AER/0000755000175400001440000000000013034022075011050 5ustar zeileisusersAER/inst/0000755000175400001440000000000013033553032012026 5ustar zeileisusersAER/inst/CITATION0000644000175400001440000000130113022372163013160 0ustar zeileisuserscitEntry(entry = "Book", title = "Applied Econometrics with {R}", author = personList(as.person("Christian Kleiber"), as.person("Achim Zeileis")), year = "2008", publisher = "Springer-Verlag", address = "New York", note = "{ISBN} 978-0-387-77316-2", url = "https://CRAN.R-project.org/package=AER", textVersion = paste("Christian Kleiber and Achim Zeileis (2008).", "Applied Econometrics with R.", "New York: Springer-Verlag. ISBN 978-0-387-77316-2.", "URL https://CRAN.R-project.org/package=AER"), header = "To cite AER, please use:" ) AER/inst/doc/0000755000175400001440000000000013033553032012573 5ustar zeileisusersAER/inst/doc/Sweave-journals.Rnw0000644000175400001440000000103413033553032016346 0ustar zeileisusers%\VignetteIndexEntry{Sweave Example: Linear Regression for Economics Journals Data} \documentclass[a4paper]{article} \begin{document} We fit a linear regression for the economic journals demand model. <<>>= data("Journals", package = "AER") journals_lm <- lm(log(subs) ~ log(price/citations), data = Journals) journals_lm @ A scatter plot with the fitted regression line is shown below. \begin{center} <>= plot(log(subs) ~ log(price/citations), data = Journals) abline(journals_lm) @ \end{center} \end{document} AER/inst/doc/Sweave-journals.R0000644000175400001440000000105713033553032016006 0ustar zeileisusers### R code from vignette source 'Sweave-journals.Rnw' ################################################### ### code chunk number 1: Sweave-journals.Rnw:8-11 ################################################### data("Journals", package = "AER") journals_lm <- lm(log(subs) ~ log(price/citations), data = Journals) journals_lm ################################################### ### code chunk number 2: Sweave-journals.Rnw:17-19 ################################################### plot(log(subs) ~ log(price/citations), data = Journals) abline(journals_lm) AER/inst/doc/Sweave-journals.pdf0000644000175400001440000004260413033553032016361 0ustar zeileisusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 1223 /Filter /FlateDecode /N 19 /First 134 >> stream xW[s8~_it t:q8Iw={vlk#4#6ǹAsrGh@sQ9|0" D= 0 BXd 2D:]|!Pw: 9yy5GBL#|&rN&?SO [Lp-UZ[FO(:48$!^r*C?1T\:2(<,T,ә9"*t3cO k^nuj\*gͳٜP-2Oإ;C ̋DZ.0% (W|Mu&<2p児y58.9S|$%_djT!c. 6cRendstream endobj 21 0 obj << /Subtype /XML /Type /Metadata /Length 1329 >> stream 2017-01-06T00:26:18+01:00 2017-01-06T00:26:18+01:00 TeX Untitled endstream endobj 22 0 obj << /Filter /FlateDecode /Length 3000 >> stream x\K#>78A\,JYej}vϪ%R% a 6Xϯl0X#ɳzGw}vuD8_9M<>W}tj.g<)f4cٟwg@_L8zGxzòE7>\mlp̻>~)-6~=jCٗ}d xXu s|Mp5 tslmlvc [.3[ơhBVa&G/,mM?^i#DOm|Wz}|f}(4 or_3ǟa:QYre->ؘ[~8Ԓa7<Gn?}G<› 5 ņl62Gjt(3v㗱j45?$o|r G`N@ł'\mpPO0ztqR ?60 >ÌHO/ٶh{s5j^-fW7lూ1=r $53(Dl5!K&D~ynQEqC98brxRLNݺ Qrg;C EwltpqEO MTpjM^`uP%JCO082HY^T ͤxIUfr06Mj29*8XW h!zeȰz!&XU~W 0RLD6(*%C>١*vOp 6GDk4J8A8E#q%Ԑ  \:%`=a҃!<`9EIadأA`6iC 0lJ@bLQc1QU 8Î!N *@b eeՠ %Z$QPKd(z[A/gЩdy02[ G@/kpF٬a9"ȳx թ*[PpJ^#b `C |JA0d ~5Do^#J-6_k# FLpCJaK(إT[ŬQ. t r\Ydۀ[Rfk@" ^l )&YPٕAbB1/V0RtMRu!pdQ%{B ?F@s*PDs]y"D,0ubZ b#x b@Q@3J g^UQl/ Q 4@ äD|C AQb P ZŁ]8XAV1/8( [D#b!4Y/GP4* ]vfEEԈc:Qrgz*g < "EBI0Upa=4<ʊpf(ns:dto\V!)*ǁ("R Ze+EaǮ27֠)N&Clګ%U!*(rl!s@u]kl7nBb"V`9[JS L-P zJv ~ԠƝʉ/*t DpBC]DuJ6m\AU(Z;51d$zV8F(*:z8UFBڠ(p3v0Hw\-di: iu{ySgk"0T¬xd+w dX 1=cp'FaazJtU1CM;I\ܰHw752CGZUUP%TG;@huJYBPo?kdJ2F);EQ޶3EvB 7JC :$Bj;14 4V59Cxslq9 \QR+<M*+vTNViUxV@iݦwLL*F[TµZV~Ģ!C\ jVXO0kq+nh!2oSla'Zg fxER&Ր  =66ВoUVz9" k8sLٵd3_ik!($@aѰxBQ !h96Xֲ4h!6=}j82̙7FhY ?.nx5t{EV^t/x $?t쩹{P}z 3iM'~,ve>Z5W˪@ow s>n> stream xWkTSW!*R% &VW}RN)ַU:y@HD$ WHx$"QhN[Ү֪uku*s.֚b̟N~d垜s.sڲ׋\ xxng^:JC O$^]y$%V [2/ܰݓ;֥x!a$ tf2\ 빋 `l^ =B|xCw08Z(BMKڳkMa-싔o#H;Ȩ-u^VYnUF(~ A5od4C@t!!3Hy^_W `љޏ?VǢq )__yiNMR/10R0U ud h jMѐI7ێO9w}VЄvpͱQ Fx>ڬp׭Rmt2sQKz8P ;KڟD d~fH xr[k tKB\RFpt75Hyũ;)t9{e*L까qYҹ|,ǥ>BgbN01vRۭM)Rĉ֖KK>KóhTUB!'O ME)6J0->wK`,-*ʳdQ;wPgVotݼF4FeW r"_XS̠}$tAg|Gl@^oԔak5* Z6;0ܭ l_ "W)>b8#C{:^Kvhqη)fqIO~DZI>JЯ)e.݅5/3Sf5I}yu5@4m qmqb(C|Cj'V#r@qNuN6˕$,HDkCԦ5L5-}x2LY~"D9QVv4y|-#ۘ [qNw"`R5G,v{-çRi t4ŘƂ!gԗA!+"! pU38[ɔӚp: l1O mЕe/-ԌZҜ7Go' ύ4r[`zԲx zΣ%D=_WvP?e!1-Yv]rC;Z1 ݹGAl(۳gUp-LNkl25tĵ6k/*W(юK#jH^m-)J[}Qeo:-XL%e)sf*"1uOkꀺ;<<ґ١h/Z F@ TFenuY]I}M#6-"?:j2[z@ `I؞-#)b;'mw71aMa+[#>.6 w\aU{ 'x\2irz>fz] EV[T2eȡmІNA{v(r*9%ْbo GeM5}AY'WO>Pq-q*^2W9"Qɵ\ײ5oqә" ѓg.*->X8WjQW_ *о1cP%CIQ%ZWǏN.NR?vDnwN[h'QΡ0[-=,^y::SRhm2D[N]}}u;ݘ`էlNnA߹j8:&JƞdlZI/}QUdLĽx+M$_S!TYؠ$+?jq} fkcc1 5endstream endobj 24 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3033 >> stream xV pSe!D*u{+h)C^bQ( }&iӴMڼwsl&i4M[ -SuEYZ (;˺3{ӀdsssD8B LX~Ӻ͛M<\=0 ARSbL]z7:3 @PGrg[Ɍs.LV"H( ĒRI[(Vy@(]4gNUUUfE̓SڙzuɏN5N{&qu1_ rñ夺 d]`#d쑿dLQ%.bi'*ύBG:)G1 ZP9t|\e8P,&l2( GG;;NmsfWv3tփJ`'|'"_D4{~8PR]k7<s] B΅ixNwaSIh&ux;&;>/敳̜0q4'Ԏ!Z~{@(M@eCs7n/S)]<eXߢ:oꃱw?P玼?&iC4[l*P5 ]LMLkK4;M E"d#mbHb=fF:=ǍHI4-q!{G_5Pɜů-^ZI[.kY3^VZ[]m̉~Y\zoQ)ic2bƍuW%jcA8EL Ym1Ip߶ 2>r$/ ɌFmcj掖gd۪ti>}텏,W֚VFlU :RHt4ϥwJL35myY@eEZNc4;~ ;Ff}]ǼG4 !0FlqBʽE%d$ѲD>7_l QT2鲟?_ǯ>9w1p' ~(Eg S9XK#H!)&~Qm[U6X QjM_};̴/hJT?ͅ2.cPMC\8D=I$=5l$YN濫rnyrJ$j10 Ί@-zv`MC/|sU GB=MgVpƌG.つ2Œm'5ڝ+?^ݽxLL7Nd T"Oo1/8y ŕsVĸ,\8~\@=8xfrM#R:}ݳhYAd"I6Cp ;]lHW}]5]QWG~"]FEE-6Я8R)E ͊ǷCZt? :~Mŏ3R4&;~i E?ЁCG;خ.uZPn&;I[(}e{܃]]¦!,bVW=Ѥ䤖U}Htϩɋm*En7`-DwI ;*{ 5Dv藺^9b#򏽯弼q,_w%ݮJ2yY2N=fU_d&1f` 8כt\]wtd["U{U+cmp=#dk;]?54WQ7xёQ~qf2ac $k4#zetLd)NwE޺/{8Siֺ= ?dsmԣ !N#7؞ vg9/GwMrFwIr(-UX;+38 ltͮroh@Xg2x(&=h@0xOom3AZkMZQ諃 .rR!DzOHdM$)ΠC}IIB dK-C ZŅO!tOvj:oȇǗZTiږF!tI tmAtXAo U^x/`r7tmk`GM75KK_%7W5 f$JxZ`)l5@C=U-FG0A4ڍf~-{al+PE險"'P'7ߔڱ,8?V+-j|r%',/}OHܙ_<A&5G]>*\R*MZ3Y& 4Usu[&s:*@Ѱ.mXUk ZXF0}5p!nX\PT>fMotaE_ zB-{b-|M7q+&}Ī)*Y`wendstream endobj 25 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3157 >> stream x TSOH<9"X;{[GVm)(8VA$ !!6(&赵W,=li?ZD@ɗ>ߖP2'J"ȗv$L/; "Kwa"YˣE7L:.s:Z Uj=9{7{D U"szWXV9mV`,N73H;S ]4u.L \z RxnfeZ xC4QE^ƭ ڹ+8dwhX L>c,R^EzzHS4ʋR˨ j%u8jQ)gʕIFSn*bȋQiy䰓aTvFʪ9 CϠKQOWp+ sss#.xw"Ԍj]6=;=_a 8:Iz0F롱II| .=z3Fz;f 3Џ~6z%$0⻳lMruv,|@dD6s q#:3s$e}>ŧ3/Ei6&/wJk:>{Of6rS4V;5(^q,29 iZ3. _qNko ĂF`Zbvhl8ˆyb/]<Ջ>{-]PyG&Ɏ} J 5_ G{ Ɛ?}jC23▇#:K?+[l:lN`5yS08 "k_'] Wh+/O@.ܿa-xc)-EcL}sOU1ĂĦ~,vx\. "뷴Cg=I>WО)mc5 ]<%i$4*3VלoNG🄵D5:Ďc\bx+Z|ә2ރ(LLmY3D綇P̶=E?GD; FtCО}c(ӑxI!H.:q}j_i#!WfQ8϶y9CNb?ao ء̙8uma"ۨ=0}[<钇v<+{<~Șˑdy 埌_lڙ -p`#@PbEhIN/vYBֆh NL2VU7pE؆3v\]PF(GLzG >Hq-p jt6t5Aƶ#B4c55q'qKnQ_*C ֲ":U)h"w`wYrQ.~ŖJjC..Ӑ%Vd&dL4הT(χv<&‹,ĉ&?=&){QT }$=Sd2ŗ8/6l'zb}X)bϿog>9qYފdP՘?gtq"^ Pq|D&74w^@1q|uzZT~2/**)zνwpz|\viuTtVX-|Ś LNIJ=QRr@g hP'iu83IIZo2~(M?z j:TelOلfIC7jKbb28,"q`wCj!>dqj:Rtaő0X ptf;扐F%V ;܀UCgG\¢ŦǍ||ZMsjhiHAk7҃\2t{pG>`[;crC.kĿx6)([dcuuгD='$S> stream x]O10 @N. 2D! }I:gׁm_Xց$i,Ÿ> stream xUTkXWd28Ff@"/DAL1܄ r*xYz(.⺺ ^@k AAHX7O9s{"3B L LR$enp/rF5bd.Dzk%̀it:!|"7LKHMٜ%PE͛?;.2SSr;~NK$iBR5 ٙxm]tLl}'Qnd ڹ>och{]׀hϠ9Ƌ_jËep)s<B)>|3&'#jgNuIxpwa>R X/&=ϲJVHm\, 7I0Wdk^/G 'uY/h0‰>!sڏ(Yx$ hŒ"$;1E^9Eh6[R+`#]![q(rX檖ZitvY1R&]j[[=p}Y~5 . }p7Cl˨Eօ\mv[l E0r]zh" 5Õ zyoxrnM.Ɨ轢3a_= fNύ~r m1꺞[6aW=v^.>;x,X}π ؃y_'EUv(N)83159^ l?,2βߋςAp#7M?9qhԿB/G3h݉$(NF3cZw&7޷ Gkr_BC*htv? Da6R.1 ;7x3pנ+_`3 ̌ \#R 2vnKq/$'`4@݀y-mrL\p#z%8? b˒B-p\܂y cH94NF&!sXi4zD;u>4>5vZ< ?x{e-=ȼ__trAĐL[GkʫvQU>$(ub9-9v`Հ~['MG:͏vg,Ԗڀ|nٽ6܁MjXyDž˺oŒnlm{e&3Eylf@p!5 /@/(0SnR{T$d@D `4o|A eFF?#8ՊJ?WזUnwu/Ov'pu]bpk V3!£ '@?9 ry0^tEO;f b?<=*-ߠPc(>s<͡kKw2=|dd-ʓ*" PRz#ͯ;/J1J[=endstream endobj 28 0 obj << /Type /XRef /Length 54 /Filter /FlateDecode /DecodeParms << /Columns 4 /Predictor 12 >> /W [ 1 2 1 ] /Info 3 0 R /Root 2 0 R /Size 29 /ID [<711c15868919fb386073fa7cf4e33635>] >> stream xcb&F~ c k3F "Az Hp3. endstream endobj startxref 17471 %%EOF AER/inst/doc/AER.Rnw0000644000175400001440000003124313033553032013675 0ustar zeileisusers\documentclass[nojss]{jss} %% need no \usepackage{Sweave} \usepackage{thumbpdf} %% new commands \newcommand{\class}[1]{``\code{#1}''} \newcommand{\fct}[1]{\code{#1()}} \SweaveOpts{engine=R, eps=FALSE, keep.source = TRUE} <>= options(prompt = "R> ", digits = 4, show.signif.stars = FALSE) @ %%\VignetteIndexEntry{Applied Econometrics with R: Package Vignette and Errata} %%\VignettePackage{AER} %%\VignetteDepends{AER} %%\VignetteKeywords{econometrics, statistical software, R} \author{Christian Kleiber\\Universit\"at Basel \And Achim Zeileis\\Universit\"at Innsbruck} \Plainauthor{Christian Kleiber, Achim Zeileis} \title{Applied Econometrics with \proglang{R}:\\Package Vignette and Errata} \Plaintitle{Applied Econometrics with R: Package Vignette and Errata} \Shorttitle{\pkg{AER}: Package Vignette and Errata} \Keywords{econometrics, statistical software, \proglang{R}} \Plainkeywords{econometrics, statistical software, R} \Abstract{ ``Applied Econometrics with \proglang{R}'' \citep[Springer-Verlag, ISBN~978-0-387-77316-2, pp.~vii+222]{aer:Kleiber+Zeileis:2008} is the first book on applied econometrics using the \proglang{R}~system for statistical computing and graphics \citep{aer:R:2016}. It presents hands-on examples for a wide range of econometric models, from classical linear regression models for cross-section, time series or panel data and the common non-linear models of microeconometrics, such as logit, probit, tobit models as well as regression models for count data, to recent semiparametric extensions. In addition, it provides a chapter on programming, including simulations, optimization and an introduction to \proglang{R} tools enabling reproducible econometric research. The methods are presented by illustrating, among other things, the fitting of wage equations, growth regressions, dynamic regressions and time series models as well as various models of microeconometrics. The book is accompanied by the \proglang{R} package \pkg{AER} \citep{aer:Kleiber+Zeileis:2016} which contains some new \proglang{R} functionality, some 100 data sets taken from a wide variety of sources, the full source code for all examples used in the book, as well as further worked examples, e.g., from popular textbooks. This vignette provides an overview of the package contents and contains a list of errata for the book. } \Address{ Christian Kleiber\\ Faculty of Business and Economics\\ Universit\"at Basel\\ Peter Merian-Weg 6\\ 4002 Basel, Switzerland\\ E-mail: \email{Christian.Kleiber@unibas.ch}\\ URL: \url{https://wwz.unibas.ch/kleiber/}\\ Achim Zeileis\\ Department of Statistics\\ Faculty of Economics and Statistics\\ Universit\"at Innsbruck\\ Universit\"atsstr.~15\\ 6020 Innsbruck, Austria\\ E-mail: \email{Achim.Zeileis@R-project.org}\\ URL: \url{https://eeecon.uibk.ac.at/~zeileis/} } \begin{document} \section{Package overview} \subsection[R code from the book]{\proglang{R} code from the book} The full \proglang{R} code from the book is provided in the demos for the package \pkg{AER}. The source scripts can be found in the \code{demo} directory of the package and executed interactively by calling \fct{demo}, as in % <>= demo("Ch-Intro", package = "AER") @ % One demo per chapter is provided: \begin{itemize} \item \code{Ch-Intro} (Chapter~1: Introduction), \item \code{Ch-Basics} (Chapter~2: Basics), \item \code{Ch-LinearRegression} (Chapter~3: Linear Regression), \item \code{Ch-Validation} (Chapter~4: Diagnostics and Alternative Methods of Regression), \item \code{Ch-Microeconometrics} (Chapter~5: Models of Microeconometrics), \item \code{Ch-TimeSeries} (Chapter~6: Time Series), \item \code{Ch-Programming} (Chapter~7: Programming Your Own Analysis). \end{itemize} This list of demos is also shown by \code{demo(package = "AER")}. The same scripts are contained in the \code{tests} directory of the package so that they are automatically checked and compared with the desired output provided in \code{.Rout.save} files. To make the code fully reproducible and to avoid some lengthy computations in the daily checks, a few selected code chunks are commented out in the scripts. Also, for technical reasons, some graphics code chunks are repeated, once commented out and once without comments. \subsection{Data sets} The \pkg{AER} package includes some 100 data sets from leading applied econometrics journals and popular econometrics textbooks. Many data sets have been obtained from the data archive of the \emph{Journal of Applied Econometrics} and the (now defunct) data archive of the \emph{Journal of Business \& Economic Statistics} (see note below). Some of these are used in recent textbooks, among them \cite{aer:Baltagi:2002}, \cite{aer:Davidson+MacKinnon:2004}, \cite{aer:Greene:2003}, \cite{aer:Stock+Watson:2007}, and \cite{aer:Verbeek:2004}. In addition, we provide all further data sets from \cite{aer:Baltagi:2002}, \cite{aer:Franses:1998}, \cite{aer:Greene:2003}, \cite{aer:Stock+Watson:2007}, and \cite{aer:Winkelmann+Boes:2009}. Selected data sets from \cite{aer:Franses+vanDijk+Opschoor:2014} are also included. Detailed information about the source of each data set, descriptions of the variables included, and usually also examples for typical analyses are provided on the respective manual pages. A full list of all data sets in \pkg{AER} can be obtained via % <>= data(package = "AER") @ % In addition, manual pages corresponding to selected textbooks are available. They list all data sets from the respective book and provide extensive code for replicating many of the empirical examples. See, for example, <>= help("Greene2003", package = "AER") @ for data sets and code for \cite{aer:Greene:2003}. Currently available manual pages are: \begin{itemize} \item \code{Baltagi2002} for \cite{aer:Baltagi:2002}, \item \code{CameronTrivedi1998} for \cite{aer:Cameron+Trivedi:1998}, \item \code{Franses1998} for \cite{aer:Franses:1998}, \item \code{Greene2003} for \cite{aer:Greene:2003}, \item \code{StockWatson2007} for \cite{aer:Stock+Watson:2007}. \item \code{WinkelmannBoes2009} for \cite{aer:Winkelmann+Boes:2009}. \end{itemize} \subsection[New R functions]{New \proglang{R} functions} \pkg{AER} provides a few new \proglang{R} functions extending or complementing methods previously available in \proglang{R}: \begin{itemize} \item \fct{tobit} is a convenience interface to \fct{survreg} from package \pkg{survival} for fitting tobit regressions to censored data. In addition to the fitting function itself, the usual set of accessor and extractor functions is provided, e.g., \fct{print}, \fct{summary}, \fct{logLik}, etc. For more details see \code{?tobit}. \item \fct{ivreg} fits instrumental-variable regressions via two-stage least squares. It provides a formula interface and calls the workhorse function \fct{ivreg.fit} which in turn calls \fct{lm.fit} twice. In addition to the fitting functions, the usual set of accessor and extractor functions is provided, e.g., \fct{print}, \fct{summary}, \fct{anova}, etc. For more details see \code{?ivreg}, \code{?ivreg.fit}, and \code{?summary.ivreg}, respectively. \item \fct{dispersiontest} tests the null hypothesis of equidispersion in Poisson regressions against the alternative of overdispersion and/or underdispersion. For more details see \code{?dispersiontest}. \end{itemize} \section{Errata and comments} Below we list the errors that have been found in the book so far. Please report any further errors you find to us. We also provide some comments, for example on functions whose interface has changed. \begin{itemize} \item p.~5--9, 46--53: There are now very minor differences in the plots pertaining to Example~2 (Determinants of wages) in Chapter~1.1 and Chapter~2.8 (Exploratory Data Analysis with \proglang{R}) due to a missing observation. Specifically, the version of the \code{CPS1985} data used for the book contained only 533~observations, the original observation~1 had been omitted inadvertently. \item p.~38, 48, 85: By default there is less rounding in calls to \code{summary()} starting from \proglang{R}~3.4.0. \item p.~63--65, 130, 143: The function \fct{linear.hypothesis} from the \pkg{car} package has been renamed to \fct{linearHypothesis} starting from \pkg{car}~2.0-0. The old interface is currently still supported but results in a warning. \item p.~85--86: Due to a bug in the \code{summary()} method for ``\code{plm}'' objects, the degrees of freedom reported for the $F$~statistics were interchanged and thus the $p$~values were not correct. Therefore, the $p$~values printed in the book at the end of \code{summary(gr_fe)} and \code{summary(gr_re)} are not correct, they should both be \code{< 2.22e-16}. Using \pkg{plm} 1.1-1 or higher, the code produces the correct output. \item pp.~88--89: As of version 1.3-1 of the \pkg{plm} package, summaries of ``\code{pgmm}'' objects provide robust standard errors by default. The output presented on pp.~88--89 is still available, but now requires \code{summary(empl_ab, robust = FALSE)}. Also, the formula interface for \fct{pgmm} has changed. Using the new interface, the function call for the Arellano-Bond example is % <>= empl_ab <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1) + log(capital) + lag(log(output), 0:1) | lag(log(emp), 2:99), data = EmplUK, effect = "twoways", model = "twosteps") @ % The function call given in the book is still valid though. \item p.~92: Exercise~6 cannot be solved using \code{PSID1982} since that data set only contains a cross-section while Hausman-Taylor requires panel data. A panel version has been available in the \pkg{plm} package under the name \code{Wages}; we have now added \code{PSID7682} to \pkg{AER} for completeness (and consistent naming conventions). Use \code{PSID7682} for the exercise. \item pp.~98--100: \proglang{R} only provides a function \code{dffits()} but not \code{dffit()} as claimed on p.~99. Somewhat confusingly the corresponding column in the output of \code{influence.measures()} (as shown on p.~100) is called \code{dffit} by \proglang{R} (rather than \code{dffits}). \item p.~141: The log-likelihood for the tobit model lacked a minus sign. The correct version is % \[ \ell(\beta, \sigma^2) = \sum_{y_i > 0} \left( \log\phi\{(y_i - x_i^\top \beta)/\sigma\} - \log\sigma \right) + \sum_{y_i = 0} \log \Phi( - x_i^\top \beta /\sigma). \] % \item p.~149: The standard error (and hence the corresponding $z$~test) of \code{admin|manage} in the output of \code{coeftest(bank_polr)} is wrong, it should be \code{1.4744}. This was caused by an inconsistency between \fct{polr} and its \fct{vcov} method which has now been improved in the \pkg{MASS} package ($\ge$ 7.3-6). \item p.~169: The comment regarding the output from the Johansen test is in error. The null hypothesis of no cointegration is not rejected at the 10\% level. Nonetheless, the table corresponding to Case~2 in \citet[][p.~420]{aer:Juselius:2006} reveals that the trace statistic is significant at the 15\% level, thus the Johansen test weakly confirms the initial two-step approach. \item p.~179: For consistency, the GARCH code should be preceded by \code{data("MarkPound")}. \item p.~192: The likelihood for the generalized production function was in error (code and computations were correct though). The correct likelihood for the model is % \[ \mathcal{L} = \prod_{i=1}^n \left\{ \frac{1}{\sigma} \phi \left(\frac{\varepsilon_i}{\sigma}\right) \cdot \frac{1 + \theta Y_i}{Y_i} \right\} . \] % giving the log-likelihood % \[ \ell = \sum_{i=1}^n \left\{ \log (1 + \theta Y_i) - \log Y_i \right\} - n \log \sigma + \sum_{i=1}^n \log \phi (\varepsilon_i/\sigma) . \] \item p.~205: The reference for Henningsen (2008) should be: %% FIXME: will be package vignette \begin{quote} Henningsen A (2008). ``Demand Analysis with the Almost Ideal Demand System in \proglang{R}: Package \pkg{micEcon},'' Unpublished. URL~\url{http://CRAN.R-project.org/package=micEcon}. \end{quote} \end{itemize} \emph{Note:} Currently, all links on manual pages corresponding to data sets taken from the Journal of Business \& Economic Statistics (JBES) archive are broken (data sets \code{MarkPound}, and \code{RecreationDemand}). The reason is the redesign of the American Statistical Association (ASA) website, rendering the old ASA data archive nonfunctional. The ASA journals manager currently appears to supply data on a case-by-case basis. The problem awaits a more permanent solution. \bibliography{aer} \end{document} AER/inst/doc/AER.R0000644000175400001440000000220613033553032013325 0ustar zeileisusers### R code from vignette source 'AER.Rnw' ################################################### ### code chunk number 1: options ################################################### options(prompt = "R> ", digits = 4, show.signif.stars = FALSE) ################################################### ### code chunk number 2: demo (eval = FALSE) ################################################### ## demo("Ch-Intro", package = "AER") ################################################### ### code chunk number 3: data (eval = FALSE) ################################################### ## data(package = "AER") ################################################### ### code chunk number 4: help (eval = FALSE) ################################################### ## help("Greene2003", package = "AER") ################################################### ### code chunk number 5: pgmm-new (eval = FALSE) ################################################### ## empl_ab <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1) ## + log(capital) + lag(log(output), 0:1) | lag(log(emp), 2:99), ## data = EmplUK, effect = "twoways", model = "twosteps") AER/inst/doc/AER.pdf0000644000175400001440000025317013033553032013705 0ustar zeileisusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3782 /Filter /FlateDecode /N 73 /First 589 >> stream x[[s6~_qj,%Dv'Sy)5ǭB-;;Wiy$kv"  i$3g2+$(>*0|a9S:LIVL<(3x0L+iKWtgxΘ zVKT,ג93g 5s6˙6y@ Pc.? d8tƼF#T6vƼ󆁄 |2)3cqaYf$XfFYrc(Htr AV,T Ne!^4 9Xr 6cXXn205gAI r`X*XIK5,n9pI1b'*Ís7EeLiփv2t@WFeCAX_i0QM ͸ZY1X4'qc1e([ߘ8.bRt 1âUT6=pY2q}M$quMb^l` گв)珋dʤ^JUT/C=x]aWU7eS4,o ^fҲ帞eT!k;(b*!q=OzKlZ];nˎ\jqrܱ]u3P;U=YPf' /::/4Wżŋ K,] :*E߆II4L|^wD'5 :]L }~sTϻrfʥ. xT!*q`98_Q֋f ٫xa*;P'b$f}< Q5mFQ0l%ś_~EM $`ٌFܠ{BԓFD?]U^}~U44 :M':։W:qɤ&57IMjnRs4D&*6QMTlbD&*?)꯺jFm D~H=݀'2*=Zg 9mp 4"Sۜ3lls=h7e5;`#7.q%V4-.ڥ4->!>͉OS]K/w7ch^\rN1 5rohReQ|_AT!KHۏECODyFHu&:WդF+?1'D ( E_ 5:ӻfՒ>>lvPO4=^q s(9"HRxb7I[w;&)p 1eu>pPx!'b$~B׳z.&gb**VąZR\  U=hE'iSB0Ф?qVSp'Ѡ]˧a@9rG#4Ƈs8j[H`X+/~m]pGG_^@#X5,e:슴iD:ӽ@vh8 EѳYkTw߯ʞ*}2D*?`ha28Y\0(ԂD2W>&&)D-S0?eSoXbuOeײ4=pj_{bWAm*XsmXy{۠ 1˭͚%WJ6$}R]}[lhV['*鎮axhT\RC+p َ –`| +`R6nӹ%6ޗ% Fo-_CluĶ%n[ljo[gŊcG|7:z{_;Bbם= %|5w7kY"?J].ں?o+WAA5X}K *rTgjUUI)hv<1 ShV +7x|,Xb)?y`v['uFni-ڤl3L.:m-uX<#1kPAs|iUm[D:sE6(k'ݠ ϱ@TW1rGPKnjL\63};rgEW/& +H^qs'MuHqܫ)\¦ {zzzI2kJ.-܀dw J'E2,CDrhGH!k8%&aruq˸w"L[L]R@_Hk5HPA)D3s7m=iOLi29Y&It%85ЎkN#=&E =bʹ`%| $ JG3'P62Lrڧ2>DŬYBp Zki(<=oϳ(繓 O^z` BgΡxNQ0f^0&\=exG<˽Vr6{A﹵pĜ}wƆa|\0|"F{gjyaCf#~{k{}n˧?.n0-vw)孳O)lbX:aZͭ7nYOTVMơ92M-Kozs NvVƛIeE2+wWam?&ڎ@ L!q|i%ƴkLk!FeSS#sTE5Ư Z_,{(}c~C{9 VE24WvO˻/+^6岩b!=I!P]bB>a(|]n2@߄.j!90W&O JԱA#* 끠`g/ neY_Je+-f<uV`n2M[;.T:,`1. Y#2..Njr^FhE1.&"ڔ݊"^}o%QIW]mTe{pQOY{ph)O>5jM9khz1 ̹%^ %3NkZ= kNq:W[v Zve3 ^N_WMYxDάb^>U{S#ҒS!S* Mn[ee.ceЯ\ƃ}",(!xP7E'"χ 7B [.j_/A}1N7;IL .4 -ܪ:%L6[+i\)8nowe]7sXL_qijw.Kh|QŘif(Xat\)gt0"HӪuu L ߇֩Ѯ'68WggeS~28;÷~Y  I)}P&/P3@ڿ]@endstream endobj 75 0 obj << /Subtype /XML /Type /Metadata /Length 1682 >> stream GPL Ghostscript 9.19 econometrics, statistical software, R 2017-01-06T00:26:18+01:00 2017-01-06T00:26:18+01:00 LaTeX with hyperref package Applied Econometrics with R: Package Vignette and ErrataChristian Kleiber, Achim Zeileis endstream endobj 76 0 obj << /Type /ObjStm /Length 3053 /Filter /FlateDecode /N 73 /First 644 >> stream x[[s8~_Ǚ]rT $3CcLa`~Gn}K l5,Y:E g3%s 2ϙJ8iyŜrka'B2!JI1/haDbK(D2gbk&Ưa'xn22a V2;/.a f4h/E]\VUJ\ &9X_6֨Y6KX6x'W{dM/`2P a^#}O1fgkz&3y6YI~ $B !nZdxxq`#[ 9jmFCghem>3YÌOV+p}ŋ Wߣ]Vp~v 7]y %_!~jj6̘ۺT}.Saz=ZsZ769@8#iI1feUn7ޏC4Y|E|&TCAR]%Ƅ"68f2?2E/˯ח ?K<DR/ D FO0kBb2Ā-Z(^/U6 4uOeJ+g.}h** )Yȃ%ktyJ?Qr`^0$).#C0$)#HR"Jيv #®UYk [†We髲 UIrقR\D\w Q $0[5QJ P"jdݣwKʋN|Yxpe8/8.)MK8}[3 T#DYh@Rܖ>_Va?v GJe#Fʈd"#:BTpDWSQi}Dji#*Z=QF/PnDu`*n#`bGo쫈[fhoyG[|RV+[wJzi6jme(bSkm^j}5cNߟ`ݓ.l{"f8݅#9F&7;3ħ:\Cpnm/-'ӔrBgEY yPF;Yn ={ʹ8k`˥Ճ) |(w P\/}R'+uo?yҰ8 Qvm`l+o &:i}Mc#U&3xWm:?|F a{5\mkYBWo^ ّ"@722@Fɀ: 0: Z|3hW^!:Ȼ.m0F"oF6KJv|HjIX=c6η ^P)vL\e|;ѐx~>*Ne DI+mq|Sѻ?%n)yyw٤(iZ,Sl:t&S][eu5[(6ZP"\uͅDIUK]UMpYT+ZL'mA$a? Xhȋ w[4\{qDMіX#}Iyh<AR7Bܢ3;$-RBuU吸A'=VP1+:=F_'2Wt\Fk.\X)bj!iIjt:[;`XQ'R(N[¢yFe0 7]VI]f|E5+ӽ!tJNX^Pvڡ9D|։k/Hg(O~ڻ'* endstream endobj 150 0 obj << /Filter /FlateDecode /Length 5493 >> stream x\IsGv#GtTm{r_&Ž lg}CBs~K./I*Tgd&]^)όY]3M.Vߝc qkwgWnk^E*ӷkuY:O/}LW*\. 즧:S=4(=ࡽJucC7׭8fmfz Z[A+otU{jc6%+?u>OcɦzO ބDuFY[q&AbmAZ:QV+^!˶k ^P,ȬY;9}SYT'"T_j/׮] B TIxoc6*Wg:}Xl)jCъˎsXϥ %Ry&nEcR+sNgڕ69UE0m$@T֥Fۭ_e1짷k`R9o@NxrTVo!"AG[XY2R`6ΐ|j;ŀzSv8PPlo<6%iհP"TiwӍkMJ$Mk0-P,X `^%mlBa_,6FV|J6Veh M%L&rsz.^=֓7ƣMGDgvL_3P]ݝycg?y9 Gab1gm9 F;KgAz]he>qPƙ%/>Ej:x@:٘-cCXhIU>` x^ߣ w1&㋦tsh{c!EIJN2W;[0­ࡅJ@&΀koeI7p\W#:Մak 8SȮQ 䪋DhP K +rBK~ $rna*_J`<[80, ԒBQryݣN?"Rd>'"VJ5f@Xiì XH }Wځi2n V^"p38MέSI P0oSvC<աa:gcA!nzB0ݷ]/_E>;1s \֩4\>٠Ap<RN=A=3_Ads۹`N\eڇP-l'΃x( mCCXXYkQh.}洌 f/}mkc9oڄtQ!xP5V࢛HM HG9;/>fi=%߳n@F儒jB\'fJ Ҷ9K!V t@' /2ë^&aF178Ѣҡa{y0*;_'cq E{\DBUY5XA^IA׌$ MWP;7(H[l ;PP^: dz9maT01,J}­`|f5劰0fZ'987`2D* v P\9R$uiz}"N}V=Ȭelpr!{Ag"|Yh=+G@ODDa)̕^hUC|c#R躞?}Z{i7tE%%Nw(a'])LC)sdt68e9쑐A7w 0a)i7dM0&A 6LX48`h䅙KLQ;gXuPd ڔF1*xBsIBk;ςzƂ48cH[5Av0ܥ]x "vumfd9pфG#w!*1ԤM\)t;ZIPv~v@לrNu0e'96zهyrc,0} F)$pM ,?o|C]eJCn]v Cº, 8rd Jc3hA<6{L,(XU .ge#n.H/+hzD㱱I`Ƣ&F\7^3dT3.5y4(LCǮX" $,iVi;FA^u8Iyt5kjoth\.qTK:N c6AXݵm nKmޮDŽ3)⢺k)ś3x Z~_d-#EB ˭EG˱M6v i8csa70]h{4)IQ|D[>a=Wڃ\|䮱m |E<&x&Pc`rm,j|%Y<0z}ghaB>9%_=Y/.-L@>5GX'V9$Cyx0U͞>Ѽ2 { =}z?+SvhJW'$1jekhvjv/&dTα;YmQ S#e·/XL[/'u]MR (ITT"OCvPFi҇5c!D6Jl R?)ny) 8S+D# O8.:\*'@*EX߁yPrRpe Ճ܉ci%'K0 ]vGa1J^|#HaSuP8Cչ82SQ u$euB@2BWtS'xr MD ƺCQ[uAdDЌ(&!M# s Ƌ9IȈܰ|\/'{]$Vy'oyd2Տ$O_2M2( =XvДi}rjCӠ"Yp? 9+' W!pu@rˀ'Srg$"aQڥF_\_r)> pDe"]06"LNŕQ&IT2+Đ/)5 #2ShتV?"q@^c=00$N EhAb֖KeUVCĘ9 !$ږX6@ok4C:6S6ei3}y@&k#CI"ah].kSym # L l5":mρՁK9Wf Nv1 r^zBYC-8WFwqOd,"-z'=\eļˤn?m3찴~'w㉕|7qu|\N N畷nU %9O?>돢 6xv?O&$F]1A>YZ6j G騫 ^PςO?^Kj_ Hf.3R)NCp[0|b:qQ^5#LbŶW=Rs !4AVH@D:frbJB?~=b210uHheLȺEX9*>=endstream endobj 151 0 obj << /Filter /FlateDecode /Length 5855 >> stream x\[s\7r~gGI'_*c{+kJ0")+Pgowh`pHQ3tC 7S1S_ܜwJ^N_O$4sE/OOi)j{z~sR@ߠ:NX~y6Wk1YaR ?A,DI(A~>ZM>շk&#\m.zvRB jQ~QgV׷8 _v‹0WAe:H.WsЀ&68,[C =陶Sp[Nne'扫WyV?6ϵy9{7컭ۼ#paL iEm@4B!:`3Iۯqt< 7 2c^}CheDp0-  (_`nK3]9rME2zM-aÐ&UBio1PiKpr yEs⁜B/tDٶ/gf~1z3ᮟ͆0C͋ yHJ`"P UB!X2bP[DjG>O /EJ?B9.*o伸%63S Ihp`b;=܍?ǀU*@+2U|1~}7u쉅c;gMǢpH@ Xr(,B?/g@sA6HHGK?A  a73働89dg ITο /s3*W%iAMpz}_l e]N{&o?V,v N)JXzj%ƙmdTҎw9 l)( -F~IVfc4{6%5{e4c m&H}t02>vq3Z/͛&!;fp_;\άJym~U& wX2z^̙ L)ؠN`mM.}.2,+oi6$9vi,)JIg5*p<|>c^ݭ|r3 |!vyǿ*٬>JYs]McZ/6tpU{2;X13Ʈ՛&NL#gl2=Q;p]hw[$ @3p3 K`&dѝ*7/w,PT, ڇyA4D1DJg^zvklIlg"v|+ ̔j!1++?lk]OBnf3e,5k2Mj-T򁔥v9iH ʨ*׃T>Krjnk}m&ٮ6762bC=7̮a:흄{#5A2ʖ^#%XW"4ݢ:{fd,4oyX3D XhYeMI}mr0XٿH ׆[Dː;vU_7Y-%ia6osgCqϕy'Ib fJ"?LvxlFȈv ?,fphqi$`",µ!0 nhS$Fkό^\P!xl)8Ϥ}W48e4opv[$pTRʭ ϰ{0w8oަ] 偖AҘmTJ`PܵW(LPl/3x_2K6UC&4Kڼ9"/r6a;؎qA810/*e0,-y͓ɢM%\y>GHwG:vz޵6Lk(:߅>j)CFLN01'E"Pi%y 9Vd]3YemŠ*tZیf @]հ7I\.(`n F#JiW\3F \Hͳ%F5OZTB;Reo;uj{eOG87ur^I|A#N:e+Vˤ[D0CÃ`0>7KdD-"X2 ̢J;24Lr``޽l6Y%'dwtQmU˞rz bl(Cֶ,cG { ܂olқE.qeM!3˓* o$ulf]n%6QXM7ȺPfWUV%`m_he?4V(-mq75I0[&ob'QP;\\mtE› '^,o+.Z'2i MCEer^Uo*% ȳˌ*2B9ʙ'$Cf~-3q7 h)D"%:G0@;G[)z(BwNj l{6 bOoc@#`< bRK= ;SmHkLJ]_H*̠v.eAm'k2Yux<#\re/:]$OL͊zg}>sb!hƢ@80pEcsWxl n+ JfY^3Z < !?jZ{ճtS?m,DR߯kFQ郛hfH"λ#0.wɦXҚϤ!=,F{+ehڹB MW3/.姊iQ f:d4ݗd^Ο-pO?ipXZrV>&Iz?I vbz`Ӥzz*hԝa!؊,l\?{S3:L)NMpj)SXy ^OtJ::Gm yb%QByMdeJybRpib s)QI]0sOx$:a'9$[ ~> ~r:89zM%wO|58X~  k#G3g ||Q]) oh Ctgv493}OSZjd60ROi m7kzN;U5{tPn'c_ⲡ #+F |og2onK66 >D7Qjn<ýXy2-?& b-TN]}|ޒjtY 0֪z`'l L<\D3>P#\,!$vbQe9}[:jz'2cj*.lk"eI)Y} 4QHG-\ %kpܐ?ԸuUćHHytGQ^Ϸb 7ץ*?*t;PRQS!%\PW[=-"#ETM%K" llk*S&N˿vOEPΪ}=<6H蚋]ꁙK#L1ff^4fTp9IZ)*wex>} =|ׅ'׍}8*KC0Ql%Q,UMF*$IkZl꾫eoM5ۈ%T{DH,#+ gՊN1xCmY&b5"=WI@rY%+;\*L';C J@ u//lܞr4bD=wo "$X]⌗gp[TJ#5+ꋌqE=L"cP{/v5ExUG8o]b~ ,L 9ٽ:c;g|ǝo=ػ5ؓ去w]NW;1}BM~Ѷΰ":cٳ}!Yͦ^?ϘMKsHDV:o7IWET3`} 6AA{11轣[8rW{:0ɳ,]^,:Ɲ6b:jb+DgyQYvE$/_ zDVQ:m;{Q<_ewzI<v7Xe_ &&RW5m'hڋ3 `Ac0~!֔u=]oݶ^\+7W~ @?\È/A#+k*S UJKr;e?<ߍ} n?P3Ղ1NƳimz^GoNs~t&u*Yz!= [c?ΓWl,Ƙ t?q* hE nh-0eUk *b{#Yakp4ּ~U)M=Y[V O|^`y'%?Aa,Mp:kS(;ԩaWbʖ#+Mw>Jz0+KJ?YNE=8b<~>1r0~ÆydS]|%̈́>&T=z"ه]k?W.N__L]<柱gj l`X$[DgWy@,6 1#(8vv3K 4)eWʞRa;SE2~{9+k3MҪa;an5J*I{n)qVk6S{wz]&]32Oqh^u9J9;)C& f7ݧ15L[zp5`%WDrpu ֙YZ_gS U3Qݕ/$ID*>4XA`lYk! (T8լ`41 p,df|S?PŽ-alG f=94kU+:i߮XT)v%G-G׊)}]N!endstream endobj 152 0 obj << /Filter /FlateDecode /Length 5967 >> stream x\Ks7Wtaz]9вg4~h<3Z$բDvkؤe]?{3BݤDMl #/?g3ϮTjG2u9}u =/}QN_OL);N~0x҇\:(l K!n l†R/\Z+GttWRRh c0VTݫBɠ%q`݇lH=,Hh1;)!`LTi/HYN"_pVwWN%}F $8&Ncft>R)`4KcsC_4j5v:2vꔍ*Qay bkWv~;ڴѩ+{>XV&60ͤJ}:720tB/big&ƘN H)&ĕY`Dšʇs.d[^1 vT4Nq3gaӜ7Q ŗ6*6B}A=4L7T3~1Wʙ zi Ȃ%4Ο&hjp>,u+|Kye { ":;~I[xqX]4 /ļ2q jT/c!\l). Tz?u~D #n ցD~76~\1|d{tFuYX0CYڀ5aB@kTOH3]9WU1"{ 24HuȮ^&~;G0]27-뭽Arf`{dUpl/ͧd xJei}ٍ'N_oJsSoK4Jφ{l(:{V34\Yikv`]J4JMi@v !=s#gdW ت ic {/vIB|>(Z#"j``53U V>*Hmdoq+{fwZحM7g`ZS4MgҼ,M ֥usgmD @@5 }E8A[)6<}( îqM30qew5 b޹O܉H٧LÔ@&n.(\}Y!${ ZqF\ޒ xEgʹt$'+'jR0w^|=ۡd;~"ۤPٵ1S,4wbbI,Ta_%NW`2wI#iL$z09gM扽U(0pS׋`F*h#+}葮 Ʋ![nV)ɿbiICi w1}s¤cʫm6GC@ q5 H1-/,Yˊq5BD1G*΢ d*Xl1hԼZrvϕj͵bDkA$' N3RWֆ傦DdI[O<'4 08i^5u-DF G2c+t^­rކԫ=H?DA̴r[Za#`л`GّT+=' 8έ,LB jռpg$Bʺ,fdQV td\%&%+pAۙ:v>Lc7sIȄpn VXd+.FYeR j pA=g@azs?w5Psq)UX{@+Ӱ`rZuc>ExsYrXq~#Luv*I@_xMU&ɘt|#et2pHSp3Rl" A)Hrczp_ٳiXQҷzf8I!(r|`eE&UiðI)Tsl-HeiyljݢT?GW--S,tT0K˲t4<+5r2&T3cN6{R'd}#`~r"t_<,Nϰhyesٗ&s/:ܕM/󮯦L.dEdJ}ivjmO,ϲ`[>.Y`^FRJO#88ʰ7ɪ^dUq4,[LjUlմ-LgcĊPR_]Rx[ȻaVk,a\°\ W{CB< L q!Ȯ흝 =2rTȐ7y,!n)A fCQ1Zh?]Q^U^&m[3Q (6e GNTt1LP`7Pzo4"L;!MA ۃAzA48(Q%bE+XHsNY*5T\1(U= qzqԃ5׾xM:a$0?PjV!~^@X|!k~t+,Ym*J.dI%TȐ± {woi@N&`B_UD&=ȞPy*lCE{@cy5~`< ZZ;\Y7|NM4|r-M5oX5GN srP(=UaQo՝\OWإ~C'1`ADڝwd'a[v߯x95ч KBj[^K?g ԃJ辐LTOG칦rpl<j ;F•Y| d2Zcex/J%ߑ9jt$f1^EI\=p:x->9UN-VYfB'w6`vB+S5/2N/2!#coWxUqp';ُZǫ:{L;t^* 0G{ ׈cg|V/K4_f˂,Ծ/>X}s6.s;־|¦xо<)M8@̲a9Z(i@p➷Pk>D^V\n_S| w*K쪟.lq"8sgu7`=jjߣ0ucQ䕕jt_.p<grN/\`=~K,~YAVw'E?9_ḥYL"W*xQWf^PCc_ڬ`*NlF2m]A4/">iicBzendstream endobj 153 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3690 >> stream xW TW֮5RI  L\Q\Q\dEٻo7Ȯ BAg&Lht>rL≙sylMݪ[dCF&޾sMd]zU& # g98;K`2YT|wԶ8ћǸN6u뜈͚HW_M\HP&~w]94(.u!qqۦ{x$&&NDN 9fkbh\ʠؠ@W8e ޷;*b[|\PoT`PL$0ns"3o~Ll\|Bfvsಠ-~!+CFL0qdÌd3~(fƸ3f-Ϭc2of3`|Df!,f24f*ӟ b^e)j|+/ϛ} |-%0a)PQg;9CljZ{ɹznRTgT`EOV&myY]dbyhGBߠ 35+AU_&SAuS1^l1=6haoO8ܖvȑv٩T`,2 7L.s7SoP}dFB~X"G֛~~,2_v]8\;K ªs٭+Y3:c9:˥FUD2mkd0roR;dW.#C%jD8M ǥJRevAg΄;_Nte14ه)GuL\p+ (EQf$cpĝ% G i'F%/Wh[1O$~ {> =ߤy1?ݐ NNeK bIs-Z52f 2ĎsoK A @+Mb5h2!G'GRJx<8cUӠHX=aY=$ɔS.Pl*t` EUE3DS!?{3T!W'$ mZz?`}=Q]٥,C,b(a_@ " RFQ\>!%.f/,T5ۂFbkުS4MKrてej%nf$2y{"x:Պ[@Щ+s]9";ˏrkd%:r)Tcn]VR|\rZ3 (348D(;`pȞ`L?C+]?CSNFVWDZLy9 jtvg]t{^ʽb5TXf7@by'\{&(.Mt~&i];@-+c`l9Lϣ~FtK!ȗn#d%m[A]gq):1 z1umO l3$K}はf䊄wcShC_>F6fS3}2q%}?]ΜY]6KdwyͲuQAѶgnϞ+v8lĩ )`L7E"}x!:7YhH.N7|q]#9JҌtѸTk=.EÆzLАהk4@<=4W5qO.hȺᄨX{秺'ű=Hl1z{r3g&SH]kM!28s*V3GmOi%})Ti)3B.c;$p[[+w$ nsW?w}[ }zEv6@<#؄8Soݿq=W+=k"Fe%-jS61dPɱrI|noyS~SWyZB .mg3p?SdJ59` d}yݕu0j:z; ҍ;sөo7*=e7٧=>}|w3l}i1|ҫUYzoȤf2ם0O9hCHSܷ*c& F?kRwYloIb>BIϝ^6~m(&.!층b ߄>Ȯ>??aQzRrQrLrn j-Gzzo|vӕnBo=V+Ý6oC0g I!*<6Qv~t=yV^2~ t iE× X嗢̚)h> stream xY TS׺>1sJz*=Pj-j-* "Sd0I!@@@:kU֡jNjm>ts};۷޺oVG@Yh5'{ =7y{%Bo]GXhS?B  K/ n7cYf2i,;v+}<; QvϞ81""b{@؄PGc33t6EAvxڙw7 ( Xj2hgh*E9ڸ xOC-_"]cYȭ+1y Ǎ0q)SM!E a*j65ZM}D}@FPHj-5rFS1zj,O6R &j!5L}JMQdj J-Q˩ Cj%5IP@j5Q4Q۩T/7LP}(+*KS֔zbj@%E"FYPj@A=žbk-Z:Y=L8s稞uMgsfV{컳ߴ~mzxԻap޶فbPҠG[9,Y$ahlW`!Űþ6#6 $0F~NPn/䇶`S Y1 yj&jG+4`6eHaFzcJUk$Kcx:M#4GFe ࠪEi$v,Y=|.,MK,Ym`-[zk4@|@X\N` Qf'TwuD$h9pܿzU-iFƸ_jnA+_h,1Xy#s8;nZ|0t?F+i[O'5p#0o}!+m:{:#P?քI<>M.p9^2l 8#5 J/![V6x=Q{m\FX{$ȉjOB OOY>ēghƏH\Ȋ+Bab,a $8]Vn"{}#-zXb‘_~=VM5Vk2Q&:xuTNH&'= Bg^[k:V%YN['-ÛQ8x2o ǯ(ş4<c]I hLKh A=?EÌxZ*R H544J е4Qq^Kq .m|;ۨɻUE> {<1GU8xO~;5\# }7\3~̀-Bm~EVy#A4gi?M:L!|S.x=m3Z8m77A1Esalj#Os[ ~(DRSڼ[\)9$m0+*+2lb-=pk!yϕr~QP i>SQtpe*`&S6!iip @u\m(% P9*!<^Ity?Mf& ='="W?,FA3@ h;q:b8͵V5邤\8-mgn2}M~rPorc4U"_;[)?[D#:T.M;!gZ`wӶ=73k]tUu*?~ZpAOn"mP|X~z#\{Z4I[eֆ#E2I)B~8?EK}vߨmtv{U1)"nAWF KqyfRN<$l#ҁc"o]vM-Ժ|^-D{Q[{*ccsQ !U9uNX+OIOk3eIfBQQ|j2v:/Z6;WR[JcTWA (+;uTRE?#me1|II&R>ٰGU@&1 0=jqDa.g&Z.ʈl6[~E炛sLk,JC<@cHgV ^J@NޕaMDiK:oM 屡"qD/$|- "o$rmDIKE&Y/K SIV?.7liU$ # >-WN ʸ~X }ИMj|<^6hrHBkl=3U#OU?i2'q]Y4N˱*nBLHiDuy{>'b Ŀw"pXz&0\NX_7u.mTW]U}4W1xyC=֗áuoTHyNC>6+j~i*L'C"lCpIԥҪU]_ =Ĝ.Ëx< o%neh,\8-~ Q>hBK3&J)3٢idq!Z/`Cw~mq iQʄG)U6yկuC8LoDFBM!j}%DPoD}Q%[#?i- T¢NPM@ yirV5U n_ohs=5@ Oib ί  $'y 1XHݞfE0O/]Z!i՘Qj=V%KKA]P[UQP-U՝swJhǮzOI|l/0v <~n,xY^?wtC5z5|F R~;@d8ĎXtMӢ;-8Z92S Qi pudЫܪ=\'{Lڌ#ꇪP8z͢|* _ԀG" (l6%y>yn2?`=<MD4-[1QS w{?,e%w3!/^I)*|OT(lqOoD]TZ[F}^[_S3ۙ"GNLߝ:qM%4-M#LwuA`}P^G:R>DUu$!WO 5,vN^>~&Hgdrj9%bo)*UB &fk߄3yl`I^фьΔڔj\P f8[}\qAըMEu6,&/V[̸Cz‹wfHJN_fΊǓ_]4)/Lyc0vKP a'S Y"s>&200,,02S/YȾIh@QA>}ہDR!^TB)e< dLlY$ٌ z(2uG<2 7(-CNqBZ/ _)z]5P {U{+78BmdtZ$]hUM@ ǰ-QiR3Jr&7MI{*!앚QʕA(v-lYkkoFm"r/ayPkN<]DB n;¤ =Qlo6Y(MFF!iyhosk=sy3ͼpߙ„ ! ,=/wIS(UE%_H& ӱOULbkOA9pl$CS,yJK_:{!vm6dY| ݑm&3,-翸!8a_9&]4eAZ*[Iaksge$A"Y,Nƃ|>`A8s+ ?g^$*1X ߏ1 g[-i9E˕/Xmej:'SNN9~BƥřKh 5|:p㨁C~Z -\dyLHw[~m+gI{pG˞m Ga[VG;ivskJaEҘmKo;+R~BzL9e(7nK;|ߍF׳Rq>fc` j#pCky# o/qK_[LL-Dky+.DjS9tב|id%|6w}J2 &%#-#ۈQ^s  ) nЀZe4Yt#='Ρ54*lowf3s4Zdrd))rn%SXiXYy gW_=YB6^GRk8jLWl:69)D,7)7W l4}EAC1~z 1 糘E ۚy2b>Йja ԇUYN~y֞ MtRI=}8h %c\/"T+kԃ1w_;=sAn-!d;ΊߞW]r8s}>ቚ "{{0B8XsQeA뛼Ygǿxv)݋&h/l_nEeEBQ\$DDAc ;tUMIg!-Bg饨5ߑwdwzG%JRQBaz]WIMԠeRSe3^.JwVqh{ˬx-Q'x~JtbMt j@ߍ棾AMҴɋxHBBspϱ\`2ӵYobȽ[2g-t@}<-MeYQ'TyᅸO0׉<=-3їH|;z#!3^tP'- ( OסzQ!ED@dq=ם{Dމ RB_^xB\UARiP^Z]{R}P@DHX.Z溞w!aYZĤ󎠻p`VV m:)Fe:)[]R qp/d)z~pU)Ʒ* Xa?Y?^ݠ;9jjRn}M&U^kf\NTUq˃>sudWifʿu ф#S?5oG9Iy鹹Zsз{B ]evmk[~U0?dEs#$}r}Fx]ʸ 썯`!x\>^޹czU6* ˖ǎ[bz dO|MZe+Aέ\>:r*ɜ{? ~/<~dE^嗗F# ǝS +4 qg [$|KS!*'Y *WS<7{G])k4 Ӣj42T;\z)[_,$_Hln sGkSggτp.[]an&qZ RX)IH]_2ueC+>kjhۓeDu  [ILԯhe|X}qmΞ3fw ԰1 "%׉c1xm̠wuvEm(enֽxT|VR/అdl{-*^'^iwB~Ģ/<3=oM'V7ap=#MQ0 ѱ|M'L, A[.@ct]5ꉄ0b(۝>9CO|2_kzL 3Zpg*WϴT.1#qY)ןIS|"Kٝ/WGS͖Cw&Ý i+_P2"56bwO}NޗtPB~2endstream endobj 155 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5062 >> stream xX tSeھ!4\;!oYDP@EQe{{I4or=t)--в#QqTYD?Җ0Ϲ'm/{yy?1|!F,]e_Da?B`F ozAT+s4!uK)شiC̟ҌgϞ$1*E6,-6*1, 99B2ش4ł̜:+9%3B2i!RR2"CV$' K ݬɉɑQ)IA<$䥊eSVLK_&37#F$߼%a[₩1XOL&6SSTb34Fl%ۉg b&XF"+*b51XC@H%^"416 [=G;Ւ`s_FƍG׎Z>cǾ <Ϗ.3{̵ CpTc/IljǹqqOLO ^˯]=&F[P4PCQò9E4Q-P҂Db}(GY 3UQC \;Vſꆊb-(3z#ꓰSL ]Lf% /hviѭh-. ~E?~Whx}"ȷ31ZT+G Og{Q6Hpqq! %nmH{޵iYB <@@̋^tE[&RstݞV@m5\ ^EKlJ&`4C`uq"mf[ <`2 eY \ E24Fe cJz-.(*1U/ Hr!;U=-`Agȥ'$L| L&[)T7J1 #ꔚ.$-XT&d#[rW܊JJs62&w}ucl_mg+\EAuaTJ`E& Xd~X&[Oe/S`/\FՓ"bhVX~\pn8tMPJ:_:؋\TaM4'yΞʇdbJ+HKٻ'vpC5~꾛 m.*ޠU@>Ԗ׻v^- v;#zEX$݋T^!9Y.,ta^._625.(b(gj΂ `&?o$&FnQG9c{HSB*0(a&a/ޛ&}awڑq VE;Xee^ E1*HH]C/iE%`_cO) 'ɹO훒Bk0(A%y0̟Oٙl-;b& PWf2[#>C\/+يIƑ.mif.Ik^`,ȓe%'%ro_G۫-%PIΊ6{b+Tv򅞤sg[jG + JLlz!ڜPrA{ Hjo:YfaL8C(?`\[`3v';qU (lh x'tQÿWy-dvA4$: 2r n?ؤ<+*wb[d)愣X9=>5@0?s6?z|M˷`b봝f֌G{Z33 s~/=Xg U=E.Ixyr\GO)[a)< Ar>9){tit\#Mn;fY0I9rT:FAX={~&eB>Z_.H]2=4P]Y*hV|YA,<"^:V8VqߡԢui ,|ސ֔ ן[:ԅUXN8vcx^:**ǪOv/,ZzC-9-$5lESL,`Xq+esL$68oA%Kj>cgb,0ZaX|yak9PӲ- F& -yo%Q|]KX2;M!*wF3\}I9'}\]vgzGqN ;j|!Sy򢙟T{D)%pTR""IG\E5{l+FXLԫR!L/:t4&|z 0,`LLR2$ovUC M'uL? WPY"$G(fZǠ,rIo~یּO{l,#_f+AFllQVSXj8&ΔgTt!g/zŋ[X8fSUjB. -dv)Yܶr Q'P]f:ūf4fYz4:O?ƕK:C:Ū//|61~MvsyF QCi*8 470L섅?qWTG&8X@Hj pvKAlA\L 4N8ǜ\KJ`f A V\L8Lܼ>݋bێǾτ\ٶU uTxSL_zҥ, KO}(7QžtO!Wg7ѡRA@"qI ZN yLN8ҟ9~_t,}  L!bjS3}ߜeҗ #erFtٻmޓ`vW8uݰ#WK2kv~ߗ,߹o_"r/]qBH$6 3JyWQV'%ȩol{oO5ʪdyB|BZYfcًoK 'QO/1AѮ^YHpՋa'q*3$f5}až݉WrЁʚښ{nF*[G1vbOi#[ \IJ_yz|5xyXWwN.ñl&NqVL0ɴY,~F#k\(9&'9GޏOOvSO͕:ۏ\N̬jȧ=RJ5y$BkGGT5j1jA/ F+endstream endobj 156 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6013 >> stream xY \֟oU^E[WPlUjDEv"! ;HrA5a3 Jqpq}j[_kδI_7s{seӋD&)  z oDZ7w[d'Fv6J{a kRbH6_-Vpy3g3֦v1z0]!'Y#9,eI5}}'n7Nm?d :ԁAc-i޸Ύf+WS:uXPhp'7 lClrhg/Bu~5h$pM٧ Aa(~:GRtuRzz2J`BQE?_-Lk޶F!AWԣƝ;HD /DYUlŎtpijOKp`PfΕC?/XF0.%vwQ< ig:S*[$v捷|x6'r akG`OL0~P)m,?2Jss=,p G!uա/YmNC;OTnR~nGSyp4(!8glm&ƃq z#sOcy~իo\q8c<$Ph0Bp-Guiz;R'ȃ쎗 @aj>mK&L ˜/Re7"鴦Ű@O`/?syש,t_~ispJb@€?wlH /}ڠ.CX;WXTE#|JU8(Ch7p!ĻJbP^F3P,:b(%;V*^{ %U:0EEs^c*](;Tt6aLc%YAl۰fpxf@EIƣQ?5{oPeCV"HplB{Qur&;=)ٝ#M+M04YmN%oEGAٿ_qYu֖&e˽fSSw%J2SP‘UL_ # #gг0~އAf,ӡ ,APEw $B p YEntw' ( R"VWpm~MvmFZlD0ǧ@:?VTYe>5*IpTau!³$`܄BNԒ?3LVG8ڛU&]W޾]nrvvX6+Ut'fRB![֨hM&32a]9oaA~Z]=$T8j/俦O A7Ţwa)x+6th`U3>X]vuO |pMܣنVzFZ ˢaYG΀rM=rj, uoZA oDgPK9V*ҟ`QR>Xp<̘4>)24=-u-y5DhxOx`IeƧŐop8}sm/Ҭ)_g}a*f<ǗFZZK_E "%DM&O{%s7JNh:XX*]bR,M V?t'O] s3$a"7|:4xm2̷s>^Q ZzIV"/rGU\}MDrjS[dؙ˨0KlPT=н-"{!YeF[| ޢ>Z&ɪ#j=-O_~WM[aO&Me6~4[.wfwCJM2K `N)P_T5_!Rĝ ޯd]*}KqS'C!\Ndq;HF\h*yu7⹳/9M#LGhNWlz\1R1Fq/<`_@a(1[Mq6*`(Ed\؜A)]O_^s7Ykd׈n~3W"j3BĶي+O"4KڡZg%d⺻׷Hk~>!SLZQ0Q,|$ij; QSSIQqޜbPBaҎ49h,*"ٚu5>S,x3djnJ('VmE{P /8\ BawfhF숋pcrg\o"2>O[IKǞM?HMgsON54L!os[\j*%;2:y?8$<21&#fh3%hܑؕ}]O:ŧb ,\ssn[bѩⴼLf`QFC'*S3I͏k)Eft@t)mߵ60\e3;k,irC0*x#J/?v5e(9.%'~IRc`&/zߋw;{..+7v>uQP F.bzߜ*='nOΌ@ь,g˰efEh_|O~AVv P{͌P˖4N o&0ø—`2a\qZyaXm[PP!SLS& EiRbe;{Hy ی|v^` )}hikc(<yI +]/b38^I1xMyeFY}G A̵tϡ  eKPs9r"9DL\QEE8}ϳ)HŘp@}hq8pۇ\n;v}̀۸?3{ s&L)ʎ}10en|W-hzsvflmϡϘ[c [ɢ:d4}Gf{uӃ/N{*Erzv%BaC?Zbe7P|<+ OW'^/5JvW/7\YƅUu%$mHVEX&,8?/kח_Lܙڋv!}yMUvQ ֊M2ٔ&)T='x!8M 8レ;mPk B\D>YE{[S tœ{fɼin+sE0ƱCc_M̮h׏2mendstream endobj 157 0 obj << /Filter /FlateDecode /Length 2197 >> stream xYr0'GӬ}IM I| @ `_fUOe4[^s빢3cW35?@Ţ7RKBq96nPY,w<,p_>}Χ2Ⱥ~,y=)Lw%Y-q_nرS UA].}qюR5J3ҟmJgw:%J L11,p|SolBm༥`C;Jzh,ke9Q) br]=6C{Mw΢I9Ymw`(ym".GF)LD. sd9FS"WeABJ]i J%8ᖓ6'\6[r2 C%&C".>w(NK R/5J|Tm &ЭN 6}9Wܒ䥂;@KYW5K7zrm5)!Ārs{AmÞj)h?.DL4i+np,zQqʨPU(;);q; mfe8ދ;4gc]BEow5j]/wSNnځvm u'?JC*& p!{Ø VإTt3T8f (8=%o;Av'?58zHk"F%0:8. 82\Չ<: $mn?MCq([1C|Zji dk_)IdUӇKDo*:°)s'ac>!voqlȧvCzwPGdG ( &&G]ͧ 0 S"YHx%3wL*ހZ+PuyUdR<P TPnIIdo& b/ɢxox1Y<1]]~oqٕ\]׺6DWjGGfLTK{b8pgG8Bmo,@W:'YX GB hF˪mtT5-5ex|ڛ4>'lB7}]I#nZ{cOKG wǬ[cU(v#d8 U[+=gÏ'$ӯ8Fﱝ; 4v!1INvxRiJL e>*enRsǓKI}t^>%f'M|&޲o'G⦉?MO1'GfR6hBeP,>QfeMӰi f2[NoM|#]#fo}>endstream endobj 158 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 659 >> stream x5_HSq^zY ]ĭSlI=TiSZzsmN,hh(߂^{!(J߽Mӷ==sLAAUUoRj'\BK)/jH`(,l=oHAw=*[[-[ԬeK =[f0J,X8YH;l EgJJ\.W^[i*X:;.5fUl!E: P!* )Q&İJ BܔGQ݂+?ȇA/T\Z"+>><cpnr!&rq|7)M^RIIhO! DmdE+_ZSzS;SOvHu4o-'Hp^AN酮ޤg?.,F.I.> stream xV p^!,`LFuB@4I16W! [Ʋe[|:o%Km-ٖ|s  @IBS2ӄߘMv&F}#GdTus =N&I#_JAL ~))O{yFѶDDfh)i]pys, ШԻ'RTKO[i͞m0f%hged%8}FAK VerTI+3u4f Dfhz*+|}F*+ ȸYٺ]IM)=i5fFIb11!^&be "XN Vsb-XO'6qA$%$G,4z$9R#{X5J?]j9o;yn7!?9.E`B&maM;R*șf \ 5x3LX#WV}?l'w,d/3T~u>e_Qw' oFYJq&!p;XQWRd$^J\3'2QO ! (<ay)G7dmZSfLUͱ l[ZX/g{JsdtuT;Z芁gOՑhݪ*<}*B8Yn} 83 Ami\+:e ˰Jcl,>l-[6%& 1OB 1 o__ \Ys6zz%=`gňXq.>2ȅV oP:y_2@M8a39,ٜNaPIJ%ŐǕUH/©wxt3:*Q<\Ch sb`*QûR0!HP(5M!! N!hnWf}dcpŊ&eS^WE,c3ͅ$P }]5|9_A L嵢#PeZY[\i:j]mhxW?uژj}ӗW+}'k@ofĖ14˱ąVqEM_T|uRQW^ENMcKSNOj<騰 6A ( `N.RrB)W`2idU#qyE%f+=HO{UPxH|"Nȟׅrg_y k䕳1Y:eX1 E _E='zJ*a܆ 準j_')ygF4V}@==y;6UeP7JV&϶[h~<DLWƐ|:}~ׯ\4yW v5UO{z{j?Te*[KsSsӀ#"MGzzԗ`نbH6%!; %ǟAzl /dﺩղlx`r1'pA4ARy[~&cOvrzk/Psh𶼷,OIJO5gx;wB*?ċ#[)tJ^mk*ݼ3aTxha]Kj}ؐ['¯==vYw|\ե7ֶw23l:Vn\w! J%=N=XQ~/1v"hҷfNipܳ.`,]R!ڞ=t>3ȲBZl KP~ʻf90`]74@U(78P^^B `ǿwIʲ˫w,(0_peܑăP%垂 FtʗOY9jFk^%c[RFJQT8/nDlƬN3_ 綪t{sk3UPGlD5.)&֎ > stream x\[o~Ώ~ Xd'K$Z"hK=#؟UEvfHS}dWb~og3Iο“1(/_WRft~ڞ_ޝyQ0=spg6jaM)w]V) =fx -%va:mq`x cE5)7:T#Ѡ2 XaBy Cz]AK5--N-]&P{*z^^ %egp߅=i; ''D$r]i~W74Js_;4UiiCCmn(fFB/~}y67|h9J"JM7) Li͙!*9td '%Ai*h5\Ǹ.eWH%+~#&3B@o[5)u;!Fg/ZmzGnTRR}Q4̸hS\1ZHTQ'ޒx)NJPXh|l4Rϧ"z4Z<3 ƙȌ&aKNU/CӄHbX# "2o֕0S 4_ʼnp0hu1j'J A,ޓx H)bHR;kd]2GшҸ۠H(m> j8:"`@PyW$_HӢ>"C`޲hצ>0[D_]1 F(߄=S=/1c1̨ԕ +nӖFFMK=WcEmB;L7R |a= &E$Tuyv>LsfsaޙC`J}i~>)x縝KQl'Bp \u{S#97 83AI&' z"y*Y4Ù!&h\R`+T]>0l=/ZJF!Zۚf}/`1ID9:o& /.5m̲@X4${|9S lB"ȧIWV TwthUQ&Dq{Q:{қ6Wz]<}lTZ&7% zjwpn,K3P2" O,Œ!dw7ʼ:.䏧;btfo@Umw3͵-]{SZhj0F0(?^,1&V$d[L =D<²A㑌ꈶ0!>8T q=àeۑ -h%EMi+͇g2 XH(T90Ϋv7_T7|_iM +y]њvsX*K4WoJgQh,L*$99:z5;uEhm!0RW>ޓ2 i/MX1 #4hJUtK "wyS˪|kpېI1ć=d|_,Zx<䫅(g)pfm7/?e=-$OF*5RʮMo#ȱ+/p ZWwbmq'iDCip[qfa#͆&~ ]m`T }vL)!Ng])}H$V b`8/5PiQNH _.,.i/:`c&Emtu'7#2}U% =yoJ#]Lml0C Yc`J!g'kaH: _[ y?5TFuCUd>eU+D'lJynaV#KР|ḿ-FY{Ƭ0`zwWskqeo J ]DRZ_o,8ʋ4Aʬ3) 1%չX8#MPX-2 GF:}ǧ"Z:>gHG]A<ۋu31âR]^Gg1TǟI#P™%"SٯTh%)9 plUصK(w4f(kR7ЃrqRgF*ۗ2;ء vD V1@;#I#MLM]wNa|RIz^RAPu!hCFFiNeV4 rFZ:?7Kh_2vṽ 'C]P0576ܬ!4R ") (hN;_X)dŞ 3PF*ur-#+#2ЍG أdJ{}O?YNz$zqM\dWmZ+9t&+HXlXrad JeTQRFI}n0#MҎ&Vt *QQ"T-8&Z+K!$1=RpikNgsO"%hqk|\X )bYc!V]z`%481T8q9Sbܡ4&7.TtY>9*Ӆ/ O~~,fqv0`s+ҵv ="D. ޒÀkp%m0Ļ@(1c wuUF!FZ{7%@tz^UN H;!8u ØDŽ͸H߿MxaFʓIdfxY> ,oh|,|B%I X ^K$I[} ;#1%q M2Z0o.7ҔK3*< ū@OYG5Z-rG%hGn.>: G4]n0@y ,ƺo?ZcJH*8qB_1S PjM:SJNi/6,\T/b*MLHG4@썲kaګѓӘ@8ivKuථ3bC:rHm*~57VQ˔\DpZizcI;*Lq*;B' K:D,xVPc~[ڭW|JVӠFj07$aVl<+inr'ckOmTM[Ɍw">Te=󱔆2EO}ga]lNă`OY<{N3W>Ϡ\\Q'L% 9T'b/C-1jr5t i%Хk~k_Gj[xar$kXdoxf;t)cOOrB66T%#VAhrUi3(߼`d5%ӟ*ySoˢ)lcdX$ƇNKYg86ˤ6YyVF'Dt7,ƾnzwnj/m% :uvUO* 8ިcf\)mYǒŸHP)J://膠s3 gS .2QD^5,RmB_Dz #c0?m(DzImyGc;)namFۅgN@Y64NW> _ 9]$t%+f TD4g,6U)Fx}DpJ|"nS3؟CT=gbPW$xXk*͗E5-9zdž#cq λMKqLp)~)Щ0Boi|Qͯcr)(sK"HafR"MN.cGkd "=( Z胬 eA /g8J>XߋH XֹܴqT_CP/[z]PdfoDWOs@NvU t펍w7lOd_?WN 'M-óyͫѓa,lOLxYĂhԚ{ {x N1-˼mɎt{Dm~4dnWF f[ޕ⢂yX?ɡGctst[2FLR;WLzOuˮaL~z$F4b!ֶJz>PVߴor4aW` QS{n翔ҼaC1Ur|l枩TCiu}4%nt2x{Nd:1dmtv`t;?{QW *RT9sJm{]}?$RB PX'-ݨĖ? c/m ®)K+N%`Laƅ*Qs?TUSUĠ:/.ڈ]R ( 'H5ey2lmۤ ;RKu6Ytf#W$yu=@anҦ_ w wĹc_'Mߟ?ָ%endstream endobj 161 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 162 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1060 >> stream x=Q}LSw}Ҿ'US{9&86dQ&6Е B)*"} / VLʰ ``B\2g#9MƲl lUs=ɽCSaML”ץZz5L(g`2P{2 -<Ѵla-/3ڄx]3Qر}{dff48.YtChUJNIZSuZ;!QیaCZk {-f5ڒ^Lf -zLQZmӖ(5*ʧ *ʢؐ3*"}/h؏$*V_&O "՜lmbLn0_n+7T;."WѫCĎ` `ȒTA:J2v٨H=EUz Y^̻AϓŌOl1 wb&^3Tɵ9N-xw pl*9*ŌDkPV/b4_;+\[3wrbtkpq\UK$y*='xq̹xU?u.4^2lz0qkiSVOD>Ux$ 8]v9O=2*0" [6iH?#<7;Ņ̾jK.p0übm.QIsQSmQ#j7Fb**յRĢ8M+endstream endobj 163 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 164 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1956 >> stream xUyPwqְ`ƈ"[ "#09gA&(6x- G55)w5G3Jt{{'#B&2U]9zC%gO_N>b$Ir Mߚ)HR&rL_Xk((6sL;T-[z"ժ|Q3CRgr&'OٰS5c2D/]jZd.1{sʪ36i F6KoЛTIZU%o!lUjC֨'bJPg,4[2v76\b#LOAl&> RTb-XBD BM$S%DQB|-Kݜ0{Y.ϒYҪX3H;h nĨLRe{pw3p4A A\qpC Ty4]Er2xGC_Aza)|]<'8  'D)f.~QrIrS YJ|'^Cozg㑖B {E-ACW/mE&:*4 zmD\d`М'Y _?D*jfhl;aAsChCQ񂴟_CDәoִm2cGʺ~E߼$ il_!뼏s[mؽZcsi<)X(<j:y{Xpw/k?ʹ.J˨"(;YƓluѺjwǤD36~K=\U'Z\,_{nfD3(I8-TlNR*pp">3Oj铗Se>Cgr1odYPeg6YN/bJ\IV͇zKk'>Lzu}:ڎT,wN 盚3gn߫腙&.hRfȪ{kU{$ B> stream xX TS׺>1xP+=šj֩ZE@AA`SHHIcaBDjUF_[EZmӷk}ݵX,oGDD"kW[7qE08 g}~ D~(?%vgOLʐ>:xiSC'M0-x4Z=2!xe<&Z)'&ng#'M MKK)M(9ktHpZ<&xMtr,5:*xQb\k{_L~D`@WL`pf?7\+ԂWЧF$L` |[409!k58V]P? )CJЫtpI*L.ט <~A;708 ä.ǚ8n.EKb͆{vKph'[EC[ : OM\VƳٻ+z#>/y[I#գɅNus8=!Ϙe$]wvbJX78pc%CP_ KWu'-7kDO[(v$LΚ LE`f*i ]&i5 }^ވ-x(^uLþB6#!'Z> *⁙4lzt\Hnզ}βBWGv27 q%1[+kI8 ?\&lwnQkFV`( ՚Jem^4s98i U7 w.AQ:Fԗ7Z˫-\s)T_oPEqx݊%(Oɋ=\h6)l,>XOO ,~0YKmPx2Y(Տiv6N=4:Pb`ޤ/Ut KVT^ pAn K)ltPOq!1xDئN4THA ܜ ,"c6uUp_ w,,8Ig@ZMδm*YS{=G}4qF]NhpA}`aJr2/rMvnMB˾h!]꒬|ZdS,`o(hڶ3)Z3Yڜ\g4;CGzPus|ѐImPPXc֢A':/晏[C., Lۿ!SeJ&5 0:h \ZSYf("D(B KXfgH*f!L-QˀYfpV+pƂFk`;|s6y3[6, jRP eKS<'?/^cI7Aa'O=$G|J,8{&B{Ӫ/K'$Fj;~&,L_j*2#zá>4gN hɛ7Mr X +BCpع3-icL ! Z2]Ouΰ.%"f&9U⎂\7zCQ/%ـ0OwuJڧ; LC77&)Yml~δYrcykgP6hbFâh{rŸ(40+nIZ+EA-4SuIc}FR].LY#}~&a>#Nxka??B[TuG,hbjjۊZdC SSՄmkJ|v^|.7)p趮~ݐUS_A 6,z(^cPW}wu@TљHl"ۓ '*$Dۊ$$bfMs qߕYu}ȥ *Z-G(߯rΣv²K)@l2W vAj#=T$lYp1c4MGQh2,P$nH?EA^7(5\O^+ ̥Pԥ[BPwMd>EEa\B[he|n=+"e3lpw(ׇ?H> stream x313R0P0U0S01C.=Cɹ\ &`A RN\ %E\@i.}0`ȥ 43KM V8qy(-> stream x]O10 TXЪj8(Nߗ,N>~l#GpƲ5 HeQV-ƃ剳B7OfϲUiZB 'mQt1 l.kSIT @s$Lg)HSendstream endobj 168 0 obj << /Filter /FlateDecode /Length 163 >> stream x]O10 PXҡUqP(/ СY:ߝ|reA>E0u- -m1,O)x@fw5|s^[+x$E b'Φ2?M%K17MR{;RB|ILSendstream endobj 169 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O10 b C+qP(/ СY:ߝ|pFcpƲ- DeQV-Ɠ剋BwOϲ)> stream x]r0 @wqZ%C{?`y9dWCaB9_/לVۼ%~j甧JY#ّn)k=Ӝ_C.d9wlۊ2ѣH5yFCyw亭bԈ ΣzQ6 k9o6I(:_6t=*\uxAz@Iߞ{ |#U̼'"mSR"U1?endstream endobj 171 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2523 >> stream xeVkPSg!GKQ-^Z/uڪX. ZQZ( $1%79' @wevmNVk8_׭{r2s}6H1++;{eӏO'Ʌ)DŽeݵ̄4!Y8:2y確yN7O o15 &Kskl3u/{=Qi=}[ JyڢqՃ<0(=~{=Z1Sct򀬶;8zzYRHmj~|}`怃4 q;1d,T'2'{%S!w=V L%AʕiO6ԁtyNmaq vC8 BPJ(Aٜu D{,/ g&"nb^tz+ZX.s WazjZ6m=mus-ErU1.ʜ77u.H0M{#<jhQ(h>z=s{}K[ Y`hUaLjz$jniM4F,m//rku ,> x/ ԏF mr p-^]TxƹL0]vҾ1rY$iq{ e5`*ig8-rZY*6r]v^_Rufwf78budVՇ๻OsCWM3n'h pc<yyI>0#_¯"q"q ]%DF|o]/t@[ҮS4]񾖑S9M\^M=TN,RMKܙuВ[^icMh7F:6&k*TUeoƦ.8*\2T|ȟ"Qt,NIśe@`XL "ϴɖ@Pcvk`U6Td8j 6mux _=!ʆ-.OYx=䥺nWGLe ;DV$|7꣇xN@0doǬ\駛hf7.(_"Pu;Ρ^p_8=47!{;mb*kjPC}sMT^!5ҭn?A:RPZ:Ko\:cNݷeC>}!hTD-?Lty^`chͫrЁmEj ljÝB8҉k|BohZn.>4*de@F"MۏlƳ`!se |;(̍f`gըKpW5_>^Q^cs$|{ԃ7-\؆K.mC51$uQz_!^57.Ab#^aL 3au(f-Y%zy!8e}\(@ I}hQ<8 sV's :A'lQd:> Њsn9(=DDWQ^՞7ktqΞbе81:IF4e@SK 6<›dP<~L}6rc@mۙg}],m)$Y͒ 7&c}8ET!<0 `Y}^ k 57 1 rY-Զԧ>v,l, dFFccy ΢]ﴍ9F"^ƓYPUSqahVQsf Z>endstream endobj 172 0 obj << /Filter /FlateDecode /Length 6483 >> stream x\Y$qߌl ~1A@@.}M+Lw!;;=rglGDVUFfe1Ks{;̯W+ ?u*;$u5O_(\=}~> W>jz3_Aߠ:Xz#z#x-z+BjqQ2qG֪w]+)d=_C7lrmmvjQvQg _=v‹0VEu܇쾁ABmq,؈XIa7]\ms=+ڋ>0hxK4{:i |CY{6[$Ja1o )Lw~ںrw3]'{QCS!ٔKچSe&Ja?}xM$!U;QPI8Dۭhq&*z=5 QȌ#zo0'1pft.̖$Cąt_|1.@ީSJ廫|śMJ(aa \{XKK½hӝҭsǟCn`/`JNG!1X, )@  ZK@"j&Ip9D`>1p|T,W*P_(e$цBȃH8:5aKE-Fu%\,-i,xuV[D0o4S+#($_i˴U{kFpR:%Q%~}nMu;U'P5Bݒ@[t\ y.u2B'i0¤g׼I-\Rtcm9'ߙ?!5=> !&$ d`9|XKN yG#0ͤmn~os./Cun9dz܄sJ |]ܼý`|;֛^MT9St$:ڂ5FpbMxdD'@ }JAw n;:()Bf_p%Me|6qRi=+_7,M vupqffvFä;7$ۃ|+j9}7Q:7wKuIys\ֹ=mv"(7eLK5 6M6f\;->07b=^7y{߉&VN[w-fb2XLq#.v8?ǥH׉C?͏ܚ>n2ϛMᜳC)~/o~eB悿\ͥ_ޚrb;S#],Jכ w)=O.Y~$Jp\pNqRGTs&{)ED@#(KER;j  K_0& RicE?AӎiǮ\9%kwrЭ ɻ:=!73 aS3zY9W -U932 ct|(ykx~ !8S`"4dz]c?D^.R禟U8<둲͢ς_Ϛ,fMՔqAdf&sWZuKB]dSi"X)5R ckk͜w!˜}U!FYG]ŦԼP9c7sVybY8IqQ1̆Ts 7ˣɿ$.Er:knNm4Y^jLO~A,Fq|.ΛVuSZ0:H+-y$izd`<q @fG>uA1 ;b [dUp4,h!;ӎ@l:0NGkGӴ06$g&z uR-g$F6oIѲ''t'h+a1C5'No/;أNvdȐdK l/[#e'ڮ\@ :$NtH3cO@syM K.jedyQ.m"OrWr3f&Bx*U>ۻuD ΎVq;JW:q:PXn{vۨr M-eowwir,gQ;} LXYɘ$̬%_I/U( l G@{`jB8겿E_b];>u˃_ܹ2j!aoz -YߙbڼwwA4\Ua;-.RoSA2R |,Y 2,|щh 㗘*ɀ!]TJU4nf( h "3Mn>MgΛ| @wپi~!q㥓I_ "e1~B=OLN]QkLc9>QԆvb2-3NƠRl d֗K)1;3΅)$EV)3Rv@:~zg$u< 9ǫ4ܯmͯs2&e2,0M1Cʎ<%RhHD)tԄ֞vP b(Ú@\lBFv)1K!خ6Dx nM)7v30)fBϲE;jKH`@M:T|S+w ?gچN;hIB;"H27KZ`׬6GknR;`"\&8M۽W ]>z1a;0L-4#ďάL]Ghqt6()!N/ N`WC),!7VEM'ͷu$9xLtH|Nx\1? nU|giH"8IxqXF)| |'T2a϶P,NRtʃ@l ܪ>^*JDfɌ5L'~w2gJh "zuЕ|0w}4pf:Y39k&[i&JďI1YU11r]62*EN\+QL` )e.ޱ2[P$ rI3# '<;IB ɬ6`;jJeBSZg>;bhXoHqXƖ]ƺH p&S TŇ)%1 gҼQAh7Q-e]E݀e)npw] R9 F<Qvh6|E3)rQVa坜է|Vn"GY䢙bivm]$+^?ix#Ll/Vڕ /$ sѪSbCt:Aynwrv׈UorenM ɀ n6-]0 ڰqNw̱֠<ՋN~v`ͬd6Klȟ6^-((n/^Os&BR.ލZZ-:Z VMq'ch>;z FTS30.۾-eFŲwrek2{r-~Eel=pG^~R`&By]6$+r*XLvy.u#T?HKZT &VݗҾ7~箙5腨Bޗ‘(6}Cc%-c(2gb%XD6/GOWaȰq)M /ٞwUBߖ3 t;Vז1v-҇0[\u@}3mnOZs-7P+x-a҂AF_?#ūܚ2uR ;\<[w9Y^L7 E~,!kZ&!Gp⽹2LȝImnٙa7_&^n3'+B\4g[HpEP>K;35,?X$St EWˊ^̂Ӥ#p,s03_i5`()^d9Zbq~?'jͽpo8.Nq7N. B#BĿ rGE!g#q1eb)̪.7bJ(ݱ([ϳCHPE3w153'gCE6=@PL0gtf ޠXzJ-1Ӡ%"s(F3hmzbh`YW2+(mzg -݈d"ZqVs*9!NMw+IA."bY4XP8@r. a$3h"&#m$"(`=0bC7iKhWE,^A^=Y +٘L7 |^C>Y.ia ? o6j!BAz3y?RRt/R2Pgi|Aݜ2Os~ kT>q^@t dEvqGIxԔ./{UrI1<z㰰;UƁp iq4A!@[wtX z=۴u00+LAg8]h0e tՒp*P"^ᑐRsg|/*Ef' uSj$0\atӌFљAc]I,d[1y5UӍLND4OA @ .58E -n["W\zSŤb8g@Y^ytVSE3$wըZxr䕕 9 ˨&w {79";_ǫendstream endobj 173 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O10 BVUAD! }I.GOJ`H_#L4;ua:XA6ٝV=4R<說dgRXyp8I.~r 6/HSendstream endobj 174 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 640 >> stream xoHqfm (7YI/RI "׼ ڴX0yBPbKIͰ0JL41!1,D xy>Re! Ԏں吴eIIw5P$P i˄q>qp΀]\VVjK2ΫrL_{9*,W3շE'3 JۘA⇸bCy^r}\+Am`uW VŤ" =U3kmhIS A8517Q\ڔ~=ǢWƩmZQX&?endstream endobj 175 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1260 >> stream xmR}LSW_OM@5J8K%F!3--R,:{-VkXt~LlӰA]4Q335q[o]Cc?n9\B$I!/(Z97'.<ħzznB !Jꙉ3d49|ѣF}R`k[ 2jʢ+&R_KjUI Vi11  SrKlvۙYT%zi2҅Z^2 l:cE6^k+M5*`1' ANo7&J,◅kWo61Zj kB\$$Ly| D^C4E0U$'JkIdWƨ)ˢ{G/e`~ZےGP/|&r hzqW;Â{zіNtd (<-sl]c A# pѪQ 2@xXJ.@п XuʼnK)}Gh'h@'\Ӂuh!|A:ZNBNs6ޣ9DD`3x=2S[PBƅ`ÆUA&. BA~+(aT1JvGШYRY 업v6Ȇ4+BIXJ+_f*@C!A{7 -,-5ؼ 28p>`Cnw'8ļrxG<^L= ƪQ<Գ ^0CZtʸ}Y6m0Ӧ&5G2B<8:(ᴹNּoBK :4ˑy_թ@z[d5ǪJ/$AP>bޏux-˲~0tHs Ϣ~ Pk_;U4D]NN{YhyT7*x{nW71Vz?+̷O ൤<(b@uh1-SP5$i5<_9z(\IҎl]gXf{NUo)ɧa &+r%%= ݣ$O&(ɟ T4ݐeysrsO\ d|Lw;!؛;^5ʟ9u@ՊcI2NWyݰ4O Qi꩒b@B!"ѿ;endstream endobj 176 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 830 >> stream xUmhw՘=H ;_L"퍶atXcy%)桗KbM.饹i\u(F*>ثpUu//~?~wχ(Eu\ڊJP6|uP*evSx#LjE]ވ R&--{v_N|$)":Mtz8Mq[$$Ӵc׮@ frzܔmN"aKR~J|v&'Iuk[:It[Iʅ tGCuuDB=Ҡe^F+AܫIT~xX./]|o$7L7C^r/"M;yMV(_,LSx~ou MrPB sO9-IAel<ǥej}H0<+L/H:~tTe#tyã型J '|Hendstream endobj 177 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 399 >> stream xcd`ab`ddds4H3a!Ckc7s7ᅣ ~.ȘW_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*]&s JKR|SR3Yfظ" g.qcu~.]RWW4f%+(?u)}Sv8*R5Di[̙}-s`nJ[k:[uweJuWqDL?aw]+k*Z##9*/?q֌U|e ~8O6{ Sq=b1ùjendstream endobj 178 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 892 >> stream x5_lZU{ 'h.71fmRN jԥtamW .0h)P3Q BVHˌYZ`bM_&'=ѱcCp dv P@%!߳48θ. 3vd0T:վ9@64[iIQ:H[ulPcD^#:z AaxX#)nzal,JS]`wfvK;Qfv ZשY΂a*9sg8);.'Wzz.==\ ޽WY ڻ}Ձ{#~h_]JJ.׈]ژP_?tޑR`sݱfRT Y'? g~~;?׿//CȄsri-þ\8 <$ydϬ.!_ +"Y%(o(|^xJPh!C:ꚳj96[YU5WIɊ8SMeY~ZWn"0,!ߊn$` %EoZoq@YqͩD}a'4 4롢LΥudJdA?/u# N܃ۿI!mBmXw8djmDŽnV'7ߌM@957d+-~Ҳ)8ro+tr2[?> stream x]O10 @;t@,tahU@p' aK,N>~l#GpƲ5 HeQ7-Ɲ剳B7O~W3g})iZB 'mUu1 > stream x=KPmc 6pھ-~hT "N4&7$o x98T $Aksxp(RR*wڏwiO{i!beP"VmFl= s?pklC /C> stream x]O10 TXЪj8(Nߗ,N>~l#GpƲ5 HeQV-ƃ剳B7OfϲUiZB 'mQt1 l.kSIT @s$Lg)GsS~endstream endobj 182 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 331 >> stream xcd`ab`ddp 44H3a!3kc7s7{' ~O+XP_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*@ݧs JKR|SRYBt^}ω33G[7]z}r[~kb}vEly~_d}{O!lYwVWG g/d4mn9.<'yx\Qxendstream endobj 183 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 810 >> stream xmQ]L`mԢ!Lt&A FIhjhذұu2YMat@ jOĿ'|Sc_1vOrϹc95N(_["\ޘ#oҁOYT^ :d[Vsk0x³&+G6+*+wW kk8 geNSFt~+ǵ۵YeNjNcIaۘY Cq^dXaObX1 ۳ nぜfY0(?!f[A2 i!j7tCٯ]|_->pA><a%[0:ChRQQ  \L?s0 av?|:3"JkcxZOAA?#ע}Gj :gԽ@nTޠ§ċn{Px*{!LП>KIQUk~ -+<{`Bװ PBWHK' IRD?L@ݜ}UjE^b'n//%(y $ 7ߔ7Ƨxf> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 185 /ID [<3398dc37a3e4cdfe30c304755654dbaf>] >> stream xcb&F~0 $8J? (_P#3(ibPl?(5LD*HE)qDroA$5 ^ $9؂wA$ px f*]@$g"Yf| f_Cal`3u0S! endstream endobj startxref 87234 %%EOF AER/tests/0000755000175400001440000000000012213624060012212 5ustar zeileisusersAER/tests/Ch-TimeSeries.R0000644000175400001440000003176612214557734014771 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: options ################################################### options(digits = 6) ################################################### ### chunk number 3: ts-plot eval=FALSE ################################################### ## data("UKNonDurables") ## plot(UKNonDurables) ################################################### ### chunk number 4: UKNonDurables-data ################################################### data("UKNonDurables") ################################################### ### chunk number 5: tsp ################################################### tsp(UKNonDurables) ################################################### ### chunk number 6: window ################################################### window(UKNonDurables, end = c(1956, 4)) ################################################### ### chunk number 7: filter eval=FALSE ################################################### ## data("UKDriverDeaths") ## plot(UKDriverDeaths) ## lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), ## col = 2) ################################################### ### chunk number 8: ts-plot1 ################################################### data("UKNonDurables") plot(UKNonDurables) data("UKDriverDeaths") plot(UKDriverDeaths) lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), col = 2) ################################################### ### chunk number 9: filter1 eval=FALSE ################################################### ## data("UKDriverDeaths") ## plot(UKDriverDeaths) ## lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), ## col = 2) ################################################### ### chunk number 10: rollapply ################################################### plot(rollapply(UKDriverDeaths, 12, sd)) ################################################### ### chunk number 11: ar-sim ################################################### set.seed(1234) x <- filter(rnorm(100), 0.9, method = "recursive") ################################################### ### chunk number 12: decompose ################################################### dd_dec <- decompose(log(UKDriverDeaths)) dd_stl <- stl(log(UKDriverDeaths), s.window = 13) ################################################### ### chunk number 13: decompose-components ################################################### plot(dd_dec$trend, ylab = "trend") lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) ################################################### ### chunk number 14: seat-mean-sd ################################################### plot(dd_dec$trend, ylab = "trend") lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) plot(rollapply(UKDriverDeaths, 12, sd)) ################################################### ### chunk number 15: stl ################################################### plot(dd_stl) ################################################### ### chunk number 16: Holt-Winters ################################################### dd_past <- window(UKDriverDeaths, end = c(1982, 12)) dd_hw <- try(HoltWinters(dd_past)) if(!inherits(dd_hw, "try-error")) { dd_pred <- predict(dd_hw, n.ahead = 24) ################################################### ### chunk number 17: Holt-Winters-plot ################################################### plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths)) lines(UKDriverDeaths) ################################################### ### chunk number 18: Holt-Winters-plot1 ################################################### plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths)) lines(UKDriverDeaths) } ################################################### ### chunk number 19: acf eval=FALSE ################################################### ## acf(x) ## pacf(x) ################################################### ### chunk number 20: acf1 ################################################### acf(x, ylim = c(-0.2, 1)) pacf(x, ylim = c(-0.2, 1)) ################################################### ### chunk number 21: ar ################################################### ar(x) ################################################### ### chunk number 22: window-non-durab ################################################### nd <- window(log(UKNonDurables), end = c(1970, 4)) ################################################### ### chunk number 23: non-durab-acf ################################################### acf(diff(nd), ylim = c(-1, 1)) pacf(diff(nd), ylim = c(-1, 1)) acf(diff(diff(nd, 4)), ylim = c(-1, 1)) pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) ################################################### ### chunk number 24: non-durab-acf1 ################################################### acf(diff(nd), ylim = c(-1, 1)) pacf(diff(nd), ylim = c(-1, 1)) acf(diff(diff(nd, 4)), ylim = c(-1, 1)) pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) ################################################### ### chunk number 25: arima-setup ################################################### nd_pars <- expand.grid(ar = 0:2, diff = 1, ma = 0:2, sar = 0:1, sdiff = 1, sma = 0:1) nd_aic <- rep(0, nrow(nd_pars)) for(i in seq(along = nd_aic)) nd_aic[i] <- AIC(arima(nd, unlist(nd_pars[i, 1:3]), unlist(nd_pars[i, 4:6])), k = log(length(nd))) nd_pars[which.min(nd_aic),] ################################################### ### chunk number 26: arima ################################################### nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1)) nd_arima ################################################### ### chunk number 27: tsdiag ################################################### tsdiag(nd_arima) ################################################### ### chunk number 28: tsdiag1 ################################################### tsdiag(nd_arima) ################################################### ### chunk number 29: arima-predict ################################################### nd_pred <- predict(nd_arima, n.ahead = 18 * 4) ################################################### ### chunk number 30: arima-compare ################################################### plot(log(UKNonDurables)) lines(nd_pred$pred, col = 2) ################################################### ### chunk number 31: arima-compare1 ################################################### plot(log(UKNonDurables)) lines(nd_pred$pred, col = 2) ################################################### ### chunk number 32: pepper ################################################### data("PepperPrice") plot(PepperPrice, plot.type = "single", col = 1:2) legend("topleft", c("black", "white"), bty = "n", col = 1:2, lty = rep(1,2)) ################################################### ### chunk number 33: pepper1 ################################################### data("PepperPrice") plot(PepperPrice, plot.type = "single", col = 1:2) legend("topleft", c("black", "white"), bty = "n", col = 1:2, lty = rep(1,2)) ################################################### ### chunk number 34: adf1 ################################################### library("tseries") adf.test(log(PepperPrice[, "white"])) ################################################### ### chunk number 35: adf1 ################################################### adf.test(diff(log(PepperPrice[, "white"]))) ################################################### ### chunk number 36: pp ################################################### pp.test(log(PepperPrice[, "white"]), type = "Z(t_alpha)") ################################################### ### chunk number 37: urca eval=FALSE ################################################### ## library("urca") ## pepper_ers <- ur.ers(log(PepperPrice[, "white"]), ## type = "DF-GLS", model = "const", lag.max = 4) ## summary(pepper_ers) ################################################### ### chunk number 38: kpss ################################################### kpss.test(log(PepperPrice[, "white"])) ################################################### ### chunk number 39: po ################################################### po.test(log(PepperPrice)) ################################################### ### chunk number 40: joh-trace ################################################### library("urca") pepper_jo <- ca.jo(log(PepperPrice), ecdet = "const", type = "trace") summary(pepper_jo) ################################################### ### chunk number 41: joh-lmax eval=FALSE ################################################### ## pepper_jo2 <- ca.jo(log(PepperPrice), ecdet = "const", type = "eigen") ## summary(pepper_jo2) ################################################### ### chunk number 42: dynlm-by-hand ################################################### dd <- log(UKDriverDeaths) dd_dat <- ts.intersect(dd, dd1 = lag(dd, k = -1), dd12 = lag(dd, k = -12)) lm(dd ~ dd1 + dd12, data = dd_dat) ################################################### ### chunk number 43: dynlm ################################################### library("dynlm") dynlm(dd ~ L(dd) + L(dd, 12)) ################################################### ### chunk number 44: efp ################################################### library("strucchange") dd_ocus <- efp(dd ~ dd1 + dd12, data = dd_dat, type = "OLS-CUSUM") ################################################### ### chunk number 45: efp-test ################################################### sctest(dd_ocus) ################################################### ### chunk number 46: efp-plot eval=FALSE ################################################### ## plot(dd_ocus) ################################################### ### chunk number 47: Fstats ################################################### dd_fs <- Fstats(dd ~ dd1 + dd12, data = dd_dat, from = 0.1) plot(dd_fs) sctest(dd_fs) ################################################### ### chunk number 48: ocus-supF ################################################### plot(dd_ocus) plot(dd_fs, main = "supF test") ################################################### ### chunk number 49: GermanM1 ################################################### data("GermanM1") LTW <- dm ~ dy2 + dR + dR1 + dp + m1 + y1 + R1 + season ################################################### ### chunk number 50: re eval=FALSE ################################################### ## m1_re <- efp(LTW, data = GermanM1, type = "RE") ## plot(m1_re) ################################################### ### chunk number 51: re1 ################################################### m1_re <- efp(LTW, data = GermanM1, type = "RE") plot(m1_re) ################################################### ### chunk number 52: dating ################################################### dd_bp <- breakpoints(dd ~ dd1 + dd12, data = dd_dat, h = 0.1) ################################################### ### chunk number 53: dating-coef ################################################### coef(dd_bp, breaks = 2) ################################################### ### chunk number 54: dating-plot eval=FALSE ################################################### ## plot(dd) ## lines(fitted(dd_bp, breaks = 2), col = 4) ## lines(confint(dd_bp, breaks = 2)) ################################################### ### chunk number 55: dating-plot1 ################################################### plot(dd_bp, legend = FALSE, main = "") plot(dd) lines(fitted(dd_bp, breaks = 2), col = 4) lines(confint(dd_bp, breaks = 2)) ################################################### ### chunk number 56: StructTS ################################################### dd_struct <- StructTS(log(UKDriverDeaths)) ################################################### ### chunk number 57: StructTS-plot eval=FALSE ################################################### ## plot(cbind(fitted(dd_struct), residuals(dd_struct))) ################################################### ### chunk number 58: StructTS-plot1 ################################################### dd_struct_plot <- cbind(fitted(dd_struct), residuals = residuals(dd_struct)) colnames(dd_struct_plot) <- c("level", "slope", "season", "residuals") plot(dd_struct_plot, main = "") ################################################### ### chunk number 59: garch-plot ################################################### data("MarkPound") plot(MarkPound, main = "") ################################################### ### chunk number 60: garch ################################################### data("MarkPound") mp <- garch(MarkPound, grad = "numerical", trace = FALSE) summary(mp) AER/tests/Ch-Basics.Rout.save0000644000175400001440000007106013022366246015572 0ustar zeileisusers R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: calc1 R> ################################################### R> 1 + 1 [1] 2 R> 2^3 [1] 8 R> R> R> ################################################### R> ### chunk number 3: calc2 R> ################################################### R> log(exp(sin(pi/4)^2) * exp(cos(pi/4)^2)) [1] 1 R> R> R> ################################################### R> ### chunk number 4: vec1 R> ################################################### R> x <- c(1.8, 3.14, 4, 88.169, 13) R> R> R> ################################################### R> ### chunk number 5: length R> ################################################### R> length(x) [1] 5 R> R> R> ################################################### R> ### chunk number 6: vec2 R> ################################################### R> 2 * x + 3 [1] 6.60 9.28 11.00 179.34 29.00 R> 5:1 * x + 1:5 [1] 10.00 14.56 15.00 180.34 18.00 R> R> R> ################################################### R> ### chunk number 7: vec3 R> ################################################### R> log(x) [1] 0.5878 1.1442 1.3863 4.4793 2.5649 R> R> R> ################################################### R> ### chunk number 8: subset1 R> ################################################### R> x[c(1, 4)] [1] 1.80 88.17 R> R> R> ################################################### R> ### chunk number 9: subset2 R> ################################################### R> x[-c(2, 3, 5)] [1] 1.80 88.17 R> R> R> ################################################### R> ### chunk number 10: pattern1 R> ################################################### R> ones <- rep(1, 10) R> even <- seq(from = 2, to = 20, by = 2) R> trend <- 1981:2005 R> R> R> ################################################### R> ### chunk number 11: pattern2 R> ################################################### R> c(ones, even) [1] 1 1 1 1 1 1 1 1 1 1 2 4 6 8 10 12 14 16 18 20 R> R> R> ################################################### R> ### chunk number 12: matrix1 R> ################################################### R> A <- matrix(1:6, nrow = 2) R> R> R> ################################################### R> ### chunk number 13: matrix2 R> ################################################### R> t(A) [,1] [,2] [1,] 1 2 [2,] 3 4 [3,] 5 6 R> R> R> ################################################### R> ### chunk number 14: matrix3 R> ################################################### R> dim(A) [1] 2 3 R> nrow(A) [1] 2 R> ncol(A) [1] 3 R> R> R> ################################################### R> ### chunk number 15: matrix-subset R> ################################################### R> A1 <- A[1:2, c(1, 3)] R> R> R> ################################################### R> ### chunk number 16: matrix4 R> ################################################### R> solve(A1) [,1] [,2] [1,] -1.5 1.25 [2,] 0.5 -0.25 R> R> R> ################################################### R> ### chunk number 17: matrix-solve R> ################################################### R> A1 %*% solve(A1) [,1] [,2] [1,] 1 0 [2,] 0 1 R> R> R> ################################################### R> ### chunk number 18: diag R> ################################################### R> diag(4) [,1] [,2] [,3] [,4] [1,] 1 0 0 0 [2,] 0 1 0 0 [3,] 0 0 1 0 [4,] 0 0 0 1 R> R> R> ################################################### R> ### chunk number 19: matrix-combine1 R> ################################################### R> cbind(1, A1) [,1] [,2] [,3] [1,] 1 1 5 [2,] 1 2 6 R> R> R> ################################################### R> ### chunk number 20: matrix-combine2 R> ################################################### R> rbind(A1, diag(4, 2)) [,1] [,2] [1,] 1 5 [2,] 2 6 [3,] 4 0 [4,] 0 4 R> R> R> ################################################### R> ### chunk number 21: vector-mode R> ################################################### R> x <- c(1.8, 3.14, 4, 88.169, 13) R> R> R> ################################################### R> ### chunk number 22: logical R> ################################################### R> x > 3.5 [1] FALSE FALSE TRUE TRUE TRUE R> R> R> ################################################### R> ### chunk number 23: names R> ################################################### R> names(x) <- c("a", "b", "c", "d", "e") R> x a b c d e 1.80 3.14 4.00 88.17 13.00 R> R> R> ################################################### R> ### chunk number 24: subset-more R> ################################################### R> x[3:5] c d e 4.00 88.17 13.00 R> x[c("c", "d", "e")] c d e 4.00 88.17 13.00 R> x[x > 3.5] c d e 4.00 88.17 13.00 R> R> R> ################################################### R> ### chunk number 25: list1 R> ################################################### R> mylist <- list(sample = rnorm(5), + family = "normal distribution", + parameters = list(mean = 0, sd = 1)) R> mylist $sample [1] 0.3771 -0.9346 2.4302 1.3195 0.4503 $family [1] "normal distribution" $parameters $parameters$mean [1] 0 $parameters$sd [1] 1 R> R> R> ################################################### R> ### chunk number 26: list2 R> ################################################### R> mylist[[1]] [1] 0.3771 -0.9346 2.4302 1.3195 0.4503 R> mylist[["sample"]] [1] 0.3771 -0.9346 2.4302 1.3195 0.4503 R> mylist$sample [1] 0.3771 -0.9346 2.4302 1.3195 0.4503 R> R> R> ################################################### R> ### chunk number 27: list3 R> ################################################### R> mylist[[3]]$sd [1] 1 R> R> R> ################################################### R> ### chunk number 28: logical2 R> ################################################### R> x <- c(1.8, 3.14, 4, 88.169, 13) R> x > 3 & x <= 4 [1] FALSE TRUE TRUE FALSE FALSE R> R> R> ################################################### R> ### chunk number 29: logical3 R> ################################################### R> which(x > 3 & x <= 4) [1] 2 3 R> R> R> ################################################### R> ### chunk number 30: logical4 R> ################################################### R> all(x > 3) [1] FALSE R> any(x > 3) [1] TRUE R> R> R> ################################################### R> ### chunk number 31: logical5 R> ################################################### R> (1.5 - 0.5) == 1 [1] TRUE R> (1.9 - 0.9) == 1 [1] FALSE R> R> R> ################################################### R> ### chunk number 32: logical6 R> ################################################### R> all.equal(1.9 - 0.9, 1) [1] TRUE R> R> R> ################################################### R> ### chunk number 33: logical7 R> ################################################### R> 7 + TRUE [1] 8 R> R> R> ################################################### R> ### chunk number 34: coercion1 R> ################################################### R> is.numeric(x) [1] TRUE R> is.character(x) [1] FALSE R> as.character(x) [1] "1.8" "3.14" "4" "88.169" "13" R> R> R> ################################################### R> ### chunk number 35: coercion2 R> ################################################### R> c(1, "a") [1] "1" "a" R> R> R> ################################################### R> ### chunk number 36: rng1 R> ################################################### R> set.seed(123) R> rnorm(2) [1] -0.5605 -0.2302 R> rnorm(2) [1] 1.55871 0.07051 R> set.seed(123) R> rnorm(2) [1] -0.5605 -0.2302 R> R> R> ################################################### R> ### chunk number 37: rng2 R> ################################################### R> sample(1:5) [1] 5 1 2 3 4 R> sample(c("male", "female"), size = 5, replace = TRUE, + prob = c(0.2, 0.8)) [1] "female" "male" "female" "female" "female" R> R> R> ################################################### R> ### chunk number 38: flow1 R> ################################################### R> x <- c(1.8, 3.14, 4, 88.169, 13) R> if(rnorm(1) > 0) sum(x) else mean(x) [1] 22.02 R> R> R> ################################################### R> ### chunk number 39: flow2 R> ################################################### R> ifelse(x > 4, sqrt(x), x^2) [1] 3.240 9.860 16.000 9.390 3.606 R> R> R> ################################################### R> ### chunk number 40: flow3 R> ################################################### R> for(i in 2:5) { + x[i] <- x[i] - x[i-1] + } R> x[-1] [1] 1.34 2.66 85.51 -72.51 R> R> R> ################################################### R> ### chunk number 41: flow4 R> ################################################### R> while(sum(x) < 100) { + x <- 2 * x + } R> x [1] 14.40 10.72 21.28 684.07 -580.07 R> R> R> ################################################### R> ### chunk number 42: cmeans R> ################################################### R> cmeans <- function(X) { + rval <- rep(0, ncol(X)) + for(j in 1:ncol(X)) { + mysum <- 0 + for(i in 1:nrow(X)) mysum <- mysum + X[i,j] + rval[j] <- mysum/nrow(X) + } + return(rval) + } R> R> R> ################################################### R> ### chunk number 43: colmeans1 R> ################################################### R> X <- matrix(1:20, ncol = 2) R> cmeans(X) [1] 5.5 15.5 R> R> R> ################################################### R> ### chunk number 44: colmeans2 R> ################################################### R> colMeans(X) [1] 5.5 15.5 R> R> R> ################################################### R> ### chunk number 45: colmeans3 eval=FALSE R> ################################################### R> ## X <- matrix(rnorm(2*10^6), ncol = 2) R> ## system.time(colMeans(X)) R> ## system.time(cmeans(X)) R> R> R> ################################################### R> ### chunk number 46: colmeans4 R> ################################################### R> cmeans2 <- function(X) { + rval <- rep(0, ncol(X)) + for(j in 1:ncol(X)) rval[j] <- mean(X[,j]) + return(rval) + } R> R> R> ################################################### R> ### chunk number 47: colmeans5 eval=FALSE R> ################################################### R> ## system.time(cmeans2(X)) R> R> R> ################################################### R> ### chunk number 48: colmeans6 eval=FALSE R> ################################################### R> ## apply(X, 2, mean) R> R> R> ################################################### R> ### chunk number 49: colmeans7 eval=FALSE R> ################################################### R> ## system.time(apply(X, 2, mean)) R> R> R> ################################################### R> ### chunk number 50: formula1 R> ################################################### R> f <- y ~ x R> class(f) [1] "formula" R> R> R> ################################################### R> ### chunk number 51: formula2 R> ################################################### R> x <- seq(from = 0, to = 10, by = 0.5) R> y <- 2 + 3 * x + rnorm(21) R> R> R> ################################################### R> ### chunk number 52: formula3 eval=FALSE R> ################################################### R> ## plot(y ~ x) R> ## lm(y ~ x) R> R> R> ################################################### R> ### chunk number 53: formula3a R> ################################################### R> print(lm(y ~ x)) Call: lm(formula = y ~ x) Coefficients: (Intercept) x 2.26 2.91 R> R> R> ################################################### R> ### chunk number 54: formula3b R> ################################################### R> plot(y ~ x) R> R> R> ################################################### R> ### chunk number 55: formula3c R> ################################################### R> fm <- lm(y ~ x) R> R> R> ################################################### R> ### chunk number 56: mydata1 R> ################################################### R> mydata <- data.frame(one = 1:10, two = 11:20, three = 21:30) R> R> R> ################################################### R> ### chunk number 57: mydata1a R> ################################################### R> mydata <- as.data.frame(matrix(1:30, ncol = 3)) R> names(mydata) <- c("one", "two", "three") R> R> R> ################################################### R> ### chunk number 58: mydata2 R> ################################################### R> mydata$two [1] 11 12 13 14 15 16 17 18 19 20 R> mydata[, "two"] [1] 11 12 13 14 15 16 17 18 19 20 R> mydata[, 2] [1] 11 12 13 14 15 16 17 18 19 20 R> R> R> ################################################### R> ### chunk number 59: attach R> ################################################### R> attach(mydata) R> mean(two) [1] 15.5 R> detach(mydata) R> R> R> ################################################### R> ### chunk number 60: with R> ################################################### R> with(mydata, mean(two)) [1] 15.5 R> R> R> ################################################### R> ### chunk number 61: mydata-subset R> ################################################### R> mydata.sub <- subset(mydata, two <= 16, select = -two) R> R> R> ################################################### R> ### chunk number 62: write-table R> ################################################### R> write.table(mydata, file = "mydata.txt", col.names = TRUE) R> R> R> ################################################### R> ### chunk number 63: read-table R> ################################################### R> newdata <- read.table("mydata.txt", header = TRUE) R> R> R> ################################################### R> ### chunk number 64: save R> ################################################### R> save(mydata, file = "mydata.rda") R> R> R> ################################################### R> ### chunk number 65: load R> ################################################### R> load("mydata.rda") R> R> R> ################################################### R> ### chunk number 66: file-remove R> ################################################### R> file.remove("mydata.rda") [1] TRUE R> R> R> ################################################### R> ### chunk number 67: data R> ################################################### R> data("Journals", package = "AER") R> R> R> ################################################### R> ### chunk number 68: foreign R> ################################################### R> library("foreign") R> write.dta(mydata, file = "mydata.dta") R> R> R> ################################################### R> ### chunk number 69: read-dta R> ################################################### R> mydata <- read.dta("mydata.dta") R> R> R> ################################################### R> ### chunk number 70: cleanup R> ################################################### R> file.remove("mydata.dta") [1] TRUE R> R> R> ################################################### R> ### chunk number 71: factor R> ################################################### R> g <- rep(0:1, c(2, 4)) R> g <- factor(g, levels = 0:1, labels = c("male", "female")) R> g [1] male male female female female female Levels: male female R> R> R> ################################################### R> ### chunk number 72: na1 R> ################################################### R> newdata <- read.table("mydata.txt", na.strings = "-999") R> R> R> ################################################### R> ### chunk number 73: na2 R> ################################################### R> file.remove("mydata.txt") [1] TRUE R> R> R> ################################################### R> ### chunk number 74: oop1 R> ################################################### R> x <- c(1.8, 3.14, 4, 88.169, 13) R> g <- factor(rep(c(0, 1), c(2, 4)), levels = c(0, 1), + labels = c("male", "female")) R> R> R> ################################################### R> ### chunk number 75: oop2 R> ################################################### R> summary(x) Min. 1st Qu. Median Mean 3rd Qu. Max. 1.80 3.14 4.00 22.00 13.00 88.20 R> summary(g) male female 2 4 R> R> R> ################################################### R> ### chunk number 76: oop3 R> ################################################### R> class(x) [1] "numeric" R> class(g) [1] "factor" R> R> R> ################################################### R> ### chunk number 77: oop4 R> ################################################### R> summary function (object, ...) UseMethod("summary") R> R> R> ################################################### R> ### chunk number 78: oop5 R> ################################################### R> normsample <- function(n, ...) { + rval <- rnorm(n, ...) + class(rval) <- "normsample" + return(rval) + } R> R> R> ################################################### R> ### chunk number 79: oop6 R> ################################################### R> set.seed(123) R> x <- normsample(10, mean = 5) R> class(x) [1] "normsample" R> R> R> ################################################### R> ### chunk number 80: oop7 R> ################################################### R> summary.normsample <- function(object, ...) { + rval <- c(length(object), mean(object), sd(object)) + names(rval) <- c("sample size","mean","standard deviation") + return(rval) + } R> R> R> ################################################### R> ### chunk number 81: oop8 R> ################################################### R> summary(x) sample size mean standard deviation 10.0000 5.0746 0.9538 R> R> R> ################################################### R> ### chunk number 82: journals-data eval=FALSE R> ################################################### R> ## data("Journals") R> ## Journals$citeprice <- Journals$price/Journals$citations R> ## attach(Journals) R> ## plot(log(subs), log(citeprice)) R> ## rug(log(subs)) R> ## rug(log(citeprice), side = 2) R> ## detach(Journals) R> R> R> ################################################### R> ### chunk number 83: journals-data1 R> ################################################### R> data("Journals") R> Journals$citeprice <- Journals$price/Journals$citations R> attach(Journals) R> plot(log(subs), log(citeprice)) R> rug(log(subs)) R> rug(log(citeprice), side = 2) R> detach(Journals) R> R> R> ################################################### R> ### chunk number 84: plot-formula R> ################################################### R> plot(log(subs) ~ log(citeprice), data = Journals) R> R> R> ################################################### R> ### chunk number 85: graphics1 R> ################################################### R> plot(log(subs) ~ log(citeprice), data = Journals, pch = 20, + col = "blue", ylim = c(0, 8), xlim = c(-7, 4), + main = "Library subscriptions") R> R> R> ################################################### R> ### chunk number 86: graphics2 R> ################################################### R> pdf("myfile.pdf", height = 5, width = 6) R> plot(1:20, pch = 1:20, col = 1:20, cex = 2) R> dev.off() pdf 2 R> R> R> ################################################### R> ### chunk number 87: dnorm-annotate eval=FALSE R> ################################################### R> ## curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3, R> ## main = "Density of the standard normal distribution") R> ## text(-5, 0.3, expression(f(x) == frac(1, sigma ~~ R> ## sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0) R> R> R> ################################################### R> ### chunk number 88: dnorm-annotate1 R> ################################################### R> curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3, + main = "Density of the standard normal distribution") R> text(-5, 0.3, expression(f(x) == frac(1, sigma ~~ + sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0) R> R> R> ################################################### R> ### chunk number 89: eda1 R> ################################################### R> data("CPS1985") R> str(CPS1985) 'data.frame': 534 obs. of 11 variables: $ wage : num 5.1 4.95 6.67 4 7.5 ... $ education : num 8 9 12 12 12 13 10 12 16 12 ... $ experience: num 21 42 1 4 17 9 27 9 11 9 ... $ age : num 35 57 19 22 35 28 43 27 33 27 ... $ ethnicity : Factor w/ 3 levels "cauc","hispanic",..: 2 1 1 1 1 1 1 1 1 1 ... $ region : Factor w/ 2 levels "south","other": 2 2 2 2 2 2 1 2 2 2 ... $ gender : Factor w/ 2 levels "male","female": 2 2 1 1 1 1 1 1 1 1 ... $ occupation: Factor w/ 6 levels "worker","technical",..: 1 1 1 1 1 1 1 1 1 1 ... $ sector : Factor w/ 3 levels "manufacturing",..: 1 1 1 3 3 3 3 3 1 3 ... $ union : Factor w/ 2 levels "no","yes": 1 1 1 1 1 2 1 1 1 1 ... $ married : Factor w/ 2 levels "no","yes": 2 2 1 1 2 1 1 1 2 1 ... R> R> R> ################################################### R> ### chunk number 90: eda2 R> ################################################### R> head(CPS1985) wage education experience age ethnicity region gender 1 5.10 8 21 35 hispanic other female 1100 4.95 9 42 57 cauc other female 2 6.67 12 1 19 cauc other male 3 4.00 12 4 22 cauc other male 4 7.50 12 17 35 cauc other male 5 13.07 13 9 28 cauc other male occupation sector union married 1 worker manufacturing no yes 1100 worker manufacturing no yes 2 worker manufacturing no no 3 worker other no no 4 worker other no yes 5 worker other yes no R> R> R> ################################################### R> ### chunk number 91: eda3 R> ################################################### R> levels(CPS1985$occupation)[c(2, 6)] <- c("techn", "mgmt") R> attach(CPS1985) R> R> R> ################################################### R> ### chunk number 92: eda4 R> ################################################### R> summary(wage) Min. 1st Qu. Median Mean 3rd Qu. Max. 1.00 5.25 7.78 9.02 11.20 44.50 R> R> R> ################################################### R> ### chunk number 93: eda5 R> ################################################### R> mean(wage) [1] 9.024 R> median(wage) [1] 7.78 R> R> R> ################################################### R> ### chunk number 94: eda6 R> ################################################### R> var(wage) [1] 26.41 R> sd(wage) [1] 5.139 R> R> R> ################################################### R> ### chunk number 95: wage-hist R> ################################################### R> hist(wage, freq = FALSE) R> hist(log(wage), freq = FALSE) R> lines(density(log(wage)), col = 4) R> R> R> ################################################### R> ### chunk number 96: wage-hist1 R> ################################################### R> hist(wage, freq = FALSE) R> hist(log(wage), freq = FALSE) R> lines(density(log(wage)), col = 4) R> R> R> ################################################### R> ### chunk number 97: occ-table R> ################################################### R> summary(occupation) worker techn services office sales mgmt 156 105 83 97 38 55 R> R> R> ################################################### R> ### chunk number 98: occ-table R> ################################################### R> tab <- table(occupation) R> prop.table(tab) occupation worker techn services office sales mgmt 0.29213 0.19663 0.15543 0.18165 0.07116 0.10300 R> R> R> ################################################### R> ### chunk number 99: occ-barpie R> ################################################### R> barplot(tab) R> pie(tab) R> R> R> ################################################### R> ### chunk number 100: occ-barpie R> ################################################### R> par(mar = c(4, 3, 1, 1)) R> barplot(tab, las = 3) R> par(mar = c(2, 3, 1, 3)) R> pie(tab, radius = 1) R> R> R> ################################################### R> ### chunk number 101: xtabs R> ################################################### R> xtabs(~ gender + occupation, data = CPS1985) occupation gender worker techn services office sales mgmt male 126 53 34 21 21 34 female 30 52 49 76 17 21 R> R> R> ################################################### R> ### chunk number 102: spine eval=FALSE R> ################################################### R> ## plot(gender ~ occupation, data = CPS1985) R> R> R> ################################################### R> ### chunk number 103: spine1 R> ################################################### R> plot(gender ~ occupation, data = CPS1985) R> R> R> ################################################### R> ### chunk number 104: wageeduc-cor R> ################################################### R> cor(log(wage), education) [1] 0.3804 R> cor(log(wage), education, method = "spearman") [1] 0.3813 R> R> R> ################################################### R> ### chunk number 105: wageeduc-scatter eval=FALSE R> ################################################### R> ## plot(log(wage) ~ education) R> R> R> ################################################### R> ### chunk number 106: wageeduc-scatter1 R> ################################################### R> plot(log(wage) ~ education) R> R> R> ################################################### R> ### chunk number 107: tapply R> ################################################### R> tapply(log(wage), gender, mean) male female 2.165 1.934 R> R> R> ################################################### R> ### chunk number 108: boxqq1 eval=FALSE R> ################################################### R> ## plot(log(wage) ~ gender) R> R> R> ################################################### R> ### chunk number 109: boxqq2 eval=FALSE R> ################################################### R> ## mwage <- subset(CPS1985, gender == "male")$wage R> ## fwage <- subset(CPS1985, gender == "female")$wage R> ## qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage), R> ## xaxs = "i", yaxs = "i", xlab = "male", ylab = "female") R> ## abline(0, 1) R> R> R> ################################################### R> ### chunk number 110: qq R> ################################################### R> plot(log(wage) ~ gender) R> mwage <- subset(CPS1985, gender == "male")$wage R> fwage <- subset(CPS1985, gender == "female")$wage R> qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage), + xaxs = "i", yaxs = "i", xlab = "male", ylab = "female") R> abline(0, 1) R> R> R> ################################################### R> ### chunk number 111: detach R> ################################################### R> detach(CPS1985) R> R> R> > proc.time() user system elapsed 1.336 0.040 1.389 AER/tests/Ch-Intro.Rout.save0000644000175400001440000002343113022366264015460 0ustar zeileisusers R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: journals-data R> ################################################### R> data("Journals", package = "AER") R> R> R> ################################################### R> ### chunk number 3: journals-dim R> ################################################### R> dim(Journals) [1] 180 10 R> names(Journals) [1] "title" "publisher" "society" "price" [5] "pages" "charpp" "citations" "foundingyear" [9] "subs" "field" R> R> R> ################################################### R> ### chunk number 4: journals-plot eval=FALSE R> ################################################### R> ## plot(log(subs) ~ log(price/citations), data = Journals) R> R> R> ################################################### R> ### chunk number 5: journals-lm eval=FALSE R> ################################################### R> ## j_lm <- lm(log(subs) ~ log(price/citations), data = Journals) R> ## abline(j_lm) R> R> R> ################################################### R> ### chunk number 6: journals-lmplot R> ################################################### R> plot(log(subs) ~ log(price/citations), data = Journals) R> j_lm <- lm(log(subs) ~ log(price/citations), data = Journals) R> abline(j_lm) R> R> R> ################################################### R> ### chunk number 7: journals-lm-summary R> ################################################### R> summary(j_lm) Call: lm(formula = log(subs) ~ log(price/citations), data = Journals) Residuals: Min 1Q Median 3Q Max -2.7248 -0.5361 0.0372 0.4662 1.8481 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.7662 0.0559 85.2 <2e-16 log(price/citations) -0.5331 0.0356 -15.0 <2e-16 Residual standard error: 0.75 on 178 degrees of freedom Multiple R-squared: 0.557, Adjusted R-squared: 0.555 F-statistic: 224 on 1 and 178 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 8: cps-data R> ################################################### R> data("CPS1985", package = "AER") R> cps <- CPS1985 R> R> R> ################################################### R> ### chunk number 9: cps-data1 eval=FALSE R> ################################################### R> ## data("CPS1985", package = "AER") R> ## cps <- CPS1985 R> R> R> ################################################### R> ### chunk number 10: cps-reg R> ################################################### R> library("quantreg") Loading required package: SparseM Attaching package: 'SparseM' The following object is masked from 'package:base': backsolve Attaching package: 'quantreg' The following object is masked from 'package:survival': untangle.specials R> cps_lm <- lm(log(wage) ~ experience + I(experience^2) + + education, data = cps) R> cps_rq <- rq(log(wage) ~ experience + I(experience^2) + + education, data = cps, tau = seq(0.2, 0.8, by = 0.15)) R> R> R> ################################################### R> ### chunk number 11: cps-predict R> ################################################### R> cps2 <- data.frame(education = mean(cps$education), + experience = min(cps$experience):max(cps$experience)) R> cps2 <- cbind(cps2, predict(cps_lm, newdata = cps2, + interval = "prediction")) R> cps2 <- cbind(cps2, + predict(cps_rq, newdata = cps2, type = "")) R> R> R> ################################################### R> ### chunk number 12: rq-plot eval=FALSE R> ################################################### R> ## plot(log(wage) ~ experience, data = cps) R> ## for(i in 6:10) lines(cps2[,i] ~ experience, R> ## data = cps2, col = "red") R> R> R> ################################################### R> ### chunk number 13: rq-plot1 R> ################################################### R> plot(log(wage) ~ experience, data = cps) R> for(i in 6:10) lines(cps2[,i] ~ experience, + data = cps2, col = "red") R> R> R> ################################################### R> ### chunk number 14: srq-plot eval=FALSE R> ################################################### R> ## plot(summary(cps_rq)) R> R> R> ################################################### R> ### chunk number 15: srq-plot1 R> ################################################### R> plot(summary(cps_rq)) Warning messages: 1: In rq.fit.br(x, y, tau = tau, ci = TRUE, ...) : Solution may be nonunique 2: In rq.fit.br(x, y, tau = tau, ci = TRUE, ...) : Solution may be nonunique R> R> R> ################################################### R> ### chunk number 16: bkde-fit R> ################################################### R> library("KernSmooth") KernSmooth 2.23 loaded Copyright M. P. Wand 1997-2009 R> cps_bkde <- bkde2D(cbind(cps$experience, log(cps$wage)), + bandwidth = c(3.5, 0.5), gridsize = c(200, 200)) R> R> R> ################################################### R> ### chunk number 17: bkde-plot eval=FALSE R> ################################################### R> ## image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat, R> ## col = rev(gray.colors(10, gamma = 1)), R> ## xlab = "experience", ylab = "log(wage)") R> ## box() R> ## lines(fit ~ experience, data = cps2) R> ## lines(lwr ~ experience, data = cps2, lty = 2) R> ## lines(upr ~ experience, data = cps2, lty = 2) R> R> R> ################################################### R> ### chunk number 18: bkde-plot1 R> ################################################### R> image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat, + col = rev(gray.colors(10, gamma = 1)), + xlab = "experience", ylab = "log(wage)") R> box() R> lines(fit ~ experience, data = cps2) R> lines(lwr ~ experience, data = cps2, lty = 2) R> lines(upr ~ experience, data = cps2, lty = 2) R> R> R> ################################################### R> ### chunk number 19: install eval=FALSE R> ################################################### R> ## install.packages("AER") R> R> R> ################################################### R> ### chunk number 20: library R> ################################################### R> library("AER") R> R> R> ################################################### R> ### chunk number 21: objects R> ################################################### R> objects() [1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde" [6] "cps_lm" "cps_rq" "i" "j_lm" R> R> R> ################################################### R> ### chunk number 22: search R> ################################################### R> search() [1] ".GlobalEnv" "package:KernSmooth" [3] "package:quantreg" "package:SparseM" [5] "package:AER" "package:survival" [7] "package:sandwich" "package:lmtest" [9] "package:zoo" "package:car" [11] "package:stats" "package:graphics" [13] "package:grDevices" "package:utils" [15] "package:datasets" "package:methods" [17] "Autoloads" "package:base" R> R> R> ################################################### R> ### chunk number 23: assignment R> ################################################### R> x <- 2 R> objects() [1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde" [6] "cps_lm" "cps_rq" "i" "j_lm" "x" R> R> R> ################################################### R> ### chunk number 24: remove R> ################################################### R> remove(x) R> objects() [1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde" [6] "cps_lm" "cps_rq" "i" "j_lm" R> R> R> ################################################### R> ### chunk number 25: log eval=FALSE R> ################################################### R> ## log(16, 2) R> ## log(x = 16, 2) R> ## log(16, base = 2) R> ## log(base = 2, x = 16) R> R> R> ################################################### R> ### chunk number 26: q eval=FALSE R> ################################################### R> ## q() R> R> R> ################################################### R> ### chunk number 27: apropos R> ################################################### R> apropos("help") [1] "help" "help.request" "help.search" "help.start" R> R> R> > proc.time() user system elapsed 1.508 0.048 1.557 AER/tests/Ch-Microeconometrics.Rout.save0000644000175400001440000006125313022366343020053 0ustar zeileisusers R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: swisslabor-data R> ################################################### R> data("SwissLabor") R> swiss_probit <- glm(participation ~ . + I(age^2), + data = SwissLabor, family = binomial(link = "probit")) R> summary(swiss_probit) Call: glm(formula = participation ~ . + I(age^2), family = binomial(link = "probit"), data = SwissLabor) Deviance Residuals: Min 1Q Median 3Q Max -1.919 -0.970 -0.479 1.021 2.480 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 3.7491 1.4069 2.66 0.0077 income -0.6669 0.1320 -5.05 4.3e-07 age 2.0753 0.4054 5.12 3.1e-07 education 0.0192 0.0179 1.07 0.2843 youngkids -0.7145 0.1004 -7.12 1.1e-12 oldkids -0.1470 0.0509 -2.89 0.0039 foreignyes 0.7144 0.1213 5.89 3.9e-09 I(age^2) -0.2943 0.0499 -5.89 3.8e-09 (Dispersion parameter for binomial family taken to be 1) Null deviance: 1203.2 on 871 degrees of freedom Residual deviance: 1017.2 on 864 degrees of freedom AIC: 1033 Number of Fisher Scoring iterations: 4 R> R> R> ################################################### R> ### chunk number 3: swisslabor-plot eval=FALSE R> ################################################### R> ## plot(participation ~ age, data = SwissLabor, ylevels = 2:1) R> R> R> ################################################### R> ### chunk number 4: swisslabor-plot-refined R> ################################################### R> plot(participation ~ education, data = SwissLabor, ylevels = 2:1) R> fm <- glm(participation ~ education + I(education^2), data = SwissLabor, family = binomial) R> edu <- sort(unique(SwissLabor$education)) R> prop <- sapply(edu, function(x) mean(SwissLabor$education <= x)) R> lines(predict(fm, newdata = data.frame(education = edu), type = "response") ~ prop, col = 2) R> R> plot(participation ~ age, data = SwissLabor, ylevels = 2:1) R> fm <- glm(participation ~ age + I(age^2), data = SwissLabor, family = binomial) R> ag <- sort(unique(SwissLabor$age)) R> prop <- sapply(ag, function(x) mean(SwissLabor$age <= x)) R> lines(predict(fm, newdata = data.frame(age = ag), type = "response") ~ prop, col = 2) R> R> R> ################################################### R> ### chunk number 5: effects1 R> ################################################### R> fav <- mean(dnorm(predict(swiss_probit, type = "link"))) R> fav * coef(swiss_probit) (Intercept) income age education youngkids 1.241930 -0.220932 0.687466 0.006359 -0.236682 oldkids foreignyes I(age^2) -0.048690 0.236644 -0.097505 R> R> R> ################################################### R> ### chunk number 6: effects2 R> ################################################### R> av <- colMeans(SwissLabor[, -c(1, 7)]) R> av <- data.frame(rbind(swiss = av, foreign = av), + foreign = factor(c("no", "yes"))) R> av <- predict(swiss_probit, newdata = av, type = "link") R> av <- dnorm(av) R> av["swiss"] * coef(swiss_probit)[-7] (Intercept) income age education youngkids 1.495137 -0.265976 0.827628 0.007655 -0.284938 oldkids I(age^2) -0.058617 -0.117384 R> R> R> ################################################### R> ### chunk number 7: effects3 R> ################################################### R> av["foreign"] * coef(swiss_probit)[-7] (Intercept) income age education youngkids 1.136517 -0.202180 0.629115 0.005819 -0.216593 oldkids I(age^2) -0.044557 -0.089229 R> R> R> ################################################### R> ### chunk number 8: mcfadden R> ################################################### R> swiss_probit0 <- update(swiss_probit, formula = . ~ 1) R> 1 - as.vector(logLik(swiss_probit)/logLik(swiss_probit0)) [1] 0.1546 R> R> R> ################################################### R> ### chunk number 9: confusion-matrix R> ################################################### R> table(true = SwissLabor$participation, + pred = round(fitted(swiss_probit))) pred true 0 1 no 337 134 yes 146 255 R> R> R> ################################################### R> ### chunk number 10: confusion-matrix1 R> ################################################### R> tab <- table(true = SwissLabor$participation, + pred = round(fitted(swiss_probit))) R> tabp <- round(100 * c(tab[1,1] + tab[2,2], tab[2,1] + tab[1,2])/sum(tab), digits = 2) R> R> R> ################################################### R> ### chunk number 11: roc-plot eval=FALSE R> ################################################### R> ## library("ROCR") R> ## pred <- prediction(fitted(swiss_probit), R> ## SwissLabor$participation) R> ## plot(performance(pred, "acc")) R> ## plot(performance(pred, "tpr", "fpr")) R> ## abline(0, 1, lty = 2) R> R> R> ################################################### R> ### chunk number 12: roc-plot1 R> ################################################### R> library("ROCR") Loading required package: gplots Attaching package: 'gplots' The following object is masked from 'package:stats': lowess R> pred <- prediction(fitted(swiss_probit), + SwissLabor$participation) R> plot(performance(pred, "acc")) R> plot(performance(pred, "tpr", "fpr")) R> abline(0, 1, lty = 2) R> R> R> ################################################### R> ### chunk number 13: rss R> ################################################### R> deviance(swiss_probit) [1] 1017 R> sum(residuals(swiss_probit, type = "deviance")^2) [1] 1017 R> sum(residuals(swiss_probit, type = "pearson")^2) [1] 866.5 R> R> R> ################################################### R> ### chunk number 14: coeftest eval=FALSE R> ################################################### R> ## coeftest(swiss_probit, vcov = sandwich) R> R> R> ################################################### R> ### chunk number 15: murder R> ################################################### R> data("MurderRates") R> murder_logit <- glm(I(executions > 0) ~ time + income + + noncauc + lfp + southern, data = MurderRates, + family = binomial) Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred R> R> R> ################################################### R> ### chunk number 16: murder-coeftest R> ################################################### R> coeftest(murder_logit) z test of coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 10.9933 20.7734 0.53 0.597 time 0.0194 0.0104 1.87 0.062 income 10.6101 5.6541 1.88 0.061 noncauc 70.9879 36.4118 1.95 0.051 lfp -0.6676 0.4767 -1.40 0.161 southernyes 17.3313 2872.1707 0.01 0.995 R> R> R> ################################################### R> ### chunk number 17: murder2 R> ################################################### R> murder_logit2 <- glm(I(executions > 0) ~ time + income + + noncauc + lfp + southern, data = MurderRates, + family = binomial, control = list(epsilon = 1e-15, + maxit = 50, trace = FALSE)) Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred R> R> R> ################################################### R> ### chunk number 18: murder2-coeftest R> ################################################### R> coeftest(murder_logit2) z test of coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.10e+01 2.08e+01 0.53 0.597 time 1.94e-02 1.04e-02 1.87 0.062 income 1.06e+01 5.65e+00 1.88 0.061 noncauc 7.10e+01 3.64e+01 1.95 0.051 lfp -6.68e-01 4.77e-01 -1.40 0.161 southernyes 3.13e+01 1.73e+07 0.00 1.000 R> R> R> ################################################### R> ### chunk number 19: separation R> ################################################### R> table(I(MurderRates$executions > 0), MurderRates$southern) no yes FALSE 9 0 TRUE 20 15 R> R> R> ################################################### R> ### chunk number 20: countreg-pois R> ################################################### R> data("RecreationDemand") R> rd_pois <- glm(trips ~ ., data = RecreationDemand, + family = poisson) R> R> R> ################################################### R> ### chunk number 21: countreg-pois-coeftest R> ################################################### R> coeftest(rd_pois) z test of coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 0.26499 0.09372 2.83 0.0047 quality 0.47173 0.01709 27.60 < 2e-16 skiyes 0.41821 0.05719 7.31 2.6e-13 income -0.11132 0.01959 -5.68 1.3e-08 userfeeyes 0.89817 0.07899 11.37 < 2e-16 costC -0.00343 0.00312 -1.10 0.2713 costS -0.04254 0.00167 -25.47 < 2e-16 costH 0.03613 0.00271 13.34 < 2e-16 R> R> R> ################################################### R> ### chunk number 22: countreg-pois-logLik R> ################################################### R> logLik(rd_pois) 'log Lik.' -1529 (df=8) R> R> R> ################################################### R> ### chunk number 23: countreg-odtest1 R> ################################################### R> dispersiontest(rd_pois) Overdispersion test data: rd_pois z = 2.4, p-value = 0.008 alternative hypothesis: true dispersion is greater than 1 sample estimates: dispersion 6.566 R> R> R> ################################################### R> ### chunk number 24: countreg-odtest2 R> ################################################### R> dispersiontest(rd_pois, trafo = 2) Overdispersion test data: rd_pois z = 2.9, p-value = 0.002 alternative hypothesis: true alpha is greater than 0 sample estimates: alpha 1.316 R> R> R> ################################################### R> ### chunk number 25: countreg-nbin R> ################################################### R> library("MASS") R> rd_nb <- glm.nb(trips ~ ., data = RecreationDemand) R> coeftest(rd_nb) z test of coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -1.12194 0.21430 -5.24 1.6e-07 quality 0.72200 0.04012 18.00 < 2e-16 skiyes 0.61214 0.15030 4.07 4.6e-05 income -0.02606 0.04245 -0.61 0.539 userfeeyes 0.66917 0.35302 1.90 0.058 costC 0.04801 0.00918 5.23 1.7e-07 costS -0.09269 0.00665 -13.93 < 2e-16 costH 0.03884 0.00775 5.01 5.4e-07 R> logLik(rd_nb) 'log Lik.' -825.6 (df=9) R> R> R> ################################################### R> ### chunk number 26: countreg-se R> ################################################### R> round(sqrt(rbind(diag(vcov(rd_pois)), + diag(sandwich(rd_pois)))), digits = 3) (Intercept) quality skiyes income userfeeyes costC costS [1,] 0.094 0.017 0.057 0.02 0.079 0.003 0.002 [2,] 0.432 0.049 0.194 0.05 0.247 0.015 0.012 costH [1,] 0.003 [2,] 0.009 R> R> R> ################################################### R> ### chunk number 27: countreg-sandwich R> ################################################### R> coeftest(rd_pois, vcov = sandwich) z test of coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 0.26499 0.43248 0.61 0.54006 quality 0.47173 0.04885 9.66 < 2e-16 skiyes 0.41821 0.19387 2.16 0.03099 income -0.11132 0.05031 -2.21 0.02691 userfeeyes 0.89817 0.24691 3.64 0.00028 costC -0.00343 0.01470 -0.23 0.81549 costS -0.04254 0.01173 -3.62 0.00029 costH 0.03613 0.00939 3.85 0.00012 R> R> R> ################################################### R> ### chunk number 28: countreg-OPG R> ################################################### R> round(sqrt(diag(vcovOPG(rd_pois))), 3) (Intercept) quality skiyes income userfeeyes 0.025 0.007 0.020 0.010 0.033 costC costS costH 0.001 0.000 0.001 R> R> R> ################################################### R> ### chunk number 29: countreg-plot R> ################################################### R> plot(table(RecreationDemand$trips), ylab = "") R> R> R> ################################################### R> ### chunk number 30: countreg-zeros R> ################################################### R> rbind(obs = table(RecreationDemand$trips)[1:10], exp = round( + sapply(0:9, function(x) sum(dpois(x, fitted(rd_pois)))))) 0 1 2 3 4 5 6 7 8 9 obs 417 68 38 34 17 13 11 2 8 1 exp 277 146 68 41 30 23 17 13 10 7 R> R> R> ################################################### R> ### chunk number 31: countreg-pscl R> ################################################### R> library("pscl") Loading required package: lattice Classes and Methods for R developed in the Political Science Computational Laboratory Department of Political Science Stanford University Simon Jackman hurdle and zeroinfl functions by Achim Zeileis R> R> R> ################################################### R> ### chunk number 32: countreg-zinb R> ################################################### R> rd_zinb <- zeroinfl(trips ~ . | quality + income, + data = RecreationDemand, dist = "negbin") R> R> R> ################################################### R> ### chunk number 33: countreg-zinb-summary R> ################################################### R> summary(rd_zinb) Call: zeroinfl(formula = trips ~ . | quality + income, data = RecreationDemand, dist = "negbin") Pearson residuals: Min 1Q Median 3Q Max -1.0889 -0.2004 -0.0570 -0.0451 40.0139 Count model coefficients (negbin with log link): Estimate Std. Error z value Pr(>|z|) (Intercept) 1.09663 0.25668 4.27 1.9e-05 quality 0.16891 0.05303 3.19 0.0014 skiyes 0.50069 0.13449 3.72 0.0002 income -0.06927 0.04380 -1.58 0.1138 userfeeyes 0.54279 0.28280 1.92 0.0549 costC 0.04044 0.01452 2.79 0.0053 costS -0.06621 0.00775 -8.55 < 2e-16 costH 0.02060 0.01023 2.01 0.0441 Log(theta) 0.19017 0.11299 1.68 0.0924 Zero-inflation model coefficients (binomial with logit link): Estimate Std. Error z value Pr(>|z|) (Intercept) 5.743 1.556 3.69 0.00022 quality -8.307 3.682 -2.26 0.02404 income -0.258 0.282 -0.92 0.35950 Theta = 1.209 Number of iterations in BFGS optimization: 26 Log-likelihood: -722 on 12 Df R> R> R> ################################################### R> ### chunk number 34: countreg-zinb-expected R> ################################################### R> round(colSums(predict(rd_zinb, type = "prob")[,1:10])) 0 1 2 3 4 5 6 7 8 9 433 47 35 27 20 16 12 10 8 7 R> R> R> ################################################### R> ### chunk number 35: countreg-hurdle R> ################################################### R> rd_hurdle <- hurdle(trips ~ . | quality + income, + data = RecreationDemand, dist = "negbin") R> summary(rd_hurdle) Call: hurdle(formula = trips ~ . | quality + income, data = RecreationDemand, dist = "negbin") Pearson residuals: Min 1Q Median 3Q Max -1.610 -0.207 -0.185 -0.164 12.111 Count model coefficients (truncated negbin with log link): Estimate Std. Error z value Pr(>|z|) (Intercept) 0.8419 0.3828 2.20 0.0278 quality 0.1717 0.0723 2.37 0.0176 skiyes 0.6224 0.1901 3.27 0.0011 income -0.0571 0.0645 -0.88 0.3763 userfeeyes 0.5763 0.3851 1.50 0.1345 costC 0.0571 0.0217 2.63 0.0085 costS -0.0775 0.0115 -6.71 1.9e-11 costH 0.0124 0.0149 0.83 0.4064 Log(theta) -0.5303 0.2611 -2.03 0.0423 Zero hurdle model coefficients (binomial with logit link): Estimate Std. Error z value Pr(>|z|) (Intercept) -2.7663 0.3623 -7.64 2.3e-14 quality 1.5029 0.1003 14.98 < 2e-16 income -0.0447 0.0785 -0.57 0.57 Theta: count = 0.588 Number of iterations in BFGS optimization: 18 Log-likelihood: -765 on 12 Df R> R> R> ################################################### R> ### chunk number 36: countreg-hurdle-expected R> ################################################### R> round(colSums(predict(rd_hurdle, type = "prob")[,1:10])) 0 1 2 3 4 5 6 7 8 9 417 74 42 27 19 14 10 8 6 5 R> R> R> ################################################### R> ### chunk number 37: tobit1 R> ################################################### R> data("Affairs") R> aff_tob <- tobit(affairs ~ age + yearsmarried + + religiousness + occupation + rating, data = Affairs) R> summary(aff_tob) Call: tobit(formula = affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) Observations: Total Left-censored Uncensored Right-censored 601 451 150 0 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 8.1742 2.7414 2.98 0.0029 age -0.1793 0.0791 -2.27 0.0234 yearsmarried 0.5541 0.1345 4.12 3.8e-05 religiousness -1.6862 0.4038 -4.18 3.0e-05 occupation 0.3261 0.2544 1.28 0.2000 rating -2.2850 0.4078 -5.60 2.1e-08 Log(scale) 2.1099 0.0671 31.44 < 2e-16 Scale: 8.25 Gaussian distribution Number of Newton-Raphson Iterations: 4 Log-likelihood: -706 on 7 Df Wald-statistic: 67.7 on 5 Df, p-value: 3.1e-13 R> R> R> ################################################### R> ### chunk number 38: tobit2 R> ################################################### R> aff_tob2 <- update(aff_tob, right = 4) R> summary(aff_tob2) Call: tobit(formula = affairs ~ age + yearsmarried + religiousness + occupation + rating, right = 4, data = Affairs) Observations: Total Left-censored Uncensored Right-censored 601 451 70 80 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 7.9010 2.8039 2.82 0.00483 age -0.1776 0.0799 -2.22 0.02624 yearsmarried 0.5323 0.1412 3.77 0.00016 religiousness -1.6163 0.4244 -3.81 0.00014 occupation 0.3242 0.2539 1.28 0.20162 rating -2.2070 0.4498 -4.91 9.3e-07 Log(scale) 2.0723 0.1104 18.77 < 2e-16 Scale: 7.94 Gaussian distribution Number of Newton-Raphson Iterations: 4 Log-likelihood: -500 on 7 Df Wald-statistic: 42.6 on 5 Df, p-value: 4.5e-08 R> R> R> ################################################### R> ### chunk number 39: tobit3 R> ################################################### R> linearHypothesis(aff_tob, c("age = 0", "occupation = 0"), + vcov = sandwich) Linear hypothesis test Hypothesis: age = 0 occupation = 0 Model 1: restricted model Model 2: affairs ~ age + yearsmarried + religiousness + occupation + rating Note: Coefficient covariance matrix supplied. Res.Df Df Chisq Pr(>Chisq) 1 596 2 594 2 4.91 0.086 R> R> R> ################################################### R> ### chunk number 40: numeric-response R> ################################################### R> SwissLabor$partnum <- as.numeric(SwissLabor$participation) - 1 R> R> R> ################################################### R> ### chunk number 41: kleinspady eval=FALSE R> ################################################### R> ## library("np") R> ## swiss_bw <- npindexbw(partnum ~ income + age + education + R> ## youngkids + oldkids + foreign + I(age^2), data = SwissLabor, R> ## method = "kleinspady", nmulti = 5) R> R> R> ################################################### R> ### chunk number 42: kleinspady-bw eval=FALSE R> ################################################### R> ## summary(swiss_bw) R> R> R> ################################################### R> ### chunk number 43: kleinspady-summary eval=FALSE R> ################################################### R> ## swiss_ks <- npindex(bws = swiss_bw, gradients = TRUE) R> ## summary(swiss_ks) R> R> R> ################################################### R> ### chunk number 44: probit-confusion R> ################################################### R> table(Actual = SwissLabor$participation, Predicted = + round(predict(swiss_probit, type = "response"))) Predicted Actual 0 1 no 337 134 yes 146 255 R> R> R> ################################################### R> ### chunk number 45: bw-tab R> ################################################### R> data("BankWages") R> edcat <- factor(BankWages$education) R> levels(edcat)[3:10] <- rep(c("14-15", "16-18", "19-21"), + c(2, 3, 3)) R> tab <- xtabs(~ edcat + job, data = BankWages) R> prop.table(tab, 1) job edcat custodial admin manage 8 0.245283 0.754717 0.000000 12 0.068421 0.926316 0.005263 14-15 0.008197 0.959016 0.032787 16-18 0.000000 0.367089 0.632911 19-21 0.000000 0.033333 0.966667 R> R> R> ################################################### R> ### chunk number 46: bw-plot eval=FALSE R> ################################################### R> ## plot(job ~ edcat, data = BankWages, off = 0) R> R> R> ################################################### R> ### chunk number 47: bw-plot1 R> ################################################### R> plot(job ~ edcat, data = BankWages, off = 0) R> box() R> R> R> ################################################### R> ### chunk number 48: bw-multinom R> ################################################### R> library("nnet") R> bank_mnl <- multinom(job ~ education + minority, + data = BankWages, subset = gender == "male", trace = FALSE) R> R> R> ################################################### R> ### chunk number 49: bw-multinom-coeftest R> ################################################### R> coeftest(bank_mnl) z test of coefficients: Estimate Std. Error z value Pr(>|z|) admin:(Intercept) -4.761 1.173 -4.06 4.9e-05 admin:education 0.553 0.099 5.59 2.3e-08 admin:minorityyes -0.427 0.503 -0.85 0.3957 manage:(Intercept) -30.775 4.479 -6.87 6.4e-12 manage:education 2.187 0.295 7.42 1.2e-13 manage:minorityyes -2.536 0.934 -2.71 0.0066 R> R> R> ################################################### R> ### chunk number 50: bw-polr R> ################################################### R> library("MASS") R> bank_polr <- polr(job ~ education + minority, + data = BankWages, subset = gender == "male", Hess = TRUE) R> coeftest(bank_polr) z test of coefficients: Estimate Std. Error z value Pr(>|z|) education 0.8700 0.0931 9.35 < 2e-16 minorityyes -1.0564 0.4120 -2.56 0.01 custodial|admin 7.9514 1.0769 7.38 1.5e-13 admin|manage 14.1721 1.4744 9.61 < 2e-16 R> R> R> ################################################### R> ### chunk number 51: bw-AIC R> ################################################### R> AIC(bank_mnl) [1] 249.5 R> AIC(bank_polr) [1] 268.6 R> R> R> > proc.time() user system elapsed 1.904 0.048 1.951 AER/tests/Ch-Basics.R0000644000175400001440000005170711570750326014115 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: calc1 ################################################### 1 + 1 2^3 ################################################### ### chunk number 3: calc2 ################################################### log(exp(sin(pi/4)^2) * exp(cos(pi/4)^2)) ################################################### ### chunk number 4: vec1 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) ################################################### ### chunk number 5: length ################################################### length(x) ################################################### ### chunk number 6: vec2 ################################################### 2 * x + 3 5:1 * x + 1:5 ################################################### ### chunk number 7: vec3 ################################################### log(x) ################################################### ### chunk number 8: subset1 ################################################### x[c(1, 4)] ################################################### ### chunk number 9: subset2 ################################################### x[-c(2, 3, 5)] ################################################### ### chunk number 10: pattern1 ################################################### ones <- rep(1, 10) even <- seq(from = 2, to = 20, by = 2) trend <- 1981:2005 ################################################### ### chunk number 11: pattern2 ################################################### c(ones, even) ################################################### ### chunk number 12: matrix1 ################################################### A <- matrix(1:6, nrow = 2) ################################################### ### chunk number 13: matrix2 ################################################### t(A) ################################################### ### chunk number 14: matrix3 ################################################### dim(A) nrow(A) ncol(A) ################################################### ### chunk number 15: matrix-subset ################################################### A1 <- A[1:2, c(1, 3)] ################################################### ### chunk number 16: matrix4 ################################################### solve(A1) ################################################### ### chunk number 17: matrix-solve ################################################### A1 %*% solve(A1) ################################################### ### chunk number 18: diag ################################################### diag(4) ################################################### ### chunk number 19: matrix-combine1 ################################################### cbind(1, A1) ################################################### ### chunk number 20: matrix-combine2 ################################################### rbind(A1, diag(4, 2)) ################################################### ### chunk number 21: vector-mode ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) ################################################### ### chunk number 22: logical ################################################### x > 3.5 ################################################### ### chunk number 23: names ################################################### names(x) <- c("a", "b", "c", "d", "e") x ################################################### ### chunk number 24: subset-more ################################################### x[3:5] x[c("c", "d", "e")] x[x > 3.5] ################################################### ### chunk number 25: list1 ################################################### mylist <- list(sample = rnorm(5), family = "normal distribution", parameters = list(mean = 0, sd = 1)) mylist ################################################### ### chunk number 26: list2 ################################################### mylist[[1]] mylist[["sample"]] mylist$sample ################################################### ### chunk number 27: list3 ################################################### mylist[[3]]$sd ################################################### ### chunk number 28: logical2 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) x > 3 & x <= 4 ################################################### ### chunk number 29: logical3 ################################################### which(x > 3 & x <= 4) ################################################### ### chunk number 30: logical4 ################################################### all(x > 3) any(x > 3) ################################################### ### chunk number 31: logical5 ################################################### (1.5 - 0.5) == 1 (1.9 - 0.9) == 1 ################################################### ### chunk number 32: logical6 ################################################### all.equal(1.9 - 0.9, 1) ################################################### ### chunk number 33: logical7 ################################################### 7 + TRUE ################################################### ### chunk number 34: coercion1 ################################################### is.numeric(x) is.character(x) as.character(x) ################################################### ### chunk number 35: coercion2 ################################################### c(1, "a") ################################################### ### chunk number 36: rng1 ################################################### set.seed(123) rnorm(2) rnorm(2) set.seed(123) rnorm(2) ################################################### ### chunk number 37: rng2 ################################################### sample(1:5) sample(c("male", "female"), size = 5, replace = TRUE, prob = c(0.2, 0.8)) ################################################### ### chunk number 38: flow1 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) if(rnorm(1) > 0) sum(x) else mean(x) ################################################### ### chunk number 39: flow2 ################################################### ifelse(x > 4, sqrt(x), x^2) ################################################### ### chunk number 40: flow3 ################################################### for(i in 2:5) { x[i] <- x[i] - x[i-1] } x[-1] ################################################### ### chunk number 41: flow4 ################################################### while(sum(x) < 100) { x <- 2 * x } x ################################################### ### chunk number 42: cmeans ################################################### cmeans <- function(X) { rval <- rep(0, ncol(X)) for(j in 1:ncol(X)) { mysum <- 0 for(i in 1:nrow(X)) mysum <- mysum + X[i,j] rval[j] <- mysum/nrow(X) } return(rval) } ################################################### ### chunk number 43: colmeans1 ################################################### X <- matrix(1:20, ncol = 2) cmeans(X) ################################################### ### chunk number 44: colmeans2 ################################################### colMeans(X) ################################################### ### chunk number 45: colmeans3 eval=FALSE ################################################### ## X <- matrix(rnorm(2*10^6), ncol = 2) ## system.time(colMeans(X)) ## system.time(cmeans(X)) ################################################### ### chunk number 46: colmeans4 ################################################### cmeans2 <- function(X) { rval <- rep(0, ncol(X)) for(j in 1:ncol(X)) rval[j] <- mean(X[,j]) return(rval) } ################################################### ### chunk number 47: colmeans5 eval=FALSE ################################################### ## system.time(cmeans2(X)) ################################################### ### chunk number 48: colmeans6 eval=FALSE ################################################### ## apply(X, 2, mean) ################################################### ### chunk number 49: colmeans7 eval=FALSE ################################################### ## system.time(apply(X, 2, mean)) ################################################### ### chunk number 50: formula1 ################################################### f <- y ~ x class(f) ################################################### ### chunk number 51: formula2 ################################################### x <- seq(from = 0, to = 10, by = 0.5) y <- 2 + 3 * x + rnorm(21) ################################################### ### chunk number 52: formula3 eval=FALSE ################################################### ## plot(y ~ x) ## lm(y ~ x) ################################################### ### chunk number 53: formula3a ################################################### print(lm(y ~ x)) ################################################### ### chunk number 54: formula3b ################################################### plot(y ~ x) ################################################### ### chunk number 55: formula3c ################################################### fm <- lm(y ~ x) ################################################### ### chunk number 56: mydata1 ################################################### mydata <- data.frame(one = 1:10, two = 11:20, three = 21:30) ################################################### ### chunk number 57: mydata1a ################################################### mydata <- as.data.frame(matrix(1:30, ncol = 3)) names(mydata) <- c("one", "two", "three") ################################################### ### chunk number 58: mydata2 ################################################### mydata$two mydata[, "two"] mydata[, 2] ################################################### ### chunk number 59: attach ################################################### attach(mydata) mean(two) detach(mydata) ################################################### ### chunk number 60: with ################################################### with(mydata, mean(two)) ################################################### ### chunk number 61: mydata-subset ################################################### mydata.sub <- subset(mydata, two <= 16, select = -two) ################################################### ### chunk number 62: write-table ################################################### write.table(mydata, file = "mydata.txt", col.names = TRUE) ################################################### ### chunk number 63: read-table ################################################### newdata <- read.table("mydata.txt", header = TRUE) ################################################### ### chunk number 64: save ################################################### save(mydata, file = "mydata.rda") ################################################### ### chunk number 65: load ################################################### load("mydata.rda") ################################################### ### chunk number 66: file-remove ################################################### file.remove("mydata.rda") ################################################### ### chunk number 67: data ################################################### data("Journals", package = "AER") ################################################### ### chunk number 68: foreign ################################################### library("foreign") write.dta(mydata, file = "mydata.dta") ################################################### ### chunk number 69: read-dta ################################################### mydata <- read.dta("mydata.dta") ################################################### ### chunk number 70: cleanup ################################################### file.remove("mydata.dta") ################################################### ### chunk number 71: factor ################################################### g <- rep(0:1, c(2, 4)) g <- factor(g, levels = 0:1, labels = c("male", "female")) g ################################################### ### chunk number 72: na1 ################################################### newdata <- read.table("mydata.txt", na.strings = "-999") ################################################### ### chunk number 73: na2 ################################################### file.remove("mydata.txt") ################################################### ### chunk number 74: oop1 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) g <- factor(rep(c(0, 1), c(2, 4)), levels = c(0, 1), labels = c("male", "female")) ################################################### ### chunk number 75: oop2 ################################################### summary(x) summary(g) ################################################### ### chunk number 76: oop3 ################################################### class(x) class(g) ################################################### ### chunk number 77: oop4 ################################################### summary ################################################### ### chunk number 78: oop5 ################################################### normsample <- function(n, ...) { rval <- rnorm(n, ...) class(rval) <- "normsample" return(rval) } ################################################### ### chunk number 79: oop6 ################################################### set.seed(123) x <- normsample(10, mean = 5) class(x) ################################################### ### chunk number 80: oop7 ################################################### summary.normsample <- function(object, ...) { rval <- c(length(object), mean(object), sd(object)) names(rval) <- c("sample size","mean","standard deviation") return(rval) } ################################################### ### chunk number 81: oop8 ################################################### summary(x) ################################################### ### chunk number 82: journals-data eval=FALSE ################################################### ## data("Journals") ## Journals$citeprice <- Journals$price/Journals$citations ## attach(Journals) ## plot(log(subs), log(citeprice)) ## rug(log(subs)) ## rug(log(citeprice), side = 2) ## detach(Journals) ################################################### ### chunk number 83: journals-data1 ################################################### data("Journals") Journals$citeprice <- Journals$price/Journals$citations attach(Journals) plot(log(subs), log(citeprice)) rug(log(subs)) rug(log(citeprice), side = 2) detach(Journals) ################################################### ### chunk number 84: plot-formula ################################################### plot(log(subs) ~ log(citeprice), data = Journals) ################################################### ### chunk number 85: graphics1 ################################################### plot(log(subs) ~ log(citeprice), data = Journals, pch = 20, col = "blue", ylim = c(0, 8), xlim = c(-7, 4), main = "Library subscriptions") ################################################### ### chunk number 86: graphics2 ################################################### pdf("myfile.pdf", height = 5, width = 6) plot(1:20, pch = 1:20, col = 1:20, cex = 2) dev.off() ################################################### ### chunk number 87: dnorm-annotate eval=FALSE ################################################### ## curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3, ## main = "Density of the standard normal distribution") ## text(-5, 0.3, expression(f(x) == frac(1, sigma ~~ ## sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0) ################################################### ### chunk number 88: dnorm-annotate1 ################################################### curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3, main = "Density of the standard normal distribution") text(-5, 0.3, expression(f(x) == frac(1, sigma ~~ sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0) ################################################### ### chunk number 89: eda1 ################################################### data("CPS1985") str(CPS1985) ################################################### ### chunk number 90: eda2 ################################################### head(CPS1985) ################################################### ### chunk number 91: eda3 ################################################### levels(CPS1985$occupation)[c(2, 6)] <- c("techn", "mgmt") attach(CPS1985) ################################################### ### chunk number 92: eda4 ################################################### summary(wage) ################################################### ### chunk number 93: eda5 ################################################### mean(wage) median(wage) ################################################### ### chunk number 94: eda6 ################################################### var(wage) sd(wage) ################################################### ### chunk number 95: wage-hist ################################################### hist(wage, freq = FALSE) hist(log(wage), freq = FALSE) lines(density(log(wage)), col = 4) ################################################### ### chunk number 96: wage-hist1 ################################################### hist(wage, freq = FALSE) hist(log(wage), freq = FALSE) lines(density(log(wage)), col = 4) ################################################### ### chunk number 97: occ-table ################################################### summary(occupation) ################################################### ### chunk number 98: occ-table ################################################### tab <- table(occupation) prop.table(tab) ################################################### ### chunk number 99: occ-barpie ################################################### barplot(tab) pie(tab) ################################################### ### chunk number 100: occ-barpie ################################################### par(mar = c(4, 3, 1, 1)) barplot(tab, las = 3) par(mar = c(2, 3, 1, 3)) pie(tab, radius = 1) ################################################### ### chunk number 101: xtabs ################################################### xtabs(~ gender + occupation, data = CPS1985) ################################################### ### chunk number 102: spine eval=FALSE ################################################### ## plot(gender ~ occupation, data = CPS1985) ################################################### ### chunk number 103: spine1 ################################################### plot(gender ~ occupation, data = CPS1985) ################################################### ### chunk number 104: wageeduc-cor ################################################### cor(log(wage), education) cor(log(wage), education, method = "spearman") ################################################### ### chunk number 105: wageeduc-scatter eval=FALSE ################################################### ## plot(log(wage) ~ education) ################################################### ### chunk number 106: wageeduc-scatter1 ################################################### plot(log(wage) ~ education) ################################################### ### chunk number 107: tapply ################################################### tapply(log(wage), gender, mean) ################################################### ### chunk number 108: boxqq1 eval=FALSE ################################################### ## plot(log(wage) ~ gender) ################################################### ### chunk number 109: boxqq2 eval=FALSE ################################################### ## mwage <- subset(CPS1985, gender == "male")$wage ## fwage <- subset(CPS1985, gender == "female")$wage ## qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage), ## xaxs = "i", yaxs = "i", xlab = "male", ylab = "female") ## abline(0, 1) ################################################### ### chunk number 110: qq ################################################### plot(log(wage) ~ gender) mwage <- subset(CPS1985, gender == "male")$wage fwage <- subset(CPS1985, gender == "female")$wage qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage), xaxs = "i", yaxs = "i", xlab = "male", ylab = "female") abline(0, 1) ################################################### ### chunk number 111: detach ################################################### detach(CPS1985) AER/tests/Ch-Programming.Rout.save0000644000175400001440000002571113022366377016657 0ustar zeileisusers R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: DGP R> ################################################### R> dgp <- function(nobs = 15, model = c("trend", "dynamic"), + corr = 0, coef = c(0.25, -0.75), sd = 1) + { + model <- match.arg(model) + coef <- rep(coef, length.out = 2) + + err <- as.vector(filter(rnorm(nobs, sd = sd), corr, + method = "recursive")) + if(model == "trend") { + x <- 1:nobs + y <- coef[1] + coef[2] * x + err + } else { + y <- rep(NA, nobs) + y[1] <- coef[1] + err[1] + for(i in 2:nobs) + y[i] <- coef[1] + coef[2] * y[i-1] + err[i] + x <- c(0, y[1:(nobs-1)]) + } + return(data.frame(y = y, x = x)) + } R> R> R> ################################################### R> ### chunk number 3: simpower R> ################################################### R> simpower <- function(nrep = 100, size = 0.05, ...) + { + pval <- matrix(rep(NA, 2 * nrep), ncol = 2) + colnames(pval) <- c("dwtest", "bgtest") + for(i in 1:nrep) { + dat <- dgp(...) + pval[i,1] <- dwtest(y ~ x, data = dat, + alternative = "two.sided")$p.value + pval[i,2] <- bgtest(y ~ x, data = dat)$p.value + } + return(colMeans(pval < size)) + } R> R> R> ################################################### R> ### chunk number 4: simulation-function R> ################################################### R> simulation <- function(corr = c(0, 0.2, 0.4, 0.6, 0.8, + 0.9, 0.95, 0.99), nobs = c(15, 30, 50), + model = c("trend", "dynamic"), ...) + { + prs <- expand.grid(corr = corr, nobs = nobs, model = model) + nprs <- nrow(prs) + + pow <- matrix(rep(NA, 2 * nprs), ncol = 2) + for(i in 1:nprs) pow[i,] <- simpower(corr = prs[i,1], + nobs = prs[i,2], model = as.character(prs[i,3]), ...) + + rval <- rbind(prs, prs) + rval$test <- factor(rep(1:2, c(nprs, nprs)), + labels = c("dwtest", "bgtest")) + rval$power <- c(pow[,1], pow[,2]) + rval$nobs <- factor(rval$nobs) + return(rval) + } R> R> R> ################################################### R> ### chunk number 5: simulation R> ################################################### R> set.seed(123) R> psim <- simulation() R> R> R> ################################################### R> ### chunk number 6: simulation-table R> ################################################### R> tab <- xtabs(power ~ corr + test + model + nobs, data = psim) R> ftable(tab, row.vars = c("model", "nobs", "test"), + col.vars = "corr") corr 0 0.2 0.4 0.6 0.8 0.9 0.95 0.99 model nobs test trend 15 dwtest 0.05 0.10 0.21 0.36 0.55 0.65 0.66 0.62 bgtest 0.07 0.05 0.05 0.10 0.30 0.40 0.41 0.31 30 dwtest 0.09 0.20 0.57 0.80 0.96 1.00 0.96 0.98 bgtest 0.09 0.09 0.37 0.69 0.93 0.99 0.94 0.93 50 dwtest 0.03 0.31 0.76 0.99 1.00 1.00 1.00 1.00 bgtest 0.05 0.23 0.63 0.95 1.00 1.00 1.00 1.00 dynamic 15 dwtest 0.02 0.01 0.00 0.00 0.01 0.03 0.01 0.00 bgtest 0.07 0.04 0.01 0.09 0.14 0.21 0.17 0.26 30 dwtest 0.00 0.01 0.01 0.06 0.00 0.03 0.03 0.19 bgtest 0.05 0.05 0.18 0.39 0.52 0.63 0.64 0.74 50 dwtest 0.02 0.02 0.01 0.03 0.03 0.15 0.39 0.56 bgtest 0.05 0.10 0.36 0.72 0.91 0.90 0.93 0.91 R> R> R> ################################################### R> ### chunk number 7: simulation-visualization R> ################################################### R> library("lattice") R> xyplot(power ~ corr | model + nobs, groups = ~ test, + data = psim, type = "b") R> R> R> ################################################### R> ### chunk number 8: simulation-visualization1 R> ################################################### R> library("lattice") R> trellis.par.set(theme = canonical.theme(color = FALSE)) R> print(xyplot(power ~ corr | model + nobs, groups = ~ test, data = psim, type = "b")) R> R> R> ################################################### R> ### chunk number 9: journals-lm R> ################################################### R> data("Journals") R> journals <- Journals[, c("subs", "price")] R> journals$citeprice <- Journals$price/Journals$citations R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) R> R> R> ################################################### R> ### chunk number 10: journals-residuals-based-resampling-unused eval=FALSE R> ################################################### R> ## refit <- function(data, i) { R> ## d <- data R> ## d$subs <- exp(d$fitted + d$res[i]) R> ## coef(lm(log(subs) ~ log(citeprice), data = d)) R> ## } R> R> R> ################################################### R> ### chunk number 11: journals-case-based-resampling R> ################################################### R> refit <- function(data, i) + coef(lm(log(subs) ~ log(citeprice), data = data[i,])) R> R> R> ################################################### R> ### chunk number 12: journals-boot R> ################################################### R> library("boot") Attaching package: 'boot' The following object is masked from 'package:lattice': melanoma The following object is masked from 'package:survival': aml The following object is masked from 'package:car': logit R> set.seed(123) R> jour_boot <- boot(journals, refit, R = 999) R> R> R> ################################################### R> ### chunk number 13: journals-boot-print R> ################################################### R> jour_boot ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = journals, statistic = refit, R = 999) Bootstrap Statistics : original bias std. error t1* 4.7662 -0.0010560 0.05545 t2* -0.5331 -0.0001606 0.03304 R> R> R> ################################################### R> ### chunk number 14: journals-lm-coeftest R> ################################################### R> coeftest(jour_lm) t test of coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.7662 0.0559 85.2 <2e-16 log(citeprice) -0.5331 0.0356 -15.0 <2e-16 R> R> R> ################################################### R> ### chunk number 15: journals-boot-ci R> ################################################### R> boot.ci(jour_boot, index = 2, type = "basic") BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 999 bootstrap replicates CALL : boot.ci(boot.out = jour_boot, type = "basic", index = 2) Intervals : Level Basic 95% (-0.5952, -0.4665 ) Calculations and Intervals on Original Scale R> R> R> ################################################### R> ### chunk number 16: journals-lm-ci R> ################################################### R> confint(jour_lm, parm = 2) 2.5 % 97.5 % log(citeprice) -0.6033 -0.4628 R> R> R> ################################################### R> ### chunk number 17: ml-loglik R> ################################################### R> data("Equipment", package = "AER") R> R> nlogL <- function(par) { + beta <- par[1:3] + theta <- par[4] + sigma2 <- par[5] + + Y <- with(Equipment, valueadded/firms) + K <- with(Equipment, capital/firms) + L <- with(Equipment, labor/firms) + + rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L) + lhs <- log(Y) + theta * Y + + rval <- sum(log(1 + theta * Y) - log(Y) + + dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE)) + return(-rval) + } R> R> R> ################################################### R> ### chunk number 18: ml-0 R> ################################################### R> fm0 <- lm(log(valueadded/firms) ~ log(capital/firms) + + log(labor/firms), data = Equipment) R> R> R> ################################################### R> ### chunk number 19: ml-0-coef R> ################################################### R> par0 <- as.vector(c(coef(fm0), 0, mean(residuals(fm0)^2))) R> R> R> ################################################### R> ### chunk number 20: ml-optim R> ################################################### R> opt <- optim(par0, nlogL, hessian = TRUE) Warning messages: 1: In log(1 + theta * Y) : NaNs produced 2: In sqrt(sigma2) : NaNs produced R> R> R> ################################################### R> ### chunk number 21: ml-optim-output R> ################################################### R> opt$par [1] 2.91469 0.34998 1.09232 0.10666 0.04275 R> sqrt(diag(solve(opt$hessian)))[1:4] [1] 0.36055 0.09671 0.14079 0.05850 R> -opt$value [1] -8.939 R> R> R> ################################################### R> ### chunk number 22: Sweave eval=FALSE R> ################################################### R> ## Sweave("Sweave-journals.Rnw") R> R> R> ################################################### R> ### chunk number 23: Stangle eval=FALSE R> ################################################### R> ## Stangle("Sweave-journals.Rnw") R> R> R> ################################################### R> ### chunk number 24: texi2dvi eval=FALSE R> ################################################### R> ## texi2dvi("Sweave-journals.tex", pdf = TRUE) R> R> R> ################################################### R> ### chunk number 25: vignette eval=FALSE R> ################################################### R> ## vignette("Sweave-journals", package = "AER") R> R> R> > proc.time() user system elapsed 15.940 0.044 15.985 AER/tests/Ch-Validation.Rout.save0000644000175400001440000004566313022366323016466 0ustar zeileisusers R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: ps-summary R> ################################################### R> data("PublicSchools") R> summary(PublicSchools) Expenditure Income Min. :259 Min. : 5736 1st Qu.:315 1st Qu.: 6670 Median :354 Median : 7597 Mean :373 Mean : 7608 3rd Qu.:426 3rd Qu.: 8286 Max. :821 Max. :10851 NA's :1 R> R> R> ################################################### R> ### chunk number 3: ps-plot eval=FALSE R> ################################################### R> ## ps <- na.omit(PublicSchools) R> ## ps$Income <- ps$Income / 10000 R> ## plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) R> ## ps_lm <- lm(Expenditure ~ Income, data = ps) R> ## abline(ps_lm) R> ## id <- c(2, 24, 48) R> ## text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) R> R> R> ################################################### R> ### chunk number 4: ps-plot1 R> ################################################### R> ps <- na.omit(PublicSchools) R> ps$Income <- ps$Income / 10000 R> plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) R> ps_lm <- lm(Expenditure ~ Income, data = ps) R> abline(ps_lm) R> id <- c(2, 24, 48) R> text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) R> R> R> ################################################### R> ### chunk number 5: ps-lmplot eval=FALSE R> ################################################### R> ## plot(ps_lm, which = 1:6) R> R> R> ################################################### R> ### chunk number 6: ps-lmplot1 R> ################################################### R> plot(ps_lm, which = 1:6) R> R> R> ################################################### R> ### chunk number 7: ps-hatvalues eval=FALSE R> ################################################### R> ## ps_hat <- hatvalues(ps_lm) R> ## plot(ps_hat) R> ## abline(h = c(1, 3) * mean(ps_hat), col = 2) R> ## id <- which(ps_hat > 3 * mean(ps_hat)) R> ## text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE) R> R> R> ################################################### R> ### chunk number 8: ps-hatvalues1 R> ################################################### R> ps_hat <- hatvalues(ps_lm) R> plot(ps_hat) R> abline(h = c(1, 3) * mean(ps_hat), col = 2) R> id <- which(ps_hat > 3 * mean(ps_hat)) R> text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE) R> R> R> ################################################### R> ### chunk number 9: influence-measures1 eval=FALSE R> ################################################### R> ## influence.measures(ps_lm) R> R> R> ################################################### R> ### chunk number 10: which-hatvalues R> ################################################### R> which(ps_hat > 3 * mean(ps_hat)) Alaska Washington DC 2 48 R> R> R> ################################################### R> ### chunk number 11: influence-measures2 R> ################################################### R> summary(influence.measures(ps_lm)) Potentially influential observations of lm(formula = Expenditure ~ Income, data = ps) : dfb.1_ dfb.Incm dffit cov.r cook.d hat Alaska -2.39_* 2.52_* 2.65_* 0.55_* 2.31_* 0.21_* Mississippi 0.07 -0.07 0.08 1.14_* 0.00 0.08 Washington DC 0.66 -0.71 -0.77_* 1.01 0.28 0.13_* R> R> R> ################################################### R> ### chunk number 12: ps-noinf eval=FALSE R> ################################################### R> ## plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) R> ## abline(ps_lm) R> ## id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any)) R> ## text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) R> ## ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,]) R> ## abline(ps_noinf, lty = 2) R> R> R> ################################################### R> ### chunk number 13: ps-noinf1 R> ################################################### R> plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) R> abline(ps_lm) R> id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any)) R> text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) R> ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,]) R> abline(ps_noinf, lty = 2) R> R> R> ################################################### R> ### chunk number 14: journals-age R> ################################################### R> data("Journals") R> journals <- Journals[, c("subs", "price")] R> journals$citeprice <- Journals$price/Journals$citations R> journals$age <- 2000 - Journals$foundingyear R> R> R> ################################################### R> ### chunk number 15: journals-lm R> ################################################### R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) R> R> R> ################################################### R> ### chunk number 16: bptest1 R> ################################################### R> bptest(jour_lm) studentized Breusch-Pagan test data: jour_lm BP = 9.8, df = 1, p-value = 0.002 R> R> R> ################################################### R> ### chunk number 17: bptest2 R> ################################################### R> bptest(jour_lm, ~ log(citeprice) + I(log(citeprice)^2), + data = journals) studentized Breusch-Pagan test data: jour_lm BP = 11, df = 2, p-value = 0.004 R> R> R> ################################################### R> ### chunk number 18: gqtest R> ################################################### R> gqtest(jour_lm, order.by = ~ citeprice, data = journals) Goldfeld-Quandt test data: jour_lm GQ = 1.7, df1 = 88, df2 = 88, p-value = 0.007 R> R> R> ################################################### R> ### chunk number 19: resettest R> ################################################### R> resettest(jour_lm) RESET test data: jour_lm RESET = 1.4, df1 = 2, df2 = 180, p-value = 0.2 R> R> R> ################################################### R> ### chunk number 20: raintest R> ################################################### R> raintest(jour_lm, order.by = ~ age, data = journals) Rainbow test data: jour_lm Rain = 1.8, df1 = 90, df2 = 88, p-value = 0.004 R> R> R> ################################################### R> ### chunk number 21: harvtest R> ################################################### R> harvtest(jour_lm, order.by = ~ age, data = journals) Harvey-Collier test data: jour_lm HC = 5.1, df = 180, p-value = 9e-07 R> R> R> ################################################### R> ### chunk number 22: R> ################################################### R> library("dynlm") R> R> R> ################################################### R> ### chunk number 23: usmacro-dynlm R> ################################################### R> data("USMacroG") R> consump1 <- dynlm(consumption ~ dpi + L(dpi), + data = USMacroG) R> R> R> ################################################### R> ### chunk number 24: dwtest R> ################################################### R> dwtest(consump1) Durbin-Watson test data: consump1 DW = 0.087, p-value <2e-16 alternative hypothesis: true autocorrelation is greater than 0 R> R> R> ################################################### R> ### chunk number 25: Box-test R> ################################################### R> Box.test(residuals(consump1), type = "Ljung-Box") Box-Ljung test data: residuals(consump1) X-squared = 180, df = 1, p-value <2e-16 R> R> R> ################################################### R> ### chunk number 26: bgtest R> ################################################### R> bgtest(consump1) Breusch-Godfrey test for serial correlation of order up to 1 data: consump1 LM test = 190, df = 1, p-value <2e-16 R> R> R> ################################################### R> ### chunk number 27: vcov R> ################################################### R> vcov(jour_lm) (Intercept) log(citeprice) (Intercept) 3.126e-03 -6.144e-05 log(citeprice) -6.144e-05 1.268e-03 R> vcovHC(jour_lm) (Intercept) log(citeprice) (Intercept) 0.003085 0.000693 log(citeprice) 0.000693 0.001188 R> R> R> ################################################### R> ### chunk number 28: coeftest R> ################################################### R> coeftest(jour_lm, vcov = vcovHC) t test of coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.7662 0.0555 85.8 <2e-16 log(citeprice) -0.5331 0.0345 -15.5 <2e-16 R> R> R> ################################################### R> ### chunk number 29: sandwiches R> ################################################### R> t(sapply(c("const", "HC0", "HC1", "HC2", "HC3", "HC4"), + function(x) sqrt(diag(vcovHC(jour_lm, type = x))))) (Intercept) log(citeprice) const 0.05591 0.03561 HC0 0.05495 0.03377 HC1 0.05526 0.03396 HC2 0.05525 0.03412 HC3 0.05555 0.03447 HC4 0.05536 0.03459 R> R> R> ################################################### R> ### chunk number 30: ps-anova R> ################################################### R> ps_lm <- lm(Expenditure ~ Income, data = ps) R> ps_lm2 <- lm(Expenditure ~ Income + I(Income^2), data = ps) R> anova(ps_lm, ps_lm2) Analysis of Variance Table Model 1: Expenditure ~ Income Model 2: Expenditure ~ Income + I(Income^2) Res.Df RSS Df Sum of Sq F Pr(>F) 1 48 181015 2 47 150986 1 30030 9.35 0.0037 R> R> R> ################################################### R> ### chunk number 31: ps-waldtest R> ################################################### R> waldtest(ps_lm, ps_lm2, vcov = vcovHC(ps_lm2, type = "HC4")) Wald test Model 1: Expenditure ~ Income Model 2: Expenditure ~ Income + I(Income^2) Res.Df Df F Pr(>F) 1 48 2 47 1 0.08 0.77 R> R> R> ################################################### R> ### chunk number 32: vcovHAC R> ################################################### R> rbind(SE = sqrt(diag(vcov(consump1))), + QS = sqrt(diag(kernHAC(consump1))), + NW = sqrt(diag(NeweyWest(consump1)))) (Intercept) dpi L(dpi) SE 14.51 0.2063 0.2075 QS 94.11 0.3893 0.3669 NW 100.83 0.4230 0.3989 R> R> R> ################################################### R> ### chunk number 33: solow-lm R> ################################################### R> data("OECDGrowth") R> solow_lm <- lm(log(gdp85/gdp60) ~ log(gdp60) + + log(invest) + log(popgrowth + .05), data = OECDGrowth) R> summary(solow_lm) Call: lm(formula = log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth + 0.05), data = OECDGrowth) Residuals: Min 1Q Median 3Q Max -0.1840 -0.0399 -0.0078 0.0451 0.3188 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.9759 1.0216 2.91 0.0093 log(gdp60) -0.3429 0.0565 -6.07 9.8e-06 log(invest) 0.6501 0.2020 3.22 0.0048 log(popgrowth + 0.05) -0.5730 0.2904 -1.97 0.0640 Residual standard error: 0.133 on 18 degrees of freedom Multiple R-squared: 0.746, Adjusted R-squared: 0.704 F-statistic: 17.7 on 3 and 18 DF, p-value: 1.34e-05 R> R> R> ################################################### R> ### chunk number 34: solow-plot eval=FALSE R> ################################################### R> ## plot(solow_lm) R> R> R> ################################################### R> ### chunk number 35: solow-lts R> ################################################### R> library("MASS") R> solow_lts <- lqs(log(gdp85/gdp60) ~ log(gdp60) + + log(invest) + log(popgrowth + .05), data = OECDGrowth, + psamp = 13, nsamp = "exact") R> R> R> ################################################### R> ### chunk number 36: solow-smallresid R> ################################################### R> smallresid <- which( + abs(residuals(solow_lts)/solow_lts$scale[2]) <= 2.5) R> R> R> ################################################### R> ### chunk number 37: solow-nohighlev R> ################################################### R> X <- model.matrix(solow_lm)[,-1] R> Xcv <- cov.rob(X, nsamp = "exact") R> nohighlev <- which( + sqrt(mahalanobis(X, Xcv$center, Xcv$cov)) <= 2.5) R> R> R> ################################################### R> ### chunk number 38: solow-goodobs R> ################################################### R> goodobs <- unique(c(smallresid, nohighlev)) R> R> R> ################################################### R> ### chunk number 39: solow-badobs R> ################################################### R> rownames(OECDGrowth)[-goodobs] [1] "Canada" "USA" "Turkey" "Australia" R> R> R> ################################################### R> ### chunk number 40: solow-rob R> ################################################### R> solow_rob <- update(solow_lm, subset = goodobs) R> summary(solow_rob) Call: lm(formula = log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth + 0.05), data = OECDGrowth, subset = goodobs) Residuals: Min 1Q Median 3Q Max -0.15454 -0.05548 -0.00651 0.03159 0.26773 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.7764 1.2816 2.95 0.0106 log(gdp60) -0.4507 0.0569 -7.93 1.5e-06 log(invest) 0.7033 0.1906 3.69 0.0024 log(popgrowth + 0.05) -0.6504 0.4190 -1.55 0.1429 Residual standard error: 0.107 on 14 degrees of freedom Multiple R-squared: 0.853, Adjusted R-squared: 0.822 F-statistic: 27.1 on 3 and 14 DF, p-value: 4.3e-06 R> R> R> ################################################### R> ### chunk number 41: quantreg R> ################################################### R> library("quantreg") Loading required package: SparseM Attaching package: 'SparseM' The following object is masked from 'package:base': backsolve Attaching package: 'quantreg' The following object is masked from 'package:survival': untangle.specials R> R> R> ################################################### R> ### chunk number 42: cps-lad R> ################################################### R> library("quantreg") R> data("CPS1988") R> cps_f <- log(wage) ~ experience + I(experience^2) + education R> cps_lad <- rq(cps_f, data = CPS1988) R> summary(cps_lad) Call: rq(formula = cps_f, data = CPS1988) tau: [1] 0.5 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) 4.24088 0.02190 193.67805 0.00000 experience 0.07744 0.00115 67.50041 0.00000 I(experience^2) -0.00130 0.00003 -49.97891 0.00000 education 0.09429 0.00140 67.57171 0.00000 R> R> R> ################################################### R> ### chunk number 43: cps-rq R> ################################################### R> cps_rq <- rq(cps_f, tau = c(0.25, 0.75), data = CPS1988) R> summary(cps_rq) Call: rq(formula = cps_f, tau = c(0.25, 0.75), data = CPS1988) tau: [1] 0.25 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) 3.78227 0.02866 131.95189 0.00000 experience 0.09156 0.00152 60.26474 0.00000 I(experience^2) -0.00164 0.00004 -45.39065 0.00000 education 0.09321 0.00185 50.32520 0.00000 Call: rq(formula = cps_f, tau = c(0.25, 0.75), data = CPS1988) tau: [1] 0.75 Coefficients: Value Std. Error t value Pr(>|t|) (Intercept) 4.66005 0.02023 230.39734 0.00000 experience 0.06377 0.00097 65.41364 0.00000 I(experience^2) -0.00099 0.00002 -44.15591 0.00000 education 0.09434 0.00134 70.65855 0.00000 R> R> R> ################################################### R> ### chunk number 44: cps-rqs R> ################################################### R> cps_rq25 <- rq(cps_f, tau = 0.25, data = CPS1988) R> cps_rq75 <- rq(cps_f, tau = 0.75, data = CPS1988) R> anova(cps_rq25, cps_rq75) Quantile Regression Analysis of Deviance Table Model: log(wage) ~ experience + I(experience^2) + education Joint Test of Equality of Slopes: tau in { 0.25 0.75 } Df Resid Df F value Pr(>F) 1 3 56307 115 <2e-16 R> R> R> ################################################### R> ### chunk number 45: cps-rq-anova R> ################################################### R> anova(cps_rq25, cps_rq75, joint = FALSE) Quantile Regression Analysis of Deviance Table Model: log(wage) ~ experience + I(experience^2) + education Tests of Equality of Distinct Slopes: tau in { 0.25 0.75 } Df Resid Df F value Pr(>F) experience 1 56309 339.41 <2e-16 I(experience^2) 1 56309 329.74 <2e-16 education 1 56309 0.35 0.55 R> R> R> ################################################### R> ### chunk number 46: rqbig R> ################################################### R> cps_rqbig <- rq(cps_f, tau = seq(0.05, 0.95, by = 0.05), + data = CPS1988) R> cps_rqbigs <- summary(cps_rqbig) Warning message: In summary.rq(xi, U = U, ...) : 18 non-positive fis R> R> R> ################################################### R> ### chunk number 47: rqbig-plot eval=FALSE R> ################################################### R> ## plot(cps_rqbigs) R> R> R> ################################################### R> ### chunk number 48: rqbig-plot1 R> ################################################### R> plot(cps_rqbigs) R> R> R> > proc.time() user system elapsed 16.812 0.044 16.859 AER/tests/Ch-Microeconometrics.R0000644000175400001440000003054311570750326016370 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: swisslabor-data ################################################### data("SwissLabor") swiss_probit <- glm(participation ~ . + I(age^2), data = SwissLabor, family = binomial(link = "probit")) summary(swiss_probit) ################################################### ### chunk number 3: swisslabor-plot eval=FALSE ################################################### ## plot(participation ~ age, data = SwissLabor, ylevels = 2:1) ################################################### ### chunk number 4: swisslabor-plot-refined ################################################### plot(participation ~ education, data = SwissLabor, ylevels = 2:1) fm <- glm(participation ~ education + I(education^2), data = SwissLabor, family = binomial) edu <- sort(unique(SwissLabor$education)) prop <- sapply(edu, function(x) mean(SwissLabor$education <= x)) lines(predict(fm, newdata = data.frame(education = edu), type = "response") ~ prop, col = 2) plot(participation ~ age, data = SwissLabor, ylevels = 2:1) fm <- glm(participation ~ age + I(age^2), data = SwissLabor, family = binomial) ag <- sort(unique(SwissLabor$age)) prop <- sapply(ag, function(x) mean(SwissLabor$age <= x)) lines(predict(fm, newdata = data.frame(age = ag), type = "response") ~ prop, col = 2) ################################################### ### chunk number 5: effects1 ################################################### fav <- mean(dnorm(predict(swiss_probit, type = "link"))) fav * coef(swiss_probit) ################################################### ### chunk number 6: effects2 ################################################### av <- colMeans(SwissLabor[, -c(1, 7)]) av <- data.frame(rbind(swiss = av, foreign = av), foreign = factor(c("no", "yes"))) av <- predict(swiss_probit, newdata = av, type = "link") av <- dnorm(av) av["swiss"] * coef(swiss_probit)[-7] ################################################### ### chunk number 7: effects3 ################################################### av["foreign"] * coef(swiss_probit)[-7] ################################################### ### chunk number 8: mcfadden ################################################### swiss_probit0 <- update(swiss_probit, formula = . ~ 1) 1 - as.vector(logLik(swiss_probit)/logLik(swiss_probit0)) ################################################### ### chunk number 9: confusion-matrix ################################################### table(true = SwissLabor$participation, pred = round(fitted(swiss_probit))) ################################################### ### chunk number 10: confusion-matrix1 ################################################### tab <- table(true = SwissLabor$participation, pred = round(fitted(swiss_probit))) tabp <- round(100 * c(tab[1,1] + tab[2,2], tab[2,1] + tab[1,2])/sum(tab), digits = 2) ################################################### ### chunk number 11: roc-plot eval=FALSE ################################################### ## library("ROCR") ## pred <- prediction(fitted(swiss_probit), ## SwissLabor$participation) ## plot(performance(pred, "acc")) ## plot(performance(pred, "tpr", "fpr")) ## abline(0, 1, lty = 2) ################################################### ### chunk number 12: roc-plot1 ################################################### library("ROCR") pred <- prediction(fitted(swiss_probit), SwissLabor$participation) plot(performance(pred, "acc")) plot(performance(pred, "tpr", "fpr")) abline(0, 1, lty = 2) ################################################### ### chunk number 13: rss ################################################### deviance(swiss_probit) sum(residuals(swiss_probit, type = "deviance")^2) sum(residuals(swiss_probit, type = "pearson")^2) ################################################### ### chunk number 14: coeftest eval=FALSE ################################################### ## coeftest(swiss_probit, vcov = sandwich) ################################################### ### chunk number 15: murder ################################################### data("MurderRates") murder_logit <- glm(I(executions > 0) ~ time + income + noncauc + lfp + southern, data = MurderRates, family = binomial) ################################################### ### chunk number 16: murder-coeftest ################################################### coeftest(murder_logit) ################################################### ### chunk number 17: murder2 ################################################### murder_logit2 <- glm(I(executions > 0) ~ time + income + noncauc + lfp + southern, data = MurderRates, family = binomial, control = list(epsilon = 1e-15, maxit = 50, trace = FALSE)) ################################################### ### chunk number 18: murder2-coeftest ################################################### coeftest(murder_logit2) ################################################### ### chunk number 19: separation ################################################### table(I(MurderRates$executions > 0), MurderRates$southern) ################################################### ### chunk number 20: countreg-pois ################################################### data("RecreationDemand") rd_pois <- glm(trips ~ ., data = RecreationDemand, family = poisson) ################################################### ### chunk number 21: countreg-pois-coeftest ################################################### coeftest(rd_pois) ################################################### ### chunk number 22: countreg-pois-logLik ################################################### logLik(rd_pois) ################################################### ### chunk number 23: countreg-odtest1 ################################################### dispersiontest(rd_pois) ################################################### ### chunk number 24: countreg-odtest2 ################################################### dispersiontest(rd_pois, trafo = 2) ################################################### ### chunk number 25: countreg-nbin ################################################### library("MASS") rd_nb <- glm.nb(trips ~ ., data = RecreationDemand) coeftest(rd_nb) logLik(rd_nb) ################################################### ### chunk number 26: countreg-se ################################################### round(sqrt(rbind(diag(vcov(rd_pois)), diag(sandwich(rd_pois)))), digits = 3) ################################################### ### chunk number 27: countreg-sandwich ################################################### coeftest(rd_pois, vcov = sandwich) ################################################### ### chunk number 28: countreg-OPG ################################################### round(sqrt(diag(vcovOPG(rd_pois))), 3) ################################################### ### chunk number 29: countreg-plot ################################################### plot(table(RecreationDemand$trips), ylab = "") ################################################### ### chunk number 30: countreg-zeros ################################################### rbind(obs = table(RecreationDemand$trips)[1:10], exp = round( sapply(0:9, function(x) sum(dpois(x, fitted(rd_pois)))))) ################################################### ### chunk number 31: countreg-pscl ################################################### library("pscl") ################################################### ### chunk number 32: countreg-zinb ################################################### rd_zinb <- zeroinfl(trips ~ . | quality + income, data = RecreationDemand, dist = "negbin") ################################################### ### chunk number 33: countreg-zinb-summary ################################################### summary(rd_zinb) ################################################### ### chunk number 34: countreg-zinb-expected ################################################### round(colSums(predict(rd_zinb, type = "prob")[,1:10])) ################################################### ### chunk number 35: countreg-hurdle ################################################### rd_hurdle <- hurdle(trips ~ . | quality + income, data = RecreationDemand, dist = "negbin") summary(rd_hurdle) ################################################### ### chunk number 36: countreg-hurdle-expected ################################################### round(colSums(predict(rd_hurdle, type = "prob")[,1:10])) ################################################### ### chunk number 37: tobit1 ################################################### data("Affairs") aff_tob <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) summary(aff_tob) ################################################### ### chunk number 38: tobit2 ################################################### aff_tob2 <- update(aff_tob, right = 4) summary(aff_tob2) ################################################### ### chunk number 39: tobit3 ################################################### linearHypothesis(aff_tob, c("age = 0", "occupation = 0"), vcov = sandwich) ################################################### ### chunk number 40: numeric-response ################################################### SwissLabor$partnum <- as.numeric(SwissLabor$participation) - 1 ################################################### ### chunk number 41: kleinspady eval=FALSE ################################################### ## library("np") ## swiss_bw <- npindexbw(partnum ~ income + age + education + ## youngkids + oldkids + foreign + I(age^2), data = SwissLabor, ## method = "kleinspady", nmulti = 5) ################################################### ### chunk number 42: kleinspady-bw eval=FALSE ################################################### ## summary(swiss_bw) ################################################### ### chunk number 43: kleinspady-summary eval=FALSE ################################################### ## swiss_ks <- npindex(bws = swiss_bw, gradients = TRUE) ## summary(swiss_ks) ################################################### ### chunk number 44: probit-confusion ################################################### table(Actual = SwissLabor$participation, Predicted = round(predict(swiss_probit, type = "response"))) ################################################### ### chunk number 45: bw-tab ################################################### data("BankWages") edcat <- factor(BankWages$education) levels(edcat)[3:10] <- rep(c("14-15", "16-18", "19-21"), c(2, 3, 3)) tab <- xtabs(~ edcat + job, data = BankWages) prop.table(tab, 1) ################################################### ### chunk number 46: bw-plot eval=FALSE ################################################### ## plot(job ~ edcat, data = BankWages, off = 0) ################################################### ### chunk number 47: bw-plot1 ################################################### plot(job ~ edcat, data = BankWages, off = 0) box() ################################################### ### chunk number 48: bw-multinom ################################################### library("nnet") bank_mnl <- multinom(job ~ education + minority, data = BankWages, subset = gender == "male", trace = FALSE) ################################################### ### chunk number 49: bw-multinom-coeftest ################################################### coeftest(bank_mnl) ################################################### ### chunk number 50: bw-polr ################################################### library("MASS") bank_polr <- polr(job ~ education + minority, data = BankWages, subset = gender == "male", Hess = TRUE) coeftest(bank_polr) ################################################### ### chunk number 51: bw-AIC ################################################### AIC(bank_mnl) AIC(bank_polr) AER/tests/Ch-Validation.R0000644000175400001440000002575411570750326015006 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: ps-summary ################################################### data("PublicSchools") summary(PublicSchools) ################################################### ### chunk number 3: ps-plot eval=FALSE ################################################### ## ps <- na.omit(PublicSchools) ## ps$Income <- ps$Income / 10000 ## plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) ## ps_lm <- lm(Expenditure ~ Income, data = ps) ## abline(ps_lm) ## id <- c(2, 24, 48) ## text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 4: ps-plot1 ################################################### ps <- na.omit(PublicSchools) ps$Income <- ps$Income / 10000 plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) ps_lm <- lm(Expenditure ~ Income, data = ps) abline(ps_lm) id <- c(2, 24, 48) text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 5: ps-lmplot eval=FALSE ################################################### ## plot(ps_lm, which = 1:6) ################################################### ### chunk number 6: ps-lmplot1 ################################################### plot(ps_lm, which = 1:6) ################################################### ### chunk number 7: ps-hatvalues eval=FALSE ################################################### ## ps_hat <- hatvalues(ps_lm) ## plot(ps_hat) ## abline(h = c(1, 3) * mean(ps_hat), col = 2) ## id <- which(ps_hat > 3 * mean(ps_hat)) ## text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 8: ps-hatvalues1 ################################################### ps_hat <- hatvalues(ps_lm) plot(ps_hat) abline(h = c(1, 3) * mean(ps_hat), col = 2) id <- which(ps_hat > 3 * mean(ps_hat)) text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 9: influence-measures1 eval=FALSE ################################################### ## influence.measures(ps_lm) ################################################### ### chunk number 10: which-hatvalues ################################################### which(ps_hat > 3 * mean(ps_hat)) ################################################### ### chunk number 11: influence-measures2 ################################################### summary(influence.measures(ps_lm)) ################################################### ### chunk number 12: ps-noinf eval=FALSE ################################################### ## plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) ## abline(ps_lm) ## id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any)) ## text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ## ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,]) ## abline(ps_noinf, lty = 2) ################################################### ### chunk number 13: ps-noinf1 ################################################### plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) abline(ps_lm) id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any)) text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,]) abline(ps_noinf, lty = 2) ################################################### ### chunk number 14: journals-age ################################################### data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations journals$age <- 2000 - Journals$foundingyear ################################################### ### chunk number 15: journals-lm ################################################### jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) ################################################### ### chunk number 16: bptest1 ################################################### bptest(jour_lm) ################################################### ### chunk number 17: bptest2 ################################################### bptest(jour_lm, ~ log(citeprice) + I(log(citeprice)^2), data = journals) ################################################### ### chunk number 18: gqtest ################################################### gqtest(jour_lm, order.by = ~ citeprice, data = journals) ################################################### ### chunk number 19: resettest ################################################### resettest(jour_lm) ################################################### ### chunk number 20: raintest ################################################### raintest(jour_lm, order.by = ~ age, data = journals) ################################################### ### chunk number 21: harvtest ################################################### harvtest(jour_lm, order.by = ~ age, data = journals) ################################################### ### chunk number 22: ################################################### library("dynlm") ################################################### ### chunk number 23: usmacro-dynlm ################################################### data("USMacroG") consump1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) ################################################### ### chunk number 24: dwtest ################################################### dwtest(consump1) ################################################### ### chunk number 25: Box-test ################################################### Box.test(residuals(consump1), type = "Ljung-Box") ################################################### ### chunk number 26: bgtest ################################################### bgtest(consump1) ################################################### ### chunk number 27: vcov ################################################### vcov(jour_lm) vcovHC(jour_lm) ################################################### ### chunk number 28: coeftest ################################################### coeftest(jour_lm, vcov = vcovHC) ################################################### ### chunk number 29: sandwiches ################################################### t(sapply(c("const", "HC0", "HC1", "HC2", "HC3", "HC4"), function(x) sqrt(diag(vcovHC(jour_lm, type = x))))) ################################################### ### chunk number 30: ps-anova ################################################### ps_lm <- lm(Expenditure ~ Income, data = ps) ps_lm2 <- lm(Expenditure ~ Income + I(Income^2), data = ps) anova(ps_lm, ps_lm2) ################################################### ### chunk number 31: ps-waldtest ################################################### waldtest(ps_lm, ps_lm2, vcov = vcovHC(ps_lm2, type = "HC4")) ################################################### ### chunk number 32: vcovHAC ################################################### rbind(SE = sqrt(diag(vcov(consump1))), QS = sqrt(diag(kernHAC(consump1))), NW = sqrt(diag(NeweyWest(consump1)))) ################################################### ### chunk number 33: solow-lm ################################################### data("OECDGrowth") solow_lm <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth + .05), data = OECDGrowth) summary(solow_lm) ################################################### ### chunk number 34: solow-plot eval=FALSE ################################################### ## plot(solow_lm) ################################################### ### chunk number 35: solow-lts ################################################### library("MASS") solow_lts <- lqs(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth + .05), data = OECDGrowth, psamp = 13, nsamp = "exact") ################################################### ### chunk number 36: solow-smallresid ################################################### smallresid <- which( abs(residuals(solow_lts)/solow_lts$scale[2]) <= 2.5) ################################################### ### chunk number 37: solow-nohighlev ################################################### X <- model.matrix(solow_lm)[,-1] Xcv <- cov.rob(X, nsamp = "exact") nohighlev <- which( sqrt(mahalanobis(X, Xcv$center, Xcv$cov)) <= 2.5) ################################################### ### chunk number 38: solow-goodobs ################################################### goodobs <- unique(c(smallresid, nohighlev)) ################################################### ### chunk number 39: solow-badobs ################################################### rownames(OECDGrowth)[-goodobs] ################################################### ### chunk number 40: solow-rob ################################################### solow_rob <- update(solow_lm, subset = goodobs) summary(solow_rob) ################################################### ### chunk number 41: quantreg ################################################### library("quantreg") ################################################### ### chunk number 42: cps-lad ################################################### library("quantreg") data("CPS1988") cps_f <- log(wage) ~ experience + I(experience^2) + education cps_lad <- rq(cps_f, data = CPS1988) summary(cps_lad) ################################################### ### chunk number 43: cps-rq ################################################### cps_rq <- rq(cps_f, tau = c(0.25, 0.75), data = CPS1988) summary(cps_rq) ################################################### ### chunk number 44: cps-rqs ################################################### cps_rq25 <- rq(cps_f, tau = 0.25, data = CPS1988) cps_rq75 <- rq(cps_f, tau = 0.75, data = CPS1988) anova(cps_rq25, cps_rq75) ################################################### ### chunk number 45: cps-rq-anova ################################################### anova(cps_rq25, cps_rq75, joint = FALSE) ################################################### ### chunk number 46: rqbig ################################################### cps_rqbig <- rq(cps_f, tau = seq(0.05, 0.95, by = 0.05), data = CPS1988) cps_rqbigs <- summary(cps_rqbig) ################################################### ### chunk number 47: rqbig-plot eval=FALSE ################################################### ## plot(cps_rqbigs) ################################################### ### chunk number 48: rqbig-plot1 ################################################### plot(cps_rqbigs) AER/tests/Ch-Intro.R0000644000175400001440000001441111570750326013773 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: journals-data ################################################### data("Journals", package = "AER") ################################################### ### chunk number 3: journals-dim ################################################### dim(Journals) names(Journals) ################################################### ### chunk number 4: journals-plot eval=FALSE ################################################### ## plot(log(subs) ~ log(price/citations), data = Journals) ################################################### ### chunk number 5: journals-lm eval=FALSE ################################################### ## j_lm <- lm(log(subs) ~ log(price/citations), data = Journals) ## abline(j_lm) ################################################### ### chunk number 6: journals-lmplot ################################################### plot(log(subs) ~ log(price/citations), data = Journals) j_lm <- lm(log(subs) ~ log(price/citations), data = Journals) abline(j_lm) ################################################### ### chunk number 7: journals-lm-summary ################################################### summary(j_lm) ################################################### ### chunk number 8: cps-data ################################################### data("CPS1985", package = "AER") cps <- CPS1985 ################################################### ### chunk number 9: cps-data1 eval=FALSE ################################################### ## data("CPS1985", package = "AER") ## cps <- CPS1985 ################################################### ### chunk number 10: cps-reg ################################################### library("quantreg") cps_lm <- lm(log(wage) ~ experience + I(experience^2) + education, data = cps) cps_rq <- rq(log(wage) ~ experience + I(experience^2) + education, data = cps, tau = seq(0.2, 0.8, by = 0.15)) ################################################### ### chunk number 11: cps-predict ################################################### cps2 <- data.frame(education = mean(cps$education), experience = min(cps$experience):max(cps$experience)) cps2 <- cbind(cps2, predict(cps_lm, newdata = cps2, interval = "prediction")) cps2 <- cbind(cps2, predict(cps_rq, newdata = cps2, type = "")) ################################################### ### chunk number 12: rq-plot eval=FALSE ################################################### ## plot(log(wage) ~ experience, data = cps) ## for(i in 6:10) lines(cps2[,i] ~ experience, ## data = cps2, col = "red") ################################################### ### chunk number 13: rq-plot1 ################################################### plot(log(wage) ~ experience, data = cps) for(i in 6:10) lines(cps2[,i] ~ experience, data = cps2, col = "red") ################################################### ### chunk number 14: srq-plot eval=FALSE ################################################### ## plot(summary(cps_rq)) ################################################### ### chunk number 15: srq-plot1 ################################################### plot(summary(cps_rq)) ################################################### ### chunk number 16: bkde-fit ################################################### library("KernSmooth") cps_bkde <- bkde2D(cbind(cps$experience, log(cps$wage)), bandwidth = c(3.5, 0.5), gridsize = c(200, 200)) ################################################### ### chunk number 17: bkde-plot eval=FALSE ################################################### ## image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat, ## col = rev(gray.colors(10, gamma = 1)), ## xlab = "experience", ylab = "log(wage)") ## box() ## lines(fit ~ experience, data = cps2) ## lines(lwr ~ experience, data = cps2, lty = 2) ## lines(upr ~ experience, data = cps2, lty = 2) ################################################### ### chunk number 18: bkde-plot1 ################################################### image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat, col = rev(gray.colors(10, gamma = 1)), xlab = "experience", ylab = "log(wage)") box() lines(fit ~ experience, data = cps2) lines(lwr ~ experience, data = cps2, lty = 2) lines(upr ~ experience, data = cps2, lty = 2) ################################################### ### chunk number 19: install eval=FALSE ################################################### ## install.packages("AER") ################################################### ### chunk number 20: library ################################################### library("AER") ################################################### ### chunk number 21: objects ################################################### objects() ################################################### ### chunk number 22: search ################################################### search() ################################################### ### chunk number 23: assignment ################################################### x <- 2 objects() ################################################### ### chunk number 24: remove ################################################### remove(x) objects() ################################################### ### chunk number 25: log eval=FALSE ################################################### ## log(16, 2) ## log(x = 16, 2) ## log(16, base = 2) ## log(base = 2, x = 16) ################################################### ### chunk number 26: q eval=FALSE ################################################### ## q() ################################################### ### chunk number 27: apropos ################################################### apropos("help") AER/tests/Ch-LinearRegression.R0000644000175400001440000004655212466512306016165 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: data-journals ################################################### data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations summary(journals) ################################################### ### chunk number 3: linreg-plot eval=FALSE ################################################### ## plot(log(subs) ~ log(citeprice), data = journals) ## jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) ## abline(jour_lm) ################################################### ### chunk number 4: linreg-plot1 ################################################### plot(log(subs) ~ log(citeprice), data = journals) jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) abline(jour_lm) ################################################### ### chunk number 5: linreg-class ################################################### class(jour_lm) ################################################### ### chunk number 6: linreg-names ################################################### names(jour_lm) ################################################### ### chunk number 7: linreg-summary ################################################### summary(jour_lm) ################################################### ### chunk number 8: linreg-summary ################################################### jour_slm <- summary(jour_lm) class(jour_slm) names(jour_slm) ################################################### ### chunk number 9: linreg-coef ################################################### jour_slm$coefficients ################################################### ### chunk number 10: linreg-anova ################################################### anova(jour_lm) ################################################### ### chunk number 11: journals-coef ################################################### coef(jour_lm) ################################################### ### chunk number 12: journals-confint ################################################### confint(jour_lm, level = 0.95) ################################################### ### chunk number 13: journals-predict ################################################### predict(jour_lm, newdata = data.frame(citeprice = 2.11), interval = "confidence") predict(jour_lm, newdata = data.frame(citeprice = 2.11), interval = "prediction") ################################################### ### chunk number 14: predict-plot eval=FALSE ################################################### ## lciteprice <- seq(from = -6, to = 4, by = 0.25) ## jour_pred <- predict(jour_lm, interval = "prediction", ## newdata = data.frame(citeprice = exp(lciteprice))) ## plot(log(subs) ~ log(citeprice), data = journals) ## lines(jour_pred[, 1] ~ lciteprice, col = 1) ## lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2) ## lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2) ################################################### ### chunk number 15: predict-plot1 ################################################### lciteprice <- seq(from = -6, to = 4, by = 0.25) jour_pred <- predict(jour_lm, interval = "prediction", newdata = data.frame(citeprice = exp(lciteprice))) plot(log(subs) ~ log(citeprice), data = journals) lines(jour_pred[, 1] ~ lciteprice, col = 1) lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2) lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2) ################################################### ### chunk number 16: journals-plot eval=FALSE ################################################### ## par(mfrow = c(2, 2)) ## plot(jour_lm) ## par(mfrow = c(1, 1)) ################################################### ### chunk number 17: journals-plot1 ################################################### par(mfrow = c(2, 2)) plot(jour_lm) par(mfrow = c(1, 1)) ################################################### ### chunk number 18: journal-lht ################################################### linearHypothesis(jour_lm, "log(citeprice) = -0.5") ################################################### ### chunk number 19: CPS-data ################################################### data("CPS1988") summary(CPS1988) ################################################### ### chunk number 20: CPS-base ################################################### cps_lm <- lm(log(wage) ~ experience + I(experience^2) + education + ethnicity, data = CPS1988) ################################################### ### chunk number 21: CPS-visualization-unused eval=FALSE ################################################### ## ex <- 0:56 ## ed <- with(CPS1988, tapply(education, ## list(ethnicity, experience), mean))[, as.character(ex)] ## fm <- cps_lm ## wago <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) ## wagb <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "afam", education = as.numeric(ed["afam",]))) ## plot(log(wage) ~ experience, data = CPS1988, pch = ".", ## col = as.numeric(ethnicity)) ## lines(ex, wago) ## lines(ex, wagb, col = 2) ################################################### ### chunk number 22: CPS-summary ################################################### summary(cps_lm) ################################################### ### chunk number 23: CPS-noeth ################################################### cps_noeth <- lm(log(wage) ~ experience + I(experience^2) + education, data = CPS1988) anova(cps_noeth, cps_lm) ################################################### ### chunk number 24: CPS-anova ################################################### anova(cps_lm) ################################################### ### chunk number 25: CPS-noeth2 eval=FALSE ################################################### ## cps_noeth <- update(cps_lm, formula = . ~ . - ethnicity) ################################################### ### chunk number 26: CPS-waldtest ################################################### waldtest(cps_lm, . ~ . - ethnicity) ################################################### ### chunk number 27: CPS-spline ################################################### library("splines") cps_plm <- lm(log(wage) ~ bs(experience, df = 5) + education + ethnicity, data = CPS1988) ################################################### ### chunk number 28: CPS-spline-summary eval=FALSE ################################################### ## summary(cps_plm) ################################################### ### chunk number 29: CPS-BIC ################################################### cps_bs <- lapply(3:10, function(i) lm(log(wage) ~ bs(experience, df = i) + education + ethnicity, data = CPS1988)) structure(sapply(cps_bs, AIC, k = log(nrow(CPS1988))), .Names = 3:10) ################################################### ### chunk number 30: plm-plot eval=FALSE ################################################### ## cps <- data.frame(experience = -2:60, education = ## with(CPS1988, mean(education[ethnicity == "cauc"])), ## ethnicity = "cauc") ## cps$yhat1 <- predict(cps_lm, newdata = cps) ## cps$yhat2 <- predict(cps_plm, newdata = cps) ## ## plot(log(wage) ~ jitter(experience, factor = 3), pch = 19, ## col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988) ## lines(yhat1 ~ experience, data = cps, lty = 2) ## lines(yhat2 ~ experience, data = cps) ## legend("topleft", c("quadratic", "spline"), lty = c(2,1), ## bty = "n") ################################################### ### chunk number 31: plm-plot1 ################################################### cps <- data.frame(experience = -2:60, education = with(CPS1988, mean(education[ethnicity == "cauc"])), ethnicity = "cauc") cps$yhat1 <- predict(cps_lm, newdata = cps) cps$yhat2 <- predict(cps_plm, newdata = cps) plot(log(wage) ~ jitter(experience, factor = 3), pch = 19, col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988) lines(yhat1 ~ experience, data = cps, lty = 2) lines(yhat2 ~ experience, data = cps) legend("topleft", c("quadratic", "spline"), lty = c(2,1), bty = "n") ################################################### ### chunk number 32: CPS-int ################################################### cps_int <- lm(log(wage) ~ experience + I(experience^2) + education * ethnicity, data = CPS1988) coeftest(cps_int) ################################################### ### chunk number 33: CPS-int2 eval=FALSE ################################################### ## cps_int <- lm(log(wage) ~ experience + I(experience^2) + ## education + ethnicity + education:ethnicity, ## data = CPS1988) ################################################### ### chunk number 34: CPS-sep ################################################### cps_sep <- lm(log(wage) ~ ethnicity / (experience + I(experience^2) + education) - 1, data = CPS1988) ################################################### ### chunk number 35: CPS-sep-coef ################################################### cps_sep_cf <- matrix(coef(cps_sep), nrow = 2) rownames(cps_sep_cf) <- levels(CPS1988$ethnicity) colnames(cps_sep_cf) <- names(coef(cps_lm))[1:4] cps_sep_cf ################################################### ### chunk number 36: CPS-sep-anova ################################################### anova(cps_sep, cps_lm) ################################################### ### chunk number 37: CPS-sep-visualization-unused eval=FALSE ################################################### ## ex <- 0:56 ## ed <- with(CPS1988, tapply(education, list(ethnicity, ## experience), mean))[, as.character(ex)] ## fm <- cps_lm ## wago <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) ## wagb <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "afam", education = as.numeric(ed["afam",]))) ## plot(log(wage) ~ jitter(experience, factor = 2), ## data = CPS1988, pch = ".", col = as.numeric(ethnicity)) ## ## ## plot(log(wage) ~ as.factor(experience), data = CPS1988, ## pch = ".") ## lines(ex, wago, lwd = 2) ## lines(ex, wagb, col = 2, lwd = 2) ## fm <- cps_sep ## wago <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) ## wagb <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "afam", education = as.numeric(ed["afam",]))) ## lines(ex, wago, lty = 2, lwd = 2) ## lines(ex, wagb, col = 2, lty = 2, lwd = 2) ################################################### ### chunk number 38: CPS-region ################################################### CPS1988$region <- relevel(CPS1988$region, ref = "south") cps_region <- lm(log(wage) ~ ethnicity + education + experience + I(experience^2) + region, data = CPS1988) coef(cps_region) ################################################### ### chunk number 39: wls1 ################################################### jour_wls1 <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice^2) ################################################### ### chunk number 40: wls2 ################################################### jour_wls2 <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice) ################################################### ### chunk number 41: journals-wls1 eval=FALSE ################################################### ## plot(log(subs) ~ log(citeprice), data = journals) ## abline(jour_lm) ## abline(jour_wls1, lwd = 2, lty = 2) ## abline(jour_wls2, lwd = 2, lty = 3) ## legend("bottomleft", c("OLS", "WLS1", "WLS2"), ## lty = 1:3, lwd = 2, bty = "n") ################################################### ### chunk number 42: journals-wls11 ################################################### plot(log(subs) ~ log(citeprice), data = journals) abline(jour_lm) abline(jour_wls1, lwd = 2, lty = 2) abline(jour_wls2, lwd = 2, lty = 3) legend("bottomleft", c("OLS", "WLS1", "WLS2"), lty = 1:3, lwd = 2, bty = "n") ################################################### ### chunk number 43: fgls1 ################################################### auxreg <- lm(log(residuals(jour_lm)^2) ~ log(citeprice), data = journals) jour_fgls1 <- lm(log(subs) ~ log(citeprice), weights = 1/exp(fitted(auxreg)), data = journals) ################################################### ### chunk number 44: fgls2 ################################################### gamma2i <- coef(auxreg)[2] gamma2 <- 0 while(abs((gamma2i - gamma2)/gamma2) > 1e-7) { gamma2 <- gamma2i fglsi <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice^gamma2) gamma2i <- coef(lm(log(residuals(fglsi)^2) ~ log(citeprice), data = journals))[2] } jour_fgls2 <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice^gamma2) ################################################### ### chunk number 45: fgls2-coef ################################################### coef(jour_fgls2) ################################################### ### chunk number 46: journals-fgls ################################################### plot(log(subs) ~ log(citeprice), data = journals) abline(jour_lm) abline(jour_fgls2, lty = 2, lwd = 2) ################################################### ### chunk number 47: usmacro-plot eval=FALSE ################################################### ## data("USMacroG") ## plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1), ## plot.type = "single", ylab = "") ## legend("topleft", legend = c("income", "consumption"), ## lty = c(3, 1), bty = "n") ################################################### ### chunk number 48: usmacro-plot1 ################################################### data("USMacroG") plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1), plot.type = "single", ylab = "") legend("topleft", legend = c("income", "consumption"), lty = c(3, 1), bty = "n") ################################################### ### chunk number 49: usmacro-fit ################################################### library("dynlm") cons_lm1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) cons_lm2 <- dynlm(consumption ~ dpi + L(consumption), data = USMacroG) ################################################### ### chunk number 50: usmacro-summary1 ################################################### summary(cons_lm1) ################################################### ### chunk number 51: usmacro-summary2 ################################################### summary(cons_lm2) ################################################### ### chunk number 52: dynlm-plot eval=FALSE ################################################### ## plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1), ## fitted(cons_lm2), 0, residuals(cons_lm1), ## residuals(cons_lm2)), screens = rep(1:2, c(3, 3)), ## lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"), ## xlab = "Time", main = "") ## legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"), ## lty = 1:3, bty = "n") ################################################### ### chunk number 53: dynlm-plot1 ################################################### plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1), fitted(cons_lm2), 0, residuals(cons_lm1), residuals(cons_lm2)), screens = rep(1:2, c(3, 3)), lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"), xlab = "Time", main = "") legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"), lty = 1:3, bty = "n") ################################################### ### chunk number 54: encompassing1 ################################################### cons_lmE <- dynlm(consumption ~ dpi + L(dpi) + L(consumption), data = USMacroG) ################################################### ### chunk number 55: encompassing2 ################################################### anova(cons_lm1, cons_lmE, cons_lm2) ################################################### ### chunk number 56: encompassing3 ################################################### encomptest(cons_lm1, cons_lm2) ################################################### ### chunk number 57: plm-data ################################################### data("Grunfeld", package = "AER") library("plm") gr <- subset(Grunfeld, firm %in% c("General Electric", "General Motors", "IBM")) pgr <- plm.data(gr, index = c("firm", "year")) ################################################### ### chunk number 58: plm-pool ################################################### gr_pool <- plm(invest ~ value + capital, data = pgr, model = "pooling") ################################################### ### chunk number 59: plm-FE ################################################### gr_fe <- plm(invest ~ value + capital, data = pgr, model = "within") summary(gr_fe) ################################################### ### chunk number 60: plm-pFtest ################################################### pFtest(gr_fe, gr_pool) ################################################### ### chunk number 61: plm-RE ################################################### gr_re <- plm(invest ~ value + capital, data = pgr, model = "random", random.method = "walhus") summary(gr_re) ################################################### ### chunk number 62: plm-plmtest ################################################### plmtest(gr_pool) ################################################### ### chunk number 63: plm-phtest ################################################### phtest(gr_re, gr_fe) ################################################### ### chunk number 64: EmplUK-data ################################################### data("EmplUK", package = "plm") form <- log(emp) ~ log(wage) + log(capital) + log(output) ################################################### ### chunk number 65: plm-AB ################################################### empl_ab <- pgmm(dynformula(form, list(2, 1, 0, 1)), data = EmplUK, index = c("firm", "year"), effect = "twoways", model = "twosteps", gmm.inst = ~ log(emp), lag.gmm = list(c(2, 99))) ################################################### ### chunk number 66: plm-AB-summary ################################################### summary(empl_ab, robust = FALSE) ################################################### ### chunk number 67: systemfit ################################################### library("systemfit") gr2 <- subset(Grunfeld, firm %in% c("Chrysler", "IBM")) pgr2 <- plm.data(gr2, c("firm", "year")) ################################################### ### chunk number 68: SUR ################################################### gr_sur <- systemfit(invest ~ value + capital, method = "SUR", data = pgr2) summary(gr_sur, residCov = FALSE, equations = FALSE) ################################################### ### chunk number 69: nlme eval=FALSE ################################################### ## library("nlme") ## g1 <- subset(Grunfeld, firm == "Westinghouse") ## gls(invest ~ value + capital, data = g1, correlation = corAR1()) AER/tests/Ch-LinearRegression.Rout.save0000644000175400001440000010222113022366302017624 0ustar zeileisusers R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: data-journals R> ################################################### R> data("Journals") R> journals <- Journals[, c("subs", "price")] R> journals$citeprice <- Journals$price/Journals$citations R> summary(journals) subs price citeprice Min. : 2 Min. : 20 Min. : 0.005 1st Qu.: 52 1st Qu.: 134 1st Qu.: 0.464 Median : 122 Median : 282 Median : 1.321 Mean : 197 Mean : 418 Mean : 2.548 3rd Qu.: 268 3rd Qu.: 541 3rd Qu.: 3.440 Max. :1098 Max. :2120 Max. :24.459 R> R> R> ################################################### R> ### chunk number 3: linreg-plot eval=FALSE R> ################################################### R> ## plot(log(subs) ~ log(citeprice), data = journals) R> ## jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) R> ## abline(jour_lm) R> R> R> ################################################### R> ### chunk number 4: linreg-plot1 R> ################################################### R> plot(log(subs) ~ log(citeprice), data = journals) R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) R> abline(jour_lm) R> R> R> ################################################### R> ### chunk number 5: linreg-class R> ################################################### R> class(jour_lm) [1] "lm" R> R> R> ################################################### R> ### chunk number 6: linreg-names R> ################################################### R> names(jour_lm) [1] "coefficients" "residuals" "effects" [4] "rank" "fitted.values" "assign" [7] "qr" "df.residual" "xlevels" [10] "call" "terms" "model" R> R> R> ################################################### R> ### chunk number 7: linreg-summary R> ################################################### R> summary(jour_lm) Call: lm(formula = log(subs) ~ log(citeprice), data = journals) Residuals: Min 1Q Median 3Q Max -2.7248 -0.5361 0.0372 0.4662 1.8481 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.7662 0.0559 85.2 <2e-16 log(citeprice) -0.5331 0.0356 -15.0 <2e-16 Residual standard error: 0.75 on 178 degrees of freedom Multiple R-squared: 0.557, Adjusted R-squared: 0.555 F-statistic: 224 on 1 and 178 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 8: linreg-summary R> ################################################### R> jour_slm <- summary(jour_lm) R> class(jour_slm) [1] "summary.lm" R> names(jour_slm) [1] "call" "terms" "residuals" [4] "coefficients" "aliased" "sigma" [7] "df" "r.squared" "adj.r.squared" [10] "fstatistic" "cov.unscaled" R> R> R> ################################################### R> ### chunk number 9: linreg-coef R> ################################################### R> jour_slm$coefficients Estimate Std. Error t value Pr(>|t|) (Intercept) 4.7662 0.05591 85.25 2.954e-146 log(citeprice) -0.5331 0.03561 -14.97 2.564e-33 R> R> R> ################################################### R> ### chunk number 10: linreg-anova R> ################################################### R> anova(jour_lm) Analysis of Variance Table Response: log(subs) Df Sum Sq Mean Sq F value Pr(>F) log(citeprice) 1 126 125.9 224 <2e-16 Residuals 178 100 0.6 R> R> R> ################################################### R> ### chunk number 11: journals-coef R> ################################################### R> coef(jour_lm) (Intercept) log(citeprice) 4.7662 -0.5331 R> R> R> ################################################### R> ### chunk number 12: journals-confint R> ################################################### R> confint(jour_lm, level = 0.95) 2.5 % 97.5 % (Intercept) 4.6559 4.8765 log(citeprice) -0.6033 -0.4628 R> R> R> ################################################### R> ### chunk number 13: journals-predict R> ################################################### R> predict(jour_lm, newdata = data.frame(citeprice = 2.11), + interval = "confidence") fit lwr upr 1 4.368 4.247 4.489 R> predict(jour_lm, newdata = data.frame(citeprice = 2.11), + interval = "prediction") fit lwr upr 1 4.368 2.884 5.853 R> R> R> ################################################### R> ### chunk number 14: predict-plot eval=FALSE R> ################################################### R> ## lciteprice <- seq(from = -6, to = 4, by = 0.25) R> ## jour_pred <- predict(jour_lm, interval = "prediction", R> ## newdata = data.frame(citeprice = exp(lciteprice))) R> ## plot(log(subs) ~ log(citeprice), data = journals) R> ## lines(jour_pred[, 1] ~ lciteprice, col = 1) R> ## lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2) R> ## lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2) R> R> R> ################################################### R> ### chunk number 15: predict-plot1 R> ################################################### R> lciteprice <- seq(from = -6, to = 4, by = 0.25) R> jour_pred <- predict(jour_lm, interval = "prediction", + newdata = data.frame(citeprice = exp(lciteprice))) R> plot(log(subs) ~ log(citeprice), data = journals) R> lines(jour_pred[, 1] ~ lciteprice, col = 1) R> lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2) R> lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2) R> R> R> ################################################### R> ### chunk number 16: journals-plot eval=FALSE R> ################################################### R> ## par(mfrow = c(2, 2)) R> ## plot(jour_lm) R> ## par(mfrow = c(1, 1)) R> R> R> ################################################### R> ### chunk number 17: journals-plot1 R> ################################################### R> par(mfrow = c(2, 2)) R> plot(jour_lm) R> par(mfrow = c(1, 1)) R> R> R> ################################################### R> ### chunk number 18: journal-lht R> ################################################### R> linearHypothesis(jour_lm, "log(citeprice) = -0.5") Linear hypothesis test Hypothesis: log(citeprice) = - 0.5 Model 1: restricted model Model 2: log(subs) ~ log(citeprice) Res.Df RSS Df Sum of Sq F Pr(>F) 1 179 100 2 178 100 1 0.484 0.86 0.35 R> R> R> ################################################### R> ### chunk number 19: CPS-data R> ################################################### R> data("CPS1988") R> summary(CPS1988) wage education experience ethnicity Min. : 50 Min. : 0.0 Min. :-4.0 cauc:25923 1st Qu.: 309 1st Qu.:12.0 1st Qu.: 8.0 afam: 2232 Median : 522 Median :12.0 Median :16.0 Mean : 604 Mean :13.1 Mean :18.2 3rd Qu.: 783 3rd Qu.:15.0 3rd Qu.:27.0 Max. :18777 Max. :18.0 Max. :63.0 smsa region parttime no : 7223 northeast:6441 no :25631 yes:20932 midwest :6863 yes: 2524 south :8760 west :6091 R> R> R> ################################################### R> ### chunk number 20: CPS-base R> ################################################### R> cps_lm <- lm(log(wage) ~ experience + I(experience^2) + + education + ethnicity, data = CPS1988) R> R> R> ################################################### R> ### chunk number 21: CPS-visualization-unused eval=FALSE R> ################################################### R> ## ex <- 0:56 R> ## ed <- with(CPS1988, tapply(education, R> ## list(ethnicity, experience), mean))[, as.character(ex)] R> ## fm <- cps_lm R> ## wago <- predict(fm, newdata = data.frame(experience = ex, R> ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) R> ## wagb <- predict(fm, newdata = data.frame(experience = ex, R> ## ethnicity = "afam", education = as.numeric(ed["afam",]))) R> ## plot(log(wage) ~ experience, data = CPS1988, pch = ".", R> ## col = as.numeric(ethnicity)) R> ## lines(ex, wago) R> ## lines(ex, wagb, col = 2) R> R> R> ################################################### R> ### chunk number 22: CPS-summary R> ################################################### R> summary(cps_lm) Call: lm(formula = log(wage) ~ experience + I(experience^2) + education + ethnicity, data = CPS1988) Residuals: Min 1Q Median 3Q Max -2.943 -0.316 0.058 0.376 4.383 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.321395 0.019174 225.4 <2e-16 experience 0.077473 0.000880 88.0 <2e-16 I(experience^2) -0.001316 0.000019 -69.3 <2e-16 education 0.085673 0.001272 67.3 <2e-16 ethnicityafam -0.243364 0.012918 -18.8 <2e-16 Residual standard error: 0.584 on 28150 degrees of freedom Multiple R-squared: 0.335, Adjusted R-squared: 0.335 F-statistic: 3.54e+03 on 4 and 28150 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 23: CPS-noeth R> ################################################### R> cps_noeth <- lm(log(wage) ~ experience + I(experience^2) + + education, data = CPS1988) R> anova(cps_noeth, cps_lm) Analysis of Variance Table Model 1: log(wage) ~ experience + I(experience^2) + education Model 2: log(wage) ~ experience + I(experience^2) + education + ethnicity Res.Df RSS Df Sum of Sq F Pr(>F) 1 28151 9720 2 28150 9599 1 121 355 <2e-16 R> R> R> ################################################### R> ### chunk number 24: CPS-anova R> ################################################### R> anova(cps_lm) Analysis of Variance Table Response: log(wage) Df Sum Sq Mean Sq F value Pr(>F) experience 1 840 840 2462 <2e-16 I(experience^2) 1 2249 2249 6597 <2e-16 education 1 1620 1620 4750 <2e-16 ethnicity 1 121 121 355 <2e-16 Residuals 28150 9599 0 R> R> R> ################################################### R> ### chunk number 25: CPS-noeth2 eval=FALSE R> ################################################### R> ## cps_noeth <- update(cps_lm, formula = . ~ . - ethnicity) R> R> R> ################################################### R> ### chunk number 26: CPS-waldtest R> ################################################### R> waldtest(cps_lm, . ~ . - ethnicity) Wald test Model 1: log(wage) ~ experience + I(experience^2) + education + ethnicity Model 2: log(wage) ~ experience + I(experience^2) + education Res.Df Df F Pr(>F) 1 28150 2 28151 -1 355 <2e-16 R> R> R> ################################################### R> ### chunk number 27: CPS-spline R> ################################################### R> library("splines") R> cps_plm <- lm(log(wage) ~ bs(experience, df = 5) + + education + ethnicity, data = CPS1988) R> R> R> ################################################### R> ### chunk number 28: CPS-spline-summary eval=FALSE R> ################################################### R> ## summary(cps_plm) R> R> R> ################################################### R> ### chunk number 29: CPS-BIC R> ################################################### R> cps_bs <- lapply(3:10, function(i) lm(log(wage) ~ + bs(experience, df = i) + education + ethnicity, + data = CPS1988)) R> structure(sapply(cps_bs, AIC, k = log(nrow(CPS1988))), + .Names = 3:10) 3 4 5 6 7 8 9 10 49205 48836 48794 48795 48801 48797 48799 48802 R> R> R> ################################################### R> ### chunk number 30: plm-plot eval=FALSE R> ################################################### R> ## cps <- data.frame(experience = -2:60, education = R> ## with(CPS1988, mean(education[ethnicity == "cauc"])), R> ## ethnicity = "cauc") R> ## cps$yhat1 <- predict(cps_lm, newdata = cps) R> ## cps$yhat2 <- predict(cps_plm, newdata = cps) R> ## R> ## plot(log(wage) ~ jitter(experience, factor = 3), pch = 19, R> ## col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988) R> ## lines(yhat1 ~ experience, data = cps, lty = 2) R> ## lines(yhat2 ~ experience, data = cps) R> ## legend("topleft", c("quadratic", "spline"), lty = c(2,1), R> ## bty = "n") R> R> R> ################################################### R> ### chunk number 31: plm-plot1 R> ################################################### R> cps <- data.frame(experience = -2:60, education = + with(CPS1988, mean(education[ethnicity == "cauc"])), + ethnicity = "cauc") R> cps$yhat1 <- predict(cps_lm, newdata = cps) R> cps$yhat2 <- predict(cps_plm, newdata = cps) R> R> plot(log(wage) ~ jitter(experience, factor = 3), pch = 19, + col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988) R> lines(yhat1 ~ experience, data = cps, lty = 2) R> lines(yhat2 ~ experience, data = cps) R> legend("topleft", c("quadratic", "spline"), lty = c(2,1), + bty = "n") R> R> R> ################################################### R> ### chunk number 32: CPS-int R> ################################################### R> cps_int <- lm(log(wage) ~ experience + I(experience^2) + + education * ethnicity, data = CPS1988) R> coeftest(cps_int) t test of coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.313059 0.019590 220.17 <2e-16 experience 0.077520 0.000880 88.06 <2e-16 I(experience^2) -0.001318 0.000019 -69.34 <2e-16 education 0.086312 0.001309 65.94 <2e-16 ethnicityafam -0.123887 0.059026 -2.10 0.036 education:ethnicityafam -0.009648 0.004651 -2.07 0.038 R> R> R> ################################################### R> ### chunk number 33: CPS-int2 eval=FALSE R> ################################################### R> ## cps_int <- lm(log(wage) ~ experience + I(experience^2) + R> ## education + ethnicity + education:ethnicity, R> ## data = CPS1988) R> R> R> ################################################### R> ### chunk number 34: CPS-sep R> ################################################### R> cps_sep <- lm(log(wage) ~ ethnicity / + (experience + I(experience^2) + education) - 1, + data = CPS1988) R> R> R> ################################################### R> ### chunk number 35: CPS-sep-coef R> ################################################### R> cps_sep_cf <- matrix(coef(cps_sep), nrow = 2) R> rownames(cps_sep_cf) <- levels(CPS1988$ethnicity) R> colnames(cps_sep_cf) <- names(coef(cps_lm))[1:4] R> cps_sep_cf (Intercept) experience I(experience^2) education cauc 4.310 0.07923 -0.0013597 0.08575 afam 4.159 0.06190 -0.0009415 0.08654 R> R> R> ################################################### R> ### chunk number 36: CPS-sep-anova R> ################################################### R> anova(cps_sep, cps_lm) Analysis of Variance Table Model 1: log(wage) ~ ethnicity/(experience + I(experience^2) + education) - 1 Model 2: log(wage) ~ experience + I(experience^2) + education + ethnicity Res.Df RSS Df Sum of Sq F Pr(>F) 1 28147 9582 2 28150 9599 -3 -16.8 16.5 1.1e-10 R> R> R> ################################################### R> ### chunk number 37: CPS-sep-visualization-unused eval=FALSE R> ################################################### R> ## ex <- 0:56 R> ## ed <- with(CPS1988, tapply(education, list(ethnicity, R> ## experience), mean))[, as.character(ex)] R> ## fm <- cps_lm R> ## wago <- predict(fm, newdata = data.frame(experience = ex, R> ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) R> ## wagb <- predict(fm, newdata = data.frame(experience = ex, R> ## ethnicity = "afam", education = as.numeric(ed["afam",]))) R> ## plot(log(wage) ~ jitter(experience, factor = 2), R> ## data = CPS1988, pch = ".", col = as.numeric(ethnicity)) R> ## R> ## R> ## plot(log(wage) ~ as.factor(experience), data = CPS1988, R> ## pch = ".") R> ## lines(ex, wago, lwd = 2) R> ## lines(ex, wagb, col = 2, lwd = 2) R> ## fm <- cps_sep R> ## wago <- predict(fm, newdata = data.frame(experience = ex, R> ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) R> ## wagb <- predict(fm, newdata = data.frame(experience = ex, R> ## ethnicity = "afam", education = as.numeric(ed["afam",]))) R> ## lines(ex, wago, lty = 2, lwd = 2) R> ## lines(ex, wagb, col = 2, lty = 2, lwd = 2) R> R> R> ################################################### R> ### chunk number 38: CPS-region R> ################################################### R> CPS1988$region <- relevel(CPS1988$region, ref = "south") R> cps_region <- lm(log(wage) ~ ethnicity + education + + experience + I(experience^2) + region, data = CPS1988) R> coef(cps_region) (Intercept) ethnicityafam education experience 4.283606 -0.225679 0.084672 0.077656 I(experience^2) regionnortheast regionmidwest regionwest -0.001323 0.131920 0.043789 0.040327 R> R> R> ################################################### R> ### chunk number 39: wls1 R> ################################################### R> jour_wls1 <- lm(log(subs) ~ log(citeprice), data = journals, + weights = 1/citeprice^2) R> R> R> ################################################### R> ### chunk number 40: wls2 R> ################################################### R> jour_wls2 <- lm(log(subs) ~ log(citeprice), data = journals, + weights = 1/citeprice) R> R> R> ################################################### R> ### chunk number 41: journals-wls1 eval=FALSE R> ################################################### R> ## plot(log(subs) ~ log(citeprice), data = journals) R> ## abline(jour_lm) R> ## abline(jour_wls1, lwd = 2, lty = 2) R> ## abline(jour_wls2, lwd = 2, lty = 3) R> ## legend("bottomleft", c("OLS", "WLS1", "WLS2"), R> ## lty = 1:3, lwd = 2, bty = "n") R> R> R> ################################################### R> ### chunk number 42: journals-wls11 R> ################################################### R> plot(log(subs) ~ log(citeprice), data = journals) R> abline(jour_lm) R> abline(jour_wls1, lwd = 2, lty = 2) R> abline(jour_wls2, lwd = 2, lty = 3) R> legend("bottomleft", c("OLS", "WLS1", "WLS2"), + lty = 1:3, lwd = 2, bty = "n") R> R> R> ################################################### R> ### chunk number 43: fgls1 R> ################################################### R> auxreg <- lm(log(residuals(jour_lm)^2) ~ log(citeprice), + data = journals) R> jour_fgls1 <- lm(log(subs) ~ log(citeprice), + weights = 1/exp(fitted(auxreg)), data = journals) R> R> R> ################################################### R> ### chunk number 44: fgls2 R> ################################################### R> gamma2i <- coef(auxreg)[2] R> gamma2 <- 0 R> while(abs((gamma2i - gamma2)/gamma2) > 1e-7) { + gamma2 <- gamma2i + fglsi <- lm(log(subs) ~ log(citeprice), data = journals, + weights = 1/citeprice^gamma2) + gamma2i <- coef(lm(log(residuals(fglsi)^2) ~ + log(citeprice), data = journals))[2] + } R> jour_fgls2 <- lm(log(subs) ~ log(citeprice), data = journals, + weights = 1/citeprice^gamma2) R> R> R> ################################################### R> ### chunk number 45: fgls2-coef R> ################################################### R> coef(jour_fgls2) (Intercept) log(citeprice) 4.7758 -0.5008 R> R> R> ################################################### R> ### chunk number 46: journals-fgls R> ################################################### R> plot(log(subs) ~ log(citeprice), data = journals) R> abline(jour_lm) R> abline(jour_fgls2, lty = 2, lwd = 2) R> R> R> ################################################### R> ### chunk number 47: usmacro-plot eval=FALSE R> ################################################### R> ## data("USMacroG") R> ## plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1), R> ## plot.type = "single", ylab = "") R> ## legend("topleft", legend = c("income", "consumption"), R> ## lty = c(3, 1), bty = "n") R> R> R> ################################################### R> ### chunk number 48: usmacro-plot1 R> ################################################### R> data("USMacroG") R> plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1), + plot.type = "single", ylab = "") R> legend("topleft", legend = c("income", "consumption"), + lty = c(3, 1), bty = "n") R> R> R> ################################################### R> ### chunk number 49: usmacro-fit R> ################################################### R> library("dynlm") R> cons_lm1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) R> cons_lm2 <- dynlm(consumption ~ dpi + L(consumption), + data = USMacroG) R> R> R> ################################################### R> ### chunk number 50: usmacro-summary1 R> ################################################### R> summary(cons_lm1) Time series regression with "ts" data: Start = 1950(2), End = 2000(4) Call: dynlm(formula = consumption ~ dpi + L(dpi), data = USMacroG) Residuals: Min 1Q Median 3Q Max -190.0 -56.7 1.6 49.9 323.9 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -81.0796 14.5081 -5.59 7.4e-08 dpi 0.8912 0.2063 4.32 2.4e-05 L(dpi) 0.0309 0.2075 0.15 0.88 Residual standard error: 87.6 on 200 degrees of freedom Multiple R-squared: 0.996, Adjusted R-squared: 0.996 F-statistic: 2.79e+04 on 2 and 200 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 51: usmacro-summary2 R> ################################################### R> summary(cons_lm2) Time series regression with "ts" data: Start = 1950(2), End = 2000(4) Call: dynlm(formula = consumption ~ dpi + L(consumption), data = USMacroG) Residuals: Min 1Q Median 3Q Max -101.30 -9.67 1.14 12.69 45.32 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.53522 3.84517 0.14 0.89 dpi -0.00406 0.01663 -0.24 0.81 L(consumption) 1.01311 0.01816 55.79 <2e-16 Residual standard error: 21.5 on 200 degrees of freedom Multiple R-squared: 1, Adjusted R-squared: 1 F-statistic: 4.63e+05 on 2 and 200 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 52: dynlm-plot eval=FALSE R> ################################################### R> ## plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1), R> ## fitted(cons_lm2), 0, residuals(cons_lm1), R> ## residuals(cons_lm2)), screens = rep(1:2, c(3, 3)), R> ## lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"), R> ## xlab = "Time", main = "") R> ## legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"), R> ## lty = 1:3, bty = "n") R> R> R> ################################################### R> ### chunk number 53: dynlm-plot1 R> ################################################### R> plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1), + fitted(cons_lm2), 0, residuals(cons_lm1), + residuals(cons_lm2)), screens = rep(1:2, c(3, 3)), + lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"), + xlab = "Time", main = "") R> legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"), + lty = 1:3, bty = "n") R> R> R> ################################################### R> ### chunk number 54: encompassing1 R> ################################################### R> cons_lmE <- dynlm(consumption ~ dpi + L(dpi) + + L(consumption), data = USMacroG) R> R> R> ################################################### R> ### chunk number 55: encompassing2 R> ################################################### R> anova(cons_lm1, cons_lmE, cons_lm2) Analysis of Variance Table Model 1: consumption ~ dpi + L(dpi) Model 2: consumption ~ dpi + L(dpi) + L(consumption) Model 3: consumption ~ dpi + L(consumption) Res.Df RSS Df Sum of Sq F Pr(>F) 1 200 1534001 2 199 73550 1 1460451 3951.4 < 2e-16 3 200 92644 -1 -19094 51.7 1.3e-11 R> R> R> ################################################### R> ### chunk number 56: encompassing3 R> ################################################### R> encomptest(cons_lm1, cons_lm2) Encompassing test Model 1: consumption ~ dpi + L(dpi) Model 2: consumption ~ dpi + L(consumption) Model E: consumption ~ dpi + L(dpi) + L(consumption) Res.Df Df F Pr(>F) M1 vs. ME 199 -1 3951.4 < 2e-16 M2 vs. ME 199 -1 51.7 1.3e-11 R> R> R> ################################################### R> ### chunk number 57: plm-data R> ################################################### R> data("Grunfeld", package = "AER") R> library("plm") Loading required package: Formula R> gr <- subset(Grunfeld, firm %in% c("General Electric", + "General Motors", "IBM")) R> pgr <- plm.data(gr, index = c("firm", "year")) R> R> R> ################################################### R> ### chunk number 58: plm-pool R> ################################################### R> gr_pool <- plm(invest ~ value + capital, data = pgr, + model = "pooling") R> R> R> ################################################### R> ### chunk number 59: plm-FE R> ################################################### R> gr_fe <- plm(invest ~ value + capital, data = pgr, + model = "within") R> summary(gr_fe) Oneway (individual) effect Within Model Call: plm(formula = invest ~ value + capital, data = pgr, model = "within") Balanced Panel: n=3, T=20, N=60 Residuals : Min. 1st Qu. Median 3rd Qu. Max. -167.00 -26.10 2.09 26.80 202.00 Coefficients : Estimate Std. Error t-value Pr(>|t|) value 0.1049 0.0163 6.42 3.3e-08 capital 0.3453 0.0244 14.16 < 2e-16 Total Sum of Squares: 1890000 Residual Sum of Squares: 244000 R-Squared: 0.871 Adj. R-Squared: 0.861 F-statistic: 185.407 on 2 and 55 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 60: plm-pFtest R> ################################################### R> pFtest(gr_fe, gr_pool) F test for individual effects data: invest ~ value + capital F = 57, df1 = 2, df2 = 55, p-value = 4e-14 alternative hypothesis: significant effects R> R> R> ################################################### R> ### chunk number 61: plm-RE R> ################################################### R> gr_re <- plm(invest ~ value + capital, data = pgr, + model = "random", random.method = "walhus") R> summary(gr_re) Oneway (individual) effect Random Effect Model (Wallace-Hussain's transformation) Call: plm(formula = invest ~ value + capital, data = pgr, model = "random", random.method = "walhus") Balanced Panel: n=3, T=20, N=60 Effects: var std.dev share idiosyncratic 4389.3 66.3 0.35 individual 8079.7 89.9 0.65 theta: 0.837 Residuals : Min. 1st Qu. Median 3rd Qu. Max. -187.00 -32.90 6.96 31.40 210.00 Coefficients : Estimate Std. Error t-value Pr(>|t|) (Intercept) -109.9766 61.7014 -1.78 0.08 value 0.1043 0.0150 6.95 3.8e-09 capital 0.3448 0.0245 14.06 < 2e-16 Total Sum of Squares: 1990000 Residual Sum of Squares: 258000 R-Squared: 0.87 Adj. R-Squared: 0.866 F-statistic: 191.545 on 2 and 57 DF, p-value: <2e-16 R> R> R> ################################################### R> ### chunk number 62: plm-plmtest R> ################################################### R> plmtest(gr_pool) Lagrange Multiplier Test - (Honda) for balanced panels data: invest ~ value + capital normal = 15, p-value <2e-16 alternative hypothesis: significant effects R> R> R> ################################################### R> ### chunk number 63: plm-phtest R> ################################################### R> phtest(gr_re, gr_fe) Hausman Test data: invest ~ value + capital chisq = 0.04, df = 2, p-value = 1 alternative hypothesis: one model is inconsistent R> R> R> ################################################### R> ### chunk number 64: EmplUK-data R> ################################################### R> data("EmplUK", package = "plm") R> form <- log(emp) ~ log(wage) + log(capital) + log(output) R> R> R> ################################################### R> ### chunk number 65: plm-AB R> ################################################### R> empl_ab <- pgmm(dynformula(form, list(2, 1, 0, 1)), + data = EmplUK, index = c("firm", "year"), + effect = "twoways", model = "twosteps", + gmm.inst = ~ log(emp), lag.gmm = list(c(2, 99))) R> R> R> ################################################### R> ### chunk number 66: plm-AB-summary R> ################################################### R> summary(empl_ab, robust = FALSE) Twoways effects Two steps model Call: pgmm(formula = dynformula(form, list(2, 1, 0, 1)), data = EmplUK, effect = "twoways", model = "twosteps", index = c("firm", "year"), gmm.inst = ~log(emp), lag.gmm = list(c(2, 99))) Unbalanced Panel: n=140, T=7-9, N=1031 Number of Observations Used: 611 Residuals Min. 1st Qu. Median Mean 3rd Qu. Max. -0.6190 -0.0256 0.0000 -0.0001 0.0332 0.6410 Coefficients Estimate Std. Error z-value Pr(>|z|) lag(log(emp), c(1, 2))1 0.4742 0.0853 5.56 2.7e-08 lag(log(emp), c(1, 2))2 -0.0530 0.0273 -1.94 0.05222 log(wage) -0.5132 0.0493 -10.40 < 2e-16 lag(log(wage), 1) 0.2246 0.0801 2.81 0.00502 log(capital) 0.2927 0.0395 7.42 1.2e-13 log(output) 0.6098 0.1085 5.62 1.9e-08 lag(log(output), 1) -0.4464 0.1248 -3.58 0.00035 Sargan Test: chisq(25) = 30.11 (p.value=0.22) Autocorrelation test (1): normal = -2.428 (p.value=0.0152) Autocorrelation test (2): normal = -0.3325 (p.value=0.739) Wald test for coefficients: chisq(7) = 372 (p.value=<2e-16) Wald test for time dummies: chisq(6) = 26.9 (p.value=0.000151) R> R> R> ################################################### R> ### chunk number 67: systemfit R> ################################################### R> library("systemfit") Loading required package: Matrix R> gr2 <- subset(Grunfeld, firm %in% c("Chrysler", "IBM")) R> pgr2 <- plm.data(gr2, c("firm", "year")) R> R> R> ################################################### R> ### chunk number 68: SUR R> ################################################### R> gr_sur <- systemfit(invest ~ value + capital, + method = "SUR", data = pgr2) R> summary(gr_sur, residCov = FALSE, equations = FALSE) systemfit results method: SUR N DF SSR detRCov OLS-R2 McElroy-R2 system 40 34 4114 11022 0.929 0.927 N DF SSR MSE RMSE R2 Adj R2 Chrysler 20 17 3002 176.6 13.29 0.913 0.903 IBM 20 17 1112 65.4 8.09 0.952 0.946 Coefficients: Estimate Std. Error t value Pr(>|t|) Chrysler_(Intercept) -5.7031 13.2774 -0.43 0.67293 Chrysler_value 0.0780 0.0196 3.98 0.00096 Chrysler_capital 0.3115 0.0287 10.85 4.6e-09 IBM_(Intercept) -8.0908 4.5216 -1.79 0.09139 IBM_value 0.1272 0.0306 4.16 0.00066 IBM_capital 0.0966 0.0983 0.98 0.33951 R> R> R> ################################################### R> ### chunk number 69: nlme eval=FALSE R> ################################################### R> ## library("nlme") R> ## g1 <- subset(Grunfeld, firm == "Westinghouse") R> ## gls(invest ~ value + capital, data = g1, correlation = corAR1()) R> R> R> > proc.time() user system elapsed 3.772 0.072 3.846 AER/tests/Ch-Programming.R0000644000175400001440000001643411570750326015171 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: DGP ################################################### dgp <- function(nobs = 15, model = c("trend", "dynamic"), corr = 0, coef = c(0.25, -0.75), sd = 1) { model <- match.arg(model) coef <- rep(coef, length.out = 2) err <- as.vector(filter(rnorm(nobs, sd = sd), corr, method = "recursive")) if(model == "trend") { x <- 1:nobs y <- coef[1] + coef[2] * x + err } else { y <- rep(NA, nobs) y[1] <- coef[1] + err[1] for(i in 2:nobs) y[i] <- coef[1] + coef[2] * y[i-1] + err[i] x <- c(0, y[1:(nobs-1)]) } return(data.frame(y = y, x = x)) } ################################################### ### chunk number 3: simpower ################################################### simpower <- function(nrep = 100, size = 0.05, ...) { pval <- matrix(rep(NA, 2 * nrep), ncol = 2) colnames(pval) <- c("dwtest", "bgtest") for(i in 1:nrep) { dat <- dgp(...) pval[i,1] <- dwtest(y ~ x, data = dat, alternative = "two.sided")$p.value pval[i,2] <- bgtest(y ~ x, data = dat)$p.value } return(colMeans(pval < size)) } ################################################### ### chunk number 4: simulation-function ################################################### simulation <- function(corr = c(0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99), nobs = c(15, 30, 50), model = c("trend", "dynamic"), ...) { prs <- expand.grid(corr = corr, nobs = nobs, model = model) nprs <- nrow(prs) pow <- matrix(rep(NA, 2 * nprs), ncol = 2) for(i in 1:nprs) pow[i,] <- simpower(corr = prs[i,1], nobs = prs[i,2], model = as.character(prs[i,3]), ...) rval <- rbind(prs, prs) rval$test <- factor(rep(1:2, c(nprs, nprs)), labels = c("dwtest", "bgtest")) rval$power <- c(pow[,1], pow[,2]) rval$nobs <- factor(rval$nobs) return(rval) } ################################################### ### chunk number 5: simulation ################################################### set.seed(123) psim <- simulation() ################################################### ### chunk number 6: simulation-table ################################################### tab <- xtabs(power ~ corr + test + model + nobs, data = psim) ftable(tab, row.vars = c("model", "nobs", "test"), col.vars = "corr") ################################################### ### chunk number 7: simulation-visualization ################################################### library("lattice") xyplot(power ~ corr | model + nobs, groups = ~ test, data = psim, type = "b") ################################################### ### chunk number 8: simulation-visualization1 ################################################### library("lattice") trellis.par.set(theme = canonical.theme(color = FALSE)) print(xyplot(power ~ corr | model + nobs, groups = ~ test, data = psim, type = "b")) ################################################### ### chunk number 9: journals-lm ################################################### data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) ################################################### ### chunk number 10: journals-residuals-based-resampling-unused eval=FALSE ################################################### ## refit <- function(data, i) { ## d <- data ## d$subs <- exp(d$fitted + d$res[i]) ## coef(lm(log(subs) ~ log(citeprice), data = d)) ## } ################################################### ### chunk number 11: journals-case-based-resampling ################################################### refit <- function(data, i) coef(lm(log(subs) ~ log(citeprice), data = data[i,])) ################################################### ### chunk number 12: journals-boot ################################################### library("boot") set.seed(123) jour_boot <- boot(journals, refit, R = 999) ################################################### ### chunk number 13: journals-boot-print ################################################### jour_boot ################################################### ### chunk number 14: journals-lm-coeftest ################################################### coeftest(jour_lm) ################################################### ### chunk number 15: journals-boot-ci ################################################### boot.ci(jour_boot, index = 2, type = "basic") ################################################### ### chunk number 16: journals-lm-ci ################################################### confint(jour_lm, parm = 2) ################################################### ### chunk number 17: ml-loglik ################################################### data("Equipment", package = "AER") nlogL <- function(par) { beta <- par[1:3] theta <- par[4] sigma2 <- par[5] Y <- with(Equipment, valueadded/firms) K <- with(Equipment, capital/firms) L <- with(Equipment, labor/firms) rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L) lhs <- log(Y) + theta * Y rval <- sum(log(1 + theta * Y) - log(Y) + dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE)) return(-rval) } ################################################### ### chunk number 18: ml-0 ################################################### fm0 <- lm(log(valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ################################################### ### chunk number 19: ml-0-coef ################################################### par0 <- as.vector(c(coef(fm0), 0, mean(residuals(fm0)^2))) ################################################### ### chunk number 20: ml-optim ################################################### opt <- optim(par0, nlogL, hessian = TRUE) ################################################### ### chunk number 21: ml-optim-output ################################################### opt$par sqrt(diag(solve(opt$hessian)))[1:4] -opt$value ################################################### ### chunk number 22: Sweave eval=FALSE ################################################### ## Sweave("Sweave-journals.Rnw") ################################################### ### chunk number 23: Stangle eval=FALSE ################################################### ## Stangle("Sweave-journals.Rnw") ################################################### ### chunk number 24: texi2dvi eval=FALSE ################################################### ## texi2dvi("Sweave-journals.tex", pdf = TRUE) ################################################### ### chunk number 25: vignette eval=FALSE ################################################### ## vignette("Sweave-journals", package = "AER") AER/tests/Ch-TimeSeries.Rout.save0000644000175400001440000004525613022366357016452 0ustar zeileisusers R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ################################################### > ### chunk number 1: setup > ################################################### > options(prompt = "R> ", continue = "+ ", width = 64, + digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) R> R> options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, + twofig = function() {par(mfrow = c(1,2))}, + threefig = function() {par(mfrow = c(1,3))}, + fourfig = function() {par(mfrow = c(2,2))}, + sixfig = function() {par(mfrow = c(3,2))})) R> R> library("AER") Loading required package: car Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich Loading required package: survival R> R> set.seed(1071) R> R> R> ################################################### R> ### chunk number 2: options R> ################################################### R> options(digits = 6) R> R> R> ################################################### R> ### chunk number 3: ts-plot eval=FALSE R> ################################################### R> ## data("UKNonDurables") R> ## plot(UKNonDurables) R> R> R> ################################################### R> ### chunk number 4: UKNonDurables-data R> ################################################### R> data("UKNonDurables") R> R> R> ################################################### R> ### chunk number 5: tsp R> ################################################### R> tsp(UKNonDurables) [1] 1955.00 1988.75 4.00 R> R> R> ################################################### R> ### chunk number 6: window R> ################################################### R> window(UKNonDurables, end = c(1956, 4)) Qtr1 Qtr2 Qtr3 Qtr4 1955 24030 25620 26209 27167 1956 24620 25972 26285 27659 R> R> R> ################################################### R> ### chunk number 7: filter eval=FALSE R> ################################################### R> ## data("UKDriverDeaths") R> ## plot(UKDriverDeaths) R> ## lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), R> ## col = 2) R> R> R> ################################################### R> ### chunk number 8: ts-plot1 R> ################################################### R> data("UKNonDurables") R> plot(UKNonDurables) R> data("UKDriverDeaths") R> plot(UKDriverDeaths) R> lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), + col = 2) R> R> R> ################################################### R> ### chunk number 9: filter1 eval=FALSE R> ################################################### R> ## data("UKDriverDeaths") R> ## plot(UKDriverDeaths) R> ## lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), R> ## col = 2) R> R> R> ################################################### R> ### chunk number 10: rollapply R> ################################################### R> plot(rollapply(UKDriverDeaths, 12, sd)) R> R> R> ################################################### R> ### chunk number 11: ar-sim R> ################################################### R> set.seed(1234) R> x <- filter(rnorm(100), 0.9, method = "recursive") R> R> R> ################################################### R> ### chunk number 12: decompose R> ################################################### R> dd_dec <- decompose(log(UKDriverDeaths)) R> dd_stl <- stl(log(UKDriverDeaths), s.window = 13) R> R> R> ################################################### R> ### chunk number 13: decompose-components R> ################################################### R> plot(dd_dec$trend, ylab = "trend") R> lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) R> R> R> ################################################### R> ### chunk number 14: seat-mean-sd R> ################################################### R> plot(dd_dec$trend, ylab = "trend") R> lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) R> plot(rollapply(UKDriverDeaths, 12, sd)) R> R> R> ################################################### R> ### chunk number 15: stl R> ################################################### R> plot(dd_stl) R> R> R> ################################################### R> ### chunk number 16: Holt-Winters R> ################################################### R> dd_past <- window(UKDriverDeaths, end = c(1982, 12)) R> dd_hw <- try(HoltWinters(dd_past)) R> if(!inherits(dd_hw, "try-error")) { + dd_pred <- predict(dd_hw, n.ahead = 24) + + + ################################################### + ### chunk number 17: Holt-Winters-plot + ################################################### + plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths)) + lines(UKDriverDeaths) + + + ################################################### + ### chunk number 18: Holt-Winters-plot1 + ################################################### + plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths)) + lines(UKDriverDeaths) + } R> R> ################################################### R> ### chunk number 19: acf eval=FALSE R> ################################################### R> ## acf(x) R> ## pacf(x) R> R> R> ################################################### R> ### chunk number 20: acf1 R> ################################################### R> acf(x, ylim = c(-0.2, 1)) R> pacf(x, ylim = c(-0.2, 1)) R> R> R> ################################################### R> ### chunk number 21: ar R> ################################################### R> ar(x) Call: ar(x = x) Coefficients: 1 0.928 Order selected 1 sigma^2 estimated as 1.29 R> R> R> ################################################### R> ### chunk number 22: window-non-durab R> ################################################### R> nd <- window(log(UKNonDurables), end = c(1970, 4)) R> R> R> ################################################### R> ### chunk number 23: non-durab-acf R> ################################################### R> acf(diff(nd), ylim = c(-1, 1)) R> pacf(diff(nd), ylim = c(-1, 1)) R> acf(diff(diff(nd, 4)), ylim = c(-1, 1)) R> pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) R> R> R> ################################################### R> ### chunk number 24: non-durab-acf1 R> ################################################### R> acf(diff(nd), ylim = c(-1, 1)) R> pacf(diff(nd), ylim = c(-1, 1)) R> acf(diff(diff(nd, 4)), ylim = c(-1, 1)) R> pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) R> R> R> ################################################### R> ### chunk number 25: arima-setup R> ################################################### R> nd_pars <- expand.grid(ar = 0:2, diff = 1, ma = 0:2, + sar = 0:1, sdiff = 1, sma = 0:1) R> nd_aic <- rep(0, nrow(nd_pars)) R> for(i in seq(along = nd_aic)) nd_aic[i] <- AIC(arima(nd, + unlist(nd_pars[i, 1:3]), unlist(nd_pars[i, 4:6])), + k = log(length(nd))) R> nd_pars[which.min(nd_aic),] ar diff ma sar sdiff sma 22 0 1 1 0 1 1 R> R> R> ################################################### R> ### chunk number 26: arima R> ################################################### R> nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1)) R> nd_arima Call: arima(x = nd, order = c(0, 1, 1), seasonal = c(0, 1, 1)) Coefficients: ma1 sma1 -0.353 -0.583 s.e. 0.143 0.138 sigma^2 estimated as 9.65e-05: log likelihood = 188.14, aic = -370.27 R> R> R> ################################################### R> ### chunk number 27: tsdiag R> ################################################### R> tsdiag(nd_arima) R> R> R> ################################################### R> ### chunk number 28: tsdiag1 R> ################################################### R> tsdiag(nd_arima) R> R> R> ################################################### R> ### chunk number 29: arima-predict R> ################################################### R> nd_pred <- predict(nd_arima, n.ahead = 18 * 4) R> R> R> ################################################### R> ### chunk number 30: arima-compare R> ################################################### R> plot(log(UKNonDurables)) R> lines(nd_pred$pred, col = 2) R> R> R> ################################################### R> ### chunk number 31: arima-compare1 R> ################################################### R> plot(log(UKNonDurables)) R> lines(nd_pred$pred, col = 2) R> R> R> ################################################### R> ### chunk number 32: pepper R> ################################################### R> data("PepperPrice") R> plot(PepperPrice, plot.type = "single", col = 1:2) R> legend("topleft", c("black", "white"), bty = "n", + col = 1:2, lty = rep(1,2)) R> R> R> ################################################### R> ### chunk number 33: pepper1 R> ################################################### R> data("PepperPrice") R> plot(PepperPrice, plot.type = "single", col = 1:2) R> legend("topleft", c("black", "white"), bty = "n", + col = 1:2, lty = rep(1,2)) R> R> R> ################################################### R> ### chunk number 34: adf1 R> ################################################### R> library("tseries") R> adf.test(log(PepperPrice[, "white"])) Augmented Dickey-Fuller Test data: log(PepperPrice[, "white"]) Dickey-Fuller = -1.744, Lag order = 6, p-value = 0.684 alternative hypothesis: stationary R> R> R> ################################################### R> ### chunk number 35: adf1 R> ################################################### R> adf.test(diff(log(PepperPrice[, "white"]))) Augmented Dickey-Fuller Test data: diff(log(PepperPrice[, "white"])) Dickey-Fuller = -5.336, Lag order = 6, p-value = 0.01 alternative hypothesis: stationary Warning message: In adf.test(diff(log(PepperPrice[, "white"]))) : p-value smaller than printed p-value R> R> R> ################################################### R> ### chunk number 36: pp R> ################################################### R> pp.test(log(PepperPrice[, "white"]), type = "Z(t_alpha)") Phillips-Perron Unit Root Test data: log(PepperPrice[, "white"]) Dickey-Fuller Z(t_alpha) = -1.644, Truncation lag parameter = 5, p-value = 0.726 alternative hypothesis: stationary R> R> R> ################################################### R> ### chunk number 37: urca eval=FALSE R> ################################################### R> ## library("urca") R> ## pepper_ers <- ur.ers(log(PepperPrice[, "white"]), R> ## type = "DF-GLS", model = "const", lag.max = 4) R> ## summary(pepper_ers) R> R> R> ################################################### R> ### chunk number 38: kpss R> ################################################### R> kpss.test(log(PepperPrice[, "white"])) KPSS Test for Level Stationarity data: log(PepperPrice[, "white"]) KPSS Level = 0.9129, Truncation lag parameter = 3, p-value = 0.01 Warning message: In kpss.test(log(PepperPrice[, "white"])) : p-value smaller than printed p-value R> R> R> ################################################### R> ### chunk number 39: po R> ################################################### R> po.test(log(PepperPrice)) Phillips-Ouliaris Cointegration Test data: log(PepperPrice) Phillips-Ouliaris demeaned = -24.1, Truncation lag parameter = 2, p-value = 0.024 R> R> R> ################################################### R> ### chunk number 40: joh-trace R> ################################################### R> library("urca") R> pepper_jo <- ca.jo(log(PepperPrice), ecdet = "const", + type = "trace") R> summary(pepper_jo) ###################### # Johansen-Procedure # ###################### Test type: trace statistic , without linear trend and constant in cointegration Eigenvalues (lambda): [1] 4.93195e-02 1.35081e-02 2.08167e-17 Values of teststatistic and critical values of test: test 10pct 5pct 1pct r <= 1 | 3.66 7.52 9.24 12.97 r = 0 | 17.26 17.85 19.96 24.60 Eigenvectors, normalised to first column: (These are the cointegration relations) black.l2 white.l2 constant black.l2 1.000000 1.00000 1.00000 white.l2 -0.889231 -5.09942 2.28091 constant -0.556994 33.02742 -20.03244 Weights W: (This is the loading matrix) black.l2 white.l2 constant black.d -0.0747230 0.00245321 -4.95816e-18 white.d 0.0201561 0.00353701 8.85035e-18 R> R> R> ################################################### R> ### chunk number 41: joh-lmax eval=FALSE R> ################################################### R> ## pepper_jo2 <- ca.jo(log(PepperPrice), ecdet = "const", type = "eigen") R> ## summary(pepper_jo2) R> R> R> ################################################### R> ### chunk number 42: dynlm-by-hand R> ################################################### R> dd <- log(UKDriverDeaths) R> dd_dat <- ts.intersect(dd, dd1 = lag(dd, k = -1), + dd12 = lag(dd, k = -12)) R> lm(dd ~ dd1 + dd12, data = dd_dat) Call: lm(formula = dd ~ dd1 + dd12, data = dd_dat) Coefficients: (Intercept) dd1 dd12 0.421 0.431 0.511 R> R> R> ################################################### R> ### chunk number 43: dynlm R> ################################################### R> library("dynlm") R> dynlm(dd ~ L(dd) + L(dd, 12)) Time series regression with "ts" data: Start = 1970(1), End = 1984(12) Call: dynlm(formula = dd ~ L(dd) + L(dd, 12)) Coefficients: (Intercept) L(dd) L(dd, 12) 0.421 0.431 0.511 R> R> R> ################################################### R> ### chunk number 44: efp R> ################################################### R> library("strucchange") R> dd_ocus <- efp(dd ~ dd1 + dd12, data = dd_dat, + type = "OLS-CUSUM") R> R> R> ################################################### R> ### chunk number 45: efp-test R> ################################################### R> sctest(dd_ocus) OLS-based CUSUM test data: dd_ocus S0 = 1.487, p-value = 0.0241 R> R> R> ################################################### R> ### chunk number 46: efp-plot eval=FALSE R> ################################################### R> ## plot(dd_ocus) R> R> R> ################################################### R> ### chunk number 47: Fstats R> ################################################### R> dd_fs <- Fstats(dd ~ dd1 + dd12, data = dd_dat, from = 0.1) R> plot(dd_fs) R> sctest(dd_fs) supF test data: dd_fs sup.F = 19.33, p-value = 0.00672 R> R> R> ################################################### R> ### chunk number 48: ocus-supF R> ################################################### R> plot(dd_ocus) R> plot(dd_fs, main = "supF test") R> R> R> ################################################### R> ### chunk number 49: GermanM1 R> ################################################### R> data("GermanM1") R> LTW <- dm ~ dy2 + dR + dR1 + dp + m1 + y1 + R1 + season R> R> R> ################################################### R> ### chunk number 50: re eval=FALSE R> ################################################### R> ## m1_re <- efp(LTW, data = GermanM1, type = "RE") R> ## plot(m1_re) R> R> R> ################################################### R> ### chunk number 51: re1 R> ################################################### R> m1_re <- efp(LTW, data = GermanM1, type = "RE") R> plot(m1_re) R> R> R> ################################################### R> ### chunk number 52: dating R> ################################################### R> dd_bp <- breakpoints(dd ~ dd1 + dd12, data = dd_dat, h = 0.1) R> R> R> ################################################### R> ### chunk number 53: dating-coef R> ################################################### R> coef(dd_bp, breaks = 2) (Intercept) dd1 dd12 1970(1) - 1973(10) 1.45776 0.117323 0.694480 1973(11) - 1983(1) 1.53421 0.218214 0.572330 1983(2) - 1984(12) 1.68690 0.548609 0.214166 R> R> R> ################################################### R> ### chunk number 54: dating-plot eval=FALSE R> ################################################### R> ## plot(dd) R> ## lines(fitted(dd_bp, breaks = 2), col = 4) R> ## lines(confint(dd_bp, breaks = 2)) R> R> R> ################################################### R> ### chunk number 55: dating-plot1 R> ################################################### R> plot(dd_bp, legend = FALSE, main = "") R> plot(dd) R> lines(fitted(dd_bp, breaks = 2), col = 4) R> lines(confint(dd_bp, breaks = 2)) R> R> R> ################################################### R> ### chunk number 56: StructTS R> ################################################### R> dd_struct <- StructTS(log(UKDriverDeaths)) R> R> R> ################################################### R> ### chunk number 57: StructTS-plot eval=FALSE R> ################################################### R> ## plot(cbind(fitted(dd_struct), residuals(dd_struct))) R> R> R> ################################################### R> ### chunk number 58: StructTS-plot1 R> ################################################### R> dd_struct_plot <- cbind(fitted(dd_struct), residuals = residuals(dd_struct)) R> colnames(dd_struct_plot) <- c("level", "slope", "season", "residuals") R> plot(dd_struct_plot, main = "") R> R> R> ################################################### R> ### chunk number 59: garch-plot R> ################################################### R> data("MarkPound") R> plot(MarkPound, main = "") R> R> R> ################################################### R> ### chunk number 60: garch R> ################################################### R> data("MarkPound") R> mp <- garch(MarkPound, grad = "numerical", trace = FALSE) R> summary(mp) Call: garch(x = MarkPound, grad = "numerical", trace = FALSE) Model: GARCH(1,1) Residuals: Min 1Q Median 3Q Max -6.79739 -0.53703 -0.00264 0.55233 5.24867 Coefficient(s): Estimate Std. Error t value Pr(>|t|) a0 0.0109 0.0013 8.38 <2e-16 a1 0.1546 0.0139 11.14 <2e-16 b1 0.8044 0.0160 50.13 <2e-16 Diagnostic Tests: Jarque Bera Test data: Residuals X-squared = 1060, df = 2, p-value <2e-16 Box-Ljung test data: Squared.Residuals X-squared = 2.478, df = 1, p-value = 0.115 R> R> R> > proc.time() user system elapsed 2.756 0.052 2.807 AER/NAMESPACE0000644000175400001440000000247412463377305012314 0ustar zeileisusers## imports import("stats") import("Formula") import("zoo") importFrom("lmtest", "coeftest", "waldtest", "waldtest.default", "lrtest", "lrtest.default") importFrom("car", "linearHypothesis") importFrom("sandwich", "bread", "estfun") importFrom("survival", "Surv", "survreg", "survreg.distributions") ## exported functions of AER export( "dispersiontest", "tobit", "ivreg", "ivreg.fit" ) ## methods for class tobit S3method("print", "tobit") S3method("print", "summary.tobit") S3method("summary", "tobit") S3method("formula", "tobit") S3method("update", "tobit") S3method("model.frame", "tobit") S3method("waldtest", "tobit") S3method("lrtest", "tobit") S3method("linearHypothesis", "tobit") ## methods for class ivreg S3method("print", "ivreg") S3method("print", "summary.ivreg") S3method("summary", "ivreg") S3method("vcov", "ivreg") S3method("bread", "ivreg") S3method("estfun", "ivreg") S3method("hatvalues", "ivreg") S3method("predict", "ivreg") S3method("anova", "ivreg") S3method("terms", "ivreg") S3method("model.matrix", "ivreg") ## methods for class survreg S3method("deviance", "survreg") S3method("fitted", "survreg") S3method("nobs", "survreg") S3method("weights", "survreg") ## methods for class multinom, polr, fitdistr S3method("coeftest", "multinom") S3method("coeftest", "polr") S3method("lrtest", "fitdistr") AER/demo/0000755000175400001440000000000012417314770012006 5ustar zeileisusersAER/demo/Ch-TimeSeries.R0000644000175400001440000003164512214556700014537 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: options ################################################### options(digits = 6) ################################################### ### chunk number 3: ts-plot eval=FALSE ################################################### ## data("UKNonDurables") ## plot(UKNonDurables) ################################################### ### chunk number 4: UKNonDurables-data ################################################### data("UKNonDurables") ################################################### ### chunk number 5: tsp ################################################### tsp(UKNonDurables) ################################################### ### chunk number 6: window ################################################### window(UKNonDurables, end = c(1956, 4)) ################################################### ### chunk number 7: filter eval=FALSE ################################################### ## data("UKDriverDeaths") ## plot(UKDriverDeaths) ## lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), ## col = 2) ################################################### ### chunk number 8: ts-plot1 ################################################### data("UKNonDurables") plot(UKNonDurables) data("UKDriverDeaths") plot(UKDriverDeaths) lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), col = 2) ################################################### ### chunk number 9: filter1 eval=FALSE ################################################### ## data("UKDriverDeaths") ## plot(UKDriverDeaths) ## lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12), ## col = 2) ################################################### ### chunk number 10: rollapply ################################################### plot(rollapply(UKDriverDeaths, 12, sd)) ################################################### ### chunk number 11: ar-sim ################################################### set.seed(1234) x <- filter(rnorm(100), 0.9, method = "recursive") ################################################### ### chunk number 12: decompose ################################################### dd_dec <- decompose(log(UKDriverDeaths)) dd_stl <- stl(log(UKDriverDeaths), s.window = 13) ################################################### ### chunk number 13: decompose-components ################################################### plot(dd_dec$trend, ylab = "trend") lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) ################################################### ### chunk number 14: seat-mean-sd ################################################### plot(dd_dec$trend, ylab = "trend") lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) plot(rollapply(UKDriverDeaths, 12, sd)) ################################################### ### chunk number 15: stl ################################################### plot(dd_stl) ################################################### ### chunk number 16: Holt-Winters ################################################### dd_past <- window(UKDriverDeaths, end = c(1982, 12)) dd_hw <- HoltWinters(dd_past) dd_pred <- predict(dd_hw, n.ahead = 24) ################################################### ### chunk number 17: Holt-Winters-plot ################################################### plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths)) lines(UKDriverDeaths) ################################################### ### chunk number 18: Holt-Winters-plot1 ################################################### plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths)) lines(UKDriverDeaths) ################################################### ### chunk number 19: acf eval=FALSE ################################################### ## acf(x) ## pacf(x) ################################################### ### chunk number 20: acf1 ################################################### acf(x, ylim = c(-0.2, 1)) pacf(x, ylim = c(-0.2, 1)) ################################################### ### chunk number 21: ar ################################################### ar(x) ################################################### ### chunk number 22: window-non-durab ################################################### nd <- window(log(UKNonDurables), end = c(1970, 4)) ################################################### ### chunk number 23: non-durab-acf ################################################### acf(diff(nd), ylim = c(-1, 1)) pacf(diff(nd), ylim = c(-1, 1)) acf(diff(diff(nd, 4)), ylim = c(-1, 1)) pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) ################################################### ### chunk number 24: non-durab-acf1 ################################################### acf(diff(nd), ylim = c(-1, 1)) pacf(diff(nd), ylim = c(-1, 1)) acf(diff(diff(nd, 4)), ylim = c(-1, 1)) pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) ################################################### ### chunk number 25: arima-setup ################################################### nd_pars <- expand.grid(ar = 0:2, diff = 1, ma = 0:2, sar = 0:1, sdiff = 1, sma = 0:1) nd_aic <- rep(0, nrow(nd_pars)) for(i in seq(along = nd_aic)) nd_aic[i] <- AIC(arima(nd, unlist(nd_pars[i, 1:3]), unlist(nd_pars[i, 4:6])), k = log(length(nd))) nd_pars[which.min(nd_aic),] ################################################### ### chunk number 26: arima ################################################### nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1)) nd_arima ################################################### ### chunk number 27: tsdiag ################################################### tsdiag(nd_arima) ################################################### ### chunk number 28: tsdiag1 ################################################### tsdiag(nd_arima) ################################################### ### chunk number 29: arima-predict ################################################### nd_pred <- predict(nd_arima, n.ahead = 18 * 4) ################################################### ### chunk number 30: arima-compare ################################################### plot(log(UKNonDurables)) lines(nd_pred$pred, col = 2) ################################################### ### chunk number 31: arima-compare1 ################################################### plot(log(UKNonDurables)) lines(nd_pred$pred, col = 2) ################################################### ### chunk number 32: pepper ################################################### data("PepperPrice") plot(PepperPrice, plot.type = "single", col = 1:2) legend("topleft", c("black", "white"), bty = "n", col = 1:2, lty = rep(1,2)) ################################################### ### chunk number 33: pepper1 ################################################### data("PepperPrice") plot(PepperPrice, plot.type = "single", col = 1:2) legend("topleft", c("black", "white"), bty = "n", col = 1:2, lty = rep(1,2)) ################################################### ### chunk number 34: adf1 ################################################### library("tseries") adf.test(log(PepperPrice[, "white"])) ################################################### ### chunk number 35: adf1 ################################################### adf.test(diff(log(PepperPrice[, "white"]))) ################################################### ### chunk number 36: pp ################################################### pp.test(log(PepperPrice[, "white"]), type = "Z(t_alpha)") ################################################### ### chunk number 37: urca eval=FALSE ################################################### ## library("urca") ## pepper_ers <- ur.ers(log(PepperPrice[, "white"]), ## type = "DF-GLS", model = "const", lag.max = 4) ## summary(pepper_ers) ################################################### ### chunk number 38: kpss ################################################### kpss.test(log(PepperPrice[, "white"])) ################################################### ### chunk number 39: po ################################################### po.test(log(PepperPrice)) ################################################### ### chunk number 40: joh-trace ################################################### library("urca") pepper_jo <- ca.jo(log(PepperPrice), ecdet = "const", type = "trace") summary(pepper_jo) ################################################### ### chunk number 41: joh-lmax eval=FALSE ################################################### ## pepper_jo2 <- ca.jo(log(PepperPrice), ecdet = "const", type = "eigen") ## summary(pepper_jo2) ################################################### ### chunk number 42: dynlm-by-hand ################################################### dd <- log(UKDriverDeaths) dd_dat <- ts.intersect(dd, dd1 = lag(dd, k = -1), dd12 = lag(dd, k = -12)) lm(dd ~ dd1 + dd12, data = dd_dat) ################################################### ### chunk number 43: dynlm ################################################### library("dynlm") dynlm(dd ~ L(dd) + L(dd, 12)) ################################################### ### chunk number 44: efp ################################################### library("strucchange") dd_ocus <- efp(dd ~ dd1 + dd12, data = dd_dat, type = "OLS-CUSUM") ################################################### ### chunk number 45: efp-test ################################################### sctest(dd_ocus) ################################################### ### chunk number 46: efp-plot eval=FALSE ################################################### ## plot(dd_ocus) ################################################### ### chunk number 47: Fstats ################################################### dd_fs <- Fstats(dd ~ dd1 + dd12, data = dd_dat, from = 0.1) plot(dd_fs) sctest(dd_fs) ################################################### ### chunk number 48: ocus-supF ################################################### plot(dd_ocus) plot(dd_fs, main = "supF test") ################################################### ### chunk number 49: GermanM1 ################################################### data("GermanM1") LTW <- dm ~ dy2 + dR + dR1 + dp + m1 + y1 + R1 + season ################################################### ### chunk number 50: re eval=FALSE ################################################### ## m1_re <- efp(LTW, data = GermanM1, type = "RE") ## plot(m1_re) ################################################### ### chunk number 51: re1 ################################################### m1_re <- efp(LTW, data = GermanM1, type = "RE") plot(m1_re) ################################################### ### chunk number 52: dating ################################################### dd_bp <- breakpoints(dd ~ dd1 + dd12, data = dd_dat, h = 0.1) ################################################### ### chunk number 53: dating-coef ################################################### coef(dd_bp, breaks = 2) ################################################### ### chunk number 54: dating-plot eval=FALSE ################################################### ## plot(dd) ## lines(fitted(dd_bp, breaks = 2), col = 4) ## lines(confint(dd_bp, breaks = 2)) ################################################### ### chunk number 55: dating-plot1 ################################################### plot(dd_bp, legend = FALSE, main = "") plot(dd) lines(fitted(dd_bp, breaks = 2), col = 4) lines(confint(dd_bp, breaks = 2)) ################################################### ### chunk number 56: StructTS ################################################### dd_struct <- StructTS(log(UKDriverDeaths)) ################################################### ### chunk number 57: StructTS-plot eval=FALSE ################################################### ## plot(cbind(fitted(dd_struct), residuals(dd_struct))) ################################################### ### chunk number 58: StructTS-plot1 ################################################### dd_struct_plot <- cbind(fitted(dd_struct), residuals = residuals(dd_struct)) colnames(dd_struct_plot) <- c("level", "slope", "season", "residuals") plot(dd_struct_plot, main = "") ################################################### ### chunk number 59: garch-plot ################################################### data("MarkPound") plot(MarkPound, main = "") ################################################### ### chunk number 60: garch ################################################### mp <- garch(MarkPound, grad = "numerical", trace = FALSE) summary(mp) AER/demo/Ch-Basics.R0000644000175400001440000005160211354653130013664 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: calc1 ################################################### 1 + 1 2^3 ################################################### ### chunk number 3: calc2 ################################################### log(exp(sin(pi/4)^2) * exp(cos(pi/4)^2)) ################################################### ### chunk number 4: vec1 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) ################################################### ### chunk number 5: length ################################################### length(x) ################################################### ### chunk number 6: vec2 ################################################### 2 * x + 3 5:1 * x + 1:5 ################################################### ### chunk number 7: vec3 ################################################### log(x) ################################################### ### chunk number 8: subset1 ################################################### x[c(1, 4)] ################################################### ### chunk number 9: subset2 ################################################### x[-c(2, 3, 5)] ################################################### ### chunk number 10: pattern1 ################################################### ones <- rep(1, 10) even <- seq(from = 2, to = 20, by = 2) trend <- 1981:2005 ################################################### ### chunk number 11: pattern2 ################################################### c(ones, even) ################################################### ### chunk number 12: matrix1 ################################################### A <- matrix(1:6, nrow = 2) ################################################### ### chunk number 13: matrix2 ################################################### t(A) ################################################### ### chunk number 14: matrix3 ################################################### dim(A) nrow(A) ncol(A) ################################################### ### chunk number 15: matrix-subset ################################################### A1 <- A[1:2, c(1, 3)] ################################################### ### chunk number 16: matrix4 ################################################### solve(A1) ################################################### ### chunk number 17: matrix-solve ################################################### A1 %*% solve(A1) ################################################### ### chunk number 18: diag ################################################### diag(4) ################################################### ### chunk number 19: matrix-combine1 ################################################### cbind(1, A1) ################################################### ### chunk number 20: matrix-combine2 ################################################### rbind(A1, diag(4, 2)) ################################################### ### chunk number 21: vector-mode ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) ################################################### ### chunk number 22: logical ################################################### x > 3.5 ################################################### ### chunk number 23: names ################################################### names(x) <- c("a", "b", "c", "d", "e") x ################################################### ### chunk number 24: subset-more ################################################### x[3:5] x[c("c", "d", "e")] x[x > 3.5] ################################################### ### chunk number 25: list1 ################################################### mylist <- list(sample = rnorm(5), family = "normal distribution", parameters = list(mean = 0, sd = 1)) mylist ################################################### ### chunk number 26: list2 ################################################### mylist[[1]] mylist[["sample"]] mylist$sample ################################################### ### chunk number 27: list3 ################################################### mylist[[3]]$sd ################################################### ### chunk number 28: logical2 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) x > 3 & x <= 4 ################################################### ### chunk number 29: logical3 ################################################### which(x > 3 & x <= 4) ################################################### ### chunk number 30: logical4 ################################################### all(x > 3) any(x > 3) ################################################### ### chunk number 31: logical5 ################################################### (1.5 - 0.5) == 1 (1.9 - 0.9) == 1 ################################################### ### chunk number 32: logical6 ################################################### all.equal(1.9 - 0.9, 1) ################################################### ### chunk number 33: logical7 ################################################### 7 + TRUE ################################################### ### chunk number 34: coercion1 ################################################### is.numeric(x) is.character(x) as.character(x) ################################################### ### chunk number 35: coercion2 ################################################### c(1, "a") ################################################### ### chunk number 36: rng1 ################################################### set.seed(123) rnorm(2) rnorm(2) set.seed(123) rnorm(2) ################################################### ### chunk number 37: rng2 ################################################### sample(1:5) sample(c("male", "female"), size = 5, replace = TRUE, prob = c(0.2, 0.8)) ################################################### ### chunk number 38: flow1 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) if(rnorm(1) > 0) sum(x) else mean(x) ################################################### ### chunk number 39: flow2 ################################################### ifelse(x > 4, sqrt(x), x^2) ################################################### ### chunk number 40: flow3 ################################################### for(i in 2:5) { x[i] <- x[i] - x[i-1] } x[-1] ################################################### ### chunk number 41: flow4 ################################################### while(sum(x) < 100) { x <- 2 * x } x ################################################### ### chunk number 42: cmeans ################################################### cmeans <- function(X) { rval <- rep(0, ncol(X)) for(j in 1:ncol(X)) { mysum <- 0 for(i in 1:nrow(X)) mysum <- mysum + X[i,j] rval[j] <- mysum/nrow(X) } return(rval) } ################################################### ### chunk number 43: colmeans1 ################################################### X <- matrix(1:20, ncol = 2) cmeans(X) ################################################### ### chunk number 44: colmeans2 ################################################### colMeans(X) ################################################### ### chunk number 45: colmeans3 ################################################### X <- matrix(rnorm(2*10^6), ncol = 2) system.time(colMeans(X)) system.time(cmeans(X)) ################################################### ### chunk number 46: colmeans4 ################################################### cmeans2 <- function(X) { rval <- rep(0, ncol(X)) for(j in 1:ncol(X)) rval[j] <- mean(X[,j]) return(rval) } ################################################### ### chunk number 47: colmeans5 ################################################### system.time(cmeans2(X)) ################################################### ### chunk number 48: colmeans6 eval=FALSE ################################################### ## apply(X, 2, mean) ################################################### ### chunk number 49: colmeans7 ################################################### system.time(apply(X, 2, mean)) ################################################### ### chunk number 50: formula1 ################################################### f <- y ~ x class(f) ################################################### ### chunk number 51: formula2 ################################################### x <- seq(from = 0, to = 10, by = 0.5) y <- 2 + 3 * x + rnorm(21) ################################################### ### chunk number 52: formula3 eval=FALSE ################################################### ## plot(y ~ x) ## lm(y ~ x) ################################################### ### chunk number 53: formula3a ################################################### print(lm(y ~ x)) ################################################### ### chunk number 54: formula3b ################################################### plot(y ~ x) ################################################### ### chunk number 55: formula3c ################################################### fm <- lm(y ~ x) ################################################### ### chunk number 56: mydata1 ################################################### mydata <- data.frame(one = 1:10, two = 11:20, three = 21:30) ################################################### ### chunk number 57: mydata1a ################################################### mydata <- as.data.frame(matrix(1:30, ncol = 3)) names(mydata) <- c("one", "two", "three") ################################################### ### chunk number 58: mydata2 ################################################### mydata$two mydata[, "two"] mydata[, 2] ################################################### ### chunk number 59: attach ################################################### attach(mydata) mean(two) detach(mydata) ################################################### ### chunk number 60: with ################################################### with(mydata, mean(two)) ################################################### ### chunk number 61: mydata-subset ################################################### mydata.sub <- subset(mydata, two <= 16, select = -two) ################################################### ### chunk number 62: write-table ################################################### write.table(mydata, file = "mydata.txt", col.names = TRUE) ################################################### ### chunk number 63: read-table ################################################### newdata <- read.table("mydata.txt", header = TRUE) ################################################### ### chunk number 64: save ################################################### save(mydata, file = "mydata.rda") ################################################### ### chunk number 65: load ################################################### load("mydata.rda") ################################################### ### chunk number 66: file-remove ################################################### file.remove("mydata.rda") ################################################### ### chunk number 67: data ################################################### data("Journals", package = "AER") ################################################### ### chunk number 68: foreign ################################################### library("foreign") write.dta(mydata, file = "mydata.dta") ################################################### ### chunk number 69: read-dta ################################################### mydata <- read.dta("mydata.dta") ################################################### ### chunk number 70: cleanup ################################################### file.remove("mydata.dta") ################################################### ### chunk number 71: factor ################################################### g <- rep(0:1, c(2, 4)) g <- factor(g, levels = 0:1, labels = c("male", "female")) g ################################################### ### chunk number 72: na1 ################################################### newdata <- read.table("mydata.txt", na.strings = "-999") ################################################### ### chunk number 73: na2 ################################################### file.remove("mydata.txt") ################################################### ### chunk number 74: oop1 ################################################### x <- c(1.8, 3.14, 4, 88.169, 13) g <- factor(rep(c(0, 1), c(2, 4)), levels = c(0, 1), labels = c("male", "female")) ################################################### ### chunk number 75: oop2 ################################################### summary(x) summary(g) ################################################### ### chunk number 76: oop3 ################################################### class(x) class(g) ################################################### ### chunk number 77: oop4 ################################################### summary ################################################### ### chunk number 78: oop5 ################################################### normsample <- function(n, ...) { rval <- rnorm(n, ...) class(rval) <- "normsample" return(rval) } ################################################### ### chunk number 79: oop6 ################################################### set.seed(123) x <- normsample(10, mean = 5) class(x) ################################################### ### chunk number 80: oop7 ################################################### summary.normsample <- function(object, ...) { rval <- c(length(object), mean(object), sd(object)) names(rval) <- c("sample size","mean","standard deviation") return(rval) } ################################################### ### chunk number 81: oop8 ################################################### summary(x) ################################################### ### chunk number 82: journals-data eval=FALSE ################################################### ## data("Journals") ## Journals$citeprice <- Journals$price/Journals$citations ## attach(Journals) ## plot(log(subs), log(citeprice)) ## rug(log(subs)) ## rug(log(citeprice), side = 2) ## detach(Journals) ################################################### ### chunk number 83: journals-data1 ################################################### data("Journals") Journals$citeprice <- Journals$price/Journals$citations attach(Journals) plot(log(subs), log(citeprice)) rug(log(subs)) rug(log(citeprice), side = 2) detach(Journals) ################################################### ### chunk number 84: plot-formula ################################################### plot(log(subs) ~ log(citeprice), data = Journals) ################################################### ### chunk number 85: graphics1 ################################################### plot(log(subs) ~ log(citeprice), data = Journals, pch = 20, col = "blue", ylim = c(0, 8), xlim = c(-7, 4), main = "Library subscriptions") ################################################### ### chunk number 86: graphics2 ################################################### pdf("myfile.pdf", height = 5, width = 6) plot(1:20, pch = 1:20, col = 1:20, cex = 2) dev.off() ################################################### ### chunk number 87: dnorm-annotate eval=FALSE ################################################### ## curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3, ## main = "Density of the standard normal distribution") ## text(-5, 0.3, expression(f(x) == frac(1, sigma ~~ ## sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0) ################################################### ### chunk number 88: dnorm-annotate1 ################################################### curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3, main = "Density of the standard normal distribution") text(-5, 0.3, expression(f(x) == frac(1, sigma ~~ sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0) ################################################### ### chunk number 89: eda1 ################################################### data("CPS1985") str(CPS1985) ################################################### ### chunk number 90: eda2 ################################################### head(CPS1985) ################################################### ### chunk number 91: eda3 ################################################### levels(CPS1985$occupation)[c(2, 6)] <- c("techn", "mgmt") attach(CPS1985) ################################################### ### chunk number 92: eda4 ################################################### summary(wage) ################################################### ### chunk number 93: eda5 ################################################### mean(wage) median(wage) ################################################### ### chunk number 94: eda6 ################################################### var(wage) sd(wage) ################################################### ### chunk number 95: wage-hist ################################################### hist(wage, freq = FALSE) hist(log(wage), freq = FALSE) lines(density(log(wage)), col = 4) ################################################### ### chunk number 96: wage-hist1 ################################################### hist(wage, freq = FALSE) hist(log(wage), freq = FALSE) lines(density(log(wage)), col = 4) ################################################### ### chunk number 97: occ-table ################################################### summary(occupation) ################################################### ### chunk number 98: occ-table ################################################### tab <- table(occupation) prop.table(tab) ################################################### ### chunk number 99: occ-barpie ################################################### barplot(tab) pie(tab) ################################################### ### chunk number 100: occ-barpie ################################################### par(mar = c(4, 3, 1, 1)) barplot(tab, las = 3) par(mar = c(2, 3, 1, 3)) pie(tab, radius = 1) ################################################### ### chunk number 101: xtabs ################################################### xtabs(~ gender + occupation, data = CPS1985) ################################################### ### chunk number 102: spine eval=FALSE ################################################### ## plot(gender ~ occupation, data = CPS1985) ################################################### ### chunk number 103: spine1 ################################################### plot(gender ~ occupation, data = CPS1985) ################################################### ### chunk number 104: wageeduc-cor ################################################### cor(log(wage), education) cor(log(wage), education, method = "spearman") ################################################### ### chunk number 105: wageeduc-scatter eval=FALSE ################################################### ## plot(log(wage) ~ education) ################################################### ### chunk number 106: wageeduc-scatter1 ################################################### plot(log(wage) ~ education) ################################################### ### chunk number 107: tapply ################################################### tapply(log(wage), gender, mean) ################################################### ### chunk number 108: boxqq1 eval=FALSE ################################################### ## plot(log(wage) ~ gender) ################################################### ### chunk number 109: boxqq2 eval=FALSE ################################################### ## mwage <- subset(CPS1985, gender == "male")$wage ## fwage <- subset(CPS1985, gender == "female")$wage ## qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage), ## xaxs = "i", yaxs = "i", xlab = "male", ylab = "female") ## abline(0, 1) ################################################### ### chunk number 110: qq ################################################### plot(log(wage) ~ gender) mwage <- subset(CPS1985, gender == "male")$wage fwage <- subset(CPS1985, gender == "female")$wage qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage), xaxs = "i", yaxs = "i", xlab = "male", ylab = "female") abline(0, 1) ################################################### ### chunk number 111: detach ################################################### detach(CPS1985) AER/demo/Ch-Microeconometrics.R0000644000175400001440000003051612417314773016155 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: swisslabor-data ################################################### data("SwissLabor") swiss_probit <- glm(participation ~ . + I(age^2), data = SwissLabor, family = binomial(link = "probit")) summary(swiss_probit) ################################################### ### chunk number 3: swisslabor-plot eval=FALSE ################################################### ## plot(participation ~ age, data = SwissLabor, ylevels = 2:1) ################################################### ### chunk number 4: swisslabor-plot-refined ################################################### plot(participation ~ education, data = SwissLabor, ylevels = 2:1) fm <- glm(participation ~ education + I(education^2), data = SwissLabor, family = binomial) edu <- sort(unique(SwissLabor$education)) prop <- sapply(edu, function(x) mean(SwissLabor$education <= x)) lines(predict(fm, newdata = data.frame(education = edu), type = "response") ~ prop, col = 2) plot(participation ~ age, data = SwissLabor, ylevels = 2:1) fm <- glm(participation ~ age + I(age^2), data = SwissLabor, family = binomial) ag <- sort(unique(SwissLabor$age)) prop <- sapply(ag, function(x) mean(SwissLabor$age <= x)) lines(predict(fm, newdata = data.frame(age = ag), type = "response") ~ prop, col = 2) ################################################### ### chunk number 5: effects1 ################################################### fav <- mean(dnorm(predict(swiss_probit, type = "link"))) fav * coef(swiss_probit) ################################################### ### chunk number 6: effects2 ################################################### av <- colMeans(SwissLabor[, -c(1, 7)]) av <- data.frame(rbind(swiss = av, foreign = av), foreign = factor(c("no", "yes"))) av <- predict(swiss_probit, newdata = av, type = "link") av <- dnorm(av) av["swiss"] * coef(swiss_probit)[-7] ################################################### ### chunk number 7: effects3 ################################################### av["foreign"] * coef(swiss_probit)[-7] ################################################### ### chunk number 8: mcfadden ################################################### swiss_probit0 <- update(swiss_probit, formula = . ~ 1) 1 - as.vector(logLik(swiss_probit)/logLik(swiss_probit0)) ################################################### ### chunk number 9: confusion-matrix ################################################### table(true = SwissLabor$participation, pred = round(fitted(swiss_probit))) ################################################### ### chunk number 10: confusion-matrix1 ################################################### tab <- table(true = SwissLabor$participation, pred = round(fitted(swiss_probit))) tabp <- round(100 * c(tab[1,1] + tab[2,2], tab[2,1] + tab[1,2])/sum(tab), digits = 2) ################################################### ### chunk number 11: roc-plot eval=FALSE ################################################### ## library("ROCR") ## pred <- prediction(fitted(swiss_probit), ## SwissLabor$participation) ## plot(performance(pred, "acc")) ## plot(performance(pred, "tpr", "fpr")) ## abline(0, 1, lty = 2) ################################################### ### chunk number 12: roc-plot1 ################################################### library("ROCR") pred <- prediction(fitted(swiss_probit), SwissLabor$participation) plot(performance(pred, "acc")) plot(performance(pred, "tpr", "fpr")) abline(0, 1, lty = 2) ################################################### ### chunk number 13: rss ################################################### deviance(swiss_probit) sum(residuals(swiss_probit, type = "deviance")^2) sum(residuals(swiss_probit, type = "pearson")^2) ################################################### ### chunk number 14: coeftest eval=FALSE ################################################### ## coeftest(swiss_probit, vcov = sandwich) ################################################### ### chunk number 15: murder ################################################### data("MurderRates") murder_logit <- glm(I(executions > 0) ~ time + income + noncauc + lfp + southern, data = MurderRates, family = binomial) ################################################### ### chunk number 16: murder-coeftest ################################################### coeftest(murder_logit) ################################################### ### chunk number 17: murder2 ################################################### murder_logit2 <- glm(I(executions > 0) ~ time + income + noncauc + lfp + southern, data = MurderRates, family = binomial, control = list(epsilon = 1e-15, maxit = 50, trace = FALSE)) ################################################### ### chunk number 18: murder2-coeftest ################################################### coeftest(murder_logit2) ################################################### ### chunk number 19: separation ################################################### table(I(MurderRates$executions > 0), MurderRates$southern) ################################################### ### chunk number 20: countreg-pois ################################################### data("RecreationDemand") rd_pois <- glm(trips ~ ., data = RecreationDemand, family = poisson) ################################################### ### chunk number 21: countreg-pois-coeftest ################################################### coeftest(rd_pois) ################################################### ### chunk number 22: countreg-pois-logLik ################################################### logLik(rd_pois) ################################################### ### chunk number 23: countreg-odtest1 ################################################### dispersiontest(rd_pois) ################################################### ### chunk number 24: countreg-odtest2 ################################################### dispersiontest(rd_pois, trafo = 2) ################################################### ### chunk number 25: countreg-nbin ################################################### library("MASS") rd_nb <- glm.nb(trips ~ ., data = RecreationDemand) coeftest(rd_nb) logLik(rd_nb) ################################################### ### chunk number 26: countreg-se ################################################### round(sqrt(rbind(diag(vcov(rd_pois)), diag(sandwich(rd_pois)))), digits = 3) ################################################### ### chunk number 27: countreg-sandwich ################################################### coeftest(rd_pois, vcov = sandwich) ################################################### ### chunk number 28: countreg-OPG ################################################### round(sqrt(diag(vcovOPG(rd_pois))), 3) ################################################### ### chunk number 29: countreg-plot ################################################### plot(table(RecreationDemand$trips), ylab = "") ################################################### ### chunk number 30: countreg-zeros ################################################### rbind(obs = table(RecreationDemand$trips)[1:10], exp = round( sapply(0:9, function(x) sum(dpois(x, fitted(rd_pois)))))) ################################################### ### chunk number 31: countreg-pscl ################################################### library("pscl") ################################################### ### chunk number 32: countreg-zinb ################################################### rd_zinb <- zeroinfl(trips ~ . | quality + income, data = RecreationDemand, dist = "negbin") ################################################### ### chunk number 33: countreg-zinb-summary ################################################### summary(rd_zinb) ################################################### ### chunk number 34: countreg-zinb-expected ################################################### round(colSums(predict(rd_zinb, type = "prob")[,1:10])) ################################################### ### chunk number 35: countreg-hurdle ################################################### rd_hurdle <- hurdle(trips ~ . | quality + income, data = RecreationDemand, dist = "negbin") summary(rd_hurdle) ################################################### ### chunk number 36: countreg-hurdle-expected ################################################### round(colSums(predict(rd_hurdle, type = "prob")[,1:10])) ################################################### ### chunk number 37: tobit1 ################################################### data("Affairs") aff_tob <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) summary(aff_tob) ################################################### ### chunk number 38: tobit2 ################################################### aff_tob2 <- update(aff_tob, right = 4) summary(aff_tob2) ################################################### ### chunk number 39: tobit3 ################################################### linearHypothesis(aff_tob, c("age = 0", "occupation = 0"), vcov = sandwich) ################################################### ### chunk number 40: numeric-response ################################################### SwissLabor$partnum <- as.numeric(SwissLabor$participation) - 1 ################################################### ### chunk number 41: kleinspady eval=FALSE ################################################### ## library("np") ## swiss_bw <- npindexbw(partnum ~ income + age + education + ## youngkids + oldkids + foreign + I(age^2), data = SwissLabor, ## method = "kleinspady", nmulti = 5) ################################################### ### chunk number 42: kleinspady-bw eval=FALSE ################################################### ## summary(swiss_bw) ################################################### ### chunk number 43: kleinspady-summary eval=FALSE ################################################### ## swiss_ks <- npindex(bws = swiss_bw, gradients = TRUE) ## summary(swiss_ks) ################################################### ### chunk number 44: probit-confusion ################################################### table(Actual = SwissLabor$participation, Predicted = round(predict(swiss_probit, type = "response"))) ################################################### ### chunk number 45: bw-tab ################################################### data("BankWages") edcat <- factor(BankWages$education) levels(edcat)[3:10] <- rep(c("14-15", "16-18", "19-21"), c(2, 3, 3)) tab <- xtabs(~ edcat + job, data = BankWages) prop.table(tab, 1) ################################################### ### chunk number 46: bw-plot eval=FALSE ################################################### ## plot(job ~ edcat, data = BankWages, off = 0) ################################################### ### chunk number 47: bw-plot1 ################################################### plot(job ~ edcat, data = BankWages, off = 0) box() ################################################### ### chunk number 48: bw-multinom ################################################### library("nnet") bank_mnl <- multinom(job ~ education + minority, data = BankWages, subset = gender == "male", trace = FALSE) ################################################### ### chunk number 49: bw-multinom-coeftest ################################################### coeftest(bank_mnl) ################################################### ### chunk number 50: bw-polr ################################################### library("MASS") bank_polr <- polr(job ~ education + minority, data = BankWages, subset = gender == "male", Hess = TRUE) coeftest(bank_polr) ################################################### ### chunk number 51: bw-AIC ################################################### AIC(bank_mnl) AIC(bank_polr) AER/demo/Ch-Validation.R0000644000175400001440000002572711354653130014563 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: ps-summary ################################################### data("PublicSchools") summary(PublicSchools) ################################################### ### chunk number 3: ps-plot eval=FALSE ################################################### ## ps <- na.omit(PublicSchools) ## ps$Income <- ps$Income / 10000 ## plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) ## ps_lm <- lm(Expenditure ~ Income, data = ps) ## abline(ps_lm) ## id <- c(2, 24, 48) ## text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 4: ps-plot1 ################################################### ps <- na.omit(PublicSchools) ps$Income <- ps$Income / 10000 plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) ps_lm <- lm(Expenditure ~ Income, data = ps) abline(ps_lm) id <- c(2, 24, 48) text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 5: ps-lmplot eval=FALSE ################################################### ## plot(ps_lm, which = 1:6) ################################################### ### chunk number 6: ps-lmplot1 ################################################### plot(ps_lm, which = 1:6) ################################################### ### chunk number 7: ps-hatvalues eval=FALSE ################################################### ## ps_hat <- hatvalues(ps_lm) ## plot(ps_hat) ## abline(h = c(1, 3) * mean(ps_hat), col = 2) ## id <- which(ps_hat > 3 * mean(ps_hat)) ## text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 8: ps-hatvalues1 ################################################### ps_hat <- hatvalues(ps_lm) plot(ps_hat) abline(h = c(1, 3) * mean(ps_hat), col = 2) id <- which(ps_hat > 3 * mean(ps_hat)) text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE) ################################################### ### chunk number 9: influence-measures1 eval=FALSE ################################################### ## influence.measures(ps_lm) ################################################### ### chunk number 10: which-hatvalues ################################################### which(ps_hat > 3 * mean(ps_hat)) ################################################### ### chunk number 11: influence-measures2 ################################################### summary(influence.measures(ps_lm)) ################################################### ### chunk number 12: ps-noinf eval=FALSE ################################################### ## plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) ## abline(ps_lm) ## id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any)) ## text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ## ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,]) ## abline(ps_noinf, lty = 2) ################################################### ### chunk number 13: ps-noinf1 ################################################### plot(Expenditure ~ Income, data = ps, ylim = c(230, 830)) abline(ps_lm) id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any)) text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE) ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,]) abline(ps_noinf, lty = 2) ################################################### ### chunk number 14: journals-age ################################################### data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations journals$age <- 2000 - Journals$foundingyear ################################################### ### chunk number 15: journals-lm ################################################### jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) ################################################### ### chunk number 16: bptest1 ################################################### bptest(jour_lm) ################################################### ### chunk number 17: bptest2 ################################################### bptest(jour_lm, ~ log(citeprice) + I(log(citeprice)^2), data = journals) ################################################### ### chunk number 18: gqtest ################################################### gqtest(jour_lm, order.by = ~ citeprice, data = journals) ################################################### ### chunk number 19: resettest ################################################### resettest(jour_lm) ################################################### ### chunk number 20: raintest ################################################### raintest(jour_lm, order.by = ~ age, data = journals) ################################################### ### chunk number 21: harvtest ################################################### harvtest(jour_lm, order.by = ~ age, data = journals) ################################################### ### chunk number 22: ################################################### library("dynlm") ################################################### ### chunk number 23: usmacro-dynlm ################################################### data("USMacroG") consump1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) ################################################### ### chunk number 24: dwtest ################################################### dwtest(consump1) ################################################### ### chunk number 25: Box-test ################################################### Box.test(residuals(consump1), type = "Ljung-Box") ################################################### ### chunk number 26: bgtest ################################################### bgtest(consump1) ################################################### ### chunk number 27: vcov ################################################### vcov(jour_lm) vcovHC(jour_lm) ################################################### ### chunk number 28: coeftest ################################################### coeftest(jour_lm, vcov = vcovHC) ################################################### ### chunk number 29: sandwiches ################################################### t(sapply(c("const", "HC0", "HC1", "HC2", "HC3", "HC4"), function(x) sqrt(diag(vcovHC(jour_lm, type = x))))) ################################################### ### chunk number 30: ps-anova ################################################### ps_lm <- lm(Expenditure ~ Income, data = ps) ps_lm2 <- lm(Expenditure ~ Income + I(Income^2), data = ps) anova(ps_lm, ps_lm2) ################################################### ### chunk number 31: ps-waldtest ################################################### waldtest(ps_lm, ps_lm2, vcov = vcovHC(ps_lm2, type = "HC4")) ################################################### ### chunk number 32: vcovHAC ################################################### rbind(SE = sqrt(diag(vcov(consump1))), QS = sqrt(diag(kernHAC(consump1))), NW = sqrt(diag(NeweyWest(consump1)))) ################################################### ### chunk number 33: solow-lm ################################################### data("OECDGrowth") solow_lm <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth + .05), data = OECDGrowth) summary(solow_lm) ################################################### ### chunk number 34: solow-plot eval=FALSE ################################################### ## plot(solow_lm) ################################################### ### chunk number 35: solow-lts ################################################### library("MASS") solow_lts <- lqs(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth + .05), data = OECDGrowth, psamp = 13, nsamp = "exact") ################################################### ### chunk number 36: solow-smallresid ################################################### smallresid <- which( abs(residuals(solow_lts)/solow_lts$scale[2]) <= 2.5) ################################################### ### chunk number 37: solow-nohighlev ################################################### X <- model.matrix(solow_lm)[,-1] Xcv <- cov.rob(X, nsamp = "exact") nohighlev <- which( sqrt(mahalanobis(X, Xcv$center, Xcv$cov)) <= 2.5) ################################################### ### chunk number 38: solow-goodobs ################################################### goodobs <- unique(c(smallresid, nohighlev)) ################################################### ### chunk number 39: solow-badobs ################################################### rownames(OECDGrowth)[-goodobs] ################################################### ### chunk number 40: solow-rob ################################################### solow_rob <- update(solow_lm, subset = goodobs) summary(solow_rob) ################################################### ### chunk number 41: quantreg ################################################### library("quantreg") ################################################### ### chunk number 42: cps-lad ################################################### library("quantreg") data("CPS1988") cps_f <- log(wage) ~ experience + I(experience^2) + education cps_lad <- rq(cps_f, data = CPS1988) summary(cps_lad) ################################################### ### chunk number 43: cps-rq ################################################### cps_rq <- rq(cps_f, tau = c(0.25, 0.75), data = CPS1988) summary(cps_rq) ################################################### ### chunk number 44: cps-rqs ################################################### cps_rq25 <- rq(cps_f, tau = 0.25, data = CPS1988) cps_rq75 <- rq(cps_f, tau = 0.75, data = CPS1988) anova(cps_rq25, cps_rq75) ################################################### ### chunk number 45: cps-rq-anova ################################################### anova(cps_rq25, cps_rq75, joint = FALSE) ################################################### ### chunk number 46: rqbig ################################################### cps_rqbig <- rq(cps_f, tau = seq(0.05, 0.95, by = 0.05), data = CPS1988) cps_rqbigs <- summary(cps_rqbig) ################################################### ### chunk number 47: rqbig-plot eval=FALSE ################################################### ## plot(cps_rqbigs) ################################################### ### chunk number 48: rqbig-plot1 ################################################### plot(cps_rqbigs) AER/demo/00Index0000644000175400001440000000052711354653130013137 0ustar zeileisusersCh-Intro Chapter 1: Introduction Ch-Basics Chapter 2: Basics Ch-LinearRegression Chapter 3: Linear Regression Ch-Validation Chapter 4: Diagnostics and Alternative Methods of Regression Ch-Microeconometrics Chapter 5: Models of Microeconometrics Ch-TimeSeries Chapter 6: Time Series Ch-Programming Chapter 7: Programming Your Own Analysis AER/demo/Ch-Intro.R0000644000175400001440000001436411354653130013557 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: journals-data ################################################### data("Journals", package = "AER") ################################################### ### chunk number 3: journals-dim ################################################### dim(Journals) names(Journals) ################################################### ### chunk number 4: journals-plot eval=FALSE ################################################### ## plot(log(subs) ~ log(price/citations), data = Journals) ################################################### ### chunk number 5: journals-lm eval=FALSE ################################################### ## j_lm <- lm(log(subs) ~ log(price/citations), data = Journals) ## abline(j_lm) ################################################### ### chunk number 6: journals-lmplot ################################################### plot(log(subs) ~ log(price/citations), data = Journals) j_lm <- lm(log(subs) ~ log(price/citations), data = Journals) abline(j_lm) ################################################### ### chunk number 7: journals-lm-summary ################################################### summary(j_lm) ################################################### ### chunk number 8: cps-data ################################################### data("CPS1985", package = "AER") cps <- CPS1985 ################################################### ### chunk number 9: cps-data1 eval=FALSE ################################################### ## data("CPS1985", package = "AER") ## cps <- CPS1985 ################################################### ### chunk number 10: cps-reg ################################################### library("quantreg") cps_lm <- lm(log(wage) ~ experience + I(experience^2) + education, data = cps) cps_rq <- rq(log(wage) ~ experience + I(experience^2) + education, data = cps, tau = seq(0.2, 0.8, by = 0.15)) ################################################### ### chunk number 11: cps-predict ################################################### cps2 <- data.frame(education = mean(cps$education), experience = min(cps$experience):max(cps$experience)) cps2 <- cbind(cps2, predict(cps_lm, newdata = cps2, interval = "prediction")) cps2 <- cbind(cps2, predict(cps_rq, newdata = cps2, type = "")) ################################################### ### chunk number 12: rq-plot eval=FALSE ################################################### ## plot(log(wage) ~ experience, data = cps) ## for(i in 6:10) lines(cps2[,i] ~ experience, ## data = cps2, col = "red") ################################################### ### chunk number 13: rq-plot1 ################################################### plot(log(wage) ~ experience, data = cps) for(i in 6:10) lines(cps2[,i] ~ experience, data = cps2, col = "red") ################################################### ### chunk number 14: srq-plot eval=FALSE ################################################### ## plot(summary(cps_rq)) ################################################### ### chunk number 15: srq-plot1 ################################################### plot(summary(cps_rq)) ################################################### ### chunk number 16: bkde-fit ################################################### library("KernSmooth") cps_bkde <- bkde2D(cbind(cps$experience, log(cps$wage)), bandwidth = c(3.5, 0.5), gridsize = c(200, 200)) ################################################### ### chunk number 17: bkde-plot eval=FALSE ################################################### ## image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat, ## col = rev(gray.colors(10, gamma = 1)), ## xlab = "experience", ylab = "log(wage)") ## box() ## lines(fit ~ experience, data = cps2) ## lines(lwr ~ experience, data = cps2, lty = 2) ## lines(upr ~ experience, data = cps2, lty = 2) ################################################### ### chunk number 18: bkde-plot1 ################################################### image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat, col = rev(gray.colors(10, gamma = 1)), xlab = "experience", ylab = "log(wage)") box() lines(fit ~ experience, data = cps2) lines(lwr ~ experience, data = cps2, lty = 2) lines(upr ~ experience, data = cps2, lty = 2) ################################################### ### chunk number 19: install eval=FALSE ################################################### ## install.packages("AER") ################################################### ### chunk number 20: library ################################################### library("AER") ################################################### ### chunk number 21: objects ################################################### objects() ################################################### ### chunk number 22: search ################################################### search() ################################################### ### chunk number 23: assignment ################################################### x <- 2 objects() ################################################### ### chunk number 24: remove ################################################### remove(x) objects() ################################################### ### chunk number 25: log eval=FALSE ################################################### ## log(16, 2) ## log(x = 16, 2) ## log(16, base = 2) ## log(base = 2, x = 16) ################################################### ### chunk number 26: q eval=FALSE ################################################### ## q() ################################################### ### chunk number 27: apropos ################################################### apropos("help") AER/demo/Ch-LinearRegression.R0000644000175400001440000004646211423553153015744 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: data-journals ################################################### data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations summary(journals) ################################################### ### chunk number 3: linreg-plot eval=FALSE ################################################### ## plot(log(subs) ~ log(citeprice), data = journals) ## jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) ## abline(jour_lm) ################################################### ### chunk number 4: linreg-plot1 ################################################### plot(log(subs) ~ log(citeprice), data = journals) jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) abline(jour_lm) ################################################### ### chunk number 5: linreg-class ################################################### class(jour_lm) ################################################### ### chunk number 6: linreg-names ################################################### names(jour_lm) ################################################### ### chunk number 7: linreg-summary ################################################### summary(jour_lm) ################################################### ### chunk number 8: linreg-summary ################################################### jour_slm <- summary(jour_lm) class(jour_slm) names(jour_slm) ################################################### ### chunk number 9: linreg-coef ################################################### jour_slm$coefficients ################################################### ### chunk number 10: linreg-anova ################################################### anova(jour_lm) ################################################### ### chunk number 11: journals-coef ################################################### coef(jour_lm) ################################################### ### chunk number 12: journals-confint ################################################### confint(jour_lm, level = 0.95) ################################################### ### chunk number 13: journals-predict ################################################### predict(jour_lm, newdata = data.frame(citeprice = 2.11), interval = "confidence") predict(jour_lm, newdata = data.frame(citeprice = 2.11), interval = "prediction") ################################################### ### chunk number 14: predict-plot eval=FALSE ################################################### ## lciteprice <- seq(from = -6, to = 4, by = 0.25) ## jour_pred <- predict(jour_lm, interval = "prediction", ## newdata = data.frame(citeprice = exp(lciteprice))) ## plot(log(subs) ~ log(citeprice), data = journals) ## lines(jour_pred[, 1] ~ lciteprice, col = 1) ## lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2) ## lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2) ################################################### ### chunk number 15: predict-plot1 ################################################### lciteprice <- seq(from = -6, to = 4, by = 0.25) jour_pred <- predict(jour_lm, interval = "prediction", newdata = data.frame(citeprice = exp(lciteprice))) plot(log(subs) ~ log(citeprice), data = journals) lines(jour_pred[, 1] ~ lciteprice, col = 1) lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2) lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2) ################################################### ### chunk number 16: journals-plot eval=FALSE ################################################### ## par(mfrow = c(2, 2)) ## plot(jour_lm) ## par(mfrow = c(1, 1)) ################################################### ### chunk number 17: journals-plot1 ################################################### par(mfrow = c(2, 2)) plot(jour_lm) par(mfrow = c(1, 1)) ################################################### ### chunk number 18: journal-lht ################################################### linearHypothesis(jour_lm, "log(citeprice) = -0.5") ################################################### ### chunk number 19: CPS-data ################################################### data("CPS1988") summary(CPS1988) ################################################### ### chunk number 20: CPS-base ################################################### cps_lm <- lm(log(wage) ~ experience + I(experience^2) + education + ethnicity, data = CPS1988) ################################################### ### chunk number 21: CPS-visualization-unused eval=FALSE ################################################### ## ex <- 0:56 ## ed <- with(CPS1988, tapply(education, ## list(ethnicity, experience), mean))[, as.character(ex)] ## fm <- cps_lm ## wago <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) ## wagb <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "afam", education = as.numeric(ed["afam",]))) ## plot(log(wage) ~ experience, data = CPS1988, pch = ".", ## col = as.numeric(ethnicity)) ## lines(ex, wago) ## lines(ex, wagb, col = 2) ################################################### ### chunk number 22: CPS-summary ################################################### summary(cps_lm) ################################################### ### chunk number 23: CPS-noeth ################################################### cps_noeth <- lm(log(wage) ~ experience + I(experience^2) + education, data = CPS1988) anova(cps_noeth, cps_lm) ################################################### ### chunk number 24: CPS-anova ################################################### anova(cps_lm) ################################################### ### chunk number 25: CPS-noeth2 eval=FALSE ################################################### ## cps_noeth <- update(cps_lm, formula = . ~ . - ethnicity) ################################################### ### chunk number 26: CPS-waldtest ################################################### waldtest(cps_lm, . ~ . - ethnicity) ################################################### ### chunk number 27: CPS-spline ################################################### cps_plm <- lm(log(wage) ~ bs(experience, df = 5) + education + ethnicity, data = CPS1988) ################################################### ### chunk number 28: CPS-spline-summary eval=FALSE ################################################### ## summary(cps_plm) ################################################### ### chunk number 29: CPS-BIC ################################################### cps_bs <- lapply(3:10, function(i) lm(log(wage) ~ bs(experience, df = i) + education + ethnicity, data = CPS1988)) structure(sapply(cps_bs, AIC, k = log(nrow(CPS1988))), .Names = 3:10) ################################################### ### chunk number 30: plm-plot eval=FALSE ################################################### ## cps <- data.frame(experience = -2:60, education = ## with(CPS1988, mean(education[ethnicity == "cauc"])), ## ethnicity = "cauc") ## cps$yhat1 <- predict(cps_lm, newdata = cps) ## cps$yhat2 <- predict(cps_plm, newdata = cps) ## ## plot(log(wage) ~ jitter(experience, factor = 3), pch = 19, ## col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988) ## lines(yhat1 ~ experience, data = cps, lty = 2) ## lines(yhat2 ~ experience, data = cps) ## legend("topleft", c("quadratic", "spline"), lty = c(2,1), ## bty = "n") ################################################### ### chunk number 31: plm-plot1 ################################################### cps <- data.frame(experience = -2:60, education = with(CPS1988, mean(education[ethnicity == "cauc"])), ethnicity = "cauc") cps$yhat1 <- predict(cps_lm, newdata = cps) cps$yhat2 <- predict(cps_plm, newdata = cps) plot(log(wage) ~ jitter(experience, factor = 3), pch = 19, col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988) lines(yhat1 ~ experience, data = cps, lty = 2) lines(yhat2 ~ experience, data = cps) legend("topleft", c("quadratic", "spline"), lty = c(2,1), bty = "n") ################################################### ### chunk number 32: CPS-int ################################################### cps_int <- lm(log(wage) ~ experience + I(experience^2) + education * ethnicity, data = CPS1988) coeftest(cps_int) ################################################### ### chunk number 33: CPS-int2 eval=FALSE ################################################### ## cps_int <- lm(log(wage) ~ experience + I(experience^2) + ## education + ethnicity + education:ethnicity, ## data = CPS1988) ################################################### ### chunk number 34: CPS-sep ################################################### cps_sep <- lm(log(wage) ~ ethnicity / (experience + I(experience^2) + education) - 1, data = CPS1988) ################################################### ### chunk number 35: CPS-sep-coef ################################################### cps_sep_cf <- matrix(coef(cps_sep), nrow = 2) rownames(cps_sep_cf) <- levels(CPS1988$ethnicity) colnames(cps_sep_cf) <- names(coef(cps_lm))[1:4] cps_sep_cf ################################################### ### chunk number 36: CPS-sep-anova ################################################### anova(cps_sep, cps_lm) ################################################### ### chunk number 37: CPS-sep-visualization-unused eval=FALSE ################################################### ## ex <- 0:56 ## ed <- with(CPS1988, tapply(education, list(ethnicity, ## experience), mean))[, as.character(ex)] ## fm <- cps_lm ## wago <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) ## wagb <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "afam", education = as.numeric(ed["afam",]))) ## plot(log(wage) ~ jitter(experience, factor = 2), ## data = CPS1988, pch = ".", col = as.numeric(ethnicity)) ## ## ## plot(log(wage) ~ as.factor(experience), data = CPS1988, ## pch = ".") ## lines(ex, wago, lwd = 2) ## lines(ex, wagb, col = 2, lwd = 2) ## fm <- cps_sep ## wago <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "cauc", education = as.numeric(ed["cauc",]))) ## wagb <- predict(fm, newdata = data.frame(experience = ex, ## ethnicity = "afam", education = as.numeric(ed["afam",]))) ## lines(ex, wago, lty = 2, lwd = 2) ## lines(ex, wagb, col = 2, lty = 2, lwd = 2) ################################################### ### chunk number 38: CPS-region ################################################### CPS1988$region <- relevel(CPS1988$region, ref = "south") cps_region <- lm(log(wage) ~ ethnicity + education + experience + I(experience^2) + region, data = CPS1988) coef(cps_region) ################################################### ### chunk number 39: wls1 ################################################### jour_wls1 <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice^2) ################################################### ### chunk number 40: wls2 ################################################### jour_wls2 <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice) ################################################### ### chunk number 41: journals-wls1 eval=FALSE ################################################### ## plot(log(subs) ~ log(citeprice), data = journals) ## abline(jour_lm) ## abline(jour_wls1, lwd = 2, lty = 2) ## abline(jour_wls2, lwd = 2, lty = 3) ## legend("bottomleft", c("OLS", "WLS1", "WLS2"), ## lty = 1:3, lwd = 2, bty = "n") ################################################### ### chunk number 42: journals-wls11 ################################################### plot(log(subs) ~ log(citeprice), data = journals) abline(jour_lm) abline(jour_wls1, lwd = 2, lty = 2) abline(jour_wls2, lwd = 2, lty = 3) legend("bottomleft", c("OLS", "WLS1", "WLS2"), lty = 1:3, lwd = 2, bty = "n") ################################################### ### chunk number 43: fgls1 ################################################### auxreg <- lm(log(residuals(jour_lm)^2) ~ log(citeprice), data = journals) jour_fgls1 <- lm(log(subs) ~ log(citeprice), weights = 1/exp(fitted(auxreg)), data = journals) ################################################### ### chunk number 44: fgls2 ################################################### gamma2i <- coef(auxreg)[2] gamma2 <- 0 while(abs((gamma2i - gamma2)/gamma2) > 1e-7) { gamma2 <- gamma2i fglsi <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice^gamma2) gamma2i <- coef(lm(log(residuals(fglsi)^2) ~ log(citeprice), data = journals))[2] } jour_fgls2 <- lm(log(subs) ~ log(citeprice), data = journals, weights = 1/citeprice^gamma2) ################################################### ### chunk number 45: fgls2-coef ################################################### coef(jour_fgls2) ################################################### ### chunk number 46: journals-fgls ################################################### plot(log(subs) ~ log(citeprice), data = journals) abline(jour_lm) abline(jour_fgls2, lty = 2, lwd = 2) ################################################### ### chunk number 47: usmacro-plot eval=FALSE ################################################### ## data("USMacroG") ## plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1), ## plot.type = "single", ylab = "") ## legend("topleft", legend = c("income", "consumption"), ## lty = c(3, 1), bty = "n") ################################################### ### chunk number 48: usmacro-plot1 ################################################### data("USMacroG") plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1), plot.type = "single", ylab = "") legend("topleft", legend = c("income", "consumption"), lty = c(3, 1), bty = "n") ################################################### ### chunk number 49: usmacro-fit ################################################### library("dynlm") cons_lm1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) cons_lm2 <- dynlm(consumption ~ dpi + L(consumption), data = USMacroG) ################################################### ### chunk number 50: usmacro-summary1 ################################################### summary(cons_lm1) ################################################### ### chunk number 51: usmacro-summary2 ################################################### summary(cons_lm2) ################################################### ### chunk number 52: dynlm-plot eval=FALSE ################################################### ## plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1), ## fitted(cons_lm2), 0, residuals(cons_lm1), ## residuals(cons_lm2)), screens = rep(1:2, c(3, 3)), ## lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"), ## xlab = "Time", main = "") ## legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"), ## lty = 1:3, bty = "n") ################################################### ### chunk number 53: dynlm-plot1 ################################################### plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1), fitted(cons_lm2), 0, residuals(cons_lm1), residuals(cons_lm2)), screens = rep(1:2, c(3, 3)), lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"), xlab = "Time", main = "") legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"), lty = 1:3, bty = "n") ################################################### ### chunk number 54: encompassing1 ################################################### cons_lmE <- dynlm(consumption ~ dpi + L(dpi) + L(consumption), data = USMacroG) ################################################### ### chunk number 55: encompassing2 ################################################### anova(cons_lm1, cons_lmE, cons_lm2) ################################################### ### chunk number 56: encompassing3 ################################################### encomptest(cons_lm1, cons_lm2) ################################################### ### chunk number 57: plm-data ################################################### data("Grunfeld", package = "AER") library("plm") gr <- subset(Grunfeld, firm %in% c("General Electric", "General Motors", "IBM")) pgr <- plm.data(gr, index = c("firm", "year")) ################################################### ### chunk number 58: plm-pool ################################################### gr_pool <- plm(invest ~ value + capital, data = pgr, model = "pooling") ################################################### ### chunk number 59: plm-FE ################################################### gr_fe <- plm(invest ~ value + capital, data = pgr, model = "within") summary(gr_fe) ################################################### ### chunk number 60: plm-pFtest ################################################### pFtest(gr_fe, gr_pool) ################################################### ### chunk number 61: plm-RE ################################################### gr_re <- plm(invest ~ value + capital, data = pgr, model = "random", random.method = "walhus") summary(gr_re) ################################################### ### chunk number 62: plm-plmtest ################################################### plmtest(gr_pool) ################################################### ### chunk number 63: plm-phtest ################################################### phtest(gr_re, gr_fe) ################################################### ### chunk number 64: EmplUK-data ################################################### data("EmplUK", package = "plm") form <- log(emp) ~ log(wage) + log(capital) + log(output) ################################################### ### chunk number 65: plm-AB ################################################### empl_ab <- pgmm(dynformula(form, list(2, 1, 0, 1)), data = EmplUK, index = c("firm", "year"), effect = "twoways", model = "twosteps", gmm.inst = ~ log(emp), lag.gmm = list(c(2, 99))) ################################################### ### chunk number 66: plm-AB-summary ################################################### summary(empl_ab) ################################################### ### chunk number 67: systemfit ################################################### library("systemfit") gr2 <- subset(Grunfeld, firm %in% c("Chrysler", "IBM")) pgr2 <- plm.data(gr2, c("firm", "year")) ################################################### ### chunk number 68: SUR ################################################### gr_sur <- systemfit(invest ~ value + capital, method = "SUR", data = pgr2) summary(gr_sur, residCov = FALSE, equations = FALSE) ################################################### ### chunk number 69: nlme eval=FALSE ################################################### ## library("nlme") ## g1 <- subset(Grunfeld, firm == "Westinghouse") ## gls(invest ~ value + capital, data = g1, correlation = corAR1()) AER/demo/Ch-Programming.R0000644000175400001440000001640711354653130014746 0ustar zeileisusers################################################### ### chunk number 1: setup ################################################### options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, threefig = function() {par(mfrow = c(1,3))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))})) library("AER") set.seed(1071) ################################################### ### chunk number 2: DGP ################################################### dgp <- function(nobs = 15, model = c("trend", "dynamic"), corr = 0, coef = c(0.25, -0.75), sd = 1) { model <- match.arg(model) coef <- rep(coef, length.out = 2) err <- as.vector(filter(rnorm(nobs, sd = sd), corr, method = "recursive")) if(model == "trend") { x <- 1:nobs y <- coef[1] + coef[2] * x + err } else { y <- rep(NA, nobs) y[1] <- coef[1] + err[1] for(i in 2:nobs) y[i] <- coef[1] + coef[2] * y[i-1] + err[i] x <- c(0, y[1:(nobs-1)]) } return(data.frame(y = y, x = x)) } ################################################### ### chunk number 3: simpower ################################################### simpower <- function(nrep = 100, size = 0.05, ...) { pval <- matrix(rep(NA, 2 * nrep), ncol = 2) colnames(pval) <- c("dwtest", "bgtest") for(i in 1:nrep) { dat <- dgp(...) pval[i,1] <- dwtest(y ~ x, data = dat, alternative = "two.sided")$p.value pval[i,2] <- bgtest(y ~ x, data = dat)$p.value } return(colMeans(pval < size)) } ################################################### ### chunk number 4: simulation-function ################################################### simulation <- function(corr = c(0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99), nobs = c(15, 30, 50), model = c("trend", "dynamic"), ...) { prs <- expand.grid(corr = corr, nobs = nobs, model = model) nprs <- nrow(prs) pow <- matrix(rep(NA, 2 * nprs), ncol = 2) for(i in 1:nprs) pow[i,] <- simpower(corr = prs[i,1], nobs = prs[i,2], model = as.character(prs[i,3]), ...) rval <- rbind(prs, prs) rval$test <- factor(rep(1:2, c(nprs, nprs)), labels = c("dwtest", "bgtest")) rval$power <- c(pow[,1], pow[,2]) rval$nobs <- factor(rval$nobs) return(rval) } ################################################### ### chunk number 5: simulation ################################################### set.seed(123) psim <- simulation() ################################################### ### chunk number 6: simulation-table ################################################### tab <- xtabs(power ~ corr + test + model + nobs, data = psim) ftable(tab, row.vars = c("model", "nobs", "test"), col.vars = "corr") ################################################### ### chunk number 7: simulation-visualization ################################################### library("lattice") xyplot(power ~ corr | model + nobs, groups = ~ test, data = psim, type = "b") ################################################### ### chunk number 8: simulation-visualization1 ################################################### library("lattice") trellis.par.set(theme = canonical.theme(color = FALSE)) print(xyplot(power ~ corr | model + nobs, groups = ~ test, data = psim, type = "b")) ################################################### ### chunk number 9: journals-lm ################################################### data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) ################################################### ### chunk number 10: journals-residuals-based-resampling-unused eval=FALSE ################################################### ## refit <- function(data, i) { ## d <- data ## d$subs <- exp(d$fitted + d$res[i]) ## coef(lm(log(subs) ~ log(citeprice), data = d)) ## } ################################################### ### chunk number 11: journals-case-based-resampling ################################################### refit <- function(data, i) coef(lm(log(subs) ~ log(citeprice), data = data[i,])) ################################################### ### chunk number 12: journals-boot ################################################### library("boot") set.seed(123) jour_boot <- boot(journals, refit, R = 999) ################################################### ### chunk number 13: journals-boot-print ################################################### jour_boot ################################################### ### chunk number 14: journals-lm-coeftest ################################################### coeftest(jour_lm) ################################################### ### chunk number 15: journals-boot-ci ################################################### boot.ci(jour_boot, index = 2, type = "basic") ################################################### ### chunk number 16: journals-lm-ci ################################################### confint(jour_lm, parm = 2) ################################################### ### chunk number 17: ml-loglik ################################################### data("Equipment", package = "AER") nlogL <- function(par) { beta <- par[1:3] theta <- par[4] sigma2 <- par[5] Y <- with(Equipment, valueadded/firms) K <- with(Equipment, capital/firms) L <- with(Equipment, labor/firms) rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L) lhs <- log(Y) + theta * Y rval <- sum(log(1 + theta * Y) - log(Y) + dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE)) return(-rval) } ################################################### ### chunk number 18: ml-0 ################################################### fm0 <- lm(log(valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ################################################### ### chunk number 19: ml-0-coef ################################################### par0 <- as.vector(c(coef(fm0), 0, mean(residuals(fm0)^2))) ################################################### ### chunk number 20: ml-optim ################################################### opt <- optim(par0, nlogL, hessian = TRUE) ################################################### ### chunk number 21: ml-optim-output ################################################### opt$par sqrt(diag(solve(opt$hessian)))[1:4] -opt$value ################################################### ### chunk number 22: Sweave eval=FALSE ################################################### ## Sweave("Sweave-journals.Rnw") ################################################### ### chunk number 23: Stangle eval=FALSE ################################################### ## Stangle("Sweave-journals.Rnw") ################################################### ### chunk number 24: texi2dvi eval=FALSE ################################################### ## texi2dvi("Sweave-journals.tex", pdf = TRUE) ################################################### ### chunk number 25: vignette eval=FALSE ################################################### ## vignette("Sweave-journals", package = "AER") AER/NEWS0000644000175400001440000002076013033552775011572 0ustar zeileisusersChanges in Version 1.2-5 o Support for aliased coefficients in ivreg() (suggested and tested by Liviu Andronic). o New data sets GoldSilver, MotorCycles2 and MSCISwitzerland, taken from Franses, van Dijk, Opschoor (2014): "Time Series Models for Business and Economic Forecasting", 2nd ed. For replication of the corresponding examples, several packages were added to the list of 'suggested' packages (including fGarch, forecast, longmemo, rugarch, vars). o Small improvements in DESCRIPTION/Imports and NAMESPACE for R CMD check. Changes in Version 1.2-4 o Reference output updated for recent versions of R. Changes in Version 1.2-3 o Package "splines" is loaded explicitly if needed (rather than assuming that it is loaded along with "survival"). o Some URLs in the manual pages had been outdated and are updated (or omitted) now. Changes in Version 1.2-2 o Another bug fix in the new summary(ivreg_object, diagnostics = TRUE). If sandwich standard errors (or other vcov) were used, the chi-squared form rather than the F form of the diagnostic Wald tests was computed and hence the p-values were incorrect. o If there is more than one endogenous variable, summary(ivreg_object, diagnostics = TRUE) now reports separate tests of weak instruments for each endogenous variable. Changes in Version 1.2-1 o Bug fix in the new summary(ivreg_object, diagnostics = TRUE). If there is more than one endogenous variable, the degrees of freedom (and hence the associated p-values) for the Sargan test were too large. o The examples employing "rgl" for 3d visualizations (e.g., for the SIC33 data) are not tested anymore in R CMD check (as "rgl" currently has some problems on CRAN's checks for OS X). Changes in Version 1.2-0 o The summary() method for ivreg() now has a diagnostics=FALSE argument. If set to TRUE, three diagnostic tests are performed: an F test of the first stage regression for weak instruments, a Wu-Hausman test for endogeneity, and a Sargan test of overidentifying restrictions (only if there are more instruments than regressors). o Added new data set EquationCitations provided by Fawcett & Higginson (2012, PNAS). o Changes in Depends/Imports/Suggests due to new CRAN check requirements. In particular, the "Formula" package is now only imported (but not loaded into the search path). Changes in Version 1.1-9 o Recompressed data sets in package to reduce file storage requirements. o ivreg() failed when used without instruments. Now fixed. o The summary() for ivreg() displayed the degrees of freedom of the overall Wald test incorrectly (although the p-value was computed correctly). o Some technical changes for new R 2.14.0, e.g., adding Authors@R in DESCRIPTION, recompressing data, etc. Changes in Version 1.1-8 o The hat values for instrumental variables regressions are now computed in the hatvalues() method and not within ivreg.fit() to save computation time for large data sets. o Added nobs() method for "survreg" objects (and thus "tobit" objects). Modified "ivreg" objects so that default nobs() methods works. o Labeling in coeftest() method for "multinom" objects with binary responses has been fixed. o Example 21.4 in ?Greene2003 now employs the scaled regressor fincome/10000. Changes in Version 1.1-7 o Adapted some example in ?Greene2003 in order to work both with the old and new "dynlm" package. dynlm() now provides convenient support for linear time trends via dynlm(y ~ trend(y)) etc. Changes in Version 1.1-6 o Adapted code/examples/tests to new car version which has deprecated linear.hypothesis() in favor of linearHypothesis(). Changes in Version 1.1-5 o CPS1985 now has 534 observations (not 533 as in prior releases), the original observation 1 had been omitted inadvertently. See also the errata in vignette("AER", package = "AER"). o Data and examples for Winkelmann and Boes (2009), "Analysis of Microdata" (2nd ed.) have been added. For details and extensive (but not quite complete) replication code see help("WinkelmannBoes2009") as well as help("GSS7402") and help("GSOEP9402"). o As announced in the changes for version 1.1-0 of the "AER" package, the variable "earnings" has now been removed from the PSID1976 (aka Mroz) data. In 1.1-0 it was renamed to "wage" to avoid confusion with other data sets. o The coeftest() method for "polr" objects used to return wrong standard errors (and hence wrong z tests) for the last intercept. This was caused by an inconsistency between the summary() and vcov() methods for "polr" objects which has been improved in recent versions of the "MASS" package. The correct results are computed by coeftest() for "polr" objects computed with MASS version >= 7.3-6. See also the errata in vignette("AER", package = "AER") o The paper describing the various versions of the Grunfeld data has been accepted for publication in the German Economic Review. An updated version of the manuscript and associated replication files -- mostly based on data("Grunfeld", package = "AER") -- is available from http://statmath.wu.ac.at/~zeileis/grunfeld/. o Added lrtest() method for "fitdistr" objects with intelligible model name (instead of the usual formula for formula-based models). Changes in Version 1.1-4 o ivreg() now uses the "Formula" package (>= 0.2-0) for processing of its model formulas. However, this only affects the internal computations, the user interface has remained unchanged. o Numerous spelling improvements in the documentation (thanks to the new aspell() functionality in base R). Changes in Version 1.1-3 o Added PSID7682 data set which contains the full Cornwell & Rupert (1988) panel data for the years 1976-1982. This should be used for estimation of the Hausman-Taylor model in Exercise 6 from Chapter 3 (instead of PSID1982 which does not provide panel data but only the cross-section for 1982). See the errata and the manual page for more details. o Fixed overall Wald test in summary() for "tobit" models with intercept only. Changes in Version 1.1-2 o New errata item in vignette("AER", package = "AER"): The comment regarding the output from the Johansen test (p. 169) is in error. The null hypothesis of no cointegration is not rejected at the 10% level (only at 15% level). o Enhancements of the CigarettesSW examples from Stock & Watson. o Fixed overall Wald test in summary() for "tobit" models without intercept. o Improved "rgl" code in the SIC33 example. o The variable "gender" in the Parade2005 data set was wrong for observation 70. It is now "male" (not "female"). Changes in Version 1.1-1 o A new improved version of the "plm" package is available from CRAN (version 1.1-1). This fixes a bug in the summary() of "plm" objects, see the vignette/errata for details. Furthermore, there is now a vcovHC() method for "panelmodel" objects: It gives equivalent results to pvcovHC() but is now the recommended user interface and hence used in the examples of some manual pages (see e.g. ?Fatalities). Changes in Version 1.1-0 o Some variable names in the PSID1976 (aka Mroz) data have been renamed: "earnings" is now called "wage" (to avoid confusion with other data sets), the previous variable "wage" is renamed as "repwage" (reported wage). Currently, "earnings" is kept; it will be removed in future releases. o Documentation of the Grunfeld data has been enhanced and updated. Much more details are available in a recent technical report: Kleiber and Zeileis (2008), "The Grunfeld Data at 50", available from http://epub.wu-wien.ac.at/. o Multinomial logit examples using Yves Croissant's "mlogit" package have been added for the TravelMode and BankWages data sets. o Vignette/errata updated. Changes in Version 1.0-1 o Small changes for R 2.8.0. Changes in Version 1.0-0 o official version accompanying the release of the book (contains all code from the book in demos and tests) o See the new vignette("AER", package = "AER") for an overview of the package and a list of errata. Changes in Version 0.9-0 o release of the version used for compiling the final version of the book for Springer Changes in Version 0.2-0 o first CRAN release of the AER package AER/data/0000755000175400001440000000000013033553033011763 5ustar zeileisusersAER/data/CPS1985.rda0000644000175400001440000000772213033553033013437 0ustar zeileisusersBZh91AY&SY{E/B1 AB! C^;儀gkW֕P(>_>!Ȋz2L4zd'zFd h UO?$TEPh@D&%L4 I*iLF&22`A0 0# dbeiP4M2d5 4L&ѡ24hF z@BM54)i4P@4 =54fa L;+[j.-m,RƁ<~xWgt=SDF|~\o7ĿG7PtA~40Y]]|n>8qCh )Z$5.ՉtYqI=X'95Tn5Ab)-.%IRhSΥ!i̞"x,q )BcRUEpb,I3wl7$JUξQe}wϘ*Xi #٤ M75 ! "E/9 KTh᩵2]{K"qAߜȉT-\& lʒ%(h\IlY\'+Mw*jT(Ai'*EL+LNXl;8w@knnl{XF9wdC1f58bk5( ړ |]?W-kڻS8W) @A@@Ő(MfT&]֌\ۛ@g$q,JW*}H% SNe>DJBDMb RO41K zJ6LnE'<Aݭd]/!-Ƣ` 8a T)IA8 Q 4*kTAMpp҇Zcl΀QJ W+qǭ+P c! RJr@ ̱ugj,x&bmӟni3e|RdkJp:V! r껀0UGM2z[cHw9e6mӆ=Pklh8]1#r虓TboƠxwn(nx,aIVfC ƅۼ Y4Y*&H9]HOϪ4tIr]m;lͣm߅V#vcU46R 1I:\\uKyRc&4in$WuQ,HUCpNfu_dIͽXGEFo.gKxI\lhۖ+׵l 2"sQj{2I thDŽD~gPt!#z"1 N#1;;&%4G5"O@@@ydynD.4 6rr){|݆wWD>(dDwlrӥ*u.3܂((+ZRF-99}F{8b8>8}]yȴagБA\  "zO'@1KـH h8Q Fvu\kYΨF5FQkXY-h-\mSh\B*#R EB4DC¡$},p~!vLb D #rT  Rr"L#]n^Tģa*D!Yɠs:4M@B(/Մ)Vu۷nݻ@ܽI$I$I$I$I$ZikZֽ{nsiYywқ6lٳfbmm m 6l@m؀mޝ@]u 0 0)5imm m 6l@m؀mbm tkk)Qֵm %܈ywt? $8<9ssI $I 2 2ҐI!$I!$I!$I!$I!10ֵ;Y^R$I!$$$I$I2I$Ҵtm4M41WI$I1[ZִI$I$I$kJbֵc1WI$I$I$I$I$LV-k[1e{$I!$KI$I$I$I=':ikZijkWĒI$I$I$I$I&I;"{`vyWVAD՘|C5zPχhu1˟?F)]r:2k0Ȍ}g@maϗv'\;51u8ۣZN-ɛ\qgے֥SC3Ԟ 1.Hĥqo?>ͷ`S[w6I> /DuezӤ<\ZZ6nEs rIҝ[5̇260<[dn*hh0ԣ1dV0+FH Р$n-sXdp4-Ŧ4MxD`)Nl<рxC) ymnhĂ$bZp,#HD*ܝKHa 3S^Q1BH bg2~cϵ{ELucVZ2(i=_6v !O}[}$UPJ<CÑ{=! I™pH |/AER/data/Mortgage.rda0000644000175400001440000000445313033553047014233 0ustar zeileisusersY}T.v,. ;7H}!4c, YvpfQ[1!51jic5~Z[u"c+eAV\|9ofM'ss}p͊0 z <$gTYXy]:[X4 tK" 6j5m?'%=7z]yfgel^<#vlf-lL>p͝w^$?u+~Q.O!KwjqO~6Į;v~1Vg7ν(vmK,Sq8⚟y윷-[qヌVgn}E7p֫~7~ydԜ*\*xچWszOv謹GUA(ۓUJcЖ[TwОz<:mJWLšَM.vo{F5;n5=@K |S>z9g;v)Qr09|T;??^G*o_v5Yڧدzu5hy$?8u竎'\&`Ra1 "GoώSf=CRI$=4ŐطL$r~=xCY!z3F pڻWoc>/(]P/u,U>QH'=pSYHr)~;LzݦzO_!p8o#IY#%)ϲR8u'S9(Ir:OVhԓ{ThpՃr3ʽ]3!>K;YٳyU)+Ƨg[-ŞۣÞsFӟFλ1UF^26oؔ^-u[m8:4&r :߰4A݀),_ (mTN2-Jd_.i`!Qq .YM!/䯔!vG}=z*157E=xFX8=KD8yqXdDvQ+qh+@͏܎5+'?ra2z!YM&>dg)^nzCqUNRtypo< n֙w58fY(GOao'?| k(|%c~ )ptGރy'y튌WFX$i&Jnxs7L7I$IO2ڦ3$o#4?I* :\еh k>u~Ɔ="t0O|StlI :Z t?AER/data/Fatalities.rda0000644000175400001440000005053013033553037014547 0ustar zeileisusers7zXZi"6!X0Q])TW"nRʟt<3n2u]Kv){@n/2h@ Z߭w4<%ڴ>ZүIC Aʫ-b*D(n. ?rT^ɂ-ȣ9(~PN}xc5x4 ȇ+XP,u$iDhe1U:un$ H31$G/`+ҙ|s݂dCly.*:p$*E"+ڇNպߕhM@s}}G )/BTn Q̥unȥUr՛{^\ȍ;!nك^AkStp "$3."%D>4箆[s`ug󐮎{u5LkhZC^ w4Yb4]M;+Ub]l̙5i QmܽżVB8ۆ;'% wˀtsS971G˹NM+/ W'G>?u$ {5 /cN,DEu?oGf,³?y\`Fҩx.Y0!7=&J-" 0Y;+Eݪ ʏ8[f8}>mgNBטtV&j)4 | ^z )If% ʼᯥKQdxc,nxr/,Fi+S ѣ0z}k/@☴z. )֒n]VHL i<ۃ*k;ɇ' Zg2%_/( qtH#ZS tDF"LjDU6=X2ϯ<Kx.'/}q~_\۸ז kDulyC Ƨ2QOIl}Lbqa"cF>GiG|vy~0^gT5\Q>6SR=]6FϗNx6׏AcCqU,<# YACYYj  !j'%^K;1SWS0lQCa~H.s[$ 61}U"` Lt%UOFLb2`P=+?>x؇"bYZ\Fĸ0h'RG "j ]) fuw..k\cT2UO<@v2;p۞-3ڄb%i#MM)]/K\d, =^\J`Wy t}%}KʦbL wsEsFv&'${-2@9-JS{{I\ AP1%ǘPJs.NњZ7\5,;T C+zkxOulЖ^M_@J@}j>~NP$4{{g FHh 5G7(G) \BuE+!u@aR7qksJ{`\/uPTŽ7x~bSVYĈƃݩ{p @7a܍̼Z5.w.Wc8E.L*%ݢ0w#QV^+͍40_bF!` (×*Zqİ_O0ńYit1+;u8[3[%%f@% /VpRc$nԴ䛔Ry@Ou$F-+6-XHr,AqexKS pru%@?YxenY.y:@YmsiP7;"B)n@C]d9dѭ0p0ݼPTh,<[ Ha_#8XG.d'ԉ~e9WnV$`S_|M7Uq["@{ GS: ㌜a:<s5F$Fa;0;dV`qp[:rz.K޵zPO핞veR,Z'(l1 ? )Pa!YRD)[+!@>mh<]AU[lE*.VĬ;Tbڼ,̓ϻ;Nj 7zJ/4w&dfj!:Y?AUfn|A<#bkG$۽&/J2%.6Gkr ?kIfUEED'nc|o/u/zM!tժmtYa71\Nf pQlɣ 棙3E;+%A1ijx^ElcF$@_"]1 4!]9i<)SNN5{m>2n?"ſ~8,pQۚ~ E;op}064.Z@ :Zc+{2ygr^{7BZ!Ty{LhڄBXCyh9z\<YV:_\rvmIT:κé_IA Sl H_-`'K RWj_@<"Ow#H\DF(uP[X tHM1N~Hi\k:(D9#EP#EtS$I i\8g9`OUc3r0GHszm_*4i)jN'غ+J!Fkb TxEKY.rw<#m#N$Y^dÚKA<Y< ]RpxCA;S-ҺsS̢z OڷFIJŷ={*Fso曳çض*DMd;~57rm'Rҕʚ6GC+玨/x&*OFtz ر{dzLd]:4x\Oɞ_{BSAF_>垳@g$O#/~eZ'5't*T ^XDQ(oqF_$!#3ɥ_ȗ.I_F~~^ֿ{5)~r9V=FSh`B' U$"*8._ x7721vڌ,d8H#)w(<2,~K#.5j_s1Nk<<@W3Fn_d?&a^M6cƖq*t|kOx]%:~^^}N51XO5}l~<իS Pޙ J[jEٺ:3{Sxg[i2fiS%/q͔n К(ؓL5ȟUi {`qkTSxnބ.]ę>0v-JEV5 LR & ^q3V)c̛H3)L9C|E(բYMѤPx6>e8D4_#w_;#$c41q}"Afx ߸=Ol)Aq ifߤ1t ‰8IӦY=:p%o@z-| q5ҋZ'Q|Sw[BdLMg-([4O缥#5Ȍ ebt?i]i޾?]bܮt vrVd%d CĀt}X7~pO8a4/NZ - $Q]O@>A. ɣEͥ[!z-fQG55CAb!췜!h5Op"6e4|U/MH0oST?c)/\7$ m{](NUq PRKfiʷ"U{)s:(`( uQD)a| C{`p-hMۑW% Q&*Ply製iv%0SQ`|׌#?@#yH{'ZuY $6_A E?ELeNvj)w Hh gHi&m"={#/C]8a GIXi %@a.O;-&Ph ;X*Fb:O;CZCvoe Iܗ¯wE{:j. ȑ00Og0)G{AalL e67^kx؝qc(n|k9?sxmsV4hZmΞSIۚ3`2tm[ \I*0Oa>_n1Y`{!BdhVz${!B([KҏL]",8Y˓ZKcJ/Qsq͠c]z}p61JP7Va4Sk޸y͵LK/k9|pNF,Eqx}]k)ĉ6TuwK|}=|hC [N$ "T]nY $\>><+>zTm9C Mm咥XP] >y"R5:4`'ú+jmA!UpM  ŏz(/H_:E HCc}Dt &#J@q(_+)ieEU\~B|7İL6_=֦2,sĝOi 05^M{"lu}_/[Q#.4tl鎫k^_G؎E.;fRY=& 2o oa|x4vP 칱-C./(A幯tc^ar1vIRrpCS_ #58+0pD67?nЏ@ `؜s ZDP[[ Үԕq 'A] !/N6,'ED;jnMVgxT( D./'پBK4k1O!(˒5[Bۥx0M }0\+\n&Z^ǑKw +*Q%+Rhg`c'}'"k ZZ?Eʼn Ǵ?Kk.{6øXW'TP V@QoaPp;(5Ȁ>gXVa+4EzlBp} ѧ0>*5jan;Yzb=(9JEVǶ(@R{1ml ,mT;Wd/Yy?gA+yDFZy`d)Ehk3d5.!8,ZG~ʈJVp-4Ѩ6FNFF~xc/s [lx}C3ϊ3$9&3a*_;tZṖClN "+, LA fWg ! ց1S(MD|[NfTT?2ܙN*Rȸĥ @To {8e#QL[}Vǐ@3K2RY͕+TdY.9'^x$+8KQ?Qq%MIRsNQҾ85Pܩ!IahO}mJ^ev%x*W6_C,+le$/ID*Eh yRYBD(v>[æИ8vkLo?K:6אYk =gD*e]pF`ik.x /b1ȰF?l]̥V( Zpv@6&Gzp P&]Cİ/f&PpT^EB) OH1Jְ\i/GP0vo?.~,FvY5-OP{&sBN;͕bآ,m:s!RO% j\=&jSޓ%ݛW<_;Cm ݣ+_u±1* XiA`R$ͼo8d5vc(;gd;_J1: ;N]~hqCK7ոHƯšZ]-lEK%L/=] [N>A) G{%џ D%;fna-5P8YrI9Md OE_*[L{!%ȍdh)b]NE_Y[bD-4 ?j'NetNucmwL}*ya0BKYx@;?$wO";Aah7WX?C~*P%S&st9=E[ŊtC:VmXf=nC u.(אNB=??tTSۤ^ĝqD =yf#;B1TMw )+7 ر5&$ !f -F;\a,o6},2vI[^j܀z1eDFO\qmgLFp+Z}*#I< krI̝rX3?(So6 yv$z9a`0/chn.K'U){NɎg1x-٢#-qBR(Om쫦2h\\ꌚ/L$*f )J +/Z7$Y FI*$Rf_da܊B`H0f4fߍ\+{\Z' ;N04{], ka0xhưB$ZNQ\mБ<1wlG#> tZS jauF> q>tUFUyѭ%0uMռeEб[Ε܃bI撌YQ6$,5B`;%M#pDJaW0j@:d{},dsJr]#M!-Óh[FJdZ1c{g7w^! 阈f4ddۭfJ?S_4%b`E\oS@q4`.GsO-+`T`@;Uͺ{09"iǾ=x&۟DQFJ ` HR:Rh·xE⍔ժ3k~0薪#:^dqj1Mo'HNM^Yx|L.b&^5xfT+K*شc x Nw?l+) Oj}}90kPd  Tb+A,6Gޡ4bF@IÅ7 i.>gY K(IYZ8(22Ա‡RõkV xط"'乡jfXnD9Wu\ʑyMsIّ&I nr8EľRC0Ѿbe~V*R5FK"4$gRV1p#CJ ֱLMV&.6E@1=,I1̉bZ쾣erlֺfAu  GcqkJP9ݖiF/,OdUH !lMaRhX0cV9M? c  +ɌʻX؀z{;\2,9rM^PJa;7uf;iGm޹1p*W8_VäSRt%TZk9*g! -st*Zۺ<Dv8'VEa\g+##@Uj|' ^/a hdP 'bGO@(wxȰscHH"j*=C婅uDnwX"Or+3^ 8ooKPJo v4$ko?1> {O`~❟ZP#o13b[#ftno".R7)⿗\-|z"оZzQ[Dhin iIRρʗp/`PNq3;buxl23Iz+ob 5vh#t($M،uU"ÂMD 鉘{J[""%!-gI]JZ ը?șD o|@gM F2!@Rzzle:<31̩)R{*uW,4?rӨ[(O#jMR ^RIڅø|=2-/zlI9g5{S@U`0ʳH55ǀF@ ,̆_9kQTo[BU(ң+,.0Orؒ,رY5[|!*6P )/ɝhQ=5 \/X[9 WӸ2]zJY+45&)n=ʖj:Y[Kz%-紂+/MKMޱ7ҧ{Je:stP3 MyWؾ`vH^L<E-s]i(kq<f1骩In7<а6E(sѺ>E}E ;D\HWVy&OLcb8#ʔXwx*_ .C oYTk)Fy 有ڼsʈEj}s3)Irck9QA4~ gMlmX]s801Kx ~oUIm8ڇc}6 7 l iXF@,P-jp_y\ E? c/+}乵s0*΀T s:RɴV mJe'7NXZ=jZo=ݒ> 2pyxtajogfn HjuJ!(x k`NC3~.>L´%:fz!_:1/vi[?dm4YBnpyk=褏PS)49Kc=HA,D {1S-OFE0:^A}ɲr>;X1DWA lG=˟4գ^+$s#F&R.~6'~ೡVQ>/2S_\cc&OQ>O'( PdM_+1(:֨9cr Y " 3XlBYhHq] úZ\}~ҥYs ( .wJIǹ[NbFSVҩn_Bxw axm8N^2hϿUصUfdAlw N};Zz誳FfG`4DOl&/ 0dۧxL5Ւ% w+NROB5{ˇ&d\~IH /Jgp%S\%-h kGLZ7.lSH\;FuHϙeNJQ}D19vitGxl\;4%O3b 9 qnnr08(LBP638G4PDdPo߇Vv"E o5mwp)&d!,_sq٫, +zzMtJW:[@PەIőW!EfMN4z.p@^}ݴY)namBLNWV>s&?|dŻȴG10YVoX.23z]uFBM?Bi|(Z >-TSԹ 7`(2QdՈ%fK 9 s3>qJ G 'iio;Ind{[ި3Ԝ5Bq%nI^k]Ƌ)g}˔iI &c8t(v1 NǨ$h2NCkw~y }oեٜzi#PVU`oEkKs* ܱ=R*p>BK8mcp\ F b IoO_9nB MrGo^UYܦROCN5d$ XI5x: qti `m˭:z5Mg3E]JP :DDtvﭬx9*82XC?xPK*#/5?a{ψuPg5DhejHqU\B5?M1"^%ZX?~'(=9 9©ZW7nɍ`L7{_^kˋ| s8i6.uLm3Мg̺n@ $sH0)Bk|5]k`'FףhڑQZtX㇌ԚUꞠCXJs>7o>X\,m<0Z03H&uzMҿZ^#ώ?9C|Lu^yA,dŨP!.;+a0TV;s%^Ie~0az c}MNE1F^_P{ $k # CLSe[yk9Th/`a J:2|# ؖQ?-|Q F8B!S)U:NzMy" ﷗,a7Xҡ4e)_ Cfؽ2Fg`h ]&pnɇ#)g5j"lxoHmaUЅNf8K˶ra}yJǓvTkdyQ_l @$qn!3ȶ Tv̅:v ᖟ(#v \n =K ųC[er8%Qt3H,E::]:$wTXșz}l#3aiґt1F6AQ2PUU@$EB ^Z~Pڞ 夽/6K;x Bpju+-?:ŝE)m .lO$UƯ}RqQJ-{e\"k<[`Mq%వ>؝=t$)xۋzJy, gςj!P ؃0I +;vaW"6OS;5b\&o{i>PeRa!U$auWxa:IrWͷ25_s {ݿJ$]FCD.˅V@D ɊK8ɭQa-3Yv-hԾ,Zn3 9}RvhOd{5OUlWk#Q4G&X;u)<8ƢG:?=0*x(sVp(o@ R-dfv`nG'w^1qD#${K֍ި48.ϔ{plG}ǩ~iN;g9XJCJ^iyՃUKԂ~@uU7:"'˿?`ϳ:^p1$D:yr{טxLKzfXQf dk̈`-Q&@gqC^p<,2GPr]Fi4';f /V]}_L\"R@6p5z3jKrk(lR|غ2 $A & wD~ug 54gw@NތR^|cgP?Lgu¼cw01>0 YZAER/data/OECDGas.rda0000644000175400001440000002307013033553047013627 0ustar zeileisusers7zXZi"6!XF%])TW"nRʟt<3n2u@6E:Zx2|wh^UǡEo=>P^^*D]MC-gNgPrHLƵQ,K]?[pg's^SwxMI4$}Wﳎߚ:;(DHdg,p3_k\;cOUNKqW]-FyCm1Ίf9*ܽ5_LX~Eɀ1 tC/w$$ uܐXrűrסz\X`ȒN2]->Oprfi]UownC;ZQmILWR߇6 M\?,#%g7GV 8zdLZ~޻!7# PkyԾbNXؼ>+,;T,Z]_y}WڠNLljP295=Sw" N) Kњ(h(  t-k?`vb)mT-Д(R8)roX۬dETc7*mXL;s7Ji$]鑱q|M?ԋO.,ϯ>b٢G9aȀ' OrH0$I}w<(9ǎ~9w++)c}jtܶqo gG6^g%Poj'_d7PUok>)cgĭVLeejgCi`O޸]"䵺G%cW0$B(@S!۱sxfh+6 zueDnO} FU_D,]LZ[HB6soQըOMVۑ='hq SuP)r`?XG5; ߝlG8`p3l im֣SJȅjcnPr }O 1Є=~ںYAEF౴Xy#!XApѓ]I\6E 2elĤ[l3_X;r;fel31)^?ypm4 t!SCxֺSOboovԌ@Vh kutG yF; anֹ#~v'VڰROu$@P v\ԫ5jE=:JQ jn(x\WX@fD.jA:VSwCAb޲,.Y1]-A7V9qQaTЅPhl2@i]_SݽNsHZx9}4kIB_ ίӇ0Ld7HYS~=8GCn=ȡcLpN( Pnte;ۖа:4֏'IXpNae L ەSɜ3IkЭWMn폺\cY䬣 uʭ07bnW-I<(:GLK7ك,BI~0DžV}s옂3|ze;{FRqk<fƔGz`Qw uPnl>O K%f`jm[ w#5(f$/\MUBwh3טREBW/M X `V 0qx8oM|kyn1@,lSۊw/ a5\ae[L*=9FqIYa$.㗰)՚)d<5AFHBm:y~{gQ/~4 ޷/q* 蠭f#g1$Gd#0rԛ~RzhT=-gP"^WS\GUcxfjδt쐱2 |0/%bf;IH~^۵-p[I۲1Uo,TWʏJB5u㔂,X:{^Tl4|mL6`F900b,xLlhdw}rد85ۿipo=e9TpX*Q=OZBU`kлЅW˙Pz||>$v0 f"Xzjf'`פ/^2ڠg2&7|2#rToM (5,A q2ɖ͎9[ ^?}v;G€z%x!~:F^ B4v6X.`JdqoX77H(*nxLX䈕nJ9)mHmFor]<9Jj|8u]c iE({b ͳH +~ۂnۄhKZEG_'b,FwꙘΪ̉mg<R7fKj@dICvn7 㷆^Lq{.1LLTWɦ5~Aj_FI:t&>꬚fI%Oo&bɌ!3a,ߙ(:p{]xSM4 ( ]-=s4́_l !ܲMCe B0J\ǸS ݎɶ"7煝u |3)x$TpO /H!c[MWy%L;}Wt\uZ/tJtmn\E.Lk=`nc JHTnOdTښ5ܚVÇ 'iL߿gW1\pM,#'{EK􁲑%*weC¨Av5Æ{EL2XE6lܔUu㏯C,cPzmO;[$|] 1ɼ$S1Mu)_["m6UD=ZIAG fro%;{boQW1L!/{V!yA,1]'  kI_U+]VƎ`/@,w HAUe \BV_#a:|)g(*1p.vF!$5 9+uw]Μ(`% qq_83flO-*$[9{h,OS3 b:+АzBi![q倦kzMY?2zaN0v41`sWd̓r$@jB[~bNb$qWqv|q9W]ű$d@3zLNxl{MhEڧab>G8 \Z 2h/5ǤC  &&OXtv3ɇhv3:'M!{7zᅎt?GB>Fc؋5hhӚ2GN#[=ſ ĩ8U)4Y43;nrQS]TO3'*Tw#qzOʠ!XObL2Iw @5Pi`6XF-p0s~X=QhS ArhB c$2[^O㣉ya N&#f/b. Fǖe.ZBкT E݅,I׾*hL&]8܈\cK@ْ∨cAeG/shn+u.;x@tRsTĪIa=0=1?Hܟ>a&65Ge,M^qA Pwnf9"3){+{>0R% "clQޝz4l ID0[vU'˙z@lBH+I]Jyp%'~iX2OHyyw3`|yQx4}' 5HbU/q9ӳa)89dťü Z Zr3Q&3<g̴5lf ``ehBxO;g\Hз:?VkM.6s羾;':.unκ9ê;b*EK]\~*ru凇MԕynqL94ЈݩW  I`Rh=x=28 %~nw.{5У%mD4b:i7#H= pqJUWhG- h}ugs'6t(.F-/>JO[U@Qt1bH4b0}!.*ˤϬ>L:?Fk)~F]U$`dvr?8߯d?q'Rl\o}"|k~ +GW3'9s5my}Y1W-2Q2kv; + j+/|aHTXkvS=jyBQ(̨|hYGܚ;3=札*IM T?[yIŊf8üO3DAВBGE.㴗#dnŃ Jj'L8.RN|ty/JLvxAYuV]Eo }g?+ЦYyYC"aM-<u2D ?VpD;0^'mY1&`.17/:j|姹+-bQi nǯZ݂tBI-zkM#LC,I=¤Q5ā<q҄|#-ۈɐ't qF6d&0ٞ\M+*[gǜX0$'@}HzZ컰om-0i!әOvKABϫ2/8'+skiW=$'鎈)Uyox Fݸt-Sg,tG° y.`DNiaKCjlp0;l!E1$#ve/1qy X WRm՟>W?_3`;"Jx6>Cʑå$n& +)m@ߣ{~K> $"i` 6-%3yϛfJMj/b߭CQ9pְƈ > C ewM21(q|[2ޔ]~v~i2m:8ݯKc4>(}Ӝ$y~y#ןn&!}yu-;>>Fy/H/K;+=|@|0U Фg2КW7--=w8(XYw8ʊ~/&dCG\2/-.btt 8 lH \>+xD"|+ƚo}#]wԫ4.y21'ӣW'u% 8 Bjss/n3%hJMc%_ۜ'cLQbx>>٩J]gOɢE{ +~ Y>80xo~_#X Ys ̯d7p]@BgPwdO~Io C 7ɫ]SG@k;1\ҧuA R޳$'àlÀRY^6J4>Z'VT:we: $aTU|d^q.,b ,ٓOo]lacMfBͦUpFcW62":CC\2)j-8L"+Iza3">|@ V&NF,W r UXp_2aU>@LtP@op}(R&KZ5ξ@a09!,V_Y v>|L=|WMw0YS +BPqC࣮/Ք,qy˅Knbm40?c]EU*OP% =hfW  fMB|@= +K v`gBQ홢E|uqk Dl4fN+JJccNJ]`-+0KN*JkKY᠄#b  #xo4Jt΃9|X`_Y<=^dk` 19Ϗ5~ x$"Gp`Z&6~YFF6/xN=s(۶>uCKA^E9~_Gb~PdєF"-$ :#bOzϫ>H<-QqU1w/n.񒍀і医/F Ɲ4&aMdM H}Aܮ REŨUӞi4m%~ kNrT|Z׏ 8`°#Xt\%چOFÂbg;b244vkbzD3kY:{ Do>,|KmVHhizZkvٛsO{ ؠj&#e*3T.ЕCb7> *ш+#T{=PoO^i*3\Wo_Q(NؾЦ 7i*^٠eT%0 ,"n\B; r)gfGcP_U8N&ژa1Js2ReUWM ~)5]¸|j7c9<-fk B*kظrWKP t>{mGǿ{H6sˤP? M1ͱ=OFYq qQ`O sjzǙM{i,>hbIOIǕPa bf pJ?};,F6\hoo`gPȑATaG(F\VD,C徨;39ywI e 2.ow~r#ZR!c3x':zD>YU-S%f2śA)jI 28_?|wS2 Υ: X#P.o-"nS5Z'Ou> zfL=lO[ S#H[W[)JF5QyeZ;y w&ajT@-r4Ճ~sw.txY,qf֟6܏js:~xA n!3ap(tޤ$TAfxwҋlSÉsjVS'=OzK:v\]5UDgخ`f߱'R0 YZAER/data/GoldSilver.rda0000644000175400001440000012103013033553046014526 0ustar zeileisusers7zXZi"6!XY*])TW"nRʟt<3n2u]P+NZ[D\mg_H0d Q٥X9;=X 5~*'(1b읱D~)pakX ԟH8 /$ 0ɥ@hD;]#If|gIX;ưbۻ x֜5x_&G ĢgyZǃof "mXMysIvI{S=`@t!<,ŗnGT#qpt‚Il-Dd;B酥 7Kk|whsz֮yVqnGUcQT vsln4ѲZ G)͵sƫԶwaDO3SV@hlHm˭MwyY8ijAx.o5/vJ` C6*6!" b,Gݦvw羀6M Wpy^SYXOf:6bVOR*f)F gRwzڐm:h ?{ )*,Re\Z cߩn?eCẃ[ L[R 7mY2ups"@Sxߌ3'gJ֔& ( RGs ٙ@LIDK˓ؤչ䷺c XXߘp5  ُV'R v;폋=3ik)$mto5UZM>t ##;dKNb-M̊׌^qtZGlP$0{E'WKT - d+z [/3ۇ"U8_؎.HRU2tOyV5BfA_`cB&J$wR4&*GނL}f2]u%/!8nR>O. Lhjvw"")q\\)$ 0  Kbo`X{, d-H9K=DX[*;D*bL_CqfFVB׆p"qk б1r2Im)7NHjJߎeWΏe!x9nh ܸx"?)G1V?Q |E 7F.< +B$F-aS9=jYKfvKC|l݌mKr!}YݱلѮPX)ԗ5tIh\1(TlS2(-;RSUmUY }ad+ΊG wgmVxCh4>GjvcLd'޵[(fn.3=9yW|@z?ZWHPChH ҂tq2|=Y`n5:m\)o5sFi"/MW$4";j>" PD,!cbo*(AmƮw&mW;a֫QdrtȚ} 4-̰Cŀ|(vb % f?.]Ym'T/^D,>Tx%WQۿOP<Ξؐpk62wߖ!x$f^=iicɄGSQjP{*vLh/uKV>p}حGNU)j^@s7(5o ~ ~5 ] m)ps,9ܗd&,F\hGuyzAaZgz<:SqaYm}FR Z; D(<z \K%qǙѤ|:P:ц=R/\%B _4MӠXEbR~2SUUFƘ Թ7NƪM5x$τ\)w($' CHMu%[ϭ2b@Nߺ z</D>4tKod+==nP〓iiqD} V4D͍᫥jLc6pwB ej2Ay͘ų^۸y]gYXrԲL3YK_`F㱴_yՙicd4OD36B?k OfՖLyp ъ T0E{{ w@$"n&r 芒oijr 7@l|̊h9 _ӓH 1CSLm(U'zX q!2^((k~B!?~]hliK}E.ղ/ \PQ摿V*a+MY*4@:KӖUf.]`)f\ތP8>>'LZܧ.2b/ByǼάR(3SYzp<\u5r8s`nT9[D=I?TEOC}޶{F˂a_<+.Zl2Bn+,e09װf t҄z2z0+6xsMN]Z淪h48u'莯̜O ⁺ @GWRM'DP=%xݔvxhA ΅QvPg5 |7Ef,Dvs`'PxcIW)dd&ڳ*/,Q뮢Fcm$FH'>i]Xm[1\7}Zqpl0B%\?qRil;0ۮ>ygqr!ѣJϗZo.Nc՝F*L=ϯ?|,{_W`LQ聄ը P{N=njmj* #Ŷ%qk|v"Q6p,RrAX?HO|]5:ݕu ?“!`0!4/[@K }\w$ˏ*[r׀}B{?˿d\C}N +^`XY԰s5"yWX^30p{->t "7ڙwҌ8VJC\eu\Fz+@DO&:*D_9 HkU=ҪvCG3E 9^_-20A2H=l9\2 zCXnj44&mFFnqMY$ 7^ocjXv_hR*ȈO4 *汋~@y;nM-&B^W4~_/P< b{ԓ|Se: J+xWxל![QBhlrw}[&1,xAHG}}B#͔H2&Pi.I̯>'zWp5I }ÒILJ4e1t H.=쇊1?)tXjY+E d*<xPp\Q5F)oY7'*zLTkDe4O\:-dɘ ĬSYw=ΘE6ءtC}?8e&_4$`t o}6l&UzHO0^nʝƅ'G-q^(9u4l 1P-*Lxz=Xeb i:PsօjkcdfC4P5ՁIu^ 79ٵf`˩g|+C׭b>$!] x!#Su7Gc&jHƯV \uz)OglFiOpIhExgt/=4Ǿ`$ɅbZԝs,83\E1.B nOA3E5l^o_];E4{S?hy/P?ntɿ9:"¼lC|!usgyp/ы~E[98$wbdAj5tۑv]&mXh0yWPP̊a;R6nnJ@^lLYzw+)+ k/]qwY*P+)PKY֏T_!.?Uwc7Iu)e\ŧ-޵rI~ $^̘q3/YiB!';)Hoe#0]X^%:g(]ifu0Slj6GeEF$D*Rլ|#{r<|''۪y¬\ܺ=r6Z=B75,]A޵m]w=aꒄAb͕CG"祰Y^Zn9Ppk4$-)e=fwY_8_~ET&J'|_4'IJd-N9ZC'(9L,MDK_|ep2OCƊSMhUܩQ| E(㸭7}IZʨ2ܔ.b7W_5\>VC*Z! z+8Ӓxe BLKڠtrUI]DsTjcyG˥va˵HAh `VmjO$K!Mk 钟j{\4>ie<)<.|Ϡ^9Ƅ(DzuY bUfμ; h",0p:Nߵ;4딬X-hY#Lt"(֎~΢_A3IF>IvuXVC]0[񹃢` 2KհB 8.^QcDSCXI6fMc q\K d>ec& =%7]uwd,P lx~dc{ Rܓ&E7JeSmt#ߝ/ tQ1|!Qfn6sU/yltz4zݽ__gAWZ)4,J,l[o0|漎HL7հ0 ^4V#ճ*|$(%bb&('a#3z<0UWw |d{Tc"J){wCҜBFQV΅ھs8~)8ymtLNlW򠜡Oq.SڷqͯO5@6VŷLo^B 3haA,qJhL*9 Jf:78\C+))\`FVSb|dn+Lx iD#XS`:<&N7@y|\Ze0)~Q|xUDꙛAnfw/B"2A(W(`L`M~ d&z44om=ďɔ]C)? rpqVJO(zT>\?C- }j-R#vjv_s0˭4f7.JJ.4UJ_AwN4 Uϴ%J\j"%ԉǨx)|}ͅ~R 0Y; Gc|S.s1|;h=[]\yiAr6r7)?oHi Rvֶf/v*[dӞ$:a=& :+AP)j^1>?C'aM\|3$VZ; {6m]7}ۦZJ@<}-tK$yv71X+bpNuTnTĈpwk9)oO*)D+({=\:V\j6XR3Hz>zdSNxnp0:GzNs+G]̚(Yt]+y`&ت+r4P-~E%ARWf6{RxupveJ ƹN =~#0xy$Bvz5HE7|JuËg2gG<NhRy\loр;ވTO9Z2xLVk2edg}\Өx[1{j*K7%0Mf:vF:-iB;AdF\GXmZЄ@${`lkR%~V1 Q)rO RZ>f}q 7%AClW.˶Bʺ)K&asқsJ X_фRU1l _#0U1I]CIvG t8:i;)Uea_=!Tͤ $AO;]H9X&wCU=rN P.+Bhqb69P }1,BDHr6^xcͶ;׿jE;NSyE'lR2/~!7LTv#gv6XHrV#X?^v s$LEE֜gJ\棒($pC"L}>0POHki#UsϧBMեulf +Dw#q-:|mXXg_Fp.fxA6o~b =ͼ@|دdOIߠ@.P)N /m sI+=G@Q%1q-Y .2 zn؇cUtLo]>di jXӮ z PLuyPUDPcxfFYw8&8-&&Ŕr`QeѮXc5C^cKɝit( >pb * h|?5D.Qmސ:MΘ |zz.d'߸:ce'U8;ݳ]FKq`j?ATٓ2N!odӅkQNwouվ6:dpUK~dJco XV۾˳KǙ%Y,`S:4Y۟*;i'v pp* cn|դ` Rjު6E[7M*You1R93^4 ]ُY(ސS1Uu"O7Tz8VT\.Y=0<6RrA1&JFRtIc=}lJ՘A.ųcN༼Wye$-W9nbIć& Y|Juu-I$k 9*x'וB^dN}s8w;D,,OùEU(ߵ` +Β&"v󫝞ƈK8ΕIb]G (SrEvM1fcV^#]327B)\o"DTz(P?v#8zh>U*PM]9­L/HRfRj ԕI'yfn@CخCmbКXO<URԷ٘Fdb!}} Ϧn/V1kfOۚ5XYRE,9*2 AЃxP=-,ΤMX|2}$e㍞Lɿ;4r~d UҶLZH;$wqc5$Gw^@;nbbvn+tN l3_iTi/$Qܚ0 XJ&V۹:3-8ـHBkd!=1RS{kn8幛_ݣdE׏T@b70gPH rۤmHʀR62n͐c0nHUNʯ4fCqL12+7$o WPK-49v'c:te9!Kf `p[T¥m.JIб&NF@(u]еLVNdLqjgL T3L_SI䙮SO>H8 Gج S xjcOP%pG/0 J%'9u\o8ٚ0 j¬J[C["N)DN74Vd(u'JAϺIu*>B ؝4ѭ-mCh .;=9n;<:rƅ:C[s4 j`Ew *u30w\ k P 7#*sH2B1 vJ96n(]yI2';j2}t|}OIkED))Zhf|8OZع8%CFx=-zc#G-V:AYm\K=_$aq|j4@s@8C`%8dvfÛm\ࡈ"fgNP7f٣>UZ U8Q>)ѡli8ş ,}R@Y {O>wx?Y`hqqz@x6~U x\Kڰ/JhIP9rɸ5F[>eШ:Y7[Z6m޴2JSR۝8ʁˉsp쁚>q:E|ƕem*x?4[.FG }{?Z#?D|Ah᢬I@q]=Vv{9Q÷jar8ʹD7VsѺԈyJO;4a̯;{]D[D'~aoP%NA్[X#6g6[]S{`}r !IY]KEزMqbgkݥbPsP#3xC9HC_P8dInV)%V].ʬ>1F1*pijoܪTB`ɛ^C8fn_q)SH˃z'Br8NoZ4T ؇&c>6?;KU5/93e!,'iH@p9u6O֨s =E&H`,Lk27Kߚ~L]J1Y"nPov ӭLv {pS!fկF7;Xda Oy)ZY$eT!ri9eL8W47p_؎*'}t ICFaS+M{v(Zc։/xjT"fm#ߒ!ޡ#^EqPڰnll_f^iOvx[m] v|bI<2佃ӏ6Y쎹Ka\)i}1c8Unu\ pE;YGRc PRD5DƠCzϚƃ,~iؿzCFwZ_ +gG !a6:)i5ܢ ߧ1)wdW}IM7ȩSo[^e\~@_MVxmi;E*O|5Y#AQ"{0ܐH<&"I H02@qEӏy\ --X'da,㌿w=[  R-CͤבVȓ}V XE*@$ !sjS}Hp13m7+"O5XWC>U Q!G^iChdTc߭:J"5w vi@\)4 o'&mJZ|]WO0Gi4L Ӗ0\HH}V&@ RxL !s]WRM(l4*z #z,6ttZ#:pR?wcRRCWwcsѫ~y §?Dj/UI?V>(J!ax3 4E5 KZp8\Im!ߕʪ5? irx8:#5O^1ʁ)U B)ρ3igyw3W >& TcNq͋>]4%bJMԲg(I\^3hxƁZ0r~~"RjWҲ#ԑĂ;X&o#cDz$( *1F1i''Vj !F1$?E]@7+h1s2tUY] KG^ XwMiќw-Z:fˑb׈N+D GvF>Iː&EɆx-_IKWE\uO_P6ݹ*a0mSUHY9LS vD Db"6s˔}5 ̮G[w&$lcAgۏXCJxCFϩŊ _ɍv,Q^u]tZD`7/r'{hUn(OBgՖђ8G!1ѳ'a[@y$bfb9F[Hdw Jn餞[ Lčo1K1x߮LLԣDmB 9Z']Q Alw+_NSN3c c)zT,BhI%*7K3+Vk#L&|vkʒ7qo7ӻp{$g?xc&ܟBN@ZsKX*:..42bq-㷥7C0vCbCMe(kX"進ƣPn1MEc5Q 7"{c;JȌk 08TśZ|p}ġ 9i>6~Q1 V&_qm=a.$T)PVb|}3'˗fiwJ<4YqЍ퀂7NJ%T6`^jf/--nn^Vn"D'<=>( Z \`ŀzIB*H{3-=ݕ焵Q@(Ux>^E rے ~"jY$"(]Fث nF$VUH8xbS׳f Dq>,̄B H?u a ANX-儻]Rt3['QDwwF/a3"CO]P(VbP)Il+ʼLU C;]J[0%Q5QLܶlI$'dَ!aV1&\i!FM67~L5-86e;2Rs:LkCt75G*R0iH+O DMӎ@h2Ӽv]k Obac`+^Q/781ea(՝k/k Q,l9%B]/s|uŶ0|p'./&n$7ܣ|dC q`MЈh ][yP&}gCݜg< P,$T2VWSeEFzC,>#9-bl[:QP0!>5ӣ]< 8ؤytIꒁ\V :^;7٬5?ait{uK3n0R^NaP"S1?!ḻj]xuYSA9jy2xm q[I\unQ+Yn;VZ`[k (cNm&^f}8b=Z ЕxB 1q~+I<{|]ROLدX5DjjAOTEv{(\;*T ;}MQl9 8, WZ>;IY0*}vշXUvM%+f]Hs{_n.u׍$~?iܡ2lLȪڌ,؄bo /L>H/FJ^TJ5dX'&Ie)Tմ 7ܱZrQ59>6keE9Fh#t!*cF8L ~Ыx#r:ԵţG?x ^-X*|-Ci۟/@_hA"FA2"Q4ؿhh>Th]澓=tV{89_D9--%ܳI e>;%# z]u YGj:Y9tݗ\g6=I<5tQBD=];9y=2f8jB漝NДixh&ti#uNT}Dε,WHտ2-Ҳ|B ؄K _o_4ڢ&Y "飧s,'ЊGyrQcD Έ,)ǩ`vg_Q鼩< TL+-\PI PqxUI|S L:+_~fradP3Y:c59g*-F  <}9sk̭T D^Qnq}HI8r]%ɭX  p a 6KE1rGـY%?[e#}Tr-uR7)tz8=s4\|Q3>ȃ4>$Adz&rad*VlS1(ث(T*vDIɸ] T{tHm /%" [>Evu^oRLC-w~{qs1@^X,;Wʶm.#[ƀžz5 ӱF0^Km 1(ܶ9o5mƭ7=jb! ¬_r z\ 1jE笰DaۼN6)ɟfDȳ]vpOqllv%qE,(I#jnUPSmg? ދ#Mƪb?^TƝ?_p2t}Ž0oczNc5`fո,3A$` UD2ʠmk"e$Fƽsγ"Sv?ѯ[:lJ%c>^ EG\Rʟlx@ֶofrOx(=X+$O?,"TCg%ޫ?ht 9A"^ط|&n3B6] WRw"AwnϐIь'}4!' 1m)(@O&nfm &)ԫ]ʐj)"gHͱUD,)_[BVuC>"Y\H6}ɿ_uAvܰo`9 4$'(TdxZ4٨HB#gnC p0~EEe #sM9}H%ɣϲg)J‰_  5EnfO{(}^U&T6)易;`#CfNcG1ٻ֔J1y8/Ọz ߄meK\ձWf֔eEx?>iCgy`^-02iY$ĉ d/?]~ﰭ̵.r U ]`8\ҭF.GpA~2mZD$fΓY6 Gk3մM>&6V6X V_]#P%n1nfc.O 䑢T|[Vkő s#"j4y򪏧u _0^u.o$&priO_Y%ݽGKBgI+-"p{Y4GvQ)6/sdŧc 7Ӑ[Zgiȗu RM{$_>o+?ޠЙg9oJ͛4 Y gE>fRKiQL)2~rzݣhPEÌ^ S33iHʴSuuP{mMJk|]s-'+u$W-KFc ml@^Q 9T3KpG؄{ƘirLw:اޒP9 )'dcPB)=¹  +Xշv`vWf۴Z8R]B捋l܅">И\0oZ[k쥦II^Q^7mtHjܼJ<[AV-V=#6Ok&tWVցMt旊5I1WucBJ>'Zkmt% WJl2큔3,Cnw3]x!Ԃ{.ߊyϚxV$Ra͂Xju;X9\e%ZkHSdнNMI¤8KѮ_/I@`B%0 y#"B0!CeޚhI[,tbGqտ=3gzxQ;p-mȢFíڡ-`Dm@Y2uxd,fbwW8y>x'_ Q`P<* h _ts@u -P3pk瓪O,-ru`}9DGh6q DuU L=P~"#Jw@V~WPFEr2L]92v;fYI9νcIe!aj.ڱ9--fp|(=<-[5Jx*1*vQ95Qh5l8=J5׏' X-0U/p9,GB]|wpO<`nd/8k'ȹ{+Ӓ}tg(HjíW/<)A:aZ"gBksMk77A#2Nm+R"DJvk?X9"5ȃYVB"}5FW$||*d  =CSU=NCU3'W4\;;Jg2\2 dd'#(eY4s#6e1a#ƦձJGe鋽I]nHA7Nwc=ʜ; fA\ STPG wa:Uޘ>MIzPE̒W8)ۯJ{Td5FfoSBgk+"t4QfSͺ"F:#ڷ vK?|6L։[7 Wq#Cىoa2|6.4)H~82巜e2PN[9iZC^ +,Z M:*u!l| F,ụAi;3%A' le 9)[v%R3t*.5/`txo<-$哔Z~ Dm]\g!0N2vS.f]vOv9b#t\MYc-Jn݅42L`K:/S9 }Qb耤OSiSѧ/Z)\3Ko<3C=ءςquiAA-! Xڻ'Edx];#c1} 3ᔲ$, 3F9Tjly>с}ka{lxa.c" a#Y PSCjStd0^"7I7zx%ǯzzay+yh辍,+a$P a[Ahq?z"$fkbjzɤc !i64P57~ j)9ui.`?23 5 hL7WFlR !rn'AC?V+r8';jEFRjH3_ZQL'qϞ;'Gv>jM M𔓰S-٭|Џ%'=~Jy]ԓd]; ZD~;N$(@[1&K#K;-Phg}H95m;0]u'RLJ]޽o߆7W֙ u t$8nܿ$%^ќ{QGmLW.@\ӢTeZ#v&ǐH.ɞ ]MC%ڣИM6oךGgaSy=V"#HZ)<@-cP*⾌Y 1z2v?Fߤ􎈌~)Wv5A]Ԝ+d?M{L H Zڋ }svOm۞ZtBfbnMUʉ(p+;)1"JW԰U腭G}.t)]ir3Z Sm3 +X󃢗dmi"=մ< rjAz+(^P"L֓u{g^Ϗ`ƙ*P h6URϻ!]"쭿צ/"x<6rag1Ֆ ׅwӳqns1V~* F 1NH5"Y`T_b+䰔gN= Bj^Fa>LxdӚgT42h~{PnM>xRsMz$ZI|Oƀ0a- nOr>q v1@5;ZE:!~#bŹZZGp`zOyꪫH_l8&D%g *Hep%y w϶=XY 0'MxJi ̷.1'Bxb@;8UG5KKJZI^JZg/#Q\Ϲ5)*~O4fmG;.Y䊦c9VqqZ(F;\QT?v55?ם3:@y#ʴd-6d/C1v eY;)nH@H\i8yN9_Օ+@.))}hb NRՎG*q.q`NOS/, 0=iڶ|@9CRWoh@=7 EDxH6j0łTհi+f rQdܶÆx_6viUh$]+jJږ3zEզl~4H:4-=BuMvx](3Ea,| / URѾS >q)[JO/I4 `&fa_:jԈQECXUhqAo ۫}09%DV]6H4W g.Fi)ߜc`]ɵs;To6 ߧ/Au[Y5Hb0KMo+y0N_cR".LC5&!+jjg >Šd/m }[j+j [ ;K)m~hBhb[6b#_E#0?"D kA%EkwQp }H.[f 4f=@4Xnt=SUx߸ȭ!; K]8cY҆ ;)W1/40PGR,>kl/P D]aeOGGTnH5dz]A zeЇ,EQYC hەIZz.s#F24$@ײ?ȁ;| A2j4,3H_(n뱠~ӌ<\% |GWGDY_EH}q~ k;z\eG= ccp"OXz5Q9ihфD7I94YpS GS Ѿu\tmiBQ{ՒCVzLkFiNQxG *u8@`d98x_E :m ;teۨt࣮K ڕ6J Yz^0̗4F%L2*R0#Umw/1S~<_M6g{iˈy%{h UA;)K>9,,\~M̠ɮR^sQ;L:2;1)d/XW(d,jD&KVd~/+pnurIW = +2G>RC'`w;e}9c.#1$'CEy]Ժׅ-,ϪoxwдP,]:;zC4 hy=J1 7{`-y$. )xYډQ6Nѱ2 ٩nV6WO5jI託 #*{(bMEmœu >Z||1XWeʤ1VE#ni0ֳSVTnCKWQPfN<L.la5bN/JPn.tdn,HURz4bmɗr!RXo|l/웷R+_ y sU"`xe6s6jV,QGf5}xʥ\rgrA`$EN:ΉpM=Qj `ddb?@pLǟ@N7]m/_i$3ik0Aw& 3&WؠQ"-*/Ek~PY`~*d1Jd$XH%9HWם 7{-}}p.؅CW Ŏ0|;,e cp+p09(Y2yZ#P/=Jaܙ UԖPtB`t0.ɒ{(M*SHrYtXRzհ?t;fGP| "xy ʻ8ҡbƁHvVU=/WO)ц]SN/ulqÍ&E"SaJp |X2&Uk{e `,c QZX{+jJsB<1-7C_n)ODFtgUL@9):M}g@G"U'˒u봭PzS9u&4V_ظZFJӥ@Ύ;VVIt[LSKvzihK7Ki듍Ce&==fD&F: S],z|y mlRa 0d"Am,H+É9?.s9A%JJSM3WDmuirҦox ^xLM^4c_EJObf 1TXm`Pz7XH>!&zDsL!+[_l'BE?( @8L!=D>h,n { ^^^/!-ة_}P@NSzʯ'iLLN&Đ@65]zPrI ˜!%uj}鮍dI^`{ݩWoiW۬s|.17c*8cη:AH>VkTr?f{?qD z/Hf.ւ+{~F_Gq HdQ5WK,1~*1HsS` 4 jaCNv),/%+B&jE޺=3Ju6\>궁Ky˞m 9jV?9>[Ev"9HKK]IL>%˂bygm e>67([lDMv1No Ұ g?Pd#d9H>}fA7Uʫ~ǤfiyPf7*َ$JJ}F2/MlK&ZRȔ;awD"K8E?G#abullP7e̚ %WcEBV}iTmJ(^(Uv#5t. d,u tO} H5>fx8"JD1wuhAu&O9NGHfVURf٢R\϶+m'}aNӦ (gA6sl.ܼ ')VҾ(Û&˗2ǰ=^>1Nɞ2{5bAl FPqpɚZ͐jwsWa#kݥ䳍pYYtLBR8Mg3q[_R]Gyu)Los?,iyx{,*{oxJiLc+F1}RZ,]CC]WnLpih#YF%m_;|$nEQ㖚-EYa1/B]Sy%2ZG^FMnP3*PҒŒ8Z,5W{Un??+L (!K8\K#ު+.V R&~WN =~Cs =Prc9i W&bFpyȑ5)O"lqihJTN6}sʏ 910$q_$/P&3 1Z ILN y㸮{U~\>tlFczlxJ'J{tٙ:.ᦓL]d G` l{uU0bWen)S6Hi5 ,>}KuBKmQfMԼ&$b3uf{]lN|܆K26;_Dk 8)VS^1șFde홁`# SF'QP5i4Ἔ ^M.S(hVm{Y 2œ7Z[?_? OV[Z/邁':#ѯ*Ofc]U]!$hßR3+>{SX!Quk:To'HޔUjwr;Q`1I;}s/>^xOeoTgzv\8m&HѾYd\ҒKV0ǝoD;TMJ &H-B=f̝JE-G1r |gti sv27wbo˅n $/$BpdШ@NCL3%5R8GG7cEԫf |<_y,/ 5Z8DL@ 7Є'=0HfX;}hdT>^:)}(h%ܕxzAF; UUK(:mNK%zuڝК)=Ll=Xir#[M>[5ljB4 >HAw'mNadN#?ubiIr ObHqQfְ̜!$M Ks>q_am뻨E؟7YZu(/$?P;9JU JkDOcXiw[7[!UI qs)+)"p?y`fmE -9~D wiҨol}N2ӡ>6=bPZk,aBAC\nMH|=NZ^,7/M !B8gCQY=`Yo ?HI`%mY"TkC y-T~6=Ȯy|u~_allDb1W5YC229UV# @d`?94sr^/zq  ߑD A96!=e']fܾRsxTZ ]µC P,8%N5$տ7ԃM^S.hr04"#PAT@ej);+@8nί)Γ%\$?5til!s8,* ϐqvk"1jձ'ecSֈco jQ~x)JP;44"'Qvq[x ~ۼ.qҮDRCpg2cW%̰FoGս|lC VW#!#YȜ|.~g ~\z"Bg~ߚX#D5p?P;+g ;֛N95]b} %UnlBܣ}@p0Gnejgy[5@]If)_@@ݯTc]5zmsr"SLT-|6ÄQL\>OunX&n ߴn*@sRBcGK`ۤ@B\9T}{#XK/KR}]ܵ:peKz%tn$1vw @f;#=م{D8DUX[a`T+c•ZT#X^h+ֿ}|~4iQt|snjҲ3'9<ϲ4KC=֋$0d50.~D=X(&X LRʓYHXVUתÓǂn7/6]BKJ]-.CW^1K;_f5#xU?@IB<48^/cfӵ MTA."Q_zB Nby>$+{gp9&{OΥ$t*Yڨe z77$6"Xc]LHUD$,[oA߃6)5n 4LAycxId$#YD2Z{qN6+ڞ{=Z*õ5"ʇ9A[9NPX CWw`'Q>1PfʶwBΓ/r>eNɭL ljz0P/(Me>n*>(0ΥlH&y (YʫAۺՅUZ mDD?|b8*dsu@ŁV|)|dfR#/@iXmPB$ѿBw`fdbEAA\0ˠjj}D-70#En9eIZ#@eb༻IGT^4}oyjPF >XIfvWAt7>#Y1 imv EE?vrx3)Ѓ)A<*L{Ic9{ozÙ.JQ)>Jc~/Tv4t[7˨zR.:bKi[T~mLK! D{wx8!xy )=1]߹T17{Cje)4)NQ2{:hsE 3bF84_4g0i4! 受"caubBW~^Qቄ 5~raWE[KAD+4.L@L^xn.ެ_TMű4 siB*yJ#jw,?'SOi@Э}⦡|e1[tY\Q&„QQ{%6_*fͿK/*B[/v)N5 ,&bC˝֤_D;݆q1Llx/]ZyDOG` 6[jCk`lQAN=.') m fEQF_xW |,P&g#0E[f>6dO ~XNBqeU`mM|Pk~@^z/Y1AuB`# K&X#$1b.m.'׵E 񉨽ڽ,>-,Brh"ŤH6I>mFrp*;vAK3{S72vcbUY]dzH$Z?2K &>BRVyv/#qa3ibT9~8+t‡H7-XO ԊJz+1yKy""7'd_yzN2&ݴ T2 [;9L:\`u_9Ϯ1"oY=,xq z@QLB?*aZB8s9h"ڍȱHRMco{` `Y/:CVEX +S˨5>hjo7Oè\ˠa`I+ Pw)DxzNi- *CsOߕYgFǛںE:HLaQ[0ES^Y K'LQ)eYBk?9/zam_N:tF(3ȟxRrc(x!z*9*ՏaEc$ӆU7kQ7Hg" M fhG?w2heICaSQmK`㸦vP"#٘ _ʼn*TLdU\OWE>Td{;96=_Ran,oN@aſ#-M;`KދnQ+)H5(B,}΁Ou98-)_=jXiG賄;ڡrlݺfR,˹JBVSnHC6oێRnjGOh_\ a#_"ubԽ27 h 5Zc/+_7?Y?FX=:9լd6a{l5YzodIQ(lG֋`HÍ Lb+4[V(Ӟbn\Slh73#YNCہ!nG!ML1)l&FB& g<#C)-yM@?d,l^Xsmg$|ïCZ=/gFbM\?ځ5J&}vsX4YF'gD5KwjO=V[,@IŷM i:7\}QZE!l^;H)'e&K?߃w8,~0_KZj|H 2dPsi3K wPBhB;$޾ę\)$+mgp{ 6OPo<[KaeT {I6MpX-lNC<:"EnR!xN U nk oKq-n̓Q~Xt}1"<#UbQ)4Oޜ.1'qϜޥ0ok5ߟCq0Уۛ8%0Ӭ+ ɒږ[J7B=~IYMs(4hr*;r^0Ķt?dn̅/c &UF:#)Eg+it}IiҒ4!P$}T}8zbj [IR.5(>6i /';y('n*@WuJpvK/zxo-GTgLSf.WMjMcsRraě;Y`aWD!n418a*1:Wh|nRsuERsb_H7,{) `!üf d!S ]mrv=(TD`?0< !!5=xS41+K&S$1AW0}iMmU|@5w͒?eڍl-*YCA  0X~|B^"֨+\v\Ma-ּ=JX)]!3)5}Mi`u`#e9+<_P,RxM;81O`_ ,wMC5 @ }κC= UTKe#FxҐ7zIhS0qR:6q}\/!4.3xPt>?t3Gs(A b~ '2S~\U,W FF?l; |Z`mzd%#˴=}~ Ni_D*HKIna *`1*52kňUf,Z8 ]u:I T@YFj.x_@݊ȭ͊-SC2(2sՙGlFN\3N$W넌a}Y! uGvfs..\z:eUr^5HLhQX7JoJF<4bϝ?KGe պm]ԗ3F|N Cygp`!1g(׌fn BOaoMg{-4yc?̰ڀ)@=-:գtHL>9*uW#pbnA %< ;np cҦ`vky+5i,* vrQTD v+tzn/> UYaX-zV,*]U|aC+R| %*R.=&j$|0 YZAER/data/TeachingRatings.rda0000644000175400001440000001170613033553053015534 0ustar zeileisusersBZh91AY&SY<88x_\ҥ.}uJj|=C9*4@4<@mOMI0FL=OSGOBChCF4dM4L5*OSSUTTBj@z =5Sͪz$H 2d4bST4d=#&&Mi240FMh0!4hhd F =Rh"DjdOCSL4dddɐA114ڍdF24 4=4ѡFLC ɦ4jE4j#(zF)a4<=ڙO)S= h=@4dQ= 'h~444z=CuAk#0vDĂ)m+ل&Ębt"q< Lh0#WHӠ2ĝcNJ>"d dj aJ& 6%e k4hV#Im;㶼=LR!ɱK_kQD><<ͅL J|S\|pQ%~. I=~QG(sRZ:=d™W~"S=Ȧ `۸3v+B'~In)Tocp&b}Ud ǹWF[ӑcSS\YoV]Rլ+Z(?,rr?4>* xmҊ!lay2SM@Y~s[:9oLiUm~s[nYW).1q*o@(.+"`nDߚj =qDYLj2$-{: :j7-7-ǓwCV PYطKBŻKvLF}9K/hAfRߚ}G''.3U~-Z6_gpeF wq*N ^2iBf6/A64*)0V-swO-mTW孢ŬmETUEXcmhklXKZ*F\ƭ-XEKFѣs[ت+EZ" ѠU4[F5%&ɢ)+5F-*$+E%hbJ-)LclPdDŔ(żҶGZbm0Ft4aM )5(6,IjH`6 X(&&ōl͢Qb4VV"j6p6eFIlmhձE%Xf^Ș o*:-‚K$kZ$I BtrFOmBN-t[RLoCDcd2& 5 (=U Alʮt #rGėذ0ږ:-#{W8N!Yz疧5 viB³ET&SZ%s֣ Eq\U[Ssoe ͯ—r ԀPB$bX*]$+1V\hZ" C7iO(/ΒtnwK N\.s9#uӺqܐN7;΋wE;4%t]ɉ݆wBQ %ԪP&䮠h 5$ qajڱX^` ,On7KKA"4$D?`RF1Bc@ɥ`~4P-uc|.#P‘gZ(RDU%v2RV R Rn;pX%_88'@d6i+&d]9TDrÀ 5Aˍ@j׆Il`[R]ZX$Wj2h,}'(C4|Zp4;D)Gͽw@:79pҴj4?ʒĚ"̲ efRߛD 6cƚsVm ɛIĜI m,I$I$I$I$UZuUcX֓H7&19$M4smmmmmmmmj~w(D"(P( ֵ9ip%f%f%f%f%f%f%f%f%f'';쓅鉍I+zjkszoMɼ8RbLnrmm}A `kJZDR`im5#D(]eT R&8o//lIJlIJl1&7x""&8m&%f%f%f%f%f%dsy>Q&ɉɤi4nl&ɳ`* 0wwjݫWwv]D!kZ-L)Ye2)$RHI"E$᪲UUYV%mMs\5Va)%wqI$I$I$`H*$+ snpR!< N 8'[j }O"wxi?4jK>o!7{g eM=hQI*\ݒkTuȊu͸Zr+\])]\5eSm&41m:DuM)7KsF--ݸ\u۝.\U$hmb-&شZ"65Ecm!d(54mIo n#QʓXF[&Ӱ2Tj,\ BXIFe*&c%4$4BeL0B$zBh\=P4EG! F\La۴sCAͤA!A0UWp%͐n 7P@"Qc`c؁RO䗚|$:-yȔܠ RCCIX:k 0UNf -;eE&v4:r F[!{L]Y>XH>%D=pAhfg-:+LpW7ؚ'y;ErJI1'Z_ \HZt)mM `j. ~+'0͆ep.,z w8w6U[~ ԵО ԕA$$.K]kB@UST(`T\v,#;5%DuUL$M=wq K G74 D%ˠO&́!3"pb޽[ޜ I薣 c$p 6=Ӑ܀,Knڇtȹ/҉ZiH}vXs>Tty=I0{Od9gܣ#OHL"4{]eqS"w`C͞1GQlZ&FB.WAzjE:C=Z ySG_a  `5LވEz]%H[#iF tn񡙝K>~$oJ\M P}%}\![qNN~T[[BL6qEiJURIsGMۃB 0deHArl/f؍yg܈QJ@|cbՁ m+ %(,a͇N"” VG Fq&ez290C$Ac!=KwW(mdM,.!dЇbX/<!Tbl8PO`% BuZ7rHSd>r0SE[%;=pfW60b=┞发 HYIGLrE8PAER/data/CPSSWEducation.rda0000644000175400001440000002474413033553037015225 0ustar zeileisusers7zXZi"6!Xm)])TW"nRʟt<3n2uz!|Gǝrٙ, 'PiL ,7Pr{1?~AxM7%,P3~3qjᣢ`΋-0\֩7.R dYL%fuU*W,CC)3vL| h kՕUT dsPpxB:V*dÁJDT2sgAp\[_rvYDІ$ۤ! j>i}dEo8n%qɾ@\u=[XÌh0C`R~Gu+P[qe`Jt[${KyȬRtgb93}$lĤm\I^6, Mb(kX7R]f\CiBCwJDT"Q- (_8Of.y\G!v94fH/.+43o rp~ER(SoY\^6R?@NvIH+?/a+C5{̏ClSLI{rAtaiJT(Гg5})!mOw40LoO݁>?c Vq1kjA !FxD6.eRX3Ұfb|A1.ß׋pl)dК216}-2VӇWVٓdȖp  `h~pmpA$y){.vkѪ޶=[B7=Ss'3+aep@ΗB*5wM\G#TQ;}t(0kpr>w(ro9vm{ \=G`BGL`QLʤg/a &6_4Y3)͕ve:n3uq*@p9OP6P0^c,mJ8"A-wo|[ӜN,h\,l=+VEB^pzC$G&tu~%; "}kbq T"P:h|B4#ķ2u tAǤhݑz⡒7{|WiFm$*q 4o!q=Z9 1! ~Z_u4+6"*u}6E'XWzDB-o1ړd[r&!"/t!T%1i u_Я*)n qÊ0Qra5]weL;3CN q|>wV :<Y Xa:Ft$j͝I cYI?fE*(N% sSLn=s¿Ǘ<;rGƶ+>hc 1i@7F[DoBGaM#?h9#LJ {x׍^J[m<qNO}{6͖V*{j0zu0*&azC:x(GR[.f;̔2@?bPGR3^i/ C;`f Tﵻd3`NC*]1(\&7{$B[\zWMl:fFA ؕwY&YX8!Ezh‘%<S%kXE\e vMyY{>V9Uj-DlWסdr_ȈKJǺIχ "H=")J|ᲊڸ/'68vaE ck4k :@1aI$kF=7t55|,MGπ#/;DDK'$n 2QF]s=gKb[[]ۮܰѢLZsӅa8^K@|5YZ}{0RP7͉4Bb^?g_v.AMr#h_uȜ'p:IU%4ΫS)Q[?ݵSQ.׌DD/  g9)w_%ɦ2,tUg6A]r(Tх>-mg}$_{CtxƦ/ gsŔ&vB^O*q ?̬6(e \|e:z>^X1ƞR">ӽdLwVO)%6ݲB ʙfS>gto?Tr )}\R!#{5)_>Ҡw̷8(fxn/Traq/,?tS=85)JSLУIig @J[ W+U]hApIIhNoAVC-wN\6Jy]PhNCwx:-DhHQ8U%gimiX5vIcEQMt$Dڅ] @bITJmۓǫA(}b*" @NA3'gr鎲 f O0ms:yD8PS$Ud_"$u3BCZ*@Т}zxp:ܭ(d6x2]H+0fĢ-,C>Ag KT 'ɔr3P<ݫSM(',vsz eꢃ9mykQJHYk5GTkٰ`,z,2)xA-WT.(Y.4PmU)l hOUCqqTo m0]éA|@~u؊EF9jO~ ]:HW|ooѵͥŎ0G< Ўſj1oF+T"F@f N$ MBOZpvVJBNΆ%x 4FGi5KBd1P ]u6wMJ#},OL@-sx}YTObr"YhU,TY` W]4@,^=תb9x&#dF9oͥЉV$chDSǹr5PLcwuK%ivYڧc-Xe雍&WnJ_'Jome_zH?yn!iO(L F%Ui= v)#ݔ7jobtu^a/6H6+xڄmDY[iiPw &$]c2'J;si@G7'|ے2͋@*>C+ԑ ! @w5%Z3d6Rnv!EJp1:/謿/fr %s-D\>6 /۠~ )rG;ܝG_=c-ՇMȣJ\:wӃ'vYhWhPY-)SCL/O#Q#G9:2ce`wO2Y;S`lFF\=Σ&MvPiU5+|>Pqf {|u¶"2ϓO~i hf]v̜; TIx= 4\o"s׹doۉWr;MI̷( ե+`jNAmI݂1`w:W8Zk,Eh?Yg0I i649y(dt!fZvE39 B;IӝnsvLY /46o%HDUΪ%Y))иVZ,FPFGVn+8x0Bo12Ϛf|h=hZqrCqQYÙu@PXW ԁ\XA7Cfuhj# (GbDr? :&©5h` .Biܗo(N;oZ%$G(iV}B55\g7ԶJ;UQkxZ 'YQl{2}H (XUuN|)ZڅaD̛f~ ICu/v*KU<1BJD f +*$4JoБ޳ vV|/^kw}k{U?.0 9>`΁#(U*p0*<]9GNgVa^mITG{0DC% .M/NEq)Zv j_tX6RۘsOjƀaNߏ QxJ`i>w"n:EBv[zm=j0'>i() fȉ\ |N3Y sYP'c+zF(is;x$8xkܡ( cjJy<}0BmJg} XO/W` )o[j911X=b9 :59j[ XXΕ՗p0LU^N:;j*:k(5,L-3usDMIﯣ&9 7*rJ=UfP"E**D}{8u4Cb؄IGHV&@ʜX!+6r26I&4idneH#tf<1o _KݸPCAu 3(XU]-83Ʊ Ic ?POuModxGqF6D&f,(n;Y roT5WO5s"ۚʋm{Yu%ԣmlQ)t rxs⁩j[;V}#h-Zsj|1n.W⼮],c`ar&kfIVF>ZM퉠;h!\~AǗjZ c] :R`3T(rr~̼2ڪIϾUG']tOi5l^~{F)Ghfa<0Al" $0%OiGn}Ă7K7MZ#YϜ0}qI\c>cmۜs^YȌM:YF!J2ApGqm yj2 H"hRhP>ۊ钽4'{W99DîⱇBÍhŒ?3԰#r,Wneϝ[:GwRV uJWzTȖ~4S"M͖c3s4fy&#mjAFWn6ΎfHۂ^IAiA yڞJLu?NLU\`$YE5r uUZ18e5/8Umz[roB䗞$o۔ xm+Ҥ?c=R&Me(B`ta.cˤȰK%̸0Otv0 H!͗^qwn̢6LWwf`╝*eTU8jπ(Ǵ .Ɲ2AmOƧgM$ڞceU;_7ɿ7v\ 9+d+@XOŨz_Q`K)_ "AǓ]3O[L/; #aJ9'e!8韠bXcFGp /Nl~Пg;vg8ǤTB(#tO*+w=7RK(?p_yCMCraS$[ %D=Tio N&9s1|w$NW:"1vѝ[^4SHjt7]WD$ >!3ycmVO@1Pn26ax6${f駪o2cdj:)W a*z{0LȦ"v":l˪%Ԙ_Y0K؜l wň0ӣSogZz+9Ě3vEaOj!mGhHhg_iNSr.n4J+ÊhՈjX \ <D?f!B,K3nE=^NA o5+2dFF[y6Z+LK1?M5:\Y^vB+|Hԕl$ԭoIg?#u9Y+ށ L4+ M1wObޫFE-QF|Pu@8 "c-?8O {+}Fz|6.2^KA 0[Ka.Kv%sԩIlr@W/#6F!V'M\ю_[]m28[@1Qx&Z'sń37.;dzT%P=>ni[eX<'`e4ȇ.1|GVD"eo\2DGni% aXܭz҂e3V8+,`Xx{,&uRQkxī>S8(v^w`KAS>0 YZAER/data/HealthInsurance.rda0000644000175400001440000005545513033553047015553 0ustar zeileisusersBZh91AY&SYU/V/DU@?ߠ@@şc*E1dJWHuJO^>0>D h*%(HTofU*CmئͳriE *&K@JEADDTA@@xxgB*~44h S%)DJJQPhOT@MHD@M(hhѣGziAQ)H@@DU>>mF5qTm^ Z+-`f1eb ˮgm0W2AũCڻ>BnmG rgBUvlH[S><(U֕=?K~*C٨nCy^b>Ţ~?YuT-RтRW\$.% `18_{yď8Tҿ13-,qOԛ:~DFdG8If&}~mB\/X((|};` :AoݺVKgX~VV?}nT Iy|ZKLkXdv1HfXiߥr2{h7ďAW)?UedY۷`beqoiI30vիSr3lg+eB&(~g:@o``J&j~9铎%| UT!zk'vc oNU!ѷNtBBz0TMl`x& d}ϰk6Кǣ#u?/ElyZ7%ٶ%1[-@#cea/33hG,2}t>,=aqBiR bvmP[f _RTՃ;Z,{K|D\sz1±8I4ӴR"p7oxaWdasq2(Uҹ:{$D2$t/_I:J>k#BhI݇y !ҔW@u4ִz}7҄ No˛ݹfOpX%miJyu|ZJ|,|l$Ev&Ui^roo}Gw!QyDt! ӵ=s*G[_A~]FLy$0Q&'gcJCf'G9T/ДH5f WV!1h4WGjOKHg-3AA$_YOcD$+Қ+ETk8ĒDPl f 3'>w+V  S=<- Jۏw>Z_O)O 'GцE\ΣnsrO`4z͖%LxxP>н PD%ڝvJ{H d4Qzr OH|e /Zwy瀟*^.џ'4Rb1]y=Ӻ$xb =Vbg}kt*9''#3.@D _RklZxMq)=-)v2L h<<:~eP[UBs֐< _=*3-Bg$'(3E~8zy)^S tz x挈yџ3+yFN2dr)6{9h3xc/۫<ܽǐBp7aAT|c'//%kK눛"ۥ-SUa!{ > nd bQl1`Ӎ:ݎ.'rlY゜d#Cr{TIN{G"<>y}#֖]g:K ""B k k*ȳ=uhA ==ۛS<5 ZxoE68 }@[l:.\l_@GEKt^MxI;?X`r;ZddVm=gUܲ>K 'qݬusW9ʦT2Ӎ)v|72ɺRz1d̩Xq=U]xt$Քm\m"ѤdB~潁D/۴choo<+-:q:.ZL|S=ֲ]jSیtq͝ʯ^-KG{,Eh] :彣OH}QvOdW'lzi07>0Z Kƴ_4"ۥ=XuC$jݎυʟR.-@k7> jvҷ٥ս,LjsIooj$,qg1LX4ilvzj[iL؏4&@L6nۋ;\/^SrיiO5LԂ&48'=)"%${ߝ43λV!SN2<ˣW];bK΂(g}LqmH;;oq^kkK<4(6W8\vW^@e>n 0^G)cHǥMyvH3.)ބm<׿!s <6)^:҃u?d\{y .JW|i<4GX.ltƬf!G0 dNbw.1zY.L ӑ1jSmi6yk:K}:v~\s/Wk#gIyZca,Ӳ=kD4S1{:g08𕧡ރ$m_];"jxiۆ< 1.m[Fbmx6]{ų]+nkC}{com R:k{H<\/z ⎼cV&)zs2-̊뜶뎍3Ч甿IƋUw+eZum Col,$xt9.QqZ32oE!leqzs2\Z\), Y. ,v}E1=n{l {i_4,{uv[@#>I1APDkƨee˾NU}6=Q[Fסwat{f;jm9}Ke+2g>%֤> k^ bC=%'ʼu ,G<}=[dt=T(dI ¾CB ()8n۽rrUZs<-1~xua7D*nyCe5Ұ7eF¾akinS=:GlDngYh+,[;Ī|M|L+\q )=7 k+Q!hR"7~"|0-e-mnzڎ =`_m1b5;qϸY=+9*2rJ6B▌20kwia-x{tc!{gO|v\,/[5Nj'jr|gj.m\r,φ<7akX=wSrp;oM+}pʺ$.{cz ljb?sQP6^:)-щ[a.4p_)ο]뎸i=ojJt{^l=H߯iJⲘ詧d}O_rbΰt?7/9s&*lWl9 ^{,qW]%zgp\ʫr|g'ѫ?U:#9!.H%^iv>eOqӑ "qg.O20Ww~6s/yGBgxw{')FT{ׅ7x[F^Ҁhu-9rc"<>OtΓJ)cl%ݯ7>bu˅|~5!{g>ipk_!e{=K)(uԷ~ [g{G)$x6觚*?Jk-R:o u,tCDBcMoΞ/n|\M(h4\W{O{nVշ^ #ָ` |(poC_4l/pח<:.r9ٯ7"Χg kΛW̼|I兼+:s}9/rvNkcgl\9baٛsi^O[{/RBɡK.Ȭ}.n9Ax>64׭c;r;ɳ츅4: _a~JugCa}U'`,M}z@>|zлP<7޴vK+Aa߳lvn>VLjezo[Z][v]atÜKmj8~LǶ#s;)0l/<>O,?3gy2q>:4㼫|T'Ŷn8R_%Oqr/ŰKG}Z|xtlWrY+z܏E߽O~^A!m^0txy7{χ}} %u`y/]lyx2}]s%el+}{d~$Sk>zRx+ŏmwhH"4jQ6Zdűh֊h6V6-RZEcQjDZFQQQ4jF"*-ƱFlVDTƱERmFHXlUF,ccb* m,QQi5@I(Tm1TE X4mXڍFKRcbRU((((lU[Y5Pm$jMj+c`[,dkTkbMQFTh5mhERF(EV(4lXlXTZ4AhmF65 b5i1hF1EhƊX6cTb"ClQ),h(i * DAj,FHQc&FV5blkkJA1cb5Fb E+Q#V(6,TccccEɣlmhE2Ѫ-TRXLb*IbcEmDUFcj5KIZ[Im#bE%X4F(ƣZ65bڊ*KE-QbEh-D4hcmjhTI Z4EF(F+@pQEFōi5lemQ*H+ AQhѨTMh*LF,E26QQm[$FьDlTj(T[@ɱ`6BQX*+cEhI2ѵ(cm[FEcj MQXڈ&mHdncF1mlkE`-&*,jFѣQX+m%dƋQ&5EEF-&"Eb IDE cIA6LXԔQE* X,c"Owknh-FTl&FD&KBQ[b#&Th,kQ1E0b*FѲQbj,j*,kűA`ъƩ4khEF bȉEEIhFBb͋,< E ccpьF:zKu!zJJJd0j1b&j5I-D`5mTPlFF-&hblTj,lQZ1V4mƍQb")5hXƈ1X-ch&bRHŢU$bI"!bXXY,FkQI ITSAIfMQ$ь  ,EI$bXI  6DFlF#&%z/;wN'E](&ݰ:/67o"MQc,kAhhZţQhţj"EFT̓lcXرQTk5cR-Qb15Ѥ6Ji(0"ت,j"S4FJٚ! he#$M$f-FQLTbX")&10l63#)D4 (utJ4mFLF6fl 5̓%D""1 2i`ɱf)1h`FF&đ2QhLAF%)) HdH׻r M HAD2$ 3c3J)4&&E"4\wvM㑯Y$ΦaRMYwOV¯utI-{2"*Z=|XѨQFUh(55,P,VbE#j 5cQ4i5cXDm)6!cm%%F-j-E`ѴLMEX$*HJ&)df% {r#R&F&6FK1($$ AiF`I1I@a& ]I@h1b ad6B(eDi0ID$i,AI% 4bFFc&R, HBJaL6F  0!"HwmyQQ$hhՍ5&#j`*`Ɔ"M! H4,Q0"2ȅ&S1$DbH*SD QI$l 1IfEј)R"2L)dA"*54 P5a$2P$1`)$$`H0IBh Q9n4fHH2LX2BCL"QɉSfR2H™2D`bRAKhI$0!RSPi"0IL24J #d,Q""-]./.5D9&28լBy*䮽]񍶴xZK_o񒠄9ҫBVmWl=R>`yKR]-ϷA wS) y%&ve*AqK׷UaCٚ[Rф&5T$ͦ(l/gpY.y"-z Ց2maՆX /u#bf{$h*djLF-%EXF4cDmѱ"5lF QLƂ1cTQZ5lQQ6Q&#K Q2DhƤ5+F&$D"f[IC1"@I(Ր-2M3i5*Qb* MFLL0LL3sh*d[IQAhMiY3&"5p 13F Z bK&$E",N\&M&% R"1ie$Qb&* 2 LQ/v;-I(64hR2$JK3FhJi5X "b,Ԧe h$@%F(FRɈeb IHlD"$RDc$BYJ#LdJ& BX"D$dc "*6&(ѓHQbQ2)McF)M$Q"h R#PDlc@BZF%ѩ{s]^PZ-cѩ4Fb6-DH`kfJM#4lb$hDM!3$LiID$5̛IDL63lFfBDȑ$…DC"2!Dc"D$F 13a(1cD#4H!Hd!H2$1F6A!D($L IFIPIA1&D`QfM" ɒ A2!4b&D0Q2&Fdb,ILRC(3 RLFL d&ȒA4fBDؓ5J@AEQ]ܹsb$Db) 3aPLSf( `HfIE Lh4Ad4Q114 )6da 2 $2Ja2$B  `46 HDB ILBblDf & L$$X&%04RH)"Y$M fEDB& bDb"5JD$iDDbL ) Sh4a 0ɔ",%R((c#Qb1e͋!eI!(d)RM3 $3dL`Td2A4FI$Ia 1)I"DA%BdE3ccai%bERcE &" 5Eb6 [lPo#\U^hs3W= (U<(5,*&g^HCX&x8Q1\L3@BCzrC,(:= rJz:tՓlj"s7|3^O~c)D^sh^}csq7oǓBبֲ<* * I?U+Q)RyS> -d[(wFLC۵,&|/AGvKKz.l}y5f$N=i)&BDᯒhIOV𵭡9О$/&Y甒== D t:¹s"k9&E^UAbnG"/F-szdv#I nY&0熰(1 &$ݡ,q腌~c l:r?/ֶ_$ Qb Fd%E(b6$Y5b1EL-m"QlEADX Qce#i,/Deъ"2b`4Ll*#P[!)FYE2X5J4heTbBcF1e2h6l Z1FHəE2& AE2(&m>kDb(,Q$YR$͒-4)c4JI̙bE,`}K{dV&%#E4L13`BA$RcDH)$͊hѤ4ABeMe2cE $J-QFKD$M EbIccQ0)pyzW9>]Km2ЙIJJ+)6h 4Ĥa !6X`Hf!.,C#$!#J( bMBI0A hf` FA1dD)L&5QhQ 1 d)&! I2RA˘`J1%IHl labE)ؖb 6ɚY1(eQƨ3!1AEQ*-A&Ѩ5FA4hؙRZ5-cPE2zb>=yNɒ-vA'i.nF)4EƢ 1DiEX4F F$+I2 2H431$ 1 csDb"1#aRJF0# "LlS Ņ11bRJ,$B0 E 1$S%M,P"d4ABBc H$FRC203B`fH* cDI i$dS04†bQ5E$0II$(Di&e$JFcD &6% 450b(I0F4ll[\-1FB,`хE 5BbQEH)%Ia4ђ`"b$LCQƊ d`"TTHI),ل Da1)$h4Ĥ$ 2d@!QHJ)QhѨI,EQDUwqdяkS"I`EHHKAKV K"2" 5ED a%E- EM&Ei #&-ɋX25"hTY(2@@i1hѡ0h,Zcd*Ab4TEѴlh #TVJF,Z6(Hm֓lTZb-{M&l<"GMm ~7y>}^\b("&(HͰ|YJ&D(+rJ0fDlNkʕr0&4 jD4`ѓL ۾/{)( 2FQ)4BY%,!`41Y100bCh( 4BDPQs;yy D0ݺa2I,Hfo:! aIF%$TfB#$PRcP$ E6SJ&i2I0!`( Y1H!b%1!d)fI XEC,XŠ^8H %ToQ#$DȘHc$R$6e"6a)Q!$4"i&I( A0124$@)ab)624A2D%#@)H2EHbF1D dM!FFjeF@Cl)@D @c(4Rʈ)(]J!4)HiĄ4EE3f*J2J,DPb"m=i),C,R &`,&Ec`RĒXZMJhb h2f!&0$#a)1XF - AjCbHQb Ahبh&I%V4Xdm&ъ"PXFD`Ѣ[Fw=y<ݺ "JwW|{cE;n|s&fNL!$E JiEl믩$:AU7 Hɷ{އ90wnBd$2;.F1HR2.t7w4@wnLĊKA$wg.JLLΊ.($ ܽ==K{>>ĂgN#`-׼ -j$fZk2H=W=C5%2x73MSzfIߚ{$}ܽHL2\ZvZe١!ʓy$.)!Nm;(FEX y^XL"j3ٕhF_~P>h+w;uޛ. FS8lbR%JQ (,#Ćm&'<ByA>Hq⣳ؾ{^S˳@Oʅ" }fwȈ-u2U}O'/#׻81apRDbTDw9OKEr撋qst:zL /s0XF=;[ﭸKR7̚?ug/y@6%G!ǣz bzTp}`q>]mzrM]9Ђ'yԁ蔒t&!xmn 6jCkCp9f2v*$vdtq'(d L'HtЗn*ѡt] 44Ppv>.yI=!k{P&L y $^:_ tR44%v&݃F&rTj-6=VqiIN$|/YU3ʭÐg9$*L&xO~'yO];=md]2r x<  =ӜLy ޸YOz8Wī@Jm!>.Oa mĝQm=&'c Z2^%~ ] p)'٧z|{=]&mp~k<!y2zgzs’(N4W#0#P¥g"Fj=ۡ)EAt\Š^k=5i(R"wn4v$c4x'x9yO,v(퐦ҝSրt:ZiFۚZJ{Im{/䋺}G̻P&8BXR!meC?žC2:*&G@l|ә^!{&CCg,Jtѡ8/do3LmzAC䃥=+c,On%0}1IևhJS=)!P\uQJh @t4%4tmB8h(PnQ[=;8 6HgciuGl:|h DKO;!Ń#06k膮pfĆH\g^t/eƍEDV*chT[r;eOC+Ji(N?z>gt$Ag' $r~?;yR~xə!D7"NPob"JzMvE h횤th(j <{(j O!R1&Қ)дD<ܢPj{)<)ݾ[{xn<`SK@hl AI]%i4bͼhj-`Z4 @,'A䆐 (z]7a EZѱ\\si[*J6iEnq9k)ZhiBNE)J:RX܊cnnQrb.lUsQY5.pѶnQ^U%cTEz4Jk1 P4@)BJi(ݣFu&ŰZ-rVVVTm_ᱪ+ın\֓s-˄XmQ湓EbʱFbKX6 Ӻ1j65@mG=P:mX!ۖj4Ht:q(hIwunj rJGAuB5)4*Q+sscnQEm.mj5,nlmn\փEANl:C P;V6Ebwv X\mkBi)i m4i !4)ҚhhD?RgeҽgZJa3(/J{\^OU'"g)T1) LX@z a3w4@O"Z۳XNg2r&X$mUNgڢX)5ܝ k23kR VVz!T}14|BӻvbL6<3k$ID<-fi),I% j5aq"z6ⳉ8{/E|%άh~}}bRJE촽!Wz$r%2<痗Wc(g,D:giK2|G{3ߥ)& \.1 it (,'wv'\dXSY%_{[wzd/ȼZNp,Hq elk_mIf=#ά HZIěx'1|}Lx8VHJK>yz*tOi@EV‰Om)ľ9;3O1MnUǧ|Bkv`=Kw`Q) Zw#k "Dy$rC{8|$`I$ sq$@޻W7y%IUמICf֭OG{!7A>OMPh)qx=N@'wRIOzyx'䇃=J$7Z미>' MNγSvn+rRpLJ.KquY\E>8[}1vӰȆVI"#J04GW='J$}iڂD:v 1@J9%/۵Ǽ 7WZ7 z{c$m :ttU< EY*P5W\z&`).5JG.Sӛ|e BR>4N>⇀_$!s@&|K"V.hzdTG]>IVg>B2hcl_W`AE^{?+K{oz k'~GR'}D?R6=ˇRYm#C=ČgȞ%C%,W{l_=8}#CfWiT0$JA'ߞ$6"]r&mMC N^g&=#F׋Fk#,;^%PBYh|rQ9d=+1>ag"#/8TYR_| Vm~#P|DD3@$>n.w~-pP8@Y̚"ÝuښmC/UʊCFmu}kF{vns+6%(yә([MXZ{hpm4ϩS޸āwc們@ОYU5$֋]Ϣ+=)/=jwo i`DS^0kZ!ýeL> ͟/>>*[f~w"/fD폼Cg/ 7'CN"زsaH9kT}N38=JbDj+0Gcf긌}= 2|*>u)4SUNI)a6*Wfл}3&s Fy %zz]1nM'[RcZNf2D|b:3|h|ćӷQ#m05SɳI4B  CPѼ^ o 'wѶR|!Fj_k7ވQC-2-$it0a]O!?BhO\sKhz4bss@4~{9 Z[zXcjDI$M31oӮgqJW1cN>% ^iמ]׫ūHC3TzNxɈCV}_`!Y8q5_|>3J[o!Х?'N˅_{uT'W$gh߹Am_t3lj/}=bhM>}gѹy"$ا)6=|BR$M~}(ay.ݤ_v- \Yޱ-wGo*]\PٕdIKli 71=ɺ)EP>dHAIH,I>5C> ?uxvF9}xwa<ӞLẻnwu9Liֽ8'9]Ol-[@asPB@"7)>jaAX5Z(|+~PF @Rty_@G-^(X^ -Q %(V*g?p&|3s=&Ǖdp:bx;fGrl4Xd{XHa 0CxyI"!>yޤMnY1 4rx]t^t ֈK-}(0"vBz@3]Gyؾ/!?DG+5ey@~0Mߋ^+zJc "EƧVOyPu5"z[$/lڇH@K^g!1% ?R կop{џNϵSG7?\|w:\Rzu8 }"=T5/!v*k=:2dm^L_yᾃ}[UnЧTY*q0˷k?ϱz0+!ө=H_D^,Ǯ:Bjߠڗu'p^+\t T^{U.[{J듏6ٳC! 82'ur :eU:Yyݫܑ>(KשMϬc)kԹZILy{yת_ rJї2YփOϿyV?{FZC}|3mGr>t#Kջ&j7|+b_yz03cqF6#1q1Qg`X]{30F0e5 O13632f3]Xzy78^1 c XGpE-j;7d!_rP3Mu&4yPq}/7mo擨QWO8T>qr_R3 ?g8`~b"?5y]U饝E|ؓ^3v>_~;S񐟊%J;_zCWzxE7׃|TUde|sD&xӣxG51eJ?=us\2+!_өZR{`o/Po ߫=L -b)|φs_j^UZ뭍z ۱w&EsF+ZS]/*j˺w -~!҃5cKj9M{/n;Ÿߝb@008-X_Fm!PsixK@Hy8y@4a-<TPGS}¡ihA8TUR$(U- BrM>\&H(&ojnĥ+S n% U0% W%T}LLKZriԒ[KC4LKõ4BKå9\å9\å9\å9\å9\059LajSspkpkptތ\?8/OVΡ]; AER/data/Journals.rda0000644000175400001440000001254713033553047014266 0ustar zeileisusersBZh91AY&SYx { !_)`#;AvW@ IZ(lЩ"$h?M5M<=~O=OjSD~4 =FhOSM=5mOj$z7Pe:Sb- eo} uٶYz+H"zɔr@jT,]uR51A^B&](%5y5I 糦kNh՜݇Lq-I:V꫱i)Ĥ! Mid'9 N R j+#">7<*͋VpEMkQr[NgʵLN.Q @FYޥR%y$jȹJ2d97G"n؀A\]2.H_$lBmm& lI$BB{!Fr$(I"\ Q:BIP)0  $@(DK`UrIUDGG&:#|H. g]IIe`AKT)@DAy. 2uxz޳}Ys' 8gomVcZ? Ua-0Ѕl f3D<2*"hr%J3T"d3&7B!m*߈(NQGQsⳙH.1L@4Ĉ:I)jM+IE@YRblQ|yPRt=ԅI7E$ ] "uQ V 2PoN9^:]Ӫs!Y۠ңť\u7[33gN\Q\X5BAr(!]i4BQ(%JqtiMM'ʒS2Tkn.q4:Uoei_w p@WĤYJ%6 9e4(<.X@O`fUϪ9Mif+֧1JaP8lUyjÙP FMk x7@~`4l^P(STP!/] UV(+?Wn3q¬ksF:}0$ff(KX0G'4eQܸZձC+wN63qU)>%^Z6` p Qq@݅y2R Qj|]7qan nDCz+;{FĴs3AA(ˑbk7`&;T߬tk"'B5T`%.&RZXf))%&=<~4˷#ʅQ=(9܌U\K] 45'!)<5zwCI $nig@!SMKJ$Ҕ{X91k-uUIE m qڴD):IbPŕW"`ٳmfa2 1FX'3>l|Gp1f7sA@IR d>z7CPqJm>!=hTb=6r% ,O+,<ZF -7E2=3CS1eTW(R"dNSKZA3QFCfm+&0mVQҌ ZFP(79Uz9PA4YўvAO*y\m٥ &1{FEDW1i]<t{9אz2gʜT܅WL+(pP&&@Zhp$toGgdO3 \bNY@’Zg\і%I4LCU ,()"Uϭ#S/2 9tb[f5r L2,#f!_hanK=w\8¬`qHPNAe(7[}gF!MHvj ڥə>Hs* +SJf!(B@ ҽ V$[)e 4m$ĕ1^E$% 8-b 5(d$I4W;(cY,]G~"&3ɱ(,Ɔh̎a|63=ԬWa>UU^,U m`lNpPN>k" ]`ATkVl(($"cUŐ¿: B jxY"Q T$LH9B+s/N܌VcBD%զr 2XX%*S$x11#(BϝNjfٍ^o̡'@\ :Q#jw6Fv궀PС4С$3B੦ԂBC5y,YJ(Ҝo"5ϣ#+ѻ `Vy$NnZV-f!au=,2-h&64S' ?3LׯgK:+cIKgW4 M{qE7mºhS+G$)d. h@J( IĆK!dL#3a6N"`K LRd%{顴B%*R`i!LɎ]Ci@/mZ#m "4Bn SNlD*a"iXm@l=ВW0nD&6D!Hœ񹓖ɫcP@ DJ"P`jm)d ,8 q[陊Z5$%M*!as0ȺI# 4$l $Ic[qjm%Ūv4YuHFEie78JwV K V_An̦7|̻(k<*Z"J8ש_k&rxHf(pxQ+vb3Hf1MPB[KRm^/r;5:N. vVXz FO9I-*)"bI UI"T4䪷j4U/w$LQ*M[iH8#?Ԙ-D4vPTeSU1/KRJZ/wIRİQƊֲWn3p+ըM3}Nh~Qim!DȂr4a'F*V%*Vk&zTh"&Ҳm(<8\,U l(M$#jm+D(JSh"e3F+VII]r@0^M4Ʌ t$[Nx&[RD(Y,Q+)\f7acnWTU[;R-m.ծu^YȓeVϑqj62nϡzsߠ2Cc RZϬ5o`"o5BՐ% H)%d Ib2&WI(HRLWg䙆WBH[Im]Z@ @8HPP.92PJarP.)J 4@ 6HU48 EfG^ mAA_Tj%^K8nkW&ٛZ)ROdUifLH{1aDbtNa$i/.p 3xAER/data/CigarettesB.rda0000644000175400001440000000252213033553037014654 0ustar zeileisusers]{PWw Z>HP= M" 4 * 0hqЈJB,"("`Pu*>ˆcj߽gw Rkc111hj̞8+jKNPʥ f|\K Ϟ|UL@̛*_0n&:nqN,e-<-ƦDz:=ahӖ+|suc,`Wǟ+~\G|V>WَIv&@#ܪOj<(_.m6ߺ;wGv4xKOjk^Җ>0 $|g-3ʎ-B6N;vzo~qQFD0L٤:`<4%R >xy&fꄡ A/_4Gaޔ.,M\ mI{'M\׾HCX*\@; `y^Ί̓4@y#JS@i>#fJ.|"*ߗ{:ņ:'$/چ@G@^ԇ98V.$_Ly7ZwZv-U]N,[ό;XŽ[Y| +8kj+=םViSy{p)\~oѶU +(jp8%z_RhU@ C5UP=A%>GQ BI@ "芈PERWBJDߐSbSQI>,=$'F$S60i/SɸSelpt_AER/data/Medicaid1986.rda0000644000175400001440000002345413033553047014517 0ustar zeileisusers7zXZi"6!XG&])TW"nRʟt<3n2un[6hO,<ʣiX( XvЛ)0#+ );Z%_z|*@GcCtAbҝj\BT8,R{<x8aIZZ\i'&Aa0}("J!ы@rNTdԜǏ2)y)0dN鿏2HA)f{N\cfHz!!$)5#1"#I}k۫$1$"1A⡰Ԩm,ٿӨ?aVΛKʷ)˅eH/(*.KeR=jil{i! x115X$kb+a pk@d Fenfp u+<˨;uJSa6VORvcM8/Xtn\"$&%f C}4F6_*8_m">5<#OWT W OZL׉WOY !2 ;Sr<=-á|c^eÇɄ]h! 0"Lϓz58(U.,sQrYWٱQ$A* 3o"[@J]6h7:x~+5?F4mn{Z5k,$R$25DYSscNw:;A إD}?8m 1$CbHLmVRJdF`Jz㊖D낟9#?:hSlrF*~ O@X>cg1g."/LIvM3ZwF.>_[PM4ȽuO5[3쀉Sy^Vh:? ѿGuvm" #t'Jx-WA1CUw/bUqͽcX5@1-g3ɌF>(PEXmŸbHw )(:8DЍ^ ZӏNyJ2K QCKwC32'8`R.bU?8VʩPJ%jwv yzapeZ/8g8A@Vsvgώ @jWShl'b]1t*_>Zt%J?EgԶm,ʙ6dC3*sITbEN^0JkP%٬phQMHXD>5ZQTarа)/fLDLfac[a78m_5p^3۵XNjR (' í[FR`p1G{RWm9)8Ssd [n@ԴG4Yk"{q0f\/C]GM9mFvsK 'ky<>5\yET r^wdM7|FH~/Nnxy4xVmhv$.?w^nW*6ATD,#Jv k%Az e#}g "l nYw)p&]󦂇N:sCk'`#G adH:^dr@&N+i S|"㕡lA5 r]_vAfܙ݂=x{C3AGVOL;6 UZ?taj({ԤM C:R#Ѧo Zs |d  BlpN| fꙑ+FM?ZXoS!e;_MGy\Tr/&biT#>z%;?S1px[,ґZP07#(TjOD=pJB 8y|9f'U&lʉsLx^;ؤQ1n&.V|8_/$U;ME.R =pcnL-)m"$S]Mc'nkK9H´njgݩGܧDSct l~CB;w 00:@`/t)b_WJQE>i?PAX2G+ rʸGD%V:dz/d~:}*J6ojޛynDF,r/+rygֽIpu{tIns@lCBl+DO XI-IoH ̫b@i}͖oxShHp}(X9{+˶f҉>%|`\s-`!yɻXIL@o<Ʀhg5y_w1A[؞P]Hl0 v鴑G6j(]>mm}*.l-UIlpls`k@L YX\.@y[r&._U>^y ئrrlI6I{hÛ &7zɝ*S $Y}tgd=j3N l2 S 912&lȝlk\~bZgpn$! )!r@֣mX!֎}i֙iTvR_&㡵}D0M@0宸5z&}c{S\Qb ʼ\-kv>KʘNYs5ǫv GC0R,N»s^H Ep8C.nu'!P@54N%=jUȝʽ?'\H6͜BT_g v/\!~:g8hxi =TIyݳ1Ψb""%N+] 牾1̜CW?w_BQ֘RrZWi|HAh/$zON&71/Vv#OY2^C<T)oa&^G0X^. KΑI }ݰQwC\%xϚ]Bxg(ƚn"89{@'ʭ]Bsc[*p^g&onrZM͟ YfCtSxzn}J% KMoϒĹp$@rti&~o gkP(G5W^ԡ~ ecɣ}Gv-, }y` YZҏQ|ECCO6j8׷Je2t( l~EӕTͭ|Uo='(gH)*h SxpҽB L^ՔQGGO@kDhϞ]Ί+WGrћz175BOj4`9sꋢ3%oхƉ HZCH^ϖxlg+Β6醦© Hi{}tPI`o_ax5.*7⛎:"ڑaK 0b1qb2 áO"@J^ 86zmbMYf {/yA-8:iJ"lpX %# Bv(;W=>]1ڐذ66-@.B(QW@o,xGMizI0Xc`d/-\JGLݗ,ض]LJ(Ӣ!wwr=;=( hN.Fڋ\S $c=AnlCDr̋4dY ka^:mw)Gz(RhiLTK IMeLqԙ ѭi0M* 7S0lyZ֠AX]yן=`D>|"' a}G^0X a@LgQD֙u?15sHOe R`#8p^|~>!1'RxpMqU.Ù\`č+tg}7ٸrhm24'kĆ|*Ibu'+yS|FhE XK,z@kd Bʁ/މt?51h&(WrԜV\h<DW=%-e˨!u0Ó!mxN?Ǹ1y{jJf_Ta . :q(ZvӏN~$?diH(25?ն~]^+Gh:mEN N'aUag AlUdF'D>A4>?3TRM?BlJd\ gV662؅[- Sg)S?tw^pc{ˊ9 9J X}uE%,pm8`X) ^RvO;Jϖ$&ѫ 9zÈ'ӯv8[xs=|H$mTP @{OgAB,O-tG%Ua0h8r L};x~]b&u+Bȴ=2zS&K.V2V?]I0ﳮҤn†~4?^Q#t1ld@FXaTl&i#Dx\@a[dА!Vgä^`q_ jdֺj׀h&ڋmۆ[+汱d m #қ~6xZhDSA]3QB/]=՚Ȧrol,rР`&5Qt>*SȢƘ]̣wx FY10R$KJFh#8*De!I܊I9j#7Dof<>.SPZs!U]Es::OЍ e,'D"i(7Pt5 17pDThLΰw].DV1W5/׌Ѐ" yR:Qo)Y$.yA[ԟZdikߥH`2uݭ\5ϥ! /l|Jˑyx.Kɴ}hh| HbRtQFL&'7{[ZK 56&W'rΧִ0AnY`fR0EˀUE<ЅS wh^E4/@DwG.׳,4"4*+ VL~ؑ9UF\ I0 !+Ќ gg6Im/ab>|2_"<}4nZI(RUd\jDs']V*/WcYf6W0vQU=l$i#]C<ꨌ~wы!Op )cٜ?$8^ᝐ' (zYzI \G~DcʞɎ*'HY>?s|ÎѧY7z8Œ<:Un)X:տ~(/<͌*ωnVy 뜁j OG캃_e9`EEi =z2~+KIPM`UmWԛ e].{*i^!f/jiaJ]O`+nU:*/.?&a]+0]'Y#Eⲫę9-Cr*&rYZ,""lűN 5ޑaՙ_XyWh^Q[僫$$߭O|O_AH'smĶ`ÃB>.?gPJ(lYqrh?[O(7ڧ Apv/Y*`T_y -_w5:gnǫ#$cvFo]c*MYX}3qN!HS ݼW75p[\z%y'vQ4_dZV/3ij: Ⱐ@I$ _FN#>0 YZAER/data/USAirlines.rda0000644000175400001440000000531113033553053014473 0ustar zeileisusersiTot"1 l j@C4%&: k 0nh .q!.(OD1bDE AgƗ`^L;?uwn$d44^24Gv~ẈAGD_%U֋&x c^ؗ0FD:'4 hR*V UB3# (,0X{]pT^R' ~AHL:%Z[}8u AǶz%7fu6Y۵ϛo&m}薶A n=lF+lFlF{hp56\ Wc(A`m@0-m߃g++++++_Ķ^MZ.}V.l-ݔEW觱K_pC&Qָ(kP;QDɉRJFHw>E}wX;tX(rw?x5-j ' J6]AC OT !U@7WsW%.I_Egsя zyq>7ȹwr|'fևUM,ow8c;OPS1&(.6jFEӎ{M."}`Yxźޟ[; kDW+XQho(ƒka{k2,*Q{OsU{k d?r#Ro Š{ } 4\=v` ހ#ڛ-;rbڐUX~`KQn9٧=x{ȣ-|3 D_,7bSsKWlq7, I"I{`ALk w[M,Zza`"xM&7H]~>3.p5l9eZ%gt= }\3E3; `d0B^`?a;H^Bh j? T@n|*W`ܦS0: AԭD+@It@&5j6@Zͥ OkE}]dK⑮ ,7@aS5#Y L#` |)\G@@ ?g`Lf!`3AFHmUT!y#PF_$΃ x"0ٷ[|փ,m&ɊRsԵL>^%P xJ`W[ ";[&.n/e[^ TSfH:0B`%d2@ H@l<sg; ̡b`jM, }} n}96tkjD%JKO!\V^9-KTU*r[[ZfYiGnhgmsj  ͻ/-Aϊ3~xзnVp+oy“g M3xs}tMSfiS-=6S|\!w[4O]]~'x;gU\_W45vS hД-wM_XR?ȼcu4{]M<\<Z ;s-O䩾Tv M72ν>r ϱGSI|͍xoGԤ'J+3닺o"Βhl|s1ȉ!ўF; hN O,+ENHI YיNdy:rS:8 _Tjw-jƾQ~++ߵ[rf|{jgigi{>Agy17'[Kuy|^@sVv;}v{UME-LRk/:AER/data/Affairs.rda0000644000175400001440000000647713033553033014044 0ustar zeileisusersBZh91AY&SYw@ HTE`/ߠ@@D@@Ì 4; 4RIJgs}ShE4Li a4l#M0`&LJC&@i&4AJҍ 4 =TL i0L&LɁ" zSPڃ=@  4~<;mY~uDeC|!w Cù:|= C<}0!^>}.O[qŏD(~Cn֓n3r̿Ԕ3r](}g> ݁:}5."CR]͛۳wtߡGAT(PlzhRvq̇xXU0%!t5VxF\}h7mv^E7\=n{MӬſ?#A4o:!ݙ:lbyR{b:%u7KL~gϓWM8sG2\?fuѤ]E'P ]gv +ji-#}g!.^ϙӷjq nO[}YoJ~oϛ%wu:Yݻ|?$>2>58GulápO60RamâB)Hkc ,[fLMԹ!jʹ5t]|=k(m msp.j5uJAYUba .zQ d) R[kF˥͊12jxbBD~o/B1a;] Ce)#11@ 8)$̧Z.nv\)" 4lCAb04HLE!#d)5%Uˍ#K؇Z5́V:>ϻ!)Wn3w.]#:޵,$a$Fd6Es\ ̙@&HiD6̠6w]];uv,L!10$4dStH,@1NQ6#d@F36E $)(Q 1(M 3 FɣD$xijDD%QгYUPquuO`fenҗڈDdzV2e^ E˺sʊ>}(=+:@QHݦOPLSnMRI\Ha,hGfDMhצq|{>yǾo0DV N&xH萊0+R o |;S*5i6!vGΛ{Yd/&PXRԉD$KZm&Co5Ė> Y]S켇BX2Ht w=[-f9N`Jp _{!Kg}I=>|ϱ a5l0 @Rkn0a{xĤk qĵl:3eYm_X* K( 9؇2۰*r͙/Y}f"N!3E`(ww|;]~g'3wE"ވ( @=~rCA@ ય҂zzzGo P~%㦈v$] 4 `:5ʽXPݠ޽/dL5Z5X5TFJe6.XcV(!(Z5Wdl*i2H|Zn9jTB9jD2UQQPcmEPTBIUQx r[\hk Td #!P8mw^udv*EmmtIE5m5"*&ƷI3c|*:~h\FJxOo=ڥ3\<$$юֱ d-L9 m G)bũ3yA7r/ ZG`8]c'tQˌCxY6j^bb$UIYǚ6wjIed :̐f5t$þsӧ:#9Jl,,Fd<F4AݧD [@ȋa+Ok/;ˁ]^i" GrwoՕ J^+QZU/-]Y%znUV>C/y;hu[x}ZO5N .5~MOV ;:w︱\cq.dS,ˠnW@}jrΜۺ@ kthX;̻&Cwo$j(v̾er;ƐcR%'U\ލĈ&2+yqml 2 \]I$J vI9AO9E۵cb;GǶ%^.rRpKVL@!&cKDC,wI$9ICI$ۅW8]ַӶG8-lhKŪ0uÂ$ί\&Hcҕ\H-ǘt T[n@80.48h:aACTIA@퀍,n#P( "IkXZƱJnlm6b6շֶ#$K0$c,%HEH*,YŌc03146$͢(9bѤشcCQ%-z[\D\$0_ rǜox{$zw_|u.4ወܞOzK|('xJU w߽{߳ C!'6$0 6McbVNx"Vq>N +h e%<  EMLvQ` ApvnRTU*1jIմx pq`>Ndw^`(,0-|Qr^O6έρx f:Nӹ 79?9+xN&ρ;AER/data/KleinI.rda0000644000175400001440000000135613033553047013640 0ustar zeileisusersm_HSqn?M+Jyձ[6-skCcs䞂z-z!( {=#uw{ow)<ڲb p8dBag}3Æz wx[kK?V{?V5?ϭTf;y0D0s\!NC=_{Q35-oq]sE;2yG+81cKqaF k/Aa5>v9Lwy6AOSό"Y'꧙$y' G,%K<#NpjnMF Fo&rU\^ { "zO|]W|,(G"RGW{7³'y >?f@ ޸o"YS'"d'Zdg疍!=oI/I9for^-P=DoGݓ.{@ݣ>x}'o<_ FԺ.xZbh`G.Wg`>}iG;Gt81'?/7|$b=h7 ɣTr}\7*VuW77 Gsʃ"5sUͭkMJUJ9 Bev6Uqs~e6:Uca;P.zq*qʇՇ\GJ1AER/data/UKInflation.rda0000644000175400001440000000105013033553053014634 0ustar zeileisusers]S=H[Q'&yiӤI4IbZ(.rPK'#F :gvvvvcCc}|x?KΆ#0e´6H*L}ݎKuԒϳwྷpK>1R\{2n٭fhW\<ʉDؕaIjB9Y;j78Z:a_]Ti4Yosm-fjJ9+FJe.8y#z9|9O98P>/>βgĝ`^3G9Q?) YԽ^eć#^]qTp_xJ/D}G?{4A]<4\N? ̅ Go>Ec{rO"Os|.'V֯Twc* M_3k֙׊,f#hnM~WA-:9>12fk<ߟ`ځgmpAER/data/PhDPublications.rda0000644000175400001440000000745713033553050015517 0ustar zeileisusersBZh91AY&SYsypf=bB H@P`J_r #@^mh @ãnpDʞ@ yALM00m@MiRߪQ5P@L40&4FѦA  dɠ'T4zL4Ѧ!ɀCM4 !LRj M 2=@dd ESD= C@ @4C S2/MsҠH$GDC*$'"⃾bs 323r8rD2z- $0ƃ%DZIDb@%!L4RjI1C)F@4&D13$HK3MA `d I!C%,EI,$TBdb$5kFd 2|ϋDtdvʇWdSs"\AlD dD.2BGݞLAA {aj'n7 ,Rtu ʒoIߨa=[ wōHIb@܍sdZQ$M-M{S *"{ ɑկ6 kptoT{r~0⎡!<ZkIDǣl5Uˆm[!\gWBscs]is6ɚ@D<]̎fz ] {|뺭s+Y\Yeph(\}˶5퇗PGWLp$o] =2hi|3#st Y[[OD7W|ɧ'f4zB$:M]'crB0D*ԙtiD0Gr`B;D-BQ-<›̢݋46l8A -AI j L5NLxD-&*TFv&QEBAt]Y7ni,@0pbm2S.:4r8xM6+ &u`VI8[VIIJ !(ƵfKZ"*RM:LxrU[Ȳ ʼ @[1gYQ$7hi6$qQ- RJKr5-j1Öy*m 6 V)S٩w)jX4!yS) $]r[fYGWO7u7~pEB9s90@ \::Y`G=w:;nL*"Ҡ{q/o3x(ٙ%)JR)JR qhM1Cf!F?+\wU#&YaNUx}{%bѣUVj7Jh!O~TU3׳PPGN^* 95"ѣbcA0‟&xz}uS?]xs9̞:\9;OIѣH < ħ p ##3ƈfM4̧G3 2 ,) k\;˕;7ws@]ݹr.g;&1d9ÛН;:ݖ-]FW5K؉w\Ŷ?꘤u~oW˝'7.]歽y5H(@fÝD{sh֩3 ޴j [3VUx ^=jVffefXauhՙP`;Xtpv'rE8PsypfAER/data/BenderlyZwick.rda0000644000175400001440000000111313033553033015223 0ustar zeileisusers}TOAv8u ƠD#P̄P++bwC/-v L(,7v[LL`.In '|{^M)0 TR`_c;3{yT8i'ߟ^۷| gg2z~lC^ 4/al bdz.~wm@|D<lq|,t\|w]loC^]<\> &XΌaOn 7;W_:O3 'DW߈a\' g{Fgx>'!}f>Sur}uG)sͺ ^BN;9,ۿH]K>zҏ~`ܰox?X/{>a 6jV } uZO٣LXJwb= >+ʠIVI("[[0knGo-?\Ir¼PKy׎cP0 ;AER/data/CigarettesSW.rda0000644000175400001440000000607713033553037015035 0ustar zeileisusersY{XTed=2wP fr93r6eY@) "f=ڦYR&CVlۺD^6m ==O9ds#CR\]]T."rS qpTiY[IT#Ew"b>Z!. AUIz"y2Ta e(RQaQDyD1<*(cE'xQ&#(E$dQ2UiLOQf2SY(y@bg-,E2Z-6DsE=&*Z\ kϵ 4 q4;'̉QqD\XKg'M⊤8x'<}2O<}j%}vٹg;}rGr|I; k+En/Y\~"OI'd4hF-*yDq+ʏk_g› χ*s`JLzW2Lc"lZf${ya]>@7o-2i)~ `kg/R}?ٗAǩ L"0ei`W~] ͧ9*z }8˝nb~EkS*ʏҺ$,Vz4z}fR?OcWxm؟W®~,`V kS/\/av'6O^>2?UPg@<+Ϗ#^P~:̑ԁIKfϿIM94r7`^Eč-ac&9hX7}X|+ 8y!5NK ;>ܯvft`c6iWɟ!wiBpoi_,jO %!ۆ} o;Fy6?N͝Qx|Υ> 䫦c< ύBstf徇x oE}o鏭qW_ڐ7nӇ[~vny/k_;CLnoFҋmV-)dx>MfS33-K'vg8!Q|>ɯj ͨKzg4O)ӎP<|fg|9Ry9:yT߳vSTw1՟hA$̗}9y3ot򾞎~#O!#q z-#l'͗q|y[ [ 0V)σ5ׇJ~ҟTսux>BkzTkj=Yz/nU##xT/Fz{l9cڶ_v}v]> 8n&쿎-]ox_9vu_h;?x[\ƍZோ#򟳸&]DU:֡~|L-޴4]E^n쾄96e_s)4`0e~c5 @Ϯ4<:4FݢsX3з^U %&Z&v¿Dw9xkz+GWЧ$KD˓`Ζ3?DD0pUԽyg?*>iao[0GG'/"8Σw]UȯkLen/;=\1 ܒU@]N!Bm1\F%?TM2/B']x/r>0f.Fݨ;>im=F!iKԽ#9!6QGϡ.+BƇC|^`ۯzS^fi0ֹO^9|c/fMOseXhyYm;aA¿} xֹ!oϥ*s7B~c [/:DvnIG~IcBB# "v-o eDy_pxR~:/䠿s쵴?`/)>IP_Zpn_zsh-+:FׇLRr rσG57}xwѺ>וΤ}+h}9/rJ8!xOatnNڹ KaCQEcϑ~7zsG~;`֗c}aBN#./BКw5()O^ȣ"oB-Wg[{S.Q>G?BtH- A'}{ |p'[sn徖[|>f9x>Sι`ng !6d8OK{6/c9s <È]H>7SFBכlcx\c{O#|pa澬_PKD16+]ys$Gt"^~(?\:Q~u~F2g;]q$ps wN^${KmٓNoo?MWn:ݴzΫpeƮzM*z\igc*/h/CpsuVwɚu3⺶Gq(}ÝLm,|/w:]؇Km[FƦ?@K`FNKqW}OjҼYձ+95[(1] 9o6e[;le<@  c3{߂£Rxc[S'e ֤'t/|7O'?z??܃⫵ӺQSQ?$l^~Y JYj] N,k(=Nd*yH{Msik(|;_G?hF`t{FAw%ḘA[Y٬qEu)&Q-}^BJO|n Ns&_yUyOd7ZKYGyڟΆoCN捁(ȗ3@ y yX^Ʃ}ld*Fy]Lb.& u|o}qʚ|4cن*dT61Yd[Fh?Lt<(N6Re#ٌ;AER/data/FrozenJuice.rda0000644000175400001440000000500713033553046014704 0ustar zeileisusers]h7:k .LKM zUqkGic-N$TdӔB C@RCD ~H':`HѓZC0]iu"MR${wh2{(Ht$:;;u4Lb_&~=~q͜M$:$_v2__ Sks&^:6=. <2]Kg~08I~ω@~3%x}<&L=}9 l-H]! rwryݢ}}w(]}}{8 ~1$ :9%ϑH}zƾ2-~YgP*[6FO1Ytb~}Oڢģ1A{}s2Dv]E@_?'8}"8yy`37b,g;mt]g"_6e\cxW z豿.}ǥ\aw;cÿ=S>q|tXx?+LU =juck ^gz=dc_C; o:"q+x/ |}ѵzؗv7:c1})>WsV1gyg94ͺGE9:9-(r_y'._F<_G,/*:X{x/X=9:#<':^2u,H-󗬺q F~Qc;Nmoh;.Q$:=7̧ 6{9NuA?vP Nq;~Ǟ˺ ^Gw#Jyg!QO/v'QqE'*^(g;\7q$9IGNݒԕ~O)([PWl[݀`:[zwzu}9R"('cO7Ey%-2O J#.TgJ}u~kY' -@}X@<~cn??v/{=E1n'7D\Zo~ՙ f}yY$$v.b*·j73yƬgp )Scϙ EvZ:.u@(:U$̓9O^t?o~^]x{+yk^zS)8=7?`:OxĹ*5֙: u#>?`꼌ѡ9k3buS:%I}鶥 x/. WyxztW~죏>|IǗ'c_Fr5GWxU[Gx]U֫WSE«J*y}qWȫ^[苀$u藀Qk5Mo_ŭ~}81秆>5NJ.~O*jP<ؗTzF9wЭ-by["~ w7㮵Su-ˌ`܈sē|Mk^x2/yiӬ:u޳ 8c{y6㛌??SY۰ ٧H!Bt 蔈qW^ÓI1vڳč%7c;ɗlj).~޳׿9?xO'/G??Is_i&:6N`Fc.M[cՍ$9qnvxЄ#?:&%j'$f>l4H!q_hcDžsu:AER/data/DJFranses.rda0000644000175400001440000000534213033553037014302 0ustar zeileisusers] t "u h9KhQȏbHU@,B\ n$HDi)83If&32?35VX Z(E,* VQJ3˜OQ)TVTTTRTZZRTR.%u)a9SQSTTڣOa}u[r6q,`v[͸OGYutQk,QwVegGwXǰAgn nqT^FaSjٯ|_ +ڛWt|Z_W&{8껀~u<6uO`߮|KS>@Ӕwcg{9i?* O}_ y`үz~sWmVT ':֒g;[8QaoЁSY:i.^έ<՗|u_ڤ?l`b5֜w/3l]{tO# W{<֎Vݏe N[5񶉪^̳u8Z/'βuջJV:ToEP#^|c,kn~}c V: H?Ϻ:G֐y7|s9y3p;+w ]+瘇sh?o{97 mǿyfSaxQa\su\'ZB^sZF~Dq{)j_I_Wg7\P"ᘭ_EzǝBWow xvcxnWwKoW9?Wֈ2a?un/d⩗x >Mu~u7fjװZv2q 9CކZ{½~\ɾ$>Fѡpm ίkkmqK/(G뛔gMaoYe7X;t>(:7w8r+~tma?rAB? }s ;@_. x\ilYY!Bވ{' s_t,;>Я]۰3/zpWkV͜ds i>{G`擁XѼҿ洋]Wޝ; ʯR/xsG`O!h.G\qS/Q/i٭jp@Lv-|Cq\!f3"Δ__`5Ghz>B9O[*ą=;WnDRoCbzpz^z0mi]DZ6e#o$&ݧtV_ gνIhSۼ}aαߡXs0?GFh8Sa~@X|pa8̄:7|Z 37+\c.76_EܤF/p !/ֽp%8eәnWj zwsoW3M"C s{s^>?Lx|{|1įܦDsVz*ۜHB:r9=՛9>.Es/ѱ]!͓NމS883Bwa8s=$'{b>iLw*ͩ>?y%WF9FD{^ba wgKbsQ.H9?S*E>a +qttH8[}|=:5s;u'πKV^N^Md xrd\7;|YfDޜ΂js}n&g>?ד~r8$#L?ts2 >Sw aP:&{J //W^e)BN{tjMM?zb?wAER/data/PSID1976.rda0000644000175400001440000003644013033553047013555 0ustar zeileisusers7zXZi"6!XU<])TW"nRʟt<3n2uJ0;1JyLeӛϖ[K4g;4Bv_;#y=ۿ'W)M yL>K|Yl Sw[VUyj`Z?ĵu|9ح!ޓ_g(BZGWJmFͺV˚xRMraJmн*P)?&5COu@ Y=5cˉRDvg ޱȈ~CXM՞AKѭO'J}vNR~_5g`邑P!^ޚ%suے?@?l0~SU62vP]ʔ5NеZ95d_32,)t`~$ P,-FzV'ɇ^jƯݤ3^7M˥<"qL4}~vWW]r@Fbo !gA <@y4>le4lдm*Kß?[R %k^'{Lβf:c24 Js$8o-xY$7+U.Y2vB;9jE4VN&%XKCM~!%+J ӷjλDK  07o;#] sz~7gq;m> 77X>}  "$SB/wbf^<e* 'B%{\ u2-5YZ Z0~mI;NN j>SB3m:j_̮c 3+̻Vmw O(DoC!b6{T̕'C(ll: aݠ]*woN%!s?՝%3+SdDW+[gv,/Gd2 Ԡ6y^g]*aM2J߀:U0(TٻNLwTBxkazcC6CCZ (4h]*G@LNR=:mRef%~9sfXC1|"T)2*7dY5`O3.yG]0C>=ZwJ\ب@ HNVyiSl|]_fw7!Tc}޴(" U4NJ4KAI `)W|8j_W3?7uu%&KL%8Ptq߂.ot'] e"}zpJnO$=7j{#[47^ңRh.Y3H@|94^NUHCxґK{.R/H/bPԆRiCd>D>;ӂWmET$@n ;cf^O~Au2G3ltýz;."e|kЊqo/vI#PT_gȐA7? Z=(gʕSO1hdM樂ș2d`9㑱'_g/AS2tS+8&)%^320]Li{7GIIebIF7 z\E9BL~C~!q?ǖSzA㣅˂N_pЫ7԰9J.&("/̤HqΐX¢d:lp&F?~^wSm^ӳPWatnhĆn5`0nlL/4^.3@xFf+e^ljp4`/)hF :3 4oG]k29F 5ͽ*:uMAPZw2rCf07ŀB#)} [FSFYH/K54CvDriuT<뚛 ŵ'y x![c[+7 ?ڇU!u4I#X&kGd7A$J~'O!PP uyM2㡇ik̖)~?Ps"}؇wk"^tTP,$NﷆUύ 0T>2A%KڂW{9rj\k2֌0t (FnMj|:DU  Mi{Pg_T,a 'n?dw%Q V= Eo4A(j~8uFXL]lDžgh1eV$ڬ H{YSX%#- 89%?Dl(Uo:! Vz gtzK3xD _:LFő4 e7PK_Եbt:K,OMI@8PОw;F y3ސJQF,[2৒l`ͅ&yruRO\&v`cfP]Q[.(¶tKY. AuaԾO#MJgҚt[ͣ{}!ɂ̔Nnm=;x  9u\Ω2cP-|&=YgqAg`&z 5YRFX'j%񿊨3_ n׳MD6†e0ghD_-yi ?22U3`Gp"% ͍Bs=|Yv*#,;|ܴ uֳ#=.Μwġj#0|Z%zˇHͿ?ӄwߚ2YRu=Q"}, gxyHHшhS6"_ ﲆg=t S8z5!Cr|/Zn7W&$>"e S!gʹ@jVےabW{ s! Au+[Z/F:` ~??Q"3mBMd}s5PDc_U|K^:UrS쨴FQVzy@pB}Ωw<EESB9 !pꁞyN +~աDxL,]4M %:~ux9,L0Pۂ!t];WB줒/*v6E p_ND &\SnvtHETɞi_/Y_"ڢϯd^)O85] n>PiB/^ RivAkvG< z*vK i}N#;\#= gR7͌H3B!*<=]y :Fk:WR-B9$[$`-ߜ4$H]$qg!p33=i閛;[Y %DZwH`9be ndfAQ]*L~hN4YLʅlaOv|ƞ3$*A&ېr +J=8+| isT?tٝ4c2T4P7H ݦ^牚|X4geƯh ֮lb7L:18ӻ5,,SQf+[DƞZ  ~DmR8uŒR`'mQ*:]g@i0Vv/xDib*.dO: =$1J<<6l:jWA9vm;XŗpO]m= y0=:|+iC5y5qԳhژp3|Hd$`9l|s:RNŋ]/=u&SظYqtqo즺t{24_#Rʹ(cOZ1?‰ŵZ%Dп>^|E'6΁1( z8@prԼK@abaBz|,[)wg$_״&@aw4k?7| ]FOScL֘~f{a+c<2d&~?QE+OĄ\8#H@P#xRf?lO('}}IrxxaoGL%3z)VS|t\_(Az,= (b$G0X.R[ ;@s"J mWқ@ߜf}{r9*V)XBڹr l cC"e (:RL;SE +r(ɥSwؘʶqUW0G"<-9ƌ)ڦ 5~L߫g#uD_l+JW۸k{&*z#8V'm.'X7{mlwq0]'0ݱq?Q>?}%L6:"#>zT/" -H;(`Zl_Vls)-"kV}ˏI"W4qZϠI e_؇ϩ͙JH{&N $Q,S/:sي҆"~]=M ë[" Ug:;Qg?u16m"Ο FW&q 6ȏ꡶*0r2ުb3ةլ +AqkL{szߜ 0u:tjj9p KA=xԓ ]hCo2 뼗0fw{LM~d(x>d.Ћ!^6]J.ɋb5H$X= 6}5B L֊;!5)$PPܿRHgFk%Ze(Pernët}uL(bJ_yi"_V))* 5x|vODJ\j$H"z)`蠤:*8DMM{!7g&B@N=pJAx:n# /0j'|uP)m69|ZA|y qN#_Б jv; }\_֤S5f֌l_;T$eGuv4pENKEc;稧r8-k2:wyjb3a\L{_1HbNo eY=DZuRLdwYW{Yvی wlvxÏիѹ y0J+^yGB5j?!Kq(1>}\ER%ڿ59 (_>=^dE'W9JF@m\p71ړέ.`nRGy;5g?׋; \sg,LHVA_w8=Yޥ#tlĝISta-i;"(ljXҧ\q`Hv?fvTmU87*:՛uV?zANXg[-Յl%;k@.xl ]oM %$(W'bHD5:YmD> bíhCT_D=OVNţp>nC`Q>Leau}k ^qCpܳV;'etl%] Dé5q*ɍw?6IqSe$ɝ-nD/$NtX?7@{|˯DgS^l}d/L8ѶL7KOD,K.szw&ʍ'c `zC13grspy=_[kp B"J)[*ȫXX: YS'"ٜxF˘;lf?Z6x,So kM$ U*Fl( O2VzԌ`,{n%pAz1ySԅCϱ% S*&g~,p>,O ;n)V1[B4-BL=0gסg&mB)]\@ ha  g>؊@5q.0$~]DŃ.0NVI3TrZH1=sUR6Ϯ-9jB[\y:n~TMOHU{WWr6<3  =S* 1OZNG6df޹:\t1ǪY["8CnN~qՈlH`jCkr䏉#3pwx=Ψ@މѳ)q^)" #!'x:[E #Dn=yo34*WDTsxjki&,%MwD@H?S8/ >=ETΥoU>2 }\uNSՑv.ߚ']jܧ[3Ԓ#cjHڷLo8Ur~4a B]j\q$EM<iUH‹C[ 6 Qo-,QG5Դg@7?*.N]  Ca-D{l^̟)m߽*4j3Q `qxEDbfce9# G?\Zw@[YlP E~E!kMaP'}6ff?@p)t\+$` XD7H4|l%ޙ3 Λ, փ2Z|nc͝~c@1 ǜ^KKBn!h8Ch*/Ons 0CSGv%G\ P+ô)pP4ѹBmEU]9}1.p%Q DBК8QgV3"PsC1qre`5z%JF0)l3^RI;rB888 ,BkW.{$|eeBU 882>kP)ۿ: X˫k ]'J|4Qe1.8BPE#0Н3$VB@Bʴ D0:h@HYzxB҉%Fb:H rJ  1{?vu?(w"De x-o5B_.6Ԫ 3+=Iۼ\BaSD4Pz*z`46n3WhOT櫚q^BkFʶCH%B'7Ck>`u!ZHF=dlht:"spH}IWd-3i[7t2o2Z Ā#!hdM˫SD`&&rW!ᠵ<8ț<*8=`X [9FF\$/`54 sB(4[v>Fh  RU%珦'X]etx/TXӫa醇+w9.V 'PDXʙniO|K-W Zh[.yc&xb%U8Qm/S͚>u9bko_׋Z:"^Ty| # :b 6B>VF:RPu|:BVafqNL)tQ`lrk2=#IV%aZpvw3 [<O":{p[59˜xe>:V@2Ig4P9ۛg37r1#~~3wnt`̿ HY6oC돜oCzʓ x hVEZ)GQA&*2fىhTY|qV/ FHJJG#q(E]G-2( aߠ0=k5p=;pܿ~%}ig*k=/ f & Ū_ox?% oV3yZ6U~ۗu(^%k{f+2 tom.pQd[a"AIcE%XAovh _Bm[N-U[ĈS[Rؗ#;{$>Sr݋tuSzo,<2_dǠ|@omj ݯĕG.c4M)va˰o`ޟ|G8uf^nc1>FZ_kт@bƗL8ЅB[~8)3e`T& tqKXb ha'|D7@6/qoNQO G^}|bll]g nR޼aɺF]Y{?F WQφ,İي-roѧ%A̅7 TYY'^Hɲ<|!2tg@Wl,}gAH ܣr"쐳=K \T1Byq]1.feZ~ k{=\JHy$ʒR{)i49A &Cۑ,tjGWօkӬD6[5y= l3ޞt5ij30 GBK5Ms_׹ێ<-m8킁5!wT\!k-;YGw h@BHy$\WVД<$_y\PIh;7٪e']Tp'p"W 76:Mq136\K_}8z.i+!X&߱K7ߡ;QyDgg˄y Qg5%}.3h"LPyDۭ7 cBKD%v S0g>ӑ:Qʏ|R"BoJH\ 0BKBt߳bjliee1$*~C]h`p^ŕ0R~S ?Hhr޿g*NJ{@f[O-`Lׄ7$ ]:8%.a]e-~YwjGՍ/&lbTNׄuSH3WĹ;qu?.^h9sq^O_~#ӏF+ԫW$C R{|gy,kCB߀7?y߀,-}KЦ0Sɦ:+՜բq+ffi@'-IFd=>]WjԊ~hM PRprY_}I8ߠ/opMv4!P-HIBqdH- H qpcq' HoF^m8y\ъ%[lc(>傹dg[WbܒUDyޅ 4}Pz8}ozm)I^5 OCK\@k]88u#O!GP Gu-\/+p"YȘWBoQ&T<'NLt"NֿN)AꞦb9?GwmV[5a?58ZtܪظH׼NIh2? MsX_[,GgiѢ/R#w:l|']-0$h,}鐗La6ў#Xv~F\^w~a{l`suu3̵l7:F7wQn؞框4!{!aqS/u7.+Qy 3y5yG%N/ oΆǗ[[%N#!boԼM{ɏG;ׇ /}iz&j_Ϻ t45=^i$82OQYXx<$_jۖI;׋^l~wq8Ԭ¬Dc+eH+ )"U ˌ;o'/xIy:`-8_=.3}X{cDisG>e\/.B^]rƋ^8-bz 2e0^>Սn[jmUI^=?2ݻ6|祢 SyۜQJrzguN?ԆۏDSnRzhdIЎŮ;&z+ %/ m0F/L/zBZQ$˜wTliy;1/%fPBW1NWFZU9Qҁ:.:+4[´U9(zq<_X,92$#~}8"6g WDys"Z޶B 5s]Jթ0UxfS}aGoR#EW|%N{rG,Vc!ô2urR Dx$bP<DoX8" (>}*Z-AĔsb/Kkpߢ5yApr|PmE@}ED_l+:NIqWI +Bzt%?(GOia7uD~Gs8^SV̤"ĥ(xGיt]2@]܄79t{JE5TuOwPwa_%쾇Tp@z߄x|7Pߡo[`WT_z UYG6P!/Զ}nBmv/po9Q!*{@Ҳj+>E>ԧ_ᜇӂ:@<۠ WȮo^HJ!]y6@-sU.PWq}}iI"IvPbOK\w5%3Amڌ Okk W2;46I/11 \幣Iu05VĜݵ;BQBJg0>j` roUOM֡#`; d4B_&2çm}?#Ûk* n7ym]@_ryvb03,X,$Ib\M׫|.<9̒XeWjli\ɗ4gdFIrm2dE4#C;"7.:r mxq?tާ 93hڇvB+GD(!sC2xb=+m7ryf&.jGfI 2]`jaWk"77Ɲ [)__,CBk#՛v*rv5Plxlht|n&xb3k>HƩ q8Iq_y#[>MbWkk1p}$MJOV/)֌-'kN~*U]θDM@U%N\C+3sb) $y&ݾGNbƟ}WsR3av﹧|Zzqj[g> 7_fpG8\أ:‹4HdX\amyVI4N;@{Uݓ3T2vsL'+ ̭̕3vni]9  W߿ϛڔR 2Q~pᮔ:?t2JpihTf' i^I/Z |A؎7߷?3bhYM O^}qBvZÞ8~P'WЁ+UX4@^sŕJQȂ@JpmlMsXC,/(q(U 2mZ%_d2xz)7k)xG'`렊~`Z"68ÏZfN6k60t!R; ;)57՚i6n%ʃ։Lnn/$t5v[C&&28E{½ckNG=9PQ!ᕓSU5o5"mҪLEhW Wq_\sߏGgwj6;i25('(.?70n:mE78KbA MC^إE{et|ԧZaL'瀦 bacr56%+ٙi4VTg(:U3}U %9hITjɱ8뉄̋`;.kO߯ӖSrg,E&&Z`p/X{sZVű BFPOo0&(x47XTJKZ3ݜqTX6p5ڒ<{:4Fan|m"TwZD1vH k6/f3̛2?PxA Tu ,9&5NRō{MIM#D9k6eٴte l: mM2%j;<($qVvTPbg)SWt]ˆS;vf`_@Kʕ4_K`?ȱEX1KNPT7)N2AzZ.NK/ e'gA-]& xwFƐ Ȣ|M07C3zw;0e驇vTbڣ&AEKE =8T~ o\Zz, ;#Mu'BW;(t @@)&ER:ӟ ISlה5vò\C/+c#AJ~ [3ho 25Լ9G(_kP]m֛q&W.+v|oFc/k;P@ƾe-IU e] uϡc=uúSK}bHY4z eWh1vrGR[:2i„~VhՎegEEz`ϸH8י'PؘJ.YHun5:cž$-%pb 1Nx3b ZVGѸ^66)* +%i[}a0sQuGcTFsYdٛ.9pkUt 2;ɏAl H xꈈLhe eVM7g)V8dc-j%^)W”o *矟HzSx`-]Tu@kҭ{caziy݆ BiYMǕs_%~ (!(tv$h΃a׶j'2:m6ϲ:^)Ω߬jx5*v\h-@֯谔TU#uY3X&MQdw8< c*kHhlHMD r4dI3˦{޸YGCDEZѯ_o)|~;_-FڻѲN=O/)IMO:Jm =hVTn9ǂMRdJY-=Cly2+[3*/}"5G[$# ǎ ri+Wɴ GDۆ擣!,FxnT9nAcH`2Y;9YҠC̓i,R}K!H= Oc{U!Qh6fb(i ĵGoȢņI((%30Dbлz:#}S6d% YJuD&/H:WtsŎ@<Ӥ &E1$|{dޜp1}1o}b 9DQ^_n%~ b!d#27*?ݎ?-6>rsEOD'ٔľ"#|v9ŕHeUG5 ?/زo 4uS|9e݉Xh{]"*6MT^vQ)lK,ue">hJsٯ$s.WϓD/FZXn12 yyۂ(Cش~-ɖDF) `S5uB`?kcmMlć}CS;z V|~̐ g LXev>>RBY[IOA3b-0P/lWv+voa-9ǹ@+_%#RʶV8/׮~V. v>tJ 00;ꃷ!}DIK9Иv =Zw-GF)bkp~TP'=ʑ*gEtWXm:_@ 4ZA˃%H L=( {b z׬SX88@w~԰Mx_@hIotc |R$UwdNs0(q_۬rkmhZCо_H^ҵ_Ц oA'7|4q-PXֶH@6EٿR2:XWk{Xu8Q|i>eҠÒ&;)('J|sv_3Y>a߬Y.?"GcSH$I"dw Y\{ qҝ2*o0չ qrKD\aZsY>&mBs76PV9Or&=}oP|+"=cS82}DkY͍Y֛GJp>w^(1 yȩ c>wG4TUa*TM2N;<3ť~xeyRO 1L_k e墂^qy"W}e@IwǸ˥Ph"$\zQ3Z[>@7sK EYBTTQ,4R)3ܒVP͹xsO%h榖Ή+~7$ a(p܁VPsskMS^ А?Ym1[?}nLd/={̍"L~dkS[0+n'^ (qݱN9.kK5u.EOz}I 𱉩mR+LkU`h7GvG ˼F WBnBHKt> 6K!$.֑pY`c wZSP/àI ."Ģf(S]hq499HRBʽpd4"e?m*s|&Ez0;J:I n/C{tx&[E}Ӑq&>5ݸV)1+fCe3RI8K R(lػQ\TnS ,f ZMq\t|+2MMFs/FI& 5yr(íJ}1 tsuݱvL[ X/fn! ]N~ {ס2Ӗ(mwA<ӦnNU^ҭӗnTU.FCD =̌ mHOK3e)5We`}}Bvp RZr }@Ki|ß/~9_Gjyw)^Ar߄0I!1v9LddCn~#2ub4?$d@X7Z ngKn}z{NM Eb-oSH&;dG+V9"T|bfZDmoi֑s-U:YMKJڿ4$ZiZ ╔2ʟKP'~[E'EŃ5yd4o!7m8UWrEV]\kb5gm()?r1%?އlzBkqzŅKۏ T˸s?bG]a%N_PfxCC:(XW?ǥvPD UV]o26/}=PhFtXe"נ[a|/bKjGAD ¹D /~SWwoG4 @mJd̉q\z3caIքE*ui 74]؟" V{rvY]ᶹ R`NAMz^-`qd+euq3gďTt/w.P^ءMSq%8 pwcM0e[Xd=@8:4sF7&(hs|;aϳI"}J+/d*?)yfȊD,1jaxL|*52`6r;U4>$}K/g 05@F ˦W+!Fe.W|}߃5LL^KB *@b=2ʏQpk:|GSb! x:[pr!ЃFP&\K*uN;/]Ap`eQ5Q4rqI AXꭂk'tW(Hj!'=?q>Z8@{:Pg܀nvLV̩N?K@֤_'˛4-P>.x}Viև,J()i2XSD*-~Ԛ\\!2AxېSp2">3L;QH"Կɀ03t@=J ow#zn AB:y[:/h/s ULG<-brP97%s~!SFŝ|`<@=dÌ8pnBąsFvrɩ[XK-)z8*X^HfA p9䢆j)Hy4 R }O|?ijl}Oz7NBSZk(H Dܷ^J=t ЗJ(FI׎_ζ7"9Z<}6`b9t@6An%ku\z[Voab5NxadlKkp>V;8%0cC0<NH .!- ԓ XIkAIbSǑdD=ݧcŵZP]sAAi67,#0Yy5EˀO^!Vl  +{JYccD YH]¹w3GdF'qH\uN:-P6(e7>WhFo-GTg̑Ws#VD{lZvZҰQa9WFEޏ&$z/ϸEo9=m>ppҵRbii*@wH6 +zȳ?o&," N Sg~A+4<`ZM2Dq"4#η-7XM  z<;Ft YRnh|KXɧ[THdjo{ޥU^'x٘QD{9a B$$3098;W>\)fe_1x'XDVeS-)'[<[yn֦Mȫ#-rcOR`ދ՟iԵD> Mf ϕ@`9V ՛]f6M%p.F ]U{DNMGZyՈ\H2 + RFGޒ[~:$ }ݏ!v?-x7 4heN˒0eH4@? ˶Uo_ l >Y6٦Xp?А7 Oz(.kT ùg̥vyh] &^1D?gVRjzY|p DNPHeBYE%A :(h2'.Q"FN<٩xV=Qr0aHnEC%YvWĿ'"󘮹=*ªK,M"~t<'A/+2?b18I{R?K\ B3b>J}UIq7+3Pz iG/V!/QX?jb,aiam#\ŠIsZi^B*q( _X.W ߰jK߻Pr:\qMZSдS*NKݎ/WW%/11ϐi~g\XP kkQ֠Er@63!.r?ڎ*/Fjc|OLE5zPxH hvLY1롑P5t~$B?֥dE%La{xAV16J Ղʊ afg@OGK* )_+OP!&̇F:0;6_; k 6 &6k}W$eߜw֡vsv&ǣ-Ԫv08`/8Z(d' -?(biv21PUW0ʰ>,|.2!W CRs#e/'_@[sN"p)GKRyQ^IuI7y6t- ;ɒ].1*.B/z*|&uΎmF*#dYڊ4]^o㞐7GfY^cFӬj7Q7px`C8G|-LZWNLl~;4͞ 򂾗E6KǣKw&Z;"QDR .5W6&텻)7~'J>9[t̺'1ҧ}Ol X漒 0Rd#i :?񇰀6B9D] Xe>7mbcIz{]JuCdh7{CIC3 9Hi!E SGwaﱝ등zudciBMu0W2+.l4(K*C 4lU! HVuO$D7UXϙuDw~ f۫wS+ XdogpΩ3c9a]O+jh̓Y* 7֍ho$c ̽w^䰀[@JH[-oO*u{J,\B&Oc\jVKVퟗWg H5ztEfUl$d:?7<&kwMʶ_ *gur2,[w~ZiADE!kS bvKHK ЪGC=vvp1S*RLsp2pMz kE]VIaݧL%?t9{w%Vރ:,0P_B3g(AiغcI Sqj˼`!q5:1,홭ɣds[dh%L$YcLUOfΑཱི:X 47Fc5)`[EWB԰pxY/p=D[2m .r,k}xo;/! +2X:!0 h@ `(Qm(w`Q&X;):SZ 27 $|1ȸѶٔbKi ԹԔ"wNч1q9ꤘ$CN85MY[ pyyTl384 Cer} ٴmZn-%?zv-Mk.%P +L;Vy>B1pwv+\z>ASnKMV҅a1-.SQab}COK 0S?ㇵlczyUm ,`C*ûtwdOCY4ȃ])b> }$6ȕZO{ኹ$~\^Sr? _l~fd(vl+_i܁shN?c8, bUs+tHÓ(0ܣٸCFLrA/ |AH#s}\dтuX]5.AsiH ߐI󊋱l2:oAym'B[y h0;Q7!ݔRj12bL}d⒕NaR,`4n6-:[BF޲B{+=Q`\+pKiW!js򂌠ą  9dI,| ͇ :t1X{W{Z#_ YJ lĿDHe%{0'`k;=- S)%I2U [WUpW|ZvUr Awh,믁1q¤s">8'R5ul DVoc0R%M㎱obǺtQNۄuExXfF|myFH<: <Ӷ}XƑHߧm)0 LI∃+X͆Ql&bZXڰ>&~ ԯON|Y}vin|6žկ z 4pnAkgT@5::q;ٴ:I(U7Uu!`asV?T~CFh/ GeyUQ=,w^J,t\lBJ@_7?LqXmQ$?t]yA1DRI. g7 eeV{k^N:*:~!H7}g.[cN#0? J!4CQ  MX߶z6(4 #tBHQRV{+T?hƓ()k)2]jl^s;04("'P˦}JR zWX<iU {,]ޅeC4#dY FAD(3SQ,nO|@r' + }ã5F{)NBڛ'GlZVCޥ& f 8 b7gx/ۗgA`vX?zl+stE Z |lEwb6!;SPYw9N^Ju-uπ?0*~Ak&=7,I9+N'I^;[&'5(E|V|^L‰U21]87&q$UĚ{ȈIiZ%J ;:< ؉L҅AuXZ8I k&n3K>m Wݷ/Gx=hܩ-3 )h{eޣط3IH2ϣPɹ=O5,d#LPMma5_҈K $?'6 Œ6n `&:=^gOٽ+g}r(5mg";~NFEQBӬÝ*fПр." ~ w׾V譧(nX(kcSS)kέ|f_?,]0)Ϳjg0@ekp+_L&TA>֨r?@sfЀ*̝xב50!U n0 ƞe*A:С*C׺J%C;5<,yگ_Ѥ᝶eCaE 5qGOW I\OQd, _.PIKk\!;Ӽ@R,[Cs@9JߵSw0-bS2ΔPپX6]~&XpSf?KsU%iU;vY_ibjxMKKr2T0}T^T>|g D"[)UƘʌi 6d[A*V!&[I26[|Ӕg~`R-2E1P dMĽd-4.p˥qRzXG);nl9v /__zmjyp.[5$kRq?Vgh)eHk.yW@4(NZJ eW # ovKZdD?rCyt*u I&["qTӄ qiO$fm>_5:q$t k|#Lhd1{웻xD7$|Q| s&*UL- 8?ۋjCjEvUHWFC!{}F7c_*JSQ>L^PooMDuu*e+ZhO8KT'2˓.]=\٦Z) BwX?dO;Rׄocim 7} /݁F1[ɞDD5nWS}YSkd91y$bm5t,WU^'16!^h51?ȫ.\Xޤ0G]*3FCU:'i ޼KGMq=[e!BY'VYBi 2Ӯ1"i?rݸW|Z~.ljGN0g%)7;_9V־#q Yϗ95DrXYɿ Xu ݽ4Q4eQzH^ `S9%kw\Uq4󚛀&aLCݻ[U${ <gg[S# x 1ɍ+vC(Y`ЦZi1 _3F`IQ^SeN\Wީ*_YANVzHAqX)fd!%1QO\gvG~;*"C5BLkOk(9 q`2s|/ڗ0h TOPi.E0uԘ:]u{T$yghdۧϻ-aCǝ#ֳmbb}r@SC[w"Q?b3v{Nz cm(NԖM]4ӖRL:9 +SD5< Z's8: Gve*4}@œI}B, SHPq=Zfs13@\zL,8)=xᑖv;bV/ٯioo= EݳLdb˳rw$/`4뼽CM9^ \gӶD֡¡ ecjv5YB?KHz85A|HV^7*ی<ݟ!Yz&~ ]Yð"Z8}lHNiS=Ǵ][" #hJI3D,,o1PkW>̌ I+,AL$Ar2k f6EKJ@?EýꨅB} W]䨤 _,u9cїŏ5f[P#ZM-S."zJ-j}xZIxŎRL; v1YC I?#:z*gB%)q_ziTjh%/#H=ˌ4I_e+,2ِDŽi9YߢJ5,](*7A'Bj0^d1MwVnNHn"r"l֤+d&c:6,j U{~N@FT}i{-a7HnhYGQcQ&ջ/,})W6Iq0SA-Fs-:Kn'exsF7T96l`0{H},XٓmBgcl'=ٙQW闻z-79q/?*59`GBb9ɅÜiK=Gm }A=i9.pmx{\Br!96BC^b??YgUU I 柔h>>-r⽨?oVџF΀J臟}p/;fczAOwAΨ(Ke!/l7Xvs_t ? xʴT9秿tH5! iGHc8X6:Nmaf95W-Kڡ}~b*FXat ]K :nEGE x_]a[S'xtd,LL f/uFf|9HM2zXt+f"]j,b~3idM5Z53,l"GngACrig9lT 3Eṹf'1W$R7Fz1\mL^Gtڄ\Cd-GH!SOfO^an7nT@⛁ڒR?ݒt~rǯgDIF1@0Ҫ;(oQ۴bm3I̪XO ?PY~mn^ƨ>W+xy&~oAŷ8l~9&rEi+VMށ@PAnx!z7MȒ&I8=P_kJiGbv.dFJh斝F/H=/eP'HkSJfvL"1%bxt0ZĒ0&MKMm÷:S2~  ~4I-B+q P+D p<T Z89 ^ LWYq=]=IrP6BɓTIъ szd 7hhCMlٚK/bmZIuX5bzuFN06hLE7H]?O<6]2o$z)#B-yS[6ޡw=HȑL"R54q'v9dEbbI5ĈRO]=}[x;&8I"趡P.2u ~TEvxߐ?4V^bm3u{E$ieybfUD$a5#-ml_E$+l`I`ܛ.Aa180xA9v}h ڷWJ:QX?`husA0UޚZVNL;ea8j>Axgu+y&=JNbe2 2S$ I^.Wv`>U kqz׷ jW:wʇh٘r`{L_l僧ݞ^)|5}W _y%S!4Aȶ<[`y@=*Rʩ&@v BXZaO @ eT Rޫ4y7x{Fn4ӊvQv]g`k.&&yj֗[eVY'lrXCÔTg5<ۆn}fr55_i~>`W^ 9恵cTMi 1EC:FX>Hd?]R*Zx5z"˔\+X͒qXH4|ib}9VlR tJxC&_Jf!mX٤,MkVd{8sk'FXys5|7nAmGW)1@I=rݗ0g btVƈ#YؗyM*zb(9Z64;Y a p7D&][z\K,rDHY ح9i"Z{/3LHN83Ԡ?rAN`瑪В#xӃ~q UYܾk]A,ڰ7J iC%/(V 6fHYYِZ熜x*@NQr7Uoh"y?1e|鞊8Ko p Vk9?IIc@ϴ pUH/"A]S}7nv:Dj%n\bB,-ckև=oga:9>er5 YāW_p 6ǔoYq"l.Sm6ؔa; ]}0*3AU!qOmśDVo8j1=~w,a_fe|N}E9Q'}z2ț'ZSeQind |d!%1iQ3t/=1l\{ØZ;إ2;C1nKi{F4)[4X ĕIS[._ƫ`I,"){4k6úu;n]l.@W۶첗;_paO| N0)q;IWvAĈ)au𭓄ȤM*lF$Iw.AQ 5:y/ {8ki8$ t lc60+jqdt}5!^D)P-}x&`j1xux'sy24H^|RIHH| xW ³QL\8QzYGItZ*mg ^|"Al:*_oE" ^]z^wr/djs1H۽"֩&1Bh[$lo )V1OP;-A 5.Қf (odx#%h+Q , `}ѳx]m4DC:s%0!(Q⎔q^ߞ:哓枒TPRddzNd_/G֘\,wzz6MY#82b1W쟆@EFDB<bM@z;KClo k'ɋ?JRa]'#k9K޴ة"9T5yjFwtЧdz{VLv T xa,,g7]2Flggbm=LBP-Troqo+Bb/fmm'('rݝ,و@C t,yÈw'N3LmLt7"w#~n/}Q Xr$`Eʢ}*:DfP:CT %K"Z[#ת@0P Rp})Wn\SG8`'@׋GGbt6F_8\R2Kli 1@iv.xФ ԰q?+Zf+.&[ S12a^o 2֝wG!mV@ѰbH9K1v{jj^̀E1OSXv̹ҟ=W:rtk{2&&ҍ|ddR53w9-NȪ:)k T~[H7e=6Ugݒ %к$DĴbT][uqyֳ]/撆cdW7&j F5kH LlVdցYEɲv×9Qk/d>Ĕdՙ H|LԇIe2$_\$I&,G'onU壒%)iZ<*/~enOЋcRp^iAϝEAx8$ cz#tu?;e\rKGbʪ 1 N E*sevΘ`߯!\N*|pAlnVo(^N۟'t1KskNNMqKg?/3C u΅JbØY]b.7%ف7UEJ;xͼdȦm"Jt{XV@0XnS8yJ9 䴿;rjeKX0ݵd(~Alt`t5d1U2S p\w\;oU4w#lC\!::f4 +\c|T8(vR~'kyάk*/ u - ]N V|10q ,U\G-Q!,;!DSk;ăĝ_{%hHJQ䮁`wPЭ ]'G!^:梘 gcJv?{2a3HRq|{k"nDh^9{Եihij ">ZPj;b.,8Ebԗ#.SmiMK: E,Nr&]rz2Q^ YRr_Qs{C-Y,(d󶨃Oc`ݿz _.c)Lkm|H݆֘ kjSi6 |{`/oN˰Z~z:%K>{}Ϟ}b[3r)K]v%{޿̀ E=8B YV+oЯL^\,܍sL ڷyDX2S,~;$С-I 1_7,"3P/2m-kbfdMw~ΆLC/?+ oC /FK"Oz%jFXT5N1"Tm–ւ%BB;<F7.+Ȁ{DƤ5lv(L?2,koYu{b̆ e)0P 3R$y)ڴ"Wgpk6&fmThϜ/EpRfuiHEQ/.u?!l6 ,ҡDnD#>+ҡW,L~KnZESt "% csD6"]!P( ?HP#%Ά:7#zw$]) &]&o&}8%uT>.smZB 6RGX\* qׯcCxp) P(ͅBxT4 ;L#(T>%nxclE_6ړF\9yZ K0RBdF9J;AX2x(#7Raʂv&$(᳁ =a[͐~cE"%T雅m`p|ԧd[gJXG; ϵ6Bwns=h$$J ]eMwVҜ˲4`/9s+T b{I'nf5>DkSZGsc̰*uҸTh C͑TyBE2= QȪ?PReyM^x6,xHT)Ϥ-]dtT:4Y/axkt JӅiB54F2.IG#+7҈a [qR9N-!CXZn`nϺN1mËdx;JmvrwWìTڜl\8H-#I M'OːzG l9HّTQI=&Z۴K;=i&w0Nq^nTzY,j74uK5sk/\wz9 ޒ`N/h`)w6`z+j`5z KzRr`PS>%+Hz=}ͳH6Q|i(?1vU+ ;4.7JWs;Be [Cܪ?^fH~ePY8!!IJ7<Q~nF\J&8葀ns+kY?KB<)I4$Rl!7+)GL*ԃMmj> )%<(tR>(~ |BghhO 9ODZno5g<-ً?h,)SȳNE{A֘ĜA2OiP>全^8 Mtu"D|Q}åRض_֤ T9(QWXBG JC& wD֏=b봰d;F}@=ŸTz`C՗er j{aBa-/+DY۲CB nŸ#%Ӑw Cs YRß[)ȦE2RnڎF:ARUyɔsr3F#}^}.pKʱCMd掝ҮThQ4.z@LaC:?EٽٯPs"}o)EP ƿ֖Eڑd{&als w ~+/E&?kEn7| Lp,iIlTsfUOb?s ܰمS[[%IV$?-`%^kpPP(/7s -yO{LVI큩";vt|ZH\D]P(iШ:/L+|FY`K?,nM{?cgEƳ¯AxnSF{z}t>2K4|2Cqkwn4s G)~SuȞ 8ͳ"r[YF.1*;c 6O.^ 3ϹA& ʁAhuؘ-}'tq\P̳|GHVQ|Ŀʧk TcT?ސ]])?p~tZU'&S@5Y9(VYM^DzԪ}\C͝]O+a\1,ª$}oV}cnSiPrBM 7 ,)u=onzAȡ%Dp<&SQ<VFNn4j/hJh a=In=SF$~$[]Wp.S|DgL0hzU0C1soU@3w % p ëwNpCˮysmP1Mp9 d jш?jhe>H(S^JRK|Xf\ĉ L.б/kAA?>BH%%\G6Gd?u~ƙ QrNя Nalc-$N :XW2.zW!)ɀ 46#2;JX.Eo0[7&f;g%ih3Ț-@U09M F^>nObMMhUT֨mQ)Oɨۊ.QMBߪ,6ƪH ʙ%*i?}.3$,n( v%پǐ\7N(Ҏ$ $;.^K>&{`*dr,>d͎:{ybi"4֔x!)4 F1St̘P@I7 c3>M-Rh2 MA>,6αMS/Ic9uAy9m&"Lp)#H{7t=OnpO ClQ5[*`7Ur y(f:coro41\f,= `!qɲ^AU*U}<^&ʍIQ!/)^٭^+X  :tLX e鳟tVBgpӾ0Hz d5٤BSgޭXF/<xTTa-OmCK_Qnx@ezvs|^ge2F(cc)aaS'T3 ~j%O*e14\m4y5׍犃ZS͖d Byz|x^o)CTD8@U#ڭkW3ߟ5io Ifd3SnyK7@%!^C +x3̪`H7%z)W"!_ӯC{5rLyLLWe@{6#TgN3]0Q(`8o1::O94<0[>d#v%T|th+V d?` X0:Gz EV,?Ey땗d@~lPBje50;GUv\9I/[;`i?R@&A]WYorY@2a?ңkyQܱj4F6bzQބ@G`ߨG{OX6}KQ89c W8 abD1:F9k`sKz1VY ?Þ䴟0LCKIܙa^ B01#cNfMGVfm Ǥ\v;ʏ{LhG݌fI5&5`Up~׫bBrbȸC#^^ݿn:k"ߣa H{2; 8 UHJcdπGEz))2i -yxTO ):,J/=aBbY]xOjv$K^!>~kZN7aҼs/zh<%d|*>*rO+BfF'@ fWz%`SZf|b-}nJP'Cio6ysJRpx߅fgіGv +֘sQAUJmVT \e}QUI0WWMŢQA|@>$ZuT$B*7A.WݦڧXT wНW?U:y}TU c/&mӞ&VܕקKШl^ ſ)vFA7y+ЍUxy &&Z=s=+@9:Ht, GM, to , }ھh n2.wm;\d k oED{{W %X-:uy:H(V/':?GsHg'3bRw,!E#JHJM6?te}Cc?_*OC%߭Dǘ ҄4zjI%]1Cu45x(8Y0xE%ijdxq8e8~!T:o6(L--W1{&5{b0~K8Ϛ}N|Dw5_SPfV yhbۊw\%Z_Aruua[񯍸`Cɦ)Ojo [mSMN>"@zY;,**vl%2X 겓,Hx=j M`ce]*!?urE5-2[P$\Aث7Z m>P [/! _|t^lOz =p5eaWQ?ْ*=L@ {_RF);q[jLJ)c,}d"=ÉפЬ=)erS岵e䊘8%g_ٲ+cT0v %YϳЇJ $KlO, &lR-X9TKbI}C3>q {#"Q +]AW"4$L4Yܿ0#p;;*[^0~.u78?᱈M٨q02 Hkbɱ}𜘦o/Wbn1%2'[;u\G5=xD_ enA“ \4^v3] {[t #/Ą`?c HC&'`qN;e`]븞y,QD^RU(dO߭QAc|(7kP  HlOnTOέXĜw"J^OJ+W.24*١Vʤ.Es\p)tw*6sgW=B1eX?oϢ^H=: ZibfWWF~E4; i:|R7Fڑ2 Tp\-<'ٰvps*D",ݩ[hV{MSl(B*8ӀFNݹBϼe؉~SAnՏHw:Pr?.GL%H_Dmӯ$ߡ?]Գf|pI۴XJFC8jÊ6*{!|֋iF ڥ4*xtG_sܣ %9/i'T ؀ Z4p5W2tpk_$J1.Eԡ:+ĦѼ!ʅFTA4j̍wY>Γ+ ;ӂFM) ZN }R!i$H+|Z?r1o j]W\{E2s|)~Vӯjҋu{{ ږO\hGH yHn}Z%bJhF[2Qu*#ƃ*0j~퀈\Y:%|57q}@!t;#^[lTY躎nr Hkh#E@s/|''Aa'' # ""e*yع)~6>q3KS9\I<{( %z߶zm xρ4HhܾĆfn )S~bir`][# 0Fz,Uf{;_{#ǀz(w'%^50N-A#n0ȀJdGlcu !DpC@#:4K=OL!BR!Y}DsUsaqHr;3Yry*nb#}xOmM|SLqy1gV-+$ʔ": -Z/>9ܗމKoU"?e0w$|ȎA(w=lj%Ph3R*ﰈ$tP5;bhbQWoh 1ԜoDcC^oB`]ZQ(yCsfsw5F} S*%IEvŨ5|jdeY>j[ uVemsӑc˥M/hXRv_:ʬ|6> Y2T&D2h{bY_cuTx^lv#):4qkΟvJRÒ%॑}Қg 8-}jpSg\h6YK|E?cZ ֶ|yaVOƙ)MdvH9, A|TNbVvP3m&vV"@#)B@ck-p?5Ɲ?/gi8Xe/h&\E~i8:+101CųB?j%h'D?0C鞩D">QQY~; ŕ?|Ҍ~ׂdhxs?o;!.Ea怐eF;@?:x#Iy7ώ,N?:0_Eb:PbW3J=VDw6ԽݙzkՂ{=(/<0ݦ*cP(U:E14,gl0,(Z?"a?OԦ Nc-DkF?ꐀ[>6GMwYb!kZ'Q[W%q3is-sE⡖-S#"J`2֟m@b]S[Yي@8Ў|)ry6\522ٽ KsO34&V'ickg7]<^Ϟ,[ųL8FgUtC h2.0Pd^w{ ))C94@`PipJDž QT>}L v5*_U֦YoUn䩿z E/?[#P}[3Fb{|*]?x첤{P a yϋj~3`r7\)  BkOL^T_@*mOq_$2b!:I:sG@ `K_@wK d׶--B/^y:_6= reߊLTP4Ol:&j.!S[XrO4Y\$NOYP`'5A?Rl'DH3PNM`QN#aL?vxn5i:k^~]q9|+ua`P7-l/B\߰j'-ɐXY<@1ǯʹ#D9ERy+є)9 %#Y8-(E =758W5?RlE9QzqEK.MrTg ُZV~$٪&= >)7gUGnXKI1:(" cF1Z=h0j -!jtivGI؋߶s@QXʾ;[}BQTu♌IaVaQ{r /y,Bis@o~ck 6!tJՀ_++=CN~30Ne M/nlzvP?@:`?de^5}N+$*[Bmv\F6 !+oWԌI֢#!*x|iB@wM8}H2?Ǽq=B-l)iM&$;@QR0?p{԰{+XJ\[ U뀚xB乑!rN("E&F1/Y:(tO6'gӢW_QUw`! IļK(&g{.ĮJY6U3ʘRBAUv'tt] |Y,~*$n]M%<#1,cdz)ü\Ѯ7T7 08(ׇ89Nb 8pxm ;9_~ū:؉"˱ rr 0˼j۠Ĝ*ڵ$OF+hM:$)u[9٧{Gsl8I֝X]\5q![K7"L_jbe$/r _K$V$7m;n~kM&8)|EuNJ P 8XҫWJYr=C^VxҗOxBԂCHc + @V1Vr*lK#')U#0M;evAV{ ̅\?|z>.(-bkW; X`R ňq8oaU"2,oňT4u Q2pHNC;-4 QZjHqk!AJw1G!\wH6i\c;28pBp@J3i(@8?s?G\B ʈ6R6;0㆓&[}AA2ێաSH&g6; _f]XOs̜cQ|L>u%GjMt^2WܲJ[>.VL_k~9Ǽ;.kingcD^^L'mgiZ3W`2TsL,(h+2bLim76/&kO}AY7newzFQ8[B, -0MM+F!Mb?-4=r(RӺ::F:1 )G7]U)*g}fUNi/Yپ!;'9')r(nbP,bE| :G7hWw. 9tѴȑmγ/4>EKE[8;kRxL-NQIm6Z+0G$ְؙ&̇d2+0sn !`^U{Խ@eBA[4B s[5>dudFu,tChEX"6­@mu:FX4h^Gs5y^(mܹ^@E"xa` )Go )Kجkg2_^,'Tv\SB2&.t_edOv@;3JZEth'ؿ+;M‡ޓ=l:WH&}2N%>[vb3K|O`pha 0vi(8YdÌ#@t&ŗx{3nOg4 U̕`Z)Y$ #z@{)%t+#𭦷\*T>~}ǗpaY{`m۹q@}QiF|- :VjʰX&O" fBJ!"Q!Vd U#OaD{Ӥ`,`;CcKAyk܌!0H߬'nlG0amSAT@󚝾Sː^]Y5t;@V2\ 9{f@}7QP/mQO[cZJ3W4pt2՝{öO/!;]ڍ- [#W^'ktV q] X{÷jWlӯ@Ӵ٪  c>U9WUI33\/\-\)i5/'(uK(YƩ#iS!XCe2]h+iE;G4D !m%be߽s3d m'}3Rvnqb)tDcthGs:bU;qdC6.jDf- z)UNfy L^Rka}zY[jv ѫP6Pp8@՛4"tT!ͬTYx&Jܺv(G{7g(>2?ט)"|)Jy2޷`<}`~׏rEh[yE\qlܚ@`vQ&1on:p c_2iginߺ,!1L`SF5!Pބ0%qʎ j9sY<ZTk`w,)I8ch->'PgR=2у`@j궼ԕ ݋[36?rH=DgX:tVQرQ@R*CX& `O)So Z$'3\3!UF5 %rvh`8O򸤆^,' հK۸#mj >H̋ˤV5>hkA13_:s;B\yyQ&Ks/]9cМpj9K> (.~ryTk1ǜVfTEW-> RP7Vٷkl8]2 {sHX@7/byOsg0azSh~ZQV? %jH[ă<9_]oCn,ާ G6s&(<{PSlo׶ M8$p({ Ϛ=p; }4_>mȸLѸ`ѡ}r7v;elȚy3y+U\$%v6y%LĞгG۠'9,6o&q|ÿ~nx;:;.)enEBo]N![.Lu y3>)ZJִR1)͸/3Fi; 䕤I:nl\6r zQc^dE -߁mɗ"5_~AѦzc}9 _58S׼ {"ƕ{ͦĈQa,6IgxKuCT2ז DmkSVgh'H!w+sah~n@%"&9 kJ!Fʤ*!aRKAarhlJevV7= l@V[rr)n\ &"(l4,aƜ1"Nz[y/6XV6ű..1q{k[lk>T[z_70e[bȼFh.; նzm:9i|F1;X G\h\cp)"$(q#;u M:iJm7qPFNY)[*<4mn-If߀>Їﱗ4}}o|]{DM1J׽CkuN-J_ٮddCqlnIV>?~opz%4?MIAG`4QjNu˄}}wwLQs,]HPy~5k醅..cCk) ec)}U0R@{e[y ]*JUnX 9N_CoiWɪ(6*uy›7L#ۢs]KEd+)e/x0.a ;$`-XԤOs%ia_Ġ4ĴF .Kg %$Ŀ6uHdtJ./ X@Y6=^b⹫: _7ٝ}}6J\#8&T:Ce'^bAذ^p\@3_,)&HA)KvcX<A t?LoHn!?g)~-~B_PKr|u.2U7%[:Ϯ0c?2! k l~ʼn?>hvJ]blJVb}}JP/6`879L.%2pRپtP>ZP/ dS]g9#YĮ;L➐͙Ҝb%byXUNjxapЦRi,d+Ae x*f@ݜ:D*"~;Hn<gVavF^5*Tt{?w^V3vmf0Ox$1֎n m }&d^fNL8˫$41JT@Q@'6Y۹?Gl2F`76Ӡ:!*Sx k4uqk :9L,^M8;]D&|&BJ.T>ΰEeTLh90-Ը%y P.5L tίR#RtSK{ _0 l %jX+=>"te)It'`&N|~ 74GV2d]\;eIp[fzSNx]zOHއ1@L)⨀sNU8_єGpe-q?[Leّ<~M Y"THAFVWBV=*LKM2 uP?eR<^/'~;Ŭ+聗a)(p{k$g#GCA({aF6@>*Ȯ敘J7Wa-$-Y%ۊN$ / F~ 4#\FTO[^Dhѩ1U.q %例 h`M Y)hkUe Bq GvB-V-AAu4$0"?+> F#f Q#3D./=FjS?3ŏCw<e/(EaM#~r^ lgs6O `S+B$f7֡9qqb_H@ް@KD?P-M;;t!86^pյI 8Tm&fܖ3͡/Cy¡ ffw4ysKZg7;0jzb8䦖ܧZ`V,X}~[Jz㡦*-/a -m0*ifjrEYU"t,8%-o7`q]y9.FsCbkFIr @-ЎiAd NE˜9wf(=s~dv79 }*U{ÏKW ;R>ZC{@?sÐvlZ.3ʘή` WX A(jp{XV `+!tX|NF<>oѶ#\AwVG'$JH3vJ블V;&/^σg9UexU-\9\L+6[K[26X/Q3\~,$g8 9\^1r\K=湀GCdUfVЭno?[kz་:U r6j$l#H6"5qy^vhdmw"LHApE%Ti^U󊒶 sA0"z/EA !:d{(qٝ|&mx6@wpsrn焙A7`M=zDFfSh5PMT/U#sw0#ⴔcOĤľA72'.uԦ9j֜F]jUۣ xLGUӝj 9TgWQ?<O΋<MєIp:RLU e1Q") H!d$qCuT ),3IxHv6DALV4n}S 3zLޝAN$ۿB?㐝KYVzʇUt ^܅S?2);I!v$@ cfl/5{_u{ss59-|:Ք;/DFOr$v|0 S9^ fN<1]>pqzZ[2l~t:CjyeuN"2Q9KFWݓǹes#&X)4XH4.)B(W nSWF*BΦ7\ftbv)F`OOfYe:*a>n^c! 4k_P,L[iil'dC Mn1j;Dh8hYj8lX9 nJ449ҧAv,RlA0* |UG#k%{mfP_[:ՆOJٔBm7>n,kcDz UQeXq| ɓ=sSH0'Mg:+ ˍ/|bC!}u4U;2ZX[zl7BV! b7 Er7oegCzjd6يWC_Ioۢ*AƄY,| ;cBw18yk-41x<.t|uTH1ȓoaچ"Z=RlVv v NX\c’LbM;]] F\& y\qArpG%X-~9hNiK^*㧿a&B2' 'R vܪ,E:ՍMbCOiKr-s4j(ai8NX,6$tz8 !D`<8/eWkRbbL :I"Q513%!e =6 \Qn$jF2qz Zkы5AH :-Ïee,o*rQl/q S$x8=T>YD;ڈ&frHS/%o넥@sz LAl}S QD^ {9_Sr4oWue'\X q\qN{@"6m;| <0z.򽩶r_Z;EJlwrF..ƺWiFȦ[ I0Pl;O[80(T߳H~.?ٟƩV1ËkͧEs^P{3c?f_|}@[˲bAG+TʙX ]GbT^wQ@ALnz&- #^TRQhutd%93 v0B!`%`VJJF*!˭oIckƕrvXLXml?7Kð7hK7x3$m#466jR"=<݊ĝVgNlqlgt" NH{;=ZƊ6Y%5cRp g^ƚf\هoô Yc;1m}}rV !>,7ڠB٭S;@v{SX$,25](Ð2U賽HG+2=^G'Xķ =[ =TeN@bР 4ck٭8KFֱ* +Vi|,x 374!\oJgS2xӋ&/DYGlje{^}po6Bd 1R"HDX6$; G(菂0y347ZUwpU6SmZC e oB:݆#EEI T.T4_#FLaoAR76^еȫ"Ƽt"*#|i 5ڢ{93 v{nyya٤ޏzTUlшc{P :LೕIwJI5SCPh118R h.?N#h]bmD?q|nj[r3G#y|ma#eTo"= 1 4Ԁz l /+PQ1. 崖HĔ9G{sL,.!T8wV #9iC1B2\e|K:XQ&=EcLl:(~ Av!1%--Ld&#H0LF NVW[ O(4 ad j;oƈ࢐npY3(T,A.r|2mƧv*WM~mS!(ki|nY7mRĈ [#=k܄!EcXl]ո+hڿ*@Ő$r2+铗MR?se/a7Hn$unي) _J2c]ӦUN2X, >0 YZAER/data/TechChange.rda0000644000175400001440000000143013033553053014444 0ustar zeileisusers]T HSQ~{mQ"&Qf(A!疕"&.G# G+,$$D暶l{߽|;~<ǒkA$ID.eYXIgKNIQYjYAEi HQtWNOu0ڱ/78ڽzۘ0\ \eU/|;/\w̷koXCks3sZ-)'0Nf1 <;I_% SI"x'(-ԙ4uI8 |/~f@@Xo ~ؚYd_<ʅճ@XK/l|%F.{)gl TvGn:sm\T=c evTPG7]ѯ>m 6!A9NkIcQd̞)6Q3z`[\80v "gX:2xCe OkòΗ贚?ȶIEAknncVJZ~YTTZ+K//8tbDKoQ86ŁKQq kZAER/data/USInvest.rda0000644000175400001440000000070713033553053014201 0ustar zeileisusers r0b```b`ffb`b2Y# ' +K-.a``mAYg, @aR;?e'q:0гn@ 1gsK&Aė}1D}J|fȧHˁڛ3 "yb^_ЄU}*sj+ 8E1_;naw "_-tdsTnGV"D>[萒 B@ 2 v8d>j; -X ^/p+|! ȃ9HBŠ(ȘdJ?|.A *9%3H?(}'b [ BI+22! c-(LNWZNl().(1;;׼`haMI,. fNnI1TR u?xe*AER/data/PSID7682.rda0000644000175400001440000003436413033553050013552 0ustar zeileisusers7zXZi"6!X$8])TW"nRʟt<3n2uJ꠆Qwq.S "w.y(̚~%\~DYq1^VNIjr%Q)SoS)Vк;~5ZyHՙs@ab *CKA-.EM:ruMH0S%pßUEBvptX5!J]OC,Yݮ?/N~z)xjXkm?ipb+eBH+M|]j# "Td@ͩkR܅nQvvB #POblJ癋љn8_2ի^ր6ROCF |Q5WlѯecZ[i)rrjY :*tq>Y]$h C>u>b"i{!2d߬* g_b RVFPR0 l(oB8QAcj~LȤP~p^_uλj~̬2?,9H 'TQ K ?S7s4~M0I L ,ɈAEqEDqÄ⚰)}m1Fk!XQSØߥו [-Zq&8| >˶78"lr*G-P9Zlfd(|P6JVD´ޔM]"*\ UCBYZ|yCPE/Ѹ#{H a8~sK `MrHtl#ɇ s 45eCo̽'XgXkj++.&mCO3R.\ߜMW709{dަe7v E.g'IFOBQLϟF||0T1G)=zW`,s#S[rrDc$ql@{$鶈q(FOfe-K >CEOjE A.{ V<YpmVBbS;.ϋ#ߊK=(y_/epiLr:K)VB,G=l|yu/rΘz Kg$\Ҹ|rIl FJ=hſcNG{ U|==rDl?3%q&> ǕxRM-tmH6?:6J-"-#jE[ۦgc^3.]GV2zyBu5o u|ɾ-Gy)D((-":Y3ʋD{f_BLFsvSs7Ս!;u:߇Xc+z'ՈcϷ>Tظ]m'ߧnwy8!sgc3r~ ^V@N_c3Gl\gSAQ}M@إV?v 8m}t` C8V,pk '?(cR{['Խ jMC&9&_Χ6s:ZdG]kW\VSHIeE4+t{rMN C:y$MMW9;czsY+k<1`6-PQq } 1x OJt8eٟb7.A[%=}!XvHȼ.M(d@kK7L8Fr n n:4Q̹ 㖬Rѹ.laja+## ]vI=e{[k5E?%y %~=QGZht/]5P-XWLr02<\X26 Zhp 1<8$pO%YW D5z{o!PMF /Dx i)%4Tᑗ0W7 ÛLk\Zm5H4g}hB6Jh\LS><ˬl dc#Nl+MKBn2;_n}v. p6=*A=',v[//"?6LWc%o$>9/zٕ&%{ؿ+RBb6P<z2% SF`b/\qmx򌃢9UNX 8}oܸw#k-?~O!Mtz^]߷)$r"*tȿ~r=1)7k}]+)aè&/kS`d-i4v1&16™Dnr1fW w+lY.ILU?x Cl'k'a:%rw@X F7#$A\<(lC %q&-F@O6 !\jgzI'Š!I8SҡꄙWDYt|_c_e)V%_M穏*L iVВ%2JU+Vd6ࣉ<3~Hϱ3an Wh@!H5֑zFk5@t cWgze$~w$j:<j#)nW~ J"}2Qcf9ȽGYz˸V 4!5+f3MgaG $X!m,>yx#!2u\o]#Ca* YѲ3f,kV}]q2g?vExEB>Tmfn(KT~;St+Z6)I/NMGΊ go %"&$*T^b+eIW|]PԄVw  &N3R݌mK9lͯĞ!KĶ.n*X%6tb鲧 W/&:ֽ*VCUN4 /+?W}CQG!}؏vEn(g0O&zh8@<кD'rQZ&9ӧFwcږ1!K(ZϸR]A9@*`F; 4tZs7R37DOsmX?4v L-BPkkKΨiBmHvIjmS6D$@o֍%ĐxQcdj" dj\\F흨H$dpL5{pQ/,svGهzCKe-\~cŵ#rӛz74ܦM`O=EX/7fm1LG+wϑV _:$^ԹM8+H@/Ȟc<*CsʅL% `\'҃J8oKۮFW]m?}e]xF ~/'z9'ܷ\IFa؉ U PhՌR7H~z]d/hlH3Hb\c,#ΰ#`B}$ q@yfғ/NUjofst+A)7Uv) t)F$TThD"@v!K_R ɋ޳Y\Wf6TL&Ƞ´ϙUcSQ@#aR,rS[zVW-GXz>Z"i/-&n)_kq׬f&QL)Xq`E\fxXrŷSTD p'ZpxIm׷bꓼaP* N+y1~HcIiBLTY]w^Vtb| xMS#T '?MIUȊ_ς?+SݙІ>5/8 @kdpwj,[0ۘ|1$Q5AڭoŝypW#W@FM.ہT{} Q7H"Rs 3s]-:/޸4HcblmmT\o;4>*4vL$2!@!K1WY>: NZ0X(YZu&FVPWNjK`f00r滞Nݵ11ŀQr zw#L\Okfg3lKN!z{[[S }:59.~E.3,b)P:蕇XYN_.R69|D/\ׂ^m#|f'O~jg`Sw,BT s#%]TfsjYՕ.tZAuk,585V+ZɁ2f*BL)R2<66m9`kԶx')ݠHUqc; \{'T/Ci'"V idFWհVu7glLjfJlI^"H;{dsW2h$TӴ y[ 0`j.ގ[2#s¿Q^ʐQ_{?g/7%gP?*Irmʭc~g{t,ZhT&#H(B\IQ Pok~g9;zr*cQzDצç B#;"^<0bSÍ,$x7Y'NmMj܃lܡ<ٛDza3^4a+s48G5)벫i.&FjRv^ TD*f3|}X>J!T\Oo5[x!#Y'9܋яPa%b?_/6L1iUrSNFH۬_I~IdRH1`Yy%=3EG,Tl2Ӌ6QZHuU5kR vu J㱵nnץe⃹ ^4[-=VyuS5)J0#USXڏ<'L$ױk6KlǕ J)d_\D'iExg2c|(VQZ'],Ht&KW 5 "p$ eX@SP"isE43]7H&W@1*J)Feuubx.?- mBh,8$Hх=g5ƿ((}"D5W4 pdج,ZѨ6c(э" JeIEbV t㝄[Ns!FhIn+`ÇAVd9&z1oșn~vir?.zF|E|7y1b ("by߶ok{RS΢PମZZMlthTܕ;+޲Ѡňgo{2 ^$;Û:DPvx"_H> J\b$]礴#'qVs!8pZaHb ҄c7o:v[w.n =7J,}`]ˉ;?BF.we|!)' KwmXi* $zܝ3iA4Svq'V 2޶sSh$NW7=cB jB-\hT& kJtwH07Dlaxz^sP4>M `·Æhf?x>GKK0 ;[S^+ 6u-Fw H h["hIv诂J` t~{ wٟGݍh%~:z"Bz.dg"BjW0} . ާ!y—щwgX V^H6L6s@k=KLYF@`GzC"@b:'v>Sv6| C\9xb+Qfprm C6F3@RA7ؖD2t.!QgyS&Zr8%~#n o? n]#6T,9B=hZ*0&jLD蜱4LSZp2Is,ή`B-N9)_4'6BUqlڹK<է]/t}ȪH.܇nql|XL.܎R+X_q+D2~n\2qc0A^8mnaQ/oz04טJV~ DCƁ1IGT̙I5΋2VF$!gQ*"z$VcVXel;_8'jŰJ͍ҁ$gnݷHgKί"[ls<-[%h1J={;!:$$gdmW@Ƹ ԯ-Kip5+ߦ8&lmi7 )'B$?j,GI[f Ch.5XC@+슮{6o wR4'B#m ?KHV >⟆l$R/|JU{27VURlG7Гe(6bm[ojf&G|?AZg۳^#h bLv2__DE}HaDkP,3V$xCEF>R,tppIx/0 6w IA]2g␶"n^ݏVe8ELYIy"e#amiW+&{Y?٣Qe+Wp8&SU3n 4j2sE{Q;\>xm @<{$+~٢l*" Mv6й)'w[0Gp]U_Sd*(v_cD6dD{Vp{o.;fH$%zo'}܋``_EAntb5=W,ݘoe ZVⰂq &V :Iδ0sv^fC &(nX7%fNUlhAcxP Nh޻x(7.e'fw_}5{ $}l ws/(K~!%LΰNn+(,hZ`/w}1% ~%Ph>?`Q=(3zJs~ f.:@ph7WWm>x ?stڙ<7u 3%thIgF}cS(jirN'+~Sp48E%=en@b 5,qGhgjaBG`D(;US)|?0HW Pȯ* "YP|6ߏ΁j7 ĞFc)@2j+Nє Q7"J`KGR(2&|NS aDMleMSZ\'r5j൰g\sZw6/d2g.*" Ćƍj.2ʗ]x-$8ٸ hó7#@*b +d( }&Ziauɧ\ߗWmTJb (}] FEFih@&=7l6}3ϘC3(j?#)y|R7#] <\&Ks闐~ Oސ-_[1( WQxj)j/53g=|\5 /dN-y\'rf?ĝh[ڞ0ͿvK48yW'/&D]y S)"$ǓتpgAž8l3oc wMaLk;MmE0θ"(@q# AUƬ<[}Lዣ-޸}aBh"Tߋ$Pո_oiy;DJkfK5.ƼpU!Ju AA~sRG/;7Pߗ'Jf>Yr $(v`2/W_R [:'t'F9a :2qRD^$ hKlXlV6Ws}alvZ< jDls03~6'g;jO|M;-׆3CnJ~hjO*-g]t!puI X(}>9>9?xyj:Kp|~1JH5W/_{!$XD\ }o&4E,K d׌GGcD B!B4R5C/dʜo+c|r^Ujb3DkcX9 Gr8TѬQ4 M]8IaTN^D ɍFh ݳLDSL3Dbb yEg-泋 'lmS$qG2rnh[b;;Q,10NY]I5E Ko^<Eږ0& oѾZ{SQ;xljFHh+D;U?hՖH'cc D :cS CC)A=':Yvf6T*/dc'8tʬ @"'ۙZKfkl#[W4tqO SzWA-!3 i*'ΞdjIP!ѥ{qF| ZQ ?RQ" 泆?p6sA>S7mQZ?`3GMy\T9 N\)g{/;N:Z,eus%Xvo VS,v0f_^NG NqyW00y΄U/}t c#5`e@J =qe>0 YZAER/data/ManufactCosts.rda0000644000175400001440000000354313033553047015237 0ustar zeileisusers]V XSAY< VqhW(DEQ> B ۇ U! a$Z@ & $$A; QQERqu$ł U- ;נGڎ-§yo#j,+ޕŮ LfZ=/؎T4Kq'g-&J*ͱtbI^$*nf*ޜA%Й–Jr]ɔJjOvy)jgZ=uyyxY56DžQ󢮂ٮTK۲KPXs剩K+ g%q &ɉgq"((2 Nr@gϢQH JjOOŅmxo|1%韑_^c; n~X4μ;&:WWf>SZ` ~a7y $9~\e8)[&9KX2h&_9b3zLU:3l#9[ 0 GfT#,QN塰%(ՅėvY~^@8OHdwywkF[ 9@\˔ҔE?{nxNNڗ938e}޾?kp2i:m:nj;Ky2ϡFqGBˍYĮ gxkzf?!_A|2-˲0ĪlnI-S ]?,I qR~:D=g'&ZqTe!Wh=}ю-9#Z?yDf~JkW*#J#IZ)m̠\4:ھ}alF ƖЈ!=f3?n0fF0" "|jJ HrVR/ARkKg2795o`144aQ5VWHAER/data/Fertility2.rda0000644000175400001440000017320413033553046014523 0ustar zeileisusers7zXZi"6!Xm#])TW"nRʟt<3n2u]KL MZk=hLF ^.ۡ6v+tnٶRj.>@OZc@O \Tx6]0I; EUpU8 ߹hp[s_Hg| =ϫ9{ja8 S6Se˸`WC^sF^-`ݹΔB:fvң4#RT$yv D\!k c9vnvG ٿ燩م]`lrRg~䫗&uE.đlŨ94>tA9[ ~V9E\1`&^.083qz (D Tr\0q}l,g1/wM6 lQuY#Mʾ$6ayu%щK$XT7&w1;Lއ'm1h(Hi:ʪ^6 ]\Б?L8s2ًEw|V56j)k:"YU}ٮiA;V+V%_~xRUC~U|J] MVaW 0e ^6Q(gi9 Ƨ &X?@ǧ0"c^6L3KHJޮ7sg:m;?"?WuT%&*q*`{ }|h̾"x+EyLOԎvN`i0~bܜ FOyc%]83ݬ΂_oٟB^pVA6)xNo,n^?צP <hv)H3zG%/⊎YɲSÆ4Nsι)Dh/Pf(m[O. FF9ɲ3/\K69J h;.j1r[7ʉUώd#@ڜ3hRjuISO^ UywxH$W&7[m!j:zB;k Яum Jy{^lcVF6+]m,"奟w :K:1R%t-CJmz}1Q^SȃAf|@f3̲5|ij\IFċfޒt0>4Uf!Aw`G[( VnQ/ nkDgU&lڝ m1SA$F`"(vJ9Gx*gl#8} <~䣄6G۷R;m2Iۨc^ nLtz{GYdph=-9Dҳ#}|_6b=kMN"b9ܣh` !ŅtUJhZV!pL>YQaM2o Bn=: ',/{M,.*FP(fCYMfr^*I7?DFPd['VPrhA"ÞߜY`op 3X+bNOr _RIyu>0~I+';u,%0uJX2/ 'Yxk6LoNw8..L>=*)~s(ᆮ683y'o'yo80)E aVZydӻ2r҄(Bi;4 x,;|Մ%7!\,{]ӹ."XסTCHX<Tτhw6&+w>T^@r:`o@7KӶ.4" =UMCp y]JgԈD͊ZZz:xb PԿNǗD/&U-"鰄fxI$9*#\z& n(S#Z5Su/2W}q1~PsXn12;`mgWd'd^)vq5K$=;L" ʝН[qhA߸4\vANQyҫ {"bAy'gULF,_CBGЄ&"<4^GcwDCWB S!hIZ91dua׸aO) #X #\FK(A}7 6}-ߌ*4'v(`H^dze;PЩ[WQAt:dj,b4ހm]X4^E^x5/ze+IrAK`edbFܬ,ԁ c 5qO߼+ܡ'9-LfQ|Cm>U=%]+*0 0qP ͭ4~\dee8TIN%a:mOo Iss\Q;1emN7d< ~h~smaU=E7(g<éj)}) +gS;dT0J&TXPDk~K p@4ŨL:N-?۷7EapeGyƪ>"ڶdX8طхeq-O:t8[F./:O1hi) dvw] Hr4b?N UUz#_zp6r٨mORLGFwm"SZ5UaW04hy4(m$s?o'Ĕg|-SN9PgǀVzU/GH0i&UvL6/I= nӥlC/FPWlc\$lUfW)Zl̞a(O{I6 ֞Fυ{6KΪeAhydkPد pLÖjr{q*Bmx` vWykJ])*F02D蜭X2?<>Ʀ Q6!ZPU˃ ~w>)M/vAip.EDf[<^Cn Avom t9eLz!WBZ݁jwc)=~Q`DGd;mN,L(@:j\(w4:F$4xrb 91DY:]$lQ; &BPYZT4˪?8#Szڍ'9AqJ/q@*nܯ46!UۓɜfeZ.Q޴1k;yD@p I./D@܈&kV(/V&S뤇 8_0柛36n ӻcU%b~$*k7 C{qL1L +b0[mLB?~ܒ@~_>Fe.)+yۃNfq~$ծpwɪ)]$ G#&B8gT[cJ\L#m=' w ڕj >Hߣd&*(.qdw@s% tWCfR5H W/&SH[&hDΠ_Ej~etO?nK\o˖*Nr>{`%?AiDBb&L+B06AqjӼLgveԗhYr#@¥mʛ^M*VxM+^UAi<{4"(TkGGy6yP )&۲Ex̆9?m8(.<;Hu_!**Ijn(Grc>-缁k }e$}P7Yg 2.W"FsF_#!< 9٪\7 VvNkMs|owYx8eQalH!ykY&wŷΈ:^ܔ3t^VϮ5 1+" ;ޱswޥJ@;= 륛!RvWQ_uƅqSۧ7!1-8{E 3#& RϝM0: B6Œ͸ijfxYuջ8K-%*}4rƠ&k9si9:L'0M#)w +9C} m)/8KREZG̴a&Q@Ab>~ VU?!\e凞PZXZ׿VӢ"s+ˇ_)j,+ܲv 4^ka_sTK @'G4T/27$ޢroɎBsD& F7C _7OcѨXaITm p\(j6ot o8O ̂G[#7uOC℅t}KFBd]&3Q-H{ERh}c2q sR\T3)f)BiuP/+;^INĕv&(^=7RDVCmʋCXї:DtC셛9xSNo- a(<%QpJ{:A{D`̪[=: B/M_9RNkPcގ46WR摯Ah@.]okLVF6iJ*c$OgR\d|^oGëY?9, iqt r.>bk3R"t4Z8FExY 5KkJ))g͒B }@ݪNƀ߼+zShƢ ~ѽڙ{[ aWys8c؄}Mofۇ q&dX"|9'B :\*Pa[CWAW$j-AĎj3LqPͺ-/?2_%bA>\'+{2'%^SQQ\lMxuy_DoOJQs[t?ZͥFKvNŇcaHH4iE<x"3/Ĉm![Wwj.\A4 m\ kW?u0~#N&bpگU\k$'NEflGE!u!y;Y*>A1G0 T+;`[H-Y"RN؄E),q gT7剾&$V0" Q1bcUd?^ۉ=X$4 G%*cpF+"jK"\i03-56JYը 7aN_ rkn5Ii xr% E4隝>Z29H}N{ z5M1CĖQaH$γ4qWVARD_?> Dj7YZODw~]E9m\ ]񛐝t?u3q;+M.!Kp?3G􄅨׍LEjHmB4CZ|=Ⱥ`n2ow1p> eҁlm 2ٽoMIMajT2/Վdz%!y bd !5|NYZ#424nM"k>x߬oZHL$.&АJgҷu.LKsʼn' +".4R5 VC%C@T?^CvRYƽ;bC 7^ߩV9}~ȐleғO?ekPPn. "z-#qN,z wl5z76ȽS8'r"]D_ˑNJo{AV3sW_G+^r#cz/UX"qxL9Q1?#e;:` y4+ĻNH*4Ej M#4ng#6ccQQT3l29'Iw Ee %HiY tW5eM7q~Mx~]D:!bZ P1//g(ALXDtgOT;-xV v|F_m;٧pg@5'J%4Tj 鼷%[u2bFFO!lMp&P= !s%SJ? ÛuY!jfڌ.[l`\? I|_ SQ(~{9tQ4km*|Ȉrkrq:Ȕ=}CZ5ל: #T ^H6_$hWqM~%}ׯn`s qOc=d~Fewۗ-QCTCK? 2"7w"[ u^Tf^H"sy1_!:.LbOxcS*zg0.&F򂰟kV](.nf%r!S$uV(}.Ãr7EېafrHYa\Bmw{e2qO\ZtAJC `E0AڐQ5L. $m*L*){R+4IM;  ,2[qa3ϟȤHR-Q|}H`V pM*,]lE,v )fpȁU'!#{9${^2KtgޫyNG;ƜƇP8b;A4"qYI\'@u`V+e9X!o!-͹gb//9X #!x*6q:"/Q5.XZ;M`ʋuv\+3xM~'1o$} ;z<@g+;]@ dEs۾\0K7@VPam&Zi1S 9GJLjh.('U<2W~l?vWMRbL}cSCҪ `^Lrm kN$#Րې )O<7ZXzai~Yr|0 @7-zX1Q/ݲgQf \柁z$`v{InPuA]OHƜpE̼K@ @)AF(Qo^C|3AHںT2I<ⵊ@^@C#iErq巏Z%9ydHR=Xwf4lܜYۻ@09>] ׄMơo k|GJ*N!K%f7ہ$eg 1a9TЇ Qp3GQ&M4_OOt)uٵBP?߬!İV` )"woc&FXz~bXsyW{ ;19qFBg`0h̖[djXB&-mj;//`-t.wlt00E*_L$R<~Cxk]"拐p@1%(F_姘 5W8kn),U4Y{iN *&vgE嚻5oI}&.@LtLoguhIԋiXFL췠S|ApK |=͗[w ͌C(6 }Ywȟ\%"!F]_jދ#wW!KA`纷N&ץJ"0p ,wjo IrDXIEgKOZvYYåT$ ص&(B$ #_}λ}-h4֚Jد`D;QU?xT녀jwH/ ~R&X:!UL!Ffr}gVPCϝЯ֫GHͳ(VB5*wj1v j[č/<~xUI>-6{H {6./X}4$bbFrфA oP[\9RMӆ,-W"/s4=-R iqHTyBoPQVjTH,ߓsrਦ5wgi( 7h>M5d]W*i"rqz}O/)' ި,W*)A߶fJK>k#QҺ@3dKۻK;r"[U{"dֵ@p*+ dD "U\˘?Ys1%aB Da>RDTZHfiO)"Vh^usrX6_ȋIL'S>"QædB òG(GPhѐ _.ը, |pvtk] S*[@"B/7nD0HNgGP̙;p布 _&KlfCU w|/3Z"x*8_ӵAr܍š=ξʽ1i"1vߙx(eMŏ7WH8ūI-Hf>y5=fHI;c<>ǵΝl ـ(#ioqkՙ07q(. H7PƝmӎek2&:gD\oOLkjA {n8ɼVi>>˹[`KRћIu]fN)SQ6}Q3]FB`@Aj٨|o-f/M-@ g#p\*wԝ>:L#4F;FcLhPKCMKksvDqƵAHk@coiدCM@ɖ@!F-gel Fʨw6_'Wʫ{[=/;5[+!Öc{Z|ٻ7B2emW_Z{ꈡjQ֋I0.Ac0-TC"4ۢ\e7spޡ6^&1I)K79Y!:v<]Zk!j0uxOD&?ڃ^'&?IU*O+KoM.{H107 (ǥ`p[s7] -F\u4hK ;@-0||pg%3|iCcutʧ&ѬSU~u $ wƓ6uXklkg:>[C'$`\NS75>OOV:-\>\oRӁ(φZ4$ HIId2T~nu8.KG$$. s]Xa>E̩BEKKBOEò:/r$t]1Kg $WƦ} VRʕEz፞wlp1lI@h}Y~yN&݃j+ng~ACa0X"jf=2p1lʱ#IZw~%&`}ZEfNWXCZV(PX.Tg=ݛ]cYmj+ZpwQ)/-$56)RL€NA6xgư 0";Xϡ3l[je i4 f8_`E28|g%GT}|БGt5#W?b7bt7|>؄RI1q8P*kXsh[Vy ::y଱rh ڎw"*ݚ&ڊGrh .j2n"P;/G$8DpN=̫A#@CMd߱qaL_sTcvZgK7+D`u\o$uy (cv]u켪eXHPsmo;A0ԋE1 -*L{}t;U wjPPp}vAFr(ƮL260,p%78(?k-K8XHxf}Ԅ5zЁѬPnYX㏴o q]VHCG-+*ʹv~>\euoL!d}|"Lonj%E=zKB0g<wyޗYb|.eMe#~g!@f\rőR*4z賃MX5)O.RTޕK~+ &cԛV5lh;ǚ[}58$EَާVs1DTIlJ8ln6@6-aF Ό_6H*M 4UGX0cR|iفZ=K?}챢"Sxq0G#m?+_s rЫ{snѴ2 Xn,Yd `IF"ҽ+YMOp A>F-+KI* b/ A|)Wȓ.wz\LssgKhvc%"N>p9%?,3;VJ^HyɼBM%é-@xΕa _-8Z&=^ۣBg9uaJku#g/K5  o[苎_UVUI}8ݭ٭ [x57pߦb Xzhᛃ<=i@;fYr{~zL\{aZv ݈9SUz4{\`p#v8V&j4^ oc9.B B0'=_@]1>}y&44pTWoϐumR`uڪ t((_Җ|_zVzuS?: z~6'\.=XHX9"{] ;fo,IL|9MzHM8?C>Y5Ns = ![H 0 et6X2!qι-Fz5D砊>LsDfOt@XG >" a♦UܧH3+n+=z:@/hoftS4=3WuX\}I uC40N4Ɗ%!Tv ^}༳GѕK/h [\A|NiCokhKt EBHtjGHB*Ws_35n=e0ދ9+ۺGɂmŒ\ f;mu :uCOtȬrUH*M0 W~s hf÷خ=v5ŕZrw-6v9DN8P~MĸN0ؙahRdv.r7d~>iA|G*$rc4D9O- @$7$8n1̍ f.&j~ԧ? )뵴+ex}1S҆V*%nVy4PS̊$Heȥ~Y{ M0C@h 쫾M! TWwqPzuy94wԢNF 1f}٨-!J6լOz pQS2c :[k0@1B,t*v)Kjv=xN].eʅhͰqk0YB\%\holBlY}a!wT 31kW “|;0[KQ Ӻ`bn a?ا3k|̉C?d/ԩ{OQ/5L 8k YXݟg`DNNɺKYٴ)<02Y^ǩp=imyKE\f%b;2Sh!- ue8QȂ,/ ,,}*ZW OQU {t,C1|KO@d( iN1Rn PtuLQ^;IKTէ, p=1ixy.Rfx}E=];bF.4C+i^6&`'W/^K:]aYa 2.]OÀE3%]̝K\ 60)ܵ~>י&um P)BAf&#ѳ}~+g'!?:S0N "%\vSUw/[R R<| ܽ2:~Z2; Shj] g3l!j5ށO gFrV RេLpLTݏ$ÒWP8|WlPEM\!d7QrFT&1\P_֏:˸9@q+_b^v\_ʄ `=xJv '5aO\]%S!Z,Cuw/>F@2phoH쮆XȤ/(De!F'Ź编zG [rS=9Go,M'ƉM$6cmDTV[ayn+RpjAV}-| JWHjo|Ê>JXӈl P/@!\qri-Bʡ$?r4Pјx(K '|X#cA^qZu{K4Cѫs?'h-ckG! $=e*-riz㑋sƹ.X<חLn Z pʹ.(&z8y *ֶա^v+~$'8_ڼQ Bsd0g48Fߝ- ^PaF1uь"t-1 9SD!?0G )NyN!1J3^<wE0Ot*z I%=%Ef2`aeG}B':%YfG|ʹBGP)XShJ3oaDԎXe\gyPyfВh{'z 9ԹE{e\! gmޟq =ݞ2(~f[1dUVL.E5=v$B tQ1 Y{ )k!foG)?|eH* zNCg0c,e&(Z%?$39F8l^dug.e"vwxR@i9[KIbCm:=\뜀jLeBluA5OjV>kI%Cx1`aYkL&'y60iM>}1Y,?޹ FODуk hmLŒȼ9 #ݱdg~H 7ct80ۙـ|3_ܾC &Ma+&@\Q!prs&\9' sбۥC&Z᤟ƢU> [0 I)d7X f1w5L6Mi-ige72H¢;o| ~8M4mK^{fho>QuzϦPem[}ub)m[$4 {%FdwOt=;` ̤s5ƘsDt$ʡT㫱..P&'G*|WY ۮtL&]$1 *.Q١B Ȓ(d!g1$,@ޜ ǶBI^L/89{rDEPW[S$@ޫ )cyc@nƶFbpv,>0)2EC/hN!sJl;M(4q#7|{#XuqXefz-\E*}0ݢ) a}VPXOJYܘYBk\ -!p2^Zg&ܓt%I=|<An3rx2Yɱy~=]HbNwEO;~C˧ƪ/4?P~9m/ߡ]]$ L-ئy4-Z= 9Va3 B]h" :#<^v'Z>k:+ z_%:ZkI3!~bq:8-k2eƘÇj=}l2haK;k0,M&F8KM+^~ܳMMNTC_&!mK )LUm )PphȚ(ҏɼFZlܘ K-ޑs~@C7߲P]%Oi(Q3 #NBac;pON !lQFC E!Zʆb IxB˫ZfMmwe' Nd:!<0WR c`I$>f Z7̛y. ~C@0X5_O*P#]AA96%X:/E,7]º%Q~H؍z M]/J4vl"^ARm\HʎM:3!닲ӻkqE/$O.9E[p},Uڱ:ئMQ"Q> Bě ֺӞ4W#%5?Kj1D<PS@+–ǙL{Lx <${ǠXTS,׳Xu#~FY%=HTEB/m*A3Ys0y6lʃ f?[35q >:{{ \uHyb4  HZm]eIfim_R>to%uN?e^݊ΚAaTMsػ/VFd1,XB"; )t;K婹ߒ=}>. 3Eim@ lY |??CM#6[ܘ5jX@U"oC&HPY] @4J0GPȇ,_\`PJ !~Cm|wJ57.4:zIbhs. @s/{"_8@PJi}<="TZ!S 6cU~ﰷh'gcY&Nt˖Q-kd3w??{%oc$>wXACk ;3_tVϥ6`*ˬ\ƊRŭl3wSVP r ZϙBSiMv96'7QDQԾӟp؆0XUf]\#Y@;,;?'jm꠰|ۚa\b ȡͳ!O*fCDh&:18KIZM*rj!?{iJ/lL^yFmW?"C׆i*6 r'%٣w L.?c":(U>ŒxyLr ;==[QB |*@e%Sϙ`Oyc{xFbhXcJ9%7m傿,IR4 7vfXvW6ΰNE*.kt}U_ [ s3fJ'QaM'-ҷW+MW1莆SVD/B+|.:ihp ؐr ]EͻJK8gkCy =o).+e5ăGmpOF Byֵ 0y:f *:Z4/3ח뺈87iƕWhBCfRBb@vJ9k{kuS&x,f8ιc%'CRv rB4\kė:vdOk wsDb[ϽIsJ/G8n+j%Q*MdtEg Lv -px(y,l0Yy!2V{-̎װC?jۏ>o}vq1@: u8A ޣW>}OW"e NTÙnEbkZ]l(}z & |pÏBz{I׿,[,hK:gIزo !p'nH={rX܏).-_MҩOyA1tb+zu3?ԂD (apDa0!r7dɓGM$6 D'Np%m/ ZCYHSFCd;1>Skj`q{xF >KW7ߋ|Pr7wD'IWPZ,I斔ؚ(6%m(dUϞ]?&+^,}DcQHn<;ȸJl曎Ϥ)oD-I{l?dN@Qk%eQ_]Pi8!V]msy4y"kṵq q 6+2wgKܜg&}EZ[ñ!*V)Y5p􋴟JP4L|ިm#NhL]hU:$ÄYcl_޾"o'"aT/-۠ӣdz-?0V\oOrlWi r3״Wq&ޗXRr&:s,6 $~"}ĭLz{@1`!5p)Od[# 0DZiB򑃺9P]#♘lJGm[]ˍSɚF FZj>β#(~b/~Z>Ήb ߝ-XK3̯+o=HD ٔFb#wUoC@7w2hætE4V%ʼn&[+4ŝeTb!v7> "BTbx5>a0Jz"n3 wksA0Pkd:|"spޡ1 _GHx>$$zC#P,Up/*6ypM~Q֘a ];Hi c.=JV 0rfX8`:HؽW"& L|`GI:iFWZ>?No,!)$ε UX)~NR5XQڽm~{Qɞר "EEO(X:Ip17CZv} %8D-md<ձ=vTůܩ5*ӘOm2ǽ9m-zU>W΄J-4QƭfEPi$ZKE+N/Ѩ7XJKlG4ixdiB\ljkPfR9Y+JPdzkDNm: !ϴ qjm,%"?(S?̽a9>11~ Θ!mUNɆe+Iz/FZ hXUըBh]Qno+{:KY3`[疦#0+o_(՚'gBp̛HR /QI_lϺ_w3'Yű ؊]dEzvŒBcb,XiO6N]YoNs\tc+~IZ7J>_bi,)5 V"%ZV <" [)$zS ,_2iP|jmsPQ%c"b'g_{FS^5UhL^%$ kv,ju. s2A~ w3K`(YF=#:A>~ñaۚ RU,ރg$9lRv:.d3CJI9̄IaOȋ>#>4*{K QyL#lG@;ktEezA;RgdJuaS&Oc{[5t2bHU:5*J#i$$;(oiꌙL5{U >\[yu*X|4*E#cFt𢳜⧟w0c\w8889u L5by"Kmd>RA~<|< НNWPe?ʷ\%&_a?ڠ}fICcp,Ҥf^jJw= 锑-QA,c "U= VQ*׹/U\ 7_'bkr蹡+Bhr_|L1hX[:L#4 _6Bᓥ"gi $2&zsg a ($pt/ 6ʃR_g .!:S%fy.+,5(-sp8BE\10_]gz`F3սh>x`-pS}7Κ:``6cVbV_OjiSE}nѵDn@cTz#|wˁڀ,BM?NZ#EefYH/5BJX+q5:͞/'/EnXp $*E!>.5"p-Ovm)4XMW2`s K Ӏ5r]L>V\Hy CklrΧLu9 ? M ]Ki:l ۸q("qkG`Q6Xܧ^ c:jy"*@ gWJ73^nj Oj;c16pB 5ND6QlV|n -B+3x4y'aݩ|OGGY\g[ <@kIx ߚK߶3jvlPn =du)?n`>'#j; 4AUy[/ w]9^(m܂C KW$؏(b-\TZDzźg`l' su4 H Cۏ l( :l?7H&09@cg&,K\h)x;Q ^k 8鈨%1I\NFrP&~Xrkk=ZmΒk+bզaw5n12K*,Xb]`kg>U-UT9~e[έ&xl_x1DB#'?`dp=Ywxpr|2\C )-b$dE ZU -3DUe, D#\a0_Ӌ:]y7prQE䶉::C"R ~ m2zRZ)o܅x`{S޴5A[iZ ^oYAAHF`D.xCKUQ@B3Lqh,.@M c!3L$ /6YcaVA ܖ:-x82ҶpKvCY辵e7kǮ< WNàF:DXD+ݽG=Ao%!"/:H}%<R@gX7Kg`tB"򍙻Tʖ:hL}gB:` ?ˇDtXDk2ąfw?K1FY3HzL=uH U$eN\ʓܾS/Ę; 8NWKJ-x5*JqφzXXKv؄h8P>zw30-cJ7je{fX4ѫoBۜ֨Fyسoej:2Vn1_+;oR"06>wpJ  :й|WV3@ kF{\xT1b{6oȕk;+*xfvpbKE2VC5]h/ #^HF s3n[!8Q A(**E.3,.6Ķχ]M B^n0(RmiJ#t! Ϊ"?\@M0Ao6R Flz MVCu$ n|NcV qC=ԇpT ;uSlL+Th':`(X6_@ծTD#FKrx"‌I7,FHV˸Z3}hduPaEFlhs>ڜ+f*lm.ָ4H6[RRI1Xw Lp*&G,ZCoX6 dW 7 kC׮w&:vXIj+tFh ոwђjJojy瘬4ۮR"B<dr\a XLY]c3-i-fvFk(#t%Y=&G4F4 |''iO|?Cdg=P>!򎍳S%`T/\|nh,"+j%SHځhV`҆6`";6Q47=6yLp¿ 6wӺOL6vqb,XTlOxg/f ݂k:B1|f~IQȒr _|ejNm=Jr8p;K)Ɗ9tdd^|5V{ڈw& EUEĖJF_n<l&{hQ6 WHsaD s y g~MJ4#;` Ύ k*'g0otWdI3[' >Pm^4*`׭hQ D؟qH2|ymKQ6l6\Vi]*5~9J9!b}vv~.TNdAL87[Z-NP%|֕EE]>{mu^d}]3.rkF'kDC4|c nk9N阃'Dǡ%bH杇N0 gv٦&Z&v D@ [*#w 1p) x 혲~RN@Ӽ%'mnzA^NJvҞ&܃uF>zFܳE@ fʺJҶ;u¿#fڷB *DӘ_@<Ja1ذ 1"b8$O,GWyc6,u*ʥ"/lLx9!ŐXMh|:-ϧcyƿ Vmt>1M?݇FQߖž3Dž:<Pt)T@9Q<"ӥ55(":W}zCD=Tҗ ]:2ÄQ?ڧ0{Yfz#MFڶ.z=:|6(U8#/TW!:i6ČnzMe92̆2IO 8͊ 1paU>tR7+==?..Jt~WlۓGgt69Hq!Sx)Pl?Ow-Hc+- |/&[{\&VB}$Լ;ы`[J(0*u}A{gP\.)qU0-wZH,:O2lԕq&nP5G7Z3ҽ!̂2G{3 # cǛS 9~Mٔ5(9#H)(?MH{KN:({_jrfldYCO޶x/57^V?Z7nl9-u(hcKI\m{LZG4?8a/gQ%lX5s޴ +g(.HA蘤G._|NMt)dD6iȾEMed 9`jX/`eWވ7тm6r2CX!嵅Ezw` (n"[ K #+:kX%ajh"rUF3^;ji z=]Mr8ʵ"Dem%:LɊ7|k?5̷p-4hb|$sXƤAhͮ=6 縧4D D1Ie}s UٺJr`\BthРx_3DȽå ^Βh=e$|!@$P^҇U\ A}&ϫS@ʳU ;`aqe' 5ur qmf.:1Iʅ۱'Rjj0 ZB=oy$>^W~n\.>3kS7=kf+e,|reM(R`ٓr[0V:r/xfpIe t{|g@SǼgyR!bju-PgVuÖVk,[ָ|iJ[g䳾ea:?$zݢM^!9eL=4׿ z&\]@uI&eXvcW^)⌞Mـ Q8VNGZ~(D[Kmq3T"z\F[YԿi$1M 'օX&i,!+?)~pe^1IC.@[2UL:x'@%ippjt'LuEWY.k`V^-8[#JL,$m) UF3Q8/J§u u‡~;f7ܤD39CI;?cro=l\凗>2XڙTuWE<~`0,[*+zP;SDAMqE>wWsZv.IDavMxF#n娊*-['fDZaIW6[f8#;@a#:#`3WMȻ|;xXc*H -JԌjۢ&`\w)ё|!a܀2}. D@~5e䒕J`bQX !;%~t8})++d`Ǐ"?(Czr^ҹCN2}dQ#0?^eMV~%3'AubmhY47p`vsBDַ ONcĻ U$%1{|4\="r?@W,0J(D? R |^, OԥdM9rp'qL.+^=zd $oCK`Ǫ9 蘖J35?$͉h{hࡶުOYlc4=q5'Vf`EmifY۱J0b?w\:H2/UO6[k Vn jr$.&|ӛ?X6%ˇnj txUV9`S&ת@Vm\5"wTQi_Zڼ'ƷYąB+֪S Tn3^W6ObGJP%\gұ8VC`Z~3W(kK>-ffd4.)93V.h|\A R?]v&_T%kEtD]/gPB8PYYxHyb=Elh8cpiHeRgy5j(5(3^,var>/U,#(H?,T&;Rb%+fn1f.`JE lCDFm D|D!0{kR2`/ 5eTro<:egSa5!-#uą(^ /V!jwfZrLl⍸؇9']Ck=Ⱦ0n HEqN`HXb͏_Nf=^ѵWCt Lb!;$1xYE]*tkPC/"}YyJ/:Tզm-u?M'C~WAñh/MhH$&Mq  L_`-P̉QVe"J~7|Y Zr(iN(ac\Ps9Jȶq ^:Ae[~a&nٝLށ%BmE}pln[I3Yd?%㟃2\=%D -呠<_s@0Jokt &N0|nEP6}hoj~(yy<~؈f2¯TR>zeOu,0%돶>pH},!KzPƛ7ePqtC5M%cɜ pL a96ȟ9@~>"ȇ8i\޷O(P2SgFY!J 2Y/[|Eƙ2dBvFyQqrRB;s>sT(q_z0|P<O%yB"e1j`y./O C#PA0P-5x/gJ/ hoϰ'Ꮌ̆ho!\]Ož~p8 7d kDn!]3n{ ׃:7͕\M=ĤdD ˫ڭۛA5^_A%_ sɭokdz$Q8+) Pi &S8 8OX&](R!h m9THR0?ʘpJv7~O.9~G͈%l_lr'38m.Wqn'*7hY6W’F&q錥W8e5@Xp4+My¨(p@,,(;CyY)t{mdLjf0arx LAzrԐ|:5I\@N @@T3ne&K,P)Q6{oﺁjpԺ,ld$;>dJ” 9T=ZZ=VJF}JWyeTbSu,7І=͡QriPTrnu|a1 R\YE8ȡ(m9_tp.{ȾE=bv߲s NN[چIP.2%=K]pH\}I:4ʃ 4 We1i.ɨ>rNF!jIj? ؔ>MT%_0/ Ջ gvHjMVS|R9]9wDΜUD*,Ac<.>:l0QygH{d IlP <޽܍>M"z`ULH><#۹PWd88.B)p~qɁ ԗr*xQd{;,$n\3$ Kp^>,4!(cJhu#'uZE<{šF:Tsԇ_1;8,+wOd[V]/bXd)̇/`81N/ONɎ\G&yDp(CaNފ{+#!+W/5rnsզ>:ȹR#y^AEN xGazN1>+bFA v-P \\e"E'a]8aKHI}dξV>7/ bL.y[9DUVJw{f码'S''/^b% |J/Gl+[@-6JHBGeA(J#ޮb)D-RzxB3Cs1SPa/2|L }ên`.[q|ŸlDp77P,׵88c׋tSͫ~棏Oc}<eZy7V OblfؓM@5ebe3m5]˴B^aĪG%f )6?'Ԣ~%EiY77c~,L(F#v]ؙ֫!ݨGm 㝃!U_:<(o2I!4&dqP;iHG-/!/!+d|ZׯVSTb@ty #`c"S2SӈF.4\2<_J/ jgCWSf`\~\UCoH 5]c!C]T =OCmPaSO<8 mGaͺFÆS7δtnr n@WrZOxIzbSNSoOC=|J1nuIFQCMx&lsJpp5㞂eTP cCҺ4eoӞ}i~*i3}\7 Yh?\o22sCMQ n0UH; 1^_dG)j-03@|湖9)5sdWIu9x9[[`/~)Us =kRD6_֙l±tQ5,S(\?Q}χ`AO-Y9|]soRGصcXee;/pk/X$6x ikQЄ [$W.kfͻ%:wv%:(9'Z[ZSJa e}W(@ ѽ-_xOTZBzIpZ i5yڎ4r^8X׉br|/JN8 d_ۡu:B7U ?aM2u1N(NJ5oQS1AJˠV JI% ["¸D27KL׀v eZܗ٪桼DL Xa aK<  &׆&J$`Á0J,6l53zQsȢe'&3U?t`35_աc ")y=;E<ެW+ic#A#?73Yp?6׺&\X@s8 p&}gO\"RE~ d-ښ2OѝV= p ɪqӎh?FCf N!; #]Oqǂ W ꖏ:^;Z|׽2Xjb>Æ3ęo,6Ewq M!Tl|PpRމ7~On\br#VeO% `0jnJ-4T B5ԡTPh^>Ǿt[!, yѤVR,dJ4\o~R o @<`[}z%Vc1v vxSR%Y4v=n:1owu"tpP/8=D9oÿ́}FG渆w&dW׼&*p/lVnT}V*1pq|GֳpY*DO{=kKk$׏  apvRO5}z O/qy2F#.Wv9+l/*(fjj+*K>Log-يɺ:Y'OO$r&U AGawahy^ੁ6AZhN!i67dϴUaiY6IyyYfƅqTLׄ` 1o e){Լ.)?YnKd%@S:;X7C )T?ܫwC:QsXdpRZ$'E ѓ3n7oL }U?)~#M@\+#sFr rȩIu/q :Pr(n1хGqh3``A`oW/`Ӌ^"IZ!Ii3x<&+QW$rW2J44Zf=O\|0$6kg(Ülcx1MV}@Ewb(sػd#[PHpڮ\ƆsZEW: Ԧ`q|De]y.c.0 &`>Jm@*E@cI]7BA LwK']nfl?1fZxsWXzR(.5HoE@v0&lH#@Z N% hC?啛*]u+ B4fd#ףČWkғQ;4>),j'~l2]{2 2 cvVBp=g uwNF$YWp7Jo&.wkdL/?tt Yr v;J9C~qSxo\'!j1!۸p9`yڭ:Y97}ZpC6֪$2(JRi i$ag>dq@x_+ nַ0 A0[ΐZ_eŁ)=t*6j?rWU&l'{vI!Dt Q".nGwV[MCٔ'p;U)gJBmu6viSk%_h&:m,@_f ܋U)$n@P-D{;B?5Mt~^i3}G0'$B=s>)|b[r|LMѮ~bLN"d'+G-q}e\K\݄fxqUkΪOjϏ-C*f@qEn-F_:^N>(ي/x@w_I=sI%zuҌr:Q=9ʦJ>AU== :rmV1@2'z^EC󭮁')Q.a\rS=GX\[YRw;e' 7^?\J6d!<]qO?O&$xUiGQd HМg|[IޛM+ W8H0+%AqחvoaU 9IU\GM$6Zvv&>X3ӂ\Um)O0@VM*@]$N!RL)+xMBPTHK[ 2*9k I0yt:utgZSt /O=l1vM3Y.W _6f.PrU_"}erLVħO2#MZNG 5*Ew|2n_K,~p<vIGb:r.왅 `z{D z &gU"l HX7rrzw}j3fN=nZ84"f{!j?zNDBk@j#< hܚ#sBΐb5BwFv6H TAxj!QNLOJ!Tav5?7Dt<OC6"G</%dU&Hd881Vb*mdWƖIsƳ 1481Rac$ J1W)8C<&.MFlԈ#$י]nQY) $ףH> <ֶd(5i\{-vqK_4R |sytbZy`G'5v%xv:b)1YKM`F{ f,D`T~*-/:l /a.}L^4M@CM5-1|KTx~Y^t< JT`YxghS,jtDh'eD?]LV"F_[M̪`]>8Ьz Z}zB'!_Ri,i1{f59Ar㡥pC3u_l~DA!s:FGpۏ|\W7jA'"4(I%&%[k5WffO9 U*&#K:W.)1?n`#sEZOm ݅ "jgxAm.&M&VLݘjW/&$*T`*q><jkĊ]aFX=sS1Cs7dX+a}Ϳd3.k$1 }iyO6ĨiobDf;vQ7x/䃚T/% T|޴S(z౷N2ز޲\~!ig#s}I6)0rlVZDkZ+[ }\=骣6LmjniH]W<8AAۅ3s|U@rF čBP⦔5ϻƍ+6h&{c"Ǯ 8gJc}-8ib>%? wo9h-* V)ZXjh m7\mqvb ȡ-G`1K{,y`AoQkiԳ"cFi%!`<"8:(L&xZtfaY3ZU[#j蟇R'cCW0(DޞUf$``d*vܣZWS@GKR]"_'܊&p{ȿEhdMq5y;F^^>j--MBDc|䊐RWeuk "4CMPw[Wƿ{ c!౥ٴnxqxfkm<I{IF(ZوJ_MRnfQLtu~FXDz`ZX kh]0wZvݍ*8_֩ rPp 2NTO>BTw b0d}\PY2@JJ9|%g0t) #x=؀DdsDR*.V/xےbԃVTe;Ǫ Yeg-ܬyi /gs6<7}<[gt9pg1'N3'1V)!;+q˼M64&"83U0yH w-gaxr]Պ$bĹ~ӫ`AU^ &|a=˩,.TY0=>;*'% ]%oYX_qp0whCF|lH6-!9@h ^c3&XkQr[YYN!@ U`#K;b; H 3JiX/v5# !V7^=K{,R*Jٔקӂl'(ڽ?l|]I LObz7VphA/)_Sð>d~n&ML 6 WF]L y])AFp{c& \D[.=^NuQJ<*IQ&jiMlFğB24hx [-ed:zGvF%1c$Y|leM|jX:d2ے'W>qx1EHB4Fv_ 06K!5+z?y *\ GC'2q]M+0 q8S3x?\[Q3KGxa* O?H.ak`PX˃>Ws-9r.?񇝈>3~ql G߫O++v356VފwI&ek_ ^ڋe$?cV:=̣8% ""HZ' mb҉$-ah~daWMއ(M߶jSKPW&X 3Wzw(`̵7F˟[b8D1$j<)kǼU ʣēXS@~A_Xv cHȞDΑU2Fd{f2nt}\-E^ߒWhHa3ac5ɓ"-=!,pTa\`Y:8tL7>Z˜_r!A_6Pk 'Z{]|k?@]憎gA;6Iy/LM皤 &qoR Y!T4jU7`y6$xҎvY-.tYXPжt` k2&|rGW]2`ꪰÔ7f."f NktZr =8{ uvL:^C>'_su kuZc5R=҂RKħjHnQy ^#[=il}JzwcK}RV)JʑI`X=Ii eֳ9ysUĐ@]x0j_sp1^M-T?ZXcEEŝrK?̩QT Fbܻb{gjm9_^xqO6{ |RֻLEqz8kKР1h;#Yk= V5La/heޕ:6}e_9#@RC:b4jI⿞$ܽcSi1W@~>ّ!!,CA}e!2!KCa;otCI/}R~B-'F, ^D[s* (ؔcH2x?<^M!ldf̍PV|$@j`_Kqn-wsԋĨS$^2 SJ*Ac^迾wڈ}ɾ5UpH{W(B~ ĄԐ]F'S`rph{-{B\:S^7H(6J⬷Dw )6/iY U[#2d${z %[rhM!׎F 嗴΁q#7]$~{!UM&WUa) %UCΉ;Enowk{MؓRJ;@>L6^֙x<(HC TXR08)td̘#wcJKP੃chN>"N6ǩ GgG;Zk=~`*yb~>BJ=./_U+o5-FnAcK #6Axj2v .-yYj$mZ)6*q?"U-q*YKy|x]žnpH11D#Q\E6eVD:ǧfZj[Xg}L8Ai F? ?zw!WA]r_2EF#Fn_;BaXbb;_f؉,yWk}m=>Hl߯:rV6U&xtT(O%h\'{gn %Mcjb鎻ۧGiK98*04[s Sy;ܞ&g-EƳ"/&6]G> #a$^b%tRWuoB+`H @1:- S]Jy 哻*6r՜ZY{8Kc!bloY*/{Cba 0+ߣ[̺ h4>BR*eׇ@ByJNInÄe]I)H 9(ڛ2" {/N`{}z:wwMtnd0x`0gߧm"] j\QBDXRX&0O >P(^CMe$((>dDt`i/iqZO{.Zg&8Cd,rNRE9-Njٌ+wv!p$d+`3bf;uhPc\|fcYϩxa?1)3^&fқDXwtj 1> f{܅6"!q0zlßqơ\⡍FZCxm%sԍ i@ۯ1jJ8aI7RCu3(Y7YYt\Yn/ڙߺ"Fa>5#l\Og8#Po9|npB1]}q < ?c0 WJt7 ܢ&ʤJǻ4zw Wy<;Uz-8 dnxhSODn ęJ*Ⰼ5V$K bb 0-B`k$ ZO+" ߛfgS]\y3z۟w:HPùGx=n eƒz4:% TB}fǴ2ph0 )( g0<Ө4goVN !vkFƙk>{wG(>\b+Df?1Me'n"389(x^9eVF4v gR@o/Qs [?mt#fe<y"D?o蛊k#f-={HGV7l=$K Υg>eCk0TNEb Q-j"NARſxªb1 Dt*e 2ܖn d: *{>El@ޘڜw>#$¹h%ͳ}'Ӕ:ʓ yB+c#E+߄al&ܙDr+l@p{4{ xy>5kS+^}qȕ|ǓLVi滠% LwșFE@:,p~vXz/7&xGs 8ցND= [ [ Uf@8\ HLq`ƁFl#:SMXD )Ҿft2vI6f3a !Ԕw5ϡ) J܏ E20y9c>bz@ D<=9UpZp:h&rC;<_2a@)ֈΓAg|nmzcp.AX!3*7yQ?96jc={7PPN"U^+R#iJIlԲIw aBd $xH(a~`_C>m|A?+QB(+'D.Hi?ϐPB5[a7f2f{嵳A7tD= (RK$7f3jBQ\7MH-tIuMmѫygďHjRAӼy=AWnS<oup |ܑe\CjpaVQGNr%yb)uYR/|olHl W/4a% R>6Ŧ /_X+o}}QB>5` \2<)rr D2\Z-·h`0OFl[s:otġJKI¤4s!Ah߬ߓ^"ZeSڈ;<`dbiP4&PѥuKB/,s5<0ag)26\XQ*sP*8J>ꎧIanv-^?m[O̢Ѫ&~3Owt5b!@9}S@$λ hz;6F_IWʈʓ/ `&{_/T۽ɽ U@k]2kj߻&͌)ȂI%_Wp{T!Y҅6XL n2PrHE30QNrJ3dLA~k@xg?k2ㆲsA# 7قJ_x6NOqyG+e ilpFҫbG-!Iɶ$s5}/{{ϗ݌n9 Yo'C[IÔ.gIl(\QeW}`iEImTP7YK q&҈UGj9x/&+eҦA ejJ/lanŎ YJ3a+ nL+$,wkc7Jd"1ba& m(K 5Hpj3LPP{jE;<9zWewvNVk'h){F?bjD3gڒR|41eT  JW48[vބ@p]!YVݫtxh+d_U43d'4Y/KVhZ̖vtOU-q3p`'y29b J޼O^ k##câ%^L$.&86t$4Y< { jClrA?u!E&_Xg {jBXŧ 7TUJq5# UJAJ/#Vqi.s䋡S4;Z c T~.K`[Lї$ $emHi$iڅs@+1#hoM/ˎ 3;M`Ϭ`ӓI>(Y]Ѿ+,s4KNS~& >N:Fp+ `.j, 2QbpɷuT>L]̴֫qqIɬ5 6hjv :’V*dQrV{HoHaGԷc a:Am @6?%fF. ya+{ʛ63$yz\6[l'$=.vj7%,Jt]DdZ.d& fI;,NO*lnz/e㗂R1.`-"Y\iLKvd[@ UH. ~}Jyyju@iL猼&]]٢ۏ g3ABVgkn+;Y9ԙT}7C! SS D*?d(D:i.UÔz4֬7jS m<3[Xm#r/Y>\т`0O%u1Z`"@fyw~.>j+x;C`Z[!)C,vؙ 763SBƂ {4g6:`6< b9/Le}JGXTR]VX/ X?p3#4PEضCFIovZcx# f OĢmp6f򷙶ebnFxTr>JSV3 vSQ"w$ϹJH\o:&ǵCDAHYtdo`4n2?'/V{>r&eݎV/A]RْuL)r䢰Ȯ8Ɔ k+eɦޘgQ'M0܀27}ipCԐ^saRR~JLT[/Ɲ CaKvUVٮ) YÚ2*IΨQds1S*d:t $!*Z 8QD؂#j2)٠M*r0Y϶*lLD.S3UJZRo/j,te3]0n<~sEGJ-;#/X_,F)?> ︘0iYzPT'B RVZ 3AgE\S+1V)븐ʪOFөTv e¸#Nv|7`% ~ݒaHo[5zɫ(ʘ)wHb31l=inp/]Zc2&*EjȽ1r,<з3DwXۯ;Oqf6^2 qIa(Ts#.Gc_o hi!UVd~"f/rTG8YqOqp0$x4sǫhI@. 8?4xܤ., UΘ ]i?iޡ~ȃp|޻ǖ:ܸUMߨdי^;*rZ*p, bt A&D\m>F@X,e?bF 3 grޭ>iB9rZ3oP%.ΘILbiO&Ϥn/r~4ԅpKU|H^\sm ( Fڙܟ!N;W}+>r?r <؛WEOI7#isL_pz5&"Yb ع6.  %@ A4qvy.GC^4TpqpیrI\#Y2z6η-鞕`ոy7e τOeҫtTW{pua&|vJ[';RӭC`k}@isY*ǼȊWj<  U tee%}fp& [ ' H ƅƢ,;-w惕\AӖhrPvK1 hߚANx]}uC%*smp""u$ \8M'U+pWxE)pH@IT^ @!G*B=Z0 ;U0Q@N/!B<;ވӂ\sX{RFa6gW'j|l yh}&^"b"}2 kي-lZ#ΰeMhA|Ec}LD␙9 ZҤ@`ovP ^24JP ùf4j8~ُRx+39X.6AOVψ `e]o`8pTB&4\ݫ5x?`IqTưIp.HLی A~vLk/zSPSV 0YQqD(.Ѻ6 safjhmQ|CrX¡U7TazUA>PtnThƀu+[ T9r[M@~4m[MNB1Iu_ 5]5^`>nc JK$cJzV 5vaQo!cqv -0Y1DPPd8z钠1ˠ[Ca&3@ifKw-hCcfqvmisl:X]mt3L\|Z=AEM՗/GOܓRhlxrIqj"x>52:F,{][T|7Ò{l{DO3Nh坛 A>,a#eFG)/ލnG(ٝ0ucw' Xe'b;IanR?&.PS>ufsvdD}0,sk>ҹa:bVS0uIY\/\"hnFRSȬfbwWep>u9@RGvT?9K (ُܧn(;mE(-c>4>Q4co'kh=#x [y)bDA m2̧cg3?e(i=Hæ2/c"ݎ_F ayFf '6#Jj&-IF6H`EW=h) ob6iYVOk-ZDqzT{4S+<_H+=O+&+vY o{k'9,Pj>{xwt9X;(L Ѹ3r`+i$*X6#skvַuVULRQN n۹v8룷L!DϻOj u%, nD2nU+-gy4}PC? \ɛ,Aj^ E9.(m%F̺~n#dWsAFKC6 y]N"d6.a֛ҴWIű>A4IAxLmvIq-wGV*9k IyݹL: +^۬d2LQgֿs \Yn}5#72?|uycz^ ^rh15͕BT,mH3%y,qS'&6*d΁oUd~싁Che2INadTH^CscjZTLu34|@jqd#N2eZxnZ5W:_.s.p1Jo.ڄ4AŬfJGqlBJ.WƏ6$y& ZaǤJNZ a>xK4p/JDϽu 05X߭uRX5p(V-djv}-D"aޯ/ӵ3ڙD_WMQm}Зv;NJS6(e6~7CP T<5~K\2*\-:biL@zy[MV*Y#z>d<0L!QM3UѠ᧰Hu R6<.h6tq=Cyr6&>!\ɮ b~a$z-vwvDs9V7lce. LٛFGJ6rS)YOI_c,os@zS'We5~Qa(<!(VηZ3{vc\Hq;Jmߛo̲%? 335'|C^Pl HHlo~b6L&3+# 9l%iw(eSnwGPm5NvB [pi;ԊMQ Vѷݦ&ȇTwY|D= F2dQ&XPo-uI7HLh`!!}ѼZ|Nj!-{Ӓ;_=/P-qJq &w'|-j[SR ~A^Kuvf.'Hb+EX{Tdo,lKֿoqO"<0~8igM(kΏ>5R_l\:Y/㭺[hC^pƋwu^[m{*,fsԨNGOq!s@6)m8OZSé%st{e292.^WDIb0p Rh)WͿx6B9ջBWMUI՞BoOApͯ`KY[ ]Jrd>;aVH0 9r/ͭvI<4-cqy3W5VspW@=f錀˚Қ2Ў格I2p\|@KɖQ!U:XDASqs݅h#X8?IXc;i%*Ў})LH[Țj•-$}vV+bܤ;Ovb!cC&p:mz+!e&Rю@R܏)w풛`ڳwc-v"D$־VLRwVϩ WWo?Ӷt5I퍅BSSo$NXj +?I'ce4HjgN]9r^ Ѳf JznTZK r`?KzL#漂4waIֹ)Z1Ή)gl0kb(wnDJ;si԰y-5.)!l۩8"1U7Tb:We,=Ly06Kb|z;2/$n/kz=4 U ,=/~PsaR3=QQҍ1V8\ct!UitC/Lf YuחϤ$Xx^ fx~e 5g6~̴joC@?M(mOKzb$pdsB@$QI $´JD ߮mi(]AW%%I1<{>k@ʓ#Bv.Ɣzϸq'!aP6vdq8(-.=Qv|lVQwTcqFE6SE$E+-ZNxl~Rr`ؽXpz:bm־u U~'w8D/Ã<_$V#Dx[O&ϟcz d_GJ= }3`| [Me n\C^ 6c;}QF8LHR2@Io! 5ga=F6&[e-JqmU8gNSw7~JeR;=y5&$64C4ѮūnBݚ(vϿeEԉu}uB'U&xl2 ]B~F8m226m Wsڸ)oe+/k*w`@܈ez5ƽ(.JGP nE@|s' 2 Ur{\Ĉ*>=[C(C<~a40qjݾgƙ*8]41Q 5^ٰ7x 80]͖UI alB2[Z2a7͡$Cj3kr_C%r2\x@awbLnr>O~BD"JVˋ'?mFja|}\<7/|T5k{_l(%#23k=y7!>wF AzsLN4޾"t2(Y|t7D]6E/%tabfT/a x)S gU% ^9$Y6ÄGrsu.:_ܷ֏ha CwFr>]ٷ>s+x|ҙjB&%#m!-Zio:'~=;E7d[y F|>mJLso{m3* 7d۫!mD K,dBHbZ`2Gr5D`f?Ir:]c@Z{ %S}HxX6sJ}PD7i@㓪FSN1HX}M؀|9Cʅ%q e\b}Y9X1/NG?^;8>np|,~_)6 ^ifN!YGŶTʺw9y;CbO< Y%b-3D05]X胔}OrkM bżS+m$Ot:",88 hexttd$}*hi;}GցoC>q: t7@- &p6Qy{+pXGoR+(Ѳg"15.Uի;~z;cܠN"wl$+RmI+S=Hѯu*@1/h$ڟD˂8#`!;ͪ0!E߿!\e1 #tT(Dqe^,9IQύ>0 YZAER/data/StrikeDuration.rda0000644000175400001440000000103613033553053015424 0ustar zeileisusers͔Ka_g =DX XǬÝl e[&4+ t "Wu u!uA@ q4eh^"x , pw <hu"C^qBKOFj3Z..W=]uYoKǷ;g}l=/>pew/Vɇs^ڃ2WSgksI &O"F݋L8gDflٸ_S7 eP߆;1I&Ť TdgC!tH:$IC!Pt(:ECѡPt(:4MCӡth:4Ca0t: Cçç×.s AER/data/Grunfeld.rda0000644000175400001440000000537413033553046014236 0ustar zeileisusersYiPGB0dGFD?0 3\Q#h@Vk5bFn^IܘDJ4MEM=2{~A8gfPNFi?&@(a8gl5Pcb5_0pǰg> >byz*UK9ҫs@}6-E=+,Xj&F|^B+g%8/̀O?18xV=)~^gc>SeB_ROݗ\Lk1˧fwrn"~\XoI3\`>  OAO*AГy]gXϪ+Kmנ;">%7/~q]2v+hKyOHB\bc >ɠk˙yӤK4pUd|"a#зh#o5^O(zb݂yļWnAvc~e2^_$q1?REZ$֩ayD|q̣⛼~'l@<~k?gMs[8E yu?/>+ʸ\^c?6Lmz!31|a;䊘;WJz Kwe{8M<03s7 zg@_:P㿂0yf޷̴[B!S@k_X|x?潸qil`\΂#ﭵǙ kgz$nk{r2ggQ)r5g)I߇A{bI!@vLS Ph=Gѿ{`ut曒ShWyd_g C O y Jh?|[$)X}?"(*D'w1aHrvmqMk>f(ٮe:"^\N6^m|mg?عumu7xW|:-wHϦG~s˼s0o\d){n-f7b_6* i GƷu`7먧f&?kG1rYP3~Z '1O9c>H{zRa4 VLܬ?1ƽvb߭Vo : _2~X#NCGؗrA$@'gOy|w)7{Y"х})d#R6 ﻴc&Ob ń0W>o e5N(kBQhݾޅ [S~ez2/5Cfn<yѫGn}yvѷ{#Oe5.-7 8[Snӥ!+#OqQ8D|WnApi>~#,;@)~)vA{;}r!26=t/HTKnisv%' -Ca^v~  ᮍ hGm5|ӭ(<';f[r&Z|}u{sX8)ڼ̱944A ȔSy<#U?\59iZ8(+`0FA:I}I6Ԏm0F.aݯ]ŵ4H%|f:k:x@^Ek%TQ8. MJt,=CyV m"3(I-Hmjan.ʮ QFRFq7n#V@F8G>%@4>fhexGKzF0jM@D##n%yLY)Aʦ;}kw743 Nee vII[02JaP4LZ;ܓmF? Nޜݼ;} Q;ĻLߛ牎PĽڵ!BMoTZ0*m-??GٮGJꆦݎ>$N=rqKȩopCOQ̵3+!Tu}*(LS5.hWz[6 AHV5*u+Oc``_ND QN(% a_+wv t?Hqm9;OhEx[8":'NאX\78> o+4B'8A:EQԐ91͎Iaw,M̳=ՊN8CnI=Xk{ňEDžhuB6K|Q QN"H/HwYn•)(xR3jW]D)^Wn[);֞W G]ݏ $(]B IdrEiy\clJ;է\T~U@Cx=r 6xk^>XE@V $j@813 9zP#F]PN=B Ս~y24u `<ٓikUx WKVUY@lĚO7/JOі )dyQD /<@!FO[RsDeH*-˾nmG֖'%q n3d|VS`N Ŷ_"Hil,ci sQEݮxcw$^K3g VAkƬ+,q=bܝM h3دbTt/ ӘC4I蠽nD 6"6i %U.*48T ~*V&LD4)J>aR'Y$a=R;N!ﯯ6F*T n,' "fBED~jT9;[?Op;{nmw?dPҨ+uKΧS/=J $tNnnb0"E [,IF{dy)J˳3s;w1 01&#t}쥰5$.cU{5㶀]T#Q!gz搯zh9r:7+N&xY# Gv<nTکEXUn+CjFHE5tL(7>)0;4ټQ h B :$Kv&ٱgnNQ5lE< w؟R[A/?fkOBm2Y K|#;\< @_ v12IH!՛M]|( I6g#yEd eBy j'xL.m;@ BIRnx Ʈ_ s!2EOI0iAaͶv(;ջ*[d-?'nNϣg0a}VcCwQψռg)mUM_ԅt9ds, tGlvIvF!We[p%ZF@\i>r2;ã:"6`Ԛ]&+ .z}zB$:qC["D?; 5apѵP1?~Ul}TL C^}ZCS!Y>#N[*T`p70W@(b5V4ANx^^p"ղ\,Gn0@N@1rGB_@\J_~$ )QkfBtrYOA㻺o j@,NQkR9O+|oM]3!W̝p阢5\l4d ;+ϴ-1JI;qQ{[ tÿc5ѬU/KG@QcVgDz7S;Vw>y{lkǎJ}xb~y1"-}kKo(P(lNNbMO7<}&ӕ'h {./. 31gN}%g|i*iD[2JYŝ%JMlF8X öx0"AgJ"!$MeŬuPB?}> &ԍ;OУ7C5з{V"\ۋVIS6my@y%1G#жgg?Fgd3X^p— @p;US}(2oChk\s*KZe3m=ߌ6!\z4RѤF7qᆿze4,sfgܬRr_;".o!Z:eP"]3M -h[.%@07 D$ z+Sڀ8$F# qS^D+5By盠f>U?4ho7?L8t=41$j%^K{|JK^Wp;_zp Y8t!x&h9 G1K˜R&!~$% V€%PJ#]^Gځ*Aȓhiog{ߪ0U8`żI>M:Kޣ4gY[Cc#E-$)&ePtQ>ˊpCs (ӿ5v7y.;p %ûfr H?{Ds joa?ߵ}՛yi߸N⤠ 6$t 6"F|0Gj۽K'a2p9M8H։2HQuy)\68.Is 訏WVq6Tc0&ʚ9'L+42.:)qeجcz>]eOix r[GMuF)&mJ"$r돇0 ܧj\[;ai IKR~l- @b!l3JJU FEa;\S `jMuON=쥣/7GObxr(Jߓ";j.*6fvrk6YRNUl%Һ:>ɗ֊ o4|}d\1A:N+~Z#zk3a {9[bѩ.? z$FUjx!_rF:cOͦרbDľԲ5.t~jj*'qzޟT79`UvU:5R:kOqVr5TVeql֦)4Vбb\Q,?<. *$MBuldyͨ5&`'eXȤ5sm\Z|Ee/![\}01`'5f㨢 1@vﻱL",peT݀8o!݇θ'R{TdwG<w*uto^ Lt(~P?cG뿑NמEscRS5 .gxIR( i\g;%]ﷵm߱n<ڣ@'uXh5x;@)J рL"ߎRvtĭWRFMo-Y31=A4pEbK PU1uPT)$[±,%5GșnZazA~dbqy`3tDlh^:wǽ>g(4M@l=z|J&囅OLe)´i6chmTWW,ϥ{d"=;uqg.|v u P0-׈{=}CR4™:'(aL| N=Ls[UAOެwC* eT'&:'̱*x^Ʃpnڈ3 @!vqϥsR##JLOmztw#ܲq-aXY\.`3HmFQV1]2΂ʇi81^4A< e@䊞4 !%G)Q+pK2\;!8(xXtPcqd2MmE[ݛ_zk08u+"k_v$ѯberuL}ӵA`e^E 15u Ѯ CN?6THi>>y/61o5ueDE%Δ:PD{-7M^whۅڙK{j/q-m4U sdl=+L-DKXI?Шםu\*B0~*m᫠BY .\{BĐ.?&٠(RgJMG4Iwy+ ؖ3&OlyKvL߰C΍dq6'n&}FfDqé2pE?E׊be>Tj8Y>"ts^T ԷBSБQ`AˑǕ5C`?: !&R P[щU](ҵ }\_ l;|ʣOmS76Bt0\F"M}wcVEyIꔤ[AhD$/q ex3 &|"T&ΚtfuK\h KMˤ:--<zg Sӡdhrg߲gI\e_RL&BOɁ;z̶cdHKgff[&Rшhf'AG6.6T2lsU}ŝ鞓eQOivN[kG"̳,7e z21%"w>U>*aʚYAx%R;:rbjs/צ T%v{͘' 2Kjv /sCã&>ao8HM KFҒ&m ,h-$'oKoYv᝹^H-\+3Z@i<v62s׏560kx;+& T4+ѣk E[ Wm[tDzG;> t̓쿸g՚J,Jר%/Mi$E? b8YE Zֶ)CRn%&A4/.Yz,FM*%[ܾ0o,kV",1VSر`z? * éYc;}÷P'i4ӕ3[ln _ ɏST='Z댫:-&y4o-t$xOEX/qxܶ ^ξc'(1;R( Mر*k ?aU`ͶcMv9b e6cp͢8W 5'pdr5:@Y&^&tSD $vmT- fvdWKMAVop4"m#= W9qxMˁ¼ǺF(HvJjԄ\ DF|JnС||$1Ir5A۳>=ݛgM9(tT UQ4[ ۙcCTj`^lX/1qҞ9Wm:؄a_]]3UwȷJ-*`"7VJ"PN%B9'Ks{fHcSC,&bv_hR4jh}7F{4qS=kK?fqlT,mG/L̓ۗg5ĻEq5Lml` 09+n^?BM\d.J*OͲ(! LNH&%j4wU -rM,x*a>#s;8x؍]ڇTdrp~?RT{#:v4A#Dt~9?*V1@S߾8ؗjWXZ׬64B5(GYϭ~մ9rH?k1Z1@[wz͑$QY GM[k.T˚C#!iU"y654F\Ձ< Z~(>2dٿQgއǢ?H9 ]GY;ߧ_уn/NO=8'hhneh[rH_} sANWDJ)`i> Pvs4m KEC ‰d̪ aM.=KKbK68rYWhHJ|]u/a-_!`,l5y0Fä_PFdY7ĵ0ϾrJ<0լ߭o׌߻Á" hY% LfmTB3xxu*oK۶&Rvpv3(OٿYG2JtK3Jct˨RIZ䤷#EKpXnF_w>F@'j_YKzyn 3`+bXXfξ 1 ,Od<(&9Wj~N&]/ |Q*gRP0k:~8Lշ4cK bF\F\ѥ-I!`4.F6 _o?]Kn#d@=cw2sj`J.;XO~f9Н黴-KĤoA17i쓤PȞ|gRe./4 |Wm~ EHOJ(/X:`75~e/uγB<+x L;"%~ib?*;/̒fqrUg:laF@2A(.QC})3kwȈ!Λ#Xtʴ?D:D}Y *+}f)m*t~@/uVuc%^u6,!om{8W\%4n2!ߩo3ׯngrmWƅn&. A+nF t]N=a" v7 l)*M-mu7]NiM4 z'țڣ/q˜i/ C R'Ii]wJ%SwoH1[ၱ_%]\1Z^+Uj5 hG=̩ĸBd=>Tq6uF>7͏iF\xgoWetm?v=qfmw+30 L,WXn\.|8& ^?su_g"b\ޮr{+ǗCP >%r**P :Ġ'u D~"[ݡ AogqK:.oOKW>[1+Ph[sg'*5mxąrnL CAuۀK+Ɩ*D_!bg{ARc X.r2f+G\rTtR $NJY ^&_R' 5NBoDCXFFHl4 ^} h^B|y/msP_w-K?Gָ2AHoK3⪃*;9Ugpi6n"h^׮5= E+ K|y&2=ކ5J*|Tx.Ͽ@Pt :f2F2`zVot (6 l:RsoFk M#%l`cܠ!vvq PR4דY0 fKJmc(/ BZ 4`_Fk%c9\um1"lGj.ƈU)r260 \TvPMc-0vGUr#!T&6(h3Sј%nxgkRDU tf&b[wj1癨I*?UBr~[D!O0fD^uH9鹻7ͱT1ku 삲T8H28uZ{y/-=:V;oL4_9ӠnUNU]=K~"'S5gdoqNk OPӴQ(yIʴI;mV=E$٨jP֎VOd`jѲ\d_J$-n᤬upY Ec,^ܾ-"P q)ڿZ+z=.{d]5T0:O:^z!`{yWemQ=nv.ߡZ 2-b~'iw+5,@Y D/A~4A҉t& MŲ/\>BI$g'ģpQ tNFcЎw~^Bĥ"jTˣZ ?}[;Gq)G.PD6](mutg#RDB(?" 0cnkiHf`n'ճkzV=n8aH˜=OČUyd⾨U4A++4X?2Ʃi\wjs)#W/z (gpl:|rc28QahԸ) &(U_EXdOz0q d˚uT$шe@LρS:.\TfP"{^r)& gƺ x#^~O}?4TGQizC8$ 7>u# !7+QK DsNbܭsXXnW)Nu{jLZSye{#Iqд/80sߞm<.~/-*,9x v]07 X 4E\e{Id$H=R?0Yrw 9|O]]hXs3Q Zē,iCP%e 8[BbIbp u3ȧUފrjT9G%]VV|mEw~}`1f3BWtm`8DSORXB5E(ZcEVnfZ0 a^)g> 7z` Ne#B{b\?Ҵ 4E{i$2y|23q(r{pHSp$Y*@2md;HV! ^]^nŻn<WIj!dxqF;#9<~h߯CR)xڈ؈kC TV='KydfY55(%I| H*:0"fJlTtO# V|\Qm[ |z~:Ñ*v%}[^ѧE ܭ6,L`ɷ5z6'] N g[Vڡ&ʣ+{ vx/WQI1_y (e ;q ckXuGWpڵ29)V`I%/]Mmu 1> ~Su'TZ0Я2Is?koƗk"b]'VMHPKDsXM;|:Qiצ}QFqeb1osI?R{R.-( bH6뭯S۔%f@B`@X3%_XW4  P.鈺a;5'a0EarF 4lSJ4:zR|_1Gp r#1p l 쩪%E['JwsCc[EE Y+>CFzvFP1̗HyV<$x: ֮JK$_h?2%&a(@-AX-ehg8EOxh&^ [s" NjI*s3M Qu`w`9DbJ }nv|X^ٟY͙\r5Ǘ:CVu.ӢJ_UIsU[0{` f]ȇ0/&͂n*zqĴZ6;ή0jS }?h%c~Ӻg*S 1<(j yP3X!((Ƒ%f47w'==,-J>y"qqΆwDy(G:(`b,hJ̐ȥ%Tme3ж%; 3ypuK !F<]n-wDF pBn]Kpwk?c} U>(#Hmiv4nE^0`]%iL߂M6WWV5OjiYQ3#W?B;-jmzBQ)T2m@G(1c)yN3h]2g<a'aVd T݃[#QB`sX(*咥 <1Z%P3NҨ1Γ&5!Ad ^+j"*$Ċɜ~,zrڰ1z_ rkJ[Ww@vgT E;74=?0@}܊ft->KƗT< pVӡ>m,-H!=Ǖ|ij(MyR-**4q+I6Csr C`HmeߗN}9wϊDO'tW:p]J,KӃz]l9Bn~Uz:ǡDTPo,r+sd`'5jdi QR ȃ[o%lˑ#Уr~qh9fo|DiPhB.)6a{`ddO|S 9f Ԥۖ[Yh8-X,IV );ež9=Q^Zρ̠IlMH 4%eEEd⾼TʋGF-N5Y"B HjUa _s=+Zd'!B):_b^Մ4<持//kmb"\(MAZҘÃiKЊ4h?QF^K`|piWsdNDx^>sEWhsR?ɕ7CaN*ȗDw:,97I-} Mem^6 mVN0АU+OW`f"@Xar1nf"ӡ@`V#/ck  1$.UWh=Ϛ0<1_2pهS=y"]%k[N$ ^J1% vQ6JE\Po8lED4r3h utPNf:! .np9y-ulR:Vg='g(4RӃFL}bɋ~j㮦"F͚P3õ9?N:)@ C=}kFƴĕ~Oe`7㲦\J,qCVr%8Uښ_KfdIs.]aA':`}Ļ7WF} Wfn|5;2R 0]Nb xQaIJR3F>2{,JTh"3Ybw`&apSD{B'p jxm(7ի- $8K&3[})ak=\\ԞSral+6G1L͖qfEu:Y/{rYKߩH#G,>hfWbBj$Q?;+"#@gtH1dIUY=ߐ-@ծV9]OT%Jx;7)2եiWR{L<;ߒCJ'ΰs"kѨe.ak__Ѭ͝ϟИb0  Ugۜ$#gIla}w2/I_6E]Hf?,H`x q0U]u0zZv4G?:w\zQuma1yM΃!ݘnTP3B|OQ"JLԅJk& K}:~oX%΁D{"ڣK]G4?־S^sT'DI@Tgv O ^"gEc,&m3n1Bnt3q-tA+d8BM 9GtO{4͈xsut#ߩ2Co1Uz?Ff9h34R jqFT!8&"^h&F a6ՓYz?Z @?3~Í)+sڦ7Xώl벺H*nnX@wT$ݹQ j!9 8'Ĝ=qCpy_~.-\Luk2;TE2EVw6}d3VYjx|UhcTeq"{磊s,C n]$0Ⱥԏ52}j(j]!L;Mg<؀A::%\ҟ}VƷV\xhhTϷO1PP8C'rz m_!(Ku"XǸ6TJD].c/a('ۍKnL\q 2,@:PO,KBr(Hv"+ˈ2ZȩHYI>9=>g<imxk^hE?Moz{"8hY9}(*gKR~qmz:1:N49i \#a@̺dAusS&: :6Jg8x,X\|9U6H)]0"3vYډth;ih5m`꩐ƖI~ʄƞӣ'#ɮF*jt`*qe<ܞGX"_f8J$=i<>_ynMo1OuWSk{+)zm1t›@^ EB6@t+Uu=hk\wn&lcɐ2{\RK|@ s`NZ4BAlG,M`(HZz޳|7X^G4BT Yҕm `Orb\܌tEhKM0 d\|.y\Rze O_3XO0@ @iQSٌ?JNe/@! %~0Z&kFi#Fৃh3EEz>VޓfMlk¯7'2RN4RTm^I@ ~U-SPˤ(c:p+- $h .1eֽ>@LPL#~݂W|LwHrxÖm\iWecV48e\%om(w3*wE֥gb摧473१0v%h6Լ] E1_:Y\Ns՘8 57OEPj& ]QF[f>onϾĵ /`)Bx+!ha&ixL( a/jdkz4_&uFSuL w}┕6/dh`ɔlsdgfS4阇k<>=u 8AyP-7T90-tSLQG}b!;ftD;C$n^D׻5 'B-93iʏt.oU?;atNE2 V# ; j41oNp*FRgCON!sɂҬ[+.}XJ _tI[ŽjP$Sc>#{_Li~QǝzVլ8N=mު.~$*V6٨82Vk1ti4zh۫gJ3p6_6MJ{IbO Ա`yaZbC* J~F(dEِ]`"-'D ّE! X)t%(^4iHRTOX1FÙavUCi=p)$_B&@ZY!h!/e u**@":@?\(y \ͤA 輪㪱θ;b9Cƛ%0ٱ],"=>23B/i?S / QqҭՓJ}ytI;\\JdbA4«T3ܨ3{?Dg]"X|VBg6ʝ]Rb,{>hyC4n T:c\$~N~ GU6ZM*!֓3!γx6Ɖ Ja )2C73 23řW۔ TԤ^ϋ#4D`C+YKi~݂gdK @5ֿyfF;-SwؙÊ?㇬r:NDM'Fyμ^b'+q0@QL^2ז_&x|ξ٣ qx' 5vaƴZ%Y<חb?lMjJ `/b'ybY*bC'U^~exDvL;k*Swβ'WrV/o.slS@mdVeV'rx eH/W{=i<)7u)頼G/U?jB.f]87ُuU<"wK=Y=" A4~ir ^cGJ-J@H6ˁ\Cʺ}\қZ dXg )WYuьhVč_rCP6ed"l+[Mꑄ)>/I{1Ƶ<1Q~"U\\ukXH XbE_C >)$G?nTr0 S H2>0 YZAER/data/CPSSW8.rda0000644000175400001440000061513013033553036013453 0ustar zeileisusers7zXZi"6!X2])TW"nRʟt<3n2u5Ķ@a5נ Lxyh~ }W\h/UYcp_x>߄ 2_I:P>'&9j\?*F#BB?d'<ɤ7y5Z> ņXUSn*7*BA5Rb YjrvX7u ehl}֬۵]?O=]-CtR{ҠUg! T4y pt/B˲UFVr^X%'Tı) Oi, j(6JS),M<{'u;lC!\LY`ZNq.yJ܏Yy0v?D1Iut KأquPb0ŁpXJ/l0َD.:@ZÓܽBV;↝}> 08ij揓CD#6W2.%*A^y6[ -e18Wzdݔ+R7MUsT-FgRWI;M&b,`7~Z`Mm6*ď]{X\6XBUFTɱ[> 6Dkf{Vc fcMH!>f;JHwl#KLsyXwLb :Zvu5\w`cQÕ:N+̙hFW#OC=ўj#ݪ:^&C-2Խ~ 4ꤲZpK>hOpZgjx5hIIc\(MkBiv9X"DD%mdp&qOYr]o\M?KuiT1#6wGߪxעg3?5/{[d+jg^#+ѿ\(6f\F1d ]1tr?R УUU+o($L7{}2ŽDOi|\<Fw^P8ܓ-;l)|˘e-/j'w@춰1^yQ)ωEKݘfVpL iNRwFi=;qk<$7E(jG+Y d%y/*j {t#@y"5!7ul /G b{g/у $|PBOSNwui?"p ydV̷ ^$8q J揯C I2^o,ĉS2IAf -Vj}7 B()Jۡ,2z6'~w! Bx?튽]e.R^=;i_$ٔ}QvXSu4 [6VqyYI9% paTם 'd:y(Xmx…*׮k*,aB8?[|3̂VsDeZX /"/I)dhG()~2w SIe%KWS&QRs $OkDˇ?n)l2ui:Go#E90 -W (!++¤V2q,İ2>,P g۞;b%SgVЂ!r[?#t Ggϱ!C>R6|ռBKe2gR9{SV6MTs N(ğ֮6尶_JT %+IY5["gיx48Kp .[ TGۉe- zQ#ZN1StQ.z ޣVΐԃF.bӥ |GJ7owU-mbLgꖽʙu7-@gnŒ^?(Zo F“nE]њC۹`F55nj#1cS^& ^sЫFԃC[`ͻMP:<_<-g{I8n,]&|ޤ]% 6Ϗ }byf3.]*tHjY1\6)MoҠO\k-(_|k6 ׌ (Zך0^hdBo^dԉa| x N+/Iǩ)El5#)b,ɫOUH_݌1mI.p9R+Z݌PMjpqPe^yգV0)VI44+V6xHZBRc\ЅESdBc#UjV#[X?c' jEws1u J`#6d.5{ݻ?hb&tZyQra5'DS\)ۻQ.(zb3x.D ps>Y{O76ͳ(=w DTQͦd#MbV, qK..pͣK˼D /¥[;LGP監F|A=,]27H 0ݲ@D\*#/ l ,B m[Ԕ3Վ(b; fslfJ%FT ;@o7lU܎|Q!lov_׿Qr5= ?cc '޵i89MW8xrclk}v{?/ ̡ Xeb˽MPf lkj%ò}C8m.}>OiqRĪ6~_HoUţZ>-iqOFW՛1+3@'$nb 4˦GJgL e.o Zz k%zBPƒ7K}ym[,jp-[M&';FҽRբ"V y{4oi P +we <iщ(%?=Xjq8 ^Dk3^:% `c%WykrfBBwǯIuaif!q\}~tmmqj m`÷ôdEL6(m6?-kT-cbyLdMtϐ¹TaH- Їbr0e-vhkjjtbt_}dvO֧8-Qj(B @VHd XǩO8Z :q{y(xsP|m , s;$\YdrBH6ƒcI$6zN #!dzNН{܍ -Dq'qmqwM˝븜lAOF^XgO$U܉%퉡Oc"ܾ;L%QcC7!юESYr{q;n ӿ ʃʌ@CZFw>+f7ۮ6ޔt!ߎ4^}=g&M)KGDcRHk\ÚJOq(@R902Ӑ$\ *:Jc9睈`k>=|OU6ҲH&y Xb"^sf/Ս ȋ|kX"Ej4+|*;%<Ow COU#7/v$0ڲ 0_HV5Z'71C%_rdzFR4n`$z}焀 5Ā'tx`ZKbB'I&Kqr#I2,٩VZ8 {T:m.KY. |m1 vVCG sUu1ɛ4?c?cR˶Br=WTg(UW x"pt&eKP-.piէW[w - llO5VocݮOe7 nBsJ hzꧻqYQ8zbs4@(PJZq2,Pv?{YnXx[+_؂N wl#l37>[ncW yPuSQI  <PG.cP^Q>"HYC3:::~OxP!ͱM~pȠE?j`;ҖĞ-Gq{):ЙĠCTN'[+%sv"D 0rzҭ%\O~{ҫ(B-v^&\ qaQ-s9gEh|VUI >\txvD&B$5Og;|mQa(mNSxQҦ /e̙Ű (;pfgAS1mՅVn/-!TdGEMYӸ(u\}]xD7<. q jvst% DowDL$)2SNdo)/hI*ߎr.#4 5<Ǿb]#=umhE CȚqTG/W *X@Z-[oqzl{0eNG'{z, w%vJʆ 'n3S0=eW |Ml9')2dyXI XFCߥd^ڀo7ɞ8k ے,k}֟J67#3H}D}KwzUߋo(TC,Pٗs,f@m–aKgeOkY>Bu^ÍvK*3a!djrcM-hƕ8iA4#@)LThaǸHto-/JNE>o]Jr DZ`& ё6q+ċ~1%aJ(ʻ07pviJ=ۦ2Sy*_cHp{5 eIX{Ou $52NE5q%Q4xQ1 41̦ FvgsfP',IN*IWBu+2v>^wh@ !NXc+RaE6MbzA7vR@;gC!C3(Fwgdg#7/e2B]l`Q{-09}"d<3M=(lvrnp}KQrmB܆C3~ Z# +uWr/#V{e`3y3~3wh[JeKi=yIN@U` ӂRz#+Kzxqo/] &E6aAn%i왶{H/KĶ^n17:y ntЙ؁ ISY0v+f_2.Jդ3EфX,d}d?$~] .8g;qjs!f $gW5)\uS7h? T?1\4,D~w^ɽdU_z_;˝- t<[LKVd4^ n YNy]<12p `~IK31:ľ#K]W\j-u8INgJZԯeXS,:j)?uN΄8POj;X"NKl'=3&ং."5QU UqC`7Ts|LF k]ܼo4FMeRM^~RJ#<b( %MExq?I K]JvP#$=kȧ qBvr9GHWEz P "YfYڏKEvQHf.U5R*A\-w oKفkfG׵|V-Dp2n6ӎ~9un; bؠlGU&wi`%o|؊FMJl^AU )tć ODBdz6!\o3{e%|+pZlď1֋U#:G lm-oB]̞og?eUvk+`% bY )66T†.uCW޺,;wq XS|˲ry{cC>YHTXGbG%e6 "vЗT&n/?א^qAtc#X`2/U giߧwTNIu5EM4aؒ #T g qhBjw-}+$B2m4"*Z~;&Ӽ1 YXhh?_2Y?RS`Y& 7,ӝ>uBPɁ]=bl]8+S~;J'劚`z ഽT0H=4x\]%a rD:h J?ZX#Rkm|I\0{$C٢5?] ek-^xD@D9ߴ{FA͟oBc##L,󽟅%:*4 ľLȖ $rԤ &-tpgw3˩s:[׋a P<{]qƛ[ゴ6t°)$*ބI r5A(UH=>Nj |ےVœzU(s1qfA c-\4$dLq$pov~*Dt嘯Wi]68ab%nTB9 xr(ڊm HGff& PF'4i+3TAvf[i҃F'{3:=|^SzCId?#kPn%c*xp;8 2}W-[ UoLpK훕+nf[:3JmF;+||BB՘k%( w3ibE'QvŢ$+ۋG ],g#'[m,ƗA[/gӕf Hv ],`cJ\hW|nRH JTb㇑9DYH:u,!;EzڥFU'?/"Du|٤# E i7'Kr?WMLO<N Z9]BP2xa:ƫkڢDxRõioy0܄U{LgBR9н'1ʮ`fxm 6+h;&2wYX&@9\a$,QWtFMv3y+1kt;)aG`)C*o*OJ@EV] J%Q=r*wzؕZ8ƕV\…aK9 -O"oxۑfDF*Ϧ3[lD{`q{Aet ŤlLb":č1tmɈXdi ۲1~ 07(=OBm1wRKd9"贲iN粅A,,]& H8 oy}_ U@|81A#G[4&zL}yGK!M߄V& D ˆOw|C,/ B `] q{؅x-MARc:}3W7+RH+*OCG/qf^z%dM:jo`"Ud"~i' iv)vG}h:+ў1L#G("\ 5bmB/^qw g`|Idi8jhS*h+2W55o`|yJzh+S{z.+*ʁ^AWmR~?]-ཝ E,iJD݄' cݠ W+u]x^lޥY95dYݷ5c4AFq|Ķ:+@ 9aL [_irzcKoΒg_ p9)*=$ˉœ)AeF< #d5v* )E|m#fuV6veq'FX{2(ӾGػ"uC,q}@% cU >Hh*~bx&Pc.TƏrGŦS(! 1,~C:,fguM=Fnd\矲26EػXɻ#}][_15R5ثH>KAcUC1]'0]鐢1VJt@++ݓ4I6{yz[4@TJ88#>W1',] 7G3p|%`«c0q:sHre)ҀwC K"|_fZnZMQ߸nxbM2Wľkg Upo\ @YkNlܧ>b"՗ļ(q~OjK9 L~Շ mQJeub̭_|IjRd, Cch䌲˕  øgkX!Y>᨝62xF>=$ 0mJ]k4LLߩ]#~ *^Ցܳ/d {Myu vN>C#&\MAܻ s_\7H)Yfj{QS'\4i^Q`o|M16N6vسKHNe_C^Y3r߄r]R!b !HD]vh2'4Z98gaW|Lc0!ue l 4^tnhZZ~!QE;oiIEg/_Wh#X}>dW,7{35pg_ YlU!65=nﶣ{Y 6l*"~3b`2m\  W00}r7XR1W'93ȦhF-oeJ1dfg8RvpO2~2?HGT7B-'NT+9lw,WWu`ʼn܃ݩH%j1&bͪ=pVT`n?F")4;/haDY$FSBS =z@VAxk>cwTh&ɽi;(cDevdphII|!D.CtAjϭ 82iD*( ȣΒ)s3G4L " / ]wV ;yU #D`˵"gGؓ+ Cm}=Te_ L!93ܼP:k'6P;)f`gFY }Ss#Ӆub-[d_LJ֊F /e |-f4AYW"Ƚr괇SQ1CZLQf4v}.IqoEk{Běy_g ca5M\F,7WQ}VeWī~YRcXh 8NdHL~[F-D,{ ]D`3EO/*~=W5xͪ^2Jq@Gs*IET+si(mZh[.wN!4G8έ-᳾8J+ETAe&UwVˑgj2$QUh'Ͳ |V:5BD,05w_6H 21?t\8aLM?&+ ITf*j"(̲uSŕ-Fl#'KLt_u؈~۸i4m 6'?&LdbE9aexr|L*DNs-PDaxcz|P ֧iY@|+EE9lV3FL~k W03'JI+2{H- ""Nr^_T r^'S"k2 x'jEq''p+FnH1Bdن l?.oPܢƴ:c/8|멮@x{8\"<S:'OOzBGBu95Dt"na &`5+U4$WUyUtk@b(FCFt.ޮ؉jj&QxNznD%jH9:VJz5^dy? g3'ɇ0 '}.CsD4Ϥڭ[[;XMNt'sK媚ֺ"DjK'2 ġ?3Ԛ!stYY['uByw}@}r6=["X]@*h8gUKJ !{Aan}J#JG]}f7NkCCy4<[٥8Opg%(Lpuxr=mQ z(d=[]%һ}"!=wAN5Ƙl6>vʀ0PXY% lWpr+O]O>u25Ybg3 w [?d*=Y4,Vy]u{:A䂥m@9[I[U~e J~ nvvx7? 'Mr̽2z߹t]m_hpc8([2߰LRg(X6]z5oLsvCcXPyo1w)eG IiFO˲OxSu[c2!ҽ'!pi˼'oM}N?$n~"A|ʑ!sVEm0sX:WoK=g *b`FU–hU^Ag?gt)E&C!A:әx+xz;;Ѵު%0CiWlɶF9t}cm~k!Ę&- ,)uܰQe.峌~s=GŦ&WBD: TcN]%#RAl9x3#o|Ym[!{00 ‾QxvAm¹ە(bW!>2'x)2! 8-=WxeV_%PqeɕJxX\:[MU?JR\.6ud Tξk$|XF?(3mqiJW5 _?Gn'U Ŗ9AhamŠJU#ӞUcŷpTqZ C/RA"ś^1,C [t6r_b]MF Sˁ5\aw-~'058` s-ZYۭqqͻ&`\T, /{4cDÐ-+q?yB0yy<)". rU:l)~Xڅ dK9JKg9w6` 4"AHu]K9MDHT谅Fa1Ju:QP4[muP\zjڞ_CqQ( ! r2|_['cKM6% #$jmIC00rZ~VWGKW6LLPLom@2ٷeK qI]| ,mj4eFPX Ѫ.Ћ;)fv Tݚl4"l,ͧ{ $ӛu|mt pKϦ=Lsd,y8?3ijˈ 45)c7Mu_*e @閬מ `ټ҇Q=~g-&naĚA79ȶUG$9cݬu>!m4z!̦#-MZn1hO>sIX؆[Nk0g8_{{mгIZ)V` ,chFeouLpp2yărs ,W\ 嵇8ƞ<Z'ǤO c}uv_Iy- CIcB3'P]2?D{^%ׁ8,}@Itzq|u"anxsE(pg_DUl (U{ՃĞ~=fiaQEod&MΆa` |S.Y&! _67h:aᗇ#t vjP]÷}3\1J: $)c/ ! DUN7 /_*!oE`uӴfBF#YѦ bËGQ{^Fu_B-Ds[/~w-,ao2&/_̼]WOANaEGIz.+1f?Ic@%*P阩murʈ w#Leʢ*Xedăwf rl!f>bS@,p T'KlSL*tzMAa!c j&Hwlt\BW_:\Ts-5oFLZ*ބssroLU=VQh|&0 y?}Ĉ'g(K/0|s,##9ײyFhN=h^0g { /~e3ޏxqɮ[\Qo>zPX4q_\;A 9+U?o7d <Ճ^7WesRYJtu<k~]K΀o%n@sQhѥ2.P U[OKzZ I(ٶI Q4ffTDi] zU1VrA0 D'L/OMz =:Sn]H3=ϰL7@;Jv[\]|y99t%K ٚ.@ѕ>1h:TK{1|$|9* mư&"gwݪ+ُ4|hnhuׅfE'u!+xЧ*M+FϴUD}B{ "CF!$zc0x)M˅$I=)Rv< 6*|d d PczK9Rj;kFO\_<cԭ8(>KX\dەݟS/\%]cV>U{QNANrJOPg^ |Czݙ dcŌjp{`BY4r< k%Moyn)]EzZM}eG73Wo'eP)>mk| s]}OchRR:-6+ Hsa=.i9mPec 0J>&,(*:_ﱈȐo%>Y|,+njoIOGNJ?~3e=W4_Ff/Eb_5#h 8o]3K^w@]?rٞVvI]>"U , `=Y'lMH*raQuBVG9SMSiqZbzOw`7P؆pڤ;]K`WAyRЭח_g7ƇF$YO6~~^ڋ|Z K,#JqȪҐ6!taezբ.#EZ@CLTi|f E27t&{Hm05R<N|g\g#r)xL.':+{^Tz켂np dd"3YY] 7\Wekfv N1|#cfԘSGGkܡ7^%G& NSQw]#$29I#{(}ՑЉ>YT$"C _I@(0I/9=Sogq#lV O";ӁIl:-UAkrE*rUU$Sl D;D6[U.LRtFr\A]Y7D0⳪_j (\?\'x[lV3*7ŪzvœGŞND[7^ɹ>>`i{A;Z@\C"Olh""7}{n6C<8y4ӝhF C@NFhvC)|tDvSm=Mi-*dxnu1Q?թ$:&7uOI8•AulYSxѩJNKþ%+(]wGⳋ }ɝ ]Jvi>ũֹ; |7ደR?A|rtUPsK?aZ*4f콶;{eD>zl}ѧ1kM\G0IVVdC0 w8J*~zhH5wן kƙ\tϛמ-6 thܞm`܅Ky8a4Xh6/!31K=qa8P"V},lSZ5 Ķ?wq8kƁ ֺC0& DNrmpPdQC\ vDVסYX(gjG1xdGŢ^on5ԃ 6M>۽_"?MEt Zd(ZmwJ|ɟL'7Ǒ5bWL#TbE _npC%%ΪS+C/cG W׼I6^6' q%3#~)tm{/+K!jU1giYmL _K owXZ2]Iy2QxzC0(#GC*ZbgZw BRHi]seB<5:`rC$OuY*gdȝ"dd]37Q\[ϭ-BZxw ܏}9aq̿I{9S5p@5=vJ^tQ<  C3sw;uHTaưR55ߟCO,kr7k^Py.ha䣥Wy`q\PJN%`dw{Gܭ/?Ӣ"X1vu9?f&Msb_>`0RQam]`"Wd$" 1S+MFM:2܊tq"UI ?woQqߚf+8&k7},/"n?RM|J@9Nu_ϲD:A~z%R*zdB0"Dж-0ؖ^WùN\\8P¦7{Ų\Թt)%&!VHVv" +mţ3[^DЯR!~~`)AjDtT<+|L#U @o[4ɜT5'eRV|-O0]9DcQ00N-':{VsXX-T(*%\yzݲ˚ ]ܲ8PA sD6f h~Y9H7Tu"{d8XhDX`lcj]_ӢvzLݩ]!땩X_F2^B}`R`JH-_Ir҇Ebi.0R|# gJ)y_}$+D*bmo~c-of´%Tq#j7zJ13R$ө^,eq]~;nqEqzK6PMxG̡1%t1-ӌ4F9(*>BnǨzNƹTMi) \|8Ե Zi,6+5z%݃9 g4p2.=۱x[֌N xxi6AF'E +˕.uçS?tR`[)9CHNUes֕+-m\!3M3ٜ {7^mѓzQ0_HR9k_e}7_[QGv?6핀z͠ZJIm[6nl wo<}ߓaT=E\j%T+H+}wj:dN5twT?* &㙷[ݝ6ڿ!%7w>t[bpӵ% xߴU/Uϔp,yAw\qsR_֒(/5ciX;9c G6j݌ckW*KQ L' |Br{@p4')dbF']#=1I&]N2xYޏ\_!\UA{~tN*Aq|ˉ#&"UW7.+N"V"]jHKcVc9  ćQ&Ό [qLdf XIU>x,fD 2 ".`Eзǂ =D)8H=:UUo]6SG>{L54O" ec 'kefukfjh0jR@ j>2>"}JД ە@GaTbfmwIrXʚ'-!OVi-` >e=u| oI"1HEiGdrݠCRBYNVusra1jsh-5\:ID>Sd*8.պ%Dt5>xTEFI.kgb4q7) JlFg_Q$Ibیi L2= uO@jwi?6䋮KpUG @%NEIKDXcig) Q4nEb}0x«PN'*16Digci;&0xrb,V^Bb{8WJ]9QL/}n%tҖi{+&TmS2br<"6,Gy>sa}_܅#qn=tzz.+GRD=[85 T9jqa(~L $jh5ă3P(Oap [eG2 RimOjcLdا4 BA&["$"F,K!\ڃgG 3hc}jNLB]gs7Zb"찜bsRӬ-Kkdn_ L@ P>Hw7GQ#|&9yd6\g]+ 13XKC₋_~M ,H/o.4Xd͉R&2% YQwF]?TfZnuئ *e"de/ w/BvnB~ZG G+@wu\n&u%y yy!4K21W+A(L]MwjIgY.u6͈.F[ڍcBBS*+dJfZ`BW!l>rqZ k#$RM ׄv'AZ$562>OZ݉m:ERܶ HQl2 scƯ fɦ@lVM~8'٣:ƿ'a?T$s0䇕M^o,i*d%5 snܲ҆bQZ N0Is8an#CQG)f ս_fs(OG[j֦E2i5l"05Ljآ=fVx2tcȲpA'hc~+S|bR4BFvQ fӀ1fv )BtN(m;Eik"A:cɸ1" DwFcWBVꖦ#%}gwy)v@X :ǜ4백 gș;C7:%M12H< vjyg*72MWP%+ mOHM&Wjˣwǚr^ۍ))4P@k|*ihG#oq#uUjf^^~(r v<\O_4{rDh:v^·D?/4kOwm"EhU2zy'y"B.z(u`{tb[Zv㸂i5X44Cq(O%XheE?:z^ˈDڱUJTLAx/M9yRO\Q̄V]OW% cjڏ 8CCf)G[-! 9"w4P:OEm .ISi^'Fl*Uz1y{rni<>5F\WtT#YZs=j٭-f!YiMyUVz/k!i9A0/L?@<R\#ď%7I9.IRi6ρ73~X M5-BA":ϩpp+/N L4kf9(al82c7.+9ŕr79k$կ"a\_p?‹*♬pBjZ&͈;ႊ[L(;]rtdJ,8O?)WTɮ`00e[:#LPӘl}]Z{|^azO>8k~n]v2ZC봘ۿ&3gZSvlJwxLtYȉ@AJg$ܛZٓ'ό@Ǿv!x޾l_epɢ3iؖfk;:'}.QDol GČՙP1>6źIz> ZvxuF?2Rl!*ܛ%"( *8;@?2T6݊\(8z-eǚ"TyH62J5A JQ]w"N6iWT|:`6fLcQNs+ g^u]pܨ%Nc`0Y+ ^?P}nD Xvصk:҅ ]YG QZp)M*y\BHC͓*ҭc1~bc"i4kӛ*5\%ckz%7\àM D Cd? -?tԔVwʝd0󉎍 QBwWb6fI{5\a6r\D Q:ŕl̅S@#TM*tQGۍ#  "MgXPD7/i1i+c䍯zxq,t)Srfܟ\(޶r/tbQ_Ywu̟6Z4m'[ITR֓f;\}X$ԻhWBzh+m(Dž Ğ?s^p&.}XӴ猡7ms/;r!ԭ =M3MEvï&N0&0Y !/Z":&C%BkIɂUC?KM Zk"Tr?hiJBvMj`: w,>*ωլTy3k-5,ps1VglTɒQvAe~J|?';%sT1[ KBqC;4+8@VbfS:^,_\ԔG@LݐS&# ʈ=iy9Kcv9Rfpd=S724 55@pfu4]*h9ӕBΝ9t3nzԘ+=! @k%lEEQVKWfo |߾W*GoLyRBuO*.):i㎪[jk#lޫQͣl,M4Hؕ14S.;BG[tV[?GQ̵Ү 0wSr#qg+QOdil?9^& *İlW "CEHB) @jt $fd&ւ(TS^VY:Z㓸.<;@ }x<5{Mք߬D(Lё1OߡEW#WLm+@!5F&cq Qt;4GϞ;ɛ8XY,O 0?@&_ɕƕyB w]^OEjs@rh#YZfhV Cw,י16x P n jr@w5G8W` c}-CB Dy81˛!sLخ)1+ S 8"Qa d(~&㧆NpN0}yc\&N:(`{1(J@uPEv;Db=Wo|x˹l/36[òu`B؜j4kõOcNΞ#Fei2d`񖾸k")1քFpv[_!zF[o*S~4mk%jc$`-8pD45¦$0RKN_Jl4DP^öԮ%:~W}-_N~C9PX䛜P ;R1!Sz(ȴaZcTPRj16vIzd?>=!*'٢pcM *ITff;%6sŖ͜M"Y'|و27}T{| ?2C@\ȥ?+ wq0 tez9jO bjK1[Y>1l,Kˀ=qY ` +(H(QT3z.%^:<> I.:f-3<viw?G.rT(A=//ABOy'-$ -K!PA< r|L5x+<у*]H"KRJy2@?",AK60x EϾ)[]Og^:Mp "rq/uLS7sie>?D$RjO3v eTA@FڲS(kyW"Rֱ48N"u?}Lz!Z:DG9} t `΁Gamh2)MΉx{N4Q4 |[CYx)2hз(rg21_"Qlrsc7Ptbes87)HS?L-wm%g/[$M窌zdUca/$ډsc Aڇ<{F:1 >sd"X-%ctX ovl(p1[7QbԱɌ`:2[BWG^1Jv+wUЅ1/ʈwGBWA9 M];@6dxA\Iy<&ZYBu~^|iGs wUD)~F}1, `svr.[z6ÍڹEO[[Idn܌~h' dCG]N2"-DbkΡ\s䍏8sPwAb]d+knvrdžAevcJEj:U:N fN6ʿ6 GqV;d{|1SBFTڤ"HGta^vK ÇԚ9~;9Rh"DATP/)Yqf>8e4a ߝl @Oo+WrO1 6 >- CBm6?B+)w$r'H== bMw iĀDXn.3ďIDu MeG lP:[ƚ+~ bqhWN<}dZzj4Àk0Sy7ktN{XDuڽH4 ܚ߉fOVNKUPQp)MEՎKC(w(3 ^H06 odBajP- jiIZA "oA6g*+]}-s3*wlCY֊0-\kXH"E"hARlN8p/ԑǀ-I_KYP>"9T KBO >je&˳GJhezo_9;ok& ރ(lU<6QNݯ}7>ԶODҵߜx9R3K"ٹlj_)7~oXF5CfGSD~qoyGto`Z~̍NRYNрJn鈧^aHje1ГC/lZ/;GRRcP#/Ca?V<=C"ʓMaI/|d??7ox J%QMyf-i 2MK[(6gul`O{~ Jvd9qUAȝ0M7;o%˥7ތ9=ua*>ސ͊-ya9eMߙs7W(H,~lt-jsA F\gkPfkMΜwӛ\K~u;Ru7A.57?;PBސ1<{ Ú+~Bd/[X|j~e*̸驄8[tBM2[b >2ɁsʟT]X^-t>*S-kZr|CDE1BzY ?gZ_vX=}YzҹC0a$ϊr^=V=Wݭ_u= /'Fh/% >lQ,J(ͳm ÜrcȨ4X&H˼(A,uU~գ($$ĄهE'O|%-'kw@u[#] xм.Ҳ%:C"ƴbwԃFatI|S| :<.E*aI˰!t3d%uh}U4uC(٩$Ό~G ǠΥ1wOf9)2q+vlCr>ZxMGj`%z2HP]/ g:p \VVkh+ǰ2Kqhԗb7d>^=`&וb˛##9|s<+A\NY:.i.I]Ёfo\Et; ZFؒ{tb4%X4]N ;)yi=u)K"$hZǝ|{_#$SR$˽oЇ!iK;΁}^y)\ NH*|r&vBM V}ʌwg%f,H7$n' ; ~i e>[D$p"}tANH:}v zA~ɈXQDdaNj/=; =yqFUv1Q0(MU!`C*o@=Ф[E[0Ka&CGaB~JApGdZ4)"32|8 *$׀,jNnaµD&sFx7@e] [D}-W֥(T]2g \Μp'6 )^TԘ2aw?(D#,%Dt<"R8u.fD б8H@bEV*\Y= :/7BOXwcK'g1;ǁB%{[TF7]KZzFLO6(h[X{-?֦ϫB[%srz4=7lfSe:[3Jjxt$ol@KnWt!8v,Ck7i\s0|s!&Eg ڥb@[򞦮( sKI6 hBEb >Wy^0;"f/J?Еj͢|񝻩}uk Y" bo˪$̒%V`}ɊAHv}Y9:u|^qI_r +爰DYjqT튠u s]OA=A,׼P;fML2[\>3I G9w'BPr&Yew<ݜ_av2h](!Oy6H`偂} {=yuJB.C 1_fSCq|iyûL1͢W]T_eC_I{j/[sx:ޛ Fynՙ݉'0ql+,*R#әyWSo*сd;z7 n|]2 x`3'o]oҏVhΎI 恬 2Aۀ] JCshT|#*/9_GaXB:_=CFd6ﻥ=M`_>)v2QMN^C3t).Y{·`_3'z0*^ f**8` JPNg?ƚ3㬱ڸ́ o%7J<D24dݨLx]vy9{X vl9 JCۺyQ 2)_#Uu-om/qVL_4gre{ 4?{/t@RٟYkĂ/ q\YR['{$HW llX%p1<߱fXj:Yܬ,⼅&s\,}~*X^A*Kzi'2rM{b(13J-/cL~ҷ%cGVZ60Y-*qqM J^/lO/mdÏOX$#:sw^y-P\()4Ҙ;w._boކ}嚻AFՇak*F3 eVrVPɚ=?h#7 Jqac]P{)܉: 5PWM]bJJiySLrtͯTj{Yh)b cnL?M/G"pmhl&cCݻhQFYr9k j|e?;iNqtcMdbOpG 뀫Lpk`M=JtmUf2UFp25T ,,?lqa<#Uql,#4JE<= B949HӤyzhΝiPI )2o \<֘"sP!`Q"{_z\ z*$y%HA߆Yj gFDt45+)q(Xk'I-x[/"iHFzEey7h,N?]۞Q76!Vetl4[/Ulv(є<_Hiu ^"y-gmO>Թ5||6@lwJ;χ`gh@p>@5-9 }۱t8,{B 0l[c|^Z.??U߅p8&*u-iIId vqe$*7Y{}ˆdi?Eώc>z`ղO6nGC> 7mʑ:*3#?M8i1G`AY(F]ё[ʤ<˜H0HoaԩvI|v|K/Ȥ-w:ބ8`_#m$*ہ̓p.ʁ)I1-Ft/tyS:K"%*ϠLK#^D'912覎dؽ$) +gb(ҭw,U!`׸p0.˸jiL"n$+^.s;G6*Pȯ V;&̷eF')t(j$Q,v=D֏=&'d2;$si٥zhp?Dģ8HzUQj3mdj!n|C +%Xx*:}ғ?.sbzeRm-!MA]&a>(P8}bKp} qb#LW$*׏ԲA$\;sGu>k*! [@*1`"֔_縦GF϶BaI^* ^wLɅ͈01  ,D|3 MeVՙaOyC5fZ0i,/c"ó 2? saWQ\"oU/K1DFbn%[O܄]7^fly+r7;Q+dD\mO)S \oܥJVͷ,?FMWCe(>TzJ3SjF_LMbZN! l&ܫ3 gUZ?-bsqQژx# \o2{=T2 TfqBamyA 'KB$զwmܕۣYihON1vsd'VK+DErlN;A!fBwgxjNBFTqwN3Ta;XZh +M R\NleE2$@H2 B6(TiOoz[L$ͫ V9t{jIl֕` z{t㠹V.0…L.G?#1B?\lD\H-Kˢ\aegTڻ | /l>=lkcˉZ-QuPBfܝb fR[ Nxlcb 8izW#efU.p}e&hxS}3Pg άK3ӂ=eQ&QvL\]M|$j|}?!dAlIDZR1`ĝW]4CW51+LOuF󠷳կN!g(LX"\T+t$J/8yGD j F]+ju[ ڎ+Mbj t[=gTN:fRTʇ@v or}=,v8FftrE_$ ~+Pذy+Z!77]f,YMs^*m~qOC=,ۋzc-gʇeŔw<>S.'^<'qPT%2W7#v3 TexRܠ^X 8?Hϭ, -R,p1.+="B(cs Z5]ph@ l.7,Ϝw%DIK\ ;-5\IVkn1e7yT-z e&Ʉ!`0wc,x<PZ L:Zjc) Q^O  62Z>R.Iپn[Mc%.*$B]eȧfuPP3+UVAW9ƚ3\K0I މ/-] r9p_}Y 4Ws%->grOV-6Ltc$al/X$A&xuS>uvdt~YwE@t`:>`.^%q^+f2a39L CQqYq "o]GF {Y$2oTc"K:3?3 TvU-( zqVq79;qX A2S3EfA5}|0Y/(Kf7wK05W-/E%)]6⢚<_qqkGAk ce+ ^yەGS3g(.]\O|% a%'_lOX~adٚ6Ʋ:\Ƥq*S6ȳxΌ>&Lz(4Uu\tPਁ0m9QCO;+-4#`k›'bgMN4pq5ƪZjJy x^"9oaga(R{wT )Ll^δeޟ.!H?d,mS,ٱ8+0% ^/$J>M.dGRSKB$wF"9Z?"i~,A{7P=Jp*O+`" #n|,[I՝*j0_ :0efrc Ѡdm ŷh/<`hH  9eVP_mCCmH:3.?t#FZ՝EvQ~M22^gD)~GV7Oޟ=Cucu\_/БK#`/޴͇Y|6XӖ{zL]ƍj`x"ͳ(9(ʼnS [SıB +ӫnP8 &(q\x`=jz&OOKӌ2c.؜'VU218BQbo=D;,^U#R5E^;q[B; 3$ظYVA?AFe0B<_)n [ýhc'Ϸq578F)o8̏BQb ,uK@eEDxPY," D4^>E0j/H JDlpl0rDutQ lR!UHegV`\ZGd֧;ŜOOYթ[B$ۦ"Xt<~TPK0r,YʦYk/Mh!t( ZD`8=uHR1ϼ\L V(גXܴ)V'֟'$.`eZD( #EY񭝳ÿ纯\F\#!ndV=L7Wh p:yf [B/& _ "Mt."|㮀1 eC,rI)+8FJJ}CA+J(8*iqOY-9UV x+?߉g?#xJJW_I -.O>GBh"-? LGcB'9N /mW{6~@_ uy88e;&ӆ H' 2$zOxO~hL|T\ximă&)"vA+Dpq~DrKѰZi(i8ҝ66rB̴+ԌZFyBDE ޶#QKŠJJR=,WZFF1% R)#V bN$BGK`8z($⮒aCrzqcَRɜIq>@߻޲'|% 4"Vϵ}QU|jQJ*@C?2~V$0b OH;ygc o,dZ-.J6߆Q%XȬAYބK@LjQ!O«-oq0KGa 'J;j(OVTygCg݋{}'uG'p՝Χ:Zye vmaօXx=u{5>G?T/iR> T??˂O/6+&,Ǩu1:ϓmhk:t&0oF}0L!_ ט?b‘pkUT7p@ H`֝8w HwC&Y:߷s:*"?D]meבh@V)f( 14@) }a#9U ; ͖ ɹ)Sm>KLon2 Acn96uKPF(Yk˩]ȍ)mX(3K|s(T'x3n3]6h{d2[x#g NNx%1YQB8 85/y 絮7q2#6AWASΤ=u1~ &\.!"ۢk0k0R*$Uv‚v "Y˂WT ?}:ek+nJ߆lO [6%1?~0UxW\ewƩЬ:`3(WYH.@:. .'7&5cMI)}4SF`1">R.݇CVZ[~{1FM鏟e$^FQS/ #q".]!ж1%]16;0b 6ϊWQBUxX=,~vh>:|)n\g\˜t$ /W*&A WV2&o\(>pjZS DjE3iڝd osCg8_ؼ֤o NdNۂ=9{}}Ĝ*(/Ti% }Tvf{|#AQ+GO9T4.ͨ/EYv @Wsyr3Ax=g$LK6q:%nQ}Y=8BM\rduǿX&HV3–{=tUcs`.X8zxT"'"ڰ7TC(-L+ȉtRj!]WX?Q>53݄](sg.NYfEk-5e@{,LO(n闤˲ *-"ݟx.dD1d[lg^PL@F2"o8Bo̥*󋅽D)u^?F"{fSrQDOc>q^A@=MIum:5nԷ:''XhmTXqOCbh^&Qb[!gK_xc?Sp7ߕB@j`v=,9_Z<R}\y(T2G#e91v2Ք·mޚI7g\]ݢ؈AEd}-.a18"gaU™CIzycWcV֫uit+ O y7~=3;|#J)4^YT%CJYC՝%*Hd#&޺圱R8αNyeٖd`WҹK|D'iBwA1Lv0?nj"~MOӴ.DtZ\TᖫŏtG>?m-FB3jMۨΥ(UA'pXc:#P,Ѧ'x*)fZ~Ax$2P:q 狌g֫/Ώ1hOSS ٤d=GhrBձ Pw%ݐ(n?( -f/dΟ;AԒ3"B@4T2^GB*}sl5\O;|-IjL?@ӷJpRz44ƫkI\9Xv;yWj*P2dwZXh[*WDE`Ƶ#5 k1:-]mrZb@2f_yFreE%n6 / G(Ypرh SG/3+0Ro9q©n01]7LL~xČԏˎѿO> [mFy.ܦ팙1̬Rʓ*,o) /s5&\Ä́܈E.P`͆ ֖!3S_,_a8Q<ں:AxL¾ CM6*dR;J;2f{!)톮&' Di-$lx2rv+$F4Lɇeq|Rs #$3$(-S$*d%֭iGYܳaMYSbcX&=u+$UջͺRY:ӵ2q%᭲c`fv "/=iT\>˟+y&Md iF a{23>tӵL4!|fq=RU[2Rçiw)Nsژ!_j ;ASRwlQo(34ĕ}?XaA{H e'8/>1ы)҄g@.YV;f`+Ҫ6͇l4"et \By\PO6!Uxn$dh ùI8̨/UV"]ʠ`L)䔲_JmY.Ui4 H${̡%ɰ骪7vig?ax麿ID)ŠapٳmA,:cLU(&j Uea ̄fa:6- -&RISa:EJ,d ض0T9p)5e/W%B~u$Tay};EHqocm?NKnױ&)+PWKm|с ~7wuc$2 NV$.sJ;h_쾻QO\2eX tl\6_roTz 0yQ p Uh'rScda<?i4g0utyJL|=?r(!;gۯVR(F1(R("!c#.r͑aIVՅϙ3O‡JUkPm hErt݁`7{Fw9ꖔmzNKO!_y};Tߞ:+"`iet0X͔#cG\cDUxJbts;FgCʵ 'YJMgBpǧi6֋lpsL[XYR^Æɓ7"Df- SX IJ_zkGu/\\# VIf ʝe~I~οA") R.ln՝'_,a4j 5x=kH_}'W x(_JKL%<0f ~w`+<TQxۉO =?鋗V8eEO:zg&R~Z1BR!mXG';*&M/>|VMspD ҺFsce v#$P&0]]r-CE >oQnO'^d^73/GAL.2&w_\tB*z, ,˺iZ9 \!cvbӥ*#Ԫv,ugXD"k%)^85bj֐YFI鹟z=9cz;!yumo+3LU6a^$ҢjÎ2xTtZ6465 }&u/楦jQiV,(xpb4nא/?cK?m>8a<(@mLZn&ue>9LGv&&KUhVm͋β" myYqJ^2hJcZ1+jQ3-1"OӒcRg(G$k\C &x8uFzqEFb6-%J0(+7Q<X)% Ft`6kD[~Y[ XUjkI{juin΀ha*>$辞L6MɍHf٘hRiޖvW-Kєj5pA˾$G 0M2miY??*fw|@ğ*  S'ӿ/!d i3-O!6Vh~pK=jlʎsh S6%Ɇ~ !wc,#;T>g0t/Y$eb9Yov͒oh]?l/9!t.XoHP0mg/&,=Ӳ՜ 7 Nɝ>ߏ:qgBT#봋d5)\J&c&0&vÍ.l2U,E"m {UG40-Q30k!nL9ggLe54ޥ@9.ØRW+>jLxrP|Ʃ7C<~!,2 hY- \^#ǘG {e$z.T5+6p+"5mQ4X>OjCd+~.}ɂ 5^E_;V߹=-l]_`W(k;sO(_'|b / y,:W@?icvA='72tD83Kl:_8|daؙ^R[ @ "B<M gԫPP^Rax3 bX"ֻV87J?d27_.I9s:C0^5,=n*R`Vmgh 9CjR5x"Oc{-0/sȂ؂vRTM6wTW-,S:LaV:gWxN"e ''lYiN3Hoj.9{ytDFDyzcO}΂/ގGI; %09fGD#:ᄏK->3n?^6J{فk|uXzB󁇀@(ֻ EN*#ވL4f)vϷ\̿7Fx;6`UQA7UHmhf@pXƔFN\1K0?yz8eq,jRtJQ)͖p$U=)Ib20s$0ḥSڊ/4_+]& ܂<)"<;Anb- 8qƁy]>AfwHADžDEWC3bthssmģɔYꜟXc1RUZ Aep>Z$ɏv OZSE?~&Dj+K^n} ̫j02pn(R ;bJmsl:Cpbym|sƘRT S<Ҷ2cؔް&5T+g~w|+1]I^e#Afs>-|"}pR֍b)Zi Ljx?c/C s煙k$a ' g2}eI[c&"Pa#oPEBo{_l1=x9 ,y{,=l wCr3WrgG(.u^!H2>Cƺ]9Z͒`& fVE"GE!|mu[*$\gmYa`jzli-TgN"V\i[S A7i{.m?OE"WHKM= iyM-.|#IpTlٷ@FA[tmVmj3l۷1p02i@LP;N 7ؗȐp$…=g&I+HnX̻uO֘+ ^U N S(CRqG_NPɹſ2 ?ZK=. NwN(zSrF ŭReTn_/^| Ju$CLGc.+V EeFSD4p;a#G_ '>sQ:V3cs+ !V3U2q?F-8-XJv4+SJ>dPG[EDՄ\0ڵNw PX+nEq&RA?=H_r Dشx/Ly>(t:AeA1U(ԒqeX{/Mtk>rdyK>͞W ndз3bv/>%B+.(31d1F5@XM#PK,4Gez!9kFD5}ሠFL0qFH u-NUrU%s7;aBJ4$&4 6dxqÅPUԫ0!aȳپ)τ{ 4WEߩպ. 9*گ|g`GJ ̰n¤OSG`nszSBDnL낇)4XQm.I(?dqPњdCM$ڽ\t62t0h.DzD]1V'o5[/bjE[Lf:;:pNi7ajθƑEOĄqؼ95Zؔ.t(++cݒWq0BޗW fx D{#cT3&A֏( Ƨi*!5I9gwa (gݪvK(p/vi{Fꇯ6K))vx&h/ "bO6ɤ9܎?gl)^y?-fnYܼ C9l[)Z ZtEHO G :hT YU. a]ԬSbBG!KU.xUy!_=_ǩe`Y.mK;]Ku&Rp.2rr/``ߗ^sƋ*ܢx)StY`]RmQCr fɊ*pNtSr bY$`]ѳk8~] V،m">z&JiduEo*kI`~-BZ|='e'7c5tu]t(D[8l#rgm/HfCʰ>FɅCwffDˬc o*6.$EOXuK\O= $!mۖ.V.s֢ۃ"ݰa;@ftOFQdkME p\[~6A[es׮ˆcèZB@y,Wчv=hB;Y+;,= JP@w;fL:_ڞ!~PnBDo,ӜEQ2Ƒ4&wL0+qJ1Ŗ6yိwFo@&}YTx9-M >Zo9NI)bU UN6R4A 9ڊߎuۦpOh&~zcjyDroJf|X.GL~X XqϙcQ *8nAgT.K4ObqumP;vh|UEIc?p+G4nM\"3ֆ EyqrJWiHeGX4km(Uqc5,*S>K6? B>&'Hz0t35ZJfi\Tk?I$|SK.*nkGD5tPXX,'kDQvNJ~6XTL9aU ԶdLJZ56l/L_caC{>Ð4Q]""\ gQO8/Ӱ4ד[wo&ɇ\m c3i!xC/ ЫLW o S?LN|"0bHFQ:ULϫ&%aeuBMʸ+)B+{̶͝0\g-2m_Z7d#ʂ{s 5lGlS2(]: )|M\/νRVj]˒ < F!Wy|uY6]|4k2 mA)1F m L!i1aMZH3b¾5%eIfy`7߳1 K6&2 "M, 9F0';rOwD8Y6tt VX8S*Li*<$,^~RO M!tqPjm cWպCS=3 u'J^.m=ﯱ/M*c`EZgD VM@!턷CAL]~JX|5/:c(:R% FԷ髐#D>fX O,&ީu'aTXK#!GC--e/:XnaALLl.Fa/shǼ왓\(l˽0,q |nSaŸnC싱 Ar$ Le?-#k/{fNJs'e#7O" cԪ$5X0os6uAw:ص_NnS%3КIkA`+=;@V:;mUv#ΒneJL(QՏZ67CI5$Xm@W)m0E ѫ8 5&GXSxo"MM\mL`=fw i>`"9"i&dXEbӢéwnI_t+ U|_BGXɧAHw鏔?V&jt:)b E5S0#PYpEs}!k\)J2]dg]Ԁ*y%D=-@.as`1'J^!PX1XR gʦqFH9u,8@)0#b%:Dj]W}lu=m;AB+\4ֺ$?ܸKEqLIӉP \L;/6p zاlD^.r}J5^&ڵlS/HsPHR"Z7OfL!7(>lݢ~i2Y: ǒ.@V{) zCN<_1IaLNjތ.ZBH^l'ә[Pdq,uyu\'nwU[[kR,t#*5<<ȹC܂Yy~|hP-YR"r=Ԫst3 u|6Tòt{=$J4SMEk@<6yKsV8IMP!Ts$D4ߟkrx;S0+U긔'I擪XʍV{!cy< XJWF=*F;%jk;sOcq3s˟` ZyQ$;Cb12tt̰%);:$bwmB1"~oҰWc~eYےˀ@VLp_ǣE ) -g?SFwwK* Kg-ya:3-#ԯqr $sNiC,VPAexZ~uW3wW t/Vs$Y)uSVPΚ !Q^kPThEI  WZc]ٽ$C5Dtu(XV wA ɐ͸终T9g|Ka_jrW Y`SSS?-N]SK)@&ɧ޾ >;:Sl.31}Qz,˸i Hۉ`4XԊ`trz)(ެˀ/?BŘѰƁ|]5啀4S\@/c 6'OBFl?; q>cWŲpDN[;l]>bX(ۯlŷŢ$Mv-ج8Y-/x;XԊyu bPhJ /?;(\L-1ut3Uhl꾡ꍼz w􋍵)%ֈEpI=x. AT U&kaJAURz "t c L#|Rhg_;I"<.i4A3ˣk(wt{uKmYci#:0N~{=s@DI?5yȈ\wÎ@wgWS٩ <.5U1x4wuޒZlƃHT]7V4+ЉW>UTi1},ݹUo^j{ej؛^Z["I53 "?aQN,UD+TA%b#1/&)uH5Ea';/lqZz(,#xՅ?Re<}e^p ɠvmFp{/G!ǀ)41@$"[_!m:3BL{q))38xҲ {q`c\׏Q_ -gZWo"ԪYv#0x4V)ҦZ:iIU X;,i* $ǧ&K &O%"[ߐ\d-7zac<ׂw?({KAOA6Vw 1s:\T9~Di7R J\o=?:_~R 80uh%^C';?3뺉 o (έ LX܁[SPu?Wq|JAȃb9(0w8׊U!'WD1i1'rQ˜#:ɩ"Y]QiM?S8B9M,쟨I -4˗ |fS}jAU/+ӻ[Y=Բ_%ޡA6y",<ԼYb0q0w'xoc*醳-qFgP1.#2!;eUswn;8i 2! qnƵjWlԔ+ZqS:18)j9NjS}!=`__A@審 Ȯ^;f3?!L[8l?.bDyi՞ÏwA_zm`Ϸ4(7ORQ]U(\9 8ٜrOM'oʖgF_Ƃy_le_Qe]S` ʃf]@ gĖ$HVke5 CBvk8ko\=r{* M),?'cn7knP̤ypYA수MTTcI}~P.^ޓAФkʤ-]t[u==؇LѼ! È{Ӆ5r{sּ_=aTw͡@beP:OM2`nVa6xt䱇vܭ>I@xr+:Emm٬PRe:~x*wAMz;Vr3bF{mQ[Iͭu"Qp LB4sk oTrq-†EWF)t>vȞyMyRg% j|t+bYW&OCm1ry$3q(dDW7iEhื~^oU4w}4 o;tK?wzfzFڍ1غ]%Ym1\of栂%~u1sGcjysqW d(N=&|<Й"7>`M=UQW nPcCa+Sn]~[U oww?!dnh> )#hI}rg0~4zӰXC\-W]1R^PpWz1WA$*py֧:?^(0_YsGP1qF$7+%Cr }RM : ;bBB"ZήczO?"s'̿CILhBDp-aHA5;U8a/~v]2@AWqI+JtarT!`NR&g㦈MJҍR9 R/,glOQ)Zڄԋqv iHr#jq>O;qgn^}gGߥit{3W z;m(}u2T 5H[IYI{! 9we!-(.|S#אf@^u(MKpI6ș8+-|˩=r /ChaoMi4c:ا0ɀ^,,ݗjMl4ucU0p!#Sy C= qJCTXy"#0z-<9v>vb&(P&R#LiD K]xmLO)(YO,b_ cs&om}a0QDNNWwd׺f)}Gմ[_iE;~f~PsCΟɓİ5 rwnau ߳^I|;vB==0;="$#&ksm𫢾VDNڛ' ?gDb!wB#; "ϥf\*" gBxlFB? ;#A -<dzp{*ryr9ʖZGL>b7?G8bRgW0+G4b9>EN[z>i% ˴9\1Zeg^8oi^k .U~b#KxMUTmiB7ۚml; q"-zhxÆOLzn>|.*]מ#` nؼCis /;]*zBZAg~{?fk \2,Q>v.:;X!6zR|mGs%qjELp%S sf؞ѱ >Dz?Hn8[ԌOATm{-r=Nvk,ZSf%kS %?3^ XJ|.bRT"T,eع$syݲFdFHr){MLR~:(򣗂d&>G4-Sg}B{95V6S?QqKh8MK>vCdg GHte*mI:a?d]e\# Ԃck{e _U*|a5fOЎpeEq߳|\V-ZׯpVx VRG~-˦^7R8];ͯF|PXyN뙍Ƶiy1ƝJj!] Fۭ>(Da Y33/:_i(C܌)iӚp:Djir]PxLO`Wk؟!+G<.0x.'؍@2zx!L1A8k39O .Ė $x5DS2+ #/ |f@$XҪ=RcA2)hiP i6wnN'9ͻCdEp~@`IS-vWe,f" E0;qp/,`f jM>`x5WOmtঝZ`a3 {yOI,A-}lN;?JssP*LEz cV鬬\ÔizSYo45GkzYʧ3,N` ھi= @r\H#`GV<]#AUTW5Rr\ZOt|B ~?R/GoTyw)Zǯ` '#@@a/ <~='ՠ fF,VxlhmT@DYx?h)BkB9𿌷T# (N_PB{%>"ֵMuUwnD=$ #N\׏N.=z-nikN8E+֜;2QJaUzC-zQ4p@zV fpg5[$.϶VsA8t?xI[?!hr#yHFw1 91e='qEe o!۪l61 u$$0c-.\K~uہhoцW-J:ad5Pc?Gu77H϶Fy6bq/n-vcR'? NxIQ12@;T隸,]?NN%8V߫z캥U0s}r(j&ʼnYdσlxy*{f(-LLm{f<0yi[xV&CzY>(ӦHT+dטĹ歩x~$W݄0rbpkG*1 Ɲa"z/-4=WTf-]4!Xh*mJ:Ϣ *D;# N\MjsώWLcHfF 2OЃ-9#r`gjPpy,X>J+t0\h?쫅֎*ADMpl Ǎ7SɌy:N\`2Q"FO8Kd2:IJmT!kX,* t@Aye_ Q.mS`1Nv>`=~d-KTH0 טЊ7Fk'wve~I 1}<(EA%'jNHa?pb| I"+4 ۣwFX|Z:l?ʏZvq+7&dZn!aʌ tf|8ngANrn3MĹ ? Rh4L5 X[bӤb}%E$`m){EK痪%*ϞXn~)h y[8>k+ HUcbtGY$)(o7zZ( o q>S$3 ܳ.;[3T4=kI0@5D:D)Gnf1DC4wO[`) [z (Bl-\I{(E' UՋ|޻e6kvʭs{)&]z6(Kω)@iNV=rofح@ek䞺z+ J`+[۞Ȓh5]zzR Քgn˜ -G_a#r.P t-4&:-Ld y=||)U2:|gt#.z.;ՆR'@ŗuuR>p`;B8)i'nx#^jA4Ӫݩ-VXq ў4F/}iT+NM*5'M}4'W2 7Luxժ*m}{`r-)sZBieOK+:S4MEYxǫoN"#ӤhgLZw@-mg8,5ruMPzfNP6]Vc}d Z G!Y ϧ6q{=<+ɛ0#;Awܱn٦t.9*Se-"kc8cZwRIw|~ lG3b oC0moׄ2W? 0C=8'F2',K KR5b_+iMUD#_OHkN0{V b9ˬrmǺ!/9*DfQccvlL]A++GhqཎʟȤ&ҙ jܩVq^Aˎ(mqR4}!qf15ILs(]RdLZ8$@r*V4S;2#|lnSriIT]EC˟-iٺe)T؆rMҘC; ҟv=3&9' GwO./CR2=^cq{ŷvnú0tKgJZ#Ow91Qģ>3.8Fs  QpcJ./ i ԉ_mVA5J8?=:"l շ\^5_Et7*T=i(Mh]m *H@ԖTMd憞xz[}s@M5#L43=ѓsؔZ'ɕ393  H]EHj=YLۻ̯n- 3^ul&˱[H\b QMP)\}0_dƒWj) ΀ғʨIMtMڊ81.y^T)F[ y"΃" 09Ί!˥r0n)^O!`S)&ԅD.IYUc:w ձћ(1,y G% 驢 i,v*PrbdJrҠ$ߊ!G1^~ɖLS F'h`>PL-GtW2.pB{PB*ZyPZM7Upq 2ϹEU;;v(Iz.`Q/-T>\Gx:j8dǛ-g |&JXO~Ӡw T$g<52VT+wN5zN3/h&ur,&9€?Z,>kt1mـM8zв$H0y0 τ3c0_Ac&/TSP>ϖ+sSt)VnrZ' o n^yړ;@:H^01.|,d)mF Qq&O|*ofYؑ2IJ ' w(0 W{`'d%4f(ZLV+m^aFn~$k &ÂW8jV*\Tې:m ͯ 89;1UlJ,JSvET(#mCN65c2#ǐ!S.NgM8Je--9q;-֟W5or,/ LQd,2ȒT}}#݋ uU,ΥʢG 8D} -`7۵7 xX ڼwAedhkZ2t0cb'eM/!\@T$ZIe,\\*uX?N 0Н<,d@ >1ںDuy2 $ޡLys%fٴH *I|/1Mt2L?>[Bh6FeUN/G:mpqEjgD7Lʞo _%/KhM~ ^L^*5[S Lig d\4cioKFSj SKi]G7ž^Gぁ<;p.4#˝Whf њ<ړG䶕DubK.@YcT5dc-qu6[D۫)qm"Ag zdnϛ^M`^({|l'V;lm!$y;AAޭ\~pr@f^_Ycl5u mZPUzS=!ߵ[.Ⱥ]LDrSL )N!ь/Pϲ2Z!dEf$Yؠ'V (>9%G` .c5'Z=ɨH5&҅ڻ\^HU6ύQT}Jk$BdK + 󓫳_.*^bP JWV| [TUyNLh ?UJG$ZRdt5iY3%2 h얇;0YWranU|FIk?6+'RHV8J{^<}ԫfXa3)CrMYi:[7OԑNܖRdkVYt[=1h0htYd4Hf<:pe<3Ѹ~%sN|xUG-_rKr3kٍ0+H͜dM,Ă./hxJ8j lx ZՍ4#*mL]dnA;~h 얄L_ 'v#(gi)>mq"& L&_n9qʖVn΅*&79k6 Vyaq'zUiV:ZBXڼ7 ۛs1JY`l^ pޢrm*yh;f'F% FrW,45cI{u8 uu8zk{JeVJCz˔+ʕc䅅M$ȋ(?&vP;ӱ>@=WU W0TTv0lM{j\8A@M؟n:OKyZ.$IŽ Q8D|SKmŶt* JP g3,[8 ryKU. 2F{H-)QטRᘮ ;y-IHE~B(VƵ%$| Q}EWӬ{`L=i-i@}T;W`rN*-] o]U5.C9B?qAe?SvWtPpzN|9kJ *w+D/喳Aw*&iKBNxMmxRk[}  gK~i){Ȍ/ӎ{J`k[[T+R)t)xx JSѮ<2y'm/Ge}M)/*wcNwϥҮ5. Zthe"=`uKf/kMu)cZ]KūI G?e]#cmWuﻅi!&Gg q/mS}ºw(*t! *8]N.w ޮ8f+svvPh[8<{>:J;;L(5G%}Ӫ? +k2!-CˠBe u{K%&=*|I׊£CVuuqn-QƘGHl8삒1_3T (bI 1 (%dq(ׁ+#{׳O[t=Tw ΖM;7\Ĕ~s'1fGHw} mo1G:5ɔ:ٲ QEQt ~Hy&GteմbQw\lBvN?3_3a5 L>~R_ *|~ rma/2Hq-.E! _ 1>[+Kn&c4A{0}E 01LR(Q#y۵Zߴ2Ys& ɵ&}Cw|XHW`c|㉺ H=ꮈGya^ۡe {iRZ& 3+˸&ZYY"Qj?z+OM"JYPzlF.ӛ"SN3wD--b-i:WyKm_+Indkh4MnzkHs͋p`q؞ĜOD1- !& yo7"2 5Kp1Z$ fVW!8z<~x[^4ޡVyI|_+ч31Wj-DR_MNa?]8\=!0XWyxiZBwM>|?>}Yt~Uvrv1yxOQ ( D }nݱlpܑ&s}Stp~a{"`"ԇj{ z*vv-%-!"VIJ;;BCZN Hz=M#()&U6Pjگ}+0/3TvLk,nZ8 ieS)&Д0xj3@W`z*K%wmY nVa1@4S@)ZJޥ䘌 ΅p]m Ts Zbo:xh]cj~^ Epdt{."P-DJ99oWqNM/##f'r>\>#BS{У-ɽTi97.{"/„O?1/TI,m3+#zj18"ն[ zQ dF}mwW&]=Ҳ[o{gY 64(/=߽A @?|XcOtı8VSFne:cwqYE^8=ٍLͭƀgdBu#O9VEN.V"v%<cjy@-=U\ss}n9d.wXUkނ~4\sgs3ɱ+F+ɥ+T"`aY}.Ȑր uPR4G}CK{*#Yc6D0{WC@RJvOyq5*yG>-%G!]UpoX2avs=DB5/s*M'Q5naQO ;`gG0:1VW~2Q:l'[\Mw^"Q4O^] ,C# =G)y #UfW ڄb06 ķx$8E_r_ސ.S/VR)z_j a*p QC9/!釵xqx\z'2;ɹ`ux/e<0!"kp$=wk!"bb5FxQ V4w'.H_d̳2W&j괯˾r$uJZw9gb)>M!3B}Vcp9m#7ٳdݨ1R~X^}*.ewHEMLq`p PPlD6עQvG^أ~xaRڸNBg ǤWf_ccafd#ĝp욐!,~>p_"`R?w 2!<"M"=lTeAѫ*nOJHRbT\*u]_E)?\+ j;u˳[Y52Vzq o|c{]YX?S9[~-8ݠXf9Kccb) Kw=P)p%eP X#Q ĐT4Q{FAMک IW"ځTV' LMoyCu =ΛE(], lҐؼt>UڲGKQf#-]B~E6xa؈Ԅ_'ɺenrFlӐfSAGx=-UP7Xw{CQ.F1߽k;a#MMŧ*.)V}RCyoN)>E7sn OPYpJAL<3qxG>IW5)oj49|) Ά~Se*qW=>jgAM-̀-(Ǩ}򵃚S~y%_̜6. /}̐>jesOyWy$HfC2U6m?6Xk|B՗eN?+@a;J^ݧѹ A(3g#6NĚR26&bS36U~X8:m!hu3}so)o#~$\M1j%BYzg(ZgH)a)h U7oz9a_+*Pin781z5yTN1%y,̊*˲Ȓ`Tr`AsJ.kQf {פ`x2^zjBYTA zbf%\^4o9]!YU^-51@4Z5~d-ʥZJTAxoWWBeF [ ޏI]+ 5hH0@$ Kte LLgпs^{sx$,c<cPNne>@g$몇(.'F1 | [)JdvU^dZG"mW> Pщox!TcӏZh-͝UzN+W%ܻ_ l#[%j-͈#?~b)pZԊsW+`$7v<W4: dxnil| 8^TvR{j^.*!l~õ;~] ԋ)3 /CL8Z|)aU}4&1i3PyLKkEB4[x+չ Dk/Cx1K /KTDY]o!z>7`"!tV}=Z<8"MdCWU'tMijW>Du,oc f8Yd H$Έ1'J) HS.UXhoL .V S}a@dAuCz )X1Zȍ aANge*ak]m+zze!ޥDwSOә:{0|*"Ins!dd՜$<HJ ~ x*teNx@$ TJm9A I0tkv ڲ,\ tŌ1& h"(B)[DGVD͎ro8%3/PAɚڃa.|/paQe ߽GnNG[{m'M.?7QN#]ө?Z+6=?\#Gp*%OlʂXn~~uY[xZ?ɄtmJX<(ɵIXޡoWotd:0P " -bs/{ߚ_b^ &^ r.%S|ڄDc>Qt%hװԪRj`AMݟ ș4G(7ʍٔ3^]P&D"kUe. \u|aFX38JolMmo+³2f\YSU}b$-tp4?Ҟk :y^k.`RԎFenժ'ZLccҮ^F1>"U.-jP:dDІBWU[=Mޡ77h, B1,|_"ćyZ? 8Ƶ}xӓKl3z>3jNdrA{7ӱӝؼne؄1«A֠Hu,{|DNE,<GRʨG>9:BW5置 H54^!E`s& }YJ؊)߅W T2k.4F_3>zmL0i6nX'qj'Gf%hgajп;d՗5n'-c|J#+_?ҰDF2gt}/~djaͬ鮎AQ4`RgLq(dץW;]xLD_l <5Q9٪ sr۶{ӈ믗qHbAqG!$_8"G*aޘT)Y.n 4$5ly9S*E;ڀYl($]H-( \#Dn%H>AFz_Fd=a8^^C=Y/1SzϪRw}qg(Pdq~˽%/Pw>6_)Zy)e8 M$<V>c)UAZ,3.6ZQr̈́ąϰS_<VLm=1mPUhZ2bMzT*FϞj7F<%2I0E+Uݬ CqeZۢ}SC{n%y ؿK #p(dwY8گ,+HٰE/Ƈ^_A;0AƩ-?ث&tU/$#d0q h ᔺ3쩈U\-NtK]EDֺ1t.sW6>exFoRt۶95K|(@E+e{9|*Q&~LIDn8 T慐{+afa_ԏlztpm#bH5z4JH KmF X%D;ې3.cjuž Ɍp5Hg>2; DЈ+sծ3 <䨪ƫM+nk6_lO.^C"sÛ.m=a\2 nنt0 + MalxSS/vVtnZJ!P툊A×$tp=i mCxM-{Edy cTy!,-Ss,`ȆCC5q*BJrU|bR-HmI< irQFA ߚ"\\3dFuOJRqy:uKeڞOF?,fDFaM4S 35lHcZT/jY:Zglczz,?3YHp;cfU%ބSYX[PIM+Lu(B>I@UI5suqs;+@&˒h.,]y[5z0@ fS3i#8h-%%sKz{tEG,vKGû ~QqB/14&:i5'kG'yccf#!As,_<=-??½AWSnj&h1dzk_3N~aǰNSqTӜ۷ ]g8@ 2 yߥ7ct> - rbW/})P0e9^͗:?֩a9| = w&L3n|V1=4ضq* g}eA/L{%<{_ɗV cgf . Ok6~)iM.su gI4ȗ}#0:M }O_ Kneގ{;7l6LJ\O ఺zX͕-ƎX`f@ !uA8Yv]E˃twkibBe5Sj4 \y[3b4,$Lq[BII,6`?GeOC(nykC_Ȧ|t.fMcduE2}=b̝:"_B_f^&7R m;IA @[9EGlx H)B/Yh )#עCQ/a_m:JTۂLt!z|Iǰ.Š͛:Z;S5C vXԖ]``=\\Ժ(9Aڅmin{MP+w|)w8rQS&br@v{4R}D7UAt44cO^}kݜi}!a]jx,B댺HMC2!:VB3ܖ*A 0瞖j}R6d(;T@L#$!fk'!ΖS[_2&?)U־rGLz&0-ԏf W ۏ<(? ǚ٦;\Òm/]/(jȣs D)(S3Wlfc_o:S)c1r v PPQ{&e (^1*`<[D/)RC2bxBn QvU:EMӱP8+qGUM[BT =MT"7VEVh2>3xg,4L#vQ:Z OzSֽSR2pQb6KS]B-U ?$={4U?&~]ghXWكʑ aS_ Hea"./񦁭hn5wf3'kH,аc i D4oN PZzqͤ,̠^_%)$OEzܢ{ f<8{I~䙙"ۄ7;_jiSdgvm!_խ4MLqqYqm21,%'g}M-҃ ^^G0kMNGq몕2F Pn(=Rh! 1^W4FB[.Olǀ&#o5nj촄{o  !f"Avv'S_ţ ;>2ۗA|UJd {}zIt8[wzr4 v(py`\[ eP|C)Hu-Y4&}Ệǵ }1}.&sc,qPH/CvHDf4QűD1=CI7щk:e ޗtlYUn'+"`QC[Ḑݝ-,dkâ!I])kGXrs'0[9BQxbӿcg.PSlc4e$|JZon}*7mVY1/_'e"1#:QD6HMXq;\n82BYsz؂,#󇚄كgpfE C@y u^B!eʼn+x{-He^I0k`)7CDAu썶/"DUj=D>uCF5j:Pf@=IEyw۶@->c՘n `a7l|'lsZ`gX;j"՜Z|Ŧul v[8;c$)'ܞ`ێOM..w?gE>^Oj3+f)k,#EBb;| ]{(v$h&miy+ ~Uj>T { _UM/eH2)Jn-mL*醗{J줨$ޓ?@t{/, 9RH"4s_gG&c~ڝg[[Oq:ʼn_PJ<|jogvg~RlʢPM~ZDK᝝YgAґywЬzh0}g6-.~v"v e. R]t2ao$*#<{!|ADY/T1l: L0ViJ.2BqnpFϗuɏpfjjE/^҅iI/5$z'!:\G#91Tg"+ѭ5G@ 'J)ϊt[5kIZ> BG`KMbLSJj}mWhƋ}|Ę,la٤O7cɕz&=(~D/ESpj%61*zܒUj-y >tBk [/ae@g+7s-y@sLaT3cğ)Q'hF+ ș<#NFZN,LnDIlfqz/E>#j]p੍(k% ҘU%u&HM` #NeT_ 7U?32UTnQ@:ղ=ܕE0 i4DA+4K޺;'8(#&(C@%DDb]oni9Di, + ?~`Q;kJox)3'h=z95P_I0UQ#%Ț{꺷d} k@EJz7> ONkjPX=R9<rg5"8Aq_@OR(9q}jێr^F/5QCmq + dhA~m3>mPAS$F1qΕPH"g.Y⎓bW xS|!cɉ%#"&([R{<uLSknje Eyǖ ):l%]Z|?[%߬\P})u%@0cnx_2̷ܭm:u9@a3tu_F) #VDMu -2^}t$oƊr0*7'`q;j1%Sƥa9WObTJQ|Evsp|Œ[ Ka& v \o&,6NĵbYs5Վm1҆^ufNpRp WEb+|p^ 1w@s:1yJȽ%1I KBpf8 o h m$t#oB,E9|Dɜ\jH6=ɐf*!? U~?>I]îBGG@y[C,O%M?4)=|w@bmkw=(˟m%0U$++ KnVH%I:ώ򭥧$ҥ2.8V|؄XĊ@_K$E7ˡk(QBcTp+|,T #=/Ki>L-M^ԍ9DBax}Z8q@d ۅ>!f~:׆.\ۚ0Gvҁb53gĬ|^su]ӈT_"_2h̸fTa?cYϰsIfk_S7 VB:`)T$OlAL\{$ٔ\uzq.?ʼi$ɆMlEL#"'!-F!|KMHc^'79,Nnn44fٱy:CIӘ A0Yj %^7]tTI߃M罹>#0=^C7zCam7|5Z'hCC˜]Bgٗ^N^τpP^/}w_tWҕ9Xh8_F14qnB@qsn>kèQȾ ;2+Mp4HC[˘ _Q [}-K2Uu%f`'Il$vFMur+ U =[W 1ąne_}i{KrE^ŧuP SU;+.АVA^GBʤp4]Mj ~Z-fu]3JjB- ~;a}G -u̦6%h>7?#b՘VvA,SIu|s RZ<@&ڿa~h%:Gu;Du:Z0k4ѿX<GzN#<7tvM0Wѫtl}Jch d-GoAxTh)^+j>3mƆ i;j7~u3ѧW qo8sr:*.lt0Y5;ًEl2lS2'!Aa)u#_ՙʏ[WėBJF>"b)lasRY2UE[1L֮XFEL"Paa_}U-ud( RP_\IMbϒ!_3}0<6vX4D)Ѓ% X ڎVb(yB&]% {1܊U0Ƌc5rLk`;Q@=%R"ˈ]Ƣ\aT^uʹ_Q[ _Kbq UˆUwHܴ-O&M9ߛ{t !d7jgΞ6ي[L ߻x{~9A 4K[tOX 7d:eH ݄2.cBi@uDM*yS ﹞<'7`j箍 1Ee^ ˿}x[9_=o I͡s=,}0^aHm";2tc¾"/$gZgvYy,g}JGVAMB|t 2ئ?bn!s;:@ , >&F,rg)6*8h *emz-]и@Hj%ڍ^VO䲀4ړj1k^ zЪ(BM_I!K&@gZWɓaqiA87fm(/J ][x&Epxq?"̣C=Gw?5O^cUBCA]J 4^Fuͨj#暧.W='p\Y.\TbB݂v}?WcOh̼RTS>!$e2 p^͸ADjLHsy:wX&"j䱹>SqF偵\:XmC}O)=/%;O!AxIfVIi}xYTK|\,{;,n5iYˮL8p0δ$Vk?VnրI?vuOesY@*:k,9?<ɭ0&69 ;Ȭ+(+O5@$d5Zﰄ^1ൕ91 &oz >=ii> y_$oj-K66mYŀD}{xbk?d{-42P{ 8T} #,c`>WM4qUE,l!0[QkO<׈> r6}|()B} 3_>vMɔϼ|X :a%%El kY wl+w W+YRrlR gT7xX+%̒Xf!W>c>hu)etЊj^ApIO=Rs79U3nqwF:Pͭ16 L%$ Y JscC!p4! -E[aisV }KĩyWyHzc7T=3"My{ɩPPl*wPz7* kO!BiOD |pSP3PӺ|9oRV? }Uk,ggt?:Z{``z&ZuU,L*Z]S(B:&.b,0e"Ds^Fs5*k1"̊m^8&JynaƧZ)r,JT:$TʽhP$<s$>Z%za/z%3q 9G>#1 cXWy IF$$ S..s}<~@j Xg!%l[7Gv 00*eD Uÿ B_zsY㔄Men`igf Pa7:W)DGﰄ!m'hWW/MK n6'S*da*(vcB]ؐQжG{+ӲeVNڽyTG每bVv֌/ќ7$ޖUs ,ܭI.׍ V)!V!_nF(7;ND7݋RxgT{μdf:Gl үљTÏ/$UVN+z%@PX[Uzw`0 ںpWG;^, 3Wac쥫)FTt͹ R 'orO%D, T`X!n:q>Z%;kRiIv&20/O' Z#kªaǗ$ÇMj5.vdNGfL?@;vkRZϺ >XѺ%`5Hb#oKy:XC`Rا-fsCly`DL<ݥY9#Y\.b*vRa%MB|νWl:VM"&F3rRrU]mf[ j#=UNfPEcgv"uXk8TvuV7D41ԟQg9eU?y5h4<{c>+Ҵ3n\M?lgdD ,#q1E1~p˰]n\ipRǜƹ^Qhmos"$ KS!:ÂSI)Xcu<Mx΅ C_ok?./ &u,;+NkCRT'%I7 /7UB=7 aa].KMRӵe[CcT+uK?,Y8D;4GY|HSS*Si;8u z ӶI5e0u(H_Կ|Cl;zl\xk-KH @_=ޑlbvĜ<}4$Ailݬk3r* Vxi]K=@s#7}{= ɿ'耡qmGv r4.8ܑ03[> ̉C(,V^(Zv0m=ޢnSқn5ހ^'7k ֙<31[79VcQ ]cx l=@NKku61^Uɶ;myPp;aYP×ehH (.L=i@zCh inի(E.c`B7]+NwdO_mww/Gש.-0cT~h؂D/1E3#k:3k_[̫4CVT%R6~w(ed[{\ #v@At0;?*4䩠h׼MҢ} pkf9R{)IR K$~Sy T֕B ?67\ܝ~L9P3$8,F& __P×& ͐אz#/`37iyaQli'6'[H(/D۠ $  Us!l.,|v\QV)~eK˩Ցj >P}ƔN~,ݨXj٭ cHZIg_-q=å^ -/<P:C,J*e0yZ%u aۨX>P COV^L6|l9z?y)Pj_h${[bqj0)_0A7*Z"iR~z[ LO ?Wz\ԋv&[x+J5):A6=d?\{mf^l߲dC$6Tz!#Hd_Urqst+#/NtvD|i66*萺>;YcC7ֿ@=M(9]@<P"Vx@yȯLTۤLuNx|Y'|cPNwjt:t 31m&*Pete+qdR$;xl´djaE!|)ІZA#ݍ71ƳEXd'gI{i܁GoO}pR?xo]˾_waRXcg&/' @4tgmt̐/Oˀ93xKq~ApQ3\Gye472!iչ9L~>'"u2>N mɅ/{p<CFz==sM-wg f#tsLIT:2C+ :{8yXFҲ( \#t=P<9\?=־]D]~DКu' \OG?Kj-Cљ+3"@4h"7s[ۏ,`$X3yMKƋPlok|\q=ҟYn`.N(afw[C;3 7k>]#Ud7b %v7uR*E^YW{#"Ar‹GmXNQƬ|H+rsGqC&EzM>d0Ďf%_v6yKVEN|HmƪYvCFғTNFdjK]3VL4ׁ4UO0O;)*"a$n7ۙgJewX@Zᑅ^ Z&:==pM4f= } (4M".B4Ho͗-m1׊4 $ ${k擼29 nsa!k5mxvM-+ -41+f`Lj9{nb8tD~Te[?ԃd8mwshji%}GrLM_h-d?T-t3Hx׹;+|<|7&p;̔Oكw7;zb~T{ `/\<;jv=O0ip- j*v͠!a;!$ 0䐁35Püz8^ GRe1 t?#okF/Se';qz[=eK01FsYAvbsmuq+v+O{ #uJ ]Dz8Ud .''،?(zwIkrLߌQ2pJW]=K <]t.q$Sm^{oUlGYƾ|' 9/ A4E=^&*,ǵF2n5<hw4m;f>w5yDa+m0]50u"CJX`)2@[yؘWQ4;UTlGb}BH*&h8'? MAƌuU ꁕ"S} .U+יLpGP;pRωۈLY U@*Mɧ"HqbG #\?&j3^rFުss%:`S+a(N@^2O$vu"[,GvmVG0uWHAJ=#6q|:9EP;>^o6i)O4`B\`U "$T,XG9 9d9PET&+y0KްX]ϴd{LþxrP 1%Dߚ/}gI0er ^&3 nO!?Û7UggfvrXRA$=/ש8UǰhDwHG0Nv&P D^V?MSSd6ʵμq!<,Pa'oG<1w1ڰ^?EmV;NB\fp 8* w55)O JSΓ*iyGl#*$/%)eT5Dc^Pjz+0haچԼ@G*r9=ƌ-J&9 2Ag$pMpҧ:Sp\xzQL(jX4Y%rek%8e-,"W]VOSy~dU B^R rS WX¿R]<1 đxɩ]tJxTQ5rc+~ۄ]WG6i~8P߼ ԯ:Xg}c *T}8Jn^4n2uJ3Q}4s':j ~%r8EfI~>%>f">hpfޯMJw\0?Z=9S y3)D6Fφ$NU,[*oѮ 5xA)Ց7_B1qC N= pvm:SA34SIM-{: }k>trHY+vפlrz5Bts|a(ũ& e. 2<ћ_4sf@LԅcG Ș;$e>Z:[~)Eʉ{ˀ}f#V"oyԗ2RU ݏzVP]dѯ/~_L69ӑ^Žf?(kZ$ + \ P5mI0t͎Bتm=?V"0gF-?@4+q3>Cb.Åu>ALfRo58LjNHzldVQtSx̰EF-%߃R2!ɫ@\LX!IXd-+;hJʅb|^R GWS][ K8΅ z} fT"T`M>+-9 8/Іm9LQ}xv~|Kf 1m+ߴyfJ`_ċGk!'K$@擖L~uKQV!袘"_;Es16L0 duwBxL{B?L+]Xy%-j]Qs#1B Y6Pי 57yк8>^RE65Wuxޭp`[O}:@ӹ'YZ[R}'H~vc*=M^S+5vǠ%;o`B_m%usn1<}`ݶ`(7=qdz6*rK&DDMWsl0ӡ=x :' #]] *S':eOG"=N.|V.A Z-2Zۚ_Yw'&GYC<.) 0Br3_s -nޅ!; UҥY헆,6<+M3(8g t.֎Hhͩz+ 2Xe }f,gI_!hM<Ɣprߕ~^%wfih#l1JTD7c<7r)җ D|gI'- {$XݱGR//P#U.O?#a7MmTr6OC6DAy dCsz یFTn<@GAK Dy.>+'' 1L?kq X4\CRID E05P.m҆QY0gՆI#4ZK7R2VKn-Зu_;Pi[LQi) giߦ?DQe;bWkQ@Q6 }#} l7b<֕5l| $eFy \"LiSw ۈxPjղk⧎i|0ۧÌz!>WtCcmV^"Hq1[C JK&TA^Nyv57M(y7Ȼ'O%S-d=,sU;bvUTSGHM[]-oliGoDJk){^Ľ;GuЦBswt6FC{_je?pP։al1Fc{X+EY^hTlo~P.QðܺI\H7(Z˦ŕmT1KeX5L}X)|W\I',9n=/j⽯U3j'fOSW@VvUZCp:΀X{/1Z3]a_[vYM k!FˡmwzetT ч `ȬNpX{PĤX>^2 lw<5,6BS dZAF{\4fk^DM.B"GcsI!%hMd>~b?4QsEߺS;6P LoAM뮧H9b >&1YR.~G`h~(<8/3+E˝3YqZ@s#:]YeW︂+qrYҵscVJ#0G$nv`\Jˋ\S7?ؠ~ ^5ޯ{$c2.sSR7qEnVSNJ/y4TmqFTهZJܘů>@<^%D] hjzƯ&CI]sl|3YPgc@G8n+Ki AB(wO|cJ*yF(Ԟ|\릤M$r"˂(6աQ*p?4rO&f}s+\B̓O( K Ce&`3̮WdMfܺ@~.@ISn"2z a.uM}%~!rwT-Ay3Ϣ%å<4x @ԛ6~/bY\F5Ɔ>iKXط/(bޥp]jM >1@n_RrY\H-l'VH'HR#ՠaC54fŖdu,B@?İ]ig F je4hڂt[~X;b6ElQ̇l0EϬ/rB#GIv7-lC0ƴ#i&sv/X,>S^"]CH3⍂ĔecW_wFVMصI~}0XXD?&97r~ rpdٮS5i4>Κg<-!FiSq*uְXл CN9N8\z.FZ΅v7BWPX7ېrأt@=fPRS Pʑ+)%CW% ɚ܉cf[Ӄ=FJ^/+bCaB5qN؁k8Cd"K:ddTȣF AvhFlK0Xӣ\;>ՓI/@Mv=Ǐ"VYK]Ee.e\HREKlCL-@ )cg0D#n|_h5>\ A.o .XvZםZpie=X ߑ4(U'E"@Zʠ{U^Ă6(/ϔ5c6u%A'!Z߸N6|~%c\~Qrh w3&Hwb0a\NJ½Ou,p62Į<F ,_+ 8 =zY׍jM,jndˇ3!SS oѽx뫢c#PsY&Y]23AOf餐29Z MEe}6P30>=-t; 5*~kxJ$җz۸bqhe3>_KΜ07ЂJ{H87lFIcu: _*(IAY6)zxZ Yo>;sz0D8SAEiJԥ3BKkW4y;*"J+ŹJ^x 4MgoغY7aq h ;nk?%{:QS.jrd02UO0 rb>e]Z4{]G=(M)s͡c?$?f$0!y(RC^#"nY_%hCH, Ӯ0,StT'V/&s-Mu22'MRWY<^m5vFX-)Kv;w|6h?wn \ƽxƢwH캤(o#яf\n-Oϲ-M(ƃ:OD:aE峧0ƁuM#EJ:bn  1%rƶ4?W׭9J {{+zu^ B5#>:]-y<(8!k*-w YKpyw o=id#}8H~7uVV;wZV>QP HoqFY+wcܢ.+7(ۺq2nI oacW3ρ!XaX_?pA)*L -({rD:Pm1޻@e!@֟&A\^[+.8jwnWz.um`mxѪAe(;m3즫hR{-ߩ%&`#|l[YFV5H*)P=qjKq:h~W Ĉ RL3\yމ6<5|Ab_dӫV+Q8"Jg 2ciSGxA?0]<.ogw:|Œ y%gk灟 "@ED 2%.ܼ-kST@uY\: [2f޽M`G8] nĥPvt} #L"{CoMXzIO-W{NTGCڲkKC4UONXi3;[ 6!xC(DfZ7/ ƏvQ/v}R!b"8U!;wFA}xW+A[ F7LGH5y9AhLTF.$Q9(CKgJg2XclZȋ~p5?Enfg(BvxÅtN~ft|3A3V?!(RYuI8Vyxg@[ܚ8Wp%5'w'A]ϡd3\*Fuz"uEl.kߩ? ,&訌N-t.EI@dZ3ylbSʱs͢߷stm0oRVaGeJލ߻PH&a$YW !KŐrf!f8:~:v*u&brj?ȂџL+k[.`yYlb=RSM N11]тubOk-09諓Ula?~l5n -yߚ4N~?6F*>7L(gzI-58n߫x'K;@P=iď&^N9H]/֐&,ŏ yvXqP1m$uDȊpq~aj}1:PՂ=9׮( M"qFuSuk UCƩLј'2\N$, ǧpk!X6 ĸHTqӶ=&H[.&{Z=< GoypVnpBqҫ*5QHH[o0U&̯ىTȶ!G# V %f;8zJci*)Q̦2k3IIe~t9AB]mVjorgӌy&EI =3pvS0#zR)&};C|*69+6bl$~vUW(2vD@PA8(|R@XE% $?=3MEvnbwje)Os4s)k)+V>4*w'$ w=>Ncˏ`maCF,D`G[}iTZZ\ ~Vi\]sK>D $‹ss,e[V?=ygjr>Sj ZO[QuosGWT}QpAj6$a1OR?- /6(~bd᫃" 'o`- OGJ1Ľ"C& )S @4xK1z~DC<$ Wǔ+%j 4yYBFo$f >TZ$ N<^"\ ~ʈz.$M]qS[PŲPͿ9z2 Am`KƴL75> R"q@.b$_ zkO8 /%4br3S4Um&6& i0rZ@n t![։Fot1s94@6]͸72v 752(:q&%A)XFhpқPd5!b2v,(ien\LDUqک cg.1zd*7fL1 YFF0_5Tz܎ޟV/uВ7akf}We08 sjD#}FPU) 8:'dz~pP)z͸m%fq>/L7%ÒmXŎv[7E S PN*2Q[ؠcTUf 'jەht7_5_h-ZF&~pc>ϬdmA0&"&X VxKlu|`y%. u(1 mD\qV P]a.)\3ǡb+e)F =k14Ů¹F =2B0BkqJp#}{?U!|F~|9&ml;[te L*(y}[Je!L̆8_-hln$cƦ%Ф|_mM`e+`I Kʖ,x-ƨ񲿬E}b{b mG\Mt>`Z&0?Y /-Iq(xZ#@ל.eLi˫Gs|&%+'hq%f>mo*} iӬdlȯRR63x(Ffw`V/'ScUtXzb}muF._hlO)r_ 2 "+=^ }ѽim6GU_*u?%CKY9"1J8w E%@QO^ z5nFm5:iCvw9^#]Z$LlkE{Li\%]a Zs?"0\fb٧jJD#顧n7E& a[ߘX=4rF0ud$F$E@gzRr=M+ŃN(jIpzvPZ utky ˒k5 }\$ZkWn)sq`ndX̯8p.Tinr`K]GƢso)Q̵S24^"%HB|C$zZw7{X. VOֱ=":`!S~=j.Խ?t_8\ ԣ̏R]QP濂cT&.q*WщĐ  i/WRQߟ/k>6]Di"4ekk&[]t-)H{ 923}zuFx|#>||iԘT\j2K#<'vK B7QϥEL g'#}l ̔.'pZG1D`KA d-{œ31M{EpJzTNI9w |gXE4j5i+;@ZgY'( aM,[b 4|džVIDv'y۵&k k1ຫ c{i`Sv)̩Ȥ)տ{h+-k6qu`$C35uֲ *n0˜4IYhB"J 4 M\6 fbXɁiOw? -mr<+V?KqEa֭6rb9EԀϥekS봩C?c.zoŜ" Y;#G,Jxɏ.hڕv?F?T>;6!Bb1,IDN&q&9KԣȾ(WF* ǓAj(Xaely(Ks*;ͨX.4RX5qaA`7ʑ[ԗ<JbӸ4 f;$aK^nge!*Pn_a)qp"՚RطH| #uF:9n*.ŴUy8'gLІ=q(V4T8 fO=3yĭ#G8%9cOk~x49s? )ȀFwʮ{A E3^qiYx3(.:#D~Ҝ\K vgl@:AY =2t l Ϡh(=+:\ )d7 &OIv漢zWss9a_kޢڹ.O C=L(n%)/3ȬO@^}_anq@9["s~bۄ1A[{.Xڥ {+ "TwPk&/C0R,ǘeT]g(bfǖ FG3UDsyjclTT9f8Ku˭3\1HR\?F5NfV. iꙨ+|/&'UPo: lGt> k=$] ZEnV=bjSw8 b"o&~b/0aIa4xɥMGbXsJu71w8hR{SN9phIjenP[Ff0%'يjI_ J}1!z DO3v^&(蒸5#oML&|s믭;a@_B}+FV3rdAlŹ }x2`Ƹd#&s X1uzˌ:01WAQh=hX;V㔌@$H;R>8'}>R`- +$;zXK{%M@&en$άfek/JĀl3˶:4ˇ|oUd`i=}iyS-w2`>zX"ӏϽhץ1-6˙AC9e0<#&\p,XHrMRV R*;`7mm*EC\ 9q$H|`ճ 0NoV q-Zw'eHXP@'nw^]ߌlcdQZ4bTeIn|q$oe 5ggCU[\ڼm B*YD߆}$VC« Hf6"D<-%O?$(y׉I[&F! * d%gע!F\JђYp 9̒[a7le5u9bȮygk毃L"i,nK/hk{ݬ)T&P:Ll>1;,:[4䑯;e9*90.8GJ, rЯR!CN*o`VkF.9ۭg=GF"T p\58+Y[0{R_~̝KvBC_"m}Qw.֗D(7DxG/$\"<`#2nG2e}@& (3CP @%EN%=&z;3 $D^YR]1x!V60vzc sGa7u~ȮsKh|aԁ,jQ޲Ѽ .0UHGp0;/NwjmѳDyHueFKON\uD/wyCT&h _MTQwTg-fgV`ʥ1J<h4G>b .:rGT-tՕ۱!aQ \NRml\ [Iwa$c4ѯrBUyD}sMh&Fӌ2 ϬdmPT/6 G3X_HUXrEi݈Y)C m=҂ A& ^z%1Fd&%d?7#ORPC @ΕIJr2ͬk h YoR-gs^8\:"QTui_IIwBBB"c-M_YۥF#를@AooiSgG ^];WYgQ 09# Ar}`}Π}榥z`Q!K-IJ}ɫufuw c-B}E2MLZx{K BCt(=suQ<1UPgvYw|vh MY})+>](366YnM'^A]I%>J7Y>d40*dd@H I.a@aI!6.^suYDn1eJ4o@| "u8vΜ52i JF]뛬]^f%7ZiQ@ c=eѨExONýM疄-,Jn,08ZnCēhX0Οv uj [RcA-}멃^9|Xx(źȪK"|l0Hg|˲U4'>7[A}&Zͤyb*5ͻ\iBM?Pz)p (`;aF+?q#p o* D&4ǰ{됏QmFbVD6оi&ǜ6gy#s$"!u?SC hyZT4}^'xPģ\\Kz״ߐ1ʢR~o),// # :Q$=gM PfZ_Y ngp8 hP2`n x=Mx e>r#fs?5 ;q}7¾E׀*VGl^ #&U` T K/*!u+:3LĊDy/L5~>%'d;:B؂Pv R0il5jId샖ۦV͕#Sҋ 6|}Fg\wEsh(x|D [K e!}_x(<ٶV@FIeN@>@Qi][@6:(Ju" r}M)M1SSխ`5bNv\=t@&- ѳ3u~E}aEjBrL4Y4 + ?NyC.Mht^j]~ nj^סsFiF7i:+Y#.,\<0rj'zHz}"Ea,[*v*>9+^-%n8%Y9yC=?XqB$=Cn*m< s[2%}7 ]Z`nS̀.`'9a5IR|^':yP~_w5Pxz}ųeH y"\ g휇7aW4P05 kl#2#992"nWS`!v5aWw#Q2ȗtkxZQHّV2끒 ˞٦>>;r1 LxPbl/l܀DT?Do9-n&Tpp(8lùϠxeXԴ/BːIEH?7rX )F'.PQY0O1KY9gB!.֩*{$A}wȩ!B;y뀾.Ze=[Vz5S`͠4~iavbx96c v.h7nF6]}Yn}/*G@q \)o-(&!MQ gU.ٰg7MtJ^syNfkq6$Jߖn}38`'`SvLb7@-lq#F4Bd:ΚCWC~"R֋KJ~ lU!XLw]} njSWTYof%4h'J~b0dF&̇!xuePwWoam7mV4̮gp@z1-)t,Tra s㸗;$R VuzԱ| Rτ5!