab5427729d *data/RecreationDemand.rda 3d0c3356888e89e9e0af26fb39192062 *data/ResumeNames.rda d3258500acad93cb32880aadf0ab2a9a *data/SIC33.rda 829b337f51e8925e7a59492cb46bfa3f *data/STAR.rda 2cb5504f2e1f2d226dff64246fa4dbc7 *data/ShipAccidents.rda 7f2c0c564b152c82e286a39b6e490954 *data/SmokeBan.rda cdc734941e1bb171acd7f9877d3b3de3 *data/SportsCards.rda c6d3700f42cefac0027372f80f52bef1 *data/StrikeDuration.rda e5f2036d0ae94d20018482422943f65d *data/SwissLabor.rda a30ea1adc13a269b674fcb09de3ba6f2 *data/TeachingRatings.rda 91307f5558d0c14a6d4b401cc0368c5d *data/TechChange.rda 82d46c73d3380587e9d28a61cd312d56 *data/TradeCredit.rda a33185a01fdb0417317a7e14082aea87 *data/TravelMode.rda 00b5e74118f5c56370e6027acce558a1 *data/UKInflation.rda 31f7216a0b2a5302dac2cbad8909e5dd *data/UKNonDurables.rda 7927875617e77e61733bfbe7e35d8ada *data/USAirlines.rda b59357c6f8dd862b281262ffaf2e5cad *data/USConsump1950.rda 6e0915f788418f7f67a40b7169130780 *data/USConsump1979.rda 488fae156ca6ba1c29af56d23bf1713e *data/USConsump1993.rda 2bca824180e3752d59a56886d0a6013f *data/USCrudes.rda cc5268cc3d60b523e2b9d98cd1b6aac3 *data/USGasB.rda cecb5e0cdfd925b1fffa71fce6fe0b07 *data/USGasG.rda f17256ac29f9c41f80f746a2c6dd8e13 *data/USInvest.rda 553dcf950e937dafb944194cd3b2dae5 *data/USMacroB.rda 51a278334c1a0c31ebfefde0178956c9 *data/USMacroG.rda bb82e1fcde392ed328ca62dc031668f5 *data/USMacroSW.rda 519de42d8c77dfffa8d8769acc2c7a83 *data/USMacroSWM.rda 0a66053091d45f3978fa34a09c497a0c *data/USMacroSWQ.rda 513698cbc656a481a9d87712e8c1a58b *data/USMoney.rda 73b1f48f8a55ebae11d1cbfd31134df0 *data/USProdIndex.rda 48dd507f8c273ef877f1e30a51842ad6 *data/USSeatBelts.rda 036abc329fd1a474f6b1b0e18b28e135 *data/USStocksSW.rda 717f3eba36d91c0e7e48d4f8715abffc *data/WeakInstrument.rda 78a5e0fe8f528aeb571b7d5501ebcfb0 *data/datalist c71c48f13243f39d8c1443d52f6525cd *demo/00Index d97965b7e0b6c86be84644aeb506dd83 *demo/Ch-Basics.R 0310dc1872229bebd805012f37305868 *demo/Ch-Intro.R ce79593f13ea25f8dcea3e8b0e86c6c0 *demo/Ch-LinearRegression.R 65a4a96967a805ae6e3bc7544b6d2bef *demo/Ch-Microeconometrics.R 24ffe6baf6f33cbe2bce4320f59b97e6 *demo/Ch-Programming.R 35d8d28d238efa520dbbc50785a55cc8 *demo/Ch-TimeSeries.R 3e90c714c97233d018c6b616fc7c61e4 *demo/Ch-Validation.R 6822193aad735cef795f2a5e0528fbdb *inst/CITATION d320a0b0d4260e95b7f54aa7328e0d1d *inst/doc/AER.R b13a8a569732c34ca62f226d55855166 *inst/doc/AER.Rnw 81ff2cb537b7baf8f8a58a0e1cf6c901 *inst/doc/AER.pdf 55645a67fdf53c524f1352c9ba6a5910 *inst/doc/Sweave-journals.R 043acb4ba18e012bfc0c60717156d385 *inst/doc/Sweave-journals.Rnw cf317ad4cfa9db4aabe76d5192e74993 *inst/doc/Sweave-journals.pdf b96c8a347a604768948d9a1392cd27eb *man/Affairs.Rd 4afb2c56e98ee17f412cb0ad3786167b *man/ArgentinaCPI.Rd b911b4a5e5e2f1d060d61592ea50390f *man/Baltagi2002.Rd e37311e3919b8a04e12ffd43e8076b98 *man/BankWages.Rd 68f5687b406278daed551ccb242a22e6 *man/BenderlyZwick.Rd 1d975c5e8304a06f5720df300853be77 *man/BondYield.Rd efafc0f9f858f879f259c0453fe66949 *man/CASchools.Rd 356cdd226d939950a6d9c9effc7016f8 *man/CPS1985.Rd 33afaa68305a52e5d40cd2fcd37d9d06 *man/CPS1988.Rd 79961590f8133efd8fb6436eb5317914 *man/CPSSW.Rd 8c1331862837f29bf6af799a753f0eee *man/CameronTrivedi1998.Rd 171262b9838be0f53717c7849d148067 *man/CartelStability.Rd 30a7589b2ba71fbd36977ca87e913860 *man/ChinaIncome.Rd 368ec6cb5a18380b0cd8e8f1cd37eca1 *man/CigarettesB.Rd affe6dcd92ffa082410f1c516b95d809 *man/CigarettesSW.Rd 6e771bcd452e2db721d6f0e7dcc2ea77 *man/CollegeDistance.Rd aca94e85997fd6c37cdd4ea0520009d6 *man/ConsumerGood.Rd 48b0c0675a1ad16c49febd06219da23a *man/CreditCard.Rd ea5a4e5332109264bd36abea390b08fe *man/DJFranses.Rd f9cd5f18fc57fb3219d54c5c2270ec18 *man/DJIA8012.Rd 29018b2dcd9507d124ebdc6c5f1a15d2 *man/DoctorVisits.Rd 009e80c3948817c6ae87792164c4a8ff *man/DutchAdvert.Rd 7289cda1e03ae07c24773ab8f922776e *man/DutchSales.Rd 772379e6839ad95dde1b9a2125100440 *man/Electricity1955.Rd 91cbd4053c16dbe3969f991d86a9014a *man/Electricity1970.Rd 7918c268d47622b8ae73e6428d035be7 *man/EquationCitations.Rd be704554f11b7638a87d60b8862a2d0d *man/Equipment.Rd ab5f2a4d9ad6a0a7534a9b8eccbee1f3 *man/EuroEnergy.Rd 2d29bdd8ecbe35f4ce4b5c0fb75713ff *man/Fatalities.Rd 7c7eefb57dd2dbdb2fb4e1ca10d8aeae *man/Fertility.Rd 904781049293273a1ab2d20d8d448da2 *man/Franses1998.Rd 8715864b32ea582bba9c5edd1910fc1a *man/FrozenJuice.Rd 0cf54cd36bb440e068e38b9294e8a72f *man/GSOEP9402.Rd 8d31eb8a7da82d81ba1b6908e6c229a6 *man/GSS7402.Rd 7bf20d8a813160c889fd7697e63f8bb2 *man/GermanUnemployment.Rd 18440f0c0bde63d102a32279f72bb959 *man/GoldSilver.Rd 1e90fdcb3324c6e722f4acec684410d8 *man/Greene2003.Rd 52a150f4696edd6dcd103977288262d9 *man/GrowthDJ.Rd bf5417c5c842b9ab575851990514dfb8 *man/GrowthSW.Rd 871eb5944f6ef6db129c6e3680197350 *man/Grunfeld.Rd cd59b0ae7e1d400555b489394ee5b485 *man/Guns.Rd 11c77404c24500db3e75ad6d724d9bf6 *man/HMDA.Rd cca440199e06e60a28acf081b8e80404 *man/HealthInsurance.Rd e8970093ff06e7b7433e12a66c5aad05 *man/HousePrices.Rd 4493cdc3424ba74f198a64cf359c3fb2 *man/Journals.Rd 09814e707160457c7a693201a1e62505 *man/KleinI.Rd e6ad7e6754fb69a38c9508776093c7fc *man/Longley.Rd e2e9097328a005d747b8037a24e04719 *man/MASchools.Rd 5e1a681614ea9891b5b3da4fb8a5d665 *man/MSCISwitzerland.Rd b1b70cf53f59d5fb6e40e1bea100f779 *man/ManufactCosts.Rd 99b0b51676d2bbad6a1e58b72f733bb6 *man/MarkDollar.Rd 9fe1251da667b3b1bd2ee947c567947a *man/MarkPound.Rd 04c4035d0d1fa2bef88736e76c2d66fe *man/Medicaid1986.Rd 25cd0df43df78e3c99b8dbf2da16f278 *man/Mortgage.Rd 958a617bff70fb950d343595676fb5ee *man/MotorCycles.Rd 8a1e9921219fc10d6c5f50174fd03e34 *man/MotorCycles2.Rd dc1b52380811dc1866343e32b41816d2 *man/Municipalities.Rd 0b130af0c82280b23c0c00e168e6db1a *man/MurderRates.Rd 65eef242c043398019b47a26db57c9b1 *man/NMES1988.Rd 48cf1d95ee988d3476aff58db7befaa2 *man/NYSESW.Rd 2d8fcd90fb4bec614c47adb396fe1482 *man/NaturalGas.Rd 62129ee56cd2fc2eb4d0d44e6930de98 *man/OECDGas.Rd 14da9bf41b8092ea25c2afe28e20daa4 *man/OECDGrowth.Rd 8f90a553c913136affcdc5772104ad13 *man/OlympicTV.Rd 8c2ae32e2201320f7c29ad34beb124f2 *man/OrangeCounty.Rd 56ef53384cbc4041345be5ea46176561 *man/PSID1976.Rd d066e983510ba1d4b50f046967866b96 *man/PSID1982.Rd 9cd6e800b81a4b9706cb56ce8150bda5 *man/PSID7682.Rd 72528b82fe338303b8d41040fe4e9252 *man/Parade2005.Rd 1e05de355e313a95a88bb30f6bde906e *man/PepperPrice.Rd ba8aaa29662bab54a0aac1c4c3f114c2 *man/PhDPublications.Rd 8b04bb595293cd5491af5509d971f7f7 *man/ProgramEffectiveness.Rd 7c54a16fc5ba1d457497426d55d7a749 *man/RecreationDemand.Rd 397a0086742c451a00fcd20a35104d55 *man/ResumeNames.Rd a775aaae7fb5c24105f9dd4b73f82262 *man/SIC33.Rd 2710b574b6e7c2139af2f37c8dd5dde8 *man/STAR.Rd 64ee7afe26d19ed4d711e1531b8cc29a *man/ShipAccidents.Rd 076205d8dfc49748020a5ef3aaf2c620 *man/SmokeBan.Rd 0eedb2f78160813ea189046c0f0b982e *man/SportsCards.Rd 56df4d14fafc4c0e732c1d59e7554cdc *man/StockWatson2007.Rd 5d0bb78b6345a5ea83a1e05686de5e71 *man/StrikeDuration.Rd d6939d092f785fc73e32cee26c3f2469 *man/SwissLabor.Rd 77af7a8927c3f56e0d7a28eed1a1abf9 *man/TeachingRatings.Rd 74e1b01d1526fe25a3bf8e28769423e4 *man/TechChange.Rd d9b29a0e0525d10e6a75ecb77b9b8c2f *man/TradeCredit.Rd 8159408da255052f89fb4a19fc7331c2 *man/TravelMode.Rd 56988ab8d351c26c56d666a1ab5dea1f *man/UKInflation.Rd c255f954fd83e016e09a74d941759037 *man/UKNonDurables.Rd 92befc24e8eb32072e10bdd6433422d0 *man/USAirlines.Rd 09899957b0cdc598ef4e93d5d21ccdf9 *man/USConsump1950.Rd 0ad05682337b40decb7ef438ccb78ec1 *man/USConsump1979.Rd a923cf8804954b72af618e76f76ef154 *man/USConsump1993.Rd 2d2feba31b114006b16e663212944135 *man/USCrudes.Rd 26c158f5f9e23835039be002bcaf5b28 *man/USGasB.Rd 1f138511f2f547449e6c742e34d8310a *man/USGasG.Rd 7f204499f59fa14d33d5e679ba678143 *man/USInvest.Rd 4b7cd39c93401ab570889d96d0ffefab *man/USMacroB.Rd f0398fc31c9fd1583d854d2a2d2cbef4 *man/USMacroG.Rd 5520ac8af1b0fc9991de74fbd5313a4c *man/USMacroSW.Rd d3371f99f17026a41cf2e328078793d5 *man/USMacroSWM.Rd 18f103607e60db68636299f97d658925 *man/USMacroSWQ.Rd f6a0d70764fe7343ec2b7ee2b3c51fa0 *man/USMoney.Rd 2586374f2eeb930827e00314c043301c *man/USProdIndex.Rd eff83acc308341806b69f01c8d202f9d *man/USSeatBelts.Rd 2735463e6f5b8dd7f855792558aa1274 *man/USStocksSW.Rd bb36bfc98d5ff4fddb215e6d00b17b8c *man/WeakInstrument.Rd 1810726c58c527cc9e294e37f54da918 *man/WinkelmannBoes2009.Rd 1a5d21429e8ad0e04095a91cb7abdac0 *man/dispersiontest.Rd 254a665c2382c9f0e9e14531f5b6cbec *man/ivreg.Rd d31309c6a96f93491aef41d611f3c3a9 *man/ivreg.fit.Rd 4a072d972620527bd0b668e40a9a2d10 *man/summary.ivreg.Rd cc34a837cad33dbd00a528de7a7512ab *man/tobit.Rd 09ab183ef26bd0d986d93d298dde09a7 *tests/Ch-Basics.R 90702ce1c87f3914189b5cd9124f364c *tests/Ch-Basics.Rout.save 6e54fc4a9ccedc44805499bde5fe566f *tests/Ch-Intro.R f7811a70d13bad37dd504c56616c8d05 *tests/Ch-Intro.Rout.save 5bfbc482f4b23a0b3918fd2532f699db *tests/Ch-LinearRegression.R c35aab5de044c14e4ed2b3895394368c *tests/Ch-LinearRegression.Rout.save 95c914cda22ba3a59e4adf050df0602c *tests/Ch-Microeconometrics.R 6addaa005aea5a4bc3eb0697fc26da07 *tests/Ch-Microeconometrics.Rout.save 9612d8a9a789a570fe47bca1b59d5529 *tests/Ch-Programming.R 49befeb0f42f734db3ceb2c755ebab94 *tests/Ch-Programming.Rout.save 976c5122fc8e354c5c1ee324919308f0 *tests/Ch-TimeSeries.R 09bb7d67ed0c276100d497128942abf0 *tests/Ch-TimeSeries.Rout.save 310a390191d82bcb7dda0342a8b29bc2 *tests/Ch-Validation.R 365d604fcc2ae09c73684db340e9a618 *tests/Ch-Validation.Rout.save b13a8a569732c34ca62f226d55855166 *vignettes/AER.Rnw 043acb4ba18e012bfc0c60717156d385 *vignettes/Sweave-journals.Rnw 290f9aa4f0ebe92b19f3e68a93ec054c *vignettes/aer.bib AER/inst/0000755000176200001440000000000014557334660011653 5ustar liggesusersAER/inst/doc/0000755000176200001440000000000014557334660012420 5ustar liggesusersAER/inst/doc/AER.Rnw0000644000176200001440000003266314303126541013513 0ustar liggesusers\documentclass[nojss]{jss} %% need no \usepackage{Sweave} \usepackage{thumbpdf} %% new commands \newcommand{\class}[1]{``\code{#1}''} \newcommand{\fct}[1]{\code{#1()}} \SweaveOpts{engine=R, eps=FALSE, keep.source = TRUE} <>= options(prompt = "R> ", digits = 4, show.signif.stars = FALSE) @ %%\VignetteIndexEntry{Applied Econometrics with R: Package Vignette and Errata} %%\VignettePackage{AER} %%\VignetteDepends{AER} %%\VignetteKeywords{econometrics, statistical software, R} \author{Christian Kleiber\\Universit\"at Basel \And Achim Zeileis\\Universit\"at Innsbruck} \Plainauthor{Christian Kleiber, Achim Zeileis} \title{Applied Econometrics with \proglang{R}:\\Package Vignette and Errata} \Plaintitle{Applied Econometrics with R: Package Vignette and Errata} \Shorttitle{\pkg{AER}: Package Vignette and Errata} \Keywords{econometrics, statistical software, \proglang{R}} \Plainkeywords{econometrics, statistical software, R} \Abstract{ ``Applied Econometrics with \proglang{R}'' \citep[Springer-Verlag, ISBN~978-0-387-77316-2, pp.~vii+222]{aer:Kleiber+Zeileis:2008} is the first book on applied econometrics using the \proglang{R}~system for statistical computing and graphics \citep{aer:R:2019}. It presents hands-on examples for a wide range of econometric models, from classical linear regression models for cross-section, time series or panel data and the common non-linear models of microeconometrics, such as logit, probit, tobit models as well as regression models for count data, to recent semiparametric extensions. In addition, it provides a chapter on programming, including simulations, optimization and an introduction to \proglang{R} tools enabling reproducible econometric research. The methods are presented by illustrating, among other things, the fitting of wage equations, growth regressions, dynamic regressions and time series models as well as various models of microeconometrics. The book is accompanied by the \proglang{R} package \pkg{AER} \citep{aer:Kleiber+Zeileis:2019} which contains some new \proglang{R} functionality, some 100 data sets taken from a wide variety of sources, the full source code for all examples used in the book, as well as further worked examples, e.g., from popular textbooks. This vignette provides an overview of the package contents and contains a list of errata for the book. } \Address{ Christian Kleiber\\ Faculty of Business and Economics\\ Universit\"at Basel\\ Peter Merian-Weg 6\\ 4002 Basel, Switzerland\\ E-mail: \email{Christian.Kleiber@unibas.ch}\\ URL: \url{https://wwz.unibas.ch/en/kleiber/}\\ Achim Zeileis\\ Department of Statistics\\ Faculty of Economics and Statistics\\ Universit\"at Innsbruck\\ Universit\"atsstr.~15\\ 6020 Innsbruck, Austria\\ E-mail: \email{Achim.Zeileis@R-project.org}\\ URL: \url{https://eeecon.uibk.ac.at/~zeileis/} } \begin{document} \section{Package overview} \subsection[R code from the book]{\proglang{R} code from the book} The full \proglang{R} code from the book is provided in the demos for the package \pkg{AER}. The source scripts can be found in the \code{demo} directory of the package and executed interactively by calling \fct{demo}, as in % <>= demo("Ch-Intro", package = "AER") @ % One demo per chapter is provided: \begin{itemize} \item \code{Ch-Intro} (Chapter~1: Introduction), \item \code{Ch-Basics} (Chapter~2: Basics), \item \code{Ch-LinearRegression} (Chapter~3: Linear Regression), \item \code{Ch-Validation} (Chapter~4: Diagnostics and Alternative Methods of Regression), \item \code{Ch-Microeconometrics} (Chapter~5: Models of Microeconometrics), \item \code{Ch-TimeSeries} (Chapter~6: Time Series), \item \code{Ch-Programming} (Chapter~7: Programming Your Own Analysis). \end{itemize} This list of demos is also shown by \code{demo(package = "AER")}. The same scripts are contained in the \code{tests} directory of the package so that they are automatically checked and compared with the desired output provided in \code{.Rout.save} files. To make the code fully reproducible and to avoid some lengthy computations in the daily checks, a few selected code chunks are commented out in the scripts. Also, for technical reasons, some graphics code chunks are repeated, once commented out and once without comments. \subsection{Data sets} The \pkg{AER} package includes some 100 data sets from leading applied econometrics journals and popular econometrics textbooks. Many data sets have been obtained from the data archive of the \emph{Journal of Applied Econometrics} and the (now defunct) data archive of the \emph{Journal of Business \& Economic Statistics} (see note below). Some of these are used in recent textbooks, among them \cite{aer:Baltagi:2002}, \cite{aer:Davidson+MacKinnon:2004}, \cite{aer:Greene:2003}, \cite{aer:Stock+Watson:2007}, and \cite{aer:Verbeek:2004}. In addition, we provide all further data sets from \cite{aer:Baltagi:2002}, \cite{aer:Franses:1998}, \cite{aer:Greene:2003}, \cite{aer:Stock+Watson:2007}, and \cite{aer:Winkelmann+Boes:2009}. Selected data sets from \cite{aer:Franses+vanDijk+Opschoor:2014} are also included. Detailed information about the source of each data set, descriptions of the variables included, and usually also examples for typical analyses are provided on the respective manual pages. A full list of all data sets in \pkg{AER} can be obtained via % <>= data(package = "AER") @ % In addition, manual pages corresponding to selected textbooks are available. They list all data sets from the respective book and provide extensive code for replicating many of the empirical examples. See, for example, <>= help("Greene2003", package = "AER") @ for data sets and code for \cite{aer:Greene:2003}. Currently available manual pages are: \begin{itemize} \item \code{Baltagi2002} for \cite{aer:Baltagi:2002}, \item \code{CameronTrivedi1998} for \cite{aer:Cameron+Trivedi:1998}, \item \code{Franses1998} for \cite{aer:Franses:1998}, \item \code{Greene2003} for \cite{aer:Greene:2003}, \item \code{StockWatson2007} for \cite{aer:Stock+Watson:2007}. \item \code{WinkelmannBoes2009} for \cite{aer:Winkelmann+Boes:2009}. \end{itemize} \subsection[New R functions]{New \proglang{R} functions} \pkg{AER} provides a few new \proglang{R} functions extending or complementing methods previously available in \proglang{R}: \begin{itemize} \item \fct{tobit} is a convenience interface to \fct{survreg} from package \pkg{survival} for fitting tobit regressions to censored data. In addition to the fitting function itself, the usual set of accessor and extractor functions is provided, e.g., \fct{print}, \fct{summary}, \fct{logLik}, etc. For more details see \code{?tobit}. \item \fct{ivreg} fits instrumental-variable regressions via two-stage least squares. It provides a formula interface and calls the workhorse function \fct{ivreg.fit} which in turn calls \fct{lm.fit} twice. In addition to the fitting functions, the usual set of accessor and extractor functions is provided, e.g., \fct{print}, \fct{summary}, \fct{anova}, etc. For more details see \code{?ivreg}, \code{?ivreg.fit}, and \code{?summary.ivreg}, respectively. \item \fct{dispersiontest} tests the null hypothesis of equidispersion in Poisson regressions against the alternative of overdispersion and/or underdispersion. For more details see \code{?dispersiontest}. \end{itemize} \section{Errata and comments} Below we list the errors that have been found in the book so far. Please report any further errors you find to us. We also provide some comments, for example on functions whose interface has changed. \begin{itemize} \item p.~5--9, 46--53: There are now very minor differences in the plots pertaining to Example~2 (Determinants of wages) in Chapter~1.1 and Chapter~2.8 (Exploratory Data Analysis with \proglang{R}) due to a missing observation. Specifically, the version of the \code{CPS1985} data used for the book contained only 533~observations, the original observation~1 had been omitted inadvertently. \item p.~38, 48, 85: By default there is less rounding in calls to \code{summary()} starting from \proglang{R}~3.4.0. \item p.~63--65, 130, 143: The function \fct{linear.hypothesis} from the \pkg{car} package is now defunct, it has been replaced by \fct{linearHypothesis} starting from \pkg{car}~2.0-0. \item p.~85--86: Due to a bug in the \code{summary()} method for ``\code{plm}'' objects, the degrees of freedom reported for the $F$~statistics were interchanged and thus the $p$~values were not correct. Therefore, the $p$~values printed in the book at the end of \code{summary(gr_fe)} and \code{summary(gr_re)} are not correct, they should both be \code{< 2.22e-16}. Using \pkg{plm} 1.1-1 or higher, the code produces the correct output. Also the degrees-of-freedom adjustment in the $p$~values for the coefficient tests in \code{summary(gr_re)} were corrected. \item pp.~88--89: As of version 1.3-1 of the \pkg{plm} package, summaries of ``\code{pgmm}'' objects provide robust standard errors by default. The output presented on pp.~88--89 is still available, but now requires \code{summary(empl_ab, robust = FALSE)}. Also, the formula interface for \fct{pgmm} has changed: as of version 1.7-0 of the \pkg{plm} package, the function \fct{dynformula} is deprecated. Instead, lags should now be specified via the package's \fct{lag} function. In addition, instruments should now be specified via a two-part formula. Using the new interface, the function call for the Arellano-Bond example is % <>= empl_ab <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1) + log(capital) + lag(log(output), 0:1) | lag(log(emp), 2:99), data = EmplUK, index = c("firm", "year"), effect = "twoways", model = "twosteps") @ % \item p.~92: Exercise~6 cannot be solved using \code{PSID1982} since that data set only contains a cross-section while Hausman-Taylor requires panel data. A panel version has been available in the \pkg{plm} package under the name \code{Wages}; we have now added \code{PSID7682} to \pkg{AER} for completeness (and consistent naming conventions). Use \code{PSID7682} for the exercise. \item pp.~98--100: \proglang{R} only provides a function \code{dffits()} but not \code{dffit()} as claimed on p.~99. Somewhat confusingly the corresponding column in the output of \code{influence.measures()} (as shown on p.~100) is called \code{dffit} by \proglang{R} (rather than \code{dffits}). \item p.~124: The argument \code{ylevels = 2:1} in the spinogram is no longer needed because the defaul ordering of the $y$-levels changed in \proglang{R}~4.0.0. \item p.~141: The log-likelihood for the tobit model lacked a minus sign. The correct version is % \[ \ell(\beta, \sigma^2) = \sum_{y_i > 0} \left( \log\phi\{(y_i - x_i^\top \beta)/\sigma\} - \log\sigma \right) + \sum_{y_i = 0} \log \Phi( - x_i^\top \beta /\sigma). \] % \item p.~149: The standard error (and hence the corresponding $z$~test) of \code{admin|manage} in the output of \code{coeftest(bank_polr)} is wrong, it should be \code{1.4744}. This was caused by an inconsistency between \fct{polr} and its \fct{vcov} method which has now been improved in the \pkg{MASS} package ($\ge$ 7.3-6). \item p.~167: The truncation lag parameter in the output of \code{kpss.test(log(PepperPrice[, "white"]))} is wrong, it should be \code{5} instead of \code{3}, also leading to a somewhat smaller test statistic and larger $p$~value. This has now been corrected in the \pkg{tseries} package ($\ge$ 0.10-46). \item p.~169: The comment regarding the output from the Johansen test is in error. The null hypothesis of no cointegration is not rejected at the 10\% level. Nonetheless, the table corresponding to Case~2 in \citet[][p.~420]{aer:Juselius:2006} reveals that the trace statistic is significant at the 15\% level, thus the Johansen test weakly confirms the initial two-step approach. \item p.~179: For consistency, the GARCH code should be preceded by \code{data("MarkPound")}. \item p.~192: The likelihood for the generalized production function was in error (code and computations were correct though). The correct likelihood for the model is % \[ \mathcal{L} = \prod_{i=1}^n \left\{ \frac{1}{\sigma} \phi \left(\frac{\varepsilon_i}{\sigma}\right) \cdot \frac{1 + \theta Y_i}{Y_i} \right\} . \] % giving the log-likelihood % \[ \ell = \sum_{i=1}^n \left\{ \log (1 + \theta Y_i) - \log Y_i \right\} - n \log \sigma + \sum_{i=1}^n \log \phi (\varepsilon_i/\sigma) . \] \item p.