~t;TN&C\p٩ X+b}^<ޠgBۘ[ S@D+z΃ 20A_YVa['zKH.z5WW60j"* 2y}X |Oˀ6V-%IE! |htgn7unMȯWu,%*V>kH'&)@q|!ôXb3;? l ơPoa+Sˏ([^,QuգI)xXssZ 4 +ӉX0k Wo]$-b). 2j)#[/<-ِ߲ zNKn76|R7ʫ ³WK,j&yɰBC f5Er D 3"rދp[1PzR r/9[%չτÎR( G3 :7dN⿸8 J\Z#PS{hߝ^?+"1w3h0HieseFÎhKN(p_W+a T"dM lQ Kfz&i"bl/a- :3;  y8F__S'F?&6\)FfZ]]4Tc.b5!hOu޲RG};=;5Z9 G8DI?hSS0gDι\|2N^lCDcǏa;!Wq_UcmI~2]3Mơ;&/ᦦ@5y8X(9kkh{Ê(u̬Sts_\n o~r87`%EBQ q,j)0LMsv[ZӎtԥβPq,k }t C)c DUDM+AKu+Rƺ HcXKaM +$-L?/l>UM~j Yre*)mRB 4Py3,X)!GZ& TjQ{C:#ٮDYt C9lm>r,?mU:8AY ̅,sT_qӹ┢D,+]x۩U3y\3)ϥ9+HW`fU e4!UhIkSgĻbKj/[VH?z,OH&X"^yՈ7xևncvdkD[v1CC| >BY<^ 8*=X{gR:AE9_Pm ORC4eTjʗ!lZ552R#[*B-9'<;)>uogN[wتJ.2O~RV}=17:zu! $8 xw[h.opo`s;kL/1'K32`I*m)]%qB>BǵՔB:NSzU{ ɪϹ|a/xlea-tKfesKryZ_n'0Aߵ52b-'u JkT\g-mmd PNπBrI&A:)*:̔We\ߚŐSȑ=qO79G^P2)Ē銃! gsK&/g8= ~*𞼕. *(T9 h%MRdZNb'i]zoa<8Vb-iȵn/f[UV3lE+V]9KAeu{=5T1Fs|B^!~1)ϤTᮯ>_peKM7ζYɅ. IP\ec Cިi2CB  (]{rUJE}A1 acVsn}}c/rxxgWN9a!y 7rYVlR-UBR'_,P]#dmq] pU;`o3'v;~H@U#b-au9=NAP]ӬHHBԚ,{QBk UKcQBˑEˢ?Br0u8K67A@^D)_ -c_/`'+|~GWOa[z8臩wWK4GIQ=ۨDR/ֺV|ިRJ-Zi°uUc%Alx+m}85C^m$F}UЧ |}wf_QNF푵V%m/,QG/t֤_&\]O 0f/$YЄȊIxvce;SB7h'tzs޻F<"%""'`D6@M6n]b`r+8]E=bekr^QGg\B4H ͆k#Moinۧ)!k`(Tbl.E9~2M=(%5ն k?a_\'G٪^<ʨ"z\=ިYe+@R_%ENOO*'>]Z6Yp-4&@)\ɨ7\XNz b?=Թ}8pwߞ8)hgKy6CX1?auQ-֯=5},O?*bKàwO3Rk">5w I, ~Sn?nMV`RFۻwHi[*u)6vBzO 7i+4LLe7 -b&~]2y )OR2W/Ir-"m5:=副m9Q$ 8ʫ ܸ*OɄ<&m%Dka[X=\^IʧPj*\:Z_ >0S?,7mGjN~JCJ$LBoj{6"<ξi(4XoW;pֺɸJǓ;osIsuS>Еc?5D+c{*&D[OI dOA'iZWMAšp/ۏ]Cp}i΀͈qFo:2%_,$i\t*Gx ܻ[܈)bMw=H'Bږvv!K|Ґ/xXKBmu'֛KUksX'%rԄZicUyߥKtIS ;C9I]Ta]ŬDrKK[KAS3Ij߷'1(u4E@L<)GrTt%`\k}M1?|7iRl7){@C-GvXaZNRӷhmyå /\").Jaߨ.=()h#TY?V` V Au_wiV.M|8 Q6!5߱겹إfЊlzO++\` ~"mX&B^Nqoenb\jBcnV^?]=qjK3 ز"V@EG.Bҧ>*$,MkK530?襙c%.G9XsVPެ|\]nzDK.Z,zFTMpN\xDVrKKw .&~qVs}_7-R -~Lk*wT i'$`,E C,tW%!dJ>-VW_1RDe^J'ʥ͛4ؽ 꺚 #|pobU:!uWT =d;{ῑQ p*u],Y-ҭNoO {싻%oG<C+ h<0c)bۯo?w ]%m0,84s`ߵLeG&j+/#k軁RA/} ,S7zI{VD47E8!E5>}[OBKw:"_`X@go]HfW#^vG0shtJ!qX; 2̍KE# rNnW9тBlp3Q¨bʸs/\spn9L:i֮F ;v:I'QʈU a2l/e9 ls+7eכ H8]@w0ª,2bx [;*-w^p}/31Ȼa_'Mwau/OT03PD(?xLlhBqhbm4ϞM}~QrH[v zhI'{M~#jÎ:dV݃p BqbCʄ.7ԁ-.$igd}+NY> uZzf0Shɸ|aK H;$~,Re垻>FIkC.IiT0NNQppT@hUe7U3*S-˛jS.. #%J+'ؿ!;6aAf9Q {)'F+핏:W $Ŗvmᚰ?6b@H>e.}K茾{\Z~v;%BChؠ7avwKa0O:fۿkzBS2ଯ:" mF}j z=x4K!C#^`%_#|@ET^{NAcQ K|aB̖G@3xܒ N_ׁ-6&rRFEnͧcˬA38IT#g^g@qt:.~5*J5 xn_\-N- ^S|7v2Mz3/*!c~Q8nntfaNʵA)ּTM>aj`.e/]HہCf'@uĂ_YF~] cU]?CSp˶;MEm_ѣTaneo((flLF?"yKrwKQ7$7 M|.cȼ\v͍kZTj闽jelC߭& Mqi%,/2/[:6#-{ׂZ5Fz LZ;ɷA!‘sYJ]sB(Â-/SyԤ,xl?,/vbeUA}n&ɋۅ~xmU|WLA)L#_asAJEEK"_.qΚӒZQm,vՉf9Ej_/\8CX,.ӾΣY`|c4g|[SlgR(; .Sk7f/wQnc4i,]&Ѧͽ]NFe.ƿVv!Op=]s'U FUT(g Ӎ zvSMA|Nt6+xT%{ \em iaIwԙJ)CH316b[bx-iT|]%qJLJ;)C7%Q#\^-g.`ۈeƏ*/; ϕ/ ?k\&Ru 7AآrQc+ZDe]w?Oڲ$n:bI1y|{D ^^|^ %L +Oџom&&LhǺu;RJHeۿ%))UUt]ăx]] ,LNV-(0u&$&cy b 0zVʝ݂v)G`P"YfRs<&ENVQ3%ƺ W*/1j1\Bs *Q`&SȬUuߠt ҒLk?Z6bkP~*qmpE uum$bٝ*xj'&_HCeT;@zFK 7RJlcP8ad5%S2.kp-vDni3%YƙkM'D#J!^S6EyG7}ɻP}߽p$hVA›\XjS MAUM'Ļlu zۦzS)uzMΨص%dPc ގbl؛D=h~M\`M/vdGٹTTːC(pGT"Йizrm@$EE@hD~\ Seh0UDQf.$|cQ Ee6)I(#EG7|$i]5L_/rlK;: 撚*ب iklU.kY^F0>8KV+R?'dͨaW2F: &*{{yNJ=B:e3Y  +&e`עcBI":b[]i`=@H a̖ܶ߆IՏ7Y_Ie٢M.M׈>2}*_ pl̇m_+4 3!1ߩ.E<f%YlN:643!Jl] 2 go-؅7쾇_YIy]hU> 4 hނw/|']PT#> Wu|sI\"fNMb(;091C$ D/ilzQzP=)NOk6&"evKPF4\_*0NJ'^ J!8/ [D~v 7DS1]x\.n 7m+ tV=ֆ&d<W#ʢ$+O5 ovC$ ɭ ˩`#ST$B+9w?BT*N ,鑣qQdern} i7dNm:o.ޛSj UӎЀ@\iZUh3л)8skVCORdmx^c"V/!HsKGV6p/x-1RpYnEfd ݈vvM5T~$PM2B7(CfE2-/P WbM&fȏa Jb*n$c6pga3۸56p&wW[{1Z \|$2@E%kA.ԨJ~ |Xc.!^:W+ ƣ{b'_e4(XEevKku! Jfi, cx[5lMa6s~Rזю&6(|+[뭀_L=qϠX]:OPu=%kTAҒ堔]:7qyϯ܋Pz_AHCut){C)ÙJQYXVyY;Ua8 H&tR.f:(~F>qˁ#̾DOb#Z~9<@lcsOirYu1~`8sݐft颠cr_=ء5cdT Oܢp~0;0v/j+o0e^x0/%ĸ*2'͙ Sk{!HFCiis :'tAm[]jr@* "4c8/}'{A A.ҹ{y.Ar$Y|hbk).<8F{}}/p'&(kKpMv~~״e+yK.}|'i#(m^[#/G+zBZ'*RDJX/c}1Q*Ri%]I &WSDe+1Pk¿jLl;GELע3 ī?>:* Lÿ{a߾ 09!b)$r_gD]Oޚ¶LŖiՊOI> ?pѧv=C][ɱ;8pByñ>[O MmN(Q3*lC֯Qov.C>Ky`V9jr|QZp[:ylPY޽EDN鱍TB3 ^J2WR&_!r㨑%ݦc. q)֥yֻ (M Q N l˚F89mL v!d]vݴ h.g虳,bFqT7Ή,R ~08zJ$ bbW'5`P*eYc=,קq*vA3{Ex!MW`3̞9}"'³qA>GǏ|?;Yf=݇tX䭊cۯ;cܤ>kux0+6 zA L4ZRtRu>cNWvu&Ֆ/{[)gx2ʨP4UQA,jz]tY#"sQ -xq|1*E^2#^zlb=]L#/ώٖ[.N0Qbr<Z @n(OPKa<#*0q Lwk&:Tg&:_䩵~0& +K&xdt#ӆ=pwu&0W}*a3/{򘟶[' g0Sy_0\W]0|Y( 5譾Ӫ/.Rbo0D&O\e҅ea!+y5PN#aPc1V(^)9[/hӈ{lgH c&L\E:ɚȣwk! Һ> uc~*s=旭 %{ نM7UgJVYَeTk4"Y =ygHt[O#HjUW @pK"%_Ieu3-ءtZel&ʀE-bv&qQ6= tMp1,6f uLXҤH6#'ed{S,2W"t%#dG8C_#(5\Qsf4&eN>=)C`Om ahF R^Uj$|1_Y}>3$?fJ. #q&8/vH+M5:V lv bHW]湘ѯ?=Vgy1yV`™8ыt]itVBx(E}{N@hp"[KjŢ'جGݺ wĴC0ErۑÚK48eR1:Il3h`їF4GN|c kQMU}h;eq0?n6@|$2Zu$&ۋ%k5}k/XgaUbJ ],zg#c0sl_-%Ϗ<)UOZяjJ j,꡴ɂ;cuuV+u9֒D(/+Yܤ\bBLD)$ G6e p cܓhfc%fFS§>d;ԟyq_1M̈́pjd&(yn *%x|"'i2Us qm:`c#4`Ї5|zqGP;Ƃϑ1<'!@o>$gK<GU2.LP>4P@ c>@%F5IYȎ=y+=H~`KL6 T^՗ET[4Ҷ \Hy5+m$n?UERnQTQXO]L5.s-q'͙ZYǺC x>^%Vݝ)= 9j }vYeCha˕]N9&մ*2hS =[14D//Z'F=!Wv4ʿl^퀈8o%Gb҇ē(q PbzL(g?Q=C-X#D*B <[^ As>5C19}`Yv&_~jbS{C;{b[Z2h9ާKIH¬6U܏njgrVQk0EŽC6JdU%/3C)2d)/J*_}@Is;dv制]EsyE\dPb8U֮/_>R3ڿz-7zѩE pXJGCD>e^\3jZ|%MP6=G V2Bx;4`2eЈ$c*;N4Ȃ}jwr3XϲP H,3gX#{8av8~G6Z(ʮ\&K6ՒzKwU&p8Pz*)|)b/%n'",˓mE[T8G]a9 z'wO%xx8¢~#y;f? 1;@İ8m`M>8V/'묘wSMJ$Tơ?w|*_? RļL4gEo9-;)dtJ"`w yrJ\+!xnK-`HV3uԇ=' ~()saz$i<+˽Ti5c8T0Ȁ(_'PDz;fz:F]YQf%&. [E4?ve[d2HR)R(;}ݺA6:sܣ>/4'?3hX)V@2rHJ>Ie '燜Sv1HNybϸ2({xW_duH1jyP?cxBFu2~iv.^39W8^12#/|3=|8HKeiS%v”Gn=?ގ  yYw+׉I"Aχ)|T̍clÿP9K9J,"&"o1It"69o5Jcڭ;9 ذs?[\!w}AMDg"zTBL>V'dc\ mԪ4;yN1l<AZJ:ݤaQ}T6DGHbmĞ_KyJ%zH3>ӱ܆?\}:yڇ mcs?wJ؛x7;~V+SS6޴)*]98ȷ>MO0mk26pǼCA9? *6@YJ]?$!tU@9{t&Iw{>k*qOeV84D%6Q{3qj8ꜭߖyB;"ҔJ:QFC)fGaUC{p0k3THPh*J T2O2k*0[0^-S"gk7*RfvF*˹2YH&LzTpiG$tOjfRۓ$qxp5Qy7__+[ې-W@],aS9?!7 `KE[yN=Uy'S.96MXr1,S=Y \ڵTyl Ռ]DuU߆UH(t' Hlap+XD); / mS&WZ*)+S9ڃG9:zUńXmuk;+b }Q`ןTt.Q¨衧R6[/W\Sumb&yUXd5L^鉔ѡ_)]èRqV]djF01Hx@x.uT,m:~džgUy * GEc YMIsCغ( JZSuzH`  `1H%~}VùP 0ϪSalyG޴e:+QM@#`:"ie+R1Q~ګ;и`3+Z-nB K1lGyBãVjX/9n,Pgri.cldg#P9ӯzw )z_H oNi o^S KPVzGx8gOkd}y&h\PTlBo v`QeM#tO{p"1)9G**l۪fj^ 0чWZш]Rtm(1`ml{SrE f||4UHU1zş}BhP׫!, dX"UyaF*YՎOۥvւAgvBT=M\)@J9䰚d5Zdlq잝ik<v0XRߝrg#dDߪș?@@{qUʴ̫罤wV}.W!M],1|Vmb(%(SM_TG j ^b9XjBaJsw k@#4/v -q9KA^Z,eK#m? ;aH0?+5_+*Kj3EKԷ>QBvHuY5E>ŔYIƘ͜T}T+77σi55lP9)e&`IT D:a* y6, ڷ;"#%gukT<=7lr;u {3Ho17X9A[k7-"ap0I9L{j!wѻQGhq6M^L2Ϩ%ϯ(I|S޽;E?6w79*;۵#i+gGfӽt\2G(m-́]kjuѴm9ڑ6lǕ+g~-PӒg͆ (fTߴ'~d2ѿGٯ:ޠIf iœ}7G ʉ-ghmѨۖי?\-N ?a t?o%s0/vAvfX8|fi kcI[XPL;S*=~ObϾCnY;Wo1F_A~A#ԉv<,ywzXn4OD\k!Sw2PwIlWpGDZ prPannղj!ދ zk> Z:TfCvﮡXsDŽW MAVCooPߤQM&l7ښr̖Ŷ7kY@e5݇<It\ e׫}¢HYH 4H۟icU3r7%Yc,ZG}܍RdU2`Or2HS #(7Z~Q`+v5`ӤQ pSI \gjU] ^,K'vQ]KKzw2뒮2yև~&b1Ct &سn6T#pwϩ\;+xtMgx~ʏxb3`\@GouݹdoC +nz݀OTQϫE,G̞م';*5JJgʦDx Om: u~p*hKjf!/c/k[0f8͜7v[]*D?& 0eS{͂s#1v~Nw{F b'?g,6w-Ngk5)rj7Et KwVW5@X * _ރj# K죆(ˎO#}EiY階EK䠖SeG!jPSF˼!{Y:%?ؗ|lzS!vTurmL?@͊G!Sȣ߰jHiut t1O3霨(CT֧cÖHsUv5Z-~`/tG Hzxnie'_lݸ~IP}?Z(^A *R~Y2==eN20cx fzdkF tp?50fH ^<.:|{qUxޥ(%q m 6w7<.ŒC" ֛2\&o2z~˝$_*Y MCHaO&Y~N b`w\d֡ai ,I*L"DHdV]-!=RTumo7c'S{Qg/ qC0]gxA&.'@E6k 3sRT+^~)꯹ks%:rl[QO‘=Z,{CGIn#J$H³<ю;3vuآG6^yP푤h|DEͿ mrU!|,G P>&{-,y\cy8j,ƥ*zE{Ja }Y)"a UxH^g-:A/ ҼpAy3Q3yu+cHpr}M\We]?Wcw^,8f+'ԧM䞃Z6H#7{6OV{\% N,9)Ilbn`m-?c^u݇B}Qta_(n8F+3-z9v2M[W.>1A>Wn 6kC!Z1Opyu)?}OmjvyÓF$T:ZqN*tQXHכq7 Ai[@E,橱3e~]ŠxH Rn悲|hƂFJOAζOїѠ#'r1 r$`cA^kGRpdˊ6A5.In٭Dj8uK!jvzrs]1 aԂMtE aU].lgWʃNmM:pb=A7oӋ9}W5Wޗ%8D@εHS0 Q:6&ZÍK)@G+5agA~A-]RB|ӛUgU&T`%^h uMlo`w+NՎ fz~C-{fj^-qzQf\ hQ)Xa#@I6UXH'IoĊ\4=o҄+)wv]! &"ӷfky = ipLk7%<(?'`ynNDKzC@ݸΓZ> d%a'v{x{%Cbÿ,qJǝirJyiht+7_(s;!~%% T?CVDMDCTaLH3k٠'KKm]pqЛxMG{>WvQ cqk z7 jYhq/7#JZKPϿpTc iI2Y0@jHND^Pe  ز2)B0Zoݎ8QۚY(>ʠ{>lYw`:|)T<``hƜUևbݥS]fЪc%ėcu~rj[3Zf&-/MUa+AbNUlDm-KG(<ӛQ\57qVGBVG/H{JUv$)Erl4|Я䓗 ˝> [(aE28]EDe `ڰUMm9JUDq<`x7+TYa.#SBjqh̜ ܔq.&e$>fuT^AvϜ֯Wy115% @w+"x>0w&[p5 I󵙰&)cSihAd({ر,5?)䩸,Xg q?:qK\"v䁘Kf )wiӞZZQ;ۑGkb#;kd{1Wo> ?{(96[^b\oHeѝHN,) p%qRl-xy{XmbHM ?waB^M ~[ yⶦW4[B Iv 枍"MT63>uW7; N+D3pF !lR a %v3wԬ3 w]dX&oV=*T6+ .V;[pBN&IJ>]C#,FW3Vզ3Nt|vSY`˓o]AA^4aE T0>8RovВȂd1eG[Al l08ե7a{g(_Vc /g~.cK cF ,akT"P3*BԴAu=YɽjU9)ج?l p~d5I}Pg;5_6$΍Ԅu7:RH> R‘<TPo\N~?43!)pرݡ|!Qt Knt[`%oԨ2" G,<7I1-mLsL؞8brBm .qmӾG7 :hXgV|ߥТIBPФQ܏mSh#T F3m) ]\()%J E޻}kWrq lҾTw?igg;phyRMXV!9X,LXy#FҜZ 7.]70apMWMe1z45'i0,B{۞*A")$ɠf}ZA!=銨,p`VFᆣUd(Sw&9jq蓻G|t s0VRj..Pr'J@cMiEMr~Cmv~Nx'4 [߯[KFyB^p|? ;xn1`}aY1\̸I s!z50;c6gl^]>ˢ~/cyĘuh@I1c-\?xm3 &m GmkBSl 3 F$-]2,%킀SRB&rDcHu!6&~ÿo0fꔫBϱQنQ,-y`#E'?2b'fB8/.3 &* Y8$鞲imjIG&v"÷b(!g3n"b5g Qzwz PmȏI{W\4DW:`7ߖʞnhNgUUjmg*64gr2|#ޖU!qB M.*hػEb^ְ*n۷]Du.sㅴcBSa^!Ŷ0FcX0 7_c㡟?l ѯܕD%"[[l Q~:&ZsGkfQ 7fJhXIAoŌ1jJ.w<Η"!>W̮ؖ ( Bq4^1$Yvu4^rզgvDeC[ Dl-6ʭ%0a4LS%&^HB(aO?R ț.zc'&PЈ"7YM^3'83M]D#P "UmS%ٿ`LLu{;/wHϬkoVf3r. BPUEu[ddWٹ`GtyvM*TasՁ*baw=4_nK O[@e]UXs}!bRf> 2ճiGqTrgB8mj _k^c?='r71)sfV]Ljά]H<~$x}g@ 8>`X!9̢R( 3pqnߜZOe @O^"RP α](F3:<Pe_9; E TVA[KS 0{9qdq1Ͳ <|r1`O: *TC-6IۣN l/hJlCJIwYnEHƻ$ÅdQRtP3d~[[&.oH%6ŭO24B김A^ԭ ,&($$XQaWt_?Lڝ^ޮaӟ )#RIњS<`(efCuv[yY/JT5 7dBj.zI 3ꇇK%3ecOw-izyvSċ2WA#@a%H458\'U `6t n @,ҧ߄BZݮ>ܰX0bDQ\'6pT筪g-O8 UUd8\kw|X1SGeB[u>f~Zjr 7#2M^鷶0oqʹKsLSX>9C?0}X[`;Pn%;"+:175CDJFYo $A }i9e991zaFo{*Fy~ l 6m7Uä7 F*f H1dW9j\7 l3{?jJo=ᖂK4?1^G[G"B 5HQ7Z]Lؐ)W'k MdHblTڐ<-0>#J𶞝B !6sI:9P:́@<敾K(-O>m @J_e#6 Bi0}N~{g_gs-UCs^LA@>9oX$_~r-v:U yx~P4U6cA\!BA 4$ʟt! OK4r1")i <"юZ Hxh늲 bAQJEYl5Pz=7I>?g(nRS=sIHA2JK_\x#_)&ʱ CA0'0& ;,!Wݯ<%r!0G6)͏76a*)MOS+Dߟݖ6EfTޚ rQZKO۽ؙxE{RFM5n4}`RJe14F9r;qw׫W X?Q Po"ʸ:~SyRt!gɡh: +X MV!+֓i4 hy!P,EU}'x,v2p\T@E9<r`mLp{dv]y/LNC-Y1/bl>?Ձ{Mn@|M,E-Rv\bgtի:!6ãw:aKN?F]/K-Qm@t|WE=o,BM#G|[;N, Q?)͂0uzK88=T_Y3-N#YPVEKx @cL5ۂe3𔶓3KF`m~6D(ɜ }q:^\~Fq[T ғ`B@Rr~|7: ֐ZfcNTѲ%e&#-!')T ȌkXhtFqSy@n!eHc1+*,I<ɭ'^6}7AM,q6p)܏B<4&XCi uA퓝 ăIφ}NrmXH! *!s" m}tѣgǗLͯĊDuń¬roďҝJfpecj% 0v,8 ne4tBfLsQ U<(|\ԘK :3`?[yzj;t1˳>#~ ̌!HO;.#mV 9Kskh#Z  ١6uX/F!qwQzðvt8kpc_ᝯ˚g}b+lG2>~PWH\S~l߸ˡ)"3h,FңIxi#n,{C|qd)JϲT(f"b|-Zї7yk 㰦#(#lVj=Oq@:zoCJ?R|e&,+}ZwR % g׵%eEu/ Yƚ&2pWu=)AUΨh7Nj_g YVrϨ['5i3 Mo`-ӢҠ& 7]\vGΎCEC;ێyT&ʬL(- s3M ϰez(dm~:ހoO?űg.:̉Eҷٷ6y G(]}*R`޷z$ )^k4ʼ2+grjT aXj[G KZ_R^T<`k]BP3y#qv(4A7=]OW&]a;C0Yao{KtbS<8"I?V[DsLY6nGH 5傣MWd^ NJK!V' ў!XƁ]"QQ9Dp^^,%WK4N#EB!2z}pT'Œ|Iޣp'K3IE@!~[=? fFգ>>pG4]]gK2Oҗ+\ceg245۹UC$Ʀ>OFO,dq]>y EM}fjlI?lë Iӓ7a#n˾pq>&T*S LpꐁҩkXu|ϋ?7;OA*+2KpujsTX% 3c.u0Nv*P)_o=q?@R.^6J~%p{R7֯8@Z훇ְeGĩl1\eâ}7BJxy[ql9 ٕl\NԮHIJ&HnL-Go"97}M@>T%FVN<$bJAV2*}O~IYVEO{,{42Դj>qFa`@20$LLK- 荰O1FI`2RM]'3\r"xUs BRcWjaP f6%+|50cOx9Eͽq)sPaBT%f{6D3oPEbEʐQ T7eBDS$HFfv$"{8&a43MsCR5f$2{Rf ֏x;3?46&҆@XX>ctg 7vƱ iȮאkѱ221ʯ<#qN^P O^HFR]nQ*|PdYXX'.z V`Sɰ(֜\dW%crBKol>D,!Di#^0r1JJE93y?Frꅳr_T @G]j"s=uI/H-_NsS.md[߻ Ǒqu}W<<^FBN!>~kEF{xbo淘[h#H"k2b3 Sy tDxW1y2zCZwynQV"iȱ$`Lm#43|{ȝTP_,]_xmQ<hzeW{ 7|i߸i+8Ϫk;)$V 7;M[8X.daћdIvoCbgڣ;ӲrttЃͲco=dX UR|)+N:8x"bH]9Nݲ5\^[Vʀ|CHUM4/*|ٹU7F*F dQw74Ho <~W;J~l-JF3 ہlz-**,ZΙ?MX p Lv٤P5}r"s]*H35<A:=p'-~B`wЫVvy)mD6 qa|U-|WQ`[Y\.+݋ nnPp-d1|ܭ!Slj(Ykk9}1zql! -ntPI.)q D TU]rPuQHv @cw t <xp3|ǯD@,"-[ϱ"%](@MBDWIk;II;xK[ЂX癷Mj@Ezt(7L{Rh7l^S1@:D6d^:)/4Hʄ(m5BQRo@WgFR+8\ $W .,4ʼnTKfȊٳ OIf'.": ^t~Åvޤ*].}_m{\ om`R fs\iXjӫ xh7IS*!6 :,xM3787m pN8#$G·BTPD`y˔cc'*`8RL2Ӧęy%qj>$t&ޣ>Ԉ%{JU:jan΃UPj"+HԍcZ6.YMS, '50n)<]=Ak^E5o]~Q9HH/zX^X8T]aU eF0M`Gտ^"V#g¼CĴϲx]FJݒ( -k-k =\bBM :VL`4A.% !Kg֌Ռ2QJj|,g HGtvMXT:w.t>7LRۤ6=,/8*cc|rk"L %||6@ 3A~}e0XIoązzؠ3L pGs (jEeNp6 ^fHR?NH 6myބBDf"Z7 9I{`Yzz8jy[Y]yqVukyv޿" ww.ؕ7?d_5@MԦӑ^$ a]IB+>WyП 6dŌd0 ܬ b|ģ\0~fCjꧥe$7&W,\u 1}$Q a9Fל8IN>~ܼu Yfz74Axa%IG3 0ыcyY)-S~ΚջZ'\vmpECMkm>_CS~P5%HD8_.Lݻ1=꣚FGC[޽U=e( ؇/I2 86 Lr^}Uu"T;,K*4 ,]sϯ s''%CP3e,5{k+aNL\GY\36NbG~̈́kg\_pZTFE$th[۬@4dE"geGn*cZ!LAysi.u}8e>T'hn7o8ǀ+?RQ$ah,H<2Q ,sڝgKf2H5iKq7%s)|K>?"b KdAӿ7r1'Vbۋ6E)M{CBX}ͥͺ.@Gt{qoV o q=s v/|iRk5 />1'PV5ٛ_Q'@yUP*MH~\׃3zͻ%^-{|(v<>Kc)<3ZAF'N6x:XTv;2lљw,$pQPL jkcKOI5fl [1XWuEΗu2W6:ZY5swzZYIՖcVDh q5Ra$o#l=43;l+~L Nm)e=`bEӟǐ| BxHq>8{95eB2xsLÈ'aQXv;%9$`0볆,Gòhچ~[/hoȠ՝a?I0fKl Ȟ57{SQ Ifo~ Ok3U"Ǝ <3ջ '}r %)*Ƽ΁ꭾb!UzHTCCeyEwH jx%|n]}gL%Z/ԔxPVx3`4wvxT8'✇=L7VGl؈`>gǖ/Vg姽[[]MPiBW^نf;dDj)+G3-D}{捻 A\DĦ'* yU%ӛtN|Dog]h$ƣW,tj=!E\kb-Ô_B$?kO $/4o6GB9OQ|ylʺwxfDa/yDDz;x0R`*fykwT,J\@}iXS@kW4dH>US܎4tR7ԍ OP\%9f1g|>YL鳨̨nxyWn&6Ub1@ԍU* wCM̧.'dREІ3h&R5^n^q[ F8d`b(5v$"m~yNT[Ҿ$o*,׋O_en$HVKX婧 5l>5qsh x#Z:l t٪|4'oU&+WwW 9x2GC1?Ak،s24X떴d5Oeҁ&ODkÍ:bz~INmH8}@B426W,]ch1(ɛڀqSҠb"0kDiKJAn  \`t6}5Zǿz\˵Kd>סQAwr;A[r$$#K#9 g2wWmQ1)51lK%mOwqpCT-<۔$<˙ܯzMl2+}sϛU|4{=.8 >QQA ݃fʗ~u :ՐG9>AmHYu-3 f1{ 7aChvo+U&0,%|uI7 cDb糙ލt^oF6p[4wMl wh{[6i枰+ 'xK# Zl^}AĎe=F)=gd&~u-x mYǞ4~l}f4iO6Vxdbbklt!ucLYO/ݶ/ tu̱זA Rcs[F|ΌY$57H&A,qr+SB؈x3% JsA5bcoz{X]d"P,g1ә"./҃j o0lOែ~_-*0r`4.'l$2~T 1k*K(!A8z[x=%AHGP P$GuER7W_55 7Rꑘ\ÝDvYݵw%LeY2rMmwCMdai>YBN`ANMGr7"Olg~> y` "'ts {Holځ܅k‘ z*3jKNj#8U$7GL ND DOOWހƒ*4 8U"J[P͢E8?s)̚@4M9K[fm)jKJS`ãtS~pˡoyؿ\v[^ag# z";¶CFȈq%7>7X'ItgLFa@zx$4˯=wȑ`lW){R!-NxxL_3KRzm=:OI:ZzDuENwǍfzS\\rܩ[oQl#Z퍸:]%Ev7m/ޜW"%u_)p /5(E#0 ?xqԖx<:4#%JOh݆Hen?*/tO{%PaE}6Vǘ (K&ޓ7)lS]d QqvtEuh.Hc-`0A~F8٢n?#U/TT(wظ/-\F(u|/H4IgiB$T c4# a1-dPRMךȲqԊx~n@U.9Kz)q[cybM M˾τ{{l:2TB"zοՊOzq?l!Ȑ&ӹNէ=R$2?N2-wݘyyJ}`> )CBl+0K`\HI3ʧD\П0,oV VRS5So08ɓ fN[B ~p"Y]h(6A^DsDb ekE aI 05=?u**<Š[)ԮNwsX(h)7= vL]Άg>h;?RM1'j WUB2'-fʐI5>"uNS~[ Iޥ4z'["v(dg҉2ΰ[~#Jߘ袑?Yh$E~cka@uMKM$:&މ6n$,%#7aji.+X"NM7>E|e>8L{+ƍezp%aL(CtUG?7 wNu4аP'Ys쁢Vs_tNN_Pa 06.m ,[ ̂e4Nˡ,0n|sZ F19t~rx$O9jcNM-:~90䳹# +g.^Ͼ 3~UFٻ?2m)c!T 7ho-Ηln([VZh5&˾>V(=!ع|+ʫ*Չ֫{m26*+x*𯌙 DpjC7Nާ\ Q:#P1dE9R^OXA|]1* VDcO`-.ۧt[ A\ޙjsv7 8Mˮơ{Pi8ON[:ױfW9V"\,򟮆D @yn[ԧpY\U&Js eYl/D룟s[W[Pm U5&!+^!?@hckcI~x&k 7`&0pqS:z&8xQװw{A*塛w ]΋"s>{fZK6v'Zlq 4=QnFo}nv߿h|jQΝ=ܬh~qj1/~ _9|8 "[M:8@lqUuEchufD^^B).Д?AϾz C@ouϷA4rpUQ0hy KE!yK_5A.]"RwLWPBl H7 XPEJ5-|q>FpSbpeELBxp#^!;".KGEmkeQ[:0 " 8FKi8dvXn/z/@2>ٟO T&!uRi` <ĐU; 9QOYsmvnrxeΩƺ={a聝ӐEFI;pl)rF>M.Omی5==X*hcͲ8,w]Ũ0l`-YXǀ_jB|G__P.Ruf6Sxt6VP(ZOYWwm $Ď>ț^hmPg ](= BU8m>f-!QmT m+F$TI8kVgdV IU7aIHЬP>8xh3oY+&Hڂ@[}@YCƫ"2x9Z̀K&N~݂3?IUTtŊ{nKꈉPn !>d</o:{O2y.!3- =zTI1pc8H'FEw-֤h9~:wbߒAy[F0``{Ȓ J@K0)Kh'kƷMꢈr9K/k RrHXp†8^[zOo0q4ɒ]Cg%aa܂$p&QEYBcS$8{Z{A1^aGf 4½n;V~/KlgYP6تR3a0'8uQ I(9fga`_A`r(MSnuL#Lý#?(njߺ{,k39B4eQbJ dY9#Pɖ9~-WC G[YOQ}uڪObt̸OS]y0+H%YEM i)F!·&XsM(zPygp!wpGKyQ M$VQWCϿ.vg3Vf DAgr@m$?M)߶t<5jfg2),;w`ĽYPşPC%s vA??].VÛX_YxME`Dո+`d^6uɪ4HlgM,0h rS = J95 sNdo HlwGL~ܧ:n'0#.oNtي^WtAQVZB}qaCapbGLߨ^a48 (. 1_C 5]t-H茔'@kھ$<=#bpV lO n3 RvׂFs/{RZB jn>mUYYОQ):}|G(']$3c$e_6:ҪAGφx*M)"i䛅DMr^GCb`zfdl*.bBbIZ7{<4I¦"fG sxT'#;OM؝mt6QgMX JH# [W?G'z)3b+vٓ̿~-M̮ZS򡜾R0$Z 7`! \HxN{ y(70̌ \]uxOfU UV.n[3W2I(E ')]KtAR #N" <+m/svr̪r}ZtVgp4"VuC>)w]L8Cd]93E5V)>Lw޷ \8@AA\F$pK1=n[4I%g0o~padTZ,&^hI8Ǩ]{n՗\`$gvIfogֶv/Ųh@tO?Bz}oC>Nw`/řfJ$ !R;N|866l-9*J?oTJT8ȹgVJ 2Ss V`$(P[8RceGjb]Rm` rSeO*fp*<${^ +6 RLP&# 'J3#۠qr)E\>e~Fߊ͍ RcTgci]>.J џvyth^ʝ2?$§Zk RA6_%Y |?:r; 3> HxPhWi+]=i:Y[k @l{mEZa4H:6oQ8^x9Yg.AZ57׮3040_a$DLgg5u\]S_'> Y.3KnJU|uH|$ zbY܈^[Q$Z<u' 0}U/;D``W8[F=d<*+YVvnD xh!ExE`uG3R/^3`z/ь)ke,܃Ms )AW%ZHE~P \Ŵ_lE6&ݵ.RgtQ t;V> ن~~CiLҟ9i$\/p9_f)06=M!֥$RTJtDBdFʠPB-ɲ_wU*v0 [^ |6|lE MنRn 19-(,XXZ5qVF^Z[9QDoa?WDƄR C z6ſƊzʠw*lj{?-m(v,G>p}9p2^ta/mP>Bk!ڀ#̈Joe{Nd) al_ϤɨHG l 6ݓVa*0-S\Sۉ1RJ.,ȡ-UppPbsNtBe˟?`ӹ%Q# D=(6/sB𧨃ujc @fRҙՓGHjg0}"6|<^y,lZ oК-X$w/DBD$ HlWS]%Imz'MOI`M/$kߜ#w_Jg뵌vU2xdsGw5mao\,g@@UesK4׷Q rʗe//m6U9ń/3C+B7+#CnlPLR<Z9`Ln~*U64\QG'"$ mLʯ!¯ vp -iucLySҮqoCN2eУk,TF2+Ĺ^6~pvGl}X!rX~C+bHty#9]N'jCRuj|czFcHc2YjeQKErNtBӼ`ڎ"w\׊>N*}mN˗gݐuj-cf qDY%\FSr@cR_!)>cC#BV>o{[ol9G"ɞUF Xߑ^gn RmV[/ga`l`J@Tj>h9>"'Gc&-.OS4C$~@άlyBރ4y$b6vg% eYKI})FR֎Q~<ұ8!V|V5׆Aye "CRTC(@; 8NɱOhlHɓ> k5΁ou{uFldvvkg ;;0MgAS(=UoC)Iy|`_Hi$O4B3v5 nd.Χsvݽ`e#?DeQ#<ܒ{cc?3tjw/׾U?MW/G'@ΨMa{}Dg3YV0_pbzBU3G]-}Vk2@84'7!R~wݼuJN7EYa$C ܤ(y=v(bDPcc-^7EOsȀ(N>Y1L)68?>7tLukm먽ιsksU_ބ,텥/AFt7] $0~94%xl5? 07wj q5Cf{,j貁`pmݒ=<\sgi[h*r:Kf U$S&[d·`AnL9ae!Us鎳 9O#`U;5 QB9@mA4O2#{T-~oӒ8qT N֋΁` P#ĄKpi3E0YQ\&VxT &b=D P -\,q%`t#n%uc:-ijmx&3?ˣTv7XU!xh +XBo#F\ vʯP3mwIJ_l-8}x|[ WRE QhH`V-8)HA n(},$u>^dQc_M| >ԇ颖*֛Aڂ?u֛aa5yIHI4w1TM'⃌7(o$%#@soblfu5N$ȧY -}~O b_n vB{)v/;Nq#suO1x;.HV;IdZ[9LdPdţY;F ;G`cp=WC)aUjco8)>@K si9aED{h,Hl|*&k56lêqsLzߡ{Ɋlయ@D`x'} ۯq< ;aJz5v>çDz},UNMнCO! =㕀1ܴd-ᅓ2'Hǎ.}ahLFe T|Tf"`GݟUGc%s3x[i /L>~)(ƭ%ĶcS_jCGĀ2g|CI_LLcWy(:ۛ Y[`,}>Hh h I*փӬg1^vg,F/i-|G …(w" %OJuĊ/"3 d.6X`wC1/lKi O蟘ۆ\MllߓpsѤ "ԝ*ϵ`_ޤv(K~F~}GܑKcGhxTZ;&Eg8oU*^i9u7 ө2Y[jվD@6^~/HbBY*'A)As@hlbhԴ<5>q[Ьi$u%fIu3gw2U%f4G\IܪaIu #aT#Z0]S 9ğ [`zv׭}{3,yp!I'./%*lnBFTw, Vg%r$)(`ҤrhhN dEBzbwGAIj|&􌃿 ʶ`C2|*9cs[Lr[a &b" _TѬWȊLe3XQ(yIXE=\O=-~h0)2[ωw$l95z{%Ld&4S oBF/)a;!ևo>O@8$NLaл)e≃fZ?'H"Q8JlN/ߛ33-RՑd@۝Ӱ_ !|؋שԠ\Tg|b>qM(xΏMعcv ϥDÒ-@ zcZ|3lGY#1$Ns{tBA9`'M{`Mwa(1%fw̷I ֥>Qt6@f{sʇ*lY l +-LjI"UbMӅYi>r}7V38OpMXB,-lqZWk c4|SHЌ8޵ 󻐿ILhZ@3!FZg)p.jb½+fd`t,rP`t_G":/ʦeJK~ Q0Y4x9 3dr= 1R2QBi( ޕsV #P~zՄd/[/Ku,zDHyh*!P # CGL8ɘ\i[R_8i/&y@"J\] Oվ] .(_OȒfE/$dptW;=jF=Ẕ=+$bA|M(n8nbs""E~_gX!$א^o%*>~o_A檣l"pr?5t(SxPm+a|Z>RQ4AvȅRE\M@$(vy)M"QK\+kL*,ƽXK!B"ƯV* i uzpA&6\jrΣGIʮ;-#q 6{?Zf|0#<nR娨)yJ8aŊ>rܨ`Cej%{i#N*ϳEN U+@Fz6ٶ_yӅZ}T7詁mGV>\}d#AouN%tf#NPڻP3BC=\22@E`x`bn6~ | +M}tSua!t@6r]0B!?W.Lu[-G@õ:yOUsý))j>eM.GYHW&OCc.E5/ٻYV/5/L\ܩďe?oY뱹qy=z\Q|HSպ׏nڂJ? -inUA0 ͻpx^)_Œ u_ͩp_,=AYGHGG>l=xEU$"dk#QXq]}tׄVx€krrDz8TrYz+|\2Q^Y }A>!SRJ'Myj(cb뵯5?'[[[bJmfaVaBCZ|]0a[Dӱ`R̄~ Drt ۮOzft$Ohy ӧ@[9,ZRdѬ$%ǢI :/g>5&)W%$?7ZTT_e4MpT4J&\@'m5M#Ú9ܰ7Co*wԶҏŠMlqﴽsg5#Aj5f 쪛<3gOzF  xV7352̙ch'i#ryCvWzڱpߙK5QPS |.G_Yt+K?U-#'6V̷<j@gb3r2FVnݑISCM㣏|OUL}bmޝBgK4eBh@z̙`>q}rKX!l x~loCr8za_ZRwU$o4jB: 嶼*KXxݣs\K9iP黣^mH0/!qr)|-xAWNi{yU8sH00gS=a{jE3w,p\X6lzO܊MVDl}Q1J- ү^s"oz#ZBp/`jݙ&NFZXהܮV=ܮ8/@5*} AtGqx,vQ'@ڐFF1fh%؂"sL^uʱ(dlIO.kK a5m,U/w S] ,+̲il[JUeDp>Xew( e!"; .] Rȵ~o[gPM7pS~.\Nf JE3RFnGcD# 3+^6Mb݈Nh:5c"3ʉmW\0OU~r 2rz>~S+8DPN(9 ܨ}ZFaabv)՘vroE2O;,%FJy utKДY9v2 3K[BFjDμqKAaǶ:RU!@ØߺG^'#yKL8D6ǕJfWE?Rkko P?[ucWi?`(5N=&0z>nLϸwrv@LT)b\"0G@u;qn8oB[VIVU0k 1H7nkX"Ĺ$%K6 Iʒ&FvV{ v ]Oztpʏ_JDo)`tNSXo`ng<`;\6M 9Ӫ~M`Q.dSkm'V!>Ц8<WBc`n-7x9\}wxˡ3^x! @*\ŋ˙W[4[,Fo2 s0DPf]k|>Rٰ+RA 'BŢ"/Q[#!r꧈׮$mbwZr5 Q41D j*f ΡD_7 iuդ֮)ODTv?2km{~z)񘑀 9'#j)9mz~-d^͵+j'`Ҟp5J)8>O]+~֌uS Day+/'`4#oH~Hz(w2 A){/ Xҭ!0Rz9tѫg=.DKb.l[XiE)ff--FB84&=CUrBFc[ﲁYŧCުbFP!k/Q~?Y* sNS|{},=ÌL;AzwNĮM虵ʯå(Y0 8rXYXI~9lbIP6vE&X)lCʼn{A4?)-Rv{19Dg^Um&Thie1geFgC*R ^,t J%/vQ !h-J+P4LXJ糈l#Q:ŭQt.3_H62qG[  k+8n`WjO@WRF쇪- }4\᭎%fFC_5ˡ/qBJ-DV:*z?+03k F/PVR--tS3D@+EDrtfHTe'  0il5Ąqtd1H)`BA[ꦚ_Iu/਽G58 g@dwv >v@nk2/އ@@.sf^'Zn\.zV#ppOFVͰ0Rb=A(Mz],#N c.tA ˡ(U&I4P$IWKPF VYhMRukUz{n^!U{w3m }WزǗ^׬ Oy< u.D4Эg ˱ tUIѪkW+x3Au,f$}"YNLH&;Rnj2#G]gdR%;ZVL_ɑD!< Lp5 ?#P[+岕—J{z!z_0rkc !s" 4c8r}!Q I|;rm;~ J|OWpD!EOdB'40t);=$|V|^[vQiZ)hjb5О@c}wZ1>P}d{(_,.9LEG+>Un?.H``f mkD]W62(b Z0"nO.;Q|?D5<ҵo09 x?B}KDLl}*V.H(K B8څg~x@澡+mߦiꔐi%DkTd Kt~ݐ#Ns}NAHI}߭p0SNw~J%z-[/#ݼ|@A1(LݸBټM{9]*A_΋flO*24"crG=5(^`.A>EՑ).z &(K,͓{))*M$ڰ̡Bk)q:Ga9LUװhњZbHܐ]`؎^ |Ub0T;_^02OBI\y | o=Vg-:#[Y7HEWM\یSܤz]X9Z*HB\B1|"tCqvԛAd$?kjtk(iXqdhҾ,=|]mp9JBW1LE5akе[3inBN;ʐ׺krf9zۻ*H7v}%WZ3ZՍzxJh^74ηWy#+ULF\tZ`[L0eF ߙƶIP =1,zdtoyA&;b"/)o.)YƀCg;_(rh;kytU'Q=ȒȰvh&ziL,5Ǡiq?,XAaQπ VnrhEa-9g4wYZgR1ɩ+_(Y*LN ,=_aH+Wmӯr?uoDeFAARpkڔNgQ.Z%5L[~9@F% zq1ᅶQv/ Ż{q0-)`P:1B&΃,ӱڙ<jKgJ*^mKs_s5kBmcq*GAP4/sXX]Y*%Y?F B~Fl΃b,HP+.YJxڎMU06=~ _q}iHQd)Ivg϶0°p{)0 *~p0-_FI87\A# r6⌟YaP[,(1/$S ڗŜbz5퐅*SkUs'ϗٯM8ߌ63X0c;ɴ^uR|""--1Oy B'B世}_8U#jלhھ~ZTN0QLMeeGzo[4pDzZGp Bg @Wb=2~: f=2@9ܬ}y:"n^!6B[>*͂$3j'X|6Lw ַ`A^Mp4tlZ:gMpIaҶ:0.?(@ @4SǑ/E-.8Fw$[=[LaC:}ūov,# !CmCf oEUyDtYMD+OiC.oL#@S0"`ڦQc]20vZؽ(O0R z՗y5+N%FM=wRXFuAn]y,8%M `B&LJ&Zs ~FfkZPw8GzycA'%&ngK2dLpN?5k@L7ԌQ]u~(+ӪIcP"k!ڏa85MVeS6 kC?C>wS+ DpZMVW{Lܿ{3b0NMiC~ٜ䲡o||X!9~>@z*q'l3dO1GaWl6􇂛Q1,R7>*91s۬` TjQ@54&[玟NO羐ޅyQEi.(5O)p%EeEpD!EpY]7O™(KZDseRCμw\sP!GS < J0]ɘ*{0XB86灓!],~20 ruwgsVw”d3ڨ C$:Z]bqNTCtبC3yL2P,qf􂷁$WyEPx E o򅘢<;|&:2q}$`o8wLdBLEшؼlUW1FxUnύfZo_Tc7GaVtFA XҺ&AUMaV]TX \tm@rs@J|8ީJld7ʩ䄯?x~MC69YqQ"NvT2o`h5Nk[Mf:YM^۠ V)^VTUJ>6pKk'm\zsNMD }lh: 7^t-p\ʒ.q晗uOء"/`壍Wn:"],q"L4M%t5)j5I +]kNdҪGOJeVTlS {wOXn[V7_q3 %#šh7U*-C[HFb[[f 4ACY̛v<꒧hkpX}]a;ƹaTiJABF|"(X~-b.)yn[ɤfĐu1f`ke½h7oc2Lќ<Df9nD)P4jz|vbs|l 1ۺKo8g_n8II_QLYӣ4M;_CԔK*zh9QBN&ÍXXCabqQCߌThCz" uatϤo,jX.똳ʻӠQЈ4Z"'~}}i3BܐU@zb@p"uѷ^]^P"Yj5חRa0O7B2rG:Szj0~ѓ/Q!޲ ZAya'|?Z^/q,yqoM{G_~ZAxΏgyʠ+ϖ`BÞVVW:Sd*իLR4VI\ߓ&%kz dZy4wL%կ-~[ֵ{-ģH榥l3*m߼8WR.SYagC0lL>."k.út0X&yo= P/iKAO-|QCПrK pzܫ F09vy g0ԈwmR*wr`vL657:hǒ^ ⭢qW~ΠmW܆?BϨ&18 -5\> +ؾDxzuNZwoJ'͇Y^T)آy<  *9y;8qPG;9GCtuxqmY]J-lxdӂ;lk8ue "tKɷ՚n_P$]XEYߙvtØ 3JaQc;y-B82%{E-yqRBӌ3755&pD5EEa1i.U<)Scs"G{6P$]ʷc  #=WE]kK"Ÿ2ө==[٥ai4Lx֢ͻd"3U7(ma0jC[IXKq(0M[HC4 ob E`h; VRjgaI3Z`ҩ˿0LDE?`L28̔pcͰWu~M)bk| n$U{.n'Wt>(U`|IĆ鮆MPj^ю&kG )Z N,v%QF <Ч|$f'tVK[5IjI2p $u!u]ՍŠw߲nÒlJU>Iu~e˨V)y&=b;BsgsaSЃs>^0^o^rޑzBD4d p匳t*DŽ Y;B|,:h"q>N|u3D;ޟԅk>LP^ciْwޞv _~gƍ\َSEUϸ͒Hs ͬJCC,!O[MatMR'E:: 3lڅ;Y}Vn88<@ NCo7 (I(MhxiŲS6)xJ p'}EXXBq#'ʜv _vliϴ_N:Y)M Z#4nA~RS ~b3wB!RB4B*pu͚'l`b4kgInE0@Z4R :7q[j4xT>q'mv~{uP5F$v|)ko"_t67kvБE%zKDƃBo&dijn=t"F^DfOԜ[R~=+kP ̑Nۮ$Vx 6w[啳eKW#y, @da$|UƏptX@1%Le|B /ww4w:X"_X9`m#^vNg8 {Ehn{X,.Շ&@N |9im[lqM:9194X޵htfy^0Wu І&Ț69f[}IBIV=PiP'[xэ(P1h0l (?#%>r}S_+K^+U䋤^ ^_:"Id2xx[2g\!'m~@24yFVlE֡|a1tIyiTFw>,(dSݏ$Bjgep1hv-Ctdx'+_[pg`@]01t|SF" }kġ{bv q^/ I&\x_e j~$ӳZ˷0z{ 9xćG:T-n3=PL3n"~. N6nQ ĽnF&;dDB})MT H箏-_$YAPOUl߀b YS\Sj$C$mTMs5kh0q5Ra&$ͲYQrGj]3!H773\9ZZjA@ıg 2 ȰSnX.`c7l4ᦏ׏P=fgqWsJ"lic&MK:?aU˝Em]JL]-n}^|Z5uϰ{֨BN;je3*˴uhfC '`M)4 Ɂ ΓG01`M됶`|(Kb=x/bt]lF&,dDn&7%qx^e$Δm_c^@-Z N`"\+zQ vӧ"@6g<ӗ'5$ bkWW#HX4Y)xZ$;d}/Ѐ:hC8.SDIk2< z$< ]Pԃl" f'' d;DXaCU+BוذZvЙ0QWIkKZ?G K!LRυ|11]b0)3ڈ=O'qgaݲ#:5}֞67CL0h2%h1m'[c=%Cn/U*2&&zmHV0 &F?| dr&Kx*;OhT&OXiiQ綷EcΪPGFW駒J9qf1*ܹFLA"wB+$2X]u2%xedzLjX47cݰ=/ב=kag!07gL{a1r?/ r8Hc2D@uQ@u.1v2Zv3`"ƎyKDcXT\#\!Ȯ8<~)K%`$yĉGL]ǍlI@  Uȿ|2unT)a0޾D+ kj!YeTnkY_rV%ѓ'3& ,>|gm g JVM :ZY!9DE<ʘIHFA:ݑoi'}[t<3B<$uN(ܛ9I z3poF86ƙڡЊKD}9(߭F8K2}v%lDV1` \lԼ Uf2 /JlȮCKՃВ, 6OcT)m<Ho[ݜzBJT ʞe/0Ikww#^ rxW=B#1liP64"I7W#RA?/\05]WE_E?dy}=zJN!쵶)bGᏭ{~7DD˘38{\fe ˯MP;?R8d$I@f_aᅆj{(BFjDc gg}8иEo@?g>Pa+oCG| !aSd@mU9vjăE >A ?Xe {h EՒt`E¯(2i_w,WLQF O-Ij!|2)h]fͶouR'zBkH;&ɱ<YfΉJ~ab-25*=&=cnnC;f;y|]f_ȖAn观&\z1ZԶa)7F~hYR Z"H-tP B|=RmaRK豙"iKk=hX-̻@fKyC )V}wXaN+r#!{=U~ 3o~@~!'eLqsH[wtC>3(K#76 d;~#DŽFǼh7]u{d]WVF, oY(2?͏oBYrBO$.E #)W#lЊUB `h۵RiW/dԖ|>a.kD#k%݁E7Rfl]U<~ٹ-CjetzgQ3h܅wgf'<Æ*ʒOU{Q8p±A4ݖZdՔ,g<}hf!z# #Lb:ŅNR#"܅|ldT/;]bcPW E%ŵ H*GET 93>J(e|? ܁Of4廑_{xf `@*RUf਩W*U5|.|UVR p"1*$XV~];8ɖ_L05'Z.ޝ$CFWs$e \gܼW;F:9qn0{Uq) O w"jRH+yb+uSjIq*Q6$cbLa`ujyh:^rq#4~]~`%1U0>ŇT V:'hֆ-&1֋ߦ@f_gǑJNIr☧%*Ee/,L."""7*T;rgivoD=&RH**Z wK}"Xg2-a;JT)]'9/i`!kȫ+Qe'xҔ}0Ǝq^,o]ߏ2ju pH*@S} M3xs˷}#ysNRo/:OzD*i7nc|~0Ғ2t>qWt~lV g2_1WSq*$ VQRv"E!'ɓzVlօg9AXEA1eIs%pZ cHjA_%jҵZU|#׶Q㏴\M-'G,"8 m#=s#,2=:鰉V}=Y(;L?aᅓv9)T2뤔Zj.ppR:E@}rXE|oXk]h$Ⱥ*s#ldE|42,D? \#41o@GƁPꇒ#l6:$9}sR)j5XR fu>XH-dmA(>t 5wr2]#q UtzKE3D:6Hֺؒ2%>[hbYmGJlBUG~ٹr1ORu"9=P_B Ϳx9Ӥ~I o".{ v' XQPTY,{:) ?"ƼS,sst'"rx["@7.uBH^g:D`^"e@_jJtcl 1O-ɝ;kx PWxpZsҬlHti`:ah1 %Ckbe%3;`H%SB nQ?ŕ),PhQʏŰiz)~[ʊނUa ^пVъ.mV-gVl 8l0-bS&0@M^{PR1)9C!mpɝ΅~.ɀEk|(;t D":ZRUe_ @OA,[ <1Lۀ]l#`I^!]դӝm,}9JO̾h%&:wͨR"6x a73U_Ո79x蘒>n/rP G]n=|s Reqkn˿{SF/n2*db^~3'(>Z9J?ȣbZ A>GcL[|t8h=or[_=2JVH0»ts n5@!K0UF ]- |Kia !Ld\gߧ]҂Xg>Kt ΦH/_`Jxֶ"jci8] %l-0C+ h5Aia+RJwpڅλgH6)c:mzӳ" go۱cCt S N'0чB再Oſ57o* oԸE( n)-%aH 6$'웟Ks B;ѩ l @ͻy1a)FTсr gkǮVu=06570ܬLθ1ap6d.`@iʩ&c[Z!s1/5K@b}y.:&0Uvs$v*Ii<F`R;ܠvDMuboDԻ;y}mO-$^Cu=-oBT2emm9{R^ݤO)Nf-jsaEv% 5 *#Κ 3; e:? ҄1@UkGM)̯N;j(o}?Ո;[hOtQjXGUß/J?e1,p.Kۨ{'&9G"oؽӭ$ B;len9[jΤj]s0[80U,Ac]}J$W;ƹ :q y'r=Y a*pYd<-t-d A v=R2.YCl; ݍHQ1}d 8$(J`P(u{x_D{,2_'^mZJ.zs;r@WWpxtnE*-Yk\Yd;bV;_Bžk7ͽ ǯp&ewu myG->̩z /kf.Ӵ_G# #d3G+@{ޚ(t=W4 M^#οjt+ⓐu>'m ' evRP#Cq|<J '@xYcGN 0EH3)؁]N sơSJP%vF k)ͿSxu5 Vc?=v15u_&A)].*S9wxf kn5~v3|b N>UӏEn6W+_Ar PNc/ #r)4vL|xTEد]Z!=B>Eyۧ?n2ur豗Z8cfלnjlwp#k W3CZ0WT(pS.~[m?Z䍂 J)0cx8T.ؙ&-$'h8}gH:W D Ƒ&mIϮw,=gw]ȒՕ쑥uAHҲy_ŢݽrDp!±[#MwQ.SU?eGb#3NE'گ[5錠f5|U>^ιT" I%mdSi?Pl#W%0a$Oair;ճ{6 2h/J i|.W*OǠ h 6g?< 5oƿ;3:_e$0 23!DzݴgkdpjPuUbPbzO2j>s~Ic#DjV%7>$I|}=.+VNYg,p}}Xf'r}̑Nq?r%N>(*{>.j#?I<#;=[֍"#ȿs{z-#3L`1cueT4/wh>T,3%?IS*bt|<#-)/uͫX-踂{7__NqR&WE(ス՟l .1e_tᘟa9;,$bZ @#RUA0k_)0{]3zt FΊMB㊃(|J` 7R8[((]z'f;׳\[%bKn]{/iq0["҂kZMN z>`LE5VPI?0o~AX}H.5Qڜ+ ̩ÄڀT_ڍX}'&aN{AʓXdHDO$`0q,C4X'4{Ҝ* ͗=i^_u>[r-[LM (9EkpEA:CTXOlZG:Nܤ\@O<[}Cr|',f:BP' P*l?>ҭv8x3 vmQc zlB5*3pN;9%rsbD'|*vv&nɷnҠ;S{dJ{F$|Uku7StZ|0+A\ lw-Hn?6=QMPM&U?S\Mk?Zui*5wzpԵƘcFu*?-3qgx,GdǠh<w@P/_iox(!}@Ɖ39"Clx2 =^/ofϚBh]JiuOæ`"1w̕VkHnۄ 0M$^JYjY!rꞄ557tӎ߮ۆhE1o21dqW PUǵBLWa۴B`k;cс+$:ü}t pO@̄UAGQ {S@4Ӛ+b/XU<<ܮ_&84ESi:-7DUcxS'װC y-1gD_-MYyJRҍ8OJer2HIXkeT#48?K#@g5EEWXDx RTUi|$w?"|ɻ|Xp *{^j+5&bXyAS 1= ƝC{.("6Ll嘐_ ]kJ$u2ݵ4K܉*̞&P ա43732vrwZB|eϭDlƭaC3|HC #%Oi*9-TUa#E̦VbGZH[/"MxDQvXKL /n7+Ky]=2Z_צ?7}o~EDZ9`QFa+}tl^][ h>ŸEl[-]8,Yp ,<!rC H %0ckiD3#QR.O2( yS>Rڂ N..fJ?%Sm /"(LVjVk21 z}GLx3d׻*狲{fO שtY>#9a dRʡDn?e%,aڦ>"5|xEeЀq .z%IбqPiϭnn;JW}ŞH&}"Wep{b o!, 6e|α[@1ӧyaOKǩdM9(6YlvÀM5s)NI½7^)8Rz{Kyv|֏dhW$QnI4wvrm]u_$4C $"j:bUp0Q2փJ,:sJBX|gmH=,1'5?x߹@ f*͜Bd̙ܳl!Bq\=*0;]J=׫L9)مUdMC?@AB^L$`q9qta,oVTvd[W0h),Gy,hivFE=joXXaK^#tО/(P@gEoB.51cWd@ 4m90يH U؛>TL6LȉН^f)5(]%}ݿT/&;LH06=Oy۟dH5 |Rf:U=F#c+k< ܞ| ˗Ն_/Yq:VgHb 7 <=u%X=l"nh؋';l>ShK`襨+mxiqA?ڽ&O9{ÜTbw;? ` om¦{%b'(´iv`3vH@V6kGtF捁Z*p`F( k=Jxc_ (a297UډSؕe|𻤪Uě.(IۯzPh"YRH*R3 ],P,Wm3ůSKy{;{GoWnD λg?;9~'IWQ'=—DԳ'_̖E:9?=aM*uF%9fcG!n嘜5'?{M2Sߍx"'lo/!Fw``ioc7\*ԾUpgD2(0$ڲD^m/}%{CR#4^[汊?Xĺ$M,)I4IɄ8j d!,3ۛCt2'Zw?*q$s.*du@E;twQT:D^/Cs Izm["w%/:rrsS<6cοP%wh.<+$0U9P='Pި!}SǼ1IDMgߓ"SRDI%`K+vMd 󽚱/"-aՙBy|hQs\p] ǀf}v]j6U5~?}ͲڶBdNdF29#IEkƆnY9MYp ,/į{i5t_cxCht#BwЃJ] | cb?naLq@ ; M㸻0aIʺ͟6'Ȅ[ ºS$V$&nJ[pj T&G 븂_RϚ ) ?)9 dPk u{tߡ"o?9f}|Hݢ99 &sqGo'A OR!4ps8Æ0 |@N~9 QKFځB 1m` $.1%ٟ[2lhJL bq2dBD%e%00y^% OcU 1")&<#<6 ! ܗkP,<zML`FAPjJ`SȉS'g? ?xٶjKEl߹3 \ؒ1{Ht1&6?PysV5j96D:K'QpNL7Vah"]]}j[kR֏?Qqdx@8 n^tk\|ğ:͜ImJs.9}`5ڴB(NitZ8%\Wg0p5lԧS*#r[' /2zrGǽؠhWlZWX'pz#2 ڜ몽)B*Vok6h8eQ ofӣHWHx=Ge*D]薫qhCA  wiwEEԡ ^:PB3Ťp&eHKcb=>NAR \c-Q"{sGoWqfB2֩b(&J+eY-Y'$`LRؓS\Cztv|̹K G֊9XX 3S{jV⥷˴ih6'S;;X!#V f /3I(RJ-ZTHBγI|z S|f91KstL|v U4Lep10aA|t(@79@x}Qʗ\X3gw{dG㽙9YzQj8fF!lV'YrqhPH=1&C46'DЖgSlaXM̦ϴ[Bʙzi-ZvȽ֧QJ%-<[أ`gUhA)@}K/?&!3^V-xԷ&;T3W-7q:~Ӭn'%$,$m/lvjoS%k"9&gzԣDϴ1FC'O vQ@YZAER/data/DJIA8012.rda0000644000175400001440000006037413033553037013513 0ustar zeileisusers7zXZi"6!X`])TW"nRʟt<3n2uJ_7[\7S|N8迨mh3x ^@>rQd=v>Ay%p%toI{pqomB8aGbA'P<4/@ Wr[!GvS cf=,܂;IɈ{&¨1bJTH"Yŷ<FVyșp^< \%YR SU /qSֶ&^!8},n&%Wڪnw-߀yq䡆WO=+`e(jpWBhֿc4@XRG9Zޔ#{aSNSKMMZǑ@c랷B!/}7+1$)$pHZ7,26MXY8#=p],X>h?D& ẫ 98^#7iຎwAdDZ|TS it Bv5~X[¡IlHoT?M(f'y\,6:1Ͼ,ϳsK-/SƁ][jfil$n$h_)Hgw~}ZaDoLB"\}8S$De4s?UDFGv~\GuQoxZwJ 8QjCB"%Dޘ ~EeZ!Gdo>bth_E8[}TBYGy_zD2l |SDV\wZdΥ:I]CPmv2R mb N! V5g 3sdQ7U4=,1iZGWŢYl|͋=2MvKc|H%HKF'BFA&xⅶ/ݨ/&P0V>بMlLNUCbQy%G"x [u+bCi͢sش~kg" &; "ߞ]U8tB燥!˅SYcV9X·>w]SrwN%+w,6 IV ([{܄xGl0y?)vf}r3bӆ)A5غmG6Đ$3_x+JbYʝ\$U2 O LW1izO5-+Ok*k1$d~$ُ#ț$l5vBYQb SVЉpuI)OK]rg:M A(%v߹xX4v׋ei+~0_ džd4H {e`֙OU;HOQ)*)K=a6}AϜB<5T՝u%KS4!ΘDtmnܲR[^TkL=mCʙ8YҙYV<7F}(](x]Y+85$K\ δp A d}6t:]G^N]-(%?4<IivGb| : "T,7AA"cvka;z1^jJjUX#LhM9[N/Œ[Lz]Wsha]xAqPznuP' =˰D#hCi6 ĺ]p.xBIO}Za~Rr&Vmnәr'uXö4L塦Q96uA7mS9.'"POA&s%|ױz1THWmڅg-/KkWC~%cg>>yZR5swtn{{. kS EγP=,ebE>oݙv.L T7ܔ]f?%M,VF8]ǣ@C[Uf7{[Uz[sYi3ʦ*I x*_#J1JMtab#߃x1KB7;n7:pa*9x>#{.1Χ5˥@iz瀇ʀyZ[Kֺewn9le-(02Y] ܟc9%؄wqJeӭws6;g۪iGnhP"%|$?q㧍e[)[sFA3IZ^u`3̀LZU't`koJ[C~4҈Pu|acR4g[Wp2 xe>nkMQإYe"pKRB;MyHc`fMqDC&F$HP E胯 z yT*\cOވ2GD.Bn=T$@WJSp2)}hW ҁMvX%.y[/A!<:?L~RFnB*q8p&ZVTpaڐܠ},w`~O&2u_䇛p uMQٞ<;P]];'H}<ŷ6t4H6+NV!>n_7Z>=v#!t ,fW1yhs@5gr~U L2&^mǭSἣbӂaV=&R +>Qʯ9ѱ5 ,YNga^ps8]I-ÓVnŜGpi=q²g|*f7H#_/~}&.bR!a~W 8|A+o94H RzJ$<>ÞNl8+u6$F.ir73A MS=&ܕ3nWB?1M8 (^RXu 6JЌR27Gɖ)o)<&#S1吂Tا? .c;& `z}WWՇ\ TWE!eBW2*P(7B4%TYR<ciOuh+S3~1_=v>55[+Qk1f)2nvCPV'=4s8>VFH ^{,{:3<8exDi_NsFϙ 5"zT(X?U_~?_hm|  ͑^aťpms]f Xd.݉tu1npܸv8u* 功||-q#7X=k!E_xw^=# !H>_!> @zW({@ ~T&.2  ݟ.=uzZ~S"}N ,JrH+qD$0y;O ce) Zf7)K0R-䚁3͒j + ̾"I,Y^¤%/ k$ȑ߼\9i\C47s83k<{4G6]d@?gq&mO4,:*,%R!n6vig]x:kٛ^G`-`|r/XpΗTnB]pih P:*aw\:KLr.~L8wU,Sw ܳƈ`m롧mFчn5'c=|à qfƄE?a V֯vl#{TݔV'.K:>4P&@>r9j,{jNN"oIweNR"?JyQ]D^miyM(%D=G.থ?( i٫f逅@6ѽ_'_Q)$ 7)eDҤ$Nb/bڟ@+@)*~L2?lWk #rsWotFI3z7ytrb$D5'ڸEdha}  ˴bT=b_5e0aBCg"*Qqed hԮ׷vRH%;]yf@nx=UQ,;AjmqN^-Чk ;=WjHJH: dʚآl/ƹ6;3z@'BQZCpmN8؆d1eMXXt|>/L?qUjaÈ&!2gK#"sp~9mCd&;3æ2a $S_ ˁ{vkMB vM著w wVq4 iF5pyBq jk^ r*eݗNHv}9Z1U'ϱQk֎y8PsM;_5,-H|A66}5"I nqfW<P oeYFRY%Ӄ Iz1.DCWr#ߨ,ZpWeh")c9pK8]^} "ɭh]_<&Z®~䣑1:j{}8VRCG{PY3I  J? TAzC$ k]ZOr+ύY-E6{ФofP)THIISb_xV\L⧂aPEW\$*WHk)xӣrAVEVF2 UxY/p'ZBf3椗 pĨn3Rsuؒ &5TIؗV[ *DRW ss;~EPPI"àxˈ@*P۔d=zqMvk˿َ?& bv _0Fs'zyZ@էYx*=;4qxHL3?eURp;k|~,,$B޳AXD}'qz+iTqTަx~]$s- >Hm9Ķm>^ F%*@d`/*Cg?,hRѪ[✬΢mW/՞U` ?E*'(RA4^"mwFVFDz:&@)f%$ lQ䰀RӪ+/3F 2#t.4"B`EL Wm0-Tdo+VRkEi[EŐzI5kT {vj_lX|\_$ ҞGДi~|R4r[op1wVӲEW{ |'tpW+EJPS{>]чE%-.!Pݺ>qU>ֆl^F?`};EE#_/.ʟ<曒#{?e}ےu wqwťʗt!|ɧvi9\řxIֱ&َߌHFXZh|=-rI~Uw{ #tCXSflKup" >W} ee^ǡd#c`w sAi+>|O[]pq"N ؐeXy׉fԱC\d sE@0,0t'`ά+]0 Ot( N T.^5AZ (6k 0_<*Vj"{(+WC{rʧ -}lc8gŗE~0WBB7qG!"Q_;ݺNp#$ a 4kJ\<#5.žgeK!cm`7x&T5Ir3.(Ws9jh)uR;<:s}d*!;``ՙwwI9ؐ"i[Z[?b{fDgC8.QJ I Cu~bQ' v+P=Qә#?{V͚\:Kbّu?  2‡#FH[~t-شaWUQ2xc?RG`_>8L?qKC#B]fa`CiQϨZt'IuDR䢾LS 3qAaÿ RPJ~x?6.޻`@R0MT$Fg{{3Z#o:S% d}BF2W:2mҒ+"Kd7#Z=+ǺJ#}$23'ϪIf) .6%&AygvD`:t;£ɝK% k %0a飞7,m^e76NQ ~CmYBPT^bz_=Xv#\рM9oBw5هQJo/# BקKG1iƼYlHۄf>QNަP<)rŘS Κ=16'~ aD$?oVs"?G;,>YVX(JwF 5jkυe!ӔZs*_M}8MͼBv$0 '~pk/qr=zVNXe,Tϫ_$ &L}WAq &} (hB@2IOm9_]ޝgiȉ8L^A;%/.JdR13zX.Rq/}o͚.k9TCA6ǣ:hWqY =Wyckqd 866N* dPxVqVK]BbU٤JGz T[hdlH1j3BgCVMi97Ot3_3VEOq]ژ$q5>C2Lr62Ylᬽ&!"Jo"/;|8`* sIɂH7 ,>7Oe>eR1.|::{LT.]/=a2Lr0Dh=FQm [%uiy`_sV~r ( {6fO2Uv ZBn#4* kW0{8*!Ս%FYF`rꆠ#hG&+V4:4bR^:JHx)zȕJ<]O`)MrUq(%y!*P=L9p,E[[ǀΌpfY$G2U s=RrK$lP0HZ"ОJ?e Й E'PKzbt TSq-Qn1xE΢^)du0iZ{瑘X*œf§C J*ŰD{Aϡyzжu@#"U1 e:1x)P7eJ$`m]H&} .Iwv Z%•xURtmGӒjrNWafSFT9/O5$$ŤXv4Au4Ɗ@)dj*RZbHR0Lg`oCRhuTZ?hJdsgAkL脒:So'nNUvHnȞ:G:a +kk$ MTFRtҢ~-zG SӉFrTYo5JQP@by|f͘=cH뛔O;C1`N|Oԡ(4/h@˜sF¶eW`G&.J=iDբo 2 2,gpM`bJ/FOUc R#RIȶe8Eƒ B5껤7|Ze >F^[l7VKnFoLueGA^w`LBS&Urqy+{ho%`O %v缉ZNcTqQ 2 Lsi+Ji;g%8c歔XKr_θCg"sqwݜA46x k% DS@GtvW8dg qS)n ~mʏT_T-xS?:Ov\*l@B9(2I1.@5.q匙'{\[,)18Om](KLщ\R/ΔQȓ?ՂE>x(BU )2/ lfM,Z+nh<'{KpDR@a@Fj&fSv&靱eWnL0 E^݉oO{ӀZ69֢ dVZxۢ ({O/ ƤikǻjF&8zz$SyS9YgZCqdrNH =z!BV J p3ѧN qUBa<_9J*|72sz\*j"0 v/831O,RW>ח5 K͆v|\!Ux[e^ _8ʰ)# J]:Wٮ=U/̜L o\'BF PCYM<@S/?|o£DBdcpS62V~h2 kKNܥO#4}Np"j#f-:2x~kPπW);)e׆Cu3t∪(-~r헼(dTN3ɂ)o x"f]ٴ}d 5Gv fk‡7t ;d!oV]bLk{ '>&ੀYCKk!D8g6Ի?jQPʺ8'_:+@Xgc Uߴ{rbCP,юJYWKX8_y S?N0DG1uఞe&9\C( x7[uQ y$| hi8]й@_=lTᶤqO{vs]NC&( ~ڵ,-}N8+sdXh=s&_ld/3]3Uz⟤\&#ϢQy14kg~G{ǎӢJ"8/_gr< {0])"Y;3?nkK[ʨ5#w4_]6wȏF`t`:uk ZZAes4=rrA": wHU1U*aauFgWDJ|~e](߷]Z~$Wv o[r2cC$߹܇-|_՜)c/^9aW#5 <9gSiaZ$zyOźIX^]U|y1O*o"O#kQG@J<)!쥛mN^%Okqj8=Rj Ag%Nsb%)2";OU{1s_4^xYo]Ί1// os idM*iU4abPVRS !`ZHF*Exe05sou:s(lws:eޯ" [s[9o:ѝ!+R'B{\zf ߃+?VX}\Rh.c~ d)D)hqɼ`g3D^!Da8]E43H:C 7)*TH׊R:8pVlEW)Aw/@V\mKh)N=p55/t&C'd##mi|{kWMH>`,y7pU< I-#7yXqYrU,џ*/| ^a>5OCxaT?HO"4iLkoZo w*WOHb4&׷IxEƽ"FO !F\MjuIʊhyyE,w:VӉ& k!ֶ{dڜ:j{akR_즞hNQ?xeXލ7%, "R6 !2|V5ϑ@ A9yLxL8auuUgn\mm@ܭ Z0T2̕-O?:' 9֒A8ro.V@r-E}v>Hj6̰+KuHYQH-BGGepmZQBj(LOA XT𽈐S?Wbol6_|kNۂ-7ō a׊|GS[g? 0I.oӢӴ.$U1W'@njbyGH(44/:=y OnDzq[0xT) qO@T^j~Qd'mL 5{-XbEE`vY$vg.o7db6|jl揑\,ԥdȎ'@ÀSswLy\ S"zn*gêT)mGjp"j\L RkKp`n+$()8_Y%O-Z%B#^u.j/XPz&g>!t oe})3ȯRtߡS@} jHD\ Q%!bڳfA`a NA@kDMқR?Ue#X*gkq9י^Cd^LPK6 (1jQ kZ'*~b UJܸgrB`J0wthmͿ-6| ]Z,"He*/]fkCk_dϥiiR5oIO̪iO6Eg#-NVo.e%l?\ IQx4xF-o#yY}HGeLJ^[>={"F(kk{(b&nRWekeu4' ̙njZQC3:ldq muY tztR[_W*^ 5&Y|4fA\:c=b},@Kebf+\C pQ?t;jkv^?%"s0pGs鿬]˪PqJD [3?`,1qɇAM,KPsn}-N9 Ռ wy'NP/<}YX#XTvS7R9@Eh^ (r$ ֎B^wtlMc7Fװ +ir_F鋰OݪlȐ Ihr".@Xl9t`yZޒ/ȗMm-.^\;{WI5fD5QMإLW.: 5i.{8aƝår5Y+0rn)U"'God5rBjԫB9VׁnƣRn=9,$ G"Fta "+JJ} 4J:p@0Ο˪p#.āP_bl:[.qF]4@8tv?#"o" g8ːZ-(3z..ӾP:'4K5b\uù_mVॲ+WzD(ݳOo{v^vGV2ILD=R/+|PnF-Omb\G"s!]bec/ 'eH2//};`pߌX6hqMkf?yq~Q a̗!B_i73 $p(}E!oZoVfSBkPGAj)EoFgG{bԤ\'%' NW0Է,X0Aa9KbVmdw TOOz!W x3oXKmghώ ?aP>/Fw#׆)JT]ⅈ/Ic$?bx,Ж>>Be YOR(F#egp59i>)[&T$]xIYw5*}xB;9 0TlNҡ~ŀr:E Lb+5A1iuwAzZAmLuA7ۣ ^X@XB5> 1'al[KnIQX@oaGy"݅]k3$6C<&nJdX!nfUy 9']\`KҺx> rea:e4:4_[ _QF"KI3DOS@~ȑ7cQ!/2T`MR9f褥5>V?vf(1 r}dI?㙛Iz ymلNw7;NM j K SMl-$*/+inf DY=7DŽ9/oHejM# BAdj:E^ؒw Q[j 9v?\f.dc$'cmhP fvhH m> J-_#.V?0j\}'Ȏ,KgX{6xCBg*"J"sn#5X8-KՃ:qc2 5~EJh#ǥ[VO_tuzٮki_gchp|i7rU} Ϧ]ۚSލkԥ@|ٟy5֊"$"I؂xuo(!qE1vEN-nG<>љ|vmwYhxËg~pYΣ4o|-jʬO-=M)T (4gk=j?>?[4@8(tճsя,Ҝte+}?eA)֬vJL[5SxJmA"[V\EGc y!+Sq_$Cf`'wir8G 9// Z2g,BqadS.NrbM.12af;s3Bҩ.dy.T(8ܭ\L֒7b3ge p'VZVnwI廳ʺUULzqVD2vφ[^z8BZoYL2O>%ɟ -0̴LZb|'ID}e; wPXahGmG2MXpTlJ;4dDAJ7:0CYg;wЌ]sE>|Y`'aS s71F6$P|O'ڭ@"(xm@N2\SYr4 婯9 xW>JOJOFy&J$BC2ϫ;DqF]jxz50_Y+V93M4-$m >呸ӄ,@ߏ7`dgKN<ݩra.6V&=^n>|ZWw=9Rb;'eu@Z?*X;l'bu*T8m6j+Lx @"ve#KapG:Aq*4@.hUaP@EkEKxZݬ(?'56D S0*Vbꝛu rho9Sx{4ҺlɘS'xmY1|hhu 2?HhvtNDEU" i]iuI'KY aoGA&BO/؜-Kȗ2m֎l JZ Sm䵞R"_WF!P;H}} J̜QFP5|ķ4.tܽ#T u-2JpC#ԆdReKdt{p#-##B82/~5sGbunx]k{MͿ~dR+4!.PrQKKiy?kSy%HIIE5O@ϠLY 621{{B7*H&Z4]I!%T,Ix&(wA/yA/(^S]X mwb7%و3T3]B'o}P'6#&piI1seUSs߇^"}K~[# R1w[t *\whK u>"P6Iq~tՅMKT˄ls1RvߥHn9Qn!J޲*U`ȵ[Nڞv 7MX FlhY@uF [o\VГ@{j," !L/[풫W a'0/+~\5K0@T;X?3d~=Vcɶ4dۈab[xEۢ}fʼn$}M&i+j,Kv1alґ,I6a*߼H$VW`פ 䃭 7.;s>zi/uXj4+7jmlD"J6}Rf|ITg)TU @讠oZ+CpCm$CF˧ E60nHc^M6=\P&P+{W[{91H o2.$;I\|j5*[2F4z\afRWE$MMv&}0y*fΜ/}9<5p?O~XO6--֫2MDW] @ߴ+`g 2^{Rc 3;L쁭ԉԢ^ѻ=g+6#lEj1mL7pq-0 'u vB asc,oXGGw-Rx@sBlZ"4E0RA(9߱rOvX2 e)mٌ]!݁Y} ɦ z'g֭rPJuv"bDMh`FFʹjᮘ jހ M0zC-j*[<ˎ.ZN hs}`?lBN7O0mB#wpBoܽ,3{bKu4{Yr"%YDe!m c/OJ( EGHeRnZvB *j v_%18w&TPļ8#%:AMZ #: /u+Ĕ@Ѫ_cjk\&ͣm񅑝׉ذp%'gͼX/˔'r/>te'0vqM я,S#4Gv`aVy6W>.AIrOd,3y`~N#4l*͹ (Vp4OOc\xԔ}[Ѫ@"E͙9OMB,G46Y~:$A#|#([ƠfV$-G"Mڕ4h`VwQa7 )q]^0772bYҾ6/AFhRKhoTD0xYԗ@E^SqYciaGp5L.iJ?*s}%`F7T q?wmDOAGn5F!bo0Dԍ^K &#{D5gDnP_ߢ[E.*P0mW~JڈUV;,e]+аSbznjzӥBc(&>5my~",ͯ.!BJ 5KP9ٯ8-*%hH0;-"Ϝ7t|Bt4jUH}뒭`\'MJSUi@B ҽԪOqN@|l;s SӐz^/X9\8Golĕ[ p\6DgφP`̻sY&`yNM<(lҋCr" 햾^KgQ@->HR0 4} FJu'?DבC',Hݥi6hSPv`c0ST&C+nI揃E{B( mMvML؆K6O">gQ X-,i\-@2O&b*F a艰GtݻG%QfbCZm%<>Zq>NsmChۣegV^]nguZtY' юjFe ?rQUA S ۣ?Ms迕V+U.CƀՈbK9k?E~5 Lzwp^%P&k̉'PyIs}][lu,6Chs |&Vz 4gTMi3gZLeF6(Ll%O-#1^t5xh-}MɁCzU"Zs՗(9Ij@MpN$p|Z.Z;O=r[ ;#;qJ' >轄J &.<1@N}i|:?0TOjk'W+A^N% !k|ң"14>G@͕JHmh\ 8u O>Iv%TAh֙ Cf p~nc!qܷ?{>'$hknO`ڈ*̔3%/(%P'KpDyp$Q ;`15{\6f u !FkrJFSIH|G QDddŠ,U]^m3 LLFD9CֱmdRőo&c0vs(nCxG;A<7j ݇~A]ބlg6 ^T4lub @ͫط׍a![8MR(BX`7~X"q`&1^ uȲ+CcnR̍!w@0{*8'P^t exF@?ּ#,:?N~`݋1b"r3ŹoV0P}I> {~TAOaߜ"=o$xjsD;Eg U4^ 3E>i]^_k.f>8[)*'A]D&w23 EM ZU#PImuH—fBF ,D}ןAà[]@KQ9}ȓl.Ae/-*Yv)(YKlH =-<: MtC9MBu/\JƶVQ?#%]Grc!P3Бj\6q$g(w>f(X2s_Ho1'z;NzT>< \JG =Qx됿v{ $WD% n9e\3@`M*+V"Ĺpv &R8|* m+fgDԛ JO1C}(X/t<{q#uq M򊫉ƒ? ^5geŤ)ațnF )a^0ٙ>ؿo.=\E|! )wurIgyyi ),ʫQ /d"Wiq[B^ !e GqS^ߙRQ0eB6ڈ2]3Osg @!vNB`-:-b]:J=/xOqy q]H6!;DaUR)6Sy|8WNnuBr>PrhxUg'<7ZMR7ˆ7p$L)V FAst\x DWITy^A0WB!B|H:c±`2#LW,HƐ5x!͆p"uk=u_;a r{!+{05/) *NsrR!E38ŌQ+eWkda"TheMvs ;B 'cm䧅7=-X]d7s0nƹLEX&g~-EPI8SV&OR4\ ;Aݝ{j6;S%p[Ob <Ipr-ępaHM(հFOہ. ua08;`ad qe X}|K{&" o0v YM^VrBՔ7UeeT5)lȱ_%x\ZA ^~ՒBV5Ǚ^ehO6t 5i^a`.Ǝ![['ވ^Hbis[>41@(P0|D8sQ9?5V/>@uʗ .=D`P)|iTم91֪BDJnP۞" g"@XpQ{ t%vgI^3&R+!? pmoV)t|_ N'ިC0h4ckK20nyۍW]^lB9'njt7Vj8 Lr*>hǑXY!c@YFD4ĉ!;3 +7˂(^鿨UNdl}vh04F,^5`X7`xe3{ⴔ-)>N >l 0G$9ZJp4)bQ$Q׋'*l/'1rAv,R%*FTфvJxZ($1OoŠkS)E* $e΁Zgv{TʼWD-0QC(0ʝ;)ȍ`n.B4ŋdc~.#lN-0$1ْ?0r6Elb&8Z'MČ6la :ݴU';(hr}ި Au=:[~_^7a}W2r3,0|@bi6!6k5hV.{kJC`n%G}:E4:Gַt)L3155 2\4j;ll lQp.T>BJ5G€ohYI~\4L5I0݆Sp( ~tVwB KG[!hH6(sQ$Cy0B5uGH XJfDZTg,s^LDYv6dtAЌ[*9OW{>0 6&t.&\* ՝#40Q8$DMKY(!7%*d -;] eo`Qa>0 YZAER/data/PSID1982.rda0000644000175400001440000000776113033553047013556 0ustar zeileisusersBZh91AY&SYճHDd\DDDDDDUEPE2Pπ7IIIJKzzѐaI44=@zAzC6(TҦJMM4hP#&M&zhhPOQ $TzA&M4dѦ@4d442S&iшh &h#M0L LbbIBaOI4hi  i4 9;exVcQ$!3 0Rp Z-Oʑ  C; y!i܃=lq _Њw*~n{޶^1bf#{Edp4tr%ܵn׍ Ur[b4iFU/ޚvS^ȵ3+"Lm Ѝz*vDLpQh ̴c/[tz.tla>w%T^).߫C|Fao$ # i%Z⍲ˆ_`MV|sp.)QQN..Fݧy>Hgh=>7ЉyFsNJo aoiؘIG~&'KNݎeKػ~wL!Ƹpur빴5VONCZ tI!?)J ҎNPm,hhhIhFhѵFhhj**-بHh4j-`JEDelF"5E3b64i6 %-!TPEcbj(hb,ɍ3DiAQS!$+ ŊFTzp5$"lLJBI QŊ(E&#HjѰ ,XT! 3.8Ll$&LH3BTYFXMRXDPiDbDFLD4%%!" SLIK*6ňJ6 4PE!F,QI3AJRH3Fh,̤bi1H`)$Deh4bJ"`IDȲ&MI%E%CS1DÊ&2i4X`$42LSi#gm䔕,%!Q$[!(HXF&BH4ldE(dBL %3$##A@&dM2Ib B 2F)))) d QAI$)FJRFI$IfdY@F(b )L(3 !hRb$34Wq2hBDFM(F A")4$6&e0Z`)\q\HY$QJ&`A (%E,) ɒ*"إ4șQ!EEhS,Q2d&h l%EEXm;E\[\Fڣ2wf3{v+* "mޞ=5율Z`2?ID)G7ŕT+}d %YjEr"jX`@}G\vr)2N`Uȟ]Ͻ֮/oyv+(} ^"NЇ\fJ0!z@3g]{f&u[Xd$g2`dpb <31:}}mKvݭo+xK;yh>Tx)'dXSbH U1JL0jVsp!5\-[b %')"dI=M^] b#dwkzLA{3 *k3Sm]߭j]Z6[)>SkUSUПnxoe[@xқYc8u׼ y'hxNgf 8q Y*vEљusoʲ6X_%ʔ_?lc! u`X7&Yz.E֥,Mά0 qb+ۥծ6wxx|ioE8q`BHT CS*dO7N,wϠAgs5YΎq%YomTe:*ѷl2k=lNxc<93kv a Hm R>SX pK4)`yMCT3?do=];1m!,.:(z8vÆy0W3+kސ:IZXUܼm_B>n q njqw^j)>r;)7DE=_Bs:n׎\zeq7rqbF[YQ:a@}ai2YHb"p]LۛrОK]d9ij(ky߉q/wJ8 $7Vc* R^r6$ԼfоREp!IF x$Jk{Ol Wg9)kotӧH1c/{UUUUUUUUUUUUUUUUUY2dɓ&L/l-qUU{P7ajI $ I$$H0I$`I $AI$3cƺ]uo|``I $AI$I $ I$$H0I$`I c5mv\rϟ>}p83 UUUUUUU[ UUUP`I $AI$I $amza/{ZI$$H0I$`I $AI$I $ -k[<Ƙ1c8[ $H0I$`I $AI$I $ I$$H6$-4$I$I$I$I$I$$LIlqI$I$I$I$I$I$vNv'V,۷nݻ c{ܒI$$I$I$I$$I$4Kq$I$I$I&8߻wGiߜ^3y}VUᶋhUmX[b؋j61\͛NwS_@,RCP5H#99YhITZZ^iGײ6GVH+E+Oڙw<@y0L8`@!#fp)F|-YCze&?j֪ ǙH.v 2  "ѵ2ЬP]u:ܜg` C t:D*,{z9h†ʣhn$yNk7HhVg"μ,ʶ*Dm&wom 6;Xߍ"PBY!3Zt"D /WBryA QӴ37A9I77+26P0*ګcNq#MPpxVW<{(  ;0 RqD\5C:/:wLtJ|P'4;U°"oG%"yO#n0)*!oϴETMz:&ׇ;( ,7mX߀sb_6~ z*0SZ>?EwxyڢC䥮P^Ѓ.;~8Ko:8*Bw Cr?Cp?7%a+/ ا IFE]!4s tЙIk wA E -ԿҤ1}&@o>􊋈g1De^_EQ:;/伬 kI=ը C/: }7n>s^{>8;n7KG VoߣN}_ċXe 1识GGc<8lփ{w7mKއn~O]>AeonC.%oi7]";߽XG }GYU.Jݦ-eNpG6NPݢ ;Ҕ䵭# v T$nL6yet;\C^MϜ=2qUd~R(@܃<,AzUP/NN}s^W< w.B_Aho!"} }>;g~}vK>Y3 BOR JqcЍa!zRxAEMFp.~~;vO赉n tCz=rϠ_( {! 9$swoyHg{}*g'wy:sM3[{{+GM|=}Ms~A7 Y}NLQù a3}FQEӸFxFWPv\E?7q}ttmws~ޣҸkA y2c"oPfdH%Civٽ |[lQB?dm >26 A` .IÐpt4|=R5\WsnWf|տ נ,ݭ3n/Vps-Рv*_6F/ȯs3aF_0Y]v37֚*01b3m_Vz]/?;ٿؠp2u[)YNABu#«Vo.yV&rFE4-\f/{7I6 S?HOuN~ϘFMC OG|!sL3gYGc磱 /ЫOk˦:T ZRA{)ƦqbWbGksC菊~J\wEЦD@NBDPI'ʍxWDBxQ@/W)g˨`}b2lyV{7 &f< D8lAxwÁq_>Tڈ$} #;fpLr]a6ݣa[3bGlM*1 R;Yŀ8:dfD};L[1rdg=]cJ8ɑ?G|2s}Сեq{(N] Gͽ:)&CHS|w“ʄM]LoQm22 PyltE.n@k\]Zo9|ܰpA>6F1g}Ɋih1ppr,ʥ|`,npY %*Wyj;bU®*P*h;kHP\isن:XVJn͌2} -nULzld _N@cʆq, jZhW7K2?z-\ pQ~}DG? J@K"s0m|ϥl@bH4'{ѦTVlegzq֭wq vω_fG6]R,i!j=e֟ aT78{XstA̷"єr>rt'A,{YͬyQW: u-QmK\!yJ9?Q(p%NAx M&YŎB璣?!z@Ȭ*&ᚻbKXYAIլePIc3/kI` ida#p-jId[bl((j zVZ7mV[y0 }==}sM9cr8Wg{Q,sB UJ" N"љJzkqCV_|"&u, ;.AП-bHLp>"69LW|P#Z |GhǙ)QjEAT|5r+Ro+:wJ;{+h0X"/dvdB'0͝*ow3ܰ1D G ʉdC@ieJ/K}@4Űv"i/,VPGlS__0]EV'5l/)R;O<}LC7=3/e@a4J1jI#LV|+Z:JyYx'}68dp[JD>^X h ohm~fn8< ,RƆJ4Nco/5,U+ % /]j5@>w)f|UqPY=E+URJ<~U\V} *?1ńleX]Wk-^0y} yPa[R ux3Ҹ>h?zP.Tijpa.q7h v/ zFQsضGto?M-Q8l گ9 \䗉R1V0AȽ/2XFA@ҮG;bs~\E}sCYqeɐ?b=IE /BD K;t;f vPblMJ sXt;ʈ"0`V3ͻJ] `-w>w>ˋsžWSφbg9 $9q"X]lIօlc̼018`l59R]Uׯ'hTF\{+lvWvw?d!@ n't̲Yj U-HbnK{KVCuv; ãԁ̊lÑC3Z)Qd!ns94,L:HLj" jzHi*zkMn^ ӹPZY0 j *z8H zaZ`9L~{::{,hh:~;(Ե?M'J1+h3D5#dV\R N|-L)QOכv";30rŃJ#"޲h y.bt/*Dq8Ƿ?ܣI@Q[h1E/dfnwfS"WrؓXCߘL)jdKaUc:+Q oQK<(AhR/(4:?NhS >‡$`!IT|l|g~ƅlx1+==G:PePØ r~5EnUB5| ?>E;Z0?]:Ňd7BjBOHYÇ}/B&_Sd]pf=2<3ߋ\?+0DO*Xՙw%U^<8V5zslE> 4U;C5Fb>:Ba [R1~&V-'B'~G<ɺV9by lzK< pSZP;.XtI;"ܙAA{g${lm/RC183'b(8Aj%,BO9vd3gm X¿LE -LPv R"Ef)$R?,͵=ZQ8ZP34l4gz \, XIY͋zt@*KCD:*{$Zb7}= Kϒf*Lۺ6cOU ĢM¯Gga %2"t rYԻL{CKυ=sR|-{]ٍf/qCpYRwc^EtVN2zV/Tv:$)Y O]SVx( TK/./qJ 0#mMaPkqs FS2cģ+] c?X 7pPynA`?Gt+BVϩioldd l7e[y]JI zu_ƗS]r6Sݸ2/#92sr-OmMWusV-b&8e RKffR_mQx?!Vn6wI"\xX€ʩf/ [$>Ah_e9pn1F;ӫF}8[i30̍@ ba2&zTPV H!,Apy 9TIoM +u{lzY%/8P*2ɄR\M2\+Jָ*ɦ)1qWeA `D?Hu_jKB?^v<ʨt@=5ݙ#d=ؿSida+f,j/-~Mfp6@/Hs#Ssh>o؀`tϐ [yv?hj{ }_e2=9Æ6ᩆe+ã LGŢı:OhZ;aR Lwrk!Z iV۱ߑ|'(VA1>R R/4 !=gp 0+]GCK#CCm8c,Ggi )WpD(IqyBq_cy^0$.jݲ_$ini.š'ҪߌA4Hzݓ2.Y@9$\^SΞwfӉ:=?7w=rHɎp.'۩垺Me$C' 'ơh+)n 9ܟe@e|7lC0č2cK(4c7poųɯSVYW&3D3n=8& 6m5]sSe7;.J<ߍ%OqʴᯓN !MIb's Yhڨ&2Y|;NYz93Hw{ww=0Hʼu)zOzKUű3ʧ?4T$XjY֎qC3fgtj~/6S Nj;nw],ETEl!z+3S-4:Gp @@>g]b>EYҽ*.e`T)齑5`3$['XbgZ#ߠ/:AJq\3'a\ hrQ gwۊ^٧qfP/RSl cPjt٤&uOaOvĀmJZkd1*\7MAHx9Z3m:F鮷/!"půEuv$.9Yua'tp8廻78w$gFIg-'AO[n6*kAɶ(,|DSTc|Nh%0 j_o35Bd>mW+6$JvVvڣPޟ {nb9O@45QM"JAk9<'k"KENlw؈H`+[U7DcfO4䃭`4~:!oN% yc$xXHD*38}ҝoZ äScm1UEEe=,fJINj|(K?K=J_mJ4|ESA 19xzQ E[͚oٶbTC% V0"5oZEC*YIy\dUe :[]TL[^ ` Bt1 /+ȃxwʐO]7-n{D@r@ e8#oQZg;:H2bF3CF_ }K-V[3Fs ( ^$s ӴnÎ "Y gCCGloc463~Mz'Wu6ty#*(;d M|g*n ] m7Xst.@oF, Y~al.xmMYʛs_MZV2dd7KGgt JeLbR4!Ue΃va}2`k skQF7)I?BvpS%7%`c }}MmKTKז)iHfaw4Cm|dzK<Hs%9Ɛ9Ul7"1(waR"׮?򔻮]/Q4\X b~ h< FfuvK>&GrmVF8[W1=rX h!QrxLIE4=LP`{ȩQy wns2Qҝfu;MgѦh{꓏ʺQ|tnop\ h .1uVm}MTU"1c9AErIs~^97q}eb߱ϋԫ8/Ay["_L9GַN&O.qqafP~_tXy0i~Y\Ocw,8dfldnCo4 TTɊCR}jq%5|lWZ &\莐P8s,=Erc MUpsz" _VX<.d"-P?a˂[luH' 2m în,!^ϟ0X&lILmFz-?29a.Re _j}*ՐZe8c2#k;DW4BLˎ50{^76Fn,vT > JM<e $s6 LQϝnKØжyv Veek#SgAY #Jn ֙I-%vxĆLϤxQQܠK9O1TTf;pB#Yx/m%ɽ[/W@!) |}d$7SpXSq,J c.I, 2ۂ# DN4,?mR.t|ˊx\CZ#w/9 LSHR%ekHJh;dÁr=64u[^[-mAWnN>\Ltl\ԩR7}ќ!ϭUGmK~E4`I~0Q@M֢S_IQ"ɮw~Y`HΧk| ꐒ?ph91cg! u3qЊ>-2ʄҙ|.L+hˋ_r%-* noZB#5=nY X%SWT'rNa}e`꽺G^s~U`=b؄WV6? | i:_u ![9J8YuQ%c}s[qy|rMk%Yo>z#'? 8DO@ު#> zrXeU6EǗ"h@~N}raRZdENvsc ĝaT:[ǰ7HE;v=Q ,E%%`H@ d,IN |"6诊ȔDY+պwhePp$*"`F4f$Js.hcR5,]븊@"AiI–˕g8~M7_y0KcHyK·sۀ5gmi$@faڵ(d .ZO.dpP)}6k&!*NyWlj W:cv>H肬 <°4;8CrCیX TA~5@oXG%B:Uʧt [5+rhdR\~lB p|@ji@O2[ۧ[R\ 0rA`"*`o+TbYӻٓ!diw=䋨u0"/b&>oirBeKf~*̎Y)i)/A lc-1cjNe[6 ʵ|?ҰԾ fJ)J!LdHg2!{F4͉6 F!>+chUPIZtsp1J׈ԍ# r_?xTJ6aZIQr!{Ó>tcosԢzY07S уwKhH$,M댪hj"+ʬe*ZN+^r ~ 2Cv^jTGX0,FUD0saڞ8cvRr@Ec,SbKg@k7`2'KoLm@*cg2,T{%K"K(iH{ pQob@*eΨǨC-Y(Жܳ9V4DrNГk2[3wxܪZ矯ȧEgusJ&QNWSJF/|d9 woCwOxfe8q+'5&5=daV'AE,9·\ }\DbמUmɼ3}+ҤWd)TY!kv{f@ 9DVZ“5Ţm9i)3ӈف̠?v0/5Ԡ^ n.V>z{ג]~hMsL[3j-&s~ ɭuǩ.F#Oh Rf&+3c/& )#?>jM,>W 63ÆyJbh¸NRjXM,T/F]Iw ǐ$~ېdͱ[plhjmI+F`P~ٓ(t4O?&V)hq;i^|Y0Ѥ8Kn/=+OŞ[HZG) r'M(4f9sQU Ҳ}UraHaE1Jßn 7IM&2}qͪ%[}E P<#Pm;&԰N}(@k}ꟸ U=onBWq0DkoEޱt ]?:K|z&ċOm:W^5j2 vl@H= NTE>R= - U!xq逯 A?]R ϟ1YgIfk>֪ (/DmUݯ I<4г_zʧ ؍ce Y2inZGEfb %2ß1Wh=ΘDN8 8oqró֙׈<g907B?Դ q֍ \46*CFH{]$< NHo 7:IބA=B1.b` 0̓bt&wZg!vjnϮ3GCUAYƼevdrĔZK^[v%%p9V=Y%VJc澳B孞{ 5 f!Vh-8+\1UkW+ޓn^I%$ o`I88Nc2̇ ͖?P <~,h$~x*s_l,زʹ}g iJ )VJ5:X2) 6ygO:"TRg)J=0SQح`]Qk]ݕu[ѻAh\ȾM`A6tz@Nn.:iQI֫Caᦈg>Wa5$Xo;д* !_Y7?;| pIp|LWH=as f#^+ rHL@3R&X;; Zas(WgBd$z$_/ca\B][fݒ" FgP޺: 4Q).l L]MS>"Ad<#3wK!;OFdGfGf1m{6?&5#baW$zwFUsr` dW zpQrP:Le+U l0[܊B41btCHpnR@oBŖ< %t4"5\Xʚ%YlzsVk\fݬ/<:75 =&ѩI@IiRpLx'x>tAzqW/ulGT:346o"; _%2XBavh_|f/h #Z}+Ja6_,0IDGr[6Ьodr~o8mڏ3R5^T>Xs8zM_3s9\5Nƫ ")'>ݕXZ<V 9?m\T*(5l)og{'#w"1*eQPMlS{_K\fc ōu$ƠRM( 8\%p"})Js^ ܅Õ׌~Y$Di!'?*P };MZMl:!Q.z4g.5èiA ţ秼k~N <ΰ-@WЛ>& sPe{|9𙳇[WGS670DsP{,QyGi]9ȶE j0 YZAER/data/CPSSW3.rda0000644000175400001440000017352013033553035013447 0ustar zeileisusers7zXZi"6!X|I])TW"nRʟt<3n2u5Ķ@];[- V,ĸDɸGg}BD å@VBhs|*$o,ySs{ 0Pw[?X:$ ~4j{>FyjWh.#lCh`2ႈ]=3D)m#EP:ZiR:'⬴./LZ4ud I]LW傭;3AxJ:iq4h f4КɠrGm94ݭFg!5: L J jFK\ PƆL-Cуm4'{rl9wzhDP$l>l'[ ieCWc%nR[M zXgug P0:%SO<{qb=}EmyoV'0]dEdD %Y='M8ɉԒIdHxij8[?(2ٸp6Ä˽7R cVJVCRC]z>sa:DXL!Ԍk`%b_rWyN3cZ/.\t*&aj-<_-!ԉO8+7{&(<`V?0fT*Kr=%z0sI5$2fKRrQa9Һψn90t(a?'a5>˂*ʜݐ 0^~PSe϶JW|2+@ѝ_ƌٱb` =Wp| kJ{z3\zO,}P;)/ kwq3\6 iBE 1\t{uwOߒ:Hnf>yW6(Ø1$7~"CԌLc3娿%=Y퇒8PP(Y:ƛQ *_Y-m`H9c 4#>/p?sZf W$~5}4A?X@HB(G@EzF<\]bձCB>Y .:DB|UR #n51Ç8T4Q6PJ]s8>Ϊ_u]'uH].&o1[piҁ)+q1q|>. *!˔p!d!LO-GS4eb#s# >(WgV=L'c/:el_th#C~>w;OelaIv~RUfj2CAYNB5mǁ' ANBp@K`pˇݫNi[}-7F~`K\;x&>aJZ]i]7^k"jeѼ ؖU|n\].}wQc(gۙGõ{&hæK̴ Sa@{>͞vznV4SԎ9=[쯦)vhڪBwna6aFf#g5V9 qw1ykwۯ1t?zv7rDX˞Jx4-e<' ".PԦCނ&hLƍ6ڼ m!dU]r^*Hޮ?DiM?NK!;*T%Pk`I^I' ixv3udCBKqCl\Xͨk(/L?PiC-Š`G})RqăSМo5h]"9$EWy v!%I?,۫p9i8 p9r@V =uDl%[?QM;5hPGUHbMtA|q3:$Ë_k$q17{nk5ƑDq`%1WdBiud?@Fz>r!6* #gsÅOxK?"̦O: ̼aȈؓyIHØU:lȋ$]iMC4>Ǝ~}"ؐs[SFx*P80hM.}E4ڢUE9祥>`w;!(\iY:N |Nk\U~ 3>uI`<}hy'4fc-Cт "cpJihОkS !'2LhFRyzj ^!,74R O$L4tjPuu;ZEmsKRk܉ yGFu%nUpzZg1@Wi!4dX^<TaG\y $9Ee#텿cOD{(t΋0J G@s{eMrճK^71A-iB! |X]ª&%*jI zn`xMpk{,>6Y#\cQU(R_n*|b&H݉;\Nb3ڷ]Z$.SEm?c_ئ(<^\."ls6@&hOA>3^'O5܊nxҎ|^ZA$V3JL_wp}Rkߺz⋼y? O0@%I^\MK達oQՀh~30SB:J]q5mQ0;Z߮)Ow!.ڢnlX[I8PH`2KG9*` k! Gu*p겔<U]l)ұښ~箩=Rz6"=02=>G:AMTP<5w_0$,I_*Z:VPL%E!3@x18 0rq"]P9TZ4"3+h]ZFJ#DK yr*:;j+EDo {imsN']HA cE]#cbG +,5(̖1c5혛omQ[J4]i~.aHJAʔ@2җG],+vlqlV`=B&Zzlٟcz.As],öSckԾW`Mʢt <FMc4J)Cg]OY9F cL]uN wg_nۼg`f=acqb1}Ad>|l59@:ԏ!|q# 542AbUq ԡc,*?qlo S&[Es^@^֟\TDiV x6cIHne,m,XL|h$)@D*^-E0Uf OG`"3iY]8cH:'ؤ~ݟgm q^mWŮM.T1,=-c;hdugyK,BВ&T%EB2xT]c"γo44E7Ib3ggt/'P*ysD`~!j^fMϱ[L'ϘAȖoM)_Gr6X}v#SD)#-b+Urse* յ8'$_t@`}_ayoF7۹5Vs.'ߎ~Hf}lV N\!mPQpw>IryM[?%o2YE/~_kA9*{9݇#*RPx PQz2cn;K5a"UsQ$f0!@7*)ӈmsVI^ >Fezh{N²U)E ZP5WC7DQsٸL/(60'ElBl{|N0TL7>+ڜh&3%_OR6KR}/RkJd=*dFZ(K!Zͻ1LYbg3qeB:$b" /m&ez4Q.w-(C@;39n0lX;ôolR&y,.$:]X/̘< b&'L۾3dgSȞTALLxE-69rsWƋoxłU[fN`7cgiOJ{g$~0^;iɩZ$3Ta!*{υj#_5G J5҄+refc w掅6c I#_ WX*Ҙ2s[@Y2m[: }'wLgXW"ɛWn'8sILDuSজv)P%hoo9eqJ ɡAO@84w@36cVp,@-WWzGInR F0E-)i֮V) Ox, R,;uWוLM͹ߝ kuRgsv(xe<==xm|߶`ŗO-sEva| CoUq9ɛ.-И$DTMg\2n^4vy_[ e$8>^XNcmJa7L%5$|$ۭ1BY 8w#BHFo8|s*Qk(4NVj?" fkJDcObʂ3Y}Acvx-whTrĝ_}4=%sH&v|RL!71\^wy&3۷-W"kWI!ZwGUp\~^uIf;(ٲCZviwZA7e2$2Kj7"tmapE41̡=ks>E={(`u \"s؅ȋZa`XY׷ۼ/fOby}o,5(m+l/(WnSc)D*A2gsP-\3S tv}$1y$ KTroHxwo+ pYFau:DwvT3Mp~mW?^`F P܇~ B`A>q_x]8^7&t;&eܡ}ϑBj=\z#/Ka +7ZY%ͅ*7PʘtsS8CHNeyLTtx:$0qJmF9f=IM+N9|8grU^eg!<¹_- 7W̕\*|m `)w׃h ͯ@\=4qZ:P""љzG紾!m2Jn}k7s=_Ѭ2,{Jp~ @N)F= W/dʡ2j\؋jAF dEzNwJ*$ \ό m7ud{Ĺm?9@ Z4H{;8uhWW&F>]&g22(ΩKF/}V+nx*ۣ H`I&%SџOpҰlҿ? ÷U6E?]ג+>[tЧɞğ& g+ *l rț"⑩ps1H<+#6rE`pG57:. D˾a%^oZoX rRSlToEm _fMUޖ;"̷7cD_tH+鐺wkYCnX5RwƈaǕ. űJsd|A>+rLPM#}MgkCO8"Nlc(.l ( P;[;C- 66&zɵjpKaDe`@[]QZF@C¨8rmaL~o()z46 p!#ej22U󼍾AQ[L__ qŘQMC\d>St( ÌA'zr evJX2 -(p %8V? M; ,4aVpu?M/;Ȋ}1ZMr=d3_'SEPY`> @wqJN8`7gȮ1ZUj-UVeeO*^BùeH1)c0*bF/u4Cpo&kMţVy8sр**CWR'(P47f_MTyCJ_M Y:/ fßiy\ua}S޿ysCIIa Bvbv1H +qcS9y<7l1> ޼5ѳIkH}EE [lfLTʠ{[hym[ZnԘ㾣+ @:QGK "П`$?ʐ٠; B( aV%'"f 313IܔeL_6׿IFA&L{[8(͢:&'0ڕ3e:/'ɕB挆1Q)e5_aö -Sg {uT5?$W5'[0NJca_$0.`q9ydN L2}涚6/9p+ sPw!@7=rhzθ ;(YVe\pmVC9w7 5W@fFnȐ$P:yيrVslH$n>PynA-]l}vIM4뿬ljUT*U?*ەP/{AxMС@!|>g׭%hG~$ev-?,kLQĊ|?B Ыx::r$-VǗ(ބ0aR+aϊ$pWRc{_LfZBo_n)۵Ɔ>nt  F3QY)8(kpt=%h31&PZaGWڸ758 9ٺ UzpugYFiΡtRբ5}<.pk-}?:&-a $]X1300K֓{sLU.nMF*nm? ;vֳFUWu*3|B7oJ !:/nT4&'u],k&}}bnf¼^TxZO9=8'뺲ޭΡZWA1vgZj?ƺY-Ӏ*>hhf?Yg+͹!3F{h ;5y pT*%ZcAۙo6 ) Q1YiYYv'8 ay!z WrTLR1_@ 23U7.&ctTXt])T\3E'MKLο@n.5 _ 1|i]_~g"O0ڌ8t@a"\҇|/֪޷/P x ]/~:EBx'\t,U"VM@C Vi[pO^3"~6Ԕ$=A< ȫ.;2)WSy8l#O4$ϚoR ڻq~5V3=DsJF UccA*%5fhlw&uLqK0- 4{az Xs]\(~ kD72&FM r4^VHp̺1/!Oo9Ɋְ(صrI{WCȎY.8*hӛXw|loYߦA{iGݩxzdϭjuK1ӦPfs5\T Yd5?9:Iyv&kbbukGQڤ峼pS9-'X(紦'C#>len :5OTXlVqvDOF$۞˫NCi.ZmC@!GU`<И0yUwa#*q*Ýt{ԕ^;Wdחu:⥍ac{/'Nhq#JS(ҳr,l{_=ac'qtx 8ُ%n 2=wQ'\?G5wRϏLöHuyMR"@D%mmx\_7nWJIXyms H[9qMEy[CAC.vk ?3xr=f>0=B ʗ6U%S^[>3l[ƕ>20fv<7uz!ala ։nQq= 7hA2YLHw4M>t>U![J*ԯM }Hhb)~(XN'D\MI`Ci} X㟘%*3m"{ԕ+UaPvhH/Q UUKGw( 6O!"dsJ:IG#|6P׭bSsGh }S/]F=]qV yͰd5]]Ϩ4ܡ4m6{S#Е} ?1kB1)J裺6t:a5cy%Y'uʲ~mXE"ZT #!!qeT9td^܌& 1^ClUӸS13Xm;H涠YÚ@C^hZ֚T Qґ@[!+GCzinEE|Y4s}H:%-^4DBpV-Щ4B*$Ee'`#і4\Ginao|f/S8쳔5MV8$OGrAU<1(i؍YFdwvF"K>x, ,^IȊƾ7 ~i,A5%wr'vAȔ$N 0:vtm-1aH2BLM4nΣgW#?߸j_jizOj>t3I n/Mx8z uNV+3P#dK".!UuwlB7XSrv;5Tp3ʎ4ˉ1pXYcx<*'gI_# 4ʹ!ghԾAi{cJ 1w6C}7WIl܄+W>ˆ7e*椟@Jͥ.NJ(tawy1F@(kU. -PR I.gTƶJwՐUMml./&kץ+NYnV;B@6Ok.إav\8Z }U b rRn}j ǣd=sXJC:ܺ61Vkk?m}rBmMun]S$ 4BV} ɀ|q5=GAwċ i'1Oکڼg7hZM_0Zuw:sj&VͷzM{q:[eV ?6Sw+# _"m89 N0'9x!UHX318"ps27zRR:&Gɱ?-{8;{MLMeT.rs[KnZZ[H=?6̊kՇS9$jLȏr}6'ߎՊ(XC2?Vknh06}ϰ+bl[a[# /Y?4α~m( 6j`h(3Qۓp9< 'H3qjBFNK ޯV Lts|ffHhe.zM- (\u][8>(own 92M,b|=@zJ<;}#gm)Q8Z"L0=!8@"]Fvl~|@|.Zyx|8y<GCTy${f/o*7z')p ,VlWbQo- &|EAC1EuEumH W';YD&B}N 8rKV-I iۇeK {mu7 j70[h3| ;3S3EϒpcVSܞcYdl~KG I(7͑_`A˼g;iKD XIfo.`hދ&8CysFN,CzwC` }@lpq׈tl;H$_{nR/ql fVMUo8@xCA @.M59~s҆DV!V%hoW>92{;%X0],UvH _'=|@@ C/d'/J%ن6Ɋwg)sQ1+:uiժ5CNZB\ (~TMvGV:.7Ib) $|A3C<F6hKp o"@nPm__8\YQ,VP]Uخ&\5\-*3}!*eq>[‡U]/!e }p7l,R+Z%@*1Yћ ,K{2+kazj's0պ"$ z6TFh#Zd?ui+`KKboe9[ # "1&jB,qF\ҸHnkzʩ|u-}%2i% Eh=_=v*q?y)N㌳EfMn :8N!2 ^GƜ!NBKaׄ HFޛtRjr ¦wG! c/uzTɇgipQ'%{\8ѠH !:3bX-1(|8 n'%88 ,ͷ4Io`Ȱip̒K!F(veЄ =˦,-=B"^y{V(Fi{hTe[ߝBHI\ѪJSSTWǞ G%pl״ªxcЪoO=uU_] oIMx2f$xioNaΕ>ۤ;Pg9ei#֏EM<( ,~b? H \uƀ'tҡ(֓]C;G2uqҗX/bgMG닅47ɞxFV HϥեXІJ&.䑋w5prr" ڜ W:>ŬJgx;#:8%4Ω(TW4>I]@KV ƮZtgU`'y ׇ9/S ٗDlq4-YfoǑ^[N{HЙjXƺm&noӘMz֓ELƜ4ӌa i)bG|/If5qИIҥF) Jn hH3gp:Kbc3+ aƫlcaa%L/{h,t 9 2~ǹZFNX4fHr@b(]=1H/pde^35o+n'-=uJ<#?.̓ve0?z+KTIq e3cD#H0GA^JbHC+~ Ƅ3l~T^NoqX/fP 6:4s&|0'cD<>"Cd(4Iׄ0}a ƈP <1ndp͑ 'EU TebI#c8^{QXB m; CLG ȷXl0jKWYZum&&"or('F `긇5cZ5\n0;u{Vu z&^xZ$($R+GNU<=DHRi[}Vt(}0<\<s[evq}ۋ`%eƅ=T|m8z܀4~-|Y LZ rޣw ih߼bLP;v4317'-sD}Y$21 :7됀QRί~" |6ڒݙDwMfnǻr2$s@کJfsB?IxuWb0UV{9l‡HϊA8N&Gm6}Э<"xJ_Wo=f+kǺaM@VGcs5#F  AԜsg -4΁S()KȉEl\=7~j!#Q4%K&?תwO+hG|XsanTm.H6 ˼ f JtWλ潃%:B-5ai Fr.RBXJeϙDsS*.\_O߮c8P%\Ej V:vOQ *iSb=:X0\k\|n:xf,7@F~lc6ϗΐFY;twr‰)Fq'?'#c_gAG~bSIW##BC\Xv+n6Uu:|S&b:V`@,!Nc[m&yyIY66<+rb~Z+O3,8CXt,fAVEV !UtII1+6U1VK0YX9қBeQn2,MZUD+Rnpl݈Hô sMF+^*tWBb9;b6=Bf8b3FoEX uH&,b¸snE8˼'}ʕd4 C`a-uE?j2#AfFg.g7@%M"3Lawc:'&=5I5ķKvSS}gx~cy/]9/Kh`|/;DܣH?pAd;uAצh( :I(h"W#KmjjS` b)>̇ Lxsyt43 ֏!V!HqKiL^&@ )Q"LQeK-.BVF}|wqwD!ib[gd$\dV--LBI~\yنʿbxou/"P9K+(d[vz0WiKћ2Fqq۪O {_<ҹYoo2Ha4,ZP#+\zrd%oh M^Q$`SXρ V]`@S4U cl4PɮJ +@d$Svpҫ3:/P5'_ow[\tdL8f| _mkO:|4_gkR|]u~v`d2KF0#:Fˀ@WpD|6QT /`\s(ڎ #JW՛7e'.9:77h=KKA &֙'e1}E@9M&wpe(zo5TtY=ڎ 5B"Ɯ?-7Rwr\zlޏBhSqoroi`!=Su`G&RVko=GK,@Ly*H ˟ F|S7^;If GЩFYx]%y*=> G"]ns%<|mo ޯKq~o?]S&g.w~'{Ϣ~TZJW~a'N{` ۇRb|`c|'XS#BX`V>0Ml*xķ6Kϖ"U}SGHȄG2 .UI_. e[_ߏxJ~PxLlFTbA'5܉ɧ6&]Ccn2;iIGPXkkq๺~4 ytk̞tsN6`Nd[7?)VV;LȰf!%=IF1qj SqBCmRs#W\ѷťvYsj^6lĈWMh^I8 Ak`u8)5#{@Yt~B>QpJI^[V"KoP47h!9 -i Ot%s\)W#df,<R2H[9;(X \/ԑ[i *G6{P %_(.:vb\>*Qe`L$Kv#1e_CV [aciLZ3X;K78 ^+O$ 3dO| jIj]|t{ªNmtNLZ8 ~.ڨAmgL!Ƴ|%Lxc3`ˈYޯ>gڐr_- !]ɒ])X62_HWEnBdZyHin]*F " AH]B[h3sX9PЯRCcOwhmUp*j'Tp~jٷ1EU&ϹD /}{jgxO~F"]eZpwX0t|Ej׸-`Vf|JI5"'t#W^q]gK;J@d2=U]lq)@H.XGl Gb&Σ08$0s4_Sd.`EחTK2o)+sUЀ}h_eÿ.UC/٩Dk?3<`Pu\Y* wĖڑ(T[XC?6~4aw9:aZitq@z{)\f{O-W5wd \?/׺,Zonmmǽ3Ayvb\8Ųb\fhOf+,dn[IBڈ,T zFpCd7[| w:EmsΪpEA %.#s>:+1.?rnV!!<-G4 >_a p@g֒R bdR? jA@rTo(Z*uQ(?`ŸcD 3LT Qa"g,{'}< T=+މbM+ic|X!$`˭9O 0.i&ֹJoa9awڜ.Z8~K)*2>*zC(p6ZTJS@S_=*3VbgtsŐSy76 cN\-!|MQC9f.+wˉe ݨȶvȬ Oʈx [lj9Ķ3\I{ꇬ;Ɉ5$@ӑ N\4S#YȚYRTΰ&3+^LMRN QV6'>mީ8lDpMʥdfPnЯi#W(8gVhr7k7*Y<.;m.ycCfi͖u$򿙸ё({hi.֮BMXb0і0蕘G(Эc-3r?k̿34qaB5{Ԓ^tu[PPW@{1dYDG ~}ayG.G  8-#5YPeA#v Wy~/TX' TLUvt42݄%Q5Hp\tr^4KjPb;_E.*gq.+ލ0|Q)G<8"X? >2/t ";D"AYzۮ/ ǂn'] ݒBZEgG;d݃UmPtP%# W҉&f/f"fRZ~B"3MAFOQEN#ρ6$nܤU6dzc6M.yZ=_2fStSJ0;T}6OdC,sPDCbS]o?zJLiqZO4u;/ ;w"UзcevoCvƞHa lZAq&YڵvDꇚk~[dBn4E\}8?hz~^N|mzGɠ&Ji,pхĝyxܣ|5př"%@4WE||<`}Q?2E"8`=:Tl >IH_K B6n3tkj=v,@ :w*]]VZ!RG>Y,W;H c{U>PYDCY2[E',W{e(aN LZݷw2EKIu¶AL VEn-JO puv oVvd'fsje-aari_={2?̪~b7@*lB%gwmi%XoV!_ƺЋ J۽~׫=#s zU ƶG/XR犸@-zi?C:ϭ.ӖeO#s;U'O1ν.\#( ڒv;}D=~NU9ֈz51Q߈iY 1TQFWkAD65$s;AZ O#M*YVL^>EiEGՂ4ԩoU%J:dbEХ:9€hb::.)Sp!b׭ڑ_D+kwsu=󐧾{hF dgq#ț=םb=B=&*l(8j'СRHa7])yv*yĀU o"ضᮑ#WեsWsQP=)H>zk!״j@4; OwBB_P3uF >Xv |X"kX.飯dP?#5x߸i{-e pL" BX87h܃Ic{;>E]>㰮M^QqܷNgmֱwhdc1hF T^c}%u=y35 EQVi#Xfb{om2Bלu^S1GHALݏDoHqbKn䇫}ʢMv`_96`K&y &@N#+-ݠ@chSoXr|m;Ѐ*Pi,c%5DXc~csh-[]}7!5sr_ܐ>]| RxI݅$ׄM~1%\l؛#GGET&MT- SDއ2'dZcvA^ϗP/|c\x=4[JQ7&EUѧ\Gb̗g;q)@Ua~W;Qg{UKXQR2o5ed 9ٴ_[oU9y1]OQ@5@D:nj afnty,m 42q$ε?yU^#XM4{@3{~ABd\͇*w{d$9 57s'f36ڇcq^A,a뇡BB6k`R( n"\rv5(4٠k1y[݆+]޲w-81{ȕf)Yg#r`=9`azW8F)5< 4%ZAeB _, X{f^} Ƙ߳;ϟf2FG`+h 8\QW=qm*x K{"&f$Dž{GfV mg$UN^(VԭW91"{TX*z,U ~^&frgeeԈ J)Bm" &ꦄ`"!XZ*!Ԋ~T'=Y-?0ѽ=?$_̀͝ .pCU$yuŲ ]@4fRzfy ֯I3tScҖ>@CajgmIoJAg:2a<,O0)<'?ydaWjei9g]kPjis.ҹolଔjB\ٟ`^Ҧ/e(pgЦ#/+У'H4b$naBkҫBš=ٙXUQQ9+H)=B'n/?.ΤP@kQz[Z dlX" |]]ggb];ܙO⅊!5PuFy|)"3ASH7OOCi?7hxZ|+yW5zj+ExxlW` GOzz!pyX9To %W8{i@^O?g#0FUi,Z hSv 4r+,$KR=duR 4Zp6AE=IRkk B‡7HEol !B8?UR^* ;l;-Ioe$,N67ބjS皶deџ+y2Zlᘬ!hx*g䝬UMf,C_nSHEdpry'Bfr) ]~mE8+dIj P,-TwA< kj孁H88GXz;|qdB 5| JMn ͺgqJ׳$^4;s:5Rb5 xC<1:˶J(]e6[C1$n5I" 2¼q@;Y0u+Kۋw۬|iaSA 6m0/ahݫze}vP7Ds(U0U8*/J,3XxÓ_0_}2I2OHΟ3Jفe[G#_qϢ,tzx?8y:bkK?z3W5'%۹qqY]oլjDgY&bȀP:~2H gpna꣭l-caan#[Oj95R ]@k'€G[*Qq(aP^DA`l?W2ukQI83 Yv(fLc;G%3ÓɎ viZW/]%29yH[(^/} @s߮M$ jBq_r택4|pb/z@E"G"1\Jsa|"@u;!xw0VJ⡅] _"#r.xin56B% V[Q2N_UqfVi`w^3=EbPT2<=.ԙMYJ_5isnֺbL)G/DԻʚ[ vEs$6T ?@ΰ6 fS [bn\-A*X(lu8:<]WD\TqޔJ&l kW}1ʜB}2MOz~r± iёl#u XHsW{KN"})&5E |34KLq_(BUv- \$KXC*K1 }шUI2lوXڹ%`P|Hv;V8T#uGH Z-}6j"&^;{'bچJG{ɐ^\;iTOz_8w @II^l|peg,br[b74U@%}j}yCK+`'|ϋH 6 (gcnOl F.p+"b>BTpW83f a]i`\(tȔƖIa݌ev)֥T/loq 2QOm:|8Pad /2432᣿m[\89p!۰[U8^Sy`-TT#;FJC3Bm{~LVoyPv6)d)G.#E`^\Lxend_֓uӮs"@ݫR:AȡyihGa(Z0QKxEZ> LV+cz}rg>!+4`JX0z!\(B* ;AIIw# (' ?.E X,h49߯arƭXU/|jU]&%A95S JC~__",4kpT)9CbP*[PҷBؾdcU$ o$͵.|5;B%1N|'ו kyB/m:>b+B X5+fOQnv?2=ݭ euX=>cgiYBSQcT:6++K*NN!teS[Z贊Uډ]T*$)9,>6$eχΙK}qxpZ5'`{u- H\Bud֡p\Ml1Ed XKKG26F|*p% E}MƼ:bhh @C}9ҐgiYCS(8^i '2OIS 燉);T:n_Ju#6N|r0{VP,T,'lj #n:y]6Gql[ՙMHek{I):q:LH3[uӔ^ݧj-ӷ'1F-'UOZIn#Zȅq*U]$,O@R龋ra;ÖOEneǺcn8٫0Gk€֥Ml['г]E)dZo'N|(L+GyM2( te%fwf(~A}eN4Yv[$XJQs$^ꧢb^NM0*HK?epXpTVHV4*2z!E!űL-NHgF@%~f@r>ƵFcs-sr6c/e|(daH)}Naxf8׷՜oqprˆ33fk҇mH0zbEvmϬT|4˪[V/j]@-2_==́[okOIܾ'أK-mg=i۔%JԱ-Q,T.Yf7Z! *MG)F}+îts/;=]337;n{O>_4^8&R8OcwY0}dohg Zagxk{[Ƚʭ5T,RlO1 Xء5Qa~ ֟*,PU,~O&! &D{?YG,QIENanod+Ha**`|79@{e+7MhI[@Nh{0~^JwMrИ|45$qrrE^V~= 9hyAamb/^-,|x8ӣ~bjLKrk,E#LPl @`RE8̖E7 ӷPqaKzо@Glgv0+5ݯRy{ OfyMX܍D:qJ0Ne?ucp:ΎUD3h]i1<&9Я/z!pأ+vl- [M(ϠiL}+;X@jv2LS1d`mibz% X+p_@ۖ!x[}遾*3|2wt36܊R(?C RVD@&ͅ{R1'쫼?labqp:ݵ 2g^AH[Xu3'M&A)z <⋺*PLd',I 4 Լuu&ԚcCU'N* $+e Ì4IxҬU7H–jP-. 9jJDAȌz횳4ZtJ.TolKMȢ˳>BvcS(@Z&fqΰ@-j_K1!?X;r}'7^-n]ŠtQam-\%4UiwA>+ g_:]OzjW`O' )}踄xM9a]#5" 'i+oH%l}U5D~ h}b@DQT.3,o^[vsf:mGFХu1 ,Qژ+K\| 2 Oѕ<X ȵ#?Dܔ/C2ʴϚ]EW(隤@R"MQ-DˣkJ*hM-DB[$ 6_hs,)J%\# 8C67)̿ + LC@\(>"%CO3C $vƬ":}ӵ&WP닶"3lMPh繣`pڕwxQSQd+D|6pr?`!41 2>>L6^4k,fVsbMNlˀӄx|ps?ws ˏ_ȫ!as6yW JEf+g +ԳY-ޚfIasS'a԰_ ^[Ya, 0c9)~&l=B'pf@m.z7zC\qk9p~; 8+S+k_1<&@ilv8+ɝi*?xKxyЁj6%cXV~t"5I(tTsDjX`P4'뼕bHhLc, \>/ UBK<"RԵ.="JS6)*ҩ.us_\0;,X_XkDKJ%\yQ#n67D(^`O 8ӹN$r:5`~5ZVksyOjx+l"f =KVc>| T]k+~*c-pIڙҖThɂdOUp#IWnuRx盵α77N$;DLo@*Oɍ{ERDttC ́I6 }Y?m#V#}& ע glep(霓a9^kl$5UږD 8%?RfB5͌]FsLTB8 5WKĵ߹JnW2 9K: .n[FS7ǓkmOS ̜}ַ n r?/L7 }ߌ fN}pbF/dP\I̊,v4}d6}T .GY%6CGze4WB'Eh+ZkQb^E}-!1-VO<-\L>*gI.U4hc?̸go5Z(v/v b-]# ׅ43F?.$bWGMZcsSRBE\~JLeٯ=QST w 7s1 ebR3{Gf|^'/zn%#=ǢR!0s ʽ%4ԞSzu܊B':Iv#_&065C^l\a1 {"䄯)nvd3W)[O2[kφlR aFXfݐu8j_ $&hܰhKT ҟC Ҍ w+ ǰ©a"f LpQD|?7UNʊ %@/5;᪽lMvzr櫔L^ِ8X(#Ͼ-|2ܮ!|k|SY}~ِ?;jQ7E0KJ]u3`uK^gr{[j]'O8$Yv_t7ر'E٤yǚ=e)KW?\Iq[hȯ|FP(`%Xdg~^yqòB(3?@OA(G`Pqz +K[0[0#z]H^%p" qPNgaD֮GoLWq}U N#t |< +M++R3j-6CO0%ie A+M;Џw6/V_h"w|;"CȟA&3s^EטFdHiulӿЗd^5^:4B>"yx,`ys.L p*Ak2j<8ص7 &Catב\HW^0Rrq"4v>d3Tk;xv'x0(MeWȥSy-<MsWr4q+rfo-l (VPX _عhla*] 8?eT.^aܐ(J_b@q*RRQ[(UǮoUьVPE8Fbq?#8B~JkL]5RȅTEܪf]y'4%koM\`FUȪ>ߚP\E?)wDJP fn_'4BP&0)Eh;/N֦|M()&ЯX}U.x"?% ډ*UoSӿ[˺\&6މ%&"1ֹʉ[}u1{D ]4em >MNQjPvz4 ;*R@ u;H3 X՛xwl'\IcެW'Yl!R1.ᘁ[ztN`rLG Wsʔ P/h)j)LਡYHvR2,%@'28x-s~ЂiCČ|&} CBљgT0i2e:Noz:.O"rtĖB;1M܂H+,b JDQ0` a#/!,12VIVm묺=u@>*BRV2 ManjFyP EL!#VCagMǴ3'gx'y.m|yYfp@wC~pxɸ%"r rj^oYc-QahK{QIWtkNcC# `ԏ 5J貮 u8406kF@ ]o%GQ^|'9!LIJ'ˬe=K_ O[\}E@BC},2W`4v5m"_ᇪhE8rz0ux$X2tڻ]7MxvLTڑ)Nt>fd̩m]y]'CV}RUoEZjK(9GzyHf:W/]k˱^^kTFgkj: 7|tAmu/hWjyinPzn+ O]!z$XRZm3Y,(y_k[ֶQ;MKHP%trB1̗[9H.\Y`C).צc* d I3)h~߮kau!VU5T]9mS;f/خpdȸkl.c{(ԕHacɆg׳ʎpyUfҽ;:T]H eJ ۞Aێ3)zPrN6TW#S,Ι[B6XDb܋瑨r pc@{z+#˺d4Ӵ]_[1"_LQX963%h.w+g֑<'֯\n^:c툅)_`gꄨ0ڄ 'Dť11N!:̘;F?T@TJTA`8=ps3<|nTEEJ[$T+(UD6+6wh @PW%&~Lr~t;miOղx߯\]N@DTM`'l+:*r-$/9z)9W/2wS64R?\[P/Ƭ7ҝ+ƿk"B%Կ%)g@]Vh %%4ռj[coǭ(WNnR`/JOTsZjϚOfx@ D6 7y$["GM#q:h" I7c/ .ЋZXԲD_V.{Dhѩ=KdkSQ``2#7Þ'9.ayWjH|di$HB͌kC=EUo RbVԮ}:X6&"qOm&5^Y̦Gb;+d{`2BV;-;mE1^f PۧkG]BqAq0s'9Ɔ&*hb7V);r>7Xyy{0:ˍ>6VUd 88dqܱEqjkȮҥeJW-2JvǞZ5sHoB_t]Dh(,8qjFJRW;4입 6UN\"m`L"*v NMdX R#Ja۫Aqɰ~kD4Ok̀f)v(hX9Vˁ#X1>hڕOIz^[vԕ Ɛ5Di,'~5eu({~l08(,Rl^`v[4IU&Z=EJvu<% 1jn!JIy8g߰d*oy (oZ^JeI`*=! ?FTZnV =/4O8 pH'uJKŤ˫=z5uYL-;dg[>y++lM:UМ9IuC@1T졵 ^dRY4 r !QD(z!R stf(Sҟ= ~o݃&榨; H@zB.DKS;v체Vk*|׫"aߦSG8aT*TLZ7J/˩_ jρnNlasKK {ostvx̴6rjRAXK1QUFmcD@ ]|RM&\ɲsQlFȸOy3Bh.qehZZd0Ixp-[cv7}DC:k+gft$agQ'B9P#_k,']ښ˧%#9 't O2Z[ni6ţƋOFyt@[gg4!мBeP=<j Wm.Gt7%/iVʅNec,>5CJ"='''jݭ!i:ķLiˑ7T2 CHC0@⎈53 o6oΔՌ!p&ʦ6$(qĞ{o%'4:*/t7GYAsa7;by=cd{(rN'il|[^|صgvje1N=F\-vۧLNLvp -%&jG |zaΊ[vRl##R~6%s=`9a?V3(Z=~y*Wjpxuq09al67pB 3X]=io󟪽G@ RႶv򴏙_l[D*6HOerRR<Dg*;1Z X}R$zf%KIѴ4!P|K=Ng`6:+)HkigG!\|]Ěok=C##,S-ͨ KQ#QMڿXʲһ<. uCxjc(?-- Hdq̧slB6 vg0]yr !"$NsgS b m?RZf ;A|{):+Nq}rؽjXir Ba7u/S8mQ/b]EY;ȳ'fIT K&٭>^HAڄ[  bQ<&jIgC!66c/ 럤Qc_S˩+%jQO5vCKN*-\اҦ0*d ߈w) G"Ep&E)eEK Ϗ̼ J\1Zѹ; HரntySS0ݲqygT?iS3֐'#|^\>n$g|=LGb ~w-ǽ%C70_F5oJ _wYU3κ l9]cd`cIi>% [ҙ > #&3=JHr4.$vSZ3b5S1;zҎr\8΢ Z<_ѸnH%t&P&(o"-hizN2SV.Mϊet6EOY$ ir4GUej)mqaǚy@>jF]ݺp:g9M ^fUJw$&kE1(BG%D6[ +f6ǨB@J?]ktokfoO!&cn@e'TpCa[8kaϼfZG>.WZwjERc.|I_U 6[ki@g!YOInAoh7ȶ@NHD%y0ݚCڪQ,uhF=C85YO[|-qNr*eά-I0<"X'ҷ9cwID$yy+ v񐰞8_.6b,*K}@;TCdvSOJH@̃S|۾h⸍ǰuB堭-Sd:*(*q*ȶΐf"}#Rm_|om,s @2I?-\"4~]\bTfM]ZHRr-Ec%ztYF n]uNlLd/e-'b"4WCG${YIJg1˛ ,G%1k$,WwRWTHH3jQK(#Ҹq}+F+eDռclFah1l%#oQIr Sy^y!*rl$).Z;:d[xEԧnKF"m [KVZosg^&?($,!SOCY 76ru'1 VTu];I_h&ب p53 S#!YбߨQu=*S70nhqZ h2d'pղ0cM(`/d﯁@z ghp*5" _!B:f#$iiFvxM9'ب7N ۶>볻 QD# JY.Hh>j>U My_(m|A:G!h!K1q3A XĘS\ ְ<v 0hV41ojO9R>tm^{E¯~W21*"> K4/+>pfQ7uqLqYbS%Ee apafx,ssXUFNbC(8kC]8+u746(tL)s1~Иo#Ѭõþ`(/8!gLH| }bEI`H}\N\?t2*s1콋'd_]lO·>V֏9܈ T=|h02]RLǴ Fy])hwO;\6.fe xU[TqLg=3x_ʡ+@B  y$$\ru'`4_[F+RMZ.}svLD7RXMcY֝AZ;u#0c$,{Wh{RRXCkFܞ {@5WHu#'uo Yb#^LEv14TET*q߃^qwM51(k% .>nȖ1f א:i_ s9bƈC/8d柖ܔ şMSBt+[tsCYpXro/[l<8 1{9qc3Lpo.`vKJ鏛nj2Q <K*^QT7J- s(9"(w:m's)i~a׉_&[ 1ްDK.y(rFc}FNPlZEB>M?wVGM bQ^UVdzLeb>D| 'G?1鹻C6ekQȯ( T TLTy҈+"X}"EN*Hq|#|SM;`/?p ]kLZkg=lɟ}| ' F?4 AytT0 rm&NP2kQ:*W_ %(%HqTEaä+Cc{{(\22 ^ aDS`Qc0%[ill+)8QXi/ʠͲLo⃺M30v7Q>:;N,EBI()j?0fzj&9"Ydc&+a ߀{=vGȈ!\tKۙY-6"Ԭ>|P=HI,Q{8OO5me.I({$ȋn>(1 gvZW^#q 'JjIP=ba03c mg]r)dX>%d\I;[}sYq.Vn<]@q=_ a6dGh/dޘw ?6A%|:ĮMasOVBws@UZ eƛ[Y,kArWQڸɕVZeƒ72:յ&LS(ѕE>\6Uj-~Z@W'LtjPR?'L3"`ha*@3AVs`AĠ?.(A1Rt M_SͺW?ԀeO3bokDI`p˳؀] SI1.LpCDb=lm" p= 1IL57uY#s>PRÉAz'?Js**?2^?_"B_| a\bN{B821gYo YSVZ6d $Sj8Ѥaظ]} *NO)s}~~͉ޝiw=u$l5<ے+|9%c)Ÿu(`Dڷ*qOxR]!|%2eqq# xkt|_\ϻ%4)RUugKXt:aAtHfH?k_EE6}z`Duxji^]<žoldANLDL. &mE]l>R+e<}vC#ΊA͡z/g c\nw~i+ɯ||@QknG6`FW * IW#r.D#-wGV@uݜm3Y&Ṋ%bv4v+TpagZ0{{}@ӿ#d/ - ;+A,k0:B_>,QCIH#mT%ӯy Efچd"68NC'e&'P7p5)DDt_Q/9 v߃<ʴ PSp`UWƛB:GkϴL.7HJ.y3Us VםXӽ/O ՂefS) s)YQ Yd=7Vq`oD5K!Dg OGvq) #} FB_ݯ" zz*;|ЌX]tNյ &4ۖbq/aO %hC?_tHz1dû(k?6^/{ttkahn=n7j辑(qek85mC=ܒ|u<į.!S|R~}촪9< hNN4ѷ4<% .n,3Ms \>GSE06Ygr)֗ح@$zš8k0'/cE,6Sz'']E ~|@SdhA0V`ā)͎pmΏ쪚 T3N~:eYFT-Y)~Z>*W;\efE'.j[6EAz8Ko|]^!KKWN 0rc8̺UMcY?@R8m< tl"nꕄZp\B'Wz#Mm}NHr*l fD%=J0ZZMQSSAG}n_k/L 4a9n_]R?i>Y usa|e6nEٖ;fO=w؎ 8-֎l8g@{pP0*p _ ۳!b˵l,I mY\6zWK0 46_ P1)3jBOA=΍!.uDw6j3ҧ,%W<8yFB@)5gNܚd wSso~Mhl4<{3VuZ,7),>OdYG]b%0\رmD/W196rNeHݰ&?& ^EB8;֘/N8kpN枘jy} 'LQ#! X>ةrsBFxN cUK?qf3_1*iggj^ֳ`"~ e<9_4u1zoBj&;wOg h3E=QM kDgK> sƱEOWUjW:8u if\";0kݧ zp2^qÑDJPyt˅hlQ9H~S!Z!^RrF.G W[%d( 6)2 bkSW<:l.ɄE: e8~ӏsO`jx\a=|/1Sb꫰ ݷ9#3 @b ^B`"=*O+NO"Pr55co <^շS+ j~a h^A6r>,􌊽2Lmrc؇+YdZ2T&spS I,aGL:2-&#:α,v aUxo"{:>#xxp P#oLچUОƛj_aqNjѲ@sqDJ;ȇ%q5vIG*}ZY*oXWd% R@רhvX8g7El]LH4%v U$~eP˷T^cR"iҤlu+O)9_{{"\Z-|[д /Ȃq^gzpW(7ርZp )(mPSbO)= 6p*)4,?% Xғ's?2wő+ML64PAA %ihy5(ڗ*ia-`.;bQ `lj~8;Ku٘ ,Ų vgO 04Ϧ4%X -ĕ6.>{}Ќ,(]3z sG-&x)K-#*ZiψTYa3wXʩU3V%PP"PTQ53b fl`#m+!چ}fFB6ugC0fR$QA`KÝj?EZca~`#v"-n"ʳīGY&8&&} BĹqmw2S}#NW& ȴl\')_fK~[)KVsa'qಮB%o]19랟Iir,&ٍb{ )&Dqˮ`G})_*FkJ.9/Z}#Oz^P^WS1AÓ2/˾FDjz=S_BHsbı;mkʍ_*կt>ႋg|'oXrb nQՋLRPtC1^1눁B1QD0U|<3ַr(33`7uJe<$g1:cRE5>fܜ$LT?b lmn"¥!<7fEK]w e7AԪ`#%Ւ' ۬6āf2k*%nH⎋qz_ou: F `a Xap:JKQu(*5.v?o 'cӰFhwQ1jdJ03^"?0:vrxh[B7 CFS47(P >/(I2XDa\G?y87 j$23?P/°r˯W*>{n~?`fKfNUJ.\&ݮNy6v!4[j *_ odyHaʺCsYl>Xwa]V]DND-Nٹ휎qZj5;V Ej>2ka8hF<PmB7b4|3?ȒV8&EynLg*&^y܇fD%m5`?B=ӧ柂'X74@CJivBȔָH>҆0&a}Eъ9MmZ9F22~wR7X{/}leo&!YBs)+?7.R.-[4e`P$1PCݚ4U$Jz$WćfK%y0| v.@Z?lS``YRqn ^?%Q ߮lRc엀"~]f¨ }^k[5:`l(LUiFXtFJ4P$uG(^ j%&CNVkn r5A1|Is;Wjw;BqS7+[sxE]XU#*T}L-)z<d !RV,$?]S )d2#d݊HHh~Dj&V]sƟB@p+Dž%2Bp>Ǵb &{ NdE RNc !eŷRIo9tݫE%fKS4)YȊ&HOC=7{B$ǗQ.d1lxyfNS|\{]ux﫩a.0E? [YV () KE3ȝw{(<ʝO5H7$G oPT3Ֆ)zQsWCEXa@EW(B]hpJLx{DuV 52|/?yL(gb͚NRթXqx&i^B/Yph %g("9\x ({<y!@$Ov9ǰ[GoYբՑF|Id'K@9 .jfp¿}Su攆Nwa$GIp5ѣW^YaUܝȀ :XKGZY&4Xj޸xCG5ŗBi,Ѵy~,rF|64aO?sIe>cxN .qfve G9d-r1~İ+oj-J|KRF 'FGXՎ!is9.X V:^O%pv=ig-1Nsƒ HCǹTtm"Uc`J~ ZF.G"-c?y맖)ԓ]lecB 7\$` hYҚ"s+ m4 Vg MQ4ohƞyYkbp*Ej(PMNJ0Q'q[A|J:;^;Js\RR\ f"$j=3c̍wʋcK 5D)_CtoEz-%>)5c #4^[=Fg5Dw Nuh)ax9&-6װJ)Sn1Q;H/Nj~&AuqA5>T1ܾUSi-A@ہV6?o} n:woZY~f]7 ?(ף5GF70DζH] &{آIMt7TE8u[5 vIAACϻ&qgehFd@72أ-_}xc@{XRa3Zeq4[%6w jr +Ob qf\%` E g( *iFoAQ:ېEqe a*:'nݑ]Kݕr12p6@ izץZX\/kl[ 8:ilZCK,AȊg7Nk݀ !| u&pyO;((4~S*fq$^rrM` MnX~_ᇵeE4]Np#'[p Ci4׋FxZi:HF4O>p Qd$udHk$M` cX ҩiª3ٻ&mGo& [Dq*mfw&x` YnC1!kApmob!vjOEF⥾ά hחT %tffϯ\Rt/_STu-y1 4#>uh'O[ oSδ-PKηtɺV;Q"`SW Tz<6LZ2$ٰEK JM/-WRcg_v 2zuvt]|m?qSw/~j"!f?orTVZ';7q%a7 I+e#ih3BCI^,4cy1c3 !8>}Y"+7"Os"v}AuN\fc=4XeWF/ fꉫfn|Uu~БadLS]$0Eh)lv? jƺLD%z](g[uoH%w4 _=ʺ[l7ojsa.rPȎeDΌBV,Cynihbc"mD.{W'-_4 j ^ ĀPU,Qj~V1Lu E8s)|=Q2iq0WoV$dmjw.3lm/nuSа,_Z2st\dz/.A^ /B씗ѷ>Ϥ>i옒s] %W)eA@P Yl|Cm.WyG.^cw"%\Su y+ n%(WB#Џ0 D *>!lcP_YU$ȉqƇ 3!iAMf`47~<Ӑd wOWE2^# Ŧ{}eWNh-S{!&l盷lou#''óhbN>)(Ex/ټ9AA œ4zZPNK^6$We4pZ.{-rrЌSRb: U+T?C9X"XDb!DRa:LMǟ#y`qcKĈ@p#|^zh6U6VС(@ -Q`€hcfYMݳ=tl$c6wBg'UcH+W?a1Tev5LTEf)%yܹgݴFP TcD9waDe> L7,`g qP g=K6M M㨴[8'K0c+DX7~͝zt@HJy|>#f-c)#*SBq]DbU2t)Uj~ݱK^ b[:AQ}zBl*y(r,`P'D[ 8~#a8BM"h$S"/T<8-(a<r G"5o0Q,tH?60?L暜<@AM%="ws5ԈHjuLF^B!YG}m8{EwʔPvn5 iHȲRF}p31*I.pAtzf4`%? g\|Ks#뇻 3قb& gg9j?Ԛt/8$wjE W5R9;b{!&UҶ bCWsFD:Sbtc٬!wJ[4Eջ {bV_4 8hU~{AڋY]X"wa:U%ݦٙ4+ҬҒ̱cHS شb;0 YZAER/data/STAR.rda0000644000175400001440000065751013033553053013244 0ustar zeileisusers7zXZi"6!X#])TW"nRʟt<3n2zvi- ~?YCߣ 6画BhiG t&frDٍ6]~`#]c^y ߡOFlӞ1 GBNYc 7d8eۺ$r; 74O,!*mQx .oX 0VMO '(խ 1̠k.y+=5>)Yv)v}Ow固2}kG(J"QiG  jŸEq'56<{e8<,',Xt2B>[ǭ<,BU-Q:llD="HLt/gS|'C.D@vA+-|q/тG4%(g8t$7K?;gv1*Z"dy8P!SM :lAZT&JGm#z*Kl5ٯqˏݛ 97\S zPf('j9 ¹|TA-]v #$>i)lɼRUfyņ{K6/oET] ^չ4uiZ}Aa/ڕb>@BX/::ݛ=gZhH }}PC(4}B RIE(U!n\v|79 '4ˤlKw$׎_>߲9ƒj`tKc!0:굟ih |ߵ|-fO`c[B<ƒCc U+[1-j(!#W["J2gw!m0V-7#>NVn,^Fji]Tk?:}mfN$êCoX~#q# zـDN1A5Bx{"a@HIX֫Lv)42w򬪣GtKZ׉ gB0R40HBw Sct̚'sRfYgIWC@VIϨz$^H onpQ{8_1iړFbIәq;]ϭƭoN{J3?{CH|t-8!_V[G?~e+K\aA\T1HK0Ҁ +~IږxxTi\6 2?c q=?h^\+>>"5)|ߎ%HG q縆{/Z~E:` )>55kbj mc8]/+<< mJXÁuvZ#patnTɘW"SVi3:Vqf'\2,dRᑓfoHe `؆iBjg˦Htgz0/Y>Om4m8sv-E)ֻ({k6WQvz vtf^kYl c~Ip"]Q||s!LUn?6>IA`/|YNB g#8OODž֋_uu^&r0naAI6M7rle{VMDI=SE`b橌v[ց}ڜ =V =yz9n%򶭟^B4 ?̚}販}g!q+_rHknJ @sE?4)vy^=i%7@``wɻ |ote9@U| B[ZMFGC\u  /i\PsCQݠdM1@ݨ,<~6>q錉c}7 d:M^Dݎ4f/ y42^y.Pؗ@ _0é)bs)iQA";4DiQ5Cf,1 Cϕ1euEAtyb3_;!qν]d}nG8ɝSZ1pezƨ j߹(Ht&y*0Խ_<|f5?v3^!孯 ~4c⡜QunUwoݬ*9ȴ(Qb P8aeԎS} V4Qkhm˙Ǭ>@\-#B"* +2Ax[T/fPKr`V +7iT`>Z&mI4O]x!b=恻%Us̻i"Yޤ,u#T[Gt้_~":-.6Xz* ?nl^Q3B(?hO |IΟa_(kڛVaԼ.ÑSJf,*w-.qnڇX.H `W坮/Ga%CU#.D97$\!r:%4+ʑNG@K؊7u D9~(FZIC_1TKbVPe⺅j˗OdP鼭ryv{vJx^g)e-~/g"?H OaoĄRoάkL>|:1,,\y8oǮv0Db$HdxOjHlr1 =- x&-vm,:E\5,yb&n6!o!˽AǦrҌ+>Tl0ΟR 44FZ"q-TZ:j/ӧіʌXIJ$,F!y6ZG,"n(2A  * hVlr~r/ֹq)=r ><:;/D'#yTב(2;ufDwJ;e~N;daY'k%–13@<Лl+\ZyMa!0gK1m>_ '?5UB%\S>]iQOL[R ߅t iYY4(CiJ){?Fn_7/=LUTZC+ƲtơYz1e04^rN`Ȧv Fݕ( v-NDOkN'\>bbVDb_HVw 厹hsA,J/Qrŧ\Hp"5\m.2?x SHVJZO m/a*G#*yXZVxWpDWʨ&prGt#ة:PG(FdTh|At>#?og,7 xY91@jc1oQk)Ȕ򖙇WM .&v".x3M{-]dn81pzfc-c%B\˻'4D? jS~͋k?GmJGbNӐPO M>RVsc6 :i5h& o[-jr6wMa. io&_G1" V-K jH` o¶PM Lkh!'"_3fHCmUj5[ 4~'J@)ZO'Γ~j6Hwr"-o3gɉL> fyNLjuWA Ь[J F` .˟0JRV?Pk4ѧAVt1!xk/9OlgdMk<#9IF S]skH= GR!-LjHx6+?1Ox;_hR[Bi7 2z]Iq@|1b+ nŰ\ X!t2fbf֡R3ufh'#&.EfEՉDZ % TrY=^88uiA7*|qrݛ;gu#{ a`(MWf[_4Ix;;c=y$XelUx 3ճ걋LmM jQJ$~2Bp%ۨGk=3Y$1jh>^I}x UfHx5j.'07t[> fY-g?& ':78yhTy鼆hXVzn lu@{a.Z?8 Ia@$e2npvZ@}q&xv^K46[+sNY A^HfxXRl0Q3,-aZZ;_s=}pJ$-v#@c9%S`,(9QOL7@K1'J̍1_?/eC#`EwD%`Yq^f훅9^2~"L_HS8ɦ?MTېq捂]\ mZ^YG+ Rb~M<)HϑB4 by.~>XqI ;E|ɜV_[{]=9FDnyx ޳Y.ټ#ݝxQ tds5 QYkQB7mEq7k8^M>55d+K"_܄]Z՜VsJs5'왒-zDfDLg'D4xjDH,$M+=HlbKXhZxܸWHKyQcK$x O(6CQΟJ4"3Qw*y4fqn]>GU֋VWRv}) vT#`*A0 Ti+4[Zʬ6N?u$njhWլ9۔?UR_ S]q-je7 K ;Lr7uQ,x,o^kXf%rn&W< o ༙U~ЭPֈLIYO"~Ώ]A>ԊҨj9Ed=YaT,9{-;_xg ; _wQ}̸RG4M;yopʰT0&F=vQ&jZ|4)p6ƱcecO2[hl_5ʨaM e3פ?bN'bQ{N$x<*#iLJWrzvRȖ%K[XBgtgG3x|Sf?̦Z4*ruJ v6ޏׇAyvS&p1;QT7`@nB.)I!`5Vir鎏Eb|:_nضt*YkHT_Ư/R8oӀX!"AAk2f^DjKRVHɰR「>WfPLm[lfIh63TJ2.Y,{O@1*enOejgbCBŇ!0`0 zk |ndDL&y꿪Jܐvhd^pz}BbR-7P +~@I PϽЦܫOE ~GwWA_ANMeKoݍ6V=o6ƥl8ūںM Ȧ1ʱyYYaLPjn(E~PZ qiPmo!*|/r@d*x$⠰wlȫD=@de h"Sm-kjeV!y{ jk&?[Xc8/8q,pC H*\ 'TqNEį̦~fЪ)azuJF>669*ճ~x}@bExNE~I4?,2e}7pG+  #3*vj; OAD9vrA`GcP{w=poϞOdP$3KRp/dK0in;Z+.sh{<? S( ~ "-u-KML+\~^%LRmGCd5֖5&q \E,#bg<|=0"FANMr ^5 ] p$,L (a^sL[|q9rIk'+NZ8J EhoTv斐rxcn^SPM:ؿ]nwbAI *iR}^>s"唸N123h|rlW`<=oB?nT"|"xhVÌ߫?EǎrIZ4>JCDXKb ͠ ٶX*"$6XZBf(8!FB !Ѿ@DFlGϊ~6Wq|cGP6!<#=g,_}q>TEVKkX}  4aNwM=3LHD\BGn$ם8}P<:Dݔ_(R \"4fC,# ֨`"9i ռ]XSbH8\Vd5DfP {6>>m{k{ũ׽G\W@#|Ǖ4lnjЛ`vf,e ah!gi|0ǹԛ,"v?q[Rm_ǽ8߮qĊʺ*"  !OÞU:/HNJ^ QKA3vJFkY>^g߯FMq}H9XЕZ^KmHF8w0E4#9lޛu t.?Xrҽ qN(~/ y-V)X4N35ܟ]}X(=ͤg=[3@)ADdÌeù:VGS4 nR9|t Y;1:&3Mz uۭKT%~qvQ"oa!k$YXd~fDF  XcxUAK#~but dJF @ {?}ebRRSݦ~ֽ6<ԗ_+!5?q4vM1ok 19^ C#{%7_N\3U"K&67X2a)҉ SӺl/zk+FpYP|^gk^Cڙ8&68Ȑ\A"g@-`"%n͊@qOCyƫ3ޱ[YI2;HOx_q]gfvpUUA͐Z9LE[^u`H_}ƫ$3 ?t_uuRRͳ TA H2CdE#Auv!mXtԬ1s' G^A B,gz4V%W3`( F5ݝ$?*bs (48mFA~#Sh&/c+ Cz83T\}),4r5S&:݇ ن1] ǵ?)"X쮑C䄃ZvH7$.{\ jU?jQ˶"%e┆y?pE,x .R}άo} #ȹŏ; |y |5d0E>ucK=F^ϸām_g hYWq[t.$A He__AE=ؤV'T6߈NKIZš;Htij!K|l @?A,xȲD_1 o["Nq?|KY(a'"I+.Cb,oo$_W$,j"TOsM'|0Q7dz^hF @2hzC$-ZX%dY%f3(+Et}`v[Q26Y.h&]'LG>x.VsLĚIN#۫ciyȩ0HfC+ؓY[~v[nJkg38(Mt2COV,C+k:Qv,#juj_3#0X~?BlalvyRT~@IҀܨA芏Tѣlv/!Or~CB֬X.Le2&&zodU6X3Z&ly-܁㬐K '`-PyGN7A?b=:swaQ$'(Wv2u,p3&A7K ꢳ?XkBJ0u\aղE-olj7ޒ[ɏu0$ 4hmq.>edK=b$g|# 6IGؼ$Qt"Ն^GHYAGWA\! 4j\Bݪi,S"*[@V7XY>SEz8KCq>c6fQ_t{\&™b!PZZձM ͐tDoI@.,AH+Wtzд$U Ҁ߶h[S#,fpEy.$6 DQ%^y:>33= Se]oABvPɼ駤Iy)O >SD>D1A,^ $Q-Fr|˭ܟ3U`VoL%r.k]Κ`^-.o]:BZA&AMݭ$@*ѫ=p* O­pZfl ZO ~KXG/_7~|](e6߇Y KΝ)G.0c޽Ny$SJuLLԙ9yZI8DVx,,EEKo:rޢp v@7K}^q%f{EHqnh3kdX_r]tOUT-`=AɡLTRiA . ~P&ai,y[eW#fH6Ep6Ԕl\kG2CwU%U(:c 5 DK:(YuU9lF\HBlZgN#-A[kX)_Pю''R / FD0,:C2\k)V Y6OM|h`r?ĴJ9#K< \a:QΛ {MjG h~c[YqP4A0 [u$\ޥ+T`z,lf<.0=eEdw.5sXZ>!k4tš=Ϻ0_uV1Y;ȑ} lf<,P޻mfN}_+~~$.9j07Sz}I5$~`AlKt<^ j3E Bd=|jʷ0/&K$da($=9xQ(zxx:-ǃ~=V;t1ez$32mZz}>ӥ1 PwbmU)Tl&gT]׹_q&8?-Ajߤm C;ܔ]sty/٪NE߄d ͘t,لR0b7Dsp@ޔ+dҎ DBHS2^4--ym oˊ4gl,lT襁zLҜǴSF &yIH );*K7S6` ܓRFSjpt2QvotP~0aPdi~+Z& rKCW:z%KUoɩ{̯kųAq~Cc!6pb5x:ND8MFq4cKUWt4/Y&(P[CScXxTo?*sv`[R=Asm"]XU2ltU7Y` 8czd!'᫞\P,#TtH`0)Lߛ:pM nPNa0|:-g4Zzzt5Z'AGZ2dj},kr ax,AR,p^vSY q@GZ]~sV6rtyO;*?+ՐFe)D.x!Kl+gƵj鑮C@5U;~XxD'JecZ7rdA}4^<=avC$NY;V1xeTzw/Րxv;׈35һr Ơ=9 :hu12+ު_ dhN ݑ7%|}}~jy;^dR"[Uq &$p'I. K41^$|Fk>$hM'p(Wy0Xct-o $ΫB njwMK'ҵ/L VЮr4.pp$ЧMO0s"fл3A7h^^b^diGyTX먲(U-cE,Q"=4dHi'u'7m:&M]c~b/pF-bUP-!3h1I8-A\a ޵͟|h&&hbJBGE#V!mADYh?*+4n¾ewkR ].@ ߻gg«T7p_Q:.d!Q$"It/,_C5Je?G!; < 7kEdSi q I-1ۗȞ=2;C1!Q^<1SŒFu( 5-ػqM/6gsJ`^f$;M1u-e*f;NPCZ޵RhNn-4s^N3 #ݜ#n#4~dXdo(WQ@4CaO~6Mx,ĩ`=W:dR/$yF"ﭷ\1"a,0փR_.>6|}T3*W#>xX;6qt5Woq[_MNG%ԅxҋLKT=c>@F#pr@vDJB;8\ ^A]*0W _+LI,aT}pVRd%_f7dUoҰJ4=5rAG4| 6LǴq4)8O \B`ՐbT-tIZYK[\ hҰ΀qzrP* Q]p9͵9b&ksW /Ia>:; "5P~2*XucK`rVF9n+-Iy31gL$ K7kMv pR"_\7煤P$%cD*&-ktx[$;HQ& Pvv.i&|b:M,kp?.MpA4"#O+C2ӲRn1g!FA tԗY|[I8DK݃_;\Sy:~aZ7p4]hoƷwR$Y ;TܦpG`.U8A/e؆S +MϦe^!͸= '!p4r+=PLbhZ }.M*OD;ş6(?o ҼЇb͉LS{֐BןImo ,qy@|H{F6 Rb/p\ Ջ z>;axZGtegi{ =䃫vrR0Rbu,osiHd/&1Ze$ZIT\&7$5>ID٤(40YGDz7hP 1V^Slj Z|mY؞ڨG)BOsżވ>;GOŐbCu<䜋?0Y =ppui-i[R&_OYa'BWM}-wUprc=K}UgMm7>}ӦMaRSdUw&T֢SOt% = S,0 |Z"{zjav X!KZ,eBa˨jGhxCI1a _z`٘LM_}D"jհ1Y@69hf ojeST39~v.'v+Y&M\oJKcĐd7td <|g|%>uPl@E9җ=-/yXSPZ:hk&W ־uơWhNz`d0*l?5&Vk[ff9EׁJB3+j-<zWiGcmL}|c3z4g][142=' @X)ARP4C ҐL9  !ITͫ촲s_Pt{^:,y ^OtҤaK'Pb]2QU}sqB̄ PN> b"'IQQi`cGD>w5LMW!v>_Lp*ED c Wz!O&M{Ǖ%³%MMC]bws''}{ 7u?%@c{ĝ<[!g sfRfA Jw~.!x̮gS3 4-ԁ{:N.2i-ڒYD!^]u'xoA#_E${S2nWeGP-x.״+ZUbrL JHMF&׉IsPk3@ e5Ej׺ )\ ,8(t$w,8o+uӇE^zVbToк.Hv`0T_VK^RtCc%->G;:fs=O8r k:H¬ BQ1̋2q~ (k!SEANh /M 5΢ule“:sgnjPE#,Я:&&؟ wl̖Us2^DFSxUH o0}̖6q&аo$cu)$+[A('{ȰmvX,BD$4Pj(2)4Hg|"!c!>gOKQҴ4ni#)ewy!^uJԁ皌JFPWY(q46C g˕G +9vd^ELݏ8x(N}a* ^31EēAZ7.w̲k(I8߹ DG& !rty cLU DDN׌j%ٻCcfF @҉dJ v[xWDjBƖAKoN C|dtm%j$ڤRٵ,8w}Φ(O2CĒn*#j!AإRzKJ9|0gt,-h_ i9_3*Y2Aű߂n _V .쵭XN:298!,cu ':HD`% ] N<.EctLemOM :n8!fx 1: 뻇&R>Wbkg1WE V*W/R,!,&OˀXfX&0I}y7/Nv'dzMR7O |d酱pҏM3#3.j}B/b `Osz}VTPҾ͑8oMN0[ACkɨ"k]O~Z-_1˭DA2r4PJ!IY"9wÁ(!Ϝ%_l;zQJO9 N`V(ȾHriu}a'n- 7k1̥mEI%QDvdA,!̸X䳉Va}XE{4HGq-c?nVp}|sd0$: ajn3~aʹ'%,dIe h|5iBq*6wJ\>g0,`SLA#j3ضykS1w=Ʒl2ƣxF hgM@RvfzP^C V>%$;͞^ҋR;ǤemMv/V8t4NkTz8WĻ4Ȫ F_mg|{T 9rH 34Qszm#;* C:WcHبK];,$' o囬d!>{YBsf)8Vo" DŽ3 ?[߇Lp]W Mb?$+nAIaΊQv}WtV>we8Jk.+|QE ̲'`j FP0 ΢ճbz`!~{B،6R ϸyypG)`|PIW^6V(Q*gomaJ3ҽ ӹ#ZZWk-n^pM%kuߓGt5kcEM뾌&+Vl0 c9^3,@!Nf[8Iؚɘhf*Yΰo:]H~V3h*0 < ɤ2M9 .VC/mU\R.M .ӡJni͞P<x+O{(g"2Ti'Ew&4 0`gMH D['ן/ۮUސ5TCRM'^ޝ֮e]O{&Pav`.$⭲$e3MU:b.d7^2r+dt}&EdkF1vߍ6ùp- K.Hڴ]ܸ)/dp]S7 / M Lj4Րp5}P#0_E`yyS.p>DUn 谿)jJ@՞wm[r@3 ݴdsu$hӵ½ѩ@D~Ilk Jm &QUفbم=!)CE\^IPoj@uX]S8ldab&H޹#ꗅ/PkPB|j bz\0a1ӁckRIuMHnߑ27BI"8 &ƗafZ Y/2wF^iy&_L-UwZ&:݌_` aez.욎Dʥ&0q2iiFj/aDS? 2h""A\W*];JSv-7,A%^ B"ZElj|xӢbXJL@N3O@Is,#@UQmTI 8U>Γ%գgfM R!6ι1k!u<w2-t!A}$"Swzh|eQV0u9~\uqx4 vH 7p|_-W~p,J?[PYo=Tb_842jbe~$Ӈf*mPe=ACFE*: _Q>\ f1=(kql.k.iYsMGaGhO̔p0MExbr`RgѴ×]>;-*V /OVG,۴$q>o(t=x9$Z"7?ط8E㢛GL,Վi=_;1D<`ݥ)0|,D+:]e^6yʬvXOzuXM[!|AeVZXVzYn rW4\.VA%ԮW<1y*fFJзf?OFcc8gPVS*Ňڄ-4Дq=@Uc">]Lfb`¾wt}miJarZŽ,~(66g6يlk:UnƋ0ʱvٔlhtYWPqJ =A QGΘsOG5*>_%-(\v QRt b(%uh'V(<˺- EVc}/H= 2MU_&:1>jX+@%,oo?I$tlH&ͮ$E[콞X3:- ]ݦPXd7e摶k5 u8jbq0o05mb7¼!IsB2)JNf ڈ}JYec3 ?L؍AN_iȝ b!IGA97J^UUxqĀ4p4rOn@1(eɣ#M.AGQ !X~47ga!AӔSa|e~bPv3MP^8M8-‰RbSyH^KUAQ LI-:.I-Bu6(ڽ)pzڱt ̀f 8I!kď7Sx̑^y- i0K0;$Y1@:V,wz|g"lV0tDzdyfdkyJPB$0)w B7]^;c-ӥ>,琛yB\7cVBg?d|*=(?+'ٗT8x}cM:7NuC( ps3C4oJ'uBgnT߄qɨ}&[dj& t}Tx\i%YvR/e-+0s[HP>h8Ac.$#؎uTBU\`xK&UK4rqwQC]{\'z,hĽ4Ru*Ox&NO#V)'Jl#jI;k]pídb qOkͩä^Љn/0X-i SYݦn1 c+ӹ/f͊, k즹H/+rnD f=ҊvpeM(ՒE؞ IrD-/)&qYc)lLwQT7+S.f "gvƏC_YA * 'R1 )|Sdb./8;p˖IqT\ ;rLdtWA<:܇CPHI6ʗ{cȎmSPO W7N]yM a;8lo@TӀJqy?=m-xE~5kqJ/t˸m= W9|zRUZ.k)o_͎1ɼ b4 H}J*Q WvGOcp{YwY̠Zc`Th_K֬SZklKwQ RR[f"C?Ǡ~ >2/3 >`og-?@ab+%Vzo]֨+de4<)]Aiprv~To Bg*9F|fpo>u=/u.'X[['O;aP3KUؓ~/ }jϓ,!N/o1*~Νf1{ "a_<-)=CF:,D&4!G^N@[ [rd͛z>Ձ1z\rC'>Pߕ{ ;Y@:ŘS5Rȹ0,y<[( D^( O\3LiZJg܍A ^FuخmBt{G6a&'*w D;hljD+4DУąEK{yooOc~t 0E1v8l谕K ._:QFkhB|WڨJ.3^!4Bq `:E ȻEwvB[31FNpo/*Wu%{1k}nReF U/N<FVa` D"TGkN-짋76`m;R3Wg҆vDO30NT8;Kc^0\_:!R"U`5w۽ BϾ\{nbS\WJ^phzN;#Dˬb*/OpYi h9וwnwoƘ{2iL/Y=L+0-ڍpXHㅔ@nsuEuh}{*%97DpLK߅ {IֹӘГ$ !#Yg* 𚔟 ׽'7I34llS<"@ *78GA1xhs2 % P}25؝iljbgTHSBGP,IѿKS# /,ڂ |vo6we)ycGyCxs sa ͊KdAr>+cO֤ڰYΘؕsFj#1<*8 \5ba|PdoqG.ҫꭕO f?m o& .-k_ 7Ylo݂8m{ȴk~ EFI;"e\Ǔ1RM*u mίK`G'pE[BEpd9Ŭ3ˡR[Z!(d’owL_:, -Е3j c ED:0/V=m_ǔ(z(Ly!iۀwnĒQ( %BU #p7&#zP 8vŕbD2%J}!qYĵZ6Jo.DgfiJKjc3t%Y@RIh[CUpo/$KrtPE T-:ObM`+ht0kȈ'~p|[vK;l'4p(dLo>wPnW`k[[1ߘ'2+œRd/5Q`:ɶPf'gtlj*;eVq`a뾒Iv\.CVr3T;IdP#w6{\ srэ&WNr|ef_1Q G?M*[x+kkr^G`pL ن'ei9 i^jog9o#vvL4ϊ?9BfIُT?w@x7Hv,{c[$%߻P;zM(Pc|S\^H%^y+xY7s!l0F}v\PY #yl͠ "@ Cbpy}z+[AQ)w룅Y3ĐJD~UXXL baCUp3U?q;Me 2VEѰNe~ї/%pF\>>4L !_8zpNby"$3[ce5N!gHCd hdY+c@e{tҨ@4khgck-v@j'p)n8O}hO7 |jW:=L>TQφ}'{r#Ffzfǂf"D9"Qr$Zqx8dn,f_Gj} ǍLj<5r逫ۘgMqPxFUDr0L s b@$9P01t&ȓs7uāMӁuG͟J#f- I>qnMbg Fj@V~ND^+28%dml2{z5p LjrWr'V)F)9h N mQ2nG۰=ه밾)=wh[ _g-~;!_3:<Rj/ϝO&κc,z+aÔ& cn? F<(/\tjZL\l.DBw .U$A_4`S F J ;aέ!/ŽoOP~^z8꣆ |{>x~< %GF-;N!iU$Ԗd[6EVN!\n%DAVU@XQ=Wr'J0E@ѩ+*LJ  o[$ F=$< FߞEjvg?3yp$n5.SQO1ϬP>r @MPW(췡s]'WIgramA!C-^0>(čf2#-L&4g.&ERN+}a|1Kd>+m8VA풾;$!]AրaDFg85`붅0ƏE3ۜ{g:jW`4vw@D!,z_'~>ʔ4Q(bQKqHѺ8#HO#Kz=/3vYdOH>cBSY-̡|)qS46pQd h-ԕJ-rO >?J(ZwpP#ûD 1^ !vJ~ 5SiA\Q@ARZ+On뼙Dƹ<~i"G2-Ƥqp_zǀ'7Wx$S$'a&7QV'&;da}PGq:V@v4]j DήMLJ&޻Qvw*uCk\eF&azb]h ʎ/yK0cJk6PfÂ9%]K' =i;iu>aRD; I)K~ z-8[> E^?Vj*NZ!"gBlpIQ fe Ԥϕ ;sGA@2>ŵ)JS~>?'=r6O^-"glyyCRb/ GҶ b=!?6ΦxG[q!J]#WQ;O_vIF[j\߀19b [V7/Mzt㸿'68~ը9E&[褿v<ݒW+Ͽh֚bю@Ϳو.{PXں y*ՓV8 Z sXEgQD.xK=}[+dKG3b |i? ܱvztyҕFlf!7˶,X 2/8>da9zp^o!wlRMUVT nMqOگ5p.Y[Ϥ]#]x7)fjOvW) h+a I1Rʺ̇ |bĂC]ERl}JzLm`jQ&zCVq\АMb pXz!pip$HTJ8 3M$#zߣ_m|(w,c4nRd !_n A7OPCH6j*a8 f]J=o4[(ZzΎbTx zd@ sA+iis=`4>qItk%elM||V= y:sϟ3!fPn2z/~E'^𱿏R' p?Ý]_ڻS|ۊA]a W 6鎕2:8@o*(5K ^C;u Y:4\8эXAvobk&6)yY=#6t $y5toЬ qLMgI;*yd-g7vfǷ1柛Q|8ܺ*x}n&L$K6]wi6.[ќ(;HA9.%Q`_xHA:w(?`.>VMFD$KJ%_5~Gh+R{Gx}bǶr"!L)LyQEc^@!H+M=a"s +[nORB;I_cmo7}Lͨ|׆jVa`tX@@1iwH!}/+}rڏhib5)?P/a]3 ?~jC Y9ƌxa F\%J#Id7@'ݙ"}U*h; J'&z /`I߆̾U(ի ŰS("j')Vw$YȬ-M^ +m[#N3i K|rhޑ/|Sj82h{ HMϨ~E;MsY #(P9M(IQmBׅON<MG#+@6sѭy목hs©d5Ec#0p7/: [id"HoFܴݖ)YˆAN=N#ҌzVqښ4 1ZH|Z:)wGBD&1Xb 9v!>_ѬL݌6Cu.512? t'BQ Qd nz+:ץ$▵,ٍ={KHIG{+- .Mk-Pѵju| MuQ yD`ɚN2ŭ!f3-Oe`.WqfeSvfD-Zo׍jљ_zhGHVG ]vO15y].j>~7^2L)QjFZG{rQ/{165'gp?6 d9_`Ӗ&dRI[h%Ze|q&]6gvי b""z= 'D"`^}>vA(vDZ!8iHt$>rF| ƫ ) m!TMB&;؟;#MY3$יyS6z£G順CdIcv[aM:idz!2vv'&xc  B/f`=rqoivQz$7`DO# T"fшM*LWgoѷRXe;aofi+nٱ 6 C_XH`t wi[CE,+S]9{u/28}'=Bm&=w߭q4Y:SiiiY`N(c.5T/QJ CTv-[@7c EㇴaX;bzZᤣ^Y#RHM?7/Y`N&jIFE<"e yk:NɸJ)i@2?Vx='a W`Rg ܀[7$kgmCybN Y]@}Aa)?_;\!)C"X@|!^셹K}Mg{\ظ9t]G^sDfJx \z@J@I3}7;zBG_suVou¯dA820 R! ̚oI2+>]*^ qNte)* 2ԱQy,9eq9h/?+*^ ;bO6GF9Zl(:?9Z\mPLFKȁc Giw3.5P&n@4[޲rj\wlR '_bQ-;x),.rl\؁. 2XRxg44E]|_Q,.HH:I~ϚM7mGV 1'gd? Ũʥ4R*< iv`]e;XQ1^won\PWND#с&9*틶ۚ-y_ >m9+mĚ >P۷W RÀ@ObârDJq+d9DcrZ-Xӹ@$Ζ 9}GWV=Pv6 󣻲X{zM^&7dkG$L f.cFk^N= 2jnijf \Kl\+* `fjNw4*Fsbs\>\ٻbw3RDM*g^Fc:e^=lP1@rDw:=OhȗZVD" =컙IQ|D醦LGceK`Q0 jOZ*Ig}[+[SC ?%j$uvҍIڼ3eCD r!0ލ'Ѯ68kznL.l TjA Z\ /خqs_qܝČj'#~23 0X[ Q= "ż-W%M`p&IK}FB:ҹy$ OaNsDFr!5(N۹h80 ;Q:Ps,~Hqvzlh.#; `ϱg Z ;A#/[ga͡xEs|!@12%@;~R@:$:5ā~CY^ԱcoΫOn}K"'7_ Cܪt}b&g)Y.wcUy0e5Ԝ I|tM#s_\svPlN22zg k"Q.6> 4/)lqD0,p9u"Իs3dOBI3Z6e5+`C|G)Rd1FvxMJkx%-z8bT3)&Axc6FaˬP|OaK$NsqC9r6lFZk@j-m8ҟH-höz)ݒfs6!wW.6lh@Z|u/F(i:w^;#, bWE jj}0r1]^NDvn|h0-o sIK>-Q1~>^ۯ dLjG !Yp\3U'*,,c0,/JB.u*U]~;i|^ӿ5 )wL)vΚT-JxɣS[_u 5)WE^RneMq6A#n$?ݸQTX)=F,}FFt 91.Hò- b-j :0^AHjz1zH# +_NU=)sOIj<~GJwVm'/HjJuS >d|fNauEL#l@wlT]_F&C2`kŀpH2_qY35JHx]{>,6BUU'r_+e]DxտKݨ6"\؛xnoA o9?t$#+dgtbJDH SҐ9\|I@H7jʉ  ΎXq'ԃ.C79*@9DϻߏqU@'şk? E<.vl̀Gdv&{bfr(4L!Qx^8uxw cv)$TJ3ja`=BNw2 66XGmY PS/Ó hebM}҅jcgrYerM1^6K6 lI&E(o@3l zM YQΨd= Y2U͗SH bvS+mcpBc;By47'Aۇ=8Pp˜`'C p:Pe&w{hmmQP]_*OTXw`6 kr!&@&X=dLVD]T/=m~&GЁ9'$F\*F<%TT*5dϯݚ/ \c2*h|lĹr74G(ُ̟Ξ^HCB%\1wkAĨL5~vd D+p$0t9ZQ#tNyXhLⷵ^GgIZUc $3e$ԩc{FK! ?܂M?Rg~ÝLmfڔ{kLo_0n$Y}9!bͫU"eҀqٓg-=h`x`A}U+mܬuY[H,5xj4##8h-X{)_N-X\$y4Qxjt ZH`y-N`Y16nʨj=d r.gm/;&X~׋\{˺|X9{O[˵_Ug7m9Cx_3%nh+<^e&C !/a ySC#}m9,qwjl[|KqY LH"fx^6g[WtT zG'1e4Eم1͜Cq:_n0߻* ,k:#\m{N aݡKOI,k7x10eH80v_d}f:Ccb{7Cz&CKk:[ Mt !1dXj%L<@ɵŻeTa{YZv"a^q?+Q)ǂT;vLB(8/OdC602D;2rƈ/ q䳏!l=Kz9<1Ul8 ׎ޅ&/*?88\:9 G蝴4+pyM@E7r!Zbа{f,(Ed%J3~ -r'\vDNb-6Rln*OP5kwsnlzMd $z l,z""_s CQ]UsJP2FR3Pz%nWE`t㇐JAѿ R4݅o1xЌ2Z580bi1*8_bP`y(c=T}AN1pTѰ˦Q-@ ,nT=}MwƦL o \,v ,zD{[~|5TJ+)|?>r ۽@;u+IBӟ 98▞|]{c30?7")/w(jwr>FF6Da3%gO@qҬq~M09Es5K-yKW5溼gHn;Ԫ"Kt ej.4a5tq}4CZh*ބ jݖa_5ːuN/gX߸׻ ktڋޘok#ۿ$l5<2fd H=2;:"0Z: G-!eH 1Zuxpڵzl\9$yy]w|L%[ &ç?NUac05SaxG*Xml!8J$7g|D w__2Z5D$D~9ۑCJC]THăwYdLmēDmqm~UyH$fJ[Wlmmuq0JeO$T/X,kOc̹*v3c6de,m>7,ypJ? gcm7x!d93;L 8v+LD0Q,/a)llw𞖟KT4tyQf/H "~ ]EaTSw!ك|dʭ&&0Ua[MԨml>UC8 `(rC.{f{'+-/r5El;vṤ1и Rc'[jRq|y(IkPo?LNQ"N?Zi3(p_jGedfǻd1Ck^HI8w>ag+&R≠'I{~,k%fц6?'- F'-i/H # I* S!iRvq ^E<Y<bGx_,xO4͙fР=sb\f:sQP-.Sg.h+m?=D֏H`_zYs緙,HMճFhg2NZ0BBf)qF~-ګٶm}q!D튛Yt]L8Ѱs À%`(K )B#C@eVnG.;К`ߗo/cߩ <jz:5 mG␢e HaI @JŒ~ ts4(4>wkRh}crRbˋ[O^(vokؚl}AN P,0?WsQ3~?TpmP$@]8}j.= @u{"=v҇zc\'-q"#~1 #dA:DX00SiXuiqZϺ;K=HQȜzJ9 (Csj'z"<\cْzˤUûvuNM33;fn$ϼyWdH!Tg&ˤf3+.MHbuaR#JF+?NchB@6X֣:-Gz҅d VArH[2B)pfЭ5yT@QN*$ԨX5jAά  LBSfnwp%7:#=&Լ (0bMux>ò){B*aO񟎽RTYPJk~B"-D?lhD qu'e" Hm҂p9ҽH.*zZHgpILPNZLHԙTyE0}(Dr G5^[@r*B}/i~ ٹN+ԑ=y S L_GtƱ7GT GTj,7%[ǹgJM;PR|׍?hTk;e\mS4n84h/]hD#8\зFg]]iFp?H/W+DwbbQ5*?]}qbGѩ{lԌHGcC sVQU< pL]p8=rV{oLRy%Py:paw>h6m-*MqJxfhV|QyKP^|>]0`>\5Y`WAg BN 7_% ٠lBz \pу&hB %* +)c.렖o.F1!& V{;1|yp (nB$dz@|⭐[9/8l͒qlGlR@-⇥lSq9D%gh殏*|8*MkEN:=8 O y2Hs|-Fv6P6͐㊷V3Dp5(!xm[zV難MZrYtjib݀-fzj JiJ[1rG-v_Fa`Wsx9ר"К3Xe% `kʗ wP'oe8&:@G*=U$s Xs !gje~TetMOOߏƛ3mSXX h S\@HQʥ% ˶,X( 㢕K?k-kTPc y{X@3~!{Kkl#5@gqD d6 9WP2[d1H[;raGL @d ./ -G*p.# 'AhM9%<$Sl~Lfki79DÄ38 /|YmF3/s =VH 탘V$n}?{P"D5!"& و*|9Er/e?2 fINKJ!f1dKG2 EMKp:5K1i#Hkq=,)U]F/ϚrXogv$8uKVABH M~uӹ )w^:gl;yBtq%*"EG@&%D46ҿyӁJvjn 2yk$,"v&\1Pb͜ n"B,B!Dy[j[鼻 8"Fl0[v,.$$Fp(Ұ1K4,%(!3T~nJZIZx횀O?\74/Gj !)o=t_DӨZrES1-!6CǿU]Y;u*ڠ!:\UfrL߹jD7Me4ޔAY_U ͟m+}۾25doiEB WZ$l f#s8?9? ULhp~품dcY\1 xG |GB8<L_t)+?S!Fi1.vw*4RQY} t]D2#}4i/,W10r Vi6[GD_[c{ĉ>{շL8yC~0-o_{0y>jɈ^<"/,ܞo~#* {yv ^A˶vfsh G]ݠnݗ`v:VNF YQ ?to`lf|[yTծˢצyS%DunF.;4SvU_ *O7ϋн=q /kE8")FγU À4QeAքr]8m57ʞ1qIS|IuE u¾գQf1cl.; 6$T3d]ZL@16=^YIwD`GaGGǫ@YS1zK A)o-Fn L ANJʃ[D{1jef_վBt0J=X1fxNՍzCRiݓjNЎC>-KAq1[ƪ߲X,vT= GJ_{x\_AM=m_UugBz#%]J:$5eUӋ"N<&7Efy0۵O#J:ܜ ^o]O|%34%چ's_ؙIDpG[5]0]SE@\y[.B0C @&qNKG[ ilhN(8&nu\/71{n>\Ne@šr` e!U4A+V޶yŪbi2 n`Zq$Y)jB6ںZJ"j:? f%b?Hy+x@;^SW^(Hfa۸T[ڿ0iJ\,] Eiq}rvl 7ZA7/d珤$^@hEzajA;ʊ8OB.^&%%m  5It{):}5:XM"&,5z&1~cocMͼ+^u{%.pO6쟽^1vSvLRj[CWfRǟSBzB^`!#R'g)nfc(Ҹc ܧTYNpTB%"s3Pd9LTSlLM&M, -tk+'(Ū5 a݉_t?,r8Y}m+7×kuQG8I$f¸u˹ nz OJʸNWP!_ %D,l aP*T,'}AUM T};TP8jjSa"Cvauhh=I ֒EVOEՉcMuOϒ>BYRYQò)B|cRMk i$:9oM9k4哇Fbc;0bIO5諹T0#P;MmW )*Pvj¹wz,G%NE_zr fQhWZ}|f(e:FeB;Jr<]*Vzsbm3V—m`x}EX8b>"*ĥԵSoVB5.z3^ IZOY ^FTImsH&HII7Dz> ˨fw?~ޫexxM=T ~܀ 敦F! 7{cfuCOq~"!;s2FRE RmK0D1aH?%a|ӧW84eÌDCThh/DEiI4 w$O{@2'iEf5L ha>qpđg K$;(O-XPp 1srKн9~&<:%j"8'ݮJ/29"r]RKU2{e=jUq;I`cՂ1=sI+' SĜ祶t~ .w&5/5Wm>6*)SzҖzs(vЇ[-BxY Ӹ\΀{9G }rir1+9nր*㻽Gb01 F/Q3FeIcJ~W)j˞53“%Qiᡊ*E~a¥|'2FN`$M /#%ohd '<V A=QܜZy3ZK_DNa{F8齂S3H==Za$Ŕ)X(5ӺN7JGpPU?]9zZ7]VR_lgaG}J{vY˯6NYU1zO\eZ 9̃*O)SGm)|QxEДcx C6zjR%~qyQ]kΨXA 1 jN()Z~>ekPMugΠɍbF܏YC118 \7x3'n8ިkK/EmhO6PknΉXnpR2L80+ly~^hO~@T羘&4m{{ Zo@$OH/CgmbԠu;U{pC拾h(_[ ʐ%+Pv[R [k)$z+z'Q)+L[l+tv ,F[MvSy=|BlG 輲Lx7i3yiev-LQ&uNAU/g唧IqW\q%6k/+5Y| 4_K0iFsR|E=>S;a=m;b }*agݛA t!wnΎ6zO$OE<[>6 h[E *p*6 yg/?Ί>YgA,vpe<ᶔ 0:BwQLt]ٯ8Vlu;SÚrݔD6֖SB|}Z_(o/ؖ}+^9-FuX!{\8X[suM[rveov|z"J`Z:\1cXˣ"ꌬ:LH eY/^B]ŧt=H[QE rK [Ғp9cGTH]b+$ИW2饳:\讱 u M& ? }|4_2^9:(x<z Ӄ6{-B2;_ ıu R X3+I.fSR;֣!V+hoeF K󼵨 hwUPXMb'x%s|}/br\pPk9;z"Q&By\o-:޺+F#A: &p}E[՘ca7\V2'mBҪ)2BCe!y]߱"~A)Ks8%?”|n'&lxY|ƾ_zX 9끇eq]_tG?,bØUxuG*o?W.L޵_@6k# s1jJ[tc~|$iO%b6\Z= w~`[J] ^OQ ֩[3Hѵ|fPX]71/Zvg9o$&u|B>-c^ u*lX*FI+: ۭP`x?wjrq)eNG ( 72|* X2,0} t?ym[jKUms!iҧ̐gA1IާFim>3ău>&G*JKF R/J-UP{4^N +i^^JP]!sZ@BtN@VS XE/ب0&&/k;γwMm#[0X8*鼳`ͅz)]-w Ef )WݚfDI`i`pcײxh4v=py /9W_41NoKbcFy#':Г+Y,$F 9{捦UQ1|-R)[LȈPg*Ιp74|O$,ONaVx$lޒDЬy\GVd#ZNR˶DP˾84T<+,hof+яԯJ}Hp?m6x 4_|4y! n6U(avB, 6r(8fAAxaKXH^eX#˷3 Qg̨3o.7QSI=\,`I[ŞP;Fcٔwr&=(_ {Vք}}(I+x 3YQ!49T4 S{':O3N[ E`KSޑ2;u-6|Ro]z$l 8)O j/sO@Z=폍w"+B_pVls>G9XDF,rJPj|ս ⍽~FnqbBauniޡ,Yhf)wfE5Le{n?VSb0:mmE0LBt7=Xm(ژ1HVA?}:#LlTv)އ.\EU2k6k*eY(5rIgاPpr5QY^cCČRYcmAWU瑂Fuғ[>l)uTr6s3Y6߭k!hJpmpӫw~U/4kku]=R ŽQk~=U$9}o'@A?`Iلuc0R6<7+P֝zBUN +dNYW/$R\]+cҀ<\>`3 }$Sī?'?fCV8SIi.l`ֿԻ>:=)a6|}#4d2ևz6_Q3ƋFWi|^m$$8|#U> "]S0ӍX˅(#1Re@6|HP,=D{ڀh7u'J8/QסkهK/ _RY>3JH3g-橚ǤwR"DŁZtvR ~d.pu61&?M26"ƇDAh@y;skD)y 1 =?ӅL:A(Bq$#^Fqg韎2I#K)q:bBu/hvP{oВJOp^Q{VH#ÀS5 1%m3Yx6N2Vl¬ Jlڋ̱t у. m}4㓥_mAUYEE{װ3XуZd=k͊Ķf dpÓq6 #CM!1WZ8nBp30 p{%(!fo Z_I׺Ǽ)f3W yezuj8W_)co\&8‡kLuq-f#˪J~7QHUK"u1"ƇDlړUeOh{CC' ɬ[rㆺJGF#mmH{'QFDL]2x}J ՗F;a.L ˂ sYϽX[<$L9n*D63g]3hqM+Vaaʚbg 4O|sxTجҽTW!Z֛C2Mޱ\Kܿ/q@( 'H! Πf,; ƗzV+KԒ9i2Qfǁwdz@{DKXbuT=[ЧC=1hLd,X\„2 'JR'"*P;S?:Ahp;̥TW! M6Tf';Է'ŀeM>GcڴUnaD"빞32h*Jhy{9Lۍvrjζa5W# AJӌo{H7Pp&f5r`C')zF81JU A,eS)̳=9V?w_xœuWv#5+:b,%1lPom2 }VtEJ0 ڍPAcBߠ0L˾akzBβ,?ΔuJɷӇR/F4 j'9c'~Tߝ\Q%**p[=.aӋr纱o!x_Eb'\bA:+#~yቀno-l`IycpPsRkR'R5\ԡb\dz (OZY!>Ӹaj_OdĚKG?OV$[hN{L*/WtBATJ3Ȥ )L7p52q8m:@]^z )3`T\BwC3`닟]"ZIЁ]͐ ]gP'04u[hxI? -z-{]`y$iEXxE|ؙ/p'g,3!~oAIJ v =2$?uHxb5]TtT_xA{z a^荽"iWˉј`5GG bqqRj=i j²4v' U[K6A( qƜ/7e"):c/)A4:ُg帉VඳڊfB"r9g`_}VSa*ӏ|d ? F;|lz%H>E'[$Fg'S`=HbY7z;E҅G7Gii?ճګZTNe|ZoaG׳ PƯINDCR ?5q,-V@Bz(qaHSk lKTQx\&M@8C/>_ UEv 98YҬliwtiSG>רK` TീU-]Q6g_ۣ.䘨{ ?2젊Wp:@RdB Qѧz[}q[㵑Y< v3 d D_U Evb:/Y4&ɇcI*ZNdWx7[3 y,[ԄI? v X{ /zRqO:zS'm+T,^D !9Iy&< к  |K;JJ !a`1a@pfE0}푊502N,\ssr_D8Zeᑃ$#n,Oc=2^2kHSUD$puhxue/6~r'/I+EƖ̟HהB<Ġ) Z Sщ^/CZnlrASP=ϼJm3Y.)C1=р T$i\Fu?pZǥ* 9@M- OvϘM{A ,E2 "(zU%ͩUѴK.2Jf>68xjzsTPS:@Ӊs\@YݷxVC>\B&V,6弚^Z/낺e)4 )ߺ[Tx~"@F\@a4h%Y7HKl,QTniJ4x;뀀mkB.KQHc'>3lğIXް`NŒ')yxFyH@v"Vp !ִ/lK?lo `g +d҃3oC: Mzݘe}ǶmZɮD-CrD*! x~-O9Ҙ&/V'6Q]bԨ*ink>"G'Qϱ{ӛ Kc4cX4(~j@ &ףuIZÅRy)kV/EW11uu2eDZet:)h1׺JڒY!?*0\ zk=&m=ӌY&NgΖPN{@@P4\"eyoXwVz DEo@eIW TY-M}9T*-%;A.;o+.ڬtAè'>>@'#Fcl=`K&F=䛦nN=qr i T9ѲCtBm2qDr=~LiuN(#_]le ]<`<͊Wֽ<06², {-%QqK6LdO_վuqC, c2l5=#!Rqs$EA-1{Ց7>F27d<*b`z4愈M pyzg@jԜьfdVPNȍ*A#WH#=z AJ/-ƫ@10ɺO:!vZocЋ%[^7OCc4NүK\sLo|=c _ط}Ul%qT1YZmT܀VF*".`_=˰k/S}9(+ug͜5%fAml+Ay*hFrڅy̕:sӺ?J|ӛ7D?Z*|KHZWUP`lDX1pmb,Vڔ˜jeYn @ClBXïO(mȶh);X+%d6p)RkH1Y,AGdaeFbL0h!INY&'݄se ˂vʾ]|ثgϛH:$#z5SQBU.1 };?RElh/> +o-A~V:L`h8׈d4Z|6H:"2i0|P7!!5 ~?OF_+KnQ9(?}$ac翊ʹ4&ɑ$^ ZzBDjy΀izr7%ܲR^vZ%|;RgƿAM@TngIuȕ3謉4nc"l(a0&d>]Eq\gA~bd9n;7.x.CaޟLt͵wDJʃwz4s/ P9&jrUsaAzqDͩQ5:P q=!J{: =-jц^-N / FhFi4-ޡRF0Y;bz~wN[첯 Qva vb .OޮZ ;2^ՓzK4j!TA֦kz_KQ qRC&/3X o9BtevBHb'@v4)6KK3VI/o¯OL\1`9D,M-]!YjDH8HdVJhcZ-

\ݽJy۸=jc~3^aV `ՠҥT]CG|9 _%+Ro7(wB J$y\a27u|.D˪G*1^D)FmBqo^ NhS8(^ʷzA\Dwes?diA/ ^EXl؀r0cwB0v^ R4:F54M͚pۚL%?K n9gKzlD.j?l;,ݕ$)x'<ӆHW/8㇊x;bDARI ZS?h_ 1 "3̰=2NK^yԣC[9Dku9iv[B9IMj5ϥ6 ~ Gc2_VͽOoŘ@OƷ2fU#Lݩt6>X(gnaq;RgƘ7x[^ޑOi_#) ǩDϢ\7f~qwfiϐM %^PKxz3YdCF0&PuP= |/%غ޼qfR]a)\2ՖlVyeleE܎4wa@C9n0`N>2`8MeO"]%<XԟNŜ 2a 170K.x`,r!"68aVNg#cҫ6dk}4NaMM'i>ST>s?[έ(NXad̵MR_.f"gL1z -{e^z$_ufD( >Zpqp<7ڑ"뀅hf=aTI&_%h9j>MHʋ _9 X \Hq\i5W7t-]mWAHiKy#mP&ϽC%adlO@!чK|3wMfxblq94;D 5zIasrmT{3ʳDG5TέZC]V&@ڸQ#gqshRF4F v5U Js@{[49s)7pbDrÙ^R("CU ET,7jfYKgBY.ԛlci𕖓U(\#s07]=m_Dn4X鱛g3klUvQ.KoqE T4~w2,N ]_B)<\2wHG7V!ntsJ2|(B]ZbԂN?R(8[#NA([Ut I_R̟ԖcsD>;i|dpa}EqӫbbOd|mbSa䖧@?;)EcVY|lݔ]ײ^[ݍ\#f͐3ˆQMꨖR<ԟމ%@gNw.vl=P$8;mKx}\v9@SЗ&]A^J5;*ug-hY'-8M wG١e90=Fv9GM Ac>I:n%kqbZP (f͗ncխPg24)q~O?M蛝9ɋ05awsP0KGAvydVf/g^:*ÒYKK4/q IWUeRHԆvRPE(g%sOxk_~Rb&n۪/ך4 q&OwllˇֵMX#87yNm:߄".m, te<ŘS{Q?uZCʺiK#%H ,q:; F(=`CW:bc7B_䊇X<8$fjq*`0XՇ4"Ӡ ])M?(ϵE'5("L}aamyc'~)/@gC1@TrJ)xv d6M+GLEfyez}qg|ZFlK%$AeOռZzMCmo˃!ܵ2bl6MIV=W>|[wp Vw\w RjꚂ !D= A1 ۆ"YH_>%V5o1uelNr?M2ngb`+omR7THXkT*"sEz֨~kb \/BTY0ORme0d{oнYkp'=\Pz;&xʶ,A/KN̊z"r Upo)풤CÜg˦Vty!΂|x;+AM۔GJ]RF΃CLdqЏurrwː7~j#yϊcZi%sw2t%܏10ss6s]W)ܧP$.cA7xmZicOh^5Ӧ7|]ҵ(lw=羣y5 'O[% бK?e.z)T3 :찧pˍ)EK&ϡ/$NȋL'_zzg$1++bN$TJZ'1 B~.G<| le劓^r4 st_VtS_ ĽBvxOL@[{ UGb=`uZQBS3w1OOkh whѷR$Z7nV.ǙZ˟֞:`267> vj)iP8@{m^E C, ;eNDP9OX"5; iᰦ>&%AQ'`s2% 9m굝$򈗏fjI G4#%`,USpv3ؚxQnhgیO2HSq>t}:(̠RSr%֯u DulH ȚۖNIc. nf3)f]0CL&uW#d"s*CEn5hiJ3g注q8$(`%ZPY57pő^z> CGE:)uH#&qN$1c.D6bX5jo#2gN2]G׊]-axj ?cBܕO *CE~@[knk^ !2v4(/ vpF\.xKy5gDwJF)hb($Q1Yl1r:ds62+i~7[.xuDohNu>XO?N~r>mX!^D9 ,Jpg׈Bَ+GWIy9miѽ:eCz@uuRU% e4]|U1~i]%eVk5&Zc훣ùoHۛcW=H=- `K9N9 2:J8a2>)bdl5WHk2:Hg%֑ۨǸEb, Cxq* \ocPO<^d5 gQ/bDb{ %m{XEPNr]hg>njZqf֓1I L; Q=xD6p&~q>g-ib|P>jWzl6c_Ҭ4Tsϵ|7#m\guDک&zr'aۜy1UNPcp.@Z} LO\ԂOqkRV< /,euo."y>Nd;B`@<;^h׭.xvzMV6A-}3~)e )z;1AHz=jg4"?Vw S6A)!u~$~@#2p( BAہ`4aNviD'yrۨl7/ ±I£GBBn-LmGWfQ}Ơ竿 d+RF;U{I 7k'TNhGϋ̂h"`X܊ |ٿW Y4&$٬lR5.Gvx +0ࢰFCHߔX=QuZiGW3/Vn,YTEi!j;AZ T`V5bkp8_@YAw48ǜ7:fF8t!8<i̚ xz: :B`JGPY6H{JL eٴp~΋gw\7Lh[qSzȢw~s:E}a,Re k,^ YU8vWt&ku7| sAiOG,r)ioˍR g-n6,*;P*TRyKǖ#ߌƕ4*Ye4S;u$Cn Wء73ܡ^ ơߢj,a̘#T) N4ł R1;8{=Ss w0=N\x.4o -x#y(4#6m4n^% cuT3&? Bq5Fe36_;uNg8E\qӪ=qt;cB>e$Tah[5th$V ~v=TG2uP:]1.[㝀s|iRQ8mZxCwY+p5VLt:[vpDdElŸ4B: 8dQu،ܹҺgwR#*)ڊ|Z@ ?{w9a[&dww 5Ok SNo`{&*{Pf*U-CH2EXs@zF7PQ z,qq2~9Q!dFU-~TҺMW\!:^Kn׶@nOH?EZ7(ASJ%7F/mLZκE!?gwPaqPwcdOK3@eipT= )'kdoHE,e g@hȹs9{N(=7ePB*c;t>'_Q Mhl^zoLꩻ"N0L$O0a00Wk3%B< t\ Ma-zïIs%R|(A ڒ/VJV0&5݋1lս.I^,_74Bww9;=K鈹&=j#D{iK/E<1m>Ar)P$FԚM,BpG~m5(]&b]~C%˓EhSGiT"*%IygW_YyOW ";Uk$[|zUXɱϽYj9 97DFY7P] prjs=[,;"G*`7qĈ4/mco?jǏLcw+٘9Sêӎ>N@ @˓he%QӕޙjChԷT [c^@F Jx&۞"n8R d©Rەy}8؀jǧ[Џ+P8_TpFf&t|'1% 3wD'O~PfցOq@5մv<]]e ޼R3=t3E֋K$P<Ґp?=Uoa}{r:lѸ7Ϋ㿘ѡdt !#:UTlXB*g]%pQ ! x<|2rab2hɡX*tHNWs)>tuҴp>t]]0IХ[ktί\XUnJbMoGN0%y1+gȧ(e0Wc!Nqy7(Ңt*3QIM0=5{ڨ")#S4AoQYSO= \Jx)6*]vN(A5&Ojke>N21ū񐑘l7o,^(@sGgjHi~oi}  vc͢a 3Ymh8wt2-?i>yZS'x5kfT:Pk:U7UC!`m% B|8i4e<~vyV.~L9Px :]z%)$bv_Hki';t Kl߸n~:&F@h  OYYe jBE%? _†Bq߱[}2J"ql{.|,8Pr$/+:Ҫ/{)/NH?r&xLh #W|O&ݪSjW }>.OVW[̧Ѹ>]+梺|"9d.)eɖeU)DǦev[=əjQmSK1,q|X)M[ԏAxиsuܠC\VA[FJo0B%ѺH:Wu\C>x?+42*5hɡdOw&OnXDZ)ɥ:}i$H{<.aNh o?cv"*Y8S(w64a!sdb‹*P#h`Z0bF]<GQ;75df:>23o}ɓV-0nUvvϯvxğ'To_Ѕ/2Kw7H:|W9u6!*GKIg04Bpҳh 4f6dRs)=?uO^ȨrJrBB|Qnf3y}{2Cj ^XLл2x mQq#fƀΧ}, P=|n3x:/[+F3(u9wYfQ3cL H1F,7 jH%a4<@er"yiiVid1Ik#;Y'M{.CjˡSX;F6zd?;v3, 1z5D%1 —K!X_u5g@HLc*fzڝBA|^XDЛEm"@FrElw43ـo)ΌKrU ۃ9FDPpj &=`L;ꉡB 2v4SQLf:U}.3ɐ\YsF<]0dEt+Ig"HXbY)P#w&5 v?;j<7KHb:q4ż6F v PKeֱLbD/><(w'̐}Ee\{&K(uH]{aYr0JonN ?>H ?#փ.6l |SI0>v6+1r{^$RWl4o'’9ͬ]] C1̔ܙ7T/[{: 5x@ zvYă`Pho(6d129vBy4~5:~w?HQzkvfkw*!^hx6YHK8)#ByQ™2ꔧ< A4Q$5X,2 ~qu;r o,ٞ|pƇոh!#l,6D{N"E!}N\ou0 tJV/ ]ͩ6;&k[&ˀ}]|ic#KX2ÄZ՘vR]cMCieDwX]B I@$ s5u@43޳u; /ջ8 oT!yXyދ骗O_7ØN?g{Ŏ$]3lO x|58 4U@q$EtC4'/p (O"G6K°R[@Yڏ~#VsxyNX.CDȒ%( sG,Ar;8]JU- DH% (pYwBݮ|U:iAf8M q0Pa[S l5yiq0%0uqSXħҚ, ;ݺ‰}] yԇee4hO y/~ڷA"^‰fA0_clY[⧉we D~֋Må>OfM=fQW7dh`98Z<ٛZf+UX72?ގB(GYld hiKg=ePç#ڠGf"~|)w x}g^bz,2|C^W)ȐX9nYɛmMo/ QL0I^sbރ1mȅziS4J#T<įf7w&J EM[QNMEU:zrL4OH,_` ۃkLeȔz $Xȳ n5bjX:ؘlPnG$FW5Q7[So)MN [3A++mA73|x[o|&hKseMocm]k'5grh4qr.}k { =%@|-uL5K-F j@;<C G++w]ԐgM8D6LLUԛB (r6e \{\ ,R R s| ?OrS+C0X!mV psJW7%μ³fc$\n9폢C5'75Cy?WSkͮWۚwX7HzKZD]nA'&g@{Ԃ"Mȥ vOч~vVW[ Y` VxӜs(|0ˌœ͆,lּ?fuh<`Z[(zumNcb AGm!8e ͳ0'>`ҫzv?|Ejg$Ȁ٥[l_UVkݓǻfi-4pXOcGlD mH="u X-5@[eJȻ~@2G6EE8mŪ#N `?Ď:$R"\`ȩv_곸%b6F;ZBIz(Ќ(J4 TO2\E2jcs%aY awegQJoJ={: ~m=,^qFXG}2LnkYu^5(#[A^.@,V.%Y+:^Et3ТF=}c%Ei}oт~*H5#LvdCgE5r hb˝dV>"dumwwrtmsIK)^IbbU\-kA^T9 |<rIi{N+;m_F7!ྕġG򚸀^iT2.DFkip0G` >B[+vL?XY1nF.vO9J_'p)o>: \GU;8{#HbJRb/Q.>+-TGpNRot#gOy8'YR~Vxm59 u)!ٞ($sWkE;΋p*&©I<_T$J·1**_pS9; Y1 VpQ!q$8KZ]kK̹81V=\$J|`jc'6y1x>6Q65H 7؀E9) F+5J~w-p\HpMRUC kĸHFd|ȳ0L[wr33{M |:)Ab+b}g%~EUW" ~_ Q RIa} ,LX8[ [~꾄ܝ]u+@#> аX62CQ^Gu!x0GyצjXL4 BĒĎSb6A͋^qH ejmѶX V(>FBi x~#u7CcLlfT1'Te}+ R1{r*X um(c#4|ZIsvU2Q<.Y.TVMUʩŽ2콸wn|,dLv+2(Rƫ]օTbABl2ŗw,ؓDcvfZoiq2dk!a)be߈>_F[$ Zep&۲DĺƇIٴ"<4xqGu,iu0X]Z `r`?\s (cӀ7sW5mSQM_*qɮYYFGX?ȡd$/>\lr,Ȭ]ZX@'Lo#9p$;#wKJ8Z hs8sIΑ`K>3mgRGFa2|%u\[. -c|mKʞﶽMt3Gaw% o?? @C"]ą³)z }rKb_CfOL ze4|l/B_֥\.-;y-e>RKrYõ,= 5geu,QAQ+|!NB<dqՂ5vF_l`4fR]}fqFY > )㱭Q흺>7݀mRm&)0{QXK@20Vn}֍.v=k v@ȼb+{J,O\SgtOHEi`,nr#uVa`]ٴ]#'-]k74.k;Zpul ZЪ@Z;X6gLTTXC2?C]o_DEy zh>8ܘyPPMwvz$ .נ;Vd<_@P/3X,d0V#o l+B|m3Cu4A]v񡩠 #VOiFJ X뷑pBǒTqb*,3Ra~[>nɗFKhzxLN;gsF+ڙMfq*uЕC&)FX}kUgsb[[)F:C_8vH|MhjL+$ؿN*_9-+<l_+j@8EBFScC׀ 3uH;PIA2[9̪ -Ux}iGnRMRz&(L'9?l8)nX@u;.a?X `WW>VbfYHdXRM-mE *>di27#^MnU0<ˣ5\Pj }B ȵ c]@#[`3F27zMHOQ G&//"xe{|,]®#dD=[ lsJKa!+)16}6\RVM@tR&aAG8H)3w}I=F_:|,=r̪I%Aط&ui/5y 7E΅۔R9""cg=y$mhmMZ>&%ǫK_9 ?ISg;53p; qj@c8Xk "*R6Rh&t %~{_n FXjd=Ɉʆʪ8Sn7==$a'r|0eb]dQc=0 jV(V1)D,(=,^Ϳu-+3ĝgꩺrnjH82@ˆMml9Xt5|-RС"~X*D())ܛhsTh%c6=x2Z, B:"\OMtS0"|MB xsg$6&P'IDj^buZџTSS _'BȒ#i&![ض1-="І\"wlR &pl t&z7k)r~x7YuM+2LZ't f;^A'̞R@))K]́[k+0֕(-2H7 ?_V%g+0QGPzn&Ŏًx,yr l^ LB\LD 3"39z"حScF4){M[-jmVJwmw&%tWmؗXMNsF·etL?ILsLJAÐvYF[% C_l&e h}07 F$jzgI̸mg𖢊HA r! ś…DG-]+.}Dy0NM:q Q9x#fp41"#1b8_VjBprY41*ݱRwڈKs\ `Dop*G"UgRI/ B1T {Y$YyސMb!S'"5 t| VN֪\CK,#ywrRUd?}Gx) ? ̥=‰*'T&M7y]NzESYw0 _* -Ȥ0kX&F L1vRo6sblך{74lZ4NGATf rER T3H"G1Z{XsTVYH>Os (UppG`VqZڼ wBDtr[:@>2 pBqn{c2$Տ(7C7NRVƯ`RsZt?J~{A^ND˔~$~uZq4F5Gx̏,KXw 9^dmӓ $C'Um7TV2cX]T6[d6ܐ/5ӴMw$]kFHK]y8N7Dho0P'PKdu"fg↛H/rM\4lmI6*4T -w. U BaC.S,v%ȵQ?:EϾwMS0թ: `tTIe+<=9k@JMe`u&p7~ۀ)v*vdaa7~4 St΂2ɐq{u86ATRxw>%:+Jֿ*v%CP'e(wdNh6l,͞k(h-*o<"6$ Drqy55wrasKsT>(9)?ys>27*{XR#=7U[Ϩ!FGI†Q=;I:z˔>:ʾ#3g Ô$Pwj@ٜx`Xg`sVpK+t*"tTjka64;h,R<,شiY|Ҍ{~Q2aq^l;bO; gNqbE 7~BG^>&s[BHmQ ԅ!ТDq}\5ޜHSFGlsV30+Xd* ydL־  yt$z۾78{/<b^iB ɃMrR@ =Ҧ`_\FnW}4Bs_$r!J6TlsZd#C`I1Ufq&, 8Vz8ヤrXlvK~{4.QN\$-1/"#{4!d,uAGS2C "g@#i4RnS4T iv.UwyRͥE4z-Ko(aa{ =*vu%դPoLw߉يSwOѽ9`TꂏxHˌ̭̊#EFNr;a Fv 7h?.(н!xN?#0UmM-i{HV{w]E(D%1; & ܻybM<}OB..nHպ[ͭvPpz@6e oYl}.Tf zÂ+Zf1|/4t'ZBtw>#c`jc uN\#T x |*zh7M t~qH,͡<~ eW.,e-[fhNb =)@sfd;b|X< ip{p@)|ێ/|Ĥ2OِpΔ9uFKD;A&AKD%6t+RU_VGv,>wA/K>Oc {3kJ=k?CgHɐ8^0Y-=Lq!ƓXד*}R4%4k83Z5P-UNNxmַS?ag QV~t\NWIOH3qHxQܾ"$ekxm~Tɏi2kn9 |P7q3ğ@fHy6 3G@Nq>sEBp5`DzïdSAy 󈷆u[;X캃6"i6 ϻUk" vHL|c>k^Fɴm1 `ᨅ"ۋ~.CS<:cd"]ZHI冧2uH=:,'|< .ɭg3TGx`usV.17fL0 U!,;Cĝl"t>ѩ@Szq'W׸m%1 *8[9YEf&5CH,PDL@NOmQX<{w&ЖM;#85FU!7L[yeedxXy7uB(%V\KVف;*A# Wa,CIF7n 4*D:o6u7b92Yqν]FX tߢ]> .IJ-2 Z+J2oLO3pj ֨.%qċ}X(חU^^HVci!LQI?bv$po.;oO4z9Q*{+C( T=svǽ{?Y!Q[ْ'25'AMmV颠1'LD ?/zoMIxxh|rANhmOJQO]X7`㢓 6hˆ: À٪8pxȆ_ƺ#;[Sea7UVc9]x'H f&텥Pm"ㅙKp%iU{ڇxkfV.y, {#}AQ$2@qZ]LUNu`"$gq!%; is)ި$]w1*c`-m}#(̔8ݜE3Yw\('L.?];@aV(zV{:g6Ȃ=1f ]s6, yz=@ juw(Rty1Pd# }ΎO2D  (^l6OH7 f{˚(Le+C7`Tam𫇐r=Ԛq:8( `c>-/Y$])9؀vwcNoŵ6_E&p ;֟|q1m%a츤s>:ibLZt ,Yu)i7_F ~|n#@|kh9Gp~px \.v+й1JrwX֪{Ӑ(Kn==ŊpY^.fvX7pXllt؁"P7{͙wR,_ߌ2;(M2Gӯ v!o͟uiw@Q,}Ar1^NYh䍐c|x5AJǎZ#yNR pQI^R\`" r=5S45AGR(ZUclr)s7$ k7)X֥*ݼURD%xn'o=z3Yu ᶛ, sRk)E\J(HafHԵs D^Mb@EM̭tԬ#? >U=m*b1nc\-<(u:%냼V &>&7wj%qәـpA֞93߳:it1/4Be QĢOȒ~/V4}v-8e\Rغp`uV}pQ}{tJ&PNT=uffk('1^b1<"ZƛYBb"+] /ko];N .NRdNJ|l+_$8,|ŽV _.鞀_/u"zN_ )py%C.8n9⎻v'|K]}B +M>N^vWL bsbY,C N7(ʚ5ls-i;Qmp!qCK1'uon!Xh-90}h:E}^ WcEODtLHJH*'E34]'JlQ^3 mUPCWWy[ӱՍ&Yk&m4Σ堗?Jj-b${9@T|m$o!D6W&Cc__VDý{ 1[<:5hjos!&յN Zg@$T%_yQ'8[SFd_^k). "Y%K26tQk3S\ANbRI6]r.sjCFR <á|g\,!.h,]>\0;n $O)sCV9e=>FBYF " 9pH3 .={*5W-.onVW_sshnbo$UFrpn#Tku %/6 g^2&&ҏ%l$6vd*iuKqkQX3Hv 5$Ѧ J[7yVɠZ?F6kU5aźe:|4װo'EǏTWAR\ K~N[r}/O\$@^) op1J`]{88қD&خRwJed%G7,I ycT(oL6 Ddj)_OZA #̋i~cWׁFE'k3OgB8e!%ޯ"?X^l"[#$3PtiMt^V\kfNH`^=}HPF ծ$h0Q"~0w9n QPvw[9DN @L{T:OG*H'JpDK'ϔ,D!xOz#.o-ڄ3XMOyt_z$pB u| _ف XQcR>kt=ei`y҂>)lǰ{'jqQLDU̵1SN_BgXꏿBSjT$\*Ǣ|3NX0{`);t > FɆuiBaA_`g\xUTY i+ ÒJœSN\jCp܉61wFpǻmm. ],]m;G`t/gZcپ܈KoN`1?/j8+=H({4Dl ـ0(xP!‹(w_ܮÕ^%+lp>-2z'V׉},sJR3;@u4MrM0aVj w'8_I0( 7qSV4,d!rV0qz(J 1|V#j!ʙ xT~To6l8W33*ʯ)Ҫ s$7@QHT^S$lrYmkfPTKTo\FvXWw9s >Yu2_^w v"rW%jtHX}/8oSv͂6Mes,,=liJ5 ѥ\GmII+ȝ3fv! H\X^ѭ]k#_hnyʤeU:Ǵ4|6Q Ihf$jgӴ%4oj5zmMY tc"m~+Bx}CbYy_*\c1VWܸ"i :,c .KmA:Ev){x` ox*$J %)@[V\QJ\tcɍrpN7|J&׻Pn=ch?,Y9&v&&x[2nV'3ax|0eؒX %w[Nul3kS(A;MFyKN(syMo!3fYiAY*uePn% ȏ %́&V?g[ &$at~ m',KGJ ق0}<{vϤ4\"#,0P/4}~FcɀbBy*A'_7KSQepoS3yzEБx8 -J1N*+|/D .7I>|3GƲeBD<߷OVŸR="F=e@+KF^4T`Qrt6ƶ&+ @CMjUrWSJ1ns#ȺRfghi}mEȌ)o؟qE u70nYăO3=X dS̎6"8GϿE:ڧᵻC˟+m_=:wRbzR3'--ßHZ*ᵭ*aA孁OdZھd~ vO9, >1>3@ NU9xT[ sLZeߋ(e٩ocy_:O8K+7ǟoVV{sKfFi`qIzJ0rwιIVl%WLmH8#Sy>t0]֠@8E^ީ$:B -.2-d2UF:IaC~W|LU:!{͋GdFOHE"TuVbFiIsu=ˆ^((E1 _ <.7"v,^ %Dv1$^̵EpHא}97&]:Q:7Y%_'(#UTN%kn 1v̀BNxaV0CN1~oO+֐O8)gT%nCl7²7> *JH!t8I)LY'Kr{ {d{VsIW2;`/gcu n3t'. .>YE7Jaبh 4}.~,xt8( ( obms8|w_"}aaMqp{a$.m% h\eᡏ|M;ҟNx'dL7j?П .&9✱%z۶!=zGȏ */HD t'4_?҈ px'sWF9+1,<Ƌ>5$G{u˞pOVK Sew 4,SfR# w3Gżή*.-B'm/ *D֦5`A{^ {FMC0om\\h&ˋl\xTZ^?:PB~0|Pq<[AIT%slt@tg.? T`p5\ ^kejhg*+32Z0MURdChHVAIxNjvͳ(l m'LeEAE睶(EQظj0uBtnk8̩cxtX{ '?}Fc_%/?n=LpT7!z2[92ЅW+O(N87ٌ =#IV&I \97*#,u /Op$"[cOo7?¿""an_vߒL,HB9$%im Q&I SPPA`Së)] IkW KeiQa}sFaާ?ߥ v Ôo>?K:-".p#("Ʋ|-a-38JQpjv m. =_`8uHzSl"\+{BD@}s kPLg Ajv셩jl1 sObۅ&zb u|vjwx{i oIWvhl!-q?7)@`lO,!U .7/0>zlM{`aeuɴ10t_ڡ~dVC%41D _$#Nݻoza=#{%Uѭ4Z!,Է0ZL]qE$+& zqφR(7綪䗨fM]2"LţAs cb|&Z5a+u'=v{;A0oD ]zF'0|b1ݒ)?h+[6&PE{#41ß@2"Bg7ŀRɫ>"Qbb(M j`/ChaHgnrA R.95_{Z=m1=j{v54H:>˓2~؍H ;YBۙF]:Pmp䜬׼B:DTwbF_XLfһq0~bnrz$۩tLpB=ns$_#g12g\e4pf]mkᔍWF0}'q1kmʜY˿‰hc+]:XW$1}3>i0O4]N}Wy.!;"%U oK>I6ZII^s>nV*t.ЖhQq-KjuuN/ mg{ _%Zs+OwX{|ޖXUW^>;oʝrF48 ! :g8L<~ɇ(QlgN?G|X'Wi²?G8h ^r) @M\1G!nbRi#WKsy L(Ztd&#D`jeab2Q>Obf֯Pc/_C$M9DRJX;>26U,E3)-˱zTv~z*y S+#tz0 Rޚi 3d(qY3t(Z ҤL57*b"GmGi7y Ftf,́%^sU(@h#!XE]HR04xܴ!pˁsn gv\.jg o)BM(G5Qd_* k_+K2:BHJk,6|doGT|ő*8ΚH@niK$@[/'I"TJJa@_:I29PBH1q Q#Cʐuz8K/c{*56v^l #RZp J4yIvG*cDǿI tE÷vT`wÙvg$QI( H*kؙҺz79GH|@bY{]<7=Q~x3Tg/ft/ ȑ|f߆UmW\*^cϲ]ƅ"Q`+t,>}0YZ2hDC3ƹq%x&'^?S:$ltwwn(Cs!Ll.#Sc&Uo=C2=C/Pwpfl' 'nY%K>EF ۔-}ŋTY ;+pa2;4~b8PDqC',)ױ6G a]5T`W6nHx"L{,v_u֑9|p5~-{'CrT*)M2r۴-d˓|JtlYzB$ma';QMIږEx)me6:PS\_mC'?D|ѲTj[!xSeyp*#St.afQww^Wt=l8)`K VQ]P퍖o}gKNkj[W),[EI} 2{A<եR໒[`R>]\&į֩׫:<ٯAbݏjRΉ?I]>Oj̞E*&+,x-pa9W6VI!oYf$`t=5,j@ 5c8C*6:p\[uB sdb[l+7$ͣlb7kS6 V{&)A#ETq.xJˌbkhrӓҞVI)ّ,}ܐV̪-=8!yިSt9Q*%GK1<rOWo]1yѨg0H[XzW\Dtw)T+Fä{F \+u;g0ߝ!OA헔A##9:>S4y%r$^C;IP g06CVy/8`.>S8]"܎ }drpHߒ‹~aX˫yI=Xx+ 'ޫ% U졉Qhd5JyRfPIkI'= VƤ 7uS Hթ#[5Iwn !Ϣ$?%/kN^(^qn + $ky1`0/"r7Lz!-юoՔX/=s4V%o*[^Q sL*i!ݜL@l(s xv""m}6GSG/i?ks0 McLӟ3c{Q$v3na ͻWD[ [ _5jv 3; ߹>͞fq庬pW8삝XtPJyfcڼfC톦Y1q ݃[Zq+=m s+JYPԶ?x"SV9"]FBñϯ2tV+B T6q:%!!E'_@*W ~Z. P[QrH))˽pq8ڷ;{ry:F6|<6 ls = IvJ!Y<`XTZ%V 3IucA:5(O.?-V4x onmIL,sU%=WWy"ʼsPCͰʁ!l_^H{ JJs>o-pBBB7J['7#z v.qO|Sm G723/[:1\vнր@!.mmf͈z3mS*臓p$a.`D|qTc/Z[lu&` 3aKK%X"m{Pv 6e؍EWtBP60%bs$,;Xݿwg+K~Q||ղ?ǾﶒF7jkC^nްG[m9z"5Wm.'UI@Y&nkI1dΙISVb <ݢm7CU>4v8xOMM t-^ñj ކ[YͩЋ(D|2h~' *%cN_Z ME&c$/1{&nl_jԟjBo1bk]˹^;:c0_W+9JBѠHp@=i3 a8QiN)?CJDGC\UcJƅlzDzz:jx婲ߘ2E{Ǹ3N$]yڙfx5UtΒF.Dd5ASH8_j*-4lo{7ooxsS KɲEnP lFwR Giu,>Zd^8n,Y\ rMԒ)b'vcTo'rIO͊]@ҷ+UoȪ̽4y FNd~xm0H> l]W#^t6 Üc<|G`'KҖ;vJIU]FdhZ36j}F EKj~_7_nqfu~dL i>ռ 7 Θu-=8ɹ~W纰`m%5*cpw㍷gaٶG[1W NscXG G 5)O@y^I *y´{J;vK@LL|Ug,3V{h|0F[0dEK%_Ẋ@ʈKv/_cKDrXkqrck>.+ CZqeRIN ;Aڼ^ 8TueB)A##YY#uV7A#̵DUP03sW@̂;VM5/D Jmeg2GB-n-US/kj6FEo /v \wvm!Rؔ+N ~1Z#!Cޠ)j [Am 5~F~Ct"$2`| 7+SJ ő9A] #ܤ&b+4L;yü)@͛y}2"fj(VHl4m Y/e1#yB;8ϳBa;P;p#H&!^҆&͖3\U|ڤUWPR%CЙnRK4*K3aK"tPҋߏJt '>+팉2Y]sM =l:1d\E|H<VL[Lucs"HKVj;*ElG> W#ޒxʝgfJ?{3 -^}Q7 G䏟SmM֥/lɓi݂}-<_eey43= K@ >ʈmHukVVPNtחn~5 O8۸뢦&y mdt+t pM:*u9x "e==>SbEn^7Ԡ~&\gczQ+!P)z %7u4m T a))ASm\ea,%ƣ2(Y&Vz\x?+^k7.`,2;ȯ]3iEdE9yC+D#R͛Fd{%bCؕ2XMw |4ubYOOI9ΎB1$h .G*LB *%@vDCAEe)]ylR;Ky!RdPa6bxŴ9@'?L$n/NRfXJ).ZlB4MV^F|<z~Gt$#UKs K<)ɒc[j,eZלU!&DOENcGe?sL0Dѳyd# #Co>,Yq2a>bUQtp+jXQDdqOఢ_8ctX*6c4)`>6^Gb%#՞6#:'tYE6H%շUwzĽժh p͝tҝ )46E8oUF cXrO怅|c퓳iy]A(jk:L=XX)dG`H'ş6,4 WϴA]nL4 pN0&Pg`)0Db\P'X`fj1"7Gh>ؿ)jsLvp-l[4f}Z X(y_QC$^ك1WWd#<(g{QboX!xލbXgӻo= "MQN t M 45#Юy 19T4&:&/OUTyDȷokiN:c*2FתɲY9XG0а”<иnJc!F;3$4v/It5| M :&@?AVT)1jm|MF {[&9ـ(p [6N=+6MN.5.nD8+sx֔Pe u[W+*y?1paUJyV.JbxPZ19+$e6Zg{MS#A}qQ: 4{Pr=.=? 6Di%δ<;o/h{XPFC- *DbkkZ5>D ɕ_ُAP5;6=Rۗ9"g{8|6!Ɖy5;GG#jI)kAk[H0k!43XaY."Nη#5XWzR~ TM+ )fI~N_gr%Y@&px*$Ӂgۣ-v:kRh\Ww E[I2Jt(pѸ&M 8)>6Ԍ~"/@:տfA "g`4UAb>-tpr{##*Y~1-з,ZMwK'Spد MKz!|t"+vfrd^$Y|m&Oh:OZH-w{X8NۛQZ 'C(Q.@Pw-f.}wߓuؾɒu5q5b5Tex?LĮ/5 vi?.Y*{q{SNzˣ}trUh[$Ƶ6%.yUڑp`e@60PQz@ojԠ,wWR쭀@3 ,hwT}mYZ΂q񬱡7G#|mzhR\%ߌgJN*p_̕%~.|Kg tӤAUf3 #lĺf)#F ٮn{(h = r#QLQCuՏWLIa>hqmb _I!~a]~|(ypXFz+])/Vs(F_U3H_qT4-"޹+$`|#)STr1)gӎn0^GSq0iɦ~@|O/EŏggVXte@TŵVD{W>7}j) E Be' S79 M֠dx.MD.Qz*/]YUiܰD19z<ʨp8`*㟟VOcۄI9C% R<&Ye+6Ns/XxW;3hlT]m\K5R}85I?/y=>~:apwJ~*ST7':P#z@>ˆ8yFYj "Ś"F>=IXKv{!!;j&!<5CUHkA虹Q0DE6,L/\sX\P"Ef'Cg~r%b>RZ,-;EJʨ`%OZE;EǐU?/8LV6wˬ@Ye!U隘3;֮C_Y3X1՟_gB%84HEo5"d?5x}S/hd^{2(H ( M0u {/;};P}\WJ.s bT ~IJbKh2DQdܹwDOnH<=ev'Y-91 bU| rB:Yr࣐]ȴ`T"S|fO#_l8Y8=cZm}`#D5*K;(eNƹ p9FAu?:x03$Дh$7u*, (֏-[IEM4Mq܀$ޟ2R{;`J-mnv#'1v"7,L;k yM[{eaR'dS/l{)#)`6Q},?8G ۸>\ˇ*"ڏ I裂4k ixq.ZFD=p |ʚ%`Tc)%]tUS7Q@|g5+ihEڦCXF# A[zo1Ey^cXU%Q&$!nCY$̭S9Ґ@T۴qϐNrNd`rNXe׌h; U'%haơѶpiNʁ{zۑola.hx3T)[:E+:uD %TZDt®PGc 0,e爊il" 7jd+U 4?5KQǟuR _$:TZu8sۈLR_@Cm|.RyPʲbM)G-~6I:;Y3 9ѻ "dh5IbN%BVX]:>x'[dt`vTc%xG1(W޻Ff<``p{@y[Ko_JoÚ=i/Rbwz!rc:QBaz夡E;.Or[@J9!6[N/09v->iKJe*t΃~q=qQTq= v9\FwhCui7-ja\t2O#/@=CApzI|ُњaC1GZrg=/UP?F#f4/RO͖H)vu0|Ֆ$VSl0ל?w|^UNҮ*"p͙#Řwv4Aհ龏`l`kC5Sk- U3#,,}AE 47 ?&DǾ-.BTy'¥{iG=Z`+Ft܈xؐO9gZ\ 9$,=r#z"3&|~eH)`|%91C4k11DO߼IE^[ْ/Xf\-X-sI^"?1\bO膍'ZI@2AIT} Ȣ#wn dR9H/tY QmLk,ww~-(E*ŏ0(3gbnmnb,!QnȪsOC/Uu1lJ3Zug\HO]J B;q(C\(zqf-H+uD }1Wȴ277 nhe@aO2P2gM:OkQ([fzJ4OAj Xt6tT}c;\EzF-.aÂwY!*t!g0>MF zXޘM aCr}Rt3x8Hkii[ vśDue"'iPHb92!Edqߊ3 pٮZk|v\0*׬e#pAg姚N+L9&*_> hjwQ?8TV3GJ.0۩|-r&8Qb7y@1:yQ3R"u׳ebMEE:wsN SL:1>_;\aogc-)Pn4/NܨfT{])m pSQLb Ypl2r ($>1e̒u߶-Di}G{Tgϖ̔}ka?hEpg6{1w}bD9H z1p=Z|%J"] ]7.d0AzC FW]&C_aѼu[bcfH?ad``Hգ!+@a:j%Eif )zJpr?g-Ӟo֌ ?ߥt)G!MY|/3lOֶ1-}m_$H°[ŸpMͥ7 kx=.MSlQGXIwg I id隰;[sET~aơV>Ŋ `cHJ4J`sI+'t[64cj-s f|ڹVP A8@;v=a P)Y!DE֌ W6^zo\ɇ?h-rM Y jX0r|u4Yߥ8=fa7 irG I y\tss#-w"!pWxI1'yEcjn\SCtgls.? ugņ[, Pm^\' ߫rAR3v#gͯCg;q?t-dbK0):4(!R+5Fn!t L~lR7Zê kVe {{l=^E y㔈~3g:ZV͔A '|ѻ0Z-ݤ wG^P'= OC/,/}䧉e -_MQ( sN@9{&P-£GE Ǹ>_N]o$񅕇mYK/<[ftCmqF3~Ŝi[zNsvl1M% *s2َr/]FLd<}ұә=#+GHlJsN1 '{9'Wl8:j\yVL!.jO003=o˔{b3xWq@̿@ 7Gɽ"w9]?IlGOPq|s֡0& K:aQKX>vD;O,\jFYrQ4.E=#z4}Sw]>>N q&F[kl|A&AAr13SW/ ;DT ]!z_ZZI[ [wI Հmt,b]̙DVoI̧ʝ)=: ΢kY)dzwgY+cF>۽Ǧ) #:wt=)AHQ%52Fh[RH]4]09:;&#UN.Sn%ps?.hôg"sP!m4x]ې*sE=69{3'd2S Xʚra!σ;эN Q5ko%\1no(Uw-H{ ("/iG}eƲmR C7i],E͓c=˲%yZQ¿ðETQ8{o.YU Kȷ–1Nl-^!}v? ׮O[ ~Uwd|kՙΒ`oꢀƬ<:ձz|I^IFY{ b1=W??㎟"H&^6^&`"$C.:Ïlq? >^E`1xoҚ=$zEx%asG ,x[S ە:+0CY)ߔl8,MVv ~a3F C'Mh+?kWX y%sN(YV6}Ղm_qM#$]{B|Ll@5UirzP~/QLC"b "|1V*K#R Me>AOگoBv2W&/>X9oqH酒/(76X/?Yl"d+a T9b滉S*Q9kK`ǑBy@:3@wrj>޸T@q0l%3 HIFO_#7ivaVZ~1DsVLh C3l{^4p')cbSRl(9=W On |Wײǚa[ݝ=,@k%zxG,Gsjd5>-csdW@9xQg_;[ [T:[胚޼ꔹkx0oFd݅6۝p=<ص[ƸzZdLi\CwKޠǒa+ "ϥaw`dkE$D+O*JR>`Wxa/iTFoYc%7-6Zn@3 [}q!g^5U;t#8I l,LVu;po~Bb\ѓ_IukORA9 :H]soQ52Px7 68*9pBE̯IplOGt>u|fU!Qى&ĵߨ1ޯf/0U&$X7{e}}FuUh;G,:GHHu0ue 8TyZ8$[=kw$]${"J aK*W IW{1.o)`AMG}nA 8z_=adml Y6;O/☀61gA=caʗV-pK}cpc|BaF` b;QL0vnc?aPԑ  eUJvLE(ɫ0e^xBn?Ml'&B^S;oz/W>E߀қWsk3syċo׆dSTw @Q BߓZx 1A<%v~*[|g4W&t%~Qcq|,te&bp®I PH5܄jUHfiy7I"4:w )Һ ] -`eŇ .@GnFE;ZVY f|׶o]x+љ7R8Pwd.5Bd&DYm'"߬mښY\ 13:r&nԨ<9j$"9GRq_\8*sJbҌHd*B\'Z>wĭ2lӠCҾIA1˱ v- C 3RFF|J %  mѥZƈBaiXަ7 M|ÎF.E@(kuh_GQȑTter!E!=VnU fẺko/5[_m;GY"ir]zgdyg*1lH2MÎ]pv606ܗ9*28sA [@0J@ZkjtedDii JYһRԘ 2hb $sWM;tk)4b*27M4>?ǮK\&*E_~Dc]y|!olvk?KVHiBJjv,^Sg10Zu\g!d ݕE8c,9Dx56<hgMAqއsjo2&:"#3z J 3jXCTelN4g+5/: K OmeaV#A?[T擣#/=OYq$QcQt| nKf} 6TqĩMA,dT+#ZC;B(i[t30˭s4>_Dho@w.m oZ@fBol}aupD[b7Ty;=8ڎ`MѠD챪5Q˫/˅r\͢C@h:PTˋ4TqЇЊ%$c |gwїI Q\(9^SOG6ڿ(t1A]5?_ õ5 Y!ߋc.X`o?6g`*yn.nw)u:*%Meú⍪?s=%B!yǺɧDkmWψ|M%_1ظ-.:A `ѵܝ86Y2]KP>(`!7̈́Թ:z *>z"=wQ.\؋DKfhhOaS}?Td=U`#ss!n--=@֔q JYBٝaIYr;2;m g'WͷH[LVϣofzǖ_[inU4ZҢ~Uc$+F?;6 ʏX sNd-xD9Ѫ, A~W6{* GU@wXfsbqHQmʴ"'-Vx7DIY[h2r׊?7K=?ɧ%oi)Y2,v ׶blR?:xp~⿃R/Hp k2s}=6-EPisp$bDF[C一=U*tG_kd5u$)f L'ZC1B UP'>|" ?Z[u~y+8ial !}  Uۙ3Hv0"M$%̨D4i'3u/  |줄ٙ (N rA  d7&2ь}2}̡$0' ' dMp!q~o]%{i&ʽ@]31ixxM=qZ ՛huojr 5䳻j˚3\ଘoi{x&5v-JHEPIE;lZ?JD(Q,#!0~86]t͇?g^< t:'TO)lM;z#9C؀kޟHن>L=4й[~5&jDaD9G[vi] V[_-eqغ؄re7e ~ LM m lgq%QhQ[*N۝t*$0X/x̄ m= !Ж71VOu0a*4cיH kαÕb8Ќ6XezKS~="EXKb%јb8D 5Bw;# z砬G \cAMPI&Yuעh@I~}cBp.dCD/XbסJ~ &^8K5<u@!ru#+C(.S(mGg+:aq-LĵB0E9e`J AcgPa?b`q+//; Y֦L-ޏ' p l$cXq yt>R;1uAXWt߆޻|کSm6J{\|P}ozOx">>w}Lu}W1z r0=+fmz,[ahq]"bײTbߨ{Q .ˏnh&sX]f7"_+n&)}_lyB>@>P*VyPLznMJr::+ryEDQt&sVs ˶p.-{h:׎ΞP ʫ0RqQH /tu0ͬrنI,2ɚE it.vMvR{vVZ+^=m|kcU=UVChcݥ03Uv "1/P.p+`nusqxވ~R;,87-u4-xvU38!`9j^tЕ 2h̛+z)V ,l2V4FN1H>ʠ[R' I_3XiuT6w( ->s9yX,{S5O:_tZ|45n)QO.@?_&V2IKb1&Z2D1 㑰*`҆5- ד?v`Ш@j1G(b쁟Vtx4ug0_1Й;pk4ZH$vE3GCX%VG SYYM5Q(r>m Y ΂>6 /(9E;ȃIvM2t }_j׻,Y)4c]o:O,~Vz 2*Xr^DV '7biq^J~I jvt܇#xin!J𭆉kqxBXVi.li 6^ctx93"꽯J:,c )KAPsnM6cV[Jϡχ-o$JYfz]mv|"ח+sm)&6"Icw}PL, _kA*jQ8UaL6sR)?ⱗȱKO#2MƷK7 ۲ 39k%LnZ9<7MRKj%XAPK؊v&yYY0Y Tz"x(.A$O^yGM)Oo9#tW" 5f\!߀P4۫Vjd 9xӛuv b"B K%]-G I8φE8kH5ܸ9iV?ƿ1Tj eg8j cd#6vn\?:O(8;z^?T]ܗ&{ӈ`i&6ٝa,.QW"?LDHL*{ya^,]#K3Jќ{)1UoNL)hN#0 *'A!rLwʇ)J,.?mr~7 Yu_gEB ڧ@ɦ9Fht,jm ._;t5妻ې wռ"9bIo ^^ =ơ2 _K;Yg}1F~URzQ W˫ntBA1.* >QY]]>k /^w!W)XhY[Asb=aoJGxVKiJ)Yf #cXf,^F UC$x0ECpv>f20Fsk89+(c3 x@R%FϹ\z9Jqlk4qC04#u\Ea~ cicb¦-L UYpڰwx6,4gJg$e'UǍ,>dނԬAP-@$U*$h@_T40L!B/ ss&Z# ٳz ں2anZ }5֤xw}JGQtU"X ,F7- f4؆>468b'$-kEb"Pv@2Q [q;i=/0!'WݳGngv=Cnt‚nJSJs1#m`{2mTtWI_*nW"-֔VcmV!/gEBXL֟8{/7F1jayL{xaE}a]6&Tl< -0X,[~iU80IaDa~+7KfGvD總\"F= ZG91`^n'hSjqpere;~;]V;q+`nF#? 5 M1vBۡ.'쮄$svXe`&ZN]5|A ;r : t"^{Yy36NLs#!< Ra|_jc\η{F6O3hNgR϶&O6T[$ԪvTyN]o, %G2TQկJ01FVؾ)-^ <|F *>d,{nT $߾ &U>k1*h7=p1ܓhsY 1X N`bhG|x;j'-ÀfC[ڻmmDVH6UNF1d2G&Z\9*, Rp06HLtD8))d0,at3$ e:b2 f"Pt0"p(Ib>E<1K[a ){iRpeͲ!#R= ,ӫR +? $ vj";a?Q4j[=pL9%^UfwuXH>\HY{#7<ס>i⊳a%M1Ks%.fHlZt <ԣB.)0Ud`mMkr=׀/*[0y@nU6Gt!|,nw{-h>,]S5(~/";jLhn}xẊđl6(}{k GQ%%Fj'EsXos3 `0Ei|+,>[tR_f \n3{ހ)G6o,) xA;HRuǜ8]R_^ _ReNfn/`HES q30CgN 85*ٕ-~I >+oA.,nDE(qK#yۏ99*c(N_'~##?ά5HxJ4Fm`GhxΉꂎ$gB*X{.DZpu?/ѰӉ mj `1AxS9Pl;^_I%Vcz=sæ{J5nnh>$ mEjXEQ"%X7H&>vJ`H$t=׉F7}=A(jSZ5"/&чӠy^"i# nI15Mu AX[Iu y}Fˌ -N'Cˢ~&JqK{ƍyO+@Qϓܘ H|Rd)Um"{ATT9P7 q NZA&p愅8eU56!W~&Dn!2F:/zXhƒRS{`XH$P8YwT/76o[b؅nPz$~dwH, !k0=E3]2[&O2JBYj?Oj~;`C{_dӇo!8 V5Ŭg0=߈8w9= 8;ҊۭqQ{S.]JjI6yt[z`z$_:\H Bij6YϞhHxޜ0i&wQ9 S' `UDLȗl,ʵ$q*7KbCi xJ=?vE.:£ztrj7fw18oj?;+R,{Gz%M'wa,Bingܞk xq =U[n֊D33NRCM7Zk-vG@ +XlŮEEW~Tf#3$&l2z^n%/)3nnX`a;U&=;#?3dG=@#,"M HU>Rhu9 ߎ<}J־fqӰZ>P;-ʙ6{E+mqC#|0e*j)(•qi2,f\Y"hT?rcj[N[$W*OЭ {?n&ً`Н\ؓMj.Pm"z>iv l oQaufe3 jO :}dhMb oQw8֗lu 4El|˿z豧Qr#5q у6J ]{`U=g'p @R=Z0"&v8PKs?l0ԅ]\7^>]0C:TIA)2Nە^#b`{Yt4_ihW/J:쏡sxӪH e͞![I}VbZ㊌J*r`'MO#)wZj(͡!,O&ǫ o:/0^KKGokBt"^LsE\mBv.ԞBɵ(I]\zUx~kQ>ѿs:Mד߼o9r-moQwϬNS-3Y*@$T?gx!I -ŕ!e&Ĝ%qw0]?QVPi.`L,JG:fڐ8XUxj W*pS iԴB-T>97DDޫpK,~g,cIP:$sA{==F4~+jZ#0/hQU\jBtnR|^a`I{RdnHͰhPEj>͹bG˞'&'ݡ^2<+- Ls۹!ڵOvhQ-6w.R8,H?EēG\-Q"a9'C ҐFb峡#Y5wY92`e1n7ā%!,=p_R5pww3缥vPe17Eybj1{AŴ~lhm#li:Rmj$/;; c)YP4{w z`l %/Ф+kL@-  Zlk"!qI,f' Jݒgg'S]#F]vMLv% y~UՅEAdȘiֵ&œ?o۵7A˭-H[ynCm`(NO~:X[ ԓiTݵJ7!qIcxK,1@݅8_Y0A.\!/>Ã/a^A [Gqx loݚm S]L ::r2ʏ\{X7FLv0Wm)ud+j5.0\]ZyEo]w!(rRCΖKdh; zGi|rFE?ѣbG<'__?27(?0gfM ТH;Yv:JѸ`OCh7 }:IւQB)RlU!|'(@P~zT ( *MOE7:CEs9d=@RO0bZ8BhID/vaC0%FZ/'wqmE޼[ґwt7Ac=ݼ}FB!DVV\Lͩ8z.UV0՝9EF!tOll1!jPCǸ!sXI#72f-,Il`7Juwk걍vI&,_ A.0m돶<.Khk~[7`X~I>+[v^R<][G P*Ŭ$]`݅Q<fnG/_tXK4qq*v GTڊ s;Q2ou wp$q% y;-+H7Fjzэc1a"ׄk56EO$S*iePjco.\$ka;֞?hl샸RܮKQ5ܰ\ĎI_(V=8k|d$6.M<)beϐ5kDU9yyC5! K2f?A`ԼZuXylX7DZ9yX-ͥBasؕ//<~BcXdOiY?_!?|):zAK= *nڰF= ߴx;ܵN:Hqå͓!mRv3nlERA<)). unYT}\x쀫!"l'\9o~alK- 1KIkڦG/_ %m|7C蔮{$(& Sy (6VA6fl&]bQ09-pQR(`#&&z"k:$Pΰ$Ϩ!d15gPBP*gRv"OPCr0^S^6_61'ҥ"@EʥKBC"ةl) V ʑxmαeAm3g1z:F7iЙ+c[ؐL]{we]>c6lK%VY0}7p (_`.ρC:rWOZ% gF>ՊV#rN8Xh WjoXlN_t ]!i c\'OM`%E#\D YrK?k ZO#<&Q\!i w'>onC]Bo /%tqf<("مPZB,1K%(;pL QIZ`c?rѶ@Qwf+cV 33GH 6»4vs/x[7 +d1 .[ 533C;y, ǟ<6 dey`cƆqQ/t*m8hqQNT%{2"~ o2ndN08ZԼCHW̮j@Q[Dk:}V#(sg$ 'ܒla NP6d @l<|?+i!l^%Jy*yoO/XP^:GL+*5rt{iF19E'|a d&پ;NYCh+.:Ƥ({j$8.])stuVqo0J5WjǼL0Hi!ψ*k;gī*Dz4>_}fO֌#dQHxyxۿRq:kvy'6B`姠R}sxOs}_>3._Ĺݙj0U*3CtqΝ/ɍs9ҶJr 44L:z6oΑёlԺ32*zdNL.Hֶÿj*ޓDUu#-eu5St#5rnvFݯÔR2/g~CҖ ݬ(f=eZ}ND9@)FJ}uu5PPgtk [%c;cc|>?fgF! W4f⁞S%)8 -wnJʥG7-~O5/m!$nfq\4Ҋx=YjfEB?#Q4fc1*ģǡvBlR^]!z++4RyJ'JG)p+vgI%G A8/3>tЫIZn-Rm}E}=kz.N_I*Lcs+{ѹ\1FK ]fj\ͫہik׿n:^2pN>fZa$VWpn>.O~PjWth;5"s{BCoaoêd=\eWP@V+ie{^%ڹ9I[S=i9Mnb‘JIwTz=R4jU Ci +V광JXg/N^J9ּg0(euUоn73$\ ?8kDٖ[w6_N8 hTsiJ-yq( OA pdى;EgBd#m.`҃Lpd)c SFp|A#x]ot߹? T([̂XIKRؗ 7"+P/Jje6nF*??TI("cpT9AS3ylүudR3^Y'rG6t [~C_ͣavPM\H!bTvJV-vٽ4MUGoZlI: 7,t~X Òz[{A1Yh):1Z/gm~\t\`E52z-RQg>79Jy4y =DgCSBO5 4L8LOCij<*;x>-L*94tއ=";H-ka;e!lIℑ}4(m2VP0E[YQ! [,#Aknr;ax3.V35m@֜M147Yjtƙ2ǩLN]&i4ȇ('vzQ[48*F., 1;3q,jQ:wiT,p"aXivTy7,$*8GWK7V'![r[ U \\2$`8y~,Ī?Ҧ;-R+f -' 0,0lblO(pzB:" XhL%;dN%y(^4~_zJ,,H3?q֨j\*__c$c/U1E+ǥҐ[ MQ8yԳCE"I8'hswPPHUY?] &.x!+OϘW0ڇMyΪʸ2 huL2%Ϭ=T/H÷?k xwΫqDgSy!5tW @\O|"$`lmޱ EElB 2lޕFŷT[殖8[ !ʗ^}2vg=XpoHq? ؎CXܤfT9MU'mmf[U%0`ruM> ^2l,~ZpXt 7KS @ܲ)^>$ qѩ?><6w1BUhbbhU յHd*@D./`umSEU}N)Qߪ!1sCbp'`d ն4 i.y~'3݅-vs5{"-vQ.VEQnLӛ &4nx hrJ9Fl ks l- LM rcʎHNOI³wnCEMj„^Gd3 Lj=mGM~赩4ҹvCj:pP_yhw%!v"1Au͹/R hixU\>nB8V|r2SdUX,|$" mIy%\'5~~ Z1 9쪖={2wF>z&z` ,# $X6>y5!MiOf.9byaX{nh{To>Aݧ%I.D@f~=VlPuQp<,ĵ,(9O )bl' wnD?_I#gn'9 dHWǽ?jtsY9Jt;ʫߠ"EOrn<"YI}oZy0YwoNGq `=ڂ!gK;Ro%;toŷqeGkM6xd{WKDlqńT2~u]CF% ;?|e@|Lg ]'CKmZ?t3R2 ?e"*3EGp6 #5''P Zoi"Z&@֪1u ǿ}Oy?&@V";W VH?VQ1mݷEw0WMJ0ol$:Am|lkY&=kQJcAƌ:0R7P}t7l7Dx]^X|O ~3_:JWJ2ܟ`N]6z|pCp )ujoc~րjBZk*n7x^:qn48tM[i9h+ -c]Ypgt$Z6tca OD#9I{3EQ j)ؿL\=<hWFhwk^ ZK-e=)Dr_DipE rK{4R{mJM^D{0^wLZ@ά='ْD,k Em)*o\,T>#Lײ_1 R#klؐ{Sm\|RbAК%k^4Sw1k705jNJXc1#׬1&2d:e1u TCq814yCx`diT3h$aPW|rb4c>Yjg*wg9_R.g)/F]v$> 9@MYK l2}eo|uU%pPc|B ܐ6킇h# Qz:Re69FlG⬻1B"J ]1'>9H<ͬLEݥjODHCa@j];2 ʽ#535^դIՌ[yu=ecrG=߂<φ7ovX{6 wق$l\Gi!Yh_4E[mAcjƠ| !k[3*0U0rf⛞AZ^rw9)"b=_+jcxwbDjv ;reW+lݩzPȮ$(N i)1R_I/]ARDw;{Xrgy=X9 <> ʖ](8Ȗx yKh8uݧ^_k8Of+Qׯn= S3R ͪqE__ALKMv.Ge sPw8RPF̥)L |{tE-0 q(&s')rV%E 0t0ߟ;@TnyD)L9Ier =6g٫A􀦯ps@@^!Dƙ)[f7 x{udtNjG>{4ܺ5ĀHvSj#P>H:p| 0.]XF?Q#W#v s{{eˌV1[+BۆkLewNVp,OkF`W1'E(˚5m}w?̙(Y82( &2عKp!54bk5gik)*ѝ AIU pDgUΙ r ,WI 0N]~P3W$׃WA>X8d$ +{*&c{8G~F/cuiT XjFa ESvzAE40@hs}i3_UQڱP rC?duPFT7ccFWib) AP%o]A,GOVt:HՖbB3ւ9 gyXH-TSe){aL LaOhaQp,_!fD_ 5-O.&*i pmZ@o0pC'kE}k)s<2S:B%~.l65M) 3+b߾.BT,i+x_2lۅF]Pq;og.s+oê^rIsE>A܏{N]Ҝ,ZOsw}_#}xOz'8ⷘ 0qGZ[>Eыh<c X)!ȤFoɺM~oUi2Av:;VPp:AP1n>&XMA[:US8 L3aO3`庇Dvjl`ٟ2/p4UTOcz\byB]M3kA)'?ewYE{*6HH8o1>L@H{^!pQsK1 2e-~%Ilj@{đGzWmSyyCQ띓=[$SDvZ~A0Н<ӴcFu@΅H.jw,olcd1+,gqKpS1E1%Hȳ!W-5 3PC|4DoGf RH#0>S㣺X|LgJZMimiӨ:-i GpDE3 SAp£mp HH XtR-"҄Rb.|z7ʵ8gjj~MCǙ!ly'1EoN燄s' zϷE=h~G"ý\!R%'SA;82ɡ\PhkP7 S;U_-A{sl8@&/%$@~p7jLÿ=2*!9;Ǵ=b9uZ҉$3ЅDJ ܕLoVHIO@a}p,cሕRѹLU\$^Mv6+]F8>ALj"UFY<Ru d wH3|$>lb=,vJj37a rh [Ś /^tݾf[q4cϕo9@UT oǐFry1񠍌2(ϙL$f3hq'>n. ĂOҍi1dz૾5LVej.r`1P قJǯmys]b!qݶEjVΗCuQi|Ej(\ڱ*Yv{FD %11BJ,]TGZRz|D@BZډmrwp)l/ Oeb&5gJBMp}a,3 `_-m1WrWƩ/cFM^n;LG?ÿ4m2QsoLVxcGg6'vT- h PζK7߯5 7z\Jo "Q/hj?|dmB*x % I*Qf5 tAǵJ43p-dz UI/?޵!t{9(lxtj!Hk,ߐ"݋ق~1EXC7צ}/븀(ߕ$4*/Dl ܧQ]%2fC l6R|`Wei6pSGim v5x 82Zd^1[Hk*Kp(%L'J` il6*'?%ޭE)BZH"`w u;C^$LP)%҆omDzR]G\<̼/`m8c`r?Ћ}Ps\S}9X`%"v(yH?2vdsfe$d"EH/ewl7~[ST O~| ЉT[VT+ 84ş[E+eC[m? ^kE˞5?SJxwW"$+}H123',9oי!(1և9l k"7.m0"w"O>Uݾ"}j=[Wof`-5!}J`0E],*_&zD;e8عGg!sW/kL+n۹ k/}PHZs{Ag4Bj38 1l NR[[刨xk(TΪA\G]Z+~WKi&0:tQOnf^9Β-1C}4ii>;Ľ7E?XM`%|6_n;n}~ކ>|_Unqy m 0 7/F3dy u#x@V9LWza@RcJ[,g$ZTq+w%RD8k1tpAV|zwApe rysJB'2Oa;za"nJ 7Z㮶UπO<)Dw:8ZZ6%KtxBN;yak_qy#.$#cAU_1U| uz.dcwV>ʓqȟvc^,Პ.UŚ"E>L!4LfTyQ-!M9뭿[?\rzx\x_,K(`r{5!y+.xyS5>\~&(VJАp'7mBH86!N[]XkBYt ,i@{O]{K >-O@[{țCe'ێkkĔ2>|iUh `dh?]k}Zj|ݧtQ@ʕa83xq399E(,# h:X}LUcgy$]Af%|pNBD Yb8$TP*}ʩ2i=AId9saFS8nSlL6FlcëN ,͸83 Sٶ{^'N11nQ^/'-= ,9#HwK a.*B?Eɫ2žcOHo}X ΙpQF[,gkɹF?T̚jnp+ ۪he=t|% A*vψoZ|ѸKGz-?B窣qf?~ne6gڨo&8UPJY"~k&@ <4g`gdp]8!Q򣠽oU {LqR=,?t`iiĆ%c[AϮc#uJ$P盇zȮ0!T@1 GY[G]-{z'D#/z굽@[rLbhvn]Cv)/ GT ' 1SS?Gt6+Ikhg.tpςlz]V/  pes{2g5R @#!'l$W R2dTo|9:ƅY!',)RB[+[MV=顡Il K6Ī>jFR;?F?[畆[)nh:3ePWMY%팝"e uvMC.d.Ϫ  ^@*']E[/6bnf,JFQ~S!(ioί}W-4f332p9}q2VMOW\ &bO'pq^EehYKY 4LRTL kF'bBL2+z= OO,j(ppZ/d+(.O"FZrrvS滂crgE`]-p(MnΫǂMvʲ4 k8_ }mKyJjM B=b=HQn: 0ρ:)GkFzE+skOsrLɂo}7DbK+wTeS^kgsu}7i;%W9a+jDlhp7eV_J"Xqpg8xrD_aPOˀ ICngmHj5;$|1ҵbJU˙W Z5R|  jt"MH(dn  Gk7pJń2H" }fPNjc1㼾P>h#uDy @,F?0WsD+WuJfLh;== oQ"륮O%Vz x ՜pڢظe߃s\Npgq/$K-#oO.T\P'].SGA\`"-7Z͔hE`(XT楅C5ݳʰ`ܛ{T[`?CTUǨoΚ2qݽ]O5])D &a*@jA*ҷg6>gSL ØY#I,ɦIng5&^l0VpCa/4  sgIDiP$4C4+Dd)wóqF79.C ׭};7&:YJ9i;h \",BLwzƋfǕ\hVw1 5SƁt@ۈRX$LgF-jDL<*J$VۿV cV mds nF9Hp9C-rn掎 vUxI])݀k|?<|P̌tθmlc{_`#рWl"mu+_d}SHN_bD4kSһF'GZ1;q#^&9J:>hK,?,P,.l@!-}Wcs Q2UK_񻲡#6/<<оK?'˯3S`zGn"0ULNyo!4gk.&Aa\C9xJj툁ufѡVҗfzy mqԠU4m)o2D#DiD.m?unQ{޳`F}< {=Lj-#I ]b,G*_  VRr=vF5+3"wǔFku6$'l?h3 4{;6I]ag=EjmԶαӎ,K m5g;yЊf]/F4]>^nDŽ BcS@h@dX \ɴ!?bʉmxَ.RRsUz>>5`uJQ29GJfx8sHJu͐迅PC׎eamPz|^:<Y˴CGHi7ܲ_5ui=?BbԴ)j'f2uwSFʁ*[z9T^ \,pIhKTd.[IFQ،tG:[ ZOB/f8QѺջra!?x~ㇳsqPV=`*4ɭ 2y Omydsllvݳ'2쟙 =t@+䎍Pi~Ǖ d'͙FoD`٪:Ck opn,%,KqHDt> ञޘȤgc}߲->U[}4wQ ;t`MDd cˢ =aa5HcabBg7w94{äC;XE=3:-<{n҄LRhNJVQ`JgHH(1b0<@* j#F%ЎHFڪYR[ H>x{y8'| Y_'P?wt.*3Ыag /^n:@}֬ Eq_L=8plwUov*y=SjBa%74J;֌J uUrJ&͌Xzҩ j$]Ov:icۈB:x׏{F9i7m8.$3z?њφ&nplex!kū/2C~MEj %v}ywxK@iP@!"kjYUbWkfmcYG!ɑ8ASBiA܏0Mt0izM)唳,@ !@kWxMYWv.̋f:5pG$֍u .YroKqkjo5*;S#h/B֟B%[ ndEҀ媃|zzm=9efyW. #7֟-?4Mf8l-t « CP".?$Н[JpeZV]4FvIrES0tΤuA~Px#ѴRr+ޘH6!u[fJp{JJ^dTDaȲ%ErV1mxoV7ˡèTIfAzgMdZr-V'ļ;XI%<0/!2I ݧ 73߸wB䑣zuc8 :_|Ӕ:ou:!#Q kC<}YHk΍Paw+2/ S!Hx[]E&g WWx<{ ? jx-`o hmMwu;MW+1`ٌڼ5xwD[cތHpLU>5rX"Oўf@dd cy·a~XA2<H:KRD9 =e 8i|P MFCvI! Ww%QQ3ݖYCtrOLʋX$sRr5Zo ȚkkIźGDD'M>ѝB?;0Nlr2ţQ8i-˜9'Y2$F_SJndc)+@rs3i Su>?Nx(H_Ѧhh/-$XNT -[Qݹ t3 X]7]ȨtJt&7ʗ[KU)h34M0+v( g#e8+'FQoVY:|ivѵCC`?hY׽GQ~PCDo8iZ=M Ukn`=, tmX2,7j)`X10:4ʫjNT#d^o4y7 !'P ZA*^%-  /Xn ~@FTY@}:Gt[Lgͪ MQ+~lr1; bxGHۇ EPE6B$5+'eJ1arz&"лxU"rvdDdY=lqHcL.oYĈ.%7B2"[|.toJֿU$Iu;~URQ-v)d7iܩB&##Zfn&x9v f EX@\Ri ]L8OΚ«.RTjC|J; dT:0qxQ9$IgAoNg "?0].٠\n6?nR9eͷ֛WP@9B-dcdy|btkQmu31@!g/˽͟E3չlk=^;ÙVұ*Fء⸫Lh^ fi`/"!FZšjK-˦Yd&,EݛGޣISJ91Ґi7IJAn\U9q YY&.b)i!H=0_ H? MW_I@Vg6$60cd L.ӶnȷzCzkۮ@ГQ}[?NE}DzʥA,ab4+$uU_={ng+.'ך[_"_<\dO︈y`(S?(𔻃mt)| i4Ftbab٭Is1r̛_r`'e'sݏ*^j#ROD@>b#j_a0z>j5CDV}Rn7%"%eq2!ILWS==Qл,4FaV1k9R$zý0%7F&1GlSdunӉw>qx)&\n 2a)h66bFs~S>}_uYIOq3aw2?IwY\4i3qͫIOvηhx4HM$FXj]Vb#wvY f4oMazQq)m.'+"Mџ<ВrKNR=nug9A`g,~1)1ע0`Z̵zg-B Ax`:X|v;BA/&x{S@e_ Aæ'JƸ&giEs 浺x#N[(W.Vtra2n9i~i OGxds;|8B<5Vbxg^ {tO[wٱkG5VѦkTx[(ߓs~Eby%cP$rEAAkXY!iZ{=+Qckz~xѩ#1XH)|f!wV 2)]q`B[M:{Yu|@*rH#'U&̬@K=d}/lB7͡Iw"VsvӕՉZN) <~YHwH5rtkOE{P˪L7ܐmUfsHNg`#sԦ®@ Ux3c ^8rFA8<^iAYcʡ/,OLlP>+5ScoM 8kϠh@泧wDl 7jl~[^Y0G`]ju1.ܙuI/%M[{=LFXō^+ IO@ 5AmK̈́dr.o&ϤqwF?[9׹ah_~(*].[fx?Eu]靷W%$^t7 }:"e|W EKlڟ&ŝZRHi",z>nOXߕ0ǻl\[<61ݳ0o#cE!w% yJ89S A[/h+j\u;%Q0=ݛ ~nx>CO-Ą>%Hd]7fh7#I~. d 5DZўn{5 xl[Z:*H8_QN1~Mu\0:~gtm<4;w;?P4 '@J_[)4@͘v/,a 4'/ՎWW@ʺƛ`F=}\laUbBic$P<‚9[Q3o*N# [Ԍ)%E B'**3+5L n>o؃ Dm }~a `(D'O!>$&7TyJrVX@g50fI\?lXHh9,uuD1 V^Ε%i+&র" w3BRz3)#.F-+߉3LN9Krz;IVMêbߍT1X%+{t_ТG׈Yëu$e~8BA)p 8 #Ǯ,- 蘎(UJX_ :q;~J<%$]*Jd xFOH=Qzf.aZkD(Xu >hfGcJy_͈/;'[ e 1gyeW~]5?ΪJ8&J`5ΣɕƂVCqKD 6^7gqlBA/Z1dtEէw+KC-LڞdT!* nTe'3X9҉O'#|gua㷶tI,WSr!p>ތk>e-zrFhQRei卤pL0|׹Zm)Eh9_?eԩ2bOV˦f& `ΉJ[  'x=@Pŝ,'#Tz0c#Q͌vRe<GS/XMt ,i!iMV!3.qqbsl)'Vy\dw:\30q3 @.8S0 ^d" `MUҬCAÀ8Qky[oSk-y:Yjwhζ=ngy鳔,衷_xhz<WWFŘPb5{.khEA{_鬶MM &6$"\B3d, /%*pmER[4Nrp{0KldeC& s͍WGn&lԫV Sv[ U[y lbHvoҚm9 :JZ}&!Id 0!O@itڬC9\R1|TY[5zAKI[j Us.`YRczq޷]4G&HּϭY/agQp n$y0TO?H8354Oixb?M[́޾Q} i#QF}BH@Yw'53 T9nJ݅ 8{ܜqO=`J'+t+BDJ  =* .;ڥ1p.llZ+WlKq_VNM|DٺӼ5`k~QjsrR9n?-j'ᥥ.143}1G=BqOz2sɢړd8B9F^n.Y P^'б6+TzʺGZ1`|i!FbpxU=c e YàsHlFlY{;2| !@[ȮE܌.0t|3$ҫTmJROٌqTgw}Xéw%ty"))AV|42*r8VdPhqX/t}hk sx/UwJw.;@:Q(ú|*x/HjW6].A@jFXvJѱP;J@h98JD iwS=,OSuACW2*)m_ ,/»&yVfm .{D/TJgg2B!yʿ"߾Q,;UK}:le E@ڐd$BJ\a2V u r{g`k[vn{ E> 9&ϽFy ܪ cNr˽f]`ȟ"k^J_W@fQ[EhV#:ʥ]@ftLk[ecKa=M7!oؘmkT9tfgXܚ(B^M&|m/#ӆagigۜݚ ;o.'ad()!lVܭ}:P(WSJӶR 3;a V҈ƣV^ G02aN1}\xi kj"^^\n!""e!kFpr/N:أ`|mo'n_|vz*䰯Bro 76BW/.kR)\j&!4ruhyRXXԩgΟ SEZ{1k zPQ[F'Q.K_@2v$Ճ'oVНÙ5)#Ol$Zд4)[ɴ\gHt/y9G!JOךGK>=e~)RAChXC:8pgk6J coe~BϛvlJ1G8@B`| 7+9Z<|6>K8.8'3! 븱m̜Յ]cvSSiWh_%tDEjX}@v(mn&C&]ʺd%oIOl2T*pv96xIlrB"ZicJ([,L! im'{J4݅7W;|RU(g#hqա2 tdiRcPQR [wANbfs#p"wcЂKDV&Ȅ >rQ xўF_k, EiЮ!|>hgXm4Fe7*!cfx >3ONݐ|u'JGv2sED\ܜLZ##!MQPJdq9ޖ^¬d~ٷXcvcϫd0RXO⸡%=65CWNMar)zw͏JdnF}k ј$=?POSLCJY[BTۼwoGW8ڳ:k c h!Z vvijo\Tl"V쳹Ev{}6!E O1D lK0[5v4&.ԀbbkKl[M70Oe/ pWgж0^|9y˰θ̻FŹIbb0'|8 eYka(;ܛBW& pSJmφϛvG|w;MXݠː-e:Đ6rdt@&vbC>'Aq ̀$fScj3ia0>Em o][KW)^I but6 G ̄ui-+Ѐa28$0jR'{:RmNS,7z×^$S)xf*7E$J_1r z<>|lcƬ6 >fu.\v[Z'~/& bM^Av;}s `nwّNhK d=R|$rpPϹٛh쮦 qqi g߇N4 #[}|b\)\Z@nf= b"%cbQ5 4SZDHyk6>7 q霸w  "98@" e{k>͆6=^4a;f8V-xKc U(㮂ypy3֞Tٞ)na{ `17GLA}-^ȹZ9?AտM2&{kv7a Xg89959{|W*h.fOp};C"Xdo%JkcsOcT|wzAy(<%.JrtDk6&ic&`-$\ Ԓe:' jF;*fsKJm,h.'imVtz+T~̒(V_b_VVy'`<Ͱ 4q ױw5_'*‘LVH*\KzookpH+v6vU-MǤJI*ܢsSA+/äamPbiI&t,2R3"1X8Ĺ8烵3)5!sJPOO,.K+%DNeLB(2Df)F*D .~n|y7ϧw!Shpk@GE* 2AK=U#ǭWHi4ճ{LMXd=I>wG ˰Ơ^xzzed.Y)u>iB @K1 }ǐ-$'F33;gSK:NQ~הS8eWa˔3wՖ-TgV&R&';7֩tg_tk+QwvͥV^QpZ.vG /wP;6BPwjcivq{NIcqԼ. 煬{V@.1v~u>,88}'ù՛]׳{dRÍMR=y(Oűf7ު3;{Rƽ_*ƧS!gy 8!nD7xF..B]|[P 7Sr,o˰u`_oŁܗ=©~dr[3#ƘI(x>Ukd1gB(+\ݱWo]Z)zݳRQU7m!agH+?ƿ[y!`"4 gڇseo3ؙht/"&M rv^H"AQ 6% :h>]9&,{>Xa0mAX5}pAjo+A`m. Vkڰ!B@tK(Rb  fr_uɨEkY Ax76;׋U1[q! ѥi&FP$S"__Gul FZl ( 16!wr9. H"#ȶγY0NdR'(I%a׏?n;e!KMC)gZ&+mWMAm(ܵJ$j qp"棃sNu)gf9 Nf FkXP(EQǻ[,F/kj|Y| ! ('W˒0>lZRwWXǠdn9B|P \=Ž?>03!|N?Pȶq]eŠ53h6n`H婿&b|03J,X hsdž}5 un3b"Sh+Xy{uh3cr坭_- ϽWcbF!4"lEK>4 ]-ÏyC)ƶX WJ'v5 2Q/yDq|K8Ԅ{yLy0VRJT& =:ޚ;[ 4e2YK: *J{9 NT9 `^c K,~Nׇ< 5sQI#D{SBaFtHTg(Bɲ0Ku f~< Fp3U#[q>oP`= ޒOv^~4 .HLR6`,or4u[30C]94"bjfhUp!|XzenHO{"or>7tDϨV17Mfѧ%\8|2iNi" 6K S{Gy>yl,wfC}"hHHtߗ,ͧwQ;{\n,\g(dޤE)Dgѝx@@TQjwS{F6 %حi6앻xl?=Ol t=I5[KN =>Y^HrW%?>[ Ri8El ^EJ]9a]sRo$.4kc-lNxɵ ah3|YF\-oIoON}9(𭡬c#\smٳl1@)[#;\  ׌(ʝ?1z*lAV;qˠy$xs5QA,`*i'ӗe/9L/\AEPJ~w$^i}^bn?Sr90F\OF%aCVI`QwT^K$Cjs$ h CABKZO#HTA.OiVhl[t,ZYD_9vGhB:oؑXr%膨6;FrtF^0 R aS'ɛ;OTWo)Y#M%wۃUR`am[fi=:wdy6^u<9'{MT요O:,W 14LdW&d$H C*'{y~{ŷUCd[c| b!5?Wt]fu@b5hԀ#,5 Ì;yͥ9 2#PGm%XS:֡.h][m8&7i={Gh+!.$Bz8jw#27wWZizhFVyQIw=sk!vR-yz}WvB cH{_:)L^fh.g1L/pri9<~SpIYC]#ݎ]o*A.D"(? @%B{r-ܮZz[`Ho>9y"&3vJA&ȢC."[-'ICkCg;7H[a-4ޟN!F3x݀ьGF#:_ e][j_!!^+fVŻWZ;k(IZ r Hymu/ לs}Y[+) ;lefGWsi.iK_28?/wCzy-ֽKmwǶIxי ZۀڼhѤ~>M0^ԆY/_b-:+sU 5m)EDhM:vAla]aWX-|S!o-P?G^YIfj«ZΨcұ 52v[Wkq B/fAKP=EYKKLo.l(=Vi =MGI`-MЇij2Gr2/ oN>ؤ`$?Zr |$\80g+q64>:ܗ~)G:N?tEΜc]`ܿOQ>D?(@j ǜMxYJyJlk[Ҕmh='D2h @9l`ͦvEy7 ϟTuBiRO S7ġ wY#M*O1.ـiNG*`~1GG3(޷C"Da 7S)ہGtlv͌5.xL#$,c^LǓF r|#H|Ĉ^K8Ԧ89T$ N9̳gD0L9t0jxh*(h1α볆!:-r ^:eT"(4#v R&3Xᄒg͜lu 2XѼ XUϯ-2<+B;:(n.\R8_BVvU; X&!^`9kqPv{N}!܎ /K % 1My Ĵ^  TRy"\2]*[I/֛q;&t>]@T}#zKfa]$߫vqsuF  U$e=qk_:9' Q_`c2|㐢,fz <3njp(/Z$h!,uC94GU(u˛XWHA%^/e}NmC_Sğkj\l9Um굜~ lanj~@h;06 ({ ԽZ"ȋ5ɸC8f֘ j(KGMN:LB9H_QHRWc9NRsg=/%cw 1?ObC\JO"kHe Viԫ 'yvH9>z_%H3 6hNk/zu"i~0d$gԔ|CTnREWiA斏79jSzp20[-IKPGߍ=g?f.]$KgOӔ7i`\ZъZ wIr~]> ym_z;!=i&ܩ{5CTQ5o)j2;y"[!k.k(炙;C|OZiB/w[$bjB|_9 er| Q sY)P"\ !{ e=g %JT=ĺ3,~C|{$tU \nL\?FJ#"BտS|<^:%+p@nҴxvY5n *8A؍l +:8~37QN89Pb&f`0fKB0^qO.{=_D{evmаGDE 90kٜʪ Ls@;K'ƥ70atE)挼w+><41l#g)o}j f D1mnzx*U+ld ^ki5$ &j(M~a *D,"6λwyNbb<n`d|˅g П|UKB(6>2=Ԛ~I6'WLgcoO/:bݜ1v_ޘ,!RN7FO; 8bG qӭhhKQvϢlGDsi pfu-5ٱ1PBwGhsʢSNR}`iE&4d]5]U )JfNNPNig{%j%onMUS:ܾ%gbՐO૝⻖LlI$!nzcΚ*:O#ZnS31˒m@UE^>dR`L"B 4B0vu/9 Q 'Ew@[+mLa ;uxsL `Ln>6 6|e+ٻYbenq-wUuŁuZdG1́h 0$ch&Ι4w|άW>Wfizcia\ CP$?diCW{`9ţRm qYJG[|n+/m`״l0Tw X.$(&\کA3X_;!c{-ޥ=\ ߓ:Dfrhzx"ߺ*/5žCH)%.^vqvьnϲ&<9gC.>!|Z"n^9tc8^ّ7>-Ɛzٛ#vʼٿzsfwF̙+_axEoJHCY'aTR@>~DMc䲳:>E9yI&KhWXW"W I7yԄ Z R-ŗ[A,0!Qp \苒-.N=ok:^4F4%%~ԌNM+y-M of 0LilU_i~'XN8G[6?e<~x8 {T}fH9|F5N.1F3Ȏ"uitRíq}(Q_F44&z7EICu MEɝ,SVt: #-cs4w ι 6]ߑUгhkމmXu>S/tZ5 G27U]^0,T-FMc2 ?y@LY DfDX1mGІbgL'BMKQ51}̛C#X?Fx%bn'wukob8#42M^%Q9;₍zCs?5 aȑ_+o?S4$@vAg8POrcȏ|iۜi.*dLzC.gmw6%PL1C'=B=r%<*v$/cDV\gKҜˡd!ڢ݇ X 'f wn&B%BAl\)E&RwvU?'W&2NMe0"JigTzg{~'F:(\ P_⸾KX+K- s. ~ !?$)2DZV7ʻuc/ ApRgB!zѮ*x8xz-5Û)1!Ey ;_kt/^z+,ئ9훱.HD j ]W3QE\oTc $ jߙ~_i#i0 ?vh]^k3"oČŗ Vj'HW@Ll/tŠ) w1w!J w ߓl;V +'X3^މv܇ЧxVY/7b=;%{` GSmd|N^(Wk u! 缱\D^"1BVV4eĽɐ𦓾ImFW(=ľɘL0|Aȗ@lwWRdBw\M2J'%v"N9~Q.GC&ïb')tbנVbv]^ bFQ2ϥ A,ݙ+幅] MdSz+A'љu\Js>+(-mͅVxܺm&+/KS2%:WxӯY^Ԏ<}Ǻ[a˂ͫc|(Uh| G!@ـ$^;Ţ&`pIo3*au|HSM`N#t(|?V}lK61Z4f1\_7NyLc]K}"e-7QT >Iy9]d3-VvoW&%6t'tr[ Ԅi9 M=a#\wUg /KXkvաgC&r #]g$'6ܤL@vxDn5-3L,yG'/8{$f#mH,jD@$2[g75fh:IdLo iOC[P2,[ &BZ )K{e*ȴ|Z8~&f@G 5B[ 2iv|PFsNx4o [Bq%.y>7L6IBt*JfPc;NeԉS8mfttZUqdz! )+DSBZ#e!Rd6Pbv) BbS^YDnV4ڟRnMf es3aiաDz %%Mӡ}fYF8ϳR̎A5fq"ҷ9-C (F䊪j4LN߻ WB 覽9^(8%!s'侫Y$_ J ~ϜPn8wfdTteP.JfU1t_s Z/)^0wKȂJ&0XFҲQ\Z7!&!yws*Ksp+RKi6o9GxQDgնvJuM[XzY:c`?0 xk_<)+598ƗҤ>Ueykk yC!O;TVc^>Ƨ ]mms1۞l(bۑ } *bdG%ă;L^׳Z6]%0D='G/UM-Z$S>lrLۀʨSD6e,(Q%: "[_;/[0h ֭W븭^xGĝeQ.l29bEhNf..s`DL Q9Zј`VL#rwDm PJ9" c=KAŘ0;ё`6>75)?} #ˍ813tW C|>>y.A? EFJ)2T+)RPΤeo3wS)Ɓ-V<8ҼҒ kߤD@ P?ǺBJk>/gs}bVe'XߡK| ⑷Pm/58ruа$gVqJ`JĿ^%x ~Z @yQ5t^U')i\GL@)i>AV!BI~GT.*+Հ `-Y?o*Ho9 ˕z+?>(̭7{}]i.u߬ Ė0 ;Ҧ9_{4Ys =lHsس B&vgʂ'IAwLQDEDFx'd|g`~&a{O,⨹:R_Eď8ҹb5lX| Gd gZH=7Le!އ`~I>ߎ$lg%;n+ɾ{v$r_̘3KUNJΙm-p G8by5W՛3wj*iKC 2v>N̪ SRxD͗DQ?rBpY&WO7%DoӜ]E*E0*#cWؔجL"ս$Vn}R"U>=d J t`JoP/;9٧8UաY.8ĝ w"utV:dIqOqG0l-n=Nг>r/c$03 $ⳣ=Z֋|)-pĒ1v<56^z8t5)G&2M 7v՝F4TizWx>DAiP|ݨdz$;kw;.^$ߪ&3QDDK|gn8D)Ih#TY2ݨ?("ǥЯm*oX"%?eX$`xytAYS~t9lcGQ̩" ]MF2yԽ/jE=nIp5&vāb*Q?h{վ^ hìG<:%ߚ_)m$U /i헞{ r3zV.tx˱Y14 cupآ7_Pь)w51ro{1vcGs,ޮdb|.CERʰ_5`XLqg`Or1/6%k̹U&&cd*'+V>m+`RtJfx}!ih:^Ⴠ*X;IΛ[B7'YD6ZQn=CG%(lbz2hDW g>uH}PU-* O xjOe `rgՠ- Mzٓ׶R|/ "y*=0#z fI)2 DO! P*TpdXOytVx$tBlv>m٪r6i-HCKB8FbXrfOdVv_;tÏJ8UltTir@̏䚼qE$Ly:L7{155 &˂̼ ;k꜏O 4ѝ820Wz+803E+ycu kJBzc>(_ȣn~=VA ˥;ۂ'@xePDw v_ J@y+L91ekg`:km!48U. GP}SBkY+;8¾ҾT޽W9t=TgMY&Ħ6A%VX!i1w>F//OE74+>ܲ_F52(a&bFm}SK\ oB fqܿ625MzRĮc#`/Vh'i!l'5bt@,ղR Ώ'PyyqRhWkic27N;WV78 =O(_¢AQ7]ڱ[np4U}:. ͦ6G^7"gZȑpf'򘴽\1aa2Eo8UO~݊Ls!Dlu,|U/}C\y+CatДL>n*!=#1X<۲U23MpZb$Jt#7 %rqp/]AQiVc[!pUfwڤu&I7uBp?|.)w>e% !3ۤyr`u?"KRse%Ľrȑ^d/Oh3(Hffk-a0q $Sm7l3yQ7b7q:J`87Md"% ]cQCp}.O "G?PmHm^+F;ZֿO  )**->@yǽ#,kw!> agݟ8Ϳ0⦣.|j).3zTw2629 q\AAU6ppv4͈a̹ŀslH4+P~Uav!=!pjL"ׇ49Vm *""vH ioZ$}r٠0LQ?NOmǺEJ;a)ӭ퐵} (_P0dj8ɗ|:.팫ްWX`gL_C$<:A{Y$aG%nF8{rˆj$)3A*I} )~J8-f8X_WK9#2#[XW<Dž)V]W.)0ǯ ٵ d4VxILwG\ӏMQ9Ln i #+n#Ė(y"C u b~_- 40r:CESt4@bE70)b&lpt"!y݃ /a#{z,, ={{wvhlKV}N,k2<[S;%TPEFp{L5 ,p@}{~6Q#!e1(θza%$=|FSn kwsDקjcz'Lp͍0S6L .21z!vi 65Hyi#c.]N. `Nw0R$ƪ= gXrf:J3ċݮ8nQ߭u<;I%U b#Ŭ$z>jw [8W$PԭC;#8/E E:РhTe \Quj {ryͧSꋢ.1"6U ~ < ʤfa3}0cx+Tf-hDue+:W/nbjz5qE?^zsLUe+k1P87ܠEkcea`uа ׊;e1Reͮ19Mw+9qA82ycUOƲ$t>tM\ Q; =a>''I9L(4`y|@Шĭ|0ɇ'0:*>;_ }"(ʥm u9+49_%-?!颊! " qsf`{*+x 4;=[T3A4cpEt7k+g,)C?*@*4DH&Vp;Dݵ+388pe8&A\>bҰ qc ?.3} '=5>SE^ȃwMvU"V ˶F?zqVYf:&eZQ+8x,ǒ8 Ao,`vS|x,lf\8\^aj VN ('ec ƌ;c0n$*<貂9ux⾝yx))j-u`OL˺$2ɷxF*!KQQ_fm43قi_M΀ 6Y[{T|s,3^U'h$;yHW^ 奥׀Pԗ/1w<; NgTZVvOWs궘RAx5▛NM1,4ZN-nMqZ14܌3 /,DXx vPLmsٰ׈pqlNIe+CwV=SbvBmn Ĺ؝޼a6y#< ָOL}F!Q]ps6NCxYVßlœLr 4m̱`J0UC$4uOIqVjņL-IA˻h>_cvP,;)g{Z_-dWأlyyJ'J|-Hө[~TwT:>*& Hi{2?E4aC5A^b 衂09IwT19/*ؑgp_MNgpVVۯsU{*y+wL /Łna1)S4YMO=kQ%gtޡw>PFt fz3eR^w!C(\z '>#Qr@a `x'ޫtP14|7rA[> ׈y绷@ZH0:d09{Ǩ\;, <{ 5=w^gáq^OAlX4T\>1|W[s,S6wvR\D׀j X}IZ*wպ~4}aa" {fsÎ7Zx$mHӿ;9gZBƏa?fUwUư\#3X},ڻ$=Έ(bcDj~q$j 1BenkX;h #-~/CMn;4V\PYv` y̤] :N4 9=uv09Di73ApẤsaa ?zTm+ۚCvjξÕ[{q_F`׬`DH}p؆bIրFֽt'XpO6/1޼H^֦ת46k{f>?I} dʆ|%V w ﮅE<>GH0y}zJ0|7;6HnՄ: B:eAO T9YP Z RƻSJUyV<9y̏\fo@((f= =6𣲒; S(AOXogwe okARo"vrI&txbll8}MJ|J=Jȃ\$r>(Tujz)jIXa7C4d nv}.a%\ޛ#YဆmDo?ZQ)R1dj;,Iծ_|s~#*̛ eg^Kgl~8_hG$s@; WE&8ɫYVc|֘9Ίf~a̽ƍY( "&fP؋K<"N/CS '{OIO$ANMF/VA e&A $|6DS3|ٵ۬YN* [eͩUqZ:Wu$ ҖĔ$iCLHQOEj`f!}f]ukFz2[4<|H y~ze;,X*2YLg&qcfR-1|2dkH`8p!VD [ГVE+Ei7Ci{_櫟C+0&"ZJ\s3ZEV79몸9'&1:CdmhcB$FHM.KS%%3޸hH0ևڌpezܓJ@^ ,!S,W1ijQ{VNqW@dKoy3@5"΍`rČh \xNbw (gaKFۆzfToYEרHCKRϱӤX]q*^f&'e^ʆN"<:<0/a.YiK{5l[~B)n"mWQ'Ԅ.L Lypt5ZاEb3yX[FL+qK3|e|Ŕ/q2z WP*tj>y2M(ʀ쁃z,؇㩰vh'a$1մUnchB+<f .qR|f͘wA+)kk^_QaQɘ;Dk;{&kj1^/PWC` R:qOh],p̹7Q8>- U.%m#1mA9=ɲl#=E,VT[}KIZ-UgЎCnE;cd$~}xcNm,ΓA#˜*+Xkw&b31=@Ԉ{AL t{7 ٿ(|ș1jŊէ5qc096Z6iǞY^WQVm`}o[!. :9Y24f3*,N-G{QY.nH:8 kfε$sJr<6SftrXUf.n6?)_%5Ȅ[J. KDνQbQ'z'Yv'kί?CeӶpzf~xGjI>PQ3(}1B>+7grP'!>FoD0TClƋ\Kj2a0ZiX~ wjd b{C Y__]M|)S;튍iئ@&x_يldc^F1ldm dzsAKPUiw:V᜹.1 Ρ^z):oǽ9ČMd:t}iSnʐƞZdQBH8 Zic1Ū@K!QhU;A&}8 xc j Rs__>i=ˆQeQ1}raeK66X٢vnd =s/vݯ?aD'W4+:L[j2R` a˃U>]9VY"[fAu0;nkvMJd j W~uɻ QMǫ22 Zﵯ:/sف}~U rxvoe@5/:ZM;m1hq[B%dށ@^oyl 7#DA_:EA<ýF E7? Ob:͜|*uU$ùs!9%47쁺T`QQtlRPL5 %%ߡ\7*X,175'eT;VG{#N>bs 'oT[y^?[)1,utٯ&5]Duޯ25dSWݤ,Ow(]Jd\:V:^{[qxӆ1(:F2)Als*A f`4_7ǻF5x)S " g\smPލunMFGi7F20c-]v1x?Tݔh.Eӌ_ +Nq'R}wQjbf#LdуqnkJb(n. G+Ps,VſFBUjO8Dn<G /PfSV,sxYik,)6rU}21hYYCw}1Ajء-`1)RECRa_?T.ZqWޥIHLF7q(ړ KD+x;J%C hB@1SHy< ėps|7nRȋuYy ͝b{'{8ӧ1藢 o^wW0\0̵+/3pDh˚jPǢ \W0ؤ}M|DhFksd0QPzʵ"*Y繷,Ww du"y nX{zkLnř)HkOo\ϿS>G]ϧն1)r!Ќ?T.àsBR=ub_hnhulܫq߉4١ԪhnֆK踽zWsGֈbX8cDgB,Ɵ+ҿb/{CccŷL_Cxٺ!qB2켶UUܲŦ#Cn\XY- `6m c}6zY9[y]9Uܺ̈v<5l"D=;Rv | Dz֫ ^c7kj,6FXG-G)?6+ PfJl[hE0i+X|A|P ՠU᠌>7{]u@ưڏ;>F6rAwID=OZ>X0%J%* s i)8$25yf=QwLI8I+#mg1WX{O'=qÖcڤI^C _qB~TfqY~Nf- #| owf:\䆏%1i<-{A¡Þh@eW^ߔђ1L8-> #D-?Y64Rݓ1*p%ỏ~,vzF>eTfgIS׃lPk^kû7 GA qxÜKim xG${)`}HCO1~PEsnv:.RJRFϜ!$?<`plD:JGgXͶWVO1c)%{q[ٌW\R6֝@NSo/зvVe|M3 0.v . fG [ 6xץ45G]OIJeI .MqY3=f%0|&3ct~X,% }O^TIxFe=;bZP^@^t;VF}i %\A!1)Tٕ~-XWZ*L r1#/)+N:+?ƃgFP KfF!2 .K~Z/$xRAn-2XW0gYclv`~iY}5~@z5fB6Æ 8ӱoW%J*a3`tX?K7OO$7c$AOfׅ)1Mp̪"]0į~{ S!{6mETN[+Rs9%=^` ķeꦓ GC>۳'$<~O+HN0Sr֫<7yእ DdAoi%sR7!J-s1"C.emTF1fkJ ciC?N$8tro6ļ`Cb֨+G;ľe@s- ѵ5?fS3,6Ev1i<~e4pU BѾ]L]V^N(C^zV%xHPKFr;XX?`!mN;&l,O*'{lt,,~iLT2щLR&Vǰ3saUaGz~oz.p .!^ 41y1v4MſV~ @ fOR`~Ye\cb8w D_jvS&ۻ)q 7"- 1GFF)K'|!V0X0ՅF@㿠apِ+HTFJϻ`gq5ګ,:vs>6h*~^>Hۥ#<2Gϻe6 =#| ',_l 'u7? 4CVoe ڜyP/{F%<%+Mt-fE::M/(R HO[_$>1,'U)pt0.\xIE喯*.Tf)=*AZ'Gᡵ.'s&03DrĐqw1"%p68?Ͻ"RI`-8's_MQ =q#^QHqފU1!2 7k@.)Kh=m$TFPwZjzl|2Մ KR=oEMhKQś)v [U?(\[F"?ӷ-W_O8ݚ/י8 uHd6/Kw[u!j(U}Sx~+\VT٦r3NZ7 earecr>byu3P%(}kse1"3.0`B$qk:=[Ƿ`I9Huqx9]Nx!21ӪZ:8 +Ns)k2dͧ$4  Sl媴P<؄$χ =i ^2*D,G}ZZ ˎtq,VS;2,qfV9I9 !"?x*1~!g0~%!tep^†*sN3qs%ͭ+v 2t0^ZmJp4vk,r$fAcpWuCKkI@ 2 &XA%f@p`y8aq}W/],YGgUhs 79z[$DѶzr5mvokL7Cࠏƹʜ853I8:{#%,=7撐Ҷ䍹\ 3<0d>ߜb XFk2NjpnM,ʥ$?]D?3Q+ǡ쫈N܄ M)ܹTCɻ 8a~֑jR̈́Rſk2Eiyb83͕˷fq&_OmfVnlA3ExxO0ZЍއQ" Vŕ9l4q~ P~:xU݋m*R뾲Bc ݂VsH=wX RBjZfRJ.EçyJ.c 6M]IQ#-#[ucǎ&labh_(_\V^a$ϞfP6j(u@0\kKŏLcb`hا8 ~Jܰ@ѠVkɴ-nA6|]ÉL/px\ gk9٣1ȭ\#j_K4 Z+ܡmy^҃ZםE'K%S]NdMщO", -#>\x;-&ٚI~SfQYi&,%?5ϸ/Gdčdk:?7q*QFRysB"CjL`sO*^zƒ9\cåK;Cn38;Y}_M茣.eƹ^}8Yp+lB݆ mvndx"bkqs(6GRNtu[&N 6T*qw} s(N> ~"NGK<&J6-/Kp͏ӒA?Qe/N4 lM.|l֩b Pq|mSe\iߤ[*ެ.EIRoOd|4{`kc޽on ;E>لiߪfZmAӦv$1 i/LhEW]o腜HFN)DBxH4̝q*O[.B7^?n Evu a=H !с젝Z`|`1 @`a.LfwB!zϟjxz>O: /OBHeSWZ\A'XApQ)JZR"4~~\i>b_AvwbN|+yќFzIĦ? 1ʕTWo4SQFPܐa'<wQ $ʿFz8DF;%WJm{i@VPl^|Gz = !) c!N@MN0ms:[+Q fN@h%'("&/_: 3&!f _P'6|Td3u?'R`\5+5 $t.Là!NH9d̆Uʐ +.]}_A<|3ބ" $D9ꉕ[cvtMI)PB+q 8t%kxd7qŌ{n~H^(J?vT{uMƋwC7 7u@ /k{Pu{\ в۪MimKBkvŔuwtQ%@Kl޼gϞ: (tےS`Y'~{: E4r>ð rUCV<^$@]A ;el(h=w9ԕyQvf E&60AQ:df qA:eBWɷQ y1u=lbP|n\]2#ѮڄצCE9=S܍x2.v2V@$/8f.Q9lOBn~+ DȠ /̑:SBpw7=1TO&cӄ(ƫSʱS䋶Ex"(t %{%*F vjPiΨ#y7nyCH%\Wdd 1B-ܖY]`Bۆ\owy=}7o"0?à|(TM ~$ט⢄ Rs!b>h֧i %t_bM5&oTtشN9 ׽u &FN6QjTFT_8]@٫cg B`ɞՋTo> i׿O(H,TX`dK2 Ga 4.ph {ե&H L0J퐪S DK/gk(7Ĕ$+:ZȚjmfL|Zzb९;;OB++{Swx;4V\ƧBx4 2t0gec[FOVik\8ܩǷNԹ[KQβdb)DT4*]mRtx\%_| 1zߍ?C:9!#Sfps NX/J=So >T+ 55 Q~矘;IN%i+&bB%z_m|7VoXh3,&ỏBd gA%x>1A;-9"owO2sl S 7[NHV‘L_)*q9RS{;展q'0Wv/#LCDr lƉ &;Ζu.0[դB PSKW-s0s|)ǫww?CPdb3vHgz L ֮sj>P]>|GӪo[$`QV䕐H]ORekT686@lQ#A@}ZZ*)BV.³aXɃLne+l-uiR-l,P+#h`ݱJ* Iӳ1ǖ%I3: .%c~ifRғ¥ZmxFP7SPQ$sG=kMuق ~B#+įrNE=&12jh ׄ`MB"h1CRN]Eqe$PSUHiqq1NxE$b!|#7I|v=:Ʃ0t4|#"\<Ϫ˽L\%Q?MV w[@~@`/wd Q( Nji8ҲlhKRTwc3I yYx!Ga}B-Pf6/ifKgJØ4W'$y ((E{DX'黤q"c+0 =-!I1ݱһSќraZ& 2Gwr…^7Ea@4"je$J&&#"tj$Ylh 4u '/w<^Tp.PXU|)a8_*eT#}w-w )YlCdjXa4W6y"NN:ѭ!(Yo"uY/T%/ }+'}2j_C'Ӹs? \U߁ns ;펿>~r@;2fbYֈk }BphgN9|Hh u>˟:*%.?֊@k|Va@Cꛃ6t\W雝Ʈ%3x'B%/j9@`k™?uAՔF.frC,ue`)C4 `s6ЕlSmZLs?{): EhP9R1ձXedNJ2~jş"c%zn`x̏DkW ޽6%WO+4fR,km(t|bMt`RΨѣq5{G~a$,tFp)f_ W B֐>t#CXƿ ;~D]d'6UO4<:L~84Tثw\}ZK-:q>G44SQlQ#ƈXsNx7.]euSu>mRΓ1?P7O N^Gl*߆[W3}{\-KYE ھvpu*/DLs%o?n.JYH .{^6Q+}P+UˁV$MouΪv'˳nDFoitv<:ւw%gY~ocl*N2ook=}3V|-yjRN׵/-!no%U0%]MFGQV $"Ȍ,Z8,Ey<,: 0p~3ٞ(VAuSnjqg+Rm,:|'1i\z19o:3B 9q 5Ku1#{i@-OIGzJ++ඣz%5S&G^[DC`׆ԓ,4)\cU5wPd@/ᐄ!J[ɍ=Z/f+ w!ͬ/SPĠ D]DTfp}ȸ 5#Ni0uXgU$tҲ-1x0&FޜZ_W9?R/w N9!I沄cZgvciW4 &S 3?%< W{PD?vi7@mTn~)X7EiutH&ne7R@ m2<))˚Ao+NגW~QU7V$ :^ֆo /Wj#)_yri;ڐ[T_78W;F[v74-dksÛ7 G٘+ŝcwJwo"Y ۼ6bU^H:$ִEdQMx]joˎOOe(n|0eV uB+l 0j ݑ> L'.CU|oZC!T.<9I82wNvti.63mCq,ooҩtYa[w W_05χN {l^#ǎsv(-fYce oy/W6@O/OރX| BJHHÀ˩.iPX՟u@jW-DL:i?g[4fzVjO8Q u2PxG~k@/jelK0=(8G rȦ0C.-T\ݦ0h:Ixu|>ᑌ/q`+:[it% -5>H3Rȼ4nܖWt%񗭇#A#t\*Ru< a0EAu)xZq!Q*x7߯5!}4L>5lF2l/aDrњ+R FXup6T-SOԚ >)3}&#jkx$Z?o"eig`ӿ!gJ=ZQNfCc\W ˎi62]#aU(3d,s4GCζ=pa}6EAF7"3Bh b a# CUa8ܐ'z73E=á l:Tlb/>Prj5y)+̨u5v%*l^;Aw kRTuʆ~N+g9\sE @952e˲7ëI/kw!;lMyDmu'H߁. k`Q.Tjftڕ-Z]Ɗ'>M ]pW1,ݛj'-Z/xI@ggq0}Ot ;8/'+ sIwI<6Z,`Bz4^[m8 D3u:xi=?:WT-=pQi^γ/xf+CEoe;H@r)!N$h1ݓyݹ6O`rԦbnd7Ýv>%޽WJ^Gޖa78E?Chf<AÕw8>%C^u%4G^,y5JF[NJ&!40NvN7z4X=u H_D{Q;QVݐCmS-#R4Deo9)؎CPaexi:Q SS}weӶ@<tl[9VTdEl!;b="~}FouH̯ں ɑ&m>S>[WgHI)P?2&(uv#1ZָnM.77PR`*IdU(2V=)d7G/ ]|m?h h?*Ch*P-cN;Ċ}AX֍+<'= * )u$33*n5W+a"rv:V{Q8Ekڑ*]I.[7aJ5+~C-?I+L@n$ 4 O>{ L 3fro77U)7kN̗*Jb(.Xjs{ߋOӱ4DWsp2 Es mrRgeճ u/( BZf:^y(Oλ,L.@R0>f%_y$p'p|Uԣ+HeM~߹L`~My6W,=TD4Z5Ł!J.WSV>"ؙm'l;z@t،/{Px  1ئufhs(9wWU^~i]1iWc[Ǐ jw+aN6HTGe/<8)Bl-PB(KTd緗lF~VE'spM]>i|\f\P;8}Kaw Vc[uR|ïDgUCRb?6 ֻ'\o?QI gz!xOİjm]&rW#SIHerkF&+)\_ſyMYAܱK V`U$ OPx^Fះ N6v,Ӈb|ggdF2 wfc>jQF7Eb|dWA'sz+ ˘vB .\NyzH 3|gQk5SH`cW?aSS02@ WJah k[n(nT:sǎ,=hKn2QY>_;,@$^2@pL+1СZ5I{fm|W4k s#i7`]zz9wQ[z5RSxJ16Go V#BKHDuAt˳6%>B[7@:_ N~;^xp4yiTqO ٞ@jĆU*k):HY @)OnR EJq 3Q2]Ma$zI7 'ZL`u/)(!@yH<=b5K"o2 Tv]M GLt ICsq؟Z X r:lgR;G x8i(0!6~x,fR5|'&y4dv8OZ=Q0r KIZLt$!\6 9Pm(D3Ǯz4ޜTttT]EG؃{f5!my]e~K ٥npᄲ!Ak^M; ~ZR*_RAĎI6Bp%]r$ԏÓퟳ A9Z[?xUfVSRƍ!(D9ɢudGkU)#=7os/T>.lxWTq Tb]D)= ?Ztnכ$<1{`IV0E퇭}F2(BM*8O%ZiPӌ SeM0}TX ]OLDɜSS\8g%itUhL#1} 5L tVEw>' m#ШOY?J9ЬuW!<(#KE~Aes;-ڟ} $ĕ?&BXX1J*KHrćm+g& S\/^czFI㐬ʞʽ-Er4  (R^y75u*a\ے|N- |b2[FA!2"O쏀( -Oj eRHo ꯲Йk 7Q v0*Ma>eD%dwu e{@Pm2sR:"ćYϟ91 |6#}Ry_:ئ,ʼM(!Xi6 2'-sI*Bۓ_*<{vNôQ %&,֙hG"F 2>~~=nT#rM,p^kH4`RZr>Nک"ڸž ~6ˊ3snkX},iu 6A:;4gj0T+ݚe3' ~kj]pAPoKrПO(x[<ʫWaG$ާfV77z2;7PPW-^TYt-eB(%]MvHf/WӵB sy_΄ӥr4jbC"tsEh"yP z\4Kg }y^?7IM/1a}ȏLGB4r4/iO)*=U)(ϭk-~Y-Ox_TFwd[̀Q暋ߜTL13a\EM~ _DQE ԄzuYHFEStyy?1uj$YUN`n9,npR݊GMA";Xo"m'=..}S,mu2'={#ưv׻uVul ?3xqҿ]- W@t_m>af}O-^tS(0Ggl.m ew#+2~ .YR_7B>G Ggk(ߗkJ k|ZTCmuZ{Y-ĵF5)Z۞V$` ;$a*Nk5Sϋ55} D\ue/qJITGQ:;)Lr+sdjuA7ƍEypч9v+>S αPk9PRuU0#†b|R4>X+9ԦP6B[|tCI̫{LQUQ\C5F66^e\?MO:F)*;rJ%m" .ď)> bh\Go|mfuHRm9x0)RU_xJ$ל r)ߑP{XE|2 6d:`DQz܏ǐEOSHΈ36A#_\H x%_!'/Km+s5$wH\Ю`f=qv@_ӏ @jcKpi'hN@{nLࣻxW/T2ݡ>oQ[EJTo&T0?6L k26cHq4(e6Aԧc| # 8vMZ"~*(krD؊]p}[}GlbifmT@< ^ IT"g+>7Z.!a?SZqdzb}*΁ā/Mo+j ӌs0 *t!NTͺ۳{~gäg6l5kt.,@-!ݚh ATX@{F(NHR:IEA8]]rՐ? Y߬{$QUMb0x}5LDP0h3T87CէFc(]&ED[kQ(!9hRZ"x:HI;JU Yr8W#v l(cZ*v)÷DXy;&%1ȯqh^H x=٣?qJPO$ ȍ:p/(lɥ\kFni":Ɵ\x4$>KNa&v4ubc$A>9V v/|3Wluυ.kPBX23Met(UZDo.\ խLծ$Ig8wgP۞F>NTF0u׸?@j$A|K$6I.9_@$RBBeڭqN>zĭ~>f(9]>3;JH7Ǯϵ:E޺n;c!8}KmV MP)Tzj剹tcek~ɐGxdRE'1+d1zj0w~Bl#,co+ Jו~:;O]hbBOLA J~{'&lk~mJ3%2Fa$T&%(9gSze/=P5H@5.xPp*ie0xUY4'ᴹPxU!7oDh*@eH:3i@s?7>-s朽%.*ѤrN(aU%` u7wkDޒf$9C%g9pG%^\q0Y>#62 pź˾Z4,u7aU9w`y=/:V݂7!|Ya l U]MC Zvh,.Wx `?Q ë0Q Ƿ%>h_%tBÎΦ՛#=۸31$3.AERVǮ鄩D A&xfdqM[`1s,ǫ"bPyբ턆u&8䙮ѩt;Ŝm Wj; =H9˅l kLrhU+o.F)n^L={3UvZap c2{L{cCLjŘZ#meK*!A$a ji U9x 0Ԧ!ތnl%]\Da0}):zbu u`"Սh{M'I Mߍ1QA"-t$.lF:\FXb6^{;Yw ]{{ nK5n aL}Lf4yHF{e9fs񁦖 հ!>-}##DNsJab8bjz }K }#M\i5%;'G&<95n +W }xMRpuȩϚ7 jans$+'s(U_; lҭ-Vil 88ԫ5D! I/U;,; 1b\ӍޜWaӠ~;$.]wAӇ\yxؓE#hȜt|>JBnc6[4"׾CRD"ڷ%Lm >@C>\Cq{;i\&Ƃw%TײRQ÷8뢺- |j1xƦg=97EEd {cF+Òv"I[?+t6ו 2c.=>Yjez[ǫuZBGaL؅5oT-~&q1'0wr(&"g?<tenc8]7 7i6}&<0(@QWrC*I=f9im:mԱ/ BխV? $88EVwvPMWCTrk>"-;.Mh}gE`S@b"엻\xGK72qΪ-B~̥TR;3;XE܃M]D>)QY=$;gp_LFL.u]IJU<_3,ekO:&BRoEZx椠ʙ7s#{+6{AXw;wSմ?)W%Ԃũ߿?Ne=WX۽iW ܻyͻ;URl&+!̇vqO,fր[JfoߙЖ]ؤN*p(;C@WfC[#Uo:Ϸ5&^jcX`U n~96./\EB "ռ̃l:c5а[ 鍻%&TO+:⌰0Pa?zt4xRkU[\;b8W8 V-[sq$€qYLf1etAff_>ry2_ pG:| ӛ0}.ꖵB TyM+ )QÚ6ads{KᥑP]J c&k\u K^PϨba ĪgQvd3-x_.݅x!j.@@Qir8IAA ź9 pLu-U\̵gy Ц󒞐ĕpXIc8:(Q,-8& PjA,d5-,= |\nEe&EvA } LlG1~lPI*8Ʊ M y7pƈ+H501V-v u C'mm6{vgXXXHCN\Y Zڎ6{V⎜0z[x8R/l"3o\pU&5ٖ?.N!JT3UzR5-'Xl3 @*@Gv˧@^.RX^RFtwȠUl)tE5CAMQS4 )m럮p6!ZczRh]^\1%S~ \Zψ:K#hj&WHnrjVG ʎ ,ATBr&FqXk*V”7;Jc=Vlg6^1>-8ٙhWZk̵O H6b?"*N2!B@fsE `04>p9.о":+eFҕB< cErY4ه;jٸBMq< 0N:i=KB ~ApsX4Q!M==-@f`&j+GKPFryQ"D.T%I._p փZrzuC A󴠲@'pTN7 %TdžǶBpJe/]Yq[|uo:zs̮dGgwTxtl1: B%djx쵗^'$} t4Ple=;+l_y]DFq Z>eٽ8qLH$IcW2Q &Ud<,DcWu>ά&p(a+%lg.)cZҫHbMQ7 `_v'f8 >Ƙ$п!R-ŧi'ܥ/^lc )T"0i;/i0b Ioh֛+w!S=v5D{~e(%{4E[wdʑgb@zɡ.ȓoq2=U+*{A2DJ~N׶nZY!E5+_j&@FݣY+@.pIO|"!*s;²J{K,7[9%r ?eTE:;(a%$C_e^"{4>kjCa0xɬ)'N kg3a1^s-U2L &CW-%4ۨO{zB4b̆\QC13L}$R0l-P@K;[gi> J\qFq']z+g|u,] ʽQ3}+R$)2*-H )5S#d<_&Ī6{0}[OHAF)Mgp┳^qHLS*B*=Ԭ K4 (]yG-t#zr /y>SSa3'6v*z>0d8p2he/G^݈E .vGjsY!0l($Bsb^fjGJfPBDlVDLc=.բTK~~13:= fQuf"[𢤼Q`d ?=I ד!2ŁϢ")DNCZmwp7,'[^)d6eoi0li-y+D'$_e-`@>Bc3B_YX%v k# voMSoV>_eFq4:& B/?U֬vY0Rfo<N [,3Z ˋ@i2"gz^w\% RoT5EѝKn8 nn.خmm$%'󰇄{cU-*'V$uDOoZg5QxLd֥,*AsUq a$Ykui}ot̅:ŏ9~ݱO|6£%;78wIof]uA4-(6xNe٤Rwu%o()V`@OVr}vJF82T ɡ| (:WPBPnwX{'IENs[+Uy$L^]Q;߉WB ͭ 8 Fz2q^/X%;%2$`ܿH5@}ԅ}d&Su=KS##4t/yk$?t[z cUbP+z3*I M-,m~[HwtOzu0QDҒ'|`QpCJ V%tOk@:]G_Oj`g@S~@˝;o$"bPLSggcЍiJ͋t>Ar՜!)7^B-Uϴ cnT_ڕ No7eY0'Xwk9uS(|N5441p$KPKc.3=QE/M3+kDV1EO5FJ|h wX E/qkJI ӣJbX^~Fƻ\zc>o﨓s! ;ZrFkҝ 8B ,QZ JU+ޔEƚq;h”2}.]O@ԥKkwN\SE` C 9sdn;-$&ٰ\3R::԰_U~艹Ð zs}fCo'- ]LIwO `PE[b7Otׁ,`A 5i4KiE Rn>$P4؇\[ HQ'z[+M03xU@[|K~ѹR>$M!2(!yz;Π,:;/}7u8Yc{*ʀVҲ̔u {T甆?ޓpp`"_(T5<ѻX&Wp*:<Nm5^S+"}.ͽI'&\>/h-Gcqɍ.jFWoہmU<y%]]J \ n}ĪuI܁%@=~sB2Iz΀e0*eǎZ$4+3;@+ i>yhf 8Ulwmm0C+B9Nnc$ϴܫM}l}ByN?ڏW I4YGJ_KqUB]&&bjj45^0C!bjБ|PigVZ1s9ϺgONWu֦ܕys,t;m2$PmE5V&j FYA2$zԅ`;N~!'*#B Q8@ FaאY~!Xp\^L:)"牒)x 2g/l*d΢.OO$%?G"ox -?AɋX;$.xp)wA] NdݞP)"ltt #Go9-xwn"Ey+uB#35h3Jsdg{ !@߈U؛sVOQpF{d呃f*Pe P*P>&"v=HhS+nT;+\ :;č9Y7C~4+qn %-ܤT2#.8JDon.5`}OX=%Y/bV\H*/4* ۙXbIoܙu5O {7Cu w`!ZA=6jnD¼8A(9QdCl*U _(jZKTsʼH7畀j:_ZTv;:NmVbuFÑML>&Im-"EpƷ*.2؉cE0SD$HhmMf Q^ @ 0K^˕DvO:ߩ"\7feWű4E9EV T+`|90dG6@9u hk2<]23\ec56 d סQ}8e]s8]sc~kuڟ?>/y SC]鯔?V.7 j̩†/{p P>ɘye>֡eDMB mhvC;֌K <ڝhEMXFuۖ ;6*2݄mci8lf=0 ,SWKg̋s6/қok6x2]ZG Lfn 0a C&mTFfok" ]Y>^]K$垗Ճd2ȢD5]b,k/QE.kߐ3^I!]V %vo-L˺S]Sn{1l-~5ڼ24783`f5eU)l,/ޥ"A7\?]bX~Ćܫۺմ~suX6uHKF vy ~O!g(R)!腒\ɪ*-'`!*0Y!zjQ*FS֡йQؾspb4JtX,Q8>_쯧Bz7o9W(ip220[SᯇW%ê; rd`{0.|xQc#a;.g Kˎ"G(㋒Gwh+,wP6TN'Xm!"^-F*K{kzkgncM9<XNh~M*]ۇ?GcԶ_O&#fڎ=D7N 67[@^DjVko% d4:R[c1 ȉX˜n.ހ\3D8;Nh8T^;O[5vT* b9,sg7ҳIR7^2a\puX8hHw=2Uɭ4;Q 7e׻b9M?ƚ3Cy){GOq)~pAihF6;bh 0HLl%,K)k<ʺl|z6O`*C$^o"@[Os9%Q*E$"QJK:[ABSgel !jN:skOzW=фpdG6/BΨ,$vBj#*amWWiSp/:^odEʎ:Sn!_&\Вv+6mr70NV\+eA5@ѱSzA qFA %i@S\8GF j!BԔ rK2U0|eevp*9UskbDӇgqA&+F)*d\]S;8kwKǨ]<[ŌuQ' ѽ^#q.YͦJ.1 bkTVAv޳@>`rNr ,EeА>Ik71xx>JEvgߑƚn0<e>;L8s< pG{LGu .(Ta+3sDjxovȹD$j^9~ j#_8)nnȥ 0w;n6 J40Pn{,s\50hx`*Y"=˞u ,[,B w<5?P;'p=KK%hHTD-q=2S|VizS\w#D_@yEQ2򷧮UANDN)i0w(a$5** ػ{"󼴄N"R'pᘥSh?5jB~{i72r4e;_*L "UGhS眜2oEcfH3rg]۽dNqZ,$'dᚴDƠ*hHZv Ļw`d]Pb[,H^S i j).u=[z!2 L- P>$ BsYp H )t&̖DRV?*dzB6ۄCG|M=us(-L8A\yqLIm׸%}Mz)7oܓ|>DlW/cpy[ŀP_ ;b P68();%Ӝa])ʎs8B)j&7%N(I6t3|ns蒸^|yl wGjP)-U!cKҗ}33OꏓmW`%0Op4HZ 8"1]*Uh K\2VJ7C%fX>`~Lp44dS698v(a]%gW؃3؉Dw"op^:/G9hKmndJӹk+,SF3%fx㏯"&)ߌٜX(cuf vl^[H#tzq_RHz3sbV;w{&zZ9l쟩`_Y7swYtddn3)!lòZ)Dg! "-wګIuqx]YY0M!LYLj(T3/  b7xxXYtYqu|-!۴2.:{¹A\`) ֪ v̻Z] ND =L R86-E*dO seQnh|&ZѶ6!g'9 :!e]u)r9D 1l1BpJb:a]9d㊰ݿ0ĸe+TsVRf u!N`箟̄bdx rzqlCUl`X)+KRZ l̷#w0ufJ `ᤍA1[$H)SW6)ѧxAﲼ6O+]ou&>[6}: vEiٕvcX̟[a8JHW良X`ظ$AD]#nϘ=3v hzD=8 /t|§SGԭP<BEXVds y:4Ug#Cr#da"LCBln3t3ߜ@n_p X[ZQ@YZAER/data/USSeatBelts.rda0000644000175400001440000002515413033553053014622 0ustar zeileisusers7zXZi"6!Xя*0])TW"nRʟt<3n2ufG$6)C⫞Gi)ڰck5^J/)JB H2,:氆V6y"rlإ()!nt{+mLu3찞ֿ+3q vRNӠvs+旊8. {߀7p_z&^G9omT{auOc+c~F {vE(Bj,Hz(@2Gp1-\aL9T(?y跄R]6gJfMK(MʭwvT?rFr հT Ͽ @ b->MjƹWL~ uݷ5_*%f̖ IDu?aU d'}T׆`b 2SP[(dl+cL5ELDQ:13C Qd[CJ;dz ^&3,ep"b9"d{(YU>>m9w C\IiǴMKbBX 3FrJa)P⚦QR(|J(5:Fk. v\hz/N~p&ny=1{bsGybd(~cD=9r7[,08 `roJ5J*iwTH/inr?:XkyB.F*激HmF!TV}$uo:IEL8vh~$>xWod *,t({Q(Yف-vQ8걳_Ԙ#T=F JyTn\ʟ)Ų,~}50Л'hnZ'nH񀍂DUe wDe^iT/$̓ % _ ʹ`C} Q^Lv$}sX' arE[il~{FqbJLБ&wo>xzC\֌jQfIb8r MJM+FZ+.;s;$U9[ %hz49SD8=G!̱+zOP2J}P4בs=<RLo'<&`$̀<(kRK/Ի S5uNŃqQF޶IQ>l /6'I,,c|g9}1ADB@5 Lr>4ߣݔ@f"EҤLpCu|O6{9zQ \T)T(&ax#WbX !7xײdiU#L5~{Y%e.Z.^Qݬ)vߗjZ١[' Gگ*M_ /hz^ ZyB\hkGP2XM%VOHOC_=4o9K5iEdI]FO6gQ%u`k[S9u=k̺g#$do7CL)8}`mm&;';v1Xf\QR׶s[?YFsI]qLm?qwGpgY^lScBLa Fˎn9wHzpzvn61 6 " 0C(v%,{¼yBJP*`z^^yn7`}'UgP2Z57׈|SRa[w+YSYX^"u;I50HdR'Vn=P6ʪ&K&.r&-9z0 چќFc{lr$:}#@;MQ)}܃s,PisMcvEz9*yb"e~{D_pHNC!~*MB^:k\Φz ѵٲHs=|Nt0d]b9N4-*W8vs|;,wvH]5KM&|m}۝Bk̚a"^aZY Р[%k s#ɣC!ݱyx-E5اD(`E q ;dG V> 6xN!P#"V yP WtRSUɼ |]T~A=f_E쮜> F>6@U҃.[CQ/ (DusHB,/zѢ$Wyd 5|,)oxT1ܤ>:${v vR@ RKnx@^u U_;_nUԮXj"o1B!}%l]7؜tsޜC/LZ-8 cDE.$IQ{eY} hLE ;JiX#@(ܮ (\6)m׽r|9?h)Jdު8`yL*N(k\71=GOxP‘jkKGkH= |ϡ5hoe\b<xZכO8K?CHR x!aά:aR&KVcNyͰ9e !B*j,dtOoiϚ\ms_ }7:H?DfnZL1'W`Ĝ`fLn,zoxx`}꤈%!'8,eS~Z+,5~nI=0O=MS1p&PAS!hG]lDMn2w8(B5pXUȁBDϰp%U}^.5?DDL"ui,ž`0X0thVht.Dȯ&SGFe%.ZG HqrXFB$e!'N7s˴n㳍bv+%3ueWͣCU}@#(zj&Cp,^ً mV`B~!9SA= JͲ<9~i %5lxo>k`XJ!"cO&2CN׆9`=OgٮhLV !q`J kcA݆M3RAP#[v,5Kݢ9j'r$ccў9 J 6Rͅ1 )qt,~A=u=y>S9BfuL~x**M49Ż ؂Qn AYN- ~zד~6tͬovjhrѶ^aENr"Q=v_hW=km5!fCVkW)s;} :StuDsGi<ԯR dK,dQehƭ J-4O,8t<Й: g A޾I2)lDP˽~U(HLZGY*8Paʎ<З0K&J^3` ӱ\g(v{ztp\n8݀k[j>ݜIJCOQ:RrJ`NF ͹,  Q{XMAJxpo_ӪgH%m|'Ujj<NUqtj eɿ oQ^Yxxƒnv8rfZ fb"?{-Ϛi4hL&_8%IT.3YRjw  >CBxP/ JԀ|ksp=H~75 3skTȦ8& % xsdM;Ik|;-6K]r\)KfL@J"jXQK1aɟJ zPԤ0Cj oE˄xiY0жSXx )3&vuí_jmwzZ-iiVx_4|x\ѧ̞{?4N/VWu#HT})F(/r^2\,f@DIW 99H@d'u}2Xhߪ՗ Bz7jj=M]AyQ˥떝v7QA Fƭ2!m 0UGWϔ4@tT2^ C:{uLh[W;Ob^5 %f'>p[7#R$pJ4"OstufQFIdxǑ4koko -em]I@;OJYRc`VTBt@75='Y; Mhg$+’6xYFΎMeUvB.*2l܅Uע];# S$4)%rrj=${# g>1ys.zA=Ax}Nh ؓ;xS9:3DS>#2XVMĞ\ߌd 监\9n(\ k稉 `G]+ei{,,bedy P^\LؕvV\Syή_.h׽hF;y4{>s~ r+{uc`Adr-lwFA;s? c ^OXlAm7arDp*SuAA>QUf~S%"&Q|.Eeq yu6r{s>E3jZ4̪EiVАu-s |1[ -t 6( &U-WáLM' (0Pn2֫7V/ia "'b,4: "~ o̲~plEQ' -n!Y&nyZ^޹%T("n9\L_L&/,ip-n7p+t@tUW3 ؕǦH,ݰQQXhS@<\5-ʹwrGqJΏCތg%)vR##Q@GMָ"w>5_Jr>d!j ĥ yFM ]vr rsb ;c{B\5?yF(IPQ!B *cDɷ0EߧK3 %KBV/ah,7 m[ 3;>qFJX֑se(:Q7v Z=9H6׮?$|sê#Eh~Ķ?סCDWM5!i>wA_=`0Xr>/0uTCgP߆Zu"NBb%b'TeJ1-ayx@b5첶S:\cҦA=] `!c:DվiOHC._~UUW|&j UYBw&Zܤݞ1*>>d5s@fzs ׮Oi %q&KEkD>, c!#\| ҄Rpz6"T+ >7r"?d' 7dJoOrP &6C( |K1Վt6I@Ed*Ey,#/4;'1@YO-an)؞8vyb8qf8hX`K9E_"A*4!vY[@ޥL{w~3lۿј\v4t]{Ltwm.nhUrMs`^>TR/IZN(PX%*!Hдn}mMH֍"eH1a9V||. 0 U(聂'`rk*Sc1bݻKoIp Ig, +χo^5hrnfcI̮yW+̵_ɠ 6>H݊}tR QcvސjǍ; QZN UJyFc;ld(ᗻ؄(U2Ff}%G<9×a^py㈥j9G*˗Qz@ǼS?~k)_rT#f-7?KVDGB|3+mM􏙕~Uy btZi7:oGr"qsi:ӰhvEe3[r ݸr2̩^'BeY%V|v}T8O2dvu߄Oo恻E(=tW74`1!%F`Ƕ!zIhΊ8QB(+2s0D؁]h7)ܞ /+U} .' hDKJW-"Z1S5걩@x%Ȍ]mTjQJ ]6 gYjޔi4ZE~ZԆa YP=x t.|_*4L <3U4XQ2.]NX޷l(6miC$6XXNCT9qj߬O*AΡ߆H=n(qMr>8#?NW`9,5aRn:4듃^y%6BSuyˈ Җjh-38Rlx?~ep1MPEG_B_J6fGhE̡*вAbM?$?8M#cbȺd-_E{.I7Կb:,$<5'@zWazEVaAZ;m NcNC$\I2VQ1*U},4hW^{K@ҚxmT_Ik P%g Nb~/VV59$n0&H|UŰD!ɀJK{~EIb*RqjIq8?bp"HMGd~W&W =;|x:ޚC O{ݘdzW ꟗ:tM<`W]XLĉq$+YSl@Dda&$YFuwp!J7S#$լdT_Ȑ 2һ2CdܱFNU‹hJ &N XmkQ1x8TTňy<\Cӱ3uU$%q*;ZH?}o5sne~@7@+um_Sq=kq f"؆L#H68)-![m8s%E 1c r;sն[#pwhȦ-lu#r9@"dvG=nJA0Y^USL{ICCҬk,Ìb\CO*?UȐIIUEH<[&AIg6.d,2ҷJBv:!11ݝ%7II/*eQ0 YZAER/data/RecreationDemand.rda0000644000175400001440000002030213033553050015653 0ustar zeileisusersBZh91AY&SY_8  O—֢li{I!$WlQ*a: [5 3mEF &#M &LM3D4M)i2ij6=Gy=LI'i<24OiCd2!=OPzjOH1<*h!&dѪ~M1 &&Q@14@*OU&U=~R~ SЙ@颇(c( &zh@FQ Ѡ4z6 dC@$H'`hLLhM0 L&40!L&&L&4``(BLzLM=#FF@e4zSizF 3J?FQ!jL<#$ǩ2z0ASzzr= Gqz{_"ikbיHM7lIKO| o2\g[/"\\^\-B$0 ڒH4cPz I@4%%,gV2swhr@-kk9 J-xkuZY@Vl:wB 9l!fS3WPHA!,.WXܝǔLf^!)Ba4PN$dku=G4gSi" 7]}]ҍ.ʰ]C@,\7+xو>+ |"8…7DC~,C}2oob/-@ղāsG:''$)̊ ڽf;{:O[Y@zD M&ֳo0 wdzLu7x]O 枈_#um1>$v80|sOb[ge_VB`^gyink^V֕&{I E2I "KC@Lt뙿8B}^irҷPaHvH DJdph!X "0%lYn-h4 kk%7/ˏ{x0 ⼐_a+aѣ-ի5Vl$ 2(V5F'GtPc1cNBI$I$I$I$I$I$v7v<^³nw;;;;;;BWZI]~]u׋2"""%9DD$`I$W {`I$$I $AI$`I$_P Xҽ]u]w^MRܔ)!$ I${0I$ I$I $H0I$ .6CSUUUUv9ھ+1J()""""LI$IH` 0`:o{k;8n m=%*3γKi: S8mK,o0I$ I$I $H0I$ 5zÂqpm}Yeajv\Jr)I $H0I$ I$I $H0I$ 17s ffffYe۷n<¿M4و)""""S $@]^t$I $AI$`I$:I$ GZ@bô<,N7`NXV۷n SEQENTQEQD*(0I$0ªI$I$v K777771c1c`Jx4M4⤒I$I$I$I$I$I$4i.I|d&.rׯbŋ)ӧN0m򪪉$I$I$I$I$I$I$v>–.˗.Sc0ʽ(I,UUDI$UUUDI$I$I$M~p~oy{s.j)'I#XS<=KKz6qfB-Ŭb6kh/*ˆ.x={nKlA0M6C~D 6]Noq;Ysx d *,DX U=.3ܜNbԈE@9") R @X)UE,PPUy[|;3R\b,X(EY )"H*{JVR؛@@ؐح؈8DIPY9G\ "Ȉ)!EhPytPоM5/:i&mUtAh x.q3:&v[whxv]c=DU.rC  G2CxU@rjCa(!܀Pw($j(>iW9 i8q#^L&1؏$G-=K09J%:#?7|'s݈TR BV{/6!8i 8jF؁z.(^+q21|%QkG` h*̈s0hyPfT$At- yC@MvG,DQ;RMhbF1Fjk,c"AL9Ln(I<,jӶʱ l:P^zDg4)5~]aoUco+|z5/OՋѮ8L% I['(vŃI|}'tjBۓuNN hD\s,?~[]7-lPvU\)rʝɵZ .|uϠ~S/KAC,Ti`2`z* -j7F޴ tvڅ冴+!ӇuUx.JfmGk"0@.-_Ipauinu!.8 lىgAmc]-衚\Q|GuP?wJrqm?x]!rnTiEq6XhȄ:25^Jpy il"Uٜ#Y#H gSvhy6c?'26I(룩rMYK,묂!sjUڶvTв\%S-eCрu2\GH%@5% ^={h CYƟ}1B5V}3D#q$=i^?C -¨:a! dIcL -ޢ8޷I ӧR\+ ɮ6_7K{lGpRX,+Cgem\$qbHPEz&iX]z#ϜdMi6}}ŎD[u*S|{uY*V>tCiS.Dkߕ3$a\x>M?<)ZMF# T{M+caLH>6MuᯣQhF5ˁ:`$-qƇ C׺ &D*d̅ND.-j;lxRT,Rӹ$>Ν(aG[(xF]ox4/ U A䭷iLMd6Q+<9ȐOMf0$HQr|]̐EKh}2#NsN<~ };xH:UXgY/Rs^>/\G7A-wy$HFK6 Ļ6u|;gV?&"t'JPk%TYI5h< 7~0N*%5t=SYbb^X}}lShPHb<%ug Ce{NZkF%pK<Ω;û_C8m-;JH]w E!P ٴ"Q (fO =,OtkZ-Molz,5 ҽG]Ӟ$\5L2ybH~o`rXtXF*W[|~A:LM,g- LwK$$<-TX<Ϙ#kBQb]D4YדR˗D\ &r[3 9o#]0tH Wl߰\Gz|_oF&D>^sRrG3J]! $&xܱSp,>f$Lb6p&H3YP mE Wk5F텟 ,,2cs|9˦fH#i{ RDKe8O^䇷@F=8)f,TŚWe (痺`tE ySJ_y*Q>PvzA08/(uN+~1/npb&!((xgrCwy3xH^WUN{RE5e~QyRxmY@bfcK)"]e|)~ qo\Si-Ϛh>2iNLzDoa_cjmŵ҆csAQ$V@bǙ#z5/t^+.S{/[^|W+*g{Oٴ7UH/5: 6Yk u,.-WyP>:*[p3rwN )n WL#qҸs]XqY.רڑj ǡCNOt:$G/ab$Ͷk2Ϝcd.ݚ?.)_"bAkr8xx}ۍU?޷9FJq4u)DkY,$p>F_֦ުx@n* ]%n*Y 3& Lթ.s)#yN +g.Sqiz}Ж貯]-mlL>+HMr"sA_Eu T<^|.S/]5xJe쩺2d8U_u4!<v-Natcp gP𜹮[*JH";Quy_C_72ً9)yx@W|~cUTCy(N-fK ugC%9.c'8n2Ua-sZH[UodzI\A[0m}%>F AaiAE =Y= 4ym"rxP?qN"]b1@Sz%3"|QϱHyx/^Z?@q3ѩņZ͒?頫U)Fj\Dk|gj3]x3`CZe\٭ V)ykB WrL6c^pU,I'=됋 ~#ιz <h1W^y|4! =eZ$$AFVD_6p׬ 7|گ䆳Om7yV{;ZMm[bgvjg$;};~Cz4r0+TBp-:^f^cp*<KEzzʡ1po#!kHf`;^+iM!pV3tRO]EI;[FD{`֕TQY(ơ{%^-Iva܋=y#Fߧ@\n\D:I_Bs{uP:J00JpB.#)`iAZ52ƴv51Р T:yS|2o@PIeEέ2WT%Z啕sYc ry0(3-ОqDkCz1Φ.g=]v[e:83( QVEƁbUg~d[Y3[9\6 XkTFbFJ+i%=!+A,SwG=>Z k-P'hUh1vFHj j€qJ}C(-Mߐt{Pk0$ ZKNxÈUk?hl1A@cAh&_*tV3#$:t:xfp6&zW@lB ~:󈞯g+R"JT6Н'H-0t-۝5.2K}[/}`Zj*%K;r-\HD2k划Z-os!8($`/$mUA/.\q#sz@c l謲Fe5JqjY$+&IgcUj9ݭD4 SjM_{~>X3:I|b!0T`yyR kv(clo.p!5tAER/data/Parade2005.rda0000644000175400001440000000260113033553050014154 0ustar zeileisusersBZh91AY&SYSAT TA ˤyλyםb<#H6Q# O(<##jhdmA⟩4 F hi<B ʧzSL?TOS54h $I&h4)S#FѠdL@ hA5, 2AOgO1!q]t*m/΍i9S ֚Jq~Yeihutr޽L-ZeIppTӐ3|Ì⼎ ] Ep#ʚ3n74& t5TpUc-0WV,U,"!Y,EU"DmuQ4h%F 6\hbe6<$%$ku{&[WHbcW#EGKy!Yoʈ]F5hݹӫvmt,u(TTQmi$cT̫ b$؜0pOpaVVDa>i6GE~TNʂ Bϼ@Fd *:pUTJBBA1$& [P)΢˞SղAP&([s&L:JI[$I#`jd^TPBNBD(I` 24BT @)$"4!-L_k8 #@z~P"jzl[`1_ ;HT9k,,`$P L@%)R@%)JDDDDDw*9s5UR"""""""#=TO{c5@05,͌0@, J""""c1B k3333c ͛2dD&X2rmlm1 #DQX(+bVR%* hbb(DEX*Uccd9')k>ѷ@nm%UUY" lHf$D$\1Hҋ;B]Xq*S 8sK7*5Uesy+ BQjdPyRtMGCQ85s]ܮ'ӊ\R9]HO(@ TWx-anLl"5ȬYhmg!Qx6v-kVPXZ&BĈ JTq [ͤRPySuN-/a[V 3oY#F;b 5tB,F)][NQw$S =$@AER/data/PepperPrice.rda0000644000175400001440000000352713033553050014677 0ustar zeileisusersm{PUǗ]u D3!&5)-J3C)S@f0L |%)e XveykH)_9ʌifԴAvnC?s={^X-2B.+ar(0C"G͗ől&cΣ];cYeqw&{8CUYO1&z!AVhOV8S(oOT=YbOD,%YqMl`5^Z`ܞRF# 9)NtWĆ0mcwH-Ϙğ9<1a}a<++{'wo=ו8My':Ⱦ/Ł뻾"?\u™Ƴ$O?Usxc>G2 䇹o~A:rsZVY:~L[rCaIfPs9FvMGG_p g)~g/NjW ?Յ4v]Gq.6Rוn3Zhܾ&*eP{ĿEuAD}[@Jh ڠg킜NB{z` Bt~At%zډ>8K{|b&1x<q}Ć `?l[&q3 @'8_ٜCl: .ϑ45 s`"og^Ej0ײGN$Μ878/]V,lүMzgsXuFR0}WdTg˜_R~ OKH|.m0 E՞җ' oܾeHU3VA]C!ի4Ďrܝ ΁ N-z @^Ov߆z0 2k9aTs, f߸ļFP,Ў8:m'oA|D9oD/%AodxԢ~-mWj2ۂ;=<7!56öo@@lɅoў NC?k2 ?]{ppN[߭ԢC|v)-5w ǃ;Hn@:o*\<]r?.g>\.}'q=bsj>w .8"Z M?.`g5a_:ù">t|D{ Ľz%fJiv8.&U[>QHQ7T17uss2øZYS.0ȼ"O"uނ*~kA.#qh{XG]j!F ; xg |aNG!Q%[W("!J./R,t' Ә9ٹpauC'*- 9z*|r@?@|Xl6VR( Ѣ{bPiv! ivmjݻq:=OJmw+%=%U $(Ҕ ]+H(Rtht5) $!0@1ۉ.}3 Ljz I#=M4@=1M = BFCE4R$I(xM2$JE5&B L#@4@SU"8[()2VͫUhE(JQF DJVjejVֱ[1+Q)%V)@P\E H BB+X@kV6-b¢PPJ-#KJ 6QcEj4SjQmEce(ڒ`V2Mce`VfRLֶ*-Ū6բhllTjحFlkZ-QZ֢X5QAM1bՆVj(ڛ5lV56j+ RB4mEQ[6-X*ѬUbֶ-i5[tMQQQV6UcFZ ̦5X)Yje)#EcbV"T[F#mhZJRR-H L++m[(V Ŭm5Z6lkV*bbEɶm+ضQAZ+ѵmFUQ5 Xڅ6&j[2YXQYXblZ`QYVL+:&qZJ(A @J*HS)M66(YMMBljحMfVjXcE#c+T1lhƂEت%|\bSjՅlj ZFַ]^(4mcV6mVcV6+0Ҙr\ڋEj5cXAh6-FR8F(V(mQUbFV+E֊-Em%(15kfSs{m1F+EV+T[ƣcZ5i-66FF6TV6 `ljjlj"ޜ|kҨ6md6m6ƴZmH+S› V,hV1T@H)Ղb& Y6 h$KD1Qi F"Z5oKQ|ޞ9A{ZEhѵXچZ5jF)$FJEJlmj-Am-ZLlcQUڍ*ZL+6mmQcdcQdmQZ+ccQQѭ[+`[nQnVVڵ*2lFb,m̍ƱQ,TF،QQcmFű`ch#F]- *-*+c*,5%F( j(4QhI*{ -X %1xb$kFtɚ ն  *[+QōFm(EXh֣(jemڶqad-,؍66*,lmchԚmڍ-D,Ƌ**(ԑQ+c`b[EXXZ5,kbƬmlFzZ8P賋gM3gEF+Eccm& cdbjTk 4X6 lm4XFѓEFƍFhh($j#E"hchh"QQlkAkElZ5V@ό+Jam16* hQ* Qkh֋bF-LbZ#X[F j,hbLcThXf$hjfmj-Fi`hJѨV "6-ElQc%( cQF3)6d$FM@dbƀ "aZ;w_ =WќS&c8q1oBzmt5B$Y `RŶ5kchEhcQ65Fh5JHѱ AS)-TQ"(4h(chHb@-bED4I5$Z,`QhmU6665lUchձF/ƫ_&G{^(­5`hՋAlV"bMQb#b ֙FQbHl%DdIdɍTY5A&!FБDa4XԛEP lk#RD cXV6E4*( 1%Mc1&$HQEbѵرT[FcS"-)XdEj%+F6*,[һ[WJImIk5_!Z--cO 5mr6Z$Bj-f,EljKjh)#hMRAEBXE( LX֍LVJɠ2bbY#)[+%ElJ hIBiaИ1j` 6 Y J*,`c0X`%`aj ƌQR[1dP(e -LfFi(+h JI[LSd:,9ɦ% LK0ѫ%^6|okhƨV*4kHTi#bFƢţElhСXƊɱX#F5EJ 5DX5mbTlj+PYH+c4k$,#IZKb#F(*6 4ci##1 @d4hHHc$lE$Ħ3FI,)QI2HQh*SI! ))eDͤe B(h-$IbI#ACB1/m\*(h(jI5&ZM bɦF*ɖHMhj*BH"faDf$EDeL3CEJ$M,dJQQdB4, QbRCA2@I DQmh؋ A4bъ03b)#RX)I4  )DȄF$03Z#DT"aTY1ȑ0)$)H& dHC&% e"aLfP L *JTyMQǺ3ڸ"SPyMU4suZ\MIWVN/7MzVpI=w9\e6Y 5ԃǥo|+nZƊ5kFlUAb4V1Ech[hEJQDX#F2EHfQQDRd%XE1h"e&&$ A("2 D &ĚY)e %6&6@hXڋc%؊P&0T@@"lFES2YD%4@&IȀ4EE6,X BjdbeI L%ajE$HS4i #6hC$QJ*T$lBa4JDF )0@b%icXh "j")ʼnb2IFfPF0R#fdXIdDbZQm BS (i51FF24*BI3JI4iLZ$Sd JdQb2YQ2&a*5eFF2B ɘJ#%bY2PbKA%3%$cdژ1T&QRXR4PF)1)IX,cS%b&ɰcBmA Y(F L),m( 6V4Q6I4V5oj_;XJ,b e3Q ѱ.qh!@0c1.wœF$"DCR:E:t}Zh0'鏽(2&u(B4D1 DTRe yUeܯk\iV34`U=owp~hC8P>S\PbzDARRQ)dqK&tJ/Og=y$*d_^UdQ(#V?{sw]_Mmq' -iaigf;K7tN )Ϗ'{kԛXբsd I}Vw5_a5=ږ#yi&eAJ-/Zbu@}m6\dH ȊH NAS!4TFJJD̛0i6Bb"AM,3cfL&SFbQH"flAIm CEbbh25&kRkDELɶ"b $AX1QBXň4FڍJ R&X0b%"*Hf EDF6 "DPlhF4C#faLhţVB+LZ*3Pj)P(DԠ&IIJd+IQhhآF)$L Sa RD24R%RIZ(Db$)hY h (1II)R(B4dBFd -)2hƌaaLdd4Ij"e2̡JCe6BA4R! BBJfJh& ĥ"Icb1&Eh$,Y-m&j JĖ0lETlZ6ڍbXi4HȆ$F$bM)Xf3J()$ F`1dXD dFh+)QF)c3F#ɕ%4&&4D DKH#%$!&b"eLFQh! "H"C3eɑ fA@h4AbZfb̥%T1F&, I1%I3(i$ѢEɉ3 "R%d 4LI) ADM)4bͮ!#)B&QHB  ePl#1ŒQC&a3 dL#c2c1 1H"Td"&R@&K$ɉ&И(# 2EhJ024JFElDBLYI͂D™Bf-,Qi)C-"42b4FPI(hJiDDA 132l2hdA(lL3"`2Hэ3f$# )2&F2c,3HdIfTJLb" Ę$$DI(I)Fi$"%@4DaH Y1R@J0I &BƔiMHQ 3L)4I"hQJR B%$E3 (Q#&)dLR P d)Rc$f`"6M!2&all #ExH%2 h211*DJX)52H1D&LHѦ&d2āͦIMXlI $4Id$21RB& ` 3%2BDRFJH!4 R$’Ea&i2H+ 30FhJdL(ɏKq4͖Qj)6I(@%DLJL R4KI2 bbY  ,ؘHTC2J$C2JHL%I%hB& 2H&FH&0ф $"#f@L2f $Dh )L4#JI,ĩ10"DK#E fdhFdDID"f51L`Rƈ"EF#d1H",#3 2QDRM I"i0ZZR"" &(2DI@)C!2Ph$PLc6,FJ13bHhC3E0ACf$1RTbV d"$ĥ$&&L&̒FiEDa6bHbL٤J!Ci"dDicd#FFILbKFaAE"66iC6)6"l)II i4hdcb%&d4$a0Ȥ%4YYdaD)Hb4H(4fILi4E-&!0E$ѐLk&!IHQ3&)%E&ёL4*"CDKA$,#4 * eRf&!!@`H E0Aa4 B4daM&"Rf6H$KB"K0i#LFR,`&M FL$B,%$hĔ4* L4hSbDCAdP h 0#b&DhJ0-&("-#d&DъF(#X1jrA#[]ۑmرAcY+FJ@HEEJ0 M M`i4hTZ $(ڰfcDd,X0,IC2EX ֊00DedIHf)1FFx4@"BjLadf24f &$I`Ԡl&1ƂFŐ F3AJ"VƉLEMb4mELEDVT dF"Ș@-ƚ0, I Hde4)LLb2&F !ؠJdH4Ȉb(C3H "i4QQci1L X0A$F b)M$)#3fFB@Q̣dTZ IH&4IS"ь$JR2LLlIMIe  $Bb$`4LM Ńd0cS(d a0 &IH l$,$Ɔb)"LR2&HJ!D IME54IdL33-%%fH Fbf2,2i !L($@FbI&&iLA#1SQAHE"HTXbR4Ks#&C1fB&a2fCē2ddRDILXQRY dFM 4E#!(DD1Č&PlLiYeLؖ4$I4A 3F6162lڌ&+,hLM"%QbōY1%2Ha$fDm $RRM0F,L!"R$`&)#dA"ő((@aI 4dX-MRcHBQ$L*HF I(ŔS1  M m#e1E(14(fALLc0 )!M%cX dhJ#A\I)J$$c6J&0`,ъP 2dRI5$lbPj-&fh6$EFbI4A,c $6H I4FED,͖)E(0"!% 64dZCQKEbC60Z"m$D$bq*6JITEض5mEZ(!TTKŵE4Ō4Q"YBlj1`F# ئI4ɘJh5(-F1&2QclbFm6I!)ffJEfFJ !i)`J0E4 HH1MX ɦRYSbe&)ĦD%Q)&cPlHb4FhdLE2HF,&166)M%"RF(ed4BXb#0B&L%F66֌j5# !*&lDbdiX4!B4cJ4@4PI 4bi1)4LѠ%Fb)2$S2fPńP) RM1,%I6(0)F 2! "H$DL`bFQ$dbA1B&Ih؊LFō# B1!6"bR%((AD1l.aDS cAh4h4R#&M%0FŲlEb,ɠƢƣT,61EEDX w%%DBJlĐTI0HXHfa%"%2h2dl.P4)2XH E,A& 42)I bɍ(d)BEbdƄ$$A) !I,#(K L1JH2HJ bdM#HPȐX( RE`QeHDšLcj%)P$2!2HlY46H4e2)d"eBHC5% (1Z,F)KFJDI DR1R@eX3fh1fAAIDS$Dj%(S4S$(Mbh`m%c(R!1bYF3$эHTV)"4P`ٖƌd"dI+2h*$III,%QZ$1(БbkkcQFQjKX(+ UiJYES -Y5kd@QdLTF,O}º Fe 4hCbe!RXLƒY6*"hM E!@QZ4)chD%$6Q,ţ1hآ1ccLMι[b31XQFdhF$X&ƍFѪ-E`"dQLFƱMi$mXF 4 (cQ1Ze * EdJh#Ed!! E&d،F"LdbPb*J H1@$Ě1XdI61a &S#m2ITTch-Eb-1Q J*4kPkckEFEdQlTRhMPQZ+Ih $JZ#X6BlTIlE`-4hHUcm$j$dQ3$̃$BB2bA) "D(4@ ("$(3 bJHliR6llZ-DlZ EQFQh2b-Qcb h"h#(kj#AZ6VjbH%B&Ti K20D#LƌUdchU$cQRdI`%ll[Ff(jűE5ţj"Z#Tlc-&cF6(lm0X֊Hc[EXkZME-b(QEFh֍d kcX DDB1 5J6MF6Rmء1- Fm+RmcFѱ5b"hj-j mT+MœE%QQ-bZōmFjk%jUXՍcX DlQFhcV* cXcFƃh66""x1"1j66#dFVѱƢ4eS̬Sbƫ@5Qlmb5hEfh)) ViP1lHY1QmEFIkb[QحlZ5F4Y-jŠ1Z6kY,ZEm`բTUj56؍F*VjZ(jjbY Z)ZT)FaYT[lB(j 0Q(JAhbFj+6ղPbPCjj0ETkEj-bڠ)T AAU Afw[EEmoS^7 ]sbjjƕʸdW sHf%ptdsL?.Β)徨fn) y[j5]I,ATJCGFC:N=cP'cpEN T:Wۣ-NB(4: 5cU؄VJՃa4܈l\xeHMDkN Lؠla6'4K>h`,(6Ěs$۱8Ƨo/Ǻq |gG|̡Z7m'Mm41mDk -$ n9"2Ur4ѶM")LX4ey[{@^YX{m9ٟq?0;>hv5跷kҥA @V2P1_/`t}̓82˖f y)%!@i5W{H~N}j2G?]n~!7MßGg6Kj{o6uu<@uJLcfr"F (F RʆHaR+n-FG\ !L*Gs6ΐƙ tTB搷@'މ|Ҏg=1'z(`یZ3ڴ*gTli~G;P hX0 :M^ղ?W!!;,|HF1l'q4cnP᮹ėxh Ҝp*LĠǒcLKYfkFRHK7r&Ȼ:'ykf.)q3jkw-Tm"vXÛso8u>s1s:.g3)nA T̯1ǚXbKxi3t@媹d5nfeX,*&dy9.,JK2لy`^ꙷҨn9䍨&IMF݈#MGleA5Z@[Ĕ+x҈$@J78,n 3A-jL`f33GXM &U*S\̢͕ā(\o03He2ɑ3Ýdpx⌚̣kS [=XkQkٲHCtpo`tړE\,$ 1>qqMi0 ZŀeD6vU .H% ͳ4^/j7RX6o2DVFT΀el+aMM Z-3! }zN4KwS;=(=Tg;SNsQ)Fk1Tdnn'Bԛ; O~U{(˹/MtIIK@wȖ/Kjx4ƕKƣ\W"\h(C7g/14ƷDy[8IgQOu AB$RS¶30<1c38MWܷq` emV27[hɬ;'@8A4joBfP5rQUy;CML#fƴU;h%m1QS@KGuDYdIJۏ˅o21'|y%;aEj{ FVGxX&*Nk6 i4.];dvgD4Bxla`r8Ƅ3y amǬ;Kk1oj2Wd`e/LQ ffT $dUb>pq1z-4і"-ݔZmm1[J0hxkk$Z\Y=fe[z11`N3%Ϭ4Q>PP5LLگ}j 9vHG#HZw9ZYݯx|kB_X6zB 30e1*LwGE'l@=GL]fA%(%P\sjw*\ {?_GE0d"(i @$!`bN;">O:4N9m2 !cpG1b 2z|3Ω6׈0Ccc8LOhڱVQXRn.*2 FeTd&OFkNTrC]y"[<^ 2a 1.ZCkcw*Z*:ovnQHkD띸7X$v3>*Fq~ߓ^U š`9{7on$ 0O۾n5iDӢ ~%}o;{RX`rK~GUtļ:8Gͱsh]l'3]"]6Ns]e@Pm4o(sw(\K$F*Ii vB7h3k w[7V,iEP ֕Q^{wW[ [:g5jSѶ*yHM3 )` ǷfN1}.cVc`cO9d.I*5 2I֓UF"8P:{U d[ΣSbA5ZN+\˶ݓ| -LsڣVD "<^ixL"\ &~Znz0~gZ~}]-jz)J[ ;VSmAWonE=% P{MsuKV/S8@Do/;-؎4= HL0cm_vRbpiƼwM}K\1}\wN%n%vƐM&G ^5Fy;Ps*י*. 0*Ke@UX^{W"ք!ȸ*kj8 PRG;7(ᮜ;o//'XO0VPDr5&/O[n4/û)D-ݸ D؂YDj *&<؏hRxWy|j(r~(8V^Ȓk*4Qؾ5ٷ$u"xfbҘ\Y*Dp-m-cR&y1/'@= !Dj}?]DZza~Z3í/Li$S"5 Z]W۞T؆.yTg/z jf/a}UzyA޼7zK{"P%nfi$)?AR7y5y5/?NH>t:aG !II|Z|҈du4棞Okxtrq*K~Zs~g^>;^OB#v,=ږXY#]ƒ'VXRi6:dyދ}UZ 뗦Aʡ1FӲ%?"N%!wz6Ԙ@"ꑉq?ռ%_QrL#3vO|f(:L]܀KMgHfoW5_n)GOa#ja]M4im{hiRIHAR>Ȧd1 Lj ɵˆZ  $&<4PG #I.z?٫]z|e%69`2[eA5]#Xnpy;AV1Ic4JLEVlc]Q&6{=;_|吉מܪ ~ߏKb1?AD9,l._wCsE34&ڭ✇lOqHN/vo_X_4'ښ]ZPv,mQ7!8!Ed>S ``g gTzhbBݳVy1jP$ߑ;B:P|˘uWfS>8wsj#RI$DT|kHgs@ 2H!(*`h_Df^ڽBIH%LfğLpLz N5DyG<1SAך%bx2D[ZCD3(FfVPBC I$,_5_553oiϒgǤaA/,x?ia^{qxzeiwo`\nXxrR/6-zzU5^8vkD6я9ʮx'(%րBjF&1SLgkέiyZPxdtĞKBo/"LX!S1)FU=ETCmhӛ\hVO80̢5uZSQ;ÿ/W';]yF}d殓DL bERqt-EѤKک:XE[Bjhery Ew_p[8m3 2OJc$5#^.2ZsaWA3JB,TtUe*3mxՙi f٨ώrtjݢ $LITX5v涸&b1f"mhbc`xtR-j)rҍO@(LnScmmQɢ8%,LǭX"tupϻl!({et@j:Ef %PB RzV5r$y@eHWO_Vz荄HO3}REze|☮.gUXV4iC^F+SaI":hbz ?%5&MP9`SW*x nLBuٲ\l]' -D_k1'x稞wx iZE*RǧW8KC!0ZLA2OAjN*)FQΔYQQ< u&v^Zllii>!;*l FnVD'q=V8բz^hhy4sb4 )5=l*Yi^SS eŃ`B;&%d@Zdqv#Ɯ6S~G>&.j"qV؂+b^\Jz\F??g!66OTf.,\IgV]0PPz PT|Όf ThYheaێGӧ/{zpܫ][sR8丟K״q#6"+!qQo}χХdg+y&axRdu%\&զYʐ 0?~]yg*A~kY1b%T@eaLJj0u;NdbMLoqrd@}v} }M5 n*"QbUO|{xHx$BGt\$'-Oȱc$Ae|^ ״($H-3^'6pQ8䓗6$Aw A;wMqVRud@D$H‹.7|\+U}1b;''sL4=S#h+m <{'[@9$A:JW.{P#!@QRDoHx~*}G=[Ѳ˾mљCQ~Huc>Y}$Qm=J $BNias'wz KڦI󌞥g_}氨ՋjXkhI|ILC\yu*Z'_~ixN%Ѭ$DM' {s‡QV73⋒5kEׯF~YKDRn5NTuQ6^J/M)Rj*A7:iv 5t&5'5z֑%#4x'J94K֟ VѱA]SkuxѯWѩK6Ѿ("J|OeΈ%B (iIl&#nwmw3!؄sx(ȡ*H}'ww\7:$Za|(^qՖCL]̒(*12D'iosM.삌PT}'?ZmX Koi G]_Hz?D7^䧪m:L(B+>Fţ􊴨HPM"7V$\ZcSJGJ+Iՙ^!WbXld@rwXmtFG3o/wP)plC.X*vIE+8I(RX:tWAҖ8i1j*10$։`GtW.CY)К1=qJ%\( .u E. Uӡ :%JmAGC4҉Q(}J,c>OZ4 2Ihj8IOL;-YX&cJ?D9g׮&MH {k|6Jۢ @pkaٗer'鯧Vo&E0=U~}, E$~oX?>7c/~^zmؐo9՟è5_5ڷlƊuF(Z+1[,{tHmfU*Auц1SJtҎ_ @RK9R&9 +TUEӐJycXOϱ9ڔ/s2v$ϱ4@AQQsAhP.cwuP58nP?+5e_ž 9,b@I$c)2*w9b7Mha #y~H cd#& lmc&b2٢e(Ye+`l0ͬ56PUUTP4-#HPm[klaM-( bV@ҧ3D SK}>ahGnUtU$LM^k{O_?svJ{F?V)/vv?v>Ņu|~ϏϱD??O$%ؠ+H|"gI&~o>MXۿ栯)HPKtקꝁ_ Qu8oĀ>Mt>OBitƟPɼOs_6-ݛk':UzD+>C;:ׄ?j*^Ȣt@>$l_fbfxG ̀''82O/b<}jcw#%y  -ڷ=:sOM>ȫ4 ˅ 2 E{ i=}gU±SJ(&{H ׇK/Ml0OM $/ %3=D  5A{_~wVc(2s\}95ry|9o5sgk=(B j7Pu1d2`. ?{.K5ZaH)?XCvAER/data/SmokeBan.rda0000644000175400001440000005424013033553053014161 0ustar zeileisusers7zXZi"6!XbXa])TW"nRʟt<3n2uK3/ ah;̑?)K LjV7oj@\X|"O! GV $l~Xչ,JD\}.]y~ pJ:FXn״KDG3 0D=J gȻG#`#34_P-GhFS=un@}*Ta - Nw2*Cdý8LP.Οx7Vj]iNאWf6j`Blf.n)5KYHb^buÏ\W-p 5U d~ ' =|!tb (%FM}hӏfe3!9>NZzk:1ҴgRd*hND&M-N @U :p#PG_;/+4wh@KBdG%~Gy6_&LݻIh#eID ;msym/ "6EA̠hpi!b,8rͶ1/wc 4; ؞4A5I0KTivb) ِ|CGxpc,1~[ kox[L|B@G!R]->@=3:<ߠ'hЂϭ ᤵC z nAܬ?w5RJKjY6)h ywSʒyA^]YU,? F^,wH\H2b$[ʇ[w&/>uk?*Ʊ0;֗wB\jZ[ŵM/x&e[ xN$Ш8Y8z[S1wBEf}'5@Ͱ=)?f񔐯.Ѕ2$) ]\>6UUV^E 6}yW086&Pe{ '냧9'PI#\ϛMNia2v aP5`Pu@~;qܕ6V.Lb=#7%+,1@ |s:Z~~C3K{K$dCv#oDT$@bZ 4NW>T,2HZ"vAr5D׹s*G1X:]wF*qz0 7vGfkᔏtc,ЦiTӏjm@ZN|\sES{Et ?u<" Q!k Ľ%v3>R^ 0 =j@.pm:{7TsH4HG4֚`kÈU;09:>tĊ?# զ1Oȗ,3KiX:8߳=&tAF/ ⺥h#S3M?p/jTàD'2oWlJ}3 8atpDsc;"rB6ROHB2ci9"%TU/ ,u}(o'A,؉Qᰩ ,6eO}_DHHmۿ K&KdYaTxY1[T</%y)u; k@hMZmQC.[^eK뵧B)YC*۲!R}Taj @r24_=-l[^i7J(]Ҁ3幜-vS >Ey_`=4n4sv)P:AeEJ`LLj S,úiaOJFOc Cyp,r~l٪9o+6%:c 4M*4ҶbPHH0d\drPЦ:8%;K]Ƌܨxǯ TP-ARPwۋ(@hA.=9vfzRq夕owKǗr#*WŤ/ӔjxξJ1#\U@N̵f*_ S?J8}-֣WuHSf\C|[)IS졀3!´ qqyLE+kbJgOuF0tze}YY9&#bFO)VѼ"k;li_(|iu LZ6C{dIt?[ə_?;tVg81ڊ\핂&/:(y= nఒlc`|F\j6 ҏ>FϚn$sLm"uTX%{2R1isQNtCx07W6%4d&+C4㽨葀 '<&rbR!SFV˭6eⵋ.hiI=-΢!!A-'rأ;P c"jMIhM@i~E=/tq}\..waQK ehf߃P.*oUw?-C `.מӨ IvR+L!dmMlPoO(8;*.J0A^p-uHDCi0a"j2 5N@H_UÝPGCU|<;A`WS1 =$bqWo'E"88Rm^& ^Q4fUkՈC7oy\HܧFs6ZA<(8daӨ:Fsk Hd̗:jI& 1ak$XQV|VXIh4?c\;,\t|s0#B$ 1]~ <VQT\#q>lx~gj"~ɖ_\䢕@)7kjn &mW\J/jid󙇇pk0U~:t݃tn +%xdÿw-3ccM>Ťj.,tG|8_ rL!T{6%6( e#VCIO×Zy8)sȍ9K25\f ILSM93r6~4sh tKlRbѡmIcR*fE@t*++'}DE:S "v{X+{v[BS(Ep. O}`:i`Ma?]3=|Xԃ]9рr@@A+wIM849 5G u*2,nsl'Ff3Y&?/bwtؠ?aqos%5'klR~ ,vc j%"c^R  bZn?$[_2\¼uz`=8WaV]c#s .0vf̀ M\e *]f/ }:fR쳕b,Jb)A|XE0_h& TM'xo]ǔx]eJ$D)&* ncEԯ}nͬOY0ҭ> u$"_H"ONm] 1fa֥By9$)Xr&;DEwD4O'8w/(ҍ#8 _8 SCJ$vIp 6' ƮЩRϒ /),W ޙQsgVc\2>wȲ>371{,eWC<:s$INI ,l]\ى 0vK5¯tx8U8<^n0Z]K`J'OC Ҡe 1GZ+Gy g S9l׾xS6ҴPG]9`NK$:߶^fCTZ>2 kScaS =:~Xhӟ]*I$;k5c:­\3:bW $ (]PB(K&w[;Q[=N/`YLJ?TU_<>Waqy X^Ny}pV7m?vRoC'IAM%JGe꧅ȁu5`MXf7wG \J^0K ,xKKeinݭI&B@Q\]%8u /5E Y\U%+/b5%8;X1W;6Ѣw9%Rղ3^@A4#C+泃A=32X$G'gF)9gKiJX/hռw2|yO[d2>m#~ʛAi5idz[3r>¬3j- 4>Bʙ]0+0' *elʈ6I|3UAGkxqN1$Ȓ;LM!(8ڬkB=;7ۛf'f챣r%nڟ+g`K)CwƼ.-1} j~~cֺ{FJ;?1[s6Rv!-[jda~rͼR6D=%6`Gq͇n4\b\% NsO4 u >Qtw[q7~*V;aTSvrZtn j.L-jvI4xX8ZMe=> J!EZpBX7MǶ&㲭**I1DwSe W?s髖?;@廍e0p34Ğ,zmx9t\gW(!-@Yyea.346ʾW9>C1?ª 6\)88Xǰo˳Jgo+@g"5&`CkTq7K.oY W'S;XU*g:ӎY(2h)jL\Y!nLf9X.۽b8bR!{NF EI -\fWX@XA? {q0o I+Ө- .E +PV^}V"~xnPQz!5AbPWaI_ !Z5zY[oce>aÃr[htBr͙VZ4lD;|B 3P<)6=c̩Xd]2fwԂWO"nНS:܎sXM}<[:(,,8!Ypr?/,ӗCRs1u}\I_1c+/L-fR?[>vTF(i .-14٤ +8 X] v@QތMϻՙX)Mݥezm@|n`U_-F&Li(ęt&}cpuCf1Clzb]Ty`0 e+Zo O|xq#nO<!C˅QE:Ͼӏ(UWa |Gŧ>\%y*e&](QFZf(;OҢD`oȅ=q0pcL']q\bo{RC>>ܷ<~4bΗeeǖ9Og:euV9SGa=U#F qs/3[ˆ]zPuT?`nSifT.x8|0ijC΢3*i]9I&E$%?G+.@z rl.M3qG#5avb}:y{)h{b1}нщ3`?O$3"0ڵNp A.m?"^+m"X.1X|}@=f󪸍Q%GK($cj4 },!yva'ط Ok <B6@9W;\2Am43*{Fª}eQv`Jq'7H]H6qTLcnrwkci'($Y_7M-` Yi; C^tGNGL2 )\Qvp$~~HfŠg" wdvRWccc{~>, ,5ϼȶ>e2^eaK ZؙO "B)iHheP7MyEΆM5Vnsy7ּ|D Rmy=EO@w+CbWegA/=S4!bSzcOt?/2wX 7Cu7L:T#!c aAIQCH/7.X Loϒ3D,"cwRm?rT7=5'vmU=mTz%OQxa( sG6jл]#Mw.Xe)v¤Z3Yj?3gbnaC?}v5Mx,&7IeQ'n~UOC>*?Gdr6!1Tpyl C9tK>0y7Lщx>QIvꘅ==^!oC<4%h/@wgTt{Q,F~Bp<JZDy{KhsU ’&MͳjyQ2" -50^\~zѴdOL~GJ\sE Wշm)KF]ޮm@>}jX"բAQgOWW+s/;XfXPQ##'Aakw&B-gIaݬ9JlIf枭J 9B w`7 T`ҩo/4AkN'*" LX{`ף\%UI \bv趠"׭iH9uh͜Y[ K_身 \z- 0K'AԹZ|t;P=շoXz<5`! D'㟙!ϹWZHXedܱ>ɹx_WC{dE1``aJ1_bG| k N1amu?Hy.oMܵn*[t_^-uXrv J1}JrRmH%LPнޔq0lؑ)*!?=p?>n#(!OR@GHLJ\zFY"mɈM@O7c0^&(-}M˯5bgQ7_,ytf"2o_jԽOU6 IRarD#2tQ7|lVxxYS C2{L:A=uﮉy{9M>]eX=bp["gztp^Z͜M)r %܌j4 -  ЈV-M >Dp&>[.Eu5{D%(pb2?[C?.]==O(; s< lcsH)߀+(ΛD5\$rrK#5bPk wS(ת6nAgUl(~DQ e2+食Yԫ GIq|MV+HV͋JI tOKbO=.~7nۄ|Lq6 rOEPU ^4Eڌ99:O' Գ?~uRŽ@8k}rTskzclIL>͵#7]wQ %n,* ,& H- )DۦaK wV|ǜ!bD 6=(Z?rPjqu-i's|9&vohUms&ț|5O' 6?6m} 6*ebyg̔OpaaS3_5r'/e~4)I9lTV洘^ZɎ*vlةUK`vj;Udl+5!˾ڝrOu,a"sj5\8L:=k7YjC6M9ko  9E9qZ~>RiK˶CqDB1a*JK8<釩6kł.7pݮt&lWq%ܧ객9hu:'I'|A&IjzH"w}KY%yzCQXDǧ'N)d.{jIBC7<(LnD\A %2aÜ]Y#k[^!ӈj!;/<2Ap @'zB"\٠`}hd}Usae' Ɏ" d%zHQOL J'Z43 r.#Ƀf8T>ruk hӇA6-)CAk9QG {1@[YթD ZrxNb,7qhsl\ڔl)>roY~;k . '27+H݅ {ImSa'ښ}f@0N \mϤs50`!(]˂}$bf} ޺X53|d[0u-(+~b<{ 8Dav%3,HmX7|)l>:16`J3P8!/١9LLO5)sfAH{dE~8qhTš 7`&#I e`~~1ZemU1yM ц]̚$hXQ&ft޳ -LR$G. BxGu4IQ0fR(ؽ_2-اÛńFi1M뿀yYFߓ L':XqY.w*|(xN$>;l|sVQ\Wd U1V& W/z d(#k)^;JI|/@u ,>Ǣfbj%gOn&R3{ȌϷֆo?_LF*a^86Uul6gIN鿰CKl(bػe@+jIkt[PgN3vN7D>#ɵ^l߯fy=T}ZK%Q;GS+hzQn\5'=,`g]H`v$םY3q`}OoÇ ]:DoڅȡjYy7"5~ n]ISI^\#flN̬VѵEr!ΏV2)~y2PH6bSbG ga{)/ΐ'w8jL舄[rlxQ"|s~z H1j".x)Jh=hqɅhy{B`7`n@ף9ihcX_ e섊[~#T*V1=ER?xb,tپ9ROe57 &B DTC>}/떦-2lEDM 9nۦ1Sn>ંx$MslGSg]WxtO v:^iΝ~'^i3yܒoy >ҳWZ"&LL\UNuYj ڑdTn니/ 7 d}ux~Ɲ7sYW1\AJZKmߍW_z>r k;;ec|ytepjPvt֞TgGV9=goEI|B 1k:\d䱝Uު7806 -=,*f5)_i̧mX0G2?UX\̃D{hǣ1ۣJgQd =cq*^#m|Nlo}r'#)T: r6w^8nt\n}uxNؕ=8Ee.pF^)h V _3HmkCla |Ujkp͖x܈ ;Tq2\zF? f[5x3-O{.(9HGꬱ׳S%ld+? 2K(҉wjYmrP.ǀ@4>ys'ߊתķvo>Uvn֙,{KnehWwM ,_/*2j^'b83`MErğJD6xrN9;Bt)Feb|M]i _s3@hEK;Ѣm,o6Q3˵%H+hy#B 3p* 6 tDp*v.1IӊяlsuA; jr1JE٠GP+|1iX n4 Oћ,TF!}縍^jP6ud\?VO@|gfl_+`'YҢezSN|CwwtО&7t"$;́:}xlaƀ#Drw4P3`IXZ݆@`Ko6($FB(owT.Sz!EoxBG$!rӶQLT (UcG3+[u _>fN.:% '%"7mJHN3N6>9eՉe ";(c*yCC4uDP(S{χR`'p FU@Tp K$O 4ݫ0yFv "fƻL 3)i-n\}$ xmTf@'pTgvI|͉*' a;/憝;x4@ B:p'"`k(X*nsNst#PL~&,\pC60͍<O_W_%z2Bk_A匂uġ߶>$rH=kFrޱR"c&u1gFxz׈e+mU|U',\t|* B}0kylnTJv vpgJC{7z.c.y5cy+_:N`OfZe͵'p{cGsf`5XpV&P>6 5@HI7[H$'Ec[p~Xr{4w6蓂ޭ~fL?=|ty_-{x -M3':e%di0)TScJ+}.'{WV SO%i#zAXĂf{2GnKVHԅWa,wzWlNJe9߹,xa 7bPAPx"HIp\^Bf %,UآyCɫHC$+&. A-;}v= \Xiq9}t|B>zbIh%Oi#&p˱A ɕ!^ӽ}i_2 -k,]/}Gme.t*Fk m ZnKdϫY\ ۪:rCE>7Ga,CA~ҹaIw qZ~&]*:GƯ՛*"w]1xD(?{N8oȷk9XkJQqǏͱb?pb1 2[[QOD;\u}@nۑɇ2OXMN6nO asGT򴨁*&z`"@+?RQGz&2sP,WNrXZU[3E6-wOS`AqԺOPD e}xz;lDƢW[!,/%Ljp!l\Wٛ-A|^,.$<[iڝ.xyE9Ab~Fa:m.p G} ǘ#v*bV;ptRw 2d$Ss1aec#  'S9ZПtdvW N[&s}L<^IZÓp=S1_acvx M_>:W"Uc䡈Fktn9XH?׸@OŽ0*ən^=j cl}Q{ceQ*ێ*>sJJ _TuCw/\Yxݒ4/)MLNt'8YI'j2 i_,B*S{0qƆ{psHxC,}6ezൔZଦ`H.`;Taiy&qhE>pRQG2u| [~NǛ'بRL7tP?Ԗjv"w;aJ-X*t~"i?-XȐ)ƿ(,4lχ[A"JuqYNpzQ`N+ֈQMU:O3~0+5lF8M})Tkq5L`""J+-B09kR7Pj\\V6)uzZAY{S ^ɢ#jj@Uo (O]cIň񪃤=W%'4_ebc:;gߚZ!Fϵӝ^ 6D E/dk GNbd-?:u 'sY@ u N,5&.C4>.DjY,S$Fm>&>pbON\n Wwl54-MJ\aQ?`er:ҪrJ$PC}Ƚ[U&gOW.K#yU=Enhڍ Ey5u]N:o56 j;2ض1,v9F7>ѓsv%Iˆغۓ5=*Ɋ95OBq8?vov1 * o7prB/@x;=&{7ӐUrs,C$[#5{Lxzgo7Fdp}j$6M@ J׬jp-~{0LGbͅ;TngULI q8,Nr:*z3Yۖ_%iT5Z*e㢗ra(E1,wB ulaV6[>?XpPք_Ӝڱ_ܔUA񳞍a7`F'܋`Ҏ1LYZgL&nZ5ܖfIu4 y,?H=a?% Æ#~Q-XbxK>O~9Ǒ͋,lhSG3䈟vNBLRu/Or3.Sϝ,@fi8ĥs^K#&C^\f??8!Isk9f3F e0kQ\|NG:,JvIpW1VGN35(T*rV0dKeuY%mVv&LRɺiW"r5P;Mv xBϻ~ ѩk_%Bg"vI}ui0o*Du= bElZv&8ywִ KҀ@TwrYyNm,"Q0hvdzu/\h?OJ1.hfPE* [£;V35~!MV|(8^u~kW4>Rmcn"M ) o2`.gdG^;ijh){rO.w2d%$WԊQHU*<.>14}μKFCZ2I,L:&3mvc ۶k<ڬzH@ B _W%йbp@0-H.OkJ&$b )"Q x&gE)1w&+e,A.(_, f%z!ΓV30c&ªhp|*Zj~0kd;*(UU/ j9> <h;g+DT4 TrQbWBkL1~l<7WJd/D:/^-m/;炚規өݴ&:}]_0{b*hf=uiz+233|ɒ`oEn7#4?ݠlhW$Yͼɪ̩R_C3k k)򚽔&51F6lMMa|V=vu"<0ty5iԳ}%ȇB. 'Y6+֫8$R{BdsHcknI{2 _G:7" fys<]}l#K|JWW> fnעc9q,sMo}3+'r=>oB>#  S:9_4 D5GLqtOaUvi3M,P1!xM]SBĭ£8K=fR;UVzr>oS~AzKR"%|),6YYIۖ1tvNsXĞs4 -(<󎧚X_>*d Orhƭ4mQŽd\VL"F< f,KPj l )yoLL080НkP "{_"QO c1p1Z1 P\H34MvM3p o{ySL8$Ff قFߋ)lM+RN)DH Ѱ+(} of[64S$]r1,'rw6*z)B")ezHjs'mG08^Ĉdggau?z_QΞ`})c6A8O{yvm}XW &/ސѾ~[P?rsSuxǺDS ?YS_ p(?*LۙxYF6iPeIn &zj7"S3a\>p.\b˚ԅ-~$ў9!9cx:ٍ e!5rGIR}Z^+KIVWu&A|[ L58:Wvk07„[L׊|}i6C#Q~^՗o!4ZVAu6+㭱HOim+GcwxBXIJYž;˿s5wĶXxo)*K碨wRwJ^LNH)*Wԃ\p7,sk;bْ otVn?";Oo{z nr@P bLf"[@G㤕ɺ Z鳏.hpޘs[zgy~LC,w$R)%U( gNx8U>3bNIߢTL+wS'|da|"y|4qcGTwF5?n@P9AҰ SوWjPjZRſj\i<ߝD[h]ro68e'+oY&מ3C*4P^`QRBos ]7ʓR+؋ԑqsݞ54(K? >^EC~Bx,B#E6R%,_ LњE_G(i^apKzf? 8HA"ލ3Ά ]QMjȖ),0K<#5ȭV GrÍ@dP/$Txa;G0]]:&mchyEriSJ6;iΤ/$u0DP'bKqHbh:^Xnm˦n1M߈qoboWv C.0Q\4uO-j9}HD ѤqT[M}nG$(%FJ\(Xer{`X2ex(tŹ\NB(7Mۓѫn%5G%/W/ž6<ƺzsv4Yَ/$G|^Q<3 ַj<~aTIksHh$:r(n߲z ߛ=ݙnޡO;)L n'aLm >y_ɦleV*9hPp6T(+!E4L\oH,:~.ýB*'Oyq+3JG1GQX]q 1YzthZz̙;*q `Z-4ȹ472熺TMDiB$ӣ[3O/#&~k#Dvp;XW㝅}ha~@5>%~;_,n4wxZ 5V|,(,+1iWmMT`7aMl G7Da!)v]bQH*[2]e ,mBy϶6C >BL762 RmKIWuf: Pj 7IUYڙEfF]#趥;袣RK\gػÁ}xIV!χB/6"?zpv%aA]\xHd@wI۴ UIpqḓY2rM~^cِi3mG5]mΥck$ ֽIn^ӬP`'{P:^)8[i9/g9"Xb]1ɛNP;Ş+lw&ZU.]R`OX\PK~ȔpH|񐻃bn8gZ;*ScD5N~5:d[UfUꗺZ@g5h2dkr-`x􃼎55oqBJ\GHl`[$Z63| WatY!-+%GIMR~Znzߓ^3Rd'䋛頁o3_z-~I>@G$r"N3L˷ 7@bN'%2OA̡/cݱr7/OXl>lZ &d T# TcDĔ} " w:ung'Fz@dek^@2/gڔ ʁO-qb,ciw|!4-C}6.!ԡX&Bq0tH K!?S${Pzi6 \ڰ?1rIȋoh Ju"^:vAG:o`DCݟbz?^[vեe񕼥?p=m1 e ۧ-A|Dk *EgR N8aŠ6os<7ۻW 5p ;jH ^Mu'%; 5R;z@$PwHoƟJ89Wvy!fGd`31 gDPeXHFҭdхü073#qՏPrrlH4|Dd#F2&WUQKC7 +1i6-TG6ON{Oy)+> GF ˕$rTxIWǬ[bjlۢ8yzml-O(^} m3"(FD{F{CҜ6/)PiUc^/O'P=~V46ڃQ]Qy9@N_5-ē<ܦUfa.T_!J#v.JX4?IZ2"vbAn-57 kX&{ el0wX!Z /[`]*zLhxN(̆j" 3:,˗ޏ"etZ`avJf52],K䪯TlftHl욛G݆v^tAH0xz%o!t#2YX: \^wdMܜ00yR~рJoA==H,:5$KbCzh3h_,lpJl >u@)wl =zf4INy#.BP ''I[N-m8euDhST rX`@A;KkY~`'4H+"J7]|=,70Gn%n銩v]/> r`0h8"X ~ M&~>TC]eˢF^`12oFOth>OG篝F͍yqokSƷjeaBsH|䧃9S+:qCeqg_s\ݘN` v1;-)>x"e wC$d=Ւ1*9bxōp83<] hc;w)-Ftv ?}bZ2XLS<ҟ ΌBa^F 3hBւX9ՠF#=LU(3כ)Y@l\DLAp~98 0(@gsYFfUN+|RI[jAOD^U{ |dqζ š#:i6bp;YG@:c<ȥ.¤[ܟVT#J^V]AoQ*Nyi V$(NMv&&mj2\/ On@~=VS`.$&j \`%)ܵFgX2]@U}_v6t:/$[D0RMXw~'xkM7L25aJta\k#ۖe"h+PhrkV Fgd6' J e9*FKTzJ"h>$llRʘ\b-y}jҹ` =4k6+.+bx ݣm̑RY>r. Yb7*" FzEt՚mKBbn ؍S1d>,㎑4u+/0= 5%WO.~#UnL^UfyPUn{2f$ੲ5r5=!hLo"oz*vDw+Ԣ\5lzIC[Fv~# q\;cf+GZP;n ǒ(Zk Gdw9]Jsh"EX#삛ށ80A*w ܱ =kp)+8`bXqHֹ3qR`A*k2ħqRLQvgtVA/CW/6=TUBs|#ꕓ\NVoJ!Bǚl)bS$R{IS{҄;~6yvܹB_QSaIBXx;#J.$/nԂ˰w X~F8zSAEPrF~Ť"7Fc^ɼ&&c'&c[\{-Y<cԀ"xAk{y|L0y+dl$4ڰEټ po9*< 8AY8xb Sɀž -a΂o/+gO fQݷm{ܦh u$(15#8N%}ʌshxIEҵ>؁,#8a-lɰ/CI[R"4*]E)S*qBɲv_`EU -72L&xYPe6cŝsJVns*yGʾ1>phw7|G*Lx%!WINo&Xm\)({h Ţx!-gv>^83|WM`G y:έO)v%ڵ n6PfϱKzX0Nle4wiEzF"d_ amĴu1\,ބ,0߻lJy݈df+KkmG*ߵק *z=BܗAȽDy:ҪEḋaJ&E;!<}őJ! >?ݝ!K{~($G"װ?ᜂ%陠mGwTZp$8n.nݨdΕ-!3T|VB.,+~o'ao37TSV3ZbZ#~r%Q&b|齐$,N^*U}:~z<'9ãIO-.Sm6RMQ^/%0˜Xg/ps,w0 YZAER/data/BankWages.rda0000644000175400001440000000223513033553033014317 0ustar zeileisusersBZh91AY&SYRd?>ТKJ| "iSebz4 b)GԓJTb@4TQb404hшbM?*OTU@4J`@L&M"SR iˑb#I,k26MI_4 bchh-Qcbb5IB1cƱl EchJ-qF,E)jPPFRUh>(Ѩ%*J5ca*@,XؠQ6ƸD-![ZJ $*iB*+ʌFѮ.5!Q5&QcmFا 5XY;%BXK [TC$* w9<omw[c-h9e|ٚm-[x]spرD9Qrs3a=nƥv]7M5Z%M]ӗ w+>f@9is<7TCz:n#< Wm^d<v;xW{;8j3{z$<4Q!z<{IDv3^HZU\8Uݟˏ79s9?_=tç7vIE7xY3}=|F8vڏ+3]{*8Gq&Pd̄l#Vagub9=HtPgYݳ 3ˎ)W_vATXʘ_]>49J#\7.\hJ2~7N MLqsp+|Z" MTݢFA^2[%G(ݾzLYjw#OL/G,'fwkr Pa<ӁO%@5^vE|cTR/:{ fv[(Ŏǽ @Ӧ`XZbEȯ^d&ã N-d•lxsg ,C3!!xrsq*ظMɱ4pևϞUoi&&%܅;|ՈsLHjh$#RhV,Mr4Q~0zzU|Eb1}IpnߐNrMRan_¯Dp9%>C+OT.nrw RjOR)u\vxWɩ j-Ve M P@]L!o{LwˣM?QoL0I 1wi8}<\5򴒈QE H]N$"H^2 7o0}Ch=R֔Y1ra}%jcBރ&PqҚpҲ)B!9zI1f;R :?ߖC&a렡 , (`s50'm()#U{,1 yXivP*?̗r(F5W/ѯ"3r]mdP1fSjR<aW=jtɨun4n_QfmoZ{a'0FB9G6rgXǁ "ΫH9u)O^2?ࠥW̠KphgG{j-V{Z+s|yXD3l"j:<xxL:5 pToDؽhg2~vLc6&{:w_9'|8!R%A B+e$^zD'Z#Idٱ{-FÒv^*3(,VXLg%mjG)%PV#ەXf$)7N p , ol0lk\U_40eKCyh54XJZk'B껸}T:0V hJ@*89=dyAmƛ@Q<&wj6bVn+FhX.dP2>o:m IJDTjrnVtWo)GS$˿ǕlZsЎ[@oOX3%mr6kWnb>KC"b08H!QL_\{̴YO}r5QcwINP+-g ;D+Ȍ0ĭ脁Y1G[y=b6<.PbhӾ,8W!=d (y30!*'n x3% {]Ii5tp4Oe8yͤP)Q+3aw!XkC)q2o xrp᲻Ͱ7xj1_{ЌTq2(~Q(: t! "PY834hUgh۫v~}&s#!Ux:fwT`qtq=}̨=f3:"ȥE,ZIjvJ@6DI*RƉUd'a\v9rE\*ުUUш[=+Gq$㳊X4T 0 2`ϢVn76fE&Mp:tVTb͘׊s8=t5 3'SkSP0ILx6@UC6zgYVҌJt~ |"Mov\irk˸ Iۧ2h7Y"eqXF;^FdNܵYO@1hVYîq&;^^1>3":u7]?mH,q mLś?{=E$ջr^HRkS W(]_ҀNh_CpU=_uB82pY"(*Fԭ,-A:66}T4U^d c4jR6wNE\@_!/SIB;bbkWZHk$ [}K [wo.p.At߭|$򊚨; oeg }] |cqSy@ \@G#$.} ј/Ym(6;Ӈ瀆ı uNfVaۃNhE3NڗO ʑ!fh<>4Mh{zS!3eĖQ~(Gv=y (pnAӮ63WW_zo.(B*^R:IXÂ(Mo}6cR/ C@Y_FP0?q:a5r̅kaߣؾF]:g\5"|>(({ %ԹKśчDa=^X )0нEVpJ:} y!Ҏ%Tv*g@9Tor)pĄS,jN)Ζ*26Ki{RNV?H/SqJa%_S!XR\ݖn$B[")IïKܺ_Au1״=#ʾ'NvO 2uUQM?BG641ɔ%#ฝq}JW> /!GXʘ]ϤmL$ cBO\/ ڳQJƬw?ƏKS,uhbmu g\+Y S>q4~yN7;PCp++m+FLvJP+׃͞?[Jzb(NVuB-FFA+]*FUf)Ε0C!MDB ﹂o}I_ y.uC-~/^EHϻY~v7"z]*/bo$<æpJ4Cճ'eey3lPɛE 'R9+9hӸzyRJd36s̾Z,Śr5^Xnn[XG YŢi>M)j.*k̈m,YjG.7zТӗ :P>Z/6ȫWLZP.%j厥]I8[YLuܘk0Ue1ªI| h=/nuN_K`L^.Y>}@ͩ4CR[IIk',0"[}2Uc8l쮦G4NͻEPu5ϭJ/H{G"2!L8q"Ӊv[Iy~l ڎDvqMSS3%5(H|_[3ۄrۏ).xaL. ^1zBX Zjn}BU{g5WΪ&ڽigVuPEXn3=^TQ'jxcXq4l?EVGk:}%F‡nkk]L7D+uQ&.6=ЁU"0KgYbxZNe*6Ԋ a1Om4 qyUG-壔ÕLoa>?>5"Ǒ`wVCU/JĵU7i !s@v1/t ©D7k\:R)YVKK 9yvP-Ch>gcp{3~6;U"7w73H&s[n)~N[EjP AaWf d7Dvggk{!+,S"8Db=Ayi5i]穐 Gy[U82}`=P)$5b@u4XKR$ hV>,kc~E?|F(3,RiM?: ^lx56f kCoHH0Rȫ1Tc PAr V{\dpsi. n9?ueς:H`ᐑ6eJԧ}8Q: _@8-kk-[D(gg l*F6Z$ ߒI(\}Y|sp3M00E v4HkϜr1uqqfZ~n 0 &4"8zf7h+n[{/D9rR\ZT"v] bB;J2hj-s8=*G(>X?jxfoyMg*[zPpV1oI y >['Sl?cr~ѳ{ݢ7P#dsK ÉK#PKHqN)9 w16xOoa&;dC8;<@Y{CT,CfS9Af6e񀑠w/24,B1ǝT񷞫77R"7 jjRrOlbވHKu4O41 M_JHy1CM%ҏa .Nic{ÚA]fP// Tq)R[ 2oٿ^m_Xs{ ƺpmr:x jUJi a;o;n1 mThS Wn>ab꾗)M|0eGcY],昝$F2;[8J7#}?0LE80S90#^ܰ\a;)HAI+|gl)ϊ%S<꣐6vG?L]&1ǀ[8G*k΃ZmfFy0Ve>V\V4DNvVRݗj o iag7ww-[ `TG#$R!"fHK?B WT1;YҟYq3Dr*v-! =?k#4AvH$!~&P.Uh5fXS-9CYg[/Ohd/G}jLu7 QTP &$In=D.htJ'F1^q۹7jW@~&b:PDmԞ5e+J[bP%}ƒDc.?bp9DHt/wP:~(FTX59ۤ}ᛦKs'GA#`,-^E6\14bc0twkż(#}Mq-#V>vy-l,""be0lmb$`=t_7\Jjp6_7R#QR.4g#hb&"J~.Lldh%xqxԿ+ Go 6D)qxJUq&vc`n},yv !T J3 Q74ehfSxnH_vjW@60;QnlrZ gߗw#'g(2h {gBO*Z[A[iJ$3kuU媋.]1_ ^¼(81K*?8:³kNb]dا~# ̳PvDQfe|Xw1Ah+ed%,`g9y8/@/Cth-涨[{K[(q;4~с/HOB`Q~0 (׌(Hx?M7ybj$r4ʕ0.^ka:-j|`B\SXO汳qߨ.ݒld1U!?˟iʁ5٘4O<>X69QQ !bR7ghDF'm^L8W179jR6,Dv)'i,D[i!Mۙڞ-&k+ eEKx b=pfhi/spam}FbhAq+!'(Ɇ! 8A$5HO$sV F'x\*זp9쯉~0Mn+B|~TF3J=~p/~kVJK' |,L{7l ?u( 'ī1M̵D<7]o`2S_#'!&~L/Ƅ~?Ą6(J87'VxLĐp;w0"'fRR!}W!t /8A)2blaQE{rǃ-/o*)^ח8GRLjv8gp` %[<1CG+ui O6:tZ S>A<-~)#{`u}g0%q S;FqBuL!FZ[BWi!)}[1 ܿFp)RQצ p=5H{ͮvT3Ib=BjJܶ`}e6{\J|,]yGn(K:ǰNg &Z_V) 7e-9,. ۀ8^4]=UBc?tZ9DŽJA[CU)d7z9`5o J`!,F{cULz|C13&s|9ԥ(g*(:k̈́ƒSPᦽ tx r\4zS,MGfN,vgu L"m4>H ^pV5R '4Lt)X{{tD#B䷚0It}`ۺ@Ze.{"^y)ҁPNc@mYX Vx@[cw G 4_QI0۱&l Fq(CCTyfY ),EcB5O᜼#Y>uP1 jj6ta.s1xa1Rum?8\c{€,ؐAčWY2J>RK0iGʿO^uy5cAf1 SC[82 Ќ#'?3GQÄyXτUXq'<Ľ#DRkAз?ghl^?,R+i'7[tWq OHBc{gu1Gp3z8'vRg{OM Kc7?Y4AčŽsV'b-{bsbTJ|ԙiR7=i*F3S ޭrztqK]J*H.~_zV9I޴pc*<[ǐCʨ LPS?{yi%5O&QKZqڵ@BƗ3/R]1D}=՝Jc3_!UvKZ܌8{BjI^v9rvl8iޙMΪ}oPǞDweӫ 9R&jS9O o_09ߤ&kOEζ Y-:]˳\qfXStTeko` PR"wIU16b?f8̣Laa kذSN,$u*nAhXB0ewy|L P,*KO'XJHc{0b'Qvg;HۃaTfrZ9}P̨-帻ソK6ψ%_8G/t-u *[HMC;{5NXd*L1\ERO n֞DYs/1S!=y `%c(,F 4 !\6Z9n:XZ$4WlS rLXI@RMMS er t>&Bb+p=A.kpa}2 ]8>ʗ,'轣k]yx,]ą` 28Y?`^ѷۤ4W"88%FBlY>5)ez7bg ^ mո†Y2]d744Y҅U-bS>u5i$LĴI243ÿ!+&l'7SؤFZ8'\lkQخqwbPf # Sy6<&];ՇB%^5gJbKݲ= "|w_{+0°L 1nP]GҚ.8uNC9^O,Ըw?yn<\ihWӭ5yH,օ#(}T*YOU C>ֽ2K^Cto :YS [.Sxnp?queϝTcs'1nL}9Ρ }F|l{&A@n"% vC(MJLPPe鳓g訉:2aHKA!JJymӨ]V:dݡT}܁ztAa^];9'U=pG*i 2Oy:.Z8v&EV^pZj[,W$,4!zEϩPx%bi1uIS᡽q;t7in~*z:J]vŦk46+Q5qk̂t"?i޵$̳-x?M,Π2 &DfQFW!VRh5 _U;!|.% 4' ƭDH҆hぬlQDݡuqXLQ0"< _=ݳ]._uHIsnZRzEm1cf\}}L=pg=׸ƭ:=j{Y~UN4s/nC ?OqO E<Cy&y9JW~'O=ո-Q(7‡ KtiU8Lnftίl<Ϲ/Pq,9TM ޔPN7,^5F<-09~_!yD/:6ŁXs!T`=iE>WgY(yd_Yˬt'yST 1fj\,l+MRr.`-sˁUYIɮA /WrJ̭-@WO:WPDᅆ2ٰ B3TpB5ZU]Ww7v }:E"f9H̙h@0h$hX^lbA < ;d5+jv3ӱ d OC'J,ͨ|Hd\Aռt S78͝j@^됳@D0SV2fEarnmSU9{x"r 4J(m9.MS+X͠ "E4ѸoLȀv`x̒kjeJ, lu-^=s'V̼q{jR kPbt@%HZ. 4WwY61G\jBNV_o# bkf)1ߌHu2 PY~rؽ0L2Wu!䪙#|K q"8{IrGeY6Dݡ[Pfsw@ Eogqשw1䒛'"1c,G֕^`1<]9 #Y=l%up {5gxuj3'«p\w XJ.jޕ8Z.{WF r/M-}Ϳ~ԩmvkBۄ:nC깘RM!qpHyܬq^ex$*AC$ /\k  UQ- Ns0ĿW/Y4FoS(PC`,Zɀ(>r4jL gLg㎨)L ,GEUr8gcxGEѱ|xDSm$7#pbHc-+{ѥ0< l"l!YAݴ{/5՞eL6louBB-0DdZ CS?D*mK>!Ǒ4VEύx:/ر,FF; "@߾AOB|{h]ڝ۽L=#;eca`5MYӥNOOǸUȂrН Bf9B}=>ƈ"DzYQ63Jrnj0. <}<ιs) fѮ g2k<)҄=u~L}_}X_ 6H%waAȡD)la$1[lJ3YiqoHNMNgq5yC%hx/+6[k M@ >BrS$nwEi & 3c=o4 u GKiY` ƶb$;$%c|xW"d<74DGWu5\2:6/ʑ O+M/ S+q"ݢ(Msƿ16 $y4/5XnA06~$jowS#gR\?FN=9CFk詢8MۺC0'Lw+K"觰)QZ1r";Y!4kil"ؑmjIJ]9KP޹)*ؠ4%ꢼM06/*lz^&D7vWԙ A鸪)7WSE‡4=XK;o66kX+;tuSPds r[qJ9Sa=a ]_$@?ل1TNSR1RèX+CtkP‚rO8r mЬ~ \A$if\ǚIYSN̾4U>j_xQ!̀7k_4N1׼F!2; cӦRG.nh@7 |UxQWoeİKyxk,*AvzFNW-< `q];KE*VZ';kXon)I4~xCXfeOi[a 9mŠ>6 4c{/Yׄb+)TɣtƠ01EÙJW+c(S1b2XF 21+Zn;^F}t 1RA2%F o,RfA%]y+GyvA薥GvXq,R1lC)D:R'2…8jZIc(nN:L>8߀ g0-6,GJ^NKwܟajI׋C,gLT'%{9^D@¦pp]XwDcX}yqX1 #L6G:]!,)p~dFusf+tMfDn,TlT1::'jM1SfY[#D$B)FABKw:*QkA}z7G:4<\|<% T^Xš ٞf#wN aF!#+mS0TJ!|N R$KY۽i'\2S䞝o/k XS@}G Tg}8De}XB93p>4vQś 8ᐴ]JFjMr1 M NYAO5mH%FoeaT.?`LN :/Meuw{:+1 .㤒E]#Eݎ}'Ha :'d_}g`0L:&{trQs}_72ԍ|4ٛR։qنJt2wKU%GMD6pA]Q~t( &Q~̧d;U0OI kn Ҡ Ry,q|m/W|fW|1,n"4Wk$U,MhϬEqOVmzi48b +aͻueqa|9E& C^A7oo`Yz>7 mdI.2ypdEvLMq=LI󴒋o8u 򓹂oW(VNEy~dsFմm ɖ9kG/fNk58XSVpo @Y; seRf@:"Li# *I E~_*Η/(iM;$B7s ~}_<$tl*K30,nE.&%>  w'CzqPݝRU͕=\y\VZI<}2<9Xm_>O{u[?9ġWQ@ oB TI/o1r.a; 2uRzR4rEL*c)BW'JfS,d}3r" t/WL.9(;R2%DP{ђ1<۸yfxaW̹ONj%|F.77UJz6? G)Wǘ. ݓ䍆E]dyr\Ry@)`i*~#;W+K] TLWk`\X=RH@: |VSY0NqN(o.'ނ/u0icn;`sHI$f^n~ u9dRRخT1?||!|!0tBpdk&tdY^\UHՎdt̅Ă̌QVEzЍ$UO4dOqIx}>Y@n(ݍVrZx+Uq/,R8b'8$y4o'c=T5hR_Q,նu NUy/3Qرhw4dǡ4p$ع%G6Ah4m[꽺gZ(Xobku# ԏofbN]EsbNi6=-""Ynfh \sVU<]7ơ8IGk#StC(>8 xX+-ѥYYclPOW&6DZrx[)bB…5v .2¥?n"~G/@WDjbZ {.g q>\֑TÂ=IեX#w8i7 qO)̤FMe99 zX \嫄}Ex~yQ\YlR>!TLP@fNk%-:ė.U;Y-a!e!C嶎J 5Cuv! pӚM}1@Y>BHjI, w:b "?Wqm>RDꭟ8I70M[/ i"Z)wj{& rϗDwI?X E+ Jex##*l2Vaw+o~݂[S3}(vS'[vDu_<8;1q1^aAbbb<#d?Zg醁uQ!Qn2iS`J Lպ}4yCTݗO.n,f ?|)GbWa3Hup{H:4%+#~:|v/ \+##.>N'z:}&Uy+l! dԄ7>S0#Z֎^uu n SW `gӐ( ZauM# ^X̂ڊt$5&JB xPB;Umyr÷⻃Η'p-2a/31VmnHBFbu-9]~ņZZ^4XkDfmZQ͹^KjKR%0_Bųۇ΍W].PU2` Ch9rY-W[[!e[phDQ'oĢ 8 v>oWEy)gvz@MKE,e/ HzW@a>3w^/A4C^*ɛйL h[Q|]sz_7;5c > xa`P0 A<@-pߪ)Hy՘xy1 dJJ5P{ICw}J/Ͳl0`hc~*U@4\0C4 2S /Oķ3R(%Q CL X OlA`Y^ȫc{-@4irE}<:`rggEBTI.ZW \m}4xsH*,Zqou(Quw{~rS/V; (f. q㯓 > dı;Yf? mg:bb(dL1yMݶau,"=6+萲0L7;2qّ=wn^*(>Q{鲦P艊ݷ^%>5xm$E'vG3"`{‚靣F۷c;0jG-qڸXSE) c,MʻL󀑷~2 U4!t'KӜ9̭9O٣4TWwVԽ?n ,ؗ!g}pe&K<Ȧ BG-O*d d\W׍VIG/ XUʳrk ɔ=&t-/ymaBwGQ)vP(@y{!@*O0.qiB0LsO Ĵ$s!w7 6j3:G^qc_g=n28EJnl \:L\B!g8ˋBā§$:Rb**/lԻOӿd ";H"].0H1oPP2mo%cӧpxGf):Gd% %%YLV)DaP9BDMD [?5 /'R\F`/:2GDF'dʼnz97'X/(VJlBZP|orS xRua߇g rqÛ8 -`e[K'RmQMV{ ]5,qZ*YfzwQ/:8 KC^-=[ʛf[*(8+/+1ߝxhوgzY5_H?4VSd>r9?mѥ=Ŷe&"4ؒa;Ȳ)|]pwj@)Gv|Q|e)Ȏʕ.V-z)$s7d+:';S# 4>֎) dhoՏs(U׎W|-JWj1=Z<]IvӾE;7|#X FWITB EȺq2GC&cL-LCZV s%OGmFnA}d. xGvI"0Ls x!3d~EQ@1`qk>؎G4TI|RY4Jc՗.9`+~G13  OSWPфX9`/B:SQӞ&^}0aدVf@9:.ڀlTΆcMd䧄mSѦvbs!R;2'w UD\zS)W"-&0*9I7'TcS:)"Q[VYu(fv >q?Za[tN A4״!#Cr>0 z/b}iS;Z 6΋ 82(nEZ q4VYS PȨJ\swjiGa9)!\ҵH { PlD:-K$LM}9{(uX@w83R-nqhEt9"D5?Gmx)Em gE`c,WtB瞖eyoZd}=aPw<"סDp=.[r,-/ i u<EKԼ.t)A>U S%,UWfjeua6[dR? g馃S~&?b>CT3H397Gik$ 3mmPNUSnԄ)FiBR6c9s3]3=>9ce):+ $j\5I_:7\wnv!_SGgz‰7Ը\*2Uq4o:D!ˑI s>K"qJ"X4Ze2p&_{yE'OζBEﭯxkpVTvCDy |klqw "q_|;S;l;+jǵ\@ v1VUKwL5̳ !G4IaIʐs`5 5`ͩՔvԈt>Z\XB%s+2k2^P%&%shO ^s^*SR(ƫU1՟EѾ]ǁ,UV 77bD%ndR2C3fy4ɐN0!UO|qe֣Y݌d0m`<˜_|Bw0.bf-9iԛJ 95%h> 4uyG0(yaӳ(' Rr]xI9(A&2[q^KA芇Ux(lXM < ~Ds4ÕEUp5~nnqdGl^Wqfi JWI1K1f7KAe{G$pf&RN,+Zgs,B7ݦtK`[_[y\ى_Կ\e(Pxm%+m+_W"FgFj/p# >[S1. xb%Xb׸v +tF]"lO s\B(<,"QHQyh""Rb[s6{1wn^wN1✑@S7#7h6AJ_'J̖2w?ڍ1n?wȑ{8][_ic),.5=O3,Ϻah͗쏻i 99V`UX >PlZLk[SE[=l(O;|j:$R6]ziC~qc:ՉoAtxT0E w5mnAfoaRZ4KЂ8vEh<>ܚT0]zqWx#^mxi=`FNl$OR\m[@lyH/ my}EZ;NV@WYέyP{)["JW`7o%1% Nnμg|$|d-~z"K6mh% hp36l&4fz.`eM9 c26B -TҸB3s|PFp' n y$ͨAgC۾d׶9*YY lSGF..;[dgX6tm`-1&X\_9η/?7QW. sw8U>{C<2):fo9oHQHJAOI5VTnEEKfYcxg @ٙRh:|]1gǖ/D~y+ΐi_tk`¢hTekڶ8$ Ltn9bi5Lpc<8Z1"Ö ^^&9!P$7C/ FnJ ɱXOwl(O4ڣsEH,jO` P5Ao˭17!<\~CYQ?,VE4 f~| m-x{V?ھTgor㢉N2Gy{嵐FU/)k8%(ݏ|!CXFQ&ߦ>&] 7Gv_]QOG/t\Ռds~U:tĐQ#<7I΃[2qZV>+{3Hí̈iFL?ƾM&{7JG(3؄$C*VT1TE+*ơЃyAKvdkkά}U[0_Rf吡Ɲ֭fJ9lV4vbHGxѶʗDlDyT| >yJYNt]o}>3LcT\}HBi4}٣ x/I|9BeQ]m+F /~g7a/|ļ7E&?QRer,f+ߦ.],hӋR'1Y~ `LsC]^eNԽ-wyƱz8)q&H]%_p506@8̰a_C ~-ɜ߶%t45C C0j eҨ5%њcО@a|^Cb9k= j%9;;Vui0A!yЏvn<B(ۍ)|̃)ݱK6s'H%܈ ^MHX,p9u#+]&R% 9{, "{{#@N}& x@XF/Gv\mYy*d S*mN"6%nEp2?4 Cq$ ">>mak4jSlShGITm6pFZ/*UA2k3 i{e\ MOLb9ZXDcBu-໴ 󪏟)~.6Ko-xb߭+Jt %[}G% B#z7Y7<&"H^s^~EcZ E-HԂ]tA$!x&tF!TdNS'VsG`i;I Z49ӕ|Y3F?38f@-.;_swS`!0,c^ޙ{k鏀.^UMHP.cL(nNɋ,%vwI q c9bN6Kh#)o]ڲϣAPӼ>q(& >]a r!w>$S$mH8۹EXjF"c֍px&gy㞧2L,O>#Yhw>64܆;}DDQuNPNc$7IO-P^#S+59xރ[NuҰ:-T:A. 74AJt+٨ "ꇉd<9S}}ڶa?Aj[Y n:68cy(4(k|quĜpyUD4"/D ]b7 Af"-<|YpCDˎװZ4IDm8VX9qS3W4jA1HV[:Cgg=FC7ζ S ҴeB#v`UM`;9 2cːS$n%cx^;&ђjD D6E?7`kr  9oD+,r f.h|1Uv݅5pt|UP髂5sHL"`Z$A&38b$W(?רc);6b];Ja"`(.l0FS*>(N .M D^cͫSd:u>ck[@V:e q7>`6HƩ1gzw Βldy 6Pok?/>EZ8B5* ڌ |6@cFXCM^[GꑞK,hva㛗m}k+o3/\EsTߞĚ^\Z W ~wKNtü{H] \2ElAr8ct+㯄V%64Y6`_=qIf /Kb̋BqPb[T#N[ky@V$^uw+ܒ,_Z'.5%+:\uHf8gi1!BrGkiDzIʦACg1J |*"љhp!r)|al$0*i %@IȮl2fq}G} 0 &<.d6KQY׶UJz&:RAA\L:g%pȑ@i!w%u/qiX N5h 1,3=#Z\;tvakb&[Rj{&@S0 /$PѺ-/FYku]74${;{uF |IX3AQ&by(~vצ{uT8mЁbNki$yc0ky& ls!槝V:kߨ_$cĔ W#O;b <[d4JB` Z,ky+/ 1RO;Vl$i%T{-9MI)يu&+_,˷XX%!dΤ"QuCjl5t)([EoxN ~.E8è ZսeHylW%a9[q54'ƅͺO2uƧa,&"U3B.#M`6A 3 k358,UĎ<ĵgNK%jz|0#}oܨja~YondPFJ{4 t۲C|ӕ9,_=SbkAM}p ׌63g޷j> 9O˭H| GDOo9VյSY}F+`I B i= ?M՛ ZJı1$0rQҴDpRxG;hu5[Q$#n.Rk)a1:3-^1WtB<M!Cb)^v.SE?l-g҄`ɵX/;HDZpEWSŖ afF3܌SP6Ƃb_nUg3}R#ښ#M6YD\y#\\u uQCoDBBI1ClP?F,dڭj ܰoRE;̒ū>cgcq~("ݛ肵5,b;tȰdZ&Rȣey-R\6nۀ-F:[pH=ޗM:HHFhWT 4>CteLZֱL $JFB?U.a55 zGkq6.f"Wp*[,z&Ȉ cO4_G';σcP(2|J1eS>**\~MѸ#oYFA)` `zN>XeE _#LAs&Q,0~>%G:Kuk.^nl -^IYk 5KLg%$w'N⛡2/Z21ǃa!5 ʢSQg>y9'y{IcdXt᯵"3NzwW9j2Qd0өV%n>,`t/BVe/ySorkgqUSDk#ig)Hokݻ )MPO_MWWOܢUHt3*IZ)InAlš@?XUb xl3؇NE 9]A1 9QRTh;Hq3%̧Ii3k Qs6ZWQL1Wf͔Dq!Q7Z0"|TLhV%y lS1v*n 9n|Gڑ `Iw g=V]Z* ن#\ŧ-YU.Gn}'ڥ> 1pʿ3^8vzG؁[@Lx!'AaA*;CSN1(l6o/+7"|jQ98`:Ф+d?Y+SF# {%0rN9;B4i OȌ—֢b6@wl"rYX8X$Z8\1\EOoCLKC.Z?hd7h5w/K\Ԓ_L4"4xy]?[+aW9bN{#*z&/~VdH]QS .Üzt od)filΩDsU!fOjǭhyWHëNej5Kx;B2)9j|ϟIB+-RQG8pr4#s_1n۶Jo~.هL/fG*$*Ds3;ԗRZ\'0']3}Ň'F-!ź0- a 3xhE6v6GfK4/mT|wS]uq⁤ːv*ϩl3!?(0WhHx+D=ĸCڵ]H޻C1`,3a~owoj] \Kڈظ΋:O>yR<-&iޠkp*05HTӭmHC=˳CI f4jhw{Vg4hnC+Ȩ;0'Byҁ":|>W %0qИPc°ȫOsF iNT(GG;oTO85L|u]xU ]AZQ`4х)\- 01,õQN5Y((*l<ڳ+4"+ͅLvK}/$9/CiޜǙjМHw}/H_*S"ϴp}fP\-昖|\NY^<2~:nmF~Rԫ y wKy6՗0!Mv@&h'3F>&%·Ou3[Zm" v,F/ݞVf'>M[c-U9 PeN9j 9ЃPQ>'a݊ΕIڼȣVF {wŮM wśC^iq~<6+{ܭ 5c@Z^oqv;tdѣ`OIue1)_O:ZW%~= 28$G ]"bۏq*Hm!{@Bw;~>2+2rU1evwT*Z_cC1[}Hdy7zSQPmH))\ү 8ɬRulgoRG+gC% L.lR|01 /ݬB75sg ʶL RYr˚-]kVVO&`fqb9UJAjf;02O %q)p KJmuAxgKǘX"m%DMJ!bhT_: Lk_j&' ?ίBgD0 ֨[;ƀߦD 1,\ӨױwJ>guDLz?%]gUば.]&pi#vZ7٣v uBg]FeHMߦY P_:(ԽLȠe# )aB6#˦/DH؍7K|}^@7=ۙyv3]"z58w~{An,cdz}[/wT.b'(; Jqj9خ\C%#D`"SńʼR JOAچO cId~5P[C ky"BRsX]`tmO=}tכp?l{g7&rR'?v>yc\:?+r;ZITq"'T D,ʈ,:T-?J ¿ӏDȿc$OU42uv 1I$O"bؕVƠ4uR D3 ecݦ]r.^B]>gW zGva[Ń\;YGuSb "1OH;w{)I~݂6Uo]k bm̧ѝ~6D~r3-3kDZS)m=m#o ~X +!8q}b196_fA+Ӄg0N-B0vv$[}Jj̓Le90l_+.z< uq@tuIqAbWc&# _ g9)dng ؁&bD .Q5 6(:}F~Nk9* DjCW.;vVp6 г0Zv+bLHI2K-"{&^}ūI /`FPM}uK5J7Al^r[UX8_/F6K_ZiVy]}KS0sjh#,ܔS]:ZWPHs%,Y2 =bx, zQ3;}ң1@/w |KD麒E\n~y*?;.vۈc\%Kբܱĸ3׼Ks((x&Rth7a@9/DPѿp&YM[Z)%aQ7PIS%hbťmZx }mfd>yʬH׽pq"C!9,kû=eEC5fwB*밿|y Ty5UAowY?32_hHKXוpԤljΦ``W`9<|do>40'^LZ"9f I&f 7͔_ّ1w #o썞bo!P:folPh)orD< <>;Dw\y?Eɀl99fdA7cpWl8ZsxOyRыTA?Sh>#0Wfs/>7́4 ݨbEdK;mB|iQv\@o9A [S+v)~_լ >Hnr Oݒ`d\b} xm/% pEi " 1Cl{-޺} d]b>Rwد ,̐|p}6op5)\ryD2"8^VVvV양ԑꖎUD9<. < ‘5m `Kf q{8Yi6ȠTLB9v1.CI*O:TjCg|az`&]6Y"C/JXP?] mo6"/q7fcC IBGC@ b90(߁ ïOQ Ql508,vvhA7P zrÐ+MgԀv6ct+'7o n4 Qwn!6fgTQypot0~4ic4̄O:9[S(#f%w5HŻ1V?e8+!9SR`hbRXc/>>=rL )1V}2ZRNV. HA%6w_/ F~94(f}THBCG'v,FPZtl&xZ\]:%P-K)X~fmǓ ySq 궤'9_ÞJLМ@ d毤B, yPBsrīE>ø6=aȎn~@g`6 /Ӛ {g[^R#S).a* m~=uD%v+dM\ [c 3Qз5Li/yEL#|* {[9X RUWF[@gmE@I97Hu+@(r#%zDͤ tqa#A4 $y6͒k~;_šQe%T\h63=Z]VqK3?TWYܣ*3 [i`K7jԘCpњԞj~4 b;^-T[͓$?+*l$>QjL3^ %ڒ>(KSTԈ)L 6@lŢ׾;?Et_uw3vmv)/0o_S,uƿ: ӟj-{*5Fye;lѰp<0VY DF_Ro&"7e[KI#AGWȤJ 'ng1Wy gnU$+l B,'!d{Թg DT`uGBJWI u/0Ӫ+opҾHTt pE| ,m6R*"j3avHC@"uk"J{)8`nGn':s;vV?MR_Q}dTZ #FHR<(|L&LƪIRꤛ:mp%k\@O6zX _9@&TdJb~Z7Ng~E1g ^&'03؂oi#C}3 EJC7PHTH>;9LU6;ɣ<}UJV;Z4xi&BfO~m}p!zeJ^1Z,>G8M)8)c X@ƫ^NJ MD/أGpUp3;`eOp}[Zy/&5PG=SQ숷uǑZ?!1NiKt,D !s]H={,o`?(46G5<-m^5`%o@{-%9 Q[v~ʿ.pOK%&K `> n H=#D}T630h0vruc4A!@s>G7O,I`ą,2x=a$Tȴ~x'2߲F5cڛn71P\$FΟONڒ 2_! KrZӘU:obHG<^l󩄜p; %/Yܢ@l,CYh8-ix.DZNr8~3Ckq4Or(D55/f1\Rɤi@5Z d r%NhO[iu=^c\B`iju;\xŐw|xxrFHRVOSS_{Yk-bB)B急:r]3!-T@<[®,ME=" _29G`AUJk֍cS0`kO0R҂ T,9*J\Aίmen>{h\8`Da_9 J'U4%C;̗`D O f<_xMs/p%}Z})~jgTnp}S8 (+4luڽJuzuej+%҅U FtFqx#pa?hmcsXgd2u ;7:lNo{]6 v! A{ʪ #E+7aMsi#e.wf[K°ld{ޣ;ܮ<ܡVfT8W  ٝ$?jГp{+#%Bikwn:^كATsאwEiC{O7$ : X QsB?ULAqe))nԒB*m x?nPگ@‹ P!uЌIHMLz'I12jI#eA2g*ٺaIpj@a>W#\8ՒU~;;MvaNJj9r5zVA@&ۋ=oQrtsȩ`"?rK,{za:Yç _4V'Z%u%8),1 #N(d $Q]< ֞ӸA XN 06yj5X.\G!wa`qm٧e)c} S@%Ʃ'շhZtU#@s?khK#yC j>,}ۍ<x@{7a+0mY]%J 7ƤYei׵Lܚ%|WDl|"s9׷TZGR"avEe*U5[:5r, (m 'm'j7zO3D jE" 2K5v5O +8+D9Vja/*墬9ϏrS4܃ۯ %ƒ2&\/H< ~PѾJ*Q" +d`K.]tuo x:gqKF ,<,b —3\{ Yjxkˍ@d znYuKK8؊&Ee+/וFUY&|KWq &v{Hd·yIz9`(n21yIJ?+b^IX@+:BO}ͯY2n3ĸ6 Y L>nJdgfҜk׋IH6O=ߪ m>Yul &fD1F4z2x?E۱̔>1(T%#{1 |uI[8&[E4-G_00yҧ >t΍RJ 5!l;N89#uʝ94CD@iPP\8w5Q< cƏ+uH4N1+4"#})ØEq?aYW1ScƏI9Ζ͡@[MC(-m7}ʼݙ7Ux:wjpBj,.lwx5W}y XdjBwfEr̓` [Eo!3-qQqfARsSGZF TSG`07Aom[PU1 +3Wv )Mx,?i}0qCa{xKd@30+}7As"*7BX.jSLV#\gD`֓'EUȚYCu8TMc`ھJ2eDcW 2,_/2 P 8Un2bx3.Ip2ۨݞaM`b)Fy wMw<_S'FʆF`" revm+ԷNZOz SaE1Ң*؜ Wn^1xJ~C^DU oaI=-ݼ"RV-Y ȍl/Q'1tV Gd_9BGoQeD{Gi'ؖxbU=6{Ӎ,yːRlOu˳ {*Gղ"a$L1j!7O̊0bԤ}+Nˣ .(L12ն@1xx7&˨f}ldIU,6잘鳮E8lWЦЄ~Ypf} ߧ02/Dۚ0 !"řU Ǚ.D& &HHI@moz%Cc'&o~%?7^g{F<{s #g]Cdã? V3=sq.ѫ Fۓcr!;A]Pjm7 1&[;c0ᤋ{@ldXt~cΫX@T?e3([F(nH`fy{KIU? kHSVlKUVqEK8Swd!U: @pDڛŸ=';Ohm d\s`2 xN5Jk}RK¿IKV5"e2 ޵X7B̷$~@=G9)mpY,{Q&nI7Gx^>tQTL{w({&l- bl ~)()Jd!W(s_5#ЌOqz@)bOx3pAʅvGXOO#?٘yRO`@'`-,` v:zz!ԫ2NfF*Aɥ|1Y(NqF 26!H [Bu0Dl9]9n’)6 -7¥/q ާS{IĦ"'M("IO-PAH 2hc䬶x85?qH}60yZo e~Ѳ{SRnCM9V1v-7Lۅ]BL-')S,ƚ mZQhnfޘ y',mP5xC&?PfbLgJ9g&JfYkK-IAgd Y3_oF:ٱ<#h9_l6D'&6 t_|VE"&Wbؼ.=C" YH$cgT42JkGtf^8-fv@Q J=} Bb.pS b鑫1q\u,E?Z'F.aE1xp#~w}^ܛUdu ".'.|6cՏ3)skA-%B!k;WZtf 0jI#lޔX%#U>#\(aHQ$_' .ƎUQ׺\ LxBE`5pؚXԛڦg8FOoL#̮U~ zF!ܹkAʾLCo7c Ȳy׈>e,Y<yuHq4 15l,8C\M4fE~0A,/?, h h A1tkӡ{3>-5SBRy4Kmѽ`52yb93v״h E1t~ 05R"f[A+7V(Nr3c`ܙ~˕~!xg橀AMԊǬe/jf a4 Cҿ" 3 تLk*)̩ӯ 㹓zo/!COcʥڽTN%;BB#/耮s.or\w_l1$zn-CjG>8"`im̝SjjKDB%j,xV`LbwSQV@\3*ZCvҹHe ħ=!LO#!C*lY[yLr՟МY:ꎏ(g:  zb(4xoIF$\D{4̛\_`tV efۜ!xWBPW+vVUOZ쎯շɢ~T."1n0j.O`'*1٩*plc- վbogLOJ\URu :*@X%~;G,!3tqw8*(`)tqQ{ ۪VnQvU?Wŵ*-1~ȕ<EMGAKdkF);f*"Q{ʿjf[]Q+LG)ulag? T,|{By@X{9(oxxeZZ[\ "nsUPggpd.٬ XS^Lߋ N"ʏiQP|tҔ5NxDqzJFG=ؐ{t"n Uv(DٓW΃- pgkw/hpu.~ŊɼHYiʓmO%]z0?6_0k, _x\~0K!ģ8vqV^ȕjž/J3GwqlC;B?ޖ]Bڗ,ޟCSVPm*"(SMo4d Os<ˢ GWh_U?Y \^उh:a5ʠ[Av$N _vE|-PRO<`WxKv~IPtS'e 1#J0\_Cj;eYtoJh1^~W0{{[XDuiXU'?S?fԍVg[^Qbzz#:|LvOT&\J.b)Xc./ q(:12TJ(JCKM"oq֣zL,1[oO[sOǧ(NRW@9PBR$JA+fD oKZ#A7ӷ[;camq $j1`Ht#JzA:2^ 㤝+R*1җhDRp8ӋzrQ3bU&mG: RMNzAom~-pΊ +a١3 | u"o*@J' MV2_~d& 7&,͇SCE ']ٴ%z),9@;b}̎mEmrQ iC1n./?qHKo!N%Y7Sg2 *+4b8d|hRwxeG49)-?S>1?Mg}'T"2QfDc)!pQb*BZ%~afV@&T)z7Qe:Q~q ȑ#b= ky?Af9Q&;rۢ9- pս'lv(C٠ޚ r':z*)t57vOvfmmp9;X*x%ccI߫bX1NV^0y):P ]?yEǃrz_C}i"n+h0@HہK j>B,TNKP8n>7)jhg IVNcJG EdVSV|T]KJv߬911WM1dMh&(}252޴rQ᏿ˀEjJSUaۊWX!-SǚQ5~ꂳM2>NB#ԾDQ"lDVY}\ZwL8bhwk;gt= d:d6"1SP1OA]6BW( z ]aUcmC'.)"|< u#̽Rl т,!Dnp]~ږwۼTM3> x2F< Ea6sYsrdf]d\gTϰ}(K1;.>KRY|FW}ns%UUyYs==vȳ{ 5ݖt=0΍پVc*}ImY% kăs\0 YZAER/data/USConsump1993.rda0000644000175400001440000000066313033553053014704 0ustar zeileisusers];hQF3HD 5&h шfgd6B,El,L' ؈ 6bVLpOm6 в%֩.$sq5799a/ +`Y =,gza;;n}uh+G_{4[T,dCaL\} ޖ7 :{Xg{HINgzN}z?>#no36k}S7IYf!4ÀZR'qr\=?uEZ[*8J;Ҿ%ب{V+8JgjT.fjIUP/SS =H:Vli-]-&IӁa\K2%$uAER/data/Equipment.rda0000644000175400001440000000165413033553037014434 0ustar zeileisusers]SkLW]YVD4j,~tZeUDW;t Ui ڄXj6ĴcLX64cMkiiZp079|95^4E(œG_iWDYM;5f)JdaEd#rgȑv7skk;8{x{҆#mB({~/8Sv]EP_u8tڮ-DɍiGoOy櫰;Я b[guqVIG_[EҾFf v+pedy=uީlh\"½ >Wmy(sd3'NʡpW;a氱ЭЫON>PSGa?.p\tq69~r1\s }W{zBق6E, y 4hy,103|yxB 8T9φ6ۙcHwb ^rғUya=t򟇆 6kEPI.tb򣕚|Oeܹ}I;DɨԌiEUے>aҸQfb_Ks%S¤[iy\0NEy[m9W6ϸ2Mގ['LdBpNԤ5R5I~sn&!Vj53k M&*Isj1ޭwj(a'|-^R_>R]co*>|t8C5>z'm}1Yn@k@yn5=쫰 z@7rpXU&>;=_4/kg_L NJYe]fje8pDAIEeRAAqWKMz,yR9|}?G˵k؏'fRS33SS3M2imb-C񞣼}gE71151+_1QW*ĪkW;&NWM8 kp 7NƓг2*SŽW %yU;ߪ MŠo#^"~l>y~I>W}9[\!gKL^S/>^*_3owݕ2.x#pUrK :sս zRYwԝǼk߶^[z[;A^X ȩ!x%֯_H| ~'_r~׽y C7l#oM|= g3Iȼi7>ż}v$vMSGS*!w.}'wXg3]A]vYq6v  9??'>v=&ya|Q/ν|{GcK }ҟ/1 t Ѫ\C@OW U?*֠ī9~,UW1y?T+'D8|Cx㹳0QOùؗW%̅<BoJ kb<x;_zTq[O~/׳?_E3WwV4~g1~%oa7$}oeeԓx<> T ܪ׀WU2z#̯U<7UA8rCȟMf!`5Tg@nu3ms:k5c^bn }x5g9\Fky>ՙ׍"dc^-gFl4[O~Sm#(+b_7e/κTOyh] ! y W S cgm"M4r}S]z1 0'aa a] jx0E(&ezp ``/!U=?2!n("8.yz98 J]0?$^ :u8 (wY@^-SCyomz40#~_ 1cMz{?q{"sK'' W2\7~.u<'#,_"-q}HΧ X'/\/qI7~Jde%޼ xJL)]M@zO) |X>x"Dٟ$}iV_i^Z*Әc ţ8~1Oy+}q6 7c|MBs)=:-}9e6\ g/&d]Iy2zfP C^:%Ogq2* /M3X' /a y<+0%zE]0hA_I+q*`1\P6eDznK=Ɍ<_)Ņ9@|P<ǧ~S2_< _,9m$uZ)<פ'|Ky>)u ci|Hcޕ7sB+-Jv-E|o[|]t㋹O?$wŬwru`I/ҹŴwIt)5}*?|=aDyJ?ga>Qn?m|Byo'2G9'yu3K~s밮e1XX׳*״+>N:!.3Ow_|X^l Bq?eb^l_6-1K Nsx> z$4'r'.{Ɵ?\^LȺY/= '}'/y|ɛL:mwyk~Og}"33s^R>p>O+g*'_8-q__V *\]A_!:x^y}zUN#4!;eWVqxȫ,^e]U_U w7η߱6nnͬ+#!q֑jTżj+VV~Ofm;n%;-<0j g8k-!vq}TZuZD|uӒuKʩ+"̯{߇`m۶.9g}O̯г2Jr|1WA픻 oaPHu!r[0ݜ5}6ٞAo9O@@o;m( 9X߯cގZ&kmü&օ&~i;ήۙuwnCΘ þ>e?yfb' 9CMZez;5BwiPw 3ƧAݸdWSH8|izWp+\>@?a &xA7a\9F9\wםH?L&O]iD0c"k"k2OZDȸ8'ɔ?S(g :c*F}cC3.3H?Sr|&uH>/ /g}@/~/?t? $=(0_(>?t 1:;w"{>w͢޳&=u֯-k}NK}cPk c!'z~0ٌټ><wXΡ0>8/qg̵|Kͥ^sn<%3>'0oxoL`&pxOO_/5#j}1zK$_"If'=u*qJI_"P2L6wTɴ!/5&ՅbMOuۼ%?R>b*Č #Č@OF׈1&t,[>oz[[~Zx(GV'1N«9uu@N^G+ /M76/5s rGcܛyzzL>͸j+ df^z0}X}CnX)- o x6(.+kӮh[fSnaN,8O[גz[.Dnm6Գ-ٰ?#{MOaKvǁ|\ωΔ@Q{Ǒt'](߉]uS{?) uN\͙[γ}~v[[ovw=.\#%Cw[NWw>w ݅xsB޴@h#u5t>t=_q\^{'+xwj(q^JW?z}\ue꾆#tWB-n4f=GõqBsVw!Eˉ54it'u$:v&]4~rw1o̧ᄚG?51hgc/Z|>mL\U–b?.F1$zGw8VF֧4+D~v⼎DSZW[|-/Нt#ޝzq]m-5}p-Z]myaT?Zj9s3Mmm#zK?5HV4.hv[0z{.8OõsjWFtCCDố6#wxK<=)]͊=!oIv>~NhAJgc;W[ %|/}dqY7_\*|Kqm8zuovR6!U"~,<νIyd _`! wRU~PE|0x[,+=%/ᷓa iONG |O<")?vښ9K^J/z>i=D. "cbx9?1+ ̗=" + [Njp_l{ߖ}}dq48 >_,y_D`6<C du-/-A^8wA39P@p *;ߠa`t|gj~z%,cUO`k; <_sQU&s8?>};QRs,V!!#1/dOEH F! !Bҕp5!!jݿ^A얽qNBA_ EsSE#nB@Сs^h!~Bӱktp>~I~ =u\(B8bl4zjiC6KW!\CWqvvqhv_$-p wEFӯ#Ɋ"<p.<v-J!퟈;؟X'YsMY3lEH1}##~#b!"dDag/⦜~7׊C$3!csdk"#ɟ?FF܆yy,:{ķ3.]د{uP7 ֍FM:. b)'"Ou+ 5'*Qu`nYwHe~{ZQmWQ}Q_"Q <~N,޹i*˫jčVk.xT*\&iI4~}Xa5;&&\=b<5v__y;/k|qCȨNLH/pc;.Kݷ}fo<5X>/<^Fzv G%}KV=ۏKr'=x]GZ[V~Lzj2n=e犤_c+U_i׍]V? WGnJxORV?v*ݷSrNHOTm=Ut^WW6vyiٌvߗ]/df뿥=]/-5vqhh3_v~P<3Kwf/V)"v$7QlZLG[8v'fzz`!۳!yQ3' N/\Rn۶ﵻ []8}Av;zHdę}ta#璘e§= ѱ3R-Zi=ϗiOψ/:YtݝCtOoni8C_x[~"~V3D&${qul=όLŢsEqGNr6  Pu_#oX)1g5ɃOS˭G:#zIJ{,;+L{(q@x0n>P6>gqZ%3EdzC8ylk_u÷kpVto [,>2ո6qJ? ׵[9´b_m5<п:cl~P2R8͗\.>,WhSD9귵V EYM lA}9ZD[%:-ZLޭeG85Ng)Ur] 8ѺB){rrtFS?N /iԣB 5Se  5Jʡ!5;_F~>MNw0H/P7ͩR?HaT.BC^j^S8Wz[ٯZeM aj}n,4 :):~ Ve-:I7}6ϞZ1٣x*Cj2tkGb詚>{^_I3$ n®FQ}(Ut:A7j?(N*}el0uB=!GJpSē/JIy\ؤ*rlU ֟Q }LVw>8TݦaF{]_AztqOSIJɼZKz>C=#\nY,nWzu]zn')ݕ>b1z,]Tk,Z%NP2UbyTWCEozE}mcR6IOW9 JR)}JٿD6jHg60D: ~Il-]=N)}Q:ؤ:N~_UvPQғBys\^ڰ]i8#e?PraP_&;Z`"}(]ϠH3"[BՐ+rsoviZ63J]aw7Q蟠o3^V?U\&2m `׬d~2X.:Zxjybp E)a4TiM<INAER/data/CASchools.rda0000644000175400001440000004037413033553033014301 0ustar zeileisusers7zXZi"6!X@])TW"nRʟt<3n2< W, F4x^L!Wgao!O+v6o~u *)z";V*S9 IWqJ&\x&E-&Ӗei 1c GQp~fo' ğ}H jVb7GH][@Lrz9w뿯xmBX (vNe4S[l R‡(8`do#hiƍ zyP?_N. D r=/"OuAC~!#5޺yIbfIyBGR8>.q5z f:U7`HfyPYX !lMNi~ xyjMfJ[5\.*#p-=k{Q7Zv 5_Q(k(F^pY+)Ơ$A./&KВi] TLgpjUMM7]R_I}{JΜ|x t0@՞7ÌNujvge/-eqmNs) ĵ 䡂e~K#TraNZJ'ېkjY) ͔ue ӹL@qEU=OS$v1T{5^c;룄XWI?;$_&v m(m'*`3;#7wW;3wՀhn@-;B@w!DWpG, 4˗