~205: The reference for Henningsen (2008) should be: %% FIXME: will be package vignette \begin{quote} Henningsen A (2008). ``Demand Analysis with the Almost Ideal Demand System in \proglang{R}: Package \pkg{micEcon},'' Unpublished. URL~\url{http://CRAN.R-project.org/package=micEcon}. \end{quote} \end{itemize} \emph{Note:} Currently, all links on manual pages corresponding to data sets taken from the Journal of Business \& Economic Statistics (JBES) archive are broken (data sets \code{MarkPound}, and \code{RecreationDemand}). The reason is the redesign of the American Statistical Association (ASA) website, rendering the old ASA data archive nonfunctional. The ASA journals manager currently appears to supply data on a case-by-case basis. The problem awaits a more permanent solution. \bibliography{aer} \end{document} AER/inst/doc/Sweave-journals.pdf0000644000176200001440000006421714557334660016212 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 1026 /Filter /FlateDecode /N 16 /First 111 >> stream xo6෦(#Pp:g~`$&KHgEɱD|w? %  C8HHDA@b¨0( c PyQ'< QC#߈?|@`(Ȅh Ljt_JW3rqQo0,HrSSN= oޮʊԎQUfT-RKG=윿P %4~mAG=%m<>0mX||=l;v=mV %pDYөMo^~j6o=3g)d a S3!PBYHXRV̠ V'bl3c-$ r1O*f;MuKt֝XTieaF\##!{a 䯓䡇&- Whآ3IMM53L.pJ/ֺrm6ڬIj}V?O0F^N2*dnZ.X~[ 7YV0ˢ:ZF˩qʚo1A׹UJe%Iý-QTj{1}]o'ena?q&/w~&&e޽]ޯy?@{^/8>?ΫyWR"ɪ>`z ]y8~Ozd*r--Ҧs/>Id]uzg)s0[ )p}[^B֗#SٳeڗDm97|Dq>o+Hendstream endobj 18 0 obj << /Subtype /XML /Type /Metadata /Length 1168 >> stream 2024-02-03T04:57:36+01:00 2024-02-03T04:57:36+01:00 TeX Untitled endstream endobj 19 0 obj << /Filter /FlateDecode /Length 12838 >> stream x}MɑY\hGcxUUef a`a6 h1=0'v2/jR#34|72>#32믷<O}Z{?/?{y?}mhXZۻӿӇ_?~a_DP>˗__?~Wٟ8Ƙ=y[edjg-ϟoosgkmYody�W7>ߓ߿?|ШTϿW߽ q{OU,ߟ _ߎ?={_CLO`ï_>~{.=)Iuh?oV۳B=UqIu?_'ؽmۧR"~k;] &,cqg c3oltrB/}u=N{g$ۇ^>\vbP{=W<7o{=]g{XZyMW^f)x蟿fzuӗ|?~^:^eݟ4?)Ls~aRoZH_؛h?g9?|I߼{?[WoVmo筬}om=m^On}~Kzelp|OOXvDZ\v{ D_ؿqiS߲W։{?&!Gۭw qت=dTBTQ/&(/epH26aPN5} A Q ai+gS4[u` |0ovN HW®gK{c\jױCp-h w[!GSB3pXLvۇ ¾Q QHKqxe>l[buh^q^BMۈI!maCp#m۱L۱;,5^BcL:Q` CB fk1'fj 4NTQ/&`Ij WV&n<}'ߏvkvj–#9j, `0PaA-BZi:49Q{<ˊgz;`?K(A0dă=fPOo;ebPHKqj[mpl . eXZs>nĀ $8=MKRQF5ų<&M1ǚnp̪Z,.-}' [fz8 Aឱ{ه nBjmox̶N^A(sAH>oJS1'!'a,. L-R` D!jfG[q1ob"y[}YϘ@Z;0ՙ`^pzL Ia./ApB؅.6I𮨄(8\h^i-KM . {֚0cmVL 2b#LLxw$p7 t3Hb`~O}AeChH.m(p 1fiR^فi,iT eI7e(I\Єjcy= B*x1" k}I= Ksu[G;li7ܧb)먃C#1ݫHmI_4{cښZJFx~ xq<:Q>8[1^'$K *)#`rFR10b鋆k1l H$;MSpZ !sU jBp)憦Ab3̈́)e`krI*  g@)ڙ2Pߥ_bm/OFw3;ڃҐBX[\pEN@r d T|5dZ"$Wv6=#?}zL_4m )m`c'ͼi,!vb"pMK(_ugjm9BW^ 5|nkR.`yPץdPB!p$(\,M\w' 뭭mX9彙Am01e8ΔwbNiLypnUe20za4Sds&l/bpߐ ^⠉"L/D j=#1FpSvsժ*W g[#OHHi&w ˮvM8_BpU.F;l+0l-n}yzyժ'$ 2|07A>IaA-BZՎ͞琲->öi>V_B}2mlL!Gc3fL0`˔)p-+}G11ij U3bjwKŢ2|#1oJ ~$"ԁ#S(XW5}$ouy؎ zCE ɁD:@: L uI?1)?Oyq]HFx/epH2"&r9~qR`!-DzƛkvpN-vaς<&$ 1Qšm,t$WVSk4iS+GGp5H{$9'C@q]#hd(0p1VWCU-J+HS t=YAA41;RnC@!D j,|{bv`a 8b!I QPG1M`IDlHeK5k} Wpx($gApdPL#\H%j 7},cx+]#mJwsX/xSK_e 2^HIA8^1h!Ԓ^AG8BQyL%׽^n5 UA0dC%  f i)W;[yO]} D ?"naFԺkp,QoI#d b1laIv|M}U ,nL%dw02ϥOWc8Y)jpNIh p5ǁc[ش30gQ7dOJ;A+7Oi6$'ݎ(4,vulNMk ^Ϡ0Hwx}eP&s5m0 H 1I CRHi2~VZ4^<&-,3|ff1w$}8ALg2hZI#E%D!%j& |(DGݣk6 = u)JÊC CfA19,xR)$\@0fۺ$nYuPz`O yr(Z ;^. ; @GP0YæQ21mE#Ul#kQ C@`İ Y¨(8\k}%JU S-'!86=~5Q %'SJ/°dބvѫZՌo܌ WHm@۝+C@ ! NGu*B*uøw7u)._wF\^/h@ԛ' SR`1cM+0(HmnL@8ȷ$`Ȉ0OylP5ԒA8")8\/l<: sf1j4%'L?)NA0dL <½M2L-D!-jc3 |Xgb:&)#")8\6Vİ=؆S ]F?mt~@` W gcl TAR^D-[N ohp'p ̟ OjJ$qZ?.@> R=eZܞx/x#zԤ1i10bl_ | ! }UH )-W#X'Q/&Ea4uJt̓-u}Fe xLhJMy1&Ei! i)W;6ʏQ[]"#n], ߢ8H ٫=&}Gl1M^v' Tï3]Z1&P#"ox''Q8}S6ERCFLĔHt M2< -D!-jޱ2MV.iDF}Ml3EG29n,1ɡ@QdYj! *)#g08E)0̹- *90RHG1Zq횉nK/U>vcf1+kzX *%_31n3eBRvu /˫=+gbּ͛ #p9m8 !L7qhGiSaL!jl mnF[ɍ-rk^.FP9STxh8hd-rBRv0ոFVyJ o+w]gYZ+!։`϶[(e˔AGP QHKqxeC_vZ[j@t 9Q0Ƶ}K8.8&)xNr3]b+]2G%ZBZiz:t<'6+c/!Ot]`Ȉٔs9b5)beQ5uRQïF0iSxEyb@TqWVsxC" 4e RQHEqPl6O¬N+``u1vكCtp2GZ"TY}tԎ 0a<(T?g#$y@ӀT}fe%g% QK S"^gqhU%8M•{О(;Ś0EL!>Ytm~hNڦY\Ђ< 9P\%d5RP&D؏]Z<& {}w]. e$ 'om7y]'思ZIa+u/xWwdp,~L=! VabO`1)aѡ2RATP/#Ǚpc0k6lG'ls)Y:Ƃ>aaW X2>ai! *)#Kg͖i4/D/OGZ^+!"&L!2,F8 xa=1̃'S(\`ai3DyW졋s SRGvQbRb& .'H *.V l8k 3 >#萩~&` =G')-:&wBlǏM}TTLHE-qѝ0[o` |%ʛg0 ! Tܓ}8.j! i)W;05t$N]l_թL ܦؤ`lr iN@z PQH?2QxN kǍ-K˞\ש磸PZN&g!X7Ѭ+',<|QH?qZ@M;wpݖ5w좍1@Əԛ$0 ݯ1ca$'ttYQEvn8Z6qh9,\] MM0daJ68mIؤH-Xq# !8AJGsgmBӑw`;9=h)'&Wv:z}1!l0Vw9z`ƮU&2Q4&DxJ vv8$].0%Z4YjZBZӣ =緅aZ^uAY ە$E9i)3˝AilniniDՎ̎Z8gf7YQkc(b[rIǮR*9xXp@c` gLQę#ԩQ`t8&pƚW2$'AW~>؎%#.l nIrXRl Gq ~ =2Cx(Rorڑʞo|T(11zqؕ[M8b\t&)A7j1J^q&xCpᨄ(8\@cWcœ+5|, 7f yi<9$h$?W3 #ERHKqƎ2#\z/д5OUh+'7c039'&$U*_;'&aJxI`Ȉp%O":=uRQïFpb×D^☟㴓F2r!7V Jp)F8\#lm9cc`Wc]P5t.O SxKy%?(A0 P! \BmelzLq`TJcjƶڦVc"H2k+e[xoE[:|gpycl1 >@lJ ;Dx(! (W+x˰ǧ  xwڎOC w @H_5qƮ(D4Eǂp{L" B{ktc Hje?2|10- Re8w .q6<$(8OK SD8p?GM# DZ++`]Vq^l+kx⸗AŃub "|0D8j#\k{LGz V"~[N4<pw7~ .=Q)\RN7ĶP<9q+N (W#`RGg&1vEĝHU)u6SԃN.9 jZx]asꑌ=C#ZpR.DŽ邜ekE ηw$ lCFt N䀏_Hjpm0ΐˉ={T4A0dD1~m0ذ!ElJBJ 6Y}L5 ]5v)ThzDq֥8Μqbl#P {{$c?BRv4)<&!<!s"^&J'O gDb r!Du-ZcL)[NTS~ 2)z|}p<2F琊21N2y)pV\@~O1a|GK_)>)]<~.OH fT`}71͞՝#rhnhnj29\oWhr1as"JmQ!2ag5~ &# 2b16-f$p8.BRv t;7>0^p\<s_MG8pl`@"|0=68&;A0#Z VD:̿;dz/ >_:9aV<)x~Mr >B|99;;G(سZ$rtbJA9z9/S\DQ6SW&!qL`a)0}H-c3cNdoH6^%?f @?Ҝ|>>? B,lcB\}`xq9s:~ft e-2! )"iH%D!%bs *y h\w?!2+O5c"u!)-!羅T 2f娜&);NeVKj[*n"%tɡ%Q&D:++bh-|񶴝s9xqa{F9<pZqeo3BʉU}T1x>8{4CnU0(2q L>B2j[vɯ qNzn]W,)h(AO9Q0L!-Kõ[rlCa&ZQPp-h Iy1²Q'G`5$5$ۺn9޽>`hS?~eXb⛺%4ڂ>72!%n06K7(ZҌ si8-PEgz56Up4Oxآp58a8TSēD!j X0NH OXթ+gƱ z|t0v$n$!yjG (W+$kܵn$QxPH@8ˆo48$ %& ǣA؟`jҒ^PeM4]# 9Q!#W0g2Yx vvѵci{OD!j|t.IG%Z$LW;(M ́i8.3w1x|:+G(J-bM21}?s(ATVa TY6]{ӺaS^8OžԾӇn|v]o??yZnd2X"߾(OP"Jg7xB1N9M ZWdVj/77OygW{pCAN+fDUes'&1OTT PLK o%\hD5]{oRF {om?O`}Bnm`'(ߕP!ӗ{7oWV/~o|ݛh~Dd: p?:@x;oo~B|> stream xVypS絿] ĪjS2@6LBu 87ev#kūdɲ- p`e9IM}/ Y ewee?wts~FdiiisX|yaQ)}Yٙ{}|GX@> HjrRWRZV^Jq{]A-VbAkuį|yb=Hljjb>CO@@ڽiқ2dޓMOPІ(Adi3yƻKdɾ1o_ %k /Ǔ괡! Jmux}D`HsB/ɺʡ Ɉq\"Pٯ[:"?/CfӘ%K-=U=Yȭݜ3ZRqC:Wqw5O*>d^8_8K&r%QbкPI eT9L??;/AULէސ 2! H#Eb/So&_1ӾFe:O GqsriZup$eK qW7p%sW`[H G-fֲD#H8u%IR-*l0XnR1JX EuWml8~8\M92bJ@e LաT+Gh;^[, GorsR/#YDe/7`/EG> $^  @_rיa_3 yjs\ Z*{!փE7`4Ak!_ڱcfK!̾L!uN ( ': KI"WjBpu$7mLѹOzF c_ aud:.hsӥ7DaUsGHC4yG/yR!Gr>TTvH¥F㳋ƮFr R8GSq~\fI$s5 ڮ=HnJK{谧W|Yq vY,W8V*q݅8=7 |W;Nۈv.jGN{=@(}m&[l0ee{%y+.׽g B-HBu _F |.ֆϸLnJ.({1& C0NĦpXڙJC Ic'פ=$:'Kpms*ƔfƱ;33p/ħWi?SW T7^bAsћk ژVά:R ~9Z|úY pzqۿ`kǏ1Jb,WxCX۰M>V55o.n*@.T9C0D=k5k7w1=n~kǤaڎb=}]G:aLD6`GL9pPQVbay3`l5;H᷺zǶ- Thc0fImA )+_,jEc'稫_^X\~z# 7|p!ecqS2?@izlk"E7>'2RtkG}]& dRC)f7cHh#/a l(&^KE]t35|xó~RLs@=㪸!:9bH8%UҟHX_8> Pϭ6ֺhAp/_={!+4z{=ԓ[ekd_3 D:ES)^Pts:ٌ6ag z Hpo%g7Wx_w/Kg@m^+:Ӹ-8$KQ.R+|Jk H]03L@*,.S+m W:<[]ǐuiYhm¥)Q9LNS.pD\<|^H 1: geL6 k(ZW+3!å8+V)eoA?:14 ^}o>?'` m,eGW6U>#yt5Ygj"wLɌ16B\1qoi ~!9xO_yՃ?t/9&jD_ bgz U2UTѭ:-\gWT=@kYY…kg(.ùD<; '=x?>u%Zg}3+'Ӯ!N7*+gw5mU:9VNPgQ{$ۍE@Mݕ{&{A"endstream endobj 21 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4046 >> stream xW pT՚1 EttFEAm  !;}۝-,aDD|TTܞqqӼ5s: TTM/_F\}QVVVx%wϜ9FΫ_\XaՁ';ģ;I]/Y۴֍nqG]M?4XD(}ym.G"f~G t H]=@K Q G 9A/ac"Ll[(ل>ٺO דz(Ӂ 6^M]R-*bOOЭD /r9cVk˂~qq"*;v7؜vh; ^PG_w!vQvCq3.sxV4zBOrd(^k2}X4 @2I]"Xj,R"v~nCg9u^0᏿yk=԰&ש$MliO}7n== 9 yW![g:Mjͱ#' Qu9IK Pp)J{);Y4gR>M IMa`1ԏ' dFU[J0rDf@_g3Yl:H2?P;=X5 ?jjG4v\q Yכ-WvB)t4͐T.󧢡 ҽ]!kyKi'{F'u "x MR:D~)i r&.50Se0_D9w֛ˆ*eVhpz7lkf@(ntdd875 h]uc̕JI20 Jl6z ۣGrܑC{"Cwt k!yq|ħ=G#^o?BXM/^$dTbJI֖(Ñ_1m#lB+,XxoXp./>VY$M[vP֓!Wב|1<0Ӧ[R2fi3$\t·Y^XL-m{Sj5'AO$8sƼ-N-M T2%Qs(GّT|ȕ a3DG6Ar_=1z1_CWv)$,0>TEKD7;8ojC[ z-pd~vܸYɹ |AD|pgΝ< 77-09MNXxU~)O1)oPhbB$_Feʤ ]0@[EW[z n=4 _zU;P}&\%GO+8L1L~_F&4: H6ƺLGgo>ǪW}N@&Yʘ)FVĮ9$] =[z-'9 %&4p%)lR:v׌p.gf(b%|[UUzR%v|Dvy)~iIQ)hJ^T΢ ])MbtH-2JU2Q,bDK]?!{s}Xm7(?RN{Yӡg%/qBP3FL- o7ڈ6$ x!iUBob0t\.J9J)ztS9[lh1h ʡ&I8ȳ^*mjkj:x}.zzt r4v $9 aE)v|7]qSsnBv=&ٔ>ħ8^ 3jw߁o+m6QATG\(P:MB!q(Ld̘.>#W,V[{8o H􍾄:鐼`[CۀLD/s!79z(w*roѶֺƶirt*顶y|n?ˋz| (L!EĩpoȤ6ɰZYO=ቦ'>TK:PWsP|>^6G 1Hd i?9Du+K \]"hhcX)ws }qӗriHƮ|F~1#+s3S!=+a3S4Hi[-_ 4 MKwB D0qeSqǪ* ?zendstream endobj 22 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3771 >> stream xy|SնOi9g#yI>'';;kZJU4*(((dɤ'ߔ,qɁpH!R}dMC#ںzQck־Tn{wj&O#LQOSPcETzzGͦʩǨǩ9\j5Z@-QCapj5ZM [Qhbj, b(]z+1bYz}y9.\so .,6d?u ce=<8O׀!Q~~gQ6$[DGKGg#9 Ȥ n2-W餒!ɳoKiFDѭ1_&/]<~i5NlJROepiߏ&+LZ4F9*>C&K.j8rx}tiL"ܔԆ< ݩdJS͟YŒ~i_h2.nZspuV& ڸT̟I2~DgtZ!Ƀ WG Y;ˡV&mNrj3IG'uSg L^P1+zL OhC<.ʩ@=G ǽXVC6fYf>ov?hy͒?~.O5euS/>=[ڰǫiU 27Yx 9Yrɉ:24-7XpIN5=!xn-z?מu;NFTafN A[ -+ 2#鶻G=~y^mFڞL9 a<|/ B9Et|~ĚSpe~y0. 7V[tZ6O- I @-MI%Bn23esD/puUp5".Fwxsz~ _i 4K5굪 <0xtjMSڥ%;$e/OrdS^\C̍Fzj|Wm-n lDHY ڠ,otkKvm==>ngucH<:5[H-vh#p]ӡ/]|S:,Ğ7tª4LdؙnfךĆu+R)?is@'8r@0h5: 0{gfl5[^:ц D8顽=9'c]Y?YΗv5%D GdC6G0"NxNɟa̧c "eVHZQcnAfA} 8Qٕiد3BBZ32F.ls"0ĸ8<&.bK=i LVڤ%f4(*?Fo"*w`-5HMM@ؓ]8K7f M &DMib_jjfMbq߅ޘA<=b#*FBXM+SozTI"cc[LUi5V6gZl7jՠ(Kӎ@.#15Cm(Smz~ ј\uPA  ^KPmw Bq}Jzb6֙K;jPuy/q}0OEn} 0 tLQraf-i}҂h7yPVV7h<јH/(UQ] A}s7wE݆l̪ҚklJQkƬ%kH/^B6 ̶BӍ,Zr_oeaC4w&O_^PF4ɟo tȒjqu{]\<>?ڟF^/cf^:ؽЉ۾Sr̈G/{[v ;k5 "ah:1Ucgvȫ{\0L͚Ҟ<;3uPB4*AC}XXi|z6wAcdCt1g#GVR b$dcU gyWhP;L#ڇhp J:!13e'CCG$є>D QL!4S56 RFw& @f!~x"_P%싽(,PZ cS~3@*(Oi2+Y,b Y =o5EQdi˯XNd꼓PJcUjtF<'p)wwcшY~ D 6"T- N1\T5! mn708cH1EYeendstream endobj 23 0 obj << /Type /XRef /Length 49 /Filter /FlateDecode /DecodeParms << /Columns 4 /Predictor 12 >> /W [ 1 2 1 ] /Info 3 0 R /Root 2 0 R /Size 24 /ID [<7f1851d6215f4fb8f72b86c7a52e577c><46677bb8c2e95e969ff20b1642ca337a>] >> stream xcb&F~ c##F@Hh ~Q endstream endobj startxref 26447 %%EOF AER/inst/doc/AER.pdf0000644000176200001440000022776514557334660013545 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4320 /Filter /FlateDecode /N 67 /First 552 >> stream x[[s6~?oԖ;Œd;VJT8^fF잭ڢFh4n4HAD8D13HL81K&IBx!͈2% u4VDX1QeyB4D$&zPDhb \@B%$rɈ:ƈ*(IMLh4MEa\I%}HhˉH" ˅IHh`' F(ABB22Dea_xe)`(K Y (+($@DkL5PV@YX([e! aV8E$GD@̐H T'(>p#A0nfu:M&зzY g d\~=<{H/Y _g׌)ɘ !+6~cP'ӡL4Pz?i]F,w,8J|s`BA+ɔ3bO߆z7'e#32-5ξ~)ӪycpiYNjupVk9td"\ZmơmOCW i9ogrd0Ηg'嬬jjH@?IMe^ϳdb &Baa@ImØLC ݫqK4yq45|X.anq LBfIU,(k#5n C'!tXuV@;Vi6ӃW҉WMY<Ϫr_5 ^}bmXՋrr@Qd@ٳ@"_T5 NRL60pOzUJǏYd|q@>owFlz 546km|l8^`gM ~B0xjExW%`0ypTp7 @z<x=@z<l߯N!>B#*s'>9=/oӂr>/&4/nDzG: J5A0AbN\;bzyÆC>gĮK:lH7Meѷ?mpV&xJ+t48'ѳy1Z?Z/wfdA8}zHsghJNyY)5 ќ~szK ZҲۜSi=[dtI_uyz~FE]Y#k?<I&k|f[u|_NMspO.=4mi@O./?\uγǦǰlz,zz~8=Vi/ hX.ӵBa5g\ ;> k0%蠖;f=kiWc{~t:77=|Yp I1*1V(G߽nu7(b?jƗoZt>I?8sVT8|6ՃV!>=\m88vL6go Ut㯳u{8¸P: Ch.Bw̺\ڹ%i^ӯZXYxQH/2SAH~-b<?;<~۱3t 5P.i(H0U|7p={?Xq9#b  'i4\8C <:8: _|*盏MeXi;5A2j_2cZ5;=9Yc^ ]6/UǑ$<>gO;F>}7xݜ $G;JD{*{T.'ӛ/,u1[g>,#qd$$2p@f uO&in"'@#KT-`E{E xUi[ p~Q(k" ͂T:-cHXd5D ?HtO`4G?:p+-1H0hİ۸5qKVmؽ%xE"*.l> 2"KtʫhV>L$5Ƚ(fd óu.P.Kh-͇"YK9\6~7M&>Hi>B iI[›$#U4UBDS?q%Ҵm$v珐?c+pm!֘.c#R5E -Ɉ缀)J=b4wAZDY~-,򫴊&:4~ lld@𴆃'EA/ߢ4+g?GOEKQi?ѧ |kGW/pXe2(?xȅ#> @KF;)G5 <4:_Vjx6$_3Y :nK8$`l|=؎ґn`tvCHFI/}H/Tc[XO(%E <>nqz} |@2!oN% ]pc'X=mY';)endstream endobj 69 0 obj << /Subtype /XML /Type /Metadata /Length 1513 >> stream GPL Ghostscript 10.01.2 econometrics, statistical software, R 2024-02-03T04:57:36+01:00 2024-02-03T04:57:36+01:00 LaTeX with hyperref Applied Econometrics with R: Package Vignette and ErrataChristian Kleiber, Achim Zeileis endstream endobj 70 0 obj << /Type /ObjStm /Length 2518 /Filter /FlateDecode /N 66 /First 563 >> stream xZisFb>njsU.W6D>R@Q E$5 E:Q`f0uOw,hc0 YoYp+yŒ[dJYBbʪȢė^V2vwT-Ѡ-P>0c$#ڳHO~\i@!v8dL˾\Uq6k[^3"A»\ I?ǹ2m>]g/؋ H=7Q-] ߏ ĖjP3E78HT hhoS6;Wsq1Z1DNlR܎لQKGҌ|18Έ@o7Uu-QWP9qE'k55S0Z}\@[7"4wڭ Z*MZ+@vI ϛ$$>hbxѠ8GL|G{I>K8Ǔ?&{Y ϕ9=++T+yyE `Nj7TbY~yվVҌOUI |ޙ:(f0KI:2^a>]B$hm> 9R\HY/pfzupu+%ɤn: sE9c,yfˆ9E9y981Qo@~pQ&J-=.}<;nM,oE ^1Z}[aT^vy;ScWڌjY4/X)S?7w.#;R]w]Kub= x-zwo22g<(}q.2}Ņ_fcq%\e#?P D\L!2.iLxv"ev~6Ǎ(Y&ʿ q+nGx2(ƙ[|q1?4fl0*# 0iylmmMsY=ak,"E/os3doџ-*y !t 6A> B.C/9@X#\4q6 ,Ҙ%Y905W<.8"Fv4KnS(<η4 l1Cl1}j#vՖGd2uo|^?8l}av.z6̿f %ɾ7&1u>/w^^.D@XdxlZ7SmBưu;N=OҮSo`?1+2m`h'-{0.4&^E1)t2p=J}u#6EDA!ćţ]r*8\NkxQf,$L}8֍WSl!Xd=4\Tcl$k@꧂%fj.NnwPIsKYh1s0sgss' Wi6 a9[HA:rO\cL-IZnI@kU]b~"L'ZlV%';"kMHL4McG{z ¨y5A?>_A"z@Hi1|gl4"CD۰NA[ Nɤla~ u0J~"Ќopv#XjP*|mMz\lC8ȇwG UjZryҏl`6f> stream xZ͒۸) JFK`*{˕rv+z'{X;zFK#gyۡk{|׆ݷÛ:Rռ5uus=E;|C6R.Xm@,/yV^*\@q,{ z]IeXFg?FXdeO$=K#QT\{%F ȷo %6wm ~Bm+/H+UBq 3󖦅gZ:^ iȎϽc]`@Ǟ4 c`vl`J%X:h=y!UKlJl2W gsU4e7]nU^4(ӫ@B)VB?Vp V@;\)O??>4Rl#U"75CE9j*ӵ p5h 8FKߞAnw5 4drv\5xV\_i)s7Wr6MKvrG)΀_t~e k1n r}0Ӥ5+^tj=3nj} Ɩd6_03Nj\"@޲ޕm~Z;H؉f7έس|';nC:$W"FgQԵv#qB[1ŽBŸ_iv|FhL0fͧ*&~m&aseUXaBbe҉$~fqDRL"z^KEJc? Qdu,g3I7ʠ%fh!٧bBf60WƐ? ܮ+|-ӇO*_6%%q hcae;,*'S{Q-)_&V 7{3%ِ SkWpKBY O4 ~i _F &j@Ef'`E"Eeu؈|Zxv8xrJR{P-04BxjyWӾa(pU`WxQ1BmU<*( ~mG~qݱ7}IC[ЗK,QDbv~Y5Ncay8I#)#T [B\}bN z i<hjƲ|cco2f>M|fd ډ[FI$K22^y>/kBt% R];n*/CZBa&x[*Eܯӧ}܉8\BڪW%|\ D&PWP06nڗ7#RC=śB "f'yhu5̦kSA,k=ä"_ C&gaŚ"S(' j#!^)d$ݴʔJ5uv)&u4$h]6SBu)jt8d6Ѳ|x(i=A}3bOf=B!䁢 Qsi9lCQФkʬ)eZTD @jcϓjeMLoH H9D#sŚsk jߔ1}mtW6t\{1 ,(&zY2YbC͸ txt!QE6` W_MhJcp֕6]5A FRl$9oU>x1 lEa'h)82lq$&0{BfbbB:UlKċ|=̷hB ޱ&.+6mM)'H! m}w17qSK3A@=$!%T~>J~9?ܝKjƭ=H'-Gf'B)acU]O{S.Bi4uܙF `6^h򨛵fu\0Cp4y\sMQZZo]q%ոKkIaӡKC M%WZknyjX1?MY2h2k/ Zv?iX%}& ڣ>O;0G)S&iˢ"/1 繮8ql]; ,Lb8*<&6?LT6ߙHu>Z u A ԛubp&D5hr &^aCL~\ >1đA/z8=ʧr7]#W+گ|bA2&OxxÕi6x0o QQƦ8LJAUnY%d0S $huKbxe/ |ޑe$-5 Ա{;ҤP۲iqDaBpr2vq&9!տ !/ dQVw&WsPF`{̻.4k=o{ӘY1 ' d'aLGΏ9S"RҟxbrbŦnx`ph޹ ZpU*c+/_ڑ(eym5EQƩрt)‘ܹt6`p@6nõp( ncxMpDZ1Xx]c4$xNQ~?Ɵ䔮O,}j5c qYMGL~?euKtyB QVĻlؤ4LEDt z(T,cTiThSڄpms 5w#Twvub VcϮ&c/]-ׅa/`g[x~}];' -)* 4$>D[Sȗi&~bh\X`\UQ&p\.S9ñ5M:VY+طyJ&PeB YKrS&%̈́w0 CkJmJ޸  ȝ6mn y.*[^$}נ*r쾅|ٸ,!8NKMc?3^Ф^ѷo6n29# ßN><~b/?%Y'=9P*qbDV *%FT5{%PEփGrK L>}MrzIs\?ד4Vt8qRThρe% 4]T;3M&Fbc 7"+vWs{E\4Ƃ 6ۆE"zY%NB0i}O(ͮ, c? endstream endobj 138 0 obj << /Filter /FlateDecode /Length 4335 >> stream xn]"Ű;-$nFS[HP}H)*A?e9gwH&&;gΜmY9f_rO*_{,. VKܜ1 Ux%j _^fϖuUksy,-={7l$de\?-/ۥUmf~ZIvܬUm+/qvË5k <5 ?J.rq!uA4"dM`w$싷5ٵۻ:uUXRNxϚ9\Gw) R >sel]{U:~$yD=8 U[ⰼpL v?Ziw a[S Wg,둜{Pol󢪅 !*+@ϷU]]mﶛծk9q*}Vb."ъOhE֮ʹD9${A9z#pK3t<>̗fjյYB=LA_- 3B7]ٴw7s'w'ߖf.o\Nd={7kdPD] +T(ಸ|3CVh%MK4]KOq.,q5` k@|״u\f-,t(YɂYB:UZVn([ m G&~#g5PҲV)Q1 ,R))f7`oQ3Fge/5o#@ 00ElG5?E%)P쥃*z-T~!BN@RŮP6$+iJ .VҢ-̔\AocRD O خ'!D޷ׅIYsinܾU}~5'&|25=z2J9lF,Z9@LG{k@^nH8 v-؍Ȟfd AZG/k~,`$^Q%"ǖEaDx=m R(\}zp:/ׇh(#orA@O9UԀőP2ҌIԴ?X ?ಁF{@KL/N|'?7"Fq]0~vlܳ.I[Rxhi#>fffk8PY,?,Nx4{|sOm!!뷁-u"/]@ZQW oЄPmz*"̤" Q}!&o[%^=hr AF,Gmi81?H's|9w2 MQ )0g*a. 3(%Rq/c!mHa-|Kj.#pgzq>"Rm.bI>k[7\,04qL< Crv_·/gse6팄$0p @GmZ1u`IR3 b 2B]u$hH|=JAuDL~*"I\Ij]tB$x? 2 d섅/ [7+#I-զEθUuCFl1x$1@P&#1$IoLO3 od\ͷe7bmD_7ȧqR@HϜ6 ҙ.U+9d26'dX1zi2?dueo;pLx,)ܳDlb24*<$sr(\U!IaȐd^r7n@KayrƿY3,*vFubM:3;Q L 0#sm/oV=@HRg b  Q5GseN L{ WN _n{e LǚJa!WpC~ zyi۽AVnhat,+hIw*QS;>rJ@M>qU0tRf]:u:b|hנ?F׹6OM{IrQQoG=j16WҙA@1a70@0 Q{ݴKB_6 듳 ]6,P&Vă⑮v{O9X/({0??8>:L 'JX?SCAR!r=8sr+8?4'zӠܶ;F"1{\Z,!Ϭ bɏwj$5G: pTT? \ɉ4)>/I{E7tRutj443Cf'ZLp.*&ONJ䣥1l8YM7QG:.6%,\gbK#!!X{.6R<<& ԐpSc@#S7(a\L8?QgpFj}}UZݭJS |܄̸èc.S$=f,Zs|xe!Z?DL94D*a "NAJHȕ*:I_HRc|wN {z3MVLCPŦOyZ Ļ{˞p1Trbr@ԧړK4c|e&e(4UnY9G=vPFjNQU) qOlVk߯`/N~4ഗ Ȥ0=EC>?TKw C[ी2lk]b}:\9ƕĬQƁ^|+5w?$C3kNH>d_Mx{Ԥ=Y rG H!ԗzОJe}۷#O/'ǀbxEC#rB%}H%'[@.) (AʸW;?!VN($lwnv;49OЭu]iIA%{l?ܵP> stream xW \T?0sK%1}u-KŽp"uA6Afg]A%1dcJil+[ww7̜s eP(,_*>6gG0fꘆ+@(Wp$oLS yJSYR98:θ; |XA̎;y;_XT)eh-hIl l XJg 4r:~F ٥FWQTRh@%*p#* 췺7Ȉ+"E &!ssUZtl{Zr^1?@HO! ݱݕr3k72~aIL!J@8!Ww$x :߿B!Z9UdKI&)Nl+ ٗo4@orT KaV3'c'^Y G ,M"ƱP"̛wqӳCrt@"!&RH: l2'wxܢ?V4(LN|C֧E"g_tk)G)ݓ_L=_Ω-Rx; >UocmR[ ťeuw\݈Qfmo `I(jΈ~Ig;52mVn?x[9xSή݆Ċo{*ʯN0\HhY+48p#Ux 0(,C¶X@=@ ncvKQI_A˶[ 3/N\6*NӾ"J気~ng﫯߷:pPǥֵV%EĄlEѻ9׿uv_ _":4RUd.ҷ/8SfBS0&(+C;4t9vkIBj,m g!Wڒ9UlR_%tߓlJ`Z{b,2)EBYko^reKbִ fA"l,zOjOoIq GudW-M%,EtR+ Üߢ7/R{ i7*.,%Oa7zX]YUq 4X=$luSQna~($P%kY,tU|C3\ן=:Efxr4CW4s^`w6l lNZcƠ>޿kuN@DŽsCnc  ?ë]$IbdImBwj0f!Ŗ_FVUjH%T4`w鞒KCHPmۥm~y x`q,)"5ڶlΣ3)sü'܃_5=6oblmΉ7blwJ)yJd<5#D .