1>5`a ӆmfN=no&)7$!$f Ͱ2SY!\]fy--}v=f8dokJ<&x 㓎(1cet= }b|}+D $:7Lq ]7 f9N_ଔjP=X% r? *XǹB Xl7xѮ; 00v@nl@>'¸6s" &%mO&o#\f]֪~4w*@@u]K)G贝U>. 2RmX9ߗ*ޟ!=T9EKi:J<_ʟ.NIszGp&O+1'53m1c%im 31'ԮF(r4*rbQu5z%v•qS~HP_EeDw3.E {LBh [)3p&eR̗ޒn}m/׼"!P 5S% vyx[@ ~ 祪ͶtV881v !$^{1)iOA@6ASU%Xy,Д ;)@ % CG23Q^#1KGb,w#G+cؐ&(ȶx,mɁNe|D(V`kċJ(_g9ˎ.RJ/J ҖNm$`>zWo{0rY p_+dnRxK.,}2\p=9َxcOj&c;]֡gI(iQDRK \͓74LBM^*K1DCt^1 ]*5') ﶴ?:rrf!"?mDUK*xhwP(H4DLZjoX$!VQ!`|*KnN -zcO%kK};Rgo9 ԫMӐM]YSP.?zӯ09T-hq5ᕟmFj+F,ݓHig#AQt}9c_  uI753z`\DAб^n(.aQ%ٹBM1O4C =߮CHy8ѭ `;):n?1,'8bw[n7_($&wlv r͡=_9:X UTs1R$m걭B᥮fi`WW0!M죗:%7HxB坚(ɒ"j. q&ۖ慴|\7pOgZD HO u2Й$F9pI/zn29"j4hScCm%I>PͿ4Qs/5X{%;lMJZdPȢ7^tY[=me- wr2Bʠ{W7jt D8/!d;e$ Z햝+AMryd&q:?ݚ+˔^gD #wGG\IzZ!Bjw2vz8& IK9 9~Yh,S\10vˀn}bb7N8^<8FAh w1)2 ~YمVY%X(% `Qo8u|Zl*cT7OsN^Ls#t]pfPuL}=Wv<- \,ˁ])=,ֱRm5?6ٝ*<$8(Y9NR |P" gbfWr pQ-ߠќ"Ȥ>F)?tdtb H+ Fȩ[MD%䁞ڟRJ\B#\EҞT251ǀۭ a'Ipu*O=8/pizJGRU[$>vs%uJWn&lIk!OŲ~ hlFsdN[ԹLN|r&}Zb-g m!ho:`fx_K+7)+% ظKVSKH㲃ڛaT<bܸD(@)?kd~YhAWrT0ɟopsna3DhL3 Khx}24`fD0^ WNĀwh\`jy/1*Mq!^\Q֑}^왅zE6Ӟ^YBt XJ41 ?5P!o# qc^gKO *鮉b;GI)%S162aRƲĩƱCxUB-hG'."B'u) ҡT 鳆 $!iPQ:}(l(=)p](`yRrLڛF޺+⺊j$\ۓ9b'wƽޏs'`zN倡jأUQx[9"hp:עLxpLpȽSH&ۚQ\*Fyq.P2V];Ƙǂ_\,XY1Z/%Dǫ0[q_AΏXD<%лdGVVתbMP}opcp"ҭ8t484@.$;b9])΁.ƻu`[C.D !5^/eרP,*QW"8Fl ,jM'♎Kn~|ykRύHBg[/')x49c"(9aV#A.bQ*ϛq9{JUE%/2UMP{Jm>zN5S/UXj 8 T }ƧHyO}3/WN9d[4Vw41VRd`lKH>LodG չOxޚXږbU\I2*bugNTiz__X5j^ԊȈq<uSh\m^v;k;x؆#3B!` )*nKn \n![0|O~kO00>\ǜ><߳ĔiK;ѤvsuCyĺ驜(>@lfgilI $ URF`$e3|.nCȖ 79-V*0*嚰򉶬C^3 :qX6Ekgn5[ 0Ed%^9'|OkUʧXO4]QyBUg2/u+ ,?lW0 9.ƘL|_5߁jFD2<3} YfyVKB߄֐Tu-u3*Z ]9YNcjc^@_Lmf@sLpx 0wt+бfR<@[7"5_BL@zZ7sS&q4!ј:,U)eYK_B8 /=>.!3\p5יF1)Ѓ}G#)^VtT_j^@Y3LZT3!Ϭ&0+ӓE#Y3 Bl֌β:#R:#w=u)zXؚz-Ď3) >2=Ecfw[\լ.I v$s4ll1rŚArtJAI|X9KYV!E'g:E*z"R;_OkY̜+k{ނg+k[fcfQ@۰a~+]ǟ[91tZ! 8}VIg&-l~Хn,LIk"bRu j1AHeiD~wi^s*gacE|,}@+*Ek0!,5_+i`+?}+û70wCiD鼫CfP6^ d92C ^iLIԕLy7W(ԏT*(r5:d;|U@ʼn{!qbȿۣG[3aJ*eo>{י٥bյ-mO*9S ԚǮ d8Z#]9iČ×5af֚DQ{=,WM+T UYk0wdCtAj{PhX)r`߅0VuR 6zM:]% X^^vC1h0R"H|٘UkIx6jOنX&Ϗ~wV ;i#Evu&ZRvӬg=8/TZtYurDu^bvPM|6N6 +禜l]b=W& @#a;"N8Ipq\:DQpLQd-+*|?8"SuTsU85^Z|h>߃{Dd2okXVMJE:Uh-5, .'AxV 8ZjJRBL'eh^uOI.h*eocyo!zڴ{o0BޙǙ,{NEef𐅁Γ‘TBe@7bڧGF ? vVNA4_,\L ^BB9iQsxOR+clO.n/W[Y; /v1ENy3`T.)xz RmĬIN[F YՄ]pEI咩El&58xgHatKIe#`=?_ :`J@y 8c\0 y*v[I& fQsKw]WE_­+q`v!ؖe%8{ed,|-``}=^ *Qd-{P(.'&ZC㭢(;R20:GC/}_W5jCTRpSfrnA0\uBz* fC7aI럦PpKGݷȊ ċ\>Upj34!~ـy6#](ޭ~tA)\eJ"lɢojY8~Ҍ%~ l*e{(prl/{q9ABƑ)sH%A7bسLIQn鍾[4t&ĄeβVx[11i1J,zUokB2RyדhTN5MH *^8֋ܥ5ha3JghVǤ,;22:Uء]8ݹ7CF3Pai=G\TtʫM'/ |<db x@R'Gx#t|{Bo5l].4@Þ])3XOA9fd-^FɊ"!Cr^amZ'Fx, iM61ܞ>/9(e ?-=?R /#Ea* ̍Zy~in|Js(bBgegіfzW쟜nu3)_l ?ֺ3$k*maÇ;LO~[Lv2'F:6?]:)6+v CjŽ!\kgt'|I5C"x >:#'28Ffa=es*6V5 9şmto` wƆj3( OYN5S5.oZ 9OݴJlIq?MNe!@̈́h(d;$AYVy`t %<,Bg#[dM+x"OX;c^J"\g!4923/vHX>=z^%}"!~  !'.Trx:Yw[H{C6A-zxlfopo|r?^1uNZ=q<4ԧp)_sׇc`7o~ 6HEKq^TȭTJEJ*Գ}]l8L쾇Nbig1~* UIµOξ&d\l ָNi<gɮ|G"@ #ATlӣ@4͑[ŏ(Uwi=iU 9y?VlqeW۾ 7GUkh -zK(U3l uJs21_g @NDwI$WIq"G$ I?꼳~r@m2,fX:D`OwꠤJuX.GkS濬Ȍ 7ue\x,u8#Zj;xݒg^/؎ۜ5!f`| 9ާwiNjb@¨ hH&c;G?H:dXPdb*$ح짉4 { )WcKХeD hOn\a2\4YE'riO;*&u!`/D%`qF@|߆Ue6.\\+ FPTmwP7m5R ,oS/j.m&&h <8Jܭ)0Gu3Nb}Fk3Mk)y4]*|C ]u#\4 ~uws- Z1X;C~=?cs3m~7RY\׺Ia}J==D53X!Ö.'[|xb@j,KPS f|jPXf u˹ͩ55iU7b`}j7(GY:ƴ]ne(}&kL(Taju]G'P8U  W' tSO(5gD]f9Lpjl@dY:6msx*enĪ07`h8qk.2P0 ).NyIORLdX5)[Ӥjp"~39x|]0ȇe\T¼􀏩!*BK+XLLH: d %QeoZ(޳$ ^1jw l5vôSJ[o7QNQH kSNH9{ );ė.9]CO@3ő!vLvStִ ۼ}B{_#yEn !VI4\w;$I#go){HtV#zdO_Ꮖ mH{Oէwz-rsZ>nm.?91L ܡ~5?d(~H۶C%B]ZkTxBMbDU3{Ց&z#jQQc%-iK(4uH8%~ S*2ZwEѷ5Hjk= I h1g" FN9"j%Ow&v!f\ Ęb(>BdC납|~*:1 iUl@z/E|ѴWs'j?+J j%=Шv*Tz#tJEKhfJ7BuTE,f>y5N&mk;slwR)CNOk:t2gб {)ySCoZBb9`) m%D Bou =\mfZ:,*TE܉!\F6Q-ggN b vrD $~іB(E1MЃ"-v4@^/U¤9Uyl-L-]'S/ (xQ !{+dU B1js2%BBc5 eZdtQcCwiuz CΓ2zP)G @ zgʢ"}or"SFj`Qzpz$YY`T^ћ]_hL8,VpuRu^ q8:pO2;0Bch؆qV={d9y9e:_dÖY.A4xG-"3(zyθcGI$1KW9hv;YP'e`1"-?U%,Þ`B A>D2 b3v*y~FSY Y?C9=% !2ӉkT_̿zDeRs#.I1j&r|w|.r.`_Vb@tۧX1̹q<=pGL>*YװoUGߢBU{*8Hyg]A iolȏ">2<'@tursK Oxv[j>rQVo?U ! |]܋\~zM>ne?KيU9'=7Z1Gt:omPwzAQF'dpV~6q_$?& hQ<2S>sv6:= ~M(^%*^Er(B>001vҤ Va"i|[ey 3'5I0Tة-[<+XFݻ*DtQݾ~7]a3lf ˠqi3OcV`p}^>6߬!8Wk>bI/$+N볫bK%Ÿ'V;#${QX(ĭ񛟢``8St2_LL*檜QmES4Pb@4Bn W>_.X'1WeqdQ28>/ծ aY2>y(5 n6c>:jydeO 釓5m] V߂+/#AWDYA߅@DSMz&mt.IHڔ%u/[WGxd᳐}F5a1 d@BJvjrr4{PG9ѐ*W@!{y!V0%D]ЈN-^JKՃNr6~g8 !CPvu?ӉsHх)!Mo}0僥HO8Ui7̊8pQn?2@`C][esk#`V@РįAVzAdB\_<;BugL⫫z`G'# vnrp9^|,&%{F4ƇMK/,FRzW[ R;XmYOžϚծmAB"I&=WUҰgצ>[=HHoօsⱿ[^X.~yH<--D@a"Az:AQT|)Rzgvcmrcʅʇ e _*$ 8\b`X!JMI#(ʶ[en ӊtqŚXq3[kUm{hHq ֻ w#U[i1I5;U;F Mi_3Y6Q)wQK!~7b-Ӽ亓ťb5%<wog`b0A c`yB j=|81[x%f4AaϿiPq@KXPSeVZ."׆VpB@nYM1&-w=C}oX\DI,}ydۻk*~/")Aˢ]|u_G"5g;} [ CW/ VQx4 n9?Be׫Q@~Ɓ0uD5[%@Ͽ  1ˣR˂1ƒZ' LltbcޣM!;8|1JJXO ,J3tc`w)~Fm}BU»/%'b )o _,le՜xǭ}B냫jsC~ uYdFauih{;8״2 C6SdPTC[NYXO>ثj=p2qܓ'DY=\IyD\w^pQګޥ;ݩi ֛6i:ES<4CX [ܣ(Ea_ 86sa*k" }58{9Izg^u/NjI3yͱ][*hɶ b~LW1+uf 9ڌ) p;!l "{ڙBg_sֻMQLqM.ˠiMRȏXA9 DJq+iϯ]zJH~bpp \n(ߋq6s %k97 "9"i㩜v,vYg1.]T/cMLS˶kX4sRڜ6)jiQl% OA]>"ړS !s=Xb}'G4T-5mQyW!H6zH C4OV< ls`61@!/*AÎi÷RĎiÆ]B!w %HZ\li\7g4nG֩Vت)i_75ێZlУ#P =- S/c)v$&|Wyi3qkIgexƲ[y|497G&ҙD 5CAL0mi,6%AYgn+*+nJ>u/{+_o8O2MTluXg0c0t@-fJnbPYO{FI7CJE)[R  =:bG9PbekP?(k1m}iVs>TndH,%Ќ>"1bO:~I7FHOiUAL=ߢnrmd &c&CCdAyɎq\h^ſI9^9<-(U<'>=؅m~%dT;s4Nhٿ|g?BWٗ$CBCzڳq"<_w)|XN~h'}Q1 ͛_f!1Au-y~$;?~ pZ4!ߖ:o\7۟]-(ܱ{hTDﺩV63*vkW?Rk9#r!#V/2QC{s:'*~٪/lf@҄4Z4݃-nꗑ o$1B-)Ui6(aPp|qvH$q[ڲwn8pT"7oj>RO,l7qYoQ '%^m( r"@^N4*OL@!“ܲqAI82G=[<0 2Γi`z@"V!Gl/t^;6]дat.;(C˟"mT% Yt1/qa- , @jSԧk76S(g5idovwY=a{5q}Z~LY1%`sV "yUrsxkZn.$:9?{R6NaG/cqP:{.? ?߾cP_ΠH"4p7!aM$XL~)bmPi59j< VAi;zV|~aG29BqyŜF5/Å+M '+Wi"IOpHu ˇ)zd5^\Ou*4 u[:g}ЊXӢǥ-lASƙ5}=uɗ\.qۮL(>E[ =uG1 :w\)0ȿ ^8"ue2n~*WP%D2'РK? ٌ񭞡ɩ*2 ".څPO@ecA)$- >\  a2fdPg'AMNOy((mTᅕ#IE@Zj?P}q=x>{tSWRmq-ˌ(9F琜1 ϛ'dTx{0Jd߸0ɒݏ۬>jn<Îs!qfHJSsKi+Pos7L~9Sakx"&;@ui'?S4U.aVD_ɍ*m95?J1 0Ʀ+5ĞGNpwQ~qBOm{kiotǁ 7!ņQoWa|\\=J-fiz w2d0}GʓpN&c+HgGC*sԸ{87(TTn?5mR/wznp֨I*#tPkS֚` io},d _-0LM[#77tS{1 TXٔ~jGLhq!cw~o2/!꒭ʵ<m#1-Hc?Hlė,hǺCȫ]2vh(MB쉀kfjr}7 ' /C_k73Ĝ~1_׃qA@N@,.'% }uU0~߱g[Ma[-zm%w:IKJ'HE5v@vvrVIDZseɏ#>4na\@<`lRFkG{PGO(h.#"/=)'b^_oaJ7w{2#!nAȌ}jV6yZ5`ݫ? ZkOi LA0y$bKڼ!O"Jhs/{7G&료D+4j^kkF.#'2FA@.}["o,Tu|XJ!qD6)yCcQ''+z~V:Imn4|)k4TFF/3ZHpDd8ՁF>0 YZAER/data/GSOEP9402.rda0000644000175400001440000002244413033553046013661 0ustar zeileisusers7zXZi"6!X$])TW"nRʟt<3n23no'h\0[`rݩJ;ql>+nL\bx26][|!it;oH[k$wh6j+g8r:Aoerkҝ/mr ^,# cOԜk$%xu  -JyBE;!'ukDחoJ{b//}H@`j.ڋ$o纵4;4B9sN3eJrB=hҙ>3!xJv|}#SeDh}zT]Ҧ%Xi zD[ d Na-fyp a9:wqr|fTLuZCK9eMYעg~~*yJSB}:ZkEg@DvA,3inYp% Z ~wChNz4:vwb:V<D|Uur,4>+3AςWaT;Wi߁Ԫ8";wʣ#5Z8]̙'74o4X@~mG } ) y1畿/G.F\M{j|'Li~!P>h?R[dEf0'vNCi 0=@nrXaZW,`UPd^vGА7 kա݅W@(^~FNnN?La`R5ٶ5MnTx](W>& O; ڨh=aj"o@ ]M8O^8H(G9XIs}[5a19=~[=iRQ"*e&.n%a?bE#_A c[S5Lw;qRG-5퇭eRv|5jD8 8e'SĄ |ZEh>Oz0  4 bޥ%}7Y#yxMo핫 FB%qMFD6]F8>"18c~Ruch ! T68v"6.4D-PW6Ge:v/MwF/U %OO 8>0oR&Se9澖kQ%9FsB߷f4(ǎKw?80Xk Ǐ%ljk{K60L^Ǽ٤ YPs,+5Ƽpu8pTRԑw&z '&EDZBb b)QZX\,yƷR%)JnWXUl;!?<:O=z=$RhSQ?ׄ69\]1Y=uʣFEH/p4(8>qjmre7#]ah1IE?*P=9r Wì Қ(+wIR_ܭcok ,@ܬI1a9" {u劏O vHa!x+|aN/{Tp%gcQzߏV~왈eQOSsBuL~Wh!E2!_ux.~z#u *=`rlAbaFFU;[X lcȣAH8L Q$tץͨ+#wgڌ14-1h}9P [ܼ9|7AHh$^ϙiu ?Nk6dI+jXT߀@VbPIvmvt9лG HC7̮oRRxC7ҔYlJLNKѮӤIË om|*g+iC=aWJ)2OU+!I=C#D.Yj&a?~}N_*g;O~_e-8k@ZǓ5PgDK,E73 ؚ]0zkmq-6rH%]f`>wC6n/C*`t {z%0|#:8iW҄~?_ Q%+/,:a%_%RPPVZƊǶ)ruU8zQld"N덮RY&Btw߅>[F,lp{ۃ0~}N 5#C0V}#ZЙ{]\*aF!1iu܈qTy>Dt*K_ փǃE,XS b.*]ڬP1=F;u[g @QMV +tq\镌̔u_A7ì`3HLIԼ5,΢!㍮걔`H!<[g&Qʖ0*lG@@a-$i[k0za>U(fVLgs' &~Mc&GYN.~XHiqU)v8:Лބt@.Fyon*C31( ya!4Qj }!0csbw@*˅|y~N]"361XN¿q)r=wSFo u&]ȓt1< Vu &BrۈYe6Kft [CX!WQʴrS>5S{K^fkOAZ$mlf4Bgfdm:FϕHpy:rqV-uu%-L'@ZdATVjy~j7:.T HoP$}=Oj_ZM0M6m56ae\xjRJPHAgtXRI}Q!j6l,9㯂\<8z{IVRKʆ"]HڢS`%Up|HxH"L@YR+o@߷&`I&s&ݝ3Y'`)ylS8- 2籢$@yN+q?4_/$!\rOtY-Dde+(O\hbU'Jmqsȋ*||5>o5j-wS QI2'P} #'9"i_DQc2=a^0H 9<+D$*Zy*Ǫү)MlYF#Ci= *Mrk@ϸj 1?46AAcg>ldwFH=h{kAOq(+`͍\QכQ!h֫ud%,׿7G?T*kSjȹ잨N!Q8:tц2}3neTN|,nj8W6$/<'g.N_BC ĩğK3YEM :=X ~mqRlJ6U8ϗ}hu[[.A`|E{OsW`K#(|xy^XX5"t(5ZLY1S:k10Q2IzoFd (UnЯ0$ijṭuNY?P-f2ܕc`ݯ}̆I36_GBml% 2b@)ZNW%SY1+M5QEqG Jf`SrX-CT$_g͍paZv߻7L!]?1Nԗ q~Q <#roc %dB kQ::ۅq*aDrI_`PW{\B[(֍K*{!d6fgg+ !uTam3d&0U 0FL'mK/%=eNXw:s-leAD {M2 ^\#D6@~PUy` VMxm_e?[X'@~S\A$ӫ d 4heִuÒ^}+8$qj2FzTNƵخ54ixT/dei.6GPȏ_؆pN!%4"W|;ࣥ*NwRb7r|mҴAUQ#bj%є}_Nn WH |Lz x ): 6(--c}g[ܸeA~h)};1%&fSu 6X_;,uDRz#`Jsq%ބ,vcs^h|[ $i .; j>d1fuupcT X*2.ߋl7BfB& jjh#bk w@(vVR` MY[2j]-/Ќ Ho'[g;Sp܏/)2h8C-N_x~/2 mn o1T.D'a7&u=v%Q/ yd+-!s^[vBAwa\\JtA伢Nav^; 8ܧDxz |b]Fߍsj)tR'䞯Q ?J\˛]Ä"GgvJoOZtI\O}PUmw:CЌsuϛ+Yxޒx Vxb\)d!(i4Xt` l8?j-JIoYZ9ɶFX^ArifQ/knle7L\B0OSgo%79I; HQ4wh{[& N51yT5-`xQRa4"݃srk+LAJd܄_"C`^RI _E`{*~{30qpCB91mJs̘-Q#Cy +A܍ 95 ƙR *U~($7}.*+ LL/GzCQ0oJ"ή Co g=1pSn?=Hu,ײ#8+ܑ,1jUٻMz8ب;{c%f9֝sfΫ [bk+ ɏy0=Of9ĴMn֜;# @xۍ:cB}A'F5?3{Đ%n$,H,ϳ""ֆrctuԄegYgPz95B#72TuH_wow%t knox#=UOe@M%umUze H<\J<4@  |0P%B V=A^llڳklB#x)y_Òi@0ہ?OkH+O!0$Zrz{t V[' dZy ^?(6Tf]F=f0 I>Q:bL4PU5~"m;Z.5s&&6^=@7UGگQE7E-0V<;q)bf$LȫM_xmvUwO\aoUn/ f0e0/UXC|mmOouFƚփLWUG\k:(!m8ȘF/H]T)W%|LFaI#NE'gJWVj %9r _oWV=Ʒ1ֹyþMY+zlEDhQe CB3$VFtAPR J7YѸ%g wS|D p * d sd.j26iXT2 fp$7(1KsԺ FaH&*QKAW='tH!;kT J.wLu^cu xOt}4KP*ʅxdO 3xq<6~!pgl Pt<ǗzL}X|bЬkzwk܃M_]u:%T¨A6 oչxkNT^ϔ̄Љҷ*\֭7gcЯoԔqMvBeuPRq :wL>pluB|jN?wf"2'<@k9;:&uVBӐ-$Pi:-Q0޹n*T~-bџybiޔ|j<$*ЀL.]k#~Gb|̿.D`ĕ~K':RNp.4 OB`'ųoJ|i-{_;$L,GOfÈK82Nv2KO&Uō GɆQtي\;MPWA&CM!fcxTH RR#;UzV[L:a_ Y([WY= fO)Sاd,ȃIc Rh5T1(-#tܡԳN { 6HʱܢtXޥ/QH' q( ZKo<cg-l*R@@$gH!n ytD-z#7I56qgDC!7{lrçGwklD+y.ԙ^y'Z!%.+C?e%⯆?]dh"K-6i/MF ZV8*xb&h0tەIb>ah 1?%bV]iㄬ~.E/Eݭ}oO2-$XG,‰mT]y~Eƚ~P$RUekS7U#  n.3|c_ld LgY}JBS+GqƠnl0l9# "Xd7Eف0vp87,_!!$"%l@7'3^d$30Q]cL]~J~|I>0 YZAER/data/USProdIndex.rda0000644000175400001440000000144613033553053014626 0ustar zeileisusers]=La_[4JHdrrBJ{{/wK"h$199NNnNnNN81199%+|6jfuQԭo~y4Z^)\~{kڟ>^Sk)o:߇N|u?N]8zm^ulMK=G|Bowƞ~Ư~!eoԧ}GD1q/&w1Q至]:1䙠PDŽ'O7=C zyg'/hP?CRA%N,>kM~ěߜzd!C/_N"Sxsu]舼= }O/zo7̯!jПM!n!OЯv.gp2wfğ'˾3/՞/'~C>[lK~Uw@ykc]j?g%U_J8Yw} o?hUtxQ@N;\T<3*ןEcpRژt AER/data/Electricity1955.rda0000644000175400001440000001234513033553037015270 0ustar zeileisusersuZx^ZB""IdkR"E !!@h!QA0RB!Л@dK"s滻 ~l+.:*!~\ԸVX{\[W_={YUw֞&]ܐ΅=&h}͕P/"8k5 yqvTNRu*ܪC`~5΅J5vbG- } 7vο(m(>gWb] kMG K_, #1 s/w̓ a;][rCn39A:f9V[c>\ݷ˘o}tVCu751uF4c,`_x` k$ԅ3FW'Zc[Vk,auw|ȚoeDY6tϞ7dW&I'ƚ|%ʚa,6U)k>ޥ Xc&h.75E}+k&`?i EYsc/*7kfA~XPݘ1A4WVKz` ,s2Ƴu3{5:{ ٨ e>Bɺ{m}JXYaA(z&(QA Ie/Pq%],)H쿏G=Hc?>%ꙀOyGI9O"e|IR&l) =l{6`ʵ(g>__Βr[X("[ rN)Ƣ\/GoYr0J_Wk0o|,*ۣD)נ_F9Fʵ\x;[Qݐr# qO21%ڻ~0r49Rni҄r Jok JYl[Q(wtJ3gc7=>R!e҇(H\þ(H߈2S)(8j&KRfM'K_x)O/ud?{P|4?ޑ@.'$9L8'b,A)߉2; ߻G6r$̇s>՗~qT;^?{?]j QySk|Qʏ׺R5Oك|TzU=@d?}N/AT]?szbMF8!eFa=mu'WpϨ|!~WԸcM8;9Ҫg3 4/)p\|V !}U/ KUK/B*;ٺػ%hWҟΣ~׵پ.C Y;@thpl66BHDk ?l~Hv@u6ͳZ^^-c솫%wUT 8aSQMa~>MA.>[!as3ddqS+=<0îEs`䜖+V?)BU܋ZlWu bu "?d^Kv֖A_aı9x dУg:ہ2-mc7CiRbJ{1s׾3^aH55`*/876*y!e:β͐תáQ WxYAQH:cIyH~*~ v*%882xN/u¸!uoo"篡; ! tyEI:# )ߊ8rc?1PX|>F ~q1/=?k8Gva_^#{bpŅ*jJ~G'zVqy?䝪 h Wr˒9*G3XCDrZ.;3ȓr?ywuzv|Jl vy^q'3 osqBE.baq!ucܜ(e/i6<2\U|_ZE Be&/ls[~EG yj}09'mB?Ȃ5Gؠm19;UXvgqP1H=+ţEx-u#.)N]8"*O*OQz1m7!ɚ{ui\WǤG|ny({9|_>,Up--fq$=\#S?wᄭmz;| FRH~i/}Nq$;,hggG)nm<x%;#~/A8''<ʋ}O}7W~b}!)E)d'IV^^zVIFx8R>nW=뀞{kGJvGxGqx45_O7/o$/׺n|?D=! ]ߺho%Q^}2&Ad"\7uACn/!MW~ qs3P$hH'p}(Xp}RkςszBn~= ٸߗ ::Jqw_sF|A H\A!‚*@TY[{Pѣkj/{q %b*pxpX9>/tnUTyz8N\;p!(?8'\z81W{'1)/=:(>T<l%ݼ*1^NuP&hppD(hPgDP.ۺ1ܟyT-'\ ek?DJ $PWm!J eÎc5* N-sC6G:̍ck"=< |@\w+;ŵ4?'g.RT~ *-qpK,pDxGX[A;}:s >pk*BA!{9s=n!{7_CFB7?LNs nP'0Wy,gs'l1.3ϑ$+#\<-[+~&XcRiZ8P>5yZkN0e:jEљOjEENݺ!cG~-?/~̎mA5#5L0SB +5lF5±cZF2Y,eU-jVj) 0) 0) 0) 0) 0) 0+ 0+ 0+ 0+ 0+ °( °( °( °( °( °* °* °* °* °* °) °) °) °) °)P0BFU #Ta*P0FSa #La)00FW #\a+p0FWkIoIoEoZMo0u4fь:QG3hFͨu4fL:IG3h&ͤt4fL:YG3hfͬu4f:YG3h͢Yt4f,:EGh͢Yu4fѬ:UGhVͪYu4?FEN]LmPZ " YWڒΧ++fNC\,<ߩz /";9  |Ԝ훔pG!tPdz5waȅP-kX;]ےkܞ paI+sT &̾U|,*3ܘ Q} ~B;G!r_)4LF̓: 6S6asXU'I"?he/$J=TݗVL:m&F&fN|`o!my\ٯT;Sr5Vj6D"[IdkUJUJJS!W_n߿~ K=@3.I-|7R]UU (S"Ā!MBw,V@$Ad jqdRP+o@.QxXR l&'jW(@$bi-x WhUJ[kvD- jzqZ?o3*&DPXX1U4 dQ@8v0[$ Gw0UcBnkbΑ*tslG'=$v/$I$I$,Y^B0` !BFFxd铻&@:d &@*]M?>>>8pÄ ^42 L2eL27tt"((B)^)JSRc^z*YeT*3~0,R)JR)Scŋ,X\$I$I$I$Kmm$$ I$DDDDsW]dI$I$I$[%mhrI$I$I$IK8~lk뮺s@sH 륒I$I$I)JR4Yx2&.\}RI@Y"#!"$R@$EdTd{`6)LNSEJ3޹RJQCCvW#y=mũ$]%@ `Qo&ݨ9R2 8ܤP(L|׀pWWI~&FS4|#3o4w?1 ˖遣q @G@!KV >1S2pJ`3rJRgl^!a{7s"<87F|9~H'U*> |Fnݛ?UJZGPf2󎷲u"f?MQ KLEElpʕj暣à~nGTwkf)t}%" JmBAӍkS{%?pxYS(1'Hu⑆0`zfhHɥT7%HbR@2Ê%HVV:Kuq&@@ E`""2Nd=X矢UemWk |Ql t=윴c&2SuPO'ܑN$AER/data/CPSSW9298.rda0000644000175400001440000011676413033553037013731 0ustar zeileisusers7zXZi"6!XH])TW"nRʟt<3n2>ç7vgV^`m!HX#m%mS{6]LKi?POئ/bGU!wf>^q*W͹:;;C.&+k٤ؤd5< J 2_DK*2ٌO4qCNUVӄ2UVU)x'J}l 4m?,}3?#i8jy:ܱ?o8mOu>U|tkԤ bUȥvQ}1ƍh$?ڳ1[0< %aK'ƚafbu_y 1ua,Z[X& *i=/(c5#S'(*Ÿwj\4vF8~&t7S߅];씁aH*^eC趧x* jEDygy}O|$0೛bBi}z4JǒD˄qXEL%9DC\ܼӲ=3[Y}>6zjζb-hTi94n"/)ڨYNm+XQE*q.Q(U#[X$0 dXrͩϸ/Fn gzgK\C86p.ܩke >d[R+E[qU$^YӔ[ǀOYnT%w EAuiGavZx].r/L"Z^O|ǡ v&"FX#t;\F/41sp,-at2{kka+u!-@:Y F]R 8.M)~z=[{4$bP-Vhq\e)E`3(:I?TOZ'_kwsma# Ϳzr pS5 KWM|^.C~n*18@EeV>gFwss/i&IF3g?ˏZbɾCz9NIz e<#1>͇W~z"DIϓ=/aݧ2mV*G9#t'dig /Uez .E^\tj_[%R^ =K%p@\tC^F&k(>o8o5aT j:F!ְ |"LLܭDkܮ⧁O&xu щ^[oA蒗J8u]cpI&Wق3ұ @d`dF7k)C+'T!܉qZ]޾H(VY !#X^ RSxn7>;emntQh?Ƒ!2?!K aE禷a:o#SL|~]K%qHǞ`Nr<e4q+SB4qtDeۼ۹姊)A3s@&vˇģ'Xbk(+;[NxslgY|;,H"< A"t䂑$ȆkLl"-_KD`bW8ogMiC\*`@ג)Ɛ;+jO>.z+Et.|DԥNb8Q_VW+El]϶dSIk$! p[?:#^NG B&'v: <|K!wKxk3a~同[{Lrя\38ˆG8ֿw[*Hy4ͻ{C̽CdR~ߘR|f}J>nvz3@@ݹf QdFɡ'a U,Yć4=Ȟ8xrdRQn0Z4 з3IR+o<*7 WL 碫B&B9^2J _ S-hM#Y g%nQK c'(/cojWZ賈Jz==fEj[f_MP wp#ك k9Ov|#%u=87BcLL]w k!–dÝӺSZmXF"]*/";:TJd\)y [ǜ\L'X)“)\|D`ns_n :L2}Dâoad_p9'oS̛!!l 6DzN^cC+SpYm .EjX-y-]YQS1vH_r/K-dyDŽs-v*)4 ~\ ;1i%C - t4q+7ϕʜ1͖ ԿpZFA<Z!6Ec;0%yR5kr g跼Q2tB'`/kI ^ʂ%`}m,՛Дn.g%)V> e (% MU@6*&ώ aM'ݦSʑa ^3L}B3慖S넠-p +7s+ ϴ$sRW)kjMauɈvI)$v-پ?HbFkl#fӠ@[YqHIne:B eU?3F h>w}1hk}>[Co`𸺓L£x~@*{bϻ 0~^;MTg4Z(?XaГlo+"q.yšfU*ƕ洜7o$ۅPrz>)~c-TW[1 /[ )$s"2"E$  47]G m/4 gdTT5W :0xeDtw |j7W61oޑ5BR}bd=sbD8[{mH偩fGڟlQ.]丞2](=4'IˍGRHBYPZc -x:zsQvf,'Y}R1=T<E+FG@VIV>p4(nAW<֋縠 2NT Lq8pl'ʿ6nHŋk:ۭ%=ᾙ 8l5J⺆_oqLdV8}J/6݌p4[؛XzcT8$|%.Z|WU͓ [mi%{e/e{"Fv!MTvMq8*{b-TfB.sqFud`NL2d%^،շP|E$P̓r XFv^VEH&>Cq0hdy4(U[ 8K˂+y_$.^vWJYT /U8#XVy7"\ s'N%Hj0DTXh| "KJDžeUH r'49lzY 0:g=1$TǷ?@Y[ E LȔjyXLt+ ]QNu%nl[|4Dtǣ :3~A ɭᗁ2|G#LɟݎjL?|PJ^iMMx*N'JN[?]_W 28 5H ڵ [DA`V-\m3'nP+r\;SP ()$ qh\eĉb=Xte}E}畠7+tYB-u@u!Q~|۾ۚ8]L7=o\ٯiNqXKe/Y8{ۑ֘W;ܮ>_)Il0Ł/aҿK62! uQMsʇqnDj+wusp7obY2 "'#_t0o<_<72MwZE vTLD%6mː=`L(zD,Amw.%YExһ9)0dGʸ־ÏAdFmxDŠ;+.@Y Kr.w)>[' 'r~(/[?ֲ(7ͻ\0kA"ڳc@`3jRo?gJXDtΐ(a `W7 @ȂqT,@i0|iׂEZ{88 'Vj$ *R]9@Н/7[+s?7(Ǒ?! YwPmak*Nm"VA]ܜ+aW{v>(Ʉ է]Zq|*"VYUbtIW$.kR!|1_V&-%`71EN%S&.N|@t!~Jf`"sb<߾#4⹹p_H8 ˭sE޸l`q;<ݓ4GM!0/uUqiB)MSLxiRђe[}{OkM#؁b!|bN۹>^?"ՀR<+)A O.죓>Y`Yg(]Zg?_ 8kzI )>6$iypP!|LjmU#ľ<;\hH[^zJQzCUoH]p_lrA݆̖3q\+.& %`>ZJUMcӑK۾וӟV#6ȇ[ :<,xM?[Qv٢ e΅CRO5Å˄+W*EքPt|ŗ^U1﫰#*3Nٯ[Cz]f '.BM%y!]ۘRng)bs[,$}MJ. |=75ڞ,mJ--<[$}dk}U&x=8c'Mb˝`]OFPPsEut Zmk쉳tj4br0vv*]M{E~~.DpB =K}QS(uPΥX: vⲻv1R aAO5~Y_CA&Z`a,eLƨ8f4 kg,z9s-R +ox\Jv% {)w3ѝ A/F/Z2?o \!BYjуRBj:kJ$L2v"Q qX9 <(X6؆"cEЫQ(gBPzU 8=2'Y)I5a?7Π"F:&uuyd&;R5,kDҞ[Bf|"B *ؓh&Yal~B`^Ӓp_-uC4r)f:ri9.BJ߾}'Dƶ+!@_)ofbItdDqy/nE3.շх{G|0)G +kkOw R6DPP){oft m㉜@q]H>J+Š;?IDk` =.,ݳ%pݳTڦ\]g-P!Pf:6N}C8,6Tl{dh`@=#fk#W$KM|X2l)[*vx) ֐$ǮD@7 &8G_G7@<y**5WaWjsyKz/@rÓk?&ΌEFihgK?%Ahʜrc7s XG%Qɠ`XlSmZ,޿ʺeWoZZY >fENr(E\WP:[ٖnƤ$"q2[%cfCS|EE>V? ޹5 cnI Rz~]N_c2 :K(ֽ6xIf ,//W uwXX`4Xmy0N^R?aídCs].uUrT+Wʲ NCwzKA5%Kͼ |~Q;{q"ιɋqqq`C;Lfp$`,Ѭ{N{[gAƲ ^s[sp0A?ygN^}2| n*b't esa𘔖+f(HJO2CΟ~UЇ=_A翕U' 蘫M\Rg[~%DUi1*  -vkz/e(n4k3:A ):BЌG;4Sb# Y땚|MoP4`g8'Ig CR=h]yX45y^ojb9lOK{|np+ g@Hг JT3nkWW6]{kEYy "WjU;h8Ĩ"Ӎ[j$8P)Al2rf ߯X!]eH@{ݴsOXmQFӌ≩Iy7}o ζ=yYB4(n:~3^||{vAȏ2IY3'l:ĤQ,'CR'y=%t{O+Nh~$kypu p}S6`^l{UakYPq^d)Z%O^.PfZlE!X'6ӧ sw'(iUſXYjFf6,Ď5gU_@6yS(h_VEŊ(S1O U.r#'P]P^3?g&,&AL eNOdSɧ#7RZhx K&'ᴇŇ :Uޖ mu35 dX-Dq@R $ <)iC)5 WC|=Aum2L8=А oLԛc|:|Ezբ5u2Ҁչt RN* mΥ`'2%CHf7 J{Q y-πRVD mI}׫Y0IJE}2A+Fo9f:bn:"'6w߉ ,?B[ j۞#-t d6X .#?A&9ɀ1ӕ l\Lq?>Md#z8.V~@se`Mh;'#_?;7i%2"\]h`$\+U5kth,L(])x`Hv d~D2ZJœ]s%!M?96L"*"#:J9ԕX™dh;p3Mn'BdCj Ydf:i sQdСB Rx*[ߩ"kDyӅP &$9?bcUf!$L@ù%*"Kȉ9@ṙwrݷμD-b:N_]\+%}:μ^; 2 -$28s}36T{ g]hc8_FYW$،P𯻂vWԯ1_?e^I! Uq'e%7LW$Lw FǙ@z>{8Hṫ'B+r7p..Bؔ俒u4_H[ޣg|#RhvL~Yr5_A!Z涫8C wBOW'tu0y Yx[!֗ٷ%$*mZyO6EL|,Zxe) 蟆UɾQi\bhW1`ͦ%ͪ3:If 9 !ٹCdڇ mTQՔBUnC4h{=;1K} j!2 J@֋CT7CKZ–$³C®Wi*kr=XL1owހVFJcU#HoaCg{Qt8Di^,(TʓG<@9OY9F~.М4@+q̧a)Tu m#Ty}$ыΗ$3ЬH KoQr.rX 9'9DD*}sb DKHT4nW8wN=!Ҏn7+ (fwW# u^Dx7±S[ugrvG_$֘\yc'K>ѭBxH9VZǨġ$%c'8fO}{ۢ*b(fF6JhBP;3'hiτTPBEC8Qgw8G[f uĭa I?QZfioL( =VPCZ;pr]-zAI_"Z=R a]MJ`Opzyx%z\@2@>W@' tv|*ȩp qj(ާYYIhLw^gUV;_T;7]?S%Ce+#Vf;QtSm/3Ucc_R3{0ƾmDmڱW[EDG>b|#zy֍߂^趱JKqd=% b%?z6+0|t5 _:%v*Wwy)onu.Nt ƛq+oRhj5`T?&=$ިwKF܈_yhN%a4Lyp<_@q ".p˂iN6|kY-MiY_N]%|i᷍3 ](S^ a?@߱fiQ4 ^βFTxߺlwc} Tw"n>;KBlu^S|.PBc[Ag#c&7lʎ>T>Ϥ]H wY hRytyȚZD=opX;#?qJ( Ҙ}]k[8n&T_ p 6Ƀζ2/j\ft4pLt` ݵ 6[yIV (晬xGjk?}Wwlkak9p_EYǰn (RY?f%Y1OGK:7G"2"!Gy(PMYϏen)a: J]n|Av;7'Jp-<i.pv] ?E `(ddQ7 9]Yd$XM]!6Q hM^rTTCᢹ놥^oy:RS;-OE-L!" fpwt;5eqA0T@0_ /˜9d  e"'`U'$L XZy˖ly .fȌϼ*j4TEE 2_&C{XЬ[} %_V`"ƒbzo[<πݻwEX Lx( jT}0Pjaor,d\4ʵlcOuYdHRּ 6l#psJ8+cDb[b!s:65ylny2^%Tb㯧E;ݦ֗lT@S6d);JNT[YP[R.^K, !Ɗ]2UdF +?uڳâۨļ닠.ś.\&.- :ظSCdDBfkA\$`,v54I[ CX5܍ؒ%ϪY϶>=/Glr~7K%F㦶i$69l҆Dxb:xj.VYf%ooo$]kGh@rGB>Q3L67n BbAmw&fgL9q?<2.[߇W*f)vu䍔NJ Q(_j>•`[(2] GuͳR$M;neh[JE03IF1ax`:`S`N}?H@@_]Γ S4I!.|.Ro?+S4mڪ2a7mqNjdn$hʦ}V}類qٞ)y>;,6 9]-YB E(ƿ^3g_uLei`. E\nB"NRӜr |mD$g7 /neB2∗,H}XNfoehtln&T'~EhS񫐻>22yϴy, qDT8EԶyOamqŧx5 :UkjLnPdzXJ'P;[EvxlY} @j@i#}Gv3> mHv.A58j1 ɞpTK5X_$&I[Լٳ+|~xD;2dZagԥZPDjK6~*_* QND-ShQ0zQhYw泤a3mv?o9s@A#i8¶Lq:Xwe/zvCޕ=@)𨫰նTv8=L,ɪxDOU30!UR"k%OaWKyH7X.K@"ͰZBܵYq/Lm' X%s190SАP(;F"0wA,K\\[+_9Z.M7G 5`C8.J]!A+ u6ޕ~ĩ[.\n?LXUiY?ˡ; uW鐓Kɳ$^r dȆ3oS`(@3!IOף 7"VGe3ٞWǢ6)fy tb#-Wyfۨ6sD a[\ÎTv[K,k!&FUJ(I)6fn; l2$wHy~wH9Q`މew(Ϻp'Q,uKJ 3 -sjڧ.[j :*O"YSQѨANT-0KCё3{83W%XI;yf @Oۿ}TQ4x`PZ)pC#ޞBS>8Jw-K%{K fZ$ܝ)f"*54˿LɚQ߳4[Io+9I.A³e_0bx_-2nI$`_GO4m͇xx:ٗ;C|n=ÚKD-lYfUXlr)&#m^y 4C WX%nZpΜ*mU v9l< 6 I<_&^Q_RffSŊ7?04< P mCЂ`& @`wdw.1Pe-'(ڷ</kEhYM`*Q %x/?_ZkX%G𙼺`0Óyu[tjˉ9ؒQgdl{*PMKV= ̶wGgLJyu9t_@W z38F$_随!W(|W\}:CټkFhrwYr`#ӯ{˒ ovW#/Bk!bϥ)@N˟Wő뿀m9pq!r͹(IRpe=1ņXzTJtU"y pˍj!4ga^N-31x& yotM٥?[|JDӕ»ZP@٨#J& Avetn wYeb}q@7QlҸa`Bkk;RM/UB od\2%-[ɊQ.vXa7+d3.Atސ|#Lr-6(12-E{utDx̭k% lds~Cy~ԑ'Y Vl䊐/VڛOFekƞNN/5/@904z0UVrAqX|uxw]) -zcI;E$Z5DYQ02&5hQtȼ$>VW()^dzL%ھI'VBי ZzcQ.L qUUUx4l9ȩ%W1ld8jPYThxYYQk̎T#G?< 9֗S~a GߘO=  1 nwfqG& ۭdQKRh E> -ֆB3D&XQSLЎc.^wװi!pf3v)Om>쫘CD3wPF^sU9S'!5hhjtB ,R%Vj(p D!OzeBw_|qWiQw 96+ ffsF``*_"$๏vmMJ[33بMu6e *~7e_hN.][+3pA96,̈́\,I6Rzνg-˞/D~nw:.bΧ;wwA턋Q&Z" rչu6(M|c\u<(P51.04I pfDaD,sk3jӚ߀i Z6[ƐHBlè́h ƲvlzUCݟM% =߅2d3"z0?t'X%'Yl(Wɬp|XZ]!z^G89;K_*\+ >vLeʀY/7%;P-NBX h|;J̬H7w5xDlP|Ա/pGSR8gW?$$w,"~^+^7 7@HRTh\s]t,LJb"ђls-6B?_^&bcaUz#90țڜf~"*ͯ~j (tjn(-PtZTYt\XUa f^أ| aڞ]sm'/;ȫOX#҅y҃Y-~Fb뢢ߖ,Ra\_¾7!H n(篗*4_zr.U>6?^A#BQv> ԟ,~P!Z,4~jfI&l9IR6\Ǯz׀UՇؚ)gF( t\޻HEc(`0E)v#Ь)=π{:CͩXQjhݤn+$fyUk#QGF-mCLm]>0VI=t<>W ǤOx= ;uJ@!8>$(tH!9;vtb؝O`)'O7AqPb%Bw(2A-,&80},Eg B3LcrD4WM) K<Oпi4UOݸd;Y T{F#sO.DsO|©ѐUSq`Tl|es]I2 Hҥ6~$$"${`?w uc0Lx y~!ڊ]T|!_&6*uI$'-%1ۼME  ֟EͲ͞E/?&2N̜դI?-H;sۡ9)J zw(*!IQ4FAn2l!jcn\ ||1E"}*~saϑ|~1N dN2CNA ; iSڞ@_qkQ2UUaF'65M}8hC w Xy,)oeSeoN "["Wx5=tX&dZ깝Y(i'2vΊIJ:0>|ۊt$ w@N|%gLkxK,-Q?jJPi!9S<ə'2ETlӂՁ ' GBl0 aP*{Wǰor|q|ptd;cDJD봜ڍX)N7Y3F s~,2oW]78[,[L>STN܌d79 Š{H9-np bS.Go&9Uw'nyKz~)UH' Y^ J 4:e3 pvC_cB+ŪaxǤ\b@(QbUj*lfu]g8Isˎe'&-fLP=OiѵE!֬:SD T  cwVxsDRLTWeW!U9K*,[Xuu3a0D?L XM} =nw?kBkFfUDHv7Ya2V4-!{k$ϱIJ~VЩoFV&}E1{@<$^2/53+[,d x*UIO5ZۧYä*bHajue=ȍh #cXz8A֥VMڟ?[ۙVlQ3Y_dĄdFz:8*_K%Fxk 뾸Y &Q2[w ɜ銡r0ʇhJl"N+KpfPRkfyo"0.VJ.V7TB/BX :K_2MEC _d(> =)yu& KUZ 4l|i=ᶁO.gE:]]"+\P{WŖg?wƲ?ʓн0v$E*I*ݛ9ڇ!8DU.\j6q'mi@Iٓ]eJ) Uh`L8C\lA ui\"TadH{.(06hW& uʁ;t]{+hJ Mvu~b!SDt[B|6̑)8W++IyVOh_^5H { C"P\02E_aEH.wRVn."Ŝo5<5\]z%}4׭ͩ6fH.uDsx{ևa QQ"-Q($'˹㪿b< \;eXI>2OF(%B{u&'/+#*pp?#i1ʷ'IZ҉!n[l՚J8Sz)k]~ųwڵEм1뉖, }m'P#&%pXggY1/R4Qn^ڈSuiEỷ1:'y%-~^|O tNJv}-ʠ][1H뮏سZt j`a0 Ȣtt\i ?>#-SVXjŽK@5;Do>zL)r; yt\ɉ-t 5³ߧt!!8T9gXtQJ#x}[!D[W%*sE}BPh ?rn NsaFg5anXNpzQK;FHZ嚣B``JD k/ٹ@ 5hj£+ӬIK9PYpv=cV3a#Y;?:tc1ﴩA\^j1 hM3bU_J_,t+ϑp|ɂ2M@ ~aqϴ•YgwߓFn15/"*}T:vaJy2H`GsXn!SW`dX74B5CrQF灇{jo!x FE 2-In =fn8dN:Q˼f vֲ:+QeڭgKs[* R_7S3rv/Q5@SYI?+J\Q@Ӭ8*BqiyЊg@ wtM s*1p ~ T4d0RIsN0G_ 1$DyeW>r%K;}_!b?2 ip4?8X7]@De'=wV1Q%r.U0S|FVo|bv."_n{<ő"Qu1ﱝO\kE%4ޝ.L `qvG"uN /v?G%c^+l4U'ykmW*@a[B^֬^w2{h [6(? jɷ52pmL}}戔fjjf4=?5v3~7i;Pu}I=b Cbˇ"͏giDba] ۨ#>Q|=/`@6΢C"zS<11 <(96PMCOf{ܾ ȝLNV4d#? P*`^l9;? ԫ6QBI`p^eNh m0T]rN 6qօ=|)Fj%uZI878 rt o c#\!TFOBëNU}#}$66H M\rlLUœ-[ߢn>:i)I~>W-=wq3g.|>rS{Uk*q0O0hRkSn-!X8Yz~gϞس7$ Ҝc֕~\,+bʩ -v1S],8<[AW]iyg8MyR1j2(%41E[i[ߤ(mclœc=1j} R3E (A-RijcQ /G'7l"2ld!jkv0Qnyp,q%K0XYQ+nZ3t/CXWxl 2#Y&kiMRm.#ԓcYMFwbs^X @|W>.;:su%v5wl/X5!E M%U):n0m=y_íx2yl-C*D7nۄHw1GBb!S[zLm}թv?"7N eЅ*?Gvebq#6D*L$ >&ddc^};&[ 3X^x_ aʍ11 FǤ @,gq$@%ۼ6Tb,@1~Ѽ22>1XRG$Oˇ`a!4w`QyZDH|!t Een4P=VzG#” FÓ 7_ ~ :|D5?cJbYbG,&u|L&##;e2}$_[oQ,=j$K.ȘZ/6T'y\L0t>zAf$p3;wfrW>B j72mP'ilK`Sq٭"e:'1ANfqAA4DνJҵw+Rn>.dduOfx[@ȓ2Ry1 E2'>S^t! 2x+cI&'@sq~dD}!N/=M4dp#*U2{tgD"¤g{éqƉkb䥸uenPC!yJy^JSM Y/:rM#2V\\Ag ; ԿH=+xnzY+ic+L'ږ9%(g(Ԗw-qF@?20}RBȹ9Zp$LХJ>vx@pOƙ`yL{]pōé(h*i;ȮizVƫ吻w!OW68T%4* ΗɕRIv#pl+s9:N:Jflݲ?& `4 bOF+C2.=Z !l ->X*/>+xLO-r`+1Ǿr9pGstT_ou{q&۔S~%~F ?ec% (q4=3 ^r C`'dr }<_!)MRN'C/h;"<{އ1%DĉSF[}<N %*я0΍wVSr 3 ^T:Uʑ wE|ZX_jOw\;<\?~p[ a 4;/:vpRP4>KjԬ]MsnDq[N&1n,>TX HO^5"l/+D 0/ls ^=f][ swwkC5ױh'` zi* BXpjtN[iqjQ @e`BJmN؂b 5Р[J;Bיg&ty{ɵ!sKg5X/Es/m V>w%/@cM7!H)LSNWe`5<;WTf H+r[x4-d4BHtQ?n=A(I8֞IbA UǍ7vm6@ecFUj#2R29޻w褬]h2#:zNd AZ(D3j$FJ7c+v50R’=m9p7lEſ4uS댲IJ, ԀRزڣ=U-in&+]_,oM<ͺ]Cz%7wBsWRb|o2w1ր^k /-ٮrRGnוz-Ff]#.Do n3xH\q[Sg?M4EJ(gZJ <qURF_Z_Ԫ 9v:=|iVBBY4hɆޯ?(RTS]MK ߅۩.$c!_e=]&i5ɑxbvH]qղյ:ΑHS T¾1Z\*# ]ub'4ؙJscR;yc>Yy43"7ˈaKwٽz1%ɘ=?Dõ`@t9>V 6pXNc2xZ 2u4f67g0ʮM0e ,(Wm)*qd)O@=aYmW0!0 >Wy"rَQ6<">]Ou &?K܋@MK]/֚ZӸ"jL2[@~(8Cqx& &|G8= \Ӏ!2LZ2ObS1ҬBfu@mJ'qB[n %)W(O:75Lrzg18v" tD7\#~pag4mUjY'9^s#9S4'V.pi0hCvUaGP3uWA^1p(qRD:L0i߼YÞmye*c* n -(\,\ŪR;/E` -TSIuf5X0)>ˈp.]-,HD1UN5crA {['oBI\⣫ל+HɎE(Wݲ\úڏnY/8$/|ZaL*|*okW-]g.LDbR˫1 N7JS)Ԃ6}ih~8Of}2 7tOH= q3EaDJˡ#a|Z 鸬ߤ$( t2Ŵ?7+4#צ2X rIy/̴5ѮH07^#<'LRҀ)\wS8*ޟt|/0s #2Ƭ qt-\ͥ>㢥Q/&:yc^ס" l^O'"18POSru,"[#TtKWuh<eM)lzJ$_&A [vI1hi5d(N_7FH:4M2ⅈȾnPd2#@Hr[律}UkG$Ś yrg.[. {hx%NˆS:ưȼn߂Z/k(K;.9Wc)-Зka H!8U }d)9F)ZtlQn@+G.ʚY_sR'r%-]^3Lw\eڹwW39nBu i`)ҒӀe|ʁ:_A r!.R:u 7pU8HGA=Шиn~DuGjX ~id"+໼aʴژT0HEhf,fY=zHՆ, uz򿏔z2dOjHIU"Θ9G<0HAq׏  =l^Q[,'5 T/H4OI2MRA.QeLSaDb*H ![ 9vV4,X˘.0/,t)GZS35vjLJ(&v(yspfGOxF0I/N[|6_'/ &32Rb}}jr>,Z&$~ʤIB3tԖv9GڋmwV4u)Qx)mEL_/EtvlAT\gS|hh mwnݳ{B}I_ܸ. -YD'\luhd3@C}CMSv{<JM[G{pۍ[OKNl[΃R'" }ȩ],Dꢢ"rQ%5>~k`K3Q˫V9B@@1q'ρ3j =98eS$__L0.jQm蛢>v6Ĕ)GT^ 0`J̿cE5>8!b3t$_-g/h8$N}))raPؚ>2!6Yv%mA,ViI&WOX`[S>.*; DՆV-@̵~j̞+ٿt]nqN?կm:QOj1vJwI~+Iks:` m *4:!ϞC< jx{-G?M7H|մCч GɎ8Az:Ϊ; _5X'ٞ hI10 |$ }6JRXZdV~p -t e:fu?ȗO~PeƬ@03' v[g'T~9/K{PIjM]I'`}Fx@1b}ąY![McGVn;ă@}}bmf/kzs', K:S(%5*ƃ+9u]лgiĘPfw>'œGV[vx70QNJ'Ǥcp9W BCa:UVǜd"e%azca㭮usdf?L<>$$OɂfDZ|N緳%azB;댬ix1?%B&Ce­.7bHY$)9&3lkP@sF3{=P/Uvig>|F;͈H3=ik|r5(mdLO sͽQBY,96Ɯ|ܷeڐ⬷k%T;(^n2mҥmǦ4oJ,̼"0}WDbB4*=A![^06UΙIvLxn/-E|^gkٳ"@;'FdtOӤXfh!(g4P3gyĥe0nRCe=2;<6O<@L>lL?>>e%evAr 4vș(c/SKHvgyW ^^JT=7NQvL̪sq'䘒ZP&=Ql&7rrwb8(SDec6 2>D|}#44x; 5Q̢;dlsCfPP YOn Hж?=&Vf4~PK}S~tXҔMQ㐩% 쪭|AU5WK{jZ Px@A6Y|eKAT 5}ťQsa\nP&?fig~[ ?vWW#JrܔDDmy6|W.X %[Rp2г-(J>X6ɧES  A"xplb &@u4=&sPDO!\Q53>(p?0 $hކ ,_ \{m̱{x,@芆Twlȧ) vr3hSjž"DT_zjq*0MV#),gmE=ɳp PS$vR+Ќ.`h۫Տi4^A5߳b)!;"z@/ t֟{S|z `lenWi1T()4#KߘΔV8t] 78ԆTvPL,n?᧳OuwqnHkK.S3}ng iVA] _}j,ʻI[ ? @@oljsB\Xp\{FP]}/{zle8 [G/blz #񃢑K)0DQF ]l=OXqD^!Ġxt F@0!zu޷ʗ1e<Df 04atM9!  ?>Ł`1sKoތT #:b>v7r'%rBıӚ:U?[G}/ BtOf@%ȬJ Ѣ h tiAHo I7+V Fv=5KfV]}{u)m]6JӤC-= )Es_s#,9X ,nԐ\rL&s,!y<5-R]ӡW5۫x pѯ"Q' ]Ė2 HOcE'}=C>0Ի9nhGOg$s3?V'xpznHD?g/ 6Ml59%r.1΁0P-S?lCcvytڙS0k (J֜ ;ݶ/7ΏabƆ3(k])Q!g% xf<5D!+ C{SٻZ-lǛ#}H|b3DAPCN~*H] g[Zda委rƝ@  bX>&^XXe/t{톮 'm05'spwkv~5jy(XB4c_/Rn/{X?UIkzPQ :8ɓVú3䠲V )۱WZ [ƀ9E֗ w:=:ހ*u#pD-psNjN{:5*K!Ľ"ia(Ϩd~PX%kYֿ¢#v6)סk4='' 8k:OQ:eu:B̀E"ڧ'Ĕ |ZP`x<ߓCp&#CIM24N|zF ZᆲB!ғ=yp0"ÿ J43>kN.6JpQu>G:"*="_]ɪm*6%bHIHΐ[ϳRxS=rT}g k P%(*W<|< BBC/C%7]`t\XqJYOX|G Gx}MۜS@4W0KC;H OzKRO^:\T6@;s #;pE|;[>& #O Q^{]Zl""=yU_ΆHDGU9]n U;9e2a.@pMU!Tu<=+шrI]YqZ!UqwԯO$f@I6165U:׵$sq\Brro!x0M‘#|VN;NdڼI qD9ٴLX]U^-[TvytESw?M}te`9^K/P9es-D"|O՞v3kdNA.7rp?x@F9/M5~b 1Ƿ|t xg'x"tP X9xN.E\^ٷk,C"Fy) 錦΃^>nU֡IyiKՉY-1Gy[OLKʷfHU;!)%^ }XfCYKTrYl{0tHC.9!v;+gk~A.6,B\([r_[FPI?!^oGD{\ucQQ-_ \=J8HН%<#0x3'1%K7i)k `QBdh+*7\J4& ooN%o?ݳ1%"["%1"SpVM B֕s,}4$X'U>-Ysu>#X!@UJ;R  0@)6-wdvP)L2h/X]{?z˅f/̰tVQu^AXv01̧v{Ɍ{Жw8~K<:Hrr&Ss%S'9PE3';WiIP.nh[ 4aQp7v6D8E-`EAޡKjDFʲQJP(-\rj]&)NQ=*_^gz EA-ݶGym91E`m] R8 y jn(=M_0|u:kYv",GrvSԳYN u`y,h(necThjjJxZN@Gq{ ?[JmDӽ{bEB7Mê#0XrՁPR^eC1^{ YC@H#;d{ޙ.]Tvn >)?L۟:w5]Qi ~\uofY\t-p/{ Ӱ>cү_ +xf S--芰5@n^B?kor_u0zxI$GOac&OD&!YYXTZx5j(vð;>buҁf0II{JŎw+8x2!um V'av"~|XF64_Ǒj0ỳpgl׷%ރ,r̘2mQݽkb`6--/[gL)I&WktՏM}#"t3F'&=B1^yOU-Xc /5;Xn xf~;݌2dDՆMs-˿oȢ&l5ג7{ZiO]GFǀ:XA (ݖ'ނW ږ ,^t<67MdS>hn2%>61Vq(/A>jL#>&-my˒^rjŵh h{--.֘Y 1B<9׼L}<,!Ƀ*.|hq1ƈbF !Bf[%Sy{YHizPH iM>'g5k "XũGTxu2hh:Qg;C#^C6g͉D.]T[$\o3׺ g@IXrb^(SݪKDP1 wNYrţv杠nb Vi}6( =F ]?@Z$$F*dZn+5|ҳ)Kc=T ]s3hNvV$[\ʂ(z$uV55,s4h1LӾ޷EZȠx$(mM ʱ7δ~QouG%!CK߃&0DF+3TC9jPo|Z߾Ld/0uĜek3U9-N<ʛnh$A]C퀝$- \prwz2cډ\T#ެHj ^Wz&w&6(? ;jbE8'mz,hxqDD SZh0@*|6]({q"w)L1yR%Zv\YKe'W%VDLB*|\zfp!ˍ9%Z@))J"228E%&8N4$zfDD0ݘ:ZtQ9U(p輔_馩UmhI`0WF7{A O5n*bN3wP0I`mT}}R[`ÝP%T Nd>7EOWѻjt[~%B >&n80-G>Ӆ[v-mŤm~xN}n>$KssYGǺL!0a,sH;8[{Xlqbi~j?*q8.nDAYNuÂ,sM&XpUiM'hI'*N7 20Ǥ>Q]HrQ<ˊj3fz@r]-a0AC`"6E~KȣM y-X؆xdJ,pyTָ6OLl*"˗<PT!׏k)`d^w2fmƓI]v%Y\iǓBo0qSa%3F{1)= lZ 3}2?!x`>#-9tT )lACGH}뮵DQ W 'b#'l@7uH+tɔ50`ӗ ɡ"0̗.¡j ueGEu6_YGd8)~+:{,j\0U%3> F䍛״xWd#o>ͿRM=QYZB'w:m|C$t+_{5E!'hS6 吻39R`~%ȓ~[%K6(?P}FT7;9r^F{>~+?%d-Lۑ!|@)FD];kqPV{B|֝u_.:3 MķeQ5BD ՌxϓZՁ ™t[:ZoïnM0 Y/m&WƧ갱5SFv &USʹ26X6J$DdCBAHR]:~>ɜfRӉdLgF[.*YYheE;x)KfAкcoN<N}RnT])b}Td\zcyc\$y"Jjj ?蓧`Oş }EQKX8~c S!| YvJYǍIBEəWaEWՓ8\^6>^΋#I=wsnu<2;ަdl LJj&p| g+metƊ^P jgU%D$F;[ Ų_[Θ3Y…ئ3bs}(T%(_Kj4፷ɕdH5+$B"`U@ñn̗܉^E!kFng=6mPb% NHg5}PxӚ9x}ȚDpsl&dveqH=TgRMgRJeoٮD|'ɩ ~d=[UL`>}K#o^s-k@"ւuλNr^ Ά:j>[Dw\atCKAkv}qF39 3y0cCNW~Kl7Ri$DtlG|&E@4k;no3Ƚ˒U,+dz-mz! ~1:a٨)8;3Oڧ+Mn*7%#Oc p5ACjAu vɄj'^,FԪ#K#=Gӣp?6e<-z2F#I9( n3i,9޷<<̼]! Gv5Qv߳N@cڢ 0ULµFTT;p'ЮjQGa9\<!_"DG0U.IJ)tA,ش6NvPUav͞&70+$*?31 -I#U|el u.)R6jC$ h2FQz@mU[Ra9rVfLSNmכ mP59.kSpRs.6 e'L״/vvMH46>?f2wϣow}"6cʀmΙ6EVmHT+8odZi1.=W&值$# k&soԾ;%7hɟ4~#ϻ!xh>0 YZAER/data/DutchSales.rda0000644000175400001440000000114513033553037014517 0ustar zeileisusers][OQ|Q ZX/1x R2E,PR.1jG&Ig9- .nj1|/|759[v3- gu2Dhg#&g qwzh a|cB0Zd؏37š1z;i>,kԓ9;n{:ż˘ r~ڬSp$Z_fZ_9Tː3MOӬYrfL&\n0 cwG,2/C}i]xly|τoߥQ뙽Xx}e*~fB#'{GU;AER/data/Electricity1970.rda0000644000175400001440000001470313033553037015265 0ustar zeileisusers]Z|EU@"HB 3iN :!A)!. ]iR^DJ/wi@ɵP)R/0ygwvfv?T/Cu5;T!Y]W͡C]Έ3=r}88P4PAߵv߰e<1oʋO,tg{QW0ͽ#"7L'-]SIJV7Caߟs;ֳA+tqE!6rȃ,rVAa_Wa':p'vf [. {aP>#"IJ Eўn4mR+;/Ң=l! =|Ŭzֺ&`[jο7~nwh*~!a~MUX l+ŝ[O\cF\}Z=tFe?xA_}!z65\>昰8NwO6~~u 7VNI@ϏT鹰,q>~t=qvMY{1|!ӝ0X-;;5̚9 ߛc\~֍ctmVuq)g!w:q.^c kN|C,`x]*pc 1]q`éj2X{q/;ݿ50GfVRжtuFqN6 lynj~'/q 7k3bd4rɢO?8}»,Eo4/YQ8&(_0(d6+=~t[w}>ܙ~;Como/t_-=Y/iI'L8νEW.[k?9`~=>xG-g5|zN8',mA%w卖*jjYѵ#RiYe\ _!ռ9>/z-9"[8\^CsWVQ']rh!=*G8VKQ?b;O~C辿ڱY.`b5 ,Š}rb'Ikg7qo}fp„_7϶a[]n<D3Z|zSG}Z|E̷doݜNm7ՙ|{G3ߣkǢYjd^ +ݕC$+yKWmQ"Gq.|B]:7'0?Y7O՟'ץ+3b~W<} oXލ+w,.hnE/e1/LrPxK*_D];vIe٦J)c4!&qlǴ-wVy\]J 1$^];_ 5Cu564~'ht4̜ҕ;D~+b=GE`}o o-75/=M8:_ҚdHuM6 5hq:Jd9R&% K޼?w_嚼xŔ>vkJd%rK|6brh#S EfX>==sH'[@jAc߶!Md[%`'ۀ^wAj@ !p!" 2xċk"q!"ӓ˗yf֯APV YhUdp_v~81e_Cʷ!AW@a_ O؇m!O!Ux[JXswix[A$e5NgN$zM!d,zv$A<Оl-3u|R(ڔWAԺFȡ׼!+);h "J#CFv'S53D@e_1{'@ ] _q VMt1 ae%BR7J-&!`)|P >iUY@Az#˾ 夜 % ص뿻WKMT?r\R1)qZ kn<2t8!uՌ!K2d~%dmi TٔC4Ǣrȓnr #pnҍnCO>WHNeO~N*;'[wd:4^B,< \3iA풬i9,Yxbp C,'e#U~Gl }s; xҐ' U!o8.\&['1;qv\_ށ q42 ٷ% kN|%r0l\1,3Cr| LEգ0 U)j-\ >I GפumCbXe/KiCן6|-bZv0:lq`M̦:&ؚoqږnGJ%EjH#$s7i[(iֆ܍E@rjǠDFͦMD<*\lTGrs ϼE /v #^b^;3%# JhyՀ̣tnRW]o6n"?q3IxHQ*(v>r +~LImJ PpM_+ VD+yvs7@6PHi(#ke7)le@,:j" ':u x񞓪| `w纅Fxx*xpWx P=i?BwՏkb϶\y'7dGn˹_8KF|{~\(F/'/Ȣ,R8(>}8ȝC9.Np=9W43h.y~/$zàxm贇MtEd0_Gtq}#=hE~]8nzgu|tQq>sS9k4#vݫ݄w`2!!Ƶ4m%3!it㶙-eLwXi/c֙軔QtVugrc~єb@1{J ,7)""S xvě !'贜J˟ Z#wU#Erٮ>(>ӱ1w:F>s2B?dr t;hDwGnǥ fJ[rUjH00:E+mcC1Twg PZT}(eS T=Ӣ(+W'`RL,U,o.T*6Jf3vQ\ RTv7`TK+%#kQxԢE^XT^b[ߦΔw )ށQzt*iٌo<`"X;\pQѬ\U>U@b;XpcgZ|BrzWdMWkV(y2A^ƚSמ=^|SSfǨz0wZDLjy/2"z걾zԜ:?{]7RՍMr[Ru7RR fZj%cAm;2.tQPgA\i)ނX )[ _A; ${$EAF -h yEq&& ,(Bg \4A}!h yf Y] Z(HwT Z!HCY%h${%}#[AVA$Syh yc yA޻et@ FGtL<.;!H^:8)'A? :%AnAg+輠 . w?](HA6R J.H+Hg#-d + (OP y7PPbA%}2AUAݑk䝖nr1׶\l>kjWN\ `+AER/data/NMES1988.rda0000644000175400001440000010452413033553047013562 0ustar zeileisusers7zXZi"6!Xw])TW"nRʟt<3n2uJB6\v-jpU!-BNHs*rpV$RzǼS,.ŁhR1`X-e%*)W(' sGE@"2S =tSr5"SB#Yta)1[ʦ¦ %{ٸdϵ~00ȁL͘;n݂J6g\ͪ2>^,Y{lI,Գ(8 ̑m"/ E-装QitL XR*tQÒ/Z鹭nh H"C"k۝/zfu/2Tt]8׼N^9A8qDЃ}{n=]LsQF«Amh)L]C ׬z0 >_iP-ydd=Uj0kT2 -І_nk<b/@cZ3)>x,0_dI?#fO@+x~;~Gp2?%k=bn !JWJf6_3\GO߷ge/ve) iT3 ^6b^割D&Ex ]M'YˈHxR+Y;0$3p)*W :J8jCLΪ I *P} x7hC#F[7]Г'/ v"SsK-= wN7Wд)pb괦̡.+iX{V b|ǫknTa_cY[]M|N喔xLld 1=}]+W j&)%nZ{,@i$E{}Ky>dU??|cO\ORѱm"Buޔ @V\A?;Ws:rܧ 8jLL:YClؐx6 SW$luc?$1v-ED~#{֖e4J E$X1̼l  *8Ζ ZK5)IUu ȮH0Y8TKtvZŭgf4zEI8Vm.}<MNʀ W1CRw~xGda@=\Q>ܩ4dBGܺW =vԃ©ś*Z uvi.'qko2zx9$*創|<n>YHYOzV:Rᶼ44<8U߯K'ؽkcp)] ' w3m7C Jb甆|^'~a)<*K^ !(kE_,I _Hdyk/`RJb KIc?ÒmHaPxWl~\E-V*ɰq%*0vjFir2_lK3-SJ#/_伱#& _vD>{0$.y~%& u.g+K!hKz,âd Cjdy5^243tFr= U 5uDw:豈q'_,)ٗ qw"#OEmIxw}ت$dHՃ"F6URռ-rXsMb Y""Ihrx@\csӻ{#ݔ8U MADK5sPP?Ʒ3n m`Չ1 Ka/ 0SEWW0k <Y"$/o [beF\_ۛ ;%QX ď?~"+(=QE}6|2ZM MSGUWz5b9TF*pkP AckS>߼'W oK/qRZodͩ1s $}):Q~NƢO @yGYs!AHH%)=2NJD O4D2âL {=7 UZLfo. Ǚw4h1X 88FAI~Vu324!F64ԏ4G:.4d!'h~ S*oz ʼ*~^^[O9)2%yLnԁ]Ӹ&ToB$DO,uIBU)CF:J^ZS=z|X`1Rnnkp θ˰"*{"i$@vPJi#>X^z 6lϗΟIGPIm:5Bm>e5Ä$K L~Cf6)d{;DN3p ~(ȋwEFM&F2>$ŮieFl T/Ѡ7GI TGd ؑ8( gߞT @í%%xm{3^%F 0BP?-U}\xuq)8 A$fA4);=4q~R? }{e0FGÒx|[[M?:ٍG#M奡{h7U$b||EPEM*I'S<+o7#U맀1itW-ڟ7Ƚ$YfPkÄ6lkTCK*Vd%`п`w\uȅuv /)-q/f,nK4KLU0rS{iUr!]?߃"3E\ΛKzi*>*WD׃5h"w5 &"\ DǰTkraIԜKʅC}֎MAGj;cdCr191N^63í!mxd!%s}l{}W0px @g=%V.({1=3ΙAHGyr>F<wr< KΑ͚5:3jq~RV].';R 8vaPhO :YGs BaƀtP*F"[қru%XCl1i$=2BeLBt2v-7*w9ѣz^QW "\,Qw5_{o6Gfڞ|[E"<YVtEåuaֿrK2gѨ:bY._"JCY?aGj{~&e6.Q1\Su WcOJPVl l1OˍqbDM͠(hbF S1ϹYƳ}NC|&^;߱ЛБb_%3!˺ fDU_`cdGz 2ߠ7Ć*z1.N<lPGNc<^ݴ]P#&Rlaur<#:@LT>#oj\B B?1zA ;O^\L\+^raBBNjYS^՝q5FSUy៷Sƿ\R'SԂf( &gP\>%x z˥2\RHlpwd|Y\rl}Up~~I[¬yIVh697d_ 6B@dP5~ ö 7km ָR/Yi# 6ԬCd풱XO =W(*FN \zDA~VDId\f b ";.kE#N-U`>јñ#-h8 ! 矷s暬~N;Zis"W7zOjǫ6L_LaJR !-EG27R3~~xní,;h&Ԑz+:K-Q[ :R=X(s)yBUxk;ɚ|+GHa!El^5><4aГG4Ai)߿g ʈJr:EGFd-e*$c!|Y0,OUW9t+xo7Y9b3u3 EiXQD~*_-I՛~ˏw?sB޹lM^z3yWb0ARY7`ւ5 ?cPvտJ?NXܶ&gZOA9Eū[ù~i 6u;c)XZݛS&ۡb։y ;i |>VnڬƊ'k\QM*zLXJ'4$^>N2 }` [q"I31EF/YIZ/TbgYDH$C+-GX ^s(Vp:B Dy{enێp=n'쁟 :@;KPbF_!ga@B76%{,kB{g4TstZsNo9rů@ИM,Kr"ۮJ/pDٷm'`vK\~w<@fa o;AG&YUh\-:䉖`Fx/~)@J{[Jn (KXr_mBL1CؓGL+[PS*@'Ac5Ǒ C5-&*婫 >TYg.W Zo7RA;I`:!`_+ "n@,]pפ4Ƿ"jA6e1'D'zD?oKW5.HIq/X֤۸YHMy)-H3uLA qwŜй ݨ+:GMMEkvмqn\GTECMZgl_@۲TBߎPPJUQKU&xBu6u\.FL %!\QDq CfaMݩA<+@3[->"y4" i0 L XN@';8\Ս)}Ut+pfU`|8A(jO<Ɣu @>}[ Ps䋰 y3F/D}oEnX<xg6Lc&'ZES%gBMZ\%8&yOI "qYaS=Cv o,7NA}c6z`'0jGwN6%Ja(rϥ.ݷ"% lhw]y7mhibX6<֝Z`Ή^]zp+j/i]}X(\N!ymkU@O GQ Hm8 p$wU!;(v|D4=UF#Q}0sl^$.x>%55_dVN5vBG^:}C*W|qH_T(-UջI=w7Ƀc$)DO gޮ0M v1SŃЕ1cipR*8f6ܢv %Õ\D =j38F qss𦾏Q ƹf9cfQ=#|vuϕo?m{Ɯ1ccR] M:J?6WA(# Wu3~ODShe΃_M``T>Gj +y6 EBsQ&Mf$P$A[1βJGӵ ,0"U=6tX~ RPUqv%:ۅ5^2 ,",y" >u"x\uu%f]+#"=jL4j5SU~OD3<揶xAWԻsb]Jelp)eW_eS&UMdi/JߋӒ]L)6oajlT?J*,rrU#۽lR 6f]ڢ=t&煎[PCRc56ҭZ`޺.ۍ,6ZqhLIcMT3pK pESEo&KKÈv/ʸs_?oG*WpdR'Yٯ5A0,^o'] *ѯcc+AuT 1L dA VZD*'}StlZղzmYSڝHA ;V Z{%)/7zQ[At߲esK:#ųb:\pλ%zYR цyjj7qf:xDIP(|<$itƙ2F Wo|"B˸] bȡ]t> aMK=>@ 멏9p XxtȘyU #sph!TUS,,.JnÁb[n1$uwXZjcZ-V-U*$R(D@җQt&Tڦ2~V ->'uX6(N:1,p%x3:u^`οbPDx:_GgcڛhP3MŤ8z S*pen!ʡv>r .HtE0X+Gu fvkJ2XR<`Mo#Gm`y'FLSԤsa~Uxjh'h`.ˤM!0Jvp$ GÕ9@'SYhcP<" W@d 2+mGGjWWt1ъQ|Qv* *Lϩ{φN!H JMrOmۮQ+><9ގ8N̯6Kj AId$oyϟl';caҊ]m̩Ƕe:%U =g^7Bau+л!|=iyV|]|7xHw|Z sx 7 7J[b-hCXm,54FyJI]ص1P>+"̤mI:*Rw@ffxTȞqWJ0"`=m9e at\,ezqLf_䙍!q4ˆۦn4;{ڀ5r)Pw̷ݳǓۨuB?!i/\ 0KEcߢmr{\fr5勏C?yibD(j7X_,ٱO?9vԸy&%hbWz KU6@ խM9+ke 7K7wJ[_T}cSZXd8&SH Nw\o,ި=&s^,)=~8'r5 3@/SFN4Ғ\HdpNZLJNs\rg;ٓQρB5;N 3c7R2jbwrz2Yޢ^TIEIqW5vtY@U0G$NoF-=`v~(I]B#Wpb/U7q& |H/D,=qh_.*wp:x [uv.iB q+&&Λ7зPčJAi1>6.VCS!p]~{q<(1P^2rN|E#vs~JN 혃rU ib$Ggy><J\&ʻ{9لN #CWac[9& \@>˒֎ XA$$vR^}&sj@>w3%}TN1 2I. BM(^DŽd: 06Ls.$~ay1KlJƄG{/\q[wkhq4/Lmc) jKF޶Ƹv[uJYO8͂'03#0Œ[ˢDm= =\ڇp['ۑfԣP*7AiwB\rW7F=1nU.aݦ*D#ftEI #S@7"^=%M:v9ȼ&O$7_Cc5h7OA}fYW*YXZq;'9A\joY!NƯ] N-\^PFֈn$>7n]۪m|hf5̛<듐0O}gЍ? SMsY0H&CオGVÙwW*-x0e{WrAߤGBH%l1—;=1sjTTIحΥ ]-!BY^_9P9 ZhcT%9rQ|9ҹhmj{ 9b?̍{A oOLRL5k_W&7eLv&ɶW7^9 %FhZfOSt#pji4yG YHׂNJœf\Yۭiޓ# D8ғAspjRtVht4hGmRjp2ɤ'$zIOmN8ƢE~kAX/EKlGfTfu)mCUʮ_DMe*uDjh+.V l@#HL"a͆ ryf?CMj Dj_ #vY 2*-[ KdO6S^teuCJ,`EX$s-v[Pv?F I퇿eWO*okBNfUx9sqM[şA,Aߑq!WzCAn68Arx⤚h!W>^gEtRioer"lҽ2~\̤3*N࢛g? _Os"&)A9o*eRH.So7pѺɡ42*+>>l:6oXf?ץFV$,,x?@(KfX<3N+QMa0[UHv5:~fb߹ L&Gy~Yx3МtC'6߿z#hfWa-]# rW¥j?\5UA W7yyKe`Q sR:/|ފkWnJ;fqul+neC釮iF鞅 hU௣%8_x/_d0y' [\iDm-+9uY *fm ӄwQc7* |/!a-Sa?lu*4XB_9o8s\P݊- %iB$Q̈tFavu=ZBvCZ3{w[*Mu,cbifwѱe> ٞc D4 FX E{y vwBvಳ)Xv7qeŢ\d0mXYx2iuۈڍ~ta#{qkDL x $зu 0-i:/I^!ȡ[4"catlA GpHbr[` 3ɰk s~%2ʟot{z$^'W%Q_iKyҢQ EŨύ!_o;BarVZ %ܥ'i\7:њJ2ܯTcp雋2Y}=Dhѥη2;.> Τ,*sV9MJ?o|(-r4V*AY<t.U4s5=Ÿ98B(L) q.R9Mօ\HX-G ^䍽;u뼯)mX*U!V:ka<\IT9 if=M*%gn0ƈ2k XżGGudD|!'#.zvI *wmmQ >@*7AW&[T|8~󂃠690A(lhk|ow}74.4o;13O=(F-zN"|TO#~L "A+>XSa(I77gЮΨC!{X)80Ř=9.W@z y燏w~gcen3e]J67H:Ws dq$+DcC2$]"ugzmù-Sr"a$CB E&D-*b6'H*N"u F7]x݁nj*!Zy:u8* } %V5|tZ\-@̌f˾Ie ;=[]/W8(fZ[qJɤ@)GrnP(iEd,roxS3ls_X l;s:" jM\/2T Ey]_7|J^ơL` k9:UI>mu |z9i։U9gu?1EZ&qThN\/Zݣ鷸V 3mkqILK7j/xXu'FU2L~pn0|նN+7{–e~$EB&&xmyȪS>Vv>[jγu)Ř=@2qI)* ˡM2!z]?5-X:d[N.9*7CHM&\3 nYzW1^_okNP !%W˲AY\O x%W!ϩ /،$ f:49@!"!'KceWhI8+STnU[k+ڞyml[ݑUj;w4PVYJU?,kd'yѫ9'^c<D*taQ-Q, ? ׅփ>qQT9Q8aޥbq"RHj N_S{*Ӟ)i:Dڄau˟0$c̝E9gt5S !JB:bDj3WkN(:#;+go"x D20r?`d&^=$t"Q ;$ԾÙay4#^=E@0[\m㚶:{M ;~>RI03A3ρX{gi6E.=,aǺO4f^2~y Ӱ3'<}&ErHQo劎ϛ``D4YU W>6Z(BǽHr1$ zi2w@ba(oj3~\JQ-ѻaEy+\젙#F;D,w?@'׾F20O$:S eT#v?)MI>< 8WTsDeE61&6ڻdD@.&+@:YaV9u{ۂNO9GH].;6`uʏ칱JLA3i_L[[+, ^sJI.:n|-DW_l/?kH.k㽰qy3N< ZBY&Lli,yQy^(l~̗s{|I(NmlVCO8w)2?Uy%rlk*iy?U7+>y%ĕ2@jJB.p\Ud}5'CK@00qSz-eѸ@_|`u@<?0´vE+:;]n,G.T=A=3r YOJxL @ȚgHmpW TJpS6"qZr.PcѼy "xbZ!Q&N R3E0Z H'0A*Xj̕>і[X2q'` 5i9צ%Ě:42~E%huj%jeqwGt}0RgM7y.upW62nff4xb@S{E}' DjVn? ~H۷m}ܺnuoXr eؑA}_ xl'gk:yD[JF@JI Jaz:cv) IwwtףW`i;D3ORtsvY$peM<DhT>pܣ5u֑%ٿJ Ŭq\9&zm:ļ젼w$+ `][0OR%5E5j*ZkX$2dNN$taq @~Ȕ~#u>w<>9 жxjUWdT iIJmKV!= `\;l$./@i[LmdRbA!s9~p@ NS~\Q7@dۯzߙƐr#P)9nJ,0S4('"%mR]^_F|kf`]H/ t `Hl]#!DCjJdARЕk:0\[C&/_"Dn7-/Xqsqt^MlFO7Z")MD ^)+5G%:}g8Py4mv*v{(Awl%z?۽^>yպViڶVEb7&r/HYt5Pyv+ KZ}XzhfZE eAq!  |.Ou8t;x_찦oP) R#ޝP"".T#'6AY;XWx޼yQ7RP b!%֙>}'ou관O]EO N@BKzOhؤZRMx$58O5Vl Չo'StTI2`zM}k|=EXX*ONu9*1ŀAh=#%9fwau thELp6Կ\S ]F5/2sqGAU'>>m1eK`9["؃ TB`8]>(Po?sΖ^%V2?uV^wMsDa,C'~E{,&0}}'|ˁ[tV H.]p SkN&qoܛ=Xr &ҸUp)T{4UNoטJ"YBf H͟fcO*!{Ě&}(E 1E6&C C>g:66ˑ? e匫8XCBH:RLR 8"Mas N{kX^ԱU<4Ql&{}f.Irq5DzAńHꛛW/-zQ. `Yhh3ie6qr;s@3cp=~)&˯A`/gU=OqjB=;L9JVn\ȕzifZ4I5޵^ĔM~5 x]XjFk# 0ǢPMTRȺ~hpL:ގ59~ 袸 ٬~ CU#1#<"ۜ1Ƀ*W +u2&n:9vq,p{,x$\Ч9Q#y”/#џ̳b>P<–_H_ Ȏ\aTB+w+̉vr<)@y05WW0xgU@iB`5*Cc8kr R.oGcXD=jմ_AYxyhމ] \2Fߍv7&Wr ǒ(7$8J6/ڦ^G.: @-\7V)dX4ᣑRH%XX8GX>*(a9DXmaw(JV.]E}8a|F)k8ֽvAs4P&ќǬZj8`z`U۵FqrQ|  <dٲ\ޞ89w 8kJCR;ܞrߛO+nzVӸi(AgQA++PZAԱ vf")X{i${ek  ?Y]90sx;=EҸtT:rCOSal Ɖ3,Q h~V֥JGE0*4ߒ#b5Ά7U6QT6"pWzI[s܀]t ZecRY?Mh/*7@?;XXe<8',a ~3,$#cu[1.6(fW:W~ 3o$$,oHxɨ-[:%ـ(u ԰:;yrqTB[zx ߥs .=mOJl'/ 8M,3j &\y3):uHjdU&="T56#xD`$zrf *m?j-@a34-c4t:]RMULNjjo <B_It[_`8nb5GR d8Ty4QBmN #^wREn||b~ez#8y78zʔ* C9WXM\_pgR0EԩZW-bs)//=,5ٕN%BhꪆBZ/)KYߏ(8%LL nt%EO# O#l.]{U9a~}%$^] ^DbwK]IWo-#HB+:iEҐdM4 O}Fbo!>KZt$<7]Uo8m*WΝ5^yݡ Z9Cumuxơ/ L gkjME(c]K1 o@;vGBXѪ:l/@!oy*1wHḫE]~75|S'+y;tp  \b -1*bc~܋O빀q$;  duK4+G 6/=]HIyqϷbn11?稂$Acn%e{[uɍ*.ؐd +dS\\Lʾ~]NGžƨBl=pB)y ASsE9*6]%’kސBa/a0ž HSL w,n%_T0M(,%<$:ا?Cc%GUlGjfHy4^{e rqo,~xn!yuu %%6-قvNk>PS][[aW]`a|9]ؠ7s pWw%%3GhjF@I\@ eUFGa]cܩY5.5o6MOIW!9ASϭJ|0+8+K>ݛ9@bv;@5rK2&ўR&Z+&޶v{[Шn%p¡= +9+?Ndb=d@cA80RiR^nS=R+fgSYr|ΣRcGI)- ϫO6!37ջ(.>xV4dt2Tm8n )9=ڌ^9AA(KɿA[9ӓ/+v<0ίBlðz5KݩN.0wX[4 Ws6~zM76E( j-cFvC!zdtm{lz另4R ozv6~"{yOP`2DCFWH1r~(դU4cRDgMOgEU]`)-rNVA Y 5l+ C4; dJu \|%s_9EJ'lf*eȩh>,K^""|A|J]0Z!5Vpk}y}ZxCb1:iʌ v5K8yEkdwOnp/Xv ٪a #9C54^ƩDB;DV;[") ݻ"7];:xSf\\"~cLÞZ!LJ^''prsOyUJܟ0a]bPSW鼆!0c+cp)F_v^S*=Gxقd*}P_9Ќ ŞB˄#oTjsSI0c[N !r4O/Rg2Q`Yfн˒_rUWphbS\|r>k sA4twl]i'26pQGh:[ P/:tD_iȏ'`d (l5w …]12^3}+:%$ZXŒ-GG,V:[z?v(qvpbpM~pLh>ؿH~S9xv]"ezWuaTͳ># YRFƤe7;ޤH_#AT<4#w0kW=K~R-#jBvp(D1@ondn,9;k8 OX2?qeXT&W4Z@o %@ "<#FoU=-m!I|ŘrI,ցL)1} p^u(t٭|yR<as ykz4fүy+70~zlBT=Zo^`wbxO! HTۺmܚ~NTdb&?%.abs@vw26tMSa;y3P-0y"P*dr4K}}`h-H3\cbc(%z[L6ƶcażRI7yJ+?H9MZfNѿ{&"X6x ȗ%O;b@I״-oj@9Vx7t:n_z*eQ]"=Q}&KNۻr5[]|f!SIM^Mt_a|UeZ}d>P΀i2,˜`B`5Q!zp`KA(/Mͮ!cGW]ds@buEK B;-gQ ^ߝ2vvb>kY\Rb˗Nr0,}eH$YVn*K5YLoɽΊnǹ \i~h j6&aK؟|wxo7Oku1#9TƋ7< [ t34n/7xa<);Is㏻\xCX0R#P.ƇPѲAGȪq%Ռ3jx]}3(k&=Sz N!N .7L b42ҫ5$;|`D2 CRZ 4PدXEҵC"L-'\DbfP4 xPvKe'fZR0@ ofy aw]2yjzp\WWp-y 54Ehz 8#:ψ>IbV}aQݧbj\W#t95m:QR15 @EV&K׸'q'5s0omEN-v(ECNw?:m5ljJXRkk&=̭wyh#1[;n7F`Ǖ3n:Dz͂dcCݺV{`Gr]U6Jz ?),݈&Xq%IRoSb(pCֵl9" <"D@**N@*eA%s;6tw>˚m81 zgxW#4@ǥg6Xd爺`i=֞q~F* \dy\c]BdF㵷>LXW-I8> $zqj[<% %v_0j|f^%a/);nm>:d Sґ֚Eg.R| uI]W' 7u _6f:u'RW Ҥ@߯#:A<@A !^6da!LB*Eºa*p9[d<rʸ ߘ!x_@A^Տ'Y{y=k)햾ESOVR;~><) T7:Ѥq<2rdL+(D]ң+D 5}EgZx'O {tJE/@Uc_xdk-ԂZҨKI.61zߵ:&L0Fpt Hd8/mN;EzƋ%)nF{w)+Xr  Q,%+`& 30H u}}`VSQ+:A'Gkr{V%n noDJew@tj0}(\=T2]9?y~7cٍ>p9Vb'cA@4(؏۹J2xGټrG쬈{`^_BF߉dRżЎ~xpsT;`?x8:l`d {vRV.ott$W ܀.ruLF&G'Qq? y?Kz. lxFx0m\.7[icP˨}m![Y` L I B j ǚoP0vq@yo_\b $޿(M d*J_Ї @i=g!i1>Nbq?F,+(JdxED8pw!iJu C%~EimV7r.k2ꆣuJ1yݹ跠i+Acp V72:8\t$pz(.ߋ*UWu,>dxSJҹ$Y17qZo/<""P'2)DV6XAP9ʿ ,;LoEfč@"yWwx◞!| I¿1b\x["oagS⥘U8?A2G:&uYՀn2Ř  eJ9E7h׻LI/gVM?n Ji:O]SRwxR^Ò/bcb}Y;g/Ǐf0JFr'JEFRD, \IKX& ½Tk2͐Iu x@OXܖzFVO"Ju#g#p-CZ%Ķo/fG ˋ.&Bfk8PrƝ ɬ ʘt"gƠ*zl^`kQ(5ʹ|}޶ފ`$|缹Vz3Oû ɭ@^ ,B,ހC HMȈ;Td}$9hMnwz1noub  풽V^-[f8ԦѺb#䬽fe !46OJTrj$cήRtr˶eXc֝ GJ?̈9c-Jc T y-r0.X)(5 7ʻMv?9E[sI;ghRGؖ5Zu]D *Ue E"0d 5>xذ'HEѰaG :hc h2AYHŐꌪtT?罬l?@f's闂[;'3j7)A)8fclu)`99 =ٹCPSz˒-U`liI$bMxyrTGbYT1sfrvEGHhcسQuUOaPrE5رfDB:sT/I(8'&2Pd9}n|yc5@^!+@$Fv|ԯtnn,&;)qލ 8WGs3@?? 8eqr %Ӥr@*@HstC'\ l:~ f?y\m'g-TJ8;k - }On'Dw1*ӷ&MDV|>o|{g(z!쬀-a6c +; MV/>g'-i?g۵e-1db~fYmA˺i?6̓水^ B u Qf!ڡxdZB/B'u"c"9ۢA=/,Đ{2Kݧ$]V zumYф mиWxKPޤ,]%l컈G78;z01A3g~ph ( Ez{$r{r2@=.jdi+S/PӚ ήUD/yub4+<xR5l=ViN>F}6kq6PQ>N:rs 8Ƕio}5XxSOloAshڧ]dELE:?=Ts.F 4ZbI#"q]7`p2[# 2 ~eS 񂇘mCho0(džK^/ov>t6<tC8 #FeϚ~yY¼E彈~|9FȰW髥 ?:, ݤ搽*pkdjjB3I^T%D7ss`HMnCfuϓ6\@3.ވ')\i[ eKZçEaN7GfÞSڃ5poWv۴[.uNw=lD,hͧyB7 Oa *%dWΣ'mv UwrR(i2/)|+t}?H[M標ݨSkR':LMس(=8e$T2o>"0KAVa)? itK8ܲ,(E mIM {֑-??,`Vi< w?T!S l[,W7!pNEߍV=*"ħl'Fs,>(6H(7hE 5tzP8M@i[;i! :x;U7ʹ$6_LD_vo]x:pb|JZ і3V35zO[WwtE+&|g(/H\lHWT5y;3,JlzƍN؄߇.$P ^(r,bu'dPp[ϕL-9q3Ca+8(v~Q3y2"OHTճс&'}w w0ˡ*Ƕ7cAg Cg I#t@|k|>˱g. 9껉pV]ƕ'pa`۽_Y>A_N}6YUU?fMޱm]P&mgIxN2-?l6xR &0rO =r)r2LwGUz~u+jf_TYCm셖z$*Y?]2M/\tBx_\il%];#7(sP>#5fIF]7gL:i@/0(qp\"1m/z*(Lax Z jnW%gݬdAK$9kBayJa/_v֮/Ruc &qzCR)2h;*S'5%Q@g;RA+9tKbVd2RABF>*[rߌH6t|8$D\!4q*Oܙ&}9YzӶAPl}Xrevq4ޤ檛TÜ_{.j7"(gÈp=nwF:YIC_J𜍗S?[dAV=5 |w="=EdA%MCW)Nx4^OͶhg![\yscx4{ؼrbn!6Wd )B K3\ P8>bE5. FlG uokNc߱Ṉ)_Wߤa`EBH@QTjK}1=qLStvZc9hո?wDVjl|SNJҽ^Ѣ*;\+CR`cǖMe_F(Kˡ+>?pZ"@*ٓz)1~jd#uw$8Na_hٯ AgAGccOzQYSI-ё0}'q}P?_T/ ŽjlRRA צ5ۭf͊Ň媑ը _ 0Uj4*NC(1頒7|DV|"@ 7~ L)XKQr6L:x;.sak>rC)l? 9Y^ NYpK?'cQb.P "|P2d%sHG N;OK#5ђ>Sc7/V-͐Ad; pQ RpRb a}BDl5`ɡo&CjP-2 dǝq*.>kTm|K\R.ڱޒp9p4L`J";Uz^H) kTdF{NF\ rsk'R/j'$>Ho.)UXIQdgJhb0ܬp7?1py0~\0ño<\IA7X 7i<@)Z.cHf:($7O1Tb*tn:}mP"<㳏dnzNG9<{r=?Ƥ/(<%&tmYxk_<&0)Z{ v.0a`mW }Ȧ uW9ǩcK,;\ی_XF^d!ŁL>4<Q&t trR/]\ TN ip"iw*J_3dSvee_qxj!a!_[TF}>0 YZAER/data/datalist0000644000175400001440000000225713033553033013521 0ustar zeileisusersAffairs ArgentinaCPI BankWages BenderlyZwick BondYield CASchools CPS1985 CPS1988 CPSSW04 CPSSW3 CPSSW8 CPSSW9204 CPSSW9298 CPSSWEducation CartelStability ChinaIncome CigarettesB CigarettesSW CollegeDistance ConsumerGood CreditCard DJFranses DJIA8012 DoctorVisits DutchAdvert DutchSales Electricity1955 Electricity1970 EquationCitations Equipment EuroEnergy Fatalities Fertility Fertility2 FrozenJuice GSOEP9402 GSS7402 GermanUnemployment GoldSilver GrowthDJ GrowthSW Grunfeld Guns HMDA HealthInsurance HousePrices Journals KleinI Longley MASchools MSCISwitzerland ManufactCosts MarkDollar MarkPound Medicaid1986 Mortgage MotorCycles MotorCycles2 Municipalities MurderRates NMES1988 NYSESW NaturalGas OECDGas OECDGrowth OlympicTV OrangeCounty PSID1976 PSID1982 PSID7682 Parade2005 PepperPrice PhDPublications ProgramEffectiveness RecreationDemand ResumeNames SIC33 STAR ShipAccidents SmokeBan SportsCards StrikeDuration SwissLabor TeachingRatings TechChange TradeCredit TravelMode UKInflation UKNonDurables USAirlines USConsump1950 USConsump1979 USConsump1993 USCrudes USGasB USGasG USInvest USMacroB USMacroG USMacroSW USMacroSWM USMacroSWQ USMoney USProdIndex USSeatBelts USStocksSW WeakInstrument AER/data/USCrudes.rda0000644000175400001440000000217013033553053014152 0ustar zeileisusersOh\U_'AmKMɤ='ӹI u&FUIRtSFq#M]х(u!."bUB03{9sν/&=kxcc 1Vk7m+֣[?1kÇ~kֶoXs+olŵ`=U6xɫk"پhMTFZ^Jkiq/mg]6ߪ)7ˮ|Zοriс^\蠮&ۨ89uasock0w\̇^9ڏ=9PMcGkc>u.>xWwG )؋81OUn=e7>A!y)Aq-m Ce跇ąߏyl|) n/+l9EI d?}ӈTBfQ'DG|9s{ 8a3o-p~6sw)<-3z/`9v˃`:Ew6;k~GnN뵼} O\[?~L!?x׹W(ΑrwB@c}+9\(o~Ϙ˽$ρ=/~嗈xibU?2:t ƃύOHsukz3UawyT"jF/_-JD%PIdTr*F`BiXZ"-I˥QQQQQQQQQQTV<ΝAER/data/GermanUnemployment.rda0000644000175400001440000000101113033553046016276 0ustar zeileisusersBZh91AY&SYFiĀ@/7`1@ I$li@;(]MM&@dh42 O*4@4h4SԠ@4 E Fm& ih4i3w$(IP) S<ѩM 6DT5la a-H;;(cp.4iI6&I =ͦ25XA-R#dJC&BRض.AC -2-J-lw`m\QԌ  T1V&?E-^i݊E;ξ>ȪbLPN")A;tT*`IHJEKQa32JE! P4#PiVwn[w94|ALgA"-: q uG -&"(xtD 0a7(wK v?-l/UUđ`A?1}>q&JfT*)IdO]B@|AER/data/DutchAdvert.rda0000644000175400001440000000476513033553037014710 0ustar zeileisusers]W TWA\P\h[Tmmuꨣb2-{]"UF) hm`B Y$l"F@VQI{9z.wb '98y|zw>swxmaFϡ_N VW-'mNR.q}6sEMR`.cZ;GQ {`3i2d8 7Sk8{H692ӹ:H7k%[;/h#I;P*L-+uM݌zPW2:N ]Aգ N<9y-du{>5? m?!%4Aù͓I,hxt ~I2s$.ݕ45T<ɼyO.Gz.snS8 @òो^]5+bo=q]H?-Y!^_8M]\!'ef1o<"7)j~?s.:Y[><_\%crb(Jgm9 GOvV8a1=HS㈺ٓrRӿ*#/~ sA]I6'D*)]R-][X LE61ي92)q_(EOQd%yNtYU[:ũfk?Wis5t+?Kv`mN~=&#lU%,?*.jK~ÿo1Ulك#_Q]ҡNQv;AU"{ߛ8~P䷩W&{+LBWOM؎:ŗB ~$x?3E{Gع>y*/{!bvuó? ӯ,{>fz@&7Oh)_kџ#?|K6/B}֡_NG?_ڲLfj@|cR{}5sXjIE&W-F}NK[E6ߏm )5YpYV ެ[y>X͸xv-IfZ?kq~+Dֲ~p o|;>d.2!ӣ u= d=)פ f3$Ud.=e0IwkHb ߥ$* HbRs|?#x$l$YGT7GA~.jO,L#(|Ij_7|B|c'8XAk'=_BoQ^}Xi=NU1;q>~9T`ZƑiJbq/q 77Q{TpK͙4maUI#ᾕxFxg٧Nt y.BEMé;I*d_ oFDPﱔYsyč$]EҼ\˹vtù9KBՀY+(dan[P ԉC( kEK'{̗]~-zr3DMQմ sy9:N E.PO_=$ ^9l=;?Qk1|z/_vym _4]w/`O ^VRL~G4D`F)]dq[ Sk.I\|;㜨g%)VsS_ ;ɑ{ڇb#>W ?,f(W1 *'%} }O0U-;z裼G6C˹Uf[qnl:s挺 'wWRp/(?9[M)zD_MF]ȣsl߂s( R~M*[=RT D:WϪg_ĹU(VN~E%Y ՈO6ۖǍcko-8qkNKZRF}ҜCoؼe9qd#xcNܼu9du ꧻlU#!џ$l8-tOtu\蘁yL͇p2^̷*%Ҫ?K_y'OŎ-j/;˻8mz=xxf. |˪a_]҄}:nme B?ojaS='7>LogMiя۵#}?}G$uxg}S__=@|jDy 3ΟLw-%[џ~lo7|'o._<^qFAo:3|*ۺL7$mdrc Bcxo%k;e|_-?.8<AER/data/SportsCards.rda0000644000175400001440000000245513033553053014732 0ustar zeileisusersBZh91AY&SY]~3%H/ߠ@@W-h4zOT'j4QP)hdO hTHjFiP @48hhɣF422@2 4DSҞS@i=A22h 4=>^&͠٣'Xs&L9qMfuLg\^d!=E GMkZQ<:[ƙf=!4}&*S !D1@A(( A @@, @)%QEUXT`Fj$[(*K 8ėX,h/IxMXRAEQItJWfbjIHUAXRl'5e̷ud%c 8ABmiLIQYC5$$ mZbeֵ*dՓn0FuKl;iDX]X:izcA]K,ѤZu+7L3`*o[ԭ"q7UT1L45EpgViҔllvVN6tn8`B*s ý :Sqžƿ{W@oG镰fK6;mnkvW%%4dz#z^d6Y^su]>moه۟> NMquN>F9$swyx_`#oDE@iJ{QU~s& &D"_}mRFS9hDDDDDlYzL$N'/J[8 r ;B H @hW @P6`d&X)A H4BE"; G 70H).$K+g.4ݧLժkZB x1mf| UUsmZֵ"&4}fffffff}5l*ֵ<9{Tvn\r9zo*UUQ99}|9mۏ*"$ T1UUUQ0 R,u)JRh!U P)1DfD `XRz͋BɑHX.7_@EPj~$&sJf.e'7HM PI^bnj1- Uj!j2sS<ԊԼ̒"syb%Š<U E krNbq1n&9%P&SI1q亷(AER/data/MotorCycles2.rda0000644000175400001440000000044713033553047015012 0ustar zeileisusersmMJPFyu`q .A:rf(T%ڴ1j(PСKp ]{` 9;AEc<}y$5Y\e4&iCĬYێct>AGr`ߕR։1 +s>-xP?D{|#fvMeJ\J\6W9Թ×?'/T>B朡gy@_t1Y:(_/5m\KY4/L/+%9AER/data/MarkPound.rda0000644000175400001440000003562613033553047014374 0ustar zeileisusers]uPVQ%EE Q"DP uI ( ( J HRtHw/릻CSA_o̜3珽fu$T.ӨАCFBgwl@Jz7R0Փ70"!s2Jh&Etwk)C*PHCȳXgp=j6fzaXC'i)L.m~a 36}<JP,^1

,w^uXWb 6>@2apP(s n;1%'f^r0L|٫O~O RP(BE3\}}:]K6!SwK1w־pi/6TWwĊ0 {01T$"d_75Ι%fUGs\R4 ? kX_3%aQi8>Ä6^o8x>ة&vͽ:k8<jJ~wc!Y~rO$ǗCu g0=xQc+d!o/A&/s>T{/-‹X$V^3_; ΐ2P+7ӻV`>K_^cP8|]$f,?&S§lzVI38MQjCٚf-F I@pU,!Oh y%  $" H,kX{~ŠZ膒Ơ.~WPa7I &IP[5tVSouϽŽx%,#K `Lp/öشEFhX]N1QXh;\ ð _@% Rli}U(>8#.V! /)g4PMmS 9$X[c2#,'R!7ȸPףܼyB|8x,:!Z9.Z&nd.`٬'6aʻqfW)_ Eݵ؜WhaB C/ZWD|98d04#גtg[ \쮛o]ˤLIX̹mq:z0N5C}peE趔}vFs7Y=īOZ&īfY8ss8uVq'4נ[K! ]8突%q7`T,뚿~*& UƒB_K7o ?gOMUb4sV#Ack:r~[7=FЦ¦ җoq0ck򧷉7Zh\go0s:76"R;ON7WD|0x?YzJ]ۇ j)^HJm#3| F`sϧ'=\r`f!&s \muR9y K."v⨕Z9~L`wZ">l'xml;2)4PepX- X}kwJ#]UΉϫNpD/'W\ cdZ1H(vdDb5?"r;TI `Uؼ3#gժISu;#9!ya[PYkhn%hVBeM`,_Xj3K "@?:v\7.LS}Ѫp/`Ok3= d@4-,>A3 +g:sؚ[WTթ?섚APAiȓF9kG Xom/ua‘N+&I~%}޾E:Ri_m!R$G|tڹ|26ˢvN9%s|.? \ .Y{\hfn4Ty٩zbⷡy<3E.xR dէf0oHx7$L {C\Z'czt}z4.A=>c7 [XrXkEcZ$#% tp^O^$?~C99So^6cb3>(|Ȭk+ܼ`Ǧu-9uc_;,DWM'by)m 4`E)i/ tG3( 01dJJi]mEs7!>t|oT7ߋyEja>zF/|>CLUO셦a#Xz8ob2#s5#+ -I)7`v='Mѽ+4Ż6bbl5^׃!'`KCG':ISּb"i j7+aHp1|Ont`Sآÿ C}oL-ozZj~AuL+T~}߻ ,/Bs4wCIv4__y,)uFii%BaO!Y@Y~ o݃*DןqaRT{n#t`)U {Lcjhz67% m[g =뫫_>;Xaݹ\|uտ>9C7vO2g.%Mp3.,:Cڹ!;MrgY(]:j"%w_58aۥ߀7km r(vL~@Yː RץyڅP#AFr ǒwn`ֱJUh`~)6 ]"`߶­J/537(^~~i?V\HJL_>n>,jQ1tIS8$zc 5 _5bgo`X 6ȥ@\٧WP~ g:-z`Tw-8U `>/l1$oX(zh,~ 2wy/vwN²&qZ-.-|5dcPRƻ-đv͔BHWVϤV @/`=ZgAw;wOY@*_UN.A"ݑ#K:=0$]!wKy=ر?}FdE,vuY/iAV3Gر!o7C $ObVcaA?U'y13i K>í/~&i~aƸkgGؓ9 KGΆRUl _^vqA?,N8) \LЋ#?#i`3WqeYu,JV4zuTFT3s7spG dt)!yq,Y>,!BJP1; wq05!Vo4J0ކ%/w?^( ,̆Ģ  X\$̂JsC.[ck"j3*9Ͻ!@e +ı>'IoIܯ@LWJ99@m?:.XrHlAhWSkbUNRL\xE勸Z2 ꃂY\7^o\ʍt~/<|+NW2}l$F67a Fz=Erla/ C&F8sZhC4 uhdyx+2>%n0tPU$/NBL+Hl` Ƽ֔ĵ#7ձ](nZirtepe{Q7Mt^suՃi8R&%*R/nju"ؙ5P+pbZklx#o>.J -')VٹY>SMր)|7,O !Dm,`&9[DydxNv1W M$o]b$T`<f\ ı+e>4cը T,mc9R cnxQd*-㢏Q:vH[zsz= #JnnŭaK| 7{O=cn<hA>z=;>̒ vrm| ,+gǕ2bJڮdcYNm6NsХ۠h&Y{¯$=g e9)l5eS^ ZA@i6a> K[k.X7׈[e.2L'MA+03)(5֠T @*NYi1p 3|"#T{U:^oe)rʎiLdz 1c<>"zLV 6U:!WUǤp6ʪFf=yi Ue\|;X=]/Ko狇65:W~fAw #O9U>Y'tfa2DH}׸҅ptJ |[2Y ]Syb_qKv I| G؛ bWz2ѩWd Gh +1`s>r}12fZy3.ZR8-sq?G2qyd Nу_Taİ.hB)˛]`ꕤ 3SX<ũ֒Ds]q KQ=܂ykM"/B'1elL2ܢ7oZIͤLU SWi a?x K'q5+LSl~x`VO:[S>KÜ0$Pzu92w^x_AghcY׈ll\| ,7ÅW信ɱCB]bԵ%<9 K?ZCm)IAa }k9q}#M]`RNJxؔr>'miMQGY\Hyk_uچq8>y2ؾvǃ  Yu6~\Ss P it MokzFo}x }(y@xubbp;/Ew`JQ+h\r;ѽji*'w5Dq)6J8J҄.o;CnRϽW-i44]fB.PTdnCGx1 iR G'J U?fe+%F#k`C~aP##4bkxllNWhYԱ(W&}[OH|k̃TekĖ* z1Ž7 C@I[kPCEF ENO 0O#ALĩݏ!ꥇ< az['xS&%A8ⴣN&j*z)ʚw1>pZ 9 I W1Ce|ury#?Oz-O01y~/?/CzV,!2wK١d{)yIL{N#/:Oߊgr+޲7ǰNԜd8 w$ޑAMS$l-HTvB,"V0t^_5&!U^LjTQDfU֐RbK s!sRhRٷa_RW>b֚tG{?Vv#F0P nZеAix}&fN|g$U:Vif *WZbU!?Wb&EG)*1=bӞtךaj6#lie3 i+6CiOӅK:l)ix 8vr1&勇jCΓVٗxvGMz3~qDqr4kY>pCLы{WW3Nn= 쏜> 7xcV<, 8ؑMo`Uss{R9Oi&~~BԚV60h~(AZJ8"1mq:,ۚկA5wwEk+T*zn@L梨p70SM\:ZتQ3H}ti*Ѭ['SMӭh])F:ʞ|!H}y7oÇ>&*\ua>$'D1Eϖ ʢȩE(g)4.~,Wdјbuϗ92KVtMiCef0^$0z6'wbvtʔZX*DCHZw#~7l@"=8'{ҁWw ACg\VRpNJhiX.*LaZgd1Qַgݔ<,(9 7]ÚŢQk6pW75l5埄~Ц-Xw&FƹxHAE+,Ԗc!X;W5D q2S1JX'g}C9s&+ԧSdW@WOMnXimfm5oHxo{{Se?WB4O 5)o=K~ztD}9Ӄ|#s4"Q\d.zO]ٞYC>ТY %VH@|ɫءJ\yzB6o c&SU`%0udDZq?AF]LZ}xk3 VY4 A|V. VV1IUNT@_:˺-(gy6^ W݈mq]*{<qBδE-/qSuGiB'-#3S*M>\ nȗq"ڝqb6?)T b9R1>t]+bw}V.Y[k`褰8|6$(_=#Y;%}j$cyڅ6lB*:PbVwPuLTj"cdlPO@aօ?/]LPcVa771F<[u8tm>&߿67^gPw i<Űi@$V/^c&d$?vbCܨqJ5Gew4mv+tOaWh2{rAl5-x: gD_[Cx|lTzy !l QWr,; $m*[~ B[A{M~KFSYŲ@ -Nh'̺۷_5(]2)oѣ1&>VS^ѝ޳ {:4tO0f9 i$ob=,o 0wѱm,T~, VxuPTK`b쪼+FZixd;@cﱗ~w6+ `~]ηJv))/oܓD %KUaeveO?z r5*)w}?<ؖv";JBx9v:w`u15fOp[zow);1z]>Wa܆ e'õYDh؂ )\c# 5_ZD>ַPrLS~yAUop_,е` GBZ1Ψ139Jru}%$tuVzNGp\s8 䏋 $Uz bPU:wBunBE{,B5ts |oWUYG:0Lb&$.D쩃΢kXY*U=k`-uP/k,QpDhL*[4Dj)Rh|.Q` 5(l>jy -x}9%)?9-O w@Vnp%tְ19y.ItKXRBHgb{K!^/ #rAE=-{>t&>T &Y8p`hQ҄1|Nf(q:?܄G,%(MmwT!})(')vUVgŽ0-PYX#7#r(Kݞ8}Liy(EqKnaYrjj~)LTSnU; Saە;X!ͳ N[hQc*)/N|}} vfC6H ?딶oV`yDRoXl_BzB=c!_WBkwcHp=q Wڨ;C.o#Wѣ;ђrfoo&3hq%+"_/i7ST0̊ݪL^ A|b=vTK

F*9+9Nb ~pk$6?pu 3n7偑!/XQ-# JY)5,:./HOQB`K8qѵ+XFNf{tGw$* #1& Lq^ dRz*HAߡC@$iϞkn$+SA8G~_v4sc*m[0*!=ta+m"G")owܸYDM#. X~[Ug: i# 1nP)7tלBu蓢`!dѮI^}k=Ge`NU0}8 bsfn47WO(f24w)| /5Ms"G?͸a%+ql%G6.At`s;+D,[600.`| b= t{qzN(5F=6 V5f_&_gTEc@)ҡH ntϾsِÅ(K63~8]cu0j<.p Ôa|tJ-bÞ`!TM?]4 7?@T $_g;[2`j8TdQj tkJJ~ۤkejqN)r0Z-oYeGɠႧCp^3ҞEH[lF♾ePe&#e@-G|30.P:(0$)!T|̞鞍 6p۬: .ܿw=BƱ^raqWt9IAS\&bQ[],z]'F m*CO1tsM qPְI{,~K]^Ilc3cgl1dzuCs]uv&IYxs\aV`G< Ժ8b;Zؿ! ">aY@WC ,?UB;Sfum9eU)*1baP!nZCI2 fHhCdIYӥnlg]dŭr=Ia1 2H*6Tߜ5e-&9\hr‚&Ø9Wﮟ#oU{"E bXKPaj\k\6+l'Dr;#8\3^JEٻ)E.uRGu0 IL}MtrLOZB4):~>1Y-,Egyl+0k_oX*7a|.[?KCJjؠT| <:)v}aږyC;M kw(HlL>(Q()9!`ZC01Ib?\ۭ/OP/6f s~' YMl낪H7O16o~m<ʓU* ",+BvwN^/c#4ɽ~AeL?u)q>:^?`#wY}5«o2 iXĠѡXIns5̯0LUn}|6dr{@ O/c|u)ӜgLˑ6!C,LxX oUu#ӢD} 5^g+.꘴6ZaO>>Qظ>ǸR:@Uf Wkb?߸맰\ҞBٹ o2-!]L vLʱ6 *vc9H5`W2C!7bxڄ~n{^(QbE^|M/jOULbԹRwHŸ"JvPn}%8]/|zܗ3_̺VwC敖 s9#QjC1H|A99]^flj-iZXQ:ش3^-"V'Aш :iO{]_4/v]gְFDXd|+6а7c翵.T;fsbؙ/R3_ bi cs Wr~Cf?>Wyne$*,>/1_Ve= ZFDvcYZXG}GNRaaS\:n}JU`^U?Onh:/܍]=rř-oi}`•6 /^~~?6| o<.a^Ht̀ȽkDG"f]YObENehgmȣAkHv}U.l/Kofm!R[jl_Ӌ5 uFu~dN2*e |CmSk1@gu1A(yc6ķ9fz j1i&cuBwOL v/!!6 *èOA!ZXv,H\T10Wq7|۽_DlǶRBgk{8tq'Z])DaQNN49Q inG=aC쟪Z3_ݞ$'P&fcYEӳ|änd7ٰxo"pq~0i݁ Ԝi1aGDŽU0Ł`=Eh.ϞYb7t紵5 uωCs3p?CX$v+K_kI2?AxF>AER/data/Longley.rda0000644000175400001440000000067613033553047014102 0ustar zeileisusersm+aby$(QJgE`ɶ3)7'98p e䥔rq ,s{;}10UUG?YlX`L-%igaӎ^RfVaqȿwYaH,㎏L֩֗fuʏ2rǚ|*)?pzh 9 O+|VYVHϤ9+՝o5|}W7fgGaۦf}LǦ+AER/data/USMacroSWM.rda0000644000175400001440000001227013033553053014357 0ustar zeileisusersBZh91AY&SY\>;+&VTB}7˵j)-vݷe҈ z4hhi4D?4d)m?R=&QzMѧh@O RhS B44M @ dzF@LHF=0)DڞGA=M2hSM22@CA@@њ4d<I7Hi4*AɠiCC@M@4F@4ѐ0C!h$BjxM4`M2iC@ mOPځ@bHMh Pz"q "L$`ymI>y HxJMr^j+zԴu+/trd6) l1dIfIAH w?##ďxޫ39+٘e`F x'5! `*~p/"U,i,SlgHH4/a۹J@D/>@$!Pi (PHi%t{T$00@J$,U0 % (X D"$#RH J! ) BBˆ"PIK$*H 1چD66 GYJt Z"apZX,1E($TXahuw^Ϻ!.6 )FwƲ.+BOˡmKWon 䜢qF!I>+.^x xUMF?;Vla$ |Vz{!lMFo3==65諳4WJ@|H-Ldj1Hg|?L?̭X|sc'uՒ~BC hVi$ ]]f>Ly'g1}r]f4:f` yD!bX ǯaٙ=yg"Bhѳ=Su*Am [e)x枖ـFCpƈ4%UI?y(tK,Q1C3# pqA\#^*08BIg?<hI֑>ꮜ/WwzFjXObپ˄8eowVq*x[,XI%q*ϣ@HбFZ$To- vz6K8%ՀJ}M-MCi! hg3QbN%6]_7-BF$hgN5חhyucF'qF@b-.ַzd}'©oD α8f%X{gBv|Nƽ)ۅ* "c&鼳 Ӌ]b1=K):ćv׶)v+zpeJVm^#f'+̒ȭg^0Ư.RZYj5%̻D9CUSu<ъU \.rJܙQp?8IN%J Q1~ҥg(h >{xc'v8ZUA[hd)F͑dE_ki+rdlW2q'n2%(XN͓ 0%=́`VHbzYJ k05#cK,3R饪K݉ Am7.k*:@kY "MIQ#5Z*{j@M2c'zrVO29bc8$Q[\]z5GkS5)a&c[VeI](^V7H H& ƙs+nP]sI +o<"H\rto]c X\Q-ćEqU;P]:bh ˚JXL$ze4ҶtV2zI.u˾9ӝ91@ '[ &Z{N Ѡ7I0E|C3qR Uk؍KB}! WDndw<[ Sǐ^ju4$+ $i!={Hrd)dukir;YBE(c[#5 ^hHͣQHbЖr1t٘RF{ q~ BKGJsuhH3mq0,2ܱnMN [a$yBBJ0hr%"\o6욒f?9Uk7fMG~FD<UpI,xHH&eK 0qZo5fULD.Tѐ%H^ihzWśH KM^zk}fs#$TȀܡ$ Ikh2?ΚR($) $Y1K)ZML(?8FF̥'#~<#f8N"Ii }(wuաPqk7O\w EW`AT101ʐsvmh&,Gȿ4SD+P ٝ a7vLlO | $FܒJ`0ܑt=M' ӿݷsZa0@Gr3@9_gd'Xy{exkbØɓ$eFgP[{lKK$ 7!97#JT_ٻF^DL{w8dkP20HC bmÂh(Q-mfج|^:7s\MF^h W&&͏u8&0Z7aKU2`4҂@dD@y2$";fM2| L;ZڔEt4:" t"@i[J|nc*tjtP:uGn*v Z#h*Wmg %1 7pᷧr"J?񟽷ZOc HSɖ"Kw׿xevxHe6"23r1sfckgYf?R:I\û$!qi(${Ifo˔p5c3&viqPM(bPG@h [h۝nTeVv"+`"@ P%PP%@*6i Ci7j prhsu3/oFxRDdMD `Lvϫ{өրD]Kڜwpdjh5qIeP+:Q` ‡xB@"h͠WOӠ%JyUn'i9Hi2 gu,+Z$)@]٭Uwthih Jƪ6(D6QzX73'ʿ0.W1 p5hف>uy-fd X9A) ܮB'&2~Q]fÛkr.`H #c \= (Ma7FW9ZFa2 DA-D<ķ|Y9\ICWoBMQϺ,̪QsBzH3 Ĉ3@TjƜe"X$6HA"<CQe'5 _KP vy+8F,:#jZӲ *2oRgl]'Єd!0{3pO"&_5 2\S/s"+,TxդAFd~xJNRiŏ|a'y667<0[CL16166m&hll46X.n1~[Q*h砄-S*IP(]ӁKb"ir(""Q(}jTYCվm4 " x.c:1 UۻQ 6/dY2w!(PTz8@xXW@@DXdI7fsTGZ Nc1$3I P!v[ڣ0WB󍧹k57[; Q_}lYw508/&aVhWЧcAU]BiAlmMe8xp6h &!3J7V4'jޤM Ӷ5N,,?;-9{rE~Kdggy/u8xάĭgx=)ђo_}q'ZN:<|x_ziSVZjq|Ae^oˡ-ohpUDYؾ/GʛM͞G gӟC߳:G1z/nruCJ;Q_g>~ @[ރ)?[X>-/س:g2~QEaz+?!vCzԠ*$ 2$ y/zBE34FO= k5!D| Wgύ1'5ęAƏj[yxO 62[;^RG/zkg,vl>[ok[?oZ= 3E|w[v;KA68c?׹qA'7ryZ-Ÿk*mq;_=L?~w:ߎg=GG ~F#w^15Ir~F/Q|CG~G"59T}c!ZU|F7=wLٛ}HLk~ SO李o:7zgPgz+?HύDʒYY➓9عzůFs!Z{ ynyU?o2H|a,cdg>~?Q/gq,x\, 鯅[qQ.BϢM{_r7ߢ_L-[H_J^Z77N?ǙSqũwe(lɵUH_xvinS'\Mk%'Oq%Q^'y!\*I2ŕOTvSEOjJuBVɥʯpœnz=-Z~?μh'%#ю\ӑ+{לD 6?u1=CZӓpcn4%_3^ͣz/rFto䭚 qUS׊{BN U_U9D?#H}gG{a{>{y0 yA99K^Y=:D2,~[ߕ×gQ>ᗟu=VG B>"ğgO1zF0OR~#G?:ENag(OԡK8s+#_v n6O/>f?"~slw.ry s 񣐸||*|ϡ?o5{\( "oA%6S=kϝs׏6W<+5^ rג:l~cPJ;/gefD}<m{6o`/~5 8A^G;0Gp;_=yk ^FȹZٯAuȗ_9~| }WD|Uz末y-Kzv 6KmA3<^c| 6K~{NM>{Ϟ/do9͋W_Dʏ%9QC+rKǙks=s1{o@OWw{-ě;zGYh`{cQJ|A=Ë|`{L}Qisx䫱f<QrykgqydX~[˾O=s,sN6mwc_v sh0gj2~qﯷyNVK6xQlQa3_TI~FK_jmso F7s~'?uo9D5v6?w Xeyoy0 Ma[?@۹S{X?\{l>{ +^n٧*}7_cF=䵬sE>}ܱG[ 7; {'h9r{ {/{mEC s/?zVwtOwh}d l=1s Z#? Tz=?RϺUzWٿEa n{^쯂o @e`=>wyѝogEOZ;|_CI=?;5?:-3mc.5D߷ķ;cZ/ˎ_HvVs`jٹ@L1Ui[P9_|ꮈӗV}Orw+O:%w`7-TK_roL>n.Trs~^~o{qxn$#:Q$\NLj\HLR_$R9|XyNѧ[d?yj PK6?q#{/يKyvs k)Ol+*v7pwśޭ|pK/U:jt;zs[e`pKi/ ZpFvNEA߿녻xR|o- ߞ&GZIϞ?~+|o>(M>xNVasюǎH?'Any ~6Cֺ|ޱa~T?Yh[&}|yN+;gMqK+N. l]p5™'X֔;X)\ο^Oopj;ί"|\7%X޴c{OqX8|Ýrt=}Ŋ';% .p}֎vtݢS{Ӣϻxͭ{W^up;[[}uw8G5d,/0P8'fOptYaN+)5}/)ՎXCGWrz*mwr:~,\N_M䬣k'͆k tzj͢^=o8ڹ{j5V*xZ|/|PA@^XNHVBM-{-+I꛺ ~G3鯻RnއƒG2}Ჳ5xC -.NU*W$|lcߣ}ayP" {GɊ9&#>"zdPUN+rmoϧBLCi䰜k~=ϣ1sŲnHfBk3s'` ɧ4Z' 3+˸jgRm ,Cwbnd 's p73H,p y*j{j{:P8vmKG[]b'7T aΆ4@ => .(m}v:yZ;{CzD C4|a5 n@:|XtMn&GZC|ǯ;n,M' _W2J_v[uE~MG:řLTXd:-@qe'B5 \pO0+wW*&a>fgs .x鎭-,N=L .]+JaTXSJR ) v[0p=oᐎOo$cxPhPnmln$?:ENHW\vJ> 9Қe}xbB{O󼦠~AhEc65߽+UDHH9󁿁eUevD<p@oFcRp]Uބ2&գzf@H/3e^ҲФ,iV]]9e1B*yHMLąIO҇4D9V@ښ7k3Ttd_G}ګ&P9~rO@agXr'и^)@>"[:A*㲰'f=S~m@D+3ȇd7ktlsX39%'˽0mSHV6 `IcHRu׻2_ylCBh x/~ A|+?6 *ޟ׏^K=+>J Rd^-*4ey 0p !njvEbYz'u\Eb/ *qk;%hdP }c+2?>y~R(mKݦP yx9)DmY=ٚY=|w&nk8G[@#7o]▫hִLӎe$<\[sheJ ࿋&u=wD6=ZUA zѲZ| f1+c R"Û"l!}9@LC A$B LI8XWoH 2<}eEƨjPo9_4?j6JcOXQkTߋ\'1N]h|2 t>>5hiMCzAr OW;76%<9X6 cR߸&+xW\5 :>R!A+~v@5 %hfOP݈. L _e+LӔ$Û*iW3~R>9Fmr[Ȝw9}F*F>ADt14EWuQ},05XmIMݜ;%!pBAUeDV05)ן_3tR[q1_vL'ϋa/K;V&)h LmUA-sN2S^RoU[ sȶN44d4`PDdTkyGyuLNǑm]PPo` [`VL'fM >'CGZ=0=-m٠fp]bĥ4E ݵufC ۻiMX{?*%k_]ȇ&J`维'E9kIA&hMd}\;cPч~"U)n,3/fJ0c\'$hB!#SWjD *| tp7'!$kXl{`6_lr Y[1 x.`{T!v-1eVoW M[x垊<(M\eWyLϪk`̵5&ĂEy׃ {QW/vuwG~͒zx&O.>cLoM Q5Ӑ_XRcf|)T{9 iZ4 My\v&AXG=Z1R#ѣxY<bZ$]=#i;( e$BR&099n B.joEG8DI46vCUk$;}&)O1a Q}~;C t4[b,4uO?~ 3^$l{Z7Z,EmEC+!iaHe,?Q|7 .v#Ĺͨ%;_Ҷ[B-AUR;]Nq0M)`&~47l 2S1zǶ(d8J/%R9odeJ2o/эR8`FE>/֚QD JȭoLJ_'_ +IVOW'*P6elmB E<'埾߷VxdR(U5B/oc@ˍbQHA6|1s؍l l_cJhCP =~$EKF=6d< //[1&av/z *ھt'grC$F}f DO&1rsCFW ~#-Z3W={&_&#Ĵ U9{iƈ(͐oڴ"|L~׻3u "is[A*)&a/ zA'ć^;F1Ɍ[08ve Z$%+:6^ u#JRͻ. {<ajۓXvi02Ʊ"`]Gj4EcLpv0w؈w 6;Jycn5*Y'.jH7lPכ a׉Z2;'B &^&`nJ"3%KvM|Yt3}I42n+A\9~#`a {t[Y6b(+JdWu*IQ͍0@EIO2!Lyv>b hekq 9sa B߁Rmp{aA1ƺʊQێ>ӹ0C r7zP֩NکXƝ9oepmS+!NI튶;EU T o~DdPl)GAv/A?FHLO뷦`<8H?6xeB4-$,QAG^!7NzV,y1DiĹMe"$TR1+}a$5'&-:LkK;eؒcbXZ{~}:]( Y isT\{=6>|gQ=u!@XtڕBY<Gl Gz"iSؙ|Oz%guTnro;o̝VQ~+.MPdjFEŻrjkO 46 IE;9Gf9d:^H| [ljss5-:{/Ҏkjیoì0٢G(zXOK6RɛПpoGtNtvՙ=ݷkBOd=U9qR3ĴtXvz@X5i4+L$YnT8M"6x;EG(BH_" wNWӞWtKyڱW^Z27y$<Ҷ%+K7B֬vQ8cYa0z$;LÒ;d1OE٠wf?Wza/RJcilѪcasXn<]q{4' +84%`'Iť07v%QFP52&|idj,i~2CSg(X#E'I-W[/UO~t=kYeP_TQ)xe$<1  O<9NNaw- |Lڛ{!ӕSgZ`DtngM^s ̔L'˕i~E2QVPsSGZDŽK8=kkcZTV3/vr]?j؜+bl%tdC{F(vbSr)؞~@}Dwـ#uU?+6Pί91T-4~ʱ88'ܧpl%}:a;!\E2[?Q?YIY$&S$)Qepuz@>>߅\5wC(Z`_P3U%fQ2GUk9ćJDWW <+ZyFSeyz#>TЁpU9]6*6W_e-fi?[!3'FAd$SEڃUn&ICIػ^gWT`qAqu$j3bNB>#ǧeMai',kJ 5}~W`!"6WYԩz^'hM"Y1"^d" z`m^e/5&"ؾA|ɴtIDX'0.Hj Ho0qp@ʆJdsuLOEhgϳ![*kF,q@ו9c1cCr㙛O2QqXaQ9hnZV  3kR2D6&x#2@`c/ɅRխ;OZ[LYgZˬ?zFgUZj|/Ay'dVzmjӜzdῈ5!Av8|\K ַFklxCfpfSsU9\8?]2y/Pp9xH,J Rj)׿7D\XaWI){{#t2*݇] %w[&fz܆*M˾lΆAfL\HHޮHQvr;u^xk0 4h-<&$$+\EoOsѬLϫt/Uƀt\h& ~ӱgyçO;bVx7Feqg*&b*Y1~К8֟s]]5dW C^sh([IXSԌqP2;0|G.A쿇sC*£+&)\^,oE(1rp Ath&#ՠ`+b?V(Z3׾JOeW`y*]>!& _s&iۂ\G76 fм~;]R}lGej?(o‘vOj|jjcm6)aQxq.J?CmnEvA"fX\2G٫>0 YZAER/data/TravelMode.rda0000644000175400001440000001315213033553053014521 0ustar zeileisusersBZh91AY&SYNq(M\P@(> }6f̓i 4@0FSi=DO2j<шhѣDe=1=&S2O)di=&SMT*U*SJUThFL00ɂ`A`4L&#F44hɄ 0QH O2@A1 yb0QɲMA4IjcMLh&ba&1@ diFODmɣ#bdƀ *?T HK$]hƢ(H*AVbqaxFQDD3t>W>Gr.{ZXW-3^lJi *Ν`iiHoXqkEӊ<+C!Z")9YCERDLQUQJRĴ%1!JU*B E%"DABҭ (@! #fbBдДJ цVMeCN16X-Cs̎ G{N"X` ĪHH"E䀌+˚U;zw90qHz˹,(y M`8"'AV K;ƪ%'+(Hx[[JP u&e䵙%] :`6ۙ!UH,` J @XX|G ,i^}n,9/Z땝kvq)-Za,@r! glbVkw~%Q%xGqpkeNg@?L41 r_cãŌD`{y}e1EM!PAsEqw߄։hCeVx=Rp)\WQw9]Rw>߬r]^SU Sf-lhh2/GW{keg+mY GզC b4H|qa@T0f4L"ƍ@Je6@A!vG5\^ϻS"5r&-r'gҀ㟰ЖóU^Z~SgUʼnD-{WM\`:[N|K Ve}*In ؼ{,QAbԢEr-ζNxMKo&k#t3[2jŦG#S,cv7RW<վ;B>PFprcuK}.BV߷yy`v뚯e[ mzcnFr0mLM EGAn _AռW*bݧmp]3ꖭ6#P4exgor)QS:x9(0wC>-;ڈ;sլ/NdT\wzL\+T嗿˞ =e0f^T._1h^±]뗵kܜo(ᔋXK{m/ִGS_Tmk/.U #kڣ&[e-ܦ> iNɗ%j+ԃ %szmhFP]wq>Ḁ̇,g^Щ"U}Վ\ٺMEX,pgbn| , & /xh~-1V|L$ϩ{ 50$=;oٝ,'jf֜Ѷbau72,wNjl&uISrNg<@:_p_o}D・<E,g[k[YwFARP:EnY~,rݺvK򫣐}LiV`q)Fwh0\{.̎I|J]}2N=&nAm~q`9/eP&|s:5˻s?ҙu/4lXxt!D[CJ7C\ר*ag-?pˍݞB}DȤ^^* <2mg ahxpi{UhcZH#M GzQY B [pnBqiA,ZsX"{9ySÎ߃{: ŧHq0!d?q&({nv{6ûxDy3+dsҾ<[kBߏj"[ui6. % .nN‹۾5(j]i)A{p*!H ?\1'> v[$I$I$I$I$I$I$I$I$I$I$[f͛6lٳf̒I$I$I$I$I$I$I$I$I$I$I$I$HG'<[۹Gʟ * S*R$#9*!FJrT@UsP0P6>8E1 ,jL! UbGN|a d8eTqPrAgpuZb 2UIx HdS9tOĸ\I$Ho2dɑUQUUQUUQUUQUUsP I$$I$v֖s@ ĐbH$XIV$+@jطnbf͛6lٶI$m$IX$bHĐ @$,\8Íۭ۬ٳf͛6nI$H֖g9v$bHĐ @$,IX$bݻuvf͛6lٳmm$I$mosX]u[EUFU"*0DUT`UQUUUQDG (qI$qVg9bZUQ"EUFU"*0DU**0 0Î8I$@69vkkkT`UQ"EUFU"*TAEUUUtaaaI ZZi;XZEUFU"*0DUT`U*(: 0 00I$s[[]u֣EUFUDUR"*"*_MۭImmm$I$&L2dɓ.e[+++)UQUUQUUQUUQU:ʏbd N(c) AE-T4l0$ SW8$i f8gXtdmGsnqk&@WB1_ ‡#&9@썮iJnFbDU Y^||;|Yev:l<סG%F0 ,ʄC3`tm-zNxGlmPF{ot^Jq~0ug!U%la8& aG IH2@躈F :z\S ,;}x]u3;G%9s[Q%tLg;}C(Mn8wr#fxSHL0 X( ɠh0Jsdt (LGg b6 t  wD5%-]c!:HḀ22 #w M)w(hL Hij(KHRlC&lHDR &J%٠jaia@SIllAfk"(H'8fAER/data/CPS1988.rda0000644000175400001440000030127413033553034013442 0ustar zeileisusers7zXZi"6!XH5])TW"nRʟt<3n2u@`5EqInW]*T/q S?96x`#eFcb*zJrc2ԃUdm+Hp>Mwj[}K,X@%fKm&1;~̳e^wU|%3ًfBC)Kp<%*Vz!.6"lJ'zԜd6V}Lm3EeDz^,jfKS@CX|+1/+?ڍv ~0L?c}d0L_No|ZEi)סC3p HGZ:zn!^MP͏WCSsQgIHn*?v?koi}M  TD~0,LM: = HF'J_ObHw_k13f+=^UHL!Tt.@>ւ IE̜a¯zڊɗOQ%$|(% ٣?zX8KizU4,\-BəJ2yzMpJ3c) 'ȑ2fȒ{sl5.7?ߋ|?_jMP$TtM&>.9|S|*ˎr (yn$b_~pԱsh݄nfN OX 3b>$!:3o79feUseBUS2.F:=1]L,j# ­`1,X档f"ò,(B%ɏ31_\ߓ~wsW,N B&0[ V*p6WuG[ ^[X "S;:{cҫhLՠGtI]-WUn<ڈnyvbihSbfvgLŘgcظ |2GUGuղwT_B8hQQ]y5+Ք #rMeBfd) m'|ԁ,zkL'_#|M^ifw:G*X*f4@Lrpý9q蘵f e/,S<-Rn!l*6ժ҉$$xCӮڒFU7ۇ-ZA-(v_2*{11:Z:́\nV$ghF;&bBIȄXE2bS߰&+ir_( f/ l g/qe`/ ΄dmu\Y2؆8T@ K"ZNDf e.bna2ֳ[ND ?e/w:v|hDх۫\P7##Z)" 3oh*lF$d:s>*GΝŠ2[$4tfmѳ.{+kADiYNAWe_:-~q*aw7'4ti{-=?(qB^n`m(=| faE>W, _+!xiZR4% n=J2zg0ڗ[IWE*WF-C3㿹w{jn:姒F@bFom~M4z#$_qb2\JSZ2M<$i%KOs[Π$R\~,</6R#CTEZ "詑8OquJQ?ӘƼ2C@zz{ }bzBh[9VmR%%Li;nvPx8 ~NE3iycW"]o$ `"E3,g؍J8@54.LwNݏzte%@T\yJă֍`!K_l?ia|O 51,^=!n!"@d 34{I'-/}΂6#W7؝oJ\F4r@6j[ `MU@Va-"I{|d%\TťA򔺓 9g8}ݷ+}%~cMcC?dv'͒L hesk8Q* ~mxVug(F*yAg6@UAKcHe .N  aCYj v \kuI#?^o8% z"Ӭ0'C{ cyd]FcPW"/wvx fлZrP헗×_l v)1xd(<4[~W/u -)~΀Wat,h|1vse}&Ɲg1GGJΡ7DQjF̭Fploj7i={` 㦞 PyOe'.? "bAcIHMa^"WN[1, Ը}^1Xuqɻau:Eo(5Z YR1@:|`ҥ~ݿPlu$@jŠ6\Str=]\!4L{StڥN9-di{Un"y[ĆrJK⛊C)x+#.,F~*aQ:,.-Ex#5QN0өr*1?Qx e\=ݕt9FvC Mz؝?ѦZ 6[Q1#Js4 CU^#ZP2h L!1qLnݥ? 3 I:=Wq1nGR6(N7lx.ۘv22;}0փЃ&\+間`qm*L 40g%eE ,2>~_׹ !mqh!a(D@}i^Wav蒛>u5!Ct?q.o}*FXSpoYt3gs#FdwHהҰ:ĠgIܕ<8V{H[l890`d2~}Jiqb7K+CvF}kЃ48)'n8m_,F:#ev'VBj쟓@F#T PIb2/^-˪;ҌeP}E>z>'[rmYZ[R[U 3j7hۤ5)TbK -dgYNxBZ!H#]c&$Y=00&_#b_!E T0UyϢ{humpu(଀ES>bpt7fb$-&sޛ-` 7'e"/<=uLgj;#$Gn37}ٜrLy9S/0%|" [m/2Lwz;d a%1>3*?ѕhSPrޝI C)^_Kp ħugK/ {O}}Q7MWэaxSCi#DbXp]s.7lkGZ~N s_ ~|lZNl.ե}ؘN,U|ysX(=OQfS`9/hm6J@mK*t @PT8O3CPj39EbCGOUwvC܃Д;=QBgo Vy$Q ϡO3$N~ɹx52|LߩJtbNTp?Ei+\H_G%|p(p[倥Uo[|'V~ě} -%>|W1@w {1I&70`ؒ,?ShA'# Yl"Fv|oqg-woEگۨ#*4'/.,߮.#UDNOy.DB@A'Xk^'Wzxmv0ŝy3ղ5;Fs!w9>YZz{ .,WڏKW*; {Ý4['A/%TlWcZ鞃;E$6@4iUٴڗXr(xH֢lxPBz(2}PcLuݑ"y&h9t.|XA|xBLGUҋ$Z6 *pu\}9P|Q i4DeʡF*͕or6K;`$x] 'zO)X&I_PA3Mh)ۉaz*TwA[bmXz>C^H"-o1#2B)!?>)5+'SWpP~r]˵frf~.3x<]&AY1?I_I\Hv,f 4(DrH+7LfW$ש:W1r<~Ʃ3u`!cJуӂc#lϢgT'A"K6<3u~lw2S՞-kEAo=dq *!K j>oX@U)8PUb% \Z?h}VOi hb[nWhmcai$Q.[&V4ĉ(vAmHǙc"WfWk9aq* =jaCoH u·W O Wn)Wl@o 8$Jqa\7)$.3ϊ(yWBXPFC(Sr?5IӸEy1pWTvʆ_Cu]\F!;%=quVHȢ*X S#Y9-7&n^gv#ailvE.r-6}υxBNߴ ضVh OZׁ xE8_Ta{!}B8.Ol^KEV ;B/In z'E.QkLjw"ŴqM&M|'R-TB}xCgɐ<@m9Юl&}5۫yeKFK|<#`)v<' M>Da*](Y{dSf' ~>}olaW~=Z^T(2sDNlt8 ȍiY\ƾx>o^y!IOz!~TK/H 8Ҥg40&MsY*.ڪ(Y :0EiꐄxLiPӝ@*DLR13Pҙ(xfq>s]XgB;10SWwٝ5ϲVS?r]4E?B:3=QL-`o>[kn2#qā]Ү+ni1rHв}ٖ?<a wKg,X}M3{EįMghqGYLbK˖ ]- ?_e8\ \Ҽa'ҭd߸r@p`AQ hMTi+B>Dv=Ӫ{Ų:":fIכMmRH~1z}rLGVc{%9_DfX?zFx$lú*|m^;_r]AeuYW##$d,AhCd(+5&5hgޢa^AÏ~( w4o"Z+7%/9AcÙ64jlXE!`9:kzo`]Dۂ.x5Xـ1VM&joɅçZ_nN#|<㵏%b໕H@œΝlΗG·'lj w~NaU;LݼAS/r-޹}C^aYX?!᩸]c>a<x.2֙§Mb[{eL2TیP"=93]p/DoH]S"Ad[zGZ~\=1j/m&YT1-0* u"`&ox. a?DK0m8 O k$nif% {'FWI"g:=,-FΠk$W/Ӭ]40Y}.1Jrp6M)SP~X4sc)7U o{%Ć %ʰ@"Sۉׄ)l~QS95>X ee_nvD POLf.Ӆ2ѨM ńuxrN8;ya>},]։ G=3F~nY`iTBmSUH28"6xO1QZV:{o pD;55yM/sd3b*'B\Aj"+TdR.Gíۍ~ܒxm( mpEUIuc]P|s/=T=_2jn -'3<ܦ_-=\{9i$ўxjN"M6G|Ab=k>>l[ pe Q<~өr`+rDȖdw$!}_0cԏe$F)[uCwEx<1dcXsM2zOAܶM֙;.(}08̵NґVQ75Ƈ]2m,g1V2 N@JW%WD`;y",胄S(;m0QHdn2ɋ#m~ˍ>A;;>NJ)~|"s-"$yOʡX'v,lں1DR MK+!xF!VYE8<;lI/0 'nKK0Db=^H/x۫k/<8aQO!B%ZEU!<Ӧg7M8f.JY(R;[S$Q?yIۥM>Ty~niR AE;Qbߎ kz*m0W\g!G|Q]ǂY,hJ)$Sl{Ȑk2d9M r;UZ~6Yb-zqN#e|)DDCMZ?@]%kz!V.VBz/ʵRgAW4UX:mAώġ,Za)EY,'e*kAFMNHh|SGUjE x f-yhb .ЯDq0pg OXQVYtpD=oPϿR{XFuL6ڱFJ5Z)N ]2g[j ЪRVZTG~檶҄#@-JaU?`*xIhA;ZRRY|Lg|B݅aHt=7@P)OA'3<"zJ)|6b^*H (B7JfuR:d"g&o%J8P,8P;֘ UmȿI\5XsF9R4 x.gm) G w00Q K% MnmiEMyo(l=85w:q;VrSNrb=f麚zi)[\LP0 s+N3_vR [8q[3f0.z΍dHe8+I~Lym+yW+LO R޶XW-m_**90D-MEr{=0/*!v H!+9M* 2kQިi$B/$8g[^M، 3>ǧl=?K̚q'/p>6ڀ#!r5IEk&upQ/ RrmQ^jaxAVPuSlɣt:mfuEex;Q+π ,Б{n&e]Pu8՛ 91̓|S!mMP7CM3uJ᭽ O&FҞXrWld>tGӌxQ**J}N=Spdd uڒ!fyf[6}fx 3RnߗXr5" T?M&kK5t\Z%P}FCJ{—LIOr9'A;s2bP8=oמ ~*b 3oT|N}\(E4x&H=f*f-]BcUlيAoS-nIWc:y|fP d-[2f@ ;Nj_~^n^hg"[dK4!FwN^>N ,Zm^ڍ`bǞJfh!QfqߥTjI-n`7M9K:n^9#Tۋ,vB`:f zBPwX: )S uU-͇Lp{W'uN%cc]%s%f [Zg"B"녊#:݃0C)cLoaCz>[V Rqm"ŃTZZ>iSo {LEyt(d}D[z[P.lPd>p td舯Y ߬|tSa,.hpn}\eJ`9Mxh%ˀS^/}kT{纮paA-Hk~++"X+ٍ\]%fmTXۯ`\8 ,&fAY1pSPb)+3+Nx0[yr05PTq%9 dDa٫ȹCbjjP]6OHfd> 'q'*4c%_.y0v0mltZh(HVhXgYslkO MڳΆn9atQ*CtvUy3*0WUE-n0*ќ uqRkI%hnU,ηqƂٻ %i:H` :8QsNgth AK}*hWuVv.G쑱hymt u򷲫" a VhQaR/;4['vvoyf &w>=īEIZT:CW:lÍ X..MY*`?USu5R?ly+7pwh?#Ya.sN"S^B eғ~ 'zuJ#>wV473Mv}jZ-ϊ=^Dv^"y E' }vdtI ؃0F 9bnoyKb3TMǤ/[C|a%wr_ˑxa5bet;6 #&6/Ԍ ^7#Fw &xiFìuN- H"6\)[}KeX锎{za]CA PptU| L,)ї=X/}{\"CH}mGs@Eks~:67l n!xd~b}+ӛ{0[Bb @|o4ޭ,}HhlUQϲ4 d~WUn KTe\κ['q/̌pXϣvTL>8i*4?fgBSO1;#0p]|4sˢFP7ye\/xS_fE"CQzgi0@ ^k|-}5\7 3:Z\Wd^@!visFJT0OfUxd <[dR״?xa+_^s˰B }:!&uĖ,¼@v~a8Ͳ">{id*QY݆]xhKSnv(;Wх9U*oj|5*J~ɈvNW~w9h'DHENVbflOetơ/XظxkSPG"QԴĪaPK.،=𓐖3.ǵe8'=1aE#yZMuwY,ߡg>'\jǸQVi@EW9:Du+ S{!IJw]Xg<ؾ#X&tf臮 b8&lag$6AiCS碙rzRK!Dc=ܧ^qF9XȒRǽ9BCRAOx0k5ڽG?;w c%k+U[-8O3C,Dqrgw!qpˆ{¡Amo)) Wqj!kw`)<ӻg=LI@>__Dy"4~lf)ȮWKۍHf,Ļ>"gz\zqr|t)AQ>G|2zZGPhQ'~c/Beݜރ4{(P57PZWp1 ǿ}~xfg%5k/`~#[KN~ǽ I,6c.hK(3 HG;bi['d޲ G/C$A ͩ,@iu91Y?xDj`i}; r=O!}3[C5MYm1 ax*/Çޫ9C|Rkfttl ; /|sb`v +毆PA г+1a$5Ufkna^1lHWfIRmy)F˜bDhvZ.9SpP\ }U鶪ڷP BnЀ2'i&l~?`m@ 2>pA;.u#U爺}0|/ss@]ARqfF!_qPVRj@{lISK779-0pXv7j [6a10_3k šN~Gh_n}Q9N8`FN!ۚ6 Q=,!-niEGh J=v빆x)6>#"URYNU^zG:0AX}5/bFI;9Pi~mD֐M$m"&đ4#Z8=}y VO4Щ.3L6ae8t4%iIwVc @l88tZDڇ䖊 M7%;jqE6p:!^v{rLbPH!FqXu0a7^gC(O&ѫHjL,(][k]bF)= ^B';u`#;kZ⭦l-KE?M|ÉaeX꟔1q>>(7FbR埳M[a5E<$S<$9A2ԜZ8NƉU0K2=,Har|ٷM6"ĕĔGzW/'$l]Hd`j(4!oiVہ,DtDL<#g4W7":as_ueb2wJa%[" ;Qa2h%$%ZE Ep˪h6>)f cJh﭂KLỊ~Q{PjaՂ G|ipVR|7S@]Nv û~|h^lAU<'CQocS2eۀ Xʃپ"2C9^kbPM'w'#BFR''"p!jMG (Q`W->N;5UQA=qeD0D̷r`zch4mSDg/.˙Eӗo'A@7TX1:_ nd1s.nk# iqHX^]jLM NS mhq#̤K&Q63w%Gp qtL= Ӑ6lg3ٔk`B%Y"X4t<5^䂃bI:EŞ|v`CtUDOCƭgvl@T\MT椽# f]v Bl¦ MF=xt(!rw5DdT ^iaDaɵK:]/5ҴEBYx ;6@y%?b5#߄N\rpq_Fq Q]yKK3O~It* H\cuvP>,MgpOR3u ~3 3 -CQ?S(XcM\(R~58 x;NeN !կA}Rk/#:y1[vV52s L#0tOj*y"C]QEѱ+ogl^df[=f%FáPﷺ+wKS/B]Y2gŴD}\oZ]=gfۣ2gJL $p +Ȑw~I!C!Oޠ/+2fDaC>KSYv1qET'271@|(TS#%śG6l)͕WW-HeH}Ľ_iGPSBdNoZdG.f:SJeɊ0{mJrJfMqP*šjQ%Q_kVhΥaPPڣ! (a jTLGd5 @VGҢEYfyS#ʅww?pn\P?ͺzʟ*b9|aF>>v‚iA$Ӕ~uhsj=eoX\{=|^@m[.lxDn )5+ڢz-Bk`{F}몶\m_0rln'ք}6o8'ߖuzyP_j'j8LҔ:% ԻmRfTi9KK zW/Fo+Ask?gG(] .i.ƙ,3WH%&RtKzf>V:T.Ytbbֆ؏=2 /[É;H*MSlc %2zۙNyZCAcB"cHx1alm_B8-]#Q"ntÛ8'@(: c= PM$]^aq t&qbŊwdr&:ͳ:hY`뤩(%rBFp)`(ٝĕ$C$`cIGٯ1gfEn8B-Er:Y'c="9LuI6}bMt4QudlK WD >V m ܾ0߈X2ڛ3幪28rz ׊cx ebQdŻ_B\>KAGy!mU/_Y_rBc+hV@Ny{4e/[|¡(qnep6-r# tZ>B 7.:BȇP\fp g4.+:{xD6hוf[g+ZĚ,ZcW6;xv=^WN4x,ܠ]K&9?뿫?d*|:J[3Aո r3| cVB3њIo!l QY)GaI<@|Boᐢo(4ryp8C05Lר`R(/t$܋eȘ#J({2"{%ŭHUX́r?NuQ)ХfDwV B1Tqċ;P7P#Vz۠W6egwD]5Lι ;em@ :̲%2K|]e%PLԼQU4&c_YSŬy=@p.޲!al[)aDr"svI,ޒMA©уaNM^t]3Ul(F3Ar[eX|J0~٧d]&֫`͔d| VC)7QFdeS56! QDiy/{vwץ )I9*sXS T+&*}>3)l۱ t_Qo 4>dfLivuW+Z#uYu& T9o~:X}(&ڹ\l\fPm;J/5V ֖܂:\Ws^+Wy g*B0Ł?oćEJꄹ5RIr]}%W۶GCQ[Q"S"!g{4l䨦xۚP~ 鄽M|Kgcu^BN~bh!9eF. f$v{]n"WL0L8efn]za 0pSQAPԜʉr_pG9`7df x8z sBщ( 3[W7̚}< z*^lZK;ڣ"G:D%NGUz)D39fybYEp9=r:u8C,c'5Ri5\XF_vOI&Ȱ%l Ӈ[)CO?Aiǟ#.\`d@et;!raP50\Vx%* TL7Z|?cK;/I"lg ՂmHke\@n.9Yԍ $$3E@nDi?[,*b$Rx4Ȝ(>gs.Ф!50~s|gF6I ˮ¬xNM|(^gUJ)0۴Xɜ&OqBw$HykV+VEdC>at.`k`S~Yj ̎$&P.wexΡ^D!8&>hRV?_zCОMp;w@Z(mCò'cqchU.ⱱ6vZZMo}&y6y2xAV)m.YduFĄ;/G^Z.9j2M+x]dzy|」c*;>@]W|LjDt!E7 H/,C\_}=~pƶwȼӧ_k?'Xx>H(_gu$k(jτSxL0fL ~7/{Ju}RPtT;[n|fFd-_._X.CE/`޽t޾mV$bG(2lrdn9Dk%ی)7hUgOSD,B5C8ava;v~]z$M-mW0ɎRw%T8 rj$gB55!NN0W8wA悶@}" _lczW.*MbIkRn5))%G⨔%SNHN 瀻̈́O7p5R}W:z&9f R&ƪ}Q=盩h]izca(C?ڤqz[*Nf;Hj!&~%Wi*Y"!~VH{9x S97Aٝz HDr+f; c8n"@=oaO [Jጣ rK4!gfB^;^%2MZg @F%wwa.7b!rxbLDuuDHԓ3.fx>5hdYEb&<4ErLi;ងI6]LUI% x0mፑקeG=>10IE*5hFM+%qBiӤe-xQV /Zz杲2%BX. g#" Zw-񱓃wof[ﺅ2 5J l:#zD#[cSf%ˎ&ƥEJ`82|* 2rzs,pODfQ_(`39FDxE+vܪmH6i[ɸf̸${8aoVN⭯ ~o,Й]+q͞O,:_kKEHs57Cr<ͼ 'GaUtTaI,k S4X&Ǩ =ft)sx錽ƲBb$8wL\~N总{a0ƀA[ Ƿ16{Gv5 Yg:Vk^ Qs٭ |]lLgr JƳ !T `,)f^0WS+`9W=VE'91D08䡦'>iEJ(ecf-^0*O3I[Kz+!~>8{m])=:oK9BFD ߖ߮H+^ auUN)mX ,zLTͳ* h}yOt}[S@&IJ",D=}|]P5u*&V%퉊kOV4KqfBг `_,P7%#eI%:"۬S sBPʶ_ْ<rH`w2``8aLv**ݐ tזk?D"H7$,DI]eH!~x|JͻKr0 mqwa&)#?"" :|R h-UsSH=΅Xyxq\o h w8j"djf,Ѻ5̓j )Qs2)_v'Mk"4ªM-[^V,G#]<=$k_JQ 7,0dUt"9T8dc YDoo&ț9`HS230',g˖C͠1`#m-@`<>#[ab^>:*% ^rfp_YNd *ᐧI\爽4L4# e߽p^ b+ǚ-vq`SMpYŠ+| Cl8.6F|йH{#MpS 6 ]ne]~R: rӦg@de30!_^P*+MNCZP81к" {Te]mFVpJ~p(ugpUS߬Dcuᡏ U!MVX :ڳ(R-oVژw^8߬ uc@ l*h+ws#DpmEc v6<_ȮJ ,*bp:"5Wv~tUU9C V#p!I%c6ĆVALm}_%EE\DJWS"]0yK_̪k<BrڥũWYCw6:=n 7H[,Nt ?6ȑ"Өh/!M 3LYG]#8ip=~ b'FP@_2iʼTwk[fk3Ai6.9yq<|\Iaߪ}!U$0m&q:< ˲Z>գ8$., (,_thUE1?G,\ˤEZ܍][k)/jI%iLzM9(m+ŏia+2ENs% \aa8q3ia/'A&ee%"GOxG]~";\Sq;&_Św #mK? q{eN{=" $ť kR^l? }YƢE t _f A99nȾ6L*d+ABdi9KC@[ff#Nwn&k"BSb܇{T;YdItn]xII# ocEk?!f}Hx-q99"牁YY޷=VjEUM- አUUfx+f(SQYSUd*TFQ!d+p:ٕ0 X~#D+/]Bh,[u,'z)=bKv8I}dZl8Jkw5jDo/u]Q D8h%c<m~'sQ}ը-"|X?.%UA5eG"(Kft" &c߅i9aݲ\ !–CK(r\;*XlQnۗIKQe̛iM;$ۉ^S<'7Z,0emQS0_i.ÂBi A^O؎m8,Q+rzuJ)mI^k`yGե 3֨ K}p}VIz6y4+qjuYf#[@ g'w YTqLJE S]^B#$x&UJS2I@8&/PfQg_xt ƚ4\3{*Zq}dґdHdwR]Nwi +zǿ}isu26AƨOl_wݸ9q+V8祬<rɋHHtv0^i[P|.E}d"D8-uɼ~ [P[SyѮIwFXU?!Ql\yZ1U B*MzćH*TUL܉6lpOAldƜ$rLzʅ]`[SSp D mhtp7*36rp**H#H )mfdB1@B>4sR73u Oy DYQ_hzTد8 ߸1 *fjG N}`@ S"FrA.qh#nk6 93|de9H6bT.RڧcES/IF{炰ڋal¬fK=ͮywUFv o (ҘyӰ)#ŶwWΨ1At=̓HTKԊqr:nZ#W܏i{D ;kw&E?kR4YZ UUe֚uL]A׻qvO)1 )+s0i r^חr0!|t٩I>ŏX{wHQNU1MXԞ"shoY9U6eFH)%O :6t6b+ixnk{ukzp Mb0B0T5}OYewcI}ODձ|<4 xy`oeP1W6p9 t`nPЀގQG~@Kv  fIY3 WqV}H`&xt^V'Ilс:1yv7 SE)IEuӍ)'t/8 SfD).bϹ82tý2)lρ=ҔC]7致)_Ў2Mo'57?s3wo5 ܬ[޿i%!'KwizWp2czE -:ˮXF8`H7 iNQVg.f{~$:m9Vn3PTmEx"!zEߡzq|"صvq =ut'V]%3뎬DpPWi8 7/[[ TtGZ0o-rnsJcn-6?CiwF^_Pp{t;̀J?@nT̳ '" paRYk"͏Xm89E8i"{UP Sy5%WӷC&]a/QBcvxTT䒩sMfɰ >&^T ֟цUV}q*{MK7S( a8V WiJ 4 mUJ{/{ oIxD$3=afmի~,~И^θ)bmPkI+o)jyvk/%1ۍom*7Yܙd} nGksoۓX;l5x7 ?Y'pLzLBk֒v r%(HbO7y,6ǴLt$:3@=r3[OUb:( G$.qJ09{ѷ|Uk&olY}cjJ \YBa=A^ȩ:IL4 jZ:jB'CTq 1eCb#}1P qTio&"m~|wTAل!~1b_!Vl\i6> 'EU5fXh 9yn'@ΘF95S?u4#nOe$XY?خ4T #2¡%FHy1S GGQAE$[+,Քﶮ~34 "KmCSLU bȇsWo@9otߐTo49fЧX~AOQ ]V9lq{@o"4?K"8Ϥ*ߨ3Uk8{+FTJb@HĠ+5kZ?)Z%B4X񧂿-KŤq䛢)?o&b Hkhl?suB4 *82.J6Gay/8?FyvqHqGJ=P*B:++U⢰%iJ '@p8Ƚ,̭5^8[Bgk(gitup}LM(m˖qJwV aP H%ů_$D:0nTд-!-գ$#_[l*2h96R5*Us9ՖOBeaAP*W?b[gx⅘>BfcqlwBGD(JE? Q0K[xeWʩcA,S `ee1$ .TOC&#mI~=N<8\QSuHj]q~VbK2~r iH%2U3~B ,;_- ^ \>%Md$\L%C&"WmrE Lۡf0s@]gQ+UK{$蝺glPoT6idH ڟ B"=vփ'(qKqMC<~ >LQxPB$`u-#;9rv>f zW @ƙZ7*^(}| x&p 3l? /7:;wVP`RhU&ܢZvQʧC `F)IzbXvoE{0 i|b!bM|܈ru Bp0rl W#BThSA78, ʩ[1I<>ʘjH2w Z{0-ћ:`ʟ-Q9y*f'uGLnA/(`i*6NFx>̄DL1kb%wYrN;ԏ2'CWm|z:͟W=`R*i 0ŔۤJص=FOE3yV_G˚.kե;]n:%s^1`P|.`ߦpMeڟ[HZ@Z&i'x\05 eHǀDy"ֵߦONGz{qyt/LC?Gh}NxGg^1.k1E?N'߂ >%,~! H?0}OTjfSk ߏ'҃ @Wi] g3'pzuv'Hr't+P TV@4(URP`ayАbM'O c^gf݇"꾥fu$jyiTI6?- b۲Vf_)sފ|8YD#''$WQ}x?'7C Cn6| ݌*&lZN%xG6;3O)DLs^*%L%\ Nw-/ʕ ؍T* Uyp 2fNڋn6>iaWkgƒN(ܖJ?7I2%<@a$rj!DaU\Z]uHr rXY#F C-Z]S(|AAӣf)8x6}#A"'1]YOl޽?o 8m6 4\rB]AJF\AYL ֘O8!? 'W}P-֌uU*FvLY@׏rO05lُsn-&L,[j\笳f`j D0f YYG(:Qƒ/G,g+ª~0&@ &vF aBz՗TKS STA WV 4P*4lI"}QRQJ&=r$MFTv`_q"5h$sY3>Vc#LȷKgI@ HbVh2S6d@/ugo22*0Sv5xRD `R_=[Rs؆ndD uupp(cv2s|\7~DzI]~)Vٲ3y` /$;W=P23A{2?w̼/qz3|+O!_~ԫ <>c* UKvFuBIFJ#:՞NycγKm1`,$bM_ʟOqo.gu2[Pj>2J0zfp._&+[Ah @3v;1z4Z7;kݲ?bkDZfL;@6(_@y$}o:ߗ w ?(Ef4(~%P3Dhyێ(#j7\w4lڰpY@} '#U*ɳ?y#m`k,ۣbW+(lauҩ ʮO| :gOAx5775DuG/.AO?)L,C˼R҉I?5\VrA4W_Es8 a̺X:I)zxD\m1Դa!(n%ȞLr;\ 6#P 3la h'Zᐎl$tξK5tnJR+vご;hvLT[5)OePW9w1QXZލTXBݹZ@}<ٛkń E铃wrSJoY4?ota,q y@FǺ8|czkFos?:ɱu |pP^rzWǗX9l?b+J?ٯmLęvjA?C§>Is™1#%'ɴBm)◲ A=k<:gr,ճy⧾aEnfz@-pSׅHfTYHBR0.Cq8&FOwnz={,VIDŽt(שOkӫ\xNq}Ft ܫSZ=<wXR&="{|Ad{mꔊRmY $&E D܊!d;  -Y"Y UҔQ _YSVZ5w= ^Hp{jޢyW8:/_GZ{ȯؤYOó`|'cj=hC#v:r3#%r4uȆW?BOT'6_=zC)Yd+ U:l=Pe\%[8݁dJo7G'7etpKeȃ/Ϝ(U6bׁqVnGP51)60rAB^ Esgh1LRƮTƒ[K1)){VuzJxU |'Fw5/CA`OFg) +1 {wun<'Ccn),T[ %n\o?=[ V 'AX*UX%$aH彾яPlLcF :jBkp_a3h2IT/;m\b5qCwhm3& 3G~dQyM>4ws>"Ζf=o7~{,˓|N2z$§(shĂ^_"ߺ2A{~DXAJ v0xjwz9!bx X;&b+6C0aEdXm}PX#AQ"̬N eBP@P—L5 V&x4ئE#E#w:lZVN2vG\5WX -F?Ϟ{]R^{_͡pyQ,9uj_ t{ƙqtmK;~[k7l y |v+7L( ֲ#7ET`vӚ00 g-lF:%~I12褐Yf̨u}~WU|<v@tUUC@'FMi胍?螕'cKHӠN:Vؼ^z&0N[]|%wP;=h'כ}_6ihrq࠶VZ'lY]+E&;.պ ӾMt5X;?:"Vm3ڨH\BI#6E"(RM'ќc]x|#.px)ߗ)e]`tv}4eMT0wuWU ('Mqv8|hWjlkZ:cXO |e/\!:g>~>sLƀ{z6VLLX*PvVu4+"quA7d3%3x gKu*Uok$"PX[*ͽ#_Cև[%EqcgƁGo՘AV 5lpBm =ϳb`ay:K@>)3MUjoĮY&7ϨJ e3eݬO_wwйzF9mnNAO~5 'N4*5`QAb~2H1dwZ""0(x,p0,>m.R* <B䔪1;dskJR7!Zsf D#T9撉8+L͖֝w}`Cd Ml"K}YqB2:>WX~o_NAĕaD/ "I  ) ;XzY[dQcC0:vhQoSSY>h,*&?[6XZv}- E}u[>KyL]W:lŤ`K ܠN.=IO"[JDX'+ƏjfU@9>ƁeS cnնz"G> /՞́.㹔oMcN):e+Ha[>CzA ,#~As0g0z1-/BD+_&4p&V}.2ƿ0сZ^9^cP*Dbw}TkBz([ZW+#LC{!`JYk Ӣ&Q!-՚7*DNUt\UG *ILf[(Y&DwxDuP6.wf3Njp>iA1/Z PET_M"٫FZDo^T^XQ!FT<])f.+: !nD9n=Dхfra΋Suɴ` >ǞSM0i^~`%E4=,1}wL~>|&d~>"OER JΔ\{y<~چ@!ďҙj9i1=,zqvٺC BL7RL4Si΢*"sF7q+}mιE7ttqWXm?\[a9٤V8' _xwm7witfB*shxPHdf,QNy#}! QV"qFQi[eC^-q,bIAߋ"`yP[dyv\oF?%nC.1nmQwxv9c,`~61Db~]ꈦnš#+h[|%S5/Pyy4d 72YA_b };ɾca wlX440{$%vI;ƕTt뜷@eUt&ڗ݅XjںRYMh\;ܡx2:x <0iof C/|AK QD*ktj|&,6n UԠ 9K[~\ ӼL:d}Q9vaƊӇ \H9)D+(_OMU-c7,r~$9ЄGăβjt<6è:G#Z-bJ4:WU$}z杋X"/9o<~WNLMtAy\ =[ 1ROm:XյD 6݀"h ]sÿk%G:+^EOO$D51o=&n!l%fJZMhޞ0l^6p պSD ayt#hHr F}t(gDJ,}!u. Cqi)UHp.L_[$4Ytm)Ԗve:M0/ik̈|F:w/DI1~WP/hd,Fuvߓz[vt#E$riHu5uS,p0uÖeZ} L$߉phyMQt0jfk2zƴ8Fky&UeUȥv_sl]*5N_l~X|x7 Gb=`fd¡ՎHHV 1?}]Ӗ@5оn4\]Rꭁ%8bcy]nH]|#zDͿ}}q}N}klvyʵ>i=z GR˾۲+&T&!ifwO׵Z5 m(qM*a:qo6m9j"Y؜օQҽn,Y߭0|cc"7<9"sŐ(;!0D76H8t `S g !j0 ({8f^{ʡ#lڊGpɒ[5qfHu*( K2g/{% YwIOoʟZ=趕".P98i=_:'9$./B%F# v1V2>+nM>*G"쨑3j :9W˹0C1{Wj 4 9IXa\SP'S.w<:ÚplNƙRXWeV]iSGCrhMN:|!IB7AIUwsKQ[H6$xV׽=Z{OUnj^7&9h+i XٗUw2- = }&*{{XeԔ,!t>8_f3BpLN]5[ " m(’OЭ^Ѭފ][=4 hn`!ĮVO$鄯+,ÒtbhUTP]gnJm]1TEA_ 6y ;6\Kؚa%R !>6xv,1q66T$GN^z~o8@!3KͲmʇsovIY'DW-)Kpg7PDSNLdڤaEC0LID5 !o6ώZ)i-E<^G#lM~ZQGW:_kآD,ݜ4G3lPZ),9[!-1ݹԃԖg\! ؅AKz7 K+Yn1^!3Fv^ )5ğX&3GNg#3$Cteb* ^+{Y|nM vSS6橺Le OF]O.գj:p|* c r66?g˲L2'STqxR( ,ylAFފ"sOaql%nҦힸHl>z3hf[KXЦΖK,$FΈpJfrBpz_~[1iԚ:"TuDa(K(1U5|etgbv٠W 9[ҏ$ׯ2ﱇt,D 9D6Am'3 gg=t@PL6h  M8G$ikE%cJK$7D]0,-HPLv 2FM|aڹ2/ٳgSJ6Woa7r\D{(2ssb:$D)p q!_,AŞ68{2<(!ZJ/ZL#F8u}PYm?Uvmtp/?4g#Qh^VG 7Īb`iuuiUVҒf$ c;2D0OLP3B,_:KS<03:&oJ^濈)IV)h ò(w=p4k8Dwb=(vأ0?PE<&G}`8d3Zi/a ~y Y-蕲1H&"RCBWM}Hߡ8iXzmDO1׫"ٞ'Ĩ/wT ))~E >ߥ D'ðjL'PiZёEKd>)9)|mWꤲ&0mu >tu#A$`Fy֤\^]#4͙<`M-}]X'a6/ԫ %$|mJ𻂋 ;+4_a:iEN٬ظPƛUPcTFN "&}ĦYgdq-*lGΉ1sӕޒ#Wɦ~eBz&+R^eADvaE %`:1,A6??4G γOFAG-"sd2Y=:ʦW^J۹ JNaNI` # ˒% k&QY]dy$Ras2 ]y|0NxXɥ<< ց B N\A n]q̵c>REG;--ûyI^(Y!7R]n5c(YN&[O}g e\;3+vd$.v?~tfIӞZ"t\]rP` Mf]}%9oluGdpei#Ö8@ꦁдDd#(xZmąMtV&$MXBuC-re|]JAܕ]"l촁l~% ]Λ6:>q`0z:k\Ƕaf(1\ՠ3pz'WS'0%N&G>F1MH%;M-!HŬa-*XJ`+Ե߾*=`b/*'G6[S}\A x7c~:D7衕7^2{jiWYHCɀp|c1SV)ۂ(fx*HUo)=06LΜf5[mwg0#FQ} SDrP,5J=D$ïGI&m]6 LfVOV]_a-*hl4g;0h~b,_pSz,NR)WJ!Cm@4icN(fVTL8`b@ gR`ɹ!d)-î'ˎ>U4Uя9DX3~8e&h*v{y158H9XJQIƯ!J6{%(]py`nٕ#mq1S,h.%վz̽@&ch_&͸>:&nD.QjG3 #==_HI1qw@p8]Bqbd>C?UKP^)PzХv\}kU{|M{Vxp| YT/v!.qWRmHD0!fŎ*]$5A\1ѭ j]xpPy,eϨAU$ЊթoFA%ɋv&F-T5bb AIζFԘϡ?"Hlc H%&DQaIgUc1=zªYz6@5\vq -PD?ݛd݅BKE8rTMopk ` čx;)?͒HcUh.oOua*jɺHC؝&ئ3~V&ba!!y `TXT֐ 5qS}Ci+'1Jm #IH#Y@_z4sHo$A]H[;]')~V@ʷ!ү8 Gtld-e~Dᔨy^Lr@fQ˶;UCeW D#[)Xt;($%{B]$o&yi7gF%T)68FJผai<@jvRFUwHw{ >Fb2֎+3FvjCBv7J\8x4RulZXdMQ 6Q8\0Q`G:՛Iq-N ٱ-9dUAVm c>+{lzÞaY\lztڡ1I~ngC"~kPKӳ[Ohq΢z~T<% FZua56呪%7ݰO_(5JhPUsJws5^ l&'lmx/$ ~(ޟ ڶO#0P)'[5鹒;Ȫe*KgF`4fP$}$SFI^YbҬ/ QF|ÕV_Z@"ׅ•ޗ;ͼt $i_&[s 2ukoZVYPP *H7}`ӠX/˘-] =T.M~C^_\g͸|3}[tۤr ]MԌq/jۮhiTwg8$nxmU/aOF=ND,wF>Tޓu@Q50|eH-.pÍ0=8)-%]LcH=|(l$i'T`O{|(3^P1i*Ҫ1kDS IyZ?%rCݏƿCV EUDpr9?(Al5$k]4徍{iQ^>),`3B&$1~,'Jހʒ*Y/)Biesi# 9f 2c8h=ƺ@L/S.' YK$[I"[cmEP%2Z W\M-)Cc`DmMT:IL? xy6XfґE+xd;X,rm9l(@qRzd9 +פ2Ҫvl-]C('M5>qӯһAC 6gGڤ hDJqa2ݖ4rcO LeGKo2jNw{L7B5|Wߌll)@a_TBzk7AXL퍘]LॏX!Ss(sm6rŠC5ԋow!$8#T&^;ώ톏D3gP5zLj ޴}OXFP -hJxOj)$O<3s]+ Oh . G[,!FEV4ᛳM;b4 R kmsioٔbl,6 \iiٗ Ym4X"4 [%P'75pc-ip> .|ޒvȚHZE?|eВW8C,6ݠo_$0uKBP7#io9Qn>}i~4Kҵ*ZB^Z`&/VWnU-`[.x0&F @6cA=\WmFy%Q;,|! h8϶l&p[A,)Ε\@7#Oˈ-}p1G0r[{e_i9'cLZHe/ZVQ e~; fq;CQB j {`1:oV y57c;]G6:xM| 1%Wl1^z>m YJM9ng^)Anה# jdG Gk"uݦm]ǹ [귣?XoS;#u{~n/J"}U@x&$Ҽ%˛dpGil&X;ǑS{es`6o4Py>ȈrҨk:1! K q||g]Gמ:"4*ԋC%|^j7z>X Z eM-nbimxٚX`{ӻbm9rBec7}Z\!Mt~Zy6" ̄B\.M>_8B1xܪ q%)[ԟ%u~B,,@ B9b~Yx/p\օ a=L@n7EA%Q7]բ$%f.s!PDk(CVƏ񎺝a'!ub-ԍbN _ 鴑cCL0O ;#HD5PqC0SƐ'ўt> ls<*{fW~#@ r*:gb`\[(uk:[Ϲ6S-Wsy,0V̳q4|A-|5TQ\4:3 !ڋ3[{C( >B%g|?J8Md@9nh}H=Оי /_>ѫcO++F mF: G7t% : q(Զ\<+O I[3#a lU5 Lk~>@`*kBd7FG{csId?6h3vz?n~`4ʆr#I,08Wagf!$DUˬo5ҤK*Xs9ߜ`8W-Or= N>mqKˑWEj!ftZBԼJ,O= R6_iϥ@|${6`@Yf*XSJ_qOID59^O郎sDMb`ozHVvuO DSLIe|D 4b_ܯp 'vSx]%DtĒ`XV6u_l{I.6xx9@j( o]6}"pSrPųUsPToݷ$ uB8 4e!д8bM b{81_HP<1 C& \%w`ҽb&pDs}mύj]Bs?[dz,ZeN׋QΔ$ٌ\qDjp>UBNJM1vg(|GiiWE(`gYw0mg 0GFjtqգyMHPwծ~I(iP;S>}}HZXMԑ0ƌ B^I4H/j?7\NN@ۣΧ\}AMm%Q]W˷Vb4tJӥ%)-#ܩ,J6XgG8iPxڌe{r$4ܚڃo_%Nr`5%r|9B"$[*A͑]96312\|>ZYQ(Hr>EpnIuW0l=cQJF("RtPfZ ?h$-q)Uxjή[wN BBӚ[=Gk^1_"x"D(|&R![%tY:gQ!e)1qibgC~XU"f;1?›<hƑDfz*}=LMǵ5!󍏗/K#AёUEbv҅>uR6J.)<6d[wJq|pWc̀&lXz נ]K>4e動tuh6v,3hh1tU( :}ERcJ?)$#(8>7KbƱ~r28fS0WYC ~Р$!LRSvG =Sv|pW{t~IOicMֳC?z#MsJX#j R;|ODh*;$CET[m2̼]4)AQw7P1e_t lO ķ֟5նLFiw-xU35Z%[k 3#kk*#w7贸Y4қPLԯKgcݣj۝yD [GWTRF^J휒ІX`)jF"&zԸ̼s)#ŠNk_%` oЄ^m1>+}Kca BوEds77 ]_8S :J#RӸuq5%jȧFoe79 f_% .޳҄yr~!:LmV)N]x)Ӂ-ta0&x` {V B2jCMza1l|+hiZQ *hVa=e$Łifuc7Uew_/޸'Do T݇ 6mzL "DPo?smR8rH8iϱ h+c^Hv =bc4H)A>2"84/BMwN` ʰP;J6]eM@q,y(['+PMJоzRn|ZaTX6{>MK&'1dÕ( _*ܹ3&}C<pDhn"+jcu/:CNeVÅ^m>»^O[`>TyD/c`D̒w0P ,_!w3 p"f eqrƃa« YBD )I: ;]n R+a69*O[P1\Y9{rDRHX|/OD~_4~q  q0 }& I`X뀰F-̡$e8?۠S*3_^] bFX^_lp0F}:0c[<gUzrߘ# #nGH.,OIt}b4Oxڿ|# ȳjjxIbqmb,BK,]1(=)<-P\V:lㅒe^跺N7赤#9Gsd݌P 5zo!&*kk'=<n6O(8E +]of/1t:onۛ}p7OW$\꥝'s$m%fp?=( #ΖpHP&.1kpGZtHD\}Ja矣Sx8ǥ-K[{i Dž O{C#f6kf61_:k0vi'\ Dd2Ϭ(zŽ"q0qGbL.xD05Q%\}vHި\Fztʛ UO .RKa:N(T)"7N 0:^V:Xt?<M_ 颟5[ 9qc?'_CiȜ x̉O`Vy\@`u2h6\g +Au*`O/q~ ݜ,eT&Bdޖ\1aPzu}rJޠ'jbĚ: >8B7w5;jfv0J^oIzV"DCmAd(,NF?y{ CEQs>*4gdT@u‡"Hl=AXDŪ6QeA#0vJGڪJj| 5@q DzK^ ~148ȕZ/GlQQרTkks8%yk hu='339%o|F r-vr i($'N$CHog5%]<2%nogjǠ_GG1~ L#p&`7`:R^ [7Ai6.o+PswI3 `if>ZwT܄lSRl+s0VqMmwGDNGT!շ}#ֵ0!yvZ([a;7| ܝşͫ57B rF??E?N.w<9DL".EZ(*Va~)#ec /KNI2Gp:^L6Z%܅s79Z LU@V͠2'M4Z$)&_$6E-м=^d k$$2D9^CFe輝)ɵ14<["ecޚ:)Cj|qMr^?׃!VuGۃ'YhV>r-j43 iq@ۦ㰂)ygc{e`ڶJ+E~BQ BP7Lrzpݡa=9fKoH.r*iGc(D#-[.ଝaOT)X_eg=IHb3.j2TZ,r[d+. Fk? i;YmQKncr]4,V' r95*ycA%Ew |R.- } u=1];@F_QZČbkeٓ IT W*z\ 63oMSc y9@2D&kQgDVǂ x+ z V,[} /@nYנ6ʑ+=*P,dCL;+1ѽ9_$Pʲg" #2f.gX{9ٶc@WFWXd#g. |&~sy|zdc 7\םRR0g I MY U;Fl`Yb0q'  (Oo |H)Cah;X0$O ´k6uM o@'k2*q?D6z`g@Z޲mDP44ǚ38;O7M_$!KkOz&^à=SB_Rvm:\5YsLWEq)qH6|Z*j|:ɼI mR஫NjNf$Tab3ϴtڠΚyJY^u1t&^c X`OOiA6>17@)('iǶ 'Dz"P ]y HEDT %2FPAVQT'&pr/г7_ztoݍ~54eV7>d"+t~R)jx1J)@k%H  gqvXϑ)M Y눿X&*R?Ko궛4̩`HǨ9P̟@T<ڽjPeeF +"qiBe>Bq@eO?)MgjG*wi鍕%SKښ>l+=a 3;8r;vmXAuMTq%+S`001)IϽ5Cg*DH+Ղk7G5b29w۰=l~m7c"`ɂ!{N'1pUj3MCWǏXiOs'ۂZXƹql-m!y~&_$x¯_)%un~VB Yl̯Dý0>3p_LFcmśĨ,t+x 07y3`}xĢΐpQ*C<&JrČ%,C]cW{/i`=o77^HyvZJTuSwYU,yv;*I_%cpz6S9[\_ u7 vDl9.8 A,BJ#1-=u.z訐ʂ+W[p+bN΋MvtP71T??^X:K zH@ ;C ^[|cpLv5(I1[ꂢN+?@kmFeRTz- E&i2<:۶ z}O#,B]<.F[uLuo}%EC-:S"O=VÌ79&sqCQÑW"3F[nYOj @ z7I_mq[JgDw?hݑ9Rė{K\r0o諍P.Y  i-bQXYeN`bwpjAu"%D$pj&v Ɉ1[}\,u, ]]i:{vs+12qtGe1 W/46% Oonf Ǝ;q=w_G͋B3x! G$:Z=_NFb]&_32`|<6xt .^µ]63µ] taOghXD]RU=:Hvm!;xp""gn53" ?895Cg16-D=7Wr23I{eۜ,+B>u뫻^<}O[5O2_Q')Z:ŏ)`0y-s#!utd5W;ZuҖзs6C&|o29N0-''4|knU$mNKuC!²5Ĥ EWFaDZ~0~֨ ヘQ¯m)i0#K SrT&!+F=[#3?cLܽ .#1:giqwg9WGCoCl#D}KFRlhBm&}CWNbGLbXKr*&9Nվ@W$z=Zdr; )\H 9h?iDo.6>m$KGݾ0#3r>P+J $tXc7caV07TSze, o2lǠCESXkY$рMz7Of; ǀg:+TyF2vRDxè~aC̚ {wD#&&Rsj@{"ąz:O+UMG].XQ):DpڧqKyOgѷuQފ qɃ={F繢dT< B%f)BA7~տb Nϟ1ѹAHa jT2&ARfţǩb;eŞF웸;5|+ S ݣ ]u1gc&n O) @=l\/+hxkV<,{4CbXa jZ5HH{[_/E;N쨎G󅘫Dqwe* Ư^r ʕy~Pe]=[-Uܓܤ ^[Ab".5ĉ m=u %g55DVjwxv~oy67rd-6o-ՅEyVԃ7M:[q`UhSVk1ZITTjŻ9H2 an!+pג,KPKnǼ2Hi5GP'yX--qO49vS2eT e}ФqmyV`,kE}!u'd']DsJic&o>[<S+Nk""E0Y"~R(6 r,SФ~dv; YyI\6גLu11;D\]5ްiuQ ' 16|uxMdqU5 R Sr.)qJU56xӋK++f>~Gü:] c.yD]S3 _;r$2<n&3]yma션'ک`|;_Rޒv5ȰS,d'7a<*9L*[ `"ąpɵ7iD GowR͸{^NɖݸЌTu|%TX6N򩐄b݇guغ`Zek6`.h D{g'(tlվ4! E_ԡ!^ z_uDS)v} N f>I|MFۋ7 'IT.^$n.X%|GZr_)c7쁨a4k/ce^NuPD c7P5QV|{0Bq/6gLTG`l%S%W[RziEe@zfpkD9ղ1Uh@Jj5zAϑ JIszy.J5A} dCE=$0,& _ q(ry)0!> z?s^(2_\f ?fuIrDzkiNW}lwowR*n*#H1Hx5<|AB,>:=9n>nU}zEŇȘ|jgEO؛?0GW=eԗpl6(VMDr>YtL(75txman|Z:M"Z4=8T' ;Okag'Ejm=.fQAL$m#K=qD-Oş < <㖔$*{M;To^NFW-6σ=0(r\f򢺱EW:H||t4m{dZJ)Z-V'A +3[ދO%ҩ)q^3j Ez9.lK`=E Q ρc SQ;c;"mźh'=K!AgT4-6_ܪVD ?݂v;Ү)S:lgs7ڱ0|*& \(H!ؔ&:`Mz*}c͜Z^Ւ&؉JX? "IeMl1 ,E̫YQ0Pp:iDJMV0c6 '7w,\ ! kP#6+k;HrGc?KK, ukq,P 9{YM4A<Ŋc° ydBp[ :,yئ-)v]Nf)T]B' } "d{6egC h`o&x'1vABH!L۶i^tIC`RtZQ)(y[W4F6h8Q'k]HIhJWGu`4{/̡밆||cj2k/z5p42ݾMM"wrčU[ǿGnVq_{NBe_-?}gn r.M u&"h7⯮3+[*} )m2wmJ84AKA;!1>"^y{X|Wq>G}lWj,+pq'~Ncf7 };& yple6s殑+$'86ssr#ǵB&kYlٔT\,D] f"S+"jufCd[i,n)qF Z3Ӯ) krP6^s3 w*a$ׇSxy8oQW/<{&ozeD; PgRrt%9y.DUȥ|dX ޯss~7>VH]ȢPt+V9m̳ޙFM(  >(v\R|gƒ #uGWcE38=pMm (gZwEDb]j  Ѝrmf%?ww9uU]s#$cv&gr0e h䘍vϺox+eWu'ުіt" Bsm1Q8o#{=D[+*⤝S{Faz˹n"sF ׭jԈAr2IbXm/ ۸ѹ?!(m@7>NzC{eA]y^Itl@6 gwB* 2 H~Uᢑ+d_B ,:LFWXϸ8ESͣ&@ɤEm9kҧ>Ik<0 v<݈`F^Iyؤ3 ./ft+0d2U)Cp["f^b5R` 2rbP[&+eP't"~%}U&=< M,LJcĚxOIKǶ"R029&m.uA#)Fz4*]ɣw}R-YUYO=(7FD<G(c^_*S",Ephbcaere7";/X4ct]dPCͦW. (uv3p풧^i ۝0JoL_ t9+1{@ԯ&__iV#FjDh`3.Yн.0..W] ^[j 8.x J e,.unyID z!F 5:+8u1ju_+G"L%O\:FN@{g1%+U=$4I"7]oQ)f'erج ږ>P/44 F͐c>{4}HJX5{c<VGJJLb~P*y1p7M)cBG{d/DQ: ~:9E@dQD~{t# +|?Do@剋o-;23V{X東3,ɈGǧSbOD&=f+s.9a/~CagYdzES+\ ?g/R TP-+|c_<=ـ|.^ a =H*蚨R'Z$jeOsN+*CW|zk_i4Ew$1bA]zP#V~ t?Љ7`rۀu'liƵU16n-{`:(lҰ}Y+^*k*GmXn8JTc\^`1w?Xژ}YpN/ YR$X;^Gk^I۾^4 tnu8uu.7*Jy%0x>0HRx{ly^#K?UNBϛIַБIs a?u^yI C  ztYm^̝+E*.qOCSNjrST2z* *SNREޥ۫(՘-!#j9FEN!qr 1V}@3]"r`^u)DaC g!tʱ:\t[bn(#O]1@҃Y/KRu-Q0&+ɵh|@EQJM8vS ʩ4 Q:h\/> dwx:9|ASk\| 2XI\d4' ڕ8 `,UTإ8EdEL90_CVIby۩D`6ܒ,x&tip$wCyWe>FLR%%LfY\<;t0P(oG@kYNim󣖾;%fـ,F53U[Ggq2u\oDj3?WN/HioH4UDbzz0\XWK4|0Cx7Yq9lDb\}圪6vLw7ë" H6X( 0l$c"{81)[9ti8>cﺱ%:ްlEü½LB}}'ԨZx/bgE#sia7s:GM%1jWQ>ۉż'bY ex.%`2((N4i`I/N ee%BRS u-)ЁPʻ٭ s`Ƅ}5{pSٗ=h^ ^mXEA]YW6cwjVdC T֧°>+Lxd-e?lQL*i[LCsB}&lkwv I]6UoE"'WgW)MMzR58v] YxY"4uakS6q ?Xe'|SIHp+%GfqE%;Uci#ێibԎ/CZPXqz3.{!"1J?n"G=J*UdT;%`)o$,C(fjlU^qwS!k:a5\]2Bh۸0TWЌpIVJBOZF%6md^@t^'  D np+`[TY7~}ssŀ\O]{yӰ`@{( l!nv#_c+P'瓨zʇ sו8H 3zr1&:e>,D LJt] xɦ R\Z30t9>]?v?šdyaVgsUO+49wG@DU`VJ} +U^P˒'J>&GPsb{zo*026H’ri*&ܓLCGvL݂ .j'Cw IQ%Y f]S RJtunXNi/#^$vqĭ-hVyܦ`+43{nXэm=n2+{Hz E ˱rӳMI3}I}k[j]J)Z%|q$cu3ŌȀR7kwbkNr V4ߠ6:f~'Xgq2rrH1)訓b77Oc'V/v;|N1EfO6+]/^I+8 ppeɳXwT֑pϞ$Jn!w!1Kb$[ڷ=4qq)2goj4@EBj{vvZL$* Qj\þ0r}A`_רh\( Te1+=cܹɎ1:$_JHl}R2ǔTIB>֢& +ʏcB,c隆P Ka^}M@+Vm#a(W!PlV+&:Nk^ǒ$Y. L70C ŵ{*$7(.M6>+~9 Ձs=^Ք: Xe-1bS;V{q@ MnAQ$.5 AhUm*C6DQӲ Zg\NqiEId)zMアf/$#}ut+~ lt_$7x4v^FK|2lC]츽]3GZy`JϾ-O$ru1;4H`Zq I4>7 O^zȌi~5PTg1HR59IM->AC؈/~*CiK>MDHY]p}h~|GOl.b* 'qe\ .:ct)H@+a&B` oPQH0 ~Τd- `eYo 8Z"xZ@5ukfJm^ %ezb(0'+[ԡN̷ݬ O{tDsuģlffX# =ƚݾg9zן%5}-A Euzgn e1+j9ż5J(-+x:U@ A/_5͆/A6zQ1,a]t"cf`u(XB ↺SqqGn=\7]>t'\2o\x{ gWg:RLwX8XŒ~mG)a;Uy_i_+Dr*4dw0*DfV`@mW z g}d@榣x0{m֗׾#':kN[#*thWJ4o$(2C!$hF:f/HGFhJ$0 Um,86 >98̨3 )esՖhH=?SgƢd2M"@m A5/UV^\iΎ6 B\jNܗӵ?s˭~S30::hN`CaR9{X>0g;]N@a波8BI*,̺ctz$=)#'n[OKnmC󔧇C¥|^ij A"R®qcW6֪^3\sµ5Q:O ؇$)9z膛 ̐+[~t5Ii-Ɨ|G2P$Юvʵ2,ŗN}PeӇRb@<ʊu󜉱7tGcԍHY|lb\tµS<&"y*GaVOJuV"erGE1߸A0І,Қ~Ԏ Bi!k@;8l!ޖWEQr ;}>{E -V5qcLFb f4w7oʔ~B:t ,1iZ=hj!#YWK:[1}Osx{4}EH-;=1 DZ ^Mù,<0juDVmnYbN>!6 hiz5C%'֦P$%`C?g-#tM\E߿h~ׁOe ߍvK!@pO,;ٛP]tɃ4p-75fL!8Dᶇ\n1NXں{?rwζ)!Kh!\9iֱal$0U}\eMoe~Xo16F»O\S}4ɶbvXmGVŨ'րk,ZrS^f]&7]ޥ؄8lPBZm}@{ocl (N,j1@wEf`rHBvH6'AeDU?jR+.R3Sqzg@;/ <\TC{!z$kE^{Y^p2;C§e0ŕgբ eeŦiW&Ĕ'v=Њ큪1 0fp,|`!^-V2n% B&^R?^b1Wüx8(Ai\;{+i[/wNZFgoPuIx9":s'G@`Ic{# Q ̂^j6yU> V/D6ʍջdVzW{),%F9V%BELLWs傋*PۅE( k-( <ƅU˔fiKjqU7αY52:==zB6l/i,,j-^K Ng0;a竐X[S ;xZ#nsu[ܘHg&]TH\Pƫu%R֯}+Jgi4 ͚:v, A -B@ sM/dHPȆ >@ ڌbh#-&~!%uӥBiqveOlVfP2YJ lR 姆dJ}oﮭRGha:&\ !fx3^F| `˗;+;J݌ vSH<)LW$e8PՃ{PW?¬rHZ#+S:m)?BomQA~OI6rm|9D[`'÷ l7O π 1`sӟ-L!9ؗJCۋRcGC_5PVF\:(bRװ}dԤ؜yAApP-!n?,?q b4ibq[] -*{820{K2wp#&H-Ƀ(EeO+,`u SlҺFA5TWn\4ǽ ..KEn/jg* Ee(Fͣ:NTsSqa޸2EXξ3! ;]=" %~3D,B{=Tr ly8%@{^dLf{5DH[FÕkju[T( q m@l =C< Q%4!ʫ i>^]\jlJ ~J1yf'B:,r>!5)r:d UxJޗ@,tm4Qbi~A7n8JwYO7"&{(tHYDQ $d!jIJcCL6mc Ètkk芘,ս|ȁH'H+0/9.?pa;:LN6>ڐ6N_x FųiY6ÙǛn_ӳv2&dB-L}m ^ш:!RLaMwd<"9O`4:#vgN&MxQ)j9gzη'd6Q^&2zC"LP{<||IhKMUr) sⴲ;""_ȗvr{,78')D.B') o2a0"JdhN=r'*bj\/hDd-Kw#?`Cb!%uK6۞dǗ@&9M!L}s2ρYhz&1"-6}0ǃl̈́P](4D5h?T4G_]W:"Vf9ÒT5M1H,Efc]sD8y.|'N Pn-y&8 Sb0Lyl3Mԡm|Qi՜Z,Nv8,@Yq+7WK8G37L#D pc:zm8&;%vSa:{QprXWy9(ǿXmi [s*!ܾdqS?OȪ,! ~OrJ&3YMwQeuj@༺z܌ 2tM،@T[G l 3`{4<#`Qs>FK9v #m wa8J[p8?Ț`ަL^t@㯮;axl 7Kci;:{C^sJx=. /,DV72C;D.㉸h!6 36x:ķJBu #rsk9n]*g"XD GU NXMVvƬRNl @Go\Fr=@y]2l#}ή %&UuόcȽߛ(Dvub,w v8ff&S,dNJD[֢2ץ@ïA>HTm186b^ }/+M2J6yCGodmLx²ގ\ =/mo88Ba'ق`ʿ-M;m& y; ED7kObOw%q:N''kW$\hz}i@~^^ު*/čxT:as {iIaDy]}zqp~› y}VFN!mXřIKdbszm";Z|)U\8aBt}yb)c;`sr D {A䜣E3(@L-ýdfTV>Iԓ&6MgnegЧ -y}E8PJAgkB"ۉ^O#kTGgDlcQW# Ʒwyٿ2G"7kd}[$%]FjZ63qe̺x..F2TRBonq y'ihi+[w cSwآzXwtawP S'lՆpy% :l)ND w}]do:J%.pԤ9q!Bpysl503gtLTÈ!~N68\oޒi3o <87Bc0vsN 4. 呗/ OO&pEMAu{kqcW#TWQJ.9=aJeӅ]|;ҹoQT W^u RvA'q=<g9tnC,ľD9hy_ћN#pا=#!BZ7R L]N߲y3K֓E_2N#J˧Ŧ%kesNz9Ups߬_$ *GUs&1 V SWnn&7CqyI`6 ֜ifTQprpkWU)V,;Ti 5'EGBob?;E&9wGQK&W65~ >'ovD0B,PbM }9c~㖇MiZUQg*|4,p\TpW১ٖtN (161=covnT %,A͞q[0˰2WRNa|(`%ey}f%Լ ,)2sVvd`^RY FS@496x[b\84ɑ YֺIfwVli!kVn E#kL)q{j^7Ч^$2qóI &h^MOJYzU3kŘM7>c`kiI&4IMn">`kyy}U,CжVn{1>L(+L;6>-WF(ŚΧ >zQpWGQ88L4$eH+ dKHn)'iҏVzA&U u^bKn6,G|~wJM3%*Yhswdq(F RjR/LZ۷wbՂڎսQU?>%0qSD6yߛ$C &hsM2ĝZLBً&xFx u?OlJŮ*'͐+h;jy@5p Z֜N WKeE-ވYIYq JkDg`[ 9GLwFj{ZDuim ]{67@0FW{czHnOFf8gWߋ-LѕEq^blT%*B=Ry=qm\ˈG=ub2?2yN(~Ge\5vx Mȱ IbXgB@^<^ܩWmIHLMxӰ!ΈݝU>/KaMB. B.hѶ-QMbyt;b:5i*1]~ayBXxڧ|~ oc|c*R$|!9-[yx: uk .KPmM=ۡSE[hj{X8| J-o3 |htXI{kb; o8%Nٷdy9\1ҮmOCu%ރ70JM΃:?杘Nqp kϥE/TOteJ<,$&x<1v$lHGƌ>ԵU+tw$PٱŘ(OhMh3z%1!T1ߚ8OLzs`eJ ~|Ɨ6/Na *?RpA`odCeQ$'wWAȻ#Lڎsrciq=;_mU SJ}< }}6Zr%wfZΫt> j$K GFGc* 4B7 1I *f*gT쪰Yat$3X?2l275N<;oN^*Fc(@8{i 3>a1M%s`nWԽ/_ѣ:.]r `I8i5FШ\abίD- LjDAKάǑdUW.F5J^g?eg ͓q^^uovH@e65!b[9-,uנ8Hz+O7YS-m F4I-?"˚|?20A+[fA3z|;G?>~̼lLO&ѪMX.n6>D~P5w {nY e^ĈiME { 6򏭢*Ñd*$H$1U\x)ev4; 97Ľ/2!qTV_{-ÓV9l430%2Io{O4KUe~sf`E(3=J #'N nP` r p8vFIRev[nzPL.i`UMƔ3>CsJꐲ%1؝e_><0e`xRj$;"%?*|bdS#ͦ ϕⴡ;V۽b.)R :#}&OU O'⅔ğk HyՊ{}q&.( h~nK11}]%/(%4!9 M /nmmdq-H=> o45kW巁6Y/K\sp~* Yώ8qZ6NcHEjW^ q<$,ޖKkv׫Ѯ4[0k$)fM|EDz݇38Qc6qQ*I\~­@'T-{"nך(btY0I]$&IeR#Gei`~lRKP.;’iQFŞy'g(1,Lw;w!]U朄o0ШfʫfEۚfgrp35m_e<_hEbcSŲrV%FǯЂ,$7SoIE>{n_gOA6:[:R *?RzчO2U9PDmO /q sQP; wR}.uOd!J$YE%=Ώ!?o T9bEal:79[|#ak7kLGwko1[饤l/?߸}hD*%N3{*D߮ t%wם=\46X$ 'HH\B&pnP&-!L Gx:p# V2?9ffulM^YIYE8 `8U uI4Nf>${IJrfr ˔o( =P//jkṚ+ucJhOؐr(f$dZ[ 6'P0jW&}H{nP痫4#DMJLLaCo#)ںj.4h] l*Zq3c "ӿ`)4 ;ʸRz>O9d010k"br2lck=*׺IX)l"li!AG=~fJvaCvL9UƆ*{ RN}*$ 3Pl)u͸p}Dm#b"|,B-Ӆ[-:hH[J*hNt*ыp`Hi<_A*=`89!E(tT#/R}:4W;0s\*tPTi$g$6C?wwV=%>{*vCyWEx t>,䎪3CKmQy}5|N{= Rg)~,{(Ba+58/w]r]Ju(]0-V`xh3DߍxHę9-m,] hk3/kOJ1MwƷ!ԭa= a/hF.8{5 ,c}ŊTc-sBhb]bQ7qVaka/'}&z lpkR?#e pK%VWL**:昘.taG-0X })rcYc}[ ~O{Uȏmd0InYRE^z]rkDl'.#DM w_ja߿-BZ](5'8Pߺn{"# ?D}du?}3A:&zj ulNX8Pu eSmڟ>(.p? kp\mt8wFoI+ۿ< t֎gJǣ=ejۛrhh]0Yhe҇ _i{9!$l+ @lIEĚM:4QۋzĎ=RN5]Kw~$c|Į "Mk'np Js@ϮEO<ɧ.LVV;-0@">5D¡XΔd^ c7 `B׿6y>szVqS4 A>H 7 -nB]zCx}Ĉ!Z.jTyH38ޒ>՗}D˚<9|=),kJVqAd@>XǷh5Ĩ){FH-ͻ >}/u56f;-R+:'k;pPpEkÊ iݕΫmZoˉ<.S<]]c/fyXxX-v4@z`<9CbQ=BB`uy @o0Q't㴰d1ҒI[eUސ}TР<-#P";LG3ƫ2ڱ@Dx9/!={`Νf3+@4;p rTB)GͽF'\ڨ s1yUrpey@aq@!q朦M L}DUagL:r䐬{rvdl~Gl|-ib,Q!"b@ QFUr;EKq]3q\&\sލD/:^;zjf:ꗜdŹ ٛ;g]kVnMy9Xe/? @, j~IZp +ol߃|x}~OǴ]fŧuuÓb]4ҊOfr~SExjNfX[ϊ?<0.KR&[@?D7(A5Y‡f 4~Jt"e z/}FH47}H %ɷvOeJ`3x*.װ [>qHnkk%A"X9{wGSʾtpg#ϡ$l]p5^9^YR6+lgpwⓖ$v=܆(#| E#,]s3KXbIk }1ٙ5]@5֥.o'|x#[ ' l0-);ED71PP G+"RSc=SEh{%wW7"AG+6/]vMݕڌT@Q_NA4b [18_[Uyf kSha yV=<< 4U~Ckmn{DZwEue6 W?hl_H€eT4:TF fPd ځmOz:9Hdqfيq0Dnno:2B#tvWյPj?UNw xȎEE&t3^ćӐy{tЋo )' _Ty|yMɰ3RjxmVڎk4jr:pg>'=E `-m4C --x.'f?*%QgBC <Sc6ĴJSiRX'WX)x<бI\K.CCUasK7հKHkkMd; )}d"?‡Ǿժ"td bm|Z (Zᑲ1Hf S@~~@ņV8;dHǩ{ U:̼Z7͉x?Z%qK߁uR$v3)ze.a9.dewBxH) 84pU> |;R=x1v=ޥ?`QDr(H3ԞgGՎgA5pAa]lk*edِX|o4KA { ?hL&>>0ai][N&Sѯ8N6ݱ0I{ z3=ື1 uxwƨe5~^ Qvo{tRd$\0:#!%jְ=ӷPg|&E1siQ)t-d̿{X> ' hƱ2fl{@<քw4f=sQB59Oa3}tl*N-JASף9,^9hKt4҅ *lhL}3dWl>WQ I\A(cԇ4dbΝI rf揔bԂufsjN`8Gc ]r<=Q[x~&X,K᩼f2,OkB$ن ݎ*<@HRyWH9c@&<iTG-+c &Hijx ܕvF,H9]w륽.Ji-ZC´\:vlÙH7H&4CrI}dJ0ݚ>7я39qTcw)-F?$Y?456=eޞ-A"čy!.ɿ;Ҵ@:0a1ϴ t=:}9Ҙ}ϙta"R&w/|qV4ݿYm l=zW;acE5zQu)ZSem`26?xux5-X(p.1Wqn{CTa^8"M&,Ly{(S;~`#@5Н5-ăF {a#yMt.hzDJE6nMaV.ҙ<_J*/zxSIkj(T0}saA0(!<0ÓTB#cg23arvAs'{'08R]tBQqt y'3|$ԟV9m8s~kwزIѷ" tӠuoX5H$g!uPP̓3\py:hDOx \qI?~O< v<@t?iɴ k8tU}n"I`p㨟IªΡSPV8B#~% u6: vXz0? W& ]T ebKH?.K&L '3}Kq "hj iUhHc_Olg΁SsS{P;)FБ*niqr=wD NNEXKC gZ h8R s~+}`:0pE{"Rd1n'GˎJa:@2~͡Z}E{Bk'fL3d~q~ҙ< |^uuXv =W6z_وjOytS݁x!BKVtF\lXO<*&"ur)C#2$w֖GX|ȡpxRJn/XX˜.:w.՜T]K\7qcG!$e ɠ_'n#J^K" Mj} kCe{)k&E ]&J0;"V6jI;W7):AiڋQ<Yw5נ,X6: kELyӟL~\fVFbgpАlsCi ڳJ?)-ˎj &6av8DhR> C4`DB'&Oae[=nZLcv&Z7Seo0gj4s7N9pi/yƤ~‚QSCpBڼo v(L$n*V*! '^00e[;<~<C]!‚ep.%C {|Kyk D@% W‡17v@0gnZdӑJ<9f)p0P|b;/v vv6`DoA"Q$݂3ثFjX5R? x{i?g#d0/Y#Hܢ&jE]1):QK M&f_KT% ]K[]hA9tie̷ đ=U'As b<%|N LLއk,'cR(~~ ^Rw B@@voȔ/.sWZFdlzb,KlO&bqB.àwdefٌ52&"фaVytČ&)f%m]ѕUhS^ǤegFt&-\r}E'.M`wKD֚z34@Źu@kWx򩝰r2(mϺ,=Rxa?zK%[d;EGmH ^ | 5/%OD0WNN %9](aRS9oxYA.t_,1'<Ԥ} e ˔Jmc$aHf.$av]Qy>g?+2WaPK ;$tGZо:K>K c,tzgPU-dUB-xҹy # V^@QTfM 2ߓES4.&.""ʍ;KUb{q}#2?8c$јӋyeotͲ_ʼn#-'@qd~%fHUdBd濚d:btWl؋U_.7)W1Z͓6"MbOkoKQI,l3:Ѿ8q:jXGj =?H ܩgJƿ"kFJ7Znk\6wjufͱ"m[ ^6~]RngG ˘NPmDaAI&w͜b6i˧ۢkbhAMq\r fJ-@ {a~^д4̷5I8kQW|e<6v\XTP`;5#$7DF,ZNƎ4q%vFvnMHf"F=^s~3d)1J}A'sy"5;ߔ9PxE+yIҗq@(gXE_?ND@8jFvb49ñGa0^W&DQD7Ls3^?3qJD v,m|{3cGìoD_B_YٱU $s5xt+`. ) uKĨ1CPrH`:~nᒍjzûwP÷n5K˹k*OjMDr& Cc`lD3L]iH"fR ܢ"ObP3'`ԗoqx2'Gj!䨿覗HעUDe4-4mҨ&D[A!cUE8g/5עBi2P$hLR)HftRma+Fy@A&.R># kq(\2xZ*|B>)V|_0?!{-iB!0Fy|8 )1򞹳P-lfdӨwq' ߑ&0Q|'9UYiYG\)F5uwO~7FPH耓#!=( b> f'Mt01Ȓ;E1: W.FjY@g1Sv3@: `⶿|9ATǑ4f| !o;@6\bUY[iQHߤ@vC 0ܪ9RP U'f8u %B祹3_bw (AZC}`=V] |z`"-)| X8`֬Ad yiE-*؃(bKPG_[c2rx!Hxۗ`F:9&NKD<J rioZC'mgmy: :@G9Q$ʘ"tw kxvtJ8JrȠ.L!>0 YZAER/data/USMacroSWQ.rda0000644000175400001440000000427013033553053014364 0ustar zeileisusers]W Xg 0XGqŋSEѭQUDPVPktծZ.j \pE Xq( ygo#IHSp.k5 r[M. pL@3$q 츨.Avo# QR ۑR&Y>O_GDL[AxhWb݌Ppg(^F9сc\Mic1~Ž(N2_ /k &g%a<+0?}>a#0/2W?{<K6%;Ol7X/g$#?9ڹX'ws"? {wbOEIOM Otd1//+ϷC~ bp7 *Nu/ y';$z/TE_󋨿Eԗ3>Ӈb3WBe>S!W8_܂ud: _Q 49ԯhGRr lB ;hQ2V PڅP|lC~WxְMS'o*C1_9P&.A$ J~ź0^wWG^YWvuby+*9~XzήY-טc\qM$ߠ.9on ɡv(i1r2W5yURysVuuV~ލjjlQk&a^MYnk(ܱ˽E7-~rn%8#jpqb8POPE,7m6l1`GY7:SGP=I۲'|d2$Ao/$ݨ/s8=L/N,ig/<gn]S`O& ca-Du]vvZRCcr~VQZ޸gʪK0̹oc@:r6Oi JF\7f?[8 avט̘ >MysF|$3i@Shf}A\yÿy,Yen8MKN{fR\~p/q^bDѸ3Rn'c}Oڗ\ӹIn`OFy.x/9sufyB4?4 :t-[Y^%?`E@@;йw/͸ Wi 8~u B:"#HhE-SEӤe p4}?k&| ?Uk{Zw=a<rpt]P0[z[a2ˣL; >5D3ѳ(}nubγEa!|y{>j N؜|_&c`ap#b߅{cߩ̚,nUtL̇ _WȈvl!?EĄ'WnǩlAER/data/USGasB.rda0000644000175400001440000000235113033553053013542 0ustar zeileisusers] LW?[(̨ns12 e_y( 2EbjhE-UJ[hb>9% E禍wϹu7i߹5dUL%8Nĉ"N$D. (YrڐqP!W۾d,,ygK)K)vI ZJY)d#e[v kso#~YXOA^*0$Bԇ~`j*ya]-19tRisky5R7!mQok>: kOc ?FswEceE6ţ9 ٲ -gs' !9 ]GS4Ika^7xU(KE~N<_1Iyg1V|%*.%FɬN zK1m;Grvx_~0_#q:0oܿxSV!h#' zkAx~ƄOhQQgܬ?r7f@ߦ߮Us)ugdg3 JH8Q6AVߔh`Ȓ^AER/data/MASchools.rda0000644000175400001440000002411413033553047014312 0ustar zeileisusers} xTEp BAYzObW'aӠ(̸$ ic'ภ /#+8N®6OAqy[眪{/kSuTUK&WMOOw8IΝIK# ڴ)5uxNz"Nn~_R/eRN/Inz󩷀z+UoeMz7Eţxu75׫z\$)*>Eŧd)|OQ)z>Eϯ=G)*~Eů %A@IPszT-UJRET-sejn[f) ʔeJR+*JrE\Q)W<ʙJg˥_գ_կ_Kի[Spk nMAE,Wh*0UOj^-WOi^4ͫib>-Ot}Oib~mtZ^f,Z^f,E@h"Y4"4Vjn[VYjEfQibeZ2ML+ʴX-t{t{\>Z_ڣWMA'կ{[iͣ)@@jb%%%2S%ӡ)גkk:v<:v8zuxuxuET)!:J:4:nMLWǎWLԫ5իkWTW˫WT^ӫקA(h:~Sjhfavs஡ jZ"'fh}ifKb)HY K" BSJ.nUͱx"q$)DCSsxf,t+"Z܀74k01'a-|=*x0"EњŽ7i#sЧevo5Z3MOH ͉HD!$"s +YHLSHkh 1d(j9"2\?3(ɕSTaBS4nM 7kۦWցqLJ=MV7*+c#f }.Ԥb02P'87B*5fUDs}\¦UE" RY0OZeDEIQj }pSs~4ܰvX/_o] l[эFS$]Ccjg&*KǀEZ52̢ GuK"*(ƆcQK*͒66\SgAX{規M-i = stdLN6D'f-5S|Kg`L{tj>0l0/y|Vgrp,:+ܪ?L\a h :>lVc3R񘹖`@c|^|NDOoԆ&8[jt1 Mf9ȎR1{uŗṉHC tVVZ\ҵ:gWG5#*_tiF7U#:>7MnꖆH)PTkдñZ 5ufҠ<Pԁ8D"P̖Tg :]O 77&mԉDYXdM5mb$7E4\ע11Z[* ;M^cl&d ʼngj9Zv;#27ߺ]xB5yF<1+.?TgzPeoIЖpQ" pJѬ+eU_k5KLlVd($X4XL,3==9nTc*E6ٻ(;MDS5InҤFk- S"99 . EO32戵'^IXcʷTn$esmJch?M*ӎ`a*OS[*)SZj-B4Q[u,jvEiDX(L`כiM;. PliƾǼO 3%eZdN4iʎY1T-;hafۊe aRlێ]: ȔS6e8۫ӌ 5̴p>-'k[9㡧.oTM禴iD~R08:Qx9=GŽ)xÑ:ȹȺƾ8{G{>{]' 8ˁ ,!_ c{k`>=QR_пpnr8~ s2<3Bx@|4A,9^g"w;AThW&uB!<@9 4x?n:88'2{ rGhc w5v0!hٗB lm.wrf}C93Zp@GGmg*mls) c N},oa0*CfJx{ղxM8?A o:QʱR*GF%+.X]'Ix֨o)'ޒ}xE[`~W;k3o/ 㼵]sE._w!7&v?ʹ{%ݭ7Kv]s^"aW/ewla?w%M/=zm8E/V3]ig zMq4u:NCNٿӶZk:K[R3?H"ߍ0nroC hIdc.; Rhconڕ%#ebGM07伍/#>n'9-Wo~En [ m]~uK~kC>#k4æ%B;Ͽ>v}Xoĺv;ʱ[% XoQ#h^\+ 'm|Wɬ'NTC]g {\|i K 9a9'9>qO[ndwX{pP#gbszn9w&~%}9ğOa[qO8sav?#߽{~oa{A]9 s=//||3ȧ:6^!l% qM{OkIǟǧk>Wa;$Чk_qdq42>'Ίj8ݎi{WX)=7x|c}r~GQpO޷豞`8pvμ㱬z{t_ccsOBy gì kNc/&s`-˃3j= |gow(+,Ξ`wOkg-Aςږ u1b8 >h;îxArpφa}ȃ5 9 -]0_ nf<kg7S.}Cv?x>9pOJ& egwȥ @\5)kʚ 1Dy虆vY ;ct.-A>B\9PG'?=>zs&W2Fe} /:xq7k:Q0Ȝ @EsLN!ԯ\xϸQaJc|eDIdz]+Z< [eBd%g0~_ c? q k}كၘ͂\gAq+e˃~9/ %qe &:y6zl|Ƨ=lۖO'ןl8a=yHl?Km?Ħw>a?ۅNT*^plr=O+<[\sqbioGgq=` 7n7ͧxw:WDn[y"LH/wE6:tUԺieysDED3B3,1+'~zJyA^_;_dGxM.jNÉ('=b۾0_/ x M!/~z} X~`?e;QM.KO1KJ/Km%9 myrr{~lsSvdA?7كp={^zm Iޜųvp %csgO,_+cr0?c|!`\v mq|:N`'7luDy?= +I/;3uM.>'ܴ mC|:q|UqM&ܼ+#~8W[Kg}1כͯ'GRya >+F8.O!̟l[u=>97Ti`!^y_Lx&R-+9Ȟ|?|.sݸrc{z2O.v99l B`ȯ|s?xsdߍ$w'>gԯ|nc߰y>㭶8~~#|^Klg~Vr:Fty=c{y~yXkw`OMmd~}:G>=xv:|?7l^vndsdgm?g9{E|8^Y.;3g׏y<|.d>uO- #o;O}BuNa|۹}:rymyU,9U'Xjk<*U/ 3G *yf}s`X/և6>=9YK[޺qP.|%Dsmd6% /?l߽9DオyEWa]^.FMY=څ?cG>[_jQt=/Z.}nEa%ewn|h(uUbI݁(7xe,-[n:o 3T.D|~C *0mEtiE;_ '# /^!'kA)<;$(Iv[ ~*܋fi޿I6eW4]< FAE`!pS0 xbwAq(g*H9 . DAȇ몄";'o#k3XIv$ ;UQ]B.ϵ ͋o.%}]o0 $JΧ>cۑCĈ'#f qX^'-=PQn!0<>ˤ-ǝBk<:hTx PA?NE|I_ C<*|t"?f8F~bnW֢d@}R]&a|K03(pjg G_x(K<\c8@G`]gb=*J%ˌ+e 60QNIغe'bUyGX͹/ 4Yp;_I#yʐʗ wXNuEyQnHq#1/`U8_ 2>:hg^jvG36omtO-â6j]69[Y-ZN].FL |l$54>`;z+Xpr=Vz W˪o}V~쏅lx,aCv]gX)YT+>YvlikIK 8!yI'/xƗ瓼 I({~IGcu6^Z⻘~luJOٝUqqV|֋j!8ZjqfUqz.X>/iWۛA^ZiGq簶(q=Zg_v'z,W_Lv_nӃkŏ} 5q[}tX8WEt8_olkVZ{}ͧ~"\W#'T5G\gȰ>Y4Hpy9x gDeӐXSȗ 7K8T0W"=~ŕ'P?xWѭv:U)K$~eX?|Wy ]*/K]~zVMG9r$}K眹h#G@S=Gww̡?D?kv} 92D?2zVi7> +)Oy ʻ<^ +WOFy!; wtIsɟWt+o8 \ >k%1 >[n_ >@K)N[hƣK|4/u(Gɮ VJy*G.Zq&R/+&Ph.*j3{XEz;}WE^)}GTw+{[ҩZR:Yٗ6b ]e_hv ༧VQ|џgb\U܋Xyco`\)l#84{;ũs&6Ə跱Aߊw#ɏ?1{t*9N+:/5 美us3 t'ˆ;޵Q7Rj%v+ X{Q|W>;7#}A7;;XQך/ɥ%c ~|~)3|8<vj3?K:3H}8)߂iKkC>;1kM͉h ghM16K6&"jjD1̨Ԙ%ئD9WNXKe˄lvᦚx"@e d# cѦ:Zb=~}ZO_ŗO-O꺗$u-uүKP7yoR<~=]ţugRWK7{)/C]~oԅJI>%`OxttS+'I]oS<%9?u.1ţ[d7x{u S<~md(d(eg\/1==ǸLw<<477y47\oO~Ej1T~z5MkK4_rZVV6]ftWfMsws57}M7t-\/ӵg\g:tfPX65po36.@w?\\tAER/data/SIC33.rda0000644000175400001440000000121213033553050013232 0ustar zeileisusers r0b```b`ffb`b2Y# 'f t66f``r@|@,UnC}\f,Ic4vP@a.[ EߏzaaM)@J П ߴ+Xk 80 hK LOdaDV?*Du;V@ij3ArXl{Aph*?_'D]Y; /+b^딇`k|@PG >}8$)ݛUpH,qQ ׬7i qO1/.Y? 0C 9vKBC-Q +Ivx93a9V=_kE&px蛑qoYN 1gAȻӽ"M;ì)`zK$Vn_YaCܷj>GOy@8BKK JK`JrĂ̒4c8J0F01acf09acXBLp!egY&p)egYp#Fp;v0an9z`'$B&ȕXV < TFtAER/data/CollegeDistance.rda0000644000175400001440000005747413033553037015525 0ustar zeileisusers7zXZi"6!X_])TW"nRʟt<3n2usGb\N`7^:qm@>Mb-4'ŸD&J݆9}2rpOFEHqQG'őԷnX;~bB`i:=O.q n>LxK`s@8֧X5<(;Q"Ozu7XP#ܓ6t`X+l:.\1A"'#ˣEb=E?4ז7 D5/g7[$[I?eGj}hdFNǠͩ|pbbJxq@˲9?3T-߸!r j{Xꆡ cX2Ii,P#n&EVG b9V[38(YxjySXf/[bq)eDV$c9#^ (!YuUR~,t'ypLu'ȅ kU l6'K6rצ(q>mAчS;Cn5}PYL.G>:j>tVv@XPs~mF8E@?cM1{$dwWW=+iyO0D[ s:,ǗqS4S!Lġe-~~;Xr" x9Z Q$p"L;,UfQ /r+וn4;F;z(*^T-\Wk2! O ׸'{ɶgu}G}K@3Rn$-+$_3n`N Q8 {ZwbA;_;Cϴ|*{[u]̱¼:NBiTyB(Б޽,B]>J=kH^\bDB_&~(Hԝts plV9iGvb:_ E~` <^z1T˙4@ޱ9&ڪ#˅<]zTIn}!ze[o:mC7pŒ{$З5j$%#0 {rG\ۿ.g U_w5-6D\ţhNBNѦeǾ9^AЉ+ T i쯦;|'˅28cŸeEJ.|hMoG\SE/:qEN1!FWD`P+- ȉ%HoJtmBD(n2dn lml=-e>|~ NF ?0!t W޹Gt#:azpor[(˪G;j^wze<'S?܀4MEe8\ɥqnÆ0ZZ[%?pA Ex.=َͫTv,R3"ܮd-KӘ-8S wg=/9|{]01#-LN-?cu:$:77&|SvO|/|? 7=FaDnß7 uBо I֚%Is2ڋ8#'üs``~ CmkHMeWܰyDah;㏀KxNU9gqxO5~mb!jV}_}s׾s6bg撴ͤ%Prރb\wK27. )wֿVwd~e3Z(н\`ǚK? Ǝa3Mp2,̀ȢR}]@*f%N4:zšl*%9Y5;ivA\k(I 0  6C<-'.>#K4527MS={іZ+2‰}$5AXe<$Qŭ&Mrmu0C\< 2ēҊKj[qzR mBcDS-kݙn<#o"JK:uYk-NK);eHXm04[oWvNR!#`2v]棳Q$mSRp,%}L""ݛt56 jRsSn{HHgL k^>吥I 9F-ZYQ1S}ʝGpZR|snAn{wbA?LX; 5Wu}Z OyJ-UQݼ qTR4R|Y*~zֵa2fS4U$ "S^$ XN(g:HCͿg{"ͥ/ -'rm?"Up-9`' ZKI:1V#˟50T!D*,횮 =n\~SƦ{FGvFOgIX~`^j>|Bڶa7"[Y+_`H \^yex]hC,]w7ށ}艢Cxd:K[Lqi6\QLv1C{kӘ~=DM4L in\V[9xh?N_Snp"MaǴB>Բ73 ,s.2&:.ɣIvK\MkzEfu|7`WX}6xZ/JFX7V0١XYlF?Y`L<WHR.$Hݭe2VE\I$񤈦ZiEAQCȐjn C\ )4+nH%))x9uqcge8ƘMXyn?POo^|Ą$$xA7K q΄T$wvPouZnPa/2aB?+LRӞ8Jp҈@CX0)z0e.'x@V;U>.J_TZ/lVBIB'.L ,+=^%(/P{Uvhs9W'4?FC5ﻵe-QOYc"hZ[sV>HCHty&fY$FRn/|nHrL !W}+ԂJwkf];ς9{g oļWj->.YJk-碂{o}Yԉ+P Q!/ ?Y Ɲ#(Z8|Uz4|V;W.Pᨴ%Wd,^6f/{89SHS]p/Ye-PxVb@f%L#OՀu?c2yKPdмrמ)1Imw]ٮ(BUKY'[󩛊l؈#x*JNp!6=q8#/'腸S#>ـĒcrەT+] 4ZYVxIU_ gNjCl(5渥ߡ.@J_ї}aN?I,6N 9d!eBd/Fng؊2E(`-BRj wK}bwuNߐX{pEd]XGmgSlselx֔ךN;Ӡ;&\oKm퀬ҩ-Gǿ9 ҶhTT;^qpMJ!4 l@jRI`D+?cfC62` >N@?)p/ڸ[|YL],(5nѲkC3g m`h_6eϮylNX" Z[8>}q? kDi3|5Q0wfT+ p,Tp1[2r_4i VgÅ6"Lyxk6]Q+ϫs]Ru_,P8I0zWCgh!fk1;o\l+ՄJ7,9gVlN޼LrPӉ}%Q_THW^<UpLOڰ-9E?yF&iF[Eb>Hf6pPk)~o_q՛x֔)HubA~O|" bW쫌 caI8?ht+91 ek#eWo)U)BRKaT {fQe4P?k\ftW-Xˠ7z=J]V/q'/X㢕!ɫ1,,Cgz5΍ۑ b ##J7f0Tm$:'*'!ݨK?b5R Gb5-LP\jd(a46;!H˽_ kf7ҡMGeسm r\2:,\1cuOs/' 5߲z)."fFuH~e\+s/ϴ~ ?&ZMd7\wy;?+-tY\Nie"eu{F. +T#}Ru(HŽ7 Kaȶp/O$U<{!l_w1?ȱŽ߀#9!T秳+p4Q%n /<=̐(حV\mAgNQ_j]Ǝ%񺣬M'iq*fzL//ڔq qwpbpW8@ŰK/wCk|8ޘOM<ꗅxf6AW9lrP't:!>Md j(:4 "鈬R2дL@4yMc\1'T S`= 7կh vˉ.얞]!?Nbׅ42h2+08+e˿_0;4 osϿP#h%"`rP2B,(da+ pRbcQ{,Rm8f&ݳr 3텽@v:W]`0ſ$`Okp19HG.UzXq㇯ /;K& fzMXb}ٞ RFѼ?oཀྵ é*xL9\܀qRa:%u$r Z2B;e8@#g%2#p0Z20J9߂_]x&~7=DC vȭ$ƙvv\wEg',U4$LfU7)nJKMmN` [9ʛUJSuhwF `Q8+%伱Z Ί@ vgAxȄ8B)|½ёMOk^1!,!Y!X7nBֶvȀT31ˮti"=5Z)x AIja0tjdF#?uSWh;" .YFD\1QڼU[GݓZ0bT 9"\Uzz̖78Uj䔓:2``r(a%~"HB-Bf+gw4|ɗR =ddKqϷIƠ!C \S9(>֊4@Ώ2$E4Yvu,{rp }5=6h?_νeLmX#^\<ȼzP˔Ę 3mg礠)gx*MTU.vvVsO o)?$5b)8By^/7eV!=rJI hREv`i(\C@{ѐ%N([f4v9$NAG7>Dm7*u=_y7+$4 VOc! ,wX&/GռM QG|ȁ!R1 FbaWg-HJA] I׾9*By ]HΥk]*6+l/ԷgMr̡M(x8Jpo~*ݡLW"Oo>{V V8N3:65%?/ɍc \e%g {4 aiBtlh3_guHpX}QZ"$;e"HX<6ޯ1P>\-T-}"nF J}UO?IVJ]-}KMdmv2 _L #68X)VIg4ֆQVĸ@&ZLWy80vXF#?)H8 y)PN>mA #xhixjn75WfSl- egG?1/ ^|#B*%4{T ސL EӖվeΤ9bHpY@Ъ[o}_ps Q׊U$xg9S aq#cΰkǛul:;-}seRfXۘ}zp~duibwR1>c)nz|YX6geʰ,|OXQ|3?9߅u.Vjy7` ̘kūY^kJge{ dUs?RήyUy~07ג :{8G$V :g-euT?њiUJ{;~K7u6FqŞ$+\^7%[n_ +vxAt @ؠi;A_s&dh)lU1"WBIwiy,Q `hQTn@LC7oRی?-nҭéw39z.JƗsKQ6MxR۲>8ZD7:JX'*xAE b( -uGDgF1Se:0Հ~4f7!1nzߦ' & <*5PebZGW}wVKZyeY@ex1J~>2'g2O"+=7W`RDLT BiL@}6 gKZ8p8Q8uھ1˜'cW4H/Y$OFdj^37p]pMyqJszCp1.|Bm$bvLa7;$g\Vj8p9h".s$0"5u2"[Dio.Z #aǬ=ͣHe;m%LxdgOe8ɣ ȻQh:zfrQle,j:\Y<3qO'w ԒV z3S|5Dl(,[htp]DG 0YtE?)/H=ilЕ3A)b0sէ$T89$s!U Tnk@jd.`gSI~]`q%4mX NY@Odz1ȿ` ņ!zFVT{kQTҠN*,e;.wTp8df=X➦qq xfT%e&ow @p{y )Rk{l3 1Uxfc \2Xֲ&ӓ6fX g+ö-~CLFv0J qrmVRU|q -;*_Fg_@yHk\=l"G~"7ۃ_~AjE)_0*8( <4ZQy/ڋ]\"gPT7>[k|)X*HyRvw$ژM PZRK1N R6PYoxD/x@CÌP~aTT&mn^˖#kD72\pu$21uej*:19 vq9<Q^w75P[Co"g{e4ږ>%x8mJAlt8/T)& S '%#yoqsExC ][ >9=z/ڂwL7>TnD"y-YNΰ"b.zD08X/ fZ[":u{@ vh|p,bEBvbLH)|1wG >H `ԑwʱ9}PÃvuʚ3/lX d_NXrYW.*|(WUIG*?7bBX^ou-&TE9zbشn 49)+ism$APǺtxUF3玭}la mQWۘ]tCM3lPU}n_ SsT5rVGs?RF3GiVIk0)ldk@df4)nߎ:ɳq1`Z)-wh<4-6bUg+쒮 n~c@' oxjgn &#@(:tkixJ+C5"}q*)~Oeޱ)a @m-So7ҋ~}nkRۡPJ_O7yd6B#WFQP4ĔITt#wOvOx˜JfC*\rm?6#$,F$, a0[7$%]vi e V̷ldpT6j$%#Ԭn,>ހZrEBޟB nuΥ2 a/Sߨ?U Yz Ac]y6@CD H‡,BIJSC^;1!Yvf^|^uG v 0O\G<3\ rQׂ'p}`٠\OmSt|%i@V& ߴ*8(F3d4Jornk?@(NdtXA( {P͇N{~ՑƚHd͑f]:_CQ#)‘"JPp8atEF=4|X|mJMTTRyd 1c|]qǤ(M + JBnw+=&S4X_J 0`%qyben)d1[ _g !BeOܠyb& @IQ<ѽD$G1ځC'_]QFl/OLO #K6&Qgm8h40P(dAv%I]TBѓ5u8=6NPj 8MaI1C -O\$coHKFLY᣻\\jdEh~!PqA :3SϷ!`ݒcvެ?[T!>sKq;tzڈ"m9`) E 4:@ +#pjI7ʡsn| `I_\]1鳬7E~rgD-8固×ؼ̂_.Qz#H3U.o"@?H^ʢ"H4JXn+,(gMaM'sj!V>5&.55l=nb:~y]z/,au:~isWAۖm`uak5*ļ>цws^?$)BmڱrR߫,>\ p[nyuf VLٞ^PD(= ^zwJ†>1ݜn/S s6%qW(N˴#j`An^`:(mRc"-\s6cuV?pp[.mZ@m&HdfH̬ 7匥C>Q_EegYWp[Ԙb·J4sb Z2]T!{u1:9,Hw-̬%Jgev w7VGr7[k![ui["v\C`4.[0AaHџ7\y̹5bȬwGH$sSE~](>N;( _9sgc4(\S 4Bi)ݔu)3$Liw1%hoa%؀q;$ 0EW6 J1+܉,7P\E% vi5OϫU;Bh\<5kJ_w:T0BK`ӠeV@}ssg[^3R>V%$\TJM e=/0X nRGL0yuRF6gFL'vT [NpXx+o?W'/Zo0Ѷk.X \?~ >˩ g*340/@r7` QYc[2i;s^ovӾu5c)5]n7D$ @:U/ B+|>u8|&6%\y |֌lYJ(fh gAZ C߿sZ[$P%(Q7F?gY{3Vamf?TaO)xx~QܴIrDقM)j27Rh#:|Youqt@:? E~d\q/xS>]}g\W[;U^R= A{${jLuLW"MS1D_Dbבg~ڲ!k<D7m=%i,hfakߎ z:ˮm;~t jڪ;^p\Q_[Ϟ5i`x۳S]jAѴSnN~8jWC;qz;?A@DLu=MHh?^[}5~ (# C4t }\\*H4x${_ǥi~n?neJXb- NjLFDhgY6 0{yj3*@cV cF weydL$fF?F2z4EesQ`~gnc5{Zkvٖ`nW}N֒I7Lo'o>ɖC+!ދJ|\u= \BZmϥNI ~D@r75~Px%7 $daorlb1B.jva^Rc2NV *1\Uۼh 0͞H%-XL if[:e>m>H+q0LȞ!K'S ~3)jzKf߀wh6Ž!N Ϡ3J,v[9?$k }'5}p#戩 8C_{9,tsWY?ݙ9:ם!Ր,o3ЈBrҀ)Nj)ށ]/AFߓUv)!_gh2qc+,t_3]>;`| zc~>׎?B"gB _>zpRyݿI245k?l;2 [ukS )k~²!L}xsw„ o*QC#sJz)w~nڝHqI NA=1: mz§"蔶o|Ώ^eRD"ҹ}Lٔ٢}6e Z}u o'~ <@9Yݵ)ByzIlu`U<$4zT<n__ʪ w㓜c-Lqdά^-"e rլ9&=אDzbG_gJzMl8ЪW9QȺ K|/[|6ܶfa}{xFR]N`ksHatKXC+@S`b? /hXdg\* EQX R=-=?L(zn5Ɏo~XuX.j*@;aN6:px@mKB<]aYr Giko mU y*?fF=G7KL}J A ް|:nNʉCD׏tu w<1f`kE%gDD_1.iڤ2 !~JF` ŕnNBgR0@&Ovډ d9((W_lXVl nU"2M u% JOEO9]<^[Nu6D@f6Zșk >kϥwf\[Yv}6\[M]tY: efus0ԛhD b5eK&AxPH`q|0% ipb}фj$mo@'c?&H"N$jS,w I zWНNŀC>$7k q0aol3 Ph Au٨⌉&o {O?rn%sPKI$!Êd坸}_ o*D-[^$xC<( u]?\\C^ȏ ܔ9*)6ZTyK/4Y; T k:m(3|yzaҀza0DI-]g0R~[3I)D׷4cN$vƛ,-0ss}cMY)TۡCe9~ĜVMb| =*p`7::]^`Hgh{BWϸIDiee K༬T'B21'ԍ.\^:2g&O TWPD~=ď%28f'eL^S^E C9)N9A%ECXLNԀ{'>&Uzb7e> ݵ Y$do@[X$`_Imd #m\k+{}S9,7JL  =V=R>-hUia~X6.4mN@RA#FKr՚u%3Vvԁm)-Zȟܦ`$k_qO~I(,* 'XϜ~"YamPvLr2vdCLGT`RVw!:E+2d(j(0J;*"+*dh_ոDCӟ-ӷ'NBPY`X\E(ӷ1|YXARK-~d;Q,1Gw%"{kסn@(5 Ns¶w7% 2 ot\_6#GĹ6.Uع0lz2f-lswf̪o;hE;JeB|k!||vp OpX*z^7R pU^̑ &~Uƞ&H_(a*LoOfV4wȤ O40V+"̈7v`gV2(ע,)$!%ze!D}Xңhi3Gɯ:$@0L@V|Bɂq:qenJa4j PjZ>B\jՃZ~:dcȟ6)†Kt?pMo"(%qt|AI$N\pEH5Q ԣ u(m;=(*\\qx"AB;e0#ŋ ţ\Sǐ! ;dS`\+IkH_Δg狑Ay"7À < vMYj4{!spnZU3s`EXx:xLr"5-8lfz24ӐUw)!ғ\r_iF<~fCjDv@.kf E@ޠvXAOs mP.* ,ӈL' ;dx/* ꭐ>7zLxKnH#NV~R7n1݀=xCiKqQid|E8U%W"}3w;'%f0I`S%IXy$7.kE$}tNY <+p-]^*Ü{gr)NC@Y؁0C5N~SN$W"ƛoi*$ ÚN%VS*9Єj [dYDZXDlhIY%ni֋UA>GYJF]y )n"v!ݟAlVvyLDu?/8'ƏNѧwf"RO 5$)4v?KFEu2:RZ =Y4Ɋ_& bhtD)iZ|ƾeR8;׮=}- !kLXPؼa-_pө0*|̂BR s 1qFDmg/gٞo%1w] ~>n70INkؙh)Y=cl KsVA5qDJGN $,ZQP1c>]og"Ҥ|!2u"I BY80blaλ89dx4qQt^D3ge[k=f=m>*P],Rx(5{;e X%6S>[7 QW )&h&i?M?( jFwXV4(G%;^n `L%8{n0s;hAT6Hۄt0;FS{J2l'moD' Hg7m> Ndk(x^0m4Fk_'Wt38|{KIj>="5nYrK2g9L5mRj+XMP+Ux5x'yL/*:Jd&VoY FGBWm=e[D1]p e(ƐcMw˅@0Pe">.:|?oz{f$2t%5>k/*l%=!ЛEMr<Ú2G+L2+!@Ur!un3V fUs 1Ihܿ֕RwH&Oy)C)2^e}3__C#q_ -rSXTޘmS+ Ն/Z$zOMRk*[锿 S:Oe}kq1EPel%E5r̙b}x zɶr8 2V7Q>^7o@?e+~ JD Xeͩ2ɲ c`N+_p5T˹\(-6SнK )|ueqQ:!nCjr~͍}v nTWXUQ췯",dZ$F~>AN.?v#Uc)J{Fx;sbg3{M bCY"m9:]IuN\F3ʠ 2鈀R΁چOeL*!E0(;nu+J6 ZM98H!&qݑkP!K 7 <[Ħ"XZt9sK*angRD!>w=X wtZPv m(c7d̠ϰM.Aa-LF)|2Bw qg:g7I E+oy߁KUhNQXd: w)'G.BvT srU)Vky`Z#,ѧYG?5ApK  %% keTWnԽ?FxmHfWiC~ lZEr_M:Tb6Y 'd|$.HD*ȋ+WO4}MKxX蠫7ǖ)V1ӰV1Feh5h2cpTXiTyugӴKʨueMNџ!#KLO6=iLTZqÍPMgQgt[s#sMpTMQg#!俘p)df¶}SP;'Kel)= 3ʻX a-mdj.@e{`S}jsꉺw͙ԵadW?'6vW8kL zk3"M홈}S{ei3z,wZӡdm:W-hOWR3\b%pM֑gRMgG'4=4~ ͡d久 Lحr`f&<c+jh9öuª-sv& Hk,\Za+Ώr^GXLrE x^gk2>[&o$#r-kITAKE! {XB21경vYXuwrltL60$hUews #H$QjF-SCoF[P_[Q>K:~.k4\$_z;~(u">h#z7p):gCh<¶Y> syGe|&n+BY[>sVߢ@6[WbڟamnpB&)+Ĩϒ :/Il+QIJ~C#Q^f#/e7'>TK\ofHqQJ?ƹ4=vȍ#ecnH[ౙhfG[OOxfߊŽqyAQ r@ qOHJ)^t3L?{WA~6jo($6 u:u䶝aDCfe,}:oZm^>0 YZAER/data/MSCISwitzerland.rda0000644000175400001440000003451013033553047015445 0ustar zeileisusers7zXZi"6!X&69 ])TW"nRʟt<3n2u @dgTZ~ .r;o'?#pLˣ'qwdZYSR?T>dT0y|@_O6m:{^xad=?|X˜pB7Y B%CPPR~QqNvQ3JUn(t (/э =Jrh&3=Pave)QqYM S wQX:6y3LD)S \S#"QI a:㌧k\&BLw=m};YnH3mQcIwIm{ 8a_]M µ{VPT7ssbLK↎c& 8) |МMiYhY]=_ŔKT{Og8kўGǜ͢~̬U&u@grKfmq-sPwpkcH!U᳖J4 Y24=P_|saf+pՍs6s>7ZĽgY’gڪ@ol9>Ui!JGc>䓓9[4>W'[/XcNFZ̾@ 1,kʖ0w(p0$_kⱍ$'ђL]^o5y|>0Sgp?' w-d\ $ՉEO#2jKio|Aѻ&)f1󟼳m}NNCIb뛉5 ґٰuqhg$F6Q,TBg0J^q~ PxMfpHm-?@ 샖 UA*J` FkF6q@4/'yvcewh%Vs#iF.Z4JH ioٍvBaEǍ(;D|ǎyKE0=: Rrv޴_ @,#ǪA``q̗i4A%z{V'% 93%BNkK>'d.BOӪ$~S̃9@d?fdz.+e4v̿X^:%ٟ^, U"L< )h6`C +hls]FԚuF )k(FxM.c~ +sqnсW% I\9&tQ"i ʌN0ϸU]Fe1AHR,T=Mpqʘ+7O}jd nhqYq0!ukQJɚ Ext·oAqQ+j<$?-@T59qܑ+@J;\5,%1Eȳ-xLsOUvG;M-q:@;?m10 qVsZ7j?2TY3Jqk֭D 3ݳT\MExE,GB4{Rp>~Tcщ`"⨞k`<- ڍLà`œ\\X $lѨKf.@qU%XIhe5ej~+f>[FDV;@8n0cqXy7@Ҩ%JBʝp#CL hLFPE T^V*-̬9~[wI+R:3vBLː")ͭ~7޾m6dxe[tؔ<$3[F`xٺ53ޡu}β(Foy>n pUn+)blb|p[KELW8qd yC8-Q5p|=y<ƣBh|gf>h_hk'8!Btp,\ZN8|u+k"OtInmDdJ sqaMߛ&H~R?Aoc %Yu~XWI:n`Wsq@.ocBWyBXUD-q(;)"/G.v\%zUAWP|ԌFoZ_tA0=Mѵ sF2f~Amʶp *k%mp]_t6V๧z ; 5f!.hha+~o!;ntJ_g.E༩IYVvibM34rG?5㖓̚n+UXE,'ݷBH1;e]ՠǽ *!kn:wu{[1l$uB=YrM?/f^10i;|F#Xba$YQ`M Ӻ )՜ bqY7]-pM\Itsb;5&=߻R@>|kH ҟ^IR;еBNJ/#QpSH^@٪K"ztcH"5חz-j:wHPju|88->({4b3.dIJ_N N^_9R{{T@ O$(!{+i$ 2 !PMB?#Pwzut =L|{$դQ^ÂCb,*`K$U؛ ƌ,e}Tb]b` 8!j`xޕOA -o1;<xR}Q\26ɞ7ݚ3;J<2ٿ1qqD0)[猿P1{^*)S/~~߷W94bMT'd/Ȱ}uOd `q@F (h;$;a{s6rV@~I͔5#9"G9m2#1!ڸCK<J?9AOs&.3é+im{DP6Ji@ܥx_V.FI zP/k>Jr7gZqhRٲ?.+p=VSj bz>Gz){X%RsގFoM92--;>:;ˇO;ۗZnVcL/ND:=P'jokŪ87/\ާd{yU(XM4x /cT5[4^ll8iHiɒ.m=5mEtUZgg4$[\ qzuAW 10VHç6J* |?ʸqi}A7[8cQ}.#kP+Wz g]H^:D`}ӿ=k~MΉ ٕzO)S[/fwՂNEwJt.lLʎ\|R-bL-ph]HB>ac) RaWv>i:-׊QDRVWqR; +Rh4TiFk*T@$rN<bZHT6_K6T34dLԇ)niq(LOW=_Sd[ؕ';B8ɍ)+e(BZBQa;9{ xۅp3]-˼*hoPRNL9TZ9"NJz( Y_)<{Ib4pYvr޿[d [W(!B/xqeY=?AY1URE}(ѫ(}5 ZaY(UUE|:YЗpȷZd Ou)!$8P-^2F;`nΉymaE8C~mPkiVjg6$5PखT 쯇p " Q!S^X_mY\Q`$Tg`vK,y  Z02^ev2bKv0 f&f`iJ[R'4ƛQ'aV6";el.~ v@kVB.\P(8jP fUP+}p|sD3bXZmXEh9gZ5* @=c@~,%A xeQ ǦQjX"T񟦧TbXx5I 'aso=Ɍ8> ,$GM#::wX ^IVZKXE`fszerCJAp#1'ы O$y!ޮ]j㜖Slwޢ\aǂSʳ>0xZW= 5lKd}HimMV*"aFک?s!m9?7^"A&s{;'Ds};! jŨ$F9,ZEE!FIzCWdOaV ?~5lQc+!qջnv* 0cQ,/J63f0"cyy;K)Y &VE!.F{k=23R p_yvbhƬ'lJ%BD(!VEMY2pv8iGư< :`6r>Uc^5UmyW(T vK֛?P~[U+X-a3Eo}j@jU_D= Hטs!);~{,G KvYG+?dP1 \]̵3=_>x8Nj[+Ac*! q& 3ɜl'JvHBK`ѵW&pݏ^î 3!X ]ax9leC7dWXIAR==뭕;P`1 nrK >؛ >į]^Hd͋NLyWY d$gRB" BM7H s<+8])#Qc26^l竝,z:m}iNJjj\)]0Spk7Gn"=WktBw&c[_~Wf_ t;5/(^\EʴSRb_0PBHO/F*󪌈; n۪lkV*5~#<IL%_h[᩸H0v#&x%m 8?=x# 3eyZC'h\$KQ<@ @{nG^!RK⮀`^pn^W< q_81 ,.pDXт$ͧR7G?[2&߮G~Q1KڟIoV / ^<1{䩴t#u3%lsR̗M]+ܦ v1.#%32j؟м{(sSn.{A*dma풑p YhSH]Ĉ)48:*C_:CI(XIϷfKG Кvr9\#lHlyנlo*ܬFgT 3EgJQ_غN@,PKAq=EѦ*:P1]ڔJnoH!/w4&0,n_:zotEB sUpzK2 Hk Y6OIt|jP b@_p<J3T:9F`}%ӭbV%Tϴj%|%l,%7K}8z@E0YȂ)wyFjS-<K8}ilR{c\{*XP\r dS@ Hbםi>mXjXM,Quc[?4c5Hur= )kw(QL0;BEgɚtCWs3Y]zү̳=|WaOFWH<@ 4R ,c +~ڂ7|܁{ KT*bjA8'v?nCm:j1oaNAXu0^ϒ8ö>yrGD$H,&ƏKnd}NPBF"7:[, v4fԉG_^p!VxO @<Dx(SGZUyQ؇?y\dQTc(jt>365*hًDivofԳՐV K'myYߣQvl$0lm@Ti<|kA3uC"F4nq֣+찯)j?lɼز)W4 & )Jm 1GO&>2q)O-9l`=% N)vb*zk@X^w>O3(Ә>EލL:홦!h1s$KzNg,|@ĤpPEsEv0 g@[&fXRKWŮ__Y=̰U⣞apV6` nIքJifZ>QF8ײo>^@w %~#&9V+injDؓ2wFC {́hiT^?J;3!W|)ꚕv8k$h)~>)9sK&ѷ+Ti2+*wfEA3ζl~L o3'?Sv=-#gck:[BNUB4!Z,sNZk\:t %&c6FR!cqOo<*SPB B`tT7o()ƘHjDmP M[Wb?2}_uYq&+m\qM' eߧƯ2(]Ra5G͹jB"6}&9zU0(1%_4K:O"ڻhF멆$9D.L*LN!7فQt?+6Ŀt4@'bkөsk䊋ϪiՇh(~9(*&>"161lQ Ga3Kj Rbdc->{ثQ@}}g ۣ8:r$MNϸU۩ <㹡@vZ%I3@(lyE &SAxRG\~SCom\fJaz={{ofdkc9Vp`)1P:Xrn-;Ϳ*FP1S3;1jQjD"i+v+(W'c0ȿDúvǏlhQ+hL@KTAf^UQ L_̆Fbյ7f"?јS"L ?i>W7@9>YLbU %[Gn<8AMKTuw@u7T)̷ ^>HNQ>S1nֽ"-AY|33-j|sx9"_nyW^dZ̼*?%HˋEߪ,IM="DT 4oޙaRdq#Ix<e.%_gת?H5xjD:lW=F R6T7gxZړ7Šn &4w$qF)e32!hJ1Y?ΐPўjMF5A)YD"CIoZ]}n&M=T߸6c'0jZS_ /eO7"1@e,m*Ef}zmd~5`}69gQ+ŜH,F\#CSjr3įR(XaG]dyc[W^Q/ ަS#q}{(y3\#&f3]yθL[ }GH]/EB^:?.&vƣ:] Hs2< ]$뇈^|VLC1K0J! "dլb%iChjdz*&)$W'D/ t'@tSqr_SؓVud^nC4GhK9!DubA旪Ж%,!3ÞLke㴚Ga3+#nK glHc˗)%Ph6S, #c o]}\"uhۛ4y) \AQ,s>)=bd*"sM,k rW}y O1'v~ Y?"w5-A,֝ /M p,n6Kq*Dz~JBC;3K9-k@`Ytexڣm}xV&;mu ᇂl^e% @Jw Ev3{!:dƜC˕Z9E[r1س>0 YZAER/data/UKNonDurables.rda0000644000175400001440000000101313033553053015124 0ustar zeileisusers][HTQ *QԓB0aHN063bf'lFKYSLS$($ ?Cu`G99i`"(w,+c/:Nq"!&IvB^p{i( Aq?xvCA4n(}0P,𾂊cďB<.l-5ާJpL| .&u5﷉0}O0 ߷LO-ވev$[$nO _ᷘ_ I^PAER/data/CreditCard.rda0000644000175400001440000005631413033553037014474 0ustar zeileisusers7zXZi"6!X\])TW"nRʟt<3n2u]=C>yEZ$ݘOqq[#g$1?oju=1&%j'^ޓ~և7BBz+f+wl@nQ>>EvY*g!,J51nb(ϥęa1<{zY*M"=߭LINEL_De{A.|k7ìTq Yi*K*IH5 xH̐I1qN~K9ǶEDct ln@'b?8i{ЍT͗8m[ @'͖ K^ c9*o걶Rba RBqJm ̷_xLGAyj !ڧ\w)˅?pf;礓XѠVasZ'H<ЌR^QL3y/Š/b\MtK'S ED|wzS$8Ҋ=2h/Kb5mS9+7?սN]CiBn|te@L([;C3|in0ûzR*:ztǂI/!#N_4Qe\4G2)pwJKpb>,fPw|R#x+@ц&/a6fQ=Oֻ7+]"9t)yE N,ggfhaj [`AIRݞTid[`5*ǣ<:Zrl.zP_8rUX"Zݻ_[.YH cX'lȇA۴ڒ ' eSˡ{(D(4xUFd 7PaE.5:r=vɨc9(D oZ/k#볔L/ų=4Sv*m~GFT{QhY$qJRb>)]4JL"g SmB[{dX"vU3`'1v;3Lh>8Ľ(b۬]S:IOp$Knfƫ<\ථ`'8?БAJ1@I 050:oRc+SY(VڵR l΄?Q+4TcC3h-Nԑ_ g]dlXM7j+4ʻjC@C ޳ep;fׇx8lD e9#Pz )${\1!V: u#.R\m5lM5 _^FnB8 aM2hv|Q;Qv1x91?-ԣ*'"3u#\|KZObu3hխEˣ;0ϾsHWB/*%qbs5QaJV6—A^_QSW6n, Bb$qv*Bk@m8]1fY~UM7d|2MT}1A(Fyt|%4G/7;lU=uw-}4W;S^-F D$f輍?=L fM_Hw}4:+FCޛ tN?ߎoGN~%)7ǼR+oɁOeN9q> *6c~:6Ci|J%nj]JXlĶ[)9 n!hS-\Kg57f#ݛ J0EH6`ـMo :bk͑ȵF~9O/! IctەD̕ ǶWԚB_AMI$6%lJ{Z pƚ=_MWDTD1]xJ徉54N3qWIT5tDy)(iLZCpHGx#;g{?MD)Mt5^% ̆zE1g—: %dqaS=_WcQE2{/Z DT11o#Id D^2+(̢(9u ^$'E 8oRQD+KtY!a BC?nK`!A[_ά71h|&2`ugUom#egVϠSpH8]YˌryAA\wN}=S-FCU>*$1o7ǔbLw?ORFQZAQdLm LNjōҬMep?g_Ogc9fK )JbygŅvr$$J`l߲/PO}1+Ơ.ˀnd[ܑ:RE~Zɐ]Yy.飮tڔh,Fgd3bER'cG5AC#4L2Pa>aڱ*]02~D@(3Ԕm*y2SDGPIE3vlq8zzI>B7aٗr=ao!CJufI /!ae",X oO o.n:sfes#Qi|$N9\6Trgb8巣Xԛ>L5BD^pP왁^WJU7PW!.CZ[ڗ#S6$MD+S@+ #l=pDHm16sE8qe/-t}$H }GԢ7$}!.MMĸ7(Nɣ*0wvNS"ߨC]jiss M]Iha͕ak2V&1:ELUy= |KSQ8HDl5BVo)]"ҝ ^ItfםҢ4Z$[_X]擯&i zvm}vw9])qaw9ޕlNZwŧd[\%b$mFO~˩ Fg&'ߢuוow.NYNxnY/mC𢡄Wd@)Z#n ]2g6"4_i DӦC?K?ڇxg^deXYB$[ZVJ),$GAqaCwmhۀ'5jBB?~ ^3cMiV͠@м'k\~H爗М݇C4szH>?k^vwޮnH'w*Z64jy_Y O423ɇz mF1c2Q PKP{z=6jqLSӓ3\+dwgCٚk&A|~R ~ms,Y Ap\tP΁LK(ZHj臤*֌e⨩d'r'9߇LQ{S/TEv^4xލ z]}"vt97<l}VXƈAMV*UNfu}cf=i4*w}`{tW\-{=Pf(v;YOhehIO`ZauWr۾J9kt J?ٓY$;ok)[1)ٻY'7rBZ%gLo˨Z7%5rE Dbr&D@t& v`_$S0IurB>8獦{cZyOxDyWۦD:!qJ+0ݯǡIY~evn =f6ltJwz|bbns1^iv+S`Ƴ|*oWOq)غF*o [+6!ÖLF=zfr[ӞqJO1DHiC`$NOv,ʱ Xkcx4=x2@~ x|6eV"7ћgTQ?\s4bkm7:c.tf+->cQ8. a!jSIoHt˙aSS#2E?c~Pآ#:`蛼gxP}WFӥG`ȬICq5eq_2qi!d"%(. ZUC^.Ncl!y5)C{&VfָyW3eЀ8P0RAE>pTsLjgJ`[(Mp>Rj*NG*6Fٺ9W`/P@H%RyYn #uod !(-<8JE}̔"o zjo4b !ӏ9[=:Pb:J&xzYPA>TZ?ʍL3IJsV%leM@ւCWLf/&i.d>Jz"-kZV}bo_AL'0,p@ یNu}i[U4!xqCU9GBoWؔ(`ʉhB܄)ĞeSo@$K\ HїpI(AeSBfIW&dv. BC3ő8}%IG(l8O(R<ie/ q>+(a sΆZ8r^"h.i.Ȗ@ ekNG1^ L#*@qq0h+{$ʈa v}akIl ` (T;P'4xP"`oRzZYfq; +/KNҀ6*JLh^lӃK *>NVPdFH mӱC -E˴lR1A _89v-U2#Ě?\tPii9>Ѹ212?% ZCݳ Ocn %;l=qL,o$oo A|Hn|0orR::i5Od97:<>mj4e#^ U9ä1ݪy|=Lչ[t4r)\|8W=L"φ1I\Nև2iTIU$3N#C_)LK8&z_SqŻm^ zNh\n8*r(=$p$*@o%!$ӑHAʌ&nzjN OR4,}L4/ʿw-UЗ꓂AF:d[h]7 Ư4: <1w(l͆Z뉐Lqk',J(zz9̂Dt!yLLdLUK7?R=I\nʱaJ6\: sc-'e|0Gs)B+٨tte"Eg+9A_.S0q$s8**UlS-NL/Gx4bDA0ļ+Wօ\d!ɓr }Zjlp 2+TM""Epx񁮣eSDKHur$%+{֖/hmF^n6IM:đ#;d;d6eE{|cSnugiXi65vͨc0sf6X}NBRSXhlertgC4(W'nntn1.nWMlas^7s ȟo2 X4S# _[RҍDy <3@ZgH꘎)M]+Ճ9°X;ufmR_bPtSV>ZQlM\p~unظ-Uݲ̅ [Ph1x^70d/,'=`#:>|뺚>Ry>O{S,y?~t* (<"SA/Z٦%^ޯ`swaί0WBs@߶)<̫!WExNZ]=ϛz`K։q5yڂT.48$' F fmMEƪ[wp)PM + 2;WN{N7&!!_hlA"1n]n@OBCoIߊ X `ջU窾|L{R Z-mQraطHVm^O9l2* \ow;6x\7sBhe/Z:E]n֍\\>; Q`}0N2&^pQ $:\[msv /w#yiòXD=ǐ]Bü-uDuw۵4ʜK S*GMI gm哫!u)YI}} HC}^v0һR-'II.ht)` $`L#=79a7XEpBjW˃'sd[N=]";_O67@p uOIIK9QxzYIADzfWR6XBRFXZ`CGj'DEn&CAG[$(k|tj;uKα4 Zמ}Zz3 =TGԿ|B Rⶌ+}|}QZ;q'n7.ӝE'o,ſzF6j)akΥp#bO:Z/QlOm S 9#֋/K:MxnN!N3 w;()k0R^FϓD:~WC>F⸾#CP?[%AQ CG3YoʾN8 |Fo'x vTUN8|JQJM" \SGR ﲧd֬/78zx/?0;-M=CN?tX_u{K~ d^[>0~I$XV"q 0l]&:SSpl!IrX˙1iFhl/S ?l \K/ {>!!ՙbC/LTg[OpK1G{[ȹlE jbZz|m8ayR$&+H4UAwݢ:՜XiUȫ[8\Ѷ6[zzAP ߾~Sڮ*ERE/#[.h};K.û C>P"U 쮘SX2 zΑ>vF˃HT_p X-{(}?`:;&uOkiY@5_-i+^{=\]_Cݓ r 2+zW^SDhU\WS7rBڤ.;zev4Zw{Eh.!R D:ikixQFxH-C %ɺNq."㠓ɮwQ/i_Ԟ6CdR@++ Ut?fEbvU}!0ڑ /(jp8CS/tִǣ4J/)irΗ)"aBL'T§PeAX]O[$ge',&6%z&\%sn0^}n,3CM  u}&gxH~ʘ5iqĝmɾc;$n y뵥w>e{= 09O -0a+[ĆNZ8I:溏TV»qJX$0O5WkJ( 2gg,kmRJ¸ ]bThz{1դ^1J? RhMsQv4M*Od2f1?Q/UPrV. 7~'ɊkNr. x"_z(T|5{\?olB4');ӣr07w_TI%D54-٬+y{p:IP=uژ@O9^Se+r]ȹ0nROi06]5a"2ǙÏx:[E'gKLNPt ,74 $2iݠq͆IpTkX1{ &l%0EQ:ݝ 1{RanS†`dѡ7uiONA5JƢ0eK}2s?^mB5lлaKRdB+#7:˷C9Yu]`)5?zq{fes `3ף0|h# IX*`磨;f9m4$Os-=2T:)ƺ˅' k OM~S$Y)>W(>Ϫem9yPl|:'>߿ A_&mW[TЅ,zfi/xNPa.gJ􋼄tΔá^Ax tCd"ݍ /(~dFUvTO2)6^3ټszP) Y rMZ}H 2y ܪfr8Uw˄>Cwjuz9&S>*$H%!rɁ|Мi6<_H"ƻ0#,80mK[~NÈ:gE/ة԰/; V@(.W0NQ썌 wXֶ} 5#D5AOhrP4gqVQRx&F}*d=cX.b;{~ed@d;[6SQp1H% zaB06UWn mW<v,O+I#< Z P#W^F:r<:i &T>I VuxKxNݸ l*5#iP!RbY.M;QzC)flr)HeMӜzI-X AJKՋ|KEvPeX, g+Ow)z`&5~c+Ĉ:tWuoƷ*rګrD (?_Uz]@ X\VboQj%yvU3ѯK<屓|*Pns+7ywLfᾉ"G|Nl*b2̷)OnqbH|.tL:mS=Xh,wZCYSm;G.?=QګBhOSH!wF-y5rxEyؐa_W6@v 52do¹)Vb7f_kb`F7kzi-(u'4&1+` l~X<'JҬǠ"`\Ҳ6K57+H͞qB$ wq!b'+ _P><\,!~rP0+o -ޗm]O@`ltč1%)m3fkwKRYTcW_ͻdԔ6 .XR<+ nl=c`1!k,^_BcIWKD3H)tY@S+-L %Jʆ`"+\$!9\UK~т3ܸwޢRrہ\4ZwOmC K΄?5\4#oi 1Lo#s2z)Ψ|kp"o{Q_gA[x{jV:Xęxlz͙k ݳ_s+ A+vqzPMI(cD#nO,ܬ<v<Qjbة1|zGiKg_h ɓٶҌf<G!];ߙ9VءWJeDh=y ϧr#QBO>zuѓO6E53l;1|$)sEp #2VVyȂajqS,F+#?+^HG=ol nkB6ǘn`}%RBRcRt+,!*w,3ROe\d.E6\W3qgf]Ǯ`W#r[/XeE]j篐.LMC|D[E_Ym+aË RgEX"fyGY?'EB(8P=k"` kr /T Z֯Zg9͎C A3'vehיk9F:t oɬ㢇[0-o&]yiQ vQX$7 .̥3 B]eΦL9nfH^҄'YyUź˒"԰ LFڨ\o-#4X0VGe՚ڋP*ZY&-*Vyhm$AFٶ&[Q./ "AI+6^bat *Jxaq Ew6emN EZVs 9lK$.kPsPtaHpV~"iwG@n#75H :|wgؤnXxG[ XYNðEq gv%Ѳu5MU2r5fŐ+eܽQƝdCv?,?F#~mKuS=A$c^ H_O &Vc b=3P L< c҆JoFDϸB휥&(m 8kN/W"苊BuGժ4x|d G\#EN 2l6"ʡɖخrm6v9uoct7ds +E'l9y>$e1vh6 ;w2YؾVO|k=ؖJ@n@4^=Qm"Ĝ͔AǠGEqmv,,G0%kh /w˸jd.֕*bl{; DW( 9ch=>b T9pPuL}}rH9MYVaQlo3~Cq5ъEZgrV_ f&WG=7yXhi-3tE @R/?{Hq+@s9Y!Axr@BنS"k0;9VBղx\C&Md8 pxBp51ML r+0G&NH.-_ǧy !?x%r s]oP!x+1p / &NbwkeLqEXIфqpYP{TBR\JE:;v(<Ҝ(jz7Gm. ZX6Gzu6`7?eI_33]1|HG.SH"t7"skhRx1QmLp罆J56T҂D7l[j_#u/< G[~ ! eX!(y_<00͉@fwx Kzbz`OrV8ʦE ;w+)t}='{pZ*1J>T1GQGzSkc|2)CN4˃,cs3I=(j%AJpaf#J,J^81&IMڭCpIJW+Wn=pa"AYv}J![;Y_|Y/{Do؏qAV0jjw<} XcFW.͎.sOAWd%\)@*֩bFc:iN"$&8tB6Y̎ewNYttܝoRQK*? 'J-+*ON'J!,=zԈc1װ_dg6kk G!v/dυOt;j"o/;6`ߙju͕g t{g(H=⩓Nnn bpVҒ'ƾogYj͋fP Ibm|iAÅ|dԀyΉ1RU NU&T|hfi0ܧX0N=+_ Ž b({تtғ :@)`$ At>E,?T"Ly^o~3E@.vYIe,8Q%S802XJ5o[4yqXDÂN,:IK[ETˑYxW~=Yc!D`:;ręWesI]Ɯݡm ڂ:7D ۡ}'dSܐQvX(7 m<ǗPDF% k3[i ]V`εOpVK8TQ0PrH'xmQM6I qư`"n"BuEYK20Co8:qRy#{Ywlr5Nsff1g?xzf9qmڮޮd+֋z}E(pS:^{5JX}D 8]G=yല)720MԼ\By7iĤ}deƂ-kob( 4G͝f +.XRga84.jˎhpHhNSz8)w~)NϵEpÏj%sQ &˖}SӑOJzbzJV9sH7S͹O%0Yuϱ&9P< <%9LȂ fϢ=M`/z{gӥÚwx]Ͱ^֜vU7'n܈ѝqk"_PGD6'ZpQ7?r%P/YI8}IfzW]}7jyYTPOSNa&c ~|DŽoJ-oG5`"ܨz>ɓe3j6ؿ( 9xi5f$׆:AҼ1߈*KADSMocIN(x'($'ÆB#=j7j]!,L9G[!ٶAMcC-j]3{[ .3<_RN>?gR+h;1a%2϶0 *bh-*N*Q?gO XJSɿk"ͬF^)I\;ο>.hhTq VB$ vTp )޵hU1!X)Δrs.leVy6>$r+ 17CP06kw:X֪ܵoɃnS?:~cqܝe,bd@1)VkWZpaIy!NP^ 1‡HAPgD`!Fm (8fm(ګ<2{Ԇ\l%fTyg:v /j%YA(dFؾ ]:|ҝQ6/Z'̝/ځR4܁kkA"4C`vUmEPLؖlp̘r>PtgEj|?rˋՁم>'{UU\khU|v͆07QHMB{X`%_2okjLEnߢ_L&{h[5o!L~R!J vƟTPi+"y胹 d 8{mѥ_p'712jJ\ WEx\Sqq'ǃ#Ц=اQ7 6Su> fG*d>䥼l ތR~9IPوIjqYt/e"@Z1n2CWxs-y|֒ue n 5ѽg\ٓ UhVNdRU44$neQ |זqvLu!S?VzQKQTL|ȅD)Hp+ڏZ! WeNXmga$Yga(2=f:$%Hʯ-M*E4zWn 9,ol/'snzdpc\$&WJڟw0"L}`魦Nl6LX۸:PŪ[ :觵\A*F T׷^O,7>г }nna9ɟ3ۺ6q9kdt(8Kq~K$Wvmg (G+\9Ͽ>6v#TI#nΤ\=[K&Cw-qsL-7EűX=@~u7|̻_4%{p_M C?n߀&1%#BW";V)FKf CAxq,D,K1>dAq+0T!ϋʰ ehr?C7hY՝XUxw)rIuK1οOډ/~eoy ^s\1+<^݀d'RHSRӋ2h,CXC3[ JTkLJYb&e}.1_'wG)K g&cA !w :<4z,`?}E|+EO| tMaY?GN,Ji{8Zl&g 3ot~FS[uXo"e𩚵w;uXBO *;`yŨ@NwEHY}:wsD;vlk8Hw'(KP4RB эzq{O͉mJJ3q+&gfMFPvլ(J2 wf?/J)@4cj,DLꪼkD,,UM6 "p5VAYrщ w=Ο;%tBXQD4; Ce7Rj$ -ՠN ^|XxOb) H~.+4i[B$9 KH*AɱTj`aX]UEzY ;h)HaҫOǩ}pBW9Wb{Etx|>٨lU{-,6C:nTٹVdufPY00 RA5țr=A!|6OӘψ``zRHQdDu5Ƙ47q_qsDJ )Y0ĕfo(!Ҡh0(Q { t!/lm1ZW(ot><wo_r5[?9':J_&*W%Opke 'ZǡIcD)hLx|E*S j^YI+\E>0 YZAER/data/ChinaIncome.rda0000644000175400001440000000145413033553037014640 0ustar zeileisusers]UMHaw54 AԩCBd2\fmݙuͿ]KK2V1Ӕ@(KDYD*DAܿT(wq[}T3FCI E1(/1Y_bCmq-_o m~}~_vXI0DY¾;Ɇ?i <SSÌK5aV5V ^1B9`Ӽ71Ώ^QŹy⼟ɗЧh{.|9^| ]`x]ˋ/ySѾP>яcN7aMwJ(~ a+DR YWm5WC`iJ*,3sj)\$ ۱R% ᔫ\Xa cY[ n̑UkImq2+h"usxut ́W#0PiR`^ݲu MUX&,{\>Ɲtv`Ŵlö14$V YAF o&όؔ[>|mgk d7Rky4EͺKxeɨ6V #POLߏA ~"Jh.;?HZ[4f=>Lv곊:m,y*9 fZ[.}=Pb{,!Yeos6<: \K1uO}D5rBJS> 6S[+§_OL<70 }rLiC3PePp#'.bEl~`M}HT}P|)xV.H3MTh10*`!RnjcxTs8TʇA g& ?3 \ϥ=9J&r1lzvm_GDV7I{B#f7!'ch/DbN}3k TF6xEaF/cr~  &ibߌo,a mN9"_1_ZǠ1Ɛ k!XtMu6K^/cWM Hm:)RAP 467ӣhݽ?L?'fPf]AHfR<@tL݊T3oվb* Uǟ!NaWkF+y<|oCs?հ6oy5֭kMрrgG?G,+v 6W|6Ew-\d}m5Hָ)u[UMRs|8O2|;oPFcᴽD 0YK1Xo`DG^U71 8ސ@8ϷB`gȬ_ o%E3kъ?N'ka"NkOvHR{##rq=wj ,cOA}ܞyo4K%"6nI?D#XIjx X=cӌaH=2?<:" =Y 0Al Kd+H5^~ZW}wwm{"氇pۻ!$1>睍=p"t>V^6/Tze 56ٰzW8;W; !Gi̦f;ǁl`h"]Vwgt<_yc M=_7B@#K^7ЫѪ5Yy ']?ƉA瓸mk;Q !6ܺ}&8h-BtW LJVhy ZRDVmA%L, ym_-QMJ,S>u聑 6|}͸^1(jy?>V'OJfʙk?zf?a N7{ a'LwuCF mCGE`c\Vx7䙦u& Efׁ-8+x qazn"_<}wj̓X+)Q =6:%iVj sDNkG;,^do3-|{Ɠ$w"mx|YHH\Tcf Ɵ;c لb7ܢ%78޹\/\^9<7v͓P4(͏gl׊0.6:6<8wuE䐎 ,WN(W̷y8PqќFNC8Ne H- #sǸvoSR-zH1zBʄwkh l7!fB A0L(([@R __վL~_Tߢ1!(wZ/oz gM`],,<|,%\ٟ}|h3ǵ#1-)M@ :p\V5s18T;}'16kIw连_˅;x/R[Cv}AͺF; ݄&A`s"nQ,d-8-ƣ:gkMҞ{us-mU,YrhkmnpSѠ'n:)+^crBasj֓7V ['DD%t)23&f }ΰJ |yl&;g`d<`՛㘹};"ucƒ㥦38)^`~8\V_ l- /e5y'˿?TeAER/data/GrowthDJ.rda0000644000175400001440000000510413033553046014147 0ustar zeileisusersZ}lR UKhE)tAd+Et ƌ/> +j e~R;9,K%d,f}ZPl7=y9ss}v}0| ޴qc7.rdnel|ohR>rй#eX:'>'Qd7mkhΌ2Z׌]e2gmMmKMvK͍UՋM7]K)GZM3JTx-e\F9~_Q&fwk|-;}Gv [>16&S=&x0C'E\w O܍{a?>&<# ynEM=uk)lym |3 G1g >5QDܬۃMvw S݈w_id:R~<,j _ Wzf?wCAG#xzb}]'V>7?|Lp7^@gQ+xOǂ{)؉xЗ ľ3gn1#{e}<}Sd}'h/#R-Βy7AifkN'ʼ;~mB.0d@q32>ku4I8Ndɥ;_I3ƅ|~݇"2YG]+"OC启b|M^9220?ƉCdGo3) V'bs_4.{?ǩdv?^ yC?YlSU"+.QL^>Ayc]yԾ<]m/h{Ld+πg8yV^w Xu Zx_~LK}E"3?/Y8V;>aOvCzW}3:_[q5i=x^ZǨez?<#j=7}3fz}VoG=+/YB~y]s&Q<XNWzM3/AshJlZǀqE/ @||1ú,e;iX79 !-F`ﰞl'Bȕo.[@}G|߁Ә_?˚![/AK7EY8%r|_ .~O,F}xÎX$\W@fF W$8׵g]/z{=!PgqOp ޯ%c{#}@=߅;7 "=J~?޻-ByC}|>'y/\{2޳s{|bl9(]yNSڊ}sROo Z7.}aH _s#W/q6Hy|<Ϭ[\X|'\2-{F-^ݷ)`дS}7OP{%?[&8OC̗Y~Xx;[~yX =v7a~9c+*د.ndUʵ1z3 $f.Xoa~OWCXSۚqnqQ52V,89p9Hp ſ:!9: (b:(#a+GX9Vr#a(GD9"QrD#(GD9UrD#Q*GT9UrĔ#1)GL9bSrĔCWrĕ#q+G\9Wr$# H(GB9ʑPr$#IH*GR9ʡ'ןTr$#)H)GJ9RʑRr#)H# 0 0 0 cs<6cs<6cs<6cs<6cs<6c {l??iZ>s T'AER/data/CPSSW04.rda0000644000175400001440000006072413033553034013530 0ustar zeileisusers7zXZi"6!Xa])TW"nRʟt<3n2u@`@Y\D.5T`pLwk}NОŸ8eNyH?6;:t˻qeˣ@lcUMč)Ba}ښAcʸ+ ax*Ғ;93z>,Ц!TΖVΖw7vv\d`"Qԍk|#5`\etrQDğ7OBoL>l v5u}НLn.& Wet_K?ʑE !&oP1R՜PTӬ'D\[#t4wr9"xU*Lu\DGeu jv[xdr*`/j_h}@3rV s04,g ƫ /@cr;ŎKX?B,\nz!'ϠcL\6O1ڄLiҎ 6˽I>Ȱ)f10`f3iusiB S^?C Fyh : թirӰ(|Il‰Y64h26Hy}mxoXqQ: uKS3_3zrOKڒVvX68csz0t$Wdx$^\@$! mkbǼC-ex9P2lkx$H3b6؃ʷ}Fgz[эpqTB@QLjh}{E7c Ĕi=apeh )/nQi5$1/M5Rek2ɰ>;}*w1lH8I6Uz07tCm\5.@=Vfj~(hxyLn- Pf n59vs-b&A\J]/1B '3e}FQǀ|!]Z?=9\/߾sR~2W<*Ȉ$Ĩqqѝ_D^,2GlVSl-#+90"$1fZ.?&c Xs%VZ݆[8rV m篷Dl-psWd}аeCF]ԑsi_ޭX_[P\c5j`cyYR+x֛Gutxc~93YSZ=@fRmH A# *tz&0+Ls/;XGO~/Z[ˊIC7>2isBCGs$S%1.F{׀|NO6_O}-|ޭx UQQ }*NFm@q}O$@/A Qث 5]^|S7@S@QNkC[$ٹ,p量tk{32<'i5gg)@vw!8Xη+5hVlkq-#yNGih@iӓ80Bܼ, \/{pߋuO=lou&Sȏ+7+uϐA`>1[Y=÷h9XW**N crJݑ;JPm50{&^Q|=볂anbzNXWI-~ywp H,S(bqScB)nN;?i%ʏ}sJ[,Iy(R|_V ȗprlbaMq:;ִ9\W,Ͽ(hL }^sCBV铇؞>,&Pzios*ζT_%AP]Tye LQv.5f61ʵ_G%*P_2O Vk>Nkn?l͐&/Cw%E i "u"//X>Wu8h\q%iPW^K"Ӓ329GQj9RcU؃atŃQ5Yszp1 }әÊF|#$`G@X\K}m8(=BɈ:JdsP˾+ [\ep()* .P9#cÛ輈5*@B #]uZthԳEMV6Aݒ"[ⷷcTbQLNH_JZ RMnn)6g;6dH8i&'3}O'bo;^4(nm03 ʷiq$IWD;ȖMIPO:`[n@]7N߸O*(̖k~,$"hx8O_v58;$WT5mP +>p>>ԁJl'U3L@GE0wRo9i?{-Y3PĐ(]{mEpb\tI3S4KZ *U!ispP K7^.򽁈=]6n<Ϥ6b19ә,GO$-TA&ws6HrǃBHXsvT+ _dܸ]"Ay [l%*.^رG1 #-/p]jZƫL1E =^y'"poZcdB㊎<bPS# ?%s[ IeQ՞0~ ߾stDFNbqufvݢ59'İE9i_2t}H>N H`MSïv5YXoX40%RIyکmC,43: $tj D_fuő(j "m S3 M{bC!s7X{o?D=04Z;x/}oҼuw E%Uzw{!Y&gB9o7Փ t̨~0qw1<^(~+WUJm"ϙuQB5#@,MmRiXa|xU穟z'QӔ?mdu 3Y;wm`*(shXNXw/^E( ԏ6oiaLVdCr"z*`qZn9bO࿷.oӺo tB$5L[Nh7 JދwֽwGr76e4k$,q J#/tBg_GhZ+;b8TvY|nrΚ,߈5X*36xW&ze1(x?F@,[\U֎*CnɈghX=ҀTzx#N`4Ddє6v~fX .7Y~CL61:-WzuO׉ iB JM–YK3W/zQrkJȞ$h<'-$i7N1g9CcPB#dΧ뾫ur#^PY.o]dNٿިߞ;qRI.; l*zZR *lNap(CԚP_Jo81 p%K6p }c8j腘|a[MNicFkp?QnoL_gۋS|Dnup*\oaRhٓ*Zk)s$/pLߛW^/iKv=Eٛ ސTdj%u6b_.8 nE+=9}YgSY"OH'`2š":5rUfZm|tŨ,-k{櫫ﷀv؍s&\dU,EDr6XԤoS5kG,_ɼ?Ohs{!:q"w ɴZxbޘU7G i\d8͂4Z)b΅)*b3Lp"p`*`u H5<{l[~[<9YITedaT-d+"ҡ_0w$q(w8Ԓ( {exz >w* s(L F$W"G;+%¬& e3W|xL08P8r].5,S']/0? I[b_e- MymbdF^l-Ʉ=EI9ެdsC= "L'WBMGA5vֆVYvuyKI$_O#}֬QevD&*:]6 #8{XG ;QQSyyؤ_-rZuIЊ}uR2ms] %ev7\9S 0 E_۟]uBBz+Wp0?i-VmRr9.vr&"88ds_/Hm(@/NM,E|1SUžn DF_p ҥ\*4tP6Hɵ e1b?Fo|&X6 #NMFzl>}jVdi5VHm{ʝ8jGL )DbE2Rɣֹ}I2L-*Xi H(*jܭWe <΋TggtuqM&ƃDG⾗֍Vݸ+r.LWxaVPk};;Yd݂@O~A8E8)nJvGWQc[V6sŲOc*;T_>!kmbE[XzXhYGAx`x1+{TH%4^'~@Ƒ>Z.7)b$ &/(50̷nk2FXC罘B g$j\Ŀd ao@c.HN+"&M50<\ A`1Q^yeTG4Vܶ *WNȲKiE/u2 5{O\N8OY>@ɔ:w{JAaݘ xCGc ~ENjj-bgO2V氉{1 {gFYt=Y;_҅jfuhN: ْD**2z;p6vyI19(mSR˘<аMF&& .z}jtӫEoDfWn}?rgf ^ ^"7`^zeڔ :/z~@+Ӷ R:kc= 38 i 19rsqE,ԛ҂ IS=o[H!ޱ5σ2~$mz )BW +^;{Orc;\D(@@8!CI*IwSBA&j[2I?'#މ/֤»`JEQ~Z݁,YLYG@U}tSxAPuj]04,OsϐP9?o?&9a%D9(=JշA.棫lh*983GyZ87QuVckg6]gvZ$Z1M?$McR _}; kZa7Zr׉!SK=cF3S;4й`65beo/Zi2WBAh{ZN$S4jهqi$DxNe}KN_OOrjX9j|aQ `~HM B?]]H%t-͜GǏLgϢxgV]Էtnxu Uf %EyΙNDtUj-b}}D܌RR S6TP-t0Ps,_X{`!c* 8^,gk캡[^]Taѕx8bBV£gw\*:Gxu? FmѮ?D !ɟ] >H`xF!q<͹zN-x>^L2x)ˋ~.%q |~"VQTgX`e[P-e5{c98gJ6:H\MX{ZNvDlh680N) yoi5Fb!BoUV?$c{ Sp)m p5t}]Ŝ4UI±h2ܒ32wLg3_X;6ru\3 z9=XC:~ Ҥ x>;p%.L2Ԟ~`oJn8Dv}Q :R@Nϕ|q!$Ch{TF%d2t)K1塢8J3L蜬'лDxb:7Ḍ )]٣ dQDin6 ?#rM],xm )[ Hx $1bRs[N`c3=Do@mN,ƈ u"B9@=^*QnZu]ApݕT}N %PjBEN`XwE(kkݟ9A_6 gzB WM0u njK5.s[C .p6BnVfCuDh兇9a=g8 fboQpȠȲT$jsyl{LbA~DdbÎiME8~me :3me.7 z;d@ =3`s p~9S6ߣ,i%q8^ lp3w|N>,י/tWa!eAYe`deFS&"1O6 Ĉ %U^H!c bZbvZrbf"\/I2qX?:\䌾" u'&nJXdW,0ީS\єŇX4\(= Wӄ,E{zj$.K:VDt12Vez]@k7E_s8۟UOZF6}#1pbvYe|}.Ag4;6yI{6(:Hvtب1Zv+Cdme4yA3rhrX=}5k Q iapbG4e5 $rqmn:i]{*&kf}&m3זl҄q1ݦ>p|I~ch4F`zع5+G XG yVY^c MPo–!];&0};Tg5?0.6u<[waڂ8H:|w&:[4YTPZ?t>:1ԮsJbK=}={1o#7}8?L79mBpf:͒G<6¿YYs,{#rus.px)_Wr 2z``c0(D $ \ 2, )+ *ćbgH pT[HNWq@ |fA[V^O!VlAv9rG®s6Znϭvi҉&9N"(ߊP2*IAH909LoqG}! # I` 7iYn8hc{h!9x:Ă6oFr6m ȋǁk!v '#`դ=u@7{-7-^ 穛[e65S` ?!(MB Q(@ Q]|DwpUr?cBws* Zc hEP`Og EZ5&y{녕XE! C*^23xG5j,aNiy@;y%$+„^cwI)f ?98Fދ,氒sKmpREYs2”&iz:5á,ڗ"W2\yw4=W8;gwE'!$%l0Y+Vf_r Ym;6N,s&I^Pw;OGR-0b.W ΓYHqICN #-4XG.~Ѡz?o2$=@Q0|6R Јlvt4Og5j ?K}3QF}+=]\= *{Ͷ{Xc 5 itxҭo;l!Oda{T!%:y ~_D+Pn1I'0< [[=ڮ GZ t 3!хa?O7?j#VOU ˜ECo-X(oK1& (7xw9i& CiFkK?/ug$&ϖ GF ڊk pk8 `Ш Qp[r0>-[գL);K>Ј#;+ ^>ۆv}JreL:'?8";`dt_;yEWO'(V vN ݖ CyZ ?'Cwӄĸ!BeӾZW$#Vg&S*X86|QH3Ѯڏ)|]ߐЭt`]"ƱkyC|RV58,iM%s´џ 7_>7_q$ȭ"&yXrv>k)yfd]"D7`P/ᓹOW٧zx@ uīxA&̈́̂Py·AeGA+^ nl7 {^7 Z( c/MD4ïB:PPlk=z`݉SP,חl P0d,I 171`&%ֶk0'o}zu 7NC{$I#RW.Mg 8d#Em)yNQB]^X?h/=Lg}Gvhǥ c,)4]Ե'Exr- δKtx^z4!- ,R$½c] K7I?*18\Br(%YsZ@rdލ<-ZVB s3!`slC?91]bb7/7Z-ʥ{IK.٫4*sEh.<B|]`EfF*S Z ≵_!s@{s%e5pF= >ڐRh6<6eRTVUPjd^a W~,j`n9]7)5T5F 4ر033~?T@-bc}zDůuon/un>k"3q,d!F'Y 0#b=ep:_MS͉K^#KAʈ8xZ?ߚ,K~%FEg0! g* mؖt {/\ݑC2vyh4g2r.|ݤa>rεBo͏*QGVE78W2Dճ{k}.ZsF>\7 (DTsyM8Nq.;DHіnVH ,κ|Su+q)aSF6jGO-?Ucsz\c*jD@u]$ӌςQ3-{?Yu;cclVE ѪklH1iJ ) jD"W 7=#;mԧΉQ!b0bauvFk芯~ ĵ!x8&RnGfCfA^C!p 3^1Ÿ񥍂x:mL=9pK5G%evNX{q0fgB;0È ~NApBtyϲ0ŨROS0tbXdIk~ :Cc -ðk/$J:d$߃=ݽy_g\L=PvVKMޘjԉ/Ae : z9~OfC1vt~#J=S&j.[rV(Eg"k TA;$}2:0)#z+*jJ%A2~pP{ EV(B)OoՄ1f'˿ij~bzD2t5 ^,!"fCc6H6Ci>vUO`pV3k2rR=-YuSNz3yKclK DHPL\>;;'= ? #TKzn]s#4#&M!u TC̋3wölEIlbbAPa/:wׯ#q9,f#u^+ Н ̧[vs32-wy]EUoٗ'/Sy, ל7Y idDl%hQ%503^n, ! 5 ɖ~x *lڬvTDdVk!Uf,>gd Rs qlDMwɴ@)Mwxo儺^sB\ UT \JW9 Yi\7`Q]-_=;RSͤ4{$4#.IdFJsUU'bm#^ oOvs_B93)[lmP@A)!aW)-iR 6kf4l}g<փ?O4|߈J>Dz\8/RBϰ2柉V %+;ټADy;sWFH25[ǰqr!A@Θb^C*Tlfw"N)8R!Wu+)*'H­ic[gp%N +]6g*R(wO9sI !,x)Gf՝2[sn/R^A27s52icvwdH6{IOQG] 59˜ZD5p{rmEQ|U)OCnjEq%Fa5jVLR#5,6j}g_SCK*w2>,n&e@K1^5i HF=0Y#wWhjs:qRV2/f?򯅭+n /4daNr/8X&R?4]Abы1#=gpB ?;uVeC|.aՖr3PGQKLra.NE]yn G̵ÜL>ޥuG>-6pz#uqfzv= ⸭f0O:2ct0k Gݑ*pM\E[ A0fX}N fcŁla0.m#KN>RꌾL䘶UDΟTlB6~:Eŵs.^zCxa .a>TT"{"k-\Dw=X$AK#ix r '"12E CV)S|g@B4i1ի5 /5,tٻސѴ_0JWR9a 1;UnDixcQVH3˪KQ{tI\t!_K[NT^@( zIvyc͸g`OT^ BϨ+΃/"6ϝ$.npme ,RrYIGp8)ܦ?ư2uL+G0$_ .miY2ow{vQD}]UB[Ĵ4vsrg7/dLBُziݝ-]K2Ifb)Yp@t!Co&^FDY>w>Lsw33E)g'*;RZEʓltLDasdD,h#u>o4.C郗*q,0ʮ3W YK;*ÑUϬ|IJfmŞp3^ ;fHaz/AϐӵzUBĆ TJc<88iH/=$-:] 4t}CȢn_|_{~b)8k n^`i Daryp%1j!_>y\m?ċ6}JYSX*Ӳ,AȂNF+Efס#VS!F&&; %d ȲwG̢pBɁi}3CMͤ}^F:Wr76.{")>d(+/ahtNtV!yxacO'IH`RR;EJhz3?̫jmy~>2l(Ou4lxWh*zOD:4pj ~:rRٮa'y6"GQ>s(/5xetcRIIn涨O6 }(a- )mL7Z5V0hFD!qKbF !ً;;W6~ُfFc'zjЪ 7ɱi37 d&ɥ5 QJŦkHbȻp\ i11+!WNƚ_2a.B<8Nq5] * CuF֚SWIM_Ȇ_ /yx1X%U_DK۸msyyͯ_WWI@*me ehi$* fk)&&S}{c(-muB[ZuElpIʪuI:7OJ8"n݅,C{\\c$2Lyo T|䩟,5 ;M}hQHx둙>v.~h:yыP%'[AQr)BK^?5,Ez@Jmz2?JK(< +w;|gk jhB %oa "p`k1# lG!ear0ںWJJ6v/FAE9ț7]|EXQ3.fx΄muHPM¦+[5H%#Kߊ.? t& Sq\nuHC0B@P S)3̰4x~Oji2 -=nZv%QYr䄨ky~&ȒϺ0N/4o f.Q2]{Ȱ)N^:ȇү$.}N0 e!Zoz.W; ?ARJWǭM_6Xnj3P|_}Bg7?RvA.$bZ[xOy!0{tux. 5jw"tLk9}-x?ދKWoGwmއ2Qhj{3#}6).YzNfT~_|IR}*!|@-B=)4y8S %s8\ڈ;<89,U(3 x)nηlu =Ž,EݢWe 84 ;DteS|iDQLSpKk$<^ya$< ,A-b>[Q%& !kee>d/1 *W|ko)t_>a@Dz/hlWYGSiAyѓG=J%bg3㢶]mjөAFx"# G}qXqsT_LdТ\{'0;)_9` A)b%R*Yt̼@gf$o9E*Q6u@*T#v8~Xx4=1EQ dkEP\Ķ#kI?ʪL bF{7 p߾~|V0=؅#iZ|"M]9-Oªߝ0>\Xdz Z֭ʒ* ӁE[!1n+)V?ˬ<{y{ۭE7J 9ڸ)0Y.aaJ@.|k6/w9i= +#&Oc.B>~v6r9  5ڐײt ]И2p/l15kH>-04E0 ;FUK{JaW0@t`#I9P='m0%\U4^ІfJzL; we/}ǪLW7%,վǟ}|g쮰6j~ZPO7dznGIJtǀLxQ.L@b+詻)ںXD-_$ Bz &ofGoY *}.TF*z *Mwչ}Vx;DR6v!tZXZ蝲ص4-*h63iICu"i$&2Ӽdۓ"_eO7̽%zwR;d gz3}ilߜI nZ6~㒃ZpFpOxbiaf5uEٍ*HE/Yo#OC"?]CJBd̵Z;Ow؃:FڊcO8ǁg8VB/hIpe i ߓdH(?݄"e9?A>UY0 59|k9+1zev05 .& +iQ-i}z  pj^Kؑ-vu';&$ֈkqr};b$8azбGaf:z@ED;}7˃/SGob^QBŘsv_ 1SV\ 2ÿRcoVAN)4?G@34{a7cko\3a x .$ֆoz!%\f&kF3oE M} -|̌Ti 69JLMf&П'Ohۂ³$hnNvHn=Q`~IPACƈM6MNqG}OR~"/z+D0\FlCJ>0 YZAER/data/Fertility.rda0000644000175400001440000142606513033553045014447 0ustar zeileisusersBZh91AY&SYD fo|r@$ a=FzP FhР4zSAQ04⢒2QC(J"B1IHm"h C )FDD QhXэL#I&ƌIhHcj(-%A)LD$@@2SB"d5*RBLј &d(J dKcd,h $F10J1D f*L0d$0!IPQ2($Fc3d"3" Ƃ&(̌`&dѱ LZMA D6D ْIĊE_ˈaLh2FKF,`L&1Yd5$QC,43dԄ" ȚX"LRRl"h͌BD JFbh4 Љd6fS,RddJ&$(BDRXH2!$L@,PȔ%Y$A4LEH J M2fC i("Fd20acY6f 0ADhf &&JRLb3Fd La)M4DZa(&BAP F$fI2BPY!3D(j4)da`)DHH1 %HX 0"@L F#HdM""S1CHdFFMRS0jI) dȁ IhY#%2IFb2(Q&# bFHE$٤$$FLX,B(@(BREJHKDPBca#2(Bj"0DcDh M4jI"JQE$AŠ+Xa 4%HY6 C32 ̌)14AFK4 H & $Ll$ Xj1Y2̦DB3LѢ $(5 H f(M2``4HE a!2hD"hƌcFFcXAS2S)$$ e&)E,P&M#-"Qf"dXH$K #a#E(XHPCJ6J$ɢ$I&FF%,!QE24B"Z&I4ĀH$dFIQ!) 4EH) $љ(  hbhhL iE&$eRI@,T&& II Q@LMFE&b1a1bQARf H@# 23L2F FS4c%AI2bhb ɱa[$jK"b3b4L1P$F$0`0̈$ M01bQE$)dLhđ51 B4(A"0 FRLDc$Q fH` HHBc bP!I"b!2 0H3,HMK2ƍ Fhؠ J2D #%$DT H-$J "1L"ƂI A)E&$ 2LdMd1#Lh(14)KA4 cb FI"R"(3 m!Y @"lb4K6,KF fA" LS" (ie4e QQ QB TABHddD̰&-%lPL1$A(‘#E$ԄYaHKbF3KF&`4 dF L2ZH"b@@R"f &F*)X"&hi #XLʦ$e%305ABd 1&"(cb)H!6Pұ1@ 2#((d dELR$F,cIbRL(T1Ѱd- lRMhb&(&ZLѱS#j""LE E&1PƐJhJRHcH-$e A20"Ɛ#1(L A$%3QX I!A4FF`0`&QIPdD$&R,D3)H6i(fŚPXM,ɤH!FQ3(f%Di2L,ELdPDHP̥F ѦhД#) b &X,T !%hƴdM"$ZA1@l&!D0٤SL(@4F"`i %0@RBfSJJ 0b"eLP,BDFE)1 D`@$2dRX*l 1IaFF&P 4ؒRB%d"f&H03$R0hɣhc1$4Y#2hI ddfd) RRRl C$R2"aB`l"1@1@2KRT1&(E(dDdP` 2!5%!"@2R1I1DH"&%M"CDKhMD,ĉIA1ؔcd616E- bBf  "$m4e(ƚlF$"I2Ii4IdP Qb!21L0L5&- (6 )EE3B"AAe042 I`a(КPHJKa IQBA,@hI1A,#I K 4!b"D4#lDDRDaP&dDCY" ILd4F2j0C 0PTh#DdPi" LhA2RfDDDPQF $4T“ &fMd٘АŠ1#he &MDI", CI(BTdL# F3fQQ PH$ JDb(Kd(I D&I2C@(Bf CH$#d bbhL"!bL`eCE&"4X2hƀD3Ah %QIh04Q $RXS2DȤiFl!&d0R&S%2i3CCDPchR&Ec%1 % ldf4`#02e)DI&QdIDLLcDQ"Ęƒ(C2 F RIc% &C B2H%))`l21fCE h  &c,C2Dh)#%RaF" bB2Efl&  -204CL̡(%, d4Q D&l423 %&С D#BPlI$!P0PlLdJ$b(") b2bl`24R1% `&Ŋ4I *f$"22@( "( $D%2A4L"(PA"ƒ0i1A` Z$cb0R!HE0) )6"Mi"QI&dKFM"&*@3,b0IQMALF3$-CL2 &,F)Ad1,hK"@Z Hd2Bi)K 1&HLZA1HɱF$D@H!#IDB!1H324 ) D%"Xъ QI&$"@Xfh “`&" "RHC5"i" YJ!fZ HK (2FM$k14hM(̘* M&#+&e# (ʼnCI2QI$&ť"bA$($Fj#!FHd)" #ɠH, 1EQ$&,0)d" ɴJ dcHh,FɆFCc0QI& a&Lb64ə&J &X#h)ИdD$ AF)A&IL"2 ,P!EC)(i4!I$3H&`4Q &"BS$!B2f L4fAfd$L6 Fh X£D$i&XQ )6lD,"I4IX$RI "Jid6I0K)IEU@A"26!( KHQ3A3SI@L&Q"66$DJJ1&be#LBQa)cш! !&bE Bf"!MPE4"4KbDB3I@C #& &1 $KDId3(L2ʼnfdiFe%D%&I (B4ei"Q%6(h$Si2!1F$ɦ0(fQRcJih23"lhl(,F10i$MB")"H4LjD4fi0E06blb)A$VfcI lҐHD`eLAQ3"c@J `hD6L "XddFH(BI$Ŕ12Tb3##!%MIbIHHMEIDȡI"2 `Ȣ#RF43"F YF0R(͂&HbD$L@ɋ&X6&!F dh`H"L)@bD@ 1H!Lb2X!fdAIB2bЂ%"0d b ¦ HQJED%3D #%f@Rh$` 4J`ѓL) 1B6I(46(&0AFhLHlI#QH DȘd%%!5Ifi2b`CHQ$2 ̨ 4,ŊM$lPBZF"BSD`4IA a1iPFL`b-"a1dl6b@bd*4dYdhLb̂D,I(e"4D1"F,P6CFQ1‰0jTMF( "h`c!"iDш%c 4e"HC&I%*#Hi"Sa0hiL%&-2 0`Z@LlHD$2$H(P ҈(B4)6C%&H2ȥ2j hDVJ $M&31D4E)PH0D(PPI F @fh%"h,[ ђhhc$ (diIEDH2&X2fQ2L&e 1II% f"a@IE$TM Jhƍ"d"PR$a4K00L%ƚLT$!H`%0̲!(0țf!`P2lc"%0Rh()2DB )&S6 a14I1bde, ˜I$C,$#@J) Ѳ`dhM2cfQf"ġA &,Ȍ4bJL""E!0!40RY#HP$4e%a@aJ4LB22$DY(@ɖ`4ȓDh 4Pac(Jh&4(LD Fl F!!$ FiJ64FɱDY% (1ŃBPX3H Y,YĚ)a@HQcB(Ii"Q $LElh0T da"a$`J 0Db Ě62 ԛ)EBF`2fIR10Rj(EF̖ adlQCHf %$h"P*4 `HBdؐ2&$$I( BTJD "0 Bcf#adJ() Ll!),i3eb 2؄) "ř1Lѓ0 "aEEI %$&fAHc%II ȶ&QDj2DŀeC,,Ja 4R b4 2MHFa  5,60Qh4d *HBCH(DQDC5&IMDDL,$,2RdQJeE4@ iE"d J1 6`$I$DHƈIbc$)3"&I2% C QR0 b55 c)LbJD!cEi2II6!0ja4i# he!&4LЂFP hd1&LJ JhIL1L1 f$#, ($FMJ4QbM%LQ̖((4JRd6 "B)!b(c 1hPd Hi@XLib 0̥Y#əJ1E2C &LM%I *H`0b2EIi %P"bML$dIY2)jC$Bc(Y!QbA(c$dƙbXLH $ 4-!(R`( Q&lɢ2fhdL0T 1cEDe$1#(X )X#FA5 $1H$ƀ0BfJ) DD0ر  $dYS1$##@L2j,(FHhI Y*d!LɌM11AT(RPbM "d6LhA6Ld!b1")"6M1b "Mf%,T )4F2dDA2  cBD̚ $,R!L‚4@H4hRYfJB&,"4Li,PhB,$4i"#сRh22dP&#YQQ@1fAT,C Ē$j D،RB E !)QS,I`#% AKIB<l)ؙ4Qb3JB #FHcAPdYPE225LII2cH%؄-! ,dHQ$,6"H  $MRd`R`2`aFe4))(4HIF4( 2Q0TFdcc1&L$`1 DbblE &5a2Pa %h1 a&afLFMFlla Ld$"(ɂJ&@M XB)A#HfА2 (D&0J*M(Lc)Jѐ",F(уF#De$Xi(I" C2D̐%c& 1F)0 &6 !L0Z4dh`LAI2BHbQ"&(ȄEƈ,dB ,bH4̐YPDDE $ h FJd&eJd(%&I#FDJ 61d#$FPDM h)1fDF2h$FA!bd Ph,يbdĒHE& i%"h1BQYHiC XHM3 b!БH6fi #E(b ,Ed-)@JdH$j*,h (,PQ1b Lc)(1,Y$d&BC$1@M DHA6(1)!2R@3CR!J2iK #ThƂB$&FIђ2SDdF a!4E 11$c E6fI&K IDA!4EF$&HPQD)f4fFLE&,3fhDhIEJ$i0bFJM !!%$HX(b3$`FCI&H@I@)L%fI@ ō (bH@2LP1& `2SiF)B4) JB%B$  &, @JHX#@C6#b`cHL` iAi4c4FIDQ a(IA`DbISf0h#14E&&(Ƀ$HAY&I(D64$Phi$RPD1J4F b%  BdQbH $L5RF"TDT&1,Ee6%) 3$A)͓FɲA2 "IHQbc%P &B%DZI4RQdY LTX "11(@e0(L,i1K $E #F #feCd Fh$d Al1K*,M1RDDdh@T% "5Bi`j AP3$1cYI4 Y 0cD2 –2bQBQDRRF(FC(YƒfL,LPF@&(@SD2DƑ*0&%" !  RZġ0!()BHc"#L1F"b4(F0I&0f4hfK(C,#DBYDDJ$"*a!2j2&dQ3@YFBFE! 3`SHĢI 1&5&Pbdc H,`(h3!DH( `ȦFP4dM,JȤ(1da%11% Ȁ QLBB hAM QD(0IFld $JQC2b4d3D(LBLIH4V ̢m$2fI#"eHĖF&1U$ DF $b$&HD#E3! )LI(I)RS1YDE#$Rd4Y f 4lLRIR@ h"TFɌɂ(`!Bif!&dcLX"@!YMb! *!2DMfXa%j-K!PQ F53j# 5$&bI23"$QJHDQD)( bIHY1"$+&F&I12& `F#B 4$P(ł44cF33(Q3$IFeLPf3Il&%j &eR!",AbF "R"b#M,,&A#A&) PLlQ&#c$3IJllX"JL A1B& FLJKE$Ș"IEҒ@ h 5IcI A2 #DcDHA$,2 PJ1L&$Ri00 Xђ$b$" 4`$J%ILMD!1M%FH4QR"bAHhF B#3HlF&12d J JK&HFd4 MD("#Qd#R$&0h1PQ$, 6&$ل"#fH*2Tm3iDICD&( B$I1&XM! h4*f4I j2d$&H XHЖR&m%cFE)Di"CPh3%E4PR&%F"d fD,H1ѐeL4X&%0̙2&2" D$)%Rc4,B(&ɊD" DPQ"1`b(F62Q ,bL0DʈB`PI2L2HbH$ ԙC`A"HA AL!#Tf$lI )5 *edd!Ґ"ȐfdX1 BIA #QcEAcd,f$D4 (I 1bLlRID@Ic""(4M3F&$EH4)lFSIƘIFFdɣd%- 2b((dlHd4m"LDBdDEhB FbcDI)1%#@E04Q"V(h(#1ĥ1DCLdLIP#4ff"5& XbdQƤY 3(BaihM 1"cf#4! $4 &b J0L $Ȕ")" M$A2R(41QiD$jdXSQDQd44T 0HI&5$b ,ILb()KF+3,f)`4d2IDDP&LdRM(Ґ6l#4J I`"XLIFƈ"Q)` 1I0$R* 2"&LQDdcB#RY6K)I0AJؒJL11B D’ؓ&)4QeL3E L%%3 PM%2$H+3dQ ##Fa%H2L LIJI 3A&SB$E0 %hb2jcJ! ȃEI  Lɐ!%"LJ"I ȍ" 4Ri(F"Ca P20h$bXHaRF4&21S RlHY124 @ lb $ef cHQdda&,c$"#JfК1 E&%#, H$@DmT@2%dE0X4R,D6RdBhd a j(R6Dd) DI"@4D@`Ia"(KB4`KFbcP1 HE$2c P!IhLdC!#F,bFkZ6e3 m IJ`ƌXa1l"J)AH1@hҒ*, )lQdX1S 16# D2jKh ehƒƌDX!(؍f4&BJHĚ$hR"Xb)T1 2P%)0̄F)(I$ bA! 20 d(2Vl(2XH(ń!@HE!QaIb ZC&b 44&M0 ,bMI#)BAa1I1dM$TF-I ,bH(@ (i&S)3DFLTdIi ,dƈ,Deb2%3&F bCF ZE!&$M,LTIj S354&,AQI2)1cHF2$%AFXeR1BR  3Bl,C +J&d1R3& % 2m0aS%Il$lF2aI H#b&d$(LQL d(I"c06&,ELh%!d 0ɤĠDDi0d121Th"afa0Dl`#3&(F!%IA@Fa12RL#H h fB0QDALIK0aI6H2DLd%h%h6)̓c&lj$1Hd$ "0`)`1L"(  JbHȘ"dI$ #FLd6*HL3h&3Y)"40FŁ#%$ %hJ"BB b( eQ4$BH-e#@XH&F1!"FE"$fFX hd4!DbI)B%(0`,ẼQ@@0 1`a$@TL D,2"iH$J$(!D)L0M$`Q 0BH ІLH`40JQhR2%i&1) ,̀)+bLdM$!$@%RL*,hI(BLH"abi &1DcI) B*M!!l"$C,1dL dDcC!&D3%AA1F 3HLbLQ()Ɍ"h$ш,i f$QS,QF*J,EIP`3$b3DR41D*@!Fɉ ) IFd̐ɍl! 4`Y$PdI""0Dh4SD)H&1ČD&L2,dƣ)$F2dĚ(H $ə"HCAFIbRl`#M("D̂` 4ƉB a&L&I"eH3EC + b"02Q"JHREHAHd҃ 5 PVRi4 b#A "0Q1!1LFJ6dH6P$(BZf2Y65J BDd̆ BcHŘlV 5I5)c* %E,d&D12(L`Lb%)DDi 2Zm%0YXP!(Ȕ!) "DB(JL4d PX Œ" $RFD0RQ$@A *-0R,f*%6L̓FY )(0S) e %#%,Ј3,f,QQ((h&)042%$cJcm%$Ѝ%!-,fHH)I 0e H@&HSb Lѱ$F1$&6$,AǍ)`DPJ 2TQhhKFD$ئ2DB&A,&4dl, J"R2$hɒJ!b( QH&d،4Df0%6mFɡ&h6J dL4%)AbQHd! LD Db2l )"$2Q% EFIKL hIhA# I &E` K IFfI I)2EP44,jdR A4f,R[#)1ABD!Cb043DJ1E& 1b0E$ɘQ`2(œBHhf& @l3R& 1(L1ld,ԐDH#BI 41!2F6K&S$M3dbI6,Q)32$(H E6F1EQ %  e2B H%  fE ,T)DMd21()2HIh,Hj#DAFAF` QSL&!he "I& `Dd("(&6" 2$A(2K#,!% lhQdҘH$)Dl%&M( D `!1RIHHEILFR4d) LhLDDS! *cCB(ؘؓR%&&0d@d$ ɩeaI #"d3A1fF3&$ԈA`&ł`!,S#SM22f#Bńd%E 2Ƅ$$(0E Ő2AQJe3&L %1F %b&&Q 1& (20B)FB(m2&0cc$#IL LDHe12PZ 2,bd̲ hlA̓I!i$`ƒ"a`AfIT%% YXd($%0#dFƦLa(@l!(ɦ$PS%)10&%5dH$Bla60Ř*6e5AD&ɤ$C3@Sdc  dLX0#̈(c@R)DH1cE0hLH @J2B61H DQh 1!lHIib $)*TjC hbF5!2l414K$HLPYdeFCha2 AE)dP(Y4 L"c4L6H2b a1"Fa`33IH6I ʅňPXCH`#IED3B!!)F  d"BI "1 P"H %)SId (h 0aC,ba(H1d"@H,$fh) 6( L1ALQ# #D(1K"j& 2L`c $4d E&be*DR 4 `H`$)M !(A B%L LP6B2CȘH"LL"I$"a" (A1%I ,3` lD$H63 %BjIf $dQ6 )3 H2 &`&Ɓ !3,YYiff  3bL̤lJF$HE)"IL0 cJ b FhP XiQ(DX&Q!F"٘b%0Q (`ƒM $,` 1c(IJb"M&2D`ف"RDE22d2H $`lhJ!0Rhah44TDh,ĊJDБ(*L+ &d(ٚFQA)&F&IfK,S J,FDI5$̙@$m!0J&d(DA12dH,T(Ȉ$LDQ!$ A2E$DHњF%( b("("%!A 4LLIЄT )E ,TXaHLh"HEFD) 6ca(4DR@Dh4h b0 4HDPY))"LRI (J&e(0 "db%! #)4,JeLSKR"E& FED(b 3#X2KLM2(ad&HQ%"E!LFhHI3b4hI()& Ƥ  ,@ Ƌ%4H`2bD,0%"B0`$RFf,!%EM$(l4X6B(,FP"&4 41`(C!)ELchi! FȤ% & H14jDɒ-3CK4",F) J$JK"5%2Sb6b4 B,FJdb(CEbDlbQ1@`j4`1 aFJCII%1%1Ō*0ȓB 2A2eJH X Rd1BL)DLP 0Iɠ1Ab,CBJ%A"c&M&JLQhcĬ02%(@M$͍$cFfI1dX H%(&DPF(C I 4hKRdh0DȀ QA3IBPdcI(22d B &H0IJYBChf#1Rfh$1 S6`)I12 ` "K2Ԛ#2Q SSQ"AHѦJE"!"h &$EDQ4 ,`MHQJ1 AdJ*BR(جL,H&` DhIQ FT2BI14%D"04H1b(Le`$"PƨS22h E CDEb$R&X24FB$Xİ(I4%S%`J$"RYFDBEJ,DXM@1QMQRJbDc QcET))aFLlH "b$ThؑD !d $̄Ĥ0i$i0eI !)I!dɢ`#Di-3"HԖHK&HرQ4I(Y-$I2P`2Jf10K2H4l%% iLEBic "JQf@S41$DP$Eb1 ͑4H&i$I&0ZJ(6 E(5 DLe@hDň30 II dcBJR&(1!aE `,6l@lA4 (S(,EIf1 EQ" LaĈEHE% BH6$1i2&ѓS$(XcIbL!"f1RFm#( l4$`aASm C!,fE#4!"La21i#D$d fDCD!XFƊ ll& 1#"#(I0E%c0Be03Ac1#$#HaITThl3 4)2HC# bD#F% $ĐH2IIID(Hf"D&$D2 % 1PlĈ1!F A5Fd2Lcd&)6`@"RJ-RQBHa2D 41$&hYe4d4Y 4h#Aj5dQb)@Ȳl4 (lh0Id*(e2EDM&4H̅ M!iE@"V`6(fSF&,E 4Q"!#3& RRE2aHFa$$E I$IXF$MBi)3(D&%((1Q& H4IL0*Bh"!0fiP`bb!%A#LJM$@12ĈP$4PQE$"LBd1 ec`)!P )!F C&De"ƌRL$( f$IC4XcH$M!f(̌$D23(04a#!"4` h #!QH,B bXPēI,%$,m%4 dJla- l RSJX Ri-#$QQ21A 002QQH!2 FHDH QD,`0AQ!DF !#i#) 0ʖ FaRYJ$i@ffEDD)QBJ$& 3&%F1(dTdƙ & *BD,1PdAJ0i4@hь2Ld"BD4Hcb I fRPIIbK2, 11$щ&cK1a6(0L,,((”1DlCd %*HH 0)#f llPPdXADd#Ab,YD FlLl# hذ!IbđL4IPcHeI12#3$Ĕ% Ȣ  hȌ$1I) $daL$4!" +A&)4$̑0bH4 4Ħ0e(0E@"R@̐C`و 6Ԑ0B"1 6S0&bE$`# B1ZbaIPDh"$Sa4Xa!*H"23 &cI@)$DFL$h#cXɣC2IBQa1AC(4F32HDh!,J 1DDA)FLX%"A F@PD 5Fh36 43!)0c 1 Ff4FFFD (a & fIK dbJJA",3) b`D1АbHQ`MEHI4F"1$M$$LRP%AHBeHD6K,Ȧ1# %$&DIdؒ(ġP"2d$L"Ti(XL$fM" ,` Di1BQd&SM(D)"i2F(& Fc&H2hThKE 31&!BC34 1EXjL@L 0bL $EIL Q%LBBe%D64YICfABj 6Hf31BEHR)3,J(c$C&ld)Y K6I #AL,HR cF$LY"",lDƉ31ŊCe B #ba`K2@M&R&& )%#E*RLR$@h) `,%(0h`H`hED&&"fB H&hHM 2 C%$ce JL!E$ d#i 2I1fFEXBL" +E̊,Qhc4&BSь0FXœ&JIRL$3AK$1,I"&c"ȑ& F@I 3%6ZJQd`h J)$01b#DFi)H #&RbHlA ͉! $$AIPQI$Z2D"LQIRhI!(X0 j $( cCR0P!,AF`6 ̍ @C"(RPfDHI$Y4XI2Bk!TɉfB Qb),2(Жh@c &C& X4Ei1!2 E S4SI6D&)1@Pj11c"Q2cc`&"aL Ȇ Bih2F1AB!F,ƊIBIMD(3$$d (12DIR4h"1$&dhdH Y !!@01$3f$M1b53(BIM4ئB2J2B6I,H)"$! @R`LFe c2aEiH%QD6 DIDZe(2"Cbh&fF"f"1d C 44&H3 1, 4)MQ3R4dBX&`L1F66ff!dHbV- 5 )$3"R,iBFHI((f&d(2X ȘJ(*$L؊,%$b5) A(RL`ADH4S0Qi2F@Ada"MI&f dQciR(0ccHD41($5e&$2A  CHH bY4QSRL0d ()K dRX3@$bJh$Ȑ$L1Y"L5&ňР`)(%%E)0$!Tdc(LD HaPI6h&`"HA!De!R[&` ,D$A2lcFL@)H B4€ef)D((FR352$`f hdґF$DhH̔Q& )P4h&`$DP&fLă4D1H"h$f D&R)#F0ZHĢc)J4D if$0j5E$Fj4XA1AIT#D!% &F aKL $"lhDFEBɱنD1`h` ,FhL$IDI &*#@B(0A)C4 3h& i 1Da#$X $%$Q0d31dL$fD$!)IBD3@!!Fe`Di6e JH"%$J(I1DJJ@`4B`0d,QILbR )#AHʊAdBMd FhƉKALa(H$4S6 5dhɒ)JS% ZaLȄ%"@ fB"2Q0 Hd#b H3H#AI23 2c)E",&Q&f#&R f@Xф(#EDԡ 2 &C) ISJ1D͊),J2#Pb PE2L !SBli#4ƒ3) $bAiHQ$"(S"Se@̂"@11"!E I$10ȆdXF43`0h,F1"LbLLŔDdH"M"%2@#XfhPAьfaIMD١0Fd؈e` b،@Eb ŒBHQD*$l0&2!2cM#)f@2DR&1(C@e(lPU%B(%i2iF34ad!TRcS-ȀH%2@B4ɨSi 1#6)RdAD3PA6@a4 a1"&*6,&(#%%)c5)ecJQ@6%12!RI3b!$SE0H Ȓ%ĉ Lē $%4VHXdF0҂d !%&M%@Sh(2iXB0XH&DAa)@ A1dDS2 $ PHJ,#QfPƂdA(L H*$JC Q&BC&aiI&`MH$( ( iMDi11CEQcIHbĄiJ)0FJA4Dh&,HbS"4&`i X``0bDI#%$i4C3 e@LE0`@#F&0"H҂Li2b1$"c(aD34ņRb&Id&Ɂ"4BS4f !E4 4BQ"(DEe%D6 4Aы*H( I1Rhif&La!D&DL@ё I)(FaJ HH$X0b `HDH33$jfZ3" &( D%$B21E2",#4ddJ)4QI,Xɠ(2fɤ(cVLM4Ihт HcdifQd`J6!4E #A %HFeH&HE”b3&FHId(%APYBa)a !E$& RD1cTi3II(&Mi!0DTfd&$B3XbcLl&44IH)6P RFbj2h AI$I0i H1B cFD"Lb%164@%(D% F$4$%`J$(2DiBF Dh$ŨLA(IMd*Ȓb24HHLHdHH̡#%D!0 D)PF$D@$I(FMaiQJ$1$F $442Ld6FB4K &H2SR2lY(P(2T3,B(  Ph"0%( 3$c%S20D͑ #F!#`cLY4e0*KdXc$0$m14@dبLJH,E3HFi 0)a*Qi 4dD&&&db2cfT$C4J 2 3 LBFIa#H5 &b $4PD6I1BIb!PdFH!A"DIi0$R&30"51F(6$IlXRdLL FhQQ!d  $0m(cQfI)B1B6 f1Bf$D)iDR`bDE$F2RHdFF$D"(0BJ$F(2i @b4Q6#BBdab)L& MD٤PIF#2 #2e$X1HhJb!#fc2Y , )QIE RA (I$X,E6"LI&bHeJPFd؆F2`R#0ɡHd$DP0BIYe4dX $FdCLB$l )bHAI bE2Ae2I IFA"X(1&ȐL"bh5&JI A$h6 " i! DIfRY0hDd`CH"D#"ňH1IdFLQDF4HE X4d HA3I5&iLQKIEdA % "%6J"fIS bLl*$I"d%-4,ѰDTF23A R$QhF6I&d% DM`( $@30Ȉ#I RQ% e0X B2M "L*IE,I IdɆ*1B dcaE6M f%)4)L234F($#$E$F@dTHIK3Ed$TAi„IIIAJi3*$1IDE)d&Hlc!#Lf4i@d1Mc!E!#b#$ %)5$F$X@)`B !L2) QH$LƒC1FDPh f J`fJe&H"a4$F&A H’4E,d(SFXD4Xтeaa0f1 A&EBɓE%FJE f,Y" "bi)(ĉTS"f% ĥ@FDFe&LԲM DLDb ,E4A- ƉEId1c6B*@a0DBMd@0IY"h&b4`"( $`d$4&)C#`"C@J3# L@1)I$JdDJ!IBc$S"1LDD И4h@biȌh5!&dȌIThRB!BDSPFh((ɱBFd,10DDB0)"LFLSB0&FafIdF1db(lFiH&Lbf#2I&flB((L$&(hbFa2b0Bbcd)IL(J̌I24hHBh,2f B$`B4ȦAd l 0b"F60̤)"dcR$FА)H# Id4 h`e)&!R- DI! 1d2I0 c4L!cDiIL0a1dl&$$bDJ$bh1)6"E Qc!#cIFE `&Fc3P&($$,$4a$L̙,`$ 2i HEMZFIfADA3`l($i0 $)& DI&Ac6#))FɓF$5e4 LFI2Bƀ+$b2S4 (#QY#0M@H!b 34A$JH̋"̋ Ff-f dRĐ%Љ&H$ɚD(H)DȈH`#f h$2@1DLP"lAb L$3 !0&h42YfD BI1 0PRDS&&#ad $"HLd %6"()"HiDdF &ATL `02Ld,bfH&@D1"cMEDS("$I$bFFRFI ,d2RARL$4J4BDS$`̓B2b4$E&!EcH3 E21RJB3M4H`2iH%,I@`M2!ɦBdFHLM( I M$1LcFe((ؐ()30(FaFJDL&$ 0((K@d H,E ȁ-DJВ`Lԁh0 Q%"!$ H * $4%$`hFDh4ȆhE, $bH*ID($Lc,AY%6dDDɄS0 H142d1d"ЈhM2((HJ FdF2A) h1$PM6ia3 &Dccd#"DA& FI2%#ffԑhĚ 3E!QBh(ƀd#%)Q3P"i"* 4$"(k$h @I&ȦPF ą"@dRV&F"MI!)1R0%0 IJ%Rad@R$DH‚e(IQ cY"(„kE CLR (hbJQ$Ѥ!L6(f02AFLi4C1$`%$T2F*IbB h0b%&&2#ahH4H0JF#&`JSe #AD&00DA!$`тcA FhQEe!,FjHّ!`1#Mȉ 1dBBQșF@LƈB H,3!$ZYI(1dْR0#&ƀB`BɊ 6$dFiI)!!JLH,1)$Hi fL"I#(HM&iIEL"hƆ&(A-&dh0&1 i)H6fD41I!Ld2Q$`iIȅ&2!cA&FQ0F&*c$41fMĤ*,QIHhLEFFHĀ2lI$lĀLhh"d(,I!!3!2@BdF Z#-$Bb6 )Bl(RDD$C$BjMbK `I&e!"3$؋IffR1FLD4Ah,lHYI4B)l%$ I1#&e3d%fK%$I2ōșA(`ъ 21D dV#Y0M," 4@Yh0 $ɤѦF XAcL))$12b!!#"b!!6bd$2Ȉ1cD#)4X$@L`Q 4FDI&%##Dh11&5&$RdE) $ 2&H 2T!0$LE1&JP $a&D Al(LTF(a2@d1d `,Hh  L@C33 "l ƍ2KLe0TdB)$F& hDlZH&dJK($Œ3)6(b4RaEDĐHFIJS2,Hdl`i Qc(Pi4Q0Sd4K FK@#&H"1H24"31(0HJS QBFH4F@LPl6M3f&XѣdM1)DRb4)0bf@FJc$ cFEi`fH$& DiQd ЁFdȨf4Fi2-%$30Ef b! HA12!a,()D@X̲&$6di K2R1 "DLRJH2ML"XR`԰"JY0 2RPb@4I,#(ij*22LE!ADX4a$i*,hH!0)"рH(Ac ( (Za`ٔɕ )QR d@% DةLтd$Fdф,Hhbͦc&,c`h٘T& IVBƐ YdD"j#I(DɱhL0QI5$`3҆ (P$`I,F F1$bDhA YHK$iKH!!b1`$hfC ! Ђc%(MHS أFda$C&ȁ#D*E$ō CS $&1P24EbPi2X*(dXbQL$ dB4FY 0X$$C"Q0Дe 1%#LFP"e2IQQ`fBL&!),J&&"H 3d0!h"Fd()dB($f&h D" Q)"i644 I$b#LldQ(Ea#%RhɊDAZLID"(Ȱ)IL4( щFL4h Lԑ4$I!6"ha $RF#!،!cF"MP$DƘH(HJi l)0&&0a!$$dCFI$0Ȍ4LI҂e0,#0̆Ēl)EI)&H"$(bH! ĘFTLeQJD3Dژfe(QR`hlF&J4heƆPKB$P4$E$&@cIba"Ib%3E4$ȟJ% 2bD2$( Jd2dLF2") QJQ0L1B&AcI B,H(ѱF JQ"!3#&H!%ESCLD 0I, PZM2IF$(ъb ,Ed0IIIDY$i"I ,RD0HR(ę4Hd $#hИfQP4&2"3i, 2  `$ )$"&&FCK0H0,FLTJ*0X Mc2""2Df6TA$$(̣$& &LB)I!bbf d0" ɰ&#Ei@I) ZFPF))S$LDQ2D P4)  0@$!$CIB4" "dB" bEBQHf14Dɋ21H$4L6LCEF4iBEhBES!2Q` 4"h؊$ & dld31& 3$EE3cHbR1``D%f@PA,)@bF!4T[&jH2DT`DAE"b4LDJAfIF(J(a4ȃC1 `daIfM142FII)ͤ$4L+6)HƦH2T,l F1Q,*McaJ"iQBM"$b44J(FH1a4X1(6F@,6 F"BJ(1!bII#1DB 1 E,Qh HhS"1L#Bb$%A 04C&)" LQ&BR"c4QI1IK %4ҀII&(1B2"%ƣ D4 LLL,(FF $$((J"dфЉ%P2 !%EFBY0CA2*1I 3CRL4F J%#46!1Bb5IB B,d1Jl1b,$hI #$(&X #%3`iJlfhfmDI$&hC!dF 0h#BbBiA1f5Jh@c#0D(e6bLHbJHJ1&(16"Hh*!1JQRdHر(1DbERII RPb0L%16  #FRd1AL""A* &@cH  Q0fb"aAQ`1 "2D!lEBQHRI"$lT#cd&M AF&!1F lX41L )QlAM,DLX bJ0$@ŔMHbK1 h ) bLHd$ ILdJ1&3!h%H12jJM@ *E0i0"Y!&L&ɤ`QcP%LФYLD$DR1aJ` F(DY (I,эQC2͍R&a)K3@ɦC"Ȑ!Ȓ$#MMD2`HfFD)dIȔlLA6J2l,6Le$@EJDƊ0JHj2bE $FD1D!FJ A J Cؐƒ1# LDPJiEL CJFD‰$@EAF4H!$̆Hȕ)Dlh@"14AC3i& $S-RHLd bQd#AL$Fcb MfZ"0$0Z6IH4&ll&IɘD!XȔ@dHab00D$24@$$F$E$ēE La  PY4,0)I0)dإaH()1R%,1 "!"i10i@+$#(0ȨP@h#&($ɱiHԘK,"HA2 b!2FB& MS$0JŔX2,C3$c3cbeF#( 2lҊDQd@,%$c0"ؤld 0d6H&cM( 0Ff1F2B"52d h!&i2,Ph&d&J21%1$J$ȍ2b ̊d DbLRad`% $DD6$ b((F2d&(Q!EQJi"f4!,a&H022&m11e$c$I(6cAI,1I31"MT1D%$ fHSF@!I0PȢ`MJi6i M-iHF1ɱa*$A3 IȂ #&L DaR@IbC2̠PʼniQ Ă#,ED3H$ A1A(XhcRDdI)(0fH bfL R,Ȩ-di H&!20f@a12 1$$R!`ѤhJ64@Ġđ"&AA0(٤$#hH"$RLA0)BIb$ҊJ430 # (Qh&(KF0c(Ţ RHFaBLMF4Dl!&"5b@fHLXѢ"3#FfT HJ4T(mH13a6!1DR Xf@1RE$R)FI&RaDbi2fhdD1"M&1$("J4`DJhIhH0Fa$&(1 )53L)I TD4X&HHc4$S1(2cd33`0ƐHғ*HbLɘ3$ FLS$LB DbRE4QaȆ&BS2ș"61lRKJDhȚ(FF$1`1LCFƆQdQ2`H̶ 4"$- !QCF(A(QMcBCMh24QDIF"@da[L 0CFŌdf`bM0@H4E,1$CHHSf` C0IP&II4d"R 4ٓ#MbIBB K&e$`ِVf LRD"HI! %&2bdFX(4%($R`jH&Q$B4d ̣EF*I5L4P20&0"`"HLDd $,h6(KES$I0&Q$ěɔFPLaH̆f#&cH# ! &Q##IEjH2"JbFEE @(i"M1&0EIFLl#32"(&$4DI1d1fd [KE#I 3F *d) F`10fh3"1FIBEh 4i6XhԆ $#e(e5$L Hhъɤ6$6fi LdR)$AIAcF4L# $34AġIdS#ADB)E$3HJ&,L@$)$ (B&I6f5HdL IEf2Y$,1 0 (dP$&4d 1H"DR"(Q I4Di)$c%&P H &% DI2d` Hh#$2d$(b"**T$LD12B4 dDf2F,Q6"H61$E Mfb(&ưFP LQd2ʍBi,L1B% ()$"h& HiI4 DB2c"Œ6&Bh,$$Mb 62lIb1%SDFFȢ ,J04F ’"LR`H6bcILe M ưT 0 ")$bPȒ D4Q3*1X12 Ilfd,3LALъA$L` Lc&0"Ha(Ċ`"3I"PQDHPRhIE &F")0$*2DX@QdASM" `@4DFHR 4fXF,؂)Da1 DHI E$I1`ё6((EEDBcXBE$f,)4aȡ3I@I"&FƢ̱"E!$E2 0I0!"D&)ɡ PH$3آ ̠( 6Q cL*M!Ad)"D`I!F&a4 LJ 0D4 2̌ldHFKF ъ(̢4 hɨD"٘F,B%FPLHh&@H " +$D % II P 4BMA#b0`ņdJdQHfR4AH6H`(Lhi4Fd!"DXʉ2QA!!,$ F 1I$03&l3A H$IYLd)Y,,R(!)0%A ĉHC0FXP3$2lF"@ D̓ aBKdLQF(lHF!5DF3`f1d Dh0AAE)S)$BH2DE1&Q32ɄA"2c` "@BJ0A4 Bbb`J2IR M3$Rɤ#"$dJ(Y(R&%%, `F̡  24B J( 2&#d"Lc P`ɩ$d FK$lLM1Hi( #$Aaa1Lh`6$I2P2Ql,2P#(%DfE%H2## `!DdDY%0IfXY2FY$HH1SI) B !fPJFd4I3 D(#hFL2 #!B(24% ͍ e*!DfBQLL,f$J" !"c%CMP2b1$2  21b"YDa*C2IIF**h"1)2,$ 6` !(LȋbHMIA 3%"@(ؒ$b$ 2"H Le)D2Mf1 4`I&l@( (&2@2&Y Jbd(&h& J& (b&(ABD(PF`LhQ$bL`!A2DL 3#(ĥ `R- (dHIcMAiI)DflI!`J@$S & *ьbA ,(e2bfC2J@L#C%*Lbc6"hQ &$&& IHAl$M H,hшM%F31!FbH # DĐ *MIFȀ4F4FaFI!%14ZQ" $)iB4H PAAE@&4b#Dc",I0K, 4F E24H)HFJ2MbLDLQ 2EbiR!$I!2L&Dř2*0d b(& $cC& CF4BL0$Q &`bi2aa@EM(ƳJ fL`4H,KJEdf4FIiJ2b $DDBę $hc$ bd IIb%i HRHiL4K&̌LAcD$̂)BJJ-&ґF 10D#JMM "FJR&fA clAFP2Hd$(!FRH(ђC""`1B5 DF"1F``"I,")̊ HS3#42LhdLF Lf4lјD"H "Q!$h,ci4Q&ĔDl̘JX 4 0R`Sa(Ie#3 QJc̉"42$Y2l a4Ll,4ȚM" `%$2E)#D"!&LL!HƊ  &Y&I4@Q( B(%!M%h1P"21eI1FL(PŔԐdH̄$Ja#I`"!)(ؠMCATH 3 3!"IDdAFI2((`2DY"$Di*M$b1LLXLFLQ)$( dH$h(R`(hh12IH& JRDb*`M̀ ,2 ٪IfLD13Q2 ēHdh$dX"I% Sa ` fbHC! 0Df(d32J$d  Pb!BЉ "fLEHb()!H Q2i,%2DHHAi$B%E Ă%4D(T@(0dИb͊4Dl6@dD,I# L1#4((jKAM4FA)&P L2S4DiD$ Yh% &bi5"B&f2R b14FHDH0B4lbXLI3 Ě4dFd 3(Hi M  !1AZH4P$A BFM LaH4h)Q@1P% 0b"D4DID`2h113Ad2DPDPFP0#4$b52&DTiF!@¦!)B)FHHb LEIF2f&eRF @l` ba4i62&lc"@0b!IfD2k3MD5$3 Q ВD$i1DIE"&H4f iD¢DhF4Q$!!F (("XLBbaX*Bf BR&Hm62E&HDe S(Q3QLL2D b$2dL IDّ"`e31!""D$SfE4bFRA4@(I!MJY*$2FPT4f‘HLƂ Hi 5D3 )0i2Ec& 21!C(f,L C4I0B$$21 2)lR! 4D@HP B)hJlb22 ъ! 0I 24Q AId01M B a"5&,C$$BibJFdH H fK$DI#F3 &P@QSIF!2(C3"i6,d 30Ȅ BiE FĦb&0QA&&c (%1LI $QBF"hHŐĒDcd2Hd&XIlf 0XHRF(1"da4R`ĊS@%iP L6BB2$ɚ%4$ifI)B4aH J* )"* $0RAh$B 2i$Ă%&h$JM&!RjJd424h%5a$daFIFJH"4RBB1d1dF2͐ƙ6T’f)! 43$hdQ"R"EEJH@͆f014)0!@hDc`$b*0A) 402Y2`*1Hb L&,lh12Q&a$Y0aldD !4(I$1A"H2dYFI!" $bRd()4$E4͑#I)IQ$!2Bb" RHACF0#$Q@# &42!H6f %M2$,&J)26FI"ca$Ҕ $ȊDS&DHBdb)be%1I KCB60iLɄf 4Eff$hƙQIL-$a,Qe%2 iFY),PP"$i $f3balH$E$E(I)fFɔe4HLHLI %$Y1JLDX́FDC1I!IABhJC LB"IHRI#4@S4"22HMBB)0! F6@ b)$R! `AX!I4&I LM4LH ƓjI"hi ,S!i3&L$djBbhR$e1!4!)Jf2$&=smkkm(؈9'(Zgt;:Ue5jbޮ$Y{)@ѣ@d(L'MiE(L49D@I 14BAIRQ1$e%1%2$H@I ShH0d(`F@Q! AK&&a4f&DiLI C 0PdjE40&@eQ#4bIFChC$#M) I% fDd C%P@IF)S 21,!I I&402Q"S2 b@IAI$Ŋ2fT)iLRJf`f0bQH&1 !C#)"j0$$e$TC4 # 1HI1BD2 c$͆"FiԤR&SH$)$)$4#$(&2%1" "C LHd  4M"Y4c L!1F2"I3!$F,%L! ʁH3!`I)6 H`3I#(YH@̈# H1)@1Af%L2$D %@""H4 Cc$jd2FJIDD1iA&$)HB J LM &#!DFF%2#,1 "@i2B"IHP $HDF$Ġf2I2XL!H d&B(Ib fJhDed4$Ye$! L"`!I2(I H 3,DI&Dd"$Pa%b HFA0adm$$DJ ƚ$RliHM$! Ii$d() CL)fd$$̢BeLB!`B23!&I& LC#fE)HIY`Lf2bd&ȐI$HDfBe #fL@B"SA $4HJDK$HБfI" R$D $ĥI &D ,0d(fDS%JbQ$"JIMf2&#aDaQ @hL)J% JA$b,``DRaLF3$,2Df"`&6,2 D,641$ɒB0Ƃ@HLF2l,0$3f$4 Ŧb0ȡPHL""H c%02 LD# FB Y2P)! &Cdc$@ (dS%&@ɡBI)$$0# bC(b d%`Ƃ2dLQ E (HL0ə!YdLHҀE)AIBaL,lL B(!0FX3 1$2 )fd`P 2dC)1HR&)"$E LjTDlh œ($RiLL"BB @Q#ET(Fb)%$ YBd0b J4 fI4d)M h,&CdIIh$e2cJE$Y2 f2I $cH3!&DD4F!c4 fHС&Q" &c!1L,E$H20( bI̐XRHPDc0Mb!bC& 2J YH@2bM&" L$d1,2a!LA1 Y3Ba fJdF"J!142EF(dɠDB$V Q2 #FD VK2c&JdŒ0`iLQL™ F1 $2I#&! #2B l"L3 2%RR@f3&Q3dRD!JRC$!He,IK&eePFƘF1&I#2 LC1 2H2"i$FLP 2If $BRD2$a)IIHfDJ4f&!&&Da(dP e4e"DF&R$J&QMLC,ʈH E0S @c C 3Iee" ,"M4ɢ13DĐ%TaI@$ĘBXh4̐ $ɤ&b0BH21C&%AJ2f@@fH(@A 304‰QR6bI  J@J)"A$@ H LBdCL B) da2I"ѐ$fa!&F4 $4 2,@JHC1L4LFd2 ,KS$H@A2C$ (&,% 1Q0!e$Rb4cD$)Ld"DR%A%$dLc&%&2BRFHd#BadFŠd2h d`Rle h#b lIS#, I 03#%b(E(&b10#BLi(fH@ LALE$cQ"&Bƀ lM Ib$H@l@bă(̦fL&(% "!CL4A`B+41&1$da4`3c"FЄIB1 Fi 40f`L)$f$2Re D Q&&He,(2Qe" $2MLM4͌"&d$41&C$,L!̓ 4L0I# c &”4!d%0AƒJ$@Ȇ1F12Xi4"`I2@QbID@!dL)!IED&H%(I20I2 &̦ŘC!Ɋ c)YI&$SLB6BE1)%($""HiI0ШBhl #)D@d) D@M10B M %1)4Hd"(iHL12`aI4FQ4XF4!$f d,dHJYQ2JPIALIIATdBE1I)%4 Q HR&HA$IF)B@1#&Ȍ! f" J*&EIJ!H!)f`Ld0$Q"@0i&&HR L  cbĒ4DSF` ɊKdC4b%0ɂL"h41@C31 $HRSȱ JD@fCJCd"YJFBd P4K$M R HL"b2m#)E"0D2$I 3&#BXLPL#J`BfiIfDHC%SD !"H Ĥ4FH&(%e44H&I $a d& l``Ba1C&f4@3F41#31 D(H e!dd C "!d2)0d&&"LHYJ "fade, 3I&` 0$@4!`ˆ2 ,$24F`ji @@bf2Ja!1bfjaJFAAK%S2 K"Y1HE,,ƈɌB)%H hل$FlX %2#)L$Dd$)II&CBILFc-(2f0e LRd IDf"d((!6% HfPS (C &E0R1!($P&2`(L#)QbIi$!0L$!F)Ee2HfEJ1,"ɖR)0c@@l`Ri`HbC2$(Ț)I(fD4ĈJaL 1!bDL )$d (h$,2`)JdPafD1h3E2$$JDLR `Ѣ&HH$(RJ &d& HA RhD D@LHA"14* P ($A 1"1DhI%1DI(lJYFIR$FLc2"H 614&YE1PQ)M"dbhI"2@K2!"a141&MRR &dH60LXD0`(f )LĒd! $̒bb$1EIaDLFbe#2$4# e,c`˜B"# JRĄdH&IHRI21cF3B(SI&&hDЁ#&L)A!BXi"iCFBšhH́0RF "*BIK hIA&S @$d bS@2(&D)HZ(RhQPI0$1dY&L!Fɦ[DbF2h`2RH) #A f Jf"i3)F )dlbL"ą SD,%& LPlȠ I3,L3 HBJc)&D̥4 @I4M30ĥ !D0E#)L#LE$1DeCa4"RTEL4H!H@lb% &ICFbQ(D"4#SQ$J$(eP1$$bdbLІDf fdhHI-)$$H & F0! dJH*LRB L"le l(!)HK0 1c$C1IQd@@L #4L,)1IC4HQQQE&  aѐMB%4 )3E !$ԌC "i@ji3$fƓ&4#@‚4DLLĥLPL$$E(,$ 1@Rь&X0LfF % D! "I%(R# ɢ"H@dDfS3I()"M"h̘bD0bXFD!0)"(MɤL!Q%IƄ2"PRIđH$AA3 bbLAHAc$$2L@L"̤L22RAI4Bi1-Q& JL! &$Pddʖ6bH, bAhMEa"`Y*DaHFC$2I PFLf4̄!M24Hā`5Hid!B)J$1% I3De4&2Yh$&b`1LPL&dYS%  @%!4!bL 4ɐ1 !"ĔH(ك,ؓ$1151( RD$41I Fd&$Ȅ$$#AHIhB؍ bA4i "DI "LJjKdBbi@ hFBi",$Bfi iL`Jf2DM L)4 Q$2ca$6ْ i2H&BؑHDD Mf1%QDh,̉Fd͘2`d)(2X1`DF!)f1! P$`dHI(&RR"DBdHɑ@AfF4 e&BBd("R$0d I 0C "4b 2BD @Șd44ThdE 23 ĘD)L$a)(@% HLaSRQHHȒLRH͆"(DD1 Fh403H $&#4Pid(mC F1A&)!)L $LHFLL $deE( `dTI06d"&F$H BdD4#Dh 2M1&dF)6RD #2&3LAe&& H1 $HhRB6F alJ,P& &D1J%LAbhdI$a" #005!Hh)$1J1l6122h1DJhL)$42D24$AH$B$F!#02e400f(IM0ɒ%HPBH0I2E,&R2`2 #@M @h$"@ɚB ,`3 MhHdaf)!!%(`c$KQdL(L "AɁK1&e  a#"BfIIA3!LLfe@ dcII40@LI)4bĄ&% I$HL"̔&bHH0 Hja02S2$!ɦH"" Q "%,16f1 0H#J"0DE!I,B(*f !i"0LT%($Rf,0 0HIfPPJH HXL4Q4А)F4CIchdRaL"B L& d"1)I3"DDFI# ! dH4Hé@f22$2JCEADșaE2ʘ!e(f ,e0!1$"LlHf33I3&BD (ALQ0C")2!$3 h)@cbA0"$`DA,bX1 0l0fad)!J bęD(6H%HтbI$щ2fIXƔ0IFHȉ&I)L) $A eāS (L 5(,)2"R3$! E 0lDfH4D%!3DQ#!"%&L# Fc"H2a&D4&SK 0 RXSI IYe)(L%e$1bL 0,(1$"IBj#L22IPɑ(AII%&P`J) L"L""E1,1%a" Ib(e0&e4Q,dd )$I(Ȥ1h(($ b (M2Rb3$2iHb$Kf,0HAD-(!3 L(HQȲ4J)&PBd(JbI@Be0DPIHDLXLDD!Q)H)3!)d$DX!A bB`AhL#f2bDe F)$3##2JHMI5#` D02&d(3 1BDQI&I CC"I$C4K% fL2dFIMAbM$AL1$%&TacA LJ`MI$ALLI$Ґ&J0 $٤&` 6 3hH`I&X(dl @&0VL4&DH fF0$S4L3"# Ѣ ,Ȇi3"Id13 3(0f&L4AJHHi, C 4fP F$C͙b (fDEE#L)FL4P"f!L H 1MI&LiSf! 0%l 1PĒPD(b2P&I)FHIb1(HAH%BLY4P!$DDH ̨HhB"Fd̙1"Ff)d!I,c#CdJi 03F152"S! c f`FI  B CA$C2&6HF!&P$B@,!a, b@d B4c !! ,DSJJ6M%4f C )I1D&a6$ "ьX HLѨPJTDA a*`F 6$)B #Bl* J%H)ҌFD"HDF4`E&aa$B )PMBif2D2& RP ,RLBh3 L22ZC)@,JمDh"` Hh0&0FJ`A$0aLD1(2C2R0(21 0"HQ4JB4R4؆T@Ȕ2L)! aF"J4iɌ0 RFdhAHh@BA00L#"hHAH2(2$)SRA)$ĉ@Xl()ɐ(DIJBfQ1Al1$bFIP,ْdLF"1!4BeaH4M34D $ 0ɀ@%I0ؚ&e R #`A&fH $lФ i$čI1I6aҙXCM$(Lщ0$B (ie "!%I$!(2 (d R *hLI)#eJ&I0 `Ʉ  PH͋0L DM L"$2 2eٙ2bF$BQEBDY$0(2X#&#$022$ YHBFI(RL! bBHE4YR31 fS1 BȈ( J0 bdId1"F2RBa0)$R $ 2$I PИ3%$I!0")2bhFAcL$ LJAfdJ!"d&%dFB B,K("Q2 2h0I#$!HhfIdR")&Ȍ&ae1@@2FM)Hbd,$1F`$R#HL l`a,% I`LedTPRe!$deQI%#2 $Tf@$I!AL3J(В$ XQ2B R!1H !L)&)1HDLFM( dFH 2@HF)̒S0a 4FDMEe&3"`RD4&QH(I F"hC ) )%&I6M! DdB0̃ha14& ,a$Dؑ$K&Q$dƁD10(iJ hIDĆĠd`̀ a4#b$D4Aa2"C&(Li0Faba(`E#H)M0$M0A&BL"f&"F,%$`I0ID&A f&$c"ePdA1I(0XL($e$LF`LZ43# (BS4&"FI$""dFID(D"e"PLFh"LSM %I02d2)& )(S&1J"RI!bQbF,`@BXl`dA"h3bd12MlfHɀCHID@$cD’HR$"3D$"aXd Q D"2YHR$(`$#fDHB$$Ē$ 5!C"B"2"&#a$2$IIS1I$&  IBE"iTɍ3%`@SYiI"aJ % R"ILfdJF&BELl &L 4S@&3) E$!`3&%IF1%0&%,b ! B dMD!cFJIB&H D$X41HLI$Id!0DH%0c (0J Ėhd&He3(C"HĔ0% Ha1$a"Ō) #IP1fihCE(`ɚK͂J12(IL0 `")R iK $$D640#$$R44HAd %, "4F`D!&b)#$cI1Fa1e HHMI@AH# $0bi #d Ja@3J JaЌ%R($ $ (dɦa @RI3 DbFa I10 E4٤ Fc$0Q"JBIL)1!12BLҌ$Y`Ha(4@M34"P J")JfLIl2љM,iٙ1 h1hPa`fQBA1*dhK1QK0BbD&$R"&"2 0A !!&hD@BI#M2dhTbMISH#@d$#& c$F4IK AF dhY3`B %&S&T3 H0AM1HX2M2! 3(0$L$#$"LRdĉ0FbA2i&*!!1L20) MFIa1LaB$C&L%2̌Hd)4HH1 IIM T!QDfSDR"1$A3"$&DDS 3 31#4&Hf&dHDdАFPPIL21`E6,$2E Rc#$I5ɠE,Y#M20)FLL  &EDM BFXĄQBA""#1 aI4S)id)1,F!) BPa c$c "TI$$01dfŌ̲a0$11`dH!"aAH2Le # $ &D@)F44Ifh ɥ0e$ FHLҘ $ Ȧ@BI S&DѣLd II((PbYI!, `S c 1L12Jhi!#L! fSd%%(LA 4)$$%@f H",b H&R%!BF Hġi 4DQ( $I" Dc&Y!04fLi&b#QD"IɓHQ@͉R1 Pbi0HB4X2cI0cL#6F!0a2BHfK @R`$Hc!L d 4fheE2L"`% BMeIfIA$2 B4J@h0#!bC,ʖSH P)`$DIDdlSeFd"hM&"C` 4AI2BE LD0& 2c 14$I@dY2*`34d"IȆ"K c4A02def42%2%0 3dS2R a((6&"0)0f%ȅLlc2ƔRhȠ,Ғ2B2Q4b01JQ@ dJJ1"hB™bD 31f%,BR" ""HFD!@)JQ$Rb R1$JXF  *%&,f4 ,RbL H$H !&f!24$̤f( FQ)&#b& P@jI,Pa R$l Q"P1f%0#Q2 %i@MLLI&lI F`%($1&)j#14"`ZBęb$ R1$HHH0 2DRR34HI42QhPI&D2("fH3 - 4M4D 4ȁIfiLF! &&4QH5  DY340Q(@2Y,J&JB!%a BHdHH$@(Y#3b &`aHbH$)l (!BaA,i#! f&" )1aBXH"i (i`4,eb&"F1EH6%0 d(h(fh2,C % 22"J0эI$bf@`JQ30"dhC# ȞfDiJLF&"X,Ґ4D`BH"H fE2&4dI d4`RR#,c$`l$4Q3a2J 4E!TD 01&&4HJ$)B4"((02Q2I2J&AR((,d`FlSfĤ,FTHRRbL$l P"RdKB`E"D‚,D !126$ILd1&30HY(D͘f$#CBň&HX&( %$a&$`dei4RH4 `PI ٌ(d(H DId$$X!!A40B0HP43A XA4`bFJ& & `L M&I%F31 $&dl F̤&`%C22hh1! a"f HY3ɤ$L5 K2!2)E")(f)DI`Abde32)!$Fh!L $IE2Bd M4M4bH "1 bM1)b$B"I LR3 !13f"D ̄D2!$CHQRe%h11J&A$!6I$bR$Dɦ $Ll $Q0Ĥi&Bc& )@h2 $1ؒ&CbRQŒ Ȓ1(2Jh2 e2I2R1) 0b1 $bXF2!1 CJbIJ&"jB4A 4"3JE!0#S)F01$ 0&dĔ$)@сf`B"# dD@F@Q "d`2Pi2Hb e$!1#FDI(B%$ )&@RYe,`fA!1(M$cai ,!,%%Ib@EdMm `DcLHB1J))E4@I#!E@b&!*XiB3(J343 )6JIL!$ҥ E(-30c(JJ 5 `R$2)IRHR##$DI1% D@#6F&2*0$RFQL(4@bTFC2F !!0eAF B JA0&`EIb)$BbhDBb`fb!&a(JbE) d K,E)ɘA41L)), AJaDA"%D""$jA2`fJ2! M1,cH# H4)1 E 1!͂,Jɦd"Rhc$X(BDJ2)2E$Paf(12  4IAF(S `!Fl $aLF 3a 1%L 20T4$,M)2BDfLf%!J2EC%@f)%2iJ@`A#H ( i11( MDB6d @"D3&1"fDƂ&BM)$-f$1HLf0 1 !i  )Y iiR ҈D̒Af E36& (haI0iLɠII+34A$C16DH(YCDLXCa(bDƁ$@f$2c "4d*I" J@RhLe #C3!IH!I"F`&IɓHa $#(ID Ąd`́H(lDJ@LL($Fi2F"44PB! 2fb@$4S$1 $2eF2 $ȲAbFE21JYF4PiC)J $DQQI%A! D4"DH ɒIf Lɢj%(A 0Ȍ da 42D$,fHK6D"CF241bI($Y Di4D`($,$̂ dQdF34 (BXe1(#&J0Re"3$4A0J2@R%2bhD6"bk"KdJFƓ"LLM&) bĠ)(61Ld4 B0Ƅ*If H6THd@`PF $PD3FHĕ(M!)XCLJ(e2Pa1J @1L)2&!#Y 6YJLd )$PYA&1$Hdf)BB4 $"!$0L"B"#2(&LI͉$df""FM(Jc&3fƆP% QbI0RI1))3IDBi$R` 0Ifa&&`ĒS,DB&$)@CDIS1B$R@i& !3 hf ()H!BM0c A"EJI ш2e1#&0cD6c%Y$P$!aYL L" R$ ,LH"$ R)&hDăCMH(1&c l 2Q$̉K)12PS"D@EDi$Ɋ P !DH)&IK($JFFL%dDfE $4ai-$DL%"DSh`i#B c3@,!%D R(if&d3CLiR`l4(S)#($ifaL" `#"$Y"DR4CTE3d(YQBa FD2$32d H&1 Lbf0bd@ R2I@RDQSFȔ "",% I ɒf(L)2$HfDM0M)JEƄJbF)2L$I)f&@" F#Q0IR"1LHP$f3e6c4H`$A1E1Ɗ "0`!$A1I"f4DF2B(10$i % &RD1(&QHdLLh2 LD@!4jbLɄ@DbB`IRI6af!l"IaȠbPLLJHD͉H3))#QH hl 2#`)) D,24(SDP$& #)LhDd"M̂ "d2(I 0$2b$DaDaD0A@& EiHC!I&0T%$haMD0H$`aaA%Q2L$L$"B&5"" 2`e,ғ1b0R*L2@c2 J&j20$D$P6DbC"h@f" fĤMJFH DQ(QF,"I6L lYZ`$̦1ĄB%&@ 2IL4$2X FFhRi $d4ђ 4 !%4I#dB3DIF# ," & $2B$)Dh l(ə2$4Bh) KL#e AD" "K!30@ PJ 4#@E,F h!Q"D1eF,E!̄c03QSc$2I"4L hlPA)D"f"I(QFY ,PL&A0f!2) FRHL`laR$J B1&( " iH DLQ hbFd4I(I(3bDS"dC#"Sb,B (!(0 HD &,"""" 4(i,4d$413"h(L͘RcC`"IH$ 10RR(JS Fh!)F!ŠT"RI əM22R h1IDcIP$%M c4)K3mJ%& $M "30! 3HA!I$2a$ LHd`RbIf0& $ f4̙F&i3HJdȌFR)&f (, dP EJ2i( €ɑ"Lb&CHb d$6&D"C4l $L&LD$! AJehb(H,)df0)2!#)K %$ RB"C% d6HFF&S$!0ĕ3($B"H$d B"Db1dB b)M $2Lɥ2@c& M1JaM)Q$AQ(P’D@% 0Ji)$2FJBRA6M,ؠHD )a 0E AfF(HɄ(3E dȲJ&FYc@$Ȩ#&! d&C&@Je5Y$4 $01DBK0i (L#"@)eI &h(J@b"&0șiH$)@ЉLD0P1$$Ґ̱2 )f)L̓IA `ICDfBJH2Hi,XhhcS40ƆL@C0S"IL @l !X iBbJ  $2($PFHB`dfAғ ) LRF(DA%$4MC&&̢̂I4I2M"A@D0`dDHI4)J$H)I*0I# I)@DidF$̌$2  El$(c23JCL" &hM&l"dȂ$ɥ$1Fcdf$2!J$F& !eDF  M@BH$I&B(2P@ъh0ShHA ( 4&Li,$C4bFI$-3(&0a &"(2hLdDS !bS%# &QBB4"P4ĔJ&EL PFB2 )d!Iȉ 1* DJA& "aDH`HBL4d$LhD$(e&$bLEJLlF@ififf"3JDb&Id"d$d@eLD0bġF2L($hXň$, !" D02IL ̘J@m1 2&FI&D#1 ` "f@$Y(SCI%Li!%"I `"A$ b"@aDIM)%Ț #LA(6de)B2C)Be&&i(2RD4DP!&" $"1&&i!! DC(`6 aHX)%2E0H&Q1dE$2Hd`a DE,$D$$A)C B4BDA$1 $ș ɘE&dD M& DcJ@ DH0вbI B#E! &a D4AFH%Š$I !Ȥ1HbDFh@3i"bR0#J$I Ʌc"!IFdgF0Ŋ21 !%$!%2fD&dd(H0C dD(SFCh$2&F%ԀIQ&Ph#R%"h))M" T%)$1 M$Ha)B)%!)&%) ̑6If%I"f$$001&"*$ $L4b IIA "  &L&M$Q$fS@S&L!6QBЍbHF "ZFYbI$`1)0Ȓ`$h)M$Q,ePf& QQFde2FbQ0&3"H&4L#RH )-$#PdS3AB  laPIda)dIBM3)JHdCI@&i LAC0H)1b lDKP@1JJ$DaH2 dB 2C ce a ƘH12II!D(1%0ɣ EdF31( 24DĤE" !(2hLJBRIF((5PȈL"0"b#0)$ÄM%!M` BPEf3)6d"AI$&DfdhHA241PiP(hbb(2IA%R# AI@Q $H0$ ! К a#,DI Ȅ "Qf2Ɖ`L 4L42aH3b)bhL3)LJ@)afJiJR,i4 hd HA2fD2A4"1%Ŕ@i 0 01T 1$T2c$M"iiHI"0R`Y!A2$1L)ٳ$@)Ra144$ČR$PDT12 LI,RE1!!336Da A@iFDi6FfbSDXhE &!3JfId3# LI!10RC (4i,#2! b`CE$C40LFeM!2I S24dB*l&"Y HDB҂Lؑ, LL&C,(l40 Ȁ$ b,Pl I@DBJ3Hi cR"#cL"P() $%YȦ *"cLVl# PDbi! LLL4DMLLȄ"DS MFB  $$e0RH&d3 "d"FeE dP13BfѬ$V D(F i0( RH&BfHJ őPAb,LC ML2"d4IIF4Rb cRFdSHJ)2f2 L(`2&b3"BI2M 3II($b&),# be I fF!$@ə323$!i&DiQ@J"hэL(FK&2E!B e" FHiH$020QfI&fII33Ih&HH $,QBl2A$LTB&H Sd,$0TFL(D$cK&4(E$Dc6Dh͌C2lb ! (h%J@!24A!e&ԣ%DJ`a@KBDI* fd RLX3M0d0)HFH&DI)%3&M1IHM )4L 2RBH " ɥI42iJ3&Q ؈I1 M"FLM$Aa,4,Bc E dD`LHHA%%P"$$dH)Ħ@"@&"F*YH)II)#Ȍ IdCI0%i@efb0@dcfBȢl iLMX@A$M"DHB"100B#"a2D1F00Ea DfY!$2HbJ1FY$fLHJLZIJfHHBbRA)$hFİac4"" 41&L a!&!J(2 4,JP13DbL ̑"ɉI$PID %$1 Ffb3D,c d30f$ haBH HD(1$M,b`Bl $P %1DEhK "(P)D2`( YHie d&lɑ&LA#*&P,&LJȓ ,i $R(B CE@QIPi!0AJB0ĦLS1E%1H LDI4"2FCH(L&L"Y)D&h )4$d0ɔf )Jd JFQhLĂb# 03Ji &E# lXIJaC,CIHYDddRlaE`$L3I2f IJc"e4C 0JBbD@$)#4DM(2 0CDM&HdȃIbH BF)&L$4$ (SRYi#(F$iLF DMK1&Y$H 32 &1$1(10*$!&PiL1I iBDi&f !Hf AD,A(ف I!0%i)$a%1H"a !(JI"H`&#b SDĘ KLJ0dHdI0h R#BC 6јaFb(&LLdA66@L%  ̅62 )11$Jh! )20b 01HI@E)HK "1hJa$LH L3%"dHdB(0$"!(I F S)$L`EBfI)I"1 $0L 1QD&4H"Bh`-RA4͒%2Ra0!AFb$FHSb4&dDԃ##))Hf%j( d!!!&M !RR"B2dMLfd 4dJB)C YFXAL&P,R2($cE"RPi(bA 2dC)6F1f2h(1 L#@IHdQD$ df4Dac dB !1$P&ɉ( %2MAMCI1 PI(D$) dِJLSF!M#LB1,Ԕ$2AdRl$āH2fa "3IJF"$( c@2ňD3"f@,l"H)S !4ĔC20HLFH4)$FbSh4L "Q LI 0K&EBblHJH$F"dd SBe1!H$3FBLY!X0R$SBFB"4 PQ,Ra&LFD$*3JcXP$1RT`BaIA4$"i@1$H"&e2DRIXQ$ь5$(B0I+HahҁHLl! ҈ňDhiQ1$M %4!0@ PhfDIIP)%2IJIM Ja1i1R2ƄI# $FFX)&(db)D`3P02QA(`#̓(҉1IbII&Qj(D؛4E @X$FLL L"#d QJ!I1!E&dLD)KI XD& hfD)I5L1 )0Q (2AM0&0B2ML d !$e6R # &I3@I3HPIabI#d$4H%Ie IID A$J!ьɘL J% !"@ DBFC2Y0 PL( D F`J"h 4 PJ-$щPd2D !"JJD)R& IF@ !cHK(I2B5$A@&!DD0HeFJ$$HQ30&@cSJK34 2BP4Mi%2"LP&L"F1 dL#IQ $B&`3fc4 FBBhDA3# HbHI#"JQdDI0d AP1 JP$c(D #)$)&1P jAh240A$c4FEIb)!Fd)Q4Jģd!3*@!"HC#0E #&J3Di!!4I,F!FL#2LQ`i#@$FRa QL" &&"$ e0daC(*(4R$D("-10DL $Jb(d !RL&$̦ f"DY dId&&LB A 2)PRD F$BdIIb  BQh2"# $3L 0"b1c 2C! L T h&4fBfbD If2@@0BIA$d2)6YL3"S BR` %$&aL @$ 3!f3 lBL0LDSM$M ҅2`X٢0i0B"3M"X4ai3!E!44d1 3 K"bH 4$(B@dL)`H)RLJTE61C22"a c)RB!I4() JDAfM "e DR %$KRBD"DHfb"L#AH26RA&*ҒRlfLɡ BI#&QJ3(ID``DĹ,bbbI QD@Ș0̱ dDlS&4%3 APBY4&&BHLLSFM HFe6HJD"d"d(aDEe%0d3#b0ғ2PYLb,l2J04I$„3L((L2 d C DX$$4  $R &R641((F$#J 0FD)(e @Ll1FI"A d`D2RlHh @D61$A I)2I Y)-(KXC2`Ef##3Dfh $M$f&D)̘١ 2fM0l030$fc&Q`e($Dĥ%bF$نd1c#0H"BD!2AF!M#"S,!LD L $4&L"(, $@RfQD "S$iFf#Fe ؔD &lb" $E$DL3""ciI(C3!F$2E!11D"P$ $1RT#0D)1J`i2 6H@M2@Q(%JiHĢ HXT 4 $Q1bBJJ)4)h ɁBHS2H6M !BL(Ȥę YI"DRe! C1 $M4 L4S3LI0 DJPiLā%)&̤@dJ5$@eىL؉$I4eA#"M& "Rc0E (DfI0J E0)BQƄ$A҈P&P&4)aS2cLɔ$DdP#-ED&DK0$ (!&&!!,,BlJlHdĦD@DaDQ& ,I 0Й2I0 $HBD d`h%2!$LPfC"&F`d"Q,̂1$PP"!i@ĤB2)6D!D3)Ʌċ# @0PHH )Д$FmB%!cHdA,f0D&dQ"PH("@١% @R"22dF&IMc B"XBFd!hI00 &i# ĆH ȉ)Ld̦& 2#Hec3$S$)F&-HdZLi%2$ !dD!"dLDHB#̙Ă(ɠ34HeɦH&f`2C) HAfii$B C bbF"b@Y$@(L24B"$B2"P`2hb$ HM4 i"H1(JF`%$)(!Ő%"PF"2F4a&K,3$L!d00&i e$! I)#A$da"F)HH̃2"ALFS0bD HS 223E! $fFɔ`H($$BDDD2$&A0&H)fIE$,6#&LIH(e1")fYHde&!&LB PLCDR(B(FL  d&Q$Ed! bc D"F&FEbi0Ȑ2$&&2(20f, @a&%"X3&dDLR$e4J Q(I11QHb !1!L1HM1 D$1LF"141 Ę010HE `TH3@K&J Mhҙ HFʖEHID(e4%ELQ-4PS $P(F̊fF2#J $ّĤLaD4$bњaDfL "b&)1fdDFL6J$&0f*&$)0F!J!`C& LcJF!Șa@IH 2dHCHCD6DCfb D S2LDQb(ѡPHIL#@H "H"fRAQ2C&I$R!EM,hed 1K$3&LęLL(&2Pl @āQ"FL,3DH`dȥ"EYHIHI)1QL(!60`!# QR12&54BD3Fȿ92@`"aB1) bSE#$&HɌ42I&Q d̐LA%@@B )PFPcHfLY4 XLbdM&eE(c)"iD*I@b(D10ĈBV1%$$F4(B")2H"& 2f (L&bd1i) A&PK4 BdH0P)2*FEdK$d@P0IE&Hd11c#4hBK &&FfH4d%)a$Q&b&)AH J&*2#2F$BEAIAJ$Q(ɔdA4(Fafc T)Ad4`A""(d$b$%1)2)6`RfP%"f )`1 (E(C$S@f(F1Li$&1""  "HlFa @l #2D"Ba$0Y$,bHP3,$3@&i)AHDDPi)" ,&K* ؑbB#DЃ,#&hl 4) DP2YE2 ( ئBd"%12"alA1M@`3 "FHEfifHDdPe&FА &3&F"KeTd0M 0 fIH̙ C!)),R2fC $ d&bRaFFDdҢH5 @c LƔADLPd M YddF D̤A2E $$D QI1!!I cE bRYj)$&(X1,4ad!F@B$2͈E"iR$EȢM*I1$1e, l$dS)M(F&2R`D6" "$)P4HQ$$"bcHK0"RPXM106M$ٰS0m4Ɛd0D%!FFd(E) d1I eD&,0de"JBDAJB1c0  E CiFHT)"A"4D&FFJ 2)(3S4ɔ1Fh`Ab&L  D ,&hHAIJL2H!h!3D12l )4JcD%٦Rc!0Ji E!@2IJ Ȧ)4d&i)F0i3$lID"PLPH!&cH%5R2dLƋPXI H(@B11QB&$ PD1H%E# DRIȉ)QdS$ d Y,Ɂl4e,e)D22%"0222(ML2ZBH63K1%L3DhLT%RHMb$#"2I1JA,dRF(HY ,e" fAfHeLBC6 & HI f,0@2RI%&L`Eb !$`fE)!!2$ @B JD"lD, BPِ$A$SIHD( $J$@DH@ L2cL$L&`C1 J L`i 4 !2I $IC"!a4#&LB "Xh&h$d2 &&`%L$H !1! 1,$l$ (Hcb30PH! %K%"E&& A$b@L&Qa4 b#IA1 -1I%Q!%!K 3I3) 0L!"J"̓K `#)dfbhhʔD$P!2ZJHK$"B$JP"3fX$BDP) F%"H ,S4@Pȍ(!i 3LS& %A C(F1&2HRi HE,$`PEA h K(#L`IFȈA! %"IFbB$cILM  2`a$("C&FfSl2 &’""c 4! C!2MLh ɚQILiɓ!&R3XP$%%&)1& " I$#2(AHC!E1iBf4X3RH! f&&2FZY$4e*QJ4@M0вPH0P JFDP,1!- #!D#J M H56& R"dCE2Q3dĠ a"&F"JD3 1"Dȉ 0EX"3f ɱIQ%$224 @ĢJ* ) RJ$&"I J )(i&fD!"I#3iL ɠI$0c“3A(L` Ii2 &Eba)&Fd!LY$Q%6b#)2!AHa IAHCbB&&e&hdbI`4Y)M Hd 2B ,b#3L(,f$"Ҍ2&M!( Bl`! T#4B4ID Y`Ąh24efP B M$(d44 # 04Ld)6b$fd$C"!K(DE J̚ 2 2 132&@0d 4%,L 2iJ!DIR 4F)$, D, %$$RLad0c@јD &,b( 0$M$@ 12PH HLJFP2J P(AM1 &4DH 2&Dh flM# C"3eB`4C fFR#4AM12HLd$X҅DL$`bK3$ A &h# %$d)@%$i""$D$F(` J")2`#!)d20)@II 60`b$ "$LJ J"haR0i$b$32# )1,`R%3)1Q%B,B@4R)(10CiB15&$ 1,@&BM* 0%P #DI#a32D4b#a E0ɖQI%)  4ɤ30db`PJLi$#AbLdS$ $&0SbBHF YɈda2e#%4EB,2c% !Lha2DAI0` Ll( D$"FaAH  Ɣ"@)fBj3 )! `ib2dY& cMA Ȍ1D,$0fR3Phɒ$i 2cE!L@3 A$LD̈Q1LLH"Ғ$BD*$0`0$4PHЙD$HE#E&%2 PPHIL!"&#$PiKLC2I I"$HГ$ RPbBI0Da"J "h1F3IJQ2BcA ɰYAAR`"&D1&aS% 6i%01! Rh$bR"661,PdIdQ A,LBBBbIALHBI $D h"#$S" l"E %  ) &h0%REePF RFdBR"&,aȤD@ R$ddő)$i2`)H$Ȇd)$0B"Lă#(ıF`Hd1 d 4BI0`$ !B)@҆bIBC0 RFJ 0aI EIA(M &D$2(I0 4# 3$$h&PJ$#)̠3"&P$#0be"$&BTL6TIF! d2hB4#FeQLEȒ$JB@ E"T"M0YHIR$!23&F&AR ĈH0@ɂ@) f(BQDE%P$1" FR&e#2 , 1 RCL Ɍ26E6!&P, ! e&4aHPC$I0"3 hB0"@!E6 XD4ɒ"1LP1&Lf&, ha3"R)@) HC*$2bPȘdlHDDi@̱i&LE$IILfHQ$adbHLDI aA0Ɍ (&L`Ie3c14I2a F(ԛ fZ$%Q !d BdƘHFc1(R XX P34̣DԲ, BFh HI2FIHLI)d#$ȈaIFfbDɒL MbRiI l 54c,IS)DbMc 4 P&fĘ,)HL,dRA2aPD6&2HFFє2 4 4Rb IHKdL)H$%IhDPQHi F ْ$hDIK1 d0Hd# h"ID1JCb(FaFT$QJ faA D2HiL&(b$RSE,$0P$эHP$f0H L 0YAIHљ3L4 "Q(@L(& "$b&0&"K(Ee  E1BBLF0AbA#BPȌ3bJPdFR #$Аlb" HjB1hX(0B@HlSF)d%4 1@IJ@ą$c L32H0l"!J3$FlB!FB"QBMDD  a bIX)D @RFL0@E !DB!E&H Ff I LBJ$dPlPd$bLЄd R ҁ2L)AB2 $) A SD%Ă%"3#I"LI)30&c1!FM&$M@ &hB 4R& f@$ љa$S12`B`̆(P(ɤ$%1 #bdJ3#"$ L)FHRY@$00f$hIl LEԑF !FB0Ie$ T$K‰$FS33Ic2&I(RMdBa )"DR41L D @YBLQd$1%12"f$FJ$A0)Y@(a& $HELIb12 M$ db@B4Qb%H4IJ3 HD &d3,4S*ljPl""QD4I aD 22YBF1I%HL&LL"AL !(Ĕ2$`&L FaL"HfF11&E#LH 6#"!Cc)!E-$Dd$ ђHM(ˆd(Q,P$IHB`5"Q#A@J(FPaI YLc1HM2 ɓ)e! 2IDLbb(`Dfd& D$2A@BC2(R&HE d%&HRRPhФd2"CD4DH2! AJ HBY (J IAHdHCQLĐ%c42H2aI2%# B@DI(BLRFQ0ȚRH2H hb%DaI$B$$X3H#3020@D2dɠ !$01%$cDؤ"2e& ) dA D@PDFDH1$ daML 3 06 $&Lf@D4B2F$hƈDdā$6i206 HILƂa#M d1eR6LPRJdP&DԍHHe!dedD$)A $ JJE$0f`1Xbh%MQ6),3eMK0Bf2L(FJc2JɈ!ISHQ1D Ddd`0!I4@ɔIPF1c$R@ ɐI4 45"EH`HY b4C1`h$CDĤM)A3A0("&Ęd&&Qe2d&*%" 3&I( l0#cE&ddM Ę2 $Q2$d13&D@&ABF!LI4c &b"CH2L%BA2i(h QK!!Y%DL IbDdJi6K$f)Ii$aIL$4h$HI!E6Df$`4DH $Ɗ(%44a Ʉ0Ą ICH,a$E(2AH , h!(2 aK10BQ0B022 di 1#(@) "D2Fa1&2I)A`FC$bFR ) Da%  3(@iAR$dA3$L6$2DH4J)@Bf(E"RD(ɒD2$hjCK0JRC$jJI(&SHah$ %,A1$1`30)BfMIbbL 3B1HhE(D! TI(B1)L bAA<AHHBFDXJ1dD () э)D0(QĤPa) i3$RDM) iHLBRABa0*FaA2$b&dhؙ!"bH"eIDD#1BfI( $d$HI1d@S#D%F1bB%fE Bd# A&2"#6FH L)LIE2R0  1"42&D&Pa ,JDILd&SBcI31K"%&$" H ($$@@2F̌D& 0),$4&, (LQ% & 2IDK)&HfTb$H„@C(`01F ̆)Ȗi F b1"(L(F F32JD4#FlYaDD P)) )FIJK, h&1F$F͊"HFI I6ĄBH#& "24 QL`Ȑje(bFa4ddb2!إI@ҡb5TʊRAfR&Y@H,"D" LA$ fFPHdTa42АJRh0-XJDa0b$eQ LRe !DJH$JLEeRj)fLAB"S`$həCM0fH%AfDĄi12FLHh&)dc#4H32d$D6D 3D!I &41A DD#$Jc&H2 FR d@ѓ" 0&&)#2 *H!DT͊$ &,HDāIQL !$ 2FH fJDa)0Ė$2$,2L Y& fd eȰb3,)4H2QI#@FȚDhH&10mJB3 4C a6EIIQ D4adAٌI&1 fe!3 )L@ш&!dQ6i11 $1"H(%D0H1$DQ4)Ec1Ff( L016)I@@IH Dٔ $(Dd2EM"0HęF D0l($ƀM4C#PLD1)DY$Pb*)1&0R$A&,&cBXȘ!0 D2S")20‰$&4F,1 LBRa3"dJ0RifS0D)Ȁc "3 2f`"QHAҔ)F`H4e !d4Df0Ida`Ġ&10(&RE,eL !!h3d$,RDDHĚ bI(hLIad!AFf)&,,(IH&IDB P*X4&`e `d 1fL@$ ! dL01!JbLBbP @)LFC024fFc4CBHJ!)HJHƃbQDDHIRBb D &BLL)d @)3!1I3B "#A DF11BJC 4i&ȑ0"0KD1& 2fhQC2REFƤ" 1LRb0@$f)S,&c"@6QƔ10 &"B$#)`C3(L!2(M)"$BaQ $%e(&J&)"DPI(!#0 1,P% (Ħ3I а L")&D2RldId@i1% "P1f (hmI FH(RM0 2d@!0H!f#F$HdQ!R20C$ E0H I% 0E1 C H$,`2L)C I&H`R2!BD"(D40DDIJDc"D(DP &S4c%$R4f!H$AD͙1BXM,f4 D",e&($A !F1FY0`$@4J A!$% Q&#J! 1`hdhh &)2%"3%(LRI,1bRd)$)DLȀ 20ē!H((d& BP44db6 " hPbld 4I)LRF#2d4&iEI *DL"C4E#3!$IAdL`BQ $S( *PI&$R$I0&#f4 2X de$1 M ,i$HCA$ )$ hjDQ"3)L02"FLJ4LfB*i $FI$ eD2@3"l#L&YHQ&CȌPl H1D &(%JJF$`&1HL)H В1)"I("HHFA12Pa2$D,A1 PR*Hbe%J6BRASЈb$I$RFH"E"dB`ɈK&J ҁLP"A%&i` ffIɐd$JP`e)(RRH1$$@ 0d6E "!4ff6& &CdP (0Ṕ #HDFIf%!`b!,b F$d`L$ `0(JE!$ $ ))#̲D RȠ2 H ŒAd"$j҉ `)Ȧd(3"Bi!2bM Q,đ$fC$jhL`@LDHi04d$$ &L!C1&)IB)b2ACEaI0(1"Y2j2Bdf%! 3 $00"#1"*I21%1H# d,ADRHbRi c, #$0E ) ((IQ12e 26D(SMQ4&%IH$ɋ3)` )4dو4SJ͒L$dH4BhdlŃ "Lh%1FidƉAH3J`S1CH&H#0&ALBE1ebe63(,LB,$b$hf3&&0FHYDdDCъ%0e2$JS")& $"(B2&(AhbBYY"& $L(I0Hb!1RLD1!3IL2,i4La3&D$ A$B#$Le0L JJdBY!$BH2 Be"IIL1PdĔ#BMI6LSE I)FQCIBHDRJMI)L,Hl2,$Jd4)$H(H0$Ab&$̃ &dA d Q@PL"K L@L 32jںj3(*(jHE Pg=m}: םLE-O):p JD 4d dhQ h#A'4  S#@2RɓFd "D),HF3$!&JLA%240I Ad4„A% HJlCILc"LS%Db,DJd Ƃd̠$h0fL@ iR4i0)IJ%I bd&RaF$c hHB0% `bH&1BE)0DQD0hȔIRP"Pb(HH&JC(c&$4E&LF "LL 2P1BF %2HɄ4 Ve"!Ie2F 10QLd$&cE$XL L0D$RM%"̒$#Rdd٣%#Lh #!A )"le0A$ġAb HYC$*$JbI$SF$4PL@ҔJ`,PI,,f&Df3( D4aX0L0@ȤL@Bae&6dI01$"f&,JM2Q2$M1&P@1BF"I!0B JL(Q ieHIdRQB`JbHMK010Ɋ3c& (1 $ř#$fK#A1 a0$IHDhJD,Id ̰3!R"͆% BE * BD 1H"@̌)č$&RJP(BHBQL0 L FЈRP@R,BT2&!R lE ɒ#DH22CJi4Dd T))B3bJA&IE"L3HH10HQi M12HɌ B(1 d$)")"34HdP1DAhfd&& (4ȌIF"hXHf("0`I&e-&DaɄ HɦaFI,b&Hɉ$HI&#c$C ,D00M2eF2$I40baF6 db$,HQ H20L)B$"3dJL2#$$M#K&2 d&2&P%BPIFHLIJidFL$J1`ɤLPФ%HJi30 ,1)LhCc$XM2 "B3 E4IdI0""Ph!$4P2!$Q ĈP)EDJ2P40%ƃ&fh6E(0M$Ĉ, &JFe4` !L ̦RPd@@a b&2CEbSbI 1h%%&"cA12d2 2C&*)&DEF2Q"L a$4C(́$A4&`)M I Ѐ3$RHTLȄ1 F HMQ`I4!E!I#@,dA(I dɔ# d#P3A$RIHR4P2IRLP 0$D!!(($M3DAbih# JclBd4c0Li$ a 100 0XfJ&K&IJLlB!HD21 $& I@PM#&F"f! I(H3$$i$&hđ) "#R 0DfBhfHĒJ c@S0a0J Bc0LĦd IYS#R,#I$B6I$e3Rc%("I & (J 3L42BdDM"1C# Q#H0P  1LHDK%1E 6f4PR2fX!Ȉ# "% (1(JJLd$cF10dœ3`E2B@ƌ00 $1)4d@@e@̊)1`Z(2bDbR!cI $щI`DHb وʋ13J)e C)i E MH$I2hILL0P`0( 3dJb1 %A0P)(R(d 1HRI2JF$&i$I#@E%%0Ҍ̑I4$L&͖c `$D2f@BD$L2 f2BQ # ") #3RJ&!@D$L !4@EAdYTbb"@! E C!"""") 2"JbfALR"I$Li M)J !4L( % C di2IR1DJL)dB!1bRPX 1Q&0 Ab(idcHE & 2 f#) )$Ʌ ),4@" ̒ 6"Le"Ic M FI)@!dD!L0R`PJfb#dQ&!&YK3Lba C# REI(I $e!#ƘLib 2XIQPbfD"dQI04̐,2H$ҢHD1E`$фHH b#(J44 FILcD# IMF0h!h0a I H@$$f  (5 HFf(h`Hi0B#1"`3(I!dBe)Db`M4B@fI fE&f3D1&%)" b3D Ŕ$R"J@ IA2 &D,A$$`HD4c0!!3# $`Bc"1 Q)4̰JBblI@i hf1bh$&d&QI !H 4HL3C3%&b(MLC2$đBB$"(*L& B%22B20H&P41a)e1Ff3i&$%&F2fMJH@$)4,bad " Q$Da0L&e L @R",d"ɚCB)A4 Q" LM#H*LQ1e2h$IDi&LdDS,ReQ ,$S d2 ,F"2 IB` a$H E"$M"RRB BhKȂ!@5(&"D13 ɘ AL#$4$ )fBi& ̡̔)XLa&2KY"&ȌB!3$R4&̆L$ "0hAB21"FA($"LD ))T4h d4$R2e)4&Hƀ$`AH 30)4H)4ɀI0I$BI"edhQ` d(&DK)0Dif`K)ғ!D33"i 2Y !DbfDI R#f0fFR2DR2JJLa 2hɥlP0S%0D) a (F)QdHı$@H% "e$2Qi$+Ҙ&(14 Ʉ!$ĄdĘ$JDS&4cbdTHXFHCDA4PfIJ b2JLXM!J#&!3dȒ0$a! "d"% R f2Р 4$ f@"i$%I(E#A(ȄlC0HC2$1 f!FI#L%)d@dFa4JihLFD Lh(K!$(Ȕ115&4B1 R Y$Ae2( fLɐHbP5,RQa L%34$F bSJS $S P $fL2idS$B,L HDQ$1F2 IT1H52F#$0Pd"$i"`aD"2Blьi#d`LC") )BhP 002$ $$b&S20eH3HI"L((RQ"Lٔ2Ȉ122#b(L!) fe0& RHALMF(i$ H`*dDAѐ i42aFffD"@Bҁ X(dQ#MbCLiA)I$Ld @!)P`# b0dQ$@2fPfhD0$M F(!IK$BɅ"&f$ i2)$ `DD$""Re"LL(A@E3A R,Bb`(ȂbD)!2DLXd&)"AH) ѣ#(h2a@Tb65!JhЅTl1Aɔe6 ̈aDfFQS@F)$&&Q2@L54X d & "h@LƑA$!4P$c)Q$2#0D f@1dfaĭ"-L 2R6"B $I0 FbFJP@Lf34%"ELIBDHLHd%%@dDRS4i3F(mMBM  C4RK&Q 02ɛ(2!dŐhFI10E@dJ12 ȓF)E D@ic&a)&b4X%$(2a 0F H5%KJb13D! $ ̆4@ead(0 L2A1$H#,%1đCBfI$42$ LI0 RQ&DdD I̒ɒ)% ,c#AfLʄ1,L diI!2E2B1F3h(b!$h"ACL$L)!CH!"5$bDM& "&d3H2aFDd i "Hc0H2Q(MibiEdД3 @„)$E#a a ! &,I $Ȥ3d!BB0&66D6dh (l`@E(Re ,#253!#!"&$A`(dc$HRe1 B"H$&C# b @̱&HbE4$cJD#J 22 AL IcɤH@!JFRd" `L  D3L1QFbd 1 bK%,d DIdS1A! Q" f@LcDLli !ISJ#Q&*&$HD0 @, aA& $$ȄіD"fIP("Lĉ &&!12 Q@hF@IH0L!™D&2e!Q""0 fDI##L3,2l&6i IH"4F,b B$ fF($P2L$l!54Ȥ`ID  F22 D,4dd d` 43l&&DI))D Q*ha ‘K Ae1Lh,D%B$ @0haS% c1,HC"ic3AR2dhFILB1 $ BSP$RDh%&Q 1d,DCHlfeHHHBFȢ(2 $H $ 43 h`Lƃ&2 1$0I(0db)HdDP &)aDbI0LbfF`&JQI2e1(4(̂e*Rj)%Ʉ 2 &IJ# D@!0FB&ILRiJh  I 23(DPJdb&Ġ" !bHƚd)ęA$bM)B ,2 `I&0 (c f$Ȉ)3( AF"1%AdD I0)0`LLHQBB$)PH! @6bH("If fYdd"1Jdh̚f*FihFH&XR)2#3BdHl# $H@ " &C4 B"2BA  "! j1 !bFLbQdd4BS%3(BɊ!L%A a$Ad hLfY2IC#&$#@4h" Qa(&LPe0B4)J $"H #TK0bMR )02L$F"JLJia2i0d!D (I $@&ɐ("&`1 B(&&"!e4H2R XE1fJF4 ) QAȚ&F )RHE2d!(! 0&&b LLMDj %$b2E1 $2c(MPi) PMB$D`D D3II"% RIK(24hS@fADIH2C2!$Rc! @Me $dd()dD @PQ) Q $a$CJh(PbL#(CBDI0FAa)0D2b$LdFH$HJ  CITaD"Qa"`I4abE X&  bR,h$4fQMF`є3#4C1P(cE#BЂ&$f a0dhḶ&L ЄHbI& K$L0 &`0Ą)) R$X1&C BJI`ғ,DPH0BFHH%4dJ1LLI H#LbiLȖ$X" 0șHƁdI4%I3(,4R36I$B4&P$4Х(R4c"E3!$ JE3D PHMRH)$dA`ȘJi0L"AC#)0bI6&@4R2R2l )H&SR2I@# FbDdc4ai"HL2ƔD1(Q 3 h5BeRe)$ hbdb HFF0 61`!!" &e 1fLD (f$CE3Dh,e62ab!ABl1̄36) 3$@%,0@1R(A$@%! ,(J$J%!(a2FQ"I(L(4Ha2I(0c )F#"dTRR0̐HDlbQ%cBI$i l Hf2 B5 J 1K"aIDL)¢&edHQ(&`&AJ1&FM$г02ɒf0$!BB4MM0J!3PbdD̒b#R 42Bi!3K2CaI%SJ J$#%# BJBJI1De2Pѣ4`!AbJ)$F K1b#!L$bI,"C1 ")23A @!L1(Ȕ4!I!4 $(FS)fXdI6,2BdLDTfY$lff!E(&@Ri`P0(1Ȉ)H$JdFRIH!1 2DR"đ̒daL 1ĔI4EDaL" I dIfDJfPPfbɒR0dLFdf@a0HiI"#E$2d"bR(l&2ŐAIThb fLɆ `FI)I,FR #$LhD `FhJ *`I d"HLIiBLDD2@RIFI)3%1DJ% (3IL`1MD͡! @bJI 4bIla%&$*) c4b#fa&LYM2DA2RFC P6`0LY"c1ŋ4f@@Dd` PD&(2E Q#D IR 2ɌB&&0BJH232`6@đ$#bA@M1LR2!RH€3h2D `L!6A 05) Hd fL0d4H$D$PI!&&I҈0i)2@aDM "hd($bє# )d`fB&"$E$FK&)0CH0$A1 `2B2  "QҡPbJ&")"RQM$@"eFe@eA$2fLc@BDHb1 d#D (cL1A$"&A1JD @FHIC,1 hdM$43$ a%E&#0C ""M R0L@36c40$3DhdJ əd&$B$c% #`$" ,PcPC  #RQ6E2Q(hfғ&D &P@$ $hщ2(dFL `i(D$JBa&B@!FK"#Id3@fI!2""dD""f!(aP4XS$)HL$(Q22$2F &*0J̡0؈Ja!Q3),(hJCC&(0B!fP2`JI#d!C2Q0DJQ!&102iRɔ2"ZLF ba41$0hEiQ$HDH!) `L2XRdD& L#Mb HɌ$f4"$40)IɰVR,ɊnA4EI6ALI$Q ML 4E2J3  iQ&KI)4DfHP($RPL2dh"2(0B1J a$F&% DY" BIBDiIec34Y  6HH "JC ŃQI2&# FD0cRhH@B(ńP@JI `LK,2H0h"$ 2PҐ6DlЄDD0dA #3$6a@c1(P0"fA2e )CDHI@̚IbA23 &a$lRi!@0!4LIH`̙@dٔ0!Fh2 ŀ&0dI2EfF2H%! 2 JL$DAI@d@2& ٍ3)(!(R! Ȃf!$L%T Q)Fi"I0$̚# C#EQƔ42Jld H҆4D,BQ($X,ЄRI$Đ b4d4D2H"JbȢhHD`3$0f%( Y0,`Q,ɌhP )D@M4(HaL 2A%1dLQF(0@CHR 1Hc2f%LaIR12QP&5 IH!Z3J`d 3AB2ILD2HFP  FciHLbBPHHB bBF(!0XL LHJQhDƑ`%&H SJA 4"I#&AbR%M)& P3H0 HFBi()hRƤ)&Dh4Di$4HQ"`e4X(10)"%&RA2Ff! 0JRb2)$Rd214E2"E dR$BR&1bL 34F` @LD$IBIPLQ #$0#)0P bB 1h#$1$1%ID DdII S II2$Iѱ$D"MA3e%)Bd!JLL4 I % 0&HXRI"Ĕ0HY(Y) LA12!1&#,)6dfP3I2R3b(dD A4b0)&C4Bb iS4a b# LX ؉1E D Cf$bM1$$ATh@(2LfA dI0SDBDSI# HjhF(Aa3)D@Da2Ff3& 4RHlf$FI@љ ē `DA$h"B"I1i!(lKe&$0–2QCJEF$(A@HSHF(B#$1 I"@(I@Ѥ" dad)"IJSIFb14"$FFP@$!(4ґY Жfb4IH%B0M$HM$3CDCHhA `HHҘ!04 LɊ$I!MFb5FD TJ d"` )(DL$ !c,@$1L&aHf2I%&d B@3S& #1JK#"#i& `lP 2%LRH(B ZM2BQaLc%0RDS$0I4P $LcXaP 2)0 LRYD I #$h @R#@ BH@FLI( 1AI&FaFfaL$2@&E0fHŔ(60 )aSH0#d)@3%D!AI&FIK )!D 2L "bA4 LdfQ&!K6idh I  & (2Dc)HA"H"@)( RJELQL$!Zf@Lђ4$0JIJlR&BLH10EA-(P I (&Jb@"$6H0&0ę(b ,b@@d̢#$DI1 )"2H 1@B!aA$I, H$ M344&$1"fiQ bD4$$0J*$! P!!(IB $Ţd1h)dbFS@QC"E2DĒ"D0Y3f$M0&̑ d!HS0) &faH!L"Fc" MSHL2d SRFB2DDIeLLI%% (d%$$H  FE BcRBb"I! !) HI&H`4CL1"K #JB %22!32LIH2H"hhe&FFd!LbDLM(dPHQb (L "0Б42! I)(aDe"di0 RL@ F4h&2DƁ&!%"61 X%3$J,$fLР&a!iB`fM%)LC0 HiHK Ƒi!,b A!M)" BHFE,)Bb$d0$ S2dPI ،d)E#I !$4@dM4lfJD$ɀPf$bd0")dPBfd$H3 4JaBSA)fBFb #M!Ґf4BcALJLHR !Rѕ(`j 22@!2$X d2%D$ Da4a2DA@j3@V0Ib4C4!0A&JA"HC$f@HH)dF2DlHM3L ) RBLBBE F*I0؈dCbLDB)HAHi!K! P!)"42dPi!M,"I4HIJ 2X#D B6 I(Hc"FH3"iĩ)`K̡$(DdIfd#2f3 % $%"Bl3I 0!2&K)H$iM3a&3AD!X%34"32J4X% $E% Lb(aALdR d"! c2bAA) FPĆ 0$Dh $LJD"blA$L) *CI&C2SdHY LS( H&$dSI1"  Add!JjI(ɰI41!!4ih&  FLH @(HFcQ$2C# i2QD0 !HY"@($LRdR$#0L4EBd2IBIFa" QDDDfi2fQeIL D $f$ #I 0B1 0"# "1#"04M2F1Ha LQHK%$Y,4bIFe0Q"e(a"A$Lc ,Dĉ2 2ib$PR DJf " )" R4BK3#& H@- d$)M3@F31 `͔II$Y "ddQ @"Hc%5Ic3 $P)"P$$BJf0f%B)!41!R(3̙ ) FfQ)&LLBc2JEIBI2AIALD2X !DlM*P`Q$ !!@̃4RDDS&2L@ @ h$ (J6`2fC DDHL$4LM(aDI&i(a#%hfDB E#1dYL ƙ1Da! M$DIMɉL14) M"b l2RA H0F!0$HS)2a3DP(MI0HLM@BIYlL#0 ĉL,FDRbLdJDH"͡I%d 2LF&$M 2a) 3 $ (l̈́0AR T)- P02 D$l %4ȖMB!$`B (RZ&(22HZ0%)I(0BC3 RRl 2T6FfC%LL!#3B0 B( JP,T!dbI!A, 6 QRA 0S&aDDLi !ELD$%! $I2RC J0I Y#&M"YI$S d$L00`DLI" a6aI 2Dġ041012$RHe4K%Q% Ѕ4e& L"Bli4$Hd1$$Jf(SQ& Ȓh $̈46C )0ƌDAHрII"d#HR !d33!32%1,La$! eh H&D($I @F HeQd $aJI$bDb$"D&eȁb1`PK DPfS+((R)i"4#&@b4Ŝf14RL&Xb)"$JP5Fd AfȄMH2F) )"4HfR&0HAI3&%$(QFdQCe`ē*bD$%$dDf0&)B"IL%$Pd(ș)$FI)23e!""D,&6B2i,R,DP 4h, "dL F&26F$b4C %C31)!$Lc,Hh2 M)A`2d$D̉@b4) 4 Sa3,F 14"d"1aBɅ!HѨH!K&3D QA)C *HY cQ,``C31(iM2$Jbi430&ILDH%$4T1d,`FD`Fi S#4I&M2af)Dḻ$Қ$03IDYALC2@eX "HI4̈b $iFEBi4S ēBX`%0 `0 dFPIS4DfD!11L0 )0R&DRQA& Pi@d$ "P R"2 HB 4a@H, cH )2""Bb  H-i)@ȉLhPB33DS"SL!D`e̤Bhʕ&$F TQ00CI LH I3A"H  LљHd#0 P$cfT!ԅ3dK&S fL,F$,́L% †K $F`"E,M%D4dE#3D2Sa"IFRF 44&4БȐI R(#$2LJhDLdQ1$fQ!B"$!&l"R` IRH aM0HTL(S30H A)S20ИI IQ)L e0 fDL0$&AM&A%2LSC 0RDB# HH$C((0 " Lh#I!2% ,FLDAdĀL$cFD" R%ƈhD`L$e ĀPL4b3Lc,FEDAb R,0ȅH`)&`$BH4I 3 LJ)HH&4"0F#3 2I@6!)L2A4LH$hY$# $ʆ20"X D$Hd6P dE&)C0&f004PS$R ɑPfi& hcRe(XHF 1 DYP4LL2c2 2 "2IPLC! `2,Ji@4Y Dd4JI3BE&H eh)*h0&L#"D$&`4Blb% a3 6@)(M"Di FMh2JI!  %1%SIS1@`A%F"bb BD2!f#"lRIBшXQ0"P&`R #-"hBdT$,,`fC%FbPIbFE0f&&@022A  %h ddQ"#,B&$ƀ1Ld3")$@Б̔ј*%di" $(0b% Q0%AI4$4c dİ)$B$PDCLBP`X ,HBILa PIYI 2QL#I$bJd٘ 4fFX1a0`a ) $BHPHF 2a"e#Id "i2&JD0%C P" &ȢLD3LCR ى)FH$HAa"2lIdIB& 4lEA$L$ (́HPA%"DB Aa @(IL3dd)IM"HC!)LJ%3H`ICBh&& e 0dPe)0$CLiI#CAE )" ę12H3) c%HCaFK$(PM LŠj P#2aD 2QB12Ya%I%f!M dAD$Ĥ1dB ȤD1$$QbP*F423L$RL%"hALa M (S 4iDF$`P )!LHPIRIfaEL&d2dɰ )EقcĤE H$R&"2I2@D(XL&h@)Qš+)1$`$11 C"2BQ0$LDE&fS,I4(# L"BL! LHŘ4CH!CL$LSJ%$B H($J $D!!!d(JK)e0 QdQR" ,RL$6#!Jb)"$,"HbJY"LA) II$$! E#ffDɚ&@H A(D &I` 1$Ҙd&1"(P@ "ha2fl )L(Mi0$ҠIQJ$"M IDa)bĘL bMJFbfCI IXI3bfLAdI bĊC@HjfFEDJPȉHAdJL@̔d#DHj& d13fI0QP&lIbR12R 1bDDdX##1"M$̢DR"))K!$L2i( ɑ!!HQE K(` "1`db1H"$$(R ؊DL#AeA!I0#d EBhDĘ0D&SA bH B&C "1$BMMI DBd$YєȤ2&(j&BBd4FL&b%R"@SD%(d%!ƈ%DPѤ0D!0!22ɲL"ؙLȤJ B1Ai#dL$f$,@#Rhd2HJSFdC 3()$),DRTId$D&fD)K6h"%2bMI 0 e" Y(Bc0$ c,"PR$&6D$Ɍ„(2BdbIJaI"1M&6- BSBd DFF0E&1FDl"0!HDMQFHb2A4&)f ,&LDJ1HD 3# $4d CI&LM(! K6$B`$(LM(L4&FE 6*hALC$ &fM$Ȥ 2`"0Y2%,Q$LH $"Ha3)H21$MLc@Jd1aF(AFɀ2$٢I )6 IP@Ph$E$̉(R,əE`)&2 I! E&4 H$a2I2 $L22`3$AD1FIKכfi0J 1Iѐ, LRd%2 AQ$DɈS "CA3I)fDi&B)`d C !4 ,2F4h,RbF1h(&b1BM fLbhFD@  &d)!D&h"24a@H0 4C!ȡMdDIJ"f$B BHX`l3DcJILQ"fK) `Y BaQ4@"HLQF34$D0LA"2$31Y!`2a!"$F&R(AHIRd1hc4f214I3D4E %($c# 2AM!$̍ A 0IHcM!"1`H(QLE*R(J@!2)LDcD&e#(D23JI2 $"&$K&f%L$"ى0JAĒI"Qe 2 ) 4d$A,@̍BD% 2!E@3bILAd 42RX E  KJd*iH400ȉI LDL"JRLɀH%l$ #iJ@$PhHЂ!L`$ a IHJ,!hͅ$ғ43)"Ic  He II!I*&!$&PԦ*lLƃ S(L%1H i"e %"H(IbHȅ$DfBLLJ!k,`Dč"D )1FIQ!@ȈS c 2ba3$@`"!D"4Hƌ%(PBA)(H@Ԑ2SfFň@؄LĚbLdC#aB"20„  4Md (BL"#2! , D241Ɉ))b (dƕ bH)"HA#$LAJR1"LD #%2H HLAQ!ISL"͒D4!$$6HБ)dFQLJfAF"@40&6%#1)(dɔȤ(Bc1!!A aJb 2@I )#2!I6@̄1&$ĂdB ,SbLDSF&%(SLS1B SFHbBS,id2)L(Q,&JPA FH!ddiICJ,J4Jhf $,IF$ e%,"h͚I @$L" ED E)1 dFdPdBB01,F!JDHc)1I)DD&B`) $ &L fI$R!YIA I ( Mc6d!PPM# 0RB&Fi$cHe"0b Q#&$b1@) H%&TE"S" D&`DhJ& JRRD6@BJe!RbC%02XASfQeC!Q1",HLD`Fa!bD"EfI3#0  R2Y)dF `H4B AL)S3 PPQi E2haHa@!c%f H JE3D&biTYRL fd$Fh()hD!&h13 ,0& 6B$J,%I )h"L22c Ԙ3`Hai LL&Lf4ċFi"aI3i- D Y4)HD( F D@$ȓ  P)`%" F0#2D %`(%!Rf011Q `%E""Q0Ȱƈh), Ғ1L3E4#"PT!DE!Pi1 IHLɑ40a#D hHdlS)2 ILhC22SDe&"0I&f&"1c!$4DYdl0LRS $A(1hD"hDĐi @eR&E0JD@L#"E )DIA)& d@0%0%"&A%a"ɓHRF IEi, 3 LDf(idQ1!H XB(3LLI)(C2I0&"BbɖfJ Lf( fLƒ2) 3(&)R44!b&FS"$PI$0JCDL&!FQ$lf$ ,,,،Tl)JA0 Ț`A 2 cC ID+3d 2&dc(ĦƄDDI,B 1@A"a"F TJbĠH4bi6$LY,3L،X1H,"(@(da`&$ `(aH0dHR4LȳI`ѓDi R,3&$$ɔb("# bFf2$)&"h!c"@e&Jc4&2FRH)H2ILfi2E&A&43 Fc!DJT  H#3IbB̔A6%#X!I" 0Q%dHPFcD`QHH2͉0b F(c2LS6bB(D1$1D$L2F63CJ1$M$fRd$2$"LS0Q"c"F$ 4)2@R33* 2hE&IF1&c(C dM4D (1 dK0 F``I 2"ddf RLhDDL! R# ĉI02bHȤD2 2X@f1Hь4șJ$$1IJ$L") 2H CHbdCa,P$I4hRL)Ff$&!fd$L!) 2C$&!FQ I"Dh H&H$"F $X $M $I3d J$&0BS6!e%l$3 5$@h"R FL,R"$3"`RDE!HRJ$2؄bHDcL&$1L 1J Sb0C&22$ 50 % d&JbdF$2E52@$fBf$ИLɃ#ACc2b2IHL@)"E2JH0Q2Ta" I2&d(Ldi @f 6QL̚XL$4&4$R2h$ 2%@2(H DAeiDPH͒"ə)"I#F,@I)IJe LHA% h bFe0R BŌDJT4!,3&$Q 4!dFPid&hS$f1 XQ)bbfiH`)FH$bE"Da 1C0LŦ(#De1I"H! J4cI0 "I 1L2I`2&2"HHȍ LI!J$i 2 F&e&c$F&1IA4RH1C44 4c444I,ȠŌ4M%)3 L bRdH M@(2)HihɤAdBI 0h@ɍ$!,lS)!f@#I !!eAd(bb$&6bQa!%0F"JP ES44J)6R$*#$Ȑ$#"D#3@%bI "C4Bd2HAKAi&Ld4HhLP01A)HLl ̩("1 AdP 0( ))0J3AH͒I! (eM@RH2$$H d$2h%Cc1 Af#LԂd10Q1 ILa F"h@HQ fFJ$f%(I!lD@,I#,D% 0#`i$F03@l2I&$aA1aѦaL6LJ# f2!FI$@Cb)A 163D#)&`$dLHL f%ffM Hҙ$ $F1Ke0ِ%$Rc$XXD#"2I&$S4VT L)D eI EbI(F%@J,XM0i5jh)Hِh1D2LJQh̢)C PhJ$#4lEa6I)a``K @2h33 0bFE$Q)L""$aL) DA$3$FHJcB#"1f02H@2ńIc3II2HЄ01K(SD1h2f RJb@ ($!Bi@)$XaLԌBQIbR2XQ%"@!Da̤34dimD &C3 (dFbF1f IfFȂ"LSCdFQX3*aMIBc Eb$M,I%2 0LD(4 dM&PB!L“"adH"4I ̍$$$b`CE c$HIL"`@DFLf1"QBJ&I"a e2I`,  DhdCFHR$ehАF %H2S)dID "Q$)MMId #H "!M4 )&Rь!5$ɰFTI,B2 E(3f*JR$) 1L2DF#D$),@,I$0dH!1 )"dԙ &$ЂbB22(`(AD)$F!$)"0Hf )Q`JA"I)$ &BRA4 dbLH(JKjPJ0fC%$bbF&h̦hE`D1E(  1,( M" S!!Ce01bKEc$H 0%#J6PPFiDf 3$0؄$ E( 1I4 H1bl"# #i##1&@S̨̠E if`e4P`HhI&LdDLƁH$S)@hIhM2DB4*B" 3" 4Ą4J `$a!*E,H2$R"̐ID`d &,A0I & A"2Y̌M4fPJRef`B&$DYAI"()Ɇ`()B 0AيdTDD1 Xj2b(R!D)&) C Fe4C$2c0H!$Ņ,XbXDJP&0%2)F1i `D@ 2&)c d@ C$a DB`$hZf&4PXDbɊFH(1H%4$B M$L1P$Lbb"HP4$D@D&DlbJ#EP`DH l0jPHS2M!$Yi!lI$(!"iHAD0`$d)$S!14(F@hD43i %b) IE#$L")2)D #J"S)#DM@PFLf$1@AD#1&S̘&""I! F Re"02h&0FL X0D`f$&$&Ĉ&S$@D&b"PILF) D1 b"RbQ@)`M0(lR6b"*)a XJ!DɁM"bFE3 )L I$ &E1f!f)&K $L&@ɑfb,a)!"a!!$2) 412A!B HLFBI XLF$H&l4dč!`@L 6!)CDI0h1!Aє)SDHĚF&4dM$&D*YhPŊIIa d!d(I)@ai&(e Ƙ D2a2SFbf BBI#,Q h)FēC P)1$%(b`E$IHH4LHFf"2$2bDE14XFRM$D&iIR)  HPQ&B`fK"Ea f" RTBCH1h@4IB&643f diC("(T@YBD B1L(JLDbc0%J&XF0 !Ff!JdIEh0F`BSK03@)$$IBdJH`ɲHdJHE2iL(E fC"a" HRDD0R2ILFb# 2E# )(BHɉ5 HDD2 iLH &D(L$3&HF2iLIJ H00bEC#%L "4*1&B % % )"JbS,4  @2J0Ef$b4ŠI ))4%JC4@RDѳ&b!AAIdBFL4BY)$bHH"T%@P)I,)24@0$RLRaH"HD4I&JbM LDQ $!M D)I!H a#F$! ! L&0a!II,," B"H1(H D$و)da42IbK3D4!"2&##DCeBh2a ƀDFD$#fJlCFLRd& P(3I3(%JJBH &RibI bу 6JfI14D4CHC I)-,A)"(ѱF@Y4$d2Q&206))$0DieLH4$e i`&a3BH D121PiȦa#1,BSbPL2Fi%!fL0)JM I 3!313 &H$FM@&bX(#(He)E& "ƙ2DȀd LII K 2A#$fH!D%, 0ɑ3P̈HcLJ$LD LL0ID`l̘bHD #f $"B20P,Ș4DCF 3A E&H1"C$Aidi $X`R K!L "Q&Qd)%FdŁI$ADe$`dd#bi"di S `!2CCeIDD`BɌi&lf&h!"&6b)AD(eID acM&% $ń0@`C2i$3DdPiLI)FFL  ф("`( "̔ "bbe"2"ɠƊh HRS d6QL L$̘MH,̨`I"$0A`BLS31$HR% `D &d@)2 3"P6" Ld1fY 1%QcFHd4IF))BD4YD`2!J2)$4R c2XL̤RA"$H&$Q HT$2e0 lD4b(0@dQld2ѥ2"4&2$HH )d"0a6dK2JFȠ`1#$ #20LbIFH&1&2I 3,ɔIC10A Mh$#"H`̱D PRRPh&$( @0fPa)"b̠BiA$Hb220L32`0IE`JdR&(bJ!,)iRe3iLA$H h(,Lȑc i%&DHc$$HC$Q1LY4 $ 0͉#1 $@Ṕ0hl$ʕ`0DT`Đd d*4S JP hHLML)!LH fJJ0E"D BQ% ) &dR%)#E e2 i$&JA(@F@1(&Jbej)PH3#)Q1 L&"`IIё #H"LMR-4 &AR"FXɤd!BMLQ$ &E,$l& HF&SJ!# "A#4De$bI P3"AD! A!*H&C 6a)#I"F(K&hb $"blЉ0X$HC%IC &i%3(Ibh E,&&fPY)I4ea0H!"b$X4"""M!M2̔h C %2 M404JJQL2Ha#B2I0H $)&1FjRLĚTCBLP`EҦLɓ& 1c% 1"BFE$eiXA%)$"K L %"d@b40Jb!D16i $FI`Hd0“"Čĉh$$dA$ldIX$4QL#L bI1#%!M00f&HiL#0R3$$`H3Dl!2$ PHDE &&$&DL(B0dfh2%%C`i $%($"̑(R dlLe0R$ LILhd4 0!JQ`40!(I%2!PȈ!3ɲI413,ADA`$HbdH@؉E0 !$ٌ c!C!li (ciLF$PH412I52FLCb&E1I@AMAS $hي")3M$i$0afR P$M3I,&6 QdLbE#L) bHS2ĦdfRHdDI$BcHf1AA#F)AAS@" 1`hDh,FA%#" `S&bBD$I0̉D PH$I3)RX)DDf0Q0!&RA&hA"$#L2E"d$LdIDEYbB1J(#H DBbL 0Q#21&6 fHB$I%B3))&II"iH%3IH)"łCccAFI$iP@d0$,MB R4Qh"dd1I% əB Th)BHBH0S$(Bl4H"#DbBHA1L !H F@!1!" B"Q!C)cQJ,EI&#fD&I(H20LB2Qh"FiRT0TRCH!0(00P2*b(JS" BcdȔc6P$6!ILfY L@@Z4j)De 0A*)J)$4-& 4`3 3(AFL 3CI) #&)BY0ccIHACȀH2M &BC e #%2 0&I&EJ2L ѲLĘL"I, F&"1,2Y(QH̑J BK44$Jjd!B40cLEc&BLM)hX6RiA2I$MFJ ,db*!, $$i1BLRj(F) 2&Db4Ld $iA)%`,Y 3, RBl 0I)c@KD$dƄcf$F2I@șJH&JB"@"Ɂa$I2 R)Le"3 2Ȃb@BFB6I!F1f6R4DFBPbLFhfdI(D)LBQIRL 4L(3 E 1I$0F2A dL 3"#&f!KF I3L$ЦQdPQIE6e&2BF d`"#2(M1IHL2)0f+,&B cB1&e3JI,EE(I@4 $Ba$&`bc! C"1$i42DHf@hd#PIe 4`0H)(b$X"D J$I$32Id,D@dHfK"DȌ`(ƒA XHIf`DI2P1E1 E( 6d`̈́$)fHL&! a1@h# #0%&E2AFPe$S$$`h0Yi(fa i$%21&1h0Lf1AE#Af1HE$ !@e2# Th $&(f4hALi"(%e%ZJf%!1(B X$, )$̈i@%&D0$Ći@0FDfbPHHPPIBL 4ȐDP ,Y  )4B$)2I d$bL Bd0D)$BP0I!DD(LhI1$0lḦ )DM$%2JFd2L1A1@(e$J# 14Hd4J(iD I B DI04I %` JDPL@#&D CF` )M2A02IBJaI$d$Jdd̨I"P!JQdQBibYF(B Fi3@b ),Ė"FP6`%*MiB23 )1$H) "MB!1CI#be$3(%"$I$54 1"( ALf&QHbȍDdBY$̒4dX@hK c4FRi 0,R4A24F#D#i F12Hc,3L F! (S4AƓFcL1)$,(2P"L "B""33M% RQ, !F)L110dFBIdҌC$ J,@R%$ Qٚa 21ѤFMDIQ @ͅ4ɥ(H cL)"BHRHT@ &LF%%DHH,HI F) RIHh)bjEI"A DѲ C4I&6e$3XCD31M R6 Hc@I!h FdY,1!40PIXe" a2 Hi$d0 1H"D("M "d,f("hFhb1$ fhR&!3FA(#&dL4hRa$(#h1 ($ 1&hI3FQM2S),Q#H@YLXCF̘P0I I4@ȌQ$#I1FF̠fIDJ &d$c & L҃DAD!4A"E6HLHMfP!