#J6][~ Kp+,]nx}$I|P)[0n RB2 ys!xn$*?=ۄ7QM^6upS"t/inȼsiEK 942|vO5P@׮jd؍~]8&z ioIP= s!"q];Vp2sJubBTq1۔f*4Ar;JaЫFx8l#&uI0QiV'E'yƒn9}S8.ܿAk'ΝnvzM>et:/&*tꀴV!Ɛ # y|jyVZ1JiOTdr%鉒.n?>_(5EuldB, u~'ڍj97VKn)wwm)6- ONendstream endobj 140 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7949 >> stream xyXT2 b5]QXbAQ삂齈PY3Cu`({Mc0Kbb!~>ƛxs~LJp{{we҉DfKxm75spj1nbfR13t7B/Jgc=g\> paТ/B,u\te6.]lt_akͣ#8&N=yi?:lx,E lrj:5ZA}J laJj8AQSjCQs1zj5@}N}BͧQ (+j!@}AMS%dj)5ZFMPn՝AP=^ToʌR}(՗ )9eA,)Fuuu(*z#=K|dI I/qڎ昅L~v: )ߋYzW ISS#&wa͝ rE~\?lnySo?Q;U)V(~6hPC  =ZBD-[ra D*g<>;15ANakviOg=զXfhu8MЩ k%tA2$A&i4JOǛrJt9_5VU}9z f'V8ڈ|06nYJKJSOZZz.핰LDB%W%.]̴eq{w k#k+Tϙ!E:|+sZ,Gnbq«'p_gNh-]|4Yɹ(-1(9ZyIb4*Kb"t ^J dfS-T¶(qQLw~$8N ؞ ,EB^S>< EA2d-$A3F}Cm\ׇڮ̰TwmJrwy$ɐ{{HhWʻ*KjYJ y\dO0F⾸aְҠ ݕGOP@dF`,kF4z電W U tq94ٿ7QFQ2e9x6Ѣʊ3=&+_2I9Bq)1P*+{O;|!ȊwDʛN`h)WJpjW\Ķw ՞HrgBVt.[IL>MxmY#1A 7cPCc NJ;ġg㻖E[K<6!ZL7,3%1V =  < S*.TV4Au[׿Yw2!$0-2#2r's=5!`NTGd~IDoM LZc&3B!&1!A9ɱ ReCEY=Ej_pz,<鋐DC0DⳁܙmyzI+ZaIc*`ά,F&?bY;ug,So LR~n֍'VfT\0!Dzv(E8(`}ݦnf4w1r!.*r9QAee[A$ +Z17 1>rN@U YACt ČdUWj$/ȊIo%%N,u2ÿɓ#"䜟Pg\.Yd^@3N^pˮ!(MdΡ' fUx"f) =a26u[mfUeWo*kgVs zs׀#UNʁ= Y--|In_XsdcB w>^$}8 G uZi-8OD6MJ @xttle)Υ:E8%&=,I״Kagkͥj>lYtܽpiWې{Pːm'zi V"dʼni#UKgg# M/2lrҔ:6j}ZAX&hm7X Me:N[r }\vn?0TV4ev8ɺF&=җCfg[V9߈K#ihX2sưp]ۥ[`k/6,j4 \m=퀑؃ki@kz(`# ̫?u2C_s6%P;Z2%x&/GWeEν-(E']gJ4qaا{c jN i_8D]ׇr_tJL&k Li.׶^-:WmK:9>ėPdCN:w v 1]$㻥g^v,꓈TOu" E"UcxPNyC'IV ͒@[x\̗/4dƞw2;aAc$2*B2DvFZ>h%I~ us'wpɮ޳+iDRjYװW:o,6g$4VLk=NjT(&H-Tr8}`^hNґaDUl"6 a8 :WAU_='u|2HzGB"d!ђ}.`^g`˭v*kjdkq3z*C( <;u7Ch!92\?(1AYhWMy8]ؾUMf!+OQKKOYK'bz|oM$pgЏڧυ\6*!,ܢR].rf55Z\[ 7xĠ4ꆨ^)2'Rw̢v,A`za:K%y%JJЄe7ͥG򣪶8R޲Ed9v `E0wplg.ffpb\z.]qtmb,#IT}U_TӠ.懫WoՅ(jw&6W^LWB=;*/00%_ب@'`&«rmUQ!J+c*P֮2y>6ٳ&) ,:j󭐽7)`hO6oS~69t܀5s.l},KH%iX<0XG#~+zU6#Y{ m> #ZfnW8583ң 'U;-o߫P ~l~t<%}'K%eg*'$%dK³ޘ=m:a6#ޢz/*lww@M.TIVX-߷o箢 #~6}ΡYyM%䒘O@djѽ)E'_N>5)V6Y8&*utlOM譤2.m [ >D//E³PH"zy !ii͇JGk[WBEPMLVBɖ lӚ_s]5W44q#eAw@`VD?IY}ݠa[uXO:$>'0<`lb-1ğlx؏X*QJ^is6OEv.O MVgC>蒓sP@SW^Pv̷K۝#Ygڿ79?a2o _p\-gV{t6=5^@ΖȝXy: 5Q'򑚤pw6HnN= Őj\x艀7!)>mlmcِԤl4O)-گ2ҩh%ތ6a3bԈ2DW!Ssh`T *5$)^8'&kr!-6"bNͨR2|g٣SqH=槃6{z?[8<+5JK|=˹c ˵v4]كx=ˊB!UZ!!J~tD(dW $B0Eը)"{@!is0EC)Γm2846 $jH=%j!BT"m}pυсEc’gW5Z]b%z$#oHG.o <;ٽE1r.48dd>6T $0q Yw Z v9#DbTI|\&B>Ahi2CkBLoD߈ѪʀRooҀJVy76-޲̘teDBtH'(c2s22,sI%AAT߄ҚftCw}iy[9?>IV NrNU]M wY2· w

zU47@@L Q r|u'*(k6X46y8VKl+bTZg@M6C̎ nɚͥ}z7Pi0as+RXUTWez^>;EvȲxuH-t`SX}th Wt)Ilf^݉76[m" a4^ɴ7n7GmRH哮D&G$%yH.1٤rs7-ݢDu:- "<.Yj'p3E]X6$A%M15>AO|K[Il!x !l)Mڣmv{0L?ph*- "A!= + 6^66]^Ta.0^=;K9zpHS~x" *;7g,ucpy:ӭdž7Qu+'L5C?v7|΄]Ϝxƥ5sVzi^h:SuAYz q]E%Yw ?AMݓ!j}f>p fp# gJXG޴bn//2 ٺ$#?P|T6uH͕ r$\JV#o?V1Ģ =*#&#CUJN)M`el?B5sׄ,Fѧ6 tcǔCu.Ȁ fM/&5$[5?` '1jԊU#l^KG>qoIoz-)skƳFo;|pvou{l!Ӻ3ۃ9=_SY˴vBeJX4}b]{j@`K[dm35v՞80lڻЧvM ӞvaAoKo]v\ům/w VXMHIJEPz&5>)^9ubSjLc"_}Ɉ+mǽZh 9xO^mKkq(,&gf&~=~LJ>UP :J6J"naZzjv\z׭Lf4f`J񟔢  |OqT,\"lֿ<8b0!Sˇ+B}!jbWῸe{xzPlh+':ckf LU5-1AY Ih՟-)g{;3 \v1YӭA26Uӟ֍/Dendstream endobj 141 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 199 >> stream xcd`ab`dd N+64 JM/I, JtwxӋewS0c1##K5|Z2,(~_?~bܥ;~3>,}}Q\rUl<_s/Mn9.|ͳz00MPendstream endobj 142 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2089 >> stream x}{Tgݙ" MA== *EAPpA`wAQwYy)"qAVX_5ML14j4&?NYԚv|e…d>+֦LЮHڹ}IɺL?g&7ũ BOϻ(-զgffe [nIIQөT4MPoSTZF^¨`*ZHEQ(o6OeKd\fKUV^f1wYmn\n@@An&o0$cTYЖoɅɹ`]$e_I٤5ʲ!X +S uꊺ>+1r[M,0WEVxD)՛;^'۽7 ^03uȗ߲Z˛0yPaUA\ 0eE/p&1\5(\jh* IGtaUbeW\LtN &Sjd9}uĻFX=?q[v2lnBuWMSpթ;`#lb qN2!uG}IQRak愽mY{DB*BԖ5A!ر&9ճXt3&>d꺸 i'rxld8o[ɶ:"ZzAx#{$[pF@W!G>eC0;{ZhN"~Z{4~>Ú4΃& VӰX9fӌ҈hd]2vpRwݗg 7%dRǛ\' z Lb$`0*Cn.CggW7XK}rC NrPS[ف*#% cP٪\jkunX]~0 6tۯJ-|Q8ykCfkYP&2& ʡ8T]iu$-\<#zq i*,Ӛ3!Z$W3J ~.ZWxª\cp؄]e 0 *j4`>;`=08o 'Hc*h/7Z4VfӘK? ;oق[WF+}c:!3Mw#Lg 9!ncjjQN%t/_]{su.J=ni]S.աWj_tK!Zrr{ ppcm/(4l峮/m9[4L%?yD.ZY/6{OCO_Y$H"wB2Č7Ĉf%ĚO$'Ӡs& B73DKуȒi I cw\ѾʊMPQ_Y'~?9܂>MsKWvcKb_C_!1Jv-Vo(=JUYO dQ-")iVjKybEC 3Am f GM#VE{|i!3]kѕMV@=>jBpW2B4OoUgRѤ&mMI>+t:^(:+{?w2O&\I~9jAczmD Ǯ a`T[*%#=Fleݛ34(;vt%}. !+['N-͍P{ qxU[,-(_?;)I1;p> stream xXy|Su!4\QZ34WQdwXoi4I479mft) @)( 3d{/mc{s~c7em)I<=wmFxb|ˇҸ`&m{x@fʟ?^R Ui/\.;|ȍQcboߑJb:Al!f[LjYvb6C$^! B']KS\bG"~ML&k:b!b#,xG!c:kƄy+׀|83y7~ &&M*o}G&?<@W82a_էS?"с? alz*'0 D2iJtqz@2G~)43M@]PPHk&@Y\. FR{> ;]TTژ -NPE &t%71t{yޠS|54ChW&y:J-<,CiIVKWFcaýW7K)ͱ0 Y42Yeht+ydd2^k(FU9˭V -4-fuKj{æЬH:?),r_c/[f ?oQ)Jµ5+>wxw^ Stؠ ur{hKUƙX e4&@846n 1N@q-n ՉV=Kfpc(A"V k7ZQKZ&TzM-6rZGK 8!75k$OMBXLByOG:<ָo 1Y"'n}}K"H0UeayإeAEpb.Sp(x((P5CrS/u+h }֭Ʌb`hA9=5oV)~{b)@3&CD5e`j̅ FZ|ݩ.-2 ͲErD4=NsskUܪacFA[m-g/6qӁØYs+'' 3mG(^!-El[șwQ޾V/rSk&3O/Dہ0"VJL:m(4C*PTb,0Q5h[, rUoPuy47mOMTh- M,,Rǯrucwg(剨ʄ2m&*5=H U8%#B2XZ_)q#O/ě*눯vd#LN*K`s>$:X1F󊛦LSd4Yr)rVp-G;/ޝr:#e2h,>d4b&yP|gpsiEDq%WUQJSK@E*-CkOQKV`'),|\F7a\|WVFJn要whr/~6?{rN1r m:sAb<b* B0 t@)m2T36A9_LJ ڡDZc%Dfh溜ݱ:0.> Z'lg;*v 0䨩W#mRueV(6rh͗ќ0BVUi,,Q܂E; qE2t2vQ Q_{<`R @BCȳE& +rK4j=S|4%9i "m6@%ٗ юy`RUy*u9 Ohij*vVB;Tוz*:gFZXe"F >RTCF:Eznk_Q}u DFs:[-11inuBz Gi[Mw! H+fzz7l4KOB?{UIV'9#-##ߪhTV@^Sw`fûRz9H\OO>^EUOM3=:!x*8~.SPSzy~9,]m:u`P$;-uٮ,f v_z 7{V[Js0ƕz ND+>6!R<=7"3DeAmGMFQjR Yů\'\{MnaH ӛSzrhVWҘ.i8i؉ nE@)&@IX)n֢U>E;g#TRZ@Un޾n!Bkq'>vcD@kTXn*S0ڀT^|Mf̚428fq|* f,䖓'_Fښms¡1i##!֚n:.fݳb@V[l D4\%Xц|{v  Nٰ.aL?{|Xdb( TCq$!YvZ>|JЅe5ld,/F)85/e~JtG4ɑpZ[o7;`4Yl2Zȡ̊(oF8u\q7޸Bڡ *5||].;zN4(vB4b0*eYMCXX;v鵟ԯJhe |<6Bw O4 Pp_ лPϜCNhE^Vr ,խþ˩1*m&}= 2$6CߚrAS "w:cu#{A1y Pj Q\Fe00 4TCQF0r8?#iLJ'nX%T'nZϸ5̞ R` :3p7$}D G(۲15z57fh}0[-3&֓`5w/Du#W<D͕`pS~#:壠Z%TQNNg@w -hfV7stn,n3G}=0d>= TZ-dW$_GW^J=hGn^ut[] ᡈӸ_k,nLZ.q!K鳂+6"Y"u|~H,@*K%PEs체CYQLzqW&X*hFlm A%K*C6Y*jJ槚ntcM D<ﺢR,3E2P'(~I#6Xn7{tё?tY*vkRE{#C"HU6g5WAejN<*=_>xJJBmZQSh_};yg4#i_޶4eM\\R";siReq^eRUKqT\|T"Ӎgn ^S}V%?P`IbILCs=[l0Té*7w/qS(gF퀠x5&.??yPY"e+L|;ܫ ^>(>w;7FZݼ;wgrem& @Bz@}֪vۗD/Tfؓ* \vI4zWnyR|R0U ^ M ݲqBRBjEn}@1HX#J'3ʲ[<7**H=@tƃ6O ZB8K4Ou]$u**n^Mړ&V$+kjkrmyY 6 knqp}K@ȕX+Tg5xCMSd&췧/ _"/?(7 p)NMxFbi֯!\_ c%1IU *8rȲru=9]@2=Dj)ƻYLTY^d4 |pendstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6105 >> stream xYXWמ3,hf%c,QQ5*jDBYAҥRbNJeQdhb11s._o}{9y ʴ%H8X?uʤ5;݃|ɵeP#gX!0|z0}-[gh%r=Kl[}E;w}sz ޳4qˤɮO6=rYyQ(j1.KPk5ZGGSO([j"ZDMdjzRSe=5rfP˩#ZIͦFR&&n&M/6MN*e_o<'=_6@2@9NO>x! )8:n9wr،aac92-*YVւu[w5Ȉ}+#ou D80PD!29Te>E؝x@WLQBrtBB d|kQ .F !] fU jT*KjQ'̺Wvg 8i,bN= G+(_?96ogh(jQvޖjQp`:]Hf~Sp%4[ W8d{~IjpQ[fS0CM7]<~3wVv`S]Fl ]| L~<.m /w|<,OۺhOP}j4&;p0dslM'C0D}~z]67y…+=ƍ[;LjqZrDW0;E"d>9{3e0Ϋ)"ӄ*Ũ7,1&>Oދ#^- sd/ ÀvX._50M&*{4헷7xIU?ʍnv,1 '`a8,4GZ\|˶3J>% jHP a:İ"rPO{y PtP{fpt6qH!`-3) ALey~b^_K 5#gC [<Х2 dLbxAnnTm" ̥20Sׅ|jxZx4g2>wpEs?tU0gvym9X7/1t H^SڜϷOVOk]0] ՒC%x wscJ׀?7C&\]n5]J F sz`uwut҂ja&[ 1Aq%t7"4:uN.%uT,%հ6I⻺⾆h,zig9@Ve )(/ZR ~M&b8߃x,ePJogR轵'Z®%yRAI17I7YVPd3#0]qYA9GL*͈/EgT^NY}EDIn-h bXL2'Gm1q9coVJd0>%ۮߍtm:u23(X]n[-z^нc~ }a$N7zM;yΖ}1^4 3qfG=YY-96wz6|s<3ͶlMߡ_GuAfA=ط{=UZB,p{=ue!(Sy rwkhRH0Q&5{ Wb^qǡ`7-ja#^vђOe{FJJb+&C5@(:#%!dH99'+RS 65ar=;<,`/N,/CMfFtղ;i" C 1!|Bd慈U‡WFBG1%uwA.f1q4Xp=>TCRֶm0|XUbAS0EQ[L-XDy*caY{_)S!?9+ZY)#w)Z԰`Ӱ&Hm2"̌ϊˏGp߾o!+<@k&BjlL;qn@kEyj:*ћ:ӷ`j!Mo$3} 2 ">BXD" ""fAD^un[K&LĬvtgW#^/x2|Mk]fxխg7oܼ޺mFx_ķU?ƎbREndHN{^48v%x"CU#5 ]* U[z%AG6Lw +P3p c mN=(хw\H$y !{^]"~e~T)cAA@; 4*z~oΎbނ8! >EX䋁3 sSDM߆?gwsFUXxUXpEP ,\ޫY}ْLY mX⹅gͩ-'-ī(T`%TtDl5(DR-j% ڿم#QsؙOGfo%tDqi.%aGEGT"kV|(1Oi6>.\U_Q*>1%Uu^M5m;ugod^:~܅@a̹l;Ҝr8AL'H`ܔ7P'n,lӔOXk$-1)|\pt5/ P15[[Ёys^ӭG ge0 fow* bU됀o)"MOdDW0CݏFٝ=tNl[&t9zMӃ{I ݚ27kI maa3o{44$[`YwSUؘUG\'~ԩVc8 KHs.Xhp.kW~mk>>4~ 5F>ƳD3xێ[FQ.uGvV 둦wW0opF5{(/Qk)tI_\ ~4-m/ZحMZ=*h})AYWIbT2 2TiEO{p i-VzH||"w^*1W!(l7ݻni.dJΖS-U3IXRg> xEL\"R0qY!5ud{rsV Mr6XBLPCNb“PL 3ړ5(7ՉUBR(\ 9n볣 %ѿ0[\B7eۮ>ţ'lwHUIUWD#aO{z ^.Ɋ9ȃ l1&S8={g@VvjZ6X9"joLRX" aE%//@e$qyވ&<ھуDE<&aR?