$C ĉM ђHLJ1K)&Hd#$#F &!#0I!1%33" R, $b`cQ)$1 AD2CRII!203 2Bƒ3&$11L002"B$JIJ)$1d@Lȥ ) !D0dPDQ&b3 3`FXMHJ3aBJi RDFH%0i0&@ 2 hFaȩ2(f2iHLhJ2aDaBfJS1L"C eDDb4#*BQ%(I &E2!`0( R#( I@I2($JdHhI"& dȁ2Sb!$H!DR( DH4h$$Bf҈ȑaa$ Ldi$cH(LI`I@̌(B DSSLS(T,AL bbH3 B$Qh1f4ɳ(Ĉ4&`4@c& " $# 32 $@0(6 i$I&"2XIBc&K$LP 1RF(ē2@hC(DѢ1I CAC3baE)"JJh&)c2E&lH"ZBdFaDfQ)!4 "Rh$ȤdE0YQQ1R! HHDH HeHM"I$%$&jL1aAC)$5% 2eA2K Q L2%c)M0hƤBc%L$HђD&I$0064A "d! !H ()#LBE2!C"#& (Ț DLLYLb&2RD$K"`b!IB V#&Y$Q ( aPE6M(2!&PIE 1e4"̑"$M(Ia@iF IF$Иl"LH"$L̳@ID2!0‰2fF"iBYL$la#hfJ&JICE(LiR$ȓ2Z`S&0 T1M"213$FS*$1%$I&(dJ0D0`F)FJ1L" TDhcH̔Di 0)#1 % f#"RF0DK&@$щH4i)%40ABa&D(@ 4RI& `ɲ) #$Ri$$b &)%0S2! ))BfDQ@I)2#f i$P RbdLLQ2D*I50HFLf $a@#@i4$1M0LBQaa#$E$ FIQD LDBPL`f6 !$c cB’@ĉ"&I L(( e ѐ - )0fdP"e%IdfȘ1$2E(dJLE4i!*bSH(&1("MLJR04b"21AH2H5*$"31$A(dKIc&C$IH"&0P0cFD dDIHA I"h Ĩ2%!MH30e,)DD()( 3L! RLQe 2l#"%F1! $fLa2ƙP)DfA1C&j3dE IH"CHJhR441 ̍3$R1A&A2$fcHFAdd fSQ2hB#52PE !$2’ČhcFfA#I&#$hL$D2D*0iF0( XME1f M 2H@ARb&A L1B&i)#HM$iMBDPDRьQ&I-#cd#a%dL6f3FF2 Id&HFXJ`#E$LFɔ LHd$Q !"F#(dA0Ƒ dP &M$$@j"h"a2hɌcBD2XR,db3"$4Ra%@К3M4$l&D3`#, 1"`ɑFI40%& ъ@cd`҂0%1IaM hS)XJLIJ6A1!1A$$4"FbhR)0HщDRFd!A&#bD di`I&LadI)R fX$h2M"!&D" Cd&B,La `B2$%IA@&#H$Y1 F$1 f2f4"IDb ILA& c4$F&D`  %LI  XE6)K@d3`ɲddRd҉DdfI"M"0$-   ͈)$IBbS PL"`E he"A2bCLHi%JId@)4LB $0La3$$"4’RY hJ2cQE"1f2d!3E@ I R K0Bd MLXa`($& &2R1&4 ѓ"4hDDP)"1 $QD)M!$ $DA#4Y(R!$+"Fh)0A F@ba̦6fSH"̐I ddd̡I6 ɑ&QbY@ff$"2#@A3DQ l!IFL,4QL!2)LL25!1B1XH@0"3 I2)EHiIBI,%""SC!3ĔD3$QI&C@S(Ʉ@04(0Ai4A̒,h̒&@cA$D Lҙ$ 0Yb("2Jf 0&21,hf!e$ ѱ!2`$1&R(LI$ `2hDhS0!( C@4 4DL)Q&( P4d" #R1IQ $d$&%#4D"$d4 !1 ISB4I)%I3"RIЀfa,R LaJMiDJ""%!C43#CY&J!bfF"P"bX4!&a!0 D%%(4̤ I2cBS4L 3D$&Id1i 2T,JHC2h50ĒC$2D&0d "((E!"I" #@lQLA,,2"J 4RI0 bH1&a2$R"Hɲ@l@c #3De$b0al&),2F 1D(!@2HJD!"2L&23()Q,4 Lf&2M6i@ 3 2"$iBJi̱I"!#$̙#I PHBFQAiJ` dF`HIQ&$DPA$ h0BB$@QĔ`H@&d͚HRb114K))$S#IEM IHHhb)JE3& cJ%@% JDA!@$b)P"f@&"HI " 0 fe 2dhD BĘE DDc2#E Bd QHR&L%02A!Bb"#`bEF#LId`YD&Q Њ"!JDbAF2I%C2f`aM 1a*D $ɘ2Ĉ$D I3Hdl*&"he$0̤٘FQ32 H SE$Yd4BLLbE$1* B1H01fZA,!D2C$d%1! e! 1A !da"S$0&A LDQ&&˜4a6 ȁb DaP H$!") (10dLD"$ P bP$,Ȣ2#%,c! e#jF %hIL@ E%$)(` $#A$D&HC$aB$((DYBbD$2e Pf&!IBRA2HȆd@"HA!(,iX 4ęa`Ȳi bD$#14ɡfDe$C &!CI bY̥#DBh"d bh2HP c16A %A +i1HЊ e2 2ĖLD#dR!BC2DɌX#X$A,44HFd""6QDRHQ"@$Q@bEIH D$I RHFJlh1`KE`L` RČZI!dXI IM#,)$E&hD&f$HHd3d$@H(PD))"(c!RQI@A B M XQ SFi#&Q&Y)Rl `DPIRCD#L-RA "d!%3D0bI$bcd(a M%4D 2D!L $2 $B H,bhF% ILB!(3I! J$BLHRH2&  I$fBE10!40IQ  #&Ca)D$H&)C&A6!l!b& DM"#bH6&L146 $& )F(A(ȉ$!@ Ń) H$)ȋ30$$D̊F4eB2K )"L 2H#hbd4`I1DĂRC M(i(1HRQ &$2DAeC3$ A20$)4cH!5#@0l $ALPDd(BLFJi3LRM Ċ $LJ  i ##0dC%)$I I,jRf$02RD*Dh  l4ZRIbA2P4Le DĤ I) d 3 Rad3"B"h00$2 Fh22H!&!*4`b I(&)!D&dIF`$IM$Fi*A!2&d̆! HDA$ L %&(6fD,D)(bRaF%"`CJf,KIJ#$XHFIbH% 2` dThJXBLC Ƙ"L@))"Y ALX"12&ad„F2ie)#f͉ɘEBI C!E"(aDHI@ fb2 1 4#(3 He HIS! RP$R1F)ALM &`I"L0 0eB)RQ% HY`K#bB#D)4BhF$A!BPRB!`Ҍ2R3aH1,*1 )QLbDI0b#HDLY&BP#2S&!10CA$H P(H@%1212 RB2BFI4$c1H2Xdѥ c 0FRR-44Ff 02AdaĦX2M J@d e0(&a14b L$J f!H" $HRɂ@b1)bR P1H`J!6J0 &d (!$Й +e5Af2dd4"L# B0&L"c,e1 dQ&a@L $JL1 %&@CC1%( "#M!C,(bi‰A#%#2LH0$12i R4hȁLe )@R)M$J(fPbILdff"i%ȒHD##RLҐbDQ42(34D)D05&cCLYBL2%&FDh$!P Bd2f"1$L&RBdђXe 3!4#4@c#1A d(J4đB11M )Ă22a"I)2i$%$ e"LX"$M!I1S$Ha IF ( aJIbFLB Jd QB"E2h& ƉC@*(S59', PQȀ k/ %DyU 2̣[OX48.TvݺFSۨ5ֹ웋u쉮u9u]vJ;gnC +v蹷VU[TnkpNq-mKRsIaYv۱\9NUcp-w[hGKUUnYwwnwWkfvkV;nZr@r:*mwl]՝;[nںjjSknwE3Fr֧ -ګwnN黋It56ŝvιuT6sn\\n[Jwt7[q]\t\[dٝKdmnm\nsvܶwm+KCuvԶ]ѭw;tms25ns]fjfnw]VuN25[.v.ɮs8.M&S\v̴B;kA˺uqvNNwkm#s];rF3v\kK;Fw%wvTq:kݗ-;vٶ7U.vͥ;wkV[u`g][S.94K͛\ɭu-eR[Kf"ܝjw-]L˶77n]ݍwwvtƍwvvY]uw$vm9w*5lVC݃V.KsZU۹v]w;mf΀7g75imvmH6ګvۜSMkN۲m %3;sUsvvvV&.\vm,][I7sYє6cg[m*KqPjujwYӶEOJ2AaO1J2iaO $ FTb$ F =UI4i&ДiFOPM~hwʐO'rޤ~y-o{!)%NTW(`k o }@[\>|ȪӳӈT;ƃZ]c*\1Gt_h_o痡ex6C~-B[RpLeU336Uu8\cAܵsQdžSJ+s@COG{2/L〮 ]wvC8ۤ$-''wIXNuxb{}4M?Z9 5ȆL,Ssc^5YdК,Cy^|4Ayo ~ޚZ"B4%wKԇ y0חȵo{6?p mg~z!Ih-tv%ܟ4(tmТ9 {g[B-B[& B%'(O \dcvDvܒx=3=йY;2'"V=?<<&ɺ/U8ZOq }SV8uYiwL6T[ƫ@mo&o-ְGμ5q[HkxdRӢ1jAwG!凕%z<`<ǡn ~7-VN]MLJq)실lM=;h[I_"Ǥvr`kNϧjuy+OI# ]L캹n6V営PBKcFcr"ˏDlv%y3XTpݢƶ9}rN )#2I4'KB0Rߝj:Q<(C yȱFTJXf8};D&ה; ]PVf~K=y xDQ~Xl] S淙}?fVlHCђ>~511w`z2fc]Yӳ]Q/H84kg%T7'7lQ$MKTK׵Nm3ծQr8窞#~{|[85V\=^+]|k5i\[ .x 05/sako$vutx(ڜS=ifJ%nqʓ[(@[}&jF<_C]Ve%Fzc6KǦM"觧UHmC}W88k!\h-Ou{^٭ڂ?깬۴D o:&0{lǙdVҞ`I|T앙~2LmR}Ƶ׾֦vH)#3'Ik7 WC q1wx`8flVϘ4lߥ %$v Fi0}D;'soUf}v/\BNHfy]݆2HS6d#޶w!i~Ǿ~o?!24LS?gYI8}P`>趥9Ro.fʄBѡS5<[cM|-7ɳ5]q}[187xwOK|@G6zڼSgNX=(L; t{ީz]pw, NSC՗Pڛ* g6Fkf"?{!^hR3V/wkqWMj%dItqycC(8@6}Y=䕫F\AN.p夙Vb:Ζ:{mX+{|ճ_ڦd9QMH þS/iy9Φi,0F3°kQM}tǽciwe/b{}g$AD*79ŁJC|[W'SCu춗ܙ lN]Q11mҼrzڪ `V(%r%z7ز;X6Vޞ"A%8~ȁ==&eoA<5J3!F/oJG' Zo,p6ㄉTB_4Ћ5cHm hjCE7._k&Xtˎ%QPp˚ŀ ΣDh]PSސuWH m!Sq1k͊PGTSԭIi\Ѓhf6Nzzꔟu3LLVH2/dvuNn<] DM|Y1TŇAW崧XwՌ_1[V`,{- w{'vIRW.y Z 7NbYg"j )N_(g/Ȁd^3P_.EaPnkp\7W,U2n4S0|)`Yٕ`UՉ@c晀:[EViav%ި : =&^2ό>h=R*[Sq,9Mlw`3͚)C1%pP SiT7 aQ_W$э뱓P4APK$WvOuQ!DM>O[yÇ ruoW|]xQM9::Q2Ut] t UY0 0H7!j^e @5%+7m6J Z4bܭζ,cxƾ18[DOct1{Q(R!rd/NMVS9˧7xN}MN x"e sX3 1~pTaTqdP%c}ؕ(c}b5ٽO+9; Euh9eTXz)!q8KRvE6\s] LDd2u~:{N[fkc~J1jT)Ch 96cX *D7>_<8ƍ/Fx 7=du缴UW7gRWV}O%٪l}CKfV 5Z_z oso?,_mW[;fe W9lBq;Z1;|O{t1Vc'd2shYIJMOYSe+).?z[8[˱B0eYhg1~t5.Q_epm3y6Ȝ|__y}jNp- NCYk۷lϮH/%͵آx`hN^0ɴ+Kۇ TLҝ3Fo{떴UNx&́&Woz]/w|nE}(}s+>OxIs21wؔFK7xK[&mr8tPĺнf nۭ_$~RV.7#Aly"aAA})qfP>븩v:}ݬyximsUWWQ6N6 yw1熮vCyW e9{R}<=f| 7 kTŘ.WKBW-G2L<n<8=ޑ-$:cU진T؊6 [ E 1 G; Ջ8#zC!ºr꓇Z ^1WuoKYm !J.wS!w4W^&x:ׅX` D 'W/>+ɔsfތR;MsӋfZjQv6T(cGpZeD+fP Т?,Q'LڗSa:T;܊]:'4nzT9 JHk,YWr7N6(*qqLИ ɲT5aThfLb\oF!C}-#B+\' i!7<\¨nBD}#jm]NaD5|1,0;_z.-e*yj-` M#FL]hXo:&10*yfї uI-VHҘ؎لP/<-rz+8 BifGHJ+؟*J5zy1i(V)0GDlA} 5J`o;NM|1[p;OMOjasG"aS{wf?:)◮*x8~bf)!"aSRyiv'=_[CninF؄,NFsKl W_P}|Q0MMq660ȅhn?i>fR+,8oDtZx'2czŽ-%Iv5;S"y~$`'>{[4 ͫ`.m;w3J>-َY6CY=aCsަq#bKyD'ٕe\~#e\Q}KJǾu sɚhYRn n-+x%gPj{ӫ /󷉘)g^Gz*xvt<grT=$)-sĽum*8韠Ntc+-UYz'.L}5JDc m@ g9x5=?I.{X3(Rv3 f_}!=1x@븏m.*?)9H"6&\28UŰMl ]kwK -'|.O% A)kvWg[i jOVۚ>^B_+^W1tן-m?hk\ߘf7csT-1# CE|k>d'}NQ>GTLTL&.RS4M l]spa&m 0LMz +n몤V~WS6NOM[|%g딿Fй}=9zٝq0=&5']&(Wx$^ Ė%?wp{ץ Qgп*E ?Sm~{uЙp>mOc=>EI >j 3[vcǛe!u۝3&|xr{Adڗrm\Xfg!w+%DҨzO ^i@$M(Iϩ+M0GWSzhFoW?f,ٺ,T_= OnuC {WZ1072Iwz}Oφƞl U*W@y~Z3ESUT0º6gflSGbE貕+/]wz_MS&tx2+빙P?tHj/[X}ǫŌXs u8Ne5*0;MH߶a;{ 3$1AKxdtN]S↓s*О:CzEMG $SS0!hOV:Paߝ$z9ڕU 7[%/qI:ޯ"Wg^مȁ/p:[{H9w@տ1B>$r乙9+o0 Tt/cDnA+1Gdeα <c&l%q2ǧM+inV)ub8%Pa|s;0 !9O+~[|gG8i8ءD};K_ FlN^Xaz`pG/6˄zk+~na=Vs4;2q3ی\0c:p]):cfL"WQug{!7%O睍p.K̿^Y!qD":=umyJ%#C$G6VFy5&^q7L}SU*fՉ`딅QZ+?wmĢ5$3\kAAhbX٢"4k"~oy˗ff+VMEwbk-g܇7߿v'3yӑ-B8@ H{nUPSFwT(@4/4O}h lIh‘nl=?not)"u#0(HE6j``~b >şS~ЃnW4T2L F-mh}M1gưAڸ[A^X]Ru!BT%oDtv}aNHWj'#dVMz{Er3 4Ȯ40ԛGuR|H4b>J\/S̓<^u*Әk<4IRlkig"bK`U\d L$AT|ku#D C4 Z!ӛ槯ɟZir̩ tQZکmعr;QR@2QGƞ͔K)*!ό-MtUH~d3u5ODj"L0̦{ k#Sv=K2E >Yۙ_qQ0DSh9`MHH0e݈`NX+8gv"vsrZ>'mTD2OTh`|AEr9ONMBoJvKbZBsTJ{j*q>Hi?v{i ,̛xX6,Z43~PƠmrn2{ ?|#oD޹ Nt6m?L~w4PI8A|7Kg5[߇LRݮKpU؏@&;M =9g l0t!xTMOW,ccd65Js{ƒyv%(ytz6!2;2ק@#RuK K['Ӓ},L$QNyQq}4#ʤ\e> T2&44 ƇI抛x>R[4r|k].{^yǵv-$ quNUI?`$*w-Sp.=7q<[dVgQMVxo%f4m_ a>v(4x)uPnA]8__n44=GIL;)~V陆 J_WLbocO4UnĒg*"8G |uUU}R(ϐ/)׏W1Bq&7ԓ췮9:,"`~}ޓ>"AqYjjӽE?5+ 3'em77]$:"W) BK9j ?kâ#Px2nUOSZ6. 0P֥d(9wo_Y\J^ja2tF(=uJȕhps%j7$tVd$e9j7,A2a*ZhUIK}ya(.:i˶,50vsVrvcܹN I.N XЁc@3*3#U}b je=u1S&7n?> "+'F}^| ݷJ]w"M{FRy;~k]G'*@N~Ub[&P;,ʙu;i>9l>մ0h6ҩ=~떸Ɂ%s=IQA^T#ޝ 0V2[xƏS[~~V^D Snj$e iL2p$YUt)OQx,mgkk~s/i.C!'qZˡdlڙ/t 4n ra.eywJì+f\-|2hOWK^ټjS*&XUiI4-yGs`#)/^-eO ._ O.*+`4OwSWyJXnEX=S^v[1$D|" ܬUHmDVQEVrHVLI]?2c|g.M>vDb kZ A[<)UFwny7qzhxЕYziIX[IO sKBW-CCjH{E:gwsdwNs-M>4aVn3߅NlWWϵnbicQnXt5=9a֧Ő𚡾gmωvp+~r9ЬX${*rc*rW 9{ c+{s@ETz#䕵vA%6Zi+K)%&5lmG>쫗Adtt:`N#swk|{xt%hYs-~{I_"AZʹUܦ2vgJg־U^wUǪ9,S:e}a7^e!)l~g%mb25-[Y&e]Ģ,ϨIR%@x>LP ]ɰKszTbpU򤭥J7M{Vh6MT2ulhw6a"& >VGň|~ylȪmYXq]0ng0ū/9p52  mY[CB]o-MFt&:`#y9:u[dEr Ӎ%mda *U2 j#}ŸD GIѧ>oHWY(=/ΒԺ~1+ca=܎{GRsZB}a8R2.G^P^l4; u8^7!ݟ.TEw S}ij%a>Wq'0HUHGRcc S~SM/zIND)U:5~4"saq jv+>o&vQ9 0g11-1Ud )$Cm7+}UVLn8HC/*_1{iF掬 z.;\Хlv4xHMgBLnwxsa1TLM_rμ/9sE-s4LLu7D֑}` Imn]b}bekEZw>8p~I?N]sS@>d2XsL^kOè8\bS yFq>MkkϺs(?c6b[:Qa#К* vXgD?-/5#U>';;v˷W#TL5u"^;>T-:=ZkQ&6l6]bu^U̝7bɓAq޻=&ȭ8.ц"4iw~kBKd*/SBw@Uqwa y% )\Y J:5AE\z}1_UWQW~.1QΛ`,Mx_otF Ic ErF״tǡ; Exh AodDXw;;8ڽO^C5B=pX1UJ.?̤#GڔV:J6Uܹ৕ihHd"%L-QDtV[D[BW#%DQ2 +.qIvA8rV3z!k&.<ȇhwaϢ?R%&:UVuy.FYG@clP/=2u~KǣXڸ tSttgt(6gd!@1#wWj߽;Gx!z\#-Bz1K~:%B?.?M#~E?WUv@-|@OIi{$!h]HiL{um|Ab-D ݜ_r6-e'谱bg]҃SJ8-xb6 FPKp=Oua22%[%1-3Z"v]E岰3H~6=t,+OT)kͽ^UzNӭ{`?T6$M5khKEr7Wņ<^KR,]|266%@ʼnvK|Jm&Z\{|}Z?939WwNbfPLܦ kSgxz>iW[J.>|i!oyS8iGg3k!lm"z[|njd&HߟPZ\?n샏i2_'^}ݾuC= @7w0qicp}EKjuADt6݊!TKT˶{u~)bs3+Ιl}bdVcB.Ԉ㩰kn0Ι[JZ6)?vp/6[#@/9Nkv!<_Z5\{>d\hW(5eʜ3iuPڛL`_&o`+4) Ρ AA}b0oXY.(mN8|!w;FkSM47Je:Alj\dU/ӥ #X(u77v7-;ٙ7\[t@Y"e%Q-{&(R?"o*3`'OoU}f~*p莀mPSWGqCّ6oeHfe^&!͈mtBt>vͬI3`:wڋIC*.0 g4eR`QNaVʈ$ h,}Wc캚A,@1d%.R݌6AVgKcɓCfcߛ5@oA(ÎDoK u1zR;EuX\]i9M%! ZQR)iϪ+^oa ݆2))Nl9=W' n/*3XH*l59 "u\\@vDOD-?- І'*e>z=GvI&rۚҘvx$>bo&"O2x kGt- 42҅%O?ʫvDX2&"o+ ZIc-:ϱm)DIfr {D6W.,YJخF<5fc3Sp\;$02 ֨0zQjT:/hSt.,{ <T1 dtsL ډ^Zˇq0iR EU+ϩ(F3VJ%"nbr;홗vfT/iGntһ֚ҍD%WIڣ.Di M"vB\5<&DHv-}+i|Cls=6I`OV5K54HL' pTT6lò`Be .w%lOAnHWib!qcD>.Y>=9>2n*fXx![Fu[JB_n]o)Y3tKFTX.Izhܹpe]gt90昇<ђ4ҬL0aGv0`;$*JP5`7@MC륬B#.;U*_^-s7L~~GB%s!;xr `crD"[K7^K'?S,CPYߏ8w9=e(Ϣ,hjW,%kk" S-uEP5n[+b\ʲ#;7 K09TWo,o&=2[vL>{ ։CK*aKrPO翽howhv$łD2z1^mU\:sZ)ցr}E7K2v* AvJHh\B%k)P1u@$u,}*u?= KF*P~=y"jYM{Ƃpxe 3aW[d0l|i~'mcށdieš 4ּ$γ ׵[Ceo,}یb$de??<<>3jt,u[MWH~n8f!hyەׁ֑y8i<&^~՛ʞ'/Sȇs2)MɖH/~;횄vˋ|Z_l+j#*}_|3Img3Dx6X{\;- !gUG(a%1'c*xn!lVFeղLH[3.bZV F5:q+r_e_cٜEE۪xJ"~`yxl01Eܻ$k`jગA1b4ZM:_rO[)fv2^jy^ܽ,<j`,dل*Dò40jP* C?pxN.)".o S:'1bPNcujWwZYJpobʉC׏5\<CXNtekg*46>9RʹB5f b+G&`P W2^}Q|1 b>_<Mr2+< e,4gV^6.+7~d7-бu'§!6nLoꆴq$ďfJ*@gtO@ oጺ)E24ph*/xW?;C]ư_ķyd[Q>V'Fjд"0L,Me#߲Gk?jQڬSZtхq'~>%*3$$^ˆ *U0'9m][n:}QSH!-ڭ.Cmu%z(s4RϿ`A,|Y- {)>3r9t9²o˯EvV]Q-Z-ubImSv*\K~_ib9o)<7k>|SI?됛Ѫ8UAۛz+ ٢SoU!ZP{r3ThG7*- nrFy (% LD`eNք! gT|7T͂^Iz5F!rg;hCEa k }RD\{%uPqղl\Jy&0ZB %n9˻-[Ia"&rt}&i(>lǧi4 ${dE,'!QݗRnaLէWLr׌:}-/-/D?ʫ 1-ޠZ C?O(erxo5)Y`2 Ƞ3_S_cZZU) MY x}ֽ,3E `sֵy@jVEl4aULL],ԩcȈS#6e`=J%Ne {Kv(Y"iT[kfZ XWR>>GLcԾoZ]&PrZ@,,?[| =Լoj{ WAУť޾ܚ"} 5>aaD0g-!UJ>y#8" m{{eT Q7>_]ronkݍ 7Z_'69PR&3m?cL°s> Y8R~ 59$)jlsӨJqaU~YsH;>ʚX*N2t bR~گ5mס2a{P#3镶]9hq XK[+!3Es ]ٯflLM7wII!^,-6I> ?f w= *O5Oj$Ę =yo_Lpve(g.T `1qmj871 X]agvw9|.a%"αVum ZJzXSBuPGK{[;,IRynx >;?IM d|)@$$Tɘd7Jbz})MLox3W,X=nVrL1sƴU>zĹwZO7CD!ڎy#isgtF?i>a794>x\-1;*~S?V-eT8~h>v H\%VA~!p;UieփPj鋧^!KMep< 1 e.5g3fd>ƈM1C5Ⓒ+Cloh43/ T~׵Z_Vςʓ:::maS}_@V~ !Iϧ 0ًMW 5m(Ԧ3wݳjk"?ZeElFl_߼Yza!Y%ݖ\sC #Α3U!׍{{სR1w R˃uJmAH!k^)GѮ֐qPXr'җ؋q3 ȗ`>0c$7$<#*Tj69n$ ۆ92JYݏ j`o'3l." lmqxH,%}lm_S`Q`2G|(߶IUf!Rh@V |3Gz? WyA%˯|iJǙްօj#]TlFh` 9U-B}t6/ZU9SnFd67a ɷ4)}x[ӳ{62.̚^Y/Tj,yt蟫2)tKVg[b+> @* !f xgz>,h6hr}́yf~˿uK(WPp>"#z{Hl>Ƽ@(O5۫YA3̥4`Ks|eTBlGY6pJ`>Ylg z(O*ܱi77/ղƱ HnTL! zVtNr5^ʷJ_6f07oUFa7 +lof2C`;kϼCѽ~CݫP(Q7HzU>N(9}"^"Kn0y B \"ͽKވ w?ԋ,ث *JY-ۘ"Jųoɕċ[e6c30N1 'JP^/7iKq7_EuYbJ{Ǎ8)2$o1u_o+VxEr2 B|Ky5]!C[' PX-s`( i ^$A=) 1 \qw[]_mt67ZKlrAyF dv'>ʫߜ-yy5w$K1"UrK-ՙp˵R#{_bp׎p%aD(pAIS T?w$k\B1Ѭw fTXذ29vZ nSaXϤ=2눒%\F]'][3 zWc[uk\I1^jV1<|Lwzi?)b"zԉePEIb6l?t%L^ 79-!y, ;9w0k mx-#ʳsZmVD4Z0 YSO- W*`?>W-pLkSz5Ė)=&fUrԏ>E־?ec?-o29>S8'Ru`2\}rFPM HqS~EJ.1e*3_<o楅*4nh4ŤakXxaݿh}|rq|4м-IH}vVUo|Z5(R+$4yTˉ[֫ӫԡّQ܋\V}2Ί]cv>x$TCݎ蠰],M,ON(KԽ%5^P`bҽQ7~6;S˄3ݩW۱nj~7{LN YDg;]ԬBʤAKzdD ;S -Hˀ7r |xD=B'p ,Qɋfp>Uo$wK+֑5u±󚪤4g1Z2LY\Ƨ߉ncA ֱUЪj\x~JmZ9,)q5{o7E^h a.'SR ~*us9dtF[+ہ+&4Ca[ZU n<^W)uMQu PSkk`,]E -'3AڽqJS9q~;T5jR~ةWn]skS"LԶ~w,t%c*ECMy:(V'Í;X ,^fK.]PkA$α24 , =swUIriP'2o|rcb0>4,\Vʧm{]jK:F }DcjhpXrw3 JL4J6{A Yo눧ǰ( Mi$~:S!bXu|4Zmz=U3$q(GSnϚ%L~4ƩP,6(54r=Z7ۋCKgd<5z*BOv`c9& ;IMuKVe!,!kFٝ6]DB̬gMn$DLBYF]ë;U01\4cĔNb8?u0OT5e\JSX0thnx/ploB ')uB{8N+/ Ck?NJjk7bg** ,i`A~Ra؈W3_ڋmgZ]j}~h+l%FhIb.|!%c7VГuNS-ӭ>v`m;iOŤg@7>6:3解$Kbb۬>UV nw zoOI$oyLwU+Ģ]"2۲40} V򋒢hJo1[3#*lZ¸+[ ;!< . Th.tlqZvR 1ƭPne6mȖO=)zS;>%Z#{o͂u|-<|K| FuG{LXFdg6f%ՐsuW 4b& <;Xoe]5H.fFnGQ+#Zbݞ)hYjC8J]3DR=a/8KjL{Ip] %djtaG~ܷ$u Y+aP0|UӀL"YEze;@]{IO y\ /WXWAj-«tOדJ>C aުCtviS `IO ly7|ewr!J*&Ё?B]˥X溞}'+VGwZ9U nw!v)zZb1z~Bm`*{մr2ns!64=\U ae z1@4!(^J"oWzn61CLFwiX;hBǟ"sz^R1ܫ[~Lg!UQxb#ĚܹiGU28Ɠf2{EWru_=3d^yuC&L.ׄ# }I/nĵCC!BlT# l&>\ITe >J!G]9zelȓ i;Z\yyglfKQlyzy2bE-3^{7;FݮffE)k<ሳt%*qOLw{%}c;-]*^_m>xyQtw#K[謬n4[ ! />k 5I 1/A).ŔQ)<|Q-#vP~u 6Hlk?cˢN3cW hH4bNWy(a.^a{eGuL?=sx:5)2;^P^xeƠxOYsnk0ᴩ2nHBLU^h >.6_)Fu>S𴝜[6j1X2nߑoV90!|ڷI6Y8\[ҖV/FA~Y|/b>WqiIOO,;E#חFʛm/jVIJxrf JY贏~ `cK. Gғ͵?L0MJsX(H^}xm 6;)y'ˊSS9iaȚ,!#!ҿղԽ;fgLyqu'$U ;T}rmѸ]n6p(ig/=0yu+W>Fs9JOJtȳ,r{ J}G>^C^SnW6bFj|iW6](6n<6Ʃ{6M}9ԸvW;N޼*E=gq]q*/٠O%2?~T() vqy \6N 믞oDcvS, P6m,S11xݟ68l~2C_=ZFMrT_%`û1K=7/X& SϛVIjɌO Svr,8BhabY~r#a{y.PRvbFW~n͔(JEKwjZSf0-!紮ﶳ)p lׅHmZzR7mlCՑWKZ7)}T>Eb}lx]8r~v1s++cF볭u3քr$E|kۚSb2/*!? 2ԯ]:3ukN۫~9vNEQvŎ ,gh0 g&aW^sd4gM+Dx<];C$vZMS@qoɱúrvK~R T}qX'%#\SpGR6&u3 J!~|}Ԅ}VWQ>!Yѯtȸ-2S+eȨ.~?7DU= 07 2fB.^$ݥiʤZcDmSL{Av?o8zƜTYa8^۳dz?w^M)3xֻ@mFYhQ2r U~]C"2g Emh_зXCycr/Xv|o<pDc,zWZl1FJO<Z8e/ʍSHc0yqy1;g5>(瓎_~m0 #D3K[#VnDKK% 95J4k!3Z+D.򘴯#'N["+N7*lͅ72 RW-TuE P{idl~RST(>ThT(OY0 Gd%C~0$L6xMn 'u'>WƪD@v_ X9E/ #:ލ5wPv-$Pm >k9xbcP8" u3Bx NmkK˺* @U)*57IG}=OpSg b q,t qiJΝ#%N(;,Vd{boWPͦ< %w?Wµ1FߜÉy ˣN)ʶ&%)-Y_/f©#:X}=߼NNcǑ&2gEΆ]NGSCsnwS_!+憈{|oCq'L*:S0sO^ơ˥"u)C@+;"SyC2QF{*EõóSCHW#Q ^0{a:W N>٣=%ks+r˪>LQ+& R1{H=HY'<vTDĽ_iJ6 _ WrXHE3+/Ӎd{+$͕ʒv!TD:Uj&M)4ϬEtGNmc{ Ӥ*b=q-o1w?_݃=uC;5yhFS/b7h ]qҎ|4]ث2}gP8tIQ>m}T0v1]Y^gb]omV33@rWdcQun 7>]jK~y5<7Zwʼn̊~p]j{ QĥEeRZ% 꼜IsҜ=o2o2rA77?1 + iˮpx \i&Y˳x&Os|B|zQ !IV2H4/{?gwc@?%7ѝf$瘪wj軆_h$u6ue=?Cr 莔RM'v[-t[U1c w6YDC_WkLNjI]UlEd|LTI|wm'ːmުj-5[ᯎ@蘼Dlτ8I#MlN7Mܸ`h;Lf E:/O4XYT햱vtZk\bvs%yT@oHa-S=|F0ű~&Oզvqk/P q]7w˘X@6l(eI3wʽ͕lL%Q%AfbCtܗNtc35R5/–7SVݔfsVe3V !|nkxr,F|H-z7'n}3Wq2ۣץTٴqk9KV׻!gys29C^@м$m.pU\m<âc4%"p'>Q@ FJ;Euvv;SVR[ ƂQΓڲ%dB}}MMzUA.ئ>~RO~8 RsEEԟb c h ]EmA`ԾG*iM%]tʊSy` ie׶@"jT0ґ۰:#:U ,b9van3Uĕ^} qO貿?gGݭxv=\'!X vtiO26DK;;~$%E E+=Mv{~ó i_ϓR6=ݧ~woOA3 9#ĕۉ,[S'gBGy FOKz} Ts#݉HG e@ Yփr0'YbA K'݋7aTܿ:*Uq/1c^t*JjxaGuKp[i/G,魱P{oOWv_˔t!UH4#3.boqȞr`~nO}A6{ _<Ǐ3*2𗥦 NܒxgsV1ܽB{}5~F1ۯ+w )}dԢ84 /a 7czїs#YlM%̭wq R}ufdl,ԈL }m A yܭ6qEI3eX|!t*Y6xKQS3S+dԳ5܋ 05/u۴ .7+Du1k M;c0 j&B*Sj/0oНzƛRœFiJ)X.upK Kh6kLoM}ٕ=#_߈%_n3+=M,q/^ӝ ҦPɀ-ʦubpoH0|?KDAxꯨV 6>{Ttӱ+,[5j }82Ѝ ѦTZֵ Bs>oB6g 7A+?'Me3o'HpC/ {ǂ/jSbp"'޴.`QL!׻d.|*]o}ڵUX_#2:%͹q϶- Sªc'L/Sf C] 7e>ksQYOаc qNsIl 3`kFf;anB/ETnY7w Kb٘*ݎ's6Ӄ0; {Үm39Յ %sލr@\/CwV_m'7gF0:e>уwl;s!+%NIܷ#dMmM1b6!GSi~A*t!Pg?*:'?Yi@Nu%^ߞ9W IﯮAz[RsI[ =,KM* y1s}0Y[SpRЊIJ굴 OK -Kz0r#ɜ )ŚI#u2;Iĕ!ǑmWOw q?ʯ*k(WL-giaAVϾXANG88N>0;yqַџyi*o>2T`_E-/2<*ez{9H8M#sH0o sE>"LX}rU}|n[StNe+1Jׅ'wewǓíYag9F/{qʊLnl ҵ>_yͤCuXfMճw xIyZұ}qNoݻI3śv s{iL3phRO`2r YmQUaAkNlO@hQ ..%ЎdCOFqEӻLP"xNB4 zyA[;S ɌLd.jœjƏ5]+b.\ dݣ񦉩ΐg5v=eMAe[ƻ_S%9J߮VaHL%CmPjC۵-jYo]:ږ? T{`9]P}p8t" ۛHE}A~|S˩2iUsOFO#IO?V9TМ lk*vC o 9vL)R8ţgx*BҀ\}[ -D:T騷G<77Ǎk'.6WV]} HGo,7_5Lp"܂kEx?z^]1L@E _J XEDPEڄXD/yw;nOӻ ^קQ 8a&1 I%%6YZlNk?ҵLV >yJDyE|{6Ԙ:[@'Akc1خZٜ":D..*7LzO+%g^:NqYJ DIa^{`w;CYqN&ngzW;X2{v bN`Hl,tz]#Ӡb؈O;ds'nl8 sU3nBy[$7cg;^rhZza'2Sݷ&؉O!MBV62b`kuq)ӕQ]G)^@.tk  ׊evY6%G|Cz o 2Ϛ*EIaDsw M)5!(E׺}GN횶JUIؓO̖r~dnip~q 'bsF0gy3aݑM_χFM0Z X 5 ! Ji>Xlu(Ǚf Tls v$>kʳg ZCDd h@/ɳ GzfV6-@9%%ҴDv:ùSK(Ƃ,W7f{I%Yd1QstgcɟW 5603oH䘪ĺ(kly[,*B=F )-_h'V\7[0:5c X AsH(yz!%U8%?@ ܢaKqzl<65Kcs.ޏ0|(aC a,6> L7&3*}sJazxU1SK#?eOƝݽ}uJM礲8ɻ_dLod=6vHpԲ$P*}S~m}d̔ 2N4`Rf}߅#0aBwN !ūب˘{E57xyFu{z-*\JXJ "%PGz7k}!TWCVLDӑC,]a%/}`ytuf8F<llxX52{F[IІכ;zmؔZ-!Ȋ@]FW۝2q ˷L:.:R̒j85jxl^zߡռFޥ6 zTK$gg0qmwkW(]/y;Hpb"}䪭(Wg(H()_faUpZ 쵾 d翅B '?2FQ27%)LMܨ(nQP1KT%P!&ꚢ kKb5\L2t,zM:SV KWpy4)ɜɗC^!{^PԦ}q񏊤ŢW*{G h_+ռ  sc 3$٣W-C=(5InV}W7ثM5J/۶Zڝ\ZR*vXs`*w=qBB@;m!Q}ELWe\ZlL7PHbՒhNVLIY4glΔq^4%i+Nz“pY5ë$Nm^CU ,'Dȡ%?djٷ6_U3j)KJ*^qفW.Y&rjA3!@S{/Zs{rW:%αeE>[iAݻtvgS@-s;2Mvϲ 7*nCTu,!r`L+vpI BwEFHU\BS0!@nO^nZ,KUva.'&}5^HYBEO0@ûceGtLkX&ԬC$&N{!He&hKD(ӟ e| c@yTaѵ̰>UcBB|ŹPy3jyO+m4 H1vD32^-pyȤGvo.*^$ bZUZ4bip=}MdScѓeu'W1LLZ=>vVjd߮H8`zJKekx&o(UmͅWct w_zRrWtn!CÖO ;895swIudo0CIP_UD36uCR2B'<~ ^U4I`=/cփwuu&.i7;EYzS7t屛fɕ+g»ՙE}qG;VCD U/uY?Л #Y.T/r珕ՙ(UWe75- ^)\+x[N(^ן迁 lox.G*cZ.2G7o `L@J&6ϪfoL]q~X5fβ3RE8dv3G~(&@μA qyH *Yu~'ڶ}Ӻc}yHӊ;y ϛu!=.8Q)У>G}_Z.8BIQ\{RLt/9&r "j>&-b Huݯ|.`$E+۫,'ߍ? FZ# nv]I]Y.KgwsZߣх msðYFb=Yk͕^Sj5DOÆlT22yWL ^MQ>0Gwt~.ےkZ޲@[~TV?Z#L7UMJmM$4^+$Ji% {QІTŗ\u "|h0#J0PvUx?[oT7дNik/scT~ LUpe!˲7ΓU5ŏԴz<2PĶ*CGN1*56B*&Y(1V^Z( 5_:PlڑHvx O/X_-- X=RM ]zC dM얳&0s.V;q0w7ueUJڣuBa.@F]9?!K<Ǣ~ >UDWn_> qU;PīL͂*5n ^0|UZ"D|z@Sk8[:MJDs3kvV}lV3ņ(I6ܿ"]4xvsq SJW T^,r2Np_>=UBA\b^a5@ՂgAf;;5O .{2bRK ebxi_쨬r52,DQ.bU\6;gRm_P^4qVu4K"j0޹I|ޤJ1?analXnr&zI{=0`J!}: IixS U'oc}>]3*z]MoY.V^nKAXY}epKJEr2eo1lP#pΉp4JM0.}\ֳHFD%aUjnVf@ e+o~ N$=31&(3eqKܥߣw}tCx'?5 W:Yo$/N#`1ڧ7NTb:$ QHΰ*w(ReCr7t/ɍ'Tܿ4<~!2X|ꓫ9ZXl |x4]9&ֲEf%}n#QLM*SP*~0PT Ԩ7鴩H.J٠#Q8e6*=IUosmWBKr.q.):!YXbdf?ձq_&3 7 #w{rh|f *IS=>0H?% 6ϟN[91Wl;1ZqֻL]V9j=ԝj|^Pm[1K x`WВes#X]TiaR1n!UMƸl6q[ƝZG.?7VU0;d س>,4'-!eb w@"2"K٧`Sf? 1]A~gO0ڌT[G7r'lIڙ#*QSx%|BzaIa'ABM7aiϭw ^.3Q=jTQ!1'R]{'i YN=>VjX) 7#z6/#f|KNk#WD{'Ȫ;v7kY>r ˽v]sR>k-A5e 2]:tZ&YZ6WHn9$qەf<>m'ެ ,f^a|MQֶ=rcs ~d"KK93II?(n3-h=e"U*t6h/CdW'0(Advw/+!c*9P9_`l;=!FZПKjl [fc&t x~rxU(Ѩ-cotM^#o&:xpщdqHO]9|]L yvњUV*Be6p܌, fל!W~_ Pa-2ޓI<[>/֠g~4MTdoc tmè^Zn6Ph] lN&߃Ta=&d~&YϚh6i5|UV{aO Ŷ\I5AJX/;h7='2N^6ᕷ0'#9yyD^D$4*%}W٧ܼD(D::{W%r]Dyk躒@jSbUPG-ݕ{Ū↘'2Ig"n>ՉqPp.B ЫJ4&}t-DQZ> v :tTs83(7sKOg3*EKQ'Ǭd " lO 9sl~`eʃ4P-\3ml nwfTadܘדJcg7 IYݝC1 %؆Q;wTlcrFa15HӼ Ʈ/z@8V oQљ4!ᢌ`7aƚd)QÝ+t?t]xU8}0O<5%"K WG? ֞7Op U x@H֋uOYgjxmvqX96' EM,B}k+D\MMpr]*^Һi֚]eS;Qv+rɰۣ%#?z#[\+3*'0 %߹QbT)gBkNCifHY6fN-R,bObYD4Ĩ4qRܱ,0<"r} h Dl2jViPz11$tJYo伽Gُ }ʫ\"X?j>h|n]hgQ}Oܹ5U-0uRB@|W82gee:XRpLC>U ѕ{q/'}ıXcCF;23_/J5oʬiYNoȪm9:diZeOLO-$cLv b= 7՛Nܟz=$K]^^|`đ.9YI/Ąd)IQd A? /T>F# >: dXY~1|yՈ_iY̵w|%R]WpzĴsݐR+ pYE*PwT:[7%AV&axl(F$ggblyzYOnŃS,נ)wpʸPqKOZh&vlZ6K}1>=jY8>`b`'`S"*N3?u{ YͬL(Ң!=\p=}.ίK=i1d7X4ō{˹_ oO41 0Nj(c1+irc A]lV%T>/_m瑒q8Ti\Cv <+CH:mv(мRcrk#VIhdY_Z6G`$˱O-.W5O?hB쩡IBI@Uk2=COϛV OZ㨐DQ˷@e`Eg1enW`|uUQ,e;*S;(&k$*:+(Xr*l-| WޞPInq 4;$ 78`Lku@Qyc`=B3\E޸+3WV+EWZ)jhHOLjE Rm9ICmY:`JFڂJ/)`D9YqԃgH N?tS3Gp^ʡ"b*~uBO}NMz-ymмyqd B؍xa !!Tm5ZylN:sgtӶg$0z%J|/:mcD&U}m CV/L=[#2脣5 ʔLQZ^h3/Iݕ4َ_c;>inlq~ۼepdWODZ*բ." 0Jɋ|p3@jH [߱=nt xXJ]ER3Cl[B^J>?CWM͞D\{ƶEZ^,qJՀ%=ӫwI.{6pTaqk驍#E2'v_Mkқ.WH}m},oMZhj/bhʤջs~;t 鸒m!ϧcl^Pw`j44NNi˭M Z h5i\f`7dUEM>9)@uf 0Ie lXyId7MCJ-2עL0WY/mxWN#[0zKŀE5)XX*|nխ\MK.R?>EY| ou+0Ҿ Oq7,a4ΧlaWI؟5w}WH?ÕXuehYf|&E!av| - ɬ.D\4 `N̓w:ʛryd0wUmkll"X68G;z' j)B50EGuߎ4v†1q[/(`J hzfn[Ls 4cQs@!{Ikp`U٣|?0$ 'wf 7&CK+)溙g2Jf8O|.r[5=&aM.`i ÐC?ʇFލ?r1ɇL_IV+wAp5D"8^]@ȅ%nu `EsQ/ZUՐa6 NUG7Q&M[* Gq%8\@*1 LK <-OZטXC:BH3rbLEA23~|\a|\P(l<|;u5VD#& -fz0 g)U"bn.sYlwk!OR,W4(gw9CT1 !59sn24hdi흂(RC=l t~yYm*%lZBώe} Zbk;Q4|g glH=.WZF$d>L -Mޞ}EC9JQ=F. m@?U EC!הuN4<Ҿ25@I?A6W&9ʊmӟwLb!>Gjl1>ܲ*;xr ㎍ >v4!IꋻTV2lN2 yb N$ SO6;ȡr,'ɾhCRC.0wwFTQOKS"ܞ^ 2(6S9o 0ҝWNd "6m-Th)᩹~6^xq~]牶ˑ-plSbBE1%'oSq~g ʗ$X{n CzĔp!VμW !> O]GBp˝Qi-c(F%>#44wZ|m3́ѫšMP:eJֈVjA|P ʼnOp:8P{y{b~rߋc@ç`3 MA Uºnό\NdG=~ }1VZ {V+kRQ(_&З!K|q::1%KJNj@S\; zzT}-i wgN ʵ\e-NN]Yk3̩&2V3҂!Ѧ3egIl&RDG^܁OcOC:vT/oZԖ=,JiWf1߫ޡ zO&貃TSLVd9b6;~m%|djuڭYO:I/?ES } |GS1"cQ`vv|LdwT~K׊vg,ӵٟob̔2ϽByTz* b+LFRA5ŎU$dia@U9 }Q8Իі/tIh{=#9<^Њ_{sx'K,@qfb<|p׿PW7@L0g 藆M6X?_6\bOcyziǙ:/͒c:)~'>v䫳}O8XZ,g*LIl ^);Bm՘4;h݈5 dL :V2 _Q|#8ٌ肍Q.?٨^ko*}pÜFFFޡw tK*Jxg*2~Q=$0K%Z싄e]+2:]זfrq5W2Wz^L$ Q;h}h)!u2^:( 0!\L5 !ikhX1> ̳)B֋49SQ Ϣ7ɨ*[糥s\*=ۢߗp(g|Sr5b%Mf+)Vu*~7bh6F1g44XY,NBr1&wU#[Ārĉ4pM{oR+/kW2ڝQ^olpMz sZҌJP $>-5Ccu d/(+gwj]!Wh3iEB8@)j$ئ?.xWӀNb;X ,QvW_Kɘ,w [ɞ]<)m/cSdk=á^bcFة0{8r"7a- dOcyg3Ѿt2 .n/$~%RfEO&TDτp@sAV4f )o]*Пٕ}~MX1&d7]f4e CTAnM}NS{g E^\hcN=_…2._DJjCMI46.*`A[_%/=cֲUね[KszMk6'SIEvlYPN8b5 |179={`<§55m)}gâͤ Zs.2dsaLf#Vf S"}v/̐TrL iUe la;3Rp}RmUQPCY,۴X]SDgv\Y~f !J֔-PYLTc%6mO\gĴ{`T8t^sqNo!nE(5ll-1[`./`A!;{2q1=W}2V#x,><ވa31s   Ͽ.]cY{iv0L\4<3av-?eMG?7Yɹ\<9ْ\s`zSiQD>A(>F`*7p7v75ܝš Z_D|cJ%Ӹu"YSHFb(=dUQRU<꘹iB_ c@0ߧe?n}=f 2#Aи^S,"6 zմӃVZNSl\l6k+c.}gqBafs}@s5,}OWI0qlaυ`UQpi}v0yUjڕ}-npHnc`aӮPk_bUɶPt| ;q)O!> .[.tjq_kJn0,C+ԤŅ62e <G6-SE)_tF?^̪+wGub0pPmpUsR?yi S]TdB{.=L4ϯC.qyTU2F n&i c)L*޼>٨M0UƊuEV%WC'bg|k&7@qE]*apPw{U$)-’A]"WUVw})yKk^HA[J:W&ڷJW:N}<uSof4l+Mu-NVĜԹaqy++ m⽚g H=I|;Kþ)P˚KQtw; 3/mS@\d*aUR0 9ѓj^"}Q𠒚~v %XXDSݏ^E \4t:M?hq-UUa)9А* 4$j }+曺:G7Kz篦Wy|%{J,]up~v-aFe@)ϝo5n1CZ͔X/> RcoǮ8o3'6M8DT zSK~-oNmDjw yj7YZ`DqS1%t&MpխY Gk= c+>9*O{cqVe"ڽl^eP~"gXJSV|Il?@U %B'- ow;qa"!JǙhhIѫQ-]Ikv$WikS)Xyr&ڠO񺁖] DBDLyEOf ;\UhKB;bh':8]Ra)*/zGa#}+췦0OpU}W>Gū&84Z~JZdiA- 1|&16Wc⺃ݽ w4i6|p*+kz:Y7q}zkpe)-]sSK>L#e _*jqe `Dt*-:'5PO2ü;LQCA}~a>Rՙ]7+5v3%<==)p2 8&S) ,O>~/nz%x.1U.]Jst`~:-T &}Irέ[0umJ,֨vv}B a8 ԩJ }yV":xMt\ຸTeZPhbnޏGm%DWmʪZ`qd5\&2H?_ n9j/oЪ79%~&  pGCSHdFc?MRLK- `pflf/ulh<6YZnT;ٺn:,k^ɜjT.w=z%#98q|4JzQ GUExh;$;0z:&xv(*!y6Msu-PjY/ (iם 7m-UyExO6R׷=) l ݧQfqS͌eh{= gu57Ftj&$݆"Zqݶ Ǜk NK|7:#ia̳0j=AOl|#ݛ*%w1K@P΃ ċ0%T;mpå>6W mÃkqLfn'VFR0K_<3>Pr6SHn)&{yd ZWFZ/~ jeWG〄yߕSd ~}ϩI|ɄA>,cİde,4.gCoWx7οvHϘj`zuwpw󚺁v w*=ZTh-=_]{"Cy<Q|FKYRKd6'@8_ϖk' 7MoϢ(DEz=Nf :MF+6au/F]Xڸ7<.ds2+ !]|y|)hz%3Rj@/SĚx쳷|wdh) dmH36pz;-Q\Aћ!{{ڎnL*C{*#Hd2KF"&6 nӇ76 l`b vF,?9?: \'h>R0z8˩[3| ZtL 'A4?P&fs2╰ŅL6S*Fmė\P^v`&|P1ECYF@KoTr,A2$u[+GY׉w8L)#CmЯ!pq,NacJY 0%.N*\({?:iq;WsdL'XlJjiJOV6R^]Nޖ( ߏQ7ٚv"6yղ &i[(1Т=ȶKN8fiiXLSc|7vɍLMO/-qn/jU>GʌCB\GK>g2c%VR#Z_MIm-4}eA[\X;̼ B!'j* jgIvf\{:2qPxhdd'*83F CMM&΄1:ʭIuway+|WOK5viMɏ=V= Y"gyU|jf"Q k(kJ [ΙkF->UasVq* l&R2G<40闖FɾOBgn%%2WK,x|R-Vľ8 hέzL90{݊p- V UM50KE5ITh^C+6{ѡx'9waOsԀmۀ[ @S'-P|/苕3 8F_IvYDeiii&?l$*!yմ`ڌx;+:AkV*mIm^XVl;fM2$c#V3C=ɉ.vP|;ɑH^_^ˬo ]8Ih?_>2!_~z `ߍQ o*#QtD`j/Iil=㷚 y_\ʭmI"8&?kVN@+Gj}ʍtrZ㶄`۫Lq7Qȍƴ"|55؇Ӧy55-[ID C6*ӈ)K蔧ӧ||RXpaWn]*Uc!L9PeRz%v"/Ҏ@e/["v+fٔiAEG>ˌWUfNFV{(P:d@^!KgD>^)JjҠ$ nZ-`>K:H«P`zGI)2#,f|*BP`Kn 4ƒ2Y~,!F} ):Vg7,Zț944طNLOhgTXfkBNG: S`ut?:Yn$MνI`ʅJpᒉ?/+٣ =PD_"˧ww Zy*b~-i-kz}U{e62/STy~PFސ3$; wT hEVFo^ &N yCm4h8ns?(%[=01(5_ 7c|g13.u7)lˀ5_| P9]hAV>Χ w_e53y Wq/c]0O;6O>pa39`$W$*k_$jAM=#qpY4ZKnBꎻlnxwW>RE }$ݘ-MQfy[ =;t>N^.Y{^.gCضCVkE0jdxsD&.ݴzb\U筮Q~ޗdvI4dd,|yM΂sW)~:.[Y,96i~`Q?~0q&Ļoc5ͳB#!4kHj4`;zZsR(P:859㹭YII-ވMErMut#b-ȤWK;׏b`O:,^=f-@NhD8ϲ:5Ah[9EgÓ8-ՒF|XK:y4%vzPYSΏwn ܌Bʠus]KdJELijMk[גּU;yҔ-xm uL{ W?MkYej]q5Yl |N]ڋ_0,_8zLB )B՗oCeܣO^;>jo20z(3ݔ6pG94pekpy;Ū*#eƲJ̚8ڮƘ-*HJt,~[__҈DI?10\KܶAI],]̿*}Y)* .s|V担Ⅹu1f&x?qm2%KGc[ MSu g㚞blWΏ`n\=G븎Ĉk:g!8TY7Ox)PBmrr؉ߋe&~#>ɼ8E߫%:ۚk'D42!=(5XZ:ֈQ":b\k+wJgU,ڪgP."$¸|"|J98C+(5{= k"@_w;yӷ`䱇mu|Gh9U-RfU9״7¶A:z? tɊf4S[,okVՙOPHp88@ONzϑ;dvԥrb/DyPګMwʢCTz![bE'猖`=d*Zl3ߙ>@uC+);nlvPyȿ-&3Z 5K Т?mc;E!-!@A2AXbss\2Vz0⦙ݑE&:d66LuUigaŴ,O[usa| kLIk;Q"(9kM0*Ş3i~;Peå,lPL-fF㕵{a-O!%T1 ͸{ӌ 3<p^zvC~;5VSioGw2o_>Fdm/פQT`mQ|9 ;-`nɂJwCHoTe0j'=SAAWֵq>ppxr-Ml3^H2HNG;3;W`R K$BO t`.K_|]UsuqSރ%ф_΁"P jxE;RtAjI>;r t~SzLJ[Ke喤"  {;q};!aL u,ayO̢][ c*Ǒvs/P;z\㧚bzK"&6 |>FZġ M7`d'eû ^|`ZiA|LT$ Xp -7sT|g6S|Wv9%rfC'Cf:lqR-U)V>yp.9qaELw̯Y[,`Gs1ĚLSxNb B"!|%*ye{"(K]pp1T+w]{=Ƀvu?g 1N%UTQJ Q㟪߄O?ʠꦬis`^f& kݰ2^phGeEnޗ5b ?Q‚QÔJȈFNLW\KX&Ǩ".wK9x?2KZ2V`_B!fbo%ׇ¦%a/mO+zVoVJJ93XR=%6*t0`6D*¬ͤSapXIgv \Se-D?\U.۲-kI=}50Pwv&&9MR?gp)n*ާhv*ukI(WxV )@ze S9C3"hzp4lePe"eyX=yeoC0i"@b2aWK6Y,bMd],5F?_Ր_,5s#~surbCV,7/u҆>hN*犃ZfOm~N9X73lT|% PɭV~ӌ%glRwjgz SO ґVT'j2Cu} %qŮx]ܑTw焠F.tHa/w6CE3Q[@ ENd2ʭR/Z{:~i7YRc?W\by ap yr3AFa)"~3sE\YPئ)E_.cN/yltEXrz*B%";p}w# I x f%DTZΚrGyoVɻ9UYgED5@Ӫ~ vԤ+XY,-aqޔ'Zim} j~r).~ޮTyMuBt.{.0mXvTii* za~5ul]~6Ϻ' ]mCX9/i<1ճgeŊ1bcw ш!.+?SCWэzԖ503UaĪ釾^T.YhofC:F*EL*P j-'|ZlR 0_:J+ӃY9QseUMJpz,=%!{9󅙚J(ԫn65Lv6" J3&My+ y`QxASo.$>GbM5U߫dB:B#i=2v7|X@v)b q-;4"[98p{{o'6ɐ}'' a-FCMa5N5E@lwٌ }hmhȠ$6MܶG"^6[WߵoE_W:=uuCtݲCʼ 'e&}?rLT ;\zZ>5=8?|1-*˨)4oWg9o}%*vx8B04""8ů M *%]uvyoBzpâɈvA=dnR]mr4 LJN6"dgDe99v *<]8עݕy~s2*z0'Z~z8ٻꝈMąs iNv3˂(fu_3 -̓_Ч޽v(4dߐZV3n$*vI9\|#Oߟ6C<{N U _"aaqb:k{ 65e.^YaY ܂'!MmD>Hz0nD+tޙ i򩱣JL(z`ޮF!/GZIȆ,jc>?F-re}9#!bp^cq轃38e;+G*`k5-P?ʣJJKVcZh;){b}B>f=1S Aj(~03 ^o#[ǰx<܅75ك[]?;*~nP@΃ޮ*سKV鷣pc}$3f cg&ڬ]f}_d~ދ3D/T4;fm3HS7_ 8DxyJxxEҗ03n(L*ez n{8O "EsBIE?v珊~MBk\C)熩._a w&<%!ﲉVM!] 2noG}b|gkq3o@@8U^`q1~W>}d0nV 1c/;WɽߝB=!ޞ[{cxgb4Sy!-RDg;v?e~w׶h0Pspc~ Jh0q;8S$Y1Yg8k&$Q҃^|&C|Wma pp`PV9G XöWlq[R)Ӑ"Z+F;Unh vzv.(V MnCMz`Xu=lőp/mRmci3NkDP ]ﮰl$;ԫ?jP-Pn d'0GIK`7{bj؇0uTf8氟h1c(Ӈ.tNaE,i֤@XI:gNƠ|,/M?)1PtvȡT 9iid az߅Y1)ٷRKlO's6vk z4\^pZ[Ŭ?Nx4?xdӿL牢kf8ȴ|_٩RV}?0bv?7N=$ "q\"QˎJ՝m=c>}jwο-8}nf43yxK !tb52X@ kΚ"[CPXnm__މ1ϔIUn^UECqH:7M Vd˃9s/EŮBaō H-)v=O77c sYLFBt rN/]QSjpoXϽ޳ K4cSגf)Uhr^FzI#tU mM\vbFS5<!JqE5EY,i4<" vE&iSek`<S!sJщywhT 3ru"y_PCMZWTF:|gŀ#q0F Ֆ1cl9?grx I4nxyadeOg#\ԫSHᾃ|8R-kUΌ_Atjitb3$% g5{ұTP+9!p:#uxw97c^Wr8p gpB#'r1:)G'ndS,;T e6&ԞXͱfi4nKCUڗAF[;QiBa_Z6)Aׅ~W / ꝅϕ{/~bwis;ՆDfSʡ=;|σ0)C5F+d/2f v#"bJMI2TF N.'tUj4)' 2GL oXꎎtˀTb5gg=M%i ,`HTf\1&jO±F>rh28\*yiWi'=>W?y9x]hwZ!K?f"PɁD2)F,ll.Dg;OeC'y.@qI@8zjvNfc%؀`')+>.y/{Zk3SAZF%dWAM݆|#q3{( ]ǬĠF3"V/b-!׾ Bɣй{&.Wz7*Aj"<3Ɯ/uZ25"ЀiF\/9 I/!tsƟ<jrKnrJ;T`W~J5F0Zrrslv*]2SN*iZ2z<#\G8cA%=059NGZY+р{ cw(8Mpęz4@>g$%Em̿ _oS8}.A*fņ[WnkERF_R4 /D Rލq&e `Vm[$a'pmOlDfVT!讥l\Y@t mJ*etGF޴i~CJ,V`/ba. JS9?*]K_ (%-)K0V=7_agoaCiטq /Р]4%6l#ϒN2|y"$pB?ŰoaNg}Ew%x (};v՞hWYG個FSYܡO ^UݹNJe!uRk'= eevMs2['Iuyxb'18n,!&5ޮnbYdTW@>󌌢aʟ1#i-vw2Pf Q(vϡ ͂0O}CuBwm囻(F(d&M:G%#쿫6lg:s_OC. )o*XS~ H>s:9(]dc ͽdzE,`uܪ4+]7 ~ᯪ`q  G$S*YswյP_k2dži\Jپ~/C:L0HܿlLZn6]k8!y0),Ln6.mqw"R&(l᝔ƫ@+ ddpB0˟qVTRױxKQL ^v⧚%dИM" av!<(,JeSǷ6ĽLj*&9Ը_c-Wc+>^jhd"{$sO/?Bkz2ib}{9S$'Q{@bUpR=(HRI:^=Igg$4e;!gԌF*mF0SCmMr[=/K BڋZ8v=f(Q4#/[ouG~6k@xw ꬵhyf#3--q+1nxg9ln…vCI9|y%D:|g{r(sW4+{XjёfɈȌ˥u O9o"z*]BfůL/NU~eP:kvm)I3_]3#cEf4T"96Ť͟Ɉ0fEM;&y~p~ e8*ūrnhrݹS(#ZkG[:|%óҸd!w miώǘQͮAWΰ X6bߩ<ϔۺ0-?,R072gaahxI[U:]4,˶u*Y 4e), Su|mdģPДl-~kM츤;Ɏ0^2Jj}~X[U0_u|{$#ZE!^zfQտl9§VX[R 32,qg'8=>ٖcP4bn@ae.{8ʓ\:3yRmksƴֈK`E?$TQMe>PE`srI/mG/e5⡟_ ? ׶kΪ۬۶մ[nݺVu;n2nn۾{].eͧ;\ukopԆv+NbwFYi{9m:mjZuָsA=m^$%W6[ u:[۲=ܝ{789w1v]mݴ+aٻmw'\ݽuv{s[sӯ[\ssA7un֫-lkuimǫg7Zwwrwzgtṭ[ֹ,\VO{X7U"]rZo^^ҜwfۊV뻧{{];Ӯ͇˹ֻ+vwnc]6Kmɮ=f^wޮ5vrowwk6Ukrmͽo^¯r2R\euu{3޺]vv;vM[e7wkiuFi{={{WWwwf̥cVWnܛ.u^]v5vuSQw^tmלhWnv箺cm,vwZ-ZzGNv^z7[]9ZssRN:θۭzݞFݛ]TWܙ97s{vKOw{u]'jm{ΩM޲=[^x׭grueŮl6úÈvLtwqrٶGd7]ݷ۶r0٥(z) TSAO$"$@U?@I*$iT$T2dz8lVѵh-[b5TUhFmFثQZTU[Fh5kFڱmkV*b֪5TmZhmkFڶ-mTkkhm[lVڊhUFڍckh֍ƶ+Xjj-U[ڪkFc[cmhh֫EjգUlkZZŢjmTmQk[EQƫXڪحUX+UڴmhZUlZkTVVŭFEm*ѭTmVڍlmmmV6ՍQbbFѭh*hjj5mjثF֊5I[j*FXkh[FEEXVhѭkbV-cmkFXEm[UZkb5+mj-QѵFVmlX֊[mVbQV-b֊mmZ6cVmQmm`تhmjEj*֍h*kbت*Ѭm&TVQjhhmbV[Q1bV5FjmhZգ[kF+j4jbڢQ6kVj*6VhQc[AQU*ضV-QEU6QmmhZZڍlŬVZ1kl[mبhkFj-jƶ+XETmF6UVkZ*ŶjVڍj"+j5X6صljUFըj5F5-ɭmljضQ[[hb1kQcmmTVūQj6ŤFڱEQj56ƭEZUFcQXEU(+hƊڍcmX[%hkŵcjQF-lV+X֣Z-*mڢ-hZ+kZFcE6Z#-Qjhբƪ+XجUA-TjhڢѶƱTkkmثd֣Z[X*j,V5ckFj6֌TFتhFZ+*(Ƣ1+Z,j&kEXc[Imc[EQZbFKZ6bj4[cU5Q[mFZkE+bF-b5ŴmcZ5Fhh`X%kmF5Ѫ5Q-TVƊ[XլZm+TmƫFڴFՊ6Ŷ-Q[hEh֢XZ6[-F6DуZ-j+Z-QETkEѶQ+ckFbDX5[j,QU-*VZ-kcU%QV,UcZV֍j6ѶTkmF*X+6֍ضmkkFEEj-֍(֣UѴj[lUlmT[FhTUEEj+lkh5hEmZ-b)-mETZVmmlVje[Qh+j6$Z-mE-blbjj6dصՌZmbѨmbشTmQmh+hljѴ[c[Z[-FصF5FQTElmbcmFڍ-h5&FbضhkckETUV5hhcUEmXmX2[lm[C6ѵjFZŭ[`رb֍Ij5bj+",khV5hUZ4jƪ*ƨѨQm5E+TmFTQmhhV6EF%cb+Qi-V**6ڍTjXmZDckAkm`hhڍhlQEQQm6-0-bZkVƍQUmE*d5FZ5A+EKXTZŶ&Q6QF1QTF-*Z6PkQj*1T[bVJ(PV̪(5ƈ5Qj6Ńj+QbmF6*6-EcZm6صmX֣mEV5FՈ֊Q[EbZ4Tcj*m+b1kQhƶFQE[Tj*5EFj6TUUT[QlV*+EbEQQbb-[++h1ZZ,V-hUcV5PEcEcmUXZ*E6ت5QkE1d-Ebش6b6ELڊlUصZ5[(cFFj6bbѫըŶmkQcUX5lm65EEXb4F6(Dmb6ōhł[D6j cbƱѴmElLL5Q@S*6[Z5jjѵKm&*cjEc[hkh* F5Fj5X6Qk(Պ4Z6-ѤڌkEh*,hՍmb5Eh`XmklmڍڊVh*4XɪEmkFImŬF֍j5 ZbEF-6XؠjŊY VLb*-*ڂFXثZ65QTkck%Z1Z+F(ڱ-h hFEQV,TlUTmFh[FJQVcEZ cbFUh5&1*BAZ*M[cX֍AlV-jH-FbՍbѢkh,VƶZh 660jTEƴZ5FVm(Z6kb֠ֈ65Ѣ1b+6ɨѨ+hc4lmF-5F4Zƃ`(bTj-F6-fhXƬ( F4X-cUF*ƶ,j *XlmjElQ[FIUcj-X1M*5F5QmMѫDkQAj-&YFƍ ZE-E*5hƂƊ4QڣmQ6*+%j,EmkQ55[bE-j*R[hcVbj-b-*6lX6661**4hZ*ض5mF@b$(1ZVSmUZ6 RlFXXQƣXkbXVUmci-&тJ,Z1TFcKE+V-XUڢZبkbشQcmQmElZ5cF#j6mQkbbحEh6XE[E kF4mEQQmb5FƳ1X 6Ƣ֍hb؍TF6ňڋ Y"j%cDEEыlQhhZ1QXQl[Tdȕ&cKh$5kX5VQQFحmFkQmj؍Q hclI%FmEX5clV4Tlhl`EZ+EE)-FԚKl6m4&h*m!mmԘ2kZ"QXڋ-bرA&0d,d55QFŌj1dFRlm(*QXMFXH4j54XhъQdJ,,QmFhMhصc[FcjcU*QW cmZ-mbŨlkTj5hъ-آTE-FƊQmVѴFmE2ƨZ+&A64[hREcTmkZMXlkTd-X @TlclkKcEAZeF11QmX4jcl`ɵXEcQE6ID(ش3EIڣX֣k Cb4mh1X-XQ*4j(1**kj*"F(V5IlVb-VmkZMRbQ[hŋh5FcV+E kF 5Bh1jثhhFű-&kki#`45FhXƈڱTTm1clQTEbkHZ-`hmc&Uų*QRVlj556 l[FdѰEX6 (4j-XTXV4FcF1d"[ 5Bm($ѤJ%lD %bh-6*ų+F`ՀfؠQ`f5ce,ŒmICbdXmF1i4"Eb,34($"QhmT[XɨѶXbű(mjmF(-lm[cmEZclbjjK%mEƬTU%h+bbƱIhIlV(MѠ"эlj-kF-!bѱThh5ckb i*L[cccc`bcX,j1lRcV *[bQj (YhAb"Ŵmb(mRllQTV,IcY6ZF5XFY"2j#QQIbƐL%hM&1-V-Db1+46E,3bdPh fmhhԘ %Eh"4E6Ě؋@Q QTQTZ1PVLcF T,QA4E&B$M[$ȱ-lY,Rh64j*fA [`4QLXRb"f-mEhXڣEQlEV [%&جmIT[ƱԘ(QPETPhFQlEEF(d,bELbƴFEŁ"ecFIX50EژUFETdU"F؋2PfD`Ʊi6Qll@h$L5d! A͔IJ`̴j F4Ph&Q@ d"Jl$b#),dт6li+$Q & ,U3%XBD(ōlFfdT% 4i2LLFƢ6(њIIh"H2b%H-&e"&b`,bIc%IEIE*dH(fFIFؤ 3,TXb0cb%3X,Dbc`4%KD"CAF&  lT0Y6D 1aeDc203fK   QHD Hљ$@M"RBb"͊l dhXѨ$& FhAQ5 AЙL$+% IDDb",14b(62*4dL &āM1I& IY b-0 I0&&i$Fde)؁) F($0$  46H2ĐJ#Ci6$$`)&e@RlH Q 1DLɈ ID1IBJIhI~o/R _-G0t}ne]9"U'aXH[*7B[YvVU/پ91M/>:3i|梘DwIM5z~Ayˇ"-MЯ5Zz!gcVKb!L3RNѽ(Ja%Kz7^'">u` F/Șػ=`I]S^yMWVJHeM>?uڑ3=V$y`S5%n=ѻQNfZN@U' g%\6~?gy 11׋>}*E@XVƘm‹kcE}m$͓~"*ԟacmz P>xHҦm'Tk uhע~k ËCy}HxA4[uU _m;&K>locoZL =BM-NX>4}Dz<#lDx}MdF$+g. ▌i Eܣ|P+ӌw "Tu哲3;Aye#IY܉-AJOJu(q݊\C=%JW3}v1~Q( k&x N`(Y-^n!H3R  4 x ˞y=D޽@ gg!!2fR;ީ@h;UIM}wS֌msC=+WWk)$>WpRu*lէ"_=V54Cי;cgT5Xsq]ұe'Kj4TJ@rW/8[ښsFqtW#ԫ Bm9:w! ]#Sj^)ئ;*1*0+'$ ,0E1`ґ~'|w Uv(c\$ZRX12%G11IE{:i]d $.le>J E& *P=d5LBX7/Xyq kϺKTHӃ| ,vkď% P^>֏c@~k!=]jFk~֖{>8934ǤO1H OֳL-\xx__"m&ǂFlda52W{ؠp䫥%MO"3/E^.^AM0P64CXpCRتmžo}[=$ 6E\2ˊMI2"}'4PIh61[c6 | zίЉ&6d7e m3"PyVN g N*!d,nqkfZF[LT"o 16l1!Eqv%ݞ-Yv|u=3GWISDwWN| ,%\A",9?/oR樭Hp_tT)(8 X /'/NelCk|C5M҉[C03kaBPtyOy?1ڣOY`AYuEHό|jXP?L<u~ j[E+q̖"d2l^}ko3\C:#՚4 _SJ#HHRTV2@F= 3L;^m̹P9nJ,hZzC}Eҋ›)|t#ES]-yҔJ8 B/c|ɟf]e 0B~:TV%h#]Qe1rmnν5^mND2i!f!u՚} ,v1T}J  ؑY)LGZ{ *3QhzP4!WIgQL7jNEc ^SE fKQw]JdjP怋g vc7I<}~aX~l[Sv1x>hDiA 9*>(nm?]sW)5L{ L[ n~HDĊ,g~us"%}YܴVԟTַ|,vYPɷ/W)1m gM)UH-')zsc}Wg2op@ĠK4S{nl闍=Ш})`>8 jdk1 k훚c&/IY Nt+$1)W~^#@#-q4y): 5Ϊ{FӶqgomț:rD*z-+ ,inz]Y*{C|0[`fIj|ilk,m@XPE39̐W$-)-иielB9f0Uݚa5҆$5A%D{m1DZ^#1cּV5vS  V⽄jG+z^k.k̳NuN3=SF.+0Ǻ|4'dǩ%[MbyR%תdaGJnwv"Z\yʩ,Ȅ2[0$b, ˧~#"T+t$鎋$'yVrF@~{`-}zyc=q [LX|6:[D\07lSZ.,+"㕤2983Pz_vQ1Q\˖@#/;Ghxɕ%0ETTQwzjD"JdtuDtbw|KKOm]]7`I9[}[$ m')T]#KD <䚯vKӠdiNϡH}J*\s-Ű[i~"F?G jvw[jsأ4L3CZ`5Ȓ^dMTʙ9sr%uJv\I! a of^B<}}W"`9kzD7#1[|žq*d<xF4xCer0Jue8۝E~5샅zmFE 혿 V%L<=v5ȟG6ԇԍ;B}87JP&&3qJH\S 5] 8B0&곤^ڬQ2=pMoc"B G6v>r=sH~y5~3o$!;31A򢅀2ꄷ6,TMD)\?v\4R읶BjDhi-SI -HU7gwhI hMr$SzC͖09c7}.7h?mG,nK')C}rQ_;܃w ~hN#[ѨI>[h`3˜Pq -jm7>!cg4\'/],bkpb7&> (E^}=D4PwJdݮɫ5Uc\EتxktYC_lH.4&&# 1|DY~!;R?{4ZjHi7LEީUV7lMvbj׎~+sEcDESy0AĘLMc,r :gZ5ܼrl$Vj2` ¸ lxT6y,w=:>)G٫96Q{'Ndͦ11%\[p=&+A EB5.dR 6Z،zɚcjG5Awğy*qFݯ44$M[KO %!mER{F6t簾[x2S"T1)op4,lZ[JZ{P 1{OþS(%"WJ2wc.,RľY ι r@{is!``r;QDŽP2󭧆%Lj,Ze NGO7 Y*Sj:~>Mv1:^\1l}ީʃlwXP>OnOފ "Pl #ҭ7,LYƅ3?w_\gֵzƄ9gσ,):3VwZmJ; CFkChʴ'B2M`E 0[NCEN3"݋s}Y"}piT+,YMXhwKIA/opUm9z3 ښCZhqMkĸ7 Ud_SJa R=MSY7"A)Q2Y |]=,(idSQ~DoVY%t뼂yG &{a*V"i]US~I5^U }_z,%(*%@1vGϼ/u5WdPhu3 cPK4+JlgUQK!04&ەFArE-4zSelI(u0ȞGՒ8i՛*m VɉR# "fLlmd(MBʢJbZ)ZwÏuSO8oLFg|;Y&(S>1%&:c* QFpʕ*mWo׺a~FOBѼݻɏ&uִe(ᥢoV6FM%У+T LRr?k>x yZb ~bK2l#ծ Yˆ~]O gъ]Y)_ N`tIi.& Oh6H|,!Ft(q.с ƽ-%o53 C$tRX&T﯒Z[^G6IǰMIFZ':6ݕG;`mH!Bm5XZ/=5wZ>3'{m~K=-ŎQg:jv~W,bj* wP1ɖWj=i&ck{zyR?lÕҦ˕&۔c/' tZU;nudC'役Þہ}+x IcݚVGTUJ*y^q"wc*}\:C^+-.Gqh ǼF)*^4z:NRUNSKRmW>ڧP2!ƂO:qb;ߗ+8-l\M-AXTS+;OX7l֑i#c0 ௯:1}gwLԚgb- mS.%&&WM/k\d,u ݀)_J큹sHϏ<6l–v脿NUY&"骟ګt*'|ۗdkO}d_M[Ȣ?/6t9X[z+&mm*wɺ 3Ew԰gn.A8a:]I#ByYz3g05[)2J 0xbԉ-ذ3OF˶ 7ev4FV8rzZ!O6Z؅{x^SfT}g_S/4F2:n<B๦Pxb9xWKdcU1+y7{ k=|Yj_zurW<ݷ˧]/p]/R<>݆6L܈"kI31c$4 L5պzhW4žT MRhG0QxO{5W`:ξSƊmlg@U Blhho(v~O`^%axݹt:>$A6b(Vk_/>Y=Um@|a[P+.;[Ƙll hvV!u1U{cMm泈,WmPыӒ BXE#3(*Kqy]qbU[v]Jqέ)*b ?seB6# MiPv_T s25pov[/[R Б_E&-K b5k|2c8ZσCrIk&WvK6vr1Hߩ#,VFC$;d{&0gJB^M->Kw30ɐcm)Ms*ɀ,r:ҽ vkjVFܝLTlS PIf>k˶%3e b+)rܭA+r:='hLw?rǠBGK ͣ9ȼ (m4/>g  y^sHyO 7:3Yn]60z6=lRC\y罦5lX@OʘߊoXoia TJ #mom,F,$CsP*`YH7GF-#qbshtdxͪC_ ل3Ao7L=Y{"pr_\2Yԡu"8N%Go;nD7u~c2M%t0fCA&5cˑOtqMz'ENno:͵pU3Qb&=_85W>q炲& - ؍]0Ž$7M 7ks[Z?v2t3:&sm΅*N_HhPZLpvm6SFd+J#] fK V+?xJZZ}JE{&J7ɠUaY9E˜clzj@T#*1Q<#ۅ%OEe2qsʋS8nP|txBgɛ~F*|}s *kF[S>͎5H6GwZ4J4l}*e|_v;5~l@ĵ2fk01I~h6N(AP؞ :m[<ӿ3%(rnE~Y-grL<ev0@O/S.T_*܌5y }tSBŖ<)QxcU0&4%↼#$+aoYhpUև3#^T6Rcď 6v.?y3~Drbc]s-?Ft7貟f[X"R8 kr|xw=MTR A#Bx{lyh=*[<#[!'!vۘvaf8ecy5$.' djBe{{%?mo)QhɌ vqZkq&nrʉIeB/UIqQmxJFk}fx+I`_Y3Dy\KgmI[(xRv.`pQVMWN}zfFdw; rFą\!T/H2 0|YyҀ_O|3X@9X7eVCxE3e^=w/~P cŊ<T^9s}gW).pgdִdYZM~iʗhתJSy{j.i-:V"gP e‹ltTMk}qQ4*2ڙb&M^Z*>6eFӦ\U;˄e07M28mLmBfĺ`9JJ:`U#Lz~&A7-\U$dCsXRU9ySzv}G"&RF|jFՐV6d,m0T-IVz^9:.%Y/b)p3z|ⰽJdyɻkTȂ: ٯr]U>WVZo D*ϜɜIolpn [BD :]WCKW⦎geb܊xȆ! /9o $e5\: LpYպǻzNQ4)צizEF17닛v.ޜ UĖ"4Cĸ?kXe?+~t9P=9=.03[nHPGN&d8hyy]Nθ!AV$)\p]λ豼.y$Nb/BdTh`Df4)]PVzΦ97`[Ns7?2 (e6cvVuXHHJPwޚ11/nwn5Pt ؊s&qW$nqvNtNA! + d/Dʩ&a1ϭ6?8\4`#\Qb9be{1l.eԲ(}fpPYi%"|UOj^7Y$h)w^u)J/jE؛=WvNh)niv6D'/ku zEKcn Be: WXAj9I0/V'4L[yIͺkz߷GmH&IU[(B&Ah @MA{b)cʩnQk}j/_A 3*wh.zb ܍uVN ߠ#|n^ic~{[LLt5gkccPEY#_ WW2"o 1aW<4ָG-[J̀ J7H .LhPԢfMJ^j_bGëZ!ع;NٶwRH*2L31'jR9#qɢXxHoEן=Qv>hmzPXg c85%oc5<.U[ˋ'ִ/{t(ܢ.di>ae|hτ7a7|eaט`<&įK*5 _MX|o/1}ژѤjo>Y hCI:zMQ?qpyFAfid[%ZK'1?vns>{}0T +TU n:h؟GE"v(9;ONHiĤeW1*1Q0-Q_Fj+Kp X‡YR>yg| +\`I$4m4 sO! T  od6y9J9^,O}O:A7tF&vþw;?5Q)c/u̩xbH}ֱ?poXLv ]n'mkU|rrq L0Bri`b=9D _Tޛj8QtmL'sa&u<ǛOZʊZJFei, 6([T>"WX}eϱrP#-?Dˢ4xu{=ޭjpBD6A*[aH)DqPLcaYg>]t潾gzܪJz![KxoRTiOD4=?|(ڗ( >(lH!r`aܶMkZbDcŘD]~2Fn><뵯X=d4Iw<9?P Ts vУj=?7cTr#o]XoÙ0> !bNtarh+ |O> a30+gd}D1Slgљy? o,5R@fGfh;H]kv?I2Ʌr*3弽DN^Hl|7WR!wYQ >S+ŃCRԏƾ6*۾, <ױ>F IJr`J`& q ~y@z|Kףw i%DL¶s7b pgfh;H]$Ή͎̞\0?DM_ɘ}o9x!Dƴm7 +G vϦСI"?uSXǏ>ǐƨzμ7ٵp=d2mV U|a#LW6Ϯr)}>!wW!O;9Փ&,sB@=SXV+wN15P$XXN~׾7޵#vx[nGV3kVްO6ԿW@r=ӟe5 pC`eᇪ0~KXKh?{o~*)K焘fǃ ïSPD5J+\uHgozbl誫vR4VeFu_1 2Sj4k0/$ ㇅Rɕ85H֔`Ot E>}/u˶mdybS#cOui~ۇRpͪ<¶ֺjW?f S fz'˻xz& $bǎaˎ4M$U:XkkU뭖>G5 %T}mc(OB[Þ&~Ɗޖܚ=M]0ژ}5D0N!FMK`iqw{0b 0m<'%Uj2:agZ_zaza&,(o( :q7 JyYJI9 SSf7[¶{ixQ|M>[߈1(wNK`ϬJ b ~Ba$×5]F'z K&:آC`Bm Ax6<)Ph g-SyRN\}QuɖQ&) 8Lݵ-s%DL-Rd{lv[]ˇ˘vjhoõ/MEKţ׶G#}6SyZOQL#O9ȢcymG\}&pEJvRT1&Y椙p*Jc3p1JP8ypK0Kj+ڻVHAo-ژrތ{51F4^X;/)DD=|ȢsU.¾0ZE![0rPT'NS0eB{HZ^W%Dfhs~fDw1>mBp/N5¥`f%T)4[ fh*qo,>d".03v3!>[1GWՌQiZ=Je^KtLF&ͽ\m< as3yW@F ׀2OAvLֺoDPO9~`:[^ȾnݽpEȾ;q`p-'rkD$f-0xv:SQ#)]OrP^ɰ}n&P@KU2|/2B}]ΚLxU:Y< aɿG=:OAToM҈I6ʑ^h$&c/9 lJjPu˚0[`:e tӳK\)MaV7M:UC`AvsuPs6rb.g1Xo'i |a#֬MGZm\bG v†!NRlYqVTjCa>qOŜCѓ"L#sccUPg+zZ0k|71lLRN"^2Ө0~zny069*9z F׫1@o S'%YO+լZϡJ){#N5FrӂeБ PT-oC} ׹4#h|FFVy;9K.)w&qM)'r':Q^2P!Gֶf-z On#?~KݳBAL3gv 1mp,2՗{ Q+?T]UPOF#ٮXn;_?5d,~YgHuVKwCmk Euإ+ J5\o ETGSR1d-M&82vps,wKuIe܃ jË^6%J}3<%ps,[u!S+!ڜ4MɁRWmk^ilل2cMxKa Ҕi_{ZpmLR!}?i]$Ddn$F]o;ӖkğPLmA C,v\ؕI#Ӷ0| }ЇAD?^ͬǹJXOK]-l6"6͂ߣWDAQ7lyh/ΘBhRئHwgN%R#'_q7O>J6($ɮV9 4@ P:=KBt0)$8t^Xp>u]#do)l٥> Z$=6%/5g´iXzwYD+LIBǾ*&09_i.UtnEYzʪ.D.-j<}"Ss$9Ad+ӑGK= PbI\޷!H%liW8tKw˖;N0! F-rh,-5 _Ő5g]]{~OwK.s+$'q^ݟO{V bu}AM7SUmOx?/ [Su"ver d]S>*[Mմ B*MP꾕UН!wcM< #Agf{lbTSd1T syiM]"AUsj; Kt"#)uA~ϖۿlRŃ@ IRwv'Ogl಍VtacïF!A'޴qelS"%] Z2 {jnUZ|q<2΅h.Wr䠄M60c**i_3ЌiЭ1Qmtv)xꭋa$>rQ {9nlCT5*vc.鈡bܛak|II *O7{B Ӑ?.RZ%nhh=Q]\( dI5YSqjiL{>S#{T&f+$ĨgG.Bawl3Gёפwjm"0&hQ>jUM{0azzjL6%Mb [qT(d\Y3GO=7E2,|Qwnt] 5z9c\<O1oT}죙aҞ1EʋmL}u% E2焲̋#6k$Ca-bRl,:R&AFY{1c%кಁD %}ou.C4ebQ5Zo^[0\d7 -4ξK&'t8NL?AO HY,`:e( Wڛ:8mkE esUxpb$‘|pM 7yfۼit6U-Zq9?ZYפ}gEZt}bh,xzi;MHtv|%)޽2Υʩp l7ֺCXcU`g'VyvX[cf[}o)m暑 ʉLn\50L]˱*f-N٩'</=UI_lmq|CT ރziЇh RjfRZɣ5M6<^ZhW;85띃j߮|]N3"S i։FZimM~=ޖ`CX+BaBY i*Iz?69ˏ6YZۊtB k>o{Wm4d^(ܚRiIu 6n?Vɶ\wﲋP:"ZMRhKd0=aBuIh"$Md!#L Zy[ Pi O <ӭ?̱j)V`w򖞵%Ϟ4&o0ZFOux$T΀`a;15 wx :BZ:+3>\X]|!Kceagda^zh%ŗGo淪PA6*b Pփuc֯Q2w}؛ת<زp?xg\RDI Iİk`<)K ;MlhĸTXYAQ̑4t[b?B'w=YZ%xd?WDeCΈwvukM"IКPLx 96maK>:"w74(L>(}HUi_ {{Y6 )54X3'1_no} j0z܊6Y*wԉ.fxtSP7!|ܶmZ{e/1MV|6{ꔴĶ$xvUk-D^|I#AA1kqlc$]VFAcfblq>~J%ϼjr=2=;6KNW( = ɫ/ CZKNIj4#EoC,-S7>|O4uU CP9?ɤm=2P)isN2ntf4Ju;dCU|Os>c\pbsI*h] މbJf4ݗ6 (|h3.Z $ڵL8p^mT¸19U& ƋaCQ%FGcJڜSԘÛ6WȶH.e]4{t-F',R^L ΦĈ7b=QgvզƲI(m;\`{<:Ck·T3D槵cdv3Uxz,6ǽ|rtrUg!&2v8ɨ-<]" 3v5^!{4}2Ɲ՚-^ !YX%_5Xע5)R,')Xj]`DydgWvqPt3i p}D9-{]x4훚N.>Szc,~7l\P4#hl\P!ۯd վL/n0xhgw5,eδɆaj0)qbwC"2'qK? /e0bFpׯe 2 iKZ[3WCu#78]P\/9W{k9fcˈBlϿGSxD;wT(+\s>9ޏ"DuCW=l[ || V6 ß0-w82AțlU1iD2k&ڎ$еan蛒 Ztޑ_ib򯦴t\,\Wɺ-ɦX[ L 8:*$0٪aUHO/.X]md]_1 nVPMw{a痌v3N!كࠒ}xVMLD eBD[At[q<{: Uˉ}l}MGξVgDc~Xg+8(fl<+Iqu@ʈ|NjL9v &0S;v_)񦎼װDGJdkָM]c(I`rts;/!22"-$*p6[Bx~(s&w=qvCJ5s&t3 ¨&U޻S̘v\U[MZ&傂QA`oJskţbֿohnNB]0XlG[1KldI.}*M?e۔K:VɎY0^y?no-.&.1mdrqELfL84+z!ݯyiIQZ0]*FL7n s"r"|һYdBXvjBZ*Rmuxeoլ,_soAف'1)u#.`n/)4ݫ ^P}4z)ϓ`Nsx(Ltն6y=SSlxH]p?Bg~(2.g H :NC!@ռ^sȫnEc¾ę5gشFfw2V11WWQ sڬ~IE*j 'ccK'ϠG>H]r$LFWp=l̺wRjP% 6i>OtWݥZ lL CU~Ixo;S$d;+Cd6Vw5:P@X<6F,xb% s~HdU]3'_h}A:-b*:D ]ИWD76(/hS33a"=6ޖL.э492&n 4x֕L ۮVj{\峲^b^MלVûRcN @ʔ5WeS"isZB4ƭ:a| ɣ$|qxRwube9X;jFZ {Qp,g4(21$U 96YhndNĶM]Zt,h&b˷J^FBCظAdDE`b9ipsi gqy δ墔)3s'2(* Xd#7Cİx9gmѩ&,]X8̨8(7IB0\9R5O<k9ZZҥNHMV]ؐ7eDA #UTD?-l`rQ?]YS6s%Z}u,G]̵&7 tILkcoO`.U vkO jM 0luUN3FEc"PF?a28 ~PYp d׿#}ZKIȓN z|>xb-fG6LPFRDؖ z}iM>52kM? Fѵx(j}:8 zO(ȫMbf  :)0HBӳh(NpaesqfLuInz!JBU+x\texfD(3rXؙHg42;Q>TFx'+7;,gL9SK $2! {F7005zDX!\7?tD›WzDK#;er~&i<إ>Ym 0u`|u| 4_mV9XLuxм߰b珘P>hnb8Ka 8_>-I N]U-I{! -ee3-jcUG[K}h Žc6UI# W2o YYiH/3vYEsb 4*iRfIv||a7gu0UͲDg~cؐ5>oz+l ؿN1y 6hIC̾X\NHrDiM]νl`!-d-Xnm(?eD)B9̜Hkt;6^}q( 8?"mĜ2Jɐ/ڪ|4M U]J[. 60[]W> ?hrܦ R7}fU1l۲y&p-ao_dZwP{e'"QcF cNӓNCHyeܽcN; ĢιW OuAI8^{*+-zۛmqox]6u!NU(`xbT]Z*ǸgO"u0&vK} XlFDo [.ZL[ɠ}"8u']ۧj_kƜ P;Tm)~KIUѝPWʴB_2EɎ0OAǴel貞ڻNogڔHaVpzp5s.9z%Ye54 .>G5âм-O&]Xw}5]b!u3FWBvoj0Zh}}mCkA2kWcBZ"Y̔n(G³FLu*m?>~.p>FYeT_DS=5od܃ w" @7?kmu߰t&+"Łb8]ҫ*Q#']78CNzX%nodJ5)5eކu+3϶uD!y]S=vB(8Wg 4:':e0N.kgR~.YR͸-K)OeQsPn;f|C6=nbt0ZSwe+ۛ>rn=נV(IӳJ=V~~#s܌ # jrF>"8N^Hܬ= Ɔ.9~}՚ҹLGo3 hOJ1sS{'-Za eJsM/Sk lƮðbԣ1nϙ´o6j38E̷v=C xhDs5T(Pj{-#2-c-k?Cm7w@09^gFIUe` ߓ"0gSeC53>Tb~gVBOzn=jyv|V[:7]/$6-y92GK]Ѭoh?/}#5cz/eL=i|lZ9:49o]unyml:8! X՜D1x @UuW[洖0VϲC44C?Sʔ]ʋѐV7A3LG2Q;XE|7%%Ͳ;pF2:2LqvD^,]JN/δPɽtGg<3j!௺*T<{ E˜xf|1 'fs ACȭv,.ƶԢ2|D ЗEV\, VrؑmNq覒a)^!:@r*͏ƥCN ,cD蛌F O]SHb0+?Sp瑿T%.ϋ{Nܛq~>G7{A aV)'Ԗ>&6@RN`943 P-$M̨UC9bX5Ppg08M5 ajۄ_ L3\(Xw=$ _yI[w<6!RLj!g2Ϙ7Xa'7CZ=xG {2aCzq%3{,0g[ء<ֻtc0xJgơ&C#*dXG4`C,б]}AQϴ?IE!N)'mʹ]€]g X =.tX'YĮC%>5g@x0nGכS{$UE=MÅ*r+^)cXekZ¨uƨJva JꎽW-x5L{Y Y{0fџ. ".Y8QWYf9mQ\v"Ax!M14E8>`?l%Zzd=y- T4+\4UlEdzF2gS2oGkla!`,1ֺpN"+"t)oc= Aޥ l0d*S;)Pw+϶ðƛipc pk6bdkFHz'cWZl֧}0jCj"@h~7QN쩒`?۫5G V7k՝l c2`˅jlDCvRIly4$~|WZW|a*Is;@xo3ޚ0y[9ɂ+4x^GH'PHy`fYJwAg2")Ne1;+]H<_+J,]MMM;kV+BU0̔,_[%cۋI26RʜR5siR|ZrQZ7KT'Mvwd 3&]w0с6oGby"^#ΡFsM[Li1-]!"kY4'pF ^W?ѮCp7i8sf¯N#~aMG0.kx(2P)\h^LD< R(l&*("nabm,-vn!܋)c{|ND;}:t_X*P1[Arr(F@,ʂYS;n*ݣVv5OAJ^o ]wnQ| Uٯ<hŦZ!KukI-3ocsyf^*bn&b (}^o"ڙ;{" ht&~sW?ɘ)-ȑ\Xgw?`qٺ~G>a`},riߧo|eCRz7;][6R^?x8b**W>ivmb$jK?]CyLfۼ̧Q6o-ta-)I5xV Yj Zb &Z#T'(:=4imʺ^/)ʒ-YMնnʓ7gP̶#>ϷՈql(]!2;m;OShk} mϖXL +I_1g.b\0-j?>[S\"\ByLnqŢ7cWOɳkG)MN^T2l"_ a@U7kZ{@A-%t`Ʉe]o5@34V~dX4u,z5F_N\u4S-)X*o(!^Xum~wwv2+hy稂$U7?X&9C˧Χ`%B/QJos ^6/TW~1]'>'<"#} _w.o#Iihxw8ԙh|74@=ԥa*kƨ+=J jSG[3O[zᮙpof +Z STU}*T#@䧑m ^%_ bvIPU! L}fv8.k'j¤;ݝGՖK04K-)VshBԭ#݆ibt9-R)Vi%rca db~?I˛OVgI>F$.\4@y."n B}`\Z~Y;Zfa<$y\L¯80Dzbgo:M5) ƴ9 E0A 封#oяyyۉR!I65 3ݐe*r0t"HNyجy4#Am3?%. y'a/e@Ǜ *sJur4b?B/wk *hdj˛S 'ȣ~Yv701j~X\cqUZo-9.:j?!bs(R{^ltِ̞xބq ;\o?NJchM*`Z:ׁ vkV֮W͑=x]s+ve"_""4kb˫Ǧ[[ - {Ӟ== ,1ޜNcuA˫AWĮ";PRsY`C|qy\|,Fc9jLjMP2bjm~Ծ?9!di32(6<bLU1ݡ2٦v0iE4 .6a@_l]O9 &H\wǦQ)SvR;xɨ3暴xRBUzP{_5|L[NpfQL|Q EFuxv%2+8!e fS\KZ֏7B_/Q)xc/w"xLĴfN&&{Z {c X5q(0M76oS5ܶ׹."D rw@,IoXń$Vfg}-VMk/tUJfO0V1ωhzKi'`O\Dz ~mWҁ>u43 s^ƙ;LvC2??{eL]R|P(2#Rmqqwn_G h[`P:t7~N#O YY3#M; .@˵&7 Fpj0mP̢BÞ7xNEf&~h5WdXO diO 2go}ݓH<z5#40BW&2r/0Vn_4r@t:BOH%zYw)՟%utop )-!D_=1 ++B.jQqG 5W;6T2ʼn)!A訷j%Y*ֈ3;DE/fn&Z[4hX2_^L|ƶz& 5W'*2ZaeYi }tXh{usiU2g19Ѐ˸kӘjٝ*'OQ$ҋ䓆$)f/;|n5BWDظDK@ RvU?˚ Z5y^YAVR bų=Zx^vG1{_. y #aβYIuwo:?Vߢ'?ܷxl*,T/%v-bkS9q zfhJ1Pw]^T*Tȁ|C%9)S*v+g+0Ǹ͈nO-V+L5U659)-E-[;O^s[]^M*{N CQ7:Wwf|_ƶޚdi[*i3uWNr03z/X;cXDǥ`laCu9gy0uz-G)iAgM{[m Mb>|;"ӛ8Eͥ] QㄋțeA5"a_Q|[EXep"7r۔:{r*uxNЮg^f$jq,HI-z,˺Yb~K#LfR#9(9f =D-obbpC~t=ݒǟŠ,g ~|$NXEdxG`9bK_z%'h-*Ll&=6j gXV b<<=_c3PӠ "h>,2a;8읢.*$/ݕ,B{ʲݷP1P2>@gjB)ULkiࡀZ9 ȹ`piBOI"KM0Օ$MeSyTCTs*ŏr |;yWba2J wxp5&'܏|mG"*E֪d5}?>}6.)^ya&OF4ϬmLqM嫝>c$d!v1BAx6f9M^݂1uVIl~A/7Nno~ Pvѯ;-[ȧ7M샔2]b~1NU6]d$d T҇̄=ْS ԇdKNgm1ml~ :칋2" n.aw`DƎ AOS, 1_Au}Yγ/c csCcSOwOTYq!!XE \Ls/SPл x3>~] HoZ)LcPǗ;Sw?3b?m8)x Χjf#EԀc FUbzG. ;>UC=\o{L[= >z""!,A7,bl-6¨^+Xo!v"Pba/l[]%l5“yFȲވ/!S%W 5n 0 "K֎9 ]lu͑y5 ,3+HÌyE)4 D9Ok…1AT rJf`~\=FDzk})4)כbdhEً v.>0fNgh}q@kչQ`זi&%D=Ȓhګڨm7OH31id)ɀ!l\_S[6edWAM[U7 X;X^ L{ZUlP#'F?6K Vߟ=a/t=Cam b㛧t\C Lpf0Lҽĵ5:LT#}$f*zlˋ*E-ɬK"f>+pDz+ A ݱ_0z sD"4SXHM2&>bíqB~Z2TmUGdCT'# iWUXc].׃L#Э{ST:eMqEKK:*EH @֔ҝ;=ծ f#A5mfVgnt<=O`݌UJSJejdP%EU>Pssv*P~;F[ڝ"Eex"cw'nѳ OE wlT˭I(k*tߌɺeHkٹT1霋ϓ(eMc[Eg&lceWlQZeJV_,e݆0M2lPQxA Sh߯(2̖dN>x%xB<7bh,uDݹ[ yJ[qDvlWiڐ_7U'g9kX1m}$n91+vP~궛:w0NURօ Nc99O2ZrUbM3aw)$8 ]G?g%3.V.^ދ(LI?<1-㖾GdL{f: dWzUvfڠKAlՀH"䭎Pv9%F|"׺}tӬěrkc2d)cGZ9OTz;;~ӎ>/I?@>a T>mfPbQrI)) yBW-Jnqẑ*E5-OB PL\N&d&btp;eӥ ӮM3AL/e["m 5Bvlg!^f1S^[tP:W@!ݷ{;[ e_ =[yF%i^۬E} 0[SS 7(dq yzdke0ÙN&puǮ'k L>t}2:/ݛ5}ݯ65C*a)x?L1MD…E2v‹$K'1!ErK56qt;3=N \P85X^t.&s÷HՀS=;e$tͫagx{NKta Sm,Ӆ |ٸO0U&k@uXC\&ήmӇ@?|_r r!g[Ez&灌L'zLU07!$]x:fX܂gT8M}hkU:چjuzȬ#a3.m8l,5J|qR%̡'E^Q%X8*g" 08ya}tp&n#:8e{,∀%tJy0'ņ ̴jtϲ7^AjeHYg2޶՚ Mu%eS|_FS$:ְj¯Ol6e0J"moOu٤ڙU.&AljMSظF0`-ˠy^c ̺Ez\\T.@`䔈,;iX# ppCyvSe]4c)LBeT]4o/bSP>6y]>Ǣ$ߍQwL`&x CkQ.eMB,M!; ԅ`;IM-7"M9 ç˚]:;{Yڹ,_@ty`Tim֎~ɘ}Y -6QvMBvafc,1wa#\B#DUSh /&\ N%7,qt`#LF֗R[౔$7=vQqgT{xЍme' K ]9AjC9 &_Kŝ3cXIk ^ۮʀ!R>qPA|Rq 0i3 oA9/9aA7ܯdA}޽4"҆Jd'.I!4t'AcچTг;[ 0vtzlA~.YLNd(q o/mͩљ;\_. _=@ Gh8XzJ/?Mȍ6toC:$G:C" _`ڳ] l-[ŶŠcA z!W!pAo =WAŏ32XDjX,>^C(4zwm/ @>O/QIvHvbZ8Z^f/XĤ񲞲4̌Cm %}[j.Ӧ۬WK0vPK2x{3n. Π+EhL绳#l2mdi҅tg(&i2JB:K[C[ c |fx?l&|:ޘ0漚"-Pqb2;Y7GF+B.ź"KWOn* k˃b߶+vω{rӞpgl,x!dvDg&_#0ԁZ e ZX,;Sϰ;]ޱOpN;-QPd\]b}AZ>" #+B!9 F4fxK%sOsWʼc nWQ~Ydߵ[6MWo>#33yp]P{$Z34b+)f`sVm İk4tF fdVک}ii%R-m!)K>]@Aie= byPF!Q4L+l3"GrdZHXHߡOފO 5֠E?ve.8 ׭pAɂCrjUZ-mwGKV4PdNc=dM4\h@^Ng V%Ye-1 DGt[.\Fɉ2&lx]M*~Q{%@vni i Ab52*`+/#h 9Lؖt`)36V״kwK/Ra2p ^C|Mk +Ҳԣ-^ d&BϦ1M>ڈ ű̈d7^붗GQ}[,Xh[$4N` y-OY}CMn!قezt5 m-6q-ONib H^P_961@Nsλ9 ]k>._R}:Cψ5tB9c&5|'fC&2C;1?zJ25'zWu-Û꽾dHM~nj+O7ڛIAj|Mw 6杺Q__ytpV[6%u6M'V@"THZ)6{{]Y[[c8&}_L3 YWS,Ybq}uw6(l'@H!<'ṷ(~ߓ(o`_szlӽ1~[ ta˟sxMLM;!F3FA[>a _Q2Y9#5lO7ڈUѱem;m#J^?9d_LD:wG[QNmo.Yڄ"rWMf z)e̚kDB^Cؿ˛ru2XG_kX&M=^Ůt\-Sªu@=%dK_u{=ԧbz=QQ3L&8ӎ"j 5wR>+MK6zjx |wU]MDH\bpRS`h*'/%~-uZT}ѽSQ9l)wk= .^e9ƹ^0LݘۊF]L :bWX6%%lp:o'xr9)^N Kޢ`oN7̥m< _SF|5a0lΆtR:эVNf`lSYv#!7k u=M7U ߂r[TΤy'"smWMbb  g-o~K]qe/퍫l`~H3RYqWsm3r1{`r.l`>j &#*#;'MED;am~h+~loFњuUOlyen[ ԘX"[஢-crlP9{"rZ24:Zb׮oyb٪o c뱘K];L5w륝~_}M.mݨ)9.:A2& ǡű;r;1T\7Ef)F:4 M#3Lqk 񼗢#\OoVz-{14RsSMlr>yL[{I \ãz'CC:R=FjmgIב;]c?T_GηVk^KrJẗվPT_K?m٨ ?+ٿğ*,)7307WtQǦ ASIJ(\hB\C JJql2bhq.|kX!&Ӡa6P2OLc.tܵtAv;qKOb/j(Ӕ+]%-ͬ.QsD 6&[7I="1Y`c Ƒ{ Ϧ V`D;X9JvS;8]鎙̯ IB * !"'Hǒۨ)L*:9߮&:6'=i[P7\(L%f$ց]{6ayBz_ 볗xhAڵiF,beYJ6kK&$&X.rູvs [HkpDR% ޚC e.0`ɷ;K,t_tЧиsVYݤUC~u&rkK ǎ,f7&~ bN,Lbw 8YmYՌ#ykx0! N&rg(lNYg"ZOJXEJ/G߸=ANzGk#CvG*k@gRڈ!ҽA9[cm;nҏjG53Yp -$9 8?2Gr+H7,y% 0M( Źۗ|h('F nCz5thbsCۚ 4+fuuv0+`cFUʌIuUÏ&>s+bg d DǞvc\lcQX=$)::aY,bkÈKh e,j"K:u)-5^]P.EXm˲Z gy3|IUw5 ˜JkOOS a'FOuQ'ݶSKtX]Y*.jOwWl ;DP1$6W|4ƪpQK!LI`ɩ͊T8cDaV-00MIѮGy#u$Ij՗!zBD 7r1:)wOp8[7V~3x\|ObPU@?;{'Q y~οۿGA /r~`DzqFU9)Gu(ڙטjF n z%oTiv1ra̦_d5d\]ZU!8EиYXٸNC,k!چl1p*Kٝkp,5XY|Yϰʑ*~-?]Q^|!ExJN|&(`1>PGzmfv%k1C Ǔ dDncSPCѸ"Ǩ*Nj)x>&'H7Gǹ|~=]X6k2IM>,KiZ䈍#XmR|a=bIҡaTWD}gcA^ɲѮ&H &ZchǫhZJDk?vnIT.3ʍD&?͑McNWG䊣7x`RYnʨt]DME4~ xհ; )o7z.Vac1hP5*We2{>:P;5CaRLƚc[cJ 5ٱRjrB1F\8M}ehwIYr:ُ eIS RFNM|{E9. bG^_T #K}8 igen3r dQy)J?Ke{NhzCV`~󗉽|]RF LbG WGg"6$6x'OD+{65@ÁAe51KmƁ^xGSIï+W+{oDWcg'yֵ(ɟܭ{qOۜgMEmؿ l"#Z(gI $m$RRS GfFGWgEZa4%}؋Zecr}hQ o9azm2ld)%>r:!1x8?rSN1׵^/t;[Bc5 m) W@?u"445R4X~Sim@sdSn^Cio[l$uQkv{>1DAO#%'gB]Ѻm6_ nvyXbՖn. U?rYEOQ^('ؙDQ|{p#-5 iD{SOux1R;69-le6Ͷ뇬Y:qJg#dE"bMQ0ԲE)i5lq+׊ݠ a_tv҂eX<Ŕ9zewK\J YٰK9]'[SGIJLLWKPVNW|Aq. u)OE̽=V<̾X!Qvԋj{τSdnlsTM2w.SH~L &O\BMyvub6IPT&/pS2'2{lʪx͞,qzzO}wV:`LJ/ Rԡe Hu1%l }[|sknmKCIsVG 3*?\[puK%MbbIF/落0ZQbD^cYZortz_2oMŔh9Y|S>#j NMF0eyT)J?tWjy*^Ԝփ(4>gLbEKԹI9d7YfY\/m¶rb|~%۪o^v ӰhfM6̸1xd,g^MgY,~&RvI =E5Q^U&cCd jy;s;))ME=cDy/z^oqbԕW9=Q/0|* xb@? n LTԈ6 3{9ɻ4e\`q!t~WFW}j@" Yn]bY=̦Ayo9SBI( 1jT.%o%ɳ"Fc;ɴD$H,A4[f,/XvkɓsFܨtZXpRk\؎11z-DB!cK6cXHU{,K>zvKS ,`d5`BvaG^F,蛩ۍ2&wmP^CCzDn#=sgQl T1Hlw8 [8A1!PXWf'Iwa@h6tg,g<k"{-rRbFwys!iJU/ʊ=P uP&0,Ae/mq2uF| p2r)1L:Sɖ?{tafÏ #7$mU1k?څY;ƄXx{sj]7=;Qc}FFb|Sv1aɧ*.M<Y-2}Um p]膢tL,kCsIۇ,cmUK˽шfi'Z%|o9CVT!{nJhcQ@N_Ⱥ=ͪ .HoF}x仰L}Tikrzs)/gOR 5))#!K\Eo2H<;AXoFXV7NN<"JzX yq}}5f . K@ǨH$/ϙ}^7Wn,9`kp{Sb!y>9Ţض.WBa{ Kؖ܎O] M@b׬2\&Dq>pݠ r5*!Kgxk9n)HyJw͘6gӏ{+f)4̛t*o2E䰬\8W"lK>z WfA)p@=UFUFDO\^>{J>+ZPX0;`櫼FbF"ʛdb WEt) +&:\^Lj|d AW.[HW701߁ĔmTdg/"ӻ#%FZ:3!e^5!RxAEC@[¯\ -^sWd\B ;NsJ}%s &zCjj[Hb.J%HMh%Qq!7|;c$VW{XtAHs]XR!9BZ.R\N)y`M$YLW#wq}阜xntpS*=hKsX?zvxH+Ȫ]pK-@X 3yde/ jik|pIE oW=ۓkckoFniDr/vyy9PLnRcN2/Ӷl2][F9# RLB8tNV#$u*Cm6|S)Fv{&݈nymԿ;\&^vVCK^{DL*B+FWa` q 1- Ն²5Q1?œeDhǖ̠Z7.쀓\MM(q޽1Dm"Xh1D\KQۗMۃLU Ӻ$rՆ5UHȥC=iE1 ɓ1-<~LdN7tk\dE8vS[!iV<\u@_Ͼu0P=!F04iaQv]CBC`k R|n׼ ɦqGΥ3[b7{dZ+qLRiTCbeϺ"C[vz[q/kG1*)5,L>c20zoeׁ8ŞM{5A;$*;⪃vNA6ȼidO4[ s Ѥ abϏutNz%q[$X8^]kk=uޔ)ĴUk1c}q{ݨ&[$W!3Px!ꆊ.pUM-.Hgp*c#5uz 4Էqw4ik(=o<6 ̉TS{X9pz6K`&QlckeRBbLĝ,b%%1W-^!!WS:96Xg'7lA4N-lƔY~'5 ]uNeΣiOdtlP+-(=JI IXz-t$UA+61tQY9v(AVUԛ`$:.Nɢm!E!aD|6aynרSSl3@^fÞo$rsEhPPY]!IO3e ?_z(D96͚A}^8vPVIWx{J/bH gDxgR*PJJ_C% Rڢ)kMLm)3kJbS`ڵ6K6 6e UVm(44( 5PR(m B(m(-b4F4ѡ@#M4h$UF2 &IPMU d2='[!l*[Cdb*[%-Jl[Rڣi6ll%l%mT[eKb6Jlڕ--l El)lFVՌ03)F¶F6elحe1Lٕ+ S a--&+hUUH%Ul62elef5ZUV 6ԩ"jalf+`)bTSj+jA[Ql[j +faLl[ [I)[JllU&6M#hV­E6ؖ j(VVj eVMl6Md‰Eb [Q-VR5l60$m!mT[m#d6J* eMA[R[ Si[JMmC`P*(L L3+c)f lA-ʦ6(6M͔fؕ-HmTmCi(SSl5c C6l2fV6VF° ڰe l(je1+`Sa[fM 6J6lSmVlՂ2m[KeKjB ؆ԛF[R[ lV)6lm#eL(ePjVUl%-Vʒڠ`mJlmR[%i[" "l @ShQe"MlTl5V+2351VfVPĕ j*VlemՌ MSb T c53m6(5 efٔ1L5ilQFțQlUcSf516VmlPئ695)5a™fjٱ-lk*mVjl5+ YV@+ն³ ͔2ĭ%ڥ6AlTl&k$i-V[m$-b6(fPVآRJZ+b B؆5ڊ3+mj3ƴ"mBm`&ЭJ)S6m4lmkEc5V1Y+ FPc5lئڱmmlQQjQ͊XFlT[$m)l+jTIU5lF™Q+56ձMM6ԶjV3QX66jl5ٱBmF566Vlce X™1[jmS1J+dlm[J6[LQQX3b6)eM[ 1MP 3(eTVlhRDE6kSe5a+fأ 6Sj566$j2 l+fRl[0V(6j-lVՅaY ڛmL٩f6S5`jFP جll%XelYP,mU-ٴ)M`V*٨5)50f 6V6S MKQ[cm5FTllŲFԛT#dK`k[%mKjV[H[$( iKeMlKdllMlV(FeaXPba̭FFՌ 2b jj61MSi ڕH؍bVZ[cV-d(V52bU6Vщ`Vƥfձ36+imKd&ȭY&MV C+jeV٨lµfSaf) 3SmL%6Q-lJlm(XV͊m lPmXVjղ֔Ka&VқRlMUkA$[ hV*Rō5Fmj"Bal[EI[*jmXeaL˜l[ڶ-mH[*lKd*5fPelYJ`lDKh6lll[+jl,h,mEcmMiChlm FF+mYLU6+ ̣6bmb[[DX6VձZ-llL (VMAVͫaXVfVڍ[VP(mEm)mMնCf[UlVl d"l*؆[ŵ+h[Q66 kSa-[ l[h6U6-FU[Vc 5SQLQfPjX)ض[U[RVV6m[QQ5Zص jfPmL)a6-FКlYSVV6U60jmj(5TQ%*6#`ѫZ5ƪƱSCV [aMj6 lQX3R٫51LefƱVQXFmڍVĔڑ(چmT5i&eUTڕHjlX)FVdlM$DڕllPS2m@V+B)YC(Ռ3Vc2jhcUhʶMlmeel͵ AM666 3++6[l[ `m%M³S5(إ%FɍUɣbkRFbbjئ a[ ̬m cX*[mbPZ5b[El F)Q1Xm-ٔfXjfljf[EhmFmQԙX(LC ealkcQb6,bV+j1VlmLe e50b[6PbԪl["E6ElM6ڪ"6TUZѵ6bVFѪ(Ƥ6+Elmjյl l6M amU#j+bLSeaEm[ EF֋X,FMS+5JUl#elmmVح̦5` 56+0MB6*ЭXڱV(%KhKi+`mc(()((MVԛ*$l6SdmQjUV66ơLV 50`cj6P+3(l+ecj0*h,kElZ(+FEf)ƠQTcQAcEU*XYmY5lSmC a-lڥmF3mEb-mbhZc[%lli-Zlhɶ ,jŢmbd6%6 R-CH[(6+kFj+AX(-mFŴjAbThشVEDh mTZ-VҫiM6Z-(-j6›SfYll[J[VűMdmcZlDkQ m-6B6ƍQbdZZ(@bئج[&-Ebbڋ1mD-mFleZ5X)eS2(ESRlU6lVłZ-mFllQm j-&53j3VSlP+2[QU[h#iZcV lHյaUmѢѵDkXLS+2Yʬ+2i5ckZƬZ#2ښa$V6R*ؓhlV[-E*mحhMFVjն)+lh5lm*Ū bţE֍Z*6bѴj-hQlmXڌńc#XѫF5m5ZɲIڢ6E6TV51LؓmEL(ؠՊ V(aFhV mj5Tm%lQmՍFUZ+5FKFحFƶ5-V-bhKa[jXض6Mj"-h`6mA+ŤڍT6bmlb­6L5a[l[mFVlMXS mV Fi1mcEb,M‚mU+( XشZ5mQF#lTQ6jabkD XjVS2m [ `[6VaiVL Q+-lml*Lj mLچMFXV4h5EQcAXڍMj-FěZ6TTEXh Ѷ 5mڂ(Dfb61JV+bXEcFXViFlV›eifa*-Fl-IlKem͆ͣbl5mlXEZ1FY[mE6$5alZōk[ lJB1h¬j*#cT[d-%-hhԔm"EIѶƭQlm$EZ"Е3- lѱm)[1j,ZmѶTmZA5j-ElV[h Z b&m1MX$[*clQ%Z V(FEZ5V(ZLli4QcmEhKX16Mj1EXŋQlTVRHJ-X6 lTQD[Fj(-Z55(maY*[[l+ebVmcFh5",XŒ15cj2Tci*1mbhѨحcZ,i5j-dXFf(d&Vڀ*b*d62lXQ4TT(Սb1Ѩ*4j -I$mX5%i ōl$ j[Sd(bE  ±F3PYje`ef(,kEFkEEZLF*hEcch5dQ-FƢj)6$ZaLSHS +(V5d[EFтElkb-,ZZMVMZ h h ѱb51 bdQSb4#j*bجY`6E"mBh j2c4i6*ōY2QEm-U+b+XU0UEj# ئBVA6TmѬ[ѴDbصblm1FQV-l֊b5cF6F#jjh(eLK2²ŨTFdj(cm5D!EIlZ5 "Ʊj4jlZ*Z cbر&Z6ŰTZ(mEb #ش%ALVVjP,Q5E d*(,mbXQ[6FF f "c15mE&&6Ũ(6@5jfmFj͵2l )Fڛ+emKcbk%l&amMMF+(Y[2l[clkhcj+4QmF#D#APmEŤ`-hڲk+4PmE[FM6Qi(lUFX*,DIjƍ),Ũ"4FkcEQ6ѴTlT`2X,E6cQ#TbmIAT,Qld*4j+$E1QAXA*ci6Bm2@$m#&`X-PX4)Ťj"HmL6Vl++1LcFkXhբ˜SV ̡X՚LE jK EڬhU[QjXi"jF Dl`KlXƱ5dU*6d5AZѱX&h*6"Zōj,Xص$ţV1XbcFcIlV65XU-ichEV"PXMbElF%b6X((661E Xэ2V,mM!EZ6 mcE[Eh"TF hKZ4bllcRb4mѬQ51i#b24DbXhh#)`,TQ fQ Ve4F-j(6 3Vb+h-إmjXS(jl%TmhAZZEbVhڋ6-BEZ4X5Eƨ"m(ɠ-FصF4ZƣmDȴcEcZ-bQYB0A,X$KcUlhQj F6mFX,Z4ZMQ-hEQ6*IT,j6(Mi*#Q i-QQMClmQXڈ*"Xf6"cZ hcj*+FКf1cZ,FB"1EQRX5DVcdت6k5,c21رQ TEdƒXđ X#QE"ƊA"VɱFѬ-F+66@F,1hfblZK$hE%c2cX5#Xeb(*6$Hl"%d&ƶel[b UհMRV›U[6F,X*52ڶڃSee4hV*hѡ XѪ4 KdVJ1ZKAmUFV6X ,m)+RYX(lj(ƒɍQ)BM-ZKlkIY5E%E1b LȂ5-cؤQ!lDE@%(mX&XM*-cFbٔY&L͊,h"تebm&c bVHU4PRJ`صŠF*#Xd4QMh1dF655C46Hhb(#`ւ-FDi6lkQ" h`Qb b0!1cc hDm ьIEbAV6A4QFLmcFTRhl*T%ű̩(Qh65Ib6a*!0IBM(lm&hA*D,b1hK%F(cQP&4DBʋI&0IIERH¶ڊXj͔̬P"5Q[hEheSS(ڍCj`Z15kel(5`PMئ¶SPj%(ՌmcFmcFj`ѣ[QX5ƣFƭIbڤkFF[bLSjjMca,TEѪ5Qb%V"EdAh ؤjLjM# ՚RZ,RQ E"cV*(ٔhcbF(+ kQcQDEl`Q-Em3EAlXlll#h`(HDMDQ2QF mQZ6CdkBƨj1lRh%,Y6RFQE[mE1ZMAjQQ IF,%b(J 6-6,JF`&Ėc`dXRXd1J(h IIF -4RXlihŨC`h1F46"*Z"1&m06H5Z61jFXьL3QEE`F",l5F(`-2Q(2`M1MIEDĤc`ѴhƍF LY 5T$dfAAaDȢfXƐLjbECƁKlj$,c̙5Z-h*MmjIbm5ƶ"aXV B2VƢ[(E53+f+`TmX+h-XmѨZ5EŊAm&lkXMIXQURS2VkFF*#AZ1m!IlڋbhBE b)(Dh5V2XQi(,kh,bVQȑ [ccclVdllVXQXXHkF%F $[ci"5@mQDQ0"*#EFX*(Lhض(ыQFhD#Ehkd؈5&Abh6%S5%DT-6PhkBEUIE bfRA)5cX4$4hJ6!4hѱHZ FZ4FRcb*ѱcE,XUEDb6KXMcDlZ),уX6L(FHŀCZ62$h1h,TJ)56k&c2(,mFMԙ*1bF1ƈ!J!Y"-j61Dh,i*1R`@X) @6#Z,j1bdJa$&h #% #k%(,b abV(آ$h1"ƃEEFd1h5L*PbX1E6Ť1@h4Rh؍) %F4h3(̢60FbجIQ Eɴ+ hŢ"YII# JAb QXAcTR%IHbѱIfH&BF4F4d"MMFYĦ"4A 0%6Lش[DFF6R3(2Ff5&ƶXjѢ55Fi5XTlZڋmh*ZVccmF66ŬʨEV+ccZb(ɢ6̒jZ1TFZ665V&,ZEb+1TF+mALVHS+ ,Y*5[ѵ$hAIF1$Vi#bƠ[j[$Y1HVcD[j 1D,fRh1Tb00[EAQFj ƍDbEE&5E2ѬkI%RQ$clPDQEE%E((J XFdMHmIk%AhRQVk15DhTb**#RQ hlj4kEZ-i,$CDE4cEDF((ƢTQRأAH Y4T$&̣HkcFPhEAJQ!c`McEŋ) 4d *(-)kh DFhE,T4i) FPQBѨ,AmDPFM6fMm)XF$ѱ1d16JC# 6H(2EDId $J&ѴTh#EDQbF"%5A)X c`(bƣS1E-4`%I(4JŊ4HFɣ(B,F5&KPL 2IؓD(ѱ$ Dh3I(Ѣ""ɢ(2Q1@QF! H1X1`(E&DDLQB6Ѧl"2bb#cjB1%`ţ`6a"3#bf,$DhdL$ f5C&J#CQ2`--&K(,db11 5Z652HdKK,hFD4DH12(4IFR1dlc4fl`S,DhFK$c1I3HQ4Hbbm% ƂŒECQEI"I2I"& Ű 4I"c&c"JL0b 02l,Q$)4QLdffS%L)&`ؔI(!(4"M0F(@H31P3I&5 NMz*ki[@[Iil 6VͫbVf0ڣj5QXb6VV5f+% -DjI--F-j5QTTmF$JhI%(ت,hR"Y@ImQTZ(1TZDk&,jY1D4h [-DF*51F!6V"I31* j-M E*-fɄ ZIlʋ4MATQ1HQ0BhMY1$FҘɨLl-HTFFДclPb$EdQP ƋXF,mdI2FfIAbѴ̑FdAb1+Z(I5QʍQh64DTBBS ؄FѢ$dI+I66JFYcd6LTh6ѱb dI54ѬMRm,4X4LMbQ66Fɘ#lX$&,ab2cV,-TF +aj AfaI,L**Ѕh I%4ɣj#Xhb61E(ɪ, cE2F &X1FD`*16A1FS*0SJ4%f6fh"MfmhѴlD@IFDI6 &Xa 4JIF"J&KlFa2-% )B%C(KL(ԖE" 1Bd ID F l&K* XC)Q#"$ 4XQE%cEFĄ4ThĘIIL؀2RHXl4lTIi I$ !`d(B0h"dh #I$HL̔fHjQc(̓$$ə 1%IMa"X¤&RmDm&56lDXi-h&H$ؠ D0EED&M4k #PA&ł4bQ)"M0ɀ4b$4ŊRlXcd2XHd&bc2bCB!)#2IH (I $فf͌SLm% 3@hR !ňAA4h4d b0F#Lhd0HbHL60b0HM(hF #hi1 A2%6L&D3243 dD6Lٔh Ld&)dɤ6"BlhhF&DɌ$h-2-hLM#a*HfX"I4F*4$&bLE6iJ iAf0BfHhB6K$DII FM2& 20ن#J!&0hAL DLH)!""щ0dI`&&(L @BdL#Xa&k0RK#Iэa!PY"#!DPb-#D, 3LFchA6l$$Q1ѓI),̘#I((!bhP 1 (1#SdaH& 2bBF6 )P&Q H$FP2!H&)$Hɘɐ0a2QBfJMc"DkF(0FM ! f144hE (Q$!EJS i(I1&!`ABɐI&,#L  2f!@iؙe#$$I26#DI %2EHFA4cdY`)$F 61TRLb6Af1f4ji&B!lH,bdR0E0m$IP (LF" 1MD DY&m2fAHH@A 2 HPA$`PF$ł6b&̠f(B-I)ƃDZ4bRPXQѨJ4Lƍ "EbAF cEK`,[,mЛbKbDTV#h!FLRZK4lL mr;{lfB'yDB'}ϏGvm4wO:_dMgNCd@' p@ QB TTI$(6Taح mSldXmͩ m6d6hV @SAV`TP[ 5fP ̰hjQmPl5*( @i@H8ࠐP0v hh ?*[=1xiV sqtћ3Ro2߫JђXvO.4RTJra[ 6"`r=ZzÑłJcl4>QL'<<\4p+ Leh}B=鍥^MbKIRFE!&_#'+.ǿKfhl(/~ZcnkZ”L h&|D@$>iDRTe/ ()n:*]ׇápl=2hST iiAr"p[{bd .#'0WQ$>aef7~Gז ^-4)a{l`1hQ{{]6YWuPBF!ZEtudQnHA?8x2. v@*x3=*WUF{Ey>0:{xS#ؠ3b33GgKp%ձ"`TųԜwe!-L_SljA&Jd U༙|Qޥu'Lgj̚QBE2@L1H+:TE*~ABlvfֶ|Ե$¥( |q2]IS˷A%5 ;e4+\ !]Ytuj v%݂s4: Yv y-\l2(cIRV >: 6+۬!e}tF&Is/2.7۽T`1}Zi+Ih2e,&&>ӏk x W}y>]y.; :MۛHCz:!f /';)SP ܮ(# 2S 4IO4_۝seL!kQWn|dF˧#cRO&R-]腜wTUyA:dutlfs=W^:dC-d2efR.e"xT!7ϝ9*J۹ҘmfE=|R7R9I`ZEw;CWZ3j Ե$d_N k 8h0@C xG]?U K7)VIVOHŁ;Iiw|A22ɽlҖg眰"3-憐kH6)i4^(oB'l&NV˾:t\#D 'nM>U1jp/uXw- E_uW$P'WVjC_q`d>X ҿ" ~To ,,˨a$o$:/IISnY]voNh2Px*b0SZln 8rRdؼ1!d6^2)s3M!"o ZL7wpp M0:jɸi@LݴUeS0^D:2OW\׷*<;%k +:%kԴ܀`v$?!SWq++ @_}Vl)@r;at&gdOrK&׾{J] E׵;6R3/ָ\&Nk[ ``sTo !cCXVC̑MqT#qxQ=%9kg-٘R8–Av֟TWoV\ECjL ufQJ  ) TǮAKlZpN=Qp`\`ٟ ~5CzV &tw ¨ ߙzz{ZNeΐ؟ϟd+7-nh-J<=N e(w@s[!ʱ}V#Dʻ>ܟ~3 0S00 ͶځFX[l*ڨU6PE 1[6Am6 ٚ@ Kb6+jmI l%*h)3+MCVb6 `h%)+jmm%[@+iFЛRVj+lV cd•mUl(%6mAmF[Em-6b+jĖījSj6SRUlQlEFU6*lEm*ئT[UlD+`l-[D[UFU#iFXM&QSl mF"mEM6TlډeRlj h[U [6*5@cVmVȭMMmE UmF¶UmJmRm#h[Xձ5(em@jI e`6PbjY6Plld*Ti&͢Kb6Qk13QVS` b)ԭJhlضl&ձ&hE6JlJ`+iFĩڔIJlVի 6Vأ1X[ldFԪSb-I6Al֒-m[Ml*6MIĭm hmMXbef[REh)-MŊ6S3e(* U6čP6l*F)6+3jͅba 3+6++3Vجeflf(jb3Q͊ +22͚22F6*6ShmE[l -VVڂجel(SmYf+a`+iUm&ьPVجڳ RmS`lHڨړj[UU4cYP([6Q+e+`m![@U6lI-L+VQ6S 66ejمeTP5beڋb)6lUE6հPjcecm[bԛFԩ+jEl[()6U[)66e[AmIF FmYڱL S5ll͔Mٲ6*+jam ch[#jMal؛V2Սj+0j+ fVfPlmZVVԛJUblmKeJٵlڱ f6հLأeUأhTl+jٕmV50QmmLƒd-iKiMKa5lVemmQ%MmE-[ +3QS6)T6@S6PQm[3S*R ammBٲ%je1Mm5cj6PePMٱKbhld-[AU6a[5aL cP3S3jl1F+(mYUlՃVQlYŒj̱[)jeIMk$kQ[&-ձl ڊMefƬVj6Z[RڒlMlT-؆ڭڶmUmCb6[RVim&Ѱ[Jl25mclU+TVFѲTMe-m J6hڕlfk֍kQP55 3+ S50 ƭ)lR؋hŴl[Qb+5MJMZlj0mblj͵-H&j& l+iUlQTJ56jbVe0Q-Ki-6l[)cS[efPSbAڅ6jV e-lѴm[(SlC)TmQ[Hٲ؋hڤQ56Akk% ٫3j 2Œ5f*՛(mjՅ ձMlm+jaJ٨QR[A+e[EAmmmll+`)m+iQ+`+`FcmXՂS6fVج+el(ءMjأ eQ6A[bڱl(ڊXՋbFALQ+PS+m[2Seb¶jf)X 53QإfbT[hڢaU`b6@mYAY bA[[KjmjEmVجXS3QZ fSe6QY@°j+EmXe 3++f*MlRm%%V(()Le2XVƒV1YY3VƬe5f̠VRV 6MXX5XV3P+̤dmF[[BYmXUVH+e-*6Immm[ZZ-MlFĶZĶJ 6 )jbճF5ѫA6U 6*ڒ6e[Rdm-["jQFV6V6VTlkFVƍZ6--[֍FƦڶ+62mZJf(M5QkF+صmTmX65Fhm- P5lځAlM*6T[)6mI--l elUFjFkElklX+i l(ڀMK`ٱ[6[EFmlVm3)V̭JmѰ6hV`f+lFlmFj)FƪƊEF-IMKam6l-&հ3+ljƦ -1mŭQ5VŒ[VmLئh*ƣZ(ŨhkQX6ѴkDZelڊY)jlS5QYmF)FRj1[ e*چlMl2 +e16ճ5ljCPV ٲLS Fjڍ[mj6Z6A[VѳbK`&H6ՙQ EI[cZ6`ձVeV 0J6Pemjʶ&[ m6"Q[bTV4XmM[V1@چVL 5j#d-Sjm-VeP lT[Q6EXFlQchՍJ+1F›jC)TPچV(SbM̭L™lmQkT[(ʹm-"5 Bڍږĭm53R1X62fFmIRm#amF)ZLXV ٨S6SSaFmMU1FXaYF5` (56VPP¶ҠVQ6Va[1C-j6XX66*Ѷ+E*eMc(+bY[+ )MlSbE mPYj(5f6C[a5k1-LbjجVl՘S6P(1XSlՙ)L[FkhEbZ6QYcU3V0P&[Rl*jXѶ l)©(2[ XT 6MY+6ej[-m6mTl[`ՊѫѭѓmEE(ZZ1VVLmQ5!ch5mmlj-Fբf)B)P)FڕQFŶ-@b(XQQhi1Rklj-m[ V,Ҳei2Q)՚PfljV56+ fV6Vlm6V4Ub5hU*ѴmF+d(cAlX(X4mlXF*ѨF*-!bZĖ-dڢmEֲ3+P-lmj cm[Qmb,j(fJ6VVM6hQ[4kcXV6cj+b["Pj*--FlTQ6Ʃ[ amIl#iDlkDmbMJmm-V‚Lem2+)FնXj-jѬE[FEX5XEڣ&1؍lXM5TkhkcEFƴ[l++l+l)mm+0VeUkƶحX-hmcZ+6ڢKj5mm Z)*-aYe0+fVţh6hXETVbQcQhƱk"m`PVjm f(L(ئVe3+ljk,TmmF֡Lң5 ԫFd hŬb*F+hڢ6-hh*!Y5cjSj™[PōQXEƴXŢ5*ъŢѵ(6mj6+Y6-hS`R ڑlbV5mhk֣Ql6[-l)jlP5cV2ڰV6 -dZت66j i,VZ+EFѶ" 5ch*5գ`4mXF5m4XkbѶ6֊AU[I[&[E6AYFVe#e6[m`ڕ[F,VѶE0j+mPحFP) ch֣mƣjhlhZ(ڋj6mmXŴZ6X6-cEAi6*KhزlV6bcck6(Ѫ#lMjhl[ ٲZU+ Y&YS3Qi+c`؍mFұTkEF,mVڢأmFѱڍ+hZ Qhcb+Il[j5bcb5h(6Ŭ6&Ѣ(HmhUDQlkcQl+ij٨,f lEQQ1lZŲhlV-ٕl)Q6ʦ° mڶeaUVmZQXcTm+Fe(VaLjVjiF4[5ERbmbcAhcXb%kbFэ lZ6mEEFhڈDPm5QlQƴZJ0+Ńc%b*)R6&հS fjfm[5ilSd6+a-+QkcmhU&+ 6VVֱZ6FmQ"؊-bجm[hkbE+hUclTmF6dMLeaAMUVրƱJŨͨFɪ1FԖ4 kKE5F*J*C&h5-XQ@+ FM+5VɰئV͉lef)@5VlUF+QUj+mF-b566Qkc6hkjljXljűFkZ[FUŶ(ѶH$cbJŪ-֒ƴUEFƭb6ţl*¶jjS֣PVHZhXi*5hэ5&XF6*66XF*FIeLPRڛ +iSblljmVڳ+lV55`+ )CV3V͢[eV66PՈ[EmF& lQkEU[bcm&b-FFŴcF+QQl[Qj-I"ŬEE5b6Ƶm6ѴQY,[mŊ)XV2U+j1Fj(U&رQZ26AQFQEZ)1#QBZ*6-bHAFգm[Qj5c(ڍ[(6+l#b[HڕlMcSljڃVee +PVM( fVFSeMձLkA#XըKdŕl cPQ&cm+ZQXhb*ضVXZ"kclcj#"mŨţ$hdbزi cTl[%TkcemLVڰSe 5kEcV+MFh" AQ1EMmXjV͛*DQ[%lmFEXZ-((51[jbFSeؠm`&ՋXkXhIUFѶ6D2jcEV-cUQZX-mkb$0FTTjQ[1k56PDUb61F5hDRm%mMĘVնKڄlj-+RV1Xj5AZŨ%؍APJ,Z 6QjƋDZ5EbضQhƍT&FY*# 4lPf٨ճ Vf6Pe6Ձ[)V1MebFV66+hV[DQbբ[6؍kcEFCDmhbh65ETj-ѬcQ6-bZ"m&ƴjѵZj,lTl[V1jcQA[@VlXZ5(`(E-mkZ*-FTE,بTQi-QlTc%I2lmdE#[X2#j dŤ5cF(j,lm i$TZlDmIXm1hhdmŦ6h(a6,6FP(ئ j6e-VVj[5cmƬmlj,kQmlV,jmZemQتkcm([mTThEEɍEljث6-XTj65F("b*XM֢cQjQ5EllXjыmh5F5Q[lZ65Q%bLZbch+h6 AmRTZ-lUQ,@k%FjicmlXŊkbcJbh4Xj%1XF MlZL cQcmƊ4XlXfdڍIli,ZM چ-ƍ+T[mcmhb̠j1Tf65Zcj1XթXef+bm[)[26[XբѱF҆j͵e6 ֢ѴPF-X,h cEHmƴmlP4aX+emb`5h6 cZ*ֲlAcb5F*K%*UmI&Dh-Em*1,[%* H5Z+ccXEIj+&* Z,EUm-6dmcF- Ѷ*f6FbI+V 5`MTب3m%E-JAlmFjFbآJ,Z0j0ŃJb$lZK@cb66,Q"Ѥ%m))ZѶ¶FŒC%[f2[[M؍[[+ElQZ-FڃU5  )lkhѶE*ZJ)LQLS mmJfVB5dee[FFkhQh5+b5kElZ+Eؤ֌hѶ(-ZD,QlZUآh5hF6l4lX&V֒E+!5F"֌k֍Flj64j,D`+hōTcEEXѢ6 (5EhѢ5( *)hTAE4jk%"-hbشhf0MQS,E@Zh5A%FjH6)!hQcl(2AZ,A ljlZ(i54hĆ0[bɌQ cQTE4[DX"0رH5QPhm&lFb1 AoeV6RVĶ؛(EaVڋi6FFEcjkefm[P(ڶjmX*2bڱmFkQZMCj6VԑMZa#E5EZ5mb5[Q5E5QZ5IDjl6#khhEQX(6f Ʊj6mcj,P4m*lSHQMEj$ڍXشh[Rhi,L[!F+E%A0ȶ ##hF6+E 116F5lV1&`ђdAZ-d̫IY*164Q`a(#hD E lhjbF,lUb QbMQcli"AdQ*,*bMVMB%F5&[ѴQb4dŶlj1F TX1lllUb 6Ea2Lɂ4MK- ,Z`LD1hֱIZA%EcѴmLXص&d1m 6j*f"(A$l@IFAI MbI"!DEEjf4j1*&SY $Y,bLs@UEǞO=Ͽ>}۞,5'Mk1,Ir-WJ:jy¼01La0E3e Ljb[(چն(++6)Vجic)X TkEAT5mZ4lZѪ1[5hZEch#b Z*bѲk552 XEj6ƍc5XIFƣlcQl["Qlhh5ѴXQc`,K4EaYYBQX XD[hAbƶ%TV6LZ-E6+EH h5VHRMBh!cj4hḍj,-FbTZ-E4d4I`b-P"EX4%DcF4DjmcQdبœlQcXb,[D F#kEFLF eQFE*1b1"dZ+4j5hdb"EBMf2+IF"Ѣ543TEcTXE5hh$"EضF&MI%YKA mUJ E"bcIb5 XMj @f(mA  4I0XōbeCIQTEبLш5k%l,E@XLjhbbQF$MMicH!DLXH%c244DT4 cbb0b"R36blQI2P"LS%&DM7^,Z,REQdшQIAlmHb*"FXĔ`fA YfRCll4XmcV,m4PFJL*RcHb-2h ##4dLIF$#%F a ",1,Q1,e&()XțJ-2R1L3M2fD(&i,(50&($eBRB RFDJ&3"d1&Md)#c`,)Okw{σq_K{C5T>1ӹOyf!jiOOYg)rXM Vc&7Æ?zVWB\ƾ]e .ջ²oμxy$c~r6|T}yӺpe'#|mGڳdx`Jdl})=>" ] Te4~@N#*M{J]mxujvynrصeVJsFN! gpG+!۵[u= Lhޘ%D LcyoIW g3MQ~սrBNgkcD)m}85 oj0W88ELHo|Ԧv{$s#TC~R52Bì48l SM(Tne :v=eeU ^q-!f ?La1#)Fz'j/++>ۚR {ziYE~;[NPzeWmosqߵE\Zr XYiǴԼp08PCEYouʙG(M(K;IFqwQuKer ֘M(Pqy\*V(44%E4'o=heW#(= wNt2f;MZe k'zXpf 8ݓwIg/w?w'k"kǝ: r}oӬp&2-3*' H <`2R\CTN /AAq\*Ѣ9\l{#S56^U?O͛mj]6ƙDzzjaHkXJP>g` Z~~N>U =e/-t2D ܅f_Bz __ V9O`K& C-W1L Q _c)MAI kTP3F=Z٬,N:ZiAHtgSVx,KaF;*E?Nj/<7֎[rȆDM6{o ñ5+0$Ӳ2{Lr5҄h5$s{KޤC Ӿ|"&wh !_]w:BێhWDS:{o#R(;q2*dR)sDfsX ,2'@^gG oڢ@U!K~*E+;p‡c [ TeuFq~y=I 9X7e<|ahDa3⌾ > UM4 ߸䒊ѪD,b`4$ePP8Gi6K[:Y%h>ێY ڞ+;KInS4FPH;81ҵPu2ß. |cR(b-QE#`/܅`/BG}&nT:N-/\<7mNHЫ2rߞo]A}f\G~n'c+[e> AfsBdHY=Kd~w r _=~I.e>۾9îvrR 0ɼA.gNHٮP/"4b·@.cơO@rݢE/,$fVTU*l4Fu1'Mn|n_֣IiC36ם8Ӷۿ4VJBpS'[S)=PIOK*bx̝ѥ ݉ <0RO\-О6߬=m* H7qP-[%axr/\psKiL:æ>R2({hS_BoyEha (Υ'|O}\rVGt- q'`ʀ(NS29J/=wK_8ZR%Y^=ǁ%G $Z29$yRw|k?ۣVl<Ѡ3:̧o%-Rf\R:u Jy=q:U֬E!wJ1PP 2yЄs5a.)<:2hZ ;*D2i6Ii‹#u<N0 w!5z[7FyԦ]׭>}˰\,)VQvS&&GvpW?==Vo U0eF;Ƿľ#j Wzә|K4A`GQrmEdMbԯHR\@EyDz]x{[EKja#ͨ{jzSHRnrA25(}(9ϙ)8q)kDW:[4#" 'k_hF^PG֎RtXN||Dp<S55R+ ̋B2(fÝq13MDMjoxL@9zkS/B,W#Io{f3R#+T~'qV-2/6d#QBGtwTn]/6P Ӹ*qfեWa--'q3 %kJ¦x$ԃN.%bA\XVjLю'?$db[:fo.H tb϶{ona:SN*WUlɤUy-)!EOٍj=ѱR,!H.Y c+099 ]!T}{?)& (Q`,;i#8 GU{Շ& пN(][*fJ}?_[%kBJwQj-vr=} ̒#g|@#PsZqɊR/\,z3:hZL ʡ M{Jp5#_>gJ-{&TkPte_sRB O] #kK@X %[oBZ%naJ|!Y-vok;{.cçcÀ(=n^#nU-+lm}ECC{FJ ۥ[&S['a2UeJT ztqT:TW.bL]#5Ų "*h"MbSxCZ8^̄-~sQektSgXᙆaTϒk^|%L mb̃RDod-b-Ӻ "֢sV-O $*c&O!~&"c8g$Bsa?~Cg5ʞ3xݟ!i8lu!`DDr'QfI!Q=rhQ\UW "e!wasGk`fa)6G=/}t魧U5#V(OrO;Pu:FrVAzx^E !R/L|"ǦBe+{Ix!M{mډ2O/!2ғЯb:cPg?bzzTd1`mh}* j='TpNsؠ©JOxi\"E."3E)WJ&{jkwUp]F ^˄n$'e м(~-&%&00ÞqN,*fGtGvԊyʯyxr&]S0\y61W#otT fjXฮQמ72h0 S-p<}e75," Rd N^V=>APhQ \7t!6LEMMMݳ ff`=b5DyJ?^1 *= /?~Ga> 5 rƣYÜ-͵rU6wiZXԎ !d>5w7]*DqSdJ+Ҳn(=FRg<&I>55ȺCݗxM<(eLz3%E rwpU~9xQAQ(xчRdW~EԅJ_c#Li":)%zҼt*SR}tb!2.Ȗyb4#a>z7w*LڞQ]*+޲gaU."zH|8Ɖ'yQ|Q|Ϣw|$~=]=W5 UsS]/ 科Qã/_*C t(i2a}#U3LpT7HF W&.(*aRX*.Q џ'x|wNJTԻ[ks^}A$ḡ4\랞t|ZGvrWܖ [m͉ub:y]}뼜\g 1ER18Iq`qjf@Ү LGC4O5?rʈ+zF ¡[\/dvK͚LQTS Q:<}|C\A3_7MFB1&Eȫ)llءb=v #6vq'[.WFM}yC28.?$qqUAهIBѺHeE+Υ쬪4Rڗ;߾c' "̩h6d&gMYK Tu]3M܏.W =ȬWK=rԽ1ʻ/]"^>zz%0RLs6G9F9ln9(+s3?_Dٞ=WjT¦A_7;85v<#dJ&<]u;־vGYvf3v r$( ,`f*a5M'&X-y =0?yTr;Igk $ȤX}_'C:&*HRv " Ӵ&rr&zTFS2^n)ɅCTRq(U1)33DZQa~q%}tI9<]J7K';e2]W~z@"ۻ$M%utDddr0H8'[ap*zPw)^a+4u.G\x.GxFxhvzz$ry+yUELQulL&S&) ?:t@ָ2evB(+&wSMF\'w\?y>B+(/z&g~W? Ĩ< Fg>%."&B91#3RҚ7X(. $rrPU_Ե@BLsd)23}Ily"kwWRIRؙh".Y%q'U2qp/y =th$/{B? W-m $+rgR!^u2Vx*-l.NդS띱M!ұ 9D+i2c=jQ5`^^]p=+wċŶmR]b&Uy gK'#ߎ'O~UPVILڴi("Dxެh+Sj6,heJU$mVMMme)*Zf4ŭe"((eVmjlHjEf[R͢ [i6fl4Kdm62E[5ki[mDѦ Sm[6f0յ*PH(mUbXɳ*Vl֭V64m4H,fU4YeI4Vh"ҥ [fV&-2"M1P٪V$Zb١M3P5S VDƬILV IٴYhZMYj &IKmhVJQJ" bQ%ZeelUeUKjml͘"*ٖmHm E*mjʥhdM- kiR)B+D6i[)ʩBfEڪKTA S e 6iSM(VFQFƉH [%JY4Mk @iI6j 3mS[iaH-jͫm-S4)lVVճUQTٍ`m4bB͖$dͰP+[[3B5Z 6ƤͩZiTlCh֫)k[d YDښVfMim*lZ6e 55*)Th%f[VhF(,`͖lJԥ[ZZśU-jJ6ڶ-̦ Z6iJ*MV)Sj++SJS[V LJkJ%eQ0*Y#**UD6dm͌+3UKHHeiܢ!T5jUejM(ScVm5VD٥RPT6[hЦ5 5[dZ6ͦc 6fSfP3%MEٚhi-Y탵5km2PVk6T m61H1VP֚XŲՃ([KmسehV 5mcjfl›&dͪիjUKDfՔ,`JJ[[RcbJjC%3X!VjͶ4UZ2օ663FklVdCmdĶKEdl)kmɭ1jP[c (6MZն2k[jkMmcRVmY[FԖYZf!c-fX!kZ  2@@MM hbi50) 2(ɵ Pi($S@ DJ&&&FFF#a&DH)&ziC2ji ?Hn#oGmiNk}˜%FO9BԤ p4}[iuBS% =[ ġOՋ*FPuxZc>SR} ] (H@;LyUu8H܏ƴ0~Z?^^8UXH1 zZ% ɞr?[z/\fvxZ#i7~YR >2ތ)"}umAxgN_Ytw~Q xiM+JUZa46enP[dQK&'$YvCΚeAM}иIgLL^pr=C K*Ҍ&Pfx<=E-2m{dbܨC iߤ.Uy)+C qG4,SL.vj7_1Da􉳞՞X =_uT-uxO)tjo_Hg̼kO%XDS6h EuӻIO;5׿>-}%k >* s䵴`3`Vh4 !cS0O~[1ƨ:ϫE x+?y7daKu)5p&k4򁝗@# 8 'NuTnPNTح?"EJ -Z’q2 z(wqVK\U^e;-~6+$ zh*A{$l&C0$/_Sdeï( ifǐlB< |V]LU\A-^MNߟ ׈&w31S:6uܗS1Kl:Lnʛ+;''Lb֣$@SmΚ4ʌ&?hO$$(;tuOEnO_$ 8wƗ@-J[K\P bY(kuGƒsj|?tm`ܿٿ-P[TtneچkYw o68!2`)X=7G ޴YpLȦ_fL?A5Gwŷ9}%{-9yhjR;+Vs9i8*>FO'Kd< m~ n L^x!#v,T#5d@P)y6 -03R|r86PCUKI/:m7ֵ!ګ?`SH)_:.-'h2 ,9N6>fZ {Bo*4;3dWM .3(z` exj3\ഖZ;p#Krh+o!Yۣ->7[ 35>vՈ]ˌPXNy,CN{,isǬBŰb bi+ϧ)b:^'k )[.A匄?sP3']y6K7:>mypS-au_O5n~Ya߿ >!+?Q;'dgXԲR;_KCPi!Aun>Dߦ4OFgz^[jYҀYV[},mD{Ovi?qn5c7j0n^Ko+ jEgܰ[0].JEu'098R2B" 52{WnˎIC/u&/kFT [K6Vҥ]HD-B(`%ނ&o$eR7;# QGZH~:?q9/qQx^_' &j=Hwu#G%Mس0msMG3]OuN0c|sho\rSگ[BQӜ$1?K86zݧ. }DiK##tqCH_qS9sz?\uqO_gÝΨId)%fQ[r8M"c #q]|jv dr"R|pJ]&q៱I]쾈K$)۬|%"Ŷ[&l[L P8";zPkJHdv~`S v2^ 8B / A2w eU渱msO 3lţbܴK'U7nΨZ2JqVmƏU]qN0W,s}dXS $ O4m$X\ .һCКơG)Aۺ`*{[C/5 '5<'xL#8sAX꽻`rur)4oF]Ӹ(="gEC)Y?kdd K{NXW4Ԃ~8i$H 1Ă{R(ZyR-Իk($OC&a).J gcqB)j2ѓSm͓\&lsnrLJm^ :H%"^u\A0*~%A~s4>02D!wE eG#ZTj#qQN`7\P5$+ik,O^$AQT5?qkdJs2seS6FѲL8\[20ŀiB\r\>^[UJI5 ~ڃAj>ߛ^.obRD|`Ќ-9,u dۦQΧN}VAfTȈ#4A^:02;/.ìzaQVil?;o6Xy\ |a3%334 iD)DmVȌ/ \BLsvnj*rt¨Y\Tofƞ4+!2eFDŽnELq"^0xRSཁplmExP ʴ^AZ9&)G^=S=#-ᱪ*Zdb N&*I .FωT Ǒ>+.iehD#A[=-@-xsq3ңeF^2%;Te50Χiuƙ?B̵c\݄L#njB h*u\`Pp[mD*S2~l,ՕJXM??{<[ì鏗 4fNlr9ջL1_g/d(/y#Lo?}Lm]u)Feqµ=KupUoɟԪ.O2 Xמsؘ1zQ#Y'B`|5G9eN6a٣2[e- ݑyRejI~&je[ RѫaUQۑo-\^ 4Q!Άcg\ul`40R X3Vdht^W Ŏlώ\k_؂p=E4~go[Tj*CГ~՝Xu!"+urW@3h-\C{7z2?[lUMhAh~,ZNLclw&?[@Ũ6ԔqHiӕY^f"줣UqDH *xkan|[e4)+zrwMJ^&­C )/:!n^ґ.Z AIIOm:!<hEl=[SGƉ|e';MHbi|:^G.'MAg=`\w]^ԦN.L֊eC4bma'P{G0'ɪR&َj,9; F7N&[F`ә L)=]|m>ޚaݥ7ۘUSi"~»1oDV|e.\zkI֑gΪhλ6b m]1"TDn~R[굏x};Y+!˷rՊmmekAђ)) Nrie= ̷e5(JXWg8Qyc>wtR/t\k@7D{s/Jzj0ǁ/"1Â'H>X6de("uGje席=sHxqIC2rwBCңhTg >4Is ={Z ̋;+1>o$,oyʏC0 FZ2')8y/f\6n] WTʚ#I~y]=4mb*^G>Y D^;>rIDCǃmB#O-5_h7Ӳ\8pa`mq.:b}m m᫮F x@XHycsM=1i,sE=6Z|%zS*V+!OH[aZZkyZMUvR4^>h+D] EAdCc'$ j~g&>ޅBn6 ;[pI~Ϝ.|d>*}/ rDmiAgv *`28UR6U\ĥhU}J>7ě]2 Vsb`w7I_ @i/cy>Lq{cz_TNUF bXb?I6wV`jX*ӎ;'ū5fI;NxOR:{.33nV'^j$a>O]uBp6ΙIXh B1ҨZMCLtu[yq3V^-驜JwgJ|`>>:&>eSTbp\?z0j^ \ɕ)|S`~Zj_tԜ`WMdl/0c.0YRL|~\ou+<\CZJ[7Xa9OpyĖP=emz!Y$U40ZWя٥{!m2oPK_ba*g`E`cf 9,j<.k{!3Az;nd—CmHAx|1^>9fK6Y6 $([@oըRL&|烲 UQZKcxK?ZT64_Y;uwPLz.#O=GD ]m(SN^ؾ/uh_?BMuq~RVMuECRFv]+Esw}tsۂ7xEmBe<]qf9qLFNWoBrFKіPZ@هT%G֓6hV?*dU; 4j~y2dY=N ʸ^6Vɚ?:>V_|wY2^7Rg"l9|D AyLE\ X*&!zR, W'٥Mg >ɓwfVXz`I#Kj3 JT?'1ӜqYxב.FUt!x.Yn2+U[5HV?FPw2]~%^>ǣBV-Ⱦ/K l?fMJtk3k/ x,=lp6j aD u4#ςɀ' (r)`.Weeϰ7H2;8N|T/4Zy+81Ŋ}w>Qq39|ہ@l(P _68O 7556?e?Ulrۼn{y1wfvȠjx7S[*ʺMY8USQiFKי/x0BQjcFeh+ r75EMY  XTedz^F(oﴛ:eԁ[n[B\FDk yҨM[ 8 Q` n%J EIezc&7pPHvl "e2ܽ4ƾ2DۑIG[(":TJ`;2^M `"x[4dBwrZV~0ZZMf%K>k/B~"a#?]~<+7kjaք/!S[d ˶N nI) Ge2e{K5+c.j8z>߬UI Q1^tuaBUlvsބV S/I4i<5ECiitgvW yH~Ac-iT -^,3DS0äxBͰί;cGu #OOntYu5T2n|qA[G߷6oN;waMhukwjܵ?h=|!E^G5q>hi(g,Y\{7cZ\:M[,k_fߙ!j筷-,vF"(zm.xzGcH=KSAB;Do!HCl 3nXa*l'񙾲3q2VA-Mчb>hjjIof5NNP5aPc(^9w(Fg$z%YdǧfM\:#nK2)cлgbcªۤ9 EUi|NH_Z߁}Y[:ިG /.~Z,Qȁ~xv%^ֽϠE}42i0Ie kceCGJ*ŵKC5cnfs;H\{-Qf2ES;J,uWcبJ56$anu""{<:#)̓X}5ͯcGԩgQs#$(]>:bpDuhv)׎jl>f[u-r5$2z9XTɛ.-j!Sl̂9nDh=tY}7mNwz![e|fOĝ3z"ɴIe~ަOvY2,D 4I |yx!* d`S.M 9Ԍz8 K0>͋zތ(,ǷQA<`L8p"k2׼U8י)e\N t7aRO8XօnSd1t7;mrH#;"Ҁ䃆v҅7HM_b=Vֺ_5~VIC'$3r2l/42"X]7ѫo.~⿁Bm16])]!-ꃊжRdEr l$sߦ&X,,6k  ?cop _0Rj!ij]iGrehᤙAUZ?< YT~h.M}uGg; x)9r ;wA-!*KAX>^!8DK!_|S]h:ƗaZ!U+yqQ$i]&NR!F[ 0^K&  jO_mƳ+ʆL6 ̍wةTMf b\-,8Hl:YP{9zu+s顜[E #CJ[lJ;?q~"!oN{SlIMQN!j½n7,L5 2BjA=- /քUJ*]·YqIQ,#Y?S"MH1> v_w˦:H)I,r2,Qx9%%>("S..i~Ր.3K:U8yő'oLj2|TӾl/ 7töL忆:B} xXeITZIL;>2sftK]630Ḛ!XjB!{% 3[ޘ;bCC X4q!E'l(MY,zƺ&mx@\j ;ٔtE 9 1iqZHdTM2o>I.z 8iL 4gǢƘc,7f1i]W LRVsz* Agc5"N֗ő!mif-0AU/P#>ۮsh[V W&.V8`iǚWa!IaI4s $  my[@ӡ.7n@"@ݕLBK~ZIlLցpm2Fųe 3?0k.K-799zEC]åxhX70\,bQrJw)C"˔J}" (L<1 sb^ h+kX=j-:)pX2E}<.Oi b ɕ,'Pe+bc>}cH{^sC:3CCx(2A쌽 m0BsTldjz?;=󻲁Hs3^$ v(@Qܑ0?Jp\GݧݾrNT,Inq_D4ƨw}rgpQ-ϔ/&5"n"_oU^|Zz+[j( ҭT ~Uh_M5=k joC]_AaB  cÔhh6Q}'aũQ% =< vKDT \S6ꏭKgҪ[K@Jdoz]i3"Zr6o "xdjl9C®Hh 4?/4eUښrm܉Jზd%^ђ\dy^n'>F0HT-+ezI'Z)#Bǖ]IR>EԒP()iYaڃrxi3e_WY=PGN$`^idqv+oQ.W߰}cb6pp9P٭̶Z, <㒶|,}uztżsy3Č{ri ,AqK*}GL^ ܐHحa8/m:eEgpXV Ltó`g4l2'%{ ~I!V#*1[roކϰޘQן)+bkd \шa]7,S!co7Лl.inf/Z8['J+:VRBy_2̕TιF[wq6<\qne͏UqBe\/S1%r=Fh;1.4tHvR)H*b$Fڇv9 >}*cO;_WP]~[PdsѣNa{pqs0)jewf >BKO].&Q&y؟ ^Tm oXMӆSN@]D c\m;[cpdo[2#̏j 7ӻ םYAn07(jV`k~4"2HV_U?W" 4CQnj3McB )&*lXXR!2G ѹqsĢyblO?W$!֮0Q `ō`+`WA[Jek f N[F0r0B+9se"3`I-#`ĽItpRs{i'Ɖ}sF[ǧddAY3l,]Wdc^y?I%_]W2J5SlU4>+w][9>M~O y5=DÃe }uxj͠gD._'36-cY>s4L0MpIϙ;YhBB³;H6A2-z:^"4y#yRFο>]炔j)V#-Y|t)}2e9se L_3cLSw#^QD~^+Yo5Y)"NdpCYT׃ Z6q˕" rJ~ 鳭V;O;XsGguI,K0NSq.~JrNw1`OޙTnv(J8 @Z(OdMi0*hױ{3dEZ.ozY9e|{w8+j ZK>W$am!iffW;ےK$۪Wդt2%ʈyyxMcx$I#-d^\Iw}9dӡ7]3YvP}MByӄ}A}9st_dPuZe9vwO>0e%?lq5_)Q>5 TnP26b 6;ئ.z_{<)sVBjGkq۝ځUR %\0}wShdx{a-|eErd fɂ❜tXC-|s+ɫH=Z'}Vψ}s}@9$T1~0+)`=?a @E$ׇVJN; ǀN~wZqL̜&!l^sqWy>qk+8x_pΓ72kb,ْD%̅}d#w2=!6䅿C7]CؿV:u=LY{T yQI'WV ӷFc3boz'|PzQ͖0T-OSkvD mN11u7sa{F\@An)ʩuCΦ5]ӼRlWg9@Pd<$:20pONXUC/78$eOsTt8Y 4 xfW2jŊGhPO 6Me) v(p75+p~b0ʄ܃] NEZW#K VaI5q?wiIsLK}7\1 .5!|$(EY)"2gfj^ 咳@@rxRkQ&61Ю=890UZejތ"{l{o3c#A: "qsb= Ze\]tn~Ch"Q)29kᅸ64=W$kIS}WA'!2 f#Oĉ_KcmZ/ח gH+"XS~hAp#r3_O&ĭFs4AJ>V Z,1qi3˖GJPqjÜP *g$~k{3e^Wp/|#C*C,jjJQ+-{:wW 0EttLD؆ aq 6CͳVmsJspu WN9r28I|1E;w,IqCE.˗xH0fQo.ktOV 3j"ærnj;i\̠ٱQ#D`GB4b~2ӯ ~pj; 20$N]! OۣUCYa:Pq^2aY> 1 iYhMVڣ2o/E 0TihGkyNU- vFuAe3! a6YBHg0,/cd+^\N#_{c*їx=)@C,w )B+x4 =0e7Z'"L Tbz ?̀?cAy.c_snJr jw.kʢцuX!Ag p1LQT?H-=?s@I^@1Y2s,G!#Ms\ɬPKcZ?k 1U[XkYΓ%8<u߇}d T\'m2a Yc9/ 2 Z47{D+&c3+13XM[W9#D,26-jD eD8.]1[HF D*lEdEd^dFsA|sg5w+D&QFȋ&IQY֘*VPU.c5/zL~#uxe/'^v8Vxqi'gЭM(O0[px*'|[b~vuwrFb){Or[!4(X 9{L*yzzHyʧϺtfL}|Ghe"^^/PVb8&J.F5'mGh9WEWFD뱽qLXe gB;[4r=B(qrN5`(="|J«p+\RyGr? Н#AXfT*IJe5 *xOg8iV-Q 4k q5b{ "ENjF^tۈz L/U0G%xnoS] ,#|ie ]uQ[Iw>P%@ Y/k1֗R0ly.gea$$)E!ff#R{1¯qׂ(=خNV0ٻbA LheaEp\dY~60@ [̡&`Xz 9aj8_y ^MZqZ CMWFVz~,X> p 7^F:y$Д.9h{䵩X ]qh.YVf8}fy BMvh 07(ާ9qOb~̛ ءPޟo w9 ŻzЮԂx.?֕]v>Xqdـ![a#sTeS3QS_ d4·l z6͕^V47uYTswItm8X~Qts=4M2 XdD@1t{~$UkIMzmagK9RR Rcٓtϗ=NHs2g[[~ݝD?133e#{5ÅP =UPNwBUG^x'cRx]LQC>OMkoȆKy)cIb 5R{Q\ AۯW황gr0x TxIjx,Da|}D:pR%C2r:ӳIZl$J*7:sΒ,Gπ}a2AEe ,EPuɣu窶ia5W 4P0cX 8/GݝM*<݃ ByT}ε K|^^&ݭ_[x lO}ִHJ,"d{y*5l.RkӯCr'O,h4Q6ƭZu3% A!S)cRy9-me'Q ,s&O;J:;4a}KV'=SyuBXY> ̷NgU"q{68)kFf9Xy>Ica ޅx%M6>)gO3̩nx e߆HO(p_9]16~FEȭ1?ߤWZ }9/hIQJߋ2wNY[)V5)G(B&Zsz2-#%Py <3hs+c)b)kzaXn R'` U"rGk7rZM&E䄢;vhУIxG#>3#FQsga|G4.MԱҙ"!0ߒyRF#\R7y6 /-Ì\_qq:Nqذ΁ziwْ}jZmgWܳpw A0=5Op:-ƎR6HHP*dz̵Wښ o V/چ)m_K\_巶,*B3۳~+6@}irжRjd~TM{3gUœ dd{~y^ ð_3SYvh(׭+Zm!'ו/_2DE/*grݢ,9EbIk_ ~ѣ¢'׼[S%) {1 ';{߱H;!*c,w3(2)rOiO_:%;㚖 w t=xHBU .GϞ]1Lx-5 +)`l^'oV^6F//!;h>^d/;~qb|uh$RC_s02- z iW>fv$/#Ya|6G̑flVw%eUu.Wb\XiBj@XS>LX}=qK{,!#93/?5f_ vTcwrV_/}//8BdqXAR(^$/7Jg" }TZ*_7 } ڊf^=HvjlɃ2y;4pC']>Ԅ%# jI E wR5.1|dyiO_FP0a:|,!ir1s: @8{A~粼|.8ă?L4`{(zpF pN48is"O Vf-eҐ%VгtWB*@\ 9q,d|[SKKψ3is}l&NY/G%P *V$j\Bx;~ mGɩwSbN/mUX@4w_{YZT~F.HVcҩxo~'QQrBfh[SWt߃+b3vz@p2&; ?r=M<*uL)Guue/ |+)1"E$GBE=LD߇oҙPzvW_lv`x08 ZPjڗgcp4lho͒¶ej<ѵ`I5@5VoGW/bA|MNk ~rkUTXrWšww:K+}ƪetځRYcֺ=ʉ[k`szm}Kglи Dt{ sh5^vËѫXªf GΜ6^WV"GD|8ؽOQlh>/fB u9,jǿY+r }1uv ̏R}Z"HVpV(񥛭R{Wn2 ކ5U&.}eNpdeo32w9V|8YS hl!o/`o_^:ϲ寺o&{ۍVj4Ѿb4nKR‹M'zͥStX|8Ҵ~%֛dɌ+D걊_ը[}M1N:N1myZ%yxd0k[VN29\7NYe*y_Y*[¥ ($Wpȏ)l.B0؛y[piYR9!~Q?QR'~X$SW DSW鏕F0ޯZjN7A|{6.0MA[:n&.,WrB#4(+9hg /Z~an!`%Vߌ_ 7,0#pؕ9`D\n+DR=ES"VUU {@"PMt PZqѕDge*9g/+qI\Қ|YG}49{j.+>- ⽈PmjheMf*ixA2Y$ Nxyyc)x0RvRnױw%q+i)5gxxI~SiS#Iaݣ%_TSe4?F_R>V$d>Lg`ocGF^M^}HO٫/!N?KQ5H&"e~AvUѓe*`%I ĠBAg~s]Uե0{i\hы]ߥ,6b.jÎU;]U-y }xH‹h*c$b,mheȯ\Sr,~آ[NKR⌋B. o-6߉Ӭ'x㩹@qjiBѪ ϬخwOGKN/6U(.2LYexmb_)6HQ,jts0_zb"ѯvM4C|e3&h¡S=XQ\-wTņjr#w~+zAߢ0ҷTtl_B".D kIpueuKx$Q>e󞑅)ƍ e~oMi 25Aj2U|ozRj_[:HO>h׈ŒI'd8@sS"ߣEzG!$hEV朁f aOC'H'$D0|Y}_龿λ!k_&גÔesPT6Jۮ-LzBF tKay$JK9%q5䃙usdҐ߂v7;Z3.oɺ5MsjE):ͫa8;Vϫvnf[C__L['&h3>iE*83C,}=ӌ퓷_4߲D6|K`wzjs,<:$o`Tܣ8qS hrF ݉;hRBO17Q b}xzk2~INȻ )z2F80blRN)hzK2%BӆM8 >yE$C 杽?+U:LE~BHmJxʈ{;Vp>}u8gg/n=gދ%Ѯ}ߞ1Ϸ頍ًG((׶| mp+Dǽnʬ0xgqFT Lv\Y8I'\뾙~!&ÚP.Rvfzӊi{-Jh D>jojZl8a : "*m~3|_j!y.*{N*|w5_f1Y"] ?^ "ˉG|\8|ȜYnm%O:M<xD30ST<.Ft$ n9M#.ܬoun%[}55K¼kĕtwYϿd;oU7Hx @~/!h icj38T9P~ :8 gHq=F] x șIϋ~ojmP8MƮ6B@PD ,e[dQS)T냑2t,B%\}({և9s-^Ld" D}VMc9}\cO&P R,zeiAW|x)wJĉP0 Af&+vSW8T^.AytHT휬 [o>ݰ{W%%D2딸HnA`Z'z:QX k0D[yfHRG fWu]ٲL"j'q M̻vܰ,pAF[cKWuqL8Ot]TP?Bb!&s +9m'.I,v3zlfp9;wRe `x_ vEڏ3_t#4A ׌e !X%;BAkEtadrcQr8C2L]sqT1,?f{#XLaxiok 5MVjQM92BHo';>ݮttYU ~35+)aRUH2 TrHO;P[!^B-qQFJ GZ>e"шvpՕvUXL6,v&"LEr2N1 ac (❝`gfYж0Q>Όm&,*g1zݲkL0LŪO,zZTHre/i94$80:!ȼb"4ŶVC֋q?4g]c- URviL3GS*;:J%gK*7wވHV6gPEx<*e1Rϫa#xFpsCTκH)r3Jf3wMDiqD4XyƄ})jVvODTv e;{yf-`O ^w-p )z7lPt! l__,4ܦg'1s>ќmU8|Eg j鍓 A#zl6,>h".Mu+&@vd8T4u)^I~_^+ gu.ŅKF S83Tg*/2ȟ(m 'p]>-79(~\9%m^;9- ~E k9o ?\,IwY7)}2͎9 SOϓ٤5YS<_pCA> YE9'VY0wIx[\}1BO޾TYIdW^dTa|ӓ0 R9ٜ%.;B]AK**qLfחȹI'~Us ᅲl[` Nn"wzD ոsjJ5̇e~; Y^F,j"ΉsH?}iqi`o9Ea JaCmn Fr2>b@iHNBJ}Z+N?_E/'PqYD)P0p^[ne,et::*ɍTIaw7{AU}ey5$:‰K.׉hn&RT18! u7BK$Ҕw+/p6|)7i'L擲) :BtkQĚe- ГtbFl2AAׯAw0~:OTv6^F׸oY~X]H"lU{ex'Ϊxk~#BXRٺa?V_ k|^ n1X^-:;fWZPP{8ƮLvv֑]o4بO$w]% <Zʵ(Gw@Q:UK7[mWA8Rf Ր)C'b΋孏L5[3y ߅βMJHC7XjY^2W:B*SZOhQy ]Fxz2#LAn;vW+ R"]~OR}Hh.ah*tSNۓ 7sY^ǒoq&ʪy˄<0(}h[$Ԭ5Ʒ$YڌC-$fCN[3Zȼ}R2pv;50@V*m{з /Z]'/͘+Taֶ8e֪%Njc[ȒyDŔXLF$ <ttCýoF:N^;Z>(E./;~Jګ[\ӾTGJ6zFAOkc+ d*eVe+y cM3iX(Ldߋkb]4mIk5;_JQk_0?Xobش[<KaMW>47Qg1n6B A&Y8MB'nCMnBNƺkHB[ӈW۞9m8=:x?iߖzDٰ]d^TE pkk5U lȃ-]f6?bFl¦r/12x"ޒKB^f+ƫTz '|LgIQ*(@k=<%v+oN#.~cfbN,/` 4BҠdWj3gdpQVaڽl쵀VxU| ɲpoxw% U{~]lwUay(U|{ ݰ2?2dusN*ٳ~(+ƵΑe*̫ i#`+-^?֓#⧞j6FNK7 5>c[Z F§=7d, ^)ڏM5g;,6e[G/ⷊ ~ <&KOw-@lfWDRY×4杺 }+݅.~WLW G8nt.+D,:b2q=ъlYR%%ix?:ܥ}Fk$ MZfmUoϏ0ᱺ/ s% E>o^t.88[Ԉ Dۢao.j9`?Kd2Sm-i1U_V84?9ٮǯ*zkmyd[4U\[[C["RGzJ6B@֒0 ^;%·Ӱ)JT!X PL7 # isja[ʢM <#>ڮ90MH_JKWigu߈4g3-ĝQ$Q3.vt"FGBȾ`]Ω o݄.;94 ؤJDŽ [>awƜ NS2nSȡzWW`6zVcF/JB%1b1p. ~>Z6>KUOSz xg&UU>(1L3I XCਛ>3P5[<К YE,h۪Fؚ $*F'ZSKpsfNێ+joR~Ol^#g$9f_%?A" Z\^G=HV,>۞PՎ~JO,|\syimFc\ۃYj-;yܫQ[{y[x_lZ?lkaU^'dPF!}|lD~ ˙(+O7*1ZFÀ愋tGE+D`Q4h‹7ө3 Y-LD#2"x ZZRPeh/wGjcc b:?zK#RFl{E_{WLOS@^EZq 0Ԇ05&?Q ܱV"r6zyb7q`uU%DM*UZ e@" nvΆZJ~6Afݳ#E-,ڍ&TAtk*pk0ф^RBv)L6ДۥD*x!k-cL%N/CZMHV%Cȍ8qƹK)G뿬qֻB@#MeOʁdR"x졏kl|41,t]]ot[a: ڝWGfؖQ)D3_Ã뻜k] [GBxTeB(-is S2⍚2nJ vrBplL#ng ;.:_z-څ@X'e`ci/4#(XƶY<Ϭ}̏"G^T/;zuИM!|>)Q@'jm7\ˇ;+Wh  f wQL>LPD:9J'6o<8 ?> bdf (]ܾ%j3g<HC,ڙ܉X kǫ́ E} (|gym /A:r;~;  +jUY3M]Zh.D/AD}Ufv|R,BSJS*_HNrTeF"3)u'Z!s NqUH Y1rfv*B& ҚMk1#=8JDF/yYx&yX)-Q-;&\,V`Q]9BJjCREwF~X[ dæU) 3gY6x.4qYh . s>:hrX 6ai]bto4qƴ Sgs‹d7l kB! Q_w(;d5^v8$ا@cZMR4][!X7xkZTQam=@ir/tN\/D)𼿧cԜTYfYT!|.'O2xvtvfvP3n}y'gӃSRr R;?>k%KOHW5l[}?Iz݈ZF͋ڮnĄts6ϼ;; caF ]Z"02(28fd/\~Oio6ぷS/"(MB#wOY2! }_G{8eV>rZ ݫB{ ;;F9 -?y==V)Bң迊&Y(20xK 5aKqa,|Q^AE6]ӵ, (߼=)|~rcE?](T GqM.<-#ev"eg M #): CzrB9(TF~A0'ue=A5\." nۡUR`{5q aA'&d8jbȘp(KLLvFʃ(PY2-ಾت@; "ʚڼũ* 19u߃u#}<%l!憌oj&E VվԙSso/.qҫ}L-$1H^.4tCy eMd2az9CV#I{GGSMtvξ&~}@PpH3W.r^~̓m)RAP{L E{T0wlU^]xdfGjc£&_bf׺; *=fI䎞kW!Hvu_/K3r 1E'o :3VVTte(JC$~Guط%@CϪs%[*w!Q`i((%!]ϟ;̰7ߚ~'Fm~[0E60Pv<,<%K UoLLLZßlb*~K)fW}dDPۜA hSk[P=ӃhB7s%21j {!6*y/Z1~U:uz<͛jݥF0 O.P)x] `_QғB^;E:4{x l2P?K= eC3VDN^Q),o''5s~;JՎgK MG }l <˒p3LtFT o5IG]|5O\8v}e@9е8\}܍΋OI"K;h`٥ vU$ .Vɪf k-aAl;/Ta& u:\2تOtYZ ?f ͋}(O_ 95?j2t0 ⼺׮+=jmT9,d&IT98c&S5]{K^ι}q]NA[p1|rGufvZ М9g ;e/D=;G/jem}lC,a{PN w.FMe [5J)X|dD% !pS0]{BĻݒꃹFAL Ya:@S}WyR59㙒4͓/ <Qo? Ӷ kERy8Xes3+g^?MX/WHvC HS%ճZjA@%$U'lZK n.h~$M`֙޴HG(ӱUٽs2}b+k MW;ۨW+k&.9==l7G,$PI8CO 8}d[횩0OlUe;e/M!mʓ\%vS<ͮ,h5Z忐Q~W5&, \fF$Q. RSBAcfsEN(fL%:!Xj1Iq \*NxsdocE 0cy?XH xt(u2s)\7ձzSkRoOkѪ#]{l]}K562)Xb*JjN- ~HP%ymoOKp<0|8s2o~9P_ 4I`R]g,FGךĈ/E9%n!M5kU%;\fPT9}Ib R HdVPgFs:rKMj_lbu>Y`N ^M#F*]nABI7wCr-B{(qȐʹZ\b22+tLʃ¡'h&Jf:;KE79 TʇQ/`s2ۑ9"iK;vڠlj[#'ޅxCe0ؔ-B1aWjM:9ΊMGd^Pc'Sc"b S}2|ys^nBq^s/fB! Pٻ5խ2*SdU+UP{ "_Ԝ Qs^ut҇3)b3;&k WsmeHt&Ȣ^,#/AĄ4CSDI}بSki)ċKh)e:!pqK,Qi;RtZA04i"\|tFWofa1x"^ь\ 6pUUh;n#SQce!y8ӚؼM&Z$Yd:wyD)nƨ.F%jAh+53MYyH'zGm,xt]SWl *2۹̨wU>#`2i]sYbOb7$"7B )`27]oU  d#LﲔcG2tԶm8q @DE5$7_c=m? *2GB{Dn!{ 5YX[Hx4 Qi۹;UdL7E [ q PͅJmUS!J|],wedqVτ:aW ,5gp1YGZɳ转Ek:ߴ͚U4\|^TOf{ 2tߝ޹J#8H7٥.Q+=6H~S,h:D_e}Pviv\&# <źTU_F<#?9u< /;kMZDGHZdekVBBg*qZ2&ۍ*Ũ|OFPfl,-S\CG֬`\IM;`xZG%j9Gz,L>MVYNeln 0&C[ PծiO=k `a5U5}ڄ1gC8Q7ldn _!wFkjJk 9hBM1C5`NybSĿU$Ѩ3ͤlv)uM a ^e ~{,lهz.=eKmȷYGaO/*.z$9n@wmkI 0^RJ JG>6MIj,~3r/iAƋJںFq4 =|$-jHL[<\E*[(bܔn ~ >vPEwQ J:ḭ "dn2ݯrQ1|tYM,SzmnI&mR}{Ő.c]R۹%y @ P~BBeeL{Opm2/W6Εo[3m|u,Ql&ZοEWOX J|NtBJGU]8*q:R9q:\8m~<#f&#i)p֬` &/3ZsQT).OM6:nCn09x2KFtx/0Ef>]%`aJP._蒩O+I8X[ "A,< l\ËRrWX7ouT/} b?wiSDM-JbȚ4#F;9UNр".J1yt2.lBOP=jz4xv8?+ifB{m w(".]M4^ݩg|n3mϺy˖)\K q#r;YT6ˉL+4qN ЋK1 ċ֤IㇺEG[-+r H Ndpi Z, 1{:h*W:ww:/>O6ɏY;qO@:\J.W9hGRVI+hlqg'kvg¸Wqi4?d~x$!xÄEEj~Š+UZfHd>qŸH"+#0\Ds@B.=qg^"$a#3OrL^0I,B腎Rx|uLRޭQF|8o8-hmXkΖg-;ˀ[VB>g:4ֻgWI Zzƅ6}k;:k#0^ ɩ JvGE#R%D爻WJW6:'J zp"5⯥6EЛ ДNFZblǎu q6wyς3$]Rn[Ǻo4z$rɡn7[_+gif( PF|9`X?P>6TLJCP NGa١b t❎@Buҗs]~,]XQ E TFr&dtUTji;p+7Cժ9mM8W2E?\һ֯߸H25( Rᵩab- %;x5A_9&䐋>CWM6 Yh8d"!Fka[9-rFi_=0]~P@OyҶתmk\zZȧvR;;A2Gr+RőuA_[} Q)}%nk#XTwYxa̅G8ƪ(HA)qV~jg'~E{iXoM!Nե]Q?3Z^~ifpͷF~c̝9H$hNXB"`+ 3e|il" R*[T{=eqb 5QOY`ZHL$שu͗L! qqL7xT?U!MЂbLU:GI%xR0\2ty\xt$(0KJyCo9Dc+Gܯy\ML,ȺP"V 02'O, {-ꜳ12xnZSBPH㡽2 q7sXcusV:W)vR)hV^#$RУI>)@ nX= QsS]gi}V\ǨbN`DHrcW|JUb)x*:M<yEO_>t@ydi }oɏt:z' Q?eҡL),Њ`8:+P8^bt\s*ܕixeBeZK$;VZ\ט) byU׼JEɜ^Eb`P<ڳ2G~o 4tH*}o70Tv ԧ)6FPs AUɑ1sAOfY8>M˔dSz6Ez7yïm:Wz,Q_M;v#0EJG/]U6f؛tb:B}U)uPv2KEgO6T0w(#N _;0s*&2?EI8"٤ѫF>1*G?j=E#U 5Ja͂Βq%aM29 &cT S8C*$1ye3(o_;e6IGo$C. H UBK[A=yLj=i5o-mLy$Ev_aws]_ +@ӈpVY{TlF!smˀ*&zEFP+۴%\IGa?&j?9CR0VnWM/ZVr7*R#u,(46n"G)mTYN88*#2'@Spؤ8EˠмP^Y$&oIo% {3Y`, ~:Zƒ&(Eg!{O*a/fE߄Ѓ^6: m]ƈ{l౾_t;#Kkf]KD6Qji g<ظ. ;^C]r`(.?&3Pˀhi-+>[BQYգ_Їnn ^L<_(? t0Y_F_ݟk vCN=NFyI4UF*lEe oVj:]4^ߦK(ssCi#>&.;<4QiKm4@F ]ݽSwu[Qu(seMF&+|P?d|g?\;0~HșS컺 ]*؆ [꽪2a,)T7U DPЫ^KhœB W_lһ?<$9FlkR) ) +>6پ3=}Wyڻ$$`Fh5賣:mvtl-xSJY͐aXKcj/ wWkSa5M]~(l&A&N|b,>X"g#/a!߄R/=|¤{h2c^m43d>OtLZOXsOy&vnmCSg.mw@wV|5f/8hJck]Ōq4a@3jT!ck -:XX@B^ (WUټ>ຬ7%\ƺ,Ѐ|t@"%r8~wr`Ê]h.zFaaFM#9Ū/LպGf`K {Q3-zf.blvE*n85Hefͥ@hun>]<׶?3raq=&])cqޑj茈f})gwxޭ2gcL_SۊTaѿ]Qg-UM<,Jk ug~HTD1d9;9TFl!y\5X<ú*M${Dۮ#Zo6x2ۊşbF\#:w1WڰԖ/d;"t#a:?jAua_Mb{f:!mWe]c*]mPN3_ZdǙm%E؂04{Wr !e _ڡll4ZE hB逄!n}?{:gC'*Q:<4 Du=G3O݆񤾑=(G $2QhVY5Ѭq D NG{Hwqkm?jp<.:Q+?|IlYs ;|h5 i~uzF]MLrVٚ^h\e$␴nVmj$}NjE[[k=F#pc yn20ɲ$ANXB^30BG};\hbIJ'fҰz Ueb+s-Ơ˖ w>7OZL߷'^!譞AQpwV-UA\eoD[fl$# -^IF M7ʵ-SD{Lğ'm-&uSeɨ1J$u 9*^]vn*T-iykL z \e;ϺŧP# ,9)U6p 8~b[K ek/G`h;deL?ƛ̘8cTJO+ā,2W=lWWQ#ҡ]DUCvS`+ڨs˛М1P.@|v~G3.) #vVۢ:eٿ HDns)Vcqϳ//iTZ~i0mꃪv Bҝݺ Sg6$= _0{{.R\-o:N5( ¥zDeS$R:Z^-;[XeL~o7$վ2qXضo:YTH>syFCY\M&k_3_°*̧!( _-*2p;c|C~.(\G5{'*͸l6U)F?m# PYxU ^!''i/V QIA^Qz5Oj^/0n˜ɢG85. 7R*Пo;,3|[0^-bJ­~0}'y9'8 G5w97P1ڗI DU%jj@HRKƵrSo̝t]s 6mF>eqڌyд!udQ.K^FM:Ť [ProYؐy_^cBh) 8)HQvIl A2٢m,&6Jd7=]]6m I$\d+%-YM̹X:|Vk)ֵ ~̖y,jf9 䲠 ;#%Z ?x(je͔c.Scn^!6 m|ϴFsEừX&?YmHp}<] 1{3m_}r4 +mdKJ85 wYs X牕oIA^/IL? ! QiXRH^'agoNaY|ܵ Ԉ.Ie#i ;[ %2l j%R;O+mRxA' qkay;k ͲlTe=06[`*ޕ=`z+iPdzIEs/}S2æ"JrZFJ{V:mf$qOLV9?*Al2)&c?h7't<4qFh5_uy)NFQ:pz:5b["_R7':OBVAMp,%]R3!P@q;ljqB^ vVKay#7zfuRtO~Ih1F-h{烀'0BaL{[h)Xdb?%8dmp2ac "$.ݵWYkP Ё7snGi# hQFHF(wOC0Fƍ;PD(Z^I3s;AyJV1qZzTSwȌ+\FtTai} f]gS#)({!ku;άWt/ f >m=uG'UwxLLN,smYNO"{ dY"O(7°I>4d ' W#.gg3y-pAHZ4o2 GcoXLSUMaW%]S"+-]ABLWS!< pZ yMU쟥i4#~1Ϫ"HR/-cǝ4΂6 bD%'+:2sR(iŖ3qߧKq:J#23U>n"xg]1 0nws~E dywp6p+lr{ߥk'> xIa35y2}.@ Ycgi}.ӳ )Љdxh#xy2) Qp$/aENVUw.;k7 µog)wkGJ tY2pfQ2Be!ֿKg#k`RKĿ uau Vm$+F$ѬzM_1å̑]s랱wF>@%ƹhO3pV@=$+Ytޛ$9qEra&@AG9KpxQ=앍jǡ$\/Q>ҹ"cW‹ϫ%XndԞ9=SQ}m]D(JN[.Z1L:!APSZaM5} oj/CT̹A@]Jqx@_L@/I4AHD,F0L$qbޒcB쩰v}fqtn/4v1O><!DnT 6mG݂ = W P@>4(]R/]XWݨǡGF p⢦\umD,JB({*D' {A{/>FK{6xYSW3%q¬ywHJ+ .YwaM5xICd{ڨ 22ߏ؈Ugh1tޤ!,W=mų )50IAf x]6(=/7ƑE'0feYAGeȁt.MWg, +ܷ_1Iݳ*m 6;) lGnҍ+ j 6;d[u4Rj7sI){hey$@ OΉqzwXMiӖ^Ϭm t/],X5t1e)UPسњ',ZTh,Cz5B Pt 3XĖMѤe!Oz}ObgrR ;:\XuZti'tnqrQHxH;ak x3ʅ q&dn\_"JѢ-J$=>ƴ!Ea8'*$Z-yB!@m|,7+j6 $}( E& B@~WQzh;hf*EjJQ^=עTĕɫ@T>dhC`T(8ȴ7Յ;WՆ7ݺQ']ͮ8zrA//&?KyٵK.Rr$5{'& ]{~ j 9:8ip_ǶU߾N:2#G9X:ͥVs6} >'3-h7䜠nxemPTkfYd ;HvϜ|C6$&[IqP'ߣVX2CtR-7, !98D TzN ##\c.AfS@˭--;OqrY{K8sq(%ǛGjCgjaTG#<)-Q^y"ݩS{O,3 ! 1K lkF-9!?O\O>'GYقJVVX{q1NSۃR<,2/^ۏꣲ(u/ s!f~f f+=_ò, s6UE@/Upq"[~ݗU 瑙OIbCjXbV3 ,Wv|bE0uA\'5p9nS8ZcSކ4."`Z?%cPZ|Qtc>&`?uKڛsEqxۀ+1範Z w}{Wa`I56`gPfPĺ)DcC)%}?5{yaTB?^+A'3"vʆYYŶ4cfڥן -2E$^1 e}]~e#NkO#`LG[0H1Pr{U.&ILs?Ko͗u@ ׺qDU %Ȭ{*.ћX" ZhΐK4F^ (6񁔷PգajXց>C P!ʗb-,SLy;f/(Y?X;)Y[?Ą=.?;2/|Jt3َ=ގBf*i# `Pt3c_ _rcP@I6V5~1Ѳo</O=#ҳe" ?[kZ,5P/ L?ƿ'1?AVGPv--+/q~<=byuR0W+^ˆf}VC|#Ɋ07Q7buw=.EN)?o8f"Ȱk.fBguvi3dwߛ:ǡ I#<5_S߳H Rʄ`'҉`}Cf,]x߯"(|lnjX6G̀Yb,>=zw}XNnl}l;$mM1O?" F(&CEE^B~%aI\wC٩(LwLэG3RQ\@&g]{̰[l{nA{'p۳RF4^Kr=Z-dqB7PYjHZiɨ?AZ/r0ye*s5eѺͷ8Я p#,pÆ^,MKoT@YT -͌H~;x0Wr-'({9pXIR];SS>TrZUV@8%y!x)0:b%`kqK& 5&}a0uy4H=Fa#;MA^q+d:Nb'f*F8V*ދYbfxfCzތ(+9Y0Rwf@ a!\MvƵ\r(bΚ(1{K/к*$}kLe%>V&0 4ap-`0DNP{2}|@xXBꙛ];xO% Uk,r"X؛C\*>[>JT!k $_Y _Nt͌m-7y6v `'T/.S&fά7-{0եzXT;|v\ PFVA Cy^FAAJ;0F]sPG (ΉHˠ/yLN}ƽWvm\%ɾc4Fed+3Mok kˇZ HY6XӋU. ͑B߹U % l = AbuU&X6+r>{7SzSCPbZej#rzʼn[l9Ua5*{d4O,|8_%FZTJ%")OnfS̴/=`x7[1y5עfmº^W<!` g~V4I A~)o"a3aIO6{cң0!Vu W6c2Vcalf+CvxNiL v_̄K7 fKUy;߳'L*>z{}9dU9-%l&~t)u=7~LzB#ZeoӮV!J#˦;]+TV=eVѿT |m0ALUuVXAM\b+~$NJcs qc 68[.ȵy{ 5fy ?b~x(νNCa0Ut]\H/k>DwJ xjp?yÒvALW%Y5Yt =Vڌܺ5PZU\LcWV8TD#IcٵEȸ+Iö[3龉:rQ/Dվdڢ gh'YZ$ҳ(nSɬ̈́6;S7כb +IP}^Mk&θ'])  N1S|o2@#P!VV(y"$O6zh);,-[Qi[./vÅGP 5% >гjѱ*g7Ue~ӒsY9j717 uaiSfrgj|j=$eվo^F +2 V} u HaFlpaP ;q!]:WNj,NfK6h؈빪V 9rڭ݅rAQ˅$Kl[@۔(ܨ@W_`QGvQOt|^%|/ɂ[PC-pH  |P@\YGϕX7;,2 Nq2e"_>|8=*zA8"ƣOS;.}8+HcX;&xy:-Cݷ8=EGŪIY<t̻RpT6r= WkJCXzTi HUw=iS BVj X,F/L|rz>S ڕY!tgoii3P$}# ޲{aG [:#FpNw0#&K~v: DG>aƶBq 9pƩDCT׌>Ȋɐ w#J[۲%;ݨO,i*z,sL?cnL#Qfw8>Iڣ0?oy?d iy!Ui 'S3 N^ɌӳH7g5\ͧ- 0d%D*bⵓe\"2HrMԥm\yzޤ-/b7 [A#2STurmL,HPD5ƖP<=54` pbFaƲ쏒nZN4\ EAX{R8tBp`"6 V|RZ7җg ʺ0Z uEol:6l6(xb ;e{%IjF' ODC֤qZt#u(c$KnlcҒ. ~h"߲hL§+J}YKx(cԵ 26ʹOhp0k֨ZK!}TrV@Mؠ|3VY ]ŕ?/hvkZZ/Xt_ҤfozWr;e*<FB9t+MJdU1-G xQ":PC!)iӫlw",K6u3<=3-N, kZ 0SWLw4/l ϝ0ˆ¢/5l:<=4!UկUK[Z?nA1|FO?Cr\ձ074iB䩗"A.&~Y23f [{ߢnDFkUm;B9{F *?L`, U,PS$RAP߆FMeYn.r;Wh/D :HkeL\E%:k!v,΍A-kr`_˞;Uݱ6ǕxE@5R\dz$iݎHHkGZiUW>(]h9W0DVGa#2wIjRb:=ZћGafe熽Z$ǽgw8=\V塹Ԫ&j[)NWbI&ah0o)+Dƒ*FtD% `.ceAsɢ릓~'NϬC,J&:4/qI|5yL1XpԘxo/*#Ki2p{lGeWi,S.8'B[´E|\"EG/Y`q1!u nU#jsx S[dra %=ETW,tRi̫GTӢEvpm0u9sIڳg,.50e|`&'e e)HCI|`FֺKP f@,GUSpqr) .&U>|,:4W ) .<Q N޺n]WUmSZ>,. ОkծL|ć Qma HeM*f~l(P1rwq 1ڣHMvNHZ z]4P OBzche H¤XvkAY;Cb4cʶJ-d  ֗2']W4ΓV 2+_Y?#Ihy!9X n\?+<3ʼnGUjyY`>tMD@P!G@OŔzJ*ME.qbǾϸ.qaeP*0EVL%X(=/$, ?De'e'd%<} hզX&OJblYHӸp1yp GSwDrvଧymN#4sY6+ zp,}:ciwqt_.[ϛ:>Tl)|eKuOA|t.$R|OPR=&G+~K1{h֙RDvo\g9X &d$k) 6\ABu4O珫skŅ(9DŽYLwI3G-'.*F+5sm:o~yM\!ˮsD#| _ޣA O,z+˭V?_t̵\~wj,~[mk͇SeNf*]m4;}7RLk ڞ1ڡ: &dq.iǰ*q3Uc:E3 y!r5V0.luP fJ$2P^ۏ, xeuv(+k>+Cgdq3DH`Y5D鿜OGa kck{oQ'J "tG0nŦpg^$6`깥KT˩7N⿩JzҴ*{c\bQ=Crzd!r"#;Oe\S'|e!3ejWxD!X9Ԉ4@(4e(c|jRt4&a,'^>+euHy|*gkwbgQYc_Zeqbx |N0˜SW.26Ne?JDVHp l5!\/!&ػ yĵ23 i̧{N1&TȲ^Ð x=̷ 6cr(+6n{k8 ۢLg- YLXrއR3?,J<ގ9Xw=j4:~s"MO\Fc\s%ag}Ơ dLKQ->ƿ'h@y}c E6_U?0:L?G+ j ¸ 45aw@T5ř<}q Ht T_/]' B0T m& > 7*(±(αMW+ q#a9fzBSzyMϻaxGT Xr dc&G?4ܴVmS/Տ)K?T=wRb#8$X.a$,Rv,ѵ6 `Z3P1KD+yqMDS>jʩzҨ&P !a*wEy\`ʖ OQkl=I͑QK6:Zv-!٥u./7M07T6AAǺBcmq֝SgL`DZ#}r,'i@JH-6CsS~UcL>tUp]}02M_&~Z-w4uws/j4p=g..9YamH 4뛐(:ubܑ5KQB%<iR2V!i + 5C!x>zW*V:\Oڄe8>KvkTlD.nYQJԱ={}+ Z#6dQ)leTa~Vɛ 1m# 2=B޾8BeE^c{[ڥ~]14@l]=.n+HNK \V8hBQÇ.R)߂l ]+gvps,/G#* (?xQ:xy\逅fFCo,J2R1nXTgP<}E4:^7IJF5~2b 9@GCg~SnW4befE־@ vƚOi pX㙵*Jv7閄U_¹Yvq7߻/Uo{!Oq&?bEgņ?;G)%9nƈuODӡgdž\6_9x|WjN9˞%zUfHš>7|)C,RurCE. |v.[t4F닲hP>1'3㼹 ZhSKps_kfEle_EI`LfEI?|&XR#Eoێ'd!@) N XqO{F&D o/G2:<'i 4WX{H[^i=篺q.Ϯ)OY?GSpN>~%+(ڍPrߣ BL?-!e5IV!LY/I<ЮN>MLobh7me. D,dQe:G.Ԑ$*lنA0.D-ꧣ -ߋIaʠF PL c]x~T,>/G` :;+eN6(Zn9k7d@.FN#'$ᰗ$y% @*>8.Ovgl *?>@ߣ`dOݺ(Ni :Wܙ-R]tNJ;paNe.9N;jxihGgUӖKUr-jI-Vj.L _y )}ףV 1 cdڣu\o*Bߧ4 WZQKe Җ^R,ɀgjöEG ]S#ʔNQQ vqϳDSdY'9v7B1L$OJ/NDRZ HtG}J=EPAW(eɢw $eÖ&N9 ®z[f_ZFkܪM9hhY}L0Ё| "{kf &jO)S9 o 2u2)m `N ۞P_^QYZ ^ J"J/f)MN G!!bb]3^G8km3iwJÙaR8u|uic}l梭^[eH% v428S#ET Y3 9;\"'')!LgT'˦V3đjCز8P_8H4 cZ?ʵqv2.I^/ ]̉ޕ A$ l߇9Li3/$ױ bkղb,Se-}dߒ[P(DVå̤(mM>JV~ő~5`^}<eObJ !arKlI=z~9Sؼ'WvL7y^3p RGs-nOWJ&T?.*AU?׳S{#NYp>Ȥ’#>O_̣yKǐ +Xb^kOX> cBy#C=?_ۃ\|omӢL;kѺӒ.azʧA @.v~X)ɕHϤ(Lsbai(G=iೌWo!+JH ʀbP#lﮏٌznjTn9Zm݋Et8Rj$ ^A1z՛jqU1P,Ow}\@gQ9fi,O BĒx`|[-{!dzEiԶ%u@'2HÎCEY_6Ge`;hkAؖ@ g,QbD Ã+?rK^MZ^{9Ga' 44 lv2z3)R޷la`I<~[qSgsB$7Lć,* P2"f,1*yͫ޽zƮM]“ nAa\_{7YMқ?H=hG.зd8|%}–W!;Ȣ& > sj6ˁkoJ|q_[{CљeX2 dW,kXHӱ]ɥ*{y5VC ^SH[5vL0e2") uBPa Ƞ竭/WPJEvx;Eti5ZJb?\F>8J}yy[p !7W*޹eKZ}G*4]e ʮFu KMn0[-(G~MS~`q2S!;O<'n- 9}44a ?txAnvw—HÐd|.l~zI~%'e #mlC-hcnwKƻ\/`KqViG bB%d{Q0w}| ؾZ/TACR2dpMM=B<?Apn۲:%X֢@; f-N継O Vu 7` abnh vfh!U`_Mh-+x^ .̥Lm6,ճd E(H:EXX8p}Y$BlDl55F]F JasNeTZXݱͭB ƚ;.+gۏ&.IaɥPZj$͔X@#%yqYCW|"KdNR[~H>JIrT=8k0% {cEK~kA-[kBU$T/VnNt>׊3"?uef 82&Xmv (c M8s9N՞2 4`p;뀀x@(葋 &)eeA|qCڿmWݫ9uf] `(*e"*'oaAh};aJ`5r;P٤dn$ZP g|]٪\8!ո/reйJSh?[ZJ:9^i ~, X {&NGϛ1Ők AqI/XSpn~ :뼬2ӭf$'+Rm%8/__//UcxaSH482\jBQag N&Kv2̸3Bi!uƅTd5?-5}4jq3yoȟDTjf"+; B t2.ڪYkpkflS"[+}1G|ϝGK\# ӓMJj*- $aiz'MXU_>*9[iÆx!$ȨɴIf/SW䧛^7°Tbof-4Vj PMioϤũsEjX^z4`/=㕤egC)C< &N$ *5뛄 YBp0jyV& `>##QwIg1Sn'+NCUnd=_pf c>B +~G47WXPMcJLu:)(W݅Ǒs9/FbݜJ!= 5J_|ah(\~nRE'َbXs4S^ )'i͂@Z~NBdp m^)pdJ^1Q MYD,' n [O /v>jd(n,e9Wz8MQ34ʟ} PƺcBycu #2>!GQ%b>Rg4,;5J [ηC*; zCl'mN[5)/m[oqf)7"a;u#x]L<? 1+eI+ fW"vswߜWcF}Ƽn-, KyZ#WqS`%SWbr"- N#dx`usP$8Ϊ6qW%:Hۗ[_s|6l=lܮ܊lUK-2x Y E\pjB2V{B&

SceR>YBQD1p_N9S+\d~e\T &]gc2_Ȣ-ƄQXqc磙٦;;䖋~e5~V#IEտmbdQ{"8vgh,-\h3q7z.:o&[ПIKfMmrcxjhlzOon*s NA1JV\M)3)u\3M]}r![uw WisIL~مwHqtަtq\ M 6eEΖv*wr1Kބ*}ļBNsRy$DR*Ȋ]~F;ewkJ݇VNNMʥ;0 M%"pwKFU:!8Il2Lմ9FE`+a:룧tȴ(2I< :A2d͑Mg\WE]/BTY:g-*|YmK[LK  7vQM<Φzsm͘<#b#W*pM:y2PI8*eU=gI>?:B+3w]]~m;O@@-}SލE)/J,\~<yWiJZztW 7 ?K^s*7cL\1CP2v6)j?t2sP"vŪmG7ݳ C#+[ΜyF~_=[e}7;_,™&i>%V0!vWݏ*7vei|1OPxԾ)S~Bϥƣ7B`>+$$Щ7A],G'2.K̠<00#މк\q8[ݖ[QȢ 16w^Q0RYL¦3(;A\Y`"\s鮂v2R_;ד ^u|Ȼժ-xܒm蜃# —dR?I#lJjɖ:im.eP^byy8${NQuqOi8bS_ s2@(.@>{⍨*[0u8uws|s96S+x%(%;mD"wYf){v/H$p7y,6+N&NڵTذv̐^SZIChzXꅊs$Y CЃl~|M##5uqӿwg]@8] cQK?j}d،)XH^FZ( G cl0epϱ"LΧ+waglfMWȎ.GH+hTZ=uGzds&tW"HnLn#22V+\6#&о ΖL wVjRG{),\l뒉Gc"tP3 -C$&1o(Cy\8xddcNg2(,"O?-ކyJ &2'c퉡;(ZRs~6;6{vg}v/ wFjy1d/^{+Yo\jZ Nq[NH"kU&+ˮsc K~? vZ…ܟa]ۓ>|0χi*n˶f=лIxd\L7l,u&>|c">zq'ڍn49}ewHu-֐[ZE_*&"7#S=Mq7=j:JRC&U\A$0PzB<1OalZghhlGx顪PZ]ʾaCge&YWxS5wgXCe@҉»uYOȤts[a.,ZO: V%5gXxNb>4|H_ ON@QhedjK1Ay U>27%@08ifEte|е T ,Dut6浿 ZAX=1`eΊRVE<ebm |C 'BT JC+ muͪN=3z;# F.ik4 6uUR?KTY])?oܐet-R6H8{O7GVf߫(]#pf'km zS]Z^c\cu,m %D5< O& (7A=1gleerQhDcg+Lar Е'MB<߯3SJqY< mg{r_)7S4\=F pW.FE0+BTpFڟTڅPUeX mK~ҔÚuͨҘ2._9<^aZ  |IX &=A8~=;eT( }st \QSTk"snQm$"i"> 3"T-L$e?,~KJ`J2-;ŁR[W~$yEK}h.k6&c!N,Eɯ#N4(6>tx,83tF πKqS6yIb6$ce5Nt]^ط:4zoREv#)dT-ea}DIƺ!YWIwIYݵ$V*YQb74˺\,,E)gWm,%.\Vi+:uRK֢7U6 CmQI_Zd ~WcX.~GG\|c5xao @^>z8m q|hݩ=J8T.媁5`Ta3+_B>ͱY:O0.xBjȴeuajGהo'k`gI?h^Ǒ)ztaGr6U1?!\,m;xfBuLX*ӔVQ3/qoǚ-`]CgB,#*H,9NgJ"prC㨉2 *Q*#"X+,HaTmBZmv+-n3ocBqݧTجb#킮w+!8J3dDŖu;4\n@kGP[fSq? $F(͓Ssq2؂7兜R0بpn}'k3A΄Ŋ#YK+!pu4i+'dj z*`|fw" ̈)l5Z3\s8`@]<|b1 NmE֘.Rq0 {yNf>VZdtCmU8l,7aJǟsf-n#.m)9~wM%: z~}ld/vei* ~ؙ?$cfF^9A)?)lM._"]G.س̈AK$5 [Xa!ÃJ qW֛ܿmwh,|zBf4VS[*qi3% vb-eX8)=Zd-0pQl,+^ PŊ`F{w)m9@nrK4J`1}4vxR~l?\Bː;!aR?k*$M(@ӢhӲz;} cpQ6´!ڙZ\[(B s2ܨOJ|Q}Fzg/6/>EYl$8B.#5D3/Q\`Qf?O`;"(7߾ukV}X c|k's5j*]\ܬ2GCb+"BHְ NNgo}b'//yV]ۧG o`j}b5"7rkN d<[[hQIH^P@ºd"4N]_ ˆ5aVo@>^c=©]2]46Yş6}`d/*ԭ1!=ΥJU07Ԃj ~Te_g0Yq&wy`'LsB=ͷl}u&͓BH/DF򎚮o輮5xriD(қ6AeI[ha] ,_=O}*gA'Ǿ2rrz "֑tFgvz4|AʉZJ誁p9 pes݊.I؀Val\_?υt/2e'w=CHD<ӈ[qԎS97̮Sl4!YAI_7/}G#gS'i.f-a3=0@TUKr{*Gul{dZY|FhsJ2M)!JOendךg7W\^73kiw8wκKjs}P ۚs~?PUfWOɣg)0VԷ HB (0{v䫬8:){QVn+-Ǹe}()e[i@X-o%/ 4fBe!á<&⺜–=B.]I, ']Bķ7-EhTׇ]Rqllv+T˽NXr]E\,w-2snƒHPnP4⋟jڟK~Hf-"!~c*a+0xʏjeX\2bu !Y=: .e0έc3QoԵd؞Q (&'CO2$9Bg/*ǚ"ʱjmDs20J3spjOZd<5.0UKSyfצcЛ6HФ3P [,y-fȂ4/ڌ!m˻jgByJ7juѓa /> tFFfY0s9!Nۙ*7hGa ANC3#E"V 4 @EP`6Y1͟qʧ^QaKsږM D`­Yj7O:flEmkuFG#bH{b4^7 Bu⮃_$  Am9.kCKF26_קa u衅u f2E˪r&2WZ粽J+RW$#ec ~:V2Do)WaśQ|#3 9:bGC1%}i@ d5c*: 7c h <mt/ qQk-L':--?FFQS⫼9Q.OYl0τA5o8P9_L21EXv<\ӫ_\=~#U9.!= l؟Ն2RY2G$G@:eBVv Zh|> uIq l1 W$W,joYy7Ea l1nEWRI2j@Yy"MLlK\ځp1*_5ԎyXY0>  @pXav h\?Yhd=B,|-懠9NB>"=%y=P #e,c{u4 cʎIr87*_RVpf~6ܼc|p"wWTPZBT;j5lj,1 wnj}>FR\m2͐У ]m틑YN<'w񲻭:G>{B2F"((̱4sޖ}{<KR d+!zr\O]-b 1uzQn'+C,S;'8{~ZV ۧ5.` m˜[#:"r3~UDk=f[{8mUB˒em(;*nI+1fdO&Pӯf(tH* 8%< =k2 >=$c~}HGB9f@>{ޝ}mas(SAuJXwʩKa]VZ ȝ29fZOf:wJU!L}0ocSUr$1J}.!WGJFh"zI!Ă* q8mIfvc;A[CwF2ߡǬ￁]' fpm O!+ᙍCOypKugP[*cVYlGzKĽjE咶VɩLP3S/I]i=4S3m D DZaAxvJ`~ [47?pHJB@(!_?t!@BC 6/&BI$`Q2"QAd (ȕ5J%'csjiB*+e [%0 aMoX^l1C:`K`/-d[B@RD3g,ٵEj7n0LUlJ{ω]sISbV52mjY5%>ݔ+L()a"DOk=xoauGh'LIݴ2PQdŵ X L$qDe ݲpIvMQ9>lDx<{ӡ%X"@C,[eHf?)*&[hgⒹЕR 0~XɯDf2AyEsJ؂KQihyJDLU @̋s&M%(Z '~2 {YMe5*f40d'~eAP`M3("}nNHeBە2Ee[`g86Ten|o^gʤعFRXfZH!!˕6!Vxo婑hsF0p%'H`y݈h [CU)6(dM!QGa 9[KV =LQ6UNjsrT^$RhdQ+v([!B,*۵u]$`jh \4Yo|zWe@0 Ёo Y` xdMeqabi!\eTհa!a\X0&bb3XS+C;]UuqQwx %:pk} S?uE5pOPְe͍Q+Kcz7(VyR6YaBQY0rT%̳ex5v[c+IIч[ `! &j SY;l`QoQr2X+Y*?ۊ@OTݰʁ]>,2laG9LHg 'L$B+1̮(Ym؈gI{m"$AU@[q%IVs[j'9֯ nmf- +av5v=^FEYr:SXh0DC2"l*hJ V4\%OX{qF{K<^#Z!YV1$Da)" i;0u#IwQA gXg'vyn⼦(9-(1OT^egjrTm 6H5f:Jלq@f0|Z$lȺ iJS2<]ql?s ʹVvaZ߻e28 D Lf[^I̙/~TQ=BU,\&۳&1.֏1%2JO LC4E$TndT2rgfKbIYR]UBIšhZ`$)/9g7'x0JImi'Y-j,%K\jwwMKmDXg;_ EEbO0 D`ڑJMcdaO_Ğ}bC<04N m *("aXroBNۀϖl{}dQg3>aM/7! 7.H26^sy,z@W6̺3jkO3 Ff#ɛwHuHHgUqmIR"D-II e OI%>ٳh`DC>#=xc8$d@n%*s(I;Zמ%~wpeQ \դ%F[V[IDWIq-n|rڿ!r*rI m OS8@eER!)JaBJ'8Tt5P)u CHQ*S֨"$J=9 @ jKR,ݳs#'i6&Rim1\S+khFEqb;cAf~%DxeE޸feֳ4T wR&hʔX,mRHd[ic d%$ I21uf7Rs|,EbN㨳\YOTQ6dA\"Ʃ-!a.mS"';gXr@LE^La"f*H'l`bgV506wjl=K"(@ ELD.QO)Nu$1NҵOs`@0$F9$IYDv,6 !1b/[ K'j9f"u+WbԿ 8qi!4d,9p㥈iѱz[wDֺ%i`m ~1)LVO\c~n95"zӭIsvlDB@um'vնn22Vp+SiZX Ag%&INYB$Id+LXnY:(W%a4&g[*2s%NGy+q%%9LDHq2v+I\DxyV[FyWQ  AgD/bIO,HU)f6K۰L)tfj%*:;\5K<vd V>Bim?_$Bz?"jKw_n+ւ K^ZQ%RF^͋&'2}b# D٪KYBaW^-+ضa-o;Nw%JKqJdmdPu3ٝnmQ9!2rDg65U X\@'@|4qEaʕ:.WrH#/ƙ0 V*zL%3/jV) Y֕TZiB^\]aIYآlMUJbgriY[ƙNKhu"ȏ4p|R=1[]vvyRH}^s0.K"&xF[%b9rBkwv4v# "HS,2x{UIw)7YI=iXa H-i`_U0KBJoo7bu5*P=i#_:"n6fjfhʕ`h4Iˤ&R5e2aei`l%emdEai)hQKe l 62Tm`ʜ_zz$ٻV2 =7' [@PP]o!ʅ8O8&WvIQB.Z`[rؐcb kmHcmdYQSԡCgO´8@ u HXP{w!*Pdv|;\ Nf H:C+@'% k%'՜LL2\f9F!ʖM)9ڧ(IZ̬S˥TMFҭ#*@at8+"+ímZ{Esx+8a)2!ZB&<2OMb$" sn*2Ъ ɵcl/6ݛZt}f۷w35\*Z^xrVbb0Q$}~ۄY?zY9 6Q\ ,eLͼAGlhjw~=*#^6*Ó\aGym<Ń)BX[Klu*,XR'9)-Ҁe"$XHxȥdQbV8*v˙rGM\皗ba!!"\"$uj 0`|0nO)`|2$8VN5]e,R`dK9z2 Qe-'[EʃNR҂kUW2&,*aXɮoZk,Đ<*e|ĩjڅ2l|L 3hZSPS(M%2j+5ʐDhv.()+?5¦ÔL4'h ؈M׺k"r(k'Uo1gnDp{7KbYԫo& S %$B ׼ɡ qBH"S*mztyaY&/MMKŠ2񌢞ݭcyJnqolBx +; @a2-(CDw%vWsl$'6**nUg= CX)(O#N3\v9} UlZ߭! |Yߏi[%=ce)ڵMXV$ WL0 ͒cg\aHg7݇ryNC,>;JNf离0\V0I!Yl ni.nO-@aFi ȓS9 hQ$2D-bGՁxęDdBB@h {c=E)2J2\2X] MjTі&Quh{ H3::dMPR 9,E-rVd!+2OW:QJe! Teih#9>3Z"dB0VE̠f08癵XQj[q$ d7zn,핝,QMnM%"Qؕe 5dg6[$!D"Fw3FdsMn׻p>7Q^1ܟ:>bs|r$Dh1RD*PNgڄDAzŁ""Y<Ԇ@᳭Ql*#fjim2c2;%$O?kv3 mˎ.)Pݬm +!6OT:/a T@4MȪ/s%~zbݜ ky@ i涠#-eA:i.]܏嗒;͕pCJ^|A?^yP=_5 S6ٿ^da9r۟IY)*f"S.u?Oŏ,.V;7 &s*ySeYrOPS*(KPV8u݌B$n¬I\EiIpy&D ls^#fU+>ݭ ,(dQ9*kXJBg'sՓH%[UnXU%ԇS?Ԝ*(bI'QD֢ ֛X4Iߝ 1ȬWYlIk\H@rj6Kv70^Чu<陘 uCi(k )ɓ+"̕djlqKrRvHgmTǶY4ddXT ,*Ev=;]P OsIL!6*ύAѷr)3X0O(3zɓ&L(5Y(u"nu[+S2JČȷYgSȹW4BpF`}YR"B*B1,;ob,p/c/4$ezHa&jnw(V:jW`oYmX[L&&*b1& R&ÔQJ,"#YBԧZs<rL V+ X^ݬSrB%C1%WkezfqPLTX_ku3xڮA2Qɘ, ԨVQLH$ j=nF`[b!ےePQD"]fJE*Z㸡ό3iJ1A99'lst&^HaVS(sp3LF)` a&CX؁!(nkA`fַ%!Dȷ{3ϕ!/ʶ۲?tͳj BmYZ˯m!(05"@[lF%ā)F&v ւKi s η+s9+e"QAs&P'V EߌI]7<@|$/fQ4yVV'?Y8!!U4V*km֒2cjELp#J2TícF9Ky6Vm( (IkO,3 dTjV3Y=TR"%zH9@)ʡ$ !Ze8Tuی-!"~.Il!t+#O\=A~W]{~\V ƪQާ~]WUX(gḙ:ofr, ekT 5XrQ8@)'Df,2-b*S{9Ұ9f{"1֡mVv'u\aډ|wWW5Am%9m X.9Ȭ^w<Dz23c + [5ΈEY+;יZ 5*AҤ2ӭsC$2 ;z՛6MM:Kh16QEFDlX@|g-Ֆ}c8'Yj$K,H[4t"dlbDiu⟀,!uڨjDdk1 )EfYS;'B08Baj-Q([`~qXHD) i漈RS,¯<3^G?lBrvQ>2êvU%j|\zfˆH*qH*@.%-I\93S6 dm_iɶ1f~9kmB[f LFM |eF"f QS69 BC! I"$' TwXQ2en֥mT_CvK0RX'Hb~jJbʗQLbTPYZ9MbsPƂ08٤_DljHoK0i*  S&$ZJ"<}a^4٣I) imLr1Ѣ{qU{P)m LX.-j@omR&RMk T٘TEPF v;Hα>\9tN)9*BK2ې*X'dE H$a:Bj`OV'? | fayW娳hl P34`yǍOֹSWfĚ]\z/0=X^kM̮OYMq q!Pi1Y+"N`R(ddSuj`~>z94 沂1"E뒒 Sf&R@0XŒ]dmg ՛6YS XX-QQl>K31 RbUO]-9+bIHMk~ݓ~d|u|ώ@Bi[idwYLLJFk4HCy/J JrD߬2 >&<~U?JGX0AHa CghUAy9εSbK,m*pɵ^JVmuhPXFVm3vM*s=sB[X#WMns$bk$Mb 5̿_mA 3^NPߗyg:ʴg۷9~XTXXҜ.v5n,&E`LF+EG!(T 4c+F %ch|CjU^.?p Luʫ`ɐc4)ͩ %=e$!J`jW9$q/ŧTd%4"Y xjQv!w *^OuY3a9~_mڡbKLMTPk5Ȓ|D&M^&w3 0SJ06Wc x Mb2iF,IWJU3̚H#a˛ $W4"hp`;|vcʬ+(ʤE R0!FdDuσ!$P-<bkMr"wHIqab&Mq;V<{x!Cr( OBKY*֪}yKDDP f&Z'+"VkiaIn!X J͌sڂ'\F)[r$:5sw(Q+$[HIAss@m l,dHxdHV`4G fdrQ^'ll1*9By7rTƋSA TSƌ 5ŵf1?IRx'ʚ,p%~\D{]{(:La*Smv8Ə+H>jtÙ\H*5kJ k(Sx\Bc|;iR5,.RWݱE+mlEHhΥUdh $+J(u VJRY?;, 2q$;XRZHGYUΖZ?P/oƣU>RsJa-̪ K(Gwo"FbҨ”}V^k &bfJ|@$YE&>bQ}rRd7 ^d[J O4!b!8bW% +"@5HBkipxUs◙m fWLV"Øa׭\+X Oӈd~\Oݿdlcҍ XVek+ a=濶f۩` "|g.Oj6|ISrC*햛tH@1'k *Ĕ;1jz,&M)OB5~>t2 S.C1SsLcRRJJH+ՄXͿ7|?*:2.0[LI-yƖHIC֚^$݌P(*is\j,b1>߫Ms]B``IZNJjHkk`I(wZM֥KR^&Id!Ba ]>^7T_Sg+!Q 3kM2s,JFB#y O5bKʰŬIze\|c\XX p:]&m'5(_PᙒT=Ajv.bN`5B*iYULM,(X\_[Q7׾W$%VTDA^=i\Lηc@E(Rc֚D;'s@*IqN'VD`e0o^=}yJ"5ɅW0KwdPٻf&fV#Q 1LJY$PT^k@Yi_^O*J1%/kR5ٚ"֪JAl!ּaڷD̨V-wSc'L"bD.q:'ciM{ܕ2[㳶2ɳ{h2DJj0Dk*J=65/{tD=k<#mC(0lưzA2im2+4~%њI_d՝.x$ˁg bV|B 8S$ l|.IڢXR5 mC&JmF)Sij(G$)jYXb~*Y6Q3\,YF)&+-J00B_LЪZgv hB>n٢Ehো`I S 刈3$땝adkf!*9/Fbd>DRQ )MCM1*b"b43+vfr?gQov5Z}{s*L7ԖuHDM#u3D2RY[n1RmU,vNR3 0ɿHIdO- 9,P'Z UU) d%9Bm31+f4֘,HKl?yfFy< c?a|b:GafJ"hdmڑaJV"mm0՞m+S_/+뎼iQaQ7mMP?M0c[NgvLokD<-8˦80DL:j&qf"m5s"ĦSF&C\&V=C)fv%EmO Hώ%&$[r$֮8fD ke"\'zW"7L+ϷIyCeā5`,iݲ))%~& iDp(?~(CL֮u0>hHJ6&`]E+ZY ]Y -?.ş}y[ ?'34F!(50 i՟ÙShVt{d5YzE޶"W,H҆~w\v'gHp1|.z|9&ŨXśɚd+᳦xrkseci|\4^xȐ]g,G¶3wn-RPY!XXywTdĕU, $t!zf*"H^7Z d%X)iԮ ZڟaaZ10E'*O "b1>,Ͷ#imY j$ !M7XMR2ݱ5`FmL?QEQReLms Ld92rc7ZzAVCTJ5'wܳd*"{}$[Ӕ5f+.Ͱ$'iK&D陡=o*-@<{q啎)L(-/$ZIdg`,(styT`퉒&55Q! DEX&5sY0X֥TYt%G-*yW(-T"0d`D#i9)p\2̮Rʽv9&C17;8ъEpn{T$Y)&TL&1:V.Oث&nibq햲F3|RP)Ċ"G! VX"ͮr3)!O'nlY  RL # JR֡4%0|POqn )4*WѨ&$ X4v޴ᐆnJR +je%,ː>'l`x4ۻK  ›bq7(і{npaKYjXBoz s;S뙯b3ɒE*:፲ !YʎhXY;_lB]qS-@7Y,&vD9ęL~8%IIR-eHENlejlbM4II il-FP`ְS 0^XZn#  U5|ά $0,JT=Kv )GkL1X# Za*T Hk]ZɢXqJJ HØ1C1mvqn* !\ITBɩ5פeflP@1u/ﰼrS!3-b\3(Q*GR"E+JŋeT)"5hbQyKY _*laT=f0lO0ذR %X_mTOEZ$ݬ : il(ǭ8 )QJ_~yۓh"VJ[L=!ld4ID91b]VZDV# K6CUT)P/I4 mpȥUg(!YײI>c*dȊ12kusM$Z41I{?\%Iɮ6[a̔F v#lߓO<|BJ?Z*[`ԴSUk>'x0֒=R@Su\&R' ?r!-bi%%SCvˀVjױuA2a6R!MVfBd6[;U2lQ$^M7] 4|дOӃE+NfJU_͹}plC00,c&}גbVmNKR9LqSX̷-b0LrT^%0"IM3kW%T?~]'rV˞s?Y9cs&*ܞLHol9iuHXfVVMgw&!F:`k \9 V_{x6 bDe;i.[hO (au#yr6 &OmUĐ 0r|JQQ2"LowtT 1p)%2$wo8q!̌\L $'&n(QV#8̦g;ljIў&Q(yL,hK H"H]'nCc+- -%=ir2\ޯtg 4uCb暺MFQU"ͳՉT_ @G̕;5ьĚM4.HJnIJҮJ|Ţg2yVN a;skig g $quv'eXͼ3%"iH 0r|ަz&k99JTp%*\Pv;X dN[mʶvEw9#^ RhYHİ1mق攣+2t昘ëFXh.mkG4Xl纞:"$kQj11DB h2&I5`BȬVi 3Jq |ʅf!dJ>_EWxC##Ô*"jvYQDPeYua.55 Yz`_|yS_;'&h $*\]bf2,Dt>ޯpĎi[F"L "!-&̩ [ yRBs5:&1Sc#l9.ܖNAmƭh=R681LuXUwKAvgnDM[, 4Tu',:D˯4xS&$1SbT;KmD2TH,c fE\N&Q+͛k=e!ML6D k{B:ؖPr-rԦB-+ XbQ%gY'7P2?, X ,J<\2JͮyY:e%'~g$!zEf7% Ԩ051Žr:KŕP;emMM[}LD * &zQ|CSZ QXQ('Zu[96`)GjaxJ{di"΃y4@ȥo/PͶ3ܚ;Z,԰ $Ο̿朆V[Mmjb&u]AD?Xp ` YMu %u'11O:1ҖS*,2,*\*ɩ6+ LL\m̅dڭH_0zCN ȟ`HuapD_mO-e/mљʸy+RS('?rj__nma,÷eBu? I`U}럝ԅT}i֯0yԺJT*i6ݖ#ٶP)-@ilIՓiY[f0\B7O13[P-b$c:3f&@ ̛P[Q1EQ)ez/ )oNkcQ*\C mj)T:#P3CK/2#hضЬ6^ER:чu3ja?=ݒx*LE[UroPT XEv)y[R|Y^xfS%*[!SN}BC3u;Q TG*(~pޖBd&:эe m&mP09S+?T86{q3VmI>IDQ5{+:lm[h :.MaXE3ϩQP $AŶՂv^Rr@)! HU$!*%cT0сW@dRU8~%*Ȳ D\L u_*umO9<53avJD,C/9lpG#( jv+~1 % y/606DX񛬆mU\B6ߺfr BƬ_źrBf,`%:7db@!hXV$M+ZUJ-99.I;ݰ֍v쩜ɣdwNs735YIKDaJ]sܐ_#}TyWjLF-`;&&R$LBRZPw, k* 9bFp$r4FD$~Xa5,n,+Y@投*4Pd j뺷gXO_泒[`E\3LC+(ΉKL!v)S+3W^L1Ne&CL#>qG;gs'=jU5٫E^ ʻ`-rPJf5$D|2sjN2Rmʷ$ׯR `S2T_;<8$D`@C]3̮ ^T29#R5ر9pz&E~P,}J!4i؀ݔ$ && 4J}Nu(/e3(֝PS-3RTrϟ{ЖMf|%| D<2?ems,&e#jV |؊E{,L*s+٘s4_m! ~cKDy\@wze%Fmew!^k{t6vŒ URH m}m"N'*BW0I`Ĺd%VP`J:SIO%xi IkRJlVCqY@ʺ7X#' 04($D?e'tV5emt@fmEAb~lnXkDAck~m[^jrdguMB"[T(#ճ9RJgJ 'uF+m( Z+luA ϭ6X"sw[ضJT2JC 7۹4Ϊ@`6rTzLZfW VXJU*ε-Md ],\pɁtZ= IKa7deJun͜kU1QŨk99aH&BhËUٚJJEE'8VD'%UH&aFm|Y2u:\<$Xؒ­D[S[TͧeTTA5:Mt 5[ QMVD! 6lfZ%)f-6D+5f5؋-`\=m2Wן''fcZd0L7,iFdDD.B&Kt`O"xtʹaҿ$GusI'Om`@Brzķi 2RݳmKm>3ՂIdYpKVVfK>pxSSԙOJ}֓g3mj/vrb2$Ȓ(#2GVZvZZ3Rwݜfqߛ}ゥ!!d~iJT.}8Oģ>{{>Xz]hFk2a)˦™4as5* yONG_0*#,\l!;B$y|0nwcrr2)l%B|n2g1|L;=D͍%/"'L"e`a24;Gh]#4"D[IgCkt}4!YՉ>%*.@iHV 0UcRP"4$ # \CX?dHA"R*Ұ|⡓8H((BhRjGbgOvڄ}Hbx=azϜTSvE|a<6EH@#?ѫ;3I0ؓ4HҶȘAq5*H*ƒROku.B)`ͱ_9)DTEQDklR0!Mݭr޻5wwg=K/Q2JT56/?yO_t2ɩe״O۲gj|WlLMg_Y@7F2G9.2Z/RJGG" b,U :93?zUQfwP 5/K"d!ۻ4~dYk7V:0@&R,vGE52u?JL5zCOŻyH?uBD9-.kks )EXHVd)w&ŋӛ֒Ody,@ΨCET3Dz2I@qyj12]^,;Q/V7֘sՄ@,K3}zDΉ*VP #\g#< -3;F33DMJU ٹ.[X Y7!N˛D6i6OZؔS[-#EH x+hmdb=Y"A )8,;D2q9uRJkr|y J ySSGyH)Buk zEq%4e`\6~}KhRxv0%OSq=q ;SLXN݁n ,32X5Ճ4La@1ᑋBأ+$DRy-6Qa SyeƤi(NYuJ#WX)F ط k&S!a#o2 .Cp\5j7QbDØpg%LȖQ5ϽG" fԴQT9(fOZf\ԣ<؆D[dFmSm6픠bD"$ [n V ;=ɶ5Λ+$EHW1ź,kTQA`ʚ7ܜ kpXa!QsG -|62B3\-2$Q%Q"~SlmSU1#3 $%|m_ggu瓘,VAu_aI@B8B ˉ֐ǮPDb,Q3XZ戣32mJ#6T=u9'ɜ#3TDfؓG\C4Ou5} "-jM"BDD$l bDy˅@Dg\$bR|=C֕+[D}@#AZdESlU)H!FHdd >IĆBu&bfnEA/c5yb!ͨHzH=S=l: ZS$Thrӵ'!Sag9jT:.1IXim ~?9s.*JU!YMA#H@bHEp? @޿;eJ)eGET(QehRr~ZJe "gԯkgtOάLD14LTOħ=9$5vV# ,֡A*V8H)m9 ʗ&;#UHHwޖu/HIL&`z(i˛s0r6Ԡ5M"m5-Zj%픽sE7]:XVC* &Cd=yDt`d05go;-R $'Jmm'rp^7VYaJQrQRA &qVdM}Rfs?ĖѴJ&Q֖ T9䖋m%1Ũeh,Sf'`UGNQ9NXKlqNT $ҘXJ@L QJrxS~bC=DKlz u\yrUR3F9ba*(? aN /3pi %bW[ԊL̅Vzq+:y/,F%f>fOS0XuFa\Q#AՔ!aTp mE|[9OpcV,r3\±#XTȌ *li'BYՐ$VI9r+9E̬U]Pͷ䥲THKhHFyk2QkU K-Z-{v2 iJ$XYg9i֊ֹ$mg2I92&D@HUcg,[Ieu(m*_X|gyos;wC$ESkuBvt. +M3LJ!Uv KA+z|Tfe|NAj1}w.z! "9畇 Ԛ)%η^M:%cb_uav r0+*A{̙^^C%PVءZbRE*ԫ<{^Jλ'XVysQQ^i|L_?H̖T֖2[.\-Yz 6U"F/ԬsD%f]g(b! 欀lv u)0]R;lځ,kY:˜R[TJa[:VV8ͬ,a$I5HEÑg%^"2XXN$L+]\X,`| nƩ$,Z L+L!ofuwZ5u ZJՊ3 zVETMqj#Xa'`7/Y*6յ"Tڀ ,veQd(!Pk̊1eFBd>漻sѶ@Y4{6m`Bd5J[fZ&dEBcݗ[3*Rs;mʲCKc$?(&όXX vIvaY<=aP}hyl!F+lj+0|IF!ݦOCmD+v6<|9;J; 6TE!QNmyԲS;g'1f*{jRHERE-S{J'u6&T[_ PPuXNb q`e 5VD,AYR:9:ĜJjʂ׭D3F6GRhcPR -1\IKr}h<0o'"R {5,dPťf$ԅ|v3:Sp Ŷ =kR25*eԦ p9^va<xKJ{v5j,*93I, Zg蘐%Cg dPJI>Aj^Kr9dm*Yj."DO3`j[Z$,A k+ V`R-.uW Y/*V^hZ)+chT!X]+^(UF0C9 ژJj 1u5-CH0"?4u 4v \X^SQgp1+03aTeNOZ*[`TLFa&}[ЪXs#X]}F LD= _~'@_5 ?;%/`/^^<^O>bw?v>t.=P7V`zz 7D7lك;iǃM CnF?/[6.r%Yb?h f8l8 \Moך)ZpV_ .})8cjpn{.ő/>yk6dGN%ZENO@E>/כ)ӦMbvmfXf֎N3I,bKżNxGnWPԈi'vϼ ^k%V) {Og<gşnAC1 _-x"TQ<sv|9bi"\YN6g3R|L8l_8Qe˘S|l>>Hxd}2oY/3azҫ)KYSx%C׸-u%Gn}9n>WR_x@V_nOyRPX[R_6οޤx9j059{jy=>ɼK,{>R~^Lv{{=>|4A5g|U5[Mfʋ >O#rsr++}Ћps\}|: xaYyз.a {;C v(+P:Po@Ε܅@A,#Ƈg#(ͨs7 Nu0eĥK,\QJ8_F^߉zuC9B4-ො; , p:Zlo6(&y}? rvQy%@,X !º I([6;>>\Y(=%ط2,rWG~CҬo;8cAM?UDVLλ@|k,Es7 1x8;'Tw^WubmŃpQO;뗈BԱB.'-Vson8ǢON[SXKs ddX(LoH^Wϙ&֍';i|c9)swW54woD KKe_a|P oyox^Ny73x.!a-.x):z|;Z_#4/Oyglg^._'aw -/\f|"ȿ/|~y=^>N):ƙu&<+p-]#xvC֍m7Ƞ}cwg{;Ou_Ϲ,h Y*;457p%&] uM\O8gg5ɳKݔZjHn955Oo*7Ϛp[WӬ;&3^,o卛M^]M^mb5\pW|nŽ.kݞWZTMa[vSͻOaOaOa_a_a}a_a_aF@aF@aYSPTATATATATAQ0*F¨P BaT( uK;jMPk~ZSӚʹ5u+;iMHk>ZSњM5u ;hM@kYSϚ{B #0 #0 #0 #0 #0C[UUYUU XՠUV5dU-4мBZh^ ky-4|BYh> g,4|B[h~ o-4B!ur]s)MuC\̿b)AER/data/USStocksSW.rda0000644000175400001440000002072613033553053014454 0ustar zeileisusers][tUE !" iһ3HQґ=-A JTQDAF)޻@[Z眙^mZo% C|(ғ{[c4{?|$-e'EPo/?tAy&W5XdƐ޷Ͼ6uQ\85K,`+Ls-m'S{z{avz{Z(SzݎK΀mJjVZCާUZڼ0~޾w"ߞ^N|:Ax/J{#d¤1a%rgR/ʾzSnJY;D&5ur Y/AmgSlY7K־͜T+([W}FV#qﭔ!xf1RftAHqFt[.HY/ z}Ȼ+dȑƙ ΧWھiL:kzbwoiQGg꬞@f\O<`fCtvets|KLs9huw/SqU'eE_oE*͋>;Y&W خ%7/zu{ 87ť[FGPg.l",:>ڍXvmP%~{?r~t͢4}*4CF}2,jߜtq |ެnŽtGm@zz[dv !c)?&uF񒾁(=(~)_\v=q]X^1YPEqzܒ- P uޤLoSO-~wЭ?ܚۣ?7f2Zn5zC縻ԾS{SUn+kt?tWTקakˆxܿ^ߙ׶|>Z'#Sȅ_j5^D8zN7>] ^UB2*יsej^+jg_]}xH-@6;eE)fb͢#nڮ2u*bnG>qWT~z{W^GJjwnԛ'Nk7 [hRov{)۬Lۦr ѻX,p_ z2t>aD&=R4f/ɪ7<5Mbut\]ӥC*LM֍[ܞ>tWo(KT])7E>G-7)t .gqLhz1]WdJ^2Da1u;Qhx?RfF]/Uda^Wq]gkEc(=_X9v6'K:b}*2E &CU/XIieSvL|'ksɸU= [zQE)EhVS34wӟ<#OA|DI2E?;}צL} ƹ]'Q9\2{~D}_зKz%Gۯky]p %DUch(r{?rJJZ?j4J+*#b!UMs.%Akj mtV##kjZKj \A=(?.ykKA}Fiv-Jq2#LB_&ýLUG!2&J)olyL<7E<{gΈ~2z8Ʉ5q2ttUP/+ݍzS-d⠰~#nȄ'w;} POĬyl>E%2f̑~F׻Oܽùݲ"Pɭ0]HvPRJ <(NkR-`TuwjNnI, b dӋMsq 2PU ^{d:-Mx]dJCTScn dn)Hf )r1{GM(ϫcu jTEf1+ RoLR:Y#{I8EE 8t7T!-rC$ePTi= L=Cs&RɊd GCe;Cw$*D]Dk&N,Opʼn^x{IWXGۨQ.dV[݊e(F{|rJI bOS~ asy|t+G5V&h98q?t0%et=dOtRLп+0/knj޻ְ7.K)}DRHa kITm5hi-i).2V$x^u˵}Qx<r/U\p2i*D,sEŗs q^[վ)([trqܗ2+7~X:?y}z!|Lh$gV|Mh$wKtu>,:[&n{{?Oؑ_w9R)HQ=r,-o~z_mw~MNg!+yzewsFc27vO;,(t$7zA9)λ^pOy>{Xyc&2dj%T?Dh?LZ~RFbqLo'.D.O\tZӿTFQ/`3=(ͽywCiTe*t$ k;UhCT_~%_+e7)#2OSl5J. ޒ.=CcxsdMO~W&dȱGefƗeLWVs?tyxb88Ul2YXlQr&q-s@?Q*.W0Rz_.TQ a {u s/B鍜"ɲj7,uD=?^C=O7SeԻփx|LYewsb'3dRC<_r;|W1QU r@W%`%<:*E2 =)/81q߽n JOφ՝>)#~:zۦIf*z0S=9r 5qʹ\Fz#iw4(iЄA2 >B4*׌eSQSF^M-R'Yu-(+zé(eAt<>W(W[5{:ݽSXRj!ԪțS(+'ce)3{s,aܝ^ MT]iÄE h{z2L >Rp_"OFa^EJnOmF}U/>\1.wraaϝ}JM^zr>6fbs)seG"e)}׹) qOgʛ C'.ޮF7l}3Y|VS*d}@EdҶl<9#pN Y39)Xx,~zdNbx?<ƛ%o,PvwlykJzXӀ/\dngL ЭNO;sJ g/o#? bwSm)#YU:_&+bucBVAd.|~ d\N@aAg瓔Y=}xOy?1wkͺdN~ƙ L ,XDR.|fq!9D3Edܖ̭;sr|̾~4Cb5F}}ٓ[2ck&@P뚙xa>boaL':̧,ms><.pEykL|oφ*x5{ '/pe۬i@khLO1 8_p-[r(~wn4 /ؿ \c9(7A;Xcdld]Ca؀0:B/ w X7 ؍יiXoBCT2@kڀ Wdf̖Oy>Af'wgI/}=pZAE)V=7K_K:l+S;:ޞkd7#k$d.Ӂת'9xi6m g]\0a36d 䀟8'c?}d鏭E[ƚj<%_?Xwa@yGctn}iv-'aOdHy?bp~ɳQyCYW?G?m>?'? R}ŠH̹ 0p0~G zOd eIL%[/s7F!\0ڲ~&%ϡYJQbIF yh42ύ82#fz3N$qc cGym坫Vj:Mk&^2Vg)E+kuFœFt߫/Y˽eJV_Ew?W>/3+dI]0.ty>JeHm֘Zm072O_Mk6`R5pLyI'dy5dWsyjɹYBdWd#X$~^]^Ȇ'9<7'{ ^_a7Mcc)+v3>_ j9$Y7 iN ~>]\SKӊsBrbqpiz=i"uBN[GG]7%<%vȺܱV'k nρ0ٳgv?ܟ&[+dsbd_sdAhqAmL:N CnģDS Tq|ȩser:/<& tutF99%)hm} rO ?X*py@Lr:=̻0=Edw=|s)>|'d<a< R~aTr3yjBni\(f?T6yh%7[ [)H>J<1{x!uԿ^մ\Wz6|qdE~`z8o.\x^sdc=̳<$s/ʂZ𜛬 xd!׳ة+[oX8?U: uaGsd{zKvU [<8&N7Zv.*{_=p>ɞh$Wt o?<nnjk;xЪz8kFaXoIZo{%:\[>XC5.(:ybY'x^G|[=t5b9YDZ9rk$+u xlUOwI=>_x8c[<\=ܰ"C[>9s<#xkM^kԃ"/3<_p}Ȟg ߰1z|tO~wbٗo%_] ^q~9- *s:30wr=cg6tӂM+yJ9,L_I`a@}`qb} LD_܍ kfn c.AQ`?'ρ(P0V> ` ]PX 9P0 [ Gw S>З{؏jAȝ 7 +Cnc^}X\ ,L]؆yA`w`u &| _o<ܤ`.  sշGd^^2z@SUxM1IJ>x}5Sb|I.|lRy_-aF 0\H壟-ӻt7AER/data/GSS7402.rda0000644000175400001440000010273413033553046013437 0ustar zeileisusers7zXZi"6!X]])TW"nRʟt<3n2u@wL/`brZ#=2< PD|jdۙZ/R3Cځ}ZX'Q9t>?]˨&ζ泠0STB!Ȟy&$JU-ca ޘi͔%5|_;KeL |<"|2(%Љѹt5cP%ákW+Yj+R=]XF? i6^|H\ap'J~>e8H~ꤛ9{XhӹlU9_+U߳f-*qԙg3|Vv%cC!䌇qgn yL.%kY\ s&AxVFtEo@\˝xxz TP%zvXkO!_ xEf JSX-Q3Nۍ/ ӑc4 Տ4x O;' Q\ĴAُyV[+;2}Hw8O @GPaI h `N$bʴhUjbӄ(m kouVd WboMbdUجPgL|'~a<ߥÝ\s[},p$fOdyg:؍ShI¬4 Y;C{RP\bՖ*PHic9mT ofs!#v!{˂|<(ffb49a?)X+W/xƅ-:Qi$c%uj!,4W^=8uѱP^qC -%C)yevNf-X皆`gqPi.Kd:֍=Ct{|hNFPY5/DnKNPB#:XR>ŏAFΟ6.Ee'pGzϟ,ygtSKGA9p>ajؔ/:PЗQs7&H(:fY7gFlt崘 _> .|Sp-៘N Ng1UpI7 EyGb&>QEfi3sҨxrrb]`S۬SwpRpCۛ+qeɿMH6}.1ghZ0\P,)O"Mz٪>r@fr9N+,Lj4*G鉚DGK(;oex0and"o<dET}3܈ _;[0CEBbV4XܠS_1:͘  3\,p$瞜b M#$meqZQU)˛oe!'TL~.Ie"Av+KY"Metpo Jff*HhJ _mDtOqa;&5˴'tnw/˚JMԉ(p՛ӡ?|+ʛ ^GQ)8|V[t[/y28[.{vOlxɭ,uI20 J9;81OC@[dvWYr)T,> jzRg)U+w]h\/~ +F@s,*N)prE^bm6k1A6x=)ڙ%xyv;tt%z;\^#)oGl;نφsfM1:XFHO<Ƴیth UDG5#&07."ůe͊\ww[M}dnPж1GşA\do!x|&*~DƖL`玤|>g땇L`fr(Y ֛>1]tb#B_aV@VX.+bUj~r>+[.~u/Ǎ7KS \djz[>U0?E_0ZL ژf␷ڊU>J\@63O'EIoutҷ]]Փ=FlگsQ fDya>+jhs1ZYEcw ~_f=H>(ĤN%wLjR@|'QhGO׋j-pe\]!~6w :5ܖ<4!SK2þ^M*Dʮ3Ɔr"lTُevhQcz *M8).Ltx,gެ,Uz=36(EFe|%cgdD9нS%ř{u.>u0a5Rş"Vt{%{̷&MT0uo^ʥMS&ESfXM3:}[{m29u:lo0mi@JY=I .*MQ]'q ؜`f%cO w~IAI,{,cI >DF2O{.1RT ~!OWt8!0`Q-K-aeR(G۵)`r{D Ntb~B#;F4Sԩpux`BAihBDVJ9֍< n٦][+|^|h\&tGW"(_ֻnsO؀@'4Dbi@TYp@ l0iqVH|–kv4!LnØX$,Lu -B@~c;,온oU󺸕W#˥н7+A)q=O~La۪ł{lٜTˌ(K.{9tƽQh=%USu^ ]{}Ì'2}2nuOw#03HY7]LbYt4BE5WCPĖ{_gJZwf-},l~+_GZiUoF^tU!r2#Rl](+*vMkK"/u/ lCT#U\p!pgY 놂&2 u njq~Nl%kr4|,13a< YR+}§C`i 0'҃nhؠIg梺_^S2I0<~4C8 ^d9?D0m%x)=`YSCJ[=9nBKҤϥqA_xe RÂjXr~a9g'ݫƟ7F؋̄ S:O lqH۳t.Uo|R<A)k0T+3gE`"7ȊƿEDé\C겜]AH&c!Xl>u]hDr;6ɞ-g&МiW5RJK&I+0k?+ +TDДx RW<` ߨׅsJ!/& c6 swrslV˔] R[ *|R(+EG^'2~J\6VE؏5 UJD'3'k0Ӽľ րAv9ǔ{/?G5#ջ;e%M6h7 EK@4Էw/LbFmqlB>rgMfw4{sziV_@8pKBfe&_vYiY7/~0-ΥzSHQTlrzG%,#=n=S80?z cG w#f3ܫLE?bd:s$4{4ANM2;c0S&w]Jo.94en5Gfa!\↩jSBM) *%f;;M(Y}8Y]7TJ2կ-?L/JK/BH,glawy鰏Ȯ0okՄ Rxՙ˂a5 I߷]h0kⲂv[ZU*gV^As۷F WK6h0,:tHYѡw[!b]k3hߨ;DJF7ueْuv"ٜ9dBkviM sKel&OyK}ZWl(4rcaOp# plCk|r[Ktt kn,OHľ$nCy͕OZhFسDbRLF<Aҷ(cE:cDJzc}a_;ZҖH(At"5M"&b#ypbW&:Xw?ǣotv^ _iUD/sːj/3ZKzuǽcݍP^?gB>`_#2b<9І#2 ,;hV>^UQ("ǥ.aUyvӨ!r@,B#&k߹XaOmIB'K1/ n-o[jƈeLx|[Lޤ(dw./׺Aa fߓV#BN k\7s%J@ jbG>5AǃM(`@uhz{7JtfuwupH4܌P5XAroJ"SYḧ́Sqf$SfICחA9^'xp*:;[d3ln* = t3ھqnߓ嗶})8W" 6|pEi-o ; ҥ<>]C! jnӽ c-Bw3֒j`. 'D0Fzq6|{Cex Tԡ - fpws(bٯ r> KZyiya5RjN)뷱 EӾEW5bm. (2*H-ֳ2o[j ad:߹_SC_vtֆҫZ+IB=*o_ ]ثoi=ӥk^}=*}Un)Pp0Iq)I0hW-2Ő:}<~ï?C@ zGT1uYA/bǬ'e>.QgRI<s!Y9'>Q(SϪ{Jo1*+Dz$9k"0Q-Z[*pMG$RMA` FJ@\1$7dR]Oㆲ4B0[}i5u4do&F'Qk#FGTTRmwxq&ܯZW~u 'w z %]$a8l0y!g>+_rF`ev/nO)`Ͳjf17g!uL8_+aĴMRA~!DG̍DU@dMsX(gDˬevT=`ҹ}UP$ teg*rX pkbȒCr*e31M&_(djf,kN C|T4 .HlF1sһ8u0د0O kLNY[B 」ۇXMKF ٺq[B.|"R!O*NF@\g| Yխ}x7&-#xJ'u2_]0h29sM&>\&\5 TI57<f&MO# >  _=/\f}l+΂!vv*xy[:.JB'G_h#R\R*@$}1qj"fHk=|e: [-Z*h -ݦL@wahyc@p9'xĨgSۈn [SEZ 1']#H,Δ04/r1`4_#چn1'E 8-s):ygQLBvvӻ! 7qA6IĘk # gtfr>'ȌJDp Ⱥ0bȾː60c/k^H20Os0!*%b@sT;hD8Rt+iU[W3V"8b3 7aO>Di"qM !ؼsZH^Q~Eg>G-E40ؾ2ñoiԵcJXjaQ1&}Za#ؚWu/XVyro{1?Q@'͘٣?)7K] M̃XZod88Qgq=囂[qfZ@mh 6]j5K#>#HqB'$;jSa]g⧇o=VIeXTGmMWsoP.&E27SEy1҇b^)xzo~W2/+*_-ol|"ў}~VCAiµc&-m_8ŎsOuXpXzK hT\;Wd^nsks=t8jy^c:❭P if@*iEkݹW^Bk-%'z@(ßuL lޣ'(#H,sq>(+T sn$^^fmvwAvDR6w#g(TߜnXUw'd9u.7|6&~ ~ZLX;ԁK 7= JܑAIL+Ƀ܄?Ŷv֒R2Tlനt:yWcE{i<޹uOBK}Znp|" nٲ'sU =5leB5hs}'I1a:Tn)Kuxɇ*1'wFeUgcX/JI43QZWrB=UUf'|f9 w/RRq@y* B)g?@}Q^[_>w Y<Wb!Br}2=XbE/Fe4<`YgI&:0U`[Q+IP'SSV7d[8|jx\.6gsQLR 7d,ȯbʩ_ez @)]aG*NOo1 R ϭY #`4t5Rñ,NV7 ˞@n܅+F>|o o;LG:hEKUii1Mͬ_跶dioxr:j)Ӧ x,B!&HҌ-g0h]U $!=L#(}wxDG3gw yl2]=`,J?tm{ oe0;G&۝@Bz<â.[SR0 (z7ҌEzkM?ГED<c9 /@Y4.:Է.Ti~{"Jp?qd4l0SL{?uC F/%5{ODS:LW<=0љ;#w난BVR}0tSa7ώ>gyȨٟqAD53 %!K% ۼ➼#M61qƽ)Pg?e,>S~Oܽh&0!眄.3bnMv#REQ5tNxxf&աCBXJT-HǢۍګt)֍qԵBZJA*$? DM-Ya8F_SWQo䨸 HcvF^u,$VdBJ$q# f Y!3ĸtjB`o"`Vdbr,[R G5 145,T1]b{?9Z@opC5zC*S3y)-h ;S Lǻ%31];'[JMYmh^-S~~h:`>xac.:ߍL+vG_OkWx@ښ˳^%GEL!%83A7P`45I:kz+f&Q.Åe<G`R|RZWf8 R?~s,gnnɌ,r}fG*G5Q]'3#+&oAR>*!3mk53l'ͻ;ǹqQwҜjQX F0CAϱ,.V]tXrIUm'bl&jۻ?jlqx-Qur;J7%au% N9ju዁<<~G^zz>S7 4ĦxO@ /aJ%/-ڠ,|ٜViZW@ .qF@T 8gWc8>EC8z⸆V}0Cxo sQLk<uQ<0VzyɮJRbRw|61sKlQ%p&SB& 0/Ѫ9%;~d g{;畗n8Dͪ*GlbBh<:$q&~n DqE'T>RP{WF̢퍁Y!޵0u.*LVSoK̗6_BGh jRld 3,tH@¥lU}k\o}(60Eُ#ـbʱ3>9y`8\+y`CJz ܇e!N|;qg#{/} -)1 @Sq_=SA OK٫AsR2|cs4͏q5Q?JVJ"s-Lt{I@Hfxj7LPp(y-<$7̮.Fg74dNYi ?U[\=s7KT g=;wQ=r]6os+wP-#-*Ŷ| 0DCbNs_0) ѷ\(z<1^o]Y# }'T=4QQ'~WiP3,8Ƥc*=#!`y3@--|2 a1IŨ2~OЗM*G@ZPm|s2P[h?à ڞ}$˜> %cp  BpE׻y(ڨB&7~+siH6@R\$D覊2*8kǐR FX|EL-Ӓe 9B |qWeg{y\zon>4ɔw)Oo_ϪPh&:ܱ8 yPH9(J2/PG&QK 6B`+m2k-w[+] yH!FPCe$Y!6W3̒>o-ՙplu9/{ ËG׹FȀ-AHM![Ҫ.yy' pN7< "Al@B! Eޚ}af[vxyE UCnhW+#7 7s;x/6]z$$O,TSs5I&Xpi;a;!F= @35GnxcThCz6[ J1>mj `x8$KZþ΢ V"NYT*t3Bp)@/ĥO:5lg/tl}bܑ{LbFeԜMnr !G<>KKtJTڎ "&;O_%UC"uD͒"^q{U$~ ?]]ۚ6\" )?*Hoؕr`529ȃ/HU?%{>KZ‘¼1ymX5 ׫[_$W8 3J9Zh@"PQS/ENKQ M2B2hˋ&<:ަՑ ^u@UI:2{aԡĚ.(9@y?g`Xஜ!DQӀ^W-i-{j YҚ6=y^r$S) %2+9b;xO`;+Zb=B0UEUFopajgvswh%"VuQTya\y>2nR85O?O.!xY0i*zI/8yQw*Wt #T!,?! Z9F1qe_\NRoB'o!1>lnEsvnJc.0'2a&P2̳Z#LWS=r{"7Pl}5:9K6jj|E`+2G%aK2ޣr"&՟.e!D;6^r]UVwPʦ`2a/u[=>׆yFEc?2.@R2lU+y`wЁRȮUDgU@uj-%.Iw(PRped@̨BV`-%KKH{&+."K~{ 6,)T7t1栆 tJB;zj94p<4l>=q-S4p/Jz5 Vřg|j0ޏ$%=^T&TvgmLfU6$K?9E̢iwUmWjk~:Vx ѥq2G.g2t3%X?|G5a@?D:?u%bc5 :tq,$d!p(~DhFucm;*ls~StsND֓8qX U<>VXo`86$Az)&5B;85NԘ<5"R_v!!#{zEnCmZCƟ/YjuY(RI\ZY@0ܩtl >ArabhagTZ}K\43b )k r;f3="xk^a9/)foP}<0FU{:?~np  w?woO;Tg:HD0,P, 3km{Ȕ; .Vl2Zk⣌VWAmk imOL QUKr\LZԉZoElTo:;s9nѥE~,$fvۤ=G:v#E$ycрa}AFfL_jpeP|孍k{Qw"2!?ifkZu!m蜙Ƿ.Vr C#*n9z،ZUGHO"Hli 6!c= .("̺L$9Osg<yR8ʎ*(cSA $sYƾc=Ʃ~tP0If)8#bO &ЀD^/Fu jeUgffR$Òr3|,~O]u'4M)N^NOcX!AwG nֆZ󪗘2 vbV KBMg*LD 90]ĸjtJ&8uW:% ?`nj'd0ڑVȘC\I5TBG0/8 !mx&΅#.!:} i6T_InæsaIޕHdŏ%*FF34#zPT% PC5 2y}ke ^+>8DWy:5Y_Iч=gdP3ېtswնqAtGyվo/.e[;j} kj3DxaSͬۇ^r$a ?$] "V4  34M;uw+PyvE.9IE#50X`9!_xHFEQYwV!zAyqڎxRٸV+ubmLal7]ZJBn )ezOY'w<&#WoY/*z?q<ƴ~al@5϶ozk ߪsk L 5;hoDzyο C 6?, VXz c # 5.yzCtfer.IM2+4s7OcBmHC[BQYth}]"))T-΁H赅n4%=9mvyDYd0I1XU\l)"u%ˢ!1:.qK5{N_ut;UXTGhMnjGh5qpOeڍ)czN0Uohr~!.& *4k9d ?GKpB"+=ņLÄy^ l[89ƍM6nخ*{[AMQ[mzrz]h=pҥY[QpnI5?E(8Y{;HiUlm,C-7 pi_x]tўu>c: G<[ꃈ]işEx$rK\Eҥv vJcIWW9$^r)p,O2AM_d\TBr%rc>vƢuî8z*Y6#.8B6\nژb RHda`]QsƨV ⻦5YXUU/}vxH8Km<1Gnr>+'C#a3 qy^3 "z) 9N]Zy)¥>)X]M.x%xXe+D16W!c0|M9m,g: ut`ÑzKӂgG}jgukF P)6CqyS9]U`=x#\k;">Y"{4ϮgV٥ e;h=yMzY!ң_YqL~&o0`\1pp  Oa8vVIO )C-)#6bK9^._~0"ygts;d8bC.NTHﻏ=U1AY]fRVjFȚVIK@1N鬭p<9qA)mW͔{.? Ud#d9`|C @3w+ZI#!Hfܐ{6wOSM. L ^8蔣X&{~_ʝG9V+7~`8g_l_|B3b)=~x.y;M ˗+|} IR@}2RZ7s9 UȨ-oևoMqmm*YHQ^ޅ![p8GSM=+`@Q6Ӵ"Ggy;q};:- \40 Zƻ9&kqM$Q-321-7/w] - S טnӕmln|lR(&G 7C44-! ER9P曂 ȚqBϦ0_[ ԥ"'zd](A[9nWGhz ߿ R1,u.}Eʂy&>6s&^C1@7C+f#POg)"?AEыPF,yr*7n|h[?SY=)dПwްQ՜jR ީm= c>9v5 n kxct)HVM@:2Kdv4៫d"pqqg[[\Tgk's E;ϼ[Hի+ܔ;e-x=]/PNb8t G" bw`E q 0`yh0w?;hޕCOޮr_FxѶ=<A'TC若Skܐ~G}_b /Ց1RFcMl1a3NulQP\Vcise 2\琮FbM{RpG}_iר53x>CP,M8`E䴉#+#,jNL%VTGi!* SBgWM ˂%"t;g">Pp1iZ󺇹шI3+~Jg54̱88霅x;Yg-=`_싀+gzZwh;,K|R?-Z !GO3/мq; _,SU1ńTHT&%m\@ҽ~j }DC]`Is%E*(5(Fˇ(Gbй7> s4:+ww5K'M=<`1.^ZPC @,"Z$u7cv_aܟ+k_\ZeBc_7\άv:&aNJw=UZO""+ܤ Y"GS\!Ѩ_( B:6}σchFEOTC,$0&\Zg0yDbtMɀѱY垙5!BEfmNEKor3Pܦd5ͼ'|xKH4}pFsb93E[)Us(FV*P4GfT4k2V^,`>,o9nJ3Bunxa)uw!-s* z3B]ƅ.HuX49P?n:CIhO͖0}T^kPjډ—2kI$m/ƣvI{pX>6c41K |o9"rn2/ȞtM{jHƫT64s/n%JzvR& `zJ۱ o+A}"Vp&&1mG6䈋fݛȷQR])-B.Pk ~倗~/=ݵ߿sby$eSibЉ*~ÿߕ5-+ r!~W5g-rT1tp j&)̎B&=ޔb}ԃ> փ~2`>͗#'SxQYcOʼA˹&~نaT=F4G)'&6{#HWC@7;U7S_Սj $`ԭ,wrjD8P{Vn)ͨC|<$ lַbj*T~d'O{BȫN0}r*N/^!,zM&q'W,Zf_+4%G]6 Oȹ*.7ot|Ǽ,}AF{e+ebO\:9qja $ D0$!/1.uZB{L ;!zJuVn7K֙hMp8VŠ Ņ1A+|i-GSIKvM)- }}pl(W>~b=6WW8TƛJQpSnDJSk.ǡʡ0 S`<6Q< oH*"ik3=*~LYzuOPWD2ѶJXs0N*:ڝޢ_*!}fQQ,ïʾ)GݒA@y^ajV!7r1@ 杂 n͜~&.YffcuU쩖F<thT0I]#R{k M=]WBI˹sKyA;_Z"lځIfk- VyuNX4 H"\PZuq1@}zTg,--xĔ*5iYޖNJ>&O [(icq(˘3ٓ{ q01KaI7~"^dʤ+ ̃^ 95xOQ31HWz;xb%=#q47" چuV 0Q϶_ϴ8E\<8e*󴒋* 3b-MLTך;y#FF^H: %ܬU`4$YTnBgƳHf@@12=Piw<]0OG$O%Yy~|H&@^~߮95Ti3n3t}U(rP J`=_]坭Rt`Vg{>_6[RN;&yMa)3V_Jd)7豖k0}_-oߘ0PjnU@y ]vý%U ma0c\%mʌs]70[K-Ը||v˸(_(C!Hst̋x0”E"H0]+VfCc5$4#! X<"h*Qw| Åw9b(#/H#oPp f~'xk00ӉAI I' \IoO4Qٙo4s$gzS>Ŏl3d4CjyS'X]IG+sqeg-6Fxŧ eƯ&`LFEH:~pb] d#fNd&O{,@͉il㾳Z+33{z@ rzH4˥( A&:w딾ƻzcr]`69,gT*HQc>sPґˤ3sA;!-_(DO<9y~a9?,oW/2[}&g[ѬiBGV$IjB!/ӗtyШP{GRءA DNjmR7ds4篠Iԧ:)eK wxÉ[װ@߁5kaσ!oV`^9}֬hKY$Ș9"j0I(JȧP5hȤ^^f ji߈ӆ6PSpr2GqH a~76O/BR&<\ӭ37j!J'q(g2p5UBbUK!.ܿ9 ` #AP(Ėq`7ݴAnŤ45_& x .Xڨ4\ =Cχw;[* tQj%myMo(.,ߛ~1kM| y氼ZAYĎCN=e"Rvju#RR u2vn݈W_R#-pz6](L}l |)R 3}GH)`#m(S@ENqqxW6[Wh r,[^fFAjU+,!h%* $;v΍!ޞѺD6!yQbnXո!»)sN8WBZrD⇬!1z @?}>JHa:C6A.a`c[3Zg򽓗RsTbs"N7iQSTiTeiJᵠe0dS[xbү =""h,b3MY3wPOKڣ%ͧðϓ!3̩eI:qs \J鉞vI8SL@FcX(/oܖ3,1\*犫&S!c8xjRg"V'?O^ up\!Jk!G[-6Y+h'i]gM9Ztwv-”Dž ccT!yqE2*fFJVakE pҥ60KgR:w艥r+o9]@ 'g?TL1 p8/]Fz:e\K`%Za^,RHTNqvD W7,ț.av|)?Lo[w(vinRD+qs@ eݟǹ:U<MXP)0gC~C {:ܧ UwMk< ,ӹoΧ/pJC3 ǰsˑ7<+&>]`z_$gQ'Ca"H Xqw7V8 ѭ 9j|.ٜ!ϋ۝pCَBo v Q: VR))!S<+Lyv3m:`Ҷb>+d cfȬݛF4\nJØ cxm}9Z.w",zhk<(.VS$'> ̩RE*~;婯 F<fDRu.:[MIUʓ:7]d*'),Kx. کc4\fZX}Ecu\`1 kg.DMKW$I`s =o;i)Bw8 C:(J'FGŃPruN/8 D0Ĕ8 ?ڙŬ6bw|zK?9"H9y [f 9n[SqU@ $2.Il+5%ݺ㵡cGTob, 4ڶ1䤠KNўĄl'A" 3Ðq,pRwuXHЛe%|E1LyF6bY-vmXZQn:+XŮ-%PN$6w4<{KZaCbp;boH€o@Kh^c2oՐl);;%T sfKޫ~ ɵBV0u];3I=,AO'\H7rH(x e(*wngf2؉!]F泔A1#@(xE(Ex燖b݂d,1HI+q`ԓ$jKsuz Ok*N`hAJya ?_dzߜ8(y5j n8 8ҮzMvLNPM.w[Zq-}_<)/7;YFz]V $nJͫrSA+RvC&T>2{,hm򡞑ԖXr7܏]ģtz{w<֍MU'^_j:*آp{:pms4te)X]wHx;V]+2ekf[9ɾqn3@Z7[o4:Lf0(Ͱ]N6C#Wuyv:BT-ڌAZGNKz 6/:=q9!(@ xeP%^6`G ^݈-fk3n5s<3VNtYnE,N_CG{s.~-rAEWئ,tTVq8΢n3F}›uYQX X`}i ڈ~c)O]:x HT 'fSⱭ1B?`jڈbQ#P^1q-*2ӣ^t;t[.}\ yũ!?/bi=-Bc&u)% նj<)*Q=lTʚc2 Ou< D6n_=I(Sک+`UoV,O$} 0>l۟]o4xW;z_."] w]įk?W556Dzі)t?)0Yy||(FpP Ch*lt]ȲP̈́4jLCv[&lwjzw١FA0+9Ӷɉ7՟Hhr]0e@oXU'e8$/)yo@*rT˪biJFyKNU$T;N3ջT's 1^h\.81 Bkk״6Z@hvM)l/g ~z:raO'?,Ql&k)!Ԥw9*mPzbKέyWV :L!J5PUIo֫Ґ>TTbk66>BH;hևʪ"4 n 8{XB,1fڬLIS]ȽH4HiE, וC}7=`RBKE\c1 + 1]ž\Nb 9|E M|c Hg`Ja缇c7k82t8Py> f-h+oke]fc9%r1gD5!tS@#ζ1Bj$Heg,<ۅKM>-XTÙyDKq@J\E/aWȧ)vz+]a[JTMqTL OܞLKi+Qgnp k;6bҩbA~)~ԋ#*P?VUhtoH@".Baģ֐n~ lu>!ut=^jkCMV&7eNNtB};pƵcֳI)Y_AXđM".K9C%2:N0iP5g=ȑ#] 1me,Pvm?rj8N+ MKC+TeD>d<0(.[GMDҥ 76L`sc+AMqQPD~j14{ ~Ѱ_ûf isF2cG4Ut]$ .:{֑\vJ=wYD¿Rn,=~f4$AiG'%쀞P[KIm F(\YE{lR=L ƟTW^шA fܭ7bz} Kc"3 8[Cפ^(QrDr O`|5ܴ}?G]112+FnZEB盀lM~DRzh#Ztt,Bv";= R2.ü[oHbnσ:?ZIZ,"lB ekE8O$Y1Qȸ77i`.7r<.3 WCxT LsѕuIʾ ڑ[o]yW#>j@Rܯ/YXMD_o/_|ޣ́k~~21^NM _q$n&ʾi] zxՖHjS^(^s͆$z$-=S7Xڦ15h2~|('n $zR[m7CSeTHNBt ~gwг ^" Μ&+aAC?BEY)x$-q82֭S2g[aԗZ2f&W2-[q|02xEOܪWsz"nd^UE5?5iR+yD#'(msA(uG4z,?f!Fhkmob<3چ$J˦U"l'&;zz0 YZAER/data/USMacroB.rda0000644000175400001440000000417713033553053014101 0ustar zeileisusers]Wy\UgdEf؆EḘH?򈒩i j ʢ cj Ȧhkin~Ah/ϱ?9˽&p!3,%T"I%R]*&.IDCp7֎0CDž/TPC2"3/H9.g)b O8@_Mmf/tk/]SR?K+d:gG"Lel_N7tgeN6[q෻~ _1 q;62~* +E_aO>yĺP1U*_u؞pwע5l_~_0ow!w̛ӏ4lW3ѣZ/%i:kK;[6O,E!ijE݄:#bi(7pppE\SQ~( I2 i }qq/t>l3}bN"_|x*gbO"D{?c}u_BGEȯ5$Sg^N4/&|c%QqFy2ŮҾu/g^FwJ-zg(Eq?vW\?W1M mBg;u ؟%pXmL~bCxy _/IPgq8w_b@KjlrɼE|)>r9.ǜE;4W|I-9菸W΂~/exL_D_f#JB:Y|Y36b޲ j_ĭNe[m6`^s䨓ӌmE-e`? q^g2|ZqGwqЛ4ݲ%n%1L.S!ɵ/gMߘ0qqMgI˦H&K$ӏw[IxH&_>|dzy[E͉dν)&m?}Ž2!dF#YWzr}rX[:%װ}z{nK/IrИ N# ),ْD^qZD] ,dAv˟x?ݰkp-Jr/87T]D.W$6)}8&fy4:HsߵnƺΙ򻘢m"C0D=|o4 8aA\5 W>P+,A5~?ܼN\Tdgځ3 gu⾁S5>#@ # > o '48#b$U!H=WhHʖsı VA ̡ANp_*g6ϑLcOIs؎鉧8ZXp[^ߞ0rJyfzinpV7\8ޙu|w݇ m!ҍpEv>81{)_ZcUdv\dvY<5{2/Žemu{>YIvT^R`>' F"~H֊7 h.T/<۳cۥ4ѱhjA6"*͚z#nv _E!&QJ_Q^PAER/data/EuroEnergy.rda0000644000175400001440000000064113033553037014544 0ustar zeileisusers]RJA=JL| ((F/мj.ٝ ]ia%-|6"?h#~8jFg9gJ:0 BSW)u KC_L_alxc@}#kSв!૗swh86_xPKU3(+_&&ި"oLMC5S92 M ~5}i8v&x? LrHEP<7,jȨI>uWxL-H&jPQr&KZy-K 2Rr cF@o7?[ȕS!Bs0gh~Ŵנ`<+ I|-uWjmu1j@u&b*41&lQi۲@˨FwQ۸CA]?}N_.-SMŠ`Y.C6ΘrCYŁAi'(xȈ҂1 &$3>_`)s}cjitCE@g&G@ 2}@1֬g:d^\/[5Kʪm:O)G# 8>?kyPtDp>g_;۠ӫI2 sP峎]6No'Tr5\ޫ8\lZA%:uz/?56SEKٮsQϗQG&zźKPPius3M-qAɣ<ՎTEBg"+t?)T1)/׌JKo@ U}}ulHhӶw-­!)夯b = seОrD>dSt3՜_oS4,ʠ5Yɼc);15m[{_Ze9=2N5мהunwUMHk]_Z1 uAQvnhN)} MVܼ }=zVp |%a EE|kQ VelW+@RPpԮ0<S6dŎ-%R;-h~d WIEbseL yBY@2 dOΚ(녂d H[b?{d%łmw =~Ӎ;C gWnZ@?W"J<bL!k}U@8R"HC?A*|{˿R?E*-H9mypljDH1H%杉T#gz4g09#JW"hjAzաH<0Aڝ9E {H~%hz髳;9L {V,6@zk٢sهu1 3}Bp1c ^@:$ZXۉMa0ADk["!sȵDpͼ[3(pb$ ,0a J1$cg=!28{. 31"MtG4 A'_OBoςgٸfHOۧD:csd0B 1kSÞ"q?BTAhO~#ym[Q#8- hη7lzujYeYe~$Fmmmmz( TRYTZkkEY!\MtfgnAȒF=yH ۃYxLW ~>3Zﺀۏ\᧘ p=lXE{N~ NOD"X+@u;)zeCљڡS"1 rdži$B1sкA= ))B+LEWo1/p..pvNYRhZ̿ah9Ҋ@R6Ȏb+(ORaHPwH}b19]l<$x'&$q:n=6ߢw fzf\q{4L&d gD3OYi(<6UY϶܃ÒF/kd ;q\锐> 9%uB7|i$m(CK3$0(1[nR2%B7Zc\ʀ]v5 h& wA3:ER q&j6Z5u r&x0ȀSYm!+/ S-Q r8%&k2J.p y5AER/data/GrowthSW.rda0000644000175400001440000000415413033553046014207 0ustar zeileisusersW PT~@1C78Iy ]Hu&\v.6Ll';DcA[5Zۚ&ԨX `0 7n;Dz4͎}9wYmm%pC`P?&&pU|E*Os!CM;E}w~]W#͚}gk hv{ n)}bѝء:i Poj-;n6θ ZL=|@gTph>?5^AɵT 0 gԿ5?ܷf:o~2x;Ɵ";ZW~n|%Bސ0O7?]ò9,ӟky|k0 gŸ xW?3IB?&1z:>YaOyp=,=?z[)4|KQ? qVFtB{Zг1u{+8,u?Wp_ s1)`W#XW ==yľ9y5 ΁;( B2o|EݛWbߡ1ގG=V b| q˰G7g ٔg+2oݏ}֣.a¹w5cOp_;CB8WP6cc4? nr a-wlyvp!gE{Pw~Q_8cmwOM< <]s ?-'nC3Ļ} =K6|mz̘u<|d#R|wЎ>0V6Bq+Jo*{3 uO-7~a V uݐ<_BJςҽshK1 S}g+^kIfFZ9|}9ȸަ;Ü}Xwܿ2~ߤ:R** nnug޵i|؁{8Ө5)߰Α~x6#{go:gMǺsdx" 0Ϗ;Q\/i[^:O2`vk8(;M|1RTqVOk{Hk翤LiO}| TO&rCZǕn=~nq<F:bh/m7ַp_:3_!sypml?/?7'ld"$Nsq>Ͷ{v*G,~C~t~# ww3t~sOߠu6ll̙vo98^Lqֹ@:9_PY2nPʷ @_}5 _sDkي8͍зr<-u?A6~kc|] ׏%A6{o#sHț&ns7dB6rap[mo_|w#~ޝ`=u5;&g@wX=eY~_E~]zue}>ym+]_*pA9<>޼3~ ;/m y`Mfb /nKF&XOu/jE y X_J?&c#ąD^ h߁x ^Lu^ ]6'|  ,}ؿew"!GR0a__[?+Ry=9**^E!OU:ރ3yeC֍=:f:3Y:jJ5,¹}XgoC } GHO="nT ֣_| ߤ/6Fѐaȧ]q Wv(!&K!MľQH0.Ά c6!ML5g$7,L"(6'mtDܺ_^V#-Gœ#ْ_8\43*uP˛ӵ KX=.v)3|3xt(O٦g:[n(/i8dSA.3 :敲.19d\8ÀXddޛSۿُoF;k6 P νUㇸYL'rcZ=\c8L2$?yA5ߘcxYO\m"c0z#ӹnr fOل81#;$k}ΤψqTW*AXf8ߝp8ɦ]$Q9֥=sO{yM.< RJ7e ey0ߌ~ooA45Yb.X[H|/ꕃ;.ʻ*Amr.huQbc͌?MoW-Uh _3mKx"Z+4EJ&k$!8pOCCi)eg; Q[+b:1t`?`hP/ߤXW#a<Njvϻ;aj3}1pCPK%#X^ZIL.5qi1,C=u!X0]z}]@^g8h94eqw!XV!!QAB6FF%GgA$r-0cqr^1 k'UV oKrNqdV^u˼"AM(IL?ώ:g-3JƑSʏ^;|-bALچ@b'xt[ Z}$ m )a{ @^pV_vS:6M 7erbSd*N1G}V&mIdD{Wvx h,S__{_N7GYzL{wuPdf.Ѱ$u2)s}+!R\eXRb78D&S4Ebt/N:fֿhZS$z)ʴjlw8WGqrX訉zNFzA;c"5|J,y-߇TW}*pF,u w45K)WZ Y%} qRk.' 8\h/[zQ-Rŷ8Zj/x9*,RUOO=ic<2Mղ.ΆsAKNR1I4{ ]ۍ#4)1._uЌ=ku$"QeɡmlT%~]Qz:7V$<s'<~ÝtT+/-})ne-aO8kY5җTOSe5nf $k(SB9X~;Pʎ]5ZiԷzj˥!iz鋸bzK!o@hh*9ڤı E`\[G/;{(wX!tPPFif~O+G}P΢koNٯl)"ِ-md4jc:{r&vyDG.=w(x7Ef OwW+|Ϧ:qY* ۃZD}4} sqXe`@C$zz5U[t8"۱F:ߞz/g,!{Yd3MndeCI9ޗR-z&?l470&ABOS˖-.7)޻1&7vUɄx(ʗe!QTj,,Ho1^tK0pkìc␔} +y0h 7q2YO5*R>ZAp;kn،YK6`82#,o84աAp'E5Fp"wn3ѓg@Ԣi}WrrR v;5@=S:K}H/J쿹՟wX{>I =`ӂ KWdv[#M f3>8}5,%`NՉxl#qMf xcc k\(Mzk+V+P™C_޶{t OU WWA_bqpj"a1 DapXK50\)H2gc՛aSn鐀6h@cPΉ0<4fxͨ9do7ijGSnV[]Uwnq B+,E`r1KItH NJ,lso37/r,6n.S/ IhAhFA" RB=q_SD$Sw'ro{Wl`I]GE{}W;uGGaTQ(/z^@6n<|E#"`,n{#k>HfhaՕIm-]h#H3#>e2: 3q_s-v8eq,VVK}h.^QVq{ykX"GBգjeBLǾMXHEU+s"!<)-#$vVsUO+3b.@FWhn2JJhOY󟊡ͭ8y,JM5Voʇե;(`+sF[!R=X8 AK{V}r hA?ܥeq'&L=oplhb#]. Od@6B=LHs9TG{ТG+g y"\AD?q9` 鋼~82Bfc{ެ IlY޺KVlʨYrΔ}*x$^YO+ 9PxJV3y!F <U +g-Da ɋ֋$_<[110E'r1$CIYjsfbf@ k{*Rҁo:MBY@Fv- 2qD: ;PPjhXNK@M#a ܔ|bO!=@osx pu%CP8嵏^'eFv=L}ۥR;@`LV4hrMT~M$=[}[,E_9]HhU73iT%_QWMz>%#Y`Y6dX[Oj*R)8?݄ Ӕsb?){ќg) i0r?'E{Yz|Z*Z]o,6 }vd4ٔpDEx_64F5ROlWN[ ν1[- Qu-[<^ 27?^pT r.Y+<8H0viv oQ;M%PMsXp@-^1Bj)bRb~̽V@WM%l\ 9ÉcT %}*D"pR^FR'ֈHR%Z|War/YYPgcTo=sLE=>s~m}Kǻ4L 7<} r`=6DN#OT·/Γef'Vn?8,SUaUxd*f%'z$3:VLXMUFTv:;@^a[p7_pyw9jn~w'ŽXb]wp !|b6_[ un0~V!c\-%4*N71C%Ӗ[Ywm557X*P8q:Nrͳ.-gGٜm+A9=fI}6|&s=D8f$\hzTt4/ ǯn*1x 0$Cwӱ8B$dno9zMF"Uʆ=wٍyV&Gs6%h(~rRf)Z#7* 9cJ?B辂ܖw?-F&.M9-9v$*Y@ lڶ -0JXYG'cpwA4U9FWSp?rq  xȫ,\M:R kjaht9ټ)oCʸJiz)g/b1}Hh f"ROE60cgFlKe+BS7.1' !ySG?_q"獵,خ.! x3MR/0ֱ̦xO['WD<7kec0Hd ,6mLHK7֝ͭ3 :Fguavv?D[d:3>ۙ2*:ZB+4۠wpﰆ9%=kʦ_:ruL80QH5\X|,2޾l%H/(΃#G sE|6Zd0;j, {Ծʓdu}tJs37.wF8 [ D$\l.nsr차 p'zv6(Z# m!YXuuvw\\Z^{ܳLCa9#~}-1݊ Ҋ53c׿Ć`!X=4}B>lZ6m_i&H5* vXOw~H!y&+YeGEZcEݫ9UDCj/mt+$56Jp !HG]6n  H)| , Vj8Ƈ&pLbD)9͖'.Rn=T?YN*v 'eNHGSëF'tS~Y2Ӱe%V.F5Y kl7D( I(n!y\過w-Pl=!LFEȊ#vB&a5uz5`pySi6~;.yI)A| (Z"~=] ?xoXCͿ'h#V'Q$[< lk,$eWݽ0 g{o\ XNJ\[rf8!F?w yBhE`{:LAl.|AJ곣ALǦwʱW$8L5ǵLF]* ?Wwf'K4EqYv~`!cB{m+ʝEb-a[x|c~*큼30 xӉ{܉>(ͅqIEK\VVAqQVPQaQ{`5V<\u9fMI)^M |o6u<#Å-. 1$YCMK >;ۻ8U3pȫ/N_SP(\Sǚok8֜9xE>@HCC6tR#aLj!dEU$Nhk|%r e&v1s tzys%y%]^Gf(\-y^6п W g.uWqՏe`\x.˟_QFjgcmNJ* !||{`y,A5+*OF}Zڴ&܉^Ҭ ƍjeUꎩ!_y%S]Ig(OQ 5bՀՍyh]Lg5]pD|fZaiКH|껩{X!,.4.^h!2iۊfV(::qS.)me69ƳMҸit;GИVJK9KoN_K ‹ /7a"bn2DY0g B-P~I(Z2 w ị Zo =2b,nPx=F.4A̟KZ8\4BRSg~JAא5?}/3AX VVs{܉`y̓,&*B1}zh޽h\]R>6㿉vnf 5(ŇA. SՐܛ -QnhoZ#C;Vsz`o}ϫu^C<аP`f!nQX{K<9Ԉ0fBv c@!&I[N3ZX(ng:s" uՂT%O $[=Q;Gl.G:36ڂ/+0nD5K׮ N}ob22T';f$@P. O&aܙdkB{0VZԄ8gY_D "eߴlؙy~q Gbəe =UipkP.Ypj׊?Wwr:h XOL/ lIZjO1JJr>e'8APRzHmd;74רQ2t-k^.ig-O (Y܈Ѳ?6=SdlC0JT]Ji{2LFYGՍAj62$V$ 6g[ HeHSlj%vسa~v)%8$[=[4Z d 8幟Kghcþ[/n-3uv5'tç1@ZxΪo~fOK;iĻ`1# ;PCP9\OKՂjO})?ac@S:" t,˸yP ŲRKW荩X[)XL$ y"H_FX%Hys}V=㎐c*9(Eok(eǶM{wgFXx< }d?!xғ+Μ~w<͸ R[-D .6e\vJ{"A$b{o|s܏Tk%VЂR֗X9^(A=#o1umqZKvCIc<ě2@¹!Q4ȁ-( C(R$Г"FKZT94$P.p6;{=d|,E\ܭ;BJ[mLasǜ1-f ~짉,iCں|Yt[ Jtls??t^3J##wq_bXD+-"d6zϮ9xLiTEA#YEքa3OYQ7!)@d %OWCvX$5Kt@ܬyЮ۹XhOҊz 0%MA&dh PY3 arjM5k~!Đ$,/IX& Y#E< țBG1vܵ&O)ۤFda烛BdZ,ynFWJiQ0ϥ?]‚aPi oe-v B$ (iʄ#>|yIMB_fkSD6lW (ͫWI0=dwR s*mEFKD]u,7%=rs&ȋ:׺\sE  OP:![12)%]EVI\Ո *ulH%)Gĕx2-%@Cpb9M |đ:TǡYDzm4.+Z14R1mqF?x\5 ,XD>Q n ]&򈪓YZ{Y(jBsؑG}%Mlgyv^Zss*H?:P$'NZgl RA5ylA1QJYnH+9iqCh%V7ڶ~7#u9R c>(.ḷI//^elާ( v̵q$<D,Mps vNDL^* ?,f=k ~lپw\#ɹ9"YE8.iOIt+e0P#kՁ)2 fّTxLA 3AJz3 UXGD# .Vc2 xNWl/>r|`轪#1h@?%yCp ,깶jLw^< si,s9d՗B(dwxϓ]]+1R>sK:f>FvntqA&E-a7֣rKס0k2_ Ql7% \B!~&l&=$d!l[]@` 6E߶Y-N[.nyfuIωj[eB ƀ3a& >vj+Mȝ*v&/zx5Œp =ࡉU,#o͚!K<2v%3%DH⨁TYS~ʰQئڗ{/l$I^a7+C9# _Wl^%C68uag,  }ts=LRG"x(զ%E^v~kHQֱ_ͪ[}=5m4XC fGpzh6]ިȍ$!oT*gC.XֺEJ+9 |BS}b}5͚xN 7"#a)L E4ٮ .%Hjad>!LՃjt@21*7~CuzQ ~L:%ߕd$ݮYjnYń)>A"4Ei]4uv:rW%J Z?Bf ȳFZӳkU/4&\L =Fp P*L8\ڨ vfODrg9DX: gj`r.fwknbe=f%@z7^F:5*gXLq8'eNuQ;ȈAp8a69zT'yꮱ$4$pYzJ,XS',}Ǟ "ya_tSHŻLb=c?~Ӝȡ"j,U# ؁2ɊTA.M5@,E {ʉXHKeU`Wͣ1MqرITU~*C72HPH})zV? \-C ?w9zZ6\_'ysNmCm$88T\z@T,ș4s!ˇ1ӳK_Z 6d M}Dh.ys@fgPICl93O4Zu {qxE0* 2_ r$G,M2:k]Q=j:hcO f3 aZډф `l`MAg8O;r?LZ <1sߌ'zi& vFGDe(c~O *)er99ڰ%:A ӯAUh` m@+fuJAPpBڀT6G"tVTv +jD<n| OyJ驭>e\=tPnN'j8&eqv~'emNm#&(E:<]ª9k!rp5GpiM M c|Đ=7>UfOpaԻެm|!%68DlpkqOFvKa`dN.}58pWU!&34:#5[*ߦ+kwIBU0y:Zoq.kƃAU2"N&oWY`3Fu ]5vnY2342px- KH&@%+(CWÏ /FI*KJ -W2u! Bbj[?H"*Γ\oDC ~(#?eyrVBwܷP/ nK2lPoS/6NIh|t Akq6pNXY0V5 l^ )%(LJ-՚d#&2vrt7+7eW%+Z nNgk’ Wt0`V\E0"ɼUi¦Ѫ׷S~0E'୔DӼ7NsyPpučMUW-3jr&CXꢂfeLJm1g&=pJ$ECq-uMߟ4јbp`h8%Fp{D0jv pb:ĥkOܡ,*3==дsjc^k~ԂGUwBͽ94+`ĝlKO:J^e+}mԡKP1#WS2Qc\7Ĥw>jD;O &u[Ų`x=aiXߤ,4w5@}ngPIrBBg @CCo7 "L]t\H/͋HX!aQ=5D KM$KY?UjAb` W_.}%1-[W 5ͤټmX0)v`a"/0T4wI/[PN'>NbN4qwF0@b(#`Zym\ ؉Ԩ4~J b1 QyQ:IɃp{ϊ=sc~/?RM>S*7[肨̿ ϥis~0pwx"lFtq޵G@`QJlܑsрl]ookODnT->Dr={֧,SO=E!X" &B >$MD_gj@ G,ip{c>!Gpc5@22bd9>WX pJsPBW=oq\0Φ8ܰa%2^蔌ǿCGALtb4Qtg:ׁ-&dF73pe9$pTq=(֦iT,Y!CMK8"N˱ae_` r&{^[yK8;.5}ljNXG VNht|2qt>š8F<[?<xћV njJ/xI(|$RJқ^_vF `}v/ŭ 0ݕWOY"NprqW $r/l-? ZWUHH|Z"[}spJpsr2i?I(Ri\зWN 哴º18&;s_WJۍfY8 ٫H &gA.Cw>WEiD2Zy0RUowwȘ4Ai*5?AUcmq k6C%riD:D'nd.<"۶,ʥ:}6.}59g6G~sV۷z?BdSt?jRhJތ#.(W X:')^H1M&Fw.d ٵntݶki>^/ej kt@%ZQ&xOa,iv̸Ȋ#5%pov;JJK[&1#T۩c>M<^oR1YV"+EiǺ}g1gO^W¤wЎ0aHX^ -=έ 2+$(EIحJ6`۞7~g2amo4DB(h$ZDAT0dHM}h[aY뱱;2s<_`kG.qW*O`4?Ḷ6l1l^0_hLuRg# &CZ &hڔ mHh[ULJ]4*W ,w"3շiD$Ō [4wD§:(^?$l߁mPTxOR!Gf2J,6Ơq\,ē2Nُh`U?P+1b:ߊrG#؏itCl7bT҈Qg>-tt?Dҟ(L$у:SHLJ܊Ҙox` mA - *=DZ#uB~0XX MkNV,xyHyobL#אF~!HH:hjb&. :vI>뛆= ٶ^Xc7- ESO)) Ɂ 5=& Y_cRF탾\ZI/*iYHBZzz|JKgP l_Wșkb˜:A+̧6x+8x%-_MDQYJ05u%zBBnҫ,n @9'#`N')vQ â Md͉sOlBqF(/]K,oXTjgwR"!h,3u{Lɽd,-&̫!lw \BSU4[6*U n 7$sF,Coւ  [z+m ͥ<5rO jqleRe2m7ó͸TiM ^A5p }4@2ч^jkJr4㟫; BٴGtPUь9Ḱih&2WePlH|'^N-S(+\cHY{⾛vB)AAWeY6-.DrR[]YkF~BnDgjD#MX +.6qq/ "v Tm̰sxөFP8V>&>[>;^_CfC.*C8Б|,p#] "O%.ֿҴ ^a't%y9i|('̄ j(JpБɜsu<;Tj ^%y\42h*w4{AQ4$X0ܨb7XSx{mѹbΐwq31VeJMoFZ(~tik;$h߮" m|+䊓brSea4GZ/ss:J_,}2Ө}jG|*回%5GU;Nݢv]?}@|as-#fAϫv[>[fUp{+}mϊ'Okۦ_حm*t-b<_Sb{,5"4H.g15M%ѥ@go6lc!}yKVA0 =pXMj6R9KDHK/r%lU+9 vNˆObJum#TDNZ12~1OP<6l'J=9潘kZZF YzqZf^j;P̫wG Ebt8֦l 4a?_yZDɞ>9߅nq2#&"ġ8Õ\+@ZP=j,o LwNK bj sܚ" qh`a/.jS k( IVџ G^ ~u[W+ P >9Uq["889@`׮ JY&F\WU@_HP9[ͱ&7Ƭ7 IC!bLVCK_P{^ T^-6t\.9ibltOZ؎a;؇H(A>MeyXD>p,N^TDf\ -]z*vaJoȱtK/މli̍9huܫB{ĻRlFGxKE#6EY q5Y&voZWHL8r~$_ߙXF^oNqic6+Z "Ԡ*T2,uobFt/3QbY,hj".֐2Li-5|ް;X8!ﭓE ezLT%poxlc%ef6"dm a9]R<ӬħanҤpvCXkԁ5*N<+^p q RUE߯"hg: s8Q!7v:2i7L5 Dl*' vvy7j}b$E #/z68VBLi_MIa9p֯GNFrM^`𩜼r 5b7*ɀaAS1nWb/uIhqeARAVPV75 J6ɴhW22Օ5cq3mMkz>1)t F$WWAӠ_:}EؓaWTiR}_{9Bgݤ-md=:g} Q+B*2KBv E#v|?b0lii$R?, ͸]z8sCg؞˜ڭ_?|>2m)*:I$}cnx =VW}{`*?.f(Mn)iK&mFѨ`5WZ M&\ڴp/XrTm׍$lWiENl_ʐOZur#&[Bpޚ2ȭ\_V(SGFJZ| $:DnI%0s,a4U`J ^F/u /{՛t-m|ll=cIӝm8x\{'. T LmBƋPyqn᫅=!傰݈r/:>i38l&DZ;;jGJ epm6Ev QZ,90YtzS}y}BʧaROtͼKcee&tOIQAB-׺`{Bhھ !Viz`FR8" Tr]|~faǖ)}mm[,>[[1z,C{؛=_[Uuos,`W#(+ Yy$MhMq{ h/vuaty.emH>V}g08M4n_uhmO!s>y*+yq5YO}p˗;'Xl,ʝb`nFtQ5u7'4W(l ~GP=@6WvA!k샃9 xAE#Y8U@ ΪBnqWK~Pa_<귉\!b&K,Z,wK1CNqo:MI}{G~sDتz fOwIDX G%3'_0|Gݚ+5zZu tLo_"-IDi:pIz]Ft; ֡H9˯]2,4v"e 3t~'VúDJ%ӇbRk.2\~wodh[lGѷ+2.8B_C3??J>j*X5F<߫dJ^'O4'~4)uceQatl75 ۢ,#T-e?7X/B.uNKtU)>ӫR`:ӛ˓~B}(1ŹёObIQ z7j]v+rIǁ0%=V~:!40b%u= $D#t)@x#βFcU! (s"]ru؛6,/fdc TE'QL lk0j\6rI7a@1—DEG ҊByn?)XFl:aO'd@^Ι[%T`PQ Vaf`W@FxCҰ7Gʃ=s!NxwN6{O!n{aUcV_\,S7Y%iS%s{MY7B'@Y)Njf'BZcb:D@TYQx3I1q Ye ZϠm&d0mgd> _)<loLNPL<[$˓VN֥xYTD<^{xߝ#HMNDʬWۨ-_wGq"YU {,[ "nG [g]ֆ_oiέ?9'Ц߇k"z2Ì'klŨSB(p簲*t3nLApшcni(Y"/8$欢B:I3f,u ޼PEnmtZwKvbV7NeZh#fQ}7o%$fvv{ljF60ٺ4qX>O3؃]%}hcR3g Ӧ3>rP#TmM_  T55ƿ:Y.5X]ߨ!&It'o6!.Z+Wwx}ާ$Іg9htv t bTg'D)Ǧ k1r|(Sˆ6̑Y$H4G@Wӭ+h&x扖6Ĥ@Do,:ɮ/4&k<),]=v1nLpN &~zqnF 7lcRB|Sol/y {{hKx^Dp32dѠ&vY%H-Lw, 7i*6濵FBh 3`R{8^0]ʣ6 (0s[omY:h3BI@`+hQQ;qBw{ eb Km& ENoL^yIXtZ9n}CJl]48X^C[ PNBnul%wwsASyRA dA${b K0O];|Y8n.Yd|Omv|!qBMޒx'h5T: Wjd1tٌ 5jE72"MB`u펣װw"a_!{\4tuv({=!n]9R6L$fZ}0|*vZP^_U:ft#}ń.W5>tm,{F⃂ЊTi|8ak|)I=K}*A&Tħ-] yn b&y I[j_!aD#$婓XJV~sY_, Sn£w˄HR;Q O 3[dwѹ¶[5-dטڃO p_/5е oB:l1LY}-qMA4ˠk6[T[hWV=ϦG::[IExV(ƾ5pW[ U^ѹ-G^ӓi=M&a$xx,M.}7F)]#7W 1CK<z;mQZW͹v ";XR}z順pe p$-qib[{|גKC3( 򧿷̧,Mo.ITzdt*6Ƕ,R_|`0R[G-U蒡NB|_A!Y$H ҈1m N2J#']z} k* K1{>ʵb):Gu hdz=<Ṽj FgGl;CٍѥsڬuBwh5DgeEvf1jYQ-Ϗ?DWYbj5zP(P ^ej3&^efwk?*FȒtIuM3φ6zpWaI8j&>.?k 9`\nO_ u?3MPRə.vL#qJd5F;{p`2GWW 2z(zp,J,cLs`loBXwKRdɝ/-Q1BQJNMZ´BH: ^t`-JAsrVoz;gƪvU{WxUX஘>KTOc>=&FX5vf̢ɏ+TN@[qfmqӑ.­q`V](@Ο\z<~,9 :CA|Jrۜ !*RIB cZ=O~jEQŹڠ߸uÖ>Ɲe2 ]@>Ʈ4ص9ȧM =[ڭ>u&M2ʆ+P;57R~3o)il-m0@t JR3bmͨ);IGoX.XnaK*@"f[97WHCC0ap\ 845$K;S ~ZjA!M /*8bB1yDՄ@*OR'z1@ T/Qê5EԕV]tqn*PO3N`jvr"-U-i2(Q`xD:{Ƕ Sڗ]Eu3ǯl͢H.FHl5I7شa2!< _O/{U3I5"8Wlfݗd\q%4')IE9eT{%}5uk>tv C&c<ܠw?Qղ N KIϦuZ ,y|y40G&Tp67#W!OB\\ Y#G ʲd .3J[iK4IC}\ 15Wo "z1s&%hZ)RPY+x*TNj՗沭qbvwic;{-埊UxwE@+ɒ6}2 CDb%Y)BngF΢#K.;~:!6 ZsYE(BLPmMqpepǺMƣuuUvըxAzFvXL7YjepX±ҳ9}T."x FEAލ1jM~h?CCWٍ<bwΠïi,NBӄODN7zLt/ p;2 & /(v8}T0/SA}<#hn&GXTZ" ]*"XnI:5P0UT`FsVx|nT_<3-dbG^.fkpcYO䉜i8wk™-l \Io acAгcId$ɪ&ymM.j]3`NQ,Hwc4!k&mKw tUYW0I 59TYhA l D$`~[<GJz\]G.1(Ô~l !Mg)IolZ)E@P?&5Sf.!mOL *=ulJ!S^&_Nc:vX0N;kYnmeop[69k.Z?(t|;F~4DJaV"`EnRYx**K֞L6.qE$!ԇwuϣ`~<"_\?H76#`]TZIo1B.F\g#07dNؼj_ Q] &-KNjjUr̡􌀗3*G;5)oh`{p:5NC*9l-:Rَl)`^E Uee{|]DžSv2˲-8PZI![uola:yM4.Tʺ@?NIR`OT GT -bØ=Q {S'cܝ\rxH0@4pB[^C i=A#9K.2ֽ삞ȓ SŠo,q@2JP6R5ro$^ yߐAûX6ƗvNW ǧE Eus˅h&h?F 3y0Ŗim^~5$tkyu!@1TuS^]n{>)3uV(@.Kf@UpmXssIGJK‡rGn@֕osw'۷ݜc'ls3,Zayb.gBS(IND vY2*zlC/VA~HwK{8J~lݷ#%i[=&je4#HTokdNJ9F|PDݳ*`ivN:j$]nwwgɃu 4~G_0'd\=)PBp紲e+k,zt;_tMEmj2͸*J!)eϛ},2fn9!EzȾa33 /u9}f_^ߨ.Ӽp1\CS< a_ ׎$?@؂Ib;rQ+z`WӧOd cSeL۔LR±j<}ʺjpK梫GqKEeޘXCRZ,wR^>rGUH|PJdMh kghE9w| n4A??w!C)+$(j փ >Hߤx=vÞhtʓHu7#s3z?'DyTɼC0럭]hO>q%VPњ0Y4ϴ E~(Z7ygAݳ*y<4$y0 W"Ȭnj qIfE 97xGЀ/T4b6@Ih˴s)y.Fj=oe]vh\N,qLY/HX:F;Vl:.Խ' c4h‡s psLU!l a>o^&-%ACy@S {)e8/~kBGgC$thNY J|c8V4}<¿܉]t h-蚜F*M (\ 2״Fh-İ ,s1-$G7 vgh*eziQ!EM!'õWwS bxI$f$"[5Ki҄ʨ<{wK3)IqlUǜ"=Uގ19\13s'>Z`RE2{]Aje)`p̕`fC[ivw|DG%K5"9]8_;ʿ](n^i21B扉ZzZ)2HhywmWzz̟5FѮjF|tc-T$ D ͉MꨤVld9|eQcK x0dݟjH6d? ⤡{UY{$%c}=ƒ@kIj\*Gj֪˭\7y M"nuCk龅g5ڄ [H@ }Clv;SSbeS7<}2'hwTOԉ06|:jصxS#b wV2Pboɯ!bϐEF3㶩*-FptokJo@/'S>83dbGTmYCWCO; ǜ֨ώHl,дӐxXFg8ە%c5"?AHA)lm|hɲ\ g wKQ/zD!sϨ Uv~~1'oOi囻D')OgoȍE~/Pݠj,X(T?m|:YC[Ԧ#?+ZU AՉ4g!$diIx@w#FK5א~*xz$ {ND=.M&3eVݿ"X~M$F>F\# N% ~-w4GP=Wڲ;GGo;x]jxu{ 3@mģ3mVlmxδJS Yȉ(hgQe\N~1ǃwǼ7NÎCӟ͕`>K"0R: zűG€MCvyK!uOw>, T gة:@Fn-zÝ# yϗӺ>MRO+켄lh=h}+I39, PGK2T_&p3lƗ6DzfA7F2T#_KvV\nC+\UA6eVm]xFPKzI$"unI/aUr`g[Q\zT8;8o n~v6ܑnz#[HlERGeJ(W}EE2b ϟA;8w;{G_*͋m"U~G}15Йs#q9dEVdX?B&t+FVqx`ר@U7ZA<PKc Czqq̃Wa-1!SIC@P~s!4DA䛡k^<.6-7d̐nq~YmU_/VۻaAL`-U p@xD "Ueqr+!oPKbk=Ҏ7YkҩvG.L iQ-K^ =oJڊI#?I3޾|G*LFB嚉ɶYP'Fqj-D.`2""vL,y)0啄/v=0rhsRtǑS }q:ݗ'A%pSvJn* Qng {~O&>lY>tɓh F`okerM K:*#j?sNaUAU`iuz(TWHށ/fO۬9754d^SsM2'I4-%6I"oL*-)=/4 HO."=3mz-E eĠ 0Sm$6dd`p|$J dd;|*V#Ipz'H>{V'11!F=!L7!FAk8$9M;ZRDmV ^AzsXs*sB0YpW./XP'U+w+mLA؝;v XgDj@/))֓UΙMfGe&:_7#wV9fkAX0KK qnBW6`)fSU!Ue+Pn(.:ucޭ'~BCCw(ZS]mgoDi3 jﰵD>SU䞊{䷗ V- bTs |t/:̮!RҟGG70@h{c)~ ]T`@ly*>)0G+[[`$Hm_?OY ; :X&M#=ip"p RerJJ'_I~'` l1c_87@LC}Zʭ;1MzM!3ik q#({xw2a&K=˜ec9g?+E!X6Y`n-WG;%WiAoP3\G!SLɣ.y5sU+[jMйw, *wv>}QD;l0nGAX(6DKf NG5(G& ,d،#yb'wrD(V0ςāXn-2g֦˥LesHAo] kpqD5ϡ/K km0Fc۾jWd(|M X>E \u!ILb^ߧKGnCc BD  #lommWg[_n4Do6a?%.y0"]xQP }AJMRBS I&ae>FYQzL., KvuHK')M]SꇖSאr[IY_3X {=(㙽d!3c r (*)큠zF>*AHLh *M^G_C_w95;~}*;Rm`7WW-Ewj#i'h+ %+lnoz~i>eѪVRXs?w) $o.OkseؾHY$loȴ6URِ[x=ނdGd,~ ׯ"n"6󰘌+0`ܚ8hDLԇ[+z~ӎ (_"[ .zv2RtpfFȹXI!Ԥ! jHWH >B#0'ob8҉u,wfv[U\&E&39»uD(qGBL[ٺ?Vxw˹ʮ`~JiyP ǙX6a cSOoBkW[>RMlYf,98~<7 j궈'gF>I.pL$,5)f|!5ʠ X)?+=雔HAyj߻a}/g+@swXpNS)yd1JZyX>4qP V]^"eRX?/!✇|A}uS_VaL ˎgV@ԶwN7m%O@,AzM WqQYsj?l chW]>1+oxvA~ ?qRn%"uA5Ui-Y5],8zn_Fl> '/Mj 1NY!G@,qnOCFm:;x~gN/gdJ RC*GD;muKQXwȞ9hU1Er#kl#XA97>F++?HyjT4Sm4Q6ʋdY|m+s10ޡmNW[ʸiW1G)ӶKrO| =YJUb$ CnW8Pu>`d>ovy m/"ѧ';= {u^aGenզ8aƥ dwONŃ/s`?ϐ5Ru܂zC v{cy$c_C!`uRB⹊J]oeVn .y s>+UۻŵriB8$T@r+۬I/W=U(ZRWt JLLc$<\>Wve0=ab))_v8-3<ϯ/q9D#= ʃr 3"?|ۯ?ݞϱw=:zA _lit W#V_{g|s@Nت=҆zmQ$I/j4b ^=]`&K}D-N2,{902ƕ4LSl@wݶ-|,uQ:-Lȍ">=Ngvf}{6D/2V/"w\d&ܦuz!vK%@nT>,Ov{R  3j?vqZ2O2}{K-;d〫ĵf-WƐML?4hM|xKiЄB\  8XϖH7(%jE#/v%<U_bK5ص|qŶ[pp(eN*BVWE\p$+:7IH)ԏ]ǜ?5NiV$wQ*41D@~l9ZlV>LOҬܤ4bRI?![B/2GR}vѶ@\P=]}j;87jpAUdW$`\\D۰\{.*qm*jm pЛ̽2 H;|Sjhe AgI+:YU Cd" qh 侍;Ʌ݊ʼn#OY#0yxZ*4o<57A#LXcYF&2kuOEVE] gY*W~ x ֹBhX]QP[ε=K'joGҁ(6PT4m@bb*8`#6KtnaVZ'.(Z۷RӠO+E]f4IЧ:d0 9 M;:T~˦ {@HEUEah"y8&b>iė-3ɰ[T71[:T̖Q2br#U5i/rU|B>3 pZCELt@ORPvRkOq,|" -vcx ,gaձ0BS$^_|CJ1&@w!ɹHfS=O(mtL,B1fU[2׳`D1n< N2}yO=݀WmKx`ϱk[#"6VnkRVՉv*ax(]*Z"~3}d!!rG4eg()6쒌N 'd=nn߄_2dx6-aYMUw)i&+&hV)Ar ՀfA,m[=*ȓ̡<Ȫ oڙSnў1 3ٷpWǵpLՕNsQc{_=%!OV8"bήV,+SW~;FpvrT Tm,?eCp%KRs? dY_W)m:"Zc n ol FZ<^:2ϔA ܭڲ oft즃t"|/8vӫzJ㛏Dv{H&jix>2#pk9[p?"9O1*·E0>dJiܪ".G Jd~hFnהAK-d@1qܪ&v$|!rq.>*.- (iHKd-jmeS`g7Agt-aHew蛔Ѝ44ʇ5Ԋ@X%7+,zdY ZJI{uڏOrUް|' ],Bbf/x$7 Wzx)V@"ļ'KzݜLbpU vɡ܊0j0]*e9̢t5>V&2a>8ڹ^v`c9 # X8 zHWmDz<9PqS. NqJ`2tM.3@㸗7A]%qήa¿/E5QשP /+l~~ɡrQGAb5˄S%^ t!b~XW>g(^f0<(=\h#lO7εwtj.^5Pk ol᱈c]cRy  ۧP>X*ڋ塈bQw 6)BG @䵐;zUm2E5k iF']28biDSoBSo'/ƣ B@EadojV]\GY6wa`-~gH|C ;H,BLaYڛ~8!2ʢ{)#yDj2dؽAP4eȾW4 n+54g9e<;>DLZF y-4{$ d} \X/)nQѢ ,g_LT7|9<@ ,rOz-LJuI_@0 ||PD=j<;$'>;81U!yrr-9c7Y NB;{4z [bi09I|'26e| |^L"3Q#{0 - b] r%GKX`B31B̀?ْuqZLJyƹ+:*'ꂷZ ĤE'͓8|C`~l[{Ċj3`}kgzkph\NVI 9/c4j׬xm GVSctl՟`xQm?,zWBʮ_9@~|U ӇH|Y$ܯwj̥: m-67jD\P,L{n# Lߖw2Ҝϙ^.,ߚΚ{71 WZ'P?A!֛d :ىb;g7O HRh fZ\ B*K߉;Vբ6CtPkɽ\Q6svtfmK0eMȹ/|?:8d,x2@҅``ؿ"a"5G˄,GXU AbSzpInI7;ٮNGa 5ύ?oh j|kcS &/+ zIv|)bFsR,[~?Gk\{=3V 3:f.ꉳԢ Nơ%*"[(YHa,.n)2m`uMhiРP(t;}}Ct4E U3lii! i\ZF 6 (2WI{I+Q "8qAK# S{4Gp *0G2.E 7{Z|FlD~ЏIF\;uݶP*ǐ]T#Q0_W~wBʡqF}K $P ҹLIeayi,&[T((mrIj \Vs-οUXS-}$GnjG&-4^}D<1ґ _w>_eNAl$S-sR<l 1b#휦\X]=Ȋ8=ȱIbF}uTT+Ck:m4Y43zv(onx&8"" s/VKu1bvkxOV󷻗XU$c^\ gsx$ n>3P5C2Xo7}ixuPt_4;u/ ECr^KU8Ӂ{X=btsBK̕.5FTyYUzyer$Mw&JwWe#@B#ׁDVK)Op"I:`dl8қ[3'WMT|ݹ}F;|l!pKD%eХs԰~7֖m:ucG@!LR)I`ҫU2x+3;W6x6n7 7`/"z5KŒZk0LNPǬR>`b0f#Rm g}I6f]16&x׬` (c /He[6fF+BRΌ_Jt%Z׾Sa&=tՎe ccp7'!4#Wi?U%<pDz@}4O 鳖O~*U\UmBʔ2IP/d4_WNC^ B.P#{1\s_b1+?2;Sɹm* AS8 5aZNa Iזh'*q;ҩ9MC|'Tq0'ſs̑uC_ۜSɆ,o(-7rb>٘,PA4!SM9 h曓ae\ qxL|r$oUC_I?` VV<-eb CqfQl>H(Ÿi e9VU'j2 *h9;5s&^*~ʇIpԿJK4#-:`@V.%_6EI k9ĨN#@hxA(tZe4+H18^}Q,AM[ɅNj 2VQ@U yKrC* ;(gQ!)ב#G7_]NK=RXS1ZۊXjRv=/;IP~aAF$A ћc7a^K%.7}Kz {[ۛ uUN(522 xT_6v%:ѕ[@k{`6A|mо`6Qż8((Kh*9a b}lsiWzpc Ag ?*YlSL~L[J {h(ypU,rZeDzH߮LSWxy?VЕ} < ۪90D?9nƱOwkn2["7?c`~?o𑶛J{S_EεdFRWUijϧF ix>~=fswTEѾF1kdƖL _l>=Z@R#&Z;aVNWќc4 ~xPB=[ɥ<}A,6FvXcZkkoIMH1l4ct"j_bU{aQ OD`mh(~Q8\]+n(ڌY.`:z5E~WyQ$ni+Vc/Z Xޝ9AX=WBDE~ ڀAzW:>0 YZAER/data/NYSESW.rda0000644000175400001440000002760413033553047013521 0ustar zeileisusers7zXZi"6!X/E])TW"nRʟt<3n2u5M#\J% z!2cs_KhȴB_ѢYs_. AvƍzVdw&,8x1DZBȺAU :4Ԥ0)_*=z|ȽW*,2v]YŜ]&a΀`H,,YA {\u:,B|;>YiT S2ӹᾐ$LC h?A*g4 uhf'3hFJY6P<} 4n3Xs2EXAf~~syᄌ,#4QωzN"Kx#IZzVm v,+da\8"-,7nH*T,V[vL2Z}0Di@61A) 9PnUEGYg-^h\}&zfPkS[Yukkc}&U*wc$'ϵuF_+e\k1bhC` Nv&= 2u[uB3!Rnkyhd#{(Ixڔ,,7ML xSaĩ,=ˆ3 H |"ʜ[n,.N^:Q\*칷q0: p؀Pj1ۺ2ٷEAM’!}Od阉#IJ1{ IR(Dwϴ|B+۽\/xe.6'.xuOp Y=& H/n@ a ;m,31/y{W8 Ml%kT>RE/^~m:O8-};aF ×g5 A{ۡ_ȼɕ=-;&%u ?Zla[QCS[/5~{@Cz70uP.axsfů*s"VB[Lj4jAwg+9:qi!kκ{d3F<'U,tW}BJʮd8E+02߭[`ӓ}T1 tVfiڌLɽx\,co=S`EwJ۷vpGL\kUP~OιY}bJf"je^U~s7Αk,~HzБYk[&+nY=7yYwbiF_h$1s& VpqYUw6 !Og@n!NWif l\ƒt$I؅i Q]\ZU9L]i[t(3[rf=2Ҹsd[ +!)ip[KUch#:)_AȈɕ(Ͷu_B`W5U/v]L NzEA֜~BFNh=k9sf5; #@8,c6@k^`~n1ИEf+~ژ@i~ѽEf섳fE1 n_( wf\vdSqf4j[-#!XI| B@l8GEllHOe-VTAF=ܹ-R*Aͬ]55( ɵTM^=l[N9 -ֱG+ Mlms)2&)KHiJd9ARk>4^IӌqŨo466tY7/PL R|76<&x ܌پաc\ ,GfH8fŊ:ZU҈3%)V /Yc"a`3B|}d~M鸨E{z?L@ $)^+‚lZ>E墑7?,хzؔMx-R$=CFqF'Kko݋Λ?+P#y7zr{D,# ZVp5n"El#^І ^V*Ɩ]߆(W -CPRYł)x'_)= "NvBӸ>tv1\vd5$ԔMA5*8I>3&֦O*օG4B!ceS,[Ō m]2~QaR-d 3"Z{-g3;IFt4_Ծ*M>2_21p}].@˹ ٦1 |܀D?ȇ,uMINnEݏa5 &,"Ghp#epmk%U]ȎNmOH]pxl_Su 0?"5c*pʮozbt['T\{xTm_ib5fl _fq(qr,Şjv/LB ?)d(hedu.hФ^Odc#K|pZ-xEK^1N).1%}N&%R$A0.t) ~jq>箓ܡ59[|`Ba ;C-W5$!{ e^`5E ' *xn:rql+XAյɆF}<} Da֒;o F5^#ѻ#/2r DȊ[Vu>J,[#!#/wsERi"gB-BIy"d@Qb s4: 5Ϧ|jz̬>/6'嶍H ?3Au)s0e'6A!@T J<TsGps鞣zp DF(-POIl DP|Ǿ@EU,A#ݏ8B*xEk녑`\>jJTX /%+cShBK0: |顯 7d/:0hv82mA/PG6`W.dN'5HSZ3,?_`@0c`#ǵjmA蛖lȻxZ4̡[ifcg9a0f7M}-JpiMyވAEb=4/޷k,Rdn6߰A_$I;5SrqM0C)vrAڭ8i&%D\jL NYF{F j[=%/d P; W_Oi,';564c:GJ:A{VGM2Y"M/s7M]Eqz"`(Rb E_Ibau"M JE$!i6[oc>~ؒ!(Y-5[%=Vƅz2Ű1.`f<eqA _ӏF .]|e^YMlčUjMr]Un`ӥcȘoC=,b]P^0C#\z hz@8_5ʡ n3y+5>m{CbU9{up.ҁ7|Pr)D743u=cya%2IFFthК4h1p&\;-UR5@<> #Q?*r5PЙ/x=;9?Q~ǃ!]?M F`nH;Hx{#ڭЪs#h p0mk'hPKkjɔnN9q]\``0`|sU_?V')ϧTi4_t"+.d)7+5n4 EsOBE,JYf޶LCИXT]B mӓ+!>V,uhY@!Z4bL)_ٕ`@cg,GbtȨ-ߓEA;=eRkh֔+z BBS[{C_IВr+óUP =X(Pj d!\wJ(o>6ѕ} EjMa0Uk\ P5FQ l-ûQDW>}S'Wo5 t:8 /xCqmNGJv*iRFvUί`zh!26;7oM# Z` s-[ "OJ0h-U찳 >]˞793xŹYFbpf[iabAW pvt֯d”z(XRiJ8ƩOΞа^qw lMa{װy5{AuX7fS"X Cʣ$sJ$ص?SU%|ڤoiRކ`YQk?[=yM/cbH!;jv$qĵU~s4Kw,C6 -x&:S"Oy}[C:~(kuRݭ0rL&1?; `{EcԷj80,6KgEh Bt"Tϑc3AaI([[5ܖ|b2C"S_ʝ=@xJy$,PƧ^el#1TY o! Si/ ?,*c醔1b_y[[^JjYh7[ӫ,Q{mOr-P:akQ*«s+-|M=TX5: @K`1K/8D$1 LfL=tΎ"Oʞۡwdk4Vjep42q3t% QzضUxԉP|x߯">^ , TO9B4g (j`.9s*޵- yޗS".}5lׯ:(,I%i~Qwچpq_]n5QaƯIW'-*4vPZ|9bg+E5ѹu ~n;F1xtPzeIT@[!srNF7|ӛq׷Ss?h4_t&g  +cž2ĭT } b IRZ1DyEzMvټ fQqYe"iS!tudB򳅥='1/Q9?z&Xcy⏁dd2k*PA֔3TB|qUkMй jb+F*;CHȩ2NKc bё^l0㋚&)?ԡrl-*Tc?UIޘSg g-Sa #w}"ϑA WƠ=3e$O K>t<ʼnpS-y Hv y|O Xe/҆bV&KjD@  &ϪbQ)(Vtq&I P]L)y0 (R03լWgMU+KJSo'?7e5gÊSZ)d cn=w9<EпفXq<|c=$~"V^G)^d&?-g7\ ;͊sr9ٙ=Ei8<3GO6zjl̠X:K3_oG&C1}V<BCKBhcSYhQ% {mn<U"MppTLhj/S! g%O_jg1-ycP8ainOIbqc͍_Ѡ$Xw6Wh1( zJ\߽9WzpbwRcM`U[Hxˍ:8fKo3>4-EFFdɴr"P#DIӣYf/b4QА1AnKQ=T 3%P1@Ol-c-';!1Z!Dulw!nm`]p¯#崤 Fj6yIlj9Fǭ'1C)K@3L 4Jލ]0q?O?{$ÑESCLFr_jrĊ@Z T1`ND ]2Kt{5k]޿*\5|S^Tڳ7wyd(]44. ŢXBP4 ~3;mj^^]dʤB,'ZcWQC/a(VyiBU>\؄7g2 Ik:>`r$e(9FoMRy^M[f@FF8n o`-9]ePX9-D MªYDMBޑ_0Vu/9.#F{8vɔGT\H!޿ŵig^*d}EY:ryA9?fԀ!4.Ƴ={RGaJ_ɄBS#߽j;Pd:뷣 0t ;ۅ'<{:E/|Һ6R_ SOMϿ^n/ 8W l6%L\86鶼t‡g_Mt8FO4rp7 dtDCk|@%f?WH h{F@{^lz¨YD:{lQ$MY0 4\֬ãIrxb՜׼(ZR(=L Iֽ8 +cv rh_X+;G|-Ø?H??FӸ &R鉂]x+:ޔzSG9f KtɯfN[t9잝#(^ \^R"~s{saA$ ɋUq9PK|dzM_7vi1q:b}ӏHe#"VZ.";v]XohH[^3v`Z`PcWc'o2eIY*&oyk}Ǽlh)St |{c_0um*yƫK (j g  WN|a.dًkӚ&w9L>VRwcn2ei5W?1fF/Y: r|!pW\Ff0G҇Ts'(CQǓp`:擋䊲q/xRpH_p7j&Sk;o|xMhP2+bQLzI[D@+BDZ#rɗ>RIt<:,~C%f/ԟ}P XplO҂4U.UD -|flj-}}4^Jr3[zLiDz{Ms_N?( تЈj8*+ب}vȨmsmßgU.cի{<71= <>.)ʓ8DU&6bhӚ\׬^*u{k1E3Z4(u#(L[Akˢ O ՘I8'D`'J ʑ jIZrB.)nN3"F'_3O C{Jy@Q.ޱz_ Bl IFBa*˕ldv{'zId)@8g8Oh'Ȳв÷b*rjW9(2ә 5 II<й wXrMdpH$"FTy AGX,,W!?΄*.lv4$ƃ>O^Y$;^ 0sUr1&gpՁlͧ&{6 CD;:G#v%Y[ *S3tY> L>[0GCzg}ʼndZ$8\4?-9n>_p 6ꌞiFz|` ]6˗4@x1qmIb7 ɖ\ 2c:,5t^%@O ѯHP>Kq@$@;\Ys0 YZAER/data/ArgentinaCPI.rda0000644000175400001440000000103213033553033014713 0ustar zeileisusers r0b```b`ffb`b2Y# 'q,JO+Ktd``z?FfI:׹l _ T=n @\_r`QoX@Kc:pY`c kvʋ@b{$Az! ` T!C@s!4BGBI(ktHtC-Y2[9C.D] n0y>Iw̷س~؟K_Cԭb<^ l߂r1s58s lΉx+`-S_O0vX7FP|92u# Ƚ> {UYAh(wX tx4ȇ_`x`~`:+X].|S`~U0nW|w;}(ĝ z9'>,Ṵ0c8Q(sI1ș0$*Ch(@šX\ d 2D0AER/R/0000755000175400001440000000000013033553032011252 5ustar zeileisusersAER/R/tobit.R0000644000175400001440000002102312560140043012512 0ustar zeileisusers## some convenience functions generally applicable to survreg ## hopefully in survival soon deviance.survreg <- function(object, ...) sum(residuals(object, type = "deviance")^2) fitted.survreg <- function(object, ...) predict(object, type = "response", se.fit = FALSE) nobs.survreg <- function(object, ...) length(object$linear.predictors) weights.survreg <- function(object, ...) model.weights(model.frame(object)) ## convenience tobit() interface to survreg() tobit <- function(formula, left = 0, right = Inf, dist = "gaussian", subset = NULL, data = list(), ...) { ## remember original environment oenv <- environment(formula) oformula <- eval(formula) ## process censoring stopifnot(all(left < right)) lfin <- any(is.finite(left)) rfin <- any(is.finite(right)) ## formula processing: replace dependent variable ## original y <- formula[[2]] if(lfin & rfin) { ## interval censoring formula[[2]] <- call("Surv", call("ifelse", call(">=", y, substitute(right)), substitute(right), call("ifelse", call("<=", y, substitute(left)), substitute(left), y)), time2 = substitute(right), call("ifelse", call(">=", y, substitute(right)), 0, call("ifelse", call("<=", y, substitute(left)), 2, 1)), type = "interval") } else if(!rfin) { ## left censoring formula[[2]] <- call("Surv", call("ifelse", call("<=", y, substitute(left)), substitute(left), y), call(">", y, substitute(left)) , type = "left") } else { ## right censoring formula[[2]] <- call("Surv", call("ifelse", call(">=", y, substitute(right)), substitute(right), y), call("<", y, substitute(right)) , type = "right") } ## call survreg cl <- ocl <- match.call() cl$formula <- formula cl$left <- NULL cl$right <- NULL cl$dist <- dist cl[[1]] <- as.name("survreg") rval <- eval(cl, oenv) ## slightly modify result class(rval) <- c("tobit", class(rval)) ocl$formula <- oformula rval$call <- ocl rval$formula <- formula return(rval) } ## add printing and summary methods that are more similar to ## the corresponding methods for lm objects print.tobit <- function(x, digits = max(3, getOption("digits") - 3), ...) { ## failure if(!is.null(x$fail)) { cat("tobit/survreg failed.", x$fail, "\n") return(invisible(x)) } ## call cat("\nCall:\n") cat(paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") ## coefficients coef <- x$coefficients if(any(nas <- is.na(coef))) { if (is.null(names(coef))) names(coef) <- paste("b", 1:length(coef), sep = "") cat("Coefficients: (", sum(nas), " not defined because of singularities)\n", sep = "") } else cat("Coefficients:\n") print.default(format(coef, digits = digits), print.gap = 2, quote = FALSE) ## scale if(nrow(x$var) == length(coef)) cat("\nScale fixed at", format(x$scale, digits = digits), "\n") else if (length(x$scale) == 1) cat("\nScale:", format(x$scale, digits = digits), "\n") else { cat("\nScale:\n") print(format(x$scale, digits = digits), ...) } ## return cat("\n") invisible(x) } summary.tobit <- function(object, correlation = FALSE, symbolic.cor = FALSE, vcov. = NULL, ...) { ## failure if(!is.null(object$fail)) { warning("tobit/survreg failed.", object$fail, " No summary provided\n") return(invisible(object)) } ## rank if(all(is.na(object$coefficients))) { warning("This model has zero rank --- no summary is provided") return(invisible(object)) } ## vcov if(is.null(vcov.)) vcov. <- vcov(object) else { if(is.function(vcov.)) vcov. <- vcov.(object) } ## coefmat coef <- coeftest(object, vcov. = vcov., ...) attr(coef, "method") <- NULL ## Wald test nc <- length(coef(object)) has_intercept <- attr(terms(object), "intercept") > 0.5 wald <- if(nc <= has_intercept) NULL else linearHypothesis(object, if(has_intercept) cbind(0, diag(nc-1)) else diag(nc), vcov. = vcov.)[2,3] ## instead of: waldtest(object, vcov = vcov.) ## correlation correlation <- if(correlation) cov2cor(vcov.) else NULL ## distribution dist <- object$dist if(is.character(dist)) sd <- survreg.distributions[[dist]] else sd <- dist if(length(object$parms)) pprint <- paste(sd$name, "distribution: parmameters =", object$parms) else pprint <- paste(sd$name, "distribution") ## number of observations nobs <- as.vector(table(factor(object$y[,2], levels = 2:0))) nobs <- c(sum(nobs), nobs) names(nobs) <- c("Total", "Left-censored", "Uncensored", "Right-censored") rval <- object[match(c("call", "df", "loglik", "iter", "na.action", "idf", "scale"), names(object), nomatch = 0)] rval <- c(rval, list(coefficients = coef, correlation = correlation, symbolic.cor = symbolic.cor, parms = pprint, n = nobs, wald = wald)) class(rval) <- "summary.tobit" return(rval) } print.summary.tobit <- function(x, digits = max(3, getOption("digits") - 3), ...) { ## call cat("\nCall:\n") cat(paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") ## observations and censoring if(length(x$na.action)) cat("Observations: (", naprint(x$na.action), ")\n", sep = "") else cat("Observations:\n") print(x$n) ## coefficients if(any(nas <- is.na(x$coefficients[,1]))) cat("\nCoefficients: (", sum(nas), " not defined because of singularities)\n", sep = "") else cat("\nCoefficients:\n") printCoefmat(x$coefficients, digits = digits, ...) ## scale if("Log(scale)" %in% rownames(x$coefficients)) cat("\nScale:", format(x$scale, digits = digits), "\n") else cat("\nScale fixed at", format(x$scale, digits = digits), "\n") ## logLik and Chi-squared test cat(paste("\n", x$parms, "\n", sep = "")) cat("Number of Newton-Raphson Iterations:", format(trunc(x$iter)), "\n") cat("Log-likelihood:", formatC(x$loglik[2], digits = digits), "on", x$df, "Df\n") if(!is.null(x$wald)) cat("Wald-statistic:", formatC(x$wald, digits = digits), "on", sum(x$df) - x$idf, "Df, p-value:", format.pval(pchisq(x$wald, sum(x$df) - x$idf, lower.tail = FALSE)), "\n") ## correlation correl <- x$correlation if (!is.null(correl)) { p <- NCOL(correl) if (p > 1) { cat("\nCorrelation of Coefficients:\n") if (is.logical(x$symbolic.cor) && x$symbolic.cor) { print(symnum(correl, abbr.colnames = NULL)) } else { correl <- format(round(correl, 2), nsmall = 2, digits = digits) correl[!lower.tri(correl)] <- "" print(correl[-1, -p, drop = FALSE], quote = FALSE) } } } ## return cat("\n") invisible(x) } ## as the apparent y ~ ... and actual Surv(y) ~ ... formula ## differ, some standard functionality has to be done by work-arounds formula.tobit <- function(x, ...) x$formula model.frame.tobit <- function(formula, ...) { Call <- formula$call Call[[1]] <- as.name("model.frame") Call <- Call[match(c("", "formula", "data", "weights", "subset", "na.action"), names(Call), 0)] dots <- list(...) nargs <- dots[match(c("data", "na.action", "subset"), names(dots), 0)] Call[names(nargs)] <- nargs Call$formula <- formula$formula env <- environment(formula$terms) if(is.null(env)) env <- parent.frame() eval(Call, env) } update.tobit <- function(object, formula., ..., evaluate = TRUE) { call <- object$call extras <- match.call(expand.dots = FALSE)$... if(!missing(formula.)) { ff <- formula(object) ff[[2]] <- call$formula[[2]] call$formula <- update.formula(ff, formula.) } if (length(extras) > 0) { existing <- !is.na(match(names(extras), names(call))) for (a in names(extras)[existing]) call[[a]] <- extras[[a]] if (any(!existing)) { call <- c(as.list(call), extras[!existing]) call <- as.call(call) } } if(evaluate) eval(call, parent.frame()) else call } waldtest.tobit <- function(object, ..., test = c("Chisq", "F"), name = NULL) { if(is.null(name)) name <- function(x) paste(deparse(x$call$formula), collapse="\n") waldtest.default(object, ..., test = match.arg(test), name = name) } lrtest.tobit <- function(object, ..., name = NULL) { if(is.null(name)) name <- function(x) paste(deparse(x$call$formula), collapse="\n") lrtest.default(object, ..., name = name) } linearHypothesis.tobit <- function(model, hypothesis.matrix, rhs = NULL, vcov. = NULL, ...) { if(is.null(vcov.)) { vcov. <- vcov(model) } else { if(is.function(vcov.)) vcov. <- vcov.(model) } vcov. <- vcov.[-nrow(vcov.), -ncol(vcov.)] model$formula <- model$call$formula car::linearHypothesis.default(model, hypothesis.matrix = hypothesis.matrix, rhs = rhs, vcov. = vcov., ...) } AER/R/dispersiontest.R0000644000175400001440000000404012415720605014457 0ustar zeileisusersdispersiontest <- function(object, trafo = NULL, alternative = c("greater", "two.sided", "less")) { if(!inherits(object, "glm") || family(object)$family != "poisson") stop("only Poisson GLMs can be tested") alternative <- match.arg(alternative) otrafo <- trafo if(is.numeric(otrafo)) trafo <- function(x) x^otrafo y <- if(is.null(object$y)) model.response(model.frame(object)) else object$y yhat <- fitted(object) aux <- ((y - yhat)^2 - y)/yhat if(is.null(trafo)) { STAT <- sqrt(length(aux)) * mean(aux)/sd(aux) NVAL <- c(dispersion = 1) EST <- c(dispersion = mean(aux) + 1) } else { auxreg <- lm(aux ~ 0 + I(trafo(yhat)/yhat)) STAT <- as.vector(summary(auxreg)$coef[1,3]) NVAL <- c(alpha = 0) EST <- c(alpha = as.vector(coef(auxreg)[1])) } rval <- list(statistic = c(z = STAT), p.value = switch(alternative, "greater" = pnorm(STAT, lower.tail = FALSE), "two.sided" = pnorm(abs(STAT), lower.tail = FALSE)*2, "less" = pnorm(STAT)), estimate = EST, null.value = NVAL, alternative = alternative, method = switch(alternative, "greater" = "Overdispersion test", "two.sided" = "Dispersion test", "less" = "Underdispersion test"), data.name = deparse(substitute(object))) class(rval) <- "htest" return(rval) } ## NB. score tests a la DCluster now implemented in countreg ## ## TODO: ## LRT for Poi vs NB2. ## fix DCluster::test.nb.pois() and pscl::odTest() ## proposed interface: ## poistest(object, object2 = NULL) ## where either a "negbin" and a "glm" object have to be ## supplied or only one of them, then update via either ## cl <- object$call ## cl[[1]] <- as.name("glm.nb") ## cl$link <- object$family$link ## cl$family <- NULL ## or ## cl <- object$call ## cl[[1]] <- as.name("glm") ## cl$family <- call("poisson") ## cl$family$link <- object$family$link ## cl$link <- NULL ## cl$init.theta <- NULL ## and evaluate the call "cl" appropriately. AER/R/ivreg.R0000644000175400001440000003514612670117311012524 0ustar zeileisusersivreg <- function(formula, instruments, data, subset, na.action, weights, offset, contrasts = NULL, model = TRUE, y = TRUE, x = FALSE, ...) { ## set up model.frame() call cl <- match.call() if(missing(data)) data <- environment(formula) mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "subset", "na.action", "weights", "offset"), names(mf), 0) mf <- mf[c(1, m)] mf$drop.unused.levels <- TRUE ## handle instruments for backward compatibility if(!missing(instruments)) { formula <- Formula::as.Formula(formula, instruments) cl$instruments <- NULL cl$formula <- formula(formula) } else { formula <- Formula::as.Formula(formula) } stopifnot(length(formula)[1] == 1L, length(formula)[2] %in% 1:2) ## try to handle dots in formula has_dot <- function(formula) inherits(try(terms(formula), silent = TRUE), "try-error") if(has_dot(formula)) { f1 <- formula(formula, rhs = 1) f2 <- formula(formula, lhs = 0, rhs = 2) if(!has_dot(f1) & has_dot(f2)) formula <- Formula::as.Formula(f1, update(formula(formula, lhs = 0, rhs = 1), f2)) } ## call model.frame() mf$formula <- formula mf[[1]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) ## extract response, terms, model matrices Y <- model.response(mf, "numeric") mt <- terms(formula, data = data) mtX <- terms(formula, data = data, rhs = 1) X <- model.matrix(mtX, mf, contrasts) if(length(formula)[2] < 2L) { mtZ <- NULL Z <- NULL } else { mtZ <- delete.response(terms(formula, data = data, rhs = 2)) Z <- model.matrix(mtZ, mf, contrasts) } ## weights and offset weights <- model.weights(mf) offset <- model.offset(mf) if(is.null(offset)) offset <- 0 if(length(offset) == 1) offset <- rep(offset, NROW(Y)) offset <- as.vector(offset) ## call default interface rval <- ivreg.fit(X, Y, Z, weights, offset, ...) ## enhance information stored in fitted model object rval$call <- cl rval$formula <- formula(formula) rval$terms <- list(regressors = mtX, instruments = mtZ, full = mt) rval$na.action <- attr(mf, "na.action") rval$levels <- .getXlevels(mt, mf) rval$contrasts <- list(regressors = attr(X, "contrasts"), instruments = attr(Z, "contrasts")) if(model) rval$model <- mf if(y) rval$y <- Y if(x) rval$x <- list(regressors = X, instruments = Z, projected = rval$x) else rval$x <- NULL class(rval) <- "ivreg" return(rval) } ivreg.fit <- function(x, y, z, weights, offset, ...) { ## model dimensions n <- NROW(y) p <- ncol(x) ## defaults if(missing(z)) z <- NULL if(missing(weights)) weights <- NULL if(missing(offset)) offset <- rep(0, n) ## sanity checks stopifnot(n == nrow(x)) if(!is.null(z)) stopifnot(n == nrow(z)) if(!is.null(weights)) stopifnot(n == NROW(weights)) stopifnot(n == NROW(offset)) ## project regressors x on image of instruments z if(!is.null(z)) { if(ncol(z) < ncol(x)) warning("more regressors than instruments") auxreg <- if(is.null(weights)) lm.fit(z, x, ...) else lm.wfit(z, x, weights, ...) xz <- as.matrix(auxreg$fitted.values) # pz <- z %*% chol2inv(auxreg$qr$qr) %*% t(z) colnames(xz) <- colnames(x) } else { xz <- x # pz <- diag(NROW(x)) # colnames(pz) <- rownames(pz) <- rownames(x) } ## main regression fit <- if(is.null(weights)) lm.fit(xz, y, offset = offset, ...) else lm.wfit(xz, y, weights, offset = offset, ...) ## model fit information ok <- which(!is.na(fit$coefficients)) yhat <- drop(x[, ok, drop = FALSE] %*% fit$coefficients[ok]) names(yhat) <- names(y) res <- y - yhat ucov <- chol2inv(fit$qr$qr[1:length(ok), 1:length(ok), drop = FALSE]) colnames(ucov) <- rownames(ucov) <- names(fit$coefficients[ok]) rss <- if(is.null(weights)) sum(res^2) else sum(weights * res^2) ## hat <- diag(x %*% ucov %*% t(x) %*% pz) ## names(hat) <- rownames(x) rval <- list( coefficients = fit$coefficients, residuals = res, fitted.values = yhat, weights = weights, offset = if(identical(offset, rep(0, n))) NULL else offset, n = n, nobs = if(is.null(weights)) n else sum(weights > 0), rank = fit$rank, df.residual = fit$df.residual, cov.unscaled = ucov, sigma = sqrt(rss/fit$df.residual), ## NOTE: Stata divides by n here and uses z tests rather than t tests... # hatvalues = hat, x = xz ) return(rval) } vcov.ivreg <- function(object, ...) object$sigma^2 * object$cov.unscaled bread.ivreg <- function (x, ...) x$cov.unscaled * x$nobs estfun.ivreg <- function (x, ...) { xmat <- model.matrix(x) if(any(alias <- is.na(coef(x)))) xmat <- xmat[, !alias, drop = FALSE] wts <- weights(x) if(is.null(wts)) wts <- 1 res <- residuals(x) rval <- as.vector(res) * wts * xmat attr(rval, "assign") <- NULL attr(rval, "contrasts") <- NULL return(rval) } hatvalues.ivreg <- function(model, ...) { xz <- model.matrix(model, component = "projected") x <- model.matrix(model, component = "regressors") z <- model.matrix(model, component = "instruments") solve_qr <- function(x) chol2inv(qr.R(qr(x))) diag(x %*% solve_qr(xz) %*% t(x) %*% z %*% solve_qr(z) %*% t(z)) } terms.ivreg <- function(x, component = c("regressors", "instruments"), ...) x$terms[[match.arg(component)]] model.matrix.ivreg <- function(object, component = c("projected", "regressors", "instruments"), ...) { component <- match.arg(component) if(!is.null(object$x)) rval <- object$x[[component]] else if(!is.null(object$model)) { X <- model.matrix(object$terms$regressors, object$model, contrasts = object$contrasts$regressors) Z <- if(is.null(object$terms$instruments)) NULL else model.matrix(object$terms$instruments, object$model, contrasts = object$contrasts$instruments) w <- weights(object) XZ <- if(is.null(Z)) X else if(is.null(w)) lm.fit(Z, X)$fitted.values else lm.wfit(Z, X, w)$fitted.values rval <- switch(component, "regressors" = X, "instruments" = Z, "projected" = XZ) } else stop("not enough information in fitted model to return model.matrix") return(rval) } predict.ivreg <- function(object, newdata, na.action = na.pass, ...) { if(missing(newdata)) fitted(object) else { mf <- model.frame(delete.response(object$terms$full), newdata, na.action = na.action, xlev = object$levels) X <- model.matrix(delete.response(object$terms$regressors), mf, contrasts = object$contrasts$regressors) ok <- !is.na(object$coefficients) drop(X[, ok, drop = FALSE] %*% object$coefficients[ok]) } } print.ivreg <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:\n", deparse(x$call), "\n\n", sep = "") cat("Coefficients:\n") print.default(format(coef(x), digits = digits), print.gap = 2, quote = FALSE) cat("\n") invisible(x) } summary.ivreg <- function(object, vcov. = NULL, df = NULL, diagnostics = FALSE, ...) { ## weighted residuals res <- object$residuals y <- object$fitted.values + res n <- NROW(res) w <- object$weights if(is.null(w)) w <- rep(1, n) res <- res * sqrt(w) ## R-squared rss <- sum(res^2) if(attr(object$terms$regressors, "intercept")) { tss <- sum(w * (y - weighted.mean(y, w))^2) dfi <- 1 } else { tss <- sum(w * y^2) dfi <- 0 } r.squared <- 1 - rss/tss adj.r.squared <- 1 - (1 - r.squared) * ((n - dfi)/object$df.residual) ## degrees of freedom (for z vs. t test) if(is.null(df)) df <- object$df.residual if(!is.finite(df)) df <- 0 if(df > 0 & (df != object$df.residual)) { df <- object$df.residual } ## covariance matrix if(is.null(vcov.)) vc <- vcov(object) else { if(is.function(vcov.)) vc <- vcov.(object) else vc <- vcov. } ## Wald test of each coefficient cf <- lmtest::coeftest(object, vcov. = vc, df = df, ...) attr(cf, "method") <- NULL class(cf) <- "matrix" ## Wald test of all coefficients Rmat <- if(attr(object$terms$regressors, "intercept")) cbind(0, diag(length(na.omit(coef(object)))-1)) else diag(length(na.omit(coef(object)))) waldtest <- car::linearHypothesis(object, Rmat, vcov. = vcov., test = ifelse(df > 0, "F", "Chisq"), singular.ok = TRUE) waldtest <- c(waldtest[2,3], waldtest[2,4], abs(waldtest[2,2]), if(df > 0) waldtest[2,1] else NULL) ## diagnostic tests diag <- if(diagnostics) ivdiag(object, vcov. = vcov.) else NULL rval <- list( call = object$call, terms = object$terms, residuals = res, weights <- object$weights, coefficients = cf, sigma = object$sigma, df = c(object$rank, if(df > 0) df else Inf, object$rank), ## aliasing r.squared = r.squared, adj.r.squared = adj.r.squared, waldtest = waldtest, vcov = vc, diagnostics = diag) class(rval) <- "summary.ivreg" return(rval) } print.summary.ivreg <- function(x, digits = max(3, getOption("digits") - 3), signif.stars = getOption("show.signif.stars"), ...) { cat("\nCall:\n") cat(paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") cat(if(!is.null(x$weights) && diff(range(x$weights))) "Weighted ", "Residuals:\n", sep = "") if(NROW(x$residuals) > 5L) { nam <- c("Min", "1Q", "Median", "3Q", "Max") rq <- if(length(dim(x$residuals)) == 2) structure(apply(t(x$residuals), 1, quantile), dimnames = list(nam, dimnames(x$residuals)[[2]])) else structure(quantile(x$residuals), names = nam) print(rq, digits = digits, ...) } else { print(x$residuals, digits = digits, ...) } cat("\nCoefficients:\n") printCoefmat(x$coefficients, digits = digits, signif.stars = signif.stars, signif.legend = signif.stars & is.null(x$diagnostics), na.print = "NA", ...) if(!is.null(x$diagnostics)) { cat("\nDiagnostic tests:\n") printCoefmat(x$diagnostics, cs.ind = 1L:2L, tst.ind = 3L, has.Pvalue = TRUE, P.values = TRUE, digits = digits, signif.stars = signif.stars, na.print = "NA", ...) } cat("\nResidual standard error:", format(signif(x$sigma, digits)), "on", x$df[2L], "degrees of freedom\n") cat("Multiple R-Squared:", formatC(x$r.squared, digits = digits)) cat(",\tAdjusted R-squared:", formatC(x$adj.r.squared, digits = digits), "\nWald test:", formatC(x$waldtest[1L], digits = digits), "on", x$waldtest[3L], if(length(x$waldtest) > 3L) c("and", x$waldtest[4L]) else NULL, "DF, p-value:", format.pval(x$waldtest[2L], digits = digits), "\n\n") invisible(x) } anova.ivreg <- function(object, object2, test = "F", vcov = NULL, ...) { rval <- waldtest(object, object2, test = test, vcov = vcov) if(is.null(vcov)) { head <- attr(rval, "heading") head[1] <- "Analysis of Variance Table\n" rss <- sapply(list(object, object2), function(x) sum(residuals(x)^2)) dss <- c(NA, -diff(rss)) rval <- cbind(rval, cbind("RSS" = rss, "Sum of Sq" = dss))[,c(1L, 5L, 2L, 6L, 3L:4L)] attr(rval, "heading") <- head class(rval) <- c("anova", "data.frame") } return(rval) } ivdiag <- function(obj, vcov. = NULL) { ## extract data y <- model.response(model.frame(obj)) x <- model.matrix(obj, component = "regressors") z <- model.matrix(obj, component = "instruments") ## endogenous/instrument variables endo <- which(!(colnames(x) %in% colnames(z))) inst <- which(!(colnames(z) %in% colnames(x))) if((length(endo) <= 0L) | (length(inst) <= 0L)) stop("no endogenous/instrument variables") ## return value rval <- matrix(NA, nrow = length(endo) + 2L, ncol = 4L) colnames(rval) <- c("df1", "df2", "statistic", "p-value") rownames(rval) <- c(if(length(endo) > 1L) paste0("Weak instruments (", colnames(x)[endo], ")") else "Weak instruments", "Wu-Hausman", "Sargan") ## convenience functions lmfit <- function(x, y) { rval <- lm.fit(x, y) rval$x <- x rval$y <- y return(rval) } rss <- function(obj) sum(obj$residuals^2) wald <- function(obj0, obj1, vcov. = NULL) { df <- c(obj1$rank - obj0$rank, obj1$df.residual) if(!is.function(vcov.)) { w <- ((rss(obj0) - rss(obj1)) / df[1L]) / (rss(obj1)/df[2L]) } else { if(NCOL(obj0$coefficients) > 1L) { cf0 <- structure(as.vector(obj0$coefficients), .Names = c(outer(rownames(obj0$coefficients), colnames(obj0$coefficients), paste, sep = ":"))) cf1 <- structure(as.vector(obj1$coefficients), .Names = c(outer(rownames(obj1$coefficients), colnames(obj1$coefficients), paste, sep = ":"))) } else { cf0 <- obj0$coefficients cf1 <- obj1$coefficients } cf0 <- na.omit(cf0) cf1 <- na.omit(cf1) ovar <- which(!(names(cf1) %in% names(cf0))) vc <- vcov.(lm(obj1$y ~ 0 + obj1$x)) w <- t(cf1[ovar]) %*% solve(vc[ovar,ovar]) %*% cf1[ovar] w <- w / df[1L] } pval <- pf(w, df[1L], df[2L], lower.tail = FALSE) c(df, w, pval) } # Test for weak instruments for(i in seq_along(endo)) { aux0 <- lmfit(z[, -inst, drop = FALSE], x[, endo[i]]) aux1 <- lmfit(z, x[, endo[i]]) rval[i, ] <- wald(aux0, aux1, vcov. = vcov.) } ## Wu-Hausman test for endogeneity if(length(endo) > 1L) aux1 <- lmfit(z, x[, endo]) xfit <- as.matrix(aux1$fitted.values) colnames(xfit) <- paste("fit", colnames(xfit), sep = "_") auxo <- lmfit( x, y) auxe <- lmfit(cbind(x, xfit), y) rval[nrow(rval) - 1L, ] <- wald(auxo, auxe, vcov. = vcov.) ## Sargan test of overidentifying restrictions r <- residuals(obj) auxs <- lmfit(z, r) rval[nrow(rval), 1L] <- length(inst) - length(endo) if(rval[nrow(rval), 1L] > 0L) { rval[nrow(rval), 3L] <- length(r) * (1 - rss(auxs)/sum((r - mean(r))^2)) rval[nrow(rval), 4L] <- pchisq(rval[nrow(rval), 3L], rval[nrow(rval), 1L], lower.tail = FALSE) } return(rval) } ## If #Instruments = #Regressors then ## b = (Z'X)^{-1} Z'y ## and solves the estimating equations ## Z' (y - X beta) = 0 ## For ## cov(y) = Omega ## the following holds ## cov(b) = (Z'X)^{-1} Z' Omega Z (X'Z)^{-1} ## ## Generally: ## b = (X' P_Z X)^{-1} X' P_Z y ## with estimating equations ## X' P_Z (y - X beta) = 0 ## where P_Z is the usual projector (hat matrix wrt Z) and ## cov(b) = (X' P_Z X)^{-1} X' P_Z Omega P_Z X (X' P_Z X)^{-1} ## Thus meat is X' P_Z Omega P_Z X and bread i (X' P_Z X)^{-1} ## ## See ## http://www.stata.com/support/faqs/stat/2sls.html AER/R/coeftest-methods.R0000644000175400001440000000432512270216037014661 0ustar zeileisuserscoeftest.multinom <- function(x, vcov. = NULL, df = NULL, ...) { ## extract coefficients est <- coef(x) if(!is.null(dim(est))) { est <- structure(as.vector(t(est)), names = as.vector(t(outer(rownames(est), colnames(est), paste, sep = ":")))) } ## process vcov. if(is.null(vcov.)) vc <- vcov(x) else { if(is.function(vcov.)) vc <- vcov.(x) else vc <- vcov. } se <- sqrt(diag(vc)) tval <- as.vector(est)/se ## process degrees of freedom if(is.null(df)) df <- Inf if(is.finite(df) && df > 0) { pval <- 2 * pt(abs(tval), df = df, lower.tail = FALSE) cnames <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)") mthd <- "t" } else { pval <- 2 * pnorm(abs(tval), lower.tail = FALSE) cnames <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)") mthd <- "z" } rval <- cbind(est, se, tval, pval) colnames(rval) <- cnames class(rval) <- "coeftest" attr(rval, "method") <- paste(mthd, "test of coefficients") return(rval) } coeftest.polr <- function(x, vcov. = NULL, df = NULL, ...) { ## extract coefficients est <- c(x$coefficients, x$zeta) ## process vcov. if(is.null(vcov.)) vc <- vcov(x) else { if(is.function(vcov.)) vc <- vcov.(x) else vc <- vcov. } se <- sqrt(diag(vc)) tval <- as.vector(est)/se ## process degrees of freedom if(is.null(df)) df <- Inf if(is.finite(df) && df > 0) { pval <- 2 * pt(abs(tval), df = df, lower.tail = FALSE) cnames <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)") mthd <- "t" } else { pval <- 2 * pnorm(abs(tval), lower.tail = FALSE) cnames <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)") mthd <- "z" } rval <- cbind(est, se, tval, pval) colnames(rval) <- cnames class(rval) <- "coeftest" attr(rval, "method") <- paste(mthd, "test of coefficients") return(rval) } lrtest.fitdistr <- function(object, ..., name = NULL) { if(is.null(name)) name <- function(x) if(is.null(names(x$estimate))) { paste(round(x$estimate, digits = max(getOption("digits") - 3, 2)), collapse = ", ") } else { paste(names(x$estimate), "=", round(x$estimate, digits = max(getOption("digits") - 3, 2)), collapse = ", ") } lrtest.default(object, ..., name = name) } AER/vignettes/0000755000175400001440000000000013033553032013061 5ustar zeileisusersAER/vignettes/Sweave-journals.Rnw0000644000175400001440000000103412225031401016625 0ustar zeileisusers%\VignetteIndexEntry{Sweave Example: Linear Regression for Economics Journals Data} \documentclass[a4paper]{article} \begin{document} We fit a linear regression for the economic journals demand model. <<>>= data("Journals", package = "AER") journals_lm <- lm(log(subs) ~ log(price/citations), data = Journals) journals_lm @ A scatter plot with the fitted regression line is shown below. \begin{center} <>= plot(log(subs) ~ log(price/citations), data = Journals) abline(journals_lm) @ \end{center} \end{document} AER/vignettes/AER.Rnw0000644000175400001440000003124313023074251014163 0ustar zeileisusers\documentclass[nojss]{jss} %% need no \usepackage{Sweave} \usepackage{thumbpdf} %% new commands \newcommand{\class}[1]{``\code{#1}''} \newcommand{\fct}[1]{\code{#1()}} \SweaveOpts{engine=R, eps=FALSE, keep.source = TRUE} <>= options(prompt = "R> ", digits = 4, show.signif.stars = FALSE) @ %%\VignetteIndexEntry{Applied Econometrics with R: Package Vignette and Errata} %%\VignettePackage{AER} %%\VignetteDepends{AER} %%\VignetteKeywords{econometrics, statistical software, R} \author{Christian Kleiber\\Universit\"at Basel \And Achim Zeileis\\Universit\"at Innsbruck} \Plainauthor{Christian Kleiber, Achim Zeileis} \title{Applied Econometrics with \proglang{R}:\\Package Vignette and Errata} \Plaintitle{Applied Econometrics with R: Package Vignette and Errata} \Shorttitle{\pkg{AER}: Package Vignette and Errata} \Keywords{econometrics, statistical software, \proglang{R}} \Plainkeywords{econometrics, statistical software, R} \Abstract{ ``Applied Econometrics with \proglang{R}'' \citep[Springer-Verlag, ISBN~978-0-387-77316-2, pp.~vii+222]{aer:Kleiber+Zeileis:2008} is the first book on applied econometrics using the \proglang{R}~system for statistical computing and graphics \citep{aer:R:2016}. It presents hands-on examples for a wide range of econometric models, from classical linear regression models for cross-section, time series or panel data and the common non-linear models of microeconometrics, such as logit, probit, tobit models as well as regression models for count data, to recent semiparametric extensions. In addition, it provides a chapter on programming, including simulations, optimization and an introduction to \proglang{R} tools enabling reproducible econometric research. The methods are presented by illustrating, among other things, the fitting of wage equations, growth regressions, dynamic regressions and time series models as well as various models of microeconometrics. The book is accompanied by the \proglang{R} package \pkg{AER} \citep{aer:Kleiber+Zeileis:2016} which contains some new \proglang{R} functionality, some 100 data sets taken from a wide variety of sources, the full source code for all examples used in the book, as well as further worked examples, e.g., from popular textbooks. This vignette provides an overview of the package contents and contains a list of errata for the book. } \Address{ Christian Kleiber\\ Faculty of Business and Economics\\ Universit\"at Basel\\ Peter Merian-Weg 6\\ 4002 Basel, Switzerland\\ E-mail: \email{Christian.Kleiber@unibas.ch}\\ URL: \url{https://wwz.unibas.ch/kleiber/}\\ Achim Zeileis\\ Department of Statistics\\ Faculty of Economics and Statistics\\ Universit\"at Innsbruck\\ Universit\"atsstr.~15\\ 6020 Innsbruck, Austria\\ E-mail: \email{Achim.Zeileis@R-project.org}\\ URL: \url{https://eeecon.uibk.ac.at/~zeileis/} } \begin{document} \section{Package overview} \subsection[R code from the book]{\proglang{R} code from the book} The full \proglang{R} code from the book is provided in the demos for the package \pkg{AER}. The source scripts can be found in the \code{demo} directory of the package and executed interactively by calling \fct{demo}, as in % <>= demo("Ch-Intro", package = "AER") @ % One demo per chapter is provided: \begin{itemize} \item \code{Ch-Intro} (Chapter~1: Introduction), \item \code{Ch-Basics} (Chapter~2: Basics), \item \code{Ch-LinearRegression} (Chapter~3: Linear Regression), \item \code{Ch-Validation} (Chapter~4: Diagnostics and Alternative Methods of Regression), \item \code{Ch-Microeconometrics} (Chapter~5: Models of Microeconometrics), \item \code{Ch-TimeSeries} (Chapter~6: Time Series), \item \code{Ch-Programming} (Chapter~7: Programming Your Own Analysis). \end{itemize} This list of demos is also shown by \code{demo(package = "AER")}. The same scripts are contained in the \code{tests} directory of the package so that they are automatically checked and compared with the desired output provided in \code{.Rout.save} files. To make the code fully reproducible and to avoid some lengthy computations in the daily checks, a few selected code chunks are commented out in the scripts. Also, for technical reasons, some graphics code chunks are repeated, once commented out and once without comments. \subsection{Data sets} The \pkg{AER} package includes some 100 data sets from leading applied econometrics journals and popular econometrics textbooks. Many data sets have been obtained from the data archive of the \emph{Journal of Applied Econometrics} and the (now defunct) data archive of the \emph{Journal of Business \& Economic Statistics} (see note below). Some of these are used in recent textbooks, among them \cite{aer:Baltagi:2002}, \cite{aer:Davidson+MacKinnon:2004}, \cite{aer:Greene:2003}, \cite{aer:Stock+Watson:2007}, and \cite{aer:Verbeek:2004}. In addition, we provide all further data sets from \cite{aer:Baltagi:2002}, \cite{aer:Franses:1998}, \cite{aer:Greene:2003}, \cite{aer:Stock+Watson:2007}, and \cite{aer:Winkelmann+Boes:2009}. Selected data sets from \cite{aer:Franses+vanDijk+Opschoor:2014} are also included. Detailed information about the source of each data set, descriptions of the variables included, and usually also examples for typical analyses are provided on the respective manual pages. A full list of all data sets in \pkg{AER} can be obtained via % <>= data(package = "AER") @ % In addition, manual pages corresponding to selected textbooks are available. They list all data sets from the respective book and provide extensive code for replicating many of the empirical examples. See, for example, <>= help("Greene2003", package = "AER") @ for data sets and code for \cite{aer:Greene:2003}. Currently available manual pages are: \begin{itemize} \item \code{Baltagi2002} for \cite{aer:Baltagi:2002}, \item \code{CameronTrivedi1998} for \cite{aer:Cameron+Trivedi:1998}, \item \code{Franses1998} for \cite{aer:Franses:1998}, \item \code{Greene2003} for \cite{aer:Greene:2003}, \item \code{StockWatson2007} for \cite{aer:Stock+Watson:2007}. \item \code{WinkelmannBoes2009} for \cite{aer:Winkelmann+Boes:2009}. \end{itemize} \subsection[New R functions]{New \proglang{R} functions} \pkg{AER} provides a few new \proglang{R} functions extending or complementing methods previously available in \proglang{R}: \begin{itemize} \item \fct{tobit} is a convenience interface to \fct{survreg} from package \pkg{survival} for fitting tobit regressions to censored data. In addition to the fitting function itself, the usual set of accessor and extractor functions is provided, e.g., \fct{print}, \fct{summary}, \fct{logLik}, etc. For more details see \code{?tobit}. \item \fct{ivreg} fits instrumental-variable regressions via two-stage least squares. It provides a formula interface and calls the workhorse function \fct{ivreg.fit} which in turn calls \fct{lm.fit} twice. In addition to the fitting functions, the usual set of accessor and extractor functions is provided, e.g., \fct{print}, \fct{summary}, \fct{anova}, etc. For more details see \code{?ivreg}, \code{?ivreg.fit}, and \code{?summary.ivreg}, respectively. \item \fct{dispersiontest} tests the null hypothesis of equidispersion in Poisson regressions against the alternative of overdispersion and/or underdispersion. For more details see \code{?dispersiontest}. \end{itemize} \section{Errata and comments} Below we list the errors that have been found in the book so far. Please report any further errors you find to us. We also provide some comments, for example on functions whose interface has changed. \begin{itemize} \item p.~5--9, 46--53: There are now very minor differences in the plots pertaining to Example~2 (Determinants of wages) in Chapter~1.1 and Chapter~2.8 (Exploratory Data Analysis with \proglang{R}) due to a missing observation. Specifically, the version of the \code{CPS1985} data used for the book contained only 533~observations, the original observation~1 had been omitted inadvertently. \item p.~38, 48, 85: By default there is less rounding in calls to \code{summary()} starting from \proglang{R}~3.4.0. \item p.~63--65, 130, 143: The function \fct{linear.hypothesis} from the \pkg{car} package has been renamed to \fct{linearHypothesis} starting from \pkg{car}~2.0-0. The old interface is currently still supported but results in a warning. \item p.~85--86: Due to a bug in the \code{summary()} method for ``\code{plm}'' objects, the degrees of freedom reported for the $F$~statistics were interchanged and thus the $p$~values were not correct. Therefore, the $p$~values printed in the book at the end of \code{summary(gr_fe)} and \code{summary(gr_re)} are not correct, they should both be \code{< 2.22e-16}. Using \pkg{plm} 1.1-1 or higher, the code produces the correct output. \item pp.~88--89: As of version 1.3-1 of the \pkg{plm} package, summaries of ``\code{pgmm}'' objects provide robust standard errors by default. The output presented on pp.~88--89 is still available, but now requires \code{summary(empl_ab, robust = FALSE)}. Also, the formula interface for \fct{pgmm} has changed. Using the new interface, the function call for the Arellano-Bond example is % <>= empl_ab <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1) + log(capital) + lag(log(output), 0:1) | lag(log(emp), 2:99), data = EmplUK, effect = "twoways", model = "twosteps") @ % The function call given in the book is still valid though. \item p.~92: Exercise~6 cannot be solved using \code{PSID1982} since that data set only contains a cross-section while Hausman-Taylor requires panel data. A panel version has been available in the \pkg{plm} package under the name \code{Wages}; we have now added \code{PSID7682} to \pkg{AER} for completeness (and consistent naming conventions). Use \code{PSID7682} for the exercise. \item pp.~98--100: \proglang{R} only provides a function \code{dffits()} but not \code{dffit()} as claimed on p.~99. Somewhat confusingly the corresponding column in the output of \code{influence.measures()} (as shown on p.~100) is called \code{dffit} by \proglang{R} (rather than \code{dffits}). \item p.~141: The log-likelihood for the tobit model lacked a minus sign. The correct version is % \[ \ell(\beta, \sigma^2) = \sum_{y_i > 0} \left( \log\phi\{(y_i - x_i^\top \beta)/\sigma\} - \log\sigma \right) + \sum_{y_i = 0} \log \Phi( - x_i^\top \beta /\sigma). \] % \item p.~149: The standard error (and hence the corresponding $z$~test) of \code{admin|manage} in the output of \code{coeftest(bank_polr)} is wrong, it should be \code{1.4744}. This was caused by an inconsistency between \fct{polr} and its \fct{vcov} method which has now been improved in the \pkg{MASS} package ($\ge$ 7.3-6). \item p.~169: The comment regarding the output from the Johansen test is in error. The null hypothesis of no cointegration is not rejected at the 10\% level. Nonetheless, the table corresponding to Case~2 in \citet[][p.~420]{aer:Juselius:2006} reveals that the trace statistic is significant at the 15\% level, thus the Johansen test weakly confirms the initial two-step approach. \item p.~179: For consistency, the GARCH code should be preceded by \code{data("MarkPound")}. \item p.~192: The likelihood for the generalized production function was in error (code and computations were correct though). The correct likelihood for the model is % \[ \mathcal{L} = \prod_{i=1}^n \left\{ \frac{1}{\sigma} \phi \left(\frac{\varepsilon_i}{\sigma}\right) \cdot \frac{1 + \theta Y_i}{Y_i} \right\} . \] % giving the log-likelihood % \[ \ell = \sum_{i=1}^n \left\{ \log (1 + \theta Y_i) - \log Y_i \right\} - n \log \sigma + \sum_{i=1}^n \log \phi (\varepsilon_i/\sigma) . \] \item p.~205: The reference for Henningsen (2008) should be: %% FIXME: will be package vignette \begin{quote} Henningsen A (2008). ``Demand Analysis with the Almost Ideal Demand System in \proglang{R}: Package \pkg{micEcon},'' Unpublished. URL~\url{http://CRAN.R-project.org/package=micEcon}. \end{quote} \end{itemize} \emph{Note:} Currently, all links on manual pages corresponding to data sets taken from the Journal of Business \& Economic Statistics (JBES) archive are broken (data sets \code{MarkPound}, and \code{RecreationDemand}). The reason is the redesign of the American Statistical Association (ASA) website, rendering the old ASA data archive nonfunctional. The ASA journals manager currently appears to supply data on a case-by-case basis. The problem awaits a more permanent solution. \bibliography{aer} \end{document} AER/vignettes/aer.bib0000644000175400001440000000721213023074251014310 0ustar zeileisusers@Book{aer:Baltagi:2002, author = {Badi H. Baltagi}, title = {Econometrics}, edition = {3rd}, year = {2002}, pages = {401}, publisher = {Springer-Verlag}, address = {New York}, url = {http://www.springeronline.com/sgw/cda/frontpage/0,10735,4-165-2-107420-0,00.html} } @Book{aer:Cameron+Trivedi:1998, author = {A. Colin Cameron and Pravin K. Trivedi}, title = {Regression Analysis of Count Data}, year = {1998}, pages = {411}, publisher = {Cambridge University Press}, address = {Cambridge} } @Book{aer:Davidson+MacKinnon:2004, author = {Russell Davidson and James G. MacKinnon}, title = {Econometric Theory and Methods}, year = {2004}, pages = {750}, publisher = {Oxford University Press}, address = {Oxford} } @Book{aer:Franses:1998, author = {Philip Hans Franses}, title = {Time Series Models for Business and Economic Forecasting}, publisher = {Cambridge University Press}, year = {1998}, address = {Cambridge}, url = {http://www.few.eur.nl/few/people/franses/research/book2.htm} } @Book{aer:Franses+vanDijk+Opschoor:2014, author = {Philip Hans Franses and Dick van Dijk and Anne Opschoor}, title = {Time Series Models for Business and Economic Forecasting}, edition = {2nd}, publisher = {Cambridge University Press}, year = {2014}, address = {Cambridge}, url = {http://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } @Book{aer:Greene:2003, author = {William H. Greene}, title = {Econometric Analysis}, edition = {5th}, year = {2003}, pages = {1026}, publisher = {Prentice Hall}, address = {Upper Saddle River, NJ}, url = {http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm} } @Book{aer:Juselius:2006, author = {Katarina Juselius}, title = {The Cointegrated {VAR} Model}, year = {2006}, publisher = {Oxford University Press}, address = {Oxford} } @Book{aer:Kleiber+Zeileis:2008, title = {Applied Econometrics with \proglang{R}}, author = {Christian Kleiber and Achim Zeileis}, year = {2008}, publisher = {Springer-Verlag}, address = {New York}, note = {{ISBN} 978-0-387-77316-2}, } @Manual{aer:Kleiber+Zeileis:2016, title = {\pkg{AER}: Applied Econometrics with \proglang{R}}, author = {Christian Kleiber and Achim Zeileis}, year = {2016}, note = {\proglang{R}~package version~1.2-5}, url = {http://CRAN.R-project.org/package=AER} } @Manual{aer:R:2016, title = {\proglang{R}: {A} Language and Environment for Statistical Computing}, author = {{\proglang{R} Core Team}}, organization = {\proglang{R} Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2016}, note = {{ISBN} 3-900051-07-0}, url = {http://www.R-project.org/} } @Book{aer:Stock+Watson:2007, author = {James H. Stock and Mark W. Watson}, title = {Introduction to Econometrics}, year = {2007}, edition = {2nd}, publisher = {Addison-Wesley}, address = {Reading, MA} } @Book{aer:Verbeek:2004, author = {Marno Verbeek}, title = {A Guide to Modern Econometrics}, edition = {2nd}, year = {2004}, publisher = {John Wiley \& Sons}, address = {Hoboken, NJ} } @Book{aer:Winkelmann+Boes:2009, author = {Rainer Winkelmann and Stefan Boes}, title = {Analysis of Microdata}, edition = {2nd}, year = {2009}, publisher = {Springer-Verlag}, address = {Berlin and Heidelberg} } AER/MD50000644000175400001440000003316013034022075011363 0ustar zeileisusers647098439a7f042cd37348735a439b7e *DESCRIPTION bba98063e269e7e7b02b2ff7840966ae *NAMESPACE a5db1f258bffbb4bdfe3a27ac476c238 *NEWS 3dd3d9497975612509b765b789beac40 *R/coeftest-methods.R c939ea5a5fc99674637505396b5fc14c *R/dispersiontest.R 1b7095e8261adfbc84d607ffbf249ba8 *R/ivreg.R b2a552e2a66cdb3c8df168de3afa3eb0 *R/tobit.R 2f6a893d7c594a888814ca2afed1c506 *build/vignette.rds 2f2c5b937422441c5fab92794b2d773a *data/Affairs.rda 820218e38fbdc143b639e68f864bd88c *data/ArgentinaCPI.rda 13dfc819ed4e325c751f73b2bf5b28a5 *data/BankWages.rda c704bc0a977055648b66ecd4ac0b962d *data/BenderlyZwick.rda 611ed8b0759e05ce7a0652bef5144bb2 *data/BondYield.rda 0a7354de74bdd55d7072f1d7069fb356 *data/CASchools.rda 34b9ebb732561371b08fc2105e317240 *data/CPS1985.rda cad2b285281cb980b5d14eebc406f0e7 *data/CPS1988.rda 009e73107ad77ff4b405bb06b549dac2 *data/CPSSW04.rda b0d176a5a2da79289f5a0679339f135d *data/CPSSW3.rda 504c8af1159d8c64f9a0c624702ab897 *data/CPSSW8.rda 9ea75e28ded2a80adbe61969cc556bc7 *data/CPSSW9204.rda 2a29e3d9ca4c53cca325c8bacf33373b *data/CPSSW9298.rda 8c38db6ecf62f50466042a13fb034b3d *data/CPSSWEducation.rda f9c29a0151f7174799223a084dfe84b5 *data/CartelStability.rda 1e2c2189ea85005a5f980bbce70f741e *data/ChinaIncome.rda 606b031d57c50268c7e35cb3f7c1ff69 *data/CigarettesB.rda 4110e2b6cfef642aea515a9baa7281ec *data/CigarettesSW.rda fd2eb0c185233f2eb06c3d22f86d01d2 *data/CollegeDistance.rda 18a039d695b0a01e7d52058ee8c490bf *data/ConsumerGood.rda 0c442c5d668b104dbc93bc4fa38ea61e *data/CreditCard.rda 658beeadbfcf60d9fe60ba86d0249f09 *data/DJFranses.rda e3390fceac49b678e30b37b6f70d33e8 *data/DJIA8012.rda 760342f8bd7a478219f2328e6a0bb848 *data/DoctorVisits.rda 76da0cb07967ca08696b8b15cf6c50da *data/DutchAdvert.rda cb9b014592eab96aa72826430e76d2d9 *data/DutchSales.rda 0aeb8db664b7151c48e6522cdd719471 *data/Electricity1955.rda a3a208da54e53492e2fac81bd7bac675 *data/Electricity1970.rda 392827793185020236728b8f5ce9917f *data/EquationCitations.rda 522eb338188dcac69110842c2046adf0 *data/Equipment.rda af76d9cfaa14f6fb66cc22fd5da23c7f *data/EuroEnergy.rda 0da145eb573675d8f15a8c150689af01 *data/Fatalities.rda 888a69a56cc0cea3a15020f76c9698e3 *data/Fertility.rda 9d1bae0928bdace841cbbd9ad2dfa7f1 *data/Fertility2.rda 9f0fba47fbbeaf6f7becd4c357b85642 *data/FrozenJuice.rda a6bc52dfd6a0059cec82d6d651510140 *data/GSOEP9402.rda 4484c96f2282e36c32ab5a7c2ae42444 *data/GSS7402.rda 97a330a3c4cb351389012e3b72ab59cc *data/GermanUnemployment.rda 877ca44413695b1d42f9eea465b85645 *data/GoldSilver.rda 60e4b48cef9159b87dcbe697f8ff5fae *data/GrowthDJ.rda 4ef8f75b0f9b940a334e3eb7d0802c80 *data/GrowthSW.rda c0e43d87c2509790735c186c686e7162 *data/Grunfeld.rda 44acd651ad99b092929286bcd88d7129 *data/Guns.rda f95ec95fafe2b4d76896ff4e16c9614f *data/HMDA.rda 58791f73577bfc90fde7ace020df28ff *data/HealthInsurance.rda d04498335be2e96addd4f16abc9e0e96 *data/HousePrices.rda d55d67079a428de95e0806ae2195fef2 *data/Journals.rda 59e18db34a9df3929982e1865803031b *data/KleinI.rda 9727cddabee8c8110267cd9cdeabdd08 *data/Longley.rda 6e0a751f3fc3bd7bbac1cc31b3c147d6 *data/MASchools.rda da9d4df8f4f57cade1241952996e9713 *data/MSCISwitzerland.rda 642c145f93cd7962161b83a907bb4542 *data/ManufactCosts.rda 4ba37601c13d1655852545e5fe1f6339 *data/MarkDollar.rda 825f340ee84dc836240e7a88d48bdd1d *data/MarkPound.rda d273a5db213c9f75e142b2b55e869b65 *data/Medicaid1986.rda ce90f4caab41c5e67012dfb194cea175 *data/Mortgage.rda 33f658c917220456c8e72df840ca7bfc *data/MotorCycles.rda 892c4975d447ddb9b98e6a926587120d *data/MotorCycles2.rda 6b4aa0909efa221e5c0374d9db1dd9e3 *data/Municipalities.rda 5dd86167f7f3a9fdf9675a16788ea003 *data/MurderRates.rda 1e6025d9397f47b32f1dade58ccce45b *data/NMES1988.rda cf9681a589336964475dd33099d13e2e *data/NYSESW.rda f7125b4de34a4dc8021e45525d8398d3 *data/NaturalGas.rda 87ff9f615113b4f90b5f9fe0e8d2f4f4 *data/OECDGas.rda 85c851835ed4b777851d1f14e647c1f6 *data/OECDGrowth.rda 1f3d224aaa23c59c1ab59a01f8dd96d0 *data/OlympicTV.rda 0e80389ef9bdeb8430ca98f1fc31dad6 *data/OrangeCounty.rda b680ea38613c408c2f681baade263380 *data/PSID1976.rda e85f587554735c3e36eed5966329f7e5 *data/PSID1982.rda 6b0253b1e5a8921d49c1254520b062aa *data/PSID7682.rda 21039fdf9831fc97be439b88f3169b97 *data/Parade2005.rda 46394845ba578d718f81031bc5bf1176 *data/PepperPrice.rda 6901f907c356df1ba15ec475ea0dbe3e *data/PhDPublications.rda 7f703127bd1697af0358355ff046a143 *data/ProgramEffectiveness.rda bb877adb3591226ae66fcb52c7410b12 *data/RecreationDemand.rda 24e55b793d2c010f4320a706aa9e2d80 *data/ResumeNames.rda 6ceef9c6e88cf30dc055f70553105d8f *data/SIC33.rda 854f0b5f8adb13b63941e2eca1b85068 *data/STAR.rda cac5ebc0fe1321825cb6e2c99b3128b3 *data/ShipAccidents.rda cb5b2663466ef871b596fde14c52e7e2 *data/SmokeBan.rda 0f5b34b18c5b7f0a56163d81ae0f3667 *data/SportsCards.rda 21aa25e9d06155821b936bc63777c362 *data/StrikeDuration.rda 5160c6a9fae884621943f43276ebb975 *data/SwissLabor.rda 21b02b9371e4617a6edd30de5f500759 *data/TeachingRatings.rda f0507f2df80c290a7a7bb9c23fd3378c *data/TechChange.rda 2b005de5ac81caa2dfa059b5b40292a2 *data/TradeCredit.rda 08568b4c7ab213845e3679cdff5bbd69 *data/TravelMode.rda 4759fd96509cdf8106fca78a9ffdeb7a *data/UKInflation.rda bb03a206a74e8361da44f43ce19d3ec2 *data/UKNonDurables.rda ba6ac55cefc9f42c7caeb6c28b89507d *data/USAirlines.rda 3eaece4a02675f95dd693b35b9f85824 *data/USConsump1950.rda b976aa61d01785ee59b108cbffc7db89 *data/USConsump1979.rda 619c5110bee6d913dde8ea0007cc06c8 *data/USConsump1993.rda d9cdbbdd8f89e3a611fbc67a7af46538 *data/USCrudes.rda 28b250e5b7f770013fde6c83a8fcb440 *data/USGasB.rda afd44453a6ede3166f062b5251ec5a96 *data/USGasG.rda f7e41763b102e395a658fb11ac90e8a2 *data/USInvest.rda 671e7aa481b3d6e64129113a81ac3401 *data/USMacroB.rda a5759daee1a498c7a8c2a61a48e2117a *data/USMacroG.rda b58e829f067cdc5e012849a28a137fa9 *data/USMacroSW.rda 76aea794ddf6388197ddafc2aca59bc1 *data/USMacroSWM.rda 4d3dda39c33e310dc61063520c6c5cd5 *data/USMacroSWQ.rda f0ec9d3b3a5527d1f82f0c4440ee0e93 *data/USMoney.rda b13744b5f1a3641dff4e9d6a0cadf657 *data/USProdIndex.rda 8dc15fedfb57d49b2aa2959405387303 *data/USSeatBelts.rda 6dfb933c083b76877c849b8fd0d63fa3 *data/USStocksSW.rda 39df7317082a9ece0d44ded5154eae9c *data/WeakInstrument.rda 78a5e0fe8f528aeb571b7d5501ebcfb0 *data/datalist c71c48f13243f39d8c1443d52f6525cd *demo/00Index 720c95edcee31608ac582992e2acd89d *demo/Ch-Basics.R 58ecaf2921f34398acc98930713225b2 *demo/Ch-Intro.R 8ca4e23f04e7713ecf132df7ee4d114f *demo/Ch-LinearRegression.R b3cc664c7769b01c12e56723910169a3 *demo/Ch-Microeconometrics.R 3e4ff0bddc3d416afff15a1604c2622e *demo/Ch-Programming.R 3c43eb89f2395979202e63eba3b4ac30 *demo/Ch-TimeSeries.R 3ac1dc4464dfa3a6ecbd2ffb6c216f8e *demo/Ch-Validation.R be1c63e8b99a84caf2b69089584c3882 *inst/CITATION a1157a7a06453160ff59c84bb67f563a *inst/doc/AER.R be86a5d0c92c9b560e26b8de29cf0b74 *inst/doc/AER.Rnw 11252b866afab9a93e33ff2e673a9f1f *inst/doc/AER.pdf 55645a67fdf53c524f1352c9ba6a5910 *inst/doc/Sweave-journals.R 043acb4ba18e012bfc0c60717156d385 *inst/doc/Sweave-journals.Rnw bbe1578671657e6675febacc5ba6799e *inst/doc/Sweave-journals.pdf cb1bee600eebe1be720241e574985281 *man/Affairs.Rd 60062af9c93b24cac2b25377dac5e222 *man/ArgentinaCPI.Rd 5bc41ae3501ce458b8638d76e7d57f02 *man/Baltagi2002.Rd 4c64198cc6ad5689d4c0eca87ad3ab5c *man/BankWages.Rd efecbe83ff32c1034b7bf64455c764a2 *man/BenderlyZwick.Rd 3d193966356f54b8877a777c80bd76f6 *man/BondYield.Rd efafc0f9f858f879f259c0453fe66949 *man/CASchools.Rd 356cdd226d939950a6d9c9effc7016f8 *man/CPS1985.Rd 4008ca71755918fcb811451086192cca *man/CPS1988.Rd adf8734b0d57d79707ff7c8147c67aac *man/CPSSW.Rd 813f614835c345bc4dac436a6dcaeff6 *man/CameronTrivedi1998.Rd 171262b9838be0f53717c7849d148067 *man/CartelStability.Rd 30a7589b2ba71fbd36977ca87e913860 *man/ChinaIncome.Rd cdc5730180e062893c138fd2901f9193 *man/CigarettesB.Rd 947ee53ac127065ac1178df1470e190f *man/CigarettesSW.Rd 4ca48c726409424e3f1aefaaef6b11d8 *man/CollegeDistance.Rd aca94e85997fd6c37cdd4ea0520009d6 *man/ConsumerGood.Rd c71ab901dd51cd800879f891c24a08b9 *man/CreditCard.Rd ea5a4e5332109264bd36abea390b08fe *man/DJFranses.Rd da44a2f2450254516333e21f646bb92d *man/DJIA8012.Rd 7d1f0ec4515443b68417d4062bdd61cb *man/DoctorVisits.Rd dd3b5d79204dd747f0b2bafc4fcd3da6 *man/DutchAdvert.Rd 7289cda1e03ae07c24773ab8f922776e *man/DutchSales.Rd 1c67de99cc85c020c6342e7b29f724cb *man/Electricity1955.Rd 10acb9ae3f2559939eb58eef8a0257fb *man/Electricity1970.Rd 8cc46e5ee4dd0f56ba7d00676e2a2bd3 *man/EquationCitations.Rd 45c0e4f347873eb32698828f441feaf0 *man/Equipment.Rd ab5f2a4d9ad6a0a7534a9b8eccbee1f3 *man/EuroEnergy.Rd db79598603da2f3cf7c956165cd0ea28 *man/Fatalities.Rd 7c7eefb57dd2dbdb2fb4e1ca10d8aeae *man/Fertility.Rd 904781049293273a1ab2d20d8d448da2 *man/Franses1998.Rd 2849a01bd2934f5752e415d15219b0c7 *man/FrozenJuice.Rd 1f01d858f7db917006d41efb75b99804 *man/GSOEP9402.Rd b5f4330dea3b78362340ef6b03fd01b6 *man/GSS7402.Rd 7bf20d8a813160c889fd7697e63f8bb2 *man/GermanUnemployment.Rd 1abbd7b19e3ca5d8a4c3187ae6002195 *man/GoldSilver.Rd f7d3626acf9532acf6f50c3a31671b29 *man/Greene2003.Rd 52a150f4696edd6dcd103977288262d9 *man/GrowthDJ.Rd bf5417c5c842b9ab575851990514dfb8 *man/GrowthSW.Rd b4f788ca699fcd96f39d028babc4c311 *man/Grunfeld.Rd fd0681261e0aba5bfcf5ec60c9511f9f *man/Guns.Rd 11c77404c24500db3e75ad6d724d9bf6 *man/HMDA.Rd cca440199e06e60a28acf081b8e80404 *man/HealthInsurance.Rd e8970093ff06e7b7433e12a66c5aad05 *man/HousePrices.Rd e80684b5f684e7126bd75bba70ce106b *man/Journals.Rd 766829114a4b292c1f9e42d82a4672f6 *man/KleinI.Rd 16da462d93863ab069c549a868160546 *man/Longley.Rd e2e9097328a005d747b8037a24e04719 *man/MASchools.Rd 0975ada40a40507fff503d6423b18e61 *man/MSCISwitzerland.Rd 61510348cb957b1ab181152fcf021ab6 *man/ManufactCosts.Rd 594ad139d2bfeff7e3317e7c614b0694 *man/MarkDollar.Rd 070a195dae0b487c188345dbf5b81511 *man/MarkPound.Rd a762e77161434ea8b76d0e651d6b2e7d *man/Medicaid1986.Rd 25cd0df43df78e3c99b8dbf2da16f278 *man/Mortgage.Rd 958a617bff70fb950d343595676fb5ee *man/MotorCycles.Rd 76a2176ac57a0c76bce9e2d183a8d98a *man/MotorCycles2.Rd dc1b52380811dc1866343e32b41816d2 *man/Municipalities.Rd 0b130af0c82280b23c0c00e168e6db1a *man/MurderRates.Rd 299f9664100c41586a1778f5c98fe239 *man/NMES1988.Rd 256bed985f5d3f35baba7910b2fbe8f9 *man/NYSESW.Rd 2d8fcd90fb4bec614c47adb396fe1482 *man/NaturalGas.Rd bcea0c2d6886108cefee5424427c5e61 *man/OECDGas.Rd 49a03bae86ac9b04719b6ebce4d6368a *man/OECDGrowth.Rd 8f90a553c913136affcdc5772104ad13 *man/OlympicTV.Rd 8c2ae32e2201320f7c29ad34beb124f2 *man/OrangeCounty.Rd 7adf8c80ee5992d818ccb5ce6f8bf0a6 *man/PSID1976.Rd d066e983510ba1d4b50f046967866b96 *man/PSID1982.Rd 82d122c0df137afab049abde7812116f *man/PSID7682.Rd 6a986a4a57e927c35e4fada0b9ab7458 *man/Parade2005.Rd de9d141a4a516ec70e6285b58aa06d77 *man/PepperPrice.Rd 1ab5bfb5aeb0d7eddf01cc64f457d25c *man/PhDPublications.Rd da54ba41002fdb537ede6bf4d5cd299b *man/ProgramEffectiveness.Rd 5afc39cbe51cea1fe76be6dd22a7c999 *man/RecreationDemand.Rd 397a0086742c451a00fcd20a35104d55 *man/ResumeNames.Rd dc8981942608d0ca0c82fb9a1a49dcff *man/SIC33.Rd 28d817ab52cf09756abf8b11393fdb75 *man/STAR.Rd babeb5ea59d2c8af2ed00bd0f7eab082 *man/ShipAccidents.Rd 076205d8dfc49748020a5ef3aaf2c620 *man/SmokeBan.Rd e294144d4deef9b62c5161a28c8704ac *man/SportsCards.Rd 4150970b1533efe1b801645fd29bcd5a *man/StockWatson2007.Rd d6c70c3c90d5e5bea5f65b76e2166e85 *man/StrikeDuration.Rd d6939d092f785fc73e32cee26c3f2469 *man/SwissLabor.Rd a08b87f909932943432e5393ed440f3e *man/TeachingRatings.Rd 172c8d25bad81c7a60f2d037d2374263 *man/TechChange.Rd d9b29a0e0525d10e6a75ecb77b9b8c2f *man/TradeCredit.Rd 0467187ab71fd88d10167b7462ee1663 *man/TravelMode.Rd 4135ec98f20e266dd7344f4a8de1a225 *man/UKInflation.Rd c255f954fd83e016e09a74d941759037 *man/UKNonDurables.Rd 7b77b68813f31b25211574da0266611d *man/USAirlines.Rd a9f647920cd22f4dc11b176919d1a879 *man/USConsump1950.Rd 5d398fc5cdb0729efe293be1d52d3df3 *man/USConsump1979.Rd aaf82b99c08976ebbc4c0ccc5a1a82e0 *man/USConsump1993.Rd 0f2e4f6b40585ab23a07e8bea1ce46ad *man/USCrudes.Rd 26c158f5f9e23835039be002bcaf5b28 *man/USGasB.Rd d6249a7e020811c5b34ddb742a820db0 *man/USGasG.Rd 7d4f1bf77d9ee7e0865c1cc743b57e83 *man/USInvest.Rd 4b7cd39c93401ab570889d96d0ffefab *man/USMacroB.Rd a76e81bb48960010b878c815b2b67fca *man/USMacroG.Rd 9e7f2fc0e112b31bcc1af86ad6090df2 *man/USMacroSW.Rd 1ad188b409f1d92c9c30f2db27769dfa *man/USMacroSWM.Rd 7917c3220154ca951ec8329b6162c79a *man/USMacroSWQ.Rd 80d6e5dc3b32be519d6e78d7e4076a4a *man/USMoney.Rd 2586374f2eeb930827e00314c043301c *man/USProdIndex.Rd cea363bdf59add644251b6a83bf3745a *man/USSeatBelts.Rd f80e40d0fe8e8b83a15c0041e64aa30d *man/USStocksSW.Rd bb36bfc98d5ff4fddb215e6d00b17b8c *man/WeakInstrument.Rd fdd4cba1108159fdfd1eb8e62325f2cf *man/WinkelmannBoes2009.Rd 1a5d21429e8ad0e04095a91cb7abdac0 *man/dispersiontest.Rd c11ba4bc897fa906f13ebf7143d807c7 *man/ivreg.Rd cba1d31034db4a70f66d1810c94cb640 *man/ivreg.fit.Rd 34f4521b3ef26262c0b8ae37e150ce18 *man/summary.ivreg.Rd b35acc4f0314e13a53c3d06fc9235327 *man/tobit.Rd 1f1d8e74adf8dfbb3e3c4b33025fa43b *tests/Ch-Basics.R d06bbedd7ec1330c9125554060cd8e7a *tests/Ch-Basics.Rout.save d8a5f23b92d461b5e7b96abd1204eba9 *tests/Ch-Intro.R 67a17f0d39e6de2cd9b476a3ec1d8af8 *tests/Ch-Intro.Rout.save dfcf11e91a383c873b9fb7d4e70c5467 *tests/Ch-LinearRegression.R 4a38b59a41509ae828118e853f5926cc *tests/Ch-LinearRegression.Rout.save 5bbb2262141d16159ba5a513359454bd *tests/Ch-Microeconometrics.R a3f1dfbcde3e40b8e6a7b2e4339276cc *tests/Ch-Microeconometrics.Rout.save 8f1fe2e6e2cab08feb3d529d88008abd *tests/Ch-Programming.R 981f265dd6a90f9929c4f99ced322074 *tests/Ch-Programming.Rout.save e9a4332ae100101fde16958b05fed907 *tests/Ch-TimeSeries.R bc2e95eb128e98fffe36cd382aa10da0 *tests/Ch-TimeSeries.Rout.save 05193cbe97bcda2a699987a3ff3dea49 *tests/Ch-Validation.R 0dfbb2c7b8ce72543d29a2dd81c5dcd0 *tests/Ch-Validation.Rout.save be86a5d0c92c9b560e26b8de29cf0b74 *vignettes/AER.Rnw 043acb4ba18e012bfc0c60717156d385 *vignettes/Sweave-journals.Rnw 386ee733a919767e4cc3c57c1bd5e8b7 *vignettes/aer.bib AER/build/0000755000175400001440000000000013033553032012150 5ustar zeileisusersAER/build/vignette.rds0000644000175400001440000000050313033553032014505 0ustar zeileisusersuQAN0t $Py?@ϨJIJJ6Őڑm0xyn-pٝuqO> G?L`Dmq1.LgHT0nAER/DESCRIPTION0000644000175400001440000000237613034022075012566 0ustar zeileisusersPackage: AER Version: 1.2-5 Date: 2017-01-06 Title: Applied Econometrics with R Authors@R: c(person(given = "Christian", family = "Kleiber", role = "aut", email = "Christian.Kleiber@unibas.ch"), person(given = "Achim", family = "Zeileis", role = c("aut", "cre"), email = "Achim.Zeileis@R-project.org")) Description: Functions, data sets, examples, demos, and vignettes for the book Christian Kleiber and Achim Zeileis (2008), Applied Econometrics with R, Springer-Verlag, New York. ISBN 978-0-387-77316-2. (See the vignette "AER" for a package overview.) LazyLoad: yes Depends: R (>= 2.13.0), car (>= 2.0-19), lmtest, sandwich, survival (>= 2.37-5), zoo Suggests: boot, dynlm, effects, fGarch, forecast, foreign, ineq, KernSmooth, lattice, longmemo, MASS, mlogit, nlme, nnet, np, plm, pscl, quantreg, rgl, ROCR, rugarch, sampleSelection, scatterplot3d, strucchange, systemfit, truncreg, tseries, urca, vars Imports: stats, Formula (>= 0.2-0) License: GPL-2 | GPL-3 NeedsCompilation: no Packaged: 2017-01-05 23:26:19 UTC; zeileis Author: Christian Kleiber [aut], Achim Zeileis [aut, cre] Maintainer: Achim Zeileis Repository: CRAN Date/Publication: 2017-01-07 00:11:57 AER/man/0000755000175400001440000000000013033552033011624 5ustar zeileisusersAER/man/tobit.Rd0000644000175400001440000000563112463377345013262 0ustar zeileisusers\name{tobit} \alias{tobit} \alias{print.tobit} \alias{summary.tobit} \alias{print.summary.tobit} \alias{formula.tobit} \alias{model.frame.tobit} \alias{update.tobit} \alias{waldtest.tobit} \alias{lrtest.tobit} \alias{linearHypothesis.tobit} \alias{deviance.survreg} \alias{fitted.survreg} \alias{nobs.survreg} \alias{weights.survreg} \title{Tobit Regression} \description{ Fitting and testing tobit regression models for censored data. } \usage{ tobit(formula, left = 0, right = Inf, dist = "gaussian", subset = NULL, data = list(), \dots) } \arguments{ \item{formula}{a symbolic description of a regression model of type \code{y ~ x1 + x2 + \dots}.} \item{left}{left limit for the censored dependent variable \code{y}. If set to \code{-Inf}, \code{y} is assumed not to be left-censored.} \item{right}{right limit for the censored dependent variable \code{y}. If set to \code{Inf}, the default, \code{y} is assumed not to be right-censored.} \item{dist}{assumed distribution for the dependent variable \code{y}. This is passed to \code{\link[survival]{survreg}}, see the respective man page for more details.} \item{subset}{a specification of the rows to be used.} \item{data}{a data frame containing the variables in the model.} \item{\dots}{further arguments passed to \code{\link[survival]{survreg}}.} } \details{ The function \code{tobit} is a convenience interface to \code{\link[survival]{survreg}} (for survival regression, including censored regression) setting different defaults and providing a more convenient interface for specification of the censoring information. The default is the classical tobit model (Tobin 1958, Greene 2003) assuming a normal distribution for the dependent variable with left-censoring at 0. Technically, the formula of type \code{y ~ x1 + x2 + \dots} passed to \code{tobit} is simply transformed into a formula suitable for \code{\link[survival]{survreg}}: This means the dependent variable is first censored and then wrapped into a \code{\link[survival]{Surv}} object containing the censoring information which is subsequently passed to \code{\link[survival]{survreg}}, e.g., \code{Surv(ifelse(y <= 0, 0, y), y > 0, type = "left") ~ x1 + x2 + \dots} for the default settings. } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Tobin, J. (1958). Estimation of Relationships for Limited Dependent Variables. \emph{Econometrica}, \bold{26}, 24--36. } \value{ An object of class \code{"tobit"} inheriting from class \code{"survreg"}. } \examples{ data("Affairs") ## from Table 22.4 in Greene (2003) fm.tobit <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) fm.tobit2 <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, right = 4, data = Affairs) summary(fm.tobit) summary(fm.tobit2) } \keyword{regression} AER/man/TechChange.Rd0000644000175400001440000000252012214555305014110 0ustar zeileisusers\name{TechChange} \alias{TechChange} \title{Technological Change Data} \description{ US time series data, 1909--1949. } \usage{data("TechChange")} \format{ An annual multiple time series from 1909 to 1949 with 3 variables. \describe{ \item{output}{Output.} \item{clr}{Capital/labor ratio.} \item{technology}{Index of technology.} } } \source{ Online complements to Greene (2003), Table F7.2. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Solow, R. (1957). Technical Change and the Aggregate Production Function. \emph{Review of Economics and Statistics}, \bold{39}, 312--320. } \seealso{\code{\link{Greene2003}}} \examples{ data("TechChange") ## Greene (2003) ## Exercise 7.1 fm1 <- lm(I(output/technology) ~ log(clr), data = TechChange) fm2 <- lm(I(output/technology) ~ I(1/clr), data = TechChange) fm3 <- lm(log(output/technology) ~ log(clr), data = TechChange) fm4 <- lm(log(output/technology) ~ I(1/clr), data = TechChange) ## Exercise 7.2 (a) and (c) plot(I(output/technology) ~ clr, data = TechChange) library("strucchange") sctest(I(output/technology) ~ log(clr), data = TechChange, type = "Chow", point = c(1942, 1)) } \keyword{datasets} AER/man/UKInflation.Rd0000644000175400001440000000163511354653140014310 0ustar zeileisusers\name{UKInflation} \alias{UKInflation} \title{UK Manufacturing Inflation Data} \description{ Time series of observed and expected price changes in British manufacturing. } \usage{data("UKInflation")} \format{ A quarterly multiple time series from 1972(1) to 1985(2) with 2 variables. \describe{ \item{actual}{Actual inflation.} \item{expected}{Expected inflation.} } } \source{ Online complements to Greene (2003), Table F8.1. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Pesaran, M.H., and Hall, A.D. (1988). Tests of Non-nested Linear Regression Models Subject To Linear Restrictions. \emph{Economics Letters}, \bold{27}, 341--348. } \seealso{\code{\link{Greene2003}}} \examples{ data("UKInflation") plot(UKInflation) } \keyword{datasets} AER/man/USMacroB.Rd0000644000175400001440000000155712463507656013557 0ustar zeileisusers\name{USMacroB} \alias{USMacroB} \title{US Macroeconomic Data (1959--1995, Baltagi)} \description{ Time series data on 3 US macroeconomic variables for 1959--1995, extracted from the Citibank data base. } \usage{data("USMacroB")} \format{ A quarterly multiple time series from 1959(1) to 1995(2) with 3 variables. \describe{ \item{gnp}{Gross national product.} \item{mbase}{Average of the seasonally adjusted monetary base.} \item{tbill}{Average of 3 month treasury-bill rate (per annum).} } } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}, \code{\link{USMacroSW}}, \code{\link{USMacroSWQ}}, \code{\link{USMacroSWM}}, \code{\link{USMacroG}}} \examples{ data("USMacroB") plot(USMacroB) } \keyword{datasets} AER/man/STAR.Rd0000644000175400001440000002063413022372554012677 0ustar zeileisusers\name{STAR} \alias{STAR} \title{Project STAR: Student-Teacher Achievement Ratio} \description{ The Project STAR public access data set, assessing the effect of reducing class size on test scores in the early grades. } \usage{data("STAR")} \format{ A data frame containing 11,598 observations on 47 variables. \describe{ \item{gender}{factor indicating student's gender.} \item{ethnicity}{factor indicating student's ethnicity with levels \code{"cauc"} (Caucasian), \code{"afam"} (African-American), \code{"asian"} (Asian), \code{"hispanic"} (Hispanic), \code{"amindian"} (American-Indian) or \code{"other"}.} \item{birth}{student's birth quarter (of class \code{\link[zoo]{yearqtr}}).} \item{stark}{factor indicating the STAR class type in kindergarten: regular, small, or regular-with-aide. \code{NA} indicates that no STAR class was attended.} \item{star1}{factor indicating the STAR class type in 1st grade: regular, small, or regular-with-aide. \code{NA} indicates that no STAR class was attended.} \item{star2}{factor indicating the STAR class type in 2nd grade: regular, small, or regular-with-aide. \code{NA} indicates that no STAR class was attended.} \item{star3}{factor indicating the STAR class type in 3rd grade: regular, small, or regular-with-aide. \code{NA} indicates that no STAR class was attended.} \item{readk}{total reading scaled score in kindergarten.} \item{read1}{total reading scaled score in 1st grade.} \item{read2}{total reading scaled score in 2nd grade.} \item{read3}{total reading scaled score in 3rd grade.} \item{mathk}{total math scaled score in kindergarten.} \item{math1}{total math scaled score in 1st grade.} \item{math2}{total math scaled score in 2nd grade.} \item{math3}{total math scaled score in 3rd grade.} \item{lunchk}{factor indicating whether the student qualified for free lunch in kindergarten.} \item{lunch1}{factor indicating whether the student qualified for free lunch in 1st grade.} \item{lunch2}{factor indicating whether the student qualified for free lunch in 2nd grade.} \item{lunch3}{factor indicating whether the student qualified for free lunch in 3rd grade.} \item{schoolk}{factor indicating school type in kindergarten: \code{"inner-city"}, \code{"suburban"}, \code{"rural"} or \code{"urban"}.} \item{school1}{factor indicating school type in 1st grade: \code{"inner-city"}, \code{"suburban"}, \code{"rural"} or \code{"urban"}.} \item{school2}{factor indicating school type in 2nd grade: \code{"inner-city"}, \code{"suburban"}, \code{"rural"} or \code{"urban"}.} \item{school3}{factor indicating school type in 3rd grade: \code{"inner-city"}, \code{"suburban"}, \code{"rural"} or \code{"urban"}.} \item{degreek}{factor indicating highest degree of kindergarten teacher: \code{"bachelor"}, \code{"master"}, \code{"specialist"}, or \code{"master+"}.} \item{degree1}{factor indicating highest degree of 1st grade teacher: \code{"bachelor"}, \code{"master"}, \code{"specialist"}, or \code{"phd"}.} \item{degree2}{factor indicating highest degree of 2nd grade teacher: \code{"bachelor"}, \code{"master"}, \code{"specialist"}, or \code{"phd"}.} \item{degree3}{factor indicating highest degree of 3rd grade teacher: \code{"bachelor"}, \code{"master"}, \code{"specialist"}, or \code{"phd"}.} \item{ladderk}{factor indicating teacher's career ladder level in kindergarten: \code{"level1"}, \code{"level2"}, \code{"level3"}, \code{"apprentice"}, \code{"probation"} or \code{"pending"}.} \item{ladder1}{factor indicating teacher's career ladder level in 1st grade: \code{"level1"}, \code{"level2"}, \code{"level3"}, \code{"apprentice"}, \code{"probation"} or \code{"noladder"}.} \item{ladder2}{factor indicating teacher's career ladder level in 2nd grade: \code{"level1"}, \code{"level2"}, \code{"level3"}, \code{"apprentice"}, \code{"probation"} or \code{"noladder"}.} \item{ladder3}{factor indicating teacher's career ladder level in 3rd grade: \code{"level1"}, \code{"level2"}, \code{"level3"}, \code{"apprentice"}, \code{"probation"} or \code{"noladder"}.} \item{experiencek}{years of teacher's total teaching experience in kindergarten.} \item{experience1}{years of teacher's total teaching experience in 1st grade.} \item{experience2}{years of teacher's total teaching experience in 2nd grade.} \item{experience3}{years of teacher's total teaching experience in 3rd grade.} \item{tethnicityk}{factor indicating teacher's ethnicity in kindergarten with levels \code{"cauc"} (Caucasian) or \code{"afam"} (African-American).} \item{tethnicity1}{factor indicating teacher's ethnicity in 1st grade with levels \code{"cauc"} (Caucasian) or \code{"afam"} (African-American).} \item{tethnicity2}{factor indicating teacher's ethnicity in 2nd grade with levels \code{"cauc"} (Caucasian) or \code{"afam"} (African-American).} \item{tethnicity3}{factor indicating teacher's ethnicity in 3rd grade with levels \code{"cauc"} (Caucasian), \code{"afam"} (African-American), or \code{"asian"} (Asian).} \item{systemk}{factor indicating school system ID in kindergarten.} \item{system1}{factor indicating school system ID in 1st grade.} \item{system2}{factor indicating school system ID in 2nd grade.} \item{system3}{factor indicating school system ID in 3rd grade.} \item{schoolidk}{factor indicating school ID in kindergarten.} \item{schoolid1}{factor indicating school ID in 1st grade.} \item{schoolid2}{factor indicating school ID in 2nd grade.} \item{schoolid3}{factor indicating school ID in 3rd grade.} } } \details{ Project STAR (Student/Teacher Achievement Ratio) was a four-year longitudinal class-size study funded by the Tennessee General Assembly and conducted in the late 1980s by the State Department of Education. Over 7,000 students in 79 schools were randomly assigned into one of three interventions: small class (13 to 17 students per teacher), regular class (22 to 25 students per teacher), and regular-with-aide class (22 to 25 students with a full-time teacher's aide). Classroom teachers were also randomly assigned to the classes they would teach. The interventions were initiated as the students entered school in kindergarten and continued through third grade. The Project STAR public access data set contains data on test scores, treatment groups, and student and teacher characteristics for the four years of the experiment, from academic year 1985--1986 to academic year 1988--1989. The test score data analyzed in this chapter are the sum of the scores on the math and reading portion of the Stanford Achievement Test. Stock and Watson (2007) obtained the data set from the Project STAR Web site at \url{http://www.heros-inc.org/star.htm}. The data is provided in wide format. Reshaping it into long format is illustrated below. Note that the levels of the \code{degree}, \code{ladder} and \code{tethnicity} variables differ slightly between kindergarten and higher grades. } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("STAR") ## Stock and Watson, p. 488 fmk <- lm(I(readk + mathk) ~ stark, data = STAR) fm1 <- lm(I(read1 + math1) ~ star1, data = STAR) fm2 <- lm(I(read2 + math2) ~ star2, data = STAR) fm3 <- lm(I(read3 + math3) ~ star3, data = STAR) coeftest(fm3, vcov = sandwich) plot(I(read3 + math3) ~ star3, data = STAR) ## Stock and Watson, p. 489 fmke <- lm(I(readk + mathk) ~ stark + experiencek, data = STAR) coeftest(fmke, vcov = sandwich) ## reshape data from wide into long format ## 1. variables and their levels nam <- c("star", "read", "math", "lunch", "school", "degree", "ladder", "experience", "tethnicity", "system", "schoolid") lev <- c("k", "1", "2", "3") ## 2. reshaping star <- reshape(STAR, idvar = "id", ids = row.names(STAR), times = lev, timevar = "grade", direction = "long", varying = lapply(nam, function(x) paste(x, lev, sep = ""))) ## 3. improve variable names and type names(star)[5:15] <- nam star$id <- factor(star$id) star$grade <- factor(star$grade, levels = lev, labels = c("kindergarten", "1st", "2nd", "3rd")) rm(nam, lev) ## fit a single model nested in grade (equivalent to fmk, fm1, fm2, fmk) fm <- lm(I(read + math) ~ 0 + grade/star, data = star) coeftest(fm, vcov = sandwich) ## visualization library("lattice") bwplot(I(read + math) ~ star | grade, data = star) } \keyword{datasets} AER/man/SwissLabor.Rd0000644000175400001440000000254412216541536014220 0ustar zeileisusers\name{SwissLabor} \alias{SwissLabor} \title{Swiss Labor Market Participation Data} \description{ Cross-section data originating from the health survey SOMIPOPS for Switzerland in 1981. } \usage{data("SwissLabor")} \format{ A data frame containing 872 observations on 7 variables. \describe{ \item{participation}{Factor. Did the individual participate in the labor force?} \item{income}{Logarithm of nonlabor income.} \item{age}{Age in decades (years divided by 10).} \item{education}{Years of formal education.} \item{youngkids}{Number of young children (under 7 years of age).} \item{oldkids}{Number of older children (over 7 years of age).} \item{foreign}{Factor. Is the individual a foreigner (i.e., not Swiss)?} } } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/1996-v11.3/gerfin/} } \references{ Gerfin, M. (1996). Parametric and Semi-Parametric Estimation of the Binary Response Model of Labour Market Participation. \emph{Journal of Applied Econometrics}, \bold{11}, 321--339. } \examples{ data("SwissLabor") ### Gerfin (1996), Table I. fm_probit <- glm(participation ~ . + I(age^2), data = SwissLabor, family = binomial(link = "probit")) summary(fm_probit) ### alternatively fm_logit <- glm(participation ~ . + I(age^2), data = SwissLabor, family = binomial) summary(fm_logit) } \keyword{datasets} AER/man/HealthInsurance.Rd0000644000175400001440000000324113022373163015173 0ustar zeileisusers\name{HealthInsurance} \alias{HealthInsurance} \title{Medical Expenditure Panel Survey Data} \description{ Cross-section data originating from the Medical Expenditure Panel Survey survey conducted in 1996. } \usage{data("HealthInsurance")} \format{ A data frame containing 8,802 observations on 11 variables. \describe{ \item{health}{factor. Is the self-reported health status \dQuote{healthy}?.} \item{age}{age in years.} \item{limit}{factor. Is there any limitation?} \item{gender}{factor indicating gender.} \item{insurance}{factor. Does the individual have a health insurance?} \item{married}{factor. Is the individual married?} \item{selfemp}{factor. Is the individual self-employed?} \item{family}{family size.} \item{region}{factor indicating region.} \item{ethnicity}{factor indicating ethnicity: African-American, Caucasian, other.} \item{education}{factor indicating highest degree attained: no degree, GED (high school equivalent), high school, bachelor, master, PhD, other.} } } \details{ This is a subset of the data used in Perry and Rosen (2004). } \source{ Online complements to Stock and Watson (2007). } \references{ Perry, C. and Rosen, H.S. (2004). \dQuote{The Self-Employed are Less Likely than Wage-Earners to Have Health Insurance. So What?} in Holtz-Eakin, D. and Rosen, H.S. (eds.), \emph{Entrepeneurship and Public Policy}, MIT Press. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("HealthInsurance") summary(HealthInsurance) prop.table(xtabs(~ selfemp + insurance, data = HealthInsurance), 1) } \keyword{datasets} AER/man/RecreationDemand.Rd0000644000175400001440000000653512463674622015347 0ustar zeileisusers\name{RecreationDemand} \alias{RecreationDemand} \title{Recreation Demand Data} \description{ Cross-section data on the number of recreational boating trips to Lake Somerville, Texas, in 1980, based on a survey administered to 2,000 registered leisure boat owners in 23 counties in eastern Texas. } \usage{data("RecreationDemand")} \format{ A data frame containing 659 observations on 8 variables. \describe{ \item{trips}{Number of recreational boating trips.} \item{quality}{Facility's subjective quality ranking on a scale of 1 to 5.} \item{ski}{factor. Was the individual engaged in water-skiing at the lake?} \item{income}{Annual household income of the respondent (in 1,000 USD).} \item{userfee}{factor. Did the individual pay an annual user fee at Lake Somerville?} \item{costC}{Expenditure when visiting Lake Conroe (in USD).} \item{costS}{Expenditure when visiting Lake Somerville (in USD).} \item{costH}{Expenditure when visiting Lake Houston (in USD).} } } \details{ According to the original source (Seller, Stoll and Chavas, 1985, p. 168), the quality rating is on a scale from 1 to 5 and gives 0 for those who had not visited the lake. This explains the remarkably low mean for this variable, but also suggests that its treatment in various more recent publications is far from ideal. For consistency with other sources we handle the variable as a numerical variable, including the zeros. } \source{ Journal of Business \& Economic Statistics Data Archive. \verb{http://www.amstat.org/publications/jbes/upload/index.cfm?fuseaction=ViewArticles&pub=JBES&issue=96-4-OCT} } \references{ Cameron, A.C. and Trivedi, P.K. (1998). \emph{Regression Analysis of Count Data}. Cambridge: Cambridge University Press. Gurmu, S. and Trivedi, P.K. (1996). Excess Zeros in Count Models for Recreational Trips. \emph{Journal of Business \& Economic Statistics}, \bold{14}, 469--477. Ozuna, T. and Gomez, I.A. (1995). Specification and Testing of Count Data Recreation Demand Functions. \emph{Empirical Economics}, \bold{20}, 543--550. Seller, C., Stoll, J.R. and Chavas, J.-P. (1985). Validation of Empirical Measures of Welfare Change: A Comparison of Nonmarket Techniques. \emph{Land Economics}, \bold{61}, 156--175. } \seealso{\code{\link{CameronTrivedi1998}}} \examples{ data("RecreationDemand") ## Poisson model: ## Cameron and Trivedi (1998), Table 6.11 ## Ozuna and Gomez (1995), Table 2, col. 3 fm_pois <- glm(trips ~ ., data = RecreationDemand, family = poisson) summary(fm_pois) logLik(fm_pois) coeftest(fm_pois, vcov = sandwich) ## Negbin model: ## Cameron and Trivedi (1998), Table 6.11 ## Ozuna and Gomez (1995), Table 2, col. 5 library("MASS") fm_nb <- glm.nb(trips ~ ., data = RecreationDemand) coeftest(fm_nb, vcov = vcovOPG) ## ZIP model: ## Cameron and Trivedi (1998), Table 6.11 library("pscl") fm_zip <- zeroinfl(trips ~ . | quality + income, data = RecreationDemand) summary(fm_zip) ## Hurdle models ## Cameron and Trivedi (1998), Table 6.13 ## poisson-poisson fm_hp <- hurdle(trips ~ ., data = RecreationDemand, dist = "poisson", zero = "poisson") ## negbin-negbin fm_hnb <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin", zero = "negbin") ## binom-negbin == geo-negbin fm_hgnb <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin") ## Note: quasi-complete separation with(RecreationDemand, table(trips > 0, userfee)) } \keyword{datasets} AER/man/Fertility.Rd0000644000175400001440000000465313022373144014100 0ustar zeileisusers\name{Fertility} \alias{Fertility} \alias{Fertility2} \title{Fertility and Women's Labor Supply} \description{ Cross-section data from the 1980 US Census on married women aged 21--35 with two or more children. } \usage{ data("Fertility") data("Fertility2") } \format{ A data frame containing 254,654 (and 30,000, respectively) observations on 8 variables. \describe{ \item{morekids}{factor. Does the mother have more than 2 children?} \item{gender1}{factor indicating gender of first child.} \item{gender2}{factor indicating gender of second child.} \item{age}{age of mother at census.} \item{afam}{factor. Is the mother African-American?} \item{hispanic}{factor. Is the mother Hispanic?} \item{other}{factor. Is the mother's ethnicity neither African-American nor Hispanic, nor Caucasian? (see below)} \item{work}{number of weeks in which the mother worked in 1979.} } } \details{ \code{Fertility2} is a random subset of \code{Fertility} with 30,000 observations. There are conflicts in the ethnicity coding (see also examples). Hence, it was not possible to create a single factor and the original three indicator variables have been retained. Not all variables from Angrist and Evans (1998) have been included. } \source{ Online complements to Stock and Watson (2007). } \references{ Angrist, J.D., and Evans, W.N. (1998). Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size \emph{American Economic Review}, \bold{88}, 450--477. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("Fertility2") ## conflicts in ethnicity coding ftable(xtabs(~ afam + hispanic + other, data = Fertility2)) ## create convenience variables Fertility2$mkids <- with(Fertility2, as.numeric(morekids) - 1) Fertility2$samegender <- with(Fertility2, factor(gender1 == gender2)) Fertility2$twoboys <- with(Fertility2, factor(gender1 == "male" & gender2 == "male")) Fertility2$twogirls <- with(Fertility2, factor(gender1 == "female" & gender2 == "female")) ## similar to Angrist and Evans, p. 462 fm1 <- lm(mkids ~ samegender, data = Fertility2) summary(fm1) fm2 <- lm(mkids ~ gender1 + gender2 + samegender + age + afam + hispanic + other, data = Fertility2) summary(fm2) fm3 <- lm(mkids ~ gender1 + twoboys + twogirls + age + afam + hispanic + other, data = Fertility2) summary(fm3) } \keyword{datasets} AER/man/MSCISwitzerland.Rd0000755000175400001440000000544713023074251015112 0ustar zeileisusers\name{MSCISwitzerland} \alias{MSCISwitzerland} \title{MSCI Switzerland Index} \description{ Time series of the MSCI Switzerland index. } \usage{data("MSCISwitzerland")} \format{ A daily univariate time series from 1994-12-30 to 2012-12-31 (of class \code{"zoo"} with \code{"Date"} index). } \source{ Online complements to Franses, van Dijk and Opschoor (2014). \url{http://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } \references{ Ding, Z., Granger, C. W. J. and Engle, R. F. (1993). A Long Memory Property of Stock Market Returns and a New Model. \emph{Journal of Empirical Finance}, 1(1), 83--106. Franses, P.H., van Dijk, D. and Opschoor, A. (2014). \emph{Time Series Models for Business and Economic Forecasting}, 2nd ed. Cambridge, UK: Cambridge University Press. } \examples{ data("MSCISwitzerland", package = "AER") ## p.190, Fig. 7.6 dlmsci <- 100 * diff(log(MSCISwitzerland)) plot(dlmsci) dlmsci9501 <- window(dlmsci, end = as.Date("2001-12-31")) ## Figure 7.7 plot(acf(dlmsci9501^2, lag.max = 200, na.action = na.exclude), ylim = c(-0.1, 0.3), type = "l") ## GARCH(1,1) model, p.190, eq. (7.60) ## standard errors using first derivatives (as apparently used by Franses et al.) library("tseries") msci9501_g11 <- garch(zooreg(dlmsci9501), trace = FALSE) summary(msci9501_g11) ## standard errors using second derivatives library("fGarch") msci9501_g11a <- garchFit( ~ garch(1,1), include.mean = FALSE, data = dlmsci9501, trace = FALSE) summary(msci9501_g11a) round(msci9501_g11a@fit$coef, 3) round(msci9501_g11a@fit$se.coef, 3) ## Fig. 7.8, p.192 plot(msci9501_g11a, which = 2) abline(h = sd(dlmsci9501)) ## TGARCH model (also known as GJR-GARCH model), p. 191, eq. (7.61) msci9501_tg11 <- garchFit( ~ aparch(1,1), include.mean = FALSE, include.delta = FALSE, delta = 2, data = dlmsci9501, trace = FALSE) summary(msci9501_tg11) ## GJR form using reparameterization as given by Ding et al. (1993, pp. 100-101) coef(msci9501_tg11)["alpha1"] * (1 - coef(msci9501_tg11)["gamma1"])^2 ## alpha* 4 * coef(msci9501_tg11)["alpha1"] * coef(msci9501_tg11)["gamma1"] ## gamma* ## GARCH and GJR-GARCH with rugarch library("rugarch") spec_g11 <- ugarchspec(variance.model = list(model = "sGARCH"), mean.model = list(armaOrder = c(0,0), include.mean = FALSE)) msci9501_g11b <- ugarchfit(spec_g11, data = dlmsci9501) msci9501_g11b spec_gjrg11 <- ugarchspec(variance.model = list(model = "gjrGARCH", garchOrder = c(1,1)), mean.model = list(armaOrder = c(0, 0), include.mean = FALSE)) msci9501_gjrg11 <- ugarchfit(spec_gjrg11, data = dlmsci9501) msci9501_gjrg11 round(coef(msci9501_gjrg11), 3) } \keyword{datasets} AER/man/KleinI.Rd0000644000175400001440000000274511354653140013303 0ustar zeileisusers\name{KleinI} \alias{KleinI} \title{Klein Model I} \description{ Klein's Model I for the US economy. } \usage{data("KleinI")} \format{ An annual multiple time series from 1920 to 1941 with 9 variables. \describe{ \item{consumption}{Consumption.} \item{cprofits}{Corporate profits.} \item{pwage}{Private wage bill.} \item{invest}{Investment.} \item{capital}{Previous year's capital stock.} \item{gnp}{Gross national product.} \item{gwage}{Government wage bill.} \item{gexpenditure}{Government spending.} \item{taxes}{Taxes.} } } \source{ Online complements to Greene (2003). Table F15.1. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Klein, L. (1950). \emph{Economic Fluctuations in the United States, 1921--1941}. New York: John Wiley. Maddala, G.S. (1977). \emph{Econometrics}. New York: McGraw-Hill. } \seealso{\code{\link{Greene2003}}} \examples{ data("KleinI", package = "AER") plot(KleinI) ## Greene (2003), Tab. 15.3, OLS library("dynlm") fm_cons <- dynlm(consumption ~ cprofits + L(cprofits) + I(pwage + gwage), data = KleinI) fm_inv <- dynlm(invest ~ cprofits + L(cprofits) + capital, data = KleinI) fm_pwage <- dynlm(pwage ~ gnp + L(gnp) + I(time(gnp) - 1931), data = KleinI) summary(fm_cons) summary(fm_inv) summary(fm_pwage) ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/PhDPublications.Rd0000644000175400001440000000352611354653140015156 0ustar zeileisusers\name{PhDPublications} \alias{PhDPublications} \title{Doctoral Publications} \description{ Cross-section data on the scientific productivity of PhD students in biochemistry. } \usage{data("PhDPublications")} \format{ A data frame containing 915 observations on 6 variables. \describe{ \item{articles}{Number of articles published during last 3 years of PhD.} \item{gender}{factor indicating gender.} \item{married}{factor. Is the PhD student married?} \item{kids}{Number of children less than 6 years old.} \item{prestige}{Prestige of the graduate program.} \item{mentor}{Number of articles published by student's mentor.} } } \source{ Online complements to Long (1997). \url{http://www.indiana.edu/~jslsoc/research_rm4cldvs.htm} } \references{ Long, J.S. (1990). \emph{Regression Models for Categorical and Limited Dependent Variables}. Thousand Oaks: Sage Publications. Long, J.S. (1997). The Origin of Sex Differences in Science. \emph{Social Forces}, \bold{68}, 1297--1315. } \examples{ ## from Long (1997) data("PhDPublications") ## Table 8.1, p. 227 summary(PhDPublications) ## Figure 8.2, p. 220 plot(0:10, dpois(0:10, mean(PhDPublications$articles)), type = "b", col = 2, xlab = "Number of articles", ylab = "Probability") lines(0:10, prop.table(table(PhDPublications$articles))[1:11], type = "b") legend("topright", c("observed", "predicted"), col = 1:2, lty = rep(1, 2), bty = "n") ## Table 8.2, p. 228 fm_lrm <- lm(log(articles + 0.5) ~ ., data = PhDPublications) summary(fm_lrm) -2 * logLik(fm_lrm) fm_prm <- glm(articles ~ ., data = PhDPublications, family = poisson) library("MASS") fm_nbrm <- glm.nb(articles ~ ., data = PhDPublications) ## Table 8.3, p. 246 library("pscl") fm_zip <- zeroinfl(articles ~ . | ., data = PhDPublications) fm_zinb <- zeroinfl(articles ~ . | ., data = PhDPublications, dist = "negbin") } \keyword{datasets} AER/man/Medicaid1986.Rd0000644000175400001440000000720512214551431014147 0ustar zeileisusers\name{Medicaid1986} \alias{Medicaid1986} \title{Medicaid Utilization Data} \description{ Cross-section data originating from the 1986 Medicaid Consumer Survey. The data comprise two groups of Medicaid eligibles at two sites in California (Santa Barbara and Ventura counties): a group enrolled in a managed care demonstration program and a fee-for-service comparison group of non-enrollees. } \usage{data("Medicaid1986")} \format{ A data frame containing 996 observations on 14 variables. \describe{ \item{visits}{Number of doctor visits.} \item{exposure}{Length of observation period for ambulatory care (days).} \item{children}{Total number of children in the household.} \item{age}{Age of the respondent.} \item{income}{Annual household income (average of income range in million USD).} \item{health1}{The first principal component (divided by 1000) of three health-status variables: functional limitations, acute conditions, and chronic conditions.} \item{health2}{The second principal component (divided by 1000) of three health-status variables: functional limitations, acute conditions, and chronic conditions.} \item{access}{Availability of health services (0 = low access, 1 = high access).} \item{married}{Factor. Is the individual married?} \item{gender}{Factor indicating gender.} \item{ethnicity}{Factor indicating ethnicity (\code{"cauc"} or \code{"other"}).} \item{school}{Number of years completed in school.} \item{enroll}{Factor. Is the individual enrolled in a demonstration program?} \item{program}{Factor indicating the managed care demonstration program: Aid to Families with Dependent Children (\code{"afdc"}) or non-institutionalized Supplementary Security Income (\code{"ssi"}).} } } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/1997-v12.3/gurmu/} } \references{ Gurmu, S. (1997). Semi-Parametric Estimation of Hurdle Regression Models with an Application to Medicaid Utilization. \emph{Journal of Applied Econometrics}, \bold{12}, 225--242. } \examples{ ## data and packages data("Medicaid1986") library("MASS") library("pscl") ## scale regressors Medicaid1986$age2 <- Medicaid1986$age^2 / 100 Medicaid1986$school <- Medicaid1986$school / 10 Medicaid1986$income <- Medicaid1986$income / 10 ## subsets afdc <- subset(Medicaid1986, program == "afdc")[, c(1, 3:4, 15, 5:9, 11:13)] ssi <- subset(Medicaid1986, program == "ssi")[, c(1, 3:4, 15, 5:13)] ## Gurmu (1997): ## Table VI., Poisson and negbin models afdc_pois <- glm(visits ~ ., data = afdc, family = poisson) summary(afdc_pois) coeftest(afdc_pois, vcov = sandwich) afdc_nb <- glm.nb(visits ~ ., data = afdc) ssi_pois <- glm(visits ~ ., data = ssi, family = poisson) ssi_nb <- glm.nb(visits ~ ., data = ssi) ## Table VII., Hurdle models (without semi-parametric effects) afdc_hurdle <- hurdle(visits ~ . | . - access, data = afdc, dist = "negbin") ssi_hurdle <- hurdle(visits ~ . | . - access, data = ssi, dist = "negbin") ## Table VIII., Observed and expected frequencies round(cbind( Observed = table(afdc$visits)[1:8], Poisson = sapply(0:7, function(x) sum(dpois(x, fitted(afdc_pois)))), Negbin = sapply(0:7, function(x) sum(dnbinom(x, mu = fitted(afdc_nb), size = afdc_nb$theta))), Hurdle = colSums(predict(afdc_hurdle, type = "prob")[,1:8]) )/nrow(afdc), digits = 3) * 100 round(cbind( Observed = table(ssi$visits)[1:8], Poisson = sapply(0:7, function(x) sum(dpois(x, fitted(ssi_pois)))), Negbin = sapply(0:7, function(x) sum(dnbinom(x, mu = fitted(ssi_nb), size = ssi_nb$theta))), Hurdle = colSums(predict(ssi_hurdle, type = "prob")[,1:8]) )/nrow(ssi), digits = 3) * 100 } \keyword{datasets} AER/man/USProdIndex.Rd0000644000175400001440000000272013023077234014264 0ustar zeileisusers\name{USProdIndex} \alias{USProdIndex} \title{Index of US Industrial Production} \description{ Index of US industrial production (1985 = 100). } \usage{data("USProdIndex")} \format{ A quarterly multiple time series from 1960(1) to 1981(4) with 2 variables. \describe{ \item{unadjusted}{raw index of industrial production,} \item{adjusted}{seasonally adjusted index.} } } \source{ Online complements to Franses (1998). } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("USProdIndex") plot(USProdIndex, plot.type = "single", col = 1:2) ## EACF tables (Franses 1998, p. 99) ctrafo <- function(x) residuals(lm(x ~ factor(cycle(x)))) ddiff <- function(x) diff(diff(x, frequency(x)), 1) eacf <- function(y, lag = 12) { stopifnot(all(lag > 0)) if(length(lag) < 2) lag <- 1:lag rval <- sapply( list(y = y, dy = diff(y), cdy = ctrafo(diff(y)), Dy = diff(y, frequency(y)), dDy = ddiff(y)), function(x) acf(x, plot = FALSE, lag.max = max(lag))$acf[lag + 1]) rownames(rval) <- lag return(rval) } ## Franses (1998), Table 5.1 round(eacf(log(USProdIndex[,1])), digits = 3) ## Franses (1998), Equation 5.6: Unrestricted airline model ## (Franses: ma1 = 0.388 (0.063), ma4 = -0.739 (0.060), ma5 = -0.452 (0.069)) arima(log(USProdIndex[,1]), c(0, 1, 5), c(0, 1, 0), fixed = c(NA, 0, 0, NA, NA)) } \keyword{datasets} AER/man/Affairs.Rd0000644000175400001440000000626312216542335013503 0ustar zeileisusers\name{Affairs} \alias{Affairs} \title{Fair's Extramarital Affairs Data} \description{ Infidelity data, known as Fair's Affairs. Cross-section data from a survey conducted by Psychology Today in 1969. } \usage{data("Affairs")} \format{ A data frame containing 601 observations on 9 variables. \describe{ \item{affairs}{numeric. How often engaged in extramarital sexual intercourse during the past year?} \item{gender}{factor indicating gender.} \item{age}{numeric variable coding age in years: \code{17.5} = under 20, \code{22} = 20--24, \code{27} = 25--29, \code{32} = 30--34, \code{37} = 35--39, \code{42} = 40--44, \code{47} = 45--49, \code{52} = 50--54, \code{57} = 55 or over.} \item{yearsmarried}{numeric variable coding number of years married: \code{0.125} = 3 months or less, \code{0.417} = 4--6 months, \code{0.75} = 6 months--1 year, \code{1.5} = 1--2 years, \code{4} = 3--5 years, \code{7} = 6--8 years, \code{10} = 9--11 years, \code{15} = 12 or more years.} \item{children}{factor. Are there children in the marriage?} \item{religiousness}{numeric variable coding religiousness: \code{1} = anti, \code{2} = not at all, \code{3} = slightly, \code{4} = somewhat, \code{5} = very.} \item{education}{numeric variable coding level of education: \code{9} = grade school, \code{12} = high school graduate, \code{14} = some college, \code{16} = college graduate, \code{17} = some graduate work, \code{18} = master's degree, \code{20} = Ph.D., M.D., or other advanced degree.} \item{occupation}{numeric variable coding occupation according to Hollingshead classification (reverse numbering).} \item{rating}{numeric variable coding self rating of marriage: \code{1} = very unhappy, \code{2} = somewhat unhappy, \code{3} = average, \code{4} = happier than average, \code{5} = very happy.} } } \source{ Online complements to Greene (2003). Table F22.2. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Fair, R.C. (1978). A Theory of Extramarital Affairs. \emph{Journal of Political Economy}, \bold{86}, 45--61. } \seealso{\code{\link{Greene2003}}} \examples{ data("Affairs") ## Greene (2003) ## Tab. 22.3 and 22.4 fm_ols <- lm(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) fm_probit <- glm(I(affairs > 0) ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs, family = binomial(link = "probit")) fm_tobit <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) fm_tobit2 <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, right = 4, data = Affairs) fm_pois <- glm(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs, family = poisson) library("MASS") fm_nb <- glm.nb(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) ## Tab. 22.6 library("pscl") fm_zip <- zeroinfl(affairs ~ age + yearsmarried + religiousness + occupation + rating | age + yearsmarried + religiousness + occupation + rating, data = Affairs) } \keyword{datasets} AER/man/GrowthDJ.Rd0000644000175400001440000000562312463506326013623 0ustar zeileisusers\name{GrowthDJ} \alias{GrowthDJ} \encoding{UTF-8} \title{Determinants of Economic Growth} \description{Growth regression data as provided by Durlauf & Johnson (1995).} \usage{data("GrowthDJ")} \format{ A data frame containing 121 observations on 10 variables. \describe{ \item{oil}{factor. Is the country an oil-producing country?} \item{inter}{factor. Does the country have better quality data?} \item{oecd}{factor. Is the country a member of the OECD?} \item{gdp60}{Per capita GDP in 1960.} \item{gdp85}{Per capita GDP in 1985.} \item{gdpgrowth}{Average growth rate of per capita GDP from 1960 to 1985 (in percent).} \item{popgrowth}{Average growth rate of working-age population 1960 to 1985 (in percent).} \item{invest}{Average ratio of investment (including Government Investment) to GDP from 1960 to 1985 (in percent).} \item{school}{Average fraction of working-age population enrolled in secondary school from 1960 to 1985 (in percent).} \item{literacy60}{Fraction of the population over 15 years old that is able to read and write in 1960 (in percent).} } } \details{ The data are derived from the Penn World Table 4.0 and are given in Mankiw, Romer and Weil (1992), except \code{literacy60} that is from the World Bank's World Development Report. } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/1995-v10.4/durlauf-johnson/} } \references{ Durlauf, S.N., and Johnson, P.A. (1995). Multiple Regimes and Cross-Country Growth Behavior. \emph{Journal of Applied Econometrics}, \bold{10}, 365--384. Koenker, R., and Zeileis, A. (2009). On Reproducible Econometric Research. \emph{Journal of Applied Econometrics}, \bold{24}(5), 833--847. Mankiw, N.G, Romer, D., and Weil, D.N. (1992). A Contribution to the Empirics of Economic Growth. \emph{Quarterly Journal of Economics}, \bold{107}, 407--437. Masanjala, W.H., and Papageorgiou, C. (2004). The Solow Model with CES Technology: Nonlinearities and Parameter Heterogeneity. \emph{Journal of Applied Econometrics}, \bold{19}, 171--201. } \seealso{\code{\link{OECDGrowth}}, \code{\link{GrowthSW}}} \examples{ ## data for non-oil-producing countries data("GrowthDJ") dj <- subset(GrowthDJ, oil == "no") ## Different scalings have been used by different authors, ## different types of standard errors, etc., ## see Koenker & Zeileis (2009) for an overview ## Durlauf & Johnson (1995), Table II mrw_model <- I(log(gdp85) - log(gdp60)) ~ log(gdp60) + log(invest/100) + log(popgrowth/100 + 0.05) + log(school/100) dj_mrw <- lm(mrw_model, data = dj) coeftest(dj_mrw) dj_model <- I(log(gdp85) - log(gdp60)) ~ log(gdp60) + log(invest) + log(popgrowth/100 + 0.05) + log(school) dj_sub1 <- lm(dj_model, data = dj, subset = gdp60 < 1800 & literacy60 < 50) coeftest(dj_sub1, vcov = sandwich) dj_sub2 <- lm(dj_model, data = dj, subset = gdp60 >= 1800 & literacy60 >= 50) coeftest(dj_sub2, vcov = sandwich) } \keyword{datasets} AER/man/SportsCards.Rd0000644000175400001440000000425513022372740014373 0ustar zeileisusers\name{SportsCards} \alias{SportsCards} \title{Endowment Effect for Sports Cards} \description{ Trading sports cards: Does ownership increase the value of goods to consumers? } \usage{data("SportsCards")} \format{ A data frame containing 148 observations on 9 variables. \describe{ \item{good}{factor. Was the individual given good A or B (see below)?} \item{dealer}{factor. Was the individual a dealer?} \item{permonth}{number of trades per month reported by the individual.} \item{years}{number of years that the individual has been trading.} \item{income}{factor indicating income group (in 1000 USD).} \item{gender}{factor indicating gender.} \item{education}{factor indicating highest level of education (8th grade or less, high school, 2-year college, other post-high school, 4-year college or graduate school).} \item{age}{age in years.} \item{trade}{factor. Did the individual trade the good he was given for the other good?} } } \details{ \code{SportsCards} contains data from 148 randomly selected traders who attended a trading card show in Orlando, Florida, in 1998. Traders were randomly given one of two sports collectables, say good A or good B, that had approximately equal market value. Those receiving good A were then given the option of trading good A for good B with the experimenter; those receiving good B were given the option of trading good B for good A with the experimenter. Good A was a ticket stub from the game that Cal Ripken Jr. set the record for consecutive games played, and Good B was a souvenir from the game that Nolan Ryan won his 300th game. } \source{ Online complements to Stock and Watson (2007). } \references{ List, J.A. (2003). Does Market Experience Eliminate Market Anomalies? \emph{Quarterly Journal of Economcis}, \bold{118}, 41--71. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("SportsCards") summary(SportsCards) plot(trade ~ permonth, data = SportsCards, ylevels = 2:1, breaks = c(0, 5, 10, 20, 30, 70)) plot(trade ~ years, data = SportsCards, ylevels = 2:1, breaks = c(0, 5, 10, 20, 60)) } \keyword{datasets} AER/man/EquationCitations.Rd0000644000175400001440000000746712214550520015573 0ustar zeileisusers\name{EquationCitations} \alias{EquationCitations} \title{Number of Equations and Citations for Evolutionary Biology Publications} \description{ Analysis of citations of evolutionary biology papers published in 1998 in the top three journals (as judged by their 5-year impact factors in the Thomson Reuters Journal Citation Reports 2010). } \usage{data("EquationCitations")} \format{ A data frame containing 649 observations on 13 variables. \describe{ \item{journal}{Factor. Journal in which the paper was published (The American Naturalist, Evolution, Proceedings of the Royal Society of London B: Biological Sciences).} \item{authors}{Character. Names of authors.} \item{volume}{Volume in which the paper was published.} \item{startpage}{Starting page of publication.} \item{pages}{Number of pages.} \item{equations}{Number of equations in total.} \item{mainequations}{Number of equations in main text.} \item{appequations}{Number of equations in appendix.} \item{cites}{Number of citations in total.} \item{selfcites}{Number of citations by the authors themselves.} \item{othercites}{Number of citations by other authors.} \item{theocites}{Number of citations by theoretical papers.} \item{nontheocites}{Number of citations by nontheoretical papers.} } } \details{ Fawcett and Higginson (2012) investigate the relationship between the number of citations evolutionary biology papers receive, depending on the number of equations per page in the cited paper. Overall it can be shown that papers with many mathematical equations significantly lower the number of citations they receive, in particular from nontheoretical papers. } \source{ Online supplements to Fawcett and Higginson (2012). \url{http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205259109/-/DCSupplemental} } \references{ Fawcett, T.W. and Higginson, A.D. (2012). Heavy Use of Equations Impedes Communication among Biologists. \emph{PNAS -- Proceedings of the National Academy of Sciences of the United States of America}, \bold{109}, 11735--11739. \url{http://dx.doi.org/10.1073/pnas.1205259109} } \seealso{\code{\link{PhDPublications}}} \examples{ ## load data and MASS package data("EquationCitations", package = "AER") library("MASS") ## convenience function for summarizing NB models nbtable <- function(obj, digits = 3) round(cbind( "OR" = exp(coef(obj)), "CI" = exp(confint.default(obj)), "Wald z" = coeftest(obj)[,3], "p" = coeftest(obj)[, 4]), digits = digits) ################# ## Replication ## ################# ## Table 1 m1a <- glm.nb(othercites ~ I(equations/pages) * pages + journal, data = EquationCitations) m1b <- update(m1a, nontheocites ~ .) m1c <- update(m1a, theocites ~ .) nbtable(m1a) nbtable(m1b) nbtable(m1c) ## Table 2 m2a <- glm.nb( othercites ~ (I(mainequations/pages) + I(appequations/pages)) * pages + journal, data = EquationCitations) m2b <- update(m2a, nontheocites ~ .) m2c <- update(m2a, theocites ~ .) nbtable(m2a) nbtable(m2b) nbtable(m2c) ############### ## Extension ## ############### ## nonlinear page effect: use log(pages) instead of pages+interaction m3a <- glm.nb(othercites ~ I(equations/pages) + log(pages) + journal, data = EquationCitations) m3b <- update(m3a, nontheocites ~ .) m3c <- update(m3a, theocites ~ .) ## nested models: allow different equation effects over journals m4a <- glm.nb(othercites ~ journal / I(equations/pages) + log(pages), data = EquationCitations) m4b <- update(m4a, nontheocites ~ .) m4c <- update(m4a, theocites ~ .) ## nested model best (wrt AIC) for all responses AIC(m1a, m2a, m3a, m4a) nbtable(m4a) AIC(m1b, m2b, m3b, m4b) nbtable(m4b) AIC(m1c, m2c, m3c, m4c) nbtable(m4c) ## equation effect by journal/response ## comb nontheo theo ## AmNat =/- - + ## Evolution =/+ = + ## ProcB - - =/+ } \keyword{datasets} AER/man/Franses1998.Rd0000644000175400001440000000546113023077223014057 0ustar zeileisusers\name{Franses1998} \alias{Franses1998} \title{Data and Examples from Franses (1998)} \description{ This manual page collects a list of examples from the book. Some solutions might not be exact and the list is certainly not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer. } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{ArgentinaCPI}}, \code{\link{ChinaIncome}}, \code{\link{ConsumerGood}}, \code{\link{DJFranses}}, \code{\link{DutchAdvert}}, \code{\link{DutchSales}}, \code{\link{GermanUnemployment}}, \code{\link{MotorCycles}}, \code{\link{OlympicTV}}, \code{\link{PepperPrice}}, \code{\link{UKNonDurables}}, \code{\link{USProdIndex}}} \examples{ ########################### ## Convenience functions ## ########################### ## EACF tables (Franses 1998, p. 99) ctrafo <- function(x) residuals(lm(x ~ factor(cycle(x)))) ddiff <- function(x) diff(diff(x, frequency(x)), 1) eacf <- function(y, lag = 12) { stopifnot(all(lag > 0)) if(length(lag) < 2) lag <- 1:lag rval <- sapply( list(y = y, dy = diff(y), cdy = ctrafo(diff(y)), Dy = diff(y, frequency(y)), dDy = ddiff(y)), function(x) acf(x, plot = FALSE, lag.max = max(lag))$acf[lag + 1]) rownames(rval) <- lag return(rval) } ####################################### ## Index of US industrial production ## ####################################### data("USProdIndex", package = "AER") plot(USProdIndex, plot.type = "single", col = 1:2) ## Franses (1998), Table 5.1 round(eacf(log(USProdIndex[,1])), digits = 3) ## Franses (1998), Equation 5.6: Unrestricted airline model ## (Franses: ma1 = 0.388 (0.063), ma4 = -0.739 (0.060), ma5 = -0.452 (0.069)) arima(log(USProdIndex[,1]), c(0, 1, 5), c(0, 1, 0), fixed = c(NA, 0, 0, NA, NA)) ########################################### ## Consumption of non-durables in the UK ## ########################################### data("UKNonDurables", package = "AER") plot(UKNonDurables) ## Franses (1998), Table 5.2 round(eacf(log(UKNonDurables)), digits = 3) ## Franses (1998), Equation 5.51 ## (Franses: sma1 = -0.632 (0.069)) arima(log(UKNonDurables), c(0, 1, 0), c(0, 1, 1)) ############################## ## Dutch retail sales index ## ############################## data("DutchSales", package = "AER") plot(DutchSales) ## Franses (1998), Table 5.3 round(eacf(log(DutchSales), lag = c(1:18, 24, 36)), digits = 3) ########################################### ## TV and radio advertising expenditures ## ########################################### data("DutchAdvert", package = "AER") plot(DutchAdvert) ## Franses (1998), Table 5.4 round(eacf(log(DutchAdvert[,"tv"]), lag = c(1:19, 26, 39)), digits = 3) } \keyword{datasets} AER/man/SmokeBan.Rd0000644000175400001440000000357513022372713013627 0ustar zeileisusers\name{SmokeBan} \alias{SmokeBan} \title{Do Workplace Smoking Bans Reduce Smoking?} \description{ Estimation of the effect of workplace smoking bans on smoking of indoor workers. } \usage{data("SmokeBan")} \format{ A data frame containing 10,000 observations on 7 variables. \describe{ \item{smoker}{factor. Is the individual a current smoker?} \item{ban}{factor. Is there a work area smoking ban?} \item{age}{age in years.} \item{education}{factor indicating highest education level attained: high school (hs) drop out, high school graduate, some college, college graduate, master's degree (or higher).} \item{afam}{factor. Is the individual African-American?} \item{hispanic}{factor. Is the individual Hispanic?} \item{gender}{factor indicating gender.} } } \details{ \code{SmokeBank} is a cross-sectional data set with observations on 10,000 indoor workers, which is a subset of a 18,090-observation data set collected as part of the National Health Interview Survey in 1991 and then again (with different respondents) in 1993. The data set contains information on whether individuals were, or were not, subject to a workplace smoking ban, whether or not the individuals smoked and other individual characteristics. } \source{ Online complements to Stock and Watson (2007). } \references{ Evans, W. N., Farrelly, M.C., and Montgomery, E. (1999). Do Workplace Smoking Bans Reduce Smoking? \emph{American Economic Review}, \bold{89}, 728--747. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("SmokeBan") ## proportion of non-smokers increases with education plot(smoker ~ education, data = SmokeBan) ## proportion of non-smokers constant over age plot(smoker ~ age, data = SmokeBan) } \keyword{datasets} AER/man/GrowthSW.Rd0000644000175400001440000000315313022373116013642 0ustar zeileisusers\name{GrowthSW} \alias{GrowthSW} \title{Determinants of Economic Growth} \description{ Data on average growth rates over 1960--1995 for 65 countries, along with variables that are potentially related to growth. } \usage{data("GrowthSW")} \format{ A data frame containing 65 observations on 6 variables. \describe{ \item{growth}{average annual percentage growth of real GDP from 1960 to 1995.} \item{rgdp60}{value of GDP per capita in 1960, converted to 1960 US dollars.} \item{tradeshare}{average share of trade in the economy from 1960 to 1995, measured as the sum of exports (X) plus imports (M), divided by GDP; that is, the average value of (X + M)/GDP from 1960 to 1995.} \item{education}{average number of years of schooling of adult residents in that country in 1960.} \item{revolutions}{average annual number of revolutions, insurrections (successful or not) and coup d'etats in that country from 1960 to 1995.} \item{assassinations}{average annual number of political assassinations in that country from 1960 to 1995 (in per million population).} } } \source{ Online complements to Stock and Watson (2007). } \references{ Beck, T., Levine, R., and Loayza, N. (2000). Finance and the Sources of Growth. \emph{Journal of Financial Economics}, \bold{58}, 261--300. Stock, J. H. and Watson, M. W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{GrowthDJ}}, \code{\link{OECDGrowth}}} \examples{ data("GrowthSW") summary(GrowthSW) } \keyword{datasets} AER/man/MotorCycles2.Rd0000644000175400001440000000214013033552033014435 0ustar zeileisusers\name{MotorCycles2} \alias{MotorCycles2} \title{Motor Cycles in The Netherlands} \description{ Time series of stock of motor cycles (two wheels) in The Netherlands (in thousands). } \usage{data("MotorCycles2")} \format{ An annual univariate time series from 1946 to 2012. } \details{This is an update of the series that was available with Franses (1998). However, the values for the years 1992 and 1993 differ.} \source{ Online complements to Franses, van Dijk and Opschoor (2014). \url{http://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. Franses, P.H., van Dijk, D. and Opschoor, A. (2014). \emph{Time Series Models for Business and Economic Forecasting}, 2nd ed. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}, \code{\link{MotorCycles}}} \examples{ data("MotorCycles2") plot(MotorCycles2) } \keyword{datasets} AER/man/BankWages.Rd0000644000175400001440000000326411667673575014014 0ustar zeileisusers\name{BankWages} \alias{BankWages} \title{Bank Wages} \description{Wages of employees of a US bank. } \usage{data("BankWages")} \format{ A data frame containing 474 observations on 4 variables. \describe{ \item{job}{Ordered factor indicating job category, with levels \code{"custodial"}, \code{"admin"} and \code{"manage"}.} \item{education}{Education in years.} \item{gender}{Factor indicating gender.} \item{minority}{Factor. Is the employee member of a minority?} } } \source{ Online complements to Heij, de Boer, Franses, Kloek, and van Dijk (2004). \url{http://www.oup.com/uk/booksites/content/0199268010/datasets/ch6/xr614bwa.asc} } \references{ Heij, C., de Boer, P.M.C., Franses, P.H., Kloek, T. and van Dijk, H.K. (2004). \emph{Econometric Methods with Applications in Business and Economics}. Oxford: Oxford University Press. } \examples{ data("BankWages") ## exploratory analysis of job ~ education ## (tables and spine plots, some education levels merged) xtabs(~ education + job, data = BankWages) edcat <- factor(BankWages$education) levels(edcat)[3:10] <- rep(c("14-15", "16-18", "19-21"), c(2, 3, 3)) tab <- xtabs(~ edcat + job, data = BankWages) prop.table(tab, 1) spineplot(tab, off = 0) plot(job ~ edcat, data = BankWages, off = 0) ## fit multinomial model for male employees library("nnet") fm_mnl <- multinom(job ~ education + minority, data = BankWages, subset = gender == "male", trace = FALSE) summary(fm_mnl) confint(fm_mnl) ## same with mlogit package if(require("mlogit")) { fm_mlogit <- mlogit(job ~ 1 | education + minority, data = BankWages, subset = gender == "male", shape = "wide", reflevel = "custodial") summary(fm_mlogit) } } \keyword{datasets} AER/man/Municipalities.Rd0000644000175400001440000000320412463506410015075 0ustar zeileisusers\name{Municipalities} \alias{Municipalities} \title{Municipal Expenditure Data} \description{ Panel data set for 265 Swedish municipalities covering 9 years (1979-1987). } \usage{data("Municipalities")} \format{ A data frame containing 2,385 observations on 5 variables. \describe{ \item{municipality}{factor with ID number for municipality.} \item{year}{factor coding year.} \item{expenditures}{total expenditures.} \item{revenues}{total own-source revenues.} \item{grants}{intergovernmental grants received by the municipality.} } } \details{ Total expenditures contains both capital and current expenditures. Expenditures, revenues, and grants are expressed in million SEK. The series are deflated and in per capita form. The implicit deflator is a municipality-specific price index obtained by dividing total local consumption expenditures at current prices by total local consumption expenditures at fixed (1985) prices. The data are gathered by Statistics Sweden and obtained from Financial Accounts for the Municipalities (Kommunernas Finanser). } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/2000-v15.4/dahlberg-johansson/} } \references{ Dahlberg, M., and Johansson, E. (2000). An Examination of the Dynamic Behavior of Local Governments Using GMM Bootstrapping Methods. \emph{Journal of Applied Econometrics}, \bold{15}, 401--416. Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ ## Greene (2003), Table 18.2 data("Municipalities") summary(Municipalities) } \keyword{datasets} AER/man/ProgramEffectiveness.Rd0000644000175400001440000000265011354653140016244 0ustar zeileisusers\name{ProgramEffectiveness} \alias{ProgramEffectiveness} \title{Program Effectiveness Data} \description{ Data used to study the effectiveness of a program. } \usage{data("ProgramEffectiveness")} \format{ A data frame containing 32 cross-section observations on 4 variables. \describe{ \item{grade}{Factor with levels \code{"increase"} and \code{"decrease"}.} \item{average}{Grade-point average.} \item{testscore}{Test score on economics test.} \item{participation}{Factor. Did the individual participate in the program?} } } \details{ The data are taken form Spencer and Mazzeo (1980) who examined whether a new method of teaching economics significantly influenced performance in later economics courses. } \source{ Online complements to Greene (2003). \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Spector, L. and Mazzeo, M. (1980). Probit Analysis and Economic Education. \emph{Journal of Economic Education}, \bold{11}, 37--44. } \seealso{\code{\link{Greene2003}}} \examples{ data("ProgramEffectiveness") ## Greene (2003), Table 21.1, col. "Probit" fm_probit <- glm(grade ~ average + testscore + participation, data = ProgramEffectiveness, family = binomial(link = "probit")) summary(fm_probit) } \keyword{datasets} AER/man/CPS1985.Rd0000644000175400001440000000556012216542447013107 0ustar zeileisusers\name{CPS1985} \alias{CPS1985} \title{Determinants of Wages Data (CPS 1985)} \description{ Cross-section data originating from the May 1985 Current Population Survey by the US Census Bureau (random sample drawn for Berndt 1991). } \usage{data("CPS1985")} \format{ A data frame containing 534 observations on 11 variables. \describe{ \item{wage}{Wage (in dollars per hour).} \item{education}{Number of years of education.} \item{experience}{Number of years of potential work experience (\code{age - education - 6}).} \item{age}{Age in years.} \item{ethnicity}{Factor with levels \code{"cauc"}, \code{"hispanic"}, \code{"other"}.} \item{region}{Factor. Does the individual live in the South?} \item{gender}{Factor indicating gender.} \item{occupation}{Factor with levels \code{"worker"} (tradesperson or assembly line worker), \code{"technical"} (technical or professional worker), \code{"services"} (service worker), \code{"office"} (office and clerical worker), \code{"sales"} (sales worker), \code{"management"} (management and administration).} \item{sector}{Factor with levels \code{"manufacturing"} (manufacturing or mining), \code{"construction"}, \code{"other"}.} \item{union}{Factor. Does the individual work on a union job?} \item{married}{Factor. Is the individual married?} } } \source{ StatLib. \url{http://lib.stat.cmu.edu/datasets/CPS_85_Wages} } \references{ Berndt, E.R. (1991). \emph{The Practice of Econometrics}. New York: Addison-Wesley. } \seealso{\code{\link{CPS1988}}, \code{\link{CPSSW}}} \examples{ data("CPS1985") ## Berndt (1991) ## Exercise 2, p. 196 cps_2b <- lm(log(wage) ~ union + education, data = CPS1985) cps_2c <- lm(log(wage) ~ -1 + union + education, data = CPS1985) ## Exercise 3, p. 198/199 cps_3a <- lm(log(wage) ~ education + experience + I(experience^2), data = CPS1985) cps_3b <- lm(log(wage) ~ gender + education + experience + I(experience^2), data = CPS1985) cps_3c <- lm(log(wage) ~ gender + married + education + experience + I(experience^2), data = CPS1985) cps_3e <- lm(log(wage) ~ gender*married + education + experience + I(experience^2), data = CPS1985) ## Exercise 4, p. 199/200 cps_4a <- lm(log(wage) ~ gender + union + ethnicity + education + experience + I(experience^2), data = CPS1985) cps_4c <- lm(log(wage) ~ gender + union + ethnicity + education * experience + I(experience^2), data = CPS1985) ## Exercise 6, p. 203 cps_6a <- lm(log(wage) ~ gender + union + ethnicity + education + experience + I(experience^2), data = CPS1985) cps_6a_noeth <- lm(log(wage) ~ gender + union + education + experience + I(experience^2), data = CPS1985) anova(cps_6a_noeth, cps_6a) ## Exercise 8, p. 208 cps_8a <- lm(log(wage) ~ gender + union + ethnicity + education + experience + I(experience^2), data = CPS1985) summary(cps_8a) coeftest(cps_8a, vcov = vcovHC(cps_8a, type = "HC0")) } \keyword{datasets} AER/man/ivreg.fit.Rd0000644000175400001440000000555112254625523014027 0ustar zeileisusers\name{ivreg.fit} \alias{ivreg.fit} \title{Fitting Instrumental-Variable Regressions} \description{ Fit instrumental-variable regression by two-stage least squares. This is equivalent to direct instrumental-variables estimation when the number of instruments is equal to the number of predictors. } \usage{ ivreg.fit(x, y, z, weights, offset, \dots) } \arguments{ \item{x}{regressor matrix.} \item{y}{vector with dependent variable.} \item{z}{instruments matrix.} \item{weights}{an optional vector of weights to be used in the fitting process.} \item{offset}{an optional offset that can be used to specify an a priori known component to be included during fitting.} \item{\dots}{further arguments passed to \code{\link[stats:lmfit]{lm.fit}} or \code{link[stats]{lm.wfit}}, respectively.} } \details{ \code{\link{ivreg}} is the high-level interface to the work-horse function \code{ivreg.fit}, a set of standard methods (including \code{summary}, \code{vcov}, \code{anova}, \code{hatvalues}, \code{predict}, \code{terms}, \code{model.matrix}, \code{bread}, \code{estfun}) is available and described on \code{\link{summary.ivreg}}. \code{ivreg.fit} is a convenience interface to \code{\link{lm.fit}} (or \code{\link{lm.wfit}}) for first projecting \code{x} onto the image of \code{z} and the running a regression of \code{y} onto the projected \code{x}. } \value{ \code{ivreg.fit} returns an unclassed list with the following components: \item{coefficients}{parameter estimates.} \item{residuals}{a vector of residuals.} \item{fitted.values}{a vector of predicted means.} \item{weights}{either the vector of weights used (if any) or \code{NULL} (if none).} \item{offset}{either the offset used (if any) or \code{NULL} (if none).} \item{estfun}{a matrix containing the empirical estimating functions.} \item{n}{number of observations.} \item{nobs}{number of observations with non-zero weights.} \item{rank}{the numeric rank of the fitted linear model.} \item{df.residual}{residual degrees of freedom for fitted model.} \item{cov.unscaled}{unscaled covariance matrix for the coefficients.} \item{sigma}{residual standard error.} } \seealso{\code{\link{ivreg}}, \code{\link[stats:lmfit]{lm.fit}}} \examples{ ## data data("CigarettesSW") CigarettesSW$rprice <- with(CigarettesSW, price/cpi) CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi) CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi) ## high-level interface fm <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax/cpi), data = CigarettesSW, subset = year == "1995") ## low-level interface y <- fm$y x <- model.matrix(fm, component = "regressors") z <- model.matrix(fm, component = "instruments") ivreg.fit(x, y, z)$coefficients } \keyword{regression} AER/man/PepperPrice.Rd0000644000175400001440000000342213025016606014334 0ustar zeileisusers\name{PepperPrice} \alias{PepperPrice} \title{Black and White Pepper Prices} \description{ Time series of average monthly European spot prices for black and white pepper (fair average quality) in US dollars per ton. } \usage{data("PepperPrice")} \format{ A monthly multiple time series from 1973(10) to 1996(4) with 2 variables. \describe{ \item{black}{spot price for black pepper,} \item{white}{spot price for white pepper.} } } \source{ Originally available as an online supplement to Franses (1998). Now available via online complements to Franses, van Dijk and Opschoor (2014). \url{http://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. Franses, P.H., van Dijk, D. and Opschoor, A. (2014). \emph{Time Series Models for Business and Economic Forecasting}, 2nd ed. Cambridge, UK: Cambridge University Press. } \examples{ ## data data("PepperPrice") plot(PepperPrice, plot.type = "single", col = 1:2) ## package library("tseries") library("urca") ## unit root tests adf.test(log(PepperPrice[, "white"])) adf.test(diff(log(PepperPrice[, "white"]))) pp.test(log(PepperPrice[, "white"]), type = "Z(t_alpha)") pepper_ers <- ur.ers(log(PepperPrice[, "white"]), type = "DF-GLS", model = "const", lag.max = 4) summary(pepper_ers) ## stationarity tests kpss.test(log(PepperPrice[, "white"])) ## cointegration po.test(log(PepperPrice)) pepper_jo <- ca.jo(log(PepperPrice), ecdet = "const", type = "trace") summary(pepper_jo) pepper_jo2 <- ca.jo(log(PepperPrice), ecdet = "const", type = "eigen") summary(pepper_jo2) } \keyword{datasets} AER/man/DJIA8012.Rd0000644000175400001440000000260613033552033013141 0ustar zeileisusers\name{DJIA8012} \alias{DJIA8012} \title{Dow Jones Industrial Average (DJIA) index} \description{ Time series of the Dow Jones Industrial Average (DJIA) index. } \usage{data("DJIA8012")} \format{ A daily univariate time series from 1980-01-01 to 2012-12-31 (of class \code{"zoo"} with \code{"Date"} index). } \source{ Online complements to Franses, van Dijk and Opschoor (2014). \url{http://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } \references{ Franses, P.H., van Dijk, D. and Opschoor, A. (2014). \emph{Time Series Models for Business and Economic Forecasting}, 2nd ed. Cambridge, UK: Cambridge University Press. } \examples{ data("DJIA8012") plot(DJIA8012) # p.26, Figure 2.18 dldjia <- diff(log(DJIA8012)) plot(dldjia) # p.141, Figure 6.4 plot(window(dldjia, start = "1987-09-01", end = "1987-12-31")) # p.167, Figure 7.1 dldjia9005 <- window(dldjia, start = "1990-01-01", end = "2005-12-31") qqnorm(dldjia9005) qqline(dldjia9005, lty = 2) # p.170, Figure 7.4 acf(dldjia9005, na.action = na.exclude, lag.max = 250, ylim = c(-0.1, 0.25)) acf(dldjia9005^2, na.action = na.exclude, lag.max = 250, ylim = c(-0.1, 0.25)) acf(abs(dldjia9005), na.action = na.exclude, lag.max = 250, ylim = c(-0.1, 0.25)) } \keyword{datasets} AER/man/USGasG.Rd0000644000175400001440000000563212216542223013214 0ustar zeileisusers\name{USGasG} \alias{USGasG} \title{US Gasoline Market Data (1960--1995, Greene)} \description{ Time series data on the US gasoline market. } \usage{data("USGasG")} \format{ An annual multiple time series from 1960 to 1995 with 10 variables. \describe{ \item{gas}{Total US gasoline consumption (computed as total expenditure divided by price index).} \item{price}{Price index for gasoline.} \item{income}{Per capita disposable income.} \item{newcar}{Price index for new cars.} \item{usedcar}{Price index for used cars.} \item{transport}{Price index for public transportation.} \item{durable}{Aggregate price index for consumer durables.} \item{nondurable}{Aggregate price index for consumer nondurables.} \item{service}{Aggregate price index for consumer services.} \item{population}{US total population in millions.} } } \source{ Online complements to Greene (2003). Table F2.2. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}, \code{\link{USGasB}}} \examples{ data("USGasG", package = "AER") plot(USGasG) ## Greene (2003) ## Example 2.3 fm <- lm(log(gas/population) ~ log(price) + log(income) + log(newcar) + log(usedcar), data = as.data.frame(USGasG)) summary(fm) ## Example 4.4 ## estimates and standard errors (note different offset for intercept) coef(fm) sqrt(diag(vcov(fm))) ## confidence interval confint(fm, parm = "log(income)") ## test linear hypothesis linearHypothesis(fm, "log(income) = 1") ## Example 7.6 ## re-used in Example 8.3 trend <- 1:nrow(USGasG) shock <- factor(time(USGasG) > 1973, levels = c(FALSE, TRUE), labels = c("before", "after")) ## 1960-1995 fm1 <- lm(log(gas/population) ~ log(income) + log(price) + log(newcar) + log(usedcar) + trend, data = as.data.frame(USGasG)) summary(fm1) ## pooled fm2 <- lm(log(gas/population) ~ shock + log(income) + log(price) + log(newcar) + log(usedcar) + trend, data = as.data.frame(USGasG)) summary(fm2) ## segmented fm3 <- lm(log(gas/population) ~ shock/(log(income) + log(price) + log(newcar) + log(usedcar) + trend), data = as.data.frame(USGasG)) summary(fm3) ## Chow test anova(fm3, fm1) library("strucchange") sctest(log(gas/population) ~ log(income) + log(price) + log(newcar) + log(usedcar) + trend, data = USGasG, point = c(1973, 1), type = "Chow") ## Recursive CUSUM test rcus <- efp(log(gas/population) ~ log(income) + log(price) + log(newcar) + log(usedcar) + trend, data = USGasG, type = "Rec-CUSUM") plot(rcus) sctest(rcus) ## Note: Greene's remark that the break is in 1984 (where the process crosses its ## boundary) is wrong. The break appears to be no later than 1976. ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/CPS1988.Rd0000644000175400001440000000520313023074251013072 0ustar zeileisusers\name{CPS1988} \alias{CPS1988} \title{Determinants of Wages Data (CPS 1988)} \description{ Cross-section data originating from the March 1988 Current Population Survey by the US Census Bureau. } \usage{data("CPS1988")} \format{ A data frame containing 28,155 observations on 7 variables. \describe{ \item{wage}{Wage (in dollars per week).} \item{education}{Number of years of education.} \item{experience}{Number of years of potential work experience.} \item{ethnicity}{Factor with levels \code{"cauc"} and \code{"afam"} (African-American).} \item{smsa}{Factor. Does the individual reside in a Standard Metropolitan Statistical Area (SMSA)?} \item{region}{Factor with levels \code{"northeast"}, \code{"midwest"}, \code{"south"}, \code{"west"}.} \item{parttime}{Factor. Does the individual work part-time?} } } \details{ A sample of men aged 18 to 70 with positive annual income greater than USD 50 in 1992, who are not self-employed nor working without pay. Wages are deflated by the deflator of Personal Consumption Expenditure for 1992. A problem with CPS data is that it does not provide actual work experience. It is therefore customary to compute experience as \code{age - education - 6} (as was done by Bierens and Ginther, 2001), this may be considered potential experience. As a result, some respondents have negative experience. } \source{ \url{http://www.personal.psu.edu/hxb11/MEDIAN.HTM} } \references{ Bierens, H.J., and Ginther, D. (2001). Integrated Conditional Moment Testing of Quantile Regression Models. \emph{Empirical Economics}, \bold{26}, 307--324. Buchinsky, M. (1998). Recent Advances in Quantile Regression Models: A Practical Guide for Empirical Research. \emph{Journal of Human Resources}, \bold{33}, 88--126. } \seealso{\code{\link{CPS1985}}, \code{\link{CPSSW}}} \examples{ ## data and packages library("quantreg") data("CPS1988") CPS1988$region <- relevel(CPS1988$region, ref = "south") ## Model equations: Mincer-type, quartic, Buchinsky-type mincer <- log(wage) ~ ethnicity + education + experience + I(experience^2) quart <- log(wage) ~ ethnicity + education + experience + I(experience^2) + I(experience^3) + I(experience^4) buchinsky <- log(wage) ~ ethnicity * (education + experience + parttime) + region*smsa + I(experience^2) + I(education^2) + I(education*experience) ## OLS and LAD fits (for LAD see Bierens and Ginter, Tables 1-3.A.) mincer_ols <- lm(mincer, data = CPS1988) mincer_lad <- rq(mincer, data = CPS1988) quart_ols <- lm(quart, data = CPS1988) quart_lad <- rq(quart, data = CPS1988) buchinsky_ols <- lm(buchinsky, data = CPS1988) buchinsky_lad <- rq(buchinsky, data = CPS1988) } \keyword{datasets} AER/man/GSS7402.Rd0000644000175400001440000000726413025016606013077 0ustar zeileisusers\name{GSS7402} \alias{GSS7402} \title{US General Social Survey 1974--2002} \description{ Cross-section data for 9120 women taken from every fourth year of the US General Social Survey between 1974 and 2002 to investigate the determinants of fertility. } \usage{data("GSS7402")} \format{ A data frame containing 9120 observations on 10 variables. \describe{ \item{kids}{Number of children. This is coded as a numerical variable but note that the value \code{8} actually encompasses 8 or more children.} \item{age}{Age of respondent.} \item{education}{Highest year of school completed.} \item{year}{GSS year for respondent.} \item{siblings}{Number of brothers and sisters.} \item{agefirstbirth}{Woman's age at birth of first child.} \item{ethnicity}{factor indicating ethnicity. Is the individual Caucasian (\code{"cauc"}) or not (\code{"other"})?} \item{city16}{factor. Did the respondent live in a city (with population > 50,000) at age 16?} \item{lowincome16}{factor. Was the income below average at age 16?} \item{immigrant}{factor. Was the respondent (or both parents) born abroad?} } } \details{ This subset of the US General Social Survey (GSS) for every fourth year between 1974 and 2002 has been selected by Winkelmann and Boes (2009) to investigate the determinants of fertility. To do so they typically restrict their empirical analysis to the women for which the completed fertility is (assumed to be) known, employing the common cutoff of 40 years. Both, the average number of children borne to a woman and the probability of being childless, are of interest. } \source{ Online complements to Winkelmann and Boes (2009). \url{http://econsites.uzh.ch/rwinke/microdata.zip} } \references{ Winkelmann, R., and Boes, S. (2009). \emph{Analysis of Microdata}, 2nd ed. Berlin and Heidelberg: Springer-Verlag. } \seealso{\code{\link{WinkelmannBoes2009}}} \examples{ ## completed fertility subset data("GSS7402", package = "AER") gss40 <- subset(GSS7402, age >= 40) ## Chapter 1 ## exploratory statistics gss_kids <- prop.table(table(gss40$kids)) names(gss_kids)[9] <- "8+" gss_zoo <- as.matrix(with(gss40, cbind( tapply(kids, year, mean), tapply(kids, year, function(x) mean(x <= 0)), tapply(education, year, mean)))) colnames(gss_zoo) <- c("Number of children", "Proportion childless", "Years of schooling") gss_zoo <- zoo(gss_zoo, sort(unique(gss40$year))) ## visualizations instead of tables barplot(gss_kids, xlab = "Number of children ever borne to women (age 40+)", ylab = "Relative frequencies") library("lattice") trellis.par.set(theme = canonical.theme(color = FALSE)) print(xyplot(gss_zoo[,3:1], type = "b", xlab = "Year")) ## Chapter 3, Example 3.14 ## Table 3.1 gss40$nokids <- factor(gss40$kids <= 0, levels = c(FALSE, TRUE), labels = c("no", "yes")) gss40$trend <- gss40$year - 1974 nokids_p1 <- glm(nokids ~ 1, data = gss40, family = binomial(link = "probit")) nokids_p2 <- glm(nokids ~ trend, data = gss40, family = binomial(link = "probit")) nokids_p3 <- glm(nokids ~ trend + education + ethnicity + siblings, data = gss40, family = binomial(link = "probit")) lrtest(nokids_p1, nokids_p2, nokids_p3) ## Chapter 4, Figure 4.4 library("effects") nokids_p3_ef <- effect("education", nokids_p3, xlevels = list(education = 0:20)) plot(nokids_p3_ef, rescale.axis = FALSE, ylim = c(0, 0.3)) ## Chapter 8, Example 8.11 kids_pois <- glm(kids ~ education + trend + ethnicity + immigrant + lowincome16 + city16, data = gss40, family = poisson) library("MASS") kids_nb <- glm.nb(kids ~ education + trend + ethnicity + immigrant + lowincome16 + city16, data = gss40) lrtest(kids_pois, kids_nb) ## More examples can be found in: ## help("WinkelmannBoes2009") } \keyword{datasets} AER/man/GSOEP9402.Rd0000644000175400001440000001017613025016606013316 0ustar zeileisusers\name{GSOEP9402} \alias{GSOEP9402} \title{German Socio-Economic Panel 1994--2002} \description{ Cross-section data for 675 14-year old children born between 1980 and 1988. The sample is taken from the German Socio-Economic Panel (GSOEP) for the years 1994 to 2002 to investigate the determinants of secondary school choice. } \usage{data("GSOEP9402")} \format{ A data frame containing 675 observations on 12 variables. \describe{ \item{school}{factor. Child's secondary school level.} \item{birthyear}{Year of child's birth.} \item{gender}{factor indicating child's gender.} \item{kids}{Total number of kids living in household.} \item{parity}{Birth order.} \item{income}{Household income.} \item{size}{Household size} \item{state}{factor indicating German federal state.} \item{marital}{factor indicating mother's marital status.} \item{meducation}{Mother's educational level in years.} \item{memployment}{factor indicating mother's employment level: full-time, part-time, or not working.} \item{year}{Year of GSOEP wave.} } } \details{ This sample from the German Socio-Economic Panel (GSOEP) for the years between 1994 and 2002 has been selected by Winkelmann and Boes (2009) to investigate the determinants of secondary school choice. In the German schooling system, students are separated relatively early into different school types, depending on their ability as perceived by the teachers after four years of primary school. After that, around the age of ten, students are placed into one of three types of secondary school: \code{"Hauptschule"} (lower secondary school), \code{"Realschule"} (middle secondary school), or \code{"Gymnasium"} (upper secondary school). Only a degree from the latter type of school (called Abitur) provides direct access to universities. A frequent criticism of this system is that the tracking takes place too early, and that it cements inequalities in education across generations. Although the secondary school choice is based on the teachers' recommendations, it is typically also influenced by the parents; both indirectly through their own educational level and directly through influence on the teachers. } \source{ Online complements to Winkelmann and Boes (2009). \url{http://econsites.uzh.ch/rwinke/microdata.zip} } \references{ Winkelmann, R., and Boes, S. (2009). \emph{Analysis of Microdata}, 2nd ed. Berlin and Heidelberg: Springer-Verlag. } \seealso{\code{\link{WinkelmannBoes2009}}} \examples{ ## data data("GSOEP9402", package = "AER") ## some convenience data transformations gsoep <- GSOEP9402 gsoep$year2 <- factor(gsoep$year) ## visualization plot(school ~ meducation, data = gsoep, breaks = c(7, 9, 10.5, 11.5, 12.5, 15, 18)) ## Chapter 5, Table 5.1 library("nnet") gsoep_mnl <- multinom( school ~ meducation + memployment + log(income) + log(size) + parity + year2, data = gsoep) coeftest(gsoep_mnl)[c(1:6, 1:6 + 14),] ## alternatively if(require("mlogit")) { gsoep_mnl2 <- mlogit( school ~ 0 | meducation + memployment + log(income) + log(size) + parity + year2, data = gsoep, shape = "wide", reflevel = "Hauptschule") coeftest(gsoep_mnl2)[1:12,] } ## Table 5.2 library("effects") gsoep_eff <- effect("meducation", gsoep_mnl, xlevels = list(meducation = sort(unique(gsoep$meducation)))) gsoep_eff$prob plot(gsoep_eff, confint = FALSE) ## omit year gsoep_mnl1 <- multinom( school ~ meducation + memployment + log(income) + log(size) + parity, data = gsoep) lrtest(gsoep_mnl, gsoep_mnl1) ## Chapter 6 ## Table 6.1 library("MASS") gsoep_pop <- polr( school ~ meducation + I(memployment != "none") + log(income) + log(size) + parity + year2, data = gsoep, method = "probit", Hess = TRUE) gsoep_pol <- polr( school ~ meducation + I(memployment != "none") + log(income) + log(size) + parity + year2, data = gsoep, Hess = TRUE) ## compare polr and multinom via AIC gsoep_pol1 <- polr( school ~ meducation + memployment + log(income) + log(size) + parity, data = gsoep, Hess = TRUE) AIC(gsoep_pol1, gsoep_mnl) ## effects eff_pol1 <- allEffects(gsoep_pol1) plot(eff_pol1, ask = FALSE, confint = FALSE) ## More examples can be found in: ## help("WinkelmannBoes2009") } \keyword{datasets} AER/man/USCrudes.Rd0000644000175400001440000000161212463507631013622 0ustar zeileisusers\name{USCrudes} \alias{USCrudes} \title{US Crudes Data} \description{ Cross-section data originating from 99 US oil field postings. } \usage{data("USCrudes")} \format{ A data frame containing 99 observations on 3 variables. \describe{ \item{price}{Crude prices (USD/barrel).} \item{gravity}{Gravity (degree API).} \item{sulphur}{Sulphur (in \%).} } } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("USCrudes") plot(price ~ gravity, data = USCrudes) plot(price ~ sulphur, data = USCrudes) fm <- lm(price ~ sulphur + gravity, data = USCrudes) ## 3D Visualization if(require("scatterplot3d")) { s3d <- scatterplot3d(USCrudes[, 3:1], pch = 16) s3d$plane3d(fm, lty.box = "solid", col = 4) } } \keyword{datasets} AER/man/ConsumerGood.Rd0000644000175400001440000000131313023077076014525 0ustar zeileisusers\name{ConsumerGood} \alias{ConsumerGood} \title{Properties of a Fast-Moving Consumer Good} \description{ Time series of distribution, market share and price of a fast-moving consumer good. } \usage{data("ConsumerGood")} \format{ A weekly multiple time series from 1989(11) to 1991(9) with 3 variables. \describe{ \item{distribution}{Distribution.} \item{share}{Market share.} \item{price}{Price.} } } \source{ Online complements to Franses (1998). } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("ConsumerGood") plot(ConsumerGood) } \keyword{datasets} AER/man/MarkPound.Rd0000644000175400001440000000371612463674260014037 0ustar zeileisusers\name{MarkPound} \alias{MarkPound} \title{DEM/GBP Exchange Rate Returns} \description{ A daily time series of percentage returns of Deutsche mark/British pound (DEM/GBP) exchange rates from 1984-01-03 through 1991-12-31. } \usage{data("MarkPound")} \format{ A univariate time series of 1974 returns (exact dates unknown) for the DEM/GBP exchange rate. } \details{ Greene (2003, Table F11.1) rounded the series to six digits while eight digits are given in Bollerslev and Ghysels (1996). Here, we provide the original data. Using \code{\link{round}} a series can be produced that is virtually identical to that of Greene (2003) (except for eight observations where a slightly different rounding arithmetic was used). } \source{ Journal of Business \& Economic Statistics Data Archive. \verb{http://www.amstat.org/publications/jbes/upload/index.cfm?fuseaction=ViewArticles&pub=JBES&issue=96-2-APR} } \references{ Bollerslev, T., and Ghysels, E. (1996). Periodic Autoregressive Conditional Heteroskedasticity. \emph{Journal of Business \& Economic Statistics}, \bold{14}, 139--151. Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}, \code{\link{MarkDollar}}} \examples{ ## data as given by Greene (2003) data("MarkPound") mp <- round(MarkPound, digits = 6) ## Figure 11.3 in Greene (2003) plot(mp) ## Example 11.8 in Greene (2003), Table 11.5 library("tseries") mp_garch <- garch(mp, grad = "numerical") summary(mp_garch) logLik(mp_garch) ## Greene (2003) also includes a constant and uses different ## standard errors (presumably computed from Hessian), here ## OPG standard errors are used. garchFit() in "fGarch" ## implements the approach used by Greene (2003). ## compare Errata to Greene (2003) library("dynlm") res <- residuals(dynlm(mp ~ 1))^2 mp_ols <- dynlm(res ~ L(res, 1:10)) summary(mp_ols) logLik(mp_ols) summary(mp_ols)$r.squared * length(residuals(mp_ols)) } \keyword{datasets} AER/man/USConsump1979.Rd0000644000175400001440000000201011354653140014337 0ustar zeileisusers\name{USConsump1979} \alias{USConsump1979} \title{US Consumption Data (1970--1979)} \description{ Time series data on US income and consumption expenditure, 1970--1979. } \usage{data("USConsump1979")} \format{ An annual multiple time series from 1970 to 1979 with 2 variables. \describe{ \item{income}{Disposable income.} \item{expenditure}{Consumption expenditure.} } } \source{ Online complements to Greene (2003). Table F1.1. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}, \code{\link{USConsump1950}}, \code{\link{USConsump1993}}} \examples{ data("USConsump1979") plot(USConsump1979) ## Example 1.1 in Greene (2003) plot(expenditure ~ income, data = as.data.frame(USConsump1979), pch = 19) fm <- lm(expenditure ~ income, data = as.data.frame(USConsump1979)) summary(fm) abline(fm) } \keyword{datasets} AER/man/HousePrices.Rd0000644000175400001440000000430212463506345014356 0ustar zeileisusers\name{HousePrices} \alias{HousePrices} \title{House Prices in the City of Windsor, Canada} \description{ Sales prices of houses sold in the city of Windsor, Canada, during July, August and September, 1987. } \usage{data("HousePrices")} \format{ A data frame containing 546 observations on 12 variables. \describe{ \item{price}{Sale price of a house.} \item{lotsize}{Lot size of a property in square feet.} \item{bedrooms}{Number of bedrooms.} \item{bathrooms}{Number of full bathrooms.} \item{stories}{Number of stories excluding basement.} \item{driveway}{Factor. Does the house have a driveway?} \item{recreation}{Factor. Does the house have a recreational room?} \item{fullbase}{Factor. Does the house have a full finished basement?} \item{gasheat}{Factor. Does the house use gas for hot water heating?} \item{aircon}{Factor. Is there central air conditioning?} \item{garage}{Number of garage places.} \item{prefer}{Factor. Is the house located in the preferred neighborhood of the city?} } } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/1996-v11.6/anglin-gencay/} } \references{ Anglin, P., and Gencay, R. (1996). Semiparametric Estimation of a Hedonic Price Function. \emph{Journal of Applied Econometrics}, \bold{11}, 633--648. Verbeek, M. (2004). \emph{A Guide to Modern Econometrics}, 2nd ed. Chichester, UK: John Wiley. } \examples{ data("HousePrices") ### Anglin + Gencay (1996), Table II fm_ag <- lm(log(price) ~ driveway + recreation + fullbase + gasheat + aircon + garage + prefer + log(lotsize) + log(bedrooms) + log(bathrooms) + log(stories), data = HousePrices) ### Anglin + Gencay (1996), Table III fm_ag2 <- lm(log(price) ~ driveway + recreation + fullbase + gasheat + aircon + garage + prefer + log(lotsize) + bedrooms + bathrooms + stories, data = HousePrices) ### Verbeek (2004), Table 3.1 fm <- lm(log(price) ~ log(lotsize) + bedrooms + bathrooms + aircon, data = HousePrices) summary(fm) ### Verbeek (2004), Table 3.2 fm_ext <- lm(log(price) ~ . - lotsize + log(lotsize), data = HousePrices) summary(fm_ext) ### Verbeek (2004), Table 3.3 fm_lin <- lm(price ~ . , data = HousePrices) summary(fm_lin) } \keyword{datasets} AER/man/USAirlines.Rd0000644000175400001440000000413111354653140014135 0ustar zeileisusers\name{USAirlines} \alias{USAirlines} \title{Cost Data for US Airlines} \description{ Cost data for six US airlines in 1970--1984. } \usage{data("USAirlines")} \format{ A data frame containing 90 observations on 6 variables. \describe{ \item{firm}{factor indicating airline firm.} \item{year}{factor indicating year.} \item{output}{output revenue passenger miles index number.} \item{cost}{total cost (in USD 1000).} \item{price}{fuel price.} \item{load}{average capacity utilization of the fleet.} } } \source{ Online complements to Greene (2003). Table F7.1. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("USAirlines") ## Example 7.2 in Greene (2003) fm_full <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load + year + firm, data = USAirlines) fm_time <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load + year, data = USAirlines) fm_firm <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load + firm, data = USAirlines) fm_no <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = USAirlines) ## Table 7.2 anova(fm_full, fm_time) anova(fm_full, fm_firm) anova(fm_full, fm_no) ## alternatively, use plm() library("plm") usair <- plm.data(USAirlines, c("firm", "year")) fm_full2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "within", effect = "twoways") fm_time2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "within", effect = "time") fm_firm2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "within", effect = "individual") fm_no2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "pooling") pFtest(fm_full2, fm_time2) pFtest(fm_full2, fm_firm2) pFtest(fm_full2, fm_no2) ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/Grunfeld.Rd0000644000175400001440000001264512325712244013676 0ustar zeileisusers\name{Grunfeld} \alias{Grunfeld} \title{Grunfeld's Investment Data} \description{ Panel data on 11 large US manufacturing firms over 20 years, for the years 1935--1954. } \usage{data("Grunfeld")} \format{ A data frame containing 20 annual observations on 3 variables for 11 firms. \describe{ \item{invest}{Gross investment, defined as additions to plant and equipment plus maintenance and repairs in millions of dollars deflated by the implicit price deflator of producers' durable equipment (base 1947).} \item{value}{Market value of the firm, defined as the price of common shares at December 31 (or, for WH, IBM and CH, the average price of December 31 and January 31 of the following year) times the number of common shares outstanding plus price of preferred shares at December 31 (or average price of December 31 and January 31 of the following year) times number of preferred shares plus total book value of debt at December 31 in millions of dollars deflated by the implicit GNP price deflator (base 1947).} \item{capital}{Stock of plant and equipment, defined as the accumulated sum of net additions to plant and equipment deflated by the implicit price deflator for producers' durable equipment (base 1947) minus depreciation allowance deflated by depreciation expense deflator (10 years moving average of wholesale price index of metals and metal products, base 1947).} \item{firm}{factor with 11 levels: \code{"General Motors"}, \code{"US Steel"}, \code{"General Electric"}, \code{"Chrysler"}, \code{"Atlantic Refining"}, \code{"IBM"}, \code{"Union Oil"}, \code{"Westinghouse"}, \code{"Goodyear"}, \code{"Diamond Match"}, \code{"American Steel"}.} \item{year}{Year.} } } \details{ This is a popular data set for teaching purposes. Unfortunately, there exist several different versions (see Kleiber and Zeileis, 2010, for a detailed discussion). In particular, the version provided by Greene (2003) has a couple of errors for \code{"US Steel"} (firm 2): investment in 1940 is 261.6 (instead of the correct 361.6), investment in 1952 is 645.2 (instead of the correct 645.5), capital in 1946 is 132.6 (instead of the correct 232.6). Here, we provide the original data from Grunfeld (1958). The data for the first 10 firms are identical to those of Baltagi (2002) or Baltagi (2005), now also used by Greene (2008). } \source{ The data are taken from Grunfeld (1958, Appendix, Tables 2--9 and 11--13). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed., Berlin: Springer-Verlag. Baltagi, B.H. (2005). \emph{Econometric Analysis of Panel Data}, 3rd ed. Chichester, UK: John Wiley. Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Greene, W.H. (2008). \emph{Econometric Analysis}, 6th edition. Upper Saddle River, NJ: Prentice Hall. Grunfeld, Y. (1958). \emph{The Determinants of Corporate Investment}. Unpublished Ph.D. Dissertation, University of Chicago. Kleiber, C., and Zeileis, A. (2010). \dQuote{The Grunfeld Data at 50.} \emph{German Economic Review}, \bold{11}(4), 404--417. \url{http://dx.doi.org/10.1111/j.1468-0475.2010.00513.x} } \seealso{\code{\link{Baltagi2002}}, \code{\link{Greene2003}}} \examples{ data("Grunfeld", package = "AER") ## Greene (2003) ## subset of data with mistakes ggr <- subset(Grunfeld, firm \%in\% c("General Motors", "US Steel", "General Electric", "Chrysler", "Westinghouse")) ggr[c(26, 38), 1] <- c(261.6, 645.2) ggr[32, 3] <- 232.6 ## Tab. 14.2, col. "GM" fm_gm <- lm(invest ~ value + capital, data = ggr, subset = firm == "General Motors") mean(residuals(fm_gm)^2) ## Greene uses MLE ## Tab. 14.2, col. "Pooled" fm_pool <- lm(invest ~ value + capital, data = ggr) ## equivalently library("plm") pggr <- plm.data(ggr, c("firm", "year")) library("systemfit") fm_ols <- systemfit(invest ~ value + capital, data = pggr, method = "OLS") fm_pols <- systemfit(invest ~ value + capital, data = pggr, method = "OLS", pooled = TRUE) ## Tab. 14.1 fm_sur <- systemfit(invest ~ value + capital, data = pggr, method = "SUR", methodResidCov = "noDfCor") fm_psur <- systemfit(invest ~ value + capital, data = pggr, method = "SUR", pooled = TRUE, methodResidCov = "noDfCor", residCovWeighted = TRUE) ## Further examples: ## help("Greene2003") ## Panel models library("plm") pg <- plm.data(subset(Grunfeld, firm != "American Steel"), c("firm", "year")) fm_fe <- plm(invest ~ value + capital, model = "within", data = pg) summary(fm_fe) coeftest(fm_fe, vcov = vcovHC) fm_reswar <- plm(invest ~ value + capital, data = pg, model = "random", random.method = "swar") summary(fm_reswar) ## testing for random effects fm_ols <- plm(invest ~ value + capital, data = pg, model = "pooling") plmtest(fm_ols, type = "bp") plmtest(fm_ols, type = "honda") ## Random effects models fm_ream <- plm(invest ~ value + capital, data = pg, model = "random", random.method = "amemiya") fm_rewh <- plm(invest ~ value + capital, data = pg, model = "random", random.method = "walhus") fm_rener <- plm(invest ~ value + capital, data = pg, model = "random", random.method = "nerlove") ## Baltagi (2005), Tab. 2.1 rbind( "OLS(pooled)" = coef(fm_ols), "FE" = c(NA, coef(fm_fe)), "RE-SwAr" = coef(fm_reswar), "RE-Amemiya" = coef(fm_ream), "RE-WalHus" = coef(fm_rewh), "RE-Nerlove" = coef(fm_rener)) ## Hausman test phtest(fm_fe, fm_reswar) ## Further examples: ## help("Baltagi2002") ## help("Greene2003") } \keyword{datasets} AER/man/EuroEnergy.Rd0000644000175400001440000000140612463507505014212 0ustar zeileisusers\name{EuroEnergy} \alias{EuroEnergy} \title{European Energy Consumption Data} \description{ Cross-section data on energy consumption for 20 European countries, for the year 1980. } \usage{data("EuroEnergy")} \format{ A data frame containing 20 observations on 2 variables. \describe{ \item{gdp}{Real gross domestic product for the year 1980 (in million 1975 US dollars).} \item{energy}{Aggregate energy consumption (in million kilograms coal equivalence).} } } \source{ The data are from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("EuroEnergy") energy_lm <- lm(log(energy) ~ log(gdp), data = EuroEnergy) influence.measures(energy_lm) } \keyword{datasets} AER/man/ResumeNames.Rd0000644000175400001440000000725313022372726014355 0ustar zeileisusers\name{ResumeNames} \alias{ResumeNames} \title{Are Emily and Greg More Employable Than Lakisha and Jamal?} \description{ Cross-section data about resume, call-back and employer information for 4,870 fictitious resumes. } \usage{data("ResumeNames")} \format{ A data frame containing 4,870 observations on 27 variables. \describe{ \item{name}{factor indicating applicant's first name.} \item{gender}{factor indicating gender.} \item{ethnicity}{factor indicating ethnicity (i.e., Caucasian-sounding vs. African-American sounding first name).} \item{quality}{factor indicating quality of resume.} \item{call}{factor. Was the applicant called back?} \item{city}{factor indicating city: Boston or Chicago.} \item{jobs}{number of jobs listed on resume.} \item{experience}{number of years of work experience on the resume.} \item{honors}{factor. Did the resume mention some honors?} \item{volunteer}{factor. Did the resume mention some volunteering experience?} \item{military}{factor. Does the applicant have military experience?} \item{holes}{factor. Does the resume have some employment holes?} \item{school}{factor. Does the resume mention some work experience while at school?} \item{email}{factor. Was the e-mail address on the applicant's resume?} \item{computer}{factor. Does the resume mention some computer skills?} \item{special}{factor. Does the resume mention some special skills?} \item{college}{factor. Does the applicant have a college degree or more?} \item{minimum}{factor indicating minimum experience requirement of the employer.} \item{equal}{factor. Is the employer EOE (equal opportunity employment)?} \item{wanted}{factor indicating type of position wanted by employer.} \item{requirements}{factor. Does the ad mention some requirement for the job?} \item{reqexp}{factor. Does the ad mention some experience requirement?} \item{reqcomm}{factor. Does the ad mention some communication skills requirement?} \item{reqeduc}{factor. Does the ad mention some educational requirement?} \item{reqcomp}{factor. Does the ad mention some computer skills requirement?} \item{reqorg}{factor. Does the ad mention some organizational skills requirement?} \item{industry}{factor indicating type of employer industry.} } } \details{ Cross-section data about resume, call-back and employer information for 4,870 fictitious resumes sent in response to employment advertisements in Chicago and Boston in 2001, in a randomized controlled experiment conducted by Bertrand and Mullainathan (2004). The resumes contained information concerning the ethnicity of the applicant. Because ethnicity is not typically included on a resume, resumes were differentiated on the basis of so-called \dQuote{Caucasian sounding names} (such as Emily Walsh or Gregory Baker) and \dQuote{African American sounding names} (such as Lakisha Washington or Jamal Jones). A large collection of fictitious resumes were created and the pre-supposed ethnicity (based on the sound of the name) was randomly assigned to each resume. These resumes were sent to prospective employers to see which resumes generated a phone call from the prospective employer. } \source{ Online complements to Stock and Watson (2007). } \references{ Bertrand, M. and Mullainathan, S. (2004). Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination. \emph{American Economic Review}, \bold{94}, 991--1013. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("ResumeNames") summary(ResumeNames) prop.table(xtabs(~ ethnicity + call, data = ResumeNames), 1) } \keyword{datasets} AER/man/GermanUnemployment.Rd0000644000175400001440000000134613023077130015744 0ustar zeileisusers\name{GermanUnemployment} \alias{GermanUnemployment} \title{Unemployment in Germany Data} \description{ Time series of unemployment rate (in percent) in Germany. } \usage{data("GermanUnemployment")} \format{ A quarterly multiple time series from 1962(1) to 1991(4) with 2 variables. \describe{ \item{unadjusted}{Raw unemployment rate,} \item{adjusted}{Seasonally adjusted rate.} } } \source{ Online complements to Franses (1998). } \seealso{\code{\link{Franses1998}}} \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \examples{ data("GermanUnemployment") plot(GermanUnemployment, plot.type = "single", col = 1:2) } \keyword{datasets} AER/man/WinkelmannBoes2009.Rd0000644000175400001440000003076412216542050015354 0ustar zeileisusers\name{WinkelmannBoes2009} \alias{WinkelmannBoes2009} \title{Data and Examples from Winkelmann and Boes (2009)} \description{ This manual page collects a list of examples from the book. Some solutions might not be exact and the list is not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer. } \references{ Winkelmann, R., and Boes, S. (2009). \emph{Analysis of Microdata}, 2nd ed. Berlin and Heidelberg: Springer-Verlag. } \seealso{\code{\link{GSS7402}}, \code{\link{GSOEP9402}}, \code{\link{PSID1976}}} \examples{ ######################################### ## US General Social Survey 1974--2002 ## ######################################### ## data data("GSS7402", package = "AER") ## completed fertility subset gss40 <- subset(GSS7402, age >= 40) ## Chapter 1 ## Table 1.1 gss_kids <- table(gss40$kids) cbind(absolute = gss_kids, relative = round(prop.table(gss_kids) * 100, digits = 2)) ## Table 1.2 sd1 <- function(x) sd(x) / sqrt(length(x)) with(gss40, round(cbind( "obs" = tapply(kids, year, length), "av kids" = tapply(kids, year, mean), " " = tapply(kids, year, sd1), "prop childless" = tapply(kids, year, function(x) mean(x <= 0)), " " = tapply(kids, year, function(x) sd1(x <= 0)), "av schooling" = tapply(education, year, mean), " " = tapply(education, year, sd1) ), digits = 2)) ## Table 1.3 gss40$trend <- gss40$year - 1974 kids_lm1 <- lm(kids ~ factor(year), data = gss40) kids_lm2 <- lm(kids ~ trend, data = gss40) kids_lm3 <- lm(kids ~ trend + education, data = gss40) ## Chapter 2 ## Table 2.1 kids_tab <- prop.table(xtabs(~ kids + year, data = gss40), 2) * 100 round(kids_tab[,c(4, 8)], digits = 2) ## Figure 2.1 barplot(t(kids_tab[, c(4, 8)]), beside = TRUE, legend = TRUE) ## Chapter 3, Example 3.14 ## Table 3.1 gss40$nokids <- factor(gss40$kids <= 0, levels = c(FALSE, TRUE), labels = c("no", "yes")) nokids_p1 <- glm(nokids ~ 1, data = gss40, family = binomial(link = "probit")) nokids_p2 <- glm(nokids ~ trend, data = gss40, family = binomial(link = "probit")) nokids_p3 <- glm(nokids ~ trend + education + ethnicity + siblings, data = gss40, family = binomial(link = "probit")) ## p. 87 lrtest(nokids_p1, nokids_p2, nokids_p3) ## Chapter 4, Example 4.1 gss40$nokids01 <- as.numeric(gss40$nokids) - 1 nokids_lm3 <- lm(nokids01 ~ trend + education + ethnicity + siblings, data = gss40) coeftest(nokids_lm3, vcov = sandwich) ## Example 4.3 ## Table 4.1 nokids_l1 <- glm(nokids ~ 1, data = gss40, family = binomial(link = "logit")) nokids_l3 <- glm(nokids ~ trend + education + ethnicity + siblings, data = gss40, family = binomial(link = "logit")) lrtest(nokids_p3) lrtest(nokids_l3) ## Table 4.2 nokids_xbar <- colMeans(model.matrix(nokids_l3)) sum(coef(nokids_p3) * nokids_xbar) sum(coef(nokids_l3) * nokids_xbar) dnorm(sum(coef(nokids_p3) * nokids_xbar)) dlogis(sum(coef(nokids_l3) * nokids_xbar)) dnorm(sum(coef(nokids_p3) * nokids_xbar)) * coef(nokids_p3)[3] dlogis(sum(coef(nokids_l3) * nokids_xbar)) * coef(nokids_l3)[3] exp(coef(nokids_l3)[3]) ## Figure 4.4 ## everything by hand (for ethnicity = "cauc" group) nokids_xbar <- as.vector(nokids_xbar) nokids_nd <- data.frame(education = seq(0, 20, by = 0.5), trend = nokids_xbar[2], ethnicity = "cauc", siblings = nokids_xbar[4]) nokids_p3_fit <- predict(nokids_p3, newdata = nokids_nd, type = "response", se.fit = TRUE) plot(nokids_nd$education, nokids_p3_fit$fit, type = "l", xlab = "education", ylab = "predicted probability", ylim = c(0, 0.3)) polygon(c(nokids_nd$education, rev(nokids_nd$education)), c(nokids_p3_fit$fit + 1.96 * nokids_p3_fit$se.fit, rev(nokids_p3_fit$fit - 1.96 * nokids_p3_fit$se.fit)), col = "lightgray", border = "lightgray") lines(nokids_nd$education, nokids_p3_fit$fit) ## using "effects" package (for average "ethnicity" variable) library("effects") nokids_p3_ef <- effect("education", nokids_p3, xlevels = list(education = 0:20)) plot(nokids_p3_ef, rescale.axis = FALSE, ylim = c(0, 0.3)) ## using "effects" plus modification by hand nokids_p3_ef1 <- as.data.frame(nokids_p3_ef) plot(pnorm(fit) ~ education, data = nokids_p3_ef1, type = "n", ylim = c(0, 0.3)) polygon(c(0:20, 20:0), pnorm(c(nokids_p3_ef1$upper, rev(nokids_p3_ef1$lower))), col = "lightgray", border = "lightgray") lines(pnorm(fit) ~ education, data = nokids_p3_ef1) ## Table 4.6 ## McFadden's R^2 1 - as.numeric( logLik(nokids_p3) / logLik(nokids_p1) ) 1 - as.numeric( logLik(nokids_l3) / logLik(nokids_l1) ) ## McKelvey and Zavoina R^2 r2mz <- function(obj) { ystar <- predict(obj) sse <- sum((ystar - mean(ystar))^2) s2 <- switch(obj$family$link, "probit" = 1, "logit" = pi^2/3, NA) n <- length(residuals(obj)) sse / (n * s2 + sse) } r2mz(nokids_p3) r2mz(nokids_l3) ## AUC library("ROCR") nokids_p3_pred <- prediction(fitted(nokids_p3), gss40$nokids) nokids_l3_pred <- prediction(fitted(nokids_l3), gss40$nokids) plot(performance(nokids_p3_pred, "tpr", "fpr")) abline(0, 1, lty = 2) performance(nokids_p3_pred, "auc") plot(performance(nokids_l3_pred, "tpr", "fpr")) abline(0, 1, lty = 2) performance(nokids_l3_pred, "auc")@y.values ## Chapter 7 ## Table 7.3 ## subset selection gss02 <- subset(GSS7402, year == 2002 & (age < 40 | !is.na(agefirstbirth))) #Z# This selection conforms with top of page 229. However, there #Z# are too many observations: 1374. Furthermore, there are six #Z# observations with agefirstbirth <= 14 which will cause problems in #Z# taking logs! ## computing time to first birth gss02$tfb <- with(gss02, ifelse(is.na(agefirstbirth), age - 14, agefirstbirth - 14)) #Z# currently this is still needed before taking logs gss02$tfb <- pmax(gss02$tfb, 1) tfb_tobit <- tobit(log(tfb) ~ education + ethnicity + siblings + city16 + immigrant, data = gss02, left = -Inf, right = log(gss02$age - 14)) tfb_ols <- lm(log(tfb) ~ education + ethnicity + siblings + city16 + immigrant, data = gss02, subset = !is.na(agefirstbirth)) ## Chapter 8 ## Example 8.3 gss2002 <- subset(GSS7402, year == 2002 & (agefirstbirth < 40 | age < 40)) gss2002$afb <- with(gss2002, Surv(ifelse(kids > 0, agefirstbirth, age), kids > 0)) afb_km <- survfit(afb ~ 1, data = gss2002) afb_skm <- summary(afb_km) print(afb_skm) with(afb_skm, plot(n.event/n.risk ~ time, type = "s")) plot(afb_km, xlim = c(10, 40), conf.int = FALSE) ## Example 8.9 library("survival") afb_ex <- survreg( afb ~ education + siblings + ethnicity + immigrant + lowincome16 + city16, data = gss2002, dist = "exponential") afb_wb <- survreg( afb ~ education + siblings + ethnicity + immigrant + lowincome16 + city16, data = gss2002, dist = "weibull") afb_ln <- survreg( afb ~ education + siblings + ethnicity + immigrant + lowincome16 + city16, data = gss2002, dist = "lognormal") ## Example 8.11 kids_pois <- glm(kids ~ education + trend + ethnicity + immigrant + lowincome16 + city16, data = gss40, family = poisson) library("MASS") kids_nb <- glm.nb(kids ~ education + trend + ethnicity + immigrant + lowincome16 + city16, data = gss40) lrtest(kids_pois, kids_nb) ############################################ ## German Socio-Economic Panel 1994--2002 ## ############################################ ## data data("GSOEP9402", package = "AER") ## some convenience data transformations gsoep <- GSOEP9402 gsoep$meducation2 <- cut(gsoep$meducation, breaks = c(6, 10.25, 12.25, 18), labels = c("7-10", "10.5-12", "12.5-18")) gsoep$year2 <- factor(gsoep$year) ## Chapter 1 ## Table 1.4 plus visualizations gsoep_tab <- xtabs(~ meducation2 + school, data = gsoep) round(prop.table(gsoep_tab, 1) * 100, digits = 2) spineplot(gsoep_tab) plot(school ~ meducation, data = gsoep, breaks = c(7, 10.25, 12.25, 18)) plot(school ~ meducation, data = gsoep, breaks = c(7, 9, 10.5, 11.5, 12.5, 15, 18)) ## Chapter 5 ## Table 5.1 library("nnet") gsoep_mnl <- multinom( school ~ meducation + memployment + log(income) + log(size) + parity + year2, data = gsoep) coeftest(gsoep_mnl)[c(1:6, 1:6 + 14),] ## alternatively if(require("mlogit")) { gsoep_mnl2 <- mlogit(school ~ 0 | meducation + memployment + log(income) + log(size) + parity + year2, data = gsoep, shape = "wide", reflevel = "Hauptschule") coeftest(gsoep_mnl2)[1:12,] } ## Table 5.2 library("effects") gsoep_eff <- effect("meducation", gsoep_mnl, xlevels = list(meducation = sort(unique(gsoep$meducation)))) gsoep_eff$prob plot(gsoep_eff, confint = FALSE) ## Table 5.3, odds exp(coef(gsoep_mnl)[, "meducation"]) ## all effects eff_mnl <- allEffects(gsoep_mnl) plot(eff_mnl, ask = FALSE, confint = FALSE) plot(eff_mnl, ask = FALSE, style = "stacked", colors = gray.colors(3)) ## omit year gsoep_mnl1 <- multinom( school ~ meducation + memployment + log(income) + log(size) + parity, data = gsoep) lrtest(gsoep_mnl, gsoep_mnl1) eff_mnl1 <- allEffects(gsoep_mnl1) plot(eff_mnl1, ask = FALSE, confint = FALSE) plot(eff_mnl1, ask = FALSE, style = "stacked", colors = gray.colors(3)) ## Chapter 6 ## Table 6.1 library("MASS") gsoep$munemp <- factor(gsoep$memployment != "none", levels = c(FALSE, TRUE), labels = c("no", "yes")) gsoep_pop <- polr(school ~ meducation + munemp + log(income) + log(size) + parity + year2, data = gsoep, method = "probit", Hess = TRUE) gsoep_pol <- polr(school ~ meducation + munemp + log(income) + log(size) + parity + year2, data = gsoep, Hess = TRUE) lrtest(gsoep_pop) lrtest(gsoep_pol) ## Table 6.2 ## todo eff_pol <- allEffects(gsoep_pol) plot(eff_pol, ask = FALSE, confint = FALSE) plot(eff_pol, ask = FALSE, style = "stacked", colors = gray.colors(3)) #################################### ## Labor Force Participation Data ## #################################### ## Mroz data data("PSID1976", package = "AER") PSID1976$nwincome <- with(PSID1976, (fincome - hours * wage)/1000) ## visualizations plot(hours ~ nwincome, data = PSID1976, xlab = "Non-wife income (in USD 1000)", ylab = "Hours of work in 1975") plot(jitter(hours, 200) ~ jitter(wage, 50), data = PSID1976, xlab = "Wife's average hourly wage (jittered)", ylab = "Hours of work in 1975 (jittered)") ## Chapter 1, p. 18 hours_lm <- lm(hours ~ wage + nwincome + youngkids + oldkids, data = PSID1976, subset = participation == "yes") ## Chapter 7 ## Example 7.2, Table 7.1 hours_tobit <- tobit(hours ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976) hours_ols1 <- lm(hours ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976) hours_ols2 <- lm(hours ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976, subset = participation == "yes") ## Example 7.10, Table 7.4 wage_ols <- lm(log(wage) ~ education + experience + I(experience^2), data = PSID1976, subset = participation == "yes") library("sampleSelection") wage_ghr <- selection(participation ~ nwincome + age + youngkids + oldkids + education + experience + I(experience^2), log(wage) ~ education + experience + I(experience^2), data = PSID1976) ## Exercise 7.13 hours_cragg1 <- glm(participation ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976, family = binomial(link = "probit")) library("truncreg") hours_cragg2 <- truncreg(hours ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976, subset = participation == "yes") ## Exercise 7.15 wage_olscoef <- sapply(c(-Inf, 0.5, 1, 1.5, 2), function(censpoint) coef(lm(log(wage) ~ education + experience + I(experience^2), data = PSID1976[log(PSID1976$wage) > censpoint,]))) wage_mlcoef <- sapply(c(0.5, 1, 1.5, 2), function(censpoint) coef(tobit(log(wage) ~ education + experience + I(experience^2), data = PSID1976, left = censpoint))) ################################## ## Choice of Brand for Crackers ## ################################## ## data if(require("mlogit")) { data("Cracker", package = "mlogit") head(Cracker, 3) crack <- mlogit.data(Cracker, varying = 2:13, shape = "wide", choice = "choice") head(crack, 12) ## Table 5.6 (model 3 probably not fully converged in W&B) crack$price <- crack$price/100 crack_mlogit1 <- mlogit(choice ~ price | 0, data = crack, reflevel = "private") crack_mlogit2 <- mlogit(choice ~ price | 1, data = crack, reflevel = "private") crack_mlogit3 <- mlogit(choice ~ price + feat + disp | 1, data = crack, reflevel = "private") lrtest(crack_mlogit1, crack_mlogit2, crack_mlogit3) ## IIA test crack_mlogit_all <- update(crack_mlogit2, reflevel = "nabisco") crack_mlogit_res <- update(crack_mlogit_all, alt.subset = c("keebler", "nabisco", "sunshine")) hmftest(crack_mlogit_all, crack_mlogit_res) } } \keyword{datasets} AER/man/FrozenJuice.Rd0000644000175400001440000000630113022372757014351 0ustar zeileisusers\name{FrozenJuice} \alias{FrozenJuice} \title{Price of Frozen Orange Juice} \description{ Monthly data on the price of frozen orange juice concentrate and temperature in the orange-growing region of Florida. } \usage{data("FrozenJuice")} \format{ A monthly multiple time series from 1950(1) to 2000(12) with 3 variables. \describe{ \item{price}{Average producer price for frozen orange juice.} \item{ppi}{Producer price index for finished goods. Used to deflate the overall producer price index for finished goods to eliminate the effects of overall price inflation.} \item{fdd}{Number of freezing degree days at the Orlando, Florida, airport. Calculated as the sum of the number of degrees Fahrenheit that the minimum temperature falls below freezing (32 degrees Fahrenheit = about 0 degrees Celsius) in a given day over all days in the month: \code{fdd} = sum(max(0, 32 - minimum daily temperature)), e.g. for February \code{fdd} is the number of freezing degree days from January 11 to February 10.} } } \details{ The orange juice price data are the frozen orange juice component of processed foods and feeds group of the Producer Price Index (PPI), collected by the US Bureau of Labor Statistics (BLS series wpu02420301). The orange juice price series was divided by the overall PPI for finished goods to adjust for general price inflation. The freezing degree days series was constructed from daily minimum temperatures recorded at Orlando area airports, obtained from the National Oceanic and Atmospheric Administration (NOAA) of the US Department of Commerce. } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ ## load data data("FrozenJuice") ## Stock and Watson, p. 594 library("dynlm") fm_dyn <- dynlm(d(100 * log(price/ppi)) ~ fdd, data = FrozenJuice) coeftest(fm_dyn, vcov = vcovHC(fm_dyn, type = "HC1")) ## equivalently, returns can be computed 'by hand' ## (reducing the complexity of the formula notation) fj <- ts.union(fdd = FrozenJuice[, "fdd"], ret = 100 * diff(log(FrozenJuice[,"price"]/FrozenJuice[,"ppi"]))) fm_dyn <- dynlm(ret ~ fdd, data = fj) ## Stock and Watson, p. 595 fm_dl <- dynlm(ret ~ L(fdd, 0:6), data = fj) coeftest(fm_dl, vcov = vcovHC(fm_dl, type = "HC1")) ## Stock and Watson, Table 15.1, p. 620, numbers refer to columns ## (1) Dynamic Multipliers fm1 <- dynlm(ret ~ L(fdd, 0:18), data = fj) coeftest(fm1, vcov = NeweyWest(fm1, lag = 7, prewhite = FALSE)) ## (2) Cumulative Multipliers fm2 <- dynlm(ret ~ L(d(fdd), 0:17) + L(fdd, 18), data = fj) coeftest(fm2, vcov = NeweyWest(fm2, lag = 7, prewhite = FALSE)) ## (3) Cumulative Multipliers, more lags in NW coeftest(fm2, vcov = NeweyWest(fm2, lag = 14, prewhite = FALSE)) ## (4) Cumulative Multipliers with monthly indicators fm4 <- dynlm(ret ~ L(d(fdd), 0:17) + L(fdd, 18) + season(fdd), data = fj) coeftest(fm4, vcov = NeweyWest(fm4, lag = 7, prewhite = FALSE)) ## monthly indicators needed? fm4r <- update(fm4, . ~ . - season(fdd)) waldtest(fm4, fm4r, vcov= NeweyWest(fm4, lag = 7, prewhite = FALSE)) ## close ... } \keyword{datasets} AER/man/USMacroSWQ.Rd0000644000175400001440000000167413022372620014027 0ustar zeileisusers\name{USMacroSWQ} \alias{USMacroSWQ} \title{Quarterly US Macroeconomic Data (1947--2004, Stock \& Watson)} \description{ Time series data on 2 US macroeconomic variables for 1947--2004. } \usage{data("USMacroSWQ")} \format{ A quarterly multiple time series from 1947(1) to 2004(4) with 2 variables. \describe{ \item{gdp}{real GDP for the United States in billions of chained (2000) dollars seasonally adjusted, annual rate.} \item{tbill}{3-month treasury bill rate. Quarterly averages of daily dates in percentage points at an annual rate.} } } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{USMacroSW}}, \code{\link{USMacroSWM}}, \code{\link{USMacroB}}, \code{\link{USMacroG}}} \examples{ data("USMacroSWQ") plot(USMacroSWQ) } \keyword{datasets} AER/man/ArgentinaCPI.Rd0000644000175400001440000000200213023077032014351 0ustar zeileisusers\name{ArgentinaCPI} \alias{ArgentinaCPI} \title{Consumer Price Index in Argentina} \description{ Time series of consumer price index (CPI) in Argentina (index with 1969(4) = 1). } \usage{data("ArgentinaCPI")} \format{ A quarterly univariate time series from 1970(1) to 1989(4). } \source{ Online complements to Franses (1998). } \references{ De Ruyter van Steveninck, M.A. (1996). \emph{The Impact of Capital Imports; Argentina 1970--1989}. Amsterdam: Thesis Publishers. Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("ArgentinaCPI") plot(ArgentinaCPI) plot(log(ArgentinaCPI)) library("dynlm") ## estimation sample 1970.3-1988.4 means acpi <- window(ArgentinaCPI, start = c(1970,1), end = c(1988,4)) ## eq. (3.90), p.54 acpi_ols <- dynlm(d(log(acpi)) ~ L(d(log(acpi)))) summary(acpi_ols) ## alternatively ar(diff(log(acpi)), order.max = 1, method = "ols") } \keyword{datasets} AER/man/StockWatson2007.Rd0000644000175400001440000005545013022372521014714 0ustar zeileisusers\name{StockWatson2007} \alias{StockWatson2007} \title{Data and Examples from Stock and Watson (2007)} \description{ This manual page collects a list of examples from the book. Some solutions might not be exact and the list is certainly not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer. } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{CartelStability}}, \code{\link{CASchools}}, \code{\link{CigarettesSW}}, \code{\link{CollegeDistance}}, \code{\link{CPSSW04}}, \code{\link{CPSSW3}}, \code{\link{CPSSW8}}, \code{\link{CPSSW9298}}, \code{\link{CPSSW9204}}, \code{\link{CPSSWEducation}}, \code{\link{Fatalities}}, \code{\link{Fertility}}, \code{\link{Fertility2}}, \code{\link{FrozenJuice}}, \code{\link{GrowthSW}}, \code{\link{Guns}}, \code{\link{HealthInsurance}}, \code{\link{HMDA}}, \code{\link{Journals}}, \code{\link{MASchools}}, \code{\link{NYSESW}}, \code{\link{ResumeNames}}, \code{\link{SmokeBan}}, \code{\link{SportsCards}}, \code{\link{STAR}}, \code{\link{TeachingRatings}}, \code{\link{USMacroSW}}, \code{\link{USMacroSWM}}, \code{\link{USMacroSWQ}}, \code{\link{USSeatBelts}}, \code{\link{USStocksSW}}, \code{\link{WeakInstrument}}} \examples{ ############################### ## Current Population Survey ## ############################### ## p. 165 data("CPSSWEducation", package = "AER") plot(earnings ~ education, data = CPSSWEducation) fm <- lm(earnings ~ education, data = CPSSWEducation) coeftest(fm, vcov = sandwich) abline(fm) ############################ ## California test scores ## ############################ ## data and transformations data("CASchools", package = "AER") CASchools$stratio <- with(CASchools, students/teachers) CASchools$score <- with(CASchools, (math + read)/2) ## p. 152 fm1 <- lm(score ~ stratio, data = CASchools) coeftest(fm1, vcov = sandwich) ## p. 159 fm2 <- lm(score ~ I(stratio < 20), data = CASchools) ## p. 199 fm3 <- lm(score ~ stratio + english, data = CASchools) ## p. 224 fm4 <- lm(score ~ stratio + expenditure + english, data = CASchools) ## Table 7.1, p. 242 (numbers refer to columns) fmc3 <- lm(score ~ stratio + english + lunch, data = CASchools) fmc4 <- lm(score ~ stratio + english + calworks, data = CASchools) fmc5 <- lm(score ~ stratio + english + lunch + calworks, data = CASchools) ## Equation 8.2, p. 258 fmquad <- lm(score ~ income + I(income^2), data = CASchools) ## Equation 8.11, p. 266 fmcub <- lm(score ~ income + I(income^2) + I(income^3), data = CASchools) ## Equation 8.23, p. 272 fmloglog <- lm(log(score) ~ log(income), data = CASchools) ## Equation 8.24, p. 274 fmloglin <- lm(log(score) ~ income, data = CASchools) ## Equation 8.26, p. 275 fmlinlogcub <- lm(score ~ log(income) + I(log(income)^2) + I(log(income)^3), data = CASchools) ## Table 8.3, p. 292 (numbers refer to columns) fmc2 <- lm(score ~ stratio + english + lunch + log(income), data = CASchools) fmc7 <- lm(score ~ stratio + I(stratio^2) + I(stratio^3) + english + lunch + log(income), data = CASchools) ##################################### ## Economics journal Subscriptions ## ##################################### ## data and transformed variables data("Journals", package = "AER") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations journals$age <- 2000 - Journals$foundingyear journals$chars <- Journals$charpp*Journals$pages/10^6 ## Figure 8.9 (a) and (b) plot(subs ~ citeprice, data = journals, pch = 19) plot(log(subs) ~ log(citeprice), data = journals, pch = 19) fm1 <- lm(log(subs) ~ log(citeprice), data = journals) abline(fm1) ## Table 8.2, use HC1 for comparability with Stata fm1 <- lm(subs ~ citeprice, data = log(journals)) fm2 <- lm(subs ~ citeprice + age + chars, data = log(journals)) fm3 <- lm(subs ~ citeprice + I(citeprice^2) + I(citeprice^3) + age + I(age * citeprice) + chars, data = log(journals)) fm4 <- lm(subs ~ citeprice + age + I(age * citeprice) + chars, data = log(journals)) coeftest(fm1, vcov = vcovHC(fm1, type = "HC1")) coeftest(fm2, vcov = vcovHC(fm2, type = "HC1")) coeftest(fm3, vcov = vcovHC(fm3, type = "HC1")) coeftest(fm4, vcov = vcovHC(fm4, type = "HC1")) waldtest(fm3, fm4, vcov = vcovHC(fm3, type = "HC1")) ############################### ## Massachusetts test scores ## ############################### ## compare Massachusetts with California data("MASchools", package = "AER") data("CASchools", package = "AER") CASchools$stratio <- with(CASchools, students/teachers) CASchools$score4 <- with(CASchools, (math + read)/2) ## parts of Table 9.1, p. 330 vars <- c("score4", "stratio", "english", "lunch", "income") cbind( CA_mean = sapply(CASchools[, vars], mean), CA_sd = sapply(CASchools[, vars], sd), MA_mean = sapply(MASchools[, vars], mean), MA_sd = sapply(MASchools[, vars], sd)) ## Table 9.2, pp. 332--333, numbers refer to columns MASchools$higheng <- with(MASchools, english > median(english)) fm1 <- lm(score4 ~ stratio, data = MASchools) fm2 <- lm(score4 ~ stratio + english + lunch + log(income), data = MASchools) fm3 <- lm(score4 ~ stratio + english + lunch + income + I(income^2) + I(income^3), data = MASchools) fm4 <- lm(score4 ~ stratio + I(stratio^2) + I(stratio^3) + english + lunch + income + I(income^2) + I(income^3), data = MASchools) fm5 <- lm(score4 ~ stratio + higheng + I(higheng * stratio) + lunch + income + I(income^2) + I(income^3), data = MASchools) fm6 <- lm(score4 ~ stratio + lunch + income + I(income^2) + I(income^3), data = MASchools) ## for comparability with Stata use HC1 below coeftest(fm1, vcov = vcovHC(fm1, type = "HC1")) coeftest(fm2, vcov = vcovHC(fm2, type = "HC1")) coeftest(fm3, vcov = vcovHC(fm3, type = "HC1")) coeftest(fm4, vcov = vcovHC(fm4, type = "HC1")) coeftest(fm5, vcov = vcovHC(fm5, type = "HC1")) coeftest(fm6, vcov = vcovHC(fm6, type = "HC1")) ## Testing exclusion of groups of variables fm3r <- update(fm3, . ~ . - I(income^2) - I(income^3)) waldtest(fm3, fm3r, vcov = vcovHC(fm3, type = "HC1")) fm4r_str1 <- update(fm4, . ~ . - stratio - I(stratio^2) - I(stratio^3)) waldtest(fm4, fm4r_str1, vcov = vcovHC(fm4, type = "HC1")) fm4r_str2 <- update(fm4, . ~ . - I(stratio^2) - I(stratio^3)) waldtest(fm4, fm4r_str2, vcov = vcovHC(fm4, type = "HC1")) fm4r_inc <- update(fm4, . ~ . - I(income^2) - I(income^3)) waldtest(fm4, fm4r_inc, vcov = vcovHC(fm4, type = "HC1")) fm5r_str <- update(fm5, . ~ . - stratio - I(higheng * stratio)) waldtest(fm5, fm5r_str, vcov = vcovHC(fm5, type = "HC1")) fm5r_inc <- update(fm5, . ~ . - I(income^2) - I(income^3)) waldtest(fm5, fm5r_inc, vcov = vcovHC(fm5, type = "HC1")) fm5r_high <- update(fm5, . ~ . - higheng - I(higheng * stratio)) waldtest(fm5, fm5r_high, vcov = vcovHC(fm5, type = "HC1")) fm6r_inc <- update(fm6, . ~ . - I(income^2) - I(income^3)) waldtest(fm6, fm6r_inc, vcov = vcovHC(fm6, type = "HC1")) ################################## ## Home mortgage disclosure act ## ################################## ## data data("HMDA", package = "AER") ## 11.1, 11.3, 11.7, 11.8 and 11.10, pp. 387--395 fm1 <- lm(I(as.numeric(deny) - 1) ~ pirat, data = HMDA) fm2 <- lm(I(as.numeric(deny) - 1) ~ pirat + afam, data = HMDA) fm3 <- glm(deny ~ pirat, family = binomial(link = "probit"), data = HMDA) fm4 <- glm(deny ~ pirat + afam, family = binomial(link = "probit"), data = HMDA) fm5 <- glm(deny ~ pirat + afam, family = binomial(link = "logit"), data = HMDA) ## Table 11.1, p. 401 mean(HMDA$pirat) mean(HMDA$hirat) mean(HMDA$lvrat) mean(as.numeric(HMDA$chist)) mean(as.numeric(HMDA$mhist)) mean(as.numeric(HMDA$phist)-1) prop.table(table(HMDA$insurance)) prop.table(table(HMDA$selfemp)) prop.table(table(HMDA$single)) prop.table(table(HMDA$hschool)) mean(HMDA$unemp) prop.table(table(HMDA$condomin)) prop.table(table(HMDA$afam)) prop.table(table(HMDA$deny)) ## Table 11.2, pp. 403--404, numbers refer to columns HMDA$lvrat <- factor(ifelse(HMDA$lvrat < 0.8, "low", ifelse(HMDA$lvrat >= 0.8 & HMDA$lvrat <= 0.95, "medium", "high")), levels = c("low", "medium", "high")) HMDA$mhist <- as.numeric(HMDA$mhist) HMDA$chist <- as.numeric(HMDA$chist) fm1 <- lm(I(as.numeric(deny) - 1) ~ afam + pirat + hirat + lvrat + chist + mhist + phist + insurance + selfemp, data = HMDA) fm2 <- glm(deny ~ afam + pirat + hirat + lvrat + chist + mhist + phist + insurance + selfemp, family = binomial, data = HMDA) fm3 <- glm(deny ~ afam + pirat + hirat + lvrat + chist + mhist + phist + insurance + selfemp, family = binomial(link = "probit"), data = HMDA) fm4 <- glm(deny ~ afam + pirat + hirat + lvrat + chist + mhist + phist + insurance + selfemp + single + hschool + unemp, family = binomial(link = "probit"), data = HMDA) fm5 <- glm(deny ~ afam + pirat + hirat + lvrat + chist + mhist + phist + insurance + selfemp + single + hschool + unemp + condomin + I(mhist==3) + I(mhist==4) + I(chist==3) + I(chist==4) + I(chist==5) + I(chist==6), family = binomial(link = "probit"), data = HMDA) fm6 <- glm(deny ~ afam * (pirat + hirat) + lvrat + chist + mhist + phist + insurance + selfemp + single + hschool + unemp, family = binomial(link = "probit"), data = HMDA) coeftest(fm1, vcov = sandwich) fm4r <- update(fm4, . ~ . - single - hschool - unemp) waldtest(fm4, fm4r, vcov = sandwich) fm5r <- update(fm5, . ~ . - single - hschool - unemp) waldtest(fm5, fm5r, vcov = sandwich) fm6r <- update(fm6, . ~ . - single - hschool - unemp) waldtest(fm6, fm6r, vcov = sandwich) fm5r2 <- update(fm5, . ~ . - I(mhist==3) - I(mhist==4) - I(chist==3) - I(chist==4) - I(chist==5) - I(chist==6)) waldtest(fm5, fm5r2, vcov = sandwich) fm6r2 <- update(fm6, . ~ . - afam * (pirat + hirat) + pirat + hirat) waldtest(fm6, fm6r2, vcov = sandwich) fm6r3 <- update(fm6, . ~ . - afam * (pirat + hirat) + pirat + hirat + afam) waldtest(fm6, fm6r3, vcov = sandwich) ######################################################### ## Shooting down the "More Guns Less Crime" hypothesis ## ######################################################### ## data data("Guns", package = "AER") ## Empirical Exercise 10.1 fm1 <- lm(log(violent) ~ law, data = Guns) fm2 <- lm(log(violent) ~ law + prisoners + density + income + population + afam + cauc + male, data = Guns) fm3 <- lm(log(violent) ~ law + prisoners + density + income + population + afam + cauc + male + state, data = Guns) fm4 <- lm(log(violent) ~ law + prisoners + density + income + population + afam + cauc + male + state + year, data = Guns) coeftest(fm1, vcov = sandwich) coeftest(fm2, vcov = sandwich) printCoefmat(coeftest(fm3, vcov = sandwich)[1:9,]) printCoefmat(coeftest(fm4, vcov = sandwich)[1:9,]) ########################### ## US traffic fatalities ## ########################### ## data from Stock and Watson (2007) data("Fatalities") ## add fatality rate (number of traffic deaths ## per 10,000 people living in that state in that year) Fatalities$frate <- with(Fatalities, fatal/pop * 10000) ## add discretized version of minimum legal drinking age Fatalities$drinkagec <- cut(Fatalities$drinkage, breaks = 18:22, include.lowest = TRUE, right = FALSE) Fatalities$drinkagec <- relevel(Fatalities$drinkagec, ref = 4) ## any punishment? Fatalities$punish <- with(Fatalities, factor(jail == "yes" | service == "yes", labels = c("no", "yes"))) ## plm package library("plm") ## for comparability with Stata we use HC1 below ## p. 351, Eq. (10.2) f1982 <- subset(Fatalities, year == "1982") fm_1982 <- lm(frate ~ beertax, data = f1982) coeftest(fm_1982, vcov = vcovHC(fm_1982, type = "HC1")) ## p. 353, Eq. (10.3) f1988 <- subset(Fatalities, year == "1988") fm_1988 <- lm(frate ~ beertax, data = f1988) coeftest(fm_1988, vcov = vcovHC(fm_1988, type = "HC1")) ## pp. 355, Eq. (10.8) fm_diff <- lm(I(f1988$frate - f1982$frate) ~ I(f1988$beertax - f1982$beertax)) coeftest(fm_diff, vcov = vcovHC(fm_diff, type = "HC1")) ## pp. 360, Eq. (10.15) ## (1) via formula fm_sfe <- lm(frate ~ beertax + state - 1, data = Fatalities) ## (2) by hand fat <- with(Fatalities, data.frame(frates = frate - ave(frate, state), beertaxs = beertax - ave(beertax, state))) fm_sfe2 <- lm(frates ~ beertaxs - 1, data = fat) ## (3) via plm() fm_sfe3 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within") coeftest(fm_sfe, vcov = vcovHC(fm_sfe, type = "HC1"))[1,] ## uses different df in sd and p-value coeftest(fm_sfe2, vcov = vcovHC(fm_sfe2, type = "HC1"))[1,] ## uses different df in p-value coeftest(fm_sfe3, vcov = vcovHC(fm_sfe3, type = "HC1", method = "white1"))[1,] ## pp. 363, Eq. (10.21) ## via lm() fm_stfe <- lm(frate ~ beertax + state + year - 1, data = Fatalities) coeftest(fm_stfe, vcov = vcovHC(fm_stfe, type = "HC1"))[1,] ## via plm() fm_stfe2 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") coeftest(fm_stfe2, vcov = vcovHC) ## different ## p. 368, Table 10.1, numbers refer to cols. fm1 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "pooling") fm2 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within") fm3 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm4 <- plm(frate ~ beertax + drinkagec + jail + service + miles + unemp + log(income), data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm5 <- plm(frate ~ beertax + drinkagec + jail + service + miles, data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm6 <- plm(frate ~ beertax + drinkage + punish + miles + unemp + log(income), data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm7 <- plm(frate ~ beertax + drinkagec + jail + service + miles + unemp + log(income), data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") ## summaries not too close, s.e.s generally too small coeftest(fm1, vcov = vcovHC) coeftest(fm2, vcov = vcovHC) coeftest(fm3, vcov = vcovHC) coeftest(fm4, vcov = vcovHC) coeftest(fm5, vcov = vcovHC) coeftest(fm6, vcov = vcovHC) coeftest(fm7, vcov = vcovHC) ###################################### ## Cigarette consumption panel data ## ###################################### ## data and transformations data("CigarettesSW", package = "AER") CigarettesSW$rprice <- with(CigarettesSW, price/cpi) CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi) CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi) c1985 <- subset(CigarettesSW, year == "1985") c1995 <- subset(CigarettesSW, year == "1995") ## convenience function: HC1 covariances hc1 <- function(x) vcovHC(x, type = "HC1") ## Equations 12.9--12.11 fm_s1 <- lm(log(rprice) ~ tdiff, data = c1995) coeftest(fm_s1, vcov = hc1) fm_s2 <- lm(log(packs) ~ fitted(fm_s1), data = c1995) fm_ivreg <- ivreg(log(packs) ~ log(rprice) | tdiff, data = c1995) coeftest(fm_ivreg, vcov = hc1) ## Equation 12.15 fm_ivreg2 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff, data = c1995) coeftest(fm_ivreg2, vcov = hc1) ## Equation 12.16 fm_ivreg3 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax/cpi), data = c1995) coeftest(fm_ivreg3, vcov = hc1) ## Table 12.1, p. 448 ydiff <- log(c1995$packs) - log(c1985$packs) pricediff <- log(c1995$price/c1995$cpi) - log(c1985$price/c1985$cpi) incdiff <- log(c1995$income/c1995$population/c1995$cpi) - log(c1985$income/c1985$population/c1985$cpi) taxsdiff <- (c1995$taxs - c1995$tax)/c1995$cpi - (c1985$taxs - c1985$tax)/c1985$cpi taxdiff <- c1995$tax/c1995$cpi - c1985$tax/c1985$cpi fm_diff1 <- ivreg(ydiff ~ pricediff + incdiff | incdiff + taxsdiff) fm_diff2 <- ivreg(ydiff ~ pricediff + incdiff | incdiff + taxdiff) fm_diff3 <- ivreg(ydiff ~ pricediff + incdiff | incdiff + taxsdiff + taxdiff) coeftest(fm_diff1, vcov = hc1) coeftest(fm_diff2, vcov = hc1) coeftest(fm_diff3, vcov = hc1) ## checking instrument relevance fm_rel1 <- lm(pricediff ~ taxsdiff + incdiff) fm_rel2 <- lm(pricediff ~ taxdiff + incdiff) fm_rel3 <- lm(pricediff ~ incdiff + taxsdiff + taxdiff) linearHypothesis(fm_rel1, "taxsdiff = 0", vcov = hc1) linearHypothesis(fm_rel2, "taxdiff = 0", vcov = hc1) linearHypothesis(fm_rel3, c("taxsdiff = 0", "taxdiff = 0"), vcov = hc1) ## testing overidentifying restrictions (J test) fm_or <- lm(residuals(fm_diff3) ~ incdiff + taxsdiff + taxdiff) (fm_or_test <- linearHypothesis(fm_or, c("taxsdiff = 0", "taxdiff = 0"), test = "Chisq")) ## warning: df (and hence p-value) invalid above. ## correct df: # instruments - # endogenous variables pchisq(fm_or_test[2,5], df.residual(fm_diff3) - df.residual(fm_or), lower.tail = FALSE) ##################################################### ## Project STAR: Student-teacher achievement ratio ## ##################################################### ## data data("STAR", package = "AER") ## p. 488 fmk <- lm(I(readk + mathk) ~ stark, data = STAR) fm1 <- lm(I(read1 + math1) ~ star1, data = STAR) fm2 <- lm(I(read2 + math2) ~ star2, data = STAR) fm3 <- lm(I(read3 + math3) ~ star3, data = STAR) coeftest(fm3, vcov = sandwich) ## p. 489 fmke <- lm(I(readk + mathk) ~ stark + experiencek, data = STAR) coeftest(fmke, vcov = sandwich) ## equivalently: ## - reshape data from wide into long format ## - fit a single model nested in grade ## (a) variables and their levels nam <- c("star", "read", "math", "lunch", "school", "degree", "ladder", "experience", "tethnicity", "system", "schoolid") lev <- c("k", "1", "2", "3") ## (b) reshaping star <- reshape(STAR, idvar = "id", ids = row.names(STAR), times = lev, timevar = "grade", direction = "long", varying = lapply(nam, function(x) paste(x, lev, sep = ""))) ## (c) improve variable names and type names(star)[5:15] <- nam star$id <- factor(star$id) star$grade <- factor(star$grade, levels = lev, labels = c("kindergarten", "1st", "2nd", "3rd")) rm(nam, lev) ## (d) model fitting fm <- lm(I(read + math) ~ 0 + grade/star, data = star) ################################################# ## Quarterly US macroeconomic data (1957-2005) ## ################################################# ## data data("USMacroSW", package = "AER") library("dynlm") usm <- ts.intersect(USMacroSW, 4 * 100 * diff(log(USMacroSW[, "cpi"]))) colnames(usm) <- c(colnames(USMacroSW), "infl") ## Equation 14.7, p. 536 fm_ar1 <- dynlm(d(infl) ~ L(d(infl)), data = usm, start = c(1962,1), end = c(2004,4)) coeftest(fm_ar1, vcov = sandwich) ## Equation 14.13, p. 538 fm_ar4 <- dynlm(d(infl) ~ L(d(infl), 1:4), data = usm, start = c(1962,1), end = c(2004,4)) coeftest(fm_ar4, vcov = sandwich) ## Equation 14.16, p. 542 fm_adl41 <- dynlm(d(infl) ~ L(d(infl), 1:4) + L(unemp), data = usm, start = c(1962,1), end = c(2004,4)) coeftest(fm_adl41, vcov = sandwich) ## Equation 14.17, p. 542 fm_adl44 <- dynlm(d(infl) ~ L(d(infl), 1:4) + L(unemp, 1:4), data = usm, start = c(1962,1), end = c(2004,4)) coeftest(fm_adl44, vcov = sandwich) ## Granger causality test mentioned on p. 547 waldtest(fm_ar4, fm_adl44, vcov = sandwich) ## Equation 14.28, p. 559 fm_sp1 <- dynlm(infl ~ log(gdpjp), start = c(1965,1), end = c(1981,4), data = usm) coeftest(fm_sp1, vcov = sandwich) ## Equation 14.29, p. 559 fm_sp2 <- dynlm(infl ~ log(gdpjp), start = c(1982,1), end = c(2004,4), data = usm) coeftest(fm_sp2, vcov = sandwich) ## Equation 14.34, p. 563: ADF by hand fm_adf <- dynlm(d(infl) ~ L(infl) + L(d(infl), 1:4), data = usm, start = c(1962,1), end = c(2004,4)) coeftest(fm_adf) ## Figure 14.5, p. 570 ## SW perform partial break test of unemp coefs ## here full model is used library("strucchange") infl <- usm[, "infl"] unemp <- usm[, "unemp"] usm <- ts.intersect(diff(infl), lag(diff(infl), k = -1), lag(diff(infl), k = -2), lag(diff(infl), k = -3), lag(diff(infl), k = -4), lag(unemp, k = -1), lag(unemp, k = -2), lag(unemp, k = -3), lag(unemp, k = -4)) colnames(usm) <- c("dinfl", paste("dinfl", 1:4, sep = ""), paste("unemp", 1:4, sep = "")) usm <- window(usm, start = c(1962, 1), end = c(2004, 4)) fs <- Fstats(dinfl ~ ., data = usm) sctest(fs, type = "supF") plot(fs) ## alternatively: re-use fm_adl44 mf <- model.frame(fm_adl44) mf <- ts(as.matrix(mf), start = c(1962, 1), freq = 4) colnames(mf) <- c("y", paste("x", 1:8, sep = "")) ff <- as.formula(paste("y", "~", paste("x", 1:8, sep = "", collapse = " + "))) fs <- Fstats(ff, data = mf, from = 0.1) plot(fs) lines(boundary(fs, alpha = 0.01), lty = 2, col = 2) lines(boundary(fs, alpha = 0.1), lty = 3, col = 2) ########################################## ## Monthly US stock returns (1931-2002) ## ########################################## ## package and data library("dynlm") data("USStocksSW", package = "AER") ## Table 14.3, p. 540 fm1 <- dynlm(returns ~ L(returns), data = USStocksSW, start = c(1960,1)) coeftest(fm1, vcov = sandwich) fm2 <- dynlm(returns ~ L(returns, 1:2), data = USStocksSW, start = c(1960,1)) waldtest(fm2, vcov = sandwich) fm3 <- dynlm(returns ~ L(returns, 1:4), data = USStocksSW, start = c(1960,1)) waldtest(fm3, vcov = sandwich) ## Table 14.7, p. 574 fm4 <- dynlm(returns ~ L(returns) + L(d(dividend)), data = USStocksSW, start = c(1960, 1)) fm5 <- dynlm(returns ~ L(returns, 1:2) + L(d(dividend), 1:2), data = USStocksSW, start = c(1960, 1)) fm6 <- dynlm(returns ~ L(returns) + L(dividend), data = USStocksSW, start = c(1960, 1)) ################################## ## Price of frozen orange juice ## ################################## ## load data data("FrozenJuice") ## Stock and Watson, p. 594 library("dynlm") fm_dyn <- dynlm(d(100 * log(price/ppi)) ~ fdd, data = FrozenJuice) coeftest(fm_dyn, vcov = vcovHC(fm_dyn, type = "HC1")) ## equivalently, returns can be computed 'by hand' ## (reducing the complexity of the formula notation) fj <- ts.union(fdd = FrozenJuice[, "fdd"], ret = 100 * diff(log(FrozenJuice[,"price"]/FrozenJuice[,"ppi"]))) fm_dyn <- dynlm(ret ~ fdd, data = fj) ## Stock and Watson, p. 595 fm_dl <- dynlm(ret ~ L(fdd, 0:6), data = fj) coeftest(fm_dl, vcov = vcovHC(fm_dl, type = "HC1")) ## Stock and Watson, Table 15.1, p. 620, numbers refer to columns ## (1) Dynamic Multipliers fm1 <- dynlm(ret ~ L(fdd, 0:18), data = fj) coeftest(fm1, vcov = NeweyWest(fm1, lag = 7, prewhite = FALSE)) ## (2) Cumulative Multipliers fm2 <- dynlm(ret ~ L(d(fdd), 0:17) + L(fdd, 18), data = fj) coeftest(fm2, vcov = NeweyWest(fm2, lag = 7, prewhite = FALSE)) ## (3) Cumulative Multipliers, more lags in NW coeftest(fm2, vcov = NeweyWest(fm2, lag = 14, prewhite = FALSE)) ## (4) Cumulative Multipliers with monthly indicators fm4 <- dynlm(ret ~ L(d(fdd), 0:17) + L(fdd, 18) + season(fdd), data = fj) coeftest(fm4, vcov = NeweyWest(fm4, lag = 7, prewhite = FALSE)) ## monthly indicators needed? fm4r <- update(fm4, . ~ . - season(fdd)) waldtest(fm4, fm4r, vcov= NeweyWest(fm4, lag = 7, prewhite = FALSE)) ## close ... ############################################# ## New York Stock Exchange composite index ## ############################################# ## returns data("NYSESW", package = "AER") ret <- 100 * diff(log(NYSESW)) plot(ret) ## fit GARCH(1,1) library("tseries") fm <- garch(coredata(ret)) } \keyword{datasets} AER/man/summary.ivreg.Rd0000644000175400001440000000643612271431351014736 0ustar zeileisusers\name{summary.ivreg} \alias{summary.ivreg} \alias{print.summary.ivreg} \alias{vcov.ivreg} \alias{bread.ivreg} \alias{estfun.ivreg} \alias{anova.ivreg} \alias{hatvalues.ivreg} \alias{predict.ivreg} \alias{terms.ivreg} \alias{model.matrix.ivreg} \title{Methods for Instrumental-Variable Regression} \description{ Methods to standard generics for instrumental-variable regressions fitted by \code{\link{ivreg}}. } \usage{ \method{summary}{ivreg}(object, vcov. = NULL, df = NULL, diagnostics = FALSE, \dots) \method{anova}{ivreg}(object, object2, test = "F", vcov = NULL, \dots) \method{terms}{ivreg}(x, component = c("regressors", "instruments"), \dots) \method{model.matrix}{ivreg}(object, component = c("projected", "regressors", "instruments"), \dots) } \arguments{ \item{object, object2, x}{an object of class \code{"ivreg"} as fitted by \code{\link{ivreg}}.} \item{vcov., vcov}{a specification of the covariance matrix of the estimated coefficients. This can be specified as a matrix or as a function yielding a matrix when applied to the fitted model. If it is a function it is also employed in the two diagnostic F tests (if \code{diagnostics = TRUE} in the \code{summary()} method).} \item{df}{the degrees of freedom to be used. By default this is set to residual degrees of freedom for which a t or F test is computed. Alternatively, it can be set to \code{Inf} (or equivalently \code{0}) for which a z or Chi-squared test is computed.} \item{diagnostics}{logical. Should diagnostic tests for the instrumental-variable regression be carried out? These encompass an F test of the first stage regression for weak instruments, a Wu-Hausman test for endogeneity, and a Sargan test of overidentifying restrictions (only if there are more instruments than regressors).} \item{test}{character specifying whether to compute the large sample Chi-squared statistic (with asymptotic Chi-squared distribution) or the finite sample F statistic (with approximate F distribution).} \item{component}{character specifying for which component of the terms or model matrix should be extracted. \code{"projected"} gives the matrix of regressors projected on the image of the instruments.} \item{\dots}{currently not used.} } \details{ \code{\link{ivreg}} is the high-level interface to the work-horse function \code{\link{ivreg.fit}}, a set of standard methods (including \code{summary}, \code{vcov}, \code{anova}, \code{hatvalues}, \code{predict}, \code{terms}, \code{model.matrix}, \code{bread}, \code{estfun}) is available. } \seealso{\code{\link{ivreg}}, \code{\link[stats:lmfit]{lm.fit}}} \examples{ ## data data("CigarettesSW") CigarettesSW$rprice <- with(CigarettesSW, price/cpi) CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi) CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi) ## model fm <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax/cpi), data = CigarettesSW, subset = year == "1995") summary(fm) summary(fm, vcov = sandwich, df = Inf, diagnostics = TRUE) ## ANOVA fm2 <- ivreg(log(packs) ~ log(rprice) | tdiff, data = CigarettesSW, subset = year == "1995") anova(fm, fm2, vcov = sandwich, test = "Chisq") } \keyword{regression} AER/man/MASchools.Rd0000644000175400001440000000577713022372703013765 0ustar zeileisusers\name{MASchools} \alias{MASchools} \title{Massachusetts Test Score Data} \description{The dataset contains data on test performance, school characteristics and student demographic backgrounds for school districts in Massachusetts. } \usage{data("MASchools")} \format{ A data frame containing 220 observations on 16 variables. \describe{ \item{district}{character. District code.} \item{municipality}{character. Municipality name.} \item{expreg}{Expenditures per pupil, regular.} \item{expspecial}{Expenditures per pupil, special needs.} \item{expbil}{Expenditures per pupil, bilingual.} \item{expocc}{Expenditures per pupil, occupational.} \item{exptot}{Expenditures per pupil, total.} \item{scratio}{Students per computer.} \item{special}{Special education students (per cent).} \item{lunch}{Percent qualifying for reduced-price lunch.} \item{stratio}{Student-teacher ratio.} \item{income}{Per capita income.} \item{score4}{4th grade score (math + English + science).} \item{score8}{8th grade score (math + English + science).} \item{salary}{Average teacher salary.} \item{english}{Percent of English learners.} } } \details{The Massachusetts data are district-wide averages for public elementary school districts in 1998. The test score is taken from the Massachusetts Comprehensive Assessment System (MCAS) test, administered to all fourth graders in Massachusetts public schools in the spring of 1998. The test is sponsored by the Massachusetts Department of Education and is mandatory for all public schools. The data analyzed here are the overall total score, which is the sum of the scores on the English, Math, and Science portions of the test. Data on the student-teacher ratio, the percent of students receiving a subsidized lunch and on the percent of students still learning english are averages for each elementary school district for the 1997--1998 school year and were obtained from the Massachusetts department of education. Data on average district income are from the 1990 US Census. } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J. H. and Watson, M. W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{CASchools}}} \examples{ ## Massachusetts data("MASchools") ## compare with California data("CASchools") CASchools$stratio <- with(CASchools, students/teachers) CASchools$score4 <- with(CASchools, (math + read)/2) ## Stock and Watson, parts of Table 9.1, p. 330 vars <- c("score4", "stratio", "english", "lunch", "income") cbind( CA_mean = sapply(CASchools[, vars], mean), CA_sd = sapply(CASchools[, vars], sd), MA_mean = sapply(MASchools[, vars], mean), MA_sd = sapply(MASchools[, vars], sd)) ## Stock and Watson, Table 9.2, p. 332, col. (1) fm1 <- lm(score4 ~ stratio, data = MASchools) coeftest(fm1, vcov = vcovHC(fm1, type = "HC1")) ## More examples, notably the entire Table 9.2, can be found in: ## help("StockWatson2007") } \keyword{datasets} AER/man/NYSESW.Rd0000644000175400001440000000136013022372644013151 0ustar zeileisusers\name{NYSESW} \alias{NYSESW} \title{Daily NYSE Composite Index} \description{ A daily time series from 1990 to 2005 of the New York Stock Exchange composite index. } \usage{data("NYSESW")} \format{ A daily univariate time series from 1990-01-02 to 2005-11-11 (of class \code{"zoo"} with \code{"Date"} index). } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ ## returns data("NYSESW") ret <- 100 * diff(log(NYSESW)) plot(ret) ## Stock and Watson (2007), p. 667, GARCH(1,1) model library("tseries") fm <- garch(coredata(ret)) summary(fm) } \keyword{datasets} AER/man/PSID1982.Rd0000644000175400001440000000454212463507567013225 0ustar zeileisusers\name{PSID1982} \alias{PSID1982} \title{PSID Earnings Data 1982} \description{ Cross-section data originating from the Panel Study on Income Dynamics, 1982. } \usage{data("PSID1982")} \format{ A data frame containing 595 observations on 12 variables. \describe{ \item{experience}{Years of full-time work experience.} \item{weeks}{Weeks worked.} \item{occupation}{factor. Is the individual a white-collar (\code{"white"}) or blue-collar (\code{"blue"}) worker?} \item{industry}{factor. Does the individual work in a manufacturing industry?} \item{south}{factor. Does the individual reside in the South?} \item{smsa}{factor. Does the individual reside in a SMSA (standard metropolitan statistical area)?} \item{married}{factor. Is the individual married?} \item{gender}{factor indicating gender.} \item{union}{factor. Is the individual's wage set by a union contract?} \item{education}{Years of education.} \item{ethnicity}{factor indicating ethnicity. Is the individual African-American (\code{"afam"}) or not (\code{"other"})?} \item{wage}{Wage.} } } \details{ \code{PSID1982} is the cross-section for the year 1982 taken from a larger panel data set \code{\link{PSID7682}} for the years 1976--1982, originating from Cornwell and Rupert (1988). Baltagi (2002) just uses the 1982 cross-section; hence \code{PSID1982} is available as a standalone data set because it was included in \pkg{AER} prior to the availability of the full \code{PSID7682} panel version. } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Cornwell, C., and Rupert, P. (1988). Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variables Estimators. \emph{Journal of Applied Econometrics}, \bold{3}, 149--155. } \seealso{\code{\link{PSID7682}}, \code{\link{Baltagi2002}}} \examples{ data("PSID1982") plot(density(PSID1982$wage, bw = "SJ")) ## Baltagi (2002), Table 4.1 earn_lm <- lm(log(wage) ~ . + I(experience^2), data = PSID1982) summary(earn_lm) ## Baltagi (2002), Table 13.1 union_lpm <- lm(I(as.numeric(union) - 1) ~ . - wage, data = PSID1982) union_probit <- glm(union ~ . - wage, data = PSID1982, family = binomial(link = "probit")) union_logit <- glm(union ~ . - wage, data = PSID1982, family = binomial) ## probit OK, logit and LPM rather different. } \keyword{datasets} AER/man/USMacroG.Rd0000644000175400001440000000504111455356231013543 0ustar zeileisusers\name{USMacroG} \alias{USMacroG} \title{US Macroeconomic Data (1950--2000, Greene)} \description{ Time series data on 12 US macroeconomic variables for 1950--2000. } \usage{data("USMacroG")} \format{ A quarterly multiple time series from 1950(1) to 2000(4) with 12 variables. \describe{ \item{gdp}{Real gross domestic product (in billion USD),} \item{consumption}{Real consumption expenditures,} \item{invest}{Real investment by private sector,} \item{government}{Real government expenditures,} \item{dpi}{Real disposable personal income,} \item{cpi}{Consumer price index,} \item{m1}{Nominal money stock,} \item{tbill}{Quarterly average of month end 90 day treasury bill rate,} \item{unemp}{Unemployment rate,} \item{population}{Population (in million), interpolation of year end figures using constant growth rate per quarter,} \item{inflation}{Inflation rate,} \item{interest}{Ex post real interest rate (essentially, \code{tbill - inflation}).