``ӱWĖL_58vywsc4޹'j"D2J=MKh&DE%;gmMH NF4%qkA3z!7M;z45yG^ BMUvLJ}ZZ}X|{ǎ0km'?c|އvKtW{PbJdb#Q2)#21-3T ҍm8,A/tmPLR|` G`s 7@SJ]2i l,ol)LyaU/wџo_6 ^]`q7vo) yLt&i;-Z%r)q@O}6lws ;8:3H0֔Է_Oj.8Lmc 'mL5vCjTȴ_=W-Ԯ,^&䪹K5P㉂BmzT⡄ 'ލpFJJLhI`R^FV#U [R5Nhy7Q{WV<]b:f=pYsr<{&x6N!`l8­Yj˳lWh;v6m a~l]3۾M|'WvWWpJ" u.H] ,UB5(4a?vh&@ŷ,W$978H&dlv4s\I >?nz,TTC}KNFg8sN̞j}LB iܑZ`o`i4E8T/:{}̪*4?"6)%V=6!2Z!227;e)fQpтkڅȗ]DhUO:Q<ѴKQ^^R> u  q(>#,f X!0E/?eg"f_byފe8;9i#jfF牋`~^F6M=T}egdOQ`endstream endobj 145 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 156 >> stream xcd`ab`dd M34 JM/I,JtwXew&ӂ' 0cC ##5|93<{-?V~u׭[gܒ+]yi-ùgRoo s5endstream endobj 146 0 obj << /Filter /FlateDecode /Length 2250 >> stream xYrF}Glike@sj"{k˖7i6>E!Eh|Hg I%f/OҒ )' ;&9S:p|5KвQtB Njѣ4ٻ*x|9xGNFJ9i-903\E-uQ! ߏ)TtJ rSͦqI%o2,j1mz!|C9S*`OReg#i∓W>Cn:Y5)Z,db@N57j棍He./_57>:zrq򲼀2 HftҖfvt[MЩ3>[K ߞ8WʿE?.!OV v7p]"KS$Mo&vpJ9w D:Ԓ{fᛢuCMCYyWuB*bl,Z55GWmr!<#ys.n7m#L,,U l}Ȃe]rݔTLbA6cCQ8r &*GRVczpEZ:G5aV=’Qgs$PYrҗֳh·"g n[Y5M + "I fIRbBUo@: jG5S#rmϵ,<۽"1Y4bu Tl^v33H\aBnL5-H$-;U2ߝIDtޞTv5=@ꬠz-.d(-zwOܜ! Хck m^9^&I~zI^?^ ԠDn!ُٙ}rx|=Zhu" keԗAėf09xѺL' K5S{hh G_tΈ+n5#?hAzd$Q5gyV(˓g` J:6WJ<_T9qCYA.y1S:WR@ԃEoG,AU?$d;9+^דV@OdIǻY IMs!M2hFAPf/yapTR\F@#R^PAwP qLU8_%xċ v|P-RVZ:ARuqB% { ~#y(d ٧XGaO'IV@t>1pFyk捦c AsɮsfzEtw2>WY1Yn 86/_(> stream xViTSgr*rM-]܎:uVK+₈,a 5!d A0H.֭ˌG[.c:ZuhN~[{}WDP"(h鲕1)aiMYŤ{znx ~m/ DcF;~!) #oˈy76nS{V'OMQcxj5 VQj2zZD-Qj)I-QGP~T+_ߋ~<=k5d吁/?=C-5:!Kyg+k~0s!ZM>>5T6:/ܠI[ emla4GARt#z֠tadw"f*`fyL[Uh bB3kFa;om*}XћUS^T:EkF,RA(p:ȗ tq{R1Cς)\rΗ>M`^fQ g[|=PĴh/ W|V<EpXQ}ӀDp5=FR*4U*B-諀W~OOI8ih90D  ?E?P$ފ_NgBSiv\,`VX!v H|MTXM@8> N`\rt@aP?.4ƕ bPwQOݼ'8: v[AT#Eo0*}UWFw l?h T]SN&8Dj0ۼ .(-7f;Z/XM$ݑh򑲡x[̖F$2w!sD4;9րJ+;7 LޠPZfB T&0!B_;+D$5ǗĖScޖ7@4QTKUwUFouP yJ^[c!pDi7)廵k* LH;a0X >[R>Ǡ)+IuDp;1]'Apb|I\hN*rYO\=\t$9bի! BWC-EhGdOޛGO znÿRw :.c^UFi_RzR/גoKڂ"N-#+Û0/RD\଱6ʡeeowY3My` kE줤5 'lp/}a51pv>Oys#`ޒfO yD@4ЏAUOpȲdtţҒ3}F"4~+$.V3)X],Tkqdk]ȇ@y -`^N^P$0+>pBUNI-Jhu_8Ia.ܞ} ] Ka)hYwP@þu" 3(&(W$FɢCln/tnERGN(.hWjVjb:"v+ur=v+o 5z^55Ta hF#y JጡPV,J..we5BUY0l㑀}0GdQ@C7xă}>"Le^nR $@c/=~'HIJpR}2$} 砻uOjO"60l>>BLiٗu~~^~k:Jr~LM- Y)2鼬hA!{rzmm jk fgwx_#3FpFIp!)I_Z(qfȿ5Ein"7Rkۙ_ck.ڧ h.dg?W)<݅lF!{LQplZqW]e:e]ஞ+QWDWz'%*mWQڈXL$ĚSay ;VX۶EY'7f-͉;XPyk FCuW|f۫ld iayp:D(亭F5;pBU[]Qn o60JFUsʔvsWcJOnJ/TÊס{Kxn[õ3C%9&X]z|]Oh hj³B]1͓ʞ1P2F$9:~ޚ^A x}?wZ$P-p㘾ZjdHT}.!j/0򱽨7JHP@1XN\4i& ܔo$Uq>+WIy^24Tf|H{1-a|6oo  Mܯ9`lG^O~)i!<<ڳ>}s3Zbuˊc rbCb1z r}g(ky-ȔLF gm: . O.R7s蹁,-|pU`w+ iM{sy\pʶXX[6L~_FIٹq2r< v.[㗯h kz+h0QﯹO kSV} @6].f[[pEuE ji/ [?i4&d>OQҝendstream endobj 148 0 obj << /Filter /FlateDecode /Length 3964 >> stream xZKܶv{J[\!ʼn5\ J#vd˱uGJUhyɑ!t7JSrHhtaRlRw>&Nݝ?SN*&/N+l¹,L鄚O^NR°-t&/f:Ymte-x=h;*[MaHŴ.xsEr淪G>`nǰm;Sre`K'CL$,̄*4~d> ~gU"g bW:' /W)ul7ƫqV\Ť.^$o0}ŋزLi|Pbzwz#{گ#_'tr 3_^xKD].T#`-iLaf͵&*qm$QcJAJt|rEqĸfv5g N͐U3M!ٶm\kqF0iIla[Il&3 4LKDЈ  x:t7HXS#d.*l 3Ji*C gJ tt/L%' U|ڢa&+hK8]9Xؔia8?2[eי1 :^@1`J=IS>:?s6Yt'@vԧ':V5tjd lsu88f]pB%J-Ʊ#֥$xl83aVҸ^mD4W5TYYd@-H)/[{ E /t%hyPbd5r^+C.oVGM.9'BCb=p=/@@26Tp`|Ҡr*3M.d@xF8! AfJ;i$Mh`ur"AJjLtc}Aby +l e%J[LfF`k. l͵Ss>+H2aVBJX!-;<e^\ǪO:"ðf9-Mqo4t6M$ПOGw :FDݍ buxCCI? g\?CgoB<Mx#Y`F@݆wEϋ)%}ax65lUt #( gɵ(%ZTJrey"yFT!K?N> ,LtXǢ>tq(O``Ƌh] 2@,sK+gS ށERr(P#!&^ Lq%..!{!8hAgۅq>,B Qx=Yc/7n6e|`0x;@gߧcNI<809(+? WEQ JWu. ̧] 4ٻz£.'AUI,T/ݝߠx($V)/R/ B#6NrBU>AysE[MMC1C> FM×OϾ, no;Z_C7OvqzU @Md M 2-UA. ̽ Ϙh$J\d2SRC+NgA(r;xpC][66 .mmvE?#T5Xg,wksՉ :b`د^䫌am,=/ξI yF9!_Y-ɺ.{v'!QmHQіrSҼ0Uh6>N}2Bs iKn>Icfqd}B9AKtAN$ܟ!/Xp9۾NLOUHzdnzv龮\'a0/6ydJ_vb e+EGi,CԁJ!̀.]7;`sH}EǞ_ܩyp1 8,"dɩ2?ujD3vU/` 5HJwS'! }7~z}1˝*p4vP՜}`׋-b}u;X! 3J13𗗠}Cu> BRs$vp Ks EsDg6IG0B{8bAzk %ň ]Ҁu4@?66IHblGI4sʃd 2tdx́V2q W)=U6ϛ @6kh.2@@t 'nA݉轜1:`g_ayZH6y": ϟgA_x hč(,Ì&r1_eCo^4Om?82^Mʲ)_~L -r.m{!|T l;b! >i㟈xq,$MQ:nSy>[HJW*xAj@Au}cI# tt`Ѝm?j_Pm_Y\Ƥt"o"eAqڣ@TQhq5iz0}h%|mx}!"3ݡ͔~(.OƿƇU4|Kɱs!O<('e"8(M!q [C8NF +=[x"~J?~Éc5BAzMЇVs-EJKȿaޑC_1n"@ؙ7b"Anq#f}Q_ .|-K_ġ`poa,S}{gz}*\4%!ŭex3QLP$( <Nx xzyŞR Z Jμw/o9WM i~'p86%Ya %QQ e2b%~X?k^zu̥0f <O >9?mbO0TW<-\x=Z 9pRv34:9hfUE3րK'J6xww@5tñvpNzgjB7~|IJ6}}^m 4tІh Z Hǘ[H˕LV%vli! qU/vM)7ׯ.ڦ4͏k5^?,V. 8e?'endstream endobj 149 0 obj << /Filter /FlateDecode /Length 265 >> stream x]n @|CV$ĥi*D~óm3/lzxkMK-og^eۯIpzM뻡wKW>dzAb稰GHqglT(Y(GV@j)ɬcEVcH3k)M\(pxE=dwtP$=FgK+ϭ> stream xeVkte Xc8, ^خ Pi)Iچ6 Isism2ɛ$ͽMN[T䪀‚] Y=Gwofwyy?< IW uj%O/(ߵ\3jnoGNg%7gy$?>ټryVY[]PjjrZvFY#bzk덦=2@H?1KFL&NIr|99[=)SԱOLV)B}hV6~SWFJUzSͬIn1hʹ u JCBHv&ޕzÑJUa \8t>+بÊCixoRIp֩YUીjjz[lx&]` NIݦ$MF!K٬ y }[c&  ?ۀ/s7>)~`l6J=p&F5qpc=, p~i278t)(#mI4».('ۈ%oq]*~.Qٸ8tucb;N׵dV;pO^f 3LBݫx(DY18gT@m2qE6ܟiN5ڥ(*R)F9#9]:ڏ :I{ rz1`@^0z62Xzg\ 2AR-`s#qh7~/`U85 @yIY}M3 Eo >2vˁz:tako#xEnݼ+ڹ I|ʿIdx-'I^K֊z0 bC.,]ѸmЀ2{EIebJk_zt#h& }Q\mZS1BEh'BR={–M]U黆C#C<$A^_CrEobc9YSv$Ii"⠽nghX!}X^^ -C}ʹA:\oJ< h2*U|ظSSRt֒ru)4@ؽd<& u*sCoܸr{EbX@q!|̮yzNҺWիƐY`Ot?52r; znfެ-X[,NSZKn)!i?rhwu:G-1 ʞ)7/yFzb#Z-q93utS6sEsz&薌%=z& 9h_29P2hvצ@$JU abJlwoh*K!I~u3m:)hjVf2]]zzFmRKbbBwh"XoNht ݃(e^GDYϙM Q>C5bEC{;vsOpoځiŋ`3 %#My {/yZXKlPUwUWZ@C4S$lzZ"$&krrZt9\! ja83}n:a669:]RSH!-l&Aћ {cD_)&ABR@s{?܁&7atN[)ZPs}`CFM}\*]=ԹFmݣtyJ$W)Xbو&2EנzHzz!Z.> p?E|^Q!EfsQfA'sEZ>YXx ^^tvii uh- A@PXJ~u |0($(ӖG7OI9S K'PPa~:K?zą쓒.=i\9Y|^!-NC !oK`Y喊**9Q_Ky }R7yp deYɸ11al\9Wh!E:z~Hy Fw0PC68h`U[~@Z^RJ`&~OX[QuWNg#s:uVZ |w2\:<+*Nod5 ~/,+ޕ!g(b^ptef0 Ý-wDW`V.ҜAS{Nu|v{lA,@5B0mzM ~#\k'<>endstream endobj 151 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1070 >> stream xMmLSwm{/X@UbL5 o20%L #s>ȋ  ꡗ UJJju>6([27`dq!˹O.%霓_CSJEӴOKvg +M@Ġ! 4 h#WKEݸ>Tf(*7L*JB) x*nBewJI?; PcRG ~ig=8_1IAhIa+OPiC!̭<[r bX(܆]<וyyN@ <=ysy|dEXd͹}b善Էs UBR E`2x5<8x:~n t0 >rR!hOZu r0re/EZAft (W:vͣn9ZJ~WFڽkd~Ad/O? FL:lIѤ! kpsD0~l%c+AZT&Gʯ-AJ/§=%5b`<#0 rMb㙤w.?F6nA¾'ivη=r3KU˘2o-3x\*QI: t/>БPL>v ꋄ,nMh؆̛c./6GĿຬqpb6 `#!=yey?­vT7N ֭$I*DDžWIz|:UjBNgs)h(_(`endstream endobj 152 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 541 >> stream xcd`ab`dd M̳ JM/I, JtSev˂0- 0+FsAs$P'r-O/zeo gN?Z[;V6?ݩS;۳OmNǫww?݆}OpM6.Srv]H/N;ͩKv_o0=ۡ۝byל.g^Gؚ vg_S V͑ž`euedm{ؽuov/o*wW~~wa(ohm];Y[̞)yȱC8s-('(jSfm]/ʹ%{9^1WvWo1VI ݝER?3[1|j'㱟?'}!F/'[MqwIY?f^$;eQ9HN($6k1PlYN^:KH>0wSendstream endobj 153 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1176 >> stream xm}LwhiOulhb$ '5 0R (-0p.N# ̹fˢnLF߉a-fs=2eu[evK*kwTf,N)9*,5Ӫs|춁XЩ@cSfceny 73&<Ҫ-vڠvԾ๦V(ӕRT2#=(IU5;E^Ot3 XY`%YQ3"gS1NUjTc9KF 5yϾB۝V\q& КްR:(`2h CMv_.2OC#p,QR`/@;=~LR\ڝ,T hB֟z! !zA*@pa/h\5VVh'@ A?,>j"ucDУQM] ;qGH:Kz<-~tl(Ae5ёL  A?L<1%K39K O\uޤWUąGcf;;V%ih?cW  !0=:IU A%7e.əN"E6=+g_Ud y. ♝:hۘy^F&H.bqEN/'KZ,o3⇮.#^ǑB8d㿰R)~gtRSF&DrrH ~*2C00'_99 js.wo'4SZ|ݘa1ѬkEݒi+$A7?㳣n^ I;=wEF̷=>dz/Evt+)zBL'8gMo7) xe o47(ܴz ͰsJb/`_q'Qøw0BEE{Lb 僘#aHK*N}g;$&xRŤC[֚kDcn|{rZl $@'qYnPjZQasendstream endobj 154 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 713 >> stream xM_HSquSٴ,˽J/%sT`,:縫wLӹf!PaIA`%y1fu_a8*)Mu<}Zx0QA$bdăB y8r[^J^Zyr15v#1L1+ƘDpL3JZ=Vh)j>8?IzDx2 Zº^ʡjn*b PkP; c@~joT̲hFWTԘENgTϱg V_ {EhB4[[1/ D?- <[hK&yde08&9m{gݘvd^66fv}$?ɺ`F͇ a@C-Ԧ {װÉ 1o/Vd6LM8GirzgzsO}Sla&F|}24^ =TvLH=WAYfVbf> stream x][HSqqe% 3 C=Pj*"By!t6:gѭ\͙[e.Ŋ̗0A^q^z>@A+9|ָsGQmUSmw-$w(I ܟkwqUA[ި5hkBDTVGȀΠ(Eel9Kwqa&a lnb(37m60CV!͕bޅr‘9<̌ X5@Ww(%C=|7L{l;Cl8'J[4G xr~~:AX22sdYOЖ E[u,djLni0<%B5SEp<7Fu:Qh4N戬djQB/e>S ν 6˃ naankQ|abX89D<^>wB]T|07-wu9Vp86c4PrynUf*_V saHY8p FءKiv5RRv =d4LB撃a)s.RH`ppNNviPA/zSBp],`kSə\4C3ОGhOPy'/u>3E2[ZO%hDN$e'+"n_>k@D1Fendstream endobj 156 0 obj << /Filter /FlateDecode /Length 4276 >> stream x[[H~'x'7(m\WW!Ն]MhY!EșL&&Y'l9Ucg:P.W:\˦ _/ۋ.}z_>7'oz}^R5m핹_~fԍQh|5DZ6[d퍭l{'uUrUb_ U7FX[]WW!>LWvZtR%[ [^n?qex@fQ6pDcVF^T"\ya]N,'%jANR֍AN@Zvۉnjc;X(FK[ktDDJv~&c~Ҫw#ZMZ_rR7us)H/AD4FVԷk]}S^9xd 4JzwGHFΐԶU[ 9/͠H1>.w ihUE@G@?;UuiL$Z;g?rˠrsY14zQ2{z6^;Ff#sٟܢ2Oq{5&Op?;VH^"Pf'S-I15`;:rx?[unK 4j dԽ "Fӕ)XWRt HhHկBz$L?*t6/[ps+'-쑯d!UڡDBS#5̠UcҴ j*.mԧ-\6#*Ix?nnxb4[ajuAhxMF\Y[frdǰZZ HA% Tz80D~8.+P?rO0@l&I' Lзq铬"J@,ڴ87fR3?Ѝ2o~^:*2I3σ:e5Ŗ6s|?orE!hmY" С{]#D|uT??]\E(@0YE\8*~fq໏a :|[ܶ@tgԏ ClM}[?+z<\wCa;7g%nkN~U_&@ڟp*yɄK~gbHP<|Cơ*)}Ϗt;IHs `#)tT gݞǢֵ |!/; $N[ 0 -xmUwy, iA[g\!D,Dg05̄@qIQv1m+cm`. ߏq?+$x֓a؇lW wLf3t[̉fv;2 |C~1@[tVη k ~Nm[ =64z@$ "[ƬK1j6RMek Y\tk> Mע\h JmW3!  B( a!tm!8PRݢ (\m\2a3s{qbC8>3<"iaӐd`DŽaJ7SN<*LяbYxTZNk#[=}[ME-W/\8f'`ƻP~3>w & fV6F gĹ@U|w3 oAN_ 16‡bʘ*Ba9@jZroW~ٱ}< I` AV1 SD"ƈ!D$lPzp7٠W0&:p I6y;+v=)Pqj*-ĉ t7H0V~sfliƙ"5EҶZ^KʜV} QL \@i!lH3I6OӮ1SKbng-50Ѐ/j #SwDT_ C7tQwkT\ F]ulک >jsb!V@1gv*KQ6)yB+F͊:JE\@RgDd.jfHXDJpqyXX'PI*TFA?8g:'%@uŀάgfeB))aLGhȘ#Z`Cf%\+mhby.j{S} aW3s6uX}(R݌c5UN.yr`s?zۋ:ac}^wςݢ^j*d#`9쁴Wp Qg.2q71?(-l0z| &A`#CmefM%-Ԉ+I𹶟+M\b47.Uir<ՇN|O{s]=d @)qIzxʿf燎fFהEtc߼Cf sEuE*cփwFU/qKV!DmSz*.bMj+ fjҸYu?yYR6/zQG $e36p,<A ĸ YhЙXJ]" ͕^H1<>OwV Nc]AZ(þDžFWRn_[ӔMk.2i/jS &JO?s598m>U{a_Iً@/48Z(~B%FngUl\Ԏ Հf*p-9~QڦPYȻXM,Hŋ O߭׈P"(Rh|xҸ(g mF-}xv9sɱ;Yne)Eb)zEb3 YPm92~1H v bJ[J7تVЅ/L %BB ?Eg!؄> stream xLMSans10-Bold!J  TR3vu$$,!>ʚ걋Ym^gfg8s+fP}Uu]Iu^i   To _endstream endobj 158 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 940 >> stream x=mL[eB{YgΙKƘmjnc%hUL7[  eO)"A vr& !,Atn&!jfs]}~>?u)2(#J Kw?Vv~mZ b"!Fy5?/đ* l!9$4r.F|*"r"#_qz$Lb K;T Wˠ| u>}ip F>YHX=b{4nPI& &a;x^G 28R+~)f4#TAOdV jU,L_jRy7D:Ã֖,^3!#v9 oiKX^ܬIkx] q``%X{Qpu6{C]v:kZZj*z;Tz``8Qߩ Wlpۿ N=]> stream xX xSն>0Hi* 2(N+3e,RЄtH$M m:)Bʠ.8@' ǻ߻$5~|ͷ5_k?*7|…6nO4eQ1ɲ ~ Na;5qL5 _t3FZ5:4Bl-5!  ,MW8LƏ]-9V.tu[6%Jq5g7-2E5ۡ4a;9M45V;1=Ѧ@ ~A,3g8;6[*(o*$ft ;+ TxqB<0Jh[Nd9ʺUڭ SY#^,@aYm`V[da,XTM PYhSҜjJnI;jD{p+0jH(k2`Z5y/m 7 N} %7|̆p 4X /pYw/ PUngDtYnH2؟&!ߗ#zLjN,Q6@-ԕwQ$t!˟KBA_pP>X68[cG%89 V-)5fæHH2LώQ=/[s(J~evma(^a,_5VlV-ʎ1,M&_"Mq.a7rnd[ ,[fRD51 蹟]!ҞJTNMP AU]`B,2Ap:[6 dVKYƋՄ^:JFO>@/j=.MfHIl~2]$HZIbvwԒK6zl'zǻO%}-i?P<do X+@^v!67J-(쑡7ì4 o!UHz_z,tMb~Mٱ-V"~Z@dǶakYJ,Z#"==dv7P *tŽ !^n3D5(vs QiM:sѬ+aV~=q彄WtUexA䆓"/`Y)F_I)+)pT`'>.{5<3<Oݨ ]c)R_֏St, vH65=m#΅>FkIԝM*u:8)*}jQ˙='\^x?"cVko+5Hǜ1YXyrtcYjRq{mO۰o^EL$ -Jt j[ZARBmSO 7nRrzt]W-WLi0feo߮Ґip3KkIm4XE+|rv{SSy)BH[QFZƊڲݵJӮN?.XTWAc#54T* yמϠŸ]WVODPv{<`)c4(|Tqt 2Zn;  $_CR:8,vL"}[˦ xr/O*V6nqjg8O; 2ݘ BK+!ԣ'y+Yt.48Z%ե/,VgS-Ӏ(q>/I<_SlzU5BA4G۴=dC$d'<,aFc;> stream x%_HSa}\mYyN!# ##g&^BXV6DV)T*A$~ZTXAPO%( L quy8~?@yDfw۹֝ն篴wt |-6L;do&B]CDOn8Y7BZtKq=L/RӮ.fL`-u:ta`~ `P(لj1>/0A&8B5j$GEX'Z<\+ 4/^UwU/V5 nc }~@S'r&ydg5RdR%y1*Yj~Ub$XjI&ݭfM3LSBUJ`"TvAK'fE[N#c :;B]h,K3DiKA,RWfp33+0dc!A~x2ՖTQ>쵫 `Ҫ&K14^,cxQ,xZ6l-w'H(  5KYendstream endobj 161 0 obj << /Filter /FlateDecode /Length 5105 >> stream x\[ouc@~ا5E[uU)dGwZ: vrg5vH10򜟝s]U]MR =εQ:ڷ+~ӣxE Lmu+MWJp:qr*i+hj O/^'uUKi}ֆ:9ѵ 9Z1Is|4RpUh۫ht?4pR.{_FqoM%5n\&Gd0,7:&= ͌!ɚ\?v,ŀsw 윒aNI?lkJPB+~pX÷ rfM %*.n_*% >5`Bg@dE]&3>iP,JiV|//cX <#ow#9%l`@f 9ODk$Vɾ22oȋIFb  ?1aMJT"_v {K`=9*E\; l?MjOPXdp*e\iHݵ}N.K=k@ZN::kfF Ń-ua H aF =3ܾ*Hw(` :W߼<;gx@k8p`̀늳 |P &R {łk}{։$MEOD<Ƨ0HeL ;R1P! z!>+S"MNM L֧/CvduC"wN; *XRéNԺv?Aڦ@q^!+Q"k.ES_9 L3=DޟgUCC./A%+xUF.@2&z͑/5AE,?CڥXrnStI .;:)pdYdOA.ef4`Ri'"C>|(2cڐB:.oƝ b\e3'']KE%(^_m7~͢0CΜXRS592&c\4|.Pe.e0Yq<Rˑh!*T|r"Nٿ=͸^Gbz6KiV -YK݉7,8+mLVe3ʄuk`sb,u!vnvY 9-` ULu(3.٢tW}YɰZ7@.mo{eCn)_!ܭ$Vz3k(xGc0c=2#H,bTX[(tϼ1\IF$5MuD)!1 zuk)&ip%h,c f.+BC+ p^K (]wmߎ׻,ށG3p3OJ9,qnУ]lm~$pf~.,.̀6sdmمp9%R#4xyf Xe4AԖ)T=l$8%$7_!bvq> 2'C 0qCGډ6``T33Z nmM}WU`u:X0@)ug+aEYFc@yR\ԃӦB'-jM+c 4x RqZڄmŨ\h Ga↟1EJ!$TF?- ã6U`21A.L  /s )kCnhL' XY4h6qƸO9ޏES3pT"*vp&͊Ui78r5 XM=Y}K䢁}Z$ ZWޙ?p!Dȧel\Ţ6uZ4 lDAZ?rP?K{7vFKF)c֝t1p((BTI[3cȲ؎2JSmyH` tx%h2OUe 9 ֱ }Di<WH3 slg{@rN+7[mcmKl,>.T|PJ/s yI?2ٮO%D/Z ¢*nB`U*5Im*3.3(E`h7P9ckԾl3wsĖ}=ltvR> 񚎼+W7**'樨ve*6Nco1\@6$'` AH֘і $1 D  UIU 7F<)Х0<)ޗf9&-;.*4/gf {%C.feptnJD,@TyYڹ L˚QbCh`we˼mab>W5vWQ}T;&gHKG+x ZSbi֨ Pobt9jax6U>uì)4Xv:4`=07O8] L@)0^._3CkptE ?e|YnlUWV'Sx<3C2SJ6ﯤXE`%ZEgg(t\6wD8^C$7.+'P:Y3'$>xT̹.>m1ԶPPwfS49{ofifN՛OP>;MZ@L֖7{&bf^/ eAa.NeC8oҠiɵ%qh~~5>5gι n(ޫU)v ?6O7 "y$Ġ~;SSEiG';X]/0,GmZ8ԝ~ݽ8.FEh8_k00endstream endobj 162 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 282 >> stream xLMMathItalic6-Regular,  }iJ)vwئytpnqnr|ty}x{XbOXy*YY%Zu~tw|Wn~i~m~zXgvCp  To rVendstream endobj 163 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O10 @+&B 8QC_Ct;,ֳ ":ր#MEY' ݕ> stream xcd`ab`ddM,M) JM/I,IItwӋew] sKJ2SK YlưNR;f.*+V[]R{~v.ZԽp܏w\ؽHq ?oZȶk's> {&LVG*endstream endobj 165 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 217 >> stream xcd`ab`dd N+64O,,M JtwLò)G@1%LW}xÌ~/]bEδ9w$3|[w+o^}݈;Lq Tv *l9Ըp.0{ Np=b <}@4Wendstream endobj 166 0 obj << /Type /XRef /Length 151 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 167 /ID [<6f32f4a6bf4d405c757c6b4309ee5640>] >> stream xcb&F~0 $8J ?`> ;/ 3(vbDD dH ɨ"9[@.)a]`]A`] "A$g0[LƃVV$eL%t јn endstream endobj startxref 77388 %%EOF AER/inst/doc/Sweave-journals.R0000644000176200001440000000105714557334660015633 0ustar liggesusers### R code from vignette source 'Sweave-journals.Rnw' ################################################### ### code chunk number 1: Sweave-journals.Rnw:8-11 ################################################### data("Journals", package = "AER") journals_lm <- lm(log(subs) ~ log(price/citations), data = Journals) journals_lm ################################################### ### code chunk number 2: Sweave-journals.Rnw:17-19 ################################################### plot(log(subs) ~ log(price/citations), data = Journals) abline(journals_lm) AER/inst/doc/AER.R0000644000176200001440000000225214557334656013160 0ustar liggesusers### R code from vignette source 'AER.Rnw' ################################################### ### code chunk number 1: options ################################################### options(prompt = "R> ", digits = 4, show.signif.stars = FALSE) ################################################### ### code chunk number 2: demo (eval = FALSE) ################################################### ## demo("Ch-Intro", package = "AER") ################################################### ### code chunk number 3: data (eval = FALSE) ################################################### ## data(package = "AER") ################################################### ### code chunk number 4: help (eval = FALSE) ################################################### ## help("Greene2003", package = "AER") ################################################### ### code chunk number 5: pgmm-new (eval = FALSE) ################################################### ## empl_ab <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1) ## + log(capital) + lag(log(output), 0:1) | lag(log(emp), 2:99), ## data = EmplUK, index = c("firm", "year"), ## effect = "twoways", model = "twosteps") AER/inst/doc/Sweave-journals.Rnw0000644000176200001440000000103412225031401016144 0ustar liggesusers%\VignetteIndexEntry{Sweave Example: Linear Regression for Economics Journals Data} \documentclass[a4paper]{article} \begin{document} We fit a linear regression for the economic journals demand model. <<>>= data("Journals", package = "AER") journals_lm <- lm(log(subs) ~ log(price/citations), data = Journals) journals_lm @ A scatter plot with the fitted regression line is shown below. \begin{center} <>= plot(log(subs) ~ log(price/citations), data = Journals) abline(journals_lm) @ \end{center} \end{document} AER/inst/CITATION0000644000176200001440000000062314364623611013002 0ustar liggesusersbibentry(bibtype = "Book", title = "Applied Econometrics with {R}", author = c(as.person("Christian Kleiber"), as.person("Achim Zeileis")), year = "2008", publisher = "Springer-Verlag", address = "New York", note = "{ISBN} 978-0-387-77316-2", url = "https://CRAN.R-project.org/package=AER", header = "To cite AER, please use:" )