} } } \source{ Online complements to Greene (2003). Table F5.1. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}, \code{\link{USMacroSW}}, \code{\link{USMacroSWQ}}, \code{\link{USMacroSWM}}, \code{\link{USMacroB}}} \examples{ ## data and trend as used by Greene (2003) data("USMacroG") ltrend <- 1:nrow(USMacroG) - 1 ## Example 6.1 ## Table 6.1 library("dynlm") fm6.1 <- dynlm(log(invest) ~ tbill + inflation + log(gdp) + ltrend, data = USMacroG) fm6.3 <- dynlm(log(invest) ~ I(tbill - inflation) + log(gdp) + ltrend, data = USMacroG) summary(fm6.1) summary(fm6.3) deviance(fm6.1) deviance(fm6.3) vcov(fm6.1)[2,3] ## F test linearHypothesis(fm6.1, "tbill + inflation = 0") ## alternatively anova(fm6.1, fm6.3) ## t statistic sqrt(anova(fm6.1, fm6.3)[2,5]) ## Example 8.2 ## Ct = b0 + b1*Yt + b2*Y(t-1) + v fm1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) ## Ct = a0 + a1*Yt + a2*C(t-1) + u fm2 <- dynlm(consumption ~ dpi + L(consumption), data = USMacroG) ## Cox test in both directions: coxtest(fm1, fm2) ## ...and do the same for jtest() and encomptest(). ## Notice that in this particular case two of them are coincident. jtest(fm1, fm2) encomptest(fm1, fm2) ## encomptest could also be performed `by hand' via fmE <- dynlm(consumption ~ dpi + L(dpi) + L(consumption), data = USMacroG) waldtest(fm1, fmE, fm2) ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/CartelStability.Rd0000644000175400001440000000223413022373176015222 0ustar zeileisusers\name{CartelStability} \alias{CartelStability} \title{CartelStability} \description{ Weekly observations on prices and other factors from 1880--1886, for a total of 326 weeks. } \usage{data("CartelStability")} \format{ A data frame containing 328 observations on 5 variables. \describe{ \item{price}{weekly index of price of shipping a ton of grain by rail.} \item{cartel}{factor. Is a railroad cartel operative?} \item{quantity}{total tonnage of grain shipped in the week.} \item{season}{factor indicating season of year. To match the weekly data, the calendar has been divided into 13 periods, each approximately 4 weeks long.} \item{ice}{factor. Are the Great Lakes innavigable because of ice?} } } \source{ Online complements to Stock and Watson (2007). } \references{ Porter, R. H. (1983). A Study of Cartel Stability: The Joint Executive Committee, 1880--1886. \emph{The Bell Journal of Economics}, \bold{14}, 301--314. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("CartelStability") summary(CartelStability) } \keyword{datasets} AER/man/DoctorVisits.Rd0000644000175400001440000000503312463506367014567 0ustar zeileisusers\name{DoctorVisits} \alias{DoctorVisits} \title{Australian Health Service Utilization Data} \description{ Cross-section data originating from the 1977--1978 Australian Health Survey. } \usage{data("DoctorVisits")} \format{ A data frame containing 5,190 observations on 12 variables. \describe{ \item{visits}{Number of doctor visits in past 2 weeks.} \item{gender}{Factor indicating gender.} \item{age}{Age in years divided by 100.} \item{income}{Annual income in tens of thousands of dollars.} \item{illness}{Number of illnesses in past 2 weeks.} \item{reduced}{Number of days of reduced activity in past 2 weeks due to illness or injury.} \item{health}{General health questionnaire score using Goldberg's method.} \item{private}{Factor. Does the individual have private health insurance?} \item{freepoor}{Factor. Does the individual have free government health insurance due to low income?} \item{freerepat}{Factor. Does the individual have free government health insurance due to old age, disability or veteran status?} \item{nchronic}{Factor. Is there a chronic condition not limiting activity?} \item{lchronic}{Factor. Is there a chronic condition limiting activity?} } } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/1997-v12.3/mullahy/} } \references{ Cameron, A.C. and Trivedi, P.K. (1986). Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests. \emph{Journal of Applied Econometrics}, \bold{1}, 29--53. Cameron, A.C. and Trivedi, P.K. (1998). \emph{Regression Analysis of Count Data}. Cambridge: Cambridge University Press. Mullahy, J. (1997). Heterogeneity, Excess Zeros, and the Structure of Count Data Models. \emph{Journal of Applied Econometrics}, \bold{12}, 337--350. } \seealso{\code{\link{CameronTrivedi1998}}} \examples{ data("DoctorVisits", package = "AER") library("MASS") ## Cameron and Trivedi (1986), Table III, col. (1) dv_lm <- lm(visits ~ . + I(age^2), data = DoctorVisits) summary(dv_lm) ## Cameron and Trivedi (1998), Table 3.3 dv_pois <- glm(visits ~ . + I(age^2), data = DoctorVisits, family = poisson) summary(dv_pois) ## MLH standard errors coeftest(dv_pois, vcov = vcovOPG) ## MLOP standard errors logLik(dv_pois) ## standard errors denoted RS ("unspecified omega robust sandwich estimate") coeftest(dv_pois, vcov = sandwich) ## Cameron and Trivedi (1986), Table III, col. (4) dv_nb <- glm.nb(visits ~ . + I(age^2), data = DoctorVisits) summary(dv_nb) logLik(dv_nb) } \keyword{datasets} AER/man/Longley.Rd0000644000175400001440000000271711354653140013540 0ustar zeileisusers\name{Longley} \alias{Longley} \title{Longley's Regression Data} \description{ US macroeconomic time series, 1947--1962. } \usage{data("Longley")} \format{ An annual multiple time series from 1947 to 1962 with 4 variables. \describe{ \item{employment}{Number of people employed (in 1000s).} \item{price}{GNP deflator.} \item{gnp}{Gross national product.} \item{armedforces}{Number of people in the armed forces.} } } \details{ An extended version of this data set, formatted as a \code{"data.frame"} is available as \code{\link[datasets]{longley}} in base R. } \source{ Online complements to Greene (2003). Table F4.2. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Longley, J.W. (1967). An Appraisal of Least-Squares Programs from the Point of View of the User. \emph{Journal of the American Statistical Association}, \bold{62}, 819--841. } \seealso{\code{\link[datasets]{longley}}, \code{\link{Greene2003}}} \examples{ data("Longley") library("dynlm") ## Example 4.6 in Greene (2003) fm1 <- dynlm(employment ~ time(employment) + price + gnp + armedforces, data = Longley) fm2 <- update(fm1, end = 1961) cbind(coef(fm2), coef(fm1)) ## Figure 4.3 in Greene (2003) plot(rstandard(fm2), type = "b", ylim = c(-3, 3)) abline(h = c(-2, 2), lty = 2) } \keyword{datasets} AER/man/USMacroSWM.Rd0000644000175400001440000000173113022372632014020 0ustar zeileisusers\name{USMacroSWM} \alias{USMacroSWM} \title{Monthly US Macroeconomic Data (1947--2004, Stock \& Watson)} \description{ Time series data on 4 US macroeconomic variables for 1947--2004. } \usage{data("USMacroSWM")} \format{ A monthly multiple time series from 1947(1) to 2004(4) with 4 variables. \describe{ \item{production}{index of industrial production.} \item{oil}{oil price shocks, starting 1948(1).} \item{cpi}{all-items consumer price index.} \item{expenditure}{personal consumption expenditures price deflator, starting 1959(1).} } } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{USMacroSW}}, \code{\link{USMacroSWQ}}, \code{\link{USMacroB}}, \code{\link{USMacroG}}} \examples{ data("USMacroSWM") plot(USMacroSWM) } \keyword{datasets} AER/man/ManufactCosts.Rd0000644000175400001440000000223011354653140014667 0ustar zeileisusers\name{ManufactCosts} \alias{ManufactCosts} \title{Manufacturing Costs Data} \description{ US time series data on prices and cost shares in manufacturing, 1947--1971. } \usage{data("ManufactCosts")} \format{ An annual multiple time series from 1947 to 1971 with 9 variables. \describe{ \item{cost}{Cost index.} \item{capitalcost}{Capital cost share.} \item{laborcost}{Labor cost share.} \item{energycost}{Energy cost share.} \item{materialscost}{Materials cost share.} \item{capitalprice}{Capital price.} \item{laborprice}{Labor price.} \item{energyprice}{Energy price.} \item{materialsprice}{Materials price.} } } \source{ Online complements to Greene (2003). \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Berndt, E. and Wood, D. (1975). Technology, Prices, and the Derived Demand for Energy. \emph{Review of Economics and Statistics}, \bold{57}, 376--384. Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("ManufactCosts") plot(ManufactCosts) } \keyword{datasets} AER/man/Equipment.Rd0000644000175400001440000000542412463506375014105 0ustar zeileisusers\name{Equipment} \alias{Equipment} \title{Transportation Equipment Manufacturing Data} \description{ Statewide data on transportation equipment manufacturing for 25 US states.} \usage{data("Equipment")} \format{ A data frame containing 25 observations on 4 variables. \describe{ \item{valueadded}{Aggregate output, in millions of 1957 dollars.} \item{capital}{Capital input, in millions of 1957 dollars.} \item{labor}{Aggregate labor input, in millions of man hours.} \item{firms}{Number of firms.} } } \source{ Journal of Applied Econometrics Data Archive. \url{http://qed.econ.queensu.ca/jae/1998-v13.2/zellner-ryu/} Online complements to Greene (2003), Table F9.2. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Zellner, A. and Revankar, N. (1969). Generalized Production Functions. \emph{Review of Economic Studies}, \bold{36}, 241--250. Zellner, A. and Ryu, H. (1998). Alternative Functional Forms for Production, Cost and Returns to Scale Functions. \emph{Journal of Applied Econometrics}, \bold{13}, 101--127. } \seealso{\code{\link{Greene2003}}} \examples{ ## Greene (2003), Example 17.5 data("Equipment") ## Cobb-Douglas fm_cd <- lm(log(valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ## generalized Cobb-Douglas with Zellner-Revankar trafo GCobbDouglas <- function(theta) lm(I(log(valueadded/firms) + theta * valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ## yields classical Cobb-Douglas for theta = 0 fm_cd0 <- GCobbDouglas(0) ## ML estimation of generalized model ## choose starting values from classical model par0 <- as.vector(c(coef(fm_cd0), 0, mean(residuals(fm_cd0)^2))) ## set up likelihood function nlogL <- function(par) { beta <- par[1:3] theta <- par[4] sigma2 <- par[5] Y <- with(Equipment, valueadded/firms) K <- with(Equipment, capital/firms) L <- with(Equipment, labor/firms) rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L) lhs <- log(Y) + theta * Y rval <- sum(log(1 + theta * Y) - log(Y) + dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE)) return(-rval) } ## optimization opt <- optim(par0, nlogL, hessian = TRUE) ## Table 17.2 opt$par sqrt(diag(solve(opt$hessian)))[1:4] -opt$value ## re-fit ML model fm_ml <- GCobbDouglas(opt$par[4]) deviance(fm_ml) sqrt(diag(vcov(fm_ml))) ## fit NLS model rss <- function(theta) deviance(GCobbDouglas(theta)) optim(0, rss) opt2 <- optimize(rss, c(-1, 1)) fm_nls <- GCobbDouglas(opt2$minimum) -nlogL(c(coef(fm_nls), opt2$minimum, mean(residuals(fm_nls)^2))) } \keyword{datasets} AER/man/GoldSilver.Rd0000755000175400001440000000511113023074251014166 0ustar zeileisusers\name{GoldSilver} \alias{GoldSilver} \title{Gold and Silver Prices} \description{ Time series of gold and silver prices. } \usage{data("GoldSilver")} \format{ A daily multiple time series from 1977-12-30 to 2012-12-31 (of class \code{"zoo"} with \code{"Date"} index). \describe{ \item{gold}{spot price for gold,} \item{silver}{spot price for silver.} } } \source{ Online complements to Franses, van Dijk and Opschoor (2014). \url{http://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } \references{ Franses, P.H., van Dijk, D. and Opschoor, A. (2014). \emph{Time Series Models for Business and Economic Forecasting}, 2nd ed. Cambridge, UK: Cambridge University Press. } \examples{ data("GoldSilver", package = "AER") ## p.31, daily returns lgs <- log(GoldSilver) plot(lgs[, c("silver", "gold")]) dlgs <- 100 * diff(lgs) plot(dlgs[, c("silver", "gold")]) ## p.31, monthly log prices lgs7812 <- window(lgs, start = as.Date("1978-01-01")) lgs7812m <- aggregate(lgs7812, as.Date(as.yearmon(time(lgs7812))), mean) plot(lgs7812m, plot.type = "single", lty = 1:2, lwd = 2) ## p.93, empirical ACF of absolute daily gold returns, 1978-01-01 - 2012-12-31 absgret <- abs(100 * diff(lgs7812[, "gold"])) sacf <- acf(absgret, lag.max = 200, na.action = na.exclude, plot = FALSE) plot(1:201, sacf$acf, ylim = c(0.04, 0.28), type = "l", xaxs = "i", yaxs = "i", las = 1) ## ARFIMA(0,1,1) model, eq. (4.44) library("longmemo") WhittleEst(absgret, model = "fARIMA", p = 0, q = 1, start = list(H = 0.3, MA = .25)) library("forecast") arfima(as.vector(absgret), max.p = 0, max.q = 1) ## p.254: VAR(2), monthly data for 1986.1 - 2012.12 library("vars") lgs8612 <- window(lgs, start = as.Date("1986-01-01")) dim(lgs8612) lgs8612m <- aggregate(lgs8612, as.Date(as.yearmon(time(lgs8612))), mean) plot(lgs8612m) dim(lgs8612m) VARselect(lgs8612m, 5) gs2 <- VAR(lgs8612m, 2) summary(gs2) summary(gs2)$covres ## ACF of residuals, p.256 acf(resid(gs2), 2, plot = FALSE) ## Figure 9.1, p.260 (somewhat different) plot(irf(gs2, impulse = "gold", n.ahead = 50), ylim = c(-0.02, 0.1)) plot(irf(gs2, impulse = "silver", n.ahead = 50), ylim = c(-0.02, 0.1)) ## Table 9.2, p.261 fevd(gs2) ## p.266 ls <- lgs8612[, "silver"] lg <- lgs8612[, "gold"] gsreg <- lm(lg ~ ls) summary(gsreg) sgreg <- lm(ls ~ lg) summary(sgreg) library("tseries") adf.test(resid(gsreg), k = 0) adf.test(resid(sgreg), k = 0) } \keyword{datasets} AER/man/Mortgage.Rd0000644000175400001440000000340212463507520013666 0ustar zeileisusers\name{Mortgage} \alias{Mortgage} \title{Fixed versus Adjustable Mortgages} \description{ Cross-section data about fixed versus adjustable mortgages for 78 households. } \usage{data("Mortgage")} \format{ A data frame containing 78 observations on 16 variables. \describe{ \item{rate}{Factor with levels \code{"fixed"} and \code{"adjustable"}.} \item{age}{Age of the borrower.} \item{school}{Years of schooling for the borrower.} \item{networth}{Net worth of the borrower.} \item{interest}{Fixed interest rate.} \item{points}{Ratio of points paid on adjustable to fixed rate mortgages.} \item{maturities}{Ratio of maturities on adjustable to fixed rate mortgages.} \item{years}{Years at the present address.} \item{married}{Factor. Is the borrower married?} \item{first}{Factor. Is the borrower a first-time home buyer?} \item{selfemp}{Factor. Is the borrower self-employed?} \item{tdiff}{The difference between the 10-year treasury rate less the 1-year treasury rate.} \item{margin}{The margin on the adjustable rate mortgage.} \item{coborrower}{Factor. Is there a co-borrower?} \item{liability}{Short-term liabilities.} \item{liquid}{Liquid assets.} } } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Dhillon, U.S., Shilling, J.D. and Sirmans, C.F. (1987). Choosing Between Fixed and Adjustable Rate Mortgages. \emph{Journal of Money, Credit and Banking}, \bold{19}, 260--267. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("Mortgage") plot(rate ~ interest, data = Mortgage, breaks = fivenum(Mortgage$interest)) plot(rate ~ margin, data = Mortgage, breaks = fivenum(Mortgage$margin)) plot(rate ~ coborrower, data = Mortgage) } \keyword{datasets} AER/man/ivreg.Rd0000644000175400001440000001250612271425235013241 0ustar zeileisusers\name{ivreg} \alias{ivreg} \alias{print.ivreg} \title{Instrumental-Variable Regression} \description{ Fit instrumental-variable regression by two-stage least squares. This is equivalent to direct instrumental-variables estimation when the number of instruments is equal to the number of predictors. } \usage{ ivreg(formula, instruments, data, subset, na.action, weights, offset, contrasts = NULL, model = TRUE, y = TRUE, x = FALSE, \dots) } \arguments{ \item{formula, instruments}{formula specification(s) of the regression relationship and the instruments. Either \code{instruments} is missing and \code{formula} has three parts as in \code{y ~ x1 + x2 | z1 + z2 + z3} (recommended) or \code{formula} is \code{y ~ x1 + x2} and \code{instruments} is a one-sided formula \code{~ z1 + z2 + z3} (only for backward compatibility).} \item{data}{an optional data frame containing the variables in the model. By default the variables are taken from the environment of the \code{formula}.} \item{subset}{an optional vector specifying a subset of observations to be used in fitting the model.} \item{na.action}{a function that indicates what should happen when the data contain \code{NA}s. The default is set by the \code{na.action} option.} \item{weights}{an optional vector of weights to be used in the fitting process.} \item{offset}{an optional offset that can be used to specify an a priori known component to be included during fitting.} \item{contrasts}{an optional list. See the \code{contrasts.arg} of \code{\link[stats:model.matrix]{model.matrix.default}}.} \item{model, x, y}{logicals. If \code{TRUE} the corresponding components of the fit (the model frame, the model matrices , the response) are returned.} \item{\dots}{further arguments passed to \code{\link{ivreg.fit}}.} } \details{ \code{ivreg} is the high-level interface to the work-horse function \code{\link{ivreg.fit}}, a set of standard methods (including \code{print}, \code{summary}, \code{vcov}, \code{anova}, \code{hatvalues}, \code{predict}, \code{terms}, \code{model.matrix}, \code{bread}, \code{estfun}) is available and described on \code{\link{summary.ivreg}}. Regressors and instruments for \code{ivreg} are most easily specified in a formula with two parts on the right-hand side, e.g., \code{y ~ x1 + x2 | z1 + z2 + z3}, where \code{x1} and \code{x2} are the regressors and \code{z1}, \code{z2}, and \code{z3} are the instruments. Note that exogenous regressors have to be included as instruments for themselves. For example, if there is one exogenous regressor \code{ex} and one endogenous regressor \code{en} with instrument \code{in}, the appropriate formula would be \code{y ~ ex + en | ex + in}. Equivalently, this can be specified as \code{y ~ ex + en | . - en + in}, i.e., by providing an update formula with a \code{.} in the second part of the formula. The latter is typically more convenient, if there is a large number of exogenous regressors. } \value{ \code{ivreg} returns an object of class \code{"ivreg"}, with the following components: \item{coefficients}{parameter estimates.} \item{residuals}{a vector of residuals.} \item{fitted.values}{a vector of predicted means.} \item{weights}{either the vector of weights used (if any) or \code{NULL} (if none).} \item{offset}{either the offset used (if any) or \code{NULL} (if none).} \item{n}{number of observations.} \item{nobs}{number of observations with non-zero weights.} \item{rank}{the numeric rank of the fitted linear model.} \item{df.residual}{residual degrees of freedom for fitted model.} \item{cov.unscaled}{unscaled covariance matrix for the coefficients.} \item{sigma}{residual standard error.} \item{call}{the original function call.} \item{formula}{the model formula.} \item{terms}{a list with elements \code{"regressors"} and \code{"instruments"} containing the terms objects for the respective components.} \item{levels}{levels of the categorical regressors.} \item{contrasts}{the contrasts used for categorical regressors.} \item{model}{the full model frame (if \code{model = TRUE}).} \item{y}{the response vector (if \code{y = TRUE}).} \item{x}{a list with elements \code{"regressors"}, \code{"instruments"}, \code{"projected"}, containing the model matrices from the respective components (if \code{x = TRUE}). \code{"projected"} is the matrix of regressors projected on the image of the instruments.} } \references{ Greene, W. H. (1993) \emph{Econometric Analysis}, 2nd ed., Macmillan. } \seealso{\code{\link{ivreg.fit}}, \code{\link[stats]{lm}}, \code{\link[stats:lmfit]{lm.fit}}} \examples{ ## data data("CigarettesSW", package = "AER") CigarettesSW$rprice <- with(CigarettesSW, price/cpi) CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi) CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi) ## model fm <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax/cpi), data = CigarettesSW, subset = year == "1995") summary(fm) summary(fm, vcov = sandwich, df = Inf, diagnostics = TRUE) ## ANOVA fm2 <- ivreg(log(packs) ~ log(rprice) | tdiff, data = CigarettesSW, subset = year == "1995") anova(fm, fm2) } \keyword{regression} AER/man/ShipAccidents.Rd0000644000175400001440000000475111354653140014650 0ustar zeileisusers\name{ShipAccidents} \alias{ShipAccidents} \title{Ship Accidents} \description{ Data on ship accidents. } \usage{data("ShipAccidents")} \format{ A data frame containing 40 observations on 5 ship types in 4 vintages and 2 service periods. \describe{ \item{type}{factor with levels \code{"A"} to \code{"E"} for the different ship types,} \item{construction}{factor with levels \code{"1960-64"}, \code{"1965-69"}, \code{"1970-74"}, \code{"1975-79"} for the periods of construction,} \item{operation}{factor with levels \code{"1960-74"}, \code{"1975-79"} for the periods of operation,} \item{service}{aggregate months of service,} \item{incidents}{number of damage incidents.} } } \details{ The data are from McCullagh and Nelder (1989, p. 205, Table 6.2) and were also used by Greene (2003, Ch. 21), see below. There are five ships (observations 7, 15, 23, 31, 39) with an operation period \emph{before} the construction period, hence the variables \code{service} and \code{incidents} are necessarily 0. An additional observation (34) has entries representing \emph{accidentally empty cells} (see McCullagh and Nelder, 1989, p. 205). It is a bit unclear what exactly the above means. In any case, the models are fit only to those observations with \code{service > 0}. } \source{ Online complements to Greene (2003). \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. McCullagh, P. and Nelder, J.A. (1989). \emph{Generalized Linear Models}, 2nd edition. London: Chapman \& Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("ShipAccidents") sa <- subset(ShipAccidents, service > 0) ## Greene (2003), Table 21.20 ## (see also McCullagh and Nelder, 1989, Table 6.3) sa_full <- glm(incidents ~ type + construction + operation, family = poisson, data = sa, offset = log(service)) summary(sa_full) sa_notype <- glm(incidents ~ construction + operation, family = poisson, data = sa, offset = log(service)) summary(sa_notype) sa_noperiod <- glm(incidents ~ type + operation, family = poisson, data = sa, offset = log(service)) summary(sa_noperiod) ## model comparison anova(sa_full, sa_notype, test = "Chisq") anova(sa_full, sa_noperiod, test = "Chisq") ## test for overdispersion dispersiontest(sa_full) dispersiontest(sa_full, trafo = 2) } \keyword{datasets} AER/man/CameronTrivedi1998.Rd0000644000175400001440000001176112216542527015400 0ustar zeileisusers\name{CameronTrivedi1998} \alias{CameronTrivedi1998} \title{Data and Examples from Cameron and Trivedi (1998)} \description{ This manual page collects a list of examples from the book. Some solutions might not be exact and the list is certainly not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer. } \references{ Cameron, A.C. and Trivedi, P.K. (1998). \emph{Regression Analysis of Count Data}. Cambridge: Cambridge University Press. } \seealso{\code{\link{DoctorVisits}}, \code{\link{NMES1988}}, \code{\link{RecreationDemand}}} \examples{ library("MASS") library("pscl") ########################################### ## Australian health service utilization ## ########################################### ## data data("DoctorVisits", package = "AER") ## Poisson regression dv_pois <- glm(visits ~ . + I(age^2), data = DoctorVisits, family = poisson) dv_qpois <- glm(visits ~ . + I(age^2), data = DoctorVisits, family = quasipoisson) ## Table 3.3 round(cbind( Coef = coef(dv_pois), MLH = sqrt(diag(vcov(dv_pois))), MLOP = sqrt(diag(vcovOPG(dv_pois))), NB1 = sqrt(diag(vcov(dv_qpois))), RS = sqrt(diag(sandwich(dv_pois))) ), digits = 3) ## Table 3.4 ## NM2-ML dv_nb <- glm.nb(visits ~ . + I(age^2), data = DoctorVisits) summary(dv_nb) ## NB1-GLM = quasipoisson summary(dv_qpois) ## overdispersion tests (page 79) lrtest(dv_pois, dv_nb) ## p-value would need to be halved dispersiontest(dv_pois, trafo = 1) dispersiontest(dv_pois, trafo = 2) ########################################## ## Demand for medical care in NMES 1988 ## ########################################## ## select variables for analysis data("NMES1988", package = "AER") nmes <- NMES1988[,-(2:6)] ## dependent variable ## Table 6.1 table(cut(nmes$visits, c(0:13, 100)-0.5, labels = 0:13)) ## NegBin regression nmes_nb <- glm.nb(visits ~ ., data = nmes) ## NegBin hurdle nmes_h <- hurdle(visits ~ ., data = nmes, dist = "negbin") ## from Table 6.3 lrtest(nmes_nb, nmes_h) ## from Table 6.4 AIC(nmes_nb) AIC(nmes_nb, k = log(nrow(nmes))) AIC(nmes_h) AIC(nmes_h, k = log(nrow(nmes))) ## Table 6.8 coeftest(nmes_h, vcov = sandwich) logLik(nmes_h) 1/nmes_h$theta ################################################### ## Recreational boating trips to Lake Somerville ## ################################################### ## data data("RecreationDemand", package = "AER") ## Poisson model: ## Cameron and Trivedi (1998), Table 6.11 ## Ozuna and Gomez (1995), Table 2, col. 3 fm_pois <- glm(trips ~ ., data = RecreationDemand, family = poisson) summary(fm_pois) logLik(fm_pois) coeftest(fm_pois, vcov = sandwich) ## Negbin model: ## Cameron and Trivedi (1998), Table 6.11 ## Ozuna and Gomez (1995), Table 2, col. 5 library("MASS") fm_nb <- glm.nb(trips ~ ., data = RecreationDemand) coeftest(fm_nb, vcov = vcovOPG) logLik(fm_nb) ## ZIP model: ## Cameron and Trivedi (1998), Table 6.11 fm_zip <- zeroinfl(trips ~ . | quality + income, data = RecreationDemand) summary(fm_zip) logLik(fm_zip) ## Hurdle models ## Cameron and Trivedi (1998), Table 6.13 ## poisson-poisson sval <- list(count = c(2.15, 0.044, .467, -.097, .601, .002, -.036, .024), zero = c(-1.88, 0.815, .403, .01, 2.95, 0.006, -.052, .046)) fm_hp0 <- hurdle(trips ~ ., data = RecreationDemand, dist = "poisson", zero = "poisson", start = sval, maxit = 0) fm_hp1 <- hurdle(trips ~ ., data = RecreationDemand, dist = "poisson", zero = "poisson", start = sval) fm_hp2 <- hurdle(trips ~ ., data = RecreationDemand, dist = "poisson", zero = "poisson") sapply(list(fm_hp0, fm_hp1, fm_hp2), logLik) ## negbin-negbin fm_hnb <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin", zero = "negbin") summary(fm_hnb) logLik(fm_hnb) sval <- list(count = c(0.841, 0.172, .622, -.057, .576, .057, -.078, .012), zero = c(-3.046, 4.638, -.025, .026, 16.203, 0.030, -.156, .117), theta = c(count = 1/1.7, zero = 1/5.609)) fm_hnb2 <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin", zero = "negbin", start = sval) summary(fm_hnb2) logLik(fm_hnb2) ## geo-negbin sval98 <- list(count = c(0.841, 0.172, .622, -.057, .576, .057, -.078, .012), zero = c(-2.88, 1.44, .4, .03, 9.43, 0.01, -.08, .071), theta = c(count = 1/1.7)) sval96 <- list(count = c(0.841, 0.172, .622, -.057, .576, .057, -.078, .012), zero = c(-2.882, 1.437, .406, .026, 11.936, 0.008, -.081, .071), theta = c(count = 1/1.7)) fm_hgnb <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin", zero = "geometric") summary(fm_hgnb) logLik(fm_hgnb) ## logLik with starting values from Gurmu + Trivedi 1996 fm_hgnb96 <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin", zero = "geometric", start = sval96, maxit = 0) logLik(fm_hgnb96) ## logit-negbin fm_hgnb2 <- hurdle(trips ~ ., data = RecreationDemand, dist = "negbin") summary(fm_hgnb2) logLik(fm_hgnb2) ## Note: quasi-complete separation with(RecreationDemand, table(trips > 0, userfee)) } \keyword{datasets} AER/man/DutchSales.Rd0000644000175400001440000000213713023077121014154 0ustar zeileisusers\name{DutchSales} \alias{DutchSales} \title{Dutch Retail Sales Index Data} \description{ Time series of retail sales index in The Netherlands. } \usage{data("DutchSales")} \format{ A monthly univariate time series from 1960(5) to 1995(9). } \source{ Online complements to Franses (1998). } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("DutchSales") plot(DutchSales) ## EACF tables (Franses 1998, p. 99) ctrafo <- function(x) residuals(lm(x ~ factor(cycle(x)))) ddiff <- function(x) diff(diff(x, frequency(x)), 1) eacf <- function(y, lag = 12) { stopifnot(all(lag > 0)) if(length(lag) < 2) lag <- 1:lag rval <- sapply( list(y = y, dy = diff(y), cdy = ctrafo(diff(y)), Dy = diff(y, frequency(y)), dDy = ddiff(y)), function(x) acf(x, plot = FALSE, lag.max = max(lag))$acf[lag + 1]) rownames(rval) <- lag return(rval) } ## Franses (1998), Table 5.3 round(eacf(log(DutchSales), lag = c(1:18, 24, 36)), digits = 3) } \keyword{datasets} AER/man/CigarettesB.Rd0000644000175400001440000000461712463507446014335 0ustar zeileisusers\name{CigarettesB} \alias{CigarettesB} \title{Cigarette Consumption Data} \description{ Cross-section data on cigarette consumption for 46 US States, for the year 1992. } \usage{data("CigarettesB")} \format{ A data frame containing 46 observations on 3 variables. \describe{ \item{packs}{Logarithm of cigarette consumption (in packs) per person of smoking age (> 16 years).} \item{price}{Logarithm of real price of cigarette in each state.} \item{income}{Logarithm of real disposable income (per capita) in each state.} } } \source{ The data are from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Baltagi, B.H. and Levin, D. (1992). Cigarette Taxation: Raising Revenues and Reducing Consumption. \emph{Structural Change and Economic Dynamics}, \bold{3}, 321--335. } \seealso{\code{\link{Baltagi2002}}, \code{\link{CigarettesSW}}} \examples{ data("CigarettesB") ## Baltagi (2002) ## Table 3.3 cig_lm <- lm(packs ~ price, data = CigarettesB) summary(cig_lm) ## Chapter 5: diagnostic tests (p. 111-115) cig_lm2 <- lm(packs ~ price + income, data = CigarettesB) summary(cig_lm2) ## Glejser tests (p. 112) ares <- abs(residuals(cig_lm2)) summary(lm(ares ~ income, data = CigarettesB)) summary(lm(ares ~ I(1/income), data = CigarettesB)) summary(lm(ares ~ I(1/sqrt(income)), data = CigarettesB)) summary(lm(ares ~ sqrt(income), data = CigarettesB)) ## Goldfeld-Quandt test (p. 112) gqtest(cig_lm2, order.by = ~ income, data = CigarettesB, fraction = 12, alternative = "less") ## NOTE: Baltagi computes the test statistic as mss1/mss2, ## i.e., tries to find decreasing variances. gqtest() always uses ## mss2/mss1 and has an "alternative" argument. ## Spearman rank correlation test (p. 113) cor.test(~ ares + income, data = CigarettesB, method = "spearman") ## Breusch-Pagan test (p. 113) bptest(cig_lm2, varformula = ~ income, data = CigarettesB, student = FALSE) ## White test (Table 5.1, p. 113) bptest(cig_lm2, ~ income * price + I(income^2) + I(price^2), data = CigarettesB) ## White HC standard errors (Table 5.2, p. 114) coeftest(cig_lm2, vcov = vcovHC(cig_lm2, type = "HC1")) ## Jarque-Bera test (Figure 5.2, p. 115) hist(residuals(cig_lm2), breaks = 16, ylim = c(0, 10), col = "lightgray") library("tseries") jarque.bera.test(residuals(cig_lm2)) ## Tables 8.1 and 8.2 influence.measures(cig_lm2) ## More examples can be found in: ## help("Baltagi2002") } \keyword{datasets} AER/man/OECDGas.Rd0000644000175400001440000000217112463507543013275 0ustar zeileisusers\name{OECDGas} \alias{OECDGas} \title{Gasoline Consumption Data} \description{ Panel data on gasoline consumption in 18 OECD countries over 19 years, 1960--1978. } \usage{data("OECDGas")} \format{ A data frame containing 342 observations on 6 variables. \describe{ \item{country}{Factor indicating country.} \item{year}{Year.} \item{gas}{Logarithm of motor gasoline consumption per car.} \item{income}{Logarithm of real per-capita income.} \item{price}{Logarithm of real motor gasoline price.} \item{cars}{Logarithm of the stock of cars per-capita.} } } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Baltagi, B.H. and Griffin, J.M. (1983). Gasoline Demand in the OECD: An Application of Pooling and Testing Procedures. \emph{European Economic Review}, \bold{22}, 117--137. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("OECDGas") library("lattice") xyplot(exp(cars) ~ year | country, data = OECDGas, type = "l") xyplot(exp(gas) ~ year | country, data = OECDGas, type = "l") } \keyword{datasets} AER/man/MarkDollar.Rd0000644000175400001440000000170012463674611014156 0ustar zeileisusers\name{MarkDollar} \alias{MarkDollar} \title{DEM/USD Exchange Rate Returns} \description{ A time series of intra-day percentage returns of Deutsche mark/US dollar (DEM/USD) exchange rates, consisting of two observations per day from 1992-10-01 through 1993-09-29. } \usage{data("MarkDollar")} \format{ A univariate time series of 518 returns (exact dates unknown) for the DEM/USD exchange rate. } \source{ Journal of Business \& Economic Statistics Data Archive. \verb{http://www.amstat.org/publications/jbes/upload/index.cfm?fuseaction=ViewArticles&pub=JBES&issue=96-2-APR} } \references{ Bollerslev, T., and Ghysels, E. (1996). Periodic Autoregressive Conditional Heteroskedasticity. \emph{Journal of Business \& Economic Statistics}, \bold{14}, 139--151. } \seealso{\code{\link{MarkPound}}} \examples{ library("tseries") data("MarkDollar") ## GARCH(1,1) fm <- garch(MarkDollar, grad = "numerical") summary(fm) logLik(fm) } \keyword{datasets} AER/man/HMDA.Rd0000644000175400001440000000417613022373074012640 0ustar zeileisusers\name{HMDA} \alias{HMDA} \title{Home Mortgage Disclosure Act Data} \description{Cross-section data on the Home Mortgage Disclosure Act (HMDA).} \usage{data("HMDA")} \format{ A data frame containing 2,380 observations on 14 variables. \describe{ \item{deny}{Factor. Was the mortgage denied?} \item{pirat}{Payments to income ratio.} \item{hirat}{Housing expense to income ratio.} \item{lvrat}{Loan to value ratio.} \item{chist}{Factor. Credit history: consumer payments.} \item{mhist}{Factor. Credit history: mortgage payments.} \item{phist}{Factor. Public bad credit record?} \item{unemp}{1989 Massachusetts unemployment rate in applicant's industry.} \item{selfemp}{Factor. Is the individual self-employed?} \item{insurance}{Factor. Was the individual denied mortgage insurance?} \item{condomin}{Factor. Is the unit a condominium?} \item{afam}{Factor. Is the individual African-American?} \item{single}{Factor. Is the individual single?} \item{hschool}{Factor. Does the individual have a high-school diploma?} } } \details{Only includes variables used by Stock and Watson (2007), some of which had to be generated from the raw data. } \source{ Online complements to Stock and Watson (2007). } \references{ Munnell, A. H., Tootell, G. M. B., Browne, L. E. and McEneaney, J. (1996). Mortgage Lending in Boston: Interpreting HMDA Data. \emph{American Economic Review}, \bold{86}, 25--53. Stock, J. H. and Watson, M. W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("HMDA") ## Stock and Watson (2007) ## Equations 11.1, 11.3, 11.7, 11.8 and 11.10, pp. 387--395 fm1 <- lm(I(as.numeric(deny) - 1) ~ pirat, data = HMDA) fm2 <- lm(I(as.numeric(deny) - 1) ~ pirat + afam, data = HMDA) fm3 <- glm(deny ~ pirat, family = binomial(link = "probit"), data = HMDA) fm4 <- glm(deny ~ pirat + afam, family = binomial(link = "probit"), data = HMDA) fm5 <- glm(deny ~ pirat + afam, family = binomial(link = "logit"), data = HMDA) ## More examples can be found in: ## help("StockWatson2007") } \keyword{datasets} AER/man/Guns.Rd0000644000175400001440000000516513022373104013034 0ustar zeileisusers\name{Guns} \alias{Guns} \title{More Guns, Less Crime?} \description{ Guns is a balanced panel of data on 50 US states, plus the District of Columbia (for a total of 51 states), by year for 1977--1999. } \usage{data("Guns")} \format{ A data frame containing 1,173 observations on 13 variables. \describe{ \item{state}{factor indicating state.} \item{year}{factor indicating year.} \item{violent}{violent crime rate (incidents per 100,000 members of the population).} \item{murder}{murder rate (incidents per 100,000).} \item{robbery}{robbery rate (incidents per 100,000).} \item{prisoners}{incarceration rate in the state in the previous year (sentenced prisoners per 100,000 residents; value for the previous year).} \item{afam}{percent of state population that is African-American, ages 10 to 64.} \item{cauc}{percent of state population that is Caucasian, ages 10 to 64.} \item{male}{percent of state population that is male, ages 10 to 29.} \item{population}{state population, in millions of people.} \item{income}{real per capita personal income in the state (US dollars).} \item{density}{population per square mile of land area, divided by 1,000.} \item{law}{factor. Does the state have a shall carry law in effect in that year?} } } \details{ Each observation is a given state in a given year. There are a total of 51 states times 23 years = 1,173 observations. } \source{ Online complements to Stock and Watson (2007). } \references{ Ayres, I., and Donohue, J.J. (2003). Shooting Down the \sQuote{More Guns Less Crime} Hypothesis. \emph{Stanford Law Review}, \bold{55}, 1193--1312. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ ## data data("Guns") ## visualization library("lattice") xyplot(log(violent) ~ as.numeric(as.character(year)) | state, data = Guns, type = "l") ## Stock & Watson (2007), Empirical Exercise 10.1, pp. 376--377 fm1 <- lm(log(violent) ~ law, data = Guns) coeftest(fm1, vcov = sandwich) fm2 <- lm(log(violent) ~ law + prisoners + density + income + population + afam + cauc + male, data = Guns) coeftest(fm2, vcov = sandwich) fm3 <- lm(log(violent) ~ law + prisoners + density + income + population + afam + cauc + male + state, data = Guns) printCoefmat(coeftest(fm3, vcov = sandwich)[1:9,]) fm4 <- lm(log(violent) ~ law + prisoners + density + income + population + afam + cauc + male + state + year, data = Guns) printCoefmat(coeftest(fm4, vcov = sandwich)[1:9,]) } \keyword{datasets} AER/man/UKNonDurables.Rd0000644000175400001440000000257113023077167014605 0ustar zeileisusers\name{UKNonDurables} \alias{UKNonDurables} \title{Consumption of Non-Durables in the UK} \description{ Time series of consumption of non-durables in the UK (in 1985 prices). } \usage{data("UKNonDurables")} \format{ A quarterly univariate time series from 1955(1) to 1988(4). } \source{ Online complements to Franses (1998). } \references{ Osborn, D.R. (1988). A Survey of Seasonality in UK Macroeconomic Variables. \emph{International Journal of Forecasting}, \bold{6}, 327--336. Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("UKNonDurables") plot(UKNonDurables) ## EACF tables (Franses 1998, p. 99) ctrafo <- function(x) residuals(lm(x ~ factor(cycle(x)))) ddiff <- function(x) diff(diff(x, frequency(x)), 1) eacf <- function(y, lag = 12) { stopifnot(all(lag > 0)) if(length(lag) < 2) lag <- 1:lag rval <- sapply( list(y = y, dy = diff(y), cdy = ctrafo(diff(y)), Dy = diff(y, frequency(y)), dDy = ddiff(y)), function(x) acf(x, plot = FALSE, lag.max = max(lag))$acf[lag + 1]) rownames(rval) <- lag return(rval) } ## Franses (1998), Table 5.2 round(eacf(log(UKNonDurables)), digits = 3) ## Franses (1998), Equation 5.51 ## (Franses: sma1 = -0.632 (0.069)) arima(log(UKNonDurables), c(0, 1, 0), c(0, 1, 1)) } \keyword{datasets} AER/man/USStocksSW.Rd0000644000175400001440000000406113022372601014103 0ustar zeileisusers\name{USStocksSW} \alias{USStocksSW} \title{Monthly US Stock Returns (1931--2002, Stock \& Watson)} \description{ Monthly data from 1931--2002 for US stock prices, measured by the broad-based (NYSE and AMEX) value-weighted index of stock prices as constructed by the Center for Research in Security Prices (CRSP). } \usage{data("USStocksSW")} \format{ A monthly multiple time series from 1931(1) to 2002(12) with 2 variables. \describe{ \item{returns}{monthly excess returns. The monthly return on stocks (in percentage terms) minus the return on a safe asset (in this case: US treasury bill). The return on the stocks includes the price changes plus any dividends you receive during the month.} \item{dividend}{100 times log(dividend yield). (Multiplication by 100 means the changes are interpreted as percentage points). It is calculated as the dividends over the past 12 months, divided by the price in the current month.} } } \source{ Online complements to Stock and Watson (2007). } \references{ Campbell, J.Y., and Yogo, M. (2006). Efficient Tests of Stock Return Predictability \emph{Journal of Financial Economics}, \bold{81}, 27--60. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("USStocksSW") plot(USStocksSW) ## Stock and Watson, p. 540, Table 14.3 library("dynlm") fm1 <- dynlm(returns ~ L(returns), data = USStocksSW, start = c(1960,1)) coeftest(fm1, vcov = sandwich) fm2 <- dynlm(returns ~ L(returns, 1:2), data = USStocksSW, start = c(1960,1)) waldtest(fm2, vcov = sandwich) fm3 <- dynlm(returns ~ L(returns, 1:4), data = USStocksSW, start = c(1960,1)) waldtest(fm3, vcov = sandwich) ## Stock and Watson, p. 574, Table 14.7 fm4 <- dynlm(returns ~ L(returns) + L(d(dividend)), data = USStocksSW, start = c(1960, 1)) fm5 <- dynlm(returns ~ L(returns, 1:2) + L(d(dividend), 1:2), data = USStocksSW, start = c(1960,1)) fm6 <- dynlm(returns ~ L(returns) + L(dividend), data = USStocksSW, start = c(1960,1)) } \keyword{datasets} AER/man/BenderlyZwick.Rd0000644000175400001440000000432412463507424014704 0ustar zeileisusers\name{BenderlyZwick} \alias{BenderlyZwick} \title{Benderly and Zwick Data: Inflation, Growth and Stock Returns} \description{ Time series data, 1952--1982. } \usage{data("BenderlyZwick")} \format{ An annual multiple time series from 1952 to 1982 with 5 variables. \describe{ \item{returns}{real annual returns on stocks, measured using the Ibbotson-Sinquefeld data base.} \item{growth}{annual growth rate of output, measured by real GNP (from the given year to the next year).} \item{inflation}{inflation rate, measured as growth of price rate (from December of the previous year to December of the present year).} \item{growth2}{annual growth rate of real GNP as given by Baltagi.} \item{inflation2}{inflation rate as given by Baltagi} } } \source{ The first three columns of the data are from Table 1 in Benderly and Zwick (1985). The remaining columns are taken from the online complements of Baltagi (2002). The first column is identical in both sources, the other two variables differ in their numeric values and additionally the growth series seems to be lagged differently. Baltagi (2002) states Lott and Ray (1992) as the source for his version of the data set. } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Benderly, J., and Zwick, B. (1985). Inflation, Real Balances, Output and Real Stock Returns. \emph{American Economic Review}, \bold{75}, 1115--1123. Lott, W.F., and Ray, S.C. (1992). \emph{Applied Econometrics: Problems with Data Sets}. New York: The Dryden Press. Zaman, A., Rousseeuw, P.J., and Orhan, M. (2001). Econometric Applications of High-Breakdown Robust Regression Techniques. \emph{Economics Letters}, \bold{71}, 1--8. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("BenderlyZwick") plot(BenderlyZwick) ## Benderly and Zwick (1985), p. 1116 library("dynlm") bz_ols <- dynlm(returns ~ growth + inflation, data = BenderlyZwick/100, start = 1956, end = 1981) summary(bz_ols) ## Zaman, Rousseeuw and Orhan (2001) ## use larger period, without scaling bz_ols2 <- dynlm(returns ~ growth + inflation, data = BenderlyZwick, start = 1954, end = 1981) summary(bz_ols2) } \keyword{datasets} AER/man/Electricity1970.Rd0000644000175400001440000000314711354653140014726 0ustar zeileisusers\name{Electricity1970} \alias{Electricity1970} \title{Cost Function of Electricity Producers 1970} \description{ Cross-section data, at the firm level, on electric power generation. } \usage{data("Electricity1970")} \format{ A data frame containing 158 cross-section observations on 9 variables. \describe{ \item{cost}{total cost.} \item{output}{total output.} \item{labor}{wage rate.} \item{laborshare}{cost share for labor.} \item{capital}{capital price index.} \item{capitalshare}{cost share for capital.} \item{fuel}{fuel price.} \item{fuelshare}{cost share for fuel.} } } \details{ The data are from Christensen and Greene (1976) and pertain to the year 1970. However, the file contains some extra observations, the holding companies. Only the first 123 observations are needed to replicate Christensen and Greene (1976). } \source{ Online complements to Greene (2003), Table F5.2. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Christensen, L. and Greene, W.H. (1976). Economies of Scale in U.S. Electric Power Generation. \emph{Journal of Political Economy}, \bold{84}, 655--676. Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}, \code{\link{Electricity1955}}} \examples{ data("Electricity1970") ## Greene (2003), Ex. 5.6: a generalized Cobb-Douglas cost function fm <- lm(log(cost/fuel) ~ log(output) + I(log(output)^2/2) + log(capital/fuel) + log(labor/fuel), data=Electricity1970[1:123,]) } \keyword{datasets} AER/man/WeakInstrument.Rd0000644000175400001440000000131713022372567015107 0ustar zeileisusers\name{WeakInstrument} \alias{WeakInstrument} \title{Artificial Weak Instrument Data} \description{ Artificial data set to illustrate the problem of weak instruments. } \usage{data("WeakInstrument")} \format{ A data frame containing 200 observations on 3 variables. \describe{ \item{y}{dependent variable.} \item{x}{regressor variable.} \item{z}{instrument variable.} } } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("WeakInstrument") fm <- ivreg(y ~ x | z, data = WeakInstrument) summary(fm) } \keyword{datasets} AER/man/StrikeDuration.Rd0000644000175400001440000000372411354653140015075 0ustar zeileisusers\name{StrikeDuration} \alias{StrikeDuration} \title{Strike Durations} \description{ Data on the duration of strikes in US manufacturing industries, 1968--1976. } \usage{data("StrikeDuration")} \format{ A data frame containing 62 observations on 2 variables for the period 1968--1976. \describe{ \item{duration}{strike duration in days.} \item{uoutput}{unanticipated output (a measure of unanticipated aggregate industrial production net of seasonal and trend components).} } } \details{ The original data provided by Kennan (1985) are on a monthly basis, for the period 1968(1) through 1976(12). Greene (2003) only provides the June data for each year. Also, the duration for observation 36 is given as 3 by Greene while Kennan has 2. Here we use Greene's version. \code{uoutput} is the residual from a regression of the logarithm of industrial production in manufacturing on time, time squared, and monthly dummy variables. } \source{ Online complements to Greene (2003). \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Kennan, J. (1985). The Duration of Contract Strikes in US Manufacturing. \emph{Journal of Econometrics}, \bold{28}, 5--28. } \seealso{\code{\link{Greene2003}}} \examples{ data("StrikeDuration") library("MASS") ## Greene (2003), Table 22.10 fit_exp <- fitdistr(StrikeDuration$duration, "exponential") fit_wei <- fitdistr(StrikeDuration$duration, "weibull") fit_wei$estimate[2]^(-1) fit_lnorm <- fitdistr(StrikeDuration$duration, "lognormal") 1/fit_lnorm$estimate[2] exp(-fit_lnorm$estimate[1]) ## Weibull and lognormal distribution have ## different parameterizations, see Greene p. 794 ## Greene (2003), Example 22.10 library("survival") fm_wei <- survreg(Surv(duration) ~ uoutput, dist = "weibull", data = StrikeDuration) summary(fm_wei) } \keyword{datasets} AER/man/CreditCard.Rd0000644000175400001440000000565211354653140014134 0ustar zeileisusers\name{CreditCard} \alias{CreditCard} \title{Expenditure and Default Data} \description{ Cross-section data on the credit history for a sample of applicants for a type of credit card. } \usage{data("CreditCard")} \format{ A data frame containing 1,319 observations on 12 variables. \describe{ \item{card}{Factor. Was the application for a credit card accepted?} \item{reports}{Number of major derogatory reports.} \item{age}{Age in years plus twelfths of a year.} \item{income}{Yearly income (in USD 10,000).} \item{share}{Ratio of monthly credit card expenditure to yearly income.} \item{expenditure}{Average monthly credit card expenditure.} \item{owner}{Factor. Does the individual own their home?} \item{selfemp}{Factor. Is the individual self-employed?} \item{dependents}{Number of dependents.} \item{months}{Months living at current address.} \item{majorcards}{Number of major credit cards held.} \item{active}{Number of active credit accounts.} } } \details{ According to Greene (2003, p. 952) \code{dependents} equals \code{1 + number of dependents}, our calculations suggest that it equals \code{number of dependents}. Greene (2003) provides this data set twice in Table F21.4 and F9.1, respectively. Table F9.1 has just the observations, rounded to two digits. Here, we give the F21.4 version, see the examples for the F9.1 version. Note that \code{age} has some suspiciously low values (below one year) for some applicants. One of these differs between the F9.1 and F21.4 version. } \source{ Online complements to Greene (2003). Table F21.4. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("CreditCard") ## Greene (2003) ## extract data set F9.1 ccard <- CreditCard[1:100,] ccard$income <- round(ccard$income, digits = 2) ccard$expenditure <- round(ccard$expenditure, digits = 2) ccard$age <- round(ccard$age + .01) ## suspicious: CreditCard$age[CreditCard$age < 1] ## the first of these is also in TableF9.1 with 36 instead of 0.5: ccard$age[79] <- 36 ## Example 11.1 ccard <- ccard[order(ccard$income),] ccard0 <- subset(ccard, expenditure > 0) cc_ols <- lm(expenditure ~ age + owner + income + I(income^2), data = ccard0) ## Figure 11.1 plot(residuals(cc_ols) ~ income, data = ccard0, pch = 19) ## Table 11.1 mean(ccard$age) prop.table(table(ccard$owner)) mean(ccard$income) summary(cc_ols) sqrt(diag(vcovHC(cc_ols, type = "HC0"))) sqrt(diag(vcovHC(cc_ols, type = "HC2"))) sqrt(diag(vcovHC(cc_ols, type = "HC1"))) bptest(cc_ols, ~ (age + income + I(income^2) + owner)^2 + I(age^2) + I(income^4), data = ccard0) gqtest(cc_ols) bptest(cc_ols, ~ income + I(income^2), data = ccard0, studentize = FALSE) bptest(cc_ols, ~ income + I(income^2), data = ccard0) ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/Parade2005.Rd0000644000175400001440000000320411354653140013622 0ustar zeileisusers\name{Parade2005} \alias{Parade2005} \title{Parade Magazine 2005 Earnings Data} \description{ US earnings data, as provided in an annual survey of Parade (here from 2005), the Sunday newspaper magazine supplementing the Sunday (or Weekend) edition of many daily newspapers in the USA. } \usage{data("Parade2005")} \format{ A data frame containing 130 observations on 5 variables. \describe{ \item{earnings}{Annual personal earnings.} \item{age}{Age in years.} \item{gender}{Factor indicating gender.} \item{state}{Factor indicating state.} \item{celebrity}{Factor. Is the individual a celebrity?} } } \details{ In addition to the four variables provided by Parade (earnings, age, gender, and state), a fifth variable was introduced, the \dQuote{celebrity factor} (here actors, athletes, TV personalities, politicians, and CEOs are considered celebrities). The data are quite far from a simple random sample, there being substantial oversampling of celebrities. } \source{ Parade (2005). What People Earn. Issue March 13, 2005. } \examples{ ## data data("Parade2005") attach(Parade2005) summary(Parade2005) ## bivariate visualizations plot(density(log(earnings), bw = "SJ"), type = "l", main = "log(earnings)") rug(log(earnings)) plot(log(earnings) ~ gender, main = "log(earnings)") ## celebrity vs. non-celebrity earnings noncel <- subset(Parade2005, celebrity == "no") cel <- subset(Parade2005, celebrity == "yes") library("ineq") plot(Lc(noncel$earnings), main = "log(earnings)") lines(Lc(cel$earnings), lty = 2) lines(Lc(earnings), lty = 3) Gini(noncel$earnings) Gini(cel$earnings) Gini(earnings) ## detach data detach(Parade2005) } \keyword{datasets} AER/man/OrangeCounty.Rd0000644000175400001440000000122412463507552014543 0ustar zeileisusers\name{OrangeCounty} \alias{OrangeCounty} \title{Orange County Employment} \description{ Quarterly time series data on employment in Orange county, 1965--1983. } \usage{data("OrangeCounty")} \format{ A quarterly multiple time series from 1965 to 1983 with 2 variables. \describe{ \item{employment}{Quarterly employment in Orange county.} \item{gnp}{Quarterly real GNP.} } } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("OrangeCounty") plot(OrangeCounty) } \keyword{datasets} AER/man/DJFranses.Rd0000644000175400001440000000113413023077065013737 0ustar zeileisusers\name{DJFranses} \alias{DJFranses} \title{Dow Jones Index Data (Franses)} \description{ Dow Jones index time series computed at the end of the week where week is assumed to run from Thursday to Wednesday. } \usage{data("DJFranses")} \format{ A weekly univariate time series from 1980(1) to 1994(42). } \source{ Online complements to Franses (1998). } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("DJFranses") plot(DJFranses) } \keyword{datasets} AER/man/USGasB.Rd0000644000175400001440000000143012463507645013214 0ustar zeileisusers\name{USGasB} \alias{USGasB} \title{US Gasoline Market Data (1950--1987, Baltagi)} \description{ Time series data on the US gasoline market. } \usage{data("USGasB")} \format{ An annual multiple time series from 1950 to 1987 with 6 variables. \describe{ \item{cars}{Stock of cars.} \item{gas}{Consumption of motor gasoline (in 1000 gallons).} \item{price}{Retail price of motor gasoline.} \item{population}{Population.} \item{gnp}{Real gross national product (in 1982 dollars).} \item{deflator}{GNP deflator (1982 = 100).} } } \source{ The data are from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}, \code{\link{USGasG}}} \examples{ data("USGasB") plot(USGasB) } \keyword{datasets} AER/man/OlympicTV.Rd0000644000175400001440000000127013023077177014013 0ustar zeileisusers\name{OlympicTV} \alias{OlympicTV} \title{Television Rights for Olympic Games} \description{ Television rights for Olympic Games for US networks (in millions USD). } \usage{data("OlympicTV")} \format{ A data frame with 10 observations and 2 variables. \describe{ \item{rights}{time series of television rights (in million USD),} \item{network}{factor coding television network.} } } \source{ Online complements to Franses (1998). } \seealso{\code{\link{Franses1998}}} \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \examples{ data("OlympicTV") plot(OlympicTV$rights) } \keyword{datasets} AER/man/Journals.Rd0000644000175400001440000000637513022373044013724 0ustar zeileisusers\name{Journals} \alias{Journals} \title{Economics Journal Subscription Data} \description{ Subscriptions to economics journals at US libraries, for the year 2000. } \usage{data("Journals")} \format{ A data frame containing 180 observations on 10 variables. \describe{ \item{title}{Journal title.} \item{publisher}{factor with publisher name.} \item{society}{factor. Is the journal published by a scholarly society?} \item{price}{Library subscription price.} \item{pages}{Number of pages.} \item{charpp}{Characters per page.} \item{citations}{Total number of citations.} \item{foundingyear}{Year journal was founded.} \item{subs}{Number of library subscriptions.} \item{field}{factor with field description.} } } \details{ Data on 180 economic journals, collected in particular for analyzing journal pricing. See also \url{http://www.econ.ucsb.edu/~tedb/Journals/jpricing.html} for general information on this topic as well as a more up-to-date version of the data set. This version is taken from Stock and Watson (2007). The data as obtained from the online complements for Stock and Watson (2007) contained two journals with title \dQuote{World Development}. One of these (observation 80) seemed to be an error and was changed to \dQuote{The World Economy}. } \source{ Online complements to Stock and Watson (2007). } \references{ Bergstrom, T. (2001). Free Labor for Costly Journals? \emph{Journal of Economic Perspectives}, 15, 183--198. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ ## data and transformed variables data("Journals") journals <- Journals[, c("subs", "price")] journals$citeprice <- Journals$price/Journals$citations journals$age <- 2000 - Journals$foundingyear journals$chars <- Journals$charpp*Journals$pages/10^6 ## Stock and Watson (2007) ## Figure 8.9 (a) and (b) plot(subs ~ citeprice, data = journals, pch = 19) plot(log(subs) ~ log(citeprice), data = journals, pch = 19) fm1 <- lm(log(subs) ~ log(citeprice), data = journals) abline(fm1) ## Table 8.2, use HC1 for comparability with Stata fm2 <- lm(subs ~ citeprice + age + chars, data = log(journals)) fm3 <- lm(subs ~ citeprice + I(citeprice^2) + I(citeprice^3) + age + I(age * citeprice) + chars, data = log(journals)) fm4 <- lm(subs ~ citeprice + age + I(age * citeprice) + chars, data = log(journals)) coeftest(fm1, vcov = vcovHC(fm1, type = "HC1")) coeftest(fm2, vcov = vcovHC(fm2, type = "HC1")) coeftest(fm3, vcov = vcovHC(fm3, type = "HC1")) coeftest(fm4, vcov = vcovHC(fm4, type = "HC1")) waldtest(fm3, fm4, vcov = vcovHC(fm3, type = "HC1")) ## changes with respect to age library("strucchange") ## Nyblom-Hansen test scus <- gefp(subs ~ citeprice, data = log(journals), fit = lm, order.by = ~ age) plot(scus, functional = meanL2BB) ## estimate breakpoint(s) journals <- journals[order(journals$age),] bp <- breakpoints(subs ~ citeprice, data = log(journals), h = 20) plot(bp) bp.age <- journals$age[bp$breakpoints] ## visualization plot(subs ~ citeprice, data = log(journals), pch = 19, col = (age > log(bp.age)) + 1) abline(coef(bp)[1,], col = 1) abline(coef(bp)[2,], col = 2) legend("bottomleft", legend = c("age > 18", "age < 18"), lty = 1, col = 2:1, bty = "n") } \keyword{datasets} AER/man/Baltagi2002.Rd0000644000175400001440000001337412463507404014002 0ustar zeileisusers\name{Baltagi2002} \alias{Baltagi2002} \title{Data and Examples from Baltagi (2002)} \description{ This manual page collects a list of examples from the book. Some solutions might not be exact and the list is certainly not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer. } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed., Berlin: Springer-Verlag. } \seealso{\code{\link{BenderlyZwick}}, \code{\link{CigarettesB}}, \code{\link{EuroEnergy}}, \code{\link{Grunfeld}}, \code{\link{Mortgage}}, \code{\link{NaturalGas}}, \code{\link{OECDGas}}, \code{\link{OrangeCounty}}, \code{\link{PSID1982}}, \code{\link{TradeCredit}}, \code{\link{USConsump1993}}, \code{\link{USCrudes}}, \code{\link{USGasB}}, \code{\link{USMacroB}}} \examples{ ################################ ## Cigarette consumption data ## ################################ ## data data("CigarettesB", package = "AER") ## Table 3.3 cig_lm <- lm(packs ~ price, data = CigarettesB) summary(cig_lm) ## Figure 3.9 plot(residuals(cig_lm) ~ price, data = CigarettesB) abline(h = 0, lty = 2) ## Figure 3.10 cig_pred <- with(CigarettesB, data.frame(price = seq(from = min(price), to = max(price), length = 30))) cig_pred <- cbind(cig_pred, predict(cig_lm, newdata = cig_pred, interval = "confidence")) plot(packs ~ price, data = CigarettesB) lines(fit ~ price, data = cig_pred) lines(lwr ~ price, data = cig_pred, lty = 2) lines(upr ~ price, data = cig_pred, lty = 2) ## Chapter 5: diagnostic tests (p. 111-115) cig_lm2 <- lm(packs ~ price + income, data = CigarettesB) summary(cig_lm2) ## Glejser tests (p. 112) ares <- abs(residuals(cig_lm2)) summary(lm(ares ~ income, data = CigarettesB)) summary(lm(ares ~ I(1/income), data = CigarettesB)) summary(lm(ares ~ I(1/sqrt(income)), data = CigarettesB)) summary(lm(ares ~ sqrt(income), data = CigarettesB)) ## Goldfeld-Quandt test (p. 112) gqtest(cig_lm2, order.by = ~ income, data = CigarettesB, fraction = 12, alternative = "less") ## NOTE: Baltagi computes the test statistic as mss1/mss2, ## i.e., tries to find decreasing variances. gqtest() always uses ## mss2/mss1 and has an "alternative" argument. ## Spearman rank correlation test (p. 113) cor.test(~ ares + income, data = CigarettesB, method = "spearman") ## Breusch-Pagan test (p. 113) bptest(cig_lm2, varformula = ~ income, data = CigarettesB, student = FALSE) ## White test (Table 5.1, p. 113) bptest(cig_lm2, ~ income * price + I(income^2) + I(price^2), data = CigarettesB) ## White HC standard errors (Table 5.2, p. 114) coeftest(cig_lm2, vcov = vcovHC(cig_lm2, type = "HC1")) ## Jarque-Bera test (Figure 5.2, p. 115) hist(residuals(cig_lm2), breaks = 16, ylim = c(0, 10), col = "lightgray") library("tseries") jarque.bera.test(residuals(cig_lm2)) ## Tables 8.1 and 8.2 influence.measures(cig_lm2) ##################################### ## US consumption data (1950-1993) ## ##################################### ## data data("USConsump1993", package = "AER") plot(USConsump1993, plot.type = "single", col = 1:2) ## Chapter 5 (p. 122-125) fm <- lm(expenditure ~ income, data = USConsump1993) summary(fm) ## Durbin-Watson test (p. 122) dwtest(fm) ## Breusch-Godfrey test (Table 5.4, p. 124) bgtest(fm) ## Newey-West standard errors (Table 5.5, p. 125) coeftest(fm, vcov = NeweyWest(fm, lag = 3, prewhite = FALSE, adjust = TRUE)) ## Chapter 8 library("strucchange") ## Recursive residuals rr <- recresid(fm) rr ## Recursive CUSUM test rcus <- efp(expenditure ~ income, data = USConsump1993) plot(rcus) sctest(rcus) ## Harvey-Collier test harvtest(fm) ## NOTE" Mistake in Baltagi (2002) who computes ## the t-statistic incorrectly as 0.0733 via mean(rr)/sd(rr)/sqrt(length(rr)) ## whereas it should be (as in harvtest) mean(rr)/sd(rr) * sqrt(length(rr)) ## Rainbow test raintest(fm, center = 23) ## J test for non-nested models library("dynlm") fm1 <- dynlm(expenditure ~ income + L(income), data = USConsump1993) fm2 <- dynlm(expenditure ~ income + L(expenditure), data = USConsump1993) jtest(fm1, fm2) ## Chapter 11 ## Table 11.1 Instrumental-variables regression usc <- as.data.frame(USConsump1993) usc$investment <- usc$income - usc$expenditure fm_ols <- lm(expenditure ~ income, data = usc) fm_iv <- ivreg(expenditure ~ income | investment, data = usc) ## Hausman test cf_diff <- coef(fm_iv) - coef(fm_ols) vc_diff <- vcov(fm_iv) - vcov(fm_ols) x2_diff <- as.vector(t(cf_diff) \%*\% solve(vc_diff) \%*\% cf_diff) pchisq(x2_diff, df = 2, lower.tail = FALSE) ## Chapter 14 ## ACF and PACF for expenditures and first differences exps <- USConsump1993[, "expenditure"] (acf(exps)) (pacf(exps)) (acf(diff(exps))) (pacf(diff(exps))) ## dynamic regressions, eq. (14.8) fm <- dynlm(d(exps) ~ I(time(exps) - 1949) + L(exps)) summary(fm) ################################ ## Grunfeld's investment data ## ################################ ## select the first three companies (as panel data) data("Grunfeld", package = "AER") pgr <- subset(Grunfeld, firm \%in\% levels(Grunfeld$firm)[1:3]) library("plm") pgr <- plm.data(pgr, c("firm", "year")) ## Ex. 10.9 library("systemfit") gr_ols <- systemfit(invest ~ value + capital, method = "OLS", data = pgr) gr_sur <- systemfit(invest ~ value + capital, method = "SUR", data = pgr) ######################################### ## Panel study on income dynamics 1982 ## ######################################### ## data data("PSID1982", package = "AER") ## Table 4.1 earn_lm <- lm(log(wage) ~ . + I(experience^2), data = PSID1982) summary(earn_lm) ## Table 13.1 union_lpm <- lm(I(as.numeric(union) - 1) ~ . - wage, data = PSID1982) union_probit <- glm(union ~ . - wage, data = PSID1982, family = binomial(link = "probit")) union_logit <- glm(union ~ . - wage, data = PSID1982, family = binomial) ## probit OK, logit and LPM rather different. } \keyword{datasets} AER/man/NaturalGas.Rd0000644000175400001440000000167712463507532014201 0ustar zeileisusers\name{NaturalGas} \alias{NaturalGas} \title{Natural Gas Data} \description{ Panel data originating from 6 US states over the period 1967--1989. } \usage{data("NaturalGas")} \format{ A data frame containing 138 observations on 10 variables. \describe{ \item{state}{factor. State abbreviation.} \item{statecode}{factor. State Code.} \item{year}{factor coding year.} \item{consumption}{Consumption of natural gas by the residential sector.} \item{price}{Price of natural gas} \item{eprice}{Price of electricity.} \item{oprice}{Price of distillate fuel oil.} \item{lprice}{Price of liquefied petroleum gas.} \item{heating}{Heating degree days.} \item{income}{Real per-capita personal income.} } } \source{ The data are from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("NaturalGas") summary(NaturalGas) } \keyword{datasets} AER/man/BondYield.Rd0000644000175400001440000000120711354653140013771 0ustar zeileisusers\name{BondYield} \alias{BondYield} \title{Bond Yield Data} \description{ Monthly averages of the yield on a Moody's Aaa rated corporate bond (in percent/year). } \usage{data("BondYield")} \format{ A monthly univariate time series from 1990(1) to 1994(12). } \source{ Online complements to Greene (2003), Table F20.1. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("BondYield") plot(BondYield) } \keyword{datasets} AER/man/CASchools.Rd0000644000175400001440000000551013022372766013745 0ustar zeileisusers\name{CASchools} \alias{CASchools} \title{California Test Score Data} \description{The dataset contains data on test performance, school characteristics and student demographic backgrounds for school districts in California.} \usage{data("CASchools")} \format{ A data frame containing 420 observations on 14 variables. \describe{ \item{district}{character. District code.} \item{school}{character. School name.} \item{county}{factor indicating county.} \item{grades}{factor indicating grade span of district.} \item{students}{Total enrollment.} \item{teachers}{Number of teachers.} \item{calworks}{Percent qualifying for CalWorks (income assistance).} \item{lunch}{Percent qualifying for reduced-price lunch.} \item{computer}{Number of computers.} \item{expenditure}{Expenditure per student.} \item{income}{District average income (in USD 1,000).} \item{english}{Percent of English learners.} \item{read}{Average reading score.} \item{math}{Average math score.} } } \details{ The data used here are from all 420 K-6 and K-8 districts in California with data available for 1998 and 1999. Test scores are on the Stanford 9 standardized test administered to 5th grade students. School characteristics (averaged across the district) include enrollment, number of teachers (measured as \dQuote{full-time equivalents}, number of computers per classroom, and expenditures per student. Demographic variables for the students are averaged across the district. The demographic variables include the percentage of students in the public assistance program CalWorks (formerly AFDC), the percentage of students that qualify for a reduced price lunch, and the percentage of students that are English learners (that is, students for whom English is a second language). } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J. H. and Watson, M. W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{MASchools}}} \examples{ ## data and transformations data("CASchools") CASchools$stratio <- with(CASchools, students/teachers) CASchools$score <- with(CASchools, (math + read)/2) ## Stock and Watson (2007) ## p. 152 fm1 <- lm(score ~ stratio, data = CASchools) coeftest(fm1, vcov = sandwich) ## p. 159 fm2 <- lm(score ~ I(stratio < 20), data = CASchools) ## p. 199 fm3 <- lm(score ~ stratio + english, data = CASchools) ## p. 224 fm4 <- lm(score ~ stratio + expenditure + english, data = CASchools) ## Table 7.1, p. 242 (numbers refer to columns) fmc3 <- lm(score ~ stratio + english + lunch, data = CASchools) fmc4 <- lm(score ~ stratio + english + calworks, data = CASchools) fmc5 <- lm(score ~ stratio + english + lunch + calworks, data = CASchools) ## More examples can be found in: ## help("StockWatson2007") } \keyword{datasets} AER/man/USConsump1950.Rd0000644000175400001440000000325711354653140014342 0ustar zeileisusers\name{USConsump1950} \alias{USConsump1950} \title{US Consumption Data (1940--1950)} \description{ Time series data on US income and consumption expenditure, 1940--1950. } \usage{data("USConsump1950")} \format{ An annual multiple time series from 1940 to 1950 with 3 variables. \describe{ \item{income}{Disposable income.} \item{expenditure}{Consumption expenditure.} \item{war}{Indicator variable: Was the year a year of war?} } } \source{ Online complements to Greene (2003). Table F2.1. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}, \code{\link{USConsump1979}}, \code{\link{USConsump1993}}} \examples{ ## Greene (2003) ## data data("USConsump1950") usc <- as.data.frame(USConsump1950) usc$war <- factor(usc$war, labels = c("no", "yes")) ## Example 2.1 plot(expenditure ~ income, data = usc, type = "n", xlim = c(225, 375), ylim = c(225, 350)) with(usc, text(income, expenditure, time(USConsump1950))) ## single model fm <- lm(expenditure ~ income, data = usc) summary(fm) ## different intercepts for war yes/no fm2 <- lm(expenditure ~ income + war, data = usc) summary(fm2) ## compare anova(fm, fm2) ## visualize abline(fm, lty = 3) abline(coef(fm2)[1:2]) abline(sum(coef(fm2)[c(1, 3)]), coef(fm2)[2], lty = 2) ## Example 3.2 summary(fm)$r.squared summary(lm(expenditure ~ income, data = usc, subset = war == "no"))$r.squared summary(fm2)$r.squared } \keyword{datasets} AER/man/Greene2003.Rd0000644000175400001440000010024012261333724013630 0ustar zeileisusers\name{Greene2003} \alias{Greene2003} \title{Data and Examples from Greene (2003)} \description{ This manual page collects a list of examples from the book. Some solutions might not be exact and the list is certainly not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer. } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. URL \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm}. } \seealso{\code{\link{Affairs}}, \code{\link{BondYield}}, \code{\link{CreditCard}}, \code{\link{Electricity1955}}, \code{\link{Electricity1970}}, \code{\link{Equipment}}, \code{\link{Grunfeld}}, \code{\link{KleinI}}, \code{\link{Longley}}, \code{\link{ManufactCosts}}, \code{\link{MarkPound}}, \code{\link{Municipalities}}, \code{\link{ProgramEffectiveness}}, \code{\link{PSID1976}}, \code{\link{SIC33}}, \code{\link{ShipAccidents}}, \code{\link{StrikeDuration}}, \code{\link{TechChange}}, \code{\link{TravelMode}}, \code{\link{UKInflation}}, \code{\link{USConsump1950}}, \code{\link{USConsump1979}}, \code{\link{USGasG}}, \code{\link{USAirlines}}, \code{\link{USInvest}}, \code{\link{USMacroG}}, \code{\link{USMoney}}} \examples{ ##################################### ## US consumption data (1970-1979) ## ##################################### ## Example 1.1 data("USConsump1979", package = "AER") plot(expenditure ~ income, data = as.data.frame(USConsump1979), pch = 19) fm <- lm(expenditure ~ income, data = as.data.frame(USConsump1979)) summary(fm) abline(fm) ##################################### ## US consumption data (1940-1950) ## ##################################### ## data data("USConsump1950", package = "AER") usc <- as.data.frame(USConsump1950) usc$war <- factor(usc$war, labels = c("no", "yes")) ## Example 2.1 plot(expenditure ~ income, data = usc, type = "n", xlim = c(225, 375), ylim = c(225, 350)) with(usc, text(income, expenditure, time(USConsump1950))) ## single model fm <- lm(expenditure ~ income, data = usc) summary(fm) ## different intercepts for war yes/no fm2 <- lm(expenditure ~ income + war, data = usc) summary(fm2) ## compare anova(fm, fm2) ## visualize abline(fm, lty = 3) abline(coef(fm2)[1:2]) abline(sum(coef(fm2)[c(1, 3)]), coef(fm2)[2], lty = 2) ## Example 3.2 summary(fm)$r.squared summary(lm(expenditure ~ income, data = usc, subset = war == "no"))$r.squared summary(fm2)$r.squared ######################## ## US investment data ## ######################## data("USInvest", package = "AER") ## Chapter 3 in Greene (2003) ## transform (and round) data to match Table 3.1 us <- as.data.frame(USInvest) us$invest <- round(0.1 * us$invest/us$price, digits = 3) us$gnp <- round(0.1 * us$gnp/us$price, digits = 3) us$inflation <- c(4.4, round(100 * diff(us$price)/us$price[-15], digits = 2)) us$trend <- 1:15 us <- us[, c(2, 6, 1, 4, 5)] ## p. 22-24 coef(lm(invest ~ trend + gnp, data = us)) coef(lm(invest ~ gnp, data = us)) ## Example 3.1, Table 3.2 cor(us)[1,-1] pcor <- solve(cor(us)) dcor <- 1/sqrt(diag(pcor)) pcor <- (-pcor * (dcor \%o\% dcor))[1,-1] ## Table 3.4 fm <- lm(invest ~ trend + gnp + interest + inflation, data = us) fm1 <- lm(invest ~ 1, data = us) anova(fm1, fm) ## Example 4.1 set.seed(123) w <- rnorm(10000) x <- rnorm(10000) eps <- 0.5 * w y <- 0.5 + 0.5 * x + eps b <- rep(0, 500) for(i in 1:500) { ix <- sample(1:10000, 100) b[i] <- lm.fit(cbind(1, x[ix]), y[ix])$coef[2] } hist(b, breaks = 20, col = "lightgray") ############################### ## Longley's regression data ## ############################### ## package and data data("Longley", package = "AER") library("dynlm") ## Example 4.6 fm1 <- dynlm(employment ~ time(employment) + price + gnp + armedforces, data = Longley) fm2 <- update(fm1, end = 1961) cbind(coef(fm2), coef(fm1)) ## Figure 4.3 plot(rstandard(fm2), type = "b", ylim = c(-3, 3)) abline(h = c(-2, 2), lty = 2) ######################################### ## US gasoline market data (1960-1995) ## ######################################### ## data data("USGasG", package = "AER") ## Greene (2003) ## Example 2.3 fm <- lm(log(gas/population) ~ log(price) + log(income) + log(newcar) + log(usedcar), data = as.data.frame(USGasG)) summary(fm) ## Example 4.4 ## estimates and standard errors (note different offset for intercept) coef(fm) sqrt(diag(vcov(fm))) ## confidence interval confint(fm, parm = "log(income)") ## test linear hypothesis linearHypothesis(fm, "log(income) = 1") ## Figure 7.5 plot(price ~ gas, data = as.data.frame(USGasG), pch = 19, col = (time(USGasG) > 1973) + 1) legend("topleft", legend = c("after 1973", "up to 1973"), pch = 19, col = 2:1, bty = "n") ## Example 7.6 ## re-used in Example 8.3 ## linear time trend ltrend <- 1:nrow(USGasG) ## shock factor shock <- factor(time(USGasG) > 1973, levels = c(FALSE, TRUE), labels = c("before", "after")) ## 1960-1995 fm1 <- lm(log(gas/population) ~ log(income) + log(price) + log(newcar) + log(usedcar) + ltrend, data = as.data.frame(USGasG)) summary(fm1) ## pooled fm2 <- lm( log(gas/population) ~ shock + log(income) + log(price) + log(newcar) + log(usedcar) + ltrend, data = as.data.frame(USGasG)) summary(fm2) ## segmented fm3 <- lm( log(gas/population) ~ shock/(log(income) + log(price) + log(newcar) + log(usedcar) + ltrend), data = as.data.frame(USGasG)) summary(fm3) ## Chow test anova(fm3, fm1) library("strucchange") sctest(log(gas/population) ~ log(income) + log(price) + log(newcar) + log(usedcar) + ltrend, data = USGasG, point = c(1973, 1), type = "Chow") ## Recursive CUSUM test rcus <- efp(log(gas/population) ~ log(income) + log(price) + log(newcar) + log(usedcar) + ltrend, data = USGasG, type = "Rec-CUSUM") plot(rcus) sctest(rcus) ## Note: Greene's remark that the break is in 1984 (where the process crosses its boundary) ## is wrong. The break appears to be no later than 1976. ## Example 12.2 library("dynlm") resplot <- function(obj, bound = TRUE) { res <- residuals(obj) sigma <- summary(obj)$sigma plot(res, ylab = "Residuals", xlab = "Year") grid() abline(h = 0) if(bound) abline(h = c(-2, 2) * sigma, col = "red") lines(res) } resplot(dynlm(log(gas/population) ~ log(price), data = USGasG)) resplot(dynlm(log(gas/population) ~ log(price) + log(income), data = USGasG)) resplot(dynlm(log(gas/population) ~ log(price) + log(income) + log(newcar) + log(usedcar) + log(transport) + log(nondurable) + log(durable) +log(service) + ltrend, data = USGasG)) ## different shock variable than in 7.6 shock <- factor(time(USGasG) > 1974, levels = c(FALSE, TRUE), labels = c("before", "after")) resplot(dynlm(log(gas/population) ~ shock/(log(price) + log(income) + log(newcar) + log(usedcar) + log(transport) + log(nondurable) + log(durable) + log(service) + ltrend), data = USGasG)) ## NOTE: something seems to be wrong with the sigma estimates in the `full' models ## Table 12.4, OLS fm <- dynlm(log(gas/population) ~ log(price) + log(income) + log(newcar) + log(usedcar), data = USGasG) summary(fm) resplot(fm, bound = FALSE) dwtest(fm) ## ML g <- as.data.frame(USGasG) y <- log(g$gas/g$population) X <- as.matrix(cbind(log(g$price), log(g$income), log(g$newcar), log(g$usedcar))) arima(y, order = c(1, 0, 0), xreg = X) ####################################### ## US macroeconomic data (1950-2000) ## ####################################### ## data and trend data("USMacroG", package = "AER") ltrend <- 0:(nrow(USMacroG) - 1) ## Example 5.3 ## OLS and IV regression library("dynlm") fm_ols <- dynlm(consumption ~ gdp, data = USMacroG) fm_iv <- dynlm(consumption ~ gdp | L(consumption) + L(gdp), data = USMacroG) ## Hausman statistic library("MASS") b_diff <- coef(fm_iv) - coef(fm_ols) v_diff <- summary(fm_iv)$cov.unscaled - summary(fm_ols)$cov.unscaled (t(b_diff) \%*\% ginv(v_diff) \%*\% b_diff) / summary(fm_ols)$sigma^2 ## Wu statistic auxreg <- dynlm(gdp ~ L(consumption) + L(gdp), data = USMacroG) coeftest(dynlm(consumption ~ gdp + fitted(auxreg), data = USMacroG))[3,3] ## agrees with Greene (but not with errata) ## Example 6.1 ## Table 6.1 fm6.1 <- dynlm(log(invest) ~ tbill + inflation + log(gdp) + ltrend, data = USMacroG) fm6.3 <- dynlm(log(invest) ~ I(tbill - inflation) + log(gdp) + ltrend, data = USMacroG) summary(fm6.1) summary(fm6.3) deviance(fm6.1) deviance(fm6.3) vcov(fm6.1)[2,3] ## F test linearHypothesis(fm6.1, "tbill + inflation = 0") ## alternatively anova(fm6.1, fm6.3) ## t statistic sqrt(anova(fm6.1, fm6.3)[2,5]) ## Example 6.3 ## Distributed lag model: ## log(Ct) = b0 + b1 * log(Yt) + b2 * log(C(t-1)) + u us <- log(USMacroG[, c(2, 5)]) fm_distlag <- dynlm(log(consumption) ~ log(dpi) + L(log(consumption)), data = USMacroG) summary(fm_distlag) ## estimate and test long-run MPC coef(fm_distlag)[2]/(1-coef(fm_distlag)[3]) linearHypothesis(fm_distlag, "log(dpi) + L(log(consumption)) = 1") ## correct, see errata ## Example 6.4 ## predict investiment in 2001(1) predict(fm6.1, interval = "prediction", newdata = data.frame(tbill = 4.48, inflation = 5.262, gdp = 9316.8, ltrend = 204)) ## Example 7.7 ## no GMM available in "strucchange" ## using OLS instead yields fs <- Fstats(log(m1/cpi) ~ log(gdp) + tbill, data = USMacroG, vcov = NeweyWest, from = c(1957, 3), to = c(1991, 3)) plot(fs) ## which looks somewhat similar ... ## Example 8.2 ## Ct = b0 + b1*Yt + b2*Y(t-1) + v fm1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG) ## Ct = a0 + a1*Yt + a2*C(t-1) + u fm2 <- dynlm(consumption ~ dpi + L(consumption), data = USMacroG) ## Cox test in both directions: coxtest(fm1, fm2) ## ... and do the same for jtest() and encomptest(). ## Notice that in this particular case two of them are coincident. jtest(fm1, fm2) encomptest(fm1, fm2) ## encomptest could also be performed `by hand' via fmE <- dynlm(consumption ~ dpi + L(dpi) + L(consumption), data = USMacroG) waldtest(fm1, fmE, fm2) ## Table 9.1 fm_ols <- lm(consumption ~ dpi, data = as.data.frame(USMacroG)) fm_nls <- nls(consumption ~ alpha + beta * dpi^gamma, start = list(alpha = coef(fm_ols)[1], beta = coef(fm_ols)[2], gamma = 1), control = nls.control(maxiter = 100), data = as.data.frame(USMacroG)) summary(fm_ols) summary(fm_nls) deviance(fm_ols) deviance(fm_nls) vcov(fm_nls) ## Example 9.7 ## F test fm_nls2 <- nls(consumption ~ alpha + beta * dpi, start = list(alpha = coef(fm_ols)[1], beta = coef(fm_ols)[2]), control = nls.control(maxiter = 100), data = as.data.frame(USMacroG)) anova(fm_nls, fm_nls2) ## Wald test linearHypothesis(fm_nls, "gamma = 1") ## Example 9.8, Table 9.2 usm <- USMacroG[, c("m1", "tbill", "gdp")] fm_lin <- lm(m1 ~ tbill + gdp, data = usm) fm_log <- lm(m1 ~ tbill + gdp, data = log(usm)) ## PE auxiliary regressions aux_lin <- lm(m1 ~ tbill + gdp + I(fitted(fm_log) - log(fitted(fm_lin))), data = usm) aux_log <- lm(m1 ~ tbill + gdp + I(fitted(fm_lin) - exp(fitted(fm_log))), data = log(usm)) coeftest(aux_lin)[4,] coeftest(aux_log)[4,] ## matches results from errata ## With lmtest >= 0.9-24: ## petest(fm_lin, fm_log) ## Example 12.1 fm_m1 <- dynlm(log(m1) ~ log(gdp) + log(cpi), data = USMacroG) summary(fm_m1) ## Figure 12.1 par(las = 1) plot(0, 0, type = "n", axes = FALSE, xlim = c(1950, 2002), ylim = c(-0.3, 0.225), xaxs = "i", yaxs = "i", xlab = "Quarter", ylab = "", main = "Least Squares Residuals") box() axis(1, at = c(1950, 1963, 1976, 1989, 2002)) axis(2, seq(-0.3, 0.225, by = 0.075)) grid(4, 7, col = grey(0.6)) abline(0, 0) lines(residuals(fm_m1), lwd = 2) ## Example 12.3 fm_pc <- dynlm(d(inflation) ~ unemp, data = USMacroG) summary(fm_pc) ## Figure 12.3 plot(residuals(fm_pc)) ## natural unemployment rate coef(fm_pc)[1]/coef(fm_pc)[2] ## autocorrelation res <- residuals(fm_pc) summary(dynlm(res ~ L(res))) ## Example 12.4 coeftest(fm_m1) coeftest(fm_m1, vcov = NeweyWest(fm_m1, lag = 5)) summary(fm_m1)$r.squared dwtest(fm_m1) as.vector(acf(residuals(fm_m1), plot = FALSE)$acf)[2] ## matches Tab. 12.1 errata and Greene 6e, apart from Newey-West SE ################################################# ## Cost function of electricity producers 1870 ## ################################################# ## Example 5.6: a generalized Cobb-Douglas cost function data("Electricity1970", package = "AER") fm <- lm(log(cost/fuel) ~ log(output) + I(log(output)^2/2) + log(capital/fuel) + log(labor/fuel), data=Electricity1970[1:123,]) #################################################### ## SIC 33: Production for primary metals industry ## #################################################### ## data data("SIC33", package = "AER") ## Example 6.2 ## Translog model fm_tl <- lm( output ~ labor + capital + I(0.5 * labor^2) + I(0.5 * capital^2) + I(labor * capital), data = log(SIC33)) ## Cobb-Douglas model fm_cb <- lm(output ~ labor + capital, data = log(SIC33)) ## Table 6.2 in Greene (2003) deviance(fm_tl) deviance(fm_cb) summary(fm_tl) summary(fm_cb) vcov(fm_tl) vcov(fm_cb) ## Cobb-Douglas vs. Translog model anova(fm_cb, fm_tl) ## hypothesis of constant returns linearHypothesis(fm_cb, "labor + capital = 1") ############################### ## Cost data for US airlines ## ############################### ## data data("USAirlines", package = "AER") ## Example 7.2 fm_full <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load + year + firm, data = USAirlines) fm_time <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load + year, data = USAirlines) fm_firm <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load + firm, data = USAirlines) fm_no <- lm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = USAirlines) ## full fitted model coef(fm_full)[1:5] plot(1970:1984, c(coef(fm_full)[6:19], 0), type = "n", xlab = "Year", ylab = expression(delta(Year)), main = "Estimated Year Specific Effects") grid() points(1970:1984, c(coef(fm_full)[6:19], 0), pch = 19) ## Table 7.2 anova(fm_full, fm_time) anova(fm_full, fm_firm) anova(fm_full, fm_no) ## alternatively, use plm() library("plm") usair <- plm.data(USAirlines, c("firm", "year")) fm_full2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "within", effect = "twoways") fm_time2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "within", effect = "time") fm_firm2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "within", effect = "individual") fm_no2 <- plm(log(cost) ~ log(output) + I(log(output)^2) + log(price) + load, data = usair, model = "pooling") pFtest(fm_full2, fm_time2) pFtest(fm_full2, fm_firm2) pFtest(fm_full2, fm_no2) ## Example 13.1, Table 13.1 fm_no <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "pooling") fm_gm <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "between") fm_firm <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "within") fm_time <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "within", effect = "time") fm_ft <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "within", effect = "twoways") summary(fm_no) summary(fm_gm) summary(fm_firm) fixef(fm_firm) summary(fm_time) fixef(fm_time) summary(fm_ft) fixef(fm_ft, effect = "individual") fixef(fm_ft, effect = "time") ## Table 13.2 fm_rfirm <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "random") fm_rft <- plm(log(cost) ~ log(output) + log(price) + load, data = usair, model = "random", effect = "twoways") summary(fm_rfirm) summary(fm_rft) ################################################# ## Cost function of electricity producers 1955 ## ################################################# ## Nerlove data data("Electricity1955", package = "AER") Electricity <- Electricity1955[1:145,] ## Example 7.3 ## Cobb-Douglas cost function fm_all <- lm(log(cost/fuel) ~ log(output) + log(labor/fuel) + log(capital/fuel), data = Electricity) summary(fm_all) ## hypothesis of constant returns to scale linearHypothesis(fm_all, "log(output) = 1") ## Figure 7.4 plot(residuals(fm_all) ~ log(output), data = Electricity) ## scaling seems to be different in Greene (2003) with logQ > 10? ## grouped functions Electricity$group <- with(Electricity, cut(log(output), quantile(log(output), 0:5/5), include.lowest = TRUE, labels = 1:5)) fm_group <- lm( log(cost/fuel) ~ group/(log(output) + log(labor/fuel) + log(capital/fuel)) - 1, data = Electricity) ## Table 7.3 (close, but not quite) round(rbind(coef(fm_all)[-1], matrix(coef(fm_group), nrow = 5)[,-1]), digits = 3) ## Table 7.4 ## log quadratic cost function fm_all2 <- lm( log(cost/fuel) ~ log(output) + I(log(output)^2) + log(labor/fuel) + log(capital/fuel), data = Electricity) summary(fm_all2) ########################## ## Technological change ## ########################## ## Exercise 7.1 data("TechChange", package = "AER") fm1 <- lm(I(output/technology) ~ log(clr), data = TechChange) fm2 <- lm(I(output/technology) ~ I(1/clr), data = TechChange) fm3 <- lm(log(output/technology) ~ log(clr), data = TechChange) fm4 <- lm(log(output/technology) ~ I(1/clr), data = TechChange) ## Exercise 7.2 (a) and (c) plot(I(output/technology) ~ clr, data = TechChange) sctest(I(output/technology) ~ log(clr), data = TechChange, type = "Chow", point = c(1942, 1)) ################################## ## Expenditure and default data ## ################################## ## full data set (F21.4) data("CreditCard", package = "AER") ## extract data set F9.1 ccard <- CreditCard[1:100,] ccard$income <- round(ccard$income, digits = 2) ccard$expenditure <- round(ccard$expenditure, digits = 2) ccard$age <- round(ccard$age + .01) ## suspicious: CreditCard$age[CreditCard$age < 1] ## the first of these is also in TableF9.1 with 36 instead of 0.5: ccard$age[79] <- 36 ## Example 11.1 ccard <- ccard[order(ccard$income),] ccard0 <- subset(ccard, expenditure > 0) cc_ols <- lm(expenditure ~ age + owner + income + I(income^2), data = ccard0) ## Figure 11.1 plot(residuals(cc_ols) ~ income, data = ccard0, pch = 19) ## Table 11.1 mean(ccard$age) prop.table(table(ccard$owner)) mean(ccard$income) summary(cc_ols) sqrt(diag(vcovHC(cc_ols, type = "HC0"))) sqrt(diag(vcovHC(cc_ols, type = "HC2"))) sqrt(diag(vcovHC(cc_ols, type = "HC1"))) bptest(cc_ols, ~ (age + income + I(income^2) + owner)^2 + I(age^2) + I(income^4), data = ccard0) gqtest(cc_ols) bptest(cc_ols, ~ income + I(income^2), data = ccard0, studentize = FALSE) bptest(cc_ols, ~ income + I(income^2), data = ccard0) ## Table 11.2, WLS and FGLS cc_wls1 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/income, data = ccard0) cc_wls2 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/income^2, data = ccard0) auxreg1 <- lm(log(residuals(cc_ols)^2) ~ log(income), data = ccard0) cc_fgls1 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/exp(fitted(auxreg1)), data = ccard0) auxreg2 <- lm(log(residuals(cc_ols)^2) ~ income + I(income^2), data = ccard0) cc_fgls2 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/exp(fitted(auxreg2)), data = ccard0) alphai <- coef(lm(log(residuals(cc_ols)^2) ~ log(income), data = ccard0))[2] alpha <- 0 while(abs((alphai - alpha)/alpha) > 1e-7) { alpha <- alphai cc_fgls3 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/income^alpha, data = ccard0) alphai <- coef(lm(log(residuals(cc_fgls3)^2) ~ log(income), data = ccard0))[2] } alpha ## 1.7623 for Greene cc_fgls3 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/income^alpha, data = ccard0) llik <- function(alpha) -logLik(lm(expenditure ~ age + owner + income + I(income^2), weights = 1/income^alpha, data = ccard0)) plot(0:100/20, -sapply(0:100/20, llik), type = "l", xlab = "alpha", ylab = "logLik") alpha <- optimize(llik, interval = c(0, 5))$minimum cc_fgls4 <- lm(expenditure ~ age + owner + income + I(income^2), weights = 1/income^alpha, data = ccard0) ## Table 11.2 cc_fit <- list(cc_ols, cc_wls1, cc_wls2, cc_fgls2, cc_fgls1, cc_fgls3, cc_fgls4) t(sapply(cc_fit, coef)) t(sapply(cc_fit, function(obj) sqrt(diag(vcov(obj))))) ## Table 21.21, Poisson and logit models cc_pois <- glm(reports ~ age + income + expenditure, data = CreditCard, family = poisson) summary(cc_pois) logLik(cc_pois) xhat <- colMeans(CreditCard[, c("age", "income", "expenditure")]) xhat <- as.data.frame(t(xhat)) lambda <- predict(cc_pois, newdata = xhat, type = "response") ppois(0, lambda) * nrow(CreditCard) cc_logit <- glm(factor(reports > 0) ~ age + income + owner, data = CreditCard, family = binomial) summary(cc_logit) logLik(cc_logit) ## Table 21.21, "split population model" library("pscl") cc_zip <- zeroinfl(reports ~ age + income + expenditure | age + income + owner, data = CreditCard) summary(cc_zip) sum(predict(cc_zip, type = "prob")[,1]) ################################### ## DEM/GBP exchange rate returns ## ################################### ## data as given by Greene (2003) data("MarkPound") mp <- round(MarkPound, digits = 6) ## Figure 11.3 in Greene (2003) plot(mp) ## Example 11.8 in Greene (2003), Table 11.5 library("tseries") mp_garch <- garch(mp, grad = "numerical") summary(mp_garch) logLik(mp_garch) ## Greene (2003) also includes a constant and uses different ## standard errors (presumably computed from Hessian), here ## OPG standard errors are used. garchFit() in "fGarch" ## implements the approach used by Greene (2003). ## compare Errata to Greene (2003) library("dynlm") res <- residuals(dynlm(mp ~ 1))^2 mp_ols <- dynlm(res ~ L(res, 1:10)) summary(mp_ols) logLik(mp_ols) summary(mp_ols)$r.squared * length(residuals(mp_ols)) ################################ ## Grunfeld's investment data ## ################################ ## subset of data with mistakes data("Grunfeld", package = "AER") ggr <- subset(Grunfeld, firm \%in\% c("General Motors", "US Steel", "General Electric", "Chrysler", "Westinghouse")) ggr[c(26, 38), 1] <- c(261.6, 645.2) ggr[32, 3] <- 232.6 ## Tab. 13.4 fm_pool <- lm(invest ~ value + capital, data = ggr) summary(fm_pool) logLik(fm_pool) ## White correction sqrt(diag(vcovHC(fm_pool, type = "HC0"))) ## heteroskedastic FGLS auxreg1 <- lm(residuals(fm_pool)^2 ~ firm - 1, data = ggr) fm_pfgls <- lm(invest ~ value + capital, data = ggr, weights = 1/fitted(auxreg1)) summary(fm_pfgls) ## ML, computed as iterated FGLS sigmasi <- fitted(lm(residuals(fm_pfgls)^2 ~ firm - 1 , data = ggr)) sigmas <- 0 while(any(abs((sigmasi - sigmas)/sigmas) > 1e-7)) { sigmas <- sigmasi fm_pfgls_i <- lm(invest ~ value + capital, data = ggr, weights = 1/sigmas) sigmasi <- fitted(lm(residuals(fm_pfgls_i)^2 ~ firm - 1 , data = ggr)) } fm_pmlh <- lm(invest ~ value + capital, data = ggr, weights = 1/sigmas) summary(fm_pmlh) logLik(fm_pmlh) ## Tab. 13.5 auxreg2 <- lm(residuals(fm_pfgls)^2 ~ firm - 1, data = ggr) auxreg3 <- lm(residuals(fm_pmlh)^2 ~ firm - 1, data = ggr) rbind( "OLS" = coef(auxreg1), "Het. FGLS" = coef(auxreg2), "Het. ML" = coef(auxreg3)) ## Chapter 14: explicitly treat as panel data library("plm") pggr <- plm.data(ggr, c("firm", "year")) ## Tab. 14.1 library("systemfit") fm_sur <- systemfit(invest ~ value + capital, data = pggr, method = "SUR", methodResidCov = "noDfCor") fm_psur <- systemfit(invest ~ value + capital, data = pggr, method = "SUR", pooled = TRUE, methodResidCov = "noDfCor", residCovWeighted = TRUE) ## Tab 14.2 fm_ols <- systemfit(invest ~ value + capital, data = pggr, method = "OLS") fm_pols <- systemfit(invest ~ value + capital, data = pggr, method = "OLS", pooled = TRUE) ## or "by hand" fm_gm <- lm(invest ~ value + capital, data = ggr, subset = firm == "General Motors") mean(residuals(fm_gm)^2) ## Greene uses MLE ## etc. fm_pool <- lm(invest ~ value + capital, data = ggr) ## Tab. 14.3 (and Tab 13.4, cross-section ML) ## (not run due to long computation time) \dontrun{ fm_ml <- systemfit(invest ~ value + capital, data = pggr, method = "SUR", methodResidCov = "noDfCor", maxiter = 1000, tol = 1e-10) fm_pml <- systemfit(invest ~ value + capital, data = pggr, method = "SUR", pooled = TRUE, methodResidCov = "noDfCor", residCovWeighted = TRUE, maxiter = 1000, tol = 1e-10) } ## Fig. 14.2 plot(unlist(residuals(fm_sur)[, c(3, 1, 2, 5, 4)]), type = "l", ylab = "SUR residuals", ylim = c(-400, 400), xaxs = "i", yaxs = "i") abline(v = c(20,40,60,80), h = 0, lty = 2) ################### ## Klein model I ## ################### ## data data("KleinI", package = "AER") ## Tab. 15.3, OLS library("dynlm") fm_cons <- dynlm(consumption ~ cprofits + L(cprofits) + I(pwage + gwage), data = KleinI) fm_inv <- dynlm(invest ~ cprofits + L(cprofits) + capital, data = KleinI) fm_pwage <- dynlm(pwage ~ gnp + L(gnp) + I(time(gnp) - 1931), data = KleinI) summary(fm_cons) summary(fm_inv) summary(fm_pwage) ## Notes: ## - capital refers to previous year's capital stock -> no lag needed! ## - trend used by Greene (p. 381, "time trend measured as years from 1931") ## Maddala uses years since 1919 ## preparation of data frame for systemfit KI <- ts.intersect(KleinI, lag(KleinI, k = -1), dframe = TRUE) names(KI) <- c(colnames(KleinI), paste("L", colnames(KleinI), sep = "")) KI$trend <- (1921:1941) - 1931 library("systemfit") system <- list( consumption = consumption ~ cprofits + Lcprofits + I(pwage + gwage), invest = invest ~ cprofits + Lcprofits + capital, pwage = pwage ~ gnp + Lgnp + trend) ## Tab. 15.3 OLS again fm_ols <- systemfit(system, method = "OLS", data = KI) summary(fm_ols) ## Tab. 15.3 2SLS, 3SLS, I3SLS inst <- ~ Lcprofits + capital + Lgnp + gexpenditure + taxes + trend + gwage fm_2sls <- systemfit(system, method = "2SLS", inst = inst, methodResidCov = "noDfCor", data = KI) fm_3sls <- systemfit(system, method = "3SLS", inst = inst, methodResidCov = "noDfCor", data = KI) fm_i3sls <- systemfit(system, method = "3SLS", inst = inst, methodResidCov = "noDfCor", maxiter = 100, data = KI) ############################################ ## Transportation equipment manufacturing ## ############################################ ## data data("Equipment", package = "AER") ## Example 17.5 ## Cobb-Douglas fm_cd <- lm(log(valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ## generalized Cobb-Douglas with Zellner-Revankar trafo GCobbDouglas <- function(theta) lm(I(log(valueadded/firms) + theta * valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ## yields classical Cobb-Douglas for theta = 0 fm_cd0 <- GCobbDouglas(0) ## ML estimation of generalized model ## choose starting values from classical model par0 <- as.vector(c(coef(fm_cd0), 0, mean(residuals(fm_cd0)^2))) ## set up likelihood function nlogL <- function(par) { beta <- par[1:3] theta <- par[4] sigma2 <- par[5] Y <- with(Equipment, valueadded/firms) K <- with(Equipment, capital/firms) L <- with(Equipment, labor/firms) rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L) lhs <- log(Y) + theta * Y rval <- sum(log(1 + theta * Y) - log(Y) + dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE)) return(-rval) } ## optimization opt <- optim(par0, nlogL, hessian = TRUE) ## Table 17.2 opt$par sqrt(diag(solve(opt$hessian)))[1:4] -opt$value ## re-fit ML model fm_ml <- GCobbDouglas(opt$par[4]) deviance(fm_ml) sqrt(diag(vcov(fm_ml))) ## fit NLS model rss <- function(theta) deviance(GCobbDouglas(theta)) optim(0, rss) opt2 <- optimize(rss, c(-1, 1)) fm_nls <- GCobbDouglas(opt2$minimum) -nlogL(c(coef(fm_nls), opt2$minimum, mean(residuals(fm_nls)^2))) ############################ ## Municipal expenditures ## ############################ ## Table 18.2 data("Municipalities", package = "AER") summary(Municipalities) ########################### ## Program effectiveness ## ########################### ## Table 21.1, col. "Probit" data("ProgramEffectiveness", package = "AER") fm_probit <- glm(grade ~ average + testscore + participation, data = ProgramEffectiveness, family = binomial(link = "probit")) summary(fm_probit) #################################### ## Labor force participation data ## #################################### ## data and transformations data("PSID1976", package = "AER") PSID1976$kids <- with(PSID1976, factor((youngkids + oldkids) > 0, levels = c(FALSE, TRUE), labels = c("no", "yes"))) PSID1976$nwincome <- with(PSID1976, (fincome - hours * wage)/1000) ## Example 4.1, Table 4.2 ## (reproduced in Example 7.1, Table 7.1) gr_lm <- lm(log(hours * wage) ~ age + I(age^2) + education + kids, data = PSID1976, subset = participation == "yes") summary(gr_lm) vcov(gr_lm) ## Example 4.5 summary(gr_lm) ## or equivalently gr_lm1 <- lm(log(hours * wage) ~ 1, data = PSID1976, subset = participation == "yes") anova(gr_lm1, gr_lm) ## Example 21.4, p. 681, and Tab. 21.3, p. 682 gr_probit1 <- glm(participation ~ age + I(age^2) + I(fincome/10000) + education + kids, data = PSID1976, family = binomial(link = "probit") ) gr_probit2 <- glm(participation ~ age + I(age^2) + I(fincome/10000) + education, data = PSID1976, family = binomial(link = "probit")) gr_probit3 <- glm(participation ~ kids/(age + I(age^2) + I(fincome/10000) + education), data = PSID1976, family = binomial(link = "probit")) ## LR test of all coefficients lrtest(gr_probit1) ## Chow-type test lrtest(gr_probit2, gr_probit3) ## equivalently: anova(gr_probit2, gr_probit3, test = "Chisq") ## Table 21.3 summary(gr_probit1) ## Example 22.8, Table 22.7, p. 786 library("sampleSelection") gr_2step <- selection(participation ~ age + I(age^2) + fincome + education + kids, wage ~ experience + I(experience^2) + education + city, data = PSID1976, method = "2step") gr_ml <- selection(participation ~ age + I(age^2) + fincome + education + kids, wage ~ experience + I(experience^2) + education + city, data = PSID1976, method = "ml") gr_ols <- lm(wage ~ experience + I(experience^2) + education + city, data = PSID1976, subset = participation == "yes") ## NOTE: ML estimates agree with Greene, 5e errata. ## Standard errors are based on the Hessian (here), while Greene has BHHH/OPG. #################### ## Ship accidents ## #################### ## subset data data("ShipAccidents", package = "AER") sa <- subset(ShipAccidents, service > 0) ## Table 21.20 sa_full <- glm(incidents ~ type + construction + operation, family = poisson, data = sa, offset = log(service)) summary(sa_full) sa_notype <- glm(incidents ~ construction + operation, family = poisson, data = sa, offset = log(service)) summary(sa_notype) sa_noperiod <- glm(incidents ~ type + operation, family = poisson, data = sa, offset = log(service)) summary(sa_noperiod) ## model comparison anova(sa_full, sa_notype, test = "Chisq") anova(sa_full, sa_noperiod, test = "Chisq") ## test for overdispersion dispersiontest(sa_full) dispersiontest(sa_full, trafo = 2) ###################################### ## Fair's extramarital affairs data ## ###################################### ## data data("Affairs", package = "AER") ## Tab. 22.3 and 22.4 fm_ols <- lm(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) fm_probit <- glm(I(affairs > 0) ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs, family = binomial(link = "probit")) fm_tobit <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) fm_tobit2 <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, right = 4, data = Affairs) fm_pois <- glm(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs, family = poisson) library("MASS") fm_nb <- glm.nb(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) ## Tab. 22.6 library("pscl") fm_zip <- zeroinfl(affairs ~ age + yearsmarried + religiousness + occupation + rating | age + yearsmarried + religiousness + occupation + rating, data = Affairs) ###################### ## Strike durations ## ###################### ## data and package data("StrikeDuration", package = "AER") library("MASS") ## Table 22.10 fit_exp <- fitdistr(StrikeDuration$duration, "exponential") fit_wei <- fitdistr(StrikeDuration$duration, "weibull") fit_wei$estimate[2]^(-1) fit_lnorm <- fitdistr(StrikeDuration$duration, "lognormal") 1/fit_lnorm$estimate[2] exp(-fit_lnorm$estimate[1]) ## Weibull and lognormal distribution have ## different parameterizations, see Greene p. 794 ## Example 22.10 library("survival") fm_wei <- survreg(Surv(duration) ~ uoutput, dist = "weibull", data = StrikeDuration) summary(fm_wei) } \keyword{datasets} AER/man/PSID7682.Rd0000644000175400001440000001036612216543315013214 0ustar zeileisusers\name{PSID7682} \alias{PSID7682} \title{PSID Earnings Panel Data (1976--1982)} \description{ Panel data on earnings of 595 individuals for the years 1976--1982, originating from the Panel Study of Income Dynamics. } \usage{data("PSID7682")} \format{ A data frame containing 7 annual observations on 12 variables for 595 individuals. \describe{ \item{experience}{Years of full-time work experience.} \item{weeks}{Weeks worked.} \item{occupation}{factor. Is the individual a white-collar (\code{"white"}) or blue-collar (\code{"blue"}) worker?} \item{industry}{factor. Does the individual work in a manufacturing industry?} \item{south}{factor. Does the individual reside in the South?} \item{smsa}{factor. Does the individual reside in a SMSA (standard metropolitan statistical area)?} \item{married}{factor. Is the individual married?} \item{gender}{factor indicating gender.} \item{union}{factor. Is the individual's wage set by a union contract?} \item{education}{Years of education.} \item{ethnicity}{factor indicating ethnicity. Is the individual African-American (\code{"afam"}) or not (\code{"other"})?} \item{wage}{Wage.} \item{year}{factor indicating year.} \item{id}{factor indicating individual subject ID.} } } \details{ The data were originally analyzed by Cornwell and Rupert (1988) and employed for assessing various instrumental-variable estimators for panel models (including the Hausman-Taylor model). Baltagi and Khanti-Akom (1990) reanalyzed the data, made corrections to the data and also suggest modeling with a different set of instruments. \code{PSID7682} is the version of the data as provided by Baltagi (2005), or Greene (2008). Baltagi (2002) just uses the cross-section for the year 1982, i.e., \code{subset(PSID7682, year == "1982")}. This is also available as a standalone data set \code{\link{PSID1982}} because it was included in \pkg{AER} prior to the availability of the full \code{PSID7682} panel version. } \source{ Online complements to Baltagi (2005). \url{http://www.wiley.com/legacy/wileychi/baltagi3e/data_sets.html} Also provided in the online complements to Greene (2008), Table F9.1. \url{http://pages.stern.nyu.edu/~wgreene/Text/Edition6/tablelist6.htm} } \references{ Baltagi, B.H., and Khanti-Akom, S. (1990). On Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variables Estimators. \emph{Journal of Applied Econometrics}, \bold{5}, 401--406. Baltagi, B.H. (2001). \emph{Econometric Analysis of Panel Data}, 2nd ed. Chichester, UK: John Wiley. Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Baltagi, B.H. (2005). \emph{Econometric Analysis of Panel Data}, 3rd ed. Chichester, UK: John Wiley. Cornwell, C., and Rupert, P. (1988). Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variables Estimators. \emph{Journal of Applied Econometrics}, \bold{3}, 149--155. Greene, W.H. (2008). \emph{Econometric Analysis}, 6th ed. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{PSID1982}}, \code{\link{Baltagi2002}}} \examples{ data("PSID7682") library("plm") psid <- plm.data(PSID7682, c("id", "year")) ## Baltagi & Khanti-Akom, Table I, column "HT" ## original Cornwell & Rupert choice of exogenous variables psid_ht1 <- plm(log(wage) ~ weeks + south + smsa + married + experience + I(experience^2) + occupation + industry + union + gender + ethnicity + education | weeks + south + smsa + married + gender + ethnicity, data = psid, model = "ht") ## Baltagi & Khanti-Akom, Table II, column "HT" ## alternative choice of exogenous variables psid_ht2 <- plm(log(wage) ~ occupation + south + smsa + industry + experience + I(experience^2) + weeks + married + union + gender + ethnicity + education | occupation + south + smsa + industry + gender + ethnicity, data = psid, model = "ht") ## Baltagi & Khanti-Akom, Table III, column "HT" ## original choice of exogenous variables + time dummies ## (see also Baltagi, 2001, Table 7.1) psid$time <- psid$year psid_ht3 <- plm(log(wage) ~ weeks + south + smsa + married + experience + I(experience^2) + occupation + industry + union + gender + ethnicity + education + time | weeks + south + smsa + married + gender + ethnicity + time, data = psid, model = "ht") } \keyword{datasets} AER/man/Electricity1955.Rd0000644000175400001440000000360311423552633014730 0ustar zeileisusers\name{Electricity1955} \alias{Electricity1955} \title{Cost Function of Electricity Producers (1955, Nerlove Data)} \description{ Cost function data for 145 (+14) US electricity producers in 1955. } \usage{data("Electricity1955")} \format{ A data frame containing 159 observations on 8 variables. \describe{ \item{cost}{total cost.} \item{output}{total output.} \item{labor}{wage rate.} \item{laborshare}{cost share for labor.} \item{capital}{capital price index.} \item{capitalshare}{cost share for capital.} \item{fuel}{fuel price.} \item{fuelshare}{cost share for fuel.} } } \details{ The data contains several extra observations that are aggregates of commonly owned firms. Only the first 145 observations should be used for analysis. } \source{ Online complements to Greene (2003). Table F14.2. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. Nerlove, M. (1963) \dQuote{Returns to Scale in Electricity Supply.} In C. Christ (ed.), \emph{Measurement in Economics: Studies in Mathematical Economics and Econometrics in Memory of Yehuda Grunfeld}. Stanford University Press, 1963. } \seealso{\code{\link{Greene2003}}, \code{\link{Electricity1970}}} \examples{ data("Electricity1955") Electricity <- Electricity1955[1:145,] ## Greene (2003) ## Example 7.3 ## Cobb-Douglas cost function fm_all <- lm(log(cost/fuel) ~ log(output) + log(labor/fuel) + log(capital/fuel), data = Electricity) summary(fm_all) ## hypothesis of constant returns to scale linearHypothesis(fm_all, "log(output) = 1") ## Table 7.4 ## log quadratic cost function fm_all2 <- lm(log(cost/fuel) ~ log(output) + I(log(output)^2) + log(labor/fuel) + log(capital/fuel), data = Electricity) summary(fm_all2) ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/DutchAdvert.Rd0000644000175400001440000000337713025016606014344 0ustar zeileisusers\name{DutchAdvert} \alias{DutchAdvert} \title{TV and Radio Advertising Expenditures Data} \description{ Time series of television and radio advertising expenditures (in real terms) in The Netherlands. } \usage{data("DutchAdvert")} \format{ A four-weekly multiple time series from 1978(1) to 1994(13) with 2 variables. \describe{ \item{tv}{Television advertising expenditures.} \item{radio}{Radio advertising expenditures.} } } \source{ Originally available as an online supplement to Franses (1998). Now available via online complements to Franses, van Dijk and Opschoor (2014). \url{http://www.cambridge.org/us/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/time-series-models-business-and-economic-forecasting-2nd-edition} } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. Franses, P.H., van Dijk, D. and Opschoor, A. (2014). \emph{Time Series Models for Business and Economic Forecasting}, 2nd ed. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}} \examples{ data("DutchAdvert") plot(DutchAdvert) ## EACF tables (Franses 1998, Sec. 5.1, p. 99) ctrafo <- function(x) residuals(lm(x ~ factor(cycle(x)))) ddiff <- function(x) diff(diff(x, frequency(x)), 1) eacf <- function(y, lag = 12) { stopifnot(all(lag > 0)) if(length(lag) < 2) lag <- 1:lag rval <- sapply( list(y = y, dy = diff(y), cdy = ctrafo(diff(y)), Dy = diff(y, frequency(y)), dDy = ddiff(y)), function(x) acf(x, plot = FALSE, lag.max = max(lag))$acf[lag + 1]) rownames(rval) <- lag return(rval) } ## Franses (1998, p. 103), Table 5.4 round(eacf(log(DutchAdvert[,"tv"]), lag = c(1:19, 26, 39)), digits = 3) } \keyword{datasets} AER/man/ChinaIncome.Rd0000644000175400001440000000203113023077043014266 0ustar zeileisusers\name{ChinaIncome} \alias{ChinaIncome} \title{Chinese Real National Income Data} \description{ Time series of real national income in China per section (index with 1952 = 100). } \usage{data("ChinaIncome")} \format{ An annual multiple time series from 1952 to 1988 with 5 variables. \describe{ \item{agriculture}{Real national income in agriculture sector.} \item{industry}{Real national income in industry sector.} \item{construction}{Real national income in construction sector.} \item{transport}{Real national income in transport sector.} \item{commerce}{Real national income in commerce sector.} } } \source{ Online complements to Franses (1998). } \seealso{\code{\link{Franses1998}}} \references{ Chow, G.C. (1993). Capital Formation and Economic Growth in China. \emph{Quarterly Journal of Economics}, \bold{103}, 809--842. Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \examples{ data("ChinaIncome") plot(ChinaIncome) } \keyword{datasets} AER/man/USConsump1993.Rd0000644000175400001440000000402512463507620014346 0ustar zeileisusers\name{USConsump1993} \alias{USConsump1993} \title{US Consumption Data (1950--1993)} \description{ Time series data on US income and consumption expenditure, 1950--1993. } \usage{data("USConsump1993")} \format{ An annual multiple time series from 1950 to 1993 with 2 variables. \describe{ \item{income}{Disposable personal income (in 1987 USD).} \item{expenditure}{Personal consumption expenditures (in 1987 USD).} } } \source{ The data is from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. } \seealso{\code{\link{Baltagi2002}}, \code{\link{USConsump1950}}, \code{\link{USConsump1979}}} \examples{ ## data from Baltagi (2002) data("USConsump1993", package = "AER") plot(USConsump1993, plot.type = "single", col = 1:2) ## Chapter 5 (p. 122-125) fm <- lm(expenditure ~ income, data = USConsump1993) summary(fm) ## Durbin-Watson test (p. 122) dwtest(fm) ## Breusch-Godfrey test (Table 5.4, p. 124) bgtest(fm) ## Newey-West standard errors (Table 5.5, p. 125) coeftest(fm, vcov = NeweyWest(fm, lag = 3, prewhite = FALSE, adjust = TRUE)) ## Chapter 8 library("strucchange") ## Recursive residuals rr <- recresid(fm) rr ## Recursive CUSUM test rcus <- efp(expenditure ~ income, data = USConsump1993) plot(rcus) sctest(rcus) ## Harvey-Collier test harvtest(fm) ## NOTE" Mistake in Baltagi (2002) who computes ## the t-statistic incorrectly as 0.0733 via mean(rr)/sd(rr)/sqrt(length(rr)) ## whereas it should be (as in harvtest) mean(rr)/sd(rr) * sqrt(length(rr)) ## Rainbow test raintest(fm, center = 23) ## J test for non-nested models library("dynlm") fm1 <- dynlm(expenditure ~ income + L(income), data = USConsump1993) fm2 <- dynlm(expenditure ~ income + L(expenditure), data = USConsump1993) jtest(fm1, fm2) ## Chapter 14 ## ACF and PACF for expenditures and first differences exps <- USConsump1993[, "expenditure"] (acf(exps)) (pacf(exps)) (acf(diff(exps))) (pacf(diff(exps))) ## dynamic regressions, eq. (14.8) fm <- dynlm(d(exps) ~ I(time(exps) - 1949) + L(exps)) summary(fm) } \keyword{datasets} AER/man/CigarettesSW.Rd0000644000175400001440000000410713022373231014460 0ustar zeileisusers\name{CigarettesSW} \alias{CigarettesSW} \title{Cigarette Consumption Panel Data} \description{ Panel data on cigarette consumption for the 48 continental US States from 1985--1995. } \usage{data("CigarettesSW")} \format{ A data frame containing 48 observations on 7 variables for 2 periods. \describe{ \item{state}{Factor indicating state.} \item{year}{Factor indicating year.} \item{cpi}{Consumer price index.} \item{population}{State population.} \item{packs}{Number of packs per capita.} \item{income}{State personal income (total, nominal).} \item{tax}{Average state, federal and average local excise taxes for fiscal year.} \item{price}{Average price during fiscal year, including sales tax.} \item{taxs}{Average excise taxes for fiscal year, including sales tax.} } } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{CigarettesB}}} \examples{ ## Stock and Watson (2007) ## data and transformations data("CigarettesSW") CigarettesSW$rprice <- with(CigarettesSW, price/cpi) CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi) CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi) c1985 <- subset(CigarettesSW, year == "1985") c1995 <- subset(CigarettesSW, year == "1995") ## convenience function: HC1 covariances hc1 <- function(x) vcovHC(x, type = "HC1") ## Equations 12.9--12.11 fm_s1 <- lm(log(rprice) ~ tdiff, data = c1995) coeftest(fm_s1, vcov = hc1) fm_s2 <- lm(log(packs) ~ fitted(fm_s1), data = c1995) fm_ivreg <- ivreg(log(packs) ~ log(rprice) | tdiff, data = c1995) coeftest(fm_ivreg, vcov = hc1) ## Equation 12.15 fm_ivreg2 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff, data = c1995) coeftest(fm_ivreg2, vcov = hc1) ## Equation 12.16 fm_ivreg3 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax/cpi), data = c1995) coeftest(fm_ivreg3, vcov = hc1) ## More examples can be found in: ## help("StockWatson2007") } \keyword{datasets} AER/man/dispersiontest.Rd0000644000175400001440000000744311354653140015207 0ustar zeileisusers\name{dispersiontest} \alias{dispersiontest} \title{Dispersion Test} \description{ Tests the null hypothesis of equidispersion in Poisson GLMs against the alternative of overdispersion and/or underdispersion. } \usage{ dispersiontest(object, trafo = NULL, alternative = c("greater", "two.sided", "less")) } \arguments{ \item{object}{a fitted Poisson GLM of class \code{"glm"} as fitted by \code{\link{glm}} with family \code{\link{poisson}}.} \item{trafo}{a specification of the alternative (see also details), can be numeric or a (positive) function or \code{NULL} (the default).} \item{alternative}{a character string specifying the alternative hypothesis: \code{"greater"} corresponds to overdispersion, \code{"less"} to underdispersion and \code{"two.sided"} to either one.} } \details{ The standard Poisson GLM models the (conditional) mean \eqn{\mathsf{E}[y] = \mu}{E[y] = mu} which is assumed to be equal to the variance \eqn{\mathsf{VAR}[y] = \mu}{VAR[y] = mu}. \code{dispersiontest} assesses the hypothesis that this assumption holds (equidispersion) against the alternative that the variance is of the form: \deqn{\mathsf{VAR}[y] \quad = \quad \mu \; + \; \alpha \cdot \mathrm{trafo}(\mu).}{VAR[y] = mu + alpha * trafo(mu).} Overdispersion corresponds to \eqn{\alpha > 0}{alpha > 0} and underdispersion to \eqn{\alpha < 0}{alpha < 0}. The coefficient \eqn{\alpha}{alpha} can be estimated by an auxiliary OLS regression and tested with the corresponding t (or z) statistic which is asymptotically standard normal under the null hypothesis. Common specifications of the transformation function \eqn{\mathrm{trafo}}{trafo} are \eqn{\mathrm{trafo}(\mu) = \mu^2}{trafo(mu) = mu^2} or \eqn{\mathrm{trafo}(\mu) = \mu}{trafo(mu) = mu}. The former corresponds to a negative binomial (NB) model with quadratic variance function (called NB2 by Cameron and Trivedi, 2005), the latter to a NB model with linear variance function (called NB1 by Cameron and Trivedi, 2005) or quasi-Poisson model with dispersion parameter, i.e., \deqn{\mathsf{VAR}[y] \quad = \quad (1 + \alpha) \cdot \mu = \mathrm{dispersion} \cdot \mu.}{VAR[y] = (1 + alpha) * mu = dispersion * mu.} By default, for \code{trafo = NULL}, the latter dispersion formulation is used in \code{dispersiontest}. Otherwise, if \code{trafo} is specified, the test is formulated in terms of the parameter \eqn{\alpha}{alpha}. The transformation \code{trafo} can either be specified as a function or an integer corresponding to the function \code{function(x) x^trafo}, such that \code{trafo = 1} and \code{trafo = 2} yield the linear and quadratic formulations respectively. } \value{An object of class \code{"htest"}.} \references{ Cameron, A.C. and Trivedi, P.K. (1990). Regression-based Tests for Overdispersion in the Poisson Model. \emph{Journal of Econometrics}, \bold{46}, 347--364. Cameron, A.C. and Trivedi, P.K. (1998). \emph{Regression Analysis of Count Data}. Cambridge: Cambridge University Press. Cameron, A.C. and Trivedi, P.K. (2005). \emph{Microeconometrics: Methods and Applications}. Cambridge: Cambridge University Press. } \seealso{\code{\link{glm}}, \code{\link{poisson}}, \code{\link[MASS]{glm.nb}}} \examples{ data("RecreationDemand") rd <- glm(trips ~ ., data = RecreationDemand, family = poisson) ## linear specification (in terms of dispersion) dispersiontest(rd) ## linear specification (in terms of alpha) dispersiontest(rd, trafo = 1) ## quadratic specification (in terms of alpha) dispersiontest(rd, trafo = 2) dispersiontest(rd, trafo = function(x) x^2) ## further examples data("DoctorVisits") dv <- glm(visits ~ . + I(age^2), data = DoctorVisits, family = poisson) dispersiontest(dv) data("NMES1988") nmes <- glm(visits ~ health + age + gender + married + income + insurance, data = NMES1988, family = poisson) dispersiontest(nmes) } \keyword{htest} AER/man/USMacroSW.Rd0000644000175400001440000000571413022372670013712 0ustar zeileisusers\name{USMacroSW} \alias{USMacroSW} \title{US Macroeconomic Data (1957--2005, Stock \& Watson)} \description{ Time series data on 7 (mostly) US macroeconomic variables for 1957--2005. } \usage{data("USMacroSW") } \format{ A quarterly multiple time series from 1957(1) to 2005(1) with 7 variables. \describe{ \item{unemp}{Unemployment rate.} \item{cpi}{Consumer price index.} \item{ffrate}{Federal funds interest rate.} \item{tbill}{3-month treasury bill interest rate.} \item{tbond}{1-year treasury bond interest rate.} \item{gbpusd}{GBP/USD exchange rate (US dollar in cents per British pound).} \item{gdpjp}{GDP for Japan.} } } \details{ The US Consumer Price Index is measured using monthly surveys and is compiled by the Bureau of Labor Statistics (BLS). The unemployment rate is computed from the BLS's Current Population. The quarterly data used here were computed by averaging the monthly values. The interest data are the monthly average of daily rates as reported by the Federal Reserve and the dollar-pound exchange rate data are the monthly average of daily rates; both are for the final month in the quarter. Japanese real GDP data were obtained from the OECD. } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{USMacroSWM}}, \code{\link{USMacroSWQ}}, \code{\link{USMacroB}}, \code{\link{USMacroG}}} \examples{ ## Stock and Watson (2007) data("USMacroSW", package = "AER") library("dynlm") library("strucchange") usm <- ts.intersect(USMacroSW, 4 * 100 * diff(log(USMacroSW[, "cpi"]))) colnames(usm) <- c(colnames(USMacroSW), "infl") ## Equations 14.7, 14.13, 14.16, 14.17, pp. 536 fm_ar1 <- dynlm(d(infl) ~ L(d(infl)), data = usm, start = c(1962,1), end = c(2004,4)) fm_ar4 <- dynlm(d(infl) ~ L(d(infl), 1:4), data = usm, start = c(1962,1), end = c(2004,4)) fm_adl41 <- dynlm(d(infl) ~ L(d(infl), 1:4) + L(unemp), data = usm, start = c(1962,1), end = c(2004,4)) fm_adl44 <- dynlm(d(infl) ~ L(d(infl), 1:4) + L(unemp, 1:4), data = usm, start = c(1962,1), end = c(2004,4)) coeftest(fm_ar1, vcov = sandwich) coeftest(fm_ar4, vcov = sandwich) coeftest(fm_adl41, vcov = sandwich) coeftest(fm_adl44, vcov = sandwich) ## Granger causality test mentioned on p. 547 waldtest(fm_ar4, fm_adl44, vcov = sandwich) ## Figure 14.5, p. 570 ## SW perform partial break test of unemp coefs ## here full model is used mf <- model.frame(fm_adl44) ## re-use fm_adl44 mf <- ts(as.matrix(mf), start = c(1962, 1), freq = 4) colnames(mf) <- c("y", paste("x", 1:8, sep = "")) ff <- as.formula(paste("y", "~", paste("x", 1:8, sep = "", collapse = " + "))) fs <- Fstats(ff, data = mf, from = 0.1) plot(fs) lines(boundary(fs, alpha = 0.01), lty = 2, col = 2) lines(boundary(fs, alpha = 0.1), lty = 3, col = 2) ## More examples can be found in: ## help("StockWatson2007") } \keyword{datasets} AER/man/NMES1988.Rd0000644000175400001440000001260413017653137013223 0ustar zeileisusers\name{NMES1988} \alias{NMES1988} \title{Demand for Medical Care in NMES 1988} \description{ Cross-section data originating from the US National Medical Expenditure Survey (NMES) conducted in 1987 and 1988. The NMES is based upon a representative, national probability sample of the civilian non-institutionalized population and individuals admitted to long-term care facilities during 1987. The data are a subsample of individuals ages 66 and over all of whom are covered by Medicare (a public insurance program providing substantial protection against health-care costs). } \usage{data("NMES1988")} \format{ A data frame containing 4,406 observations on 19 variables. \describe{ \item{visits}{Number of physician office visits.} \item{nvisits}{Number of non-physician office visits.} \item{ovisits}{Number of physician hospital outpatient visits.} \item{novisits}{Number of non-physician hospital outpatient visits.} \item{emergency}{Emergency room visits.} \item{hospital}{Number of hospital stays.} \item{health}{Factor indicating self-perceived health status, levels are \code{"poor"}, \code{"average"} (reference category), \code{"excellent"}.} \item{chronic}{Number of chronic conditions.} \item{adl}{Factor indicating whether the individual has a condition that limits activities of daily living (\code{"limited"}) or not (\code{"normal"}).} \item{region}{Factor indicating region, levels are \code{northeast}, \code{midwest}, \code{west}, \code{other} (reference category).} \item{age}{Age in years (divided by 10).} \item{afam}{Factor. Is the individual African-American?} \item{gender}{Factor indicating gender.} \item{married}{Factor. is the individual married?} \item{school}{Number of years of education.} \item{income}{Family income in USD 10,000.} \item{employed}{Factor. Is the individual employed?} \item{insurance}{Factor. Is the individual covered by private insurance?} \item{medicaid}{Factor. Is the individual covered by Medicaid?} } } \source{ Journal of Applied Econometrics Data Archive for Deb and Trivedi (1997). \url{http://qed.econ.queensu.ca/jae/1997-v12.3/deb-trivedi/} } \references{ Cameron, A.C. and Trivedi, P.K. (1998). \emph{Regression Analysis of Count Data}. Cambridge: Cambridge University Press. Deb, P., and Trivedi, P.K. (1997). Demand for Medical Care by the Elderly: A Finite Mixture Approach. \emph{Journal of Applied Econometrics}, \bold{12}, 313--336. Zeileis, A., Kleiber, C., and Jackman, S. (2008). Regression Models for Count Data in R. \emph{Journal of Statistical Software}, \bold{27}(8). URL \url{http://www.jstatsoft.org/v27/i08/}. } \seealso{\code{\link{CameronTrivedi1998}}} \examples{ ## packages library("MASS") library("pscl") ## select variables for analysis data("NMES1988") nmes <- NMES1988[, c(1, 7:8, 13, 15, 18)] ## dependent variable hist(nmes$visits, breaks = 0:(max(nmes$visits)+1) - 0.5) plot(table(nmes$visits)) ## convenience transformations for exploratory graphics clog <- function(x) log(x + 0.5) cfac <- function(x, breaks = NULL) { if(is.null(breaks)) breaks <- unique(quantile(x, 0:10/10)) x <- cut(x, breaks, include.lowest = TRUE, right = FALSE) levels(x) <- paste(breaks[-length(breaks)], ifelse(diff(breaks) > 1, c(paste("-", breaks[-c(1, length(breaks))] - 1, sep = ""), "+"), ""), sep = "") return(x) } ## bivariate visualization par(mfrow = c(3, 2)) plot(clog(visits) ~ health, data = nmes, varwidth = TRUE) plot(clog(visits) ~ cfac(chronic), data = nmes) plot(clog(visits) ~ insurance, data = nmes, varwidth = TRUE) plot(clog(visits) ~ gender, data = nmes, varwidth = TRUE) plot(cfac(visits, c(0:2, 4, 6, 10, 100)) ~ school, data = nmes, breaks = 9) par(mfrow = c(1, 1)) ## Poisson regression nmes_pois <- glm(visits ~ ., data = nmes, family = poisson) summary(nmes_pois) ## LM test for overdispersion dispersiontest(nmes_pois) dispersiontest(nmes_pois, trafo = 2) ## sandwich covariance matrix coeftest(nmes_pois, vcov = sandwich) ## quasipoisson model nmes_qpois <- glm(visits ~ ., data = nmes, family = quasipoisson) ## NegBin regression nmes_nb <- glm.nb(visits ~ ., data = nmes) ## hurdle regression nmes_hurdle <- hurdle(visits ~ . | chronic + insurance + school + gender, data = nmes, dist = "negbin") ## zero-inflated regression model nmes_zinb <- zeroinfl(visits ~ . | chronic + insurance + school + gender, data = nmes, dist = "negbin") ## compare estimated coefficients fm <- list("ML-Pois" = nmes_pois, "Quasi-Pois" = nmes_qpois, "NB" = nmes_nb, "Hurdle-NB" = nmes_hurdle, "ZINB" = nmes_zinb) round(sapply(fm, function(x) coef(x)[1:7]), digits = 3) ## associated standard errors round(cbind("ML-Pois" = sqrt(diag(vcov(nmes_pois))), "Adj-Pois" = sqrt(diag(sandwich(nmes_pois))), sapply(fm[-1], function(x) sqrt(diag(vcov(x)))[1:7])), digits = 3) ## log-likelihoods and number of estimated parameters rbind(logLik = sapply(fm, function(x) round(logLik(x), digits = 0)), Df = sapply(fm, function(x) attr(logLik(x), "df"))) ## predicted number of zeros round(c("Obs" = sum(nmes$visits < 1), "ML-Pois" = sum(dpois(0, fitted(nmes_pois))), "Adj-Pois" = NA, "Quasi-Pois" = NA, "NB" = sum(dnbinom(0, mu = fitted(nmes_nb), size = nmes_nb$theta)), "NB-Hurdle" = sum(predict(nmes_hurdle, type = "prob")[,1]), "ZINB" = sum(predict(nmes_zinb, type = "prob")[,1]))) ## coefficients of zero-augmentation models t(sapply(fm[4:5], function(x) round(x$coefficients$zero, digits = 3))) } \keyword{datasets} AER/man/USMoney.Rd0000644000175400001440000000136411354653140013463 0ustar zeileisusers\name{USMoney} \alias{USMoney} \title{USMoney} \description{ Money, output and price deflator time series data, 1950--1983. } \usage{data("USMoney")} \format{ A quarterly multiple time series from 1950 to 1983 with 3 variables. \describe{ \item{gnp}{nominal GNP.} \item{m1}{M1 measure of money stock.} \item{deflator}{implicit price deflator for GNP.} } } \source{ Online complements to Greene (2003), Table F20.2. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("USMoney") plot(USMoney) } \keyword{datasets} AER/man/SIC33.Rd0000644000175400001440000000332112236754000012700 0ustar zeileisusers\name{SIC33} \alias{SIC33} \title{SIC33 Production Data} \description{ Statewide production data for primary metals industry (SIC 33). } \usage{data("SIC33")} \format{ A data frame containing 27 observations on 3 variables. \describe{ \item{output}{Value added.} \item{labor}{Labor input.} \item{capital}{Capital stock.} } } \source{ Online complements to Greene (2003). Table F6.1. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("SIC33") ## Example 6.2 in Greene (2003) ## Translog model fm_tl <- lm(output ~ labor + capital + I(0.5 * labor^2) + I(0.5 * capital^2) + I(labor * capital), data = log(SIC33)) ## Cobb-Douglas model fm_cb <- lm(output ~ labor + capital, data = log(SIC33)) ## Table 6.2 in Greene (2003) deviance(fm_tl) deviance(fm_cb) summary(fm_tl) summary(fm_cb) vcov(fm_tl) vcov(fm_cb) ## Cobb-Douglas vs. Translog model anova(fm_cb, fm_tl) ## hypothesis of constant returns linearHypothesis(fm_cb, "labor + capital = 1") ## 3D Visualization if(require("scatterplot3d")) { s3d <- scatterplot3d(log(SIC33)[,c(2, 3, 1)], pch = 16) s3d$plane3d(fm_cb, lty.box = "solid", col = 4) } ## Interactive 3D Visualization \donttest{ if(require("rgl")) { x <- log(SIC33)[,2] y <- log(SIC33)[,3] z <- log(SIC33)[,1] rgl.open() rgl.bbox() rgl.spheres(x, y, z, radius = 0.15) x <- seq(4.5, 7.5, by = 0.5) y <- seq(5.5, 10, by = 0.5) z <- outer(x, y, function(x, y) predict(fm_cb, data.frame(labor = x, capital = y))) rgl.surface(x, y, z, color = "blue", alpha = 0.5, shininess = 128) } } } \keyword{datasets} AER/man/MotorCycles.Rd0000644000175400001440000000135213033552033014357 0ustar zeileisusers\name{MotorCycles} \alias{MotorCycles} \title{Motor Cycles in The Netherlands} \description{ Time series of stock of motor cycles (two wheels) in The Netherlands (in thousands). } \usage{data("MotorCycles")} \format{ An annual univariate time series from 1946 to 1993. } \details{An updated version is available under the name \code{MotorCycles2}. However, the values for the years 1992 and 1993 differ there.} \source{ Online complements to Franses (1998). } \references{ Franses, P.H. (1998). \emph{Time Series Models for Business and Economic Forecasting}. Cambridge, UK: Cambridge University Press. } \seealso{\code{\link{Franses1998}}, \code{\link{MotorCycles2}}} \examples{ data("MotorCycles") plot(MotorCycles) } \keyword{datasets} AER/man/USInvest.Rd0000644000175400001440000000314011354653140013636 0ustar zeileisusers\name{USInvest} \alias{USInvest} \title{US Investment Data} \description{ Time series data on investments in the US, 1968--1982. } \usage{data("USInvest")} \format{ An annual multiple time series from 1968 to 1982 with 4 variables. \describe{ \item{gnp}{Nominal gross national product,} \item{invest}{Nominal investment,} \item{price}{Consumer price index,} \item{interest}{Interest rate (average yearly discount rate at the New York Federal Reserve Bank).} } } \source{ Online complements to Greene (2003). Table F3.1. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("USInvest") ## Chapter 3 in Greene (2003) ## transform (and round) data to match Table 3.1 us <- as.data.frame(USInvest) us$invest <- round(0.1 * us$invest/us$price, digits = 3) us$gnp <- round(0.1 * us$gnp/us$price, digits = 3) us$inflation <- c(4.4, round(100 * diff(us$price)/us$price[-15], digits = 2)) us$trend <- 1:15 us <- us[, c(2, 6, 1, 4, 5)] ## p. 22-24 coef(lm(invest ~ trend + gnp, data = us)) coef(lm(invest ~ gnp, data = us)) ## Example 3.1, Table 3.2 cor(us)[1,-1] pcor <- solve(cor(us)) dcor <- 1/sqrt(diag(pcor)) pcor <- (-pcor * (dcor \%o\% dcor))[1,-1] ## Table 3.4 fm <- lm(invest ~ trend + gnp + interest + inflation, data = us) fm1 <- lm(invest ~ 1, data = us) anova(fm1, fm) ## More examples can be found in: ## help("Greene2003") } \keyword{datasets} AER/man/TeachingRatings.Rd0000644000175400001440000000535613022372655015206 0ustar zeileisusers\name{TeachingRatings} \alias{TeachingRatings} \title{Impact of Beauty on Instructor's Teaching Ratings} \description{ Data on course evaluations, course characteristics, and professor characteristics for 463 courses for the academic years 2000--2002 at the University of Texas at Austin. } \usage{data("TeachingRatings")} \format{ A data frame containing 463 observations on 13 variables. \describe{ \item{minority}{factor. Does the instructor belong to a minority (non-Caucasian)?} \item{age}{the professor's age.} \item{gender}{factor indicating instructor's gender.} \item{credits}{factor. Is the course a single-credit elective (e.g., yoga, aerobics, dance)?} \item{beauty}{rating of the instructor's physical appearance by a panel of six students, averaged across the six panelists, shifted to have a mean of zero.} \item{eval}{course overall teaching evaluation score, on a scale of 1 (very unsatisfactory) to 5 (excellent).} \item{division}{factor. Is the course an upper or lower division course? (Lower division courses are mainly large freshman and sophomore courses)?} \item{native}{factor. Is the instructor a native English speaker?} \item{tenure}{factor. Is the instructor on tenure track?} \item{students}{number of students that participated in the evaluation.} \item{allstudents}{number of students enrolled in the course.} \item{prof}{factor indicating instructor identifier.} } } \details{ A sample of student instructional ratings for a group of university teachers along with beauty rating (average from six independent judges) and a number of other characteristics. } \source{ The data were provided by Prof. Hamermesh. The first 8 variables are also available in the online complements to Stock and Watson (2007) at } \references{ Hamermesh, D.S., and Parker, A. (2005). Beauty in the Classroom: Instructors' Pulchritude and Putative Pedagogical Productivity. \emph{Economics of Education Review}, \bold{24}, 369--376. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("TeachingRatings") ## evaluation score vs. beauty plot(eval ~ beauty, data = TeachingRatings) fm <- lm(eval ~ beauty, data = TeachingRatings) abline(fm) summary(fm) ## prediction of Stock & Watson's evaluation score sw <- with(TeachingRatings, mean(beauty) + c(0, 1) * sd(beauty)) names(sw) <- c("Watson", "Stock") predict(fm, newdata = data.frame(beauty = sw)) ## Hamermesh and Parker, 2005, Table 3 fmw <- lm(eval ~ beauty + gender + minority + native + tenure + division + credits, weights = students, data = TeachingRatings) coeftest(fmw, vcov = sandwich) ## (same coefficients but with different covariances) } \keyword{datasets} AER/man/TravelMode.Rd0000644000175400001440000000330311667673472014202 0ustar zeileisusers\name{TravelMode} \alias{TravelMode} \title{Travel Mode Choice Data} \description{ Data on travel mode choice for travel between Sydney and Melbourne, Australia. } \usage{data("TravelMode")} \format{ A data frame containing 840 observations on 4 modes for 210 individuals. \describe{ \item{individual}{Factor indicating individual with levels \code{1} to \code{200}.} \item{mode}{Factor indicating travel mode with levels \code{"car"}, \code{"air"}, \code{"train"}, or \code{"bus"}.} \item{choice}{Factor indicating choice with levels \code{"no"} and \code{"yes"}.} \item{wait}{Terminal waiting time, 0 for car.} \item{vcost}{Vehicle cost component.} \item{travel}{Travel time in the vehicle.} \item{gcost}{Generalized cost measure.} \item{income}{Household income.} \item{size}{Party size.} } } \source{ Online complements to Greene (2003). \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. } \seealso{\code{\link{Greene2003}}} \examples{ data("TravelMode") ## overall proportions for chosen mode with(TravelMode, prop.table(table(mode[choice == "yes"]))) ## travel vs. waiting time for different travel modes library("lattice") xyplot(travel ~ wait | mode, data = TravelMode) ## Greene (2003), Table 21.11, conditional logit model if(require("mlogit")) { TravelMode$incair <- with(TravelMode, income * (mode == "air")) tm_cl <- mlogit(choice ~ gcost + wait + incair, data = TravelMode, shape = "long", alt.var = "mode", reflevel = "car") summary(tm_cl) } } \keyword{datasets} AER/man/TradeCredit.Rd0000644000175400001440000000176012463507601014320 0ustar zeileisusers\name{TradeCredit} \alias{TradeCredit} \title{Trade Credit and the Money Market} \description{ Macroeconomic time series data from 1946 to 1966 on trade credit and the money market. } \usage{data("TradeCredit")} \format{ An annual multiple time series from 1946 to 1966 on 7 variables. \describe{ \item{trade}{Nominal total trade money.} \item{reserve}{Nominal effective reserve money.} \item{gnp}{GNP in current dollars.} \item{utilization}{Degree of market utilization.} \item{interest}{Short-term rate of interest.} \item{size}{Mean real size of the representative economic unit (1939 = 100).} \item{price}{GNP price deflator (1958 = 100).} } } \source{ The data are from Baltagi (2002). } \references{ Baltagi, B.H. (2002). \emph{Econometrics}, 3rd ed. Berlin, Springer. Laffer, A.B. (1970). Trade Credit and the Money Market. \emph{Journal of Political Economy}, \bold{78}, 239--267. } \seealso{\code{\link{Baltagi2002}}} \examples{ data("TradeCredit") plot(TradeCredit) } \keyword{datasets} AER/man/PSID1976.Rd0000644000175400001440000001615111560207547013217 0ustar zeileisusers\name{PSID1976} \alias{PSID1976} \title{Labor Force Participation Data} \description{ Cross-section data originating from the 1976 Panel Study of Income Dynamics (PSID), based on data for the previous year, 1975. } \usage{data("PSID1976")} \format{ A data frame containing 753 observations on 21 variables. \describe{ \item{participation}{Factor. Did the individual participate in the labor force in 1975? (This is essentially \code{wage > 0} or \code{hours > 0}.)} \item{hours}{Wife's hours of work in 1975.} \item{youngkids}{Number of children less than 6 years old in household.} \item{oldkids}{Number of children between ages 6 and 18 in household.} \item{age}{Wife's age in years.} \item{education}{Wife's education in years.} \item{wage}{Wife's average hourly wage, in 1975 dollars.} \item{repwage}{Wife's wage reported at the time of the 1976 interview (not the same as the 1975 estimated wage). To use the subsample with this wage, one needs to select 1975 workers with \code{participation == "yes"}, then select only those women with non-zero wage. Only 325 women work in 1975 and have a non-zero wage in 1976.} \item{hhours}{Husband's hours worked in 1975.} \item{hage}{Husband's age in years.} \item{heducation}{Husband's education in years.} \item{hwage}{Husband's wage, in 1975 dollars.} \item{fincome}{Family income, in 1975 dollars. (This variable is used to construct the property income variable.)} \item{tax}{Marginal tax rate facing the wife, and is taken from published federal tax tables (state and local income taxes are excluded). The taxable income on which this tax rate is calculated includes Social Security, if applicable to wife.} \item{meducation}{Wife's mother's educational attainment, in years.} \item{feducation}{Wife's father's educational attainment, in years.} \item{unemp}{Unemployment rate in county of residence, in percentage points. (This is taken from bracketed ranges.)} \item{city}{Factor. Does the individual live in a large city?} \item{experience}{Actual years of wife's previous labor market experience.} \item{college}{Factor. Did the individual attend college?} \item{hcollege}{Factor. Did the individual's husband attend college?} } } \details{ This data set is also known as the Mroz (1987) data. Warning: Typical applications using these data employ the variable \code{wage} (aka \code{earnings} in previous versions of the data) as the dependent variable. The variable \code{repwage} is the reported wage in a 1976 interview, named RPWG by Greene (2003). } \source{ Online complements to Greene (2003). Table F4.1. \url{http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm} } \references{ Greene, W.H. (2003). \emph{Econometric Analysis}, 5th edition. Upper Saddle River, NJ: Prentice Hall. McCullough, B.D. (2004). Some Details of Nonlinear Estimation. In: Altman, M., Gill, J., and McDonald, M.P.: \emph{Numerical Issues in Statistical Computing for the Social Scientist}. Hoboken, NJ: John Wiley, Ch. 8, 199--218. Mroz, T.A. (1987). The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions. \emph{Econometrica}, \bold{55}, 765--799. Winkelmann, R., and Boes, S. (2009). \emph{Analysis of Microdata}, 2nd ed. Berlin and Heidelberg: Springer-Verlag. Wooldridge, J.M. (2002). \emph{Econometric Analysis of Cross-Section and Panel Data}. Cambridge, MA: MIT Press. } \seealso{\code{\link{Greene2003}}, \code{\link{WinkelmannBoes2009}}} \examples{ ## data and transformations data("PSID1976") PSID1976$kids <- with(PSID1976, factor((youngkids + oldkids) > 0, levels = c(FALSE, TRUE), labels = c("no", "yes"))) PSID1976$nwincome <- with(PSID1976, (fincome - hours * wage)/1000) PSID1976$partnum <- as.numeric(PSID1976$participation) - 1 ################### ## Greene (2003) ## ################### ## Example 4.1, Table 4.2 ## (reproduced in Example 7.1, Table 7.1) gr_lm <- lm(log(hours * wage) ~ age + I(age^2) + education + kids, data = PSID1976, subset = participation == "yes") summary(gr_lm) vcov(gr_lm) ## Example 4.5 summary(gr_lm) ## or equivalently gr_lm1 <- lm(log(hours * wage) ~ 1, data = PSID1976, subset = participation == "yes") anova(gr_lm1, gr_lm) ## Example 21.4, p. 681, and Tab. 21.3, p. 682 gr_probit1 <- glm(participation ~ age + I(age^2) + I(fincome/10000) + education + kids, data = PSID1976, family = binomial(link = "probit") ) gr_probit2 <- glm(participation ~ age + I(age^2) + I(fincome/10000) + education, data = PSID1976, family = binomial(link = "probit")) gr_probit3 <- glm(participation ~ kids/(age + I(age^2) + I(fincome/10000) + education), data = PSID1976, family = binomial(link = "probit")) ## LR test of all coefficients lrtest(gr_probit1) ## Chow-type test lrtest(gr_probit2, gr_probit3) ## equivalently: anova(gr_probit2, gr_probit3, test = "Chisq") ## Table 21.3 summary(gr_probit1) ## Example 22.8, Table 22.7, p. 786 library("sampleSelection") gr_2step <- selection(participation ~ age + I(age^2) + fincome + education + kids, wage ~ experience + I(experience^2) + education + city, data = PSID1976, method = "2step") gr_ml <- selection(participation ~ age + I(age^2) + fincome + education + kids, wage ~ experience + I(experience^2) + education + city, data = PSID1976, method = "ml") gr_ols <- lm(wage ~ experience + I(experience^2) + education + city, data = PSID1976, subset = participation == "yes") ## NOTE: ML estimates agree with Greene, 5e errata. ## Standard errors are based on the Hessian (here), while Greene has BHHH/OPG. ####################### ## Wooldridge (2002) ## ####################### ## Table 15.1, p. 468 wl_lpm <- lm(partnum ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976) wl_logit <- glm(participation ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, family = binomial, data = PSID1976) wl_probit <- glm(participation ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, family = binomial(link = "probit"), data = PSID1976) ## (same as Altman et al.) ## convenience functions pseudoR2 <- function(obj) 1 - as.vector(logLik(obj)/logLik(update(obj, . ~ 1))) misclass <- function(obj) 1 - sum(diag(prop.table(table( model.response(model.frame(obj)), round(fitted(obj)))))) coeftest(wl_logit) logLik(wl_logit) misclass(wl_logit) pseudoR2(wl_logit) coeftest(wl_probit) logLik(wl_probit) misclass(wl_probit) pseudoR2(wl_probit) ## Table 16.2, p. 528 form <- hours ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids wl_ols <- lm(form, data = PSID1976) wl_tobit <- tobit(form, data = PSID1976) summary(wl_ols) summary(wl_tobit) ####################### ## McCullough (2004) ## ####################### ## p. 203 mc_probit <- glm(participation ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, family = binomial(link = "probit"), data = PSID1976) mc_tobit <- tobit(hours ~ nwincome + education + experience + I(experience^2) + age + youngkids + oldkids, data = PSID1976) coeftest(mc_probit) coeftest(mc_tobit) coeftest(mc_tobit, vcov = vcovOPG) } \keyword{datasets} AER/man/USSeatBelts.Rd0000644000175400001440000000365513022373064014265 0ustar zeileisusers\name{USSeatBelts} \alias{USSeatBelts} \title{Effects of Mandatory Seat Belt Laws in the US} \description{ Balanced panel data for the years 1983--1997 from 50 US States, plus the District of Columbia, for assessing traffic fatalities and seat belt usage. } \usage{data("USSeatBelts")} \format{ A data frame containing 765 observations on 12 variables. \describe{ \item{state}{factor indicating US state (abbreviation).} \item{year}{factor indicating year.} \item{miles}{millions of traffic miles per year.} \item{fatalities}{number of fatalities per million of traffic miles (absolute frequencies of fatalities = \code{fatalities} times \code{miles}).} \item{seatbelt}{seat belt usage rate, as self-reported by state population surveyed.} \item{speed65}{factor. Is there a 65 mile per hour speed limit?} \item{speed70}{factor. Is there a 70 (or higher) mile per hour speed limit?} \item{drinkage}{factor. Is there a minimum drinking age of 21 years?} \item{alcohol}{factor. Is there a maximum of 0.08 blood alcohol content?} \item{income}{median per capita income (in current US dollar).} \item{age}{mean age.} \item{enforce}{factor indicating seat belt law enforcement (\code{"no"}, \code{"primary"}, \code{"secondary"}).} } } \details{ Some data series from Cohen and Einav (2003) have not been included in the data frame. } \source{ Online complements to Stock and Watson (2007). } \references{ Cohen, A., and Einav, L. (2003). The Effects of Mandatory Seat Belt Laws on Driving Behavior and Traffic Fatalities. \emph{The Review of Economics and Statistics}, \bold{85}, 828--843 Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ data("USSeatBelts") summary(USSeatBelts) library("lattice") xyplot(fatalities ~ as.numeric(as.character(year)) | state, data = USSeatBelts, type = "l") } \keyword{datasets} AER/man/MurderRates.Rd0000644000175400001440000000436311354653140014363 0ustar zeileisusers\name{MurderRates} \alias{MurderRates} \title{Determinants of Murder Rates in the United States} \description{ Cross-section data on states in 1950. } \usage{data("MurderRates")} \format{ A data frame containing 44 observations on 8 variables. \describe{ \item{rate}{Murder rate per 100,000 (FBI estimate, 1950).} \item{convictions}{Number of convictions divided by number of murders in 1950.} \item{executions}{Average number of executions during 1946--1950 divided by convictions in 1950.} \item{time}{Median time served (in months) of convicted murderers released in 1951.} \item{income}{Median family income in 1949 (in 1,000 USD).} \item{lfp}{Labor force participation rate in 1950 (in percent).} \item{noncauc}{Proportion of population that is non-Caucasian in 1950.} \item{southern}{Factor indicating region.} } } \source{ Maddala (2001), Table 8.4, p. 330 } \references{ Maddala, G.S. (2001). \emph{Introduction to Econometrics}, 3rd ed. New York: John Wiley. McManus, W.S. (1985). Estimates of the Deterrent Effect of Capital Punishment: The Importance of the Researcher's Prior Beliefs. \emph{Journal of Political Economy}, \bold{93}, 417--425. Stokes, H. (2004). On the Advantage of Using Two or More Econometric Software Systems to Solve the Same Problem. \emph{Journal of Economic and Social Measurement}, \bold{29}, 307--320. } \examples{ data("MurderRates") ## Maddala (2001, pp. 331) fm_lm <- lm(rate ~ . + I(executions > 0), data = MurderRates) summary(fm_lm) model <- I(executions > 0) ~ time + income + noncauc + lfp + southern fm_lpm <- lm(model, data = MurderRates) summary(fm_lpm) ## Binomial models. Note: southern coefficient fm_logit <- glm(model, data = MurderRates, family = binomial) summary(fm_logit) fm_logit2 <- glm(model, data = MurderRates, family = binomial, control = list(epsilon = 1e-15, maxit = 50, trace = FALSE)) summary(fm_logit2) fm_probit <- glm(model, data = MurderRates, family = binomial(link = "probit")) summary(fm_probit) fm_probit2 <- glm(model, data = MurderRates , family = binomial(link = "probit"), control = list(epsilon = 1e-15, maxit = 50, trace = FALSE)) summary(fm_probit2) ## Explanation: quasi-complete separation with(MurderRates, table(executions > 0, southern)) } \keyword{datasets} AER/man/CollegeDistance.Rd0000644000175400001440000000473713022372775015166 0ustar zeileisusers\name{CollegeDistance} \alias{CollegeDistance} \title{College Distance Data} \description{ Cross-section data from the High School and Beyond survey conducted by the Department of Education in 1980, with a follow-up in 1986. The survey included students from approximately 1,100 high schools. } \usage{data("CollegeDistance")} \format{ A data frame containing 4,739 observations on 14 variables. \describe{ \item{gender}{factor indicating gender.} \item{ethnicity}{factor indicating ethnicity (African-American, Hispanic or other).} \item{score}{base year composite test score. These are achievement tests given to high school seniors in the sample.} \item{fcollege}{factor. Is the father a college graduate?} \item{mcollege}{factor. Is the mother a college graduate?} \item{home}{factor. Does the family own their home?} \item{urban}{factor. Is the school in an urban area?} \item{unemp}{county unemployment rate in 1980.} \item{wage}{state hourly wage in manufacturing in 1980.} \item{distance}{distance from 4-year college (in 10 miles).} \item{tuition}{average state 4-year college tuition (in 1000 USD).} \item{education}{number of years of education.} \item{income}{factor. Is the family income above USD 25,000 per year?} \item{region}{factor indicating region (West or other).} } } \details{ Rouse (1995) computed years of education by assigning 12 years to all members of the senior class. Each additional year of secondary education counted as a one year. Students with vocational degrees were assigned 13 years, AA degrees were assigned 14 years, BA degrees were assigned 16 years, those with some graduate education were assigned 17 years, and those with a graduate degree were assigned 18 years. Stock and Watson (2007) provide separate data files for the students from Western states and the remaining students. \code{CollegeDistance} includes both data sets, subsets are easily obtained (see also examples). } \source{ Online complements to Stock and Watson (2007). } \references{ Rouse, C.E. (1995). Democratization or Diversion? The Effect of Community Colleges on Educational Attainment. \emph{Journal of Business \& Economic Statistics}, \bold{12}, 217--224. Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ ## exclude students from Western states data("CollegeDistance") cd <- subset(CollegeDistance, region != "west") summary(cd) } \keyword{datasets} AER/man/OECDGrowth.Rd0000644000175400001440000000644711354653140014040 0ustar zeileisusers\name{OECDGrowth} \alias{OECDGrowth} \title{OECD Macroeconomic Data} \description{ Cross-section data on OECD countries, used for growth regressions. } \usage{data("OECDGrowth")} \format{ A data frame with 22 observations on the following 6 variables. \describe{ \item{gdp85}{real GDP in 1985 (per person of working age, i.e., age 15 to 65), in 1985 international prices.} \item{gdp60}{real GDP in 1960 (per person of working age, i.e., age 15 to 65), in 1985 international prices.} \item{invest}{average of annual ratios of real domestic investment to real GDP (1960--1985).} \item{school}{percentage of the working-age population that is in secondary school.} \item{randd}{average of annual ratios of gross domestic expenditure on research and development to nominal GDP (of available observations during 1960--1985).} \item{popgrowth}{annual population growth 1960--1985, computed as \code{log(pop85/pop60)/25}.} } } \source{ Appendix 1 Nonneman and Vanhoudt (1996), except for one bad misprint: The value of \code{school} for Norway is given as 0.01, the correct value is 0.1 (see Mankiw, Romer and Weil, 1992). \code{OECDGrowth} contains the corrected data. } \references{ Mankiw, N.G., Romer, D., and Weil, D.N. (1992). A Contribution to the Empirics of Economic Growth. \emph{Quarterly Journal of Economics}, \bold{107}, 407--437. Nonneman, W., and Vanhoudt, P. (1996). A Further Augmentation of the Solow Model and the Empirics of Economic Growth. \emph{Quarterly Journal of Economics}, \bold{111}, 943--953. Zaman, A., Rousseeuw, P.J., and Orhan, M. (2001). Econometric Applications of High-Breakdown Robust Regression Techniques. \emph{Economics Letters}, \bold{71}, 1--8. } \seealso{\code{\link{GrowthDJ}}, \code{\link{GrowthSW}}} \examples{ data("OECDGrowth") ## Nonneman and Vanhoudt (1996), Table II cor(OECDGrowth[, 3:6]) cor(log(OECDGrowth[, 3:6])) ## textbook Solow model ## Nonneman and Vanhoudt (1996), Table IV, and ## Zaman, Rousseeuw and Orhan (2001), Table 2 so_ols <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth+.05), data = OECDGrowth) summary(so_ols) ## augmented and extended Solow growth model ## Nonneman and Vanhoudt (1996), Table IV aso_ols <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(school) + log(popgrowth+.05), data = OECDGrowth) eso_ols <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(school) + log(randd) + log(popgrowth+.05), data = OECDGrowth) ## determine unusual observations using LTS library("MASS") so_lts <- lqs(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth+.05), data = OECDGrowth, psamp = 13, nsamp = "exact") ## large residuals nok1 <- abs(residuals(so_lts))/so_lts$scale[2] > 2.5 residuals(so_lts)[nok1]/so_lts$scale[2] ## high leverage X <- model.matrix(so_ols)[,-1] cv <- cov.rob(X, nsamp = "exact") mh <- sqrt(mahalanobis(X, cv$center, cv$cov)) nok2 <- mh > 2.5 mh[nok2] ## bad leverage nok <- which(nok1 & nok2) nok ## robust results without bad leverage points so_rob <- update(so_ols, subset = -nok) summary(so_rob) ## This is similar to Zaman, Rousseeuw and Orhan (2001), Table 2 ## but uses exact computations (and not sub-optimal results ## for the robust functions lqs and cov.rob) } \keyword{datasets} AER/man/CPSSW.Rd0000644000175400001440000001050513022373212013011 0ustar zeileisusers\name{CPSSW} \alias{CPSSW} \alias{CPSSW9298} \alias{CPSSW9204} \alias{CPSSW04} \alias{CPSSW3} \alias{CPSSW8} \alias{CPSSWEducation} \title{Stock and Watson CPS Data Sets} \description{ Stock and Watson (2007) provide several subsets created from March Current Population Surveys (CPS) with data on the relationship of earnings and education over several year. } \usage{ data("CPSSW9204") data("CPSSW9298") data("CPSSW04") data("CPSSW3") data("CPSSW8") data("CPSSWEducation") } \format{ \code{CPSSW9298}: A data frame containing 13,501 observations on 5 variables. \code{CPSSW9204}: A data frame containing 15,588 observations on 5 variables. \code{CPSSW04}: A data frame containing 7,986 observations on 4 variables. \code{CPSSW3}: A data frame containing 20,999 observations on 3 variables. \code{CPSSW8}: A data frame containing 61,395 observations on 5 variables. \code{CPSSWEducation}: A data frame containing 2,950 observations on 4 variables. \describe{ \item{year}{factor indicating year.} \item{earnings}{average hourly earnings (sum of annual pretax wages, salaries, tips, and bonuses, divided by the number of hours worked annually).} \item{education}{number of years of education.} \item{degree}{factor indicating highest educational degree (\code{"bachelor"} or\code{"highschool"}).} \item{gender}{factor indicating gender.} \item{age}{age in years.} \item{region}{factor indicating region of residence (\code{"Northeast"}, \code{"Midwest"}, \code{"South"}, \code{"West"}).} } } \details{ Each month the Bureau of Labor Statistics in the US Department of Labor conducts the Current Population Survey (CPS), which provides data on labor force characteristics of the population, including the level of employment, unemployment, and earnings. Approximately 65,000 randomly selected US households are surveyed each month. The sample is chosen by randomly selecting addresses from a database. Details can be found in the Handbook of Labor Statistics and is described on the Bureau of Labor Statistics website (\url{http://www.bls.gov/}). The survey conducted each March is more detailed than in other months and asks questions about earnings during the previous year. The data sets contain data for 2004 (from the March 2005 survey), and some also for earlier years (up to 1992). If education is given, it is for full-time workers, defined as workers employed more than 35 hours per week for at least 48 weeks in the previous year. Data are provided for workers whose highest educational achievement is a high school diploma and a bachelor's degree. Earnings for years earlier than 2004 were adjusted for inflation by putting them in 2004 USD using the Consumer Price Index (CPI). From 1992 to 2004, the price of the CPI market basket rose by 34.6\%. To make earnings in 1992 and 2004 comparable, 1992 earnings are inflated by the amount of overall CPI price inflation, by multiplying 1992 earnings by 1.346 to put them into 2004 dollars. \code{CPSSW9204} provides the distribution of earnings in the US in 1992 and 2004 for college-educated full-time workers aged 25--34. \code{CPSSW04} is a subset of \code{CPSSW9204} and provides the distribution of earnings in the US in 2004 for college-educated full-time workers aged 25--34. \code{CPSSWEducation} is similar (but not a true subset) and contains the distribution of earnings in the US in 2004 for college-educated full-time workers aged 29--30. \code{CPSSW8} contains a larger sample with workers aged 21--64, additionally providing information about the region of residence. \code{CPSSW9298} is similar to \code{CPSSW9204} providing data from 1992 and 1998 (with the 1992 subsets not being exactly identical). \code{CPSSW3} provides trends (from 1992 to 2004) in hourly earnings in the US of working college graduates aged 25--34 (in 2004 USD). } \source{ Online complements to Stock and Watson (2007). } \references{ Stock, J.H. and Watson, M.W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}, \code{\link{CPS1985}}, \code{\link{CPS1988}}} \examples{ data("CPSSW3") with(CPSSW3, interaction.plot(year, gender, earnings)) ## Stock and Watson, p. 165 data("CPSSWEducation") plot(earnings ~ education, data = CPSSWEducation) fm <- lm(earnings ~ education, data = CPSSWEducation) coeftest(fm, vcov = sandwich) abline(fm) } \keyword{datasets} AER/man/Fatalities.Rd0000644000175400001440000001556613022373127014220 0ustar zeileisusers\name{Fatalities} \alias{Fatalities} \title{US Traffic Fatalities} \description{ US traffic fatalities panel data for the \dQuote{lower 48} US states (i.e., excluding Alaska and Hawaii), annually for 1982 through 1988. } \usage{data("Fatalities")} \format{ A data frame containing 336 observations on 34 variables. \describe{ \item{state}{factor indicating state.} \item{year}{factor indicating year.} \item{spirits}{numeric. Spirits consumption.} \item{unemp}{numeric. Unemployment rate.} \item{income}{numeric. Per capita personal income in 1987 dollars.} \item{emppop}{numeric. Employment/population ratio.} \item{beertax}{numeric. Tax on case of beer.} \item{baptist}{numeric. Percent of southern baptist.} \item{mormon}{numeric. Percent of mormon.} \item{drinkage}{numeric. Minimum legal drinking age.} \item{dry}{numeric. Percent residing in \dQuote{dry} countries.} \item{youngdrivers}{numeric. Percent of drivers aged 15--24.} \item{miles}{numeric. Average miles per driver.} \item{breath}{factor. Preliminary breath test law?} \item{jail}{factor. Mandatory jail sentence?} \item{service}{factor. Mandatory community service?} \item{fatal}{numeric. Number of vehicle fatalities.} \item{nfatal}{numeric. Number of night-time vehicle fatalities.} \item{sfatal}{numeric. Number of single vehicle fatalities.} \item{fatal1517}{numeric. Number of vehicle fatalities, 15--17 year olds.} \item{nfatal1517}{numeric. Number of night-time vehicle fatalities, 15--17 year olds.} \item{fatal1820}{numeric. Number of vehicle fatalities, 18--20 year olds.} \item{nfatal1820}{numeric. Number of night-time vehicle fatalities, 18--20 year olds.} \item{fatal2124}{numeric. Number of vehicle fatalities, 21--24 year olds.} \item{nfatal2124}{numeric. Number of night-time vehicle fatalities, 21--24 year olds.} \item{afatal}{numeric. Number of alcohol-involved vehicle fatalities.} \item{pop}{numeric. Population.} \item{pop1517}{numeric. Population, 15--17 year olds.} \item{pop1820}{numeric. Population, 18--20 year olds.} \item{pop2124}{numeric. Population, 21--24 year olds.} \item{milestot}{numeric. Total vehicle miles (millions).} \item{unempus}{numeric. US unemployment rate.} \item{emppopus}{numeric. US employment/population ratio.} \item{gsp}{numeric. GSP rate of change.} } } \details{ Traffic fatalities are from the US Department of Transportation Fatal Accident Reporting System. The beer tax is the tax on a case of beer, which is an available measure of state alcohol taxes more generally. The drinking age variable is a factor indicating whether the legal drinking age is 18, 19, or 20. The two binary punishment variables describe the state's minimum sentencing requirements for an initial drunk driving conviction. Total vehicle miles traveled annually by state was obtained from the Department of Transportation. Personal income was obtained from the US Bureau of Economic Analysis, and the unemployment rate was obtained from the US Bureau of Labor Statistics. } \source{ Online complements to Stock and Watson (2007). } \references{ Ruhm, C. J. (1996). Alcohol Policies and Highway Vehicle Fatalities. \emph{Journal of Health Economics}, \bold{15}, 435--454. Stock, J. H. and Watson, M. W. (2007). \emph{Introduction to Econometrics}, 2nd ed. Boston: Addison Wesley. } \seealso{\code{\link{StockWatson2007}}} \examples{ ## data from Stock and Watson (2007) data("Fatalities", package = "AER") ## add fatality rate (number of traffic deaths ## per 10,000 people living in that state in that year) Fatalities$frate <- with(Fatalities, fatal/pop * 10000) ## add discretized version of minimum legal drinking age Fatalities$drinkagec <- cut(Fatalities$drinkage, breaks = 18:22, include.lowest = TRUE, right = FALSE) Fatalities$drinkagec <- relevel(Fatalities$drinkagec, ref = 4) ## any punishment? Fatalities$punish <- with(Fatalities, factor(jail == "yes" | service == "yes", labels = c("no", "yes"))) ## plm package library("plm") ## for comparability with Stata we use HC1 below ## p. 351, Eq. (10.2) f1982 <- subset(Fatalities, year == "1982") fm_1982 <- lm(frate ~ beertax, data = f1982) coeftest(fm_1982, vcov = vcovHC(fm_1982, type = "HC1")) ## p. 353, Eq. (10.3) f1988 <- subset(Fatalities, year == "1988") fm_1988 <- lm(frate ~ beertax, data = f1988) coeftest(fm_1988, vcov = vcovHC(fm_1988, type = "HC1")) ## pp. 355, Eq. (10.8) fm_diff <- lm(I(f1988$frate - f1982$frate) ~ I(f1988$beertax - f1982$beertax)) coeftest(fm_diff, vcov = vcovHC(fm_diff, type = "HC1")) ## pp. 360, Eq. (10.15) ## (1) via formula fm_sfe <- lm(frate ~ beertax + state - 1, data = Fatalities) ## (2) by hand fat <- with(Fatalities, data.frame(frates = frate - ave(frate, state), beertaxs = beertax - ave(beertax, state))) fm_sfe2 <- lm(frates ~ beertaxs - 1, data = fat) ## (3) via plm() fm_sfe3 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within") coeftest(fm_sfe, vcov = vcovHC(fm_sfe, type = "HC1"))[1,] ## uses different df in sd and p-value coeftest(fm_sfe2, vcov = vcovHC(fm_sfe2, type = "HC1"))[1,] ## uses different df in p-value coeftest(fm_sfe3, vcov = vcovHC(fm_sfe3, type = "HC1", method = "white1"))[1,] ## pp. 363, Eq. (10.21) ## via lm() fm_stfe <- lm(frate ~ beertax + state + year - 1, data = Fatalities) coeftest(fm_stfe, vcov = vcovHC(fm_stfe, type = "HC1"))[1,] ## via plm() fm_stfe2 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") coeftest(fm_stfe2, vcov = vcovHC) ## different ## p. 368, Table 10.1, numbers refer to cols. fm1 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "pooling") fm2 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within") fm3 <- plm(frate ~ beertax, data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm4 <- plm(frate ~ beertax + drinkagec + jail + service + miles + unemp + log(income), data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm5 <- plm(frate ~ beertax + drinkagec + jail + service + miles, data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm6 <- plm(frate ~ beertax + drinkage + punish + miles + unemp + log(income), data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") fm7 <- plm(frate ~ beertax + drinkagec + jail + service + miles + unemp + log(income), data = Fatalities, index = c("state", "year"), model = "within", effect = "twoways") ## summaries not too close, s.e.s generally too small coeftest(fm1, vcov = vcovHC) coeftest(fm2, vcov = vcovHC) coeftest(fm3, vcov = vcovHC) coeftest(fm4, vcov = vcovHC) coeftest(fm5, vcov = vcovHC) coeftest(fm6, vcov = vcovHC) coeftest(fm7, vcov = vcovHC) ## TODO: Testing exclusion restrictions } \keyword{datasets}